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PREFACE
If you only have pretend data, you can only pretend to analyze it.

George Cobb

As professors of statistics we tell our students that an understanding of research
questions is necessary in order to collect meaningful data and analyze it intelligently.
"Don't collect data first and then try to figure out what (if anything) you can do with it," we
admonish students and also researchers who come to us for help with data analysis. Yet
when we teach statistics courses, we often do just that! Now convinced of the necessity to
include examples that use REAL data, we search for real data sets and then try to come up
with some question that we think might in some way capture our students' interest.
Without an in-depth understanding of how the data was collected or why it is important, we
look at data and try to figure out what (if anything) we can do with it to turn it in to a
classroom example. I confess that I am guiltier of this than most—I have created whole
textbooks full of examples and exercises in just this way.

While examples and case studies of this type are certainly better than those based on
artificial data and contrived situations, I now realize that a case study based on real data
from industry that has research questions and directed analyses constructed by an academic
often looks very different from a case study based on actual practice in industry.
Traditional statistics education has been criticized for not adequately preparing statisticians
and engineers for careers in industry and for being unresponsive to the needs of industry.
This may be partially due to the fact that most university faculty do not have the type of
industry experience that would enable them to easily incorporate examples based on actual
practice in industry into their courses. We hope that this collection of case studies can help
make this easier.

The collection of cases is eclectic—they come from a variety of application areas and
the vast majority require the use of multiple data analysis methods. Some are challenging
and some are messy—we have made no effort to "simplify" the problems presented for
classroom use. What unifies this collection is that all are based on actual practice in
industry or government.

Each case study in this collection is the product of a collaboration between statisticians
in industry and colleagues in academe. These collaborations were made possible by
support from the National Science Foundation's Division of Undergraduate Education
through an Undergraduate Faculty Enhancement grant. Forty-four statisticians, 22 from
academic institutions and 22 from business, government, and industry, participated in the
Collaboration Project and in the development of these case studies. All participants met at
a workshop held at Cal Poly, San Luis Obispo, during the summer of 1995. The workshop
program focused on academe-industry partnerships and included presentations by Ron
Iman, Bill Parr, Bob Mason, and Dick Gunst. Academe-industry pairs were also formed
during this workshop. During the following academic year, each pair participated in three-
day exchange site visits. These site visits enabled each participant to experience the work
environment of his or her partner and became the basis for the development of the case
studies that make up this collection. Twenty-one of the 22 pairs produced a case study
(one pair produced three), and 20 of the 24 cases submitted are included in this volume.

The result of these individual collaborations is a collection of case studies that illustrate
real application of statistical methodology to solve problems in industry. They address
problems important to industry, as opposed to an academic view of what might be
important. As a collection, they show the scope and variety of problems that can be
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addressed using statistical methods, and illustrate a number of points that are important for
students of statistics:

Real problems almost always require the sequential use of several statistical methods.
There is almost always more than one reasonable answer.
Problems encountered in actual practice are generally much messier than traditional
textbook problems. Not all problems are going to look just like one from the text.

The collection can be used in several ways: (1) Statistical consulting courses are
becoming more common in statistics curricula around the country. This collection could
easily serve as a text for such a course. (2) An instructor could use selected cases to enrich
just about any statistics course. (3) Practitioners of statistics in industry may find the
collection a useful reference, in that it illustrates the application of a wide variety of
statistical methods in applied settings.

The cases are ordered roughly by level of sophistication. Tables indexing the cases by
statistical methods required (Table 1), by application area (Table 2), and by level of
difficulty (Table 3) follow this preface.

Two introductory articles that will also be of interest to instructors and practitioners
precede the collection of cases. The first, "The Benefits of Cases," by Bill Parr, examines
how statistical case studies benefit a variety of stakeholders, including students, faculty,
and statistics professionals. The second article, "Partnering for the Future of the Statistics
Profession," by Ron Iman, looks at the long-range benefits of academe/industry
collaboration.
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Roxy Peck
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Table 1. Index of case by statistical method.

Chapter
# Title

1 Are the Fish Safe ...
2 Chemical Assay Validation
3 Automating a Manual .. .
4 Dissolution Method ...
5 Comparison of Hospital . . .
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Table I. Continued.
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Table 2. Index of case by application area.
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Table 3. Index of case by course level.
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THE BENEFITS OF CASES
Dr. William C. Parr

Why cases?
The question is simple. Amplified, it becomes: Why should we hope to see more cases

of statistical applications written up? The purpose of this note is to provide an answer (not
the only one) to that question.

My method is simple: I look at the question in terms of the interest of a variety of
stakeholders:

the student who takes a class using the case or reads the case,
the organization which eventually hires the student,

 the faculty who teach using the case,
the statistical profession,
the company/organization in which the work documented in the case took place,
the writer of the case.
We find that all of these stakeholders have a strong, positive interest in cases being

written. Hence, win-win relationships built around purposeful case writing seems both
mutually desirable and possible.

THE INTEREST OF THE STUDENT

Students clamor for real experience. Study after study validates that learning is best
accomplished by doing. Internship and co-op programs prosper at ever-increasing levels,
with employers in some cases not wanting to consider applications from students with no
internship or co-op experience. (At the University of Tennessee Department of Statistics,
we consistently find that when a student (rarely) foregoes an internship, they are typically
among the last to secure a good job.)

Learning by cases provides students with a means to have the experience vicariously.
They can study a case, do their own analysis, make their own recommendations, discuss
these in a case-discussion class or turn in written analysis and recommendations, and then
hear what was actually done. Then, they have the opportunity to compare what was
actually done (which may be by no means the best approach) with what they (the students)
did, with the collaborative support of their classmates and professor.

Students can work individually (often a better method for validating and growing
individual competence) or in teams (excellent for growing teamwork skills, and for
learning from each other).

Much like a flight simulator experience, the consequences of "failure" are fairly
benign—if a student makes errors of analysis or judgment in recommendations, the only
consequence is poor performance in the case. They do not lose major credibility inside
their organization, lose millions of dollars for their company as a consequence of a poor
decision, or otherwise have to live with the full consequences of their analysis. Instead,
they learn from what others have to contribute, strengthen themselves and their
understanding, and come again to the next class, prepared to contribute. Crashes are not
fatal—they are valued learning experiences.

A further benefit of learning by case-method teaching is the ability of the student to
participate in a give-and-take which can actually be comparable to what they will
experience in the real work environment after graduation.

xvn
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THE INTEREST OF THE HIRING ORGANIZATION

Hiring organizations want experience. They prefer students with internship and co-op
experience. They want students who have had to continually look at situations, size them
up, determine appropriate data collection strategy, analyze the data, and make and defend
their recommendations.

Cases have several benefits over internships or co-op experiences. (Incidentally, we
strongly support internships and co-ops, but recognize their limitations from the point of
view of offering a variety of substantive applied experiences to students.)

One benefit is that a student can handle one major case a week, or even more, via case-
based learning. However, in an internship, they would not be likely to see such a broad
number and range of applications as can be examined through a judicious choice of cases.
The result is that the hiring organization can hire a student who has been through 15 or
more virtual (case-based) experiences per course, for a total of perhaps 100 or more in their
curriculum. This experience is far different from that of working homework problems,
involving a higher level of integration of statistical thinking into real technical, process,
and business issues and problems.

There is of course incompleteness to the case analysis and case discussion experience.
No case analysis and case discussion can duplicate fully the political environment in which
improvement work takes place. This knowledge must be provided for the student by some
other means (and internships and co-ops are excellent at providing this knowledge).

THE INTEREST OF THE TEACHING FACULTY

Teaching faculty want to teach material which is seen to be relevant. In many cases,
teachers of statistics do not have active personal work in applied statistics. Some are not
even statisticians, but instead are mathematicians by training who teach statistics as a part
of their teaching load. Others were theoretically trained and have little or no consulting
experience, and would be hard put to draw applied examples from their own experience.

Cases provide a way for faculty to draw interesting, meaty exercises in the use of
statistical thinking from an experience range broader than the current instructor—one as
broad as the set of all writers of statistical cases.

Cases provide a way for faculty to make clear the kinds of applications where statistical
thinking can be useful. Cases can provide a way for faculty to imbed the statistical tools
inside a broader problem solving and system improvement process.

THE INTEREST OF THE STATISTICAL PROFESSION

The statistical profession is in need of further documenting the value it provides. In the
excellent book "Statistical Case Studies for Industrial Process Improvement," edited by
Veronica Czitrom and Patrick D. Spagon, the editors begin their preface by saying that
"The primary objective of this book is to demonstrate how American industry would
benefit from using statistical methods." They continue, "Another major objective is to
provide examples of successful industrial applications of statistics for use in industrial
workshops and in academic courses."

THE INTEREST OF THE COMPANY/ORGANIZATION IN

WHICH THE WORK WAS DONE

Many companies/organizations are interested in making their good work known. They
see the value in publicizing this successful work. It can be an aid to them when they must
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hire statisticians in the future. Statisticians in academe can easily envision this effect—
imagine what organizations you would recommend to a bright young student considering
future employment. Then, consider whether these are organizations which have tended to
make their applications of statistics relatively "secret" or instead those organizations which
have publicized their experiences using statistical thinking.

THE INTEREST OF THE WRITER OF THE CASE

Traditionally, academics have found it difficult to place a positive value on applied
work. (The author remembers one faculty discussion at an institution which will not be
named in which someone who was fond of "counting publications" suggested that a tenure
and promotion committee should not only count the publications but should subtract
something based on the amount of consulting and other applied engagements—since they
were, in his view, evidence of lack of a full commitment to the "correct" academic model.
The eyes of the speaker did not twinkle.) The writing of cases gives those actively engaged
in the practice of statistics a way to create written scholarly output which can be a natural
outgrowth of their applied work, and yet meet the needs for scholarly output which are
articulated by their academic institutions.

Much work is needed on this front. In some institutions, case writing is not viewed as a
significant component of scholarly work.

A FEW WORDS ON GETTING STARTED USING CASES

The author would be remiss if he were not to give some indication of how to get
insights into the use of cases. The literature on the use of cases continues to grow. One
particularly useful source of cases, in addition to the current volume, is the Czitrom and
Spagon volume previously above (a number of very useful cases contained therein). A
good source of information on teaching by the case method (not particular to statistics
teaching) is Christensen, C. Roland, Garvin, David A., and Sweet, Ann (1991) . Parr, W. C.
and. Smith, Marlene (1997) have written on their experiences with teaching statistics by the
case method.

Cases are used in many ways in the classroom—from constituting the basis of examples
to document and illustrate applicability of methods to being the basis for case discussion in
class, in which different students have individually analyzed the data and constructed their
recommendations, and describe, advocate, and defend them in class. Each way has its own
special benefits. We invite you to review the sources listed above, use the cases in this
book, and learn from that practice.

CONCLUSION
We applaud the authors of these cases for their contributions to the growing statistical

case literature. They toil in a vineyard which still looks for more workers—the deficit of
statistical cases is appalling when one compares it to the widespread and growing use of
statistical thinking to address real and significant problems. We also thank Roxy Peck for
giving us the opportunity to be one of the faculty instructors for the original National
Science Foundation workshop which led to the writing of these cases, and for the
opportunity to write this foreword.
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PARTNERING FOR THE FUTURE

OF THE STATISTICS PROFESSION
Ronald L. Iman

INTRODUCTION
Many of us are all too aware that it is not business as usual anymore; competition is

forcing changes. We see changes in the way organizations are managed—witness the
breakup of AT&T into three separate entities. The statistics profession is not immune to
such changes—after all, software makes anyone a statistician! If the statistics profession is
to remain relevant, we must make major changes in the operation of our professional
organizations, in the way we train our students, in the way we interact with our customers,
and in the way we perceive our profession.

The problems we face today are too complex for any one entity to solve in isolation,
and in this era of increasingly tighter budgets, academe and industry are seeking ways to
leverage scarce resources. The statistics profession should flourish in such an
environment! However, statisticians seem all too willing to take a back seat while others
make decisions affecting their profession. We seem content to teach decision making
rather than educating the decision makers who control our livelihood.

What can we do in the current situation? For one thing, we can learn from and emulate
the success of others. For example, industry is placing greater emphasis on partnering with
their suppliers and customers. These partnership efforts have decreased production costs,
shortened production time, and increased product performance. The statistics profession
could benefit by partnering with other organizations having a professional interest in
statistics. Currently, there is little or no interaction among such organizations. When was
the last time two or more professional organizations held a joint meeting to see how they
might work together to benefit the statistics profession?

The statistics profession would also profit through partnering activities between
academe and industry/government. However, the concept of partnering is an enigma to
most universities as their administrative structures, with rigidly defined departments and
colleges, encourage an inward focus. Few universities recognize the existence of a
customer-supplier relationship either within the university or in their relationships with
external organizations. This inward focus has had a pernicious effect not only on
universities, but also on industry. University departments evaluate research in comparison
with peer institutions and frequently have a low regard of joint research, rather than
evaluating it in terms of its usefulness by industry. Traditional training methods have not
emphasized the need for cross-disciplinary training and teamwork. Consequently,
graduates are not equipped to work as team members and industry frequently has to
provide special training to its new employees to ensure they speak each other's language.
Statistics programs are usually evaluated by peer institutions without input from industry.
As a result, industry is left on the outside looking in and universities wonder why funding
from industry and government is increasingly difficult to obtain.

xxi
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SEMATECH: A ROLE MODEL FOR PARTNERING
When I was President of the American Statistical Association in 1994, I asked Dr. Bill

Spencer, the President and CEO of SEMATECH in Austin, to give the President's Invited
Address at the ASA Annual Meeting in Toronto. I asked Dr. Spencer to talk about the
success that SEMATECH achieved through partnering to help the U.S. regain its world
leadership position in both semiconductor sales and semiconductor equipment sales. This
success did not happen by accident nor did it come about easily. However, I believe the
SEMATECH model is one that we can successfully implement in the statistics community.
This model provides important lessons for the statistics community about the value of
working together and thereby increasing our circle of influence.

The formation of SEMATECH was a difficult process since it involved getting
competitors in the semiconductor industry such as Advanced Micro Devices, AT&T,
Harris Corp., Intel, IBM, Motorola, and Texas Instruments, among others, and the federal
government to work together. These manufacturers were in direct competition with one
another for what amounted to an ever-decreasing share of the worldwide semiconductor
market.

Many doubted that SEMATECH would be able to succeed in a nation where fierce
competition flourished and industry cooperation was minimal. Moreover, the government
had been a roadblock in allowing these companies to work together. However, these
companies and the government quickly learned that they had more to gain by working
together and leveraging their resources than by trying to go it on their own.

SEMATECH had another big obstacle to overcome involving customer-supplier
relationships. SEMATECH has a large group of suppliers that is collectively known as
SEMI/SEMATECH. The members of this latter group range from very small to very large
and they supply a wide spectrum of materials used in semiconductor manufacturing. In
turn, this group of suppliers has their own group of suppliers. SEMI/SEMATECH took the
lead in forming partnerships between customers and suppliers. Again, many doubted that
these partnerships would work, and each side approached them cautiously. However, these
partnerships have made both parties stronger, improved the product, reduced costs, and are
now regarded as the standard way to do business. They have learned that the whole is truly
greater than the sum of the parts.

In 1979, the respective U.S. and Japanese shares of the worldwide semiconductor
market were approximately 58% and 26%. By the time SEMATECH was formed in 1987,
the U.S. share had declined to 38% while Japan's share increased to 48%. The following
year, the U.S. share declined to 32% and Japan's share increased to 52%. As a result of
SEMATECH's efforts, the U.S. pulled even with Japan in 1992 at a 42% share and
regained the lead in 1993.

SEMATECH's success serves as a truly remarkable example of what can happen when
competitors work together and customer-supplier relationships are openly recognized and
cultivated. I stated in my ASA Presidential Address that many in our profession have
pointed out that we do a poor job of recognizing the existence of customers. Thus, we
must begin by recognizing that each of us has customers and that ours is a customer-driven
profession.

SOME EXISTING PARTNERSHIPS IN THE STATISTICS
PROFESSION

I chaired the opening session in Toronto during which four speakers gave presentations
on the Benefits of Increasing Interaction Among Statisticians in Academia and Industry.
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The speakers in this session were Bob Hogg from the University of Iowa, John Schultz
from The Upjohn Company, Bob Mason from the Southwest Research Institute, and Ray
Myers from VPI and State University. These speakers did an outstanding job of covering
the need and identifying the benefits of increased interactions from a variety of
viewpoints—academe, industry, and government. They made it clear that there are many
advantages for all parties resulting from increased interactions. Moreover, they identified
many of the changes that are needed to bring about increased interactions.

John Schultz provided an outstanding example of a successful partnership that has been
going on for years between The Upjohn Company and Western Michigan University.
There are other examples of successful partnerships between academe and industry and
between academe and government that we can use as role models. For example, Oakland
University has a very successful program with Ford Motor Co. that has created a true win-
win situation for all parties. The University of Manitoba is located in a small community
that is isolated geographically. However, their faculty has conducted workshops for local
small businesses and this has led to a very successful program for their department. It is
encouraging to see such partnerships, but we need to address the issue of partnerships on a
wide-scale basis so that the opportunity for participation is greatly expanded.

A REVIEW OF SOME MODELS FOR PARTNERING
If we were to make a list of concerns to the statistics profession, we would find that it is

not much different from those developed by many other professions. For example, the
following list of concerns apply broadly to many professions:

Lack of recognition
Misrepresentation in the news media
Journals are not readable
Academe ignores industry's needs
Joint research is not highly valued
Misuse of statistics by nonprofessionals
Skills or graduates are too narrowly focused
Lack of jobs
Shortage of funding
Difficult to find students

In light of these concerns, I have defined three models that can be used to describe
existing relationships between academe, industry, and government. I call the first model
the Inward Focus Model. It is shown graphically in Figure 1. Academic products in this
model are identified as students and research. However, customers for these products are
viewed as academe while industry and government are viewed as a source of funding to
support the system.
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Fig. 1. The Inward Focus Model.

The following summary describes the characteristics of the Inward Focus Model as
viewed by academe and industry.

Model Characteristics: Academe Model Characteristics: Industry

Research oriented to peers
Our students will all teach at
Berkeley
Give us money and we will see
what we can do
Program review performed by
peer institutions
Inward focus is rewarded
What's a customer?

Academic research is not relevant to our
needs
Graduates are not trained in non-
technical skills
Academe only wants our financial
support
Seldom asked to participate in program
reviews
Academe is an ivory tower
We are your customers!

The Inward Focus Model clearly does not bode well for establishing or maintaining
healthy long-term relationships. We might ask if its focus on peer institutions is either
realistic or justified. A partial answer to this question can be obtained by comparing the
number of Ph.D. graduates in statistics over a 21-year period with the number of available
faculty positions. As shown in Figure 2, the number of Ph.D. graduates in statistics has
varied from approximately 173 to 327, with an average of 233. There were approximately
735 statistics faculty in the U.S. in 1990 with a growth rate for the preceding 21 years of
approximately 1.75 new positions per year. Using a tenure figure of 30 years for a faculty
position gives 735/30 = 24.5 positions available each year through retirements. Thus, there
are only enough faculty positions available each year for about 10% of the new Ph.D.
graduates. Or, viewed from the other perspective, 90% of the Ph.D.s will work outside of
academe, and this does not account for the B.S. and M.S. graduates that will most likely be
working in industry or government! These figures make it clear that the Inward Focus
Model does not meet the needs of society and does not enhance the statistics profession.
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Fig. 2. Number of Ph.D. graduates in statistics from 1972 to 1992.

The Modified Inward Focus Model is represented in Figure 3. Unlike the Inward Focus
Model, this modified model recognizes the existence of an external customer, but it still has
a heavy focus on peer institutions. The following summary describes the characteristics of
the Modified Inward Focus Model as viewed by academe and industry.

Model Characteristics: Academe Model Characteristics: Industry

Academic sabbaticals in industry
Student summer internships
Some joint research activities
Some industry adjoint professors
Some funding from industry
Some equipment from industry

Industry adjoint professors
Student summer internships are beneficial
Joint research is helpful
Funding of research provides some benefits
Good re-use of equipment
Limited input into academic programs

STATISTICS PARTNERSHIPS AMONG ACADEME, INDUSTRY,
AND GOVERNMENT

As President-Elect-Elect of the ASA in 1992, I attended separate meetings of the
Academic Program Representatives and the Corporate Member Representatives held
during the Joint Statistical Meetings in Boston. I suggested that these groups try something
"bold" and have a joint meeting. The two groups heeded my advice and held a joint
meeting in San Francisco in 1993. The idea for summer internships came out of that
meeting. This is now a yearly program that has been extremely helpful to all parties. At
the annual ASA meeting held in Toronto in 1994 I again challenged the two groups to form
strategic partnerships known as Statistics Partnerships among Academe, Industry, and
Government (SPAIG). I asked each of the groups to independently develop vision
statements, recommendations for achieving those visions, and related issues and concerns.
I then suggested that they exchange their statements to see each other's views. These
summaries were presented at a joint meeting of the two groups at the annual ASA meeting
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in Orlando in 1995. I now present a summary of the statements prepared by the two
groups.

Fig. 3. The Modified Inward Focus Model.

The Modified Inward Focus Model is an improvement over the Inward Focus Model,
but it still falls short of meeting the needs of the statistics profession. The last, and best,
model is the Partnering Model. This model is represented in Figure 4.

Supplier Customer

Academe

Industry
&

Government

Fig. 4. The Partnering Model.

The characteristics of the Partnering Model can be summarized as follows:

True customer-supplier relationship exists
Training is driven by industry needs
Joint research is highly valued
Interactions with industry provide a source
of real problems for Ph.D. students
Long-term funding received from industry
Students are highly sought as employees

Industry participates in program reviews
Two-way employee exchanges are the norm
Research supports industry needs
Equipment received from industry
Student internships are the norm
Enrollments are up
The whole is greater than the sum of the parts
Recruitment costs are lower and more effective
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The Partnering Model clearly creates a win-win situation for all parties.

The View from Academia

Professor Bill Parr from the University of Tennessee took the lead in developing
statements for the academic community. Professor Parr used e-mail to send drafts of the
academic statements to department heads and statistics programs. This process was
repeated five times with an average of over 40 responses each time. The very forward
looking statements that resulted from that process are as follows.

If we are successful in cooperation between industry (includes both industry and
government) and academia, in ten years we will be able to truthfully say the following:

In the area of exchange:
Statisticians from academia and industry routinely exchanges roles, with faculty taking
one-semester to one-year "sabbaticals" from academia to contribute to industry, and
industrial statisticians taking one-semester to one-year "sabbaticals" to work within
universities.

In the area of education:
We (in academia) know what industrial organizations want, and we supply statisticians
with the knowledge, skills, and attitudes to be effective both when they are ini t ial ly
employed and throughout their careers (through lifelong learning).
We have real examples and applications to present in the classroom, based on what we
have learned about industrial practice.
We send out students routinely for internships and co-op arrangements, which benefit
industry in hiring decisions, students in better value added to their education, and
academics in more input for relevance. These internships and co-op arrangements
have forged strong linkages between us and industry.
We seek out industrial statisticians to participate with us by giving seminars to our
departments and helping our students and faculty understand the current realities of
industrial practice.

In the area of research:
We are able to guide our research based on the needs of actual users of statistics.
We pursue industry as a developmental funding source.
We lead industrial problem solving into the future with new developments in theory
and the means to apply that theory in industrial settings, appropriately targeted to meet
real needs.
We transfer new knowledge in multiple ways, via courses, seminars, workshops,
consulting arrangements, outgoing students, and the written (and electronic) word.
We have worked through current prohibitions against proprietary research to facilitate
ongoing working relationships between universities and industry (not only between
university statisticians and industry).

In the area of academic values:
We believe that sending a Ph.D. graduate to a good industrial position requiring Ph.D.-
level competence is as valuable to our program and the profession as sending her/him
to an academic position.
We give as much credit for a joint publication addressing a significant real problem in
a creative way as we do for a theoretical paper addressing a significant problem in a
creative way.
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We use industry as laboratories for the development of new theory and applicable
techniques.

What do we hope to see on behalf of industry?
Industry informs academia of their needs for broadly educated statisticians rather than
menu-driven technicians.
Industry acts to energize the current batch of academicians teaching statistics to
transforming both their content and their pedagogy based on best current practices.
Industry supports professional societies and academic institutions in the transfer of
new knowledge through seminars, workshops, and consulting arrangements.
Industry uses the academy in the solution of industrial problems through research
grants and contracts and collaborating with academic institutions in the establishment
of research centers.

The View from Industry

The corporate view was coordinated by Bruce Rodda from Schering-Plough Research
Institute. It is also very forward looking and complements the views of academe.

Statisticians beginning careers in an industrial setting often have difficulty in adapting
to the dramatic change from the academic to the industrial environment. At the time the
new employee enters their company, they may have spent as much as 20 years in an
academic environment and are often unaware of the expectations and opportunities in an
industrial setting. Although they may have excellent theoretical and technical skills, many
find that these alone are not sufficient for an opportunity-rich and professionally satisfying
career.

Many statisticians arriving in industry view themselves as technicians and analysts
whose primary role is to support the work of other disciplines. Although these technical
functions are extremely important, acceptance of them as long-term career goals reduces
the magnitude of the contributions statisticians can make and will also limit their career
opportunities. This limitation minimizes the impact that statistics can have since
statisticians at higher positions in organizations can, in general, have a much greater
strategic influence than those in lower level (primarily technical) positions.

Academia and industry have very similar values. Industrial statisticians clearly know
and value the academic interest in theory and research, whereas the academic may view the
real world use of statistics in the industrial setting as a productive consequence of statistical
research and education. Thus, the complete education of a statistician is a shared
responsibility between academia and industry. Historically, the primary source of
theoretical training for the industrial statistician has been in their formal academic training.
In contrast, the practical utilization of this training through real-world problems has been
acquired in the on-the-job setting.

The basic education that students receive prior to graduation should include both the
excellent technical training that they now receive and an even greater exposure to a broad
variety of practical problems. In addition, an understanding of the industrial environment
and career opportunities will be very beneficial in providing students the broadest of
options for their career choices. This broader background would allow graduates the
opportunity to choose any number of areas of statistical application and possess the
fundamental scientific and leadership skills to function as principals in their organization.

A survey of several corporate member representatives of the ASA resulted in a number
of suggestions to achieve this objective. These can be categorized into two areas:
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a. Broader understanding of the needs, opportunities, and environments in which
statisticians work in an industrial setting.

There needs to be an appreciation for teams, organization, society, and their
relationships and dynamics.
Statisticians must understand and appreciate the complete research process.
Statisticians must understand the expectations of industry and have the training to meet
those expectations.
Statisticians should be interested in the total problem, not just the statistical part.
Statisticians should have a global view of a research effort and have a systems
approach to research.
Statisticians must expand their skills beyond statistics to include those of a successful
consultant (e.g., communication, negotiation, project management).
Statisticians must be integral to the project and participate to its conclusion.

b. More formal associations between academia and industry that demand a true
collaborative approach to the education of both students and continuing education.

Industrial seminar series at universities should occur regularly.
Faculty/industry personnel exchange should occur regularly.
Faculty sabbaticals in industry should occur regularly.
Industrial advisory committees at universities should be common.
Adjunct faculty appointments of industrial statisticians should be more frequent and
routine.
Formal training/requirements in writing and presentation skills should be established.
Cooperative research endeavors should be developed.
The availability and content of continuing education programs should be broadened.
A syllabus of both statistical and essential nonstatistical skills required by industry
statisticians should be developed and issued under the aegis of the ASA.
Academia needs to have a formal mechanism for understanding and anticipating the
needs of industry and government.
Faculty must have a genuine interest in working on the projects arising in industry.
This is key—and is necessary, but not sufficient.
Good professional interaction between faculty members and one or more industrial
researchers needs to be established.
True success will require that both academia and industry gain more from the
interaction than they can accomplish separately.
Universities should routinely invite industry scientists and statisticians to give
seminars on real problems and to play an important role in the education of new
statisticians.

There is a very strong interest in the industrial community to contribute to the
development and education of our students. The advantages that could be provided by a
more intensive association between academia and industry would result in statisticians
being ready to assume more effective positions in industry and provide a greater
opportunity for statisticians to lead research efforts in the future.
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CURRENT SPAIG ACTIVITIES
SPAIG held a two-day workshop in Raleigh, NC on May 30-31, 1997. The workshop

was chaired by Dr. Robert Starbuck of Wyeth-Ayerst and was attended by 87 senior-level
statisticians from academe, industry, and government. Dr. Starbuck opened the workshop
by mentioning valuable opportunities that could be achieved by better and more
widespread partnering relationships:

Expanding and improving the use of statistics
Increasing the value of statistics to society
Improving the educational experience of students
Improving the career decision process and outcome
Increasing communications among all statisticians
Enabling greater awareness of each other's needs, issues, and concerns
Improving the self-image of statisticians
Making statistics a more rewarding profession
Ensuring that statistics is a growth field

The SPAIG workshop provided a valuable opportunity for interaction among the
different groups. Details of the workshop can be found on the SPAIG web site at
http://funnelweb.utcc.utk.edu/~wparr/spaig.html. Information on detailed action plans,
milestones, responsibilities, measures of success, and progress as it occurs will be regularly
posted to the site. One important event at the workshop occurred when participants were
asked to identify the consequences of maintaining the status quo, i.e., doing nothing to
improve the partnering relationships between academe, industry, and government. Their
responses are summarized as follows:

Consequence Number of Votes
1. Statistics as a discipline viewed as irrelevant; 28

decline in influence
2. Nonstatisticians will do statistics 28
3. Decline or elimination of statistics departments and 19

professional societies
4. Students not prepared to solve future problems 12
5. Slow growth in technical advances in statistics 12
6. Industry/government will do in-house statistics 11

training
7. Reduced contribution of statistics to society 10
8. Failure to attract good students 9
9. Reduced dollars, resources, support 8
10. Good applied statisticians not available for hire 7
11. Fewer employment opportunities 5
12. Continued alienation among academe and 5

government
13. Outside forces will determine the direction of the 3

discipline
14. U.S. Industry will be less competitive 2
15. Miscellaneous 11

http://funnelweb.utcc.utk.edu/~wparr/spaig.html
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WHAT CAN You Do?
It will take much more than the efforts of just a few individuals to make partnerships

between academe and industry a reality. Everyone needs to participate and get involved.
There are a number of ways to do this, including the following:

Participate in local chapter activities for ASA, ASQC, HE (Institute of Industrial
Engineers), and SPE (Society of Professional Engineers). Expand your chapter
participation activities and do not restrict yourself to just your chapter.
Faculty members should initiate discussions within their departments on the
advantages of partnering with industry and how they might go about doing so.
Industrial statisticians should initiate discussions within and between their
organizations on how to better partner with academe.
Universities should regularly invite industrial statisticians to give seminars on actual
applications of statistics.
Academe should go to industry and present seminars that are of interest to industrial
statisticians (i.e., not theoretical).
Publicize your activities by writing articles for newsletters of professional
organizations.
Organize sessions on industrial applications of statistics at regional and national
meetings.
Contact board members of professional organizations with your concerns and ideas.
Support and participate in SPAIG activities.
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CHAPTER 1

ARE THE FISH SAFE TO EAT?
ASSESSING MERCURY LEVELS IN

FISH IN MAINE LAKES
Jennifer A. Hoeting and Anthony R. Olsen

The information in this article has been funded in part by the United States Environmental
Protection Agency. It has been subjected to Agency peer review and approved for publication. The
conclusions and opinions are solely those of the authors and are not necessarily the views of the
Agency.

Mercury is a toxic metal sometimes found in fish consumed by humans. The state of Maine

conducted a field study of 115 lakes to characterize mercury levels in fish, measuring

mercury and 10 variables on lake characteristics. From these data, we can investigate four

questions of interest: 1. Are mercury levels high enough to be of concern in Maine lakes?

2. Do dams and other man-made flowage controls increase mercury levels? 3. Do different

types of lakes have different mercury levels? 4. Which lake characteristics best predict

mercury levels?

INTRODUCTION
In May, 1994, the state of Maine issued the following health advisory regarding

mercury in Maine lakes, warning citizens of the potential health effects of consuming too
much fish from Maine lakes [Bower et al., 1997]:

"Pregnant women, nursing mothers, women who may become
pregnant, and children less than 8 years old, should not eat fish from
lakes and ponds in the state. Other people should limit consumption
(eating) fish from these waters to 6-22 meals per year. People who
eat large (old) fish should use the lower limit of 6 fish meals per year.
People who limit themselves to eating smaller (younger) fish may use
the upper limit of 22 fish meals per year."

This health advisory resulted in newspaper headlines throughout the state proclaiming,
"Mercury: Maine Fish are Contaminated by this Deadly Poison" (The Maine Sportsman),
"Maine's Most Lethal Sport" (accompanied by pictures of ice fishermen) (Maine Times),

1
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and "Natural-Borne Killer, Mercury Rising" (Casco Bay Weekly). Were these newspapers
issuing bold headlines merely to increase circulation or were they repeating stories based on
fact? The data described below can give us some answers to this question.

WHAT is MERCURY?
Mercury is a "heavy metal" that occurs naturally in the environment in several forms

(elemental, organic, and inorganic). Mercury occurs naturally in the earth's crust and
oceans and is released into the earth's atmosphere. In addition, human activity results in
releases of mercury through the burning of fossil fuels and incineration of household and
industrial waste.

Mercury enters fish through two known mechanisms. When water passes over fish gills,
fish absorb mercury directly from the water. In addition, fish intake mercury by eating
other organisms. Mercury tends to bioaccumulate at the top levels of the food chain.
Bioaccumulation occurs when microorganisms convert inorganic mercury into toxic
organic compounds which become concentrated in fatty tissues as they move up the food
chain [EPA, 1994].

Mercury is a toxin that acts upon the human nervous system. Consumption of mercury-
laden fish can lead to a variety of neurological and physiological disorders in humans.
Because mercury acts upon the nervous system, developing children and fetuses are
especially sensitive to mercury's effects [Bahnick et al., 1994].

BACKGROUND INFORMATION
In 1993, the U.S. Environmental Protection Agency (EPA) and the state of Maine

implemented the "Maine Fish Tissue Contamination Project." The goals of the project
were to determine the distribution of selected contaminants in fish from Maine lakes, to
determine risk to human and wildlife consumers of fish from Maine lakes, and to identify
factors that affect the distribution of contaminants in fish tissue. To select the sample of
lakes, the research team identified 1073 lakes in Maine that had previously been surveyed,
were found to have significant fisheries, and were reasonably accessible. The identified
lakes are a subset of the total number of lakes in Maine, 2314 [USEPA, 1995]. From the
1073 lakes, a simple random sample of 150 lakes was selected for study. Out of the original
150 lakes selected, samples were collected from only 125 of these lakes during the summers
of 1993 and 1994. Nonsampled lakes were either not reasonably accessible or did not have
desired fish species available.

A group of "target species" were determined based on the species' desirability as game
fish and other factors. The data included here involve only the predator species from the
original target species list and thus only 115 lakes out of the original list of 150 lakes are
included (Fig. 1). To collect the fish specimens, field crews obtained up to 5 fish from the
hierarchical order of preferred predator species group. Field protocols targeted fish that
were of comparable age, legal length limit, "desirability" as game species, and likelihood of
capture. Fish were collected by angling, gill nets, trap nets, dip nets, or beach seines. Care
was taken to keep fish clean and free of contamination. Upon capture, fish were
immediately killed if alive. Fish were rinsed in lake water and wrapped in aluminum foil,
labeled with an identification number, and kept on ice in a cooler. Upon returning from the
field, fish were immediately frozen for later analyses. In the laboratory, the fish fillet
(muscle) of each fish was extracted. The fillets from each lake were ground up, combined
and homogenized, and then the tissue was subsampled to analyze for mercury levels.
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Fig. 1. Sampled lake locations. Note: The points that appear to be in the Atlantic Ocean
are located on islands,

Another goal of the study was to examine external stressors and other factors potentially
responsible for elevated levels of mercury in fish. The information would be used to gain
insights on conditions and sources that could be used in managing any problems detected.
The factors were divided into fish factors, lake factors, and geographic stressors
(watersheds and airsheds). Only a subset of the factors are used here. Lake characteristics
include lake size, depth, elevation, lake type, lake stratification, watershed drainage area,
runoff factor, lake flushing rate, and impoundment class.

Some useful definitions

Lake type. This is a lake classification system [Collie, 1992]. A trophic state or level is a
classification of taxa within a community that is based on feeding relationships. An
oligotrophic lake has a balance between decaying vegetation and living organisms, where
the lowest layer of water never loses its oxygen and the water contains few nutrients but
sustains a fish population. A eutrophic lake has a high decay rate in the top layer of water
and so contains little oxygen at the lowest levels; it has few fish but is rich in algae. A
mesotrophic lake is between the oligotrophic and the richer eutrophic state and has a
moderate amount of nutrients in its water.

Lake stratification. This refers to temperature stratification within a lake. In summer,
the lake surface warms up and a decreasing temperature gradient may exist with the bottom
remaining cold. Consider a lake stratified if a temperature decrease of 1 degree per meter or
greater exists with depth.

Drainage area. This is the area of land which collects and drains the rainwater which
falls on it, such as the area around a lake [Collie, 1992].

Runoff factor. RF = (total runoff during year)/(total precipitation during year). Runoff is
the amount of rainwater or melted snow which flows into rivers and streams. In general,
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higher runoff factors may lead to more surface waters from the lake watershed reaching
lakes. If contaminants are from local sources, this may influence concentrations in fish.

Flushing rate. FR = (total inflow volume during year)/(total volume of lake). This gives
the number of times all water is theoretically exchanged during a year.

QUESTIONS OF INTEREST
1. The U.S. Food and Drug Administration has determined that samples with more than

1.0 ppm (parts per million) mercury are above the safety limit. Most states consider 0.5
ppm mercury levels (Maine uses 0.43 ppm) to be high enough to consider taking action
(e.g., issuing a health advisory, considering methods of clean-up, etc.). As indicated by
the data collected here, are mercury levels high enough to be of concern in Maine?

2. The industries that benefit from dams and dam construction are concerned that
environmentalists will claim that high mercury levels in fish are related to the presence
of a dam (or man-made flowage) in the lake's drainage. Do the data support this claim?

3. Previous studies [Nilsson and Hakanson, 1992; Larsson et al., 1992] suggest that
mercury levels vary by lake type with oligotrophic lakes experiencing the highest
mercury levels and eutrophic lakes experiencing the lowest mercury levels. Do the
Maine data support this claim?

4. In future studies, it would be useful to predict mercury levels using lake characteristics
as the latter are inexpensive data to collect. Which lake characteristics best predict
mercury levels?

ADDITIONAL QUESTIONS FOR ADVANCED STUDENTS
1. Do the missing data appear to be missing at random? If we omit the lakes with missing

data from the analysis, how does this influence the resulting inferences?
2. Should the number of fish per sample be taken into account in your regression

analysis?

DATA
Name of data file: CaseOl .txt

Table 1. Maine lake data.

CODE
NAME
HG
N
ELY
SA
Z
LT

ST
DA
RF
FR

DESCRIPTION
Lake or pond name
Mercury level in parts per million (ppm)
number of fish in the composite
elevation (feet)
surface area (acres)
maximum depth (feet)
lake type as determined by the Department of Inland Fisheries and Wildlife
1 = Oligotrophic, 2 = Eutrophic, 3 = Mesotrophic
lake stratification indicator (l=yes, 0=no)
drainage area (square miles)
runoff factor
flushing rate (number flushes per year)
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CODE
DAM

LAT1
LAT2
LAT3
LONG1
LONG2
LONG3

DESCRIPTION
Department of Inland Fisheries and Wildlife impoundment class
0 = no functional dam present; all natural flowage
1 = at some man-made flowage in the drainage area
Latitude degrees
Latitude minutes
Latitude seconds
Longitude degrees
Longitude minutes
Longitude seconds

Table 1 lists the variables available for the data analysis.

The first five lines of Case01.txt are shown in Table 2 as they appear in the file. In
Case01.txt, missing data are indicated by "-9." Note: five lakes have duplicate names, but
they are different lakes (see latitude and longitude columns).

Table 2. First five lines ofCase01.txt.

N
1
2
3
4
5

NAME
ALLEN.P
ALLIGATOR.?
ABASAGUNTICOOK.L
BALCH&STUMP.PONDS
BASKAHEGAN.L

HG
1.080
0.025
0.570
0.770
0.790

N
3
2
5
5
5

ELY
425
1494
402
557
417

SA
83
47
568
704
6944

Z
27
26
54
44
22

LT
3
2
2
2
2

ST
1
0
1
1
0

Table 2. First five lines ofCase01.txt (continued).

DA
2
1

15
14

123

RF
0.60
0.69
0.56
0.58
0.57

FR
2.8
0.8
1.1
2.7
2.0

DAM
1
1
0
0
1

LAT1
44
45
44
43
45

LAT2
57
37
25
37
30

LAT3
44
50
13
0
32

LONG1
68
69
70
70
67

LONG2
5
12
19
59
50

LONG3
7
30
22
4
2

INSTRUCTIONS FOR PRESENTATION OF RESULTS
Write a report addressing the questions above. Include summary statistics for each

variable in relevant plots and tables. Interpret your results. You may want to seek out
background material on mercury. The list of references below would be a good place to
start your library search.

Assume the report will be read by Maine's governor and legislature. These individuals
are concerned about the impact of mercury on the tourism and recreational fishing
industries. Since Maine's governor and legislature may not have a background in statistics,
make sure the main points in your report can be understood by a nonstatistician.
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NOTES TO THE INSTRUCTOR

Level of Case Study

This case study is suitable for a wide range of student levels. The first three questions of
interest are suitable for use in an introductory statistics course. The fourth question is
suitable for an undergraduate course in regression. More technical data analysis issues can
also be addressed by a first year Master's level course in data analysis.

Necessary Tools

Exploratory data analysis, basic confidence intervals and/or hypothesis tests, survey
sampling, analysis of variance, multiple regression analysis, and regression diagnostics.
More advanced levels may require methods for missing data and weighted least squares.

Objectives

1. Students apply techniques used in class to real data. They learn, first-hand, how messy
data can limit the inferences one can make.

2. Students gain experience in explaining statistical results to nonstatisticians.
3. Students learn the impact statistical analysis can have on public policy.
4. Advanced students learn about the ramifications of missing data and the difficulties

involved in modeling a highly variable response.
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Typical Results

Exploratory Data Analysis

Mercury levels range from 0.02 to 2.5 (Table 3). The maximum observation (mercury
level = 2.5) is an outlier and is from Hodgdon Lake. Approximately one-half of the lakes
have elevations less than 500 feet. One lake, West Grand Lake, has a large surface area of
14340 acres, while the next largest lake has a surface area approximately half as large. Most
lakes have a maximum depth between 0 and 50 feet. Seventy-five percent of the sampled
lakes have drainage areas of 21 square miles or less. There are 3 observations with very
small runoff factor levels (Keewaydin Lake, Lovewell Pond, and Pleasant Pond). The
median flushing rate is equal to 2.1 flushes per year. No strong relationships appear to exist
between mercury level and the predictors (Figs. 2-6).

Table 3. Summary statistics (missing values omitted).

Variable
Mercury
Elevation
Surface Area
Max Depth
Drainage Area
Runoff Factor
Flushing Rate

Mean
0.49

567.28
901.30

41.20
42.50

0.55
0.60

Std. Dev.
0.33

430.68
1985.52

29.98
117.01

0.10
0.49

Range
0.02 -2.50

15.00 -1700
12 -14340
5 -158
0 -762

0.06 -0.76
0-1

Number of Fish
per Composite

Total (%)
1

2(1.7)
2

1 (8.3)
4

17(14.2)
3

17(14.2)
5

74(61.7)

Lake Type
Total (%)

Oligotrophic
21 (17.7)

Eutrophic
53 (44.5)

Mesotrophic
45 (37.8)

Lake Stratification
Total (%)

No
52(44.1)

Yes
66 (56)

Impoundment Class
Total (%)

No Man-made Flowage
47 (39.8)

Some Man-made Flowage
71 (60.2)

Question 1

Based on the state's 0.5 ppm criteria, approximately 37.5 percent (90% C.I. of 30.2% to
44.8%) of Maine's 1073 lakes are at risk and approximately 6 percent (90% C.I., 2.3% to
9.4%) are above the FDA 1.0 ppm safety limit. For the population of 1073 lakes, an
estimated 402 lakes (90% C.I., 324 to 480) are at risk and 63 lakes (90% C.I., 25-100) are
above the safety limits.

Discussion: There are at least two ways to address this question, by computing the
percentage of lakes above 0.5 and 1.0 and by comparing the mean mercury level to the
threshold levels of 0.5 and 1.0. It makes more sense to base policy decisions on the
percentage of lakes above 0.5, since policy makers will probably be more concerned about
the percentage of affected lakes than they would be concerned about the estimated level of
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mercury for all lakes. Translation of the percentage of lakes to numbers of lakes also is
helpful to policy makers. The issue of which statistic to use is a worthwhile class
discussion topic.

This question also can be discussed from a survey sampling perspective. The 1073 lakes
are a finite population of lakes of interest to policy makers, but this does not include all
lakes; hence inference only applies to the restricted set of 1073 reasonably accessible lakes
with the desired fish species and not to the set of all possible 2314 lakes in Maine. This
presents an opportunity to discuss how a study or survey design can limit the generalization
of the results. The newspapers infer that the results apply to all Maine lakes, an
inappropriate statistical inference. In addition, these data include only species of fish that
are categorized as "predators," and therefore inferences made from these data only apply to
these types of fish.

Question 2

The mean mercury level of lakes without impoundment equals 0.46 ppm and the mean
mercury level of lakes with at least some impoundment equals 0.53 ppm. The 95% C.I. for
the difference in the means includes 0 (-0.20, 0.05); hence there is insufficient evidence to
conclude that mercury levels of lakes without impoundment are significantly different from
mercury levels of lakes with impoundment (Fig. 6).

Question 3

The mean mercury levels in the three types of lakes are quite similar (Fig. 4). An
analysis of variance (ANOVA) comparing the three types of lakes indicates there is
insufficient evidence to conclude that the lakes are significantly different from one another
(p-value = .11).

Discussion: There is a large outlier in the eutrophic group (Hodgdon Pond). It may be
of interest to have the students investigate the impact of this outlier on this analysis. A
Kruskal-Wallis rank sum test may also be performed. In both cases, the conclusion is the
same as above. The Hodgdon Pond outlier is a legitimate mercury value, i.e., not due to
data collection error; thus, this is an opportunity to discuss when it is appropriate to discard
outliers and the potential benefit of completing two alternative statistical analyses.

Question 4

For the statistical analysis below, missing data are removed and the number of fish per
sample is initially included as a predictor. Many possible approaches can be used to model
the data; a simplified analysis is given below.

The regression results for the full model (Table 4) indicate that elevation is a significant
predictor of mercury, in the presence of the other lake characteristic predictors. The full
model is statistically significant (p-value = .06), but the model explains only 16.8% of the
variability in mercury levels.

The model indicates that, when all other predictors are held constant, elevation
increases as mercury levels decrease. The decrease in mercury for an elevation increase of
1000 feet is 3 ppm. There are several potential explanations as to why elevation is a
significant predictor of mercury. It is reasonable to assume that most people in Maine live
at lower elevations, so mercury levels may be higher for watersheds that are less pristine.
Also, watersheds located at lower elevations would presumably consist of water from
higher elevations, and thus these watersheds may have higher levels of mercury collected
from larger drainage areas.
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Table 4. Regression results for full model.

Intercept
N
ELY
SA

Z
LT1
LT2
ST
DA
RF
FR
DAM

Coefficient
0.6536
0.0003

-0.0003
0.0000

-0.0009
0.0551

-0.0230
0.0926
0.0003

-0.0088
-0.0024
-0.0314

Std. Error
0.2556
0.0298
0.0001
0.0000
0.0018

0.0615
0.0253
0.0835
0.0004
0.3309
0.0030
0.0709

t-value
2.58
0.01

-3.20
-1.06
-0.49

0.89
-0.91

1.11
0.88

-0.03
-0.82
-0.44

p-value
0.01
0.99
0.002
0.29
0.62
0.37
0.37

0.27
0.38
0.98
0.42

0.66
Residual standard error: 0.33
R-squared: 16.75%
F = 1.79, df =(11,98), p-value = 0.0654
In the studentized residual plots for the full model, Hodgdon Pond is a large outlier

(studentized residual = 6.7). While removal of this observation improves the residual plots,
removal does not significantly change the full regression model results.

Variable Selection

When all data are included, several frequently used variable selection methods (e.g.,
adjusted R-squared and stepwise selection) choose the model with elevation as the only
predictor.

The studentized residual plots for this reduced model show a large outlier which is
Hodgdon Pond, discussed above. When this outlier is removed, the residual plots are
improved, but there is some indication of nonconstant variance and nonnormality. A
square-root transformation of mercury level improves the residual plots and results in a
model with an R-squared value of 13% (Fig. 7 and Table 5).

Table 5. Regression results for reduced model with the response equal to the square root
of mercury and Hodgdon Pond removed from the analysis.

Intercept
ELY

Coefficient
0.7518
-0.0002

Std. Error
0.02965
0.00004

t-value
25.36
-4.19

p-value
0.0000
0.0002

Residual standard error: 0.193
Multiple R-Squared: 13.03%
F-statistic: 17.53, d f= (1,117), p-value = 5.49 x 10A(-05)

When Hodgdon Pond is removed from the data, some variable selection techniques
(e.g., highest adjusted R-squared) choose runoff factor and dam in addition to elevation for
inclusion in the model. When the three observations with very small RF values (RF = .06)
are removed in addition to Hodgdon Pond, only elevation is selected. It is not clear whether
these RF values are valid observations, or whether they resulted from equipment or
typographical errors. Students who have done an adequate exploratory data analysis should
notice these three observations as outliers in RF. Having students explore the impact of

9
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these observations on model selection demonstrates to students the potential impacts of
outliers in the predictors in addition to the impact of outliers in the response.

Various models and transformations can lead to improved residual plots, but all models
considered to date with reasonably interpretable transformations have very low R-squared
values. Reasonable regression models that use lake characteristics as predictors explain
little of the variation in mercury levels. In one author's experience, students who are new to
regression and also those who are quite experienced learn much about the limitations of
regression models when presented with this data set. Students often aim to get models with
high R-squared values and lose sight of the importance of interpretable models. A
challenging data set like the mercury data allows students to get firsthand experience with
real data, and they learn about the trade-offs faced by scientists who analyze real, as
opposed to clean textbook, data.

Fig. 2. Scatterplot matrix of continuous predictors.
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number of fish in the composite

Fig. 3. Mercury levels by number offish in the composite.

Lake Type

Fig. 4. Mercury levels by lake type.

Lake Stratification

Fig. 5. Mercury levels by lake stratification.
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Impoundment Class

Fig. 6. Mercury levels by impoundment class.

Elevation (feet)

Fig. 7. Elevation versus square root mercury with fitted regression line.
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CHAPTER2

CHEMICAL ASSAY VALIDATION
Russell Reeve and Francis Giesbrecht

Many manufacturing processes depend upon measurements made on the product of the

process. To maintain control over the manufacturing process, these measurements must

themselves come from a measuring process of satisfactory quality. Therefore, an assessment

of the characteristics of the measurement process is important. This case study discusses the

statistical analysis of a measuring process set in the pharmaceutical industry: assay

validation. Here we discuss one facet of assay validation: the assay's accuracy and

repeatability.

While the terminology of this case study comes out of the pharmaceutical/biotechnology

industries, the statistical reasoning crosses the boundaries of many industries.

INTRODUCTION
In the pharmaceutical industry, chemical assays must be validated before use in

pharmacokinetic'/pharmacodynamic2 studies, manufacturing, or stability3 analyses. A
method validation is very similar in principle to gage studies (defined below) found in other
industries; however, a validation is more extensive. We will discuss one component of a
validation package: the analysis of a method's accuracy and precision. In general, the
accuracy refers to the bias of a method, while precision refers to the variability in a method,
usually measured by the coefficient of variation (CV); in some laboratories, the CV is
called the relative standard deviation, or RSD for short.

BACKGROUND INFORMATION
A gage study is any study of a measuring process designed to assess the measuring

process' capability. The chief concerns in a gage study are the measuring process'
accuracy, reproducibility, and repeatability. Repeatability is the standard deviation (or,

1 This is a study designed to estimate the distribution and absorption of a drug in the body.
" This is a study designed to estimate the effect of a drug on the pharmacological processes of a body.
3 The ability of a drug to remain potent, undegraded over time.

15
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equivalently, CV) within a single measurement run (i.e., one operator on one day on one
piece of equipment, etc.); reproducibility is the standard deviation (or CV) when all sources
of variation are accounted for, including operators, days, etc. The term is derived from a
gage block, which is a block used to measure small distances. The analysis for accuracy and
precision (repeatability and reproducibility) in the assay validation is the same as that for a
gage study. In this case study, we will be discussing the validation of a High Performance
Liquid Chromatography (HPLC) method for the analysis of the potency of a drug product.
Every batch of drug product must be analyzed for potency before it may be released for
use. A batch with potency above specification could prove to have side effects or toxicity; a
batch with potency below specification could fail to be efficacious. HPLC methods are also
used for stability studies, for dissolution4 studies, and occasionally for bioavailability5 and
pharmacokinetic studies.

In an HPLC assay, the compound of interest is measured by first separating it from
other compounds likely to be found with it and then measuring how many molecules are in
the sample by the amount of light absorbance at some frequency; see Fig. 1. The drug
product is dissolved in a solution; this solution is then injected into a column (Point A). The
column is filled with a small pellet powder,6 known as the stationary phase. As the solution
is pushed through this powder at high pressure (often more than 1500 psi), the smaller
molecules will tend to come out of the column (Point B) faster than the larger molecules,
thus separating the drug molecules from the other molecules found with it. However, other
factors, such as pH, will also affect the order in which the molecules will exit the column,
due to factors such as electrical interaction between the molecules in the mobile phase with
those in the stationary phase, etc. The time at which the drug molecules exit the column is
known. The solution is passed in front of a detector (Point C), where a light beam of a
specific wavelength is passed across the solution. The detector produces a voltage
proportional to the amount of light reaching it. If the light is set to an appropriate
frequency, the quantity of light passing through the solution is proportional to the number
of molecules of the drug between the lamp and the detector.

Figure 2 has a picture of a typical response from a detector. The area under the peak
found at the time the drug product is known to be found is calculated, and that is the
response used for the calibration.

A calibration curve is used to estimate the quantity of drug in a sample. See Fig. 3 for an
example of a calibration curve. In an HPLC run, several samples of known drug amount are
analyzed; these are called the standards, and they are often expressed as amounts added.
The peak areas of the standards are regressed onto the drug amounts, producing the
calibration curve; for HPLC assays, the calibration curve is typically linear. The peak areas
of the unknown samples are then interpolated off this calibration curve, yielding estimates
of their true drug amount, often called amounts found. These estimates are typically
expressed in terms of percentage of label strength, or %LS for short.

4 How fast a solid dosage or lyophilized drug dissolves.
5 How much and for how long a drug is in the system, available to act (bioavailable).
6 The HPLC's solid phase's composition will change depending on the properties of the analyte or the other

compounds in the mixture. The analyte is that compound whose content we are analyzing. The mixture in which
all the compounds live is called the matrix.
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Fig. 1. Schematic diagram of a basic HPLC system.

Time (min)

Fig. 2. Signal produced by HPLC system; shaded area is peak area that is used to compute
the %LS Found using the calibration curve. The time is elapsed time since sample was

injected into Point A.
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Drug Content (%LS)

Fig. 3. Example of a standard curve and a quantitation of a sample that yielded a peak
area of 1 using the curve. Noise in the standards has been exaggerated to make it easier to

QUESTION(S) OF INTEREST
To validate the method, several samples of known analyte content are prepared (%LS

Added) at several concentrations (usually 3 to 5) and analyzed, with the method reporting
back an estimated content (the %LS Found). In an ideal assay, the estimated content would
equal the known content.

The questions the chemist wishes to ask are as follows:
1. What is the method's accuracy? Is it unbiased?
2. Is the method precise? A CV < 2% is acceptable; over 2% is unacceptable.

Note that the CV above refers to repeatability.
In a complete validation, other factors would also need to be investigated:

reproducibility, specificity of the method, robustness to small changes in procedure or
equipment settings, system suitability, etc. (e.g., [Chow and Lui, 1995], [FDA, 1987],
[Shah et al., 1992]). We will not consider these other issues here.

DATA
Name of Data File:
Format:

Variable Name
%LS Added
%Recovery

Case02.txt
Tab delimited

Description
Amount of analyte spiked into the sample solution to be analyzed
Amount of analyte quantitated divided by %LS Added;
expressed as a percentage.

see
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Table 1. Recovery data for an HPLC method collected to investigate the method's
accuracy. The data are derived from ten independent standards.

%LS Added
70

70

85

85

100

100

115

115

130

130

%Recovery
99.72

100.88

100.82

100.50

100.47

101.05

101.85

101.44

101.22

101.93

These accuracy data are for a drug to treat organ rejection after transplants; the dosage
form is a tablet. The %Recovery was found by taking the %LS Found and dividing it by the
%LS Added, and then multiplying by 100%. %Recovery is preferred to %LS Found since it
is interpretable without regard to the %LS Added. Since we do not know which
%LS Added we will have in actual samples, this generality is quite useful. Also, the
standard deviation tends to be proportional to the amount added; hence, %Recovery is
homoscedastic. These data were obtained on a single HPLC run where standards were
quantitated (peak areas not given as they are not needed for this case study).

ANALYSIS
The regression model considered for these data is %Recovery = Po + (3 i (%LS Added) +

e. The closer PQ is to 100 and Pi is to 0, the better in terms of assay performance. It can be
safely assumed that the errors e are approximately normally distributed on this scale, with
unknown constant variance a .

There are several approaches that one can take to validate a method for accuracy and
precision. We will present three, in order of commonness. Your instructor will inform you
which approach(es) to pursue.

APPROACH 1: Hypothesis Testing Approach

We will accept the method if we do not reject the null hypothesis HQ (either version (a)
or (b)). Test either (a) or (b) at the 5% level.

(a) Joint hypothesis (b) Three single hypotheses
//0:po=100, p! = 0,o<2 HQ:$Q = 10° vs- HA- Po* 100

vs. HQ: pi = 0 vs. HA: fr * 0
HA: not//0 HQ: a < 2 vs. HA: a > 2

1. What are your conclusions as to the method acceptability?
2. What is the power of the test?
3. Compute confidence intervals pV Pi> ar*d d.



20 Reeve and Giesbrecht

APPROACH 2: Confidence Interval Approach

We will accept the method if the confidence interval for the mean predicted value is
within ±2 %LS over the range of the data and if s < 2 %LS. Note that s is the point estimate
of o.
1. Is the method acceptable under these conditions?

APPROACH 3: Tolerance Interval Approach

We will accept the method if the 95% tolerance interval for 95% of the center of the
population is within ±6% over the range of the data (cf. [Patel, 1986]).
1. Is the method acceptable under these conditions?

INSTRUCTIONS FOR PRESENTATION OF RESULTS
The results should be presented in a written report suitable for presenting to an audience

with a wide variation in statistical expertise. The parts of the report should include the
following:

Report Section Statistical expertise expected
Management Summary Very little; also has very little time

Conclusion Not interested in the statistics; plots very useful
Statistical Methodology To be reviewed by statistical peers (possibly at

FDA or internally)
Data Present the data so as to avoid ambiguity later
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Biopharm., 16(6), pp. 657-680.
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NOTES TO THE INSTRUCTOR

Approach 1

Level of case. Undergraduate, masters for the joint hypothesis
Necessary tools. Any standard regression package
Objectives. Application of regression to measurement problems; understanding of some

issues in measurement problems.

Comments. We purposefully left the null hypothesis vague, as this is often how one
finds it in pharmaceutical and biotechnology organizations. This gives you some flexibility.
Some issues that might be discussed are as follows:
1. Do you do a joint test, or three individual tests?

A. If three individual tests, do you adjust for multiplicity to keep an overall Type I
error rate fixed?

B. If a joint test, is the test for the P's joint and that for o independent, or all joint?
2. Are the results affected by the particular values chosen for the %LS Added? If so,

how? (See also 5.B.H)
3. What is the power of the test or tests?
4. A. How is this test affected by the %LS Added chosen? (See also 5.B.H.)
5. What practical question does this statistical procedure answer?
6. How does this compare to a model of %LS Found = Oo + oij (%LS Added) + 5?

