CAMBRIDGE TEXTS
IN APPLIED
MATHEMATICS

A First Course in
Combinatorial
Optimization

JON LEE

http://www.cambridge.org/9780521811514

This page intentionally left blank

A First Course in Combinatorial Optimization

A First Course in Combinatorial Optimization is a text for a one-semester
introductory graduate-level course for students of operations research, mathe-
matics, and computer science. It is a self-contained treatment of the subject,
requiring only some mathematical maturity. Topics include linear and integer
programming, polytopes, matroids and matroid optimization, shortest paths,
and network flows.

Central to the exposition is the polyhedral viewpoint, which is the key princi-
ple underlying the successful integer-programming approach to combinatorial-
optimization problems. Another key unifying topic is matroids. The author does
not dwell on data structures and implementation details, preferring to focus on
the key mathematical ideas that lead to useful models and algorithms. Problems
and exercises are included throughout as well as references for further study.

Cambridge Texts in Applied Mathematics

FOUNDING EDITOR
Professor D.G. Crighton, Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, UK

EDITORIAL BOARD

Professor M.J. Ablowitz, Department of Applied Mathematics, University of Colorado,
Boulder, USA

Professor A. Majda, Courant Institute, New York University, USA

Dr. J. Ockendon, Centre for Industrial and Applied Mathematics, University of Oxford,
UK

The aim of this series is to provide a focus for publishing textbooks in applied mathe-
matics at the advanced undergraduate and beginning graduate levels. It is planned that
the books will be devoted to covering certain mathematical techniques and theories and
to exploring their applications.

Maximum and Minimum Principles
M.J. SEWELL

Solitions
P.G. DRAZIN AND R.S. JOHNSON

The Kinematics of Mixing
J.M. OTTINO

Introduction to Numerical Linear Algebra and Optimisation
PHILLIPPE G. CIARLET

Integral Equations
DAVID PORTER AND DAVID S.G. STIRLING

Perturbation Methods
E.J. HINCH
The Thermomechanics of Plasticity and Fracture
GERARD A. MAUGIN
Boundary Integral and Singularity Methods for Linearized Viscous Flow
C. POZRIKIDIS
Nonlinear Systems
P.G. DRAZIN
Stability, Instability and Chaos
PAUL GLENDINNING
Applied Analysis of the Navier—Stokes Equations
C.R. DOERING AND J.D. GIBBON
Viscous Flow
H. OCKENDON AND J.R. OCKENDON
Similarity, Self-similarity and Intermediate Asymptotics
G.I. BARENBLATT
A First Course in the Numerical Analysis of Differential Equations
A. ISERLES

Complex Variables: Introduction and Applications
MARK J. ABLOWITZ AND ATHANSSIOS S. FOKAS

A First Course in Combinatorial Optimization

JON LEE
IBM T.J. Watson Research Center, Yorktown Heights, New York

1‘

CAMBRIDGE

= UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cB2 2ru, UK
Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521811514

© Jon Lee 2004

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First published in print format 2004

ISBN-13 978-0-511-18690-5 eBook (EBL)
ISBN-IO 0-511-18690-8 eBook (EBL)

ISBN-13 978-0-521-81151-4 hardback
ISBN-10 0-521-81151-1 hardback

ISBN-13 978-0-521-01012-2 paperback
ISBN-I0 0-521-01012-8 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

http://www.cambridge.org/9780521811514
http://www.cambridge.org

THE HOUSE JACK BUILT

Open doors so I walk inside
Close my eyes find my place to hide
And I shake as I take it in
Let the show begin

Open my eyes

Just to have them close again
Well on my way

On my way to where I graze
It swallows me

As it takes me in his home
I twist away
As I kill this world

Open doors so I walk inside
Close my eyes find my place to hide
And I shake as I take it in
Let the show begin

Open my eyes
Just to have them close once again
Don’t want control
As it takes me down and down again
Is that the moon
Or just a light that lights this deadend street?

Is that you there

Or just another demon that I meet?

The higher you walk
The farther you fall
The longer the walk
The farther you crawl
My body my temple
This temple it tells
“Step into the house that Jack built”

The higher you walk
The farther you fall
The longer the walk
The farther you crawl
My body my temple
This temple it tells
“Yes this is the house that Jack built”

Open doors as I walk inside
Swallow me so the pain subsides
And I shake as I take this in
Let the show begin

The higher you walk
The farther you fall
The longer the walk
The farther you crawl
My body my temple
This temple it tells
“Yes this is the house that Jack built”

The higher you walk
The farther you fall
The longer the walk
The farther you crawl
My body my temple
This temple it tells
“YesIam I am [am”

Open my eyes
It swallows me
Is that you there
I twist away
Away
Away
Away

— Metallica (Load)

“The House Jack Built,” written by James Hetfield, Lars Ulrich and Kirk Ham-
mett, courtesy of Creeping Death Music, © 1996, All Rights Reserved.

Contents

Preface

Introduction

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
22

Polytopes and Linear Programming

Finite Systems of Linear Inequalities
Linear-Programming Duality

Basic Solutions and the Primal Simplex Method
Sensitivity Analysis

Polytopes

Lagrangian Relaxation

The Dual Simplex Method

Totally Unimodular Matrices, Graphs, and Digraphs
Further Study

Matroids and the Greedy Algorithm
Independence Axioms and Examples of Matroids
Circuit Properties

Representations

The Greedy Algorithm

Rank Properties

Duality

The Matroid Polytope

Further Study

Minimum-Weight Dipaths
No Negative-Weight Cycles
All-Pairs Minimum-Weight Dipaths

iX

page xiii

o — B~ O o

W N NN =
2

TN
- S O

N~
J

49
49
51
53
56
60
63
66
73

75
76
78

23
24
25

3.1
32

33
34
35

4.1
4.2
4.3
4.4
4.5
4.6

5.1
52
53
54

6.1
6.2
6.3
6.4
6.5

6.6

7.1

7.2
1.3

Contents

Nonnegative Weights
No Dicycles and Knapsack Programs
Further Study

Matroid Intersection

Applications

An Efficient Cardinality Matroid-Intersection
Algorithm and Consequences

An Efficient Maximum-Weight Matroid-Intersection Algorithm

The Matroid-Intersection Polytope
Further Study

Matching

Augmenting Paths and Matroids

The Matching Polytope

Duality and a Maximum-Cardinality Matching Algorithm
Kuhn’s Algorithm for the Assignment Problem
Applications of Weighted Matching

Further Study

Flows and Cuts

Source—Sink Flows and Cuts

An Efficient Maximum-Flow Algorithm and Consequences
Undirected Cuts

Further Study

Cutting Planes

Generic Cutting-Plane Method

Chvatal-Gomory Cutting Planes

Gomory Cutting Planes

Tightening a Constraint

Constraint Generation for Combinatorial-Optimization
Problems

Further Study

Branch-&-Bound

Branch-&-Bound Using Linear-Programming Relaxation
Knapsack Programs and Group Relaxation
Branch-&-Bound for Optimal-Weight Hamiltonian Tour

78
81
82

84
84

89
101
103
106

107
107
109
113
121
126
137

138
138
140
147
150

151
151
152
156
167

171
176

177
179
184
188

7.4
7.5

8

8.1
8.2
83
8.4

Contents

Maximum-Entropy Sampling and Branch-&-Bound
Further Study

Optimizing Submodular Functions

Minimizing Submodular Functions

Minimizing Submodular Functions Over Odd Sets
Maximizing Submodular Functions

Further Study

Appendix: Notation and Terminology
A.l1 Sets

A.2 Algebra

A.3 Graphs

A.4 Digraphs

References

Background Reading
Further Reading

Indexes

Examples
Exercises
Problems
Results
Algorithms

X1

191
193

194
194
197
200
201

203
203
203
204
205

207
207
207

209
209
209
209
210
211

Preface

This is the house that Jack built. Ralph prepared the lot. There were many
independent contractors who did beautiful work; some putting on splendid
additions. Martin, Laci, and Lex rewired the place. The work continues. But
this is the house that Jack built.

This textbook is designed to serve as lecture notes for a one-semester course
focusing on combinatorial optimization. I am primarily targeting this at the
graduate level, but much of the material may also be suitable for excellent
undergraduate students. The goal is to provide an enticing, rigorous introduction
to the mathematics of the subject, within the context of a one-semester course.
There is a strong emphasis on the unifying roles of matroids, submodularity,
and polyhedral combinatorics.

I do not pretend that this book is an exhaustive treatment of combinatorial
optimization. I do not emphasize data structures, implementation details, or
sophisticated approaches that may yield decidedly faster and more practical
algorithms. Such are important issues, but I leave them for later independent
study. The approach that I take is to focus, mostly, on the beautiful. Also, I note
that the terrain of the field shifts rapidly. For example, Gomory’s seminal work
on integer programming from the 1960s, which was featured prominently in
textbooks in the early 1970s, was out of vogue by the late 1970s and through
the early 1990s when it was assessed to have no practical value. However,
by the late 1990s, Gomory’s methods were found to be practically useful. Rather
than try and guess as to what will be practically useful some decades from now,
I prefer to emphasize some of the work that I regard as foundational.

Also, I do not dwell on applications. To some extent, the applications are the
raison d’étre of combinatorial optimization. However, for the purposes of this
book, I take the view that the interesting mathematics and algorithm engineering
are justifications enough for studying the subject. Despite (because of?) the
fact that I only touch on applications, one can develop talent in modeling and

xiii

xiv Preface

in developing solution methods by working through this book. This apparent
paradox is explained by the fact that mathematical abstraction and modeling
abstraction are very close cousins.

The prerequisites for studying this book are (1) some mathematical sophis-
tication and (2) elementary notions from graph theory (e.g., path, cycle, tree).
If one has already studied linear programming, then a good deal of Chapter O
can be omitted.

Problems (requests for short proofs) and Exercises (requests for calculations)
are interspersed in the book. Each Problem is designed to teach or reinforce a
concept. Exercises are used to either verify understanding of an algorithm or
to illustrate an idea. Problems and Exercises should be attempted as they are
encountered. I have found it to be very valuable to have students or me present
correct solutions to the class on each assignment due date. The result is that the
text plays longer than the number of pages suggests.

The Appendix should at least be skimmed before working through the main
chapters; it consists of a list of notation and terminology that is, for the most
part, not defined in the main chapters.

A list of references for background and supplementary reading is
provided.

Finally, there is a set of indexes that may aid in navigating the book: the
first is an index of examples; the second is an index of exercises; the third is
an index of problems; the fourth is an index of results (i.e., lemmas, theorems,
propositions, corollaries); the last is an index of algorithms.

We begin with an Introduction to the mind set of combinatorial optimization
and the polyhedral viewpoint.

Chapter 0 contains “prerequisite” results concerning polytopes and linear
programming. Although the material of Chapter 0 is prerequisite, most linear-
programming courses will not have covered all of this chapter. When I have
taught from this book, I start right in with Chapter 1 after working through
the Introduction. Then, as needed while working through Chapters 1-8, I ask
students to read, or I cover in class, parts of Chapter 0. In particular, Section
0.5 is needed for Sections 1.7, 3.4, and 4.2; Section 0.2 is needed for Sections
1.7, 4.3, 4.4, and 5.2; Section 0.6 is needed for Section 7.3; and Sections 0.3
and 0.7 are needed for Section 6.3.

Although Chapter 0 does not contain a comprehensive treatment of linear
programming, by adding some supplementary material on (1) practical imple-
mentation details for the simplex method, (2) the ellipsoid method, and (3)
interior-point methods, this chapter can be used as the core of a more full
treatment of linear programming.

Preface XV

The primary material starts with Chapter 1. In this chapter, we concentrate
on matroids and the greedy algorithm. Many of the central ideas that come
up later, like submodularity and methods of polyhedral combinatorics, are first
explored in this chapter.

Chapter 2, in which we develop the basic algorithms to calculate minimum-
weight dipaths, is somewhat of a digression. However, minimum-weight di-
paths and the associated algorithms are important building blocks for other
algorithms.

In Chapter 3, we discuss the problem of finding maximum-cardinality, and,
more generally, maximum-weight sets that are independent in two matroids on
a common ground set. The algorithms and polyhedral results are striking in
their beauty and complexity.

The subject of Chapter 4 is matchings in graphs. As in the previous chap-
ter, striking algorithms and polyhedral results are presented. We discuss some
applications of matching to other combinatorial-optimization problems.

The subjects of Chapters 3 and 4 can be viewed as two different general-
izations of the problem of finding maximum-cardinality and maximum-weight
matchings in bipartite graphs. We find that Konig’s min/max theorem, as well
as the algorithmic and polyhedral results, generalize in quite different ways.

In Chapter 5, we discuss the maximum-flow problem for digraphs and related
cut problems. Although the topic seems less intricate than those of the two
previous chapters, we discuss the seminal method of Edmonds and Karp that is
used to produce an efficient algorithm. Also, the methods of this chapter relate
to those of Chapter 2.

In Chapter 6, we study cutting-plane methods for integer programming.
We begin with the fundamental idea of taking nonnegative linear combina-
tions and rounding. The details of Gomory’s finite cutting-plane algorithm are
described. There is a general discussion of methods for tightening integer-
programming formulations. Examples of special-purpose cutting-plane meth-
ods for combinatorial-optimization problems are also given.

In Chapter 7, Branch-&-Bound methods for solving discrete-optimization
problems are described. The general framework is not very interesting from
a mathematical point of view, but the bounding methods, for example, can be
quite sophisticated. Also, Branch-&-Bound is a very useful practical technique
for solving combinatorial-optimization problems.

In Chapter 8, we discuss optimization of submodular functions. Many
of the problems that were treated in the earlier chapters can be viewed as
problems of minimizing or maximizing particular submodular functions. Al-
though the efficient algorithms for minimizing general submodular functions

XVi Preface

are not described, it is valuable to explore the unifying role of submodular
functions.

And there it ends. A sequel to this book would study (1) semidefinite pro-
gramming formulations of combinatorial-optimization problems and associated
interior-point algorithms for the solution of the relaxations, (2) efficient approxi-
mation algorithms with performance guarantees for combinatorial-optimization
problems, (3) algebraic methods for integer programming, (4) and much more
on submodular optimization. The practical significance of these subjects has
yet to be firmly established, but the theory is great!

I thank those who first taught me about combinatorics and optimization at
Cornell: Lou Billera, Bob Bland, Jack Edmonds, George Nemhauser, Mike
Todd, and Les Trotter. Further thanks are due to Carl Lee, Frangois Margot, and
students at the University of Kentucky and New York University who worked
through drafts of this book; they made many valuable suggestions, most of
which I stubbornly ignored.

Finally, this project would never have been completed without the firm yet
compassionate guidance of Lauren Cowles, Caitlin Doggart, Katie Hew, and
Lara Zoble of Cambridge University Press and Michie Shaw of TechBooks.

JON LEE
Yorktown Heights, New York

Introduction

A discrete-optimization problem is a problem of maximizing a real-valued ob-
Jjective function c on a finite set of feasible solutions S. Often the set S naturally
arises as a subset of 2 (the set of all subsets of E), for some finite ground set E,
in which case we have a combinatorial-optimization problem. Of course, there
is no problem because we can just enumerate all feasible solutions — but we seek
to do better. Usually, the feasible solutions are described in some concise man-
ner, rather than being explicitly listed. The challenge is to develop algorithms
that are provably or practically better than enumerating all feasible solutions.

Applications of discrete-optimization problems arise in industry (e.g., man-
ufacturing and distribution, telecommunication-network design and routing,
airline crew scheduling) and in applied sciences (e.g., statistics, physics, and
chemistry).

Besides the applications, discrete optimization has aspects that connect it
with other areas of mathematics (e.g., algebra, analysis and continuous opti-
mization, geometry, logic, numerical analysis, topology, and, of course, other
subdisciplines of discrete mathematics such as graph theory, matroid theory,
and enumerative combinatorics) as well as computer science. Thus research in
discrete optimization is driven by mathematics as well as by applications.

It is almost always the case that the set of feasible solutions S is delivered to
us descriptively rather than by an explicit list. For example, S might be the set of
spanning trees of a connected graph. As a complete graph on n vertices has n" 2
spanning trees (a nontrivial fact discovered by Cayley), it may come as quite
a surprise that finding a ‘maximum-weight’ spanning tree is about as difficult
as sorting the (g) = n(n — 1)/2 edge weights. As another example, S might be
the set of ‘traveling-salesperson’s tours’ through n points in some metric space.
There are (n — 1)!/2 (equivalence classes of) such tours (as we may call any of
the n points the initial point of the tour, and we can reverse the ordering of the
points to obtain another tour of the same total length). The problem of finding

2 Introduction

a shortest traveling-salesperson’s tour is a notoriously difficult problem; yet we
will touch on techniques that enable us to find good solutions for instances that
are significantly larger than brute-force enumeration would permit.

An algorithm is theoretically efficient for a class of problems if the number of
computational steps required for solving instances of the problem is bounded
by a polynomial in the number of bits required for encoding the problem (in
which integers are encoded in base 2). We encode a rational number by en-
coding its integer numerator and denominator. This model does not permit the
encoding of irrational numbers. To make all of this precise, we would need
to carefully specify a model of computation (e.g., the Turing machine). Then,
through notions of problem equivalence (e.g., polynomial-time reductions), we
would define complexity classes (e.g., the class NP) and the idea of “com-
pleteness” for a complexity class. We will hardly touch on such issues in what
follows, but a full appreciation of combinatorial optimization, from the point
of view of “theoretical efficiency,” requires such ideas.

The beacon of theoretical efficiency has its faults as an indicator of practical
performance: (1) It is an asymptotic theory, (2) it is a worst-case theory, and (3)
the order of the bounding polynomial may be quite high. Correspondingly, we
note that (1) practical problems have some limited size, (2) practical instances
may be quite different than worst-case instances, and (3) a high-order polyno-
mial may grow too quickly in the limited range of problem sizes that are of
practical concern. Still, this guiding light has shown the way to many practical
methods.

For combinatorial-optimization problems, it will often be enlightening, and
sometimes computationally effective, to embed our problem in RE (real |E|-
dimensional space with coordinates indexed by E). The natural method is as
follows. We consider the convex hull Ps of the set of characteristic vectors
of sets in S — that is, the smallest convex set that contains these characteristic
vectors. Next, we need to find a function ¢ : [0, 11Z — R such that, if x(S) is the
characteristic vector of a feasible set S, then ¢(x(S)) = ¢(S). The success of such
an approach depends, critically, on the form of the objective function. Concave
functions are relatively easy to maximize (provided we have a description of
‘Ps as the solution set of linear inequalities), as in this case a local maximum is
a global maximum. On the other hand, convex functions have the nice property
that they are maximized by extreme points of a polytope — these extreme points
are characteristic vectors of our feasible sets. For linear functions we have the
best of both worlds. A weight function ¢ : 2F — R satisfies c(S) = D sescle),
V S C E [we take the liberty of writing c(e) for c({e})]. The weight function ¢
naturally leads to the linear function ¢ defined by ¢(x) =), c(e)x,, V x €
REZ; note that ¢(S) = &(x(S)). Most of the combinatorial-optimization problems
that we will study involve optimizing weight functions. This does not mean

Introduction 3

that we can easily solve all combinatorial-optimization problems involving the
optimization of weight functions. The challenge in the approach that has been
outlined is to find a useful description of Ps by means of linear inequalities.

Next, we look at a concrete example. To visualize the geometry of the exam-
ple, we are forced to use an instance with very few elements in the ground set.
Our ground set E := {1, 2, 3} corresponds to the set of edges of the following
graph:

1
2

We define our set S of feasible sets to consist of subsets of E that are acyclic
(i.e., contain no cycle). That is, S is the set of forests of the graph. Here

S={0. {1}, {2}, {3}, {1. 3}, {2, 3}}

(the only sets containing cycles are {1, 2} and {1, 2, 3}).
We consider the characteristic vectors of sets in S, namely,

0,0, 0),
(1,0,0),
0, 1, 0),
0,0, 1),
(1,0, 1),
O, 1, 1).

Next, we embed these points in R®, and we depict the convex hull Ps:

0,1, 1)
0,1, 0)
(1,0, 1)

0,0,0) (1,0,0)

4 Introduction

The polytope Ps is one-half of the unit cube. It is the solution set of the linear
inequalities
x; >0,
x2 >0,
1>x3>0,
xi+x=<1.

If, for example, we maximize the linear function 5x; 4 4x; 4+ x3 over the
solutions to this inequality system, we get the optimal solution x = (1, 0, 1),
which is the characteristic vector of {1, 3}.

We may not be so fortunate if we model the points carelessly. For example,
the set of linear inequalities

1>x >0,

1>x >0,

1>x32>0,

Xy +x—x3 <1,

Xy +x3+x3 <2,
has precisely the same 0/1 solutions as the inequality system that describes Ps.
It is easy to see that (1, 1, 0) (the characteristic vector of {1, 2}) is the only 0/1
vector excluded by x; + x, — x3 < 1. Also, (1, 1, 1) (the characteristic vector

of {1,2,3}) is the only 0/1 vector excluded by x; + x, + x3 < 2. However,
these inequalities describe a region that properly contains Pgs:

0,1, 1)

/>

(172, 1, 1/2)
0,1,0)
a1, 1/2,1/2)

(1,0, 1)

0,0,0) (1,0,0)

The difficulty with this latter set of inequalities is that there are linear func-
tions having their unique maximum on the feasible region at a point with
fractional components. For example, 5x; + 4x; + x3 (the objective function
that we used earlier) has its unique maximum at x = (1, 1/2, 1/2). So, if we
do not work with the inequalities that describe the convex hull, we cannot

Introduction 5

rely on linear programming to identify an optimal solution to the underlying
combinatorial-optimization problem. Finally, we note that if we add 1/2 of each
of the inequalities

X1 +x—x3 <1,

X1 +x+x3 <2,
we get
X1+ x <3/2.

Rounding down the right-hand-side constant, which we can do because the
left-hand side will only take on integer values on 0/1 solutions, we recover the
inequality

x1+x <1,

which is needed in the inequality description of Pgs.

Even if we have a description of the convex hull using linear inequalities,
the situation is far more difficult for nonlinear maximization. For example, it
is not hard to see that the function 2x; + x» — 3x1x, + x3 is maximized on Pg
by the point x = (1, 0, 1). However, this function is not concave, so methods
of nonlinear optimization that would seek a local minimum on the convex set
‘Ps may fail to find the optimum. For example, the point x = (0,1, 1) is a
strict local minimizer on Ps. Therefore, it is hard to proceed from that point
to the optimum by use of local methods of nonlinear programming. We can
try to salvage something by transforming the objective function. The concave
function —3x7 — 3x3 — 3xyx2 + 5x; + 4x + x3 takes on the same values at
0/1 vectors as the original function (we are just using the identity x? = x; when
x;jis O or 1). This function has its unique maximum on Ps atx = (2/3,1/3, 1).
However, this point is not a characteristic vector. Therefore, even though it is
relatively easy to find this maximum by continuous local-search methods of
nonlinear programming (maximizing a strictly concave function on a concave
set is a situation in which finding a local maximizer is sufficient), the solution
does not solve the underlying combinatorial-optimization problem. Finally, if
we are clever enough to notice that the function 2x; + x, + x3 takes on the same
values at feasible 0/1 vectors as the original function 2x; + x, — 3x1x, + x3,
then we can easily find x = (1, 0, 1) as the solution of a linear program.

The important point to draw from this example is that continuous model-
ing must be done very carefully when variables are used to represent discrete
choices in a combinatorial-optimization problem. This section closes with some
Exercise and Problems that further develop this point.

Introduction

Exercise (Comparing relaxations). The following three systems of in-
equalities have the same set of integer-valued solutions.

X1 +x <1 x1>0
xX1+x3 <1 x>0
() X +x <1 x3>0
X +x3 <1 x4 >0
Xo+x4 <1
X1+x+x3<1
2x1 +2x +x3+ x4 <2
X1 +x2+ x4 <
0<x; <1
xIZO
8] 0<x<1 (I11)
x>0
0<x3<1
x3>0
0<xs <1
)C420

In fact, the solutions to each system are the characteristic vectors of the
“vertex packings” of the graph following — a vertex packing of G is just a
set of vertices S with no edges of G between elements of S:

Compare how closely the three systems of inequalities approximate the set
of integer-valued solutions in real space.

Problem (Uncapacitated facility location). The uncapacitated facility-
location problem involves production and distribution of a single commodity
at available facility locations, numbered 1, 2, ..., n. Customers, numbered
1,2, ..., m have demand for the commodity. A fixed-cost f; is incurred if
any (positive) production occurs at facility i. The profit (not accounting for
the fixed costs) for satisfying the fraction x;; of the demand of customer
J from facility i is ¢;;x;;. The goal is to maximize net profit, subject to

Introduction

satisfying all customer demand exactly. We can formulate this problem as
the program

m

m n
max =3 fivi+ D) ey
i=1

i=1 j=I
subject to:

insz forj:l,z,...,n;
i=1

(%) —ny; + Y xij <0, fori =1,2,...,m;
j=1
0<x;;<1, fori=1,2,...,mand
j=1,2,...,nm
0 <y; <linteger, fori =1,2,...,m.

Compare the strength of (x) and

(%) —yi+x;; <0, fori =1,2,...,mand j =1,2,...,n.

Problem (Piecewise-linear functions). In practical instances of many op-
timization problems, key quantities, like costs, may not be well modeled
as linear functions. In many instances, however, a piecewise-linear func-
tion is adequate. Let x' < x?> < --- < x" be real numbers. We consider
the piecewise-linear function f : [x!, x"] — R that we define by linearly
interpolating f between the x'. That is, if x = A;x’ 4+ A;,x'*!, for some
Aiy Aig1 = O with &y + A = 1, then f(x) 1= X; f(x") 4+ Ay f(xH):

f(xi+1)
J0) = A fx) + Agg f(xIF)

fGh

1 i xitl

X = 7\.1')61.4' 7\.,~+1xi+1

Introduction

The difficulty in formulating this with linear constraints is that the choice
of i depends on x. Still, with 0/1 variables, we can make the choice. We

employ the formulation

o)=Y nif;
i=1

n

n—1
Z}‘i =L Zyi =1;
i=l

i=1

A >0, fori=1,2,...,n; vy, >0integer,fori =1,2,...,n—1;

(%) yi =1 = only A; and X;;; may be positive.

a. Explain why (x) can be modeled by
A=
(%x) AN <yio1+y, fori=2,3...,n—1.
)\n = Yn—t1

b. Compare the strength of (%) and

J+l1

Z)’z Z)»,, forj=1,2,...,.n—=2
Y ovis Z?»,, forj=2,3,....,n—1

i=j i=j

(k * %)

0

Polytopes and Linear Programming

In this chapter, we review many of the main ideas and results concerning poly-
topes and linear programming. These ideas and results are prerequisite to much
of combinatorial optimization.

0.1 Finite Systems of Linear Inequalities

Let x*, k € N, be a finite set of points in R”. Any point x € R" of the form
x =Y,y Mxk, with A, € R, is a linear combination of the x*. If, in addition,
we have all A; > 0, then the combination is conical. If Zke ~ A =1, then
the combination is affine. Combinations that are both conical and affine are
convex. The points x* € R",k € N, are linearly independent if Y, ., Ax* = 0
implies Ay =0V k € N. The points x* € R", k € N, are affinely independent if
Y ien Mxt =0,y Ak = Oimplies Ay = 0Vk € N.Equivalently, the points
xK € R", k € N, are affinely independent if the points (Xlk) eR"! ke N, are
linearly independent.

A set X C R" is a subspace/cone/affine set/convex set if it is closed un-
der (finite) linear/conical/affine/convex combinations. The linear span/conical
hull/affine span/convex hull of X, denoted sp(X)/cone(X)/aff(X)/conv(X), is
the set of all (finite) linear/conical/affine/convex combinations of points in X.
Equivalently, and this needs a proof, sp(X)/cone(X)/aff(X)/conv(X) is the
intersection of all subspaces/cones/affine sets/convex sets containing X.

10 0 Polytopes and Linear Programming

In the following small example, X consists of two linearly independent points:

I

sp(X) cone(X) aff(X) conv(X)

A polytope is conv(X) for some finite set X C R”. A polytope can also be
described as the solution set of a finite system of linear inequalities. This result
is called Weyl’s Theorem (for polytopes). A precise statement of the theorem
is made and its proof is provided, after a very useful elimination method is
described for linear inequalities.

Fourier—Motzkin Elimination is the analog of Gauss—Jordan Elimination, but
for linear inequalities. Consider the linear-inequality system

n
E ajjX;j <b;, fori=1,2,...,m.
Jj=1

Select a variable x; for elimination. Partition {1, 2, ..., m} based on the signs
of the numbers a;;, namely,

Sy :={i : ay > 0},

S_={i : ayx <0},

S() = {l LAk =0}

The new inequality system consists of
n
Za,-jxj < b; fori € Sy,
j=1

together with the inequalities

—ay; (Zaijxj < b,’) + a;; (Zaljxj < b1> ,

=1 j=1
for all pairs of i € S; and/ € S_. Itis easy to check that
1. the new system of linear inequalities does not involve x;;

2. each inequality of the new system is a nonnegative linear combination of the
inequalities of the original system;

0.1 Finite Systems of Linear Inequalities 11

(1, X2, ooy X1y Xy Xkt 1y« -+ 5 Xn)
solves the original system, then

(x17x27 coes Xk—15 Xk41, "'7xn)

solves the new system;
4. if

(xlv-va coes Xk—15 Xk+1, '~‘7-xn)

solves the new system, then

(-xlv X2y ooy Xk—1s Xks Xk4-15 « o+ 5 -xn)
solves the original system, for some choice of x.

Geometrically, the solution set of the new system is the projection of the solution
set of the original system, in the direction of the x; axis.

Note that if S; U Sy or S_ U Sy is empty, then the new inequality system has
no inequalities. Such a system, which we think of as still having the remaining
variables, is solved by every choice of x|, X2, ..., Xg—1, Xkt1, - - - Xn-

Weyl’s Theorem (for polytopes). If P is a polytope then
P = {x eR" : Zaijxj <b;, fori= 1,2,...,m},
j=1

for some positive integer m and choice of real numbers a;j, b;, 1 <i <m,
I<j=n

Proof. Weyl’s Theorem is easily proved by use of Fourier—Motzkin Elimina-
tion. We consider the linear-inequality system obtained from

M—kaﬁ:0,f0rj:l,2,...,n;
keN

Z)\k = 1;

keN
M>0, V keN,

by replacing each equation with a pair of inequalities. Note that, in this system,
the numbers x;? are constants. We apply Fourier—Motzkin Elimination to the
linear-inequality system, so as to eliminate all of the A; variables. The final
system must include all of the variables x;, j € N, because otherwise P would
be unbounded. Therefore, we are left with a nonempty linear-inequality system

inthe x;, j € N, describing P.]

12 0 Polytopes and Linear Programming

Also, it is a straightforward exercise, by use of Fourier—Motzkin Elimina-
tion, to establish the following theorem characterizing when a system of linear
inequalities has a solution.

Theorem of the Alternative for Linear Inequalities. The system
n

) Za;jxjfb[,forizl,l...,m
=1

has a solution if and only if the system

m

Zyiaij =0,forj=1,2,...,n;
i=1

1) vi >0,fori=1,2,...,m;
> yibi <0
i=1

has no solution.

Proof. Clearly we cannot have solutions to both systems because that would
imply

n m m n m
0= ij Zyiaij = Zyi Zaijxj < Zyibi < 0.
=1 =l =1 = i=1

Now, suppose that / has no solution. Then, after eliminating all n variables,
we are left with an inconsistent system in no variables. That is,

> 0.x; <b), fori=1.2,....p.
j=1
where, b,/< < 0 for some k, 1 < k < p. The inequality
(%) > 0.x; <b,
j=1

is a nonnegative linear combination of the inequality system /. That is, there
existy; > 0,i =1,2,...,m,so that () is just

m n
Z Yi aijxj < b; |.
i=1 j=1
Rewriting this last system as

n m m
Z (Z yiaij> x; < Z)’ibi,
i=1 izl

J=1

0.1 Finite Systems of Linear Inequalities 13

and equating coefficients with the inequality (x), we see that y is a solution to
().]

An equivalent result is the “Farkas Lemma.”

Theorem (Farkas Lemma). The system

n

E ajj xj=>b;,fori =1,2,...,m;
j=1

x;>0,forj=1,2,...,n.

has a solution if and only if the system

m
Y wiay =0, for j=1,2,....n;
i=1

m

Z y,'bi <0
i=1

has no solution.

The Farkas Lemma has the following geometric interpretation: Either b is
in the conical hull of the columns of A, or there is a vector y that makes a

nonobtuse angle with every column of A and an obtuse angle with b (but not
both):

14 0 Polytopes and Linear Programming

Problem (Farkas Lemma). Prove the Farkas Lemma by using the Theorem
of the Alternative for Linear Inequalities.

0.2 Linear-Programming Duality

Letcj, 1 < j < n, bereal numbers. Using real variables x;, 1 < j <n,and y;,
1 <i < m, we formulate the dual pair of linear programs:

n
max Z ij]'
j=1
(P) subject to:

n
E aijxjfb,-, fori =1,2,...,m,

Jj=1

m
min Zy,-bi
i=1

subject to:

m

E viaijj =cj, fori=1,2,... n;
i=1

(D)

yi >0, fori=1,2,...,m.

As the following results make clear, the linear programs P and D are closely
related in their solutions as well as their data.

Weak Duality Theorem. If x is feasible to P and y is feasible to D, then
Z?:l cjxj < >, yibi. Hence, (1) if Zl;’:l cjxj =Y i vibi, then x and
y are optimal, and (2) if either program is unbounded, then the other is
infeasible.

Proof. Suppose that x is feasible to P and y is feasible to D. Then we see
that

n n m m n m
chx_,- = Z (Z yz‘“z‘j) Xj = Z)’i (aijxj> < Z)’ibi- n
= i=1 i=1 1 i=1

j=1 =

The Theorem of the Alternative for Linear Inequalities can be used to estab-
lish the following stronger result.

0.2 Linear-Programming Duality 15

Strong Duality Theorem. If P and D have feasible solutions, then they have
optimal solutions x, y with Z';:l cjxj = Y i, vib;. If either is infeasible, then
the other is either infeasible or unbounded.

Proof. We consider the system of linear inequalities:

n
E ajXx;j <b;,, fori=1,2,...,m;
Jj=1

m

Zy,va,-j <cj, forj=12,...,n
i=1

() n
_Zyiaij <—cj, forj=1,2,...,m;
i=1

—y; <0, fori=1,2,...,m;

—zn:Cij + Zm:biyi <0.
j=1 i=1

By the Weak Duality Theorem, it is easy to see that x € R” and y € R are
optimal to P and D, respectively, if and only if (x, y) satisfies /. By the Theorem

of the Alternative for Linear Inequalities, system [has a solution if and only if
the system

iuia[j —cjit=0, forj=12,...,n
- n n
Za,-jvj —Zai‘,-v} —si+bit=0, fori=1,2,...,m;
j=1 j=1
u; >0, fori =1,2,...,m;
1 v; >0, forj=1,2,...,n;
v}zo, forj=1,2,...,n;
s; >0, fori =1,2,...,m;
T >0;

m n n

!
E bju; + E cjv; — E cjv; <0
i=1 j=1 j=1

has no solution. Making the substitution, & ; := v;. —vj,for j=1,2,...,n,

16 0 Polytopes and Linear Programming

we get the equivalent system:

T >0
m
E uja;; =c;r, forj=1,2,...,n;
i=1

u; >0, fori=1,2,...,m;

1r -
(71 > aijhy <biT, fori=1,2,....m;
j=1

h;j >0, forj=1,2,...,m;
Zbiu,- < Zthj
i=1 j=1

First, we suppose that P and D are feasible. The conclusion that we seek is
that [is feasible. If not, then 71’ has a feasible solution. We investigate two
cases:

Case 1: T > 0 in the solution of 77’. Then we consider the points x € R”

and y € R" defined by x; := %hj,forj =1,2,...,n,and y; := %u,-,fori =
1,2, ..., m. Inthis case, x and y are feasible to P and D, respectively, but they

violate the conclusion of the Weak Duality Theorem.
Case 2: T = 0 in the solution to /1’. Then we consider two subcases.

Subcase a: i u;b; < 0. Then we take any y € R™ that is feasible to D,
and we consider y’ € R™, defined by y! := y; + Au;, fori =1,2,...,m. It
is easy to check that y’ is feasible to D, for all A > 0, and that the objective
function of D, evaluated on y’, decreases without bound as A increases.

Subcase b: Y[, c;h; > 0. Then we take any x € R” that is feasible to P,
and we consider x’ € R”, defined by x} =x;+ A, for j=1,2,...,n It
is easy to check that x’ is feasible to P, for all A > 0, and that the objective
function of P, evaluated on x’, increases without bound as A increases.

In either subcase, we contradict the Weak Duality Theorem.

In either Case 1 or 2, we get a contradiction. Therefore, if P and D are
feasible, then / must have a solution — which consists of optimal solutions to
P and D having the same objective value.

Next, we suppose that P is infeasible. We seek to demonstrate that D is either
infeasible or unbounded. Toward this end, we suppose that D is feasible, and we
seek to demonstrate that then it must be unbounded. By the Theorem of the

0.2 Linear-Programming Duality 17

Alternative for Linear Inequalities, the infeasibility of P implies that the system

m
Zuiaij =0,forj= 1,2,...,”;
i=1

u; >0,fori =1,2,...,m;
Zu,-b,- <0
i=1

has a solution. Taking such a solution # € R™ and a feasible solution y € R”
to D, we proceed exactly according to the recipe in the preceding Subcase a to
demonstrate that D is unbounded.

Next, we suppose that D is infeasible. We seek to demonstrate that P is either
infeasible or unbounded. Toward this end, we suppose that P is feasible, and
we seek to demonstrate that then it must be unbounded. By the Theorem of
the Alternative for Linear Inequalities, the infeasibility of P implies that the
system

m

Zaljh] EO, fori = 1,2,-~~am;

j=1
n
E thj >0
=1

has a solution. Taking such a solution & € R" and a feasible solution x € R”"
to P, we proceed exactly according to the recipe in the preceding Subcase b to
demonstrate that P is unbounded.]

Problem (Theorem of the Alternative for Linear Inequalities). Prove the
Theorem of the Alternative for Linear Inequalities from the Strong Duality
Theorem. Hint: Consider the linear program

m
min Zyibi
i=1

subject to:
(Do)

m

Y yiay; =0, fori=12....n

i=1
yi >0, fori=1,2,...,m.

First argue that either the optimal objective value for Dy is zero or Dy is
unbounded.

18 0 Polytopes and Linear Programming

Points x € R" and y € R™ are complementary, with respect to P and D, if

Vi (bi—Zaijxj):O, fori:l,Z,...,m.

J=1

The next two results contain the relationship between duality and comple-
mentarity.

Weak Complementary-Slackness Theorem. [ffeasible solutions x and y are
complementary, then x and y are optimal solutions.

Proof. Suppose that x and y are feasible. Note that

m n m

m n m n
DY) ST B SEUED 99 SIS SR o
i=1 j=1 i=1 j=1i=1 i=1 j=1
If x and y are complementary, then the leftmost expression in the preceding
equation chain is equal to 0. Therefore, 3 _, c;x; = "I yibi, so, by the
Weak Duality Theorem, x and y are optimal solutions. |

Strong Complementary-Slackness Theorem. [fx andy are optimal solutions
to P and D, respectively, then x and y are complementary.

Proof. Suppose that x and y are optimal. Then, by the Strong Duality Theorem,
the rightmost expression in the equation chain of the last proof is 0. Therefore,
we have

Zyi (bl — Za,-jxj) =0.
i=1 j=1

However, by feasibility, we have y;(b; — 27:1 ajjx;) > 0,fori =1,2,...,m.
Therefore, x and y must be complementary. []

The Duality and Complementary-Slackness Theorems can be used to prove
a very useful characterization of optimality for linear programs over polytopes
having a natural decomposition. Fork = 1,2, ..., p, let

Pei=1xeR} : > afix; <bf, fori=1,2,....mk){,
j=1

0.2 Linear-Programming Duality 19

and consider the linear program

(P) max{Zn:cjxj : xeﬁpk}.

Suppose that the c are defined so thatc; = > 7_, c . Such a decomposition
of c € R" is called a weight splitting of c. For k = l 2,..., p, consider the
linear programs

(Py) max{Zc iXj o xePk}.

