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INTRODUCTION

This volume contains lectures given at the Saint-Flour Summer School of
Probability Theory during the period August 17th - September 3d, 2000.
This school was Summer School 2000 of the European Mathematical Society.

We thank the authors for all the hard work they accomplished. Their
lectures are a work of reference in their domain.

The School brought together 90 participants, 39 of whom gave a lecture
concerning their research work.

At the end of this volume you will find the list of participants and their
papers.

Thanks. We thank the European Math Society, the European Commission
DG12, Blaise Pascal University, the CNRS, the UNESCO, the city of Saint-
Flour, the department of Cantal, the Region of Auvergne for their helps and
sponsoring.

Finally, to facilitate research concerning previous schools we give here the
number of the volume of “Lecture Notes” where they can be found:

Lecture Notes in Mathematics

1971 : no 307 – 1973 : no 390 – 1974 : no 480 – 1975 : no 539 –
1976 : no 598 – 1977 : no 678 – 1978 : no 774 – 1979 : no 876 –
1980 : no 929 – 1981 : no 976 – 1982 : no 1097 – 1983 : no 117 –
1984 : no 1180 –1985–1986 et 1987 : no 1362 – 1988 : no 1427 –
1989 : no 1464 – 1990 : no 1527 – 1991 : no 1541 – 1992 : no 1581 –
1993 : no 1608 – 1994 : no 1648 – 1995 : no 1690 – 1996 : no 1665 –
1997 : no 1717 – 1998 : no 1738 – 1999 : no 1781 – 2000 : no 1816

Lecture Notes in Statistics

1986 : no 50
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0 Introduction

The theory of Dirichlet forms is situated in a vast interdisciplinary area which
includes analysis, probability theory and geometry.
Historically its roots are in the interplay between ideas of analysis (calcu-
lus of variations, boundary value problems, potential theory) and probability
theory (Brownian motion, stochastic processes, martingale theory).
First, let us shortly mention the connection between the “phenomenon” of
Brownian motion, and the probability and analysis which goes with it. As
well known the phenomenon of Brownian motion has been described by a
botanist, R. Brown (1827), as well as by a statistician, in connection with
astronomical observations, T.N. Thiele (1870), by an economist, L. Bache-
lier (1900), (cf. [455]), and by physicists, A. Einstein (1905) and M. Smolu-
chowski (1906), before N. Wiener gave a precise mathematical framework for
its description (1921-1923), inventing the prototype of interesting probability
measures on infinite dimensional spaces (Wiener measure). See, e.g., [394] for
the fascinating history of the discovery of Brownian motion (see also [241],
[16] for subsequent developments).
This went parallel to the development of infinite dimensional analysis (calcu-
lus of variation, differential calculus in infinite dimensions, functional analy-
sis, Lebesgue, Fréchet, Gâteaux, P. Lévy...) and of potential theory.
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Although some intimate connections between the heat equation and Brow-
nian motion were already implicit in the work of Bachelier, Einstein and
Smoluchowski, it was only in the 30’s (Kolmogorov, Schrödinger) and the
40’s that the strong connection between analytic problems of potential the-
ory and fine properties of Brownian motion (and more generally stochastic
processes) became clear, by the work of Kakutani. The connection between
analysis and probability ( involving the use of Wiener measure to solve cer-
tain analytic problems) as further developed in the late 40’s and the 50’s,
together with the application of methods of semigroup theory in the study
of partial differential equations (Cameron, Doob, Dynkin, Feller, Hille, Hunt,
Martin, ...).
The theory of stochastic differential equations has its origins already in work
by P. Langevin (1911), N. Bernstein (30’s), I. Gikhman and K. Ito (in the
40’s), but further great developments were achieved in connection with the
above mentioned advances in analysis, on one hand, and martingale theory,
on the other hand.
By this the well known relations between Markov semigroups, their genera-
tors and Markov processes were developed, see, e.g. [162], [160], [207], [208],
[209], [276], [463].
This theory is largely concerned with processes with “relatively nice charac-
teristics” and with “finite dimensional state space” E (in fact locally compact
state spaces are usually assumed). From many areas, however, there is a de-
mand of extending the theory in two directions:

1)“more general characteristics”, e.g. allowing for singular terms in the gen-
erators

2) infinite dimensional (and nonlinear) state spaces.

As far as 1) is concerned let us mention the needs of handling Schrödinger
operators and associated processes in the case of non smooth potentials, see
[70].
As far as 2) is concerned let us mention the theory of partial differential
equations with stochastic terms (e.g. “noises”), see, e.g. [201], [28], [37], [38],
[129], [127] the description of processes arising in quantum field theory (work
by Friedrichs, Gelfand, Gross, Minlos, Nelson, Segal...) or in statistical me-
chanics, see, e.g. [16], [15], [344], [242]. Other areas which require infinite
dimensional processes are the study of variational problems (e.g. Dirichlet
problem in infinite dimensions) [278], the study of certain infinite dimen-
sional stochastic equations of biology, e.g. [474], the representation theory of
infinite dimensional groups, e.g. [68], the study of loop groups, e.g. [30], [12],
the study of the development of interest rates in mathematical finance, e.g.
[416], [337], [502].
The theory of Dirichlet forms is an appropriate tool for these extensions.
In fact it is central for it to work with reference measures µ which are nei-
ther necessarily “flat” nor smooth and in replacing the Markov semigroups
on continuous functions of the “classical theory” by Markov semigroups on
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L2(µ)-spaces (thus making extensive use of “Hilbert space methods” [211]).
The theory of Dirichlet forms was first developed by Feller in the 1-dimensional
case, then extended to the locally compact case with symmetric genera-
tors by Beurling and Deny (1958-1959), Silverstein (1974), Ancona (1976),
Fukushima (1971-1980) and others (see, e.g., [244], [258]).(Extensions to non
symmetric generators were given by J. Elliott, S. Carrillo-Menendez (1975),
Y. Lejan (1977-1982), a.a., see, e.g. [367]).
The case of infinite dimensional state spaces has been investigated by S. Al-
beverio and R. Høegh-Krohn (1975-1977), who were stimulated by previous
analytic work by L. Gross (1974) and used the framework of rigged Hilbert
spaces (along similar lines is also the work of P. Paclet (1978)). These studies
were successively considerably extended by Yu. Kondratiev (1982-1987), S.
Kusuoka (1984), E. Dynkin (1982), S.Albeverio and M.Röckner (1989-1991),
N. Bouleau and F. Hirsch (1986-1991), see [39], [147], [278], [367], [230], [172],
[465], [234], [235], [236], [237], [238], [239], [256].
An important tool to unify the finite and infinite dimensional theory was
provided by a theory developed in 1991, by S. Albeverio, Z.M. Ma and M.
Röckner, by which the analytic property of quasi regularity for Dirichlet forms
has been shown in “maximal generality” to be equivalent with nice properties
of the corresponding processes.
The main aim of these lectures is to present some of the basic tools to un-
derstand the theory of Dirichlet forms, including the forefront of the present
research. Some parts of the theory are developed in more details, some are
only sketched, but we made an effort to provide suitable references for further
study.
The references should also be understood as suggestions in the latter sense, in
particular, with a few exceptions, whenever a review paper or book is avail-
able we would quote it rather than an original reference. We apologize for
this “distortion”, which corresponds to an attempt of keeping the reference
list into some reasonable bounds - we hope however the references we give
will also help the interested reader to reconstruct historical developments.
For the same reason, all references of the form “see [X]” should be understood
as “see [X] and references therein”.
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1 Functional analytic background: semigroups,
generators, resolvents

1.1 Semigroups, Generators

The natural setting used in these lectures is the one of normed linear spaces
B over the closed algebraic field K = R or C. Some of the results are however
depending on the additional structure of completeness, therefore we shall
assume most of the time that B is a Banach space.
We are interested in describing operators like the Laplacian ∆ and the
associated semigroup (heat semigroup), and vast generalizations of them.
Let L ≡ (L,D(L)) be a linear operator on a normed space B over K, defined
on a linear subset D(L) of B, the definition domain of L.
We say that two such operators Li, i = 1, 2 are equal if D(L1) = D(L2) and
L1u = L2u, ∀u ∈ D(L1).
L is said to be bounded if ∃C ≥ 0 s.t. ‖Lu‖ ≤ C‖u‖,∀u ∈ D(L) = B.
We then have, setting ‖L‖ ≡ sup

u∈B,‖u‖≤1
‖Lu‖ ∈ [0,+∞]

L bounded ⇔ ‖L‖ < +∞.
L is said to be continuous at 0 (∈ D(L)!) if un → 0, un ∈ D(L) implies
Lun → 0, n→∞.
L is said to be continuous if un → u, un ∈ D(L) implies
u ∈ D(L) and Lun → Lu, n→∞.
One easily shows

L bounded ⇔ L continuous at 0⇔ L continuous.

We define L = α1L1 + α2L2, αi ∈ K, i = 1, 2, by
D(L) = D(L1) ∩D(L2), Lu = α1L1u+ α2L2u, ∀u ∈ D(L).
Moreover we define for L1, L2
L1L2u ≡ L1(L2u),∀u ∈ D(L1L2) ≡ L1D(L2) ≡ {u ∈ B|L2u ∈ D(L1)}
Definition 1. A linear bounded operator A on a normed linear space B is a
contraction if ‖A‖ ≤ 1. A family T = (Tt)t≥0 of linear bounded operators on
B is said to be a strongly continuous semigroup or C0-semigroup if

i) T0 = 1 (the identity on B)
ii) lim

t↓0
Ttu = u, ∀u ∈ B (strong continuity)

iii) (Tt)t≥0 is a semigroup i.e.
TtTs = TsTt = Ts+t,∀t, s > 0.
(Tt)t≥0 is said to be a C0-semigroup of contractions or a

C0-contraction semigroup if, in addition,
iv) Tt is a contraction for all t ≥ 0.
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Exercise 1. Show that i),ii),iv) imply that t → Ttu is continuous, for all
t ≥ 0,∀u ∈ B.

Definition 2. Let T ≡ (Tt)t≥0 be a C0-contraction semigroup on B. The
linear operator L is said to be generator of T if:

i) D(L) ≡
{
u ∈ B| lim

t↓0
1
t (Ttu− u) exists in B

}

ii) Lu = lim
t↓0

1
t (Ttu− u)∀u ∈ D(L)

Exercise 2. Show that the “strong derivative” d
dtTtu ≡ lim

h↓0

(Tt+h−Tt)u
h exists

in B, for all u ∈ D(L) and d
dtTtu = LTtu = TtLu∀t ≥ 0,∀u ∈ D(L).

In particular Lu = d
dtTtu|t=0,∀u ∈ D(L).

It is easy to convince oneself that even simple operators like the
Laplacian ∆ are not bounded, e.g. in B = L2(Rd). For this reason it is useful
to introduce the concept of a closed operator.

Definition 3. A linear operator L in B is called closed if un ∈ D(L), un → u
as n → ∞, Lun convergent as n → ∞, in B, imply that u ∈ D(L), and
Lun → Lu.

Exercise 3. Show that L closed ⇔ G(L) closed in B × B, where G(L) ≡
{{u, Lu} , u ∈ D(L)} is the graph of L.

Proposition 1. Let T = (Tt)t≥0 be a C0-contraction semigroup on a Banach

space B, with generator L. Then Ttu = u +
t∫
0
TsLuds, u ∈ D(L) where the

integral on the r.h.s is to be understood in the natural sense of strong integrals
on Banach spaces (Bochner integral 1).

Proof. This follows immediately from Exercise 2, via integration. �

Proposition 2. The generator L of a C0-contraction semigroup T = (Tt)t≥0
on a Banach space is a closed operator.

Proof. This easily follows from Proposition 1, the strong continuity (Exercise
1), the fact that for un → u, Lun convergent to v, ‖TsLun‖ ≤ ‖Lun‖ ≤ C, for
some C ≥ 0, independent of n, as Lun converges, and dominated convergence.

�

Proposition 3. The generator L of a C0-contraction semigroup T = (Tt)t≥0
on a Banach space is densely defined.
1 See, e.g. [506], p.132
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Proof. One easily shows that for any u ∈ B, with vt ≡
t∫
0
Tsuds :

1
r

[vt+r − vt] =
1
r

[Trvt − vt]→ Ttu− u, as r ↓ 0

hence vt ∈ D(L).
On the other hand
vt

t → u, t ↓ 0, yielding an approximation of an arbitrary u ∈ B by elements
vt

t in D(L). �

Corollary 1. If T = (Tt)t≥0, S = (St)t≥0 are two C0-contraction semigroups
on a Banach space with the same generator L, then Tt = St ∀t ≥ 0.

Proof. From Exercise 2 we have easily d
dsTt−sSsu = 0,∀0 ≤ s ≤ t,∀u ∈ D(L)

from which Ttu = Stu∀u ∈ D(L) follows, hence Tt = St, these being bounded
and D(L) being dense. �


The above corollary implies that the usual notation Tt = etL, t ≥ 0 for
the semigroup with generator L is justified.
The question when a given densely defined linear operator L is the generator
of a C0-contraction semigroup is answered by the theory of Hille-Yosida. For
this we recall some basic definitions.
If L is a linear injection (1-1 map), then L−1 is defined on D(L−1) = LD(L),
by L−1u = v, u ∈ D(L−1), with v s.t. Lv = u.
For a linear operator L the resolvent set is defined by:
ρ(L) ≡ {α ∈ K|α− L : D(L)→ B is an injection onto B i.e.
D((α− L)−1) = B. Moreover (α− L)−1 is bounded.

}
Exercise 4. Show that if ρ(L) �= 0 then ρ(L) is closed (use that (α − L)−1

for α ∈ ρ(L) is bounded).

The spectrum σ(L) of L is by definition the complement in K of ρ(L).
For α ∈ ρ(L), Gα ≡ (α− L)−1 (which exists as a bounded operator on B) is
called the resolvent of L at α.
(Gα)α∈ρ(L) is called the resolvent family associated to L.

Exercise 5. Show that (Gα)α∈ρ(L) satisfies the resolvent identity
Gα −Gβ = (β − α)GαGβ = (β − α)GβGα,∀α, β ∈ ρ(L).

Proposition 4. Let L be the generator of a C0-contraction semigroup on a
Banach space. Then (0,∞) ⊂ ρ(L) and for any

Reα > 0 : (α− L)−1u = Gαu =
+∞∫
0
e−αtTtudt

(where the integral is in Bochner’s sense) and ‖Gα‖ ≤ 1
Reα .
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Proof. Set Rα ≡
+∞∫
0
e−αtTtdt.

It is easily seen that (α − L)Rαu = u, ∀u ∈ B,Reα > 0. Since L is closed
for all u ∈ D(L) : LRαu = RαLu, from which one deduces that α − L is
injective for Reα > 0 (in particular for α > 0) and Rα = Gα. The bound in
Proposition 4 then follows from the definition of Rα. �

Remark 1. Gα is the Laplace transform of Tt (in the sense given by
Proposition 4).

Theorem 1. (Hille-Yosida, for C0-contraction semigroups):
Let L be a linear operator in a Banach space B. The following are equivalent:

i) L is the generator of a C0-contraction semigroup T = (Tt)t≥0 on B.
ii) L is densely defined and

α) (0,∞) ⊂ ρ(L)
β) ‖α(α− L)−1‖ ≤ 1 ∀α > 0

Corollary 2. If ii) is fullfilled then L is closed and uniquely determined.

Proof. ii) implies i) by Theorem 1 and hence that L is closed by Proposition
2. The rest follows from Corollary 1. �

Proof. (of Theorem 1)
i) ⇒ ii): From i) we have L closed, densely defined (Propositions 2,3). That
(0,∞) ⊂ ρ(L) and ii) holds follows from Proposition 4.
ii) ⇒ i): For details we refer to, e.g.[413]. In the proof the following Proposi-
tion is useful.

Proposition 5. Let L satisfy the conditions ii) of Theorem 1. Set Gα =
(α− L)−1, α > 0. Then

i) αGαu→ u in B, as α→ +∞
ii) Define L(α) ≡ −α+ α2Gα, α > 0 (“Yosida approximation of L”). Then

L(α) is bounded, D(L(α)) = B,L(α)u → Lu, α ↑ +∞, u ∈ D(L), and
etL(α)

u converges as α ↑ +∞ for all u ∈ D(L) to T̃tu, where T̃t is a
C0-contraction semigroup, with generator L. Moreover T̃t coincides with
the semigroup Tt generated by L mentioned in i).

Proof. For u ∈ D(L) we have

‖αGαu− u‖ = ‖α(α− L)−1u− (α− L)(α− L)−1u‖
= ‖L(α− L)−1u‖
= ‖(α− L)−1Lu‖
≤ 1
α
‖Lu‖ → 0, α ↑ +∞

(where we used Proposition 4). But αGα is a contraction by Proposition 4
and D(L) is dense by assumption, hence αGαu→ u as α ↑ +∞, for all u ∈ B.
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From this it is easy to see that αGαLu → Lu, u ∈ D(L), as α ↑ +∞, and
thus L(α)u = −αu+ α2Gαu = αGαLu→ Lu as α ↑ +∞.
The rest follows by realizing that

etL(α)
u =

∞∑
n=0

tn

n!
L(α)n

u = eαte−α2Gαu

Remark 2. Another useful “approximation formula” for Tt in terms of the
resolvent is the following one:

Ttu = lim
n→∞

(n
t

)n (
Gn

t
u
)n
,∀u ∈ B

(see, e.g., [413], p. 33).

Remark 3. In the formulation of Hille-Yosida’s theorem i) can be replaced
by a statement involving the generator of a C0-contraction resolvent family
according to the following definition.

Definition 4. A C0-contraction resolvent family is a family (Gα)α>0 such
that

αGαu→ u, α ↑ +∞, ‖αGα‖ ≤ 1, α > 0

and the resolvent identity in Exercise 5 holds.
Hille-Yosida’s theorem holds then with i) replaced by:

i’) L is the generator of a C0-contraction resolvent family (Gα)α>0 in the
sense that Gα = (α−L)−1 on B. There is a one-to-one correspondence
between C0-contraction semigroups (Tt)t≥0 and C0-contraction resolvent
families (Gα)α>0 given by the Laplace-transform formula in Proposition
4 (and Remark 1) resp. Proposition 5 or Remark 2 after Proposition 5.

Hille-Yosida’s characterization of generators L involves the resolvent Gα.
A pure characterization of L, under some “direct restrictions” on L is given
by the Lumer-Phillips theorem, for which we need a definition.

Definition 5. The duality set F (u) for any element u in a Banach space B
is defined by

F (u) ≡ {u∗ ∈ B∗|〈u∗, u〉 = ‖u‖2 = ‖u∗‖2} ,
where B∗ is the dual of B (the space of continuous linear functionals on B)
and 〈, 〉 is the dualization between B and B∗.
An operator L is dissipative on B if for any u ∈ D(L) there exists some
u∗ ∈ F (u) such that Re〈u∗, Lu〉 ≤ 0.
(−L is then said to be accretive).
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Proposition 6. L is dissipative iff

‖(α− L)u‖ ≥ α‖u‖,∀u ∈ D(L)∀α > 0

Proof. See, e.g. [413] (Theorem 4.2). �

Proposition 7. Let L be dissipative. Then L is closed iff Range (α − L) is
closed, for all α > 0.

Proof. The proof is left as an exercise (cf,e.g., [413]). �

We recall that an operator L0 in a Banach space is said to be closable if

there exists at least one closed extension L̃0 of it, i.e. L̃0 closed and L̃0u =
L0u, ∀u ∈ D(L0) ⊂ D(L̃0) . One calls closure L0 of L0 the minimal closed
extension of L0.

Theorem 2. (Lumer-Phillips)
Let L be a linear closable operator in a Banach space. Then the closure L of
L generates a C0-contraction semigroup on B iff

a) D(L) is dense in B
b) L is dissipative
c) The range of α0 − L is dense in B, for some α0 > 0.

Proof. See, e.g., [413] Theorem 4.3 �

Remark 4. If L is the generator of a C0-contraction semigroup on B then a)
holds, c) holds for all α > 0 and b) holds, see, e.g. [413], [424].

Remark 5. If L is a linear operator satisfying a),b) then L is closable. This,
together with c) gives that L generates a C0-contraction semigroup.
See [424],(p.240 and p.345).
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1.2 The case of a Hilbert space

We shall consider here the special case where the Banach space B of section
1.1 is a Hilbert space H, with scalar product (, ).
We first observe that if R is a contraction then

|(Ru, u)| ≤ ‖Ru‖‖u‖ ≤ ‖u‖2.
Hence Re(Ru, u) and Im(Ru, u) are bounded absolutely by ‖u‖2.
If (Tt)t≥0 is self-adjoint, i.e. T ∗

t = Tt (where R∗ means the adjoint to R)
and Tt is a C0-contraction semigroup on H with generator L, then for all
u, v ∈ D(L), using the self-adjointness of Tt :

(−Lu, v) = lim
t↓0

1
t
(u− Ttu, v)

= (u,−Lv)
i.e. L is symmetric in H (in the sense that L∗ is an extension of L or, equiv-
alently, (u, Lv) = (Lu, v),∀u, v ∈ D(L)).

