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INTRODUCTION

This volume contains lectures given at the Saint-Flour Summer School of
Probability Theory during the period August 17th - September 3d, 2000.
This school was Summer School 2000 of the European Mathematical Society.

We thank the authors for all the hard work they accomplished. Their
lectures are a work of reference in their domain.

The School brought together 90 participants, 39 of whom gave a lecture
concerning their research work.

At the end of this volume you will find the list of participants and their
papers.

Thanks. We thank the European Math Society, the European Commission
DG12, Blaise Pascal University, the CNRS, the UNESCO, the city of Saint-
Flour, the department of Cantal, the Region of Auvergne for their helps and
sponsoring.

Finally, to facilitate research concerning previous schools we give here the
number of the volume of “Lecture Notes” where they can be found:

Lecture Notes in Mathematics

1971 : n® 307 — 1973 : n° 390 — 1974 : n° 480 — 1975 : n° 539
1976 : n° 598 - 1977 : n° 678 — 1978 : n® 774 — 1979 : n® 876 —
1980 : n°® 929 - 1981 : n° 976 — 1982 : n°® 1097 — 1983 : n® 117

1984 : n® 1180 —1985-1986 et 1987 : n° 1362 — 1988 : n® 1427 —
1989 : n° 1464 — 1990 : n° 1527 — 1991 : n® 1541 — 1992 : n® 1581 —
1993 : n° 1608 — 1994 : n° 1648 — 1995 : n°® 1690 — 1996 : n°® 1665 —
1997 : n® 1717 — 1998 : n® 1738 — 1999 : n® 1781 — 2000 : n°® 1816

Lecture Notes in Statistics

1986 : n° 50
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Summary. The theory of Dirichlet forms, Markov semigroups and associated pro-
cesses on finite and infinite dimensional spaces is reviewed in an unified way.
Applications are given including stochastic (partial) differential equations, stochas-
tic dynamics of lattice or continuous classical and quantum systems, quantum fields
and the geometry of loop spaces.

0 Introduction

The theory of Dirichlet forms is situated in a vast interdisciplinary area which
includes analysis, probability theory and geometry.

Historically its roots are in the interplay between ideas of analysis (calcu-
lus of variations, boundary value problems, potential theory) and probability
theory (Brownian motion, stochastic processes, martingale theory).

First, let us shortly mention the connection between the “phenomenon” of
Brownian motion, and the probability and analysis which goes with it. As
well known the phenomenon of Brownian motion has been described by a
botanist, R. Brown (1827), as well as by a statistician, in connection with
astronomical observations, T.N. Thiele (1870), by an economist, L. Bache-
lier (1900), (cf. [455]), and by physicists, A. Einstein (1905) and M. Smolu-
chowski (1906), before N. Wiener gave a precise mathematical framework for
its description (1921-1923), inventing the prototype of interesting probability
measures on infinite dimensional spaces (Wiener measure). See, e.g., [394] for
the fascinating history of the discovery of Brownian motion (see also [241],
[16] for subsequent developments).

This went parallel to the development of infinite dimensional analysis (calcu-
lus of variation, differential calculus in infinite dimensions, functional analy-
sis, Lebesgue, Fréchet, Gateaux, P. Lévy...) and of potential theory.



Theory of Dirichlet forms and applications 5

Although some intimate connections between the heat equation and Brow-
nian motion were already implicit in the work of Bachelier, Einstein and
Smoluchowski, it was only in the 30’s (Kolmogorov, Schrodinger) and the
40’s that the strong connection between analytic problems of potential the-
ory and fine properties of Brownian motion (and more generally stochastic
processes) became clear, by the work of Kakutani. The connection between
analysis and probability ( involving the use of Wiener measure to solve cer-
tain analytic problems) as further developed in the late 40’s and the 50’s,
together with the application of methods of semigroup theory in the study
of partial differential equations (Cameron, Doob, Dynkin, Feller, Hille, Hunt,
Martin, ...).

The theory of stochastic differential equations has its origins already in work
by P. Langevin (1911), N. Bernstein (30’s), I. Gikhman and K. Ito (in the
40’s), but further great developments were achieved in connection with the
above mentioned advances in analysis, on one hand, and martingale theory,
on the other hand.

By this the well known relations between Markov semigroups, their genera-
tors and Markov processes were developed, see, e.g. [162], [160], [207], [208],
[209], [276], [463].

This theory is largely concerned with processes with “relatively nice charac-
teristics” and with “finite dimensional state space” E (in fact locally compact
state spaces are usually assumed). From many areas, however, there is a de-
mand of extending the theory in two directions:

1) “more general characteristics”, e.g. allowing for singular terms in the gen-
erators
2)infinite dimensional (and nonlinear) state spaces.

As far as 1) is concerned let us mention the needs of handling Schrédinger
operators and associated processes in the case of non smooth potentials, see
[70].

As far as 2) is concerned let us mention the theory of partial differential
equations with stochastic terms (e.g. “noises”), see, e.g. [201], [28], [37], [38],
[129], [127] the description of processes arising in quantum field theory (work
by Friedrichs, Gelfand, Gross, Minlos, Nelson, Segal...) or in statistical me-
chanics, see, e.g. [16], [15], [344], [242]. Other areas which require infinite
dimensional processes are the study of variational problems (e.g. Dirichlet
problem in infinite dimensions) [278], the study of certain infinite dimen-
sional stochastic equations of biology, e.g. [474], the representation theory of
infinite dimensional groups, e.g. [68], the study of loop groups, e.g. [30], [12],
the study of the development of interest rates in mathematical finance, e.g.
[416], [337], [502].

The theory of Dirichlet forms is an appropriate tool for these extensions.
In fact it is central for it to work with reference measures u which are nei-
ther necessarily “flat” nor smooth and in replacing the Markov semigroups
on continuous functions of the “classical theory” by Markov semigroups on
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L?(u)-spaces (thus making extensive use of “Hilbert space methods” [211]).
The theory of Dirichlet forms was first developed by Feller in the 1-dimensional
case, then extended to the locally compact case with symmetric genera-
tors by Beurling and Deny (1958-1959), Silverstein (1974), Ancona (1976),
Fukushima (1971-1980) and others (see, e.g., [244], [258]).(Extensions to non
symmetric generators were given by J. Elliott, S. Carrillo-Menendez (1975),
Y. Lejan (1977-1982), a.a., see, e.g. [367]).

The case of infinite dimensional state spaces has been investigated by S. Al-
beverio and R. Hgegh-Krohn (1975-1977), who were stimulated by previous
analytic work by L. Gross (1974) and used the framework of rigged Hilbert
spaces (along similar lines is also the work of P. Paclet (1978)). These studies
were successively considerably extended by Yu. Kondratiev (1982-1987), S.
Kusuoka (1984), E. Dynkin (1982), S.Albeverio and M.Rdckner (1989-1991),
N. Bouleau and F. Hirsch (1986-1991), see [39], [147], [278], [367], [230], [172],
[465], [234], [235], [236], [237], [238], [239], [256].

An important tool to unify the finite and infinite dimensional theory was
provided by a theory developed in 1991, by S. Albeverio, Z.M. Ma and M.
Réckner, by which the analytic property of quasi regularity for Dirichlet forms
has been shown in “maximal generality” to be equivalent with nice properties
of the corresponding processes.

The main aim of these lectures is to present some of the basic tools to un-
derstand the theory of Dirichlet forms, including the forefront of the present
research. Some parts of the theory are developed in more details, some are
only sketched, but we made an effort to provide suitable references for further
study.

The references should also be understood as suggestions in the latter sense, in
particular, with a few exceptions, whenever a review paper or book is avail-
able we would quote it rather than an original reference. We apologize for
this “distortion”, which corresponds to an attempt of keeping the reference
list into some reasonable bounds - we hope however the references we give
will also help the interested reader to reconstruct historical developments.
For the same reason, all references of the form “see [X]” should be understood
as “see [X] and references therein”.
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1 Functional analytic background: semigroups,
generators, resolvents

1.1 Semigroups, Generators

The natural setting used in these lectures is the one of normed linear spaces
B over the closed algebraic field K = R or C. Some of the results are however
depending on the additional structure of completeness, therefore we shall
assume most of the time that B is a Banach space.
We are interested in describing operators like the Laplacian A and the
associated semigroup (heat semigroup), and vast generalizations of them.
Let L = (L, D(L)) be a linear operator on a normed space B over K, defined
on a linear subset D(L) of B, the definition domain of L.
We say that two such operators L;,i = 1,2 are equal if D(L;) = D(Ls) and
Liu = Lou, Yu € D(Ll)
L is said to be bounded if 3C > 0 s.t. || Lu|| < Cllu||,Yu € D(L) = B.
We then have, setting ||[L|| = sup || Lul| € [0, +o0]

uweB,||ul|<1

L bounded & ||L|| < +o0.

L is said to be continuous at 0 (¢ D(L)!) if u, — 0,u, € D(L) implies
Lu, — 0,n — oo.

L is said to be continuous if w, — u,u, € D(L) implies

w € D(L) and Lu, — Lu,n — oo.

One easily shows

L bounded < L continuous at 0 < L continuous.

We define L = a1 Ly + asls,; € K;i = 1,2, by

D(L) = D(Ll) N D(LQ),LU =ar1Lqu+ OLQLQ’U,,VU S D(L)

Moreover we define for Lq, Lo

LiLou = Ll(LQ’U,),V’LL S D(LlLQ) = LlD(Lg) = {u S B|L2’LL € D(Ll)}

Definition 1. A linear bounded operator A on a normed linear space B is a
contraction if ||A|| < 1. A family T = (T})i>0 of linear bounded operators on
B is said to be a strongly continuous semigroup or Cy-semigroup if

i) To = 1 (the identity on B)
it) hﬁ)l Tiu = u,Yu € B (strong continuity)
¢

ii) (Tt)i>0 is a semigroup i.e.
T\T, =TTy = Toyy,Vt, s > 0.
(T})e>0 is said to be a Cy-semigroup of contractions or a

Co-contraction semigroup if, in addition,
w) Ty is a contraction for all t > 0.
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Exercise 1. Show that i),ii),iv) imply that ¢ — Tyu is continuous, for all
t>0,Yu € B.

Definition 2. Let T = (T})i>0 be a Co-contraction semigroup on B. The
linear operator L is said to be generator of T if:

i) D(L) = {u € B| ltiﬁ)l 1(Tyu — u) exists in B}
it) Lu = 1&8 H(Tyu — vw)Yu € D(L)

» d

Exercise 2. Show that the “strong derivative” <Tiu = 1}5101 w

i exists

in B, for all w € D(L) and 4 Tyu = LTyu = T,LuVt > 0,Yu € D(L).
In particular Lu = %Ttuh:o,Vu € D(L).

It is easy to convince oneself that even simple operators like the
Laplacian A are not bounded, e.g. in B = L2(R%). For this reason it is useful
to introduce the concept of a closed operator.

Definition 3. A linear operator L in B is called closed if u, € D(L), up, — u
as n — oo, Lu, convergent as n — oo, in B, imply that w € D(L), and
Lu,, — Lu.

Exercise 3. Show that L closed < G(L) closed in B x B, where G(L) =
{{u, Lu} ,u € D(L)} is the graph of L.

Proposition 1. LetT = (T}):>0 be a Cy-contraction semigroup on a Banach

t
space B, with generator L. Then Tiu = u + fTSLu ds,u € D(L) where the
0

integral on the r.h.s is to be understood in the natural sense of strong integrals
on Banach spaces (Bochner integral 1).

Proof. This follows immediately from Exercise 2, via integration. a

Proposition 2. The generator L of a Cy-contraction semigroup T = (T})¢>0
on a Banach space is a closed operator.

Proof. This easily follows from Proposition 1, the strong continuity (Exercise
1), the fact that for u,, — w, Lu,, convergent to v, | TsLu,|| < || Lu,| < C, for
some C' > 0, independent of n, as Lu,, converges, and dominated convergence.

O

Proposition 3. The generator L of a Cy-contraction semigroup T = (T})¢>0
on a Banach space is densely defined.

! See, e.g. [506], p.132
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t
Proof. One easily shows that for any u € B, with v, = [ T,uds :
0

1 1
— [vpgr — ) = = [Trvg —v¢] > Tou —u, asr } 0
r r

hence v; € D(L).

On the other hand

% — u,t | 0, yielding an approximation of an arbitrary uw € B by elements
“tin D(L). O

~

Corollary 1. IfT = (1})i>0, S = (St)t>0 are two Cy-contraction semigroups
on a Banach space with the same generator L, then T, = Sy VYVt > 0.

Proof. From Exercise 2 we have easily %Tt_SSSu =0,Y0 <s <t Vue D(L)
from which Tiu = SyuVu € D(L) follows, hence T; = Sy, these being bounded
and D(L) being dense. |

The above corollary implies that the usual notation 7; = e'*,¢t > 0 for
the semigroup with generator L is justified.
The question when a given densely defined linear operator L is the generator
of a Cy-contraction semigroup is answered by the theory of Hille-Yosida. For
this we recall some basic definitions.
If L is a linear injection (1-1 map), then L1 is defined on D(L~') = LD(L),
by L~ u =v,u € D(L™'), with v s.t. Lv = u.
For a linear operator L the resolvent set is defined by:
p(L) ={a € Kla—L:D(L) — B is an injection onto B i.e.
D((a— L)™*) = B. Moreover (a — L)™! is bounded. }

Exercise 4. Show that if p(L) # 0 then p(L) is closed (use that (o — L)~!
for « € p(L) is bounded).

The spectrum o (L) of L is by definition the complement in K of p(L).
For a € p(L),Gy = (o — L)~! (which exists as a bounded operator on B) is
called the resolvent of L at «.

(Ga)aep(r) is called the resolvent family associated to L.

Exercise 5. Show that (Ga)acp(r) satisfies the resolvent identity
Go—Gp = (B —a)GaGp = (6 - )GpGa, Ve, B € p(L).

Proposition 4. Let L be the generator of a Cy-contraction semigroup on a
Banach space. Then (0,00) C p(L) and for any

+oo
Rea>0:(a— L) 'u=Gou= [ e “Tyudt
0

1
Rea *

(where the integral is in Bochner’s sense) and |G| <
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—+oo
Proof. Set R, = [ e *'Tydt.
0

It is easily seen that (o — L)Rou = w,Vu € B, Reaw > 0. Since L is closed
for all w € D(L) : LRou = R, Lu, from which one deduces that o — L is
injective for Rea > 0 (in particular for o« > 0) and R, = G,. The bound in
Proposition 4 then follows from the definition of R,. O

Remark 1. G, is the Laplace transform of T; (in the sense given by
Proposition 4).

Theorem 1. (Hille-Yosida, for Cy-contraction semigroups):
Let L be a linear operator in a Banach space B. The following are equivalent:

i) L is the generator of a Cy-contraction semigroup T = (T})1>0 on B.
it) L is densely defined and

a) (0,00) C p(L)

8) la@—L) 1 <1 VYa>0

Corollary 2. If ii) is fullfilled then L is closed and uniquely determined.

Proof. ii) implies i) by Theorem 1 and hence that L is closed by Proposition
2. The rest follows from Corollary 1. O

Proof. (of Theorem 1)

i) = ii): From i) we have L closed, densely defined (Propositions 2,3). That
(0,00) C p(L) and ii) holds follows from Proposition 4.

ii) = i): For details we refer to, e.g.[413]. In the proof the following Proposi-
tion is useful.

Proposition 5. Let L satisfy the conditions ii) of Theorem 1. Set G, =
(a =L)"Y a>0. Then
i) aGou — u in B, as a — 400
ii) Define L% = —a + oGy, a > 0 (“Yosida approzimation of L”). Then
L) s bounded, D(L*)) = B, L™y — Lu,a 1 +oo,u € D(L), and

oL, converges as o T +oo for all u € D(L) to Tﬂ{, where T} is a

Cy-contraction semigroup, with generator L. Moreover T} coincides with
the semigroup T; generated by L mentioned in i).

Proof. For v € D(L) we have
laGau —ull = [la(a = L) 'u — (o = L) (e = L)
— (@ — L)t
I = L)' L]

IN

1
—||Lu|| = 0, T +00
a

(where we used Proposition 4). But aG,, is a contraction by Proposition 4
and D(L) is dense by assumption, hence aG,u — u as a 1 +o0, for all u € B.
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From this it is easy to see that aG,Lu — Lu,u € D(L), as a T 400, and
thus L(®u = —au + o2Gou = aGoLu — Lu as a 1 +oo.
The rest follows by realizing that

(o) N 2
tL'>) Yy, _ jat,—a”Gq
e u = E n!L u=e"e U

n=0
Remark 2. Another useful “approximation formula” for T} in terms of the
resolvent is the following one:

. ny\" n

Tiu = lim (7> (Ggu) ,Vue B
t t

n—oo
(see, e.g., [413], p. 33).

Remark 8. In the formulation of Hille-Yosida’s theorem i) can be replaced
by a statement involving the generator of a Cy-contraction resolvent family
according to the following definition.

Definition 4. A Cy-contraction resolvent family is a family (Ga)aso Such
that
aGou = u, a0 T 400, |[aGe|| < 1,a >0

and the resolvent identity in Fxercise 5 holds.
Hille-Yosida’s theorem holds then with i) replaced by:

i’) L is the generator of a Cy-contraction resolvent family (Gu)a>o in the
sense that G, = (a— L)™' on B. There is a one-to-one correspondence
between Cy-contraction semigroups (T;)i>o0 and Co-contraction resolvent
families (Go)a>0 given by the Laplace-transform formula in Proposition
4 (and Remark 1) resp. Proposition 5 or Remark 2 after Proposition 5.

Hille-Yosida’s characterization of generators L involves the resolvent G,,.
A pure characterization of L, under some “direct restrictions” on L is given
by the Lumer-Phillips theorem, for which we need a definition.

Definition 5. The duality set F(u) for any element u in a Banach space B
s defined by

F(u) = {u" € B*|(u",u) = |[ul® = u"[*},

where B* is the dual of B (the space of continuous linear functionals on B)
and (,) is the dualization between B and B*.

An operator L is dissipative on B if for any u € D(L) there exists some
u* € F(u) such that Re{u*, Lu) < 0.

(—L is then said to be accretive).
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Proposition 6. L is dissipative iff
(e = L)u|| > af|ul],Yu € D(L)Va >0
Proof. See, e.g. [413] (Theorem 4.2). |

Proposition 7. Let L be dissipative. Then L is closed iff Range (o — L) is
closed, for all a > 0.

Proof. The proof is left as an exercise (cf,e.g., [413]). O

We recall that an operator Lg in a Banach space is said to be closable if
there exists at least one closed extension I~/0 of it, i.e. I~/0 closed and l~/0u =
Lou,Yu € D(Ly) C D(Lg) . One calls closure Lo of Ly the minimal closed
extension of Lg.

Theorem 2. (Lumer-Phillips) B
Let L be a linear closable operator in a Banach space. Then the closure L of
L generates a Cy-contraction semigroup on B iff

a) D(L) is dense in B
b) L is dissipative
¢) The range of ag — L is dense in B, for some ag > 0.

Proof. See, e.g., [413] Theorem 4.3 O

Remark 4. If L is the generator of a Cy-contraction semigroup on B then a)
holds, ¢) holds for all @ > 0 and b) holds, see, e.g. [413], [424].

Remark 5. If L is a linear operator satisfying a),b) then L is closable. This,
together with c) gives that L generates a Cp-contraction semigroup.
See [424],(p.240 and p.345).
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1.2 The case of a Hilbert space

We shall consider here the special case where the Banach space B of section
1.1 is a Hilbert space H, with scalar product ().
We first observe that if R is a contraction then

|(Ru, w)] < [|Rul[Jull < [lul.

Hence Re(Ru,u) and Im(Ru,u) are bounded absolutely by [|u|?.

If (T})i>0 is self-adjoint, i.e. T} = T; (where R* means the adjoint to R)
and Tj is a Cp-contraction semigroup on H with generator L, then for all
u,v € D(L), using the self-adjointness of T :

1
(=Lu,v) = ltlﬁ]l ;(u — Tyu,v)
= (u,—Lv)

i.e. L is symmetric in H (in the sense that L* is an extension of L or, equiv-
alently, (u, Lv) = (Lu, v),Yu,v € D(L)).

Remark 6. If A is a symmetric operator in H we have (u, Au) = (Au,u),Vu €
D(A). On the other hand (u, Au) = (Au,u) (by the properties of the scalar
product), hence (u, Au) = (u, Au) for symmetric operators, i.e. (u, Au) is
real.

For A bounded with D(A) = B we have A symmetric iff A is self-adjoint
(but this is not so in general for A unbounded!).

In particular a Cy-contraction semigroup is symmetric iff it is self-adjoint. It
is easily seen that the following are equivalent:

i) (Ti)e>o0 is a symmetric Cop-contraction semigroup
i) (Ga)a>o is a symmetric Cy-contraction resolvent family

(use, e.g., the Laplace transformation Proposition 4, resp. Proposition 5).
We also see that if (73) is a symmetric Cp-contraction semigroup then

|(u, Tyu)| = |(Tyu, )| < |Jul|?, for all u € H. (1)

On the other hand ltlﬁ)l (Tt u) = (Lu,u),Yu € D(L).

But (@,u) is real (by the symmetry property) and negative, by (1),
hence (Lu,u) < 0.

One calls a densely defined operator A in a Hilbert space positive if (u, Au) >
0,Vu € D(A).

Remark 7. A positive implies —A dissipative. The above says that (—L) is
positive, or equivalently, that L is negative.

By Lumer-Phillips theorem the range of g — L is dense in H, for some ag > 0.
Hence we have proven:
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Proposition 8. The generator of a symmetric Cy-contraction semigroup in
a Hilbert space is a negative densely defined closed symmetric operator L s.t.
the range of ag — L is dense, for some ay > 0.

Remark 8. One easily shows that the fact that the range of ag — L is dense
for some a > 0 implies that L is self-adjoint (see, e.g. [424]).

Viceversa, if L is linear, symmetric (hence closable) densely defined on H,
negative and such that the range of ag — L is dense in H for some o > 0 then,
by Lumer-Phillips theorem, its closure L (which is self-adjoint by the above
remark) generates a symmetric Cy-contraction semigroup (symmetry can be
seen, e.g., by the symmetry of G, = (a— L)™' and the above considerations
on the symmetry properties of G, resp. Tt).

Remark 9. L in Remark 8 can be easily replaced by any self-adjoint negative
extension L of L. In fact then both L and its adjoint L* = L are negative
hence dissipative and then they generate a Cj-contraction semigroup, see
[424],p.248.

Remark 10. Spectral theory also gives a direct relation between self-adjoint

properties of generators L and corresponding semigroups, recalling that

L= [ ME),T, [ edE()), E()\) being the spectral family associ-
o(L) o(L)

ated with L. Here o(L) C (—o0,0].
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1.3 Examples

We shall concentrate, in this section, on:
Semigroups in Banach or Hilbert spaces associated with differential
operators over finite dimensional spaces.

The typical situation is given by the finite dimensional space R? and the
(“finite dimensional”) differential operator A (the Laplacian) acting, e.g. in
the Hilbert space H = L%(R?) resp. on the Banach space B = Cj(R?).

Let us first consider the case H = L?(R%).

We see that (A,C5°(RY)) (or, e.g., (A,S(R?)) is densely defined and sym-
metric in H (as a consequence of an integration by parts).

Let U be the map from L2(R?) into L2(R?) defined by L2-Fourier transform
ie.

d

(UF) (k) = (2m) 4 / ¢ f(2)da, k € RY
Rd
(R? a copy of RY, for the Fourier transform variables). Then U is unitary (by
Parseval’s theorem), i.e. U*U = UU* = 1.
Let M be the multiplication operator given by Ma(k) = |k|?a(k)

ke
L2(R%), on its natural domain D(M) = {u e LA(RY)|Ma e L? Rd }
M is self-adjoint positive (since (M + «), has dense range for all o > 0
Let us set

U €

Hy=U"MU
with

D(Hy) = {u e L*(RY)|Uu € D(M)}
={U"D(M)}
(i.e. w € D(Hy) <> 4 € D(M)).

Remark 11. One easily shows that D(Hy) = H*?(R?) is the Sobolev space
obtained by closing C§° (RY) in the norm given by the scalar product

(u,v)g = /Do‘uDav dx.
|| <2

Hy is self-adjoint positive in L?(R%), being unitary equivalent to the self-
adjoint positive operator M (positivity is immediate; self-adjointness follows
e.g. by spectral theory, the spectrum of Hy being the same as the one of M
and the spectral family of Hy being U* E\U, where E) is the spectral family
to M).

By Lumer-Phillips theorem (or spectral theory) we have that e * ¢ > 0, is
a symmetric Cy-contraction semigroup on L?(R?), hence

e tHo — re=t™My ¢ >0



16 Sergio Albeverio

is also a symmetric Co-contraction semigroup on L?(R%).
Its spectral represzentation can be obtained by the one of M, in fact since
e ™Ma(k) = e " a(k), we have for all u € L?(R%).

ety (z) = / (2, y)u(y) dy, ()
Rd

lz—y|?

where m(x,y) = (4ﬂt)%de_ 7 ,t > 0 is the heat kernel density.
(2) holds for t = 0 with m(z,y)dy replaced by the Dirac measure ¢, (dy)
(since e tH0|,_q is the unity operator in L?(R%)).

Remark 12. Formula (2) easily extends to t € C with Re(t) > 0.
In particular we have a representation for the unitary group e*fo t ¢ R.
This unitary group (uniquely associated to Hy by Stone’s theorem) gives the

time evolution in the quantum mechanics of one (non relativistic) particle,
see, e.g. [423],[424], [425],[426].

One can ask the question: )
do there possibly exist other semigroups e‘*,¢ > 0 (unitary groups

ej“i, t € R) generated by self-adjoint extensions L, different from the closure
L of A from C§°(R?) in B?

That the answer is no, for B = L?(R?) (or C,(R?)) , can be seen using
the following important Theorem, for which we need a definition.

Definition 6. Let L be a closed linear operator on a Banach space B. A
linear subset D in D(L) is called a core for L if L | D = L (i.e. the closure
of the restriction L | D of L to D is precisely L).

Theorem 3. (Nelson)

Let L be the generator of a Cy-contraction semigroup on a Banach space B.
Let Dy C Dy C D(L), Dy = B, such that e’ maps Dqy into Dy. Then Dy is
a core for L.

Proof. See, e.g., [393], [227] p.17, [424]. For extensions see [501]. O

For the application of the theorem to our situation, let us take
et = e=tHo with Hy = U*MU as above. To see that Nelson’s theorem can
be applied with Dy = D; = S(R?) we observe that D(L) contains S(R?) (as
seen from the fact that US(R?) = S(R%), and M maps S(R?) into itself, and
U*S(R?) = S(R?)) and by (2) we have e *70S(R?) C S(R?) (the smoothness
of the elements of e 0 S(R%) can be checked directly, using, e.g., dominated
convergence). Thus we have shown that S(R?) is a core for e~ *0,
To see that also C§°(RY) is a core in L%(R?), let us set A = —A on C§°(RY).
Let v € D(A*), then
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(—Au,v) = (Au,v) = (u, A*v),Vu € C°(RY).

Hence, —Av ,defined by looking at v € L?(R%) as a distribution, is equal to
A*v € L?(RY).

Thus v € H*2(R?) and A*v = Hyv (by the fact that D(Hy) = H*?(R?)).
This shows that D(A*) C D(Hp) and Hj is an extension of A*. Conversely, for
v € D(Hy) we have Hov € L?(R?), hence (Hou,v) = (u, Hyv)Vu € C5°(R?),
thus v € D(A*), A*v = Hyv, i.e. A* is an extension of Hy. Thus Hy must
coincide with A*, and then A* = A** (since Hy = H{ by self-adjointness),
which shows that the closure of A is self-adjoint and coincides with Hy, thus
C§°(R) is a core for Hy, in L*(R?).

Remark 13. From the explicit formula (2) we see that the r.h.s. of (2) also
maps the Banach space B = Coo(R?) (the continuous functions on R van-
ishing at infinity with supremum norm), into itself, and is a Cyp-contraction
semigroup Pt

Let us call L the generator of P;.

D(L) D S(R?) as easily verified by the definition of the generator and (2).
In fact L = —A on S(]Rd) and by Nelson’s theorem apphed to Dg = D1 =
S(RY), B = Coo (R?) we have that S(R?) is a core for P, in Cao (RY).

Remark 14. P; and P, can be identified in the following sense.

P, and P, on Co (RN L2(RY), as Cy-contraction semigroups, coincide, hence
by the density of Coo (R?) N L*(R?) in L? (Rd) P, = P, on L*(R%).

Similarly one can show P; = P; in Oy (R?), by exploiting the boundedness
of P;, P, in Cso(R?) and their equality on the dense subset Co (R%) N L2(RY)
of O (RY).

In this sense then the heat semigroup e~*0 can be identified in Cy (R?) and
L2(R?) with the semigroup with generator A having S(RY) (or C°(R%)) as
core, both in Cy (R?) and L2(R9).
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2 Closed symmetric coercive forms associated with
Cy-contraction semigroups

2.1 Sesquilinear forms and associated operators

Sesquilinear forms Let H be a Hilbert space over K = R or C, with scalar
product (-,-) (conjugate linear in the first argument, linear in the second
argument), and corresponding norm || - || = (-, ).

Let D be a linear subspace of H.

Definition 7. A map £ : D x D — K, conjugate linear in the first argument,
linear in the second argument is called a sesquilinear form (on D, in H).

D is called the domain of £. One writes (€, D) whenever it is important
to specify the domain.

Elu] = E(u,u), u € D is called the associated quadratic form.

Remark 15. For K = C, (E[u],u € D) uniquely determines (€, D) by the
polarization formula

E(u,v) = H(Eu+v] — Efu — v] + i€u + ] — i&[u — iv)).
This is not so, in general, for K = R (see, e.g., [495])

Definition 8. A sesquilinear form & is said to be symmetric if Yu,v € D:
E(u,v) = E(v,u)
(where — stands for complex conjugation).

Remark 16. The quadratic form associated with a symmetric sesquilinear
form is real-valued.

Definition 9. A sesquilinear form & is said to be lower bounded if there
exists v € R such that:

Elu] = A|ul®, Vue D(E)

One writes then € > . 7y is said to be the lower bound for £.
& is called positive if v = 0.

Remark 17. If £ is positive then
1€ (u,v)| < (E[u))?(E[0])?

Proof. This is Cauchy-Schwarz’ inequality.
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Ezample 1. Let A be a linear operator with domain D(A) in H. Define for
u,v € D(A):
E(u,v) = (u, Av).

Then € is a sesquilinear form with domain D(£) = D(A). The following
equivalences follow immediately from the definitions.

£ is symmetric iff A is symmetric.

& >~ iff A > v (in the sense that (u, Au) > v|u|? for some v € R,
Vu € D(A); in which case one says that A is lower bounded with lower
bound 7).

E>0iff A> 0 (in which case one says that A is positive).

Closed forms Let £ be a sesquilinear, lower bounded form on .

Definition 10. A sequence (un)nen is said to be E-convergent to u € H,

for n — oo, and one writes u, 4 u, n — 00, if u, € D(E) , up — u (i.e
(un) converges to w in H) and Elu, — ] — 0, n,m — 0o (i.e. uy is an
“€-Cauchy sequence”).

N.B. u is not required to be in D(E).

Definition 11. & is said to be closed if un = u, n — oo, implies u € D(E)
and E[un, —u] = 0, as n — oo.
Let € be a symmetric, positive sesquilinear form. Define for any a > 0:
Ea(u,v) = E(u,v) + alu,v), Yu,v e D(E).
Then D(E) taken with the norm given by
lulh = (Eu)? . ue DE)

is a pre Hilbert space, in the sense that (D(E), | - ||1) has all properties of a
Hilbert space, except for completeness. We call D(E)1 this space.

Remark 18. a) u = (uy)nen is E-convergent iff u is Cauchy in D(E);.

b) uniu,n%oo,ueD(E) iff ||uy, — ully = 0, n — oo.
Proposition 9. A lower bounded form & is closed iff D(E)1 is complete.
Proof: This is left as an exercise (cf., e.g., [312], p. 314).

Ezample 2. Let S be a linear operator with domain D(S) C H. Define
E(u,v) = (Su, Sv), D(E) = D(S). Then & is a positive, symmetric sesquilin-
ear form. & is closed iff S is closed (the proof of the latter statement is left
as an exercise).
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Closed forms

Definition 12. A sesquilinear lower bounded form &£ is said to be closable
if it has a closed extension &, i.e., € is closed, D(E) D D(E) and € =& on
D(¢).

Proposition 10. A sesquilinear lower bounded form & is closable iff u, N 0,
n — oo implies Elu,] — 0, n — oo.

Proof. This is left as an exercise (cf., e.g., [312], p. 315).

Definition 13. The smallest closed extension of a sesquilinear lower bounded
form & is by definition the closure £ of £.

Ezample 3. Let € be as in Example 2, i.e. E(u,v) = (Su, Sv), Vu,v € D(E) =
D(S), S a linear operator on H. Then & is closable iff S is closable. In the
latter case one has &(u,v) = (Su, Sv), where S is the closure of the operator
S ( a linear operator A is said to be closable if it has a closed extension, cf.
Definition 3 in Chapter 1 for the concept of closed operators). Moreover one
has & closed iff S is closed.

The proofs are left as execises.

Remark 19. Not every sesquilinear symmetric positive form is closable. Con-
sider, e.g., H = L2(R), &(u,v) = 4(0)v(0), u,v € D(E) = C°(R). Then £ is
sesquilinear, symmetric, and positive but not closable. In fact take a sequence
u, € CF(R), with u,(x) = 0 for |z| > £, u,(0) = 1, un(z) < 1, Vo € R,
then we have, (by the mean-value theorem) [u,|| < 2¢ — 0, hence u, — 0,
n — 00, moreover

Elm — tn] = (U (0) — 1 (0)) - (Um(0) — un(0)) =0

hence u, 5 0, n — co. On the other hand &[u,] = 1, (0)u,(0) = 1 does not
converge to 0 as n — 0o, which shows by Proposition 10 that £ is not closable.

N.B. Concerning closability the situation with forms and densely defined
operators is thus very different: every symmetric densely defined operator A
is namely closable! (since A symmetric means by definition that the adjoint
A*, which exists uniquely since A is densely defined, is an extension of A,
but every adjoint operator is closed, see, e.g. [312], p. 168).

Forms constructed from positive operators

Proposition 11. Let A be a positive symmetric operator. Then

o]

Ealu,v) = (u, Av), u,v € D(E’A) = D(A)

s a sesquilinear, symmetric, positive, closable form.
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Proof. 5 A is clearly sesquilinear, Symmetrlc positive. To prove the closability,

let uy, 5 0,1 — co. We have to show SA[un] — 0, n — oco. But by the triangle
inequality resp. Cauchy-Schwarz inequality:

o

5A[Un] < |5A(un7un - U'rn)| + |5A(Un; um)|

(o) o (3)
< SA[UH]1/2[5A[U71 - umﬂl/Z + ‘(Um AUM)‘

where for the latter term we have used the definition of £ 4.

But from the assumption u, £ 0, n — 0o, we have for any given € > 0,
that there exists N(e) s.t. for n,m > N (e):

o

EA[un - um] S €2~ (4)
Moreover, by the symmetry of A

|(tns Augn)| = (At )| < || Aun||[[um | "= 0 ()
for any fixed n € N since u, %0, m — oo implies [|ttm || = 0, m — oco.
Hence from (3)-(5), for any given € > 0, for some N (¢) large enough,

€ alun] < Eaun]2e, n> N(e). (6)

For given n > N (€), either EA[un] =0, or SA[un] > 0, in which case from (6)
we deduce SA[un]1/2 < e. In both cases SA[un] <€, n > N(e), which shows

that EA[un] — 0, n — oco. O

Positive closed operators from positive symmetric closed forms

Theorem 4 (Friedrichs representation theorem). Let £ be a densely
defined sesquilinear, symmetric, positive, closed form. Then there exists a
unique self-adjoint positive operator Ag s.t.

i) D(Ag) C D(E), E(u,v) = (u, Agv), Yu € D(E),v € D(Ag).

it) D(Ag) is a core for € (in the sense that the closure of the restriction
of € to D(Ag) coincides with £, i.e. £ pay) = E).

i) D(E) = D(A}:/z) (where Aig/2 is the unique square root of the positive
self-adjoint operator Ag, defined, e.g., by the spectral theorem), and:

E(u,v) = (A(lg/zu,Aéﬂv), Yu,v, € D(E).



22 Sergio Albeverio

And wviceversa: if A is a self-adjoint positive operator, then & defined by
E(u,v) = (AY?u, AV20) with D(E) = D(AY2) is a densely defined sesquilin-

ear form. & is the closure & with

(o) e}

E(u,v) = (u, Av), ve D(A), ue DE)=D(A).

Remark 20. One says Ag¢ (in the first part of the theorem) is the self-adjoint
operator associated with the form &£. Viceversa, in the second part of the
theorem, £ is the form associated with the operator A.

One often writes —Lg instead of Ag

The proof of the first part relies on following

Lemma 1. Let Hy be a dense subspace of a Hilbert space H. Let a scalar
product (-,-)1 (in general different from the scalar product (-,-) in H) be
defined on H1, so that (Hi, (-,+)1) is a Hilbert space. Suppose that there exists
a constant k > 0 s.t. k||u||? < ||u||? for all u € H. Then there exists uniquely
a self adjoint operator A in H s.t. D(A) C Hi, (Au,v) = (u,v)1,Vu €
D(A),v € H1, and, moreover, A > k.

A is described by

DA)={ueH|TueH]| (u,v)1 = (Gv)VveHi}, Au=4d.

D(A) is both dense in Hy with respect to the ||-||1-norm and in H with respect
to the || - ||-norm.

Proof. (cf. e.g., [495], [427]): We first remark that @ in the definition of D(A)
is uniquely defined, since H; is dense in H by assumption. Moreover, u +—
is linear, from the definition, thus A is linear.

Let J : H — Hy with D(J) =Hi1 CH, Jf = f,Vf € D(J). Then J is
closed from D(J) = H; C H to Hy (in the sense that f, € D(J), fn — f,
n— oo, in H, Jf, — hin Hy implies f € D(J) and Jf = h:

in fact Jf, = f, and Jf,, — h in Hy implies f,, — hin H by || f. — h|]* <
L\ fn — h||2. But then Jf, = f, — f in H, by assumption, and f, — h
in H;, again by assumption, imply f = h in H; = D(J) hence f € D(J),
Jf = f = h by the definition of J and the fact that f = h as elements of H;.

J is densely defined from H into H;, with D(J) = H; and closed (a
fortiori closable), then J* is uniquely and densely defined, closed from H;
into H (by Th. 5.29 in [312], p. 168).

Set Ag = J*. Then we have Yu € D(J*), v € Hy:

(Aou,v) = (J*u,v) = (u, Jv); = (u,v);.

Set A = Ay, looked upon as an operator from #H into H. It is then clear
that D(A) C Hi1 C H,
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(Au,v) = (Aogu,v) = (u,v); Yu € D(A),v € H;. (%)

That A > k follows from the fact that (Au,u) = (u,u); > k(u,u), Yu €
D(A), by the definition of (-,-);. That A is symmetric in H follows from
(Au,v) = (u,v)1, Yu € D(A),v € Hy and, for v € D(A):

(u, Av) = (u, Agv) = (u, J*v) = (Ju,v); = (u,v);.

Also the description of D(A) given in the lemma is proven, since D(A) is
characterized by the definition of Ay and J* as the set of all u € H; s.t.

(Au,v) = (Aou,v) = (u,v); Yv € Hi.

That D(A) is (-,-)1-dense in H; is clear from the fact that D(J*) is (-, -)1-
dense in H;.

That D(A) is (-, -)-dense is also clear from the relation between the || - ||1
and || - ||-norms.

It remains to show that A is self-adjoint. For this it is enough to prove
that the range of A is H (cf., e.g., [495]). Let us consider v € H,w € Hy:

(v, w)] < [ollllw]l < Zllvlllw]l
VE

where in the latter inequality we used the relation between || - || and || - ||1.
This shows that, Vo € H, w — (v, w) is a continuous linear functional on H,
hence there exists, by Riesz’ theorem (see, e.g., [423]) a © € H; s.t.

(0, w) = (v,w) Yw,veH.

By the definition (*) of A (used with w replacing v and ¢ replacing u) we
have then (v,w) = (Au,w) for any v € H, Yw € H, which shows that any
v € H can be written as Au for some u € D(A), hence the range of A is the
whole of H.

The uniqueness of A in the lemma is proven as follows: Let B be self-
adjoint in H s.t.

(Bu,v) = (u,v); Yu € D(B),v € Hy.

Then by definition of A, A is an extension of B (i.e. B C A). But A4 is
self-adjoint so

BCA=A*C B*
B being itself self-adjoint, this implies B = A. This finishes the proof of the
lemma and of the theorem. O



24 Sergio Albeverio

2.2 The relation between closed positive symmetric forms and
Cp-contraction semigroups and resolvents

The basic relations

Theorem 5. Le & be a densely defined positive symmetric sesquilinear form
which is closed, in a Hilbert space H. Let —Lg be the associated self-adjoint
positive operator given by Theorem 4 (in 2.1) so that

E(u,v) = ((—Le)Y?u, (=Lg)Y?*v)  Vu,v € D(E).

Then Lg generates a Co-contraction semigroup Ty = et , t >0, in H.

And wviceversa, if Ty is a symmetric Cy-contraction semigroup, then its
generator L is self-adjoint, negative (i.e., —L is positive) and the associated
form given by Theorem 4 in 2.1 is positive, symmetric, closed.

One has

lim (v — Tyu,v) = E(u,v), Yu,v € D(E

tl\IAI(l) 7 (u—Tyu,v) (u,v) U, v &)
Proof. The direct way follows from the Theorem 4 given in Chapter 2, 2.1.
The viceversa part follows from the fact that L is self-adjoint, negative and
the same Theorem 4. O

Theorem 6. All statements in Theorem 5 hold with the semigroup (T})i>0
replaced by the symmetric resolvent family (Go)a>0, Go = (o — Lg)fl, cor-
responding to (T})1>o-

One has for all w € H,v € D(E):

Ea(Gau,v) = (u,v)

(where we recall the definition Eq(u,v) = E(u,v) + au,v)).
Moreover,
E(u,v) = liIJIrl alu — aGau,v), Yu,v € D(E).
a—r 400

Proof. (G4)a>o0 is self-adjoint, by the spectral theorem. The relation for &,
holds because of

Ea(Gau,v) = E(Gau,v) + a(Gau,v) (7)

(as seen using the definition of &,, noting the fact that G,u € D(L) C D(E),
for L the operator associated to £ in the sense of Theorem 4 in Chapter
2,2.1). But

E(Gqu,v) = (— LGy u,v) (8)

by the relation between £ and L. The r.h.s. of latter relation can be written
as
(L +a— a)Gau,v) = (u,v) — (aGuu,v), (9)
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where we used G, = (o — L)~!. The relation involving &, then follows from

(7)-(9)-

For the limit relation we use (7), the relation just shown for &, to get
(u,v) = E(Gau,v) + a(Gqu,v)

hence
alu,v) = E(aGqu,v) + o*(Gou,v),

and the fact that oG, — 1 as o — +o0. a

Remark 21. The “relations € <+ L < T <> G” as described in Theorems 4,
5, 6 can be summarized in the following two tables:

Table 1

B = Banach space over K=R, C

G, = / e T, dt
Jo

(T1)i>0 strongly continuous (Gu)aso strongly continuous

contraction semigroup on B contraction resolvent on B
T, = lim et@Ga=1) ¢ >

a—r00
“Hille-Yosida”

“Hille-Yosida”
(via resolvent)

(L,D(L)) densely defined,
(closed) linear operator on B
s.1.

1. 10, 00[C p(L)

2 Jlafa—L) Y <1
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Table 2

H = Hilbert space over R with inner product (, ) and norm || || := (, )*/2.

GO:/ e T dt

(TV)i=0 strongly continuous 0 (Ga)aso strongly continuous

contraction semigroup on H | «+—n— contraction resolvent on H
T, = lim efe@Ga=D) ¢ 5
a

—00
“Hille-Yosida”

(e7'T )0 is the restriction
of a holomorphic contraction
semigroup on Hc¢ E(u,v) = lliffI)l M€ (u,v)
€ (u,v) = (u — Tyu,v)
D(&) = {u € L*(m)|
sup V€[] < oo}
>0

[(Gru, )| <
const - (Ghu, u)/?(Gyv,v)'/?

“Hille-Yosida” | |L :=1lim +(T; — 1) E(u,v) = Ea(Gou,v)
(via resolvent) Ho lim B(u — fGau,v) = (u,v),
B—o0 e 'HA,

veDE)
_ L)fl
L=a-G,
(L,D(L)) densely defined, GD;[I;’)I‘::S({Z f)z(flff1;)
icllosed) linear operator on H Vo e D)}
1. 10, 00[C p(L) R (€, D(€)) coercive closed form|
2. Jle(a—L) M <1 E(u,v) := (—Lu,v), onH
3. |((1 = L)u,v)| < const.- u,v € D(L)
(1 — Lyu,u)"/? & completion
(1 = Lyv,v)'/?

Extension to the case of coercive forms in a real Hilbert space In
this section we consider a real Hilbert space H. Sesquilinear forms on such
spaces will be simply called bilinear.

Definition 14. Let £ be a bilinear form on a real Hilbert space H, with
dense domain D(E) (i.e. both u — E(u,v) and v — E(u,v) are linear). The
symmetric (resp. antisymmetric) part £ (resp. £) of € is by definition the
bilinear form given by:

E(u,v) = %[E(U,U) + E(v,u)]

resp.
E(u,v) = %[g(u,v) —E(v,u)],

for all u,v € D(E).

One then has € = E+E. € is a symmetric bilinear form and & is an
antisymmetric bilinear form (in the sense that &(u,v) = —&(v,u)).

Suppose € is positive definite (i.e. E(n,n) > 0 for all u € D(E)). Then
one says that € satisfies the weak sector condition with constant k > 0 if
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1E1(u,v)| < k&1 [u]/2E [v]/2.

(E,D(E)) is called a coercive closed form if £ satisfies the weak sector condi-
tion and (€, D(E)) is closed.

The relations £ «<» L <> T <> G discussed in Theorems 4, 5, 6 (and in
Tables 2.2, 2.2 extend to the case of a real Hilbert space, with the symmetry
and positivity in £, —L, T, G replaced respectively by:

a) Coerciveness for £.
b) L is closed operator with p(L) C (0,00) s.t. ||a(a — L)~ < 1, for a > 0,

(1 = L)u,v)| < C((1 = Lyu,u)*((1 — L)v, )"/,
¢) G is a Cy-contraction resolvent family with
[(Gru,v)| < C(Gru, u)?(Gro,v)? w0 e M.

d) T is a Cp-contraction semigroup s.t. its natural linear extension to the
complexification He = H + iH of H satisfies the following condition: the
operator e T is the restriction of a holomorphic contraction semigroup on
the sector

{z € C||Im(z)| < 1 Re(z)} (with k as in Definition 14).

Moreover, G, T are accompanied by dual semigroups G‘, T (that only in the
symmetric case coincide with G, T'), see, e.g., [312], [427], [367].

Remark 22. The direct relation between £ and T has been discussed in [407]
and [136]. E.g. one has the result, relating £ and T":

E(u,v) = }{r(l) ®&(u,v), Yu,ve D(E),

with V& (u,v) = H(u— Tyu,v), D(E) = {u € H | sup;~q PE[u] < oo}

An example In the whole course, we shall have two basic examples, one
in finite dimensions and one in infinite dimensions. Here is the first basic
example, the second one will be introduced in Chapter 3, 4.2.

Let i be a positive Borel measure on R? with supp p = R?. Let us consider
the bilinear form in H = L2(RY, p):

o

Eu(u,v):/<Vu7Vv>du, u,v € C§°(RY),
R4
with Vu(z) = (%,...%), r = (21,...,24) € R < Vu,Vo >=

Zd du v
i=1 Ox; Ox; "
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We call £,, with domain D(€,,) = C§°(R?) the classical pre-Dirichlet form
given by p. £, is symmetric and positive. The basic question is: For which p

o
is £, closable?

In Proposition 11 in 2.1, we have already indicated a condition for a
positive symmetric sesquilinear form to be closable, namely that it can be
expressed by a symmetric operator B s.t.

o

€.(u,v) = (u, Bv),, u,ve D(B)=D(E,)

(where (u,v), stands for the L?(R?, y)-scalar product). When can we find
such a B? The problem is solved when we can derive an “integration by parts
formula” (“IP”), writing

Eulu,v) = —/Rd uAvdu—/Rdu < B, Vv > du, (10)

with < B,(2),y > du(z) = “< Vi,y > du(z)”, y € RY, whenever u is
differentiable in a suitable sense. For this it suffices, e.g., that u is absolutely
continuous with respect to Lebesgue measure, with density p s.t.

1 dp 2 (Tpd :
- L (R =1,...,d
pamz e ( 7/’1')) Z b b
because then v
ﬁHZTpZVIHp. (11)
In this case .
Eu(u,v) = (u, Apv), (12)

with

A, =-A— < PBu(x),Vy >
on C§°(R?) or shortly A, = —A — 3, - V (thus the operator B we were
seeking is this A,). A, is called the classical pre-Dirichlet operator given by
. The quantity 5, in (11) is the logarithmic derivative of p. More generally:

whenever there is a measurable vector field 3, = (3,,... 7ﬁﬁ) s.t.
au _ 7 oo d
oz, dp=— [ up,dp, Yue Cg°(RY) (13)

one says that 3, is the logarithmic derivative of y (in L?(R%, 1)) whenever
Bl e L2(RY, p),Vi=1,....d.

In this case one easily sees that (10) holds, hence &, is closable. Detailed
conditions for closability to hold have been worked out, based on the above

idea. E.g. for d = 1, £, is closable iff u has a density p € L}, .(R) with respect

loc

to the Lebesgue measure s.t. p =0 a. e. on S(p) =R — R(p), where
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x+e
R(p)z{w€R|/ %<+oo736>0}
xr—e

is the regular set for p (“Hamza’s condition”) (cf. [244],[119]).

Remark 23. A condition of this type is also necessary and sufficient for the

“partial classical pre-Dirichlet form” [g, %g’k dp, u,v € C$(RY) to be
closable, for all K = 1,...,d, see [119]. For an example where the above

condition is not satisfied, yet the total classical pre-Dirichlet form is closable,
see [258].

Definition 15. If the classical pre-Dirichlet form £, given by u is closable,
the closure £, is called classical Dirichlet form associated with . The corre-
sponding self-adjoint negative operator L, s.t.

((*L#)l/zua (*Lu)l/zu)u = E,u(u, v)

is called the classical Dirichlet operator associated with .

The corresponding classical Dirichlet form shares with other forms an essen-
tial “contraction property”, which shall be discussed in Chapter 3 to which
we refer also for other comments on classical Dirichlet forms.

Let us however discuss already at this stage briefly why classical Dirichlet
forms are important, relating them to (generalized) Schrédinger operators.

Let p be absolutely continuous with respect to the Lebesgue measure on
R? with density p. To start with we assume p(x) > 0 for all z € R? and p
smooth.

Let us consider the map W : L?(R%) — L2(R%, 1) given by

u
VP
(where L?(R%) denotes the space of square summable functions with respect
to the Lebesgue measure). W is unitary (and W*v = /pv, v € L2(RY, ),

as seen from the construction). Let A, be given by (12) and consider on the
domain W*D(A,), the operator A:

Wu = u € L*(RY)

A=W*A,W.

If D(A,) is dense in L*(R?) (which is the case discussed above, where
D(A,) D C§°(R%)) then, by unitarity, W*D(A,,) is dense in L?(R%, 11), hence
A is densely defined in L?(R%, u). We have, for u,v € W*D(A,,),

(Wu, A, Wv) = (u, WA, Wv) = (u, Av)

where (-, -) is the scalar product on L?(R%).
Set \/p = ¢, assuming ¢(z) > 0, Vo € R?, ¢ € C®(RY). We compute
the Lh.s of the above equality for u,v € C§°(RY) (observing that then also
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5 € C§°(RY) by our assumption on ) using the relations between A, and
g

« given by (12) and the definition of & ,:

o u v
(Wu, AuWo) 20,y = Eu(Wu, Wo) = /Rd V(;)V(;)gﬁdm. (14)

But V(%) = iVu - ﬁ(ku and correspondingly with u replaced by wv.
Inserting these equalities into (14) we get the following four terms:
a)
1 1 )
—(Vu)—=(Vv)p?de = — | u(Av)dx
R ¥ 14 R
(where we first observed that the ¢-terms cancel, and then we integrated
by parts, using u,v € C§°(R?)),
b)

1 1
/ — (Vo)u— (Ve)vp?de = /U(iﬂi)vdﬂf
Rd P 2 2

(where we used that by (11): 8, = VInp? = 2%),

¢) Two mixed terms:

- Eu(VU)daz:—/Ev(Vu)dac
P ¥

R4 R4

\% \Y 1
= —/—@V(uv)dx = /V(—w) uvdr = 5/(divﬁu)uvdx
Rd v Rd 4 Rd
(where we have used again integration by parts and 3, = 2%).

In total we then get:

(Wu, A, W), = (u, Av), (15)
with A = —A 4+ V(x), with

1

Viz) = 1

1 .
ﬂu(z)2 + idwﬂu(x).
Remark 24. The operator A is a Schrodinger operator with potential term V|
acting in L?(R?) (in this interpretation it is appropriate to take L?(R%) as the
complex Hilbert space of square integrable functions). A is densely defined

(on C$°(RY)) in L2(RY), positive and symmetric as seen from (15) and the

[e]
positivity and symmetry of A, (coming from corresponding properties of £,
see (14)). It is well known that Schrédinger operators describe the dynamics
of quantum systems. More precisely: any self-adjoint extension H of A can be
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taken to define the dynamics of a quantum mechanical particle moving in the
force field given by the potential V' (having made the inessential convention
% = 1, where & is the reduced Planck’s constant and m the mass of the
particle; obviously a “scaling” of variables will remove this restriction). The

corresponding Schrodinger equation is then
igw =Hy, t>0
ot T =T

with ¢, = 1o € D(H) C L*(R%); it is solved by e~ ¢/, (the unitary group,
when we let t € R, generated by H via Stone’s theorem).

Assumptions on V' are known s.t. H is uniquely determined by its re-
striction 4 to C§°(R?) (i.e. A is essentially self-adjoint on C§°(R?); see, e.g.
[423] for this concept), e.g. V bounded is enough (but in fact H is uniquely
determined in much more general situations, see, e.g. [426]).

