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There are only a few things that may improve when
getting older. One of these is a grasp on the rules of Nature.



Preface

Classical concepts and numerical methods of mechanical engineering such as,
for example, fracture mechanics and finite element analysis focus on macro-
scale problems where the microstructure is incorporated by using averag-
ing constitutive laws. On the other hand, the domain of materials science
and solid state physics focuses on investigation of atomic bonds, lattice de-
fects, microstructural elements and their interactions at nano, micro and meso
scales. However, a recent development in fracture and fatigue research clearly
indicates that the most promising and effective concepts are based on cou-
pling engineering mechanics with materials science within so-called multiscale
fracture models. The objective of these approaches is to bridge the enormous
gap between time and space scales and, therefore, they constitute a great
challenge in the sense of scientific knowledge. Moreover, they still drive at
psychological barriers of conservative mechanical engineers and/or material
scientists. Therefore, an overwhelming majority of books about fracture and
fatigue were written from the point of view of either mechanical engineers
or material scientists. To our knowledge, a pioneering attempt to produce
a successful integrated concept of fracture was made by Kelly and Macmil-
lan [1]. Since that time, however, many new methods and concepts have been
developed which should be incorporated into advanced multiscale models of
fracture and fatigue.

This book was written as an overview of scientific results achieved by the
authors during about 40 years of their research. However, another strong mo-
tivation was to support advanced trends in fracture and fatigue which lead to
the development of multiscale concepts for securing the integrity of engineer-
ing components and structures. This second aim has always prevailed over
the first. Therefore, the book is composed in a compact manner and provides
a rather comprehensive survey of fracture micromechanisms and related mul-
tiscale models. Although these models were predominantly proposed by the
authors of this book, many passages devoted to models that were published
by other authors are included in order to ensure a consistent presentation of
the subject. A prevailing part of the book reflects the joint work of authors
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at the Brno University of Technology. However, several results and models
originate from the research of the first author, performed at the Military
Institute of Material Science and Technology from 1973 to 1985. The oppor-
tunity to present these results is much appreciated since, for obvious reasons,
they were not allowed to be published in international scientific journals at
that time.

The book addresses students at graduate and postgraduate levels, lectur-
ers, materials scientists and mechanical engineers, as well as materials physi-
cists and chemists. Any kind of criticism or advice that can help to improve
the text will be very welcome.

Many results presented in this book were achieved either in the frame of
international scientific collaboration or appeared as a consequence of stimu-
lating discussions with colleagues from foreign universities and research in-
stitutes. Our very special thanks go to Prof. R. Pippan from the Institute of
Materials Science, Austrian Academy of Sciences, in Leoben, Austria, Prof.
V. Vitek from the University of Pennsylvania in Philadelphia, Pennsylvania,
USA and Prof. Y. Murakami from the Kyushu University in Fukuoka, Japan,
for our stimulating discussions during our long-term collaboration. Our warm
thanks go to Dr. A. Doig from the Military Academy in Shrivenham, Eng-
land, and Dr. R. Gröger from the Los Alamos National Laboratory, USA, for
their fruitful comments on the scientific content and English language of this
book. We are also deeply indebted to Prof. O. Kolednik, Prof. J. Janovec,
Prof. M. Jenko, Prof. Y. Kondo, Dr. G. Chai, Prof. Y. Kitamura, Prof. C.
Laird, Prof. S. Stanzel-Tschegg, Dr. M. Sauzay, Prof. M. Zehetbauer, Prof. A.
Krasowski, Prof. E. Macha, Prof. A. Shaniavsky and Prof. L. Tóth for helpful
and friendly discussions associated with joint publications and/or scientific
meetings and visits.

There are also a number of Czech colleagues who directly or indirectly con-
tributed to this book. Let us first mention a long-term collaboration, fruitful
discussions and extended joint work with Prof. M. Šob from the Masaryk Uni-
versity in Brno and Prof. P. Lejček from the Institute of Physics, Academy
of Sciences of the Czech Republic in Prague. Furthermore, Dr. P. Lukáš from
the Institute of Physics of Materials, Academy of Sciences of the Czech Re-
public in Brno and Dr. F. Kroupa ( ) from the Institute of Plasma Physics,
Academy of Sciences of the Czech Republic in Prague have helped us very
much particularly during the first periods of our research activities. We are
also grateful to Prof. J. Švejcar, Dr. I. Saxl ( ), Prof. I. Dlouhý, Prof. B.
Vlach, Prof. M. Kotoul, Dr. P. Pońıžil, Prof. K. Stránský, Prof. I. Dvořák,
Dr. J. Siegl, Dr. L. Obdržálek, Prof. J. Zeman, Prof. L. Kunz, Prof. Z. Knésl,
Prof. P. Lukáč, Dr. A. Machová, Dr. V. Paidar, Prof. V. Navrátil, Prof. J.
Polák, Dr. M. Holzmann, Prof. J. Kohout, Prof. R. Foret, Dr. P. Staněk, Dr.
A. Buchal, Dr. K. Obrtĺık, Prof. M. Šlesár ( ), Prof. M. Bı́lý, Dr. V. Oliva and
Dr. H. Lauschmann for helpful discussions associated with joint publications
and/or scientific meetings.
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We are deeply grateful to our friends and colleagues from the Depart-
ment of Materials Micromechanics and Applied Acoustics, especially to Dr.
M. Černý, who was our partner and consultant in most topics of the first chap-
ter. We have also very much appreciated the help of Dr. J. Horńıková and
Dr. K. Slámečka with experimental and theoretical investigations in mixed-
mode fracture and fatigue as well as with the design and preparation of many
figures. Finally, we would like to thank Anthony Doyle from Springer UK,
who has offered us the opportunity to write this book.
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Contents

0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Deformation and Fracture of Perfect Crystals . . . . . . . . . . . . . 9
1.1 Ideal Strength of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 From Classics to Recent Concepts . . . . . . . . . . . . . . . . . . 11
1.1.2 Calculation Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.3 Simple Loading Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.1.4 Multiaxial Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.1.5 Nanocomposites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.1.6 Influence of Crystal Defects and Temperature . . . . . . . . 52

1.2 Intrinsic Brittleness and Ductility . . . . . . . . . . . . . . . . . . . . . . . . 54
1.2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.2.2 Calibration of Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.3 Multiscale Model of Nanoindentation Test . . . . . . . . . . . . . . . . . 63
1.3.1 Description of Submodels . . . . . . . . . . . . . . . . . . . . . . . . . . 64
1.3.2 Simulation of Pop-in Effects . . . . . . . . . . . . . . . . . . . . . . . 66

2 Brittle and Ductile Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.1 Brittle Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.1.1 Geometrically Induced Crack Tip Shielding . . . . . . . . . . 74
2.1.2 Pyramidal Model of Tortuous Crack Front . . . . . . . . . . . 78
2.1.3 Fracture Toughness of Particle Reinforced Glass

Composite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.2 Quasi-brittle Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.2.1 Statistical Approach to Geometrical Shielding Based
on Size Ratio Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.2.2 Anomalous Fracture Behaviour of Ultra-high-strength
Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.2.3 Mixed Intergranular and Cleavage Fracture of
Phosphorus-doped Fe-2.3%V Alloy . . . . . . . . . . . . . . . . . 98

2.3 Ductile Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xi



xii Contents

2.3.1 Kinetics of Plastic Deformation During Uniaxial
Ductile Fracture: Modelling and Experiment . . . . . . . . . 111

2.3.2 Fracture Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.3.3 Assessment of Fracture Toughness from Basic

Mechanical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 121

3 Fatigue Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.1 Quantitative Fractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.1.1 Topological Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.1.2 Morphological Patterns in Fatigue . . . . . . . . . . . . . . . . . . 135

3.2 Opening Loading Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.2.1 Discrete Dislocation Models of Mechanical Hysteresis . 141
3.2.2 Nucleation and Growth of Short Cracks . . . . . . . . . . . . . 150
3.2.3 Discrete Dislocation Models of Mode I Growth of

Long Cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.2.4 Crack Closure Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 164
3.2.5 Unified Model of Crack-tip Shielding . . . . . . . . . . . . . . . . 175
3.2.6 Applications of the Unified Model . . . . . . . . . . . . . . . . . . 179
3.2.7 Influence of Shielding on Crack Growth Rate . . . . . . . . 185

3.3 Shear and Mixed-mode Loading . . . . . . . . . . . . . . . . . . . . . . . . . . 188
3.3.1 Models of Shear-mode Crack Growth . . . . . . . . . . . . . . . 189
3.3.2 Propagation of Cracks under Cyclic Torsion . . . . . . . . . 194
3.3.3 Propagation of Cracks under Cyclic Shear . . . . . . . . . . . 203
3.3.4 Crack Growth and Fatigue Life under Combined

Bending-torsion Loading . . . . . . . . . . . . . . . . . . . . . . . . . . 217
3.3.5 Formation of Fish-eye Cracks under Combined

Bending-torsion Loading . . . . . . . . . . . . . . . . . . . . . . . . . . 227
3.4 Failure Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

3.4.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
3.4.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

4 Final Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4.1 Useful Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4.2 Open Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Appendixes

A Ab initio Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . 249
A.1 TB-LMTO-ASA Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
A.2 Wien 95 – w2k Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
A.3 VASP Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

B Mixed-mode Criteria of Crack Stability . . . . . . . . . . . . . . . . . . . 255
B.1 Energy Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
B.2 Criterion of Linear Damage Accumulation . . . . . . . . . . . . . . . . . 256



Contents xiii

B.4 Criterion of Maximal Principal Stress . . . . . . . . . . . . . . . . . . . . . 257

C Plastic Flow Rate Inside the Neck . . . . . . . . . . . . . . . . . . . . . . . . 259
C.1 Ideal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
C.2 Real Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

List of Reprinted Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

B.3 Criterion of Minimal Deformation Energy . . . . . . . . . . . . . . . . . 256



Chapter 0

Introduction

A systematic investigation of fracture and fatigue started during the nine-
teenth century mainly as a consequence of repeating failures of dynamically
loaded engineering components and structures. In the first half of the last
century, pure empirical and mechanical views on fracture prevailed and this
explains the rather empirical understanding of the failure of engineering com-
ponents and structures under applied static or dynamic loads. Results of ex-
periments were evaluated by using linear–elastic fracture mechanics and the
resistance of structural materials to fracture was believed to be predominantly
determined by their chemical composition. However, fundamental experience
revealed that the fracture resistance of materials is to a large extent influenced
by their microstructure. Since about 1950, therefore, the materials science
approaches based on physics, chemistry and mechanical engineering became
very important in fracture research. Advanced experimental methods such
as electron microscopy, atomic-force microscopy, Auger spectroscopy, X-ray
methods, electron-beam microstructure analyses and servohydraulic close-
loop testing devices started to be utilized in fracture research. At the same
time, the employment of numerical methods in materials science and fracture
was promoted by the rapidly increasing efficiency of computer systems as well
as by growing demands for quantitative predictions in industrial research.
Thus, the theoretical models of fracture and fatigue processes started to be
developed and experimentally supported on all spatial scales from atomistic
to macroscopic approaches.

Phenomenological fracture models beyond the atomic scale are based on
constitutive relationships that usually involve many variables. These variables
can be categorized into independent variables, state variables and parame-
ters [2]. As a rule, time and space coordinates serve as independent variables
while state variables represent physical quantities as functions of the indepen-
dent variables. Quantities such as stress, strain, dislocation density, vacancy
concentration, particle size or interphase spacing are typical examples of state
variables. A further distinction between explicit and implicit state variables
can often be encountered, especially in microstructure mechanics. The ex-
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2 0 Introduction

plicit state variables define local microstructural features such as grain size
or particle volume. On the other hand, the implicit variables are defined as
mesoscopic or even macroscopic averages. In kinematic equations describ-
ing the evolution of microstructural damage during the fracture process, the
state variables are usually weighted, i.e., based on parameters. The parame-
ters should be measurable quantities of well–defined physical meaning.

As a consequence of both advanced experimental and theoretical stud-
ies, the fracture of engineering components is, nowadays, commonly grasped
as a process of damage accumulation in the materials microstructure. This
process consists of four fundamental stages: Localization of plastic deforma-
tion, nucleation of cracks, propagation of cracks and final fracture of the
component. However, the duration of these stages can substantially differ de-
pending on microstructure, chemical composition, loading, temperature and
environment. Some of these stages might be absent as well. The materials
microstructure should be understood in terms of a spatial hierarchy ranging
from the nanoscale (electrons, atoms, individual lattice defects), through the
microscale (crystallography, lattice defects ensembles and secondary phases
below the grain scale) up to the mesoscale (defects and phase ensembles at
the grain scale). The macroscopic level embraces the geometry of samples
and components. The state variables that quantify microstructural elements
are often called microstructural characteristics. In order to illustrate the role
of microstructural elements and characteristics in individual stages of the
fracture process, the physical background of uniaxial tension tests of metallic
materials of the same chemical composition but possessing a different mi-
crostructure will be briefly discussed hereafter. The influence of microstruc-
ture on fracture characteristics will also be mentioned.

Let us first consider a perfect single crystal as a highly ordered solid pos-
sessing the lowest possible internal energy per atom. In this case, the first
three stages of the fracture process are absent. Indeed, such a crystal would
experience a nonlinear–elastic deformation until it fails either by homoge-
neous unstable decohesion along the atomic planes perpendicular to the ap-
plied load (when reaching the ideal tensile strength) or, much more probably,
by a shear instability (when reaching the ideal shear strength). In both cases,
however, this stress would significantly depend on the direction of the applied
load, i.e., on the crystallography (see Chapter 1 for details). The related uni-
axial fracture stress σu would lie close to an upper limit of the material
strength of the order of 10GPa, whereas the fracture strain would approach
the lower limit of the order of 0.1. The cohesive energy per atom U is another
important mechanical characteristic related to this fracture process. This en-
ergy is proportional to the fracture (surface) energy γ that refers to the work
necessary to create a unit area of an internal free surface (crack), and also
depends on the crystallography.

Real single crystals exhibit much lower fracture stresses. This is, however,
not a consequence of a lower cohesive (or fracture) energy due to the presence
of dislocations. Indeed, the cohesive energy associated with a dislocation core
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is only slightly lower than that of the perfect crystal. On the other hand, real
crystals exhibit much higher fracture strains due to a long mean free path of
dislocation. The reason is that the fracture process involves all four fracture
stages, thereby being completely different from that of the perfect crystal. In
the first stage, the mobile primary dislocations on selected glide planes move
rather long distances thus producing large macroscopic strains under very
small applied stresses of the order of 10MPa. In the second stage, the inter-
action of dislocations at intersections of primary and secondary slip planes
builds long pile-ups associated with very high local internal stresses. When a
superposition of internal stresses with the external stress locally approaches
the ideal strength, microcracks nucleate in the bulk. Growth and coalescence
of these cracks lead to a final fracture at a rather high fracture strain (εf � 1).
In body centred cubic (bcc) metals the interaction of pile-ups creates sessile
dislocations that initiate cleavage fracture along (100) crystallographic planes
(see Chapter 2 for more details).

Polycrystalline single-phase materials contain grain boundaries that re-
strict the dislocation motion. Therefore, lower fracture strains (εf ≥ 1) are
usually observed. On the other hand, higher external stresses (σ ≈ 100MPa)
are needed to build dislocation pile-ups inside the grains. The high-angle grain
boundaries possess a rather low cohesive energy. This energy and the related
ideal strength can be further reduced by a diffusion of interstitial atoms like
hydrogen or oxygen to the grain boundary sites where high triaxial tensile
stresses are built by the superposition of internal and external stresses. This
can lead to grain boundary cracking (see Chapter 3 for more details).

Engineering polycrystalline materials contain secondary phase particles
(precipitates and inclusions) both inside the grains and at the grain bound-
aries. This restricts dislocation motion to an even greater extent so that the
fracture strain is further reduced (εf ≤ 1). On the other hand, higher exter-
nal stresses are needed to build dislocation pile-ups which leads to a higher
fracture stress. Incoherent matrix/particle interfaces exhibit a very low cohe-
sive energy and a reduced ideal strength. These characteristics can be further
worsened by interstitial diffusion and/or segregation of impurity atoms (see
Chapter 2 for more details). Therefore, the microcracks can be initiated at
both the particle/matrix interfaces and the grain boundaries. Consequently,
the fracture process can be accomplished by diverse micromechanisms: Trans-
granular cleavage, intergranular decohesion, coalescence of voids or their mix-
ture (see Chapter 2 for more details). In comparison to previously discussed
microstructures, the stress-strain diagram of a typical high-strength engineer-
ing material (σu ≈ 1GPa, εf ≈ 0.3) is closer to that of the perfect crystal.

The radical engagement of dislocations in the microcrack nucleation might
be understood in terms of their negative role in fracture processes. However,
this statement is generally not true. When the microcrack is already formed,
dislocations start to serve in a very positive way particularly in the case of
brittle or quasi-brittle fracture. Indeed, the emission of dislocations from the
crack tip (or their absorption at the crack tip) increases the fracture energy



4 0 Introduction

and blunts the crack tip, thus increasing the material resistance to unsta-
ble fracture. This favourable effect is appreciated in the case of engineering
components containing microdefects that have been produced during their
production or nucleated by corrosion and/or fatigue. On the other hand, a
repeated emission and absorption of dislocations enables stable crack prop-
agation under fatigue loading. These examples demonstrate a miscellaneous
role of lattice defects in fatigue and fracture. Simultaneously, they highlight
the importance of recognizing the fracture micromechanism in the research
and development of advanced materials with high resistance to fracture and
fatigue.

Table 0.1 Space scales and simulation methods

Scale range [m]

10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

Subnano Nano Micro Meso Macro

ab initio, phonon spectra

Monte Carlo, cluster variation,
molecular dynamics

dislocation dynamics,
discrete dislocations

tessellation, topology,
grain boundary dynamics

percolation

finite element, boundary element,
finite difference, rheology, cellular automata

There are many simulation methods used in modelling deformation and
fracture processes on different scales. In Table 0.1, selected methods are col-
lected according to their applicability in subnano-nano-micro-meso-macro
regimes. Many of these methods (emphasized in Table 0.1) were also em-
ployed by us. Advanced microstructure models of fracture and fatigue pro-
cesses based on simulation methods should enable us to use, or even derive,
path-independent relationships between microstructural parameters and frac-
ture characteristics. They should provide an insight into physical principles
that govern the damage accumulation in materials microstructure as well as
allow a proper interpretation of experimental results. To fulfil these require-
ments, the advanced models are increasingly complemented by the concept
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of integrated modelling and simulation. This means that computer codes and
methods are coupled with the aim of bridging the scale differences between
adjacent simulation levels. Such models belong to the multiscale category. To
our knowledge, there is no generalized rule for how to design the multiscale
approach. However, there are two principally different integration methods
widely employed in such simulations: simultaneous integration and sequential
integration [2]. The first method means that various interacting simulation
codes are utilized simultaneously in one computer experiment. The second
principle is based on an adequate transfer of parameters between simulation
that are used sequentially. Multiscale models of fracture processes, presented
in the works of the authors of this book, are preferentially built on the second
approach.

It should be emphasized that partial submodels of the sequential multi-
scale model should not involve too many state variables serving as fitting
parameters. Indeed, too complicated mathematical descriptions can lead to a
physical nontransparency of the model. Similarly, a deficiency of experimen-
tal verification of partial theoretical concepts usually results in a misleading
phenomenology of the multiscale model. Nevertheless, without analyzing the
fracture micromechanisms in the frame of relevant multiscale approaches,
many rather surprising experimental results (or even those standardly ac-
cepted) could not be reasonably elucidated. Since these models embrace a
wide range of microstructure states, they are able to predict materials be-
haviour and fracture properties on different scales. Let us briefly mention a
few examples of such unique capabilities.

In 1970–1974, numerical simulations of an arrangement of atoms in screw
dislocations in bcc metals confirmed that their core is spatially extended
into three slip planes that lie in the zone of a common slip direction [3, 4].
Much later, the coupling of codes based on atomistic, crystallographic and
finite element approaches revealed that such dislocations exhibit asymmetry
in their mobility under tensile and compressive loading [5]. Moreover, they
do not follow the Schmid’s law at low temperatures. These unique properties
could explain an asymmetric mechanical hysteresis observed in bcc single
crystals or the anomalous temperature dependence of the yield stress in some
intermetallic materials [6]. This multiscale analysis led to the development
of a physically based yield criterion with generally asymmetric yield surface
that is directly applicable in macroscopic analyses of yielding [7].

In fatigue, the existence of the threshold ΔKth of long crack growth has
been well known and widely accepted since nearly 1970. Unfortunately, the
theoretical methods based on the macroscopic theory of plasticity did not pre-
dict such a threshold behaviour at all. Starting from 1990, however, discrete
dislocation concepts could be brushed up and applied to fracture research
owing to a massive involvement of new numerical methods (e.g., [8]). One of
the most important results that followed from such approaches was the exact
theoretical confirmation of the threshold behaviour [9]. Afterwards, the dis-
crete dislocation concept proved to be a very useful tool for elucidation and
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quantification of various phenomena near the fatigue threshold, e.g., crack
closure effects under plane strain conditions [10, 11]. These concepts were
also able to provide a physically clear background of the size effect observed
in micro and nanocomponents [12].

During 1975–1985, many experimental results verified an anomalous frac-
ture behaviour of ultra-high-strength low-alloy (UHSLA) steels. The fracture
toughness of these steels significantly increased with coarsening of the mean
prior austenite grain size (raising austenitizing temperature). On the other
hand, the absorbed energy in impact tests revealed the opposite trend. These
contradictions could be elucidated by an extreme geometrical shielding of the
crack tip that was produced by decohesion of coarse grain boundaries dur-
ing the fracture toughness tests. A multiscale model that coupled methods
based on topology, stereology and metallography with finite element analy-
sis quantitatively predicted fracture behaviour in very good agreement with
experimental data. A similar model could quantitatively reproduce a steep
increase in fracture toughness of borosilicate glasses with increasing concen-
tration of reinforced particles (see also Chapter 2).

Besides a survey of our work, this book aims to present a rather consistent
overview of fracture micromechanisms. Indeed, all the fundamental kinds of
fracture processes and related micromechanisms are considered except for
high-temperature creep damage. The description of fracture processes ranges
from atomistic up to macroscopic levels. Therefore, the multiscale context
can be easily found in many models of fracture processes that couple such
approaches by means of sequential integration. Although emphasis is given
to metallic materials, the fracture behaviour of ceramics and composites is
also discussed.

The topic of the first chapter is the deformation and fracture of perfect
crystals. Their mechanical behaviour under various kinds of monotonously
increasing (static) loading is preferentially investigated by means of ab ini-
tio (first principles) methods based on electronic structure calculations. It is
our strong belief that engineers can also learn a lot from the results of these
apparently academic studies. They provide a clear distinction between in-
trinsic lattice properties and those induced by defects and secondary phases
in engineering materials. They also constitute physical benchmarks for en-
gineering multiscale models such as upper and lower limits of fracture and
fatigue characteristics (ideal strength and fracture toughness). Three-scale
models coupling electronic structure with atomic arrangements and crystal-
lography are applied to calculate the ideal strength of crystals and nanocom-
posites under various loading conditions. Multiscale models predicting intrin-
sic ductile/brittle behaviour of crystals are also presented. These models cou-
ple atomistic, crystallographic and fracture-mechanics approaches. Finally, a
multiscale model of nanoindentation is presented in order to quantify pop-in
effects observed in load-penetration diagrams. This model links numerical
methods and results embracing all spatial scales from nano to macro.
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The second chapter is divided into sections devoted to micromechanisms
of brittle, quasi-brittle and ductile fracture under static (low strain rate) and
dynamic (high strain rate) loading. The leading theme of the first topic is
the geometrically-induced crack tip shielding effect and the related fracture
micromechanism. A two-scale analytical model based on quantitative fractog-
raphy and mixed-mode fracture mechanics is applied to explain the fracture
behaviour of borosilicate glasses. In order to quantify the quasi-brittle frac-
ture, the geometrically-induced shielding effect is related to the ratio of a
characteristic microstructure dimension and the crack-tip plastic zone size
(the size ratio) in a two-scale analytical model based on quantitative frac-
tography and fracture mechanics. This model is employed to describe the
anomalous fracture behaviour of UHSLA steels as well as to assess the value of
fracture energy of grain boundaries with segregated phosphorus in ferritic al-
loys. Finally, analytical three-scale models of ductile fracture processes based
on dislocation dynamics, microvoids formation kinetics and fracture mechan-
ics are presented. These models are able to predict the fracture strain in the
tensile testing of ductile metallic materials and to assess the values of fracture
toughness for steels exhibiting the ductile fracture micromechanism.

The last chapter is dedicated to fatigue fracture of metallic materials. The
micromechanisms of mechanical hysteresis, crack initiation and crack prop-
agation under all modes of crack-tip loading are described in the multiscale
concept from nanoscale to mesoscale levels. An analytical multiscale model of
crack closure was developed in order to evaluate individual crack-tip shield-
ing components and to assess the intrinsic fatigue threshold value under the
opening loading mode. Micromechanisms of crack propagation under shear
and mixed-mode loading are also discussed from the point of view of both
theoretical and experimental approaches. For example, a two-scale model
connecting three-dimensional topology with linear–elastic fracture mechan-
ics is able to explain a formation of factory-roof morphological patterns on
the fracture surfaces generated by cyclic torsion. The initiation and propaga-
tion of fish-eye cracks is studied under combined bending-torsion loading in
specimens made of nitrided steel. A method enabling a quantitative recon-
stitution of the fatigue process from the fracture morphology is described in
the final part of the chapter. This method of engineering failure analysis was
successfully applied in many practical cases.

The book is complemented by three appendices devoted to ab initio meth-
ods utilized in atomistic models, criteria employed in mixed-mode fracture
and derivation of void-induced dislocation dynamics in the model of ductile
fracture.



Chapter 1

Deformation and Fracture of Perfect
Crystals

Perfect crystals constitute an idealization of real single crystals that always
contain some crystal defects. This holds even for almost perfect single crys-
tals, so-called whiskers, where the presence of an equilibrium concentration
of vacancies is inevitable. On the other hand, the mechanical behaviour of
perfect crystals can be very successfully simulated and predicted by theoret-
ical ab initio approaches based on electronic structure calculations. Because
many of the crystallographic, elastic, electric, magnetic and thermodynamic
characteristics of crystals do not depend on crystal defects, the ab initio re-
sults can still be experimentally verified. The practical importance of such
studies lies in several general aspects.

First, knowledge of the behaviour of perfect crystals clearly identifies the
role of crystal structure and chemical composition. This enables us to sep-
arate the role of defects due to the difference in the mechanical behaviour
of perfect and real crystals. Second, the ideal (theoretical) strength of per-
fect crystals of a particular chemical composition represents an upper bound
of the strength of solids. Consequently, engineers can see the gap remaining
between the strength of contemporary high-strength materials and that of
the theoretical limit. Third, the models of processes of dislocation creation
near stress concentrators such as cracks in perfect crystals provide us with
lower bounds of macroscopic characteristics used in fracture mechanics. Thus,
the ab initio results yield both upper and lower benchmarks defining phys-
ically possible ranges of mechanical characteristics of engineering materials.
Fourth, the characteristics of ideal crystals can be utilized in multiscale mod-
els of deformation and fracture processes of engineering materials. Finally,
these results can be used as fitting data for the construction of sophisticated
semi-empirical interatomic potentials that are utilized for prediction of the
behaviour of extended defects in real crystals and polycrystals.

All of the above-mentioned aspects are demonstrated in the three sec-
tions of this chapter devoted to the mechanical behaviour of perfect crystals.
In the first section, the application of ab initio methods to calculations of
elastic stress-strain response and, particularly, to the determination of ideal

9
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strength under various loading conditions is demonstrated. One should note
that these concepts are, in fact, two scale models based on both electronic
and atomic structures. Section 1.2 deals with another important problem
concerning the physics of brittle/ductile behaviour of perfect crystals. The
models are three-scale approaches dealing with electronic, atomic and crys-
tallographic structures of crystals. The third section illustrates the modelling
of nanoindentation tests with regard to the physical interpretation of pop-ins
observed at the end of the elastic part in the force-indentation depth diagram.
These multiscale models couple electronic, atomic, crystallographic and con-
tinuum approaches to provide a unique tool for experimental measurements
of the ideal shear strength.

1.1 Ideal Strength of Solids

The strength of any solid has an upper limit called the ideal (theoretical)
strength (IS). This value corresponds to the failure of an infinite perfect
single crystal loaded in a defined mode. The strength of engineering materials
is usually controlled by nucleation and propagation of dislocations and/or
microcracks. If such defects were not present, the material would only fail
when the IS is reached. Until recently loads of this magnitude were only
approached in studies of the mechanical behaviour of whiskers of very pure
metals and semiconductors [1,13,14]. Starting from the beginning of the last
century, there has been a more or less continuous effort expended in order
to obtain theoretical and experimental data concerning IS of various solids.
The IS values set an upper limit to the envelope of attainable stresses and its
knowledge enables us to assess the gap remaining to upper strength values of
advanced engineering materials in each period of time. However, this is not
the only reason for IS investigation. From the theoretical point of view, the
IS plays a decisive role in the fundamental theory of fracture. For example,
the stress necessary for nucleation of a dislocation loop can be identified with
the shear IS value. This has been proved most eloquently by nanoindentation
experiments (see e.g., [15–18]) which suggest that the onset of yielding at the
nanoscale is controlled by a homogeneous nucleation of dislocations in a small,
dislocation free, volume under the nanoindenter, where the stresses approach
the shear IS. Similarly, the local stress needed for unstable propagation of a
cleavage crack should overcome the value of the tensile IS [19–22]. The ratio
of shear and tensile IS expresses a tendency of the crystal matrix to become
brittle or ductile [23–25] (see Section 1.2). The values of IS may also be used
in the construction or checking of semi-empirical interatomic potentials. From
the practical point of view, the shear IS appears to control both the onset
of fracture and the dislocation nucleation in defect-free thin films and, in
particular, in nano-structured materials that are currently being developed.
Perfect single crystal wires (whiskers) are used as reinforcements in advanced
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composite materials and large metallic and ceramic single crystals start to
be important in special engineering components, e.g., in turbine blades [26].

Section 1.1.1 provides a picture of the historical development including re-
marks on sophisticated calculation methods. The principles of ab initio meth-
ods and stability procedures, utilized in recent computations, are presented
in Section 1.1.2. Some results of ab initio calculations of IS under simple
loading modes reported in our works are outlined in Section 1.1.3. Section
1.1.4 is dedicated to IS of crystals under multiaxial loading. An analysis of
mechanical properties of ideal nanocomposites is outlined in Section 1.1.5. A
brief discussion concerning the influence of lattice defects and temperature
on the crystal strength is presented in the last subsection.

Section 1.1 is complemented by two appendices focused on ab initio meth-
ods and mixed-mode criteria of crack stability.

1.1.1 From Classics to Recent Concepts

For every particular loading, the stress state is characterized by six stress
tensor components and, consequently, an infinite number of ideal strengths
exists for a given crystal. For practical reasons, therefore, the IS was usually
evaluated only for several special cases of loading, each defined by a single
value of the stress tensor component, specifically, for the uniaxial tensions
and compressions along various crystallographic directions, the isotropic (hy-
drostatic) tension and compression and for the pure shear in certain planes
and directions. The respective IS values denoted here as σiut, σiuc, σiht, σihc
and τis cover, to a reasonable degree, the most important cases occurring in
the engineering practice.

1.1.1.1 Classical Theories

Historically the first calculations of τis were performed in 1926 by Frenkel [27].
The model of an ideal crystal subjected to block-like shear is, along with the
related behaviour of the shear stress τ under applied shear deformation, ex-
pressed by the plane shift s in Figure 1.1. The values of ideal shear strength
for the block-like model will be denoted τis,b. The τ(s) dependence was as-
sumed to be of a sinusoidal shape.

According to specification of variables in Figure 1.1, the stress behaviour
could be described by the relation

τ = τmax sin
2π

a
s.

For a small shift (sin 2π
a s ≈ 2π

a s), the shear modulus should be G = dτ/dξ,
where ξ = s/b. Since τis,b = τmax this leads to
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Figure 1.1 (a) Model of a block-like shear deformation (dark spheres represent
atomic positions within the upper block, that is, as a whole, shifted by s towards the
lower block along the shear plane, light spheres show their original positions), and
(b) shear stress τ as a function of the shift s of two adjacent planes

τis,b =
Ga

2πb
. (1.1)

Equation 1.1 gave values τis,b ≈ 1
9G for the {111}〈112̄〉 shear of face cen-

tred cubic (fcc) metals, and τis,b ≈ 1
5G for {110}〈11̄1〉 shear of bcc metals as

well as for the {111}〈11̄0〉 shear of fcc metals. Because the yield stress of real
crystals was found to be about three orders lower, the only plausible explana-
tion of this discrepancy was the presence of line defects (dislocations). Thus,
the Frenkel’s result created a milestone for a development of the dislocation
theory.

First attempts to compute the ideal strength in uniaxial tension σiut were
performed by Polanyi [28] and Orowan [29]. They were based on an assump-
tion of tearing fracture of a stretched crystal along a crystallographic plane.
Forces between two adjacent atomic planes of a perfect solid vary with the
interplanar distance as in Figure 1.2. This dependence was approximated by
a sinusoidal function

σ = σmax sinπ
x− a0
d

and the expected deviation from this trend for high strain values was ne-
glected. The function was parametrized according to the following assump-
tions: 1) the work of deformation per unit area corresponds to energy 2γ of
the two new surfaces

a0+d∫

a0

σdx = 2γ;
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and 2) in the vicinity of the equilibrium state (x = a0), the stress is pro-

portional to Young’s modulus and the relation E =
dσ

dε
must be valid for

the strain ε =
x− a0
d

. Then, the maximum value of the tensile stress can be

simply evaluated as

σiut =

√
Eγ

a0
. (1.2)

The corresponding ideal tensile (tear) strengths of metals are mostly very
high (several tens of GPa).

a0
x

�

0

�max

a +d0

Figure 1.2 Stress as a function of the distance between atomic planes

Mackenzie presented in 1949 a more extended study of the shear IS based
on a variation of potential energy U per unit area of a shear plane with the
plane shift s [30]. The shear stress can be calculated from the energy U as

τ =
dU

ds
. (1.3)

From this point of view, the Frenkel’s approach described above refers
only to the first two terms in the Fourier series for U(s). Therefore, Macken-
zie took further terms into consideration. This theory gave a very low value
τis,b ≈ 1

30G for {111}〈112̄〉 shear in fcc lattice [30]. As found by Šandera and
Pokluda [31], however, some assumptions used in that theory were not phys-
ically legitimate. Indeed, more recent calculations [31, 32] based on more so-
phisticated atomistic approaches confirmed a much better validity of Frenkel’s
estimation.

Further IS calculations were performed by means of so-called empirical
interatomic potentials [33]. Most of them used an analogy to Equation 1.3.
The potential energy U was calculated as a sum of pair-potentials of various
kinds such as the Morse potential, the Lennard–Jones potential, etc. (e.g., [23,
24,34–36]). As an example, some results of calculations of σiht are introduced
in Section 1.1.3.
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1.1.1.2 Ab initio Methods

Nowadays, so-called ab initio (or first principle) approaches enable us to
compute the crystal energy in a very accurate manner. This particularly holds
for single crystals of pure elements or compounds, crystals with periodical
arrangements of atoms of various kinds and also for local crystal defects.
These methods utilize the density functional theory [37, 38] in which the
problem of many interacting electrons is transformed into a study of single
electron motion in an effective potential. A brief description of principles of
such methods is presented in Appendix A.

Most probably, the first ab initio calculation of the uniaxial IS σiut was
that of Esposito et al. [39] for the copper crystal. However, these authors
did not perform relaxations of atomic positions inside the loaded crystal in
directions perpendicular to the loading axis (Poisson’s type of expansion or
contraction). Probably the first ab initio simulation of a tensile test that
included the relaxation in perpendicular directions to the loading axis was
performed by Price et al. [40] for TiC along the [001] axis. Later, σiut was
calculated for [001] and [111] loading axes for a variety of cubic crystals by Šob
et al. [41–43]. Kitagawa and Ogata [44,45] studied the tensile IS of Al and AlN
but also did not include the Poisson’s contraction. Further calculations of σiut,
performed for α-SiC, diamond, Si, Ge, Mo, Nb and Si3N4, have already taken
that effect into account by allowing a transversal relaxation of atoms [46–51].

The values τis,b of the shear IS were first calculated by Paxton et al. [32] for
V, Cr, Nb, Mo, W, Al, Cu and Ir. The values τ∗is calculated according to the
model of a uniform shear (see Figure 1.3) were later reported by Moriarty et
al. [52,53] for Mo and Ta. These calculations did not include any relaxations.
Recently, the relaxed values of τis were calculated for many crystals such as
TiC, TiN, HfC, Mo, Nb, Si, Al, Cu andW by groups of Morris et al., Kitamura
et al. and Pokluda et al. [54–58]. In these models, the interplanar distance
was relaxed towards the minimum energy during deformation. More advanced
models also enabled relaxations of the arrangement of atomic positions within
the planes [48, 59] – see also Sections 1.1.2 and 1.1.3.

Since 1997, ab initio calculations of σiht have been performed by Pokluda
et al. [60–62] and other authors (e.g., [63]). Since spherical symmetry was
maintained during deformation, the relaxation procedures were not necessar-
ily applied in these models.

In the majority of older studies on IS, the deformation process was assumed
to proceed in a stable manner until the applied stress reached its maximum
value. This means that the crystal failed in the same mode in which it was
originally deformed from the very beginning. However, this assumption was
disputed in many works [64–66]. Under both tensile and compressive load-
ings, the shear stresses in some slip systems can exceed their critical values
(corresponding to the related τis) well before the stress reaches its maximum.
This was also observed in tensile tests on whiskers [30, 33]. Indeed, some of
the whiskers evidently failed by shear across some favourable crystallographic
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Figure 1.3 Scheme of the uniform shear applied to a perfect crystal

plane resulting in an atomically smooth fracture surface. Thus, the definition
of IS as a maximum attainable stress along the deformation path was assigned
to a stress related to the first onset of instability. Many stability studies were
based on an analysis of the elastic response of crystals subjected to small
homogeneous deformations. Such analyses of the mechanical stability, based
on calculations of independent elastic moduli, led to a significant decrease in
computed values of IS. This was the case for [001] uniaxial loading in Al, Nb
and Cu [49,67,68]. More attention to this issue will be paid in Sections 1.1.2
and 1.1.3.

1.1.1.3 Other Advanced Methods

Besides ab initio approaches several other methods were also utilized for IS
computations. Although these methods lie beyond the scope of this book, it
is worthwhile making a brief comment on the topic.

In the last 20 years, very sophisticated semi-empirical methods such as
many-body potentials of Finnis–Sinclair type [69], embedded atom method
[69] or bond-order potentials [70] were used for analyses of extended crystal
defects [71–73]. These concepts represent a hybrid between empirical and ab
initio approaches. At present, the ab initio methods are only capable of giving
a sufficiently precise prediction of the mechanical behaviour in very simple
cases (but still far enough from the unstressed equilibrium state). This is the
reason why, starting from the early 1990s, they are used for the calibration
of semi-empirical potentials [42].

A further step towards identification of the initial onset of an instability
was made by studies on the phonon spectra of crystal states along investi-
gated deformation paths. This approach has further reduced the calculated
values of IS [74]. The phonons are quasi particles used to express a particle
aspect of lattice vibrations. They play a major role, e.g., in the theory of both
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thermal and electric conductivity. However, they can also serve as an indica-
tor of the lattice instability related to so-called soft phonon modes, at which
the phonon frequency becomes an imaginary number. Such instabilities are
responsible for various structural transitions [75,76] and, in general, they can
be understood as an irreversible non-uniform (heterogeneous) distortion of a
crystal. In this aspect, phonon analysis represents a generalization of elastic
stability analysis since any observed elastic instability corresponds to a soft
phonon mode with an infinite wavelength.

Once the crystal becomes unstable, it will follow a trajectory in a con-
figurational space that will eventually violate the harmonic approximation
inherent in the phonon calculation. In order to find such trajectories, molec-
ular dynamic (MD) methods can be utilized. These approaches account for
variations of the unit cell shape as well as the positions of constituent atoms.
MD methods are probably the most promising tools for an investigation of
the system stability and eventual structure evolutions during spontaneous
structural transitions. They can give a sufficient number of degrees of free-
dom to studied systems and, furthermore, they can also incorporate finite
temperatures and pressures thus bringing the simulations closer to reality.
However, certain limitations related to computational capacity hinder them
from wider applications. Present MD methods are mostly based on empirical
or semi-empirical interatomic potentials. Some results obtained by means of
these methods are mentioned in Section 1.2.

Let us finally note that the most sophisticated methods, including so-called
correlated electron-ion dynamics, are even more computationally demanding.
On the other hand, they may represent a reliable tool for atomistic simula-
tions in the near future [77].

1.1.2 Calculation Principles

When applying atomistic approaches to a particular crystalline system, the
dependence of its total energy on the deformation state constitutes the main
output.

In order to describe the deformation of a crystalline system, it is necessary
to define appropriate deformation parameters (strain variables). However,
there is no unique way of defining a set of parameters which would provide a
measure of a pure finite strain related to the crystal reference state. Therefore,
one can find several different definitions used in the technical literature. A
homogeneous strain of a crystal can be specified, e.g., by any six parameters
that define a primitive cell. Some authors use lengths of cell edges (ai) and
their included angles (αi) [66,78–80]. Although the deformation is described
by changes of these parameters rather than themselves, they are also widely
used in stability analyses. Such a natural set of variables is sometimes called
Milstein’s variables [79].
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A simple description of any deformation that is used throughout this work
employs a general rule on how to change position of an arbitrary point (e.g.,
atomic position) within the chosen coordinate system. This rule is expressed
by a transformation matrix (deformation gradient) which is also called the
Jacobian matrix J [81]. The practical advantage of such a description is ap-
parent when one simulates a homogeneous deformation of a crystal through
the deformation of its primitive cell. The primitive cell comprises both the
motif and the set of vectors that determine the translational symmetry of a
crystal. The transformation of vectors is then performed by multiplying by
the Jacobian matrix.

Let us consider a crystalline system in a reference state with the corre-
sponding set of primitive translational vectors ar,br, cr. Applying a defor-
mation described by J to the system, the set is transformed to a new set of
vectors corresponding to the deformed state

a = Jar; b = Jbr; c = Jcr.

The tensor of a finite deformation (also called Lagrangian strain tensor)
is defined according to the relation

η̂ =
1

2
(JT J− I),

where I means the identity matrix.
An equivalent definition of the finite strain tensor uses a rule that describes

changes of lattice points positions via the displacement vector u = a − ar
and the matrix eij = ∂ui/∂aj [82]. When using the Einstein summation rule,
the components of the finite strain tensor can then be written as

ηij =
1

2

(
∂ui
∂aj

+
∂uj
∂ai

+
∂uk
∂ai

∂uk
∂aj

)
. (1.4)

The components ηii refer to stretches and ηij stands for shear strains if i �= j.
A small deformation can also be depicted by a small strain tensor (known

also as Euler strain, Green tensor or Cauchy infinitesimal strain):

εij =
1

2

(
∂ui
∂aj

+
∂uj
∂ai

)
. (1.5)

Hence, the finite strain differs from the small strain by the cross-term
∂uk

∂ai
∂uk

∂aj
. Consequences of this difference with respect to the IS analysis are

discussed in [83]. As the tensor represents a symmetric part of the matrix eij ,
any infinitesimal transformation can be expressed by a linear combination of
the tensor εij (describing pure deformation) and the antisymmetric part of
the matrix eij

ωij =
1

2

(
∂ui
∂aj

− ∂uj
∂ai

)

that represents the rotation as can be seen in Figure 1.4.
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Figure 1.4 Two-dimensional illustration of lattice distortion (simple shear) as a
pure shear plus a rotation ê = ε̂+ ω̂

As follows from Equations 1.4 and 1.5, both the strain tensors are sym-
metric (even if J is generally asymmetric). Therefore, it is useful to use Voigt
notation that reduces the number of indices of symmetric tensors according
to the prescription

11 → 1 23 → 4
22 → 2 13 → 5
33 → 3 12 → 6.

Thus, the second-rank tensor is reduced to a six-dimensional vector. Re-
grettably, there are two different standards used in the literature. The first
one exactly follows the above-mentioned substitution ηij = ηα (where indices
i, j run from 1 to 3 and the index α runs from 1 to 6) [84,85] whereas the other
one uses substitution ηij =

1
2ηα(1+ δij) that leads to the following difference

for the shear components: η4 = 2η23, η5 = 2η13 and η6 = 2η12 [82, 86–89].
The latter case is usually called standard Voigt notation. This simplifies the
expression for energy expansion at Equation 1.7.

When a crystal system is subjected to a deformation, its energy changes
(in the case of a stable state it increases, of course). The crystal energy can
be expanded into Taylor series with respect to the finite strain ηij as

U = U0(V ) + V σijηij +
1

2
V Cijklηijηkl +O(η3), (1.6)

where V represents a system volume, Cijkl are elastic moduli and σij are the
related stress tensor components. In classical continuum mechanics, Cijkl are
usually called elastic constants [82]. However, the analysis of crystal stability
(see Section 1.1.2.2) requires calculation of Cijkl also at states far from equi-
librium, where their values depend on the applied strain (or stress). In this
book, therefore, the term elastic moduli is used for Cijkl .

The symmetry of Cijkl and σij with respect to interchange of indices
(i ↔ j) and (k ↔ l) enables us to use the Voigt notation for both of them.
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The standard Voigt notation for strain ηij =
1
2ηα(1 + δij) is used here. The

corresponding energy expansion is then

U = U0(V ) + V σαηα +
1

2
V Cαβηαηβ +O(η3). (1.7)

Note that the energy expansion at Equation 1.7 contains a double sum instead
of a quadruple sum in Equation 1.6.

1.1.2.1 Elastic Moduli

The 6×6 matrix of elastic moduli generally contains 21 independent elements
that do not transform like the second-rank tensor components. According to
the number of point group symmetry operations, the amount of independent
elastic moduli can be lower. With respect to the energy expansion, the elastic
moduli can be defined as

Cαβ =
1

V

(
∂2U

∂ηα∂ηβ

)

or

cαβ =
1

V

(
∂2U

∂εα∂εβ

)
.

From now on, the Cij will denote the elastic moduli defined on the basis of
the finite strain and cij will stand for the elastic moduli based on the small
strain.

When, for example, the crystal is subjected to small isotropic deformation,
the lattice parameter a is related to the reference parameter ar as a = ar(1+
e). Here e is a small stretch that represents diagonal components of the small
strain tensor. Then, the finite strain is related to e according to η1 = η2 =

η3 = η = e+ e2

2 , and the deformation gradient can be expressed as

Jiso =

⎛
⎝1 + e 0 0

0 1 + e 0
0 0 1 + e

⎞
⎠ or Jiso =

⎛
⎝

√
1 + 2η 0 0
0

√
1 + 2η 0

0 0
√
1 + 2η

⎞
⎠ .

The corresponding energy expansion at Equation 1.7 gives

U = U0(Vr) + 3Vrση +
1

2
Vr(3C11η

2 + 6C12η
2) + . . .

from which the following combination of elastic moduli:

C11 + 2C12 =
1

3Vr

d2U

dη2
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can be derived. Thus, this combination defines the bulk modulus

B =
1

3
(C11 + 2C12)

which expresses the elastic response of a crystal to isotropic (hydrostatic)
loading.

Several other elastic moduli can be related to simple types of loading.
For example, the modulus C11 can be determined by a simple lattice stretch
in the [100] direction (see Figure 1.5). The Young’s modulus expresses the
crystal response to uniaxial loading and, therefore, it depends on the crystal
orientation with respect to the loading direction. For particular orientations
one can derive

E〈100〉 =
(C11 − C12)(C11 + 2C12)

C11 + C12
, (1.8)

E〈110〉 = 4
C44

C11

[
1 +

2C44

(C11 − C12)(C11 + 2C12)

]−1

,

E〈111〉 =
3C44(C11 + 2C12)

C44 + C11 + 2C12
.

The shear modulus G can be expressed as

G =
3C44(C11 − C12)

4C44 + C11 − C12

for {111}〈2̄11〉, {111}〈1̄10〉 and {110}〈1̄11〉 slip systems,

G =
1

2
(C11 − C12)

for {110}〈1̄10〉 slip system and G = C44 for {110}〈001〉 slip system.

a0

a0

a0

a

[100]

[010]

[001]

Figure 1.5 Illustration of a lattice distortion for calculation of the elastic modulus
C11
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1.1.2.2 Mechanical Stability

Hereafter, the crystal potential energy U is determined from the electronic
structure as Etot. Thus, by using the internal energy per unit volume Eu =
Etot/V , one can also write

Cij =
∂2Eu
∂ηi∂ηj

and

σi =
∂Eu
∂ηi

. (1.9)

When no other instability (unstable phonon modes, phase transformations,
elastic shear instabilities, etc.) occurs in the crystal, the relation at Equation
1.9 shows that IS corresponds to the first point of inflection on the energy vs
strain curve (Cij = 0, σi = σimax).

Probably the first attempt to formulate general criteria of crystal stability
based on its elastic moduli was made in 1940 in the work of Born [64] and
Born and Fürth [65]. They showed that by expanding the internal energy
of a crystal in a power series in the strain and requiring positivity of the
energy, one obtains a set of conditions on the elastic constants appropriate
to the crystal that must be satisfied to maintain structural stability. It can
be briefly said that, in the Born criterion, the system is stable if the matrix
of elastic moduli Cij is positive definite, i.e., all its eigenvalues are positive.
Their results are valid only when the lattice is not under external stress.

In general, two basic cases of elastic (homogeneous) instability behaviour
related to IS can be distinguished when analysing the crystal deformation:
1. instability occurs along the original deformation path,
2. instability changes the loading mode or the type of the deformation path.

The instability of the first kind (so-called volumetric instability) means that
the process of unstable crystal collapse starts at the above-mentioned point
of inflection on the original deformation path. Assuming the constant stress
ensembles (i.e., the stress-controlled loading), the crystal starts to disinte-
grate spontaneously after reaching this point. During this process, however,
strain induced phase transformations (so-called displacive transformations)
may appear along the deformation path [90, 91]. These transformations pro-
ceed by means of cooperative displacements of atoms away from their lattice
sites and alter the crystal symmetry without changing the atomic ordering
or composition. They are of the first order and, therefore, accompanied by
a symmetry-dictated extrema on the stress–strain curve. For example, the
tetragonal Bain’s path also induces typical displacive transformations (see
Section 1.1.3). Moreover, additional extrema that are not dictated by the
symmetry may occur, and reflect properties of the specific material. Conse-
quently, more “IS values” can be found related to different points of inflection
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on the energy–strain curve. However, the IS is determined by the stress as-
sociated with the first point of inflection on the original energy–strain curve
which corresponds to the maximal energy gradient. Note that atomic con-
figurations related to energy minima behind the first point of inflection may
mimic stable or metastable atomic arrangements that could be encountered
when investigating thin films or extended defects such as interfaces or disloca-
tions. Similar configurations can also be reached during the strain-controlled
deformation path of a crystal (the constant strain ensembles), provided that
they are not preceded by any instabilities of the second kind.

The instabilities of the second kind (so-called shear instabilities) can be
derived by considering a requirement that the free energy (and at T = 0
also the total internal energy) be minimum in subsequent constant stress
ensembles in accordance with the second law of thermodynamics [66, 78–80,
87, 92–94]. The main point of such an analysis was the assumption that the
crystal is subjected both to the applied load and to an infinite variety of small
perturbing forces. Any of the forces can make the crystal fail in a different
mode than that related to the main loading force. The proposed stability
assessment requires information about an elastic response of the system to
small deviations from the current state (let us call it the reference state).
Therefore, in the case of a quasi-static loading, the stability assessment is
in a sense independent of the deformation path which led the system to
this state, because the same atomic arrangement can be obtained via many
various transformations of an arbitrary original state. For that reason, the
further deformations used to investigate the stability have nothing to do with
the original deformation path. If the solid is strained infinitesimally from the
reference state associated with the stress σij (in the standard notation) by a
strain tensor εij , the related Cauchy (true) stress τij can be written as

τij = σij +Bijklεkl,

where

Bijkl = Cijkl +
1

2
(δikσjl + δjkσil + δilσjk + δjlσik − 2δklσij) (1.10)

is the elastic stiffness matrix (i, j, k, l = 1, 2, 3) introduced by Wallace [95]
that is generally asymmetric with respect to the interchange of indices. Con-
struction of this matrix is crucial for the stability assessment. As was shown
in [92,94,96], the system becomes unstable once its symmetrized counterpart

A =
1

2

(
BT + B

)

attains a zero determinant, i.e.,

|A| = 0 (1.11)



1.1 Ideal Strength of Solids 23

during the loading. It should be emphasized that the elastic moduli in Equa-
tion 1.10 are the local ones, i.e., corresponding to different points of the
deformation path. Thus, in order to assess the stability, their values should
be determined by introducing a sufficient number of independent small devi-
ations (strain increments) away from the original deformation path at each
point, in accordance with the symmetry of the particular crystal lattice. The
solution of Equation 1.11 gives a different number of possible stability condi-
tions for different crystal lattice symmetries as well as different loading modes.
The higher the symmetry (the more point group symmetry operations), the
fewer the stability conditions are to be tested. The smallest possible number
of necessary stability conditions (only two) corresponds to the isotropic solid.

The stability conditions for cubic crystals loaded in uniaxial tension or
compression along the [001] direction, the so-called Bain’s path, can serve
as a suitable example. The tetragonal symmetry induced by the uniaxial
loading means C11 = C22 �= 0, C33 �= 0, C12 �= 0, C13 = C23 �= 0, C44 = C55 �=
0, C66 �= 0 and Cij = 0, other, and a simple relationship σij = σδi3δj3 stands
for the stress tensor. By introducing these relations into Equation 1.11, one
obtains the following stability conditions:

(C33 + σ)(C12 + C11)− 2(C13 − σ/2)2 > 0, (1.12)

C11 − C12 > 0, (1.13)

2C44 + σ > 0, (1.14)

C66 > 0. (1.15)

The left-hand side of Equation 1.12 differs from the tetragonalE[001] modu-
lus for the stress-free state σ = 0 only by a multiplication constant. Therefore,
the violation of that so-called volumetric condition is closely related to the
first inflection point on the energy vs strain curve along the [001] deformation
path (the instability of the first kind). In any case, the maximum value of the
stress determining the IS along the [001] path is associated with the point of
inflection. This is the main reason why the testing of the volumetric insta-
bility can actually be omitted. All the other conditions prevent the crystal
from shear (second-kind) instabilities. Breaking the condition at Equation
1.13 causes a shear bifurcation from the tetragonal deformation path to the
orthorhombic one [46, 85]. In the case of the fcc crystal, this instability in-
duces branching to the tetragonal face centred orthorhombic path – it is the
so-called Born’s instability. The instabilities at Equations 1.14 and 1.15 are
related to C44 and C66 shear moduli, respectively.

In order to test the shear-related criteria, special local Lagrangian defor-
mations (determined by corresponding Jacobi matrices) are to be applied to
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the crystal at each point of the deformation path. For the tetragonal path [68],
the Jacobi matrix

JC′ =

⎛
⎝

√
1 + 2e 0 0
0

√
1− 2e 0

0 0 1

⎞
⎠

and the corresponding deformation matrix

η̂C′ =

⎛
⎝ e 0 0

0 −e 0
0 0 0

⎞
⎠

lead to the following change of the system energy (per volume unit) according
to Equation 1.7:

ΔEu = (C11 − C12)e
2 + . . .

This deformation changes the tetragonal symmetry to the orthorhombic one
but the calculated ΔEu(e) curve is symmetric (ΔEu(e) = ΔEu(−e)). With
regard to the energy expansion, the tetragonal shear modulus C ′ = 0.5(C11−
C12) can be expressed as

C′ =
1

4

∂2ΔEu
∂e2

.

The condition at Equation 1.14 corresponds to the shear instability related
to the C44 modulus. Using the Jacobi matrix and strain as

JC44 =

⎛
⎜⎜⎜⎜⎝

1 0 0

0

√
1 + 2e+

√
1− 2e

2

2e√
1 + 2e+

√
1− 2e

0
2e√

1 + 2e+
√
1− 2e

√
1 + 2e+

√
1− 2e

2

⎞
⎟⎟⎟⎟⎠ , η̂C44 =

⎛
⎝0 0 0

0 0 e
0 e 0

⎞
⎠ ,

one obtains the dependence ΔEu(e) leading to

ΔEu = 2C44e
2 + . . .

and

C44 =
1

4

∂2ΔEu
∂e2

.
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The stability condition at Equation 1.15 can be tested by using

JC66 =

⎛
⎜⎜⎜⎜⎝

√
1 + 2e+

√
1− 2e

2

2e√
1 + 2e+

√
1− 2e

0

2e√
1 + 2e+

√
1− 2e

√
1 + 2e+

√
1− 2e

2
0

0 0 1

⎞
⎟⎟⎟⎟⎠ , η̂C66 =

⎛
⎝0 e 0
e 0 0
0 0 0

⎞
⎠ .

The corresponding energy change reads

ΔEu = 2C66e
2 + . . .

and the modulus

C66 =
1

4

∂2ΔEu
∂e2

.

Let us also show the stability conditions applied for a cubic structure (with
48 symmetry operations) under isotropic loading (σ1 = σ2 = σ3 = σ). Here
the form of the Wallace matrix (Equation 1.10) becomes symmetric:

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 + σ C12 − σ C12 − σ 0 0 0
C12 − σ C11 + σ C12 − σ 0 0 0
C12 − σ C12 − σ C11 + σ 0 0 0

0 0 0 C44 + σ 0 0
0 0 0 0 C44 + σ 0
0 0 0 0 0 C44 + σ

⎞
⎟⎟⎟⎟⎟⎟⎠

and its determinant

det |B| = (C44 + σ)3(C11 − C12 + 2σ)2(C11 + 2C12 − σ)

can be broken down into to a set of stability conditions:

1. C11 + 2C12 − σ > 0
2. C11 − C12 + 2σ > 0
3. C44 + σ > 0.

(1.16)

Stability criteria for a tetragonal system under biaxial (epitaxial) loading
as well as those for the simplest case of an isotropic solid under hydrostatic
loading can be found elsewhere [83].

Let us recall that, in addition to the violation of the mechanical stability
conditions, some phonon (heterogeneous) instabilities may occur along the
deformation path. A more detailed description of this problem lies beyond
the scope of this book.

The currently used methodology for the IS calculation can be, finally,
briefly summarized in the following points:
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1. construction of a suitable empirical interatomic potential or calculation of
the electronic structure;

2. calculation of the energy–strain curve and the related stress vs strain de-
pendence for a specific deformation path;

3. establishment of elastic and phonon instability ranges on the strain vs
energy and/or stress vs strain curves;

4. determination of IS value as a stress related to the first instability point
on the energy vs strain curve.

1.1.3 Simple Loading Modes

1.1.3.1 Ideal Isotropic Strength

A nearly isotropic, triaxial tensile stress state (σ1 = σ2 ≈ 1.6σ3) builds
up at the tip of cracks in solids stressed by uniaxial tension (e.g., [8]). The
value of σiht expresses a resistance to a brittle fracture (cleavage or tearing
at a sharp crack tip), while the value of τis reflects a defiance to a ductile
response (blunting of the crack tip). Consequently, the ratio σiht/τis can be
used as a measure of the brittle/ductile behaviour of cracked perfect crystals
[23–25] (see also Section 1.2). This is why the search for isotropic IS values
also becomes worthwhile from the engineering point of view. To our best
knowledge, however, there are no available experimental data on σiht. The
reason lies in difficulties in experimental realization of an isotropic tensile
loading. Thus, a theoretical assessment remains to be the only applicable
tool to gain such information. When the isotropic deformation is applied to
a system, its volume changes but the symmetry remains unchanged (unless a
phase transition takes place). Under such conditions, a rather simple LMTO-
ASA method is particularly suitable for ab initio calculations (see Appendix
A). Indeed, the error of ASA approximation is nearly independent of the
volume.

Let us consider a cubic crystal under applied isotropic stress σ. A natural
parameter for a description of deformation is the crystal volume V . The
deviation from the equilibrium (unstressed) volume V0 can be expressed by
the relative (normalized) volume v = V /V0. The isotropic stress can be
simply derived from the dependence of the crystal energy U (see Figure 1.6)
on the relative volume v as

σiht =
1

V0

dU

dv
.