Remark 6. If A is a symmetric operator in H we have (u,Au) = (Au, u),∀u ∈
D(A). On the other hand (u,Au) = (Au, u) (by the properties of the scalar
product), hence (u,Au) = (u,Au) for symmetric operators, i.e. (u,Au) is
real.
For A bounded with D(A) = B we have A symmetric iff A is self-adjoint
(but this is not so in general for A unbounded!).
In particular a C0-contraction semigroup is symmetric iff it is self-adjoint. It
is easily seen that the following are equivalent:

i) (Tt)t≥0 is a symmetric C0-contraction semigroup
ii) (Gα)α>0 is a symmetric C0-contraction resolvent family

(use, e.g., the Laplace transformation Proposition 4, resp. Proposition 5).
We also see that if (Tt) is a symmetric C0-contraction semigroup then

|(u, Ttu)| = |(Ttu, u)| ≤ ‖u‖2, for all u ∈ H. (1)

On the other hand lim
t↓0

(
Tt−1

t u, u
)

= (Lu, u),∀u ∈ D(L).

But
(

(Tt−1)u
t , u

)
is real (by the symmetry property) and negative, by (1),

hence (Lu, u) ≤ 0.
One calls a densely defined operator A in a Hilbert space positive if (u,Au) ≥
0,∀u ∈ D(A).

Remark 7. A positive implies −A dissipative. The above says that (−L) is
positive, or equivalently, that L is negative.
By Lumer-Phillips theorem the range of α0−L is dense in H, for some α0 > 0.
Hence we have proven:
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Proposition 8. The generator of a symmetric C0-contraction semigroup in
a Hilbert space is a negative densely defined closed symmetric operator L s.t.
the range of α0 − L is dense, for some α0 > 0.

Remark 8. One easily shows that the fact that the range of α0 − L is dense
for some α0 > 0 implies that L is self-adjoint (see, e.g. [424]).
Viceversa, if L is linear, symmetric (hence closable) densely defined on H,
negative and such that the range of α0−L is dense inH for some α0 > 0 then,
by Lumer-Phillips theorem, its closure L (which is self-adjoint by the above
remark) generates a symmetric C0-contraction semigroup (symmetry can be
seen, e.g., by the symmetry of Gα = (α−L)−1 and the above considerations
on the symmetry properties of Gα resp. Tt).

Remark 9. L in Remark 8 can be easily replaced by any self-adjoint negative
extension L̃ of L. In fact then both L̃ and its adjoint L̃∗ = L̃ are negative
hence dissipative and then they generate a C0-contraction semigroup, see
[424],p.248.

Remark 10. Spectral theory also gives a direct relation between self-adjoint
properties of generators L and corresponding semigroups, recalling that
L =

∫
σ(L)

λdE(λ), Tt =
∫

σ(L)
etλdE(λ), E(λ) being the spectral family associ-

ated with L. Here σ(L) ⊂ (−∞, 0].



Theory of Dirichlet forms and applications 15

1.3 Examples

We shall concentrate, in this section, on:
Semigroups in Banach or Hilbert spaces associated with differential
operators over finite dimensional spaces.
The typical situation is given by the finite dimensional space R

d and the
(“finite dimensional”) differential operator ∆ (the Laplacian) acting, e.g. in
the Hilbert space H = L2(Rd) resp. on the Banach space B = Cb(Rd).
Let us first consider the case H = L2(Rd).
We see that (∆,C∞

0 (Rd)) (or, e.g., (∆,S(Rd)) is densely defined and sym-
metric in H (as a consequence of an integration by parts).
Let U be the map from L2(Rd) into L2(R̂d) defined by L2-Fourier transform
i.e.

(Uf)(k) ≡ (2π)− d
2

∫
Rd

eik·xf(x)dx, k ∈ R̂
d

(R̂d a copy of R
d, for the Fourier transform variables). Then U is unitary (by

Parseval’s theorem), i.e. U∗U = UU∗ = 1.
Let M be the multiplication operator given by Mû(k) ≡ |k|2û(k), k ∈ R̂

d, û ∈
L2(R̂d), on its natural domain D(M) ≡

{
û ∈ L2(R̂d)|Mû ∈ L2(R̂d)

}
.

M is self-adjoint positive (since (M + α), has dense range for all α > 0).
Let us set

H0 = U∗MU

with

D(H0) =
{
u ∈ L2(Rd)|Uu ∈ D(M)

}
= {U∗D(M)}

(i.e. u ∈ D(H0)↔ û ∈ D(M)).

Remark 11. One easily shows that D(H0) = H2,2(Rd) is the Sobolev space
obtained by closing C∞

0 (Rd) in the norm given by the scalar product

(u, v)2 ≡
∑

|α|≤2

∫
DαuDαv dx.

H0 is self-adjoint positive in L2(Rd), being unitary equivalent to the self-
adjoint positive operator M (positivity is immediate; self-adjointness follows
e.g. by spectral theory, the spectrum of H0 being the same as the one of M
and the spectral family of H0 being U∗EλU , where Eλ is the spectral family
to M).
By Lumer-Phillips theorem (or spectral theory) we have that e−tM , t ≥ 0, is
a symmetric C0-contraction semigroup on L2(Rd), hence

e−tH0 = U∗e−tMU, t ≥ 0
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is also a symmetric C0-contraction semigroup on L2(Rd).
Its spectral representation can be obtained by the one of M , in fact since
e−tM û(k) = e−t|k|2 û(k), we have for all u ∈ L2(Rd).

e−tH0u(x) =
∫
Rd

πt(x, y)u(y) dy, (2)

where πt(x, y) ≡ (4πt)
−d
2 e− |x−y|2

4t , t > 0 is the heat kernel density.
(2) holds for t = 0 with πt(x, y)dy replaced by the Dirac measure δx(dy)
(since e−tH0 |t=0 is the unity operator in L2(Rd)).

Remark 12. Formula (2) easily extends to t ∈ C with Re(t) > 0.
In particular we have a representation for the unitary group eitH0 , t ∈ R.
This unitary group (uniquely associated to H0 by Stone’s theorem) gives the
time evolution in the quantum mechanics of one (non relativistic) particle,
see, e.g. [423],[424], [425],[426].

One can ask the question:
do there possibly exist other semigroups etL̃, t ≥ 0 (unitary groups
eitL̃, t ∈ R) generated by self-adjoint extensions L̃, different from the closure
L of ∆ from C∞

0 (Rd) in B?

That the answer is no, for B = L2(Rd) (or Cb(Rd)) , can be seen using
the following important Theorem, for which we need a definition.

Definition 6. Let L be a closed linear operator on a Banach space B. A
linear subset D in D(L) is called a core for L if L � D = L (i.e. the closure
of the restriction L � D of L to D is precisely L).

Theorem 3. (Nelson)
Let L be the generator of a C0-contraction semigroup on a Banach space B.
Let D0 ⊂ D1 ⊂ D(L), D0 = B, such that etL maps D0 into D1. Then D1 is
a core for L.

Proof. See, e.g., [393], [227] p.17, [424]. For extensions see [501]. �

For the application of the theorem to our situation, let us take

etL = e−tH0 , with H0 = U∗MU as above. To see that Nelson’s theorem can
be applied with D0 = D1 = S(Rd) we observe that D(L) contains S(Rd) (as
seen from the fact that US(Rd) = S(R̂d), and M maps S(R̂d) into itself, and
U∗S(R̂d) = S(Rd)) and by (2) we have e−tH0S(Rd) ⊂ S(Rd) (the smoothness
of the elements of e−tH0S(Rd) can be checked directly, using, e.g., dominated
convergence). Thus we have shown that S(R̂d) is a core for e−tH0 .
To see that also C∞

0 (Rd) is a core in L2(Rd), let us set A ≡ −∆ on C∞
0 (Rd).

Let v ∈ D(A∗), then



Theory of Dirichlet forms and applications 17

(−∆u, v) = (Au, v) = (u,A∗v),∀u ∈ C∞
0 (Rd).

Hence, −∆v ,defined by looking at v ∈ L2(Rd) as a distribution, is equal to
A∗v ∈ L2(Rd).
Thus v ∈ H2,2(Rd) and A∗v = H0v (by the fact that D(H0) = H2,2(Rd)).
This shows thatD(A∗) ⊂ D(H0) andH0 is an extension of A∗. Conversely, for
v ∈ D(H0) we have H0v ∈ L2(Rd), hence (H0u, v) = (u,H0v)∀u ∈ C∞

0 (Rd),
thus v ∈ D(A∗), A∗v = H0v, i.e. A∗ is an extension of H0. Thus H0 must
coincide with A∗, and then A∗ = A∗∗ (since H0 = H∗

0 by self-adjointness),
which shows that the closure of A is self-adjoint and coincides with H0, thus
C∞

0 (Rd) is a core for H0, in L2(Rd).

Remark 13. From the explicit formula (2) we see that the r.h.s. of (2) also
maps the Banach space B = C∞(Rd) (the continuous functions on R

d van-
ishing at infinity with supremum norm), into itself, and is a C0-contraction
semigroup P̃t.
Let us call L̃ the generator of P̃t.
D(L̃) ⊃ S(R̂d) as easily verified by the definition of the generator and (2).
In fact L̃ = −∆ on S(R̂d) and by Nelson’s theorem applied to D0 = D1 =
S(R̂d), B = C∞(Rd) we have that S(R̂d) is a core for P̃t in C∞(Rd).

Remark 14. Pt and P̃t can be identified in the following sense.
Pt and P̃t on C∞(Rd)∩L2(Rd), as C0-contraction semigroups, coincide, hence
by the density of C∞(Rd) ∩ L2(Rd) in L2(Rd), Pt = P̃t on L2(Rd).
Similarly one can show Pt = P̃t in C∞(Rd), by exploiting the boundedness
of Pt, P̃t in C∞(Rd) and their equality on the dense subset C∞(Rd)∩L2(Rd)
of C∞(Rd).
In this sense then the heat semigroup e−tH0 can be identified in C∞(Rd) and
L2(Rd) with the semigroup with generator ∆ having S(R̂d) (or C∞

0 (Rd)) as
core, both in C∞(Rd) and L2(Rd).
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2 Closed symmetric coercive forms associated with
C0-contraction semigroups

2.1 Sesquilinear forms and associated operators

Sesquilinear forms Let H be a Hilbert space over K = R or C, with scalar
product (·, ·) (conjugate linear in the first argument, linear in the second
argument), and corresponding norm ‖ · ‖2 = (·, ·).

Let D be a linear subspace of H.

Definition 7. A map E : D×D → K, conjugate linear in the first argument,
linear in the second argument is called a sesquilinear form (on D, in H).

D is called the domain of E. One writes (E , D) whenever it is important
to specify the domain.
E [u] ≡ E(u, u), u ∈ D is called the associated quadratic form.

Remark 15. For K = C, (E [u], u ∈ D) uniquely determines (E , D) by the
polarization formula

E(u, v) = 1
4 (E [u+ v]− E [u− v] + iE [u+ iv]− iE [u− iv]).

This is not so, in general, for K = R (see, e.g., [495])

Definition 8. A sesquilinear form E is said to be symmetric if ∀u, v ∈ D:

E(u, v) = E(v, u)

(where − stands for complex conjugation).

Remark 16. The quadratic form associated with a symmetric sesquilinear
form is real-valued.

Definition 9. A sesquilinear form E is said to be lower bounded if there
exists γ ∈ R such that:

E [u] ≥ γ‖u‖2, ∀u ∈ D(E)
One writes then E ≥ γ. γ is said to be the lower bound for E.
E is called positive if γ = 0.

Remark 17. If E is positive then

|E(u, v)| ≤ (E [u])1/2(E [v])1/2

Proof. This is Cauchy-Schwarz’ inequality.
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Example 1. Let A be a linear operator with domain D(A) in H. Define for
u, v ∈ D(A):

E(u, v) = (u,Av).

Then E is a sesquilinear form with domain D(E) = D(A). The following
equivalences follow immediately from the definitions.

E is symmetric iff A is symmetric.

E ≥ γ iff A ≥ γ (in the sense that (u,Au) ≥ γ‖u‖2 for some γ ∈ R,
∀u ∈ D(A); in which case one says that A is lower bounded with lower
bound γ).

E ≥ 0 iff A ≥ 0 (in which case one says that A is positive).

Closed forms Let E be a sesquilinear, lower bounded form on H.

Definition 10. A sequence (un)n∈N is said to be E-convergent to u ∈ H,
for n → ∞, and one writes un

E→ u, n → ∞, if un ∈ D(E) , un → u (i.e.
(un) converges to u in H) and E [un − um] → 0, n,m → ∞ (i.e. un is an
“E-Cauchy sequence”).

N.B. u is not required to be in D(E).
Definition 11. E is said to be closed if un

E→ u, n → ∞, implies u ∈ D(E)
and E [un − u]→ 0, as n→∞.

Let E be a symmetric, positive sesquilinear form. Define for any α > 0:

Eα(u, v) ≡ E(u, v) + α(u, v), ∀u, v ∈ D(E).
Then D(E) taken with the norm given by

‖u‖1 ≡ (E1[u]) 1
2 , u ∈ D(E)

is a pre Hilbert space, in the sense that (D(E), ‖ · ‖1) has all properties of a
Hilbert space, except for completeness. We call D(E)1 this space.

Remark 18. a) u ≡ (un)n∈N is E-convergent iff u is Cauchy in D(E)1.

b) un
E→ u, n→∞, u ∈ D(E) iff ‖un − u‖1 → 0, n→∞.

Proposition 9. A lower bounded form E is closed iff D(E)1 is complete.

Proof: This is left as an exercise (cf., e.g., [312], p. 314).

Example 2. Let S be a linear operator with domain D(S) ⊂ H. Define
E(u, v) ≡ (Su, Sv), D(E) = D(S). Then E is a positive, symmetric sesquilin-
ear form. E is closed iff S is closed (the proof of the latter statement is left
as an exercise).
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Closed forms

Definition 12. A sesquilinear lower bounded form
◦
E is said to be closable

if it has a closed extension E, i.e., E is closed, D(E) ⊃ D(
◦
E) and E =

◦
E on

D(
◦
E).

Proposition 10. A sesquilinear lower bounded form
◦
E is closable iff un

E→ 0,
n→∞ implies E [un]→ 0, n→∞.

Proof. This is left as an exercise (cf., e.g., [312], p. 315).

Definition 13. The smallest closed extension of a sesquilinear lower bounded
form E is by definition the closure Ē of E.
Example 3. Let E be as in Example 2, i.e. E(u, v) = (Su, Sv), ∀u, v ∈ D(E) =
D(S), S a linear operator on H. Then E is closable iff S is closable. In the
latter case one has Ē(u, v) = (S̄u, S̄v), where S̄ is the closure of the operator
S ( a linear operator A is said to be closable if it has a closed extension, cf.
Definition 3 in Chapter 1 for the concept of closed operators). Moreover one
has E closed iff S is closed.

The proofs are left as execises.

Remark 19. Not every sesquilinear symmetric positive form is closable. Con-
sider, e.g., H = L2(R), E(u, v) ≡ ū(0)v(0), u, v ∈ D(E) = C∞

o (R). Then E is
sesquilinear, symmetric, and positive but not closable. In fact take a sequence
un ∈ C∞

o (R), with un(x) = 0 for |x| ≥ c
n , un(0) = 1, un(x) ≤ 1, ∀x ∈ R,

then we have, (by the mean-value theorem) ‖un‖ ≤ 2c
n → 0, hence un → 0,

n→∞, moreover

E [um − un] = (ūm(0)− ūn(0)) · (um(0)− un(0)) = 0

hence un
E→ 0, n→∞. On the other hand E [un] = ūn(0)un(0) = 1 does not

converge to 0 as n→∞, which shows by Proposition 10 that E is not closable.

N.B. Concerning closability the situation with forms and densely defined
operators is thus very different: every symmetric densely defined operator A
is namely closable! (since A symmetric means by definition that the adjoint
A∗, which exists uniquely since A is densely defined, is an extension of A,
but every adjoint operator is closed, see, e.g. [312], p. 168).

Forms constructed from positive operators

Proposition 11. Let A be a positive symmetric operator. Then

◦
EA(u, v) ≡ (u,Av), u, v ∈ D(

◦
EA) = D(A)

is a sesquilinear, symmetric, positive, closable form.
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Proof.
◦
EA is clearly sesquilinear, symmetric, positive. To prove the closability,

let un
E→ 0, n→∞. We have to show

◦
EA[un]→ 0, n→∞. But by the triangle

inequality resp. Cauchy-Schwarz inequality:

◦
EA[un] ≤ |

◦
EA(un, un − um)|+ |

◦
EA(un, um)|

≤
◦
EA[un]1/2[

◦
EA[un − um]]1/2 + |(un, Aum)|

(3)

where for the latter term we have used the definition of
◦
EA.

But from the assumption un
E→ 0, n → ∞, we have for any given ε > 0,

that there exists N(ε) s.t. for n,m > N(ε):

◦
EA[un − um] ≤ ε2. (4)

Moreover, by the symmetry of A

|(un, Aum)| = |(Aun, um)| ≤ ‖Aun‖‖um‖ m→∞→ 0 (5)

for any fixed n ∈ N since um
E→ 0, m→∞ implies ‖um‖ → 0, m→∞.

Hence from (3)–(5), for any given ε > 0, for some N(ε) large enough,

◦
EA[un] ≤

◦
EA[un]1/2ε, n > N(ε). (6)

For given n > N(ε), either
◦
EA[un] = 0, or

◦
EA[un] > 0, in which case from (6)

we deduce
◦
EA[un]1/2 ≤ ε. In both cases

◦
EA[un] ≤ ε, n > N(ε), which shows

that
◦
EA[un]→ 0, n→∞. �


Positive closed operators from positive symmetric closed forms

Theorem 4 (Friedrichs representation theorem). Let E be a densely
defined sesquilinear, symmetric, positive, closed form. Then there exists a
unique self-adjoint positive operator AE s.t.

i) D(AE) ⊂ D(E), E(u, v) = (u,AEv), ∀u ∈ D(E), v ∈ D(AE).

ii) D(AE) is a core for E (in the sense that the closure of the restriction
of E to D(AE) coincides with E, i.e. E|D(AE) = E).

iii) D(E) = D(A1/2
E ) (where A1/2

E is the unique square root of the positive
self-adjoint operator AE , defined, e.g., by the spectral theorem), and:

E(u, v) = (A1/2
E u,A

1/2
E v), ∀u, v,∈ D(E).
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And viceversa: if A is a self-adjoint positive operator, then E defined by
E(u, v) ≡ (A1/2u,A1/2v) with D(E) = D(A1/2) is a densely defined sesquilin-

ear form. E is the closure
◦
E with

◦
E(u, v) = (u,Av), v ∈ D(A), u ∈ D(

◦
E) = D(A).

Remark 20. One says AE (in the first part of the theorem) is the self-adjoint
operator associated with the form E . Viceversa, in the second part of the
theorem, E is the form associated with the operator A.

One often writes −LE instead of AE

The proof of the first part relies on following

Lemma 1. Let H1 be a dense subspace of a Hilbert space H. Let a scalar
product (·, ·)1 (in general different from the scalar product (·, ·) in H) be
defined on H1, so that (H1, (·, ·)1) is a Hilbert space. Suppose that there exists
a constant κ > 0 s.t. κ‖u‖2 ≤ ‖u‖21 for all u ∈ H. Then there exists uniquely
a self adjoint operator A in H s.t. D(A) ⊂ H1, (Au, v) = (u, v)1,∀u ∈
D(A), v ∈ H1, and, moreover, A ≥ κ.

A is described by

D(A) = {u ∈ H1 | ∃û ∈ H | (u, v)1 = (û, v)∀v ∈ H1}, Au = û.

D(A) is both dense in H1 with respect to the ‖·‖1-norm and in H with respect
to the ‖ · ‖-norm.

Proof. (cf. e.g., [495], [427]): We first remark that û in the definition of D(A)
is uniquely defined, since H1 is dense in H by assumption. Moreover, u �→ û
is linear, from the definition, thus A is linear.

Let J : H → H1 with D(J) = H1 ⊂ H, Jf = f , ∀f ∈ D(J). Then J is
closed from D(J) = H1 ⊂ H to H1 (in the sense that fn ∈ D(J), fn → f ,
n→∞, in H, Jfn → h in H1 implies f ∈ D(J) and Jf = h:

in fact Jfn = fn and Jfn → h in H1 implies fn → h in H by ‖fn−h‖2 ≤
1
κ‖fn − h‖21. But then Jfn = fn → f in H, by assumption, and fn → h
in H1, again by assumption, imply f = h in H1 = D(J) hence f ∈ D(J),
Jf = f = h by the definition of J and the fact that f = h as elements of H1.

J is densely defined from H into H1, with D(J) = H1 and closed (a
fortiori closable), then J∗ is uniquely and densely defined, closed from H1
into H (by Th. 5.29 in [312], p. 168).

Set A0 = J∗. Then we have ∀u ∈ D(J∗), v ∈ H1:

(A0u, v) = (J∗u, v) = (u, Jv)1 = (u, v)1.

Set A = A0, looked upon as an operator from H into H. It is then clear
that D(A) ⊂ H1 ⊂ H,
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(Au, v) = (A0u, v) = (u, v)1 ∀u ∈ D(A), v ∈ H1. (∗)

That A ≥ κ follows from the fact that (Au, u) = (u, u)1 ≥ κ(u, u), ∀u ∈
D(A), by the definition of (·, ·)1. That A is symmetric in H follows from
(Au, v) = (u, v)1, ∀u ∈ D(A), v ∈ H1 and, for v ∈ D(A):

(u,Av) = (u,A0v) = (u, J∗v) = (Ju, v)1 = (u, v)1.