Remark 25. We can write, using 3, = 2%:

2

v (V“">2+dw(w> _ (V9 | php—(Ve)® _ Af

® ©? ©?
This shows

(A +V)p=0

” N

ie. pisa “(—A + V)-harmonic function
The passage A, — A can thus be seen as a particular case of “Doob’s
transform” technique, going from an operator A4, in L? (R?, 1), with 1 as har-
monic function (1 is in the domain, if j is finite) to an operator A in L?(R9),
here —A + V', with ¢ as harmonic function (see, e.g. [217] for the discussion
of Doob’s transform). Doob’s transform is also called, in the context of the
above operator, “ground state transformation” (see, e.g. [426], [467]).
Viceversa: Let us consider a “stationary Schrodinger equation” of the form

(~A+V)p=Egp
for some V : R? — R, E € R. If there is a solution ¢ € L?(R?) s.t. p(z) > 0
vz € RY, then setting V=V — E we get V = %. If, e.g., D(V) D C§°(RY),
we can define A = —A+V on C§°(R?), as a linear densely defined symmetric
operator. The associated sesquilinear form

o

E(u,v) = (u, Av)

defined for u,v € C§°(R?) is then symmetric and closable in L?(R%). More-
over, if
IVell3 + (¢, V) > 0
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(which is, e.g. the case whenever V > 0), then & is positive. We also observe
that, defining A, = —A — 8, - V with 3, = % = 2Vin(p) with p = ©?,
dp = pdx, we have

E’(u,u) = (Wu, A, W),

with A, = WAW™*, u,v € C(R?).
Defining on the other hand

gu(u,v) = / < Vu, Vo >du

we see, as in the beginning of this section, that

[e]

g’u(u, v) = (u, Ay), = (u, Av) = E(u,v).

Note that £, is a form in L?*(R%, i), whereas & is a form in L?(R9).
Thus to a generalized Schrédinger operator of the form —A+V in L?(RY)

we have associated a classical pre-Dirichlet form £, and its closure EH and
corresponding associated densely defined operators L;, resp. L,,. Even though

€ and A in L?(R?) have a more direct physical interpretation, rather than
their corresponding objects &, resp. L, in L?(R9, 1), the latter are more
appropriate whenever discussing “singular interactions” (see, e.g. [44], [104],
[20], [106], [40], [152], [157], [164], [176], [193], [183], [266], [503] or the case
where R? is replaced by an infinite dimensional space E (like in quantum
field theory), see, below and, e.g., [278], [15], [41] (in fact in the latter case
there are interesting probability measures p on F, whereas no good analogue
of Lebesgue measure on E exists). In this sense operating with £,, L,, is more
natural and general than operating with Schrédinger operators.

Remark 26. In the above discussion of closability and Doob’s transformation
we have assumed ¢, V, V to be smooth and ¢ > 0. These assumptions can
be strongly relaxed. Moreover, the considerations extend to cover the cases
where, instead of A resp. A4,,, general elliptic symmetric operators with L -
coefficients are handled, see e.g. [367], [499], [104], [106], [20], [22], [174], [364],
[375] where various questions (including, e.g. closability) are discussed (we

shall give more references in Chapter 4).
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3 Contraction properties of forms, positivity preserving
and submarkovian semigroups

3.1 Positivity preserving semigroups and contraction properties
of forms- Beurling-Deny formula.

In this whole section the Banach respectively Hilbert space of Chapter 2 will
be the functional space L?(m) = L*(E, B, m; K), where (E, B, m) is a
measure space and L?(E, B, m; K) stands for the K-valued (equivalence
class of) functions over E which are square integrable with respect to m.
Let (,) be the scalar product in L?(m), || — || the corresponding norm.

Definition 16. A linear operator A in L?(m) is said to be positivity preserving
(p.p.) iff u > 0 m-a.e. implies Au > 0 m-a.e., for any u € L*(m). A semi-
group T = (T})>0 is said to be positivity preserving if Ty is p.p. for allt > 0.

Proposition 12. Let L be a self-adjoint operator in L?(m) s.t. L <0 (i.e.
—L > 0). The corresponding symmetric Cy-contraction semigroups (e'F)i~o
is positivity preserving iff the corresponding resolvent family (a— L)™' = G,
a > 0, is positivity preserving.

This is an immediate consequence of the Laplace-transform formula, see
chapter 1:
Gau = fooo e~ etlydt, u € L?(m) resp. the Yosida approximation formula
tL

e = lim
a——+00

(o)
et};

with L® = —a + a?Gl.

Theorem 7. (Beurling-Deny representation for positivity preserving semi-
groups)

Let K = R and let L be a self-adjoint operator in L?(m), with L < 0. Then
the following statements are equivalent:

i) (etl)>0 is positivity preserving

i) E([lul]) < Eu] for all w € D(E)
(where £ is the positive, symmetric, closed form associated with L, ac-
cording to Friedrichs representation theorem of Chapter 2 )

Remark 27. This is an important theorem since it expresses the positivity
preserving property of semigroups (and in probability theory, as we shall see,
one is primarly interested in such semigroups, e.g., transition semigroups)
through corresponding properties of associated forms, which are often easier
to verify directly.
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Proof. i) — ii)

One first remarks that |e'u| < etZ|u| (which follows from e'Z(|u| & u) > 0,
by the assumption in i) ).

But for all v € L?(m), using the semigroup property: (u,e'fu) = ||ezlu?,
which is then bounded from above by |le2*|u|[|? = (|ul,e*|u]), where in the
latter equality we again used the semigroup property.

From this we deduce

tL

(u, (e = 1) u) < (|ul, (e — 1) |ul) . vt >0

For u € D(L) the left hand side divided by ¢ > 0 by Theorem 5 in chapter 2
section 2.2 converges for ¢t | 0 to (u, Lu) = —&Ju].
The right hand side is non positive, since et is positivity preserving, thus:

—Elu) < = (Jul, (etL —1)Jul) <0 vt > 0.

~+ | =

Hence the limit for ¢ | 0 of % (\u|, (etL - 1) |u|) exists by subsequences,

and by the definition of D(L) we must have then that this is equal to
(lul, Lul).
Thus —&u] < (lul,Lju|) = —&[lul]] < 0 for all w € D(L). Since D(L)
is a core for D(£), and L is closed, this extends by continuity to all
u € D(E) = D((—L)'/?), showing that i) — ii).

i) — i):

We have, for u € D(L),v € D(L):

Ealu+v] = Eqfu] + Eafv] + 2((a — L)u, v).

Replace now u by w = (o — L) tu (¢ D(L)!), and take v > 0, v € D(),
then Ey[w + v] = E,Jw] + & [ ]+ 2(u v). Taking u > 0, v as before, we get:
Ealw + v] > Eq[w] + Eulv]. (16)

But
Eallw] +v] = Ealw + (Jw| — w) +v] = Eafw + 7], (17)

with v/ = |w| — w + v. Applying (16) on the right hand side, with v replaced
by v’ we get:
Ealw + '] > Euw] + E4 V] (18)

Hence from (17), (18):
Eallw] +v] > Eafw] + Ea[v]. (19)

By assumption ii) the r.h.s. is bounded from below by
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Eallw]] + Ealv']. (20)
Taking now v = 0, we get from (19):
Eallwl] = Eallw]] + Eaflw] — w] (21)
(where we inserted the definition of v’). On the other hand, by &, > 0:
Eallw| —w] > 0. (22)

Hence, from (21), (22):
Eallw] —w] =0

thus Jw| — w=0 i.e. |w| = w, in particular w > 0. From the definition of w,
then:
(= L)'u>0 foru>0,

which proves i), using Proposition 12.

Remark 28. 1) There are several other statements which are equivalent to
the ones of Theorem 7, see e.g., [367],[368], [136].

2) In a similar way one proves the Theorem for the complex Hilbert space
LZ(m). It is also easy to show that i),ii) are equivalent with iii), '’ is
reality preserving and E[u™] < E[u] for all real u € D(E), with ut =

sup(u, 0). This is left as an exercise (cf. [423]).

3.2 Beurling-Deny criterium for submarkovian contraction
semigroups

Theorem 8. Let K =R and let L be a self-adjoint operator in L*(m), with
L <0, s.t. Tyu >0 foru > 0, with Ty = e, t > 0. Then the following are
equivalent:

a) el is a contraction on L>(m) N L?(m), ¥t > 0.

b) Foru>0,u € D(E), then E[uN1] < E[u] (withu A1 =inf(u,1)).

Proof. The proof of b) — a) is similar to the one of ) — 4¢) in Theorem 7.
For a) = b) the idea is to show

(WAL, (1—T)(uA) < (u, (1 —T)u) ¥t > 0. (23)

Once this is shown a) follows easily by dividing the inequality by ¢ > 0 and
going to the limit ¢ | 0, which yields, for u € D(L)

Elunl] < (u,(1—L)u) =EJul.

b) then follows by the fact that D(L) is a core for £. The proof of (23) is
obtained by proving it first for special step functions and then going to the
limit, exploiting the fact that F(u) = u A 1 satisfies |F(u)| < |u|, F(u) —
F(v) < |u—v|, see, e.g., [258], [367], [423] for details.
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3.3 Dirichlet forms

Let (E, B, M) be a o-finite measure space, and let K = R.

Definition 17. Let S be a linear operator in L?(m) with D(S) = L*(m), S
bounded. S is called submarkovian if 0 < Su < 1 m-a.e., whenever 0 < u <1
m-a.e., for all u € L?(m)

Remark 29. If S is positivity preserving in L?(m) and 1 € L?(m), then Su < 1
for u < 1 m-a.e., u € L?(m) follows from S(u — 1) < 0 and linearity, since
u—1¢€ L*(m).

Definition 18. Let £ be a positive, symmetric, bilinear closely defined form
in L?(m) (not necessarily closed). Given ® : R — R, we say that £ contracts
under @ if u € D(E) implies P(u) € D(E) and E[P(u)] < Eu]. If () =
(OViE)AL, t €R, then we call  the “unit contraction”. Let, for all € > 0,
D, be such that D.(t) =t, t € [0,1]

—e< P () <1+e VteR,

0 S dje(tg) — @g(tl) S t2 - tla tl S t27
Pc(u) € D(E),
forv e D(E) and lini%nfg[ée(u)] < E[u] , then we call P, “c-approrimation”

of the unit contraction and we say that £ is submarkovian.

Theorem 9. Let € be a positive, symmetric, bilinear, closed densely defined
form and let Ty, G, be the associated Cy-contraction semigroup resp. con-
traction resolvent. Then the following assertions are equivalent:

a) Ty is submarkovian for all t > 0

b) oG, is submarkovian for all a >0

c) € is submarkovian

d) & contracts under the unit contraction

e) The infinitesimal generator L of Ty has the “Dirichlet contraction prop-
erty” (u, L(u —1)*) <0 Vu € D(L).

Proof. a) — b): Proposition 12 in Chapter 3.3.1

d) — c): take @, = unit

b) — d): this is similar to the proof of ¢) — 4i) Theorem 7 in Chapter 3.3.1
¢) — b): this is similar to the proof of b) — a) in Theorem 8 in Chapter 3.3.2.
For the remaining parts see [244], [258], [367], [172]. O

For the applications the following “Addendum” is useful.
Proposition 13. Let 5 be a symmetrzc positive, closable, densely defined

bilinear form Assume moreover that 5 s submarkovian on D(E) then the

closure € ofS satisfies a)-¢) of Theorem 9.
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Proof. (Sketch): Let u € D(E), since £ is closable by assumption, there exists

a sequence u, € D(£), s.t. u, — u in L?(m), for n — oo, and Eu,] — E[u).

Choose @1 as € = %- approximation of the unit contraction, for n € N. Then

sup El[é%(un)] < sup€i|uy] and this is finite, by the convergence of &1[uy,].

(D(€),£&1) is a Hilbert space and by the Banach-Saks theorem (cf. e.g. Th
2.2, in App.2 in [367]), gn = = > @1 (u;) converges strongly for n — oo to

%
g € D(€) and &[gn] — £[g]. On the other hand: g, — Pp[u] as n — oo
®. — Py m-a.e. as € | 0.
So by these convergences we get @o[u] = g m-a.e., By € D(E) and E(Po[u])2 =

lim,, o0 £[gn] 2. By the triangle inequality and the definition of g, the r.h.s.
is bounded from above by lim sup + dim1 5[90;; (uj)]%. Since the Cesaro-limit

and the ordinary limits coincide whenever they exist, we get that this is £ [u]%
and thus & contracts under the unit contraction. a

Definition 19. A form & with the properties as in Theorem 9 (i.e. bilinear,
positive, symmetric, closed, densely defined and submarkovian) is called a
(symmetric) Dirichlet form.

Remark 30. Proposition 13 says that the closure £ = £ of the form £ in

[e]
Proposition 13 is a Dirichlet form. In applications the forms £ are usually
given on a nice subset D of L?(m) where they are closable. Proposition 13 per-
mits then to pass from the contraction properties of £ on D to corresponding
ones for its closure €.

Remark 31. Dirichlet forms are studied extensively in [150], [244], [258], [468],
[469], [367], [309] (and references therein).

3.4 Examples of Dirichlet forms

Standard finite dimensional example Let E = R?, B = B(RY), m = p,
w(dz) = p(z)dz, r > 0, (where dz is Lebesgue measure on R9).

Consider €, (u,v) = [Vu-Vodp in LE(RY, ) = L2(RY, 1, R) = L2 (p),
u,v € C§°(RY) (with Vu(z) = (%u, . ,d—idu)(x), r € RY).

The basic question to be answered is whether £, is closable. In Chapter 1 we
saw that for this to be the case it is enough to find a (symmetric, positive)
operator A, in L?(p) s.t. £, (u,v) = (u, A,0).

By “integration by parts” we see that A, = —A — 3, -V on C§°(R?). This is
well defined whenever

Bui(z) = -0;p(x) € L3(p), Vie{l,...,d}

1
p
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with 0; = 8 - (taken in the distributional sense).

“Optimal” conditions for closability of 5 have been given in [119], see also
[223], [474].

The second basic question to be answered is whether the closure £, = &£, of

&, is a Dirichlet form.

The answer is yes, since by using Proposition 13 it is enough to verify that
[e]

&, is submarkovian. Let us take ¢ > 0, &, € C*°, P.-contraction, an e-
approximation of the unit contraction |®.(-)| < 1. Then:

E@(w)] = [ Vo) V()i = [ () Vub(w)Vudye = [ |#,(u) [V dp <

[1Vul?du = E[u), Yu € C§°(R?), where we used the definition of 5 Leibniz
differentiation formula in the second equality, and |@,| < 1 for the latter in-
equality.

o
This shows that £ contracts under @. and by Proposition 13 we then have
that £, is a Dirichlet form. O

The standard infinite dimensional example Let E be a separable real
Banach space, E’ its topological dual. Let p be the probability measure on
the Borel subsets B in E generated by all open subsets of F, and suppose
suppp = E (i.e. w(U) > 0 for all U C E, U open, U # ).

Let FC* = FCP(E) ={u: E —- R | 3Im, 3f € C°R™), 3y, , 1L,
E" : u(z) = f(< 2,1y >,-++,< 2,l;, >)}. Then FCg° is dense in L?(u)
L2(E, i) (this is essentially a form of the Stone-Weierstrass theorem, see, e.g.
[396], [277], [290]).

For u € FC°(E), z € E, k € K C E (K a linear subspace of E) we define
the (Gateaux-)derivative in the direction & by:

m-m

ou d
k)|s= l Zylm k,l; .
35 (9 = pulz + 5k)] o( z2;&9f<z 1>, >) < >>
We define P
o u v
Ennlu0) = [ 5p - gpdi:

for u,v € FC§°.
[e]
We easily see that £, 1, is a symmetric, positive, bilinear form on L?(u), with

domain D(E,, 1) = FCg® (dense in L*(u)!). As before the first question to be

answered is: for which p is £, 1 defined on FCp® closable? A sufficient con-
dition for this is (analogously as in the finite dimensional case) the existence

of Bk € L*(u) s.t

u%du — /uvﬁmkdu, Yu,v € FCp°. (24)
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Remark 32. This is an “integration by parts” formula, in the spirit of those
in the theory of smooth measures [205], [59], [61], [62], [65], [119] and in
“Malliavin calculus” (originally on Wiener space, see [372], [396]).
Assuming (24) we have then that

0? 0

wk = @ + 5#,167

L ok

o

is a well defined linear operator with D(L, ;) = FCp°, symmetric and such
that

o

Epup(u,v) = (u, (= Ly 1))
(with (, ) the L?(p)-scalar product). From Proposition 11 in Chapter 2 we

see that &, is closable in L?(y).

[e] [e]
The next question is whether the closure &, = £, of £, in L2(p) is a
Dirichlet form. This is proven similarly as in the finite dimensional case. In
fact let @, be an e-approximation of the unit contraction which is C* on R.
Then, by Leibniz formula, v — &.(u) € FCg° if u € FCp© and

& klB.(u)] < / 1 () 2| Va2 < / Vuldu = &, 4lul.

[e]
By using Proposition 13 this yields the proof that £, j is a Dirichlet form.
We assume that F and its dual E’ are s.t.

E'cH =HCE,

where H is a Hilbert space, densely contained in E, H’ (isomorphic to H) is
the dual of H (and E’ is densely contained in H'), moreover the embedding
of H in E (and of E’ in H')is continuous. (We remark that this assumption
is not strong, in fact it can be realized in great generality, see e.g. [301], [462],
[428]).

For u € FCy°, k € E' we have %(z) =< k,Vu(z) > (with < , > the

E E g E

dualisation between E and E').

Definition 20. For u,v € FCy° we define

o

Eulu,v) = / < Vu,Vv >g dpu,
E

where < , >p is the scalar product in H.
Let K be an orthonormal basis in H consisting of elements in E'. We have:

g’u(u,v) = Z g’pyk(u,v).

keK
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[e] [e]
We remark that £, is a bilinear positive symmetric form. £, is closable if
all £, are closable (we leave the verification of this as an exercise: one can

[e]
use, e.g., Proposition 11 in Chapter 2). In this case the closure &, of £,, exists
and is a positive symmetric closed bilinear form. It is also easy to verify that
&, is a Dirichlet form. £, is called the “classical Dirichlet form given by u”.

Remark 33. For E = H = R? and FC;® replaced by C§°(R?), &, coincides
with the classical Dirichlet form given by i (over R?) as defined in Definition
15.

By Friedrichs’ representation theorem to £, there is a uniquely associated
self-adjoint, negative operator L, s.t. £,(u,v) = ((—L#)%u, (—Lu)%v). L,is
called the Dirichlet operator associated with pu.

Remark 34. £, should not be confused with the “maximal Dirichlet form
given by u”, £, obtained from the closed extension of £, with domain
D) = Npex{u e L2(w] [ %Pdu <~oo}. In general £ is a strict exten-
sion of &,, they coincide exactly when L,is essentially self-adjoint on F'Cy°,
see, e.g., [119], [88], [359] for results of this type.

Exercoise 6. Show that 5 .
L,=1L, on FC, with L, =", L, on FCy°, where

° 02 15)
Lyk= 52 + ﬁmk(')%,
2= L @V ue) = Y < B k> Duz)
H= o2 0 < Bul2); u(z) = . (2), 5 u(?)
keK keEK

ue FC, z€ E.

Moreover £,,(u,v) = > (u, L, xv) Yu,v € FCP°.
kEK

Exercise 7. When E = C(()([0,]; R), (Wiener space of continuous functions
from [0,¢] to R vanishing at time zero) we have

H = HY2([0,4:R) = {w ¢ E|/O lis(s)|2ds < o0},

where g is the Wiener measure: show that (, is a linear function (cf.
[172],[365], [396]).

We know by the general theory of Chapter 3.1 that L, generates a symmet-
ric submarkovian Co-contraction semigroup L?(p). We shall show that L,
generates a diffusion process. For this we first describe shortly the general
structure theory of Dirichlet operators and forms.
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3.5 Beurling-Deny structure theorem for Dirichlet forms

We first consider the case of a locally compact separable metric space E (not
necessarily a linear space). Let m be a Radon measure on E (see, e.g., [462]
for Radon measures).

Definition 21. A bilinear symmetric positive densely defined form & in
L3(E,m) = L*(m) is called regular if D(E) N Co(E) is dense in D(E)with
respect to the E1-norm and dense in Co(E) with respect to the supremum-
norm.

Definition 22. A bilinear form & in L*(m) is called local if € (u,v) = 0, for
all uyv € D(E) s.t. supplu] N supplv] = 0 (for some representatives [u], [v] of
u resp. v as element of L?(m), with supplu], supp[v] compact).

Examples are:

a) E(u,v) = [uvdm, u,ve CFRY),
b) E(u,v) = [Vu-Vvdm, u,ve CFRY).

Definition 23. A bilinear form £ in L?(m) is called strong local if €(u,v) =
0 Yu,v € D(E) such that v is constant in a neigborhood of suppu].

Remark 35. Strong local implies local, but not viceversa, e.g. in the examples
above a) is local but not strong local.

Theorem 10. (Beurling-Deny structure theorem)
Let € be a regular Dirichlet form. Then £ can be written as

E=¢E+&1 4+ &5

on D(E) N Cy(E), with £° strong local,

£ (u,v) = /E (@) — u)]lo(a] o (y)] (drdy),

where (E X E) = {(z,y) € EXE | x # y} and J is a symmetric Radon
measure on (E x E),

EF(u,v) = /uv dk,

dk being a Radon measure on E. The parts £¢ (diffusion part) , £ (jump
part) , EF (killing part) are uniquely determined by E.

Proof. For the proof see [244], [258]. O

If E is a manifold or E = U with U an open subset of R? then £°¢ can be
further specified.
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Theorem 11. (Beurling-Deny structure theorem for an open subset of R?)
Let U be an open subset of R?, m a Radon measure on U. Then any submarko-
vian symmetric positive bilinear form 5 on L*(U, m) with D(S) C§°(U) s.t.
5 is closable and one has that €& = 5 is a regqular Dirichlet form and for €
(and hence 2’) on C§°(R?) we have

=gt 4eh,

with £°(u,v) = szzl gm“i (x)(%”j(x)duij(:r), where v;;(-) is a random mea-

sure (for all i,j = 1,---,d), with (Vij(K))ﬁjzl is a positive definite, sym-
metric matriz for all compact K C U.

Proof. Since £ is submarkovian and closable, the closure is a Dirichlet form.
That £ is regular follows easily, see [244]. Then we can apply Theorem 1 in
chapter 1 to get £¢, &7, E¥. For the formula for £¢ see [244].

Remark 36. There is an extension of Theorem 10 to infinite dimensional
spaces, with regularity replaced by “quasi-regularity” (a concept we shall
discuss in Chapter 4) see [111], [112].

3.6 A remark on the theory of non symmetric Dirichlet forms

There exists an extension of the entire theory of Dirichlet forms to the case
of bilinear forms which are closable and contract under suitable “contraction
operations”, but are not necessarily symmetric.

Definition 24. A bilinear form £ in a real Hilbert space H is said to satisfy
the weak sector condition if 3k > 0 s.t.

11 (u, v)| < k& [u]2 & [v]?

€ is a coercitive closed form if D(E) is dense in H, £ satisfies the weak sector

condition and the symmetric part £ of £ (defined as

E(u,v) = 1[E(u,v) 4+ E(v,u)Vu, v € D(E),with D(g) = D(&)) is closed.

Analogs of the relation between symmetric forms, contraction semigroups
and associated operators, resolvents, discussed in Chapter 2.3, exist also for
coercive closed forms. The main difference consists in the fact that instead
of a single semigroup (7});>o (resp. resolvent family (G, )a>0) there are two
semigroups (T3, T});>0 (resp. two resolvents ((Ga,Ga)as0)): in duality (i.e.
adjoint to each other in the case of a space L?(m)). See the table below. For
a Beurling-Deny structure theorem in this case see [378].
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Table 3
00
Gy = T, dt

(Ty)ts0 strongly continuous @ /0 € ¢ (Ga)aso strongly continuous
contraction semigroup on contraction resolvent on
L*(E;m) T, = lim e@Ga—D) ¢ L*(E;m)

a—00

c ] o “Hille-Yosida”

(e7TF)s>0 is the restriction (Gru,v)| <

of a holomorphic contraction

) const - (Gyu, u)/2(Gyv, v)V/?
semigroup on L*(E = C;m) | £(u,v) = 13%1 & (u, v) (Gru, w)?(Gro,v)

(Ti)t>0 sub-Markovian D(E) = {u € L¥(m)| (Ga)aso sub-Markovian

sup DE] < oo}
>0

“Hille-Yosida” | |L :=lim }(T; — 1) E(u,v) = Ea(Gau,v)
(via resolvent) o lim B(u — BGau,v) = (u,v),
pveo u€H,
ve D(E)
-

(L, D(L)) densely defined, | P(L) :={u € D(€)|3Lu
(closed) linear operator € Hs.t. E(u,v) = (—Lu,v)

on L?(E;m) s.t. Vv € D(€)}
1. 10, 00[C p(L)
2 Jlala=L) <1 E(u,v) = (—Lu,v), (€,D(€)) coercive closed form|
3. |((1 = L)u,v)| < const.- u,v € D(L) on L*(E;m)
(@ = Lyu,w)/? & completion

((1 - L)'U’ U)1/2

(€,D(€)) 3-Dirichlet,i.e.,
ueDE)=>utAN1eDE)&
Eu+utALLu—utAl)>0

L Dirichlet, i.e.,
(Lu, (u—1)*) < 0 Vu € D(L)

4 Potential Theory and Markov Processes associated
with Dirichlet Forms

4.1 Motivations

Let E be a topological space, m be a o-finite measure on E. Let T' = (T})¢>0
be a sub-Markov semigroup in L?(m) = L2 (E, m). We shall discuss the fol-
lowing questions:

1) Is it possible to associate a “nice process” to T such that T is its transition
semigroup (analogously as the Brownian motion process on RY is associated
with the heat semigroup as transition semigroup)?

2) Which kind of Dirichlet forms correspond to such "nice processes”?

As is well known, in the case where FE is a locally compact separable
metric space, an association of this type is surely possible if the transition
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semigroup has the additional property of being a Feller semigroup, but what
about the general case of the theory of Dirichlet forms?

Historically, one has analyzed first precisely the case of a locally compact
separable metric space for the case where the Feller semigroup is replaced
by the semigroup associated with a regular Dirichlet form, in which case the
nice associated process is a Hunt process, see [243], [244], [258], [468], [469].

The next case that was historically treated was the one of non locally

compact spaces, e.g. separable Banach spaces or rigged Hilbert spaces or
conuclear spaces. These cases were discussed particularly in connection with
the development of a mathematical theory of quantum fields, see [57], [58],
[59], [61], [408] (for the case of rigged Hilbert spaces), [335] (for separable
Banach spaces). A more general theory was then formulated in [118], [119],
[120], some assumptions being further weakened by Schmuland [457] (see also
[458], [459], [460], [461]). The setting of abstract Wiener spaces was particu-
larly discussed in [172].
A non standard analytic setting was developed in [39], [36]. The central an-
alytic concept which developed from all these approaches as being appropri-
ate for the association of nice processes to general Dirichlet forms on general
Hausdorff topological spaces E with a o-finite measure m is that of quasi-
regularity, first introduced in [105], [107], [108], [114], [109], [110], [113], see
[367].

We shall here limit ourselves to a short sketch of the construction of
nice processes starting from quasi regular Dirichlet forms, giving its main
ideas. One basic idea is to replace continuous functions by quasi-continuous
functions, as functions continuous modulo “small sets”, and construct kernels
acting on such functions.

4.2 Basic notions of potential theory for Dirichlet forms

E-exceptional sets Let E be a Hausdorff topological space, B the o-algebra
of its Borel subsets, m a o-finite measure.
Let (€, D(€)) be a Dirichlet form on L?(m) = L3 (E,m).

Definition 25. An increasing sequence (Fi)gen of closed subsets of E is
called an E-nest if |, D(E)p, is €~11/2—dense in D(E) (where D(&)p = {u €
D(E) | u = 0 m-a.e. on the complement FCofF'}; €~11/2 is the norm given by
the scalar product in L?(m) defined by & ).

Definition 26. N C E is called “€-exceptional” if N C (), F for some E-
nest {Fy}ren. We say that a certain property of points in E holds “€-quasi
everywhere” (g.e.) if it holds outside some E-exceptional subset of E.

There is an important relation between £-exceptional sets and sets of
small capacity; for this we first have to introduce the concept of capacity
(an extension to our setting of the concept of capacity in classical potential
theory, see, e.g. [162], [276], [160]).
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Definition 27. Let U be an open subset of E. Define the capacity cap U of
U by

cap U = ulenﬁfu &1 [u)

where
Lu={ueDE)|u>1m-ae onU}
(with inf{.} = 400 if Ly = D). For any A C E define

A= inf cap U.
ACU,U open

Remark 37. We have that cap (U) = 0 implies m(U) = 0.
Proof. We have
E1lu] > |Jul|* > m(U) Vu € Ly,
hence cap U = inf ez, E1u] > m(U). O

Proposition 14. Let E, m, £ as above. If (Ap)nen s an increasing sequence
of sets then 1) cap ([,, An) = sup cap A,
n
Moreover,
2) (Fi)ken is an E-next <= limy_,o cap FZ =0
3) N is E-exceptional <= cap N = 0.
Proof. (Sketch):
1) is easy (see, e.g., [244]). 2) = 3) is obvious. To prove 2) one uses the
following
Lemma 2. Let U C E be open, s.t. Ly # ), then
a) there exists uniquely an element ey € Ly (called “equilibrium potential”)
s.t. Eley] = Cap U.
b) 0 <ey <1 m-a.e. on E and U — ey is monotone increasing.
Proof. For a) one uses that Ly is convex (which we leave as an exercise).

b) Take u = (0 V ey) Al. € being a Dirichlet form, it contracts under the
unit contraction, i.e. for u € D(E)

Eru) < &iley] = Cap U

which implies, by the definition of capacity, that v = ey q.e., hence 0 <
ey < 1 m-a.e.. That u — ey is monotone increasing is easily seen using
Eoo(MT,M7) <1 for any u € D(E), see [244]. O

Definition 28. Let (F))ren be an E-nest. Set
C{Fk}) = {u :A—= R, for some AC E s.t. UF’“ CACE,up,
k
continuous Vk € N}.
An E-q.e. defined function u on E is called €-quasi-continuous (q.c.) if there

exists an E-nest {Fi}ren s.t. w € C({Fr}). C({Fx}) is then called the set of
quasi-continuous functions associated with the nest (Fy)ken.
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Remark 38. One shows that u is £-q.c. if for any ¢ > 0 U C E open s.t.
Cap U < ¢, ujg_y continuous, see, e.g. [367].

4.3 Quasi-regular Dirichlet forms

Definition 29. Let E be a Hausdorff topological space, m a o-finite measure
on E, and let B the smallest o-algebra of subsets of E with respect to which
all continuous functions on E are measurable.

A Dirichlet form & is called quasi-reqular if

i) there exists an E-nest (Fi)ren of compact subsets of E;

i) there exists an 511/2—6167156 subset of D(E) whose elements have E-q.c.
M-Versions.

iii) there exists u, € D(E), n € N, with £-q.c. m-versions U, and there

exists an E-exceptional subset N of E s.t. {ln tnen separates the points
of E— N.

Remark 39. Thinking of Stone-Weierstrass type results, “point separation”
means richness of elements...

Remark 40. We leave as an exercise to prove that if E is a locally compact
separable metric space then & regular implies £ quasi-regular but not
viceversa (in general).

4.4 Association of “nice processes” with quasi-regular Dirichlet
forms

(E,B,m) be as in the preceding section. Let £ be a symmetric Dirichlet
form in L%(m) and (T; = e'l);>¢ the associated symmetric submarkovian
Co-contraction semigroup on L?(m).

Definition 30. Let (p;)i>0 be a submarkovian semigroup acting in Cy(E)
s.t. (pu)(z) = [ pe(z, dy)u(y), u € Co(E), py being a submarkovian semigroup
of kernels i.e. pi(xz, A) € [0,1],x — pi(x, A) is measurable Vo € E, A € B,
A = pi(x, A) is a measure on (E,B) with pi(x, E) < 1( see e.g., [142]).
py 05 said to be associated with € (or (T})i>0 or with the infinitesimal gener-
ator L) if psu is an m-version of Tyu,Vt > 0, for all u € By(E) N L?(m).
Let X = (Xi)t>0 be a (sub-) Markov process with state space E and transition
semigroup (pt)e>o, S.t.

(peu) (=) = B [u(X,)]

Vz € E,t > 0 (with E* the expectation for the process with start measure
3.(.)) is said to be associated with € (or (T});>0 or the infinitesimal generator
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L) if p; is associated with £.
X s said to be properly associated with & if in addition pyu is €-quasi
continuous (in the sense of the definition in IV.3) for allt > 0.

Remark /1. In a sense the £-quasi-continuity of p;u is replaces the Feller-
property (for the latter see, e.g., [162], [201], [220]).

The following theorem gives the basic relation between certain properties of
symmetric Dirichlet forms and corresponding properties of associated (sub-)
Markov processes; the meaning of the latter properties will be shortly
discussed afterwards.

Theorem 12. Let E be a topological Hausdorff space. Then:

a) € is a quasi-regular Dirichlet form iff X is an m-tight special standard
process.

b) & is alocal quasi-regular Dirichlet form iff X is an m-tight special standard
process and it is a diffusion i.e.
P?{t — X; continuous on [0,()} =1 forallz € E
(for some random variable ¢, with values [0, 40|, the life time of the
process).

The basic concept on the r.h.s. is defined as follows:

Definition 31. (right process)
Let A be one pointset, disjoint from E, and define Eo = EU A.

i) Let X = (Xy)i>0 be a (family of ) stochastic process(es) on a probability
space (£2, M, P?) ¢, with state space E, life time ¢, a measurable map
2 — [0,400] (if { = +00 one can forget about A), s.t.

X (w) € E fort < ((w),

Xi(w) € A fort > ((w).

Yw € 2. Assume (t,w) — Xi(w) is measurable.
Let M, be a filtration in M s.t. Xy is M- adapted.

ii) Assume that z — P*(B) is measurable for all B € M and the Markov
property holds:

P*(X414 € BIM,) = PX+(X, € B),

Vs,t > 0,P%-a.s. ,z€ Ep,B € B(EA)
X is then called a Markov process.

i11) X is called normal if P*(Xo = 2) =1,Vz € Ea.

i) X is said to be right continuous if t — X (w) is right continuous,
vVt > 0,Vw € £2.
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v) X is said to be strong Markov if My is right continuous and

P" (Xyi4 € BIM,) = PX7 (X, € B),

Pt-q.s., YMy-stopping times o, for any probability measure p on E, and
with P*(.) = [ P*(.)p(dz).

X is said to be a right process if i)-v) hold.
An “m-tight special standard process” is shortly described as a right process
which is “concentrated on compacts” (m-tightness), has almost surely left
limits and is almost-surely left quasi-continuous, see [367] for details.

Remark 42. 1) An analogon of the above theorem holds also for non
symmetric Dirichlet forms £ in the sense discussed in [367]. In the same
way as to £ there are associated two submarkov semigroups (Tt,Tt)tgo
in duality, there are two corresponding (properly)- associated “nice pro-
cesses” X, X.

2) There also exists, in the same spirit as in the above theorem, an
analytic characterization (in terms of Dirichlet forms) of Hunt processes
(see [104], [367]).

3) The main consequence of the above theorem is that concepts of analytic
potential theory, like capacity and equilibrium potential become related
to concepts of probabilistic potential theory, like hitting distributions and
entrance times, e.g. one has for an open set U:

cap(U) = & lev]

with ey the “l-equilibrium potential”.

Moreover cap(U) < oo iff ey (2) is a quasi-continuous version of E*(e~7Y),
with oy the entrance time of the associated process in U.

In this way capacity gets related with hitting distribution and, e.g.,
cap(N) = 0 iff N is an E-exceptional set and this is so iff P™ (o5 < 00),
for some Borel subset N D N of E; see below and [244], [258], [367] for
details.

A hint to the proof of Theorem 12:

From the experience with the construction of Markov processes in the simpler
case of a locally compact separable space (“finite dimensional case”), we know
it is easy to construct a (sub-) Markov process if one disregards detailed path
properties. In contrast the proof of the existence of a version of it with “nice
properties” is quite hard.

In fact the case of a general Hausdorff space F in the above theorem is indeed
reduced to the case of F locally compact, separable, metric, which had been
treated before by Fukushima [246] and Silverstein [468]. This reduction has
to be done in such a way as to preserve, e.g., the quasi-regularity property (in
fact it gets transformed into the regularity property under compactification).
In the case where F is locally compact separable metric one realizes that the
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Feller property of the transition semigroup leads to strong Markov processes
and eventually to Hunt processes (cf. [162]).
On the other hand one shows:

Lemma 3. Fach u € D(E) (for € a regular Dirichlet form, in the sense of
[246], [258]) has a quasi-continuous modification s.t. u | (Ea — G) is quasi-
continuous, for any open subset G of E (cf. Theorem 3.1.3 in [246])

Proof. A) One has Cap G% < £5&[u],VA > 0,u € D(E) N C(E)) with
Gy ={z € E|ju(z) > A}
(seen by realizing that G} is open, |u|/A € Lgy, for u € D(E)NC(E), with
L;.» as in the definition of capacity, and using the “Dirichlet property”
Eflul] < &[ul.)

B) By the regularity of £ and A) one can find u,, € D(E)NCyH(E) s.t. u,, — u.
By passing if necessary to a subsequence, denoted again by u,,, one then
has 81 [un+1 — un] S 23%

Then by A): CapGyit' ™" < 4.

Hence Fj, = (G;,’Z'Jrl_u”) is an E-nest.
1=k
But |un,(z) — um(2)] < > |up—1(x) — uy,(x)|, for any x € Fy,
v=N+1
n,m>N > k.

Setting @(z) = lim wu,(x),z € |JFy we have that @ [ Fj is continuous
n—oo k

and @ is quasi-continuous. a

The next observation consists in showing that one can construct a
countable set By C D(E)NCy(F) dense in sup-norm in Cy(E) s.t. By is linear
and closed under |.| (as seen by approximation, using the regularity of £, see
[Fu], proof of Lemma 6.1.2).

Set Hy= |J Ti(Bo)UG1(By) (where (T});>0 is the Markov semigroup asso-
teQ4

ciated with £ and G is the corresponding resolvent G, evaluated at « = 1).

Let u € Hy and let 4 be its quasi-continuous modification given by the above

Lemma.

Set Hy = {a|u € Hy}. One shows (using that Hy is countable!) that there

exists a regular nest {F{} on E s.t. Hy C C({FP}) (where C({F?}))

denotes the functions which are continuous in (FP)¢). Let |J F} = Y;. One

sets for u € L2(m),z € Yy, t € Q4 : pru(x) = Tyu(z).

P: is not yet a semigroup, but has a submarkovian kernel p;(z, B), x € Yy,

B € B (cfg. [246], proof of Lemma 6.1.2).

One extends p; to E by setting pi(xz,B) = 0,Va € E — Yy. One shows

pCoo(E) C C({F?}), and that p, is a quasi-continuous version of Tyu, for

any u > 0, Borel, u € L?(m),t € Q4 (cf. Lemma 6.1.2 in [246]), and that p,

is a semigroup of Markovian kernels on (E, B).

One then uses p; to get by Ionescu-Tulcea-Kolmogorov’s construction a
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Markov process on X 4. The crucial step then consists in showing that this
Markov process has a cadlag version on some Borel subset Y,Y C Yy, sit.
Cap(E — 17) = 0. This relies on an interplay of analytic and probabilistic
methods, where regularity again plays an important role (see [246], Lemma
6.2.3). The same ingredients then enable us to show that the process is a
Hunt process.

By the reduction of the infinite dimensional case to the locally compact case,
one then completes the construction in the general case, see [114], [367] for
details.

Remark 43. 1) The m-tight special standard process X properly associated
with a quasi-regular symmetric Dirichlet form is m-symmetric (in the
sense that its transition semigroup is symmetric in L%(m)), and has m as
an invariant measure (by construction).

In general it has a finite life time ¢, but if T;1 = 1 (7} being the Markov
semigroup associated with £) and 1 € L?(m), then the life time is infinite.
The process X can always be taken as a canonical process (cfg. [367]).

2) Let X be a right process properly associated with a quasi-regular Dirichlet
form £ (in the general case where E is a topological Hausdorff space and
m is a o-finite measure on F).

One shows that there exists an E-nest (F};), with Fj, compact measurable

subsets in F and a locally compact separable metric space E# containing

densely Y = JF), with B(Y) = {4 € B(E#)|AC Y} and, moreover,
k

there exists a Hunt process X on E#, the “natural extension” of X |
(E-N),NCE,

N invariant, £-exceptional, s.t. X is properly associated with the regular
Dirichlet form £#, the image of £ in L?(E#,m#). This observation is
exploited in the “regularization method”, see [244], [114], [465].

4.5 Stochastic analysis related to Dirichlet forms
Let (E,B,m) be as in chapter 4.1

Definition 32. (Additive functional)

Let X = (Xy)t>0 be a right process associated with a quasi reqular Dirichlet
form & (according to Theorem 12 in chapter 4.4).

A = (Ay)i>0 is called an additive functional associated with X if Ay is
M-measurable, cadlag and such that Apys(w) = Ay(w) + As(A(w)) for all
s,t > 0,w in the underlying probability space (2.

A is called a continuous additive functional if t — Ay(w) is continuous

Yw € 2.

Definition 33. Let A be an additive functional. The energy of A is by
definition
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—1; 1 m 2

if the limit exists, m-a-s.

Definition 34. Let 9 ={M|M additive functional, E*(M}?) < oo,

E*(M;) =0,€ —q.e.,z € E,Vt > 0}.

One shows that any M € M is a martingale under P®, for any x € E— N,
N being a properly exceptional set (depending on M, in general). Thus the
elements of 9 are called martingale additive functionals.

One shows ([246] p.135, by a method of P.A. Meyer) that for any martingale
additive functional M, there exists uniquely a positive continuous additive
functional (M) s.t. for anyt > 0:

E*((M);) = E*(M?), g.e. 2 € E, (M), is then by definition the quadratic
variation of M.

Let M ={N s a continuous additive functional of zero energy i.e.

e(N) =0 and s.t. E*(|N¢|) < oo for g.e. z € E}.

Theorem 13. (Fukushima’s decomposition)

Let X be the right process associated with a quasi reqular symmetric Dirichlet
form on a Hausdorff topological space. If u € D(E) then there exists uniquely
a martingale additive functional of finite energy M and an element of zero
energy N € M s.t. for any quasi-continuous version @ of u:

W(Xy) = a(Xo) + MM + N,

Remark 44. N™ is not necessarily of bounded variation (but it has zero

energy).
For the proof of this theorem see [244], [258], [367], [114].

5 Diffusions and stochastic differential equations
associated with classical Dirichlet forms

5.1 Diffusions associated with classical Dirichlet forms

We consider the example discussed in chapter 4, 4.2 of the classical Dirichlet
form &,,, associated with a probability measure i on a separable Banach space
FE s.t.

EECcH 2*HCFE

We suppose as in chapter 4,4.2 that there exists 3, € L?(u) s.t. the integra-
tion by parts formula holds, i.e.

%d,u:—/uﬁu,kdu Vke K C E',u e FCy®,
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K consisting of elements which form an orthonormal basis in .
Let 8, : E — E s.t., for all z € E:

(k,Bu(2)) = Bur(z),

E’ E

where (, ) is the dualization between E and E’.
E E
Let L, be the self-adjoint operator with —L,, > 0 associated with &, (Dirich-

let operator associated with y). Then, on FCp*:
Ly = Dy + Bu(2) - Vi,

where Ay = Y 97 is the Gross-Laplacian associated with #, V4 the natu-
keK
ral gradient associated with #, so that

Bu(2) Tr= 3 Bur(2)s.

keK
Proposition 15. The classical Dirichlet form &, given by 1 is quasi-regular.

Proof. One has to verify the properties i),ii),iii) in Definition 29 of quasi-
regularity for Dirichlet forms. For i) it is enough to show that there exist
compacts Fy T E with Cap (F — Fy) J 0 (“tightness of the capacity”), we
leave this as an exercise (cf. [367]).

ii) The subset FCy° is & -dense in D(&,) by the construction of £, as

the closure of £,,. Its elements are continuous.

iii) FCp® separates the points of E (and hence also of E — N) since E is
a separable Banach space (use, e.g., the theorem of Hahn-Banach, cf.
[367], p.119)

O

Proposition 16. &, is local.

Proof. We have to show that &,(u,v) = 0 if suppu,suppv are compact,
suppu Nsuppv = 0.

This is obvious for u,v € FCg°. Now for arbitrary u,v € D(E,) we can find
(by the &i-density of FC®) ty, v, € FC s.t. & ([un —u]) — 0,

E1([vn, — v]) — 0, as n — oo, and the Proposition is proven. O

By the general theory of association, cf. Chapter 4, to £, there is properly
associated an m-tight special standard process X;,0 < ¢t < (, which by the
locality of £, is a diffusion process.

Since the Cy-contraction Markov semigroup Ty = e'”,t > 0, associated with
&, moreover satisfies T;1 = 1, it follows that X = (X¢)¢>0 is a p-symmetric
conservative process s.t. ( = 4o0.

An application of Fukushima’s decomposition theorem (Chapter 4, Theorem
12) to the present case yields:
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Theorem 14. For any u € D(E,),t > 0:
a) if ue D(L,) then

N = [ (s

b) (M) =2

t

o o

(Vu(Xs), Vu(X,) ) ds, where (-) denotes the quadratic vari-
H t

ation process (so that E* ((M)) = E*(M?) ,qe. 2z € E;t > 0,M; a
t

martingale additive functional.)

Proof. a) The proof is based on an extension to quasi-regular Dirichlet forms
on general Hausdorff topological spaces (cf. [367]) of the following Lemma:

Lemma 4. Let £ be a regular Dirichlet form on L*(m) on a locally com-
pact separable space E, and let X be a properly associated right process.
Then for any g € L*(m) :

t

fg(XS)ds is a continuous additive funtional of zero energy.
0

The proof of the Lemma is left as an exercise (hint: use the Markov prop-
erty of X).

Now take u € D(L,), so that u = G1 f, f € L*(m). Set g=u — f

Then:

jmxmw:/wua—ﬂ&»@

0
t

— [ Luutxas

0

where for the latter equality we have used
Liu=I[L,—1+1u=—-f+Gif.

Applying the above Lemma we get that

t

J Lyu(X;)ds is a continuous additive functional of 0 energy and by the

0

uniqueness in Fukushima’s decomposition theorem this is then Nt[u].
b) To give an idea of the proof of this point, let us look at the finite dimen-
sional case E = U,U an open subset of R?, with a classical pre-Dirichlet

form gﬂ.
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From the finite dimensional theory we know that if X is the Markov pro-

[e]
cess properly associated with the closure &, of £, then by the Beurling-
Deny decomposition

t

<M[“]Z =2 / (Vu(Xy), Vu(X,))ds
0

For the infinite dimensional case see [367].

Remark 45. a) holds for any quasi-regular Dirichlet form.
b) can be generalized to

t
MM = / p(X,)ds, with
0

p(x) = Lyu?(z) — 2u(z)Lyu(z).

In this form the proof of b) can found in [208] for the case of locally
compact spaces and [126], [451], [452], [453] for quasi regular Dirichlet
forms.

Remark 46. For E = R? y the Lebesgue measure on U, so that &, is the
classical Dirichlet form uniquely associated with —A we have, taking
w(x) = ui(z) = z;(€ L3 (pk)) (with pg the restriction of p to the interior

K of a compact subset K in R?). But for any u € D(€,, )3w € D(E,) s.t.
w = u m-a.e. on K and Mt[wi] = Mt[u] for t < O o5 (the hitting time of

R¢ — K). On the other hand

t
(Mlwsly = 2/ds =21,
! 0
By a local version of Levy’s characterization theorem we then have
Ml = Wi with W' the i-th component of a Brownian motion in R¢.

Remark 47. In particular we see from the preceding remark that the finite
energy additive functional M ¥ is just the i-th component of Brownian
motion.

In general, finite energy additive functionals of a quasi-regular Dirichlet form
can be represented by stochastic integrals, see [367].
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5.2 Stochastic differential equations satisfied by diffusions
associated with classical Dirichlet forms

Proposition 17. Let ju be a probability measure on S'(R?), as in
Chapter 5.5.1, s.t.

w() = (k,-) € L(n).
S S’

Then uy, € D(L,) C D(E,) (where &, is the classical Dirichlet form
gwen by p). Moreover Lyu, = B,k (p-a.s.)

Proof. We have, for any v € FCp° :

Eulug,v) = ((—Ly)ug,v) = /(lva?){du,

where we used the relation between £, and L, the definition of 3, 1, and
the integration by parts formula. a

Theorem 15. Let X = (X,);>0 be the diffusion process associated with the
classical Dirichlet form given by p as in Proposition 17. Then X satisfies
“componentwise”, in the weak probabilistic sense, the stochastic differential
equation:

t
(k, X¢) = (k, Xo) + /Bmk(Xs)ds +wh,t>0,P*-a.s., g.e z € E.
0

Hereby (wy, Fy, P*)i>0 is a 1-dimensional Brownian motion starting at 0 (for
|k|l# suitably normalized).
Proof. By the above Fukushima decomposition formula we have

t

(M) = 2/<vuk(Xs>7vu,c(Xs>>ds = 2t[|kll3,
i H
0

(because of V,, = (k,.)).
Hence by Levy’s characterization of Brownian motion:

(M[“’“])t = w.

Moreover:

because Ly up(Xs) = (Dy + By - Va)uk = Bk,
where in the latter step we have used that uy(.) = (k,.) is linear. O
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Let us now vary k along an orthonormal basis K in E/ C H. Then wf, wf/

are independent for k # k'.
Assume that there exists a probability measure u; on E s.t., for all k € H :

. 1
i) = exp (511413

(in which case there exists a Brownian motion on E with unit covariance
given by the scalar product in H: see, e.g., [334], [428], [118]).
Then we have the following

Theorem 16. Under above assumption about the existence of u; there
exist maps W, N : 2 — C([0,00], E) s.t. t = Wy(w),t = Ny(w) are
Fi-B-measurable, for all non negative t.

Wy is such that for gq.e. z € E, under P?, it is an F;- Brownian motion
starting at 0, with covariance given by the scalar product in H.
Moreover,

<k’ Nt = uk] 7/B/Lk
One has:
Xt =24+ Wi+ N¢yt >0, P?-a.s.,q.e. z€ E.

Remark 48. X also solves the martingale problem for D C D(L,) C L*(E,,)
in the sense that X is a p-symmetric, right process s.t.

t
(X)) — u(Xo) /Luu Yds,t >0
0

is Fy-measurable under P?, for some quasi-continuous, right continuous
modification u, independent of N, and independent of the p-version of the
class L,u € L?(p).

Remark 49. A particular case of the above results concerns
E = Cy)([0,1;R)
(Wiener space),

M =H"*([0,t;R)

(Cameron-Martin-space),
1 is the standard Wiener measure on E.
In this case

gu(u, v) = /(Vu,Vv)du,
H
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Eu(u,v) = /(V’u,ﬁv?{du,

with V Malliavin’s closed gradient (the verification of the latter is left as an
exercise; see also, e.g. [396],[365], [329],[57], and references therein).
In this case we have:

6u,k(-) = (k,.)

(since f Sedp = — [uBy kdu,u € FC°, as seen from the following compu-

tation
/ (. + sk)|smodp = / (.)Wdu(.)

— /U(.)e—Uw)e—%Hk\lidu(_))

Incidentally: the computation in parenthesis of the Cameron-Martin density
under translations of Wiener measure is the basis of a corresponding compu-
tation for the quasi-invariance of a natural measure on loop-groups, see [57],
[373], [68] and is used in an essential way in the representation of related
infinite dimensional Lie groups (cf. [68]).

Remark 50. A similar computation can be done for other Gaussian measures,
of the form p = N(0; A1), A > cl,c > 0, A a Hilbert Schmidt operator in
the Hilbert space H.
In this case we have

ﬁ“)k = <Ak7 '>a

see [119], [269]. See also [165], [134], [318] for other results on infinite dimen-
sional Ornstein-Uhlenbeck processes.

5.3 The general problem of stochastic dynamics

Given a (probability) measure on some space one can ask the (“inverse prob-
lem”) question whether there exists a Markov process X with corresponding
transition semigroups P, p-symmetric (in the sense that P = P, in L?(u)),
having p as Pi-invariant measure, in the sense that

/Ttudu = /ud,u
for all u € L?(u).

One then says that X is the “stochastic dynamics” (or “Glauber dynamics”)
associated with pu.

Remark 51. 1) If u is a probability measure then we have:
w is Pp-invariant iff P,1 =1
(with 1 the function identically 1 in L?(u))
(we leave the proof as an exercise).
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2) There is a notion of measure p infinitesimal invariant with respect to
(T¢)t>0 , e.g. this has been discussed in connection with hydrodynamics
(cf. [35]):

1 is namely called infinitesimal invariant under a Cy-semigroup Ty =
ettt > 0if [Ludu = 0,Yu € Dy C D(L), Dy dense in L?(p).

In general p infinitesimal invariant is strictly weaker than p T}~ invari-
ant , unless T} is p-symmetric and 1 € D(L), L1 = 0 (because then from
J Ludp = 0 one deduces [ L™udp = 0, for all n, hence [ Tiudp = 0)
For recent work on invariant and infinitesimally invariant measures see,

e.g., [21], [37], [38], [95], [128], [166], [167], [168], [201].

The converse problem to the above “inverse problem” is the following
“direct problem”: given a Markov process X find a probability measure y s.t.
1 18 an invariant measure for X.

In this case one says that p is the invariant measure to the stochastic dy-
namics described by X.
Connected with this direct problem are the following ones:

1) Existence of the classical Dirichlet form &, associated with p (closability

o
problem for the pre-Dirichlet form £, in L?(x)). If this is solved then one
can construct a diffusion Y having u as invariant measure (Y in general
can be different from X).
2) Does the logarithmic derivative 8, = (B,.x)kex of p exist e.g. as an
element in L2(u)?
3) Does X satisfy a stochastic differential equation?

Further associated questions are, e.g.:

4) What is the asymptotic behavior for ¢ — oo of Xy, and of the semigroup
T, = etlw t > 0, associated with £, ?

5) Is a solution of the martingale problem for L, on a closed domain D
strictly contained in D(L,,) already uniquely determined by the knowledge
of L, on D? This is the “Markov uniqueness problem”, cf. [147], [223], [88],
[119] and, for the related “strong uniqueness problem”, i.e. the essential-
self-adjointness resp. maximal dissipativity of (L,, D) see these references
and, e.g., [85], [86], [359].

Other problems are, e.g.:

6) When does T; have the Feller property and thus permit a more direct
construction of an associated “nice process”? (see, e.g., [82], [214], [262],
[444])

7) Is the invariant measure p to X unique?

Problems of this type are often encountered, e.g., in the study of processes
associated with “Gibbs measures”, e.g., in quantum field theory, statistical
mechanics (on lattices and in the continuum, in problems connected with the
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geometry and analysis of configuration spaces), quantum statistical mechan-
ics (and connected problems of geometry and analysis on loop spaces), in
the study of self-intersection functionals of diffusion processes and polymer
models, in models of population dynamics, see below, chapter 6, for further
discussion and for the construction of stochastic dynamics in some examples.
First we shall briefly discuss in general the large time asymptotics of processes
associated with Dirichlet forms.