The stress σiht reaches its maximum value when

d2U

dv2
= 0, (1.17)
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1 v ip

v

U

0

-Ucoh

Figure 1.6 A schematic dependence of the crystal potential energy U on the relative
volume v. The region with v < 1 corresponds to compression, v > 1 to tension and
vip is assigned to the point of inflection. Ucoh represents the cohesive energy of a
crystal when a zero energy is related to a system of isolated atoms ( lim

v→∞U = 0)

Table 1.1 Theoretical isotropic strength σiht from ab initio and semi-empirical
approximations

Element Theoretical strength σiht (GPa)
ab initio results Semi-empirical results

LMTO VASP Polynomial Morse Sinus DVC
[97] [97] [98] [99] [36] [36] [36] [100]

Li bcc 3.53a 3.13b 5.06 2.49 4.91 1.92
C dia 66.1a 53.2b 88.5a 88.5a 84.7 69.7 138
Na bcc 1.97a 1.55b 1.87 1.20 1.86 1.77
Al fcc 13.8a 12.0b 11.2b 22.2 11.9 23.0
Si dia 15.0a 10.4b 15.5a 15.4a 15.1 13.7 28.2
K bcc 0.955a 0.701b 0.99 0.659 1.28 0.10
V bcc 39.2a 33.2b 32.7b 32.6 23.5 45.4 38.3
Cr bcc 37.2a 21.0b 35.2 25.9 50.2 47.4
Fe bcc 37.7a 26.7b 27.7b 28.5b 33.8 24.1 48.1
Ni fcc 39.5a 27.4b 28.9b 29.2b 44.7 26.9 51.2
Cu fcc 28.8a 20.9b 19.8b 20.4b 32.7 19.9 38.4
Ge dia 11.0a 6.46b 11.1a 11.3 10.1 21.4
Nb bcc 36.3a 31.6b 31.6b 35.5 25.5 49.4 34.1
Mo bcc 49.3a 42.7b 42.9b 43.2b 48.2 35.0 68.9 42.2
Ag fcc 19.0a 12.6b 17.6a 20.2 13.7 26.7
Ba bcc 2.69a 1.93b 2.36 1.64 3.17
Ta bcc 41.3a 36.4b 39.2 28.5 55.1 41.3
W bcc 57.0a 50.6b 50.7b 50.2b 56.1 42.2 80.1 53.1
Ir fcc 40.1b 61.2 45.6 85.6
Pt fcc 42.7a 33.6b 39.6a 48.5 35.1 68.0
Au fcc 25.5a 17.6b 23.2a 23.5a 28.4 20.9 39.9
Pb fcc 8.7a 6.98b 7.91 5.47 10.6

a LDA
b GGA
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i.e., at the inflection point of the U(v) dependence (v → vip). Considering the
bulk modulus as a parameter expressing the elastic response of the crystal to
the volume change as

B =
dσiht
dv

=
1

V0

d2U

dv2
, (1.18)

the volume at which the equality at Equation 1.17 is valid corresponds to
vanishing of the bulk modulus. In other words, the first (volumetric) condition
of a stability set at Equation 1.16 related to the isotropic loading of cubic
crystals is fulfilled. Indeed, the bulk modulus is defined by the combination
C11 + 2C12 of elastic constants. In the further analysis, the crystal potential
energy U will be substituted by a total energy Etot that is evaluated from the
electronic structure of investigated crystals. Thus, the first stability condition
is related to the inflection point of the dependence of the total energy on the
volume. The violation of the second stability condition corresponds to a shear
instability (vanishing of the tetragonal shear modulus) when we can expect
a bifurcation from the primary deformation (isotropic) path to a secondary
one, where the lattice acquires tetragonal or orthorhombic symmetry. The
third condition corresponds to another shear instability related to the trigonal
shear modulus.

The values of σiht for various cubic crystals, as determined by ab initio
approaches, are reported in our papers [60–62] and displayed in Table 1.1. The
stability analysis, performed for crystals of Cu, Al, Ag, Fe, Ni and Cr, revealed
that all these crystals fail under the volumetric instability [62]. This means
that the values of the stress related to the point of inflection really correspond
to σiht. The associated relative change of volume is about 1.5, which means
that the relative elongation of the lattice parameter is about 1.15. In the case
of aluminium crystal, however, the ab initio approach indicated a break in
the trigonal shear stability before reaching the inflection point. Because this
is in disagreement with results achieved by several other authors [80,94], the
problem of the aluminium crystal is open for further investigations. For a
majority of crystals, nevertheless, the values of σiht are higher than τis and
σiut. Indeed, the values of τis are generally much lower since, to reach this
value, the atoms in the shear plane need not be separated by higher distances.
During uniaxial tension, the shear instabilities appear well before reaching
σiut at the inflection point (see next subsections).
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It is to be expected that the values of σihc could even be much higher
than those of σiht. This was confirmed by a stability analysis of Ni, Cr and
Fe crystals [58]. No instability was found in the compressive region up to 50%
of unstressed volume V0 in the cases of Ni and Cr which means that the values
of σihc must be, at least, several hundred GPa. The stress corresponding to
the break of the third stability condition in Fe is 200GPa. This is in agree-
ment with previously predicted instability of bcc iron under pressure [110],
at which the tetragonal meta-stable phase develops. As has been experimen-
tally observed, however, that the bcc → hcp phase transition already starts
at pressures of about 10–15GPa [111]. This implies that this kind of insta-
bility cannot be revealed by mechanical stability analysis and, therefore, an
identification of phonon instability ranges might be more helpful. However,
we are not aware of any studies of this kind.

1.1.3.2 Ideal Tensile Strength

When a uniaxial tensile stress is applied to any cubic crystal, its symmetry
becomes reduced. In the case of [001] loading, the crystal acquires a tetragonal
symmetry with 16 symmetry operations. A model of two adjacent elementary
fcc cells subjected to [001] loading is displayed in Figure 1.7.

P1

[100]

[010]

[001]

P2

P3

Figure 1.7 Illustration of fcc lattice extended in [001] direction with examples of
one tear plane (P2) and two possible shear (P1 and P3) planes

Experiments on whiskers [1,33] suggested that, under such particular load-
ing, the lattice usually fails by the shear in the {111} plane (P3 in Figure 1.7)
in fcc systems or in the {110} plane (P1 in Figure 1.7) in bcc systems rather
than by the tear along the {001} plane (P2 in Figure 1.7) – see also Section
1.1.4.3. The latter fracture process was assumed not only in the very first
calculations of tensile strength [1] but even in a majority of later studies
(e.g., [39, 41, 74, 112]). The elastic matrix of the tetragonal system contains
six independent components:
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C =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

⎞
⎟⎟⎟⎟⎟⎟⎠

and the corresponding stability analysis is presented in [68, 78, 113], partic-
ularly in Section 1.1.2. For example, the copper crystal was found to fail in
shear at the tensile stress of 9.4GPa, well before the volumetric instability
at 24.3GPa. This result is in good agreement with the calculations of Mil-
stein and Chantasiriwan [78]. Unfortunately, practically all the previously
calculated σiut values of different crystals are related to the volumetric insta-
bility (see Table 1.2) and, therefore, they substantially exceed the real ones.
Moreover, the older studies did not include the atomic relaxation procedures
enabling the transverse Poisson’s contraction. Nevertheless, a mutual com-
parison of those values can serve as an orientation ordering of various crystals
according to their uniaxial IS.

As can be seen in Table 1.2, there is a three-order of magnitude differ-
ence between the strongest and the weakest crystal. As expected, the highest
IS value belongs to the diamond crystal with pure covalent bonds and the
lowest values to the Van der Waals crystals of inert gases that are stable
only in the low temperature range. High values of σiut of metals as W, Mo
and Fe or intermetallics such as Ni3Al and AlN are also understandable due
to a high portion of covalent interatomic bonds in these crystals. It should
be emphasized that this ranking of σiut is, more or less, compatible with
that of ultimate strength σu for real crystals and engineering materials. This
means that the intrinsic (matrix) strength properties predetermine the ulti-
mate strength of the engineering materials in a rather significant manner.

1.1.3.3 Ideal Shear Strength

Unlike tensile and compressive deformation modes, the pure shear deforma-
tion process does not require any elastic stability assessments because it is
expected to maintain, more or less, the original shear path. On the other
hand, the symmetry of the crystal lattice is almost disturbed by the shear
shifts and, therefore, the calculation procedures become rather cumbersome.
Moreover, the full relaxation of atomic positions near the shear plane, allow-
ing them to follow configurations of lowest total crystal energies along the
whole shear trajectory, are essential for obtaining sufficiently precise values
of τis [49, 99, 103].

A great majority of analyses published before the year 2000 did not utilize
the relaxation procedure. From all these results let us mention only a rather
general study made on fcc, bcc, diamond, B1 and B2 structures. In this
study, the block-like shear was simulated by using both central and non-
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Figure 1.8 Shear potentials in the slip system (a) {111}〈110〉, (b) {111}〈112〉, non-
central forces. U0 is energy at the equilibrium (unstressed) position in utilized semi-
empirical potentials

central empirical potentials [31]. Shapes of the potential energy along shear
trajectories in fcc crystallographic systems 〈1̄10〉{111} and 〈2̄11〉{111}, as
computed using non-central potentials, are displayed in Figure 1.8. It can be
seen that, in spite of the shallow local minimum created by the large non-
central component (three-body), the total energy shape in Figure 1.8(a) is
of a sinusoidal type, as originally presumed by Frenkel. Another investigated
shear system in Figure 1.8(b) exhibits a secondary energy minimum that is
related to the stable stacking fault. These results are in contradiction to the
already mentioned Mackenzie theory that assumes an existence of a shallow
minimum on the total energy curve in the range s/d ∈ (1, 2). This is one
of the main reasons why the calculated values of τis approach those already
reported by Frenkel (see Table 1.3).

Table 1.3 Ideal strength in simple shear direction (a is the lattice parameter)

Lattice Direction Plane d/a b/a τid/G

bcc 〈111〉 {110} √
3/2 1/

√
2 0.1949

fcc 〈110〉 {111} 1/
√
2 1/

√
3 0.1949

fcc 〈112〉 {111} 1/
√
6 1/

√
3 0.1025

B1 〈110〉 {110} 1/
√
2 1/

√
8 0.3183

B2 〈001〉 {110} 1 1/
√
2 0.2251

diam 〈110〉 {111} 1/
√
2

√
3/4 0.2599

In most ab initio studies, a uniform shear of a perfect crystal was simu-
lated, as is schematically depicted in Figure 1.3. Moreover, the first principles
codes enable minimization of all stress tensor components, except for the re-
solved shear stress, to approximately zero values by appropriate shifting of
atoms not only in the direction perpendicular to the shear plane, but also
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within this plane (so-called in-plane relaxation). This can be done by using
the procedure based on the Hellman–Feynman forces, which is part of some
ab initio program codes (VASP, Abinit). Consequently, the resulting (op-
timal) shear trajectory is usually slightly different from that prescribed by
crystallography.

1.1.3.4 Comparison of Theoretical and Experimental Results

Because of the long history of IS calculations, a number of theoretical re-
sults concerning crystals of pure elements and compounds are available in
the literature. On the other hand, the experimental data are rather limited
which is related to problems associated with both specimen preparation and
experimental arrangement. It is particularly difficult to measure the values
of σiht and τis, although, for measuring the latter, nanoindentation appears
as a good tool today (see Section 1.3).

Theoretical and experimental values of σiht, σiut and τis for various crys-
tals are presented in Table 1.2. The lowest values of σiut for a particular
crystal have always been found in calculations with full relaxations that also
take the mechanical stability conditions into account. It can be seen that
theoretical and experimental values can differ substantially according to the
applied computational or experimental procedure. Nevertheless, the ab initio
methods can be considered as the most reliable ones. It should be empha-
sized that a majority of σiut values correspond to the inflection point of the
energy vs strain curve when omitting the stability analysis. Hence, most of
such calculated values are substantially overestimated.

Rather rare experiments provided τis values of about 2–3 times lower than
those calculated by means of the ab initio methods. Older experimental data
on τis were obtained by recalculating the results of uniaxial tensile testing
of whiskers by omitting the influence of the normal stress component (see
Section 1.1.4 for more details). When taking this influence into account, the
maximum resolved shear stresses at fracture are still substantially lower than
the theoretical ones, but already of the same order of magnitude. Note that
the most sophisticated methods based on nanoindentation tests render data
almost in accordance with the recent theory (see Section 1.3 for more details).
This is a very encouraging message showing that, at least in the case of τis,
the advanced theoretical and experimental methods start to agree.

In the case of metals, a majority of experimental σiut data obtained on per-
fect large single crystals or whiskers are of an order of magnitude lower than
those calculated even by means of ab initio methods considering the mechani-
cal or phonon shear instabilities. This might be due to the dislocation-assisted
shear instability controlling the final failure process. On the other hand, a
very high Peierls–Nabarro stress in covalent and complex ionic ceramic crys-
tals resists the nucleation and motion of dislocations. Indeed, for such crystals
the difference between theory and experiment is relatively small. Probably the
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highest ever reported experimental value σiut = 40GPa (≈ E/20) is for the
ZnO whiskers [33]. However, experiments performed on tungsten whiskers by
Mikhailovskii et al. [114] also approach the calculated results. Anyway, the
discrepancy between theory and experiment for metallic crystals becomes
much smaller when the mechanical and phonon stability conditions are taken
into account (e.g., for Cu [68] and Al [101] crystals), though it still remains
significant. It should be noted that the stability conditions imply that the
loading mechanism should be able to maintain the Cauchy stress and the
crystal symmetry along the whole deformation path. It particularly means
that the shear instability 〈2̄11〉{111} in the case of [001] tension of the fcc
crystal is not controlled by the stability conditions, although it is a usu-
ally observed failure mode in experiments. Indeed, this instability requires a
finite shear in the {111} plane changing the symmetry to triclinic or mono-
clinic. Additionally, a possible resonance of short-wavelength phonons should
be considered. Such effects are clearly beyond the description supplied by
the mechanical stability conditions that are based only on continuum me-
chanics. Nevertheless, the difference between theory and experiment can be
understood particularly in terms of various imperfections of experimental
procedure and the crystal defects.

Anyway, a lot of work is needed in both theoretical and experimental
investigations of IS. Let us finally note that the ultimate strength of currently
used ultra-high-strength steels still exhibits only a rather small fraction of the
IS of the iron crystal. From the theoretical point of view, however, materials
of an extreme dislocation density could, in principle, achieve more than half
of the strength level of σiut [20]. This also holds for amorphous solids.

1.1.4 Multiaxial Loading

Although there is no doubt that crystals and whiskers used in industrial
exploitation are usually subjected to multiaxial loading, little attention has
been paid to the coupling of various stress tensor components. Another ex-
ample of the practical importance is associated with reinforcing fibres used
in engineering composite materials. Due to the matrix/reinforcement incom-
patibility strains, the single crystal fibres (or whiskers) are subjected to mul-
tiaxial loading even in the case of remote uniaxial tension of the composite.
Consequently, ab initio modelling of the uniaxial tension of perfect crystals
under superimposed tensile or compressive biaxial stresses is expected to be a
reasonable theoretical simulation of the stress-strain behaviour of composite
fibres (see Section 1.1.5). Several studies were also focused on the influence
of superimposed hydrostatic or normal stress on the shear IS [103, 115, 116].
The results reveal, as a rule, an increase in the shear strength with increasing
compressive normal stress. Such analyses allow us, for example, to predict the
very onset of plastic deformation under the nanoindenter (see Section 1.3).
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1.1.4.1 Coupling of Uniaxial and Transverse Biaxial Stresses

In order to describe the influence of superimposed transversal biaxial stress on
the tensile IS of metallic fibres in composites, bulk systems of several metallic
and covalent ideal crystals subjected to multiaxial loading were studied in
[117]. The calculation procedure based on the VASP code was applied to ten
cubic crystals (V, Fe, Ni, Cu, Nb, Mo, W, Ir, Pt and Au) and three crystals
of a diamond structure (C, Si and Ge). All studied crystalline systems were
subjected to the uniaxial tensile stress σuni along [100] direction combined
with the transverse biaxial stress σbi in the (100) plane (see Figure 1.9). A
relaxation procedure based on the Hellman–Feynman forces in (100) plane
was applied in order to get the stress tensor in a simple form as

σ̂ =

⎛
⎝σuni 0 0

0 σbi 0
0 0 σbi

⎞
⎠ .

The relaxation process consisted of the following steps:

1. The crystal was subjected to σbi of a certain preset value.
2. The crystal was incrementally elongated in the [100] direction and the

value of σbi was converged to the same preset value for any elongation.
3. The stress maximum σmax and the related strain εmax were found by a

cubic spline interpolation of computed σuni values. If no other instability
precedes, the σmax value can be considered to be the theoretical tensile
strength σiut under corresponding superimposed biaxial stress.

4. The relaxation procedure was repeated for several preset σbi values.

�bi

[100]
[010]

[001]

�bi

�bi

�uni

Figure 1.9 Illustration of a triaxial stress state that comprises a tensile stress in
[001] direction σuni and superimposed transverse biaxial stresses σbi

The tensile strength of a majority of crystals increases almost linearly with
the applied biaxial stresses (see Figure 1.10). The linear dependencies can be
parametrized as
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Figure 1.10 Dependence of the theoretical tensile strength σmax on perpendicularly
acting biaxial stresses σbi for W, Mo, Nb and V

σmax = σmax,0 + kmaxσbi, (1.19)

where kmax is the slope expressing the influence of the superimposed biaxial
stress σbi. The parameters kmax are collected in Table 1.4. Values of the slope
kmax seem to be higher for bcc crystals than for fcc ones.

Table 1.4 Slope of the linear regression lines k =
dσmax

dσbi
, maximum stress σmax,0

(GPa) and the ultimate strain εmax,0 under pure uniaxial loading along with available
literature data on σiut and computed values of theoretical isotropic strength σiht

(GPa)

σmax,0 kmax εmax,0 σiut σiht

C 225 −1.08 0.37 225 88.5
Si 26.3 0.26 15.5
Ge 16.8 0.23 11.1
V 19.8 0.688 0.22 32.7
Fe 12.4 0.634 0.16 14.2 27.7
Ni 35.2 0.37 39.0 28.9
Cu 24.1 0.36 23.7 19.8
Nb 19.0 0.662 0.11 18.8 31.6
Mo 28.3 0.737 0.12 28.8 42.9
W 28.9 0.739 0.16 28.9 50.7
Ir 44.5 0.281 0.25 40.1
Pt 34.1 0.152 0.34 39.6
Au 18.6 0.163 0.33 22.5 23.2
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A highly interesting exception of the studied elements is carbon with a
diamond structure in which tensile strength decreases with increasing σbi.
Thus, it exhibits a negative value of the slope kmax = −1.08. An anomalous
behaviour was also revealed in crystals of Si and Ge with a diamond structure
and, to a certain extent, also in crystals of Ni and Cu. Both tensile and
compressive applied biaxial stresses substantially reduce the σiut-values of Si
and Ge (and less so those of Ni and Cu). Consequently, the σmax vs σbi curves
for Si and Ge exhibit sharp maxima near the zero applied σbi (see Figure 1.11)
whereas the maximum of the diamond crystal is shifted by about 120GPa
towards the compressive region. This shift is a reason for the negative value
of the slope kmax of the diamond crystal in the region around the zero value
of σbi.

Figure 1.11 Normalized values of the theoretical tensile strength σmax/σmax,0 as
functions of superimposed biaxial stress σbi for Si and Ge

One of practical consequences of the above-mentioned results is that the
reinforcing fibres, subjected to tensile transverse stresses induced by incom-
patibility strains, can exhibit higher strength than those tested under uniaxial
tension. In this way, a synergy effect can appear in composites (see Section
1.1.5).

Results concerning the dependence of the ultimate strain εu at the in-
flection point on the applied biaxial transverse stress were also obtained in
the frame of the ab initio study. This dependence is depicted in Figure 1.12
for selected crystals. In general, the ultimate strain of fcc metals decreases
with increasing biaxial stress (see the curves for Cu, Ni and Pt) whereas
the opposite trend refers to bcc metals (Fe, Mo and V). The curves for dia-
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mond structures C, Ge and Si exhibit maxima near the zero biaxial stress.
The average ductility of fcc metals is higher than that of bcc crystals but,
rather surprisingly, it is comparable to that of diamond crystals. This result
shows that the behaviour of perfect crystals in terms of the ultimate strain is
qualitatively different from that of engineering materials. In the latter case,
indeed, the increasing biaxial stress always leads to a decrease of the ductility.
This effect can be attributed to a plasticity driven growth and coalescence
of microvoids that initiate at secondary phase particles (see Section 2.3).
Thus, the lattice imperfections play a decisive role in the ductility response
of engineering materials.

Figure 1.12 The ultimate uniaxial strain as a function of the applied transverse
biaxial stress for selected perfect crystals

1.1.4.2 Coupling of Normal and Shear Stresses

Another important example of stress coupling is the influence of the stress
component acting perpendicularly to slip planes during simple shear, as dis-
played in Figure 1.13 for a particular case of 〈2̄11〉{111} shear in fcc lattice.
Results of such analyses are presented in [59, 103, 106, 115, 116] for selected
metallic, intermetallic and ceramic crystals. It should be noted that the relax-
ation procedure used in [116] comprised just a relaxation of atomic positions
in the direction perpendicular to the slip planes but did not include the relax-
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Figure 1.13 A crystal under superposition of shear and normal stresses

ation of ionic positions within the planes (in-plane relaxation). On the other
hand, the in-plane relaxation was added to procedures used in [59, 103, 115].

Figure 1.14 Influence of normal stress σn on the shear strength τis in Ir with and
without in-plane relaxation

An example of results obtained for the crystal of iridium is shown in Fig-
ure 1.14. In general, the compressive normal force can substantially increase
the shear strength. In the region of compressive normal stresses, the coupling
effect can also be expressed by the linear function

τis = τis,0 − bσn (1.20)

in a formal analogy to the well known relation between the friction and the
normal force exerted on sliding surfaces. In the region of tensile stresses, the
coupling effect, at least for some crystals, changes to a parabolic shape (see
Figure 1.14). This is in agreement with studies performed by Kelly et al. by
means of empirical potentials [23].
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In a more recent paper [118] six fcc crystals were subjected to homoge-
neous shear deformations in the {111} slip system in two distinct ways. In
the first approach (from now on called the rigid-planes approach), the shear
planes were kept undistorted during the whole shear process. Only the in-
terplanar distance was allowed to change in order to set the normal stress
to a prescribed value. This approach was consistent with previous calcula-
tions [23, 116]. However, the computed Hellman–Feynman stress tensor was
used here instead of total energy calculations. The other approach (relaxed-
planes) utilized a full relaxation of the stress tensor (including possible in-
plane stresses). The details of the related computational procedure can be
found in [59]. In both approaches, the main attention was paid to the ten-
sile region of normal stresses. The homogeneous shear was simulated using a
one-atom simulation cell.

[112]

B

A

Figure 1.15 Two adjacent {111} A (open circles) and B (solid circles) planes in fcc
crystals for illustration of the 〈112〉{111} shear system

The shear system studied is illustrated in Figure 1.15. For the sake of
clarity, only two adjacent planes are displayed. When the upper plane A
moves to the right, its atoms must overcome a high-energy barrier related
to over-passing the atoms in the B plane. The final position of the selected
atom in plane A is marked by the dashed circle. The corresponding structure
has fcc symmetry of an opposite stacking order (with respect to the original
state). The same state can be reached by moving the A plane to the left.
In this case, the corresponding energy barriers as well as the related stresses
are substantially lower. Although the plane shift cannot then continue the
same path (because of the consequent higher energy barrier), the instant of
approaching the shear strength is the first onset of instability. For the calcu-
lations of Hellman–Feynman stress tensor the Vienna Ab initio Simulation
Package (VASP) was utilized. In the case of Ni, the projector augmented-
wave potential was used along with the spin-polarized calculations taking
the ferromagnetic ordering into account. The exchange-correlation energy
was evaluated using either the local density approximation (Pt, Au) or the
generalized-gradient approximation (Al, Ni, Cu, Ir). The functions τis(σn)
were found to be almost linearly decreasing and could also be expressed by
Equation 1.20. The regression parameters are collected in Table 1.5. When
comparing the computed data with the previously published results [116] one
can see good agreement in τis,0 values while more significant differences can
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be found in b values. They are probably caused not only by a different as-
sessment but also by a differently selected range of interpolated data with
respect to normal stresses. Nevertheless, all the b values match the previous
results within 15%.

Table 1.5 Regression parameters for {111} shear strength in both the rigid-planes
and the relaxed-planes approaches

Element Rigid-planes Relaxed-planes
τis,0 b τis,0 b τis,0a

(GPa) (GPa) (GPa)
Al 3.12 0.238 3.07 0.319 2.84
Ni 5.64 0.139 5.05 0.123 5.05
Cu 3.01 0.117 2.43 0.080 2.16
Ir 17.1 0.223 17.3 0.249
Pt 2.75 0.138 2.05 0.177
Au 1.66 0.152 1.05 0.171 0.85
a [99]

Figure 1.16 Theoretical shear strength as a function of normal stress in the relaxed-
planes approach. Dashed lines represent linear regressions of the displayed data points

The results of relaxed-planes calculations are displayed in Figure 1.16.
Again, the τis(σn) curves can be approximated by linear functions up to
σn = 20GPa. The regression parameters are also included in Table 1.5. By
comparing both approaches one can see that the full relaxation of stresses
lowers the shear strength of all investigated crystals except for iridium.
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Crystals of metals and diamond exhibit a nearly linear decrease in the ideal
shear strength with increasing superimposed isotropic (hydrostatic) stress
σh [55,119]. This behaviour seems to be closely related to the fact that, dur-
ing a pure shear (σh = 0), the lattice volume of these crystals increases, thus
minimizing the crystal energy. An application of the tensile isotropic stress
works, therefore, as a shear driving force leading to a reduction of the ideal
shear strength. On the other hand, the lattice volume of covalent crystals Si,
Ge and SiC decreases during the pure shear so that the dependence τis(σh)
exhibits an opposite trend [106]. This reasoning can be, to a large extent,
also applied to the τis(σn) dependence. However, the ideal shear strength
of Cu and Ni crystals is lowered by both tensile and compressive normal
stresses [55,119]. This anomalous behaviour can be understood from the crys-
tal relaxation during the shearing process. Under the pure shear deformation,
these crystals prefer to extend the shear planes perpendicularly to the shear
direction rather than increase their interplanar distance. Consequently, an
application of additional compressive normal stresses contributes to further
lateral extension that makes the shear easier [55, 59, 120].

1.1.4.3 Calculation of Tensile Strength from Shear Strength Data

The application of mechanical-stability criteria to the prediction of ideal ten-
sile strength is computationally very time-consuming. These criteria can be
interpreted approximately by assuming that a rupture of perfect crystals
under uniaxial tension starts when reaching the shear strength in some con-
venient shear system [102]. An illustration of such a shear system in a crystal
sample is given in Figure 1.17.

Figure 1.17 Illustration of a shear system in a crystal sample under tensile stress.
The angles φ and λ are measured between the crystal axis and the normal n of the
slip plane and the slip direction d, respectively. Reprinted with permission from
Institute of Physics and IOP Publishing Ltd. (see page 265)

When the crystal is subjected to tensile stress, certain slip systems can be
exposed to a combination of shear and tensile (normal to the shear plane)
stresses. The displayed vectors n and d determine the vertical to the shear
plane and the shear direction, respectively. The normal stress σn can be
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σn = σ cosφ. (1.21)

Assuming that some shear instability can precede the volumetric instabil-
ity, the ideal tensile strength σiut can be estimated from the corresponding
theoretical shear strength τis using the relationship

σiut,s =
τis

cosφ cosλ
. (1.22)

The relation is similar to the well known Schmid’s law

τc = σy cosφ cosλ (1.23)

that expresses the relationship between the critical resolved shear stress τc
required to move dislocations across the slip plane and the yield stress σy in
a crystal with dislocations. However, Equation 1.22 holds only for a perfect
single crystal. Another significant difference between Equations 1.22 and 1.23
lies in the influence of the normal stress on the critical shear stress. Whilst, in
Schmid’s law, the critical shear stress does not depend on the normal stress
σn (at least in fcc crystals), the significant influence of σn on the ideal shear
strength has already been clearly demonstrated. The latter result can be used
for a simple estimate of σiut for fcc crystals Al, Ni, Cu, Ir, Pt and Au.

In order to estimate the theoretical tensile strength σiut, Equations 1.20,
1.21 and 1.22 can be combined into the final form

σiut,s =
τis,0

cosφ(cosλ+ b cosφ)
(1.24)

when assuming σ = σiut,s in Equation 1.21. Equation 1.24 can easily be used
for an estimation of the ideal tensile strength from the ideal shear strength
τis,0.

The σiut,s values obtained for uniaxial tension in [110], [111̄] and [100]
directions are listed in Tables 1.6 and 1.7. Uniaxial tension was applied to
the crystal in the most favourable representative of the family of symmetry-
equivalent directions 〈110〉, 〈111〉 and 〈100〉. The σiut values, that were col-
lected from available literature, represent the corresponding values of the
volumetric-instability stress (at the inflection point). It can be seen that the
predicted σiut,s values for [100] and [111̄] directions are substantially lower
than the corresponding σiut values for all studied fcc crystals with the ex-
ception of Ir. On the other hand, the σiut values in [110] direction are so
low that the predicted σiut,s values are of a comparable magnitude. In the
case of [100] direction, the predicted σiut,s values for Cu, Ni and Al can be
well compared with ideal strength σ∗

iut corresponding to the first onset of
the mechanical instability as predicted in [78,98] or the phonon instability as
reported in [101].

expressed by means of the tensile stress σ and the angle φ as
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Table 1.6 The estimated theoretical tensile strengths σiut,s in 〈110〉 and 〈111〉
directions (in GPa) along with the available literature data for σiut (volumetric in-
stability)

〈110〉 loading 〈111〉 loading

Element σrigid
iut,s σrelaxed

iut,s σiut σrigid
iut,s σrelaxed

iut,s σiut

[GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

Al 5.0 4.5 4.2a 9.2 8.8 14.8a

Ni 10.0 9.1 11.7a 17.1 15.4 39.3a

Cu 5.5 4.6 5.5a 9.2 7.5 26.5a

Ir 27.6 27.1 26.5b 50.4 50.6 43.5b

Pt 4.9 3.5 8.3 6.1 30.0b

Au 2.9 1.8 2.8a 5.0 3.2 13.6a

a [78]
b [102]

Table 1.7 The estimated theoretical tensile strengths σiut,s in 〈100〉 direction along
with the available literature data for the ideal strength σiut (volumetric-instability)
and the ideal strength σ∗

iut corresponding to the first onset of the shear instability

Element σrigid
iut,s σrelaxed

iut,s σ∗
iut σiut

[GPa] [GPa] [GPa] [GPa]

Al 9.9 9.0 11.1a 12.6a

Ni 20.0 18.3 21.3a 39.0a 35.2b

Cu 11.0 9.3 9.8a 23.7a 24.1b

Ir 55.2 54.3 44.5b

Pt 9.8 7.0 34.1b

Au 5.8 3.6 10.0a 22.5a 18.6b

a [78]
b [98]

A good agreement of results predicted from shear strength data with those
obtained by including the stability analysis also seems to be promising for an
application of the proposed method to crystals other than fcc.

1.1.5 Nanocomposites

Composites represent a widely used successful way to improve mechanical
characteristics of materials, in particular their elastic moduli, strength and
fracture toughness. Resulting properties in real engineering macro-composites
are functions of many parameters depending on the particular design and
production technology. However, the situation is not so complicated for all
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mechanical characteristics. For example, the Young’s modulus of long-fibre
composites in the direction of the fibre can be sufficiently precisely assessed
according to the following simple relationship:

E = ηVfEf + (1− Vf )Em, (1.25)

where Ef and Em are Young’s moduli of the fibre and the matrix, respec-
tively, Vf is the volume fraction of fibres and η is the factor depending on the
strength of cohesion of the fibre/matrix interface [121]. Obviously η = 0 when
there is no cohesion at all, while η = 1 corresponds to the ideal binding be-
tween atoms of matrix and fibres. The value η ≈ 0.8 is fulfilled for a majority
of real composites of a standard quality. Similar simple linear relationships
are also often used for other moduli as well as for the strength of composites.

Values of the equilibrium volume, elastic moduli and σiut of ideal nanocom-
posites were computed in [122–124] for different thicknesses of nanofibres from
a single atom to several atomic distances. The fibres were made of W or Mo,
whereas the matrix consisted of V or Nb atoms. In these first principles stud-
ies, the uniaxial tensile loading was applied parallel to the nanofibres. The
main aim was to verify the validity of Equation 1.25 for elastic moduli and
σiut in the ideal case of η = 1.

1.1.5.1 Calculation Method

A model of the nanocomposite was built up as a periodic repeating of 4 ×
4 × 1 bcc-based super-cell which is displayed in Figure 1.18 for the Nb–
W composite. The crystal super-cell contained 32 atoms in both A (solid
circles) and B (open circles) (001) planes. The grey solid circles in Figure 1.18
belong to other (adjacent) super-cells. The dashed contours define interfaces
between the wires (W) and the matrix (Nb) in investigated lamina models
of different concentrations (percentages) of wire atoms. In order to get a few
more different concentrations, the systems Nb (wires) and W (matrices) were
also studied. In this way, additional wire concentrations of 59.4%, 71.9% and
84.4% could be obtained.

The calculation procedure consisted of several steps. The first step was a
computation of the total energy Etot per atom as a function of the atomic
volume V. Atomic positions within the cell had to be relaxed in order to
minimize the interfacial stresses. The equilibrium volume per atom V0 of
each lamina model was obtained from the energy minimum and the lamina
bulk modulus B could be determined according to Equation 1.18 (U = Etot).
Then the crystal system was elongated in the [001] direction to simulate
uniaxial loading applied in the direction parallel to the lamina fibres. The
system energy was minimized at any elongation by a full relaxation procedure
regarding the atomic positions within the super-cell. The dependence of the
total energy obtained on the relative elongation ε allowed authors to compute
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Figure 1.18 A sample of: (a) the nanocomposite, and (b) the super-cell

the values of the uniaxial stress σ applied to the system as well as the Young’s
modulus E001 value:

σ =
1

V

dEtot
dε

and

E001 =
1

V0

d2Etot

dε2
. (1.26)

If no other instability precedes, the uniaxial stress reaches its maximum at
the point of inflection of the Etot function and the related stress σiut can be
considered to be the IS of the nanocomposite under the conditions of uniaxial
loading.

For electronic structure calculations the VASP code was utilized. The cut-
off energy for the basis set was 290 eV and the exchange-correlation energy
was evaluated using the generalized-gradient approximation of Perdew and
Wang with Vosko, Wilk and Nusair interpolation [125]. The 3 × 3 × 12 k-
points mesh was used in all calculations. The solution was considered to be
self-consistent when the energy difference of two consecutive iterations was
smaller than 0.1meV. Atomic positions within the super-cell were relaxed
using the Hellman–Feynman stress tensor.

1.1.5.2 Computed Data for Composite Constituents

Although it could have been possible to compute the data for pure tungsten,
vanadium and niobium using a primitive cell, the super-cell with all atomic
positions occupied by the same kind of atoms was used in the calculations.
This allowed us to check the results for the composites in a more reliable way.
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Computed values of the equilibrium lattice parameter a0, the bulk modulus
B, the shear modulus G, the Young’s modulus E001 and the Poisson’s ratio
ν for pure W, Nb, Mo and V are listed in Table 1.8 along with experimental
data. The experimental values of a0 and B were taken from [126]. Values of
E001 and ν were computed from experimentally determined elastic moduli
[82, 127] using Equations 1.8 and

ν =
C12

C11 + C12
.

Table 1.8 Ground-state properties of Nb, W, Mo and V along with their ideal
uniaxial strengths

Element a0 B E001 ν σiut

[Å] [GPa] [GPa] [GPa]

Nb calc. 3.32 177 127 0.38 19.2a 18.8b

exp. 3.30 170 152 0.35
W calc. 3.18 318 389 0.29 28.8a 28.9c

exp. 3.16 323 417 0.28
V calc. 2.98 188 199 0.32 19.9a

exp. 3.03 162 151 0.34
Mo calc. 3.15 268 412 0.24 28.3a 28.8b

exp. 3.15 272 394 0.26

a [122]
b [49]
c [41]

The agreement between computed and experimental values of a0 is ex-
cellent (within 1%). In spite of a most noticeable exception of the Young’s
modulus for Nb (underestimated by 16%), the agreement is very good also
in the case of elastic moduli and the Poisson’s ratio (mostly within 5%).

Computed values of the uniaxial stress σiut at the point of inflection on
the Etot(V ) curve for pure Nb, W, V and Mo are listed in Table 1.8 along
with available literature data. The mutual agreement of values from different
sources is very good.

1.1.5.3 Solutions for Composites

As an example, the dependence of the average atomic volume V0 on the
atomic concentration of W (nearly corresponding to the volume fraction Vf
of tungsten fibres) in the niobium matrix is depicted in Figure 1.19 by solid
squares. The dotted line interpolates between experimental values for pure
Nb and W. As can be expected, the atomic volume linearly decreases with W
concentration. Similar dependencies also hold for other studied composites.
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Figure 1.19 Equilibrium atomic volume as a function of W concentration

Figure 1.20 The composite bulk modulus as a function of the atomic concentration
of tungsten fibres

The dependence of the composite bulk modulus B on the atomic con-
centration of W is depicted in Figure 1.20. Values obtained by means of
Equation 1.26 are displayed by open circles. The triangles show values of B
calculated from the Equation 1.27 (valid for an isotropic material)

Bisot =
E001

3(1− 2ν)
(1.27)

by using E001 values computed according to Equation 1.26. Both of them
seem to follow Equation 1.25, where the bulk moduli are used instead of
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E001. The dotted line in Figure 1.20 follows Equation 1.25 for experimental
values Bf = 323GPa and Bm = 170GPa.

Values of the Young’s modulus E001 of all investigated composites were also
found to follow the linear mixture rule in a satisfactory manner. Consequently,
all atomistic results confirm that deviations from Equation 1.25 observed for
real composites are caused by their imperfections, in particular by a reduced
interface cohesion.

While the computed quantities such as the equilibrium volume or elas-
tic moduli obey the simple linear mixture rule, the IS of a pure reinforcing
materials W and Mo can already be reached (or even exceeded) well below
the 100% concentration of the fibres in the composite. Indeed, Figure 1.21
displays the σip values as functions of the reinforcement concentration for all
the investigated composites. The curves exhibit a simple linear dependence
on the atomic concentration of fibre atoms up to about 60–80%. Above this
concentration range they seem to reach a saturated value.

Figure 1.21 Theoretical tensile strength as a function of atomic concentration of
reinforcing fibres for three composites. The fibres are made of W or Mo, whereas the
matrix consists of V or Nb atoms

A possible explanation of this synergy effect can be the lattice mismatch
owing to different Poisson’s contractions of individual composite constituents.
As a consequence, the fibres can be under transverse tensile or compressive
stresses which can influence the uniaxial tensile strength of the whole com-
posite (see Section 1.1.4). It was found that, in the case of cubic metals,
the tensile strength increases under conditions of superimposed tensile trans-
verse stresses. Therefore, a simple model has been developed to verify the
above-mentioned explanation of the synergy effect in nanocomposites [128].
The model compares the data obtained for V–W nanocomposites with those
achieved by modelling a deformation behaviour of two independent ideal
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crystals of pure W and V. In order to include the stress coupling effect, the
individual crystals were loaded in a triaxial mode that simulated the stress
state experienced by the fibre or the matrix in the composite. It was found
that, during the deformation, the vanadium matrix was subjected to trans-
verse (internal) tensile biaxial stress whereas the tungsten fibres experienced
compressive stresses. By including these stresses into the simple proportional
rule written in terms of stresses acting on the nanocomposite, the σiut values
shift above the linear function interpolating strengths of W and V (the cor-
responding dotted line in Figure 1.21). However, such a shift does not fully
reproduce the computed σiut values of the composite which means that ei-
ther the predicted synergy effect is not only caused by the internal transverse
stresses or the applied model is not sufficiently precise. Let us finally mention
that the procedure simulating the deformation of the nanocomposite can also
be improved by including a relaxation of all atomic positions within the bulk.
These issues should be a matter of further analyses.

1.1.6 Influence of Crystal Defects and Temperature

All preceding results concerning the IS were obtained assuming a perfect
crystal and an extremely low temperature (T → 0). In real perfect crystals
(whiskers), however, the presence of some imperfections is to be expected.
At least, an equilibrium concentration of vacancies as well as a certain level
of surface roughness are inevitable. Thus, it is worthwhile to assess possible
effects of lattice defects, surface roughness and temperature on IS. For prin-
cipal reasons, however, the strength of imperfect crystals cannot be identified
as IS any more. Therefore, the term “strength” will simply be used instead
of IS hereafter.

In general, the presence of lattice defects decreases the strength value. The
only exception to this rule might be some special impurity dopants and al-
loying atoms. Since no grain (or subgrain) boundaries and secondary phase
particles are expected in perfect single crystals, only point defects, disloca-
tions, stacking faults, twins, free surfaces, cracks and phonons (temperature)
are mentioned in the following brief summary.

1.1.6.1 Crystal Defects

Vacancies are inevitable in real crystals just near the zero Kelvin temperature.
However, the effect of monovacancies on strength is negligible which simply
follows from Equations 1.2 for σiut. Indeed, this classical formula for the
tensile IS is equal to the Griffith criterion for a nanocrack of an atomic size –
a vacancy. Larger clusters of vacancies (microcracks) may probably exist only



1.1 Ideal Strength of Solids 53

at temperatures near the melting point that are far beyond the temperature
range relevant for strength studies.

The effect of impurities and alloying atoms was studied in several works
based on ab initio methods. Although Goodwin et al. [129] found that Ge and
As impurities in aluminium raise the cohesive energy by up to 8%, no clear
conclusions concerning the change in strength were made. Huang et al. [130]
reported no effect on the σiut value of silicon in the case of p-type doping,
unlike the 6% decrease in the case of very high levels of n-dopants. Both works
used the pseudopotential approach combined with molecular dynamics. Song
et al. [100] used the DVM method to realize that the 7% alloying of V,
Cr, Fe and Mo slightly improves the value of σiht, unlike the 4% alloying
that caused a slight decrease in σiht. Many authors (e.g., [131]) theoretically
expect a slight decrease in τis owing to the impurity content. In summary,
the influence of a low concentration of point defects on the strength seems to
be very small.

Dislocation slip appears when shear stress in the slip plane parallel to
the slip direction reaches the Peierls–Nabarro level. Since this level in metals
is relatively very low, the strength might be dramatically reduced (by four
orders of magnitude or even more). On the other hand, the P-N stress is ex-
tremely high in ceramic covalent crystals (C, Si, SiC, ZnS, Si3N4) as well as
in complex ionic crystals (MgAl2O4, Al2O3, Al2O3.MgO). The dislocations
are practically sessile at near zero temperatures and, therefore, the tensile
strength might be reduced only by tens of percents owing to microcracks ini-
tiated by the stress relaxation around dislocations with long Burgers vectors.

As far as we know, no special studies regarding the effect of stacking faults
(SF) on strength have been performed. Atoms on the stable SF plane lie in
the local energy minimum and no stress is induced in the surrounding volume.
The energy of the SF per atom is about two orders of magnitude lower than
that of the free surface. We may, therefore, deduce that the influence of SFs
on strength can be neglected. This also refers, most probably, to twins as was
shown for the NiTi crystal from first principles [132].

The effect of a perfectly flat free surface on the strength can also be consid-
ered to be negligible. However, small imperfections like scratches or dimples
act as stress concentrators (micronotches). Their maximum effect on strength
can be roughly estimated by a factor 1+2(l/ρ)1/2, where l is the notch depth
and ρ is the curvature of the notch root (ρ > 0) [133]. Therefore, sharp
notches can significantly reduce the strength value.

According to the Griffith law for perfectly brittle materials, an atomically
sharp crack of length a causes a drop in the tensile strength value by a factor
of (2a0/(πa))

1/2 (a0 is the lattice parameter). However, only ceramics, semi-
conductors and, most probably, molybdenum and tungsten can be considered
to be intrinsically brittle crystals at absolute zero temperature (see Section
1.2). In all other metals, dislocation emission precedes unstable crack growth.
This process increases the effective surface energy and blunts the crack tip
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(see Chapter 2). Consequently, the strength drop must be much less than
that predicted by the Griffith law.

1.1.6.2 Temperature

The variation of strength with temperature is generally attributed to the role
of phonons in deformation and fracture processes. Although the Frenkel for-
mula at Equation 1.1 simply suggests that the variation should be the same
as that of the shear modulus, the Orowan–Polanyi relation at Equation 1.2
brings a complication with the temperature dependence of the surface en-
ergy. From a historical point of view, two sufficiently relevant methods were
applied to predict the temperature influence: the Einstein model of harmonic
oscillators combined with the elastic instability criterion and the model of dis-
location nucleation supported by phonon fluctuations [1]. The first approach
predicted a drop in the uniaxial strength within the range of units to tens
of percents when changing the temperature from 0K to 1000K. The results
depend on the type of utilized interatomic potentials (short- or long-range).
However, this drop was found to be very close to that predicted when consid-
ering only the change in Young’s modulus. The second approach deals with
the maximum energy of up to 50 kT (k is the Boltzmann constant) that the
thermal fluctuations can supply at any temperature. Typically, the results re-
veal tens of percents decrease in the strength within that temperature range.
An analysis of a possible thermal crack initiation has shown that relatively
small amounts of available thermal energy are unlikely to affect the process
very much up to 1200K (in comparison with the total amount of strain en-
ergy conversion into surface energy). It should be emphasized, however, that
the most physically justified approaches to the temperature problem are com-
plex analyses of phonon spectra or the quantum (ab initio) MD simulations.
However, recently available studies of that kind are too rare and incomplete
to allow general conclusions.

Nevertheless, one can assume that the temperature change in the rele-
vant elastic modulus might be considered to be an acceptable lower-band
approximation to the strength-temperature dependence.

1.2 Intrinsic Brittleness and Ductility

The intrinsic tendency of perfect crystals to brittleness or ductility can
be quantitatively assessed by considering crack stability conditions. Indeed,
when a cracked crystal is subjected to a tensile loading, there are basically two
possibilities for its behaviour – either an unstable cleavage fracture is observed
(brittleness) or a dislocation emission stabilizes the crack tip by plastic blunt-
ing (ductility). Physical solutions of that problem are usually constructed by
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means of two classical approaches introduced by Kelly et al. [23] and Rice
and Thompson [134]. The former deals with the ratio of tensile to shear ideal
strengths σiut/τis of an investigated crystal, whereas the latter analyses a
related mechanism of dislocation emission. The principles of both concepts,
which lead to essentially equivalent results, are outlined in the following sub-
section along with a description of more general approaches. Further parts are
devoted to an extended calibration of crystal brittleness/ductility performed
by Rice et al. [135] and, in particular, to that developed by us.

1.2.1 Fundamentals

1.2.1.1 Classical Criteria

The classical understanding of intrinsic brittle/ductile behaviour was intro-
duced by Kelly, Tyson and Cottrell (KTC) [23]. According to this concept,
the crystal is considered to be intrinsically ductile when τis is exceeded earlier
than the σiut at the crack tip. This corresponds to the following condition of
intrinsic ductility:

σ1τis
σiutτr

< 1, (1.28)

where σ1 is the maximum principal stress and τr is the resolved shear stress
on the active slip plane adjacent to the crack tip. However, only slip in
crystallographic planes containing the whole crack front can effectively pro-
duce blunting. Let us consider the blunting configuration depicted in Fig-
ure 1.22 in a special case of mode I loading (the shear stress intensity factors
KII = KIII = 0). Then, Equation 1.28 can be rewritten as

σiut
τis

>
2[1 + sin(Θ/2)]

sinΘ cosΦ
, (1.29)

where Θ is the angle between the crack plane and the intersecting slip plane
and Φ is the angle between the Burgers vector and the direction perpendicular
to the crack front [136].

The following reasoning leads to a derivation of Equation 1.29. The stress
tensor at the crack tip under the condition of plane strain [137] reads

τij =
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Figure 1.22 Scheme of the blunting crack-slip plane configuration

A =
KI√
2πr

cos

(
Θ

2

)

and

σ1 = A

[
1 + sin

(
Θ

2

)]
. (1.30)

Regarding Figure 1.22, the coordinates of the stress vector T in the slip
plane can be expressed by means of the stress tensor τij and the normal
n = (− sinΘ, cosΘ, 0) as Ti = τijnj which gives

T = (T1, T2, T3) =

(
−A

2
sinΘ,A cos2

(
Θ

2

)
, 0

)
.

The magnitude of the resolved shear stress τr depends on τij and b =
(cosΘ cosΦ, sinΘ cosΦ, sinΦ) as

τr = T · b =
A

2
sinΘ cosΦ. (1.31)

By substituting Equations 1.30 and 1.31 into the criterion at Equation 1.28
one finally obtains Equation 1.29.

Another criterion based on the ability of the material to emit dislocations
from the crack front was proposed by Rice and Thomson (RT) [134]. There
are two principal forces acting on the emitted dislocation in the adjacent
slip plane. The first is the repulsive force that is induced by external loading
and the second is the attractive mirror force induced by a presence of free
surfaces (crack flanks). In the frame of the elastic approximation and in terms
of the KI factor, the resulting force component within the slip plane can be
expressed as follows:

fd(r) =
be

2
√
2πr

KI sinΘ cos
Θ

2
− G

4πr

(
b2s +

b2e
1− ν

)
, (1.32)
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where be and bs are magnitudes of edge and screw components of the Burgers
vector, respectively, and G is the shear modulus. The function at Equation
1.32 is schematically plotted in Figure 1.23. One can see that for small dis-
tances of the dislocation from the crack front (r < r0, where fd(r0) = 0)
the attractive force is dominating, whereas for greater distances the repul-
sive interaction prevails. This means that the elastic theory always predicts
a mechanical instability, i.e., the intrinsic brittleness. However, the elastic
approximation fails for r ≤ rc, where rc is the size of the dislocation core. In
this case the Burgers vector of the emitted dislocation is expected to be pro-
portional to r and, consequently, the repulsive force remains dominating over
the whole distance. In other words, the condition r0 ≤ rc means a sponta-
neous emission of dislocations and, with regard to Equation 1.32 and r0 = rc,
the stress intensity factor corresponding to this emission can be written as

KIe =
G√
2πrc

b2s + b2h/(1− ν)

bh sinΘ cos(Θ/2)
.

Figure 1.23 The dependence of the resulting force on the relative distance for a
dislocation emitted from the crack front

Because the Griffith criterion for brittle fracture reads

KIc =

√
2Gγ

1− ν
,

where γ is the fracture energy, the combined criterion for intrinsic ductility
becomes

KIe < KIc. (1.33)

Note that no thermal activation was assumed to help the dislocation emission
in the RT concept which corresponds to absolute zero temperature. This
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means that Equation 1.33 overestimates the tendency of crystals to intrinsic
brittleness when applied to higher temperatures.

At zero Kelvin, the criteria KTC and RT are essentially equivalent and
yield similar results (see later). Indeed, when one assumes remote mode I
loading, the simplest IS estimates at Equations 1.1 and 1.2 and an averaged
angle Θ̄ [138], both criteria can be rearranged to

Gb

10γ
< 1.

1.2.1.2 Beyond the Classical Criteria

The efficiency of both criteria in their classical forms is restricted in many
directions. First, there is only one selected configuration of crack-slip planes.
In the KTC criterion, moreover, the Orowan estimate of σiut contains an
uncertain γ-value and it does not reflect the real triaxial state of stress at the
crack tip. The Frenkel formula for τis does not take the normal/shear stress
coupling into account. Second, the RT criterion contains a purely defined rc-
value and stands only for the mode I case. Therefore, more generalized and
accurate approaches are needed in order to obtain a plausible calibration of
crystals with respect to their intrinsic brittle/ductile response.

The RT-criterion was upgraded by application of the Peierls–Nabarro
model to the process of the dislocation nucleation as well as by replacing
the KI-concept by that of the effective crack driving force Geff [135, 139]
(see also Appendix B). This leads to the following condition for dislocation
nucleation:

[
fI(Θ)KI + fIIKII

]
cosΦ+ fIII(Θ)KIII sinΦ =

=

√
2G

1− ν

[
cos2 Φ+ (1− ν) sin2 Φ

]
γb,

(1.34)

where KI , KII and KIII are stress intensity factors (SIFs) for modes I, II
and III, fI , fII , fIII are related angular functions and γb is the energy barrier
for the dislocation nucleation. In the case of a pure opening mode I Equation
1.34 reduces to

GI = 8
1 + (1− ν) tan2 Φ

(1 + cosΘ) sin2Θ
γb,

where GI = (1− ν)K2
I /2G.
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The intrinsic ductility means that, during the loading, Equation 1.34 is
satisfied earlier than the generalized Griffith condition Geff = 2γ. This leads
to

γ

γb
>

4[1 + x2 + z2/(1− ν)][1 + (1− ν) tan2 Φ]

(1 + cosΘ)[sinΘ + (3 cosΘ − 1)x+ 2z tanΦ]2
, (1.35)

where x = KII/KI and z = KIII/KI . In the case of the pure opening mode
(x = z = 0) one obtains

γ

γb
>

4[1 + (1− ν) tan2 Φ]

(1 + cosΘ) sin2Θ
= NRT. (1.36)

The KTC-criterion can be improved by inserting more sophisticated es-
timates of IS values based on atomistic models [25, 136]. The Orowan esti-
mate of σiut can be replaced by values of σiht based on the Morse poten-
tial [36]. These values reflect well the stress state of almost isotropic tension
(σ1 = σ2 = 1.6σ3) at the crack tip and, fortunately, they are also suffi-
ciently precise as proved by recent ab initio calculations (see Section 1.1.3).
The Frenkel formula for τis is quite satisfactory but the atomistic results are
still more precise [31]. The normal/shear stress coupling can be reflected by
inserting both linear and parabolic functions τis(σn) which, again, was veri-
fied by means of ab initio computations (see Section 1.1.4). Moreover, both
the crack plane and the front positions that correspond to the many possible
combinations of Miller indices related to all possible blunting slip systems are
to be analyzed in order to obtain a complex picture of the intrinsic response.
When taking these corrections into account, Equation 1.29 (for σiut → σiht)
and Equation 1.36 constitute very useful stress and energy criteria. They en-
able us to order crystals of pure elements and compounds according to their
tendency to exhibit intrinsic brittleness (or ductility).

1.2.2 Calibration of Crystals

1.2.2.1 Models Based on Dislocation Emission

When considering Equation 1.36 and calculating the values of ΓRT = NRTγb/γ
for various crystals of elements and compounds, one can order the crystals
with respect to their intrinsic brittleness/ductility. The values ΓRT ≥ 1 pre-
dict intrinsic brittleness, whereas ΓRT < 1 means the intrinsic ductility. Such
an ordering is called the calibration of the intrinsic brittleness/ductility of
crystals. Rice et al. [135] performed such a calibration of selected metallic
and ceramic elements by assuming angles Θ and Φ associated with one char-
acteristic blunting configuration of the crack plane-slip system for each crys-
tal. The results are displayed in Table 1.9. One can see that all the diamond
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crystals and metallic crystals of bcc structure (except for alkali metals) are
intrinsically brittle since their ΓRT values are distinctly greater than 1. The
extreme behaviour of alkali metals is not very surprising. Indeed, their fcc
and bcc structure modifications have approximately the same energy and,
moreover, crystals of Na and Li keep closed-packed structures even up to
about 50K [140]. On the other hand, all the fcc crystals (except for iridium)
are intrinsically ductile, since their ΓRT values lie close to 1. Note that this
result agrees well with engineering experience of imperfect crystals and poly-
crystals of analyzed materials at room temperature. Here, due to the effect of
thermal activation, all the ΓRT values must be lower to promote the ductility.
In this way, perfect bcc crystals might also cross over to the ductile state as is
well known for engineering materials. When applying such a simple model of
dislocation emission, however, it is not to be expected that the brittle/ductile
boundary will be exactly 1. Anyway, more important information is offered
just by the order of crystals according to their brittleness/ductility behaviour.

The influence of the loading mode on brittle/ductile behaviour of perfect
crystals can be assessed by means of Equation 1.35 [136]. Let us consider,
for example, bcc structures, where the crack lies in the {100} plane with an
adjacent slip system {110}〈11̄1〉 and the associated angles are Θ = 45◦ and
Φ = 35.3◦. For a pure mode I (x = z = 0, ν = 0.3) one obtains γ/γb > 6.3.
Already a very small ratio of shear modes such as KII = KIII = 0.1KI

(x = z = 0.1) results in γ/γb > 3.5, i.e., to a considerable transfer of the
intrinsic response towards ductility. The same behaviour is also exhibited by
perfect crystals of fcc metals. On the other hand, the crystals with diamond
structure remain intrinsically brittle even under high applied shear modes.
Similar behaviour is typical also for single crystals containing dislocations.
However, this is not necessarily the case for cracked polycrystals owing to
the effect of friction produced by the crack-flank roughness (see Chapter 2
for more details).

1.2.2.2 Models Based on Ideal Strength

These models mostly utilize Equation 1.29 in terms of an extended analysis
of the influence of the crack plane position in the crystal lattice. Crack plane
and front directions {hkl} and 〈uvw〉 related to all possible combinations of
low Miller and direction indices (0 ≤ h, k, l, u, v, w ≤ 4) along with all possi-
ble blunting slip systems (the crack front forms an intersection of crack and
slip planes) were investigated in our works [25, 136]. The slip configurations
for fcc, bcc, diamond, B1 and B2 structures are shown in Table 1.10. The
developed computer code contained procedures that were able to select var-
ious possible slip systems within the crystallographically equivalent set and
construct associated blunting crack-slip configurations. The left-hand side of
Equation 1.29 depends solely on the crystallography. Indeed, the atomistic
simulations [31] have shown that the shear IS can be simply expressed as
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Table 1.9 Values of the parameters ΓRT and Γ̄KTC for investigated crystal struc-
tures

Crystal Structure ΓRT Γ̄KTC
pΓ̄ε

KTC,min
pΓ̄σ

KTC,min
lΓ̄ε

KTC,min
lΓ̄σ

KTC,min

NaCl B1 10.2 1.0 1.0 1.5 1.2
CsCl B2 7.5 1.0 1.0 1.6 1.2
CsBr B2 6.9 1.0 1.0 1.6 1.2
CsJ B2 6.7 1.0 1.0 1.6 1.2
Mo bcc 5.2 6.3 1.0 0.9 1.4 1.0
W bcc 4.7 6.1 1.0 0.9 1.4 1.0
C diam 4.5 6.0 1.0 1.0 1.3 1.2
LiF B1 2.6 5.8 1.0 1.0 1.6 1.2
MgO B1 2.9 5.0 1.0 1.0 1.5 1.2
Ir fcc 3.6 4.2 0.9 0.7 1.1 0.7
Ge diam 3.4 4.1 1.0 0.9 1.3 0.9
Fe bcc 2.4 4.0 1.0 0.7 1.3 0.8
Si diam 2.7 3.8 1.0 0.8 1.3 0.9
V bcc 1.9 3.5 1.0 0.7 1.3 0.7
Ta bcc 2.0 3.5 1.0 0.7 1.3 0.7
Nb bcc 1.7 2.7 1.0 0.5 1.2 0.5
Ni fcc 1.7 2.3 0.7 0.4 0.8 0.4
Al fcc 1.2 2.1 0.8 0.4 0.9 0.4
Th fcc 1.9 0.6 0.3 0.6 0.3
Pt fcc 1.3 1.6 0.8 0.3 0.9 0.3
Cu fcc 1.2 1.6 0.6 0.3 0.7 0.3
Ag fcc 1.1 1.5 0.7 0.3 0.7 0.3
Na bcc 1.2 1.4 0.7 0.3 0.7 0.3
Rb bcc 1.3 0.7 0.3 0.7 0.3
K bcc 1.3 1.2 0.8 0.3 0.8 0.3
Li bcc 0.7 1.1 0.6 0.2 0.6 0.2
Au fcc 0.9 0.9 0.7 0.2 0.7 0.2
Pb fcc 0.8 0.9 0.6 0.2 0.6 0.2

τis = κG, where κ is the parameter characteristic for the particular struc-
ture and the slip system (see Table 1.3). Consequently, Equation 1.29 can be
rearranged as

σiht
G

>
2χ[1 + sin(Θ/2)]

sinΘ cosΦ
= NKTC, (1.37)

where the exchange σiut → σiht was also performed. The left-hand side of
Equation 1.37 is a ratio of material characteristics and the right-hand side
(NKTC) depends only on crystallography. Thus, another computer procedure
was developed to calculate values NKTC for all selected crack-slip configura-
tions in all investigated structures. There is a wide range of NKTC values for
individual crystal structures as well as for each crystal. In the latter case, the
set of blunting crystallographic configurations, labelled by NKTC values, can
be divided into brittle and ductile parts by the characteristic value σiht/G.
This means that the intrinsic response of each crystal substantially depends



62 1 Deformation and Fracture of Perfect Crystals

on the crack-plane position towards the basic crystallographic system. Nev-
ertheless, one can determine a global characteristic Γ̄KTC = N̄KTCG/σiht,
where N̄KTC is the mean value of NKTC, averaged over all investigated con-
figurations in a particular crystal.