A. Specifically, how do the a's and the (3's relate to each other?
B. The null hypothesis now is (XQ = 0 and a\ = I . How does one test this?

i. Effects of weighted least squares.
ii. In this form, it is not uncommon to see the additional requirement that R >

o

0.99, or some such number. One might discuss how R can be inflated by
spreading out the %LS Added. Note that this does nothing for the quality of
the data generated by the procedure.

7. Ultimately, many samples are going to be analyzed by this process. How does this
procedure relate to the quality of any individual value?

8. Here one can also reinforce the concept that confidence intervals can be used for
hypothesis testing purposes, while yielding more information.

9. If one were to inflate the RSD (perhaps by using lower quality chromatography
equipment, or sloppier laboratory work), what happens to the acceptance probability?
It increases. Note that no method has mean recovery of 100% throughout its range.

10. How is the acceptance probability affected by the sample size chosen? Decreases as
sample size increases. What if one were to use only half of the data, say, the first
sample in each pair?

Approach 2

Level of case. Undergraduate, masters
Necessary tools. Any standard regression package
Objectives. Application of regression to measurement problems; understanding of some

issues in measurement problems; equivalence thinking. Secondarily, the illogic of the
hypothesis testing framework for this type of problem.

Comments. This approach is similar to most equivalence tests (e.g., [Schuirmann,
1987], [Blackwelder, 1982]). Equivalence tests set up an indifference region around the
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ideal point; the null hypothesis is then that the parameter lies outside of the indifference
region. The tests for pharmaceutical product bioequivalence progressed from Approach 1
(up until the 1980s) to Approach 2, where it stands today. This approach will also get the
students' feet wet in anticipation of the Dissolution Equivalence case study. Many of the
issues discussed under Approach 1 will also affect Approach 2. In particular, items 2, 4, 6,
8, and 9 are interesting here as well. Other issues to consider also are
1. Should we use marginal confidence intervals, or simultaneous intervals?
2. This can also be recast as a hypothesis problem. For simplicity, one can consider the

equivalence hypothesis at a single %LS Added value; 100 %LS would be meaningful
here, since most the samples will have values close to 100 %LS, and if a sample is
considerably removed from 100 %LS, its value is not particularly useful except as a
warning that this batch is not of acceptable quality. The equivalence hypothesis then
becomes //0: n < 98 %LS or (I > 102 %LS versus the alternative HI: 98 %LS < p, <
102 %LS. Several issues here might be
A. How does one test the equivalence hypothesis? Note that the confidence interval

for the mean would then be computed for confidence 90%, assuming the
equivalence hypothesis is tested at the 5% level.

B. What is the operating characteristic of this test?

Approach 3

Level of case. Masters
Necessary tools. Hand calculation or spreadsheet; tolerance tables
Objectives. Orientation towards data that will actually be produced from the system;

tolerance intervals.
Comments.This, approach is quite dissimilar to the others listed above. Some issues for

class discussion could be as follows:
1. What is a tolerance interval, and how are they computed?
2. Marginal tolerance intervals or simultaneous?
3. Contrast this with Approach 2. This relates to the individual measurements that will be

reported in the future, as opposed to the mean of the measurements. Note that chemists
and other physical scientists and engineers can understand the concept of bracketing
observations much easier than the concept of bracketing a mean of a population.

4. As you increase the precision, what happens to the probability of accepting the method,
assuming the method is acceptable but not perfect? Increases.

5. As you increase the sample size, what happens to the probability of accepting the
method, assuming that the method is acceptable but not perfect? Increases.

6. Do you need a separate test for precision? We would argue that you do not, since if a
procedure was excessively noisy, it would be rejected on the grounds that the tolerance
intervals were too wide.

7. Note that points 4 and 5 are the opposite of what happens for Approach 1, but in
alignment with Approach 2.
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CHAPTER 3

AUTOMATING A MANUAL
TELEPHONE PROCESS

Mary Batcher, Kevin Cecco, and Dennis Lin

This article was written and prepared by U.S. Government employees on official time. It is in the
public domain and not subject to U.S. copyright. The content of this article is the opinion of the
writer and does not necessarily represent the position of the Internal Revenue Service. The mention
of specific product or service in this article does not imply endorsement by any agency of the federal
government to the exclusion of others which may be suitable.

This case study illustrates the use of statistics to evaluate a new technology that will be

implemented nationally in over 30 locations if it proves successful in a pilot study.

Specifically, the case study is of an interactive telephone application that will let certain

types of calls to the IRS be handled without the intervention of a staff person.

When introducing new technology, it is important to consider the human interaction with

that technology. The technology may function perfectly but the ability or willingness of

people to use it may not be there. It is thus very important to pilot test new systems. The

interactive telephone system was pilot tested and evaluated in terms of cost, customer

satisfaction, and ease of use. This case study focuses on the assessment of cost, in terms of

time to complete a transaction, and ease of use, in terms of the percent of users who

successfully completed their transaction without requiring the assistance of IRS staff.1 The

case study illustrates the use of hypothesis testing in decision making and the use of basic

time series statistics and plots to examine periodic fluctuation over time.

The custo mer satisfaction measure was an automated survey of a sample of callers. The caller was asked, at the
end of the transaction, to participate in a short survey. The general satisfaction level from the survey was 93.6
percent and the survey response rate was 64.4 percent.
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INTRODUCTION
The problem to be solved is to assess the effectiveness of a new interactive telephone

system by examining its performance in a pilot test. The goals of the statistical analysis are
twofold. The first goal is to determine whether a new interactive telephone system is more
efficient than the manual process it replaces, as measured by the time needed to complete a
transaction. The second is to examine ease of use and the effect of extraneous occurrences
in the pilot test by tracking successful completion rates over time to identify any
problematic occurrences or any periodicity in the data.

BACKGROUND INFORMATION
Interactive telephone systems allow us to exchange limited information using the push

buttons on our touch-tone telephones. The most basic of these systems allows us to route
ourselves to a recorded message or to the best person to handle our issue. More complex
systems allow a complete exchange of information, with problems fully resolved in the
automated setting. Interactive telephone systems are increasingly common. We use them to
check bank balances, order merchandise, inquire about service, etc. They offer
opportunities to decrease costs while maintaining or increasing accessibility. The IRS is
developing interactive systems for some of their telephone work. When people are unable
to pay all of the taxes they owe, they are able to establish installment agreements with the
IRS to pay off the balance over time. One of the interactive telephone systems developed by
the IRS allows people to request a payment extension or establish an installment agreement.
(Additional examples of the use of telephone pushbuttons for the automated exchange of
information can be found in [Nicholls & Appel, 1994], [Rosen, Clayton, and Pivetz, 1994],
and [Werking, Clayton, and Harrell, 1996].)

The IRS has developed the Voice Balance Due (VBD) fully automated telephone
system. It permits people who call the IRS for the purpose of requesting a payment
extension or establishing a monthly payment plan to do so by using the push buttons on
their telephone. The system is fully automated for eligible callers and does not require any
contact with an IRS representative. The VBD system automates a process that is currently
manual.

During the pilot test of the VBD system, taxpayers receiving IRS balance due notices
were also notified that they might be eligible to use their touch-tone telephone to request an
extension of time to pay their taxes or to set up a schedule to pay their taxes in installments.
Callers to the VBD system had to enter their social security number and a unique caller
identification number printed on the notice. There were checks to screen out ineligible
callers based on several criteria. Once into the system, the caller was given the option to
select a payment extension or a monthly payment plan. Those who selected a payment plan
were asked to enter the amount they could afford to pay each month and the day of the
month they wished to establish as their monthly due date. Callers who established a
monthly installment plan or a payment extension received a confirmation letter from the
IRS. The confirmation letter included the terms and conditions of the arrangement.

Some of the anticipated advantages to the VBD system are that it can provide callers
better access to the IRS in terms of increased capacity to handle calls. Twenty-four-hour
access was not available because throughout the call, callers were given the option of
exiting the automated system to speak with an IRS representative. The establishment of
fully automated telephone systems also provides the IRS the opportunity to redirect staff to
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deal with more complex issues. A goal for the VBD system is to provide the same or better
service to callers with greater efficiency than the manual process.

QUESTIONS OF INTEREST
New systems and procedures must be evaluated not only in terms of their cost savings

or operating efficiencies but also in terms of their ability to provide service that is at least as
easy to use as the system they are replacing. The automated installment agreement
application of the VBD system replaces a manual process for the less complex installment
agreements. One of the ways that we can measure ease of use is by examining the
percentage of callers who succeed in establishing installment agreements through the VBD
system out of those eligible callers who attempt to set up agreements. Callers can default
out of the automated process at any time to an IRS employee. Therefore, the percent of
callers who successfully complete an automated agreement is an indicator that the system is
easy for them to use. Ease of use is affected by many factors, including the clarity of the
information mailed to taxpayers informing them that they owe a balance and inviting them
to use the VBD system, the clarity of the telephone script and on-line prompts, and the
motivation and general capability of the caller. We might speculate that there are
differences in the ability of callers to use the VBD system related to day of the week, time
of day, etc. During the pilot test, there was some variability in the material mailed to
taxpayers; this might also account for some differences in ease of use of the system.
Beginning in June 1995, material was added to the mailing to taxpayers informing them that
they might be eligible to use the VBD system to establish an installment agreement and
providing some information about using the system. This additional material was
discontinued in December. There is also some clustering of the mailings of notices.

To assess ease of use, we can explore the following questions: To what extent have
callers been served by the VBD application; i.e., what percent of eligible callers
successfully completed the application, and did that percent differ over the period of the
pilot test? Were there any periodic fluctuations in completion rates?

Major goals of automated systems are to increase access and decrease costs. Cost can be
measured in terms of efficiency. Automated systems are valuable primarily to the extent
that they handle calls more efficiently than manual processes.

To assess system efficiency we would like to know the following: Is it more efficient for
the IRS to have taxpayers set up installment agreements manually or through the use of the
VBD automated system?

Note: A limited study in a single district found that, in 60 calls handled manually, the
average time needed to complete an installment agreement was 15 minutes and 38 seconds.
The standard error associated with this estimate of mean time was 4 minutes and 58
seconds. This is our best information about the time needed to complete a manual
installment agreement of the type handled by the VBD system.

DATA
Many more variables are captured by the VBD system than are presented in this case

study. We selected a subset of variables that have direct bearing on the questions posed
above. They include the date (Monday through Friday only), daily counts of the number of
callers requesting an installment agreement, the number of callers successfully completing
an installment agreement, and the day's average call length for a completed agreement.
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Data collected by the automated telephone system are free from many of the
measurement issues that exist in data collected manually. However, there are still issues
about the refinement of the measure. Our data are presented as daily counts rather than as
specific information about each call. This precludes us from tracing the success of
particular types of calls as they progress through the system and limits the types of analysis
that can be done.

Although the pilot test period was from April 24 through June 23, 1995, we have
included additional data through December 8, 1995.

Variable Name Description

Date mm/dd/yy
Request Callers Requesting an Installment Agreement Plan
Complete Callers Successfully Completing an Installment Agreement
Length Average Call Length, in seconds, for a Completed Payment Agreement

Date Request Complete Length
042495 25 22 206
042595 15 11 172

120895 41 34 194

ANALYSIS
Two questions were identified in Questions of Interest as the key issues to be addressed

in the statistical analysis. They are listed below with suggested analytic approaches.

Question 1

To what extent have callers been served by the VBD application; i.e., what percent of
eligible callers successfully completed the application, and did that percent differ over the
period of the pilot test? Were there any periodic fluctuations in completion rates?

Question 1 can be answered by the following statistical techniques: (1) Convert raw
data into a meaningful picture of completion rates on a daily and weekly basis. (2) Create
graphs of the daily and weekly rates and examine the data over time. (See Figures 1 and 2.)
(3) Calculate and examine the autocorrelates to determine whether or not there appears to
be any significant fluctuation in time (e.g., from week to week or day to day) among the
completion rates. Statistical methods we recommend are time series plot for both weekly
and daily data, as well as autocorrelation plots. (See Figures 3 and 4.) (Useful time series
references include [Box, Jenkins, and Reinsel, 1994] and [Wei, 1990].) The Pearson
correlation coefficient is probably the most common measure for the dependency between
two random variables. When there is only one random variable in a time sequence, we can
evaluate the autocorrelation to measure the dependency among all the observations along
the time sequence.

For example, given a time series y = (yt, y(t-\),..., yi-> .ViX we can artificially generate a
lag - 1 series y_\ - (v(r-i)» y(t-2),--,y2-> Jl) and men evaluate the correlation between the first
(t -1) observations from y and y_\. This is called the autocorrelation of lag -1. If such an
autocorrelation is significant, we know that the observations are not independent, and in
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fact, each observation is correlated to the previous observation. Similarly, we can define
autocorrelations of lag -2, lag -3, and so on to investigate the dependency among all
observations.

Weekly Success Rate

Week, 1995

Fig. 1. Weekly percentage of successfully completed installment agreements.

Daily Success Rate

Daily, 1995

Fig. 2. Daily percentage of successfully completed installment agreements.

Figure 3 (autocorrelates for lags 1 through 10 for VBD data summarized on a weekly
basis) shows a significant fluctuation in the success rates during the first two weeks of the
pilot. This would be indicative of correcting unexpected problems that quite frequently
occur in the earliest stages of a pilot test. The remaining eight weeks (lags) shown on Figure
3 reveal no significant change from one week to the next in the completion rates.
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Lags

Significant Lag Lag

Fig. 3. Autocorrelations for lagsl through 10 for VBD data summarized on a weekly basis.

Lags

I Significant Lagg

Fig. 4. Autocorrelations for lagsl through 15 for VBD data summarized on a daily basis.

Lag
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Question 2

Is it more efficient for the IRS to have taxpayers set up installment agreements
manually or through the use of the VBD automated system?

Question 2 can be answered by the following statistical techniques: ( 1 ) Compute the
average automated time to complete an automated installment agreement and determine the
variability (standard error) associated with the estimate. (2) Conduct a hypothesis test where
the null hypothesis is that the average length of time to complete a manual installment
agreement is the same as the length of time to complete an automated installment agreement
and the alternative hypothesis is that the average length of time to complete a manual
installment agreement is greater than the length of time to complete an automated installment
agreement. Namely, test the hypothesis Ho: |i im = |i u vs. Ha: (I Lm > \\. ^/, where [i im =
average time to complete a manual installment agreement and |a ^/ = average length of time
to complete an automated installment agreement. Evaluate the decision with some level of
confidence. Statistical methods we recommend here are descriptive statistics, hypothesis
testing, two-sample t test, and the F test to test the equality of variance assumption. We
have found [Berenson & Levine, 1993], [Keller and Warrack, 1997], [Siegel, 1994], and
[Vardeman, 1994] to be useful references for introductory statistical methods.

INSTRUCTIONS FOR PRESENTATION OF RESULTS
For Question 1, results should be presented with a brief written description of the

findings, accompanied by graphic displays. Some statement about the apparent ease of use
should be included, as well as a recommendation for any additional data collection and
analysis.

The "trend patterns" can easily be seen from the time series plot for weekly data, while
the "seasonal patterns" are most easily shown in the time series plot of the daily data. The
trend pattern can be captured by the simple linear regression, and the seasonal pattern can
be evaluated by the autocorrelation plot (as shown in Figures 3 and 4). In contrast to most
introductory statistical content, the "independent" assumption is in general not valid in time
series data.

For Question 2, results should be summarized in a written report, accompanied by a
recommendation about the implementation of the VBD system, based on system efficiency.

Here we have used some descriptive statistics to illustrate the basic comparison. A
statistical test of the hypotheses Ho: |i i,n = |i ̂  vs. Ha: |i /,„, > \i ^ will be sufficient to
answer Question 2. We also suggest the simple comparison based on confidence intervals.
This seems to be an easier approach to helping undergraduate students grasp the idea of
making comparisons in the presence of uncertainty.

A report should be generated that addresses the findings. It should include graphics and
a discussion of the limitations of the study and recommendations for further analysis. It
should also include a recommendation about adopting the VBD system based on system
efficiency and ease of use. There should be a discussion about the effectiveness of these
measures for their stated purpose.

REFERENCES
Berenson, Mark L. and Levine, David M. (1993), Statistics for Business and Economics,

Prentice-Hall: Englewood Cliffs.
Box, G.E.P., Jenkins, G.M., and Reinsel, G.C. (1994), Time Series Analysis Forecasting and

Control, Third Edition, Prentice-Hall: Englewood Cliffs.



32 Batcher, Cecco, and Lin

Keller, Gerald and Warrack, Brian (1997), Statistics for Management and Economics, Duxbury
Press: Belmont.

Nicholls II, William L. and Appel, Martin V. (1994), "New CASIC Technologies at the U.S.
Bureau of the Census," Proceedings of the Section on Survey Research Methods, American
Statistical Association, pp. 757-762.

Rosen, Richard J., Clayton, Richard L., & Pivetz, Lynda L. (1994), "Converting Mail Reporters
to Touchtone Data Entry," Proceedings of the Section on Survey Research Methods,
American Statistical Association, pp. 763-768.

Siegel, Andrew F. (1994), Practical Business Statistics, Irwin: Boston.
Vardeman, Stephan B. (1994), Statistics for Engineering Problem Solving, PWS Publishing

Company: Boston.
Wei, William W.S. (1990), Time Series Analysis, Addison-Wesley: Redwood City.
Werking, George S., Clayton, Richard L., and Harrell Jr., Louis J. (1996), "TDE and Beyond:

Feasibility Test of E-Mail/World Wide Web for Survey Data Collection," Proceedings of the
Section on Survey Research Methods, American Statistical Association.

NOTES TO THE INSTRUCTOR

Level of Case

The case can be used in teaching basic descriptive statistics in an introductory applied
class. It can also be used to teach inferential statistics in the comparison of two populations.
The graphical time series analysis can be used in an intermediate or introductory classroom
depending on the level of presentation. The case is primarily appropriate for business
statistics.

Necessary Tools

Understanding of statistical graphs, basic knowledge of inferential statistics and
correlation.

Objectives

To use real-world data in decision making and to recognize the strengths and
limitations of statistical analysis in informing business decisions. The statistical teaching
goals are to use real data for hypothesis testing and to learn to use statistical graphics and
limited time series analysis.

Comments and Suggestions for the Instructor

This case study can be used for several important subjects in undergraduate statistics
courses:

Descriptive statistics (mean, variance, percentage, and their physical meanings)
Comparing two populations (confidence intervals and hypothesis testing)
Time series plots and explanations from the plot

Specifically, the descriptive statistics can be used to estimate the means and variances,
etc. of the number of completed and attempted installment agreements and mean
completion times. Since the length of call data are presented as daily averages, they must
be weighted by daily volume of completed agreements to estimate an overall mean length
of time. This is useful in teaching the need to weight linear combinations of estimates.

Comparing two populations can be used for the choice of automated vs. manual
processes in terms of efficiency. This is useful for teaching confidence intervals and
hypothesis testing.
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The time series plots can be used for teaching basic concepts about graphical analysis
of data, trend over time, periodic patterns in the data, and attempting to understand the
patterns.

The basic features of the data can be displayed by a time series plot. Note that the time
series plot for weekly percentages is more appropriate to illustrate the trend pattern, as
compared to the plot for daily percentages. Thus the time series plot for weekly
percentages is recommended for the introductory course when the case is presented.

Moreover, as shown in the case study, we have introduced an intermediate-level
technique here: the autocorrelation function. An autocorrelation function is a set of
correlations between the original time series and the time series created by time shifting the
original series. It has been proven to be an important tool in understanding the trend pattern
but does not appear in most introductory texts. A student with exposure to the correlation
function can take one further step to the autocorrelation function to understand the
fluctuations in the time series.

One of the data limitations the students may identify is the use of percent completed
agreements as a measure of ease of use/customer satisfaction. This is a limitation and, for
the study from which the case is drawn, a customer satisfaction survey of callers
completing automated agreements was part of the evaluation. The survey had a 64 percent
response rate, based on the number completing the survey of those callers who successfully
completed either an installment agreement or payment extension. Survey results show that
97 percent of respondents felt that the VBD system was either very easy (88%) or
somewhat easy (9%) to use. Results for customer satisfaction indicate that 94 percent were
either very satisfied (75%) or somewhat satisfied (18%).

Typical Results

Question 1

To what extent have callers been served by the VBD application; i.e., what percent of
eligible callers successfully completed the application, and did that percent differ over the
period of the pilot test? Were there any periodic fluctuations in completion rates?
1. Calculate daily and weekly completion rates.
2. Develop daily and weekly graphs using any standard statistical or graphic software

package.
3. Examine daily and weekly graphs for any trends.
4. Compute autocorrelates using standard statistical software. (We used SAS Proc

Arima.)
5. Develop a graph of autocorrelates using a graphic software package.

Results for Question 1

For parts (1) through (3) of Question 1, refer to Figures 1 and 2. Daily and weekly
graphs show a significant increase in completion rates during the early stages of the pilot
test. This was probably due to correcting unexpected problems that occurred in the early
stages of the pilot test. The completion rate stabilized during the summer months of 1995.
The sharp peak and valley in the completion rate during the fall of 1995 may have been
attributed to system problems caused by the congressional shutdown of government. For
parts (4) and (5), see Figures 3 and 4. Figure 3 indicates a significant autocorrelation for lag
-1 and lag -2 weekly data, while Figure 4 suggests a five-day (weekly) seasonal pattern.
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Question 2

Is it more efficient for the IRS to have taxpayers set up installment agreements
manually or through the use of the VBD automated system?

Conduct a hypothesis test with null hypothesis Ho: \^Lm = ViLi ^ where
Lm = Average length of time to complete a manual installment agreement,
LI = Average length of time to complete an automated installment agreement
against the alternative hypothesis test Ha: [I im > |i ̂ /.
xLm = 15.64 mins, xLi =3.15 mins,

2 2S Lm = 24.75 mins, s LI =1.11 mins,
HI = 44, «2 = 146.

We plan to use a t test for the equality of group means to test our hypotheses. Our first
check is to determine if we have equal variances. A comparison between the calculated F
and the critical F will tell us if the variances are equal.

Critical F (i-.o5), 43, 145 = 1-58. Therefore, since the calculated F value is greater than th
critical F, we know that the manual and automated variances are not equal. In addition to
the large difference in variances, the sample sizes are very different in the two groups as
well. The t test that does not use pooled variances is

(Alternatively, a nonparametric test could be used.)
The critical t value with 43 degrees of freedom at the 90th percentile is 1.30. The

calculated t of 16.64 exceeds the critical value. Therefore, we reject the null hypothesis
that mean time to complete a manual installment agreement is the same as the mean time to
complete an automated installment agreement. In other words, we conclude that the IRS
should continue to allow taxpayers the opportunity to create an installment agreement in an
automated setting.

An alternative method of analysis would be to compare the confidence intervals around
the two estimates of mean time to complete an installment agreement. This has intuitive
appeal to undergraduate students and is frequently easier for them to grasp than the logic of
hypothesis testing.

The 90 percent confidence interval around the estimate of mean time to complete a
manual installment agreement is

The corresponding confidence interval around the estimate of mean time to complete an
automated agreement, using £95 145, is 1.42 minutes < |î / < 4.88 minutes.
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The two confidence intervals do not overlap. From this we can also conclude that the
average time to complete a manual installment agreement is not equal to the average time
needed to complete an automated agreement.
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CHAPTER4

DISSOLUTION METHOD
EQUIVALENCE

Russell Reeve and Francis Giesbrecht

In this case study, we will explore the concept of equivalence, and in particular how it

relates to a dissolution test. Many questions that are answered with hypothesis testing could

be better answered using an equivalence approach. A discussion of dissolution tests will

come first; it will be followed by an explanation of why we need criteria for equivalence. It

is helpful if the reader has at least read the Chemical Assay Validation case study (Chapter

2) before proceeding with this case study, though it is not necessary.

INTRODUCTION
There are two issues in this case study: (1) Devise statistical criteria to decide if two

sites yield equivalent results, and (2) apply the methodology developed on two data sets.
Note that (1) is more theoretical in nature, while (2) applies the mathematical work of (1) to
data. Since many comparisons are best dealt with as equivalence problems, the
methodology has wide applicability.

BACKGROUND INFORMATION
A dissolution test measures how fast a solid-dosage pharmaceutical product dissolves

[USP XXII], [Cohen et al., 1990]. Since variation in dissolution profiles can have
deleterious effects on the in vivo1 performance of a solid-dosage product, a test that
measures the dissolution is of upmost importance.

The dissolution apparatus often consists of six vessels, each containing a dissolving
solution—typically water with pH adjusted to cause the tablets or capsules to dissolve,
though in some cases digestive enzymes may be used to more realistically simulate that
action of the stomach. The sampled units are dropped into the vessels; the units here are
either individual capsules or tablets; see Fig. 1. The vessels themselves are in a water bath
to maintain a nearly constant temperature. The solution containing the capsule or tablet is
stirred with a paddle rotating at a fixed rotational velocity. At predetermined times, the

In vivo means in either human or animals; in vitro means in the laboratory (e.g., in the test tube).

37
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probe withdraws a small amount of the solution, and that sample is then analyzed, typically
by an HPLC2 system. The assayed values are then expressed on a percent of label strength
(%LS) or percent dissolved basis, and the plots of the amount dissolved (released) as a
function of time are generated; these plots represent the dissolution profile. See Fig. 2 for a
typical profile.

Fig. 1. Schematic of physical setup of dissolution apparatus.

Cattle Feed Dissolution Profile-New York

Time (min)

Fig. 2. Typical dissolution profile.

High Performance Liquid Chromatography; the device quantitates how much of the drug is in the solution fed to
it, with some amount of random variation. The exact nature of the method is not important for understanding
this case study or for understanding dissolution tests.
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The dissolution is often developed in one laboratory, typically the company's research
and development center, and then transferred to another site for use, typically the
manufacturing facility located at another site; however, transfers even within the R&D site
are not uncommon. Because of federal regulations described in Good Manufacturing
Practices for Finished Pharmaceuticals [21 CFR 211.160], before the new site can use the
method, it must be verified that the new site can produce results equivalent to those of the
originating site. Note that one should treat the concept of "site" liberally here, as even a
transfer to another analyst within the same site requires documentation that the new analyst
can yield "equivalent" results to the originating analyst. Therefore, some concept of
equivalence is needed.

Two different dissolution equivalence problems arise: that for immediate-release
products, and that for sustained-release products. An immediate-release product is one that
is designed to dissolve and enter the bloodstream as fast as possible. In this case, one
typically wants an assurance that the product is at least p% dissolved, for some p (between
0 and 100), at a specified time point (possibly more than one time point may be specified).
A sustained-release product is one that has been designed to slowly dissolve so that there is
a more constant concentration of drug in the body. Here, one wants some assurance that the
product is dissolving at a controlled rate, neither too fast nor too slow. Typically, the
percent dissolved must pass through prespecified hoops at several time points (3 not being
uncommon).

QUESTION(S) OF INTEREST
To keep the problem from becoming extremely difficult, each time point will be

considered separately; i.e., we want to construct a univariate procedure rather than a joint
procedure. In practice, one would prefer the joint procedure since the data are correlated
within a vessel. Since the variation in the %LS values vary as a function of the mean,
different criteria will be needed for different mean values. In general, the most variation is
found around 70 %LS, with the least around 0 %LS and 100 %LS. All units have potencies
that are close to 100 %LS; the unit-to-unit variation is, in general, considerably less than
the method variation. For this problem, criteria will be developed for 2 time points; which
time points will be explained in the next paragraph. The accepted facts are listed in Table 1.

The products we are considering in this case study are both immediate-release products.
Therefore, we need equivalence criteria for two points: (a) The time point where the
%dissolved is closest to 70 but definitely less than 90, and (b) the last time point. The time
point as described in (a) is chosen since that is often the most discriminating time point
(i.e., can differentiate two methods, two lots of product, etc., the most easily, despite also
having the largest standard deviation). The time point as described in (b) is chosen since
that is the time at which the drug product should be completely dissolved.

From long-standing experience, it can be safely assumed that the within-site variances
are common across sites.

After the criteria for calling two dissolution profiles equivalent has been constructed,
two profiles must be compared for equivalence. Both products are scaling up production
after regulatory approval to market these products. Hence, they are being moved to larger
facilities.
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Table 1. Accepted bounds for dissolution equivalence.

If mean dissolved is Mean differences of this much An approximate upper bound
are considered scientifically for the standard deviation* is

important
<90%LS ±15%LS 8

> 90 %LS ± 7 %LS 3
* Average across products of the maximal standard deviation with mean %dissolved in the

listed category

DATA
Name of Data File: Case04.txt
Format: Tab delimited

Variable Name Description
Drug Drug of comparison; note that each drug should be treated

individually
Site Site of laboratory performing test
Time Time (in minutes) of sampling of dissolution solution
Vessel 1 %Dissolved in vessel 1
Vessel2 %Dissolved in vessel 2
etc.

The first five rows of the data listing are shown in Table 2. In Tables 3 and 4, the
complete data listing for each drug is presented. Table 3 lists the dissolution data for a
growth hormone, fed to cattle as a feed additive to help add muscle mass. It is formulated
as a capsule. The dissolution media has a pH of 4.0; paddle speed is 50 rpm, and the
temperature is 30 °C. Table 4 lists the dissolution data for an analgesic in tablet form; it is
water soluble. The dissolution media is deionized water, paddle speed is 40 rpm, and the
temperature is 25 °C.

Drug

FeedAdditive
FeedAdditive
FeedAdditive
FeedAdditive
FeedAdditive

Table

Site

New
New
New
New
New

York
York
York
York
York

2. First five observations of the data file "Case04.txt. "

Time

0
15
30
45
60

Vessel
1
0
2
20
65
95

Vessel
2
0
5
33
82
92

Vessel
3
0
0
9
48
81

Vessel
4
1

17
23
81
94

Vessel
5
0
1

23
77
95

Vessel
6
0
12
32
61
93
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Table 3. Drug = cattle feed additive. Compare New York vs. California.

%Dissolved
Site Time (min)

New York 0
15
30
45
60
120

California 0
15
30
45
60
120

Vessel 1
0
2
20
65
95
98

0
13
28
35
90
99

Vessel 2
0
5
33
82
92
97

0
25
42
55
99
103

Vessel 3
0
0
9

48
81
101

0
27
45
70
95
100

Vessel 4
1

17
23
81
94
100

0
2

8
50
85
97

Vessel 5
0
1

23
77
95
99

0
17
28
41
78
100

Vessel 6
0
12
32
61
93
99

0
18
38
63
96
101

Table 4. Drug = Analgesic. Compare New Jersey to Puerto Rico.

%Dissolved
Site Time (min)

New Jersey 0
20
40
60
120

Puerto Rico 0
20
40
60
120

Vessel 1
0
5

72
96
99

0
10
65
95
100

Vessel 2
0
10
79
99
99

0
12
66
99
102

Vessel 3
0
2

81
93
96

0
7

71
98
98

Vessel 4
0
7
70
95
100

0
3

70
94
99

Vessel 5
0
6

72
96
98

0
5

74
90
97

Vessel 6
0
0

73
99
100

0
14
69
92
100

ANALYSIS
A. Theoretical Problem

1. Devise a simple, yet statistically valid, rule for deciding whether two sites have
equivalent results. For generality, the rule should depend on the sample size. Sample
sizes that are possible are 6, 12, 18, and 24. Sample sizes larger than 24 would put too
onerous a burden on the quality control laboratory.

2. Construct an operating characteristic (OC) curve of the rule as a function of mean
difference. Note that OC(A) = Prob{declare profile pairs not equivalent I ji] - (12 - A}.

3. What sample size should be used? Again, the sample sizes possible are 6, 12, 18, and
24. The restrictions to multiples of 6 are because of the design of the testing apparatus.
If the true mean difference is within 1 standard deviation, then we would like to accept
the methods as being equivalent at least 80% of the time.
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B. Application

Apply the rule devised in 1 above to the two data sets in Tables 3 and 4.

INSTRUCTIONS FOR PRESENTATION OF RESULTS
The results should be presented in a written report suitable for presenting to an audience

with a wide variation in statistical expertise. The parts of the report should include the
following:

Report Section Statistical Expertise Expected
Management Summary Very little; also has very little time
Conclusion Not interested in the statistics; plots very useful
Statistical Methodology To be reviewed by statistical peers (possibly at FDA

or internally)
Data Present the data so as to avoid ambiguity later

REFERENCES
21CFR211.160, Code of Federal Regulations, Title 21, Vol. 4, Parts 200-299, Revised April 1,

1997.
Cohen, J. L. et al. (1990), The development of USP dissolution and drug release standards,

Pharmaceutical Research, Vol. 7, No. 10, pp. 983-987.
United States Pharmacopeia xxii, USP-NF xxii, p. 1579.

NOTES TO THE INSTRUCTOR
The bounds shown in Table 1 are more illustrative than accepted industry practice. In

fact, at the time of this writing, no industry concensus exists for how to test for
equivalence, let alone bounds of scientifically important differences. Some companies go
so far as to write different specifications for each drug product.

Several different approaches can be taken. A natural approach for most students seems
to be a hypothesis test:

But this has the unfortunate effect of penalizing a method of better-than-average precision,
and it neglects the notion of practical significance. The equivalence approach is a
possibility, but probably the students will need to be taught this notion: If the 90%
confidence interval for the mean difference lies within the equivalence limits, then accept
the assays as being equivalent; if not, then fail to accept equivalence. Use the limits in the
table above for the equivalence limits; i.e., ±15 %LS for those assays with mean %LS <
90, etc. One might note that we are testing the hypothesis

using a test with level 5%.
Some specific notes regarding exercises 1 through 3 above follow:

1. The simpler to execute, the better. An ideal statement, as far as the chemist is
concerned, would be as follows: Accept if
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where L is a specified number. But they will live with the statement regarding
confidence limits or hypothesis tests.

2. Numerical issues here might be important. It is always useful for students to actually
compute an OC curve. Note that they will need to be able to compute the distribution
of the noncentral t distribution.

3. This is optional. This could be a good lead-in to the Fisher-Behrens problem. One
could also discuss some practical implications of this. If the originating laboratory has
the larger standard deviation, then all is well; however, if the originating laboratory is
considerably tighter than the qualifying laboratory, then maybe one ought not declare
equivalence. The practical implication here would be the possibility of lots of
acceptable quality being rejected simply because of the analytical method. The
opposite error, accepting lots of unacceptable quality, is not likely to happen because
of the acceptance criteria, which essentially look at the smallest unit tested; in synopsis,
if the smallest unit has high enough dissolution, the lot is accepted; otherwise, more
testing is needed.
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CHAPTER 5

COMPARISON OF HOSPITAL
LENGTH OF STAY BETWEEN Two

INSURERS FOR PATIENTS WITH
PEDIATRIC ASTHMA

Robert L. Houchens and Nancy Schoeps

This case study investigates the relative importance of several factors in predicting the

length of time young patients with asthma stay in the hospital. With the present atmosphere

of cutting health care costs it is important to look at providing adequate care while at the

same time reducing costs and not keeping children in the hospital longer than necessary. By

looking at a sample of patients with pediatric asthma, concomitant factors to the main

reason for being admitted to the hospital may shed light on different lengths of stay.

INTRODUCTION
In today's healthcare environment, health insurance companies are increasingly

pressuring hospitals to provide high quality health services at the lowest possible cost. The
vast majority of all healthcare costs are for hospitalization. During the past decade,
inpatient costs of patients in hospitals have been reduced in two primary ways. First, the
less severe cases are now treated in the doctor's office or in hospital emergency rooms
rather than being admitted to the hospital. Second, for cases admitted to the hospital, the
lengths of hospital stays have been considerably shortened.

It is believed that some insurers have been more successful than others at minimizing
hospital lengths of stay (LOS). To test this, a sample of hospital medical records was drawn
for each of several illnesses from metropolitan hospitals operating in one state. The data for
this case study consists of information abstracted from the medical records of asthma
patients between the ages of 2 and 18 years old.

BACKGROUND
The sample of medical records was drawn in two stages. At the first stage, 29

metropolitan hospitals were sampled with probabilities proportional to an estimate of the

45
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number of asthma admissions it had during a single year. At the second stage, 393 asthma
cases insured by Insurer A were randomly selected and 396 asthma cases insured by Insurer
B were randomly selected from the 29 hospitals.

Information was abstracted from each patient's medical record. Aside from the main
variables of interest, insurer and LOS, the additional information falls into four categories:
A. Patient Severity Variables describe the severity of the patient's condition at admission

to the hospital. Included in this category are comorbidities, additional conditions that
may exacerbate the condition that is the major reason for admission. The LOS is
expected to be longer for more severely ill patients and for patients with comorbidities.

B. Demographic Variables describe the patient's age, sex, and race. The effect of
demographic factors on LOS for patients with pediatric asthma is not known.

C. Hospital Variables describe the characteristics of the hospital in which the patient was
treated. It is expected that LOS will be lower for hospitals with more services and with
a higher staff-to-bed ratio. The effects of size of hospital, measured by the number of
beds in the hospital (bedsize), and the categorization of that hospital as a teaching
hospital or not (teachcat) have not been explored. In this case study these variables are
named bedsize and teachcat.

D. Treatment Variables describe aspects of the patient's treatment during hospitalization.
Treatment variables are not fully known until the hospital stay is complete. It is
expected that LOS will be longer for patients who have treatment complications and
process of care failures (the hospital fails to adhere to standards of care given the
patient's condition). Finally, patients with more diagnostic tests probably are more
severely ill. Consequently, LOS is expected to increase with the number of tests
performed.

QUESTIONS OF INTEREST
Are there differences in LOS between the insurers?
Do the differences hold up once you have accounted for differences in hospital and
patient characteristics?
What are the differences in patient severity characteristics, demographics, hospital
characteristics, and treatment variables between the two insurers?

DATA
The data in this case study were analyzed using the Statistical Analysis System (SAS).

Below see the SAS Input Statement for the Pediatric Asthma Data found in the file
Case05.txt.

INPUT LOS 1-2 HOSPITAL 4-6 PATIENT 8-12 INSURER 14-15
SUMCOMRB 17-18 CMPLll 21 CMPL12 23 SEVMOD 25 SEVSEV 27
HISTF01 29-30 HISTF02 32 HISTF03 34-35 AGE 37-38 FEMALE 40
RACE 42 SUMSERV 44-46 BEDSIZE 48 OWNER 50 TEACHCAT 52
ANYCOMP 54 HIGHPOC 56 MEDPOC 58 LOWPOC 60 DIAGTSTS 62-63
@65 FTETOBED 7.4 @73 PCTINS1 7.4;



s
p I
A N
T S
I U
E R
N E
T R

U
M
C
0
M
R
B

C
M
P
L
1
1

C
M
P
L
1
2

S
E
V
M
0
D

S
E
V
S
E
V

H
I
S
T
F
0
1

H
I
S
T
F
0
2

H
I
S
T
F
0
3

A
G
E

F
E
M
A
L
E

R
A
C
E

S
U
M
S
E
R
V

B
E
D
S
I
Z
E

T

0
W
N
E
R

E
A
C
H
C
A
T

A
N
Y
C
0
M
P

H
I
G
H
P
0
C

M
E
D
P
0
C

D

L
0
W
P
0
C

I
A
G
T
S
T
S

F
T
E
T
0
B
E
D

P
C
T
I
N
S
1

5. Comparison of Two Insurers for Patients with Asthma 47

Here are the first four observations for hospital 17.
H
0
S
P
I

0 L T
B O A
S S L

11 17 10 0 0 0 0 1 0 0 0 1 10 12 51 4 2 1 0 1 0 0 1 4.64 11.52
22 17 11 0 0 0 0 1 0 0 0 0 601 51 4 2 1 0 1 0 0 2 4.64 11.52
33 17 12 0 0 0 1 1 0 0 0 0 301 51 4 2 1 0 0 2 0 3 4.64 11.52
44 17 13 0 0 0 0 1 1 0 0 0 11 03 51 4 2 1 0 0 0 1 3 4.64 11.52

Table 1 lists the variables along with their ranges of values.

ANALYSIS
A major objective of the analysis is testing whether the average LOS is different

between the two insurers. The unadjusted average LOS is higher by 0.6 days for Insurer A
than it is for Insurer B (p < .001). To test whether this difference in average LOS can be
attributed to differences in patient and hospital characteristics or between the two insurers,
a regression model will be applied, with LOS as the dependent variable.

The approach will be to fit the model in four stages. In each stage there will be at least
two steps. In the first step all variables from one of the categories A through D as shown
below will be added and their contribution to the model assessed. In the second step a
subset of the variables selected from the first step will be analyzed. In Tables 2 and 3 check
the means, standard deviations, and frequencies for each variable and compare Insurers A
and B. For which of the variables are there statistically significant differences given at the
0.05 level of significance? Are there any surprising differences or lack of differences
shown in the means and contingency tables? Construct boxplots comparing LOS and
DIAGTSTS for the two insurers. What do the boxplots reveal about the shape of the
distributions for these two variables? What effect might the characteristics observed have
on a regression analysis of LOS?

Next check the correlations among variables in Table 4. Are there any unusually high
correlations among variables? Are there significantly high intercorrelations among the
independent variables? Recall that LOS is the dependent variable.

Recall that the variables fall into four major categories:

Category Variable Description
A. Patient Severity Variables
B. Demographic Variables
C. Hospital Level Variables
D. Treatment Variables

Begin building the regression model. Since the objective is to compare insurers, Insurer
will be included in every model. At each stage check the R , the overall significance level,
the significance for each of the included variables, the value of the regression coefficient,
and the variance inflation factors (VIFs). Eliminate variables that are not significant at the
0.10 level. For variables that have high VIFs consider whether you might eliminate one or
more to lower the multicollinearity [Mendenhall and Sincich, 1993]. Rerun the model with
the selected variables and check the R again.
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VARIABLE NAME
INSURER

Table 1. Definition of variables.

DESCRIPTION VALUES
Insurer who Pays the Hospital Bill 0 = A, 1 = B

Patient Severity
SEVMOD
SEVSEV
CMPL11
CMPL12
SUMCOMRB
HISTF01
HISTF02
HISTF03

Patient Demographics
AGE

FEMALE
RACE

Hospital
Characteristics
OWNER

NUMSERV
BEDSIZE

FTETOBED
PCTINS1

TEACHCAT

Treatment Variables
ANYCOMP
DIAGTSTS

LOWPOC

MEDPOC

HIGHPOC

Asthma Severity is Moderate or Higher
Asthma Severity is Severe
Bronchitis Present?
Pneumonia Present?
Number of Comorbidities
History of Respiratory Failure
Oral Steroid Dependent
Two or More Previous Hospitalizations
for Asthma

Patient Age in Years

Patient is Female
Patient Race

Ownership Category

Number of Hospital Services
Hospital Bedsize Category

Full Time Staff per Bed
Percent of Annual Patients Insured by
Insurer B
Degree of Teaching Category

Any Treatment Complications
Number of Diagnostic Tests Ordered or
Performed
Number of Low Level Process of Care
Failures
Number of Medium Level Process of
Care Failures
Number of High Level Process of Care
Failures

1 = Yes, 0 = No
1 = Yes, 0 = No
1 = Yes, 0 = No
1 = Yes, 0 = No

Nonnegative Integers
1 = Yes, 0 = No
1 = Yes, 0 = No
1 = Yes, 0 = No

Integers 2- 18

1 = Yes, 0 = No
1 = White
2 = Hispanic
3 = Black
4 = Asian/Pacific
Islander,
5 = Unknown

1 = Public,
2 = Private
Positive Integers
1 = 1-99,
2= 100-249,
3 = 250-400,
4 = 401-650
Positive Real Numbers
Real Numbers 0-1 00

0 = None,
1 = Minor,
2 = Major

1 = Yes, 0 = No
Nonnegative Integers

Nonnegative Integers

Nonnegative Integers

Nonnegative Integers
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Table 2. Descriptive statistics: mean and standard error.

Variables Insurer A Insurer B
Length of Stay in Days

(mean)LOS
Severity > 2 (%)

SEVMOD
Severity > 3 (%)

SEVSEV
Number of Comorbidities

SUMCOMRB
Bronchitis (%)

CMPL1 1
Pneumonia

CMPL12
History Respiratory

Failure (%)HISTF01
Oral Steroid HISTF02

Dependent (%)
>2 Previous HISTF03

Hospitalization (%)
Age in years (mean)

AGE
Female (%)

FEMALE
Number of Services

SUMSERV
Private Hospital (%)

PRIVATE
Ratio of FTEs to Beds

FTETOBED
Percent Payer 1

PCTINS 1
Any Treatment ANYCOMP

Complication (%)
# High Risk Care Problems

(mean) HIGHPOC)
# Medium Risk Care MEDPOC

Problems (mean)
# Low Risk Care Problems

LOWPOC
# Diagnostic Tests

(mean) DIAGTSTS

2.3
(.06)
78.4
(2.1)
12.5

(1.7)
0.06
(.01)

6.1
(1.2)
17.3

(1.9)
2.3

(0.8)
1.0

(0.5)
24.4
(2.2)

6.9
(0.2)
37.4
(2.4)
36.4
(0.5)
93.6
(0.2)

4.6
(0.9)
15.2

(18.4)
2.0

(0.7)
0.28
(.03)
0.61
(0.4)
0.68
(.04)
3.19
(.05)

2.9
(.08)
82.3
(1.9)

8.6
(1.4)
0.14
(.02)

8.6
(1.4)
15.9

(1.8)
3.0

(0.8)
1.5

(0.6)
37.6
(2.4)

6.6
(0.2)
34.6
(2.4)
35.9
(0.6)
73.0
(0.4)

6.1
( 1 . 1 )
39.7

(21.6)
2.0

(0.7)
0.31
(.03)
0.57
(0.4)
0.81
(.04)
3.07
(.06)

<.001

.163

.076

0.001

0. 1 83

0.599

0.519

0.533

<.()01

.341

.412

0.500

<.001

<.001

<.001

0.988

0.547

0.436

0.042

0.151

P-value
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Patient/Hospital Variables

Race(%) p<.001
Black
White

Hispanic
Asian/Pacific Islander

Unknown

Hospital Beds (%) /?<.001
1-99

100-249
250-400
401-650

Teaching Status (%) p<.001
Nonteaching

Minor Teaching
Major Teaching

Table 3. Contingency tables.

Insurer A Insurer B

28.5
37.2
19.1
8.1
7.1

2.8
38.7
46.1
12.5

55.5
33.8
10.7

41.2
18.2
33.3
4.8
2.5

0.8
50.8
32.1
16.4

50.0
15.7
34.3

Based on Chi-square tests of association

Table 4A. Correlation analysis.

Pearson Correlation Coefficients / Prob > \R\ under Ho: Rho = 0/ N= 789

LOS With
DIAGTSTS

0.32813
0.0001

SEVMOD
0.13591
0.0001

CMPL11
0.09180
0.0099

SUMCOMR
B

0.05427
0.1278

FEMALE
-0.00720
0.8399

INSURER
0.20392
0.0001

HISTF03
0.11407
0.0013

SUMSERV
-0.09172
0.0099

LOWPOC

0.04752
0.1824

PRIVATE
-0.00398
0.9111

TEACHING
-0.19663
0.0001

SEVSEV
0.11130
0.0017

ANYCOMP
0.08815
0.0133

MEDPOC

-0.04349
0.2224

CMPL
0.17702
0.0001

BEDGT400
-0.11048
0.0019

BEDGT249
-0.06857
0.0542

PCTINS1

0.03735
0.2947

MINORTCH
-0.17129
0.0001

HISTF01
0.10950
0.0021

FTETOBED
-0.06803
0.0561

HIGHPOC

-0.02797
0.4328

CMPL 12
0.14708
0.0001

AGE
0.10450
0.0033

MAJORTCH
-0.05809
0.1030

HISTF02

-0.00911
0.7984
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Table 4B. Correlation analysis.

Pearson Correlation Coefficients / Prob > \R\ under Ho: Rho = 0 / N = 789

51

LOS INSURER SUMCOMRB CMPL12

LOS

INSURER

SUMCOMRB

CMPL11

CMPL12

CMPL

HISTF01

HISTF02

HISTF03

LOS

INSURER

SUMCOMRB

CMPL1 1

CMPL 12

CMPL

HISTF01

HISTF02

HISTF03

1.0000.0
0.0

0.20392
0.0001

0.05427
0.1278
0.09180
0.0099
0.14708
0.0001
0.17702
0.0001
0.10950
0.0021

-0.00911
0.7984

0.11407
0.0013

CMPL
0.17702
0.0001
0.02199
0.5374
0.05263
0.1397
0.51442
0.0001
0.81486
0.0001
1 .00000

0.0
0.02161
0.5445

-0.06204
0.0816

-0.02285
0.5215

0.20392
0.0001
1.00000

0.0
0.11545
0.0012

0.04749
0.1826

-0.01873
0.5994
0.02199
0.5374
0.02299
0.5190
0.02223
0.5330
0.14262
0.0001

HISTF01
0.10950
0.0021
0.02299
0.5190

0.10905
0.0022

0.01377
0.6994
0.01086
0.7606
0.02161
0.5445
1.00000

0.0
-0.01874
0.5993
0.19535
0.0001

0.05427
0.1278
0.11545
0.0012
1.00000

0.0
0.11130
0.0017

-0.02560
0.4727
0.05263
0.1397
0.10905
0.0022

-0.00128
0.9714
0.08297
0.0198

HISTF02
-0.00911
0.7984
0.02223
0.5330

-0.00128
0.9714

-0.03191
0.3707

-0.05055
0.1560

-0.06204
0.0816

-0.01874
0.5993
1 .00000

0.0
0.09537
0.0073

0.09180
0.0099
0.04749
0.1826

0.11130
0.0017
1 .00000

0.0
-0.03432
0.3356

0.51442
0.0001
0.01377
0.6994

-0.03191
0.3707
0.01039
0.7708

HISTF03
0.11407
0.0013
0.14262
0.0001

0.08297
0.0198
0.01039
0.7708

-0.03444
0.3340

-0.02285
0.5215

0.19535
0.0001
0.09537
0.0073
1.00000

0.0

0.14708
0.0001

-0.01873
0.5994

-0.02560
0.4727

-0.03432
0.3356
1.00000

0.0
0.81486
0.0001
0.01086
0.7606

-0.05055
0.1560

-0.03444
0.3340

CMPL11
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Table 4C. Correlation analysis.

Pearson Correlation Coefficients / Prob > \R\ under Ho: Rho = 0 / N = 789

LOS

ANYCOMP

PCTINS1

PRIVATE

MINORTCH

TEACHING

MAJORTCH

BEDGT249

BEDGT400

LOS

ANYCOMP

PCTINS1

PRIVATE

MINORTCH

TEACHING

MAJORTCH

BEDGT249

BEDGT400

LOS
1.00000

0.0
0.08815
0.0133
0.03735
0.2947

-0.00398
0.9111

-0.17129
0.0001

-0.19663
0.0001

-0.05809
0.1030

-0.06857
0.0542

-0.11048
0.0019

TEACHING
0.19663
0.0001
0.04387
0.2183
0.11624
0.0011

-0.25572
0.0001
0.60508
0.0001
1.00000

0.0
0.57001
0.0001
0.32828
0.0001
0.43400
0.0001

ANYCOMP
0.08815
0.0133
1.00000

0.0
0.01376
0.6995

-0.00779
0.8271
0.02180
0.5410
0.04387
0.2183

0.02991
0.4015
0.02600
0.4658

0.01760
0.6215

PCTINS1 PRIVATE MINORTCH
0.03735 -0.00398 -0.17129
0.2947 0.9111 0.0001

0.01376 -0.00779 0.02180
0.6995 0.8271 0.5410
1.00000 -0.38699 -0.39785

0.0 0.0001 0.0001
-0.38699 1.00000 0.07576
0.0001 0.0 0.0334

-0.39785 0.07576 1.00000
0.0001 0.0334 0.0001
0.11624 -0.25572 0.60508
0.0011 0.0001 0.0001
0.54942 -0.38363 -0.30925
0.0001 0.0001 0.0001

-0.22419 -0.09803 0.23389
0.0001 0.0059 0.0001
0.05648 -0.32769 0.02361
0.1129 0.0001 0.5078

MAJORTCH BEDGT249 BEDGT400
-0.05809

0.1030
0.02991
0.4015
0.54942
0.0001

-0.38363
0.0001

-0.30925
0.0001
0.57001
0.0001
1.00000

0.0
0.15074
0.0001
0.49403
0.0001

-0.06857 -0.11048
0.0542 0.0019
0.02600 0.01760
0.4658 0.6215

-0.22419 0.05648
0.0001 0.1129

-0.09803 -0.32769
0.0059 0.0001

0.23389 0.02361
0.0001 0.5078

0.32828 0.43400
0.0001 0.0001

0.15074 0.49403
0.0001 0.0001
1.00000 0.38325

0.0 0.0001
0.38325 1.00000
0.0001 0.0

Do the regression analysis for the category A variables. What variables did you retain
for the model?
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Now, add the Demographic (or category B) variables to the ones selected from the
Patient Severity variables. As each stage is completed, do not drop a variable selected at
that stage from the set at a later stage; i.e., build an additive model. Again, check your
observed significance levels and VIFs. Run the model with the selected variables. Do any
of the category A variables become insignificant at the 0.10 level? If so, should they be
dropped from the model? Why?

As the next step, add the Hospital Variables. Answer the same questions as for the first
two categories.

Finally, add the Treatment Variables. Plot the residuals against DIAGTSTS. Is there a
pattern?

At the final stage add the term for the square of DIAGTSTS. Squaring terms can
introduce problems with multicollinearity; such multicollinearity caused by squaring terms
is called structural. In cases of structural multicollinearity more accurate estimates of the
regression coefficients can often be found if the variable is first standardized or centered
[Mendenhall and Sincich, 1993]. Is there evidence of structural multicollinearity here?
Center the variable DIAGTSTS (i.e., subtract the mean and divide by the standard
deviation) and square the centered variable. Rerun the model with the centered variables. Is
there still evidence of structural multicollinearity? Compare the residual plots for the
centered and uncentered models. What effect did centering the variable have on the
regression coefficients and R ?

Compare the R values for the four stages. Check the regression diagnostics, including
plots of the residuals; check the residuals for normality and for influential observations and
outliers. If there are outliers identified by the studentized residuals, the hat diagonal, the
dffits or the dfbetas [Neter, Wasserman, and Kutner, 1990], try to identify the reason for the
unusual value. Try running the model excluding the outliers or influential observations and
check the effects on the coefficients, the residuals, and the R .

This four-stage approach defines a framework in which severity takes precedence over
demographics, demographics take precedence over hospital variables, and hospital
variables take precedence over treatment variables in explaining LOS variability. The final
model at each stage adjusts the effect of Insurer for variables that are increasingly easier to
control. The patient's severity of asthma at admission is most often outside anybody's
control. Patient demographics are fixed, although they can be controlled in the aggregate to
a certain extent through insurance enrollment policies. The insurer can control hospital
characteristics by selectively contracting with hospital providers and then by forcing the
insured to receive nonemergency treatment only at contracting hospitals. The hospital can
lower the rates of treatment complications and process of care failures by increasing staff
quality and by adopting strict practice standards. Standard treatment protocols demand that
the hospital perform certain diagnostic tests. Consequently, although the hospital has
control over the number of diagnostic tests performed for a patient, this measure is most
likely a proxy for overall patient severity of illness, rather than something the hospital can
use to reduce LOS.

What conclusion about the difference between insurers do you draw on the basis of the
analysis? Once the model has accounted for differences in the patients such as severity of
condition, previous hospitalizations, and comorbidities, are there still differences between
insurers? Has the addition of other variables changed the interpretation of the difference
between insurers?

Try rerunning the analyses by looking at each category of variable separately, but
always including Insurer. Which of the categories provides the greatest amount of
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explanatory value? What set of variables would you use if you chose the variables selected
from each category independently? Is this model noticeably different from the additive or
phased approach you tried first?

Compare the method you were using for variable selection to software package
programs that do stepwise regression. Try running the same variables using forward,
backward, and stepwise methods. To gain comparability with your approach in the phased
(or additive) method use a significance level 0.10.
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NOTES TO THE INSTRUCTOR
Level of Case

Intermediate statistics undergraduates who have a background in multiple regression.

Necessary Tools

Multiple regression including interpretation of coefficients, variable selection,
interpretation of residual plots, studentized residuals, hat diagonals, and multicollinearity
issues. Descriptive statistics. Boxplots and f-tests. Access to statistical software that will
give output on each of the previous topics.

Objectives

Introduce the student to the issues involved in modeling data and variable selection for
regression analysis.
Observe the various effects of structural multicollinearity and a remedy for the
problem.
Provide experience in approaching data analysis from both a statistical and a
substantive position. In this medical example the student must think about what the
variables are measuring, as well as what the statistical significance is.

Comments and Suggestions for the Instructor

This real-life example of how statistics can help us to unravel some of the complexity
of economic issues underlying health policy issues should be of interest to students in
almost any discipline. This is a dataset rich with questions the student can explore.
The material in this case study requires time for the student to try a variety of models,
check model assumptions, and make decisions. Time in class should be spent
discussing the choice of variables, how a model might be improved by the inclusion of
a quadratic term, how to correct for multicollinearity when that quadratic term is
added, whether the nonnormality of the residuals is serious enough to require a
transformation of the dependent variable, and other related topics.
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The size of the dataset makes it cumbersome to print out residuals for all of the
observations and makes plots of the variables hard to interpret. Methods for getting
plots of summary data would be helpful.
Much of the analysis of the data must be done by the students outside of the classroom.

Discussion of Selected Analyses and Interpretation

All analysis results shown used the software package SAS (Statistical Analysis System,
Gary, North Carolina). Other general purpose statistical packages can produce the results
obtained here.

Table 2 shows the means and standard deviations for each Insurer and the observed
significance level (or p-value) of the r-test for assessing the difference between insurers for
that variable. Table 3 shows the frequencies and contingency tables for categorical
variables with more than two categories, along with /^-values for the chi-square tests of
significance. Because each dichotomous categorical variable reported in Table 2 is coded 0
and 1, the mean equals the proportion (or percentage) of the sample coded 1. For example,
the variable Female is coded 0 for males and 1 for females. The percentage of females in
the sample is 37.4, which is also the percentage of 1's. Insurer A is coded 0, and Insurer B
is coded 1.

A simple Mest revealed that there was a difference in LOS on the average for the two
insurers A and B. The data were skewed to the right for both insurers. Boxplots and stem
(and leaf) plots were created for the continuous variables—by insurer.

We decided to investigate the factors that were associated with LOS to better
understand why insurers 0 and 1 might show different LOSs. There might be factors that are
related to choice of insurer that would lead to persons with certain characteristics choosing
that insurer and thus also leading to a longer LOS. There might also be factors related to the
hospital choice that increased or decreased length of stay. After looking at the descriptive
statistics in Tables 2 and 3, we eliminated variables that had an extremely low or zero
incidence in the sample. Table 4 has selected correlations.

Our strategy was then to use a regression analysis with LOS as the dependent variable
regressed against independent variables from category A, after checking for pairwise
correlations higher than 0.80. Insurer was included in this model and at each of the
following stages. For the variables in category A, we included in the model each variable
and then its interaction with insurer.

Drawing on that analysis we used the following criteria:
Retain variables with p-values < 0.10.
Attempt to eliminate variables that give VIFs > 4 (VIF = Variance Inflation Factor).
Look at a model containing interaction terms of each variable with insurer.

None of the interactions were significant at the first stage (i.e., with category A
variables). We ran the model again without interaction terms and dropped variables with p-
values < 0.10. The regression coefficients for CMPL11 and CMPL12 were of almost equal
values. A decision to make a combination variable for any patient who had either CMPL11
or CMPL12 led to a variable CMPL, which had a smaller standard error because more
patients were included in that group. So, from the eight original patient variables, one was
eliminated because of nonsignificance and two were combined into one variable (CMPL).
See Tables 5A and 5B for a comparison of the results of this honing down of the variables.
We eliminated variables HISTF02 and SUMCOMRB but retained the variables INSURER,
CMPL, SEVMOD, SEVSEV, HISTF01, and HISTF03. Note the variance inflation factors



56 Houchens and Schoeps

(VIFs) for variables; none of the VIFs exceeded 4, so multicollinearity is not a problem
either by the criterion of VIF or pairwise correlation coefficients. The proportion of
variability in LOS explained by the subset of variables is represented by R , which for this
model is 0.1105.

Table 5A. Regression analysis.

Dependent Variable: LOS

Source DF
Model 7
Error 781

C Total 788

Root MSB
Dep Mean

C.V.