5.4 Large time asymptotics of processes associated with Dirichlet
forms

Let E be a topological Hausdorff space, m a o-finite measure on F, as in
chapter 3-4 on Dirichlet forms.

Definition 35. A general Dirichlet form € in L?(m) is said to be _irreducible
if u € D(E) and E[u] = 0 imply that m is constant m-a.e.

Definition 36. Let (T3),t > 0 be a submarkovian Cy-contraction semigroup
in L2(m). Ty is called irreducible if Ty(uf) = uTyf,Vt > 0,Yf € L°(m)
implies u = const m-a.e.

Definition 37. Let (T})i>0 be a (submarkovian) Cy-contraction semigroup
in L?(m). (Ty)i>o is said to be L*(m)-ergodic if Tyu — [udm as t — oo in
L3(m),Yu € L*(m).

In [90] (see also [91], [64]) the following Theorem is proven:

Theorem 17. For symmetric Dirichlet forms £ and associated symmetric
submarkovian Cy-contraction semigroups Ty = e'*',t > 0, in L*(m), the fol-
lowing are equivalent:

a) & is irreducible

b) (T})i>0 is irreducible

¢) Tyu = uvt > 0,u € L*(m) implies u = const m-a.e.
d) (T;)i>0 is L?(m)-ergodic

e) w€ D(L) and Lu = 0 imply u = const m-a.e.

Proof. b) — a) is immediate, using the contraction property of £. The rest
is left as an exercise (cf. [90]). O

It is also interesting to connect asymptotic properties of semigroups with
corresponding properties of associated processes.

Definition 38. Let X be a right process on a topological Hausdorff space,
properly associated with a quasi-reqular Dirichlet form £. Let for any p €
P(E) (the linear space of probability measures on E):
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Pt = /P'z,u(dz)7

E
where P? is the probability measure on the paths of X corresponding to a
starting point z € E.
(X, P*) is said to be time-ergodic if for any G : 2 = R, s.t. G is Oy invariant
Yt > 0 one has G = const, P*-a.s. (that G is O-invariant means that
G(Bw) = Gw)Vt > 0,0, being the natural shift in path space given by
Orw(s) = w(t+s),¥0 < s,t < ((w)).

One has then the following

Theorem 18. (“Fukushima’s ergodic theorem”)

The classical Dirichlet form £, on a topological Hausdorff space (X, ) (with
w o-finite) is irreducible in L*(u) iff (X, P*) is time-ergodic.

Moreover, the transition semigroup Py to X (so that X is properly associated
to Py, t >0) is such that Pou — [udp as t — +00,E,-q.e., Yu € By(E).

Proof. The proof is given in [87] (for previous work see, e.g., [57], [390], [244]).
O

Corollary 3. Let &, be as in above theorem. Then &, is irreducible if p
is the only Pi-invariant probability measure on B(E) which does not charge
E,-exceptional subsets of E.

Proof. See [244]. O

For measures p which are quasi-invariant with respect to suitable sub-
spaces K of E, which we shall call “space quasi-invariant”, one has an inter-
esting relation between above time ergodicity of F and “space ergodicity”,
i.e. ergodicity with respect to K. This is the context of next section.

5.5 Relations of large time asymptotics with space
quasi-invariance and ergodicity of measures

Let E be a Hausdorff topological space, which is a locally convex topological
vector space with the topology of a Souslin-space. (cf. [462] for this concept,
E can be, e.g., a Banach space, or a space like S’(R%)).

Assume there is a Hilbert space H s.t. E/ C H C E where the embeddings
are dense and continuous.

Definition 39. A probability measure p on E is said to be K -quasi invariant
if u(.) < p(. +tk),Vk € K,Vt € R (where < means absolutely continuous).

Remark 52. An example of a quasi invariant measure is given by F =
Co, ([0,1]; RY), i the Wiener measure on E, with K = H2([0,t];R?) the
Cameron-Martin space, cf. Chapter 5.5.2.

As clearly mentioned in Chapter 5.5.2, the non commutative analogon of
this setting, with R¢ replaced by a compact Lie group, is the basis for the
representation theory of loop groups and algebras, see, e.g., [57], [68].
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Definition 40. A probability measure p on E is said to be K-ergodic if i is
K -quasi invariant and for any u € L*(p) one has that u(z + tk) = u(z) p-
a.e. (Vz € E,teR) implies u= const, u- a.e.

Given a probability measure p on F, one might ask whether there is a
relation between the irreducibility of the corresponding classical Dirichlet
form &, and the K-ergodicity of x. This has already been discussed in [57].
The surprise is that a close relation of this type involves another Dirichlet
form €M% (with larger domain than &,), rather than &,.

In order to define £ let us first define its domain:

D(EP8X) = {u € () D(Eur), D> Ennlul < oo}
k

keK

One sees then easily that
D(EM) 5 D(Ey).

In general however one can have D(E) # D(E,,) (see e.g. [246] for finite
dimensional examples, with E replaced by a bounded subset of RY).

Remark 53. D(Eﬁnax) is an infinite dimensional weighted space analogue of
the Sobolev space H'?(u) whereas D(&,) is an infinite dimensional weighted
space analogue of Hy?(1).

One defines £"* to be equal to £, on D(E,,). One can then show that £
so defined has a unique closed extension to a Dirichlet form with domain
exactly equal to D(E[®¥) as defined above, see [99], [101], [223].

Remark 54. It is an important open problem to establish whether is
quasi-regular in general, hence whether to it there can be properly associated
a right process.

The advantage of £M%* over &£, is that irreducibility for it implies K-
ergodicily of p i.e. the following theorem holds

max
&

Theorem 19. If £ is irreducible then p is K-ergodic.

Proof. Let u : E — R be B(E)-measurable and in L?(u1). Suppose u is k-
invariant, k € K. Then one can show that Z-u = 0, see [119], hence u €
D(E,.1).

By the definition of D(EM'®X) this implies u € D(EMX) and €1 [u] = 0.
By the irreducibility of £*®* this implies u = const, p-a.e., which by the
definition of K-ergodicity of p yields that p is K-ergodic. O

Remark 55. One has £ irreducible = &, irreducible (but the converse is

not true in general, see, e.g. [119]).
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Remark 56. The question whether ElanaX = &, for a given setting (E, u, 1, K)
is called the “Markov uniqueness question”. One can namely show in general:

ENAX = £, & the only Dirichlet form extending (£, D(E,.)) is £,
& if 5 isa Dlrlchlet form and £ = £, on FCp° then £ =&,
< Let (T})1>0 be the submarkov semigroup with generator coinciding on
FCp° with the classical Dirichlet operator L, given by u (i.e. L,

is the operator associated to £, in the sense of the representation theorem)

Then T, = etln.

In general it is known that Markov uniqueness is weaker than “strong
uniqueness” or “L?-uniqueness”, which is the property that L, is essentially
self-adjoint on FC§° on L2 ().

The Markov and strong uniqueness problems are thoroughly discussed in
[223]. We mention here some further basic work by [85], [86], [89], [499],
[471], [185], [37], [38], [440], [441] (connected with applications in various do-
mains).

To give an idea of these connections let us mention shortly what happens in
the finite dimensional case E = R? : for pu(dz) = p(z)dz, \/p € H1102c one has
Markov uniqueness in general (see [359]).

For U a bounded region and p = 1, 5}1Lnax is the Dirichlet form describing re-
flected Brownian motion, &, describes absorbing Brownian motion and there
are infinitely many other forms between &, "X describing Brownian mo-
tion with other types of boundary behaviour.
It is also known that there are other closed symmetric positive bilinear forms
with associated generators of symmetric Co-contraction semigroups in L?(p)
with generators coinciding with L, (here A) on C§°(U) but which are not
submarkovian, e.g. the Krein extension of A [ C§°(U), see [244].

A “concrete” (probabilistic and analytic) classification of all extensions in
the infinite dimensional case is a very interesting open problem.

Remark 57. There exists a partial converse to the previous theorem.

Theorem 20. If u is K-quasi invariant and a “strictly positive” measure
on E (in the sense that its Radon-Nikodym derivatives in the directions of K
are strictly positive) and moreover u is K-ergodic, then 5;nax is irreducible

Proof. See [87]. O

We shall now see that for special p called “Gibbs measures”, one has a
close relation between irreducibility and K-ergodicity.
Let
G" = { € P(E)|u satisfies (1P)"},

where (IP)" is the following “integration by parts formula with resp. to u
and the direction b”:

ou
(%dﬂ = —/ubkdu
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Yu € FCp°,Vk € K.
Any element y of G° is called a “b-Gibbs state” ” and b = (by.), € K is the
logarithmic derivative of p.

Remark 58. We shall see below how to relate this definition of b-Gibbs state
with other definitions of Gibbs states.

Remark 59. Let us look at a probability measure on E = R" of the form
du(z) = Z e 5@ dz,

where dz is Lebesgue measure on F, S is a lower bounded measurable function
on R", Z a normalization constant s.t. u is a probability measure on R"”.
The (IP)b-formula holds with K = R” and b, = —diS(z), di being the
derivative in the direction k, i.e. by, is the logarithmic derivative of the measure
I

In this sense it is often inspiring to think of u also in the case of an infinite
dimensional E as a measure of the above form (of course there is no good
analogue of Lebesgue measure on infinite dimensional spaces, so this way
of thinking has to be understood “cum grano salis”, e.g. as limit of finite
dimensional measures, see, e.g., [16]).

Remark 60. a) GY is a convex set, in the sense that any p € G® can be written
as an integral with respect to v € (G%)ex, with (G®)ex the set of extreme
elements in G°, see [90].

We have the following

Theorem 21. Let u be in G,
Consider the following statements:
i) € Gy
i) E irreducible
iii) &, irreducible
w) (X, P*)-time ergodic (with X a right process properly associated with &,,)
Then: ©) > i) — iii) > iv)
If £ = &, (i.e. one has Markov uniqueness) then i),ii),iii),iv) are all
equivalent.

Proof. ii) — iii) is clear
1i1) <> iv was discussed above. For the rest of the proof see [90], [91]. O

Remark 61. £, acts as a rate function for the large deviation of occupation
densities of X from the ergodic behaviour, as shown in [390].
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6 Applications

The applications of the theory of Dirichlet forms are so numerous and belong
to so many different areas that it would be impossible to give here even a
sketchy but balanced overview.

We shall restrict ourselves to some examples, mainly taken from physics,
which illustrate some of the basic advantages of the approach and where
the analysis has been pushed forward most intensively in recent years, in
particular concerning the stochastic processes involved, which are difficult
to obtain (if at all) by other methods, and where in any case the theory of
Dirichlet forms has played a pioneering role.

In most of the cases we shall consider the processes which have invariant
measures of the form of “Gibbs measures”, i.e. measures heuristically given
by the formula

du(z) =2 e %®dz, zeE (1)

(F being the state space, cf. Remark 59 in Chapter 5). For somewhat comple-
mentary references where problems connected with the ones discussed here
see also, e.g., [2], [3], [9], [116].

6.1 The stochastic quantization equation and the quantum fields

Let us consider a classical relativistic scalar field (as a simpler analogue of
the classical electromagnetic vector field) over the d-dimensional Minkowski
space-time (d = s + 1,s = space dimension, the physical case being for
s = 3). ¢ is the (real-valued) solution of the non-linear Klein-Gordon (or
massive wave) equation:

Op +m’p +1'(p) =0 (2)

(with O = % — A~ the d’Alembert wave operator, m (>) 0 being the
mass parameter, v a real valued differentionable function on R called “(self-
)interaction”, ¢ > 0 is the time variable, 7 € R® is the space variable).
Inspired by Feynman’s heuristic “path integrals” quantization procedures (we
refer to [60], [23], [24], [25], [26], [73], [16], [53], [278], [279], [280], [49] for work
implementing this in related situations), Symanzik formulated a program of
constructing a quantization of the solution of (2), in terms of a measure of
the heuristic form (1) with S(z) an “action functional” of the form

S(z) = So(z) + /v(z(x))dx,
Rd

with
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So(z) = %/(fz(x))Az(sc)d:v +m? / |2(z)|2dz,

R4 R4
with z = z(z), 2z = (t, ) € RxR® = R?. In this case then E should be a space
of maps from R? into R. The reason for this is that the moment functions
[ z(z1)..2(xn)p(dz) of p heuristically defined by (1) with such an S give,

after analytic continuation z = (¢, ) — (it, 2 ), the “correlation functions in
the vacuum”

of the relativistic quantum field ¢q (¢, E?) corresponding to the classical Klein-

Gordon field ¢(t, 7).
From the perspective of Chapter 5.3, the construction of u is related to the
construction of a process (X;),>0 on E s.t.

dX, = B,(X;)dr + dw,

with w, a Brownian motion on F with covariance given by a suitable Hilbert
space H, with 8,(z) = —V#S(z). For H = L?(R?) we get heuristically

~VS(2(x)) = —(= g +m?)z(z) — v'(2(2)),
so X, satisfies heuristically
dX,(z) = (A — m*) X, (2)dT — ' (X, (x))dT + (T, 2)dr (3)

with n(7, x) a Gaussian white noise in all variables 7 € R,z € RY, s.t. heuris-

tically,
d

dr
with (w,(+)) a (cylindrical) Brownian motion on &'(R%) with covariance given
by the scalar product in L?(R?).

wr(x) = n(7, )

(3) is called the “stochastic quantization equation”. It has been discussed
by Parisi-Wu as a computational, Monte-Carlo type method for the construc-
tion of p (7 being a “computer time”). This equation has since received a lot
of attention, both in physics and mathematics, after the pioneering work of
Jona-Lasinio and coworkers [302].

As for the definition of the measure p = u”, heuristically given by (1) with S
as above, one starts from the case v = 0. In this case, as realized by E. Nelson
[393] (see also, e.g. [10], [15], [428],[429] for other connections) p® = pv=0 is
realized rigorously as the normal distribution with mean zero and covariance
(= + m?)~t (which, by Minlos theorem, is a well defined measure, e.g.,
in &'(RY), with support e.g. in H~12(R9)) (this is called Nelson’s free field
measure).

For d = 1, 1" has been constructed for large classes of v as weak limit as
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1 v _ —fGE@)de
1 R of measures of the form u%(dz) = Z'e 2 1’ (dz) (see [293],
[450], [197]).
A direct analogous procedure for d = 2 fails, since p is ill defined, since for
z € suppu®, [ v(z(z))dz is infinite p%-a.s. (this is due to the singularity of
Rd

the covariance of u® on the diagonal (x = y) of the type |z — y|~(?~2) for
d > 3 and —27ln|z — y| for d = 2), with :: being the Wick ordering.

But, for d = 2, replacement of v by : v : (so that e.g. for v(y) = y", (k,: v :
(2)), k € S(R?) is an element in the n-th chaos subspace in L? (1)) yields (by

a fundamental estimate of Nelson, see, e.g. [466]) a well-defined probability
— [w:(z(z))dx
measure pY (heuristically given by Z~le 4 1°(dz)), and one shows

then that uY converges weakly, under some assumptions on v, for A T R?,
to a well defined probability measure % on S'(R?) (see [466], [265], [39]). p”
is then by definition the “v(p)2-model” of (Euclidean) quantum field theory
(for v a polynomial P one has the “P(y)s-model”).

Remark 62. The problem whether the coordinate process X with distribution
w1 is a global Markov field was open for a long time and was solved in works by
Albeverio, Gielerak, Hpegh-Krohn, Zegarlinski, see, e.g., [132] and references
therein.

Looked upon as an S’(R?¢~!)-valued symmetric Markov process t —
X:(f), f € S(R¥=1),t > 0, it has a generator which coincides on a dense set,
e.g. FC°, with the S'(R?~1)-valued diffusion process X;(f),t > 0 associated
with the classical Dirichlet form given by ug, where ug is the restriction of p”
to the o-algebra o(Xo(f), f € S(R41). Wether X,(f) and X,(f) have gener-
ators coinciding on their full domain is an open question for v # 0 (“Markov
uniqueness” for the process associated with ) (for v = 0, X;(f) = X,(f) =
Nelson’s free field at time ¢ and with test function f. Its generator is the
Hamiltonian of the relativistic free field). The corresponding problem for the
diffusion generated by the analogue [LE)O)7 Ay of ,uE’O) in a bounded region Ag

of R has been solved in [359)].

Let us now come back to the stochastic quantization equation (SQE):

it has been verified in [119], [255], [421] that p is (for d = 2 and a large class
of v’s) such that the classical Dirichlet form p¥ given by it exists and that
the properly associated diffusion X = (X;),;>o indeed solves the SQE (3),
componentwise (in fact 3, 5 € L?*(u)) and on E itself.

Recent work on pathwise solutions of the SQE is in [52] and [199], see also
[384] for a discussion of the impossibility to use a Girsanov transformation
to produce solutions, even on a bounded domain A in R2.

Remark 63. a) The problem of the necessity of the renormalization v —: v :
in order to avoid “triviality” is discussed in [42], [52], [51], [47].
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b) For a discussion of the Markov resp. strong uniqueness problem for p% see
[359], [499] (the case where A = R?, i.e for uV is still open , see [121] for
a partial result and [37], [38] for a related problem in hydrodynamics).

¢) Despite the unproven Markov uniqueness, the space of Gibbs states for
©® (in the sense discussed, e.g., in [72]) can be identified with G°, and b
given on F'Cp° by the expression (3, i.e.

bi(2) = (A —mHk,2) — (k2 0'(2) 1)
S S’ S NG

(with (, ), the dualization between S(R?) and &'(R?)). It is important
s s

to realize that b is independent of the Gibbs state, it only depends on p°
and v in the support of k.

Using the ergodic theory briefly exposed in Chapter 5.4, it has been shown
in [90], [91] that for u € G8 one has that £, is irreducible and the solution
X of the SQE (3) is time-ergodic. This is a result which has been hard to
obtain, and holds, e.g., for v(y) an even degree polynomial, with leading
term of the form A\?y™, A > 0 sufficiently small (y € R).

d) More work has been done on a stochastic quantization equation with reg-
ularization € > 0, denoted by (SQE)_, obtained from (3) by replacing on
the r.h.s. X, by A'* X, w, by A=5w, and : v: (X, )byA™® : v : (X,),
with A = —A 4+ m?. u¥ is heuristically still invariant for (SQE)_, for any
e > 0, this has been shown rigorously in [302], [169], [120], [199] (see
also [384] and references therein). Markov uniqueness for ', A C R¢ has
been also shown in [121], [123]; LP-uniqueness of u4, A € R? in the sense
of [223] (the case p = 2 being strong uniqueness) has been shown in [359],
[200], see also [223]. The problem of corresponding uniqueness results for
R? instead of A is still open.

e) Log-Sobolev inequalities for u<, (e > 0) would yield exponential ergodic-
ity of X, but this is still an open problem (even for d = 1) (the analogous
problem in lattice statistical mechanics is solved in [89], see Section 2
below).

Remark 64. For d = 3 only a construction of the analogue of pu” works for
v # 0 in the special case v(y) = y*. It is not known whether one can associate
a Markov process to any of the u’, u%, ug, uf 4,, 4 C R? Ay C R?, for a
negative result see [133].

For further discussions of these topics and related ones see also [11], [12], [13],
[15], [54], [55], [56], [196], [198], [201], [219], [221], [228], [260], [241], [272],
[201], [303], [310], [318], [328], [496], [497], [498], [499], [500], [360], [394], [395],
[430], [431], [432], [433], [435], [437], [438], [439], [440], [441], [442], [478], [479],
494].
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6.2 Diffusions on configuration spaces and classical statistical
mechanics

We shall present here shortly a probabilistic construction of diffusion pro-
cesses on configuration spaces, see [92], [93], [94] for details (and, e.g., [325],
[202], [436], [369], [401], [434] for continuation of the latter work; for previ-
ous related work on stochastic analysis related to Poisson processes see, e.g.,
[179], [305], [420]).

Let M be a connected oriented C'*° Riemanian manifold such that Vol(M) =
+oo (where Vol is the volume measure). Let

I' = configuration space (of locally finite configurations) over M
={y C M||yN K| < oo for each compact K C M}.

v € I' can be identified with the Z-valued Radon measure »_ e,, we shall
xey
not distinguish in the following v and the corresponding Radon measure

> Ese
S
Any f € C§°(M) can be lifted to the map from I to R given by

)= fw) = [ far

rey

One can “lift the geometry from M to I, e.g., given
v € Vo(M) = {smooth vector fields on M}, one gets a flow ¢{ on M, and
this flow is lifted to the flow ¢} on I", defined by

¢i(v) ={¢{(z)|lz €}
Let T, M be the tangent space to M at x € M and let TM be the tangent
bundle (T, M),ecnr- Let VM the derivation on M given by

VY f(z) = (VM f(2),v(z)) 1,0,

VM being the gradient operator associated with M.
One can also lift the operations VM, VM VM ¥M from quantities associated

with M to quantities associated with I" by defining first the space FCp° of
smooth bounded cylinder functions on I" by

FCOF ={u: ' = Rlu() = g((f1,7), -, (fn,M)Fn €N, fi € C° (M), g € C;° (R™)}
and setting for u as in the definition of FOp®, VM (v)= [ > 0:9(z)VM fi(x)y(dx)

Moreover: } R
V{;U(’}/) = <VMU('Y7 l‘), ’U(x)>L2(M~>TMw)~

In this way we let also correspond to the tangent bundle T'M the tangent
bundle TT" = (T, I")yer with metric given by the inner product in L*(M —
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TM;~). This gives then a lift of VM as acting on smooth functions on M to
VT as acting on smooth cylinder functions on I

Similarly one can define a lift div I of divM to an operation on vector fields
on I'. Defining then A" = divi'v! on FCpe, we have a lift of the Laplace-
Beltrami operator AM on functions on M to a Laplace-Beltrami operator on
functions over I'.

A natural question here is for which measures p on I" does one have divl' =
(—=V1)*, the adjoint being taken in L?(u). The following theorem was proven
in [94].

Theorem 22. For u a probability measure u on I' with finite first absolute
moments, t.e., s.t.

/ (2 Mda() < oo vf e (M)

the following are equivalent:
i) div" = (-V1),
it) p is a mized Poisson measure, i.e. there exists a o-finite measure \
o0
on Ry sit. = [7.50)A(2), where o = Vol(-), and 7, is the Poisson
0

measure on I with intensity measure o so that

4 (e —1)do(-)
fold) = [ 0y () = el . vfecrE)
r

Remark 65. 1t follows for p as in the above theorem:

1) p is the volume measure on I" (in the natural sense of being a “flat mea-
sure” on I')

2) p is quasi-invariant with respect to v — ¢(v), ¢ € Diffo(M) (the diffeo-
morphisms which are identically the unit outside some compact subset of

A stochastic dynamics can be associated with the classical (quasi regular
local) Dirichlet form &,, in the form of a diffusion process, satisfying a differ-
ential equation of the form given in Theorem 14, in Chapter 5, with a drift
coefficient in L2(yu). This process is generated by A", moreover, ergodicity
and strong uniqueness hold, see [87].

There is an extension of this work to the case where p is replaced by a “Gibbs
measure” (see, e.g., [263]), called again p, describing a system of particles, in
the sense of classical statistical mechanics, for a general class of interactions
including “physically realistic” ones, see [93], [333], [325], [403], [505], [48].
Correspondingly in this case one has div' = (=V!)* but with * taken with
respect to the “non flat” measure p, i.e. (VI)* = VI — g, with 8, a drift
term (the logarithmic derivative of p).
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Also the case where R? is replaced by a (non compact) manifold M has been
handled and a corresponding Hodge type L?-cohomology theory has been de-
veloped, see [29], [30], [34], [32], [33]. For relations with representation theory
of infinite dimensional groups see, e.g., [292], [349)].

6.3 Other applications

In this section we briefly mention some other applications of the method of
classical Dirichlet forms and associated diffusions for defining and studying
stochastic processes.

Classical spin systems In this case one studies random variables associated
with points on a lattice Z? (or other discrete structures), with values in R
(or, e.g., a compact Lie group M), with distributions of the “Gibbs type”,
i.e. of the form

p(dz) = “Z e 5@ dy

with z = (2)pezd, 2x € R (or M).

S(z) describes the interaction between the spins in the “spin configura-
tion” z. Also in this case the diffusion properly associated with the classical
Dirichlet form &, satisfies a stochastic differential (SDE) equation with drift
in L?(u), and it is ergodic, if p is an extreme state. As opposite to the cases
discussed before, in Sect. 6.1, 6.2, log-Sobolev inequalities for classical spin
systems have been proven, so that exponential ergodicity holds.

The solution process to the corresponding SDE has a drift in L?(u). A dy-
namical theory of phase transitions can be developed. See [98], [82], [83], [84],
[89], [189], [213], [271], [356], [446], [447] for references and also for current

work.

Natural measures and diffusion processes associated with individ-
ual and lattice loop spaces Let (M, g) be a (compact) Riemannian mani-
fold. Let E = LM = C(S', M) be the corresponding free loop space, and let
L,M ={y € LM|y(0) =z € M} be the corresponding z-based loop space.
Let p resp. p, be the pinned Wiener measure on LM resp. L, M, associated
with a Brownian loop in M, with initial distribution the Hgegh-Krohn-Bismut
measure Vol(-)P;(z, x) resp. the Dirac measure in z € M. On L*(v) (v =
resp. p;) we consider the classical Dirichlet form given by v:

& = 5?,,, with é?l,(uw) = /(vu, v ) dv,
H

u,v € FCp°,(FCs° being defined as an analogon of the smooth bounded
cylinder functions on M) and H the Cameron-Martin space associated with
E, consisting of loops with finite kinetic energy. This diffusion on E has been
constructed and discussed in [103] (full loops) and [218] (based loops).
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For a long time the problem of log-Sobolev inequalities has been open, see,
e.g. [270], it was discussed recently in the negative by Eberle [222], [224] (for
positive results for the case where a “potential” is added see [267], [268], [270]
and references therein).

For the problem of uniqueness see [4], [8], [5], [6], [7], [412].

For other problems related to loop spaces and strings see [350], [352], [351],
353], [473)].

For applications to quantum statistical mechanics see [78], [79], [80], [81],
97], [321], [322], [326], [357].

6.4 Other problems, applications and topics connected with
Dirichlet forms

We mention here some topics that - although of great interest - have unfor-
tunately not been covered in these lectures. They illustrate other aspects of
the usefulness and power of the method of Dirichlet forms.

Polymers The construction and study of diffusions with polymer measures
as invariant measures has been made possible using methods of Dirichlet
forms in [124], resp. [125] (for the case of polymer measures of the Edwards-
Westwater-type in 2 resp. 3 dimensions). An open problem here is the ergod-
icity of the process constructed in the 3-dimensional case. One notes that in
two dimensions the drift is in L?(x) but this is not so in three dimensions.
The stochastic differential equation satisfied by the diffusion is studied by
other methods in [27].

Non-symmetric Dirichlet forms and generalized Dirichlet forms Al-
though the theory of non symmetric resp. generalized Dirichlet forms could
only be mentioned shortly in this course, it has lead to important new devel-
opments in the theory of singular (finite and infinite dimensional) processes.
The main attention has been given to the local forms associated with diffu-
sion processes, see, e.g. [110], [112], [314], [346], [348], [347], [383], [367].
Whereas non symmetric Dirichlet forms have first order terms essentially
dominated by the symmetric part, generalized Dirichlet forms allow the in-
clusion of general first order terms in the generators [474], [475], [476], [477].
The latter lead to non proper associated processes which have found striking
applications in the study of stochastic PDE’s (see [?] for the Gaussian noise
and [355] for Lévy noise. See also [492] for further developments). It should
also be mentioned that the theory of generalized Dirichlet forms include also
time dependent Dirichlet forms, cf. 6.4, below.

Complex-valued Dirichlet forms A theory of such Dirichlet forms has
been developed in [117], [131], with applications to quantum theory. It has
also lead to a new approach to some aspects of non symmetric Dirichlet
forms [386]. See also [317] for further developments in connections with “open
system”.
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Invariant measures for singular processes A theory of such invariant
measures has been developed especially in the case of diffusions, e.g. [21],[330].
For jump processes see [130],[128], [129].

Subordination of diffusions given by Dirichlet forms A theory of
subordination of diffusions given by Dirichlet forms has been developed in
[127] (see also [129], based on Lévy processes on Banach spaces [126]). For
previous work on subordination and Dirichlet forms see [294], [295], [296],
[170], [171], [230], [231], [232], [299], [229], [298], [284], [285], [287], [288],
[289], [382], [400]; for relations with relativistic Schrodinger operators see
[181], [464]. For other relation to jump processes see [311], [376], [397].

Time dependent Dirichlet forms A theory of time-dependent Dirichlet
forms leads in particular to processes which satisfy S(P)DE’s with time de-
pendent coefficients see [406], [404], [405], [474], [475]. The case of Nelson’s
diffusions is covered in [474], [475], [173]. For related work see also [300].

Differential operators and processes with boundary conditions Ex-
amples of processes described by Dirichlet forms in finite dimensions, includ-
ing complicated boundary behavior, are given in [258], see also, e.g., [159],
[177], [204] (and [188a] for systems of elliptic equations). In infinite dimen-
sions not so many examples have been developed until now, see however
[507].

Convergence of Dirichlet forms The problem of when a sequence of
Dirichlet forms converges in such a way that the limit is again a Dirichlet
form has been discussed originally, in the symmetric case, in [70], [64], [102],
[143], [343], [417], [409], [443], [442], [486], [493], [398], [397]. The study of
such questions in the non symmetric case has been initiated in [377], [378],
379], [380].

Dirichlet forms and geometry In the sections 6.2 and 6.3 in Chapter
6 we already mentioned some work involving Dirichlet forms and geometry
(loop spaces, configuration spaces). For work in other directions, in particular
in connection with differential geometry in finite dimensions resp. on special
infinite dimensional manifolds see [225], [139], [154], [156], [187], [180], [29],
[144], [146], [247], [250], [251], [254], [161], [148], [281], [282], [286], [319], [226],
[283], [186], [261], [374].

Further problems involving classical Dirichlet forms For relations
with hyperbolic problems see [320] and for scattering problems [324], [323],
[175], [182], [184], [327]. For control problems see Nagai [392], [391]. For prob-
lems of filter theory see [385]. For Dirichlet forms associated with Lévy Lapla-
cian see [1], [17]. For problems of homogenization theory see [18], [257]. For an
inverse problem in stochastic differential equations see [19]. For a small time



Theory of Dirichlet forms and applications 73

asymptotics for Dirichlet forms see [422]. For a Girsanov transformation for
Dirichlet forms on infinite dimensional spaces see [122]. Structural questions
about Dirichlet forms and associated spaces are discussed in [472], [149], [163],
[178], [215], [216], [240], [252], [253], [248], [274], [339], [340], [341]. For local
Dirichlet forms in relation to problems of classical continuum mechanics see
[153], [155], [387], [388], [345], [399]. For questions of infinite dimensional dif-
fusion processes and Dirichlet forms see [354], [361], [362], [365], [366], [370],
[371], [418].

Dirichlet forms and processes on fractals, discrete structures and
metric measure spaces Important work has been done for constructing
and studying processes on fractals in [338], [387], [389], [336], [332], [331],
[141], [249], [275], [304], [315], [414]. For the study of Dirichlet forms and
processes on p-adic spaces with relation to certain trees, see [74],[75]. A theory
of hyperfinite Dirichlet forms (in the sense of non standard analysis) has been
developed in [39],[36]. The construction of local Dirichlet forms and diffusion
processes on metric measure spaces was carried out in [482]. The important
particular case of Alexandrov spaces was studied in great detail in [342]. See
also [445], [454], [487], [488], [489], [490], [491], [504], [508], [509].

Harmonic mappings, non linear Dirichlet forms Dirichlet form tech-
niques turned out to be a powerful tool in the study of generalized harmonic
mappings with values in metric spaces. Jost [307] pointed out how to define
the energy of mappings from the state space of a Dirichlet form into a metric
space. This leads to the concept of nonlinear or generalized Dirichlet forms,
[308], [481]. The stochastic counterparts are nonlinear Markov operators and
martingales in metric spaces [485], [484], [480]. For work on nonlinear Dirich-
let forms see [264], [297], [381], [151].

Non commutative and supersymmetric Dirichlet forms and pro-
cesses The study of non commutative Dirichlet forms has been initiated
in [63] (see also [64], [66]) in the symmetric case. This was extended to the
nonsymmetric case in [206], [358], [273]. Associated processes have also been
studied in [69], [67], [45]. For recent further work, also connected to non com-
mutative geometry, see [365], [195], [190], [191], [192], [194], [306], [363], [273]
(see also [50], [402], [410], [411]). Supersymmetric Dirichlet forms have been
considered in [138], [77].
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Summary. In this introductory course we review some of the basic concepts of
Mathematical Finance. We start with an account on the thesis of L. Bachelier, which
was defended as “Théorie de la Spéculation” in Paris in 1900. We hope that this
historic approach gives a good motivation for a critical appreciation of the modern
theory.

In section 2 we then present the basic framework of the modern no-arbitrage
theory in the simple setting of finite probability spaces f2.

The celebrated Black-Scholes model, based on geometric Brownian motion, is
presented in section 3. It is compared to Bachelier’s model, which is based on (arith-
metic) Brownian motion.

The first three sections are kept on a relatively low level of technical sophisti-
cation. In section 4 we pass to a higher level of technicality and review the general
theory of semi-martingale models of financial markets. We discuss in some detail the
“fundamental theorem of asset pricing”, which establishes the relation between the
no-arbitrage theory on the one hand, and martingale theory on the other.

Finally, in section 5 we briefly discuss some of the applications of the fundamental
theorem.
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1 Introduction: Bachelier’s Thesis from 1900

The fact that this course is given in the year 2000 at the école d’été in Saint
Flour makes it particularly appealing to start this course with a review of
the seminal thesis of Louis Bachelier: “Théorie de la Spéculation” [B 00]. This
historical account will provide a good motivation for the general theory. We
note, however, that readers only interested in a presentation of the theory in
modern terms, can immediately pass to section 2.

Bachelier’s thesis was defended in Paris on March 29, 1900, and H. Poincaré
was a member of the thesis committee. He wrote a very positive and insight-
full report on this thesis (this opinion as well as many other value judgements
below only reflect my personal point of view). One may consult this report in
Courtault et al. [CK 00], where one can also find a copy of the handwritten
manuscript of Poincaré’s report. We also refer to the interview of M. Taqqu
with B. Bru [T 00] for an account on the personal life of Bachelier, who — in
spite of his brilliant and original work, and the fame and support of his thesis
adviser — remained an outsider to the French mathematical establishment
during all of his life.

L. Bachelier was born in 1870 and became an orphan at the age of 19.
In order to make a living, he had to work at the Bourse de Paris where he
was exposed on a daily basis with the erratic movement of prices of financial
securities.

In these days there was massive trade at the Bourse de Paris in the so-
called “rentes”, which were perpetual bonds paying an annual interest rate,
typically 3% (paid in 4 quarterly coupons of 75 centimes per 100 francs par
value). The reason why these instruments had such importance in France
goes back to the French revolution, when many wealthy aristocrats left the
country and lost their property. When they returned after the restauration,
they wanted their property back, but this turned out to be impossible after
25 years. The solution adopted by the government in order to recompensate
them, was to issue “rentes”, and to distribute an appropriate amount of them
among the expropriated noble-men. While the quaterly coupons would provide
them with an adequate income, the capital was never paid. These rentes were
passed on in the families and they were also traded massively at the Bourse de
Paris (for more information see [T 00]). Of course, they were not necessarily
traded at par value but rather at changing prices similarly as in today’s bond
markets.

We spoke in some detail about the “rentes”, because their special proper-
ties are important to understand the choice of Bachelier’s model for the stock
price process.

(i) There was a (very) liquid market, and price fluctuations happened “in
continuous time”, similarly as in the major stock and bond markets of
today.

(ii) The price of a “rente” would typically not deviate too much from its
par value, e.g. 100 francs; hence the absolute price changes (expressed in
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francs) and the relative price changes (expressed in percent) would roughly
be the same.

(iii) The price fluctuations were relatively mild, if compared, e.g., with today’s
price fluctuations of stocks: one may deduce from the data provided by L.
Bachelier that the standard deviation of the price change of a “rente” with
par value of 100 francs over a year was about 2.4 francs (which roughly
corresponds to a yearly volatility of 2.4 percent in the Black-Scholes model
analyzed in section 3 below).

L. Bachelier was interested in designing a rational theory for the prices of
term contracts. The two forms which were traded at the Bourse at that time
also play a basic role today as forward contracts and options.

Definition 1. A forward contract on an underlying security S consists of the
right and the obligation to buy a fized quantity (which we normalize to be one)
of the underlying security, at a fized price K and a fized time T in the future.

The underlying was in Bachelier’s case typically a “rente”, but it may just
as well be any risky security such as a share, a foreign currency, a commodity
etc.

Depending on the value of the “strike price” K, the present day value (i.e.,
at time ¢ = 0) of such a forward contract could be positive or negative. The
price K = F at which a forward is contracted today at price zero is called the
forward price of the underlying S (see, e.g., [H99] or any introductory text
on Mathematical Finance for more explanation).

We shall show now — in a similar way as Bachelier did in 1900 — that
the forward price F' is determinated by some very elementary no-arbitrage
arguments. For the sake of clarity, we provide an example in a slightly different
economic context than the one considered by Bachelier.

Example 1. Let X = (X¢)o<t<7 model the exchange rate of the US$ vs. the
€, i.e., the price of 1 USS§ in terms of €. The present day rate Xy (the “spot
price”) can be looked up in the newspaper, hence this is just a positive number,
say Xo = 1.1. On the other hand, for ¢ > 0, we do not know the exchange rate
X;. Later on we shall model X as a stochastic process, but presently it is not
even necessary to speak about probability at all. X; simply is some quantity
which will be known at time t.
To compare cash-flows at different times we assume that there are “cash-
accounts” B¢ and Btf for € and US$ respectively, which are given by
B =emtt, B =o', 1)
where d stands for “domestic”, i.e. €, while f stands for “foreign”, i.e. US$.
The idea behind the notion of “cash account” is that an investor has the
possibility of investing in a “riskless” way, which means that the value of
her investment in the “cash-account” will develop deterministically in a way
which is known in advance. The reader should think of a bank account (in €
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or US§ resp.) yielding an interest rate of r4 or ry respectively. We in advance
shall also assume that these investments may be either positive or negative
(“long” or “short” in the financial lingo), in other words we may invest or
borrow at the same conditions. Of course, this is an unrealistic assumption
for small investors, but we should think of large investors (banks, investment
funds, broker houses etc.) for which this assumption is a close approximation
to reality.

Claim. Given the time horizon T', there is a unique forward price F' which
does not allow arbitrage opportunites, namely

F = Xgelre— )T, (2)

We have not yet defined the notion of arbitrage — and we shall give a
formal mathematical definition only much later. But the best way to grasp
this — very primitive and economically convincing — concept is to consider
the subsequent argument.

Consider two portfolios which can be established on the market today.

Portfolio A: Invest e="/T US$ into a US$ cash account. This investment
will be worth one US$ at time 7, and we can buy it today at a price of
e 1T Xy €.
Portfolio B: Invest e "¢TF € into a € cash account and buy one forward
contract with maturity 7" and strike-price K = F. A moment’s reflection
reveals that this investment will also be worth one US$ at time T and that
we can buy it today at a price of e "¢ F € (recall that F is defined in such
a way that we can “buy” (i.e., enter into) a forward contract today at cost
Z€ero).

Hence the portfolios A and B are worth the same at time 7' (independent
of how the exchange rate (X;)o<¢<r develops!). We therefore claim that they
also must have the same value today which results in equation (2).

Indeed, suppose for example that F' > Xoe("#=7/)T, In this case an “ar-
bitrageur” would profit of the situation by buying portfolio A and selling
portfolio B, thus obtaining the strictly positive difference e™"TF — ™/ T X,
as a riskless profit: at time T the two positions will cancel out surely.

If the inequality is of the form F' < Xge("¢—"1)T just reverse the roles of
portfolio A and B. Also note that we have given our example in terms of the
rather symbolic quantity of one US$. But of course there is no normalizing
factor in front of the above argument and — if the market circumstances
permit — you are free to multiply it with your favourite power of 10. Hence
it is economically quite obvious that a market, where equation (2) is violated,
cannot be in equilibrium as such an arbitrage opportunity would quickly be
exploited by economic agents; a moment’s reflection reveals that the market
forces triggered by an arbitrageur behaving according to the above recipe will
act towards making a possible violation of the identity (2) become smaller,
and that people would continue to exploit such a violation of the “no-arbitrage
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principle” up to the point where (2) is satisfied to a sufficient degree as to
make this arbitrage opportunity unattractive, even for a large investor.

The reader also should note that it is not necessary that all market par-
ticipants behave rationally (and that they are aware of the identity (2)). It
suffices that some of them (in theory even one would suffice!), who are ready
and able to act with large sums on the market, are aware of (2) and eager to
exploit arbitrage opportunities, whenever they come up.

Let us recapitulate the assumptions on the financial market which we have
made above (more or less tacitly) in order for the no-arbitrage argument —
and therefore the formula (2) — to be valid: we assumed that we can go
long and short in the cash accounts (1) as well as in the forward contract
at prices, which do not depend on the sign of the investment, without any
transaction costs and with arbitrarily large quantities. As mentioned above,
these assumptions are not, fully satisfied in practice, but the economic situation
of the “big players” in the market is quite close to these assumptions.

The attentive reader has noticed that we did not fully rely on the assump-
tion (1) that there exist “riskless” cash accounts behaving according to (1),
for all 0 <t < T all we needed was, that the relation holds true for ¢t = 7.
In other words and using the financial lingo, we had to assume the existence
of “riskless” (in practice this means that the government guarantees for the
payment) “zero coupon bonds” maturing at time 7', i.e., a contract, which
pays 1€ (or 1USS$) at time 7. Such contracts — or close approximations to
them — are indeed traded in massive volume in financial markets.

At this point the reader is advised to convince herself — by consulting the
financial section of a standard newspaper — that the above arguments are
not merely theoretical but confirm very well to reality: the forward price of a
currency depends on the difference of the interest rates in the corresponding
currencies, pertaining to the maturity 7', via (2) — and it only depends on
this difference. Also observe that, in the case rq = r¢, (2) reduces to F' = Xy,
i.e. the forward price then simply equals the spot price.

Let us turn back to L. Bachelier and the “rentes” traded at the Bourse de
Paris. There was a liquid market in forward contracts on these “rentes” and
Bachelier noticed the above relation between the spot price and the forward
price. To link to our US $/€ example, the role of the accumulated interest of a
“rente” plays a similar role as the interest rate 7, for the foreign currency, at
least for periods [0, 7] which contain no coupon payment (in the case of coupon
payments one has to make some rather straightforward adaptations). On the
other hand, there was a complicated system of partial recompensation of the
buyer of a forward contract with respect to this accumulated interest, called
— “contangoes” (in french: “reports”) — which — roughly speaking — plays
a similar role as r4 above. The details are quite complicated, only of historical
interest, and not relevant for our purposes. We shall therefore assume that the
system of contangoes would fully recompensate the accumulated interest of
the “rentes”; while this was not the case in reality, it was explicitly mentioned
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as a theoretical case by Bachelier. This corresponds to the case rq = ry for
the case of foreign exchange considered above, and implies — by similar no-
arbitrage arguments — that the forward price (called the “true price” by
Bachelier) coincides with the spot price.

Assumption 1 We assume for the rest of this section that, for every matu-
rity T, the spot price Sy of the underlying security, and the forward price F
with respect to T, coincide.

We shall see later that this convenient assumption does not restrict the
generality of the argument. What it does in practice: it dispenses us of making
boring calculations of upcounting and discounting as reflected by the identity
(2).

One final comment on whether Bachelier used the same no-arbitrage argu-
ments as we did above: Bachelier does not argue by no-arbitrage but simply
states that bond prices must “logically increase” by the accumulated interest
which is tantamount to (2). He would simply appeal to common sense without
explicitly mentioning the rather obvious no-arbitrage arguments. He saves this
for more complicated securities where the argument becomes less obvious, as
we shall presently see.

After this elementary treatment of forward contracts and forward prices
in the first pages of his thesis, Bachelier passes to the case of options, which
— in today’s terminology — were European options.

Definition 2. A Furopean call (resp. put) option on an underlying security
S consists in the right (but not the obligation) to buy (resp. to sell) a fixed
quantity (which we normalize to be one) of the underlying security, at a fized
price K and a fixed time T in the future.

In fact, there is a slight — but for the mathematical modelling rather
crucial — difference between the way options are traded today and the way
they were traded in Bachelier’s days, at least in France. Nowadays the option
premium C, i.e., the price, the buyer of an option has to pay, in order to
enter into the contract, (the letter C' standing for call option) is paid up front,
i.e., at t = 0. In 1900 it was paid at the exercise time ¢ = T' of the option.
We denote the latter premium by C to indicate that it corresponds to the
upcounted premium C (from ¢ = 0 to t = T') with respect to the risk free rate
of interest (more precisely and in modern terminology: with respect to the
zero coupon rate with maturity 7). Fixing the letter K for the strike price of
the option one arrives — after a moment’s reflection — at the usual “hockey-
stick” shape for the pay-off function of the option at time 7'. We draw the
value of the option as a function of the price St of the underlying at time 7'

This famous picture appears explicitly (with different letters for notation)
in Bachelier’s thesis. In fact, Bachelier compares the pay-off function of an
option to the pay-off function of a forward contract with forward price F':
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Profit
K Price St
/ K+C
-C
Fig. 1. Pay-off function of a call option at time T'.
Profit
F /K Price St
K+C
-C

Fig. 2. Pay-off function of a call option and a forward contract at time 7.

Today the quotation system in option markets usually fixes the strike
price K while the premium C is variable and fluctuates (the reader might
look up the financial section of any standard newspaper); in Bachelier’s times
it was done the other way round (at least for the “rentes”): the (upcounted)
premium C was fixed, typically C = 50, 25, or 10 centimes, and the strike
price K would fluctuate according to demand and supply. In fact, the way
people were quoting options was in terms of the “spread” K + C — F', which
is very natural as we now shall see.

Bachelier gives the following numerical example: Suppose that the forward
price F' (for fixed horizon T' which at these times was in the order of one or
two months) for a “rente” equals 104 francs. He then continues: “If we buy a
forward contract on 3000 francs par value, we expose ourselves to a potential
loss which may become considerable if a fall in the market occurs. To avoid
this risk, we could buy an option at 50 centimes paying no longer 104 francs
but 104.15 francs, for example.” In our notation this amounts to F = 104,
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K =103.65, C = 0.50, K + C = 104.15, and the spread K + C — F = 0.15.
The idea is that one agrees to pay K + C — F' (the “spread”) more than in
the case of a forward contract when exercising the contract at time T'; en
revanche, one has limited the maximal loss to C' = 0.50.

He then remarks the “obvious fact” that the spread is a decreasing func-
tion of the premium C' and again he does not bother to give the — rather
trivial — corresponding no-arbitrage argument (which we leave to the atten-
tive reader). But then he also observes the concavity of this function by a less
trivial combination of investments: this combination of options is known to-
day under the name of “butterfly” in finance. We don’t give the details here;
the interested reader may look it up in Bachelier’s thesis [B 00, p.24] and
compare it to the “butterfly” argument as explained, e.g., in [H99]. Bachelier
does not use the word arbitrage, which is today’s terminology, but refers to
“operations in which one of the traders would profit regardless of eventual
prices”, which amounts to the same, and is in fact a very pretty description
of the notion of arbitrage. Working at the bourse he was very aware of the
no-arbitrage principle [B 00, p.24]: “We will see that such spreads are never
found in practice”.

After these preparations, L. Bachelier passes to the central topic, Proba-
bilities in Operations on the Exchange. He had already addressed the basic
difficulty of introducing probability in the context of the stock exchange in the
introduction to the thesis in a very sceptical way: “The calculus of probabili-
ties, doubtless, could never be applied to fluctuations in security quotations,
and the dynamics of the Exchange will never be an exact science.”

Nevertheless he now proceeds to model the price change of securities by a
probability distribution distinguishing

“two kinds of probabilities:

(i) The probability which might be called “mathematical”, which can
be determined a priori and which is studied in games of chance.

(ii) The probability dependent on future events and, consequently im-
possible to predict in a mathematical manner.

This last is the probability that the speculator tries to predict.”

My personal interpretation of this — somewhat confusing — definition is
the following: sitting daily at the Bourse and watching the movement of prices,
Bachelier got the same impression that we get today when observing price
movements in financial markets, e.g., on the internet. The development of the
charts of prices of stocks, indices etc. on the screen or blackboard resembles
a “game of chance”. On the other hand, the second kind of probability seems
to refer to the expectations of a speculator who has a personal opinion on the
development of prices. Bachelier continues: “His (the speculator’s) inductions
are absolutely personal, since his counterpart in a transaction necessarily has
the opposite opinion.”

Here he is led to the remarkable conclusion, which in today’s terminology
is called the “efficient market hypothesis”:
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“It seems that the market, the aggregate of speculators, at a given
instant can believe in neither a market rise nor a market fall since, for
each quoted price, there are as many buyers as sellers.”

He then makes clear that this principle should be understood in terms of
“true prices”, i.e., forward prices (compare the up- and discounting arguments
as well as assumption 1 above). Finally he ends up with his famous dictum:

“In sum, the consideration of true prices permits the statement of
this fundamental principle:
The mathematical expectation of the speculator is zero.”

This is a truly fundamental principle and the reader’s admiration for
Bachelier’s pathbreaking work will increase even more when continuing to
the subsequent paragraph of Bachelier’s thesis:

It is necessary to evaluate the generality of this principle carefully:
It means that the market, at a given instant, considers not only cur-
rently negotiable transactions, but even those which will be based on
a subsequent fluctuation in prices as having a zero expectation.

For example, I buy a bond with the intention of selling it when it
will have appreciated by 50 centimes. The expectation of this com-
plex transaction is zero exactly as if I intended to sell my bond on the
liquiditation date, or at any time whatever.

In my opinion, in these two paragraphs, the basic ideas underlying the
concepts of martingales, stopping times, trading strategies, and Doob’s stop-
ping theorem already appear in a very intuitive way. It also sets the basic
theme of the modern approach to option pricing which is based on the notion
of a martingale.

In the remainder of this introductory review of Bachelier’s thesis we shall
discuss the implications of this fundamental principle and we shall address
the following natural basic question:

Is the fundamental principle of L. Bachelier true?

There are, at least, two aspects to this question:

(i) Is it true, from a practical point of view, i.e., does it agree with data from
financial markets?

(ii) Is it true, from a mathematical point of view, i.e., are there theorems that
support his claim?

But let us first look at the implications of the fundamental principle: In
order to draw conclusions from it, Bachelier had to determine the probability
distribution of the random variable St (the price of the underlying security
at expiration time T'), or, more generally, on the entire stochastic process
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(St)o<t<r. It is important to note that Bachelier had the approach of consid-
ering this object as a process, i.e., by thinking of the pathwise behaviour of the
trajectories (S¢(w))o<t<; this was very natural for him, as he was constantly
exposed to observing the behaviour of the prices, as ¢ “varies in continuous
time”.

To fix the process S, Bachelier fixes the maturity time 7" and chooses
the coordinates such that the forward price F' which — according to our
assumption 1 — coincides with the current price Sy of the underlying security,
is at the origin. Then Bachelier assumes — more or less tacitly — that, for
0 <t < T, the probability p, :dz, that the price S; of the underlying security,
starting at time ty = 0 from the point x = 0, lies at time ¢ in the infinitesimal
interval (z,x + dx), is symmetric around the origin and homogeneous in time
t as well as in space x.

Of course, Bachelier notices that this creates a problem, as it gives positive
probabilities to negative values of the underlying security, which is absurd. But
one should keep in mind the proportions mentioned above: a typical yearly
standard deviation o of the prices of the bonds considered by L. Bachelier
was of the order of 2.4%. Hence the region where the bond price after a
year becomes negative is roughly 40 standard deviations away from the mean;
anticipating that Bachelier uses the normal distribution this is — in his words
— “considered completely negligible”, as the time horizons for the options
were just fractions of a year. On the other hand, we should be warned when
considering Bachelier’s results asymptotically for ¢ — oo (or ¢ — oo which
roughly amounts to the same), as in these circumstances the effect of assigning
positive probabilities to negative values of S; is not “completely negligible”
any more.

After these specifications, Bachelier argues that “by the principle of joint
probabilities” (apparently he means the independence of the increments), we
obtain

—+oo
Dz i+t :/ pz,hpz—z,tgdm- (3)
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In other words, he obtains what we call today the Chapman-Kolmogoroff
equation. Then he observes that “this equation is confirmed by the function”

1 z2 )
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concluding that “evidently the probability is governed by the Gaussian law
already famous in the calculus of probabilities”.

Some remarks seem in order here: firstly, for the convenience of the reader
who looks up Bachelier’s original text, we mention that Bachelier did not use
the quantity o for the parametrisation but rather the quantity H = \/Lﬂ
Secondly, he obviously did not bother about the uniqueness of the solution to
(3). Thirdly, he was well aware — and explicitly mentions — that he models

the price movements in absolute terms and not in relative terms (w.r.t. the
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stock prices). As already mentioned, this distinction is not very important in
the case of the “rentes”, where the current price is typically close to the par
value of 100 francs.

Summing up, Bachelier derived from some basic principles the transition
law of Brownian Motion and it’s relation to the Chapman-Kolmogoroff equa-
tion.

Bachelier then gives an “Alternative Determination of the Law of Prob-
ability”. He approximates the continuous time model (S¢);>0 by a random
walk, i.e., a process which during the time interval A¢ moves up or down
with probability % by Az. He clearly works out that Az must be of the order

(At)% and — using only Stirling’s formula — he obtains the convergence of
the one-dimensional marginal distributions of the random walk to those of
Brownian motion.

Now a section follows, which is not directly needed for the subsequent ap-
plications in finance, but which — retrospectively — is of utmost mathemat-
ical importance: “Radiation of probability”. Consider the random walk model
and suppose that the grid in spaceis given by ..., Zp—2, Tpn—1,Tn, Tnt1s Tnt2, - - -
having the same distance Az = z,, — x,,_1, for all n, and such that at time
t these points have probabilities ...,p, 5, pl_1, Pk, Pl 1,0l s, - .. under the

random walk under consideration. What are the probabilities .. ., pfjﬁt , pflt?t,

pﬁm,pf:_ft,pﬁét, ... of these points at time ¢ + At? A moment’s reflection
reveals the rule which is so nicely described by Bachelier in the subsequent

phrases:

“Each price x during an element of time radiates towards its neigh-
boring price an amount of probability proportional to the difference
of their probabilities.

I say proportional because it is necessary to account for the relation
of Az to At.

The above law can, by analogy with certain physical theories, be
called the law of radiation or diffusion of probability.”

Passing formally to the continuous limit and denoting by P, ; the distri-
bution function associated to the density function (4)

Px,t = / pz,tdz (5)

Bachelier deduces in an intuitive and purely formal way the relation

oP 19p 10°P 6
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where ¢ > 0 is a constant. Of course, the heat equation was known to Bachelier:
he notes that “this is a Fourier equation”.