Table 1.10 Slip configurations used in the model based on the ideal strength

Lattice bcc fcc Diamond B1 B2

Plane {112} {110} {111} {111} {111} {110} {110}
Direction 〈111〉 〈111〉 〈110〉 〈112〉 〈110〉 〈110〉 〈100〉

All the studied crystal elements and compounds are ordered according to
the global parameter Γ̄KTC in Table 1.9. One can clearly see that the ordering
of crystals is very similar to that determined by using the parameter ΓRT

(shown in the same table). All ionic and covalent ceramic crystals can be
considered to be intrinsically brittle, unlike those of fcc structure and the
alkali metals. However, values of ΓRT and of Γ̄KTC for practically all crystals
are higher than 1 which infers their intrinsic brittleness at 0K. In the case of
RT criterion, the thermal activation at the room temperature is expected to
produce a significant reduction of all values so that the alkali metals and fcc
metals become ductile. In the case of KTC criterion, however, the ratio of
ideal strengths in Equation 1.29 should not depend too much on temperature.
The main reason for too high values must be sought in the strong dependence
of τis on the normal stress component σn (see Section 1.1.3) which was not
taken into account. This dependence was considered in both parabolic and
linear approximations as

τis(σn) = τis0 (1− σn/σiht)
2 ,

τis(σn) = τis0 (1− kσn/σiht) , k ∈ 〈0, 1〉.
Moreover, both the plane strain (σ1 = σ2 = 1.6σ3) and plane stress
σ1 = σ2, σ3 = 0) conditions at the crack tip were studied. The computer
procedure was completed by a routine that could select minimum values
Γ̄KTC,min of all Γ̄KTC parameters related to investigated crack-slip configura-
tions in a particular crystal. When the condition Γ̄KTC,min ≥ 1 is fulfilled, no
blunting of the crack tip by shear can appear and, consequently, the crystal
can be assumed to be definitely brittle. The computed parameters Γ̄KTC,min,
obtained for both the parabolic and the linear (k = 0.5) approximation, are
also presented in Table 1.9. The upper indices ε (σ) stand for the plane strain
(plane stress) case and the upper indices l (p) refer to the linear (parabolic)
approximation of the dependence τis vs σn. The results show that, in the
plane strain state, all ceramic and bcc crystals exhibit intrinsic brittleness
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at absolute zero temperature. All fcc crystals including the bcc alkali met-
als indicate a ductile behaviour. It should be noted, however, that Γ̄KTC,min

values slightly lower than 1 provide only a necessary but not sufficient condi-
tion for intrinsic ductility. In that case, indeed, a high dominance of brittle
crack-slip configurations might be expected. Therefore, the borderline brit-
tleness/ductility should rather correspond to Γ̄KTC,min ≈ 0.9. In the plane
stress case, all the ionic ceramics (including covalent diamond) are predicted
to behave in a brittle manner. However, crystals of Mo, W, Ge and Si also
lie close to the brittle/ductile borderline. All other metals can be assumed
as definitely intrinsically ductile. These results already seem to reflect plausi-
bly the intrinsic response of crystals at 0K. Moreover, the plane stress state
prefers the ductile behaviour which is also to be expected.

In summary, the following conclusions with respect to the intrinsic brit-
tleness/ductility of perfect crystals can be derived:
1. Diamond and all ionic ceramics are intrinsically brittle. This also holds for

sufficiently large perfect crystals of Mo, W, Si and Ge (plane strain).
2. The perfect bcc crystals, except for alkali metals, lie close to the brit-

tle/ductile borderline at absolute zero temperature. They are expected to
exhibit a transition to ductile behaviour at higher temperatures similarly
to the behaviour of real bcc crystals and polycrystals.

3. All perfect crystals of fcc metals, including the bcc alkalis, are intrinsically
ductile in the whole temperature range.

The transient behaviour of the perfect body-centred Fe crystal was also
recently verified by means of molecular dynamics simulations [141]. It should
be emphasized that the brittleness/ductility behaviour of perfect crystals is
in good quantitative agreement with long-term experimental experience with
engineering single crystals and polycrystals containing defects. This means
that this kind of behaviour is, at least partially, predetermined by the intrinsic
properties of the crystal lattice.

1.3 Multiscale Model of Nanoindentation Test

Indentation tests represent a very effective tool to explore mechanical prop-
erties of materials. Besides hardness, many other characteristics such as
strength, yield stress, fatigue limit and plastic strain can be approximately as-
sessed from these tests. The nanoindentation test provides useful information
about very local mechanical characteristics of the material’s microstructure.
However, this test also became a very promising experimental method for
identification of the ideal shear strength (e.g., [142]). Due to a very small pen-
etration depth, the stressed volume beneath the sharp nanoindenter may be
free of preexisting dislocations. Moreover, this volume is usually constricted to
one grain (single crystal) even in polycrystalline materials. During the nanoin-
dentation, therefore, the increasing local shear stress can reach the ideal shear
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strength value and, consequently, dislocations can nucleate in the ideal crys-
tal lattice. Such an onset of local plastic deformation could be detected as
a pop-in on the load-displacement curve by several authors [15, 143–145].
However, a physically plausible model of the nanoindentation test must be
developed in order to determine the value of τis related to the pop-in load.

During the last 10 years, several models of the nanoindentation test have
been published (e.g., [142,146,147]). These models utilized either the simple
Hertzian solution of the stress distribution under a spherical indenter or more
sophisticated multiscale approaches. The latter models can be built by using
different concepts (see Preface). Hereafter, a multiscale approach that couples
an indentation model based on continuum mechanics (finite elements) with
material characteristics determined on both the mesoscopic (crystallography)
and atomistic (ab initio) levels is introduced. In order to reflect sufficiently
the physics of the indentation process, a plausible model of that kind must
comply with several fundamental relationships and boundary conditions: (1)
the ab initio calculations of pure ideal shear strength are to be generalized in
order to reproduce correctly the stress state under the indenter – in particular,
the influence of the normal stress σn on τis must be considered; (2) both the
nonlinearity and the anisotropy of the elastic response of the ideal crystal are
to be taken into account; (3) the evolution of the resolved shear stress and the
normal stress on all appropriate crystallographic planes must be evaluated
during the simulation; (4) a 3D finite element model of the nanoindentation
process must be developed since the real stress state is quite different from
that obtained from 2D models; (5) an analysis of friction forces between the
substrate and the indenter should be also included.

To our knowledge, the first multiscale model including all the above-
mentioned corrections was published by Krenn et al. [142]. The authors gave
a very good interpretation of the pop-in effects in tungsten and molybdenum
single crystals in terms of reaching the τis value. Unfortunately, a detailed
description of all utilized computational procedures was not given in that pa-
per. Therefore, the reported results cannot be checked and the methodology
remains questionable. In our first work concerning the nanoindentation in the
polycrystalline copper [146], only the first two corrections were incorporated
into the model. In more recent papers [145,148] practically all the necessary
corrections were already taken into account. Hereafter, the utilized compu-
tational procedures and the results of these models for copper and nickel will
be briefly outlined.

1.3.1 Description of Submodels

The three-dimensional isotropic FEM model of the nanoindentation tests was
performed by using the finite element code ANSYS. A frictionless sphero-
conical indenter with a radius of 0.2 μm (0.5 μm) in agreement with related
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experiments for Ni (Cu) was pressed into a 5μm thick substrate disc with
a radius of 10 μm (see Figure 1.24). The values of the Young’s modulus and
Poisson’s ratio of the diamond indenter were taken as E = 1141 GPa and
ν = 0.07, respectively. In the vicinity of the interface, the sphere was dis-
cretized with elements approximately 0.2 nm (0.5 nm) wide and the mesh of
the substrate was refined from 0.4mm (1mm) at the outer edge of the disc
to 0.2 nm (0.5 nm) directly beneath the indenter.
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Figure 1.24 The geometrical configuration of the model: (a) cross-section of the
nanoindenter and the substrate disc, and (b) scheme of the tip of the sphero-conical
indenter with the semi-angle and the tip radius. Reprinted with permission from
Trans Tech Publications Inc. (see page 265)

Owing to the rotational symmetry of the indentation model, only a 2D
section could be analyzed as depicted in Figure 1.25. To model a contact
area between the indenter tip and the specimen, the potential contact sur-
faces during the deformation had to be identified via a target (indenter) and
the contact (substrate) elements in terms of so-called contact pairs. The ele-
ments of the substrate were, unlike those of the indenter, constrained against
penetration into the opposite surface. The tangential contact stiffness based
on current contact normal pressure and maximum allowable elastic slip could
be updated in the frame of the ANSYS code.

The Coulomb model was utilized in the analysis involving friction. In this
model, an equivalent shear stress was defined as a fraction of the contact
pressure corresponding to the onset of sliding between the two surfaces. A
special sticking/sliding calculation procedure determined the transitions from
sticking to sliding and vice versa (see [148] for details).

The nonlinearity and, to a certain extent, the anisotropy of the elastic
response was taken into account by a multilinear approximation of tension-
compression stress-strain curves for Cu and Ni crystals. These curves were
calculated from first principles in accordance with the experimental [001]
indentation direction. The multilinear approximations were utilized in the
ANSYS code procedure as an equivalent stress-strain dependence.
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Figure 1.25 The finite element network near the contact boundary. Reprinted with
permission from Trans Tech Publications Inc. (see page 265)

The function τis(σn) for the set of {111} slip planes was also computed by
means of the ab initio approach. Parameters of this linear dependence (see
Equation 1.19) for Ni and Cu crystals can be found in Table 1.5.

The global calculation procedure simulated, step by step, the penetra-
tion of the indenter into the crystal. In order to identify the appropriate
crystallographic plane in which the condition for the dislocation emission
was first reached, the activity in the shear systems 〈112〉{111} was con-
tinuously tracked in stepwise calculations. The stress tensor transformation
was performed to obtain all crystallographic systems related to the cylin-
drical symmetry. This enabled us to compute the values of τ and σn as
functions of the rotation angle φ. Consequently, the maximum of the ratio
θi(φ) = τi(φ)/τis,i(φ) was searched for the entire circle going through each
mesh node. The highest value of that ratio for all nodes and angles was
denoted θmax. Thus, the values of θmax could be related to each individual
deformation step characterized by the penetration depth h.

1.3.2 Simulation of Pop-in Effects

The results obtained by using frictionless analysis were found to be practically
identical with those obtained by using the model involving friction. This
finding was in agreement with the conclusion already reported by Krenn et
al. [142].

The dependence of θmax on the penetration depth h is depicted in Fig-
ure 1.26 for the nickel crystal. When the value of θmax slightly exceeds 1, the
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condition for the dislocation emission can be considered to be safely fulfilled.
This nearly corresponds to the depth h = 5.5 nm and the related indentation
load F = 35 μN. The associated experimental pop-in values were found to be
hexp = 4.0 − 4.5 nm and Fexp = 40 − 48 μN. The following values referred
to the copper crystal: h = 12 nm (hexp = 10 − 20 nm) and F = 100 μN
(Fexp = 150− 270 μN).

Figure 1.26 The dependence of the parameter θmax on the penetration depth h. The
predicted moment of the first emission of dislocation loops corresponds to exceeding
the critical value θmax ≈ 1 for h ≈ 5.5 nm

In spite of some differences in experimental and theoretical values, the
results reveal that nanoindentation may serve as a very good tool for the
measurement of ideal shear strength. One should note that the deviations
within the range of tens of percents are highly acceptable when compared
to those in the range of hundreds of percents obtained by means of other
experimental methods (see Table 1.2).



Chapter 2

Brittle and Ductile Fracture

This chapter is devoted to damage and fracture micromechanisms operating
in the case when monotonically increasing forces are applied to engineering
materials and components. According to the amount of plastic deformation
involved in these processes, the fracture events can be categorized as brittle,
quasi-brittle or ductile.

Brittle fracture is typical for ceramic materials, where plastic deformation
is strongly limited across extended ranges of deformation rates and temper-
atures. In polycrystalline ceramics the reasons lie in a high Peierls–Nabarro
stress of dislocations due to strong and directional covalent bonds (this holds
also for some ionic compounds), and in less than five independent slip systems
in ionic crystals (e.g., [149]). In amorphous ceramics it is simply because of
a lack of any dislocations and, simultaneously, strong covalent and ionic in-
teratomic bonds. Metallic materials or polymers exhibit brittle fracture only
under conditions of extremely high deformation rates, very low temperatures
or extreme impurity concentrations at grain boundaries. In the case of a
strong corrosion assistance, brittle fracture can also occur at very small load-
ing rates or even at a constant loading (stress corrosion cracking). A typical
micromechanism of brittle fracture is so-called cleavage, where the atoms are
gradually separated by tearing along the fracture plane in a very fast way
(comparable to the speed of sound). During the last 50 years, the resistance
to unstable crack initiation and growth, i.e., the fracture toughness, became
a very efficient measure of brittleness or ductility of materials. In the case
of cleavage, this quantity can be simply understood in a multiscale context.
The macroscopic (continuum) linear–elastic fracture mechanics (LEFM) de-
veloped by Griffith and Irwin brought to light an important relationship
between the crack driving force G (the energy drop related to unit area of a
new surface) and the stress intensity factor KI as

G =
1− ν2

E
K2
I .

69
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This relation holds for a straight front of an ideally flat crack under con-
ditions of both the remote mode I loading and the plane strain. The energy
necessary for creation of new fracture surfaces can be supplied from the elastic
energy drop of the cracked solid and/or from the work done by external forces
(or the drop in the associated potential energy). Thus, at the moment of un-
stable fracture, the Griffith criterion gives Gc ≈ 2γ, where γ is the surface
(or fracture) energy that represents a resistance to cleavage. Consequently

γ ≈ 1− ν2

2E
K2
Ic. (2.1)

However, the surface energy can be expressed also in terms of the cohesive
(bonding) energy needed to break down an ideal crystal or an amorphous
solid into individual atoms. The bonding energy of a surface atom is a half
of that associated with an internal atom [150] and, because of two fracture
surfaces, one can simply write

γ =
U

4S
, (2.2)

where U is the cohesive energy assigned to one atom and S is the area per
atom on the fracture surface. With regard to Equations 2.1 and 2.2 it reads

KIc ≈
(
EU

2S

)1/2

. (2.3)

Values of U can be calculated either ab initio or by using semi-empirical
interatomic potentials (see the previous chapter), and they can also be exper-
imentally determined as twice the sublimation energy. For most metallic and
ceramic crystals, values of U and S are in units of eV/atom and 10−19m2,
respectively. Thus, according to Equation 2.3, values of fracture toughness in
the case of an ideal brittle fracture are as low asKIc ∈ (0.5, 1)MPam1/2. This
range represents a lower-bound physical benchmark for the fracture tough-
ness of engineering materials, and it corresponds well to experimental results
achieved in tests with classical ceramic materials such as glasses or porcelain.
Similar considerations can also be applied to classical ceramic materials that
do not contain macroscopic pre-cracks. Indeed, some pores or microcracks
are always present in such materials.

In advanced ceramic materials for engineering applications, however, the
level of fracture toughness is substantially enhanced. This can be achieved
by microstructurally induced crack tortuosity combined with the presence of
many small particles (or even microcracks) around the crack front. In this way
the crack tip becomes shielded from the external stress supply and the stress
intensity factor at the crack tip reduces. Both the theoretical background and
the practical example of that technology are discussed in Section 2.1 in more
details. Another method, commonly utilized for an additional improvement
of fracture toughness of ceramics, is the distribution of supplied energy to
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damage mechanisms other than pure cleavage. This can be succeeded, for
example, by an enforcement of phase transformations in the vicinity of the
advancing crack front [149].

In cracked metallic solids, however, the measured values of KIc are at
least an order of magnitude higher than the lower-bound benchmark. This
holds even for ferrite (bcc Fe) at very low temperatures, where almost mi-
croscopically smooth cleavage fractures along {001} planes appear (note that
the 〈001〉 direction in Fe is associated with the lowest ideal tensile strength).
The value of related fracture energy was experimentally found to be about
14 Jm−2 [149]. This means that the energy supplied for the unstable fracture
is also considered here for the development of localized plastic deformation
around the crack tip. Hence, the general thermodynamic criterion for unsta-
ble crack growth [19] can be written in the Griffith–Orowan form

1− ν2

E
K2 ≥ 2γ + wp(K, γ), (2.4)

where wp(K, γ) is the plastic work needed for building the plastic zone at the
crack tip. While this work can be neglected in the case of brittle fracture, it
is of the same order of magnitude as 2γ in the case of quasi-brittle fracture
in metals. Note that the crack tip emission of dislocations in metals already
occurs at very low K values in units of MPam1/2 (see Section 3.2 for more
details). The dislocations emitted from the crack tip generate an opposite
stress intensity factor so that the crack tip becomes shielded from increasing
external (remote) loading. The plastic work consumption proceeds until the
moment when the sum of external and internal stress intensity factors at
the crack tip (the local K-factor) exceeds the critical value necessary for
separating atoms to produce new surfaces in an unstable (cleavage) manner
[151,152]. This is mathematically expressed in Equation 2.4 so that the plastic
work wp(K, γ) is written as a function of both γ and K. Thus, the moment
of cleavage fracture is somewhat delayed and, as reported by many authors
[153–155], a short stage of stable crack growth often precedes the unstable
propagation. The microstructurally induced heterogeneity in the resistance
to both the unstable crack growth (γ) and the dislocation emission can,
sometimes, produce a series of elementary advances and arrests of the crack
tip.

Many quasi-brittle fractures in practice occur as a consequence of pre-
existing corrosion dimples, large inclusions or fatigue cracks. However, the
localized plastic deformation at favourable sites in the bulk also enables the
creation of microcracks as nucleators of the quasi-brittle fracture in solids
which do not contain any preliminary defects. At phase or grain boundaries
it can be accomplished by many different and well known micromechanisms
conditioned by the existence of high stress concentrations in front of dislo-
cation pile-ups. Let us briefly mention another mechanism of crack initiation
in bcc metals first introduced by Cottrell [156]. When two edge dislocation
pile-ups are driven by the applied stress σ and meet on different {110} glide
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planes in the grain interior, their interaction results in the nucleation of a
[001] sessile dislocation. This dislocation can be considered to be a wedge in
the {001} cleavage plane. Interaction of n dislocations of Burgers vector b
then creates a microcrack with flank opening nb. The work W = σn2b2 done
by the force σnb acting at the front of n dislocations along the distance nb
must be equal to the energy 2γnb for the creation of new crack surfaces. This
gives the microscopic criterion for quasi-brittle fracture as

σcnb = 2γs, (2.5)

where σc is the critical (fracture) stress. Assuming the relation connecting
the number of dislocations with the grain size d in terms of the Hall–Petch
relation, Equation 2.5 can be rearranged to

(
σ0

√
d+ ky

)
ky = βGγs, (2.6)

where σ0 is the yield stress, ky constant in the Hall–Petch relation (tem-
perature dependent), β the temperature independent constant and G the
shear modulus (weakly temperature dependent). Thus, the right-hand side
of Equation 2.6 is practically independent of temperature. If the left-hand
side is equal to or higher than the right-hand side, the brittle (or quasi-
brittle) fracture initiates just at the moment of reaching the yield stress. In
an opposite case, the ductile failure occurs after some deformation hardening
period. Both the high deformation rate and the low temperature enhance
σ0 as well as ky, thereby giving rise to quasi-brittle fracture. The same is
caused by a large grain size. Thus, the criterion at Equation 2.6 correctly
predicts the experimentally observed fracture behaviour. Note that this sim-
ple model for single-phase bcc metals is of a two-level type, since the Hall–
Petch relation can be easily interpreted by combined atomistic-dislocation
considerations [149].

In Section 2.2 a statistical approach to geometrical shielding effects occur-
ring in multi-phase engineering materials is outlined. This two-level concept
can be used to give quantitative interpretation of some rather surprising re-
sults obtained when measuring the fracture toughness and the absorbed im-
pact energy (notch toughness) of some metallic materials. Examples of such
interpretation are documented for ultra-high-strength low-alloyed (UHSLA)
steels and Fe-V-P alloys.

Unlike brittle or quasi-brittle fracture, the ductile fracture starts with a
rather long period of stable crack or void growth due to the bulk plastic de-
formation. In the case of pre-cracked solids this means that the surface energy
2γ becomes negligible when compared to the plastic term wp(K, γ) in Equa-
tion 2.4, and this criterion loses its sense. Therefore, instead of stress-based
criteria (fracture stress, critical stress intensity factor) the deformation-based
criteria are more appropriate for a quantitative description of ductile fracture.
In the first stage of ductile fracture, microvoids (micropores) nucleate pref-
erentially at the interface between the matrix and secondary phase particles.



2.1 Brittle Fracture 73

The physical reasons are clear: high interfacial energy (low fracture energy),
the incompatibility strains (dislocation pile-ups) and the mosaic stresses in-
duced by a difference in thermal dilatations of the matrix and inclusions.
Nucleated voids experience their stable growth controlled by the plastic de-
formation. In the tensile test, for example, the voids become cylindrically pro-
longed by uniaxial deformation up to the moment when the ultimate strength
is reached. Beyond that limit they also expand in transverse directions under
the triaxial state of stress inside the volume of developing macroscopic neck.

Although the bulk ductile fracture occurs only very exceptionally in engi-
neering practice, the research of that process is important for forging tech-
nologies. Besides the two-scale analysis of plastic deformation, some models
of void coalescence during the tensile test are outlined in the last section of
this chapter. It should be emphasized that the damage process inside the
crack-tip plastic zone of many metallic materials can also be described in
terms of the ductile fracture mechanism (e.g., [157]). Therefore, an analyti-
cal model that enables a prediction of fracture toughness values by means of
more easily measurable ductile characteristics is also presented.

2.1 Brittle Fracture

From the historical point of view, brittle fracture proved to be one of the most
frequent and dangerous failures occurring in engineering practice. Besides the
well known brittleness of utility ceramics and glasses, metallic materials may
also exhibit intrinsically brittle properties dependent on temperature; there
exists a critical temperature, the so-called ductile-brittle transition tempera-
ture (DBTT) under which the material is brittle, while it is ductile above that
temperature. This holds particularly for bcc metals, in which cores of screw
dislocation are split into sessile configurations [4,158]. They remain immobile
at low temperatures so that,under such conditions, cleavage is a dominant
fracture mechanism. However, a steep exponential increase of ductility ap-
pears when approaching the DBTT owing to thermal activation helping to
increase the mobility of screw segments. Improper application of a material
below this temperature can have catastrophic consequences, such as, for ex-
ample, the sinking of the RMS Titanic nearly one hundred years ago. The
material of Titanic, although representing the best-grade steel at that time,
was characterized by coarsed grain and high level of inclusions so that DBTT
was higher than 32◦C. No wonder this ship was catastrophically destroyed by
brittle fracture during its impact with the iceberg at the water temperature
of −2◦C [159].

However, brittleness is often induced by other effects such as flawed ma-
terial processing or segregation of deleterious impurities at grain boundaries.
Grain boundary segregation can result in a local enrichment of thin but con-
tinuous interfacial layers throughout the polycrystalline material with con-
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centrations as much as several orders of magnitude higher than that in the
grain interior [160]. The most dangerous impurities segregating in bcc iron
and steels are phosphorus, tin and antimony. For example, the disintegra-
tion of the rotor at the Hinkley Point Power Station turbine generator in
1969 was caused by 50% of phosphorus segregated at grain boundaries of the
3Cr1/2Mo low-alloy steel containing a few tenths of a percent of phosphorus
in the bulk [161].

Brittle intercrystalline (intergranular) decohesion caused by impurity seg-
regation exhibits relatively high microroughness of fracture surfaces. More-
over, the secondary cracks identifying the splitting of the main crack front
are often observed preferentially at triple points. Both these phenomena lead
to the so-called geometrically induced shielding (GIS) of the crack tip that
has a favourable effect on decreasing the local stress intensity factor, thereby
increasing the fracture toughness. This kind of shielding is one of the so-
called extrinsic components of fracture toughness that can be considered as
a possible toughening mechanism in the research and technology of advanced
materials.

In the next subsections, the theory of GIS and its practical application to
an improvement of fracture toughness of brittle materials is outlined.

2.1.1 Geometrically Induced Crack Tip Shielding

Crack front interactions with secondary–phase particles or grain (phase)
boundaries in the matrix structure cause deflections of the crack front from
the straight growth direction resulting in the microscopic tortuosity of cracks.
As already mentioned, such waviness combined with crack branching (split-
ting) is a natural property of intergranular cracks in metals as well as ce-
ramics. In general, the tortuosity induces a local mixed-mode I+II+III at
the crack front even when only a pure remote mode I loading is applied.
In order to describe the crack stability under mixed-mode loading, various
LEFM-based criteria were proposed (see, e.g., [162–164]). Several of the most
frequently used mixed-mode criteria can be found in Appendix B, where con-
ditions of their validity are also briefly described. When selecting a suitable
criterion one should note that an unstable brittle fracture in metallic mate-
rials is usually preceded by a stable corrosion and/or fatigue crack growth
to some critical crack size. During such growth the crack always turns per-
pendicularly to the direction of maximal principal stress, i.e., to the opening
mode I loading. This physically corresponds to minimization of both the crack
closure (see Chapter 3 for more details) and the friction so that the rough
crack flanks behind the tortuous crack front do not experience any significant
sliding contact. Because the crack-wake friction is responsible for somewhat
higher fracture toughness values measured under remote sliding modes II and
III when compared to those under mode I [164], one can consider an approx-
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imate equality KIc ≈ KIIc ≈ KIIIc along tortuous crack fronts of remote
mode I cracks. Moreover, first unstable pop-ins at these fronts follow, most
probably, the local planes of already pre-cracked facets. Consequently, the
simplest stability criterion

Geff = GI +GII +GIII ,

can be accepted, where Geff is the effective crack driving force. An almost
equivalent relation is often used in terms of stress intensity factors:

Keff =

√
K2
I +K2

II +
1

1− ν
K2
III . (2.7)

For example, in the case of a long straight crack with an elementary kinked
tip, it simply reads

Keff = cos2(θ/2)KI , (2.8)

where θ is the kink angle. One can clearly see that Keff < KI for θ > 0.
This inequality generally holds for any spatially complex crack front. Hence,
the local stress intensity Keff at such a front is always lower than the re-
mote KI -factor applied to a straight (smooth) crack of the same macroscopic
length. The geometrically induced shielding (GIS) effect belongs, according
to Ritchie [165], to so-called extrinsic shielding mechanisms. The resistance
to crack propagation in fracture and fatigue has, in general, many compo-
nents that can be divided into two main categories: intrinsic and extrinsic
toughening. The first mechanism represents the inherent matrix resistance in
terms of the atomic bond strength or the global rigidity, strength and duc-
tility. Appropriate modifications to both the chemical composition and the
heat treatment are typical technological ways to improve the intrinsic fracture
toughness. On the other hand, processes like kinking, meandering or branch-
ing of the crack front, induced mostly by microstructural heterogeneities,
belong typically to the extrinsic toughening mechanisms. They reduce the
crack driving force and, apparently, increase the intrinsic resistance to crack
growth. Thus, the measured fracture toughness can be expressed as a sum of
the intrinsic toughness and extrinsic components:

KIc = KIci +
∑

KIce. (2.9)

The standardized procedure for calculation of KIc-values [166] assumes a
planar crack with a straight front and, therefore, does not take the extrinsic
shielding effect associated with the crack microgeometry into account. Hence,
surprisingly high KIc-values might be measured, particularly for materials
with coarse microstructures and highly tortuous cracks. General expressions
for GIS contributions in both brittle and quasi-brittle fracture were derived
in [167, 168] by following the approach first introduced by Faber and Evans
[169]. In the case of brittle fracture
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KIci =

(
ḡeff ,r
RA

)1/2

KIc, (2.10)

where KIc and KIci are respectively the measured (nominal) and intrinsic
values of fracture toughness, ḡeff ,r

1/2 = k̄eff ,r is the mean effective k-factor
for the tortuous crack front, normalized to the remote KI (keff ,r = Keff /KI),
and RA is the area roughness of the fracture surface. Equation 2.10 can be
derived by the following simple reasoning.

Let us consider a cracked body of a thickness B with an intrinsic resistance
GIci against the crack growth under remote mode I loading. The coordinate
system x, y, z is related to the crack front in the usual manner (Figure 2.1).
The straight crack front with no geometrical shielding (GIS) represents a
trivial case. Here, obviously, the measured fracture toughness value GIc (or
KIc) is equal to its intrinsic value, i.e., GIc ≡ GIci (or KIc ≡ KIci).
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Figure 2.1 Scheme of the tortuous crack front and its segment. Reprinted with
permission from John Wiley & Sons, Inc. (see page 265)

When the crack front is microscopically tortuous, a variable local mixed-
mode 1+2+3 characterized by geff or keff values is present generally at each
site along the crack front. During the external loading under increasing re-
mote value GI , the proportionality geff ∼ GI or keff ∼ KI must be valid.
Thus, the ratio geff ,r = geff /GI can be introduced as independent of GI but
dependent on the crack front tortuosity. Let GuI be the remote crack driving
force at the moment of an unstable elementary extension dx of the crack
front. This value is equal to the conventionally measured (nominal) fracture
toughness GIc. Then the nominal elementary energy release rate due to the
creation of a new crack surface area dxdz is equal to GuIdxdz. However, the
actual (local) elementary energy release rate at the tortuous crack front is

geff dxdz = geff ,rGuIdxdz.
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Consequently, the total energy available for the creation of a new surface
area Bdx along the crack front can be written as

dW = GuIdx

B∫

0

geff ,rdz. (2.11)

As follows from Figure 2.1, however, the real new elementary surface area
dS = RABdx is greater than Bdx since

RA =
1

B

B∫

0

dz

cosφ(z) cosϑ(z)
. (2.12)

In Equation 2.12,RA is the roughness of the fracture surface and dxdz/(cosφ cosϑ)
is the area of the hatched rectangle in Figure 2.1. Because GIci is the intrinsic
resistance to crack growth, the total fracture energy must be

dW = GIcidS = GIciRAB dx. (2.13)

Combining Equations 2.11 and 2.13 and denoting

ḡeff ,r =
1

B

B∫

0

geff ,rdz,

one obtains

GuI ≡ GIc =
RA
ḡeff ,r

GIci. (2.14)

In general, GIc ≥ GIci since ḡeff ,r ≤ 1 and RA ≥ 1. Therefore, the
nominally measured fracture toughness GIc is usually higher than the in-
trinsic (real) matrix resistance GIci. According to the relation GIc/GIci =
(KIc/KIci)

2, Equation 2.14 can be eventually rewritten to obtain Equation
2.10.

Values of ḡeff ,r and RA must be estimated by using numerical (or ap-
proximate analytical) models of the real tortuous crack front combined with
appropriate experimental methods for fracture surface roughness determina-
tion. In Sections 2.1.2 and 2.1.3, the so-called pyramidal- and particle-induced
models are presented. In the context of 2D crack models, the tortuosity is usu-
ally described by a double- or even single-kink geometry and RA = 1/ cos θ
is assumed. In the 2D single kink approximation at Equation 2.8, the crack
front is assumed to be straight (RA = 1). Consequently, Equation 2.10 takes
the following form:

KIci = cos2(θ/2)KIc.
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Besides both the kinking and the meandering, the crack branching can also
take place especially in the case of intergranular fracture. This process causes
further reduction of SIF ahead of the crack tip and, therefore, Equation 2.10
is to be further modified. According to [170], the crack branching reduces the
local SIF approximately to one half of its original magnitude. Let us denote
Ab the area fraction of the fracture surface influenced by crack branching.
When accepting a linear mixed rule, Equation 2.10 can be then modified as

KIci =

((
ḡeff ,r
RA

)1/2

(1−Ab) + 0.5Ab

)
KIc. (2.15)

The area Ab can be determined by measuring the number of secondary
cracks (branches) occurring on fracture profiles prepared by polishing met-
allographical samples perpendicular to the fracture surface [171] (see also
Section 3.2). Twice the sum of projected lengths of branches into the main
crack path divided by the true crack length yields a plausible estimate of Ab.

When omitting the crack branching and considering Equations 2.9 and
2.10, the extrinsic GIS component of fracture toughness can be simply ex-
pressed as KIce = (1−√ḡeff ,r/RA)KIc. Brittle fracture in metallic materials
occurs only when a pure cleavage or intergranular decohesion takes place. In
these cases the extrinsic components other than geometrical (such as zone
shielding or bridging) can be neglected. In the particular case of cleavage
fracture (bcc metals at very low temperatures) one usually observes that
RA < 1.2 and ḡeff ,r > 0.9. This means that GIS is rather insignificant. On
the other hand, the extrinsic component KIce might be very high when the
intergranular fracture cannot be avoided (strong corrosion or hydrogen assis-
tance, grain-boundary segregation of impurities and tempering embrittlement
of high-strength steels). In that case, however, the favourable effect of the ex-
trinsic component is usually totally destroyed by an extreme reduction of the
intrinsic component KIci. Nevertheless, one can still improve the fracture
toughness of both metals and ceramics by increasing the extrinsic (shielding)
component without the loss of general quality in mechanical properties (see
Sections 2.1.2, 2.2.2 and 3.2.6).

2.1.2 Pyramidal Model of Tortuous Crack Front

A plausible assessment of the GIS effect is possible only when the following
steps can be realized:

1. building of a realistic model of the crack front based on a 3D determination
of fracture surface roughness;

2. calculation of local normalized stress intensity factors k1r, k2r and k3r
along the crack front;

3. calculation of the effective stress intensity factor keff ,r.
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The first step can be achieved by the 3D reconstruction of fracture mor-
phology. The second problem can be solved, for example, by using the soft-
ware package FRANC3D based on the boundary element method [172]. The
third step is solvable by standard mathematics. A nearly exact numerical so-
lution by means of the FRANC3D code is, however, usually extremely time
consuming. Therefore, a simple pyramidal model of the crack front was pro-
posed for approximate analytical estimations [168, 173]. This model is based
on a pyramid-like periodic approximation of the tortuous crack front, each
element of which is characterized by the twist angle Φ and the highest tilt
angle Θm towards the macroscopic crack plane; see Figure 2.2.

�
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�pp/
2

�pl

Figure 2.2 A periodic element of the pyramidal model of tortuous crack front

The profile roughness RL (measured along the crack front) and the pe-
riodicity λpl (λpp) measured parallel (perpendicular) to the crack front are
associated with the angles Φ and Θm by the following simple equations:

λpp tanΘm = λpl tanΦ, RL = cos−1 Φ. (2.16)

The characteristic periodicities λpl and λpp can be determined either by the
Fourier analysis of roughness profiles measured at appropriate locations on
the fracture surface, or simply identified with a characteristic microstructural
periodicity, e.g., with the mean grain size. The effective stress intensity factor
keff ,r (normalized to the remote KI factor) at each point of the pyramidal
front can be calculated by using Equation 2.7 with the following approximate
analytical expressions for local stress intensity factors:

k1r = cos

(
Θ

2

)[
2ν sin2 Φ+ cos2

(
Θ

2

)
cos2 Φ

]
,

k2r = sin

(
Θ

2

)
cos2

(
Θ

2

)
,

k3r = cos

(
Θ

2

)
sinΦ cosΦ

[
2ν − cos2

(
Θ

2

)]
.

(2.17)

The results calculated according to Equation 2.17 are sufficiently accurate
provided that λpp � 2a, where a is the pre-crack length. The global effective
factor k̄eff ,r, averaged for the periodic crack front geometry composed of
identical pyramidal elements, can then be computed as
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k̄eff ,r =
π − 2

2Θm(2RL + π − 4)

Θm∫

−Θm

(
k21r + k22r +

k23r
1− ν

)
dΘ. (2.18)

Comparison of results obtained by means of the pyramidal model and the
FRANC3D code revealed that, in the whole range of both the surface rough-
ness and the roughness periodicity typical for real intergranular surfaces, the
difference lies within the 10% of error band [168]. Although the pyramidal
model yields very promising results predominantly in the case of intercrys-
talline fracture (see Section 2.2.2), it can also be quite successfully applied
to other brittle fracture modes, as shown in the next section.

2.1.3 Fracture Toughness of Particle Reinforced Glass
Composite

Traditional ceramic materials such as glass or porcelain possess amorphous
microstructures. An absence of crystallographically conditioned dislocations
makes these materials extremely brittle. However, the very low intrinsic frac-
ture toughness of glass in the range KIci ∈ (0.5, 1)MPam1/2 may be im-
proved, for example, by reinforcing with second constituents with high mod-
ulus, high strength and/or high ductility in the form of fibres, whiskers,
platelets or particulates embedded into the matrix [174, 175]. A success-
ful example of ceramic platelet reinforcement of glass is the borosilicate
glass/Al2O3 platelet composite that was first introduced by Boccaccini et
al. [176]. Based on this system, environmentally friendly and cost-effective
materials can be produced as alumina platelets for the building industry or as
abrasives for the polishing industry. The enhancement in fracture toughness
can be ascribed here to four concurrent phenomena [176–180]: the Young’s
modulus increment resulting from the platelets addition (the intrinsic com-
ponent), the presence of a compressive residual stress in the glass matrix,
the crack tip shielding produced by platelets and the crack deflection mech-
anism (extrinsic components). The shielding effect is a result of local mixed-
mode I+II+III induced by rigid particles surrounding the crack tip. The
crack deflection is forced particularly by a necessity to bypass rigid parti-
cles when searching the direction of the highest crack driving force (com-
pare Section 2.2.1). This leads to a zig-zag crack propagation in between
the platelets (crack tortuosity) and a reduction of the crack driving force in
comparison to that of the straight crack. This must be associated with an
enhanced microroughness of fracture surfaces. A direct correlation between
the roughness of the fracture surface and the fracture toughness of dispersion
reinforced ceramic and glass composites has been suggested and experimen-
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tally proved [180–182]. Because these systems provide an excellent possibility
to verify theoretical GIS models, quantitative assessments of all the above-
mentioned intrinsic and extrinsic effects have been performed [183,184]. More-
over, extended experimental analysis of fracture toughness, fracture surface
roughness and microstructure was performed on samples made of borosilicate
glass containing different volume fractions of alumina platelets.

2.1.3.1 Experimental Procedure and Results

The experimental glass matrix composite was fabricated via powder technol-
ogy and hot pressing. Alumina platelets of a hexagonal shape, with major
axes between 5 − 25 μm and axial ratio of 0.2, were used. The commercially
available borosilicate glass was selected for the composite matrix. The mi-
crostructure of specimens containing 0, 5, 10, 15 and 30 vol.% of platelets [176]
consisted of a dense glass matrix with a more or less homogeneous distribu-
tion of platelets. A strong bond between the matrix and the platelets was
confirmed by transmission electron microscopy [185]. Upon cooling from the
processing temperature, the thermal expansion mismatch between matrix
and reinforcement induces tangential compressive and radial tensile residual
stress in the matrix around the particles. Fracture toughness values were
obtained using test pieces of a standard cross-section (3 × 4mm2) with the
chevron notch machined by an ultra thin diamond blade. A Zwick/Roell
electromechanical testing machine was utilized for the three-point bending
test with a span of 20mm. Scanning electron microscopy (SEM) was used
for the fractographic analyses of fracture surfaces. Roughness parameters
were measured by the optical profilometer MicroProf FRT based on a chro-
matic aberration of its lens. The device works with vertical resolution of 3 nm
and lateral resolution of about 1μm. A three-dimensional reconstruction of
surface topography was performed by means of the software Mark III. The
surface roughness was quantified by the average area roughness, RA, defined
on the basis of the ISO 4278 norm as the arithmetic mean of the deviations
of the roughness profile from the central line. The profile roughness RL, de-
fined in a standard manner as the true profile length divided by its projected
length, was also determined. The profiles obtained from 3D fracture surface
morphology quantification were subjected to Fourier analysis in order to de-
termine the characteristic periodicities λpp and λpl. The measured values for
all specimens are displayed in Table 2.1.

Note that values of λpp are an order of magnitude lower than the double-
length of the pre-crack (2a = 4mm) which ensures a reasonable validity of
the pyramidal model.

Dependencies of both the relative area roughness Rr = RA(X%)/RA(0%)
and the average fracture toughness on different alumina platelet volume con-
tents (X%) are shown in Figure 2.3. It is seen that both curves increase
linearly with increasing content of alumina platelets in the matrix approx-
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Table 2.1 Characteristics of the pyramidal model related to tortuous cracks in mea-
sured specimens

Al2O3 (vol.%) RL λpp [μm] λpl [μm] Θm k̄eff ,r

0 1.011 373 114 0.0455 0.983
5 1.053 412 171 0.3178 0.924

10 1.199 102 32 0.2040 0.763
15 1.115 341 170 0.2410 0.719
30 1.229 102 128 0.7311 0.714

Figure 2.3 Dependence of the relative surface roughness and the fracture toughness
on the volume content of alumina platelets in the glass matrix. Reprinted with
permission from Elsevier B.V. (see page 265)

imately up to X = 15%. The increase in roughness is, unlike that of the
fracture toughness, effectively stopped at higher platelet contents. This also
means that other mechanism(s) should be acting to counteract the loss of
effectiveness of crack deflection here. Typical examples of reconstructed frac-
ture surfaces obtained from the profilometric measurement for both 0 and 30
vol% of alumina platelets are depicted in Figure 2.4. It is evident that the
fracture surface roughness was significantly increased when alumina platelets
were incorporated into the borosilicate glass matrix.

At the highest volume fraction of alumina platelets (30 vol%), however,
platelet clusters are already observed as shown in Figure 2.5. It seems to be
plausible that the crack front interacts with the whole cluster rather than
with all its individual platelets. Thus, some particles inside clusters do not
directly contribute to the crack front deflection (the surface roughness).
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(a) (b)

Figure 2.4 Three-dimensional reconstructed fracture surfaces for 0 and 30 vol% of
alumina platelets. Reprinted with permission from Elsevier B.V. (see page 265)

Figure 2.5 Clusters of platelets in the sample with 30% reinforcement volume.
Reprinted with permission from Elsevier B.V. (see page 265)

2.1.3.2 Theoretical Assessment of the Shielding Effect

Besides the roughness-induced shielding (RIS), the crack tip shielding caused
by surrounding rigid particles has to also be considered. This effect can be
approximately assessed according to results reported in [178, 183]. In these
works, the shielding effect produced by rigid circular particles was analyzed
in the frame of the 2D ANSYS model based on the finite element method.
The presence of such inclusions generally induces the mixed-mode I+II at
the tip of the straight crack.

The rigid particles possessed 20 times higher Young’s modulus than the
matrix. Particles of different sizes (diameter d = 6, 12, 30, 60, 120, 240μm),
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spaced by l = 30, 60, 90, 120 μm, were considered. Moreover, geometrically
identical particles of negligibly small moduli (holes) were also studied for
comparative reasons. Note that the range d/l ∈ (0.1, 3) corresponds to the
particle volume fraction fp ∈ (0.04, 25)%. Several thousands of possible po-
sitions of the crack tip were analyzed within an investigated area in between
a pair of spherical particles, according to the scheme in Figure 2.6. This area
was long enough to incorporate the influence of further neighbouring pairs
of particles (behind and ahead of the investigated area, dashed lined) which
were not explicitly considered in the analysis.

x x
y

y

(a) (b)

Figure 2.6 The scheme related to the model of particle-induced crack tip shielding:
(a) position of the investigated region in the testing sample, and (b) detail of the
region (black rectangle) and circular particles

This enabled us to generalize the results to a periodic square network of
particles by multiplication of normalized effective SIFs in the points which lie
within both the left-hand and the right-hand parts of the investigated region
and are associated owing to the translation periodicity.

The effective SIF (keff ,r =
√
k2I,r + k2II,r) was used to assess the effective

crack driving force. Averaged values of k̄eff as functions of the ratio d/l for
all analyzed types of particles are displayed in Figure 2.7. One can see that
the rigid inclusions start to produce some shielding after reaching the critical
value (d/l)c = 0.2 (or fpc = 0.5%). Then the normalized effective k-factor
rather slowly drops to the value of 0.9 that corresponds to (d/l) = 3 (or
fp = 25%). Practically the same decrease was identified in the case of holes.
Here, however, the drop was shifted to a higher critical value (d/l)c = 1 (or
fpc = 6.5%). Despite this rather slight difference, the shielding effect of both
rigid particles and holes appeared to be similar.

In order to asses the RIS, the pyramidal model was applied in the first
approximation by using the roughness characteristics from Table 2.1. The
dependence of the relative fracture toughness KIc(X%)/KIc(0%) (where
KIc(0%) = KIci = KIcm), calculated using Equations 2.16, 2.17 and 2.18,
on the volume fraction of Al2O3 platelets is plotted by the dashed line in
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Figure 2.7 Averaged values of the effective stress intensity factor as a function of
the particle size/spacing ratio for all analyzed types of particles

Figure 2.8 along with the experimental data. As expected, the maximal pre-
dicted relative increase of 40% in the fracture toughness cannot fully explain
the real improvement of 120% that was achieved by the 30% volume fraction
of platelets.

Figure 2.8 Theoretical curves of the relative fracture toughness as functions of the
percentage of Al2O3 particles in comparison with experimental data. The full line
shows the theoretical prediction including all considered corrections
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Indeed, one must also consider the decrease in the crack driving force
related to both the increase in Young’s modulus and the shielding induced
by platelets [177]. The increase in fracture toughness due to the increase in
Young’s modulus can be calculated from

KIc

KIcm
=

√
E

Em

Gc
GIcm

, (2.19)

where E is Young’s modulus of the composite and Em = E(0%) is Young’s
modulus of the matrix, the values of which are given in Table 2.2 [176]. The
improved prediction (RIS+E) including this effect is shown by the dotted
line in Figure 2.8.

Because the difference in shielding produced by rigid particles and holes
was found to be negligible, one can use the result plotted in Figure 2.7 as a
further correction of the theoretical curve. By considering the relevant volume
fractions of experimental samples (the value k̄eff ,r = 0.9 was used for X =
30%), the final theoretical prediction (RIS+E+PS) is shown by the full line
in Figure 2.8.

Table 2.2 Young’s moduli of borosilicate glass matrix composite containing different
volume fractions of Al2O3 platelets

Platelets content [vol.%] E [GPa]
0 63
5 65

10 70
15 79
30 102

One can see that the agreement between theory and experiment is reason-
able.

A somewhat more complex and exact model was proposed by Kotoul et
al. [184]. This model considered several additional toughening mechanisms,
such as compressive residual stresses or crack front trapping at platelets that
may be effective in these composites. Moreover, it could explain the experi-
mental fact that the fracture roughness ceased to increase from about 15vol%
of Al2O3. The model follows from the theory of particle-induced crack de-
flection that was developed by Faber and Evans. However, some errors in
the expression for the strain energy release rate, appearing in their original
paper [169], had to be corrected. After relevant modification, the following
equation for the normalized effective crack driving force was obtained:
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Here Θ is a tilt angle and Φ is a twist angle of crack front elements induced
by their interaction with platelets. Note that Equation 2.20 possesses the
required limiting properties, i.e.,

lim
φ→π/2

geff ,r → 0, lim
φ→0

geff ,r → cos4
θ

2

which was not the case in the originally derived expressions in [169]. De-
tails concerning the calculation of the averaged crack driving force ḡeff ,r can
be found elsewhere [184]. This solution also involves the contribution of the
change in Young’s modulus according to Equation 2.19. The theoretical pre-
diction was in very good agreement with experimental data. This result re-
vealed that, most probably, the contributions of residual stresses as well as
crack trapping could be negligible. Indeed, as shown in [184], the presence of
high residual radial tensile stresses along the platelet circumference leads to
crack front propagation around the particle to relieve these stresses (no crack
trapping). Simultaneously, however, the segment of the crack front propa-
gating through the matrix is shortened and the corresponding twist angle
decreases which results in flattening of the crack front in the matrix. This
raises the energy release rate ḡeff ,r and makes it easier for the crack prop-
agation in the tangential compressive stress field within the matrix. As a
result, the net toughening increment given by ḡeff ,r remains unchanged and
the residual stress contribution also does not take any effect.

Taking the above-mentioned considerations into account, the peculiar oc-
currence of a plateau in the plot of fracture surface roughness as a function
of platelet volume fraction (Figure 2.3) can also be elucidated. There are
two contributions to the surface roughness related to (1) crack propagation
around the platelets and (2) crack propagation within the matrix. The for-
mer grows with increasing platelet concentration. The latter decreases with
increasing platelets concentration because the fracture surface in the matrix
flattens. Moreover, due to clustering of platelets, their vicinity becomes less
effective at deflecting cracks and, as a result, the corresponding contribution
to the surface roughness further decreases. Beyond about 15% volume frac-
tion of platelets, the positive and the negative contributions to the surface
roughness mutually compensate and the increase in surface roughness stops.

In summary, one can say that the models based on coupled shielding effects
are able to elucidate quantitatively the increase in fracture toughness caused
by particle reinforcement of glass-based ceramics.
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2.2 Quasi-brittle Fracture

Microscopically smooth cleavage cracks, observed in ferrite at very low tem-
peratures, possess the surface energy of 14 Jm−2 which is much higher than
that of about 1 Jm−2 related to the lower-bound benchmark for ideal cleav-
age cracks. A satisfactory explanation gives the cleavage mechanism based
on alternative short-range dislocation slip proposed by Knott [186]. A pair of
(1/2)〈111〉(11̄0) and (1/2)〈11̄1̄〉(110) edge dislocations are emitted from the
cleavage crack front [010] to a distance of several Burgers vectors to produce
an elementary crack advance in [100] direction. After that advance the dis-
locations immediately disappear on newly created surfaces as a consequence
of attractive mirror forces. In this way, microscopically flat fracture surfaces
with neither slip markings nor dislocations in their vicinity might be pro-
duced. The fracture energy associated with that process can be assessed as
12 Jm−2 which is close to the above-mentioned experimental value.

However, this kind of perfectly smooth cleavage crack is the exception
rather than the rule. The cleavage fracture in metallic materials is, even at
low temperatures, usually accompanied by clear microscopic traces of local
plastic deformation. The so-called steps, tongues and fishbones are produced
by interaction of the crack front with dislocation tangles or twins [187]. The
most typical morphological features are so-called river markings that are
created by shear connections of steps originating at grain boundaries with
non-zero twist component. They are enforced by a necessity of gradual re-
initiation of the cleavage crack when penetrating to a twisted cleavage plane
in the adjacent grain (see Figure 2.9). In metallic materials, therefore, at
least a small plastic zone at the crack tip is always to be expected. Even in
the case of intergranular fracture along strongly weakened grain boundaries,
at least several percent of cleavage and/or dimple fracture facets are always
present on the fracture surface. This experimental observation was proven by
a theoretical model [188] showing that a pure intergranular crack front would,
during its advance, require higher tortuosity and more spatial geometrical
complexity [189]. This would demand a steadily increasing fracture energy to
a unit projective area. Consequently, at rather early crack growth stages, the
cleavage of some of the largest grains becomes more energetically favourable
than their intergranular decohesion. Thus, the fracture morphology of quasi-
brittle cracks consists of a mixture of intergranular facets (microscopically
tortuous) and transgranular cleavage or dimple facets (microscopically nearly
straight). The intergranular, cleavage and dimple fractures represent brittle,
quasi-brittle and ductile components of the fracture process, respectively.
Thus, in spite of a macroscopically brittle appearance, the fracture processes
in metallic materials are to be considered as quasi-brittle.

It is well known that LEFM can be successfully used for the description
of quasi-brittle fracture only when the plastic zone size



2.2 Quasi-brittle Fracture 89

Figure 2.9 A typical picture of river markings on cleavage facets (mild steel)

rp =
1

ξ

(
K

σy

)2

, (2.21)

where ξ ≈ 2π, is very small in comparison to the crack length a and the thick-
ness B of the component. Under such conditions of small-scale yielding and
plane strain the laboratory tests of fracture toughness KIc remain more or
less invariant with respect to both the specimen shape and the crack location.
Indeed, the elastic-plastic stress-strain behaviour of even very ductile mate-
rials becomes quasi-brittle inside the small plastic zone (see Section 2.3.2).
When also taking the constraint effect into account, which means comparable
values of T-stress (the second term in the Williams expansion) depending on
the ligament w between the crack tip and the free surface of the specimen and
the component, the KIc values obtained in the laboratory tests can be more
safely transferred to large engineering components [190, 191]. However, the
plastic zone size is also an important quantity with respect to the microscopic
mode of crack propagation that is affected by materials microstructure. In
that respect, naturally, it should be related to a characteristic microstruc-
tural distance d, e.g., to the grain (particle) size or interparticle (interphase)
spacing. Such a parameter is called the size ratio. Similarly to the brittle frac-
ture case shown in Section 2.1, the microscopic mode of crack propagation
might also have a strong impact on the resistance to unstable crack growth
in the case of quasi-brittle failures. In this connection, the size ratio plays a
very important role. This will be demonstrated in the next subsections in a
theoretical as well as an experimental manner.
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2.2.1 Statistical Approach to Geometrical Shielding
Based on Size Ratio Effect

A lot of experimental evidence about the special role of the size ratio
SR = d/rp was collected during the last three decades of fracture and fa-
tigue research. Hitherto, only the mean values dm or SRm = dm/rp were
usually taken into consideration. Numerous experiments [192–194] revealed
that the crack path is particularly influenced by microstructure (grain bound-
aries, phase boundaries, precipitates, inclusions) when the plastic zone size is
comparable to or smaller than the mean characteristic microstructural dis-
tance, i.e., when SRm ≥ 1. Microscopically tortuous, intergranular or crystal-
lographic fracture morphology is predominantly observed under these circum-
stances. On the other hand, the crack path becomes insensitive to microstruc-
ture when the plastic zone size embraces many microstructural elements, i.e.,
when SRm � 1. In this case, ductile dimples or non-crystallographic quasi-
cleavage are observed on rather smooth and straight transgranular fracture
surfaces. In fatigue, many authors [195–197] reported the maximum percent-
age of intergranular facets at those sites of the fracture surface, where the
cyclic plastic zone size was exactly equal to the mean grain size (SRm ≈ 1).

The theory of yield stress gradient effects in inhomogeneous materials
(e.g., [198]) or the discrete dislocation models in fatigue (e.g., [199]) yield a
general basis for elucidation of the above-mentioned phenomena. According
to the former theory, the interaction between the crack tip and the near-
inhomogeneous region becomes significant only when SRm ≥ 1. Following
this interaction, the crack will either circumvent high-strength heterogeneity
or deflect to the low-strength one. Similarly, the discrete dislocation models
reproduce well the strong interaction of crack tip with grain boundaries when
the crack tip plasticity is constrained within one or a small number of grains.
Once the plastic zone size becomes much higher than the mean grain size,
the interaction effects decay and the crack growth rate starts to be quite un-
affected by the microstructure. The maximum of intergranular morphology
at SRm ≈ 1 in fatigue can be explained by considering intergranular (or in-
terfacial) misfit strains [168]. If the above condition holds, grains of the mean
size closely adjacent to the fatigue crack front become, unlike their neigh-
bours (more distant to the crack front), cyclically plastically deformed. The
related cyclic mismatch stresses at boundaries between neighbouring grains
can preferentially lead to intergranular (or interphase) relaxation cracking.
Due to only slightly asymmetric Weibull (or log-normal) probability density
of the grain size in metallic materials [200–202], the grain sizes close to the
average are the most probable ones. Thus, the large strain mismatch caus-
ing intergranular fracture becomes most probable just when the condition
SRm ≈ 1 becomes fulfilled at the advancing fatigue crack front.

In most engineering materials, the scatter of both the grain size and the
particle spacing causes variation of the parameter d within more than two
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orders of magnitude along the crack front. On the other hand, a sharp de-
crease of the stress with distance from the crack front leads to localization
of the plastic deformation within a narrow zone of approximately constant
width along the whole crack front. Therefore, the plastic zone size follows the
Hall–Petch rule in terms of the mean grain size and the yield stress [203], and
remains rather invariable along the crack front with the exception of plane
stress regions close to free specimen surfaces. As a consequence, the size ratio
SR follows the grain size distribution and varies in a wide range along the
crack front inside the specimen. In other words, there are many sites at the
crack front where SRm � 1 or SRm ≥ 1 is to be expected. However, only the
latter locations contribute to the microscopic tortuosity that induces GIS,
while the effect of the former ones can be neglected. Therefore, the statistical
approach seems to be the most relevant way to describe the GIS effect in
quasi-brittle materials.

Figure 2.10 Probability density function p(SR) in terms of the size ratio SR. The
ratio of hatched and white areas under the curve determines the probability of finding
a geometrically shielded element at the crack front

The basic idea of the statistical approach, first introduced in [200], lies in
an assumption that the microstructural elements can be simply divided into
two main categories of low and high SR. It means that the low SR part of the
probability density function does not influence the shielding phenomenon that
is controlled by the high SR part. This is clearly seen in Figure 2.10, where
the area under the probability curve is divided into two parts. Only elements
falling into the hatched part contribute to the shielding effect at the crack
front. The SR value determining the boundary between both parts is denoted
by SRc. The two-part concept is introduced for the sake of both clarity and
simplicity because, in fact, some transient range must exist. The SRc value
is expected to vary, for example, with the impurity concentration at grain
boundaries in a particular material: Because of generally higher probability
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of intergranular cracking, the higher the impurity concentration the lower
SRc value is to be assumed. Therefore, this value is to be considered as a
free (fitting) parameter in the statistical analysis. Nevertheless, it should lie
somewhere within the transient range SRc ∈ (0.2, 1.0).

Denoting the probability density function p(SR), the relative length of the
crack front contributing to GIS can be expressed as

η =

∞∫

SRc

SRp(SR)dSR.

In other words, the parameter η means the probability of finding a shielded
element at the crack front. This statistical parameter is suggested to be a
suitable measure of the GIS efficiency and will be used in further analysis.
For a particular material, the value of η can be calculated when determining
both the yield stress σy from the tensile test (in order to estimate rp according
to Equation 2.21) and the statistical distribution of d from the metallographic
sample. Fortunately, the two-parameter (ξ, SRm) Weibull distribution, where
ξ ≈ 2.2, can be successfully used for all engineering materials [200, 201].
Consequently, one can easily show [11, 204] that the parameter η can be
estimated on the basis of the yield stress and the mean grain size only:

η = exp

[
−
(
0.886 rp
dm

)2.2
]
. (2.22)

The portion pt of tortuous intergranular or crystallographic morphology of
the fracture surface can be experimentally determined by using SEM. Indeed,
such morphology is clearly different from that of rather straight transgranu-
lar facets (quasi-cleavage or ductile dimples). The tortuous part can also be
distinguished by topographical methods utilizing various roughness parame-
ters (see Section 3.1 in more detail). Note that, according to the Cavallery
principle [201], the area-based value of pt is equal to the tortuous portion of
crack front. As shown above, however, this portion can also be assessed by
setting pt = η. Let us assume the proportional rule for a mix of the tortuous
and straight morphology, and note that the probability of finding the tortu-
ous element of the crack front (which produces shielding) is equal to η. Then
the following modification of Equation 2.15 can be utilized:

KIci =

[
1− η + η

((
ḡeff ,r
RA

)1/2

(1 −Ab) + 0.5Ab

)]
KIc. (2.23)

Obviously, Equation 2.23 reduces to Equation 2.15 for η = 1 (pure brittle
mode, GIS along the whole crack front), to Equation 2.10 for η = 1 and
Ab = 0 (GIS along the whole crack front, no branching) or to the identity
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KIci = KIc for η = 0 (pure quasi-cleavage and/or ductile mode, no GIS).
The term in the square brackets is called the static shielding factor [168,171].

2.2.2 Anomalous Fracture Behaviour of
Ultra-high-strength Steels

An interesting application example of the statistical approach is a quantita-
tive interpretation of the peculiar fracture behaviour of ultra-high-strength
low-alloy (UHSLA) steels. During the 1970s and 1980s, many authors (e.g.,
[193, 205–208]) reported an unexpected increase in fracture toughness with
increasing prior austenite grain size (or austenitizing temperature). This is
clearly documented by the experimental data of various authors in Fig-
ure 2.11, where the mean prior austenite grain size is varied over a wide
range dm ∈ 〈5, 265〉μm. On the other hand, the impact absorbed energy, as
expected, dramatically decreased as shown in Figure 2.12 for the US military
300M steel (AISI 4340 with enhanced silicon content). Such contradictory be-
haviour is rather exceptional since values of fracture toughness and absorbed
energy are usually well correlated [209].