Squares
182.76616

1459.87263
1642.63878

1.36720
2.61597

52.26359

Analysis of Variance
Sum of Mean

Square F Value
26.10945 13.968
1.86924

/^-square
Adj R-sq

Prob>F
0.0001

0.1113
0.1033

Parameter Estimates

Variable
INTERCEP
INSURER
SEVMOD
SEVSEV
CMPL11
CMPL12
HISTF01
HISTF03

Variable
INTERCEP
INSURER
SEVMOD
SEVSEV
CMPL11
CMPL12
HISTF01
HISTF03

Parameter
DF Estimate

1 1.763241
1 0.555544
1 0.391395
1 0.447417
1 0.541264
1 0.579624
1 0.749878
1 0.181452

Variance
DF Inflation
1 0.00000000
1 1.03250930
1 1.04442797
1 1.04780244
1 1.01070191
1 1.00459694
1 1.04379708
1 1.07354014

Standard
Error

0.12317163
0.09891760
0.12519853
0.16239355
0.18750348
0.13110456
0.30895004
0.10899263

T for HO:
Parameter = 0

14.315
5.616
3.126
2.755
2.887
4.421
2.427
1.665

Prob > ITI
0.0001
0.0001
0.0018
0.0060
0.0040
0.0001
0.0154
0.0964
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Table 5B. Regression analysis.

Dependent Variable: LOS

Source
Model
Error

C Total

DF
6

782
788

Root MSB
Dep Mean

C.V.
Parameter Estimates

Variable
INTERCEP
INSURER
SEVMOD
SEVSEV

CMPL
HISTF01
HISTF03

DF
1
1
1
1
1
1
1

Variable
INTERCEP
INSURER
SEVMOD
SEVSEV
CMPL

HISTF01
HISTF03

DF

Analysis of Variance
Sum of
Squares

181.47123
1461.16755
1642.63878

1.36693
2.61597
52.25333

Mean
Square

30.24521
1.86850

/^-square
Adj /?-sq

F Value
16.187

0.1105
0.1037

Variance
Inflation

0.00000000
1.03054322
1.03621499
1.04749870
1.00196634
1.04405961
1.07288953

Prob>F
0.0001

Parameter
Estimate
1.768873
0.550193
0.385608
0.451673
0.594771
0.742196
0.182383

Standard
Error

0.12284696
0.09880396
0.12468080
0.16233811
0.11563296
0.30892818
0.10893819

T for HO:
Parameter = 0

14.399
5.569
3.093
2.782
5.144
2.402
1.674

Prob > ITI
0.0001
0.0001
0.0021
0.0055
0.0001
0.0165
0.0945

Next, we used the selected variables and added the demographic variables: AGE,
FEMALE, HISPANIC, BLACK, ASIAN, and MISSRACE and did another regression run.
Again we included interactions with Insurer but found no significant interactions. There
were no VIFs higher than 4. The variables FEMALE, HISPANIC, and MISSRACE were
not significant. In a future run the variable BLACK was also found to be nonsignificant, so
only the demographic variables AGE and ASIAN were retained for the model. Even
though HISTF03 became even less significant it was retained in the model for its
substantive importance. The addition of the demographic variables brought the R" up to
0.1283. Although this is not much higher than 0.1113, AGE was added because of the
significant p-value and because experience leads us to expect it to affect LOS.

Next the hospital level variables were added to the model. The variables BEDGT249
and BEDGT400 were created from BEDSIZE. BEDGT249 is a dichotomous variable with
value 1 if the number of beds in the hospital is more than 249 and 0 otherwise. A similar
dichotomous variable is created for BEDGT400. Again there were no significant
interactions with insurer or problems with multicollinearity as assessed by the VIFs. At the
conclusion of this stage there were two hospital level variables, namely, FTETOBED and

1
1
1

1
1
1
1
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MINORTCH. MINORTCH was created from the TEACHCAT variable as follows. If
TEACHCAT was greater than 0 then MINORTCH = 1; otherwise MINORTCH = 0. If
TEACHCAT was greater than 1 then MAJORTCH = 1; otherwise MAJORTCH = 0. The
R for this model was 0.1872. During the preliminary analysis, the variables TEACHING
and MAJORTCH were used. The coefficients were opposite in sign and led us to check
using only one variable MINORTCH. When the model was run with MINORTCH, the
amount of variability explained was almost the same, but required one less variable.

The next set of variables to be added was that related to hospital treatment, e.g.,
problems with failure of care, or treatment complications that occurred after admission to
the hospital. These variables refer to the hospital's care but are specific for each patient.
This time two interactions proved to be significant: INSURER*ANYCOMP and
INSURER*HIGHPOC. However, the interactions effected little change in the model, so for
simplicity of interpretation we excluded them. The residuals for DIAGTSTS indicated a
nonlinearity; the residual plot suggested a quadratic model, so the square of DIAGTSTS
was also added to the model. This produced a structural multicollinearity as evidenced by
the VIFs. To ameliorate this situation DIAGTSTS was centered by subtracting the mean
and dividing by the standard deviation. The new variable is called CDIAG and its square is
CDIAGSQ. Comparing Tables 6B and 6C, we found an improvement in the estimates
brought about by centering—the VIFs were within a normal range, the coefficients made
sense, and both the linear and quadratic terms were significant. The coefficients can be
interpreted as the change in LOS associated with one standard deviation change from the
mean of DIAGTSTS.

Any variable added in one stage was not later dropped even though it became
insignificant as new variables were added from other categories because we were interested
in the effect of each variable category adjusting for previous categories. By the end of the
fourth stage, 12 variables, in addition to INSURER, had been selected, plus the quadratic
term CDIAGSQ. Inclusion of all the terms produced an R = 0.2677.

As the analysis proceeded, two other considerations were important: analysis of the
residuals for normality and outliers. We noted that the residuals were skewed to the right. In
an attempt to get better behaved residuals and to see how we might decrease the number of
outliers, we tried the log of LOS as the dependent variable. When the log LOS was
modeled we did achieve a closer approximation to normality and fewer outliers. The
amount of variability explained was very close to that for the nontransformed data. There
was still measurable nonnormality and the same variables were significant in explaining
LOS. For simplicity of interpretation we therefore decided to stay with the untransformed
dependent variable.

The final set of variables (shown in Table 6A) chosen for inclusion in addition to
INSURER were as follows:

Category A. SEVMOD, SEVSEV, CMPL, HISTFO1, HISTF03
Category B. AGE, ASIAN
Category C. FTETOBED, MINORTCH
Category D. HIGHPOC, CDIAG, CDIAGSQ

Note that as the analysis proceeded the coefficient for INSURER remained quite
similar, indicating that in spite of severity of illness, demographics, hospital qualities, and
hospital care variables, the difference in LOS for the two insurers held up. This could be an
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indication that Insurer A is more successful than Insurer B at pressuring hospitals to reduce
LOS.

Another analysis corroborated the results of the above analysis. A stepwise regression
was run using the SAS program and setting both the criterion for entering and for retaining
at 0.10, which produced the results in Table 7. In this case the stepwise approach gave the
same variables that were selected by the phased approach. This of course would not always
be the case.

Yet another analysis which treated the four categories separately, that is, not additively,
produced the results seen in Table 8. In each separate category selected variables produced
significant predictors. By this method, however, a different set of variables would have
been selected for inclusion in the overall model.

Table 6A. General linear model analysis.

Source
Model
Error

C Total

DF
16

772
788

Root MSB
Dep Mean

C.V.

Sum of
Squares

439.74373
1202.89505
1642.63878

1 .24826
2.61597

47.71693

Mean
Square

27.48398
1.55815

7?-square
Adj R-sq

F Value
17.639

0.2677
0.2525

Prob>F
0.0001

Parameter Estimates

Variable
INSURER
SEVMOD
SEVSEV

CMPL
HISTF01
HISTF03

AGE
ASIAN

FTETOBED
MINORTCH
ANYCOMP
HIGHPOC
MEDPOC
LOWPOC

CDIAG
CDIAGSQ

DF
1
1
1
1

1
1

Parameter
Estimate
0.647216
0.441779
0.319744
0.366155
0.810748
0.087082
0.022759
0.356084

-0.114113
-0.663642
0.750083

-0.135280
-0.108869
0.006437
0.358206
0.079943

Standard
Error

0.09675175
0.12113466
0.15261790
0.11028428
0.28399103
0.10183152
0.01065333
0.18378826
0.02525986
0.12011787
0.32071377
0.09117450
0.06356298
0.05647966
0.04836978
0.02085035

T for HO:
Parameter = 0

6.689
3.647
2.095
3.320
2.855
0.855
2.136
1.937

-4.518
-5.525
2.339

-1.484
-1.713
0.114
7.406
3.834

Prob > ITI
0.0001
0.0003
0.0365
0.0009
0.0044
0.3927
0.0330
0.0531
0.0001
0.0001
0.0196
0.1383
0.0872
0.9093
0.0001
0.0001

1

1

1
1
1
1
1
1
1
1



60 Houchens and Schoeps

Variable
INTERCEP
INSURER
SEVMOD
SEVSEV

CMPL
HISTF01
HISTF03

AGE
ASIAN

FTETOBED
MINORTCH
ANYCOMP
HIGHPOC
MEDPOC
LOWPOC

CDIAG
CDIAGSQ

DF
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Variance
Inflation

0.00000000
1.18499893
1.17292532
1.11021295
1.09294898
1.05804060
1.12419591
1.08031638
1.03412881
1.58021592
1.35940508
1.03477817
1.21959044
1.05657265
1.17779648
1.18318527
1.01979307

Table 6B.

Source
Model
Error

C Total

DF
17

771
788

Root MSE
Dep Mean

C.V.

Sum of
Squares

440.36869
1202.27010
1642.63878

1.24875
2.61597
47.73546

Mean
Square

25.90404
1.55936

/^-square
Adj R-sq

F Value
16.612

0.2681
0.2519

Prob>F
0.0001

Parameter Estimates

Variable
INTERCEP
INSURER
SEVMOD
SEVSEV
CMPL

HISTF01
HISTF03

AGE
ASIAN

FTETOBED
TEACHING

DF
1
1
1
1
1
1
1
1
1
1
1

Parameter
Estimate
2.334608
0.652069
0.446567
0.313881
0.362464
0.815322
0.086903
0.022626
0.355733
-0.103245
-0.665484

Standard
Error

0.21428932
0.09709235
0.12141746
0.15295779
0.11048110
0.28419317
0.10187146
0.01065951
0.18386047
0.03054951
0.12019976

T for HO:
Parameter = 0

10.895
6.716
3.678
2.052
3.281
2.869
0.853
2.123
1.935

-3.380
-5.536

Prob > 171
0.0001
0.0001
0.0003
0.0405
0.0011
0.0042
0.3939
0.0341
0.0534
0.0008
0.0001
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Variable
MAJORTCH
ANYCOMP
HIGHPOC

MEDPOC

LOWPOC
CDIAG

CDIAGSQ

DF
1
1
1
1
1
1
1

Parameter
Estimate
0.573199
0.749004

-0.138939

-0.105907
0.006257
0.356909
0.079968

Standard
Error

0.18668006
0.32084284
0.09139285

0.06375949

0.05650231
0.04843196
0.02085848

T for HO:
Parameter = 0

3.070
2.334

-1.520

-1.661
0.111
7.369
3.834

Prob > 171
0.0022
0.0198
0.1289

0.0971

^ 0.9119
0.0001
0.0001

Variable
INTERCEP
INSURER
SEVMOD
SEVSEV

CMPL
HISTF01
HISTF03

AGE
ASIAN

FTETOBED
TEACHING
MAJORTCH
ANYCOMP
HIGHPOC
MEDPOC
LOWPOC

CDIAG
CDIAGSQ

DF
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Variance
Inflation

0.00000000
1.19243048
1.17749368
1.11429795
1.09600206
1.05872490
1.12420464
1.08073132
1.03413820
2.30954206
1.82215232
3.08057936
1.03480736
1.22448766
1.06229039
1.17782644
1.18530864
1.01979674

Table 6C.

Source
Model
Error

C Total

DF
17

771
788

Root MSE
Dep Mean

C.V.

Sum of
Squares

440.36869
1202.27010
1642.63878

1.24875
2.61597

47.73546

Mean
Square

25.90404
1.55936

R- square
Adj /?-sq

F Value
16.612

0.2681
0.2519

Prob»F
0.0001
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Parameter Estimates

Variable
INTERCEP
INSURER
SEVMOD
SEVSEV

CMPL
HISTF01
HISTF03

AGE
ASIAN

FTETOBED
TEACHING
MAJORTCH
ANYCOMP
HIGHPOC
MEDPOC
LOWPOC

DIAGTSTS
DIAGSQ

DF
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Parameter
Estimate
1.955900
0.652069
0.446567
0.313881
0.362464
0.815322
0.086903
0.022626
0.355733
-0.103245
-0.665484
0.573199
0.749004
-0.138939
-0.105907
0.006257

-0.068779
0.060573

Standard
Error

0.29837235
0.09709235
0.12141746
0.15295779
0.11048110
0.28419317
0.10187146
0.01065951
0.18386047
0.03054951
0.12019976
0.18668006
0.32084284
0.09139285
0.06375949
0.05650231
0.10788760
0.01579948

T for HO:
Parameter = 0

6.555
6.716
3.678
2.052
3.281
2.869
0.853
2.123
1.935

-3.380
-5.536
3.070
2.334
-1.520
-1.661
0.111
-0.638
3.834

Prob > 171
0.0001
0.0001
0.0003
0.0405
0.0011
0.0042
0.3939
0.0341
0.0534
0.0008
0.0001
0.0022
0.0198
0.1289
0.0971
0.9119
0.5240
0.0001

Variable
INTERCEP
INSURER
SEVMOD
SEVSEV
CMPL

HISTF01
HISTF03

AGE
ASIAN

FTETOBED
TEACHING
MAJORTCH
ANYCOMP
HIGHPOC
MEDPOC
LOWPOC

DIAGTSTS
DIAGSQ

DF
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Variance
Inflation

0.00000000
1.19243048
1.17749368
1.11429795
1.09600206
1.05872490
1.12420464
1.08073132
1.03413820
2.30954206
1.82215232
3.08057936
1.03480736
1.22448766
1.06229039
1.17782644
7.76516114
7.53486896
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Table 7. General linear model analvsis.

63

Regression
Error
Total

DF
13

775
788

Sum of Squares
434.73935983
1207.89942344
1642.63878327

Mean Square
33.44148922
1.55857990

F Prob>F
21.46 0.0001

Variable
INTERCEP
INSURER
SEVMOD
SEVSEV

CMPL
HISTF01

AGE
ASIAN

FTETOBED
MINORTCH

ANYCOMP
MEDPOC

CDIAG
CDIAGSQ

Parameter
Estimate

2.36078126
0.65738572
0.39634742
0.35359537
0.36062401
0.86903151
0.02489141
0.35125805

-0.11084902
-0.6479945 1
0.77999020

-0.11484246
0.36319548
0.08225662

Standard
Error

0.19296047
0.09580536
0.11576461
0.15083710
0.11023435
0.27892224
0.01055004
0.18356371
0.02483448
0.11665307

0.31969833
0.06344777

0.04821248
0.02079441

Type II
Sum of Squares
233.29416953
73.38206806
18.26962147
8.56497050
16.68032329
15.12982290
8.67601371
5.70700149
31.05150917
48.09272373
9.27740772
5.10624175

88.44862074
24.38807149

F
149.68
47.08
11.72
5.50
10.70
9.71
5.57
3.66
19.92
30.86

5.95
3.28

56.75
15.65

Prob>F
0.0001
0.0001
0.0007
0.0193
0.0011
0.0019
0.0186
0.0560
0.0001
0.0001

0.0149
0.0707

0.0001
0.0001

Summary of Stepwise Procedure for Dependent Variable LOS

Step

1
2
3
4
5
6
7
8
9
10
11
12
13

Variable
Entered

Removed
CDIAG

INSURER
MINORTCH
CDIAGSQ

FTETOBED
HISTF01
SEVMOD

CMPL
ANYCOMP

AGE
SEVSEV
ASIAN

MEDPOC

Number
In

1
2
3
4
5
6
7
8
9
10
11
12
13

Partial
R**2

0.1077
0.0488
0.0180
0.0159
0.0168
0.0126
0.0122
0.0082
0.0076
0.0062
0.0040
0.0036
0.0031

Model
R**2

0.1077
0.1565
0.1745
0.1904
0.2072
0.2198
0.2320
0.2401
0.2477
0.2540
0.2580
0.2616
0.2647

C(p)

148.7191
99.6049
82.8189
68.1980
52.6227
41.3988
30.6517
24.0981
18.1684
13.6456
11.4410
9.7010
8.4482

F

94.9606
45.5195
17.0719
15.3810
16.5876
12.6668
12.3878
8.3912
7.8474
6.5007
4.2076
3.7560
3.2762

Prob>F

0.0001
0.0001
0.0001
0.0001
0.0001
0.0004
0.0005
0.0039
0.0052
0.0110
0.0406
0.0530
0.0707



64 Houchens and Schoeps

Table 8. Analysis with separate categories.
2

Category R All Variables in Category + Insurer
A. 0.1106 Sumcomrb, Sevmod, Sevsev, Cmpl, HistfOl-HistfOS
B. 0.0670 Age, Female, Hispanic, Black, Asian, Missrace
C. 0.1072 Ftetobed, Bedgt249, Bedgt400, Private, Pctins 1, Minortch, Sumserv
D. 0.1655 Anycomp, Highpoc, Medpoc, Lowpoc, Diagtsts

Category
A.
B.
C.
D.

£
0.0804
0.0620
0.1063
0.1594

BIOGRAPHIES

Significant Variables Selected + Insurer
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CHAPTER6
COMPARING NONSTERIODAL

ANTI-INFLAMMATORY DRUGS WITH
RESPECT TO STOMACH DAMAGE

Tom Filloon and Jack Tubbs

This case study may seem to be a rather trivial exercise, but we feel that it contains many

of the important ideas that applied statisticians use on a day-to-day basis. It discusses the

quantile-quantile (QQ) plot, normality assumptions, comparing distributions, and

calculating p-values. Furthermore, it shows the great utility of the Mann-Whitney-

Wilcoxon rank sum approach.

INTRODUCTION
Many people take medication daily for the treatment of arthritis. Painful, swollen joints

are a source of problems for arthritis sufferers. Pain relief and anti-inflammatory benefits
can be achieved by drugs classified as NSAIDs (NonSteroidal Anti-Inflammatory Drugs),
which include such drugs as ibuprofen (Motrin). One potential side effect with the long-
term use of this class of drugs is that they can possibly cause severe stomach damage
(lesions, ulcers, perforation, death). In addition, if a person has developed a stomach ulcer,
then this type of drug has the potential for delaying the time it takes for an ulcer to heal.
The goal of a pharmaceutical company's research is to provide a better, safer drug for
treating arthritis (i.e., developing an arthritis drug that does not slow the ulcer healing
process). In this study, we are evaluating two drugs in an animal ulcer healing experiment
in an effort to determine a new, more stomach-safe NSAID for use by arthritis sufferers.
Analysis of this data will include descriptive statistics, assessing normality, permutation
testing, and sample size determination.

BACKGROUND INFORMATION
An animal (rat) experimental model has been developed to evaluate NSAIDs with

regard to their effects on ulcer healing. In this animal model, all animals are given a large
dose of a known stomach-damaging compound. It has been shown that after approximately
2 weeks, the majority of the stomach damage created by the initial insult is gone (i.e.,
substantial ulcer healing has taken place). In an effort to mimic how people take pain
medication for arthritis, an experimental compound is administered to each rat twice daily
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for these 14 days. At the end of this treatment period, the animals are sacrificed and their
stomachs are examined in order to quantify the amount of damage present as indicated by
long, narrow indentations called lesions. The response variable of interest is the sum of the
lesion lengths in millimeters (mm).

This type of experiment has been run several times previously in order to compare the
amount of stomach damage remaining for the standard drug-treated animals (denoted as
OLD) as compared to the control-treated animals (PLACEBO). That is, one has observed
and would expect to observe larger lesion lengths in the Old group as compared with the
Placebo group at the end of 14 days. Hence, one can conclude that the Old treatment is
delaying ulcer healing as there is more damage left at the day 14 evaluation.

In the current study described here, a new drug treatment (NEW) will also be used with
the Old and Placebo treatments. The purpose of this study is investigate how the two
NSAIDs (Old, New) compare with the Placebo group in order to determine if these drugs
delay the ulcer healing process. Additionally, it is of interest to compare the NSAIDs to
one another.

QUESTIONS OF INTEREST
There are several questions of interest that this study will address.

1. Does the Old treatment delay ulcer healing as compared to the Placebo? This would
indicate that the results of this study are similar to previous experiments.

2. Does the New treatment also delay healing as compared with the Placebo?
3. Is the New Treatment superior to the Old treatment?

DATA
From prior data and power calculations, it was determined that 25-30 animals were

needed for each treatment in order to have sufficient power to be able to detect differences
between treatments. To account for expected accidental loss of animals through the course
of the study, 35 animals were randomized to each of the 3 groups. As this number of
animals was too large to perform the experiment's final day procedures in one day, a
complete block design was used. Four blocks of animals were used with each block of
animals starting the study on a different day such that they were staggered over days in
order to balance out any potential time trends. As is usual with animal experiments, a small
proportion of the animals died during the course of the study, causing final sample sizes to
range from 32-34 in the 3 groups. Table 1 shows a partial data listing. The complete data
set for the 3 treatment groups is found in file Case06.txt.

SUGGESTED ANALYSIS
1. Use simple descriptive procedures for each of the treatment groups in order to visualize the

data and to determine how the three groups' means and medians compare. Based upon
these simple procedures, what preliminary results would you expect? What problem areas
do you observe with the data?
a. Determine if the data are normally distributed. If not, what procedures would you

use to achieve normality? How do these procedures work in these data?
b. Although there are three treatments in the study the main interest is found in the

pairwise comparisons of the groups. Test to determine the nature of the
differences using two sample Mests. Are you justified in using this approach? If
so, why? If not, why not?

c. An alternative test for comparing two treatments is called the Wilcoxon rank sum
test. Perform a Wilcoxon rank sum analysis for the three pairwise treatment
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comparisons. What are your conclusions? How do these conclusions compare
with your results found in #3? How do you know whether or not either set of
conclusions are correct for these data?

d. A method called permutation (or randomization) tests can be used to obtain p-
values for any test of hypothesis. What are the results found in using a
permutation test? What are your overall conclusions concerning the three
treatment groups' means or medians?

e. The statistic used in the Wilcoxon ranked sum test can be used to estimate Prob(F
> X). Find the estimates of these probabilities for the three pairwise comparisons.

f. Results from previous studies were used to determine sample sizes for this study.
Use the information from this study (obtain effect size from observed Old vs.
Placebo comparison) to determine the sample sizes for similar analysis in a
subsequent experiment.

Table 1. Listing of data.

Block/Day
1
1
1
1
1
1
1
1
1
1
1

4
4
4
4

Treatment
Placebo

New
Old
Old
Old
New
Old

Placebo
New

Placebo
New

Old
New
New
New

Lesion Length (mm)
0.00
3.16
0.00
8.00
8.21
0.04
9.90
0.36
8.23
0.77
0.00

5.97
0.90
2.86
1.64

INSTRUCTIONS FOR PRESENTATION OF RESULTS
Results should be summarized in a written report with graphs. Optionally, oral

presentations could be given from the written reports.
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NOTES TO THE INSTRUCTOR

Level of Case

Some of the questions are easily accessible for students with an introductory statistics
course. Other questions are more advanced and are included as advanced topics or for use
as special topics for advanced individual student projects.

Necessary Tools

All of the analyses can be performed using readily available statistical packages. The
analyses provided here were performed using S-plus, Data Desk, and StatXact, but
Minitab, SAS, etc. could have been used likewise.

Primary Objectives

2. To emphasize the importance of plotting and simple summaries.
a. Introduce QQ plots to check for normality.
b. Introduce normalizing transformations.
c. Introduce the Wilcoxon rank sum analysis approach.
d. Introduce methods for determining sample size.

Secondary or More Advanced Objectives

3. Increase one's understanding of the Wilcoxon approach and its utility,
a. Introduce the use of exact and Monte Carlo permutation tests.

Comments and Suggestions for the Instructor

One of the main intents of this case study is to demonstrate how the Wilcoxon rank sum
statistic provides a parameter estimate of the Prob (Y > X). Also it is seen that the Wilcoxon
approach is a valid approach for any dataset, not just those deemed nonnormal.

In this case study we have chosen not to analyze the data as a complete block design
(but this could be included as an additional exercise for analysis). Instead we have decided
to concentrate on the various pairwise comparisons.

It should also be mentioned that we have considered the use of normalizing
transformations but have elected not to analyze the transformed data, even though it
appears to be more normal, as in structure. A fundamental reason for this stems from the
practical problem of having to explain the transformed results to one's collaborators as
such approaches can be rather confusing to nonstatistical people.

This case study can be used as a stepping stone for several other topics. For example,
we have illustrated the permutation approach for determining a /7-value for a hypothesis
test. One method illustrates computing the exact permutation /?-value (StatXact) and the
other is an approximate Monte Carlo approach.

Typical Results

Question 1

Figure 1 presents boxplots for the three treatment groups' lesion lengths and gives
individual histograms for each treatment group. From the figure one observes how the data
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appear to be asymmetric and skewed to the right (nonnormal). Note that although the
histogram bars include negative values, they only represent the number of zeroes in each
group as the lesion length response takes only nonnegative values.

BOXPLOTS HISTOGRAM
Placebo

Lesion Length (mm)

HISTOGRAM

Lesion Length (mm)

HISTOGRAM

Lesion Length (mm)

Fig. 1. Plots of original data by treatment group.

Other types of plots that would also show the data would be stem-and-leaf plots,
mountain plots [Monti, 1995], or cumulative distribution plots (such as Figure 2).

TREATMENT
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Empirical Cumulative Distribution Functions

Lesion Length (mm)

Fig. 2. ECDF by treatment.

Table 2 gives some summary statistics for each group. From these summary statistics,
one can see how the Old group is yielding somewhat larger lesions lengths than the
Placebo group. Notice also that the mean and median for a given group are quite different.
There is also a tendency for the Old group to be more variable as shown by group standard
deviations (SD) and interquartile ranges (IQR), as shown in Figure 3.

Table 2. Summary statistics by treatment.

SUMMARY
STATISTIC

Mean
SEM
SD
IQR
10th Percentile
25th
Median
75th
90th

Placebo

1.55
0.50
2.90
1.78
0.00
0.00
0.45
1.78
4.30

TREATMENT
Old

3.72
0.80
4.53
4.57
0.00
0.36
2.48
4.93
9.08

New

2.02
0.43
2.53
2.10
0.01
0.44
1.16
2.54
4.76
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Fig. 3. Mean, sem, and median by treatment.

Question 2

Figure 4 contains a series of QQ plots, where the data for each group and combined
model (one-way ANOVA) residuals are plotted against their expected values under a
normal distribution assumption. If the data are normally distributed, then these plots should
resemble a straight line. Notice the severe curvature of each plot, which indicates that the
data is not normally distributed. Furthermore, this is confirmed by significance testing
(Shapiro-Wilk normality test).

In the plots in Figure 5, the data have been transformed by taking a log transformation.
Notice that for these data, due to the occurrence of zeroes, we have modified the
transformation to be logioC* + 0.1). This seems to linearize the QQ plots a bit, but the
Placebo and Combined data still reject the normality test. Notice that one is not able to get
rid of the flat parts of these QQ plots due to the occurrences of ties (mainly, zeroes) in
these datasets.

This transformation does not "normalize" the data (rejection of the Shapiro-Wilk
normality test). Hence, it is not obvious that a simple transformation (e.g., square root) that
will normalize this particular set of data exists. Further work could be tried using a
modified Box-Cox transformation approach. One of the problems with using
transformations on this particular dataset is that it cannot change the occurrence of ties in
these data. In addition, transformations can make for a more difficult explanation of results
to one's collaborators.

Question 3

In comparing the Placebo and Old groups, one obtains a ^-statistic value of -2.3089,
which yields a 2-sided /?-value of 0.0242. Although the data are not normally distributed,
one knows from the Central Limit Theorem (CLT) that the sample means (and their
differences) should be approximately normally distributed for moderate sample sizes. The
two sided p-values for comparing New versus Old is 0.063; for New versus Placebo it is 0.476.
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Fig. 4. QQ plots for original data.

Fig. 5. QQ plots for log-transformed data.
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Question 4

73

In comparing the Placebo and Old groups, using a Wilcoxon rank sum approach, one
obtains a rank sum value of 1262 for the Old group. Subtracting its expected value (1056)
and dividing by its null SD, one obtains a z-statistic of 2.703 with a 1-sided /rvalue of
.0035. If one uses a continuity correction in the numerator and adjusts the variance for tied
values, one obtains a 1-sided p-value of 0.0033. When comparing New versus Old, one
obtains a 2-sided p-value of 0.215; for New versus Placebo it is 0.053.

Question 5

Another approach to getting a p-value for the /-tests would be to do a permutation test.
In doing a Monte Carlo (n = 1000) permutation test, one obtains a/?-value of 0.023 ± 0.005
when using the Placebo and Old groups. One can see from Figure 6 that the permutation
distribution is approximately normally distributed and provides credence to the CLT
normal approximation. One can also determine a p-value via permutation testing for the
Wilcoxon test statistic using the Placebo and Old groups. Exact permutation testing (via
StatXact) yields a 1-sided/?-value of 0.0031, while a Monte Carlo (n = 10,000) permutation
testing (see Figure 7) yields a 1-sided p-value of 0.0029 ± 0.0005.

T statistic

Fig. 6. Histogram/QQ plot of permutation distribution (n = 1000).
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Wilcoxon rank sum statistic

Fig. 7. Histogram/QQ plot of permutation distribution (n = 10,000).

Question 6

The Wilcoxon rank sum value can be used to calculate the corresponding Mann-
Whitney ^/-statistic via W= U + n(n+l)/2 [Hollander and Wolfe, 1973] so that U = 1262 -
32*33/2 = 734. The estimator of 9 = Prob(y>X) is U/(n*m). Hence, our estimate of p* is
0.695. A standard error for 0 can also be determined to be 0.064 [Boos and Brownie,
1992]. The simpler form of the standard error under the null hypothesis is calculated as
(6*n)~l/2 Herein lies the ultimate usefulness of the Wilcoxon rank sum approach. The
estimator of Prob(y > X) is simply the proportion of observations in one group that are
larger than observations in the other group when compared on a head-to-head basis. This is
a very simple concept to use when talking with nonstatistical colleagues about how to
compare two distributions. This approach obviates the need for normal, equal variance
distributions of data and is a stronger way of comparing distributions than just comparing
means. In addition, it is known that the Wilcoxon rank sum approach is almost as efficient
(Pitman efficiency = 0.955) as the /-test approach, even when the data are truly normal.
So one should consider always using the Wilcoxon rank sum approach in conjunction with
the usual /-test approach when analyzing data, not just in cases where the data are
nonnormal.

Question 7

The practicing statistician is continually asked questions regarding adequate sample
sizing for studies. Simple approximate formulae exist for both the /-test and Wilcoxon rank
sum approaches. Such formulae are useful for determining sample sizes for future studies
and determining if the sample size used in a given study was adequate to detect a fixed
treatment difference of interest.

Sample size determinations for the /-test statistics take the form n = 16 *(s/diff)2 [Lehr,
1992], where s represents the estimate of the common standard deviation a and "diff' is the
treatment difference of interest to be detected. Sample size formulae are similar for the
Wilcoxon rank sum statistic, taking the form n = 8/(6*(9 -0.5)2) [Noether, 1987]. Both of
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these sample size formulae achieve 80% power for detecting a desired treatment difference
using a two-sided 0.05 significance test.

Hence, if one wanted to reproduce these study results in a subsequent study, respective
sample size estimates are 49 and 35 for the parametric and nonparametric approaches if one
uses the observed differences between the Placebo and Old treatment groups as the "effect
size" to be used in the calculations.

ADDITIONAL NOTE TO INSTRUCTOR
An alternative way of analyzing these data is to rethink the problem by considering

whether or not a treatment affects the presence of lesions and not be overly concerned
about the total length of the lesions. Below we have introduced a binary variable which has
value 0 if the lesion lengths are "small" and 1 if they are not. The corresponding 2x2 tables
leads to some interesting results, with 2-sided /7-values derived from Fisher's exact test.

Table 3. Binary analysis of data.

When the lesions exceed 0 mm in length

Placebo 22/33(67%) Placebo 22/33(67%) Old 28/32(88%)
vs. vs. vs.
Old 28/32(88%) New 30/34(88%) New 30/34(88%)

/7-value = 0.076 /7-value = 0.043 /rvalue = 1.000

When the lesions exceed 1mm in length

Placebo 12/33(36%) Placebo 12/33(36%) Old 20/32(63%)
vs. vs. vs.
Old 20/32(63%) New 18/34(53%) New 18/34(53%)

p-value = 0.048 /7-value = 0.222 /7-value = 0.465

When the lesions exceed 3 mm in length

Placebo 5/33(15%) Placebo 5/33(15%) Old 14/32(44%)
vs. vs. vs.
Old 14/32(44%) New 7/34(21%) New 7/34(21%)

/?-value = 0.048 /7-value = 0.752 p-value = 0.064
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CHAPTER 7

VALIDATING AN ASSAY OF VIRAL
CONTAMINATION

Lawrence I-Kuei Lin and W. Robert Stephenson

Viral contamination is of great concern to the makers, and users, of biological products

such as blood clotting Factor Eight (given to people with hemophilia) and human blood

substitute (a product still in development). How does one guarantee that such products are

free of viral contamination? The first step is to have an assay that can accurately and

precisely measure viral contamination. An assay is an analysis of a substance to determine

the presence or absence of a specific ingredient. Most of you will be familiar with the idea

of an assay of mineral ore to determine the amount of gold. In a viral assay, a solution is

analyzed to determine the presence or absence of a specific virus. A viral assay can also be

used to determine the amount of virus in the solution, the total viral titer. In order to ensure

the accuracy and precision of an assay, it must be validated. The validation of an assay has

three components: linearity (or proportionality), precision, and sensitivity. Each of these

components requires the use of statistical methods. This case study looks at validating a

viral assay using bovine viral diarrhea virus (BVDV). Other methods are used to validate

viral assays for human immunodeficiency virus (HIV), the virus that causes AIDS.

INTRODUCTION
In order to validate an assay one must start with something that has a known viral

contamination. To do this, virologists spike a sterile stock solution with a known amount
of a particular virus, in our case BVDV. BVDV is a virus that affects the gastrointestinal
system of cattle causing severe diarrhea. The virus is particularly harmful to pregnant
cattle because of its ability to infect the fetus. BVDV is closely related to the hog cholera
virus and a similar virus that affects sheep. The BVDV has the property that when cultured
in a petri dish the viral particles form plaques, circular regions in the culture medium.
These plaques are easily visible under a microscope or to the naked eye when a stain is
used. Each plaque is associated with a single viral particle. By counting the number of
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distinct plaques, so-called plaque forming units (PFUs), per mL of volume, one can
estimate the total viral liter. HIV does not form plaques so a different technique that looks
for simply the presence or absence of the virus is used.

BACKGROUND INFORMATION
For BVDV it seems straightforward to determine the total viral liter. However, with a

large enough concenlration of virus, the entire petri dish becomes one large plaque, and it
is impossible lo counl individual PFUs. In order lo produce counlable plaques one must
dilule ihe spiked solution. The dilution is performed as follows. One mL of the spiked
solution is mixed wilh 99,999 mL of slerile solution, a reduction lo 1 in 100,000. This
dilule-conlaminaled solution is further diluled in a series of sleps, a serial dilution. Al ihe
first dilution 1 part of Ihe dilule-conlaminated solution is mixed wilh 2 parts of slerile
solution. At Ihe second dilution 1 part of Ihe firsl dilution is mixed wilh 2 parts of ihe
slerile solution. This continues in Ihe same manner so lhal al dilution d, 1 part from
dilution d-l is mixed wilh 2 parts of slerile solution. Al each slep in Ihe serial dilution Ihe
conlaminalion should be 1/3 as greal as in Ihe previous slep. Al each slep, 4 pelri dishes
are prepared wilh material from lhal dilution. For Ihe firsl several dilutions, Ihe pelri dishes
produce uncounlable plaques because of Ihe overabundance of viral particles. In order lo
proceed, we need al leasl 2 dilutions lhal yield counlable (bul nonzero) plaques.

The process Ihen is lo spike, dilule, culture, and count. Since variability can affecl each
of Ihe steps in Ihe process, Ihe process is repealed several limes (called samples).

QUESTIONS OF INTEREST
In general, one wishes lo know if Ihe melhod of assay is valid; i.e., is il sufficienlly

accurate and precise lo use in routine laboratory work? The validation of an assay melhod
has Ihree componenls: linearity (or proportionality), precision, and sensitivity. This case
sludy looks al only Ihe firsl Iwo components.

Linearity/Proportionality

Given the counts of the PFUs/mL from the serial dilutions, can we estimate Ihe lolal
viral tiler in Ihe undiluted conlaminaled slock?

Precision

As wilh all dala Ihere is variation in response, in this case variation in the number of
PFUs/mL. Whal causes Ihe majority of Ihis variation? Is il allribulable lo differences from
sample lo sample and/or lo differences wilhin a sample? How does Ihis affecl our estimate
of Ihe lolal viral liter?

DATA: PFU ASSAY VALIDATION: BVDV
Name of Dala File: CaseOT.lxl
There are nine samples, resulting from nine runs of Ihe process of spike, dilute, culture,

and count. Each sample has seven dilutions and four pelri dish counls of PFUs/mL.
Portions of Ihe full dala sel necessary for Ihe basic analysis are given in Tables 1 and 2.
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Linearity/Proportionality

Table 1. Number of PFUs/mLfor sample 1, dilutions 3 through 9.

Sample Dilution PFUs/mL
1 3
1 4
1 5
1 6
1 7
1 8
1 9

75
24
4
4
0
0
0

66
18
6
1
0
2
0

84
27
8
2
0
0
0

82
21
7
2
1
1
0

Note: Dilutions below 3 yield uncountable PFUs/mL due to the high concentration of virus.
Note: The full data set has a total of nine samples.

Precision

Table 2. Number of PFUs/mLfor dilutions 3, samples 1 through 9.

Sample Dilution PFUs/mL
1 3
2 3
3 3
4 3
5 3
6 3
7 3
8 3
9 3

75
55
63
105
63
39
36
45
30

66
43
57
70
59
47
38
56
46

84
33
54
87
66
46
52
34
45

82
35
65
73
61
53
38
30
49

Note: The full data set includes dilutions 3, 4, 5, 6, 7, 8, and 9.

ANALYSIS

Linearity/Proportionality

For sample 1 plot the number of PFUs/mL versus the dilution. Describe the general
relationship between dilution and the number of PFUs/mL. Will a straight line give a good
approximation to the relationship between dilution and the number of PFUs/mL?

Recall that at each dilution there should be approximately 1/3 as much viral
contamination as at the previous dilution. That is, the number of PFUs/mL should be
falling in a multiplicative fashion. Taking the logarithm of the number of PFUs/mL can
change this multiplicative relationship into an additive one. The logarithm, base 10, of a
number is simply the power of 10 that will give you that number. For example, the
logarithm, base 10, of 100 is 2 since 102= 100. The logarithms of the PFUs/mL for sample
1 appear in Table 3.
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Table 3. Logarithm of PFUs/mL for sample 1, dilutions 3 through 9.

Sample Dilution Y=log,0(PFUs/mL)

1
1
1
1
1
1
1

3
4
5
6
7
8
9

1.875
1.380
0.602
0.602

*
*
*

1.820
1.255
0.778
0.000

*
0.301

*

1.924
1.431
0.903
0.301

*
*
*

1.914
1.322
0.845
0.301
0.000
0.000

*

Note: If PFUs/mL = 0, then log|0(PFUs/mL) is undefined and is denoted by the asterisk.

Again for sample 1, plot the response Y=logi0(PFUs/mL) vs. dilution. On your plot
note the zero PFUs/mL counts, the asterisks, in some way. Describe the general
relationship between dilution and this response. Does the relationship appear to be linear
for dilutions 3, 4, 5, and 6? Compute the least squares line relating 7=log]0(PFUs/mL) to
dilution using only dilutions 3, 4, 5, and 6. Give the value of the coefficient of
determination, R2, and comment on what this value tells you about the fit of the straight
line. Give an interpretation of each of the estimated coefficients (the intercept and the
slope) within the context of the problem. An estimate of the total viral liter, the number of
viral particles in the undiluted contaminated solution, is

10(K''="~n million particles per mL,

where Yd=0 is the predicted value of Y when the dilution is zero. By using Yd=0 -1 in the

exponent, the titer is given in millions of particles rather than hundreds of thousands of
particles. Using the regression equation you developed, estimate the total viral titer.
Calculate the residuals and plot these against the dilution. Describe the pattern in this
residual plot.

This analysis can be repeated for the other samples in the data set.

Precision

For each dilution there is variability within the four observations. There is also variation
from sample to sample. Which of these sources of variation contributes the most to the
overall variation? For dilution 3 consider the one-way classification according to sample.
Plot the data to show the variation within samples and among samples. Analyze these data
with an ANOVA to separate the within (intra) sample variation from the among (inter)
sample variation. Table 4 gives the expected mean squares which may be helpful in
estimating the variance components.

Table 4. Expected mean squares and variance components.

Expected Mean Square Variance Component
Source

Samples a2 +4cr2 Intersample: /r2
samples samples

Error cr2 Intrasample: <j2

Total: Total: a2 +<j2
v samples
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What percentage of the total variance is attributable to intersample variation? What
percentage of the total variance is attributable to intrasample variation? If Intrasample
variation is too large, larger than the intersample variation, then the precision of the data is
suspect. In that case the data for that dilution should not be used to predict the total viral
concentration. Another way to quantify precision, or lack thereof, is through the
coefficient of variation, CV. The coefficient of variation is defined to be the square root of
the total variance divided by the mean. It is often expressed as a percentage. As a rule of
thumb, if the CV% is greater than 50% there is too much variability to accurately predict
the total viral concentration.

Compute the CV% for dilution 3. Repeat the analysis with dilutions 4, 5, 6, and 7. For
which dilution(s) is the CV% greater than 50%? How does this affect your assessment of
linearity?

INSTRUCTIONS FOR PRESENTATION OF RESULTS
Most projects require presentation of results to clients. Presentations have more impact

than documents alone. To be successful a presentation should be
In terms of the client's needs
In tune with the client's values
In the client's language

The statistician is responsible for ensuring this. She must translate her thinking into
words understandable to the client. Some possible client audiences for this case might be

Manager of statisticians and staff
Manager of manufacturing and staff manager of virologists and staff
Chief executive of organization and staff

Linearity/Proportionality

Prepare a presentation of your findings. Direct your presentation to one of the possible
client audiences described above. Be sure to include graphs of the data. An important
consideration is the final estimate of the total virus titer; however, this is only as good as
the regression equation used to estimate it. Comment on the adequacy of the linear
regression that relates the log transformed PFUs/mL to the dilution.

Precision

Prepare a presentation of your findings directed at one of the possible client audiences
described above. This presentation should indicate which dilutions provide reliable data
for estimating total virus titer. Include any summary tables and graphs you feel are
appropriate.

REFERENCES
Lin, Lawrence I-Kuei (1992), "Assay Validation Using the Concordance Correlation

Coefficient," Biometrics, 48, pp. 599-604.
Chow, Shein-Chung and Tse, Siu-Keung (1991), "On the Estimation of Total Variability in

Assay Validation," Statistics in Medicine, 10, pp. 1543-1553.
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NOTES TO THE INSTRUCTOR

Level of Case

The two aspects of this case, Linearity/Proportionality and Precision, can be directed at
two different audiences. The Linearity/Proportionality part can be used in a general
introductory statistics class. The Precision part is appropriate for an intermediate level
methods class for majors/minors in statistics. Both parts can be used in this latter class and
can reinforce the idea that several different data sets and analyses may be necessary to look
at a problem.

Necessary Tools

For the Linearity/Proportionality part students will need to be able to plot bivariate data
and do simple linear regression including residual plots. At the general introductory level,
students may have difficulty with the idea of logarithms. For the Precision part, analysis of
variance including the ideas of random effects models and variance components are
necessary.

Objectives

To show students an application of linear regression that is somewhat nonstandard
in that one must first transform the response to achieve a linear pattern in the data.
To indicate how quantifying sources of variation can affect how one views the data
and its use in other analyses.

Comments and Suggestions for the Instructor

The general idea of assuring that biological products are safe from viral
contamination should be of interest to the students. The need for an accurate and
precise assay method can be further motivated by the example of the development
of an artificial blood substitute. This blood substitute shows great promise because
it has a longer shelf life than natural blood products and has biological properties
that make it particularly useful for victims of heart attack and stroke. The artificial
blood substitute is manufactured from human red blood cells, so it is particularly
important that the manufacturing process destroys any viral contamination in those
cells. The assay validation techniques are applicable in this problem of assuring
the ability of the manufacturing process to inactivate any viral contamination.
The material described in Linearity/Proportionality can be covered in one class
period. Analysis of other samples can be assigned as homework. There is the
opportunity to assign teams to each of the remaining eight samples and to have the
teams report their results. This provides the opportunity to discuss the different
estimates each team gets, where that variability in estimates is coming from, and
how one might combine the data to get a single estimate. If you use the
Linearity/Proportionality data in the intermediate level class, you can also discuss
the idea of lack of fit for the regression model. Since one has multiple samples at
each dilution, the within sample variation can be used to estimate replication (pure)
error. One can also measure the inability of a straight line to describe the
relationship between the dilution and the response (lack of fit). For the material
described in Precision, the data for dilution 3 can be analyzed in class to
demonstrate the idea of analysis of variance and estimating variance components.
The other dilution levels 4, 5, 6, and 7 can be assigned as homework. You can have
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teams of students assigned to each of the dilution levels and have each team
present their results.

Typical Results

Linearity/Proportionality: The plot of PFUs/mL vs. dilution shows a very steep
curved relationship. A straight line will not do a very good job. However, the plot
of log(PFUs/mL) versus dilution is fairly linear for dilutions 3, 4, 5, and 6 but then
bottoms out for dilutions 7, 8, and 9. The linear regression of log(PFUs/mL) on
dilutions 3,4,5, and 6 is quite good; R2 = 0.956. That is, 95.6% of the variability in
log(PFUs/mL) can be explained by the linear relationship with dilution. The

regression equation is Y = 3.47-0.53*dilution. The intercept 3.47 is the
log(PFUs/mL) when the dilution is zero. The slope is the average change in
log(PFUs/mL) for a unit change in dilution. Since the reduction at each dilution
produces approximately 1/3 as much viral contamination, the slope should be
approximately log(l/3). The estimate of total viral titer is ioa47~" = 295 million
particles per mL. The plot of residuals versus dilution shows a characteristic
fanning or megaphone pattern. As the dilution increases the variation in the
residuals also increases. This is most apparent for dilution 6. The full analysis of
variance table, including Lack of Fit, is given in Table 5.

Table 5. Analysis of variance for linear regression q/log|0 (PFU) on dilution.

Source df Sum of Squares Mean Square F-value

The regression is clearly significant and there is no indication of lack of fit.

Precision For Dilution 3; the analysis of variance is given in Table 6.

Table 6. Analysis of variance and variance components for sample 1.

Source
Sample

Error

Total

Df
8

27

35

Sum of Squares
8699.5

2260.5

10960.0

Mean Square
1087.4

83.7

Variance Components
<j;(w//;/( = 250.93

<r2 =83.72

dlimi,,f+d- -334.65

The estimate of total variance is 334.65. The total SD is V334.6 = 18.29 and CV
(18.29/55.00)100% = 33.3%. The other dilutions are summarized in Table 7.

Table 7. Summary of precision analyses for dilutions 3 through 9.

Dilution
3
4

tf;,,,,,/,
250.93(75%)

8.69(32%)

3~
83.72( 25%)
18.81(68%)

Total
Variance
334.65

27.50

Total
SD
18.29
5.24

mean
55.00
19.36

CV
33.3%
27.1%

Regression
Lack of Fit
Pure Error

Total

1
2
12
15

5.6426
0.0056
0.2563
5.9045

5.6426
0.0028
0.0214

263.7
0.13
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Dilution
5
6
7
8
9

tL*
0.02( 0%)
0.43(23%)
0.25(27%)
0.00( 0%)
0.00( 0%)

(T2

4.64(100%)
1.41(77%)
0.67( 73%)

0.25(100%)
0.03(100%)

Total
Variance

4.66
1.84
0.92
0.25
0.03

Total
SD
2.16
1.36
0.96
0.50
0.17

mean
5.53
1.56
0.72
0.25
0.03

cv
39.1%
87.2%

133.3%
200.0%
566.7%

Given the values of CV, only dilutions 3, 4, and 5 should be used in establishing the
total viral titer. With this additional information, the Linearity/ Proportionality part of the
case study may be revisited and a new regression line fit using only dilutions 3, 4, and 5.

With only these data the new regression equation for sample 1 is Y = 3.54 —0.55*dilution.
The estimated total viral titer is 10(3'54~" = 347 million particles per mL.

PFUs/mL for nine samples: BVDV

Dilution: 3

Sample

Analysis of Variance (Balanced Designs)

Factor Type Levels Values
Sample Random 9 1 2 3 4 5 6 7 8 9
Data for Assay Validation: BVDV

Analysis of Variance for PFU3

Source
Sample
Error
Total

Source

1 Sample
2 Error

DF
8

27
35

SS
8699.5
2260.5
10960.0

MS F P
1087.4 12.99 0.000

83.7

Variance Error Expected Mean Square
Component Term (Using Unrestricted Model)

250.93 2 (2) + 4.0000(1)
83.72 (2)
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Y=log(PFUs/ml_) versus dilution

Assay Validation: BVDV, sample 1

Dilution

Regression Analysis

The regression equation is
log(PFU) = 3.47 - 0.531 dilution

Predictor Coef StDev
Constant 3.4686 0.1418
dilution -0.53116 0.03058

S = 0.1368 R-Sq - 95.6%

Analysis of Variance

T
24.46
-17.37

P
0.000
0.000

R-Sq(adj) = 95.2!

Source
Regression
Error
Total

DF
1

14
15

SS
5.6426
0.2618
5.9045

MS
5.6426
0.0187

F
301.69

P
0.000

Unusual Observations
Obs dilution log(PFU) Fit
13 6.00 0.6021 0.2817
14 6.00 0.0000 0.2817

StDev Fit Residual St Resid
0.0572 0.3204 2.58R
0.0572 -0.2817 -2.27R

R denotes an observation with a large standardized residual



86 Lin and Stephenson

Regression of Y=log(PFUs/ml_) on dilution

Y = 3.46861 - 0.531160X

R-Sq = 0.956

dilution

Residuals versus dilution
Assay Validation: BVDV, sample 1

Dilution
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Data for Assay Validation: BVDV

Sample
1
1
1
1
1
1
1
2
7
7

7

2
2
7

3
3
3
3
3
3
3
4
4
4
4
4
4
4
5
5
5
5
5
5
5
6
6
6
6
6
6
6
7
7
7
7
7
7
7
8
8
8
8
8
8
8
9
9
9
9
9
9
9

Dilution
3
4
5
6
7
8
9
3
4
5
6
7
8
9
3
4
5
6
7
8
9
3
4
5
6
7
8
9
3
4
5
6
7
8
9
3
4
5
6
7
8
9
3
4
5
6
7
8
9
3
4
5
6
7
8
9
3
4
5
6
7
8
9

PFUs/mL
75
24
4
4
0
0
0
55
23
8
0
0
0
0
63
18
9
0
3
0
0
105
25
10
7

1

0
0
63
16
4
3
7

1

0
39
18
4
1
7

1

0
36
20
7
0
7

0
0
45
14
5
1
(I
0
0
30
16
5
1
0
1
0

66
18
6
1
0
7

0
43
13
2
2
0
0
0
57
20
6
3
2
0
0
70
21
7
T

0
0
0
59
12
5
2
7

0
0
47
8
8
0
0
0
0
38
17
7
0
0
0
0
56
18
9
5
0
0
0
46
17
5
1
0
0
0

84
27
8
2
0
0
0
33
24
1
1
0
0
0
54
27
9
1
1
1
1
87
33
4
1
0
0
0
66
21
4
5
1
1
0
46
21
5
1
0
0
0
52
1 1
5
1
1
0
0
34
14
4
1
2
0
0
45
15
5
0
0
0
0

82
21
7
7

1

1

0
35
17
4
2
1
0
0
65
23
4
7

0
0
0
73
28
4
4
1
0
0
61
20
4
2
3
0
0
53
19
8
0
0
0
0
38
15
T

1

0
(1
0
30
~>~>

6
1
1
1
0

49
21
4
1
0
0
0
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CHAPTER 8

CONTROL CHARTS FOR QUALITY
CHARACTERISTICS UNDER

NONNORMAL DISTRIBUTIONS
Youn-Min Chou, Galen D. Halverson, and Steve T. Mandraccia

When using Shewhart control charts, the underlying distribution of the quality

characteristic must be at least approximately normal. In many processes, the assumption of

normality is violated or unjustifiable. If the quality characteristic is not so distributed, then

the control limits may be entirely inappropriate, and we may be seriously misled by using

these control charts. In this case study, we discuss several "state of the art" curve-fitting

methods for improving the technical validity of control charts for the nonnormal situation.

We also compare their practical application qualities using data from the semiconductor

industry.

INTRODUCTION
To set up a control chart for the particle counts, the control limits may be calculated

according to historical data from the particle count database. Two frequently used charts
for particle counts are the c (or number of particles per wafer) chart and the x (or individual
measurements) chart. See [Montgomery, 1996]. The basic probability models used for
these charts are, respectively, the Poisson distribution and the normal distribution.

In many practical situations, these models may not be appropriate. In such cases, the
conclusions drawn from the analysis will be invalid. To solve these problems, we propose
to transform data to near normality and then apply the normal-based control charts to the
transformed data.

BACKGROUND INFORMATION
Statistical process control techniques have been employed in manufacturing industries

to maintain and improve quality by applying statistical methods to the data collected from a
process. Control charts are utilized to monitor the process so that out-of-control conditions
can be readily observed. Such monitors are effective because they also provide the process

89
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engineers with information to identify the causes of the process change and take
appropriate action to improve the process. The process may then be adjusted before an
excessive number of defective items are produced.

With semiconductor integrated circuit manufacturing entering the sub-half micron
era (a half-micron is approximately 20 microinches), smaller critical dimensions (such as
the line width and length of a transistor gate) make it increasingly important to closely
monitor the process steps by control charting the number of particles on wafers. A wafer is
a thin slice of silicon crystal substrate on which several hundred circuits are built. Particles
on the wafer surface can lead to failure of the electronic circuit and loss of yield (or
percentage of acceptable items). Particles deposited on a wafer surface can be generated
by several sources; the manufacturing environment, including people working in the
manufacturing area; by the equipment used to manufacture the wafer; and by wafer
handling. In particular, equipment-generated particles can be one of the main causes of
yield loss. Particle control is a major factor for yield, quality, and reliability. See [Mori,
Keeton, and Morrison, 1993]. Therefore, quality improvement of the manufacturing
process is of the utmost importance.

Particles generated by the process equipment generally are caused by mechanical
operations such as wafer handling, wafer rotation and axis tilt, pumping and venting, and
valve operations. In addition, particles can be generated by the chemical and physical
reactions of the manufacturing process itself. To minimize particles from these sources,
the equipment must be routinely monitored to ensure proper operation. A nonproduction
surrogate or test wafer is an unpatterned wafer that has been analyzed by a laser-scanning
device and found to contain few or no particles. This wafer is then cycled through the
process equipment to simulate the conditions production wafers are exposed to. The wafer
is reanalyzed by the laser scanning device and any particles found are categorized by size
and location and recorded in a database.

The variable charted will be the number of particles per wafer. The control chart for
this variable is usually called the c chart. The Poisson distribution is assumed when using a
c chart. In order for the Poisson distribution to apply, three conditions must be satisfied:
(a) the defects (or particles) must occur independently of each other, (b) the number of
potential locations for defects must be infinitely large, and (c) the probability of occurrence
of a defect at any location must be a small constant. In some practical situations, these
conditions may not be satisfied. For example, there are particle count data sets, in which
the Poisson model is inappropriate.

Another approach would be to use the x or individual measurements chart. In using the
x chart, a common and often implicit assumption is that the data are taken from a normal
distribution. Unfortunately, this assumption may not be valid. If the data are not from a
normal distribution, especially when the underlying distribution is heavily skewed, then the
control chart can yield misleading results.

To solve these problems, we transform the original variable to a normal variable. This
method has many advantages, notably that the evaluation of the distribution function of the
transformed variable is straightforward since tables of the standard normal distribution
function and its allied functions are available. In this case study, we will consider several
transformations including the Johnson system and the logarithmic and square root
transformations. See [Johnson, 1949]. Goodness-of-fit tests, such as chi-square and
Shapiro-Wilk, can be used to compare the transformations. See [Shapiro and Wilk, 1965].
The approach is to compute a test score of normality and the associated /7-value for each
trial transformation. By selecting the highest score or p-value among all trial
transformations, one can determine the transformation, along with its parameter estimates,
that best fits the data.
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Transformations must pass practical criteria too. The selected method must deal reasonably
with type I and type II errors—it must detect out-of-control conditions but not send too many
false alarms that would desensitize process engineers who monitor charts. The selected method
must be easily applied using available tools such as software in the manufacturing environment
The method must be easily understood so that, for example, members who use the method can
readily distinguish if an unusual or "outlier" datum is distorting results.

QUESTIONS OF INTEREST
1. If a Poisson or normal model does not adequately describe the particle count data, what can

be done about it?
2. One approach to question (a) would be to transform the original random variable to a near-

normal variable. How do you find the transformation that best fits the data?
3. How do you find a transformation that can be practically applied?

DATA
Name of Data File: Case08.txt

A piece of new equipment in critical process steps is selected for study. Scanning wafers
before and after a process step will reveal the equipment-generated particle counts. The data
of equipment-generated particle counts on wafers are recorded and stored in a real-time on-
line computer system. A random sample of size 116 is selected from the database. The
consecutive numbers in the sample are taken about four days apart. We verify that data are
accurate by checking the equipment status log history with the engineers.

Variable Name Description
particle count equipment-generated particle count per wafer on a piece of equipment

Notation

X - equipment-generated particle count per wafer
Z = the transformed variable from X

Data

Wafer Number Particle Count (X)
1 27
2 16
3 16
4 34
5 14
6 13
7 10

114 19
115 8
116 9
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ANALYSIS
The purpose of the analysis is to find out whether the process involving the selected

equipment is in control and what areas need improvement. The data set consists of a
random sample associated with an unknown distribution. We proceed as follows.

Step 1. Looking at the histogram in Fig. 1,
Poisson or normally distributed?

do the data appear to be

X

Fig. 1. Frequency histogram for X data.

To test that the null hypothesis Ho: X has a Poisson distribution versus the alternative
hypothesis Ha: X does not have a Poisson distribution, we use [STATGRAPHICS, 1993].
We choose 21 class intervals with a starting point 0 and class width 80/21 = 3.8095. A chi-
square goodness-of-fit test of Poisson distribution yields the following:

Chi-square = 216.595 with 3 degrees of freedom (d.f.) and/?-value < 0.0001.
This means that the data set does not come from a Poisson distribution. In the

following discussion, the chi-square tests for normality will also be performed using
STATGRAPHICS.

There are many tests for normality. For example, the chi-square test is widely used.
The Shapiro-Wilk test has excellent properties compared to other normality tests. See
[Shapiro, 1990]. The chi-square test depends on the number and width of class intervals.
The Shapiro-Wilk test is more powerful than the chi-square test. Note that the Shapiro-
Wilk test is available in statistical software packages such as JMP [Sail and Lehman, 1996]
andMINITAB [McKenzie, Schaefer, andFarber, 1995].

For the X data, we test that Ho: X has a normal distribution against Ha: X does not have
a normal distribution. We use 21 class intervals with a starting point 0 and class width
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80/21 = 3.8095 for the chi-square test. Tests of normality on the particle count data yield
the following results:

Chi-square = 82.6951 with 8 d.f. andp-value < 0.00001.
W= 0.7812 andp-value < 0.00001, where Wis the Shapiro-Wilk test.

Clearly, the data are not from a normal distribution because the /7-values are extremely
low. The rejection of the normal model leads us to transform the data so that the
transformed data may be nearly normally distributed.

Step 2. What transformations are applied?

Three transformations are proposed here which will subsequently be evaluated for their
fit to a normal distribution:
1. Johnson system of distributions.
2. Logarithmic transformation.
3. Square-root transformation.