Proposition (Sufficiency of weight splitting). Given a weight splitting of c, if
x € R" is optimal for all P, (k = 1,2, ..., p), then X is optimal for P.

Proof. Suppose that X is optimal for all P, (k = 1,2, ..., p). Let y* be optimal
to the dual of Py:
m(k)

min Z y"bk

subject to:

(D) .

ZylauzC forj=1,2,...,m;

yi >0, fori =1,2,...,mk).

Now, x is feasible for P. Because we have a weight splitting of c,
(', 7%, ..., ") is feasible for the dual of P:

subject to:

p m(k)
ZZ)’: a;; > cj, for j=1,2,.

k=1 i=1

(D)

>0, fork=1,2,...,p,
i=1,2,....,mk).

Optimality of X for P, and y* for Dy implies that 3" i1 jx = e Sk

when the Strong Duality Theorem is applied to the pair Py, Dy. Using the
fact that we have a weight splitting, we can conclude that Z?=1 CiXj =

Yo, ZT(]I) ykbk The result follows by application of the Weak Duality The-
orem to the pair P, D. []

20 0 Polytopes and Linear Programming

Proposition (Necessity of weight splitting). If X € R" is optimal for P, then
there exists aweight splitting of ¢ so that X is optimal forall P, (k = 1,2, ..., p).

Proof. Suppose that X is optimal for P. Obviously X is feasible for Py

k=1,2,...,p). Let (y 1 32,...,9”) be an optimal solution of D. Let

k= Zf"(]i) yial;, so y* is feasible for Dy. Note that it is not claimed that

this is a weight splitting of c. However, because (yl, iz, ..., yP)is feasible for
D, we do have

P

Z =D ylaj; = ¢;.

k=1 k=1

Therefore, we have a natural “weight covering” of c.

Applying the Weak Duality Theorem to the pair Py, Dy gives > ; =1] i<

Zm(];) ?fbk. Adding up over k gives the following right-hand inequality, and

the left-hand inequality follows fromX > Oand ¢ < > 1_, c*:

Zijj SXP:XII:CJ;E} 521;: y{cbk

Jj=1 k=1 j=1 k=1 i=1

The Strong Duality Theorem applied to the pair P, D implies that we have
equality throughout. Therefore, we must have

m(k)

Zc X = Zikbk

for all k, and, applying the Weak Duality Theorem for the pair Py, Dy, we
conclude that X is optimal for P, and y* is optimal for Dy.
Now, suppose that

M~

~.

ci > Cj,

~
Il
—_

for some j. Then

P
—k k

E :yiaij > Cj,

k=1

for that j. Applying the Weak Complementary-Slackness Theorem to the pair
Py, Dy, we can conclude that X; = 0. If we choose any k and reduce c'; until
we have

p
§ k
Cj =y,

k=1

0.3 Basic Solutions and the Primal Simplex Method 21

we do not disturb the optimality of X for P; with k # k. Also, because X ;=
0, the Weak Complementary-Slackness Theorem applied to the pair Py, Dy
implies that X is still optimal for Pg.]

0.3 Basic Solutions and the Primal Simplex Method

Straightforward transformations can be effected so that any linear program is
brought into the standard form:

n
max ZCJ'X]'
=1
) subject to:
(P"))
Za,-jxj =b;,, fori=1,2,...,m;
j=1

x; >0, forj=1,2,...,n,

where it is assumed that the m x n matrix A of constraint coefficients has full
row rank.

We consider partitions of the indices {1, 2,...,n} into an ordered basis
B = (B1, B2, ..., Bm) and nonbasis n = (n1, N2, . . . , Nu—m) SO that the columns
Ag,, Ag,, ..., Ag, are linearly independent. The basic solution x* associated
with the “basic partition” B, n arises if we setx, =x, =---=x, ~=0and
let x;f] , xgz, ol xgm be the unique solution to the remaining system

m
> ai s =bi, fori=12...m.
=

In matrix notation, the basic solution x* can be expressed as x; = 0 and xz =
A};lb. If x5 > 0 then the basic solution is feasible to P’. Depending on whether
the basic solution x* is feasible or optimal to P’, we may refer to the basis j
as being primal feasible or primal optimal.

The dual linear program of P’ is

min Zyibi
i=1
(D) subject to:

m
E viajj > cj, fori=1,2,...,n.

i=1

Associated with the basis 8 is a potential solution to D'. The basic dual solution

22 0 Polytopes and Linear Programming

associated with § is the unique solution yj, y5, ..., y» of
m
Zyiaiﬁjzcﬂ/., forj=1,2,...,n.
i=1

In matrix notation, we have y* = cg AE]. The reduced cost of x,); is defined by
Cy, i=Cy, — ey Viay, I ¢, <0,for j =1,2,...,m, then the basic dual
solution y*is feasible to D’. In matrix notation this is expressed as ¢, — y*A4, <
0, or, equivalently, ¢, < 0. Sometimes it is convenient to write Z,, = AEI Ay,
in which case we also have ¢, — y*A, = ¢, — cgA,. Depending on whether
the basic dual solution y* is feasible or optimal to D', we may say that 8 is dual
feasible or dual optimal. Finally, we say that the basis § is optimal if it is both
primal optimal and dual optimal.

Weak Optimal-Basis Theorem. Ifthe basis B is both primal feasible and dual
feasible, then B is optimal.

Proof. Let x* and y* be the basic solutions associated with 5. We can see that
ex* = cpxp = c,«;AElb = y*b.

Therefore, if x* and y* are feasible, then, by the Weak Duality Theorem, x*
and y* are optimal. []

In fact, if P’ and D’ are feasible, then there is a basis § that is both primal
feasible and dual feasible (hence, optimal). We prove this, in a constructive
manner, by specifying an algorithm. The algorithmic framework is that of a
“simplex method”. A convenient way to carry out a simplex method is by
working with “simplex tables”. The table

xo x rhs

1 — O
0O A b

(where rhs stands for right-hand side) is just a convenient way of expressing
the system of equations

n
X0 — E Cj)Cj:O,
Jj=1

n
E a,-jxj:b,-, fori=1,2,...,m.

j=1

0.3 Basic Solutions and the Primal Simplex Method 23

Solving for the basic variables, we obtain an equivalent system of equations,
which we express as the simplex table

Xo Xg Xy rhs

I 0 —c,,—i—c,gA;lA,, CﬂAElb
0 I Ag'A, Ag'b

The same simplex table can be reexpressed as

X0 Xg Xy rhs

1 0 —c, cpxg
0 I A, xg

In this form, it is very easy to check whether 8 is an optimal basis. We just
check that the basis 8 is primal feasible (i.e., x; > 0) and dual feasible (i.e.,
¢, <0).

The Primal Simplex Method is best explained by an overview that leaves a
number of dangling issues that are then addressed one by one afterward. The
method starts with a primal feasible basis B. (Issue 1: Describe how to obtain
an initial primal feasible basis.)

Then, if there is some n; for which ¢,; > 0, we choose a §; so that the new
basis

B =B, B Bt s Bitis s B)

is primal feasible. We let the new nonbasis be

0 =M, =1, Bis Njtts - - s Nnem)-

The index f; is eligible to leave the basis (i.e., guarantee that 8’ is primal
feasible) if it satisfies the “ratio test”

x*

i := argmin {_i D Gk, > O}
ak,,“
(Issue 2: Verify the validity of the ratio test; Issue 3: Describe how the primal
linear program is unbounded if there are no k for which ay ,, > 0.)
After the “pivot”, (1) the variable xg = Xy, takes on the value 0, (2) the

variable Xy, = Xg/ takes on the value xz, = ;i, and (3) the increase in the
J i i inj

objective-function value (i.e., cpxz — cpxp) is equal to ¢y xy,. This amounts
to a positive increase as long as x; > 0. Then, as long as we get these positive
increases at each pivot, the method must terminate since there are only a finite

24 0 Polytopes and Linear Programming

number of bases. (Issue 4: Describe how to guarantee termination if x5 = 0 at
some pivots.)
Next, we resolve the dangling issues.

Issue 1: Because we can multiply some rows by —1, as needed, we assume,
without loss of generality, that b > 0. We choose any basis 8, we then introduce
an “artificial variable” x|, and we formulate the ‘“Phase-I" linear program,
which we encode as the table

This Phase-I linear program has the objective of minimizing the nonnegative
variable x,.1. Indeed, P’ has a feasible solution if and only if the optimal
solution of this Phase-I program has x,.; = 0.

Equivalently, we can express the Phase-I program with the simplex table

X0 Xg Xy Xpt1 rhs

10 0 1 0
0 I A A, e x3=A45"

If x is feasible for P’, then we can initiate the Primal Simplex Method for
P’, starting with the basis 8. Otherwise, we choose the i for which x;i is most
negative, and we pivot to the basis

ﬂ/ = (ﬂl,...,ﬁ,'fl,n"‘ 17 ,3,'+1, ---7/3m)'

It is easy to check that x;, > (. Now we just apply the Primal Simplex Method
to this Phase-I linear program, starting from the basis 8. In applying the Primal
Simplex Method to the Phase-I program, we make one simple refinement: When
the ratio test is applied, if n + 1 is eligible to leave the basis, then n + 1 does
leave the basis.

If n 4 1 ever leaves the basis, then we have a starting basis for applying the
Primal Simplex Method to P’. If, at termination, we have n + 1 in the basis,
then P’ is infeasible. (It is left to the reader to check that our refinement of the
ratio test ensures that we cannot terminate with a basis 8 containing n + 1 and
having x,4+; = 0 in the associated basic solution.)

0.3 Basic Solutions and the Primal Simplex Method

Issue 2: Because

Ap =[Ap, ... Ap_ s Ay Apys s A
1 i—1 % i+1
=Agle’,....e" A, e, ... e"]
we have
Al =lel, .. e A, e e A
and
xﬂ,—Alg,lb
=[e',....e A, e e AL
ral i—1 4 i+1 my—1 %
=le,....e" Ay, e, .. e"] Ty
Now, the inverse of
1 i—1 +1
e,e" A, e ... €]
is
_ a, _
51’,7;,
al'*l,m
Ei,ﬂf
. 1 .
ell... [e! el S B P
Ain;
Ait1,;
Ei,ﬂf
amﬂ?/
L Eiﬂ?/ _
Therefore,

Ekun- .
wo_ Hhnj ok
LR T E e fork A
xﬁk = *

b | fork =i

El,"/j

X

To ensure that x?

25

B > (), we choose i so that ajy; > 0. To ensure that xE >0,

26 0 Polytopes and Linear Programming

for k # i, we then need

x* X
P < 2P fork # i, such that @y, > 0.
i n; Ak.y;

) j

Issue 3: We consider the solutions X := x* + €h, where h € R" is defined by
hy =€ and hg := —Z,,/. We have

AX = Ax + €Ah =b+¢€(A,, — AgA,) = b.

If we choose € > 0, then?c}; =Xxg — EZ,“ , which is nonnegative because we are
assuming that A,; < 0. Finally, X, = X, + €h, = €e/, which is also nonnega-
tive when € > 0. Therefore, X is feasible for all € > 0. Now, considering the
objective value, we have ¢X = cx* + ech = cx* + €Cy,- Therefore, by choos-
ing € large, we can make cXx as large as we like.

Issue 4: We will work with polynomials (of degree no more than m) in €, where
we consider € to be an arbitrarily small indeterminant. In what follows, we write
<c to denote the induced ordering of polynomials. An important point is that
if p(€) <e q(e), then p(0) < ¢(0).

We algebraically perturb the right-hand-side vector b by replacing each b;
with b; + €', fori =1,2,...,m. We carry out the Primal Simplex Method
with the understanding that, in applying the ratio test, we use the <, ordering.
For any basis B, the value of the basic variables xz is the polynomial

x;i = Aglb + Z (A;,l)‘k e~
k=1 !

We cannothave x; equal to the zero polynomial, as that would imply that the ith
row of A;l is all zero — contradicting the nonsingularity of Ag. Therefore, the
objective increase is always positive with respect to the <. ordering. Therefore,
we will never revisit a basis.

Furthermore, as the Primal Simplex Method proceeds, the ratio test seeks to
maintain the nonnegativity of the basic variables with respect to the <. ordering.
However, this implies ordinary nonnegativity, evaluating the polynomials at
0. Therefore, each pivot yields a feasible basic solution for the unperturbed
problem P’. Therefore, we really are carrying out valid steps of the Primal
Simplex Method with respect to the unperturbed problem P’.

By filling in all of these details, we have provided a constructive proof of the
following result.

0.4 Sensitivity Analysis 27

Strong Optimal-Basis Theorem. If P’ and D’ are feasible, then there is a
basis B that is both primal feasible and dual feasible (hence, optimal).

This section closes with a geometric view of the feasible basic solutions
visited by the Primal Simplex Method. An extreme point of a convex set C is
apointx € C,suchthatx',x2 € C,0 < A < 1,x = Ax' 4+ (1 — A)x?, implies
x = x! = x2. That is, x is extreme if it is not an interior point of a closed line

segment contained in C.

Theorem (Feasible basic solutions and extreme points). The set of feasible
basic solutions of P’ is the same as the set of extreme points of P’.

Proof. Let X be a feasible basic solution of P’, with corresponding basis 8
and nonbasis 7. Suppose that X = axl 4+ = a)x2 withx!, x2 e P and 0 <
A < 1.Because x, =0, x}], x,% >0, },, =)»x,ll + (1 - A)x%, we must have x,% =
xf] = },, = 0. Then we must have Aﬁxé; = b, forl =1, 2. However, this system
has the unique solution X. Therefore, xé = xé = Xg. Hence, xl=x2=%x

Conversely, suppose that X is an extreme point of P’. Let
¢ = {j €f{l,2,....n} 1 X; >0}.

We claim that the columns of Ay are linearly independent. To demonstrate
this, we suppose otherwise. Then there is a vector wy € R!?!, such that wg is
not the zero vector, and Agw, = 0. Next, we extend wy to w € R” by letting
w; = 0,for j & ¢. Therefore, we have Aw = 0. Now, we letx! :=% + ew,and
x? :=X — ew, where € is a small positive scalar. For any e, it is easy to check
that X = %x' + %xz, Ax' = b, and Ax?> = b. Moreover, for € small enough, we
have x!', x2 > 0 (by the choice of ¢). Therefore, X is not an extreme point of P’.
This contradiction establishes that the columns of A, are linearly independent.

Now, in an arbitrary manner, we complete ¢ to a basis 8, and n consists of
the remaining indices. We claim that X is the basic solution associated with this
choice of basis B. Clearly, by the choice of ¢, we have x,, = 0. The remaining
system, Agxg = b, has a unique solution, as Ag is nonsingular. That unique
solution is Xg, because AgXs = AypXy = AX = b. [

0.4 Sensitivity Analysis

The optimal objective value of a linear program behaves very nicely as a function
of its objective coefficients. Assume that P is feasible, and define the objective

28 0 Polytopes and Linear Programming

value function g : R" = R by

n
g(cy, ¢y ..., Cp) = max E CjX;j
=1

subject to:

n
Zaijxjfb,-, fori =1,2,...,m,
j=1
whenever the optimal value exists (i.e., whenever P is not unbounded). Using
the Weak Duality Theorem, we find that the domain of g is just the set of ¢ € R”
for which the following system is feasible:

m
E viajj =cj, fori=1,2,...,n;

i=1

yi >0, fori=1,2,...,m.

Thinking of the c; as variables, we can eliminate the y; by using Fourier—
Motzkin Elimination. In this way, we observe that the domain of g is the solution
set of a finite system of linear inequalities (in the variables c;). In particular,
the domain of g is a convex set.

Similarly, we assume that D is feasible and define the right-hand-side value
function f : R" — Rby

f(b]7b27 "‘7bm) .= max Zc]xl
j=1

subject to:

n

Zaijxj <b;, fori=1,2,...,m,

j=1
whenever the optimal value exists (i.e., whenever P is feasible). As previously,
we observe that the domain of f is the solution set of a finite system of linear
inequalities (in the variables b;).

A piecewise-linear function is the point-wise maximum or minimum of a

finite number of linear functions.

Problem (Sensitivity Theorem)

a. Prove that a piecewise-linear function that is the point-wise maximum
(respectively, minimum) of a finite number of linear functions is convex
(respectively, concave).

b. Prove that the function g is convex and piecewise linear on its domain.

c. Prove that the function f is concave and piecewise linear on its domain.

0.5 Polytopes 29

0.5 Polytopes

The dimension of a polytope P, denoted dim(P), is one less than the maxi-
mum number of affinely independent points in P. Therefore, the empty set has
dimension —1. The polytope P C R” is full dimensional if dim(P) = n. The
linear equations

n
Z“;xﬂi =B, fori=1,2,...,m,
j=1
are linearly independent if the points (‘;) e R i =1,2,..., mare linea y
independent.

Dimension Theorem. dim(P) is n minus the maximum number of linearly
independent equations satisfied by all points of 'P.

Proof. Let P := conv(X). For x € X, let X := (]) € R""'. Arrange the points
X as the rows of a matrix G with n + 1 columns. We have that dim(P) 4+ 1 =
dim(r.s.(G)). Then, by using the rank-nullity theorem, we have that dim(P) +
1 = (n+ 1) — dim(n.s.(G)). The result follows by noting that, forao € R, 8 €
R, we have (Z) € n.s.(G) if and only if Z;zl ajx; = pforall x e P. |
An inequality Z;Zl a;x; < Bisvalid for the polytope P if every point in P
satisfies the inequality. The valid inequality Z:le a;x; < Bdescribes the face
}"::Pﬁ{xeR: ozjszﬂ}.
j=1

It is immediate that if Z?zl ajx; < B describes the nonempty face F of P,
then x* € P maximizes Y ;_, &;x; over P if and only if x* € . Furthermore,

if F is a face of
P= {x eR" :

n
ajjX;j <b;, fori = 1,2,...,}’71},
Jj=1

then

szﬂ{xGR” . ll[(k)’ijZb,‘, fork:l,Z,...,r},
J=l
where {i(1),i(2),...,i(r)} is a subset of {1, 2, ..., m}. Hence, P has a finite
number of faces.
Faces of polytopes are themselves polytopes. Every polytope has the empty
set and itself as trivial faces. Faces of dimension O are called extreme points.
Faces of dimension dim(P) — 1 are called facets.

30 0 Polytopes and Linear Programming

A partial converse to Weyl’s Theorem can be established:
Minkowski’s Theorem (for polytopes). If
P = {x eR" : Zn:aijxj <b;, fori =1,2, m}
=1
and P is bounded, then P is a polytope.

Proof. Let X be the set of extreme points of P. Clearly conv(X) C P. Suppose
that X € P \ conv(X). Then there fail to exist A,, x € X, such that

Z,-:Z)Lxxj,forjzl,z,...,n;

xeX

1= ZAX;

xeX
Ay>0, V xeX.
By the Theorem of the Alternative for Linear Inequalities, there exist ¢ € R”

and ¢ € R such that

n
t—I—chx_,- >0, V xelX,;
j=1

n
t+ ch;j < 0.
Jj=1

Therefore, we have that X is a feasible solution to the linear program

n
min E CjX;j
Jj=1
subject to:
n
E aij)Cijl‘, fori =1,2,...,m,
j=1

and it has objective value less than —, but all extreme points of the feasible
region have objective value at least ¢. Therefore, no extreme point solves the
linear program. This is a contradiction. []

Redundancy Theorem. Valid inequalities that describe faces of P having
dimension less than dim(P) — 1 are redundant.

0.5 Polytopes 31
Proof. Without loss of generality, we can describe P as the solution set of
> Gix; =b; fori =1,2,....k;

j=1

n
E a[jXJSbi,fOriIO,l,...,m,

j=1

where the equations

n
E Zz\i_,-xj =bi,f0ri: 1,2,...,k,
j=1

are linearly independent, and such that fori =0, 1, ..., m, there exist points
X' in P with

n
E a,-jf} < b,’.
=1

With these assumptions, it is clear that dim(P) = n — k.
Let

We have

n
b\ij?{j Zbi,fOI'i = 1,2,...,](;
=1

n
E a;jXj < b;, fori =0,1,...,m.

J=1

Therefore, the point X is in the relative interior of P.
Without loss of generality, consider the face F described by

n
E apjXj = by.
Jj=1

We have that dim(F) < dim(P) — 1. Suppose that this inequality is necessary

32 0 Polytopes and Linear Programming

for describing P. Then there is a point x! such that

n
> Gyx} =b; fori =1,2,....k;
j=1

n

§ : 1 .
aojxj > b(),

j=1

n

E aijle- <b;,fori=1,2,...,m.
j=1

It follows that on the line segment between X and x! there is a point x> such
that

n
E '(iijsz-:b,-,fori =1,2,....k;
Jj=1

n

§ 2 .
aojxj = b(),

J=1

Zaijxlz- <b;,fori=1,2,...,m.

=
This point x? is in F. Therefore, dim(F) > dim(P) — 1. Hence, F is a facet of
P. []

Theorem (Necessity of facets). Suppose that polytope P is described by a
linear system. Then for each facet F of ‘P, it is necessary that some valid
inequality that describes F be used in the description of P.

Proof. Without loss of generality, we can describe P as the solution set of

n
E ajjx; =b;, fori =1,2,...,k;
j=1
n
E aijXx;j <b;,fori=1,2,...,m,
j=1

where the equations
n —~
> Gyxj=b; fori =1,2,... .k
j=1

are linearly independent, and such that fori = 1, 2, ..., m, there exist points

0.5 Polytopes 33

X' in P with
n
E Ll,'jy; < bi.
Jj=1

Suppose that F is a facet of P, but no inequality describing F appears in the
preceding description. Suppose that

n
> " apjx; < by
j=1

describes F. Let X be a point in the relative interior of F. Certainly there is no
nontrivial solution y € R¥ to

k
Zyi@j =0,forj=1,2,...,n.
i=1
Therefore, there is a solution z € R” to

> Gyz;=0.fori =1,2,....k

j=1

n

E apjl; > 0.
j=1

Now, for small enough € > 0, we have X + €z € P, but X + €z violates the
inequality

n

E apjx;j < by

j=1

describing F (for all € > 0). [|

Because of the following result, it is easier to work with full-dimensional
polytopes.

Unique Description Theorem. Let P be a full-dimensional polytope. Then
each valid inequality that describes a facet of P is unique, up to multiplication
by a positive scalar. Conversely, if a face F is described by a unique inequality,
up to multiplication by a positive scalar, then F is a facet of P.

34 0 Polytopes and Linear Programming

Proof. Let F be a nontrivial face of a full-dimensional polytope P. Suppose
that F is described by

n
1 1
Y oapx =B
=

and by
D = B
j=1

with () £ A(ﬂz) forany A > 0.Itis certainly the case thata! £ 0and o? # 0,
as F is a nontrivial face of PP. Furthermore, () £ k(ﬁz) forany A < 0, because
if that were the case we would have P C Y} = Jx ; = B!, which is ruled out
by the full dimensionality of 7P. We can conclude that

o! o?
1Go) ()]
is a linearly independent set. Therefore, by the Dimension Theorem, dim(F) <

n — 2. Hence, F can not be a facet of P.
For the converse, suppose that F is described by

n
Z(ijj‘ < ,3
Jj=1

Because F is nontrivial, we can assume that o # 0. If F is not a facet, then
there exists (ﬂ) with o’ # 0, such that () *+)\() for all A # 0, and

FcCixeR": Za;szﬁ

Consider the inequality

() Y (o) +ea)x; < p+ep,

j=1
where € is to be determined. It is trivial to check that (x) is satisfied for all
x € F. To see that (x) describes F, we need to find € so that strict inequality
holds in (x) for all x € P\ F. In fact, we need to check this only for such x
that are extreme points of P. Because there are only a finite number of such X,
there exists y > 0 so that

n
E ajxj <ﬂ—)/,
=1

0.6 Lagrangian Relaxation 35

for all such x. Therefore, it suffices to choose € so that

n
€ (Za;fc,- - ﬁ’) <7,
j=1

for all such x. Because there are only a finite number of such %, it is clear that
we can choose € appropriately. |

0.6 Lagrangian Relaxation

Let f : R" — R be a convex function. A vector heR"isa subgradient of f
at 77 if

m ~

fo) = f@E+ Y (m—Fhi, ¥V meR";

i=1
thatis, using the linear function f(7) + Y i, (7w — 7;)h; to extrapolate from 7,
we never overestimate f. The existence of a subgradient characterizes convex
functions. If f is differentiable at 77, then the subgradient of f at 7 is unique,
and it is the gradient of f at 7.

Our goal is to minimize f on R™. If a subgradient 1 is available for every

7 € R™, then we can utilize the following method for minimizing f.

The Subgradient Method

1. Let k :== 0 and choose 7° € R”™.

2. Compute the subgradient 7* at 7*.

3. Select a positive scalar (“step size™) A .

4. Let T+ = 7k — 3 Bk,

5. Go to step 2 unless h=0ora convergence criterion is met.

Before a description of how to choose the step size is given, we explain the
form of the iteration 7%+ .= 7% — Akﬁk. The idea is that, if A; > 0 is chosen
to be quite small, then, considering the definition of the subgradient, we can
hope that

FEY ~ f@ + Y G - T
i=1
Substituting 7 — A;/* for 751 on the right-hand side, we obtain
FEY ~ FGE =2y IR
i=1

Therefore, we can hope for a decrease in f as we iterate.

36 0 Polytopes and Linear Programming

As far as the convergence criterion goes, it is known that any choice of A, > 0
satisfying limy_,oo Ax = 0 and) ;- A, = oo leads to convergence, although
this result does not guide practice. Also, in regard to Step 5 of the Subgradient
Method, we note that, if 0 is a subgradient of f at 77, then 7 minimizes f.

It is worth mentioning that the sequence of f(7*) may not be nondecreasing.
In many practical uses, we are satisfied with a good upper bound on the true
minimum, and we may stop the iterations when k reaches some value K and
use minX_, £(7¥) as our best upper bound on the true minimum.

Sometimes we are interested in minimizing f on a convex set C C R”. In
this case, in Step 1 of the Subgradient Method, we take care to choose 70 ecC.
In Steps 4 and 5, we replace the subgradient 7 with its projection onto C. An
important example is when C = {w € R™ : 7 > 0}. In this case the projection
amounts to replacing the negative components of 7% with 0.

Next, we move to an important use of subgradient optimization. Let P be a
polyhedron in R”. We consider the linear program

n
Z .= max E Cj.Xj
=1

subject to:
(P) n
Zaifxf <b;, fori=12,...,m,
j=1

x eP.

For any nonnegative 7 € R™, we also consider the related linear program

m n m
flr):= Znibi + max Z (cj — Zﬂiaij X;
i=1 j=1 i=1

subject to:
xeP,

(L())

which is referred to as a Lagrangian relaxation of P.
LetC:={m eR” : 7 >0}.

Lagrangian Relaxation Theorem
a. For all m € C, z < f(m). Moreover, if the w} are the optimal dual vari-
. n
ables for the constraints ;
fan =z

b. The function f is convex and piecewise linear on C.

—1GijX;j <b,i=12,....,m, in P, then

0.6 Lagrangian Relaxation 37

c. If T € C and X is an optimal solution of L(7), then 7 eR™, defined by
l:—b Za,]xj,forl_l 2,.
is a subgradient of f at 7.

Proof
a. If we write L(7) in the equivalent form

f () := max Xn:cjxj + iﬂi (bi - Xn:aijxj>
i=1 i=1 =1

subject to:
x eP,
we see that every feasible solution x to P is also feasible to L(s), and the
objective value of such an x is at least as great in L(sr) as itis in P.
Moreover, suppose that P = {x € R" : Z'}zl dijx; <d;, 1=1,2,...,
r}, and that 7* and y* form the optimal solution of the dual of P:

m r
Z := min Znibi + Zyldl
i=1 =1

subject to:
D
(D) Za,jrr,—i—Zd,jy,—cj, forj=1,2,.
i=1
7, >0, fori=1,2,...,m

>0, forl=1,2,...,r

It follows that

f(rr*)_Zn*b —i—max{ (c] ZJT aij)xj DX 673}
j=1

m r r m
= E 7/ b; + min vid; - wid; =cj — E wlaij,
= .

Therefore, f(7*) = z.

38 0 Polytopes and Linear Programming

b. Thisisleft to the reader (use the same technique as was used for the Sensitivity
Theorem Problem, part b, p. 28).
c.

m n m
T) = ;b; + max P — a4 ;
f(m) ; ,+x€73;<c1 ; ,a,)x,

This theorem provides us with a practical scheme for determining a good
upper bound on z. We simply seek to minimize the convex function f on the
convex set C (as indicated in part a of the theorem, the minimum value is 7).
Rather than explicitly solve the linear program P, we apply the Subgradient
Method and repeatedly solve instances of L(;r). We note that

1. the projection operation here is quite easy — just replace the negative com-
ponents of T with 0;

2. the constraint set for L(;r) may be much easier to work with than the con-
straint set of P;

3. reoptimizing L (i), at each subgradient step, may not be so time consuming
once the iterates 7 start to converge.

Example (Lagrangian Relaxation). We consider the linear program

Z=max x| + xp
subject to:
(P) 3xp—x =< 1;
X1+ 3x <2;
0<xp,x <1
Taking P := {(x1, x2) : 0 < x1, x, < 1}, we are led to the Lagrangian relax-
ation

[y, m)=m + 2my + max (1 — 37y — mp)x1 + (1 + 7 — 3m2)x2
(L(7y, 72)) subject to:
0<x,xn =L

The extreme points of P are just the corners of the standard unit square. For

0.6 Lagrangian Relaxation 39

any point (71, 2), one of these corners of P will solve L(m, 7). Therefore,
we can make a table of f (s, 7,) as a function of the corners of P.
(x1,x2) fm,m2) h
(0, 0) 7y + 2 (
(L0) 1-2m+m (7)
0D 1+2m-m (3)
LD 2-m-2m (1))

For each corner of P, the set of (771, 7r;) for which that corner solves the
L(7y, my) is the solution set of a finite number of linear inequalities. The fol-
lowing graph is a contour plot of f for nonnegative 7. The minimizing point of
fisat(my, mp) = (1/5, 2/5). The “cells” in the plot have been labeled with the
corner of P associated with the solution of L(5r, >). Also, the table contains
the gradient (hence, subgradient) 2 of f on the interior of each of the cells.
Note that z =1 [(x;, x2) = (1/2, 1/2) is an optimal solution of P] and that

£(1/5,2/5) = 1.

2/ ——

0.1 02 03 0.4 05 Py

Problem (Subdifferential for the Lagrangian). Suppose that the set
of optimal solutions of L(rr) is bounded, and let X!, X%, ... %7 be the

40 0 Polytopes and Linear Programming

extreme-point optima of L(rr). Let ¥ be defined by
hf=b; =Y ¥, fori =1,2,....m.
j=1

Prove that the set of all subgradients of f at 7 is

p
!Z ,lLk/’lk :
k=1

P
,uk=1, [,LkZO,k=1,2,...,p

k=1

Exercise (Subdifferential for the Lagrangian). For the Lagrangian Re-
laxation Example, calculate all subgradients of f at all nonnegative (7,),
and verify that O is a subgradient of f at w if and only if (), m) =

(1/5,2/5).

0.7 The Dual Simplex Method

An important tool in integer linear programming is a variant of the simplex
method called the Dual Simplex Method. Its main use is to effectively resolve
a linear program after an additional inequality is appended.

The Dual Simplex Method is initiated with a basic partition 8,7 having the
property that B is dual feasible. Then, by a sequence of pairwise interchanges
of elements between 8 and 7, the method attempts to transform g into a primal-
feasible basis, all the while maintaining dual feasibility. The index g; € B is
eligible to leave the basis if xz < 0. If no such index exists, then g is already
primal feasible. Once the leaving index B; is selected, index n; € 7 is eligible
to enter the basis if A := —¢,,/a;;, is minimized among all ; with a;;, < 0.
If no such index exists, then P’ is infeasible. If A > 0, then the objective value
of the primal solution decreases. As there are only a finite number of bases, this
process must terminate in a finite number of iterations either with the conclusion
that P’ is infeasible or with a basis that is both primal feasible and dual feasible.
The only difficulty is that we may encounter “dual degeneracy” in which the
minimum ratio A is zero. If this happens, then the objective value does not
decrease, and we are not assured of finite termination. Fortunately, there is a
way around this difficulty.

The Epsilon-Perturbed Dual Simplex Method is realized by application of
the ordinary Dual Simplex Method to an algebraically perturbed program. Let

/e o J
c; =cj+e€,

0.8 Totally Unimodular Matrices, Graphs, and Digraphs 41

where € is considered to be an arbitrarily small positive indeterminant. Consider
applying the Dual Simplex Method with this new “objective row.” After any
sequence of pivots, components of the objective row will be polynomials in €.
Ratios of real polynomials in € form an ordered field — the ordering is achieved
by considering € to be an arbitrarily small positive real. Because the epsilons
are confined to the objective row, every iterate will be feasible for the original
problem. Moreover, the ordering of the field ensures that we are preserving
dual feasibility even for ¢ = 0. Therefore, even if € were set to zero, we would
be following the pivot rules of the Dual Simplex Method, maintaining dual
feasibility, and the objective-function value would be nonincreasing.

The reduced cost ¢, = ¢; — ¢y A, =Ty — > i Gy, €” + €" of nonbasic
variable x;, will never be identically zero because it always has an €”/ term.
Therefore, the perturbed problem does not suffer from dual degeneracy, and the
objective value of the basic solution x*, which is 37, ¢x} =377, cjx} +
Z;f:l €l x}*, decreases at each iteration. Because there are only a finite number
of bases, we have a finite version of the Dual Simplex Method.

0.8 Totally Unimodular Matrices, Graphs, and Digraphs

Some combinatorial-optimization problems can be solved with a straightfor-
ward application of linear-programming methods. In this section, the simplest
phenomenon that leads to such fortuitous circumstances is described.

Let Abethem x nreal matrix with g;; inrow i and column j. The matrix A is
totally unimodular if every square nonsingular submatrix of A has determinant
+1. Let b be the m x 1 vector with b; in position i. The following result can
easily be established by use of Cramer’s Rule.

Theorem (Unimodularity implies integrality). If A is totally unimodular and
b is integer valued, then every extreme point of P’ is integer valued.

Proof. Without loss of generality, we can assume that the rows of A are linearly
independent. Then every extreme point x* arises as the unique solution of

x; =0,
Aﬂx; = b,
for some choice of basis 8 and nonbasis 1. By Cramer’s Rule, the values of the
basic variables are
. det(Afg)

=—— fori=1,2,...,m,
5T Get(Agy m

42 0 Polytopes and Linear Programming
where
Ay =[Apg.....Ag .b. Ag, ... Ag,].

Because Afg isinteger valued, we have that det(Afg) is an integer. Also, because A
is totally unimodular and Ag is nonsingular, we have det(Ag) = =£1. Therefore,
xj is integer valued. []

A “near-converse” result is also easy to establish.

Theorem (Integrality implies unimodularity). Ler A be an integer matrix.
If the extreme points of {x € R" : Ax < b, x > 0} are integer valued, for all
integer vectors b, then A is totally unimodular.

Proof. The hypothesis implies that the extreme points of
P = {x e R"" : Ax = b, x > 0}
are integer valued for all integer vectors b, where A =[A, I].
Let B be an arbitrary invertible square submatrix of A. Let &’ and 8’ denote
the row and column indices of B in A. Using identity columns from A, we
complete B to an order-m invertible matrix Ag of A. Therefore, Ag has the

form
B 0
X I

Clearly we have det(Zﬂ) = +det(B).

Next, for each i =1,2,...,m, we consider the right-hand side, b :=
Azﬂe + e, where A = [maxk,j(zgl)kﬂ. By the choice of A, we have that
the basic solution defined by the choice of basis B is nonnegative: xz =
Ae + Zglei. Therefore, these basic solutions correspond to extreme points
of P’. By hypothesis, these are integer valued. Therefore, xp — Ae= Z;le" is
also integer valued fori = 1, 2, ..., m. However, for each i, this is just the ith
column of Zgl Therefore, we conclude that 251 is integer valued.

Now, because Zﬂ and Zgl are integer valued, each has an integer determinant.
However, because the determinant of a matrix and its inverse are reciprocals of
one another, they must both be +1 or —1.]

There are several operations that preserve total unimodularity. Obviously, if
A is totally unimodular, then AT and [A, I are also totally unimodular. Total
unimodularity is also preserved under pivoting.

0.8 Totally Unimodular Matrices, Graphs, and Digraphs 43

Problem (Unimodularity and piveting). Prove that, if A is totally uni-
modular, then any matrix obtained from A by performing Gauss—Jordan
pivots is also totally unimodular.

Totally unimodular matrices can also be joined together. For example, if A!
and A? are totally unimodular, then

Al 0
0 A2

is totally unimodular. The result of the following problem is more subtle.

Problem (Unimodularity and connections). The following A’ are matri-
ces, and the b’ are row vectors. If

() = (%)

are totally unimodular, then

Al 0
b' b
0 A2

is totally unimodular.

Some examples of totally unimodular matrices come from graphs and di-
graphs. To be precise, a graph or digraph G consists of a finite set of vertices
V(G) and a finite collection of edges E(G), the elements of which are pairs of
elements of V(G). For each edge of a digraph, one vertex is the head and the
other is the tail. For each edge of a graph, both vertices are heads. Sometimes
the vertices of an edge are referred to as its endpoints. If both endpoints of an
edge are the same, then the edge is called a loop. The vertex-edge incidence
matrix A(G) of a graph or digraph is a 0, ==1-valued matrix that has the rows
indexed by V(G) and the columns indexed by E(G). If v € V(G) is a head
(respectively, tail) of an edge e, then there is an additive contribution of +1
(respectively, —1) to A,.(G). Therefore, for a graph, every column of A(G)
has one +1 and one —1 entry — unless the column is indexed by a loop e at
v, in which case the column has no nonzeros, because A,.(G) = -1+ 1 =0.
Similarly, for a digraph, every column of A(G) has two +1 entries — unless the
column is indexed by a loop e at v, in which case the column has one nonzero
value whichis A,.(G) = +1+1 = +42.

The most fundamental totally unimodular matrices derive from digraphs.

44 0 Polytopes and Linear Programming

Theorem (Unimodularity and digraphs). If A(G) is the 0, 1-valued vertex-
edge incidence matrix of a digraph G, then A(G) is totally unimodular.

Proof. We prove that each square submatrix B of A(G) has determinant 0, £1,
by induction on the order k of B. The result is clear for k = 1. There are three
cases to consider: (1) If B has a zero column, then det(B) = 0; (2) if every
column of B has two nonzeros, then the rows of B add up to the zero vector,
so det(B) = 0; (3) if some column of B has exactly one nonzero, then we may
expand the determinant along that column, and the result easily follows by use
of the inductive hypothesis. []

A graph is bipartite if there is a partition of V(G) into V|(G) and V»(G) (that
is, V(G) = Vi(G) U V2(G), Vi(G) N V2(G) = ¥, E(G[V1]) = E(G[V2]) = ¥),
so that all edges have one vertex in V|(G) and one in V,(G). A matching of G
is a set of edges meeting each vertex of G no more than once. A consequence
of the previous result is the famous characterization of maximum-cardinality
matchings in bipartite graphs.

Konig’s Theorem. The number of edges in a maximum-cardinality matching
in a bipartite graph G is equal to the minimum number of vertices needed to
cover some endpoint of every edge of G.

Proof. Let G be a bipartite graph with vertex partition V|(G), V»(G). For a
graph G andv € V(G), we let §5(v) denote the set of edges of G having exactly
one endpoint at v. The maximum-cardinality matching problem is equivalent
to solving the following program in integer variables:

max E Xe

ecE
subject to:

dYooxe s, =1, Vv e Vi(G);
e€dg(vy)

> xe +s5,=1, Ve WG
€8 (v2)

x, >0, Ve e E(G),
sy, >0, Vv, e Vi(G);
sy, >0, Vv, € Vo(G).