Figure 2.11 Fracture toughness of UHSLA steels as a function of the mean prior
austenite grain size dm. Reprinted with permission from John Wiley & Sons, Inc.
(see page 265)

This anomalous behaviour could be explained in a satisfactory manner
only after recognizing the difference in fracture modes between fine- and
coarse-grained steel grades [210]. While the fine-grained samples exhibited a
transgranular dimple fracture morphology, the coarse-grained ones fractured
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Figure 2.12 Experimental data of the absorbed impact energy in dependence on
the mean prior austenite grain size

by intergranular decohesion along prior austenite grain boundaries as docu-
mented in Figure 2.13 for the 300M steel. Thus, during the measurement of
fracture toughness KIc, the short stable stage of intergranular crack growth
in coarse grained specimens was accompanied by a high level of GIS at the
fatigue pre-crack tip. However, the first models [210–212] that attempted
to estimate quantitatively the GIS level were only partially successful. The
reasons were their two-dimensional and deterministic characters. Only the
subsequent, statistically based approaches [168,213] have led to very reason-
able agreement between the theory and experiment. The statistical parameter
was determined using Equation 2.22 and the fracture toughness KIc was as-
sessed according to Equations 2.18 and 2.23 (Ab = 0). Nearly the same value
of the yield stress was measured for all microstructures since this value is
controlled by the martensitic matrix (not by the prior austenite grain size).
Thus, σy = 1500MPa and SRc = 0.5 were considered in the calculations
of GIS. The computed values of η are plotted as a function of the mean
austenite grain size dm in Figure 2.14. This function reproduces very well the
fraction of intergranular morphology of samples with different mean grain
size. In particular, specimens having dm < 20 μm fractured in a pure trans-
granular dimple mode, whereas for those of dm > 150 μm the fracture was
fully intergranular.

The characteristic periodicities λpl and λpp in the pyramidal model were
identified with the mean austenite grain size and RA = 1.6 was used as a
typical value for intergranular fracture surfaces [214]. The identity KIci =
52MPam1/2 that corresponds to the fracture toughness of steels with finest
grains (no GIS) was accepted for all steel grades. Indeed, owing to the extreme
purity of UHSLA steels, the intrinsic fracture toughness associated with both
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(a)

(b)

(c)

Figure 2.13 Fracture surface morphology of three grades of 300M steel: (a) trans-
granular (dm = 20 μm), (b) mixed trans-intergranular (dm = 70 μm), and (c) inter-
granular (dm = 120 μm). Reprinted with permission from John Wiley & Sons, Inc.
(see page 265)
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Figure 2.14 Statistical parameter η as a function of the mean grain size dm

the intergranular decohesion and the fine dimple fracture must be nearly
equal. Finally, the dependence of the KIc values on dm could be predicted
by using the pyramidal approximation according to Equations 2.16, 2.17,
2.18 and 2.23. The result is shown in Figure 2.11 by the full curve. The
agreement between theory and experiment is very satisfactory in spite of the
fact that only two fitting parameters SRc, KIci of physically plausible values
were used in this analysis (Ab = 0). For the coarsest grades, however, the
theoretical curve lies slightly below the experimental data that exhibit the
highest scatter. This can be explained by the fact that branching of some
of the intergranular crack front segments was not taken into account in the
theoretical analysis. As can be seen from Equation 2.23, the branching term
might be responsible for the slight difference between theory and experiment
in the pure intergranular region.

Let us emphasize that the fracture mechanism in KIc specimens was quite
different from that in the notched specimens used in the impact tests for
the measurement of absorbed energy. In the latter case the crack had to be
first initiated at the notch root. Therefore, the initiation energy represented
a substantial portion of the total absorbed energy. This energy could be well
correlated with an extent of shear (stretch) zones adjacent to notches that
were clearly identified on the fracture surfaces of all specimens. These zones
indicate areas, where the crack was initiated by ductile fracture accompanied
by long-range shear coalescence of microvoids with the notch root (see Sec-
tion 2.3). The shear zones in the coarse-grained specimens were found to be
very narrow (and the related energy consumption very low) in comparison
to those in fine-grained samples, as documented in Figures 2.15 and 2.16.
This phenomenon can be understood in terms of a capability of local micro-
crack initiation at inclusions or grain (phase) boundaries. Indeed, the local
microdefect (microvoid) nucleation assisted by high local stresses ahead of
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long dislocation pile-ups in large grains must be much easier, thus reducing
the average fracture strain within the notch plastic zone.

Figure 2.15 The narrow crack-initiation shear zone at the notch (at the top) in the
coarse-grained sample

Figure 2.16 The wide crack-initiation shear zone at the notch (at the top) in the
fine-grained sample
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It should be finally noted that an improvement in fracture toughness
caused by microstructure coarsening as discussed above is usually associ-
ated with a significant decrease in most other mechanical properties [168].
Nevertheless, the increase in an extrinsic component is not necessarily al-
ways accompanied by such a detrimental effect. For example, duplex ferrite-
austenite microstructures possess extremely high components of GIS while
exhibiting other very good mechanical properties (see Section 3.2).

2.2.3 Mixed Intergranular and Cleavage Fracture of
Phosphorus-doped Fe-2.3%V Alloy

It is well known that grain boundary segregation of phosphorus, tin and an-
timony can lead to intergranular fracture. However, finding a quantitative
relationship between the segregation level and fracture toughness (or sur-
face energy) constitutes a very difficult task. Therefore, an extended study
of fracture behaviour and grain boundary chemistry in an Fe-3%Si based al-
loy, which contained traces of phosphorus, has recently been performed [215].
Even though this study provided us with unambiguous results, the data may
have suffered from the fact that both silicon and phosphorus segregate to the
grain boundaries and reduce the cohesion of the material [160]. Additionally,
due to repulsive interaction between phosphorus and silicon, a complex seg-
regation behaviour occurs (i.e., enrichment with phosphorus but depletion
of silicon) [216]. Many straightforward results in this respect could be ob-
tained by measurement of phosphorus segregation and fracture behaviour in
phosphorus-doped iron or in a ferrous alloy containing an element indiffer-
ent to phosphorus segregation. Therefore, the phosphorus-doped Fe-2wt%V
base alloy was selected [217]. Here, the austenite γ-phase was fully avoided
and the system remained bcc up to the congruent melting point. This made
it possible to grow bicrystals directly from the melt. Moreover, vanadium
does not affect the grain boundary cohesion significantly and, in addition, its
segregation is expected to be rather low. From this point of view, one may
consider this alloy as a pseudobinary Fe-P system.

Polycrystals of an Fe-2.3wt%V-0.12wt%P alloy were prepared by hot
rolling of the vacuum cast master alloy between 1070K and 1370K annealing
at 973K for 1 h so that an average grain size of 0.2mm was achieved. The
notched samples for fracture testing were annealed for interfacial segrega-
tion at 1073K (24 h), 973K (48 h), 873K (72 h) and 773K (168 h). Annealed
samples were deformed in three-point bending at room temperature using
the Zwick Z 020 testing machine. Because the validity of small-scale yielding
was not fulfilled for all samples, the fracture toughness KJc was evaluated
according to ASTM E399-72 procedure. The data are listed in Table 2.3.
It should be emphasized that force-displacement curves of all specimens ex-
hibited a short nonlinear part indicating a dislocation-assisted stable crack
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growth before the fast unstable tearing. However, this initiation stage of such
quasi-brittle fracture became negligible in cases of prevailing portions of in-
tergranular morphology on the fracture surface.

Table 2.3 Experimental data on chemical composition of grain boundaries and on
fracture behaviour of polycrystalline Fe-2.3wt%V-0.12wt%P alloy

T XΦ
P XΦ

V KJc η R∗
L KJic

[K] [at%] [at%] [MPam1/2] [MPam1/2]

773 25.3± 6.9 14.4± 9.2 24.5± 7.5 0.89 ± 0.07 4.8± 2.2 7.9± 3.6
873 17.6± 8.6 9.2± 8.0 49.0± 9.4 0.47 ± 0.14 4.6± 1.6 31.8± 10.3
973 19.4± 6.4 5.6± 5.6 66.4± 16.6 0.74 ± 0.07 5.7± 2.2 28.8± 13.7

1073 20.6± 6.7 4.4± 2.0 38.8± 14.6 0.77 ± 0.03 5.8± 0.1 14.6± 6.5

KJc – the fracture toughness, T – the annealing temperature, η – the portion of
intergranular fracture, R∗

L – the linear (profile) roughness corrected to the portion
of transcrystalline cleavage, KJic – the intrinsic fracture toughness, XP and XV –
the grain boundary concentrations of phosphorus and vanadium, respectively

Fracture surfaces of the samples were inspected by Philips XL-30 scanning
electron microscope and the portions of intergranular fracture, η, were deter-
mined (see Table 2.3). The values correspond to a close vicinity of the fatigue
crack front, i.e., to the initiation stage of the quasi-brittle fracture process.
As a rule, the η -values in the final region of unstable fracture were found to
be higher.

The composition of the grain boundaries was studied by Auger electron
spectroscopy (AES) using a Microlab 310F VG-Scientific facility equipped
with a field emission gun. Notched cylindrical samples of 5mm diameter
and 30mm length were fractured in situ by impact at about −120◦C, and
subsequently analyzed in ultra-high vacuum of 5 × 10−8Pa. To determine
the phosphorus and vanadium grain boundary concentrations, several tens of
AES analyses per sample were done at many intergranular and transgranular
facets. Typical results of the AES analysis are shown in Figures 2.17 and
2.18. In Figure 2.17(a), the intergranular facets and the analyzed points are
depicted along with related Auger spectra, where clear peaks of P, V and Fe
are visible (Figure 2.17(b)). In Figure 2.18, an example of transgranular facets
and associated spectra are presented. Note that no evidence of phosphorus
was detected on these facets. The chemical composition of the grain boundary
monolayer (see Table 2.3) was obtained from the derivative Auger peak-
to-peak heights measured at the fracture surface according to the method
published in [216].

AES measurements revealed that annealing at different temperatures re-
sults in segregation of both P and V. The temperature dependence of their
grain boundary concentrations is shown in Figure 2.19. While the concentra-
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Figure 2.17 (a) Intergranular facets with analyzed points, and (b) related Auger
spectra with clear peaks of P, V and Fe
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Figure 2.18 (a) Transgranular facets with analyzed points, and (b) related Auger
spectra without peaks of P
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tion of vanadium decreases with increasing temperature, phosphorus does not
exhibit monotonous dependence showing a minimum of segregation at 873K,
followed by a rather surprising increase with a further raising of temperature.
This behaviour clearly suggests that the segregation at lower temperatures
is far from equilibrium. This was also proven by comparison of the results
with prediction of the grain boundary composition in Fe-P and Fe-V binary
systems [218] (see the averaged experimental points and the theoretical lines
in Figure 2.19). Only the data for 1073K represent, most probably, the equi-
librium grain boundary composition. In all cases, the scatter of the data
predominantly reflects the heterogeneity of grain boundary segregation.

Figure 2.19 Concentrations XΦ
I of phosphorus (solid circles) and vanadium (open

circles) at grain boundaries of polycrystalline Fe-2.3wt%V-0.12wt%P alloy at differ-
ent temperatures. The dashed-dotted lines show predicted equilibrium concentrations
of P and V at general grain boundaries. The dotted line depicts the vanadium bulk
concentration

Analysis of the fracture surfaces revealed that the fracture process was
predominantly intergranular but accompanied by various amounts of tran-
scrystalline cleavage (Figure 2.20). Because of the very large mean grain size
of 200 μm, transgranular cleavage was observed rather than the ductile dimple
morphology, as one can predict from Equation 2.6.

The portion of intercrystalline fracture morphology, η, changes with an-
nealing temperature of the sample, i.e., with the level of interfacial segre-
gation. In Figure 2.21, the curves of the probability density vs phosphorus
concentration are plotted, where 1/N is the increment of the probability
density and N is the number of measured AES data at each temperature. It
is apparent that the experimental data are well correlated by the Gaussian
cumulative distribution function
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Figure 2.20 Fracture surfaces of polycrystalline Fe-2.3%V-0.12%P alloy annealed
at 773K and 1073 K, broken at room temperature. Typical morphology of prevailing
intercrystalline brittle fracture (η = 0.73) with several transcrystalline cleavage facets
near the fatigue pre-crack front is apparent in the middle of the fracture surface. On
the left-hand side the notch and the pre-crack are clearly visible. Reprinted with
permission from Elsevier B.V. (see page 265)

F (XP ) =

XP∫

−∞
f(ξ) dξ

for all annealing temperatures, where

f(ξ) =
1

σ
√
2π

exp

[
−1

2

(
ξ − μ

σ

)2
]
.

Here, f(ξ) is the probability density function, μ is the mean value and σ is the
standard deviation. It is assumed that transcrystalline cleavage occurs when
XP < XPc while intercrystalline fracture dominates for XP > XPc, where
XPc is some critical concentration of phosphorus. Thus, the portion of tran-
scrystalline fracture should be proportional to F (XPc). Portions of transcrys-
talline and intercrystalline fracture related to the critical value XPc = 17 at%
are plotted in Figure 2.21 by dashed lines. The curves of a predicted portion
of intergranular fracture for various selected XPc in the range of 5–20 at% P
(spline curves based on calculated points for individual annealing temper-
atures) are shown in Figure 2.22, where they are also compared with the
experimental values of η. It is apparent that the theoretical prediction for
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XPc = 17 at% P yields the best fit to averaged experimental data indepen-
dently of annealing temperature. This means that, at room temperature, all
grain boundaries containing more than about 17 at% of phosphorus fractured
in an intergranular manner. Note that the intergranular fracture at low tem-
perature of−120◦C occurs at 4–6 at% P (see Figure 2.21) which is in excellent
agreement with the recent result reported by Wu et al. [219].

Figure 2.21 Distribution curves of the grain boundary concentration of phosphorus,
XΦ

P for samples annealed at various temperatures. Experimental points are correlated
with Gaussian curves with characteristic parameters μ and σ. The vertical line marks
the critical phosphorus concentration XPc = 17at%. Portions of transcrystalline frac-
ture determined byXPc for individual annealing temperatures are given at horizontal
lines

The presence of intergranularly fractured facets induces an extreme micro-
scopic tortuosity of the crack front and, therefore, a strong GIS occurs [168].
This explains surprisingly high values of fracture toughness measured accord-
ing to the ASTM standard. These values were in the range 20−90MPam1/2.
To obtain the values of both the intrinsic fracture toughness and the fracture
energy at intercrystalline facets, the GIS effect has to be subtracted from
the measured values of KJc. A 3D analysis of fracture surface profiles was
performed close to the fatigue pre-crack front (the initiation site of inter-
crystalline fracture). A 3D reconstruction using the program code Mark III
enabled the evaluation of the profile roughness RL. An example of the tortu-
ous profile is shown in Figure 2.23. The coordinate z represents the height of
the profile and the coordinate x runs along the crack front. Because of a high
portion of transgranular fracture, the values of RL had to be corrected to
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Figure 2.22 Comparison of calculated ratios of intercrystalline fracture morphology
for selected values of XPc (5–20 at%) with experimental data (semi-solid points).
The averages of these values for individual temperatures are also shown (large filled
circles). Reprinted with permission from Elsevier B.V. (see page 265)

the portion 1−η of the transcrystalline morphology according to the relation
R∗
L = (RL − 1 + η)η. Corrected values were used to determine the intrinsic

fracture toughness, KJic, in the frame of the pyramidal model.

Figure 2.23 An example of fracture profile of intercrystalline morphology near the
fatigue pre-crack front
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The calculated values of KJic are plotted as a function of η in Figure 2.24.
An extrapolation of this dependence to 100% of intergranular fracture (η = 1)
enables us to obtain the value of KJic that would correspond to a pure
intergranular fracture. As expected, the data are significantly scattered due
to a pronounced anisotropy of phosphorus grain boundary segregation in the
range of 1− 35 at%. Despite this scatter, the dependence can be linearly well
correlated to obtain KJic = 3.8MPam1/2. By considering this value in the
relation

γi =
K2
Jic(1− ν)2

2E

one obtains the mean value of the surface energy on intercrystalline facets,
γi = 19 Jm−2. This value is well comparable with the surface energy of cleav-
age facets in ferrite at very low temperatures. It is also in agreement with an
estimate of 20 Jm−2 found previously for an Fe-Si-P alloy [220]. Thus, more
than 17 at% of phosphorus causes a grain boundary embrittlement to this
limit level even at room temperature.

Figure 2.24 Plot of experimental values of the intrinsic fracture toughness, KJic,
vs the ratio of intercrystalline brittle fracture, η, for all annealing temperatures.
Reprinted with permission from Elsevier B.V. (see page 265)

The concentration of phosphorus at some grain boundaries along the crack
front was significantly less than the critical value of 17 at%. Consequently, the
related grains failed by the dislocation-assisted transgranular cleavage frac-
ture under intrinsic stress intensity factors as high as about 70 MPam1/2given
by an extrapolation of experimental data in Figure 2.24 to 100% of cleav-
age fracture (η = 0). Such relatively high values were found to be not only
due to the blunted tip of the fatigue pre-crack. The dislocation arrangements
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within the plastic zone both ahead of the crack front and in the crack wake
produced additional crack tip shielding [11] (see also Section 3.2). Due to
the large scatter of phosphorus concentration at grain boundaries, however,
there is a competitive mechanism of intergranular decohesion operating along
supercritically segregated (and suitably oriented) grain boundaries of all sam-
ples already at KJic-values of an order of units of MPam1/2, i.e., just at the
onset of the short crack initiation stage. Such isolated intergranular ledges
create local peaks of K-factor along the crack front. These peaks enable an
easier initiation of further intergranular or cleavage facets so that the mixed
intergranular/cleavage fracture can spread across the whole crack front dur-
ing the short initiation stage. Thus, the subsequent unstable rupture could
sometimes happen under intrinsic stress intensity factors of an order of units
of MPam1/2.

In the following stage of fast unstable fracture, the stress intensity factor
and crack growth rate rapidly increase and allow an immediate intergranu-
lar fracture at less segregated grain boundaries adjacent to the crack front.
This means that the portion of intergranular morphology increases with the
distance from the fatigue pre-crack front. This is clearly seen in Figure 2.20,
where almost a pure intergranular morphology appears near the right edge
of the fracture surface corresponding to the last stage of unstable fracture.

Figure 2.25 Cumulative plot of experimental ratio of the intercrystalline brittle frac-
ture η vs grain boundary concentration XΦ

P for all annealing temperatures. Reprinted
with permission from Elsevier B.V. (see page 265)

As follows from the cumulative plot of η vs XΦ
P in Figure 2.25, the ratio

of the intercrystalline brittle fracture increases, although not necessarily lin-
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early, with increasing grain boundary concentration of phosphorus. This fact
suggests that the grain boundary concentration of phosphorus rather than
the annealing temperature controls the fracture mode. This is a consequence
of the fact that the segregation was not allowed to reach an equilibrium.

In summary, the results of the analysis revealed that, at room tempera-
ture, the surface energy of grain boundaries segregated by phosphorus is very
low and comparable with the surface energy of cleavage facets at very low
temperatures. However, the crack-tip shielding induced by intergranular frac-
ture significantly increases the fracture toughness of iron to values measured
in steels of a high purity. This means that, similarly to the above-mentioned
case of the ultra-high-strength steel, the results of fracture toughness tests
performed according to the standard ASTM procedure need not necessarily
reflect the inherent brittleness of materials.

2.3 Ductile Fracture

The micromechanism of ductile fracture consists of void generation from sec-
ondary phase particles and their growth and coalescence. The classical Mc-
Clintock’s model [221] considers isolated, initially cylindrical spaced voids
uniformly distributed in a plastic solid. The aim of this model was to deter-
mine the dependence of void dimensions on both the axial plastic strain εp
and the superimposed respective radial and tangential stresses σ2 and σ3. The
analysis led to a rather complicated dependence of the radius of voids on the
triaxiality parameter κ = σm/σi, where σm = 1/3(σ1 + σ2 + σ3) is the mean

hydrostatic stress and σi =

√
2

2

[
(σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2
]1/2

is

the von Mises stress intensity. More recent relationships (e.g., [222–224]) con-
firmed that the void growth can be generally described as

R = R0 exp {f(κ)εp} ,
where f(κ) is an appropriate function of the stress triaxiality, and R and R0

are running and initial sizes of voids, respectively. It should be noted that,
in the vicinity of free surfaces of growing voids, the movement of dislocations
is accelerated by image stresses and stress concentration. Consequently, a
localization of plastic deformation must take place.

The axially symmetric tensile test can be assumed as a simple and efficient
example of the ductile fracture process. In the initial stages of plastic defor-
mation up to the ultimate strength, both the density and the volume fraction
of voids remain small and the voids grow preferentially in one direction only.
Therefore, the localization of plastic deformation does not play any impor-
tant role and the global deformation process proceeds in a uniform manner.
Just before reaching the strength limit, however, the density of voids in one
of the volume elements becomes critical and starts a local void coalescence.
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The related pronounced localization of plastic deformation causes a global
plastic instability and the macroscopic homogeneity of plastic deformation is
lost. This results in necking and a development of triaxial stress state in the
adjacent bulk region. In the region of necking, the Bridgman solution

σ2
σi

=
σ3
σi

= ln(1 + r/2R) (2.24)

can be applied, where r/R is the ratio of the radius of the cross-section to
the radius of the specimen profile in its narrowest part. This means that the
tensile triaxiality develops inside the neck region. If we simply assume that,
just before the onset of necking, first void nuclei of a radius a0 appear by
decohesion of particle-matrix interfaces, the McClintock’s growth relations
can be simply approximated as

a1 ≈ a0 exp(λ1εp), (2.25)

a2 ≈ a0 exp(λ2εp), (2.26)

where a1 and a2 are the characteristic sizes of growing elliptical voids. The
parameters λ1 and λ2 vary from the onset of necking to the final fracture
in the range of λ1 ∈ 〈0.8, 2〉 and λ2 ∈ 〈0, 1〉, respectively [225]. When the
voids nucleate only by partial decohesion of the particle-matrix interface or
by broken carbides, Equations 2.25 and 2.26 should be modified as

ai ≈ a0[exp(2λiεp)− 1], (2.27)

where i = 1, 2 [226]. Thus, from the moment of plastic instability on, the voids
expand into all space directions, and the kinetics of plastic deformation within
the necked region is predominantly influenced by their presence. In Section
2.3.1, the dislocation based model of plastic deformation during the tensile
test is presented and compared with experimental data [225]. This model
clearly demonstrates the role of voids growing during the plastic instability
stage.

Originally, the ductile fracture process was assumed to be finished by a
continuous void coalescence due to local necking of inter-void ligaments until
their total contraction [221,227]. Based on the growth relations, the strain to
fracture εf could be expressed as

ε′f =
(1− n) ln(Λ/2a0)

sinh[(1− n)(σ2 + σ3)/(2σi
√
3)]
, (2.28)

where n is the hardening exponent (σ = σ0ε
n) and Λ is the initial mean

intervoid distance. The symbol ε′f used in Equation 2.28 instead of εf means
that the fracture strain according to this equation does not include the value

of the uniform strain related to ultimate strength. Because Λ/(2a0) ≈ f
−1/3
v ,

where fv is the volume fraction of secondary phase particles, this equation
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correctly reflects qualitatively the experimental findings that εf decreases
with both increasing the volume fraction of particles and stress triaxiality
(if σ2 = σ3 = 0 then εf → ∞). However, further research revealed that the
fracture strain calculated according to Equation 2.28 significantly exceeds
experimental data. One of the main reasons is the fact that the coalescence
process does not proceed in a stable manner but it is accomplished by rapid
unstable collapse after the intervoid ligament has reached a critical width
[228].

Because the triaxiality is highest within the narrowest part of the speci-
men on its central axis, the first noticeable coalescence of voids usually ap-
pears there. Thus, the process of final fracture starts at the moment when a
penny-shaped central crack has been developed. As soon as the crack front
approaches the external traction-free surfaces, the stress state in the remain-
ing ligament changes from the triaxial to the plane stress (biaxial) one. This
causes a sudden increase in the maximum shear stress on the plane inclined
by approximately 45◦ to that of the crack. Therefore, the final rupture occurs
by shear along this plane and the creation of shear lips. The fracture surfaces
of cone-shaped broken parts become a crater-like macromorphology (see Fig-
ure 2.26). Dimples in the central part reflect the process of void growth and
coalescence, as can be clearly seen from Figure 2.27. Inside the dimples, the
nucleating secondary phase particles can often be detected. In Section 2.3.2,
some models of void coalescence are presented and compared with experi-
mental data on tensile fracture strain of various steels. These models give a
physical basis of an empirically determined dependence of the ductile fracture
strain on the state of stress that serves as a critical strain assessment when
applying various forging technologies (see Section 2.3.3).

Figure 2.26 The scheme of crater-like morphology typical for one part of a ductile
sample fractured during the tensile test

At present, numerical models based on constitutive models of porous solids
[223, 229, 230] are widely used to simulate the ductile fracture processes of
various materials and components under different loading conditions. These
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Figure 2.27 A typical SEM picture of ductile dimples (aluminium alloy)

semi-empirical models use a modified yield function and plastic potential,
including the “porosity” terms as additional internal variables responsible
for “softening” of the material. The models need to be implanted into the
finite element codes and calibrated by the experimental stress-strain curve of
the particular material in order to obtain at least two empirical parameters. A
more detailed description of these models and their applications lies beyond
the scope of this book.

The last subsection is devoted to a simple method, based on the above-
mentioned theoretical concepts of ductile fracture, that can be used for the
prediction of fracture toughness values of high-strength metallic materials.
This method avoids expensive fracture toughness tests when we need only
approximate KIc values.

2.3.1 Kinetics of Plastic Deformation During Uniaxial
Ductile Fracture: Modelling and Experiment

Whereas the classical works [221,222,231] presented void growth as a result of
bulk plastic deformation, Lui and Le Mai [232] and Jonas and Baudelet [233]
have shown an active role of voids in the creation of plastic instability during
the tensile test. Later on, detailed measurements revealed a significant accel-
eration of plastic strain rate in the smallest cross-section of the neck during
the tensile test performed under conditions of constant crosshead speed [234].
In order to explain this behaviour, Staněk and Pokluda assumed an active role
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of voids inside the neck in the promotion of dislocation movement [225,235].
They used the well known equation connecting the macroscopic plastic flow
with the rate of dislocation movement proposed by Gilman [236] as

ε̇p = μbvc(ρ0 +Mεp)fm exp [−(D +Hεp)/σs] , (2.29)

where μ ≈ 0.5, b is the magnitude of the Burgers vector, vc the limit speed
of dislocations, ρ0 is the initial dislocation density, M the coefficient of dislo-
cation multiplication, fm the fraction of mobile dislocations, D the effective
friction stress, σs the mean effective true stress and H the coefficient of dislo-
cation trapping. In engineering materials, the fraction fm can vary in a very
wide range in dependence on εp and, in particular, on ρ0. However, Equa-
tion 2.29 provides a good description of plastic flow rate even when assuming
fm �= fm(εp) [235]. Equation 2.29 can be used for a reasonable simulation of
the kinetics of plastic deformation up to the ultimate strength, i.e., within the
region of uniform deformation. However, it must be substantially modified
to allow a description of localized plastic deformation inside the neck due to
the influence of void growth.

(a) (b)

r0

h

Figure 2.28 Scheme of: (a) the initial dimension of the sample, and (b) the axial
dimension h of the bulk element within the neck that experiences the highest localized
plastic deformation during the tensile test

Both experiments and finite element calculations [234,237] revealed that an
axial dimension h ≤ r0 (r0 is the initial specimen radius) of the bulk element
of highest localized macroscopic plastic deformation in the thinnest part of
the neck remains nearly constant during the tensile test – see Figure 2.28.
This active volume changes with the tensile strain as

V = V0 exp(−εp), (2.30)

where V0 = πr20h.
As mentioned before, the microvoids promote the dislocation mobility by

increasing free surfaces in the bulk and inducing local strain concentrations.
This evokes an idea of small volumes adjacent to microvoids, where all dislo-
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cations can be considered to be mobile. Consequently, the active volume V
of the specimen can be divided into three parts – see Figure 2.29: V1 is the
volume unaffected by voids, V2 is the sum of small volumes containing only
mobile dislocations and V3 is the total volume of voids.

V1

V2

V3

Figure 2.29 The scheme of active volumes within the neck. V1 is the volume unaf-
fected by voids, V2 is the sum of small volumes containing solely mobile dislocations
and V3 is the total volume of voids

The relation V1 � V2 ≈ V3 holds during the whole deformation, almost
up to the final fracture. Let us denote lim (i = 1, 2) and ρim the respective
total length and density of mobile dislocations in the relevant volumes and ρ
the mean total density of dislocations. Then the mean relative density fm of
mobile dislocations in the active volume can be expressed as

fm =
l1m + l2m
ρ(V1 + V2)

=
ρ1m
ρ

V1
V1 + V2

+
ρ2m
ρ

V2
V1 + V2

.

Since

ρ2m = ρ;
ρ1m
ρ

= f1m

one obtains

fm = f1m
V1

V1 + V2
+

V2
V1 + V2

. (2.31)

By differentiating Equation 2.31, the increment of the ratio of mobile dislo-
cations reads

dfm = df1m
V1

V1 + V2
+ f1md

(
V1

V1 + V2

)
+ d

(
V2

V1 + V2

)
. (2.32)

Because V1 � V2 and f1m � 1, Equation 2.32 can be simplified as

dfm ≈ df1m + d

(
V2
V1

)
. (2.33)

Equation 2.33 states that the increment of mean fraction of mobile disloca-
tions consists of two terms. The first means a change in the mobile dislocation
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fraction within the “undamaged” volume V1 while the second expresses the
related contribution of voids.

When approaching the ultimate tensile stress, the density of dislocations
rapidly increases and a relative contribution of dislocation trapping to the
density of mobile dislocations starts to dominate that of their multiplication.
This means that the exponential term in Equation 2.29 starts to control
the density of mobile dislocations [235]. Unlike in the active volume V2, this
trend will continue further inside the inactive (undamaged) volume V1 after
reaching the ultimate stress (during the necking). Therefore, the total density
of dislocations in V1 will not substantially change and the mean relative
density of mobile dislocations in V1 can be assumed to follow the “trapping”
rule

f1m ≈ Ξ exp

(
−D +Hεp

σs

)
, (2.34)

where Ξ is a dimensionless constant. Since the true mean stress σs remains
nearly constant during the necking, the differentiation of Equation 2.34 gives

df1m ≈ −ΞH
σs

exp

(
−D +Hεp

σs

)
dεp = −Φf1mdεp, (2.35)

where Φ = H/σs. When assuming f1m ≈ fm (V2 � V1), Equation 2.35 can
be expressed in an approximate form:

df1m ≈ −Φfmdεp.
The second term in Equation 2.33 represents the increment of mobile dis-

locations due to the void growth. In order to specify this term in more detail,
Equations 2.25 and 2.26 can be used while considering two cases: (1) voids
are of the same initial size and their number remains constant – the ideal
model and (2) the initial size and the number of voids are functions of plas-
tic strain and the size distribution of nucleating particles – the real model.
In the context of the ideal model, and by assuming the elementary volumes
near voids as in Figure 2.30, Equation 2.29 takes on the following form (see
Appendix C):

ε̇p ≈ μbvc(ρu +Mεp)f
u
m exp

{
−Dus +Hεp

〈σs〉k

}
+

+ μbvc(ρu +Mεp)
Θ

γ + Φ
exp

{
−Dus +Hεp

〈σs〉k

}[
e(γ+Φ)εp − 1

]
,

(2.36)

where ρu and Du are respectively the density of dislocations and the friction
stress at the onset of necking, Θ = 4πa20γnδ/V0, n is the number of voids in
the active volume and γ = 1 + κ.

The first term in Equation 2.36 is nearly equal to Equation 2.29 and ex-
presses the process of hardening, while the second term gives the softening
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a
b

Figure 2.30 A detail of an active volume around the void

due to void growth. A more complicated relationship derived in the context of
the real model (see Appendix C) is not too much different and, consequently,
it does not give much better results when compared to the experiment [225].

The validity of Equation 2.36 was verified by an experimental method
based on recording both the fine surface net and the neck shape by a camera
during the whole tensile test performed on cylindrical specimens of a low-
alloy steel [225]. This proved that the plastic strain in the thinnest part of
the neck could be well approximated by a simple relation εp = 2 ln d0/d, where
d0 and d stand for respective initial and final diameters of the neck. The steel
contained a high density of rather uniformly distributed spherical carbides
that acted as void initiation sites. Measured and theoretical dependencies of
ε̇p on εp, plotted in Figure 2.31, exhibit a very good agreement.

Figure 2.31 Comparison of experimental and theoretical dependences ε̇p vs εp dur-
ing the whole tensile test

It should be emphasized that parameters in Equation 2.36 were either
taken from the literature or determined by fitting a part of the function ε̇p
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vs εp during the uniform deformation until the onset of necking by Equa-
tion 2.29. The constant Θ = 4.5× 10−7 was the only fitting parameter used
in the unstable region of necking. This parameter roughly reflects the volume
ratio V2/V1 and reveals that a negligible volume of mobile dislocations acti-
vated around the voids can induce a substantial acceleration of the plastic
flow inside the neck.

2.3.2 Fracture Strain

The attempts to predict theoretically the fracture strain by means of void
growth and coalescence models started in the late 1960s and are still in
progress. In the first part of this subsection, theoretical predictions of duc-
tile contraction along with experimental data obtained from tensile tests on
cylindrical bars made of different steels (void nucleation on carbides) are pre-
sented as published in the early 1980s [226]. In the second part, a generalized
diagram of fracture strain is presented.

2.3.2.1 Prediction of Ultimate Contraction During the Tensile
Test

The models of void growth and coalescence are based on three different ideas
concerning the critical conditions of the coalescence process that precedes the
moment of final unstable fracture: (1) continuous shrinkage of ligaments (Mc-
Clintock), (2) unstable collapse of intervoid ligaments (Brown and Emburry)
and (3) reaching a percolation threshold (Staněk and Pokluda).

Continuous Shrinkage of Ligaments

This model uses Equation 2.28, the relation at Equation 2.24 and the formula

r

R
= 2.93(1− e−εi/3) (2.37)

proposed by Bridgman [238], where

εi =

[
2

9
(ε1 − ε2)

2 + (ε1 − ε3)
2 + (ε2 − ε3)

2

]1/2

is the strain intensity in terms of true principal strains εk = ln(lk/l0k) (k =
1, 2, 3). During the uniform deformation up to the ultimate strength it holds
that σ2 = σ3 = 0, εpu = n and the voids do not grow in the transverse
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εf = n+ ε′f . (2.38)

Taking Equation 2.30 into account, the contraction of the bar at the mo-
ment of final fracture can be expressed as

ψ = 1− exp(−εf). (2.39)

By substitution of εi = ε′f/2 or εi = ε′f (mean or maximal stress triaxial-
ity) in Equation 2.37 and combining Equations 2.24, 2.28 and 2.37 we obtain
an implicit equation for ε′f . Substituting the obtained value of ε′f into Equa-
tion 2.38 and combining it with Equation 2.39, we receive predicted ultimate
contractions ψ for both considered stress triaxialities.

Unstable Collapse of Intervoid Ligaments

According to Brown and Emburry [228], the unstable collapse of ligaments
between voids starts when the axial size of neighbouring voids reaches the
distance between their centres, i.e., λ/2a = 1 (see Figure 2.32). By considering
the void-grow law in the form of Equation 2.27, the fracture strain can be
expressed as

εf = n+
1

κ̄
ln

{
1

2

(
λ

2a0
+ 1

)}
, (2.40)

where the mean value κ̄ of the triaxiality parameter during the necking pro-
cess is considered and λ is the mean distance of nucleating particles (car-
bides). The initial size of the voids a0 = 2a0s, where a0s is the mean size of
particles initiating voids just at the onset of necking.

2
a

2
a

0

�

�

�

Figure 2.32 Scheme of the onset of the coalescence of axially prolonged voids ac-
cording to the Brown–Emburry model

The contraction of the bar at fracture can, again, be obtained by utilizing
Equation 2.39.

direction. Consequently, the total fracture strain is
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Percolation Threshold

This model is based on the theory of percolations, which is part of the theory
of graphs [239]. While in the first stages of necking only a short-range inter-
action of voids takes place, the long-range interaction of void clusters in the
final stages of fracture has to be taken into account. Then, the moment of un-
stable fracture can be related to the percolation threshold. This means that,
in terms of the theory of graphs, a non-zero probability exists that a certain
element of the graph (the void) belongs to an infinite cluster (the fracture
surface) within an infinite graph characterizing a physical system (here an
arrangement of voids in the bulk). Vertices of the characterizing graph in our
model were associated with a constant number of growing voids, arranged
in hexagonal or square lattices. By using stereometric rules in the context of
the cluster theory and Equation 2.27, the fracture strain can be obtained as

εf = n+
1

κ̄
ln

⎧⎨
⎩

1

2
+

1

2

[
−2S2

3π

(
Λ

2a0

)3

ln(1− psc)

]1/3⎫⎬
⎭ , (2.41)

where S2 is the limit number of in-plane void touching sides and psc is the
percolation threshold [226]. The theoretical values Ss2 = 4 and psc = 0.5
stand for the square lattice whereas Ss2 = 6 and psc = 0.35 correspond to the
hexagonal one [239]. After substituting these values into Equation 2.41 and
using Equation 2.39, the relevant values of contraction can be calculated.

2.3.2.2 Comparison of Theoretical and Experimental Data

In order to make a comparison between theory and experiment, the values
of κ̄ and Λ/2ao were experimentally assessed. Tensile tests on cylindrical
specimens of pearlitic steel 12 010 and low-alloy steels 14 109 and 14 331 of the
Czech provenance were performed by means of the Zwick machine equipped
with a special camera [226]. This allowed the assessment of the mean value
of triaxiality during necking by observing both the surface grid and the neck
shape. In this way, the κ̄-values of 0.8, 0.6 and 0.85 were established for
12 010, 14 109 and 14 331 steels, respectively. The values Λ/2ao = Λ/4aos
were determined from the distribution functions of carbide sizes obtained by a
careful examination of carbide extraction replicas. The identification of voids
on polished metallographic samples cut from the sample in the initial stage
of necking led to the conclusion that the smallest size of carbides nucleating
voids was about 10 μm. Therefore, only the related quantiles of the probability
density functions were used to determine the mean values aos for investigated
steels.

The theoretical predictions and experimental values of contractions for all
studied steels and models are summarized in Tables 2.4, 2.5 and 2.6, along
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with relevant values of n, κ, Λ/ao, εf and ε′f . The best agreement between
theory and experiment was achieved by using the model based on the unstable
collapse of intervoid ligaments (Brown–Emburry). Satisfactory, but slightly
conservative results were also obtained by means of the percolation model.
On the other hand, the fracture strains and contractions obtained by utilizing
the McClintock’s model highly overestimated the experimental values.

Table 2.4 Comparison of the McClintock model with experimental data

Steel
Λ

2a0
n ε′f

a ε′f
b ψ′

(MC)
a ψ′

(MC)
b ψexp

[%] [%] [%]

12 010 3.9 0.25 1.88 1.41 88.1 81.0 74.6
14 109 2.0 0.22 1.45 1.06 81.2 72.2 59.6
14 331 2.8 0.22 1.80 1.33 86.7 78.8 63.8

a for εi = ε′f/2
b for εi = ε′f

Table 2.5 Comparison of the Brown–Emburry model with experimental data

Steel κ εf ψBE ψexp

12 010 0.80 1.370 74.6 74.6
14 109 0.60 0.896 59.2 59.6
14 331 0.85 0.971 62.3 63.8

Table 2.6 Comparison of the percolation model with experimental data

Steel εf εf ψPP ψexp

(s(2) = 6) (s(2) = 4) (s(2) = 4)
12 010 1.17 1.20 70.0 74.6
14 109 0.68 0.71 50.1 59.6
14 331 0.80 0.83 56.4 63.8

2.3.2.3 Generalized Diagram of Fracture Strain

In the early 1950s, Russian scientists proposed a generalized diagram of frac-
ture strain [240] that was subsequently widely used in forging technology.
They found that the influence of stress state on the true fracture strain (in
terms of the true strain intensity) can be successfully described by the fol-
lowing exponential function:
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εf = k1 exp{−k2κ}. (2.42)

There are only two fitting parameters k1 and k2 in Equation 2.42. Values
of κ for selected special loading modes are as follows:

1. isotropic tension (σ1 = σ2 = σ3 > 0 ⇒ κ→ ∞);
2. crack tip region (σ1 = σ2 ≈ 1.6σ3 ⇒ κ→ 2.2);
3. uniaxial tension (σ1 > 0, σ2 = σ3 = 0 ⇒ κ = 1/3);
4. torsion (σ1 = −σ2 > 0, σ3 = 0 ⇒ κ = 0);
5. uniaxial compression (σ1 < 0, σ2 = σ3 = 0 ⇒ κ = −1/3);
6. isotropic compression (σ1 = σ2 = σ3 < 0 ⇒ κ→ −∞).

Thus, Equation 2.42 can, in principle, be represented by a diagram that
is constructed using true fracture strain data obtained from the torsion test
and the uniaxial tensile test. The compression test can be used as well. It
should be noted that some stress triaxiality might be induced in the later
stages of the tensile test of ductile materials. Consequently, the related mean
value of κ is usually slightly higher than 1/3. In the case of the compression
test, similarly, the mean value of κ might also be somewhat higher due to
specimen bulging. The value of κ for the crack tip region (plane strain) is
also only approximate because the stress state in volume elements inside the
plastic zone changes during the loading (see the next paragraph).

For positive values of κ, a simple relation

εf =
0.8

κ
ln
d0
d

(2.43)

can be also used [241].
Note that both empirical relations at Equations 2.42 and 2.43 are consis-

tent with more physically justified Equations 2.28 and 2.40 (or 2.41).

�i

�i

a)

b)

Figure 2.33 The schematic stress-strain intensity diagram of a ductile material
under triaxial tension within the plastic zone (curve a) and uniaxial tension (curve
b)
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Important information allowing the applicability of LEFM to ductile ma-
terials can be directly obtained from the diagram of fracture strain. Even
materials of a very high ductility measured in terms of the uniaxial tensile
test (κ ≈ 0.33) generally exhibit a low fracture strain at the crack tip under
plane strain (κ ≈ 2.2). According to the von Mises plasticity surface, more-
over, the yield strength becomes about three times higher than that related
to the uniaxial tension. Therefore, the ductile material inside the plastic zone
behaves in a quasi-brittle manner. This can be clearly seen from generalized
stress-strain diagrams of a ductile material under both uniaxial and triaxial
stress states, as schematically plotted in Figure 2.33. Indeed, the behaviour
of the ductile material inside the crack-tip plastic zone is not far away from
the elastic response. This is one of the reasons why, in the case of small scale
yielding, the application of LEFM reasonably predicts the crack stability.

2.3.3 Assessment of Fracture Toughness from Basic
Mechanical Characteristics

During the initial phase of fracture toughness test of high-strength steels and
aluminium alloys, the crack tip grows in a stable way by blunting. Since the
yield stress of those materials is high enough, small scale yielding conditions
can easily be realized, and valid KIc tests can be performed at room tem-
perature by using rather small samples. This means that a localized ductile
damage process always precedes the unstable fracture and, as a consequence,
the so-called stretch zone near the fatigue pre-crack can usually be identified
on the fracture surface. Because of the triaxial state of stress in the process
(plastic) zone ahead of the crack front, the growth rate of voids is very high
and can be described by means of the previously mentioned mathematical
apparatus. When considering the standard fracture toughness test of rela-
tively small deformation rates, energy dissipation in the form of elastic waves
can be neglected, and Equation 2.4 can be utilized for the description of the
fracture process. Practically all energy supplied by external forces and/or
released by elastic relaxation is consumed in the plastic zone during the duc-
tile damage process preceding the unstable crack advance. This means that
the term 2γ can be neglected in comparison to wp(K, γ). Thus, the energy
consumed within the plastic zone up to the moment of unstable fracture can
be expressed as

1− ν2

E
K2
I = wp(KI , γ) ≈ 2rp

εf∫

0

σi(εip)dεip, (2.44)
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where εip and σi are the respective intensities of plastic strain and stress, εf
is the fracture strain and rp is the plastic zone size [242]. Let us consider the
Hollomon approximation of the tensile stress-strain diagram

σi = Aεnip,

where A is the hardening coefficient and n the hardening exponent, together
with the relation rp ≈ Bn2 (B ≈ 0.025m) first introduced by Hahn and
Rosenfield [157]. Equation 2.44 can be then transformed to

KIc =

[
2Cεn+1

f

(1− ν2)(n+ 1)

]1/2
n, (2.45)

where C = ABE. The only difficulty with a direct application of Equation
2.45 to the assessment of KIc is the fracture strain εf . This value is much
lower than that obtained from the uniaxial tensile test due to a different
(triaxial) state of stress at the crack tip. As already mentioned, the state of
stress inside the plastic zone changes due to the crack tip blunting. However,
this problem can be solved by a method proposed by Staněk and Pokluda
[241]. During the crack tip blunting, each element of the process zone at
the crack tip experiences a deformation trajectory that can be calculated
numerically using the parameter κ [243,244]. In the range κ ∈ (0.6, 2.5), this
trajectory can be well approximated by the relation

εip(κ) = 7.7 exp(−2.9κ). (2.46)

The deformation of each element starts at the point εip = 0, κ = (π +
1)/

√
3] and, during the crack tip blunting, it proceeds along the trajectory

given by Equation 2.46 under decreasing triaxial stress state defined by the
parameter κ. Let us accept the hypothesis of linear damage accumulation,
and define an elementary damage increment as dεp/dεf with respect to the
diagram of generalized fracture strain (Equation 2.43). Then the onset of
fracture is determined by the relation

(π+1)/
√
3∫

κc

dεip(κ)

εf (κ)
= 1, (2.47)

which means that the critical damage level of 1 was reached in one of the
process zone elements. A combination of Equations 2.43, 2.46 and 2.47 gives

(7.7κc + 2.655) exp(−2.9κc) = 0.8 ln
d0
d

+ 0.0205. (2.48)

Equation 2.48 enables us to do a simple numerical calculation of the crit-
ical parameter κc that determines the moment of unstable crack initiation
within the process zone during blunting of the pre-crack tip. Substituting κc
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Figure 2.34 Comparison of experimental and theoretical fracture toughness data
for some high-strength steels and aluminium alloys

back into Equation 2.46 one obtains the value εf . This value can be used in
Equation 2.45 for the assessment of fracture toughness KIc.

Thus, in order to estimate the KIc value of a particular high-strength
material, one needs only standard experimental characteristics of the tensile
test: parameters A and n of the Hollomon approximation and the ratio d/d0
on longitudinal profiles of fractured tensile samples. A comparison of experi-
mental and theoretically estimated values of KIc for high-strength steels and
aluminium alloys is given in Figure 2.34 [245]. All fracture toughness tests
were performed at room temperature except for the steel AISI 4340 II, where
the samples had to be cooled to −120◦C. Even at such a low temperature the
fracture surfaces revealed ductile patterns because the steel was tempered at
650◦C. The agreement between theory and experiment is very good. It seems
to be even better when taking the usual scatter of fracture toughness tests
into account.



Chapter 3

Fatigue Fracture

From the practical point of view, fatigue fracture is the most important dam-
age process. Available statistics show that, including corrosive assistance, fa-
tigue is a leading cause of material failures registered during a long-term per-
formance of engineering components and structures [246]. From the microme-
chanical point of view, the fatigue process can be understood as a sequence of
the following stages: nucleation of cracks, stable propagation of short (small)
cracks, stable propagation of long cracks and unstable fracture [247].

This chapter is divided into four sections. In Section 3.1, morphological
patterns reflecting all crack growth stages on the fracture surface are briefly
described. Moreover, the topological methods widely utilized in fatigue re-
search and the quantitative fractography are outlined. These topics are im-
portant for all subsequent sections of the chapter.

The second section is devoted to the propagation of fatigue cracks under
the remote opening mode (mode I). Mechanisms of nucleation and growth of
short cracks are briefly reported, although these initial stages of the fatigue
process were not a special subject of our research. Inclusion of these topics
was, however, inevitable in order to provide a self-contained description of
fatigue micromechanisms. The growth of short cracks is governed by shear
stress components in favourably oriented crystallographic slip systems that
are inclined at about 45◦ with respect to the maximal principal stress. This
means that the short cracks grow in a local mixed-mode I+II and the pic-
ture of dislocation emission from the crack tip as well as the related growth
micromechanisms are completely different from those related to long cracks.

After a certain incipient period that incorporates crystallographic and
transient growths of short cracks, the fatigue cracks incline towards a di-
rection perpendicular to the maximal principal stress, i.e., nearly towards
mode I loading of the crack tip. This means that the long cracks keep prop-
agating so that the crack tip plasticity is produced in the opening loading
mode. Thus, the second section provides the reader with a micromechanical
interpretation of all important phenomena accompanying this, most frequent,
type of fatigue crack growth. Knowledge of these micromechanisms is essen-
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tial not only for materials scientists and mechanical engineers, but also for
technologists attempting to design structural materials exhibiting better re-
sistance to fatigue crack propagation.

When the shear components of the applied stress are dominant, both short
and long cracks can grow macroscopically under shear loading modes II or
III. As usual, however, pure shear-mode crack propagation persists only for
a limited number of loading cycles and the cracks incline or branch to get
loaded in mode I. This leads to a local mixed-mode I+II, I+III or I+II+III
crack propagation. The factory roof formation under torsion loading is an
instructive example of such behaviour. Therefore, Section 3.3 refers to both
shear-mode and mixed-mode crack growth. The first subsections introduce
theoretical models and experimental results concerning crack growth under
pure-shear and torsional loading. Since a combined cyclic bending-torsion is
applied to many structural components, a rather extended part of the third
section reports on the results of fracture tests performed under this kind of
loading.

The final Section, 3.4, is devoted to the application of quantitative frac-
tography to failure analysis. The fracture morphology can purvey a direct
link between damage micromechanisms and both initiation and propagation
of cracks. This section directly outlines how the knowledge of fracture mi-
cromechanisms can help to identify the reasons for failures of structural com-
ponents in service. Therefore, its content can be useful for machine designers,
especially for those working in the transport industry.

In general, Chapter 3 attempts to convince the reader of how useful the
unified nano- micro- meso- macroscopic approach can be when trying to de-
scribe and interpret the behaviour of fatigue cracks.

3.1 Quantitative Fractography

Micromechanisms of fatigue crack propagation can be advantageously stud-
ied by means of fractographic tools. Indeed, the fracture surface morphology
reflects many important stages of both stable and unstable fatigue crack
propagation. Moreover, quantitative fractography is a powerful tool for fail-
ure analysis. Consequently, all sections of this fatigue chapter more or less
refer to morphological patterns and fractographical results. Therefore, the
quantitative fractography section was placed at the very beginning of this
chapter.

The term “fractography” was first used by Carl A. Zapffe for the proce-
dure of descriptive analysis of fracture surfaces in 1945 [248]. The output of
this analysis is a set of numerical characteristics (number, shape, size, orien-
tation, distribution) related to morphological patterns or parameters (rough-
ness, fractality, texture) of the global surface topography. In both cases, the
accuracy of these data is determined by knowledge of space coordinates of
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points on the fracture surface investigated. A very intensive development
of quantitative fractography is obviously directly associated with increasing
accuracy of measuring methods as well as with a rapidly growing capac-
ity and computing rate of computers. During the second half of the last
century, two-dimensional fractography in the scanning electron microscope
was widely developed. In the last 20 years, however, an extended utilization
of computer-aided topography techniques has enabled enormous progress in
three-dimensional methods. Similarly, a number of descriptive concepts, dis-
tinguished by both the extent and the quality of utilized parameters, have
been developed in the area of quantitative fractography.

Nevertheless, two various approaches can be distinguished here. The first
utilizes various parameters of roughness, fractality or texture of fracture sur-
faces in order to find relationships between the fracture topology on one
side, and the loading mode or the crack growth rate on the other side. In
the first subsection, therefore, definitions of basic topological parameters are
outlined. A rather different problem, usually demanding extensive research
experience, constitutes the correct identification of morphological patterns as
fracture facets, ridges, beach marks, tire tracks or fatigue striations. Thus,
the second approach deals with the quantification of morphological patterns
and their relationships to the loading parameters.

3.1.1 Topological Analysis

A general description of fracture surfaces by means of topographical param-
eters should be able to provide topological characteristics as well as morpho-
logical patterns as special cases. This might, in principle, be achieved by an
analysis of a global set and relevant subsets of topological data. However,
the basic problem here is represented by a high variability of fracture surface
topology measured at different resolutions as well as an extreme complexity
of the related microreliefs. In spite of a rather long history, no general defini-
tion of the surface topology and, consequently, no universal methodology of
its quantification has been commonly accepted up to now [249–254].

In order to acquire a sufficiently wide and relevant set of topological param-
eters, advanced three-dimensional topological methods are to be employed. A
great majority of results presented in this book was obtained by application of
two methods that are based on different physical principles. Stereophotogram-
metry is a method that makes use of the stereoscopic principles in order to
obtain topological data of the fracture surface under investigation. Inputs
to the method are two images of the analyzed region taken from different
angles of view (so-called stereoimages or the stereopair) and some additional
parameters that characterize a projection used during their acquisition. Usu-
ally, a scanning electron microscope (SEM) equipped with a eucentric holder
is employed and the stereopair is obtained by tilting the specimen in the
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SEM chamber by an angle that depends on the local roughness of the sur-
face. The stereopair is processed via a matching algorithm in order to find
corresponding points on both images (homologous points) and the relative
z-coordinates of these points are calculated. The 3D model of the depicted
surface area usually consists of ten to twenty thousand non-equidistant points
and so the Delaunay triangulation must be performed [255].

Optical chromatography represents another method useful for a 3D recon-
stitution of the fracture surface micromorphology. The profilometer Micro-
Prof FRT, Fries Research & Technology GmbH, makes use of the chromatic
aberration of the optical lens. Different light monochromatic components are
focused at different heights from a reference plane at the output of the opti-
cal fibre. The light intensity exhibits a maximum at the wavelength exactly
focused on the surface and the height of the surface irregularities is deduced
by using a calibration table. This optical method was usually employed only
for verification of selected results obtained by stereophotogrammetry.

According to their mathematical basis, recently used topological param-
eters can be divided into five main categories. This classification is based
on published works [250–253] and, in particular, on the work of Petropou-
los et al. [256]. First two categories represent vertical (altitudinal) and length
roughness parameters which characterize vertical and horizontal distributions
of surface points, respectively. The third group involves hybrid parameters si-
multaneously describing more than one of the above-mentioned aspects. The
fourth and fifth groups respectively consist of spectral and fractal character-
istics of the fracture surface.

3.1.1.1 Roughness Parameters

In this brief overview only vertical, length, hybrid, spectral and fractal pa-
rameters are mentioned in more detail. The description of other parameters
can be found elsewhere [214,249–251]. For the sake of simplicity, the assump-
tion of non-overlapping surface elements is accepted hereafter. This means
that each pair of coordinates (xi, yi) that determine the location of a point
on the reference plane perpendicular to the macroscopic fracture surface is
uniquely related to one altitudinal coordinate zi. Because of a discrete data
set of points utilized here to quantify surface topography, only a discrete
form of definition of individual parameters is presented. Integral definition of
many topological characteristics can be found, e.g., in [251, 252].

Vertical Parameters

Most important altitudinal parameters are characteristics associated with the
probability of realization of the value zi in terms of central moments, defined
as
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μk =
1

n

n−1∑
i=0

(zi − 〈z〉)k,

where k is the order of the central moment, n is the range of the analyzed
set of data and 〈z〉 is the arithmetic average height:

〈z〉 = 1

n

n−1∑
i=0

zi.

With respect to properties of 〈z〉, the first central moment is zero. The
second moment (variance) yields information on the width of the distribution.
This parameter is connected with the standard deviation Rq by the relation

Rq =
√
μ2.

The characteristic of the third central moment, the skewness, describes a
symmetry of the function p(z). It is defined as

γ1 =
μ3

μ
3/2
2

=
μ3

R3
q

.

A normalized form of the fourth central moment is the kurtosis:

γ2 =
μ4

μ2
2

− 3 =
μ4

R4
q

− 3.

This parameter becomes zero for the Gaussian distribution and a negative
value indicates a more flat distribution. Another parameter often used in the
literature is the arithmetic roughness (the centre line average):

Ra =
1

n

n−1∑
i=0

|zi − 〈z〉|.

This parameter, however, is usually nearly proportional to the standard de-
viation Rq [250].

The second group of vertical parameters involves characteristics based
on extreme values of the set Z [257]. The most widely used parameters
are the highest height Rp (Rp = zmax − 〈z〉) and the maximum depth Rv
(Rv = 〈z〉 − zmin) which are the maximal and minimal values of the rel-
ative coordinates associated with a selected altitudinal level 〈z〉, respec-
tively. Another parameter is the vertical range, Rz, representing their sum
Rz = zmax − zmin (Figure 3.1).
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Figure 3.1 Graphical definition of basic extreme vertical parameters: the maximum
hight Rp, the maximum depth Rv and the vertical range Rz . For comparison, the
arithmetic roughness Ra is also depicted. The grey area marks the first element of
the profile

Length Parameters

Length parameters describe the distribution of specific altitudinal levels of
the surface in the horizontal plane x–y. These parameters are particularly
useful for quality control in manufacturing processes. Their application in
the fractography is rather rare. The most commonly used length parameters
are, for example, the average spacing of profile elements on the mean line,
Sm, the number of profile intersections with the mean line n0 or the number
of peaks per the length unit m0.

By evaluation of the parameter m0, for example, the peak is counted only
when its horizontal distance from the previously counted peak is higher than
1
10 of the vertical range Rz [251]. Consequently, the relation x

p
i −xpi−1 >

1
10Rz

must be fulfilled, where xpi is the x-coordinate of the i-th peak and xpi−1 is
that of the previously counted peak.

Hybrid Parameters

Hybrid parameters can be understood as a combination of altitudinal and
length characteristics [250, 252]. In quantitative fractography, the linear
roughness RL and the area roughness RA have been used for some time.
These dimensionless characteristics, sometimes respectively called the rela-
tive profile length and the relative surface area, are defined as

RL =
L

L′ ,

RA =
S

S′ ,
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where L is the fracture profile length, S is the area of the fracture surface, L′

is the profile projection length and S′ is the surface area projection into
the macroscopic fracture plane. In the case of the profile composed of z
randomly oriented linear segments RL = π

2 , whereas for the fracture surface
composed of randomly oriented (nonoverlapping) facets RA = 2 [214]. The
area roughness RA can be roughly assessed by means of the linear roughness
RL as

RA =

(
4

π

)
(〈RL〉 − 1) + 1.

The average slope Δa and its standard deviation Δq are defined in the
following manner:

Δa =
1

n− 1

n−2∑
i=0

|zi+1 − zi|
(xi+1 − xi)

,

Δq =

[
1

n− 1

n−2∑
i=0

( |zi+1 − zi|
(xi+1 − xi)

−Δa

)] 1
2

.

It should be noted that the parameters RL and RA also provide informa-
tion about the angular distribution of surface elements [258].

Spectral Parameters

Spectral character of the profile can be described by means of the autocorre-
lation function which is a quantitative measure of similarity of the “original”
surface to its laterally shifted version [251, 253]. Thus, the autocorrelation
function expresses the level of interrelations of surface points to neighbour-
ing ones. In the case of the fracture profile described by a set of n equidistant
points (or m × n points obtained by sampling using constant steps in the
directions of coordinate axes x, y), the autocorrelation function is defined by
the following relations:

R(p) =
1

(n− p)

n−p−1∑
i=0

(zi − 〈z〉)(zi+p − 〈z〉),

R(p, q) =
1

(m− p)(n− q)

m−p−1∑
i=0

n−q−1∑
j=0

(zi,j − 〈z〉)(zi+p,j+q − 〈z〉),

where p and q are shifts in the directions of x and y. The autocorrelation
function has the following properties:



132 3 Fatigue Fracture

1. R(0) = μ2 or R(0, 0) = μ2;
2. R(p) = R(−p) or R(p, q) = R(−p,−q);
3. R(0) ≥ |R(p)| or R(0, 0) ≥ |R(p, q)| which means that the autocorrelation

function attains a maximum for zero shifts.

With respect to the first attribute, the autocorrelation function is often
normalized so that R(0) = 1 or R(0, 0) = 1. The normalized autocorrelation
function is usually denoted as r(p) or r(p, q):

−1 ≤ r(p) =
R(p)

μ2
≤ 1, −1 ≤ r(p, q) =

R(p, q)

μ2
≤ 1.

Autocorrelation lengths βp and βq are defined as shifts p, q corresponding
to a drop of the autocorrelation function to a given fraction of its initial value.
The fractions 1

10 and 1
e are most frequently utilized [251,253]. Consequently,

the surface points more distant than βp, βq can be assumed to be uncorre-
lated. This means that the related part of the fracture surface was created
by another, rather independent, process of surface generation.