Step 3. The results for the transformed data are as follows:

1. Johnson transformation: See [Chou et al., 1994] and [Chou and Polansky, 1996].
For the X data, the best-fit Johnson transformation is given by

Z = 2.5350 + 1.1155 ln((X - 2.2369)7(124.4346 - X)) for
2.2369 <X< 124.4346.

For the Z data, we use 21 class intervals with a starting point -4.0 and class width 8/21
= 0.381 for the chi-square test. Tests of normality on Z give the following:

Chi-square = 8.5882 with 8 d.f. andp-value = 0.378.
W= 0.9768 and/7-value = 0.3221.

2. Logarithmic transformation:
For the X data, the logarithmic transformation is Z = \n(X). For the Z data, we use 21
class intervals with a starting point 0 and class width 5/21 = 0.2381 for the chi-square
test. Tests of normality on Z yield the following:

Chi-square = 13.0802 with 8 d.f. and p-value = 0.109.
W = 0.9711 and p-value = 0.1251.

3. Square-root transformation:
For the X data, Z = (X)l/2. For the Z data, we use 21 class intervals with a starting
point 0 and class width 10/21 = 0.4762 for the chi-square test. Tests of normality on Z
yield the following results:

Chi-square = 24.034 with 8 d.f. and /7-value = 0.002.
W = 0.9089 and p-value < 0.0001.

Step 4. Examine the results in Step 3. Do the transformed data appear
to be normally distributed?

1. Johnson transformation: Refer to Step 3. We see that the p-values are well above 0.05, and
hence we would not reject the hypothesis of a normal model for the transformed data.

2. Logarithmic transformation: Refer to Step 3. We note that the /7-values are above 0.05, and
hence we would not reject the hypothesis of a normal model for the transformed data.

3. Square-root transformation: Refer to Step 3. We note that the ^-values are well below .05,
meaning that the normal model does not fit the transformed data well.
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Step 5. What is the transformation that best fits the data?

We select the best-fit transformation that corresponds to a maximum p-value among all
transformations under consideration. For the X data, the best-fit transformation is the
Johnson transformation given in Step 3. The histogram for the transformed data is
displayed in Fig. 2.

Z

Fig. 2. Frequency histogram for Johnson transformed Z data.

Step 6. Control chart for the transformed data:
The transformed data are calculated based on the equation

Z = 2.5350 + 1.1155 ln((X - 2.2369)7(124.4346 - X))
for 2.2369 <X< 124.4346.
The moving range (MR) chart for Z has

center line (CL) = 1.25568,
upper control limit (UCL) = 4.10230,
lower control limit (LCL) = 0.

The MR chart for Z is in control and the estimated process standard deviation (or
sigma) is 1.11319.

The control chart for Z has
CL = the average of 116 Z values = -0.09259,
UCL = CL + 3 sigma = 3.24698,
LCL = CL - 3 sigma = -3.43216

and is shown in Fig. 3. The Z chart is in control and the estimated process mean is -0.09259.
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Observa t ion N u m b e r

Fig. 3. Control chart for Z.

Step 7. Control chart for the raw data:
We can express X in terms of Z as

X= 124.4346- 122.1978/{exp[(Z-2.5350)71.11551+ M-
The control chart for X in Fig. 4 has

CL = 12.8216 or 13, since particle count data are integers,
UCL = 82.1991 or 82,
LCL = 2.8146or3.

O b s e r v a t i o n N u m b e r

Fig. 4. Control chart for X.
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Although we could draw conclusions from the control charts at Step 6, we would like to
include Step 7 in order to show the following.

Clearly, the control limits for the original variable X are not symmetrical about the
center line. This suggests that the 3-sigma control limits should not be applied directly to
the nonnormal data. We must transform the nonnormal data to nearly normal and then use
the 3-sigma limits for the transformed data.

The Johnson transformation from X to Z is an increasing function. This means that
large (or small) values of X correspond to large (or small) Z values. If a point is outside the
control limits of the Z chart, it also falls outside the control limits for the X chart.
Therefore, it suffices to use the Z chart in Step 6 to draw conclusions.

CONCLUSIONS
There are many useful distributions besides those that are so commonly used, the

normal and the Poisson distributions. Conventional Shewhart control charts can be used
for process control. However, failure to understand nonnormality leads to over control or
under control of the manufacturing process. This discussion demonstrates the various
transformations applied to nonnormal data in conjunction with goodness-of-fit tests on
whether the data become nearly normal through transformation. The transformation
yielding the best fit among the transformations tried will be chosen for the data.

Based on this study, it is clear that with relative ease, quality engineers can produce
control charts under nonnormal distributions. It is hoped that this presentation will
encourage more practitioners to check the validity of the assumptions for any statistical
method before applying it.
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NOTES TO THE INSTRUCTOR

Level of Case

The case is intended for junior, senior, and graduate students in statistics, engineering,
and science; for industrial courses; and also for self-study by those in industry.

Necessary Tools

It is assumed that the student has some background in statistics including control charts.

Objectives

The objectives of the case study are
To provide students with a fundamental understanding of the statistical techniques
necessary to deal with practical problems, and
To show quality engineers how to choose an appropriate statistical model and use
it in the evaluation of problems related to the manufacturing process.

Comments and Suggestions for the Instructor

The lecture should emphasize principles rather than too many details. To use this case
study as "a recipe," the procedure seen in the case study may guide in the selection of an
appropriate model. Although there is a major portion of the case study devoted to quality
control, the methods covered can be used when a distributional fit must be evolved from a
given data set. In manufacturing industries, automation pertains to the technique of making
a device, machine, process, or procedure more fully automatic. Some attention should be
given to the automation in industry. Statistical packages such as IMP, MINITAB, and
STATGRAPHICS are available for use with the case study.

Questions may be similar in format to those in this case study. Some sample questions are
Does it appear from the histogram that the distributional model can be assumed to
be normal?
If not, what recommendations would you make?
What goodness-of-fit tests do you use and what are your conclusions?
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CHAPTER 9

EVALUATION OF SOUND TO
IMPROVE CUSTOMER VALUE

John R. Voit and Esteban Walker

The rumble of a motor, the tick of a clock, the hum of a generator are all product sounds

that are not necessary for product performance. Some of these unnecessary noises may be

pleasant to the consumer, whereas others may be annoying or even intolerable.

Unfortunately, "pleasantness" is inherently a subjective characteristic and thus is difficult

to measure reliably. Subjective characteristics are often evaluated through a panel of

judges using a method to rank the items. There is little information on which method

provides the most reliable and consistent rankings. This article compares two subjective

evaluation methods commonly used by panels of judges to rate noises. Using data from a

manufacturing process, the methods are compared on the basis of

Consistency of judges within panels,
Consistency of panels over time,
Agreement between an expert panel and a nonexpert panel.

INTRODUCTION
There exists an increased need in the engineering community to evaluate noise

"quality" to justify adding unit cost to better satisfy the consumer. For instance, the sound
of a car air conditioning (AC) system is known to be annoying to some customers. This
fact has been conveyed through warranty claims for noise complaints and customer clinics,
where people were asked about their AC units. The engineers have several design options
that will reduce the noise generated by the AC unit; however, all will increase the cost of
production.

With a reliable method to evaluate the AC unit noise, engineers and managers would be
better able to determine the option that represents the best value to the consumer. The
same principles can be applied to other products where costly design changes are
considered to reduce objectionable noises.
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BACKGROUND INFORMATION
Two procedures have gained widespread use for the evaluation of noise. Both methods

rely on a panel of evaluators listening to sounds and registering an opinion. The purpose of
this paper is to compare these methods with respect to several criteria. The noises involved
in this study were produced by different car AC motors.

The first procedure is the "paired comparison" (PC) method. In this method, each
judge listens to pairs of sounds and chooses the one that is more "pleasant." The total
number of comparisons for each judge is, therefore, k(k-\}!2, where k is the number of
sounds. For every judge, the number of marks for each sound is totaled. A 1 is added to
each of these totals in order to transform them into ranks. The ranks are then summed
across the judges to get a panel score.

The second procedure considered is the "Free Scale" (FS) method. This method
consists of listening to a series of sounds and asking each judge to assign an arbitrary score
(higher for more pleasant) to the first sound heard and then to assign scores to the other
sounds relative to each other. Each sound is repeated p times and the order is randomized.
The total number of sounds that each judge hears is pk. To eliminate the effect of scale, the
scores for each sound are standardized so that the maximum is 1 and the minimum 0. These
standardized scores are averaged for each sound and transformed into midranks to create
each judge's ranking. A panel score is obtained by averaging the rankings across judges.

In order to evaluate the consistency of ratings for both methods, two panels of judges
were formed. The members of the first "expert" panel were engineers who are familiar
with the nature of the sounds and the rating procedures. The second "nonexpert" panel
was formed with students of the M. S. program in Statistics at the University of Tennessee.
These students were unfamiliar with both the sounds and the rating procedures. The
purpose was to create a panel of judges that would be more similar to the average car
buyer.

Each panel consisted of seven judges who rated twelve sounds with each method. The
procedure was repeated approximately one month later with different randomizations of the
sounds. High quality Digital Audio Tapes (DAT) and equipment were used throughout the
study. Special care was taken to ensure that the volume was constant throughout the tapes.
The same equipment was used for both panels.

QUESTIONS OF INTEREST
The main objective of the study was to determine if one of the methods was superior to

the other. The criteria used to compare the methods were
Consistency of judges within panels,
Consistency of panels over time,
Agreement between an expert panel and a nonexpert panel.

For example, does a panel have "an opinion?" That is, is there agreement among the
judges? Does a panel have the same opinion throughout time? Do the two panels (expert
and nonexpert) have similar opinions?

DATA
Tables 1 and 2 display the number of votes given by each judge to the sounds for each

session using the PC method.
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Table 1. Votes assigned by the nonexpert panel using the PC method in the two sessions.

Sound

1
2
3
4
5
6
7
8
9
10
11
12

1
Session
1 2
5 7
10 11
5 3
9 6
9 10
7 7
9 7
5 4
2 6
4 4
1 1
0 0

2
Session

1 2
3 2
10 4
8 6
10 6
9 5
6 9
7 6
4 10
4 5
3 9
2 4
0 0

3
Session
1 2
5 5
6 6
8 7
4 8
4 7
8 6
5 5
8 8
6 6
8 5
4 3
0 0

Judge
4

Session
1 2
6 10
9 9
5 4
7 8
11 7
8 7
5 6
7 5
5 5
2 4
1 1
0 0

5
Session
1 2
6 6
8 11
6 7
10 9
11 9
8 6
7 7
3 4
1 2
4 4
2 1
0 0

6
Session
1 2
8 3
7 7
4 6
8 8
11 10
5 6
9 5
5 8
2 6
6 6
1 1
0 0

7
Session
1 2
3 4
9 8
7 6
5 7
11 6
7 9
5 6
9 8
5 7
4 4
1 1
0 0

Table 2. Voto assigned bv the expert panel using the PC method in the two sessions.

Sound

1
2
3
4
5
6
7
8
9
10
11
12

1
Session

1 2
9 5
9 10
7 7
9 8
10 11
5 6
7 8
2 4
3 2
4 4
1 1
0 0

2
Session
1 2
5 5
9 10
6 9
7 8
9 10
7 5
9 7
8 5
3 3
2 3
1 1
0 0

3
Session
1 2

11 10
8 9
7 10
9 8
10 8
4 5
6 6
5 3
3 3
2 3
1 1
0 0

Judge
4

Session
1 2
9 10
10 10
7 8
8 7
10 8
5 5
6 8
4 2
3 4
3 3
1 1
0 0

5
Session
1 2
6 4
6 7
6 7
10 10
11 10
7 6
8 5
5 9
4 5
2 2
1 1
0 0

6
Session
1 2
8 7
9 10
6 6
9 10
10 10
7 5
6 4
4 5
3 4
3 4
1 1
0 0

7
Session
1 2
7 8
9 9
7 7
9 8
10 11
6 6
5 6
4 2
3 5
5 3
1 1
0 0

In order to compare the two methods, the scores from the FS method were transformed
into the ranks given in Tables 3 and 4. The standardized scores appear in the Appendix.
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Table 3. Midranks assigned by the nonexpert panel using the FS method in the two sessions (higher
ranks correspond to "better" sounds).

Sound

1
2
3
4
5
6
7
8
9
10
11
12

Judge
1

Session
1 2
10 3
7 9.5

3.5 7.5
10 12
12 9.5
8 5
10 5
3.5 11
5.5 7.5
5.5 5
2 2
1 1

2
Session
1 2

10 4
12 4
8 6
9 7.5
11 1.5
4.5 7.5
7 12
3 10.5
2 10.5

4.5 9
6 1.5
1 4

3
Session
1 2
9 8
12 11
6.5 3
6.5 9.5
10.5 12

3 9.5
10.5 6.5
4 6.5

6.5 4.5
6.5 4.5
2 2
1 1

4
Session
1 2

9.5 12
11.5 10.5
6.5 4.5
6.5 9
11.5 10.5
6.5 7
9.5 7
6.5 4.5
3 7
4 3
2 2
1 1

5
Session
1 2

8.5 5.5
10.5 8
10.5 12

6 10.5
12 10.5
6 8
6 8
3 3.5
4 3.5

8.5 5.5
2 2
1 1

6
Session
1 2

11 3
10 6.5
7.5 6.5
6 12
12 10.5
7.5 6.5
4 6.5
4 10.5
9 6.5
4 6.5
2 2
1 1

7
Session
1 2
6 3.5

8.5 10.5
7 7

4.5 9
12 12
8.5 7
10.5 3.5
10.5 10.5
4.5 7
3 5
2 1.5
1 1.5

Table 4. Midranks assigned by the expert panel using the FS method in the two sessions (higher
ranks correspond to "better " sounds).

Sound

1
2
3
4
5
6
7
8
9
10
11
12

1
Session
1 2

10.5 10.5
9 8
6 10.5

10.5 10.5
12 10.5
6 4.5
6 7
6 4.5
3 4.5
6 4.5
2 1.5
1 1.5

2
Session
1 2
8 5

10.5 10
10.5 12
10.5 11
10.5 9
4.5 8
7 6

4.5 3
4.5 4
4.5 7
2 2
1 1

3
Session
1 2

12 12
11 11
9 9.5
10 7.5
8 9.5
7 6
6 7.5
5 5
4 3.5
3 3.5

1.5 2
1.5 1

Judge
4

Session
1 2
7 8
11 9.5
9 12
12 7
10 9.5
5 5
8 11
4 2
3 3
6 6
2 4
1 1

5
Session
1 2

12 8
5.5 8
10 3
9 10.5
11 8
8 12
7 5
3 5
4 10.5

5.5 5
2 2
1 1

6
Session
1 2

10.5 10
8 11.5
7 5
9 11.5
12 8
5.5 3
10.5 9
5.5 7
4 6
3 4
2 2
1 1

7
Session
1 2

8.5 12
11 10.5
8.5 8.5
12 8.5
10 10.5
6 6
7 7
5 5
3 4
4 3

1.5 2
1.5 1

ANALYSIS
Panel scores were obtained for each session of both the FS and PC method. These

scores were calculated by summing ranks across all evaluators (within a panel) for each
sound (Tables 5 and 6). To transform the votes for individual judges into ranks (from 1 to
12), the scores for the PC method were obtained by adding seven to the total number of
votes.
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Table 5. PC scores for each panel (N = nonexpert, E = expert) and each session (1,2).

Rank

1
2
3
4
5
6
7
8
9
10
1 1
12

Sound
ID
5
2
4
6
7
3
8
1
10
9
11
12

PCN1

73
66
60
56
54
50
48
43
38
32
19
7

Sound PCN2
ID
2 63
5 61
4 59
6 57
8 54
7 49
3 46
1 44
9 44
10 43
11 19
12 7

Sound PCE1
ID
5 77
4 68
2 67
1 62
7 54
3 53
6 48
8 39
9 29
10 28
11 14
12 7

Sound PCE2
ID
5 75
2 72
4 66
3 61
1 56
7 51
6 45
8 37
9 33
10 29
11 14
12 7

Table 6. FS scores for each panel (N = nonexpert, E - expert) and each session (1,2).

Rank

1
2
3
4
5
6
7
8
9
10
11
12

Sound FSN1
ID
5 81
2 71.5
1 64
7 57.5
3 49.5
4 48.5
6 44
10 36
8 34.5
9 34.5
11 18
12 7

Sound FSN2
ID
4 69.5
5 66.5
2 60
8 57
6 50.5
7 48.5
3 46.5
9 46.5
1 39
10 38.5
11 13
12 10.5

Sound FSE1
ID
5 73.5
4 73
1 68.5
2 66
3 60
7 51.5
6 42
8 33
10 32
9 25.5
11 13
12 8

Sound FSE2
ID
2 68.5
4 66.5
1 65.5
5 65
3 60.5
7 52.5
6 44.5
9 35.5
10 33
8 31.5
11 15.5
12 7.5

The scores from the previous tables were plotted to investigate the agreement between
the panels for each evaluation method (Figures 1 and 2). It was noted that sounds 11 and
12 (shown by "x") scored in the bottom two positions, regardless of evaluation method,
panel, or session. These sounds were eliminated from future calculations because the
engineering objective was to understand the differences between the evaluation methods
when the sounds were difficult to discern, not when the sounds were clearly unpleasant.
From a statistical point of view, these sounds were highly influential, and it was considered
that more truthful measures of consistency and agreement were obtained by eliminating
these influential points.
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Fig. 2. Scatterplots of FS scores between panels and across time.

Fig. 1. Scatterplots of PC scores between panels and across time.
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Kendall's W coefficient of concordance was used to measure the internal consistency
(agreement) among judges' rankings within a panel. The coefficient is defined as

where Rj is the sum of the ranks for the y'th sound, n is the number of judges, and k is the
number of sounds tested. Another form of this coefficient that sheds some light on its
meaning (see [Hettmansperger, 1984, p. 210]) is

where rnr is the average of the Spearman correlation between the ranks assigned by each

pair of judges (see Tables 1 and 2).
It can be shown that Kendall's W varies between 0, when concordance is null, and 1,

when concordance is perfect among the judges. Null concordance is interpreted to mean
that the judges assign ranks at random to the sounds. As W increases, the opinion of the
panel members is more consistent. The hypothesis of no concordance (opinion) within a
panel can be tested using a Chi-square test. Under the null hypothesis of null concordance,
W*(n(k—\)) is distributed as a Chi-square with k-\ degrees of freedom (see
[Hettmansperger, 1984, p. 211]).

The values of W for the PC method appear on the diagonal of Table 7. For the expert
panel the values were .7831 and .7114 for sessions 1 and 2, respectively. The
corresponding values for the nonexpert panel were .3880 and .2875. All these values were
significant at the .05 level, indicating that both panels had internal consistency. However,
the expert panel was considerably more internally consistent than the nonexpert panel.

To evaluate agreement between panels for the PC method, the Spearman correlation of
the scores (Tables 5 and 6) was computed between each pair of panels. These values
appear in the off-diagonal of Table 7. The results suggest significant agreement between
the panels and sessions (p < .05).

Table 7. Concordance within and between panels using the PC method without sounds 11 and 12. P
values in parentheses.

Expert ( 1 )

Expert (2)

Nonexpert ( 1 )

Nonexpert (2)

Expert ( 1 )
.7831

«.0001)
.9848

(<.0001)
.7195

(.0190)
.8146

(.0041)

Panel

Expert (2)

.7114
(<.0001)

.7477
(.0129)
.8424

(.0022)

(Session)

Nonexpert ( 1 )

.3880
(.0037)
.9301

(<.0001)

Nonexpert (2)

.2875
(.0339)

The same procedure was used to evaluate consistency for the FS method (Tables 3 and
4). The results appear in Table 8. As before, the internal consistency (diagonal values) was
significant in all instances, with higher concordance associated with the expert panel.
However, none of the concordance values involving the nonexpert panel in session 2 were
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significant at the .05 level. This result indicates that, while the nonexpert panel in session 2
was consistent internally, its ranks did not agree with the rest of the panels.

Table 8. Concordance within and between panels using the FS method without sounds 11 and 12. P
values in parentheses.

Expert (1)

Expert (2)

Nonexpert (1)

Nonexpert (2)

Expert (1)
.7727

(<.0001)
.8424

(.0022)
.8328
(0028)
.5593

(.0928)

Panel

Expert (2)

.6183
(<.0001)

.7964
(.0058)
.4377

(.2058)

(Session)

Nonexpert (1)

.5745
(<.0001)

.2957
(.4068)

Nonexpert (2)

.2870
(.0342)

During the analyses, it was noted that in some sessions, some judges dissented
considerably from the rest. The scores of these judges had a sizable impact on the
measures of concordance. For example, by eliminating one nonexpert judge from the
second session, the internal consistency measured by Kendall's W increased from .2875 to
.4111 and from .2870 to .4802 for the PC and FS methods, respectively.

CONCLUSIONS
This investigation compared two subjective noise evaluation methods and two panels of

judges. The PC method is significantly easier to analyze since the votes can be used
directly as ranks, whereas the FS method calls for standardization of the scores (see
Appendix Tables Al and A2). Analyses using nonparametric statistics based on ranks
yielded the following:

The expert panel was more internally consistent than the nonexpert panel,
regardless of the evaluation method.
For both methods, the expert panel was consistent over time. However, the
nonexpert panel was only consistent over time using the PC method.
There was agreement between the two panels for the PC method. The same cannot
be stated for the FS method.
Clearly inferior (or superior) sounds can have a strong incremental and misleading
effect on the measures of agreement.
A single dissenting judge can notably affect the panel's internal consistency and
presumably the level of agreement between panels.

Based on these findings, if nonexpert judges are involved in a panel evaluation, the PC
method should be used to increase the internal consistency and consistency over time. A
decision should be made on whether to include dissenting judges and clearly different
items in the analysis, since these can have a considerable effect on the level of
concordance. For example, a hearing deficit is a valid reason to eliminate a judge's scores.

The ultimate validation of subjective scores would be their correlation with objective
noise measures like amplitude, frequency, etc. If these correlations can be established, then
objective measures of noise quality could be devised.
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NOTES TO THE INSTRUCTOR

Level of Case

Intermediate statistics and engineering undergraduates.

Tools

Analysis of ranks, nonparametric statistics, measures of concordance, scatterplots, correlation.

Objectives

Illustrate the difficulty of using subjective measurements.
Understand the concept of concordance.
Illustrate the use of nonparametric statistical methods.
Discuss the effect of influential observations.

Comments and Suggestions for the Instructor

Emphazise that many important characteristics in products and processes are
subjective in nature.
The methods used here are also used in other areas, like food science, where the
interest is in measuring flavor, crispiness, softness, etc.
The idea of consistency and its importance should be carefully explained. In
particular, if there is no consistency within a panel, the ranks derived have little
value.
Discuss the detection and handling of influential observations (inferior sounds or
dissenting judges). These types of observations appear frequently in data analysis.

APPENDIX

Table A1. Standardized scores for the nonexpert panel using the FS method in the two sessions.

Sound

1
2
3
4
5
6
7
8
9
10
11
12

1
Session
1 2

0.71 0.67
0.64 0.81
0.52 0.76
0.71 0.95
0.76 0.81
0.67 0.71
0.71 0.71
0.52 0.90
0.62 0.76
0.62 0.71
0.14 0.29
0.10 0.10

2
Session
1 2

0.56 0.06
0.69 0.06
0.43 0.11
0.49 0.17
0.57 0.00
0.27 0.17
0.36 0.44
0.20 0.33
0.09 0.33
0.27 0.22
0.33 0.00
0.00 0.06

3
Session
1 2

0.79 0.71
0.92 0.88
0.75 0.54
0.75 0.75
0.83 0.92
0.62 0.75
0.83 0.67
0.71 0.67
0.75 0.62
0.75 0.62
0.33 0.29
0.21 0.04

Judge
4

Session
1 2

0.80 0.87
0.93 0.73
0.73 0.53
0.73 0.67
0.93 0.73
0.73 0.60
0.80 0.60
0.73 0.53
0.60 0.60
0.67 0.33
0.27 0.13
0.00 0.00

5
Session
1 2

0.83 0.56
0.92 0.67
0.92 0.78
0.75 0.72
1.00 0.72
0.75 0.67
0.75 0.67
0.42 0.44
0.50 0.44
0.83 0.56
0.25 0.11
0.00 0.00

6
Session
1 2

0.81 0.62
0.76 0.67
0.67 0.67
0.62 0.81
0.95 0.76
0.67 0.67
0.57 0.67
0.57 0.76
0.71 0.67
0.57 0.67
0.24 0.24
0.05 0.10

7
Session
1 2

0.63 0.50
0.73 0.83
0.67 0.67
0.60 0.75
0.83 0.92
0.73 0.67
0.77 0.50
0.77 0.83
0.60 0.67
0.50 0.58
0.17 0.17
0.03 0.17
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Table A2. Standardized scores for the expert panel using the FS method in the two sessions.

Sound

1
2
3
4
5
6
7
8
9
10
11
12

1
Session
1 2

0.94 1.00
0.89 0.83
0.83 1.00
0.94 1.00
1.00 1.00
0.83 0.50
0.83 0.67
0.83 0.50
0.75 0.50
0.83 0.50
0.19 0.00
0.17 0.00

2
Session
1 2

0.87 0.43
0.93 0.84
0.93 0.96
0.93 0.86
0.93 0.81
0.67 0.74
0.80 0.64
0.67 0.38
0.67 0.41
0.67 0.73
0.27 0.17
0.00 0.00

3
Session
1 2

0.93 1.00
0.82 0.85
0.69 0.62
0.76 0.55
0.63 0.62
0.58 0.38
0.44 0.55
0.38 0.32
0.31 0.23
0.26 0.23
0.00 0.08
0.00 0.00

Judge
4

Session
1 2

0.70 0.77
0.88 0.80
0.82 0.85
1.00 0.73
0.87 0.80
0.56 0.39
0.78 0.83
0.47 0.16
0.39 0.33
0.58 0.48
0.26 0.38
0.00 0.00

5
Session
1 2

1.00 0.67
0.75 0.67
0.89 0.39
0.87 0.72
0.95 0.67
0.80 0.89
0.77 0.56
0.69 0.56
0.71 0.72
0.75 0.56
0.07 0.28
0.00 0.00

6
Session
1 2

0.87 0.84
0.82 0.92
0.71 0.40
0.85 0.92
0.93 0.73
0.70 0.36
0.87 0.77
0.70 0.49
0.69 0.44
0.60 0.37
0.18 0.12
0.00 0.00

7
Session
1 2

0.80 1.00
0.88 0.75
0.80 0.67
0.93 0.67
0.82 0.75
0.58 0.50
0.68 0.58
0.57 0.42
0.31 0.33
0.38 0.25
0.00 0.08
0.00 0.00
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CHAPTER 10

IMPROVING INTEGRATED CIRCUIT
MANUFACTURE USING A
DESIGNED EXPERIMENT

Veronica Czitrom, John Sniegowski, and Larry D. Haugh

Integrated circuits (chips) are essential components in the electronics industry, where they

are used in computer products, radios, airplanes, and other electronic equipment.

Numerous integrated circuits are manufactured simultaneously on one silicon wafer.

Chemical etching (removing an oxide layer from a wafer) is one of many manufacturing

steps in the creation of an integrated circuit. A designed experiment was performed to

improve control of an etching process. It was necessary to increase the CF4 gas flow

beyond what development engineers had recommended, and it was hoped that two other

factors, electric power and bulk gas flow, could be used to offset the effect of this increase

on three important responses related to yield and throughput: etch rate, etch rate

nonuniformity, and selectivity. The designed experiment allowed a systematic and

efficient study of the effect of the three factors on the responses. Settings were found that

allowed the CF4 gas flow to be increased.

INTRODUCTION
The semiconductor industry is the foundation of the electronics industry, the largest

industry in the U.S., employing 2.7 million Americans. The semiconductor industry
manufactures integrated circuits, or chips, for use in airplanes, computers, cars, televisions,
and other electronic equipment. Each integrated circuit consists of thousands of
interconnected microscopic elements such as transistors and resistors. The smallest active
features are 0.5 microns in width, or approximately 1/150th the diameter of a human hair.
During manufacture, many integrated circuits are created simultaneously on a thin round
silicon wafer. The wafer goes through a very complex set of manufacturing steps that can
take up to two months to complete. The steps include depositing layers of material on the
wafer, creating patterns on the wafer through a photolithographic process, etching away
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part of the material, cleaning in chemical baths, and implanting dopant atoms to change the
electrical properties of the silicon substrate.

During the creation of a new integrated circuit technology, a new process was
developed by the research and development group to etch silicon dioxide (oxide) from
wafers using a CF4 gas. This process was then transferred to manufacturing. The process
development group had suggested using a CF4 gas flow rate of 5 seem (standard cubic
centimeters per minute). However, the manufacturing equipment that was to be used for
the etching process is under better control if the CF4 gas flow is at least 15 seem. For this
reason, the manufacturing engineer wanted to increase the flow of CF4 gas from 5 seem to
15 seem. He thought adjustments to two other processing factors, power and bulk gas
flow, might offset the effect of the increase in CF4 gas flow on two important responses,
wafer throughput and yield.

A designed experiment is an efficient, methodical approach to discern and quantify the
effect of controllable process factors on one or more response variables in order to find
good processing conditions. For this reason, a designed experiment was used to study the
effect of CF4 gas flow, power, and bulk gas flow on wafer throughput and on yield. A full
factorial designed experiment in eight experimental runs, using all possible combinations
of two levels of each of the three process factors, as well as two center point experimental
runs at the mid-levels (center point) of the three process factors, was performed. Analysis
of the experimental results using graphical analysis and multiple regression analysis
allowed the discovery of processing conditions in power and bulk flow that permitted the
increase in CF4 flow without having a negative impact on throughput or yield. These
results were later confirmed, and the new processing conditions were adopted for
manufacturing.

BACKGROUND INFORMATION
Figure 1 shows a cross section of one of millions of transistor gate structures of one of

the integrated circuits on a silicon wafer. Figures l(a) and l(b) illustrate the structure
before and after etching an oxide (silicon dioxide, SiO2) layer to leave "spacers" next to the
polysilicon gate structure. The spacers help set the width of the transistor.

(a) Before oxide etch (b) After oxide etch

Fig. 1. Cross section of a transistor before and after oxide etch.

The etching process is illustrated in Figure 2. During the etching process, a single
wafer is introduced into a chamber, placed on a cathode, and a radio frequency power
differential is applied. CF4 gas is introduced into the chamber to etch the oxide for 30
seconds. The CF4 gas is a trace element in the bulk, or carrier, gas flow of Argon and
CHF3 (trifluoromethane, or Freon-23).
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Fig. 2. Oxide etching process.

The research and development group that had developed the process had suggested
using a CF4 gas flow rate of 5 seem for the oxide etching process. However, the
manufacturing engineer wanted to increase the CF4 gas flow to 15 seem to make the
equipment used for manufacture more controllable. He thought that the effect of the
increase in CF4 gas flow on throughput and yield could be offset by changing the settings
of applied power and bulk gas flow. The effect on wafer throughput was measured using
oxide etch rate, and the effect on yield was measured using etch rate nonuniformity and
selectivity.

Etch rate is the amount of oxide that is removed from the wafer per unit time. In this
process, etch rate values are around 3,000 Angstroms/minute. To put this number in
perspective, note that there are 101() Angstroms in one meter (about a yard), and that an
atom is several Angstroms in diameter. The higher the etch rate, the higher the
manufacturing throughput. Etch rate nonuniformity is a measure of the variability
(standard deviation) in oxide etch rate on a wafer expressed as a percentage of the mean
oxide etch rate. Since there are integrated circuits throughout the wafer surface, and each
integrated circuit needs to function properly, it is important to reduce the variability in the
amount of oxide etched at different sites across the wafer. The lower the etch rate
nonuniformity the higher the yield, which is the proportion of integrated circuits that
function properly at the end of the manufacturing process. Selectivity is the ratio of the rate
at which oxide is etched to the rate at which polysilicon is etched. As the oxide layer is
being etched, it is important to minimize the loss of the polysilicon structure. If oxide is
etched at a faster rate than polysilicon, then selectivity is high, and yield is high.

A designed experiment was performed to study the effect of three manufacturing
process factors—bulk flow, CF4 flow, and power—on the three responses—selectivity,
etch rate, and etch rate nonuniformity. A statistical model for each response was used to
study the effect of the three factors on the response. The models were used to determine
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whether there are processing conditions that allow the CF4 flow to be increased to 15 seem
without having a negative impact on the responses. In particular, selectivity should not be
degraded.

DATA
A designed experiment was performed in three factors at two levels each:

Factor

Bulk gas flow (seem)
CF4 Flow (seem)
Power (Watts)

Levels
Low
60
5

550

High
180
15

700

In the bulk gas flow, the ratio of Argon flow to CHF3 gas flow was held constant at a 2-
to-1 ratio. Other factors such as pressure and magnetic field were held constant at the
current operating conditions.

Table 1. Experimental design in three factors with three responses.

Bulk gas CF4 flow Power Selectivity Etch rate Etch rate
Run flow (seem) (seem) (Watts) (A/min) nonUniformity
1
2
3
4
5
6
7
8
9
10

60
180
60
180
60
180
60
180
120
120

5
5
15
15
5
5
15
15
10
10

550
550
550
550
700
700
700
700
625
625

10.93
19.61
7.17
12.46
10.19
17.5
6.94
11.77
11.61
11.17

2710
2903
3021
3029
3233
3679
3638
3814
3378
3295

11.7
13.0
9.0
10.3
10.8
12.2
8.1
9.3
10.3
11.1

The experimental design is given in Table 1. The design is a 23 full factorial in the
eight possible combinations of settings of the three factors at two levels each (runs 1 to 8),
with two centerpoints (runs 9 and 10). Centerpoints are design conditions such that each
factor is set at levels midway between the low and high settings for that factor. The order
of the full factorial portion of the experiment (runs 1 to 8) was randomized. One
centerpoint was performed at the beginning of the experiment, and the other centerpoint
was performed at the end, to check for changes over time.

Four wafers were etched at each one of the ten treatment combinations (runs) in the
experimental design. The first two wafers were dummy wafers, to allow the etching
reactor to warm up. The third wafer was an oxide wafer with a layer of silicon dioxide on a
bare silicon wafer, which was used to measure the oxide etch rate and the oxide etch rate
nonuniformity. The fourth wafer was a poly (polysilicon) wafer with a layer of
polycrystalline silicon and a layer of silicon dioxide above the silicon wafer, which was
used to measure the polysilicon etch rate in order to evaluate selectivity as the ratio of the
oxide etch rate to the polysilicon etch rate. There were only enough wafers available to
replicate the centerpoint.
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The sampling plan, shown in Figure 3, consisted of taking thickness measurements at
49 sites on each wafer. Oxide thickness was measured at the same 49 sites on each wafer
before and after etch. The difference in oxide thickness before and after etch was evaluated
at the 49 sites, and the etch rate at each site was calculated as the difference in oxide
thickness divided by the etching time (half a minute). The etch rate given in Table 1 is the
average of the 49 oxide etch rates on each wafer. The etch rate nonuniformity (often called
etch rate uniformity) given in Table 1 is the coefficient of variation, calculated by dividing
the standard deviation of the 49 oxide etch rates on a wafer by the average of the 49 oxide
etch rates on the wafer and multiplying by 100. The etch rate nonuniformity is the
variability in oxide etch rates across the wafer expressed as a percentage of the mean. The
polysilicon etch rate is calculated just like the oxide etch rate, using the poly wafer instead
of the oxide wafer. Selectivity is the quotient of the average oxide etch rate at the 49 sites
on the oxide wafer divided by the average polysilicon etch rate at the 49 sites on the
polysilicon wafer.

Fig. 3. Sampling plan of 49 sites on a 6" oxide wafer and contour plots of raw thickness data.

The highest and lowest values of the three responses are highlighted in Table 1. The
engineer looked at these values, as well as the raw data illustrated for a typical wafer in
Figure 3, to check for unusual values such as outliers (unusually large or small values) or
patterns that could have a strong influence on the analysis or could give additional insight
into the process.

QUESTIONS OF INTEREST
The statistical and engineering questions of interest concern the effect of the three

experimental factors on the responses. How does each factor affect each response? What
graphs would be helpful in identifying recommended process conditions to optimize the
process? What graphs would aid in understanding possible factor interactions? What
multiple regression equations can be identified and fit for each relationship? Can the
critical goal of increasing the CF4 flow to 15 seem be achieved without degrading yield and
selectivity?
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DATA
The data consists of ten experimental runs in three factors with three responses. The

three factors are bulk gas flow, CF4 flow, and power. The three responses are selectivity,
oxide etch rate, and oxide etch rate nonuniformity. The first three runs are as follows:

Run

1
2
3

Bulk gas
flow

(seem)
60
180
60

CF4 flow
(seem)

5
5
15

Power
(Watts)

550
550
550

Selectivity

10.93
19.61
7.17

Etch rate
(A/min)

2710
2903
3021

Etch rate
nonuniformity

11.7
13.0
9.0

ANALYSIS
1. Graphical analysis of the selectivity response.
A. Draw the three main effects plots for selectivity, each of which goes from the average of

the four responses at the low level of the factor to the average of the four responses at the
high level of the factor.

B. Does selectivity increase or decrease as each factor increases? By how much does
selectivity increase/decrease with each factor?

C. Which factor has the greatest effect on selectivity? Which factor has the least effect on
selectivity?

D. Add the centerpoints to the main effects plots. Do the centerpoints appear to indicate the
presence of curvature in the relationship of selectivity with the three factors?

E. Make the interaction graph of bulk flow and CF4 flow, with one line for low bulk flow
going from the average of the two selectivities at low CF4 flow to the average of the two
selectivities at high CF4 flow, and the other line for high bulk flow going from the average
of the two selectivities at low CF4 flow to the average of the two selectivities at high CF4

flow.
F. Make another interaction graph reversing the roles of CF4 flow and bulk flow in part E.
G. Do the two interaction graphs in parts E and F look the same? For a fixed value of bulk

flow, what does each graph indicate about the behavior of selectivity as CF4 flow
increases? For a fixed value of CF4 flow, what does each graph indicate about the behavior
of selectivity as bulk flow increases? Can you draw the same conclusions from both
graphs with regard to the behavior of selectivity as a function of bulk flow and CF4 flow?

H. Make the interaction plots for the other two interactions. Do any of the interactions appear
to be important (watch for the extent of nonparallel lines in the interaction graph)?

2. Numerical analysis of the selectivity response—initial model.
A. To compare the effects of the three factors on selectivity using a common scale, code the

low and high values of each factor as -1 and +1, respectively.
B. Derive the regression model for selectivity with a constant term, three main effects terms,

and three two-factor interaction terms.
C. Derive the corresponding analysis of variance (ANOVA) table.
D. What is the value of/?2, the percentage of the variability explained by the model? Does the

model fit the data well?
E. Which is the most significant (important) effect? Which is the least significant effect?
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F. Do the numerical results (size of the coefficients in the model and statistical significance of
the terms in the ANOVA table) agree with the conclusions from the main effects plots and
the interaction plots in question 1 above?

3. Numerical analysis of the selectivity response—refined model.
A. Remove the two least significant terms from the model in question 2 and find the

corresponding regression model and ANOVA table.
B. How does the value of R for this model compare to the value of R2 for the model with all

main effects and interactions in question 2? Did the values of the coefficients change? Did
the standard error of the coefficients and their statistical significance change? Why?

C. Does the significance of the largest interaction term in the model agree with the perceived
importance of the interaction as seen in the interaction graph in question 1 ? If there is a
discrepancy, what is its cause?

D. Derive 95% confidence intervals for the coefficients. Which factor(s) effects are positive,
negative, and not significantly different from zero? Does this agree with the graphical
analysis of question 1 ?

4. Numerical analysis of the selectivity response—contour plot.
A. Use the fitted model of selectivity derived in question 3 to do a contour plot of selectivity

as a function of bulk flow and power, with CF4 flow fixed at the desired value of 15 seem.
Use the contour plot to answer parts B to F.

B. For a given value of power, does selectivity increase or decrease as a function of bulk
flow?

C. For a given value of bulk flow, does selectivity increase or decrease as a function of
power?

D. Do the results of parts B and C agree with the conclusions derived from the main effects
graphs in question 1 ?

E. What do the parallel contour lines indicate about the interaction between bulk flow and CF4

flow?
F. What is the maximum value of selectivity in the region? What are the values of power and

bulk flow at the point of maximum selectivity?
5. Do a similar analysis for the etch rate response.
A. Find the model for etch rate with main effect and interaction terms, and the value of/?2.
B. Plot the studentized residuals by run number. Is there anything unusual about this graph?

Remove run 9 from the remainder of the analysis of etch rate.
C. Remove the least significant term from the model, and derive the new regression model.

Are the coefficients in this new model the same as the coefficients for the initial model with
all main effects and interactions? Why?

D. For a CF4 flow of 15 seem, do the contour plot of etch rate as a function of bulk flow and
power. Use the contour plot to answer parts E and F.

E. Why aren't the lines of the contour plot parallel?
F. Why are the contour lines almost parallel to one of the axes?
G. What is the highest etch rate in the region? What are the values of power and bulk flow at

the point of highest etch rate? Is etch rate much smaller at the low level of bulk flow?
6. Do a similar analysis for the etch rate nonuniformity response.
A. Find the model for etch rate nonuniformity in terms of the three main effects and the three

two-factor interactions. What is the value of/?2?
B. Remove the three least significant terms from the regression model.
C. For a CF4 flow of 15 seem, do the contour plot of etch rate nonuniformity as a function of

bulk flow and power.
D. From the contour plot in part C, what is the lowest etch rate nonuniformity in the region?

What are the values of power and bulk flow at that point?
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7. Analyze the three responses simultaneously using a contour plot.
A. Overlay the contour plots of the three responses (questions 4, 5, and 6) on one graph, for a

fixed CF4 flow of 15 seem and with power and bulk gas flow along the axes.
B. For what values of power and bulk gas flow is selectivity maximized? What are the values

of etch rate and etch rate nonuniformity at that point?
C. Is it possible to simultaneously maximize selectivity and etch rate and minimize etch rate

nonuniformity?
8. Prediction using the models for the responses.
A. Use the models for the three responses to predict the responses at the original process

conditions of CF4 flow at 5 seem, power at 625 Watts, and bulk flow at 90 seem.
B. Use the three models to predict the responses at the values of the factors that maximize

selectivity.
C. Are the values of the three responses very different at the original process conditions

(section A) and at the point that maximizes selectivity (section B)?
9. Conclusions.
A. The most important manufacturing question was whether the CF4 gas flow could be

increased from 5 to 15 seem without having a negative impact on yield and on throughput,
as measured by the three responses. Based on this experiment, would you recommend the
increase in CF4 flow to manufacturing management?

PRESENTATION OF RESULTS TO CUSTOMERS
Write a brief report to the project manager summarizing your recommendations. Make

sure the summary can be understood by nonstatisticians and that it relates clearly to the
engineering problem (feasibility of increasing CF4 flow). Include detailed statistical
analysis issues in an appendix.

Prepare a brief oral presentation of your results for the project manager. Concentrate
on a simple graphical presentation of the main results that can be easily understood by a
nonstatistician (remember—a picture is worth a thousand words). State the conclusions in
terms of the engineering problem. Be prepared to answer questions and to present relevant
backup information in case it is needed.
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NOTES TO THE INSTRUCTOR

Level of Case

The case study is targeted to engineering, science, and statistics undergraduate students.
It can be used in an introductory statistics course that covers full factorial designs or in
intermediate statistics courses that consider full factorial designs and multiple regression
analysis.
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Necessary Tools

The experimental design is a 2 full factorial experimental design with three factors at
two levels each with two centerpoints, and with three responses. Only main effects plots
and interaction plots are needed for an introductory statistics course, as considered in
question 1 of the section "Questions for Data Analysis." Topics covered in a more
advanced course include analysis of variance, multiple regression analysis, contour plots,
studentized residuals, and confidence intervals for regression coefficients. These topics are
considered in questions 2 to 8 of the section "Questions for Data Analysis." To simplify
the students' work, they can be given a set of regression and analysis of variance printouts,
as well as contour plots. Otherwise, software is recommended for the regression analysis
and for contour plots. The RS/1 software package was used in this presentation.

Objectives

Introduce students to the idea of changing several factors simultaneously in a
designed experiment.
Illustrate the possible need for trade-offs when there are several responses to be
optimized in a process.
Illustrate the value of graphical analysis of experimental data.
Illustrate the application of multiple regression analysis for experimental data and
process optimization.

Comments and Suggestions for the Instructor

Semiconductor processing is of major economic importance and is at the forefront
of current engineering research. This makes the case study relevant and appealing
to engineering, science, and statistics majors.
The main effects plots and interaction plots are derived using only the averages of
the observations at the low and high levels of the factors. This leads to an analysis
of the results that is both intuitive and easy to understand. A basic graphical
analysis using only main effects plots and interaction plots (without the regression
model, ANOVA, residuals, or contour plots) can be taught at the end of an
introductory statistics course, to illustrate the value of multifactor experimentation.
The material described in the case study can be covered in class in one hour.
Analysis of one response could be outlined in the lecture, and analysis of the
additional responses can be given as homework.

Typical Results

Three responses are considered.
• Selectivity increases with bulk flow, decreases with CF4 flow, and almost

doesn't change with power. The centerpoints added to the main effects graphs
indicate almost no curvature in selectivity. The interaction graph between
bulk flow and CF4 flow looks different depending on which factor is placed
on the horizontal axis, even though both graphs contain the same information.
The almost parallel lines in the interaction graphs indicate negligible
interactions. The largest interaction in the model is statistically significant at
the 0.05 level of significance (p = 0.02) but is not practically significant. The
lines in a contour plot are parallel, indicating no interaction.

• Etch rate has a large standardized residual, indicating that the centerpoint did
not replicate well. In the actual study, further centerpoints were run to
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establish that run 9 was in fact an aberrant value. Removing the centerpoint
from the analysis changes only the constant term in the model. The contour
plot has almost parallel lines, reflecting a small interaction. The lines are
almost parallel to one axis, because power has a much larger effect on
selectivity than bulk flow.
Etch rate nonuniformity (coefficient of variation) has no significant
interactions.

Each response is optimized for different values of bulk flow and power, in
different corners of the contour plots. A contour plot with the three responses
illustrates trade-offs between responses.
The models are used to predict the response at the original process flow condition,
which was not included in the experiment.
The CF4 flow can be increased without having a negative impact on yield and on
throughput, as measured by the three responses.
Some highlights of the data analysis follow. Selectivity will be analyzed in greater
detail than etch rate and etch rate nonuniformity.

Selectivity
Figure 4 gives the main effects graphs of selectivity. The line in a main effects graph

for a factor goes from the average of the four values of selectivity at the low setting of the
factor to the average of the four values of selectivity at the high setting of the factor.
Selectivity at the centerpoints is not used to draw the main effects graphs, although the
centerpoints are added to the main effects graphs in Figure 4. Bulk flow has a large
positive effect on selectivity, CF4 flow has a large negative effect on selectivity, and power
has a small negative effect on selectivity. The centerpoints are close to the main effects
lines, indicating negligible curvature.

Fig. 4. Main effects plots of selectivity for the three factors bulk flow, CF^flow, and power.
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The interaction graph between bulk flow and CF4 flow is shown in Figure 5. The lines
of the interaction graph are not quite parallel, indicating a slight interaction between bulk
flow and CF4 flow. Selectivity increases with bulk flow at a slightly higher rate when CF4

flow is at its low level than when it is at its high level.

Fig. 5. Interaction graph of bulk flow and CF^flow, with bulk flow
along the horizontal axis. The response is selectivity.

The same interaction between bulk flow and CF4 flow is shown in Figure 6. The only
difference between Figures 5 and 6 is which of the factors is placed on the horizontal axis,
and which of the factors is used to index the lines. The two interaction graphs look
different. However, the two interaction graphs contain exactly the same information so
that exactly the same conclusions can be drawn from either one.

The other two interactions, bulk flow by power and CF4 flow by power, are also
inconsequential.

Table 2 gives typical computer output for the regression model for selectivity with a
constant term, three main effects terms, and three two-factor interaction terms. The three
factors have been coded so that their low value is -1 and their high value is +1, allowing a
comparison of the effects of different factors on a common scale.

Bulk flow has a large positive effect on selectivity, CF4 flow has a large negative effect
on selectivity, and power has a much smaller effect on selectivity, which agrees with the
results of the main effects graphs. All three interactions are small. At the 0.10 level of
significance, four terms are significant (p-values < 0.10): the main effects of bulk flow CF4

flow, and power, and the interaction between bulk flow and CF4 flow. The high value of
0.9934 for R2 indicates an excellent fit of the model to the data.

Table 3 gives the Analysis of Variance (ANOVA) table for selectivity. The p-values
corresponding to terms in the model are the same in Tables 2 and 3, since the square of the
r-value in Table 2 is the F ratio in Table 3.
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Fig. 6. Interaction graph of bulk flow and CF4flow, with CF4flow
along the horizontal axis. The response is selectivity.

Table 2. Computer output for the regression model for selectivity with main effects and interaction terms.

Model term Coefficient
Constant
Bflow
CF4
Power
Bflow*CF4
Bflow*Power
CF4*Power

R-squared
Adjusted R-squared

11.935
3.264

-2.486
-.471

-0.734
-0.229

0.241
0.9934
0.9802

Std. Error
0.177
0.198
0.198
0.198
0.198
0.198
0.198

Residual

r-value

16.47
-12.54
-2.38
-3.70
-1.15

1.22

/?-value

0.0005
0.0011
0.0978
0.0342
0.3321
0.3106

mean square (MSE) 0.314

The initial model for selectivity is
Selectivity = 11.94 + 3.26 Bflow - 2.49 CF4 - 0.47 Power

- 0.73 Bflow*CF4 - 0.23 Bflow*Power +0.24 CF4*Power.

Table 3. ANOVA table for selectivity with main effects and interaction terms.

Source
Constant
Bflow
CF4
Power
Bflow*CF4
Bflow*Power
CF4*Power
Residual

DF
1
1
1
1
1
1
1
3

Sum Sq.
1424.44

85.22
49.45

1.78
4.31
0.42
0.47

Mean Sq.

85.22
49.45
1.78
4.31
0.42
0.47
0.31

F-Ratio

271.14
157.34
5.65
13.70
1.33
1.48

p-value

0.0005
0.0011
0.0978
0.0342
0.3321
0.3106

Cases included: 10
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Removing the two smaller interactions from the model gives the regression model in
Table 4.

Table 4. Regression model for selectivity without the (bulk flow )*(power) and the
(CF4flow)*(power) interactions

Model term
Constant
Bflow
CF4
Power
Bflow*CF4

Coefficient
11.935
3.264

-2.486
-0.471
-0.734

R- squared
Adjusted R-squared

Std. Error
0.191
0.214
0.214
0.214
0.214

0.9872
0.9769

/-value

15.27
-11.63
-2.20
-3.43

Residual mean
square (MSE)

/?-value

0.0001
0.0001
0.0786
0.0186

0.365

The model for selectivity is now

Selectivity = 11.94 + 3.26 Bflow -2.49 CF4 - 0.47 Power - 0.73 Bflow*CF4.

The coefficients in Table 2 with all the terms in the model are the same as the
coefficients in Table 4 without the two small interactions. When the two small interactions
are removed from the model they are pooled into the estimate of error so that the standard
error of the coefficients, the /-values, and the p-values are different in Tables 2 and 4.

Table 5. ANOVA table far selectivity without the (bulk flow )*(power) and the (CF4flow)*(power)
interactions.

Source
Constant
Bflow
CF4
Power
Bflow*CF4
Residual

DF Sum Sq.
1 1424.44
1 85.22
1 49.45
1 1.78
1 4.31
5 1.83

Mean Sq.

85.22
49.45
1.78
4.31
0.37

F-Ratio

233.20
135.33

4.86
11.79

P- value

0.0001
0.0001
0.0786
0.0186

Cases included: 10

The analysis of variance table without the two small interactions is given in Table 5.
The bulk flow by CF4 flow interaction is significant at the 0.05 level of significance since
its p-value is less than 0.05. This disagrees with our judgment from Figure 1 that the
interaction is very small and does not appear to be significant. This discrepancy highlights
two things: the fact that statistical significance is different from practical significance, and
the fact that the significance of a term in the model is highly dependent on the estimate of
error (residual mean square). The residual mean square in this example is estimated with
five degrees of freedom, and only the centerpoint replicated.

We will use a 0.10 level of significance and leave the three main effects terms and the
bulk flow by CF4 flow interaction term in the model. Leaving the power term in the model
even though it is hardly significant will only have a small effect on the estimate of
selectivity using the model, and on the contour plots.

The 95% confidence intervals for the main effects of selectivity are shown in Figure 7.
At this level of significance, the confidence interval for the main effect of power overlaps
the origin, indicating that the effect of power could be zero (no effect). The confidence
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interval for bulk flow is positive, indicating that as bulk flow increases, selectivity
increases. The confidence interval for CF4 flow is negative, indicating that as CF4 flow
increases, selectivity decreases. Confidence intervals should be estimated when the final
model has been selected, since the width of the confidence intervals depends on the
estimate of variability, and hence on the terms that have been removed from the model.

Fig. 7. Confidence intervals for the main effects of bulk flow, CF4flow, and power, for the response
selectivity.

Figure 8 shows the contour plot of selectivity as a function of bulk flow and power,
with CF4 flow fixed at the desired value of 15 seem. The model for selectivity is used to
draw the contour lines of constant values of selectivity. Contour plots can be used to
estimate selectivity in the entire experimental region, and not only at the experimental
points. The contour lines are parallel, indicating no interaction between bulk flow and
power. A horizontal line crosses many more contour lines than a vertical line does,
indicating that a change in bulk flow has a much greater effect on selectivity than a change
in power. At a low power of 550 watts, selectivity increases from 7.5 to 12.5 as bulk flow
goes from 60 to 180 seem. At a high power of 700 watts, selectivity increases from 6.5 to
11.5 as bulk flow goes from 60 to 180 seem. At a low bulk flow of 60 seem, selectivity
decreases from 7.5 to 6.5 as power goes from 550 to 700 watts. The highest selectivity is
in the lower right-hand corner of the contour plot, at high bulk flow and low power.
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Fig. 8. Contour plot of selectivity as a function of power and bulk flow, with CF^flow at 15 seem.

Etch Rate

The initial model for oxide etch rate with three main effects and three two-factor
interactions is

Etch rate = 3270 + 103 Bflow + 122 CF4 + 338 Power
-57 Bflow * CF4 + 53 Bflow * Power +13 CF4 * Power.

A high R2 of 0.987 indicates excellent fit of the model to the data.

The studentized residuals (residuals divided by their standard deviation) by run number
are shown in Figure 9. Run 9 has a large studentized residual, indicating that the
observation is far from the value predicted by the model. Since runs 9 and 10 are the two
centerpoints, the values of etch rate (and hence the residuals) should have been similar.
The raw data at the 49 sites was examined for outliers, and the wafer was examined for
contamination. Since a reason for the large residual was not found, the centerpoint run was
repeated several times. The new values agreed with run 10 of the experimental design.
Analysis of the three responses with and without run 9 gives almost identical numerical
values and identical conclusions. For these reasons, the remaining data analysis for etch
rate is illustrated by excluding run 9.

The final model after removing the CF4 flow by power interaction is

Etch rate = 3258 + 103 Bflow + 122 CF4 + 338 Power - 57 Bflow*CF4

+ 53Bflow*Power.

The removal of the centerpoint changes only the value of the constant term in the model
and not the coefficients of the main effects and of the interactions. This reflects the fact
that centerpoints are used to estimate the constant term but are not used to estimate the
main effect and interaction terms. Center points also enable checking the model
assumption of linearity of effects.
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Fig. 9. Studentized residuals for the model for etch rate with all main effects and two-factor
interaction.

The contour plot of etch rate as a function of bulk flow and power, with CF4 flow at the
desired value of 15 seem, is shown in Figure 10. The slightly nonparallel contour lines
reflect a small interaction between bulk flow and power. The fact that the contour lines are
almost horizontal reflects the fact that etch rate almost does not change as bulk flow
changes. Etch rate increases as power increases. The highest etch rate (and hence the
highest throughput) is in the upper right-hand corner of the contour plot, at high power and
high bulk flow. The etch rate is almost as high at the upper left-hand corner of the contour
plot, at high power and low bulk flow.

Fig. 10. Contour plot of etch rate as a function of bulk flow and power, with CF^flow at 15 seem.
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Etch Rate Nonuniformity

The final model for etch rate nonuniformity is

Etch rate nonuniformity = 10.58 + 0.65 Bflow - 1.38 CF4 - 0.45 Power.

The contour plot of etch rate nonuniformity as a function of bulk flow and power, with
CF4 flow at the desired value of 15 seem, is given in Figure 11. The etch rate
nonuniformity increases with bulk flow and decreases with power. The contour lines are
parallel because there is no bulk flow by power interaction in the model. The lowest etch
rate nonuniformity is at low bulk flow and high power.

Fig. 11. Contour plot of etch rate nonuniformity as a function of bulk flow and power for a CF4flow of 15 seem.

OPTIMIZATION
Figure 12 gives the contour plots for the three responses as a function of power and

bulk gas flow, with CF4 gas flow set at the desired value of 15 seem. Selectivity is
maximized at high bulk flow and low power, etch rate is maximized at high bulk flow and
high power, and etch rate nonuniformity is minimized at low bulk flow and high power.
This means that the optimal settings of bulk flow and power are different for each response,
requiring some trade-offs.

We will consider the settings of power and bulk flow that maximize selectivity and
decide whether the values of etch rate and etch rate nonuniformity are satisfactory at those
settings. The contour plot indicates that when CF4 is fixed at 15 seems, the maximum
value of selectivity of 12.5 is in the lower right-hand corner, where bulk gas flow is 180
seem and power is 550 Watts, and that at that point etch rate is slightly under 3100 A/min,
and nonuniformity is around 10.3. As a point of reference, we will compare these values to
the original process values. We will use the models to predict the responses.

The predicted value of selectivity at the improved process conditions which maximize
selectivity at a bulk flow of 180 seem and at a power of 550 watts when CF4 flow is 15 seem is

Selectivity = 11.94 + 3.26 Bflow - 2.49 CF4 - 0.47 Power - 0.73 Bflow * CF4

= 11.94 + 3.26 (+1) - 2.49 (+1)-0.47 (-1) -0.73(+1) *(+! )
= 12.45 .
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ETCH_RATE. NONUNIFORMITY, SELECTIVITY
CF4_FLOW=15

ETCH_RATE
NONUNIFORMITY
SELECTIVITY

Fig. 12. Contour plot of the three responses (selectivity, etch rate, and etch rate nonuniformity) as a
function of bulk flow and power for a CF^flow of 15 seem.

The predicted value of selectivity at the original process conditions of bulk flow of 90
seem, CF4 flow of 5 seem, and power of 625 Watts is

Selectivity = 11.94 + 3.26 Bflow - 2.49 CF4 - 0.47 Power - 0.73 Bflow * CF4

= 11.94 + 3.26 90-120 _ 2.49 5-10 _ 0.47 625-625
60 5 75

- 0.73 90-120 5-10
60 5

= 11.94 + 3.26 (-0.5) - 2.49 (-1) - 0.47 (0) -0.73 (-0.5) (-1)
= 12.43.

None of the runs in the designed experiment were performed at these conditions.
Nevertheless, the model can be used to predict the value of selectivity at these conditions.

Using the models for the other two responses gives the following prediction of the three
responses at the original process conditions and at the improved process conditions:

Factor

Selectivity
Etch rate
Etch rate nonunif

Original Process
CF4 = 5

Power = 625
Bulk flow = 90

12.43
3068
11.6

Improved Process
CF4 = 15

Power = 550
Bulk flow =180

12.45
3048
10.3

The values predicted by the models at the original process conditions agree with
previous production data. At the improved process conditions, selectivity is slightly better
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than at the original process conditions, etch rate is slightly worse, and etch rate
nonuniformity is slightly better. This means that the new process conditions are not
expected to have a big impact on yield or on wafer throughput.

The predictions at the improved process conditions were confirmed by performing ten
additional runs.