Also the description of D(A) given in the lemma is proven, since D(A) is
characterized by the definition of A0 and J∗ as the set of all u ∈ H1 s.t.

(Au, v) = (A0u, v) = (u, v)1 ∀v ∈ H1.

That D(A) is (·, ·)1-dense in H1 is clear from the fact that D(J∗) is (·, ·)1-
dense in H1.

That D(A) is (·, ·)-dense is also clear from the relation between the ‖ · ‖1
and ‖ · ‖-norms.

It remains to show that A is self-adjoint. For this it is enough to prove
that the range of A is H (cf., e.g., [495]). Let us consider v ∈ H, w ∈ H1:

|(v, w)| ≤ ‖v‖‖w‖ ≤ 1√
κ
‖v‖‖w‖1

where in the latter inequality we used the relation between ‖ · ‖ and ‖ · ‖1.
This shows that, ∀v ∈ H, w �→ (v, w) is a continuous linear functional on H1,
hence there exists, by Riesz’ theorem (see, e.g., [423]) a ṽ ∈ H1 s.t.

(ṽ, w)1 = (v, w) ∀w, v ∈ H.

By the definition (*) of A (used with w replacing v and ṽ replacing u) we
have then (v, w) = (Au,w) for any v ∈ H, ∀w ∈ H, which shows that any
v ∈ H can be written as Au for some u ∈ D(A), hence the range of A is the
whole of H.

The uniqueness of A in the lemma is proven as follows: Let B be self-
adjoint in H s.t.

(Bu, v) = (u, v)1 ∀u ∈ D(B), v ∈ H1.

Then by definition of A, A is an extension of B (i.e. B ⊂ A). But A is
self-adjoint so

B ⊂ A = A∗ ⊂ B∗

B being itself self-adjoint, this implies B = A. This finishes the proof of the
lemma and of the theorem. �
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2.2 The relation between closed positive symmetric forms and
C0-contraction semigroups and resolvents

The basic relations

Theorem 5. Le E be a densely defined positive symmetric sesquilinear form
which is closed, in a Hilbert space H. Let −LE be the associated self-adjoint
positive operator given by Theorem 4 (in 2.1) so that

E(u, v) = ((−LE)1/2u, (−LE)1/2v) ∀u, v ∈ D(E).

Then LE generates a C0-contraction semigroup Tt = etLE , t ≥ 0, in H.
And viceversa, if Tt is a symmetric C0-contraction semigroup, then its

generator L is self-adjoint, negative (i.e., −L is positive) and the associated
form given by Theorem 4 in 2.1 is positive, symmetric, closed.

One has
lim
t↘0

1
t (u− Ttu, v) = E(u, v), ∀u, v ∈ D(E)

Proof. The direct way follows from the Theorem 4 given in Chapter 2, 2.1.
The viceversa part follows from the fact that L is self-adjoint, negative and
the same Theorem 4. �

Theorem 6. All statements in Theorem 5 hold with the semigroup (Tt)t≥0

replaced by the symmetric resolvent family (Gα)α>0, Gα ≡ (α− LE)−1, cor-
responding to (Tt)t≥0.

One has for all u ∈ H, v ∈ D(E):

Eα(Gαu, v) = (u, v)

(where we recall the definition Eα(u, v) ≡ E(u, v) + α(u, v)).
Moreover,

E(u, v) = lim
α→+∞α(u− αGαu, v), ∀u, v ∈ D(E).

Proof. (Gα)α>0 is self-adjoint, by the spectral theorem. The relation for Eα
holds because of

Eα(Gαu, v) = E(Gαu, v) + α(Gαu, v) (7)

(as seen using the definition of Eα, noting the fact that Gαu ∈ D(L) ⊂ D(E),
for L the operator associated to E in the sense of Theorem 4 in Chapter
2,2.1). But

E(Gαu, v) = (−LGαu, v) (8)

by the relation between E and L. The r.h.s. of latter relation can be written
as

((−L+ α− α)Gαu, v) = (u, v)− (αGαu, v), (9)
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where we used Gα = (α− L)−1. The relation involving Eα then follows from
(7)-(9).

For the limit relation we use (7), the relation just shown for Eα to get

(u, v) = E(Gαu, v) + α(Gαu, v)

hence
α(u, v) = E(αGαu, v) + α2(Gαu, v),

and the fact that αGα → 1 as α→ +∞. �

Remark 21. The “relations E ↔ L ↔ T ↔ G” as described in Theorems 4,
5, 6 can be summarized in the following two tables:

Table 1

B = Banach space over K = R, C

(L, D(L)) densely defined,
(closed) linear operator on B
s.t.

1. ]0,∞[⊂ ρ(L)

2. ‖α(α− L)−1‖ ≤ 1

(Gα)α>0 strongly continuous
contraction resolvent on B

(Tt)t≥0 strongly continuous
contraction semigroup on B
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�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
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Gα =
∫ ∞

0
e−αtTt dt

Tt = lim
α→∞

etα(αGα−1), t > 0
“Hille-Yosida”

Gα := (α− L)−1,
α > 0L := α−G−1

α

“Hille-Yosida”
(via resolvent)

L := lim
t↓0

1
t
(Tt − 1)
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Table 2

H = Hilbert space over R with inner product ( , ) and norm ‖ ‖ := ( , )1/2.

(L, D(L)) densely defined,
(closed) linear operator on H
s.t.

1. ]0,∞[⊂ ρ(L)
2. ‖α(α− L)−1‖ ≤ 1
3. |((1− L)u, v)| ≤ const.·

((1− L)u, u)1/2·
((1− L)v, v)1/2

(E ,D(E)) coercive closed form
on H

|(G1u, v)| ≤
const · (G1u, u)1/2(G1v, v)1/2

(Gα)α>0 strongly continuous
contraction resolvent on H

(e−tT C

t )t≥0 is the restriction
of a holomorphic contraction
semigroup on HC

(Tt)t≥0 strongly continuous
contraction semigroup on H
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E(u, v) = lim
t↓0

(t)E(u, v)
(t)E(u, v) ≡ (u− Ttu, v)
D(E) = {u ∈ L2(m)|

sup
t>0

(t)E [u] <∞}

D(L) := {u ∈ D(E) | ∃Lu
∈ H s.t. E(u, v) = (−Lu, v)

∀v ∈ D(E)}

E(u, v) := (−Lu, v),
u, v ∈ D(L)

& completion

Gα =
∫ ∞

0
e−αtTt dt

Tt = lim
α→∞

etα(αGα−1), t > 0
“Hille-Yosida”

Gα := (α− L)−1,
α > 0L := α−G−1

α

“Hille-Yosida”
(via resolvent)

L := lim
t↓0

1
t
(Tt − 1) E(u, v) =

lim
β→∞

β(u− βGβu, v)
Eα(Gαu, v)
= (u, v),
u ∈ H,

v ∈ D(E)

Extension to the case of coercive forms in a real Hilbert space In
this section we consider a real Hilbert space H. Sesquilinear forms on such
spaces will be simply called bilinear.

Definition 14. Let E be a bilinear form on a real Hilbert space H, with
dense domain D(E) (i.e. both u → E(u, v) and v → E(u, v) are linear). The
symmetric (resp. antisymmetric) part Ẽ (resp. Ě) of E is by definition the
bilinear form given by:

Ẽ(u, v) ≡ 1
2 [E(u, v) + E(v, u)]

resp.
Ě(u, v) ≡ 1

2 [E(u, v)− E(v, u)],
for all u, v ∈ D(E).

One then has E = Ẽ + Ě. Ẽ is a symmetric bilinear form and Ě is an
antisymmetric bilinear form (in the sense that Ě(u, v) = −Ě(v, u)).

Suppose E is positive definite (i.e. E(n, n) ≥ 0 for all u ∈ D(E)). Then
one says that E satisfies the weak sector condition with constant k ≥ 0 if
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|E1(u, v)| ≤ kE1[u]1/2E1[v]1/2.

(E , D(E)) is called a coercive closed form if E satisfies the weak sector condi-
tion and (E , D(E)) is closed.

The relations E ↔ L ↔ T ↔ G discussed in Theorems 4, 5, 6 (and in
Tables 2.2, 2.2 extend to the case of a real Hilbert space, with the symmetry
and positivity in E , −L, T , G replaced respectively by:

a) Coerciveness for E .
b) L is closed operator with ρ(L) ⊂ (0,∞) s.t. ‖α(α− L)−1‖ ≤ 1, for α > 0,

|((1− L)u, v)| ≤ C((1− L)u, u)1/2((1− L)v, v)1/2.

c) G is a C0-contraction resolvent family with

|(G1u, v)| ≤ C(G1u, u)1/2(G1v, v)1/2 u, v ∈ H.

d) T is a C0-contraction semigroup s.t. its natural linear extension to the
complexification HC = H + iH of H satisfies the following condition: the
operator e−tTC

t is the restriction of a holomorphic contraction semigroup on
the sector

{z ∈ C | |Im(z)| ≤ 1
kRe(z)} (with k as in Definition 14).

Moreover, G, T are accompanied by dual semigroups Ĝ, T̂ (that only in the
symmetric case coincide with G, T ), see, e.g., [312], [427], [367].

Remark 22. The direct relation between E and T has been discussed in [407]
and [136]. E.g. one has the result, relating E and T :

E(u, v) = lim
t↘0

(t)E(u, v), ∀u, v ∈ D(E),

with (t)E(u, v) ≡ 1
t (u− Ttu, v), D(E) = {u ∈ H | supt>0

(t)E [u] <∞}.

An example In the whole course, we shall have two basic examples, one
in finite dimensions and one in infinite dimensions. Here is the first basic
example, the second one will be introduced in Chapter 3, 4.2.

Let µ be a positive Borel measure on R
d with suppµ = R

d. Let us consider
the bilinear form in H = L2(Rd, µ):

◦
Eµ(u, v) =

∫
Rd

< ∇u,∇v > dµ, u, v ∈ C∞
0 (Rd),

with ∇u(x) = ( ∂u
∂x1

, . . . ∂u
∂xd

), x = (x1, . . . , xd) ∈ R
d, < ∇u,∇v >=∑d

i=1
∂u
∂xi

∂v
∂xi

.



28 Sergio Albeverio

We call
◦
Eµ with domain D(

◦
Eµ) = C∞

0 (Rd) the classical pre-Dirichlet form

given by µ.
◦
Eµ is symmetric and positive. The basic question is: For which µ

is
◦
Eµ closable?
In Proposition 11 in 2.1, we have already indicated a condition for a

positive symmetric sesquilinear form to be closable, namely that it can be
expressed by a symmetric operator B s.t.

◦
Eµ(u, v) = (u,Bv)µ, u, v ∈ D(B) = D(

◦
Eµ)

(where (u, v)µ stands for the L2(Rd, µ)-scalar product). When can we find
such a B? The problem is solved when we can derive an “integration by parts
formula”(“IP”), writing

◦
Eµ(u, v) = −

∫
Rd

u�vdµ−
∫

Rd

u < βµ,∇v > dµ, (10)

with < βµ(x), y > dµ(x) = “< ∇x, y > dµ(x)”, y ∈ R
d, whenever µ is

differentiable in a suitable sense. For this it suffices, e.g., that µ is absolutely
continuous with respect to Lebesgue measure, with density ρ s.t.

1
ρ

∂ρ

∂xi
∈ L2(Rd, µ), i = 1, . . . , d

because then
βµ =

∇ρ
ρ

= ∇ ln ρ. (11)

In this case ◦
Eµ(u, v) = (u,Aµv)µ (12)

with
Aµ = −�− < βµ(x),∇x >

on C∞
0 (Rd) or shortly Aµ = −� − βµ · ∇ (thus the operator B we were

seeking is this Aµ). Aµ is called the classical pre-Dirichlet operator given by
µ. The quantity βµ in (11) is the logarithmic derivative of ρ. More generally:
whenever there is a measurable vector field βµ = (β1

µ, . . . , β
d
µ) s.t.

∫
∂u

∂xi
dµ = −

∫
uβi

µdµ, ∀u ∈ C∞
0 (Rd) (13)

one says that βµ is the logarithmic derivative of µ (in L2(Rd, µ)) whenever
βi

µ ∈ L2(Rd, µ),∀i = 1, . . . , d.

In this case one easily sees that (10) holds, hence
◦
Eµ is closable. Detailed

conditions for closability to hold have been worked out, based on the above

idea. E.g. for d = 1,
◦
Eµ is closable iff µ has a density ρ ∈ L1

loc(R) with respect
to the Lebesgue measure s.t. ρ = 0 a. e. on S(ρ) ≡ R−R(ρ), where
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R(ρ) ≡ {x ∈ R |
∫ x+ε

x−ε

dy
ρ(y) < +∞,∃ε > 0}

is the regular set for ρ (“Hamza’s condition”) (cf. [244],[119]).

Remark 23. A condition of this type is also necessary and sufficient for the
“partial classical pre-Dirichlet form”

∫
Rd

∂u
∂xk

∂v
∂xk

dµ, u, v ∈ C∞
0 (Rd) to be

closable, for all k = 1, . . . , d, see [119]. For an example where the above
condition is not satisfied, yet the total classical pre-Dirichlet form is closable,
see [258].

Definition 15. If the classical pre-Dirichlet form
◦
Eµ given by µ is closable,

the closure Eµ is called classical Dirichlet form associated with µ. The corre-
sponding self-adjoint negative operator Lµ s.t.

((−Lµ)1/2u, (−Lµ)1/2v)µ = Eµ(u, v)

is called the classical Dirichlet operator associated with µ.

The corresponding classical Dirichlet form shares with other forms an essen-
tial “contraction property”, which shall be discussed in Chapter 3 to which
we refer also for other comments on classical Dirichlet forms.

Let us however discuss already at this stage briefly why classical Dirichlet
forms are important, relating them to (generalized) Schrödinger operators.

Let µ be absolutely continuous with respect to the Lebesgue measure on
R

d with density ρ. To start with we assume ρ(x) > 0 for all x ∈ R
d and ρ

smooth.
Let us consider the map W : L2(Rd)→ L2(Rd, µ) given by

Wu ≡ u√
ρ
, u ∈ L2(Rd)

(where L2(Rd) denotes the space of square summable functions with respect
to the Lebesgue measure). W is unitary (and W ∗v =

√
ρv, v ∈ L2(Rd, µ),

as seen from the construction). Let Aµ be given by (12) and consider on the
domain W ∗D(Aµ), the operator A:

A ≡W ∗AµW.

If D(Aµ) is dense in L2(Rd) (which is the case discussed above, where
D(Aµ) ⊃ C∞

0 (Rd)) then, by unitarity, W ∗D(Aµ) is dense in L2(Rd, µ), hence
A is densely defined in L2(Rd, µ). We have, for u, v ∈W ∗D(Aµ),

(Wu,AµWv) = (u,W ∗AµWv) = (u,Av)

where (·, ·) is the scalar product on L2(Rd).
Set
√
ρ = ϕ, assuming ϕ(x) > 0, ∀x ∈ R

d, ϕ ∈ C∞(Rd). We compute
the l.h.s of the above equality for u, v ∈ C∞

0 (Rd) (observing that then also
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u
ϕ ,

v
ϕ ∈ C∞

0 (Rd) by our assumption on ϕ) using the relations between Aµ and
◦
Eµ given by (12) and the definition of

◦
Eµ:

(Wu,AµWv)L2(µ) =
◦
Eµ(Wu,Wv) =

∫
Rd

∇(u
ϕ

)∇( v
ϕ

)
ϕ2dx. (14)

But ∇( u
ϕ

)
= 1

ϕ∇u − 1
ϕ2 (∇ϕ)u and correspondingly with u replaced by v.

Inserting these equalities into (14) we get the following four terms:
a) ∫

Rd

1
ϕ

(∇u) 1
ϕ

(∇v)ϕ2dx = −
∫

Rd

u(�v)dx

(where we first observed that the ϕ-terms cancel, and then we integrated
by parts, using u, v ∈ C∞

0 (Rd)),
b) ∫

Rd

1
ϕ2 (∇ϕ)u

1
ϕ2 (∇ϕ)vϕ2dx =

∫
Rd

u
( 1

4β
2
µ

)
vdx

(where we used that by (11): βµ = ∇ lnϕ2 = 2∇ϕ
ϕ ),

c) Two mixed terms:

−
∫
Rd

∇ϕ
ϕ
u(∇v)dx−

∫
Rd

∇ϕ
ϕ
v(∇u)dx

= −
∫
Rd

∇ϕ
ϕ
∇(uv)dx =

∫
Rd

∇(∇ϕ
ϕ

)
u v dx =

1
2

∫
Rd

(div βµ)u v dx

(where we have used again integration by parts and βµ = 2∇ϕ
ϕ ).

In total we then get:

(Wu,AµWv)µ = (u,Av), (15)

with A = −�+ V (x), with

V (x) ≡ 1
4
βµ(x)2 +

1
2
divβµ(x).

Remark 24. The operator A is a Schrödinger operator with potential term V ,
acting in L2(Rd) (in this interpretation it is appropriate to take L2(Rd) as the
complex Hilbert space of square integrable functions). A is densely defined
(on C∞

0 (Rd)) in L2(Rd), positive and symmetric as seen from (15) and the

positivity and symmetry of Aµ (coming from corresponding properties of
◦
Eµ,

see (14)). It is well known that Schrödinger operators describe the dynamics
of quantum systems. More precisely: any self-adjoint extension H of A can be
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taken to define the dynamics of a quantum mechanical particle moving in the
force field given by the potential V (having made the inessential convention
�
2

2m = 1, where � is the reduced Planck’s constant and m the mass of the
particle; obviously a “scaling” of variables will remove this restriction). The
corresponding Schrödinger equation is then

i
∂

∂t
ψ = Hψ, t ≥ 0,

with ψ|t0 = ψ0 ∈ D(H) ⊂ L2(Rd); it is solved by e−itHψ0 (the unitary group,
when we let t ∈ R, generated by H via Stone’s theorem).

Assumptions on V are known s.t. H is uniquely determined by its re-
striction A to C∞

0 (Rd) (i.e. A is essentially self-adjoint on C∞
0 (Rd); see, e.g.

[423] for this concept), e.g. V bounded is enough (but in fact H is uniquely
determined in much more general situations, see, e.g. [426]).

Remark 25. We can write, using βµ = 2∇ϕ
ϕ :

V =
(∇ϕ
ϕ

)2

+ div

(∇ϕ
ϕ

)
=

(∇ϕ)2

ϕ2 +
ϕ�ϕ− (∇ϕ)2

ϕ2 =
�ϕ
ϕ
.

This shows
(−�+ V )ϕ = 0

i.e. ϕ is a “(−�+ V )-harmonic function” ”.
The passage Aµ → A can thus be seen as a particular case of “Doob’s

transform” technique, going from an operator Aµ in L2(Rd, µ), with 1 as har-
monic function (1 is in the domain, if µ is finite) to an operator A in L2(Rd),
here −�+ V , with ϕ as harmonic function (see, e.g. [217] for the discussion
of Doob’s transform). Doob’s transform is also called, in the context of the
above operator, “ground state transformation” (see, e.g. [426], [467]).

Viceversa: Let us consider a “stationary Schrödinger equation” of the form

(−�+ Ṽ )ϕ = Eϕ

for some Ṽ : R
d → R, E ∈ R. If there is a solution ϕ ∈ L2(Rd) s.t. ϕ(x) > 0

∀x ∈ R
d, then setting V ≡ Ṽ −E we get V = 
ϕ

ϕ . If, e.g., D(V ) ⊃ C∞
0 (Rd),

we can define A = −�+V on C∞
0 (Rd), as a linear densely defined symmetric

operator. The associated sesquilinear form

◦̃
E(u, v) = (u,Av)

defined for u, v ∈ C∞
0 (Rd) is then symmetric and closable in L2(Rd). More-

over, if
‖∇ϕ‖22 + (ϕ, V ϕ) ≥ 0
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(which is, e.g. the case whenever V ≥ 0), then
◦̃
E is positive. We also observe

that, defining Aµ = −� − βµ · ∇ with βµ = ∇ρ
ρ = 2∇ln(ϕ) with ρ = ϕ2,

dµ = ρ dx, we have
◦̃
E(u, v) = (Wu,AµWv)µ,

with Aµ ≡WAW ∗, u, v ∈ C∞
0 (Rd).

Defining on the other hand

◦̃
Eµ(u, v) =

∫
< ∇u,∇v > dµ

we see, as in the beginning of this section, that

◦̃
Eµ(u, v) = (u,Aµv)µ = (u,Av) =

◦̃
E(u, v).

Note that
◦̃
Eµ is a form in L2(Rd, µ), whereas

◦̃
E is a form in L2(Rd).