The character of the spectral surface can also be described in the Fourier
space. The most important characteristic is the power spectral density

G (ωp) = |F (ωp)|2 ,

G (ωp, ωq) = |F (ωp, ωq)|2 ,
where ωp and ωq are space frequencies in the directions of coordinate axes x
and y [251, 254]. Functions F (ωp) and F (ωp, ωq) represent relevant Fourier
transforms of the fracture surface:

F (ωp) =
1

n

n−1∑
k=0

zk exp

{
−i2π

(
kωp
n

)}
, (3.1)

F (ωp, ωq) =
1

mn

m−1∑
k=0

n−1∑
l=0

zk,l exp

{
−i2π

(
kωp
m

+
lωq
n

)}
, (3.2)

where i is the imaginary unit [254]. Equations 3.1 and 3.2 define the so-
called discrete Fourier transform (DFT). The conventional factors 1

n and 1
mn

might differ for various applications. Instead of the highly computationally
demanding DFT the fast Fourier transform is often utilized.

Fractal Parameters

Fractal geometry is a mathematical discipline introduced by Mandelbrot [259]
in the early 1980s. It is widely utilized as a suitable tool for the description
of jagged natural objects of complicated geometrical structure. Fundamental
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properties of fractal objects are so-called self-similarity or self-affinity which
mean an invariance with respect to scale changes. As a measure of the frac-
tality the Hausdorff (fractal) dimension DH is often used. The metrics of DH

can be determined by means of the Hausdorff measure

Γ dH = lim
ε→0

inf
Ui

∑
i

(diam Ui)
d . (3.3)

When calculating the Hausdorff measure, the object is covered by cells
Ui. The diameter of each cell meets the following condition: diam Ui =
sup {|x− y| : x, y ∈ Ui} ≤ ε. Consequently, one searches the cell network min-
imizing the sum in Equation 3.3 for an infinitely small diameter of covering
cells (ε → 0). There is only a single value of DH fulfilling the conditions
Γ dH = 0 for each d > DH and Γ dH = ∞ for each d < DH . This value is called
the Hausdorff (fractal) dimension of the object. In the case of a smooth (Eu-
clidean) object DH = dT , where dT is the topological dimension, whereas
dT < DH ≤ (dT +1) holds for the fractal object. In general, DH is a rational
number exceeding the topological dimension. A higher DH -value means a
higher segmentation of the object. As an example of the fractal object, Von
Koch’s curve is depicted in Figure 3.2 along with several first steps of its
construction.

Figure 3.2 Von Koch’s curve: (a) fractal initiator, (b) first iteration, (c) second
iteration, (d) third iteration, and (e) final fractal (DH ≈ 1.262)

As can be seen from Figure 3.2, the length of the curve increases with
increasing number of iterations and, for the final fractal, it becomes infinite.
On the other hand, the area under the curve remains finite and practically
unchanged. The infinite length of the fractal curve means that the marked
points O and P retain the same distance during all iterations. Paradoxically,
however, they coincide in the case of the final fractal (limn→∞ |OP | = 0).
Real natural objects exhibit a statistical self-similarity rather than a perfect
deterministic one. This means that the self-similarity does not hold for the
object itself but only for its statistical parameters (average, variation, etc.)
[260].

With respect to difficulties connected with the calculation of the Haus-
dorff dimension Γ dH directly according to Equation 3.3, various other simpler
solutions were derived. The most widely used methods are depicted in Fig-
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ure 3.3. By application of those methods to real objects, however, deviations
from the theoretical fractal dependencies are usually observed [249,261,262].
A sigmoidal trend, obtained when calculating the parameter DH , can serve
as a typical example.

Figure 3.3 Some computation methods of the of fractal dimension: (a) perimeter
method, (b) computation of squares, and (c) Minkowski method

Calculation of the of areas fractal dimension (dT = 2) is more complicated
and, as usual, it is performed either by means of space versions of curve
methods [263, 264] or using the area-perimeter method. The latter method
analyzes the fractal dimension of boundary curves of “islands” created by
intersections of the horizontal plane with the object surface [264, 265].

Self-affinity is a more general form of self-similarity. A regular object ex-
hibiting self-affinity is invariant to the transformation

x′ → λxx, y′ → λyy, z′ → λzz,

where λy ∝ λ
νy
x and λz ∝ λνzx so that λz ∝ λ

νz/νy
y . The ratio H = νz/νy is

called the Hurst exponent (the exponent of self-affinity), H ∈ 〈0; 1〉. When
all contraction coefficients are equal (λx = λy = λz), the same transforma-
tion describes the self-similarity (see Figure 3.2(e)). In the case of isotropic
surfaces, λx = λy and H = νz. This relation also refers to the arbitrary
self-affine plane curve [260]. Again, the natural objects exhibit a statistical
self-affinity rather than a deterministic one. Many experiments reveal that
the fracture surfaces of most materials exhibit such a property [260,266,267].
Indeed, the self-similarity is usually preserved in the horizontal plane x–y (the
area-perimeter method is based on that assumption), whereas the self-affinity
is associated with the z-coordinate.

The Hurst exponent also yields information on a degree of internal ran-
domness. When the object can be described by the Hurst exponent H > H∗,
where H∗ = dT

dT+1 , the trend in the local site x (e.g., low or high z-values)
is most probably followed by a similar trend in every other site x+Δx (the
persistence or the long-term memory). On the other hand, H < H∗ means
an opposite tendency (antipersistence or short-term memory). The former
type is typical for brittle fractures whereas the latter is typical for ductile
ones [260].

As a rule, the Hurst exponent is calculated by means of the so-called
variable bandwidth method [267, 268]. First, the profile is divided into k
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movable windows (size ε) and, for each window, the local value of Rq is
determined. Then the dependence of the average (global) characteristic

W =
1

k

k−1∑
i=0

Rqi

on ε is established. Finally, the Hurst exponent is calculated according to
the relation W (ε) ∝ εH as a slope of the exponential function plotted in
bi-logarithmic coordinates (similarly to the fractal dimension).

3.1.2 Morphological Patterns in Fatigue

The morphological features in fatigue are different when looking at the frac-
ture surface under low and high magnifications. Therefore, they can simply
be separated into macroscopic and microscopic patterns [149, 187, 269, 270].

Macroscopic Patterns

The fractographic investigation of fatigue fracture surfaces usually starts vi-
sually or by low-magnification optical microscopy. Because of a change from
a stage I slip plane that is inclined to the fracture plane macroscopically per-
pendicular to the principal loading axis, one can often distinguish a boundary
between stage I and stage II crack propagations. It should be noted that the
stage I fracture never extends beyond about three grains around the crack
initiation site at the surface. The transition from stage I to stage II is usu-
ally accompanied by ridges parallel to the crack propagation direction. These
ridges are formed by local shears that merge many plateaus corresponding to
different fracture plains in individual grains.

One of the most important features usually found on fatigue fracture sur-
faces is beach marks (arrest marks), which are centred around the point of
fatigue crack origin. These patterns correspond to stage II of crack propaga-
tion, and occur as a result of changes in loading or frequency or by oxidation
of fracture surfaces during periods of crack arrest from intermittent service
of the component.

The final-fracture zone can usually be identified by a fibrous morphology,
which is different to that of the stage II crack growth. The size of this zone
depends on the magnitude of loading, and its shape depends on the mode
of external loading. Therefore, the transition boundary (line) between the
stage II and final fracture zones can be related to the value of critical stress
intensity factor Kc, associated with the fast (unstable) fracture. In ductile
materials, shear lips (plane-stress) at approximately 45◦ to the fracture sur-
face appear at the end of the final-fracture zone related to the free surface of
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the component. These lips enable us to differentiate clearly the final fracture
zone from that of the initial crack growth stage.

Microscopic Patterns

During stage II of fatigue crack propagation, striations are formed in the way
shown in Section 3.2.3. According to the model relevant for the Paris–Erdogan
region, the striation spacing should be equal to the local crack growth rate,
which is particularly true for ductile and homogeneous materials. Fatigue stri-
ations often bow out in the direction of crack propagation and generally tend
to align perpendicular to the principal (macroscopic) crack growth direction.
However, the crack locally propagates along multiple plateaus (facets) so that
the local crack propagation directions in individual facets are usually differ-
ent. The SEM picture of a striation field which documents this phenomenon
is presented in Figure 3.4. Moreover, the plateaus can lie at different eleva-
tions with respect to each other and join by tear ridges or walls that also
contain striations.

Figure 3.4 The striation field in the austenitic steel

Therefore, when comparing the macroscopic crack growth rate with the
striation spacing for a given crack length, one has to consider an average
of local crack growth rates indicated within the related striation field. This
can be done by assuming the average of projections of local crack growth
rates, perpendicular to the striations on individual facets, to the macroscopic
propagation direction by using the formula
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s̄ =
1

n

n∑
i=1

si cosαi, (3.4)

where n is the number of facets, si is the striation spacing on the i-th facet
and αi are the related projection angles (see Figure 3.5)
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Figure 3.5 The scheme of local inclination angles of striation fields. The macroscopic
crack growth direction is marked by the arrow

On striation facets which are at an angle to the average plane of crack
growth, so-called fissures can be formed [271, 272]. They appear as short
(secondary) cracks related only to one surface of the local crack, are regularly
spaced, and penetrate a distance below the fracture surface which is much
larger than the variations in fracture surface topography. The fissures form
at striations most likely due to their stress concentration effect. Because
the formation of fissures causes local crack branching, the further striations
created on the inclined facet start to be immediately shielded especially from
the local tensile stress parallel to the fracture surface. As the crack front
moves away from the fissure, the local tensile stress builds up to the point
where a new fissure is formed, and the process is repeated. Therefore, the
fissure spacing does not directly correspond to the local crack growth rate,
similarly to the spacing of false striations created in the near-threshold region
(Section 3.2).

There are also other periodic patterns, sometimes observed on fatigue frac-
ture surfaces generated by a shear loading, known as fibrous patterns and tire
tracks. Both these markings are produced by a contact wear of crack-flank
asperities. The fibrous patterns are, unlike striations, parallel to the crack
growth direction and can be clearly seen in Figure 3.6. The tire tracks, re-
sembling the tracks left by the tread pattern of a tire, are the result of particles
or protrusions on the fracture surface being successively impressed into the
mating surface part during the closing portion of the loading cycle. They are
nicely depicted especially in Figure 3.52 (Section 3.3). An appearance of both
fibrous patterns and tire tracks always indicates a presence of either remote
or local shear mode II at the crack front. The local shear mode can also be
induced in the case of a pure remote mode I by inclinations of crack front
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elements from the main crack plane perpendicular to the remote loading di-
rection (see also Section 3.3). The direction of the tire tracks and the change
in the spacing of indentations can also indicate both the magnitude and the
type of displacements that occurred during the fracture process, such as lat-
eral movement from shear or torsional loading. There is, again, no simple
correspondence between the spacing of tire tracks (or fibrous patterns) and
the crack growth rate.

Figure 3.6 Fibrous patterns and tire tracks formed under the shear (mode II) crack
propagation in austenitic steel. The crack growth direction is from the bottom to the
top

Sometimes, periodic microstructural phases (pearlite, martensite laths,
etc.) or slip traces can also be observed on fracture surfaces. Such patterns,
obviously, have nothing to do with the crack growth rate. Thus, the fields of
fatigue striations are the only relevant patterns that can be directly corre-
lated with the rate of crack front propagation. A clear distinction between
the striations and other periodical features is not trivial. Therefore, when
performing a reconstitution of the fatigue process based on the fracture sur-
face micromorphology, one should possess a sufficient level of fractographic
experience.
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3.2 Opening Loading Mode

There is common agreement within the international scientific community
concerning a principal physical difference between the driving force of the
fatigue (stable) crack growth and that of the brittle (unstable) fracture. While
the latter is directly associated with a drop in the elastic energy (elastic
strain) and the critical value of the stress intensity factor Kc, the driving
force in fatigue is directly related to the range of the cyclic plastic strain at
the crack tip. Because the maximum K-value during the stable crack growth
lies below Kc, the crack growth can proceed only when supported by the
work of external cyclic forces. Similarly, the stable growth in the case of stress
corrosion cracking presumes the assistance of the chemical driving force. In
1963, Paris and Erdogan [273] proved that the diagram da/dN vs ΔK for
so-called long cracks in the small-scale yielding range (the high-cycle fatigue)
retains the advantage of LEFM, namely a satisfactory invariance in the shape
and size of cracked solids. It might seem to be surprising that the linear
elastic parameter also allows us to describe successfully the rate of plastic
processes at the crack tip. Several years later, however, Rice [274] brought to
light a theoretical reason justifying the present opinion: the small-scale cyclic
plasticity (the cyclic plastic zone) at the crack tip is, indeed, controlled by
the value of ΔK.

The local value of ΔK at the crack tip is determined by both external
and internal stresses resulting from external forces and local plastic defor-
mations (or generally from microstructural defects), respectively. The tensile
and compressive elastic energies associated with internal stresses are mutu-
ally compensated all over the bulk and, therefore, they do not contribute to a
global tensile elastic energy of stressed solids. Consequently, they cannot be
released to support the unstable fracture process. At the same time, limited
amounts of elastic energy that can be released by relaxation of local tensile
internal stresses in small volumes adjacent to the crack tip can significantly
influence neither the onset of brittle fracture nor its crack growth rate. On the
other hand, the level of internal stresses can substantially influence the stable
fatigue growth rate in each step of the crack advance, since the emission of
dislocations from the crack tip occurs at very low stress intensity factors. This
means that even very small changes of local K-values at the crack tip can
considerably modify the stable crack growth rate. Thus, unlike in the case of
unstable fracture, the internal stresses created by dislocation configurations
and secondary phases are to be considered as an important additional factor
affecting the fatigue crack propagation rate. It is particularly this difference
that elucidates a much higher complexity of shielding (or anti-shielding) ef-
fects accompanying the fatigue crack growth when compared to brittle frac-
ture. Unlike in brittle fracture, for example, the contact shielding in fatigue
also occurs under the opening loading mode, which causes so-called crack
closure phenomena. Moreover, many important phenomena associated espe-
cially with the small scale yielding, e.g., the existence of fatigue thresholds or
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a delay in ratcheting, can be explained only when the behaviour of discrete
dislocations is taken into account. This underlines the necessity to utilize the
multiscale approaches to the fatigue crack growth phenomenon which is doc-
umented in Chapter 3. Unfortunately, those fundamental diversities of stable
and unstable crack growths still do not seem to be widely understood, partic-
ularly among “classical” mechanical engineers dealing solely with continuum
mechanics.

There is, however, another important factor strongly influencing the sta-
ble crack growth rate in contrast to the unstable one. This is the effect of
environment, even that of the air. Simply, the stronger the chemical interac-
tion between the environment and the material, the higher the fatigue crack
growth rate. For a majority of metallic materials, the crack growth rates in
air are two orders in magnitude higher than those in vacuum [275]. Although
the detailed mechanisms of chemical processes are not examined here, the
micromechanical reasons for their strong influence are clearly outlined here-
after. On the other hand, the growth rate of unstable (brittle) cracks remains
unaffected by the environment because there is not enough time available to
produce a chemical damage during the fast fracture.

Let us emphasize that the mechanism of cyclic plasticity immediately elu-
cidates why the fatigue cracks avoid propagating in hard (or brittle) mi-
crostructural phases. In such phases, the movement of dislocations is strongly
limited and, therefore, the fatigue crack is always repelled to a softer mate-
rial [276, 277]. The same qualitative explanation holds for an increase in the
fatigue limit with an increasing hardness (or ultimate strength). Indeed, the
fatigue limit is related to a critical stress under which the microstructurally
short cracks still remain arrested [149,247]. These cracks are smaller in high-
strength materials (finer microstructure) so that the stress necessary for their
further growth is higher. The fundamental difference in micromechanisms of
brittle and fatigue crack propagation also has a consequence in the follow-
ing well–known phenomenon: whilst a continuous increase in the materials
ductility along the path of propagating brittle cracks (induced, e.g., by a
temperature gradient) causes their arrest, this is generally not the case of
fatigue cracks.

Large deformations inside the plastic zone in both the Paris–Erdogan and
the near fracture regions of long–crack propagation can be described by clas-
sical continuum theories (Figure 3.7). However, these regions are of less engi-
neering importance than those of the short crack growth and the long–crack
threshold. Here, on the other hand, the plastic zone is relatively small and the
dislocation activity is confined to one or two favourable slip systems. Under
such conditions, the experimentally observed phenomena can be sufficiently
elucidated only when taking the discrete nature of plasticity into account.
Therefore, Sections 3.2.1, 3.2.2 and 3.2.3 are devoted to discrete dislocation
models of cyclic plasticity and fatigue crack growth.

The results presented here are essential for a sufficient grasp of both the
crack closure effects and the unified model of the crack-tip shielding, as de-
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Figure 3.7 Scheme of the crack-growth rate vs ΔK dependence for long fatigue
cracks

scribed in Sections 3.2.4 and 3.2.5. The unified model was developed as a
multiscale concept involving three basic levels; micro – crystal defects, meso
– grain (phase) microstructure and macro – continuum. The discrete dislo-
cation theory and the size ratio effect constitute links between these three
levels. It is important to emphasize, however, that a full comprehension of the
crack growth threshold phenomenon requires an insight into the atomistics
of dislocation emissions from the crack tip. Section 3.2.6 presents results of
an extended application of the unified model to identify the shielding com-
ponents as well as the intrinsic resistance to the near-threshold fatigue crack
growth in various metallic materials. Finally, Section 3.2.7 is devoted to the
influence of shielding effects on the crack growth rate in the Paris–Erdogan
region.

3.2.1 Discrete Dislocation Models of Mechanical
Hysteresis

3.2.1.1 Hysteresis Loop

The process of cyclic plastic deformation controls both the crack initiation
and the rate of fatigue crack propagation. The Nabarro–Cottrell analysis
[156] represents a rather simplified model of mechanical hysteresis but it
is very useful for understanding the physical background of that process.
This analysis was applied to provide an insight into the early stage of cyclic
softening as well as to the micromechanism of ratcheting (the cyclic creep)
in polycrystalline materials at room temperature [149, 278, 279].

A polycrystalline material at the onset of cyclic softening can be considered
to be a nearly elastic aggregate containing a small number of perfectly plastic
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grains. The macroscopic stress-strain response of such a system of n grains
corresponds to a composite of nel elastic grains with Young’s modulus E
(a major phase) and npl plastic grains with Young’s modulus E2 � E (a
minor phase). Denoting the relative number of plastic grains as α = npl/n
(n ≈ nel), the composite modulus Ec can then be expressed as

Ec = E

(
1− 1.9

α

1 + α
+ 0.9

α2

(1 + α)2

)
≈ E(1− 2α),

in analogy to a porosity influence in ceramic materials [149, 280].
The aggregate strain can be expressed as

ε = σ/E for σ < σ0,
ε = εe + εp = σ/E + 2α(σ − σ0)/E for σ > σ0,

(3.5)

where σ0 is the yield stress of the composite. The stress-strain response of
such aggregate is depicted in Figure 3.8 in τ − γ shear coordinates (E →
G, σ → τ, ε→ γ).

By raising the applied tensile stress τ from zero, the strain remains elastic
up to the point A in Figure 3.8(a), where τ = τ0. At this moment the first
dislocations are emitted from Frank–Read (F-R) sources and create pile-ups
at grain boundaries. These pile-ups hinder further dislocation emissions by
producing an increasing back stress to F-R sources. Note that, in engineering
applications, this stress is usually declared as a residual stress that remains
in the material after unloading. Thus, the dislocations are emitted from the
F-R source and produce plastic strain as long as the increasing effective shear
stress τ − τ0 compensates the back stress. At the point B the applied stress
stops increasing (τ = τmax), and the following equilibrium equation holds:

τmax − τ0 − τB = 0, (3.6)

where τB is the back stress.
Now we start to reduce the tensile stress from τmax → τmax −Δτ . Before

a sufficiently high value of Δτ is reached, the dislocations cannot move back
and the reverse deformation proceeds in an elastic manner (the segment BC
in Figure 3.8(a)). The backward motion of dislocations begins only after a
stress reversal at the point C, where the sum of the applied (reversed) stress
and the back stress becomes equal to the compressive yield stress:

τmax −Δτ − τB + τ0 = 0. (3.7)

Combining Equations 3.6 and 3.7 one obtains

Δτ = 2τ0.

This simple relation reveals that, for the unloading strain path, a doubled
yield stress is to be taken into account. The value of the compressive yield
stress τmax−2τ0 corresponding to the point C is lower than that of the tensile
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Figure 3.8 Scheme of the mechanical hysteresis behaviour in the frame of the
Nabarro–Cottrell analysis: (a) the asymmetric loading cycle, and (b) the symmet-
ric loading cycle

yield stress. This is the well-known Bauschinger effect. Beyond the point C,
the dislocations move backwards while gradually reducing the back stress up
to the point D, where τB = 0. If the applied compressive stress starts to be
reduced now, the whole process is repeated in the frame of a closed hysteresis
loop. Such a loop is also created when the reverse deformation starts before
reaching the point B or proceeds beyond the point D. An example of the latter
case for a symmetrical loading is shown in Figure 3.8(b). Indeed, an inverse
back stress is created within the segment DE, which causes an appropriate
reduction of the tensile yield stress at the point F, similarly to that of the
compressive yield stress at the point C. Let us finally emphasize that such a
behaviour presumes a totally reversible dislocation slip.

As a rule, the elastic parts of real hysteresis loops in engineering materials
are somewhat shorter, while the plastic ones are longer and curved. A main
reason for that fact constitutes a statistical distribution of values of the yield
stress in various grains [281]. It should also be noted that all the discrete
dislocation models presented in this book utilize only dislocations inevitable
for simulation of cyclic plasticity phenomena, the so-called geometrically nec-
essary dislocations. There are also other dislocations forming the dislocation
structure in real polycrystals, the so-called statistically stored dislocations.
For more details about the geometrically necessary dislocations, see [8].
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3.2.1.2 Ratcheting

The ratcheting (cyclic creep) is a process of gradual plastic elongation or con-
traction of a sample during cycling loading of a constant nominal stress am-
plitude. The first experimental observation of the ratcheting at room temper-
ature was reported by Kennedy [282]. This process can lead to a substantial
reduction of fatigue life in comparison with the strain-controlled loading of
the same stress range [283,284]. For example, failures of helicopter airscrews
can be induced by ratcheting [285]. When loadings of a high asymmetry
near the fatigue limit are applied, the cyclic microcreep can cause undesir-
able shape changes of precisely manufactured components as spiral springs
or turbine blades.

In most practical cases, the prescribed load (work) level is achieved only af-
ter a certain period of time (the so-called ramp-loading). During that starting
period, the plastic strain is increasing and the ratcheting process can only ap-
pear when the plastic strain range exceeds a certain critical value Δεpc which
is characteristic for a particular material. This means that, during the load-
ing, no ratcheting occurs when either the highest achieved value of the plastic
strain range Δεp is less than Δεpc or a cyclic hardening starts before reaching
Δεpc. In the case of cyclically softening materials such behaviour is observed
even when the work load is reached just in the first loading cycle. The scheme
of a typical hysteresis behaviour during the asymmetric loading of cyclically
softening materials before and after the onset of ratcheting is shown in Fig-
ure 3.9. However, remarkable elongations may occur even when a symmetrical
loading cycle is applied (the cyclic ratio R = σmin/σmax = −1) [286, 287].

The value of Δεpc is a material characteristic and depends on the cyclic
ratio (decreases with increasing R) – see e.g., [278, 287]. The elongation or
contraction per one loading cycle (the ratcheting rate) increases with increas-
ing both the cyclic softening rate and the cycle asymmetry [149, 288].

As first described in [279], the analysis based on the discrete dislocation
model of the hysteresis loop can be utilized to elucidate all the experimen-
tally observed phenomena. Obviously, a closed hysteresis loop means that
no ratcheting can take place. According to the above-mentioned Nabarro–
Cottrell analysis, the incomplete closure of the hysteresis loop must be caused
by micromechanisms producing an irreversibility of the cyclic plastic strain.
During initial stages of a global cyclic softening, the plastic deformation is
gradually transferred from pile-ups in most favourably oriented grains into
the adjacent grains [289]. Simultaneously, a cyclic hardening starts to take
place in some of the already plasticized grains. At the end of the global cyclic
softening stage, all grains become plastic and the global response changes to
the cyclic hardening. During the global cyclic softening stage the density of
dislocations increases by a cooperative operation of Frank–Read sources and,
in this way, primary dislocation networks and loop patches are successively
created. In their vicinity, a gradual increase of internal stresses results in
an activation of secondary slip systems. Schemes of both the hysteresis loop
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and the primary slip system in Figure 3.10(a) correspond to a moment just
before the activation of the secondary slip. The interaction of primary and
secondary dislocations leads to a formation of sessile dislocations, i.e., either
to the Lommer–Cottrell barriers (in fcc metals) or to the [001] dislocations
(in bcc metals). This means a start of the slip irreversibility, since the pri-
mary dislocations become locked in between the secondary (newly created)
barrier and the primary (microstructural) barrier. Consequently, they cannot
return to the Frank–Read source during the reverse half-cycle. Moreover, the
secondary slip always reduces the back stress of the pile-up (regardless to
a creation of the secondary barrier). This corresponds to an increase in the
compressive yield stress. These micromechanisms are schematically depicted
in Figure 3.10(b) (ΔτB is the increment of the compressive yield stress, GB is
the grain boundary, SD is the sessile dislocation and SS is the secondary slip
system). Both processes substantially reduce the reverse plasticity, and leave
a residual tensile plastic strain γrb, i.e., initiate the ratcheting [278, 290].
The first experimental observation of a direct connection between the sec-
ondary slip activity and the ratcheting process was reported by Lorenzo and
Laird [291]. Due to superimposed internal and external stresses, the creation
of barriers is related to a peak of the applied true stress. If the peak is ten-
sile (compressive), the ratcheting causes the elongation (contraction) of the
specimen.
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Figure 3.9 The scheme of the hysteresis behaviour of cyclic softening materials
before and after the onset of ratcheting. The ratcheting starts after reaching the
critical range of plastic strain Δεpc

In order to quantify the residual plastic deformation associated with the
loop disclosure, let us consider the reverse slip of the pile-up in more detail.
The Burgers vector density B(x) within the pile-up can be expressed as

B(x) =
τ

πc0

x√
a2 − x2

,

where c0 = μ/[2π(1− ν)], ν is the Poisson’s ratio, x is the coordinate along
the pile-up and a is the length of the pile-up. In the first half-cycle the slip
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Figure 3.10 Incomplete closure of hysteresis loops produced by the secondary slip
mechanism: (a) the moment just before a secondary slip activation (point B’), and
(b) disclosure of the loop caused by the secondary barrier

of pile-up dislocations emitted from the F-R source is restricted only by the
microstructural barrier. Consequently, the related shear strain

γr ∼
a∫

0

B(x)xdx =
τ

πc0

a∫

0

x2√
a2 − x2

dx. (3.8)

When the maximum applied stress τmax is reached, the secondary slip cre-
ates the sessile dislocation. One can assume that the probability P (x) of its
location at the point x inside the pile-up is proportional to the density B(x),
i.e., P (x) = DB(x). The probability of finding the dislocation barrier any-
where in between the F-R source and the primary obstacle (grain boundary)
must be equal to 1, and, therefore, the following relation holds:

1 =

a∫

0

P (x)dx⇒ 1 =
τD

πc0

a∫

0

x√
a2 − x2

dx⇒ P (x) =
1

a
B(x). (3.9)

After the creation of the secondary barrier, only dislocations located be-
tween the F-R source and that barrier can move back to the F-R source. These
dislocations are positioned in the range (0, y), where y is the coordinate of
the secondary obstacle occurring with the probability P (y). This means that,
according to Equations 3.9 and 3.8, the total reverse shear displacement can
be expressed as
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γrb ∼
a∫

0

y∫

0

P (y)B(x)xdxdy =
τ

πc0a

a∫

0

y√
a2 − y2

y∫

0

x2√
a2 − x2

dxdy. (3.10)

After integrating Equations 3.8 and 3.10 one obtains

γrb/γr = 0.41.

This result shows that the secondary barrier prohibits at least a half of dis-
locations from returning back to the F-R source in the unloading half-cycle,
which leads to a disclosure of the hysteresis loop. Obviously, this demands
a sufficient density of primary dislocations to be generated during the cyclic
softening in order to allow the creation of secondary barriers in the pref-
erentially oriented large grains. From a macroscopic point of view it corre-
sponds to a critical amount of a global cyclic plastic strain, i.e., the critical
plastic strain range Δεpc associated with the onset of ratcheting during the
ramp-loading (generally during the global cyclic softening stage). This is a
micromechanical interpretation of initial delays in the cyclic creep process
observed for many metallic materials and various cyclic ratios [286,288]. The
existence of ratcheting in case of symmetrical loading can be elucidated in a
similar way. Due to a transverse contraction of the specimen (component),
the peaks of the true stress come up in the tensile half-cycles. Because the
creation of the first barriers is related to these peaks, the cyclic creep follows
the tensile direction and elongates the specimen.
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Figure 3.11 The scheme of the hysteresis behaviour when the critical plastic strain
range is exceeded in all loading cycles: (a) the loading starts in the tensile direction,
and (b) the loading starts in the compressive direction (the shake-down behaviour)

When the work load is reached just in the first loading cycle and, si-
multaneously, the critical value Δεpc is exceeded, the kinetics of ratcheting
strongly depends on the starting loading direction and the plastic strain range
in the following cycles [292]. Such multislip plastic behaviour can already
be described by continuum plasticity theories involving kinematic harden-
ing [293,294]. The starting tensile (compressive) half-cycle produces the elon-
gation (contraction) after a completion of the first cycle – see Figure 3.11. The
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ratcheting process proceeds only when the plastic strain range also remains
sufficiently high in the next cycles (Figure 3.11(a)). This case corresponds to
exceeding the so-called shakedown limit, usually expressed in terms of a criti-
cal applied stress value. When the ratcheting is oriented into the compressive
direction, however, it eventually stops after a certain number of cycles due to
a decreasing true stress range (an increasing diameter of the specimen) – see
Figure 3.11(b). Such behaviour is known as a plastic shakedown. When the
material hardens and the plastic strain range is relatively small, a rather slow
ratcheting, reversed to that of the first half-cycle, is usually observed (Fig-
ure 3.12). As a rule, however, the loop stabilizes and the ratcheting shakes
down after a certain number of cycles. This backward ratcheting is caused
by high residual stresses which are created in the first half-cycle. During a
certain period of a cyclic plastic deformation, these stresses gradually become
relaxed by multislip.
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stable loop
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12
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Figure 3.12 The scheme of the shake-down behaviour when the critical plastic strain
range is exceeded only in the first loading cycle: (a) starting in the tensile direction,
and (b) starting in the compressive direction

In order to assess the ratcheting rate in the initial softening stage, the
difference between the plastic strains produced in the loading and unloading
parts of the cycle is to be determined. Let us consider that during each loading
cycle the reverse slip is restricted to one half due to the secondary slip in Δα
grains. This means that the reversed plasticity will be reduced proportionally
to Δα/2. By using Equation 3.5, and respecting the reduction of the reversed
plasticity, it leads to the following result:

Δγcc = γp − γpR ≈ ±
(
2α

μ
(τmax − τ0)− 2α−Δα

μ
(τmax − τ0)

)
=

= ±Δα

μ
(τmax − τ0) = ±Δα

μ

(
2

1−R
τa − τ0

)
.

(3.11)

The positive sign holds for R > −1 (elongation) and the negative sign
for R < −1 (contraction). According to Equation 3.11 the ratcheting rate
increases with both the increasing cycle asymmetry and the plastic strain
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range. Indeed, one can assume Δα ∝ Δεp, where Δεp is the push-pull plastic
strain range. This is in general agreement with experimental observations
as well as with continuum plasticity models [295]. It should be emphasized,
however, that the continuummechanics is unable to interpret the two, already
discussed, micromechanically induced phenomena: the critical plastic strain
range related to the onset of ratcheting at the end of a delay and the tensile
cyclic creep in the case of symmetrical loading.

Equation 3.11 was quantitatively verified by a simulation of initial ratch-
eting stages in ultra-high-strength steels [296]. Because Δα ≈ kΔεp and the
push-pull stresses σ and strains ε are proportional to the shear quantities τ
and γ, Equation 3.11 can be rewritten in terms of σ and ε as

Δεcc
Δεp

≈ k

E
(σmax − σ0). (3.12)

According to Equation 3.12, the dependence Δεcc/Δεp vs σmax should be
linear. Thus, the linear interpolation of experimental points is plotted in
Figure 3.13 along with associated scatter ranges.
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Figure 3.13 The normalized ratcheting rate as a function of the maximum loading
stress. The straight line corresponds to the theoretical model

The plastic strain range Δεp in the experiment was of the order of 10−5.
The extrapolated value σ0 = 1905MPam1/2 for the zero ratcheting rate
agrees well with the experimental one (σ0 = 1920MPam1/2). The constant
k is of the order of 104 and Δα ≈ 10−1. This means that, in every loading
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cycle, the reversed dislocation slip was suppressed approximately in one of
each ten grains. This seems to be a plausible result as well.

Let us finally note that similar irreversible micromechanisms also oper-
ate in the cyclic plastic zone ahead of an advancing fatigue crack front (see
the next subsection), and contribute to the roughness-induced shielding (see
Section 3.2.4).

3.2.2 Nucleation and Growth of Short Cracks

3.2.2.1 Mechanisms of Crack Nucleation

Fatigue cracks in metallic materials are nucleated by local interactions of
dislocation slip bands or pile-ups with microstructural heterogeneities and
defects as grain boundaries, phase boundaries, large secondary phase parti-
cles or free surfaces [149, 192, 297]. These interactions are induced by elas-
tic mismatch strains evolving at boundaries of grains and microstructural
phases with different stress-strain characteristics during the external loading.
Although the related high elastic incompatibility stresses can be relaxed by
plastic deformation (dislocation movements) in a nearly entire volume of a
deformed solid, relatively high long-range stresses of dislocation arrangements
in slip bands and pile-ups remain locally at microstructural boundaries. Since
the cohesive strength (fracture energy) of incoherent boundaries can be very
low, these stresses often lead to microcrack initiation at the weakest sites.
Discrete dislocation models [298–300] revealed that the peak stresses could
be higher than the cohesion stress, which depends on the surface and grain
boundary energies. A high hydrostatic component of the long-range stresses
intensifies a diffusion of interstitials into the stressed regions, thereby reduc-
ing the cohesive strength of the boundary. Following the molecular dynamics
computations of Van der Ven and Ceder [301], a fraction of 40% of oxygen
(hydrogen) atoms in a {111} aluminium plane induces a relative reduction
in the cohesive strength by a factor of two (three). In order to propagate
further the nucleated microcrack, however, a sufficient amount of irreversible
plasticity must be produced at its front. This is conditioned by a permanent
flux of oxygen to avoid a repeating recovering of newly created fracture sur-
faces (see hereafter). Therefore, an intergranular propagation from the bulk
interior along the grain or phase boundaries by repeating decohesion mecha-
nism is usually observed only in strong corrosive environments. On the other
hand, a transgranular crack propagation from the internal nucleus at an in-
clusion was often observed in specimens with a reinforced surface layers or in
an ultra-high cycle regime (see Section 3.3.4).

It should be emphasized, however, that the fatigue cracks preferentially
initiate at the surface [149, 192]. Indeed, the free surface is a boundary that
separates media with an extremely high difference in properties (lack of in-
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teratomic bonds in air). In this particular case, the movement of dislocations
towards the free surface is caused by attractive mirror forces (see also Sec-
tion 2.3). During the first loading cycles progressive changes in the dislocation
structure start to proceed. The damage processes begins at the sites of cyclic
strain localization, usually called persistent slip bands (PSBs) and results in
the formation of sharp surface slip patterns called persistent slip markings
(PSMs). PSMs consist of extrusions and intrusions which develop on the ini-
tially flat surface at emerging PSBs (see Figure 3.14). While the amplitude of
reversed plastic slip in the interior of PSBs or pile-ups is highly constrained
by surrounding elastic matrix, this is not the case for the parts near the
PSMs on the free surface where high local plastic deformations appear. In-
deed, atomic force microscopy revealed that these strains can be two orders
of magnitude higher than the applied macroscopic ones (e.g., [302]).

The slip localization in surface thin bands can be explained by several
mechanisms. For example, cycling of precipitation hardened alloys induces
formation of thin slip bands in zones with easily shareable (coherent) pre-
cipitates [303]. In ductile fcc and bcc polycrystals subjected to cyclic loading
the PSBs are often formed within the surface grains. The PSBs consist of
hard walls (high density of edge dislocation dipoles) and soft channels (low
density of screw dislocations which glide and cross-slip) creating the well-
known ladder-like structure (e.g., [304, 305]). This rather regular dislocation
arrangement lowers the internal energy and enables high local shear defor-
mations [306,307]. Although the ladder-like structure is usually not observed
in metals and alloys possessing a low stacking-fault energy, the PSMs occur
in these materials [302].

The amount of plastic slip inside the slip bands and PSBs can be modelled
by considering an elongated bulk inclusion embedded in the matrix which
mimics the whole polycrystal [308]. By considering analytical solutions de-
rived by Eshelby for bulk inclusions [309] one can show that the primary
slip in the vicinity of the free surface is higher than that in the bulk, where
the deformation is constrained by the grain boundary surrounded by a hard
elastic material [310]. The slip within the band can be defined as the ratio
between the displacement along the most active Burgers vector and the slip
band thickness, h. Then the shear deformation within the surface slip bands
can be expressed as

γp = r(1 − ν)
L

h

(
1 +

h

L

)2
0.5Σ − τcrs

G
, (3.13)

where L is the length of the slip band (usually the grain size), r = 1.9, ν
is the Poisson’s ratio, G is the shear modulus, Σ is the applied stress and
τcrs is the critical resolved shear stress in the channel [310]. The factor 0.5
corresponds to a highest possible Schmid factor of the slip band inclined 45◦

from the loading axis. Equation 3.13 was recently verified by finite element
calculations [311]. Since in large grains the values of L are tens of microns and
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the values of h are units or tens of nanometers, the ratio h/L ≈ 0.005 � 1.
With regard to Equation 3.13 this means that the surface plastic deformation
in the slip band is proportional to L/h, i.e., it increases with increasing aspect
ratio of the band. Clearly, the Eshelby inclusion elongated in the direction of
the applied stress experiences lower back stress. Thus, the ratio of the strain
εL localized in slip bands at the surface and the applied (nearly elastic) strain
ε can reach values as high as εL/ε ≈ 200. Note that the localization ratio
related to the inner end of the slip band (impinged by a grain boundary) is
about ten times lower [311].

�
b

extrusions

[111]

[121]

[101]

intrusiondipolar walls chanels

b= /2 [101]a

x

y

z

Figure 3.14 A scheme of extrusion and intrusion patterns at the intersection of the
persistent slip band with a free surface

The high local reversed plasticity in slip bands and channels of PSBs
produces a surface microroughness in the form of extrusions and intrusions
(e.g., [312]). The movement of screw dislocations with jogs generates a sur-
plus of vacancies in the channels. The counterbalancing flux of atoms inside
the channels causes extrusions at the free surface, the volume of which is
much higher than that of intrusions, as shown in Figure 3.14. On the other
hand, volumes near the surface and close to the outer boundary of the chan-
nels become depleted by atoms (or enriched by vacancies). This usually leads
to formation of thin intrusions next to the extrusions [313]. Such a model of
combined movements of dislocations and point defects well reflects geomet-
rical proportions of extrusions and intrusions [314]. However, there are also
many other older models of the surface relief evolution (e.g., [315, 316]).

High stress concentrations around extrusions and, particularly, at the tip
of intrusions leads to a formation of short surface cracks which start to prop-
agate along the slip bands or PSBs inside the bulk. This growth is controlled
by irreversible emission and absorption of dislocations at the fronts of these
cracks. Owing to the localization ratio and Equation 3.13, such a damage
process is most probable in the largest surface grains along slip planes with
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the highest Schmid factors. One should also note that the average level of
cyclic plasticity is raising when transferring from a high-cycle regime to a
low-cycle one. Consequently, the concentration of nucleated surface cracks
follows the same trend.

3.2.2.2 Propagation of Short Cracks

There is no clear notion about the moment of transition from the vacancy-
assisted intrusion growth into the dislocation based propagation of the related
short crack. Nevertheless, there are some plausible models explaining possible
mechanisms of initial growth stages (e.g., [149, 312, 317]). Since the crack
nuclei are strictly aligned with the slip planes of PSBs, their further advance
proceeds along these planes. This means that the cracks propagate under the
shear stress coupled with the tensile normal stress (the mixed-mode I+II)
that can somewhat facilitate the emission of dislocations from the crack tip by
reducing the ideal shear strength (see Section 1.1). During cyclic loading in air
or other corrosive environments, a passive oxide layer always forms on metallic
surfaces. If the oxide layer is fractured as a consequence of deformation in
the underlying polycrystal, the passivation is lost and a re-oxidation occurs.
The process of repeated fracture and re-oxidation is a central principle of
slip-oxidation models that are widely used to elucidate the mechanism of
propagation of both short and long cracks [149, 317].

The simplest model assuming the propagation along a single slip plane is
depicted in Figure 3.15. In the tensile half-cycle, the edge dislocations are
emitted from (or absorbed at) the crack tip which generates a new fracture
surface on one of the crack flanks. The size of the new surface is equal to the
number of dislocations times the Burgers vector and the length of the crack
front. When assuming an immediate surface oxidization, the dislocations re-
turning during the unloading cycle cannot remove the new surface. Instead of
that, they will form a new fracture surface on the other crack flank, the size
of which is, again, equal to the number of returning dislocations times the
Burgers vector and the crack front length. Under a constant loading ampli-
tude the number of returning dislocations to the crack tip is nearly equal to
the number of dislocations generated during loading. Hence, the crack exten-
sion per cycle is equal to the number of dislocations generated at the crack
tip times the Burgers vector. In other words it is equal to the cyclic crack tip
opening displacement. In this way, the crack advances during each loading
cycle.

In general, the crack growth rate da/dN can be assumed to be nearly pro-
portional to the frequency of the oxide-layer fractures which is, again, propor-
tional to the plastic strain γp in the slip band. Consequently, the crack growth
rate can be assumed to be proportional to (L/h)m, where m ∈ (0.3, 0.8) is
commonly accepted [311,317]. This also means that the growth rate of short
cracks is higher in the long PSBs embedded in large surface grains.
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Figure 3.15 The single-slip model of short crack propagation

When the growing short crack approaches a grain boundary, the emission
of crack tip dislocations starts to be restricted by the back stress from a creat-
ing pile-up. As a result, the growth rate rapidly decreases and, eventually, the
crack could be arrested at the grain boundary. In general, the crack growth
of these so-called microstructurally short cracks (MSCs) becomes retarded
by various microstructural barriers of different strength. The maximal length
of MSCs is determined by the distance bs of the strongest barriers such as
grain or phase boundaries. As was sufficiently verified particularly by the
group of K. J. Miller in Sheffield [318], the fatigue limit corresponds to a
maximal stress still not high enough to propagate the longest short cracks,
i.e., to transfer it through the boundary of the surface grain to adjacent bulk
grains. The distance bs also corresponds well to the maximal size of non-
damaging cracks in the well known Kitagawa–Takahashi diagram [319]. In
specimens fractured close to the fatigue limit, therefore, many small surface
cracks arrested at grain or phase boundaries can be found.

Unlike in the case of long cracks, a description of MSC propagation in
terms of ΔK does not make too much sense. Indeed, the relative size of
the plastic zone rp/a determined by the zone of emitted dislocations at the
tip is not small enough to fulfil the conditions of small-scale yielding and
plane strain. Moreover, there is a rapid change in the T-stress during the
crack propagation from the surface towards the grain boundary. Therefore,
the growth rate of MSCs is often described in the form

da/dN = AΔεlp(bs − a)k,

where Δεp is the applied plastic strain range, and A, l and k are material
parameters (k ≤ 1) [247]. This relationship implies a proportionality between
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the applied and the local plastic strains and reflects well the retardation and
the subsequent arrest of MSCs at the barriers (da/dN = 0 for a = bs). It
should be emphasized that the MSCs can grow at substantially lower applied
stresses than the long cracks, i.e., well below the fatigue limit. This is mainly
caused by an absence of crack closure effects (see Section 3.2.5 for more
details). Indeed, the crack flanks of MSCs are ideally flat so that there is
no roughness-induced closure. A highly elongated shear-mode plastic zone
lies within the confines of one or two slip planes and no plastic blunting
of the crack tip occurs. Therefore, there is also a lack of plasticity-induced
crack closure. In the very first growth stages, the closure level might even be
negative due to the fact that the Peierls–Nabarro stress prevents individual
dislocations from the backward motion within the plastic zone.

For a further advancement of MSCs, the applied stress must be raised to
reinitiate the crack in the adjacent grains. Indeed, the superposition of the
remote and local stresses can also create sufficiently high local plastic strains
in the slip planes with lower Schmid factors. When the crack overcomes the
grain boundaries, it starts to be spatially tortuous. This means that the
crack flanks become rougher and the growing friction forces decelerate the
crack growth under the shear mode II. To avoid friction, the crack attempts
to incline to the plane perpendicular to the direction of the applied stress in
order to get a more open crack tip by a higher mode I loading component. The
cracks occurring in such a transient stage are called physically short cracks
(PSCs). As a rule, MSCs start to be PSCs after subsequent passing through
one or two grain boundaries. The plastic zone size of a growing PSC steadily
increase to embrace more than a single grain. While the crack closure effect
increases, the influence of microstructure on the crack growth rate decreases.
The PSC completely converts into a long crack (LC) after passing more than
ten grain boundaries. At this growth stage, the crack tip plastic zone already
embraces several grains and the microstructural influence becomes negligible.

The dependence of the crack growth rate on the range of the stress inten-
sity factor ΔK during all the stages of MSC, PSC and LC is schematically
depicted in Figure 3.16. An enormous variation of crack growth rate due to
interactions with individual grain boundaries is typical for the MSC stage.
The threshold range ΔKth indicates the limit below which the long cracks
do not propagate.

3.2.3 Discrete Dislocation Models of Mode I Growth
of Long Cracks

3.2.3.1 Near-threshold Crack Tip Plasticity

In the near threshold region of long fatigue cracks, the range of the stress
intensity factor (SIF) is very small (units of MPam1/2), and the plastic zone is
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Figure 3.16 The scheme of the crack growth rate of short and long cracks showing
the characteristic ranges of stress intensity factors. The near-threshold behaviour of
long cracks is indicated by the bold dashed line

bounded to a close vicinity of the crack tip. Therefore, the internal dislocation
sources are likely not present, and the dislocations can be assumed to be
generated at the crack tip. Atomistic models developed by Rice and Thomson
[134] and Rice [139] for atomically sharp cracks show that the spontaneous
emission of dislocations occurs when the SIF reaches a critical value ke. This
value can be estimated as

k2e =
(1 + (1 − ν) tanΦ)

(1 + cos θ) sin2 θ

16Gγus
(1 − ν)

.

Here γus is the unstable stacking fault energy and θ, Φ are angles character-
izing the activated slip system. According to [139] and [320], the predicted
values of ke are 1.3MPam1/2 for Fe, 0.3MPam1/2 for Al and 0.5MPam1/2

for Cu. However, the stress fields produced by emitted dislocations shield the
crack tip, so that the value of the local SIF kloc becomes significantly lower
than that of Krem transmitted from the remote loading. One can write

kloc = Krem +
∑
i

kdi, (3.14)

where kdi < 0 is the SIF originated from i-th single dislocation [320]. In the
crack tip plasticity models, the movement of an already emitted, individual,
dislocation is determined by the Peach–Koehler force

df = (σ · b)× dl,

where b is the Burgers vector, σ is the stress tensor and df is the force on
the line segment dl. The stress tensor is defined by interaction with other
dislocations, free surfaces (e.g., a crack) and remote stresses. The dislocation
remains at rest whenever the slip component of the Peach–Koehler force is less
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Figure 3.17 Configuration of geometrically necessary dislocations emitted from the
crack tip during a loading sequence (DFZ – the dislocation free zone)

than the lattice resistance τ0 (τ0 ≈ G/2000 for bcc metals). The dislocations
may return to the crack, where they disappear by decreasing the crack tip
opening displacement (CTOD).

The mode I crack tip plasticity can be numerically simulated as motion
of edge dislocations, which are parallel to the crack front (plane strain) [9].
Dislocations are symmetrically emitted in pairs and the angle between the slip
planes and the crack propagation plane ϑ = 70◦ – see Figure 3.17. This value
meets the results of both theoretical and experimental investigations [22].
When Krem is increased from its zero value to Kmax and then unloaded back
to zero, the model shows the following main features of dislocation behaviour:

1. Kmax < ke: no dislocations are generated and the material behaves elasti-
cally.

2. ke ≤ Kmax < 1.3ke: several pairs of positive (shielding) dislocations are
generated and pushed into the bulk so that the kloc becomes lower than
Krem. Upon unloading the back stress never reaches the negative friction
stress −τ0. Consequently, the material behaves elastically in all further
cycles.

3. 1.3ke ≤ Kmax < 3.5ke: many pairs of positive dislocations are generated
and, during the unloading sequence, some of them return to the crack
again. This means that the crack-tip cyclic plasticity appears first within
this range of Kmax values. No negative dislocations (with opposite Burgers
vectors) are emitted during unloading.

4. 3.5ke ≤ Kmax < 4ke: during the unloading some pairs of negative (anti-
shielding) dislocations are emitted but they immediately annihilate with
their positive counterparts (their mutual distance is less than 10b).
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5. 4ke ≤ Kmax: some pairs of negative dislocations, generated during the
unloading half-cycle, remain stable.

The fully developed dislocation configurations look like inverse pile-ups (Fig-
ure 3.17). A dislocation free zone (DFZ) is found in the immediate vicinity
of the crack tip. Such zones were often observed in thin foils (e.g., [321]) and
their existence is an exclusive consequence of the discrete nature of plastic-
ity. Similarly, the cyclic plasticity starts to operate only when Kmax ≈ 2ke
is reached (the point 3). This condition can be interpreted as an intrinsic
threshold Kin,th of the stationary mode I fatigue crack. The coefficient 2 was
chosen here instead of 1.3 (the lower limit), because the emitted dislocations
blunt the crack tip. As a consequence, the real critical values for sponta-
neous dislocation emission (Kin,th ≈ 2.6MPam1/2 for Fe, 0.6MPam1/2 for
Al and 1MPam1/2 for Cu) are expected to be somewhat higher than those
calculated for the atomically sharp cracks. Thus, the experimentally verified
existence of the intrinsic threshold can be nicely interpreted by the discrete
dislocation model.

3.2.3.2 Crack Growth in Near-threshold Region

In order to study the development of dislocation configurations and related
details of the crack front geometry during the loading history, the discrete
dislocation model of growing fatigue crack was developed by Riemelmoser
et al. [320, 322]. It is a blunting model very similar to the original concept
of Pelloux [323], but the plastic deformation is modelled as motion of edge
dislocations.

Blunting and growing of the modelled crack is schematically shown in
Figure 3.18. The crack growth increment per emission of one dislocation pair
is Δa = b cos θ, where b is the magnitude of the Burgers vector.

The crack resharpens again when the emitted dislocations return to the
crack tip (or crack flanks). As usual, an assumption of full irreversibility of
the fracture process is accepted when modelling the fatigue crack growth in
the air. It means that, due to the environmental assistance (in particular
that of the oxygen), once created free surfaces do not re-weld. Consequently,
after the unloading the length of the crack remains the same as it was at
the moment of the preceding maximum load. Thus, in principle, only one
dislocation that was emitted, and returned back to the crack tip causes an
elementary fatigue crack advance. This is the microstructural interpretation
of the previously mentioned fact that the range of local cyclic plasticity can
be considered to be the fatigue crack driving force.

A result of the numerical analysis of a growing crack is demonstrated in
Figure 3.19. In the first loading half-cycle many dislocations are emitted as
a slip band. During unloading m of them return to the crack, where they
annihilate on the free surface (Figure 3.19(b)). In the second cycle the same
m dislocations are generated and annihilated again, while the crack propa-
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Figure 3.18 Scheme of the crack tip advancement produced by its blunting due
to dislocation emission. Δa is the crack advancement caused by emission of four
dislocation pairs

gates. The same occurs in many further cycles, until the crack advancement
becomes about 200 Burgers vectors. Then one further pair of dislocations
remains in the bulk, since the repulsive stress from the slip band, acting at
the advanced crack tip, has become somewhat lower (Figure 3.19(c)). This
happens every 200 Burgers vector distances after the crack advancement is so
that a dislocation wall parallel with the crack is formed, see Figure 3.19(d).
When the influence of the first slip band on the moving-away crack tip be-
comes small enough, the newly generated dislocations can pass the wall to
form a second slip band, as also shown in Figure 3.19(d). In the following
unloading half-cycle the dislocations in the wall experience the back stress
from the dislocations in the secondary band. Many of them return to the
crack tip and disappear. This situation is depicted in Figure 3.19(e). From
that moment on, the whole process starts to repeat periodically which leads
to a dislocation arrangement as shown in Figure 3.19(f). The width of each
periodicg999 segment is about 2500 Burgers vectors (0.6mm). The segments
are accompanied by surface steps (adjacent to the slip bands) that can be
visible on fracture surfaces as so-called subcritical (near-threshold) striations.
Their spacing of about 0.6mm is, unlike that of supercritical striations (see
hereafter), fully independent of the crack growth rate.

Thus, the growing near-threshold fatigue crack leaves a plastically de-
formed band, the static plastic zone, along its flanks behind the crack tip. In
real crystals, this zone consists of both the geometrically necessary disloca-
tions and the statistically stored ones. Although only geometrically necessary
dislocations are considered here, the dislocation arrangements observed in the
electron microscopy look very similar, e.g., [324]. Such a periodic configura-
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Figure 3.19 Prediction of geometrically necessary dislocation arrangements in the
wake of a growing near-threshold crack according to the discrete dislocation model:
(a) the first growing stage, (b) after releasing the load some dislocations disappear to
free surfaces, (c) generation of the first wall dislocation, (d) generation of the second
slip band, (e) vanishing of a part of wall dislocations in the unloading phase, and
(f) creation of a periodic dislocation structure in the crack wake
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tion of slip bands, remaining in the wake of a propagating crack, causes a
tilting of the crystal lattice near crack flanks. This can produce a significant
contact shielding of the crack tip (see Section 3.2.4).

The model can also well reproduce the intrinsic crack growth curve [9]
near the threshold. On the other hand, the continuum plasticity models (e.g.,
[274]) are not able to reproduce correctly any of above-mentioned phenomena.
The difference in prediction of the near-threshold crack growth behaviour by
the continuum approach and the discrete dislocation model is schematically
depicted in Figure 3.20.

Figure 3.20 The scheme of the near-threshold crack growth rate according to the
continuum approach (dotted line) and the discrete dislocation model (solid line)

3.2.3.3 Crack Growth in Paris–Erdogan Region

When the crack proceeds to reach the Paris–Erdogan region, the SIF at
its tip keeps raising steadily. The ability of dislocation emission increases
and, consequently, the width of periodic segments decreases. Due to a much
higher number of emitted dislocations, simultaneously, the crack advance per
cycle becomes much larger. After reaching the Paris–Erdogan region, both
these phenomena lead to a vanishing of the periodic crack-wake dislocation
structure shown in Figure 3.19(f). Many dislocation slip bands are emitted
during each loading cycle, which results in a significant crack blunting. The
related qualitative change in the micromechanism of crack propagation is
schematically depicted in Figure 3.21. In order to make this demonstration
clear, only four slip bands are assumed to be emitted per each cycle.
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During the loading phase, large slip bands are alternatively emitted on
both sides of the crack tip. This is shown in Figure 3.21(a,b). Owing to their
repulsive stress, the subsequently emitted bands appear shorter than the pre-
vious ones (Figure 3.21(c,d)). During unloading m dislocations of the second
band return to the crack, where they annihilate on the free surface. This
leads to resharpening of the near-tip part of crack flanks (Figure 3.21(e)).
The same sequence is carried on in further loading cycles while leaving pe-
riodic patterns on crack flanks which are known as (supercritical) striations.
Their morphology on both fracture surfaces is repeating in each cycle, which
is clearly seen in Figure 3.21(f), where the crack flanks are pressed together
during a compressive part of the loading cycle. Here the microscopic tortu-
osity of the crack path is suppressed in order to highlight important periodic
patterns. Indeed, such created striations successfully mark locations of the
crack front and their spacing corresponds to a local rate of the crack growth
(microscopic growth rate). Therefore, they play a significant role in the fail-
ure analysis (see Section 3.4). Naturally, the schematically described “Paris”
crack also leaves the geometrically necessary dislocations in individual bands
on both sides of the crack flanks.

Another simple model for crack advance was proposed by Neumann [325].
It assumes an alternating shear only on two slip planes, primary and sec-
ondary, which intersect the crack front as shown in Figure 3.22. The work
hardening on primary slip planes leads to alternating shear on secondary
planes. In the reverse half-cycles a majority of dislocations returns back to
the crack tip and disappears. Some of dislocations remain in the crack wake to
create the residual plastic zone and saw-tooth supercritical striations. This
model is also applicable to ductile metal single crystals as well as to the
near threshold growth in polycrystals. In the latter case, however, the re-
pulsive forces of remaining shear-band dislocations do not allow emission of
the shear bands again in many subsequent loading cycles. During these cy-
cles the crack proceeds along a finer zig-zag path (without leaving observable
saw-tooth striations) in a way similar to that described in connection with
Figures 3.19(c,d). It should be noted that the original Neumann’s model did
not assume any dislocations left behind the advancing crack tip.

In engineering materials, the crack path exhibits significant tortuosity on
many scales owing to different microstructural barriers to dislocation mo-
tion. The largest fluctuations are of the order of the grain size. Especially
in the near threshold region much smaller deflections can occur which can
be induced by dislocation-dislocation interaction or by microstructural fea-
tures much smaller than the grain size [10]. The smallest deviations are of
the order of lattice spacing. They are caused by remaining ledges formed by
dislocations generated at the tip or entered on the fracture surface. There-
fore, the crack path geometry is usually simply drawn in a zig-zag manner
as in Figure 3.22(c). Let us emphasize that the extent of created dislocation
bands (the plastic zone size) in relation to the length of largest deflected crack
segments constitutes a very important parameter. It determines a symmetry
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Figure 3.21 A scheme of the crack tip advance by dislocation emission during one
loading cycle in the Paris–Erdogan region. The points on the K vs t diagram show
subsequent loading stages. In the last compressive stage the crack flanks are pressed
together which highlights ductile striations
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(a)

(b)

(c)

Figure 3.22 Alternating slip model after Neumann: (a) the first loading cycle, (b)
the second loading cycle, and (c) the resulting crack path leaving saw-tooth striations
on fracture surfaces

of the crack-wake dislocation arrangements and decides about the level of
roughness-induced crack closure (see the next subsection).

3.2.4 Crack Closure Mechanisms

The fatigue crack growth behaviour, particularly near the threshold of the
applied SIF, is affected by both the chemical composition and the microstruc-
ture. Various shielding mechanisms that are used to explain the diversity
in the threshold values can be, according to Ritchie [165], categorized as
intrinsic and extrinsic (see also Chapter 2). A general scheme of extrinsic
mechanisms is depicted in Figure 3.23. In this figure the applied (external)
ΔK consists of two basic components: the closure range ΔKcl and the effec-
tive range ΔKeff . The range ΔKcl is divided into three parts (from the left
to the right): the oxide-induced closure, the roughness-induced closure and
the plasticity-induced closure. The range ΔKeff consists of two parts: the
geometrically-induced shielding ΔKbr (crack kinking and branching) and the
intrinsic range ΔKin. While all the closure mechanisms operate in the crack
wake, the crack kinking and branching produce shielding in front of the crack
tip.

Thus, besides the geometrical shielding that has already been described in
the brittle-fracture section, several closure (or contact shielding) mechanisms
become important in fatigue.
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Figure 3.23 A general scheme of extrinsic mechanisms occurring during the fatigue
crack propagation; ΔK – the applied SIF range, ΔKcl – the closure SIF range, ΔKeff

– the effective SIF range, ΔKin – the intrinsic SIF range

As recognized by Elber [326], the crack remains to be closed not only in
the compressive part of the loading cycle but, to some extent, also during
its tensile part. This means that only the ΔKeff = ΔK − Kcl part of the
applied ΔK is effective as a crack driving force of the fatigue crack growth
– see Figure 3.24. When the minimum applied SIF is higher than Kcl, the
crack remains steadily open (Figure 3.25). However, this happens only for
very high cyclic ratios (R > 0.6).

t

Kmax

Kcl

K

Kmin

Keff

K

�K

�K
ef

f

0

Figure 3.24 Applied and effective stress intensity factors when Kmin < Kcl. K is
the applied SIF (solid line), Kcl is the closure SIF level and Keff is the effective SIF
(dotted line). The dashed areas show ranges, where the crack tip is open
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Figure 3.25 Applied and effective stress intensity factors when Kmin > Kcl

(ΔKeff = ΔK), and the crack remains steadily open during the loading. The dashed
area shows the K-range of a potential crack closure

In metallic materials fatigued in air or vacuum, both the roughness-induced
crack closure (RICC) and the plasticity-induced crack closure (PICC) are the
most important closure mechanisms. There can also be other shielding con-
tributions [165] such as, for example, the oxide-induced closure (OICC) and
the crack-wake bridging that occur in corrosive environments and composite
materials, respectively. It should be emphasized that there is no experimental
tool for measuring individual closure components; only the total crack clo-
sure level can be measured using the methods based on extension or electrical
resistance (e.g., [327]).