Hence Bachelier in 1900 very explicitly discovered the fundamental relation

between Brownian motion and the heat equation; this fact was rediscovered
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five years later by A. Einstein and resulted in a goldmine of mathematical
investigation through the work of Kolmogoroff, Kakutani, Feynman, Kac, and
many others up to recent research. It is worth noting that H. Poincaré in his
report on Bachelier’s thesis apparently saw the seminal importance of this
idea when he wrote “On peut regretter que M. Bachelier n’ait pas developpé
d’avantage cette partie de sa thése” (One may regret that M. Bachelier did
not develop further this part of his thesis).

With all these considerations L. Bachelier has fixed the model for the price
changes of the underlying security — namely the normal distribution — up
to the crucial parameter o, which he calls the “coefficient of instability or of
nervousness of a security” (strictly speaking he considers \/% rather than o,
which is just a matter of normalization). Fixing the parameter o and applying
the “fundamental principle” to the pay-off function in figure 2 one obtains —
using the identity F' = Sy from assumption 1 — the equation

-C+ /OO (z — (K — So)) f(z)dz =0, (7)
K—So
where 1 )
f(z) = ——=e =77, (8)
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which clearly determines the relation between the premium C of the option
and K — Sp and therefore also the relation between C and the “spread” K +
C — Sp. In other words, equation (7) determines the price for the option and
therefore solves the basic problem considered by Bachelier.

It is straightforward to derive from (7) an “option pricing formula” by cal-
culating the integral in (7) (compare, e.g., [Sh99]): denoting by ¢ (z) the stan-
dard normal density function, i.e., ¢(z) equals (8) for 0T = 1, by &(x) the
corresponding distribution function, and using the relation ¢’(z) = —zp(z),
an elementary calculation reveals that

C = /DO (mﬁ — (K - F)) o(z)dx (9)

K-—F
oVT

e () e ()

Interestingly, Bachelier does not bother to write up this easy formula which
gives C' as a function of K (the way which is useful in determining option
prices today). As mentioned above, he was rather interested in expressing
inversely the “spread” K + C — F as a function of C , and apparently there is
no explict way of writing down this relation.

Instead, he does something much more interesting: he first specializes to
the case of simple options (this is terminology from 1900), when K = F|
which at his time were the usual options on commodities; in modern terms




122 Walter Schachermayer

they correspond to so called at-the-money options where the strike price K
equals the forward price F' (which in our setting is equal to the spot price Sy
by assumption 1). In this case the solution to (7) obviously results in

PN o
c m\/i (10)
which is a remarkably simple formula. Bachelier also uses this formula to
turn the point of view upside down, or — in modern terms — to determine
the “implied volatility”, thus discovering yet one more basic idea of modern
mathematical finance: if we can observe the (upcounted) premium C of an
at-the-money option on the market, formula (10) determines very directly the
“nervousness” parameter \/LzTr and therefore specifies the probability distribu-
tion pg ¢
Still, formula (10) depends on the parameter o and Bachelier — following
the reflexes of a true mathematician — wanted to find quantities invariant
under variations of the parameter o and the expiration date 7": For example,
he determines the probability that the buyer of an at-the-money option (i.e.,
K = F) makes a profit. Glancing at figure 2 this probability p equals

v= [ tee= [ s (1)
V2r

where f(z) is given by (8). Calculating this expression, the term /T cancels
out, and we obtain

1 22 1
= ——e 2dr=1-® | — | =~ 0.345. 12
p /; V2T (\/27r> (12)

Vo

In other words, according to Bachelier’s model, the buyer of an at-the-
money option makes a profit in 34,5% of the cases, and a loss in 65,5% of
the cases. Isn’t it a remarkable and surprising result that this number does
not depend on any parameter? Bachelier also derives explicit numbers (not
depending on any parameter) for the probability of success in a number of
similar situations.

Then he treats the case of options where the strike price K is not necessar-
ily equal to the forward price F, i.e., options which are not necessarily at the
money. He uses a_quadratic approximation of the behaviour of the relation
between K and C determined by (7) in a neighbourhood of K = F which
again yields very explicit and practical formulae, displaying a good fit for the
values appearing in practice, i.e.,when |K — F'| is small as compared to F'.

After all these derivations Bachelier compares his theoretical results with
the financial data observed for the “rentes” in the period of 1894-1898.
He just considers averages over these five years and in particular the “ner-

vousness parameter” \/% is an average estimate, while it becomes clear from
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the remarks of Bachelier, that the “nervousness” \/% of the market was vary-
ing in time (just as it does today).

He estimates the yearly standard deviation of the price movement of a
rente to be approximately equal to 240 centimes, which corresponds to the
above mentioned 2.4 % of the par value of 100 francs.

Then he compares the quantities derived from his model (using this pa-
rameter) to the empirical financial data (taking again averages over these five
years).

This comparison of calculated figures with observed data does not live
up to the standards of a modern statistical analysis; also the match is not
overwhelmingly good — the difference sometimes being in the range of 10 or
20 percent — but it shows that the qualitative features are well captured.

To sum up the issue of the match of his theory with empirical financial
data Bachelier makes the remarkable comment:

“If, with respect to several questions treated in this study, I have
compared the results of observation with those of theory, it was not
to verify formulae established by mathematical methods, but only to
show that the market, unwittingly, obeys a law which governs it, the
law of probability.”

It is interesting to have a look into Poincaré’s report on Bachelier’s the-
sis where he gives an argument in favor of Bachelier’s fundamental principle
(which, of course, is the basis of the above methodology) relying on the law
of large numbers; Poincaré also clearly stresses the relative weakness of this
argument (the reader should compare the argument below involving the law
of large numbers to the much more convincing no-arbitrage arguments en-
countered above):

“One should not expect a very exact verification. The principle of
the mathematical expectation holds in the sense that, if it were vio-
lated, there would always be people who would act so as to re-establish
it and they would eventually notice this. But they would only notice
it, if the deviations were considerable. The verification, then, can only
be gross. The author of the thesis gives statistics where this happens
in a very satisfactory manner.”

In the final part of his thesis L. Bachelier makes another seminal discov-
ery: the law of the maximum of a Brownian path. Here we again see clearly
that Bachelier had a pathwise approach to stochastic processes. The fact that
the density function of the maximum of the Brownian path equals twice the
density of the corresponding Gaussian density function on the positive axis
(while it is of course zero on the negative axis) is today the standard example
for the use of the “reflection principle”, which reduces this fact almost to a
triviality.

Interestingly, Bachelier does not derive it in this way, but rather by approx-
imation with a discrete random walk and using a combinatorial result obtained
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in 1888 by D. André, called the solution to the ballot problem (“probléme du
scrutin”).

Using this theorem and passing in an appropriate way to the limit, Bache-
lier obtains the result on the distribution of the maximum of Brownian motion.
It is only then that he uses the reflection principle to interpret this result:

“The interpretation of this result is very simple: The price cannot
be exceeded at the moment t without having been attained previously.
The probability P is therefore equal to the probability P multiplied
by the probability that, given that the price was quoted previously, it
will be exceeded at the moment t, i.e., multiplied by % Thus

P=5" (13)

To explain the notation: letting ¢ > 0 denote “the price” referred to above,
and (W¢)¢>0 Brownian motion, the letter P denotes the probability P{W; > c}
while P denotes P{supy<,<; Wy > ¢}, so that (13) describes the well known
law of the maximum of a Brownian path.

Bachelier was led to consider this problem by a very interesting idea from
the financial point of view, which may be considered as a precursor of the idea
of dynamical hedging, which in turn is the central idea of modern mathemat-
ical finance.

Consider again the buyer of an at-the-money option with K = F = Sy
and a premium C. We have seen above that the probability of success of the
buyer of such an option is

PN 1
PSr>So+Cl=1—-¢& <\/ﬂ> ~ 0.345. (14)
Now suppose that the buyer of this option follows the subsequent strategy:
at the first moment when S; reaches the level Sy + C (if this happens before
T), she “locks in” her profit by going short (i.e., selling) one unit of the
underlying security. Of course, the “first moment when ...” is a stopping time
7 in modern terminology. A moment’s reflection reveals that in the case 7 < T'
the speculator cannot end up with a negative result and will have a strictly
positive gain, when, in addition to 7 < T, the price St at expiration time
happens to be less than K. But, of course, this operation of “locking in” the
profit only happens if S; attains the level So + C for some 0 < ¢t < T, while
in the other case the speculator will end up with a loss.
What is the probability of success (i.e., a non-negative result) of a specu-
lator pursuing this strategy? Clearly it equals

P | max S; > So + C (15)
0<t<T

for which we obtain, using the law of the maximum of Brownian motion,



Introduction to the Mathematics of Financial Markets 125

. 1
P | max Si > So + C} =2 <1 s <E>> ~ 0.69. (16)

In other words, the probability of a non-negative result of this strategy is
about 69 %. Again we find it remarkable that this result does not depend on
any parameter.

Let us try to give a résumé of this review of Bachelier’s remarkable thesis
and to compare it with the modern theory, in particular with the Black-Scholes
model considered below.

The usual argument against Bachelier and in favor of Black-Scholes is the
fact that Bachelier’s model of Brownian motion assigns positive probability to
negative prices of the underlying stock, while the Black-Scholes model (using
geometric Brownian motion) does not. (For the remainder of this section we
assume that the reader is already sufficiently familiar with the basic features
of the Black-Scholes model as discussed in section 3 below.)

In my opinion this argument is to a large extent a myth: in basic appli-
cations of statistics (say, quality control) there are good reasons to model
the quantities under consideration (say, the length of a screw) by a normal
distribution. Apparently nobody worries that this model also assigns positive
probability to a negative length of the screw, although this is at least as ab-
surd as a negative stock price. The reason is, that — if expressed numerically
— these probabilities are “completely negligible”, as was so nicely phrased by
Bachelier.

One might compare the relation of modelling price processes with Brown-
ian motion as opposed to geometric Brownian motion, to that of using linear
interest as opposed to continuously compounded interest for cash accounts.
Of course, the latter one is logically more appealing, but we all know, that the
difference between these two procedures is very minor for short periods (say,
less than a year, in the case of reasonable values of the interest rate). On the
other hand, in the long run the difference is spectacular.

Similarly, the differences between the Bachelier and the Black-Scholes op-
tion pricing formulae are very minor, as long as o and T  remain in a reasonable
range, which certainly was the case for the options on the rentes considered
by Bachelier (compare the more quantitative discussion at the end of section
3). On the other hand it is worth noting that, for 7' — oo, Bachelier’s formula
C = \/Lz_w\/T (see (10) above) for the option price assigns arbitrarily large
values to the premium of an option, while an obvious no-arbitrage argument
(using assumption 1 and the non-negativity of the underlying security) reveals
that C is certainly less than Sp.

In my opinion, L. Bachelier has obtained an option pricing model which,
for practical purposes, is just as satisfactory as the model obtained by Black
and Scholes some 70 years later, with the shortcomings of these models being
very similar (e.g., underestimation of extreme movements of the underlying by
using normal or lognormal distributions). But there is one crucial idea which
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L. Bachelier has missed and which is of central importance for the modern
theory: the concept of dynamic hedging which allows to reduce Bachelier’s
“fundamental principle” to no-arbitrage considerations. The use of this idea
to determine option prices is due to R. Merton (in a footnote of the original
Black-Scholes paper [BS 73] this is explicitly acknowledged) and plays a truly
fundamental role.

On the other hand, we have seen above that L. Bachelier was already
close to this idea when considering trading strategies where the selling of
a security would happen at a stopping time. But for a full-fledged theory
of dynamic hedging, Bachelier would have had to make quite a number of
additional pioneering steps in his lonely endeavour of investigating Brownian
motion. His situation was in sharp contrast to the situation encountered by the
researchers in Mathematical Finance in the last third of the 20t" century, who
could build on a well-established theory of stochastic integration, as notably
developed by K. Itd and by the school of P.A. Meyer in Strasbourg.

In any case, let us stop here with the review of Bachelier’s seminal achieve-
ments and turn to a systematic development of the modern theory of option
pricing, which is based on the notion of no-arbitrage.
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2 Models of Financial Markets on Finite Probability
Spaces

In order to reduce the technical difficulties of the theory of option pricing to a
minimum, we assume throughout this section that the probability space {2 un-
derlying our model will be finite, say, 2 = {wi,ws,...,wn}. This assumption
implies that all functional-analytic delicacies pertaining to different topologies
on L*®(2,F,P), L*(2,F,P) and L°(2,F,P) evaporate, as all these spaces
are simply RY (we assume w.l.o.g. that the sigma-algebra F is the power set
of 2 and that P assigns strictly positive value to each w € 2). Hence all the
functional analysis, which we shall need in section 4 for the case of more gen-
eral processes, reduces to simple linear algebra in the setting of the present
chapter.

Nevertheless we shall write L>(£2, F,P), L' (2, F,P) etc. below (knowing
very well that these spaces are isomorphic in the present setting) to indicate,
what we shall encounter in the setting of the general theory.

Definition 3. A model of a financial market is an R**'-valued stochastic
process S = (S)L, = (S?, S}, ..., SHE,, based on and adapted to the filtered
stochastic base (2, F,(F)L,,P). We shall assume that the zero coordinate
SO, which we call the cash account, satisfies SY =1, for t =0,1,...,T. The
letter AS; denotes the increment Sy — Sp_1.

Definition 4. H denotes the set of trading strategies for the financial market
S. An element H € H is an R? -valued process (H;)L, = (H},H?,...,H)L |
which is predictable, i.e. each H; is F;_1-measurable.

We then define the stochastic integral (H-S) as the R-valued process ((H -
$)0Lq given by

(H-S) =Y (H;,AS;), t=0,...,T, (17)

Jj=1
where (.,.) denotes the inner product in R?.

The reader might be puzzeled why we chose S to be R4+ -valued, while we
chose H to be R?-valued. The reason is that we defined the zero coordinate
S% of S to be identically equal to 1 so that ASY = 0 and this coordinate can
not contribute to the stochastic integral (17). We note that this assumption
does not restrict the generality of the model as we always may choose the
cash account as numéraire. This means, that the stock prices are expressed in
units of the cash account, or — in more practical terms — we have expressed
stock prices in discounted terms.

On the other hand we want to stress for later use (the change of numéraire
theorem 3 below) the role of the cash account — which we choose as numéraire
— in the definition of a financial market, although the coordinate S° presently
only serves as a dummy.
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Definition 5. We call the subspace K of L°(2, F,P) defined by
K={(H-S)r:HeH} (18)

the set of contingent claims attainable at price 0.

The economic interpretation is the following: the random variables f =
(H-S)r, for some H € H, are precisely those contingent claims, i.e., the pay-
off functions at time T depending on w € (2, that an economic agent may
replicate with zero initial investment, by pursuing some predictable trading
strategy H.

For a € R, we call the set of contingent claims attainable at price a the
affine space K, obtained by shifting K by the constant function al, in other
words the random variables of the form a+ (H-S), for some trading strategy
H. Again the economic interpretation is that these are precisely the contingent
claims that an economic agent may replicate with an initial investment of a
by pursuing some predictable trading strategy H.

Definition 6. We call the convex cone C in L*((2,F,P) defined by
C={g€L®N,F,P) st thereis f e K,f > g} (19)
the set of contingent claims super-replicable at price 0.

Economically speaking, a contingent claim g € L*>(£2,F,P) is super-
replicable at price 0, if we can achieve it with zero net investment, subse-
quently pursuing some predictable trading strategy H — thus arriving at
some contingent claim f — and then, possibly, “throwing away money” to
arrive at g. This operation of “throwing away money” may seem awkward at
this stage, but we shall see later that the set C plays an important role in
the development of the theory. Observe that C' is a convex cone containing
the negative orthant L (2, F,P). Again we may define C, as the contingent
claims super-replicable at price a if we shift C' by the constant function al.

Definition 7. A financial market S satifies the no-arbitrage condition (NA)
if
KnLY(2,F,P)={0} (20)

or, equivalently,

CnNLE (N, F,P)= {0}, (21)
where 0 denotes the function identically equal to zero.

In other words we now have formalized the concept of an arbitrage possi-
bility: it consists of the existence of a trading strategy H such that — starting
from an initial investment zero  the resulting contingent claim f = (H-S)r
is non-negative and not identically equal to zero. If a financial market does
not allow for arbitrage we say it satisfies the no-arbitrage condition (NA).
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Definition 8. A probability measure Q on (£2,F) is called an equivalent mar-
tingale measure for S, if Q ~ P and S is a martingale under Q.

We denote by M*(S) the set of equivalent martingale probability measures
and by M*(S) the set of all (not necessarily equivalent) martingale proba-
bility measures. The letter a stands for “absolutely continuous with respect
to P” which in the present setting (finite {2 and P having full support) au-
tomatically holds true, but which will be of relevance for general probability
spaces (£2, F,P) later. We shall often identify a measure @) on ({2, F) with its
Radon-Nikodym derivative 42 € L'(02, F,P).

Lemma 1. For a probability measure QQ on (£2,F) the following are equiva-
lent:

(i) Q € M*(S),
(i) Eq[f] =0, for all f € K,
(iit) Eqlg] <0, for all g € C.

Proof The equivalences are rather trivial, as (ii) is tantamount to the very
definition of S being a martingale under @, and the equivalence of (ii) and
(iii) is straightforward. O

After having fixed these formalities we may formulate and prove the central
result of the theory of pricing and hedging by no-arbitrage, sometimes called
the “fundamental theorem of asset pricing”, which in its present form (i.e.,
finite (2) is due to Harrison and Pliska [HP 81].

Theorem 1 (Fundamental Theorem of Asset Pricing). For a financial
market S modeled on a finite stochastic base (2, F,(F)i o, P) the following
are equivalent:

(i) S satisfies (NA).

(ii) M(S) # 0.

Proof (ii) = (i): This is the obvious implication. If there is some @ € M?*(S)
then by lemma 1 we have that
Eglg] <0, forgeC. (22)

On the other hand, if there were g € CNLS®, g # 0, then, using the assumption
that @ is equivalent to P, we would have

Eqlg] >0, (23)

a contradiction.
(i) = (ii) This implication is the important message of the theorem which
will allow us to link the no-arbitrage arguments with martingale theory. We
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give a functional analytic existence proof, which will be generalizable in
spirit — to more general situations.

By assumption the space K intersects L5° only at 0. We want to separate
the disjoint convex sets L5°\{0} and K by a hyperplane induced by a linear
functional Q € L'(£2, F,P). Unfortunately this is a situation, where the usual
versions of the separation theorem (i.e., the Hahn-Banach Theorem) do not
apply (even in finite dimensions!).

One way to overcome this difficulty (in finite dimension) is to consider the
convex hull of the unit vectors (1, 3)3_; in L®(2,F,P) i.e.

N N

n=1 n=1

This is a convex, compact subset of L(f2, F,P) and, by the (NA) as-
sumption, disjoint from K. Hence we may strictly separate the sets P and K
by a linear functional Q € L> (2, F,P)* = L'(£2, F,P), i.e., find a < B such
that

(Q,fy<a for fekK, (25)
(Q,h)y > for heP

As K is a linear space, we have a > 0 and may, in fact, replace a by
0. Hence B8 > 0. Therefore (@,1) > 0, and we may normalize @) such that
(Q,1) = 1. As Q is strictly positive on each 1y, y, we therefore have found
a probability measure @ on (§2,F) equivalent to P such that condition (ii)
of lemma 1 holds true. In other words, we found an equivalent martingale
measure () for the process S. O

Corollary 1. Let S satisfy (NA) and f € L (82, F,P) be an attainable con-
tingent claim so that
f=a+(H-S)r, (26)

for some a € R and some trading strategy H.
Then the constant a and the process (H -S) are uniquely determined by
(26) and satisfy, for every Q € M*(S5),

a=Eg[f]l, and a+ (H-S)=Eq[f|F:] for0<t<T. (27)

Proof As regards the uniqueness of the constant a € R, suppose that there
are two representations f = a' + (H'-S)r and f = a®+ (H?-S)r with a' # a?.
Assuming w.l.o.g. that a! > a® we find an obvious arbitrage possibility: we
have a' — a? = ((H! — H?)-S)7, i.e. the trading strategy H' — H? produces
a strictly positive result at time T, a contradiction to (NA).

As regards the uniqueness or the process H-S we simply apply a conditional
version of the previous argument: assume that f = a + (H'-S)7 and f =
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a+ (H?-S)7 such that the processes H!-S and H2-S are not identical. Then
there is 0 < t < T such that (H'-S); # (H?-S)s; w.log. A= {(H'-S); >
(H?-S);} is a non-empty event, which clearly is in J;. Hence, using the fact
that (H'-S)r = (H?-S)r, the trading strategy H := (H?> — H')xa-Xje, 1) is a
predictable process producing an arbitrage, as (H -S)r = 0 outside A, while
(H-S)r = (H'-S); — (H?-S); > 0 on A, which again contradicts (NA).
Finally, the equations in (27) result from the fact that, for every predictable
process H and every Q € M*(S), the process H-S is a @Q-martingale. O

Denote by cone(M#(S)) and cone(M?*(S)) the cones generated by the con-
vex sets M€(S) and M*(S), respectively. The subsequent result clarifies the
polar relation between these cones and the cone C. Recall (see, e.g., [Sch 66])
that, for a pair (E, E') of vector spaces in separating duality via the scalar
product {(.,.), the polar C° of a set C' in E is defined as

C'={gcE:(f,g)<1, forall feC}. (28)

In the case when C' is closed under multiplication with positive scalars
(e.g., if C is a convex cone) the polar C° may equivalently be defined by

C'={geE :(f,g)<0, forall f€C}. (29)

The bipolar theorem (see, e.g., [Sch66]) states that the bipolar C% :=
(C®)0 of a set C in E is the o(E, E')-closed convex hull of C.

After these general considerations we pass to the concrete setting of the
cone C' C L*>®(£2,F,P) of contingent claims super-replicable at price 0. Note
that in our finite-dimensional setting this convex cone is closed as it is the
algebraic sum of the closed linear space K (a linear space in RY is always
closed) and the closed polyhedral cone L= ({2, F,P) (the verification, that the
algebraic sum of a space and a polyhedral cone in RY is closed, is an easy, but
not completely trivial exercise). Hence we deduce from the bipolar theorem,
that C equals its bipolar C°.

Proposition 1. Suppose that S satisfies (NA). Then the polar of C is equal to
cone(M*(S)) and M*(S) is dense in M*(S). Hence the following assertions
are equivalent for an element g € L>(§2, F,P)

(i)geC,
(it) Eqlg] <0, for all Q € M*(S),
(iii) Eqlg] < 0, for all Q € M(S),

Proof The fact that the polar C° and cone(M?(S)) coincide, follows from
lemma 1 and the observation that C' D L™ (12, F,P) implies C° C L°(02, F, P).
Hence the equivalence of (i) and (ii) follows from the bipolar theorem.

As regards the density of M¢(S) in M*(S) we first deduce from theorem
1 that there is at least one Q* € M*(S). For any Q € M*(S) and 0 < p < 1
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we have that puQ* + (1 — p)Q € M¢(S), which clearly implies the density of
Me(S) in M*(S). The equivalence of (ii) and (iii) now is obvious. O

The subsequent theorem tells us precisely what the principle of no-
arbitrage can tell us about the possible prices for a contingent claim f. It
goes back to the work of D. Kreps [K 81] and was subsequently extended by
several authors.

For given f € L% (£, F,P), we call a € R an arbitrage-free price, if in
addition to the financial market S, the introduction of the contingent claim f
at price a does not create an arbitrage possibility. Mathematically speaking,
this can be formalized as follows. Let C/>® denote the cone spanned by C and

the linear space spanned by f — a; then a is an arbitrage-free price for f if
chan L (0, F,P) = {0}.

Theorem 2 (Pricing by No-Arbitrage). Assume that S satisfies (NA)
and let f € L (2, F,P). Define

(f) = sup{Eq[f] : @ € M*(S)}, (30)
(f) = inf {Eq[f] : @ € M*(5)}, (31)

Either w(f) = 7(f), in which case f is attainable at price w(f) := n(f) =
7(f), i.e. f=a(f)+ (H-S)r for some H € H; therefore w(f) is the unique
arbitrage-free price for f.

Or on(f) < ®(f), in which case {Eg[f] : Q@ € M°(S)} equals the open
interval 1w (f), T(f)[, which in turn equals the set of arbitrage-free prices for
the contingent claim f.

™
™

Proof First observe that the set {Eqg[f] : Q@ € M*(S)} forms a bounded
non-empty interval in R, which we denote by I.

We claim that a number a is in I, iff a is an arbitrage-free price for f.
Indeed, supposing that a € I we may find Q € M¢(S) s.t. Eg[f —a] = 0 and
therefore C7»% N L (02, F,P) = {0}.

Conversely suppose that C7* N L (02, F,P) = {0}. Note that Cleis a
closed convex cone (it is the algebraic sum of the linear space span(K, f — a)
and the closed, polyhedral cone L ({2, F,P)). Hence by the same argument
as in the proof of theorem 1 there exists a probability measure ) ~ P such
that @Q|cr.« < 0. This implies that Eg[f —a] =0, i.e., a € I.

Now we deal with the boundary case: suppose that a equals the right
boundary of I, i.e., a =7(f) € I, and consider the contingent claim f —7(f);
by definition we have Eg[f — 7(f)] < 0, for all Q € M*°(S), and therefore by
proposition 1, that f —7(f) € C. We may find g € K such that g > f —7(f).
If the sup in (30) is attained, i.e., if there is @* € M*(S) such that Eq-[f] =
7(f), then we have 0 = Eg-[g] > Eq-[f —@(f)] = 0 which in view of @Q* ~ P
implies that f — 7(f) = g; in other words f is attainable at price 7(f). This
in turn implies that Eq[f] = 7(f), for all Q € M*(S), and therefore I is
reduced to the singleton {7w(f)}.
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Hence, if o(f) < 7(f), 7(f) cannot belong to the interval I, which is there-
fore open on the right hand side. Passing from f to —f, we obtain the analo-
gous result for the left hand side of I, which therefore equals I =]z (f),7(f)][.
a

Corollary 2 (complete financial markets). For a financial market S sat-
isfying the no-arbitrage condition (NA) the following are equivalent:

(i) ME(S) consists of a single element Q).
(ii) Each f € L (02, F,P) may be represented as

f=a+(H-S)r, forsomea€cR and H e H. (32)

In this case a = Eq[f], the stochastic integral (H - S) is unique, and we have
that
Eqlf|F] = EQlf] + (H-S), t=0,....T. (33)

Proof The implication (i) = (ii) immediately follows from the preceding the-
orem; for the implication (ii) = (i), note that, (32) implies that, for elements
Q1, Q2 € M*(S), we have Eg, [f] = a = Eq,[f]; hence it suffices to note that
if M*(S) contains two different elements @1, Q2 we may find f € L>°(2, F,P)

st. Eg,[f] # Eq.[f]. O

Let us pause here for a moment and recapitulate the above results from
an economic point of view. In particular we address the question: how does
this theory relate to Bachelier’s fundamental principle?

We consider a model S of a financial market satisfying the assumptions
of corollary 2. The reason why these (models of) financial markets are called
complete in the Mathematical Finance literature is related to assertion (ii)
above: in such a market any contingent claim f is already replicable by an
initial investment a and a properly chosen trading strategy H. We shall see
in the next section that the arch-example of a complete financial market in
discrete time is the random walk, also called the binomial model. We have seen
that this model was already considered by Bachelier (over a grid in arithmetic
progression); some 70 years later, Cox, Ross and Rubinstein [CRR 79] studied
this model over a grid in geometric progression.

The basic problem of Bachelier, as well as of modern Mathematical Finance
in general, is that of assigning a price a to a contingent claim f; corollary
2 tells us that, in the case of a complete market, we simply have to take
the expectation Eg[f], similarly as Bachelier proposed in his “fundamental
principle”. But now the argument in favor of this methodology is based on a
no-arbitrage argument, which is more robust from an economic point of view
than the equilibrium argument used by Bachelier.

Also, the message of corollary 2 is not quite identical to Bachelier’s “fun-
damental principle”. The subtle difference is that in modern Mathematical
Finance one takes the expectation with respect to a risk neutral probability
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measure @, i.e., a measure under which S is a martingale and which does not
necessarily coincide with the physical measure P. This distinction between
P and @ does not show up in Bachelier’s work (although he also is speaking
about “two kinds of probability”, but apparently he has something different in
mind in this passage of his thesis). Bachelier argues somehow in the opposite
direction as compared to the modern approach: he postulates that the process
S has to be a martingale already under the “physical” measure P (this is what
his “fundamental principle” amounts to in modern terminology).

The distinction between the measure () and P is one of the crucial features
of the modern approach to Mathematical Finance. It is implicit in the early
work of Black and Scholes [BS 73] and Merton [M 73], and has clearly been
crystallized in the later work of Harrison, Kreps and Pliska ([HK 79], [HP 81],
[K 81]).

In this respect Bachelier’s approach really misses something crucial: for
example, there is massive empirical evidence that — in the long run — stocks
perform better than bonds. At least, this happened in the previous hundred
or two hundred years. Many people believe that this will also be the case in
the future (but, of course, we don’t know that). In any case, Bachelier has
no way of modelling such a phenomenon without violating the “fundamental
principle”.

One might try to argue in favor of Bachelier that such a long term effect
is not of crucial importance for short term option prices and may therefore be
ignored.

But there are also other obstructions to the somewhat naive application of
the “fundamental principle”, which involve logical inconsistencies (which is,
of course, particularly annoying from a mathematical part of view): let’s take
up again the foreign exchange example 1 and assume, mainly for notational
convenience, that the domestic and foreign interest rates r4 and ry equal
zero. The stochastic process (X¢)o<¢<7 models the price of one US$ in terms
of €. By applying Bachelier’s “fundamental principle” to the situation of a
€-investor “speculating” in US$, we must have

Xo = E[X7]. (34)

On the other hand, the same principle applied to the situation of a US $-
investor “speculating” in € implies

X, ' =E[X;']. (35)

But Jensen’s inequality tells us that (34) and (35) cannot hold simulta-
neously (except for the trivial case when Xr is constant). Hence we find a
logical obstruction to the “fundamental principle” of Bachelier.

At this stage a distiction between the measure P and @ is unavoidable
and we also see from the above argument that the “risk-neutral” measure @
apparently depends on the choice of a numéraire.
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We therefore pass to a thorough analysis of the role of the numéraire S° in
our modelling of a financial market. In particular, we investigate what happens
under a “change of numéraire”, i.e., by passing from one unit of denomination,
say €, to another one, say US$.

Let us consider once more the basic example 1 of a financial market con-
sisting of a €-bond and a $-bond (which we now consider in discrete time,
to confirm with the setting of this section). We now drop the assumption
rq = ry = 0 and assume that these bonds develop (expressed in terms of €
and $ respectively) by

BE=erat, B —errt 1=0,1,...,T. (36)

Denoting again by (X;)o<¢<7 the stochastic process modelling the exchange
rate, the value (in terms of €) of an investment into the $-bond is given
by the stochastic process (e"/*X;){_,. But note that this refers to the € as
numéraire, which is not a traded asset, unless we have ry = 0. This may seem
odd a first glance; but remember our standing assumption that we can go long
and short in traded assets at the same conditions. If the Euro were a traded
asset, this would imply that we could borrow Euros at nominal value (i.e.,
without paying interest); combining this operation with an investment into a
€-bond paying positive interest, clearly creates an arbitrage.

We have agreed to choose a traded asset as numéraire: from the point of
view of a €-investor, the natural choice in our example is the €-bond. Hence
from her point of view the financial market is modeled by

S, = (89,81 = (1,e<7“f*w>txt) , t=0,1,....T, (37)

where S now is expressed in terms of units of the €-bond.
But adopting the point of view of a $-investor it is natural to express
everything in terms of the $-bond, i.e.

& Sf? St1 (ra—rg)t y—1
St:<§,§):(e X; ,1), t=0,1,...,T. (38)
t Pt

The previous theorem 2 and corollary 2 tell us, how to relate the arbitrage
free prices of derivative securities f € L (2, F,P) to the expectations under
the “risk-neutral” probabilities Q € M¢(S).

How do these things change, when we pass to a new numéraire? Of course,
the arbitrage free prices should remain unchanged (after denominating things
in the new numéraire), as the notion of arbitrage should not depend on
whether we do the book-keeping in € or in $. On the other hand, we shall
presently see that the risk-neutral measures () do depend on the choice of
numéraire.

Let us analyze the situation in the proper degree of generality: the model
of a financial market S = (57, S}, ...,S{)L, is defined as above. Recall that
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we assumed that the traded asset S° serves as numéraire, i.e., the value Sy
of the j’th asset at time ¢ is expressed in units of SY. In particular, we have
SV =1,forall0<t<T.

We also assume that the process (Stl)ogth is strictly positive; choosing
this asset as the new numéraire we find the process S denoting the prices of

the assets S°,S*,...,5% in terms of S':
L[Sy sz sh\"
S:(—t,l,—t,...,—f> . (39)
S} S} St o

To link with the previous example, we might have that S is a cash account
in €, S' a cash account in US$, while S?,...,S? model some other stocks,
commodities etc.

We now have the proper setting to formulate the theorem clarifying the
situation:

Theorem 3 (change of numéraire). Assume that the financial market S =
(SY, S}, ..., S) satisfies (NA) and recall that we have assumed S =1, i.e.,
we have chosen the zero coordinate as numéraire.

We also assume that the first coordinate (S})I_ is a strictly positive pro-
cess, so that we may define the “process S in terms of the numéraire S” by

passing to
L (S0 sz osi\T
5:(—t,1,—t,...,—t> ) (40)
Si7 7SS o

Then the set M¢(S) of equivalent martingale measures for S equals

. . dQ  SLdQ
e _ L% _ET 7w e
M) ={0: F=F . eem®). (a1)
For a contingent claim f € L*(£,F,P) the interval of arbitrage-free
prices therefore does not depend on the chosen numéraire, as we have

(Balfl: Qe M) = {siBg | F] ;e Mm@} a2

Proof Note that the fact that S is a Q-martingale implies that EQ[“;—l{] =1,
0

for all Q € M-*(S), so that the set defined by the right hand side of (41)
consists of probability measures. Also note that, by our assumption on the
strict positivity of S', these measures are equivalent to P.
We now calculate the space K C L>®(£2, F,P) of claims attainable at price
0 with respect to S,
K={(L-S)r:LeM}. (43)

We claim that
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K:{S—l%f:feK}. (44)

In fact, we claim more generally, that the class of processes of the form
S}(L-S); coincides with the class of processes (H -S); where L and H run
through the predictable processes.

Economically speaking this means that the possible gains processes H - S,
obtained by trading with respect to some trading strategy H in terms of the
numéraire S°, coincide with the possible gains processes Sl(L-S'), where L-S
run through the possible gains processes in terms of the numéraire S!, which
subsequently are transformed into units of the numéraire S° by multiplication
with S*.

To verify this — economically rather obvious — identity in a formal way
we use a little stochastic calculus, namely the stochastic version of the product
formula (similarly as in [DS 95, theorem 11]). We have

S, =S}Sy, (45)
the right hand side refering to multiplication of the positive scalar S} (w) with

the (d 4 1)-vector Sy(w) = (ggé:g , 1, g?gi; e gggig) Hence by elementary

algebra we obtain
AS; = Stl,lAS”t + S”t,lAStl + AStlASt (46)

Now we fix any predictable process L and calculate the increment of the
process S}(L-S); in a similar way:

A(S{(L-8)e) = (L-8)i—1 A4Sy +S{_1 A((L-S)s) + AS; A((L-S)e) ~ (47)
= (L-S); 1AS} + Ly(S}_, AS; + AS} ASy)
= (L-8);_1 AS} + Li(S} AS; + S;_1 AS} + ASEASy)
— L;S;_1 AS}
= ((L-8)¢—1 — LyS;_1)AS} + Ly ASy,

where in the last equality we have used (46). In other words, the increment
A(S}H(L-S);) of the process S*(L-S) is the product of some F;_,-measurable
functions with the increments AS} and AS; respectively. Noting that AS} is
just one of the coordinates of AS;, we conclude that the process S} (L-S;) may
be represented as a stochastic integral of the form (H-S) for some predictable
process H. Reversing the roles of S and S and using the strict positivity of
the process S', we also conclude that each process of the form (H-S) may be
presented in the form S*(L-S), for some predictable process L, which shows

in particular (44).
Hence the linear map M : L — L* of multiplication by the function %

1

M= (48)
T
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maps K bijectively onto K. By basic linear algebra the adjoint M* of M,
which is equal to M, maps the polar of K onto the polar of K and therefore
cone(M?(S)) and cone(M¢(S)) onto cone(M?(S)) and cone(M?®(S)) respec-
tively. Hence we obtain the identity (41). Finally observe that equality (42) is
an immediate consequence of equality (41), noting that, when () runs through
Me(S), then M~(Q) runs through M¢(S). O

Corollary 3 (change of numéraire in a complete market). Assume in
addition to the assumptions of theorem 3 that M¢(S) consists of a singleton

-~ o~ ~ 1
{Q}. Then M®(S) = {Q} where %2 = z—g%.
For f € L™ (02, F,P), we obtain the unique arbitrage free price as

Eq[f] = S5Eq [é] O (49)

We finish this section by a dynamic version of theorem 2 on pricing by
no-arbitrage, due to D. Kramkov (in a much more general setting; see [K 96]
and section 5 below).

Theorem 4 (Optional Decomposition). Assume that S satisfies (NA) and
let V.= (Vi)t>0 be an adapted process.
The following assertions are equivalent:

(i) V is a super-martingale for each Q € M*(S).

(i’) V is a super-martingale for each Q € M*(S)

(i) V. may be decomposed into V. = Vo + H-S — C, where H € H and
C = (Ct)t>0 is an increasing adapted process starting at Co = 0.

To explain the terminology “optional decomposition” let us compare this
theorem with Doob’s celebrated decomposition theorem for non-negative
super-martingales (V;)¢>o (see, e.g., [P 90]): this theorem asserts that, for a
non-negative (adapted, cadlag) process V, we have equivalence between the
following two statements:

(i) V is a super-martingale (with respect to the fixed measure P),

(ii) V may be decomposed in a unique way into V = Vy + M — C, where
M = (My)¢>0 is alocal martingale (with respect to IP) and C an increasing
predictable process s.t. My = Cy = 0.

We see the similarity in spirit, but, of course, there are differences. As
regards condition (i) the difference is that, in the setting of the optional de-
composition theorem, the super-martingale properly pertains to all martingale
measures ) for the process S. As regards condition (ii) the role of the local
martingale M in Doob’s theorem is taken by the stochastic integral H-S. A
decisive difference between the two theorems is that, in theorem 4, the de-
composition is not unique any more and one cannot choose, in general, C to
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be predictable. The process C' can only be chosen to be adapted and therefore
optional (for finite {2, a process is adapted iff it is optional).

The economic interpretation of the optional decomposition theorem goes
as follows: a process of the form V' = V;j+ H-S—C describes the wealth process
of an economic agent, starting at an initial wealth V5, subsequently investing
in the financial market according to the trading strategy H, and consuming as
described by the process C': the random variable C; models the accumulated
consumption during the time interval {1,...,¢}. The message of the optional
decomposition theorem is that these wealth processes are characterised by
condition (i) (or, equivalently, (i)).

Proof of theorem 4 First assume that T" = 1, i.e., we have a one-period
model S = (Sp, S1). In this case the present theorem is an immediate con-
sequence of theorem 2: if V' is a super-martingale under each @ € M*(S),
then

Eo[Vi] < W, for all Q@ € M*(S). (50)

Hence there is a predictable trading strategy H such that Vo + (H-S)1 > V1.
Letting Cy = 0 and writing AC; = C; = Vi — (Vo + (H-S)1) we have obtained
the desired decomposition.

Recall our general assumption that JFg is trivial; it implies that the trading
strategy H = H; simply is a vector in R¢, as an Fp-measurable function is
constant. But this assumption is not at all essential for the above argument:
if Fo is not trivial, we simply apply the above argument to each of the atoms
of the sigma-algebra Fy to obtain an Fy-measurable function Hj.

Hence we may apply, for each fixed ¢t € {1,...,T}, the same argument as
above to the one-period financial market (S;_1,S;) based on (2, F,P) and
adapted to the filtration (F;_1,F;). We thus obtain an F; ;-measurable R?-
valued function H; and a non-negative JF;-measurable function AC; such that

AV, = (Hy, AS;) — AC, (51)

where (.,.) denotes the inner product in R?.

This finishes the construction of the optional decomposition: define the
predictable process H as (H;)]_,, and the adapted increasing process C' by
Ct = E;’:l AC]

This shows the implication (i) = (ii); the implications (ii) = (i’) = (i)
are trivial. O
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3 The Binomial Model, Bachelier’s Model and the
Black-Scholes Model

The canonical example of a finite probability space {2, to which the no-
arbitrage theory applies very nicely, is the binomial model. Let 2 = {—1,+1}7
be equipped with the filtration (F;)7_,, where JF; is generated by the first ¢
coordinate maps on (2. As probability measure P we chose the uniform mea-
sure on F = Fr, but we remark that the subsequent results do not depend
on this special choice of P; the only property of I which is needed is, that P
assigns positive mass to each point of (2.

Consider a financial market based on ({2, (F;)L,,P) consisting of a cash
account By := (S))T_, = 1 and a risky asset (stock) (S})Z_, which is an R-
valued adapted process defined on (£2, (F;)]_,, F). By abuse of notation we
also shall write S for the one-dimensional process S*.

To avoid trivialities we assume that

P[S; # St—1|Fi—1] >0 everywhere, for t =1,...,T. (52)
It ist rather obvious and very intuitive that S does not allow arbitrage iff
P[St > St71|‘7:t71] >0 and P[St < St71|.7:t71] >0, for t=1,...,T. (53)

It is just as obvious — using, e.g., backward induction (compare [LL 96])
— that in this case there exists a unique equivalent martingale measure Q).
Hence we know that, for any contingent claim f € L°°(£2,F,P), we can find
a trading strategy H such that

f=Eqlfl+ (H-S)r (54)
and that we have, for every t =0,...,T,
Eqlf|Fi] = EQlf] + (H-S):- (55)

We now specialize to two concrete cases for the financial market model S:
the first example is the simple random walk; this was considered by Bachelier
as a discrete approximation to Brownian motion. The second one is the mul-
tiplicative version of the random walk — i.e., (ln(g—;))tT:O is a random walk,
possibly with drift. In finance the latter model is called the Cox, Ross, and
Rubinstein model [CRR 79]. These authors analyzed this model as a discrete
analogue to geometric Brownian motion.

In the former case, i.e., the simple random walk, where (S; — S;_1)7_, are
i.i.d. random variables taking values oAz with probability %, the original
measure P is already the unique martingale measure for the process (S;)7_-
Hence we deduce from corollary 3 that the unique arbitrage-free price of a
contingent claim f € L°(P) is given by Ep[f], which justifies Bachelier’s
“fundamental principle” on the basis of no-arbitrage arguments for the model
of a simple random walk.
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In the Cox-Ross-Rubinstein case the original measure P — in general —
is not a martingale measure, but it is easy to explicitly calculate the density
% (which amounts to a discrete version of Girsanov’s theorem).

In both cases the pricing formulae for an option reduce to the calculation
of the expected value of the hockey-stick function f(z) = (z — K)4 with
respect to a binomial distribution, placed on a sequence of points in arithmetic
progression in the former and on a sequence in geometric progression in the
latter case.

We leave the elementary but somewhat cumbersome calculations of the
resulting formulae in the first case to the energetic reader (who may also find
the calcuations essentially in Bachelier’s thesis) and in the second case we
refer to the beautiful book by Lamberton and Lapeyre [LL 96], where these
calculations are presented in a clean and transparent way.

We now pass on to the continuous limits of these models (if properly
normalised), where — as usual in mathematics — the results and formulae
become more elegant and more transparent.

To do so, we recall the martingale representation theorem for Brownian
motion, which is the continuous analogue to the elementary considerations on
the binomial model above.

Theorem 5. (see, e.g., [RY 91]) Let (Wy)o<i<t be a standard Brownian mo-
tion modeled on (§2, (Fi)o<i<T,P), where (Fi)o<i<T s the natural (saturated)
filtration generated by W .

Then P is the unique measure on Fr which is absolutely continuous with
respect to P, and under which W is a martingale.

Correspondingly, for every function f € L' (2, Fr,P) there is a unique
predictable process H = (Hy)o<i<T Such that

f=E[f]+H -W)r, (56)
and

E[f|7] =E[f]+ (H-W);, 0<t<T, (57)
which implies in particular that (H-W) is a uniformly integrable martingale.

Bachelier’s model revisited:
Let us restate Bachelier’s model in the framework of the formalism devel-
oped above: let By = 1 and S; = So+0W;, 0 <t < T, where Sy is the current
stockprice, o > 0 is a fixed constant, and W is standard Brownian motion on

its natural base (§2, (F¢)o<t<T,P).
Fixing the strike price K, we want to price and hedge the contingent claim

fw) = (Sr(w) — K)y € LY2, Fr,P). (58)

Using the martingale representation theorem we may find a trading strategy
H s.t.
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f=E[fl+H-W)r (59)
= E[f]+ (H-5)r,

where H = g Noting that B; = 1 implies that assumption 1 is satisfied, we
deduce from (9) above that

C(S0,T) = B[] = (So — K)& (S;\;TK> +oVTo <52;TK> (60)

By the same token we obtain, for every 0 < ¢t < T, and conditionally on
the stock price having the value S; at time ¢,

C(st,T—t)::E[f|st]:(st—K)¢<US:t/T__>+a\/T—go< Ti).
6

Hence this solves the pricing problem, which now is based on the no-
arbitrage considerations rather than on accepting Bachelier’s fundamental
principle, as we now have the “replication formula” (59).

But what is the trading strategy H, in other words, the recipe to replicate
the option by trading dynamically? Economic intuition suggests that we have

H(S,t) = %C(S, T —t). (62)

Indeed, consider the following heuristic reasoning using infinitesimals: sup-
pose at time ¢ the stock price equals Sy so that the value of the option equals
C(St,t). During the infinitesimal interval (¢,t + dt) the Brownian motion W,
will move by dW; = Wyyar — Wy = e,Vdt, where Ple; = 1] = Ple; = —1] = &
so that S; will move by dS; = Sipqt — St = e;av/dt. Hence the value of the
option C(St,t) will move by dC; = C(S¢qqt, T — (t + dt)) — C(Sg, T — t) =
€25 (S, T — t)o/dt, where we neglect terms of smaller order than v/dt. In
other words, the ratio between the up or down movement of the underlying
stock S and the option is

C dSt = € gs (St, ) dt : GtO'\/E (63)
e
aS (St7 )

If we want to replicate the option by investing the proper quantity H of
the underlying stock, formula (63) suggests that this quantity should equal

95(S, T —t)
85( b :
After these motivating remarks, let us deduce the equation

H(S,t) = %(St,T — 1) (64)

more formally. Consider the stochastic process
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C(S;, T —t)=C(So+ oW, T —1t), 0<t<T, (65)

of the value of the option. By It6’s formula

ocC oC  19%°C .
where we have used dS; = odW;. One readily deduces from formula (61) that
C verifies the heat equation with parameter "72 displayed in (68) below (time
is running into the negative direction in the present setting). In particular, for
the function C defined in (61), the drift term in (66) vanishes as it must be the
case according to the general theory (the option price process is a martingale
by (57)). Hence (66) reduces to the formula

C(S:, T —t) =C(So,T)+ (H-S), (67)

where H is given by (64). Rephrasing this result once more we have shown that
the trading strategy H, whose existence was guaranteed by the martingale
representation, is of the form (64).

One more word on the fact that C(S,T — t) satisfies the heat equation,
which may be verified by simply calculating the partial derivatives in (61).
Admitting this calculation, we concluded above that the drift term in (66)
vanishes. One may also turn the argument around to conclude from (57) that
the drift term in (66) must vanish, which then #mplies that C'(S,T — t) must
satisfy the heat equation (time running inversely)

oC % 9°C
ot ($T-8=-3 952 (
Imposing the boundary condition C(S,T —T) = C(S,0) = (S — K)+ one may
derive from this p.d.e. by standard methods the solution (61). This is, in fact,
how F. Black and M. Scholes originally proceeded (in the framework of their
model, which we shall analyse in a moment). Let us also give the heuristic
argument to deduce the p.d.e. (C10) from Bachelier’s “fundamental principle”
and It6’s formula.
Suppose there is a “formula” C(S¢, T —t) which gives the value of an option
for every 0 <t < T and S; € R. By assumption, at the terminal date ¢t = T
we have the boundary condition C(St,T —T') = C(St,0) = (ST — K)+.
Applying Bachelier’s fundamental principle (remember this wonderful pas-
sage following the formulation of his “fundamental principle”, which describes
the idea of a martingale!) the stochastic process (C(S¢, T —1t))o<¢<7 should be
a martingale. Therefore the drift term in (66) should vanish, which amounts
to formula (68).

The Black-Scholes model:
This model of a stock market was proposed by the famous economist
P. Samuelson in 1965 ([S 65]), who at this time was aware of Bachelier’s work.

S, T —1). (68)
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In fact, triggered by a question of J. Savage, it was P. Samuelson who had
rediscovered Bachelier’'s work for the economic literature some years before
1965.

The model is usually called the Black-Scholes model today and became
the standard reference model in the context of option pricing:

_ rt
Bt—e 5

2
Sy, = Sge?Wetl=—%)t 0 <t <T. (69)
Again W is a standard Brownian motion with natural base (2, (F;)o<i<7,P).
The paramenter r» models the “riskless rate of interest”, while the parame-
ter u models the average increase of the stock price. Indeed using Ito’s formula
one may describe the model equivalently by the differential equations:

dB;

E = Tdt, (70)

ds,

?t = pdt + odW,. (71)
t

The numéraire in this model is just the relevant currency (say €); in order
to remain consistent with the above theory, we shall rather follow our usual
procedure of taking a traded asset as numéraire, namely the bond. We then
have

Et =1, (72)
5y = SperWetur—0

The tilde indicates that we now have denominated B; and S; in terms of
the bond By, i.e., we have discounted them. We shall write v for y —r which is
called the “excess return”. The only thing we have to keep in mind by passing
to the bond as numéraire, is that now quantities have to be expressed in terms
of the bond: in particular, if K denotes the strike price of an option at time 7'
(expressed in € at time T'), we have to express it as Ke~"T units of the bond.

Contrary to Bachelier’s setting, the process

~ -2
Sy = Spe?Wetlv=F)t 0 << T, (73)

is not a martingale under P (unless v = 0, which typically is not the case).
The unique martingale measure @ for S (which is absolutely P-continuous)
is given by Girsanov’s theorem (see [RY 91] or any introductory text to Math-
ematical Finance)
dQ

v v?

Let us price and hedge the contingent claim f(w) = (St(w) — Ke~"T),,
which is the pay-off function of the European call option with exercise time
T and strike price K (expressed in terms of €).
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Noting that (Wi + vt);>0 is a standard Brownian motion under ¢ and
applying theorem 5 to the Q-martingale S, we may calculate

C(50,T) = BolJ] = Bo | (Soe™r =57 - ge=rT) | (73

27

= SoEq I:eaﬁZ_UTX{STZK}] — Ke "TQ[Sr > K],

where Z denotes a N (0, 1)-distributed random variable under Q.
After an elementary but tedious calculation (see, e.g., [LL96]) this yields
the famous Black-Scholes formula

In(52) + (r + 2)T
C(S0,T) = S0P K 2 76
(50, T) = So < T (76)

In(52) + (r — 2)T
- K —TT@ K 2
¢ ( oVT
and, by the same token, for 0 <t <7, and S; > 0,
In(5) + (r + ) (T — 1)

C(S;, T —t) = So® K 2 7

o (I3 + (r = ST — 1)
- Ke T@( K gy )

Let us take some time to contemplate on this truly remarkable formula
(for which R. Merton and M. Scholes received the Nobel prize in economics
in 1997; F. Black unfortunately had passed away in 1995).

1.) As a warm-up consider the limits as ¢ — oo (which yields C(Sy,T) = Sp)
and ¢ — 0 (which yields C(Sy,T) = (So — Ke~""),). The reader should
convince herself that this does make sense economically. For an extremely
risky underlying .S, an option on one unit of S is almost as valuable as one
unit of S itself (think, for example, of a call option on a lottery ticket with
K = 100 and exercise time 7', such that T is later than the drawing where
it is decided, whether the ticket wins a million or not). On the other hand,
if the underlying S is almost riskless a similar consideration reveals that the
value of an option is almost equal to its “inner value” (S — Ke "1),.

This behavior of the Black-Scholes formula should be contrasted to Bache-
lier’s formula (specializing to the case Sy = K and r = 0)

; o
CBacheher S, ,T — \/T 78
obtained in (10) above, which tends to infinity as o — oo; this limiting be-
haviour is economically absurd and contradicts an obvious no-arbitrage argu-
ment which — using the fact that St is non-negative — shows that the value
of a call option always must be less than the value of the underlying stock.
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The reason for this difference in the behaviour of the Black-Scholes formula
and Bachelier’s one, for large values of ¢, is that geometric Brownian motion
always remains positive, while Brownian motion may also attain negative
values, a fact which has strong effects for very large ¢ or — what amounts to
the same, at least in the case r = 0 — for very large T'. Nevertheless we shall
presently see that — for reasonable values of o and 7' — the Black-Scholes
formula and Bachelier’s formula (78) are very close. This seems to be the
essential fact, keeping in mind Keynes’ dictum telling us, not to look at the
limit 7" — oo: in the long run we all are dead.

2.) Let us compare the Black-Scholes formula (76) and Bachelier’s formula
(78) more systematically. To do so we specialize in the Black-Scholes formula
tor =0 and Sy = K, and we have to let the o in the Black-Scholes formula,
which we now denote by ¢B>, correspond to the ¢ appearing in Bachelier’s
formula, denoted by o®. As the former pertains to the relative standard de-
viation of stock prices and the latter to the absolute standard deviation, we
roughly find the correspondence — at least for small values of T' —

0B~ B85, (79)

Hence, in this special case, the Black-Scholes and Bachelier option prices to
be compared are

OPS = 5, lds (aBszx/T) 5 (_ 0B52ﬁ> ’ (80)
while 5 -

The difference of the two quantitaties is best understood by looking at the

:::2

shaded area in the subsequent graph involving the density ¢(z) = \/%e’ z
of the standard normal distribution, and noting that ¢(0) = \/%7
Developping () into a Taylor series around zero and using ¢ (0) = — ors

we get the asymptotic expression

OB — B8 = g, { ! (UBS\/T)T +o <(UBS\/T)3> L (82)

244/ 27

which indicates a very good fit, if ®5+/T is small. Evaluating this expression
for the empirical data reported by Bachelier, i.e., 05 &~ 2.4% on a yearly
basis, and T' ~ 2months = %year (this is a generous upper bound for the
periods considered by Bachelier which were ranging between 10 and 45 days)
we find

T N\ s
ct-cC ~5024\/2_ 0.0244/% | ~1.56%107°S,. (83)
v
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obmm - =

(h)

Fig. 3. Comparison of the Bachelier with the Black-Scholes formula.