Thus to a generalized Schrödinger operator of the form −�+ Ṽ in L2(Rd)

we have associated a classical pre-Dirichlet form
◦̃
Eµ and its closure Ẽµ and

corresponding associated densely defined operators L◦
µ resp. Lµ. Even though

◦̃
E and A in L2(Rd) have a more direct physical interpretation, rather than
their corresponding objects Eµ resp. Lµ in L2(Rd, µ), the latter are more
appropriate whenever discussing “singular interactions” (see, e.g. [44], [104],
[20], [106], [40], [152], [157], [164], [176], [193], [183], [266], [503] or the case
where R

d is replaced by an infinite dimensional space E (like in quantum
field theory), see, below and, e.g., [278], [15], [41] (in fact in the latter case
there are interesting probability measures µ on E, whereas no good analogue
of Lebesgue measure on E exists). In this sense operating with Eµ, Lµ is more
natural and general than operating with Schrödinger operators.

Remark 26. In the above discussion of closability and Doob’s transformation
we have assumed ϕ, V , Ṽ to be smooth and ϕ > 0. These assumptions can
be strongly relaxed. Moreover, the considerations extend to cover the cases
where, instead of A resp. Aµ, general elliptic symmetric operators with Lp

loc-
coefficients are handled, see e.g. [367], [499], [104], [106], [20], [22], [174], [364],
[375] where various questions (including, e.g. closability) are discussed (we
shall give more references in Chapter 4).



Theory of Dirichlet forms and applications 33

3 Contraction properties of forms, positivity preserving
and submarkovian semigroups

3.1 Positivity preserving semigroups and contraction properties
of forms- Beurling-Deny formula.

In this whole section the Banach respectively Hilbert space of Chapter 2 will
be the functional space L2(m) ≡ L2(E, B, m; K), where (E, B, m) is a
measure space and L2(E, B, m; K) stands for the K-valued (equivalence
class of) functions over E which are square integrable with respect to m.
Let (, ) be the scalar product in L2(m), ‖ − ‖ the corresponding norm.

Definition 16. A linear operator A in L2(m) is said to be positivity preserving
(p.p.) iff u ≥ 0 m-a.e. implies Au ≥ 0 m-a.e., for any u ∈ L2(m). A semi-
group T = (Tt)t≥0 is said to be positivity preserving if Tt is p.p. for all t ≥ 0.

Proposition 12. Let L be a self-adjoint operator in L2(m) s.t. L ≤ 0 (i.e.
−L ≥ 0). The corresponding symmetric C0-contraction semigroups (etL)t>0
is positivity preserving iff the corresponding resolvent family (α−L)−1 = Gα,
α > 0, is positivity preserving.

This is an immediate consequence of the Laplace-transform formula, see
chapter 1:
Gαu =

∫∞
0 e−αtetLu dt, u ∈ L2(m) resp. the Yosida approximation formula

etL = lim
α→+∞ etL(α)

with Lα ≡ −α+ α2Gα.

Theorem 7. (Beurling-Deny representation for positivity preserving semi-
groups)
Let K = R and let L be a self-adjoint operator in L2(m), with L ≤ 0. Then
the following statements are equivalent:

i) (etL)t≥0 is positivity preserving
ii) E([|u|]) ≤ E [u] for all u ∈ D(E)

(where E is the positive, symmetric, closed form associated with L, ac-
cording to Friedrichs representation theorem of Chapter 2 )

Remark 27. This is an important theorem since it expresses the positivity
preserving property of semigroups (and in probability theory, as we shall see,
one is primarly interested in such semigroups, e.g., transition semigroups)
through corresponding properties of associated forms, which are often easier
to verify directly.
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Proof. i)→ ii)
One first remarks that |etLu| ≤ etL|u| (which follows from etL(|u| ± u) ≥ 0,
by the assumption in i) ).
But for all u ∈ L2(m), using the semigroup property: (u, etLu) = ‖e t

2 Lu‖2,
which is then bounded from above by ‖e t

2 L|u|‖2 =
(|u|, etL|u|), where in the

latter equality we again used the semigroup property.
From this we deduce

(
u,
(
etL − 1

)
u
) ≤ (|u|, (etL − 1

) |u|) . ∀t ≥ 0

For u ∈ D(L) the left hand side divided by t > 0 by Theorem 5 in chapter 2
section 2.2 converges for t ↓ 0 to (u, Lu) = −E [u].
The right hand side is non positive, since etL is positivity preserving, thus:

−E [u] ≤ 1
t

(|u|, (etL − 1
) |u|) ≤ 0 ∀t ≥ 0.

Hence the limit for t ↓ 0 of 1
t

(|u|, (etL − 1
) |u|) exists by subsequences,

and by the definition of D(L) we must have then that this is equal to
(|u|, L|u|).
Thus −E [u] ≤ (|u|, L|u|) = −E [|u|] ≤ 0 for all u ∈ D(L). Since D(L)
is a core for D(E), and L is closed, this extends by continuity to all
u ∈ D(E) = D((−L)1/2), showing that i) → ii).

ii)→ i):
We have, for u ∈ D(L), v ∈ D(L):

Eα[u+ v] = Eα[u] + Eα[v] + 2((α− L)u, v).

Replace now u by w = (α − L)−1u (∈ D(L)!), and take v ≥ 0, v ∈ D(E),
then Eα[w + v] = Eα[w] + Eα[v] + 2(u, v). Taking u ≥ 0, v as before, we get:

Eα[w + v] ≥ Eα[w] + Eα[v]. (16)

But
Eα[|w|+ v] = Eα[w + (|w| − w) + v] = Eα[w + v′], (17)

with v′ ≡ |w| −w+ v. Applying (16) on the right hand side, with v replaced
by v′ we get:

Eα[w + v′] ≥ Eα[w] + Eα[v′]. (18)

Hence from (17), (18):

Eα[|w|+ v] ≥ Eα[w] + Eα[v′]. (19)

By assumption ii) the r.h.s. is bounded from below by



Theory of Dirichlet forms and applications 35

Eα[|w|] + Eα[v′]. (20)

Taking now v = 0, we get from (19):

Eα[|w|] ≥ Eα[|w|] + Eα[|w| − w] (21)

(where we inserted the definition of v′). On the other hand, by Eα ≥ 0:

Eα[|w| − w] ≥ 0. (22)

Hence, from (21), (22):
Eα[|w| − w] = 0

thus |w| − w=0 i.e. |w| = w, in particular w ≥ 0. From the definition of w,
then:

(α− L)−1u ≥ 0 for u ≥ 0,

which proves i), using Proposition 12.

Remark 28. 1) There are several other statements which are equivalent to
the ones of Theorem 7, see e.g., [367],[368], [136].

2) In a similar way one proves the Theorem for the complex Hilbert space
L2

C
(m). It is also easy to show that i),ii) are equivalent with iii), etL is

reality preserving and E [u+] ≤ E [u] for all real u ∈ D(E), with u+ ≡
sup(u, 0). This is left as an exercise (cf. [423]).

3.2 Beurling-Deny criterium for submarkovian contraction
semigroups

Theorem 8. Let K = R and let L be a self-adjoint operator in L2(m), with
L ≤ 0, s.t. Ttu ≥ 0 for u ≥ 0, with Tt = etL, t ≥ 0. Then the following are
equivalent:

a) etL is a contraction on L∞(m) ∩ L2(m), ∀t ≥ 0.
b) For u ≥ 0, u ∈ D(E), then E [u ∧ 1] ≤ E [u] (with u ∧ 1 ≡ inf(u, 1)).

Proof. The proof of b) → a) is similar to the one of i) → ii) in Theorem 7.
For a)⇒ b) the idea is to show

(u ∧ 1, (1− Tt)(u ∧ 1)) ≤ (u, (1− Tt)u) ∀t ≥ 0. (23)

Once this is shown a) follows easily by dividing the inequality by t > 0 and
going to the limit t ↓ 0, which yields, for u ∈ D(L)

E [u ∧ 1] ≤ (u, (1− L)u) = E [u].
b) then follows by the fact that D(L) is a core for E . The proof of (23) is
obtained by proving it first for special step functions and then going to the
limit, exploiting the fact that F (u) ≡ u ∧ 1 satisfies |F (u)| ≤ |u|, F (u) −
F (v) ≤ |u− v|, see, e.g., [258], [367], [423] for details.
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3.3 Dirichlet forms

Let (E,B,M) be a σ-finite measure space, and let K = R.

Definition 17. Let S be a linear operator in L2(m) with D(S) = L2(m), S
bounded. S is called submarkovian if 0 ≤ Su ≤ 1 m-a.e., whenever 0 ≤ u ≤ 1
m-a.e., for all u ∈ L2(m)

Remark 29. If S is positivity preserving in L2(m) and 1 ∈ L2(m), then Su ≤ 1
for u ≤ 1 m-a.e., u ∈ L2(m) follows from S(u − 1) ≤ 0 and linearity, since
u− 1 ∈ L2(m).

Definition 18. Let E be a positive, symmetric, bilinear closely defined form
in L2(m) (not necessarily closed). Given Φ : R→ R, we say that E contracts
under Φ if u ∈ D(E) implies Φ(u) ∈ D(E) and E [Φ(u)] ≤ E [u]. If Φ(t) =
(0 ∨ t) ∧ 1, t ∈ R, then we call Φ the “unit contraction”. Let, for all ε > 0,
Φε be such that Φε(t) = t, t ∈ [0, 1]

−ε ≤ Φε(t) ≤ 1 + ε ∀t ∈ R,

0 ≤ Φε(t2)− Φε(t1) ≤ t2 − t1, t1 ≤ t2,
Φε(u) ∈ D(E),

for v ∈ D(E) and lim inf
ε↓0

E [Φε(u)] ≤ E [u] , then we call Φε “ε-approximation”

of the unit contraction and we say that E is submarkovian.

Theorem 9. Let E be a positive, symmetric, bilinear, closed densely defined
form and let Tt, Gα be the associated C0-contraction semigroup resp. con-
traction resolvent. Then the following assertions are equivalent:

a) Tt is submarkovian for all t ≥ 0
b) αGα is submarkovian for all α > 0
c) E is submarkovian
d) E contracts under the unit contraction
e) The infinitesimal generator L of Tt has the “Dirichlet contraction prop-

erty” (u, L(u− 1)+) ≤ 0 ∀u ∈ D(L).

Proof. a)→ b): Proposition 12 in Chapter 3.3.1
d)→ c): take Φε = unit
b)→ d): this is similar to the proof of i)→ ii) Theorem 7 in Chapter 3.3.1
c)→ b): this is similar to the proof of b)→ a) in Theorem 8 in Chapter 3.3.2.
For the remaining parts see [244], [258], [367], [172]. �

For the applications the following “Addendum” is useful.

Proposition 13. Let
◦
E be a symmetric, positive, closable, densely defined

bilinear form. Assume moreover that
◦
E is submarkovian on D(

◦
E), then the

closure E of
◦
E satisfies a)-e) of Theorem 9.
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Proof. (Sketch): Let u ∈ D(E), since
◦
E is closable by assumption, there exists

a sequence un ∈ D(
◦
E), s.t. un → u in L2(m), for n→∞, and

◦
E [un]→ E [u].

Choose Φ 1
n

as ε = 1
n - approximation of the unit contraction, for n ∈ N. Then

sup
◦
E1[Φ 1

n
(un)] ≤ sup

◦
E1[un] and this is finite, by the convergence of

◦
E1[un].

(D(E), E1) is a Hilbert space and by the Banach-Saks theorem (cf. e.g. Th
2.2. in App.2 in [367]), gn ≡ 1

n

∑n
1 Φ 1

j
(uj) converges strongly for n → ∞ to

g ∈ D(E) and
◦
E [gn]→ E [g]. On the other hand: gn → Φ0[u] as n→∞

Φε → Φ0 m-a.e. as ε ↓ 0.
So by these convergences we get Φ0[u] = g m-a.e., Φ0 ∈ D(E) and E(Φ0[u])

1
2 =

limn→∞
◦
E [gn]

1
2 . By the triangle inequality and the definition of gn the r.h.s.

is bounded from above by lim sup 1
n

∑n
j=1

◦
E [ϕ 1

j
(uj)]

1
2 . Since the Cesaro-limit

and the ordinary limits coincide whenever they exist, we get that this is E [u] 1
2

and thus E contracts under the unit contraction. �

Definition 19. A form E with the properties as in Theorem 9 (i.e. bilinear,
positive, symmetric, closed, densely defined and submarkovian) is called a
(symmetric) Dirichlet form.

Remark 30. Proposition 13 says that the closure
◦
E = E of the form

◦
E in

Proposition 13 is a Dirichlet form. In applications the forms
◦
E are usually

given on a nice subsetD of L2(m) where they are closable. Proposition 13 per-

mits then to pass from the contraction properties of
◦
E on D to corresponding

ones for its closure E .
Remark 31. Dirichlet forms are studied extensively in [150], [244], [258], [468],
[469], [367], [309] (and references therein).

3.4 Examples of Dirichlet forms

Standard finite dimensional example Let E = R
d, B = B(Rd), m = µ,

µ(dx) = ρ(x) dx, r ≥ 0, (where dx is Lebesgue measure on R
d).

Consider
◦
Eµ(u, v) ≡ ∫ ∇u · ∇v dµ in L2

R
(Rd, µ) ≡ L2(Rd, µ; R) ≡ L2(µ),

u, v ∈ C∞
0 (Rd) (with ∇u(x) ≡ ( ∂

∂x1
u, · · · , ∂

∂xd
u)(x), x ∈ R

d).

The basic question to be answered is whether
◦
Eµ is closable. In Chapter 1 we

saw that for this to be the case it is enough to find a (symmetric, positive)

operator
◦
Aµ in L2(µ) s.t.

◦
Eµ(u, v) = (u,

◦
Aµv).

By “integration by parts” we see that
◦
Aµ = −A− βµ · ∇ on C∞

0 (Rd). This is
well defined whenever

βµ,i(x) ≡ 1
ρ
∂iρ(x) ∈ L2(µ), ∀i ∈ {1, ..., d}
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with ∂i ≡ ∂
∂xi

(taken in the distributional sense).

“Optimal” conditions for closability of
◦
E have been given in [119], see also

[223], [474].

The second basic question to be answered is whether the closure Eµ ≡
◦
Eµ of

◦
Eµ is a Dirichlet form.
The answer is yes, since by using Proposition 13 it is enough to verify that
◦
Eµ is submarkovian. Let us take ε > 0, Φε ∈ C∞, Φε-contraction, an ε-
approximation of the unit contraction |Φ′

ε(·)| ≤ 1. Then:
◦
E [Φε(u)] =

∫ ∇Φε(u)∇Φε(u)dµ =
∫
Φ′

ε(u)∇u·Φ′
ε(u)∇udµ =

∫ |Φ′
ε(u)|2|∇u|2dµ ≤∫ |∇u|2dµ =

◦
E [u], ∀u ∈ C∞

0 (Rd), where we used the definition of
◦
E , Leibniz

differentiation formula in the second equality, and |Φ′
ε| ≤ 1 for the latter in-

equality.

This shows that
◦
E contracts under Φε and by Proposition 13 we then have

that Eµ is a Dirichlet form. �


The standard infinite dimensional example Let E be a separable real
Banach space, E′ its topological dual. Let µ be the probability measure on
the Borel subsets B in E generated by all open subsets of E, and suppose
suppµ = E (i.e. µ(U) > 0 for all U ⊂ E, U open, U �= ∅).
Let FC∞

b ≡ FC∞
b (E) = {u : E → R | ∃m, ∃f ∈ C∞

b (Rm), ∃l1, · · · , lm ∈
E′ : u(z) = f(< z, l1 >, · · · , < z, lm >)}. Then FC∞

b is dense in L2(µ) ≡
L2

R
(E, µ) (this is essentially a form of the Stone-Weierstrass theorem, see, e.g.

[396], [277], [290]).
For u ∈ FC∞

b (E), z ∈ E, k ∈ K ⊂ E (K a linear subspace of E) we define
the (Gâteaux-)derivative in the direction k by:

∂u

∂k
(z) ≡ d

ds
u(z + sk)|s=0

(
=

m∑
i=1

∂if(< z, l1 >, · · · , < z, lm >) < k, li >

)
.

We define ◦
Eµ,k(u, v) ≡

∫
∂u

∂k
· ∂v
∂k
dµ,

for u, v ∈ FC∞
b .

We easily see that
◦
Eµ,k is a symmetric, positive, bilinear form on L2(µ), with

domain D(Ẽµ,k) = FC∞
b (dense in L2(µ)!). As before the first question to be

answered is: for which µ is
◦
Eµ,k defined on FC∞

b closable? A sufficient con-
dition for this is (analogously as in the finite dimensional case) the existence
of βµ,k ∈ L2(µ) s.t.

∫
∂u

∂k
vdµ = −

∫
u
∂v

∂k
dµ−

∫
uvβµ,kdµ, ∀u, v ∈ FC∞

b . (24)
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Remark 32. This is an “integration by parts” formula, in the spirit of those
in the theory of smooth measures [205], [59], [61], [62], [65], [119] and in
“Malliavin calculus” (originally on Wiener space, see [372], [396]).
Assuming (24) we have then that

◦
Lµ,k ≡ ∂2

∂k2 + βµ,k
∂

∂k

is a well defined linear operator with D(
◦
Lµ,k) = FC∞

b , symmetric and such
that ◦

Eµ,k(u, v) = (u, (−
◦
Lµ,k)v)

(with ( , ) the L2(µ)-scalar product). From Proposition 11 in Chapter 2 we

see that
◦
Eµ,k is closable in L2(µ).

The next question is whether the closure Eµ,k =
◦̄
Eµ,k of

◦
Eµ,k in L2(µ) is a

Dirichlet form. This is proven similarly as in the finite dimensional case. In
fact let Φε be an ε-approximation of the unit contraction which is C∞ on R.
Then, by Leibniz formula, u→ Φε(u) ∈ FC∞

b if u ∈ FC∞
b and

Ẽµ,k[Φε(u)] ≤
∫
|Φ′

ε(u)|2|∇u|2dµ ≤
∫
|∇u|2dµ =

◦
Eµ,k[u].

By using Proposition 13 this yields the proof that
◦
Eµ,k is a Dirichlet form.

We assume that E and its dual E′ are s.t.

E′ ⊂ H ′ ∼= H ⊂ E,
where H is a Hilbert space, densely contained in E, H ′ (isomorphic to H) is
the dual of H (and E′ is densely contained in H ′), moreover the embedding
of H in E (and of E′ in H ′)is continuous. (We remark that this assumption
is not strong, in fact it can be realized in great generality, see e.g. [301], [462],
[428]).
For u ∈ FC∞

b , k ∈ E′ we have ∂u
∂k (z) =<

E′
k,∇u(z) >

E
(with <

E′
, >

E
the

dualisation between E and E′).

Definition 20. For u, v ∈ FC∞
b we define

◦
Eµ(u, v) ≡

∫
E

< ∇u,∇v >H dµ,

where < , >H is the scalar product in H.
Let K be an orthonormal basis in H consisting of elements in E′. We have:

◦
Eµ(u, v) =

∑
k∈K

◦
Eµ,k(u, v).
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We remark that
◦
Eµ is a bilinear positive symmetric form.

◦
Eµ is closable if

all
◦
Eµ,k are closable (we leave the verification of this as an exercise: one can

use, e.g., Proposition 11 in Chapter 2). In this case the closure Eµ of
◦
Eµ exists

and is a positive symmetric closed bilinear form. It is also easy to verify that
Eµ is a Dirichlet form. Eµ is called the “classical Dirichlet form given by µ”.

Remark 33. For E = H = R
d and FC∞

b replaced by C∞
0 (Rd), Eµ coincides

with the classical Dirichlet form given by µ (over R
d) as defined in Definition

15.

By Friedrichs’ representation theorem to Eµ there is a uniquely associated
self-adjoint, negative operator Lµ s.t. Eµ(u, v) = ((−Lµ)

1
2u, (−Lµ)

1
2 v). Lµ is

called the Dirichlet operator associated with µ.

Remark 34. Eµ should not be confused with the “maximal Dirichlet form
given by µ”, Em

µ , obtained from the closed extension of Ẽµ with domain
D(Em

µ ) =
⋂

k∈K{u ∈ L2(µ)| ∫ |∂u
∂k |2dµ <∞}. In general Em

µ is a strict exten-
sion of Eµ, they coincide exactly when L̃µis essentially self-adjoint on FC∞

b ,
see, e.g., [119], [88], [359] for results of this type.

Exercise 6. Show that
Lµ =

◦
Lµ on FC∞

b , with
◦
Lµ =

∑
k

◦
Lµ,k on FC∞

b , where

◦
Lµ,k ≡ ∂2

∂k2 + βµ,k(·) ∂
∂k
,

�H ≡
∑
k∈K

∂2

∂k2 , < βµ(z),∇ > u(z) =
∑
k∈K

< βµ(z), k >
∂

∂k
u(z),

u ∈ FC∞
b , z ∈ E.

Moreover
◦
Eµ(u, v) =

∑
k∈K

(u,
◦
Lµ,kv) ∀u, v ∈ FC∞

b .

Exercise 7. When E = C(0)([0, t]; R), (Wiener space of continuous functions
from [0, t] to R vanishing at time zero) we have

H = H1,2([0, t]; R) = {w ∈ E|
∫ t

0
|ẇ(s)|2ds <∞},

where µ is the Wiener measure: show that βµ is a linear function (cf.
[172],[365], [396]).
We know by the general theory of Chapter 3.1 that Lµ generates a symmet-
ric submarkovian C0-contraction semigroup L2(µ). We shall show that Lµ

generates a diffusion process. For this we first describe shortly the general
structure theory of Dirichlet operators and forms.
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3.5 Beurling-Deny structure theorem for Dirichlet forms

We first consider the case of a locally compact separable metric space E (not
necessarily a linear space). Let m be a Radon measure on E (see, e.g., [462]
for Radon measures).