(We note that feasibility implies that the variables are bounded by 1.) The
constraint matrix is totally unimodular (to see this, note that scaling rows or

0.8 Totally Unimodular Matrices, Graphs, and Digraphs 45

columns of a matrix by —1 preserves total unimodularity and that A is totally
unimodular if and only if [A, I] is; we can scale the V;(G) rows by —1 and
then scale the columns corresponding to s,, variables by —1 to get a matrix
that is of the form [A, I], where A is the vertex-edge incidence matrix of a
digraph). Therefore, the optimal value of the program is the same as that of
its linear-programming relaxation. Let x be an optimal solution to this integer
program. S(x) is a maximum-cardinality matching of G. |S(x)| is equal to the
optimal objective value of the dual linear program

min Z Yy, + Z Yvy

vieVI(G) v2€V2(G)
subject to:
W o+ oy =1, Ve ={vi,n} € EG);
Yo, =0, Vv € Vi(G);

Yy, = 0, VVZ c V2(G)

At optimality, no variable will have value greater than 1. Total unimodularity
implies that there is an optimal solution that is integer valued. If y is such a
0/1-valued solution, then S(y) meets every edge of G, and |S(y)| = |S(x)|.

|

Hall’s Theorem. Let G be a bipartite graph with vertex partition
Vi(G), Vao(G). The graph G has a matching that meets all of Vi(G) if and
only if IN(W)| = |W| forall W C Vi(G).

Proof 1 (Hall’s Theorem). Clearly the condition |N(W)| > W], for all W C
Vi(G),is necessary for G to contain a matching meeting all of V;(G). Therefore,
suppose that G has no matching that meets all of V;(G). Then the optimal
objective value of the linear programs of the proof of Konig’s Theorem is less
than | V1(G)|. As in that proof, we can select an optimal solution y to the dual
that is 0/1-valued. That is, y is a 0/1-valued solution to

Yoot D Y <IViG)l;
vieVi(G) v2€V2(G)
Yo+, 21, Ve=(vi,n) € EG).

Now, by defining y € {0, 1}V@ by

~ 1=y, forveVi(G)
Vo forv € V,(G) °

Vo

46 0 Polytopes and Linear Programming

we have a 0/1-valued solution y to
Z ’.)71/2 < Z S;vl 9
VzEVz(G) V|€V| (G)

Vo, = Vs Ye={vi,v2} € EG).

Let W := {v; € Vi(G) : J,, = 1}. The constraints clearly imply that N(W) C
{v2 € Va(G) : 3,, = 1}, and then that |[N(W)| < |W|.]

Hall’s Theorem can also be proven directly from Konig’s Theorem without
a direct appeal to linear programming and total unimodularity.

Proof 2 (Hall’s Theorem). Again, suppose that G has no matching that meets
allof V1(G).Let S C V(G)be aminimum cover of E(G). By Konig’s Theorem,
we have

[Vi(G)] > |S] = 1SN Vi(G)] + [S N Va(G)].
Therefore,
[ViI(G)\ S| = [VI(G)| = [SNVI(G)| > |SN Vo (G)].

Now, using the fact that S covers E(G), we see that N(V1(G) \ §) C SN VL(G)
(in fact, we have equality, as S is a minimum-cardinality cover). Therefore, we
justlet W := Vi(G)\ S. []

A0, 1-valued matrix A is a consecutive-ones matrix if the rows can be ordered
so that the ones in each column appear consecutively.

Theorem (Unimodularity and consecutive ones). If A is a consecutive-ones
matrix, then A is totally unimodular.

Proof. Let B be a square submatrix of A. We may assume that the rows of B
are ordered so that the ones appear consecutively in each column. There are
two cases to consider: (1) If the first row of B is all zero, then det(B) =

(2) if there is a one somewhere in the first row, consider the column j of B
that has the least number, say k, of ones, among all columns with a one in
the first row. Subtract row 1 from rows i satisfying 2 <i <k, and call the
resulting matrix B’. Clearly det(B) = det(B). By determinant expansion, we
see that det(B’) = det(B) where B i B is the submatrix of B’ we obtain by deleting
column j and the first row. Now B is a consecutive-ones matrix and its order
is less than B, so the result follows by induction on the order of B.]

0.9 Further Study 47

Example (Workforce planning). Consecutive-ones matrices naturally arise
in workforce planning. Suppose that we are planning for time periods i =
1,2,...,m. In time period i, we require that at least d; workers be assigned
for work. We assume that workers can be hired for shifts of consecutive time
periods and that the cost c¢; of staffing shift j with each worker depends on only
the shift. The number n of shifts is at most (m;” 1) — probably much less because
an allowable shift may have restrictions (e.g., a maximum duration). The goal is
to determine the number of workers x; to assign to shift j, for j =1,2,...,n,
so as to minimize total cost. We can formulate the problem as the integer linear

program

n
min E CjXj
j=1
subject to:

n
E ajjx; > d;, fori =1,2,...,m;
Jj=1

x; > Ointeger, for j =1,2,...,n.

It is easy to see that the m x n matrix A is a consecutive-ones matrix. Because
such matrices are totally unimodular, we can solve the workforce-planning
problem as a linear program. ®

0.9 Further Study

There are several very important topics in linear programming that we have not
even touched on. A course devoted to linear programming could certainly study
the following topics:

1. Implementation issues connected with the Simplex Methods; in particular,
basis factorization and updating, practical pivot rules (e.g., steepest-edge and
devex), scaling, preprocessing, and efficient treatment of upper bounds on
the variables.

2. Large-scale linear programming (e.g., column generation, Dantzig—Wolfe
decomposition, and approximate methods).

3. Ellipsoid algorithms for linear programming; in particular, the theory and
its consequences for combinatorial optimization.

4. Interior-point algorithms for linear programming; in particular, the theory as
well as practical issues associated with its use.

5. The abstract combinatorial viewpoint of oriented matroids.

48 0 Polytopes and Linear Programming

A terrific starting point for study of these areas is the survey paper by Todd
(2002). The book by Grétschel, Lovasz, and Schrijver (1988) is a great resource
for topic 3. The monograph by Bjorner, Las Vergnas, Sturmfels, White and
Ziegler (1999) is the definitive starting point for studying topic 5.

Regarding further study concerning the combinatorics of polytopes, an ex-
cellent resource is the book by Ziegler (1994).

The study of total unimodularity only begins to touch on the beautiful in-
terplay between combinatories and integer linear programming. A much more
thorough study is the excellent monograph by Cornuéjols (2001).

1

Matroids and the Greedy Algorithm

Matroids are objects that generalize certain combinatorial aspects of linear
dependence of finite sets of points in a vector space. A graph can be encoded
by means of its 0/1-valued vertex-edge incidence matrix. It turns out that, when
this matrix is viewed over GF(2), each linearly independent set of columns
corresponds to a forest in the underlying graph, and vice versa. Therefore, a
fortiori, matroids generalize aspects of graphs. From this viewpoint, Hassler
Whitney founded the subject of matroid theory in 1935.

In a natural sense, matroids turn out to yield the precise structure for which
the most naive “greedy” algorithm finds an optimal solution to combinatorial-
optimization problems for all weight functions. Therefore, matroid theory is
a natural starting point for studying combinatorial-optimization methods. Fur-
thermore, matroids have algorithmic value well beyond the study of greedy
algorithms (see, for example, Chapter 3).

In addition to the algorithmic importance of matroids, we also use matroids
as a starting point for exploring the power of polytopes and linear-programming
duality in combinatorial optimization.

1.1 Independence Axioms and Examples of Matroids

A matroid M is a finite set E(M) together with a subset Z(M) of 2E™) that
satisfies the following properties:

Independence Axioms

I1. ¥ € IZ(M).

R2.XCYeIM)=— X € IZ(M).

B.XeIM),Y €eI(M),|Y|>|X|=—JecY\ X suchthat X +e €
IZ(M).

49

50 1 Matroids and the Greedy Algorithm

The set Z(M) is called the set of independent sets of M. The set E(M) is
called the ground set of M. Property I3 is called the exchange axiom.
What follows are some examples that we will revisit as we proceed.

Example (Linear matroid). Let A be a matrix over a field F, with columns
indexed by the finite set E(A). Let E(M) := E(A), and let Z(M) be the set
of X C E(M) such that the columns of Ay are linearly independent. In this
case, we say that M is the linear matroid of A and that A is a representation
of M over F. It is very easy to see that properties I1 and 12 hold. To see how I3
holds, suppose that X + e ¢ Z(M) for every e € Y \ X. Then the columns of
Ay are in c.s.(Ay) (the column space or linear span of Ay). Hence, c.s.(Ay) is
a subset of c.s.(Ax). Therefore, the dimension of c.s.(Ay) is no more than that
of ¢.s.(Ay). Therefore, we have |Y| < | X]. e

Let G be a graph with vertex set V(G) and edge set E(G). We denote the
numbers of connected components of G (counting isolated vertices as compo-
nents) by «(G). For F C E(G), let G.F (G restricted to F) denote the graph
with V(G.F) := V(G) and E(G.F) := F. A set of edges F of graph G is a
forest if it contains no cycle.

Lemma (Forest components). Let F' be a forest of a graph G. Then |F| =
IV(G)| — k(G.F).

Proof. By induction of | F|. Clearly true for | F'| = 0. For the inductive step, we
just observe that, fore € F, k(G.(F —e)) = «(G.F) — 1. |

Example (Graphic matroid). Let G be a graph. Let E(M) := E(G), and let
Z(M) be the set of forests of G. In this case, we say that M is the graphic
matroid of G. It is easy to see that I1 and I2 hold. To see how I3 holds, suppose
that X and Y are forests such that X 4 e is not a forest for every e € ¥ \ X.
Then every edgein Y \ X would have both ends in the same component of G. X .
Hence, k(G.Y) > «(G.X). Therefore, by the Lemma (Forest components), we
have |Y| < | X]. L]

Example (Uniform matroid). Let E(M) be a finite set, and let 7 be an integer
satisfying0 <r < |E(M)|.LetZ(M) :={X C E(M) : |X| < r}. Inthis case,
we say that M is a uniform matroid. ®

Example (Direct sum). Let M, and M, be matroids with E(M;) N E(M,) =
#. Define M by E(M) := E(M)U E(M,), and Z(M) :={X; UX, : X, €
I(My), X, € Z(M3)}. Then matroid M is the direct sum of M, and M,. ®

1.2 Circuit Properties 51

A system that respects I1 and 12 but not necessarily I3 is called an inde-
pendence system. As the following example indicates, not every independence
system is a matroid.

Example (Vertex packing on a star). Let G be a simple undirected graph.
Define M by E(M) := V(G), and let Z(M) be the set of “vertex packings” of
G —avertex packing of G is just a set of vertices X with no edges of G between
elements of X. Clearly M is an independence system. To see that M need not
be a matroid consider the n-star graph:

withn > 3. The pair X = {1}, Y = {2, 3, ..., n} violates I3. ()

1.2 Circuit Properties

For any independence system, the elements of 2£() \ T(M) are called the
dependent sets of M. We distinguish the dependent sets whose proper subsets
are in Z(M). We call these subsets the circuits of M, and we write the set of
circuits of M as

CM)={XCEM): X€&IM), X —ecI(M), YeeX}

For example, if M is the graphic matroid of a graph G, then the circuits of
M are the cycles of G. Single-element circuits of a matroid are called loops; if
M 1is the graphic matroid of a graph G, then the set of loops of M is precisely
the set of loops of G.

Problem [Graphic = linear over GF(2)]. Show that if A(G) is the
vertex-edge incidence matrix of G, then the matroid represented by A(G),
with numbers of A(G) interpreted in GF(2), is precisely the graphic matroid
of G.

52 1 Matroids and the Greedy Algorithm

If M is a matroid, then C(M) obeys the following properties:

Circuit Properties

Cl. 0 €C(M).

C2. XeCM),YeCM),XCY=X=Y.

C3. XeCM),YeCM), X#Y,ecXNY = I ZC(XUY)—e
such that Z € C(M).

Properties C1 and C2 follow from I1 and 12 and the definition of C(M).
Theorem (Circuit elimination). If M is a matroid, then C(M) satisfies C3.

Proof. Suppose that X, Y, e satisfy the hypotheses of C3 but that (X UY) — e
contains no element of C(M). By C2, Y \ X # J, so choose some f € Y \ X.
By the definition of C(M), Y — f € Z(M).

Let W be a subset of X UY that is maximal among all sets in Z(M) that
contain ¥ — f. Clearly f ¢ W. Choose some g € X \ W [the set X \ W is
nonempty because X is a circuit and W € Z(M)]. Clearly f and g are dis-
tinct because f € ¥ \ X. In the following figure W is indicated by the shaded
region.

X

-\
Hence,

W= I[(XUD\{f.gll =IXUY|[=2<|[(XUY)—e|

Now, applying I3 to W and (X U Y) — e, we see that there is an element & €
(XUY)—e)\ W,suchthat W + h € Z(M). This contradicts the maximality
of W. []

Problem (Linear circuit elimination). Give a direct proof of C3 for linear
matroids.

1.3 Representations 53

Problem (Graphic circuit elimination). Give a direct proof of C3 for
graphic matroids.

Property C3 is called the circuit-elimination property. A system satisfying
properties C1 and C2 but not necessarily C3 is called a clutter.

Example [Vertex packing on a star, continued (see p. 51)]. X := {1, i}
and Y := {1, j} are distinct circuits for 1 #i # j # 1, but {i, j} contains no
circuit. o

It should be clear that C(M) completely determines Z(M) for any indepen-
dence system. That is, given E(M) and C(M) satisfying C1 and C2, there is
precisely one choice of Z(M) that has circuit set C(M) that will satisfy 11 and
12. That choice is

I(M):={X CE(M) :AY C X, Y € C(M)).

Problem (Unique-circuit property). Let M be a matroid. Prove that if
X eI(M)and X + e &€ T(M), then X + e contains a unique circuit of M.
Give an example to show how this need not hold for a general independence
system.

Problem (Linear unique circuit). Give a direct proof of the unique-circuit
property for linear matroids.

Problem (Graphic unique circuit). Give a direct proof of the unique-
circuit property for graphic matroids.

1.3 Representations

The Fano matroid is the matroid represented over GF(2) by the matrix

4

I
S O = =
S = O N
_o O W
—_—_= O &
—_ O = W
S = = &
—_— ==

54 1 Matroids and the Greedy Algorithm

Exercise [Linear over GF(2) /= graphic]. Prove that the Fano matroid
is not graphic.

A linear matroid may have many representations. A minimal representation
of M is a representation having linearly independent rows. If A and A’ are
r X n matrices over the same field, having full row rank, and there is a nonsin-
gular matrix B and a nonsingular diagonal matrix D such that A’ = BAD,
then A and A’ are projectively equivalent. It is easy to see that projective
equivalence is an equivalence relation. If A and A’ are projectively equivalent
then they represent the same matroid; however, the converse is not generally
true.

Proposition (Fano representation). The Fano matroid is representable over
a field if and only if the field has characteristic 2. Moreover, F is the only
minimal representation of the Fano matroid over every characteristic-2 field,
up to projective equivalence.

Proof. If the Fano matroid can be represented over a field F, then it has a
minimal representation over F of the form

1 2 3 4 5 6 7

ay app a3 ajg dis dje apr
A= |axn axn ay au axs ay ax
a1 azy Gz a4z Az daz aig

The first three columns of A must be linearly independent, so, by using ele-
mentary row operations, we can bring A into the form

4 5 6 7

/ ’ / /
ayy dis dig dy
/ ’ / /
Gyy Gps Uy Aoy
/ ’ / ’
a3y 435 Az dig

=

I
S O = =
S = O N
- o O W

Wehave aj, = 0,45, # 0,and a}, # 0, as {2, 3, 4} is a circuit. Similarly, a}5 #
0, abs =0, afs # 0, and a4 # 0, a), # 0, a, = 0. Finally, aj, # 0, a5, # 0,
and a}; # 0, as {1, 2, 3, 7} is a circuit.

1.3 Representations 55

Therefore, any minimal representation of the Fano matroid over a field F, up
to multiplication on the left by an invertible matrix, is of the form

1 2 3 4 5 6 7
1 00 0 a b c
01 0 d 0 e f],
001 g h O i

with the letters being nonzeros in the field F. We can bring the matrix into the
form

SO = =
S = O N
—_ o O W
N = O &
L O = W
oOR = &
e N |

with the letters being nonzeros, by nonzero row and column scaling (multiply
row 1 by ¢!, row 2 by f~!, row 3 by i~!, column 4 by d~! f, column 5
by a~'c, column 6 by b~'c, column 1 by ¢, column 2 by f, and column 3
by i).

Now, columns 1, 4, and 7 should be dependent; calculating the determinant
and setting it to 0, we get r = 1. Similarly, the required dependence of columns
2,5, and 7 implies s = 1, and the dependence of columns 3, 6, and 7 implies
q = 1. Therefore, over any field F, F is the only minimal representation of the
Fano matroid, up to projective equivalence.

Finally, columns 4, 5, and 6 should be dependent, so we get 1 + 1 =0.
Therefore, the field must have characteristic 2. []

The non-Fano matroid arises when the GF(2) representation of the Fano
matroid is used but the numbers are considered as rational. The representation
F, viewed over Q, is projectively equivalent to the rational matrix

4 5 6 7

0 1/2 1/2 1/3

12 0 1/2 1/3
1 1 1 1

K

Il
—_— O =
_— 0 N
-_ o O W

Let F’_be the matrix that we obtain by deleting the last row (of all 1°s) of F_.
The linear dependencies among the columns of F_ are the same as the affine
dependencies among the columns of the matrix F’. We can plot the columns

56 1 Matroids and the Greedy Algorithm

of F’ as points in the Euclidean plane and then visualize the independent sets
of the non-Fano matroid as the sets of points that are affinely independent (in
the plane, this means pairs of points that are not coincident and triples of points
that do not lie on a straight line):

Exercise (Nonrepresentable matroids). First prove that the non-Fano ma-
troid is representable over a field if and only if the characteristic of the
field is not 2, and then prove that there are matroids representable over
no field by taking the direct sum of the Fano matroid and the non-Fano
matroid.

1.4 The Greedy Algorithm

Associated with any independence system M is its rank functionr, , : 2EM)
R, defined by

rM(X) =max{|Y| : Y C X, Y e Z(M)}.

We call rM(E(M)) the rank of M. A set S C E(M) such that S € Z(M) and
|S| = rM(E(M)) is a base of M. We write B(M) for the set of bases of M. It
is a simple matter to find a base of the independence system M when M is
a matroid, provided that we can easily recognize when a set is in Z(M). We
simply use a “greedy” algorithm:

1.4 The Greedy Algorithm 57

Cardinality Greedy Algorithm

1. S:=0.U := E(M).

2. While (U # 9)
i. chooseany e € U; U :=U —¢;
ii. if S+e€Z(M),then S := S +e.

Throughout execution of the algorithm, S C E(M) and S € Z(M). At termi-
nation, |S| = rM(E (M)) (convince yourself of this by using 12 and 13).

The algorithm need not find a base of M, if M is a general independence
system.

Example [Vertex packing on a star, continued (see pp. 51,53)]. If 1 ischosen
as the first element to put in S, then no other element can be added, but the only
base of M is {2, 3, ..., n}. L)

With respect to a matroid M and weight function ¢, we consider the problem
of finding maximum-weight independent sets Sy of cardinality k for all k satis-
fying 0 <k < rM(E (M)). This is an extension of the problem of determining
the rank of M; in that case, c({e}) = 1,V e € E(M), and we concern ourselves
only with k = rM(E (M)). A greedy algorithm for the present problem is as
follows:

(Weighted) Greedy Algorithm

1. So:=0.k:=1.U := E(M).
2. While (U # 9)
i. choose s; € U of maximum weight; U := U — s;
ii. if Sy_1 + s € Z(M), then S := Si_1 + s and k := k + 1.

Next we demonstrate that each time an S is assigned, Sy is a maximum-
weight independent set of cardinality k.

Theorem (Greedy optimality for matroids). The Greedy Algorithm finds
maximum-weight independent sets of cardinality k for every k satisfying
Il <k=r (E(M)).

58 1 Matroids and the Greedy Algorithm

Proof. The proof is by contradiction. Note that Sy = {sy, 52, ..., s} for 1 <
k < r, (E(M)). Hence, c(s1) > c(s2) = -~ = c(si). Let Ty = {th ek, oty
be any maximum-weight independent set of cardinality k, with the elements
numbered so that c(f) > c(t5) > - -+ > c(#{). Suppose that c(Ty) > c(Sy);
then there exists p, 1 < p <k, such that c(tI’j) > c¢(s,). Now, consider the
sets

...t . 1h),

{s1,82, ..., 8p—1}.

Property 13 implies that there is some i, | <i < p, such that

tik ¢{S1,S2, ...,Spfl},
{S17S25 "'7Sp—]}+tik EI(M)‘

Now c(tik) > C(tik+1) > > c(t[’;) > c(sp); therefore, tl.k should have been cho-
sen in preference to s, by the Greedy Algorithm. []

Exercise (Maximum-weight spanning tree). Use the Greedy Algorithm,
with respect to the graphic matroid of the following edge-weighted graph,
to find a maximum-weight spanning tree.

1.4 The Greedy Algorithm 59

The Greedy Algorithm can be used to find a maximum-weight independent
set (with no restriction on the cardinality) by stopping once all positive-weight
elements have been considered in Step 2.i.

Problem (Scheduling). Jobs labeled 1, 2, ..., n are to be processed by a
single machine. All jobs require the same processing time. Each job j has a
deadline d; and a profit ¢;, which will be earned if the job is completed by
its deadline. The problem is to find the ordering of the jobs that maximizes
total profit. First, prove that if a subset of the jobs can be completed on time,
then they will be completed on time if they are ordered by deadline. Next,
let E(M):={1,2,...,n},and

I(M) :={J C E(M) : the jobsin J are completed on time}.

Prove that M is a matroid by verifying that I1-I3 hold for Z(M), and describe
a method for finding an optimal order for processing the jobs.

Exercise (Scheduling). Solve the scheduling problem with the following
data. The machine is available at 12:00 noon, and each job requires one hour
of processing time.

Jobj ¢ d;
1 20 3:00 p.m.
2 15 1:00 p.m.
3 10 2:00 p.M.
4 10 1:00 p.m.
5 6 2:00 p.m.
6 4 5:00 p.Mm.
7 3 5:00 p.Mm.
8 2 4:00 p.M.
9 2 2:00 p.M.
10 1 6:00 p.M.

It is natural to wonder whether some class of independence systems, more
general than matroids, might permit the Greedy Algorithm to always find
maximum-weight independent sets of all cardinalities. The following result
ends such speculation.

60 1 Matroids and the Greedy Algorithm

Theorem (Greedy characterization of matroids). Let M be an independence
system. If the Greedy Algorithm produces maximum-weight independent sets of
all cardinalities for every (nonnegative) weight function, then M is a matroid.

Proof. We must prove that Z(M) satisfies 13. The proof is by contradiction.
Choose Y and X so that I3 fails. We assign weights as follows:

1+e¢ ifeeX
cle): =131, ifeeY\X ,
0, ifee EIM)\(XUY)

with € > 0 to be determined. Because Y is in Z(M), the Greedy Algorithm
should find a maximum-weight independent set of cardinality |Y|. With just
| X| steps, the Greedy Algorithm chooses all of X, and then it completes X to
an independent set X’ of cardinality |Y | by using 0-weight elements, for a total
weight of | X|(1 + €). Now we just take care to choose € < 1/|E(M)], so that
c(X’) < c¢(Y). This is a contradiction. [|

Problem (Swapping Algorithm)

Swapping Algorithm

1. Choose any S € Z(M), such that |S| = k.
2. While (3§’ € Z(M) with | S| =k, |SAS’| = 2and ¢(S") > ¢(S)): Let
S:=9.

Prove that if M is a matroid, then the Swapping Algorithm finds a maximum-
weight independent set of cardinality k.

Exercise [Maximum-weight spanning tree, continued (see p. 58)]. Apply
the Swapping Algorithm to calculate a maximum-weight spanning tree for
the edge-weighted graph of the Maximum-weight spanning tree Exercise.

1.5 Rank Properties

Let E be a finite set, and let M be a matroid with E(M) = E. If r := " then
r satisfies the following useful properties:

1.5 Rank Properties 61

Rank Properties

R1. 0 < r(X) < |X]|, and integer valued, V X C E.
R XCY=r(X)<r(Y),YX,YCE.
R3.r(XUY)+rXNnY)<r(X)+r(Y),VX,Y CE.

Property R3 is called submodularity. The rank function of a general inde-
pendence system M need only satisfy R1 and R2 and the weaker property of
subadditivity: rM(X uY) < rM(X) + rM(Y).

Example [Vertex packing on a star, continued (see pp. 51,53,57)]. For X :=
{1,i} and Y := {1, j}, with i # j, we have rM(X) =1, rM(Y) =1, rM(XU
Y)=2,andrM(XﬂY)=l. o

Problem (Cuts). Let G be a graph, let E := V(G), let ¢ be a nonnegative-
weight function on E(G), and define r(X) := ZeeSG(X) c(e), for X C E.
Show that always satisfies R3, but need not satisfy R1 and R2 [even when
c(e) =1,forall e € E(G)].

Theorem (Submodularity of matroid rank function). If M is a matroid, then
" satisfies R3.

Proof. Let J be a maximal independent subset of X N Y. Extend J to Jx (Jy),
a maximal independent subset of X (Y, respectively). We have rM(X nYy)=
|J| = |Jx N Jy|. If we can show that rM(X UY) < |Jx U Jy|, then R3 follows,
because |Jx U Jy| + |Jx N Jy| = |Jx| + |Jy|. Extend Jx to a maximal inde-
pendent subset K of X U Y.

D

N @

62 1 Matroids and the Greedy Algorithm

Suppose that |K| > |Jx U Jy|. Because Jx \ J is contained in both K and
Jx U Jy, we have |K \ (Jx \ J)| > |Jy|. Now, by the choice of Jx, we have
that K \ (Jx \ J) is an independent subset of Y. This contradicts the choice of
Jy. []

Our next goal is to show that R1-R3 characterize the rank functions of
matroids. That is, for every E and r satisfying R1-R3, there is a matroid M
with E(M) = E and ry="r First, we establish a useful lemma.

Lemma (Closure). Suppose that r : 2 + R satisfies R2 and R3. If X and Y
are arbitrary subsets of E with the property thatr(X +e) = r(X),Ve e Y \ X,
thenr(X UY) = r(X).

Proof. The proof is by induction on k = |Y \ X|. For k = 1 there is nothing to
show. For k > 1, choosee € Y \ X.

2r(X)=r(XU((Y\ X)—e))+r(X +e) (bytheinductive hypothesis)

> r(XUY)+r(X) (byR3)
2r(X) (by R2).

IV

Therefore, equality must hold throughout, and we conclude that r(X UY) =
r(X).]

Theorem (Rank characterization of matroids). Let E be a finite set, and
suppose that r : 2F + R satisfies RI-R3. Then

IM):={Y CEM) :|Y|=r)}.
defines a matroid M with E(M) := E and ry ="
Proof. We show that the choice of Z(M) in the statement of the theorem satisfies
11-1I3, and then show that r is indeed the rank function of M.

R1 implies that r (@) = 0; therefore, ¥ € Z(M), and 11 holds for Z(M).
Now, suppose that X C Y € Z(M). Therefore, r(Y) = |Y|. R3 implies that

r(XUX\NX)+r(XNE\ X)) <r(X)+r\X),
which reduces to

r(¥Y) = r(X)+r¥ \ X).

1.6 Duality 63

Using the facts that r(Y) = |Y|, r(Y \ X) < |Y \ X|, and r(X) < | X]|, we can
conclude that ¥(X) = | X|. Therefore, X € Z(M), and 12 holds for Z(M).

Next, choose arbitrary X, Y € Z(M), such that |Y| > |X|. We prove I3 by
contradiction. If I3 fails, then r(X + e) = r(X) foralle € Y \ X. Applying the
Closure Lemma, we have r(X U Y) = r(X). However, r(X) = | X| and r(X U
Y) > r(Y) = |Y]|implies |Y| < |X|. Therefore, 13 holds for Z(M).

We conclude that M is a matroid on E. Because M is a matroid, it has a
well-defined rank function Ty which satisfies

rM(Y) =max{|X| : X C Y, |[X|=r(X)}
R2 for r implies that

max{|X| : X C Y, |X|=r(X)} <r().
Therefore, we need show only that Y contains a set X with | X| = r(X) = r(Y).
Let X be a maximal independent subset of Y. Because X +e¢ € Z(M), Ve €

Y\ X,wehaver(X +¢) =r(X),Ve € Y \ X.By the Closure Lemma, we can
conclude that ¥(Y) = r(X) = | X|, and we are done. [|

1.6 Duality
Every matroid M has a natural dual M* with E(M*) := E(M) and

IM*):={X C E(M) : E(M)\ X contains a base of M}.
Theorem (Matroid duality). The dual of a matroid is a matroid.

Proof. Clearly M* is an independence system. Therefore, it possesses a well-
defined rank function r, . First we demonstrate that

rM*(X) = |X|+ rM(E(M) \ X)— rM(E(M)), VX CEWMY.

Let Y be asubsetof X thatisin Z(M*). By the definitionof Z(M™*), E(M)\ Y
contains a base B of M. If Y is a (setwise) maximal subset of X thatisin Z(M™),
then (X \ B) \ Y is empty (otherwise we could append such elements to Y to
get a larger set). Therefore, a maximal such Y is of the form X \ B for some
base B of M. Now, if ¥ = X \ B is a maximum cardinality such set, then

64 1 Matroids and the Greedy Algorithm

|X N B| must be a small as possible, because all bases of M have the same
cardinality.

Therefore, forany X C E(M), let Bx be abase of M with | Bx N X| as small
as possible. By the choice of By, we have rM*(X) = |X \ Bx|. Moreover, the
choice of By dictates that |Bx \ X| = rM(E(M) \ X). Therefore, we have

r.(X) =X\ Byl

= |X| + Bx \ X| — |By]
= IX| + 7, (EQM)\ X) —r, (E(M)).

We leave verification that r :=r, _satisfies RI-R3 as a problem.]

Problem (Dual rank function). Verify thatr := Fope satisfies R1-R3 when
M 1is a matroid.

It is clear from the specification of Z(M*) that the bases of M* are precisely
the complements of the bases of M. That is, B(M*) ={E(M)\ B : B €
B(M)}. Therefore, another algorithm for finding a maximum-weight base B of
M, with respect to the weight function c, is to use the Greedy Algorithm to
select a minimum-weight base B* of M*, and then let B := E(M) \ B*. The
choice of algorithm may depend on the structure of the matroid. Indeed, for
graphic matroids, there are specialized algorithms that do not appear to extend
to arbitrary matroids.

Problem (Dual of a linear matroid). Prove thatif [/, A]is arepresentation
of a matroid M, then [—AT, I is a representation of the dual matroid M*.

1.6 Duality 65

Exercise [Maximum-weight spanning tree, continued (see pp. 58, 60)].
With respect to the edge-weighted graph of the Maximum-weight spanning
tree Exercise, use the Greedy Algorithm to find a minimum-weight base of
the dual of the graphic matroid of the graph.

Exercise [Scheduling, continued (see p. 59)]. With respect to the Schedul-
ing Exercise, use the Greedy Algorithm to find a minimum-weight base of
the associated dual matroid.

Problem (Cocircuits and coloops). Let M be the graphic matroid of a
graph G. Describe the circuits of M* in terms of G. In particular, describe
the loops of M* in terms of G.

A planar embedding of a graph G is a drawing of G in the plane with no edges
crossing. With respect to a planar embedding of G, we construct the planar dual
G* by having a vertex corresponding to each region of the planar embedding of
G and having an edge consisting of each pair of regions that share a common
edge. Note that G* has a vertex corresponding to the outer region of the planar
embedding of G. Evidently G* is planar as well, and it is easily drawn on top
of the planar embedding of G. As each edge of G* naturally crosses an edge of
G in the pair of planar embeddings, it is natural to label each edge of G* with
the label of G corresponding to the edge that it crosses.

Example (Planar dual). Consider the planar graph G:

W

66 1 Matroids and the Greedy Algorithm

We construct the planar dual as the graph G*, shown in the following figure
with the hollow vertices and dashed edges:

-

- 0=
- ~
4 ~
. 1
! \
‘ 4. .

Problem (Dual graphic matroids and planar graphs). Let G be a pla-
nar graph. Take any planar embedding of G and form the planar dual G*.
Prove that the graphic matroid of G* is the dual of the graphic matroid
of G.

Problem (Minors of matroids). Foraset F' C E(M),define M\ F (read M
delete F)by E(IM\F) := E(IM)\ F,andZ(M \ F) :={X C EIM)\ F :
X € Z(M)}. Clearly, M\ F is a matroid. Now, define the matroid M/ F (read
M contract F)by M/F := (M*\ F)*.

a. Show that 'y F(X) = rM(X UF)— rM(F), VXCEM)\F.

b. Choose Jp C Fsuchthat Jp € Z(M)and |Jp| = max{|J| : J C F, J €
Z(M)}. Show that ZM/F) ={X C E(M)\ F : XU Jp € Z(M)}.

c. Describe how to obtain a representation of M\F and of M/F from a
representation of M.

1.7 The Matroid Polytope

The rank function leads to an appealing characterization of the independent sets
of a matroid M in terms of the extreme points of a polytope. Recall that

Prony = conv{x(S) : S € Z(M)}.

1.7 The Matroid Polytope 67
Theorem (Matroid polytope). For any matroid M,

Prony = {x eRIM - Y x, <r (), VTC E(M)}.

eeT
Proof. Forevery S, T C E(M), we have

Y x(S)=[SNT].
eecT
If S € I(M). then |SNT| <r, (T),as SNT C T and SN T € Z(M). There-

fore, by convexity, we have)
have

ver Xe < rM(T) for all x € Pz, and we

Pran C {x eRIM Y x<r (D), VTC E(M)}.

ecT

Hence, it suffices to show that every linear-objective function is maximized
over

{x eRY™ = Y x < r,(T), VTcC E(M)}

eeT

by a point of Pz(s). Without loss of generality, let E(M) = {1, 2, ..., n},and let
c(l) > c(2) = --- = c(n). Let k be the greatest index among the nonnegative
weights. Let T, :={1,2,...,e} for 1 <e <n, and let Ty = . The Greedy
Algorithm for finding a maximum-weight independent set S can be viewed as
determining its characteristic vector x(S) as

r (T,)—r (T,_y), ifl<e<k
xe(s):{ FEERINCIN, |
0, ifk<e<n

The point x(S) is a feasible solution of the linear program

max Z c(e)x,

ecE(M)
subject to:

Y xe<r (T), VT CEM);

ecT

x, >0, Vee EM).

(P)

68 1 Matroids and the Greedy Algorithm

We can check the feasibility of x(S) by using only properties of "y Non-
negativity follows from R2. Satisfaction of the rank inequalities follows from
R1-R3:

xe(S) = r,(Te) —r (Te-1)
M M

ecT eeT:
l<e<k

sEjQMan»ﬂanmTQ (by R3)

eeT:
I<e<k

=r (T.NT)=r, (#)
<r (I)—r @) (byR2)

= rM(T) (by R1).

The dual of P is the linear program

min Z r(T)y,

TCE(M)
subject to:

Z Yy = cle), Yee E(M)

T :ecT
y,Z 0, VT C E(M).

(D)

D E(M)

As for P, we can construct a potential solution y € R of D, defined by
cle)—cle+1), ifT=T,withl <e <k

V= c(k), ifT =T,
0, otherwise

We need check only that y is feasible to D and that the objective value of x(S)

in P and that of y in D are equal. Then, by the Weak Duality Theorem, x(S) is
optimal in P. Therefore, every linear function is maximized over

{x eRY™ Y x < r (T, VTcC E(M)}

eeT

by a point of Prur).

1.7 The Matroid Polytope 69

Clearly, y is nonnegative. For 1 < e < k, we have

k
> Yr ZIX:y'n
=e

T :ecT

k=1
= c(k)+ Y _(cl) — el + 1))
I=e

k

k—1
=ct)+) ch—) e

I=e I=e+1
= c(e),
which is certainly > c(e). For e = k, we have
D vy =y, =),
T:keT

which is certainly > c(k). For e > k, we have

which is certainly > c(e), because c(e) < 0 for e > k. Therefore, the solution
y is feasible to D. Finally, we have equality of the objective values because

k—1
>y, () = el (T + Y (e) = el + D)r, (T)
TCE(M) =1

k

k
=Y clr, (T) =Y cr, (Tr-y)
=1

=2

k
> e(r, (T —r, (Ti-1)
=1

Il
M= i

c(Dx;.

=1

Exercise (Dual solution). With respect to the edge-weighted graph of the
Maximum-weight spanning tree Exercise (see p. 58), calculate the “dual so-
lution” of the previous proof, and use it to verify optimality of the maximum-
weight forest.

Example [Vertex packing on a star, continued (see pp. 51, 53, 57, 61)]. Let
c(l) =2 and ¢(2) = c¢(3) = --- = c¢(n) = 1. Following the definition of x(S§)
in the previous proof, x;(S) = 1, x2(S) = 0, x3(S) = x4(S) = - - - = x,(S) = 1,
which picks out the dependent set S = {1,3,4,...,n} having weight n,

70 1 Matroids and the Greedy Algorithm

whereas the maximum-weight independent set is {2, 3, ---,n}, which has
weightn — 1. ®

The proof of the characterization of Pz for matroids M can be used to
establish a related result.

Theorem (Greedy optimality for polymatroids). Letr be a function on E :=
{1,2, ..., n}satisfying R2, R3, andr () = 0. Suppose thatc(1) > ¢(2) > --- >
c(n). Let k be the greatest index among the nonnegative weights. Then the greedy
solution x € RE defined by

. r(Te)_r(Te—l), lfl Sefk
0o, ifk<e<n

forall e € E solves the linear program
max Z c(e)x,
eeE
subject to:

Y xe<r(T), VT CE;

eeT

x>0, VeckE.

Furthermore, if k = n and we drop the inequalities x, > 0, V e € E, then we
can omit the hypothesis that r satisfies R2.

For an independence system M, a set T C E(M) is inseparable if the only
U c T for which rM(T) = rM(U) + rM(T \U)are U =T and U = . Rank
inequalities for sets that are not inseparable are redundant because

fo = rM(T)
JeT
is the sum of
Y ox <, U)
Jjeu
and
Y xj < (T\U),
JjeT\U
whenr, (T)=r (U)+r, (T\U).

For an independence system M, a set T C E(M) is closed if rM(T +e) =

rM(T) fornoe € E(M)\ T.If M is a matroid, then for every T C E(M) there

is a unique maximal superset clM(T) of T, called the closure (or span) of T,
such that rM(T) = rM(clM(T)).

1.7 The Matroid Polytope 71

Rank inequalities for sets that are not closed are redundant because
fo = rM(T)
jeT
is the sum of
2 % =n,(T)
Jjeclu(T)

and

—x; <0, Vjecl (I\T.

Theorem (Facets of a matroid polytope). If M is a matroid and { f} € T(M),
Y f € E(M), then the rank inequalities for nonempty sets that are closed and in-
separable, together with nonnegativity, provide a minimal description of Pz

Proof. Clearly Pzy is full dimensional because the |E(M)| + 1 points
x(@)U{x({e}) : e € E(M)}

are affinely independent. Therefore, each facet-describing valid inequality is
unique up to multiplication by a positive scalar.
Each inequality x, > 0 is facet describing because the | E(M)| points

x@ VxS f € E(M) —e}

are affinely independent.
Next, suppose that nonempty 7 is closed and inseparable and consider

F(T) := Pran N {x e REM . er = rM(T)}.

eeT

Clearly F(T) is a nontrivial face of Pz(). We demonstrate that, up to multi-
plication by a positive scalar, the only linear inequality that describes F(T') is
Yoeer Xe < rM(T). By the Unique Description Theorem, this will demonstrate
that F(T) is a facet of Pzyy).

Let

T:={SeI(M) : |SNT|= rM(T)},
and let
XT):={x(S) : SeT}c FD).
Observe that S € 7 if and only if

x(S) € Proany N {x eRFM ¥y, = rM(T)}.

ecT

72 1 Matroids and the Greedy Algorithm

Let) ", cE(M) XeXe = B be an arbitrary inequality that describes F (7). There-
fore, all points x € X (7) satisfy ZeeE(M) AeX, = f.
Let J be a maximal independent subset of 7. Clearly J € 7, so

() D aex =) a=p

ecE(M) eeJ
Consider f € E(M) \ T.Because T is closed, we have J + f € Z(M); hence,
J+ feTand

() YooaxJ+ =) a=p
ecE(M) eeJ+f
Subtracting () from (x%), we getay =0 for f € E(M)\ T.