Hence for this data the difference of the option value obtained from Bache-
lier’s or the Black-Scholes model is of the order 10~ times the value Sy of the
underlying; keeping in mind, that for Bachelier’s data, the price of an option
was of the order of Sp/100, we find that the difference is of the order 1079 of
the price of the option.

In view of all the uncertainties involved in option pricing, in particular
as regards the estimation of o, one might be tempted to call this quantity
“completely negligible, a priori” (this expression was used by Bachelier when
discussing the drawbacks of the normal distribution giving positive probability
to negative stock prices).

3.) Let us now comment on the role of the riskless rate of interest r, appearing
in the Black-Scholes formula and the reason why this variable does not show
up in Bachelier’s formula: noting the obvious fact that

So _ So
In (E) +7T =In <K€TT> , (84)

one readily observes that this quantity only enters the Black-Scholes formula
(76) via the discounting of the strike price, i.e., transforming K units of €,=r
into Ke~ "7 units of €,—g. When comparing the setting of Black-Scholes to
that of Bachelier one should recall that the option premium in Bachelier’s
days pertained to a payment at time T or, in modern terms, was expressed
in terms of a zero coupon bond maturing at time 7. Under the assumption
of a constant riskless interest — as is the case in the Black-Scholes model —
this amounts to considering the present day quantities upcounted by e"T. This
was perfectly taken into account by Bachelier, who stressed that the quantities
appearing in his formulae have to be understood in terms of “true prices”, i.e.,
forward prices in modern terminology, which amounts to upcounting by e™”
in the present setting. In fact, we have seen in section 1 that Bachelier did
even more, as he in addition was considering the “contangoes”, which — in
modern terminology — correspond to a continuous yield on the stock.
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The bottom line of these considerations on the role of r is: when we as-
sumed that » = 0 in the above comparison of the Bachelier and Black-Scholes
option pricing methodology, this assumption did not restrict the generality
of the argument: it also applies to r # 0 as Bachelier denoted the relevant
quantities in terms of “true prices”.

4.) What is the partial differential equation satisfied by the solution (77) of
the Black-Scholes formula? Again we specialize to the case r = 0 in order to
focus the attention of the reader to the crucial aspect, but we note that now we
do restrict the generality and refer to any introductory text to Mathematical
Finance (e.g., [LL 96]) for the Black-Scholes partial differential equation in the
case of a riskless rate of interest r # 0.

From the Martingale Representation Theorem 5 above we know that the
Black-Scholes option price process

C(S¢, T — t)o<i<T (85)

is a martingale under the measure @ defined in (74). Hence, denoting by

(Wt)0<t<T a standard Brownian motion under @), using dS; = O'Stth, and
working under the measure @), we obtain from It6’s formula

. 2
dCt = dC(St,T — t) = g—gaStth + < Stz gSC; + %f) dt. (86)

We first observe, using again oStth = dS;, that — similarly as in the
context of Bachelier — the replicating trading strategy H:(w) is given by
8¢ (S¢(w), T —t). In the lingo of finance this quantity is called the “Delta” of
the option (which depends on S; and t), and the trading strategy H is called
“delta-hedging”.

Next we pass to the drift term: as it must vanish, we arrive at the “Black-
Scholes partial differential equation”

ocC

( 02C
ot

S, T — ):——Szasz(

S, T —t), for S>0,t>0. (87)

This is the multiplicative analogue of the heat equation (68) and may, in
fact, easily be reduced to a heat equation (with drift) by passing to logarithmic
coordinates z = In(S).

Exactly as in Bachelier’s case we may proceed by solving the partial dif-
ferential equation (87) for the boundary condition C(S,T —T) = C(S,0) =
(S — K)4 and C(0,t) = 0 to obtain the Black Scholes formula.

In the hngo of finance, the quantity —%+ is called the “Theta” and the

quantity 852 ¢ the “Gamma” of the option. Hence the p.d.e. (87) allows for the
following economic interpretation: the loss of value of the option, when time
to maturity T'— ¢ decreases (and S remains fixed), is equal to the “convexity”

r “gamma’” of the option price (as a function of S) at time ¢, normalized by
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"7252 (in the case of the Bachelier model the normalisation was simply §)
This has a good economic interpretation and today’s option traders think
in these terms. They speak about “selling or buying convexity” or rather
“going gamma-short or gamma-long” which amounts to the same thing. The
interpretation of (87) is that, for the buyer of an option, the convexity of the
function C(S,T —t) in the variable S corresponds to a kind of insurance with
respect to price movements of S. As there is no such thing as a free lunch,
this insurance costs (proportional to the second derivative) and a positive
‘77252 gﬁg is reflected by a negative partial derivative % of C(S,T —t) with
respect to time t.

Let us illustrate this fact by reasoning once more heuristically with in-
finitesimal movements of Brownian motion: we want to explain the infinitesi-
mal change of the option price when “time increases by an infinitesimal while
the stock price S remains constant”. To do so we apply the heuristic ana-
logue of the Brownian bridge: consider the infinitesimal interval [¢,¢ + 2dt]

and assume that the driving @-Brownian motion W moves in the first half
[t,t + dt] from W to Wy + eVdt, where ¢ is a random variable with
Qlee = 1] = Qle, = —1] = 1, while in the second half [t + dt,t + 2dt] it
moves back to ;. What happens during this time interval to a “hedger”
who proceeds according to the Black-Scholes trading strategy H described
above, which replicates the option? At time ¢ she holds %(St,T — t) units
of the stock. Following first the scenario ¢, = +1, the stock has a price of
S; + 0S;V/dt at time ¢ + dt. Appart from being happy about this up move-
ment, the hedger now (i.e., at time ¢ + dt) adjusts the portfolio to hold
9C(Se + 0S;Vdt, T — (t + dt)) units of stock, which results in a net buy of
ngg(St, T — t)oS;V/dt units of stock, where we neglect terms of smaller order
than V/dt. In the next half [t + dt,t + 2dt] of the interval the stock price S
drops again to the value Si424: = St and the hedger readjusts the portfolio by
selling again the %(St, T — t)oS;V/dt units of stock (neglecting again terms
of smaller order than v/dt). It seems at first glance that the gains made in
the first half are precisely compensated by the losses in the second half, but
a closer inspection shows that the hedger did “buy high” and “sell low”: the
quantitiy gZTC;(St, T —t)0.S;V/dt was bought at price S; +0S;V/dt at time ¢ +dt,
and sold at price S; at time ¢ + 2dt, resulting in a total loss of
2 2
(%(Stj - t)astm) (ast\/a) - 0253%(5,5,T —f)dt. (88)
Going through the scenario ¢; = —1, one finds that the hedger did first
“sell low” and then “buy high” resulting in the same loss (where again we
neglect infinitesimals resulting in effects (with respect to the final result) of
smaller order than dt).
Keeping in mind that this was achieved during an interval of total length
2dt we have found a heuristic explanation for the Black-Scholes equation (87)
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(we also note that the same argument, applied to Bachelier’s model, yields
a heuristic explanation of the heat equation (68)). The general phenomenon
behind this fact is that, in the case of convexity, the “wobbling” of Brownian
motion, which is of order v/dt in an interval of length dt, causes the hedger

to have systematic losses, which are proportional to ‘9S€ as well as to the

increment d(S); of the quadratic variation process (S); = [; 0>S2du of the
stock price process S.

5.) When deriving the Black-Scholes formula (76) we did not go through the
(elementary but tedious) trouble of explicitly calculating (75). We shall now
furnish an explicit derivation of the formula which has the merit of yielding
an interpretation of the two probabilities appearing in (76). It also allows for
a better understanding of the formula (for example, for the remarkable fact,
that the parameter p has disappeared) and which also dispenses us of some
troubles in the calculation. B

As observed in (75) above, the contingent claim f(w) = (S7(w)—Ke™"T),
(expressed in terms of the numeraire B;) splits into

(ST = Ke ™)1 = STX 5,5 k011 — KT X 5,5 10001y (89)
= Stx(sr>xy — Ke 7" X(sr> k)
= f1— fo-

We have to calculate Eg[fi1] and Eg[f.] under the risk-neutral measure Q
defined in (74). This is easy for f» and we do not have to use the explicit form
of the density (74) prov1ded by Girsanov’s theorem. It suffices to observe that

St So exp(aWt — —t) where W is a Brownian motion under Q. So
In ( ) + < T
Xi=———F——~N(0,1 under @, 90
L 0.1 Q (90)
whence
Eolf2] =e "TK Q[Sy > ¢ "TK] (91)

”

. (;\); o7 b (€SE2+ 27

77‘TK 2
X>1n(e So )+07T

— efrTKQ
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which yields the second term of the Black-Scholes formula.

Why was the calculation of Eq[fz] so easy? Because the amount Ke
is just a constant (expressed in terms of the present numéraire); hence the
calculation of the expectation reduced to the calculation of the probability
of an event, namely the prohability that the option will be exercised, with
respect to ().

To proceed similarly with the calculation of Eg[fi] we make a change of
numéraire, now choosing the risky asset S in the Black-Scholes model (69) as
numéraire. Under this numéraire the model reads

—rT

i — Sale—owt+(r—u+§)t (92)
St

St

— =1

St

where W is a standard Brownian motion under P. The reader certainly has
noticed the symmetry with (72). But what ist the probability measure @
under which the process %‘ becomes a martingale? Using Girsanov we can

explicitly calculate the density %; but, in fact, we don’t really need this full
information. All we need is to observe that we may write

- = 561670Wt7%t7 (93)

where T is a standard Brownian motion under @ (the reader worried by the
minus sign in front of W; may note that —T¥ also is a standard Brownian
motion under Q). We now apply the change of numéraire theorem (in the
form of corollary 3) to calculate Eg[fi]. In fact, we have only proved this
theorem for the case of finite {2, but we trust in the reader’s faith that it also
applies to the present case (for a thorough investigation for the validity of
this theorem for general locally bounded semi-martingale models we refer to
[DS95]). Applying this theorem we obtain

Eq[fi] = Eq {ETX{;_?%TTK}} (94)

= SoEg

Sr
EX{?_;SeTTK—I}
= SO EQ |:X{SO_1EUWT°'22TS6TTK_1}:|

= SO Q [So@aWT‘F%T Z eirTK:| .
Noting that Wy /v/T is N(0,1)-distributed under @, this expression is com-

pletely analogous to that appearing in (91), with the exception that now there
is a plus in front of the term "2—2T. Hence we get
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ln(%)+(r+"2—2)T

Eqlfi] = So® = :

(95)

which is the first term appearing in the Black-Scholes formula. We now may
) P 111(%—0)+(r+§)T
interpret Y, S—

ercised, with respect to Q.

> as the probability, that the option will be ex-
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4 The No-Arbitrage Theory for General Processes

We now again take up the theme of the no-arbitrage theory as developed in
section 2: what can we deduce from applying the no-arbitrage principle with
respect to pricing and hedging of derivative securities?

While we obtained satisfactory and mathematically rigorous answers to
these questions in the case of a finite underlying probability space {2 in section
2, we saw in section 3, that the basic examples for this theory, the Bachelier
and the Black-Scholes model, do not fit into this easy setting, as they involve
Brownian motion.

In section 3 we coped with the difficulty either by using well-known results
from stochastic analysis (e.g., the martingale representation theorem 5 for the
Brownian filtration), or by appealing to the faith of the reader, that the results
obtained in the finite case also carry over — mutatis mutandis — to more
general situations, as we did when applying the change of numéraire theorem
to the calculation of the Black-Scholes model.

In the present chapter we want to develop a “théorie génerale of no-
arbitrage” applying to a general framework of stochastic processes. The de-
velopment of Mathematical Finance since the work of Black, Merton and
Scholes made it clear, that the relatively poor fit of the Black-Scholes model
(as well as Bachelier’s model) to empirical data (especially with respect to
extremal behaviour, i.e., large changes in prices) makes it necessary for many
applications, to pass to more general models; in some cases these models still
have continuous paths, but also processes (in continuous time) with jumps are
increasingly gaining importance.

We adopt the following general framework: let S = (S;)¢>0 be an RIF1-
valued stochastic process based on and adapted to the filtered probability
space (£2,F, (F)i>0,P). Again we assume that the zero coordinate S, called
the bond, is normalised to SP = 1.

We first will make a technical assumption, namely that the process S is
bounded, i.e., that there exists a sequence (7,,)52; of stopping times, increas-
ing a.s. to +oo, such that the stopped processes S{» = Sinr, are uniformly
bounded, for each n € N. Note that continuous processes — or, more gener-
ally, cadlag processes with uniformly bounded jumps — are locally bounded.
This assumption will be very convenient for technical reasons, and only at
the end of this section we shall indicate, how to extend to the general case of
processes, which are not necessarily locally bounded.

We have chosen [0, oo[ for the time index set in order to allow for maximal
generality; of course this also covers the case of a compact interval [0,7],
which is relevant in most applications, by assuming that S; is constant, for
t > T. We shall always assume that the filtration (F;);>0 satisfies the usual
assumptions of right continuity and saturatedness, and that .S has a.s. cadlag
trajectories.
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How to define the trading strategies H, which played a crucial role in the
preceding sections? A very elementary approach, corresponding to the role of
step functions in integration theory, is formalized by the subsequent concept.

Definition 9. (compare, e.g., [P 90]) For a locally bounded stochastic process
S we call an R -valued process H = (Hy)t>0 a simple trading strategy (or,
speaking more mathematically, o simple integrand), if H is of the form

n
H= ZhiXﬂTi—lvTi]]’ (96)
=1
where 0 = 19 < 1 < ... < 7, are finite stopping times and h; are F,,_,-

measureable, R? -valued functions.
We then may define, similarly as in definition 4, the stochastic integral
(H-S) as the stochastic process

n

(HS)t = Z (h'Za S‘ri/\t - S‘ri_l/\t) (97)

i=1

n d
= Zzhi (Sii/\t - Sii,l/\t) ; 0<t<oo,

i=1 j=1

and its terminal value as the random variable

(HS)OO = zn:(hlas‘n - S‘ri—l)' (98)

i=1

We call H admissible if, in addition, the stopped process S™ and the func-
tions hi, ..., hy, are uniformly bounded.

This definition is a well known building block for developing a stochastic
integration theory (see, e.g., [P 90]). It has a clear economic interpretation in
the present context: at time 7;,_; an investor decides to adjust her portfolio in
the assets S',...,S57,...,5¢ by fixing her investment in asset S7 to be h(w)
units; we allow hg to have arbitrary sign (holding a negative quantity means
borrowing or “going short”), and to depend on the random element w in an
Fr,_,-measurable way, i.e., using the information available at time 7;,_;. The
funds for adjusting the portfolio in this way simply are financed by taking
the appropriate amount from (or putting into) the “cash box”, modeled by
the numéraire S° = 1. The investor holds this portfolio fixed up to time ;.
During this period the value of the risky stocks S7, j = 1,...,d, changed
from S7. (w) to S7 (w) resulting in a total gain (or loss) given by the random
variable (h;, Sr; — Sr,_,). At time 7;, for i < n, the investor readjusts the
portfolio again and at time 7, she liquidates the portfolio, i.e., converts all her
positions into the numéraire. Hence the random variable (H-S),, = (H-S)
models the total gain (in units of the numéraire Sy) which she finally, i.e., at
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time 7, obtained by adhering to the strategy H; the process (H -S); models
the gains accumulated up to time ¢.

The concept of a simple trading strategy is designed in a purely algebraic
way, avoiding limiting procedures, in order to be on safe grounds.

The next crucial ingredient in developing the theory is the proper gener-
alisation of the notion of an equivalent martingale measure.

Definition 10. A probability measure Q) on F which is equivalent (resp. ab-
solutely continuous with respect) to P is called an equivalent (resp. absolutely
continuous) local martingale measure, if S is a local martingale under Q.

We denote by M¢(S) (resp. M®(S)) the family of all such measures, and
say that S satisfies the condition of the existence of an equivalent local mar-
tingale measure (EMM), if M¢(S) # (.

Note that, by our assumption of local boundedness of S, we have that S
is a local @-martingale, iff S™ is a )-martingale for each stopping time 7 such
that S7 is uniformly bounded.

Why did we use the notion of a local martingale instead of the more
familiar notion of a martingale? The reason is, that it is the natural degree of
generality. The subsequent easy lemma (whose proof is an obvious consequence
of the chosen concepts and left to the reader) shows that this notion serves
just as well as the notion of a martingale for the present purpose of a no-
arbitrage theory. On the other hand, the restriction to the notion of martingale
measures would make it impossible to formulate the general version of the
fundamental theorem of asset pricing (theorem 1 below), as may bee seen
from easy examples (see, e.g., [DS94a]).

Lemma 2. A locally bounded semi-martingale S is a local martingale under
Q if

Eq[(H:-S)x] =0, (99)
for each admissible simple trading strategy H .

For later use we note that the “=” in (99) may equivalently be replaced

by “S” (OI‘ “277)'
We define the subspace K™mPle of [°(§2, F,P) of contingent claims avail-
able at price zero via an admissible simple trading strategy by

KSmPle = {(H.S). : H simple, admissible} (100)

and by C®™P!€ the convex cone in L ({2, F,P) of contingent claims dominated
by some f € K

Csirnple — Ksimple _ Lf — {f — k- f c Ksimple,k_ Z 0} . (101)

Definition 11. S satisfies the no-arbitrage condition (NA) with respect to
simple integrands, if Ksmple NLY (02, F,P) = {0} (or, equivalently, Csimple
L (02, F,P) = {0}).
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We want to prove a fundamental theorem of asset pricing analogous to
theorem 1 above. But now things are more delicate and the notion of (NA)
defined above is not sufficiently strong to imply this result:

Proposition 2. The condition (EMM) of the existence of an equivalent local
martingale measure implies the condition (NA) of no-arbitrage with respect to
simple integrands, but not vice versa.

Proof (EMM) = (NA): this is an immediate consequence of lemma 2, noting
that for  ~ P, and a non-negative function f > 0, which does not vanish
almost surely, we have Eg[f] > 0.

(NA) # (EMM): we give an easy counterexample which is just an infinite
random walk.

Let t, = 1 — -2~ and define the R-valued process S to start at So = 1,

n+1
and to be constant except for jumps at the points ¢,, which are defined as

AS, =2 ", (102)

such that (e,)22; are independent random variables taking the values +1 or
—1 with probabilities

1+ o,
2 )

Plen = —1] = 1= % (103)

Ple, =1] = 5

where (a;)32; is a sequence in | — 1, +1[ to be specified below.

Clearly this well-defines a bounded process .S, for which there is a unique
measure @ on (2, F) = ({—1,1}, Borel ({—1,1}"), under which S is a mar-
tingale; this measure is given by

Qlen = 1= Qlen = 1] = 3, (104)

and (€,)52; are independent under Q.

By a result of Kakutani (see, e.g. [W91]) we know that @ is either
equivalent to P, or P and () are mutually singular, depending on whether
Yoo, a2 < oo or not.

Taking, for example, a, = %, for all n € N, we have constructed a process
S on (£2,F,P), for which there is no equivalent (local) martingale measure
Q. On the other hand, it is an easy and instructive exercise to show that, for

simple trading strategies, there are no-arbitrage opportunities for the process
S. O

The example in the above proof shows, why the no-arbitrage condition
defined in 11 is too narrow: it is intuitively rather obvious that by a sequence of
properly scaled bets on a (sufficiently) biased coin one can “produce something
like an arbitrage”, while a finite number of bets (as formalized by definition
9) does not suffice to do so.
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But here we are starting to move on thin ice, and it will be the crucial
issue to find a mathematically precise framework, in which the above intuitive
insight can be properly formalized.

A decisive step in this direction was done in the work of D. Kreps [K 81],
who realized that the purely algebraic notion of no-arbitrage with respect to
simple integrands has to be complemented with a topological notion:

Definition 12. (compare [K 81]) S satisfies the condition of no free lunch
(NFL), if the closure C of C*'™P!®  taken with respect to the weak-star topology
of L>®(02, F,P), satisfies

CnNL>(2,F,P)={0}. (105)

This strengthening of the condition of no-arbitrage is taylor-made so that
the subsequent version of the fundamental theorem of asset pricing holds true.

Theorem 6 (Kreps - Yan). A locally bounded process S satisfies the con-
dition of no free lunch (NFL), iff condition (EMM) of the existence of an
equivalent local martingale measure is satisfied:

(NFL) <= (EMM). (106)

Proof (EMM) = (NFL): This is still the easy part. By lemma 2 we have
Eg[f] < 0, for each Q € M*(S) and f € C®™Ple  and this inequality also
extends to the weak-star closure C. On the other hand, if (EMM) would hold
true and (NFL) were violated, there would exist a @ € M¢(S) and f € C,
f > 0 not vanishing almost surely, whence Eg[f] > 0, a contradiction.

(NFL) = (EMM): We follow the strategy of the proof for the case of finite
£2, but have to refine the argument:

Step 1 (Hahn-Banach argument): ~We claim that, for fixed f € LY,
f # 0, there is g € LY which, viewed as a linear functional on L, is less
than or equal to zero on C, and such that (f,g) > 0. To see this, apply the
separation theorem (e.g., [Sch66, th. II, 9.2]) to the o*-closed convex set C'
and the compact set {f} to find g € L' and o < 3 such that glz < a and
(f,g) > B. Since 0 € C' we have a > 0. As C is a cone, we have that g is zero
or negative on C and, in particular, nonnegative on L, ie. g€ L}r. Noting
that 8 > 0 we have proved step 1.

Step 2 (Ezhaustion Argument): Denote by G the set of all g € L1, g <0
on C. Since 0 € G (or by step 1), G is nonempty.

Let S be the family of (equivalence classes of) subsets of {2 formed by the
supports of the elements g € G. Note that S is closed under countable unions,
as for a sequence (g,)5, € G, we may find strictly positive scalars (ay)52;,
such that 3 | angn € G. Hence there is go € G such that, for So = {go > 0},
we have

P(Sy) = sup{P(S): S €g}. (107)
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We now claim that P(Sp) = 1, which readily shows, that go is strictly
positive almost surely. Indeed, if P(Sp) < 1, then we could apply step 1 to
f = X(a2\s0) to find g1 € G with

(fo0n) = /Q BP0 (108)

Hence, go+ g1 would be an element of G whose support has P-measure strictly
bigger than P(Sy), a contradiction.

Normalize go so that ||go||l1 = 1 and let @ be the measure on F with
Radon-Nikodym derivative d@/dP = go. We conclude from lemma 2 that @
is a local martingale measure for S, so that M¢(S) #0. O

Some comments on the Kreps-Yan theorem seem in order: this theorem was
obtained by D. Kreps [K 81] in a more general setting and under a — rather
mild — additional separability assumption; the reason for the need of this
assumption is that D. Kreps did not use the above exhaustion argument, but
rather some sequential procedure relying on the separability of L'(§2, F,P).
Independently, and at about the same time, Ji-An Yan [Y 80] proved in a
different context, namely the characterisation of semi-martingales as good
integrators, and without a direct relation to finance, a general theorem. C.
Stricker [S90] observed, that Yan’s theorem may be applied, to quickly yield
the above theorem without any separability assumption. We therefore took
the liberty to name it after these two authors.

The message of the theorem is, that the assertion of the “fundamental
theorem of asset pricing” 1 is valid for general processes, if one is willing to
interpret the notion of “no-arbitrage” in a somewhat liberal way, crystallized
in the notion of “no free lunch” above.

What is the economic interpretation of a “free lunch”? By definition S
violates the assumption (NFL), if there is a function go € LY (£2, F,P), go # 0,
and nets (ga)acer, (fa)aer in L®(£2, F,P), such that fo, = (H*-S)x for some
admissible, simple integrand H®,g, < fa, and limaecr go = 9o, the limit
converging with respect to the weak-star topology of L°° ({2, F,P). Speaking
economically: an arbitrage opportunity would be the existence of a trading
strategy H such that (H-S)s > 0, almost surely, and P[(H-S)s > 0] > 0. Of
course, this is the dream of each arbitrageur, but we have seen, that — for the
purpose of the fundamental theorem to hold true — this is asking for too much
(at least, if we only allow for simple admissible trading strategies). Instead, a
free lunch is the existence of a contingent claim gy > 0, go # 0, which may,
in general, not be written as (or dominated by) a stochastic integral (H-S)oo
with respect to a simple admissible integrand; but there are contingent claims
Jga “close to go”, which can be obtained via the trading strategy H®, and
subsequently “throwing away” the amount of money f, — ga-

This triggers the question whether we can do somewhat better than the
above — admittedly complicated — procedure. Can we find a requirement
sharpening the notion of “no free lunch”, i.e., being closer to the original
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notion of “no-arbitrage” and such that a — properly formulated — version of
the “fundamental theorem” still holds true?

Here are some mathematically precise questions related to our attempt to
make the process of taking the weak-star closure more understandable:

(1) is it possible, in general, to replace the net (g,)aer above by a sequence
(92)307

(ii) can we choose the net (ga)aer (or, hopefully, the sequence (g)5) such
that (gq)aer remains bounded in L (P) (or at least such that the negative
parts ((ga)—)aer remain bounded)? This latter issue is crucial from an eco-
nomic point of view, as it pertains to the question whether the approximation
of f by (ga)acr can be done respecting a finite credit line.

(iii) is it really necessary to allow for the “throwing away of money”?

It turns out that questions (i) and (ii) are intimately related and, in gen-
eral, the answer to these questions is no. In fact, the study of the pathologies
of the operation of taking the weak-star closure is an old theme of functional
analysis. On the very last pages of S. Banach’s original book ([B 32]) the fol-
lowing example is given: there is a separable Banach space X such that, for
every given fixed number n > 1 (say n = 35), there is a convex cone C in
the dual space X*, such that C ¢ ¢V ¢ 0® ¢ ... ¢ O = 0"+) = C,
where C*) denotes the sequential weak-star closure of C*=1) i.e., the limits
of weak-star convergent sequences (;)3%,, with z; € C*=1 and C denotes
the weak-star closure of C'. In other words, by taking the limits of weak-star
convergent sequences in C' we do not obtain the weak-star closure of C' imme-
diately, but we have to repeat this operation precisely n times, when finally
this process stabilizes to arrive at the weak-star closure C.

In Banach’s book this construction is done for X = ¢g and X* = [' while
our present context is X = L'(P) and X* = L*(P). Adapting the ideas
from Banach’s book, it is possible to construct a semi-martingale S such that
the corresponding convex cone C$™P!¢ has the following property: taking the
weak-star sequential closure (C*Ple)(1) | the resulting set intersects L5°(P)
only in {0}; but doing the operation twice, we obtain the weak-star closure
C® =, and C intersects L¥(P) in a non-trivial way (see [DS 94, example
7.8]). Hence we cannot reduce to sequences (g, )% in the definition of (NFL).
The construction of this example uses a process with jumps; for continuous
processes the situation is, in fact, nicer, and in this case it is possible to give
positive answers to questions (i) and (ii) above (see [S90], [D 92] and [DS 94]).

As regards question (iii), the dividing line again is the continuity of the
process S (see [S90] and [D 92] for positive results for continuous processes,
and [S 94] for a counterexample S, where S is a process with jumps).

Summing up the above discussion: the theorem of Kreps and Yan is a
beautiful and mathematically precise extension of the fundamental theorem
of asset pricing 1 to a general framework of stochastic processes in continuous
time. However, in general, the concept of passing to the weak-star closure
does not allow for a clear-cut economic interpretation. It is therefore desirable
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to prove versions of the above theorem, where the closure with respect to
the weak-star topology is replaced by the closure with respect to some finer
topology (ideally the topology of uniform concergence, which allows for an
obvious and convincing economic interpretation).

To do so, let us contemplate once more, where the above encountered diffi-
culties related to the weak-star topology originated from: they are essentially
caused by our restriction to consider only simple, admissible trading strategies.
These nice and simple objects can be defined without any limiting procedure,
but we should not forget, that they are only auxiliary gimmicks, playing the
same role as step functions in integration theory. The concrete examples of
trading strategies encountered in section 3 for the case of the Bachelier and
the Black-Scholes model led us already out of this class: of course, they are
not simple trading strategies.

Hence we have to pass to a suitable class of more general trading strategies
than just the simple, admissible ones. Among other pleasant and important
features, this will have the following effect on the corresponding sets C' and
K: these sets will turn out to be “closer to their closures” (ideally they will
already be closed in the relevant topology), than the above considered sets
Csimele and FC$imPle: the reason is that the passage from simple to more general
intergrands involves already a limiting procedure.

Let us do in a more systematic way our search for an appropriate class of
trading strategies:

First of all, one has to restrict the choice of the integrands H to make sure
that the process H -S exists. Besides the qualitative restrictions coming from
the theory of stochastic integration, one has to avoid problems coming from
so-called doubling strategies. This was already noted in the paper by Harrison
and Pliska (1979). To explain this remark, let us consider the classical doubling
strategy. We toss a coin, and when heads comes up, the player is paid 2 times
his bet. If tails comes up, the player loses his bet. The strategy is well known:
the player doubles his bet until the first time he wins. If he starts with 1 €,
his final gain (= last pay out - total sum of the preceding bets) is 1 € almost
surely. He has an almost sure win. The probability that heads will eventually
show up, is indeed one (even if the coin is not fair). However, his accumulated
losses are not bounded from below. Everybody, especially the casino boss,
knows that this is a very risky way of winning 1 €. This type of strategy
has to be ruled out: there should be a lower bound on the player’s loss. The
described doubling strategy is known for centuries and in French it is still
referred to as “la martingale”.

Here is the definition of the class of intergrands which turns out to be
appropriate for our purposes.

Definition 13. Fiz an R*!-valued stochastic process S = (St)t>0 as de-
fined in the beginning of this section, which we now also assume to be a
semi-martingale. An RY -valued predictable process H = (Hi)e>0 is called an
admissible integrand for the semi-martingale S, if
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(i) H is S-integrable, i.e., the stochastic integral H-S = ((H-S)t)t>0 is well-
defined in the sense of stochastic integration theory for semi-martingales,
(i) there is a constant M such that

(H-S):>—-M, a.s., for all t > 0. (109)

Let us comment on this definition: we place ourselves into the “théorie
générale” of integration with respect to semi-martingales: here we are on safe
grounds as the theory developed, in particular by P.-A. Meyer and his school,
tells us precisely what it means that a predictable process H is S-integrable
(see, e.g., [P 90]). But in order to do so we have to make sure that S is a semi-
martingale: this is precisely the class of processes allowing for a satisfactory
integration theory, as we know from the theorem of Bichteler and Dellacherie.

How natural is the assumption, that S is a semi-martingale, from an eco-
nomic point of view? In fact, it fits very naturally into the present no-arbitrage
framework: it is shown in ([DS 94, theorem 7.2]) that, for a locally bounded,
cadlag process S, the assumption, that the closure of CS™P'® with respect to
the norm topology of L°(P) intersects L°(P); only in {0}, implies already
that S is a semi-martingale. This assumption therefore is implied by a very
mild strengthening of the no-arbitrage condition for simple, admissible inte-
grands. Loosely speaking, the message of this theorem is that a no-arbitrage
theory only makes sense, if we start with a semi-martingale model for the
financial market S.

As regards condition (ii) in the above definition, this is a strong and eco-
nomically convincing requirement to rule out the above discussed doubling
strategy, as well as similar schemes, which try to make a final gain at the
cost of possibly going very deep into the red. Condition (ii) goes back to the
original work of Harrison and Pliska [HP 81]: there is a finite credit line M
obliging the investor to finance her trading in such a way, that this credit line
is respected at all times ¢ > 0.

Definition 14. Let

K = {(H-S)s : H admissible and (H-S)s = tlim (H-S): exists a.s.}, (110)
—00

which forms a conver cone of functions in L°(£2, F,P), and
C={g€L>®(P):g< f for some f € K}. (111)

We say that S satisfies the condition of no free lunch with vanishing risk
(NFLVR), if .
onLe(P) = {0}, (112)

where C now denotes the closure of C with respect to the norm topology of
Lo (P).
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Comparing the present definition to the notion of “no free lunch” (NFL),
the weak-star topology has been replaced by the topology of uniform con-
vergence. Taking up again the discussion following the Kreps-Yan theorem
6, we now find a better economic interpretation: S allows for a free lunch
with vanishing risk, if there is f € LS°(P)\{0} and sequences (f,)nlo =
(H™-S)0)o2, € K, for a sequence (H™)22, of admissible integrands, and
(gn)22, satisfying g, < f,, such that

lim || f — gnlloc = 0. (113)
n—o0

In particular the negative parts ((gn)—)5%, tend to zero uniformly, which
explains the term “vanishing risk”.

We now have all the ingredients to formulate a general version of the
fundamental theorem of asset pricing.

Theorem 7. ([DS 94, corr.1.2]) The following assertions are equivalent for
an R _yalued locally bounded semi-martingale model S = (St)t>0 of a fi-
nancial market:

(i) (EMM), i.e., there is a probability measure Q, equivalent to P, such that
S is a local martingale under Q.

(ii) (NFLVR), i.e., S satisfies the condition of no free lunch with vanishing
risk.

The present theorem is a sharpening of the Kreps-Yan theorem, as it re-
places the weak-star convergence in the definition of “no free lunch” by the
economically more convincing notion of uniform convergence. The price to be
paid for this improvement is, that now we have to place ourselves into the
context of general admissible, instead of simple admissible integrands.

The proof of theorem 7 as given in [DS94] is surprisingly long and tech-
nical; despite of several attempts, no essential simplification of this proof has
been achieved so far. We are not able to go in detail through this proof, but
we shall try to give a “guided tour” through it, which should motivate and
help the interested reader to find her way through the arguments in [DS 94].

We start by observing that the implication (i) = (ii) still is the easy
one: supposing that S is a local martingale under @ and H is an admissible
trading strategy, we may deduce from a result of Ansel-Stricker ([AS 94], see
also [E 80]) and the fact that H-S is bounded from below, that H-S is a local
martingale under @, too. Using the boundedness from below of H-S, we also
conclude that H-S is a Q-super-martingale, so that

Eq[(H -S)cc] < 0. (114)

Hence Eq[g] < 0, for all g € C, and this equality extends to the norm
closure C of C (in fact, it also extends to the weak-star closure of C, but we
don’t need this stronger result for the proof of the present theorem).
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Summing up, we have proved that (EMM) implies (NFLVR).

Before passing to the reverse implication let us still have a closer look at
the crucial inequality (114): its message is that the notion of equivalent local
martingale measures () and admissible integrands H has been designed in
such a way, that the basic intuition behind the notion of a martingale holds
true: you cannot win in average by betting on a martingale. Note, however,
that the notion of admissible integrands does not rule out the possibility to
lose in average by betting on S. An example, already noted in [HP 81], is
the so-called “suicide stategy H”. Consider a simplified roulette, where red
and black both have probability %, and as usual, when winning, your bet is
doubled. The strategy consists in placing one € on red and then walking to the
bar and regarding the roulette from a distance: if it happens that consecutively
only red turns up in the next couple of games, you may watch a huddle of
chips piling up with exponential growth. But, inevitably, i.e., with probability
one, black will eventually turn up, which will cause the huddle — including
your original € — to disappear. Translating this story into the language of
stochastic integration, we have a martingale S (in fact, a random walk) and an
admissible trading strategy H such that we have a strict inequality in (114).
Of course, the present process H-S corresponding to the “suicide strategy”, is
just the process corresponding to the “doubling strategy” with opposite sign.

We now discuss the hard implication (NFLVR) = (EMM) of theorem 7. It
is reduced to the subsequent theorem wich may be viewed as the “abstract”
version of theorem 7:

Theorem 8. ([DS 94, theorem 4.2]) In the setting of theorem 7 assume
that (ii) holds true, i.e., that S satisfies (NFLVR).
Then the cone C C L*(P) is weak-star closed.

The fact that theorem 8 implies theorem 7 now follows immediately from
the Kreps-Yan theorem: theorem 8 tells us that we don’t have to bother about
passing to the weak-star closure of C' any more, as assumption (ii) of theorem
7 implies that C already is weak-star closed. In other words, our program of
choosing the “right” class of admissible integrands was successful: the “passage
to the limit” which was necessary in the context of the Kreps-Yan theorem,
i.e., the passage from C®™Pl® to its weak-star closure, is already taken care of
by the “passages to the limit” in the stochastic integration theory of general
admissible integrands for the semi-martingale S.

In fact, theorem 8 tells us that — under the assumption of (NFLVR) —
C equals precisely the weak-star closure of C*'™MP!e (the fact that CS™Ple is
weak-star dense in C follows from the general theory of stochastic integration,
which is based on the idea of approximating a general integrand by simple
integrands).

By rephrasing theorem 7 in the form of theorem 8, we did not come closer
to a proof yet. But we see more clearly, what the heart of the matter is: for
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a net (H%),er of admissible integrands, fo = (H*-S)e and go < fo such
that (ga)aecr weak-star converges to f € L°°(P), we have to show that we
can find an admissible integrand H such that f < (H -S)s. This will prove
theorem 8 and therefore 7. Loosely speaking, we have to be able to pass from
anet (H*),er of admissible trading strategies to a limiting admissible trading
stategy H.

The first good news on our way to prove this result is that in the present
context we may reduce from the case of a general net (H%),er to the case
of a sequence (H™)22 . This follows from a good old friend from functional
analysis, the theorem of Krein-Smulian (see, e.g., [Sch66]): this theorem im-
plies that a convex set C in a dual Banach space X* is weak-star closed, iff it
is relatively weak-star closed in each bounded subset of X*. Using some easy
additional facts from general functional analysis (see [DS 94, theorem 2.1]) we
may conclude that the convex cone C in L ({2, F,P) is weak-star closed iff it
is weak-star sequentially closed. The reader should note the subtle difference
to the example from Banach’s book discussed after the Kreps-Yan theorem 6
above: to pass from a convex set C' C L°(§2,F,P) to its weak-star closure, it
does, in general, not suffice to add all the weak-star sequential limits. But to
check, whether a convex set C' is already weak-star closed, it does suffice to
check, whether the weak-star sequential limits remain within C'.

Once we have reduced to the case of sequences (H™)5° , we may exploit an-
other good friend from functional analysis, the theorem of Banach-Steinhaus
(also called principle of uniform boundedness): if a sequence (9,)22, in X*
is weak-star convergent, the norms (||gn||)S2, remain bounded. This result
implies that we may reduce to the case that the sequence (H")22 , admits a
uniform bound M such that H"-S > —M, for all n € N.

Putting together these reductions from general functional analysis, it will
suffice for the proof of theorem 8 to prove the following result:

Proposition 3. Under the hypotheses of theorem 8, let (H™)2, be a sequence
of admissible integrands such that

(H™-S); > -1, a.s., fort >0 and n € N.. (115)

Also assume that f, = (H"-S)s converges almost surely to f. Then there
is an admissible integrand H such that

(H-S)oo 2 f- (116)

To convince ourselves that proposition 3 indeed implies theorem 8, we still
have to justify one more reduction step which is contained in the statement
of proposition 3: we may reduce to the case, when (f,)5°, converges almost
surely. This is done by an elementary lemma in the spirit of Komlos’ theorem
([DS 94, lemma A 1.1]). In its simplest form it states the follwing: Let (g,)52
be an arbitrary sequence of random variables uniformly bounded from below.
Then we may find convex combinations h, € conv(fy, fnt1,...) converging



Introduction to the Mathematics of Financial Markets 165

almost surely to an R U {+oo}-valued random variable f. For more refined
variations on this theme see [DS99].

Note that the passage to convex combinations does not cost anything in
the present context, where our aim is to find a limit to a given sequence in a
locally convex vector space; hence the above lemma allows us to reduce to the
case where we may assume, in addition to (115), that (f,,)5%, = ((H™S))%,
converges almost surely to a function f : 2 — RU{+o0}. Using the assumtion
(NFLVR) we can show in the present context that f is a.s. finitely valued.

Summing up, proposition 3 is a statement about the possibility of passing
to a (kind of) limit H, for a given sequence (H™)%2, of admissible integrands.
The crucial hypothesis is the uniform one-sided boundedness (115); apart from
this strong assumption, we only have an information on the a.s. convergence of
the terminal values ((H™S)x0)52, but we do not have any a priori information
on the convergence of the processes ((H™-S)i>0)5%-

Let us compare proposition 3 with the literature. An important theorem
of J. Memin [M 80] states the following: if a sequence of stochastic integrals
((H™-S)>0)02 on a given semi-martingale S converges with respect to the
semi-martingale topology, then the limit exists (as a semi-martingale) and is
of the form H - S for some S-integrable predictable process H.

This theorem finally will play an important role in proving proposition 3;
but we still have a long way to go, before we can apply it, as the assumptions
of proposition 3 a priori do not tell us anything about the convergence of the
sequence of processes ((H":S):>0)22 -

Another line of results in the spirit of proposition 3 assumes that the
process S is a (local) martingale. The arch-example is the theorem of Kunita-
Watanabe (see, e.g. [P 90] or [Y 78]): suppose that S is a locally L2-bounded
martingale, that each (H"-S);>o is an L*-bounded martingal, and that the
sequence ((H"-S):>0)2%, is Cauchy in the Hilbert space of square-integrable
martingales (equivalently: that the sequence of terminal values ((H"-S)0)2%q
is Cauchy in the Hilbert space L2(£2, F,P)). Then the limit exists (as a square-
integrable martingale) and it is of the form (H -S)¢>¢.

As the proof of this theorem is very simple and allows for some insight
into the present theme, we sketch it (assuming, for simplicity, that S is R-
valued): denote by (S); the predictable, quadratic variation process of the
L?-bounded martingale S, which defines a finite measure d{S); on the sigma-
algebra P of predictable subsets of £2 x R, . Denoting by L2(2 x Ry, P,d{S):)
the corresponding Hilbert space, the stochastic integration theory is designed
in such a way that we have the isometric identity

||H||L2(QxR+,7>7d<S>t) = ||(H'S)OO||L2(Q7]-‘,P): (117)

for each predictable process H, for which the left hand side of (117) is finite.

Hence the assumption that ((H™ - S)i>0)52, is Cauchy in the Hilbert
space of square-integrable martingales is tantamount to the assumption that
(H™)2, is Cauchy in L?(2 x Ry, P,d(S);). Now, once more, the stochastic
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integration theory is designed in that way that L?(2 x Ry, P,d(S);) con-
sists precisely of the S-integrable, predictable processes H such that H - S is
an L2-bounded martingale. Hence by the completeness of the Hilbert space
L?(2 x Ry, P,d(S):) we can pass from the Cauchy-sequence (H™)°, to its
limit H € L?(2 x Ry, P,d(S);), thus finishing the sketch of the proof of the
Kunita-Watanabe theorem.

The above argument shows in a nice and transparent way how to deduce
from a completeness property of the space of predictable integrands H a com-
pleteness property of the corresponding space of stochastic integrals H - S.
In the context of the theorem of Kunita-Watanabe, the functional analytic
background for this argument is reduced to the — almost trivial — isometric
identification of the two corresponding Hilbert spaces in (117).

Using substantially more refined arguments, M. Yor [Y 78] was able to
extend this result to the case of Cauchy sequences (H™-S)5, of martingales
bounded in LP, for arbitrary 1 < p < oo, the most delicate and interesting
case being p = 1.

After this review of some of the previous literature on the topic of com-
pleteness of the space of stochastic integrals, let us turn back to propostion
3.

Unfortunately the theorems of Kunita-Watanabe and Yor do not apply to
its proof, as we don’t assume that S is a local martingale. It is precisely the
point, that we finally want to prove that S is a local martingale with respect
to some measure () equivalent to P.

But in our attempt to build up some motivation for the proof of proposition
3, let us cheat for a moment and suppose that we know already that S is a local
martingale under some equivalent measure @) and let (H™)S, be a sequence
of S-integrable predictable processes satisfying (115). Using again the theorem
of Ansel-Stricker [AS94] we conclude that (H"-S)32, is a sequence of local
martingales; inequality (115) quickly implies that this sequence is bounded in
L' (Q)-norm:

|H™-S||z1(q) := sup{E[|(H" - S).[], 7 finite stopping time} < 2, for n > 0.
(118)

Let us cheat once more and assume that each H™-S is in fact a uni-
formly integrable @-martingale (instead of only being a local @-martingale)
and that ((H™-S)e0)2%, is Cauchy with respect to the L!(Q)-norm defined
above (instead of only being bounded with respect to this norm).

Admitting the above “cheating steps” we are in a position to apply Yor’s
theorem to find a limiting process H to the sequence (H™)32, for which (116)
holds true, where we even may replace the inequality by an equality. But, of
course, this is only motivation, why proposition 3 should hold true, and we
now have to find a proof without cheating.

We have taken some time for the above heuristic considerations to develop
an intuition for the statement of proposition 3 and to motivate the general
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philosophy underlying its proof: we want to prove results which are — at least
more or less — known for (local) martingales S, but replacing the martingale
assumption on S by the assumption that S satisfies (NFLVR).

As a starter we give the proof of a result which shows that, under the
assumption of (NFLVR), the technical condition imposed on the admissible
integrand H in (110) is, in fact, automatically satisfied.

Lemma 3. ([DS 94, theorem 3.3]) Let S satisfy (NFLVR) and H be an
admissible integrand.
Then
(H-S)eo := tlLr&(H-S)t (119)

ezists and is finite, almost surely.

This result is a good illustration for our philosophy: suppose we know
already that the assumption of 3 implies that S is a local martingale under
some () equivalent to P. Then the conclusion follows immediately from known
results: from Ansel-Stricker [AS 94] we know that H - S is a super-martingale.
As H-S is bounded from below, Doob’s theorem (see, e.g., [W 91]) implies the
almost sure convergence of (H-S); as t — oo to an a.s. finite random variable.

Our goal is to replace these martingale arguments by some arguments
relying only on (NFLVR). The nice feature is that these arguments also allow
for an economic interpretation.

Proof of Lemma 3 As in the usual proof of Doob’s super-martingale conver-
gence theorem we consider the number of up-crossings: to show almost sure
convergence of (H-S);, for t — oo, it will suffice to show that, for any 5 < 7,
the P-measure of the set {w : (H -S)¢(w) upcrosses |3,~[ infinitely often}
equals zero.

So suppose to the contrary that there is § < y such that the set

A={w: (H-S); upcrosses |3,~[ infinitely often} (120)

satisfies P[A] > 0. The economic interpretation of this situation is the follow-
ing: an investor knows at time zero that, when following the trading strategy
H, with probability P[A] > 0 her wealth will infinitely often be less than or
equal to 8 as well as more than or equal to . A smart investor will realize
that this offers a free lunch with vanishing risk, as she can modify H to obtain
a very rewarding trading strategy K.

Indeed, define inductively the sequence of stopping times (o,)52, and
(1)L by 0o = 790 = 0 and, for n > 1,

on =1inf{t > 711 : (H-95): < B}, (121)
T = inf{t > op: (H-S): > 7}

The set A then equals the set where, o, and 7, are finite, for each n € N
(as usual, the inf over the empty set is taken to be +00).
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What every investor wants to do is to “buy low and sell high”; the
above stopping times allow her to do that in a systematic way: define
K = Hl{y~ 15,73, Which clearly is a predictable S-integrable process.
A more verbal description of K goes as follows: the investor starts by doing
nothing (i.e., making a zero-investment into the risky assets S',...,S%) until
the time oy when the process (H-S); has dropped below g (If § > 0, we have
o1 = 0)). At this time she starts to invest according to the rule prescribed by
the trading strategy H; she continues to do so until time 7y when (H-S); first
has passed beyond 7. Note that, if 7 (w) is finite, our investor following the
strategy K has at least gained the amount v — 8. At time 7; (if it happens
to be finite) the investor clears all her positions and does not invest into the
risky assets until time o5, when she repeats the above scheme.

Oune easily verifies (arguing either “mathematically” or “economically”)
that the process K - S is uniformly bounded from below and satisfies

(K-S)y>-M a.s., for all ¢, (122)
where M is the uniform lower bound for (H -S), and

lim (K-S); = 0. a.s. on A. (123)
t— o0

Hence K describes a trading scheme, where the investor can lose at most
a fixed amount of money, while, with strictly positive probability, she ulti-
mately becomes infinitely rich. Intuitively speaking, this is “something like
an arbitrage”, and it is an easy task to formally deduce from these proper-
ties of K a “free lunch with vanishing risk”: for example, it suffices to de-
fine K™ = LK1y, a1, for a sequence of (deterministic) times (T5)5%,
to let f, = (K™-S)eo = (K™-8S);, a7, and to define g, = f, A (v — 5)1B
where B = (7 o{m < Ty} If (T,)32, tends to infinity sufficiently fast, we
have P[B] > 0, and one readily verifies that (g,,)52, converges uniformly to
(v —B)1s.

Summing up, we have shown that (NFLVR) implies that, for § < =, the
process H - S almost surely upcrosses the interval |3, v[ only finitely many
times. Whence (H -S); converges almost surely to a random variable (H -S)
with values in R U {oo}. The fact that (H -S) is a.s. finitely valued follows
from another application (similar but simpler than above) of the assumption
of (NFLVR), which we leave to the reader. O

After all these preparations we finally start to sketch the main arguments
underlying the proof of proposition 3. The strategy is to obtain from assump-
tion (115) and from suitable modifications of the original sequence (H™)%,,
still denoted by (H™)S2,, more information on the convergence of the se-
quence of processes (H™-S)S2,. Eventually we shall be able to reduce to the
case where (H™-S)22, converges in the semi-martingale topology; at this stage
Memin’s theorem will give us the desired limiting trading strategy H.
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So, what can we deduce from assumption (115) and the a.s. convergence
of ()20 = ((H™-8)00)22, for the convergence of the sequence of processes
(H™-S5)$2,? The unpleasant answer is: a priori, we cannot deduce anything.
To see this, recall the “suicide” strategy H which we have discussed in the
context of inequality (114) above: it designs an admissible way to lose one €.
Speaking mathematically, the corresponding stochastic integral H-S starts at
(H-S)o =0, satisfies (H-S); > —1 a.s., forall £ > 0, and (H-S)s = —1. But
clearly this is not the only admissible way to lose one € and there are many
other trading strategies K on the process S having the same properties. A
trivial example is, to first wait without playing for a fixed number of games of
the roulette, and to start the suicide strategy only after this waiting period;
of course, this is a (slightly) different way of losing one €.

Speaking mathematically, this means that — even when S is a martingale,
as it is the case in the example of the suicide strategy — the condition (H-S); >
—1. as., for all £ > 0, and the final outcome (H - S) do not determine the
process H -S. In particular there is no hope to derive from (115) and the a.s.
convergence of the sequence of random variables ((H™-S)« )22, a convergence
property of the sequence of processes (H"-S).

The idea to remedy the situation is to remark the following fact: the suicide
strategy is a silly investment and obviously there are better trading strategies,
e.g., not to gamble at all. By discarding such “silly investments”, we hopefully
will be able to improve the situation.

Here is the way to formalize the idea of discarding “silly investments”:
Denote by D the set of all random variables A such that there is a random
variable f > h and a sequence (H")2, of admissible trading strategies satis-
fying (115), and such that (H™-S)s converges a.s. to f. We call fy a maximal
element of D if the conditions h > fo and h € D imply that h = fo.

For example, in the context of the “suicide strategy“, f = —1 is an element
of D, but not a maximal element. A maximal element dominating f is, for
example, fo = 0.

More generally, it is not hard to prove under the assumptions of proposition
3 that, for a given f = (H-S)s > —1, where H is an admissible integrand,
there is a maximal element fo € D dominating f (see [DS 94, lemma 4.3]).

The point of the above concept is that, in the proof of proposition 4.12,
we may assume without loss of generality that f is a maximal element of
D. Under this additional assumption it is indeed possible to derive from the
a.s. convergence of the sequence of random variables ((H" -S)s)32, some
information on the convergence of the sequence of processes ((H”-S)t>0)02 .

As the proof of this result is another nice illustration of our general ap-
proach of replacing “martingale arguments” by “economically motivated ar-
guments” relying on the assumption (NFLVR), we sketch the argument.

Lemma 4. ([DS 94, lemma 4.5]) Under the assumptions of proposition 3
suppose, in addition, that f is a mazimal element of D.
Then the sequence of random variables
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Ey . =sup |(H"-S)y — (H™-S)| (124)

t>0

tends to zero in probability, as n,m — 0.

Proof Suppose to the contrary that there is & > 0, and sequences (ny, mg)x>1
tending to oo s.t., for each k, we have P[sup, o ((H"*-S);—(H™*-S);) > a] > a.
Define the stopping times 73 as

T = inf{t: (H"™-S), — (H™*-S); > a}, (125)

so that we have P[r, < oo] > «.

Define LF as L* = H™ 1o ;1 + H™ 1y, o[- Clearly the process LF is
predictable and L*-S > —1.

Translating the formal definition into prose: the trading strategy L* con-
sists in following the trading strategy H™* up to time 7, and then switching
to H™*. The idea is that L* produces a sensibly better final result (L*-S)s
than either (H™-S), or (H™*-S) s, which will finally lead to a contradiction
to the maximality assumption on f.

Why is L* “sensibly better” than H™ or H™*? For large k, the random
variables (H™*-S) as well as (H™*-S) will both be close to f in probability;
for the sake of the argument, assume that both are in fact equal to f (keeping
in mind that the difference is “small with respect to convergence in probabil-
ity”). A moment’s reflection reveals that this implies that the random variables
(L*-S)s equal f plus the random variable ((H™-S),, — (H™*-S) 7, )1{7, <co}-
The latter random variable is non-negative and with probability a greater
than or equal to a; this means that this difference between f and (L*-S), is
not “small with respect to convergence in probability”; this is, what we had
in mind when saying that L* is a “sensible” impovement as compared to H™*
or H™k,

Modulo some technicalities, which are worked out in [DS 94, lemma 4.5],
this gives the desired contradiction to the maximality assumption on f, thus
finishing the (sketch of the) proof of lemma 4. O

Lemma 4 is our first step towards a proof of proposition 3: it gives some
information on the convergence of the sequence of processes (H™-5)52, in
terms of the maximal functions defined in (124). But the assertion that these
maximal functions tend to zero in probability is still much weaker than the
convergence of (H™-S)52, with respect to the semi-martingale topology, which
we finally need in order to be able to apply Memin’s theorem. There is still a
long way to go!

But it is time to finish this “guided tour” and to advise the interested
reader to find the remaining part of the proof on pages 482-494 of [DS 94].
We hope that we have succeeded to give some motivation for the proof and
for the “economically motivated” arguments underlying it.
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To finish this section we return to the issue, that we always have assumed
that the process S is locally bounded. What happens if we drop this — tech-
nically very convenient — assumption?

Before starting to answer this question, we remark that it is not only of
“academic” interest. It is also important from the point of view of applica-
tions: once one leaves the framework of continuous processes S — and there
are good empirical reasons to do so — it is also natural to allow for the jumps
to be unbounded. As a concrete example we mention the family of ARCH
(Auto Regressive Conditional Heteroskedastic) processes and their relatives
(GARCH, EGARCH etc.), which are very popular in the econometric litera-
ture. These are processes in discrete time where the conditional distribution of
the jumps is Gaussian. In particular, these processes are not locally bounded.
There are many other examples of processes which fail to be locally bounded,
used in the modelling of financial markets.