Definition 21. A bilinear symmetric positive densely defined form E in
L2

R
(E,m) ≡ L2(m) is called regular if D(E) ∩ C0(E) is dense in D(E)with

respect to the E1-norm and dense in C0(E) with respect to the supremum-
norm.

Definition 22. A bilinear form E in L2(m) is called local if E(u, v) = 0, for
all u, v ∈ D(E) s.t. supp[u]∩ supp[v] = 0 (for some representatives [u], [v] of
u resp. v as element of L2(m), with supp[u], supp[v] compact).

Examples are:

a) E(u, v) =
∫
u v dm, u, v ∈ C∞

0 (Rd),
b) E(u, v) =

∫ ∇u · ∇v dm, u, v ∈ C∞
0 (Rd).

Definition 23. A bilinear form E in L2(m) is called strong local if E(u, v) =
0 ∀u, v ∈ D(E) such that v is constant in a neigborhood of supp[u].

Remark 35. Strong local implies local, but not viceversa, e.g. in the examples
above a) is local but not strong local.

Theorem 10. (Beurling-Deny structure theorem)
Let E be a regular Dirichlet form. Then E can be written as

E = Ec + Ej + Ek

on D(E) ∩ C0(E), with Ec strong local,

Ej(u, v) =
∫ ′

E×E

[u(x)− u(y)][v(x]− v(y)]J(dxdy),

where (E × E)′ ≡ {(x, y) ∈ E × E | x �= y} and J is a symmetric Radon
measure on (E × E)′,

Ek(u, v) =
∫
uv dk,

dk being a Radon measure on E. The parts Ec (diffusion part) , Ej (jump
part) , Ek (killing part) are uniquely determined by E.
Proof. For the proof see [244], [258]. �


If E is a manifold or E = U with U an open subset of R
d then Ec can be

further specified.
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Theorem 11. (Beurling-Deny structure theorem for an open subset of R
d)

Let U be an open subset of R
d, m a Radon measure on U. Then any submarko-

vian symmetric positive bilinear form
◦
E on L2(U,m) with D(

◦
E) = C∞

0 (U) s.t.
◦
E is closable and one has that E =

◦̄
E is a regular Dirichlet form and for E

(and hence
◦
E) on C∞

0 (Rd) we have

◦
E = Ec + Ej + Ek,

with Ec(u, v) =
∑d

i,j=1

∫
∂u
∂xi

(x) ∂v
∂xj

(x)dνij(x), where νij(·) is a random mea-
sure (for all i, j = 1, · · · , d), with (νij(K))d

i,j=1 is a positive definite, sym-
metric matrix for all compact K ⊂ U .

Proof. Since
◦
E is submarkovian and closable, the closure is a Dirichlet form.

That E is regular follows easily, see [244]. Then we can apply Theorem 1 in
chapter 1 to get Ec, Ej , Ek. For the formula for Ec see [244].

Remark 36. There is an extension of Theorem 10 to infinite dimensional
spaces, with regularity replaced by “quasi-regularity” (a concept we shall
discuss in Chapter 4) see [111], [112].

3.6 A remark on the theory of non symmetric Dirichlet forms

There exists an extension of the entire theory of Dirichlet forms to the case
of bilinear forms which are closable and contract under suitable “contraction
operations”, but are not necessarily symmetric.

Definition 24. A bilinear form E in a real Hilbert space H is said to satisfy
the weak sector condition if ∃k > 0 s.t.

|E1(u, v)| ≤ kE1[u] 1
2 E1[v] 1

2

E is a coercitive closed form if D(E) is dense in H, E satisfies the weak sector

condition and the symmetric part
◦
E of E (defined as

◦
E(u, v) ≡ 1

2 [E(u, v) + E(v, u)]∀u, v ∈ D(E),with D(
◦
E) = D(E)) is closed.

Analogs of the relation between symmetric forms, contraction semigroups
and associated operators, resolvents, discussed in Chapter 2.3, exist also for
coercive closed forms. The main difference consists in the fact that instead
of a single semigroup (Tt)t≥0 (resp. resolvent family (Gα)α>0) there are two
semigroups (Tt, T̂t)t≥0 (resp. two resolvents ((Gα, Ĝα)α>0)): in duality (i.e.
adjoint to each other in the case of a space L2(m)). See the table below. For
a Beurling-Deny structure theorem in this case see [378].
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4 Potential Theory and Markov Processes associated
with Dirichlet Forms

4.1 Motivations

Let E be a topological space, m be a σ-finite measure on E. Let T ≡ (Tt)t≥0
be a sub-Markov semigroup in L2(m) ≡ L2

R
(E,m). We shall discuss the fol-

lowing questions:
1) Is it possible to associate a “nice process” to T such that T is its transition
semigroup (analogously as the Brownian motion process on R

d is associated
with the heat semigroup as transition semigroup)?
2) Which kind of Dirichlet forms correspond to such ”nice processes”?

As is well known, in the case where E is a locally compact separable
metric space, an association of this type is surely possible if the transition
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semigroup has the additional property of being a Feller semigroup, but what
about the general case of the theory of Dirichlet forms?

Historically, one has analyzed first precisely the case of a locally compact
separable metric space for the case where the Feller semigroup is replaced
by the semigroup associated with a regular Dirichlet form, in which case the
nice associated process is a Hunt process, see [243], [244], [258], [468], [469].

The next case that was historically treated was the one of non locally
compact spaces, e.g. separable Banach spaces or rigged Hilbert spaces or
conuclear spaces. These cases were discussed particularly in connection with
the development of a mathematical theory of quantum fields, see [57], [58],
[59], [61], [408] (for the case of rigged Hilbert spaces), [335] (for separable
Banach spaces). A more general theory was then formulated in [118], [119],
[120], some assumptions being further weakened by Schmuland [457] (see also
[458], [459], [460], [461]). The setting of abstract Wiener spaces was particu-
larly discussed in [172].
A non standard analytic setting was developed in [39], [36]. The central an-
alytic concept which developed from all these approaches as being appropri-
ate for the association of nice processes to general Dirichlet forms on general
Hausdorff topological spaces E with a σ-finite measure m is that of quasi-
regularity, first introduced in [105], [107], [108], [114], [109], [110], [113], see
[367].

We shall here limit ourselves to a short sketch of the construction of
nice processes starting from quasi regular Dirichlet forms, giving its main
ideas. One basic idea is to replace continuous functions by quasi-continuous
functions, as functions continuous modulo “small sets”, and construct kernels
acting on such functions.

4.2 Basic notions of potential theory for Dirichlet forms

E-exceptional sets Let E be a Hausdorff topological space, B the σ-algebra
of its Borel subsets, m a σ-finite measure.

Let (E , D(E)) be a Dirichlet form on L2(m) = L2
R
(E,m).

Definition 25. An increasing sequence (Fk)k∈N of closed subsets of E is
called an E-nest if

⋃
k D(E)Fk

is Ẽ1/2
1 -dense in D(E) (where D(E)F ≡ {u ∈

D(E) | u = 0 m-a.e. on the complement F cofF}; Ẽ1/2
1 is the norm given by

the scalar product in L2(m) defined by Ẽ1).
Definition 26. N ⊂ E is called “E-exceptional” if N ⊂ ⋂k F

c
k for some E-

nest {Fk}k∈N. We say that a certain property of points in E holds “E-quasi
everywhere” (q.e.) if it holds outside some E-exceptional subset of E.

There is an important relation between E-exceptional sets and sets of
small capacity; for this we first have to introduce the concept of capacity
(an extension to our setting of the concept of capacity in classical potential
theory, see, e.g. [162], [276], [160]).
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Definition 27. Let U be an open subset of E. Define the capacity cap U of
U by

cap U ≡ inf
u∈LU

E1[u]
where

LU ≡ {u ∈ D(E) | u ≥ 1 m-a.e. on U}
(with inf{.} = +∞ if LU = ∅). For any A ⊂ E define

A ≡ inf
A⊂U,U open

cap U.

Remark 37. We have that cap (U) = 0 implies m(U) = 0.

Proof. We have
E1[u] ≥ ‖u‖2 ≥ m(U) ∀u ∈ LU ,

hence cap U = infu∈LU
E1[u] ≥ m(U). �


Proposition 14. Let E, m, E as above. If (An)n∈N is an increasing sequence
of sets then 1) cap (

⋂
nAn) = sup

n
cap An

Moreover,
2) (Fk)k∈N is an E-next ⇐⇒ limk→∞ cap F c

k = 0
3) N is E-exceptional ⇐⇒ cap N = 0.

Proof. (Sketch):
1) is easy (see, e.g., [244]). 2) ⇒ 3) is obvious. To prove 2) one uses the
following

Lemma 2. Let U ⊂ E be open, s.t. LU �= ∅, then
a) there exists uniquely an element eU ∈ LU (called “equilibrium potential”)
s.t. E1[eU ] = Cap U .
b) 0 ≤ eU ≤ 1 m-a.e. on E and U �→ eU is monotone increasing.

Proof. For a) one uses that LU is convex (which we leave as an exercise).
b) Take u = (0∨ eU )∧ 1. E being a Dirichlet form, it contracts under the

unit contraction, i.e. for u ∈ D(E)
E1[u] ≤ E1[eU ] = Cap U

which implies, by the definition of capacity, that u = eU q.e., hence 0 ≤
eU ≤ 1 m-a.e.. That u �→ eU is monotone increasing is easily seen using
E∞(�+,�−) ≤ ′ for any u ∈ D(E), see [244]. �

Definition 28. Let (Fk)k∈N be an E-nest. Set

C({Fk}) ≡
{

u : A → R, for some A ⊂ E s.t.
⋃
k

Fk ⊂ A ⊂ E, u|Fk

continuous ∀k ∈ N

}
.

An E-q.e. defined function u on E is called E-quasi-continuous (q.c.) if there
exists an E-nest {Fk}k∈N s.t. u ∈ C({Fk}). C({Fk}) is then called the set of
quasi-continuous functions associated with the nest (Fk)k∈N.
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Remark 38. One shows that u is E-q.c. if for any ε > 0 ∃U ⊂ E open s.t.
Cap U < ε, u|E−U continuous, see, e.g. [367].

4.3 Quasi-regular Dirichlet forms

Definition 29. Let E be a Hausdorff topological space, m a σ-finite measure
on E, and let B the smallest σ-algebra of subsets of E with respect to which
all continuous functions on E are measurable.

A Dirichlet form E is called quasi-regular if

i) there exists an E-nest (Fk)k∈N of compact subsets of E;

ii) there exists an Ẽ1/2
1 -dense subset of D(E) whose elements have E-q.c.

m-versions.

iii) there exists un ∈ D(E), n ∈ N, with E-q.c. m-versions ũn and there
exists an E-exceptional subset N of E s.t. {ũn}n∈N separates the points
of E −N .

Remark 39. Thinking of Stone-Weierstrass type results, “point separation”
means richness of elements...

Remark 40. We leave as an exercise to prove that if E is a locally compact
separable metric space then E regular implies E quasi-regular but not
viceversa (in general).

4.4 Association of “nice processes” with quasi-regular Dirichlet
forms

(E,B,m) be as in the preceding section. Let E be a symmetric Dirichlet
form in L2(m) and (Tt = etL)t≥0 the associated symmetric submarkovian
C0-contraction semigroup on L2(m).

Definition 30. Let (pt)t≥0 be a submarkovian semigroup acting in Cb(E)
s.t. (ptu)(x) =

∫
pt(x, dy)u(y), u ∈ Cb(E), pt being a submarkovian semigroup

of kernels i.e. pt(x,A) ∈ [0, 1], x→ pt(x,A) is measurable ∀x ∈ E,A ∈ B,
A→ pt(x,A) is a measure on (E,B) with pt(x,E) ≤ 1( see e.g., [142]).
pt is said to be associated with E (or (Tt)t≥0 or with the infinitesimal gener-
ator L) if ptu is an m-version of Ttu, ∀t > 0, for all u ∈ Bb(E) ∩ L2(m).
Let X ≡ (Xt)t≥0 be a (sub-) Markov process with state space E and transition
semigroup (pt)t≥0, s.t.

(ptu)(z) = Ez [u(Xt)]

∀z ∈ E, t ≥ 0 (with Ez the expectation for the process with start measure
δz(.)) is said to be associated with E (or (Tt)t≥0 or the infinitesimal generator
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L) if pt is associated with E.
X is said to be properly associated with E if in addition ptu is E-quasi
continuous (in the sense of the definition in IV.3) for all t > 0.

Remark 41. In a sense the E-quasi-continuity of ptu is replaces the Feller-
property (for the latter see, e.g., [162], [201], [220]).
The following theorem gives the basic relation between certain properties of
symmetric Dirichlet forms and corresponding properties of associated (sub-)
Markov processes; the meaning of the latter properties will be shortly
discussed afterwards.

Theorem 12. Let E be a topological Hausdorff space. Then:

a) E is a quasi-regular Dirichlet form iff X is an m-tight special standard
process.

b) E is a local quasi-regular Dirichlet form iff X is an m-tight special standard
process and it is a diffusion i.e.
P z {t→ Xt continuous on [0, ζ)} = 1 for all z ∈ E
(for some random variable ζ, with values [0,+∞], the life time of the
process).

The basic concept on the r.h.s. is defined as follows:

Definition 31. (right process)
Let ∆ be one pointset, disjoint from E, and define E∆ ≡ E ∪∆.

i) Let X ≡ (Xt)t≥0 be a (family of) stochastic process(es) on a probability
space (Ω,M, P z)z∈E∆

, with state space E, life time ζ, a measurable map
Ω → [0,+∞] (if ζ = +∞ one can forget about ∆), s.t.

Xt(ω) ∈ E for t < ζ(ω),

Xt(ω) ∈ ∆ for t ≥ ζ(ω).

∀ω ∈ Ω. Assume (t, ω)→ Xt(ω) is measurable.
Let Mt be a filtration in M s.t. Xt is Mt- adapted.

ii) Assume that z → P z(B) is measurable for all B ∈M and the Markov
property holds:

P z(Xs+t ∈ B|Ms) = PXs(Xt ∈ B),

∀s, t ≥ 0, P z-a.s. , z ∈ E∆,B ∈ B(E∆).
X is then called a Markov process.

iii) X is called normal if P z(X0 = z) = 1,∀z ∈ E∆.
iv) X is said to be right continuous if t→ Xt(ω) is right continuous,
∀t ≥ 0,∀ω ∈ Ω.



48 Sergio Albeverio

v) X is said to be strong Markov if Mt is right continuous and

Pµ (Xσ+t ∈ B|Mσ) = PXσ (Xt ∈ B),

Pµ-a.s., ∀Mt-stopping times σ, for any probability measure µ on E, and
with Pµ(.) ≡ ∫ P z(.)µ(dz).

X is said to be a right process if i)-v) hold.
An “m-tight special standard process” is shortly described as a right process
which is “concentrated on compacts” (m-tightness), has almost surely left
limits and is almost-surely left quasi-continuous, see [367] for details.

Remark 42. 1) An analogon of the above theorem holds also for non
symmetric Dirichlet forms E in the sense discussed in [367]. In the same
way as to E there are associated two submarkov semigroups (Tt, T̂t)t≥0
in duality, there are two corresponding (properly)- associated “nice pro-
cesses” X, X̂.

2) There also exists, in the same spirit as in the above theorem, an
analytic characterization (in terms of Dirichlet forms) of Hunt processes
(see [104], [367]).

3) The main consequence of the above theorem is that concepts of analytic
potential theory, like capacity and equilibrium potential become related
to concepts of probabilistic potential theory, like hitting distributions and
entrance times, e.g. one has for an open set U :

cap(U) = E1[eU ]

with eU the “1-equilibrium potential”.
Moreover cap(U) <∞ iff eU (z) is a quasi-continuous version of Ez(e−σU ),
with σU the entrance time of the associated process in U .
In this way capacity gets related with hitting distribution and, e.g.,
cap(N) = 0 iff N is an E-exceptional set and this is so iff Pm(σÑ < ∞),
for some Borel subset Ñ ⊃ N of E; see below and [244], [258], [367] for
details.

A hint to the proof of Theorem 12:
From the experience with the construction of Markov processes in the simpler
case of a locally compact separable space (“finite dimensional case”), we know
it is easy to construct a (sub-) Markov process if one disregards detailed path
properties. In contrast the proof of the existence of a version of it with “nice
properties” is quite hard.
In fact the case of a general Hausdorff space E in the above theorem is indeed
reduced to the case of E locally compact, separable, metric, which had been
treated before by Fukushima [246] and Silverstein [468]. This reduction has
to be done in such a way as to preserve, e.g., the quasi-regularity property (in
fact it gets transformed into the regularity property under compactification).
In the case where E is locally compact separable metric one realizes that the



Theory of Dirichlet forms and applications 49

Feller property of the transition semigroup leads to strong Markov processes
and eventually to Hunt processes (cf. [162]).
On the other hand one shows:

Lemma 3. Each u ∈ D(E) (for E a regular Dirichlet form, in the sense of
[246], [258]) has a quasi-continuous modification s.t. u � (E∆ −G) is quasi-
continuous, for any open subset G of E (cf. Theorem 3.1.3 in [246])

Proof. A) One has Cap Gu
λ ≤ 1

λ2 E1[u],∀λ > 0, u ∈ D(E) ∩ C(E)) with
Gu

λ ≡ {x ∈ E||u(x) > λ|}
(seen by realizing that Gu

λ is open, |u|/λ ∈ LGu
λ
, for u ∈ D(E)∩C(E), with

Ll·λ as in the definition of capacity, and using the “Dirichlet property”
E1[|u|] ≤ E1[u].)

B) By the regularity of E and A) one can find un ∈ D(E)∩C0(E) s.t. un → u.
By passing if necessary to a subsequence, denoted again by un, one then
has E1[un+1 − un] ≤ 1

23n

Then by A): CapGun+1−un

2n ≤ 1
2n .

Hence Fk ≡
∞⋂

l=k

(
G

un+1−un

2n

)c

is an E-nest.

But |un(x)− um(x)| ≤
∞∑

ν=N+1
|uν−1(x)− uν(x)|, for any x ∈ Fk,

n,m > N ≥ k.
Setting ũ(x) ≡ lim

n→∞un(x), x ∈ ⋃
k

Fk we have that ũ � Fk is continuous

and ũ is quasi-continuous. �

The next observation consists in showing that one can construct a

countable set B0 ⊂ D(E)∩C0(E) dense in sup-norm in C0(E) s.t. B0 is linear
and closed under |.| (as seen by approximation, using the regularity of E , see
[Fu], proof of Lemma 6.1.2).
Set H0 ≡

⋃
t∈Q+

Tt(B0)∪G1(B0) (where (Tt)t≥0 is the Markov semigroup asso-

ciated with E and G1 is the corresponding resolvent Gα evaluated at α = 1).
Let u ∈ H0 and let ũ be its quasi-continuous modification given by the above
Lemma.
Set H̃0 = {ũ|u ∈ H0}. One shows (using that H̃0 is countable!) that there
exists a regular nest

{
F 0

k

}
on E s.t. H̃0 ⊂ C(

{
F 0

k

}
) (where C(

{
F 0

k

}
))

denotes the functions which are continuous in (F 0
k )c). Let

⋃
F 0

k ≡ Y0. One
sets for u ∈ L2(m), x ∈ Y0, t ∈ Q+ : p̃tu(x) ≡ Ttu(x).
p̃t is not yet a semigroup, but has a submarkovian kernel p̃t(x,B), x ∈ Y0,
B ∈ B (cfg. [246], proof of Lemma 6.1.2).
One extends p̃t to E by setting p̃t(x,B) = 0,∀x ∈ E − Y0. One shows
p̃tC∞(E) ⊂ C(

{
F 0

k

}
), and that p̃t is a quasi-continuous version of Ttu, for

any u ≥ 0, Borel, u ∈ L2(m), t ∈ Q+ (cf. Lemma 6.1.2 in [246]), and that p̃t

is a semigroup of Markovian kernels on (E,B).
One then uses p̃t to get by Ionescu-Tulcea-Kolmogorov’s construction a
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Markov process on X∆. The crucial step then consists in showing that this
Markov process has a càdlàg version on some Borel subset Ỹ , Ỹ ⊂ Y0, s.t.
Cap(E − Ỹ ) = 0. This relies on an interplay of analytic and probabilistic
methods, where regularity again plays an important role (see [246], Lemma
6.2.3). The same ingredients then enable us to show that the process is a
Hunt process.
By the reduction of the infinite dimensional case to the locally compact case,
one then completes the construction in the general case, see [114], [367] for
details.

Remark 43. 1) The m-tight special standard process X properly associated
with a quasi-regular symmetric Dirichlet form is m-symmetric (in the
sense that its transition semigroup is symmetric in L2(m)), and has m as
an invariant measure (by construction).
In general it has a finite life time ζ, but if Tt1 = 1 (Tt being the Markov
semigroup associated with E) and 1 ∈ L2(m), then the life time is infinite.
The process X can always be taken as a canonical process (cfg. [367]).