Next, we demonstrate that o, = ay for all distinct e, f in T. The
following figure may help. Suppose otherwise. Let 71 ={eeT : «,
is maximized over T'}. Let T, = T \ T;. Let J, be a maximal independent sub-
set of T,. Extend J, to a maximal independent subset J of T. Let J; = J \ J,.
Because T is inseparable we have |Jj| < VM(T1) [notice that rM(T) = |J|,
rM(Tz) = |J»|]. Therefore, there is some e € T; \ J; such that J; 4+ e € Z(M).
It follows that there is some e’ € J, such that J' := J + e — €’ is a maximal
independent-subset of T (notice that J + e contains a unique circuit, and that
circuitis contained in J, + e;sochoose ¢’ € J, to be any element of that circuit).
Now, J and J' arebothin7,but) ,_, o, > >, ., a.. Hence,), ., aex.(J") >
Y ecr deXo(J), which is a contradiction.

1.8 Further Study 73

Therefore, every inequality describing F(T) has the form &), ; x. < B.
Plugging in x(J) for some maximal independent subset of 7" shows that 8 =
o- rM(T). Finally, we find that the result follows by noting that (1) « = 0 would
imply F(T) = Pz, and (2) o < 0 yields an inequality that is not valid. M

Problem (Base polytope). Let M be a matroid. Suppose that, for every
pair of elements g # h, there is a circuit containing both. Let Pgy) be the
convex hull of the characteristic vectors of bases of M.

a. Give one (nontrivial) linear equation satisfied by all points in Pp).

b. Suppose that
Z OeXe = :3
ecE(M)

is an equation satisfied by all points in Pgy. Show that o, = oy, for
every pair of elements g # h.

c. Show that dim(Pg) = |[E(M)| — 1.

d. Give a complete description of Pp(ss) as the solution set of your equation
from part a and additional linear inequalities.

Problem (Base polytope with a coloop). Let M be a matroid. Suppose that
f isin every base of M. Suppose that, for every other pair of elements g # h
(both different from f), there is a circuit of M containing g and #.

a. Give two linearly independent equations satisfied by all points in Pg(r).

b. Suppose that
Z UeXe = :3
ecE(M)

is an equation satisfied by all points in Pg). Show that o, = v, for
every pair of elements g # h, both different from f.

c. Show that dim(Pp) = |E(M)| — 2.

d. Give a complete description of Ppsr) as the solution set of your equations
from part a and additional linear inequalities.

1.8 Further Study

The theory of matroids is a beautiful and deep area of combinatorial mathemat-
ics. The book by Oxley (1992) is a wonderful resource for learning about this
subject.

74 1 Matroids and the Greedy Algorithm

There are many theoretical and practical studies of the application of greedy
and local-search algorithms to combinatorial-optimization problems. One start-
ing point is the book by Aarts and Lenstra (1997).

Chapter 13 of the book by Ahuja, Magnanti, and Orlin (1993) describes
the details of efficient implementations of algorithms for the minimum-weight
spanning tree problem.

2

Minimum-Weight Dipaths

One of the simplest combinatorial-optimization problems is that of finding a
minimum-weight dipath in an edge-weighted digraph (under some natural re-
strictions on the weight function). Not only are there rather simple algorithms
for this problem, but algorithms for the minimum-weight dipath problem are
fundamental building blocks for developing solution methods for more com-
plicated problems.

Let G be a strict digraph. A v—w diwalk is a sequence of edges e;,
1 <i < p(with p > 0), such thatt(e;) =v (if p > 0), h(e,) =w (f p > 0),
and h(e;) = t(ej41), for 1 <i < p. Neither the edges nor the vertices need be
distinct. The v—w diwalk imputes the sequence of vertices v = t(e;), h(e;) =
t(e2), h(ex) = t(e3), ..., h(ep,—1) =t(ep), h(ep) = w. If no vertex in this im-
puted vertex sequence is repeated, then the v—w diwalk is called a v—w dipath.
In such a case, every vertex of the imputed sequence other than v and w is
called an interior vertex. Note that the empty sequence of edges is a v—v diwalk
for any vertex v; the associated imputed sequence of vertices is also empty, so
the empty sequence of edges is a v—v dipath. If v = w, and the only repetition
in the imputed vertex sequence is the consonance of the first element with the
last, then the diwalk is a dicycle. Therefore, the v—w diwalk (with v #% w) is
a dipath if it contains no dicycle. A vertex w is accessible from v if there is a
v—w diwalk in G.

For a strict digraph G and weight function ¢ on E(G), we are interested in
finding a minimum-weight v—w dipath. If w is not accessible from v, then there
are no v—w dipaths and the problem is infeasible. If G contains no dicycle with
negative weight, then any minimum-weight v—w dipath is a minimum-weight
v—w diwalk. If G contains a dicycle with negative weight, then there is some
pair of vertices v, w for which there are v—w diwalks with weight less than any
constant.

75

76 2 Minimum-Weight Dipaths

2.1 No Negative-Weight Cycles

Given a vertex v, the Bellman—Ford Algorithm calculates minimum-weight
dipaths from v to every other vertex. The algorithm will fail only if G contains
adiwalk from v to some vertex w that is contained in a negative-weight dicycle.
In such a case, w is accessible from v, but there is no minimum-weight v—w
diwalk.

The algorithm is based on the following definition. For w € V(G) and 0 <
k <|V(G)| —2,let

Jr(w) := weight of a minimum-weight v—w diwalk with < k interior vertices,

unless there is no v—w diwalk with < k interior vertices, in which case we define
fr(w) := 4o00. Note that fy(v) = 0.

No v—w dipath contains more than |V (G)| — 2 interior vertices; therefore, if
w is accessible from v and G contains no negative-weight dicycles, then

fivig)—2(w) := weight of a minimum-weight v—w dipath.

The algorithm computes the numbers fi.(w) for successively larger values of
k, starting with &k = 0.

The Bellman-Ford Algorithm

1. fo(v) :=0, and

c((v,w)), if(v,w)e E(G)
+o00, otherwise

t}

Sow) :== {

Yw e V(G)—v.
2. Fork =1to |V(G)| —2:
Sew) :=min ({fies W)} U {fic1(2(e)) + c(e) : e € 5w)}),
Yw e V(G).

Because each edge is examined once for each &, the Bellman—Ford Algorithm
requires O(|V(G)| - |E(G)|) time.

Exercise (Bellman—-Ford Algorithm). Use the Bellman—Ford Algorithm
to find minimum-weight dipaths from vertex a to all other vertices in the
following digraph.

2.1 No Negative-Weight Cycles 77

Problem (Recovering the dipaths with the Bellman-Ford Algorithm).
Describe how minimum-weight v—w dipaths can be recovered by keeping
track of some extra information at each iteration of the Bellman—Ford Al-
gorithm.

Problem (Finding a negative-weight dicycle). Suppose that for some w €
V(G), we have fiy)-1(w) < fivc)—2(w). Show that G contains a v—w
diwalk that contains a negative-weight dicycle.

Problem (Minimum-weight dipaths by linear programming). Let G be
a digraph with v € V(G). Let ¢ be a weight function on E(G) with the
property that G has no negative-weight dicycles. Consider the following
linear program:

max Z c(e)x,

ecE(G)
subject to:
D oxe— Y x=IV(G)|—1;
eest(v) eedg(v)
Z Xe — Z xe=—1, YweV(G)—v;
eesf(w) eesg(w)

78 2 Minimum-Weight Dipaths

Demonstrate how to recover minimum-weight v—w dipaths for all w €
V(G) — v from an optimal solution of this linear program. Prove the cor-
rectness of your procedure.

2.2 All-Pairs Minimum-Weight Dipaths

If we want to calculate minimum-weight dipaths between all (ordered) pairs of
vertices, we could just apply the Bellman—Ford algorithm |V (G)| times, with
each possible choice of a starting vertex v. This would require O(|V(G) |*) time.
The Floyd—Warshall Algorithm provides a way of calculating the same informa-
tionin O(|V(G)|?) time. Assume that the digraph G contains no negative-weight
dicycle. First we choose an arbitrary bijectionw : V(G) — {1,2,...,|V(G)|}.
For all ordered pairs of vertices (v, w) and integers k satisfying 0 < k < |V(G)|,
let

Jx(v, w) := the weight of a minimum-weight v—w dipath having
all interior vertices u satisfying w(u) < k.

The Floyd—Warshall Algorithm

1. fo(v,v):=0, Yv € V(G), and

c((v,w)), if(v,w)e E(G)
+o00, otherwise

)

fO(V, W) = {

Vwe V(G) —v.
2. Fork = 1to |V(G)|,
fevow) s=min{ fici(v, w), fici(v, w7 (K) + fica (T k), W)},
Vv #w e V(G).

Problem (Recovering the dipaths with the Floyd-Warshall Algorithm).
Describe how minimum-weight v—w dipaths can be recovered for all (or-
dered) pairs of vertices v, w by keeping track of some extra information at
each iteration of the Floyd—Warshall Algorithm.

2.3 Nonnegative Weights

There is another algorithm that is more efficient than the Bellman—Ford Algo-
rithm, requiring just O(|V(G)|?) time, but it requires that the weight function ¢

2.3 Nonnegative Weights 79

be nonnegative. In such a case, there is no possibility of negative-weight dicy-
cles. Dijkstra’s Algorithm maintains upper-bound labels f(w) on the lengths
of minimum-weight v—w dipaths for all w € V(G). Throughout, the labels are
partitioned into two classes: permanent and temporary. At each iteration of the
algorithm, a temporary label that is least is made permanent, and the remaining
temporary labels are updated. At any stage of the algorithm, the interpretation
of the labels is as follows:

f(w) := the weight of a minimum-weight v—w dipath having
all interior vertices permanently labeled.

Initially the only permanent label is f(v) := 0. The other labels are all tem-
porary.

Dijkstra’s Algorithm

1. P.={}. f(v):=0.T :=V(G)—v.Forallw €T,

c((v,w)), if(v,w) e E(G)
400, otherwise ’

o]
2. While (T # 0):
i. choose w* € T such that f(w*) = min{f(w) :w € T};
ii. T:=T—w* P:=P+w"
iii. fore € 85(w*) such that h(e) € T,

f(h(e)) := min{ f (h(e)), f(w*) + c(e)}.

Exercise (Dijkstra’s Algorithm). Use Dijkstra’s Algorithm to find
minimum-weight dipaths from vertex a to all other vertices in the digraph
from the Bellman—Ford Algorithm Exercise (see p. 76).

Proposition (Correctness of labels for Dijkstra’s algorithm). At the start of
any iteration of Dijkstra’s Algorithm, the following statements hold:

a. Forallw € P, f(w) = the weight of a minimum-weight v—w dipath;
b. Forallw € T, f(w) = the weight of a minimum-weight v—w dipath that
has all interior vertices in P.

80 2 Minimum-Weight Dipaths

Proof. The proof is by induction on | P|. The result is clear when |P| = 1. We
assume that hypotheses a and b hold for the partition P, T. We want to verify
that they continue to hold after we make the label of w* permanent and update
the temporary labels. To make this precise, let P’ := P +w*,letT" := T — w*,
let f'(w):= f(w) for w € P’ and for w € T’ such that w ¢ (Sg(w*), and let
f'(w) :=min{ f(w), f(W*) + c((w*, w))} for w € T’ such that w € Sg(w*).
We seek to verify subsequent hypotheses ¢’ and ', assuming that a and b
hold:

a’. Forallw € P/, f'(w) = the weight of a minimum-weight v—w dipath;
b’. Forallw € T’, f'(w) = the weight of a minimum-weight v—w dipath that
has all interior vertices in P’.

First, we verify a’. Because, f'(w) = f(w) for all w € P (by a), we need
only to verify a’ for w = w*. Consider any v—w™* dipath F. Let k be the first
vertex in T visited by F. Then we can think of F as being composed of a v—k
dipath F; and a k—w™* dipath F,:

By the choice of w* in the algorithm, f(k) > f(w™*). Furthermore, the weight
of F, is nonnegative. By applying the inductive hypothesis b to vertex k, we
have that the weight of Fj is at least f (k). Therefore, the weight of F is at least
f(w*). Therefore, we have that no dipath using a vertex of 7' as an interior
vertex can have weight less than f(w*). Therefore, a’ holds.

Next, we verify b’ by using a. For w € T’, consider a v—w dipath F’ that
has minimum weight among all v—w dipaths that have their interior vertices
in P”:

2.4 No Dicycles and Knapsack Programs 81

Pr T!

j o
@

It cannot be that w* must be used by such an F’ before the last interior vertex
J, because hypothesis a implies that there is a minimum-weight v—j dipath that
does not use w*. Therefore, we can choose F’ so that either the last interior
vertex of F’ is w* or the dipath does not use w* at all. Then the definition of
f'(w) for w € T’ ensures that hypothesis b’ holds. []

Corollary (Dijkstra’s Theorem). At the conclusion of Dijkstra’s Algorithm,
f(w) is the weight of a minimum-weight v—w dipath for all w € V(G).

Problem (Recovering the dipaths with Dijkstra’s Algorithm). Describe
how, in Dijkstra’s Algorithm, we can recover a set of minimum-weight v—w

dipaths by having the algorithm maintain a “directed tree of dipaths rooted
at v” at each iteration.

2.4 No Dicycles and Knapsack Programs

Rather than requiring the weight function ¢ to be nonnegative, another way
to eliminate the possibility of negative-weight dicycles is to stipulate that the

digraph have no dicycles whatsoever. Such an assumption allows a simple
O(|E(G)])-time algorithm.

Problem (Minimum-weight dipaths in graphs with no dicycles). Sup-
pose that G has no dicycles. We can find a bijection 7 : V(G) —
{1,2,...,|V(G)|} so that for every e € E(G), m(t(e)) < m(h(e)).

82 2 Minimum-Weight Dipaths

f(w) := the weight of a minimum-weight v—w dipath having
all vertices u satisfying w(u) < w(w).

Starting with (7 ~'(1)) = 0, show how to compute f(r~!(k)) for succes-
sively greater values of k, from k = 1 up through k = |V (G)|. Explain how
this yields an O(] E(G)|)-time algorithm for calculating minimum-weight
7~ 1(1) — w dipaths for all w € V(G).

Problem/Exercise (Knapsack program). Consider the integer program

n
Z = max E ij]'
Jj=1

subject to:

n
E ajx; < b;
j=1

x; >0, j=12,...n
xjel, j=1,2,...n,
where a; and b are positive integers.

a. Formulate the problem of calculating z as a minimum-weight v—w dipath
problem (with v fixed) on a digraph with no dicycles. Hint: The di-
graph should have b + 1 vertices. Try out your method on the following
example:

max 1lx; + 7xo + 5x3 4+ x4
subjectto: 6x; 4+ 4xo + 3x3 + x4 < 25
X1 , X2, X3 , x4 > 0 integer.

Hint: You can carry out the algorithm without drawing the digraph.

b. How can you change the general formulation if the x; are required to be
integers between 0 and u ;? Hint: The digraph should have 1 + n(b + 1)
vertices.

2.5 Further Study

A more detailed treatment of minimum-weight dipath problems is available in
Chapters 4 and 5 of the book by Ahuja, Magnanti and Orlin (1993).

2.5 Further Study 83

Most of the techniques of this chapter also fall in the domain of a subject
called dynamic programming; Denardo (1982) is a standard reference in this
field. Exceptionally, Dijkstra’s Algorithm is not ordinarily considered to be a
dynamic-programming algorithm. Ironically, the evolution of the set of perma-
nently labeled vertices makes Dijkstra’s Algorithm look much more dynamic
than the static definitions of the dynamic-programming “value functions.”

Cook and Seymour (2002) employ a very sophisticated and dynamic decom-
position in their approach to combinatorial-optimization problems on sparse
graphs.

3

Matroid Intersection

Matroids become a particularly useful modeling tool in combinatorial opti-
mization when we define more than one of them having a common ground set.
Applications of this idea include the study of (1) bipartite matching, (2) the me-
chanics of frameworks, and (3) directed Hamiltonian tours. In particular, when
the feasible solutions of a linear-objective combinatorial-optimization problem
are sets that are independent in fwo matroids on a common ground set, striking
optimization algorithms and polyhedral results apply.

3.1 Applications

For p > 2, let M; be matroids having the common ground set E := E(M;),
i=1,2,..., p, and let ¢ be a weight function on E. It is not generally the
case that ﬂf;lI(Mi) is the set of independent sets of a matroid on E, even for
p = 2. Therefore, a greedy algorithm is not appropriate for reliably calculating
maximum-weight sets Sy € ﬂ[pz 1Z(M;) of all possible cardinalities k, even for
p = 2. Indeed, a greedy algorithm can fail to deliver a maximum-cardinality
setin NY_,Z(M;), even for p = 2.

Example (The intersection of two matroids need not be a matroid). Let M,
be the graphic matroid of the graph

84

3.1 Applications 85

and let M, be the graphic matroid of the graph

Therefore,
I(My) N Z(Ma) = {9, {1}, {2}, {3}, {2, 3}}.

In fact, Z(M,) N Z(M,) is the set of matchings of the bipartite graph

Now, if we try to build a maximum-cardinality element of Z(M) N Z(M,), one
element at a time, in a myopic manner, we may fail. For example, if we take
So := ¥ and then S; := {1}, we cannot continue, even though there is a larger
common independent set. ®

In fact, the preceding example is an instance of a nice family of examples
related to matchings in bipartite graphs.

Example (Bipartite matching). Let G be a bipartite graph with vertex
partition Vi(G), V2(G) [that is, V(G) = V1(G) U Va2(G), Vi(G) N Va(G) = 0,
E(G[V1]) = E(G[V2]) = @]. We define two matroids M, and M,, having the
common ground set E(G), by

I(M;) :={F CEG) : |[FNés(v)| =1, VveVi(G)}

for i =1,2. Clearly, F € Z(M;) NZ(M,) if and only if F is a matching
of G. Py

86 3 Matroid Intersection

Example (Generic rigidity in the plane). A framework G consists of a finite
set of points V(G) in R? and a set of straight lines E(G) connecting some
pairs of points. A (infinitesimal) motion of G is an assignment of velocity
vectors m” € RY, forall v € V(G), so that v — w is perpendicular to m" — m"
whenever a line connects v and w. That is,

(m" —m",v —w) =0, Ve={v,w}e EG).

We can easily interpret the equations describing motions by rewriting them as

(m”, v —w) _ (mw"’_w>’ Ve={v,w}e EQG).
v —w] v =wl

In this form, we see that the equations dictate that the component of m" in the
direction of the straight line connecting v and w should be the same as that of
m".

Considering the scalar variables that are the components of the velocity
vectors, we have a homogeneous system of | E(G)| linear equations in |V (G)|

variables, where d is the dimension of the ambient Euclidean space:

d
Z(v,- —wim] + (w; —vpm! =0, Ve={v,w}e EG).

i=1

Exercise (Motion). Consider the following framework, in which the points
are labeled with their Cartesian coordinates:

(1) (1)

(=) ()

Write down the system of four linear equations in eight unknowns that
describes the motions of this framework.

Every framework has some trivial motions — that is, those induced by the
rigid motions of R?. We confine our attention to d = 2. The space of such rigid
motions of the plane is three dimensional; for example, we can take as a basis
horizontal translation, vertical translation, and clockwise rotation. Formally, we

3.1 Applications 87

can realize a horizontal translation of points by using the velocity vector m"

defined by
) 1 Vi
m’ :=(>, Vv=< >EV(G).
0 1%

We can realize a vertical translation by using m" defined by

m’ = (O), Vy = <V‘> € V(G).
1 Vo

Finally, we can realize a clockwise rotation (about the origin) by using m"

defined by
m' :=<V2) w:(”) € V(G).
-V V2

Exercise [Motion, continued (see p. 86)]. Find a nontrivial solution to the
system of the Motion Exercise that does not correspond to a rigid motion of
the plane.

Note that some motions are truly “infinitesimal.” Consider the following
framework, in which all vertices are held motionless except for one that is
“moved” downward. This is not a true motion because any actual movement of
just that one vertex in this framework is not possible. However, it is an infinites-
imal motion. From an engineering point of view, it is quite practical to consider
infinitesimal motions as motions because they do indicate an instability.

+

A framework is infinitesimally rigid (in the plane) if its only infinitesimal
motions are rigid motions (of the plane). Equivalently, the framework is in-
finitesimally rigid if the rank of its associated linear system is 2|V(G)| — 3. A

88 3 Matroid Intersection

framework is not infinitesimally rigid if |E(G)| < 2|V (G)| — 3. An infinites-
imally rigid framework has unnecessary lines if |E(G)| > 2|V(G)| —3. A
framework is minimally infinitesimally rigid if it is infinitesimally rigid but
ceases to be so if we delete any line.

A simple graph G is generically rigid (in the plane) if it can be realized (in the
plane) as an infinitesimally rigid framework with the lengths of its edges being
algebraically independent over the rationals (i.e., the lengths should solve no
polynomial equation having rational coefficients). For example, the preceding
graph is generically rigid, and we see that by realizing it as the following
framework:

It turns out that there is a nice combinatorial characterization of which graphs
G thathave |E(G)| = 2|V(G)| — 3 are generically rigid. For any e € E(G), let
G*¢ denote G with the edge e duplicated.

Theorem (Planar generic rigidity). A simple graph G is minimally generi-
cally rigid (in the plane) if |E(G)| = 2|V(G)| — 3 and E(G?) is the union of
two (disjoint) spanning trees of G¢ for all e € E(G).

For a proof and more, see Recski (1989) and Whiteley (1992).

For a graph G having |E(G)| = 2|V(G)| — 3, we can test whether E(G°) is
the union of two spanning trees of G¢ by considering the maximum cardinality
of a set thatis independent in a particular pair of matroids. Let M, be the graphic
matroid of G¢, and let M, be the cographic matroid of G°. Then E(G®) is the
union of two spanning trees of G° if and only if there exists a set S € Z(M;) N
I(M,) with |S| = |V(G®)| — 1. If there is such an S, then S and E(G*) \ S are
a pair of disjoint spanning trees of G°.)

There are important examples arising from intersecting the independent sets
of more than two matroids on a common ground set.

3.2 An Efficient Cardinality Matroid-Intersection Algorithm 89

Example (Directed Hamiltonian tours). A directed Hamiltonian tour of di-
graph G is a dicycle of G that meets every vertex. We define three matroids
M;,i =1, 2, 3, on the common ground set E(G). First, we specify M; and M,
by

I(My):={F C E(G) : |Fﬂ§§(v)| <1, VveV(G)
and
I(My) :={F CEG) : |[FNs;»)| <1, VveV(G)}

Itis trivial to check that M and M, are matroids (in fact, each is the direct sum of
acollection of rank-1 and rank-0 uniform matroids). Next we choose an arbitrary
vertexw € V(G), and, treating G as an undirected graph, we let M3 be the direct
sum of the graphic matroid of G[V(G) — w] and the uniform rank-2 matroid
on §(w). Then the edge sets of directed Hamiltonian tours of G are precisely
the sets in Z(M1) N Z(M,) N Z(M3) having cardinality |V (G)|. Indeed, G has
a directed Hamiltonian tour if and only if the maximum-cardinality elements
of Z(M) N ZT(M,) N T(M3) have |V (G)| elements. ®

3.2 An Efficient Cardinality Matroid-Intersection
Algorithm and Consequences

Inthis section, itis shown how to efficiently find a maximum-cardinality element
of Z(My) N Z(M,) for any pair of matroids M, M, with E := E(M,) = E(M>).
Before the algorithm is described, a few technical lemmata relating to matchings
in bipartite graphs are established.

Lemma (Unique matching implies crucial edge). Let G be a bipartite graph
with vertex bipartition Vi(G), Vo(G). Suppose that G has a unique matching
X that meets all of Vi(G). Then there exists an edge e := {vi,v,} € X, with
v1 € Vi(G) and v, € V,(G) such that

{vi,v3} € E(G), Y V) € Va(G) — v,.

Proof. The proofis by contradiction. If such vy, v, do not exist, then there is a set
Y of edges extending between Vi(G) and V»(G), with |Y| = |X|, X NY =0,
and with the property that ¥ meets each element of V;(G) exactly once (see the

90 3 Matroid Intersection

following figure):

V(G) V,(G)

The set X U Y must contain a nonempty path or cycle C with an even number
of edges, alternating between elements of X and Y [just start walking along
elements of X UY, starting on the V,(G) side, first along an edge in X; after
each edge in X, there is exactly one edge in Y with which to continue the walk;
after each edge in Y, there is at most one choice of edge in X with which to
continue the walk; eventually, we either (1) revisit a vertex in V,(G) closing
a cycle, or (2) we reach a vertex in V,(G) that is not met by X, completing a
path]. Therefore, X AC is a matching that also meets V;(G), contradicting the
uniqueness of X. |

Let M be a matroid. With respect to any S € Z(M), we define the bipartite
exchange graph Gy;(S). The graph has V(G (S)) := E(M). All edges of G (S)
extend between S and E(M) \ S. Specifically, for f € Sande € E(M) \ S,

{f.e} € E@Gu(S)if S —e+ f e I(M);

3.2 An Efficient Cardinality Matroid-Intersection Algorithm 91

thatis, { f, e} € E(Gu(S))if S + e isindependent, or, if not, if f is in the unique
circuit contained in S + e.

Lemma (Exchange implies perfect matching). Ler M be a matroid with
S, T € Z(M) and |S| = |T|. Then Gy (S) contains a perfect matching between
S\Tand T\ S.

Proof. The proof is by contradiction. The subsequent figure helps in following
the proof. Suppose that the hypothesis is true, but the conclusion is false. Then,
Hall’s Theorem (see p. 45) implies that there exists a set W C T \ S such that
INWYN(S\T)| < |W]|. Therefore, (SN T)U W is a larger independent set
than (SNT)U[N(W)N(S\ T)]. Hence, by I3, there exists an e € W such
that

(SNT)UINW)N(S\T)] + e € T(M).

Now, because |[S\ T| = |T \ S| and IN(W)N(S\ T)| < |W|, we must have
(S\T)\ N(W) # (. However, because there is no edge between ¢ and the
nonempty set (S \ 7) \ N(W), it must be that S + ¢ ¢ Z(M). Therefore, S + ¢
contains a unique circuit. However, because (SN T)U [N(W)N(S\ T)] + e €
Z(M), that circuit must contain some f € (S \ 7) \ N(W). However, then { f, e}
is an edge of G;(S), in contradiction to the definition of N(W).

s E(M)\S

S\T T\S

@ :
’ =
|

92 3 Matroid Intersection

A very useful partial converse holds.

Lemma (Unique perfect matching implies exchange). Let M be a ma-
troid with S € Z(M). Suppose that T C E(M), |T| = |S|, and Gy(S) con-
tains a unique perfect matching X between S\T and T\ S. Then T €
Z(M).

Proof. The proof is by induction on |T \ S|. The base case |T \ S| =0 is
trivial.

We assume that |7\ S| > 1. We apply the “Unique matching implies crucial
edge” Lemma to the subgraph G of G (S) induced by SAT, with V;(G) :=
S\ T and V5(G) :=T \ S. Therefore, there exists an f € S\ T and an e €
T\ S such that {f,e} € X and {f, ¢’} ¢ E(Gy(S)), for all & € (T \ S) —e.
In particular, S — f + e € Z(M). Now, consider T’ :=T —e + f and X' :=
X —{f,e}. Clearly |T'\ S| < |T \ S|, and X’ is the unique perfect matching
in Gy (S) between 7'\ S and S \ T’. Therefore, by the inductive hypothesis,
T' € Z(M);hence,by 12, T —e =T — f € Z(M).

Therefore, by I3, there exists an é € (S — f +e) \ (T — e) such that T —
e+éeI(M). We may as well assume that € # e, because if é =e we
would conclude that T € Z(M), and we would be done. Hence, we may as-
sume that there exists an € € (S — f)\ (T —e)suchthat T —e + & € Z(M).
Therefore,

r (SUT) = f)=r (S—fHU(T —e)) (by the definition of ")

v

rM(T —e+¢é)

=|T —e+¢| [because T — e + € € Z(M)]
=1S].

Therefore, by I3, there exists an e’ € [(SUT') — fIN (S — f)=(T —e)\
S such that S — f + ¢’ € Z(M). This contradicts the choice of f, e. [|

Next, we return to the subject of matroid intersection. Let M; and M,
be a pair of matroids with E := E(M;) = E(M,). With respect to any S €
(M) NI(M,), we define a bipartite augmentation digraph Gy, m,(S). The
graph has V(G m,(S)) := E. All edges of Gy, m,(S) extend between S and

3.2 An Efficient Cardinality Matroid-Intersection Algorithm 93

E\ S. The edges from S to E \ S are precisely the edges of Gy, (S), ori-
ented from S to E \ S, but we omit the edges { f, e} such that S + e € Z(M,).
Similarly, the edges from E \ S to S are precisely the edges of GM,(S),
oriented from E \ § to S, but we omit the edges {f, e} such that S+ e €
Z(My).

Certain vertices in E \ § are termed sources and sinks. A source (respectively,
sink) of Gy, m,(S)isane € E \ S such that S + e € Z(M;) [respectively, S +
e € Z(M3)]. An e—¢’ dipath is a source—sink dipath if e is a source and ¢’ is a
sink. We include the degenerate case of an e—e dipath having no edges, where
e is both a source and a sink.

Example [Generic rigidity in the plane, continued (see p. 86)]. Consider the
following graph G:

Notice that |E(G)| =9 and |V(G)| = 6, so G is a candidate for being a
minimal generically rigid graph [i.e., |E(G)| = 2|V(G)| — 3]. Consider the
graph G°. Let edge 0 be the copy of edge 9. We seek to find a maximum-
cardinality set that is independent in both M; and M,. Consider the set S :=
{0,1,2,3} € Z(M) N I(M>).

94 3 Matroid Intersection

The bipartite augmentation digraph G(S) looks like

S E\S

e sink

@\ / sink

\‘X"« 6) sink

/}3“*\

3 8) source

) .

With respect to a source—sink dipath P in Gy, a,(S), we have an im-
puted vertex sequence ey, f1,e1, f2, €2, ..., €n—1, fn,€n, Where eq is a source,
e, is a sink, all ¢; are in E\ S, all f; are in S, and all (e;, fiy+1) and
(fi, e;) are edges of Gy, m,(S). The source-sink dipath P is augmenting if
S =S\ {f1, fo,.--, [u}Uleo, €1, ..., e,}isin Z(My) N ZT(M5).

We are able to obtain an augmenting sequence from a shortest source—sink
dipath in Gy, w1, (S). It is easy to find a shortest source—sink dipath by use
of a “breadth-first search,” starting from the sources. A shortest source—sink
dipath has no “shortcuts” [i.e., there is no edge (v, w), where w follows v in the
imputed vertex sequence, but not immediately] as well as no sources and sinks
as interior vertices.

Lemma (Shortest implies augmenting). Let M| and M, be matroids with
E := E(M)) = E(My)and S € Z(My) N Z(M). If P is a shortest source—sink
dipath in Gy, .m,(S), then its imputed vertex sequence is augmenting.

3.2 An Efficient Cardinality Matroid-Intersection Algorithm 95

Proof. Consider the graph Gy, (S). The edges X :={ {fi,ei}. {f2, €2}, ...,

{fu, ex}} form a perfect matching between { f1, f>, ..., fu} and{e}, ez, ..., e,}
in G, (S). In fact, X is the unique perfect matching between { fi, f2, ..., fu}
and {ey, ez, ..., e,} in Gy, (S) [because, if there were another one, then, in that
one, some f; (i =1,2,...,n) would be matched to an e¢; (j =1,2,...,n)

with j > i, such an edge would be a shorter source—sink dipath than P]. Then,
by the “Unique perfect matching implies exchange” Lemma,

Si=(S\{fi, for- s i Uler, eas ..., e,) € T(M)).

However, we are not quite done; we must demonstrate that S’ = §+ ey €
Z(M;). We have

- (SU{ep, e1,...,e,}) = Ty (S+e)=|S+1 (because ¢ is a source),

1 1

and

" (SU{ey, e, ...,e,}) =|S| (because {e], es, ..., e,} contains no source).
1

Therefore, S’ = S + eq € Z(M)).
By symmetry, we have S’ € Z(M,) as well. |

Exercise (Shortcut). Let M; and M, be the graphic matroids of the graphs
G and G, respectively. Show that, for § := {2, 4}, there is a source—sink
dipath that does not yield an augmenting sequence.

w
[\

96 3 Matroid Intersection

The “Shortest implies augmenting” Lemma suggests the following simple
algorithm to find a maximum-cardinality set that is independent in M; and M.

Cardinality Matroid-Intersection Algorithm

1. Start with any S € Z(M;) N Z(M>). For example, S := (.

2. While G(S) has a source-sink dipath:
i. leteg, e1, fi,e2, f2, ..., fu, €, be an augmenting sequence;
ii. let S:=8SUfe; : 0<j<n}\{f; : 1=j<=<n}L

Example [Generic rigidity in the plane, continued (see pp. 86, 93)]. The
bipartite augmentation digraph yields the augmenting sequence 8, 3, 6, so we
areledtotheset {0, 1,2, 6,8} = {0, 1, 2,3} U {6, 8} \ {3}, whichisinZ(M;) N
I(M>).

1 8 L

Theorem (Correctness of the Cardinality Matroid-Intersection Algo-
rithm). On termination of the Cardinality Matroid-Intersection Algorithm, S
is a maximum-cardinality set in (M) N Z(M>).

Proof. Suppose that E = E| U E;. Then, for any S € Z(M,) N Z(M;),
IS|<ISNE||+|SNE;| < rM](El) + er(EZ)'
Therefore, it suffices to find E; and E, that cover E such that | S| = " (E))+
o (E2).
Let
Ag :={w € E : there is a v—w dipath for some source v of G(S)}.
Let E| := clMl((E \Asg)N S)and E, := cle(AS N S). Now,
r(ED+7, (E) =71, (E\A)NS)+7, (A5NS)
=[(E\As)NS|+|AsNS| =S|

3.2 An Efficient Cardinality Matroid-Intersection Algorithm 97

It remains to be shown that E; U E, = E. First, we make some simple ob-
servations. By the definition of Ag, (1) all of the sources are in (E \ S) N Ag,
and all of the sinks are in (E \ S) N (E \ Ag), and (2) there are no edges from
AsNSto(E\ S)N(E \ Ag)andnoedges from(E \ S)N Agto(E \ As)N S.

E\S
Ag

o€
e

®

. E\Ag

Oe

Clearly e € S implies that e € E; U E,. Therefore, suppose thate € E \ S.

Ife € Ag,thene € E;; otherwise e would be asink.Ife € E \ Ag,thene € Ey;
otherwise e would be a source. []

Example [Generic rigidity in the plane, continued (see pp. 86, 93, 96)].
Now, consider G*. This time, let edge 0 be the copy of edge 4. We seek to find
a maximum-cardinality set that is independent in both M; and M,. Consider

the set S := {0, 3, 5, 7}.

98 3 Matroid Intersection

The bipartite augmentation digraph G(S) looks like

sink

sink

sink

source

source

For this example, we have Ay = {7, 8, 9}. Hence,

Eyi=cl, (E\A5)NS)
=, ({0,3,5)

={0,1,2,3,4,5,6},
and

E, = CIMZ(AS ns)
= ¢l ((7H
= {7? 87 9}7
Therefore, we have E = E| U E,. Because " (Ey) =3 and - (Ey) =1, we
2

have |S| =4 = " (E))+ " (E,). Therefore, lE(G“) is not the disjoint union
1 2
of two spanning trees. Hence, G is not generically rigid. e

3.2 An Efficient Cardinality Matroid-Intersection Algorithm 99

Exercise (Generic rigidity in the plane). Determine whether the following
graph is generically rigid in the plane.

9

Exercise [Scheduling, continued (see pp. 59, 65)]. Recalling the Schedul-
ing Exercise, let E :={1,2, ..., 10}, and let M; be the matroid having
E(M,) := E, and

I(My):={X C E : X can be completed on time}.
Let M, be the matroid for which E(M,) := E, and
IMy):={XCE : |XNn{2i—1,2i}| <1, fori =1,2,3,4,5}.

Verify thatthe set S := {2, 6, 8, 9}isin Z(M;) N Z(M;). Construct the bipar-
tite augmentation digraph G(S), and identify either a shortcut-free source—
sink dipath or sets E, Ep such that Ey U E; = E andry, (Ey) + ry,(E2) =
IS].

A consequence of the proof of the validity of the Cardinality Matroid-
Intersection Algorithm is the following duality theorem.

Matroid-Intersection Duality Theorem.

max{|S| : S € Z(M\) NI(M,)} = min{er(El) +r, () : E\UE; = E}.

100 3 Matroid Intersection

Example [Bipartite matching, continued (see p. 85)]. Fori =1, 2, - (E)
is precisely the number of elements of V;(G) that are met by E;. Therefore a
consequence of the Matroid-Intersection Duality Theorem is Konig’s famous
characterization of maximum-cardinality matchings in bipartite graphs (see
p. 44): The number of edges in a maximum-cardinality matching in a bipartite
graph is equal to the minimum number of vertices needed to cover all of the
edges of the graph. ®

Example (Separations). A k-separation of matroid M is a partition (S, S,) of
E(M) so that | S| > k, |S2| > k, and

r (S, () <1 (E(M) +k — 1.

If A is arepresentation of M and M has a k-separation (S, S,), then there is
a nonsingular matrix B and a permutation matrix IT such that

S S
A0

BATl= | ¢ & |,
0 A

where (C; () has k — 1 rows.

Now suppose that X; and X, are disjoint subsets of E(M), each having
cardinality k. We may consider k-separations (S;, S>) such that X; C S; and
X, C $. Letting E; := 81\ X; and E; := S, \ X, and using the formula for
the rank in minors, we can reexpress the separation inequality as

(E))+r

o, (B2 S 1 (EOD) = (X)) =7, (X2) +k — 1.

"vxx,
Therefore, M has a k-separation (S;, S;) with X; C S; and S, C E; if and only
if all common independent sets of M/ X\ X, and M/ X,\ X, have cardinality
less than rM(E(M)) - rM(Xl) — rM(Xz) + k. By allowing X and X, to vary,
we can determine whether M has a k-separation by solving at most O(| E(M)|*)
(cardinality) matroid-intersection problems. ®

Problem (Matroid partitioning). Let M; be matroids on the common
ground set E fori = 1,2, ..., p. Define an independence system M such
that E(M) := E and

p
(M) = {ScE cS=JS. S eTM).i=1,2,....p
i=1

3.3 An Efficient Maximum-Weight Matroid-Intersection Algorithm 101

Prove that M is a matroid by showing that

a.r, is defined by

p
rM(X):min{ZrMi(T)vLIX\Tl : TCX}, VXCE,

and
b. "y satisfies R1-R3.

Hint: For part a, construct matroids ‘M and M x on the common ground set
EX =X x{1,2,...,p},
by letting

i. Z(M x) := {subsets of E x such that no two elements have the same first
component}, and

ii. 7 (M x) := {subsets of E x such that the set of first components that have
the same second component is in Z(M;),i = 1,2, ..., p}.

Think of M y as a matroid that permits partial p-colorings of X. Matroid M X
forces elements of color i to be independent in M;, i = 1,2, ..., p. Now,
consider a maximum-cardinality element of Z (M x) NIT(My).

3.3 An Efficient Maximum-Weight Matroid-Intersection Algorithm

With respect to matroids M, M, on the common ground set E and weight
function ¢, we consider the problem of finding maximum-weight sets S; of
cardinality k in Z(M) N Z(M,), for all k for which such sets exist. Our algorithm
is motivated by the algorithm for the cardinality case. The algorithm works by
computing the desired S for successively larger values of k, starting with k = 0
and Sp = 0.

As for the cardinality case, we work with the bipartite augmentation digraph.
In the algorithm, if there is a sink that is accessible from a source in the bipartite
augmentation digraph G(Sy), we augment by using the imputed vertex sequence
of a certain dipath in G(Sy).

Let ey, fi,e2, f2, ..., fu—1, €, be an augmenting sequence. Its incremental
weight is

n n—1

D cle) =Y e,

j=1 j=1

and its length is n.

102 3 Matroid Intersection

(Weighted) Matroid-Intersection Algorithm

1. Start with k£ and S; such that Sy is a maximum-weight set in Z(M;) N
Z(M,). For example, let k := 0 and S := (.
2. While G(S) has a source-sink dipath:
i. letey, fi,e2, f2,-.., fu_1, e, be a shortest (length) augmenting se-
quence among those having maximum weight;
ii. let Sppp =8 Ule; - 1<j<ni\{fj : 1=5j<n—-1}
iii. letk < k+ 1.