CONCLUSIONS
A designed experiment was performed to determine whether, in an etching process, the

CF4 gas flow can be increased from 5 to 15 seem to meet hardware constraints. The
experimental results give values of two other factors, power and bulk flow, that
compensate for the increase in CF4 gas flow while maintaining selectivity, etch rate, and
nonuniformity. The new experimental conditions allow increasing the CF4 gas flow
without a negative impact on yield or wafer throughput.
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EVALUATING THE EFFECTS
OF NONRESPONSE AND

THE NUMBER OF RESPONSE
LEVELS ON SURVEY SAMPLES

Robert K. Smidt and Robert Tortora

The purpose of this case study is to examine two elements in survey sampling that affect

estimation: nonresponse and the number of response levels allowed for any question. The

first factor, nonresponse, causes difficulties in surveys, especially when those who fail to

respond are liable to be different from those who do. Estimates based on such responses

will have substantial errors. The second factor is associated with surveys that employ the

Likert scale. The Likert scale offers a series of "k" ordered responses indicating the degree

of agreement (or satisfaction or support, etc.) for the question under consideration. The

choice of k, the number of available responses to a survey question, is crucial, particularly

when interest lies in estimating the percent that belongs in the top category. We would like

to examine the combined effect of these two factors on estimation.

INTRODUCTION
Survey samples are used to gather information from many and diverse groups. Based

on these, elections are predicted before the polls close, television networks decide which
programs to replace, advertising firms choose the group to target with their marketing
strategies, and companies retool their factories. It is crucial for sample surveys to be
designed so that representative information is obtained from the appropriate group. Failure
to do so can lead to disastrous results. Introductory statistics texts enjoy describing the
Literary Digest's attempt to forecast the Roosevelt/Landon election (remember President
Alf?) or presenting the photograph of Harry S. Truman holding aloft the headline
proclaiming Dewey's victory. Less dramatic but often more costly mistakes are made
when inaccurate sample surveys lead firms to make bad decisions and take inappropriate
actions.

129
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The sample survey methodologist tries to produce a questionnaire and sampling
procedure that reduce the possibility of a misleading survey. Questions are carefully
examined to make sure that they are precise and not misleading and are posed so that they
are unlikely to produce biased answers. Each question is evaluated to see if it is likely to
lead to an inaccurate response either because a truthful answer is likely to embarrass the
respondent or because the respondent feels prompted to answer a certain way (from social
desirability or acquiescence). The method of sampling is chosen to ensure the maximum
return for the investment of time and money. The sampling frame is made as complete as
possible to guard against bias in the results. Results are evaluated to find inconsistencies
and contradictions. Similar surveys are examined to search for potential problems. In
effect, well-done surveys involve a great deal of quality control.

The primary use of many surveys is to estimate the proportion of people in a population
that fall into a certain category or categories. Even with good surveys, there are problems
that occur during sampling and decisions made about the questionnaire that will perturb the
estimate of this proportion. We will consider the problem of nonresponse and the effects of
varying the number of possible responses on a questionnaire.

BACKGROUND INFORMATION
One of the most difficult problems in survey research is nonresponse. It is a mistake to

assume that people who did not respond to a question are identical to those who did.
Perhaps some people feel threatened by a question and therefore do not respond, while
those not threatened by the question answered fairly neutrally. Perhaps the question
excited some who responded in the extreme and bored others who did not respond.
Perhaps there is some aspect of personality that a particular survey touches and divides the
population into two diverse groups. Or perhaps the nonrespondents are just a cantankerous
lot whose opinions we still need.

Another aspect of a questionnaire that will affect the response is the set of possible
responses. One standard type of response is the Likert scale. A basic Likert item asks an
individual to express a degree of agreement to or support of a statement on an ordered
scale. For example, consider the statement "The use of marijuana for medicinal purposes
should be legal." People might be asked if they agree, are neutral, or disagree with that
statement. This is a 3-point Likert scale. But they could just as easily be asked on a 5-
point Likert scale, i.e., if they strongly agree, agree, are neutral, disagree, or strongly
disagree with that statement. Or if they strongly agree, agree, mildly agree, are neutral,
mildly disagree, disagree, or strongly disagree with that statement. As another example of
a Likert scale, many companies do product satisfaction surveys. Purchasers of the
company's product are asked how satisfied they are with the product. They are instructed
to indicate their degree of satisfaction by selecting a number between 1 and k, where a "1"
would indicate complete dissatisfaction and "k" would indicate complete satisfaction. This
is a &-point Likert scale. With the emphasis on customer satisfaction, many companies use
this type of question to evaluate the quality of products or services. Often companies want
to know what proportion of people check the "top box," i.e., what percent of their
customers are completely satisfied and check the fcth response. One interesting question
asks, "What are the effects of changing the value of &?" That is, what happens to the
proportion of people who check the top box as k is varied from 3 to 5 to 7, etc.?

QUESTIONS OF INTEREST
The general problem of nonresponse has been considered. Cochran [Cochran, 1977]

discusses this problem in his sampling text. He divides the population into two strata, the
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first consisting of measurements from the respondents in a sample, the second being the
nonrespondents. Of course, there are no measurements from stratum 2, the
nonrespondents. Following the notation of Cochran, we let N} and N2 be the number of

members in the two strata. Then the proportions of the population in each stratum are
W, = NjN and W2 - N2/N, where N - Af, + N2. Suppose we let Y represent the mean

of the population and Y., / = 1, 2, the means of the two strata. Upon taking a simple

random sample from the population, we have an estimated value for F,, y , , but none for

F?. The resulting bias in the estimation of Y is

We have no information on Y2. So for a continuous variable, we can place no reasonable

bounds on the possible error. However the situation is better when dealing with categorical
data. We want to estimate P, the proportion of the population that belongs in the top box.
Let p\ represent the proportion of successes in the observed sample, i.e., the proportion of
successes among the respondents. If W, =1, i.e., if there is no nonresponse, and if the

sample was large enough to ignore the finite population correction factor, then approximate
95% confidence limits for P are given by

Because W, will not be 1, the bias introduced by the unobserved value of P2 will perturb

these limits. However, because we know that the value of any proportion must be between
0 and 1, we can use a conservative approach to create valid confidence limits by taking a
"worst-case scenario" approach. For the lower limit (LL), the worst case would be if
P 2 =0, while for the upper limit (UL), the worst case is where P2=l. Therefore,

conservative limits are given by

These limits are very conservative and can lead to wide intervals. Cochran presents a table
of LL and UL for n = 1000 in which the values of W, and /?, are varied. Recognizing that

W2 is usually unknown (we will only have the nonresponse rate of a sample), we can again

use a conservative approach. We calculate the LL by assuming that none of the n2

nonrespondent observations belong in the top box and UL by assuming that all of the n2

nonrespondent observations belong in the top box. If jc represents the number of the n}

respondents who check the top box, this gives
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These are the formulae used in the example on the bottom of p. 362 of Cochran.
The problem that Cochran presents is based on estimating a binomial proportion. This

proportion, while unknown, is constant. This is not so with a Likert scale until the value of
k is selected. If we are interested in the proportion of people who belong in the top box,
this proportion depends on the choice of k in a &-point Likert scale. As the number of
possible responses goes up, the proportion of people who are in the top box should go
down. A person who is happy with his product and would willingly check 3 (satisfied) on
a 3-point Likert scale might be reticent to check 5 (very satisfied) on a 5-point Likert scale,
7 (extremely satisfied) on a 7-point Likert scale, or 27 (very extremely infinitely
magnificently bodaciously satisfied) on a 27-point Likert scale. Choosing the value of k
actually changes the parameter being estimated. But many companies who sponsor
surveys want to know the proportion in the top box, no matter the number of choices
available. So the selection of k is crucial.

Combining the effects of nonresponse with this varying definition of the parameter of
interest, an interesting question arises: With what values of k does the problem of
nonresponse cause the greatest difficulties in estimation? This general question has
interesting parts:
1. When are the widths of confidence intervals most affected?
2. How conservative are the confidence limits presented in Cochran?
3. When are the estimators most likely to be biased?
4. What are the effects of ignoring nonresponse?

DATA
To try to examine the combined effects of nonresponse and the choice of k in a &-point

Likert scale, we suggest a computer simulation to generate data. Such simulations are
often used in research to evaluate the statistical properties of a procedure. The simulation
we suggest would generate random data that (our experience says) is typical for customer
satisfaction. For most of these surveys, the distribution seems to have a positive mode with
a negative skew [Peterson and Wilson, 1992]. A key point of the simulation is to use a
probability model for the responses that would have this basic shape but would be flexible
enough to be appropriate and in some sense comparable for different values of k. That is,
we would like to select a probability model that would allow us to vary k yet still consider
the samples to be from a population with the same basic shape. One choice would be to
pattern the responses as samples from binomial populations. To ensure the correct shape to
the distribution, we would require that the probability of success on an individual trial be
greater than 0.5. (Note: Because we want to avoid confusion between this probability and
the probability of membership in the top box, we will denote this binomial probability as
nR , while the probability of membership in the top box will be represented by P.) Then

the various choices of k can be modeled by varying the value of n, where n represents k - 1.
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For example, if we choose n = 2, we are modeling a 3-point Likert scale. The possible
outcomes of the binomial sample are 0, 1, and 2. We will let a 0 represent 1 on the Likert
scale, while 1 represents 2 and 2 represents 3. The extension to any values of n and k is
obvious.

After we have selected the type of population to use to represent the respondents, we
want to do the same for the population of nonrespondents. That is, we want to select a
probability model, different from the population of respondents, to represent the population
of opinions of the nonrespondents. The appropriately weighted combination of the two
distributions would represent the distribution of the population. It is this combined
population whose proportion of observations in the top box is the parameter of interest.
(Note: We want the distribution of the nonrespondents to be different from that of the
respondents because if they were identical, the only effect of nonresponse is a reduction in
sample size.) Some reasonable choices for the simulation might be a second binomial with
a parameter value nNR different from nR or a discrete uniform distribution.

ANALYSIS
Once the distributions are selected, we can vary two parameters. One is the value of k

on the Appoint Likert scale. The other is what Cochran denotes as W2, the proportion of

nonresponse. Cochran presents a table of 95% confidence limits for P for various values of
P and nonresponse percents only up to 20%. We feel that this table presents too rosy a
picture for the nonresponse rate, especially for but not limited to mail surveys, and feel it is
more appropriate to consider nonresponse rates up to at least 50%.

For the analysis, we suggest a series of computer simulations. The first set would be
directed by our choices for the distributions to use. The remaining simulations would be
based on the reader's judgments on how to best further investigate the effects of
nonresponse and selection of k. The first two simulations involve sampling from binomial
distributions, the first with JIR = 0.60 and the second with nR = 0.75 . The remaining steps

are identical.
1. Decide on the distribution of nonrespondents. We would suggest three reasonable

possibilities: (1) binomial with parameter nNR - 1 - TT, ; (2) binomial with parameter

nNR - 0.50 ; (3) discrete uniform.
2. For k = 3, 5, 7 (n = 2, 4, 6), generate a sample of 1000 + s observations from the

population of respondents and s observations from the population of nonrespondents.
Do this for s = 50, 100, 150, 200, 300, and 500, corresponding to W, = 5, 10, 15, 20.

30, and 50%.
3. For each of these obtain the following:

A. The true value of P, the proportion in the combined population that belongs in the
top box.

B. The conservative 95% confidence interval used at the bottom of p. 362 of
Cochran.

C. A 95% confidence interval using only the responses and thereby ignoring the
problem of nonresponse, as is, unfortunately, often done in practice.

D. A 95% confidence interval using both the responses and the data on the
nonrespondents as if they were available. This combined confidence interval is
the "right" confidence interval, i.e., the one we would calculate if the problem of
nonresponse did not exist.

4. Summarize the results of the simulations in tabular form.
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5. Examine the results in the table to get an initial impression of the effects of
nonresponse and k and to suggest further simulations that would be beneficial.

6. Perform the additional simulations.
7. Repeat.

INSTRUCTIONS FOR PRESENTATION OF RESULTS
We will give an example of the process and a way that the results could be presented.

For this example, we will present the results of a simulation where we used % = 0.75 and
n = k - 1 = 4. We also let our population of nonrespondents have a binomial distribution,
but with XNR = 0.25. We used MINITAB to generate the samples and calculate the
confidence intervals. For each value of W2, we also calculated P, the proportion of the
population in the top box. To do so, we calculate the proportion of respondents and
nonrespondents that belong in the top box and take a weighted average. For example, for
W2 = 10%, we obtained the following:

Respondents:

Nonrespondents:

W2

5%

10%

15%

20%

30%

50%

P

.301

.285

.270

.254

.223

.160

Conservative

.274

.383

.253

.412

.242

.451

.221

.479

.195

.553

.119

.671

Respondents

.289

.349

.281

.343

.286

.350

.277

.343

.281

.351

.241

.322

Combined

.274

.332

.254

.310

.242

.298

.221

.275

.198

.250

.122

.167

1 he results are given in 1 able 1.

Table 1. Results: k = 5,7tR = 0.75, nNR = 0.25 .
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Once this table and similar ones are obtained, the results of the tables should be
compared, further simulations performed, and the results, with conclusions, presented in
the form of a report.
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NOTES TO THE INSTRUCTOR

Level of Case

This study is intended for students in their first course in survey sampling.

Necessary Tools

Knowledge of a computer package such as MINITAB or any reasonable statistical
computer package with the capability of generating random data.

Objectives

To introduce the students to the problem of nonresponse; to examine the effects of k in
a /:-point Likert scale; to consider the effects of choices on a survey.

Comments and Suggestions for the Instructor

1. In a class with a mixture of majors, give this as a team project with a good mixture of
majors on each team.

2. Split the teams by giving them different distributions with which to begin and see if
they come to the same conclusions.

3. Have the projects presented orally and discussed.
4. Remind the students that they are trying to examine the effects of nonresponse and k

by examining the following questions:
When are the widths of confidence intervals most affected?
How conservative are the confidence limits presented in Cochran?
When are the estimators most likely to be biased?
What are the effects of ignoring nonresponse?

Typical Results

For convenience, in Tables 2-7 we present the results of one run of all the suggested
simulations, including the three choices for the distribution of the responses. Based on
space considerations and to facilitate comparisons, we combine the results for each of the
three choices for the distribution of the responses into single tables. After that, we present
the MINITAB macro we used to generate our results.
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Table 2. Results: k = 3,nK = 0.60, (1) nNR = 0.40, (2) nNR = 0.50, (3) Uniform.

W2

5%

10%

15%

20%

30%

50%

P
LL
UL

P
LL
UL

P
LL
UL

P
LL
UL

P
LL
UL

P
LL
UL

Conservative

.296

.407

.298

.459

.284

.495

.264

.525

.241

.600

.163

.717

Respondents

.312

.374

.332

.397

.335

.401

.332

.400

.348

.421

.333

.419

Combined
nNR = 0.40

.350

.303

.363

.340

.316

.376

.330

.306

.366

.320

.298

.358

.300

.287

.345

.260

.250

.306

Combined
nm = 0.50

.355

.308

.368

.349

.322

.382

.344

.321

.381

.338

.315

.375

.327

.313

.373

.305

.289

.347

Combined
Uniform

.359

.311

.371

.357

.327

.387

.356

.337

.397

.355

.332

.392

.352

.328

.388

.347

.321

.381

Table 3. Results: k = 5,nR = 0.60, (1) nNR = 0.40, (2) nNR = 0.50, (3) Uniform.

W2

5%

10%

15%

20%

P
LL
UL

P
LL
UL

P
LL
UL

P
LL
UL

Conservative

.095

.188

.094

.240

.101

.300

.094

.343

Respondents

.100

.142

.104

.149

.119

.168

.118

.167

Combined
nm = 0.40

.124

.096

.136

.119

.098

.138

.114

.102

.144

.109

.097

.137

Combined
nm = 0.50

.126

.099

.141

.123

.102

.144

.120

.117

.161

.116

.107

.149

Combined
Uniform

.133

.106

.148

.137

.115

.159

.140

.129

.175

.144

.139

.185
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W2

30%

50%

P
LL
UL

P
LL
UL

Conservative

.066

.414

.041

.586

Respondents

.094

.143

.082

.138

Combined
nNR = 0.40

.098

.073

.109

.078

.055

.087

Combined
nm = 0.50

.109

.086

.124

.096

.067

.103

Combined
Uniform

.151

.118

.162

.165

.134

.180

Table 4. Results: k = l,nR = 0.60, (1) nNR = 0.40, (2) nNR = 0.50, (3) Uniform.

W2

5%

10%

15%

20%

30%

50%

P
LL
UL

P
LL
UL

P
LL
UL

P
LL
UL

P
LL
UL

P
LL
UL

Conservative

.037

.120

.023

.157

.027

.214

.016

.252

.027

.369

.012

.553

Respondents

.039

.068

.026

.052

.032

.060

.020

.045

.038

.073

.024

.060

Combined
nNR = 0.40

.044

.038

.066

.042

.024

.048

.040

.027

.051

.038

.017

.037

.039

.028

.052

.025

.014

.034

Combined
7^ = 0.50

.045

.038

.066

.044

.024

.048

.042

.032

.058

.040

.019

.041

.037

.030

.056

.031

.020

.042

Combined
Uniform

.051

.041

.069

.056

.037

.065

.061

.044

.074

.066

.038

.066

.076

.057

.091

.095

.075

.111

Table 5. Results: k = 3,KR = 0.75, (1) KNR = 0.25, (2) KNR = 0.50, (3) Uniform.

W2

5% P
LL
UL

Conservative

.489

.602

Respondents

.516

.581

Combined
nm = 0.25

.538

.490

.554

Combined
nm = 0.50

.547

.504

.568

Combined
Uniform

.551

.507

.571
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W2

10%

15%

20%

30%

50%

P
LL
UL

P
LL
UL

P
LL
UL

P
LL
UL

P
LL
UL

Conservative

.469

.632

.440

.653

.402

.663

.356

.716

.245

.799

Respondents

.524

.590

.521

.589

.506

.576

.515

.590

.501

.591

Combined
nm = 0.25

.513

.472

.536

.488

.453

.577

.463

.417

.479

.413

.373

.435

.313

.268

.326

Combined
nm = 0.50

.531

.492

.556

.516

.479

.543

.500

.451

.515

.469

.431

.495

.406

.359

.421

Combined
Uniform

.540

.498

.562

.528

.494

.558

.517

.464

.528

.494

.459

.523

.448

.410

.473

Table 6. Results: k = 5,nR = 0.75, (l)nNR = 0.25, (2) nm = 0.50, (3) Uniform.

W2

5%

10%

15%

20%

30%

50%

P
LL
UL

P
LL
UL

P
LL
UL

P
LL
UL

P
LL
UL

P
LL
UL

Conservative

.274

.383

.253

.412

.242

.451

.221

.479

.195

.553

.119

.671

Respondents

.289

.349

.281

.343

.286

.350

.277

.343

.281

.351

.241

.322

Combined
nm = 0.25

.301

.274

.332

.285

.254

.310

.270

.242

.298

.254

.221

.275

.223

.198

.250

.160

.122

.167

Combined
nm = 0.50

.304

.277

.335

.291

.260

.318

.278

.258

.316

.266

.236

.292

.240

.215

.269

.189

.146

.194

Combined
Uniform

.311

.284

.342

.305

.267

.325

.299

.280

.338

.293

.251

.307

.281

.251

.307

.258

.211

.265
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Table 7. Results: k = l,KR = 0.75, (1) nm = 0.25, (2) nm = 0.50, (3) Uniform.

W2

5%

10%

15%

20%

30%

50%

P
LL
UL

P
LL
UL

P
LL
UL

P
LL
UL

P
LL
UL

P
LL
UL

Conservative

.158

.259

.132

.283

.126

.327

.133

.445

.094

.445

.058

.606

Respondents

.166

.217

.147

.197

.148

.200

.167

.191

.135

.191

.118

.182

Combined
nm = 0.25

.169

.158

.206

.160

.132

.178

.151

.126

.170

.142

.133

.134

.124

.094

.134

.089

.058

.092

Combined
nm = 0.50

.170

.159

.207

.162

.135

.181

.154

.127

.173

.146

.137

.139

.129

.099

.139

.097

.070

.106

Combined
Uniform

.176

.166

.216

.174

.141

.188

.173

.145

.193

.171

.164

.174

.167

.128

.174

.160

.130

.176

MINITAB Macro

note k99 = # nonrespondents
note k88 = n
note k77 = p
let k98 = 1000 - k99
let k55 = k88 -1
note respondent data
Random k98 cl;
Binomial k88 k77.

Code (0:k55) 0 (k88) 1 cl c2
note conservative limits
let kl = sum(c2)/1000
name kl 'pLhat'
let k2 = 2*(sqrt(kl*(l-kl)/1000))
name k2 '2s pLhat'
let k3 = (sum(c2)+k99)/1000
name k3 'pUhat'
let k4 = 2*(sqrt(k3*(l-k3)/1000))
name k4 '2s pUhat'
let k5 = kl - k2
name k5 'LLCons'
let k6 = k3 + k4
name k6 'ULCons'
note limits ignoring nonresponse
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let k7 = sum(c2)/n(c2)
name k7 'phatResp'
let k8 = 2*(sqrt(k7*(l-k7)/n(c2)))
name k8 '2s phatR'
let k9 = k7 - k8
name k9 'LL Resp'
let klO = k7 + k8
name klO 'UL Resp1

note nonresponses binomial with parameter 1 - pi
let k66 = 1 - k77
Random k99 c3;
Binomial k88 k66.
Stack cl c3 c4
Code (0:k55) 0 (k88) 1 c4 c5
let kll = sum(c5)/1000
name kll 'phatBl'
let k!2 = 2*(sqrt(kll*(l-kll)/1000))
name k!2 '2sphatBl'
let k!3 = kll - k!2
name k!3 'LL Bl'
let k!4 = kll + k!2
name k!4 'UL Bl'
note nonresponses binomial with parameter 0.50
Random k99 c6;
Binomial k88 .5.
Stack cl c6 c7
Code (0:k55) 0 (k88) 1 c7 c8
let k!5 = sum(c8)/1000
name k!5 'phatB2'
let k!6 = 2*(sqrt(kl5*(l-kl5)/1000))
name k!6 '2sphatB2'
let k!7 = k!5 - k!6
name k!7 'LL B2'
let k!8 = k!5 + k!6
name k!8 'UL B2'
note nonresponses uniform
Random k99 c9;
Integer 0 k88.
Stack cl c9 clO
Code (0:k55) 0 (k88) 1 clO ell
let k!9 = sum(cll)/1000
name k!9 'phatUn'
let k20 = 2*(sqrt(kl9*(l-kl9)/1000))
name k20 '2sphatUn'
let k21 = k!9 - k20
name k21 'LL Un'
let k22 = k!9 + k20
name k22 'UL Un'
prin kl-k22
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CHAPTER 12

DESIGNING AN EXPERIMENT TO
OBTAIN A TARGET VALUE IN THE
CHEMICAL PROCESSES INDUSTRY

Michael C. Morrow, Thomas Kuczek, and Marcey L. Abate

The case history presents the issues encountered when designing an experiment. The

emphasis is on the design, not the analysis. A proper design makes the statistical analysis

straightforward. A lot of design issues are presented. An appropriate design option is

chosen and evaluated for sensitivity given the constraints of the process. The data from the

experiment is analyzed and summarized. Conclusions from the planning process and

analysis are presented. It is hoped that students exposed to this case study will get a taste of

what experimental design is truly about.

INTRODUCTION
The problem to be solved is to identify the critical variables involved in a chemical

process and then to come up with an appropriate experimental design which will help put
the process on target. The key issues are setting the objectives of the experiment and then
choosing the design to achieve the objectives of the experiment. The emphasis in this case
history is on the planning process, although the analysis of the chosen design is also
presented.

BACKGROUND
A major goal in the production of plastic pellets at Eastman Chemical Company is to

keep a property of the plastic pellets, in this case Response, as close to a target value as
possible. It is critical that the response of the plastic pellets produced be close to the target
value, for if it is not, the pellets cannot be used efficiently in the manufacturing processes
of Eastman's customers. Eastman's customers use the pellets to produce sheeting,
containers, refrigerator components, display cases, and so forth. If the response were to
deviate from the target response value by a high enough margin, the result could be
unsellable material or a substandard product if the pellets were used.

The plastic pellets are manufactured in a continuous process. The substrate material
from which the pellets are formed is put in a charge bin and fed through to the first heater
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at the desired production rate. The material is then passed through a second heater and then
into a production vessel. There the material is held under heat and pressure and mixed with
catalysts for a while and then is transported to holding silos before being shipped to
customers.

Because the process is required to produce plastic pellets with a response as close as
possible to the target value of 30, Eastman engineers want to know how response changes
when certain input factors vary. The engineers know that many inputs affect the response
of the pellets which are produced. Some of these inputs can easily be controlled in the
production process. These are generally referred to as control factors (or variables). There
are other inputs which affect response which cannot be controlled in the production
process. They are referred to as uncontrollable factors. The problem is how to find a way to
set the control factors so that response remains at the target value of 30 even when the
uncontrollable factors vary. The engineers also want to determine the effect of changing the
factors on response. In order to accomplish this, an experiment needs to be designed to
better understand how response depends on uncontrollable and controllable factors.

QUESTIONS OF INTEREST
There are many considerations in planning a designed experiment. For this case, the

issues are summarized as follows:
What are the objectives of the experiment? The objectives should be stated in

engineering and statistical terms. The objectives must be clearly understood so
that the experiment can be planned to obtain them.

 How many experimental runs will be needed at each setting? There are many
considerations when determining the number of runs, one of the most important
being the expense of each observation. Other issues to consider are listed below:
Is the process stable in terms of the important outputs? A stable process gives a
predictable estimate of variability for use in the planning process. The results of
a designed experiment are predictable if the process is stable during the
experiment and remains stable after the experiment.
What is the variability of the important outputs? The standard deviation of the
output measures the magnitude of the variability in the process. The effects of
factors must be evaluated relative to the process variation.
What kind of model is needed (linear effects, interactions, quadratics)? The
design must be adequate to fit the desired model.
What should the risks be set at (i.e., Type I (Alpha) and Type II (Beta) error
probabilities)? The experiment should have a reasonably high probability of
detecting important effects from an engineering standpoint, with a low
probability of detecting an effect when it really does not exist.
At what factor levels should we collect data from the process? It is important to
choose levels distinct enough to cause changes in the process that are
statistically detectable, but the factor levels should be such that the process can
still operate.

It takes a lot of work to plan an experiment correctly. However, it is the most important
part of any experimental design. In most cases, if the experiment is planned correctly, the
analysis will be trivial. Gerald Hahn put it very well in saying, "The world's best statistical
analysis cannot rescue a poorly planned experimental program." Another relevant quote
from a unknown source said, "A well-designed and executed experiment is usually more
important than 'high-powered' statistical methods and will usually result in a trivial
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analysis with clear, unambiguous conclusions." More detail now follows on the points
mentioned above.

Objectives

In order to assure that the experiment is properly designed to meet all of the objectives,
they must be clearly stated prior to the actual implementation of the experiment. As stated
earlier, the engineering objectives are as follows: (1) Develop a control strategy for
response; (2) Determine the effect of changing important inputs on response. The statistical
objective is to develop a model to estimate response as a function of the input factors. The
model will help develop the control strategy and evaluate the effect of changing the
important inputs on response.

Sample Size

"How many samples do I need to run?" is probably the most frequently asked question
of a statistician. From a statistical viewpoint, there are many considerations when
determining a proper sample size. Some of the most important ones are

Is the process stable?
What is the variability of the response?
What is the minimum effect the experiment needs to detect?
What are the alpha and beta risks?
What kind of model is needed?

The sample size is estimated using the information gained from answering these
questions. However, there are also important considerations such as the cost associated
with each sample. For the plastic pellets, the process is manufacturing costly material at
every combination of input factors (experimental conditions).

In addition, there are often engineering constraints. For example, how long does it take
for the process to line out? That is, after making a change to the input factors, how long
does it take for the process to give representative output values (in this case, response)? For
the plastic pellet manufacturing process, the engineers estimated the line-out time to be 48
hours. After the process lines out, the process can stay at the experimental conditions for 24
hours. During this 24 hours, one data point can be collected every four hours. Thus, each
combination of input factors will be held for 72 hours and will provide six data points. The
engineers decided they could run a maximum of 16 sets of experimental conditions,
resulting in an experiment which took 48 days. Given these constraints, the sample size
question becomes one of determining experimental sensitivity. That is, given that six data
points can be collected at each of 16 sets of experimental conditions, what is the minimum
effect the experiment can detect?

Stability

It is critical that the process be stable in order to obtain a predictable estimate of
variability and predictable results from a designed experiment. At each set of conditions,
six individual response measurements will be averaged and used to develop a model.
Therefore, we must determine if the process is stable with respect to the averages over
time. Figure 1 displays an individuals chart on the averages over time. This chart was
chosen over an X-bar chart since it will include day-to-day variation in the stability
evaluation. Because this variation will be included in the root mean square error from the
model, it is appropriate to include it in the stability evaluation and sample size calculation.
There is also some question as to the independence of the individual measurements within
a day. Time series analysis indicated that the individual measurements were not



146 Morrow, Kuczek, and Abate

independent. Therefore, it is not appropriate to construct control limits for an X-Bar chart
with nonindependent data in the subgroups. The individuals and moving range charts
indicate instabilities in the process. If the root causes for the instabilities are identified and
removed, the process will operate with less variability. This is accomplished through
ongoing statistical process control (SPC) efforts. The engineers decided that the degree of
instability was not bad enough to stop the experiment.

Fig. 1. Individuals control chart on response averages.

Process Variability

The process variability is an important input in determining the number of replicates of
each experimental setting or in determining experimental sensitivity. The standard
deviation is a measure of the process variability. Because the root causes of the instabilities
are still part of the manufacturing process, all of the data will be used to calculate the
standard deviation of the daily response averages. Figure 2 displays a histogram and
descriptive statistics of the daily response averages. The standard deviation of the daily
averages is 0.00864.
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Fig. 2. Histogram and sample statistics from the average response data.

Model Type

The type of model the experimenters want to estimate will help determine the
experimental design. The model type will also be used as an input to determine the
sensitivity of the experiment. Using a computer program based on the article in [Abate,
1995], the minimum detectable effect of the experiment can be calculated in multiples of
the standard deviation. The engineers decided it was important to estimate interactions.
They also wanted to estimate nonlinear relationships.

Risks

The experimenters must choose the risk levels in an experiment. The majority of
experimenters have a difficult time choosing Type I (Alpha) and Type II (Beta) risk levels.
Alpha is the risk of concluding that an effect of a factor on response exists when it truly
does not. Beta is the risk of concluding that an effect of a factor on response does not exist
when it truly does. Experimenters will often set alpha = 0.05 and beta = 0.10 because these
choices are given as a rule of thumb in many textbooks. However, more informed risk
decisions may be made by considering such things as

 At what stage is the experimental process?
Are a large number of factors being screened for importance?
Are the key factors being optimized?

What are the implications to the customer if a wrong decision is made based on the
experimental data?

Sensitivity

The experiment should be able to detect a 0.0169 change in response across the range
of Z\(uncontrollable factor), X\, and Xi (controllable factors). This calculation was done
using the method described in [Abate, 1995] and the information above. The engineers
decided the sensitivity of the experiment was acceptable. If it were not acceptable, they
would have several options:

 They could replicate some or all of the experimental conditions.
They could leave the process at the experimental conditions longer and collect
more four-hour samples to go into the average.
They could work on reducing the variation in the process. In this case, nested
experimental designs are useful to determine the major sources of variation. One
can use this information to determine where further work is needed to reduce the
variation.
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They could also decide that the sensitivity of the experiment is unacceptable and
run the experiment anyway. In this case they are hoping the experiment will
produce shifts in response greater than the detectable effect.

Factor Levels

Factor levels must be determined by the people knowledgeable of the process, typically
the engineers and operators. However, statisticians can offer some considerations such as
the following: (a) The range of the factor levels should be large enough to induce large
changes in response relative to the variation in the process; (b) However, the ranges must
be chosen such that the process can be run at the experimental settings. One issue the
engineers brought out at this stage was the problem of running at extreme conditions,
which a typical factorial type of design requires. Catching a plant on fire does nobody any
good! Most engineers cannot make "off class" or unsellable material during an experiment.

DATA
A three-factor Box-Behnken experiment was designed and run on the process. A Box-

Behnken was chosen because the client wanted to evaluate curvature terms and felt that
running the process at the extreme vertices of a factorial design would not be possible.
Three replicates were added at the center point conditions to give an estimate of pure error
and to track the process stability during the experiment. The center points will be spaced
evenly throughout the experimental runs. The rest of the combinations were selected
randomly. However, the engineers had to change the run order slightly for a variety of
practical reasons. The run order column gives the planned order for the experimental
conditions. The actual order of the conditions is how the data is ordered in the file. In
addition, only three data points were obtained for run 12 because the response was getting
dangerously high, which forced leaving the conditions before obtaining all six data points.

The data is contained in the Casel2.txt file (see Tables 1 and 2). At each of the 16
design conditions, product was manufactured for one day. Every four hours, a sample of
material was taken and sent to the lab for analysis. The response and the experimental
factors have been coded in order to protect proprietary information. Although this data set
is real, Eastman's interest must be protected. Therefore, the data can only be given out in
coded form. No more information can be given on the details of the data.

Table 1. Variable descriptions.

Var Name
Response

z.
x\ -
X2

Description
Important quality characteristics for Eastman's customer

Uncontrollable process variable
Controllable process variable 1
Controllable process variable 2

Table 2. First three cases ofCasel2.txt.

Run_Order
1
1
1

Response
30.010
29.995
30.009

Zi
0
0
0

Xl
0
0
0

X2

0
0
0
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ANALYSIS
A least squares fit of the data was made. The model contained linear, quadratic, and

interaction (or cross product) terms. The refined model with terms that had a /rvalue of
0.10 or less is listed below.

where R is the predicted response for the fitted model (see [Bratcher, Moran, and Zimmer,
1970]).

From the fitted model, an engineer may gain insight into the relationships among these
factors in addition to an empirical ability to predict response as a function of these
variables. The plots in Figures 3 and 4 display the relationships between response and the
factors in the experiment. Figure 3 shows how the quadratic relationship between the
response and Z\ changes with X|. When X\ is high the rate of decline in response is
significantly greater in the lower range of Z\ than when X\ is low. Or, the effect of
changing X\ from low to high is significantly greater when Z\ is low than when Z\ is high.
This information is very useful to the engineers for process control. Typically engineers
understand how one variable generally effects a response. But, it is usually new
information to them when two variables interact. Figure 4 shows how response increases as
X2 increases. It shows how response begins to level out as X2 reaches the high levels.

Polynomial Fit degree=2 Xi=-1
Polynomial Fit degree=2 Xi=0
Polynomial Fit degree=2 Xi=1

Fig. 3. Response vs. Z\ by X{ (across all levels ofX2).
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Fig. 4. Response vs. X2.

A revealing outcome of the analysis comes when one considers the practical
implications of the model at different levels of Z\. One can scan the surfaces for specific
settings of X\ and X2 to keep the process on target (response = 30) as Z} varies. Figures 5, 6,
and 7 display the contour plots of response versus X\ and X2 as Z\ is fixed at the low,
medium, and high levels.

Fig. 5. Predicted response vs. X\ andX2 (Z\ - low).
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Fig. 6. Predicted response vs. X\ and X2 <Z\ - middle).

Fig. 7. Predicted response vs. X\ and X2 (Z, - high).

CONCLUSIONS
A three-factor Box-Behnken experiment was chosen. The Box-Behnken was chosen

for three reasons: (1) A quadratic model was needed; (2) Operations was nervous about
operating at the extreme conditions of a factorial design; (3) Minimization of the number of
conditions run on the process was desired. The last reason is always a concern for
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practitioners. A statistician needs to help them understand how sensitive the experiment
will be given the sample size constraints, variation, and objectives.

The goal is to put the process on a target value of 30. To do this, we ran a designed
experiment to see how three factors of interest affect response. Our empirical model does
this and allows us to estimate response for any setting of variables within the range studied.
The engineers will be able to maintain the target response while Z\ varies by changing the
settings of X\ and X2. This is extremely useful information to the engineers. They will be
able to operate the process on target, and hence with less variability as an uncontrollable
factor (Zi) varies in time. The information gained from this experiment will give Eastman
Chemical Company a competitive advantage in the manufacturing of plastic pellets.
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NOTES TO THE INSTRUCTOR

Level of Case

Engineering statistics or statistics major

Necessary Tools

Regression, experimental design

Objectives

This is a case history whose primary goal is to exemplify design issues in an
experiment. The analysis is straightforward and is a secondary issue, though it could be an
exercise.

Comments and Suggestions for the Instructor

Most of experimental design is actually taught as data analysis. Rarely do books talk
about the process one goes through in defining the objectives of the experiment, then in
selecting factors, their levels, and their roles in the experiments so that certain effects can
be estimated in the following analysis. This case history provides an example of the
process of issues encountered in the design stage of an experiment. Can students think of
other designs which adhere these ends?
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CHAPTER 13

INVESTIGATING FLIGHT
RESPONSE OF PACIFIC BRANT
TO HELICOPTERS AT IZEMBEK
LAGOON, ALASKA BY USING

LOGISTIC REGRESSION
Wallace P. Erickson, Todd G. Nick, and David H. Ward

Izembek Lagoon, an estuary in Alaska, is a very important staging area for Pacific brant, a

small migratory goose. Each fall, nearly the entire Pacific Fly way population of 130,000

brant flies to Izembek Lagoon and feeds on eelgrass to accumulate fat reserves for nonstop

transoceanic migration to wintering areas as distant as Mexico. In the past 10 years,

offshore oil drilling activities in this area have increased and, as a result, the air traffic in

and out of the nearby Cold Bay airport has also increased. There has been a concern that

this increased air traffic could affect the brant by disturbing them from their feeding and

resting activities, which in turn could result in reduced energy intake and buildup. This may

increase the mortality rates during their migratory journey. Because of these concerns, a

study was conducted to investigate the flight response of brant to overflights of large

helicopters. Response was measured on flocks during experimental overflights of large

helicopters flown at varying altitudes and lateral (perpendicular) distances from the flocks.

Logistic regression models were developed for predicting probability of flight response as a

function of these distance variables. Results of this study may be used in the development

of new FAA guidelines for aircraft near Izembek Lagoon.
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Fig. 1. Location of study area (Izembek Lagoon).

INTRODUCTION
During the fall season, Izembek Lagoon, Alaska (see Fig. 1) and adjacent estuaries

support greater than 90% of the Pacific black brant (Branta bernicla nigricans) population.
Izembek Lagoon was designated as a wetland of international importance in 1985 because
it supports large numbers of geese and other waterbirds. Aircraft and other human activities
may increase in and near Izembek Lagoon if petroleum industry facilities and a U.S. Coast
Guard search and rescue station are established in Cold Bay. Brant and other geese are
sensitive to aircraft and other human disturbance during fall migration. Human disturbance
can disrupt feeding activity of geese, displace birds from feeding areas, and potentially
affect energy reserves that are important for migration and over-winter survival of
waterfowl. The current FA A minimum altitude standard for flying over Izembek Lagoon is
2000 feet.

To minimize potential impacts that may result from increased aircraft disturbance at
Izembek Lagoon, an understanding of factors that influence the response of brant is
needed. [Ward, Stehn, and Derksen, 1994] found that brant flew longer when disturbed by
helicopters than by any other aircraft, but response varied by aircraft altitude and distance
to the birds during fall-staging at Izembek Lagoon. Other studies (e.g., [Davis and Wiseley,
1974], [Owens 1977]) have also identified aircraft type, altitude, and distance from the
birds as important factors influencing the response of waterfowl, yet few researchers have
made a detailed examination of the relationship of aircraft altitude and distance to the birds
and the response of brant.

The United States Fish and Wildlife Service is interested in developing models of the
behavioral response of brant to aircraft as a function of altitude and lateral distance. The
purpose of this study is to estimate the flight response of brant as a function of altitude and
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lateral distance using logistic regression techniques and provide recommendations for
changes to the current FAA regulations if these appear inadequate for minimizing the
effects to brant.

BACKGROUND
In this study, overflights of two large helicopters with similar noise ranges, the Bell 205

and a Sikorsky HH-3F Coast Guard helicopter, were flown following established routes
and altitudes. These two aircraft are commonly used in the area and would be expected to
have the highest disturbance effects on brant. Flight-lines were aligned perpendicular or
parallel to the shoreline of Izembek Lagoon to simulate local flight patterns. Data presented
are for these experimental aircraft overflights (hereafter called overflights) at Izembek
Lagoon and were used to assess the effects of altitude of the aircraft and lateral
(perpendicular) distance from the birds on the behavioral response of brant. Lateral
distance was determined from maps, which included the flight path of the aircraft and the
location of the center of each flock. The behavioral response of brant flocks to overflights
was recorded from blinds at various locations along the shoreline of the lagoon. Flock size
was determined by visual estimation from the blinds. A flock was defined as a spatially
distinct group of birds. In some cases flock members were dispersed over a 1 km area, and
an arbitrary subdivision of the flock was selected for observation.

QUESTIONS OF INTEREST
Investigate the effects of lateral distance and altitude of the helicopters on the flight

response of brant using both graphical and statistical techniques. Develop a logistic
regression model for flight response of brant as a function of the lateral distance and
altitude and the interaction of the two. Investigate the fit of the models using appropriate
logistic regression diagnostics.

DATA
Data collected on each brant flock during the experimental overflights include altitude

of the helicopter during the overflight (ALTITUDE), lateral distance from the aircraft to
the center of the flock (LATERAL), and flight response (FLIGHT). Descriptions, units,
and ranges for these variables are provided in Table 1.

Table 1. Variable names, descriptions, units, and ranges.

Variable
LATERAL
ALTITUDE
FLIGHT

Description
Lateral distance
Altitude of aircraft
Flight response

Units
100 meters (m)
100 meters (m)

Ranges
Low High
0
0.91
0

80.47
12.19
1

Each overflight followed established routes and altitudes. Flight-lines were aligned
perpendicular or parallel to the shoreline of Izembek Lagoon to simulate local flight
patterns. Airspeed was maintained at normal cruising speed (150-240 kilometers/hour
(km/hr)) in level flight. The altitude for an overflight (ALTITUDE) was randomly assigned
(within levels tested) and was recorded at 9 discrete levels (0.91, 1.52, 3.05. 4.57, 6.10,
6.71, 7.62, 9.14, 12.19). Lateral (perpendicular) distance (LATERAL) between the aircraft
and flock was determined from the study area maps to the nearest 0.16 km. Pilots of the
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aircraft radioed the observers with the altitude of the helicopter prior to initiating the next
overflight. See Fig. 2 for an illustration of these measurements.

The behavioral response of goose flocks to overflights (FLIGHT) was measured from
blinds at 8 study sites (see [Ward, Stehn, and Derksen, 1994]) and various temporary
locations along the shoreline of the lagoon. A flock was defined as a spatially distinct
group of birds; median flock size was 700 birds (range = 10 -30,000 birds). In some cases,
flock members were dispersed over a 1 km area, and an arbitrary subdivision of the flock
was selected for observation. The behavioral response was estimated as the percentage of
the flock exhibiting flight response and was classified into two categories with 0
representing flocks exhibiting less than 10% response and 1 otherwise. Only two classes
were used, because the majority of responses were either 0% or 100%. A flight response is
defined as the brant individual taking flight during the overflight of the aircraft.

Table 2 contains the first 10 records of the data file Casel3.txt, while Appendix A
contains all 464 records of response by flocks of brant.

Fig. 2. Illustration of the altitude and lateral distance measurements.

Table 2. First ten records of the brant response data file.

FLOCK ID
1
2
3
4
5
6
7
8
9
10

ALTITUDE
0.91
0.91
0.91
9.14
1.52
0.91
3.05
6.1
3.05

12.19

LATERAL
DISTANCE

4.99
8.21
3.38

21.08
6.60
3.38
0.16
3.38
6.60
6.60

FLIGHT
RESPONSE

1
1
1
0
1
1
1
1
1
1
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ANALYSIS

Phase 1. Describing data

Investigate the univariate distributions of altitude (ALTITUDE) and lateral distance
(LATERAL) with the use of histograms and descriptive statistics. What is the shape of the
distribution for LATERAL? Display frequency tables (frequencies and percentages) for the
ALTITUDE and FLIGHT variables.

Visually compare ALTITUDE for the two categories (Yes/No) of FLIGHT with the use
of side-by-side boxplots. Do the same for the LATERAL variable. What can you tell about
your data from these boxplots? Does there appear to be a relationship between ALTITUDE
and FLIGHT? How about LATERAL and FLIGHT? Summarize your results as if you
were writing a report for a biologist.

Show a scatter plot of ALTITUDE and LATERAL. What is the scatter plot depicting
about the design of the experiment? Is it a balanced design? Is there anything interesting
about the altitude values greater than 12?

Phase 2. Odds Ratios and Simple Logistic Regression Analysis

This phase of analysis is designed to explore the relationships between the predictor
and response variables separately. Models were fitted with ALTITUDE as the predictor,
then with LATERAL as the predictor. This will demonstrate the relationships between the
predictor variables and response, ignoring the effect of the other predictor.

Reduce the variable ALTITUDE to the three categories of <3, 3-6, and >6 and call the
newly created variable ALT3CAT. Compute descriptive statistics (e.g., proportions) for
ALT3CAT by flight response by using contingency tables (PROC FREQ in SAS).

When the response variable is a proportion (i.e., proportion of brant flocks exhibiting
flight response), say p, it is often useful to apply the logit transformation: logit(/?) -
log(/>/(l-/?)). This transformation is called the log odds ratio (pl(\-p) are the odds of the
brant flying). Two categories can be compared by taking the ratio of the odds ratios or log
odds ratios. The resultant ratio of odds ratios yield the odds of a flock exhibiting flight
behavior in the numerator category relative to the denominator category.

Is there an association between ALT3CAT and FLIGHT ignoring the effect of
LATERAL? Calculate and discuss the odds and log odds for each category of ALT3CAT.
Calculate and discuss the odds ratio for comparing the two altitude groups >6 and <3.
Finally, fit a logistic model with ALTITUDE as the independent variable and FLIGHT as
the dependent binary variable. Compute the estimates, standard errors, Wald chi-square
statistics, and p-values for the intercept and ALTITUDE variable. Interpret the odds ratios
for ALTITUDE from the logistic regression analysis.

Is there an association between LATERAL and FLIGHT ignoring the effect of
ALTITUDE? To compute odds ratios only, collapse the LATERAL variable into four
categories, <10, 10-19, 20-29, and >30 (LAT4CAT) and produce a contingency table for
LAT4CAT by flight response. Calculate the odds and log odds for each category. Compute
the odds ratio for the two groups <10 and >30. Does there appear to be an association
between the LAT4CAT and FLIGHT? Using the continuous variable LATERAL, fit a
logistic model with LATERAL as the independent variable and FLIGHT as the dependent
variable. Is there as association between LATERAL and FLIGHT? Interpret the odds ratios
for LATERAL from the logistic regression analysis.
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Phase 3. Multiple Logistic Regression Analysis

Run a logistic model with ALTITUDE and LATERAL as independent variables and the
flight response variable as the dependent variable. Are the coefficients significant?
Interpret the odds ratios for both variables. Plot the predicted probability of flight response
against LATERAL for each of three altitudes (2, 4, 6). With ALTITUDE fixed at 6.1 units
(610 m or -2000 ft), what value of LATERAL yields a predicted probability of flight
response of 25%?

Consider the possible interaction between ALTITUDE and LATERAL. Plot the
proportion of flocks responding to an overflight versus LATERAL (use the four groups
defined above) separately for each of the three ALTITUDE categories defined previously
(variable ALT3CAT). From this plot, does there appear to be an interaction between
ALTITUDE and LATERAL? Include the interaction effect in the logistic model with
ALTITUDE and LATERAL. What is the /7-value for the interaction effect? Plot the
predicted probability of flight response against LATERAL for each of the three altitudes
(2, 4, 6) using this model.

With ALTITUDE fixed at 6.1 units (610 m or -2000 ft), what value of LATERAL
yields a predicted probability of flight response to helicopters of 25%? The current
minimum altitude for all aircraft flying over the lagoon is 2000 feet (6.1 100 meter (m)
units) when flying over the lagoon. Does this appear adequate if it is important to minimize
the flight response of aircraft? Is there adequate information from this study to determine a
minimum altitude requirement that yields a 25% probability of flight response by flocks
when a large helicopter is flying directly over the lagoon? If not, and if studies were to be
conducted to determine this altitude, what would you recommend in terms of study design?
What would be your recommendation for setting minimum altitude or distance from the
lagoon for these large aircraft if it was important to have a 25% or less chance of disturbing
the brant flocks into flight?

Phase 4. Diagnostics

In linear regression, diagnostics using the residuals (i.e., difference between the fitted
and the observed value) are investigated to identify outliers and data values having a large
influence on the fit of the model. Several statistics have been developed for identifying
outliers and influential observations in logistic regression (see [Pregibon, 1981] and
[Hosmer and Lemeshow, 1989]) and can be calculated in most statistical packages for
logistic regression. One such statistic, called the deviance residual, is commonly used.
Which cases have large deviance residuals (define large as greater than 4)? What possible
biological factors could be used to explain the ill-fitting observations? The sum of deviance
residuals can be thought of as an overall fit for the model. Identify highly influential cases
by calculating the change in the overall deviance statistic due to deleting that case.

INSTRUCTIONS FOR PRESENTATION OF RESULTS
A detailed written report that can be read and understood by a wide array of people,

including statisticians, managers and staff, biologists, and environmental groups, should be
submitted. A presentation that summarizes your analysis, results, and recommendations
should be prepared. Assume your presentation has this same intended audience.
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NOTES TO THE INSTRUCTOR

Level of Case

This case study is suitable for a categorical data analysis course for undergraduate
students or a multiple regression course that includes multiple logistic regression.

Necessary Tools

Students must have access to a statistical software package, such as SAS, S-Plus, or
SPSS, which is common for a course of this type. Output may be provided to the students if
interpretation is the basis of the course and/or student out-of-class-time is limited. We have
included sample SAS code for much of the analysis in Appendix B and on the disk that
contains the data.

The main objective of this case study is to provide biological data for students to run a
multiple logistic regression model. This case study is unique in that the main focus is in
interpretation of data, with single and multiple independent variables, with the interaction
effect being the primary focus. We feel most textbooks on this subject have little on the
interpretation and presentation of interaction effects at the logistic model level. The data
set's strength is the small number of variables in the model and the biological importance
of statistical interaction between altitude and lateral distance. Secondary objectives include
the use of boxplots in a logistic framework setting; the use of and interpretation of odds
ratios, odds, and logs for univariate relationships; and the use of some diagnostic tools to
use in logistic regression.

We recommend that the instructor provide some initial SAS code for the students to get
started with the case study. Also, a disk and printout of the data should be given to each
student or team of students. We would suggest pairing the students in teams so that
discussion between the students has an effect on the learning process. The students should
have previous knowledge of odds ratios, chi-square tests, and multiple logistic regression
with a significant interaction term.

TYPICAL RESULTS
Typical results of the case study are outlined below by phase of question.

Phase 1 . Describing Data

Histograms of altitude and lateral distance are given in Figs. 3 and 4. The levels of
altitude are apparent in Fig. 3. The distribution of lateral distance looks somewhat
lognormal.

There were 179 (38.6%) flocks that did not fly in response to the helicopter overflights
and 285 (61.4%) that did fly. For the variable altitude, the frequencies and percents are
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below. To clearly show the frequencies for the altitude variable, a frequency chart may be
useful (see Table 3).

Altitude

Fig. 3. Histogram of altitude.

Lateral Dstance

Fig. 4. Histogram of lateral distance.
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Table 3. Frequency chart of altitude.

163

Altitude Frequency Percent

0.91
1.52
3.05
4.57
6.10
6.71
7.62
9.14

12.19

92
98
98

100
53

5
3
9
6

19.8
21.1
21.1
21.6
11.4

1.1
0.6
1.9
1.3

Total 464 100.0

Boxplots of lateral distance and altitude versus flight response (Yes/No) are given in
Figs. 5 and 6.

Based on the box plots, there appears to be a relationship between lateral distance and
flight response. The proportion of flocks responding increases with decreasing lateral
distances. For lateral distance, the flocks that did not respond have a 25th percentile that is
greater than the 75th percentile of the flocks that did respond. Also, the interquartile range
of lateral distance for flocks that did not respond is approximately twice the interquartile
range of the flocks that did respond. Based on the boxplot only, there appears to be no
relationship between altitude and the flight response indicator. The outliers and quartiles
are approximately equal with the exception that the flocks that did respond had one
extreme value that was detected in the box plot.

Flight Response

Fig. 5. Boxplots of lateral distance vs. flight response (Yes/No).
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Flight Response

Fig. 6. Boxplots of altitude vs. flight response (Yes/No).

Phase 2. Odds Ratios and Simple Logistic Regression Analysis

The scatter plot of altitude versus lateral distance (Fig. 7) shows the levels of the
altitude variable and the ranges of lateral distance. The values above 1200 meters on the
altitude scale are limited to small lateral distances.

Fig. 7. Scatter plot of altitude vs. lateral distance.
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For initial exploratory analyses, and plotting purposes, we collapsed the 9 levels of
altitude into 3 levels. These groups were < 3, 3-6, > 6. The frequency (percent) for the <3
category was 190 (40.9%), 198 (42.7%) for the 3-6 category, and 76 (16.4%) for the >6
category. We call this newly created altitude variable (ALT3CAT). Note that the mean of
the original variable was 3.28 with a standard deviation of 2.24.

In considering the relationship between the created altitude variable and flight response,
ignoring latitude, we can examine the cross tabulation table (Table 4) below.

Table 4. Cross tabulation of altitude and flight response indicator.

Altitude Flight Response
Frequency (Row %)

No Yes Total Odds (Log)

<3
3-6
>6
Total 179

85 (45%)
77 (39%)
17(22%)

105(55%)
121 (61%)
59 (78%)

285

190
198
76
464

105/85= 1.24(0.21)
121/77= 1.57(0.45)
59/17 = 3.47(1.24)

>6 : <3 odds ratio = 2.80, log = 1.03
>6 : 3-6 odds ratio = 2.21, log = 0.79
3-6: <3 odds ratio = 1.27, log = 0.236

Based on the above cross tabulations, there appears to be a relationship between the
altitude categories and flight response. The >6 category is almost three (2.8) times as likely
as the <3 category to have a flock exhibit flight behavior.

Results of the logistic regression using flight response (FLIGHT) as the dependent and
ALTITUDE as the independent variable are found in Table 5.

Table 5. Logistic regression output from SAS using flight response (FLIGHT) as the
dependent variable and ALTITUDE as the independent variable.

Variable
INTERCPT
ALTITUDE

DF
1
1

Parameter
Estimate
0.0960
0.1150

Standard
Error

0.1720
0.0456

P r > X
0.5768
0.0117

Odds
Ratio

1.122

The coefficient for altitude is significant (p - 0.0117) and positive, indicating that, in
general, probability of flight response increases with increasing altitude. The odds ratio
from this table indicates that increasing the ALT3CAT by one unit (100 m) increases the
chances of a flock exhibiting flight response by 1.12 times. These results may at first
appear counterintuitive. One might think that the lower the helicopter, the higher the flight
response. It may mean that the birds are reacting to the sight of the aircraft, and an aircraft,
when not flying directly overhead, is more easily seen at higher altitudes. Also, the sound
at the lower altitudes does not have the same opportunity of traveling as far because it gets
absorbed more quickly by the ground.

Table 6 shows the cross tabulations of lateral distance and flight response. Based on the
cross tabulations, there appears to be a relationship between lateral distances and flight
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response. In fact, if we compare the distances <10 versus >30, we see an odds ratio of 219,
which means the flocks are 219 times more likely to fly if the distance is >30 versus <10.

Table 6. Cross tabulation of altitude and/light response indicator.

Lateral Distance Flight Response
Frequency (Row %)

No Yes Total Odds (Log)

<10
10-19
20-29
>30

Total

37 (13%)
68 (65%)
44 (92%)
30 (97%)

179

243 (87%)
37 (35%)
4 (8%)
1 (3%)

285

280
105
48
31

464

6.57(1.88)
0.54 (-0.61)
0.09 (-2.40)
0.03 (-3.43)

<10 : >30 odds ratio = 219, log = 5.39

Results from the logistic regression analysis with flight response as the dependent
variable and lateral distance as the independent variable are found in Table 7.

Table 7. Logistic regression output from SAS using flight response (FLIGHT) as the
dependent variable and LATERAL as the independent variable.

Variable
INTERCPT
LATERAL

DF
1
1

Parameter
Estimate
2.9621

-0.2333

Standard
Error

0.2560
0.0216

Pr>X
0.0001
0.0001

Odds
Ratio

0.792

There does appear to be a negative relationship between lateral distance and probability
of flight response (p = 0.0001). As lateral distance increases, the probability of flight
response tends to decrease. Based on the odds ratio for lateral distance, a brant flock 100 m
further away from an aircraft is .8 times less likely to exhibit flight response.

Phase 3. Multiple Logistic Regression Analysis

Results for the logistic regression with lateral distance and altitude in the model are
found in Table 8.

Table 8. Logistic regression output from SAS using flight response (FLIGHT) as the
dependent variable and ALTITUDE and LATERAL as the independent variables.

Variable
INTERCPT
ALTITUDE
LATERAL

DF
1
1
1

Parameter
Estimate
2.3954
0.1965

-0.2388

Standard
Error

0.3055
0.0674
0.0225

Pr>X
0.0001
0.0036
0.0001

Odds
Ratio

1.217
0.788

Both variables are significant, with ALTITUDE positively and LATERAL negatively
related to the probability of response. A one-unit increase in ALTITUDE (100 m) implies a
1.2-fold (1.2 times) increase in probability of flight response by brant. A one-unit increase



Using these equations, the lateral distance that yields a predicted probability of flight
response for the third altitude category is 17.04 units or 1704 m.

• 200 m Altitude

400 m altitude

600 m altitude

300-600 m
altitude

Lateral Distance (100 m units)

Fig. 8. Predicted probability of flight response as a function of lateral distance for altitudes
o/200 m, 400 m, and 600 m.

The plot of the proportions of flocks responding within each of the four lateral distance
categories (1 = <10, 2 = >10 and <20, 3 = >20 and <30, and 4 = >30) for each altitude
group (ALT3CAT) is shown in Fig. 9. These lines do not appear parallel, so an interaction
between altitude and lateral distance may exist. The predicted probability of flight response
(Fig. 9) decreases at a much lower rate for the higher altitude group (>600 m) than for the
two other altitude groups.
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in LATERAL (100 m) implies the probability of flight response decreases to .8 times the
previous response value. Figure 8 contains a plot of the predicted probabilities of flight
response as a function of lateral distance for each of the three altitudes (3, 6, 9).

In logistic regression, the response Y can take on one of two values, typically denoted
by a 1 (e.g., flight response) and a 0 (e.g., no flight response). Define X\, X2, ... , Xn as the
independent predictor variables and p = Pr(y=llXi, X2, ... , Xn) as the probability to be
modeled (e.g., probability of flight response). The logit of p has the form

Solving for p yields
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< 300 m altitude

>300 m and <
300 m altitude

> 600 m altitude

Lateral Distance groups

Fig. 9. Plot of the proportion of flocks responding for each of four lateral distance groups
(1 = <10, 2 = >10and < 20, 3 = >20 and < 30, and 4 = >30).

Results from the logistic regression with the variables altitude, lateral distance, and the
interaction are found in Table 9. The interaction is significant (p = 0.0001).

Table 9. Logistic regression output from SAS using flight response (FLIGHT) as the
dependent variable and ALTITUDE, LATERAL, and the interaction ALTLAT as the

independent variables.

Variable
INTERCPT
ALTITUDE
LATERAL
ALTLAT

DF
1
1
1
1

Parameter
Estimate
3.8250

-0.2030
-0.3909
0.0401

Standard
Error

0.4992
0.1056
0.0484
0.00949

Pr>X
0.0001
0.0545
0.0001
0.0001

Odds
Ratio

0.816
0.676
1.041
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Lateral Distance (100 m units)

Fig. 10. Predicted probability of flight response as a function of lateral distance for
altitudes of 200 m, 400 m, and 600 m.

The plot of the predicted probability of flight response as a function of lateral distance
for each of three altitudes (2, 4, 6) is found in Fig. 10. The predicted probability of flight
response decreases at a much lower rate for the higher altitude (600 m) than for the two
altitudes plotted.

With altitude fixed in the third category, the lateral distance that yields a predicted
probability of response of 25% is 2094 m. The flight response is greater than 80% for
helicopters at 0 lateral distance for all three altitude categories, so the current regulation of
2000 feet minimum (610m) does not appear adequate. Other altitudes above those used in
this study would have to be tested to determine if there is an altitude level where expected
probability of response is low. It is our recommendation to move the flight corridors away
from Izembek Lagoon approximately 1 to 1.5 miles, at least for helicopters. If further
studies are conducted, more observations of brant flocks at large lateral distances (> 30)
should be made, especially for altitudes greater than 600 m. The current model is based on
few observations within this category.