2) Let X be a right process properly associated with a quasi-regular Dirichlet
form E (in the general case where E is a topological Hausdorff space and
m is a σ-finite measure on E).
One shows that there exists an E-nest (Fk), with Fk compact measurable
subsets in E and a locally compact separable metric space E# containing
densely Y ≡ ⋃

k

Fk with B(Y ) ≡ {
A ∈ B(E#)|A ⊂ Y } and, moreover,

there exists a Hunt process X on E#, the “natural extension” of X �
(E −N), N ⊂ E,
N invariant, E-exceptional, s.t. X is properly associated with the regular
Dirichlet form E#, the image of E in L2(E#,m#). This observation is
exploited in the “regularization method”, see [244], [114], [465].

4.5 Stochastic analysis related to Dirichlet forms

Let (E,B,m) be as in chapter 4.1

Definition 32. (Additive functional)
Let X = (Xt)t≥0 be a right process associated with a quasi regular Dirichlet
form E (according to Theorem 12 in chapter 4.4).
A ≡ (At)t≥0 is called an additive functional associated with X if At is
Mt-measurable, càdlàg and such that At+s(ω) = At(ω) +As(At(ω)) for all
s, t ≥ 0, ω in the underlying probability space Ω.
A is called a continuous additive functional if t→ At(ω) is continuous
∀ω ∈ Ω.

Definition 33. Let A be an additive functional. The energy of A is by
definition
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e(A) ≡ lim
t↓0

1
2t
Em(A2

t ),

if the limit exists, m-a-s.

Definition 34. Let M ={M |M additive functional, Ez(M2
t ) <∞,

Ez(Mt) = 0, E − q.e., z ∈ E,∀t ≥ 0}.
One shows that any M ∈M is a martingale under P x, for any x ∈ E −N,
N being a properly exceptional set (depending on M , in general). Thus the
elements of M are called martingale additive functionals.
One shows ([246] p.135, by a method of P.A. Meyer) that for any martingale
additive functional M , there exists uniquely a positive continuous additive
functional 〈M〉 s.t. for any t > 0 :
Ez(〈M〉t) = Ez(M2

t ), q.e. z ∈ E, 〈M〉t is then by definition the quadratic
variation of M .
Let Nc ={N is a continuous additive functional of zero energy i.e.
e(N) = 0 and s.t. Ez(|Nt|) <∞ for q.e. z ∈ E}.
Theorem 13. (Fukushima’s decomposition)
Let X be the right process associated with a quasi regular symmetric Dirichlet
form on a Hausdorff topological space. If u ∈ D(E) then there exists uniquely
a martingale additive functional of finite energy M [u] and an element of zero
energy N [u] ∈ Nc s.t. for any quasi-continuous version ũ of u:

ũ(Xt) = ũ(X0) +M
[u]
t +N

[u]
t .

Remark 44. N [u] is not necessarily of bounded variation (but it has zero
energy).
For the proof of this theorem see [244], [258], [367], [114].

5 Diffusions and stochastic differential equations
associated with classical Dirichlet forms

5.1 Diffusions associated with classical Dirichlet forms

We consider the example discussed in chapter 4, 4.2 of the classical Dirichlet
form Eµ, associated with a probability measure µ on a separable Banach space
E s.t.

E′ ⊂ H′ ∼= H ⊂ E
We suppose as in chapter 4,4.2 that there exists βµ ∈ L2(µ) s.t. the integra-
tion by parts formula holds, i.e.

∫
∂u

∂k
dµ = −

∫
uβµ,kdµ ∀k ∈ K ⊂ E′, u ∈ FC∞

b ,
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K consisting of elements which form an orthonormal basis in H.
Let βµ : E → E s.t., for all z ∈ E:

〈
E′
k, βµ(z) 〉

E

= βµ,k(z),

where 〈
E

, 〉
E′

is the dualization between E and E′.

Let Lµ be the self-adjoint operator with −Lµ ≥ 0 associated with Eµ (Dirich-
let operator associated with µ). Then, on FC∞

b :

Lµ = �H + βµ(z) · ∇H,

where �H =
∑

k∈K

∂2
k is the Gross-Laplacian associated with H,∇H the natu-

ral gradient associated with H, so that

βµ(z) · ∇H =
∑
k∈K

βµ,k(z)∂k.

Proposition 15. The classical Dirichlet form Eµ given by µ is quasi-regular.

Proof. One has to verify the properties i),ii),iii) in Definition 29 of quasi-
regularity for Dirichlet forms. For i) it is enough to show that there exist
compacts Fk ↑ E with Cap (E − Fk) ↓ 0 (“tightness of the capacity”), we
leave this as an exercise (cf. [367]).

ii) The subset FC∞
b is Ẽ1-dense in D(Eµ) by the construction of Eµ as

the closure of
◦
Eµ. Its elements are continuous.

iii) FC∞
b separates the points of E (and hence also of E −N) since E is

a separable Banach space (use, e.g., the theorem of Hahn-Banach, cf.
[367], p.119)

�

Proposition 16. Eµ is local.

Proof. We have to show that Eµ(u, v) = 0 if suppu, supp v are compact,
suppu ∩ supp v = ∅.
This is obvious for u, v ∈ FC∞

b . Now for arbitrary u, v ∈ D(Eµ) we can find
(by the Ẽ1-density of FC∞

b ) un, vn ∈ FC∞
b s.t. E1([un − u])→ 0,

E1([vn − v])→ 0, as n→∞, and the Proposition is proven. �

By the general theory of association, cf. Chapter 4, to Eµ there is properly

associated an m-tight special standard process Xt, 0 ≤ t ≤ ζ, which by the
locality of Eµ is a diffusion process.
Since the C0-contraction Markov semigroup Tt = etL, t ≥ 0, associated with
Eµ moreover satisfies Tt1 = 1, it follows that X = (Xt)t≥0 is a µ-symmetric
conservative process s.t. ζ = +∞.
An application of Fukushima’s decomposition theorem (Chapter 4, Theorem
12) to the present case yields:
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Theorem 14. For any u ∈ D(Eµ), t ≥ 0:

a) if u ∈ D(Lµ) then

N
[u]
t =

t∫
0

(Lµu)(Xs)ds.

b) 〈M [u]
t 〉

t
= 2

t∫
0
〈∇u(Xs),∇u(Xs) 〉

H
ds, where 〈·〉

t
denotes the quadratic vari-

ation process (so that Ez

(
〈M〉

t

)
= Ez(M2

t ) ,q.e. z ∈ E, t > 0,Mt a

martingale additive functional.)

Proof. a) The proof is based on an extension to quasi-regular Dirichlet forms
on general Hausdorff topological spaces (cf. [367]) of the following Lemma:

Lemma 4. Let E be a regular Dirichlet form on L2(m) on a locally com-
pact separable space E, and let X be a properly associated right process.
Then for any g ∈ L2(m) :
t∫
0
g(Xs)ds is a continuous additive funtional of zero energy.

The proof of the Lemma is left as an exercise (hint: use the Markov prop-
erty of X).
Now take u ∈ D(Lµ), so that u = G1f, f ∈ L2(m). Set g ≡ u− f
Then:

t∫
0

g(Xs)ds =

t∫
0

(u(Xs)− f(Xs)) ds

=

t∫
0

Lµu(Xs)ds,

where for the latter equality we have used

Lµu = [Lµ − 1 + 1]u = −f +G1f.

Applying the above Lemma we get that
t∫
0
Lµu(Xs)ds is a continuous additive functional of 0 energy and by the

uniqueness in Fukushima’s decomposition theorem this is then N [u]
t .

b) To give an idea of the proof of this point, let us look at the finite dimen-
sional case E = U,U an open subset of R

d, with a classical pre-Dirichlet

form
◦
Eµ.
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From the finite dimensional theory we know that if X is the Markov pro-

cess properly associated with the closure Eµ of
◦
Eµ, then by the Beurling-

Deny decomposition

〈M [u]〉
t
= 2

t∫
0

〈∇u(Xs),∇u(Xs)〉ds

For the infinite dimensional case see [367].
�


Remark 45. a) holds for any quasi-regular Dirichlet form.
b) can be generalized to

M
[u]
t =

t∫
0

ρ(Xs) ds, with

ρ(x) = Lµu
2(x)− 2u(x)Lµu(x).

In this form the proof of b) can found in [208] for the case of locally
compact spaces and [126], [451], [452], [453] for quasi regular Dirichlet
forms.

Remark 46. For E = R
d, µ the Lebesgue measure on U , so that Eµ is the

classical Dirichlet form uniquely associated with −∆ we have, taking
u(x) ≡ ui(x) ≡ xi(∈ L2(µK)) (with µK the restriction of µ to the interior
◦
K of a compact subset K in R

d). But for any u ∈ D(EµK
)∃w ∈ D(Eµ) s.t.

w = u m-a.e. on
◦
K and M

[wi]
t = M

[ui]
t for t < σ

Rd−
◦
K

(the hitting time of

R
d −

◦
K). On the other hand

〈M [ui]〉
t
= 2

t∫
0

ds = 2t.

By a local version of Levy’s characterization theorem we then have
M [ui] =Wi, with Wi the i-th component of a Brownian motion in R

d.

Remark 47. In particular we see from the preceding remark that the finite
energy additive functional M [ui] is just the i-th component of Brownian
motion.
In general, finite energy additive functionals of a quasi-regular Dirichlet form
can be represented by stochastic integrals, see [367].
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5.2 Stochastic differential equations satisfied by diffusions
associated with classical Dirichlet forms

Proposition 17. Let µ be a probability measure on S ′(Rd), as in
Chapter 5.5.1, s.t.

uk(·) ≡ 〈
S
k, · 〉

S′
∈ L2(µ).

Then uk ∈ D(Lµ) ⊂ D(Eµ) (where Eµ is the classical Dirichlet form
given by µ). Moreover Lµuk = βµ,k(µ-a.s.)

Proof. We have, for any v ∈ FC∞
b :

Eµ(uk, v) = ((−Lµ)uk, v) =
∫
〈k,∇v 〉

H
dµ,

where we used the relation between Eµ and Lµ, the definition of βµ,k, and
the integration by parts formula. �

Theorem 15. Let X ≡ (Xt)t≥0 be the diffusion process associated with the
classical Dirichlet form given by µ as in Proposition 17. Then X satisfies
“componentwise”, in the weak probabilistic sense, the stochastic differential
equation:

〈k,Xt〉 = 〈k,X0〉+
t∫

0

βµ,k(Xs)ds+ wk
t , t ≥ 0, P z-a.s., q.e z ∈ E.

Hereby (wk
t ,Ft, P

z)t≥0 is a 1-dimensional Brownian motion starting at 0 (for
‖k‖H suitably normalized).

Proof. By the above Fukushima decomposition formula we have

〈M [uk]〉
t
= 2

t∫
0

〈∇uk
(Xs),∇uk

(Xs) 〉
H
ds = 2t‖k‖2H

(because of ∇uk
= 〈k, .〉).

Hence by Levy’s characterization of Brownian motion:(
M [uk]

)
t
= wk

t .

Moreover:

N
[uk]
t =

t∫
0

Lµuk(Xs)ds

= βµ,k

because Lµuk(Xs) = (�H + βµ · ∇H)uk = βµ,k,
where in the latter step we have used that uk(.) = 〈k, .〉 is linear. �
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Let us now vary k along an orthonormal basis K in E′ ⊂ H. Then wk
t , w

k′
t

are independent for k �= k′.
Assume that there exists a probability measure µt on E s.t., for all k ∈ H :

µ̂t(k) = exp
(
−1

2
t‖k‖2H

)
,

(in which case there exists a Brownian motion on E with unit covariance
given by the scalar product in H: see, e.g., [334], [428], [118]).
Then we have the following

Theorem 16. Under above assumption about the existence of µt there
exist maps W,N : Ω → C([0,∞], E) s.t. t→Wt(ω), t→ Nt(ω) are
Ft-B-measurable, for all non negative t.
Wt is such that for q.e. z ∈ E, under P z, it is an Ft- Brownian motion
starting at 0, with covariance given by the scalar product in H.
Moreover,

〈k,Nt〉 = N
[uk]
t =

t∫
0

βµ,k(Xs)ds.

One has:
Xt = z +Wt +Nt, t ≥ 0, P z-a.s.,q.e. z ∈ E.

Remark 48. X also solves the martingale problem for D ⊂ D(Lµ) ⊂ L2(Eµ)
in the sense that X is a µ-symmetric, right process s.t.

ũ(Xt)− ũ(X0)−
t∫

0

Lµu(Xs)ds, t ≥ 0

is Ft-measurable under P z, for some quasi-continuous, right continuous
modification ũ, independent of N , and independent of the µ-version of the
class Lµu ∈ L2(µ).

Remark 49. A particular case of the above results concerns

E = C(0)([0, t]; R)

(Wiener space),

H = H1,2([0, t]; R)

(Cameron-Martin-space),
µ is the standard Wiener measure on E.
In this case ◦

Eµ(u, v) =
∫
〈∇u,∇v 〉

H
dµ,
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Eµ(u, v) =
∫
〈∇u,∇v 〉

H
dµ,

with ∇ Malliavin’s closed gradient (the verification of the latter is left as an
exercise; see also, e.g. [396],[365], [329],[57], and references therein).
In this case we have:

βµ,k(.) = 〈k, .〉
(since

∫
∂u
∂kdµ = − ∫ uβµ,kdµ, u ∈ FC∞

b , as seen from the following compu-
tation ∫

∂

∂s
u(.+ sk)|s=0dµ =

∫
u(.)

dµ(.− sk)
dµ(.)

dµ(.)

=
∫
v(.)e−〈k,.〉e− 1

2 ‖k‖2
Hdµ(.))

Incidentally: the computation in parenthesis of the Cameron-Martin density
under translations of Wiener measure is the basis of a corresponding compu-
tation for the quasi-invariance of a natural measure on loop-groups, see [57],
[373], [68] and is used in an essential way in the representation of related
infinite dimensional Lie groups (cf. [68]).

Remark 50. A similar computation can be done for other Gaussian measures,
of the form µ = N(0;A−1), A ≥ c1, c > 0, A a Hilbert Schmidt operator in
the Hilbert space H.
In this case we have

βµ,k = 〈Ak, .〉,
see [119], [269]. See also [165], [134], [318] for other results on infinite dimen-
sional Ornstein-Uhlenbeck processes.

5.3 The general problem of stochastic dynamics

Given a (probability) measure on some space one can ask the (“inverse prob-
lem”) question whether there exists a Markov process X with corresponding
transition semigroups Pt, µ-symmetric (in the sense that P ∗

t = Pt in L2(µ)),
having µ as Pt-invariant measure, in the sense that∫

Ttudµ =
∫
udµ

for all u ∈ L2(µ).
One then says that X is the “stochastic dynamics” (or “Glauber dynamics”)
associated with µ.

Remark 51. 1) If µ is a probability measure then we have:
µ is Pt-invariant iff Pt1 = 1
(with 1 the function identically 1 in L2(µ))
(we leave the proof as an exercise).
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2) There is a notion of measure µ infinitesimal invariant with respect to
(Tt)t≥0 , e.g. this has been discussed in connection with hydrodynamics
(cf. [35]):
µ is namely called infinitesimal invariant under a C0-semigroup Tt =
etL, t ≥ 0 if

∫
Ludµ = 0,∀u ∈ D0 ⊂ D(L), D0 dense in L2(µ).

In general µ infinitesimal invariant is strictly weaker than µ Tt- invari-
ant , unless Tt is µ-symmetric and 1 ∈ D(L), L1 = 0 (because then from∫
Ludµ = 0 one deduces

∫
Lnu dµ = 0, for all n, hence

∫
Ttu dµ = 0)

For recent work on invariant and infinitesimally invariant measures see,
e.g., [21], [37], [38], [95], [128], [166], [167], [168], [201].

The converse problem to the above “inverse problem” is the following
“direct problem”: given a Markov process X find a probability measure µ s.t.
µ is an invariant measure for X.
In this case one says that µ is the invariant measure to the stochastic dy-
namics described by X.
Connected with this direct problem are the following ones:

1) Existence of the classical Dirichlet form Eµ associated with µ (closability

problem for the pre-Dirichlet form
◦
Eµ in L2(µ)). If this is solved then one

can construct a diffusion Y having µ as invariant measure (Y in general
can be different from X).

2) Does the logarithmic derivative βµ = (βµ,k)k∈K of µ exist e.g. as an
element in L2(µ)?

3) Does X satisfy a stochastic differential equation?

Further associated questions are, e.g.:

4) What is the asymptotic behavior for t→∞ of Xt, and of the semigroup
Tt = etLµ , t ≥ 0, associated with Eµ ?

5) Is a solution of the martingale problem for Lµ on a closed domain D
strictly contained inD(Lµ) already uniquely determined by the knowledge
of Lµ onD? This is the “Markov uniqueness problem”, cf. [147], [223], [88],
[119] and, for the related “strong uniqueness problem”, i.e. the essential-
self-adjointness resp. maximal dissipativity of (Lµ, D) see these references
and, e.g., [85], [86], [359].

Other problems are, e.g.:

6) When does Tt have the Feller property and thus permit a more direct
construction of an associated “nice process”? (see, e.g., [82], [214], [262],
[444])

7) Is the invariant measure µ to X unique?

Problems of this type are often encountered, e.g., in the study of processes
associated with “Gibbs measures”, e.g., in quantum field theory, statistical
mechanics (on lattices and in the continuum, in problems connected with the
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geometry and analysis of configuration spaces), quantum statistical mechan-
ics (and connected problems of geometry and analysis on loop spaces), in
the study of self-intersection functionals of diffusion processes and polymer
models, in models of population dynamics, see below, chapter 6, for further
discussion and for the construction of stochastic dynamics in some examples.
First we shall briefly discuss in general the large time asymptotics of processes
associated with Dirichlet forms.

5.4 Large time asymptotics of processes associated with Dirichlet
forms

Let E be a topological Hausdorff space, m a σ-finite measure on E, as in
chapter 3-4 on Dirichlet forms.

Definition 35. A general Dirichlet form E in L2(m) is said to be irreducible
if u ∈ D(E) and E [u] = 0 imply that m is constant m-a.e.

Definition 36. Let (Tt), t ≥ 0 be a submarkovian C0-contraction semigroup
in L2(m). Tt is called irreducible if Tt(uf) = uTtf,∀t > 0,∀f ∈ L∞(m)
implies u = const m-a.e.

Definition 37. Let (Tt)t≥0 be a (submarkovian) C0-contraction semigroup
in L2(m). (Tt)t≥0 is said to be L2(m)-ergodic if Ttu →

∫
udm as t → ∞ in

L2(m),∀u ∈ L2(m).

In [90] (see also [91], [64]) the following Theorem is proven:

Theorem 17. For symmetric Dirichlet forms E and associated symmetric
submarkovian C0-contraction semigroups Tt = etL, t ≥ 0, in L2(m), the fol-
lowing are equivalent:

a) E is irreducible
b) (Tt)t≥0 is irreducible
c) Ttu = u∀t > 0, u ∈ L2(m) implies u = const m-a.e.
d) (Tt)t≥0 is L2(m)-ergodic
e) u ∈ D(L) and Lu = 0 imply u = const m-a.e.

Proof. b) → a) is immediate, using the contraction property of E . The rest
is left as an exercise (cf. [90]). �


It is also interesting to connect asymptotic properties of semigroups with
corresponding properties of associated processes.

Definition 38. Let X be a right process on a topological Hausdorff space,
properly associated with a quasi-regular Dirichlet form E. Let for any µ ∈
P(E) (the linear space of probability measures on E):
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Pµ ≡
∫
E

P zµ(dz),

where P z is the probability measure on the paths of X corresponding to a
starting point z ∈ E.
(X,Pµ) is said to be time-ergodic if for any G : Ω → R, s.t. G is Θt invariant
∀t ≥ 0 one has G = const, Pµ-a.s. (that G is Θt-invariant means that
G(Θtω) = G(ω)∀t ≥ 0, Θt being the natural shift in path space given by
Θtω(s) = ω(t+ s),∀0 ≤ s, t ≤ ζ(ω)).

One has then the following

Theorem 18. (“Fukushima’s ergodic theorem”)
The classical Dirichlet form Eµ on a topological Hausdorff space (X,µ) (with
µ σ-finite) is irreducible in L2(µ) iff (X,Pµ) is time-ergodic.
Moreover, the transition semigroup Pt to X (so that Xt is properly associated
to Pt, t ≥ 0) is such that Ptu→

∫
udµ as t→ +∞, Eµ-q.e., ∀u ∈ Bb(E).

Proof. The proof is given in [87] (for previous work see, e.g., [57], [390], [244]).
�


Corollary 3. Let Eµ be as in above theorem. Then Eµ is irreducible if µ
is the only Pt-invariant probability measure on B(E) which does not charge
Eµ-exceptional subsets of E.

Proof. See [244]. �

For measures µ which are quasi-invariant with respect to suitable sub-

spaces K of E, which we shall call “space quasi-invariant”, one has an inter-
esting relation between above time ergodicity of E and “space ergodicity”,
i.e. ergodicity with respect to K. This is the context of next section.

5.5 Relations of large time asymptotics with space
quasi-invariance and ergodicity of measures

Let E be a Hausdorff topological space, which is a locally convex topological
vector space with the topology of a Souslin-space. (cf. [462] for this concept,
E can be, e.g., a Banach space, or a space like S ′(Rd)).
Assume there is a Hilbert space H s.t. E′ ⊂ H ⊂ E where the embeddings
are dense and continuous.