The answer to the above question is as we expect it to be: mutatis mutandis
the fundamental theorem of asset pricing 7 and the related theorems obtained
in its proof carry over to the case of not necessarily locally bounded R¥*!-
valued semi-martingales S. Not coming as a surprise, the techniques of the
proofs have to be refined: in particular, we cannot entirely reduce the situation
to the study of the space L>®°(£2, F,P), and the weak-star and norm topology
of this space: there is no possibility any more to reduce to the case of (one-
sided) bounded stochastic integrals and we therefore have to use larger spaces
than L°(£2, F,P). Yet it turns out — and this is slightly surprising — that
the duality between L>(P) and L'(P) still remains the central issue of the
proof.

Here is the statement of the extension of the fundamental theorem of asset
pricing as obtained in [DS 98].

Theorem 9. ([DS 98, corr.1.2]) The following assertions are equivalent for
an R —yalued semi-martingale model S = (St)t>0 of a financial market:

(i) (ESMM), i.e., there is a probability measure Q equivalent to P such that
S is a sigma-martingale under Q.

(ii) (NFLVR), i.e., S satisfies the condition of no free lunch with vanishing
risk.

There is a slight change in the statement of the theorem as compared
to the statement of theorem 7: the term “local martingale” in the definition
of (EMM) was replaced by the term “sigma-martingale” thus replacing the
acronym (EMM) by (ESMM). On the other hand, condition (ii) remained
completely unchanged.

The notion of a sigma-martingale is a generalisation of the notion of a
local martingale:

Definition 15. [DS 98] An R" -valued semi-martingale S = (St)t>0 is called a
sigma-martingale if there is a predictable process g = (g+)¢>0, taking its values
in ]0,1], such that the stochastic integral g-S is a martingale.
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It is easy to verify that a local martingale satisfies the above condition.
More delicate is the fact that there are examples of sigma-martingales which
fail to be local martingales: this was shown in a famous and ingenious example
by M. Emery [E 80].

It is shown in [DS 98] that the notion of sigma-martingales makes good
sense economically in the present context. Indeed, the “only if” implication of
lemma 2 above extends to not necessarily locally bounded semi-martingales,
if we replace the term local martingale by the term sigma-martingale. For this
as well as for the (rather technical) proof of theorem 9 we refer to [DS 98].
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5 Some Applications of the Fundamental Theorem of
Asset Pricing

The crucial message of theorem 7 and the results obtained in the course of
the proof is not only, that the version of the FTAP, as obtained by Harrison-
Pliska for the case of finite {2 (theorem 1 above) and subsequently extended
by several authors (we refer to [DS 94] for references on the literature), carries
over — mutatis mutandis — to the general semi-martingale setting. For the
applications, the additional information provided by theorem 8 pertaining to
the weak-star closedness of the set C' turns out to be at least as relevant.

As a typical example we show that, once the weak-star closedness of C'
is established by theorem 8, it is straight forward to deduce the extension
of theorem 2 on Pricing by No-Arbitrage from the setting of finite 2 to the
present semi-martingale setting.

We start with the analogue of proposition 1: for the sake of coherence we
again place us into the setting of locally bounded processes as in the previous
section; but we remark that the subsequent results also extend to the non
locally bounded case (see [DS 98]).

Proposition 4. Suppose that the locally bounded R4 -valued semi-martingale
S = (St)t>0 satisfies (NFLVR). Then the polar of C, taken with respect to the
duality between L>®°(P) and L'(P), and identifying a P-absolutely continuous
measure @ with its Radon-Nikodym derivative Z—g, is equal to cone(M°(S5)),
and M¢(S) is dense in M®(S) with respect to the norm topology of L*(PP).
Hence the following assertions are equivalent for an element g € L>(£2, F,P):

(i)g€C,
(ii) Eqlg] <0, for all g € M*(S),
(iii) Eqlg] < 0, for all g € M*(S),

Proof First note that, similarly as in lemma 1, a probability measure @,
absolutely continuous with respect to PP, is in M?(S) iff Eg[g] < 0, for all
g € C': the necessity of this condition was shown in (114); for the sufficiency
we use the local boundedness of S and lemma 2 to obtain that the condition
Eglg] <0, for g € C, implies in particular that S is a local martingale under
@. In other words, the polar of C' equals cone(M*(S)).

The bipolar theorem [Sch66] therefore implies that an element ¢ of
L (02, F,P) is in the weak-star closure of C iff condition (ii) is satisfied. By
theorem 8 we know that C' is already weak-star closed, hence (i) is equivalent
to (ii).

The density of M*¢(S) in M?(S) and therefore the equivalence of (ii) and
(iii) follows by the same argument as in proposition 1 above. 0O

We now carry the argument underlying theorem 2 over to the present
setting.



174 Walter Schachermayer

To maintain in line with the formulation of theorem 2, it is convenient to
introduce some notation. A given f € L*>({2,F,P) is called super-hedgeable
(resp. strictly super-hedgeable) at price a € R, if there is an admissible trading
strategy H s.t. f < a+ (H-S)e ( resp. s.t., in addition, we have P[f <
a+ (H-S)x] > 0). In other words, f is super-hedgeable (resp. strictly super-
hedgeable) at price a, if f —a is in C (resp. if, in addition, f — a is not a
maximal element of C). Accordingly, we say that f is sub-hedgeable, (resp.
strictly sub-hedgeable) at price a if —(f — a) is in C (resp. if, in addition,
—(f — a) is not maximal in C). A real number «a is called an arbitrage free
price for f,if f is neither strictly super- nor strictly sub-hedgeable at price a.

Denoting by S; the set of prices a at which f is super-hedgeable, it is
rather obvious that S, is an interval, its upper bound being equal to co, and
its lower bound being an element of the interval [ess inf (f), ess sup (f)]. It is
less obvious that Sy is closed, but this fact is a straightforward consequence
of theorem 8: If (f —a,,) € C, for each n, and lim,, ., a,, = @, then f—a € C.
Hence there is 8 € R s.t. S; = [§, o0][.

Denoting by S_ the set of prices at which S is sub-hedgeable we similarly
obtain that S_ =] — 00, a], for some a € R. As, for any @ € M*(S), we have
Eg[f] < B and Eg[f] > «, (apply (114)), we observe that o < 3, as soon as
ME(S) # 0.

Using the notation (30) and (31) we also have § = 7(f) and a = =(f).
Indeed, we just have remarked the inequalities 7(f) < f and zn(f) > a.
Conversely, we know from theorem 8 and proposition 4 that, for a < 3, we
may find @ € M¢(S) such that Eg[f —a] > 0, as f —a is not in C. Hence
for w(f) := sup{Eg[f] : @ € M*(S)}, we obtain the inequality 7(f) > S; the
same argument implies that =(f) < a.

Having established o = z(f) and 8 = 7(f), we need a little extra argument
for the proper treatment of the boundary cases a and S.

Lemma 5. Under the above assumptions suppose in addition that o < f3.
Then f is strictly super-hedgeable at price B and strictly sub-hedgeable at price
a. Hence, for Q € M¢(S), we have Eg[f] €]a, O]

Proof We know that f is super-hedgeable at price 3, i.e., there is an admis-
sible trading strategy H such that f < 8+ (H +S)s. To show that f is, in
fact, strictly super-hedgeable at price 3, define the stopping time 7 by

T=inf{t: (H-S); > 1+ esssup(f)}. (126)

Clearly H:= H1po ;] also is a super-hedging strategy for f.

Now we distinguish two cases: either P[t < oo] > 0. Then the trading
strategy H strictly super-hedges f. Or P[r < oo] = 0; in this case we have
that H = H and that H-S is a bounded process; therefore H-S is a uniformly
integrable martingale under each @) € M?(S). This implies that the original
strategy H defines a strict super-hedge for f, i.e., P[f < 8+ (H-S)x] > 0.



Introduction to the Mathematics of Financial Markets 175

Indeed, otherwise we would have that Eq[f] = Eq[8+ (H-S)] = 5, for each
Q € M*(S), in contradiction to the assumption a < f.

Summing up, we have shown that f is strictly super-hedgeable at price f;
applying the same argument to —f we see that f is strictly sub-hedgeable at
price a.

The final statement of the lemma is now obvious. O

Taking up again the discussion preceding lemma 5, we distingnish two
cases: either @ < 3, in which case lemma 5, tells us that the arbitrage-free
prices for f consist of the open interval ], 5[. We then also have that |a, B[=
17(f),7(f)[. In the case @ = B we have that there is an admissible trading
strategy H such that f < a+ (H-S)s. Fixing an arbitrary @ € M*(S), we
must have Eg[f] = a, so that H-S must be a uniformly integrable martingale
under @ (it is a Q-super-martingale verifying Eq[(H-S)s| = Eg[(H-S)o] = 0).
Hence (H-S): = Eg[f — a|F], which shows in particular that the process H-S
is bounded. Therefore H as well as —H are admissible trading strategies.

Summing up: we have proved the subsequent extension of theorem 2 (com-
pare [DS 95, theorem 5.7]) to the present semi-martingale setting, which car-
ries over almost verbatim from the setting of finite (2.

Theorem 10 (Pricing by No-Arbitrage). Assume that the locally bounded
semi-martingale S = (S)¢>0 satisfies (NFLVR) and let

(f) = sup{Eq[f] : @ € M*(5)}, (127)
(f) = inf {Eq[f]: @ € M*(5)}, (128)

Either w(f) = 7(f), in which case f = w(f) + (H-S)s, where w(f) =
7(f) = m(f) and H is a predictable process such that the process H - S is
bounded.

Or on(f) < ®(f), in which case {Eg[f] : Q@ € M°(S)} equals the open
interval 1w (f), T(f)[, which in turn equals the set of arbitrage-free prices for
the contingent claim f.

™
™

In the formulation of the above theorem we have restricted ourselves to
the case of bounded random variables f € L>=(£2, F,P). One may also extend
it — mutatis mutandis — to the case of functions f which are uniformly
bounded from below or, more generally, bounded from below by some fixed
random variable w having appropriate integrability conditions (see, e.g., [J 92],
[AS94] and [DS98]).

Let us briefly review some other applications of theorem 8. A rather subtle
consequence, requiring quite a bit of additional work, is the subsequent ex-
tension of the optional decomposition theorem 4 to a general semi-martingale
setting as given by D. Kramkov([K 96]):

Theorem 11 (Optional Decomposition). Let S = (Si)i>0 be a locally
bounded R -valued semi-martingale satisfying (NFLVR), and let V. =
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(Vi)e>o be a non-negative, adapted, cadlag process, defined on the filtered
stochastic base (2, F, (Ft)t>o0,P).

The following assertions are equivalent:

(1) V is a super-martingale, for each QQ € M*®(S).

(i) V is a super-martingale, for each Q) € M?(S).

(i) V' may be decomposed into V. =Vy + H-S —C, where H is an admissible
trading strategy and C = (Ct)>0 is an increasing, cadldg, adapted process
starting at Cy = 0.

The above theorem extends the “baby version” for finite {2 presented in
theorem 4 above. A first non-trivial version of this theorem was given by
N. El Karoui and M.-C. Quenez [KQ95] in the context of a filtration gener-
ated by an n-dimensional Brownian motion, using techniques from stochastic
control. The version stated above was proved by D. Kramkov [K 96]. Subse-
quently H. Follmer and Y. Kabanov [FK 98] extended the result to the case
of non locally bounded semi-martingales; their method uses a Lagrange mul-
tiplier technique and does not rely on theorem 8. Finally, F. Delbaen and the
present author [DS99] also removed the assumption of non-negativity of V;
their proof is similar in spirit to Kramkov’s original one and heavily relies on
theorem 10. We shall now present the basic idea of this proof.

Sketch of proof of theorem 11 As in theorem 4 above we only have to
show the implication (i) = (ii). Fix an increasing sequence of finite meshes
M"™ = {0,t7,...,t% }, such that U2, M™ is dense in Ry . For example, we
may take N,, = n2" and ! = &, fori =1,..., N,.

For fixed n € Nand i = 1,..., N,, we proceed similarly as in the proof
of theorem 4 above: we consider the process (St)t?_lﬁtst? and apply theorem
10: the condition

Eq[Vir|Fir 1 < Vi, for Q € M*(S), (129)

implies that there is an admissible predictable process (Htrl7i)t?,1<t§t;‘7 sup-
ported by [t ,,t?], such that

Vig < Vi 4+ (H™"-S)ss. (130)

In fact, we have to apply theorem 10 conditionally with respect to the
sigma-algebra F» ; but this conditional extension of theorem 10 does not
present any difficulty.

Fixing n € N, letting H" := Y% H™' and, defining AC? := Vin  +(H™"
S)ip — Vip for i = 1,..., N,,, we obtain the following objects: an admissible
trading strategy H" = (H}");>0, indexed by R, and an adapted increasing
process C™ = (C}*)te M, indexed by the finite time index set M™, such that

V, = (H"-S), — CI, for t € M,. (131)
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This is not yet quite what we want to have, as we want to find a predictable
process H = (H;)¢>o and an adapted cadlag process C' = (Ct)¢>0, indexed by
t € Ry, such that (131) holds true for all ¢ € Ry..

But it is clear what we have to do to achieve this goal: we have to pass to
the limit of the sequence (H™)2° . Hence, again, we face our usual problem:
how to pass from a sequence (H™)52, of admissible integrands to a limit H?
Similarly as in the context of the proof of the fundamental theorem of asset
pricing, the only essential information on the sequence of admissible trading
strategies (H™)%2 , is that they have a uniform lower bound: indeed, one easily
deduces from the assumption V' > 0 that H™-S > —V;, for all n € N.

Hence the basic problem of the proof of the present theorem is very similar
in spirit to the theme of the proof of theorem 8. It turns out that, refining
some of these arguments, it is indeed possible to find a limiting strategy H
above. For the details we refer to [K96] or [DS99]. O

As a final application of theorem 8 we mention the topic of utility opti-
mization in financial markets. Roughly speaking, one fixes a utility function
U on R, i.e. an increasing, strictly concave function U : R — RU {—o0}, and
an initial endowment x € R. A typical problem consists in finding, for a fixed
horizon T', a trading strategy H maximizing

E[U(z + (H-S)7)). (132)

We cannot go in detail into this rather extensive theory here and refer,
e.g., to the survey paper [S 01]. We only mention that the modern way to deal
with the problem of maximizing (132) is to use the duality theory of convex
optimization in infinite-dimensional spaces. The crucial property in order to
make this theory work, again, is the polar relation between the sets C' and
M4(S) as stated in theorem 5. The heart of the matter therefore again is the
weak-star closedness of C' as stated in theorem 8.
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1 Introduction

Consider a large collection of random variables (H;)s<ar. What is the value
of the largest of them? More generally, what is the structure of the “few
largest” values? Certainly the question is too general. Even if the variables
are identically distributed, the answer depends upon both the distribution
and the correlation structure of the variables. When the variables are inde-
pendent, then of course, everything can be computed. To move beyond that
case, one should ask what correlation structures are of interest. A collection
of random variables is, in other words, a stochastic process. The examples
that first come to mind are indexed by the real line. The correlation struc-
ture one will consider will naturally take advantage of the structure of the
real line, a “one-dimensional” object.

The direction purposed here will be completely different and probably
completely new to the reader. The correlation structure considered will be
high dimensional, in a sense that will soon be clear. This type of structures
appear naturally in problems of combinatorial optimization in a random
setting. One can dream that there exists an entire theory in the above
direction; the present monograph presents only a few steps of the study of
a typical example.

The motivation behind the present research is the work of physicists on
mean field models for spin glasses, and in particular the book “Spin glass
theory and beyond” by Mézard, Parisi, Virasoro. The physicists have built
a truly remarkable theory, which they believe applies not only to the models
they have introduced, but also to a number of problems of fundamental
interest in probability. Due to space (and energy) limitation, these models
will not be discussed here, and we refer the reader to [T'6] for a non-technical
discussion.



186 Michel Talagrand

The predictions of the physicists are most likely true. A reader of this
volume is however probably well aware that studying a problem by the meth-
ods of theoretical physics (in the present case heuristic arguments backed
by numerical simulation) and providing mathematical arguments are two
distinct endeavors. We make a definite choice for the later approach.

The author has devoted a major effort since 1994 to the task of pro-
viding proofs to some of the physicists’ statements. This has resulted in
a number of very long and very technical papers. The author’s concern is
that they will remain forever hardly accessible to others. The main goal of
the present notes is to address this concern. Our overwhelming objective is
readability. No knowledge of physics, or statistical mechanics is required, or
even probably useful to read these notes. There are no prerequisite of any
kind, beside a familiarity with the basic concepts of probability theory. In
fact, the most advanced tool that will not be proved is Holder’s inequality.
With the exception of a few results that are probably still far from their
final form, every proof is given in complete detail. The usual dreadful “it is
easy to see...” have not been permitted to creep in. In order to improve
readability we will discuss only the SK model and its cousin, the p-spin
interaction model.

A regrettable consequence of this (necessary) choice is that it will not
be possible to introduce the reader to what is possibly the greatest charm
of the topic: the existence of several models, which yield to the same overall
approach, but seem to require different technical tools. But of course the
reader having mastered the present notes should be well armed to explore
this aspect by reading the relevant research papers.

Let us now briefly describe the content of each chapter.

Chapter 2 is devoted to a toy model, Derrida’s Random Energy Model,
that helps understanding what this is all about. This model is not treated in
the simplest possible manner, but is also an opportunity to introduce some
tools.

Chapter 3 studies the high temperature case of the SK model without
external field. Some special symmetries make this case particularly simple
and well understood.

The main motivation is that the methods developed there also apply to
the p-spin interaction model, considered in Chapter 4. In this chapter, we
prove the basic a priori estimates that will be the starting point of our study
of this model below the critical temperature.

In Chapter 5, we return to the SK model, this time with external field.
This is a much more interesting situation. We give a simple and complete



Mean field models for spin glasses: a first course 187

proof of the mysterious “replica-symmetric” formula and we describe in great
detail the structure behind them. This chapter is essentially self contained.

In Chapter 6, we investigate in much greater detail the structure behind
the replica-symmetric formula. We replace crude moment inequalities by
sharp exponential inequalities. Most importantly, the proofs there, rather
than taking advantage of specific features of the SK model, rely on tools of
much wider applicability.

In Chapter 7 we compute the inter-spin correlation. We explain the
occurrence of the AT line, the conjectured boundary between the high and
low temperature region. We also argue that the validity of the replica-
symmetric solution on the entire high-temperature region is not self-evident
(as the physicists think) but rather is a difficult problem.

In Chapter 8 we return to the p-spin interaction model. We study it
below the critical temperature. We prove that the configuration space spon-
taneously decomposes in small pieces that we call the lumps. We prove that
these are as much separated from each other as they can be.

The structure of this model below (but not too far below) the critical
temperature is now (January 2000) rigorously understood in much greater
detail than is presented here [T7]. Having decided at the onset that this
monograph would contain only proofs that were being written a second
time, we have not included these recent results here. For the same reason,
the reader is referred to [T8] for another major progress (April 2000) on
the region of validity of the replica-symmetric solution. The reader having
penetrated the present monograph should however be well prepared to read
[T7, T8].

Acknowledgment. The author expresses his deepest gratitude to Profes-
sor Anne Boutet de Monvel who made the publication of this monograph
possible by accepting the unrewarding labor of typing it. He also expresses
his thanks to the many participants of the school that helped to correct
countless typos and inaccuracies.



2 What this is all about:
the REM

Consider the space Xy = {—1,1}V. A point & = (01,...,0x) in Xy will be
called a configuration. It physically represents the position (= configuration)
of N “spins” g; = £1. We will have a collection of r.v. Hy (o), and we will
be interested in the smallest, or the few smallest, of the values Hy (o) as
o ranges over all possible configurations. The physical idea is that Hy (o)
represents the “energy” of the configuration o. The function Hy is called
the Hamiltonian. The energies Hy (o) are random due to some kind of
“disorder” that we try to understand. To study the small values of Hy (o)
we will weight them using the Boltzmann factors exp(—GHn(o)), where
B > 0 is a parameter. We will then consider Gibbs’ (probability) measure
Gy on Xy, that will be given by

(2.1) Gi@) = 1 exp(~FHx (@),

where Zpy is the normalization factor, called the partition function,
(2.2) Zy = Zn(B) = ) exp(~FHn(0)),
o

where the sum is over all configurations o. The physical idea is that Gibbs’
measure quantifies the thermal fluctuations of the N-spin system with en-
ergy levels Hy(o) when it is in thermal equilibrium with a heat bath at
temperature T = 1/3. That is, Gy(o) is the probability to find the system
in configuration o after it has been left undisturbed a long time. The —
sign is to respect the conventions of physics, where energies are minimized,
not maximized.
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Gibbs’ measure is a basic concern of statistical mechanics. The reader
however will know very soon all the statistical mechanics he will need for
these notes. The reason is that disorder (= randomness) is the overwhelm-
ing feature here, and that the vast body of knowledge of standard “non
disordered” statistical mechanics seems to be largely irrelevant.

Gibbs’ measure is a probability measure. It is itself random. Thus, we
have two levels of randomness, and this topic is in some sense a probabilist’s
paradise.

Given a (typical) occurrence of the disorder, we will try to understand
the structure of G. The disorder does not evolve with the thermal fluctu-
ations. It is “frozen” or “quenched” as the physicists say. The word “glass”
conveys that idea of “frozen disorder”.

The subtilty of definition (2.1) is not apparent at first sight. The normal-
ization will be chosen so that maxg (—Hy (o)) is of order N so the sum (2.2)
is the sum of 2V terms, some of which small, others of exponential order,
and it is not clear a priori from which of these comes the main contribution.
Computation of Zy is a major objective, and this computation is essentially
equivalent to understanding G, because the derivatives of log Zny with re-
spect to the various parameters we will consider are expressed as integrals
with respect to G. For example

23 558 2n() = 5 Y ~Hx(e)exp(~FHN (@)

dg
= (-Hn (o).

In this formula, as well as in the rest of the notes, ( - ) denotes average with
respect to Gibbs’ measure, i.e.

(2.4) (f(e)) = % S f(o) exp(— AHx(0)).

Throughout the notes, we will assume that
(2.5) The family (Hy (o)) is a jointly Gaussian family of r.v.

This family will not always be centered. We will also assume
N

(2.6) Vo, E(HX(0)) - (EHn(o))? < -

It should be apparent that E will denote expectation in the variables Hy (o).

The corresponding probability will be denoted by P.

It is of course impossible to even think the word Gaussian without im-
mediately mentioning the most important property of Gaussian processes,
that is concentration of measure. We will use the following convenient for-
mulation ([I-S-T]).
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Proposition 2.1. Consider a function F on RM | and assume that its Lip-
schitz constant is at most A, i.e.

(2.7) z,y eRY = |F(z) — F(y)| < Allz —y|
where ||z|| is the Euclidean norm of ©. Then if g = (g1,...,9m) where the
r.v. g; are i.i.d. N'(0,1) we have, for each u > 0,
u
(2:8) P(IF(g) —EF(9)l 2 u) < exp(—53)-

A statement of similar strength (with the loss of a factor 2 in the ex-
ponent, loss that is irrelevant here) will be proved at the end of Chapter
6.

Throughout the paper, we will write

(2.9) pN = pN(B) = % Elog Zn ().

Thus py is the “expected density of the logarithm of the partition function”.
It would be interesting to find a nice name for py. We find it safer to avoid
taking unnecessary risks here. We will call this quantity “px”. The quantity
pn is closely related to the “free energy” considered by physicists. The free
energy is —%pN(ﬁ). The factor % is a nuisance for mathematics. This had
led to the name “free energy” for py in previous papers but this confusing

terminology is abandoned here.

It will turn out that px(5) is of order 1. The following proposition shows
that the single number py(5) is a good way to capture information about
the r.v. % log Zn(0).

Proposition 2.2. Under (2.5), (2.6) we have for u > 0,

1 Nu?

: - — >u) < —-—).
(2.10) P(‘N log Zn(B) pN(ﬁ)‘ > u) < exp( 7 )
Proof. It is elementary that for M = 2"V we have a representation
(2.11) Hy(o) =EHy(o)+a(o)-g

where a(o) € RM, g is as in Proposition 2.1, - denotes the dot product and
|la(a)||? < N/2. The function

F(z) = %log(z exp(—B(EHn (o) + a(o) m)))

satisfies (2.7) with A = \/%, because

la() -z —a(o) - y| < \/gllw -yl

The result follows from (2.8). O
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Comment. The reader who does not find (2.11) obvious should be reas-
sured. We do not provide details because in all cases where (2.10) will
actually be used, the representation (2.11) will be obvious from the very
definition of Hy.

Here is another simple observation:

Proposition 2.3. The (random) functions 8 — % log Zn(B) are convez,
and so iS py.

Proof. Let f be a positive function on a measure space. Then, the map
B+ log([ £P du) is convex by Hélder’s inequality. O

Thus, the random function + log Zy () is convex and has small fluctu-
ations. The quantity of information that can be extracted from this simple
fact is amazing [G-G].

Here is another simple fact.

Proposition 2.4. For each § > 0 we have

(2.12) o < 2+ L1og 3 exp(~BE Hn(a).

Proof. We use Jensen’s inequality
(2.13) Elog Zn <logE Zy
and we use (2.6) and the fact that for a (centered) Gaussian r.v. g we have

(2.14) Eed = F9°/2. O

There is a crucial point that must be explained here.

Proposition 2.2 shows that py(03) is the correct way to obtain infor-
mation about %log Zn(B). However, in general E Zy is not the correct
information about Zy. This is because a large part of E Zy comes from
very rare events. In other words, the mean and the median of Zy are very
different. This is true even when measured on a logarithmic scale. In that
scale, the median and the average of Zy are fairly represented respectively
by

1 1
(2.15) PN = 3 Elog Zn and NlogEZN.

These two numbers will be of order 1, but different. The interesting (and
difficult) problem is to understand the median of Zy. The fundamental
difference between these numbers (2.15) could be called the lottery phenom-
enon. This name reflects the situation of a person holding one of (say) 108
tickets of a lottery that offers a single (huge) prize. His expected gain might
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be sizable; but his typical gain is zero, significantly lower. The notion of
“expected gain” implies that the experiment is repeated many times, and is
not the way to look at a single lottery drawing.

For simplicity, we now assume
(2.16) EHy(o) =0 for each o,
so that the variables Hy (o) are centered and E H% (o) < N/2.

Proposition 2.5. If 8 > 0, we have

,32
(2.17) pw(8) < 2+ 10g2.
and if B > 2+/log2 we have
(2.18) pn(B) < By/log?2.

Proof. We first observe that (2.17) is a consequence of (2.12) under (2.16).
Next we observe that

Zy 2 exp(fmax(—Hy(0)))
and thus 5

Py (B) > & Emax(~Hy (o))
Combining with (2.17) for 8 = 24/log 2, we see that

1
(2.19) N Em&ax(—HN(O')) < Vlog2.

Next, we use (2.3) to get

(2.20) (TﬂpN(ﬁ) =N E(—Hn (o))
< E(max(~Hy (o))
< Vlog2,
using (2.18). Combining (2.17) and (2.20) proves (2.18). d

The upper bound of Proposition 2.5 is a kind of worst case. For example,
if Hy (o) does not depend upon o, we have py(8) = log2 for each N, .
The interesting (and difficult) case will be when there is some (but not too
much) correlation between the variables Hy (o). In the rest of the section,
we will investigate the case where

(2.21) The r.v. (Hy(o)) are i.i.d. N'(0, N/2).

This case is known as Derrida’s random energy model (REM): the energy
levels are random independent. It is not surprising that in this case we can
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get a complete picture of the situation. This is nonetheless a very instructive
exercise.

Our first goal is to show that in this case, the upper bounds of Proposi-
tion 2.5 are the correct ones.

Proposition 2.6. For the REM we have

(2.22) A}gn pn(B) = %2 +log2 if B < 24/log2
(2.23) Nh_r)n pn(B) = B/1log2  if B> 24/log2.

Proof. Let us first prove (2.23). We simply use that

p(6) = 1 Elog Zn(6)

1
> 1 Elogexp(~fmin Hy (o))
= % Emo_ax(—HN(a)).

That is, we take into account only the largest term of the sum (2.2). Thus
to prove (2.23) it is enough to show that the estimate (2.19) is essentially
correct when the r.v. Hy(o) are independent. (We do not detail this easy
point, as we will prove more later.) Another route is that (2.23) follows from
(2.22), the upper bound of (2.20), and the convexity of py.

Let us now turn to the proof of (2.22). To understand what happens, it
is useful to note that in the left-hand side of (2.14), most of the contribution
occurs for g ~ E g?. More precisely we have the following

Lemma 2.7. Consider an N'(0,7%) r.v. g. Then, if c < 72,

2

1 c
Eegl{ggc} S iexp(c— ﬁ)’

while, if ¢ > 72,
1 c?
E eg].{gzc} S 5 exp(c — ﬁ) .

Thus, if a > 0,

2 a
(224) Eegl{lgf‘r?IZa} S e’ /2 exp(—ﬁ).
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Proof. For example, if ¢ > 7'2

et 42/ 272) dt

Eefli>ey = T\/2_7T

= - 127r eTQ/Q/COOexp( 9.2
) 2
ZeQ”A;ﬂVT exp(-'y )

< 1eTz/Zexp( e’ )
2
2

1 c
:f@@*Zﬂ- .

—(t— 72)2) dt

The meaning of (2.22) is that (on a certain logarithmic scale), most of
the time

BQ

2.25 —0BH oN

(2.25) Ea exp(—BHnN(0)) ~ 2" exp —— 1

and Lemma 2.7 shows that about the only way this can happen is that there
2

are enough values of o for which —GHy (o) > % This is because if a > 0

the expected contribution of the terms for which —SHy (o) < NTHZ —aN is

hopelessly smaller than the right hand side of (2.25). This suggests use of
the bound

(2.26) ZN(B) > exp i card{a | —Hy(o '8}
so that
(2.27) %log ZN(B) > % + N log card{a ‘ —Hpy(o B}

We now turn to the task of bounding below the card involved in (2.26).
Essentially the only known method to do that is called (now) the second
moment method, and relies upon the following principle.

Proposition 2.8. Consider a r.v. Y > 0. Then

(2.28) P(Y > %EY) >z

This was apparently used first in the work of Paley and Zygmund on
trigonometric series.

Proof. If A={Y > JEY} then

1
EY <E(Y1a) +E(Y14) < 5EY +E(Y14).
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Thus

EL <E(r1a) < (E¥)7P(4)/2

using Cauchy-Schwarz. The result follows.

Proof of (2.22). We will use (2.28) for

N
(2:29) = Card{a ‘ —Hy(o ﬂ} Z Lnye)>48)
and thus
(2.30) EY =2Y®(8/N/2),

where, if g is N'(0,1),
u2

(2.31) ®(t) = P(g > 1) exp ) du.

2= 5 )

Now, from (2.29)

= D Y iy0)258, ny (o228
o0

so that
(2.32) => Alo,0)
o,0
where
Ao, 0") = P({~Hn(o) 2 ?,—HN(U’) > NTﬂ )

If o' = o, we have

Ao, o) = (6 N/2).
If o # o', by independence, we have

A(o,0') = 2(6y/N/2)?

Combining these estimates we get from (2.32) that

(2.33) EY?2<2V®(8v/N/2) + 22V ®(8\/N/2)? =EY + (EY)2

We now use the well known fact that for ¢ > 0,

1 t2 1 t?
2.34 —_— < P(t — .
(2:34) L(1+t)eXp( 2) ®) = 2eXp( 2)

195

Here, as well as in the rest of the paper, L denotes a positive number,
not necessarily (and even rarely) the same at each occurrence. Thus, given

B < 2+/log2, for N large we have

oN s
2.35 EY > — ¢ N4>
(2.35) Z TN >



196 Michel Talagrand

and (2.28), (2.33) show that

PlY >
( ~ 2LvVN
Combining with (2.27) we get

—~B2N/4 >l
o

1 B2 1
_ > S >
P( log Zn(B) > 1 + log 2 log(LN)) >

oo | =

To prove (2.21), we then observe that by (2.10), we have

P 108 Zn (8) < p () + j—%) >1-et>

and thus
p(ﬂ)>ﬂ—2+lo 2———l1 g(LN). O
vN N
Comments. 1. We have not tried to give the simplest proof or the sharpest
result, but we have tried to prepare for future results. Rather than using
Proposition 2.8, one can use that E(Y —EY)? < EY < (EY)? to see that
P(Y < EY) is in fact very small.

2. The reader might wonder why we did not use (2.28) for Y = Zy.
This is because it is untrue that E Z%, and (E Zx)? are of the same order of
magnitude if 8 > v/2log2. To make (2.28) work directly, one has to use a
truncation argument, that our approach was designed to bypass.

3. This scheme of proof would work even if we only knew that EY? <
KN?(EY)2 This remark will be used in Chapter 4 (see (4.13)).

Having computed py for Derrida’s REM, we turn to the study of Gibbs’
measure, and we first consider the case 8 < 2/log2. Two obvious ways of
looking at Gibbs’ measure are respectively the “local way” involving only
finitely many coordinates and the “global way” involving all coordinates.
These yield very different results. We first consider the “local” point of
view. Given a subset I of {1,..., N}, we denote

by G; (= Gn.1(8)) the projection of Gibbs’ measure on {—1,1}/;

by pr the uniform probability on {—1,1}/;

by |G — p1| the total variation distance between Gy and pur.

Proposition 2.9. If 3 < 2/Tog2 and § < 1—3?/(41og?2), there is a number
K depending upon 3, § only such that

N
(2.36) card] < 6N = E|G — i gexp(_g)_

Throughout these notes K will denote a quantity independent of N, but
that might depend upon other parameters. This quantity need not be the
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same at each occurrence. (We recall that L, on the other hand, denotes a
universal constant).

Before proving the proposition, we show that the condition
§<1—5%/(41og2)
is not absurd. In fact, (2.22) and (2.24) imply that if v < §/2 then (with
probability close to one)
Gn({o | ~Hy(o) < N7}) < exp(~ %),
that is, Gy is essentially supported by

(2.37) A={o| —Hn(o) > Nv}
which has the property that
(2.38) Ecard A < 2 exp(—N4?).

Thus, if card I > §' N, where §' > 1— 32/(41og 2), we can find v < 3/2 such
that
2card ! 5 E card A

and there are not enough points in A to control all the atoms of {—1,1}¢,
0 (2.36) must fail.

Proof of Proposition 2.9. Of course this can’t be hard, but there is a
tiny difficulty due to the fact that second moment computations require
truncation (see comment 2 above). We set M = card I. The inverse images
of the points of {—1,1}/ under the projection from {—1,1}" to {—1,1}{
form a family B of subsets of {—1,1}". It has 2™ elements, each of which
contains 2V~ points. We have to show that

(2.39) El;iPM - %f)‘ < exp(—%)

where S(B) = > 5. pexp(—BHy(a)).
Consider a number y with v < 42/4, that will be determined later. It
follows from (2.22), (2.10) that

P(ZN < 2N6N7) < exp(—%),

so that to prove (2.39) it is enough to prove that

1
(2.40) EBZGB|2_MZN —8(B)| <2V expN(*y - E)'

Since Zy = ) g S(B), it suffices to show that for B, B’ € B,

(2.41) E|S(B) - S(B')| < 2V~M eXpN('y - %)
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This is an exercise. It requires truncation. Consider 7/ > 32/2, set
S1(B) = Y exp(=BHN(0)1_pry(0)> N}
ocB

and Sy(B) = S(B) — S1(B). It follows from Lemma 2.7 that

12
ESl(B)§2N_MexpN(' 7 )

G
Thus, if we assume
2
(2.42) v - 2 <",
to prove (2.41) it suffices to prove that
1
(2.43) E[Sy(B) — Sa(B')| < 2V—M eXpN('y - E)’
or even
2 2 N—M 1 2
. - < - )Y
(2.44) E(S2(B))” — (ESx(B))” < (2¥ MexpN(v - )

Using independence, for any o,

2 _
E(S2(B))” — (ES2(B))* < 2N "M Eexp(—28HN(0)) 1{_pmy(0)<n+'}
N-M 7"
< oN- expN(Q'y'—ﬁ),
using Lemma 2.7 with 72 = 2N32, ¢ = 2N+'. Thus, to obtain (2.44), it
suffices to have that (since M/N = §)
E
2y — 7 < (1—140)log2+ 2.
If (1 —6)log2 > 82/4, we can find v < $2/4 and o' > 32 /2 that satisfy this
and (2.42). O

A more tricky question would be to find the largest value of § such that

E sup |Gr—pr| < 1.
card I<d

After having looked at G “locally”, what can we say “globally”? It
follows from (2.37) and (2.38) that Gy is very far from the uniform measure
on X . The reader has certainly already understood that the whole point of
studying Hy is that it has few large values. These have a dominant influence
on Gibbs’ measure. The “peaks” of Hy reflect upon the structure of Gy at
any temperature. We need however to look at the global structure of Gy to
see this for small 3 (i.e. 8 < 24/log2). This point of view seems to have no
motivations from the physical content of the theory, but possibly will raise
interesting mathematical problems. It will be discussed again in Chapter 3.
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We now turn to the study of Gibbs’ measure at 8 > 2+/log2. In that
case, the most striking feature is that “Gibbs’ measure is supported by a
sequence of configurations” in the sense that given € > 0, one can find &
independent of N such that

(2.45) P(max{G(B) |card B <k} <1—¢) <e.
We start with the observation that

1 o0 t?
2.46 P(—Hyn(o) > u) = exp|——)dt,
( ) ( N( ) = ) m/u XP( N)

so that if we define ay by Na% = log(2" /V/N), we have

P(—Hy(o) > Nay +u) = ! /uooexp(—w) dt

TN N
27N o] ( )
< — exp(—2tay) dt

VT Ju

< 2N exp(—?uaN).
Thus, given k, we have
E(Z eXP(_IBHN(U))l{karNaNZfHN(a’)sz71+NaN})
< 4exp(BNan — k(B — 2an)),

and, by summation, since 8 > 2ay,

k
E(Z exp(_ﬁHN(o'))1{7HN(0')§NaN7k}) < KeXP(-g) expfNan.
The details of the rest of the proof of (2.45) will be left to the reader. If
U = max(—Hy(0))

one shows that P(U < Nay — u) goes to zero uniformly in N as u — oo.
One then observes that

Y {Gn(o) | ~Hn(o) < Nay — k}

< exp(—BU) Y exp(—BHN(0)) 111, () <Nay—k}-
O

The “tightness” result (2.45) can be completed by a limit theorem. Given
a bounded Borel subset A of R, the number Xy (A) of values of o for which
—Hpy(o)—Nay belongs to A converges in law to a Poisson r.v. of expectation

%/ exp(—2t\/log2) dt,
A

and, if B is another Borel subset, disjoint of A, Xx(B) and Xy(A) are
asymptotically independent. In other words, the values taken by —Hy (o) —
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Nay, for & € ¥y converge (in each interval [u,+00)) to a Poisson point
process of intensity measure dy = exp(—2ty/log2)dé. The values taken
by the weights exp(—8Hn (o) — BNan) converge (on each interval [u, +00)
where u > 0) to a Poisson point process having as intensity measure the
image of p under the map = — exp(—pfz), which is the measure v, such
that

(2.47) dvp(z) = ——=2z" ™ tdz

for m = 2y/log2/8 < 1. The important feature is that, since m < 1, we
have

/ z dvg(z) < oo,
so that if we denote by (u,) the family of numbers created by a realization
of the Poisson point process (2.47), we have ) ug < oo a.s. We can then
define the random weights
(2.48) Vo

— UQ
> ug

If we agree to label them in decreasing order, we thus define a probability
measure on the space of sequences (va)a>1, Vo > 0 that sum to one. Going
back to Gibbs’ measure, the distribution of the numbers Gy (o), when or-
dered in decreasing order, converges to the distribution of the weights v, (in
a sense that the reader will make precise). The distribution of the weights
Vo 18 very natural and interesting (see [P-Y]). It plays a fundamental role
at low temperature [T7].




3 The Sherrington-

Kirkpatrick model at

high temperature

The Hamiltonian of the Sherrington-Kirkpatrick model (SK) is given by

(3.1) Hy(o) = *% Zgijaigjv

i<j

where (g;j)i<; are 1id. N(0,1). Thus, given another configuration o’ we

have

(3.2) E(HN(J)HN(U')) = %Zaiajag(r;
1<J

-3 (X))

i<N

and in particular

g N-1
(33) E(HY(0)) = —— -
In (3.2) we see the first occurrence of
!
) n_o-o 1 g
(3)4) R(G’,O’) = T = N ;Vazai,
Z_

1

57

which is called the overlap of o and ¢'. The name is motivated by the

relation

2
R(o,0') = Ncard{i <Nl|o;=0l} -1
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The overlaps will play a fundamental role in the sequel.

In this chapter we study the SK model for § < 1. This is basically
simple, and comes as a natural second step after Derrida’s model. The
reader should however keep in mind that many special features occur in this
model, and that it definitely gives a false idea of our topic, as will start to
be obvious in Chapter 5.

The SK model at inverse temperature § < 1 is well understood, in
particular through the work of Comets and Neveu [C-N]. This pretty pa-
per uses stochastic calculus. Unfortunately stochastic calculus has yet to
demonstrate its use outside a few very special situations, so we will not talk
about it (a good excuse for putting off one more time the task of learning
something about it). We actually know how to prove some of the sharp
results of [C-N] (central limit theorems) by other methods. These will be
developed in Chapters 5 to 7, in situations that do not seem to be within
the reach of stochastic calculus.

The really special feature of the present model is that
(3.5) E(Z%) < K(B)(E Zn)?,

and proving this is our first goal. We first observe that, from (3.3)

2
(3.6) EZn =2 exp %(N —1).
Lemma 3.1. If § <1 we have
) 1
) 2N — )2 <
(3.7) 2wy 00" s =

In (3.7), the sum is of course over o € Y. This will not be mentioned
anymore.

Proof. For all £,

N 2
(3.8) 2N Z expt ;jgi = (ch t)N <exp Tt’
i<

using the elementary inequality cht < exp % Using (3.8) for t = g/d/N
where g is M'(0,1) and taking expectation yield (3.7). O

Comment. I learned this pretty argument in [C-N]. Of course, one can
also deduce tail estimates from (3.8), from which weaker bounds than (3.7)
follow that do not require this trick.
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Lemma 3.2. If v+ 3% < 1 we have

(3.9) E(Z exp(—BHy(c) — BHy (o)) exp %(o’ : 0")2)
1

< - -
VP

Of course here it is understood that the summation is over all values of
/
o, o

(EZn)%.

Proof. Using (3.2), (3.3), we see that
1
E(Hy(o) + Hy(0")* =N —2+ 2 (o -0'),
so that the left-hand side of (3.9) is at most equal to
BN —2) g "2
exp#ZeXpﬁ(a-o) )

where § = 32 + v. Now, using (3.7), we have

Zexp2N0'0' —2NZexp (Z )23 =

which implies (3.9). O

If y=0, (3.9) implies
(3.10) E(Z%) < (1 - B*)V*(EZn)2

Theorem 3.3 ([A-L-R]). If 8 < 1, we have

2
(3.11) lim py(B) = - +log2 .
N—oo 4

Proof. Using Proposition 2.8 and (3.10) we see that

(3.12) P<ZN > %EZN> > i\/l e

so that, using (3.6)

1 i N-1y _1
P(5 108 2w = (- +1og2) —=—) = 71— .

The end of the proof is then as in the proof of (2.22): by Proposition 2.2,
we have

1 up 2
— < — ) > 1= —
P( log Zy < pn(B) + \/N) > 1 — exp(—u?),
so that if exp(—u?) < /1 — (2/4 we have

pn(B) = % +log2 — K(p)

N

T
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We now prove a more sophisticated result.
Theorem 3.4. For each 8 < 1 there is a constant K(8) such that for each
N, each u >0,
u?

(3.13) P(logZN(ﬁ) (ﬂ2 +1log2) — u) < K(p) exp(—m).

To understand this, we note that this really consists of two parts

(3.14) |pzv(ﬂ) - %2 —1082‘ = %
1 N2y?
(3.15) P(NlogZN(ﬂ) <pn(B) —“) < K(f) eXP(_m)'

Condition (3.15) gains a factor N in the exponent of the bound compared
to Proposition 2.2. This is not a general phenomenon, but a very special
feature of the present model. For this reason, Theorem 3.4 is not particularly
important, but the proof is quite pretty. Before we start, we recall an
essential notation, the bracket ( - ), that denotes average with respect to
Gibbs’ measure

(3.16) )= [ 10)d6n(0) = 5 3 f(o) expl-BHn (o))

A fundamental idea throughout the paper is that of replicas. This simply
means that we will consider products of the probability space (Xn,Gn),
where G corresponds to the same realization of the g;;’s in each copy.
Averages in a replica with respect to the corresponding power of Gy are
also denoted by brackets, so that, for example,

(expzN //exp— o-0')?dGn(0)dGn (o)
(3.17) :EZeXp<—ﬂHN(a)—ﬂHN( )-l—ﬁ(a' 0)2)

and (3.9) means that
1

N

(3.18) E(ZN<exp—(a o )2>) < (E Zy)>.

2N

Lemma 3.5. If 8 <1 we have

1
o-o')? <K,6’)>—.
" <KB) 2 g
Comment. Here, as always, this means: “If § < 1, there exists a number
K (f) depending upon § only such that...”

1 1
P(ZN > SEZn, ((
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Proof. Using (3.12), (3.18) for v = ;2 and Chebyshev inequality we see
that
1 ¥ 9 1
> — — < > ——.
P(2n 2 5B 2y, Zhlexp 5o o'V S KBEZN)) 2 05

But since e > x we have

1
ZNZ—EZN

z;)v(exp%(a o')?) < K(B)(E Zy)*

— (3o -0'7) <K(B).

O

The proof of Theorem 3.4 will use a simple algebraic fact that is not
so intuitive. This (and similar facts) will play a fundamental role, so it is
better brought to light now.

Lemma 3.6. We have
(3.19) ((0-0')?) =) (0i0))°

Proof. We write

! /
o-0 = E 0i0;,

i<N
so
- } : ' r E : )
= O'iO'Z-O'jO'j = O'Z'O'jO'iO']
1,j<N L,j<N
Now
PN A2
(3.20) (0iojoio}) = (0i0j)

because the bracket on the left deals with a product measure on G%;, with
respect to which o and o' are independent r.v. O

Comment. A very useful function of replica is that they transform products
of integrals into integrals, such as in the formula

which simply means that

/f )dGn (o /f )dG N (o //f ') dGn (o) dGn (o).



206 Michel Talagrand

Proof of Theorem 3.4. It relies upon Proposition 2.1. To apply (2.8), it
is convenient to reformulate Lemma 3.5 as follows. The subset B of RM (for
M = W) such that

Zn > $EZN(B);
3.21
20 (9s) € {<<a o)) < K(B)N
satisfies
(3.22) P((gij) € B) > %

It is of course implicit here that the (g;;) on the left are those used to define
Zy and Gibbs’ measure on the right. We apply (2.8) to the function

F(z) = d(z, B) = inf d(a.y).

the Euclidean distance from & to B in RM. There, of course
(3.23) & (@,y) = Y _(zi — i)™
1<j
Thus, by (2.8), we have
2

(3.24) P(ld(g, B) — Ed(g, B)| = u) < exp(~ )
In particular, if u < Ed(g, B), we have
L <P(geB) <P(dlg, B) ~Edlg. )| > u) < exp(~).
(8) 2

so that u < K(8) and thus Ed(g,B) < K(8). It then follows from (3.24)
that for u > 0
2

(3.25) P(dlg, B) > u+K()) < exp(—).

To prove (3.13), it suffices to combine (3.25) with the following
2

(3.26) log Zn(g) > (ﬂ +log2) — K(B)(d(g,B) +1)

where Zy(g) means of course that Zy corresponds to the choice g = (gi;)
of the r.v. Indeed, if (3.26) holds, and if
v&

log Zy(g) < +log2) — u,

then d(g, B) > “= I(((SB) Using (3.25) this is an event of probability at most

2

oo D)) < k().
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To prove (3.26), since log Zy(g') > (N —1) (i—z—l-log 2) for ¢’ in B, it suffices
to prove that if g € RM we have

(3.27) log Zn(g) = log Zn(g") — K(B)d(g,9)
where d is given by (3.23). We start with the algebraic identity
/6 !
(3.28) Zn(g) = Zn(g')(exp—— = Z(Qij — gij)0i05)
W
where ( - ) means that Gibbs’ measure is computed for gi;- Using succes-
sively Jensen’s inequality and Cauchy-Schwarz, we get

1<j
> Zn(9") eXp(—% d(g.9') (Z(Gz’ffj)'2)l/2)-
1<j

Using (3.19), and the fact that ((o - 0’)2)’ < NK(B) by (3.22) we have
proved (3.27). O

Theorem 3.7. If § < 1, there ezists K(8) < oo such that

ﬁQ N2
(o 0')?) <K(p).

This implies a very good control of the overlap of two configurations o,
o', when the overlap is viewed as a function on ¥%,, provided with G%Q, or, if
one prefers, when o, o’ are weighted according to their Gibbs weights. Tt will
gradually become apparent that this type of information is of considerable
importance. We will have to work very hard later to prove the extensions
of (3.29) to other situations.

(3.29) E(exp

Proof of Theorem 3.7. Using Cauchy-Schwarz for ( - ) we have

(o0 o) < (o o o)

8N
Now
E<exp 14_Nﬂz(a . a'l)2>1/2 _ E(ZI_N(Z?V<6XP 14—Nﬂ2 (. cr')2>)1/2)
< K(B)(E Z%)m E Zw,
N

using again Cauchy-Schwarz and (3.9) for v = 1_2ﬁ2. But (3.13) implies that

foru >1 ) )
p(<EZZ];Vv> > ) < K(5) exp(ﬂ;g(;; ).
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so that

O

Theorem 3.7 has applications to a statement of the same nature as
Proposition 2.9, but with card I about v N. We refer the reader to [T2]
for this.

What about the global structure of G 7 We will show that, in a strong
sense, G is very far from the uniform measure p on Y. Let us denote by
d the Hamming distance on Xy, given by
N-o-0

5 .

Proposition 3.8. If § > 0, with overwhelming probability one can find two
sets A, B C X with

(3.30) d(o,0') = card{i < N | 0; £ 0}} =

Gn(A)
(3.31) wB) 2

v el IV
S TEN)

d(A, B) %

min(1, 5%).
In this statement, as through these notes “with overwhelming probabil-
ity” means that the probability of failure is < exp(—N/K). A consequence

of (3.31) is that “the transportation cost of Gy to u is of order N”. (Don’t
worry if you don’t know what this is.)

Proof of Proposition 3.8. We set 8/ = min(1, 3). We define

o =)
B={o| -Hy(o) < Nﬂl},

and we prove that A, B satisfy (3.31). To prove that Gy(A4) > 2/3 and
in fact Gy(4) > 1 — exp(—N/K) with overwhelming probability, we use
Lemma 2.7, Proposition 2.2, Theorem 3.3 (and the convexity of py if § > 1)
to bound Gy (A°). To prove that p(B) > 2/3 (and in fact u(B) > 1 —
exp(—N/K)) with overwhelming probability, we will use Fubini Theorem.
If we define

NG }

4

= {HN(U) >

E(Y Loo)) = 30 P(2a)) <2 exp (- Nfﬁ”),

then
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so that
12 /2

_ Np Np

N

P(2 D Lo 2 eXp(* 32 )) < eXp(_ 32 )

To prove that d(A, B) > % with overwhelming probability, we observe that
ifo € A, o’ € B then

(3.32) Hy(o') — Hy(o) > 15

Now, using (3.2), (3.3), we have

E(Hy(o') — Hy(o))’ =

where we have used (3.30) in the last line. Thus

P(HN(U') — Hy(o) > NE ) < exp(—ﬁ).

12 Ld(o,0’)
This shows that if N32 > LD, with overwhelming probability there exist
no pairs (o, 0’) with d(o, ') < D that satisfy (3.32). O

Definition 3.9. A probability measure G on ¥y is ¥-shattered if we can
find two sets A, B C Xy such that

Q
=
IV

(3.33) G(B)
d(A, B)

v
IV ol mewol =

IN.

The idea there is that a ¥-shattered probability utterly fails concentra-
tion of measure. It is better understood if one knows the following important
result: nice probability measures on ¥y (such as product measures) satisfy

v(A) >
— d(A,B) < LVN.
v(B) 2

W W[ -

Conjecture 3.10. If 8 > 0, there is ¥(3) > 0 such that with overwhelming
probability, Gy is 9¥-shattered.

Even though a physicist would probably consider this question as eso-
teric and far fetched, it seems that it possibly touches some central issues.
If true, Conjecture 3.10 would mean that we can find two pieces A, B of
the configuration space, that are well separated for d, and that both carry



210 Michel Talagrand

some mass. Moreover, such pieces would depend essentially upon the ran-
domness. Certain central low temperature predictions of the physicists can
be expressed with roughly the same words. It is conceivable that proving or
disproving Conjecture 3.10 is really difficult.

Challenge problem 3.11. Construct a random probability measure v on
3 n that is ¥-shattered for some ¥ > 0 but satisfies

E // cxp(ﬁ(a‘ : 0")2> dv(e)dv(e’) < L.

The difference between an open problem and a challenge problem is that
I have no clue about the former but that I know (or at least, I thought at
some point I would know if T really tried) how to do the later.

Challenge problem 3.12. Prove that if 8 > 0, there exists ¢ = ¢(3)
such that the Gibbs’ measure associated to Derrida’s REM (Chapter 2) is
J-shattered with overwhelming probability.

What happens if 8 > 17 It is known that Theorem 3.3 fails, as is shown
by the following

Theorem 3.13 ([C, K-T-J]). If 8 > 1, then

1
(3.34) limsuppn(5) <log2+ 5 — Z —5 log 3.

N—o0

Let us explain the basic idea. The starting point is that the joint law of
a jointly Gaussian family of r.v. is determined by its covariance structure.
Consider now independent A (0,1) r.v. (g;)i<n (independent of the g;;) and
for & € RY consider

(3'35) H[V Z‘h]xﬂ'] Z 9i%;
l<j z<N

An immediate computation shows that

1
SN (& y)®.

Thus, given any linear isometry R of RY the joint law of the family (H’ (R(o)))
for o in Xy is independent of R (since R(z) - R(y) = - y) and thus

(3.36) E % log ) " exp(—BHpy(R(c)))

EHy (z)Hy(y) =

is independent of R. It is in particular equal to its value when R = Id. In
that case

H}V( = \/—Zgljo'zag \/—Zgz

<]
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The term ), g; is independent of . We can take it through the log and it
gives no contribution. Thus, for each R,

(337 () = € o S exp(-HHA(R()).

Let us denote by dR the Haar (= uniform) measure on the set of all rotations
of RY. We integrate (3.36) with respect to dR, and use Jensen’s inequality
to put the integral inside the log. We observe that

N

| S (- (R(@)) aR = 2" [ exp(-pH}(@)) dun (o)

where py is the uniform measure on Sy = {z € RN |22 +--- + 2% = N}.

Thus we have

(3.38) palf) <log2 +E log [ exp(~0Hy(2)) dun(e).