We note that it is not hard to find a shortest (length) augmenting sequence
among those having maximum weight. This amounts to finding a minimum-
weight source—sink dipath and (possibly repeatedly) checking whether there is
any shortcut leading to a dipath with the same weight.

At termination of the algorithm, we claim that there is no Sy, € Z(M;) N
Z(M>) having cardinality k + 1. This is easily verified in exactly the same
manner as for the Cardinality Matroid-Intersection Algorithm.

Therefore, the only thing to verify is that, after each iteration, Si4; is a
maximum-weight set of cardinality k 4+ 1 in Z(M,) N Z(M;). Verification of
this (nontrivial) fact is left to the industrious reader.

Exercise [(Weighted) Matroid-Intersection Algorithm]. Consider the
pair of matroids from the Shortcut Exercise (see p. 95). We define a weight
function ¢ by

e c(e)

D AW N =
O 00 3

We claim that S, := {3, 4} is a maximum-weight set in Z(M;) N Z(M;) hav-
ing cardinality 2. Starting with S,, use the (Weighted) Matroid-Intersection
Algorithm to find a maximum-weight set S3 € Z(M;) N Z(M,) having car-
dinality 3.

3.4 The Matroid-Intersection Polytope 103

3.4 The Matroid-Intersection Polytope

Next, we establish an appealing characterization of the elements of Z(M;) N
Z(M53) in terms of the extreme points of a polytope. Recall that

Primynzmy) = conv{x(S) : S € Z(M) N I(M,)}.

Theorem (Matroid-Intersection Polytope). Forany pair of matroids My, M,
with common ground set E,

Primynzimsy = Pramyy N Promy)-

Proof. The extreme points of Pry,)nz(m,) are the points x(S) € RF such that
S € I(M,) and S € Z(M;). Therefore, the extreme points of Pr,)nzm,) lie
in ’PI(MI) and PI(MZ)- Hence, PI(MI)QI(MZ) - PI(MI) N PI(MZ)-

We demonstrate the reverse inclusion by induction on |E|. The theorem
is easily checked for |E| = 1. Therefore, suppose that |E| > 1. Let z be an
arbitrary extreme point of Pz, N Pru,). It is sufficient to prove that z is 0/1
valued, as that would imply that z € Pz(uy,)nz(m,)- First, we demonstrate that z
has at least one component that is O or 1.

Toward that goal, we may assume that z, > O for all e € E (otherwise we
would be done). Fori =1, 2, let

T.:={TCE : Zzeer‘(T)}.
eeT '

These sets pick out “tight rank inequalities” for each of the two matroid poly-
topes, with respect to the point z.
R3 implies that for T, T’ € 7;, we have

rM‘_(T) + rM,_(T') > rMi(T NTH + rMi(T uTh

EZze—i- Zze

eeTNT’ eeTUT'
= E Ze + E Ze»
eeT eeT’

so we have equality throughout. Therefore, each 7; is closed under intersection
and union.

We define two partitions of E. For i =1,2, let nonempty sets
A’i, Aé, e, A};(i) form a partition of E, defined in the following manner: Dis-
tinct e, f € E are both in A’j, 1 <j<k@),ifforeach T €7, {e, f}CT
or {e, f}NT = (@. That is, e and f are in the same block of the partition for
matroid M;, if each tight rank inequality for z uses both or neither of e and f

104 3 Matroid Intersection

(it is easy to check that this is an equivalence relation, so that these blocks are
well defined).
Because we assumed that z, > O for all e € E and because

Promy = {x €eRf :) x < (T, YT C E}
eeT

the extreme point z is the unique solution of the equations

er =r, (I, VTeT;

ecT

D xe= r (. VT e

eeT

Therefore, the points
x(T), TeTiUT,

span RE.

Notice that each T € 7; is the union of some blocks A’ Therefore, each
characteristic vector x(T'), for a set T € 7;, is the sum of some characteristic
vectors x(A j). Therefore, the points x(A j), i =1, 2, also span RE. Therefore,
k(1) + k(2) > |E|.Infact, k(1) 4+ k(2) > | E|, as we have the linear-dependence
relation Zk(l) x(A}) = Zk(z) x(Az) (equal to the all-one vector).

Without loss of generality, we may assume that k(1) > |E|/2. Therefore, at
least one of the A}. must contain exactly one element. Without loss of generality,
we may assume that A| = {f}.

Let

U= JiTeT : fe¢r),

and let
Vi=({TeTi: feT}.

Because 7 is closed under intersection and union, U and V are in 7.

Now, considere € V \ U. Wehavee € T ifandonlyif f € T forevery T €
7:. Therefore, e and f are in the same block A1 However, the block containing
fis A1 f;therefore, f =eand V\ U = {f} Therefore, U + f =U UV,
and because U and V are in 7}, we have U + f € 7;. Hence,

Yoz ze=r, U+ [)—r, OU),

ecU+f eeU

which is either O or 1.

3.4 The Matroid-Intersection Polytope 105

If z; = 0, thenlet z’ be the projection of z onto RE~/ . Clearly 2’ € Pz,) N

Prawy gy as r, (T)=r, (T) for T € E — f. By the inductive hypothesis,
Z' € Pru\ fynz(my\ f)- Therefore,

7 = > Nx'(5),
SET(M\ f)NI(Ma\ f)
where A5 > 0,
My =1,
SET(M\ f)NT(Ma)\ f)

and x/(S) is the characteristic vector of S in RE~/. Now, let

. Mg, for S € I(M) NZ(M>) such that f ¢ S
$710, forSeZ(M)NI(M,)suchthat feS’

Then we have

2= Y asx(S),

SeZ(M)NI(M>)

with Ag > 0,

As =1
SeT(M)NI(M>)

[here, x(S) is the characteristic vector of S in R¥]. Therefore, z € Privpnzv)-

Ifz; = 1, thenletz’ be the projection of z onto RE~/ . Clearly, z' € Pz, /) N
Priny as 1, (1) =r, (1) =r, {fH)=r, (T)~1 for T € E~ f.By
the inductive hypothesis, z' € Pz, /r)nzm,/f)- Therefore,

Z/ — Z)Jsx/(S),
SET(My/f)NL(Ma/f)

where A5 > 0,

SET(My/HNI(M2/f)
and x'(S) is the characteristic vector of S in RE~/. Now, let

. Mg, for S € I(M) NZ(M>) such that f € S
$°710, forSe(Z(M)NI(My)suchthat f ¢ S

Then we have

2= Y Asx(S),

SeZ(M)NI(M>)

106 3 Matroid Intersection
with Ag > 0,

As =1
SeZ(M))NI(M,)

[here, x(S) is the characteristic vector of S in RE]. Therefore, z € Prm)nzim,)-
| |

Exercise (Intersection of three matroid polytopes). Give an example of
three matroids M; on the same ground set, so that P,y N Pz N Proms)
has a fractional extreme point. Hint: A three-element ground set will suffice.

3.5 Further Study

Whiteley’s (1992) work contains much more information concerning the con-
nection between matroids and statics. Recski (1988) provides connections be-
tween matroids and electrical networks as well as statics. The article by Lee and
Ryan (1992) is a broader survey of algorithms and applications of matroids.

4

Matching

Recall that a matching of a graph G isaset S C E(G)suchthat|5c(v)N S| <1,
VY v € V(G). Also, the matching S is perfect if [§c(v) N S| =1,V v € V(G).
We have already studied matchings in bipartite graphs in some detail. Konig’s
Theorem provides a characterization of maximum-cardinality matchings for bi-
partite graphs (see the bipartite matching example, pp. 85, 100, and see p. 44).
The total unimodularity of the vertex-edge incidence matrix of a bipartite graph
yields a characterization of the characteristic vectors of matchings in bipartite
graphs as extreme points of a polytope (see p. 44). The Matroid-Intersection
Algorithms provide efficient methods for finding maximum-cardinality and
maximum-weight matchings in bipartite graphs (see Chapter 3). In this chap-
ter, an efficient direct algorithm is provided for finding a maximum-weight
matching in a (complete) bipartite graph.

The study of matchings in nonbipartite graphs is more complicated. We will
study an efficient algorithm for the problem of finding a maximum-cardinality
matching in a general graph. Additionally, an inequality description of the con-
vex hull of the characteristic vectors of matchings of a general graph is provided.
Finally, some applications of minimum-weight matchings are described.

4.1 Augmenting Paths and Matroids

Let S be a matching of G. A path or cycle P of G is alternating with respect
to S if the elements of P alternate, along the path or cycle, between elements
of S and elements of E(G) \ S. A vertex v € V(G) is exposed (with respect to
S) if g(v) N S = @. Vertices that are not exposed are covered. An alternating
path is augmenting if its endpoints are left exposed by S.

Berge’s Theorem. A matching S of G is of maximum cardinality if and only if
G has no augmenting path with respect to S.

107

108 4 Matching

Proof. Let P be an augmenting path with respect to S, and let 8" := SAP. §’
is a matching of G such that |S’| > |S]|.

Conversely, suppose that S is a matching of G that is not of maximum
cardinality. Let " be amatching of G such that | S| > |S|. Consider C := S'AS.
The graph G.C has maximum degree 2. Moreover, each nontrivial component
has its edge set as either an alternating path or cycle (with respect to S). Because
|S’| > |S], G.C must have some component with more edges from S’ than from
S. Any such component is an augmenting path with respect to S. []

Theorem (Matching matroid). Let G be an arbitrary graph, with W C V(G).
Then M defined by E(M) := W, and

I(M) :={X C W : G has a matching that covers X}.

is a matroid.

Proof. 11 and 12 obviously hold for M, so I3 is demonstrated here. Suppose that
X eIM)andY € Z(M)with |Y| > | X|. Let Sx and Sy denote matchings that
cover X and Y, respectively. We may assume that all elements of Y \ X are left
uncovered by Sy; otherwise we would have some v € Y \ X with the property
that the matching Sx covers X 4 v, and we would be done. Now, consider
C := SxASy. As in the proof of Berge’s Theorem, each nontrivial component
of G.C has its edge set as either an alternating path or cycle (with respect to
Sx). Consider the vertices of G.C that have degree 2. Each such vertex v has
the property that it is in Y only if it is in X (by our previous assumption).
Therefore, each (alternating) cycle of G.C has at least as many vertices in X
as in Y. Moreover, each (alternating) path of G.C has at least as many interior
vertices in X as in Y. Therefore, because |Y| > | X|, there is some (alternating)
path of G.C with more endpoints in Y than in X. Consider such a path P.
Obviously, the endpoints of P are in V(G) \ (X N Y). Neither endpoint of P
canbein X \ Y, and at least one endpoint must be in ¥ \ X for P to have more
vertices in Y than in X. All vertices of X that were covered by Sx are covered
by Sx A P in addition to any endpoint of P thatisin Y \ X (there is at least one
such endpoint). The result follows. []

A matching matroid is any matroid that arises as in the statement of the
theorem.

Problem [Scheduling, continued (see p. 59)]. Recall the matroid described
in the Scheduling Problem. Demonstrate that this matroid is a matching
matroid.

4.2 The Matching Polytope 109

Problem (Mismatching matroid). Let G be an arbitrary graph, with W C
V(G). Define M by E(M) := W, and

I(M) = {X C W : all elements of X are left exposed by some
maximum-cardinality matching of G}.

Prove that M is a matroid and describe a matroid-theoretic connection be-
tween matching matroids and these “mismatching matroids.”

4.2 The Matching Polytope

We also have a characterization of the characteristic vectors of matchings as
the extreme points of a polytope.

Matching-Polytope Theorem. Let G be a graph with no loops. The convex
hull of the characteristic vectors of matchings of G is the solution set of

(i) —x, <0, VeeE(®G);
(ii) Y xe<1l. YveV(G):
e€dg(v)
[W|—1 .
(iii) Y ks , YW C V(G)with |W| > 3 odd.
ecE(G[W]) 2

Proof. Let M(G) denote the set of matchings of G. Because G has no loops,
the characteristic vectors of all single edges, together with the characteristic
vector of the empty set, form a set of | E(G)| + 1 affinely independent points.
Therefore, the polytope Py is full dimensional.

Our goal is to show that every facet of P,y is described by an inequality
of the form (i), (ii), or (iii). Let

() > alex. < B

ecE(G)

describe a facet of Ppyg). If matching S satisfies

D al@x(S) =B,

ecE(G)

then S is fight for (x).

Case 1: a(e) < 0 for some e € E(G).

110 4 Matching

In this case, no matching S that is tight for (:) contains e, because, for such an
e, x(§ — e) would violate (). Therefore, x.(S) = 0 for all matchings S that are
tight for (), so x(S) satisfies (i) as an equation. Because P, is full dimen-
sional and because (i) is valid for Payc), (*) must be a positive multiple of (i).

Case 2: There is a vertex v € V(G) that is met by every matching that is tight
for ().

Then

D ox($)=1,

e€dg(v)

for all matchings S that are tight for (%), so x(S) satisfies (ii) as an equation.
Because P) is full dimensional and because (ii) is valid for Ppyg), () must
be a positive multiple of (ii).

Case 3: a(e) = 0 for all e € E(G), and for every v € V(G), there is some
matching S that is tight for («) that leaves v exposed.

Define a graph G .. by
E(G;):={e € E(G) : ale) > 0},
and
V(G,):={v € V(G) : v isan endpoint of some ¢ € E(G.)}.

We analyze Case 3 by means of a series of claims.
Claim 1: G is connected.

If G, were the disjoint union of nonempty G| and G,, then fori = 1, 2, let

; . a(e) ife € E(G))
=10 ifee EG)\EG)

Then a(e) = a'(e) + a’(e), foralle € E(G).Fori = 1,2, let S’ be a matching

that maximizes

Y (@S,

ecE(G)

and let 87 be the optimal value. We can assume that S’ C E(G;). Then

Y diex, < p

ecE(G)

4.2 The Matching Polytope 111

is valid for Pyg), fori = 1, 2. Moreover, () is the sum of these two inequal-
ities, which contradicts the assumption that (x) describes a facet.

Claim 2: If § € M(G) is tight for (x), then S leaves at most one element of
V(G4) exposed.

Suppose that there is a matching that is tight for (x) and leaves a pair of
elements of V(G,) exposed. Among all such matchings and their exposed
pairs, choose a matching S and an exposed pair u, v so that u and v are the
minimum distance apart in G .. Let P be a shortest path connecting u and v in
G . Clearly P cannot consist of a single edge, say e. If that were the case, then
S + e would be a matching that violates (), as S is tight for () and a(e) > O.
Therefore, we can choose a vertex w on P that is distinct from # and v. The
vertex w is met by S due to the choice of the pair u, v.

Let S’ € M(G) be amatching that is tight for (x) and leaves w exposed (such
an S’ exists by the hypothesis of Case 3). Then SA S’ contains an alternating path
Q that has w as an endpoint. Because S and S’ are both tight for (x), we have

D ale)+) ale) =28.

eeS ees’

Now, SAQ =S\ Q)U'NQ), and SAQ =(S"\ Q)U (SN Q). There-
fore, we have

D ae)+ D ale)=28.

eeSAQ eeS'AQ

Because SAQ and S’A Q are matchings, it must be that

> ale) < B,

eeSAQ

and

> ale) < B.

eeS'AQ

Therefore, we can conclude that the matching SA Q is tight for (x). However,
SAQ leaves w exposed, as well as at least one of # and v (remember, u and v
are left exposed by S and Q is an alternating path that meets w; so Q can meet
at most one of u and v and only as an endpoint). This contradicts the choice
of S and the pair u, v.

Claim 3: For every v € V(G.), the graph obtained when v is deleted (along
with its incident edges) from G has a perfect matching.

112 4 Matching

By the hypothesis of Case 3, there is a matching that is tight for () and leaves
exposed v € V(G4). Choose such a matching S so that S C E(G) [just delete
edges notin E(G4)]. By Claim 2, § leaves no vertex of G exposed besides v.
Therefore, S is a perfect matching of the graph obtained from G by deleting v.

Claim4: Let W := V(G). Every matching that is tight for () contains exactly
(JW] —1)/2 edges of G[W].

Let S be a matching that is tight for (). As in Claim 3, we can assume that S is
contained in E(G[W]). By Claim 2, S leaves at most one element of W exposed.
Therefore, S contains at least (|W| — 1)/2 edges of G[W]. Claim 3 implies that
|[W] is odd; therefore, |S| < (JW| — 1)/2. Therefore, |S| = (|W| — 1)/2, and
x(S) satisfies (iii) as an equation.

Because Pay(c) is full dimensional and because (iii) is valid for Pyc), (*)
must be a positive multiple of (iii). []

Exercise (Weighted matching). Consider the following “envelope graph”
G with edge weights c(e) as indicated and the associated linear program
max ZeeE(G) c(e)x, subject to (i), (ii), and x, € Z,V e € E(G).

a. Convince yourself that the optimal solution of this integer program has
objective value 21.

b. Prove that the optimal objective value of the associated linear-
programming relaxation is 30 by displaying feasible solutions to it and
its dual having objective value 30.

c. Next, include constraints (iii) as well, and prove that the optimal objective
value of the linear-programming relaxation is 21 by displaying a feasible
solution to its dual having objective value 21.

1

10 ! 10

Problem (Facets of a matching polytope). Let G be a complete graph on
at least four vertices. Show that the inequalities (i), (ii), and (iii) describe
facets of Pc)-

4.3 Duality and a Maximum-Cardinality Matching Algorithm 113

4.3 Duality and a Maximum-Cardinality Matching Algorithm

We also have a generalization of Konig’s Theorem. An odd-set cover of a graph
Gisaset W= ({W, W, ..., Wi}s{vi,va, ..., v, }), where v; € V(G), each
W; C V(G) has odd cardinality (> 3), and every edge of G has a v; as an
endpoint or has both endpoints in the same W;. The capacity of the odd-set
cover W is

k
(Wil —1
r+; 3 .

The idea of an odd-set cover can be motivated by the inequality description of
P m(c) and linear-programming duality. The maximum cardinality of a matching
of G is equal to the maximum value of), E(G) Xe subject to inequalities
(i)—(iii). The dual of this linear program is

min Zyv+ Z |W|_lnw

veV(G) WCV(G) : 2
[W[=3, odd

subject to:

Yyt Y. mw=1l Ve={v.nm)eE@G);

WCV(G) : eCW
[W|=3, odd

» >0, Vv e V()
Tw >0, Y W cCV(G) : |W]|>3,odd.

The characteristic vector of an odd-set cover is a feasible solution to this
dual linear program, and the objective value of the solution is the capacity of
the cover. Therefore, the capacity of an odd-set cover is an upper bound on the
cardinality of a matching. In fact, we demonstrate the following stronger result.

Matching Duality Theorem. The maximum cardinality of a matching of a
loop-free graph G is equal to the minimum capacity of an odd-set cover of G.

Problem (Disjoint odd-set cover). Let W = ({W;, Wa, ..., Wi}; {vy,
V2, ..., v, }) be an arbitrary minimum-capacity odd-set cover of a simple
graph G. Describe an efficient procedure that alters YV to create a new
minimum-capacity odd-set cover W' = ({W{, W, ..., W\.}; (v}, v}, ...,

v;,}) such that each v’; is not an element of each W/, and the W; are disjoint
from one another. (Note: Be sure to explain why your procedure terminates,
why your W' is an odd-set cover, and why your V' has minimum capacity.)

114 4 Matching

Problem (Tutte’s Perfect-Matching Theorem). Let G be a simple graph.
For W C V(G), let koqa(G[V (G) \ W]) denote the number of components
with an odd number of vertices in the subgraph of G induced by V(G) \ W.
Note thatanisolated vertex is an “odd component.” Use the Matching Duality
Theorem to prove that G has a perfect matching if and only if k,4a(G[V (G) \
W1) < |W]| for all W C V(G). Hint: Use the fact that you can choose a
minimum-capacity odd-set cover to be “disjoint.”

The proof of the Matching Duality Theorem follows from Edmonds’s
Maximum-Cardinality Matching Algorithm. Edmonds’s algorithm is based on
the following result.

Shrinking Lemma. Let G be an undirected graph, and let S be a matching
of G. Let C be a cycle with |C| = 2l + 1 for some positive integer l. Suppose
that |SNC| =1 and S\ C is vertex disjoint from C. Construct a graph G’
by shrinking C to a single vertex. Then S’ .= S\ C is a maximum-cardinality
matching of G if and only if S is a maximum-cardinality matching of G.

Proof. Suppose that S is not a maximum-cardinality matching of G. Let P be
an augmenting path with respect to S (in G). If P is vertex disjoint from C,
then P is also augmenting with respect to S’ (in G’). So suppose that P is not
vertex disjoint from C. At least one endpoint of P, say v, is not on C, as only
one vertex of C is exposed, but both endpoints of P are exposed. Let w be the
first vertex of C encountered while traversing P starting at v. Then the subpath
P’ of P that extends from v to w is augmenting with respect to S’ (in G’). Thus
S’ is not a maximum-cardinality matching of G’.

Conversely, suppose that S’ is not a maximum-cardinality matching of G’.
Let T’ be a matching of G’ with |T’| > |S’|. Now, expand C to recover G.
Then, 7’ is a matching of G that covers at most one vertex of C. We can choose
[elements of C to adjoin to 7’ to get a matching 7 of G. Because |T| =
IT'| +1 > |S'| +1 =S|, S is not a maximum-cardinality matching of G. H

The algorithm uses the idea of an “alternating forest” to find augmenting
paths. An alternating forest with respect to a matching S of G is a subgraph H
such that

1. E(H) is a forest;
2. each component of H contains exactly one exposed vertex, called the root,
and every exposed vertex is the root of a component of H;

4.3 Duality and a Maximum-Cardinality Matching Algorithm 115

3. vertices of H are called odd or even depending on their distance to their root,
and each odd vertex has degree 2 in H and one of the two incident edges in
Hisin S.

This sounds more complicated than it really is. A picture clarifies the situ-
ation. The following picture shows what a component of H might look like.
Wavy edges are matching edges. A component could consist of an isolated root.
Note that every matching edge that is not in H is vertex disjoint from H. Also,
every vertex that is not in H is covered.

O
O
C O O
O
Root (G O O
O
O
O O
Even Odd Even Odd Even Odd Even

Edmonds’s Maximum-Cardinality Matching Algorithm

Let S be a matching of G of cardinality k. (Can take k = 0).

0. (Seed). Seed a forest H with just the exposed vertices as isolated roots
with no edges. Let G’ < G, S’ < S;. Next, repeatedly apply any of
Steps 1-3, as they are applicable.

1. (Grow). If there is an edge e € E(G’) \ E(H) with an even endpoint x
and the other endpoint y ¢ V(H), then y is met by some f € S’ \ E(H).
Moreover, the other endpoint z of f is not in V(H), so we can redefine
H by letting E(H) < E(H)+e+ f,V(H) <~ V(H)+y + z.

2. (Augment). If there isan edge e € E(G’) \ E(H) with its endpoints being
even vertices of different components of H, then E(H) + e contains a
path P between the roots of the components containing the endpoints
of e. The path P is augmenting with respect to S’, so we can let §’ <«
S’A P to increase the cardinality of the matching of G’. By repeatedly
unshrinking all shrunken cycles, we recover the original graph G and, by
applying the Shrinking Lemma (repeatedly), a matching Si+; of G such
that |Sy1| =k + 1. Let k < k + 1, and go to Step 0.

116 4 Matching

3. (Shrink). If there is an edge e € E(G’) \ E(H) with its endpoints being
even vertices of the same component of H, let P be the path from either
endpoint of e to the root of the component. Let §" < S’A P (note that this
does not alter the cardinality of S”), and shrink the unique cyclein E(H) +
e (note that we switched S’ to satisfy the conditions of the Shrinking
Lemma). The shrunken cycle becomes the root of its component in the
alternating forest.

4. (Optimality). If none of Steps 1-3 is applicable, then S; is a maximum-
cardinality matching of G.

We will be satisfied with a crude bound on the number of steps required by
Edmonds’s algorithm.

Proposition (Finiteness and efficiency of Edmonds’s Cardinality Match-
ing Algorithm). Edmonds’s Maximum-Cardinality Matching Algorithm ter-
minates in O(|V(G)|*) time.

Proof. First we note that the number of augmentations is bounded by |V (G)|/2
(consider how many edges a matching could have). Let us consider the course of
the algorithm between augmentations. The number of growth steps is bounded
by |V(G)|/2 (consider how many edges a forest could have). The number of
shrink steps is bounded by |V (G)|/2 (consider how many vertices are “lost”
when we shrink). Therefore, the total number of iterations of Steps 1, 2, and
3 is O|V(G)|*. Using the simplest of data structures, we can easily carry out
each step in O|V(G)|? time, so the total running time in terms of elementary
operations is O(|V(G)|*). |

Lemma (Maximum-cardinality matching in a shrunken graph). Az the
conclusion of Edmonds’s Maximum-Cardinality Matching Algorithm, S’ is a
maximum-cardinality matching of G'.

Proof. Let H be the forest of G’ at the conclusion of the algorithm. Let £ be
the set of even vertices of H, and let O be the set of odd vertices of H. Letl{ be
the set of vertices of G’ that are not in H. All vertices of H are covered except
for the roots. Moreover, because of the alternating nature of the forest, all non-
root vertices of H are met by elements of S’ N E(H). Therefore, no matching
edge extends between H and U/. However, all elements of U/ are covered by S’
(otherwise they would be roots); therefore, S’ N E(G'[U]) is a perfect matching
of G'[U], and |S" N E(G'[U])| = |U|/2. Moreover, by the alternating structure
of H, we have |[S' N E(H)| = |O].

4.3 Duality and a Maximum-Cardinality Matching Algorithm 117

If || > 2, then choose v € U and let W := ({Ud — v}; O +v).

We claim that WV is an odd-set cover of G’. This follows if we note that (1)
every edge of H is met by an element of O, (2) every edge of G’[U] either has
both endpoints in ¢/ — v, or is met by v, and (3) the only edges that are not in
E(H)U E(G’[U]) have an endpoint in O (because otherwise we could grow,
shrink or augment).

If, instead, we have |/| = 2, then we modify the construction of the odd-
set cover so that W := (4; O + v). If, instead, we have U = @J, then we let
W = (@;0).

In any case, it is easy to check that the capacity of W and the cardinality of
S’ are both |O| + |U|/2. |

This lemma, together with the Shrinking Lemma, establishes the validity of
Edmonds’s Maximum-Cardinality Matching Algorithm.

Theorem (Correctness of Edmonds’s Cardinality Matching Algorithm).
At the conclusion of Edmonds’s Maximum-Cardinality Matching Algorithm, Sy
is a maximum-cardinality matching of G.

Problem (Algorithmic proof of Konig’s Theorem). Adjust the proof of
the previous lemma (Maximum-cardinality matching in a shrunken graph)
to prove Konig’s Theorem (see p. 44).

Next, we work through an example to illustrate the algorithm.

Example (Matching). Consider the following graph (the matching is indicated
by the wavy edges):

118 4 Matching

First, we repeatedly apply Step 1 of the algorithm and grow an alternating
forest:

Vertices 5 and 7 are even vertices that are in the same component of the forest,
and they are connected by an edge. Therefore, we can apply Step 3 of the algo-
rithm. We alternate the matching on the path having imputed vertex sequence
1,2,3,4,5:

4.3 Duality and a Maximum-Cardinality Matching Algorithm 119

Then we shrink the cycle having imputed vertex sequence 3,4, 5,6,7,3 to
obtain the graph

and the associated alternating forest

®)

(note that the shrunken cycle becomes the root of its component). The two
vertices (3,4, 5, 6, 7) and 10 are even vertices that are in different components

120 4 Matching

of the forest, and they are connected by an edge. Therefore, we can apply Step
2 of the algorithm, and we obtain the augmenting path with imputed vertex
sequence (3,4,5,6,7), 10, 12, 11. Carrying out the augmentation, we obtain
the following matching:

Next, we unshrink the shrunken cycle, by applying the Shrinking Lemma, to
obtain a larger matching of the original graph. Vertex 10 can be matched to
either vertex 4 or 6; we arbitrarily pick vertex 4. Then we can choose any
perfect matching of the remaining vertices of the cycle to produce a larger
matching of the original graph:

4.4 Kuhn’s Algorithm for the Assignment Problem 121

Next, we reseed, and grow the forest

None of Steps 1-3 applies, so Step 4 of the algorithm indicates that the matching
of cardinality 6 has maximum cardinality. An odd-set cover of capacity 6 is

W= ({{4,5,6,7,10, 11, 12}};{2,3,8}). o

Problem (Matching duality theorem). The proof of validity of Edmonds’s
Maximum-Cardinality Matching Algorithm uses a construction of a
minimum-capacity odd-set cover of the shrunken graph G’. Prove the Match-
ing Duality Theorem by describing how to construct a minimum-capacity
odd-set cover of the original graph G.

4.4 Kuhn’s Algorithm for the Assignment Problem

Let G be a complete bipartite graph, with vertex bipartition V;(G), V»(G) satis-
fying n := |V1(G)| = |V2(G)|. Let c be a weight function on E(G). The assign-
ment problem is to find a maximum-weight perfect matching of the complete
bipartite graph G. The assignment problem is often used as a model for assign-
ing personnel to tasks.

The more general problem in which we do not assume that G is complete is
easily handled. We simply include any missing edges into G and apply a very
large negative weight.

The algorithm that is presented for the assignment problem is driven by con-
siderations involving linear-programming duality. The most natural formulation
of the assignment problem as an integer linear program is

max Zc(e)xe
ecE
subject to:

Z x, =1, Vv e V(G);

e€dg(v)

x, >0, Ve e E(G).

122 4 Matching

Of course, the variables should be required to be integer, but we get that for free
because the constraint matrix is totally unimodular and the constraint right-hand
sides are integers.

The linear programming dual is

min Z Vo

veV(G)
subject to:
Y+ = c({v,w)), Ve={v,w}e EG).

For any choice of y € RV(®, we define the transformed weight function
¢ by letting c({v,w}) := c({v,w}) — y, — y, for all edges {v,w} € E(G).
Note that dual feasibility of y is equivalent to nonpositivity of the transformed
weight function. It is an easy observation that, for any perfect matching F
of G, c(F) =c(F) — Zvev(c) v,. Therefore, F is a maximum-weight perfect
matching with respect to ¢ if and only if F is a maximum-weight perfect
matching with respect to c.

At all times, the algorithm maintains a dual-feasible solution y. A dual feasi-
ble solution can be used in a sufficient optimality criterion. We define the equal-
ity subgraph G_ by V(G-) := V(G) and E(G-) :={e € E(G) : c(e) =0}.
If y is dual feasible and F is any set of edges, then obviously ¢(F) < 0. If y is
dual feasible, then any perfect matching of G- is a maximum-weight perfect
matching of G. It is simple enough to construct an initial dual feasible solution
by taking the y, to be large enough.

Therefore, the algorithm starts with a dual feasible solution y and constructs
a maximum-cardinality matching F' of G_. If F is perfect, then we are done.
If F is not perfect, we grow a maximal alternating forest H with respect to
F, using exposed v € V(G) as roots. At the conclusion of this phase, once H
is maximal, all exposed w € V,(G) are not in the alternating forest (because
otherwise we would have discovered an augmenting path with respect to F,
contradicting the maximum cardinality of F).

Next, we define

A :=max{—c({v,w}) : v e VI(G)NV(H), w € VoL(G) \ V(H)}.
Notice that A > 0 because otherwise we could continue to grow the forest H.
Finally, we update the dual solution y as

y—A, ifveVi(GYNV(H)
=1 w+A, ifveVWVG)NV(H),
Yo ifv ¢ V(H)
and repeat (i.e., form the equality subgraph G_, find a maximum-cardinality

perfect matching of G, consider a maximal alternating forest, etc.) until the
algorithm terminates.

4.4 Kuhn’s Algorithm for the Assignment Problem 123

The only possible termination is with a perfect matching of G_ (which is
a maximum-weight perfect matching of G). Therefore, we should be satisfied
if we can establish (1) that the transformed weights remain nonnegative after
a change in the dual solution y, and (2) that the algorithm must terminate in a
reasonable number of steps.

For (1), we note that the only edges {v, w} for which the transformed weight
increases are those that have v € Vi(G) N V(H) and w € V»5(G)\ V(H). All
such edges have their transformed weight increase by exactly A, and A is
chosen to make sure that the least negative of these is increased to 0 (so all of
them will remain nonnegative).

For (2), we make two observations: (a) the number of times the cardinality
of the matching can increase is just n; (b) between increases in the cardinality
of the matching, on a dual change, the previously maximal alternating forest H
can grow further, and that can happen at most » times. To expand on observation
(b), we note that, after a dual change, all of the edges of the previous H are still
in G_, and any edge {v, w} that enters G_ (and there is at least one) can be
appended to F; if w is exposed, then we have an augmenting path that leads to
a matching of greater cardinality; if w is not exposed then we also append the
matching edge that touches w to F.

It is easy to see then that the dual solution y is changed at most n? times
and that the number of basic computational steps between each dual change is
O(n?). Therefore, the total running time is O(n*).

Although we make no use of it, we note that each component of H
has one more vertex from V(G) than V,(G). Therefore, |Vi(G) N V(H)| >
[Vo(G) N V(H)| [whenever Vi(G) has elements left exposed by the matching
F — or, equivalently, when F is not perfect]. Therefore, it is easy to see that
Zvev(c) v, decreases [by A(|V1(G) N V(H)| — |Va(G) N V(H)|] at each step.
This observation can be used to produce a somewhat simpler proof that the
algorithm terminates (although we do not get the polynomial bound on the
running time with such a proof).

Example (Kuhn’s Assignment Algorithm). We are in the process of solving a
maximum-weight assignment problem for a problem with V| (G) := {1, 2, 3, 4}
and V»(G) := {a, b, ¢, d}. The matrix of edge weights is

a b ¢ d
1 /6 15 12 13
2118 8 14 15
3113 12 17 11
4 \18 16 14 10

124 4 Matching

That is, the entry in row v and column w is c({v, w}). Using (y1, y2, 3, y4) =
(15,18, 17, 18) (for the row vertices) and (Y4, ¥p, Ve, Ya) = (0, 0,0, —2)
(for the column vertices), we compute the matrix of transformed edge

weights:

9 0 -3 0
0 —-10 -4 -1
4 -5 0 -4
0 -2 -4 -6

1
2
3
4

The equality subgraph G_ is

4.4 Kuhn’s Algorithm for the Assignment Problem 125

At this point a maximal alternating forest (seeded from vertex 1, the only
exposed vertex in V) is H, indicated by

It is easy to verify that F is of maximum cardinality in G-, as (V;(G=) \
V(H))U(WV,(G)N V(H)) = {1, 3, a}isavertex cover of G _ having cardinality
equal to that of F.

From the alternating forest H, we calculate A = 1, and we update the dual
variables to (yi, y2, y3, y4) = (15, 17,17, 17), (a, b, Ye. ya) = (1,0, 0, =2)
and the transformed edge weights to

a b c d
-10 0 -3 0
0O -9 -3 0
-5 -5 0 -4
o -1 -3 -5

S W N =

Edge {2, d} enters the equality subgraph H (and, by design, no edges of H
leave), which enables us to further grow the alternating forest to

126 4 Matching

which contains (is!) an augmenting path. This leads to the matching

of G_. This matching is perfect in G_ and is thus a maximum-weight perfect
matching of G. []

4.5 Applications of Weighted Matching

Although an algorithm for finding optimum-weight matchings in general graphs
is not presented, we do discuss some applications of such an algorithm. One
simple application is a method for finding a minimum-weight even path in an
undirected graph with nonnegative edge weights.

Problem (Minimum-weight even path). Let G be an undirected graph
with nonnegative edge weights and a pair of distinct vertices v and w. The
goal is to develop an algorithm to find, among all v—w paths having an even
number of edges, a path having minimum weight.

Consider the following construction. Let H := G[V(G) — v], and let H’
be a copy of G[V(G) — w], where V(H') :={u’ : u € V(G) —w}. Let
M be a set of disjoint edges connecting each element u of V(H) —w
with its “copy” u’ in V(H') — v. Now, we form a new graph G’ having
V(G') :=V(H)U V(H'),and E(G") := E(H) U E(H’) U M.Each edge of
G'in E(H) U E(H’) gets weight equal to the weight of the corresponding
edge in G. Edges of G’ in M get weight 0.

a. Prove that a minimum-weight perfect matching of G’ can be used to find,
among all v—w paths having an even number of edges, a path having
minimum weight.

b. What goes wrong if there are edges with negative weight in G?

4.5 Applications of Weighted Matching 127

Further applications of weighted matching are best explained in the context
of a certain generalization of perfect matchings. For a graph G, let T be an
even-cardinality subset of V(G). A subset F of E(G) is a T-join of G if

odd, ifveT

[5c(v) N F|is {even, ifve VIG\T "

Consider the vertex-edge incidence matrix A(G), the characteristic vector x(F’)
of a set F C E(G), and the characteristic vector x(7") of an even-cardinality
subset T C E(G). Itis easy to see that F' is a T-join if and only if A(G)x(S) =
x(T), where we do the arithmetic in GF(2).

A T-join is minimal if it does not properly contain a 7'-join. Certainly every
minimal 7'-join is a forest because we can repeatedly remove cycles from a 7'-
join that is not a forest. We are especially interested in minimal 7 -joins because,
for positive weight functions on E(G), minimum-weight 7'-joins are minimal
T -joins. In addition, for nonnegative weight functions, every minimum-weight
T -join is the (edge) disjoint union of a minimal 7 -join and a subgraph of weight
zero edges consisting of an ¢J-join.

The set of V(G)-joins that have cardinality |V (G)|/2 is precisely the set of
perfect matchings of G. By the addition of a large positive constant to each edge
weight, a minimum-weight V (G)-join for the new weights will be a minimum-
weight perfect matching with respect to the original weights. In this way, T'-joins
generalize perfect matchings.

Another motivating example comes from the problem of finding a minimum-
weight v—w path in an undirected graph G. Let d be a weight function on E(G).
If the weight function d is nonnegative, then we can just replace each edge of
G with an oppositely directed pair to form a digraph H. That is, edge {i, j}
of G gives rise to an oppositely directed pair of edges ¢’ and ¢” in H [i.e.,
with 7(¢’) := h(e”) := i and h(e') := t(¢”) := j]. We define a weight function
c on E(H) by letting c(e’) := c(e”) := d(e). Then, with respect to ¢, we find
a minimum-weight v—w dipath in H. This procedure fails if G has negative-
weight edges, as H would then have negative-weight dicycles. However, if
we let T := {v, w}, then the set of minimal 7-joins is precisely the set of
(undirected) v—w paths of G. Then, as long as G contains no negative-weight
cycles, a minimum-weight 7-join in G is the (edge) disjoint union of a v—w
path and a subgraph of weight zero edges consisting of an @J-join. Therefore, an
efficient algorithm for finding a minimum-weight 7 -join has, as a special case,
an efficient algorithm for finding a minimum-weight v—w path in an undirected
graph.

Using a couple of lemmata, we show how, for the problem of finding a
minimum-weight 7'-join, it suffices to consider the case of nonnegative weights.

128 4 Matching

Lemma (Symmetric difference for T-joins). Let F' be a T'-join of G;
let F C E(G)and T C V(G). Then S is a T-join of G if and only if FAF’ is
a T AT'-join of G.

Proof. In what follows, all arithmetic is in GF(2). Recall that the statement that
F’ (respectively, F, FAF') is a T'-join (respectively, T-join, T AT’-join) is
equivalent to the statement that A(G)x(F’) = x(T") [respectively, A(G)x(F) =
x(T), A(G)x(FAF’) = x(TAT")]. Because x(FAF’) = x(F) + x(F’), and
x(TAT") = x(T) + x(T"), we have that A(G)x(FAF'") = x(T AT’) is equiva-
lent to A(G)x(F) + A(G)x(F’) = x(T) + x(T"). The result follows. [|

Lemma (Shifting the objective for T-joins). Ler F' be a T’ join of G, and let
¢ be a weight function on E(G). Define a new weight function d on E(G) by
d(F):=c(FAF') —c(F'), forall F C E(G). Then F is a T-join maximizing
d(F) ifand only if FAF' is a T AT'-join maximizing c(FAF’).