Phase 4. Diagnostics

We identified eight observations with relatively large deviance residuals (cases 13, 26,
79, 90, 154, 167, 311, 347). Cases 26, 79, 90 are cases in which flocks a long distance from
the aircraft responded by flying. Factors such as presence of a predator (e.g., eagle), boat,
or movement from feeding or resting grounds, if known, may explain these cases. The
other five are cases in which flocks close to the aircraft did not fly. Factors such as wind
direction and speed, closeness to shore, or other unknown factors may explain these cases.
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Cases that appear to have the largest influence on model parameters are cases 4, 13, 26, 38,
79, 154, 197, 223, 311, 321, and 369.
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CHAPTER 14

ESTIMATING THE BIOMASS
OF FORAGE FISHES IN ALASKA'S

PRINCE WILLIAM SOUND
FOLLOWING THE EXXON VALDEZ

OIL SPILL
Winson Taam, Lyman McDonald, Kenneth Coyle, and Lew Halderson

The Alaska Predator Ecosystem Experiment (APEX) is a research project to determine why

some species of seabirds whose populations were reduced by the Exxon Valdez oil spill in

Prince William Sound, Alaska are not recovering. An acoustic survey was performed in the

Sound to estimate the abundance and distribution of forage fishes and seabirds in the

region. APEX involves a number of aspects, including estimation of seabird population

sizes, food abundance, and state of the ocean. The sampling design was conducted with

designated straight line paths transecting in three regions of the sound in July, 1995. These

three regions were chosen to represent three levels of impact by the Exxon Valdez accident.

The data consist of acoustic sonar signals collected on each transect using surface sensors,

observer sightings of birds, net sampling of fishes, and water and weather conditions. This

case study provides analysis of a segment of this study; namely, estimating the biomass of

one species of forage fish with spatially correlated data. Other components of the project

will evaluate the forage fish data collected in concert with seabird reproduction data over

three years, 1995-1997, in an attempt to determine if food is limiting recovery of the

piscivorous (fish-eating) seabirds.

INTRODUCTION
In a field study, many issues related to planning, execution, and analysis are crucial to

the success of a project. Although the focus of this case study is placed on estimation of
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biomass, many interesting challenges can be found in the questions of interest and the
comments and suggestions sections. In short, this case study provides analysis and
estimation of the biomass of specific species of forage fish given that these measurements
are likely to be correlated in space. Moreover, the location and concentration of these fish
are reported as helpful information for scientists to monitor the ecological changes in this
region.

BACKGROUND INFORMATION
Seabirds suffered substantial mortality from the Exxon Valdez oil spill in 1989, and

some piscivorous species have not yet recovered. Low reproduction of piscivorous seabirds
may be linked to food shortages related to oil spill injury. Since small forage fish are a
major component of the diets of these seabirds in Prince William Sound, Alaska, the causes
of seabird population declines cannot be evaluated without concurrent estimates of forage
fish populations in foraging regions in proximity to the nest sites during the reproductive
season. Three study regions (Figure 1) were selected to represent three levels of impact by
the Exxon Valdez accident and were subsampled to provide estimates of forage fish
distribution, species composition, size, and abundance using quantitative acoustic
equipment from a research vessel. A second research vessel followed and captured fish
from a sample of detected schools to provide estimates of the size and species composition
of fish. The surveys were first initiated in 1994 in a pilot study to evaluate gear and
sampling designs to be used in subsequent years. The seabird reproductive season of 1995
was the first full implementation of the sample survey; plans are in place to continue the
surveys for two more reproductive seasons through the summer of 1997.

Fig. 1.
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Each of the 3 study regions was subsampled twice during the 1995 seabird reproductive
season using a systematic sample of parallel east-west transects. The data analyzed in this
case study are from the first coverage of the transects in the middle study area (Figure 1),
1995. Two sets of similar data separated by about 2 weeks were collected from each of the
3 study areas. Figure 2 displays the 1995 systematic subsample of 12 survey lines
(excluding the zigzag lines in Figure 1) which were traversed by the research vessels. The
lines were selected across the central study region with a random starting point for the first
line. The remaining 11 lines were then located parallel to the first line and at equal intervals
of about 3.7 kilometers (2.3 miles) apart. Note that wind and waves make it impossible for
a ship to exactly follow a line and the realized survey tracks were not exactly straight. Also,
there are 6404 numbers in the data set for biomass of a certain age forage fish, 12 lines in
the systematic set of lines, and 1 random placement of the systematic set. From these
comments, one can begin to see that these data are not exactly like the standard "simple
random sample" with "independently and identically distributed" random values.

Longitude Distance in KM

Fig. 2. Actual transects sampled (center region).

Our collaboration provides assistance with estimation of the biomass of specific species
of forage fish given the fact that these data are likely correlated in space. Data from points
close together in space are likely more similar than data from points which are separated by
large distances. Other components of the project will evaluate the forage fish data and data
of seabird reproduction over three years, 1995-1997, in an attempt to determine if food is
limiting recovery of the piscivorous seabirds.
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QUESTIONS OF INTEREST
One of the objectives of APEX is to assess the amount of forage fish available for the

region's seabirds. Developing a procedure to graphically illustrate the distribution of a
specific species of forage fish in one region and to estimate the total biomass of the species
in subregions is the objective of our case study. This objective may seem simple but there
are a number of questions associated with it.
1. What is the sampling procedure? What is the sample size? There are 6404 data records

in the set, but is this the proper sample size? Is the sample size 12, the number of
designated transects?

2. Some data values are from adjacent sites and others are separated by several
kilometers. How does this affect the analysis? About 54% of the values for biomass
are less than 0.001 g/m2. How does this influence the estimation?

3. What are the underlying assumptions for estimation of mean biomass and total
biomass? Are the data values independent?

4. What is the difference between estimating biomass with and without consideration of
spatial correlation?

5. How should one compute an estimate of the average biomass per square meter in the
entire study area? How is this estimate converted to an estimate of total biomass?
What is the accuracy and precision of these biomass estimates?

6. How are estimates from two locations or two time frames compared to determine if
important changes have taken place in the amount of biomass present?

DATA
In the study, three regions, north, central, and south, were selected from the Sound

(Figure 1). The data include sonar measurements of biomass along the designated transects,
fish information such as size and species, an observation log of the birds' foraging
behavior, and ocean and weather measurements. Our case study concentrates on the sonar
data for one species of forage fish, pollock less than one year old (young pollock), from the
central region only.

From some preliminary discussion of the sampling plan, the zigzag lines in Figure 1 are
excluded from the analysis of this case study. Although the process of obtaining the
biomass value is given below, the actual values of the study are rescaled to maintain the
confidentiality of the findings of this APEX study. The data were originally standardized so
that a given value of biomass is the average grams of young pollock in a one square meter
(m) column between 26 m and 62 m depth in the water surveyed during a 15-second period
of time. The original units were in grams per meter cubed for each one meter deep interval
between 26 m and 62 m. These values have been summed over the interval 26 m to 62 m
and are reported as average grams per square meter of surface area with the implication
that the mean biomass is for the entire column of water whose depth is between 26 m and
62 m. Associated with each value of biomass are the longitude (X) and latitude (Y) and
transect number; the longitude and latitude have been coded so that 147.7034 west and
60.3683 north gives X = 0.0, Y = 0.0; the units are in meters.

The data set is available on the floppy disk, and the file is called Casel4A.txt. There are
6404 sampled sites in this region of about 40 km (25 miles) in the north-south direction
and about 25.6 km (16 miles) in the east-west direction. Each site is recorded in each row
of the data file. Each row consists of four entries: the X coordinate, the Y coordinate, the
corresponding average biomass in one square meter of surface area (between 26 m and 62
m depth), and the transect label. Refer to Figure 2 for transect labels. A display of the
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sampled sites is given in Figure 2. The empty spaces in the northern and the south-western
area are occupied by islands (see Figure 1).

ANALYSIS
From the extent of questions listed in a previous section and the massive amount of data

collected at one point in time, it is easy to see that the scope of the analysis quickly moves
beyond the goals of classroom exercises. In particular, we do not present data from two
regions or times but restrict the suggested exercises to the following broad steps:
1. Plot the data and examine any systematic pattern. Where are the regions with the larger

values for biomass of young pollock?
2. Check for spatial dependence and type of dependence. Are sites close together more

similar than sites which are far from each other? If sites are correlated in space, how
would one measure such dependence?

3. Compute the correlation over space. Fit a parametric function to the correlation (or
covariance) of sites over various distances. Define a zone of influence (neighborhood)
such that all sites within this zone of each other have influence on the measurement of
biomass at a given site. In other words, data from correlated neighbors should be used
to improve the estimate of biomass at a given site.

4. Estimation of biomass: (a) Estimate the average biomass without spatial consideration,
(b) Estimate the average biomass with spatial consideration.

Exploratory Data Analysis

Plot the data and examine any systematic pattern. Where are the regions with the larger
values for biomass of young pollock? Figure 3 displays the biomass in a bubble plot, where
the size of the bubble represents the magnitude of biomass with the maximum scaled to 1
cm in radius. In our case study, Figure 3 displays several features.

Longitude Distance in KM

Fig. 3. Transect biomass scales to 1 cm.
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1. Large biomass values are clustered together near the southern portion of the study
area.

2. The sites within a transect are much closer than the ones across transects, and sites
within a transect are likely to be correlated with each other.

3. The majority of the biomass appears to be aligned across the three southern most
transects.

Readers are encouraged to plot the data in other manners to further examine the
distribution of biomass in the study area.

Exploratory Look at Spatial Dependence

Check for spatial dependence and type of dependence. Are sites close together more
similar than sites which are far from each other? Are sites correlated in space?

This step involves understanding the spatial dependence among these measurements by
computing the sample correlogram. A sample correlogram (a spatial analogue of
correlation coefficient) is defined as

where N(d) represents the set of sites which are d units apart in distance and #N(d)
represents the number of (5j,Sj*) pairs within d distance of each other. Z(sj) represents the
observed biomass at site Sj and Z is the average of all 6404 biomass values. In theory, this
is easy to do, but it requires some programming. For this exercise, we selected a range of d
from 0 to 8.05 km (about 5 miles) and subdivided this range into 100 intervals of size 80.5
m each. Find all pairs of sites which are within 80.5 m of each other, #/V(80.5), and
compute the value of the correlogram, eg (80.5), for these pairs. For each of the intervals

[0 m, 80.5 m), [80.5 m, 161 m), [161 m, 241.5 m), ... , compute the above quantities and
then plot cg(d) versus d. It will be a useful exercise to verify the correlogram in Figure 4
if you have programming skills. Otherwise, plot the pairs of values in the file Casel4B.txt
which are provided with the data diskette. Column one is distance (d) and column two is
the correlogram (cg(d)}. The resulting plot of the correlogram for our study is in Figure 4.
The solid line in the correlogram is the zero (no correlation) line. Based on the correlogram
in Figure 4, estimate the zone of influence. That is, at what distance between sites does the
correlation become negligible.

Distance in Kilometers

Fig. 4. Transect biomass.
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The correlogram suggests that the degree of dependence decreases rapidly as distance
increases so that sites which are approximately 1.6 km (1 mile) apart are essentially
uncorrelated. According to a parametric estimation of the correlogram, the correlation at
1.6 km distance apart is nearly 0.04.

From Figures 3 and 4, one may wish to see if the spatial dependence within a transect
extends beyond the distance between 2 transects. Not knowing the size and geometry of the
schools, one may use the spatial dependence within a transect to extrapolate across
transects. First, examine the spatial dependence for each transect in this region. Figures 5
and 6 show the correlograms for all 16 transect segments. Due to some land masses in the
northern area, some transects are broken into 2 segments. Therefore, there are 16
correlograms. The last letter of the transect label indicates an intact transect with "a," an
east segment transect with "e," and a west segment with "w." The first 3 correlograms
represent the 3 southern most transects. Their spatial dependence resembles the one in
Figure 4. These figures suggest that the spatial dependence pattern for the whole region is
dominated by the 3 southern most transects. The correlograms from other transects either
lack systematic pattern or have very small correlation values for all distances.

Correlogram for ffnda Correlogram for ffn02a

Distance in KM

Correlogram for ffnOSa

Distance in KM

Correlogram for ffn04a

Distance in KM

Correlogram for ffnOSa Correlogram for ffnOGa

Distance in KM

Correlogram for ffn07e Correlogram for ffn07w

Distance in KM

Fig. 5.

Distance in KM

Distance in KM

Distance in KM
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Correlogram for ffnOSa

Distance in KM

Correlogram for ffn09w

Distance in KM

Correlogram for ffnl 1 e

Distance in KM

Correlogram for ffn09e

Distance in KM

Correlogram for ffnIOw

Distance in KM

Correlogram for ffnl 1w

Correlogram for ffn12e

Distance in KM

Correlogram for ffn12w

Fig. 6.

Estimation of the Spatial Correlation

Judging from the correlograms from Figures 5 and 6, it is reasonable to fit an
exponential model to the decay of correlation as a function of distance between sites. This
parametric relationship is needed for later analysis. The parametric function used to model
the correlogram obtained from all biomass values is

where fi\ and fa are positive parameters and d is the distance. Although other functional
forms may be used, we found that the chosen function fits the correlogram quite well (see
Figure 4). A nonlinear regression approach was used and the parameters were estimated to

be /?, =0.314104 and /32 =1.31545 for the data in the file Casel4B.txt. By the definition
of autocorrelation, we mean that the correlation between two Zs is the covariance between
them divided by their variance (under some stationary condition). Therefore, one may find

Distance in KM
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the covariance of biomass between two sites d distance apart by multiplying the
correlogram with the variance of biomass. For this data set, the sample variance estimate of
biomass is 0.1684.

Estimation of Average Biomass

What are the implications of these exploratory analyses? How does spatial dependence
help the biomass estimation? How would one make use of the spatial information to
improve the estimation procedure? The spatial dependence can be used to estimate average
and total biomass in the region and its variance in the following discussion. To compare
this approach to one without spatial consideration, let us compute the total biomass and its
variance assuming independence of all sites.

Estimate Average Biomass without Spatial Information

The simple "finite sampling" approach is to compute the average of all 6404 values and
compute the variance and the standard deviation of the mean (standard error). The mean is
0.04867177 g/m2 and the standard error is 0.005128495 g/m2.

Estimation of Biomass with Spatial Information

From the discussion on exploratory analysis of spatial dependence, we have chosen a
region of 1.6 km (1 mile) in radius as the zone of influence. The distance between two
adjacent transects is about 3.7 km, which is larger than the observed zone of influence in
the correlogram (Figure 4). It is reasonable to assume that the data between two transects
are uncorrelated. A simple approach to estimate the average biomass is to compute the
weighted average of the means from the transects, and then estimate the variance of the
weighted average using variances from the transects. The weights for averaging are the
proportion of sites for each transect in the entire region. The definition of this estimate is
given as follows:

Z(. represents the average biomass from the ith transect, n{ represents the number of

observations in the ith transect, and t represents the number of transects. The appendix
gives the mean and variance of this estimate. Using this approach, the estimated mean
(Z+) biomass of young pollock per square meter is 0.04867177 g/m2 and the standard

error is 0.0050607 g/m2. The average and standard error of biomass estimates match the
ones from the previous subsection.

There are a number of models which have been proposed for analysis of spatially
correlated data under the general heading of "geostatisics." Many of the early advances and
development were made in the applications for geology. [Cressie, 1991] and [Ripley, 1981 ]
are two frequently referenced books in this area. After considering several of these models
for the APEX project, we chose one such model here for comparison with the estimates
presented in the previous subsection and the previous paragraph.

One method to utilize the correlation of neighboring biomass values on transects is to
compute a moving average at each site. The average at a site is a weighted average of its
neighbors in the zone of influence where the weights are inversely proportional to the
distance from the site. Following the exploratory analysis and the magnitude of the
parameters from the covariance function, the zone of influence is chosen to be a
neighborhood of 1.6 km (1 mile) in radius. This suggests that a correlation smaller than
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0.04 is considered negligible. Using this information, let us define an estimate of biomass
at each site as a weighted average of its neighbors within a 1.6 km (1 mile) radius.

where N(i) is the neighborhood of sites that lie within the zone of influence from site i and
Wj are weights that sum to one (they are standardized reciprocal distance weights).

where dfj is the distance between st and Sj. A farther neighbor has a smaller weight than a

closer neighbor. The moment equations in the appendix indicate that Z(s,) is unbiased for

Z(st} and that the spatial dependence enters the variance estimation through the

covariance term. For interested readers, the appendix gives the equations of the mean and
variance of these estimates. The contents of Casel4c.txt are X Y coordinates in columns 1
and 2, the observed biomass in column 3, the estimated biomass in column 4, and the
estimated variance at each site in column 5. A computer program was used to compute
these estimates. Although the algorithm is relatively simple, the size of this data set makes
the computation inaccessible in a classroom setting because the iterations needed to
compute estimate of equation (13) are too many. In our case study,

is 0.050034 g/m2 and the standard error is 0.016919 g/m2.
Table 1 summarizes the estimates obtained in the three methods described.

Table 1. Estimation summary.

Average Biomass Std. Error
No spatial information
Independent transects

With spatial information

0.048672 g/m2

0.048672 g/m2

0.050034 g/m2

0.005 129 g/m2

0.005061 g/m2

0.0 169 19 g/m2

CONCLUSIONS
When presenting this case study to the APEX team, one would use Figures 1 and 2 for

background information and data description, Figure 3 for location and concentration of
biomass, and Figures 4, 5, 6, and Table 1 for discussion of biomass estimation with spatial
correlation.

Remarks on the estimation using spatial consideration:
1. The estimate of average biomass is slightly larger than the one given with the other

two approaches. Under the constant mean assumption, all three estimates are unbiased.
2. The weighted average estimate for biomass at each site provides a "smoother" profile

than the original biomass because the fluctuations across sites are averaged out by the
values in the zone of influence. These values in the file Casel4C.txt can be plotted for
graphical presentation.

3. The variance of Z ( s t ) at each site is available for graphical display or pointwise

inference. The estimate ± certain multiples of standard error at each site could be
plotted in three dimensions to illustrate the point estimates of biomass and the relative
precision at each site.
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4. The standard error of the average biomass is larger with the spatial consideration. In
this case, it is more than three times as large, because data values are not independent.

5. The procedure to compute the weighted average estimates is not readily available on
commercial software. The computation of the variance estimate using the equations in
the appendix requires huge numbers of iterations for this data set.

REFERENCES
Cressie, N. (1991), Statistics for Spatial Data, John Wiley and Sons: New York.
Ripley, B.D. (1981), Spatial Statistics, John Wiley and Sons: New York.

NOTES TO THE INSTRUCTOR

Level of Case

Undergraduate majors in statistics and students who have taken several statistics
courses are expected to understand the general concept and methodology of this case study.
Graduate students in statistics and biometry are expected to understand the details and be
able to carry out the analyses.

Necessary Tools

Summary statistics, concept of sample survey, spatial statistics, concept of dependence
and computing skill.

Objectives

Understand the challenges of this field study.
Be able to manipulate and analyze large data set.
Provide an estimate of biomass in a region.
Present the findings to peers.

Comments and Suggestions

1. We suggest that students work in teams of two or three to discuss the philosophical
issues which are likely to arise.

2. Students should plot the data in two or three dimensions. There are many ways to
display this data set. The bubble plot in two dimensions (Figure 4) using biomass to
determine size of bubble is one possibility. Students would find the nonnormality of
the data by plotting the histogram of the biomass values in Casel4A.txt.

3. The primary value of this case study is to point out the need of thinking about data
which are correlated in space. Students with minimal experience in statistics can be
expected to estimate the mean and variance of biomass by the approach without spatial
consideration and the one that assumes uncorrelated transect lines. However, they will
probably be challenged by the size of the data set compared to standard classroom
exercises.
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4. The instructor may consider several issues related to sampling. Discuss the logistical
problems of random placement of lines in the study area compared to systematic
placement. Discuss the potential problem that the interval between lines may fall in
step with some unknown cyclic pattern in the study region. Our opinion on this point is
that the potential problem is much discussed in theory but is rarely an issue in practice.
Discuss the design-based philosophy of finite systematic sampling compared to the
model-based approaches of geostatistics. Philosophical issues such as extrapolating
across transects could lead to endless discussion.

5. The parametric representation of spatial correlation is meant to reduce the spatial
dependence between any pair of 6404 observations into a simple function. Discuss the
pros and cons of this approach.

6. More advanced students could be expected to write some programming code to
estimate the correlogram and use a statistical software package to fit a nonlinear
relationship with distance. There are a number of ways to estimate the parameters in
equation (2).

7. Compare the ocular estimate of the 1.6 km (1 mile) zone of influence versus solving

for the intersection between 0 ± 2/Vn and the fitted nonlinear relationship.

8. Two components of the data can be used for model diagnostics in a regression class.
Model checking can be discussed with (a) a nonlinear fit (not necessarily the one

presented here) to the correlogram and (b) the behavior of residuals Z(st) - Z(s,).

9. Most of our analyses involved using Fortran programs to compute the necessary
quantities and Splus to plot the results. Commercial software which will handle large
data sets for geostatistical analysis is very expensive. Public domain programs such as
GEOEAS written by E. Englund and A. Sparks of the Environmental Protection
Agency can be obtained through the Environmental Monitoring Systems Laboratory,
Las Vegas, NV 89193. Also, UNCERT, which was written by W. Wingle of the
Colorado School of Mines, can be retrieved from the World Wide Web at the
following site: http://www.mines.edu:80807 fs_home/ wwingle/ uncert.

Technical Appendix

This section illustrates the mean and variance of the biomass estimate under the
assumed spatial dependence. Assume that there is a mean (jU,) and a variance (crz

2) for

the underlying measurements of biomass Z in the sampled region.
Moments of Z :

Moments of Z:

http://www.mines.edu:8080/fs_home/wwingle/uncert
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Moments ofZ(,s ;):

cv(dj j ! t ) = Cov(Z(Sj), Z(s r.)) is the covariance function with distance d . ]t. This quantity

can be estimated by the product of the correlogram and the variance estimate. Since the
assumption of neighborhood is bounded by the zone of influence, the computation of the

first term of C o v ( Z ( s j ) , Z ( s i i t . ) ) excludes pairs with distance larger than the zone of

influence.

Moments of Z :
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CHAPTER 15

A SIMPLIFIED SIMULATION
OF THE IMPACT OF

ENVIRONMENTAL INTERFERENCE
ON MEASUREMENT SYSTEMS

IN AN ELECTRICAL COMPONENTS
TESTING LABORATORY

David A. Fluharty,Yiqian Wang, and James D. Lynch

In the evolution of the automobile, electrical signal transmission is playing a more

prominent role in automotive electronic systems. Since signal transmission involves

voltages and currents in circuitry that are considerably less than for power transmission

circuits, corrosion buildup in connections of such low energy circuits—referred to as dry

circuits—is a considerable problem because corrosion buildup increases resistance.

To study the reliability of dry circuits in a laboratory setting, automotive engineers test

connections and measure the resistance in a connection as a surrogate for connection

failure. Since resistance is measured indirectly via Ohm's Law using circuit voltage and

current measurements, the voltage and current measurement errors propagate through

Ohm's Law1 to affect the calculated resistance. In addition, such tests are very sensitive to

external voltage sources that can be difficult, if not impossible, to control even in

laboratory settings. Because these tests are performed with voltages and currents that are

very small, the sensitivity of the calculated resistance to error propagation and to

intermittent voltage sources are important issues. The purpose of this project is to gain

insight into these issues through a simulation study.

See [O'Malley. 1992. Chapter 2) for a basic explanation of Ohm's Law.

185
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INTRODUCTION
The role of electrical contacts and connections in the reliability of automotive wiring—

and thus the automobile as a system—is becoming of greater importance. This is because
wiring is being used more and more for signal transmission rather than only for power
transmission. An example of signal transmission is a small current from an exhaust sensor
flowing to the engine control microprocessor. An example of power transmission is a large
current flowing from the battery, through a simple switch, to the headlamp. There are
numerous electrical connections along the path of current in an automobile. Increases in
resistance at these connections can lead to degradation of signals. This can, in turn, cause
microprocessors to issue control signals that negatively impact the performance of major
vehicle systems such as the engine. Results can include hesitation, poor fuel economy, and
increased emissions. Thus, the evaluation of connection systems is an important
engineering task not only for automobiles, but for other products that use electronics.

Engineering these systems entails laboratory testing to simulate the "field performance"
of resistance over time. In this case study, a statistical simulation is used to demonstrate
the importance of understanding the laboratory environment under which such testing is
conducted. Failure to do so can result in basing engineering decisions on poor data. Such
decisions might result in degraded performance, increase cost, or even entail an expensive
and time consuming redesign effort.

Two considerations in measuring resistance are that (i) it is calculated indirectly via
Ohm's Law using measured voltages and current and (ii) the measured resistance is very
sensitive to external voltage sources. Consideration (i) is related to error propagation and
transmitted variation issues and considers how variation (fluctuations) and measurement
errors in the voltages and the currents are transmitted to the calculated resistance through
Ohm's Law. In (ii) the issue is the sensitivity of the calculated resistance to intermittent
voltage that is difficult to control even in laboratory settings.

The student will use time series plots and normal probability plots for simulations of
calculated resistances to study the sensitivity of the calculated resistance to (a) fluctuations
in the actual currents and voltages in the circuits and (b) intermittent external voltage
sources. Before the simulations can be conducted, however, a number of algebraic
substitutions and manipulations—all of which relate to test procedures or realities of the
electrical measurement system—are required to produce equations used in the simulation.
The equations are "programmed" into a spreadsheet format to accumulate simulation
results (see Table 1).

BACKGROUND INFORMATION
Several decades ago most circuits in an automobile were power circuits. These carried

enough current to run various devices, e.g., headlamps, radio, turn signals, and ignition.
With the advent of automotive electronics this situation has changed drastically. There are
now an increasing number of microprocessors in the vehicle that require electrical signals
as input. These signals are frequently from sensors that operate at very low current levels.
Circuits carrying these low power signal currents are referred to as "dry circuits." For the
purpose of this case study, dry circuits have voltages (V) less than 20 millivolts (20 mV)
and current (/) less than 1 milliamp (1 mA). At its simplest, an automotive connection
system is composed of male and female terminals that are crimped to wire leads. This sub-
assembly is held in place in a plastic "hard shell" connector (see Fig. la). As depicted in
Fig. Ib there are three contributors to the system resistance: the separable interface of the
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terminals (1 mQ [one milliohm] maximum recommended for dry circuits2) and the crimp
of the terminals to the wire (0.5 mQ for each terminal/wire crimp). Since these resistances
are in series, the overall resistance in this simplified connection system is a total of 2 mQ
(0.5 m&+ 1.0mQ + 0.5mQ).

Top Row Wire (crimped to terminal), Female Micropin Terminal, Male
Micropin Terminal, Wire (crimped to terminal).

Center Row Wire (crimped to terminal), Female Blade Terminal, Male
Blade Terminal, Wire (crimped to terminal).

Bottom Row Connected Plastic Hard Shell Connector (without wires
and terminals) and US Penny for Size Comparison.

Fig. la. Automotive connection systems photograph.

Maximum resistance as required by U.S. Car, a consortium of Ford, General Motors, and Chrysler.

Fig. Ib. Automotive connection system schematic.
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Chemical changes such as corrosion can occur at the molecular level in any terminal
interface. These changes can result in a degradation in signal, either on an intermittent
basis (possibly resulting in the problems that the technician at an auto repair facility cannot
duplicate) or on an increasing basis as corrosion builds up over time. The electromotive
force in a power circuit is well in excess of the breakdown voltage needed to remove such
corrosion.3 This is not the case in a dry circuit since "the voltage and/or current is too low
to cause any physical change in a contact." See [J. H. Whitley, 1963].

Because automotive engineers are designing products with anticipated lives in excess of
ten years and 150,000 miles, accelerated life testing is used to simulate a combination of
high mileage and aging in evaluation of connection systems. One type of accelerated life
testing is called combined environments testing. This may include the simultaneous
application of vibration, thermal shock, and humidity in an acceleration chamber. While
these stresses may be far in excess of those actually seen in the field, they are employed to
achieve the activation energy necessary to excite the failure mode under investigation.4

Because the integrity of the signal degrades over time as resistance of the connection
system increases, failure criteria frequently are specified in terms of increased resistance.
According to one frequently used criteria, a dry circuit terminal system fails when its
resistance rises 5 mQ above its baseline resistance. For example, for the 2 mQ system
given above, the system fails if it ever reaches 7 mQ.

To test the dry circuit connection the testing setup in Fig. 2 is used.

Fig. 2. Simplified test setup (not to scale).

In this setup circuit, two voltmeters are used to take voltage measurement from which
the current and resistance are computed using Ohm's Law.5 In Fig. 2, r denotes the
unknown resistance of the connection system the determination of which is the object of
our test.

3It is worth noting that there is not complete unanimity of expert opinion of the implications of contact physics for
automotive dry circuits among practitioners in the field. That is one reason why testing is crucial.

Establishing the correlation between combined environments testing and field performance is not a simple issue.
5Ohm's Law expresses the fundamental equilibrium between three elements of electricity: resistance, voltage, and

current. For those not familiar with electricity, one can think of the resistance as the size of a hole through which
one is trying to push a certain quantity of electricity (the current). The power with which one pushes is the voltage.
Thus, for example, if resistance increases (the hole is smaller), one must either push harder (increase the voltage),
or decrease the throughput (the current) to remain in equilibrium. See [O'Malley, 1992, Chapter 2].
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QUESTIONS OF INTEREST
The engineering question of interest is the determination of the resistance of the

connection interface, r, in the above figure. This resistance is calculated as follows:

where Vr is the voltage drop across the connection system and / is computed from the
voltage reading at the other meter as follows:

Because the "resistances" r and R are in series, the current / is the same at both locations.
The actual voltages, Vr and VR , cannot be directly observed since they are subject not only

to measurement6 error but also to other external voltage sources induced through the test and/or
environmental sources. Collectively, these other voltage sources are referred to as the voltage
offset,7 which will be indicated by the symbol V0. In addition, the current / and resistance r are
never known but are also measured indirectly since they are computed using formulas (2) and
(3). To avoid ambiguity, a tilde (~) over a variable will be used to distinguish the measurement
or computation of a value from the actual value. Thus we have the following:

Symbol Read as Indicates
V-tilde sub small r Measured voltage at the meter

V, labeled little r

VR V-tilde sub capital R Measured voltage at the meter
labeled capital R

R Capital R The resistance of a known resistor, R.
This resistor is placed in the system

by the test engineer.

The voltage offset is symbolized by V0. Thus the measured voltages at meter "r" and
meter "/?," Vr and VR, respectively, are given by the following equations:

To get more accurate readings at r and at /?, the voltages at these two locations are
determined by the following procedure:
1. Send current through the circuit in one direction (called the positive).
2. Then, immediately reverse the polarity and send the current through the circuit in the

opposite (negative) direction.
3. Subtract these two readings.

6An engineer never knows the "true" value of what is measured. We only have the measurement from the
measurement system. The measurement system consists of the "true" value, the meter, the procedures used to
calibrate the meter, the procedure used to read the meter, the person using the meter (including their training,
experience, and physical skills), environmental voltage sources, and other factors. All these factors are sources
of variation in the measurement system.

7For purposes of this exercise, we are simplifying to consider only the voltage offset. Thus factors influencing
the measurement system discussed in footnote 6 are not considered. These, however, are vitally important in a
laboratory to ensure that good data is obtained.
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This procedure changes the parity of the circuit and cancels V0, voltage fluctuations due
to external sources such as thermal EMI (electromagnetic interference),8 EMC/EMI
(electromagnetic compatibility/electromagnetic interference) interference, temperature, and
vibration if these fluctuations change slowly relative to the sampling. Note that some of
these fluctuations are induced deliberately in the environmental chamber; others can come
from other lab equipment; still others can come from the environment, for example, a
diesel electric train traveling in the vicinity of the test laboratory.

Before we can explain how this canceling is done, we need to introduce more notation
to identify the parity of the circuit. One direction of the current flow will be called positive
and denoted by + and the other by a minus -. It is important to distinguish plus and minus
subscripts from addition and subtraction signs.

A positive subscript Measured voltage at the meter labeled small r
+Vr before a V-tilde followed when the current has positive parity (is

by a small r subscript. flowing in the "positive" direction).

A negative subscript Minus the measured voltage at the meter
_Vr before a V-tilde followed labeled small r when the current has negative

by a small r subscript. parity (is flowing in the "negative" direction).

Thus, from Ohm's Law,9 V =Ir,

You will notice that the voltage offset, Vo, does not have a parity subscript since it is
external to the circuit. In (4) it has been implicitly assumed that V0 is independent of the
current flow and location.10

The polarity in the circuit is reversed to remove the voltage offset from the measured
voltage. Thus there are two readings for the voltage at r given by (4A) and (4B).
Subtracting (4B) from (4A) yields the following:

8Thermal EMI is induced due to a temperature gradient along the wire.
9A further note on notation: (+7) r indicates current in the positive parity multiplied by the resistance r. The small

r here is not a subscript as indicated by the parentheses around +7.
'°This is a major assumption. As can be seen by imposing the lines of a field on the test set up (Fig. 2), even a

single electromagnetic field might have a different impact at R and r. In addition, V0 excludes accuracy of the
voltmeters, which would be different with the two voltmeters used in this setup.

Symobo Symbol Explained Indicatres
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Direct measurements of +7 and _/ are not available. However, by subtracting (4D) from
(4C) and rearranging the terms, an expression equivalent to [(+/) - (_/) ] is obtained:

Substituting the expression derived in (5B) into (5A) yields the following equation (6A):

Equation (6A) gives the theoretical relationship between the resistances and the
voltages. The resistance, r, is computed from (6A) using the measured voltages and the
resistance R, which has been determined with a high degree of accuracy by the test
engineer. Thus we have the following relationship which is useful in the laboratory:

Equation (6B) is the equation which relates the measurements at the voltmeters to the
resistance at the separable interface of the connection system (refer to Fig. 2). To review:
in equation (6B) 7 is the computed resistance at r and R is the known resistance at R,

which is determined by the test engineer. + y ,. and _ y r are the measured voltages at r
(the connection system, separable interface, placed in the test chamber) when the parity is +

and -, respectively. + y R and _ y R are the measured voltages at R when the parity is + and
-, respectively.

Time Dependencies: Some Formulas

In equation (4) it was assumed that the voltage offset did not change during the polarity
reversal or over time. Since the two readings are almost simultaneous during the polarity
reversal this may not be totally unrealistic. It would be more realistic, though, to model
fluctuations in voltage offset as a function of time. The goal of this case study is to
investigate the sensitivity of the computed resistance to fluctuations of the offset. This is to
determine if the voltage offset, representing environmental factors, can produce a "false
positive" test result. This would be seen in a resistance rise of 5 mQ above its baseline
resistance.

For the simulations below, r and V(> will be allowed to fluctuate over time while the
voltage V and the resistance R will be assumed to be constant except for changes in the
polarity of V (see Fig. 2). The dependency on time and polarity in variables such as r will
be denoted by +r(r) and _r(f), t = 1,2,.... To keep time units free, the units will not be
specified and sampling frequencies, rates of occurrence, etc., will be specified in terms of
these units. For the purposes of tracking the polarity, it is assumed that a time unit is
sufficiently long enough to obtain values at both polarities.
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Key formulas relating the time dependencies and computed and measured values are
given below. Note that since R and r are in series, JR(t) = +Ir(t) - +7(0 and _ IR(f) =
_ Ut) = _ I(f). So bv Ohm's Law,

where R = 20 mQ and V = 20 mV. Formulas (4) and (6) with time dependencies given
from (7) result in

DATA

Instructions for the Simulation Analysis

To explore the impact of various environment factors that affect a laboratory test, the
student will conduct a series of simulations. Each simulation will depend on the setting for
R and V. The purpose of the simulations is to provide insight into the effect of different
types of fluctuations in V0 on false failures" and their relationship to the settings for R and
V0. R is a known resistance which is placed into the circuit by the test engineer. The
voltage offset, V0 , is the result of thermal EMI, EMC/EMI interference, temperature, and
vibration. In an effort to explore the accumulated effect of these changes, we recommend a
spreadsheet approach in Table 1 (such as a MINITAB workspace).

Remember that the purpose of the laboratory test being simulated is to measure r(t), the
resistance of the connection system. We are interested in the behavior of this resistance
over time. Specifically, we want to see if resistance ever rises 5 mQ. above its baseline
resistance. All we have is a calculated value for this resistance, 7(0, in column C12 of
the spreadsheet. Column C12 is calculated using equation (9)^ The inputs for equation (9)
are the known resistance R and the measured voltages +Vr(0, -Vr(0, +VK(t), and _V/?(0 which
are in columns C8 to Cll, respectively. For purposes of the simulation, the measured
voltages are derived from equations (8A) through (8D). These equations require the "true"
current levels +7(0 and J(t) (which are in C6 and C7, respectively) and the "true"
resistances at the interface + r(t) and _r(0 (which are in Cl and C2).

A false failure occurs when test results indicate an interface failure (measured by one or more resistance
readings of at least 5 m£l
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Table 1 a. Simulation/calculation spreadsheet setup.

Time
Period

Cl

t

1
2

Example

N

Simulate
Va

C2

+K0

2.038

d "True"
ues

C3

-r(t)

2.063

Simulated Voltage
Offsets

C4

+V0(t)

32.732

C5

-VoW

33.417

Calculated "True"
Current

C6

+ /(0

.908

C7

-l(t)

-.907

Calculated Voltages Which Are Used to
Calculate C 12

C8

+VXO

34.581

C9

-VM

31.548

CIO

+VK(t)

50.882

C l l

-VW)

15.287

C12

rCf)

1.704

Table Ib. Spreadsheet column descriptions.

Column

Cl
C2

C3

C4

C5

C6

C7

C8

C9

CIO

C l l

C12

Symbol

t

+r(t)

-KO

+Vo(0

-Vo(0

+ /(0

-I(t)

+ VM

-Vr(t)

+VR(t)

-VK(t)

r(f)

Variable

Time subscript
"True" resistance at r

measured at time t with
positive parity

"True" resistance at r
measured at time t with

negative parity
Voltage offset at time t for

positive parity
Voltage offset at time t for

negative parity
"True" current at time t for

positive polarity
"True" current at time t for

positive polarity

Use
Equation

7

7

8A

8B

8C

8D

9

Comments

Simulated per instructions
in scenarios

Simulated per instructions
in scenarios

Simulated per instructions
in scenarios

Simulated per instructions
in scenarios

Assume R = 20 mQ and
V=20 mV

Assume R = 20 Q and
V=20mV

Uses C6

Used C7

Use C6,
Assume R = 20 mQ

Uses C7,
Assume R = 20 mQ
Assume R = 20 mQ

When +r(0 and _r(t) fluctuate about a fixed level of specified resistance r, the nominal
current in the circuit is defined as V/(R+r). To simulate this, model +r(l), +r(2), ... and
_r(l), _r(2), ... as independent normal random variables with mean \i = r = 2 mQ and a
standard deviation of o = 0.05 mil Assume R = 20 mQ and V - 20 mV. Thus the nominal

current is 20 mV/(20 mQ + 2 mQ) = .90909 mA. Theoretical considerations (Jensen's
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inequality) show that the mean current in the circuit (the mean of V/(/?++r(/))) is strictly

greater than the nominal current .90909 mA. Use C6 and C7 as a test to see if you can
detect this difference between the mean current and its nominal value. This difference is
the so-called bias between the estimator, the average current whose mean is the mean
current, and the population parameter it is estimating, the nominal current. Construct
normal probability plots for columns Cl and C2 to verify that their entries are from a
normal distribution. Also construct normal probability plots for C6 and C7 to see if the
current can be modeled by a normal distribution when the resistances are normal.

To analyze false failures, construct time series plots of r(0 for each of the scenarios
given below. In each scenario, as above, +r(l), +r(2), ... and _r(l)> _r(2), ... are independent
normal random variables with mean |i = r = 2 mQ, and a standard deviation of a = 0.05
mQ. To reference the false signals add a horizontal line going through 7 m£l, the defined
failure resistance. One observation through the line is a failure.

Scenario 1: I/ constant and t\t\ Fluctuates (see datafiles Case 15A.txt and Case 15B.txt)

As a baseline for comparing the impact of changes in V0, the first scenario is just the
case when V0(t) = V0 is constant over time and r(i) fluctuates about a level of specified
resistance r each time it is computed.

Scenario 2: Modeling Fluctuations in I/ (see datafile Case 15C.txt)

2a. This is the same as Scenario 1 except that V0(t) fluctuates about a level V0. To
model this fluctuation, let +V(1), +V(2\ ... and _V(1), _V(2), ... be independent normal
random variables with mean ji = V0 and a = VJ9, where V0 = 1, 10, 20, and 30 mV. (Note
that the coefficient of variation o /^i = 1/9, or in terms of signal to noise, |I/CT = 9. Since
almost all of a normal distribution's values (99.73%) are within 3 standard deviations of its
mean, one interpretation of a /\i = 1/9 is that the error in measurement relative to V0 is at
most about 3cr/f4, = 1/3 = 33%.) At what values of V0 do sporadic false failures occur?
When do the false failures become chronic?

Scenarios: Modeling Occurrences of Disruptions in I/

3a. Use a Poisson process to model environmental factors such as changes in
temperature due a door opening or flipping a light switch that may effect a significant
change in V0, say an increase of 20 mV. To do this, assume that there are on the average 2
per 100 time units. Generate a Poisson random variable P with mean equal to 2*(A//100),
where TV is the number of rows in the spreadsheet. Randomly select P numbers without
replacement from 1, 2, ..., N, These will correspond to the P rows in column C13 where
one hundreds will be placed. The remaining N-P rows of C13 will be filled with zeroes.
Add this column to the C4 and store in C14 to simulate this type of disruption.

3b. To simulate a single major disruption of V0, such as a train passing (which actually
was a problem), randomly select a single number between 1 and N. Add 50 mV to this row
and the next 9 entries in C4 and store in C15.

ANALYSIS
The graph in Fig. 3 is typical of a time series graph of ?(?). Note that there are at least

four instances where resistance is over 7 mQ, that is, more than 5 mQ, above the allowable
2 mQ (see Background Information). These are "false failures."
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(Note: There are resistance values below 0. This is not possible in practice and could
have been prevented with more sophisticated programming in the simulation, equating all
negative values to zero.)

Fig. 3. Time series graph of calculated resistance (includes "false failures").

INSTRUCTIONS FOR PRESENTATION OF RESULTS
The student should perform the indicated simulations. Normal probability plots will

give an indication of the distributional behavior of the input resistances to the voltages,
currents, and calculated resistances. Time series plots can be used to determine the
prevalence of false signals of connection failure when the calculated resistance exceeds 7

mQ.
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NOTES TO THE INSTRUCTOR

Level of Case

Undergraduate Engineering Statistics Course or a Statistical Quality Control Course. In
the latter course, students will have to be taught some simple facts about voltages,
resistances, and currents for a series system of two resistors. The case can also be used in
courses on statistical consulting or engineering testing.

Necessary Tools (Concepts and Terminology)

Parameters, estimators, bias, coefficient of variation, signal to noise, volt, ohm, am
dry circuit.

Necessary Tools (Statistics)

Normal probability plots, time series plots, spreadsheets, normal and Poisson
simulations.

Objective

Introduce the student to propagation of error, transmitted variation, and biases in
measurements and how they can arise in measurement systems.

Comments and Suggestions for the Instructor

Ask engineering students:
How does this simulation relate to any laboratory experience they have had

in which false readings have given false results?
If they calibrate their measurement equipment.
When they are reviewing test results, how will they determine if the data is

to be trusted?
This simulation required a number of simplifications. Discuss the

importance of simplifications in modeling.
Ask statistics students:

How does this simulation relate to problems they might work on as
statisticians? If they start with issues in the engineering and physical sciences,
draw them into a discussion of biological and social sciences. Go further and
inquire about the quality of the statistics policy makers—and every citizen—
use for decisions.

•How many of their statistics or subject matter courses have dealt directly
with problems of measurement?

What is the professional responsibility of statisticians to ensure that the data
they analyze is actually measuring what it should measure?

Typical Results

Scenario la: I/= 0, A distributed Normal (jo, = 2mQ , a = .05m£2)

The summary statistics and the normal probability plots of the input and the calculated
resistance illustrate resistance in Fig. 4, the relationship of the two, and show that the
calculated resistance is approximately normal with less variation (s.d. = .035) than in the
original resistances (s.d. = .05). In terms of variance, the variance of the calculated
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resistance is about half of that of the original resistance variation. This may not be as
surprising as it seems since a calculated resistance in Scenario 1 is, up to a first-order
approximation, the "average of two resistances." Normal probability plots would indicate
that the distributions of the current and voltage are also approximately normal. The
summary statistics also indicate that the bias in the nominal current is hard to detect and
that the calculated resistance is centered at the nominal resistance of 2 mQ. A time series
plot of the calculated resistance is given in Fig. 5.

Normal Probability Plot for +t\t) - R~(f)

Data

Fig. 4. Normal probability plot of resistances Scenario 1: o = .05mQ .

Variable IV
+r(t) 1000
-r(t) 1000
+I(t) 1000
-I(t) 1000
r~(t) 1000

Mean
2.0006
2.0023
0.90907
-0.90900
2.0014

Median
2.0025
2.0016
0.90899

-0.90903
2.0004

TrMean
2.0008
2.0018
0.90906

-0.90902
2.0014

StDev
0.0490
0.0499

0.00202
0.00206
0.0349

SEMean
0.0015
0.0016

0.00006
0.00007
0.0011

Variable Min Max Ql Q3
+r(t) 1.8362 2.1379 1.9661 2.0323
-r(t) 1.8271 2.1716 1.9674 2.0350
+I(t) 0.90343 0.91591 0.90776 0.91049
-I(t) -0.91629 -0.90206 -0.91044 -0.90765
r~(t) 1.8907 2.1092 1.9790 2.0254
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Fig. 5. Time series plot of calculated resistance Scenario 1: cr = .05mQ .

Scenario 1 b: I/ = 0, /"distributed Normal()Li = 2 m£2, o = 1 mH)

Below are the summary statistics when we have a twenty-fold increase in the standard
deviation in Scenario la. The standard deviation of the calculated resistance is still about
0.7 of that of the input resistances. A time series plot would indicate that all of the data
falls below 7 mQ.

Variable N Mean Median TrMean StDev SEMean
+r(t) 1000 1.9860 1.9763 1.9806 1.0368 0.0328
-r(t) 1000 1.9840 1.9807 1.9868 1.0334 0.0327
+I(t) 1000 0.91169 0.91007 0.91118 0.04311 0.00136
-I(t) 1000 -0.91177 -0.90989 -0.91095 0.04315 0.00136
r~(t) 1000 1.9592 1.9610 1.9590 0.7102 0.0225

Variable Min Max Ql Q3
+r(t) -0.7837 5.8221 1.2552 2.6934
-r(t) -0.9919 5.1217 1.3146 2.6883
+I(t) 0.77453 1.04078 0.88131 0.94095
-I(t) -1.05218 -0.79612 -0.93832 -0.88151
r~(t) -0.4303 4.3800 1.4996 2.4428

Scenario 2

Below are the summary statistics for a number of cases considered in Scenario 2. False
signals due to an external voltage source for connection failure (resistance exceeds 7 mH in
Fig. 7) begin to occur when the voltage offset reaches about 30 mV (Vo = 30mV). Also,
the curvature in the normal probability plot (Fig. 6) indicates that at this level of external
voltage the calculated resistance is no longer approximately normal.

Scenario 2a: V0 Dist., AT(U = 10 mV, a = 1/10 mV) ; r Dist. N
(u = 2m£i, a

Variable
+r(t)
-r(t)
+ J(t)
-J(t)
r~(t)

= .05 mfl)

N
1000
1000
1000
1000
1000

Mean
2.0006
2.0023
0.90907
-0.90900
1.9581

Median
2.0025
2.0016
0.90899
-0.90903
1.9692

TrMean
2.0008
2.0018
0.90906
-0.90902
1.9736

StDev
0.0490
0.0499
0.00202
0.00206
0.7817

SEMean
0.0015
0.0016
0.00006
0.00007
0.0247
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Variable
+r(t)
-r(t)
+ Kt)
-Kt)
r~(t)

Scenario 2b:
(20 |l = 2mQ,

Variable
+r(t)
-r(t)
+ I(t)
-Kt)
r~(t)

Variable
+ r(t)
-r(t)
+ Kt)
-Kt)
r~(t)

Scenario 2c:
(|0. = 2mQ, o

Variable
+ r(t)
-r(t)
+ I(t)
-Kt)
r~(t)

Variable
+r(t)
-r(t)
+ Kt)
-Kt)
r~(t)

Min Max
1.8362 2.1379
1.8271 2.1716
0.90343 0.91591
0.91629 -0.90206
-0.7180 3.9707

V Dist. N(\L
0 = .05 mQ)

AT Mean
1000 2.0006
1000 2.0023
1000 0.90907
1000 -0.90900
1000 1.9454

Min Max
1.8362 2.1379
1.8271 2.1716
0.90343 0.91591
0.91629 -0.90206
-4.3489 5.7082

V Dist. N(\i
= .05 mii)

N Mean
1000 2.0006
1000 2.0023
1000 0.90907
1000 -0.90900
1000 1.6065

Min Max
1.8362 2.1379
1.8271 2.1716
0.90343 0.91591
0.91629 -0.90206
10.4343 7.0152

Ql
1.9661
1.9674
0.90776
-0.91044
1.5035

= 20 mV,

Median
2.0025
2.0016
0.90899
-0.90903
2.1072

Ql
1.9661
1.9674
0.90776
-0.91044
0.9926

= 30 mV,

Median
2.0025
2.0016
0.90899
-0.90903
1.9879

Ql
1.9661
1.9674
0.90776
-0.91044
0.2326

Q3
2.0323
2.0350
0.91049
-0.90765
2.5077

0 = 1/20

TrMean
2.0008 0
2.0018 0
0.90906 0.
-0.90902 0.
1.9965 1

Q3
2.0323
2.0350
0.91049
-0.90765
3.0947

a - 1/30

TrMean
2.0008 0
2.0018 0
0.90906 0.
-0.90902 0.
1.7430 2

Q3
2.0323
2.0350
0.91049
-0.90765
3.3611

mV) ;

StDev
.0490
.0499
00202
00206
.6085

mV) ;

StDev
.0490
.0499
00202
00206
.6452

r Dist. N

SEMean
0.0015
0.0016
0.00006
0.00007
0.0509

r Dist. N

SEMean
0.0015
0.0016
0.00006
0.00007
0.0836

Normal Probability Plot for +r(f) - R~(f)
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Fig. 6. Normal probability plot of resistances Scenario 2: V0 = 30mV.

Additional Considerations—Dependencies on A'and V

Construct boxplots all on the same scale to compare the behavior of 7(t) for various
values V and R. Regression analysis could be performed with means and variances of ~r(t)
regressed various values of the setup voltage and resistance V and R. This would provide
useful information on designing the testing setup.

Fig. 7. Time series plot of calculated resistance Scenario 2: V0 = 30mV.
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CHAPTER 16

CEREBRAL BLOOD FLOW
CYCLING: ANESTHESIA AND

ARTERIAL BLOOD PRESSURE
Michael H. Kutner, Kirk A. Easley, Stephen C. Jones, and G. Rex Bryce

Cerebral blood flow (CBF) sustains mental activity and thought. Oscillations of CBF at a

frequency of 6 per minute, termed CBF cycling, have been suspected of being dependent

on the type of anesthesia [Clark Jr., Misrahy, and Fox, 1958; Hundley et al., 1988]. Thus,

we investigated the effects on CBF cycling using different anesthetics [Jones et al., 1995].

INTRODUCTION
CBF is important because it sustains mental activity and thought. The research

question asked here was whether CBF cycling is influenced by the type of anesthesia.
Because cycling is enhanced at lower arterial pressures, blood was withdrawn
(exsanguinated) in all experimental animals to reduce their arterial pressure. Analysis of
covariance is used to explore whether cycling characteristics, amplitude, and frequency
differ by type of anesthesia while controlling for the amount of blood pressure change
induced by exsanguination.

BACKGROUND INFORMATION
CBF is important because it sustains neuronal activity, the supposed basis of mental

activity and thought [Chien, 1985]. As various regions of the brain are activated by
sensory or motor demands, the level of blood flow adjusts regionally in a dynamic fashion
to support the local changes in neuronal activity [Lindauer, Dirnagl, and Villringer, 1993].

Fluctuations or oscillations of CBF and their relation to the rate of oxygen use by the
brain have been noted by many workers [Clark Jr., Misrahy, and Fox, 1958; Vern et al.,
1988], but generally they have only been reported as secondary results and usually only in
a small fraction of the subjects studied. Because these oscillations occur with a dominant
frequency near 0.1 Hz, or 6/min, and often have a high amplitude that can approach 15% of
the mean value of CBF, they have intrigued many who have sought to understand their
physiological significance and possible relation to pathology [Jobsis et al., 1977; Mayevsky
andZiv, 1991].

Laser Doppler flowmetry [Stern, 1975; Frerichs and Feuerstein, 1990] provides a
method of monitoring rapid changes of CBF and is based on the Doppler shift that moving
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red blood cells impart to a beam of laser light. Both this shift, which is proportional to red
blood cell velocity, and the amount of the reflected laser light, which is proportional to the
red cell mass, are used to provide an index of CBF that has been shown to be proportional
to relative changes in CBF [Haberl et al., 1989]. However, laser Doppler flowmetry cannot
provide an absolute measure of CBF.

The advent of laser Doppler flowmetry has resulted in several investigations of CBF
cycling [Hudetz, Roman, and Harder, 1992; Morita-Tsuzuki, Bouskela, and Hardebo,
1992]. Since laser Doppler flowmetry is sensitive to red blood cell flow, these
observations are, in a strict sense, observations of red blood cell cycling. Based on our
preliminary experiments [Williams et al., 1992] and other recent data [Hudetz, Roman, and
Harder, 1992; Morita-Tsuzuki, Bouskela, and Hardebo, 1992], cycling is increased at lower
arterial pressures, so we chose to lower arterial pressures using exsanguination as a
mechanism to increase the occurrence of cycling.

The fast Fourier transform was used to characterize the CBF oscillations by providing
an estimate of the dominant frequency and relative amplitude. An example of this analysis
is shown in Fig. 1. The plot of the original data in Fig. 1 (Panel A) shows the arterial blood
pressure tracing and the simultaneously recorded CBF, showing a transient drop just after
the steep decrease in arterial blood pressure, followed by CBF oscillations. In Fig. 1 (Panel
B), the fast Fourier transform is shown of the 64 second epoch marked by arrows in Fig.l
(Panel A), with a high amplitude peak at a dominant frequency of 0.1 Hz.

TIME (mln) FREQUENCY (1/sec)

Fig. 1 (Panel A). Dramatic initiation of cerebral blood flow (CBF) cycling (solid line) when the
MABP (dashed line) is dropped from 155 to 60 mmHg (Table 1, epoch 29). Seventy-one seconds

after the blood withdrawal, the 64 second epoch from which the fast Fourier transform spectrum is
derived is marked with arrows.

(Panel B). The fast Fourier transform derived spectrum showing the dominant frequency of 0.094 Hz
and amplitude of 1.1%. The amplitude is calculated from the amplitude at zero frequency or the

mean amplitude, 13.8 arbitrary units (not shown), and the amplitude at the dominant frequency, 0.98
arbitrary units (100*0.98/13.8 = 7.1%). Reprinted with permission from Jones, Williams, Shea,

Easley, and Wei, Cortical cerebral blood flow cycling: Anesthesia and arterial blood pressure, Amer.
J. Physiol, 268: H569-H575.

QUESTIONS OF INTEREST
Does cerebral blood flow cycling as characterized by amplitude and frequency vary

depending upon the type of anesthesia adjusted for blood pressure change?

DATA
Fifteen Sprague-Dawley rats were anesthetized with either Pentobarbital sodium, (n =

5, 40-50 mg/kg IV), oc-Chloralose (n = 5, 60 mg/kg IV), or Halothane (n = 5, 0.5-1.0% by
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inhalation). Mean arterial blood pressure (MABP) and laser Doppler flow (LDF) were
recorded continuously [Jones et al., 1995]. MABP was transiently and repeatedly lowered
by rapid withdrawal of blood from the femoral arterial catheter until cycling was noted.
The blood was then reinfused and each animal had from 1 to 4 individual pressure drops.
Thirty-six instances of cycling were observed in all 15 animals after these rapid arterial
pressure drops. Epochs were chosen from the recordings to purposely represent cycling
with the highest amplitude. For the purposes of this case study, these epochs were
considered to be independent experimental units. Table 1 provides the raw data from each
epoch including a description of each variable.

Table 1. Raw data from fast Fourier transform (FFT) analysis ofCBF.

Variable Name Description

Cycling Parameters:
Amplitude
Frequency

FFT-determined amplitude (%)
FFT-determined frequency (Hz)

Physiological Variables:
Blood Pressure

Blood Pressure Change

Mean arterial pressure (mmHg) just after blood withdrawal
during each epoch of cycling
The change in blood pressure

[%AMABP = 100(MABPcyc - MABPpre)/MABPpre], where
MABPpre and MABPcyc are measured before and after the

blood withdrawal.
Treatment:
Anesthetic P = Pentobarbital

H = Halothane
C = a-Chloralose

Epoch

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Anesthetic

C
C
H
H
H
H
P
P
P
P
P

C
C
H
C
C

Blood
Pressure

65
55
68
76
65
65
55
60
60
70
72
50
52
75
60
60

Blood Pressure
Change
-45.8
-64.5
-51.4
-30.9
-53.6
-35.0
-57.7
-55.6
-47.8
-46.2
-24.2
-64.3
-56.7
-28.6
-60.0
-50.8

Amplitude

12.9
10.3
5.1
3.9
9.8
5.8
11.8
7.3
3.4
8.2
3.7
7.5
7.0
4.5
4.5
14.6

Frequency

.089

.081

.102

.078

.063

.078

.070

.094

.094

.094

.125

.086

.125

.094

.125

.093
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Epoch

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Anesthetic

C
H
H
P
P
P
P
C
C
H
C
H
P
P
C
C
C
C
H
C

Blood
Pressure

75
58
67
57
52
75
75
70
70
67
72
52
57
70
65
70
82
58
60
85

Blood Pressure
Change
-33.0
-49.6
-44.2
-61.2
-44.7
-45.7
-16.7
-50.0
-39.1
-44.2
-44.6
-55.6
-63.2
-41.7
-43.5
-30.0
-29.3
-53.6
-36.8
-34.6

Amplitude

6.8
6.0
9.3
5.9
4.7
5.4
2.1
6.4
4.1
3.7
6.8
6.1
7.1
2.0
10.7
3.7
6.1
11.4
4.7
5.3

Frequency

.110

.096

.078

.078

.102

.109

.125

.133

.109

.063

.070

.094

.094

.094

.102

.109

.078

.086

.078

.078

ANALYSIS
Analysis of covariance can be used to address the question of whether cerebral blood

flow cycling differs depending upon the type of anesthesia. Two examples will be given to
demonstrate the use of analysis of covariance.

Example One

The data consist of 36 experimental units (N = 36 epochs) with cycling amplitude (%)
as the dependent variable and blood pressure change (%) as the covariate for each of the 3
anesthetics with «, units per anesthetic (n\ = 11 for Pentobarbital, n2 = 15 for oc-Chloralose,
and n3 = 10 for the Halothane (see Table 1 and Fig. 2a)). Let Ytj (amplitude) denote they'th
observation for the ith treatment (anesthetic) and Xfj denote the covariate (blood pressure
change) corresponding to the (z'J)th experimental unit (epoch). We assume that the mean
of Yij can be expressed as a linear function of the covariate with possibly different slopes
and intercepts required for each anesthetic. An important point to note is that the mean of
Y depends on the value of the covariate as well as on the particular anesthetic from which
the observation was obtained.

The single-factor analysis of covariance model with one linear covariate is
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where X is the overall mean of the Xy-'s. Here we will assume that error terms are

independently, identically, normally distributed with mean zero and variance o2, i.e.,
EJJ ~iid jV(0,<J2) . The required SAS statements to fit this model are provided on page

211.
Amplitude (%) by Blood Pressure Change (%)

P = (solid line, dot), C= (dashed line, square), H = (dotted line, circle)

Blood Pressure Change (%)

Fig. 2a.

Blood Pressure Change (%)

Fig. 2b.