When the crack front branches (splits) during the crack propagation, the
effective driving force becomes further reduced to ΔKin as marked in Fig-
ure 3.23. An additional reduction can be caused by the crack deflection and
meandering. However, this fully holds only for brittle materials as high-
strength alloys or ceramics (see Chapter 2 for details). Another shielding
(or anti-shielding) component can be associated with large particles or mi-
crovoids embedded in the matrix. These effects are important only in nodu-
lar ductile irons (see Section 3.2.7) or in particle reinforced composites (see
Chapter 2). The value of ΔKin,th represents the intrinsic threshold or the
intrinsic resistance to the fatigue crack growth. Because a partial recovery of
newly created surfaces usually takes place in engineering materials during the
unloading cycle, the real values of ΔKin,th are somewhat higher than those
of 0.5–2.6MPam1/2 resulting from the discrete dislocation model. However,
they can be almost an order of magnitude lower than the measured fatigue
thresholds ΔKth, as shown in Section 3.2.6.

Note that there is no experimental method available for measuring the ge-
ometrical shielding component and, consequently, the values of the intrinsic
threshold ΔKin,th. Nevertheless, they can be assessed theoretically by em-
ploying rather standard materials data in the frame of the unified analytical
model of extrinsic shielding, as presented hereafter.
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3.2.4.1 Plasticity-induced Crack Closure

The well known reason for the PICC in thin solids (the plane stress condition)
is the plastic wedge in the wake of the crack front; see Figure 3.26. This wedge
is created by tensile necking within the crack-tip plastic zone. Experimental
data lead mostly to the conclusion that the ratio of the closure stress level
to the maximum stress (the so-called closure ratio) σcl/σmax ≈ 0.6 is rather
independent of the material. There is, however, a moderate dependence on
the cyclic ratio R. Theoretical models published in the last 30 years confirm
these results [192]. In the case of thin specimens, however, the LEFM concept
loses its validity, which constitutes a considerable disadvantage.

In a rather more important case of plane strain (thick solids), the PICC
can also be detected, albeit to a much lower extent. Indeed, the closure ratio
Kcl/Kmax ≈ 0.25. However, the mechanism of that phenomenon remained
unclear for rather a long time. Under the plane strain, indeed, the necking
associated with a transverse contraction is not allowed by definition. The
problem was solved by Pippan et al. in 2004 [10]. A static plastic zone of
a constant height is always formed by both the geometrically necessary and
the statistically stored crack-wake dislocations; see Figure 3.27 (compare also
Section 3.2.3). Unlike those statistically stored, the geometrically necessary
dislocations have a long-range tilting effect as shown in Figure 3.28. Only
two narrow bands of dislocations, forming low-angle tilt boundaries, are con-
sidered here since the effect of the real distribution can simply be obtained
by integrating over many such dislocation bands. The tilting of the volume
elements in the plastic wake is associated with shear in the direction of the
crack propagation. This shear causes a transfer of the material to the crack
tip – a reason for the PICC under plane strain conditions.

The dislocation bands shield the crack tip from the remote SIF range ΔK ,
as generally expressed by Equation 3.14. In the case of an unloaded crack,
one dislocation band produces the local shielding stress intensity factors ks1
and ks2 at the crack tip as

(
ks1
ks2

)
= Gb

√
r
1

D

(
c1
c2

)
, (3.15)

where r is the distance of a single band of dislocations from the crack flanks,
D is the spacing between individual dislocations in the array and cI and cII
are constants of about −1 [10]. In the near tip regime, the displacements at
the crack flanks are given by the well known LEFM equations

(
u1
u2

)
=

2(1− ν)

G

√
|xc|
2π

(
ks2
ks1

)
, (3.16)

where xc is the distance of the crack-wake contact of crack flanks from the
crack tip. Indices 1 and 2 correspond to the shear mode II and the opening
mode I, respectively. Note that an overlap of the crack flanks (PICC) takes
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Figure 3.26 The scheme of the plastic wedge in the crack-wake causing the
plasticity-induced crack closure in thin specimens (the plane stress condition)

Figure 3.27 The scheme of geometrically necessary crack-wake dislocations causing
the plasticity-induced crack closure in thick solids (the plane strain condition)

place since ks1 and u2 are negative. Dislocation arrays on both sides of the
crack flanks contribute to PICC. Consequently, the closure distance for PICC
can be assessed by combining Equations 3.15 and 3.16 to get

δcl,p ≈ 4(1− ν)b

D

√
|xc|
2π

. (3.17)
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Figure 3.28 Two narrow dislocation bands approximating the real arrangement of
geometrically necessary dislocations

The spacing D is inversely proportional to the number n of geometrically
necessary dislocations per unit extension of the crack. That number must be
proportional to the mean strain at the distance r of the dislocation arrays
from the crack flanks. The mean strain is proportional to the yield stress σy
divided by the Young’s modulus E = 2G(1 + ν). That reasoning leads to

D ≈ 2BG (1 + ν)/σy , (3.18)

where B ≈ 10−10m can be assumed to be rather material independent [11].
The maximal applied SIF can be expressed as

KImax ≈ σy(2πrp)
1/2 (3.19)

and the maximal opening displacement as

δmax = 2u2(|xc|,KI,max). (3.20)

A half-size of the static plastic zone rp constitutes a plausible estimate
of the distance of dislocation strips from the crack flanks, i.e., r ≈ rp/2. By
combining Equations 3.17, 3.18, 3.20 and 3.19, the closure ratio reads

δcl,p
δmax

= 2C, (3.21)

where C = b/(10
√
πB) ≈ 0.1 is a dimensionless constant [204]. Equation 3.21

is in agreement with the experimentally determined value of the closure ratio
of about 0.25, nearly independent of the material.

3.2.4.2 Roughness-induced Crack Closure

The existence of RICC is connected with asperities on fracture surfaces in the
wake of the tortuous crack front. Suresh and Ritchie [328] proposed a simple



170 3 Fatigue Fracture

two-dimensional LEFM model describing clearly the essential mechanism of
that phenomenon. Irreversible operation of the local mode II at the front of
the tortuous crack causes a mutual horizontal shifting of fracture surfaces
and their premature contact. Although this geometrical scheme is principally
correct, the model does not yield an explicit relation to the microstructure,
since the averaged crack path inclination angle used in that analysis does not
change with the microstructure coarseness. Thus, in fact, this model is not
very useful for a quantitative assessment of the role of the microstructure in
the RICC. In order to assess the dependence of the mode II displacement on
the mean grain size, Wang and Mueller [258,329] proposed a more recent con-
cept that deals with an irreversible dislocation pile-up adjacent to the crack
tip and restricted by a grain boundary. This one-parameter approach requires
a complicated analysis of the fracture surface roughness and, moreover, the
assumption of a planar slip mode is necessary for its validity.

It should be emphasized that all the previous analytical models could not
take the so-called long-range component of the RICC into account because, as
mentioned above, that important component was described only recently [10].

Maximal Long-range Component

When the arrangement of crack-wake dislocations becomes asymmetric as in
the extreme case in Figure 3.29, the shear displacements of both crack flanks
are different. This shear misfit causes the long-range RICC on rough fracture
surfaces. Indeed, the asymmetric arrangements of crack wake dislocations can
produce the RICC far behind the crack tip, in contrast to shear displacements
induced by the irreversible slip (see the next paragraph). Thus, both the
asymmetry of crack-wake dislocations and the roughness of fracture surfaces
can be assumed to be necessary conditions for the appearance of long-range
RICC.

crack tip

plastic
zoneu1

�

cyclic plastic
zone

Figure 3.29 The scheme of a shear misfit and the roughness-induced crack closure
produced by an asymmetric arrangement of crack-wake dislocations
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As follows from theoretical and experimental results [11,168,204], the nec-
essary conditions for RICC are well fulfilled when SR > 1, where SR = d/rp
is the ratio of the characteristic microstructural distance d (the mean grain
size or the interparticle spacing) and the plastic zone size rp (see also Chap-
ter 2). On the other hand, when the plastic zone embraces several grains
or particles, i.e., SR � 1, the phenomenon of RICC can be neglected. The
reason for these opposite effects is schematically elucidated in Figures 3.30
and 3.31.

In the case of SR > 1, an alternating (zig-zag) single-slip accompanied by
dislocation pile-ups represents a strongly prevalent crack propagation mecha-
nism in all metallic materials [192,194]. The static plastic zone is constrained
within individual grains containing the crack front. The grain boundaries
or secondary phase particles constitute obstacles for crack growth since the
atomistic structure of these defects is quite different from that of the matrix,
where the dislocations possess a minimum energy and can slide in an optimal
manner. Additionally, there is no possibility for their further gliding on the
same slip planes in the adjacent grain or inside the secondary particle. There-
fore, the crack often grows along grain boundaries and secondary phases or,
eventually, even intergranular or interface propagation appears. This obvi-
ously leads to a microscopically tortuous crack path associated with a high
surface roughness (Figure 3.30). The deviations from the straight growth di-
rection are comparable to the grain size, particle size or their spacing. Such
kind of crack advance must also be associated with highly asymmetric crack-
wake plasticity varying from grain to grain. The distance of the characteristic
dislocation strip from the crack flanks is lower than the grain size. It means
that, even when the strips regularly alternate their positions towards the
crack flanks, the interaction of dislocation configurations in adjacent grains
(reducing the shear asymmetry) can be nearly neglected along the whole
length of the crack flanks. This is schematically depicted in Figure 3.30),
where only the short segments of the cracks flanks (marked bold) experience
the same shear. All the above-mentioned effects result in the maximal level
of the RICC.

In the case of SR � 1, on the other hand, grain boundaries and sec-
ondary phases do not constitute obstacles for the crack growth owing to a
large-scale crack-tip plastic deformation embracing many grains or particles
(Figure 3.31). The plastic zone is not restricted (constrained) by barriers on
either side of the crack flanks and, obviously, there is no reason for the asym-
metry of the crack-wake plasticity. The symmetry of the large-scale multislip
deformation results in rather straight crack propagation, where crack ad-
vance during one cycle (or the CTOD) is higher than the microtortuosity of
the crack path (the width and the height of asperities on the fracture surface).
The distance of the characteristic dislocation strips from the crack flanks is
higher than the average grain size. All those effects result in a negligible level
of the RICC.
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Figure 3.30 The scheme of asymmetric dislocation configurations produced in the
case of high size ratios when the plastic zone size (the grey region) is smaller than
the mean grain size. The highlighted short segments on the projected crack path
correspond to nearly symmetric dislocation arrangements

Figure 3.31 The scheme of symmetric dislocation configurations produced in the
case of low size ratios (the plastic zone is larger than the mean grain size). The
dislocation arrangement is nearly symmetric along the whole crack path
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Thus, the statistical concept of the size ratio effect, as already described
in Chapter 2, also holds valid for the RICC phenomenon. On the other hand,
the size ratio effect is not so significant for the PICC since the dislocation
bands on both sides of the crack flanks contribute to that effect. Nevertheless,
a small influence might still be expected when SR > 1 since, due to the
asymmetry of dislocation strips, the total closure effect might be somewhat
less than that described by Equation 3.21. In our further considerations,
however, this small inaccuracy will be neglected.

The maximum possible level of RICC can be determined by assuming only
one characteristic dislocation band that produces the local mode II SIF ks2 and
the crack-flank shear displacement u1 according to Equations 3.15 and 3.16,
respectively. The simple scheme of RICC in Figure 3.32 relates the closure
distance δcl,rl to both the shear displacement u1 and the surface roughness
RA = 1/ cos θ (in this 2D model RL = RA) as follows:

δcl,rl = |u1|
√
R2
A − 1. (3.22)
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Figure 3.32 The scheme of the roughness-induced crack closure mechanism: (a) the
crack tip opening at a maximal tensile load, and (b) the shear shift after unloading

Then a combination of Equations 3.16, 3.18, 3.19, 3.20 and 3.22 yields

δcl,rl
δmax

= C
√
(R2

A − 1). (3.23)

This is the final expression for a maximum possible long-range closure ratio
in metallic materials.

Maximal Short-range Component

Besides the long-range component of RICC, a short-range component has to
be considered as well. As already mentioned, this component is associated
with the local mode II induced by the zig-zag crack path, and it is created by
an irreversible slip at the crack tip – see Figure 3.32. It was the mechanism
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that was solely considered in the previous RICC models [168,328,329]. Unlike
the long-range component, the overlap of crack flanks caused by the short-
range mechanism quickly decays at larger distances from the crack tip. It
completely disappears at distances comparable to the mean grain size.

During the loading part of the cycle, the crack tip is opened in a local
mixed-mode reaching the maximum CTOD denoted as δmax at the moment
of the peak stress (Figure 3.32(a)). This displacement is considered to be
composed of both the reversible normal component δn and the irreversible
shear component δs defining the local mixed-mode 1+2. Since the shear dis-
placement created in the loading phase is not totally compensated during
the unloading phase, the crack flanks remain shifted (Figure 3.32(b)). The
main reason for this irreversibility, namely the interaction of dislocations
of primary and secondary slip systems, has already been described in Sec-
tion 3.2.1. Thus, the maximum value of the ratio of backward/forward shear
displacements (the irreversibility level) is about 0.5. Obviously, this value
is associated with sufficiently long pile-ups (a high probability of activating
the secondary slip), i.e., with the size ratio SR ≥ 1. On the other hand,
SR � 1 means no residual shift of crack flanks, i.e., zero irreversibility level.
Indeed, the related multislip mechanism cannot produce the residual shear
shift, which is apparent from Figure 3.32. Moreover, the crack advance per
cycle is comparable to (or higher than) the width of the asperities. Thus,
by following the scheme in Figure 3.32(b), and assuming the irreversibility
parameter α ≈ 0.5η, one can easily derive the expression at Equation 3.24
for the maximal short-range closure ratio:

δcl,rs
δmax

=
ηδs sinϑ

2(δn cosϑ+ δs sinϑ)
. (3.24)

In the framework of the saw-tooth (zig-zag) approximation of the crack flanks
[330] it holds that

δn
δs

=
k1
k2

=

√
2

3
cot

ϑ

2
, (3.25)

where k1 and k2 are the local SIFs induced by the remote KI at the deflected
crack tip. Note that the linear relationship δ ∝ k is used here (as in Equa-
tion 3.16), instead of a quadratic one in the previous models. This is because
the real contact point, determined by a sum of the closure effects, lies in the
crack-wake. Because RA = 1/ cos θ, the final relation for the maximal short-
range RICC ratio can be obtained by combining Equations 3.24 and 3.25 as
follows:

δcl,rs
δmax

=
3η (RA − 1)

2
√
6 + 6 (RA − 1)

. (3.26)

The real short-range closure effect can, obviously, be composed of both
the mode II and the mode III contributions (twisted crack segments). The
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corresponding shear displacements seem to influence the crack closure more or
less independently. Hence, the RICC is determined predominantly by those
sides of the fracture surface that exhibit the highest local values of either
mode II or mode III. These values are associated with the highest and the
steepest asperities and, therefore, the standard deviation DR of the surface
roughness seems to be also an important roughness parameter [329]. Although
the quantities DR and RA are usually well correlated, the level of RICC
according to Equation 3.26 can be underestimated in the case of very irregular
fracture profiles of extremely high DR (highly anisotropic and heterogeneous
materials).

It should be noted that the roughness-induced crack closure is caused
not only by the lateral displacement of two geometrically identical fracture
surfaces. Due to local plasticity the shapes of the two rough surfaces are not
identical, which leads to a premature contact at the top of the asperities.
Such a mechanism, however, can dominate the RICC only when the plastic
zone size is very small in comparison with the deflection length (see [10] for
more details).

Let us finally mention that stress levels, corresponding to the moments of
crack closure and crack opening, are practically equal. Most probably, how-
ever, there is a subtle difference related to the fact that the crack propagation
is slightly postponed beyond the opening stress level (see [327] for details).
However, this inconsistency practically does not affect the effective range
ΔKeff .

3.2.5 Unified Model of Crack-tip Shielding

The total crack closure effect represents a sum of the PICC and the RICC
components (δcl = δcl,p + δcl,rl + δcl,rs). Because of the statistics of the size
ratio in engineering materials, the parameter η determines the weight of the
RICC components similarly to that of the geometrical shielding term in the
brittle fracture case (see Chapter 2). Regarding that fact and Equations 3.21,
3.23 and 3.26, the total contact shielding ratio reads

δcl
δmax

=
Kcl

Kmax
= Cη

√
R2
S − 1 +

3η (RS − 1)

2
√
6 + 6 (RS − 1)

+ 2C. (3.27)

Equation 3.27 reflects many interesting phenomena that were observed in
connection with the fatigue crack behaviour:
1. Both terms of the RICC must approach zero for microscopically straight

(planar) cracks, i.e., the microstructurally short fatigue cracks in poly-
crystals or shear cracks in single crystals. This obviously corresponds to
RS = 0 in Equation 3.27.
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2. The total RICC level must also approach zero in the near fracture region of
fatigue crack growth. In that region, clearly, the mean size ratio SRm → 0
and η → 0. Thus, the crack closure ratio is independent of the material
and fully determined by the PICC.

3. The maximal level of RICC is detected in the near-threshold region, where,
obviously, SRm → 1 and η → 1 is to be expected.

Equation 3.27 also reflects all the transient crack growth phenomena ob-
served after overloads or during the random loading. For example, a sudden
increase in δmax following an overload cycle increases the total level of the
closure displacement δcl, and reduces the effective crack driving force ΔKeff

in the next cycles. The crack growth rate decelerates and remains lower as
long as the crack front propagates through the plastic zone created by the
overload cycle. After passing that zone, the crack growth rate approaches the
previous “steady-state” value. Note that this transient effect is mainly due to
the sudden change in the PICC because the overload causes a simultaneous
increase in the size ratio (the parameter η). This keeps the level of the RICC
close to that before the overload.

The effective crack driving force ΔKeff can be expressed by means of
Equation 3.27 and relations Keff = Kmax −Kcl, Kmax = ΔK/(1−R). After
some rearrangements one obtains

ΔKeff =

(
1− Cη

√
R2
S − 1− 3η (RS − 1)

2
√
6 + 6 (RS − 1)

− 2C

)
ΔK

1−R
=

= Ω1
ΔK

1−R
.

(3.28)

The main advantage of the relation at Equation 3.28 is a possibility of its
direct comparison with experimental ΔKeff data, as shown in Section 3.2.6.
Although a very moderate decrease in C with decreasing R is to be expected
due to a slight drop in the crack-wake dislocation density, the constant C
must lie within the range of 0.2 – 0.3. Therefore, in fact, the parameter
SRc ∈ (0.1, 1) is the only one real fitting parameter in this analysis. Anyway,
both dimensionless parameters C and SRc possess a clear physical meaning
and their values must lie within narrow ranges for all metallic materials. The
relation at Equation 3.28 predicts that, for a particular material and a fixed
applied ΔK, the effective driving force decreases with:
1. decreasing cyclic ratio;
2. increasing surface roughness;
3. decreasing plastic zone size (decreasing η).

This is in agreement with experimental observations [192]. Equation 3.28
also predicts that, in nanomaterials, the RICC level must be negligible in the
whole fatigue crack growth region (not only near fracture). Indeed, the value
of the intrinsic (effective) fatigue threshold range is lower than 3MPam1/2
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(see Section 3.2.3). Therefore, assumingKmax,th ≈ 5MPam1/2 as a minimum
value for R < 0.5, and considering σy ≈ 1000MPa, one obtains rp ≈ 2500nm
in the near-threshold region. For nanomaterials with dm < 100nm it means
that SRm < 0.04 � SRc ≈ 0.5 → η → 0 and (δcl/δmax)RICC → 0. In
nanomaterials, consequently, a negligible level of the RICC ratio applies even
to the near-threshold region. Recent experimental results [331] confirm this
conclusion.

The values of ΔKeff (or the effective resistance to the crack growth) can
be measured by indicating the contact of crack flanks using extensometrical
or resistometrical methods. Some authors have used a much simpler proce-
dure based on the fact that, for cycle asymmetries R > 0.7, the crack remains
steadily open. However, this method was recently challenged by Kondo [332],
who indicated a decrease in ΔKeff with increasing Kmax for R > 0.7 in high-
strength steels. This is, most probably, caused by an increasing environmental
effect. Related extreme crack tip opening displacements (and associated lat-
tice dilatations) enable a massive penetration of hydrogen into the plastic
zone, which results in a reduction of the intrinsic matrix resistance.

When the crack tip opening displacement (CTOD) is much less than the
deflections (kinks) or branches (splits) of the crack front, the geometrical
shielding can take place [168,192,328]. These geometrical irregularities induce
a reduction of the crack driving force (both the kI and the keff ) as has already
been discussed in Chapter 2 in detail. The contact- and geometrical-shielding
components can be unified on the basis of the size ratio statistics. With regard
to Equations 2.23 and 3.28, the full effect of the geometrical shielding can be
included in the model as follows:

ΔKin =

(
1− Cη

√
R2
S − 1− 3η (RS − 1)

2
√
6 + 6 (RS − 1)

− 2C

)
×

×
[(

1− η + η

√
ḡeff ,r
RS

)
(1−AB) + 0.5AB

]
ΔK

1−R
=

= Ω1Ω2
ΔK

1−R
.

(3.29)

Equation 3.29 for calculation of the intrinsic crack driving force ΔKin

represents the most general form of the unified model. This relation holds in
both the near-threshold and the Paris–Erdogan regions, but its application
is limited when special shielding and anti-shielding effects are induced by
large secondary phase particles (see Section 3.2.7). In cases of very high cycle
asymmetry (R > 0.6), the crack closure level lies below the minimum SIF
value (Kcl < Kmin) – see Figure 3.25. Under such circumstances no closure
occurs and, obviously, Equation 3.29 remains no longer valid.

A typical diagram of relative contributions of individual mechanisms
to crack tip shielding (ΔK̄br = ΔKbr/ΔK,ΔK̄in = ΔKin/ΔK,ΔK̄cl =
ΔKcl/ΔK) in dependence on both the applied ΔK (constant dm) and the
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mean grain size dm (constant ΔK) according to Equation 3.29 is schemati-
cally depicted in Figures 3.33 and 3.34 for a material of particular chemical
composition. Note that the decreasing (increasing) influence of the RICC
mechanism with increasing ΔK (dm) almost completely determines the re-
lated dependencies of global shielding or intrinsic driving force.
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Figure 3.33 Diagrams of relative participation of individual mechanisms in the crack
tip shielding as functions of the applied ΔK (constant dm)
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Figure 3.34 Diagrams of relative participation of individual mechanisms in the crack
tip shielding as functions of the mean grain size dm (constant ΔK)
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By applications of Equation 3.29 to metallic materials, however, one has
to pay attention to the following problem. Unlike in brittle fracture, the
fatigue crack growth mechanism in metallic materials is closely related to
a cyclic movement of dislocations that is controlled by the shear stress. As
shown by Pippan [333], the deflections like kinks or double-kinks do not cause
any reduction in the maximal shear stress at the crack tip. Thus, that kind
of shielding can be neglected in a majority of metallic materials, perhaps
except for those exhibiting a quasi-brittle fracture mechanism. On the other
hand, the crack branching causes both the reduction of the local shear stress
and the increase in the resistance to the crack growth (the doubled fracture
energy) [168,169]. Although the branching process is not typical of the fatigue
cracks in metallic materials, its occurrence must always be explicitly reflected
when applying the unified model to a determination of both the shielding
components and the intrinsic thresholds in metallic materials.

For a material of a particular chemical and phase composition, the values
of the intrinsic thresholds should be practically independent of either the mi-
crostructure coarseness or the cyclic ratio. A slight dependence on the former
might result from a difference in the resistance of grain or phase boundaries
to fatigue crack penetration. As already mentioned, a small change in the
crack-wake dislocation density with variation in R is also expected. These
effects are, most probably, the main reasons why there is some scatter in the
calculated values of ΔKeff ,th or ΔKin,th (see the following subsection).

3.2.6 Applications of the Unified Model

Equations 3.28 and 3.29 of the unified model can be simply applied to the
assessment of the intrinsic thresholds and the shielding components in en-
gineering metallic materials. Indeed, only a few rather standard material
characteristics and loading parameters are necessary: σy, dm, RS , ΔK and
R. A question important for practical measurements of the surface roughness
RS arises in connection with a semi-fractal character of the fracture surface
morphology (e.g., [334]). As already mentioned in Section 3.2.3, almost all
cracks in metallic materials can be assumed to be tortuous within a con-
siderably wide range of scaling. Consequently, one should be able to decide
about the fracture surface roughness RS of a particular material under spe-
cific loading conditions. Fortunately, the size ratio effect gives a rather clear
answer to that question: the asperities smaller than about one half of the
static plastic zone size do not contribute to the RICC. This statement is
justified by the fact that the size of asperities is closely related to the charac-
teristic microstructural parameter. Thus, for example, Kmax,th ≈ 5MPam1/2

is generally appropriate for the near-threshold region. When considering the
yield stress σy ≈ 500MPa, the facet sizes of the order of units of μm might
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still be significant. In the Paris–Erdogan region (Kmax ≈ 20− 30MPam1/2),
however, the finest plausible scale constitutes only tens of microns.

The unified concept of crack tip shielding was applied in several studies
of the intrinsic thresholds in aluminium alloys, α-titanium, titanium alloys
and steels [168,173,335]. The geometrical shielding effects were neglected for
almost all investigated metals (ΔKin,th ≈ ΔKeff ,th), which means that, in
most cases, Equation 3.28 was used to determine the intrinsic thresholds. An
exception to the rule was the duplex steel, where a pronounced interphase
cracking and crack branching took place. The analyses are briefly reported
hereafter. Although some results were slightly corrected according to the
current state of the theoretical concept, the changes do not have any impact
on conclusions stated in the works published earlier.

3.2.6.1 Aluminium Alloys

The crack closure contribution in the near-threshold region has been experi-
mentally studied using underaged and overaged compact tension samples of
a 7475 aluminium alloy in air and vacuum [336]. Different thermomechani-
cal treatments have produced microstructures with grain sizes of 18 μm and
80 μm. The experimental and theoretical data are displayed in Table 3.1.

Table 3.1 Experimental and calculated fatigue threshold data for 7475 aluminium
alloy in air and vacuum (Λ is the percentage of extrinsic shielding)

Envir. ΔKexp
th dm RS σy η ΔKeff ,th Λ

[MPam1/2] [μm] [MPa] [MPam1/2] [%]

Air 2.60 18 1.30 505 1.00 1.2 54
1.70 18 1.21 455 1.00 0.89 48
2.70 80 1.90 451 1.00 1.14 58
2.20 80 1.25 445 1.00 1.08 51

Vacuum 4.00 18 1.30 505 0.97 1.87 53
2.90 18 1.21 455 0.99 1.52 48
8.80 80 1.90 451 0.94 1.85 79
4.10 80 1.25 445 1.00 2.02 51

The values of ΔKeff ,th calculated according to Equation 3.28 for the tests
in air are practically identical and independent of the grain size. They lie
only slightly below the measured data of about 1.4MPam1/2 [336] and are in
a good agreement with the range of 0.75− 1.0MPam1/2 reported by Pippan
[337] for aluminium alloys. The calculated values ΔKeff ,th for the vacuum
tests are also in good agreement with the experiment. They are distinctly
higher than those in air, which can be reasonably elucidated by more extended
re-welding of newly created surfaces in the vacuum.
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3.2.6.2 Titanium Alloys

Experimental near-threshold crack growth data for various α-titanium grades
[338] are collected in Table 3.2. The large scatter of measured values of ΔKth

is mainly a consequence of a wide distribution of grain sizes. The average mea-
sured value ΔKeff ,th = 2.1MPam1/2 [339] lies within the computed range of
intrinsic thresholds ΔKeff ,th ∈ (2.0, 3.8)MPam1/2.

Table 3.2 Experimental and calculated fatigue threshold data for α titanium grades

ΔKexp
th R dm σy η ΔKeff ,th Λ

[MPam1/2] [μm] [MPa] [MPam1/2] [%]

6.00 0.07 40 430 0.95 2.03 66
5.00 0.35 40 430 0.89 2.56 49
5.30 0.07 35 260 0.68 2.25 58
4.30 0.35 35 260 0.48 3.02 30
7.00 0.07 230 220 0.96 2.35 66
5.80 0.35 230 220 0.91 2.91 50
6.00 0.07 20 630 0.96 2.02 66
4.30 0.35 20 630 0.95 2.08 52

10.00 0.07 210 580 1 3.23 68
8.00 0.35 210 580 0.99 3.71 54

Experimental and theoretical threshold data for two grades of the Ti-
2.5%Cu alloy are displayed in Table 3.3. The microstructures consisted of
coarse lamellar colonies (dm = 580 μm) and a fine Widmanstätten mi-
crostructure (dm = 10μm), respectively [329]. The calculated intrinsic thresh-
old values of 3.3MPam1/2 are very close to the average measured value
ΔKeff ,th = 3.2MPam1/2 for Ti-6Al-4V alloys [340].

Table 3.3 Experimental and calculated fatigue threshold data for Ti-2.5%Cu alloy

ΔKexp
th R dm σy η ΔKeff ,th Λ

[MPam1/2] [μm] [MPa] [MPam1/2] [%]

9.00 0.1 580 420 1.00 3.32 63
7.00 0.1 10 499 0.65 3.15 55

3.2.6.3 ARMCO Iron

Experimental and calculated data for different grades of the ARMCO iron
[341, 342] are summarized in Table 3.4. Besides an enormous variance in the
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grain size there is also a wide range of R ratios. The measured effective
thresholds of 2.75MPam1/2 do not depend on the mean grain size. The the-
oretical data are presented only for loading cases, where a non-zero closure
was predicted. The calculated ΔKeff ,th values in Figure 3.35 lie close to the
experimental dotted and dashed line.

The dominant contribution of RICC explains well the strong dependence
ΔKth(dm, R) observed in the experiment. Note that ΔKth ≈ ΔKin,th =
ΔKeff ,th for R > 0.55, which means no closure during cycling.

Table 3.4 Experimental and calculated fatigue threshold data for ARMCO iron

ΔKexp
th R dm σy η ΔKeff ,th Λ

[MPam1/2] [μm] [MPa] [MPam1/2] [%]

4.5 0.1 2 530 0.19 2.78 38
2.9 0.7 2 530
5.3 0.1 20 240 0.5 2.49 53
2.9 0.7 20 240
6.8 0.1 90 150 0.55 3.03 55
3.65 0.55 90 150 0.44 3.64 0
2.8 0.7 90 150
2.9 0.8 90 150
8.7 0.1 410 108 0.76 2.96 66
3.2 0.7 410 108

10.3 0.1 3550 96 0.99 2.37 77
3.6 0.7 3550 96 0.99 2.49 31

3.2.6.4 Duplex Steel

The fatigue threshold values of duplex ferritic-martensitic steels can reach
20MPam1/2 [343], which is much higher than the threshold range of single
phase alloys [344]. The high thresholds of multi phase alloys are typically
attributed to extreme crack deflection and branching of the crack front [343,
345].

Hot rolled bars made of the austenitic-ferritic duplex stainless steel SAF
2507 (equivalent to UNS S32750) with a diameter of 80mm (AD) were also
used in our experiments [171]. The tests were performed at three different
temperatures 150◦C, −50◦C and at room temperature (R = 0.1 and the
frequency f = 10 Hz). The microstructure was evaluated using the optical
microscope Olympus PMG3 after etching and the values of RS were mea-
sured by the profilometer MicroProf FRT. The path of propagating cracks
was found to be very tortuous and branched. The propagation directions
change in the austenite or ferrite phase and, in particular, at the austen-
ite/ferrite interface. Crack branching could be identified by secondary cracks
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Figure 3.35 The dependence of both measured thresholds ΔKth and calculated
effective thresholds ΔKeff ,th on the mean grain size of the ARMCO iron for various
cyclic ratios. Reprinted with permission from ASTM International. (see page 265)

in all specimens (see Figure 3.36). The values of the area fraction AB were
assessed by a careful counting of both the number and the size of secondary
cracks. Because of a quasi-brittle character of the crack path, the shielding
effect induced by crack deflections was taken into account as well.

Measured values of RS and AB for all investigated temperatures are listed
in Table 3.5.

Table 3.5 Experimental fatigue threshold data for the duplex steel

t ΔKexp
th AB RS σy ΔKexp

eff ,th

[◦C] [MPam1/2] [MPa] [MPam1/2]

150 10.83 10 1.55 484 4.92
20 8.64 20 1.43 625 3.90

−50 14.85 30 1.56 738 5.84

Calculated values of both the statistical factor η and ΔKeff ,th are dis-
played in Table 3.6. There is good agreement between the calculated and the
measured effective threshold values (compare with Table 3.5).

The effective threshold values for −50◦C and 150◦C are higher than the
effective value of 2.75MPam1/2 measured and calculated for the ferritic
single-phase steel. This disagreement can be almost eliminated by calculating
ΔKin,th using Equation 3.29 (see Table 3.6). The remaining slight deviations
can be attributed to: (1) a different intrinsic resistance of single-phase and
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Figure 3.36 Tortuous and branched geometry of fatigue cracks in the duplex steel

Table 3.6 Calculated fatigue threshold data for the duplex steel

t η ΔKeff ,th ΔKin,th Λ

[◦C] [MPam1/2] [MPam1/2] [%]

150 0.58 4.6 3.6 67
20 0.92 2.9 1.9 78

−50 0.72 5.3 3.6 76

duplex matrices; (2) imperfections in experimental methods; (3) an approxi-
mate character of the theoretical concept and (4) the temperature influence.
The last column in Table 3.6 shows a contribution of the total extrinsic
component (closure + shielding) of almost 80%, which is much higher than
that in all other investigated materials, including austenite steel [346]. This
confirms the decisive role of the extrinsic toughening induced by the duplex
microstructure.

The difference in intrinsic thresholds of materials with various chemical
composition is, in principle, determined by differences in their values of the
critical SIF for dislocation emission (see Section 3.2.3). However, the environ-
mental effects can also play an important role because, during experimental
procedures, elementary crack advances cannot be avoided.
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3.2.7 Influence of Shielding on Crack Growth Rate

When a long crack propagates under the constant applied stress range, both
the plastic zone size and the crack opening displacement linearly increase
with an increasing crack length. Consequently, the size ratio SR decreases
and the relative influence of surface asperities becomes smaller. Particularly
in the near-fracture region the crack advancement per cycle usually becomes
higher than the size of crack-wake asperities. As a consequence, the super-
critical fatigue striations, created cycle-by-cycle by partially reversible large-
scale blunting beyond the near-threshold region, usually remain as the most
striking morphological patterns on fracture surfaces (see Section 3.4 for more
details). It obviously means that the role of the roughness-induced shielding
diminishes. Nevertheless, the length fraction of deviated segments along the
crack path can be reasonably estimated by the mean value η̄ during the crack
growth.

When assuming an ideally straight crack propagating in a quasi-brittle ma-
trix (R = 0), the simplest “intrinsic” form of the well known Paris–Erdogan
relation

(
da

dN

)
s

= A(ΔKin)
n (3.30)

applies, where A and n are materials constants. Obviously, no shielding ap-
pears because η → 0, g → 1, C → 0 AB → 0 and RS = 1 in Equation 3.29,
i.e., ΔK = ΔKin. This intrinsic behaviour is assumed to be reproduced for
all further crack types which means, at least, the same chemical composi-
tion and crystallography of the matrix. On the other hand, the presence of
shielding reduces the crack driving force and, consequently, the substitution
ΔK → Ω1Ω2ΔK is to be made in Equation 3.30. Moreover, an extended
crack path due to the crack tortuosity is to be considered. The ratio of the
mean crack growth rates along the straight and the tortuous paths must be
inverse to that of their lengths. The length lt of the tortuous crack path is
determined by the mean value of its linear (profile) roughness R̄L. In a gen-
eral case, the length lm of a partially tortuous crack path can be determined
by the mean values of R̄L and η̄ as follows:

(
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)
s

/(
da
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)
m

= lm/ls ≈ 1− η̄ + η̄R̄L.

This leads to
(
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)
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(Ω1Ω2)

n
ΔKn =

Ωn1Ω
n
2

1− η̄ + η̄R̄L

(
da

dN

)
s

. (3.31)

When introducing typical values η̄ = 0.8, g = 0.9, R̄L = 1.2, R̄S = 1.3,
AB = 0.1, C = 0.1 and n = 3 into Equation 3.31, the growth rate for a



186 3 Fatigue Fracture

partially tortuous crack is an order of magnitude lower than that of the ideally
straight one, which nearly covers the scatter observed in experiments [192].

Additional types of shielding and anti-shielding effects can appear in some
special materials [177]. When analyzing the fatigue crack growth rate in duc-
tile irons, for example, such effects are induced by graphite noduli that may
occupy 25% of the fracture surface, as documented in Figure 3.37. Because
this number is about twice as high as that of the volume fraction (13%), the
crack path is strongly affected by the presence of nodules. The difference is
clearly visible in Figure 3.38, where the left part of the picture corresponds
to fatigue fracture whereas the right part corresponds to the ductile final
fracture (closer to the volume fraction of noduli). This means that the inter-
particle distance of graphite noduli, and not the grain or the phase size, is
the characteristic microstructural parameter in ductile irons. Both the stress
concentration around the noduli and the crack initiation at nodule/matrix
interface are to be particularly considered, as expressed in the following sum-
mary of shielding and anti-shielding interactions.

Figure 3.37 The fatigue fracture morphology of the ferritic ductile iron showing a
high participation of graphite noduli in the fracture process

Shielding effects:
1. A decrease in ΔK due to a higher level of the roughness-induced crack

closure.
2. An extension of the main crack path due to the crack front deflections.
3. A reduction in ΔK due to the crack front deflection and branching. Be-

cause of a quasi-brittle fracture mechanism controlled by noduli, the shield-
ing effect caused by crack deflections is to be also taken into account.
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Figure 3.38 The overview fractograph documenting a more frequent presence of
graphite noduli on fatigue fracture surfaces (the left half ) than it would correspond
to their bulk concentration (the right half – the ductile final fracture)

4. A reduction in ΔK owing to a network of microcracks connected with
noduli that are located within the plastic (process) zone at the crack tip.

5. An increase in the material resistance to the crack growth caused by an
additional work needed for a creation of the microcrack network;

Anti-shielding effects:
6. An increase in ΔK due to the difference between elastic moduli EG

(graphite) and EF (ferrite): EG � EF → the stress concentration around
the graphite nodule (the local effect).

7. An increase in ΔK caused by the interaction between the main crack and
the microcracks at noduli in front of the main crack.

8. An increase in the crack driving force ΔG caused by the difference between
the elastic moduli EFDI (ferritic ductile iron) and EF : EFDI < EF (the
bulk effect).

9. A reduction of the crack path due to a coalescence of the main crack front
with the microcracks.

Note that the effects described by points 4–9 are not considered in Equa-
tion 3.31. Therefore, Equation 3.31 can be simply generalized as

(
da

dN

)
t

=

n∏
i=1

Ωi

1− η̄ + η̄RL

(
da

dN

)
s

, (3.32)
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where n is the number of shielding effects involved (n = 8 for FDI, point No. 4
irrelevant). Obviously, the shielding effects correspond to Ωi < 1, whereas
Ωi > 1 applies to the anti-shielding ones.

Equation 3.32 shows a general structure of the Paris–Erdogan law in terms
of shielding effects. By using that equation, in particular, a variation of fatigue
crack growth rates in engineering materials of the same matrix but with
different microstructures can be understood in a quantitative manner.

The difference in intrinsic crack growth rates (given by difference in pa-
rameters A and n) is determined mainly by a diverse environmental influence
of air on rewelding of newly created fracture surfaces in various materials.
In the ultra-high vacuum, the intrinsic crack growth rates of various steels,
aluminium and copper alloys are practically identical when normalized to the
Young’s modulus [275].

3.3 Shear and Mixed-mode Loading

When either a torsion or a pure shear loading is applied to a cracked solid,
the crack front can propagate under local shear modes II and III. Therefore,
the first subsection deals with basic theoretical concepts of mode II and mode
III propagations of long fatigue cracks. A special emphasis is devoted to the
micromechanism of mode III crack growth which seem to be much more
complicated than that of the mode II. Indeed, the theoretical analysis and
recent experiments show that the macroscopic mode III crack propagation
can be produced by local mode II or mixed-mode II+III micromechanisms.
As a consequence, mode III crack growth rate is often found to be lower than
that of the mode II which is documented in the Section 3.3.3.

Pure shear-mode crack propagation usually persists only for a limited num-
ber of loading cycles and the cracks incline (or branch) to get a support of the
mode I loading. Such a behaviour is predominantly caused by attempting to
avoid friction stresses at shear crack flanks that reduce the driving force. This
leads to a local mixed-mode I+II, I+III or I+II+III crack propagation as is
documented in Sections 3.3.2 and 3.3.3 dedicated to crack propagation under
cyclic torsion and pure shear. Typical products of this complicated crack path
are so-called factory roofs that represent one of the most remarkable morpho-
logical patterns in fatigue. The related model, based on LEFM mixed-mode
analysis and 3D fractography, reveals that the opening loading mode dom-
inates the process of factory roof formation. However, the most important
result of this analysis seems to be a definition of generalized conditions of
mode I branching (kinking) from the shear-mode crack propagation.

The last two parts are devoted to fatigue life of steel specimens subjected
to a combined bending-torsion loading. Many engineering components such
as shafts, piston rods or gear wheels operate under this type of loading.
An application of stress-based multiaxial criteria to predictions of fatigue
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life and comparison with experimental data obtained on virgin and nitrided
specimens are presented. In addition, an extended fractographical analysis of
nitrided specimens reveals changes in the fracture surface roughness and the
geometry of so-called fish-eye cracks with varying proportion of bending and
torsion loading components.

3.3.1 Models of Shear-mode Crack Growth

While the principal micromechanisms of fatigue crack growth in modes I
and II can be clearly demonstrated by simple dislocation models, this is
not the case in a pure mode III crack propagation. Nevertheless, besides a
local twisting of the mode III crack front to get a mode I support [347], a
micromechanical interpretation of the crack growth under the out-of-plane
(mode III) cyclic shear is possible by means of alternating in-plane (mode
II) shears acting either at a microscopically tortuous crack front [348] or
between particles cracked near the crack front [348, 349]. Models based on
such concepts are described hereafter.

3.3.1.1 Basic Assumptions

Plastic deformation in metals, alloys and intermetallics is usually caused by
generation and movement of dislocations. Only in special cases do twinning,
grain boundary sliding and diffusion of vacancies give an additional contri-
bution to plastic deformation. In fact, a large amount of dislocations, includ-
ing those statistically stored, on different slip systems is active during plas-
tic deformation. However, only geometrically necessary ones are sufficient to
demonstrate the local fracture processes. Deformations at the crack tip un-
der modes I, II and III produced by geometrically necessary dislocations are
schematically depicted in Figures 3.39 and 3.15, where the formation of the
new fracture surface is illustrated on the atomistic scale.

As has already been described in Section 3.2, mode I deformation at the
crack tip is caused by a symmetric generation of edge dislocations at the crack
tip. A new fracture surface is created that is proportional to the Burgers
vector times the number of generated dislocations and the crack front length.
If one assumes that the new fracture surface will be immediately oxidized so
that the dislocations cannot annihilate the newly generated fracture surface
during unloading, the crack will propagate with a rate proportional to the
cyclic crack tip opening displacement.

Mode II deformation is caused by edge dislocations in the plane of the
crack. This process has already been described in the previous section (see
Figure 3.15). The crack extension per cycle is, again, proportional to the
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Figure 3.39 Atomistic scheme of fatigue crack advances in the mode I and the mode
III during a single loading cycle

number of generated dislocations at the crack tip times the Burgers vector,
i.e., to the cyclic crack tip “opening” displacement.

In the case of an idealized mode III loading screw dislocations are gen-
erated at (or near) the crack tip as shown in Figure 3.39. Although these
dislocations form a plastic zone in a similar way to edge dislocations in the
mode II case, they do not create new fracture surfaces along the crack front
since their Burgers-vector is parallel to the crack front. Thus, in a planar
sample, the movement of the screw dislocations generates ledges on the sur-
face within the plastic zone. Each dislocation generates a surface ledge that
is equal to the Burgers vector times the distance of its movement. If one
assumes that the surface ledge cannot annihilate during the reverse motion
of dislocations during unloading, a new “fracture surface” is generated only
within the plastic zone at the surface of the sample. However, along the crack
front no crack extension should take place. During further loading the surface
crack (the ledge in the plastic zone) will grow in a mode II along the mode
III crack front.

In summary, the cyclic movement of dislocations under idealized modes
I and II generates a new fracture surface along the whole crack front in
each cycle. On the other hand, the screw dislocations in a pure mode III
generate only ledges on the surface of the sample which may propagate as
“local” mode II cracks. The situation along the crack front is similar to the
movement of dislocations near a free surface: the movement of the dislocation
will not generate a ledge (a surface step) if its Burgers vector is parallel to the
surface. One can imagine that, in reality, mutual interactions of dislocations
(including those statistically stored) might generate some microcracks ahead
of the crack front in the case of all modes I, II and III. This might lead to
local advances of the main crack front by a coalescence of microcracks with



3.3 Shear and Mixed-mode Loading 191

(a) (b) (c)

Figure 3.40 The geometric scheme of fatigue crack advance under: (a) mode I, (b)
mode II, and (c) mode III during a single loading cycle

the main crack front. However, the crack front advance per cycle produced
in such a way must be negligible when compared with the straightforward
crack growth caused by the irreversible movement of geometrically necessary
dislocations in modes I and II.

The basic difficulty with a pure mode III mechanism in homogeneous ma-
terials can also be simply understood when following the macroscopic crack
growth schemes drawn in Figure 3.40. During one loading cycle, new surfaces
are created ahead of both mode I and mode II fatigue crack fronts by non-
zero components of shear displacements parallel to the crack growth direction.
Environmental degradation of a newly created surface and irreversibility of
dislocation movement are two commonly accepted reasons for an incomplete
recovery of atomic bonds at the crack tip during the reversed loading. On the
other hand, no shear displacements creating such new surfaces are produced
by pure mode III loading.

3.3.1.2 In-plane Shear Models of Out-of-plane Shear Crack
Growth

It should be emphasized that a macroscopic mode III crack front propagation
does not necessarily need to be produced by pure mode III displacements. In-
deed, pure mode II cracking micromechanisms can be exclusively responsible
for such crack front advance. In homogeneous materials this demands only
a natural assumption of a microscopically tortuous crack front. The crack
fronts in engineering materials are never absolutely straight except for single
crystals provided that the crack plane is identical with the shear plane and,
simultaneously, the direction of the “straight” crack front is exactly parallel
to the Burgers vector. In all other cases the crack fronts have a serrated shape
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at least at the atomic level. Therefore, a global out-of-plane shear deforma-
tion will cause fatigue crack propagation of the serrated flanks as depicted in
Figure 3.41. In case (a) the small displacement ranges ΔuIII mean that the
sum of edge components of dislocations emitted from the more horizontal
parts of the crack front does not exceed a few total Burgers vectors. This
corresponds to a loading near the local mode II+III crack growth threshold.
In case (b) higher displacement ranges ΔuIII cause crack propagation along
the whole crack front.

�uIII

�uIII

(a)

(b)

Figure 3.41 Scheme of deformation-controlled mode III growth of a serrated crack
front: (a) small out-of-plane strain, and (b) large out-of-plane strain. Reprinted with
permission from John Wiley & Sons, Inc. (see page 265)

Let us now consider a simple model of a macroscopically straight but
microscopically tortuous crack front under a pure macroscopic mode III
loading as shown in Figure 3.42. The triangular microledges are loaded in
a mixed-mode II+III, but the out-of-plane shear stress vector can be re-
solved into two pure mode II (in-plane) components, perpendicular to the
legs of the triangle. This enables an alternating step by step growth of the
crack front segments under a pure mode II mechanism and leads to a gradual
smoothing of the front. This effect may decelerate the macroscopic mode III
crack growth or even cause its arrest. Such a behaviour, already reported by
Tschegg [350–352], was originally attributed only to the friction and clinch-
ing of spatially tortuous crack flanks. The front propagates in the x direction
and, indeed, it remains parallel to the direction of the macroscopic “mode
III” crack front. This can elucidate a mode III-like fatigue crack growth from
a circumferential mode I pre-crack under torsion [353, 354]. When applying
the alternating mode II advance of the crack front segments to the circum-
ferential pre-crack described above [348], the resulting shape of the growing
crack always becomes qualitatively very similar to that experimentally ob-
served by Murakami [355]. After a certain number of cycles, the shape of the
crack front gives an impression of a mode III-like crack propagation (see [348]
for more details).
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Figure 3.42 Scheme of the alternating pure mode II mechanism of a gradual advance
of a microscopically tortuous (macroscopically straight) crack front in a macroscopic
mode III. The thin lines indicate positions of the crack front after a specific number
of fatigue cycles. Reprinted with permission from John Wiley & Sons, Inc. (see page
265)
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Figure 3.43 Scheme of a mode II mechanism ensuring a macroscopic mode III crack
advance (grey areas) between secondary phase particles (hatched squares). Fracture of
the particle-matrix interface is assumed when the crack front approaches the particles



194 3 Fatigue Fracture

Even a microscopically straight crack front can propagate in a macro-
scopically pure mode III when considering the assistance of cracks related
to secondary phase particles [348, 349]. Indeed, the cracks formed by frac-
ture of particles or particle-matrix interfaces can spread in a pure mode II
along the “mode III” crack front as depicted in Figure 3.43. The particles in
the vicinity of the crack front are depicted by hatched squares. Frank–Read
(F-R) sources adjacent to the main crack front generate dislocation pile-ups
at the particle-matrix interfaces and produce coplanar interface cracks with
crack fronts nearly perpendicular to the main crack front. Consequently, these
cracks can extend under mode II loading along the crack front. The mean
crack propagation rate in such a model depends on the total length of the
microscopic mode II crack front, given by both the size and the line concen-
tration of particles, associated with a unit length of the “mode III” crack
front.

Let us note, however, that another dominant damage mechanism might
be responsible for fatigue crack propagation in some metallic materials. One
can imagine that, inside the whole cyclic plastic zone ahead of the crack
front, many secondary particles can be separated from the matrix during one
loading cycle. Such microcracks can then be mutually jointed by shearing
under the local mode II to coalesce with the main crack front by breaking
remaining ligaments (in a local mixed-mode I+II+III). In this way, rather
large crack advances in a nearly pure mode III through the whole process zone
can be accomplished during each of several loading cycles and, consequently,
the crack growth rate under mode III must not necessarily be lower than that
under mode II. Although such a mechanism might be primarily expected to
operate in a low cycle fatigue, one cannot exclude that it could also be efficient
in a high-cycle fatigue.

3.3.2 Propagation of Cracks under Cyclic Torsion

The great majority of shear loading experiments was performed by cyclic
torsion of cylindrical specimens. Many of these studies revealed that there
is a big difference in the crack propagation mode in smooth and notched
specimens (e.g., [192,350,356,357]). In smooth specimens, the maximal shear
and normal stresses are equal in magnitude. Therefore, there is competition
between the planes of the maximal shear (parallel and perpendicular to the
specimen axis) and those of the maximal tensile stress (main planes, inclined
at 45◦ to the specimens axis) with respect to the fracture process. During
the first few cycles, this competition is, as a rule, decided in a favour of the
latter planes. Thus, the cracks start to propagate under an opening mode I.

In the circumferentially notched specimens, however, the concentration
of shear stresses in the plane perpendicular to the specimen axis stabilizes
the crack growth in this plane. Therefore, the cracks propagate under shear
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modes II+III at least for a certain portion of the fatigue life to an extent which
increases with increasing level of torsion loading. In quasistatic and very low-
cycle fatigue regions, the cracks can propagate under a dominant shear mode
until the final fracture. In these cases, an intensive cyclic deformation within
a large plastic zone (embracing many grains and microstructural elements)
quickly produces a network of microcracks at grain boundaries or secondary-
phase particles. This damage zone is extended ahead of the crack front rather
coplanar with the notch plane (e.g., [358]). A coalescence of these microcracks
and their shear interconnections with the main crack front keep the crack path
in the plane perpendicular to the specimen axis. It is to be expected that the
coalescence is controlled predominantly by local mode II shearing processes
already described in the frame of the particle-assisted model of mode III
crack growth (Figure 3.43). In the high-cycle region, on the other hand, the
plastic zone size is comparable to the characteristic microstructural distance.
Therefore, the microstructurally-induced tortuosity of the crack front soon
causes the initial shear-mode propagation to transfer into the zig-zag mode
I growth by formation of factory roofs (e.g., [359, 360]).

In the next subsections, the results of fractographical studies of both
smooth and notched specimens made of low-alloyed high-strength steel are
presented [348]. Moreover, a theoretical model of factory roof formation is
briefly described according to a more extended analysis reported in [361].

3.3.2.1 Smooth Specimens

Initiation and propagation of fatigue surface cracks in smooth cylindrical
specimens made of a low-alloy, Cr-Al-Mo steel BS 970/1-83 (σy = 850MPa),
were investigated by means of optical and scanning electron microscopes.
Pure torsion fatigue tests (number of cycles to fractureNf ∈ (104, 106) cycles)
were interrupted after defined numbers of cycles, the specimens were stati-
cally fractured in liquid nitrogen and their fracture surfaces were analyzed in
SEM.

A formation of a network of microcracks macroscopically perpendicular
and parallel to the specimen axis was detected during the first loading stage.
This initiation stage was followed by growth of the perpendicular microcracks
preferentially in the mode II along the surface and their coalescence.

A typical shape of microcracks that macroscopically lie in the plane per-
pendicular to the specimen axis is shown in Figure 3.44. However, the real
crack plane related to stage I is inclined to the macroscopic plane at an angle
of 45◦. The crack front at the end of the stage I exhibits, similarly to the
scheme in Figure 3.42, a microscopically rough zig-zag geometry. The depth
of stage I cracks was in the range of 10–30 μm. The plane of the stage II
crack is inclined at 50◦ to the opposite direction and twisted at 20◦ so that
it gets an additional mode I support. As a rule, the crack fronts at the end
of stage II were smoother than those of stage I. All such cracks were rather
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Figure 3.44 A typical shape of a surface microcrack on the fracture surface macro-
scopically perpendicular to the specimen axis. Both the stage I and stage II planes are
inclined at about 45◦ to the macroscopical fracture plane. Reprinted with permission
from John Wiley & Sons, Inc. (see page 265)

slowly propagating in a mode I+III to a depth of nearly 100 μm while simul-
taneously growing and coalescing along the specimen surface under modes
II or I+II. As a result, a shallow circumferential macrocrack has developed
round the whole specimen as depicted in Figure 3.45. A much higher growth
rate of a mode II or I+II crack front segments in comparison with those
of the mode I+III can, however, be partially attributed to the interaction
and coalescence of surface microcracks. In some cases, however, long mode I
branches were also observed leading to a deep and extremely tortuous surface
macrocrack propagating into the interior of the specimen along 45◦ planes of
the maximum tensile stress.

In general, the fractographical analysis revealed that:
1. mode III crack growth was always supported by a mode I component due to

the propagation in planes of maximum tensile stress (short stage I cracks)
or even with additional twisting of the crack plane (stage II cracks);

2. the mode II (or I+II) crack growth rate was much higher than that of the
mode I+III which often resulted in a continuous circumferential crack.
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Figure 3.45 SEM picture of a circumferential crack developed after coalescence of
surface microcracks in modes II or I +II (depth about 100 μm). White lines mark a
segment of the continuous fatigue crack. Reprinted with permission from John Wiley
& Sons, Inc. (see page 265)

3.3.2.2 Notched Specimens

A typical way in which the cracks emanating from circumferential notches
of cylindrical specimens further propagate into the specimen interior under
torsional loading is by formation of factory roofs. The factory roof (F-R)
is one of the most extraordinary fractographical patterns ever observed in
fatigue and fracture of metallic materials. The roughness (or visibility) of
F-R particularly depends on the applied cyclic shear stress amplitude though
a significant influence of both the material microstructure and the material
yield strength was also observed (e.g., [349, 353, 356, 357, 362]). In spite of
the fact that first reports on the F-R appeared in the early 1950s, their
formation mechanism was only just beginning to be understood in 2006 when
the experimental work of Matake et al. [363] appeared. This study revealed
that there are three stages of F-R formation: (1) initiation and growth of
surface semi-elliptical microcracks under shear loading modes II+III, (2) their
interaction, coalescence and growth in the local mixed-mode I+II+III by
forming mode I branches (tilted and twisted segments) and (3) growth of
the periodic main crack under the prevalent mode I loading. The theoretical
work [364] was focused on the problem of friction and shielding phenomena
associated with a simple saw-tooth model of F-R patterns. However, neither
a detailed geometry of F-R nor any quantitative rules of their formation were
reported. Therefore, many principal questions concerning the phenomenon of
F-R still remained unsolved:
1. What is the characteristic 3D picture of the F-R?
2. Which physically based relationships control the initiation and growth of

the F-R?
3. What is the kinetics of the F-R formation?
4. Why the F-Rs are not observed in the region of a very low cycle fatigue?
5. Are the F-Rs observed only in the case of torsional loading?
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Answers to these questions are the main subject of the paper [361]. Some
of the most important results are mentioned hereafter.

3D Topography of Factory Roof

The three-dimensional micromorphology of F-R was investigated by stereo-
photogrammetry and optical chromatography. The fracture surfaces of V-
notched cylindrical specimens made of a high-strength low-alloy steel were
generated by a reversed torsion loading. Three applied values of the torsion
moment Mt1 = 13Nm, Mt2 = 17.9Nm and Mt3 = 22.7Nm led to fatigue
lives of Nf1 = 8.31 × 105, Nf2 = 2.44 × 105 and Nf3 = 1.58 × 104 cycles,
respectively. Unlike in the latter case (low-cycle fatigue), distinct F-R pat-
terns were observed in both high-cycle regimes. The macrophotograph of the
fracture surface with highlighted region of investigated F-R patterns is shown
in Figure 3.46.

Figure 3.46 Fracture surface with highlighted region of investigated factory-roof
patterns (Mt = 17.9Nm, Nf = 2.44 × 105 cycles)

Figure 3.46 documents not only a complexity but also a certain regularity
of F-R patterns. Indeed, the lamellar-like F-R structure consists of nearly
parallel elongated “mountain-like” massifs (segments) joined by rather nar-
row valleys with secondary cracks. Near the surface, the massif is usually split
into two smaller segments which constitute the initial stage of the F-R for-
mation. Note that there are several F-R patterns which significantly differ in
their size: The smaller the F-R patterns the finer is their lamellar structure.

The profiles of F-R topology in nearly tangential directions are plotted in
Figure 3.47 as obtained by stereophotogrammetry. The profiles well docu-
ment the general geometrical features: the slopes (hillsides) of the embryonic
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Figure 3.47 Topological profiles of F-R patterns in tangential direction

triangle-like segments gradually decrease starting from an initial angle α
of 65–77◦ near the surface (profile 3), continuing to somewhat lower angles
of 60–70◦ near their conjunction to one main segment (profile 4) to finally
reach 40–60◦ at the top of the main ridge and near the centre of the fracture
surface.

A repeated contact of fracture surfaces and the related bending loading
initiates secondary cracks in the valleys and also contributes to a further
mode I propagation of the main F-R crack inside the specimen. Therefore,
numerous wear traces (fibrous patterns or tire tracks) could be found on the
SEM pictures of the fracture surface.

Initiation of Factory-roof Patterns

Mixed-mode II+III exists at all points of the semi-elliptical crack front except
for two points on the surface (pure mode II) and one point at its centre
(pure mode III). However, nearly straight crack fronts of such semi-elliptical
cracks change to a highly tortuous profile by inclinations towards a mode I
loading rather soon. This change is accomplished by tilting (branching) and
twisting of the crack front segments. There are several possible reasons for
such behaviour that are particularly related to the crack advance in the radial
direction. Indeed, the notch stress concentration decreases and, moreover,
there is also a very limited ability of a pure mode III segment to propagate
in that direction [348]. Interactions of the crack front with microstructural
barriers are accompanied by an increase in the roughness of crack flanks. This
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leads to an increase in the friction stress (shear closure) and to the reduction
of the mode II+III crack driving force.