Proof. By the previous lemma, F is a T-join of G if and only if FAF' is a
T AT’-join of G. Moreover, the objective function d(F') differs from ¢(FAF")
by the constant c¢(F’). The result follows. [|

Theorem (Transformation to nonnegative weights for 7T-joins). Let E_ :=
{ee E(G) : cle) <0} Let O_:={v € V(G) : |E_N¥g(v)|isodd}. We
define a nonnegative-weight function ¢ on E(G) by simply letting c*(e) :=
|c(e)|, for all e € E(G). Then FAE_ is a minimum-weight T AO_-join with
respect to c if and only if F is a minimum-weight T -join with respect to c™.

Proof. We use the previous lemmata, taking 7' := E_, and F' := O_. It is
easy to verify that F’ is a T’-join. Also, d(F) := ¢(FAF') — ¢(F') = ¢(F \
FY+c(F'\F)—c(F)=c(F\ F') — c(F' N F) = c"(F). Hence, the result
follows. |

We return to the problem of finding a minimum-weight 7 -join of a graph G,
for which we now assume that the weight function c is nonnegative.

Lemma (Structure of repeated edges). Let P be a minimal T -join of G. Then
P partitions into the edge sets of paths (1) that do not share endpoints, and (2)
whose endpoints are in T.

4.5 Applications of Weighted Matching 129

Proof. The proof is by induction on the number of edges in P. Choose a non-
trivial component H of P. Such a component has no cycle, so it contains (at
least) two vertices of degree 1. These vertices must be in 7. There is a (unique)
path in P between these two vertices. Remove the edges of this path from P,
and the result follows by induction. |

This lemma validates the following algorithm.

Edmonds—Johnson Minimum-Weight 7'-Join Algorithm

0. Given graph G, even-cardinality subset 7 of V(G), and a nonnegative-
weight function ¢ on E(G).
1. For distinct 7, j € T, let Py j; be a minimum-weight i—j path in G. Let
K be a complete graph having V(K) :=T. Let
i Y=Y cle), Vi, j}e EK).

ee P(i,j)

2. Let S be a minimum-weight perfect matching of K with respect to the
weight function ¢’. Then

P := the symmetric difference of the P; ;,, over {i, j} € S,

is a minimum-weight 7'-join of G.

T -joins also have a use in certain routing problems. These applications use
the notion of “Eulerian graphs.” An Eulerian tour of an undirected graph G
is a directed walk (for some orientation of the edges of G) that contains each
element of E(G) exactly once. An undirected graph is Eulerian if it has an
Eulerian tour.

Euler’s Theorem. G is Eulerian if and only if G is connected and E(G) is an
#-join.

Proof. The “if” part is obvious because an Eulerian tour must contain all of
E(G), and every time a walk passes through a vertex v, two edges meeting v
must be utilized.

Next, we demonstrate the “only if”” part. We proceed by induction on the
number of edges. Suppose that G is connected and E(G) is an @-join. It is
easy to see that E(G) contains a cycle C of G. Now, the connected components
G1,Ga,...,Grof G.(E(G) \ C)also have even degree at every vertex. By the
inductive hypothesis, each has an Eulerian tour. We can traverse the cycle C,

130 4 Matching

taking “side trips” of Eulerian tours of each of the G; to construct an Eulerian
tour of G.]

Let G be a connected graph with a nonnegative-weight function c on E(G). A
postperson’s tour of G is a walk of G that contains every edge, with repetitions
allowed, and returns to its starting point. We may think of a postperson’s tour
of G as an Eulerian tour of an Eulerian graph G having V(G) = V(a) and
E(G) C E(G).

Lemma (Forest of repeated edges). A minimum-weight postperson’s tour G
of G can be chosen so that E(a) \ E(G) contains no cycle. In particular, a
minimum-weight postperson’s tour of G need not traverse any edge of G more
than twice.

Proof. Removing any cycle from E (6) \ E(G) preserves the Eulerian property
(recall that G is assumed to be connected). The result follows because every
cycle has nonnegative weight. []

Let G® be the weighted graph obtained from G by the duplication of each
edge of G. For specificity, let G’ denote the graph having V(G’) := V(G) and
E(G') := E(G®)\ E(G).

As a consequence of the lemma, we can recast the problem of finding a
minimum-weight postperson’s tour problem as that of finding an Eulerian graph
G that has minimum edge weight, such that G is a restriction of G® and G is
a restriction of G. Let T be the set of vertices of G having odd degree. In the
language of T'-joins, for the sought-after G.G \ G C G’ is a minimum-weight
T-join of G'.

Exercise (Postperson’s tour). Find a minimum-weight postperson’s tour
for the following graph:

(Solve the needed minimum-weight perfect-matching problem by inspec-
tion.)

4.5 Applications of Weighted Matching 131

Similar ideas can be used in a heuristic for a much harder routing problem. A
Hamiltonian tour of the undirected graph G is a directed Hamiltonian tour for
some orientation of the edges of G. Let N be a finite set of distinct points in some
metric space. Let G be a complete graph with V(G) = N.Fore € E(G),letc(e)
be the distance between the endpoints of e. The Metric Traveling-Salesperson’s
Problem is the problem of finding a minimum-weight Hamiltonian tour of
G. For any H C E(G?) such that G®.H is Eulerian, we easily construct a
Hamiltonian tour of G that has weight no greater than a given Eulerian tour of
G®.H,by “compressing” the tour (taking advantage of the “triangle inequality”
for c) — that is, removing repeated interior vertices from the imputed vertex
sequence of the Eulerian tour, and then taking the (unique) Hamiltonian tour
with this imputed vertex sequence.

Consider the following method for determining a Hamiltonian tour of G
that has weight no more than 50% greater than that of a minimum-weight
Hamiltonian tour.

Christofides’s Heuristic

1. Let S be a minimum-weight spanning tree of G, and let
T :={veV(@G) : |5¢(v)N S]isodd}.

2. Let F be a minimum-weight perfect matching of G'[T'].

3. Define a subgraph H of G®@, where V(H) := V(G) and E(H) consists
of S U F. Find an Eulerian tour of H.

4. Compress the Eulerian tour to a Hamiltonian tour of G.

Christofides’s Theorem. Christofides’s Heuristic finds a Hamiltonian tour of
G that has weight no more than 50% greater than that of a minimum-weight
Hamiltonian tour.

Proof. Because every Hamiltonian tour contains a spanning tree, the weight
of § is no more than the weight of a minimum-weight Hamiltonian tour. The
triangle inequality implies that the weight of a minimum-weight Hamiltonian
tour of G[T'] is no more than the weight of a minimum-weight Hamiltonian tour
of G. Notice that |T| is even. The edge set of every Hamiltonian tour of G[T']
is the disjoint union of two perfect matchings of G[T]. Therefore, the weight
of F is no more than 50% of the weight of a minimum-weight Hamiltonian
tour of G[T]. Therefore, we can conclude that the weight of E(H) is no more
than 50% greater than that of a minimum-weight Hamiltonian tour of V(G). By
Euler’s Theorem, H has an Eulerian tour, and compressing such a tour provides
a Hamiltonian tour with weight no greater than that of the Eulerian tour. |

132 4 Matching

Example (Christofides’s Heuristic). Points:

Minimum-weight spanning tree of G:

4.5 Applications of Weighted Matching

Minimum-weight perfect matching of G'[T]:

Matching and tree together (double edges rendered thicker):

133

134 4 Matching

Tour generated by Christofides’s Heuristic:

The minimum-weight Hamiltonian tour turns out to be

4.5 Applications of Weighted Matching 135

For this example, the tour generated by Christofides’ heuristic weighs less than
8% more than the optimal tour — much better than the 50% guarantee. o

Problem (Worst case for Christofides’s Heuristic). Show how, for ev-
ery € > 0, there exist points in two-dimensional Euclidean space, so that
Christofides’s Heuristic can find a Hamiltonian tour that has weight at least
(50 — €)% greater than that of a minimum-weight Hamiltonian tour. Hint:
For m > 2, consider the 2m — 1 points of the following “trellis.” All of
the triangles are identical equilateral triangles. Although lines have not been
drawn between every pair of points, the distance between every pair of points
is their Euclidean distance.

2m—-1 2m-2 2m-3 m+4 m+3 m+2 m+ 1

With regard to the minimum-weight Hamiltonian tour problem, there is an-
other use for optimal-weight matchings. A set S C E(G) is a 2-factor of G
if [SNég(v)| =2 for all v € V(G). Clearly every Hamiltonian tour is a 2-
factor, so the weight of a minimum-weight 2-factor is a lower bound on the
minimum-weight of a Hamiltonian tour. Next, a description is given of how to
reduce the problem of finding a minimum-weight 2-factor of G to the problem
of finding a minimum-weight perfect matching of another graph, G”. In what
follows, vertex requirement means the number of edges that must be chosen to
be adjacent to a vertex. For a 2-factor, the vertex requirements are all 1; for a
perfect matching, the vertex requirements are all 1. Therefore, our goal is to
transform the problem on G with vertex requirements of 2 to a problem on a
new graph G” with vertex requirements of 1. We accomplish this in two steps.
The first step is to transform the problem to one, on a graph G’, in which all of
the vertices with a vertex requirement of 2 are nonadjacent. Then we make a
further transformation so that all of the vertex requirements are 1.

First, to form the problem on the graph G’, we take each edge {v, w} of G

: CVW :

136 4 Matching

having weight c,,, and vertex requirements 2 at v and w, and replace it with the
path

with edge weights ¢,,, = ¢, = ¢,y /2 and ¢/, = 0, and vertex requirements
2 atv and w and 1 at w’ and v'. In this manner, we make the following corre-
spondence between a feasible S in G and a feasible S’ in G:

v,wle S < {v,w},{w,vieds,

v,wldS < {,w}es.

Next, we take each vertex v

4.6 Further Study 137

each connected to the neighbors of v and with weights and vertex requirements
as indicated.

4.6 Further Study

Another application of T -joins is to a minimum-weight cut problem for planar
(undirected) graphs (see Section 5.3).

The definitive resource for studying matching is the monograph by Lovasz
and Plummer (1986). In particular, efficient algorithms for the maximum-weight
matching problem can be found in that book.

Much more on the minimum-weight Hamiltonian tour problem is available
in Lawler, Lenstra, Rinnooy Kan and Shmoys (1985).

Christofides’s Algorithm is just a glimpse at the rich subject of approximation
algorithms. The book by Vazirani (2001) is an excellent text on the subject.

5

Flows and Cuts

An extremely useful modeling concept in the application of optimization meth-
ods to logistics problems is the idea of a flow on a digraph. A fundamental
problem involving flows is the so-called maximum-flow problem. Although
not a true combinatorial-optimization problem, the problem of finding a maxi-
mum flow in a digraph has a strong connection with combinatorial optimization
through duality.

5.1 Source-Sink Flows and Cuts

Let G be a digraph with no loops. We distinguish a source vertex v and a
sink vertex w (v # w). A v—w flow is a point x € RF(@ that satisfies the flow-
conservation equations

Z Xe — Z xe=0, YueV(G)\{v,w).

eeég(u) e€d;(u)

We are given an upper-bound function ¢ : E(G) — R U {400} and a lower-
bound function / : E(G) — R U {—o0} . A v—w flow is feasible if it satisfies
the flow bounds

l(e) < x. < c(e), Yee EQG).

If we add up all flow-conservation equations, we obtain
- D et Dwe= DL xnt) ox=0,
eEBg(v) e€d;(v) eeég(w) e€ds(w)

or, equivalently,

z(x) = Z X — Z X, = Z Xe — Z Xe.

eeég(v) e€dg(v) e€d;(w) eESZ(w)

138

5.1 Source=Sink Flows and Cuts 139

That is, the net flow out of v is equal to the net flow into w. The maximum v—w
Sflow problem is to find a feasible v—w flow x that maximizes z(x).

It is a simple observation that the maximum v—w flow problem is a linear-
programming problem. Furthermore, because the constraint matrix of the lin-
ear program is totally unimodular, it follows that, if ¢ : E(G) +— Z U {400}
and / : E(G) — Z U {—o0}, then there will be an integer-valued optimal so-
lution whenever an optimal solution exists. Our goal in this section is to de-
scribe an efficient algorithm for the maximum v-w flow problem. As a by-
product, we will have another proof of the integrality theorem previously
mentioned.

It might appear that the maximum v—w flow problem is not truly a
combinatorial-optimization problem. This observation is correct, but there is a
natural dual to the maximum v—w flow problem that is a true combinatorial-
optimization problem. Our efficient algorithm for the maximum v—w flow prob-
lem will solve this dual problem as well.

A v—w cutset is a set S C V(G) such that v € S and w € V(G) \ S. The
capacity of S is defined as

CS) = > cley— Y le).

eesi(S) eesg(S)

Lemma (Flow across a cut). If x is a feasible v—w flow and S is a v—w cutset,
then

z(x) = Z Xo — Z Xe.

ees(S) ees;(S)

Proof. Add up the flow-conservation equations for u € S — v, and then add in
the equation

)T SRS SR S

eeég(v) e€dg(v) e€dg(w) eEzS;T(w)

to obtain

er—er=er—er.

eeég(S) ecd;(S) ecdz(w) eeég(w)

The right-hand side is z(x). |

140 5 Flows and Cuts

Corollary (Weak duality for flows). If x is a feasible v—w flow and S is a
v—w cutset, then z(x) < C(S).

Proof. This follows from the “Flow across a cut” Lemma, because

Yo xe— Y x = C(S).]

eedi(S) ee€s;(8)

5.2 An Efficient Maximum-Flow Algorithm and Consequences

Let P be a v—w path. Let P, denote the forward edges of the path, and let P_
denote the reverse edges of the path. A v—w path is augmenting with respect to
a feasible v—w flow if

X, <cle), Vee Py,
x. > 1(e), VYeeP_.

Lemma (Augmenting paths). If P is an augmenting v—w path with respect
to x, then x is not a maximum v—w flow.

Proof. Let x’ € RE be defined by

X+ A, foree Py
x,:=1{x.—A, foreeP_)
Xe, fore € E(G)\ P

Clearly x’ is a feasible flow for sufficiently small A > 0. We find that the result
follows by noting that z(x") = z(x) + A. [|

Ford and Fulkerson’s algorithm for finding a maximum v—w flow is moti-
vated by the proof of the preceding lemma. At each step of the algorithm, a
feasible v—w flow x is at hand, and we seek an augmenting v—w path P with
respect to x. If we find such an augmenting path P, then we adjust the flow
to x” of the proof, taking A to be as large as possible subject to x’ satisfying
the flow bounds. If an edge e € P has x, = I(e) or c(e), then e is critical for
the augmentation. If there is no maximum value for A, then there is no max-
imum value for the flow. If there is no augmenting path with respect to x, we
demonstrate that x is a maximum v—w flow by constructing a v—w cutset S with
z2(x) = C(9).

5.2 An Efficient Maximum-Flow Algorithm and Consequences 141

Maximum-Flow Algorithm

1. Let x be a feasible v—w flow.
2. Choose an augmenting v—w path P. If no such path exists, then stop.
3. If P is an augmenting v—w path, let

A :=min{{c(e) —x, :e € P }U{x, —Il(e) :e € P_}}.

If A = +o0, then stop.

4. Let
x.+ A, foree Py
X, =4 x.,— A, foree P_ ,
Xe, fore € E(G)\ P

and go to Step 2.

Next, we specify Ford and Fulkerson’s procedure for carrying out Step 2 of
the Maximum-Flow Algorithm. In the algorithm, L is the set of labeled but
unscanned vertices. S is the set of scanned vertices (which are labeled). U
is the set of unscanned vertices. The functions A : V(G) — R, U {400} and
¢ : (V(G) —v) — E(G) are referred to as labeling functions.

Augmenting-Path Procedure

1. Av):=40c0. L:={}. S:=0.U :=V(G) —v.

2. If L = ¢, then return (and report that no augmenting path exists). Other-
wise, choose u € L. L := L — u.

3. Scan vertex u by repeating Step 3.i or 3.ii until no further labeling is
possible. Return as soon as w € L (and report that an augmenting path
exists).

i. Choose e € (SJGr(u), such that x, < c(e) and h(e) € U, let ¢(h(e)) :=
e and A(h(e)) := min{A(u), c(e) — x.},and let U := U — h(e) and
L := L+ h(e).
ii. Choose e € 8. (u), such that x, > I(e) and t(e) € U, let ¢(t(e)) :=
e~ and A(z(e)) := min{A(u), x, — l(e)}, and let U := U — t(e) and
L :=L +1t(e).
4. Let S := S + u and go to Step 2.

142 5 Flows and Cuts

The Augmenting-Path Procedure calculates enough information to obtain
the forward edges P, and reverse edges P_ of the augmenting path and the
flow increment A required by the Maximum-Flow Algorithm. In particular, we
have A := A(w). We can recover P, and P_ by the following backtracking
procedure.

Backtracking Procedure

l.u:=w.P, =0, P_ :=0.

2. While u # v, carry out the appropriate Step 2.i or 2.ii:
i. If u = h(¢(u)), then P, := P, + ¢(u) and u := t(¢(u)).
ii. If u =1t(¢pu)), then P_ := P_ + ¢(u) and u := h(¢p(u)).

Lemma (Strong duality for flows and the stopping criterion of the
Maximum-Flow Algorithm). If the Maximum-Flow Algorithm terminates in
Step 2, x is a maximum v—w flow, and S, determined by the Augmenting-Path
Procedure, is a minimum v—w cutset with z(x) = C(S).

Proof. 1f the Maximum-Flow Algorithm terminates in Step 2, it is because
the Augmenting-Path Procedure terminated in step 2. This means that w is
unlabeled, so S is a v—w cutset. Moreover, x, = c(e) for all e € Sg (S), and
x, = I(e) for all e € 5;(S). Therefore, z(x) = C(S), and the results follows
from the “Weak duality for flows” Lemma. |

Example (Maximum-Flow Algorithm). Each edge j is labeled [(j)/x;/c(j).
Each vertex i is labeled A(i)¢(i).

Initial flow value z(x) = 4:
3a 2/3/5 2c

1/3/6

1/1/4

P.={hd a),P_=9.

5.2 An Efficient Maximum-Flow Algorithm and Consequences 143
7(x) =6:

la 2/3/5 le

P,={g. c,e b}, P_={d}.

2(x) = C(S) = &

)

Edmonds-Karp Theorem. If vertices are chosen from L in Step 2 of the
Augmenting-Path Procedure in the order that they were appended to L in Steps
3.i and 3.ii, then the Maximum-Flow Algorithm terminates with no more than
[V(G)| - |E(G)|/2 repetitions of Step 2.

144 5 Flows and Cuts

If vertices are scanned on a first-labeled/first-scanned basis, then each flow
augmentation uses an augmenting path with a minimum number of edges.

Exercise (Edmonds-Karp labeling). Let M be a large positive integer.
Each edge j is labeled I(j)/x;/c(j).

Show that, when the Edmonds—Karp labeling is used, the optimal flow is
found in just two augmentations, whereas, without any special precautions
being taken, the Maximum-Flow Algorithm may use 2M augmentations.
Also, if M = 400, then the algorithm can iterate infinitely.

For alli € V(G) and nonnegative integers k, let
O’[k := the minimum number of edges in a v— augmenting path
after k flow augmentations.

and let

rl.k := the minimum number of edges in an i—w augmenting path

after k flow augmentations.

Lemma (Monotonicity of labels in the Maximum-Flow Algorithm). [feach
flow augmentation uses an augmenting path with a minimum number of edges,
l.k'H > aik and rikH > rl.k for all i € V(G) and nonnegative integers k.

In particular, the numbers of edges in the augmenting paths chosen by the

then o

algorithm never decrease.

5.2 An Efficient Maximum-Flow Algorithm and Consequences 145

Proof (Lemma). Suppose that o' < ¥ for some i € V(G) and some k. For
any such k, we can choose i so that ok+' is as small as possible (among all i
with o/ < o). Obviously, o' > 1 (because 0! = o* = 0).

There is some final edge e on a shortest v— augmenting path after k 4 1
augmentations. Let us suppose that e is a forward edge in the path (the case in

which it is a reverse edge is handled similarly). Therefore, x, < c(e). Clearly,
ol = okt 4 1.
1 [e

By the choice of i, we have 01(5 > gk (- Hence, oft!

t Gllze) + L.

Now, suppose that x, < c(e) after k flow augmentations. Then, we would
have of < U,(e) + 1. However, we have shown that o/ *' > a,(e) + 1; therefore,
O’ik < al.kH, which is contrary to our assumptlon.

Therefore, we must have that x, = c(e) after k flow augmentations. However,
this implies that e was a reverse edge in the k + Ist v—w augmenting path.
Because that path had the minimum number of edges we have al’}e) =of+ 1.
Now, we have already established that al.kJrl > ot(e) + 1. Therefore, we have

that o/ ! > o} + 2, contradicting o/ ! < of.
The proof that t;

K1 > 7k is very similar. []

Proof (Edmonds—Karp Theorem). Suppose that edge e is critical for the k + Ist
augmentatlon The number of edges in the associated augmenting path is o, (e) +
W) = ah(e) + rh(e), because the path has the fewest number of edges among
v—w augmenting paths. The next time that edge e appears in an augmentation,
say the [4+ 1st augmentation, it appears with the opposite orientation. Let us
suppose that e is a forward edge in the k + 1st augmentation (the case in which
it is a reverse edge is handled similarly). Then, o, = o}, + 1 and o/, =
Ope + 1. Using the lemma, we have that o/, — 1 = o}, = 0y, = 0, + 1
therefore, at’(e) > t(e) +2. The lemma also gives us 7,,) > 7/, SO wWe can
conclude that ot(e) + 'Et(e) > t(e) + rt(e) + 2.
That is, every time an edge is critical, the length of the augmenting path that
uses it is at least two edges longer than the previous time that it was critical.
Now, every augmenting path has at most |V(G)| — 1 edges, and therefore, an

146 5 Flows and Cuts
edge can not be critical more than |V (G)|/2 times. The result follows because

G has |E(G)| candidates for critical edges. [|

Corollary (Max-Flow/Min-Cut Theorem). The maximum value of a v—w
flow is equal to the minimum capacity of a v—w cutset.

Problem (Linear-programming proof of the Max-Flow/Min-Cut
Theorem). Using linear-programming duality and total unimodularity, give
another proof of the Max-Flow/Min-Cut Theorem.

Problem (Finding a feasible v—w flow). Given a maximum v—w flow prob-
lem MFP, show how to formulate another maximum source-sink flow prob-
lem MFP' so that

a. MFP’ has a readily available feasible source-sink flow, and
b. any optimal solution of MFP’ either reveals that MFP has no feasible
v—w flow or calculates a feasible v—w flow for MFP.

Problem (Konig’s Theorem). Let G’ be a (undirected) bipartite graph with
vertex bipartition (Vy, V,). Associated with G’ is a directed graph G, with
V(G) := V(G') U {v, w}. The edges of G are the edges of G’, all directed
from the V; side to the V, side, together with edges of the form (v, i) for
all i € Vi, and (i, w) for all i € V,. We consider flows in G. All edges e
have flow lower bounds /(e) = 0. All edges e between V; and V, have flow
upper bounds of c(e) = +o00o. All other edges e have flow upper bounds of
cle) = 1.

a. Explain how finding a maximum v—w flow in G solves the problem of
finding a maximum-cardinality matching of G'.

b. Use the Max-Flow/Min-Cut Theorem to prove Konig’s Theorem (see
p- 44) that the maximum cardinality of a matching of the bipartite graph
G’ is equal to the minimum cardinality of a vertex cover of G'.

Problem (Vertex packing in bipartite graphs). Let G be a digraph having
no loops with source v and sink w. We consider v—w flows x that respect

5.3 Undirected Cuts 147

l(e) < x, < c(e). The anticapacity of a v—w cutset S is defined as

LS)= Y le)y— Y cle)y=—-C(V(G)\S).

e€d i (S) ecs;(S)

a. Prove that the minimum value of a v—w flow is equal to the maximum
anticapacity of a v—w cutset.

b. Let G’ be a (undirected) bipartite graph with vertex bipartition (Vy, V).
A set X C E(G') is an edge cover of G’ if every element of V(G') is
met by some element of X. Associated with G’ is a digraph G, with
V(G) := V(G) U {v, w}. The edges of G are the edges of G’, all directed
from the V; side to the V; side, together with edges of the form (v, i) for
alli € Vi, and (i, w) for all i € V,. We consider flows in G. All edges ¢
have capacity c(e) = 4o00. All edges e between V| and V; have flow lower
bounds of /(e) = 0. All other edges e have flow lower bounds of I(e) = 1.
Explain how finding a minimum v—w flow in G solves the problem of
finding a minimum-cardinality edge cover of G'.

c. Assume that G has no isolated vertices. Prove that the minimum cardi-
nality of an edge cover of G’ is equal to the maximum cardinality of a
vertex packing of G'.

5.3 Undirected Cuts

For an undirected graph H withd : E(H) — R, it is a simple matter to find
a minimum-weight v—w cut, that is, to solve

min {f(S) : veS, weV(H)\S},
SCV(H)

where f(S) := Zee&H(S) d(e). We simply make a digraph G having V(G) :=
V(H). Each edge {i, j} of H gives rise to an oppositely directed pair of edges
¢ and ¢’ in G [i.e., with t(¢') := h(e") := i and h(¢’) := t(¢”) := j]. Then we
define an upper-bound function ¢ on E(G) by letting c(e’) := c(e”) := d(e)
and a lower-bound function / on E(G) by letting c(e’) := c(e”) := 0. Then
the capacity C(S) of each v—w cut § in graph G is precisely equal to f(S).
Therefore, we can find a minimum v—w cut in the undirected graph H by using
an efficient algorithm to find a minimum v—w cut in the digraph G.

On the other hand, if the weight function d is not nonnegative, then the pre-
ceding transformation does not work. In that case, the problem is considerably
harder. In Chapter 6 we will study an integer-programming approach to the
general problem (see p. 175).

148 5 Flows and Cuts

For now, we describe an efficient method when the graph H is planar and
the source and sink are not fixed. That is, we wish to solve

min {f($)}.
SCV(H)
We rely on planar duality (see p. 65) and T'-join methodology (see Section 4.4).
A cutin G is just a set 5 (S) for some S C V(G).

Theorem (7 -joins in the planar dual and cuts). Every cut in G is an (-join
in G*, and conversely.

Proof. Let S be a subset of V(G). Consider the cut 5(S). The graph G having
V(G') := V(G) and E(G’) := 85(S) is bipartite. Therefore, G’ has no odd
cycles. Hence, the dual of G’ has all even degrees. In addition, no edge of
E(G) \ E(G’) connects two nonadjacent elements of V(G). Therefore, the set
of dual edges of E(G’) is a subset of the edges of G*. Hence, E(G’) is an #-join
of G*.

Conversely, let F' be an #-join of G*. We can view F as the edge-disjoint union
of simple cycles. Thinking of the planar embedding of G*, we can consider each
cycle as a simple closed curve, with curves intersecting on vertices only. In the
following example, we view the embedding of F as five such curves. Each
vertex of G 1is inside or outside each such curve — regions enclosed by an odd
number of these curves are shaded in the example:

5.3 Undirected Cuts 149

The following five “thumbnail” drawings are meant to clarify which edges of
F C E(G*) are in each curve.

&
M
£

Let S be the set of vertices of G (not drawn) that are inside an odd number of
these curves. It is easy to see that the elements of §(S) are precisely the (dual)
edges of F. |

Therefore, we can find a minimum-weight cut of G by simply taking a
minimum-weight @-join of G* — using the transformation technique of the
proof of the “Transformation to nonnegative weights for 7-joins” Theorem
(see p. 128) and the Edmonds—Johnson Minimum-Weight 7-Join Algorithm
(see p. 129). If we really want a minimum-weight v—w cut for a particular pair
of distinct vertices v, w € V(G), then we can just append an edge {v, w} to H
with a large negative weight; then, as long as appending this edge leaves the

150 5 Flows and Cuts

graph planar, a minimum-weight cut of this new graph will be a minimum v—w
cutof H.

5.4 Further Study

The work of Ahuja, Magnanti and Orlin (1993) is an excellent reference on
network algorithms. In particular, Chapters 68 focus on maximum-flow algo-

rithms.

6

Cutting Planes

Many combinatorial-optimization problems have natural formulations as in-
teger linear programs. The feasible region of such a formulation may have
extreme points with fractional components, in which case the optimal solution
may not be obtained by solving the linear-programming relaxation. However,
if we had a concise description of the convex hull of the feasible points, by
means of linear inequalities, we could solve such an integer linear program
by solving a linear program. Thus we have a strong interest in finding such
descriptions.

If we do not have such a concise description, all is not lost; as long as we
can generate some of the needed inequalities in an efficient manner, we may
be able to solve the integer linear program as a sequence of linear programs.
A cutting plane is a linear inequality that is generated as needed in the course
of solving an integer linear program as a sequence of linear programs. In this
chapter, we study formulation and algorithmic issues involving cutting planes.

6.1 Generic Cutting-Plane Method

Consider the integer linear program IP:

k
max E ijj
=1

subject to:
k
(i) Y ayxy<bi, fori=12,....m;
j=1
(ii) x; =0, forj=1,2,...,k;
(iii) xjel, forj=12 ...k

151

152 6 Cutting Planes

We consider approaches to solving IP that rely on solving a sequence of
linear programs that provide successively better approximations to IP.

Generic Cutting-Plane Method

. Initially, let LP be the linear-programming relaxation of IP.

. Let x* be an optimal extreme-point solution of LP.

. If x* is all integer, then stop because x* is optimal to IP.

. If x* is not all integer, then find an inequality that it satisfied by all feasible
solutions of IP, but is violated by x*, append the inequality to LP, and go
to Step 1.

W N = O

As we keep appending inequalities to our linear-programming relaxation, the
sequence of optimal values to the successive linear programs is a nonincreasing
sequence of upper bounds on the optimal value of /P. The difficulty in applying
the Generic Cutting-Plane Method lies in the problem of finding the inequalities
of Step 3.

6.2 Chvatal-Gomory Cutting Planes

Choose u € R’} For all x that satisfy the inequalities (i), we have

@) Zui ajjx; < Zuibia
i=1 =1 i=1

or, equivalently,

ji: LZ uiai_jJ X+ Xk; (é uia;; — Lé uia,-jD X;

i=1 j=

IA

m
E uib,‘.
i=1

Therefore, we have that all solutions of (i) and (i7) satisfy

k m m
i) Z \\Z uiaijJ xXj =< Z”ibi-
i=1

j=1 Li=l

It is important to note that we have not used (iii) yet. Finally, (iii) implies that

6.2 Chvdtal-Gomory Cutting Planes 153

all solutions of (ii") and (iii) satisfy the Chvdtal-Gomory cutting plane:

@iii") Z Li MiaijJ Xj = Li uibiJ .
; i=1

j=1 Li=l1

To appreciate the limitations of Chvatal-Gomory cutting planes, it is important
to note that (i7i") must be satisfied by all solutions of (ii") and (iii), even those
that do not satisfy (i) and (i7).

Example (Chvatal-Gomory cutting planes). Consider the program

max 2x; + x»
subject to:
Tx1 +xp < 28;
—X1 +3x, <7,
—8x; — 9xp, < —32;
X1, x2 > 05
X1, xp € Z.
The choice of u; =0, u, = 1/3, u3 = 1/3 yields the cutting plane —3x;

—2x, < —9. The choice of u; = 1/21, u, = 7/22, us = 0 yields the cutting
plane x, < 3.

154 6 Cutting Planes

Notice how a Chvétal-Gomory cutting plane can “hang up” on integer points
whether they are feasible or not. ®

Exercise (Chvatal-Gomory cutting planes). Find a choice of u, us, uz >
0 to yield the cutting plane —x; — x, < —4 for the Chvéital-Gomory cutting-
planes Example. Is there a choice of u, u,, u3 > 0 that will yield the valid
inequality —x; < —2 as a cutting plane? Hint: Devise an inequality system
with variables u, u», us.

Problem (Chvatal-Gomory cutting planes). Consider the program

max X2
subject to:
2k - x1 +x2 <2k
—2k-x14+x <0
X1, x>0
X1,xy € Z,
where k is a positive integer. Observe that the optimal objective value of
the program is 0, whereas the optimal value of the linear-programming
relaxation is k. Graph the feasible region. Convince yourself that it would

require at least k-successive Chvéatal-Gomory cutting planes to reduce the
optimal objective value of the linear program to 0.

Problem (Matching and Chvatal-Gomory cutting planes). Demonstrate
how the inequalities

Wl -1
> k< "7, Y W C V(G) with |[W| > 3 odd.
ecE(G[W)) 2
are Chvatal-Gomory cutting planes with respect to the system

Z x <1, VveV@G)

ecdg(v)
x, >0, VeeEWG);
x, €Z, VYeeE®G).

6.2 Chvdtal-Gomory Cutting Planes 155

Problem (Vertex packing and Chvatal-Gomory cutting planes). Let G
be a simple graph and let P(G) be the convex hull of the characteristic
vectors of vertex packings of G.

a. Demonstrate how the clique inequalities

Z x, <1, VW C V(G) such that G[W] is complete,
veW

arise by repeatedly applying the Chvatal-Gomory process, starting with
the formulation

Y x <1, VeeEG)

vee
x, >0, VveV(G),
x, €Z, VYveV().

b. Show that if G[W] is a maximal complete subgraph of G (i.e., G[W]
is complete, and there is no vertex w € V(G) \ W such that G[W + w]
is complete), then the associated clique inequality describes a facet of

P(G).

Problem [Uncapacitated facility location, continued (see p. 6)]. Demon-
strate how the inequalities (xx) are Chvatal-Gomory cutting planes with
respect to the original formulation which uses (x).

Problem (Mixed-integer cuts). Let

P::{(x>: x>0, j=1,2... k
y

x;je€l, j=1,2,...,k;
y; =0, j=12,...,p;

k)4
Zajxj +Zajyj <by;.
i=1 i=1

Let®:={j : aj <0, 1 <j < p},andlet f :=b — |b]. Prove that the

156 6 Cutting Planes

following inequality is valid for P:
u 1
ZMMHTT7Zﬁm§ML
Jj=1 jed

Hint: Consider the twocases (1) 3o o0jy; > f — land(2) -, o @y <
f—1.

6.3 Gomory Cutting Planes

Gomory cutting planes are particular manifestations of Chvatal-Gomory cut-
ting planes. They are “general-purpose” cutting planes in the sense that they
do not rely any special structure of the integer linear program. Gomory cut-
ting planes arise from linear-programming basic-feasible solutions. For this,
we assume that the a;;, b;, and c; are all integers. Let xo be defined by

k
Xo — E cjxj =0.
Jj=1

Fori = 1,2, ..., m, define nonnegative slack variables x;,; by
k
Xiyi + Zaijxj =b;.
=1

Note that the slack variables and x(can be forced to be integers, because the
aij, b, and c; are all assumed to be integers (this is important!).
Forl <i,j <m,let
1 ifi=j
a; j = P . s
Bkt 0 ifi#

andfor 1 <i <m let

aijo = 0.
Finally, for 0 < j < n, let
1 if j=0
apj:=14—c; ifl<j<k ,

0 ifk+1<j<k+m

and let by := 0.

6.3 Gomory Cutting Planes 157

Now, let n :=k +m. We can represent a basic solution of the linear-
programming relaxation of /P by manipulating the system of equations

Za,jxj =b;, fori=0,1,2,...,m.

=0
A basic solution arises if the indices (0,1,2,...,n) are partitioned
into nonbasic indices n = (N1, N2, - .., Nu—m) and basic indices f = (By :=

0, B1, B2, ..., Buw) so that

m n—m
(El) E aiﬂjx,g/. + ai,,jx,,/. = b,‘ s fori = 0, 1, 2, ce.,m,
j=0 j=1
has a unique nonnegative solution x* with x; =x, =.--=x, ~=0.We

can also solve the equations for the basic variables in terms of the nonbasic
variables:

n—m

(Eg,) xﬂi—f—ZEﬁmjx,U =xp, fori=0,1,2,....m.
j=

This equation is what we ordinarily see as row i of a simplex table. Using the
nonnegativity and integrality of the x;, we obtain the Gomory cutting planes

(Gg,) xXp+ Y gy,)xy, < x50, fori=0,1,2,....m.
j=1

Note that the cutting plane G g, is violated by the basic solution athand whenever
xy, ¢ Z. Furthermore, the Gomory cutting plane has integer coefficients. This
last fact is important so that we can repeat the process. Finally, we note that, by
subtracting E g, from Gp,, we obtain the equivalent inequality

n—m

Gp) Y ([@pn, | —@p,) %y, < x5] — x5, fori=0,1,2,....m.

Jj=1

Example (Gomory cutting planes). Continuing with the Chvatal-Gomory
cutting-plane example, we introduce slack variables x3, x4, x5. The optimal
linear-programming basis consists of the basic indices (0,1,2,5), as can be seen

158 6 Cutting Planes
from the optimal simplex table:

7 5
X0 +Z)C3 +ﬁX4 =
3 1
X1 +353X3 —35X4
1 7
X2 +3x3 A5x4

3 5
+35x3 +3x4 +xs =

IS SIS I TR I

We obtain the Gomory cutting planes

0 xp < 105
(1) X1 —x4 <3;
2 Xy <35
(€)] X3+ 2x4 + x5 <27,

which, in the space of the original variables, are

) 2x1 4+ x2 < 10;
1" 3x, < 105
2" X2 <3;

3" 3x1 4+ 2x < 17.

X

\

) o

\

Exercise (Gomory cutting planes). Inthe example, on which integer points
does inequality (1) “hang up”?

6.3 Gomory Cutting Planes 159

In the space of the nonbasic variables the Gomory cutting planes take the
form

©) —%x3 —25—2)64 = —%;
) —5x —Hx < -5
@) —tx3 —fx < -4
3) —3x3 —3x < —3.

Problem (Gomory cuts are Chvatal-Gomory cuts). Let A, A2, .
A jm be real numbers such that

. ey

(Ej) = hji-(E).
i=1

Show how the Gomory cutting plane G; (1 < j < m) is equivalent to the
special case of the Chvatal-Gomory cutting plane for the choice of u; :=
Aji — [Ajil, fori =1,2, ..., m. (You will need to use the observation that
forAeR,aeZ, [(A— |A])a] = | a] — [A]a).

Gomory’s method for applying the Generic Cutting-Plane Method to solve
IP is to select a “source” row of the simplex table having a basic variable that
has a noninteger value, and generate a Gomory cutting plane from that row.

Example [Gomory cutting planes, continued (see p. 157)]. Next, we finish
solving the example by using Gomory’s method. We append the Gomory cutting
plane to the bottom of our simplex table after writing it in terms of the nonbasic
variables and introducing a (basic) slack variable. We then solve the resulting
linear program with the dual simplex method. Each “<«-" indicates the source

row for each cutting plane. Pivot elements for the dual simplex method are
indicated by “[- - -]”.