Sn

(“Domination of the Ising model by the spherical model” in jargon.) The
reason why the last term is easier to compute than px(8) is that it has more
symmetries. We can compute the integral in whatever basis we choose. The
result depends only upon the eigenvalues of the matrix (g;;)ij<n given by

1 o
g =595 i<y

1 i
Za. i

29]1 1>]
1

géi = ﬁgi-

These are well understood through a famous theorem of Wigner. They are
(in a precise sense) essentially independent upon the realization of the (g;;),
and follow “Wigner semi circle law”. This allows to bound in the limit the
right-hand side of (3.38) by the right-hand side of (3.34). We will refer
the reader to [C] for this pretty computation, because the entire approach
we are following here is somewhat unsatisfactory. Conditioning upon the
eigenvalues of the matrix (gj;) is possibly not the right idea. Moreover,
while Wigner’s theorem is basically not difficult, it relies upon the very
special structure of matrices (that can be multiplied), and it is unclear how
to extend it, say to the situation of the next chapter.

I
9i; =

What really happens for 3 > 1 7 The physicists have proposed an entire
theory, of great complexity. It seems so much out of reach of the current
rigorous methods that there is no point to even discuss it.
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Challenge problem 3.14. Consider the Hamiltonian HRX™M (o) of the
REM and the Hamiltonian H3¥ (o) of (3.1). Assume these are indepen-
dent. Find the exact region of parameters 31, B2 for which

1 1
Jim - Elog ; exp(=BLHN () = BHN (0) =log2+ 7 (B + B5).



4 The p-spin interaction
model

The Hamiltonian of this model replaces the 2-spin interactions of the SK
model by p-spin interactions. The Hamiltonian is given by

(4.1) Hy(o) = — (2Ni" 1) Zq’h ipTiy -+ Ty

The summation is over all possible choices of indices 4; < «-- < 4. The
Giy,..ip are Lid. N(0,1). We will soon explain why the case p > 3 is fun-
damentally different from the case p = 2. To understand the normalization
factor in (4.1) we observe that for two configurations o, o', we have

(4.2)
E(HN(O')HN( )

/
NP I E Oiy - - - O, Zl...oip
11 <ol

_ 1 . / . ! . !
= N1 0iy 04,00y Ty - - - 04,04,
d

Ny/o-o'\p 1 , ; ,
N - 21,\“7_1 Za’ilghaizgig‘“aipaip‘
nd

T2

Here, 3 ; denotes the sum over all possible choices of indexes i1, ... 14, that
are all distinct, while ), , denotes the sum over all choices of indexes such
that at least two of them coincide. In particular we have

(4.3) K <E(Hx(e)) < .

(Following our convention, K = K (p) depends upon p only).
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If we view (4.2) as

ny . N(o-a\r
E(Hx (o) Hn(o") = 5 ()
and we observe that since |o-o’| < N, as p increases, there is less correlation
between Hy (o) and Hy(o”) if 0 # +o'. Thus, as p — oo the model should
resemble more and more the REM. This intuition is correct, but we must

keep in mind that we cannot exchange the limits p — oo and N — oo.

Let us note another consequence of (4.2).

Lemma 4.1.
E((Hn(o) + Hn(c")?) < N(1+R(o,d')?).

Let us define the number 8, by
. B2
(4.4) Bp = Sup{ﬂ ‘ Jim py(B) =~ + log 2},
where of course py () corresponds to the Hamiltonian (4.1). It follows from
Theorems 3.3 and 3.13 that §» = 1. For p > 3, the value of 3, is not
rigorously known, but we will approximate it. To state our result, we need
the function

1
(4.5) o(t) = 5((1 +t)log (1+1¢) + (1 —t)log (1 —¢)).
This function is probably best understood by noting that ¢(0) = ¢'(0) =0,
¢"(t) = 1/(1 —t?). Thus p(t) > %, and p(t) ~ % for small ¢. This function
arises through the following result, a special case of the Chernov bounds for

the binomial law.

Lemma 4.2. Ift >0, we have

(4.6) card{a ‘ >z Nt} < 2V exp(=No(1)).

Proof. We observe that, for each A
Z exp A Z o; = 2N (ch )N =2V exp Nlogch ),

i<N
so that the left-hand side of (4.6) is bounded by
2N inf exp N(logch A — At) = 2N exp(—Nop(t)). O

Theorem 4.3. For p > 2 we have
. . L << |
o odnf 2(1+17P)p(t) < B, < 4log?2

The right-hand side inequality follows from (2.18).
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Challenge problem 4.4. Show that in fact
,33 < 4log2.
Since ¢(t) > %, for p = 2, the left-hand side of (4.7) is 1, the correct

value. Thus Theorem 4.3 recovers Theorem 3.3. This is not a surprise: the
proofs are very similar.

Proof of Theorem 4.3. It will closely follow that of (2.22). Consider
: 2 < ().
(4.8) A7 < imf 2(1+17P)e(t)

We define Y as in (2.29) and using (4.3), (2.34), we have

2N71 N2,82

Now,

N2,82 Nﬂz N,82

s -K) “aa-F) = 4
so that
(4.9) EY > K\I/N al exp(—NTﬂQ).
Now, we have
(4.10) EY?= " A(o,0),
o,0'
where
Afo0") = P({~Hn(o) > NTﬁ, _Hy (o) > NTﬁ )
< P({~(Hn(o) + Hy(c") = NB})
N2
<o (515 R o)

<ep(~ 31 Tt o))
xp( —
=\ 21t R, o))
using successively (2.34) and Lemma 4.1. We observe that |o - 0’| is an
integer. Thus if in (4.10) we regroup the pairs o, ¢’ for which |o- o'| = tN,
we get
(4.11) EY? < Z exp(—NiﬂQ) card{o,o’ | |o-o'| =tN}

' - 2(1 4 tp) ’ '

0<t<1
Nt integer
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Now, by (4.3)
(412)  card{o,o' o o| = tN} = 2" card{o | 3 o1 = Nt}
i<N
< 92N+1 exp(—No(t)).
Moreover, (4.8) implies that
,62

2(1 +1tp)

so that (4.9), (4.12) imply

ﬁQ
+p(t) > o

(4.13) EY2< (N +1)22¥ exp(—NTﬂz) < KN*EY)2.
The proof is then completed as in Proposition 2.6. (|
Proposition 4.5. If p is large enough we have
(4.14) 2¢/log2 (1 —27P) < 8, < 24/log?2.
This follows from Theorem 4.3 and (4.16) below.

Lemma 4.6. If p is large enough, the following holds. If v > 275 then

. - p
. p > —.
(4.15) ogégiu%l +t7P)p(t) >4log2 + i
Moreover
92-p
: i P > ( - —) 297%).
(4.16) 051212(1“ J(t) > 4log2(1 Tog 2 + O(p*2~7P)

where O(A) denotes a quantity such that |O(A)| < LA.

Proof. Since p(t) > %, we have, by convexity,
21+t P)p(t) > 2P > 1+ (p—2)(1 —t) > 4log2 + ]23(1 — 1),
if pislarge and 1—¢ > %. Thus we need only to consider values of t > 1 — %.
Setting u = 1 — ¢, we observe that, by convexity,
1+t ?>24+pu
(1+¢t)log(l+1¢) >2log2 — (1 +log2)u,
and thus
2(1 4+ t7P)p(t) > p(u) == (2 + pu)(2log2 — (1 + log 2)u + ulogu).
Now,
(4.17) P(u) =4log2 + 2u(p — 1) log2 — 2u
+ 2ulogu — pu?(1 + log 2) + pu? log u.
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For u < ;1—,, we have
(4.18)
P(u) > 4log2 + u(2(p — 1)log2 — 2 + 2logu — 4(1 + log 2) — 4log§)

> 410g2+%,

provided logu > —Zlog2 and p is large enough. This proves (4.15). To

prove (4.16), we can assume u < 27 %. In that case, rather than (4.18), we
obtain

(4.19) P(u) > 4log2+ uf2(p — 1) log2 — 2 + 2log u
— p2*§(1 + log2) — p2*g log(Z%)],
so that (for p large)
Y(u) > 4log?2 if u>27PF3,
But, if u < 27P+3, then (4.17) yields
P(u) > 4log2+ 2u((p — 1)log2 — 1) + 2ulogu + O(p*2~ ),
and the right-hand side has its minimum at u = 27?*!, from which (4.16)

follows. N

Our purpose is not to study in detail the p-spin interaction model for
B < Bp. Rather we will be interested in the case 8 > .

Challenge problem 4.7. Find a convincing version of Theorem 3.13 for
the present model.

Challenge problem 4.8. Find a convincing version of Proposition 2.9.
What is the optimal size of I?7

Challenge problem 4.9. More generally, which of properties proved in
the setting of Chapter 3 for p = 2 can be generalized to the case p > 37

Challenge problem 4.10. Prove that given 8 > 0, there is p(8) > 0,
6 = 0(53) such that if p > p(8), the Gibbs’ measure of the p-spin interaction
model is f-shattered (as in Definition 3.9) at inverse temperature § with
overwhelming probability.

Open Problem 4.11. Does there exist p > 0 such that the Gibbs’ measure
of the p-spin interaction model is shattered for each 8 > 07

We now turn to the main topic of this chapter, the search for estimates
on the overlaps that will be valid not only for 8 < 3, but also for 3 larger.
To avoid having to distinguish cases we assume p even. In that case, Gibbs’
measure is invariant by global symmetry around zero.
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Our estimates on the overlap will rule out the possibility that the over-
laps belong to certain intervals. This justifies the following definition.

Definition 4.12. We say that an interval I is negligible (at a given £) if
N
EGS2({o,0' | |R(o,0')| € I}) < Kexp(—E)_

We will prove that certain intervals are negligible. This is the key to the
low temperature results of Chapter 8, but will not be needed before that.

Our goal is the following (I am grateful to A. Bovier for having pointed
out to me that my argument gives the result without any restriction on )
Theorem 4.13. There exists a number py such that if p > py then for all
values of B, the interval [2_§, 1-— 2_5] is negligible.

We consider the function () given by

2
log 2 + % if 8 < 24/log?2,

B+/1log 2 if 8 > 2y/log 2.

This function occurs in Propositions 2.5 and 2.6.

(4.20) £(8) =

Lemma 4.14. For all p sufficiently large, we have
(4.21) lim inf py (8) > £(8) — 2775,
N—+o00
Proof. The function 8 — pn(8) is convex, and by definition of g,, for
B < B, its limit is log 2 + 3%/4. It is elementary to conclude that
lim inf p/ > 2
lim inf py (Bp) = Bp/2,

so that, using convexity of py again, for 8 > 8, we have

. g 1
liminfpy(B) > log2 + i + iﬂp(ﬁ — Bp)s

N—+oo

and thus, by an elementary computation
. 1
liminf py (6) 2 £(8) - 5(2v/1087 - G,
—+00 2
But it follows from (4.14) that 2y/Iog2 — (3, < 27P*1. O

We now define, for |u| <1,

(4.22) An(u) =) exp(-B(Hn(o) + Hy(a")),

where the sum is over the pairs of configurations o, o’ that satisfy R(o, o') =
u.
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Lemma 4.15. We have

(4.23) % Elog An(u) < &u(B)
where
62

&u(B) = 7(1 +uP) +2log 2 — p(u)
if

,82
(4.24) 5 (L+u?) <2log2 —p(u)
and

£u(B) = Bv/2(1 + uP)(2log 2 — (u))
if (4.24) fails.
Proof. It is identical to that of Proposition 2.5 if one observes that when

R(o,0') = u,

E((Hy(o) + Hy(0))?) < N(1 +uP)
by Lemma 4.1, and that the number of pairs in the summation (4.22) is at
most 22V exp(—Nop(u)). O

Using Proposition 2.2 (and its extension to the left-hand side of (4.23)),
we see that to prove Theorem 4.13 it suffices to prove the following

Lemma 4.16. If |u| € [277/4,1 — 277/2] and if p is large enough, we have
(4.25) £u(B) < 26(B) — 2757

Proof. We can assume u > 0 by symmetry. The basic fact is that if |u| €
[27P/4 1 —27P/?] (and p is large enough) then

(4.26) 2uP log2 — (1 4 uP)p(u) < —27572,
To prove this, we observe that if u?~2 < 1/8, this is at most
2 2 2
v_w < _w < 97572,
4 2 4
If uP~2 > 1/8, we appeal to (4.15) with v = 277/2 to see that
p2-P/2
(14 uP)po(u) > (210g2+ 1 )up

so that the left-hand side of (4.26) is at most

—p/2 -

_p2 (l)p/(p 2) < _o9 b2
4 8

for p large enough. This proves (4.26).
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To prove (4.25), we first assume that (4.24) fails. We observe that this
implies

(4.27) B% > log2 >

DN | =

We write
2(1 + uP)(2log 2 — p(u)) = 4log 2 + 2(2uP log2 — (1 + u?)p(u))
<4log2 — 9—%5-1
by (4.26), and thus
V2(1 +u)(2log 2 — p(u)) < 2¢/log2 — 27573,

Since 2¢(8) > 206+/log 2, (4.25) follows by (4.27).
Finally, if (4.24) holds,

2 2
(4.28) &u(B) = % +2log2 + %up — p(u).
By (4.24),
,32
(4.29) 5 < 2log2 — ¢(u)

so that, by (4.28),

&u(B) < %2 +2log 2 + 2uPlog 2 — (1 + uP)(u)

B’ —z_9
< > +2log2 —272

by (4.26). Now, by (4.24), 82 < 4log2, and (52/2 + 2log 2 = 2¢(5). O

Challenge problem 4.17. Show that if 3 < 8, and £ > 0, the interval
[z,1] is negligible.



5 External field and the
replica-symmetric
solution

In this chapter we return to the SK model. One way to read Theorem 3.3
is that, if 3 < 1, we have

. T, .1
(5.1) A}gnoo E N log Zn = A}gnoo N logE Zy.

It is always true, by Jensen’s inequality, that we have
Elog Zn <logE Zyn

and the content of (5.1) is that this trivial bound gives the correct order.
On the other hand (5.1) does not hold for § > 1, as Theorem 3.13 shows.
This is of course a more interesting situation.

As it turns out, (5.1) represents an accidental feature rather than a
general one. For several models of considerable interest, it does not occur,
even at high temperature. In this chapter we investigate a typical case, the
SK model with external field. With the notation (3.1), the Hamiltonian is
given by

1
(5.2) Hy(o)=——~= ) gijoi0; — k' ;-
\/N ; N A A ] KZIV 7

The last term represents the influence of an external field (that is, created
by an apparatus independent of our sample of matter). The reason for
the unexpected ' on the parameter b’ (which measures the strength of the
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external field) is that we find it convenient to consider 8 and h = Bh' as

independent parameters.

In this chapter we prove the following theorem, where g is standard
normal.

Theorem 5.1. There is a number By such that if 8 < By, we have

2
(5.3) lim py(B,h) =log2+ ——(1— q)* + Elogch(Bg./q + h)
N—o00 4
where q is the unique solution of the equation
(5.4) q=Eth*(Bg/g+h).

Thus (to write the formulas of the physicists)

(5.5) Jim pn(B,h) = e~ log(2ch (/g + h)) dt

# —(1—q7 /
4 \/27r
On the other hand, it is very simple to show that

2
lim —logEZN =log2+ 'B— +logchh
N—oo N 4

and that (5.1) fails unless h = 0. (As we will show later, the value of ¢ given
by (5.4) minimizes the right-hand side of (5.3).) The remarkable character
of a formula of the type (5.3) should be self apparent. This formula is not
an accident, but reflects an underlying structure. It is the purpose of the
present chapter to explain this structure and to prove (5.3). The formulae
(5.3), (5.4) are called by physicists the “replica-symmetric” formulas.

The methods of this chapter are rather elementary. Considerably more
powerful methods will be used in Chapter 6 and 7, and will provide shorter
proofs of better results. Our motivation for presenting first an elementary
(an leisurely) approach is that we feel that some of the important ideas are
more apparent this way. These ideas have been very useful to the author.

If we think of the spins o; as functions on the probability space (X, Gn),
the correlation of two spins is given by (o;0;) — (0i)(0;). The fundamental
property behind (5.3) (and many other “replica-symmetric” formulas), is
that in average over the disorder, these correlations are small, i.e.

. 2
5.6 lim E({(o;0;) — (0:){(0;))” = 0.
(5.6) Nl—?éo ((UZU]> <Ul><aj>)
The purpose of the square is to prevent cancelation. By symmetry upon the

sites, we can use any values for 7, j.

Calculations are much simpler when one replaces products of integrals
for Gibbs’ measure by single integrals (this is what makes replicas so useful),
and we first explain how to do this in the present setting.
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One first idea is to use a procedure called “symmetrization” to replace
centering. (This idea is very useful in many areas of probability.) If X, Y
are r.v., and (X', Y’) is an independent copy of the pair (X,Y), we have

(5.7) E(XY) — E(X)E(Y) = % E((X — X')(Y —Y")).

We consider two replicas o', o2, they are independent under G%Q, SO
that we can use (5.7) to write

2((0ig;) — (0i)(05)) = (07 — 07)(aj — 7).
The difference of two replicas o', o2 will occur many times so we will
simplify notation by setting

(5.8) o’=o' - o’
and we see that (5.6) is equivalent to
(5.9) Jim E(oj07)? = 0.

3 o* and we set

To remove this square, we bring in two new replicas o
(5.10) o =o03—0o*
so that, since (07 07) = (0707),
(5.11) (0}0})2 = (0305) (0} (T]) (oiojo; 0']>

It is often useful to use symmetry among coordinates. We define

(5.12) Cn = Cn(B,h) = E<(a~z.va*)2>

Writing

Z%ZO;J:(
(o’ 0') NQZUZ o ],

we see that by symmetry upon the coordmates,

(5.13)

N -1
(5.14) Cyn :—E< 72 *2>+T E(oio30503).

Thus, (5.6) is equivalent to limy_,o Cy = 0. One could say that when

(Z)

one has a “global” point of view, while when using

E((0703)?) = E{oio30103)
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one has a “local” point of view (two spins involved). It seems fruitful to use
both.

We will study Cy using the cavity method. This is simply induction upon
N. One removes a spin to reduce to an (N —1)-spin system (thereby creating
a cavity). This method is of fundamental importance, both in the rigorous
work of mathematicians, and in the heuristic arguments of physicists.

Let us consider a sequence (g;)i<n of i.i.d. standard normal r.v., that is
independent of all the g;;. Consider oy € {—1,+1}. We have

(515) 7,8HN(0') +onNt1 (% Z gi0; + h)

<N
g
= ,_N Z gijO'z'O'j-f-h Z ag;
1<i<j<N+1 iSN+1

where we set g; n+1 = g;. If we set

(5.16) e =(o,0n11) = (03)i<n+1 € BN,
we see that the right-hand side of (5.15) is

(5.17) 8 Hyir(0)

where

, VN1
(5.18) ﬂ_ﬂim .

That is, (5.15) is the Hamiltonian of an (N + 1)-spin system at a slightly

lower temperature. We denote by Gyi1 = Gn+1(8') the corresponding

Gibbs’ measure, and by ( - )’ average with respect to this measure.
Consider now a function f on Xy41. Using the notation (5.16), we can

write either f = f(Q), [ NS EN+1 or f = f(o’, 0N+1), o € Xy, ON+1 = +1.
We then have the following algebraic identity

1
r_ -
(5.19) (1@ = 7, Av,, fle.oni)E).
where
(5.20) & Z(‘:(O',UN_H) :expaNH(iZgioi—l-h),
VN i<N
and where
(5.21) Z = <0Nﬁ\;i15(0', 0N+1)>.

(The reader should not confuse Z with the partition function Zy.)

What these formulas mean is that we average first over o1 = £1; the
resulting quantity depends on o only. We then average over o in Gy.
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We will need a formula similar to (5.19), when f is a function on
(2K 1, GY"1)- In that case, we have

1

(5.22) (Fle",---. @) = Jp(Avi(e',.... ") &),

where now

(5.23) &k = exp Z ol (\}‘% Z giok + h).
1<k i<N

The notation (5.22) uses two conventions, that we will be valid throughout
the paper.
First, the relation between @' and (o-l,aéw_l) is as in (5.16),

(524) Ql = (O-lla'--ao-évaaé\f—‘rl)'

Second, the average is over cr]lV_H, .. .,J?V_H = +1. The result of this

1

averaging depends only upon o', ...,o*, and is then integrated for G%k.

When one averages over a}\, FRTRp ,a}“\, 41 these are simply dumb vari-
ables, U§v+1 = =1, so we will lighten notation by writing ¢; = U§v+1,5~ =
ON+1,€* = o)y, inside such averages. Then we write of course (5.23) as

B !
Er=exp ) &(—= gio; +h).
' g z(mgv )

Proposition 5.2. There is a number By > 1/3 such that if 8 < By, then
for all h > 0, we have

(5.25) NCy(B,h) < 32.

Proof. From (5.14), we write

6 N-1_, ... .
Cn(B,h) < N + N E(ociolonon),

and changing N in N + 1,

16 N -
On+1(B',h) < g + g EleToioN-1ok )
We then use (5.22) on the last term to obtain
~ % _~ * 1 ~ % _~ %
(5.26) E(oioiontion41) =E ﬂ<AV o101e€* ),

where Av is over €1,...,e4. We observe that AvE(e) > 1, so that Z > 1.
Also

(Avoiotee*Ey) = (Avoie€)? >0
and thus,

(5.27) E(Jfa’{avaU*NH)' < E(Avoioiee*Es).
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The previous argument does not take advantage of the fact that Z can be
much bigger than one. But removing this denominator makes the compu-
tation of the expectation much easier. Before we start this computation we
observe an important fact. Since ¢; € {—1,+1}, if €"# 0, ¢* # 0 we have
€9 = —€1, €4 = —€3, SO that

€€* &y = T’

where
&' =exp— Zg, €10; + e307).

\/_ <N

Now
Av g =¢q, Av & =¢g3
go==+1 gq==+1
and thus
(5.28) (Avoioiee*Es) = (AvoiofeiesE’).
We denote by E, the expectation in (g;);<n only. Thus
2
(5.29) £ = E, & = exp f—N S ((07)2 + (07)? + 2e1650707).
i<N

Since the disorder in ( - ) is independent of the (g;)i<n, we have
Eq(Avoioieies€’) = (Avoiojeies EgE').
From (5.28) and (5.29), we then get that
(5.30) E(Avoiojee*Es) = E(Avoioje e3E")
= E{o70o] AveresE”).

We then use symmetry among the sites to see that
(5.31) E(Avoioieies€”) <( Z 0;0 ) Aveiesl! >

In view of the notation o' - 6 = 37,y o/ 07, it is natural to write

(5.32) @)=l I?; D (e7)? =llo”.
i<N i<N
Thus the right-hand side of (5.31) is
1 B 2 5
(5:33) E<a -o* Averes expf—N(Ha 12 4 o*]2 + 261650 -0'*)>

- LE(r oS oY exp 7|+ [0 1P)).
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Now we use the fact that for |z| < 4, we have zsh 5%z < % sh44?, and that
lo™ - a*|?, |lo7]|?, ||o*]|? < 4N. From (5.31), (5.33) we obtain

E(Avoiotees€") < ish 462 exp 8B2< ("NJ'V"*)2>.

If we recall (5.25), we see that

. 16 1, N
. < —

2
N—+1) sh 462 exp 862Cy (B, h).
We consider now Gy such that

1 1
7 Sh465 exp 805 < 5
(e.g- Bo = 3). Thus, if B’ < By we have

1
i sh48? exp 84’2 <

N | =

and
1
(N+1)Cny1(B8',h) <16 + §NCN([3, h).

If we set

an = sup NCN(Igah’)u
B<pBo

since 8’ > 3 we see that
1
an+1 <16 + §aN
and thus by induction over N that ay < 32. O

It should be pointed out that Proposition 5.2 is a very special case of a
powerful result of [F-Z]; but this special proof we gave is particularly simple.

Let us now explore consequences of Proposition 5.2. We set

o - o3\ 2
(5.35) Dy = Dy(B,h) = E<( ) >
Lemma 5.3. We have
(5.36) Cn <4Dy
(5.37) Dy < +/Cy.
Proof. To prove (5.36), using that (a + b)? < 242 + 2b?, we have

oy <2e((SE) )+ 2e((SE) ) -
To prove (5.37), we write
o o= Z J}Uf’,

i<N
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so that, using Cauchy-Schwarz twice,
1 ~ 3 ~ 3
Dy = N2 E Z (oio;0j07)
4,j<N

=z 2 Elloiop){otod))

i,j<N

IN

7 3 (Eloiog))F (Elobody)
1,j<N
1

NI=

INA

= O (Elio))?)

1,j<N

IA M
S
g9

\/
(ML

=+/Cn. O

Thus, it follows from (5.25) and Proposition 5.2 that Dy < 8/v/N for
B < Bo. It is in fact true, as we will show later, that Dy < L/N. This
however cannot be proved by general principles.

Challenge problem 5.4. Prove by an example that (5.37) is essentially
sharp. That is, construct a random measure G’y on {—1, 1}V such that if
we define Cy and Dy by replacing Gy by G', then (5.37) is essentially
optimal.

As a consequence, we will not be able to deduce that Dy < L/N from
(5.24) but we will have to make a specific analysis, along the lines of Propo-
sition 5.2. It is unfortunately harder to relate Dy and Dy _; than Cy and
Cn_1.

As simplicity is our main goal in the present chapter, we will proceed
through (5.37). This does not give the correct rates of convergences, so we
will not attempt to get any rate of convergence at all. The correct rates will
be obtained later.

Lemma 5.5. We have

(5.38) %DN < E{(R(a,0") — (R(o,0")))*) < 4Dy.
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In particular, (5.6) is equivalent to

(5.39) lim E{(R(a,0") — (R(c,0")))?) = 0.

N—o0

What (5.39) means is that the function (o, o’) = R(o, o) on (2%, G%)
is nearly constant. The value of the constant is quite naturally the integral
of the function, namely (R(o,o’)). This quantity might depend upon the
disorder.

Proof. First, we write
3

o -o0°\2
v =E(("5))
=E((R(0?,0°) — R(c",07))?)
< 2E((R(c?,0°) — (R(0?,0%)))%) + 2E((R(c",0°) — (R(a",0%)))?)
= 4E((R(e",0?%) — (R(a',0%)))?).

Next we write

(5.40) b= (o) = ((03))i<n-

We observe that by Jensen’s inequality
3

1) (Y < ((52))

This is because the left-hand side relates to the right-hand side by aver-
aging o2 for Gy inside the square rather than outside. Similarly,

(542 () <))

Let us also observe that

(5.43) b-b=> (0:)°=) (0j0}) = (o' ?).

i<N i<N

Thus
1.2 1. .2

o -0 o -0 2 ol —b)-o? 0?2 —b)-b\2
(T () ) = (T )
<4Dy,

using (5.41), (5.42), and the fact that (a + b)? < 2a% + 2b%. O

In the use of the cavity method, we have met quantities such as

(5.44) <exp Wi Z gzal>

i<N
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in (5.40) for ¢t = Bon4+1. These will occur often, so we write

(5.45) Z gioi =g - 0.

i<N

The quantities in (5.40) are averages with respect to Gibbs’ measure, and
as we do not yet understand Gibbs’ measure, we might fear that we do not
understand them either. A fundamental consequence of (5.6) is that the
quantities (5.44) essentially depend upon Gibbs’ measure only through the
much simpler quantity b = (o).

Proposition 5.6. Under (5.7), if f is a bounded function on Xy, we have

(5.46) Tim E|(f(o)exp ﬁ g-0)— (f) exp(

#g-bng(l—q))‘—)O

where

2
7= ((o,a") = T

Strictly speaking the expression “f is a bounded function on Xy” is
meaningless. This is a convenient way to express the following: for each NV,
we consider a function fy on X, and we assume that supy|fn| < 0.

Proof. First let

X=<f(a)exp#g-a>
2

y <f(a)e><p(ﬁg-b+%(l—§))>-

We will show that
(5.47) E(X —Y)? =E(E,(X? —2XY +Y?)) -0

where E, denotes integration in g only. We use replicas to write
X = (f(@)f(c)exp =g (o +")),
VN

XY = (1)) ow( g (0 +0) + 501-)),
2t

Y? = exp(\/]v

g-b+1(1-9)(f(@)f(o"),
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so that, since ||o||?> = ||o’||? = N, using (2.14),
Eg X2 = (f(0)f (o) expt*(1 + R(a, ")),
t2 b||?
E, XY = <f(0')f(o")exp<5<1 +2T + %) + 51— ))>
o-b
= <f(°')f(°'l) exp t? (1 + T)>a
b 2
E,v? = exp (2210 +2(1 - D)) {£(0) (")
= expt*(1+7) (f(o)f(o")).
Now, it follows from (5.39) that
E((R(o',0%) —q)%) — 0,
and from (5.42)and (5.43) that

(7))
This implies that

E|E, X*—E,Y? =0, E|E,XY —E;Y? —0.
This proves (5.43) and Proposition 5.6. O

Not surprisingly, Proposition 5.6 will be very useful. But what is really
behind it? Proposition 5.6 means that for the typical choice of g the law of
(g-o)/V'N under Gy is approximately N ((g-b/v'N), (1—g)). It is a kind of
central limit theorem but it holds for the typical random coefficients g; rather
than for any choice. If it were true that G is a product measure (which it
is certainly not) then for any sequence (a;)i<n, with maxa; < (3 a?)%, the
law under Gy of o — Y a;0; would be approximatively

N(Z a;{o;), Z aZ(1— (oi)Q)).

i<N i<N

When a; = g;/V N, one certainly expects that averaging takes place and

that )
Z%(l-( _1——201 =

i<N i<N
Proposition 5.6 is much less surprising as part of a general theme: under
(5.6), Gibbs’ measure somehow resembles a product measure. This is in fact
the case as long as one considers only finitely many spins.

Proposition 5.7. Under (5.6), for each p, we have
(5.48) lim E((01...0p) — (01) ... {0p))> = 0.
N—o0
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Thus, quite remarkably, the vanishing of the correlations of two spins
implies a similar vanishing on any given number of spins.

Proof. We proceed by induction over p. This is true for p = 2. For the
induction from p — 1 to p, since |(0;)| < 1, it suffices to prove that

]\}i—l>noo E((o1-..0p) — (01 ...0p—1){0p))? =0,

or, with the notation

(5.49) 6; = 0; — (04),
that
(550) ]\}1_1)1100 E<O'1 .. Up,10.'p>2 = 0.

We observe that, by symmetry upon the sites, we have
(5.51) ME(o1...0p 16,)° <E Y (03, ...00, ,6i,)°
T

where M = N(N —1)...(N —p+ 1), and where the summation is over all
choices 41,...,% < N. Now, using replicas,

< \2 _ . ) Y
(5.52) E (04 -+ 04y, 03,) " = < E Oiy + - Oip_1 03,04y - O _ Oy >

il:--'aiP il:--wip
/

— Np<("’]'v"’ ) R(o-,cr')p_1>.

Moreover, since |R(o, 0')| < 1, by Cauchy-Schwarz,

6w (o) < (((5E)) <k

where in the last inequality we have used Jensen’s inequality as in (5.41).
To finish the proof, we observe that (5.50) follows from (5.51) to (5.53). O

Theorem 5.8. Under (5.6), given any number p, o1,...,0p are asymptoti-
cally independent under G .

Proof. The proof will provide a precise statement. Denote by Gy, the law
of o1,...,0p under Gy, or equivalently, the projection of G onto {—1,1}7.
Let us denote by u the (random) product measure on {—1,1}? such that

[odutor.o) = @) = [a:aGrylon....p).

Then E|Gn,p — p| = 0, where |Gy — pf is the total variation distance. To
prove this, it suffices to show that given o4,...,0p,

(5.54) ElGnp({(o1,-.-,09)}) = n({(o1,-- -, 0p)})| = 0.
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NOW7 if (7717 s 77717) € {_17 1}11,

(o1, (M- mp) = 27P [ (1 + mios) =277 " myoy

i<p I
where the summation is over I C {1,...,p}, and o1 = [[;c; 03, 11 = [ ;1 mi-
Thus, to prove (5.54), it suffices to prove that for each I
(5.55) E |/01 dGnplor,...,0p) — /O’[ dp(oy,. .. ,ap)‘ — 0,
ie.
E ‘(01) ~Itea| = o,
i€l
which follows from Proposition 5.7. |

The remarkable feature of Theorem 5.8 is of course that the conclusion
looks stronger than the hypothesis.

At this point the reader should be convinced of the importance of (5.6).
With the exception of Proposition 5.2, the conclusions we have drawn from
(5.6) are quite general, and rely only upon the symmetry between sites.
The physicists say that a system satisfying (5.6) is in a pure equilibrium
state. For all the systems where the author has been able to prove at high
temperature the validity of the replica symmetric formulas, proving that the
system is in a pure state has always been the first (and most difficult) step.

Lemma 5.5 tells us that the overlap of two generic configurations is
independent of the particular choice of these configurations, although it
might depend upon the disorder. Of course, we would like it to be in fact
independent of the disorder. That is, we would like

(R(o,0) = - Y lool) = 1 (o) =7
i<N i<N

to be independent of the disorder. Before we prove this, we collect a few
simple facts, the first of which, the integration by parts formula, is of fun-
damental importance.

Proposition 5.9. If g is centered normal, for any smooth function f such
that (1 + z2)~* f(z) is bounded for some k then

(5.56) E(gf(9)) = E(g°) E(f'(9)).
2

Proof. This is, indeed, integration by parts. If E(g%) = 72,
2

1 +o00 ¢ \ 1 +oo I 2
V21 /_oo tf(t)eXp(_ﬁ) dt =1 /_oo f(t)eXp(—2—T2) dt. O
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We consider
(5:57) (o) = EW (505 +h) = < [ (Bgvi+ Wyex (-5)a
. T) = gvT v g p 5 .

This notation will be used in Chapters 5 and 6. (The function 1 of Chapter
4 will be not used any more).

Lemma 5.10. We have

V(z) = FPE 1 — 2 sh?(Bgy/z + h)

' (Bg/z + 1)
and in particular |¥'| < 262, and |¥'| < § if B < 1.

Proof. We have

¥(e) =€ (2L 25 60vE +1)

and the result by (5.56), since

th(z) \' 1—2sh’(z)
(ch%c)) T alw -

It follows, in particular, that (5.4) has indeed as unique solution g.

Theorem 5.11. If B < By, for each h we have
(5.58) lim E(g—¢)? = 0.
N—oo

Proof. We set
1 2 1
- — E(7 2 _ A2\ _ = \2 4 2
Qn = Qu(8:h) =E@—0)” =E(57 D (0)°) ~20E 5 3 {o0) +*
i<N i<N
By expanding the square and using symmetry between the sites, we have

(559 Qv < 3 +EW0)Hon)’ —gE(e)’ —aElon) + ¢

and, changing N into N + 1,
1

(5.60) Qn+1(8,h) < N+l

+E(01) {on+1)"? — ¢ E{01)? — ¢ E{on11)? + ¢2,

K
where ¢’ is the solution of (5.4) when ' replaces 8. It should be obvious
that

(5.61) lg — ¢'] = o(1),

where o(1) is a quantity that goes to zero as N — oc.
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Lemma 5.12. We have

(5.62) El{01)"? — (01)?] = 0
5.63 E 2_g2( L g pin |—o.
( ) <0N+1> (\/N )
Proof. To prove (5.62), from (5.19) we have
Avoi &
<01>I = < Zl > )
for
Z = (AvE)
g
&= = ioi +h) .
eXpUNH(\/NZZ]:ng )
It follows from Proposition 5.6 that
g p
E|Z—exp7(1—q)ch(ﬁg-b+h)‘ =0,
g p
E ‘(Avolé’) — (o1) exp 7(1 -7 ch(ﬁg -b+ h) ‘ — 0.

Since Z > 1, this implies
Ef{o1)' = (01)] = 0
from which (5.62) follows. The proof of (5.63) is similar.

235

O

End of the proof of Theorem 5.11. If we combine (5.60) to (5.63), we

see that
/ < 2 th? i .
(5:60)  Quar(8,h) <E((01)*th*( =g b+ 1))
_gE{o1)2 —qE th2(ig-b+h) +q% + o).
VN

Since ) ) .

_ . = — 2 =q

& (5 98) =ylblf=a

we have

2(_P_,. _ U@
(5.65) E, th (mg b+h) =U(g).
Moreover, since (o1)? does not depend upon g, we have

E(@Q%}P(%g-wh)) = E((01)2Egth2(%g-b+h))

=E((01)*¥(q)).



236 Michel Talagrand
With (5.64) this implies

(5.66)  Qn11(8,h) < E((01)?T(q)) — qE(01)? — gET(q) + ¢* + o(1)

and, using the symmetry between sites,

(5.67) Qn+1(8',h) < E(G‘IJ(_)) qE(@) — qET(q) +¢* +o(1)

Here, we have used Lemma 5.10 in the fourth line. Iteration of (5.67) yields
(5.58). O

We have now improved (5.39) into

(5.68) lim E((R(o,0") —q)*) =0
N—o0
where ¢ is given by (5.4).

We are now ready to start the proof of (5.3). We first remove some of
the mystery of this formula. Fixing h once and for all, we denote by SK(£3, q)
the right-hand side of (5.3), when we think of 3, ¢ as independent variables.
We then have

oSK
9 —?(1 -9+ E( \[th(ﬁg\/_—i-h))
and using integration by parts (Proposition 5.9),
ISK _ 82 1
gon -+ 2 ————
dq Tt E G h
Since th?(z) =1 — 21 , (5.4) means that ¢ = ¢(3, h) is such that
ch*(z)
BSK
(ﬁa )_
It follows that
dSK
5.69 — SK ,q(B,h)) = ,q(B,h)).
(5.69) S SK(B.a(5. 1) = 256, 4(6,1)
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Now,
dSK
O = 51— 0+ E(gvath(Agva + 1)
g 2 1
S NP N VY - S—
5 (1 —a)" +pq 2 (Bg/a + )
using Proposition 5.9 again. Now, by (5.4),
S S
ch?(Bg/q + h) ’
so that
OSK _ B, 4
(5.70) 95 2(1 q°).

We note for g =0
pn(0,h) =log(2chh) = log(e" + e )

so that (5.3) is obviously true. So to prove (5.3) we will show that

v 5 )~ B - )] =0,

(5.71) fim |22 5

N—o0 8ﬂ

where ¢ is given by (5.4). This, of course, removes much of the mystery of
(5.3).

Lemma 5.13. We have

oy _ B

98 2 (1 - E(R(o,0")?).

Proof. This fundamental formula is again a consequence of integration by
parts. We write

1 1
(5.72) pN(B,h) = + Elog Zy = + Elog%:B(a)

where

B(o) = BN (B, h, o —exp( ngolo]+h201)

z<] <N
and thus
aB
(5.73) = (Z guazaa)
1<j
(5.74) aB—“') _ b ioBlo).

09ij VN
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Thus, from (5.71),

1 i<i ,"O'Z'U'Ba'
(5.75) aﬂpN(ﬁ, h) = N3/2E22<J9’ZN i5(9)
iB(a)

N3/2ZZ i9, JEgJ

i<j O

We now use integration by parts using the fact that the g;; are independent,
so that we can use Proposition 5.9 conditionally upon the (gy;/), (¢',5") #
(,7) and we get, using (5.74)

3 ,,B(U)) _B (00, E<B(o)) _gB0)e 020}3(0’)))

Y9778 ) T YN 7y 7
and (5.75) yields

0 —=PN(Bh) = ﬂ(w - EZ<Uin0§0}))

op N i<j
= g (V- EXteele)
50 <(zm ))
=21~ E(R(. o). .

Combining Theorem 5.11, Lemma 5.13 and (5.70) proves (5.71), and
hence Theorem 5.1.

Thus, it seems quite appropriate to say that the replica symmetric for-
mula (5.3) is neither so mysterious nor quite central. The central fact is
(5.68).

Theorem 5.8 means that “locally” (on finitely many spins), Gibbs’ mea-
sure is determined by the sequence b = ({0;))i<n, and Proposition 5.6 says
that this is even true “globally”, in some respects. So, how does this se-
quence (0;)i<n behave?

Theorem 5.14. For 3 < (3, given any number p, (01),...,{(op) are asymp-
totically i.i.d. Their common limit law is the law v of th(Bg\/q + h) where
g is N(0,1) and q is given by (5.4).

Proof. By induction over p, we show that if f : RP — R is continuous with
bounded support,

Ef((01)s - (o) /fxl,.., Ydv(z) ... dv(zy) — 0
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uniformly over 8 < ;. This is true for p = 0 (nothing to prove) so we
proceed to the induction step from p — 1 to p. Since this requires use of
the cavity method, we will change N into N + 1 and, using the symmetry
among sites, we will prove that

(5.76)
Ef((o1)s. . {op-1)',s (on41) /f Ty, 2p) AV (z1) .. A (zp) = 0
uniformly in #' < By, where 3’ and f3 are related by ' = 8 (1 + )1/ 2 and

where v/ corresponds to §' rather than 8. We observe from Lemma 5.12
that

/ B
5.77) Efiowsay ~th( 758 -b+#)| 0
E|(o;) — ()| = 0, for all i,
so that
(5.78)
E7((01)- (o) fowan))—E £ (o). .. @g,m(% gbth)) 0.

Consider the function

U(iL‘l, ceey Tp—1, y) =E f(xlu <oy Tp—1, th(ﬂg + h))7
where g is N(0,y). It is obviously continuous. In (5.78), g is independent
of (- ), and the law of (g - b)/v/N given b is N'(0,7). It follows that

Ef((ol), o @g,m(%g b+ h)) =Eu((o1),...,(op1),7).

Since we have shown that E|g — ¢| — 0, we have

EU(<0’1>, <0'p 1) )—EU(< ) ...,<0'p,1>,q) — 0.

Now the function u(z1,...,zp,q) has bounded support, so by induction
hypothesis (and since 8 < ') we have

Eu({(o1),...,{0p-1),q) — /u(ml, ey Tp_1,q) dv(z) ... dv(zp—1) — 0.

Moreover

u(ml,...,xp,l,q)=/f(zl,...,mp,l,mp)du(mp).

Combining these estimates we have proved

Ef(<01)l o {op—1) s (ong1) /f T1y...,2p)dv(zy) ... dv(z,) =0
from which (5.76) follows. O



6 Exponential
inequalities

In the previous chapter, we have shown that for the SK-model, if 5 < % we
have
(6.1) lim E{(R(o,o") —¢)?) =0.

N—o0

We will prove here considerably more accurate results in the same direction,
namely the following.

Theorem 6.1. There ezists a number L and a number By such that if 6 <
Bo, and h <1, then

(6.2) E<exp % (R(cr, o') — q)2> < L.

Besides the fact that such an inequality is obviously a notable improve-
ment on (6.1), it is also motivated by its possible relevance to the important
open problem that will be discussed in the next chapter. The restriction
h <1 is not really needed. We impose it to avoid secondary complications.
It can be removed with a few extra lines of work. In fact, large values of
h improve the situation: one can show that (6.2) holds for 8 < 8(h) with
B(h) = oo as h = oo.

An exponential integrability condition such as (6.2) amounts to a uni-
form control of moments. We will prove the following

Proposition 6.2. There ezists a number By with the following property. Set
A=192. If 8 < By, h <1 then for each k, N we have

(6.3) E((o! - 0® — Ng)™*) < A*N*E!
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Using that
CH
e = Z k!’
E>0
we see that (6.3) implies (6.2). (These are in fact essentially equivalent).

An important observation before the proof starts is that to prove (6.3)
we can assume N > k. Indeed, since |o! - 02 — Ng| < 2N, the left-hand side
of (6.3) is at most 4* N2, so (6.3) holds provided

4k NF < AR

so that if N < k, to prove (6.2) it suffices to see that k¥ < e*k! This is a
weak version of Stirling’s formula which is very easy to prove by induction
upon k.

To prove (6.3) we will proceed by double induction. Let us denote by
H(N, k) the validity of (6.3), so that H(N,0) is valid for all N. We will
prove by induction over k that H (N, k) is valid for all N. For a given k, we
will prove the validity of H(N, k) by induction over N.

Let us write
(6.4) Unk(B) = E((c" - o® = Ng)*).
To prove Proposition 6.2, it suffices to prove the following

Proposition 6.3. If 8/ < By and if

(6.5) VI<k Uny(B) < AN,
then
(6.6) Uni1:(8) < AF(N + 1)FK!

Here, as elsewhere in this Chapter, 8 and 3, g and ¢’ as well as ( - ) and
(-)" are related as in Chapter 5.

Lemma 6.4. If 8 < By, we have

(N+Dlg—q| <1
Proof. We write as ¥(z, 3) the quantity (5.57). Thus if ¢ = ¥(g, §), then

dg _ 5(@)

Now 0¥ /08 = 2q/B 0¥ /dq, and the result follows from Lemma 5.10 and
the fact that |3’ — 8] < B/2N. O
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Let us start the proof of Proposition 6.3. (The reader is suggested to
assume k = 1 at first reading). To simplify notation, we write

V=0'0>-Ng ovnp1=0ypox1—¢ 6§=(N+1)(g—q).
We have

67)  Unsip(8) = E((0" - 02 + ohy10%ss — (N + 1)) %Y
= E((V +vn41 + 0)%F)

> (3)0 v+ oyt

0<I<2k

< Z (2lk)wmf§£l

0<I<2k

= (1+ W)

where
(6.8) W = E((V +on41)2),

and where we have used Lemma 6.4 and Holder’s inequality in the fourth
line. To prove (6.6), it suffices to prove that

(6.9) W< 2(N + 1)k AFE!
Indeed, by (6.7), we have
1 1
(6.10) Un1(8) < 1+ W) < (14 (2(N+ )% AFRY) 21’f) o
1 k gk 2k
§(N—|—1)Akexp( ﬁ)

(L(V + 1)k AFE!)

since, for z > 0,

1 2k
(1 +$)2k — $2k:(1 + E)Zk S $2k exp(;)_

Now, N +1 > kandA¥k! > 42k+1kk 5o that

(;(N + 1)k ARKY) 3 > 4k

and (6.10) implies (6.6).
We turn to the proof of (6.9). Using symmetry between sites, we get

(6.11) W < (N +1)E{(wns1(V 4+ vnp1) LY.
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Of course in the bracket, average is integration of o' = (di,..., 0,0l ;)
(1 <2) in Gy41. We write

2k —1
(V+on)* = ( I )V%_l_lﬂévﬂ
0<I<2k—1

The most important term is for I = 0. For [ > 1, we bound |vy,1|'T! by
241 and we obtain from (6.11) that

(6.12) W < (N +1)ElwyV* 1Y 48
where
2k -1 I+1 2k—1—1\1
(6.13) S=N+1) > ;2R ).
1<I1<2k—1

We first perform the easy task, the control of S.
Lemma 6.5. If N + 1 > k, we have

(6.14) S < %(N + 1)k AFR!

Proof. We use (5.22), and the fact that Z > 1 to get
E(IV P41 < E(aVV 1)
< exp(26” + 2n) E(V 1),
by integrating first in g = (¢;)i<n-

Next, we use Holder’s inequality,
E<|V|2k7l71> < (E<V2k72>)2§;i;l

2k—1-1

= (UN,k—l(ﬁ)) 2%k-2 |

We use the trivial bound
2k —1
( l ) < 202k - 1)L,

to obtain from (6.13) that

(6.15) S < 8k(N+1)exp(26°+2h) 3. (4(k—1)) ' (Unx_1(8)) T .
1<I<2k—1

Now, we use that pP < 3Pp! for p = k£ — 1 to see that, since we assume
N > k — 1, we have
82(k—1)(k _ 1)2(k—1) < Ak—lNk—l(k _ 1)|’

so that
(6.16) (4(k — )17 < 217H(AR-INE-1 (g 1)l)zee,
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Next we use (6.5) to see that
(6.17) Unj—1(8) < AP INF1(k — 1)1,
and substitution of (6.16), (6.17) in (6.15) gives
S < 16k(N 4 1) exp(28% + 2h) AF I NF 1k — 1)!

< (% exp(262 + 2h)) (N + 1)k ARk

1
But since g < 5 h <1, we have 16 exp(262 + 2h) <

d
A

|

Now we turn to the main issue, the study of E(vyy1V2¢~1). We use
(5.22) to get

1
E—(V*# T Av(erer — 9)&2),

(6.18) E(oy 1 VHEY = 73

where

Eg—epoEl \/_g ol +h),

<2

Z = <Av exp s(\/—ﬂﬁ

To study (6.18), we will use the following principle.

g-0'+h)>.

Proposition 6.6. There exists a number L with the following property.
Consider a function f : X% — R and p,p' with 1/p+ 1/p' = 1. Consider q
in [0,1]. Then if 8 <1,h <1, and if J is a subset of {1, 2} we have

(6.19) ‘E %(f Av ][] e€2) — Eth™(Y) E(f)‘

leJ

\\H

< BLEF) 7 (E(IR(@! 0%) — )",
where Y = 3g,/q + h, and where g is N(0,1).

The ideas behind Proposition 6.6 are of fundamental importance, so we
delay their discussion until after the proof of Theorem 6.1.

We will use (6.19) when ¢ is given by (5.4). This simply means that
g = Eth?Y. We apply (6.19) to f = V?*~1 p = 2k/(2k — 1),p' = 2k, and
for two choices of J : J = {1,2} and J = (). Since

/I = N*|R(o,0?) — ¢ = [V,
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we get

2
L6 UNk(/B)

< L,BQN’“‘lA’“k!,

(6.20) E(oy 1 VHF 1Y <

using (6.5). Going back to (6.12), and using (6.4), we get
W< (N + )’“A’“k'( + L/j?)

and this proves (6.9) if L3% < 1/4. This proves Proposition 6.2 and hence
Theorem 6.1.

We now turn to the proof of Proposition 6.6. Even though it will require
some abstraction to see it, the true nature of the problem we face is as
follows. Consider two centered jointly Gaussian families (u;)i<n, (vi)i<n
and a smooth function F' on R”. How do we compare

EF(uy,...,up) and EF(vy,...,v,)7

The circle of ideas we will use to do this will be referred to as Kahane’s
principle (in honor of [K]). As in all great mathematics, the starting point
is almost absurdly simple. It is to find a smooth path w(t) from the family
u to the family v so that w(0) = u, w(1) = v, and to write

(6.21) EF(v) —EF(u /9’

where 6(t) = E F(w(t)). The basic tool for computation of #'(¢) is integra-
tion by parts, and we first state the form we need.

Proposition 6.7. Consider a (centered) jointly Gaussian family u,uq, ..., uy,
of r.v. Then
(6.22) EuF(ui,...,un ZE wu;) ul, ey Up)-

i<n

Proof. This is an application of (5.56). We write
E(uu;)
Eu? ©
so that E(uju) = 0. The family (u})i<, is independent of u. Setting ¢; =
E(uu;)/ E(u?), we write

!/
U; = U —

EuF(ui,...,u,) = EuF(u] + cau, ... LU, + cpu)
and we use (5.56) at (u}) fixed. O

Here is a particularly elegant formulation.
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Proposition 6.8. Consider two centered jointly Gaussian families of r.v.
U = (Ui)i<n, U = (V;i)ic<n. We assume that these families are independent of
each other (but we do not assume that (u;)i<n or (vi)i<n are independent).
For 0 <t <1 consider

(6.23) 0(t) = EF(VI—tu+Viv).
Then for 0 <t <1 we have
/ 1 0’F
(624)  0'(t) = > " (E(viv;) — E(usu;)) E m(\ﬂ —tu+Viv).
iyj t

Proof. We have

') = - R S e iy
0(t)-2E;<\/Evl muz)awi( 1 tu+\/7_5v).
By independence of u, v, we have
1 1
E((% v — Vi ul) (\/1——tu] + \/Z’Uj)) = E(vivj — uiuj),

so that the result follows from Proposition 6.7. |

The way Kahane uses this is that if
2

- 7

.. 15}
Vi,j E(vivj) > E(usv;) and 9105

then E F(v) > E F(u). (Slepian’s Lemma)
Proof of Proposition 6.6. For further purposes, we will consider a more

general setting, namely replicas of order s rather than 2 and we will try to
approximate

(fAve &) (f AvesEs)
6.25 E =E
(6:25) A (Av Es)
where J C {1,...,s} and ¢; = [[;c;€&- We will work conditionally upon

Gibbs’ measure on Yy, that is, we integrate first in g. Rather than Gibbs’
measure, it turns out to be very convenient to consider points (o°(j));j<m
in ¥ and the probability p that gives mass 1/M to each o(j), ie. p =
M1 >-j<m 0 (j)- The points o(j) are not assumed to be distinct. Fixing
N, we will take M — oo to approximate Gibbs’ measure. Thus, we want to
understand

ZfAVEJeXleSs El(%g ~o(ji1) +h)
Y Avexp) . 51(%9 o) +h)

(6.26) E,

Here

(6.27) f=Ffle@),...,o0s),



Mean field models for spin glasses: a first course 247

and the sum ) are over all possible choices j1,...,js < M. It turns out to
be very useful to think to the quantities g - o(j;) as Ms different variables
(s for I < s, M for the M possible values of j). That is, we consider
x = (2(4,1)) j<m,<s and we consider

(6.28) Fi(x)= Y fAves GXP(Z el(Bz (i, 1) + h))

J1yeess I<s
(6.29) Fy(@) = Y Avexp(Y elBolinl) + 1)),
jly"'ajs lSS

where f is as in (6.27) and the summation is over all possible values of

I1s---57s- We set

(6.30) F(z) =
We consider the Gaussian family

v = (v(5,1))j<mi<s
where

1
v(j,l) = —g - o(j),
;) N ()

so that (6.26) is E, F'(v).

We consider now independent Gaussian variables u, w(j,1) such that

(6.31) Eu? =g¢

(6.32) Ew?(j,l)=1—q.
We set

(6.33) u(g,1) = u+w(j,1).
Thus, if (5,1) # (5',1"), we have

(6.34) Eu(j,Du(s',1") = q.

The idea of considering u is as follows. We have
(6.35) M °Fi(u)

=M Av(gJ exp(z ei(Bu + h)) Z f exp(z Berw(Ji, l)))
I<s I<s
Now, the variables w(j;,!) are all independent, so by a trivial computation
(6.36) E|M_S Z fexp Z Beyw(ji, 1) — M~° Z fexp '8—23(1 — q)‘2 < E,
2 M

I<s
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where K depends upon f, 3, s but not upon M. Proceeding as in (6.35) for
Fy(u), we see that

F1 (U) _ (f(o_l o )) Av HlEJ €1 €Xp Zlgs 6l(5u + h)
Fy(u) T 7 Avexp Yl a(Bu+h)

= E, (th(Bu + 1)) (f(al,...,0%).