Definition 39. A probability measure µ on E is said to be K-quasi invariant
if µ(.)# µ(.+ tk),∀k ∈ K,∀t ∈ R (where # means absolutely continuous).

Remark 52. An example of a quasi invariant measure is given by E =
C0, ([0, t]; Rd), µ the Wiener measure on E, with K = H1,2([0, t]; Rd) the
Cameron-Martin space, cf. Chapter 5.5.2.
As clearly mentioned in Chapter 5.5.2, the non commutative analogon of
this setting, with R

d replaced by a compact Lie group, is the basis for the
representation theory of loop groups and algebras, see, e.g., [57], [68].
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Definition 40. A probability measure µ on E is said to be K-ergodic if µ is
K-quasi invariant and for any u ∈ L2(µ) one has that u(z + tk) = u(z) µ-
a.e. (∀z ∈ E, t ∈ R) implies u = const, µ- a.e.

Given a probability measure µ on E, one might ask whether there is a
relation between the irreducibility of the corresponding classical Dirichlet
form Eµ and the K-ergodicity of µ. This has already been discussed in [57].
The surprise is that a close relation of this type involves another Dirichlet
form Emax

µ (with larger domain than Eµ), rather than Eµ.
In order to define Emax

µ let us first define its domain:

D(Emax
µ ) ≡

{
u ∈

⋂
k∈K

D(Eµ,k),
∑

k

Eµ,k[u] <∞
}

One sees then easily that

D(Emax
µ ) ⊃ D(Eµ).

In general however one can have D(Emax
µ ) �= D(Eµ) (see e.g. [246] for finite

dimensional examples, with E replaced by a bounded subset of R
d).

Remark 53. D(Emax
µ ) is an infinite dimensional weighted space analogue of

the Sobolev space H1,2(µ) whereas D(Eµ) is an infinite dimensional weighted
space analogue of H1,2

0 (µ).
One defines Emax

µ to be equal to Eµ on D(Eµ). One can then show that Emax
µ

so defined has a unique closed extension to a Dirichlet form with domain
exactly equal to D(Emax

µ ) as defined above, see [99], [101], [223].

Remark 54. It is an important open problem to establish whether Emax
µ is

quasi-regular in general, hence whether to it there can be properly associated
a right process.
The advantage of Emax

µ over Eµ is that irreducibility for it implies K-
ergodicily of µ i.e. the following theorem holds

Theorem 19. If Emax
µ is irreducible then µ is K-ergodic.

Proof. Let u : E → R be B(E)-measurable and in L2(µ). Suppose u is k-
invariant, k ∈ K. Then one can show that ∂

∂ku = 0, see [119], hence u ∈
D(Eµ,k).
By the definition of D(Emax

µ ) this implies u ∈ D(Emax
µ ) and Emax

µ [u] = 0.
By the irreducibility of Emax

µ this implies u = const, µ-a.e., which by the
definition of K-ergodicity of µ yields that µ is K-ergodic. �

Remark 55. One has Emax

µ irreducible ⇒ Eµ irreducible (but the converse is
not true in general, see, e.g. [119]).
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Remark 56. The question whether Emax
µ = Eµ for a given setting (E, µ,H,K)

is called the “Markov uniqueness question”. One can namely show in general:
Emax

µ = Eµ ⇔ the only Dirichlet form extending (Eµ, D(Eµ)) is Eµ
⇔ if E is a Dirichlet form and E = Eµ on FC∞

b then E = Eµ
⇔ Let (Tt)t≥0 be the submarkov semigroup with generator coinciding on
FC∞

b with the classical Dirichlet operator Lµ given by µ (i.e. Lµ

is the operator associated to Eµ in the sense of the representation theorem)
Then Tt = etLµ .

In general it is known that Markov uniqueness is weaker than “strong
uniqueness” or “L2-uniqueness”, which is the property that Lµ is essentially
self-adjoint on FC∞

b on L2(µ).
The Markov and strong uniqueness problems are thoroughly discussed in
[223]. We mention here some further basic work by [85], [86], [89], [499],
[471], [185], [37], [38], [440], [441] (connected with applications in various do-
mains).
To give an idea of these connections let us mention shortly what happens in
the finite dimensional case E = R

d : for µ(dx) = ρ(x)dx,
√
ρ ∈ H1,2

loc one has
Markov uniqueness in general (see [359]).
For U a bounded region and ρ = 1, Emax

µ is the Dirichlet form describing re-
flected Brownian motion, Eµ describes absorbing Brownian motion and there
are infinitely many other forms between Eµ, Emax

µ describing Brownian mo-
tion with other types of boundary behaviour.
It is also known that there are other closed symmetric positive bilinear forms
with associated generators of symmetric C0-contraction semigroups in L2(µ)
with generators coinciding with Lµ (here ∆) on C∞

0 (U) but which are not
submarkovian, e.g. the Krein extension of ∆ � C∞

0 (U), see [244].
A “concrete” (probabilistic and analytic) classification of all extensions in
the infinite dimensional case is a very interesting open problem.

Remark 57. There exists a partial converse to the previous theorem.

Theorem 20. If µ is K-quasi invariant and a “strictly positive” measure
on E (in the sense that its Radon-Nikodym derivatives in the directions of K
are strictly positive) and moreover µ is K-ergodic, then Emax

µ is irreducible

Proof. See [87]. �

We shall now see that for special µ called “Gibbs measures”, one has a

close relation between irreducibility and K-ergodicity.
Let

Gb ≡ {µ ∈ P (E)|µ satisfies (IP )b
}
,

where (IP )b is the following “integration by parts formula with resp. to µ
and the direction b”:

∫
∂u

∂k
dµ = −

∫
ubkdµ
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∀u ∈ FC∞
b ,∀k ∈ K.

Any element µ of Gb is called a “b-Gibbs state” ” and b ≡ (bk)k ∈ K is the
logarithmic derivative of µ.

Remark 58. We shall see below how to relate this definition of b-Gibbs state
with other definitions of Gibbs states.

Remark 59. Let us look at a probability measure on E = R
n of the form

dµ(z) = Z−1e−S(z)dz,

where dz is Lebesgue measure on E, S is a lower bounded measurable function
on R

n, Z a normalization constant s.t. µ is a probability measure on R
n.

The (IP )b-formula holds with K = R
n and bk = −dkS(z), dk being the

derivative in the direction k, i.e. bk is the logarithmic derivative of the measure
µ.
In this sense it is often inspiring to think of µ also in the case of an infinite
dimensional E as a measure of the above form (of course there is no good
analogue of Lebesgue measure on infinite dimensional spaces, so this way
of thinking has to be understood “cum grano salis”, e.g. as limit of finite
dimensional measures, see, e.g., [16]).

Remark 60. a) Gb is a convex set, in the sense that any µ ∈ Gb can be written
as an integral with respect to ν ∈ (Gb)ex, with (Gb)ex the set of extreme
elements in Gb, see [90].

We have the following

Theorem 21. Let µ be in Gb.
Consider the following statements:

i) µ ∈ Gb
ex

ii) Emax
µ irreducible

iii) Eµ irreducible
iv) (X,Pµ)-time ergodic (with X a right process properly associated with Eµ)

Then: i)↔ ii)→ iii)↔ iv)
If Emax

µ = Eµ (i.e. one has Markov uniqueness) then i),ii),iii),iv) are all
equivalent.

Proof. ii)→ iii) is clear
iii)↔ iv was discussed above. For the rest of the proof see [90], [91]. �

Remark 61. Eµ acts as a rate function for the large deviation of occupation
densities of X from the ergodic behaviour, as shown in [390].
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6 Applications

The applications of the theory of Dirichlet forms are so numerous and belong
to so many different areas that it would be impossible to give here even a
sketchy but balanced overview.
We shall restrict ourselves to some examples, mainly taken from physics,
which illustrate some of the basic advantages of the approach and where
the analysis has been pushed forward most intensively in recent years, in
particular concerning the stochastic processes involved, which are difficult
to obtain (if at all) by other methods, and where in any case the theory of
Dirichlet forms has played a pioneering role.
In most of the cases we shall consider the processes which have invariant
measures of the form of “Gibbs measures”, i.e. measures heuristically given
by the formula

dµ(z) = Z−1e−S(z)dz, z ∈ E (1)

(E being the state space, cf. Remark 59 in Chapter 5). For somewhat comple-
mentary references where problems connected with the ones discussed here
see also, e.g., [2], [3], [9], [116].

6.1 The stochastic quantization equation and the quantum fields

Let us consider a classical relativistic scalar field (as a simpler analogue of
the classical electromagnetic vector field) over the d-dimensional Minkowski
space-time (d = s + 1, s = space dimension, the physical case being for
s = 3). ϕ is the (real-valued) solution of the non-linear Klein-Gordon (or
massive wave) equation:

�ϕ+m2ϕ+ v′(ϕ) = 0 (2)

(with � = ∂2
∂t2 − �→

x
the d’Alembert wave operator, m >

(−)
0 being the

mass parameter, v a real valued differentionable function on R called “(self-
)interaction”, t ≥ 0 is the time variable,

→
x ∈ R

s is the space variable).
Inspired by Feynman’s heuristic “path integrals” quantization procedures (we
refer to [60], [23], [24], [25], [26], [73], [16], [53], [278], [279], [280], [49] for work
implementing this in related situations), Symanzik formulated a program of
constructing a quantization of the solution of (2), in terms of a measure of
the heuristic form (1) with S(z) an “action functional” of the form

S(z) = S0(z) +
∫
Rd

v(z(x))dx,

with
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S0(z) =
1
2

∫
Rd

(−z(x))�z(x)dx+m2
∫
Rd

|z(x)|2dx,

with z = z(x), x = (t,
→
x) ∈ R×R

s = R
d. In this case then E should be a space

of maps from R
d into R. The reason for this is that the moment functions∫

z(x1)..z(xn)µ(dz) of µ heuristically defined by (1) with such an S give,
after analytic continuation x = (t,

→
x)→ (it,

→
x), the “correlation functions in

the vacuum”
〈ϕQ(t1,

→
x1)...ϕQ(tn,

→
xn)〉

of the relativistic quantum field ϕQ(t,
→
x) corresponding to the classical Klein-

Gordon field ϕ(t,
→
x).

From the perspective of Chapter 5.3, the construction of µ is related to the
construction of a process (Xτ )τ≥0 on E s.t.

dXτ = βµ(Xτ )dτ + dwτ

with wτ a Brownian motion on E with covariance given by a suitable Hilbert
space H, with βµ(z) = −∇HS(z). For H = L2(Rd) we get heuristically

−∇HS(z(x)) = −(−�x +m2)z(x)− v′(z(x)),

so Xτ satisfies heuristically

dXτ (x) = (�x −m2)Xτ (x)dτ − v′(Xτ (x))dτ + η(τ, x)dτ (3)

with η(τ, x) a Gaussian white noise in all variables τ ∈ R, x ∈ R
d, s.t. heuris-

tically,
d

dτ
wτ (x) = η(τ, x)

with (wτ (·)) a (cylindrical) Brownian motion on S ′(Rd) with covariance given
by the scalar product in L2(Rd).

(3) is called the “stochastic quantization equation”. It has been discussed
by Parisi-Wu as a computational, Monte-Carlo type method for the construc-
tion of µ (τ being a “computer time”). This equation has since received a lot
of attention, both in physics and mathematics, after the pioneering work of
Jona-Lasinio and coworkers [302].
As for the definition of the measure µ ≡ µv, heuristically given by (1) with S
as above, one starts from the case v = 0. In this case, as realized by E. Nelson
[393] (see also, e.g. [10], [15], [428],[429] for other connections) µ0 ≡ µv=0 is
realized rigorously as the normal distribution with mean zero and covariance
(−�x + m2)−1 (which, by Minlos theorem, is a well defined measure, e.g.,
in S ′(Rd), with support e.g. in H−1,2(Rd)) (this is called Nelson’s free field
measure).
For d = 1, µv has been constructed for large classes of v as weak limit as
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Λ ↑ R of measures of the form µv
Λ(dz) = Z−1

Λ e
− ∫

Λ

v(z(x))dx

µ0(dz) (see [293],
[450], [197]).
A direct analogous procedure for d = 2 fails, since µv

Λ is ill defined, since for
z ∈ suppµ0,

∫
Rd

v(z(x))dx is infinite µ0-a.s. (this is due to the singularity of

the covariance of µ0 on the diagonal (x = y) of the type |x − y|−(d−2) for
d ≥ 3 and −2πln|x− y| for d = 2), with : : being the Wick ordering.
But, for d = 2, replacement of v by : v : (so that e.g. for v(y) = yn, 〈k, : v :
(z)〉, k ∈ S(R2) is an element in the n-th chaos subspace in L2(µ0)) yields (by
a fundamental estimate of Nelson, see, e.g. [466]) a well-defined probability

measure µv
Λ (heuristically given by Z−1e

− ∫

Λ

:v:(z(x))dx

µ0(dz)), and one shows
then that µv

Λ converges weakly, under some assumptions on v, for Λ ↑ R
2,

to a well defined probability measure µv on S ′(R2) (see [466], [265], [39]). µv

is then by definition the “v(ϕ)2-model” of (Euclidean) quantum field theory
(for v a polynomial P one has the “P (ϕ)2-model”).

Remark 62. The problem whether the coordinate processX with distribution
µv is a global Markov field was open for a long time and was solved in works by
Albeverio, Gielerak, Høegh-Krohn, Zegarlinski, see, e.g., [132] and references
therein.

Looked upon as an S ′(Rd−1)-valued symmetric Markov process t →
Xt(f), f ∈ S(Rd−1), t ≥ 0, it has a generator which coincides on a dense set,
e.g. FC∞

b , with the S ′(Rd−1)-valued diffusion process Xt(f), t ≥ 0 associated
with the classical Dirichlet form given by µv

0, where µv
0 is the restriction of µv

to the σ-algebra σ(X0(f), f ∈ S(Rd−1). Wether Xt(f) and X̃t(f) have gener-
ators coinciding on their full domain is an open question for v �= 0 (“Markov
uniqueness” for the process associated with µv

0) (for v = 0, Xt(f) = X̃t(f) =
Nelson’s free field at time t and with test function f . Its generator is the
Hamiltonian of the relativistic free field). The corresponding problem for the
diffusion generated by the analogue µv

(0),Λ0
, of µv

(0) in a bounded region Λ0

of R
d has been solved in [359].

Let us now come back to the stochastic quantization equation (SQE):
it has been verified in [119], [255], [421] that µv is (for d = 2 and a large class
of v’s) such that the classical Dirichlet form µv given by it exists and that
the properly associated diffusion X = (Xτ )τ≥0 indeed solves the SQE (3),
componentwise (in fact βµ,k ∈ L2(µ)) and on E itself.
Recent work on pathwise solutions of the SQE is in [52] and [199], see also
[384] for a discussion of the impossibility to use a Girsanov transformation
to produce solutions, even on a bounded domain Λ in R

2.

Remark 63. a) The problem of the necessity of the renormalization v →: v :
in order to avoid “triviality” is discussed in [42], [52], [51], [47].
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b) For a discussion of the Markov resp. strong uniqueness problem for µv
Λ see

[359], [499] (the case where Λ = R
2, i.e for µv is still open , see [121] for

a partial result and [37], [38] for a related problem in hydrodynamics).
c) Despite the unproven Markov uniqueness, the space of Gibbs states for

µv (in the sense discussed, e.g., in [72]) can be identified with Gb, and b
given on FC∞

b by the expression βµv , i.e.

bk(z) = 〈
S
(�x −m2)k, z 〉

S′
− 〈

S
k, : v′(z) : 〉

S′

(with 〈
S
, 〉
S′

, the dualization between S(R2) and S ′(R2)). It is important

to realize that b is independent of the Gibbs state, it only depends on µ0

and v in the support of k.
Using the ergodic theory briefly exposed in Chapter 5.4, it has been shown
in [90], [91] that for µ ∈ Gb

ex one has that Eµ is irreducible and the solution
X of the SQE (3) is time-ergodic. This is a result which has been hard to
obtain, and holds, e.g., for v(y) an even degree polynomial, with leading
term of the form λ2yn, λ > 0 sufficiently small (y ∈ R).

d) More work has been done on a stochastic quantization equation with reg-
ularization ε > 0, denoted by (SQE)ε, obtained from (3) by replacing on
the r.h.s. Xτ by A1−εXτ , wτ by A− ε

2wτ and : v : (Xτ )byA−ε : v′ : (Xτ ),
with A ≡ −∆+m2. µv is heuristically still invariant for (SQE)ε, for any
ε > 0, this has been shown rigorously in [302], [169], [120], [199] (see
also [384] and references therein). Markov uniqueness for µvε

Λ , Λ ⊂ R
d has

been also shown in [121], [123]; Lp-uniqueness of µv
Λ, Λ � R

d in the sense
of [223] (the case p = 2 being strong uniqueness) has been shown in [359],
[200], see also [223]. The problem of corresponding uniqueness results for
R

d instead of Λ is still open.
e) Log-Sobolev inequalities for µvε , (ε ≥ 0) would yield exponential ergodic-

ity of X, but this is still an open problem (even for d = 1) (the analogous
problem in lattice statistical mechanics is solved in [89], see Section 2
below).

Remark 64. For d = 3 only a construction of the analogue of µv works for
v �= 0 in the special case v(y) = y4. It is not known whether one can associate
a Markov process to any of the µv, µv

Λ, µ
v
0, µ

v
0,Λ0

, Λ ⊂ R
3, Λ0 ⊂ R

2, for a
negative result see [133].
For further discussions of these topics and related ones see also [11], [12], [13],
[15], [54], [55], [56], [196], [198], [201], [219], [221], [228], [260], [241], [272],
[291], [303], [310], [318], [328], [496], [497], [498], [499], [500], [360], [394], [395],
[430], [431], [432], [433], [435], [437], [438], [439], [440], [441], [442], [478], [479],
[494].
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6.2 Diffusions on configuration spaces and classical statistical
mechanics

We shall present here shortly a probabilistic construction of diffusion pro-
cesses on configuration spaces, see [92], [93], [94] for details (and, e.g., [325],
[202], [436], [369], [401], [434] for continuation of the latter work; for previ-
ous related work on stochastic analysis related to Poisson processes see, e.g.,
[179], [305], [420]).
Let M be a connected oriented C∞ Riemanian manifold such that Vol(M) =
+∞ (where Vol is the volume measure). Let

Γ ≡ configuration space (of locally finite configurations) over M
= {γ ⊂M ||γ ∩K| <∞ for each compact K ⊂M} .

γ ∈ Γ can be identified with the Z+-valued Radon measure
∑
x∈γ

εx, we shall

not distinguish in the following γ and the corresponding Radon measure∑
x∈γ

εx.

Any f ∈ C∞
0 (M) can be lifted to the map from Γ to R given by

〈f, γ〉 =
∑
x∈γ

f(x) =
∫
M

fdγ.

One can “lift the geometry from M to Γ”, e.g., given
v ∈ V0(M) ≡ {smooth vector fields on M}, one gets a flow φv

t on M , and
this flow is lifted to the flow φ̃v

t on Γ , defined by

φ̃v
t (γ) = {φv

t (x)|x ∈ γ} .
Let TxM be the tangent space to M at x ∈ M and let TM be the tangent
bundle (TxM)x∈M . Let ∇M

v the derivation on M given by

∇M
v f(x) = 〈∇Mf(x), v(x)〉TxM ,

∇M being the gradient operator associated with M .
One can also lift the operations∇M

v ,∇M , ∇̃M
v , ∇̃M from quantities associated

with M to quantities associated with Γ by defining first the space FC∞
b of

smooth bounded cylinder functions on Γ by

FC∞
b ≡ {u : Γ → R|u(γ) = g(〈f1, γ〉, ..., 〈fn, γ〉)|∃n ∈ N, fi ∈ C∞

0 (M), g ∈ C∞
b (Rn)}

and setting for u as in the definition of FC∞
b , ∇̃M

u (γ)=
∫ ∑

i

∂ig(x)∇Mfi(x)γ(dx)

Moreover:
∇̃Γ

v u(γ) = 〈∇̃Mu(γ, x), v(x)〉L2(M→TM ;γ).

In this way we let also correspond to the tangent bundle TM the tangent
bundle TΓ ≡ (TγΓ )γ∈Γ with metric given by the inner product in L2(M →
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TM ; γ). This gives then a lift of ∇M as acting on smooth functions on M to
∇̃Γ as acting on smooth cylinder functions on Γ .
Similarly one can define a lift div Γ of divM to an operation on vector fields
on Γ . Defining then ∆Γ ≡ divΓ∇Γ on FC∞

b , we have a lift of the Laplace-
Beltrami operator �M on functions on M to a Laplace-Beltrami operator on
functions over Γ .
A natural question here is for which measures µ on Γ does one have divΓ =
(−∇Γ )∗, the adjoint being taken in L2(µ). The following theorem was proven
in [94].

Theorem 22. For µ a probability measure µ on Γ with finite first absolute
moments, i.e., s.t.