This model has seven parameters (2f+l), three intercepts |a, (when X(j = X ), and three
slopes )3, and cr2, the variance of each experimental unit. The least squares estimates of the
parameters |i, and (3, can be obtained by minimizing the residual sum of squares in (2):

Frequency (Hz) by Blood Pressure Change (%)
P = (solid line, dot), C = (dashed line, square), H = (dotted line, circle)
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The least squares estimator of each |3, is the same as the estimator obtained for a simple
linear regression model. The residual sum of squares for the iih treatment is based on
«, - 2 degrees of freedom an

The residual sum of squares for model (1) can be obtained by pooling residual sums of the
squares for each of the three models to obtain

In general, the residual sum of squares is based on (N-t(k+l)) degrees of freedom, where

and k = the number of covariates. The best estimate of the variance is

<72 = SSRes / (N-t(k + l ) ) . The basic hypotheses most commonly tested about the
parameters of the analysis of covariance model are discussed in the next section.

Testing Hypotheses about the Slopes: Example One

1. Does the mean of amplitude given the blood pressure change depend linearly on the
covariate? This question can be answered statistically by testing the hypothesis

The null hypothesis states that none of the anesthetics have means which depend on the
value of blood pressure change (SAS code provided on page 211). A model comparison
method provides a way of obtaining the desired test statistic. The model restricted by the
conditions of the null hypothesis, HQ\, is Yfj = //, + £ } , • , / = 1, 2, 3 and j = 1, ...n,-. This
model is the usual analysis of variance model for the one-way treatment structure. The
residual sum of squares for this model is

which is based on TV — t degrees of freedom. The sums of squares due to deviations from
HOI, denoted by SSHm, is SSH01 = SSRes (#0i) - SSRes, which is based on (N-t)- (N-2f) = 3
degrees of freedom. A test statistic for testing HQ\ versus Ha\ is

When HQI is true the sampling distribution of FH is an F distribution with t and N - 2t
degrees of freedom. By processing the SAS code provided on page 211, we obtain a
statistically significant F statistic (F = 3.04, p = 0.044). We therefore reject HQ\ and
conclude that the mean of amplitude does depend on the value of blood pressure change for
at least one of the anesthetics. Please verify this result by calculating FH for the data set
provided. What is the best estimate of the variance?
2. Do the cycling amplitude means of the anesthetics depend on blood pressure change

differently (nonparallel lines)?
To answer this question, we test for homogeneity of the slopes. (SAS code provided at

the bottom of page 211.) The appropriate null hypothesis can be stated as H02- Pi = fii = &>
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= ft versus //a2 (not #02), where ft is unspecified and represents the common slope of the
three regression lines. The model which satisfies the conditions of //02 is

which represents three parallel lines each with slope ft and intercepts //i, //2, //3 when

X,y = X . The residual sum of squares for the model is

where //, and /? denote the least squares estimators of the model parameters. The residual
sum of squares for this model is based on N - t - I degrees of freedom. The sum of
squares due to deviations from Hm is SSHm = SSRes (HQ2) - SSRes. The statistic used to
test HQI is

which has sampling distribution F with t-\ and N-2t degrees of freedom. The F statistic
is not significant (p = 0.93) for this example, allowing us to conclude that the lines ar
parallel (equal slopes). The estimated common slope is -0.114 (standard error = 0.0370),
which is significantly different from zero (p = 0.004; see Table 2). Obtain a 95%
confidence interval for the common slope estimate.

3. Using the parallel lines or equal slopes model, are the distances between the regression
lines different from zero? (SAS code provided on page 212.)

Since the equal slopes model is appropriate for this example, a property of parallel lines
is that they are the same distance apart for every value of X. Thus, the distances betw£en
these lines can be measured by comparing the intercepts of the lines, i.e., when Xtj = X .
The hypothesis to be tested is that the adjusted means or distances between the lines are
equal, which is equivalent to testing the hypothesis that the intercepts are equal:

where ju is unspecified. The model to describe the mean amplitude as a function of the
covariate and the treatments is assumed to be of the form Ytj =//, + /? (Xy- - X ) + £y . The
residual sum of squares for the model is SSRes (#02) given previously. This model,
restricted by the conditions of H0j, is Yi}• = ju + ft (Xy - X ) + £y , which is a simple linear
regression model fit to all of the data. The corresponding residual sum of squares is

where ft and ft are least squares estimators from the model. The residual sum of squares
for HOS is based on N -2 degrees of freedom (DF). The sum of squares due to deviations
from H03, given that #02 is true, is SSH0j = SSRes(Hm) - SSRes(Hm), which is based on
D¥(SSRes(H03)) - DP(SSRes(H(n)) = 2. The appropriate test statistic is

The calculated F statistic is 2.5 (p = 0.10), suggesting that distances between pairs of lines
may not be different from zero or that the intercepts are equal (Table 2). In other words,
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the cycling amplitude is related to blood pressure change but the intercepts are similar and
thus we conclude there are no differences between anesthetics.

4. Use fitted regression model (4) equations to calculate the adjusted amplitude means at
X = -45.4% for each anesthetic. (LSMEANS SAS statement on page 212 provides
these estimates.) Compare these values to the unadjusted mean values.

where X = -45.4 = the overall mean blood pressure change (%) for all three anesthetics.

5. Is the adjusted mean for cycling amplitude under cc-Chloralose anesthesia
significantly different from the adjusted mean for cycling amplitude under
Pentobarbital? (Provided by the first ESTIMATE statement on page 212.)

Testing Hypotheses About Slopes: Example Two

1. Use analysis of covariance to examine the relationship between cycling frequency (Hz)
and blood pressure change (%) for the three anesthetics.

As conveyed by Fig. 2b, the equal slopes model (fa = fa = fa = ft) does not appear
appropriate for the relationship between cycling frequency and blood pressure change. In
this case, model (1) is necessary to adequately describe the data (see SAS code on page
213). For the following fitted regression equations, calculate the adjusted mean cycling
frequency for each anesthetic at X = -45.4 % :

where X - -45.4 % = the overall mean blood pressure change (%) for all three

anesthetics. The adjusted means are provided using the SAS ESTIMATE statement (see
page 213, ESTIMATE statements 10, 11, and 12).

2. Test the equality of the distances between the lines at a blood pressure change of X\ = -30%
(see page 213, ESTIMATE statements 18, 19, and 20).

The hypothesis can be answered by testing #04u=v,=-3o ̂ n^, = fj-2\x=xl
 = A*3u=r, or

equivalently as Yit.= / / / l v = v + fa(X.j ~^..) + £ ,y• The model restricted by HM{x=x is
Ya = A*/iv=.v, + A' (*// - X..) + £ij • This model is identical to model (1) with X(>. set equal to

X\. The corresponding residual sum of squares is
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which is based on N - t - 1 degrees of freedom. The sum of squares due to deviations
from //04|V=V! is S S ( H ( W x = X ] ) = SSRes(HM\x=Xt )-SSRes w i t h / - 1 degrees of freedom.

The resulting test statistic is

The results (Table 4) suggest that the frequency response differs significantly for one of the
anesthetics compared to pentobarbital at a mean blood pressure change of -30%. (Which
one? See ESTIMATE statement 20 on page 213.) Are the results similar at the overall
mean for blood pressure change (mean = -45.4%)?

ANALYSIS OF COVARIANCE COMPUTATIONS USING THE
SAS SYSTEM

SAS can be used to compute the various estimators and tests of hypotheses discussed in
the previous sections. The SAS statements required for each part of the analysis discussed
above are presented in this section.

All the following models will be fit assuming that the data from Table 1 were read in by
the following SAS statements:

DATA ANCOVA;
INPUT EPOCH ANES$ BP BPCHANGE AMP FREQ;
DATALINES;
The required SAS statements needed to fit model (1) for example one are
PROC GLM;
CLASSES ANES;
MODEL AMP = ANES BPCHANGE*ANES/NOINT SOLUTION;

The term ANES with the no-intercept option (NOINT) enables one to obtain the
intercept estimates for each anesthetic. The term BPCHANGE*ANES generates the part
of the design matrix corresponding to the slopes. The option SOLUTION is used so that
the estimates and their standard errors are printed. The sum of squares corresponding to
ERROR is SSRes and the MEAN SQUARE ERROR is d2 . The type III sum of squares
corresponding to BPCHANGE*ANES tests //01.

To test the equality of slopes hypothesis (#02), the required SAS statements are
PROC GLM;
CLASSES ANES;
MODEL AMP = ANES BPCHANGE BPCHANGE*ANES/E3 SOLUTION;

The type III sums of squares corresponding to BPCHANGE*ANES tests Hn2. The type
III sum of squares corresponding to BPCHANGE tests that the average value of all slopes
is zero, and the type III sum of squares corresponding to ANES tests Hm given that the
slopes are unequal. By including BPCHANGE and/or removing the NOINT option, the
model becomes singular and thus the set of estimates obtained is just one of the many least
squares solutions. Option E3 provides a list of estimable functions that will allow us to
verify that the above type III sum of squares do in fact test the indicated hypotheses. Since
we fail to reject //02, then we should fit the parallel lines or equal slopes model. The
appropriate SAS statements are
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PROC GLM;
CLASSES ANES;
MODEL AMP = ANES BPCHANGE/SOLUTION;
LSMEANS ANES/STDERR PDIFF;
Estimate XC vs. P' Anes 1 0 -1;
Estimate 'C Intercept' intercept 1 anes 1 0 0 ;
Estimate 'C Adj. Mean' intercept 1 anes 1 0 0 bpchange

-45.4;
The results from fitting this model can be found in Table 2. The type III sum of squares

and resulting F test corresponding to ANES tests that the distance between the lines is zero
given that the parallel lines model is adequate to describe the data. The LSMEANS
statement provides the adjusted amplitude mean given BPCHANGE = -45.4% for each
anesthetic. The option STDERR provides the corresponding standard error of the adjusted
means and PDIFF provides significance levels for Mests of [iY = fj,Y for each pair of

adjusted means. The first ESTIMATE statement also produces a computed ?-value and its
significance level comparing the intercept estimates for Pentobarbital and oc-Chloralose.

Table 2. Equal slopes model for example one. General linear models procedure.

Dependent Variable: AMP

Source
Model
Error

Corrected Total

DF
3
32
35

Sum of Squares
104.49280047
215.49942175
319.99222222

Mean Square
34.83093349
6.73435693

F Value
5.17

Pr>F
0.0050

R-Square
0.326548

C.V.
39.15436

Root MSE
2.5950640

AMP Mean
6.6277778

Source
ANES

BPCHANGE

DF
2
2

Type III SS
33.13371493
64.15891158

Mean Square
16.56685746
64.15891158

F Value
2.46
9.53

Pr>F
0.1014
0.0042

Parameter

INTERCEPT
ANES

BPCHANGE

C
H
P

Estimate

0.3632651 34 B
2.1 85276224 B
0.620058522 B
0.000000000 B
-0.114135295

TforHQ:
Parameter = 0

0.19
2.12
0.54

-3.09

Pr>l71

0.8471
0.0418
0.5899

0.0042

Std Error of
Estimate

1.86833483
1.03052670
1.13889620

0.03697767

Least Squares Means
ANES

C
H
P

AMP
LSMEAN

7.73028376
6.16506606
5.54500754

Std Err
LSMEAN

0.67164352
0.82545587
0.78264404

Pr>l71
HO:LSMEAN = 0

0.0001
0.0001
0.0001

LSMEAN
Number

1
2
3
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Pr > 171 HO: LSMEAN(/) = LSMEAN(/)
Uj
1
2
3

1

0.1525
0.0418

2
0.1525

0.5899

3
0.0418
0.5899

NOTE: To ensure overall protection level, only probabilities associated with preplanned
comparisons should be used.

Parameter

Cvs. P
C Intercept
C Adj Mean

Estimate

2.18527622
2.54854136
7.73028376

T for HO:
Parameter = 0

2.12
1.38

11.51

Pr>l71

0.0418
0.1780
0.0001

Std Error of
Estimate

1 .03052670
1.85068527
0.67164352

The SAS statements necessary to test HQ\ (i.e., does the mean frequency given the blood
pressure change depend linearly on the covariate?) for example two and estimate several
linear combinations of the parameters are
PROC GLM; CLASS ANES;
MODEL FREQ = ANES BPCHANGE*ANES/NOINT;
Estimate VC Intercept' Anes 1 0 0 ;
Estimate 'H Intercept' Anes 0 1 0 ;
Estimate 'P Intercept' Anes 0 0 1 ;
Estimate VC Slope' Bpchange*Anes 1 0 0;
Estimate 'H Slope' Bpchange*Anes 0 1 0;
Estimate VP Slope' Bpchange*Anes 0 0 1;
Estimate VC-H Slope' Bpchange*Anes 1 - 1 0;
Estimate VC-P Slope' Bpchange*Anes 1 0-1;

Estimate 'H-P Slope' Bpchange*Anes 0 1-1;

Estimate 'C AT -45%' Anes 1 0 0 Bpchange*Anes -45.4 0 0;

Estimate 'H AT -45%' Anes 0 1 0 Bpchange*Anes 0 -45.4 0;
Estimate 'P AT -45%' Anes 0 0 1 Bpcharige*Anes 0 0 -45.4;
Estimate VC-H AT -45%' Anes 1 - 1 0 Bpchange*Anes -45.4 45.4 0;

Estimate VH-P AT -45%' Anes 0 1 - 1 Bpchange*Anes 0 -45.4 45.4;

Estimate 'C AT -30%' Anes 1 0 0 Bpchange*Anes -30 0 0 ;
Estimate 'H AT -30%' Anes 0 1 0 Bpchange*Anes 0 -30 0;
Estimate VP AT -30%' Anes 0 0 1 Bpchange*Anes 0 0 -30;
Estimate 'C-H AT -30%' Anes 1-1 0 Bpchange*Anes -30 30 0;
Estimate 'C-P AT -30%' Anes 1 0-1 Bpchange*Anes -30 0 30;
Estimate XH-P AT -30%' Anes 0 1-1 Bpchange*Anes 0 -30 30;

Table 3 provides the SAS output from fitting this model. The sum of squares for
BPCHANGE*ANES tests //Oi and is significant. Thus we conclude that cycling frequency
depends on blood pressure change. Table 3 contains the intercept and slope estimates for
each anesthetic. Since the equal slopes model is not appropriate for these data, it is
necessary to compare the anesthetics at various values of blood pressure change. We have
chosen to compare the three anesthetics at BPCHANGE = -45.4% and -30.0%. The last
11 ESTIMATE statements are required to estimate the adjusted means and compare these
means at each given value of blood pressure change. For example, "H-P at -30%" asks
SAS to compare Halothane and Pentobarbital at a blood pressure change of -30%. The
results of these tests are in Table 3 and a summary of results for both examples can be
found in Table 4.
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TableS. Example two. General linear models procedure.

Dependent Variable: FREQ

Source
Model
Error

Uncorrected Total

DF
6
30
36

Sum of Squares
0.32077953
0.00768147
0.32846100

Mean Square
0.05346325
0.00025605

F Value
208.80

Pr>F
0.0001

/?-Square
0.342319

C.V.
17.05819

Root MSE
0.0160015

FREQ Mean
0.0938056

Source
ANES

BPCHANGE*
ANES

DF
3
3

Type III SS
0.02859050
0.00219677

Mean Square
0.00953017
0.00073226

F Value
37.22
2.86

Pr>F
0.0001
0.0534

Parameter

C Intercept
H Intercept
P Intercept

C Slope
H Slope
P Slope

C-H Slope
C-P Slope
H-P Slope

C AT -45%
H AT -45%
P AT -45%

C-H AT -45%
H-P AT -45%
C AT -30%
H AT -30%
P AT -30%

C-H AT -30%
C-P AT -30%
H-P AT -30%

Estimate

0.09020351
0.07654260
0.14407316

-0.00017283
-0.00013625
0.00100219

-0.00003658
-0.00117502
-0.00113844
0.09805005
0.08272836
0.09857378
0.01532169

-0.01584542
0.09538845
0.08063011
0.11400749
0.01475834

-0.01861904
-0.03337738

T for HO:
Parameter = 0

5.21
3.16
8.64

-0.48
-0.25
2.88

-0.06
-2.34
-1.75
23.59
15.81
20.42
2.29

-2.23
13.08
9.20
15.54
1.29

-1.80
-2.92

Pr>l71

0.0001
0.0036
0.0001
0.6353
0.8063
0.0073

0.9561
0.0259
0.0908
0.0001
0.0001
0.0001
0.0290
0.0337
0.0001
0.0001
0.0001
0.2053
0.0819
0.0066

Std Error
of Estimate
0.01732883
0.02420883
0.01668434
0.00036073
0.00055069
0.00034810

0.00065832
0.00050130
0.00065148
0.00415624
0.00523128
0.00482756
0.00668136
0.00711840
0.00729092
0.00876223
0.00733767
0.01139887
0.01034403
0.01142882

CONCLUSION
Although our original hypothesis was that the occurrence of CBF oscillations was

dependent on the type of anesthesia, as suggested previously [Clark Jr., Misrahy, and Fox,
1958; Hundley et al., 1988], this was not born out by the results. CBF cycling occurred
under all the anesthetics used, Pentobarbital, cc-Chloralose, and Halothane. For the
variation of amplitude with blood pressure change, all the anesthetics demonstrated
significant linear relationships. However, Pentobarbital showed a clear and significantly
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different linear relationship between blood pressure change and frequency of cycling from
Halothane and a-Chloralose.

Table 4. Summary statistics b\ t\pe of anesthetic adjusting for blood pressure change
using analysis of covariance.

Mean
Blood

Pressure Mean
Adjusted Change Square

Variable Anesthetic n Mean ± SEM ' Slope ± SEE (%) Error
Amplitude (%)

Frequency
(Hz)

Frequency
(Hz)

a-Chloralose
Halothane

Pentobarbital

a-Chloralose

Halothane
Pentobarbital

a-Chloralose

Halothane
Pentobarbital

15
10
1 1

15

10
11

15

10
11

7.7±0.7a

6.2 ±0.8
5.5 ±0.8

0.098 ± 0.004

0.083 ± 0.005h

0.099 ± 0.005

0.095 ± 0.007

0.081 ±0.009

0.114 ±0.007C

-0.1 14 ±0.037
-0.1 14 ±0.037
-0.1 14 ±0.037

-0.000 173 ±0.00036

-0.000 136 ±0.00055
0.00 1002 ±0.00035

-0.000 173 ±0.00036

-0.000 136 ±0.00055
0.00 1002 ±0.00035

-45.4

-45.4

-30.0

6.73

0.00256

0.00256

f SEM = Standard Error of Mean
* SEE = Standard Error of Estimate
a Adjusted mean for Pentobarbital differs from that for a-Chloralose (p = 0.04).
h Adjusted mean for Halothane differs from that for a-Chloralose (p - 0.03) and Pentobarbital (/; = 0.03).
c Adjusted mean for Pentobarbital differs from that for Halothane (/; = 0.007).
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NOTES TO THE INSTRUCTOR

Level of Case

Intermediate statistical methods; statistics or biostatistics majors.

Necessary Tools

Analysis of covariance; comparison of adjusted means.

Objectives

Demonstrate variety of uses of covariance analysis.

Comments and Suggestions for Instructor

It is important to check out the assumptions of parallel slopes and linearity of the
concomitant variable when using covariance analysis.
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CHAPTER 17

MODELING CIRCUIT BOARD
YIELDS

Lorraine Denby, Karen Kafadar, and Tom Land

The manufacturing of products often involves a complicated process with many steps, the

quality of which depends upon the complexity of the individual tasks. More complex

components can, but need not, result in lower success rates in the final product. "Success"

is measured differently for different products; it may be as simple as "unit turns on and off

properly" or more quantitative such as "output power falls within the range 100 ± 0.05

watts."

The cost of poor quality is significant in a manufacturing plant: loss of a functioning unit

that could have been sold for profit, lost employee time that produced the defective unit,

diagnosing the problem, and correcting it if feasible, and materials from the unit that are no

longer usable (scrapped). Thus, managers focus on ways of designing and building qualit

into the final product. If certain characteristics can be manufactured more successfully

than others, it behooves the designer to incorporate such features wherever possible

without sacrificing optimal performance. Statistical quality control usually involves the

monitoring of product quality over time to ensure consistent performance of manufactured

units. Our focus here is on quality one step before: to identify the characteristics of

products which lead to higher probability of successful performance.

In this case study, we analyze the yield of printed circuit boards, i.e., the percent of boards

in a production lot which function properly. Printed circuit boards are used in hundreds of

electronic components, including computers, televisions, stereos, compact disk players, and

control panels in automobiles and aircraft. Board failure means equipment failure, which is

serious when the board controls the aircraft. Various characteristics of these boards can be
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identified, and board designers and manufacturers desire information on how the presence

or absence of certain features can affect the yield. Features that lead to lower yields are

candidates for either redesign or more careful analysis of the processes required to produce

them.

INTRODUCTION
Product yields are important for cost, quality, and service in the printed circuit industry

as well as other electronics manufacturing industries. Yield can be measured in a variety of
ways. For the purpose of this study, yield is the ratio of number of boards shipped to
number of boards started (shipped + scrapped).

In the printed circuits industry, the cost of poor quality may exceed 20% of sales. Scrap
product is usually the largest component of that cost. In addition to process variations,
product complexity will also influence yield. Complexity will vary considerably from one
design to the next. Predicting yield as a function of product complexity becomes difficult
because complexity can manifest itself as several dozen design variables, many of which
are confounded with one another.

Predicting yields for new products can assist in price/cost decisions. Assessing what
the yield "should be" for existing products can indicate which parts have abnormally low
yields because of their complexity and which parts might have correctable problems related
to some other factors. The parts with complexity-related yield problems need to be
addressed with improved process capability. Those with other factors often need to be
addressed through other means. The goals of this analysis are to identify which of the
measured features on printed circuit boards have an effect on yield, either positively
(raising yield) or negatively (reducing yield).

BACKGROUND INFORMATION
In the printed circuits manufacturing industry, almost all products are made to order.

Each board design is unique, and hence the process that produces boards of a particular
design has its own yield. When the manufacturer considers a new design for a customer,
he must plan to price the product in accordance with yield expectations. If pricing assumes
a 50% yield when in fact a 99% yield is achievable, a competing manufacturer may submit
a lower bid and will likely receive the contract. Conversely, if the manufacturer prices the
product expecting to achieve 99% yield but achieves only 50%, the financial losses will be
severe. Most manufacturers "guess" at what the yield will be for new products based on
opinion and experience. These guesses often err by 5% to 10% and occasionally miss by
even greater margins.

Each design could be characterized with many variables. Some are known early and
are easy to measure. Others are not measured until after a price quotation has been
delivered. Still other variables are not easily measured or may be rarely measured at all.
Most of these variables are confounded with one another. More complex designs often
have more layers, narrower lines, more holes, and smaller holes than do less complex
designs. Each customer uses different CAD software and presents a unique set of finished
product requirements; consequently, customer identity also contributes to product
variability.
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Process variation complicates matters further. One lot of the same design might be
processed at 100% yield while another lot a few days later might be scrapped completely
(0% yield). When comparing results from two different products, the analyst cannot be
sure if the differences are a result of product variation (design) or process variation.

The goal of this project is to develop a simple but accurate prediction of yield for each
new design. This prediction should be based on variables/attributes that are easily
measured and are known early in the process. Inaccurate predictions are no better than the
current "guessing" system, and complicated algorithms and predictions based on variables
that have not been measured cannot be used.

QUESTIONS OF INTEREST
The engineers are particularly interested in being able to predict the yields of printed

circuit boards given information on various characteristics of the boards type. Some of
these characteristics are assumed to be associated with board complexity, such as number
of layers, minimum drill hole size, the presence of gold-plated fingers; one might suppose
that more complex boards have lower yields. To some extent, the engineers might want to
know which variables are most influential in predicting yield. These predictions allow the
engineers to plan their production needs and schedule the manufacturing of boards
accordingly and price the boards appropriately.

DATA
Measured characteristics and performance yields for 96 types of printed circuit boards

were collected over a six-month period (April-September). Although weekly data are
available (number of boards shipped and scrapped), from which weekly performance
yields can be calculated [yield - #shipped/(#shipped + #scrapped)}, we confine ourselves
to only the overall yield for the entire 6-month (26-week) period. The characteristics of the
board types are as follows:
1. testpts - the number of endpoints (e.g., connections) that the board (part number)

must pass in order for the board to be shipped. This may be the best estimate of the
total functionality of the part and is probably confounded with most of the other
variables. An individual with cost/price responsibility for new part numbers would
usually know all of the other variables in this list before knowing this variable. Yield
is expected to decrease with an increased number of test endpoints.

2. subp = the number of subpanels per board. Given a constant panel size, the number
of subpanels per panel is inversely related to the area of product that has to be good in
order for the part to ship. Yield is expected to increase with the number of subpanels
per panel. The area of the board is approximately 340/subp.

3. small = number of small (25 mm or less) holes in a subpanel. Yield is expected to
decrease with an increased number of small holes, small/subp gives the average
number of small holes per subpanel.

4. large = number of large (25 mm or more) holes in a subpanel. Yield is expected to
decrease with an increased number of large holes, large/subp gives the average
number of large holes per subpanel.

5. lyrs - number of layers in the part number. Generally, multilayer boards are more
complicated to manufacture.

6. ess = binary variable: 1 indicates that the part number uses this type of solder mask
coating; 0 indicates that it uses one of the other three possible types. Generally, part
numbers using the ESS solder mask coating have had lower yields than those using
one of the other types.
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7. gold = binary variable: 1 indicates that the part number has gold fingers, 0 indicates
that it does not. The presence of gold fingers presents additional failure modes to
which nongold boards are not subject. Yield is expected to be better on nongold
products than it is on gold products.

8. min.drill = the smallest size hole that is drilled into a given part number. Yield is
expected to decrease as hole size decreases, since smaller drill hole sizes are more
complicated to manufacture.

9. smdra = binary variable: 1 indicates board types with a two mil solder mask
registration allowance. Such boards are processed on superior equipment. They have
the disadvantage of tighter tolerances but the advantage of the superior equipment.
The relationship between yield and this variable could be either favorable or
unfavorable.

10. ci.tol - binary variable: 1 indicates that the board type has a tight tolerance for
controlled impedance, 0 indicates normal tolerance. In addition to the standard
electrical test, some parts have a controlled impedance requirement that subjects them
to further testing and additional failure modes to which normal product is not subject.
Yield is expected to be lower on parts with a controlled impedance requirement.

11. oem = binary variable: 1 indicates that the board type is manufactured for an outside
equipment manufacturer, 0 indicates internal use. Most of the factory's products are
sold to other divisions of the company. Some are sold on the market to "OEM"'
customers. OEM parts typically have somewhat different endpoint requirements and
less robust designs which produce lower yields.

12. int.lw = the circuit width on internal layers of the board. This variable is not
applicable to two layer boards as there are no internal layers. This variable has four
levels: 5, 6, > 6 (greater than 6), and "NA" (not applicable for boards having only two
layers; see variable Iyrs2). Thus, only two of the three contrasts associated with this
variable will be meaningful and should be included in the analysis. Yield is expected
to decrease as the circuit width becomes smaller.

13. Iyrs2 = binary variable indicating that the board has only two layers. Notice that we
need this variable because int.lw is not meaningful for boards having only two layers,
since there are no internal lines on such boards.

14. ext.lw = the circuit width on external layers of the board. Yield is expected to
decrease as the circuit width becomes smaller.

15. ship.t = total number of boards shipped during the six-month period.
16. scrap, t = total number of boards scrapped during the six-month period.
17. yield.t = total yield, ship.t/(ship.t + scrap.t), over the six-month period.

A subset of the data follows.

Cl C2 C3 C4 C5
testpts 4299 4010 2038 5704 1568

lyrs 6 6 6 6 6
ess 0 0 0 0 0

subp 1 3 3 4 4
gold 1 0 1 0 1

min.drill 25 13 22 13 25
smdra 0 0 0 0 0
ci.ro/ 0 0 0 0 0
o e m 0 0 0 0 0
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small
large
ship, t

scrap. t
yield.!

Cl
4069

139
162850
62150
0.7238

C2
15601

164
133532
51458
0.7218

C3
1830
5906

114629
38194

0.7501

C4
19243
3104

346095
117055
0.7473

C5
2611
5676

224070
81330

0.7337

QUESTIONS FOR ANALYSIS
1. What is the distribution of layers (lyrs) in our data set (i.e., how many boards have two

layers, three layers, etc.)? Likewise, how many boards
• use/do not use the newest solder mask (ess)',
• require/do not require gold-plated fingers (gold);
• are for an outside/inside equipment manufacturer (oem);
• have a tight/normal tolerance for controlled impedance (ci.tol);
• have tight/normal solder mask registration allowance (smdra).

2. Construct either a histogram or a stem-and-leaf diagram for the variables testpts, large,
small, subp, min.drill. What do you conclude about the distributions of these variables
in our data set?

3. When the response variable of interest is a proportion, or yield, say p, we often find it
useful to consider transforming the proportion via the transformation:
logit(p) = log [p/(\-p)J. In medical studies, this transformed variable is called the
logarithm of the odds ratio (the odds of survival versus not surviving); it is also the
"natural parameter" when the binomial family is expressed in exponential family form.
Construct boxplots for logit(yield.t) versus (a) number of layers (lyrs), (b) outside
equipment manufacturer (oem), (c) gold fingers (gold), (d) solder mask registration
allowance (smdra), (e) use of newest solder mask (ess), (f) internal line width (int.lw),
(g) external line width (ext.lw), and (h) controlled impedence (ci.tol). Because of the
distribution of these variables in the data set, it is helpful to construct boxplots having
variable widths (i.e., width proportional to number of observations in the box; see
[McGill, R., Tukey, J.W., Larsen, W.A., 1978]). Which variables appear to have an
effect on the yield, and in what direction?

4. Some of the variables may interact with respect to yield. Calculate weighted yields for
the four categories oem (0 or \) xgold (0 or \). This can be done most effectively by
defining a variable N.t - ship.t + scrap.t for the total number of boards for each
oem x gold cell. For example, the yield when gold = 0 and oem - \ can be calculated as

where «OI = ^T N.t(j) and the summation V is over all board types having gold =

0 and oem = 1.
Note that p(n is equivalent to the number of boards shipped over the total number

manufactured (ship.t + scrap.t), amongst all those for which gold = 0 and oem - 1.
Amongst all boards manufactured for internal use (oem - 0), do boards with gold
fingers have higher or lower yields than those without gold fingers?

Recall from one of your early statistics classes (or see [Snedecor, G. and Cochran,
W.G., 1967, section 8.7, p. 210]) that an approximate standard error of the estimate of
a binomial proportion, yield.t(j), can be calculated as f >',(!- v,)/ N.t(j)]{/ 2, where
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y j = yield.t(j}. Using this formula, calculate the standard error of the weighted mean

yield pw given above, as well as those for the other three categories. (Because the

N.t(j)'s are so large, these standard errors, while correct, are of limited usefulness in
assessing the significance of the differences in yields in different categories.) Is there
an interaction between gold and oeml Answer the same question for the variables ess
and gold and for lyrs and gold.

5. The engineers would prefer not to require the variable testpts in a prediction model,
because the value of this variable is known only long after the board is designed.
However, the number of holes on the board per unit area is often a good indicator of
how many points will need to be tested. Recall that the area is inversely proportional
to subp. Carry out a linear regression of the variable testpts on the two variables x\ =
small/subp and x2 = large/subp. Plot testpts as a function of x\ + x2. Do you notice
any potential outliers? Now construct a normal quantile-quantile (qq) plot of the
residuals from your model. Run another regression model without the outlier(s). How
much variation is explained by your model? Can you conclude the adequacy of a
linear combination of x\ and x2 in place of testpts for a linear prediction model of
yield?

Notes for Questions 6-8

An important consideration in fitting a linear regression model is the
appropriateness of the assumptions. Classical linear regression assumes that the
response yt is normally distributed with mean AC, ft and variance <7 2 , independent of i,

for i = 1 ... n (=96 here), where x' = (jt0], ;c1( ,K , xki) are the measured characteristics

of board type i and ft is a (&+l)-dimensional vector of unknown coefficients to be
estimated (e.g., via least squares). Clearly these assumptions do not hold for our case,
since our y, is a yield. There are two approaches to handling this situation:

A. Use a generalized linear model routine. This allows you to state explicitly that the
distribution of the random variableN.t(i)- pt, i = 1,K ,96, is binomial with

parameters N.t(i) and p, , where p, = x'ft is the linear combination of our

explanatory variables that we use to predict y , . We aim to estimate ft for good

predictions based on our choice of variables.
B. Some packages may not have a generalized linear model routine. We can effect

the same procedure as follows. Recall that a proportion, yt, has a distribution

that is asymptotically normal with mean p( and variance p,. (1 - pf. )/W.f (0

especially if N.t(i) is large. (In our case, all of the N.t(iys are well over 1000,

so our approximation to normality is quite safe.) We can now use an ordinary
linear regression routine but insist that the routine recognizes the differences in the
variances of our yt, which we approximate by [y^l-y^/Nj(i)]. The optimal

weights for a linear regression whose observations have unequal variances are
inversely proportional to the variances; hence, w(

(0) =N.t(i)/[yi(l-yi)]. Let us

call the predicted yi from such a model y f } .
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Obviously, we would like to use the true p, instead of the sample observed y , ,

so we can improve our estimate of ft by updating our weights with

w,01 = Nl ( / ) / [_y , ( l ) ( l -y , ( l ) ) ] - The predicted y, from this second model is y ' 2 ' , and

of course we can continue by setting w) 2 > - j V . f ( / ) / [ y ) 2 ' ( l - y , ' 2 ' ) ] unti l there is no

further change in our fitted model coefficients. (A generalized linear model routine
effectively executes these iterations.)

6. Carry out a linear regression according to prescription (B) above with the following
variables:
y, = dependent variable, yield of board type /, jc, = small/subp, x, = large/subp,

JC-, = lyrs, jc4 = gold, x^ =ci.tol, xh =lyrs, x1 =int.lw, A~S =/yr.v2, ,v() = ext.lw,

jc,0 =smdra, JCM — oem, jc,2 —oemxgold.

Notes for Question 7

You will need 3-4 iterations. You will also need to specify that only two of the
three contrasts associated with the variable int.Iw are meaningful: one for internal line
widths of 5 and one for internal line widths of 6. The coefficient for the factor
corresponding to > 6 will be the negative of the sum of the coefficients for these two
variables, and the third contrast must be left out of the analysis. You can accomplish
this by specifying formally two coded variables, say ( c , , c - , ) , taking the values (r^o)

= (1,0) if int.Iw = 5, (0,1) if int.Iw = 6, (-!,-!) if int.Iw >6 , and (0,0) if int.Iw = NA,
i.e., missing. In S or S-PLUS, set options (contrasts = 'contr.sum') and include as a
variable con.lw <— C(int.Iw, contrasts(int.lw), 2) in your model statement (call for //;?).
Which variables are highly significant in predicting yield? What do the coefficients
indicate about their effects on yield1?

How much variation is explained by your model? If any variables appear to be
nonsignificant, try refitting your model without them. State clearly your final model
and the importance of the variables included in it.

7. Construct the analysis of variance table corresponding to the variables in your model.
(If you coded the contrasts for int.Iw directly, remember to combine the sum of squares
for these two variables for the total sum of squares for the variable int.Iw.) Most
statistical packages will compute the />values hierarchically: i.e.. the additional
reduction in the sum of squares given the preceding terms in the model.

8. Plot the residuals from your model versus the fitted values. Are there any patterns in
your plot? Also construct boxplots of the residuals for the variables of greatest
significance (/?-value less than 0.05). Are the residuals uniformly distributed over
different levels of the variables?

ANALYSIS AND NOTES FOR THE INSTRUCTOR
This case study is for fairly advanced students who have taken a course that includes both

linear regression and analysis of variance. The concept of a linear regression whose dependent
variable has a binomial, as opposed to Gaussian, distribution is introduced by means of relating
it to a weighted Gaussian least squares where the weights are inversely proportional to the
(binomial) variances of the dependent variable. An additional complication of this study is the
combination of both continuous and categorical variables in the prediction equation, especially
when one of them (int.Iw) requires a dummy variable (/yr.v2) to make it meaningful. The data in
this case study further exhibit outliers as well as the need for weighted regression. The
instructor may have to provide some guidance on the commands in the statistical software
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package being used by the majority of the class in connection with the course, since the analysis
for the general linear model may not be available as a single command.

Notes on Question 1

Since all of these variables are either discrete or indicator variables (i.e., coded as 0 or
1), their distributions can be described by tables of counts. The table for lyrs shows that
most of the codes have 2 to 6 layers. Very few codes have greater than 10 layers.

Number of layers

Counts
2
19

4
26

1
53

8
12

10
14

12
3

18
1

About half the codes have the ESS solder mask:

Ess

Counts
0

43
1

53

Two-thirds of the codes do not have gold fingers.

Gold Fingers

Counts
0
66

1
30

Two-thirds of the codes are not manufactured for OEM customers. One might ask if
they are the same two-thirds as those not having gold fingers. A cross tabulation of counts
of gold and oem shows that they are not.

OEM

Counts
0
61

1
35

Gold
0
1

OEM
0
40
21

1
26
9

Only five codes have ci.tol equal to 1, i.e., are designed with a tight tolerance for
controlled impedance. One might question whether it is important to include a variable
that only related to five codes. However, it is well known among engineers that this tight
tolerance is very hard to manufacture, so this variable could prove to be important.

ci.tol

Counts
0

91
1
5

About 20 percent of the codes are manufactured with a two mil solder mask
registration, i.e., smdra = 1.

Smdra

Counts
0
75

1
21
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Notes on Question 2

Below are the stem-and-leaf diagrams for the variables testpts, large, small, subp, and
min.drill. Notice that the distributions for testpts, large, small, and min.dril are skewed,
while that for subp is highly discrete.

Testpts:
N = 96 Median = 2723 .5
Quartiles = 1553, 4792
Decimal point is 3 places to the right of the colon
0 22235888899
1 012333444555567789999
2 0022344566666777799
3 02335678999
4 0011233367999
5 001234778
6 255669
7 0478
High: 12036 14476

large:
IV = 96 Median = 2465
Quartiles = 1170, 4370
Decimal point is 3 places to the right of the colon
0 111222223455557799999
1 01222233355789
2 00022223444555566788999
3 012333445689
4 1345689
5 11235799
6 25
7 48
8 9
9 15
10 : 6
High: 12020 12900 13300

small:
N = 96 Median = 5426.5
Quartiles = 0, 11217
Decimal point is 3 places to the right of the colon
0 zzzzzzzzzzzzzzzzzzzzzzzzzzzOll
0 222333
0 444444444555
0 666777777
0 888999
1 0000001111
1 223333
1 444455
1 6667
1 88999
2 0
2 3
Note: "z" indicates 0.

subp:
N = 96 Median = 3
Quartiles = 3, 4
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Decimal point is at the colon
1 000000
2 00000000000000
3 00000000000000000000000000000
4 00000000000000000000000000000000000
5 00
6 000000
High: 9 10 17 18

min.drill:
N = 96 Median = 18
Quartiles =13, 27
Decimal point is 1 place to the right of the colon
1 022333333333333333333333333333333333333
1 5555555588888888
2 22
2 5555555555555559999
3 1133
3 588888888
4 333
4 5666

Notes on Question 3

Figure 1 shows boxplots for each of the eight categorical variables. Each boxplot
shows the marginal effect of each variable on the dependent variable logit(yield). They do
not, however, show its effect when the other variables are in the model. One
counterintuitive relationship is seen in the boxplot for gold. In this plot we see that the
marginal relationship of yield to gold fingers indicates that the yield is higher for those
codes with gold fingers. This is contrary to engineering judgment. One might ask why this
might be so. Has there been a mistake in the coding of this variable? We checked back
with the engineer and he found no mistake. One explanation could be that this variable is
confounded with other design features, e.g., perhaps the gold finger codes tend to be those
with some other variable set at a level where the yield is high. One would need to do cross
tabulations of gold with each of the other variables to see if there is a confounding of gold
with any other variable.
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Fig. 1. Question 3: Box plots of yield against each of the categorical variables.

By inspecting the boxplots for the other variables, one sees that the marginal
relationship of each of those variables is in the direction that follows engineering judgment.
It is important that the coefficients in the fitted model indicate relationships that are in the
direction that "make sense" according to what is known. If not, there could be some
confounding between the variables that would need to be understood or parameterized in
such a way that the model provides meaningful results. In assessing the models below, one
must be mindful of the known relationships of each of these variables and yield.

Notes on Question 4

Figure 2(a) shows a plot of the yields calculated for the four weighted yields
corresponding to the four cells when you cross gold and oem:

OEM

Gold
0
1

0
0.75
0.76

1
0.72
0.65

Note that the lines are definitely not parallel. This indicates that there is an interaction
between gold and oem.
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The interaction plot in Figure 2(b) for ess and gold shows a possible interaction
between these variables though not as dramatic as the one seen in Figure 2(a).

Fig. 2. Question 4: Interaction plots for pairs of categorical variables.

The interaction plot for lyrs and gold shows two lines that are not exactly parallel. The
points for gold = 0 do not fall exactly on a straight line. The line for gold = 1 is quite a bit
more wiggly than the one for gold = 0. This is due in part to the fact that the data are
sparse for the larger values of lyrs.

Notes on Question 5

The variable testpts can be well explained by some function of x\ and X2, as Figure 1
indicates. Table 1 gives a summary when we fit testpts - a + /3, *, + /32x2 .
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Fig. 3. Question 5: P/o/s oftestpts on (small & large)/subp.

Table 1. Question 5.

(Intercept)
X|
X2

Value
652.1692

0.9373
0.5761

Std. Error
188.2225

.0508
0.0628

t value
3.4649

18.4440
9.1800

Pr(>\t\)
0.0008

.0000
0.0000

Residual standard error: 1107 on 93 degrees of freedom
Multiple /^-Squared: 0.7951
F-statistic: 180.4 on 2 and 93 degrees of freedom, the /?-value is 0

Fig. 4. Question 5: QQ plot of residuals from testpts on small/subp and large/subp.

A plot of the residuals versus the fitted values indicates that point #95 is a clear outlier:
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small
15530

large
1265

subp
2

smdra smdra.new ct.tol oem

lyrs

int.lw
2

ess
1

ext.lw
3

gold
0

ship.t
41160

min. drill
15

scrap, t
22040

yield.t
0.6512658

Clearly, the variable testpts for this observation is quite a bit lower than for the other
board types. When we fit without this outlier we get Table 2.

Table 2. Question 5.

(Intercept)
X|

X2

Value
527.1052

1.0237
0.5899

Std. Error
138.9391

0.0385
0.0461

t value
3.7965

26.5774
12.8000

Pr(>|t|)
0.0003
0.0000
0.0000

Residual standard error: 812.2 on 92 degrees of freedom
Multiple /^-Squared: 0.8899
F-statistic: 371.8 on 2 and 92 degrees of freedom, the/7-value is 0

Notes on Questions 6 through 9

After four iterations, the summary table for this model is given in Table 3.

Table 3. Question 6.

(Intercept)
small/subp
large/subp

lyrs
gold
ci.tol

con.lwl
con.lw2
lyrs.2

ext.lw 1
ext.lw2
smdra

min.drill
oem

oem: gold

Value
0.7629

-8.7e-6
-7.0e-6
-0.0048
-0.0041
-0.0546
-0.0524

0.0265
0.0159
0.0086

-0.0180
-0.0103

0.0001
-0.0061
-0.0560

Std. Error
0.0211
2.73e-6
2.4e-6
0.0019
0.0072
0.0225
0.0201
0.0116
0.0167
0.0111
0.0074
0.0113
0.0005
0.0109
0.0171

t value
36.13
-3.26
-2.97
-2.49
-0.58
-2.43
-2.60
2.28
0.95
0.77

-2.42
-0.91
0.26

-0.56
-3.28

Pr(>\t\)
0.00
0.00
0.00
0.01
0.57
0.02
0.01
0.03
0.34
0.44
0.02
0.36
0.79
0.58
0.00

Residual standard error: 55.05 on 81 degrees of freedom
Multiple /?-Squared: 0.6563
F-statistic: 11.05 on 14 and 81 degrees of freedom, the/?-value is 1.429e-13

testpts
1272 8

0 0 1 1
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All variables except lyrs.2, gold, smdra, min.drill, and oem show signs of significance,
but, because of the importance of lyrs to the variables for interior and exterior line widths,
and the interaction oem x gold, we retain lyrs.2, gold, and oem in the model. The
interaction between oem and gold is quite strong, as could be seen from the interaction
plots in the previous question. Notice that the direction of each coefficient is consistent
with the suspicions of the engineers given in the introduction: negative for lyrs (more
layers => lower yield), negative for gold (presence of gold => lower yield).

Also, the coefficients for the contrasts associated with int.lw and ext.lw are consistent
with the line width size and yields: negative for the first contrast (smallest line widths have
lower yields) and positive for the second contrast (yielding a positive coefficient associated
with the largest interior line widths). The variables gold and min.drill are clearly
nonsignificant, but, because the interaction oem x gold is significant, we retain gold in the
model. Table 4 below gives the analysis of variance for this model.

Table 4. Question 7.

Small/subp
large/subp

lyrs
gold
ci.tol

con.lw
lyrs.2
ext.lw
smdra

min.drill
oem

oenrgold
Residuals

Df
1
1
1
1
1
2
1
2
1
1
1
1

81

Sum of Sq
81843.82
24772.95
18825.23
3239.11
5681.81
3804.89

15243.77
19952.83
3972.59

198.63
3066.61

11463.17
86377.57

Mean Sq
81843.82
24772.95
18825.23
3239.11
5681.81
1902.44

15243.77
9976.41
3972.59

198.63
3066.61

11463.17
1066.39

F Value
76.75
23.23
17.65
3.04
5.33
1.78

14.29
9.36
3.73
0.19
2.88

10.75

Pr(F)
0.00
0.00
0.00
0.09
0.02
0.17
0.00
0.00
0.06
0.67
0.09
0.00

We run the regression without variable min.drill and find negligible change in the R-
squared value of 65.63% for the above model (Tables 5 and 6):

Table 5. Question 1.

(Intercept)
small/subp
large/subp

lyrs
gold
ci.tol

con.lw 1
con.lw2

lyrs.2
ext.lw 1
ext.lw2
smdra
oem

oenrgold

Value
0.7655

-9.0e-06
-6.6e-06
-0.0049
-0.0034
-0.0528
-0.0529

0.0270
0.0162
0.0089

-0.0184
-0.0103
-0.0063
-0.0560

Std Error
0.0185
2.4e-06
1 .9e-06
0.0019
0.0066
0.0213
0.0199
0.0114
0.0165
0.0110
0.0072
0.0112
0.0107
0.0170

/ value
41.30
-3.81
-3.44
-2.52
-0.52
-2.47
-2.66

2.37
0.98
0.81

-2.56
-0.92
-0.59
-3.30

Pr(>\t\}
0.00
0.00
0.00
0.01
0.61
0.02
0.01
0.02
0.33
0.42
0.01
0.36
0.56
0.00
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Residual standard error: 32.47 on 82 degrees of freedom
Multiple /^-Squared: 0.6896
F-statistic: 14.01 on 13 and 82 degrees of freedom, the/?-value is 7.772e-16

Table 6. Question 1.

small/subp
large/subp

lyrs
gold
ci.tol

con.lw
lyrs.2
ext.lw
smdra
oem

oem:gold
Residuals

Df
1
1
1
1
1
2
1
2
1
1
1

82

Sum of Sq
81795.93
24788.06
18847.03
3236.75
5678.21
3799.02

15243.60
19980.37
3972.16
3189.37

1 1462.86
86437.06

Mean Sq
81795.93
24788.06
18847.03
3236.75
5678.21
1899.51

15243.60
9990.19
3972.16
3189.37

11462.86
1054.11

F Value
77.60
23.52
17.88
3.07
5.39
1.80

14.46
9.48
3.77
3.03

10.87

Pr(F)
0.00
0.00
0.00
0.08
0.02
0.17
0.00
0.00
0.06
0.09
0.00

Notice that, even after having accounted for all the other variables, the interaction oem
Xgold is still quite significant.

Fig. 5. Question 8: Residuals vs. fitted values from prediction model.

Figures 5 and 6 answer question 8. There appear to be no unusual patterns in the
residuals, except for a few values whose predicted yields are quite a bit lower than actual
yields (negative residuals); these are identified by code in Figure 5. Figure 6 shows no
unusual distributions in the residuals for different levels of lyrs, ext.lw, oem, oem x gold
variables.



17. Modeling Circuit Board Yields 233

Fig. 6. Question 8: Residuals from prediction model as a function of categorical variables.

INSTRUCTIONS FOR PRESENTATION OF RESULTS
Prepare a one-page executive summary for the manufacturing manager of this project,

stating your conclusions from this analysis. Remember that the manager is not likely to be
a statistician, so you will need to explain your results in manufacturing language.

REFERENCES
McCullagh, P. and Nelder, J.A. (1983), Generalized Linear Models, Chapman & Hall, London.
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Neter, J., Kutner, M., Nachsheim, C.J., and Wasserman, W. (1994), Applied Linear Statistical
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CHAPTER 18

EXPERIMENTAL DESIGN
FOR PROCESS SETTINGS

IN AIRCRAFT MANUFACTURING
Roger M. Sauter and Russell V. Lenth

This case study is about designing and analyzing experiments that are relevant to hole-

drilling operations in aircraft. When a change was made to a new lubricant, it was

necessary to do some experimentation to learn how much of this lubricant should be used

and how it interacts with other process factors such as drill speed. Several factors are

involved in our experiment, and there are physical and time constraints as well,

necessitating an incomplete-block experiment where only a subset of the factor

combinations are used on any one test coupon. The reader is guided through the design and

analysis, considering some related practical issues along the way.

INTRODUCTION
The goal of this study is to design and analyze an experiment that will help improve a

manufacturing process—in this case, the assembly of aircraft.
The skin of the fuselage (i.e., the body of the plane—see Figure 1) and wings are made

of pieces of metal, overlapped and fastened together with rivets. Thus, the process involves
drilling a very large number of holes. These must be positioned accurately, and the quality
of the holes themselves is important.

The experiment in this study was motivated by a change in lubricant. A certain amount
of lubrication reduces friction, prevents excessive heat, and improves hole quality;
however, too much lubricant can be problematic because the drill bit may not get enough
"bite." In the past, chlorofluorocarbons (CFCs) had been used as a lubricant. These can no
longer be used due to environmental concerns, necessitating the use of a new class of
lubricants. Changing the lubricant can have a far-reaching impact on the entire process;
hence, experimental methods are used to study the key control variables—including the
amount of lubricant—in the hole-drilling process.

235
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Fig. 1. Panels in part of the fuselage.

The response variables (outputs) of interest are the important quality characteristics of
holes. These include the hole diameter and the surface finish inside the hole. These are
described in more detail below.

BACKGROUND
By definition, experimentation entails trying different settings to see what works and

what doesn't. The experiment will not provide much useful information unless it produces
a range of hole qualities: we have to try to produce some bad holes along with some good
ones. For this reason as well as cost, we do not want to run such experiments on actual
aircraft assemblies. Instead, the experiments are run off line, using small pieces of material
called test coupons.

Measuring Hole Quality

The customer for this experiment is most interested in how various factors affect the
diameter and surface finish of the hole. Accordingly, the surface finish and diameter are the
primary measures of hole quality and serve as the response variables in our experiment.

Surface finish is measured using a probe that can detect the minute peaks and valleys of
the surface inside the hole along the path of the probe. The roughness, denoted Ra, of the
hole can be quantified using the total area from the average depth. Specifically, Ra is
defined as the total area of the absolute deviations of the probe from its average depth—the
shaded area in Figure 2. The acceptable magnitude of these peaks and valleys varies
depending on the engineering requirements for a given installation.

Fig. 2. Illustration of the definition ofRa.
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Hole diameter is measured using an instrument that is pushed into the hole. It measures
the hole diameter at different depths and in different directions; these numbers are averaged
together into one measurement of hole diameter. Instead of reporting the raw measurement,
the diameter of the drill bit used to drill the hole is subtracted from the measured hole
diameter, yielding the "excess diameter" values in the data set.

Factors

The experiment contains four factors: the rotational speed of the drill (RPM, rotations
per minute, at three levels), the feed rate of the drill (IPR, for inches per revolution, at three
levels), the temperature of the air jet (AirTemp, in degrees Fahrenheit, at two levels), and
the volume of lubricant (LubeVol, in milliliters, at two levels). There are thus a total of 3 x
3 x 2 x 2 = 36 factor combinations.

Six test coupons (Coupon) are used in the experiment. It is not possible to run all 36
factor combinations on 1 coupon, so only 6 factor combinations are run on each coupon.
(This makes it an incomplete-block experiment.) The factor combinations are assigned so
that a balance of levels of each factor is represented on each coupon. Refer to the data file
described below to see exactly how these assignments were made.

QUESTION OF INTEREST
Our goal is to find the settings of speed, feed rate, air temperature, and lubrication that

yield the best hole quality. (What is meant by "best" is discussed later.) This small
experiment is unlikely to answer all of our questions, so another goal is to recommend a
new experiment that will help shed further light in the quest to improve the hole-drilling
process.

DATA
Name of data file: Case 18.txt

Variable name Description

RPM Drill speed in revolutions per minute
(3 levels: 6,000, 10,000, and 15,000)

IPR Feed rate in inches per revolution
(3 levels: .006, .009, .012)

AirTemp Temperature of the air jet in degrees Fahrenheit
(2 levels: 30 and 50)

LubeVol Amount of lubricant, in milliliters
(2 levels: .01 and .02)

EntRa Average entrance surface finish (Ra) for holes
1,5, 10, 15,20

ExitRa Average exit surface finish (/?„) for holes
1,5, 10, 15,20

EntLnRa Average entrance In surface finish (In R(l) for holes
1,5, 10, 15,20

ExitLnRa Average exit surface finish (In R(l) for holes
1,5, 10, 15,20

XS_Diam Average hole diameter minus drill diameter for holes
1,5, 10, 15,20
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Coupon

1
1
1

RPM

6000
15000
10000

IPR

0.006
0.009
0.012

Air
Temp

30
50
30

Lube
Vol
0.02
0.02
0.02

Ent
Ra

21.6
23.4
23.6

Exit
Ra

21.4
21.4
23.4

Ent
LnRa
3.040
3.028
3.010

Exit
LnRa
3.027
3.023
3.125

xs_
Diam
1.21
1.32
1.33

The experiment involved drilling a sequence of 20 holes at each factor combination.
Only the 1st, 5th, 10th, 15th, and 20th hole in each sequence was actually measured; hence,
the complete data set consists of measurements on 5 x 36 = 180 holes. Picking these hole
numbers provides an opportunity to examine heat build up and its effect on hole quality
over each group of the 20 holes (in a different analysis than this case study). Summary
statistics were computed for each set of 5 measured holes. Specifically, the following
summary statistics are in the data set: the mean of the surface finish (Ra) at the entrance and
the exit of the hole; the mean of the natural logarithm of Ra at the entrance and exit; and the
mean excess diameter. All analyses in this case study are based on these summary values.

GUIDED ANALYSIS

Design Concepts

Since one of the interesting features of this study is the experimental design itself, we
ask the student to begin by answering some practical questions about the measurements
and the design.
1. Suppose that you have measured the excess diameter of two different holes.

A. How would you know which hole is of higher quality? What if the measurement
were the surface finish (/?«)? Do you think that excess diameter and surface finish
will be correlated?

B. If there is substantial variation in one of these measurements (under the same
operating conditions), is that good, bad, or unimportant?

C. Explain why excess diameter is a better measure of quality than just the diameter
of the hole.

D. Can you think of other useful ways of measuring hole quality?
2. Suppose that the experiment involves six coupons of the same type and thickness of

metal. In selecting coupons, should we get six coupons from the same batch of
incoming material, or should we get the coupons from different batches? Discuss the
advantages and disadvantages of each.

3. Consider a different (simpler) experiment that involves six coupons from different
batches of material. We want to test the three different drill speeds—6000, 10000, and
15000 RPM. We can drill 60 holes in each coupon. Discuss which is better:
A. Randomly assign two coupons to 6000 RPM, two others to 10000 RPM, and the

remaining two to 15000 RPM. Drill all 60 holes in each coupon at its assigned
speed.

B. In each coupon, drill a row of 20 holes at 6000 RPM, 20 holes at 10000 RPM, and
20 holes at 15000 RPM. A random mechanism (separate for each coupon) is used
to decide which speed comes first, second, and third.
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4. The plan in 3(b) calls for all 20 holes at each speed to be drilled in sequence on each
coupon. Another possibility—call it plan 3(c)—allows the speed to change between
individual holes so that for each coupon, some random subset of 20 of the 60 holes are
drilled at 6000 RPM, a different 20 are drilled at 10000 RPM, and the rest are drilled at
15000 RPM. The 60 holes are then drilled in random sequence. Discuss the relative
merits of this randomization compared with the one in 3(b), taking both the statistical
and the practical issues into account.

5. The experimental procedure used in this case study was as follows:
• We do all test runs on a coupon before proceeding to the next coupon.
• The order in which coupons are tested is randomized.
• For each factor combination, a row of 20 holes is drilled in sequence on the

coupon.
• It was not possible to use the same drill bit for all of the holes; therefore, six drill

bits were used on each coupon and the bits were randomly assigned to the six
factor combinations. We consider the drill bits to be nearly identical in quality,
but there is slight natural variation in their diameters. The diameter of each drill
bit was measured and used as an adjustment to the measurements of hole
diameter.

• Within each coupon, the order of testing its six assigned factor combinations is
randomized. (The order of testing also defines the physical position of the row
of holes on the test coupon.)
What has been lost by testing one coupon at a time, rather than mixing them
up?

6. By reducing the data to summary measures, we now have only one observation per
factor combination. Is there any hope of obtaining valid statistical results without any
replications?

Data Analysis

1. Construct an analysis of variance table for ExitRa, using a model with a main effect of
Coupon, plus all main effects and two-way interactions of RPM, IPR, AirTemp, and
Lube Vol. Construct and interpret diagnostic plots of the residuals. Do the same using
ExitLnRa as the response. (Note: Because this is an incomplete-block experiment,
computer procedures designed solely for balanced analysis of variance will balk at
these data. You will need to use a "general linear models" procedure, or do regression
on dummy variables.

2. Based on the above analyses, decide whether you want to continue to work with
ExitRa or ExitLnRa as the response variable. Construct interaction plots for the mean
response at combinations of each pair of factors RPM, IPR, AirTemp, and Lube Vol.
Based only on looking at these plots,
A. What factor combination appears to yield the best overall quality?
B. What factors interact the most strongly?

3. Complete the construction of interaction plots, analysis of variance tables, and
diagnostic plots for the response variables EntRa (or EntLnRa) and XS_Diam.
Determine the best combinations (and the close runners-up) for each response variable.
Are there any serious contradictions among the best combinations, depending on the
response variable?
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Further Reading

Most standard design texts—for example, [Montgomery, 1997, pp. 208-219]—discuss
incomplete-block designs in one factor. Somewhat fewer have material on multifactor
designs in incomplete blocks. Material on such designs having all factors at two or three
levels can be found in [Hicks, 1993, sections 12.3 and 13.5] and [Montgomery, 1997,
Chap. 8 and section 10-2]. An example of an experimental design closely related to ours (a
3 x 3 x 2 design in 3 blocks of size 6) is discussed in [Cochran and Cox, 1957, pp. 203-
212]. The design in this study incorporates restrictions on randomization—a common
practice. [Lorenzen and Anderson, 1993] is a good reference for this topic.

PRESENTATION OF RESULTS
Based on the analysis above, write a short report and prepare a presentation directed to

the engineer in charge that summarizes your conclusions and recommendations. The report
should be no more than three pages in length and should contain only pertinent graphs and
tables to aid in the engineer's understanding. Organize your own work so that if the
engineer were to come back in six months with a question, you would know what you did
and did not do, and what methods you used.
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NOTES TO THE INSTRUCTOR

Level
Intermediate.

Necessary Tools

Experimental design, analysis of variance, correlation, regression and regression
diagnostics, transformations, statistical software package.

Objectives and Overview

The emphasis of much of this case study is on design issues, with some additional
emphasis on the nuts and bolts of analysis. This is a fractional design, and this case study
could serve as an introduction to such designs and their analysis. In addition, substantial
attention is paid to the point that understanding that the way an experiment is randomized
is an important part of the analysis.
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Design Questions

These questions require no computation at all. They can probably be presented and
discussed in one class period. The remaining questions can be assigned as homework and
discussed in a subsequent class meeting.
1. The purpose here is to get the student to understand the measurements and to think

about them in practical terms.
A. Generally, a small diameter or Rtl is better than a large value. A large hole

diameter, for example, could result from chattering of the drill bit. Intuitively,
such chattering might also lead to poorer surface finish, so there is some
expectation that the measurements are positively correlated.