104 31 31 0 o 274

Xo X1 X2 X3 X4 X5 rhs

1 0 0 £ 2 0 4~
3 1 7

0 1 0 & —% 0 <
1 7 7

0 0 1 5% % 0 i

o 0 0 3 3 1 2

160

6 Cutting Planes

104 31 31 0 0o 274 -1
X0 X1 X2 X3 X4 X5 X6 rhs
0 0 % = 0 0 2
3 1 7
1 0 3 -3 0 0 3
1 7 7
0 1 3 ol 0 0 3
0 0 3 3 10 3
0 0 -5 [-%] 0o 1 =3
10 32 2¢ 0 21 22 0
Xp X1 X2 X3 X4 X5 Xg rhs
1 0 0 0 0 O 1 10
1 1 18
0 1 0 z 0 0 -3 5 <
2 7 14
0 O I -z 0 0 3 =
o o0 0 -2 0 1 11 22
7 22 11
0o 0 O 3 1 0 —-= 5
3 4 1 3
10 3z 23 0 2: 22 0 —:
Xo X1 X2 X3 X4 X5 Xg X7 rhs
1 0 O 0 0 O 1 0 10
1 1 18
0 1 0 3 0 0 -—3 0 5
2 7 14
0 0 1 —£ 0 O z 0 3
o 0 O -2 0 1 11 0 22
7 22 11
0o 0 O 5 1 0 - 0 3
1 4 3
0o 0 O [—3] 0 0 -z 1 —3

6.3 Gomory Cutting Planes

10 3 4 3 -2 28 0 0
X0 X1 Xp X3 X4 X5 Xg X7 rhs
1 0 0 0 0 0 1 0 10
0 1.0 0 0 0 -1 1 3
o 0 1 0 0 0 3 -2 4
0o 0 00 O 1 19 -10 28
00 0 0 1 0 [-10] 7 -2
0o 0 0 1 0 0 4 -5 3
4 1 2 1 1 1
9¢ 31 32 21 0o 24 1 0
X0 X1 X2 X3 X4 X5 X6 X7 rhs
1 0 0 0 & o0 0 £ 2
o 1 0 0 —% 0 0 3 2
0 0 1 0 & 0 0 g =
19 33 121
o 0 o 0 g 1 o 2 2
0 0 0 0 —% 0 1 -4 :
o o o 1 % o o -2 I

161

162

6 Cutting Planes

9¢ 31 32 20 o 241 I 0o -%
X0 XI X2 X3 X4 Xs X¢ X7 Xg rhs
1 0 0 0 0 0 & 0 2
0 1 0 0 —% 0 0 & 0 &
0o 0 1 0 3 0 0 & 0 g
o 0o o o § 1 o0 £ o H
00 0 0 -5 0 1 —3F 0 3
0 0 0 1 z o o -4 o 4
0 0 0 0 [-5] 0 o0 —-% 1 -3
9 4 1 -1 8 9 1 0 0
Xo XI X2 X3 X4 X5 Xe¢ X7 Xg rhs
1 0 0 0 0 0 0 O 1 9
01 0 0 0 0 O 1 -1 4
0o 0 1 0 00 0 -2 3 1
0 0 0 0 0 1 0 —10 19 9
0 0 0 0 00 1 0 -1 1
0 0 0 1 0 0 0 [-5] 4 ~1
0o 0 0 0 1 0 0 7 -10 8

6.3 Gomory Cutting Planes

9 32 12 0 62 11 1 L1 o0
X0 X1 X2 X3 X4 X5 X X7 X8 rhs
1 0 0o 0 O 0 0 O 1 9
1 1 19
o1 0 Lt 0o 0 0 0 -1 Lo
2 7 7
o0 1 =20 0 0 0 I z
o 0 o -2 0 1 0 0 11 11
0O 0 O o o o 1 0 -1 1
o 0 0o - o o o 1 -2 L
7 22 33
oo o0 I 1 0o o0 o0 -2 3
4 2 3 1 4
9 3212 o 6 1 1 L o ¢
X0 X1 X2 X3 X4 X5 X X7 X8 X9 rhs
1 0 O 0 0 0 0 O 1 0 9
1 1 19
o1 0 LY o o0 o0 o0 -1 o 2
2 7 7
o0 1 -2 0 0090 I o
o 0 o -2 o0 1 0 0 11 0 11
0 0 O 0 o o0 1 0 -1 0 1
1 4 1
o0 0o - o o0 o0 1 ¢ o |
7 22 33
o0 0o 2 1 0 0 0 -2 o B
1 4 4
00 0 [} 0o o 0o o ¢ 1 -

163

164

6 Cutting Planes

9 3 3 4 1 19 1 1 0 0

Xo XI X2 X3 X4 X5 X X7 Xg X9 rhs
1 0 0 0 0 0 0 O 1 0 9

0o 1 0 0 O O O O -1 1 3

o 0 1 0 O O O O 3 -2 3

0o 0 o 0 061 0 0 19 -10 19
0o 0 0o 0o 0 0 1 0 -1 0 1

0 0 0 0 0 0 0 1 0 -1 1

o 0 o o 1 0 0 0 —-10 7 1

0o 0 0 1 0 0 0 O 4 -5 4

In the space of the original variables, the sequence of Gomory cutting-planes

is

(A)
(B)
©)
(D)

2x1 + x2 < 10;
3x1+x2 <135
2x1 +x <9;

3x; +x <12,

and the sequence of optimal linear-programming solutions (in the original vari-

ables) is:

(a)
(b)
()
(d)
(e)

X1 =

)C1=3—
X1 =2z
X1=3—
X1=3,

X2 =975,
)CQZZ%;
Xy = 3%,
x2=1%;
x2=3.

Toward describing a way to guarantee that Gomory’s Cutting-Plane Method
will terminate in a finite number of steps, we need to understand something
about unbounded integer programs.

6.3 Gomory Cutting Planes 165

X
° ° °
® ° °
® ° °
® ° °
° ° °
\
\
\
° » °

v N

\\\A
pBC

-

Problem (Unbounded integer program). Assume that the data for IP are
rational and that /P has a feasible solution. Prove that the linear-programming
relaxation of /P is unbounded if and only if /P is unbounded.

We assume that /P has an optimal solution. With this assumption, the linear-
programming relaxation of /P cannot have unbounded objective value. There-
fore, we can append a redundant constraint to the formulation and produce
a dual-feasible linear-programming basis. Under these assumptions, Gomory
demonstrated that there is a refinement of his cutting-plane method that is guar-
anteed to terminate.

Theorem (Finiteness of Gomory’s Cutting-Plane Method). Assume that IP
has an optimal solution. Gomory’s Cutting-Plane Method terminates provided
that

a. the source row is chosen to be the one with the noninteger basic variable of
least index,

166 6 Cutting Planes

b. the slack variable in each appended equation is given the next available
index,

c. the Epsilon-Perturbed Dual Simplex Method is used to reoptimize after each
equation is appended.

Proof. When we append a Gomory cutting plane in the form of 5,3‘. to an optimal
simplex table, the value of the new basic variable for that row is negative. The
objective coefficient that we assign to the slack variable x; is €, as per the
Epsilon-Perturbed Dual Simplex Method. Therefore, the objective value for
the perturbed problem, even before we pivot, changes by (Lx;ij - xzi) ek,
which is a decrease. Then we reoptimize with the dual simplex method, and
the objective value for the perturbed problem continues to decrease, at each
iteration of the dual simplex method.

Consider the first iteration of the dual simplex method, just after Eﬁ, is
appended to the simplex table. Some nonbasic variable, say x, , is exchanged
with the basic variable x;. The value of xg, changes from x; to

* *
¥ —x* —g Xg — LxﬂfJ
Bi T B Bin;)] .
ag;n; ag;n,
Because
5 L)
agn; — Laﬁ,-n‘,-J

is positive, a decrease in x4 means that ag,, > 0. Therefore,

agn;

agin; — LaﬂiﬂjJ h

We conclude that fgi < xg,]

Assume that the optimal objective value of the linear-programming relaxation
of IP is z*. Let x be the optimal solution the linear-programming relaxation
of IP found by the Epsilon-Perturbed Dual Simplex Method.

Consider the box of lattice points

B = {x eZMtt . o Sx()fxép; 0=<x; §xj1fP, for j = 1,2,...,n}.
The finite set B can be ordered lexicographically: x' < x* if Y i_gxje/ <

Z?:o xfej for arbitrarily small positive €. After each successive reoptimization
(by the Epsilon-Perturbed Dual Simplex Method) in which a source row with an

6.4 Tightening a Constraint 167

original variable (i.e., xo, X1, . .., x,)is selected, the solution has the values of its
original variables lexicographically less than an element of B thatis successively
lexicographically smaller. Therefore, after a finite number of iterations, all origi-
nal variables take on integer values. |

6.4 Tightening a Constraint

Leta;; (1 <i<m, 1 <j<n)andb; (1 <i <m)be integers, and consider
the integer linear program

n
max E CjX;
=1

subject to:

P "
Py > ayx; < b, fori=12,....m;

j=1
0<x; <1, forj=1,2,...,m;

x;j€Z, forj=1,2,...,n.

There are several strategies, based on a single constraint, that can be used to
strengthen /P. Consider a single inequality

n
E agjXj < by.
Jj=1

As we consider only one constraint at a time, we can assume that a;; > 0 for
all j =1,2,...,n (we can substitute 1 — x} for x; if ax; < 0).

Provided that by is not too large, we can use a recursion to efficiently solve
the knapsack program (see the “Knapsack program” Problem)

n

A Y.
b, := max E agjXj

J=l
subject to:
(KPy) :

Zaijj < by
=
0<x; <1, forj=1,2,...,m;

x;j€Z, forj=1,2,...,n,

and then replace by with b in IP.

168 6 Cutting Planes

Another strategy is to attempt to find sets W C {1, 2, ..., n} satisfying

Z Agj > bk.

jew

Then the cover inequality

doxj= w1

jew
is satisfied by all feasible solutions of IP. The cover inequality is minimal if

Z Qg <b,, VieW.
jew—l

We can generate violated cover inequalities for use in a cutting-plane algo-
rithm. For fixed x*, let

o (x*) := min Z(l — xf)zj

j=1
(DPy) -
Z axjzj > by
j=1

z; €{0,1}, for j=1,2,...n.

Theorem (Finding violated cover inequalities). If o(x*) > 1, then all cover
inequalities for the constraint Z;le ayjxj < by are satisfied by x*. Alterna-
tively, if 0(x*) < 1 and z* solves DPy, then W := S(z*) describes a cover
inequality that is violated by x*.

Proof. Notice that z is a feasible solution of DPy, if and only if z is the charac-
teristic vector of a set W that describes a cover inequality. If o(x*) > 1, then
> ioi(1 = x7)z; > 1forall z that are feasible for DPy. Therefore,), x7z; <
Z?:l z; — 1 for all z that are feasible for DPy. That is, all cover inequalities
are satisfied by x*. Alternatively, if o(x*) < 1, then }i_,(1 — x7)z} < 1 for
some z* that is feasible to DP;. It follows that |S(z*)| — Zjes(z*) x;‘ < 1, which
implies that the valid cover inequality Zjes(z*) xj < |8(z")| — 11is violated by
x*.]

Problem (Cover separation). Describe how DP; can be solved by use of
knapsack-program methods (see the “Knapsack program” Problem).

6.4 Tightening a Constraint 169
Still another strategy is to attempt to find sets W C {1, 2, ..., n} satisfying
ayj +ax > by, Vdistinct j,I € W.

Then the clique inequality
2 3 =1
jew
is satisfied by all feasible solutions of IP. The clique inequality is maximal if

foralli ¢ W,

axj +ay; < by, forsome je W.

Problem (Clique separation). Describe how the separation problem for
clique inequalities can be recast as a maximum-weight vertex-packing
problem.

Suppose that we have the valid inequality Z?:l a;x; < B. We may assume
that all o; are nonnegative (by complementing variables if necessary). We can
choose an index k and consider the lifting program

O =B — maXZajxj
J#k
subject to:
Zaijxj'fbi—aik’ fori =1,2,...,m;
7k
0=<x; <1, forj#k;
xj€Z, for j #k.
If the lifting program is infeasible, then x; = 0 is valid. Otherwise, the inequal-
ity agxi + 3 ojx; < B is valid, for all o < §. In practice, it may not be
practical to compute more than a lower bound on §; (which amounts to com-

puting an upper bound on the maximum in the lifting program). Lifting can be
applied to any valid inequality, and, sequentially, to each variable.

Consider the formulation

Tx1 4 2x3 + x3 + 3x4 + 6x5 + Sx6 < 8;

0 < xy, x2, X3, X4, X5, X6 < 1, integer.

IA

Let P be the convex hull of the feasible solutions. Because the 0-vector and the
six standard unit vectors are feasible, dim(P) = 6. It turns out that P has 18

170

6 Cutting Planes

integer-valued points,

(000000),
(100000),
(010000),
(001000),
(000100),
(000010),
(000001),
(101000),
(011000),
(010100),
(010010),
(010001),
(001100),
(001010),
(001001),
(000101),
(011100),
(011001),

and 14 facets, described by the following inequalities:

ey
@
3
“
&)
(6)
0
®)
€)
(10)
an
12)
13)
(14)

X
x2 > 0;

x3 > 0;

x4 > 05

x5 > 0;

xe > 0;

x3 <1,

xit+x =1

X1+ x4+ x5 < 1;

x1+xs+x < 1;

X1+ X2 +x3+ x5 < 2;

X1+ X3+ x3+ x5+ X6 < 2;

2x1 + X2 + X4 + X5 + x6 < 25

3x1 4+ x2 + x3 + 2x4 + 3x5 + 2x6 < 4.

6.5 Constraint Generation for Combinatorial-Optimization Problems 171

Inequalities (1)—(7) come from the initial formulation. (8) can be thought of
as a maximal clique inequality or a minimal cover inequality. (9) and (10) are
maximal clique inequalities. We can realize (11) by starting with the minimal
cover inequality

X +x3+x5 <2,

and then lifting the coefficient of x;. We can obtain (12) by starting with the
minimal cover inequality

X3+ x4 +x6 < 2,

and then, sequentially, lifting the coefficients of x; and x4. We can obtain (13)
by starting with the minimal cover inequality

X2+ x4 +x6 < 2,

and, sequentially, lifting the coefficients of x| and xs. One way to see how (14)
can arise is to add (12) and (13) and then lift the coefficient of xs.

6.5 Constraint Generation for Combinatorial-Optimization Problems

Some integer programs require an enormous number of constraints, relative to
the number of “natural” variables. For example, let G be a simple graph, and let
P(G) denote the convex hull of the characteristic vectors of Hamiltonian tours
of G. We can formulate the problem of finding a minimum-weight Hamiltonian
tour:

min Z c(e) x,

ecE(G)
subject to:
Z X, =2, Yv € V(G) (degree constraints);
ecdg(v)
YW CV(G): (subtour-elimination
Ye=WI=L 5w < ve) -3 inequalities):
ecE(G[W]) = = ’
0<x, <1, Ye€ E(G) (simple lower- and upper-bound
inequalities);

x. €71, Vee E®QG).

It is usually impractical to explicitly list all of the subtour-elimination in-
equalities. However, we can treat them just like cutting planes and generate

172 6 Cutting Planes

them as needed; all that is required is an efficient algorithm for generating a
single violated inequality with respect to a point x* € RE(G)

First, we note that either W := § or W := V(G) \ S describes a subtour-
elimination inequality that is violated by x* when

Z x;<2.

e€dg(S)

This easily follows from), E@G) Xe = |V (G)| (which follows from the degree
constraints). Conversely, if

Z x;>2

e€dg(S)

for all § C V(G), then x* satisfies all subtour-elimination inequalities.

Separation Algorithm for Subtour-Elimination Inequalities

1. Form a digraph G’ with V(G’) := V(G). E(G’) is obtained by the re-
placement of each edge e € E(G) with a directed edge e in G’ (in either
direction).

2. Define an upper-bound function ¢ : E(G’) — R by c(e) := x} and a
lower-bound function / : E(G’) — R by l(e) := —

3. Distinguish any vertex v, and calculate minimum-capacity v—w cutsets
S, forallw € V(G') — v.

4. Let S be any choice of S,, (w € V(G’) — v) so that C(S) = min C(S,,).

i. If C(S) > 2, then all subtour-elimination inequalities are satisfied by
x*.

ii. If C(S) < 2, then either W := S or W := V(G) \ S describes a
subtour-elimination inequality that is violated by x*.

Problem (Prize-collecting traveling salesperson). Let G be an undi-
rected graph with a selected “starting vertex” v € V(G). We have posi-
tive weight functions f on V(G) —v and ¢ on E(G). The cost of trav-
eling along edge {i, j} € E(G) is c(e). The revenue obtained for visiting
vertex i is f(7). Starting from v, we must return to v, and we must visit
other vertices no more than once each. We want to find the trip with max-
imum net profit. Explain why the following formulation of the problem is

6.5 Constraint Generation for Combinatorial-Optimization Problems 173

correct:
max Y f@yi— Y cle)x.
ieV(G)—v e€E(G)
subject to:
> xe=2y, VieV(G);
eedg(i)
() dYoxe= Yy YWCV(G), weW;
ecE(G[W)) ieW—w

0<x. <1, Yee E(G)\s(v);
0<x, <2, Veedsv),
0<y; <1, Vi e V(G) —v;
x. €Z, Ve e E(G),
viel, YieV(G)—v;
»=1
Now, suppose that x* € RE(G), y* e RK(G), and w € V(G) are fixed, and
consider the linear program:

max E XJzZe — E yiu;

ecE(G)\86(v) ieV(G\lv,w)
subject to:
Ze

IA

upandz, <uj, V{i,j} € E(G)\c(v);
, Vee E(G)\ ég(v);
, YieV(G)\ {v,w};

u, = 1.

—_

0=<z =<

—_—

0=<u; <

Prove that the solution of this linear program solves the separation problem
for the inequalities ().

Even with all of the subtour-elimination inequalities, we do not have a com-
plete description of the Hamiltonian-tour polytope P(G). However, using the
Chvatal-Gomory process, we can derive valid inequalities that cut off some
fractional solutions. An elementary comb of G has a handle G[W] and teeth
F C E(G), satisfying the following properties:

L3<|WI=|V(G) -1
2. 0dd |F| > 3;

3. F Céc(W);

4. F is a matching.

174 6 Cutting Planes

Example (Comb). Below is a depiction of an elementary comb with five
teeth.

The elementary comb determines the 2-factor inequality

> xe+2xele|+{§J.

ecE(G[W]) eelF

Theorem (Validity of 2-factor inequalities). If S C E(G) satisfies S N
dg(v) =2 forallv € V(G), then x(S) satisfies the 2-factor inequalities.

Proof. If SN E(G[W])is atour of W, then W N F = (. In that case, plugging
x(S) into the 2-factor inequality, we get |W| on the left-hand side and at least
that on the right-hand side.

If SN E(G[W]) is not a tour of W, then it consists of say, p paths (some of
which might consist of a single vertex). Then we will have |S N E(G[W])| =
|W| — p. In that case, considering the degree constraints for vertices in W, we
must have |S N F| = 2p. Then, plugging x(S) into the 2-factor inequality, we
get |W| + p on the left-hand side and |W| + || F|/2] on the right-hand side.
Validity follows from the observation that2p = |SN F| < |F|. |

Problem (2-factor inequalities and Chvatal-Gomory cutting planes).
Demonstrate how 2-factor inequalities are Chvatal-Gomory cutting planes
with respect to the degree constraints and the simple lower- and upper-bound
inequalities.

Exercise (Violated 2-factor inequality). The following graph de-
scribes a fractional solution to the linear-programming relaxation of the

6.5 Constraint Generation for Combinatorial-Optimization Problems 175

integer-programming formulation for the maximum-weight Hamiltonian
tour problem. The values of the variables are indicated on the edges. Con-
vince yourself that this point satisfies the degree constraints and the subtour-
elimination inequalities, and find a 2-factor inequality that it violates.

1

~ -
~ -
~ -

LN

1

: 12~ 1 o712
12! . o
1
1
! -
.

2.~ N

- ~
- 1 ~

Even with all of the 2-factor inequalities, we do not have a complete de-
scription of P(G) (although the 2-factor inequalities, degree constraints, and
simple lower- and upper-bound inequalities are enough to describe the convex
hull of the characteristic vectors of the 2-factors of). Many other families of
valid inequalities are known for P(G), but it is unlikely that anyone will ever
establish a satisfying linear-inequality description of P(G).

Problem (Odd-cycle separation). Let H be an undirected graph with
weight function d on E(H). Recall the minimum-weight cut problem (see
p. 147)

min d .
scviin {eesXHQS) (e)}

a. Explain why the following formulation is valid for the minimum-weight
cut problem:

min Z d(e) x,

ecE(G)

subject to:
Y x. <|Cl =1, Yoddcycles C of H (odd-cycle
eeC inequalities);

0<x, <1, Yee E(G) (simple lower- and upper-bound
inequalities);
x. €Z, Vee€ EG).

176 6 Cutting Planes

b. Give an efficient algorithm for solving the separation problem for the odd-
cycle inequalities. Hint: See the “Minimum-weight even path” Problem
(p. 126).

6.6 Further Study

The work of Nemhauser and Wolsey (1988) is a useful starting point for more
material on cutting-plane methods. Also, the book by Schrijver (1986) is an
excellent resource for more material concerning integer linear programming.

There is a wealth of mathematical material and great computational success
on cutting-plane methods for the minimum-weight Hamiltonian tour problem;
see Applegate, Bixby, Chvatal and Cook (1998), and the references therein.

For the minimum-weight cut problem in undirected graphs, it turns out that
the linear-programming relaxation of the formulation (given in part a of the
“Odd-cycle separation” Problem, p. 175) solves the problem for planar graphs
and also for bipartite graphs (see Chapter 75 of Schrijver (2003)).

7

Branch-&-Bound

For general combinatorial-optimization problems, we do not know theoreti-
cally efficient algorithms. Indeed, it is very likely that theoretically efficient
algorithms do not exist for some of our favorite combinatorial-optimization
problems (e.g., the Metric Traveling-Salesperson’s Problem, the Maximum-
Cardinality Vertex-Packing Problem, and many other hard problems with com-
pact descriptions as integer linear programs).

Branch-&-Bound is a “divide-and-conquer” framework for solving discrete-
optimization problems. Because it is semienumerative and performs very badly
in the worst case, it is not something that most people who work in discrete
optimization are particularly proud of. Still, it is a very important part of
the discrete/combinatorial-optimization tool kit — something like a “plumber’s
helper.” The methodology is rather robust, it can often be integrated with other
techniques (like cutting-plane techniques for integer linear programming), and,
in many situations, it is partly responsible for the success in solving large in-
stances of difficult problems.

We assume that our discrete-optimization problem has the general form

(P) zp ;= max{c(S) : S €S},

where S is a finite set and ¢ is an arbitrary function from S to R. The Branch-
&-Bound framework is based on three main ingredients:

1. Upper Bounds: Efficient methods for determining a good upper bound
UB(P)on zp.

2. Branching Rules: Methods for replacing an instance P of the discrete-
optimization problem with some further “smaller” subproblem instances
Py, such that some optimal solution of P maps to an optimal solution of a
subproblem P;.

177

178 7 Branch-&-Bound

3. Lower Bounds: Efficient heuristics that attempt to determine a feasible can-
didate solution S € S with as high a value of ¢(S) as is practical, yielding
the lower bound LB(P) := ¢(S) on zp.

The algorithm maintains a global lower bound LB on zp (see ingredient
3), and a list £ of active subproblems with a subproblem upper bound (see
ingredient 1) for each. Initially, we set £ := {P} and we calculate UB(P).
Initially, we apply the lower-bounding heuristic to P and set LB := LB(P).
If the lower-bounding heuristic fails to provide a feasible solution, then we
initially set LB := —o0.

At a general step, we remove a subproblem P’ from the list L. If its subprob-
lem upper bound UB(P’) is less than or equal to the global lower bound LB,
then we discard P’ —in this case, we say that P’ is fathomed by bounds. If, alter-
natively, the subproblem upper bound UB(P’) is greater than the global lower
bound LB, we create further subproblem “children” of P’, say P,, according to
the branching rule (see ingredient 2). For each subproblem P; that we create,
we compute its subproblem upper bound UB(P,) and possibly a subproblem
lower bound. If the subproblem upper bound is less than or equal to the global
lower bound LB, then we discard Pé (fathoming by bounds, as above). If we
have some logic for determining, in the subproblem upper-bounding procedure,
that P; is infeasible, then we consider the subproblem upper bound for P; to be
—o00, and it will also be discarded — in this case, we say that Pe’ has been fath-
omed by infeasibility. If we obtain a finite subproblem lower bound LB(P,) for
P;, then we update the global lower bound: LB < max{LB, LB(P,)}, and then
we discard P if its subproblem lower bound LB(P)) is equal to it subproblem
upper bound — in this case, we say that P, is fathomed by optimality.

If a subproblem child P, is not fathomed according to the preceding possi-
bilities, then we put P; on the list L. If the list £ is empty after we process
all of the subproblem children P, of P’, then we stop with the conclusion that
zp = LB. Otherwise, we remove another subproblem from the list and repeat
all of the preceding procedure.

Finite termination is ensured by having each subproblem instance be
“smaller” than its parent (see ingredient 2). The exact meaning of “smaller”
depends on the application; this will be developed further in the remaining
sections of this chapter.

Although not necessary for carrying out the algorithm, some additional infor-
mation can be recorded that can be useful. Just before removing a subproblem
from L to process, we may calculate the global upper bound

UB := max{LB, max{UB(P’) : P’ € L}}.

At the beginning of the execution of the algorithm, we will have UB := UB(P).
At any stage, because LB < zp < UB, we may stop the algorithm when UB is

7.1 Branch-&-Bound Using Linear-Programming Relaxation 179

deemed to be close enough to LB, at which point we know that the objective
value of the candidate solution is within UB — LB of the optimal objective
value zp. In addition, the global upper bound can be used to develop a useful
branching rule (to be discussed shortly).

The Branch-&-Bound framework can be effective only if, after we remove a
subproblem P’ from the list £, we do not replace it on the list with very many
of its children P; very often. Our success, in this regard, depends on the quality
of the lower and upper bounds.

There is always the flexibility of being able to choose any subproblem P’
from £ to remove. Experience indicates that a “Last-in/First-out” discipline
may obtain a good feasible solution relatively quickly (assuming that the lower-
bounding heuristic is pretty good), and so this discipline is aimed at increasing
the global lower bound LB. On the other hand, the “Best-Bound” discipline of
choosing a subproblem P’ with the property that UB(P’) = UB has the goal
of trying to decrease the global upper bound UB relatively quickly. A prudent
strategy seems to be to use Last-in/First-out early in the process and then employ
mostly Best-Bound, reverting to Last-in/First-out for some time if £ grows large
or if the global upper bound has not decreased significantly after many iterations.

In the remainder of this chapter, we will see how the Branch-&-Bound frame-
work can be used for particular problems.

7.1 Branch-&-Bound Using Linear-Programming Relaxation

Consider the integer linear program

n
z, '= max E Cjx;
j=1

subject to:
(P) "
Zaijxj <b;, fori=1,2,...,m;
j=1

x;el, forj=1,2,... n.

For simplicity, we assume that the feasible region of the linear-programming
relaxation of P is a bounded set. Therefore, the set of feasible solutions to any
subproblem P’ is a finite set.

1. Upper Bounds: We solve the linear-programming relaxation of a subproblem
P’. Let x* be its optimal solution. The optimal objective value of the linear-
programming relaxation is an upper bound on zp-.

2. Branching Rule: We choose a variable x; for which x; ¢ Z. We branch by
creating two new subproblems: (a) P’ together with the additional inequality
X¢ < |x;], and (b) P’ together with the additional inequality x; > [x;].

180 7 Branch-&-Bound

3. Lower Bounds: If the solution x* of the linear-programming relaxation of
P’ happens to be in &’ (the set of feasible solutions to the integer linear
program P’), then its objective z* := c(x™*) value is a lower bound on zp.
We can make this a bit more sophisticated. Even if the optimal solution
is not feasible to P’, we may visit feasible solutions to P’ in the process
of solving its linear-programming relaxation (if, for example, we solve the
subproblems by the primal simplex method). Any of these also provides a
lower bound on zp.. Finally, it may be possible to perturb the solution of
the linear-programming relaxation to obtain a feasible solution of P’; for
example, if the g;; are nonnegative, then rounding the components of x*
down provides a feasible solution.

This Branch-&-Bound method can be effective only if we do not replace one
subprogram on the list with two very often. This depends on the quality of the
bounds we obtain by solving the linear-programming relaxations. Often, these
bounds can be significantly strengthened by use of cutting-plane methods. In
doing so, we obtain a so-called “Branch-&-Cut” method.

Example (Branch-&-Bound using linear-programming relaxation).

max —x; + x»

subject to:
12x; + 11x, <63
(upP)
—22x1 +4x, < 33
X1, x2 >0
X1, X2 € Z

We solve the linear-programming relaxation of the initial subprogram and
obtain an optimal solution with z* = 1.29, x| = 2.12, and x5 = 3.41.

Xy /z=1.29

X

7.1 Branch-&-Bound Using Linear-Programming Relaxation 181
At this point we have
LB = —o0, UB =1.29,
and the list of active subprograms is

* *

Subprogram z x| 5

X3

IP 129 212 341

Selecting the only subprogram on the list, we arbitrarily choose x; as
the variable to branch on. We obtain two new subprograms. The child with
the constraint x; < 2 has z* = 0.75, x{ = 2.00, x3 = 2.75 as the solution of
its linear-programming relaxation. The child with the constraint x; > 3 has

¥ = —0.55, x{ = 3.00, x; = 2.45 as the solution of its linear-programming
relaxation.
X
L z=075

X1

Both subprograms are put on the list. At this point we have
LB = —o0, UB =0.75,
and the list of active subprograms is

* * *

Subprogram z X X3

IP with x; <2 0.75 2.00 275
IPwithx; >2 —0.55 3.00 245

Arbitrarily selecting the top subprogram from the list, we must branch on
X7, and we obtain two new subprograms. The child with the constraint x, < 2

182 7 Branch-&-Bound

has z* = 0.14, x{ = 1.86, xJ = 2.00 as the solution of its linear-programming
relaxation. This subprogram is placed on the list. The child with the constraint
x» > 3 is fathomed by infeasibility. At this point we have:

LB = —o0, UB = 0.14,
and the list of active subprograms is

* *

Subprogram b4 X] >

RY)

IP with x; > 3 —0.55 3.00 245
IP with x; <2,x, <2 0.14 186 2.00

Arbitrarily selecting the bottom subprogram to remove from the list, we
must branch on x;, and we obtain two new subprograms. The child with the
constraintx; < 1 is fathomed by infeasibility. The child with the constraint x; >
2hasz* = 0.00, x{ = 2.00, x; = 2.00 as the solution of its linear-programming
relaxation and it is fathomed by optimality. This becomes our new candidate and
we update LB to 0.00. Now, the remaining subprogram on the list (/P with x; >
3) is removed, and it is fathomed by bounds. At this point the list is empty and
UB is reduced to 0.00, so we conclude that the candidate is optimal. '

Exercise (Branch-&-Bound). You are in the process of solving an inte-
ger linear maximization program, in the variables x|, x,, x3, by Branch-&-
Bound. The current value of the lower bound LB is —oo. The list of active
subproblems is

Subprogram 4 x{ x5 X3
IP with x; > 6, x, <3 90.50 6.00 3.00 0.50
IP with x; <5,x, <13 16525 5.00 13.00 5.75

IP withx; <5,x, > 14,x3>1 138.00 425 16.00 1.00
IP withx; <5,x, > 14,x3 <0 121.25 3.75 1525 0.00

where x* is the optimal solution for the linear-programming relaxation of a
subproblem and z* is the objective value of x*.

a. What is the current value of the upper bound UB? Explain.

b. Have we fathomed any subproblem by integrality yet? Explain.

c. Have we fathomed any subproblem by bounds or by infeasibility yet?
Explain.

7.1 Branch-&-Bound Using Linear-Programming Relaxation 183

Exercise [Knapsack program, continued (see p. 82)]. Using the data from
the “Knapsack program” Exercise, solve the knapsack program by using
Branch-&-Bound.

There are some practical issues that can have a considerable effect on the
performance of the Branch-&-Bound method for integer linear programming
that has been described:

1. As is always true when the Branch-&-Bound framework is used, a greater
value of LB increases the likelihood of fathoming by bounds. For integer lin-
ear programming, performance in this regard can be considerably enhanced
by use of problem-specific heuristic methods to find a good initial candidate,
rather than just hoping that one will be stumbled upon during the solution
of the linear-programming relaxation of some subprogram.

2. All subprogram relaxations, except possibly for the initial one, may be solved
by the dual simplex method, beginning with an optimal basis of the parent
subprogram. This can drastically reduce the amount of time spent solving
linear programs.

If the feasible region is not bounded, then it is possible that the linear-
programming relaxation of /P may be unbounded. In such a case, however,
IP is also unbounded if /P has a feasible solution and the data is rational (see
the “Unbounded integer program” Problem from Chapter 6). Therefore, if the
linear-programming relaxation of /P is unbounded, we determine whether /P
is unbounded by applying Branch-&-Bound to the “feasibility program”:

Zp, = MAX X0
subject to:
n
(IPy) X0 + ajjxj <b;, fori =1,2,...,m;
Jj=1
xo < 05

xjelZ, forj=0,1,2,...,n.

IP is feasible if and only if % = 0.
0

Branch-&-Bound can behave quite poorly on programs even when the fea-
sible region is nicely bounded.

184 7 Branch-&-Bound

Problem (Exponential example for Branch-&-Bound). Let n be an odd
positive integer, and consider the integer linear program

max —xg

subject to:

n
xo+2 E X; =n;
=1

0<x;<1,forj=0,1,2,...,m;
xj€Z, forj=0,1,2,...,n.

Show that, when Branch-&-Bound is applied to this integer program, at least
2" subprograms are placed on the list.

7.2 Knapsack Programs and Group Relaxation

The application of Branch-&-Bound to the solution of integer linear programs
is not critically linked to the use of upper bounds obtained from the solution of
linear-programming relaxations. For simplicity, consider the equality knapsack
program

n
max E Cj)Cj
j=1

subject to:
EKP &
() Z ajx; = b;
j=1
x; >0, forj=1,2,...n;
xjeZ, forj=12,...n,
where the a; and b are arbitrary positive integers.
1. Upper Bounds: Choose k (1 < k < n) so that ¢;/ay = max{c;/a; : 1<
J < n}. Relaxing the nonnegativity restriction on the variable x;, we obtain the
group relaxation

Ck Ck
—b + max E cj — —aj |x;
273 ak

i
subject to:
(GP) Zajszb—akxk;
7k
x; >0,V j#k;

x;€Z, forj=12,...n

7.2 Knapsack Programs and Group Relaxation 185

Equivalently, we have

Ck . Ck
ab — min ; (—cj + a—ka.,->xj
subject to:
(GP) Zajxj = b (mod ay;);
J#k
x; >0, Vj#k;
x; €L, Vj#k.

Notice how, from every feasible solution to GP’, we can easily calculate the
value for x; that goes with it in GP. If this value of x; is nonnegative, then we
have found an optimal solution to EKP.

Now, consider a digraph G with V(G) :={0,1,...,a; — 1}. Foreach i €
V(G)and j # k, we have an edge fromi toi + a; (mod a) with weight —c; +
;—ia‘,-. Notice that, by the choice of k, we have —c; + ;—:a ; = 0. Therefore, we
have a digraph with nonnegative edge weights.

Consider a diwalk in G that begins at vertex 0. As we traverse the walk, we
increment variables starting out with x; = 0,for j = 1,2, ..., n. Including the
edge from i to i + a; (mod a;) in our walk corresponds to incrementing the
variable x; by one. Indeed, as x; is incremented by one, } ., a;x; (mod a)
changes from some value i to i +a; (mod a;), and Zj#k (—cj + Z—iaj) Xj
increases by —c; + %a ;. Ultimately, we want to choose a solution x so that
> jak X = b (mod a;), so we find a minimum-weight diwalk from vertex 0

to vertex b (mod a;). Because the edge weights are nonnegative, we can use
Dijkstra’s algorithm to find a minimum-weight dipath.

Example (Branch-&-Bound using group relaxation). Consider the equality
knapsack program (compare with p. 82):

max Ilx; + 7x2 4+ 5x3 + x4
subjectto: 6x; 4+ 4xo + 3x3 + x4 + x5 = 25
X1 s X2 N X3 , X4 , X5 = 0 integer.

We have ¢;/a; = max{cj/a; : 1 < j <5}, so, relaxing the nonnegativity re-
striction on the variable x|, we obtain the group relaxation

1—6125 — min %xz + %x3 + %x4 + X5
subjectto: 4x, + 3x3 + x4 4+ x5 = 25 (mod 6);
X2 o, X3 o, X4 xs > 0integer.

186 7 Branch-&-Bound

The associated weighted digraph takes the following form:

Because 1 = 25 (mod 6), we seek a minimum-weight dipath from vertex O to
vertex 1. The edge directly from vertex O to vertex 1 constitutes such a minimum-
weight dipath. This corresponds to the solutionx; = 0, x3 =0, x4 = 1, x5 = 0,
and an upper bound of 45(= %25 - %) for the group relaxation, which implies
that x; = 4. Because x; turns out to be nonnegative, our solution to the group
relaxation solves the original knapsack program.

Another minimum-weight dipath from vertex O to vertex 1 consists of the
edge from vertex O to vertex 4 together with the edge from vertex 4 to vertex 1.
This corresponds to the solution x, = 1, x3 = 1, x4 = 0, x5 = 0, and the same
upper bound of 45(= %25 - % - %) for the group relaxation, which implies
that x; = 3. Again, because x; turns out to be nonnegative, our solution to
the group relaxation provides an alternative solution to the original knapsack
program. ®

7.2 Knapsack Programs and Group Relaxation 187

Problem (Big right-hand side). Provethatifb > (ax — 1) - max{a; : j #
k}, then the solution of the group relaxation solves the original knapsack

program.

2. Branching Rule: Next, we need to see how we can branch effectively when
we use the group relaxation. A subprogram will have the general form

n
max E CjX;j
J=1

subject to:

EKP(l 1
(EKP(1) S s, = b
j=1
xj =1, forj=1,2,...m;
x;jelZ, forj=1,2,...n,
where ! = (11, I», . .., I,) is a vector of nonnegative integers. Substituting x;. =

xj — [, we have the equivalent program

n n
/
E lej -+ max E Cjx;
Jj=1 j=l1

subject to:
EKP'(l & “
e > a =b= Y al;
= =1
x} >0, forj=1,2,...n;
x} €Z, forj=1,2,...n,

We can apply the group-relaxation method directly to EKP'(l). Finally, we
branch by (1) considering x =/ as a potential replacement for the current
candidate, and (2) replacing EKP(I) with the n programs EKP(l + e/), where
e/ is the jth standard unit vector for j = 1, 2, ...n. This is a finite procedure
because the assumption that the a; are positive bounds the x; from above.

Exercise (Knapsack program using group relaxation). Solve the equality
knapsack program,

max 16x; + 7Tx»
subjectto: 1lx; 4+ 5x + x3 = 18;
X1 , Xx» , x3 > 0 Iinteger,

by using the Branch-&-Bound scheme based on group relaxation.

188 7 Branch-&-Bound

7.3 Branch-&-Bound for Optimal-Weight Hamiltonian Tour

Let G be asimple graph. We are interested in the problem of finding a maximum-
weight Hamiltonian tour of G.

1. Upper Bounds: We fix a vertex w in V(G). A w-forest of G 1is a set that
consists of no more than two edges from §5(w) and a forest of G[V(G) — w].
Similarly, a w-tree of G is a set that consists of two edges from §;(w) and a
spanning tree of G[V(G) — w]. It is easy to see that every Hamiltonian tour of
G is a w-tree of G, but not conversely. On the other hand, the only reason that
a given w-tree is not a Hamiltonian tour is that some of the vertices, other than
w, have a degree different from two.

Let F,,(G) [respectively, 7,,(G)] be the set of all w-forests (respectively,
w-trees) of G. Let P, (G) be the convex hull of the characteristic vectors of
elements of 7,,(G). We can formulate the problem of finding a maximum-weight
Hamiltonian tour as

Z := max Z c(e)x,
e€E(G)
subject to:
Z Xe =2, YveV(G)—w (degree constraints);,
e€dg(v)

x € Pu(G).

It is easy to see that the set F,, (G) is the set of independent sets of a matroid
M., (G). Assuming that G has a w-tree, the matroid M,,(G) is the direct
sum of the uniform matroid of rank two on §5(w) and the graphic matroid of
G[V(G) — w]. Furthermore, again assuming that G has a w-tree, the set of
bases of M, (G) is the set 7,,(G).

By dropping the degree constraints, we are led to

f = max Z c(e)x,
¢cE(G)
subject to:
x € Py(G),

which is an upper bound on z. We can efficiently calculate f by using the
Greedy Algorithm to find a maximum-weight base of M, (G).

Example (w-tree relaxation). We consider the maximum-weight
Hamiltonian-tour problem on the graph of the “Maximum-weight span-
ning tree”” Exercise (see p. 58). We take w := b. The maximum-weight b-tree
is

7.3 Branch-&-Bound for Optimal-Weight Hamiltonian Tour 189

with weight f = 13.)

To use this bound f in a Branch-&-Bound Algorithm, we need to choose a
branching strategy that is consistent with the bound calculation.

2. Branching Rule: Every w-tree contains a unique cycle. If S is a maximum-
weight w-tree and S is not a Hamiltonian tour, then S contains a cycle C
with |C| < |V(G)|. Every Hamiltonian tour omits some edge of C; so we can
replace the Hamiltonian-tour problem with the |C| Hamiltonian-tour subprob-
lems, which are form by taking the restriction of the problem to G.(E(G) — e)
foreache € C.