In order to get a maximum support of the opening mode I to avoid the
above-mentioned problems, mode II segments rotate around the axis parallel
to the crack front. Such a rotation is relatively easy even for large tilted
segments since their planes intersect the main crack plane along the line
(curve). On the other hand, twisting around the axis perpendicular to the
crack front provides mode III crack segments with mode I support. Since the
planes of the twisted elements and the main crack intersect only at a single
point, the size of the twisted elements is very limited and the twisting can
occur only on microscopic ledges at the main crack front. This means that
the formation of mode I branches at the mode II crack front is easier than
that at the mode III crack front.

Thus, the F-R formation starts by the creation of mode I branches at par-
ticular sites along the elliptical mixed-mode II+III front. A detailed mathe-
matical analysis of mode I branching based on LEFM is given in [361]. The
main aim of this theoretical analysis was to predict the most probable sites
of mode I branching at the semi-elliptical crack front. These sites are consid-
ered to be associated with branches of a pure local mode I stress intensity
factor KI at the semi-elliptical crack front. The angles X and Θ of such
branches respectively define the twist and the tilt of the branch with respect
to the semi-elliptical crack front as shown in Figure 3.48. Simultaneously,
these branches were found to be loaded by a maximal effective stress inten-
sity factor Keff = (K2

I +K2
II + (1− ν)−1K2

III)
1/2. The polar angle ϕ defines

the position of the branch at the semi-elliptical crack front as also depicted
in Figure 3.48.

X

�

�

Figure 3.48 Scheme of a branched element at the semi-elliptical crack front
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The analysis revealed that the tilt angle Θ = 71.6◦ keeps the same value
within the whole range of ϕ ∈ 〈0◦, 180◦〉 and the twist angle X = 19.5◦ re-
mains constant within the range ϕ ∈ 〈0◦, 54◦〉 and ϕ ∈ 〈126◦, 180◦〉. Starting
from the critical polar angle ϕc = 54◦, the twist angle X decreases to zero
which corresponds to ϕ = 90◦. This result holds well for all semi-elliptical
cracks exhibiting aspect ratios in the range b/a ∈ (0.6, 0.8) which contains
a great majority of the experimentally observed semi-elliptical cracks. Only
the critical polar angle changes in the range ϕc ∈ 〈45◦, 60◦〉.

It should be emphasized that the superposition of tilting and twisting
raises the values of KI,max (or Keff ,max) for the mode I branch significantly
above the originalKeff values for the semi-elliptical crack front just before the
initiation of the mode I branch. This very important result can be understood
in terms of a synergy effect of both the mode II and the mode III loading
on the creation of the mode I branch. For all the semi-elliptical cracks, the
branches of maximal values of KI,max (or Keff ,max) lie in the ranges ϕmax ∈
(20◦, 30◦) and (150◦, 160◦). This ranges determines two segments on the
semi-elliptical crack front that correspond to the maximal probability of the
creation of the F-R nuclei (mode I branches).

The initiation and further propagation of F-R nuclei is conditioned by
exceeding the mode I threshold for the HSLA steel on the mode I branches.
For cracks with b/a ∈ (0.6, 0.8), the computed maximal values ofKI are in the
rangeKmax ∈ (6.4, 7.1)MPam1/2. These values are higher than the threshold
amplitude ΔKth/2 = 4.6MPam1/2 but still sufficiently close. This result,
along with the good prediction of initiation sites, confirms the plausibility
of the theoretical approach. Moreover, it can be used to define generalized
conditions of mode I branching (kinking) from the shear-mode propagation:
1. the first branch forms at that site of the crack front where the value of

ΔKI on its facet would be maximal;
2. the branching appears at the moment when this maximal ΔKI -value ex-

ceeds that of the threshold ΔKIth related to the applied cyclic ratio.

The geometrical and microstructural parameters related to both the crack
front and the crack wake (the level of the roughness-induced closure) of the
mode I branch might be somewhat different from those of a crack in the
standard specimen used for the determination of ΔKIth. This difference could
be a reason for some deviations from the rule (2). Nevertheless, the above-
mentioned conditions give a general frame to a quantitative understanding
of the transition from the shear-mode propagation to that under the opening
mode.

Model of Factory-roof Formation

On the basis of the above-mentioned results, the kinetics of F-R formation can
be qualitatively assessed. Individual stages of F-R formation in terms of grad-
ual positions of F-R crack front are shown in Figure 3.49, where a 3D image
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of the investigated F-R is depicted according to the stereophotogrammetric
reconstruction. The process starts with the creation of mode I branches at
well defined sites of semi-circular cracks. The positions of mode I branches
corresponding to the ranges ϕmax ∈ (20◦, 30◦) and (150◦, 160◦) are marked
on the crack fronts of all deduced semi-elliptical cracks. One can see that
there is a good correspondence with practically all the real initiation sites of
F-R nuclei. In the cases of considerable size difference of neighbouring semi-
elliptical cracks, the mode I branch appears first on the larger semi-ellipse.
When a large semi-ellipse is adjacent to a small one, a short stage of a back-
ward growth towards both the critical site at the smaller semi-ellipse and the
remaining semi-elliptical crack front may appear due to their mutual inter-
action. This accelerates both the initiation of the second mode I branch and
the coalescence process.

After the coalescence, the initial F-R crack front consists of the local spa-
tial ledges and branches that form the embryonic massifs connected by the
remaining fronts of semi-elliptical cracks. The contact bending loading on
these massifs starts to produce the secondary cracks adjacent to the nuclei
and, later on, to the main valleys (or hilltops on the mating fracture surface).
These mode I cracks spread in planes inclined at 45◦ to the macroscopic plane
of the maximum shear stress, and eventually approach the advancing F-R
crack front.

In order to reduce the line tension of such a tortuous front, the embryonic
massifs expand in both the radial direction (inside the specimen bulk) and the
tangential direction (along the semi-elliptical fronts). In this way, both the
width and the height of the nuclei increase while forming the local U-shaped
valleys of decreasing width. Finally, the embryonic segments link-up to form
the main massifs and to terminate the local valleys. From that moment on, the
main front of a nearly saw-tooth profile propagates further in the direction of
a maximum increase of the crack driving force, i.e., more or less in the radial
direction. For simple geometrical reasons, the F-R crack front has to contract
during propagation towards the specimen centre. Consequently, the main
massifs are brought mutually closer and their heights and widths decrease.
The extinction of F-R patterns near the specimen centre precedes the final
fracture of the specimen. A geometrical model of F-R patterns [361] also
revealed that both the height h and the width w of the F-R patterns decrease
with decreasing distance (or increasing density) of individual segments.

When considering all the presented theoretical and experimental results,
the first three basic questions seem to be answered in a satisfactory manner.
The last two questions can also be answered in a rather simple way. The
density of initiated semi-elliptical cracks increases with decreasing number of
cycles to failure (increasing applied stress range). For the above-mentioned
geometrical reasons, the higher the density, the lower the size of the F-R
patterns. In the very low-cycle and quasistatic regions, moreover, the micro-
crack coalescence in the damage zone start to dominate the fracture process.
Both these facts mean that the F-R practically vanishes when approaching
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Figure 3.49 The 3D model of the F-R formation

these regions. It should be noted that some authors emphasize another rea-
son for the vanishing of F-R: the shear displacements in the low-cycle regime
become very large and the related strong wear can destroy the F-R mor-
phology. However, the relevancy of this reason is substantially weakened by
the theoretical analysis performed by Vaziri and Nayeb-Hashemi [359] that
predicts sliding of F-R walls rather than their abrasive wear in the low-cycle
region (see Section 3.3.3 for more details).

Let us finally remark that the biaxial stress state induced by torsion is
not the only kind of loading that produces the F-R patterns. Indeed, these
patterns are also developing under pure shear loading, i.e., under a uniaxial
stress state [365] (see also the Section 3.3.3).

3.3.3 Propagation of Cracks under Cyclic Shear

An investigation of shear-mode cracks in the case of torsional loading is very
difficult and ineffective especially in the high-cycle fatigue region. Indeed,
there is only a very short initial period of shear mode crack growth during
which almost the whole crack front grows either in the mixed-mode I+II+III
(smooth specimens) or II+III (notched specimens). Therefore, it is practi-
cally impossible to study the pure modes II and III separately in order to
distinguish their growth mechanisms. Under this kind of loading, moreover,
an appropriate identification of threshold values ΔKIIth and ΔKIIIth is also
impracticable. However, good experiments enabling the pure mode II or mode
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III crack tip loading are very difficult to arrange. One of the main problems
is to avoid a parasitic mode I vibrational loading. To our knowledge, the first
experimental device of this kind was based on four-point bending of angular
beams [366, 367]. However, pure mode II or mode III loadings could be re-
alized only in the very centre of the beams so that the extent of the related
crack growth was very limited. Diverse experimental arrangements were em-
ployed in [365,368]. The basic idea was to realize simultaneous pure mode II
and mode III crack propagations in one specimen. Two different devices were
utilized for low-cycle and high-cycle fatigue experiments. Hereafter, a brief
description of these experiments and obtained results are presented.

3.3.3.1 Low-cycle Fatigue

Experimental Arrangement

A loading scheme of a special cylindrical specimen utilized in the experiments
is introduced in Figure 3.50. Two very sharp circumferential notches were
machined by a lathe tool and additionally subjected to a compressive loading
in order to produce a crack-like notch. Then, the specimen was annealed in
order to remove residual stresses at the crack tip induced by compressive
loading.

front back

bottom

top

notch A notch B8
m

m

cyclic loading

Figure 3.50 The loading scheme of the two-notch specimen. Reprinted with per-
mission from Elsevier B.V. (see page 265)

Specimens were then placed into a fixed rigid holder in the machine, where
both side parts of the specimen could be gripped tightly. The whole middle
part of the specimen (in between both circumferential notches) was gripped
by a moving part of the machine and loaded strictly uniaxial, in tension
and compression. The clamping device was stabilized in order to prevent any
vibrations and movements out of the tensile axis. A more detailed description
of the testing device can be found in [368]. In this way, pure shear loading was
transferred to the crack-like notches: At both the top and the bottom sites
of two round notches a pure mode II loading was applied, whereas the cracks
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starting from both middle-site segments were subjected to a pure mode III
loading. Thus, four sites of both mode II and mode III growing cracks could
be analyzed in a single specimen. Other sites along the notch root experienced
a mixed-mode II+III loading.

The constant applied cyclic displacement produced a large-scale cyclic
yielding in the ligament that corresponded to a displacement of the crack
flaws of the order of a few microns. Such a loading produced crack advance
of several hundreds microns during about a hundred of cycles applied in the
experiments.

An austenitic steel X5NiCrTi26-15, used e.g., in the aviation industry or as
turbine blade material (yield strength of 600MPa), was selected as an experi-
mental material. This material was nearly free of inclusions or precipitates so
that the particle-induced mechanism of mode III propagation (Figure 3.51)
was not expected to be dominant.

Figure 3.51 The microstructure of the austenitic steel along the crack growth plain.
Reprinted with permission from Elsevier B.V. (see page 265)

Crack Growth Data

Two specimens were fatigued by 200 cycles and one specimen by 100 cycles.
After the fatigue tests the specimens were broken by cyclic tensile loading.
Fractographic observation permitted the determination of the crack exten-
sion caused by mode II and mode III cyclic loading, which was clearly distin-
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guishable from the crack propagation caused by the subsequent cyclic tensile
loading. The fatigue crack advance under macroscopically pure modes II and
III was measured at appropriate sites of fracture surfaces along short crack-
front segments of 100μm. In spite of a relatively high scatter of individual
measured fatigue crack lengths, a clear difference in averaged remote mode II
and mode III final crack lengths was identified. In the case of 200 applied cy-
cles, the averaged length of 420 μm corresponded to mode II but only 200 μm
was determined for mode III. The respective lengths of 210 μm (mode II)
and 120 μm (mode III) were measured in the case of 100 applied cycles. Since
the fatigue crack path was only a tenth of the total crack length, a nearly
constant crack growth rate could be assumed in individual tests. Thus, the
remote mode II crack growth rate was approximately twice higher than that
of the mode III. It should be emphasized that the numerical analysis for the
circumferential crack subjected to pure remote shear revealed that the value
of CTODIII was more than 1.4 times higher than that of CTODII in the
small-scale yielding case for the same applied strain range [369]. By assuming

the dependence
da

dN
∝CTOD2 this means that, in fact, the crack growth rate

under mode III must have been about five times lower than that under mode
II.

Fractographical Observations

A detailed 2D fractographical investigation by means of SEM was performed
in order to identify real local fracture modes. Examples of a typical fracture
surface produced during the remote mode II loading is shown in Figure 3.52.
Here the directions of both the applied shear stress and the macroscopic
crack growth are vertical (from the bottom to the top). Many facets covered
by striations, mostly nearly perpendicular to the growth direction, could be
observed all over the fatigue fracture surface. The occurrence of striations
was related to the presence of a small opening mode I at the crack tip that
was induced here by local inclinations of the crack front from the plane of
maximum shear strain. Sometimes the crack front advanced in pure mode II
as can be easily deduced from tire tracks typical for shear mode presence that
could be identified in many parts of the fracture surface (see Figure 3.52).
The direction of these periodic patterns indicates the expected propagation
of the shear crack front from bottom to top.

Many secondary cracks, mostly perpendicular to the growth direction, were
also found all over the fracture surface [368]. These cracks are considered to
be preferentially created at the corners of asperities left in the crack wake
which, under the applied mode II shear, are loaded by cyclic bending.

All observed morphological features confirm that pure mode II and com-
bined mode I+II are the dominating microscopical fracture mechanisms caus-
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Figure 3.52 Tire tracks and striations (at the top) on the remote mode II fracture
surface

ing rather straightforward advance of the crack front under remote mode II
loading.

A typical example of fracture surfaces produced under remote mode III is
displayed in Figure 3.53. Here the direction of the applied shear stress is hor-
izontal. The fracture morphology was found to be completely different from
that created by the remote mode II. Practically all striation fields confirmed
the dominance of mode II or II+III propagation in accordance with the mod-
els in Figures 3.42 and 3.43, often supported by mode I due to kinking and
twisting of the crack plane. Indeed, a prevalent direction of striations is nearly
vertical which means that the crack front propagated horizontally, i.e., under
local mode II. A careful examination of the mode III fractographs uncovered
some regions looking like mode I+III crack propagation, where the crack
formed striations parallel to the external applied mode III loading. Due to
the crystallographic nature of plasticity, the macroscopic shear displacement
parallel to the crack front is expected to be always locally associated with
small mode I and mode II displacements in addition to the mode III ones.
Indeed, there must practically always be a certain deviation of the Burgers
vectors from the crack front direction.

The secondary cracks generated under remote mode III are more frequent
and noticeable than those under remote mode II loading (see Figure 3.53).
These cracks, mostly parallel to the growth direction, were created preferen-
tially as corner cracks at the crack-wake asperities bent by external mode III
shear. Coalescence of such cracks causes crumbling of asperities and falling
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Figure 3.53 Striations on the remote mode III fracture surface revealing the domi-
nance of local mode II or I+II crack propagation mechanisms. Reprinted with per-
mission from Elsevier B.V. (see page 265)

of the fracture surface. As a result, large voids are left in between mating
surfaces as was previously detected by Slámečka and Pokluda [370] by us-
ing stereophotogrammetrical methods after torsional fatigue fractures. Sec-
ondary cracks also sporadically initiated at particles of secondary phases near
the main crack front. These cracks then propagated as mode II or I+II cracks
in between the particles along the main crack front – see Figure 3.53 (left).
Indeed, the striations emanating from the cracked particles indicate a hori-
zontal direction of the crack front propagation in accordance with the model
in Figure 3.43.

In summary, the fracture morphologies generated by remote mode II and
mode III loadings are significantly different. However, the observed morpho-
logical features revealed that the dominating growth mechanisms in both
cases are similar: pure mode II and the combined mode I+II. This is in
agreement with the models in Figures 3.42 and 3.43. Some indication of the
local mode I+III crack propagation under the remote mode III loading was
also found. Thus, the local fracture modes caused a complicated zig-zag ad-
vance of the crack front unlike the rather straightforward growth under the
remote mode II. As a consequence, the crack front propagation rate under
remote mode III was significantly lower than that in the remote mode II case.
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3.3.3.2 High-cycle Fatigue

Experimental Arrangements

In the high-cycle regime, the shear displacements are much lower than those
in low-cycle fatigue and, consequently, small parasitic mode I vibrations and
bendings could play a much more important role. Therefore, two other orig-
inal testing setups (cells) with a higher stiffness were designed and utilized
to assure a pure remote shear loading. The loading scheme of the first cell
is depicted in Figure 3.54. The construction of the specimen holder and its
orientation with respect to the loading axis provided pure mode II loading
at the “top” and “bottom” sites of the specimen and pure mode III loading
at the “front” and “back” sites. At all other points along the crack front
mixed-mode II+III was applied. A circumferential V-notch was machined
by a lathe tool at the specimen mid-length and a pre-crack was introduced
by a blade mechanism. Finally the specimens were compressed by 20 kN to
sharpen the pre-crack and subsequently annealed. The resulting pre-crack is
depicted in Figure 3.55. Specimens made of the ferritic steel (0.01%C) with
outer diameter of 8 mm and inner diameter of 4mm were loaded by different
ranges of the nominal ligament shear stress τn (the cyclic ratio R = 0.1) After
the shear mode tests, the specimens were rapidly fractured in liquid nitrogen.
Specimens made of austenitic steel X5NiCrTi26-15 were also tested by means
of this experimental set-up. These specimens were fractured by cyclic tensile
loading.

specimen

holder

cyclic loading

notch with precrack

(a)

(Mode III)(Mode III)
front back

top (Mode II)

bottom (Mode II)

(b)

Figure 3.54 The experimental setup: (a) the loading scheme, and (b) the loading
modes operating at different specimen sites

The second special cell for loading specimens made of austenitic steel was
manufactured to enable higher loadings (see Figure 3.56). The pre-crack was
introduced by means of a compressive load of 200 kN. After the shear mode
tests, the specimens were also fractured by cyclic tensile loading.
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Figure 3.55 The shape of the pre-crack after compression

Figure 3.56 The scheme of the loading cell for higher loading forces

Numerical K-calibration of Specimens

In order to determine the mode II and mode III stress intensity factors at the
crack tip, a numerical analysis was performed by means of the ANSYS code.
Although the loaded specimen was modelled as rotationally symmetric, a full
linear–elastic 3D solution had to be used owing to a different symmetry of the
loading. In the first step, the stress-strain field along the crack front loaded
by the remote shear stress of 180MPa was determined by utilizing a rough
finite-element network. This field was used to create a ring-like submodel with
a very fine finite-element network that embraced only the pre-crack region.
The submodel surface was loaded by the rimstrains computed for the same
surface on the rough model.

In this way, very precise values of the stress intensity factors KI ,KII and
KIII could be determined for many points along the circular crack front.
Mutual shear displacements of crack flanks were calculated at four points
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Figure 3.57 Values of KII and KIII along the crack front in polar coordinates.
The dashed lines correspond to the middle points of the finite elements, the dotted
lines are related to their vertexes and the full lines represent the average values

near the crack front. The values of KI ,KII and KIII were determined by an
extrapolation to the crack front for all applied nominal shear stress ranges.
The ratio of maximal values in pure shear modes II and III was found to
be KIIImax/KIImax = 1.37 while the values of KImax were negligible (for
more results see [365]). This can be seen from the polar diagram of maxi-
mal values of KIIImax and KIImax in the loading cycle (for τn = 180MPa)
that is plotted in Figure 3.57. It should be emphasized that such deter-
mined numerical values of KIIImax were found to be in excellent agreement
with calculations performed using the asymptotic method [371]. Let us men-
tion that recent results of elasto-plastic analysis have shown that the ratio
CTODIIImax/CTODIImax in the large-scale yielding case can be even higher
than 1.4 [369].

Crack Growth Data

The spatial shear crack path was determined by an SEM identification of the
fracture surface morphology in selected rectangular regions corresponding to
pure mode II and mode III loading of both austenitic and ferritic steels. The
fracture morphology of pure mode II and III shear cracks is shown in Figure
3.58 for the austenitic steel. The areas corresponding to the pre-crack, the
shear crack propagation and the final tensile fracture are marked as well.
Practically all the mode II shear cracks were globally inclined from the shear



212 3 Fatigue Fracture

plane. Averaged deflection angles were found to be 60±16◦ (austenite) and
53±15◦ (ferrite). This means that just after the start of shear mode cycling,
the mode II cracks branched to the opening mode I. In terms of the previously
defined branching condition, the value of ΔKIth ≈ 5.8 for the austenitic steel
at R = 0.1 must have already been exceeded at the mode I branches. Indeed,
the crack flanks near the pre-crack tip are microscopically tortuous, as can be
seen in Figure 3.55. Consequently, a bending moment at interlocked asperities
has, most probably, produced an additional local mode I loading at the pre-
crack tip. The fracture morphology of mode III cracks typically consisted of
factory-roof patterns (Figure 3.59).

Figure 3.58 SEM pictures of fracture surfaces showing propagation of shear cracks.
The left (right) pictures correspond to remote mode II (mode III) cracks

Profiles of fracture micromorphology in the direction of applied stress for
both mode II and mode III crack propagation stages are depicted in Figure
3.60. As expected, the crack path in the remote mode III case clearly reveals
the formation of factory roofs. The related interlocking of crack flanks caused
by the F-R asperities must lead to a dramatic reduction of the crack tip
driving force especially in the near-threshold crack growth region [359]. This
is schematically shown in Figure 3.61 where the interlocked F-R asperities are
associated with a low effective crack driving force ΔKeff ,III for low applied
values of τ . When the applied shear stress or ΔKIII becomes sufficiently
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Figure 3.59 3D picture of the factory-roof morphology created by a pure mode III
shear (viewed parallel to the fracture surface)

high (or the FR patterns sufficiently small) the sliding of fracture surfaces in
the crack wake rapidly becomes dominant. This is accompanied by a sudden
increase in the effective driving force in the near-fracture region of the crack
growth rate diagram (or in the low cycle region). On the other hand, the
microrelief of mode II crack growth is very smooth so that the effective driving
force is high. Consequently, the crack growth rate under mode II is expected
to be significantly higher than that under mode III.

Figure 3.60 Profiles of fracture morphology in the direction of applied stress cor-
responding to mode II (left) and mode III (right) crack propagation. The smooth
profiles 1, 2 and 3 show propagation paths of three elements of the mode II crack-
front (extended in the tangential direction) along the radial direction r towards the
specimen centre. The profiles 4, 5, 6 and 7 correspond to consecutive propagation
stages of the mode III crack front extended in the tangential direction l

Since the length of the shear mode cracks was an order lower than that
of the pre-crack, a nearly constant crack growth rate during the shear prop-
agation could be assumed. Therefore, the crack growth rate was calculated
simply by dividing the total length of shear cracks by the corresponding num-
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Figure 3.61 The scheme of the interlocked factory-roof asperities in the case of a
small applied shear stress (the left part, wedging) and a high applied shear stress (the
right part, sliding)

bers of cycles. The near-threshold crack growth curves for both the mode II
and the mode III propagation in the austenitic steel are plotted in Figure
3.62. The related regression curves follow the Klesnil–Lukas relationship

da

dN
= A (ΔKn −ΔKn

th) ,

where A and n are material constants [289]. While the exponents nII =
5.6 and nIII = 5.1 are nearly identical, the constants AII = 1.131 and
AIII = 2.721 [MPam1/2, m] are significantly different as well as the calcu-
lated thresholds ΔKIIth = 3.5MPam1/2 and ΔKIIIth = 4.7MPam1/2.

According to a general condition of mode I branching defined in Sec-
tion 3.3.2, this effect can appear only when the mode I threshold value is
exceeded at the mode I branch. With the help of the local bending mo-
ment induced by the crack-wake asperities near the crack tip, the value
ΔKIth ≈ 6MPam1/2 for the austenitic steel (R = 0) [372] could already be
exceeded by applying ΔKII values very close to the remote mode II threshold
ΔKIIth ≈ 3.7MPam1/2. One can also clearly see that, for the same value
of the applied stress intensity range, the crack growth rates for the mode
II loading are about six times higher than those for the mode III loading.
This is in agreement with results achieved in the low-cycle fatigue region
and confirms the diversity of the mechanisms of mode II and mode III crack
propagation in metals within the whole range of the fatigue life.

Also in the case of the ferritic steel, the threshold values ΔKIIth =
1.2MPam1/2 and ΔKIIIth ≈ 2.0MPam1/2 were found to be different. This is
documented in Figure 3.63, although further experiments must be performed
in order to obtain more precise results.

To prevent mode I branching in order to observe a sufficiently long mode II
and III crack growth near the threshold, the pre-crack flanks should be very
smooth, particularly in the close vicinity of the pre-crack tip. This might be
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Figure 3.62 The crack growth curves for the austenitic steel in the near-threshold
region

Figure 3.63 The crack growth data for the ferritic steel close to the fatigue threshold

achieved by generation of an additional short pre-crack by cyclic compressive
loading. In this case, the intrinsic values ΔKIIth,in and ΔKIIIth,in could
be determined by a sequential cyclic shear mode loading. Results of first
experiments of this kind are plotted in Figure 3.64. For mode II loading, open
stars and squares are associated with planar shear crack propagation with
the deflection angle less than 15◦, while solid stars and squares correspond to
branching angles higher than 40◦. The latter symbols can be found only for
ΔKII = 7.3MPam1/2 which is a higher value than that of ΔKIth. Due to
the smoothing and sharpening of the crack tip by cyclic compression, there
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is also a significant shift of both mode II and mode III thresholds towards
lower values (ΔKIIth,in ≈ 2.9MPam1/2 and ΔKIIIth,in ≈ 4MPam1/2).

These results do not confirm the identity ΔKIIth,in = ΔKIIIth,in ≈
9.6MPam1/2 as obtained by Murakami et al. [354] for carbon steel under
cyclic torsion. It should be noted, however, that the methodology used in the
latter case was rather complicated and, in our opinion, not correct. Indeed,
the extremely high threshold values were the result of a wrong presumption
that the branching of the mode II+III cracks occurred at the first joint sites
of the factory-roof massifs. In fact, the branching starts much sooner: at sites
of embryonic semi-ellipses that are well defined by the theoretical analysis in
Section 3.3.2. Consequently, the real threshold values should be substantially
lower.

Figure 3.64 The crack growth curves for the specimens with an additional pre-crack
made by cyclic compression in the austenitic steel

The results achieved in both the low and high-cycle region show that
the crack growth rate under mode III is about five times lower than that
under the mode II for the same applied strain or stress ranges. This fact
was already respected in empirical codes for mixed-mode crack growth in the
small scale yielding case [373, 374] by utilizing the effective stress intensity
factor approximately as

K2
eff = K2

I + ξK2
II + ηK2

III , (η < ξ < 1).

Thus, it seems that a similar assumption can be also extended to the large
scale yielding regime by using the effective crack opening displacement

CODeff = CODI + ξ∗CODII + η∗CODIII , (η∗ < ξ∗ < 1).
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Let us finally emphasize that, up to now, the experiments on mode II and
mode III crack propagation were accomplished only for a relatively small
number of engineering materials. In some metallic materials, the dominant
fatigue crack growth mechanismmust not necessarily be based on the environ-
mentally prevented recovery of the newly created surfaces ahead of the crack
front. Indeed, the accumulation of damage due to the creation of microcracks
inside the cyclic plastic zone could also control the crack propagation rate
in some metallic materials. This could lead to nearly identical crack growth
rates under both mode II and III loading cases. Therefore, the problem of
shear-mode fatigue crack propagation still remains a challenge for further
research.

3.3.4 Crack Growth and Fatigue Life under Combined
Bending-torsion Loading

Combined cyclic bending-torsion (CCBT) is a kind of multiaxial fatigue load-
ing that is probably mostly employed in scientific experiments. At the same
time, many engineering components such as, for example, shafts, piston rods
or gear wheels also operate under CCBT. Basically, there are two types of
CCBT observed in practice and utilized in experiments: in-phase and out-of-
phase loadings. In the next subsections, some results achieved by us and our
co-workers using the in-phase variant of CCBT are presented.

3.3.4.1 Fatigue Life

Stress State under In-phase Bending-torsion Loading

In experimental investigations sinusoidal loading is usually applied. In this
case, the time-dependence of non-zero components of the stress tensor can
generally be expressed as

σij(t) = σijm + σija sin(ωijt− ϕij), i, j = x, y, z, (3.33)

where σijm is the mean stress, σija is the stress amplitude, ωij is the angular
velocity and ϕij is the initiation phase.

Because of the biaxial character of bending-torsion, the loading trajecto-
ries can be plotted in 2D diagrams [312]. In the cases of pure bending, pure
torsion and, generally, in-phase loading, the directions of principal stresses re-
main time-independent. This means that the ratio of torsion/bending stresses
is constant along the whole loading trajectory (τ/σ = const). In the case of
out-of-phase loading, on the other hand, only the amplitude ratio remains
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constant (τa/σa = const) and the principal stress directions are time depen-
dent.

The stress tensor at an arbitrary point inside the cylindrical specimen
under in-phase bending-torsion (Figure 3.65) can be described as

σ̂(t) =

⎡
⎣ 0 0 τxz(t)

0 0 τyz(t)
τzx(t) τzy(t) σzz(t)

⎤
⎦ =

⎡
⎢⎣

0 0 −Mt(t)
Ip

y

0 0 Mt(t)
Ip

x

−Mt(t)
Ip

y Mt(t)
Ip

x Mb(t)
Iy

x

⎤
⎥⎦ ,

Ip =
πd4

32
, Iy =

πd4

64
,

where the components denoted τ (σ) represent shear (normal) stresses, Mt

(Mb) is the torsion (bending) moment, d is the specimen diameter, Ip is the
polar inertial moment and Iy is the inertial moment round the y-axis ( [279]).

O

z

x

y
Mo

Mt

Figure 3.65 A scheme of the cylindrical specimen loaded by bending-torsion mo-
ments

In the case of in-phase symmetric loading one can consider ωσ = ωτ = ω,
σm = τm = 0 and ϕσ = ϕτ = 0 so that Equation 3.33 becomes very simple:

σij(t) = σija sin(ωt), i, j = x, y, z.

This means that only stress amplitudes are sufficient for further reasoning
and the time dependence can be neglected.

Since the short crack growth near the surface of rather smooth specimens
occupies a significant part of their fatigue life, the stress components at the
surface (x = ±d2, y = 0) are the most important parameters, especially in
the case of high-cycle fatigue. At these points the principal stresses can be
determined by solving the equation

∣∣∣∣∣∣
−σia 0 0
0 −σia τa
0 τa σa − σia

∣∣∣∣∣∣ = 0,

where σzza = σa and τyza = τzya = τa. Hence, in accordance with the
convention σ1 > σ2 > σ3, one obtains
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σ1a =
1

2

(
σa +

√
σ2
a + 4τ2a

)
, σ2a = 0, σ3a =

1

2

(
σa −

√
σ2
a + 4τ2a

)
,

which means that the combined bending-torsion loading induces the biaxial
state of stress. One can easily show that the directional cosines cij related to
i and j axes of the principal coordinate system can be expressed as

c2ji =
(σkk − σj) (σmm − σj)− σ2

km

3σ2
j − 2σjI1 + I2

, i �= k �= m,

where J1 and J2 are the first and second invariant of the stress tensor, re-
spectively:

J1 = σxx+σyy +σzz , J2 = σxxσyy +σxxσzz +σyyσzz − (τ2xy + τ2xz+ τ2yz).

The maximal shear stresses, crucial for the short crack initiation, act in
planes inclined at ±45◦ towards the principal axis, and their magnitude is

τ12 =
1

2
|σ1 − σ2| , τ13 =

1

2
|σ1 − σ3| , τ23 =

1

2
|σ2 − σ3| .

For selected bending-torsion loading cases, the orientation of principal
stresses and maximal shear stresses at surface points is depicted in Figure
3.66.

(a) (b) (c)

Figure 3.66 Principal stresses and maximal shear stresses at surface points of the
cylindrical specimen loaded under: (a) pure bending, (b) in-phase combined bending-
torsion (τa = σa), and (c) pure torsion. The z-axis is parallel to the specimen axis

Let us finally emphasize that, in general, the stresses in planes not too
much inclined at those in Figure 3.66 are very similar in magnitude. In the
case of uniaxial tension, for example, the stresses in planes inclined at 10◦

are reduced by only 3% [375]. This is particularly important with respect to
the crystallographic nature of short crack propagation in fatigue.
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Stress-based Criteria of Multiaxial Fatigue Life

The experimental determination of fatigue life curves for complicated multi-
axial loading cases represents, as a rule, a very difficult and expensive task.
Therefore, many criteria of multiaxial fatigue life based on data available
from uniaxial push-pull, bending or torsion tests were developed during the
second half of the last century. In general, these criteria can be categorized
as based on stress, strain or energy [375]. The stress-based criteria are ap-
propriate for the large class of materials and components that operate near
or below the fatigue limit (high-cycle fatigue).

The stress-based criteria can be written in the general form

af(τa) + bg(σa, σn, σm) = 1, (3.34)

where a and b are parameters that can be determined from two independent
simple fatigue tests and f(τa) and g(σa, σn, σm) are functions of applied shear
and normal stresses, respectively. In the case of combined bending-torsion
loading, for example, the fatigue limits in fully reversed pure torsion t−1 and
pure bending f−1, corresponding to a prescribed number of cycles to failure,
are preferably used to obtain parameters a and b. In order to assess the
efficiency of a particular criterion, the error index I is widely utilized as

I = 100(LHS− 1) [%],

where LHS means the left-hand side of Equation 3.34. The ideal prediction
leads to I = 0. If I > 0, the criterion gives conservative (safe) results since it
predicts the specimen (or component) failure under lower loads than observed
in the experiment. In other words, the applied stress amplitudes τa and σa
lead to higher than prescribed number of cycles to failure.

The oldest criterion was suggested by Gough and Pollard [376,377]. This
criterion is based on the Huber–Hencky–Mises equivalent stress and its sim-
plest form can be written as

aτ2a + bσ2
a = 1,

where a = 1/t2−1 and b = 1/f2−1.
Another classical empirical criterion, as proposed by Sines [378], uses the

amplitude of the second stress invariant J2,a and the mean hydrostatic stress
σm:

a
√
J2,a + bσm = 1.

In the case of bending-torsion fatigue, a = 1/t−1 and b =
√
3f−1/(σut−1),

where σu is the ultimate tensile strength. The criterion reported by Crossland
[379] is of the same form while b = 3/f−1 −

√
3/t−1 and σm → σma, where

σma is the amplitude of the mean hydrostatic stress.
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More sophisticated criteria suggested by Findley, McDiarmid, Matake,
Dang Van and Spagnoli are based on identification of the stress acting on
specific planes within the component bulk. These planes are termed critical
planes and are defined as one or more planes subjected to maximum damage.
This concept respects the fact that the fatigue crack initiates in slip systems
of maximal shear stresses and, in the short crack stage, it propagates along
these planes with an enhancing support of normal stresses that open the crack
tip. Particularly in smooth specimens or components, these stages occupy a
majority of the fatigue life [247]. Thus, the fatigue life is controlled by the
combination of shear and normal stresses acting on a critical plane. Findley
[380] suggested that the maximal normal stress σn (the sum of the mean
stress σm and the stress amplitude σa) on the critical plane might have a
linear influence on the allowable alternating shear stress τa:

(aτa + bσn)max = 1, (3.35)

where a = 1/σa and b = k/σa. The damage leading to failure is expected
to be related to the critical plane that is associated with the largest term
in the left-hand side of Equation 3.35. The constant k must be determined
experimentally by performing tests under pure bending and pure torsion. In
the case of in-phase proportional bending-torsion loading, a simple relation
tan 2/Θ = k−1 incorporates the angle Θ between the direction of the first
principal stress σ1 and the critical plane [375]. However, the Findley criterion
incorrectly predicts a dependence of the torsion fatigue limit when the mean
torsion stress is superimposed [381].

In the McDiarmid criterion [382], the critical plane is defined as the plane
on which the amplitude of the shear stress reaches its maximum (not the plane
on which the damage quantity is maximized). The torsion fatigue strength
tA,B is introduced either for case A (cracking parallel to the surface) or case
B (cracking inwards from the surface). The bending-torsion loading refers to
case A and the McDiarmid criterion becomes

τa,max

t−1
+

σn
2σu

= 1.

The Matake criterion [363] can be formally expressed in the form of the
Findley relation at Equation 3.35. However, the critical plane is assumed to
be the same as that in the McDiarmid criterion (the maximum shear stress
amplitude) which leads to a = 1/t−1 and b = 2/f−1−1/t−1 (see also Equation
3.36).

The criterion of Carpinteri and Spagnoli [383] is an example of a quadratic
form

aτ2a,max + bσ2
n = 1,

where a = 1/t2−1 and b = 1/f2−1.
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Criteria of Dang Van [384], Papadopoulos (integral approach) [385] and
Gonçalves et al. [386] are examples of advanced approaches. These criteria
also take, besides the critical plane, the distribution of local microstructural
stresses and possible slip systems into account. Dang Van has proposed an en-
durance limit criterion based on the concept of microstresses within a critical
volume of the material. This criterion can be written as a time-dependent cu-
mulative combination of the local shear stress τL(t) and the local hydrostatic
stress σh,L(t):

d = max

[
τL(t)

b− aσh,L(t)

]
.

The critical damage is reached when the condition d ≥ 1 becomes fulfilled.
In the Papadopoulos criterion both the shear stress and the normal stress

are integrated over all slip planes:

√√√√√5κ2

8π2

2π∫

ϕ=0

π∫

ψ=0

2π∫

χ=0

(Ta (ϕ, ψ, χ))
2
dχ sinψdψdϕ+

(
3−

√
3κ
)
· σh,max ≤ f−1,

where Ta is the amplitude of resolved stress, ϕ, ψ and χ are the Euler angles
and σh,max is the maximum value of the mean hydrostatic stress.

The Gonçalves criterion is expressed as

κ− 1
√
2
(
1− 1√

3

)
√√√√ 5∑

i=1

di +

√
3− κ√
3− 1

σ1,max ≤ f−1,

where the parameters di can be determined from minimum and maximum
values of the deviatoric stress tensor as

di =
1

2
(max si(t)−min si(t)) .

Fatigue Life of Steel Specimens under Bending-torsion

Comparison of prediction efficiency of individual multiaxial criteria in the
case of combined bending-torsion fatigue of smooth specimens was reported
in the work of Major et al. [387]. One set of specimens was subjected to a
nitriding procedure, a technological treatment that results in a harder surface
layer containing compressive residual stresses. Hereafter, these specimens will
be called “nitrided” ones unlike the “virgin” ones without the surface layer.

The cylindrical specimens were made of high-strength low-alloy Cr-Al-
Mo steel (equivalent to EN 37CrAlMo6) of the chemical composition given
in Table 3.7. When compared with commonly used nitrided steels, the in-
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vestigated material contains a slightly higher percentage of carbon, which
offers higher strength but, at the same time, it introduces larger differences
in microstructure caused by local variations in the nitriding process. After
the heat treatment consisting of annealing (920◦C, 25min, air), quenching
(930◦C, 25min, oil), and tempering (650◦C, 25min, air), the microstructure
consisted of the sorbitic phase. The heat treatment resulted in yield strength
σy = 840MPa and ultimate tensile strength σu = 950MPa.

Table 3.7 Chemical composition of EN 37CrAlMo6 steel (wt%)

C Mn Cr Mo V Cu Al W Si P S

0.357 0.468 1.49 0.194 0.01 0.072 1.4 0.032 0.292 0.006 0.006

Nitriding is a prominent industrial technology that is used to enhance key
properties of engineering components, especially surface hardness, fatigue
strength and wear and corrosion resistance [388–390]. The plasma nitriding
process is characterized by adsorption of nitrogen in the form of N+, NH+,
NH2+ and NH3+ ions. The most important characteristics determining the
depth of the nitrided layer are the nitriding time and the nitriding tem-
perature. The nitrided layer consists of (1) the thicker subsurface diffusion
layer and (2) the thin brittle surface compound layer composed of different
iron nitride phases (often called the white layer). The higher strength of the
nitrided layer together with associated compressive residual stresses causes
subsurface crack nucleation and, therefore, improvement of fatigue strength.
The micropulse plasma nitriding procedure was applied in two steps – clean-
ing (30min) and nitriding (8 h) resulting in the depth of the diffusion layer
hdl = 200 μm and the thickness of the white layer hwl = 3 μm; see Table
3.8 for the details of this procedure. The basic tensile mechanical properties
of the plasma nitrided specimens were measured as follows: yield strength
σy = 870MPa and ultimate strength σu = 1020MPa. This means that a
slight improvement of both characteristics was achieved.

Table 3.8 Parameters of the nitriding process

Step Temperature Time Atmosphere Pressure U Pulse

[◦C] [h] N2 H2 CH4 [mbar] [V] [μs]

Cleaning 510 0:30 20 2 - 0.7 800 120

Nitriding 515 32:00 21 7 0.4 2.6 530 150

The fatigue life of nitrided specimens was found to be significantly longer
than that of virgin specimens, as can be clearly seen in Figure 3.67. The
curves are plotted by using the McDiarmid criterion for the number of cycles
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Table 3.9 Average error indices Iavr and their absolute values IABS,avr of selected
multiaxial criteria for virgin and nitrided specimens

Specimens Virgin Nitrided
Criterion Indices [%] IABS,avr Iavr IABS,avr Iavr

Dang Van 7.35 −3.03 8.45 −0.35
Crossland 7.28 −5.42 8.65 −2.47
Sines 11.85 −11.23 12.32 12.82
McDiarmid 7.08 −3.02 8.65 1.72
Findley 7.08 −3.38 8.62 −0.87
Matake 7.12 −3.04 8.32 −0.23
Spagnoli 10.5 4.33 8.56 3.35
Papadopoulos (integral approach) 7.36 −3.04 8.46 −0.35
Papadopoulos (critical plane) 11.08 −6.30 16.56 −6.70
Gonçalves et al. 8.62 4.14 13.92 5.20

Figure 3.67 The constant fatigue life diagram (Nf = 5 × 105 cycles) for bending-
torsion loading of virgin and nitrided specimens according to the McDiarmid criterion

Nf = 5 × 105 and the experimental data correspond to a fatigue life of
Nf = 5× 105± 2× 105. This conclusion also holds for push-pull fatigue tests
reported elsewhere [390].

The error indices, calculated for selected multiaxial criteria by averaging
the experimental data, are shown in Table 3.9. They reveal that the McDi-
armid criterion was the most successful in fatigue life prediction for virgin
specimens whereas the Matake criterion was the best for nitrided ones, al-
though both criteria provide slightly non-conservative results. Nevertheless,
the related errors are less than 10% which is safely below the safety fac-
tors commonly utilized in fatigue strength analyses applied in engineering
practice.
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3.3.4.2 Topology of Bending-torsion Fracture Surfaces

Cyclic torsion loading leads to a very complicated crack path exhibiting
local crack arrests, a branch/twist crack morphology or the factory roof
[347,361,375,391,392]. An interaction between both mating fracture surfaces
(some combination of sliding, climbing, sticking, slipping and deforming) of-
ten makes even a qualitative understanding of fatigue crack propagation dif-
ficult [347,375]. On the other hand, a high amount of opening loading mode I
or sometimes high shear amplitudes generate a fracture surface that appears
macroscopically flat. Despite all mentioned studies, the crucial problem in bi-
axial fatigue topography is still a significant lack of experimental data. This
shortcoming could be partially reduced by a study devoted to the fracture
surface topology formed by a combined bending-torsion loading in both the
low-cycle fatigue (LCF) and the high-cycle fatigue (HCF) regimes [393].

Experimental Procedure and Results

Experimental settings were based on Matake’s critical plane criterion [381,
383]. According to fatigue life Nf , the virgin cylindrical specimens made of
the EN 37CrAlMo6 steel were divided into LCF and HCF, respectively. The
differences in Nf within both LCF (Nf ≈ 104) and HCF (Nf ≈ 106) sets
were well within an order of magnitude, which is a scatter typical for fatigue
life data.

Topological 3D data of 0.5× 0.5mm regions, selected on the fracture sur-
faces at a distance of 0.8mm from the specimen surface (the crack initiation
site), were obtained by means of stereophotogrammetry. Using the Delaunay
triangulation, two sets of profiles were traced for all analyzed regions: the
first in the crack propagation direction (referred to in the following as the
y-direction) and the second in the perpendicular direction (referred to as the
x-direction) thus representing different positions of the progressing fatigue
crack front.

The following parameters were found to be sufficiently sensitive to differ-
ent topological aspects of the extracted fracture surface profiles, correspond-
ing to a different loading mixture: the standard deviation Rq of vertical z-
coordinates, the number of peaks of the profile per unit length m0 and the
Hurst exponent H . It was expected that these parameters might be used for a
wide range of fracture surfaces of engineering components made of materials
with different microstructures. It should be emphasized that the arithmetic
roughness Ra exhibited similar trends as Rq, and the fractal dimension DD

did not reveal any significant susceptibility to differentiate the loading cases.
Average values of analyzed parameters, together with their standard de-

viations (error bars), are plotted in Figure 3.68 for profiles oriented in the
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Figure 3.68 Averaged values of topological parameters as functions of the loading
ratio rt. Reprinted with permission from Elsevier B.V. (see page 265)

rt = τa/(τa + σa).

Discussion of Results

Since the parameters Rq and Ra describe both macroscopic and microscopic
levels of the surface roughness, it is not surprising that lower values Rq <
10μm correspond to low torsion components of the loading (rt < 0.5) in

y-direction as functions of the loading ratio rt. This ratio is defined as
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both LCF and HCF. Fracture surfaces corresponding to a higher torsion
component (rt > 0.5) exhibited substantially higher Rq values.

Calculated values of the parameter m0 decrease with an increase in the
torsion component which is likely associated with frictional contact of both
fracture surfaces during the fatigue process. Indeed, the contact friction must
be more intensive for loading regimes of high rt. Generally higher values of
m0 for LCF can be understood in terms of a higher roughness level. On
the other hand, the values of H increase with increasing loading ratio rt.
Moreover, they are generally higher in the case of HCF. This behaviour, the
opposite of that of m0, can also be attributed to the frictional contact of
fracture surfaces.

The most important result lies in the existence of a critical value of the
loading ratio rt ≈ 0.5 that corresponds to a significant change of all exam-
ined topological characteristics. This means that the topography of analyzed
fracture surfaces substantially changes when the torsion component becomes
higher than the bending one. This result might be very important for the
assessment of the loading type in failure analysis, provided that it remains
true for other metallic materials.

Let us finally note that the experimental results obtained for the x-
direction were similar to those for the y-direction. The only additional trend,
observed only in the case of LCF, was a slight decrease (increase) in m0 (H)
with measured distance. In terms of the Hurst exponent, for example, this
means that the fractality of the crack front decreases during its propagation.
Such behaviour might be elucidated by a gradual merging of many initial
surface microcracks that nucleate in the case of LCF.

3.3.5 Formation of Fish-eye Cracks under Combined
Bending-torsion Loading

The high strength of the nitrided layer and the compressive residual stresses
introduced within the diffusion zone are the main causes of an improvement
of fatigue strength. Since such a layer hinders dislocation motion, the predom-
inant failure mechanism in the high-cycle fatigue (HCF) region is subsurface
fatigue crack growth (e.g., [394,395]). As a rule, the cracks initiate at internal
inclusions within the core region and propagate in a near vacuum by forming
so-called fish-eye cracks. The interior of these cracks looks bright to the naked
eye or in the optical microscope, whereas the outside region seems to be grey.
The difference in colour is, most probably, caused by different fracture mi-
cromechanisms. The bright morphology of the fish-eye crack is produced by a
cyclic contact of the mating fracture surfaces under conditions of suppressed
atmospheric effects. When the crack front approaches the low-toughness ni-
trided layer, local through-the-layer brittle cracking creates a connection to
the surface and, subsequently, a penetration of the atmosphere to the inside of
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the fish-eye [394]. This changes the growth mechanism to an environmentally
assisted one which leads to a different surface roughness and to the optical
contrast.

Fish-eye cracks are also a typical feature of fractures in the ultra-high-cycle
fatigue (UHCF) region [396–398]. The transition of the crack initiation site
from the surface into the interior causes the stepped, double or multi-stage
fatigue curve appearance. The initiation sites in the UHCF region are often
non-metallic inclusions, although the crack nucleation near finely dispersed
segregations or phase interfaces was sometimes observed. In the former case,
the dark-looking fracture morphology in the vicinity of the inclusion, termed
as the “optically dark area” (ODA), is usually present. The formation of the
ODA is, most probably, attributed to slow intermittent fatigue crack growth
assisted by the internal hydrogen trapped by the inclusion [399].

When the maximum tensile loading exceeds the yield strength of the mate-
rial, the low-toughness nitrided layer breaks during the first few loading cycles
due to a high strain mismatch at the layer/matrix interface [390]. Such ini-
tiated surface cracks can easily penetrate to the specimen bulk owing to the
related hard/soft transition direction [198]. Thus, this damage mechanism is
typical for the quasi-static region.

The geometric characteristics of the fish-eye cracks were, to some extent,
studied by several researchers (e.g., [388, 389, 396, 400]). In general, the fish-
eye cracks were found to be approximately of either a circular or an elliptical
shape depending on the type of loading (push-pull, rotating bending, plane
bending) and the presence of high compressive residual stresses introduced
by some of the surface hardening procedures. A restricted propagation of the
crack towards the nitrided layer is considered to be the reason why there is
an increase of the fish-eye crack radial size with increasing distance of the
inclusion from the specimen surface, which in turn is reported to be a function
of the level of applied stress inside the nitrided layer and the compressive
residual stress profile. In the UHCF region, the ODA is of particular interest
due to the still insufficiently understood interplay of cyclic strain and internal
hydrogen. The size of the ODA was found to increase with decreasing stress
level or increasing fatigue life.

The residual stress effect on the crack initiation site under high-cycle push-
pull loading was studied in [390]. The size of the inclusion required for fa-
tigue crack initiation was computed as a function of inclusion depth. The
local shift of the loading asymmetry caused by the presence of a compressive
residual stress field was accounted for by using an equation describing the
dependence of the fatigue threshold ΔKth on the cyclic ratio R [401]. For
the investigated nitrided steel, this dependence was determined by using pre-
cracked flat specimens with nitrided layers of the thickness of approximately
a quarter of the specimen width and, therefore, the measured fatigue thresh-
olds represented averaged layer/core values. When identifying the inclusion
with a critical crack at the fatigue limit, the critical inclusion size dc could
be estimated as dc1 = 3.79mm near the specimen surface, dc2 = 0.87mm
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at depth h = 0.3mm inside the diffusion zone and dc3 = 0.068mm at depth
h = 0.4mm [390] at the outer layer/matrix boundary. In spite of the fact
that the averaged values of ΔKth might have been inaccurate, the calculated
critical size of the inclusion near the surface exceeded by two orders of mag-
nitude the inclusion size of tens of microns found in the investigated steel as
well as in most commercial steels. This is a clear reason why there was no
crack initiation observed at (or near) the surface.

All the above-mentioned studies were, however, conducted on fish-eye
cracks generated by the uniaxial loading regime or torsion and no informa-
tion is currently available for the case of multiaxial loading. Therefore, the
motivation for further research was to study the fish-eye cracks developing
under symmetrical bending, symmetrical torsion and their synchronous in-
phase combinations. The results of such an investigation [402] are presented
in the following subsection.

3.3.5.1 Experimental

The specimens were made of high-strength low-alloy Cr-Al-Mo steel speci-
fied in the previous subsection. In the HCF regime, both the compressive
residual stresses and the hardness of the nitrided layer induce the internal
fatigue fish-eye crack initiation at the inclusion-matrix interface and influence
a subsequent crack propagation. The dependence of the residual stress level
inside the layer on the distance from the free surface is depicted in Figure
3.69. This dependence was obtained by means of precise X-ray measurement
performed on samples made of an equivalent high-strength steel that was
nitrided using the technology described above [403]. One can see that the
compressive residual stresses reach a maximum of 750MPa close to the sur-
face and, up to about 0.2mm depth, they start to decay steeply. Beyond the
depth of 0.2mm corresponding to the microstructurally distinguishable dif-
fusion layer, a rather slow decrease of residual stresses continues to reach a
zero value at 0.7mm. The maximum value of the residual compressive stress
of about 800MPa was also confirmed by less precise measurement on the
investigated nitrided steel [404].

Plasma nitrided specimens were tested at room temperature using a Polish
resonance testing machine MZGS-200. The sinusoidal symmetrical bending
and torsion as well as the synchronous in-phase bending-torsion were applied
at a frequency f = 29Hz. Experimental settings were based on the Matake
critical plane criterion

τa +

(
2τc
f−1

− 1

)
σn = t−1. (3.36)

This criterion was used to estimate both bending and torsion loading compo-
nents in order to constrain the fatigue life into the HCF region. The details
of experimental settings and fatigue life data are published elsewhere [393].
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Figure 3.69 The experimental profile and the theoretical estimation of residual
stresses in the nitrided layer. The scheme in the inset shows a general shape of the
residual stress curve along the specimen radius. Reprinted with permission from
Elsevier B.V. (see page 265)

3.3.5.2 Fish-eye Crack Geometry

Fish-eye cracks were studied using a chromatic optical profilometer FRT Mi-
croProf 100, Fries Research & Technology GmbH. In the first step, the dis-
tance h of the centre of the inclusion from the free specimen surface in the
radial direction was measured. After that, the maximal projection plane was
found by tilting the specimen mounted on the moving x-y table and fish-
eye crack sizes in radial (Rtl, Rtr) and tangential (Rru, Rrd) directions were
recorded; see Figure 3.70 for the nomenclature. While the inclination of the
crack plane was almost negligible in the radial direction, the inclination an-
gles in the tangential direction varied in the range of (0◦, 45◦), where 0◦

nearly corresponds to pure bending (rt = 0) and 45◦ approximately stands
for pure torsion (rt = 1). This actually means that in all cases of non-zero
torsion component the crack front propagates under the local mode I load-
ing. In several cases, the diameter of the inclusion was also estimated in the
scanning electron microscope (SEM) by analyzing either the inclusion itself
or its imprint found on the fracture surface. The average diameter was found
to be 37± 14 μm.

The observed fish-eye cracks were, in general, of an elliptical shape; see
Figure 3.71. In the case of fish-eyes initiated close to the nitrided layer, the
upper radial dimension Rru (crack propagation towards the free specimen
surface) was found to be smaller than the lower radial dimension Rrd (crack
growth into the specimen core). This behaviour, which is understandable in
terms of the retardation effect of the surface nitrided layer, is consistent with
observations reported in the work of DelaCruz et al. [388] where, however,
only fish-eye cracks generated under reversed bending were studied.
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Figure 3.70 A scheme showing the nomenclature for the fish-eye crack characteri-
zation

(a) (b) (c)

Figure 3.71 An example of the SEM microphotographs of fish-eye cracks for dif-
ferent loading regimes: (a) rt = 0, (b) rt = 0.5, and (c) rt = 1. Reprinted with
permission from Elsevier B.V. (see page 265)

The fish-eye crack shape was characterized by the radial asymmetry, Sr,
the average size of the fish-eye crack (free of the influence of the nitrided
layer), Ravr, and the elliptical coefficient Q. These quantities were defined as

Sr =
Rru

Rrd
,

Ravr =
1

4
(2Rrd +Rtl +Rtr) ,

Q =
Rtl +Rtr

2Rrd
.

All of the fish-eye cracks studied were nucleated at internal non-metallic
inclusions. The distance h of the inclusion centre from the specimen free
surface was in the range of 420−1040 μm. The crack growth towards the free
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surface was always, at least partially, influenced by the compressive residual
stress field (h−Rru < 0.6mm). Moreover, some fish-eye cracks (5 out of 26)
grew into the compound layer (h−Rru < 0.2mm).

The effect of the free surface and the bending stress gradient on the fish-
eye crack growth in the radial direction without the influence of the nitrided
layer was analyzed using the analytical expressions for KIA and KIB at two
opposite radial crack fronts A and B of the elliptical crack in a shaft under
bending. The results revealed that, almost independently of the depth h in
the range of (0.6, 1.2)mm, the radial asymmetry, Sr, was found to be in the
range of (1.20, 1.22) [402]. Note that the influence of the nitrided zone on fish-
eye cracks initiating outside the range of compressive stresses (h > 0.7mm)
must be nearly negligible. Because the stress gradient is also similar in the
case of torsion loading, most of the measured values of Sr for the fish-eye
cracks initiated at the depth h > 0.7mm should lie close to Sr = 1.2 for all
loading regimes.

3.3.5.3 Results

The dependence of the radial asymmetry, Sr, on the distance of the inclusion
from the specimen surface, h, is shown in Figure 3.72. As mentioned above,
the fatigue crack growth in the radial direction is influenced by bending-
torsion loading component gradients, the free surface and the residual com-
pressive stresses, which are prominent especially for the fish-eye cracks initi-
ated near the nitrided layer. Obviously, when the inclusion depth is not very
large (h < 0.7mm), the residual compressive stresses decelerate the crack
front growing towards the free surface as evidenced by the radial asymmetry
values Sr < 1. On the other hand, as was predicted by the growth simula-
tion, the radial asymmetry reaches Sr = 1.2 in the range h ∈ (0.7, 0.8)mm.
With an increasing inclusion depth h > 0.8mm, however, the general ten-
dency seems to be the growth in a rather symmetrical fashion Sr ≈ 1. This
might be a consequence of small tensile residual stresses that must balance
the compressive ones beyond the depth h = 0.7mm (see also hereafter).

An increase in the average fish-eye size, Ravr, with increasing inclusion
depth and fatigue life, Nf , is depicted in Figure 3.73. The first tendency
is in agreement with the result reported in [388] and follows from a simple
geometrical consideration. Indeed, the fish-eye dimension Rru is, more or less,
determined by the distance from the initiation site to the nitrided layer. The
second dependence can be understood in terms of the increasing equivalent
stress amplitude with the decreasing number of cycles to failure Nf .

The elliptical coefficient, Q, exhibits no correlation with the number of cy-
cles to failure (Figure 3.74(a)) in accordance with the result reported in [400].
On the other hand, the loading regime has a certain effect, as is demonstrated
in Figure 3.74(b). Despite a large scatter in the data, the elliptical coefficient
increases with increasing loading ratio (the regression line). In Figure 3.75, a
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Figure 3.72 The dependence of the radial asymmetry on the inclusion depth.
Reprinted with permission from Elsevier B.V. (see page 265)

Figure 3.73 The dependence of average fish-eye crack size on: (a) the inclusion
depth, and (b) the fatigue life
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corrected coefficient Q′ = (Rtl +Rtr)/(2Rrd), where the lower radial dimen-
sion Rrd (free of the influence of the nitrided layer) replaced the upper radial
dimension Rru. This correction eliminates the effect of the nitrided layer on
the fish-eye crack growth, diminishes the data scatter and accentuates the
trend observed in Figure 3.74b. The dependence Q vs rt means that with a
higher portion of the torsion loading component the crack growth rate in the
tangential direction becomes more rapid than that in the radial direction.
This effect is, most probably, caused by a different influence of the stress
gradients on the crack growth in tangential and radial directions.

Figure 3.74 The dependence of the elliptical coefficient on: (a) the fatigue life, and
(b) the loading ratio

3.3.5.4 Estimation of Residual Stresses

The experimental data obtained under pure bending could be used for an
approximate assessment of the residual stresses in the innermost part of the
nitrided layer and the adjacent core region. In the pure bending case, the
direction of internal stresses is equal to that of the principal stress. The
orientation of the residual stress vector is opposite to that of the main stress
during the tensile loading half-cycle and identical to it during the compressive
half-cycle. This means that the residual stress σres shifts the S-N (Wöhler)
curve for a symmetric loading (R = −1) of the virgin material (without
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Figure 3.75 The dependence of the corrected elliptical coefficient Q′ on the loading
ratio

the nitrided layer) to a curve for a lower cyclic ratio R < −1. This fact is
employed in the proposed method described as follows:
1. measurement of the initiation depth hk of k-th fish-eye;
2. calculation of the amplitude of the bending stress σak that corresponds to

the depth hk;
3. identification of the number of cycles to failure Nfk corresponding to the
k-th bending experiment;

4. determination of the bending amplitude σavk (the surface stress ampli-
tude) corresponding to Nfk on the Wöhler curve for virgin specimens;

5. utilization of both the ratio σak/σavk and the relationship generally de-
scribing the shift of S-N curves to a determination of the mean stress
σm = σres corresponding to the depth hk;

6. application of this procedure to fish-eyes of various depths h in order to
obtain the dependence σres(h).