B. Small variations are better than large variations because consistency is one aspect
of quality.

C. Drill bits vary slightly, and those bits with larger diameters will tend to produce
larger holes. Drill-bit diameter may be used as a covariate or as part of a
multivariate response; but it also seems quite reasonable to simply adjust the
measured hole diameter by subtracting the drill-bit diameter.

D. Students may have some creative answers. Obvious answers include measures of
hole shape (e.g., deviation from roundness, taper, etc.), which can be obtained by
looking at variations in the probe readings (recall the description in the
Background section ).

2. If we get all coupons from the same batch, there is likely to be less variation in
measured quality, due to more uniformity of raw material. This improves the
resolution of the experiment, but reduces its scope: we would not know how applicable
our conclusions are to other batches. Using more batches will broaden the scope of
inference, at the likely expense of increasing variation and reducing resolution.

3. This is really a continuation of question 2. Plan (a) confounds the variation among
coupons with the effects of drill speeds. Moreover, the coupons serve as experimental
units for drill speeds; thus we have only two true replications at each speed, not 120.
Plan (b) uses coupons as blocks, allowing us to compare the speeds under
homogeneous conditions. It is a much better design, especially if there is a lot of
coupon-to-coupon variation. (This is a good time to take another look at question 2.
Blocking allows us to broaden the scope of the experiment without sacrificing
resolution.)

4. In 3(b), the experimental units are the sets of 20 holes drilled in sequence; we have no
true replications within each block (this is often the case with block designs), so in
effect we have an experiment with 6 blocks and 3 observations on each block. In the
new design, each block is in fact a completely randomized design with 20 replications
of each of three treatments. There are lots more degrees of freedom for error, leading
to a more powerful test. (However, this is partially offset by the fact that the error
variances are different. The data analyzed in 3(b) are averages of 20 measurements,
less variable than the individual measurements analyzed in the new design.)

5. We have not lost much; in fact we might have gained something, if there are time
variations. As the experiment is designed, time variations are confounded with Coupon
effects; but that is okay because it isn't important to estimate Coupon variations. If we
include coupons in the randomization, then the time variations become more of an
issue. They will add to the variation in the data and decrease resolution.
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6. This question alludes somewhat to the discussion in questions 3 and 4. The
randomization is such that the individual holes do not constitute genuine replicates.
Treating them as such seriously distorts the validity of any tests and confidence
intervals. Reducing the data to summary measures is a conservative strategy for
dealing with the validity issue. By seeking a suitable model for these reduced data,
there is still hope of obtaining valid statistical results. (The instructor might take this
opportunity to point out that it is common to fit regression models to unreplicated
data—i.e., (x,y) pairs where each x value appears only once.)

Analysis Questions

1. We used Minitab's GLM procedure to fit the model to ExitRa and to produce the plots
in Figure 3—a normal plot of the residuals and a plot of residuals versus fitted values.
The latter has a vaguely triangular shape that suggests a relationship between the mean
response and its variance. The normal plot shows curvature suggestive of heavy-
tailedness (more likely in this case, a mixture of distributions having different
variances). Since the normality and homogeneity-of-variance assumption doesn't seem
to be very well satisfied, the statistical results for this model are questionable. Using
ExitLnRa as the response, the diagnostic plots look much better (see Figure 4), and
this makes ExitLnRa a better choice of response variables if a convential normal-
theory analysis is to be used.

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Fig. 3. Residual plots with ExitLnRa as the response.

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Normal Score

Fig. 4. Residual plots with ExitLnRa as the response.

Fitted Value
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The analysis of variance table for ExitLnRa is shown in Table 1. One thing to
point out to students is that the sequential sums of squares differ in some places (but
not others) from the adjusted (or partial, type II, or type III) sums of squares. This is
due to the incomplete-block structure. If Coupon were removed from the model, then
we would have a balanced design in the four primary factors. Indeed, it is tempting to
do just that; however, many statisticians recommend against removing a block effect
from the model, because it is part of the randomization of the experiment and so it
should be accounted for even if it is not statistically significant.

Table 1. Analysis of variance for ExitLnRa.

Source

Coupon
RPM
IPR

AirTemp
LubeVol

RPM*IPR
RPM* AirTemp
RPM*LubeVol
IPR*AirTemp
IPR*LubeVol

AirTemp*LubeVol
Error
Total

DF

5
2
2
1
1
4
2
2
2
2
1

11
35

SeqSS

1.52200
0.42566
0.60371
0.01886
0.05429
0.65811
0.03860
0.00050
0.14305
0.12182
0.00114
0.64314
4.23088

AdjSS

1.16471
0.42566
0.60371
0.01886
0.05429
0.61226
0.01760
0.01143
0.10833
0.12277
0.00114
0.64314

AdjMS

0.23294
0.21283
0.30185
0.01886
0.05429
0.15307
0.00880
0.00571
0.05417
0.06139
0.00114
0.05847

F

3.98
3.64
5.16
0.32
0.93
2.62
0.15
0.10
0.93
1.05
0.02

P

0.026
0.061
0.026
0.581
0.356
0.093
0.862
0.908
0.425
0.383
0.891

2. This is good practice in constructing and interpreting interaction plots. A matrix of
interaction plots (created by Minitab) is displayed in Figure 5. Remember that a low
Ra is good. From inspection, it appears that the worst setting for RPM is 6000; the
other two levels seem less distinct, but the middle level, 10000, averages lowest (best).
Similarly, we would not want to operate at an IPR of .012. The choices seem less
dramatic for the other two factors, but it appears that an AirTemp of 30 degrees and a
LubeVol of .02 ml have the edge. There are several strong interactions, the strongest of
which is between RPM and IPR.

3. The same general results hold for the other responses (again, using EntLnRa yields
better-looking diagnostics than EntRa). A summary of the analysis of variance F tests
and P values is given in Table 2. There are not as many significant effects with
EntLnRa or XS_Diam as the response variables, but the same general trends appear in
the means and interaction plots (Figures 6 and 7) as for ExitLnRa. We would
recommend to the engineer that the process be set at an RPM of 10000 and a feed rate
of .009 ipr. The air temperature and lubricant volume do not seem as critical, but it
appears that 50 degrees and .02 ml, respectively, may have a slight edge. (Keep in
mind that all the statistical tests are based on summary statistics and so they are
probably somewhat conservative).
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Note, by the way, that all four factors have quantitative levels; so this case study is
good for illustrating the fitting and testing of polynomial effects. Using XS_Diam as
the response, for example, one finds that almost all of the sum of squares for RPM is
attributable to the quadratic contrast. In some reduced versions of the model, it is
possible for the quadratic effect to be statistically significant, while the overall two-
degree-of-freedom test of RPM is not. That situation should stimulate some good
discussion about whether or not RPM is a good predictor; and whether or not to
include a linear term with the quadratic term in the model.

Fig. 5. Interaction plots when the response is ExitLnRa.

Table 2. Analysis of variance summary for the three responses.

EntLnRa ExitLnRa XS Diam
Source
Coupon

RPM
IPR

AirTemp
LubeVol

RPM*IPR
RPM*AirTemp
RPM*LubeVol
IPR*AirTemp
IPR*LubeVol

AirTemp*LubeVol

DF
5
2
2
1
1
4
2
2
2
2
1

F
0.25
3.92
1.68
3.68
1.02
0.10
0.39
0.13
0.94
0.88
0.25

P
0.933
0.052
0.231
0.081
0.334
0.980
0.683
0.882
0.419
0.443
0.629

F
3.98
3.64
5.16
0.32
0.93
2.62
0.15
0.10
0.93
1.05
0.02

P
0.026
0.061
0.026
0.581
0.356
0.093
0.862
0.908
0.425
0.383
0.891

F
1.14
1.72
2.41
1.14
0.05
1.41
1.23
0.89
1.12
1.19
1.61

P
0.395
0.225
0.135
0.308
0.821
0.294
0.329
0.439
0.361
0.342
0.231



18. Experimental Design for Process Settings 245

Fig. 6. Interaction plots for EntLnRa.

Fig. 7. Interaction plots for XSJDiam.

The Report

There is obviously a lot of flexibility here; but generally, for reporting purposes, a good
short report would include an executive summary (including the main conclusions), a
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description of the data, one or two good descriptive graphs. A main-effects plot like the one
in Figure 8 would be useful. Then some interaction plots should be used to display
important interactions. For most audiences, we recommend keeping the focus on graphs,
and keeping the analysis of variance tables, residual plots, and anything involving Greek
letters and subscripts in one's briefcase.

Fig. 8. Main-effect plot ofExitLnRa.
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AN EVALUATION
OF PROCESS CAPABILITY FOR

A FUEL INJECTOR PROCESS USING
MONTE CARLO SIMULATION

Carl Lee and Gus A. D. Matzo

Capability indices are widely used in industry for investigating how capable a

manufacturing process is for producing products that confirm the engineer's specification

limits for essential quality characteristics. Companies use them to demonstrate the quality

of their products. Vendees use them to decide their business relationship with the

manufacturer. One important underlying assumption for capability analysis is that the

quality characteristic should follow a normal distribution. Unfortunately, many quality

characteristics do not meet this assumption. For example, the leakage from a fuel injector

follows a very right-skewed distribution. Most of the leakages are less than one ml, with a

few cases over one ml and some rare cases over three ml. It is important to understand how

well these indices perform if the underlying distribution is skewed. This case study is

initiated from the concerns of using these indices for reporting the capability of a fuel

injector process in an engine manufacturing plant.

INTRODUCTION
The fuel injection system of an automobile meters fuel into the incoming air stream, in

accordance with engine speed and load, and distributes this mixture uniformly to the
individual engine cylinders. Each cylinder is connected with an injector. When an engine is
turned on, fuel injectors inject fuel into individual cylinder along with the incoming air to
form a uniform mixture for ignition. When the engine is turned off, the injector should stop
injecting fuel immediately. However, during the first few seconds after turning off the
engine, a tiny amount of fuel may leak out from the injector into the engine cylinder. This
is the injector leakage. Such leakage is undesirable from an emissions standpoint.

247
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The amount of leakage is usually less than one ml with rare occasions over three ml.
The distribution of leakage is skewed to the right. The leakage is monitored using statistical
process control (SPC) methods, and the capability indices are used to measure if the
amount of leakage meets the engineer's specification limits. Due to the fact that the
distribution of leakage is highly skewed, there has been a concern of the validity of using
the capability indices that are developed for variables that follow normal curves. In fact,
this is not an isolated case. Quality characteristics in industrial environments often do not
follow normal distributions. This case study is conducted for two main purposes:
1. To explore the quantitative properties of the fuel injector's leakage using a set of

leakage data collected at a fuel injector flow laboratory at FORD.
2. To investigate the performance of capability indices when the underlying distribution

of a quality characteristic is highly skewed. This purpose is not limited to the leakage
problem. It has a more general goal in mind to study the performance of capability
indices under different degrees of skewness and several other factors that may also
have effects.

BACKGROUND INFORMATION
The automotive industry is complex. There are thousands of components in an

automobile. Each component must be at a high quality level in order to have a quality
automobile. Many technologies developed by the automotive industry are also the
foundation of many other manufacturing industries. Since the 1980s, the automotive
companies have been undergoing a very deep restructuring to attain high quality
automobiles for the highly competitive international market. One of the major tools in
pursuing quality improvement is statistical methodology. Among the essential tools are
graphical tools such as the histogram, probability plot, box plot, pareto diagram, cause-
effect diagram, statistical process control charts, capability analysis, and more advanced
statistical methods such as design of experiments, analysis of variance, regression
techniques, simulation techniques, etc.

Most automobile engines are four strokes where the engine operates on what is known
as the four-stroke cycle (see Figure 1). Each cylinder requires four strokes of its piston to
complete the sequence of events which produces one power stroke. These four strokes are
(1) intake stroke, (2) compression stroke, (3) power stroke, and (4) exhaust stroke. The
intake stroke draws a fresh mixture of fuel and air into the cylinder. The compression
stroke compresses the mixture to the point where cylinder pressure rises rapidly. At the
power stroke, as the temperature and pressure rise, combusted gases push the piston down
and force the crankshaft to rotate. At the exhaust stroke, the burned gases exit the cylinder,
and another cycle begins.

The fuel injection system controls the amount of fuel going into the air mixture at the
intake stroke stage. Fuel is injected through individual injectors from a low-pressure fuel
supply system into each intake port. The ratio of mass flow of air to mass flow of fuel must
be held approximately constant at about 14.6 to ensure reliable combustion. Figure 2 shows
the detailed components of a fuel injector. When the engine is shut off, the injector should
stop. Ideally, there should be not any fuel leakage from injectors. However, the physical
design is so complex that it may be impossible to prevent some leakage.

Although the injector leakage reduces rapidly with engine usage, strict emission
regulations require that the leakage be low over the entire vehicle life, starting at virtually
zero miles. High leakage equates to potentially higher undesirable tailpipe emissions.
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Fig. 1. The four-stroke cycle.

Fig. 2. The cross section of a fuel injector.
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SPC charts are used to monitor the special causes of a manufacturing process. If any
out-of-control condition shows on the charts, managers will look for some special causes
associated with these out-of-control problems. The capability analysis studies the ability of
the process to produce products within the specification limits. Specification limits are
designed to meet engineering and emission regulation consideration. Capability analysis
evaluates the accumulated variation of the entire process when it is operated under normal
circumstance. It provides information about the noise level of the system when there is no
out-of-control condition indicated on the SPC charts.

The sampling procedure of collecting leakage data for process monitoring and
capability analysis is the following. Ten injectors are sampled at a randomly selected time
period as a subgroup. They are brought into a laboratory and automatically connected to a
manifold. The manifold is put under controlled liquid pressure, and held. The injectors are
operated for a few seconds, as they would in the engine. Leaking fluid is measured at the
nozzle tip of each injector. The entire test is controlled and measured by a computer. The
leakage data are used for monitoring the injector production line and for capability
analysis.

The fuel injector leakage data are used in this case study because they represent a
general class of distribution types frequently encountered in SPC applications, i.e.,
unilateral (one-sided) and positively (right) skewed. In the case of fuel injectors, leakage
cannot be negative.

Commonly used SPC control charts for variable data are X - and R-charts. An X - chart
monitors the process mean and an R-chart monitors the process variation along the time
domain. Commonly used indices for capability analysis are Cp, Cpk for quality
characteristics requiring two-sided specification limits, Cpi for characteristics requiring only
the lower specification limit (LSL), and Cpu for characteristics requiring only the upper
specification limit (USL). These indices are defined in the following:

where the notation |i and a are the process mean and process standard deviation. Virtually
every quality control textbook covers the SPC control charts and capability analysis (e.g.,
[Montgomery, 1996; Devor, Chang, and Sutherland, 1992]).

Both SPC charts and capability indices are designed for characteristics that follow a
normal distribution. However, this assumption may not be valid in real world applications.
One example is the amount of leakage of a fuel injector, which is highly skewed.
Therefore, it is important to investigate "how well these indices and/or SPC charts perform
when the underlying distribution is highly positively skewed." Gunter had a series of four
articles on the use and abuse of Cpk, The methodology presented in this study is not limited
to the injector leakage problem.

QUESTIONS OF INTEREST
There are two purposes for this case study. One is to explore the quantitative properties

and the distribution of the fuel injector leakage; the other is to investigate the performance
of some commonly used capability indices when the underlying distribution is highly
positively skewed. To address the first purpose, the following questions are asked:
1. What is the average and the median fuel injector leakage? What is the leakage standard

deviation?
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2. Does the distribution of the leakage follow a normal curve? If not, how skewed is it?
What type of distribution is it?

These questions are investigated using the leakage data of 94 randomly tested fuel
injectors.

For the fuel injector process, the smaller the leakage, the better the injector. The best
would be zero leakage. Therefore, it is only necessary to have the upper specification limit,
and Cpu is usually used for the capability analysis. If the quality characteristic has a nominal
value, then two-sided specification limits are necessary. Under this situation, Cp and Cpk are
commonly used. If the quality characteristics are "the-higher-the-better," one needs only
the lower specification limit, and Cp\ is commonly used. This case study focuses on the
performance of Cp, Cpu, and Cpk, since Cp\ is not used only for quality characteristics that
are the "the-smaller-the-better."

In a typical process capability analysis for a manufacturing production line, the
observations collected for SPC control charts are also used for capability analysis. The
procedure for constructing SPC control charts involves the determination of subgroup size
and the estimation of the process variation. Commonly used subgroup sizes are between 4
and 15. Process variation is usually estimated using the average of ranges or standard
deviations from subgroup samples. The performance of capability indices depends on not
only the underlying distribution but also the choice of the subgroup size and the estimation
of the process variation. In order to investigate the performance of Cr, Cpll, and Cpk, the
following questions are asked:
1. What is the effect of different sample sizes ?
2. What is the effect of different process standard deviation estimates?
3. What is the effect of the skewness of the underlying distribution?

There are various ways to investigate these questions. One way is to design an actual
experiment involving these factors. Another is to develop the theoretical probability
distribution of the index for a specific skewed distribution or plan a simulation study using
Monte Carlo simulation techniques. It would be preferred to run an actual experiment.
However, there are difficulties with this approach:
1. The actual process cannot address different degrees of skewness.
2. The actual process monitoring system may be difficult to adapt to study multiple

sample sizes.
3. It is costly and time consuming.

These limitations are common in many industrial processes. The theoretical approach
could broaden the knowledge base but may only give results for certain restrictive
distributions. Also, it is often difficult and time consuming. The Monte Carlo simulation
technique is a natural choice to quickly provide some solutions for the problem. The
advantages of using simulation include the following:
1. It can be completed in a much shorter time.
2. It is very cost effective.
3. It can be designed to study several factors at once.

However, simulation also has some weakness:
1. It assumes that the quality characteristic follows a certain distribution, which may not

be a realistic choice in the actual process. However, prior information or data collected
previously are good sources for identifying the probability distribution of interest.

2. It assumes the environment is constant except for those factors under study.
Simulation is commonly applied to address problems that are difficult to solve

theoretically or in actual experimentation. The results are very useful to guide later actual
experimentation and motivate theoretical development.
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DATA AND SIMULATION PLAN
The leakage data are collected from 94 randomly selected fuel injectors. They are tested

in a laboratory and automatically connected to a manifold, which is put under controlled
liquid pressure, and held. For safety reasons, a nonflammable liquid is used (not the actual
gasoline). The injectors are operated for a few seconds, as they would be in the engine.
Leaking fluid is measured at the nozzle tip of each injector. The entire test is controlled and
measured by a computer.

Name of Data File: Casel9.txt

Variable Name Description
Case ID Injector ID (from 1 to 94)
Leakage The amount of leakage (ml)

The first nine cases are as follows:
Case ID Leakage

1 1.16
2 0.40
3 0.06
4 0.00
5 1.95
6 0.40
7 0.70
8 0.00
9 0.28

This testing procedure tries to simulate the actual operation. However, the
nonflammable liquids are slightly different from gasoline in the viscosity, compressibility,
and surface tension. These differences may have introduced some measurement bias of the
leakage.

In planning the simulation study for evaluating the performance of capability indices,
one needs to determine the following information:
A. What is the underlying distribution of the quality characteristic?
B. What are the subgroup sample sizes for the study?
C. What degree of skewness is to be compared?
D. With what are the standard deviation estimates for computing capability indices to be

compared?
E. How many random samples will be used for each simulation?
F. How many simulation runs are needed?

Previously collected information can be very useful for determining the possible
underlying distribution for the quality characteristic. Graphical tools such as histograms
and probability plots can be used to explore the possible distribution. The leakage data
suggest that if a fuel injector has leakage, then the leakage approximates a Weibull
distribution well. A total of 85 out of 94 injectors have leakage. These 85 leakage data
values are used for determining the leakage distribution. The reason for excluding the zero
leakage injectors is due to the fact that distributions which describe nonnegative continuous
characteristics usually require the characteristics to be positive. However, for the purpose
of exploring the quantitative properties of a quality characteristic, these zeros should also
be included.

If there is no information available for determining the underlying distribution, how
should we determine the distribution of interest? In this case, since the purpose is to study
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the performance of indices for a highly skewed distribution, the generalized gamma
distribution [Hahn and Meeker, 1991] is also a good choice.

The Weibull distribution is one of the most widely used probability distributions in the
study of fracture, fatigue, strength, and reliability, etc. in industry. There are various forms
of the Weibull random variable (e.g., [Hallinan Jr., 1993]). In this simulation, the two-
parameter distribution is used. The scale parameter corresponds to the average leakage and
the shape parameter indicates skewness of the distribution. The Weibull random variable,
X, has the probability density function

where a is the scale parameter and b is the shape parameter. When b - 1, the Weibull
distribution is the exponential distribution. When b increases to about 3.5, the Weibull
distribution is close to a normal distribution.

To determine the levels of skewness for the simulation study, the maximum likelihood
method is applied to estimate the scale and shape parameters of the distribution using the
85 leakage data. The typical subgroup sample size ranges from 4 to 15. For the purpose of
the comparison, the sample sizes are chosen to be 5, 8, 12, and 16.

The number of repeated samples for each simulation is analogous to the number of
subgroups collected for capability analysis in the actual process. The size of simulation
runs serves the purpose of investigating the distribution property of the capability index.
They can be varied from several hundred to several thousand depending on the computer
environment and the distribution of the statistic of interest. For this study, the number of
repeated subgroup samples is chosen to be 400 and the number of simulation runs is 500.

Table 1 is the summary of five Weibull distributions for this study. The scale parameter
is fixed to be one, and the shape parameter changes from 2.00 to 0.75. The corresponding
mean, s.d., median, and skewness are given in Table 1. These values are obtained using the
central moments of the Weibull distribution:

where F(.) is the gamma function.
Table 2 summarizes the simulation plan based on sample sizes, skewness, process

standard deviation estimates, number of repeated samples, and number of simulation runs.
In planning this simulation, one needs also to determine the lower and upper

specification limits (LSL and USL) for evaluating Cp, C^, and Cpll. For the situation when
the underlying distribution is normal, the index Cp = 1 says that 99.73% of observations
will fall within the specification limits. Equivalently, it means that LSL is the .135th
percentile and USL is the 99.865th percentile. Based on the same analogy, the theoretical
Cp is chosen to be one and is used as reference for the comparison. The expected LSL and
USL are obtained for each underlying Weibull distribution and are summarized in Table 1.

Table 1. Summary of the Weibull distributions for the simulation study (mean - u.|,

variance - (J.2, skewness = ̂ 3(^2)~3/2 )•

Parameter
(Scale, Shape)
(1.00,2.00)
(1.00, 1.50)
(1.00, 1.25)
(1.00, 1.00)
(1.00,0.75)

Mean
0.886
0.903
0.931
1.00

1.191

Std.
Dev.
0.463
0.613
0.750
1.00

1.611

Median
0.833
0.782
0.745
0.693
0.619

Skewness
0.631
1.072
1.430
2.000
3.121

LSL
(0.135%-tile)

0.036
0.012
0.004
0.001
0.000

USL
(99.865 %-tile)

2.572
3.524
4.547
6.757
14.457
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Table 2. The selected arguments for the simulation.

Sample size (n)
Skewness

Process Std. Dev.
Number of Samples (k)
Number of Simulations

58 1216
0.631, 1.072, 1.430, 2.000, 3.121
Use SR , Use Ss , Use Sw , Use ST

400 for each simulation run
500

The estimates of process standard deviation are four commonly used estimates. For
each combination of sample size and skewness, four hundred subgroup samples are
generated. Four process standard deviations are then calculated:

Sw = square root of (s2+ s2 + • • • + sk
2 )/k, and

ST is the standard deviation from the total of n*k generated
observations,

where s,2 is the /th subgroup variance. The values of d2 and C4 can be found in most
statistical quality control books. These estimates of the process standard deviation are
common in statistical quality control (e.g., [Montgomery, 1996]).

Each capability index is calculated for each combination of sample size, skewness, and
process standard deviation. Five hundred simulated indices are generated for each
capability index.

ANALYSIS AND SIMULATION ALGORITHM
Exploratory graphical methods are common techniques for investigating the

quantitative properties and distribution of a quality characteristic. Descriptive statistics,
histograms, probability plots, and box plots are used to explore the distribution of the
leakage data. The Minitab statistical package is used for this case study.

Simulation study is quite different from analyzing actual data. In simulation, the most
crucial steps are the planning and algorithm development. The analysis of the generated
data usually is straightforward with common tools being graphical methods, descriptive
analysis, and interval estimation.

For this case study, the following algorithm is used:
Step 1: Input sample size n and parameters (a,b) for the Weibull

distribution.
Step 2: Generate a random sample of size n of Weibull random

variates.
Step 3: Compute average, range, and standard deviation from the

sample.
Step 4: Repeat Step 2 to 3 for 400 times.
Step 5: Compute four process standard deviation estimates.
Step 6: Compute Cp, Cpu, and Causing each of four process standard

deviation estimates.
Step 7: Repeat Step 2 to 6 for 500 times.
Step 8: Compute mean and standard deviation from the 500 Cp, Cpu,

and Cpk.
Step 9: Repeat Step 1 to Step 8 until all combinations of sample size

and skewness are completed.
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It is clear that there are many ways to develop an algorithm to carry out this study. The
development of an algorithm also relies on the capability of the computer. It may take
several simulations to carry out a simulation plan. Several algorithms may be needed to
complete a study.

The results of the computer simulation consist of five hundred generated C,,, Cpu, and
Cpk indices for a total of 80 combinations (4 sample sizes x 5 skewness x 4 process
standard deviation estimates). The analysis of the simulated indices involves descriptive
analysis, graphical presentation, and interval estimations.

The comparison of Cp, Cpu, and Cpk under different sample sizes can be demonstrated
by multiple box plots of Cp, Cpu, and Cpk for different sample sizes. These box plots will
also show the variations in Cp, Cpll, and Cpk for different sample sizes.

The comparison of Cp, Cpu, and Cpk under different skewness and process standard
deviations can be demonstrated the same way.

INSTRUCTIONS FOR PRESENTATION OF RESULTS
The presentation of exploring the quantitative properties of the fuel injector leakage

should include at least the following:
1. A brief description of the fuel injector process.
2. How the leakage occurs.
3. How the leakage data are collected.
4. Various graphical presentations to demonstrate the distribution of the leakage data.
5. Discuss skewed distribution and the relative standing of the average and median

leakage.
6. Discussion of data transformation may also be included if the class level is

appropriate.

The presentation of simulation results should include at least the following:
1. The problem statement.
2. The simulation plan and how the plan will answer the problem.
3. A summary table of the mean and standard deviation of each index generated by the

simulation.
4. Various graphical presentations that will demonstrate the pattern of each index for

different combinations of the factor levels.

In addition, the presentation should be understandable to nonstatisticians, especially
those who are directly involved, such as operators who collect the data and managers who
make decisions using the process capability analysis. How the simulation is developed is
not necessary for the presentation.
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NOTES TO THE INSTRUCTOR

Level of Case

The exploratory analysis of the leakage data is at the level of Introductory Statistics for
demonstrating skewed distribution using various graphical techniques.

The simulation study is at the level of an engineering statistics. It can be used in a
statistical quality control course or in a course of mathematical statistics, where simulation
studies can be assigned as team projects.

Necessary Tools

For the exploratory analysis, the tools needed are descriptive statistics and graphical
methods such as histograms, box plots, probability plots, scatter plots, etc.

For the simulation study, in addition to the graphical tools, one also needs knowledge of
skewed distributions such as the Weibull or gamma probability distribution, confidence
interval, SPC control charts, and capability analysis. Software for generating random
variates and analysis are also needed.

Objectives

1. Introduce students to the value of simulation techniques and how to plan a simulation
study.

2. Discuss the potential problems of capability indices when the quality characteristic is
highly skewed.

3. Introduce students to various graphical methods, such as histograms, box plots,
probability plots, etc.

Comments and Suggestions for the Instructor

1. The simulation technique is a common tool for studying violation of statistical
assumptions. It is usually used for some artificial projects in a classroom setting. With
the actual application to an automotive problem, it should make the technique more
interesting and appealing to statistics and engineering majors.

2. With the availability of computer technology and user friendly statistical software,
simulation study can be conducted as a guided classroom activity or be assigned as a
team project. Team project assignments will also provide students with the opportunity
to learn how to work as a team member, how to write a report, and how to do an oral
presentation. Simulation study may help to motivate students to be active learners.

3. The simulation study presented here is a very large scale study. It can be divided into
several small-scale simulation studies. This simulation study can be reasonably divided
into (a) a study on the effect of sample sizes, (b) a study on the effect of skewness, (c)
a study on the effect of different process standard deviation estimates.

4. The performance of SPC control charts under skewed distributions using similar
simulation plans is another alternative.
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5. The performance of capability indices when the underlying distribution is a mixture of
a skewed distribution and zero injector leakage is another interesting simulation study.
As discussed in the Background Information section, a certain percent of fuel injectors
do not leak. However, in this simulation case study, we consider the situation when the
fuel injector leaks. It would be interesting to plan a simulation study that uses a
mixture of a skewed distribution, e.g., the Weibull distribution, and a certain percent of
zeros as the process distribution. The simulation plan can be made similar to that
described in the Analysis and Simulation Algorithm section by replacing Steps 1 and 2
with the following :

Step 1: Input sample size, parameters (a,b) for the Weibull
distribution, and the ratio p for the proportion of zero
leakage.

Step 2: Generate a uniform (0,1) random variate, U. If U > p,
then generate a Weibull random variate; otherwise, add a
zero to the sample, until n variates are reached.

6. In order to make a team work more effectively, some planning and guidance through
the entire project is necessary:
A. Grouping: Heterogeneous grouping is suggested with team sizes of three or four.

A simple survey may be distributed in the first class period to find out students'
background. Each team should have one member with a strong computer
background and one with a strong statistical theory background.

B. An outline of dividing a project into a sequence of small problems is helpful.
Students will be able to understand better the process of a study and feel more
confident in working on the project. More importantly, they will feel some
achievement in a shorter time period.

C. A weekly or biweekly report to the instructor about the progress and the role each
team member plays is important. Both learning process and the final results
should be emphasized so that students will realize their role as a team member and
be encouraged throughout the project.

D. Report writing and oral presentation should be part of the project. Undergraduate
students have little opportunity to write and present a study. However, report
writing and oral presentation are essential in industry. Team projects provide an
excellent opportunity for practicing how to write a report and how to give an oral
presentation to individuals with little statistical training.

7. The injector leakage data can be used separately in an introductory statistics course as
the demonstration of exploratory analysis using graphical tools, with discussion of
skewed distributions in real world applications.

Typical Results

1. The normal probability plot indicates the data are not normal. The Weibull probability
plot shows almost a straight line, which suggests that the underlying distribution of the
injector leakage, when it leaks, follows a Weibull distribution.

2. Ct, is underestimated for slightly right skewed Weibull distributions (skewness < 1)
and overestimated for moderate and highly right skewed Weibull distributions.

C,w is overestimated for any right-skewed Weibull distributions. The rate of
overestimation could be as much as three times when the sample size is small (five) and
distribution is highly skewed (skewness > 3).
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Cpk is underestimated for any right-skewed Weibull distribution. The rate of
underestimation could be as much as four times for a small sample size (five) and
highly skewed distribution (skewness > 3).

The performance of Cp, Cpu, and Cpk remains similar for different process standard
deviation estimates, except that the magnitude of over/underestimation is highest when
using SR (process s.d. is estimated by using /?), and lowest when using Sw (process s.d.
estimated by using the within subgroup variation).

The effect of sample size is not as dramatic as the effect of skewness. The
magnitude of over/underestimation decreases when sample size increases.

The variation of each index increases when the sample size is smaller. The variation
is largest when the process standard deviation is estimated by using SR.

A summary of the simulation procedure and results will be provided and discussed.

A SUMMARY OF THE STUDY AND RESULTS

Purpose

To explore the quantitative properties and the distribution of the fuel injector leakage.
To investigate the performance of Cp, Cpk, and Cpu when the distribution of the
characteristic is skewed.

Reason

Injector leakage is one of the issues for a quality engine. It is noticed that the
characteristic does not follow "normality," which is often an assumption for SPC control
charts and capability analysis. This creates a concern about the validity of using these tools
for monitoring the process. An evaluation on how well these tools perform is important for
decision-makers when they use the information for making decisions.

Approach

Step 1: Use exploratory data analysis techniques to investigate
the distribution of the fuel injector leakage.

Step 2: Conduct a simulation study that takes the factors of
interest into account.

A sample of 94 injectors is obtained. Eighty-five have some leakage (9 out of 94
injectors have no leakage). The higher the percent of injectors having zero leakage, the
better the production process can be expected. In exploring the quantitative properties of
the injector leakage, both the complete leakage data set and the data set excluding the zeros
are analyzed. However, for the simulation study, we focus on the distribution of the
positive data values for the reason that distributions that describe continuous characteristics
having nonnegative values do not include zero. The Weibull and generalized gamma
distributions are this type of distribution.

A simulation study is planned using the Weibull distribution as the underlying
distribution. Tables 1 and 2 show the distributions of interest and the factors considered in
this simulation case study. The algorithm is given in the Analysis and Simulation
Algorithm section.

Results and Discussion

Both the complete leakage data set and the data set excluding the zeros are analyzed. If
the injectors having zero leakage are included, we obtain the average leakage of .7755 (ml),
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median leakage .57 (ml), standard deviation .7692 (ml), and skewness 1.484. If the zeros
are excluded, we obtain the average leakage of .8576 (ml), median leakage .7(ml), standard
deviation .764 (ml), and skewness 1.4631. The nine zero leakage data values do not change
the average leakage, standard deviation, and skewness much. However, the median is
changed from .57 (ml) (including the zeros) to .70 (ml) (excluding the zeros).

The corresponding histograms and box plots are given in Figures 3 and 4. Both plots
suggest that the distribution of the fuel injector leakage is right skewed. The normality plot
for the leakage data excluding the zeros is given in Figure 5. It clearly indicates that the
distribution is nonnormal. The Anderson-Darling's goodness-of-fit test gives ap-value of
0.000. Figure 6 shows the Weibull probability plot for the leakage data excluding the zeros.
The straight line on the Weibull probability plot indicates that the positive leakage follows
a Weibull distribution. Applying the maximum likelihood method, the parameter estimates
are scale parameter 0.887 and shape parameter 1.095 (see Figure 6).

Fig. 4. Box plots for the fuel injector data.

Fuel Injector Leakage

Fig. 3. Histograms for the fuel injector leakage data.
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Amount of Injector Leakage

Fig. 5. Normal probability plot of the leakage data excluding the zeros.

Amount of Injector Leakage

Fig. 6. Weibull probability plot of the leakage data excluding the zeros.

A summary of the simulation results for sample size of 5 and 16 is given in the following:
Table 3: A comparison of the simulated Cp, Cpu, and Cpk for sample of size = 5.
Table 4: A comparison of the simulated Cp, Cpu, and Cpk for sample of size = 16.
Figure 7: Box plots of the simulated Cp, Cpu, and Cpk for the five Weibull distributions

for sample of size 5.
Figure 8: Box plots of the simulated Cp, Cpu, and Cpk for the five Weibull distributions

for sample of size = 16.
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Table 3. A comparison of simulated Cp, Cpll, and Cpk for sample of size = 5.

Shape
(skewness)

2.00
(0.631)

1.50
(1.072)

1.25
(1.43)

1.00
(2.00)

0.75
(3.121)

Estimates of s.d.
Use 5^

Use 5,

Use Sw

Use ST

Use^

Use 5,

Use Sw

UseSr

Use SK

Use Ss

Use Sw

UseSr

Use5/f

Use Sx

Use Sw

UseSr

UseS«

Use 5,

Use Sw

UseSr

CP
(s.d.)
0.923

(0.017)
0.916

(0.017)
0.913

(0.016)
0.913

(0.015)
0.991

(0.021)
0.977

(0.021)
0.956

(0.021)
0.956

(0.019)
1.072

(0.025)
1.052

(0.025)
1.008

(0.025)
1.008

(0.024)
1.256

(0.033)
1.221

(0.033)
1.125

(0.035)
1.126

(0.035)
1.844

(0.070)
1.768

(0.068)
1.500

(0.073)
1.499

(0.072)

^PU
(s.d.)
1.227

(0.027)
1.218

(0.026)
1.214

(0.026)
1.214

(0.023)
1.478

(0.036)
1.460

(0.036)
1.428

(0.036)
1.428

(0.033)
1.706

(0.045)
1.673

(0.044)
1.604

(0.044)
1.604

(0.043)
2.141

(0.063)
2.082

(0.062)
1.919

(0.064)
1.920

(0.064)
3.384

(0.137)
3.244

(0.133)
2.752

(0.140)
2.752

(0.138)

Cpk
(s.d.)
0.619

(0.011)
0.614

(0.011)
0.612

(0.011)
0.612

(0.009)
0.502

(0.009)
0.495

(0.009)
0.485

(0.009)
0.485

(0.008)
0.438

(0.008)
0.430

(0.008)
0.412

(0.009)
0.412

(0.008)
0.371

(0.006)
0.361

(0.006)
0.332

(0.008)
0.333

(0.007)
0.303

(0.006)
0.291

(0.006)
0.247

(0.008)
0.247

(0.008)
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Table 4. A comparison of simulated Cp, Cpu, and Cpkfor sample of size =16.

Shape
(skewness)

2.00
(0.631)

1.50
(1.072)

1.25
(1.43)

1.00
(2.00)

0.75
(3.121)

Estimates of s.d.
Use SR

UseSy

Use.Sn/

UseSr

Uses*

Use Ss

UseS^

UseSr

Use^

Use Ss

Use Sw

UseSr

UseSR

Use Ss

UseSV

UseSr

UseSfl

Use Ss

\JseSw

UseST

CP
(s.d.)
0.941

(0.010)
0.914

(0.009)
0.913

(0.009)
0.913

(0.009)
0.995

(0.013)
0.964

(0.011)
0.955

(0.011)
0.955

(0.011)
1.061

(0.016)
1.029

(0.014)
1.010

(0.014)
1.010

(0.014)
1.197

(0.023)
1.166

(0.020)
1.125

(0.021)
1.125

(0.020)
1.641

(0.043)
1.619

(0.038)
1.499

(0.041)
1.500

(0.041)

^pu
(S.d.)

1.250
(0.016)
1.215

(0.014)
1.213

(0.014)
1.213

(0.014)
1.485

(0.022)
1.439

(0.019)
1.426

(0.019)
1 .426

(0.019)
1.690

(0.028)
1.638

(0.025)
1.609

(0.025)
1.609

(0.025)
2.040

(0.042)
1.987

(0.037)
1.917

(0.038)
1.918

(0.038)
3.012

(0.082)
2.972

(0.073)
2.752

(0.078)
2.753

(0.078)

Cpk
(S.d.)

0.631
(0.007)
0.613

(0.006)
0.612

(0.006)
0.612

(0.006)
0.505

(0.005)
0.489

(0.004)
0.485

(0.005)
0.484

(0.004)
0.433

(0.005)
0.420

(0.004)
0.412

(0.004)
0.412

(0.004)
0.354

(0.005)
0.345

(0.004)
0.333

(0.004)
0.333

(0.004)
0.270

(0.005)
0.267

(0.004)
0.247

(0.005)
0.247

(0.004)
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Skewness of the Weibull Distribution

Fig. 7. A summary of box plots for Cp, C^, and Cpu against the degrees of skewness of the
Weibull distribution for sample size = 5.

Fig. 8. A summary of box plots for C,,, Cpk, and Cpu against the degrees of skewness of the
Weibull distribution for sample size = 16.

Skewness of the Weibull Distribution



264 Lee and Matzo

These tables and figures can be summarized as following:

The effect of skewness:
1. The more severe the skewness of the distribution, the larger the bias and the

variation of the capability indices.
2. Cpu is dramatically overestimated, while Cpk is dramatically underestimated.
3. Cp is underestimated for slightly skewed distribution and overestimated for

moderate or highly skewed distributions.

The effect of process standard deviation estimate:
1. The process s.d. estimated by using SK shows the worst in both average and s.d. of

each index.
2. The process s.d. estimated by either within subgroup variation (Sw) or total

variation (Sr) is very similar, and better than those using SR or Ss.

The effect of sample size:
1. Sample size effect is minor. However, a small sample shows more over/under-

estimation in magnitude for each index.
2. It also shows that the smaller the size, the larger the variation for each index.

The interaction effect of process standard deviation and skewness of the underlying
distribution:
1. There is no interaction effect between process standard deviation and skewness.

The pattern of Cp, Cpu, and Cpk generated from different process standard
deviations stays the same for all five distributions. However, the variation
increases when skewness increases.

2. Similar situations occur for different sample sizes.

Overall performance and comments:
1. The concerns of the capability analysis include the distribution of the

characteristic and the performance of the indices. The Weibull distribution seems
to fit the injector leakage very well. The properties of the Weibull distribution will
provide better understanding about the characteristic.

2. In the actual process, only the upper specification limit is of particular interest,
since the target is zero. The characteristic is such that smaller is better. Hence, the
performance of Cpu is of particular interest. This simulation study shows that Cpu

is two to three times overestimated for a highly skewed Weibull distribution,
when the expected specification limits are chosen to be the 99.7% probability
limits, that is, LSL is the .135th percentile and USL is the 99.865th percentile of
the underlying distribution. However, the actual LSL and USL are usually
determined from the engineering point of view, which may not be the 99.7%
probability limits. Hence, a routine communication between process managers,
statisticians, and engineers will be important for quality improvement.

3. Cp is usually close to one unless the distribution is very highly skewed. However,
since the lower specification limit is not of interest for this problem, Cp may
provide a false signal about the true process capability. On the other hand, Cpk

takes the minimum of Cpu and Cp!. For the same reason, Cp! is not of concern.
Taking the smaller of Cpu and Cp\ tends to underestimate the actual process
capability because of the skewness of the distribution.
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In summary, one should use the Cpu index for a positively skewed "the-smaller-the-
better" characteristic. However, Cpll itself tends to overestimate the true process capability.
For the actual experimental data, the skewness is about 1.46; therefore, using Table 3 with
skewness = 1.43, C,m may overestimate the true process by as much as 50% to 80% (with
approximately 95% of probability), when the LSL and USL are chosen to be the 99.7%
probability limits.

Skewed distribution happens often in industrial processes. Based on the currently
available statistical methods for process control and capability analysis, there is not an easy
way of dealing with the skewed distribution problems. This case study shows how the
typical capability indices can mislead the actual capability of a process. Until better
methods are developed, one should be cautioned by such problems in actual applications.
The following actions may be taken to deal with the skewed distribution problems:
1. Closely monitor the process using control charts, and carefully distinguish potential

outliers from the skewed distribution. Some extremes may be due to special causes
rather than the nature of the quality characteristic.

2. If the characteristic is skewed, a practical approach is to take a data transformation and
use the normal probability plot for checking the transformed data. If there are
historical observations available, the transformation can be determined using these
observations and built into the regular process control and capability analysis routine.

3. The data transformation should be evaluated regularly, in particular if there is any
dramatic change of the process.
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CHAPTER 20

DATA FUSION AND MAINTENANCE
POLICIES FOR CONTINUOUS

PRODUCTION PROCESSES
Nozer D. Singpurwalla and Joseph N. Skwish

Continuous production processes involve round-the-clock operation of several, almost

identical, pieces of equipment that are required to operate concurrently. Failure of one of

these pieces of equipment interrupts the flow of production and incurs losses due to waste

of raw material. The incidences of this in-service failure can be reduced through preventive

maintenance; however, preventive maintenance also interrupts production and creates

waste. Thus, the desire to prevent in-service failures while minimizing the frequency of

preventive maintenance gives rise to the problem of determining an optimal system-wide

maintenance interval. The aim of this study is to propose a procedure for addressing

problems of this type.

INTRODUCTION
The maintenance of equipment used in continuous manufacturing processes, such as

refining oil and the production of paper, steel, synthetics, and textiles, presents a generic
class of problems on which little has been written. Such processes are characterized by
round-the-clock operation of several pieces of almost identical equipment, called
"processing stations," to which there is a continuous flow of raw material; see Fig. 1.
Examples of such equipment are the spinning wheels of textile mills and the extrusion dies
of chemical and steel plants.

Each processing station converts raw material to a finished product, and all stations
operate concurrently. Since a common flow of raw material feeds all stations, the flow
cannot be stopped to stations that are out of service. Thus, whenever a station experiences
an in-service failure, there is a loss of production and a wastage of raw material.

The incidence of these in-service failures can be reduced through periodic preventive
maintenance; however, since preventive maintenance also interrupts the flow of production
and creates waste, it should be performed only as often as necessary. In general, the costs
of stoppage due to in-service failures are much greater than those due to preventive

267
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maintenance. This is because unexpected stoppages can create an environment of chaos
involving a rescheduling of maintenance personnel and a disruption of spare parts
inventory.

Thus, the desire to prevent in-service failures while minimizing the frequency of
preventive maintenance gives rise to the problem of determining an optimum system-wide
preventive maintenance interval. The purpose of this paper is to offer a plausible solution
to this problem.

The procedure we offer requires as input two quantities. The first is a probability model
for the failure of the equipment; the second is a utility function which describes the
consequences of scheduled and unscheduled stoppages. The proposed failure model is
based on expert opinion and the pooling, or the fusion, of data from the various pieces of
equipment. The fusion of data is based on the information content of each data set in the
sense of Shannon.

Fig. 1. A continuous production process with a common flow of raw material.

BACKGROUND INFORMATION
Our approach to the decision problem described above is based on the principle of

maximization of expected utility (see [Lindley, 1985]). An implementation of this principle
requires the specification of two quantities: (i) a utility function, which relates the profits of
production to the losses of stoppage, and (ii) a probability model for the equipment's failure
time. In this section we describe a piecewise linear utility function appropriate for use with
continuous production processes. This function, or its nonlinear versions, are flexible
enough for multipurpose use. We also discuss the development of an "omnibus" failure
model, that is, a model encompassing all of the almost identical pieces of equipment.

The omnibus, or "composite" failure model (see [Chen and Singpurwalla, 1996]) is
developed in two stages. In the first stage an individual model for each piece of equipment
in the system is developed. Each model is developed via an approach which incorporates
expert opinion and the failure/survival history for that piece of equipment. In the second
stage, the individual models are fused to obtain an omnibus model. The fusion is performed
through a pooling formula, in which the weights assigned to the individual models are
based on the Shannon information (see [Lindley, 1956]) provided by the failure/survival
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history of each piece of equipment. Our reason for a two-stage construction of the omnibus
model is that, although the equipments perform identical functions and are often of the
same design, they differ from each other with respect to age, maintenance history, and
operating environment. Thus, from a statistical point of view, they cannot be considered
identical.

When solving decision problems, the choice of a utility function is often the subject of
debate and discussion. Thus, the need to have utility functions that are representative of a
certain class of applications is germane. The class of applications of interest to us are
continuous production processes having several processing stations, all serviced by a
common flow of raw material. Such features mandate that the utility function be
continuous and increasing with time whenever production is in progress, and be decreasing
whenever there is a stoppage. The shape of the utility function dictates the rate at which
there is a gain or a loss of utility.

In the utility function we have chosen, the profit (positive utility) for each processing
station is a linearly increasing function of production time t, with a slope determined by an
angle, say 0(t*), which is a function of t*, the time at which the production stops. Thus, if /
is an optimal maintenance interval, and if the processing station experiences no in-service
failure, then the profit until t is tan#(f) t; see Fig. 2. At time t, preventive maintenance is
performed, and if x is the time needed to complete a scheduled maintenance action, then
the loss (negative utility) due to stoppage, to include the cost of wasted material, is tan 9\ • jc,
where 9\ > $(/); both 9\ and 9(t) have to be specified. Added to this loss is an amount c,
the cost of actually performing a scheduled maintenance; see Fig. 2. In Fig. 3 the case of a
processing station experiencing an in-service failure at t* is illustrated. The profit due to
production is tan 0(t*) • f*, but the loss of an unscheduled stoppage is tan 9\ • kx, where the
constant k (>1) reflects the incremental consequences of an unscheduled maintenance.
Again added to this cost is the amount c. There are possible generalizations to the set-up of
Fig. 3, the obvious ones being that both k and c can be made decreasing functions of r*with
k(t)= 1, and c(t) = c. Also, the utility function need not be linear. For 9(t*) a plausible
choice is 9 (t) • (t* I t); this choice reflects the feature that small failure times result in a
decrease in the rate of profit from production.

If T denotes the time to failure of any processing station in the system, and if an
omnibus failure distribution for T has density f(t) and survival function
S(t\H}= P(T > t \ H ) , then U(t), the expected utility per processing station, for a

production run that is designed to be of length t, is of the form

where the H associated with / and S denotes history, which includes such things as
background information and model parameters, and 9 (t*) • (t* I t), with 9 (t) specified.
Once / and S are specified, U(t) can be evaluated and optimized.

We now describe a two-stage procedure for specifying a common distribution to
characterize the failure behavior of any processing station in the system. The first stage of
the procedure involves the development of a failure model for each station. The approach
used is Bayesian; it involves the incorporation of expert opinion and the failure/survival
history of each station. The second stage consists of pooling the individual models to
obtain a composite model.
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Fig. 2. Utility function without an in-process failure.

Fig. 3. Utility function with an in-process failure.

A Bayesian approach for developing failure models based on expert opinion and life
data has been proposed by Singpurwalla (1988). This approach has been codified for use
on a personal computer; see [Aboura and Campodonico, 1992]. It is based on the
assumption that the time to failure distribution is a member of the Weibull family. That is,
if TI denotes the time to failure of the /th processing station, i = 1, 2,...,N, then, given a

scale (shape) parameter a(j3), the probability density of Tt at t is
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A prior distribution for a and ft is assessed via consultation with an expert who is able to

provide an opinion about the shape parameter ft and the median M i of Tt, where

Mj = aexp(c/j8), with c = ln(ln2). Let mi denote the expert's declared value for the

most likely value of M, , and let s; be the expert's measure of uncertainty aboutmi. Since

the parameter ft characterizes the aging behavior of processing station /, opinion about ft

is elicited from the expert in terms of A,, and p-, the scale and the shape parameters,

respectively, of a gamma distribution for ft . Recall that the mean and the variance of a

gamma distribution with scale parameter A and shape parameter p are / ? /A and (p/A 2) ,

respectively. Once the hyperparameter 0, = (m;, ,s;, A (.,/?,.) is elicited from the expert,

then, assuming independence of M, and ft , a joint prior distribution of a and ft can be

easily induced. The details are in [Singpurwalla, 1988], where issues such as the expertise
of the expert, the case of multiple experts, and correlations between experts are also
discussed. Let the density, at a and ft, of the induced joint prior distribution of a and ft

for the rth processing station be denoted by n, (a, j3|©,).

Suppose that there is a maintenance schedule in place for the production system; this
schedule need not be optimal. Then, a life history of each processing station will consist of
both failure and survival times. Let JC. and sih denote the n( failure times and the

7} survival times, respectively, of the z'th station, where j - l,2,...,n, and h = l,2,...,r,

LetDj =(xu,sih;j = \,...,ni;h = \,...,ri) denote the lifetime history of the z'th station,

/ = 1,...,N . Then the likelihood of a and ft , L(D, ; a , f t ] , can be easily written from which

the posterior distribution of a and ft , given D; and©,, can be obtained via an application

of Bayes' Law as

While a knowledge of the posterior distributions of a and ft is of interest, especially that

of ft , what we really need to know is the posterior survival function of T,,

For this, we invoke the law of total probability, from which

where P\Ti > ta,ft)= exp(- (tlaj j. Analogously, the prior survival function of Tt is

Because the expression for TT,.(a,/?)©;) is not available in closed form, (4) and (5) will

have to be evaluated numerically. These computations are performed by IPRA (see
[Aboura and Campodonico, 1992]) once the inputs 0( and Di, / = 1,..., N , are provided.
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At this point we have at our disposal Nsurvival functions, 5,.(/JD,.,©,.), i = l,...,N,

one for each of the TV stations. Our task is to pool (or combine) these survival functions to
obtain an omnibus survival function S(t\D,Q), where D = (D{,...,DN), and

0 = (0,,...,0/v). We now propose a procedure for accomplishing this task.
The pooling of distributions is a well-discussed topic in the statistical literature; a recent

overview, with new insights, is in Dawid, DeGroot, and Mortera (1995). The majority of
pooling procedures that have been proposed involve the concept of a decision maker (DM),
or a "boss," who consults several experts j, 7=1,2,..., regarding their assessments about the
same unknown quantity. The DM then combines all the experts' inputs based on the DM'
judgment about the expertise of each expert, and on the DM's perceived correlations
between their inputs. Indeed, our procedure for inducing a prior distribution for a and ft
of processing station / is based on the notion of a DM eliciting information from a single
expert specializing on station / . The DM's judgments about the expertise of an expert, if
any, will be reflected in the prior through an expanded version of the hyperparameter 0,.

It is, of course, conceivable that there could be several experts specializing on a
processing station and that there could be experts specializing on more than one station.
Thus, using many of the available procedures for pooling survival functions could entail a
duplicate use of the DM's judgments about the expertise of the experts. Our strategy for
pooling avoids such duplications; moreover, it accounts for the fact that the life history data
of each processing station is of different dimensions. For instance, some processing stations
may have been more carefully scrutinized than others, and some may have experienced
more failures than others. How do we account for the fact that a processing station with 1
failure and 99 survivals could be more or less informative (about the reliability) than
another station which has experienced 0 failures and 9 survivals? That is, how should our
pooling procedure take into account the fact that data set Di could be more informative
than data set D ? The situation here is reminiscent of an observation by Abel and

Singpurwalla (1994) that survivals could be more informative than failures, and vice versa.
The procedure for pooling that we propose is the "linear opinion pool" (discussed, for

example, by [Genest and Zidek, 1986]). The linear opinion pool is simply a weighted linear
combination of the W survival functions, 5 r

/(?JD ( ,0 () . The difficulty in implementing a

linear pool is the choice of the weights w, , i = l,...,N, that are to be assigned to each
survival function. Our strategy is to weigh each survival function in proportion to the
"observed Shannon information" (cf. [Singpurwalla, 1996]) about 71, that is provided

by D., the data. This pooling strategy is ad hoc; its formal justification remains to be
provided. The issue of justification is important because there are philosophical difficulties
with the linear opinion pool (cf. [Genest and Zidek, 1986]).

Given 0,, the observed information about T{ provided by the data Dt is defined as

where 0(s|D(., 0,) is the density at s of the posterior distribution of 77; that is ,
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Similarly, 0(s|0,-) is the density of the prior of Ti . The weight w; to be assigned to

5,^|D,,0,)is

An omnibus survival function that we have been seeking is then given as

Note that the W( 's are the normalized Kullback-Liebler distance between the prior and the posterior.

QUESTION OF INTEREST
Specifically, the question that we want to answer is: What is the optimal system-wide

maintenance interval for a continuous production process?

DATA
Data files: Case20A.txt, Case20B.txt, Case20C.txt

Variable Name Description
Number of Failures n,
Failure Times xt,
Number of Survivals /?.
Survival Times g-,
Observed Information See equation (6)
Pooling Weights See equation (7)

Table 1. Failure times of the five processing stations.

Station 1 Station 2 Station 3 Station 4 Station 5
Number of Failures 13 13 11 8 4

Failure Times 7.72 5.08 13.94 13.92 23.19
25.20 16.87 20.87 6.21 13.28

Table 2. Survival times of the five processing stations.

Station 1 Station 2 Station 3 Station 4 Station 5
Number of Survivals 10 11 12 14 14

Survival Times 19.92 18.98 17.33 14.73 13.26
13.43 15.88 0.06 13.98 15.25

Table 3. Observed information and the pooling weights.

Station 1 Station 2 Station 3 Station 4 Station 5
Observed Information 0.864 0.454 0.389 0.817 0.966

Pooling Weights 0.247 0.130 0.112 0.234 0.277
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ANALYSIS
To illustrate an application of the material of the previous sections to a real-life

scenario, we consider a continuous production process with 5 concurrently operating
processing stations in a chemical plant. Ideally, the system is required to function 24 hours
per day, 7 days per week. Current operating procedures call for a preventive maintenance
action after a specified number of hours of operation. There is, however, no assurance that
these procedures are strictly followed. The 5 stations were observed for a period of 2 weeks
providing the failure and survival times shown in Tables 1 and 2, respectively; for reasons
of company confidentiality, these times are transformed via a common location and scale
parameter.

An engineer, considered to be an expert on the system, was consulted for his
assessment about the median lifetimes and aging characteristics of each processing station.
His judgment was that

The processing stations neither degrade nor improve with use;
The most likely value of a station's median life is 24 (camouflaged) hours;
The expert's assessed standard deviation for the assessed median is 6 hours

(also transformed).
Since we have no basis to assume that the expert's assessments were biased, there was

no need to modulate the expert's inputs, so we set mi- 24, 5. = 6, A = 2, and p = 1 for
/ = 1,...,5 . These values were used in IPRA which, with the data of Tables 1 and 2,
produced the 5 survival curves shown in Fig. 4. To pool these 5 survival functions, we
computed the observed information provided by each set of data, see Table 3, and the
ensuing pooling weights. These weights were then used to obtain the omnibus (posterior)
survival function shown in boldface in Fig. 4.

Fig. 4. Posterior survival functions for the five processing stations.
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Observe that even though stations 2 and 3 contain approximately the same number of
failures and survivals as stations 1 and 4, the weights that they receive are less than those
given to the others. Furthermore, station 5, which has the smallest number of failure,
receives the largest weight. What could be the possible reasons for this asymmetry? One
explanation is that the information provided by the data about T2 and T3, the failure times
of stations 2 and 3, may not be too different from that subsumed in the prior distribution
(vis-a-vis the expert inputs), as compared to the information provided by the data about T { ,

T4, and T5. Another explanation pertains to the scatter of the observations (both failures
and survivals) for the 5 stations; it has different patterns. Thus, what matters is not only the
numbers of survivals and failures, but what failure and survival times are observed. Note
that the weights would be very difficult to assess by subjective considerations alone.

CONCLUSION
Replacing the f(t\H) of equation (1) by s(?|D,0) of equation (8), we have the

expected utility, per processing station, per production cycle, given a maintenance interval
t as

where

Recall that we have chosen6(t )=6(t)-(t* /t), where t is the preventive maintenance

interval, and d(t) is specified. Also specified are the quantities 0,, x, c, and&, with

0, > 0(?)and k > 1. The optimal maintenance interval t is that value of t which maximizes

<j(>).
Since S(?|D, 0) is not available in closed form, the maximization of U(t} with respect

to t has to be done numerically. This requires that we choose a grid of values o f t , say/ , ,

t2,...,tu,..., and for each value in the grid evaluate U(t). Thus, for t = tu, we evaluate

U(tu) by using S(tu D,0), and approximating f\tu\D,Q)by

the negative of the slope ofS(t\D,Q). The finer the grid, the better the resulting

approximation. We then choose 1 as that value of t in the grid for which u(t] is a

maximum. An alternative approach is to approximate S(/JD,0) by a well-known function

and proceed analytically. Thus, for example, if s(?|D,0) is approximated by the function

e~*, with A chosen so that s(f|D,0) and e~^ are as close to each other as is possible,
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then the maximization of U(t] is relatively straightforward, especially when 0, =0(t).

Thus, for example, if * = l/3, c = l , fc = 3, and A = 1712, then U(t) attains its

maximum at t ~ 20 for a range of values of 6 ; see Fig. 5, which shows the behavior of
U(t)for 0(t) = 10,20,30, and 40. When A = 1/24, U(t) attains its maximum in the

vicinity of f=42, as the plots of Fig. 6 show. Thus, it appears that the maximum of U(t) is

quite sensitive to the choice of A (and hence to S(?|£>,0)) and relatively insensitive to

0(t). Figures 7 and 8 are a magnification of Fig. 6, in the vicinity of t = 42, for 0(t)= 10

and 0(f)=40, respectively. Figures 5 and 6 illustrate the crucial role of the omnibus

survival function in arriving at an optimal maintenance interval. Clearly, the development
of the omnibus survival function needs to be treated with a careful deliberation.

Fig. 5. Behavior of the utility function for different values of 6(t) when A = 1 /12.

Fig. 6. Behavior of the utility function for different values of 6{t) when A = 1 / 24 .
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Fig. 7. A magnification of Fig. 6 when 0(t) = 10 , near t = 42,

Fig. 8. A magnification of Fig. 6 when 0(t) = 40 , near t = 42.
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