Example (w-tree relaxation, continued). Continuing with the example, the
maximum-weight b-tree contains the unique cycle C := {{a, b}, {b, e}, {a, e}}.
It is easy to check that the maximum-weight b-tree on the graph with the edge
{a, b} deleted has weight 5, weight 10 on the graph with {b, e} deleted, and
weight 8 on the graph with {a, e} deleted. The maximum of these is 10, so at
this point in the Branch-&-Bound Algorithm, we have reduced the global upper
bound from 13 to 10. L)

Exercise (w-tree based Branch-&-Bound). Continuing with the “w-tree
relaxation” Example, find the maximum-weight Hamiltonian tour by com-
pleting the execution of the Branch-&-Bound Algorithm.

190 7 Branch-&-Bound

The w-tree bound can be improved by use of Lagrangian relaxation (see
p. 35). In this way, we can take some advantage of the heretofore ignored
degree constraints. For notational convenience, we take 7w € RV(©) but we fix
7, := 0, and we work only with 7 satisfying) evG) v = 0 [initially, we
take 7, = 0, for all v € V(G)]. We have the Lagrangian relaxation

f () := max Z [e({i, JH — i — 7jlxg,

{i.j}€E(G)

(L())

subject to:
x € P,(G),

Let S be a maximum-weight w-tree, with respect to the weight function:
c{i, j}) —m; — m;, forall {i, j} € E(G). We have the subgradient H e RVO,
defined by h, =2 — |SNdg(v)|, forallv € V(G). We can use the Subgradient
Optimization Algorithm to seek to minimize f.

Example (w-tree relaxation, continued). We continue with the “w-tree

relaxation” Example. At 7 = 7!:=0, the optimal w-tree is S = {{a, b},
{b, e}, {a, e}, {a, c}, {a, d}}. We have the subgradient
T -2
~ he 0
=117
h 1

Y

This leads to the new iterate 7' = %° — A%. The Lagrangian relaxation L(7%° —

)ji) is the problem of finding a maximum-weight b-tree on the edge-weighted
graph:

7.4 Maximum-Entropy Sampling and Branch-&-Bound 191

Plotting f(7') = f(7° —)\5) as a function of A, we have

181

13\
-1 \/1 2 3 4

By taking A = 2/5, we see that we can get the upper bound down from f = 13
(at A = 0) to less than 12. Then, using the integrality of the weight function,
we can conclude, without yet resorting to branching, that z < 11. e

There are other reasonable choices of bounds for carrying out Branch-&-
Bound to find a maximum-weight Hamiltonian tour. For example, every Hamil-
tonian tour is a 2-factor, so the weight of a maximum-weight 2-factor is an upper
bound on the weight of all Hamiltonian tours. We can find a maximum-weight
2-factor by solving a related maximum-weight perfect-matching problem (see
p. 135). For a compatible branching rule, we proceed exactly as we did previ-
ously, branching on a cycle.

7.4 Maximum-Entropy Sampling and Branch-&-Bound

The Branch-&-Bound framework may also be applied to situations in which
upper bounds are not easily calculated by solving a relaxation. One such ex-
ample is the “maximum-entropy sampling problem.” Let C be a symmetric
positive-definite matrix, with rows and columns indexed by V. For nonempty
S, T C V,let C[S, T]denote the submatrix of C having rows indexed by S and
columns indexed by 7T'. For nonempty S C V, the entropy of S with respect to
C[V,V]is H(S) := Indet(C[S, S]). If V is a set of random variables having
a joint Gaussian distribution and C is the associated covariance matrix, then
H(S) is a measure of the “information” contained in S.

192 7 Branch-&-Bound

Let s < |V| be a positive integer, and let @ be a constant. The maximum-
entropy sampling problem is

P(C,V,s,a) z:=a+max{H(S) : SCV, |S|=s}.

The goal of the problem is to find a choice of s of the random variables that is
most informative about the entire set V.

1. Upper Bounds: A consequence of the “eigenvalue interlacing property” for
symmetric matrices is that det(C[S, S]) <]_[f:1 M(CIV, V], forall S C V
having |S| = s, where 1;() denotes the /th greatest eigenvalue. Therefore,
we have the upper bound z < o + Y), In 2, (C[V, V]).

2. Branching Rule: We branch by choosing some j € V and creating two sub-
problems of the problem P(C, V, s,). For one of them, we exclude j from
the optimal solution. This amounts to solving the problem

PCIV =), V—=jLV—=js a).

For the other, we require j to be in the optimal solution. This amounts to
solving the problem

P(CLV —j,V — j1=CLV — j, jIC};'CLj, V — j],
\% —j,S — 1,a+1Hij).

3. Lower Bounds: We can obtain a lower bound on z by some greedy and
local-search heuristics.

Problem (Maximum-entropy sampling and Branch-&-Bound). Let V;,
Vo, ..., V), be a partition of V. Let C(Vi, V3, ..., V,) be the submatrix of
C we obtain by changing C;; to zero whenever i and j are in different parts
of Vi, Vo, ..., V,.

a. Prove that

z<a+)y Inx(CVi, Va,..., V).

=1
b. Prove that z is equal to the optimal objective value of
P(C7', V,n —s,a+Indet(C)),

and explain how this formula can be exploited, in conjunction with the
upper bounds from part a, to give further upper bounds on z.

7.5 Further Study 193

7.5 Further Study

There are many papers on Branch-&-Bound. In most of these, the mathematics
is mostly in the upper-bounding methods (for maximization problems). Lenstra
(1983) and Margot (2003) demonstrate (in quite different ways) the value of
mathematical approaches to the investigation of branching rules in the context
of integer linear programming.

Branch-&-Bound for integer linear programming has several, more sophisti-
cated variants. Some of these are Branch-&-Cut, Branch-&-Price and Branch-
Cut-&-Price. See Ladanyi, Ralphs, and Trotter (2001) for a description of many
of the ideas and how they have been implemented. Notably, open-source code
for Branch-Cut-&-Price is available at www.coin-or.org.

There is considerable practical lore on applying Branch-&-Bound (and its
variants) to integer linear programming problems. The articles by Linderoth
and Savelsbergh (1999) and Martin (2001) are in this vein.

An entry point to the literature on Branch-&-Bound methods for maximum-
entropy sampling is Lee (2001).

Anstreicher, Brixius, Goux, and Linderoth (2002) achieved stunning success
in solving large “quadratic assignment problems” by employing sophisticated
bounding procedures, clever branching rules, and a state-of-the-art parallel im-
plementation on a computational grid.

8

Optimizing Submodular Functions

Minimizing and maximizing submodular functions are fundamental unifying
problems in combinatorial optimization. In this chapter, some examples are
given, and we discuss aspects of the general problems of minimizing and max-
imizing submodular functions.

8.1 Minimizing Submodular Functions

Let M be a matroid. Recall the rank inequalities

D oxe<r,(S), VSCEM)
eeS
that, along with nonnegativity, describe Pz. The separation problem for the
rank inequalities is, for fixed x* € REM)_find § ¢ E(M) so that
er > rM(S) .

eeS

Define f : 2E™) 1 R by
f(S):=r ()= xI.

ecS
Itis easy to check that f is submodular (by use of the fact that Ty is). Moreover,
x* violates a rank inequality if and only if the minimum of f(S), over S C
E(M), is less than 0.

Thus an ability to minimize this particular submodular function efficiently,
provides a theoretically efficient algorithm, by use of the ellipsoid method, for
finding maximum-weight sets that are independent for a matroid or even for a
pair of matroids. Of course, we also know direct combinatorial algorithms for
these problems that are practically as well as theoretically efficient.

194

8.1 Minimizing Submodular Functions 195

Problem (Minimum-weight cuts and submodular minimization). Con-
sider a digraph G with distinguished vertices v, w € V(G) withv # w, and
a “capacity” function ¢ : E(G) — Ry.For § C V(G) \ {v, w}, define

f(S) := Z {c(e) tee€ (Sg(S +v)} .

[That is, f(S) is the sum of the capacities on the edges that point out of
S +v.] Prove that f is submodular, and describe how to determine the
minimum of f on V(G) \ {v, w}.

Problem (Maximum-cardinality matroid intersection and submodular
minimization). Let M; be matroids on the common ground set E := E(M;)
fori = 1, 2. Prove that f : 2 > R defined by

f©S):=r, () +r, (E\S)

is submodular, and explain how this relates to the problem of finding a
maximum-cardinality subset of E that is independent in both M, and M,.

Next, we discuss some aspects of the problem of minimizing a general
submodular function f : 2F 5 R, where E is a finite set. First, we may as-
sume that f(#) = 0 [by subtracting f(¥) from f if necessary]. We define
f':10,1]% — R in a certain way, so that f'(x) := f(S(x)) for x € {0, 1}.
Every nonzero x € [0, 1]€ can be decomposed uniquely as x = ZT:I Ajxd,
where

() m < |E|;

(ii) Aj>0,forj=1,2,...m;
(iii) x/ ef{0,1}E forj=1,2,...m;
(iv) x12x22~~2x’”750.

Then we let f'(x) := > 7, X f(S(xD)).

Theorem (Convexity of /' and integer-valued minima). The function f' is
convex and attains it minimum over [0, 11% on {0, 1}£.

196 8 Optimizing Submodular Functions

Proof. First, we demonstrate that the function f’ is convex. Consider a point
x* e Rf and the linear program

F(x*) := max Zx:ze

eckE

Subject to:
Yz < f(I), YTCE.

eecT

The optimal objective-function value of a linear-programming maximization
problem is a convex function of the vector of objective-function coefficients.
Therefore, it suffices to prove that f' = f.

Without loss of generality, we can take E :={1,2,...,n} and x{ > xJ
>...>xy. LetT; :={1,2,...,jl,for j=1,2,...,n,and let Ty := @. The
proof of the characterization of Pz for a matroid M implies that

fon =Y x| 1@ - f1-0)
j=1

n

= (37 =) £T)

j=1

(even though f need not be the rank function of a matroid), where we
take x;,, :=0. Letting A; :=x} —x},,, we get the decomposition x* =
Z;le Ajx(T;) (we can ignore the j with A; = 0); so we have f'(x*) = f(x*).

Finally, we demonstrate that f’ is minimized at a vertex of [0, 1]€. Let
x* = ZT:I Xjx’ € [0, 11% be a minimizer of f” over [0, 1]15. If f/(x*) =0,
then £’ is also minimized by 0 € {0, 1}%, because we have assumed that f (%) =
£'(0) = 0. Therefore, we may suppose that f'(x*) < 0.If f'(x/) > f'(x*) for
all j, then f/'(x*) = Z'}Izl i f(xd) > ZT:] X; f(x*). Because f'(x*) <O,
we have 1 < Z'};l ;. However, x* € [0, 1]* implies that Z'};l A <1,sowe
have a contradiction. Therefore, f'(x/) < f'(x*) for some j; hence, some x/
minimizes f. [|

There is a theoretically efficient algorithm for minimizing the convex function
f’ over [0, 11Z, by use of the ellipsoid method. In this way, we can find a
minimum of the submodular function f. Other, more combinatorial methods
generalize maximum-flow techniques.

8.2 Minimizing Submodular Functions Over Odd Sets 197

8.2 Minimizing Submodular Functions Over Odd Sets

In this section, we see how to use an efficient algorithm for minimizing a
submodular function as a subroutine in an efficient algorithm for minimizing
a submodular function f over subsets S of the ground set E intersecting a fixed
subset T of the ground set on an odd number of elements. First, some motivation
is given that is related to the maximum-weight matching problem.

Let H be a graph with weight function c on E(H). We consider the maximum-
weight matching problem on H. We may as well assume that ¢ is nonnegative,
as the set of matchings is an independence system and so no negative-weight
edge will appear in a maximum-weight matching. Next, we can make a copy
H'of H, and joineachi € V(H)toitscopyi’ € V(H’). Call this new graph G.
All edges of H' and those extending between H and H’ are assigned 0 weight
as we extend c to the entire edge set of G.

weight function ¢ 0 weights
\ / N\
\ /
= -
/ \
/ \

Now, every matching S of H extends to a perfect matching of G having the same
weight — for each e € S, take its copy ¢’ € E(H'), and for each exposed vertex
i of H, take the edge joining i to its copy i’ € H'. Furthermore, every perfect
matching S of G induces a matching S N E(H) of H having the same weight.
Therefore, to efficiently find a maximum-weight matching of H, it suffices to
be able to find a maximum-weight perfect matching of G.

Therefore, let us assume now that we have an arbitrary graph G and
nonnegative-weight function ¢ on E(G). Let M(G) be the set of perfect match-
ings of G. Considering the inequality characterization of the matching polytope
Prmc) (see the Matching Polytope Theorem, p. 109), it is easy to see that the
perfect-matching polytope Py, is the solution set of

Q) —x, <0, VYeceEWG),
(ii) Z x.=1, VYveVG);
e€dg(v)

W] —1
(iii) Y k< wi=1 , YW C V(G) with |[W| > 3 odd.
ecE(G[W])) 2

198 8 Optimizing Submodular Functions

Using equation (ii), it is easy to check that (iii) can be replaced with

(i) > xe=1, YW CV(G)with W] odd;
EE(S(;(W)

we simply note that

2(S s 'W"l)_z(z xe:1)=_< 3 xezl,>.
ecE(G[W]) 2 veW \eedg(v) ecdg(W)

Then, for x* € RF(© satisfying (i), we can solve the separation problem for
(iii") by minimizing the function

fW):=—1+ > x;

ecdg(W)

over odd cardinality subsets W of V(G). As we have seen (“Cuts” Problem,
p. 61), the function f is submodular.

Now, we turn back to the general problem of minimizing a submodular
function over subsets of the ground set intersecting a fixed subset on an odd
number of elements. To be precise, let f be a submodular function on E. Let
T be a subset of E. We describe an efficient method for solving

X* :=argmin{f(X) : X CE, | XNT|odd}.
We assume that we have, at our disposal, an efficient subroutine for ordinary

submodular-function minimization.

Step 1: Reduce the case of |T| odd to |T| even. We observe that an optimal X*
either contains all of T or it avoids some element of T'. Therefore, we calculate

Xr:=argmin{f(X) : X CE, T C X},
and, foralle e T,
X, :=argmin{f(X) : X CE—e, | XN(T —e)| odd}.

The calculation of each X, is just like the calculation of X*, but now we are
intersecting an even cardinality set on an odd number of elements. The calcu-
lation of X7 is just an instance of ordinary submodular-function minimization,
but the effective ground set is just £ \ T, as we can just “shrink” T to a single
element.

8.2 Minimizing Submodular Functions Over Odd Sets 199

Step 2: Solve a relaxation. Let U be a subset of E. We say that U splits T if
both 7 NU and T \ U are nonempty. We wish to calculate

U:=argmin{f(X) : X CE, XsplitsT}.

Notice that, because T is even, the condition that X splits 7 is a weakening of
the condition that | X N T'| is odd. Therefore, if |U N T| is odd, then we solve
our original problem by letting X* = U.

Next, we specify how we can efficiently calculate U. For all distincte, f € T,
we calculate

Ue s :=argmin{f(X) : X CE— f, e X odd}.

The calculation of each of the ('g‘) choices of U, s is just an ordinary

submodular-function minimization problem. Then we simply let

U :argmin{f(Ue,f) te fe T}.

Step 3: Recurse. At this point we can assume that |U N T'| (and hence, also
|T \ U]) is even, or we would have solved the problem in Step 2. Recursively,
we solve the following two subproblems:

Uy:=argmin{f(X): X CE, |XN(TNU)lodd, X does notsplit 7T\ U};
Uy:=argmin{f(X): X CE, | XN(T\U)|odd, X doesnotsplitTNU}.

Although we still have some work left to do to justify this, the solution to our
main problem is just to set X* to

argmin { f(Uy), f(Uz)}.

We note that, for the calculations of U; and U,, we reduce the problems to
problems of the same type that we are attacking, by “shrinking” the set not
to be split to a single element. In doing so, the set that we need to intersect
on an odd cardinality set remains of even cardinality. Also, because |T| =
IT\U|+|T NU|, it is clear that the total number of recursive calls will be
less than 7.

Theorem (Correctness for odd submodular minimization). If (U N T| is
even, then X* = argmin { f (U,), f(U,)} solves

min{f(X) : X CE, | XNT|odd}.

200 8 Optimizing Submodular Functions

Proof. The proof is by contradiction. Suppose that X* solves our main problem,
but f(X*) < f(U,)and f(X*) < f(U,). From the definition of U, we see that
X* splits T \ U. Therefore, immediately, we have that X* U U splits T. Sym-
metrically, from the definition of U,, we see that X* splits 7 N U. Therefore,
we have that X* N U splits T'.

Now, because |7 N X*| is odd and |T N U] is even, exactly one of |T N
(X*UU)|and |T N(X* N U)| is odd. We suppose that |7 N (X* N U)| is odd
(the other case, which is left for the reader, is handled symmetrically). By the
definition of X*, we have

fX*NU) > f(X).
By the definition of U, we have
fX*UU) > fU).

Then, by submodularity, we musthave f(X* N U) = f(X*)[and f(X*UU) =
fO)]. Now, X*NU)Y+ (T NU)=X*NU)NT. Therefore, |(X*NU)+
(TNU)|isoddand(X* N U) + (T N U)doesnotsplit T \ U. Therefore, by the
definition of Uy, we have f(X* N U) > f(U,). However, because we have al-
ready established that f(X* N U) = f(X*), we conclude that f(X*) > f(U)),
which contradicts our assumption. []

8.3 Maximizing Submodular Functions

For an interesting special case, we know an efficient algorithm for maximizing
a submodular function.

Problem (Maximum-cardinality matching and submodular maxi-
mization). Let G be an undirected graph and define f : 2£(% - R by

f(S):=|{v € V(G) : e € §g(v) for some e € S}| — ||,

for S C E(G). Prove that f is submodular and that, if S maximizes f, then
f(S) is the maximum number of edges in a matching of G.

In general, maximizing a submodular function is hard. For example, the
difficult problem of determining whether a digraph has a directed Hamiltonian
tour is a problem of finding a maximum-cardinality set that is independent for
three matroids having a common ground set.

Problem (Maximum-cardinality p-matroid intersection and submodu-
lar maximization). Let M; be matroids on the common ground set E :=

8.4 Further Study 201

E(M;),fori =1,2,..., p. Define a submodular function f : 2f - R by
P

HOEDBMOR

i=1
Prove that the problem of finding a maximum-weight set that is independent
in all p matroids can be recast as a problem of finding a set S that maximizes

f(S).

Hard submodular maximization problems arise in other domains as well.

Problem (Uncapacitated facility location and submodular maximiza-
tion). Recall the “Uncapacitated facility location” Problem (see p. 6).
Demonstrate how the uncapacitated facility-location problem can be mod-
eled as a problem of maximizing a submodular function.

Another favorite hard problem can also be modeled as a problem of maxi-
mizing a submodular function.

Problem (Vertex packing and submodular maximization).

a. Recall the entropy function H (see p. 191). Prove that H is a submodular
function.

b. Let G be a simple graph. Let C be the symmetric matrix, with row and
columns indexed by V(G), having

1, if {i, j} € E(G)
cij =10, ifi # jand {i, j} ¢ E(G).
3IV(G), ifi =j

The matrix C is symmetric and positive definite. Notice thatif E(G[S]) =
@, then H(S) =S| - In(3|V(G)|). Prove that if E(G[S]) # @, then
H(S) < |S| - In(B|V(G))]).

8.4 Further Study

The first theoretically efficient algorithm for minimizing a submodular func-
tion was based on the ellipsoid method; see Grotschel, Lovdsz and Schrijver
(1988). The first theoretically efficient combinatorial algorithms are due (simul-
taneously!) to Iwata, Fleischer, and Fujishige (1999) and to Schrijver (2000).

202 8 Optimizing Submodular Functions

None of these algorithms should be regarded as practical. However, their exis-
tence, together with the known practical and theoretically efficient algorithms
for the minimization of particular submodular functions, suggests that it is use-
ful to know whether a particular combinatorial-optimization problem can be
regarded as a problem of minimizing a submodular function.

The work by McCormick (2003) is a very nice survey of the state-of-the-art
algorithms for minimizing submodular functions.

“Itis true what Madame says,” observed Jacques Three. “Why stop?
There is great force in that. Why stop?”’
“Well, well,” reasoned Defarge, “but one must stop somewhere.
After all, the question is still where?”
— A Tale of Two Cities (C. Dickens)

Appendix: Notation and Terminology

Some familiarity with set operations, matrices and vector spaces, graphs, and
digraphs is assumed. In this appendix, basic notation and terminology that we
make free use of are given

A.1 Sets
(In what follows, S, T are subsets of the finite ground set E.)

Notation/ Term Definition

e € S (in) e is an element of §

S C T (subset) ecS=ecT

S NT (intersect) {e :eecSandeeT}
S UT (union) {e : eecSoreeT}
S + e (plus) S U {e} (assumes e &€ S)
S\ T (minus) {feeS :edT}

S — e (minus) S\ {e} (assumes e € S)
SAT (symmetric difference) (S\T)U(T \ S)

|S| (cardinality) number of elements in §
25 (power sef) {(X : XCS}

A.2 Algebra

(In what follows, A is a matrix with elements from field F with m rows and
columns indexed from finite set E.)

Notation/ Term Definition

R the reals
R, the nonnegative reals

203

204

Appendix: Notation and Terminology

Notation/ Term Definition
Q the rationals
GF(p) the Galois field with p elements (p a prime power)
V/ the integers
Y/ the nonnegative integers
vector/matrix with all components equal to 1
i ith standard unit vector
1 identity matrix
Ag matrix consisting of columns of A indexed by
SCE
rank(A) number of linearly independent rows (columns)
of A
det(A) determinant of A (assumes A square)
AT transpose of A
FE set of points in FIZ! with coordinates indexed from E

r.s.(A) (row space)
c.s.(A) (column space)
n.s.(A) (null space)

x(S)
S(x) (support)

lx || (2-norm)

{x eFE :xT =yTA, y e F"}
r.s.(AT)

{x eFF : Ax =0}
characteristic vector of S C E

{e € E :x, # 0} (where x € FF)

/> ek X7 (where x € RF)

A.3 Graphs

(In what follows, G is a finite undirected graph.)

Notation/Term Definition

V(G) the vertex set of G

E(G) the edge set of G

k(G) number of connected components of G
(counting isolated vertices)

3 (v) the edges having v as exactly one
endpoint [v € V(G)]

36(S) the edges having exactly one endpoint
inS[S C V(G)]

N(S) (neighbors of S) vertices in V(G) \ S adjacent to some vertex

G|[S] (induced subgraph)

inS[SC V()]
V(G[S]) := S, E(G[S]) := edges in E(G)
with both endsin S C V(G)

A.4 Digraphs 205

Notation/ Term

Definition

G.F (restriction)
cycle

forest

spanning tree
loop

simple graph
cocycle

coloop

A(G)

Kn

Km,n

matching
perfect matching
2-factor

vertex cover
vertex packing
Hamiltonian tour

V(G.F):=V(G), E(G.F):=F [F C E(G)]
simple closed path of edges

a set of edges containing no cycle

a forest F (of G) such that «(G.F) = 1

cycle of one edge

no loops or identical edges

(set-wise) minimal disconnecting edge-set

a cocycle of one edge

0/1-valued vertex-edge incidence matrix of G
complete graph on n vertices

complete bipartite graph with parts of m and n vertices
F C E(G) such that |66 r(v)| < 1,V v € V(G)

F C E(G) such that |66 r(v)| =1,V v € V(G)

F C E(G) such that |66 r(v)| =2,V v € V(G)

set of vertices meeting all edges

set of vertices that induce a subgraph with no edges
cycle meeting all vertices of G

A.4 Digraphs

(In what follows, G is a finite directed graph.)

Notation/ Term Definition
V(G) the vertex set of G
E(G) the edge set of G
t(e) the tail of ¢ € E(G)
h(e) the head of ¢ € E(G)
Se) the edges with tail v and head not v [v € V(G)]
(V) the edges with head v and tail not v [v € V(G)]
82;’ (S the edges with tail in S and head not in
S[S C V(G)]
35(8) the edges with head in S and tail not in
S[S C V(G)]
strict digraph no loops or identical edges
A(G) 0/ £ 1-valued vertex-edge incidence matrix of G
dicycle directed cycle

directed Hamiltonian tour

dicycle meeting all vertices of G

References

Background Reading

e D. Bertsimas and J.N. Tsitsiklis (1997), Introduction to Linear Optimization, Athena
Scientific.

* V. Chvatal (1983), Linear Programming, Freeman.

* M. Garey and D. Johnson (1979), Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman.

* D. West (1996), Introduction to Graph Theory, Prentice-Hall.

Further Reading

Of particular note is the magnificient three volume set by Schrijver (2003) which is an
encylopedic treatment of combinatorial optimization. Also, the collection edited by
Graham, Grotschel and Lovasz (1995) is a valuable reference.

* A. Aarts and J.K. Lenstra, eds. (1997), Local Search in Combinatorial Optimization,
Wiley.

* R.K. Ahuja, T.L. Magnanti, and J.B. Orlin (1993), Network Flows, Prentice-Hall.

* K. Anstreicher, N. Brixius, J.-P. Goux, and J. Linderoth (2002), “Solving large quadratic
assignment problems on computational grids,” Mathematical Programming 91, 563—
588.

* D. Applegate, R. Bixby, V. Chvital, and W. Cook (1998), “On the solution of traveling
salesman problems,” in Proceedings of the International Congress of Mathematicians,
Vol. Il (Berlin, 1998). Documenta Mathematica 1998, Extra Vol. 111, 645-656 (elec-
tronic).

* A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler (1999), Oriented
Matroids, second edition, Cambridge University Press.

* W.Cook and P. Seymour (2003), “Tour merging via branch-decomposition,” INFORMS
Journal on Computing 15, 233-248.

* G. Cornuéjols (2001), Combinatorial Optimization: Packing and Covering, Society
for Industrial and Applied Mathematics.

¢ E.V. Denardo (1982), Dynamic Programming: Models and Applications, Prentice-Hall.

* R.L. Graham, M. Grotschel, and L. Lovasz, eds. (1995), Handbook of Combinatorics,
Elsevier.

* M. Grotschel, L. Lovész, and A. Schrijver (1988), Geometric Algorithms and Combi-
natorial Optimization, Springer-Verlag.

207

208 References

* S.Iwata, L. Fleischer, and S. Fujishige (1999), “A strongly polynomial-time algorithm
for minimizing submodular functions,” Sirikaisekikenkyiisho Kokyiiroku 1120, 11-23.

L. Ladényi, T.K. Ralphs, and L.E. Trotter, Jr. (2001), “Branch, cut, and price: Sequential
and parallel,” in M. Jiinger and D. Naddef, eds., Computational Combinatorial Opti-
mization: Optimal or Provably Near-Optimal Solutions, Lecture Notes in Computer
Science 2241, 223-260.

e E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, eds. (1985), The
Traveling Salesman Problem : A Guided Tour of Combinatorial Optimization, Wiley.

¢ J.Lee (2001), “Maximum entropy sampling,” in A.H. El-Shaarawi and W.W. Piegorsch,
eds., Encyclopedia of Environmetrics, Wiley.

¢ J. Lee and J. Ryan (1992), “Matroid applications and algorithms,” ORSA (now, IN-
FORMS) Journal on Computing 4, 70-98.

* HW. Lenstra, Jr. (1983), “Integer programming with a fixed number of variables,”
Mathematics of Operations Research 8, 538-548.

* J.T. Linderoth and M.W.P. Savelsbergh (1999), “A computational study of branch
and bound search strategies for mixed integer programming,” INFORMS Journal on
Computing 11, 173-187.

¢ L. Lovasz and M.D. Plummer (1986), Matching Theory, Akademiai Kiado.

* F. Margot (2003), “Exploiting orbits in symmetric ILP,” Mathematical Programming
98, 3-21.

* A. Martin (2001), “General mixed integer programming: Computational issues for
branch-and-cut algorithms,” in M. Jiinger and D. Naddef, eds., Computational Com-
binatorial Optimization: Optimal or Provably Near-Optimal Solutions, Lecture Notes
in Computer Science 2241, 1-25.

* S.T. McCormick (2003), “Submodular function minimization,” in K. Aardal, G.
Nemhauser, and R. Weismantel, eds., to appear in the Handbook on Discrete Opti-
mization, Elsevier.

* G.L. Nemhauser and L.A. Wolsey (1988), Integer and Combinatorial Optimization,
Wiley.

* J. Oxley (1992), Matroid Theory, Oxford University Press.

* A. Recski (1988), Matroid Theory and its Applications, Springer-Verlag.

* A. Schrijver (1986), Theory of Linear and Integer Programming, Wiley.

* A. Schrijver (2000), “A combinatorial algorithm minimizing submodular functions in
strongly polynomial time,” Journal of Combinatorial Theory, Series B 80, 346-355.
*! A. Schrijver (2003), Combinatorial Optimization: Polyhedra and Efficiency,

Springer-Verlag.

* M. Todd (2002), “The many facets of linear programming,” Mathematical Program-
ming 91, 417-436.

* V.V. Vazirani (2001), Approximation Algorithms, Springer-Verlag.

* W. Whiteley (1992), “Matroids and rigid structures,” in N. White, ed., Matroid Appli-
cations, Encyclopedia of Mathematics and Its Applications, Volume 40, 1-53, Cam-
bridge University Press.

* G.M. Ziegler (1994), Lectures on Polytopes, Springer-Verlag.

Indexes

Examples

Bipartite matching, 85, 85

Branch-&-Bound using group relaxation, 185

Branch-&-Bound using linear-programming
relaxation, 180

Christofides’s Heuristic, 132

Chvital-Gomory cutting planes, 153

Comb, 174

Direct sum, 50

Directed Hamiltonian tours, 89

Generic rigidity in the plane, 86, 93, 96, 97

Gomory cutting planes, 157, 159

Graphic matroid, 50

The intersection of two matroids need not be a
matroid, 84

Kuhn’s Assignment Algorithm, 123

Lagrangian relaxation, 38

Linear matroid, 50

Matching, 117

Maximum-Flow Algorithm, 142

Planar dual, 65

Separations, 100

Uniform matroid, 50

Vertex packing on a star, 51, 53, 57, 61, 69

Workforce planning, 47

w-tree-based Branch-&-Bound, 189

w-tree relaxation, 188

Exercises

Bellman—Ford Algorithm, 76
Branch-&-Bound, 182
Chvatal-Gomory cutting planes, 154
Comparing relaxations, 6

Dijkstra’s Algorithm, 79

Dual solution, 69

Edmonds—Karp labeling, 144
Generic rigidity in the plane, 99
Gomory cutting planes, 158

Intersection of three matroid polytopes, 106

Knapsack program, 82, 183

Knapsack program using group relaxation, 187

Linear over GF(2) #= graphic, 54

Maximum-weight spanning tree, 58, 60, 65

Motion, 86, 87

Nonrepresentable matroids, 56

Postperson’s tour, 130

Scheduling, 59, 65, 99

Shortcut, 95

Subdifferential for the Lagrangian, 40

Violated 2-factor inequality, 174

Weighted matching, 112

(Weighted) Matroid-Intersection Algorithm,
102

Problems

Algorithmic proof of Konig’s Theorem, 117

Base polytope, 73

Base polytope with a coloop, 73

Big right-hand side, 187

Chvital-Gomory cutting planes, 154

Clique separation, 169

Cocircuits and coloops, 65

Cover separation, 168

Cuts, 61

Disjoint odd-set cover, 113

Dual graphic matroids and planar graphs, 66

Dual of a linear matroid, 64

Dual rank function, 64

Exponential example for Branch-&-Bound,
184

Facets of a matching polytope, 112

Farkas Lemma, 14

Finding a feasible v—w flow, 146

Finding a negative-weight dicycle, 77

Gomory cuts are Chvatal-Gomory cuts, 159

Graphic circuit elimination, 53

209

210

Graphic = linear over GF(2), 51

Graphic unique circuit, 53

Knapsack program, 82

Konig’s Theorem, 146

Linear circuit elimination, 52

Linear-programming proof of the
Max-Flow/Min-Cut Theorem, 146

Linear unique circuit, 53

Matching Duality Theorem, 121

Matching and Chvdtal-Gomory cutting planes,
154

Matroid partitioning, 100

Maximum-cardinality p-matroid intersection
and submodular maximization, 200

Maximum-cardinality matching and
submodular maximization, 200

Maximum-cardinality matroid intersection and
submodular minimization, 195

Maximum-entropy sampling and
Branch-&-Bound, 192

Minimum-weight cuts and submodular
minimization, 195

Minimum-weight dipaths by linear
programming, 77

Minimum-weight dipaths in graphs with no
dicycles, 81

Minimum-weight even path, 126

Minors of matroids, 66

Mismatching matroid, 109

Mixed-integer cuts, 155

Odd-cycle separation, 175

Piecewise-linear functions, 7

Recovering the dipaths with Dijkstra’s
Algorithm, 81

Recovering the dipaths with the Bellman—Ford
Algorithm, 77

Recovering the dipaths with the
Floyd—Warshall Algorithm, 78

Scheduling, 59, 108

Sensitivity Theorem, 28

Subdifferential for the Lagrangian, 39

Swapping Algorithm, 60

Theorem of the Alternative for Linear
Inequalities, 17

Tutte’s Perfect-Matching Theorem, 114

2-factor inequalities and Chvatal-Gomory
cutting planes, 174

Unbounded integer program, 165

Uncapacitated facility location, 6, 155

Uncapacitated facility location and
submodular maximization, 201

Unimodularity and connections, 43

Unimodularity and pivoting, 43

Unique circuit, 53

Vertex packing and Chvatal-Gomory, 155

Vertex packing and submodular maximization,
201

Indexes

Vertex packing in bipartite graphs, 146
Worst case for Christofides’s Heuristic, 135

Results

Augmenting paths, 140

Berge’s Theorem, 107

Christofides’s Theorem, 131

Circuit elimination, 52

Closure, 62

Convexity of f” and integer-valued minima,
195

Correctness for odd submodular minimization,
199

Correctness of Edmonds’s Cardinality
Matching Algorithm, 117

Correctness of labels for Dijkstra’s Algorithm,
79

Correctness of the Cardinality
Matroid-Intersection Algorithm, 96

Dijkstra’s Theorem, 81

Dimension Theorem, 29

Edmonds—Karp Theorem, 143

Euler’s Theorem, 129

Facets of a matroid polytope, 71

Fano representation, 54

Farkas Lemma, 13

Feasible basic solutions and extreme points, 27

Finding violated cover inequalities, 168

Finiteness and efficiency of Edmonds’s
Cardinality Matching Algorithm, 116

Finiteness of Gomory’s Cutting-Plane Method,
165

Flow across a cut, 139

Forest components, 50

Forest of repeated edges, 130

Greedy characterization of matroids, 60

Greedy optimality for matroids, 57

Greedy optimality for polymatroids, 70

Hall’s Theorem, 45

Integrality implies unimodularity, 42

Konig’s Theorem, 146, 44

Lagrangian Relaxation Theorem, 36

Matching matroid, 108

Matching-Polytope Theorem, 109

Matching Duality Theorem, 113

Matroid duality, 63

Matroid polytope, 67

Matroid-Intersection Duality Theorem, 99

Matroid-Intersection Polytope, 103

Max-Flow/Min-Cut Theorem, 146

Maximum-cardinality matching in a shrunken
graph, 116

Minkowski’s Theorem (for polytopes), 30

Monotonicity of labels in the Maximum-Flow
Algorithm, 144

Necessity of facets, 32

Indexes 211

Necessity of weight splitting, 20

Planar generic rigidity, 88

Rank characterization of matroids, 62

Redundancy Theorem, 30

Shifting the objective for T'-joins, 128

Shortest implies augmenting, 94

Shrinking, 114

Strong Complementary-Slackness Theorem,
18

Strong duality for flows and the stopping
criterion of the Maximum-Flow
Algorithm, 142

Strong Duality Theorem, 15

Strong Optimal-Basis Theorem, 27

Structure of repeated edges, 128

Submodularity of matroid rank function,
61

Sufficiency of weight splitting, 19

Symmetric difference for 7'-joins, 128

Theorem of the Alternative for Linear
Inequalities, 12

T-joins in the planar dual and cuts, 148

Transformation to nonnegative weights for
T-joins, 128

Tutte’s Perfect-Matching Theorem, 114

Unimodularity and consecutive ones, 46

Unimodularity and digraphs, 44

Unimodularity implies integrality, 41

Unique Description Theorem, 33

Validity of 2-factor inequalities, 174

Weak Complementary-Slackness Theorem,
18

Weak duality for flows, 140

Weak Duality Theorem, 14

Weak Optimal-Basis Theorem, 22
Weyl’s Theorem (for polytopes), 11

Algorithms

Augmenting-Path Procedure, 141

Backtracking Procedure, 142

Bellman—Ford Algorithm, 76

Cardinality Greedy Algorithm, 56

Cardinality Matroid-Intersection Algorithm,
96

Christofides’s Heuristic, 131

Dijkstra’s Algorithm, 79

The Dual Simplex Method, 40

Edmonds’s Maximum-Cardinality Matching
Algorithm, 115

Edmonds—Johnson Minimum-Weight 7'-Join
Algorithm, 129

Epsilon-Perturbed Dual Simplex Method, 40

Floyd—Warshall Algorithm, 78

Generic Cutting-Plane Method, 152

Gomory’s Cutting-Plane Method, 159

Kuhn’s Assignment Algorithm, 107

Matroid-Intersection Algorithm, 96

Maximum-Flow Algorithm, 141

Primal Simplex Method, 23

Separation Algorithm for Subtour-Elimination
Inequalities, 172

Subgradient Method, 23

Submodular minimization over odd sets, 198

Swapping Algorithm, 60

(Weighted) Greedy Algorithm, 57

(Weighted) Matroid-Intersection Algorithm,
102

	Cover
	Half-title
	Title
	Copyright
	Contents
	Preface
	Introduction
	0 Polytopes and Linear Programming
	0.1 Finite Systems of Linear Inequalities
	0.2 Linear-Programming Duality
	0.3 Basic Solutions and the Primal Simplex Method
	0.4 Sensitivity Analysis
	0.5 Polytopes
	0.6 Lagrangian Relaxation
	0.7 The Dual Simplex Method
	0.8 Totally Unimodular Matrices, Graphs, and Digraphs
	0.9 Further Study

	1 Matroids and the Greedy Algorithm
	1.1 Independence Axioms and Examples of Matroids
	1.2 Circuit Properties
	1.3 Representations
	1.4 The Greedy Algorithm
	1.5 Rank Properties
	1.6 Duality
	1.7 The Matroid Polytope
	1.8 Further Study

	2 Minimum-Weight Dipaths
	2.1 No Negative-Weight Cycles
	2.2 All-Pairs Minimum-Weight Dipaths
	2.3 Nonnegative Weights
	2.4 No Dicycles and Knapsack Programs
	2.5 Further Study

	3 Matroid Intersection
	3.1 Applications
	3.2 An Efficient Cardinality Matroid-Intersection Algorithm and Consequences
	3.3 An Efficient Maximum-Weight Matroid-Intersection Algorithm
	3.4 The Matroid-Intersection Polytope
	3.5 Further Study

	4 Matching
	4.1 Augmenting Paths and Matroids
	4.2 The Matching Polytope
	4.3 Duality and a Maximum-Cardinality Matching Algorithm
	4.4 Kuhn’s Algorithm for the Assignment Problem
	4.5 Applications of Weighted Matching
	4.6 Further Study

	5 Flows and Cuts
	5.1 Source–Sink Flows and Cuts
	5.2 An Efficient Maximum-Flow Algorithm and Consequences
	5.3 Undirected Cuts
	5.4 Further Study

	6 Cutting Planes
	6.1 Generic Cutting-Plane Method
	6.2 Chvátal–Gomory Cutting Planes
	6.3 Gomory Cutting Planes
	6.4 Tightening a Constraint
	6.5 Constraint Generation for Combinatorial-Optimization Problems
	6.6 Further Study

	7 Branch-&-Bound
	7.1 Branch-&-Bound Using Linear-Programming Relaxation
	7.2 Knapsack Programs and Group Relaxation
	7.3 Branch-&-Bound for Optimal-Weight Hamiltonian Tour
	7.4 Maximum-Entropy Sampling and Branch-&-Bound
	7.5 Further Study

	8 Optimizing Submodular Functions
	8.1 Minimizing Submodular Functions
	8.2 Minimizing Submodular Functions Over Odd Sets
	8.3 Maximizing Submodular Functions
	8.4 Further Study

	Appendix: Notation and Terminology
	A.1 Sets
	A.2 Algebra
	A.3 Graphs
	A.4 Digraphs

	References
	Background Reading
	Further Reading

	Indexes