In (6.37), the limit is taken as M — oo and as v = M ' Y.,/ dg ;) con-
verges to Gibbs’ measure. The reader has by now certainly understood that
the purpose of introducing v rather than working with Gibbs’ measure is
not to use equal weights (this makes little difference) but to consider the
atoms of Gibbs’ measure as made up from many different small pieces in
order to use (6.37) as M — oco. We consider

0(t) =E, F(V1—tu+Vtv)

(6.37) lLimE,

so that

(6.38) E, F(v) — Ey F(u) = 0(1) — 0(0) = /0 oy,
and we compute €'(¢) through Proposition 6.8

Lemma 6.9. We have

(6.39) 0't)= > EgF,(VI—tu+Viv)
1<l <la<s
- > EF,(VI—tu+Viv)
1< <l2<s
- Y EF,(VT—tu+Viv)
1<ly,l2<s
+ Y EFR,(VI-tu+Viv),
1<l1,l2<s
where the functions Fi 1,y r=1,2,3,4 are defined as follows:
,62
(6.40) (@) = 5 D fAL L, AveyeneE()
jla"'ajs
for
E@) = exp > (Balin 1) +h) ;
(6.41) fs
A — cr(.]h) i U(]lz) —q
l1,l2 N
,82F1 xr
(6.42) Fﬁ,b (z) = Fg(a:()Z) Z A p Aveyepé ().

jla---ajs
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Moreowver,

ﬂZ
F2 (m 2

(643)  F (@) = D fAirs Avey e, sesE(@)E ().

J1yeensj2s

Here j1,...,72s take all values < M, with (ji,,11) # (Jip+s,l2), the average
Av is over €1,...,69s = £1, and

E'@) =exp > ers(Brlites 1) + h) ;

1<i<s
(i) - oli
All,lz—l—s _ (]l1) N(]l2+s) —q,
and finally
Fl(il,’)
(6.44) F} o (x) = B2 @) > Ay s Aver ey E(@)E (@),
J1sensf2s

where j1,. .., jos take all values < M with (ji,,11) # (Jiy+s,12)-

This of course looks totally overwhelming! To prove that this is not the
case, we finish the proof of Proposition 6.6.

We use that Fy(z) > M*. Taking absolute values, and expectations, we
see that all these terms on the right of (6.39) are bounded by

B2K (B, h,s)M™3 " |f(o(j1)

J13ee1J3s

where [,I' < 3s, 1 #I'. Using Holder’s inequality, this is at most

1

FEB,hs) (MY |f<a(j1>,...,a<js>>|p)*’

J1seeesds
1
(e ST )

J:g'

This is a bound for the left-hand side of (6.38). As M — oo and
Mt Z do(j) converges to Gibbs’ measure, this bound becomes
Jj<M
%

B2K (B, b, ){|f1P) 7 (|R(e, o) — g}

where K (g, h, s) remains bounded with 3, h, s, and we conclude by Hélder’s
inequality. a
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Proof of Lemma 6.9. This is a mere computation, although of course not
a pleasant one. We write, with obvious notation,

O°F R 1 PR R

4 = —_——
(6.45) 0z, 0xy Oz ,0ry Fy  O0x,0xyp F22
(8F1 8F2 +8F1@)L 6F2@ﬂ
Ozy 0z, Oz, Oz /) F2 Oz, Oz F23
so that
1 O%’F
(646) 5 Z E(Ua'l]b — uan)m

is the sum of four pieces, each of which creates one of the sums of (6.39).
The indexes a, b in the sum (6.46) are of the type

(647) a = (kl,ll), b= (kQ,lQ).

Restricting the summation to [y, I fixed will create the individual terms in
the sums of (6.39). Let us observe that Ev2 = 1 = Eu2 so that in (6.46)
we can restrict the sum to a # b. If l; = I3, no term of the sum (6.28) can
contain both variables z(k1,l1), z(ke,l2) if k1 # ko so that

PR
0x,0xp
If ll 7é 127
O ﬁ2ZfAssse Zsﬁ I)+h)
= \", X z
92,01, 1 El,€7 €Xp - ! s
where the sum is restricted over those families ji, ..., js such that j, = k1,

Ji, = k2. Now if a # b, we have seen (using again the notation (6.47)) that

(6.48) E(vaty — ugtg) = 2 7 (2)
N
Thus
> E(vavy — ’uaub) =62 f(ol ..,a(js))(w *q)
xAvellsl25Jexp25l z(j;,1) + h),
I<s

where the sum on the left is over k1, ks < M, a = (k1,11), b = (ka,12), l1,12
fixed. This is how (6.40) occurs. The restriction [; < Iy creates a factor 2.
The term (6.42) occurs for the same reason, so we turn toward (6.43), that
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occur from the term OF, OF% . Using again (6.47), we have
sz 3
OF, BFQ 2
{'):ca( )8$b =8 (ZfAVszleJeXP;&z Bz (1, )+h))
X (Z Ave, exp Zsl (Bz(ji, 1) + h)),
I<s

where the first sum is restricted to j;, = k1, while the second sum is restricted
to j1, = ko2. We write this product of two sums as a single sum (replicas) to
obtain

OF OF:
6x: (z) &Ez =B fAve,EnsE
x exp(z e(Br(in, 1) + h) + > s (Br(ies, 1) + h)).
I<s I<s

There the sum is over ji,...,752s < M, such that j;, = k1, ji,+s = ko, the
average is over €1, ..., ¢c9s. If we recall (6.48), computation of the sum

OF OF:
D Evars — uaw) 3 (2) 5 2 (a)

yields (6.43). The restriction (j;,,11) # (Ji,+s,l2) is because (6.48) requires
a # b. The term (6.44) is similar. O

Challenge problem 6.10. a) After reading Chapter 7, prove that

L
_Egl< 2.
g qI_N

b) Prove that lim N(q— Eq) exists.
N—o00
We now end this chapter by the following weaker version of Proposition
2.1. It was discovered around 1985 by G. Pisier[Pi].
Proposition 6.11. Consider a function f on RM and assume that

(6.49) [f(z) — f(y)] < Lilz — yl|.

Then, for allt > 0,
2

P(If(g9) —Ef(g) >1) < 2exp(—4%).

Proof. We assume first f differentiable. Consider s, and the function F' on
R?M given by

(6.50) F(z) = exps(f((zi)i<m) — f((ziynm)i<mr))-
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Consider the Gaussian family u given by

wi = gi for i < M.
Ui+M = Gi

Then F(u) = 1. Consider now i.i.d. N(0,1) variables (v;)i<on. Thus, for
i < j < 2M we have E(vjv; — uju;) = 0 unless j = i 4+ M, in which case
E(viv; —usuj) = —1. Consider now 6(t) = EF(v/1 —tu+ v/t v) so that, by
Proposition 6.8,

(6.51) 0'(t) = Z E(vivj — uiuy) OF ——(V1-tu+ Vi)

— 8 0T
1<J
Z axzamHM (V1—tu++Vto).
Now,
0*F s20f of
(6.52) m )= " ox; (2 )z'sM)aTci((xiJrM)isM)F(-’B)-

Since (6.49) implies
ve, |[[Vf(2)l <L,

of? 2
i<M ?
we see from (6.52) and Cauchy-Schwarz that
‘ o*F
0z;0z; M

ie.

(@)] < L5 F (),
i<M
so that (6.52) implies
0'(t) < s2L%0(t)
and since #(0) = 1 this implies
(1) = E F(v) < exp s°L*.
Now by Jensen’s inequality (integration in (v;);>nr) we have
Eexps(f(g) —Ef(g)) SEF(v) <exps’L?,
so that
P(f(g) —Ef(g) > t) < exp(s”L” — st),

and
2

P (f(9) ~Ef(g) > 1) < exp(~77)
by optimization over s. Changing F' into —F finishes the proof when F' is
differentiable. The general case follows by approximation (e.g. convolution
with a smooth function). O



7 Central limit theorems
and the
Almeida-Thouless line

In the previous chapter we have seen how to obtain sharp bounds on certain
moments when 3 < 3. But how do we perform exact computation ? For
example, we know since Chapter 5 that for 5 < 1/3

o - o*\2
New = NE((TF7))
remains bounded. We surely expect that this quantity has a limit, and we

would like to compute it. Using symmetries between the sites, we write as
usual

NON = E(U&TO'}(VU'~' 0'*),
and changing N into N +1 and 8 in &,
~ P ~ !
(7.1) (N +1)Cni(f) = Eloviokp0™ 0%) +E{(oR+10511)%) -

It should be obvious that the last term has a limit, as we will detail
later. In view of what we did in Chapter 5, or even in Chapter 6, it is not
sufficient to give a bound for the middle term of (7.1). We need an exact
expression, or at least an expression with error o(1). We will as usual use
(5.22), so we need to evaluate

1, . -
(7.2) E ﬁ@r co*AveetEy).
The closest we can do for the computation of such an expression is in Propo-
sition 6.6. But certainly the proposition (or its obvious extensions to more
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replicas) is not accurate enough. Since f = o - o* satisfies (f) = 0, it
would suggest 0 as approximation of (7.2), which is not really satisfactory
(the error term in (6.19) is of course of order 1). Our first task will then be
to obtain a result in the spirit of (6.19), but with higher accuracy. It will
be a “second order expansion” rather than a “first order expansion”. The
reader who has not followed in detail the computations of the second half
of Chapter 6 should at this point skip directly to Corollary 7.4 below. This
is the key result that allows to prove Proposition 7.5. This result in turn
plays an important role in our discussion of the A-T line, the conjectured
separation between high and low temperature behavior. We could perform
the main computation in the case of Corollary 7.4 only. Rather, we have
decided to give a more general result. There are several good reasons to do
this. First, the extra complication is minimal, and purely algebraic. Second,
this general result opens the door to interesting computations (Proposition
7.7) which show how far the high temperature phase of the SK model is
from being trivial despite what the physicists say.

Our general result will involve s replicas and a given subset J C {1,...,s}
of these replicas. We set n = card J. For [; < Iy < s, we set

n+ 2 lfll,lggj
n(J,ll,lg)Z n ifll¢J,l2€JOI‘11€J,12¢J
n—2 ifly,ly € J.

If ¢; € {—1,1}, n(J,11,12) is the number of terms that actually occur in the

product
€1, €1y H €l

leJ

after cancelation (¢7 = 1). In a similar manner, we define

1 ifl'gJ
’}’L(J, ll) = n l ¢
n—1 ifl' e J.
We recall our usual notation
g !
ES:epoel ——g-o'+h
> (Ux )
Z = <Avexps<\/—ﬂﬁg co+ h)>
7= (R(o,0")),
and we recall that ¢ is the solution of (5.4).

To lighten the notation, we write

(7.3) Y = Bgv/q+h
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where ¢ is N(0,1).
Proposition 7.1. Given s, 31, h1, there is a number K = K(s, 1, h1) such
that if B < B1, h < hy, for each function f on X%, each p, p' with ;;—l—}% =1,

/

each subset J of {1,...,s} of cardinal n we have
1
(14) E Z—( f Av(g 6;)53>

= Eth"(Y) E(f)
bB Y EmeRE(f (T2 )

1<l <2<
o 1+n(J,0) ﬂ_
5B lgsmﬁ WE(r(T2-a))
EChs 1)52 Eth™t2(Y) E((f)(ﬁ - q))
+R,
where
(7.5) IR| < K E(|f|?)7 <‘Raa —q| >7'

Compared with Proposition 6.6, the gain is that we have a better error
term, due to the exponent 2p’ rather than p’. But, rather than approxi-
mating the left-hand side of (7.4) only by E(th™(Y)(f)) we now have three
extra terms, each of which is a sum. Probably the reader will find that this
is awfully complicated. But the model (rather than the author) should be
blamed: when (f) = 0 these extra terms are what matters. What will make
(7.4) usable is that we use it for combinations of terms such as the left-hand
side of (7.4) with various choices of J. These will be chosen such that there
is abundant cancelation among the complicated terms. This will be done in
Proposition 7.2 and most notably in Proposition 7.3.

Proof of Proposition 7.1. The proofis a refinement of the proof of Propo-
sition 6.6, so that the reader who has not studied this should go directly to
Corollary 7.4. We use (6.30), and the same families u, v as in the proof
of Proposition 6.6. Rather than (6.38), however, we use a second order
expansion

(7.6) 6(1) =6(0)+6'(0) + R
where

|R| < ‘/ 0" (t) dt‘ < sup|0”( )|-
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It was shown in (6.37) that as M — oo and M ! > j<mdo(j) converges
to Gibbs’ measure, #(0) contributes as the first term in the right-hand side
of (7.4). We compute the contribution of 6'(0). For each r = 1,...,4, as
M — oo, we examine the limit of Eg ] | (u) as M — oo. For r = 1, this
creates the second term on the right-hand side of (7.4). For r = 2, the term

1.2 _ . .
Ay, 4, creates an average (% — g) = g — g, so this term contributes as

@ﬂZ E th"™2(Y) E((f)(q - q)) For the same reason, the term for r = 4

contributes as s?4% E th"™2(Y) E ((f)(q—q)) , and regrouping these gives the
penultimate term of (7.4). The term Ey F} ; (u) has a limit

(7 (T ) ey,

where m is the number of terms ¢; occurring in €y¢;,€;,+5, that is (since
Iy <) 1+n(J,11). Since f depends only upon o', ...,0°, we have

(=) = (7))

so that the terms arising from E, F? 1, () contribute as the third term on
the right-hand side of (7.4). Thus, to prove Proposition 7.1, it remains to
control the error term, that is to show that E|0"(¢)| is bounded as in (7.5).
What one would like to say is that Lemma 6.9 proves that #'(¢) is the sum
of pieces of the same nature as 6(¢), except that they involve more replicas

(up to 3s replicas in (6.44)) and that one has replaced f by f (# —q)
for certain values I’ # I". Thus, applying Lemma 6.9 once more will express
0" (t) as a sum of similar terms, but now involving yet more replicas, and
functions

P R
5959
Bounding these terms as in the case of 8'(¢), but using Holder’s inequality
with coefficients p, 2p’, 2p’ will then yield the required error term
1 .o! 2"\ &

(Y.
It is however not exactly true that F] ; () is of the same nature as F(z),
because F(zx) involves different variables z(o,!) in each replica while this is
not the case e.g. for Fﬁ,b' Thus, before saying that we can iterate Lemma
6.9, we must investigate how to modify this lemma in a situation where
different replicas need not have different variables; that is, we consider dif-
ferent variables y(o,m), m =1,... and we take z(o,l) = y(o, m(l)) where
the map | — m(l) need not be one to one. We then see that (6.39) remains
valid, provided that in the first two terms in the right-hand side of (6.39)
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we restrict the summation to the pairs I; < Il with m(l;) # m(lz). This

completes the proof. O
Proposition 7.2. We have
~ 3
2 o 0
(7.7) (fAvee S) = B2E YE<f = >
9 th Y oo
s ey BT
>4
_PE th?Y oc™-b
BE E< P )+ R,

where R is as in (7.5).
Proof. Let J; = {1,3}, Jo = {2,3}. From (7.4) we get
(7.8)
1 ~
E ﬁ<f Avee3E,)

ol

.ol?
_ /82 Z E((th Y)n(Jl,ll,lz) _ (thY)n(J2’l1’l2)) E f o _q
1<l1<12<s < ( N )>

l
— 58 3 E((thY) U — (thy) D) E<f (aTb - q)> +R.
1<I<s
Now n(Ji,l1,12) = n(J2,l1,l3) unless I} < 2 < lg; and n(Jy,1) = n(Jy,1)
unless [ = 1,2. To obtain the result, we regroup the contributions of [y = 1,
l; = 2 (treating separately the case l; = 3 or I3 > 3) and the contributions
of I = 1,2. We then use that

1—th’Y = ; . O
ch”*Y
Proposition 7.3. We have
1 ke 2 1 o -o*
(7.9) E i (fAVEE'E) = A Ech4yE<f = >+R,
where R is as in (7.5).
Proof. Use (7.7) twice on £% and £&*, and subtract. O

Corollary 7.4. Under the conditions of Proposition 7.1, we have

1 e 1
(7.10) E (T AVeE'E) = FPE G E<f

where

o~ o*
N

>+R,

R<KL ( E(|[7))7.
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Proof. We have shown in Proposition 6.2 that

(|75 ) < (%)

If k is the smallest integer such that p’ < k we write

1
ol

o-o 2p’ o-o 2k\+ Lk
|7y o ) <7 e ) <
N 1 = N 1 =N

to control the remainder (7.5). O

We now go back to the study of (7.1), when 8 < g, h <1 (so that we
can use Corollary 7.4). We use (7.10) fors =4, f=0"-0*, p=p' = 2. We
know that E(f2) < LN by Theorem 6.1, so that (7.1) yields

1
ch*Y
where |R| < K/v/N. Let us compute the last term. With the notation
e = Jﬁvﬂ, and since €72 = 2(1 — e1€2), it is

(7.11) (N +1)Cn41(8) = B°E

NCN(B) + E{(oh+10841)°) + R,

1 N 1
E ﬁ<AV(8 6*)254> =4E ﬁ<AV(1 — €1€9 — €3&4 + 61626364)54),

and using (7.4) when f = 1, we see that

1
~ * 2\! __
(712) E<(JN+1UN+1) )I—4Em+R,
where |R| < K/v/N (in fact, |R| < K/N). Now we see that we are on the
right track, but (7.11) alone would require the use of iteration. To avoid
this, we will show that (N + 1)Cn4+1(08") ~ NCn(B). We write

(7.13) NCy = E<% Y oiojo a'*> = E<ﬁ Y siojo a*>,
i<N i<N—1

using symmetry between sites. Changing N into N + 1, we get

!

(714) (N4 0)0ni(8) = E( 0™ 0 (07 0" + oiv1onsn)

N
o -o*\2\' 1 5 5
= NE<< i ) > + N E{ontioy 107 0%) .
We leave it to the reader to use (7.4), with n = 0, to obtain
o-o 3
(7.15)  |(N+1)Cna(8) — NOn(8)] < KNE(| T —d|),

so that, using Proposition 6.2, we have

(7.16) [(N 4+ 1)Cny1(8") = NCn(B)| <

2
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We combine with (7.11), (7.12), to see that

1 1
NCy +4E
e ch?
with |R| < K/v/N. We have proved the following:
Proposition 7.5. If 8 < Gy, h < 1, we have

. o"-o%\2 4A
(r.18 Jm NE(*5) ) = =

where

(7.17) NCy = f?E

+ R,
Y

1 1
A=E—==E— .
ch*Y ch*(Bg/q + h)
The importance of this result is that it provides an identification of the
so-called Almeida-Thouless line. This line is given by the relation

1
7.19 2E———— =1,
(719 ? ch*(Bg\/q + h)

where ¢ is “the” root of (5.4). It is certainly not obvious that (5.4) has a
unique root; This was recently proved by R. Latala (private communication).
Since the left-hand side of (7.18) is a square, (7.18) can hold only if the right-
hand side is positive, that is if
’E 4; <1

ch®(Bg\/q + h)
The physicists believe that (5.4) holds under (7.20) (“the high temperature
region”), but fails if

(7.20)

(7.21) 2 ! ) > 1,

ch*(Bg\/G+ h
(“the low temperature region”). It is certain that under (7.21), (7.18) cannot
hold, so one of the facts we have used in its derivation must be wrong. Using
(7.17), that we read as

1

(7.22) NCy =BNCy +4E %
c

where B > 1, we see that we can take advantage of this only if R < NCly,

or, rather, that (7.22) implies that R is of the same order as NCy. This

error term has several sources. One of them is (7.5), where we have used

f = o7 o*. The natural choice of p = 2 = p’ there gives an error term

o-o 4\\ 3
= (52 -
There is also an error term from (7.15), but we can argue that this is less

important. What we would really like to show is that under (7.21) C cannot
be small, because the fact “C'x small” is really the main reason behind (5.3).

+ R,
Y
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So we try to argue by contradiction. If Cy is small (limCy =0 as N — o0)
does it follow that the quantities (7.23) are much smaller than NCn? A
first difficulty is that a priori it is not clear how to relate

ran (570

and

(7.25) E<(°~]'V°*)4>.

(See Lemma 5.3). But even if we know that the quantities (7.24), (7.25) are
of the same order, it is not clear why we should have

ra () = () <E(TE))

In other words, are terms that look second order terms really second order
terms? This at first looks like a purely technical point. Rather, as will be
explained in detail later in this chapter, this appears to be a question of
fundamental importance.

Let us now turn to the discussion of the following important issue: is it
true that (5.3) holds under (7.20)? The following is probably more relevant

Problem 7.6. Is it true that in the region (7.20) we have
lim E{(R(e,d’) —q)%) =07
N—o0

This problem, to a large extend, was recently solved in [T8]. Nonethe-
less, it seems worthwhile to discuss in detail the underlying issues. The
question of controlling the entire “high temperature” region is of fundamen-
tal interest for many models, and the solution given in [T8] is unfortunately
very specific to the SK model.

We have found condition (7.20) through the computation (7.18). A first
obvious question is: couldn’t we find a more stringent condition through
another computation? Apparently this is not the case. It seems desirable
that the function ¥ of (5.57) be a contraction near ¢, and Lemma 5.10 shows
that this amounts to

2 2sh?(B,/g+ h) — 1
ch*(Bg\/q + h)
The physicists say that this holds under (7.20). They have probably checked
this numerically.

To illustrate the fact that not everything is so simple, we now start
another interesting computation, that of
3

(7.27) lim N E< (";’V"

N—o0

)')= ¥
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The computation will be valid when 8 < Gy, h < 1. The error terms are
controlled as in the computation (7.18), so we will not explain again how
this is done each time. It always follows from Proposition 6.2 and Holder’s
inequality. We will denote by R a quantity such that |R| < K/v/N. We
start as usual with the relation

1
NDy =E{(—= Z oiod o~ o®) = E(onoyo™ o),
(S o))
so that
(728) (N + )Dyi1(8) = Elohs10% 10 0% + E((07s10% 1))

Now, (on410%,1)? =2(1 — 0o} 10%,), and as in (7.12) we obtain
1

(7.29) E((oht10%41)%) =2E oyt R.
Next, we use Proposition 7.2 to write
(7.30) E(oh 105410 - 0°) =E %(a’ -3 AveE3E3)
_ ﬁZ oy
- 3ﬂ2 thQ E< “ o "Tb> +R.

Now, as in (7.15) we find
(7.31) (N +1)Dy;1(8') = NDy + R,

and combining with (7.28) we have

_ 2
(7.32) NDy = (ﬂ h2y)NDN
332 th2Yy 1
E 2E
N By BTt o 2B hr R

Now we observe that
(07 0%)%) =

(67 o®— o ot)?)

(
2{((e" 0'3)2) —2(c" oo™ 0'4),

so that
E(c™-0% - b)=E(c™- 00 0?)
1
=N?Dy — §NQCN,
and combining with (7.32) we have

1—2sh?Y 3 W’y
ch4SY )):2 Zh

(7.33) NDy (1 e E( —ay TR
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In order to make the point that not everything is very simple, we state the
following conclusion, that follows from (7.33) and (7.18).

Proposition 7.7. If 6 < 1/10 and h < 1, we have

o o%\2 2B — 632A? + 4% AB
7.34 lim NE((——— =
(7:34) N oo << N ) > (1—B2A)(1— 2(3A — 2B))
where A is as in Proposition 7.5 and
1
=E——.
ch?Y
Challenge problem 7.8. Compute
. ol-o0?— (ol a?)\2
im NE((T ) ),
And what about
ol o2 —E(c!'-a?)\2
i ?
Jim NE((TT ) )

Do you find a new constraint other than (7.20)7
Hint: [T4], Section 6.

The main difficulty in proving that Problem 7.6 has a positive answer is
that it seems very difficult to do any kind of computation about Cy unless

one also has a control about
%

(7))
(o) o))

In turn, it seems possible to control these only by controlling quantities
where 4 is replaced by 6, etc. This was one motivation behind the work of
Chapter 6.

Everything would be easy if it were true that (7.26) holds. At first
sight the failure of (7.26) looks like a rather remote possibility, one of these
pathologies that are “in principle” possible, and that only weird people (such
as mathematicians) care about. This is however not the case. The failure
of (7.26) is not only possible. It is also natural. It does represent a different
type of transition from high to low temperature than that predicted for the
SK model. To understand what happens, we will compare the behavior of
the SK model and the p-spin interaction model as 3 increases to the critical
value (3,, and p is even. We will assume that h = 0, because then all the
claims we make can be proved rather than conjectured. We expect that if
h is small the situation is similar.

or, even better, about
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When h = 0 we have b = (o) = 0 by symmetry. There is no “centering
problem” here and the natural quantity to measure the correlation of spins
is

!

i) €((%7))

1 N-1
— 5+ Eloa?).

Proposition 7.9. If h =0, 8 < 1, for the typical value of the disorder, and
N large, the map

(o,0") —

VN

) r.v. More precisely, for each k > 0, the r.v.

()"

converges in probability to (1 — 82)"2* E g?* where g is N'(0,1).

1
resembles a N(O, ﬁ

This is proved in [C-N]. When h # 0, we will prove a similar result
(Theorem 7.12 below). The difference is that Theorem 7.12 is proved only
for 8 < 1/10, while Proposition 7.9 holds for 8 < 1. (See Challenge problem
7.15 to understand better the relationship).

In other words, what Proposition 7.9 says is that N~1/2¢ - o' is dis-
tributed like C(83)g (where g is N'(0,1)), where C(8) — oo as 3 gets close
to the critical value 8.. What happens for large p is totally different.

Proposition 7.10. For the p-spin interaction model with h = 0, there exist
L >0, pg and z > 0 such that if p > po and B < 2P/>76 we have

L
(735) E(R(O’, 01)21{|R(0',0")\§z}) S N
If moreover 8 > 2+/log2, we have
(736) lﬂloléf E(<1{|R(0',0")|2z}>) > 0.

Comment. In particular if p is large, there are situations where (7.35) and
(7.36) occur simultaneously.

Proposition 7.10 says that if we do not look at the values of R(o,0o’)
that are of order 1 we do not see any increase in the fluctuations of this
quantity as (8 increases beyond the critical value 8.. On the other hand,
values of R(o,a’) of that order exist for 3 > (.. We will prove Proposition
7.10 in Chapter 8.
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Proposition 7.11. For the 4-spin interaction model there exist arbitrarily
large values of N for which for certain values of 3,

E(R(o, o)) < 3
but
(7.37) E((R(o,0")?)) < LE((R(o, 6")*)).

This in particular shows that (7.26) cannot follow from general princi-
ples.

If we do not insist on p = 4, but allow p to be large, this is a consequence
of Proposition 7.10 as we now show. Let us assume z irrational, so that we
never have R(o,0') = Nz. Let us consider N and By with 0 < 8y < S, + 1
and

1
(7.38) E((Lir(,07)2})80) 2 -
Here, the subscript Gy indicates of course that Gibbs’ measure is taken at
this value of the parameter 3.

Since N is fixed, the quantity

(7.39) E((L{r(o,07)>2})8)
is a continuous function of §. It is exponentially small at 8 = 0, so we can
fix 8 < o < By + 5 for which

1
(7.40) n=E(lro.0m22)) = 37
(As (3 is now fixed, it is no longer indicated in the notation). We then deduce
(7.37) from the fact that

E(R(o,d')?)) > 2Ppu > xi}a

while

E((R(a,0")%) <E((R(e,0") 1 r(o,0)2<a}) + 1 < — 0

It is nonetheless very instructive to give a direct proof of Proposition
7.11. This will also be done in Chapter 8.

The preceding discussion has shown that, as § increase, there are (at
least) two very distinct ways in which the structure described in Chapter
6 can deteriorate. Condition (7.21) identifies the value of § where deterio-
ration will occur following the pattern of Proposition 7.5. The challenge of
Problem 7.6 is to show that the other type of deterioration, following the
pattern of Proposition 7.10 will not occur first.

We now give an example of computation of higher moments.
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Theorem 7.12. If 8 < Gy, h <1, for n =1,2 we have

ma ()Y - () ey

where g is N'(0,1) and A is as in Proposition 7.5.

This implies that for each k, the r.v.

= ()

satisfies E M? ~ (E M},)? so that M}, converges in probability to E M. Given
kg, for large N and the typical value of the disorder, the moments of order
k < kg of the function

VN
are approximately those of a N'(0,44/(1 — 32A)) r.v. Thus, Theorem 7.12
is indeed a central limit theorem.

Proof of Theorem 7.12. For ky, ke > 0, we prove that

w5 ()

4 A k1+ko
- (1 - ﬂ?A)

The proof is by induction over k¥ = k; + k2. For k = 1, this is Proposition

7.5. We write

Ay oo, N = Gy oo, (B) = E((07 ™)) (07 %) %2).
We use the symmetry between sites to write
Wy +1,ko,N = N Eonoy (07 a) ) (07 07)2),

and, changing N into N + 1,

E92k1 Eg2k2.

~ ~ ~ !
Oy 1,5, N11(8) = (N + 1) E(oN 410811 (07 0% + ohq1oy, )T

(7.43) (70" + 0N+1afv+1)2k2)l. O
Lemma 7.13. We have
~ *|a\/ ~ *1b\/ (a+b)
E{le™ a*[*) (o™ o™’ < KN =
Proof. We use Cauchy-Schwarz to reduce this to the proof of
E(lo™ o*[?) < KN°.
We use (5.22) and that Z > 1. We first integrate w.r. to ¢ to reduce the

proof to the fact that E{jo ™ o*|??) < K N?, which follows from Proposition
6.2. |
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We want to study

. k1 ka1
lim (N—l— 1) 12 Oy +1,ky,N+1-
N—o0

We expand the powers in (7.43) and we use that [0y 1103, ;| < 4 and Lemma
7.13 to see that

(7.44)  ak, +1,k,n+1(8")

= (N +1)E{forq1054, (07 )Y (0™ o*)?F2)
+ (2k1 + 1)(N + 1) E{(oR 10N 41) (07 a*) 1) (07 0*)*F2)’
+ 2k (N + 1) E(on1108 1 (07 a*) 2Ty
<0N+10N+1(0' "o )2k2_1>’
+ R
=I+II+1II+R,
where
(7.45) |R| < KNFithets,

We will study each of the terms I to III. To reduce the product of brackets
to a single bracket we set

U= ((0_5 N 0_6) . (0,7 _ 0_8))2192’
so that
L= (N + 1) E(ohsiok (0™ 0P 10
We use the cavity method and Proposition 7.3 to obtain

N+1,_ 1

4 I= E E{(o™- o*)%k1 12
(7.46) N B iy (7 %) U)+ R,

where R is as in (7.5), i.e

.o’ 2p"\ 1/p
(147) BRI < LN+ DE(([(o™ 0" up) P E(| 2T — g7V
Taking p = p’ = 2, and using Holder’s inequality, we see that |R| is as in
(7.45). It is essential here (as was already essential in Proposition 7.5) to
have 2p’ rather than p’ in (7.47).

The term IT is less dangerous, because o™ o* occurs with a lower power.
It is enough there to use Proposition 6.6 to get

(7.48)  Tl= (2k +1)(N +1)E ﬁE((a”- oM + R,

C

where R is as before.
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To study the term ITI, we also use Proposition 6.6. The difference with
the term II is that the main contributions cancel out. Writing ¢; for ofv 11
the dependence in the variables ¢; is as in

(e1 — e2)(e3 — ea)(e5 — €6)(e7 — €3)
and out of the 16 resulting terms, each involving a product of 4 different ¢;,
8 of them have a negative sign.

Now we have obtained

2
kg (F) = S E LB (o o (o o)
+ (N +1)(2k; +1)E ch%Emf- o)t (7. o*)?k2)
+R.
(7.49) g +1,k,N+1(8) = B°E 1yak1+1 ka,N (B)
(2k1 + l)N E——— alﬂ,kz,N(ﬂ) + R.

ch*Yy

Now we claim that

(7'50) ak1+1,k2,N+1(IBI) = ak1+1,k2,N(IB) + R.

Indeed, we write
N - - ~
(7.51)  agy 11 pn(B) = T E( Y diof(o™ o)1) (o7 %)),
i<N—1
we replace N by N + 1; we use Lemma, 7.13 to see that only the term
N+1

—— B0 a2 (o7 o))

matters, and we conclude with Proposition 6.6 again.
Combining (7.49), (7.50), we have reached the conclusion that

k1 —ho— 1
(7.52) N+ 1) o (1 - BB )

= (2k; + 1)E

—k1—k
iy N ke R,

where
|R| < K/V'N.
We also observe that by integration by parts,
E(9”*?) = E(99”" ') = (21 + 1) E(¢**).
Thus (7.52) finishes the induction step. O
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Challenge problem 7.14. Prove Proposition 7.9.
Hint: Use the results of Chapter 3.

Challenge problem 7.15. Compute the following, when 8 < f(y:

ol . o2 ol. b
- a)%)

—9)); lim NE((

lim N E((
N—00

. — 32
Jim NE(g—q)".

If you don’t have the stamina to compute these limits, at least prove their
existence.



8 Emergence and
separation of the lumps
in the p-spin
interaction model

We go back to the study of the p-spin interaction model with no external
field, and our efforts will focus on the low temperature region.

Theorem 8.1. There exists a number py such that, if p > py, then for
B8 < 25 6 with overwhelming probability we have

o N
(8.1) G ({|R(e, o) € 25,1 -2 5]}) exp(—7)-
Proof. This follows from Theorem 4.13 and Fubini’s theorem. O

Thus, for large p, |R(o,o')| is typically close to 0 or 1. This fact has
strong consequences about Gibbs’ measure.

It is convenient and will somewhat clarify matters to consider a more
general setting. Let

SN:{O'ERN | ZJE:N},

i<N
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be the sphere of radius v/N (so that ¥y C Sy), and for 0,0’ in Sy, we
write

oc-o 1
(8.2) R(o,0') = N =N Z oi0l.
<N
Consider now a probability measure g on Sy, and assume that for a certain
(small) number a,

(8.3) p@uT)=c¢
is very small, where
T ={(e,0") | |R(e,0")| € [a,1 —a]}.

What does (8.3) tell us about p? First it could happen that (8.3) is true
simply because it is already true that

(8.4) p @ u({(a,0) | [R(o,0")| = a})

is very small. This is for example the case if y is uniform on ¥y. It could
also happen that p is concentrated on a single point, or more generally on
a set A such that R(o,0') > 1 —a if (o,0') € A. We will show that the
general situation is a mixture of the previous two cases.

The construction will involve thinking of S as a metric space, equipped
with the distance

d(o,0') = arccos(R(o,0")).

We consider ¢ given by
(8.5) § = arccos(1 — a)
so that, if a is small enough, we have
(8.6) a < cos 70,
and for o in Sy, we consider the sets

Ci(o) ={o' € Sn | |R(e,0")| > cosd}

C(o) ={o' €Sy | |R(o,0")| > cos 36}

D(o) ={0' € Sy | cos65 < |R(o,0")| < cos26}.

Thus C; (o) (resp. C(o)) is the union of two balls of Sy for the metric d, of
radius § (resp. 30) that are centered at & and —o. One should keep in mind
that p might (and, in the case of G, will) be invariant by the symmetry
o — —o, so that all our constructions should respect this symmetry.

Definition 8.2. A set C(o) such that
(8.7) WOi(e)) 2 €3

is called a lump.
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Thus, a lump is a small set (its diameter is < 6§) and it carries a sig-
nificant mass. The motivation of D(o) is that this is “nearly empty space”
around a lump C(o).

Lemma 8.3. For each lump C(o) we have
(8.8) u(D(o)) < €.
Proof. By (8.3), (8.7) it suffices to prove that

Ci(o) x D(a) CT.
Consider o’ € Cy(o), " € D(o). Without loss of generality we can assume
R(o,0') >0, R(o,0") > 0. Thus d(¢/,0) < ¢, 26 < d(o,0") < 64, so that
d <d(o',0") <76, ie. cos7d < R(o',0") < cosd, and (o',0") € T using
(8.6). 0

Theorem 8.4. Under (8.3), (8.6), we can find a disjoint family (Co)a<m
of lumps such that

89 wou({e.0) R0 za}\ | Z) <ser.
a<M

Comment. Here, and below, « is an integer. The content of the theorem
is that essentially the only way one can have |R(o,0’)| > a is that o, o’
belong to the same lump.

This of course contains information only if

(8.10) p®u{(e,0) | |R(a,0")| = a})

is not too small, or equivalently under (8.3), if
p@u{(o,0') [ |R(e,0")| 2 1-a})

is not too small.

Proof of Theorem 8.4. We consider a maximal disjoint family of lumps
(Ca)a<m. (It might very well happen that M = 0) and we prove (8.9).
First, by (8.7) and since the lumps C, are disjoint, we have Mes < 1, so that
M<es. Next, if Cy = C(04), by Lemma 8.3 we have p(D(oy)) < 5%, C0)
that if D = (J,<;; D(0a) we have u(D) < Mes < e3. Thus to prove (8.9),
it suffices to prove that
(8.11) {(o,0") € S} ||R(o,0)| > 1-a}) C S'U(DxSy)U (] CD),
a<M

where

§'={(0,0") | &’ € Ca(@), u(Cr(e)) < &5},
This implies (8.9) because p ® u(S') < e3 by Fubini’s theorem. To prove
(8.11), consider (o,0') € S%, with |R(o,0')] > 1 — a and assume that
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(o,0") ¢ S, that is, u(C1(o)) > £3. The maximality of the family (Ca)a<m
implies that for some a we have

(8.12) Clo)NC(oy) # 0.

Let us assume for clarity R(o,0,) > 0, R(o,o') > 0. Then by (8.12) we
have d(o,0,) < 64. If d(o,0,) > 26, we are done because o € D(o,) C D.
Ifd(o,0,) < 26, then, since R(o,0') > 1 —a, we have d(o,0') < §, so that
d(o',04) <36 and (o,0') € C2. O

Challenge problem 8.5. Formulate and prove a statement showing that
the lumps are essentially determined.

We now go back to the case of Gibbs’ measure. When (8.3) occurs for
p# = Gy, under (8.6), we can construct the lumps (Cy)q<am where € is the
left-hand side of (8.3). It is perfectly possible a priori that M = 0, that
there exist no lumps, or that there exist few of them, and that they are far
from exhausting all of Gy. To keep notations simple, it is better not to
distinguish these various cases, and to adopt a procedure that exhausts all
of the configuration space ¥ . This will be done in a trivial way (this does
not bring more information than Theorem 8.4). After having constructed
the lumps (Ca)a<m we continue the construction by enumerating all the
remaining pairs {o,—o} as Cary1,. .. until Xy is exhausted. This happens
at a certain index ag, and for a > ag we set C, = (; we thus define a
sequence of lumps (Cy)a>1. (Only the (Co)a<nmr actually deserve the name
of lumps).

Theorem 8.6. There exists a number py such that if p > pg, then for
8 < 2576, we can find a decomposition (Co)a>1 of En in disjoint sets with
the following properties:

(8.13) Each set C, is symmetric, i.e. o € C,, = —o € C,.
(8.14) 0,0’ € Cy = |R(o,0")| >1—2711F,
P N
(815)  E(G({(e,0") | IR(o,0)| 227 }\ | €2) < exp(—T)-
a>1

Proof. We apply the construction of Theorem 8.4 for each value of the
disorder with @ = 274. To prove (8.14), we observe that 0,0’ € Cy =>
R(o,0') > cos 65 where cos§ = 1 —a and that cos 65 > 1 —2%(1 — cos §) for
small 4. |

Of course one should repeat that all the information contained in this
statement is contained in (8.15); so for example if it is already true that

(8.16) EG%4({o,0' | |R(c,0)| >275}) < exp(_%)
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(as in the case where 8 < f3,) a decomposition such as that of Theorem
8.6 is uninteresting. On the other hand, things become interesting as soon
a (8.16) fails. Indeed, in that case, since the lumps are disjoint, we have
Y a>1 GN(Cq) =1, so that

EmaxGN >E(ZGN )

a>1

—E(erean(Uc?))
> E(Gn @ On({(0.0") | [R(e.0")| 2 275) — exp(~ ),

where we have used (8.15) in the last line. The ultimate goal (for which we
must refer to [T'7]) is to show that the “total mass of the macroscopic lumps
is one”.

We can reformulate (8.15) by saying that if o, ' do not belong to the
same lump, then (generically) we have |R(o,0’)| < 27%. The rest of the
chapter is devoted to show that in fact not only do we have |R(c, ') < 2714,
but in fact R(o, ') ~ 0. The proof will rely upon the cavity method, and
our first task is to set up notation to do this. Given o in Xy, we set

T(U) = (Uil I Uip—1)7

where the index ranges over all families 77 < 14g < --- <4,_1. We consider a
family of independent N (0, 1) variables,

(8.17) 9 = (9ir.ip_1);

with the same range of indexes as above, and we define

0') = E gi1...ip710i1 s Oy

where the range of the index is as above.

We recall the Hamiltonian Hy (o) of (4.1). Consider ony1 € {—1,1}.
Then we have

(8.18) —BHN (o) +0N+15(%)5T(9) o

(2]\[1’ 1) Zgh ipTiq + o+ Oy

where the sum is over 1 <4; < --- <14, < N + 1, and where

Giy..iip_1ip = Giy.ip_1
when i, = N + 1. If we recall the notation

2= (0i)i<n+1 € En1,
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we see that the right-hand side of (8.18) is

_ﬁIHN-Fl(Q)a
where

, (N+1\%
(8.19) 8 _(7N ) .

That is, (8.18) is the Hamiltonian of an (N + 1)-spin system at a slightly
lower temperature. We denote by Gy11 = Gn+1(8') the corresponding
Gibbs’ measure and by ( - )’ average with respect to this measure: we will
use the same conventions as for the SK model. Then (5.19) holds, except
that now

! 1
(8.20) E=€&(o,0n41) = expaN+1ﬂ(2]\¢T) ‘g-T(o)

and in (5.22) we now have

(8.21) & = exp(z aﬁmﬂ(%) %g.T(a'l)).
1<k

Even though everything looks pretty much like in the case p = 2, it is
good to observe that

(8.22) E(((mé’%)%g-T(a))Q):%;—l 71)

_p! N(N—-1)...(N—p+1)
© 2Np-1 (p—1)!

~P
~ 5

Thus as p increases, the exponent in & gets larger, and is harder to control.
This is unavoidable: as p increases, there is less relationship between the
structure of the (N + 1)-spin system and the structure of the N-spin system.
The good news is that, on the other hand, the correlation between the
variables g - T'(o) decreases.

Lemma 8.7. We have

(8.23) T(o)-T(o) —
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Proof. We have, setting a; = 040,

no_ . ) / /
T(o) -T(co") = E iy« - Oy 1Oy - O,
11 < <ip_1
= E Qgy - - - aip—l
11 < <lip_1

1
= mzail...aip_l,
d

where ), means that the summation is over indices i1, ...4,_; all different
(but not necessarily ordered). Now

(0‘ . o")p*1 = (Z ai)p_l = Z iy« Ay,

i<N
where the summation is over all choices of iy < N,...,i, < N. For each
i, we have |a;| < 1 and there are at most K (p) NP2 choices of i1,...,ip_1
that are not all different. O

Theorem 8.8. There ezists a number py such that if p > py and B < 256,
we have

(8.24) E(R (0, 0" 1 niarayjery) < .
We will show that

(8.25) p<at® = Ay < 2P

where

(8.26) An(B) = E(R(c",6°)1(r(o1,02)<c})»

and where ¢ = 27%1". This implies (8.24) by Theorem 4.13.

We use symmetry between sites to see that
(8:27) An(B) =E{oyoxR(a!, 0°) 1o ,02) <))
and, changing N into N + 1 and S into 3', we get

(8.28) An+1(8") = E(oy 10511 R(0", 091 r(pt,0%) <c})-
We have set
(8.29) o' = (ohy . ol
so that
N ol o2
12y _ 1 .2 N+19N+1
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This implies that

1 N
(8.31) An41(8') < NritT Nl E{on 108 11R(0",0%)1|r(01,02)<c})-

Now (8.30) implies

1 2 1 2

Thus

2 c
NiiS2 = Lreedi<a — lireroni<al < Yzcrereni<iy

2

and thus, if #' < 2575, we deduce from Theorem 4.13 that

B3 Ana(@) < g +en(- )

+ NL—H E(on 105 2R(0",0°) 1 rio,02) <} )-
Setting
f=fle',6%) = R(c",6%) 1 o102 <)
we are now in a position to use the cavity method to write

fAve el
(8.33) (ol 1 ) = B LA 128 o 2)

where, as usual, g = aé\, 4+1- The family g of (8.17) is independent of the
disorder involved in G (the variables g;, .. ;,) so we will try to evaluate

<f Av €1 6252>

72 '
This will be done using Kahane’s principle. The proof will resemble that of
Proposition 6.6. Let us write

plo) =Gn({a}).

For z = (z(0)) € R*N we write

x) = Z pleHu(o?) f(o!, %) Averesexp Z e1z(ot)

<2
= Z,u (eYHu(e?) f(o!,0?) shx(al) shz(o?)
Z ulo Av exp Z ez(o

(Zu )chz(o )2

where the summations are over all values of o', a?. We consider

(8.34) E,
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Consider the Gaussian family v = (v(o)) where

NI

(5.35) w(0) = 8(5551) "9 T(0),

so that the quantity (8.34) is E; F(v).

We consider a centered Gaussian family » such that

(8.36) (0,0') €| JC2 = Eu(o)u(o’) = Ev(o)v(d”)
(8.37) (o,0') ¢ UC’g = Eu(o)u(o’) =0.

The first condition means that 4 and v have the same covariance inside a
lump, while the second condition means that different lumps are independent
for u.

It should be obvious that such a family exists. The idea of (8.36) is
that we do not disturb anything inside a lump, while making the lumps
independent. In this manner, it is not an obstacle to the proof that we do
not know what happens inside the lumps.

Lemma 8.9. E; F(u) = 0.

Proof. We observe that we have
(8.38) Fi(x) =) f(o',0*)u(e")u(o?) sha(o") sha(o?)

(8.39) Fy(z) = ZM(O‘l)M(GQ)Ch.’E(O‘l)Ch.’L'(0'2).

1 o2 we have Eg A(u,o!,0?) = 0 where

f(ot,0?)shu(o!)shu(a?)
Fy(u) '

We will prove that, given o

Au, o', 0?%) =

1

Certainly we can assume |R(o',0?)| < 3, for otherwise f(o',0?) = 0.

Consider « such that o' € C,. Then o? & C,, for otherwise |R(c?, 0?)| >
1/2. Consider the Gaussian family u, given by

uo(o) =u(o) ifodgC,
ug(o) = —u(o) if o € C,.

Then u, and u have the same distribution by (8.36), (8.37) so that

(8.40) E, A(u, o', 0?) = E; A(ug, b, 0?).
But we have uq(o!) = —u(o!), ua(6?) = u(o?), Fo(us) = Fo(u) so that
A(’U,, 017 0-2) = —A(’U,a, 017 0-2)7

and combining with (8.40) this proves the lemma. O
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To estimate Ey F'(v) — Eg F(u), we will use (6.38). That is, we set
=V1—tu++Vtv
0(t) = Eg F'(ur)

so that
1
(8.41) E,F(v) =E; F(v) —E;,F(u) = /0 ' (t) dt.

To compute #'(t), it will be convenient to introduce the quantity B(o!, o?)
given by

A%p!
2NP-1

when o', o2 do not belong to the same lump, and B(o!,0?) = 0 otherwise.

B(o',0?) = T(c') - T(c?)

Lemma 8.10. We have

(8.42) 06 = 3By Fr(w)
r=3

where

(8.43)

o )u(e?)B(e!,0?) chz(ot) chz(o?)

1

(the summation is over o', o2 in Yy ),

(8.44) Fy(x) o?)shz(o')shz(o?)

(845)  F(z) = —% S ule (o)) (o) f (o', o)
( o3)shz(o!) chz(o?)shz(o?) chz(a?)
4F1($)

(8.46)  Fy(z) =

F3(x) Z wloHpu(a?)B(e!, 0?) shx(at) shz(a?).

Proof. We use (6.46). Now the indexes a, b belong to y. If a = n!,
b =n?, we have

(8.47) E(vavp — ugup) = B(nl, 'r)2).
Since F' is a ratio, the quantity

1 2F
- E(vavp — Ugtip) ————
2 D E(vavs — uauy) 02,0z,
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is the sum of four terms, as in the formula
o (R _ 0*F 1 ’r, 1
81‘aa$b

T 01,07y Fo ! 0z,0zy F2
OF, 0F, OF, 0Fy\ 1 OF, 0F,\ 1
+ 2 4 oF 92y

oz, 8:51, Oxp Oz, oz, Oxyp F23

These terms are F3 to Fg respectively. Let us see how (8.45) arises. For
a =1, we have

By

e = S uln (o) (00 cha (') shia(o?)
+ 3 ule ) (o n') shale) e ()
=2 40 Julo?) (0, 0) chs (') sha(o?)

by symmetry. Similarly, if b = n?,
OF:
ij = 22/1 %) chz(o') shz(n?).

Fy OF:
Writing(9 OF,

T, OTp

Corollary 8.11. We have

(8.45). O

F7(Ut)

+ S
9 Fo(ut)

(8.48) 0'(¢)| < 108%p2~P—3(E-DE
where

= wehu(e®) f*(a',0”) chz(o') cha(o?)
and

K(p)
< —,
ES<—

Proof. We use the inequalities [shz| < chz and |f| < 1 to see that

: Fy(z)
(8.49) 2::3 |Fy(z)] < 10 Fz(w),
with
Zp o?)B%(c!,0%) chz(o') chz(o?).

Now, from (8.23) we see that

2
K
1B(o!,0?)| < %|Rp_1(a’1,a’2)| + %.
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Since B(o!,0?%) = 0 when (0!, %) € UC2 we have

2
K
€50 B0} od)| < SRR o ey + PP+ K2
where
C={(e",0%) | |R(e",0%)| > &; (o, 0%) & UCZ}.
Thus,

2 2 K
(8.51) |B(o!,0?)| < %cl'—?’R(al,a ) 1 ri<er + 5 ﬁ PPio+ #.
Using elementary inequalities such as (a+b)? < 2(a? —|—b2), Va+b < \Ja+b,
etc., from (8.49), (8.51) we see that (since Fp > 1)

6
(8.52) §| ()| < 1082 cp—?F7(m)+KT(p)

Fy(x)
—|—,62pr o?)1¢(ot,0?) chz(o!) chz(o?).
We now appeal to (8.39) to obtain (8.48) with
Ko | e o(3 mohule)1c(o,0?) chu(o") chun(o?)).
It follows from (8.15) that the expected value of S (in the disorder) is
K(p)/N. O

Proposition 8.12. Ifp > pg, 8 < 25 we have
(8.53) 1(t) > —6:1(t) — S,
where

e Fr(w)
(8.54) 6:1(t) = Eg Folur)
and

K
ES < #

Proof. It is similar to the proof of Corollary 8.11. |

Proof of Theorem 8.8. First, we claim that (8.53) implies
(8.55) 0<t<1 = 0,(t) <e'7'0(t) + S1(1—1).
Indeed, if u =1 —t¢

&(u) = 01(1 —u) — e“61(1) — Stu
satisfies £(0) = 0, £'(u) < &(u), so that £(u) <0
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If we combine (8.55) with (8.54), (8.48), we see that for p > po, B < 216
we have

1
(8.56) 0'(0)] < 561 (1) + S+ 5,
and, combining with (8.38), we have

<f Av 616252) 1 F7(’U)
E, ¥— 2| =|E, F < -E .
g 7 |Eg (v)|_2 gFl(v)+S+S1
Recalling (8.33), and taking expectation in the disorder, we have

1 _F(v)  Kl(p)

1 2 | < Z
1 K(p)
= 5 E<R(01702)21{R§c}>l + N

By an argument similar to that in the proof of (8.33), we see that
E(ol 1051 /f) and E(R(o!,0%)? 11p<y)’ differ from Ay y1(f') by at most
K (p)/N, so that (8.57) yields

An(f) < % O

Challenge problem 8.13. Improve Theorem 8.8 to an exponential in-
equality.

If we combine Theorems 4.13 and 8.8, we see that, if
B={Jc
[e%
then
K
(8.58) |E(R(c*, 0®)P15) — E(R(o*,0%)P)| < #

Also, since (1 — 2_%)1’ > % for large p, we have

1
o,0 cCy, = 3 < R(a’l,UZ)p <1
so that, if

(8.59) wo = GN(Ca),
1
5 W < (R(e!,0?P) < wy,
and, combining with (8.58),
1 o  Klp) 1 2 2  K(p)
. Z 2 < Py < —
(8.60) 2EZwa ~ <ER(c',0*)P) <ED wl+ ~

This allows us to obtain information about the weights (8.59). The following
is a generalization of Lemma 5.13.
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Lemma 8.14. We have

(8.61) S50~ 51— ElR(e, o)) <

2=

Proof. The same computation as in Lemma 5.13 gives

dpy _ Bp!
a5 = 5Np Z (1- E<0i10§1 ...aipagzj).
1< <ip

Changing p into p + 1, (8.23) shows that

! K
% Z 03, 0%, ...aipaép — R(o,d')?| < N O
i1 <e<ip
Corollary 8.15. If 8 > 2v/log2, then
(8.62) lim inf E(R(a, 0)?) > 0,
and consequently, if B < 2576,
(8.63) liminfE Y w? > 0.
N —o00 @
a>1

Proof. (8.62) follows from (8.61) and Lemma 4.14 and this implies (8.63)
by (8.60). O

Comment. Observe that (8.62) and Theorem 8.6 prove (7.43).

Since Y wq = 1, a consequence of (8.63) is that 1}\1[11 inf E maxw, > 0:
—

o0
For large N, with positive probability, there exists at least one lump of mass
of order 1. Our theory of lumps is not empty. (It is in fact shown in [T7]
that the lumps do carry all the mass).

Proof of Proposition 7.11. We write
Ani(B) = E(R(o, a')k).

Proceeding as in (8.37), we obtain

1 N 1
(864) ANJ,.LQ(,BI) S N—-i-]. + N——I-l E ﬁ(R(O’l, 0'2) Av 516252).

We note that (R(o!, 0?) Av e162&2) is a square (as in the proof of Proposition
5.2) so that, since Z > 0,

(8.65) Ans12(8) <
We recall that

1
+ E(R(c!, 02%) Aver62Es).
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so that 24
2
E, AveiesEs = Bsh(2N3 (o)) - T(o ))
for B241 N(N — 1)(N — 2)
_ ’ - - 2

B =exp NE 3l < exp 26“.
Assuming § < 3, and using Lemma 8.7, we then have
(8.66) Ant12(8) < An4(B).

N+1

283

To prove Proposition 7.11, we now argue by contradiction. If this proposition

was wrong, we could say that
dNy, VN > Ny, V3 < 3,

2L 1
(8.67) Anp(f) < S5 = Ana(B) < 7AN2(P).
Let us define ol
B(N) = sup{#>0 | Axa(8) < =2}
The function Ay () is continuous, and Ay 2(0) = 1/N, so that
2L
Ana(B(N)) = 57
Thus, if 8 < B(N), 8 <3 by (8.67) we have
1 1L
Ana(B) = 7AN2(6) < §ﬁ1,
so that by (8.66)
Ly 1L, 2L,
"< ~=<
Ave2B) S v it o N SN

and this means that 8’ < B(N + 1). Thus we have proved that

B(N)<3 = B(N+1) > (%)%B(N).

This implies that there are arbitrarily large values of N for which B(N) >

This however contradicts (8.57).

3.
]
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