This procedure was applied to obtain an approximate dependence σres(h)
for comparison with the measured values in Figure 3.69. In Figure 3.76, the
S-N curve for virgin specimens [390] is plotted by a solid line along with
that for nitrided specimens (the dashed line). The solid stars refer to the
calculated stresses σak at the depths hk. For depths hk < 0.7mm, these
points lie in between the S-N curves for virgin and nitrided specimens while,
for hk > 0.7mm, they lie slightly below the virgin S-N curve. The well known
Soderberg (σa/σav = (1 − σm/σy)) and Goodman (σa/σav = (1 − σm/σu))
relations for the S-N curve shift were adopted for calculation of residual
stresses. All the experimental and computed data are displayed in Table 3.10.
Since the Soderberg relation generally gives conservative results unlike the
Goodman approximation that provides nonconservative estimates [192], the
mean values of both approaches are plotted in Figure 3.69 (open symbols)
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as the theoretical assessment of residual stresses. One can see a rather good
agreement between the calculated and measured data within the innermost
part of the nitrided layer. In the adjacent core region, the computed data
predicted small tensile residual stresses. This is to be expected owing to
a necessary balance of residual stresses through the specimen radius d/2.
Indeed, the integral of the residual stresses along the radius must be zero, as
is schematically shown in the inset of Figure 3.69.

Figure 3.76 Wöhler curves for virgin and nitrided specimens and the data points
corresponding to the analyzed fish-eye cracks. Reprinted with permission from Else-
vier B.V. (see page 265)

Table 3.10 Results of the residual stress analysis

Nf [cycles] hk [μm] σak [MPa] σavk [MPa] σm [MPa]
Soderberg

σm [MPa]
Goodman

4.20×106 800 527.6 548.0 31.2 35.3
2.71×106 750 535.3 569.2 50.0 56.5
1.39×106 580 682.2 602.9 −110.5 −125.0
3.24×105 505 749.0 684.0 −79.9 −90.3
3.08×105 680 756.0 687.0 −84.3 −95.4
3.08×105 458 803.0 687.0 −141.8 −160.4

Although the estimation of the residual stresses seems to be plausible, one
should take some limitations of the proposed method into account. First,
the fatigue resistance of the layer increases with decreasing depth h due to
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the hardening effect of the nitriding process. This means that the virgin S-N
curve certainly does not apply for hk < 0.2mm, i.e., for the depth region cor-
responding to the hard diffusion zone. For the values hk > 0.3mm, however,
the microstructurally induced hardening effect becomes rather negligible and
the hardening component induced by residual stresses starts to dominate.
Consequently, the applicability of the method is restricted to fish-eyes initi-
ating within that region. Since the initiation depth decreases with increasing
σa, the depth condition hk > 0.3mm also implies a limitation of the applied
loading. Another load limit is given by the yield stress σy due to the related
breaking of the nitrided zone. On the other hand, a different geometry of
the crack growth stage in the virgin and nitrided specimens does not rep-
resent any serious problem. Indeed, the number of cycles to failure in both
types of specimens are determined by the crack initiation stages where the
inclusion-assisted nucleation mechanisms are identical. However, this is not
necessarily true for low-strength materials, where the crack initiation mech-
anism in virgin specimens could be different (persistent slip bands, grain
boundaries, etc.). This is a further limitation of the proposed method. Let
us finally mention that the data scatter of S-N curves for both the virgin
and nitrided specimens does not cause a significant complication, as one can
observe in Figure 3.76.

The main results of the fish-eye analysis can be summarized in the follow-
ing points:
1. The nitrided layer reduces the crack growth rate. The retardation effect

of the residual compressive stresses is prominent especially for the fish-eye
cracks initiated on inclusions at depths h < 0.7mm, as evidenced by the
radial asymmetry Sr < 1.

2. The average size of the fish-eye crack increases with increasing distance
from the free surface and the number of cycles to failure.

3. The elliptical coefficient Q increases with an increasing portion of the
torsion loading component. The transient value of the loading ratio can
be estimated to be rt ≈ 0.4.

4. An assessment of residual stresses can be made by a combination of frac-
tographical and strength analyses related to the fish-eye centre. The ap-
plicability of this theoretical method is restricted to the innermost part of
the nitrided layer and to the adjacent core region.

3.4 Failure Analysis

Linear–elastic fracture mechanics can be successfully applied in numerical
procedures predicting the residual fatigue life of structural components con-
taining cracks longer than about 0.5mm. According to defect-tolerant design
approaches to fatigue, the useful fatigue life is the number of cycles to prop-
agate the largest undetected crack to an unstable fracture. The discovery of
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fatigue striations in the early 1960s has promoted a development of quanti-
tative retrogressive methods that can be very useful for the reconstruction of
conditions under which the failure process occurred.

In failure analysis, the re-estimation of the stress amplitude, the cyclic
ratio and the number of cycles to failure is of main practical interest [246].
First attempts to assess those parameters from the fracture surface were
published in the early 1960s [405, 406]. These simple approaches allowed the
assessment of applied loading amplitude (assumed to be a constant) but the
value of cyclic ratio had to be anticipated. Similar concepts were described in
the early 1970s [407,408]. Several years later two different methods enabling
an assessment of both Δσ and R were reported by Uchimoto et al. [409] and
Pokluda and Staněk [410, 411]. The method proposed by the latter authors
is applicable even to cases of stationary random loading. Nowadays, failure
analysis can be supported by laboratory devices that are able to simulate the
fatigue process on real components under realistic loading spectra. Methods
based on overload markings or image analysis can better identify the function
s(da/dN) that defines the difference between striation spacings and real crack
growth rate during the whole period of stable crack propagation [412, 413].
However, these time consuming and expensive methods do not necessarily
provide much more accurate results. The reason lies in a lack of knowledge
about a precise fracture mechanical description of crack growth rate with
respect to the complexity of both applied loading spectra and fatigue crack
paths in structural components [192, 347].

As a useful example, the method [411] which was developed by one of the
authors during his employment in the military research institute is presented
here. This method was widely used in case studies in order to assess fatigue
loading parameters as well as the number of cycles spent by a long fatigue
crack during its propagation from a small initial size to the final fracture (e.g.,
[414, 415]. The original method was recently improved by utilizing a more
sophisticated relation describing the whole range of the long crack growth
rate [416]. The applicability of the method is demonstrated in a case study
concerning the fatigue failure of a compressor blade.

3.4.1 Theoretical Background

As was shown in Section 3.1, both the subcritical (stage II) crack propaga-
tion and the unstable fracture are usually reflected on the fracture surface
in a characteristic way. In the reconstruction procedure, the following as-
sumptions are utilized: (1) an approximate 1:1 relation between the mean
projected striation spacing s̄ and the crack growth rate in the Paris–Erdogan
region of stage II crack growth; (2) the morphological boundary between sta-
ble/unstable crack growth, associated with the the crack length ac, can be
simply related to the cyclic fracture toughness Kc. Moreover, the basic crack-
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growth rate equation proposed by Forman et al. [417] is used in a modified
form allowing a better accommodation to the near-threshold region:

da

dN
= A

ΔKn −ΔKn
th (1−R)

nm

Kc (1−R)−ΔK
, (3.37)

where ΔK is the range of applied stress intensity factor, ΔKth is the thresh-
old factor for R = −1, R is the cyclic ratio and A, m, n are experimen-
tal constants. Equation 3.37 reduces to the Klesnil–Lukas relation [418] for
ΔKth ≈ ΔK � Kc. As a rule, n ∈ (2, 5) and m ∈ (0.3, 0.5) for metal-
lic materials. The left-hand side of Equation 3.37 may be replaced by the
mean striation spacing s̄ (da/dN ≈ s̄) that should be measured closely in
the range of a/ac ∈ (0.3, 0.6) on the fracture surface (usually corresponding
to the Paris–Erdogan region). The value s̄ should be determined according
to the relation at Equation 3.4 at k points corresponding to the same crack
length a on the fracture surface. It should be emphasized, however, that the
limit k = 1 is also permissible which substantially extends the applicability
of the method. For many reasons, indeed, one can find only a single facet
covered by striations. On the other hand, the accuracy of such an assessment
might be lower.

The moment of unstable fracture corresponds to the cyclic fracture tough-
ness Kc and to the critical crack length a = ac. Therefore, one can write

Kc =
ΔK(ac)

1−R
. (3.38)

Since ΔK = Δσ
√
πaf(a, a/W ) (W is the width of the component and

f(a, a/W ) is the shape function), a numerical solution of Equations 3.37 and
3.38 gives the estimates of loading parameters Δσ and R that caused failure of
the structural component. It should be noted that comprehensive handbooks
of stress intensity factors are available today (e.g., [419]).

Substituting the obtained values Δσ and R into the relation

Nc =

Nc∫

0

dN =
1

A

ac∫

a0

Kc (1−R)−ΔK

ΔKn −ΔKn
th (1−R)

m da, (3.39)

one can calculate the number of cycles Nc, associated with the fatigue crack
propagation in the range of 〈a0, ac〉, where a0 is the initial crack length (usu-
ally a minimum detectable length of inspection methods).

For the method described above, nearly constant values of Δσ and R
during the fatigue process are assumed. In engineering practice, however, this
kind of loading occurs rather rarely (only about 10%). Roughly 40% of applied
loading cases are stationary or quasi-stationary spectra (highly variable ΔK
and nearly constant R). In these cases, the striation spacings s̄1 and s̄2 for at
least two different crack lengths a1 and a2 are to be measured on the fracture
surface within the Paris–Erdogan region [411]. The reason lies in an uncertain
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stress range at the moment of the final fracture corresponding to the crack
length ac. The values Δσrms and R can then be obtained by a simultaneous
numerical solution of two Equations 3.37 for a1 (s̄1) and a2 (s̄2), where Δσrms
means the root mean square value of the applied spectrum loading. About
50% of all exploitation loading spectra exhibit a highly variable R, i.e., a non-
stationary behaviour. In these cases the method presented becomes useless,
similar to most other approaches.
Thus, the following steps should be performed to accomplish the failure anal-
ysis:
1. experimental determination of Equation 3.37 in the laboratory by using

samples made of the material of the fractured component;
2. selection of appropriate shape function(s) f(a, a/W ) for the fractured com-

ponent and crack lengths a and ac;
3. measurement of s̄ for the selected length(s) a on the fracture surface;
4. measurement of the critical length ac on the fracture surface;
5. numerical solution of Equations 3.37 and 3.38 to estimate Δσ and R;
6. anticipation of the shape function f(a, a/W ) in the whole range of (a0, ac);
7. numerical solution of Equation 3.39 to assess Nc.

3.4.2 Case Study

Apart from many other applications, this method was used to reconstitute
conditions of a surprisingly quick fatigue failure of a compressor blade in
an aircraft engine after a general repair. The engine was tested in a stand
placed on the ground inside a special semi-natural cave. Blocks of a constant
loading amplitude were applied by changing engine frequencies to simulate
the service regime. The blade was made of the high-strength alloy Ti-4Al-
3Mo-1.5Zr (σy = 1060MPa). A careful investigation in the scanning electron
microscope revealed that the fatigue crack was initiated at the leading edge
of the blade. Some silicon micro-particles were found to be stuck in the blade
surface along with many micro-craters near the crack initiation site. Thus,
the crack initiation was a result of impacting silicon particles coming, most
probably, from a dust whirled up from the ground.

The shape function for the cracked compressor blade can be written as

f(a) = 0.56419(1− 1.1× 10−4a3)×
× (1.67687− 0.43573a+ 0.0819338a2 − 0.0065158a3 + 0.00018858a4).

This form was obtained by compliance measurements performed on an iden-
tically designed blade containing crack growing from the leading edge [420].
The influence of a variable blade width W is already respected by coefficients
in the shape function (a in [mm]).
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Figure 3.77 The scheme of growth curves marking different loading regimes on the
fracture surface of the compressor blade

Table 3.11 Measured and calculated values

a [mm] s̄ [nm] R Δσ [MPa] Nc

8 45 0.345 518 2.01×106

10 120 0.265 582 1.28×106

The macromorphology of the fracture surface exhibited a sequence of char-
acteristic regions and growth curves corresponding to different loading blocks;
see Figure 3.77. Bioden-carbon replicas of fracture surfaces had to be pre-
pared for observations using the transmission electron microscope in order
to find some facets covered by fatigue striations. The critical crack length
ac = 17mm corresponded to the final fracture. Three-point bending spec-
imens made of the blade material were used for measuring parameters in
Equation 3.37: ΔKth = 5MPam1/2, Kc = 80MPam1/2, A = 4.582× 10−36

[Pa,m], n = 4.9 and m = 0.3. Measured mean striation spacing s̄ related
to two different crack lengths is shown in Table 3.11 along with calculated
values of R, Δσ and Nc.

Computed values of Δσ lie below the fatigue limit Δσc ≈ 600MPa (for
R ≈ 0.3) of the blade material. The initial crack length a0 = 0.5mm was cho-
sen to be nearly equal to the size of silicon particles. The computed residual
fatigue life Nc ≈ 106 cycles also shows that the stable crack propagation ran
at a stress below the fatigue limit of the material. The crack initiation stage
was very low due to the impact of silicon particles. When neglecting the ini-
tiation stage and assuming the blade vibration frequency of several hundreds
of Hz, the duration of the whole fracture process was no longer than several
days.

It was realized later on that the test was performed during a week when,
due to a service cut-off, the ground floor in the cave remained uncleaned.



Chapter 4

Final Reflections

The book has been finished and the authors would like to thank in particular
those tolerant and patient readers who have read it to the very end. One can
be quite sure that such readers would not mind further brief reflection. In
spite of the fact that these final remarks will bring no additional scientific
information, the authors believe that selected pieces of knowledge that are
assembled in the main text might be worth mentioning again. Because this
book preferentially refers to the scientific work of the authors, only the results
that arose from their own research will be highlighted. On the other hand,
many important things still remain open for further investigations. Some of
these tasks related to our research will also be recalled.

4.1 Useful Results

1. The highest achievable tensile strength of a solid of a particular chemi-
cal composition, the ideal tensile strength of the perfect crystal, strongly
depends on the stress triaxiality. For the majority of metallic crystals,
the ideal strength related to the volumetric instability increases almost
linearly with increasing transverse biaxial stresses. On the other hand, ce-
ramic crystals with a diamond structure exhibit a sharp maximum either
close to the zero biaxial stress (Si, Ge) or in the compressive biaxial region
(C).

2. Under uniaxial tension, however, perfect metallic crystals usually fail when
reaching the first shear instability. Therefore, their uniaxial ideal strength
σiut does not exceed 10GPa which is far below their volumetric ideal
uniaxial strength and only several times higher than that of the strongest
related engineering metallic materials. This is not necessarily true for the
case of isotropic (hydrostatic) tension in which the ideal strength σiht
usually reaches values as high as several tens of GPa.
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3. The ranking of tensile strengths σu of the strongest grades of engineering
materials with chemically different matrices nearly follows that of σiht of
related perfect crystals. The same is true for the ductile/brittle response
of engineering materials and that of their perfect crystals. Therefore, these
mechanical properties are, to a considerable extent, predetermined by
those of a perfect lattice. On the other hand, such a correspondence is not
apparent for the fracture strain and its dependence on the stress triaxial-
ity. This property is determined instead by crystal defects and secondary
phases.

4. Crystals of metals and diamond exhibit a nearly linear decrease in ideal
shear strength with increasing superimposed isotropic (hydrostatic) stress
σh. On the other hand, the dependence τis(σh) of covalent crystals Si, Ge
and SiC reveals an opposite trend. These trends also refer to the depen-
dence of ideal shear strength on the superimposed normal stress. This is in
agreement with the normal stress influence found for the dislocation nu-
cleation stress (non-Schmid behaviour). However, the ideal shear strength
of Cu and Ni crystals becomes lowered by both tensile and compressive
normal stresses.

5. By considering the coupling of shear and normal stresses, the values of
σiut can be calculated from those of τis. This method, proven on a variety
of fcc metals, avoids cumbersome examinations of the stability conditions
necessary for a standard computation of σiut.

6. Nanoindentation appears to be the only efficient method for an experimen-
tal determination of ideal shear strength values. This method is based on
a quantitative interpretation of the pop-in effect on the load–penetration
diagram.

7. The geometrically-induced shielding of the crack tip due to crack kinking
and branching can substantially increase fracture toughness values of brit-
tle and quasi-brittle engineering materials. This is the reason why, even
in the case of severely segregated grain boundaries of very low fracture
energy, the fracture toughness of such defect containing steels can reach
values higher than 50MPam1/2. This effect also elucidates the anomalous
fracture behaviour of ultra-high-strength low-alloy steels when considering
an influence of the size ratio d/rp (the characteristic microstructural pa-
rameter/the plastic zone size). The size ratio is a very important parameter
that couples micro (d) and macro (rp) scales of fracture and fatigue pro-
cesses. Decreasing size ratio means a decreasing influence of microstructure
and thus a decreasing level of geometrical shielding.

8. Enhanced dislocation activity around growing voids gives a steep increase
of the strain rate inside the neck during the tensile test of ductile metal-
lic materials. The related model reasonably predicts the value of frac-
ture strain when using the Brown–Emburry or percolation based void-
coalescence models.

9. The fracture toughness of steels exhibiting a ductile fracture morphology
can be reasonably predicted by means of a simple model based on the frac-
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ture strain diagram. This diagram can be easily determined from tensile
and compressive tests.

10. The ratcheting process in metallic materials starts when reaching a crit-
ical plastic strain range during cyclic softening. This threshold value de-
creases with increasing cyclic ratio. The initial ratcheting rate can be well
described by a model based on discrete dislocation theory. This model
explains the role of cyclic softening (hardening) in the acceleration (decel-
eration) of the ratcheting process.

11. Besides geometrically-induced shielding, an increasing size ratio also raises
the effect of the roughness-induced crack closure in fatigue. A generalized
model of crack tip shielding and closure under mode I loading, based on
the concepts of discrete dislocations and size ratio, allows one to separate
the intrinsic component from the measured fatigue threshold value. This
model correctly predicts a decrease in roughness-induced crack closure
with increasing range of applied stress intensity factor as well as the low
fatigue threshold in nanostructured materials.

12. Micromechanisms of mode II and mode III crack propagation in metallic
materials are generally different. Unlike for the mode II case, the commonly
accepted idea of fatigue crack front advance due to an oxygen-assisted
creation of new fracture surfaces is rather irrelevant for the mode III case.
Therefore, mode II based micromechanisms of the remote mode III crack
growth were proposed and experimentally verified for austenitic steel. In
notched specimens, the mode I growth by formation of factory roofs (F-Rs)
is a typical micromechanism under the remote mode III crack tip loading in
the high-cycle fatigue region. These rather complicated micromechanisms
are, most probably, the main reason for the low mode III crack growth
rates observed in some steels.

13. In the high-cycle fatigue region, the size ratio is rather high and shear
mode cracks incline (or branch) to the mode I loading case very easily.
This is mainly caused by an increase in both the roughness-induced friction
and the microstructurally affected tortuosity of the crack path. Moreover,
there is a synergy of modes II and III by a formation of the mode I branch
in terms of the crack driving force. The generalized conditions of mode
I branching from the shear-mode crack propagation can be defined as
follows: (1) the first branch forms at that site of the shear crack front
where the value of ΔKI on a facet of a potential mode I branch becomes
maximal; (2) the branching appears at the moment when this maximal
value exceeds that of the threshold ΔKIth for the applied cyclic ratio.

14. A textbook example of the branching behaviour is a formation of the fac-
tory roof from mode II+III semielliptical cracks on the surface. The rele-
vancy of a quantitative model of F-R formation based on the synergy effect
was proven by stereogrammetrical measurements of the three-dimensional
topography of factory roofs. There are two main reasons why the formation
of factory roofs is not observed in the low-cycle fatigue region. First, the
size of factory-roof patterns decreases with increasing density of crack nu-
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clei on the surface which becomes very high in the low-cycle fatigue region.
Second, in this region a network of microcracks at microstructural hetero-
geneities is quickly produced inside a large plastic zone that is coplanar
with the notch plane and embraces many characteristic microstructural
elements (low size ratio). Coalescence of these microcracks and the main
crack front keeps the crack path in their common (shear) plane.

15. Plasma nitriding can substantially raise not only the fatigue limit of mild
steels but also that of high-strength steels under various kinds of loading
such as push-pull, bending, torsion and combined bending-torsion. Both
the improved hardness and the compressive residual stresses in the nitrided
layer cause fish-eye cracks to initiate at inclusions inside the specimen and
propagate in a near vacuum towards the surface. Both the level and the
sign of residual stresses that are present in locations of fish-eye centres can
be assessed by utilizing a method based on a determination of bending (or
push-pull) stress amplitude corresponding to these centres on the fracture
surface.

16. A rather simple method can be employed to reconstitute the applied stress,
the cyclic ratio and the number of cycles spent for stable crack propagation
during the fatigue process. This method couples quantitative fractography
on both microscopic and macroscopic levels and might be very useful for
the analysis of failure cases of engineering components and structures.

4.2 Open Tasks

17. Calculations of ideal strength should be corrected by thorough analyses
of phonon spectra under various loadings and temperatures. This should
finally explain the gaps between the strength of the strongest solids and
their upper theoretical limits.

18. Verification of the simple method for recalculating the ideal tensile strength
from the ideal shear-strength data of bcc metals and ceramics.

19. The synergy effect found in W-V and Mo-V nanocomposites should be
verified for more composite components. A physically justified reason for
this phenomenon might possibly be found by means of a precise analysis
of stress coupling effects.

20. Nanoindentation experiments should be performed on as many single crys-
tals as possible in order to establish an extended database of experimental
values of ideal shear strengths.

21. The dependence of the fracture energy on the grain boundary concentra-
tion of phosphorus and other detrimental elements should be established
by fracture experiments on well defined segregated bicrystal boundaries.
This would finally solve the problem of the severity of individual impurities
and set up physically justified impurity limits.
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22. Correct measurements of crack growth rates and crack growth thresholds
in mode II and mode III should be performed for an extended range of
metallic materials. This would solve the practically important question
concerning the resistance of materials to crack propagation under both
kinds of shear mode loading.

23. The generalized conditions of mode I branching from shear-mode crack
propagation should be verified for more metallic materials under various
external shear loading modes.

24. Extended experiments on fish-eye crack initiation and growth should be
realized for materials with reinforcing surface layers in both standard and
gigacycle fatigue regimes. This would decisively complete our knowledge
about micromechanisms of interior nucleation and propagation of fatigue
cracks.

The authors hope that performing a majority of these tasks might be
attempted in a rather near future.



Appendix A

Ab initio Computational Methods

The objective of ab initio approaches based on applied quantum theory is to
calculate stationary states for electrons in the electrostatic field of nuclei, i.e.,
the electronic structure (ES). The energy of this ground state can then serve
as a potential energy for displacements of nuclei. From the point of view of
ideal-strength (IS) calculations, the total energy of the system is the most
important output of ab initio methods.

The main advantage of ab initio methods is their independence of exper-
imental data. Unlike in the case of empirical and semi-empirical methods,
there is no need for calibration parameters. Thus, they can also be used for
calculation of some structural and mechanical characteristics of hypothetical
systems (prediction of properties of materials that have not yet been devel-
oped) or study of materials behaviour under large deformations (far from the
equilibrium state) that can give a better understanding of micromechanisms
of materials failure.

First attempts to develop applicable theories were made in the late
1920s [421, 422], a few years after the foundations of modern quantum the-
ory were laid (derivation of the Schrödinger equation). A very successful step
forward was the Hartree–Fock method [422, 423]. This method yields very
accurate bond lengths in molecules. On the other hand, the binding energies
are generally not in good agreement with experimentally obtained energies.
Moreover, for solids, the Hartree–Fock method has problems with a descrip-
tion of band structures. The density functional theory (DFT) [37, 38] was
invented to include correlation effects without using the very costly wave
function methods. All the methods used within this book are based on the
DFT.

In DFT the energy is not obtained as eigenvalues of a wave function, but
rather as a functional of the electron density. The complex problem of many
interacting electrons is transformed into a much simpler study of single elec-
tron interactions with an effective potential Ueff created by other electrons
and all nuclei. This is expressed by the Kohn–Sham equation (one-electron
Schrödinger equation)
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(−Δ+ Ueff (r)− εi)ψi(r) = 0,

where εi represents the one-electron energies and ψi are the one-electron wave
functions.

The wave functions are then occupied in accordance with the Pauli prin-
ciple and a new field is obtained by solving the Poisson equation for point
nuclei shielded by the electronic density

ρ(r) =
∑
i,occ

|ψi(r)|2 .

In the case of periodic crystalline materials, the one-electron wave func-
tions are expanded into appropriate basis sets and satisfy the Bloch theorem.
The Kohn–Sham equation is solved iteratively until the solution becomes
self-consistent. This means that the electron density, determined from the
effective one-electron potential, must generate the same effective potential
(which is again a functional of the electron density). The self-consistent cycle
usually starts with a guess of the effective potential (superposition of atomic-
like potentials) and then the input and output potentials are appropriately
mixed before starting a new iteration. The quality and speed of the conver-
gence of such calculations is related not only to the choice of a suitable basis,
but also to the sophistication of the iterative process. The necessary correc-
tions for exchange and correlation are also included in the effective potential
Ueff . This seems to be the crucial point of ab initio calculations because the
exchange-correlation (XC) functional is not known exactly and must be ap-
proximated. The first (and the simplest) attempt to build an approximation
of the XC energy functional in the DFT is the local density approximation
(LDA) [424]. The LDA is local in the sense that the electron exchange and
correlation energy at any point in space is a functional of the electron density
at that point only. As a consequence of this, LDA fails in situations where
the density undergoes rapid changes (molecules). An improvement to this
can be made by considering the gradient of the electron density. The density
gradient corrections are implemented in the so-called Generalized Gradient
Approximation (GGA). While there is only one LDA there are several differ-
ent parameterizations of the GGA [425–427].

Nevertheless, it is the choice of the basis wave functions that makes the
main difference between various methods used for the ES calculations. The
better we choose them (according to the character of the problem), the
smaller number of them is needed for the description of one-electron wave
functions. Commonly used bases are augmented (APW) and orthogonalized
(OPW) plane waves, linear muffin-tin orbitals (LMTO), linear combination
of atomic orbitals (LCAO), of Gaussian orbitals (LCGO) and linear aug-
mented Slater-type orbitals (LASTO), augmented spherical waves (ASW),
etc. The Korringa–Kohn–Rostoker (KKR) method proceeds by the use of the
Green function of the Kohn–Sham equation and is also called Green’s func-
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tion (GF) method. The pseudopotential approach applied mostly to solids
containing no d- or f-electrons is also widely used. A detailed description of
these methods may be found in many books and articles, e.g., in [86, 88, 89].
The atomic configurations corresponding to deformed structures usually have
lower symmetries and, at the strength limit, they are very far from the lowest-
energy equilibrium state. Therefore, to obtain reliable structural energy dif-
ferences, the full-potential methods (i.e., without any shape approximation
of the crystal potential and the electronic charge density) have to be utilized
in such studies. At present, several codes are available, e.g., WIEN, VASP,
FHI, FLEUR, FPLO, FPLMTO, ABINIT, SIESTA, etc.

All the ab initio calculations of IS presented in this book were performed
by using the following three computational codes: LMTO-ASA, WIEN and
VASP.

A.1 TB-LMTO-ASA Code

Linearized ab initio methods have been successfully utilized for solving many
problems in materials science [428,429]. One of the most effective approaches
for early first principles calculations was the LMTO formalism which has been
continuously developed since 1980 [428–430]. This method is very appropriate
for self-consistent calculations.

In the LMTO-ASA code [431], the crystal potential U is approximated by
a muffin-tin (MT) shape potential which is composed of a set of spherically
symmetric potentials inside slightly overlapping spheres around individual
nuclei and a constant potential in the interstitial region outside the spheres
(Figure A.1). Atomic-like orbitals derived for the MT potential constitute
a suitable basis set. The tight binding approximation, which is also imple-
mented into the code [432], assumes that the full Hamiltonian may be ap-
proximated by that of an isolated atom centred at each lattice point. The
atomic orbitals (eigenfunctions of the single-atom Hamiltonian) are assumed
to be negligible at distances exceeding the lattice constant.

In all presented calculations, the LMTO method is used in the framework
of an atomic sphere approximation (ASA) which is particularly suitable for
closely packed structures like fcc, hcp or bcc [428]. The size of a spherically
symmetric potential is assumed to be equal to that of the Wigner–Seitz cell
(Figure A.1(b)). This suppresses the interstitial region and neglects the ki-
netic energy of related free electrons. Owing to the necessary space-filling
condition, ASA represents a physically plausible model only for a description
of an infinite system of atomic spheres.
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(a) (b)

Figure A.1 Muffin-tin shape potential in (110) plane of a general bcc crystal of the
lattice constant a = 3au with spherical radii: (a) rMT = 1au, and (b) rMT = rWS =
1.48 au

A.2 Wien 95 – w2k Codes

The program package WIEN [433] does not use any shape approximation
to the potential. The crystal environment is divided into a region of non-
overlapping atomic spheres (centred at individual atomic sites) and an inter-
stitial region as can be seen in Figure A.2. In order to describe ES reliably
and effectively, two different basis sets are employed: a product of linear com-
bination of radial functions and spherical harmonics is used inside the spheres
whereas the wave functions in the interstitial region are expanded into a linear
combination of plane waves. The solution in both regions must be continuous
at the spherical boundaries. Each basis function is then defined as a plane-
wave in the interstitial region connected smoothly to a linear combination
of atomic-like functions in the spheres, thus providing an efficient represen-
tation throughout the space. A similar representation is used for potentials
and charge densities. The method is called the linear augmented plane wave
(LAPW) method [428, 434].

S
1 S

2 S
3

I

Figure A.2 Illustration of a crystal model – three atomic spheres (S1 – S3) with
potential US(r) =

∑
lm Ulm(r)Ylm(r̂) embedded in the interstitial region I with

UI(r) =
∑

K UK(r)eiKr
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In order to increase the flexibility of the basis (to improve upon the lin-
earization of wave functions) and to make possible a consistent treatment of
semicore and valence states in one energy window (to ensure orthogonality)
additional basis functions can be added. They are called local orbitals [435]
and consist of a linear combination of two radial functions at two different
energies (e.g., at the 3s and 4s energy) and one energy derivative (at one of
these energies). The local orbitals are normalized and have zero value and
slope at the spherical boundaries.

A.3 VASP Code

Another way of avoiding a problem with plane wave basis set in the vicinity
of atomic nuclei, where the number of plane waves would exceed any practical
limits (perhaps except for H or Li), is to substitute the exact potential by a
pseudopotential.

Upseudo

rrcut

�pseudo

rrcut

�

U

0

0

Figure A.3 Comparison of a wavefunction in the Coulomb potential of the nucleus
(dashed lines) to that in the pseudopotential (solid lines)

Construction of the pseudo-wavefunctions is schematically described in
Figure A.3. The Coulomb potential of the nucleus and the corresponding
wavefunction are represented by dashed lines. The solid line displays the
pseudopotential and the pseudo-wavefunction. The real and the pseudo-
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wavefunction (and also the potentials) match above a certain cutoff radius
rcut.

The pseudopotential approach has been implemented in the VASP (Vi-
enna ab initio Simulation Package) code. This code was developed at the
Institut für Materialphysik, Universität Wien. The VASP currently supports
three types of pseudopotentials: norm-conserving pseudopotentials, ultrasoft
pseudopotentials and projector augmented wave pseudopotentials [436–438].
In all three cases, the core electrons (at lower energy levels than valence elec-
trons) are precalculated in an atomic environment and kept “frozen” during
the remaining calculations.



Appendix B

Mixed-mode Criteria of Crack Stability

In order to describe the crack stability under mixed-mode loading, various
concepts within the framework of LEFM were proposed (e.g., [162–164]). In
this brief overview, the stress intensity factors are denoted only by capital
letters KI , KII and KIII , as is common for remote quantities. However, the
criteria are relevant also to local stress intensity factors usually denoted as
k1, k2 and k3.

B.1 Energy Criterion

The criterion postulates that the total energyGI+GII+GIII , released by the
system to create a unit of a new surface, equals the crack growth resistance
Gc:

Gc = GI +GII +GIII . (B.1)

When the crack grows in its original plane (or propagates in a self-similar
manner), the energy criterion can be expressed in terms of the effective K-
factor as

Kc =

√
K2
I +K2

II +
4

κ+ 1
K2
III , (B.2)

whereKc is the critical stress intensity factor (fracture toughness), κ = 3−4ν
for plane strain, κ = (3 − ν)/(1 + ν) for plane stress and ν is the Poisson’s
ratio.

255



256 B Mixed-mode Criteria of Crack Stability

B.2 Criterion of Linear Damage Accumulation

Each of Equations B.1 and B.2 can be understood as a condition of subse-
quently reaching the critical level of material damage during loading. If the
partial damages accumulate independently, the mixed-mode criterion

GI
GIc

+
GII
GIIc

+
GIII
GIIIc

≤ 1

can be accepted. Clearly, for the special case GIc = GIIc = GIIIc = Gc,
the criterion of linear damage accumulation transfers to the energy criterion.
Under the dominant mode I loading, the problem of shear friction in modes
II and III on the rough fracture surfaces is not crucial due to sufficiently large
opening displacements of crack flanks. Consequently, the equality of critical
crack driving forces in all modes might be assumed and the energy criterion
can be accepted.

Since the assumption of self-similar crack propagation does not hold un-
der a general remote mixed-mode loading, one must be careful when applying
both the above-mentioned criteria. They appear to be useful only for a predic-
tion of the moment of unstable fracture or, generally, in the case of a dominant
external mode I loading of microscopically tortuous cracks. The description
of long fatigue crack propagation under external mixed-mode loading condi-
tions by means of these criteria is rather limited in the sense that the growth
direction cannot be predicted.

B.3 Criterion of Minimal Deformation Energy

The deformation energy density S is minimal in those elements near the crack
front, where the ratio of the hydrostatic tensile stress and the octahedral
stress is maximal [439]. In such elements, therefore, the first local fracture is
expected to occur and the crack propagates towards such damaged sites in
the matrix. In the plane mixed-mode I+II, the condition of minimal S yields
the stability condition as

K2
eff =

16G

2 (κ− 1)

(
a11(θm)K2

I + 2a12(θm)KIKII + a22(θm)K2
II

)
,

where aij(θm) are angular functions andG is the shear modulus. The criterion
generally enables us to predict the moment of crack nucleation as well as the
crack growth direction in the 3D homogeneous continuum. Its disadvantage
is a rather low transparency.
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B.4 Criterion of Maximal Principal Stress

This criterion can be derived from the energy criterion by expressing the
effective crack driving force Geff as a function of growth angle θ and by
searching its maximal value. It can be shown that this maximum corresponds
to a crack perpendicular to the maximum principal stress. Considering the
plane model, stresses in close vicinity of the crack tip can be expressed as
follows:

σθ =
1√
2πr

cos
θ

2

(
KI cos

2 θ

2
− 3

2
KII sin θ

)
,

τrθ =
1

2
√
2πr

cos
θ

2
(KI sin θ +KII (3 cos θ − 1)) .

If τrθ = 0, then the hoop stress σθ becomes the principal stress. This
condition determines the growth angle θm as well as the related effective
stress intensity value:

tan
θm
2

=
KI

4KII
± 1

4

√(
KI

KII

)2

+ 8,

Keff = KI cos
3 θm

2
− 3KII cos

2 θm
2

sin
θm
2
.

The criterion can be used for predictions of crack stability and growth in
homogeneous materials. The criterion does not involve the antiplane mode
III and, consequently, it can be applied only in the framework of 2D models.
Nevertheless, a very good applicability of the maximum principal stress crite-
rion to propagation of long fatigue cracks was already proven (e.g., [399,440]).
This success can be understood from the micromechanical point of view. In-
deed, the fatigue crack tries to maximize the opening as well as the friction
between the flanks. Consequently, it inclines to the maximum opening mode I
perpendicularly to the maximal main stress direction, thereby also minimiz-
ing the shear modes (friction).



Appendix C

Plastic Flow Rate Inside the Neck

C.1 Ideal Model

When taking Equations 2.25, 2.26 and ranges λ1 ∈ 〈0.8, 2〉, λ2 ∈ 〈0, 1〉 into
account, the growth of the semi-axes of elliptical voids at the onset of necking
can be described as

a = a0e
0.8εp , b ≈ b0 ≡ a0 (C.1)

while

a = a0e
2εp , b ≈ a0e

εp (C.2)

holds in the final stages of necking just before the final fracture. In order to
calculate the active volume V2, the surface area of the elliptical void Sel has
to be considered as

Sel ∼= 2π
(
b2 + ab

)
. (C.3)

By inserting Equations C.1 and C.2 into Equation C.3 and transferring the
surface of the ellipsoid to that of the equivalent sphere of the same surface
area one obtains

aSel = 4πa20e
0,4εp , bSel = 4πa20e

2,5εp .

A corresponding error of this transfer is less than 10% for 0 < εp < 1. Thus,
the variation of the void surface during the necking process can be expressed
as

Sel ≈ 4πa20e
κεp , (C.4)

where 0.4 < κ < 2.5 . Let us denote δ the mean distance from the void surface
to the outer boundary of the volume V2 (see Figure 2.30) and n the number
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of voids in V1. With respect to Equations C.4 and 2.30, where V0 = πr20h,
one obtains

V2 ∼= 4πa20δne
κεp .

By considering Equation 2.30 (V = V1) and denoting Θ =
4πγa20δn

V0
, γ = 1+κ

we get

d

(
V2
V1

)
∼= d

(
4πa20δn

V0
e(1+κ)εp

)
= Θeγεpdεp. (C.5)

When inserting Equation C.5 into Equation 2.33 one obtains

dfm
dεp

∼= −Φfm +Θeγεp ,

which is a linear differential equation. By solving this equation, a change of
the fraction of mobile dislocations during the unstable deformation inside the
neck can be expressed in the following form:

fm ∼= exp

⎧⎨
⎩

εp∫

0

−Φdt
⎫⎬
⎭
⎡
⎣fum +

εp∫

0

eγs exp

⎧⎨
⎩

s∫

0

Φdt

⎫⎬
⎭ds

⎤
⎦ .

Here fum is the relative density of mobile dislocations at the onset of necking.
After integration and some algebraic re-arrangement

fm ∼=
(
fum

Θ

γ + Φ

)
e−Φεp +

Θ

γ + Φ
eγεp . (C.6)

Equation C.6 shows the dependence of the relative density of mobile disloca-
tions on the plastic deformation during the necking process. By introducing
Equation C.6 into the general relationship at Equation 2.29 one obtains

ε̇p = μbvc (ρu +Mεp) exp

{
− Du

〈σs〉k

}(
Ω1e

−Φεp +Ω2e
γεp
)
, (C.7)

where Ω1 = fum − Θ
γ+Φ̄

, Ω2 = Θ
γ+Φ̄

and Φ̄ = H
〈σs〉k . Moreover, ρu and Du are

the density of dislocations and the friction stress, respectively, at the onset
of necking, 〈σs〉k and Φ̄ are the mean effective stress and the mean value of
Φ during the necking process, respectively (〈σs〉k is nearly constant). Finally,
an appropriate algebraic re-arrangement of Equation C.7 leads to Equation
2.36.
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C.2 Real Model

The formation of cavities at secondary phase particles can be described
by assuming either the energetic (matrix/particle interphase) or fracture-
mechanics (breaking of the particle) criteria. In both cases, the analysis leads
to the relation σcr ∝ a−1/2, where σcr is the critical applied stress for the
cavity nucleation and a is the particle size (e.g., [157,441,442]. Therefore, the
total initial surface SP of nucleated cavities can be determined as

SP ≈ 4πK1

∞∫

(K2/σcr)
2

a−2da. (C.8)

Beyond the ultimate stress σu, the true stress σ (εp) is nearly a linear function
of εp [236, 237]:

σcr ≈ 4

3
σu +K3εp, (C.9)

where K3 is a constant. A combination of Equations C.9 and C.8 gives

Sp ≈ 4πK1

∞∫
[

K2
(4σu/3+K3εp)

]2
a−2da. (C.10)

Nucleated voids grow according to Equation 2.24 and their total surface
area increases in correspondence with Equation C.4. At the moment of reach-
ing the ultimate stress, the total surface area can be estimated by means of
Equation C.10 as

Sup ≈ 4πK1

∞∫

(3K2/4σu)
2

a−2da. (C.11)

Let us assume small increments of plastic strain Δεp. Then, with respect
to Equation C.4, the total surface area at ε∗p � Δεp can be approximated as
follows:

Sel ≈ Sup e
κεp +

(
dsp
dεp

)
0

eκεpΔεp + . . .

+

(
dSp
dεp

)
εp/2

eκ(ε
∗
p/2)Δεp + . . .+

(
dSp
dεp

)
ε∗p

Δεp

= Sup e
κε∗p +

εp/Δεp∑
k=0

(
dSp
dεp

)
kΔεp

eκ(ε
∗
p−kΔεp)Δεp.

For Δεp → 0 the sum can be replaced by an integral:
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Sel ≈ Sup e
κε∗p +

ε∗p∫

0

(
dSp
dεp

)
eκ(ε

∗
p−εp)dεp. (C.12)

By combining Equations C.11, C.10 and Equation C.12, the total surface
area related to the plastic strain εp reads

Sel ≈ 4πK1

⎡
⎢⎢⎢⎣eκεp

∞∫

( 3K2
4σu

)
2

a−2da+

εp∫

0

eκ(εp−e)
d

de

⎛
⎜⎜⎜⎝

∞∫
[

K2
(4/3)σu+K3e

]2
a−2da

⎞
⎟⎟⎟⎠ de

⎤
⎥⎥⎥⎦

and, after integration, one obtains

Sel ≈ 4π
K1

K2
2

×

×
[(

4

3
σu

)2

eκεp +
8

3κ
σuK3 (e

κεp − 1) +
2

κ
(K3)

2

(
1

κ
eκεp − 1

κ
− εp

)]
.

(C.13)
Since, for metallic materials, K3 <

4
3σu, 0.4 < κ < 2.5 and

1

κ
eκεp =

1

κ
+ εp +

1

2
κε2p + . . . ,

the last term in the brackets can be neglected (εp < 1). After a simple
re-arrangement of Equation C.13 (the constant 2

3σu + K3

κ is not too much
different from σu) one finally obtains

Sel = 2πK1
1

a0p
(3eκεp − 1) , (C.14)

where a0p =
(

3K2

4σu

)2
is the size of voids that nucleate when reaching the

ultimate stress.
Let us further consider that the initial void size is determined by a dis-

tribution function of particle sizes and, during the deformation, the number
of nucleated voids increases. According to Bergh [443] and other authors
(e.g., [444, 445]), the distribution function can be written as

g(a) =
1

a4
, a ≥ a∗,

where a∗ is a critical size of particles which start to nucleate voids. Conse-
quently, the total number of particles which, at a given strain, have already
nucleated voids reads
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h(a) = K1

∞∫

an

1

a4
da, (C.15)

where K1 is a constant, an is the smallest size of particles that nucleate voids
in a particular deformation stage εp. With respect to Equations C.14 and
C.15, the dependence of the volume V2 on the plastic strain is εp:

V2 ≈ 2πK1
δ

a0p
(3eκεp − 1) . (C.16)

When inserting Equation C.16 into Equation 2.33, and following the same
reasoning as in the case of the ideal model, one finally obtains the strain rate
formula

ε̇p ≈ μbvc (ρu +Mεp) exp

{
− Du

〈σs〉k

}
[
fuom −Θ∗

(
1

γ + Φ̄
− 1

3γ
(
1 + Φ̄

)
)
e−Φεp+

+Θ∗
(

1

γ + Φ̄
eκεp − 1

3γ
(
1 + Φ̄

)
)
eεp

]
,

(C.17)

where Θ∗ = 6πK1δγ
a0pV0

.

Since Φ̄ > 1 (H in units of GPa and 〈σs〉k in hundreds of MPa) and
1.4 < γ < 3.5 , the terms 1

3γ(1+Φ̄)
in both brackets can be neglected and

Equation C.17 reduces to Equation C.7 (both the ideal and the real model
lead to a similar result).
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5. Gröger R, Bailey A G, Vitek V (2008) Acta Mater 56:5401–5411
6. Paidar V, Pope D P, Vitek V (1984) Acta Metall 32:435–448
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53. Söderlind P, Moriarty J A (1998) Phys Rev B57:10340–10350
54. Jhi S H, Louie S G, Cohen M L, Morris J W Jr (2001) Phys Rev Lett 87:075503
55. Ogata S, Li J, Yip S, (2002) Science 298:807–811
56. Roundy D, Krenn C R, Cohen M L, Morris J W Jr (1999) Phys Rev Lett

82:2713–2716
57. Roundy D, Krenn C R, Cohen M L, Morris J W Jr (2001) Phil Mag A81:1725–

1747
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59. Černý M, Pokluda J (2008) Comp Mater Sci 44:127–130
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83. Pokluda J, Černy M, Šandera P, Šob M (2004) J Comp Aid Mater Design

11:1–28
84. Barron T H K, Klein M L (1965) Proc Phys Soc Lond 85:523–532
85. Morris J W, Krenn C R (2000) Phil Mag A80:2827–2840
86. Mehl J M, Klein B M, Papaconstantopoulos D (1994) First principles calcu-

lations of elastic properties of metals. In: Westbrook J H, Fleisher R L (eds)
Intermetallic Compounds. John Willey & Sons, New York

87. Kim K Y (1999) Phys Rev B54:6245–6254
88. Deutsch T, Lancon F (2003) J Phys Cond Matter 15:1813–1826
89. Harrison W A (2004) Elementary Electronic Structure. World Scientific Pub-

lishing, Singapore
90. Craievich P J, Weinert M, Sanchez J M, Watson R E (1994) Phys Rev Lett

72:3076–3079
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103. Černý M, Pokluda J (2007) Mater Sci Eng A483–484:692–695
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Acta Mater 56:2908–2918

185. Winn A J, Boccaccini A R, Imam N, Trusty P A (1997) J Microscopy 186:35–40
186. Knott J F(1983) Mechanics of Fracture. In: Latanision R M, Pickens J R (eds)

Atomistics of Fracture, Plenum Press, New York
187. Kerlins V (1994) Modes of Fracture. In: Mills K et al. (eds) ASM Handbook:

Vol 12 Fractography. ASM International
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Fracture of Materials, Components and Structures (ECF17). VUTIUM, Brno

191. Kim Y J, Lin G, Cornec A, Schwalbe K H (1996) Int J Fract 78:21–34
192. Suresh S (1998) Fatigue of materials. Cambridge University Press, Cambridge,

UK
193. Zeman J, Rolc S, Buchar J, Pokluda J (1990) Microstructure and fracture

toughness of cast and forged ultra-high-strength, low-alloy (UHSLA) steels. In:
Gudas J P, Joyce J A, Hackett E M (eds) Fracture Mechanics: Twenty-First
Symposium, ASTM STP 1074. ASTM, Philadelphia, PA

194. Petit J (1998) Metall Mater 3:220–232
195. Cook J R, Irwing P E, Booth G S, Beewers C J (1975) Engng Fract Mech

7:67–77
196. Pokluda J, Siegl J (1990) Fat Fract Engng Mater Struct 13:375–385
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218. Lejček P, Hofmann S, Janovec J (2007) Mater Sci Eng A 462:76–85
219. Wu S J, Ding R G, Knott J F (2007) Mater Sci Technol 23:1262–1268
220. Janovec J, Pokluda J, Jenko M, Lejček P, Vlach B, Horńıková J (2006) Surf
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241. Staněk P, Pokluda J (1984) Metall Mater 22:710–719 (in Czech)
242. Kraft J M, Irwin G R (1965) ASTM STP 381:84–113
243. Rice J R, Johnson M A (1970) The Role of Large Crack Tip Geometry Changes

in Plane Strain Fracture. In: Kanninen M F et al. (eds) Inelastic Behavior of
Solids, McGraw-Hill, New York



276 References

244. Hancock J W, Cowling M J (1980) Metal Sci 14:293–304
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342. Pippan R, Berger M, Stüwe H P (1987) Metall Trans 18A:429–435
343. Shang J K, Tzou J L, Ritchie R O (1987) Metall Trans 18A:1613–1627
344. Taylor D (1989) A Compendium of Fatigue Thresholds and Growth Rates.

EMAS, Warley
345. Wang Z G, Al S H (1999) ISIJ Inter 39:747–759
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32:921–928
403. Onuki A, Yanagi N, Satoh N, Takase F (1992) Fatigue strength of a ion nitrided

steel. In: Sedmak (ed) 9th European Conference on Fracture (ECF9). Varna,
Bulgaria
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brittleness 57–59
component 78, 245
crack driving force 177
crack growth 161
driving force 178
ductility 55, 57, 59, 63
effect 81
matrix resistance 177
resistance 141, 166, 183
threshold 158, 166, 179–181
toughening 75

intrusion 151
inverse pile-up 158
ionic

compound 69
crystal 69

irreversibility 144, 158, 174, 191
level 174

irreversible
dislocation pile-up 170
shear component 174
slip 170, 173

isotropic
deformation 26
loading 20
solid 23
stress 26, 44
tension 11

K

Kelly–Tyson–Cottrell
criterion 55

kinematic hardening 147
kinetic energy 251
kinetics 109, 112, 147, 197, 201
kink angle 75
kinking 75, 78, 164, 188, 201, 244
Klesnil–Lukas relation 214, 239
Kohn–Sham equation 249, 250
Korringa–Kohn–Rostoker method 250
kurtosis 129

L

lamellar colonies 181

lattice
defect vii, 11
dilatation 177
instability 16
resistance 157
spacing 162
vibrations 15

length parameter 128, 130
Lennard–Jones potential 13
line segment 156
linear

augmented plane wave 252
augmented Slater-type orbitals 250
combination of atomic orbitals 250
combination of Gaussian orbitals

250
muffin-tin orbitals 250
roughness 130

linear–elastic fracture mechanics 69
loading

condition 179
cycle 144, 148, 165
direction 147
half-cycle 158
parameter 179
part 174
phase 162, 174
ratio 227

local
density approximation 250
fracture process 189
mixed-mode 174, 197
mode II 170, 173
plastic deformation 88, 139
plastic strain 155
shear mode 188
shear stress 179
stress 10

Lommer–Cottrell barrier 145
long

crack 185
crack threshold 140
fatigue crack 188
range closure ratio 173
range component 170, 173, 174
range RICC 170

low-cycle fatigue 209

M

macroscopic
approach 126
crack growth 191

Matake criterion 221
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material resistance 187
maximal shear stress 179
McClintock’s model 108, 119
McDiarmid criterion 221
mean

grain size 170, 171, 174, 182
size ratio 176
strain 169

meandering 78, 166
mechanical hysteresis 141
mesoscopic approach 126
metallic

crystal 60
material 141, 150, 166, 171, 173, 176,

179
metallography 6
metals 10, 33
microcrack 10, 70, 187, 195, 217

network 187
micromechanism vii, 3–7, 69, 71, 108,

125, 140, 141, 144, 145, 150, 161,
188, 189, 191, 245, 247, 249

micromorphology 198
microroughness 152
microscopic

approach 126
tortuosity 104

microscopically straight (planar) cracks
175

microstructural
barrier 146, 199
defect 139
element 2
parameter 4
phase 140

microstructurally short fatigue crack
175

microstructure vii, 1, 2, 89, 164, 170,
180–182, 188, 225

coarseness 170, 179
microtortuosity 171
microvoid 112, 166
military research 238
mixed

mode 126, 188
mode criterion 74
mode II+III 188, 205
mode loading 255

mobile dislocation 113, 116, 260
mode I 55, 58, 60, 70, 74, 75, 125, 137,

155, 157, 158, 167, 188, 189, 191,
192, 194–197, 199–202, 204, 206,
209, 212, 225, 230, 245, 256, 257

mode II 137, 155, 170, 174, 175,
188–192, 195, 204, 206, 207, 211,
245

mode III 174, 175, 188–192, 194, 195,
204–208, 211, 245, 257

molecular dynamic 16
morphology 126
Morse potential 13
mosaic stresses 73
multi phase alloys 182
multiaxial fatigue 217
multiaxial loading 11, 37, 220
multiscale

approach 64, 140
concept 141
model vii, 6, 7

N

Nabarro–Cottrell analysis 141, 144
nanocomposite 11, 47, 48
nanoindentation 10, 35, 64, 67, 246
nanoindenter 10
nanomaterial 176, 177
nanoscopic approach 126
near fracture region 176
near-threshold crack growth 181
near-threshold region 176, 177, 180
neck 73
necking 109, 116–118, 167, 259, 260
negative dislocation 157, 158
nodular ductile irons 166
nominal stress amplitude 144
normal stress 36, 41, 43, 45
notch toughness 72
notched specimen 194
nucleation 10
numerical analysis 158

O

obstacles 171
opening loading mode 125, 139
optical chromatography 198
optical microscope 182
orthogonalized plane wave 250
orthorhombic symmetry 28
out-of-phase loading 217
out-of-plane shear deformation 192
overlap of crack flanks 174
overload 176
oxide-induced closure 166



290 Index

P

pair of dislocations 159
pair-potentials 13
Papadopoulos criterion 222
Paris–Erdogan 140

law 188
region 136, 141, 161, 163, 177, 180,

238
relation 185

particle reinforced composite 166
particle size 1, 171
Peach–Koehler force 156
peak stress 174
Peierls–Nabarro stress 35, 69
penetration 177
percolation 118

model 119
threshold 116

perfect crystal 3, 6, 9, 36, 40, 52, 54, 60
periodic

configuration 161
pattern 162
segment 159, 161

persistent slip band 151
persistent slip marking 151
phase

boundary 90, 150
composition 179
interface 228
microstructure 141
transformation 21, 71
transition 32

phonon 15
frequency 16
instability 25, 26, 32
mode 21
spectra 15

phosphorus segregation 98
pile-up 142, 144–146, 174
planar slip mode 170
plane strain 157, 167
plane stress 167
plastic

deformation 2, 91, 108, 109, 111, 112,
144, 158, 189, 260

flow rate 112
grain 142
instability 109, 111
slip 151
strain 114, 122, 142, 144, 261
strain range 144, 149
strain rate 111
wake 167

wedge 167
work 71
zone 71, 107, 120, 140, 154, 155, 171,

177, 246
zone size 122, 155, 171, 176, 195

plasticity-induced crack closure 166
point of inflection 21
Poisson’s contraction 14, 33, 51
Poisson’s ratio 49, 65, 145, 151, 255
polycrystal 175
polycrystalline material 141
polymers 69
pop-in effect 244
porcelain 70, 80
pores 70
porous solids 110
positive dislocation 157
potential energy 13
precipitate 3, 90
primary dislocation 144, 145, 147
principal stress 125
profile roughness 104
profilometer 81, 128, 182, 230
pseudopotential 253
pure

bending 217
shear 11, 188
torsion 217

pyramidal model 79, 80, 84, 94

Q

quantitative fractography 126, 246
quantum theory 249
quasi-brittle 69

crack 88
fracture 75, 88, 179
matrix 185

R

radial asymmetry 237
ramp-loading 144
random loading 176
ratcheting 140, 141, 144, 145, 147, 148,

245
process 145
rate 144, 148

real
crystal 9, 159
polycrystal 9, 143

reinforcements 10
reinforcing 80
relaxation 139
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remote loading 156
repulsive stress 159
residual

plastic deformation 145
shear shift 174
stress 80, 81, 86, 148, 228, 229, 234,

246
stress effect 228
tensile plastic strain 145

resistance 126
resistometrical method 177
resolved shear stress 34, 56, 64
retrogressive methods 238
reverse

deformation 142
plasticity 145
slip 145, 148

reversible
dislocation slip 143
normal component 174

RICC
component 175
level 176
model 174
phenomenon 173
ratio 177

Rice–Thompson
criterion 55, 56

rigid particles 80, 83, 84, 86
river marking 88
roughness 170

induced crack closure 164, 166, 245
induced shielding 150
parameter 175

S

saw-tooth 174
model 197
striation 162

Schmid’s law 5, 45
screw dislocation 190
secondary

barrier 146, 147
crack 182, 206, 207
dislocation 145
obstacle 146
particle 171
phase 109, 139, 171
phase particles 171, 177
slip 145, 146, 148, 174
slip system 144, 145, 174

segregation behaviour 98
segregation level 98

semi-elliptical crack 200, 201
semi-empirical methods 15
semi-fractal character 179
semiconductors 10
sessile dislocation 72, 145, 146
shear 167, 171

asymmetry 171
component 126
coordinates 142
crack 175
deformation 44
displacement 146, 170, 173–175
instability 22
loading modes 126
misfit 170
mode 167
mode crack 126, 213
mode loading 247
mode test 209
modulus 54, 72
path 33
plane 13, 34
strain 146
strength 43, 46, 244
stress 11, 179

shielding 74, 84, 86, 91, 139, 177, 179,
244

component 141, 179
effect 80, 83, 84, 87, 141, 188

short
crack 125, 140
crack initiation 219
crack propagation 219
crack stage 221
range closure ratio 174
range component 173
range mechanism 174
range RICC ratio 174

Sines criterion 220
single crystal 2, 60, 175
single phase alloys 182
size ratio 89, 141, 174–176, 185, 245

effect 173, 179
statistics 177

skewness 129
slip

band 151, 152, 158, 159, 161
irreversibility 145
plane 155
system 69, 140, 156

small deformation 17
small-scale yielding 139
soft phonon mode 16
Spagnoli criterion 221



292 Index

spatially tortuous crack 192
spectral parameter 128
speed of sound 69
spiral spring 144
spontaneous dislocation emission 158
stability

analysis 33
condition 23, 28, 32, 35, 36, 244

stable crack growth rate 140
stainless steel 182
static plastic zone 159, 167, 169, 171,

179
static shielding factor 93
statistical

approach 91, 93
distribution 143
factor 183

statistically stored dislocations 143,
167

steel 180
steepest asperities 175
stereology 6
stereopair 127
stereophotogrammetry 198, 225
straight crack propagation 171
straight growth direction 171
strain 142, 169

increment 23
path 142
rate 263
tensor 17

strain-controlled loading 144
strength 10, 47
stress

amplitude 218
concentration 108, 186, 187
coupling 246
ensembles 21, 22
field 156
gradient 234
intensity factor 69, 78, 139, 155, 255
level 175
range 185
state 11
tensor 11, 56, 156, 217
triaxiality 108, 110, 117

stress–strain curve 21
stress-strain curve 65
stress-strain response 142
stressed solids 139
striation 136, 138, 207, 238, 241
structural components 126
structural transitions 16
sublimation energy 70

supercritical striations 159, 162
surface

asperities 185
atom 70
crack 228
element 128
energy 70, 88, 98, 106
grain 152
hardness 223
morphology 81
roughness 52, 78, 81, 82, 87, 170, 171,

173, 175, 176, 179, 228
topography 81, 126, 128, 137

symmetrical loading 143, 144
symmetry-dictated extrema 21
synergy 39, 51, 201, 245, 246

T

temperature gradient 140
tempering embrittlement 78
tensile

direction 147
necking 167
strength 2, 32, 53, 243, 244
stress 44, 114, 142, 196
test 109, 112, 116
yield stress 143

tetragonal symmetry 28
theoretical strength 10
thermal

conductivity 16
dilatations 73
fluctuations 54

thermomechanical treatments 180
thick solids 167
thin

film 10, 22
foil 158
solid 167

tight binding approximation 251
tilt boundaries 167
tilting 199
tilting effect 167
titanium 180, 181

alloy 180
topography 127, 225, 227, 245
topological parameter 128
topology 6, 7, 127, 198, 225
torsion loading 225
tortuosity 76, 195, 245
tortuous

crack 170
crack front 76, 77, 79, 169, 189, 191
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crack path 171
profile 199
surface 196

transgranular crack propagation 150
transgranular fracture 104
transient crack growth 176
transient effect 176
transport industry 126
transverse contraction 147, 167
triaxial

stress 110
trigonal

shear modulus 28
shear stability 28

true stress 145, 147, 148
turbine blade 11, 144, 205
twisted crack segment 174
twisting 199

U

ultimate strength 73, 140
ultra-high-cycle fatigue 228
ultra-high-strength steels 149
uniaxial tensile test 120, 122
uniaxial tension 26, 243
unified model 141, 177, 179
unstable

crack growth 140
fracture 139
stacking fault energy 156

unstable fracture 107

V

vacuum tests 180
Van der Waals crystal 33
vertical parameter 128
void 73

cluster 118
coalescence 109, 116
growth 116
nucleation 116
surface 259

volume fraction 186
volumetric instability 21, 23, 28, 33, 45

W

wedge 167
whiskers 9, 10, 14, 32, 36, 52, 80
Widmanstätten microstructure 181
Williams expansion 89
work load 144, 147

Y

yield
strength 121, 197, 228
stress 72, 94, 142, 143, 169, 179

Young’s modulus 13, 20, 47–49, 51, 54,
65, 80, 83, 86, 87, 142, 169, 188

Z

zig-zag crack path 173
zone shielding 78
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