∫
|〈f, ·〉|dµ(·) <∞ ∀f ∈ C∞

b (M)

the following are equivalent:

i) divΓ = (−∇Γ )∗,
ii) µ is a mixed Poisson measure, i.e. there exists a σ-finite measure λ

on R+ s.t. µ =
∞∫
0
πzσ(·)λ(z), where σ ≡ Vol(·), and πσ is the Poisson

measure on Γ with intensity measure σ so that

π̂σ(f) =
∫
Γ

ei〈f,γ〉πσ(dγ) = e

∫

M

(eif(·)−1)dσ(·)
. ∀f ∈ C∞

0 (M)

Remark 65. It follows for µ as in the above theorem:

1) µ is the volume measure on Γ (in the natural sense of being a “flat mea-
sure” on Γ )

2) µ is quasi-invariant with respect to γ → φ(γ), φ ∈ Diff0(M) (the diffeo-
morphisms which are identically the unit outside some compact subset of
M).

A stochastic dynamics can be associated with the classical (quasi regular
local) Dirichlet form Eµ, in the form of a diffusion process, satisfying a differ-
ential equation of the form given in Theorem 14, in Chapter 5, with a drift
coefficient in L2(µ). This process is generated by ∆Γ , moreover, ergodicity
and strong uniqueness hold, see [87].
There is an extension of this work to the case where µ is replaced by a “Gibbs
measure” (see, e.g., [263]), called again µ, describing a system of particles, in
the sense of classical statistical mechanics, for a general class of interactions
including “physically realistic” ones, see [93], [333], [325], [403], [505], [48].
Correspondingly in this case one has divΓ = (−∇Γ )∗ but with ∗ taken with
respect to the “non flat” measure µ, i.e. (∇Γ )∗ = ∇Γ − βµ, with βµ a drift
term (the logarithmic derivative of µ).
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Also the case where R
d is replaced by a (non compact) manifold M has been

handled and a corresponding Hodge type L2-cohomology theory has been de-
veloped, see [29], [30], [34], [32], [33]. For relations with representation theory
of infinite dimensional groups see, e.g., [292], [349].

6.3 Other applications

In this section we briefly mention some other applications of the method of
classical Dirichlet forms and associated diffusions for defining and studying
stochastic processes.

Classical spin systems In this case one studies random variables associated
with points on a lattice Z

d (or other discrete structures), with values in R

(or, e.g., a compact Lie group M), with distributions of the “Gibbs type”,
i.e. of the form

µ(dz) = “Z−1e−S(z)dz”

with z = (zk)k∈Zd , zk ∈ R (or M).

S(z) describes the interaction between the spins in the “spin configura-
tion” z. Also in this case the diffusion properly associated with the classical
Dirichlet form Eµ satisfies a stochastic differential (SDE) equation with drift
in L2(µ), and it is ergodic, if µ is an extreme state. As opposite to the cases
discussed before, in Sect. 6.1, 6.2, log-Sobolev inequalities for classical spin
systems have been proven, so that exponential ergodicity holds.
The solution process to the corresponding SDE has a drift in L2(µ). A dy-
namical theory of phase transitions can be developed. See [98], [82], [83], [84],
[89], [189], [213], [271], [356], [446], [447] for references and also for current
work.

Natural measures and diffusion processes associated with individ-
ual and lattice loop spaces Let (M, g) be a (compact) Riemannian mani-
fold. Let E = LM = C(S1,M) be the corresponding free loop space, and let
LxM = {γ ∈ LM |γ(0) = x ∈M} be the corresponding x-based loop space.
Let µ resp. µx be the pinned Wiener measure on LM resp. LxM , associated
with a Brownian loop inM , with initial distribution the Høegh-Krohn-Bismut
measure Vol(·)Pt(x, x) resp. the Dirac measure in x ∈ M . On L2(ν) (ν = µ
resp. µx) we consider the classical Dirichlet form given by ν:

Eν =
◦
Eν , with

◦
Eν(u, v) =

∫
〈$u,$v 〉

H
dν,

u, v ∈ FC∞
b , (FC∞

b being defined as an analogon of the smooth bounded
cylinder functions on M) and H the Cameron-Martin space associated with
E, consisting of loops with finite kinetic energy. This diffusion on E has been
constructed and discussed in [103] (full loops) and [218] (based loops).
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For a long time the problem of log-Sobolev inequalities has been open, see,
e.g. [270], it was discussed recently in the negative by Eberle [222], [224] (for
positive results for the case where a “potential” is added see [267], [268], [270]
and references therein).
For the problem of uniqueness see [4], [8], [5], [6], [7], [412].
For other problems related to loop spaces and strings see [350], [352], [351],
[353], [473].
For applications to quantum statistical mechanics see [78], [79], [80], [81],
[97], [321], [322], [326], [357].

6.4 Other problems, applications and topics connected with
Dirichlet forms

We mention here some topics that - although of great interest - have unfor-
tunately not been covered in these lectures. They illustrate other aspects of
the usefulness and power of the method of Dirichlet forms.

Polymers The construction and study of diffusions with polymer measures
as invariant measures has been made possible using methods of Dirichlet
forms in [124], resp. [125] (for the case of polymer measures of the Edwards-
Westwater-type in 2 resp. 3 dimensions). An open problem here is the ergod-
icity of the process constructed in the 3-dimensional case. One notes that in
two dimensions the drift is in L2(µ) but this is not so in three dimensions.
The stochastic differential equation satisfied by the diffusion is studied by
other methods in [27].

Non-symmetric Dirichlet forms and generalized Dirichlet forms Al-
though the theory of non symmetric resp. generalized Dirichlet forms could
only be mentioned shortly in this course, it has lead to important new devel-
opments in the theory of singular (finite and infinite dimensional) processes.
The main attention has been given to the local forms associated with diffu-
sion processes, see, e.g. [110], [112], [314], [346], [348], [347], [383], [367].
Whereas non symmetric Dirichlet forms have first order terms essentially
dominated by the symmetric part, generalized Dirichlet forms allow the in-
clusion of general first order terms in the generators [474], [475], [476], [477].
The latter lead to non proper associated processes which have found striking
applications in the study of stochastic PDE’s (see [?] for the Gaussian noise
and [355] for Lévy noise. See also [492] for further developments). It should
also be mentioned that the theory of generalized Dirichlet forms include also
time dependent Dirichlet forms, cf. 6.4, below.

Complex-valued Dirichlet forms A theory of such Dirichlet forms has
been developed in [117], [131], with applications to quantum theory. It has
also lead to a new approach to some aspects of non symmetric Dirichlet
forms [386]. See also [317] for further developments in connections with “open
system”.
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Invariant measures for singular processes A theory of such invariant
measures has been developed especially in the case of diffusions, e.g. [21],[330].
For jump processes see [130],[128], [129].

Subordination of diffusions given by Dirichlet forms A theory of
subordination of diffusions given by Dirichlet forms has been developed in
[127] (see also [129], based on Lévy processes on Banach spaces [126]). For
previous work on subordination and Dirichlet forms see [294], [295], [296],
[170], [171], [230], [231], [232], [299], [229], [298], [284], [285], [287], [288],
[289], [382], [400]; for relations with relativistic Schrödinger operators see
[181], [464]. For other relation to jump processes see [311], [376], [397].

Time dependent Dirichlet forms A theory of time-dependent Dirichlet
forms leads in particular to processes which satisfy S(P)DE’s with time de-
pendent coefficients see [406], [404], [405], [474], [475]. The case of Nelson’s
diffusions is covered in [474], [475], [173]. For related work see also [300].

Differential operators and processes with boundary conditions Ex-
amples of processes described by Dirichlet forms in finite dimensions, includ-
ing complicated boundary behavior, are given in [258], see also, e.g., [159],
[177], [204] (and [188a] for systems of elliptic equations). In infinite dimen-
sions not so many examples have been developed until now, see however
[507].

Convergence of Dirichlet forms The problem of when a sequence of
Dirichlet forms converges in such a way that the limit is again a Dirichlet
form has been discussed originally, in the symmetric case, in [70], [64], [102],
[143], [343], [417], [409], [443], [442], [486], [493], [398], [397]. The study of
such questions in the non symmetric case has been initiated in [377], [378],
[379], [380].

Dirichlet forms and geometry In the sections 6.2 and 6.3 in Chapter
6 we already mentioned some work involving Dirichlet forms and geometry
(loop spaces, configuration spaces). For work in other directions, in particular
in connection with differential geometry in finite dimensions resp. on special
infinite dimensional manifolds see [225], [139], [154], [156], [187], [180], [29],
[144], [146], [247], [250], [251], [254], [161], [148], [281], [282], [286], [319], [226],
[283], [186], [261], [374].

Further problems involving classical Dirichlet forms For relations
with hyperbolic problems see [320] and for scattering problems [324], [323],
[175], [182], [184], [327]. For control problems see Nagai [392], [391]. For prob-
lems of filter theory see [385]. For Dirichlet forms associated with Lévy Lapla-
cian see [1], [17]. For problems of homogenization theory see [18], [257]. For an
inverse problem in stochastic differential equations see [19]. For a small time
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asymptotics for Dirichlet forms see [422]. For a Girsanov transformation for
Dirichlet forms on infinite dimensional spaces see [122]. Structural questions
about Dirichlet forms and associated spaces are discussed in [472], [149], [163],
[178], [215], [216], [240], [252], [253], [248], [274], [339], [340], [341]. For local
Dirichlet forms in relation to problems of classical continuum mechanics see
[153], [155], [387], [388], [345], [399]. For questions of infinite dimensional dif-
fusion processes and Dirichlet forms see [354], [361], [362], [365], [366], [370],
[371], [418].

Dirichlet forms and processes on fractals, discrete structures and
metric measure spaces Important work has been done for constructing
and studying processes on fractals in [338], [387], [389], [336], [332], [331],
[141], [249], [275], [304], [315], [414]. For the study of Dirichlet forms and
processes on p-adic spaces with relation to certain trees, see [74],[75]. A theory
of hyperfinite Dirichlet forms (in the sense of non standard analysis) has been
developed in [39],[36]. The construction of local Dirichlet forms and diffusion
processes on metric measure spaces was carried out in [482]. The important
particular case of Alexandrov spaces was studied in great detail in [342]. See
also [445], [454], [487], [488], [489], [490], [491], [504], [508], [509].

Harmonic mappings, non linear Dirichlet forms Dirichlet form tech-
niques turned out to be a powerful tool in the study of generalized harmonic
mappings with values in metric spaces. Jost [307] pointed out how to define
the energy of mappings from the state space of a Dirichlet form into a metric
space. This leads to the concept of nonlinear or generalized Dirichlet forms,
[308], [481]. The stochastic counterparts are nonlinear Markov operators and
martingales in metric spaces [485], [484], [480]. For work on nonlinear Dirich-
let forms see [264], [297], [381], [151].

Non commutative and supersymmetric Dirichlet forms and pro-
cesses The study of non commutative Dirichlet forms has been initiated
in [63] (see also [64], [66]) in the symmetric case. This was extended to the
nonsymmetric case in [206], [358], [273]. Associated processes have also been
studied in [69], [67], [45]. For recent further work, also connected to non com-
mutative geometry, see [365], [195], [190], [191], [192], [194], [306], [363], [273]
(see also [50], [402], [410], [411]). Supersymmetric Dirichlet forms have been
considered in [138], [77].
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[24] Albeverio S., Brzeźniak Z. (1995), “Oscillatory integrals on Hilbert
spaces and Schrödinger equation with magnetic fields”, J. Math. Phys.
36, 2135-2156
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“An invariance result for capacities on Wiener space”, J. Funct. Anal.
106, 35-49

[42] Albeverio S., Gallavotti G., Høegh-Krohn R. (1979), “Some results for
the exponential interaction in 2 or more dimensions”, Comm. Math.
Phys. 70, 187-192

[43] Albeverio S., Gesztesy F., Karwowski W., Streit L. (1985), “On the
connection between Schrödinger and Dirichlet forms”, J. Math. Phys.
26(10), 2546-2553

[44] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H. (1998), “Solvable
Models in Quantum Mechanics”, Springer Verlag, Berlin

[45] Albeverio S., Goswami D. (2002), “A Remark on the structure of sym-
metric quantum dynamical semigroups on von Neumann algebras”, to
appear in IDAQP (2002)

[46] Albeverio S., Gottschalk H., Wu J.L. (1997), “Models of local relativistic
quantum fields with indefinite metric (in all dimensions)”, Commun.
Math. Phys. 184, 509-531

[47] Albeverio S., Gottschalk H., Yosida M. (2001), “Representing Euclidean
quantum fields as scaling limit of particle systems”, Bonn preprint, to
appear in J. Stat. Phys.

[48] Albeverio S., Grothaus M., Kondratiev Y., Röckner M. (2001), “Stochas-
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[115] Albeverio S., Ma Z.M., Röckner M. (1995), “Characterization of (non-
symmetric) Dirichlet forms associated with Hunt processes”, Random
Operators and Stochastic Equations 3, 161-179
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[124] Albeverio S., Röckner M., Zhou X.Y. (1999), “Stochastic quantization
of the two dimensional polymer measure”, Appl. Math. Optimiz. 40,
341-354
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[224] Eberle A. (2001), “Poincaré inequalities on loop spaces”, BiBos Preprint
01-07-049

[225] Elworthy K.D., Le Jan Y., Li X.M. (1999), “On the geometry of diffusion
operators and stochastic flows”, Lect. Notes in Math. 1720

[226] Elworty K.D., Ma Z.M. (1997), “Vector fields on mapping spaces and
related Dirichlet forms and diffusions”, Osaka J. Math. 34, no. 3, 629-
651

[227] Ethier S., Kurtz Th.G., “Markov processes – characterization and con-
vergence”, J. Wiley, New York (1985)

[228] Fabes E., Fukushima M., Gross L., Kenig C., Röckner M., Stroock D.W.
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Weighted First Order Sobolev Spaces on Loop Spaces”, Journal of Func-
tional Analysis 185, 527-563

[269] Gross L. (1976), “Logarithmic Sobolev inequalities”, Amer. J. Math.
97, 1061-1083

[270] Gross L. (1992), “Logarithmic Sobolev Inequalities and Contractivity
Properties of Semigroups”, Springer Verlag, Lecture Notes in Math.
1563

[271] Grothaus M. (1998), “New Results in Gaussian Analysis and their Ap-
plications in Mathematical Physics”, Ph. D. thesis, University Bonn

[272] Guerra F., Rosen L., Simon B. (1975), “The P (φ)2 euclidean field theory
as classical statistical mechanics II”, Ann. of Math. (2) 110, 111-189



90 Sergio Albeverio

[273] Guido D., Isola T., Scarlatti S. (1996), “Non-symmetric Dirichlet forms
on semifinite von Neumann algebras”, J. Funct. Anal. 135, no. 1, 50-75

[274] Hagemann B.U. (1997), “Eine Klasse von Pseudodifferentialoperatoren
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[349] Léandre R. (2001), “Stochastic diffeology and homotopy”, Progr.
Probab. 50, 51-57
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[443] Röckner M., Zhang T.S. (1997), “Convergence of operators semigroups
generated by elliptic operators”, Osaka J. Math. 34, no. 4, 923-932
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�������
��� ������� ���
��
����
�


-���		 
�� ������	 ��������
� ���� �� �� ������	. �� ���	��� ���� ��� �������
�������� � � �� ����	� �� � ����
� �� �

� � �� �� ��$��������	� ������
� ��
�
������
 /�� ���� ��������
� �� �
� �� �		 ��������	 �
� ��� ��
�� ���������
�� �� �� �
� ������	� �� ����	� ���	� ��� ��
�� �������� �
 ���� 
� ��� ��
��

� ��� �����$�	����� �� �
 
����� �� ��$��������	� ������
� ��


+���� �� ��� ���	�� �
� ���� �0�� � � �!� � � � � ��� ��� ���� �������� ��
��
�� �
 ��� 
��$����
� �������	 ��� �� ������ ��� ����� 
� ���� ��� ���
������� �
 ��� �	�����
� ���������
 1� ���� 
����� �� ����$��������	� �� $
��	��� ������
� �� ��� � �
�$�������� ��$��������	� ������
� 
�� ���� ����


�� � ���� 
����
��� �)!�

����� ��� �� ���
��� ��� ����� ��
���� �� �� 

���� ������� ��� �
��������
� 
� ��� 
���
��	 ���
��
����
�� ����� ���

���������	� ��
���� � �� ����
�
���� ��� ��� ������� ���������� ��
���� � ��

�� � ��
���
�� 


���� ��
�� ��� ���	�����
� ��� 	 ����. ��� ���	�����
�� ���� 	 ��"� 	 ���
��� ������	
 
�



140 Walter Schachermayer

� ��� ������	
 ����

 �	���
����� ����
 	�� ���

�
	�������
�� ����


��� ��������� �	�
��� �� � 
���� ����������� ����� �� �� ����� ��� ���
��������� ������ ������� ���� ������� �� ��� �������� 
����� ���� � ��������

�� �������� ���� ��� 
��������  ��!
�
���� ����� �� �� ��������� �� ��� 
��� �

���������� 
��� �� �� "� ����������� 
������ � �� ����� ��� ������
 
���
���� �� � � �� � ��� �� ��
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�����! ���������� �� � ����

������� �� &�  ��� !
�
��� � � ��� � ���#� �����  ����#!  ��� !

�
��� ����� �� �� ��

������ ������� ������� ��
��� ��  ��  ��!
�
�����!� '� ����� �� �������� ��
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�(�� � ���������) � * ��� �(�� � ���������) � *� ��� � � �� � � � � ��  +/!
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 ���#$ ���� ��� ���������� �� '��������
�� � �������� �����	�
����� �� '������� 
������ ��� ������ ��� �� ��� 
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The predictions of the physicists are most likely true. A reader of this
volume is however probably well aware that studying a problem by the meth-
ods of theoretical physics (in the present case heuristic arguments backed
by numerical simulation) and providing mathematical arguments are two
distinct endeavors. We make a definite choice for the later approach.

The author has devoted a major effort since 1994 to the task of pro-
viding proofs to some of the physicists’ statements. This has resulted in
a number of very long and very technical papers. The author’s concern is
that they will remain forever hardly accessible to others. The main goal of
the present notes is to address this concern. Our overwhelming objective is
readability. No knowledge of physics, or statistical mechanics is required, or
even probably useful to read these notes. There are no prerequisite of any
kind, beside a familiarity with the basic concepts of probability theory. In
fact, the most advanced tool that will not be proved is Hölder’s inequality.
With the exception of a few results that are probably still far from their
final form, every proof is given in complete detail. The usual dreadful “it is
easy to see. . . ” have not been permitted to creep in. In order to improve
readability we will discuss only the SK model and its cousin, the p-spin
interaction model.

A regrettable consequence of this (necessary) choice is that it will not
be possible to introduce the reader to what is possibly the greatest charm
of the topic: the existence of several models, which yield to the same overall
approach, but seem to require different technical tools. But of course the
reader having mastered the present notes should be well armed to explore
this aspect by reading the relevant research papers.

Let us now briefly describe the content of each chapter.
Chapter 2 is devoted to a toy model, Derrida’s Random Energy Model,

that helps understanding what this is all about. This model is not treated in
the simplest possible manner, but is also an opportunity to introduce some
tools.

Chapter 3 studies the high temperature case of the SK model without
external field. Some special symmetries make this case particularly simple
and well understood.

The main motivation is that the methods developed there also apply to
the p-spin interaction model, considered in Chapter 4. In this chapter, we
prove the basic a priori estimates that will be the starting point of our study
of this model below the critical temperature.

In Chapter 5, we return to the SK model, this time with external field.
This is a much more interesting situation. We give a simple and complete
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proof of the mysterious “replica-symmetric” formula and we describe in great
detail the structure behind them. This chapter is essentially self contained.

In Chapter 6, we investigate in much greater detail the structure behind
the replica-symmetric formula. We replace crude moment inequalities by
sharp exponential inequalities. Most importantly, the proofs there, rather
than taking advantage of specific features of the SK model, rely on tools of
much wider applicability.

In Chapter 7 we compute the inter-spin correlation. We explain the
occurrence of the AT line, the conjectured boundary between the high and
low temperature region. We also argue that the validity of the replica-
symmetric solution on the entire high-temperature region is not self-evident
(as the physicists think) but rather is a difficult problem.

In Chapter 8 we return to the p-spin interaction model. We study it
below the critical temperature. We prove that the configuration space spon-
taneously decomposes in small pieces that we call the lumps. We prove that
these are as much separated from each other as they can be.

The structure of this model below (but not too far below) the critical
temperature is now (January 2000) rigorously understood in much greater
detail than is presented here [T7]. Having decided at the onset that this
monograph would contain only proofs that were being written a second
time, we have not included these recent results here. For the same reason,
the reader is referred to [T8] for another major progress (April 2000) on
the region of validity of the replica-symmetric solution. The reader having
penetrated the present monograph should however be well prepared to read
[T7, T8].
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Université de Trento (Italie)
Mr. BERTRAND Pierre U.F.R. Psychologie
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Université PARIS X, Nanterre
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Mr. MARDIN Arif Département Signal & Image

Institut National des Télécommunications, Evry
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Universitat de Barcelona (Espagne)
Mr. SCHIED Alexander Institut für Mathematik/stochastik

Humboldt-Universität, Berlin (Allemagne)
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1983 D.J. ALDOUS (LNM 1117)
“Exchangeability and related topics”
I.A. IBRAGIMOV
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