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Preface

This textbook on field theory is based on our lectures delivered to students beginning
their specialization in theoretical physics at the Jagiellonian University in Cracow.
The lectures were accompanied by problem-solving classes. The goal was to give a
presentation of the basics of field theory.

Field theory plays a fundamental role in many branches of contemporary physics,
from cosmology, to particle physics, and condensed matter physics. Plenty of suc-
cessful applications testify for its importance. On the other hand, there still remain
unanswered questions about its foundations. It is not clear what is the proper math-
ematical framework for its formulation. We do not know how to exactly solve equa-
tions in the case of interacting fields. This state of field theory—many successful
applications vs. hidden in a mist foundations—makes the task of preparing an intro-
ductory course rather challenging.

Before attending our course, the students had theoretical physics courses on clas-
sical mechanics, non relativistic quantum mechanics, classical electrodynamics, sta-
tistical physics, as well as mathematical courses on algebra, calculus and differential
equations. They also had a general introduction to particle physics. Simultaneously
with our lectures or subsequently, they attended specialized lectures on advanced
quantum mechanics including the relativistic one, the standard model of particle
physics, statistical field theory and quantum theory of condensed matter. Such a
curriculum has of course influenced the content of our lectures. We have entirely
omitted applications of field theory, and the emphasis has been put on basic ideas.
Furthermore, because of the limited time available both for the lectures and for
the students, we have not attempted at all to make the course comprehensive. Our
intention has been to offer a slow, step by step introduction to the main concepts of
field theory. The method chosen by us consists of a carefully detailed explanation
of the selected material. We hope that such a textbook can be useful, and that it is a
helpful supplement to the vast amount of existing literature.

The textbook consists of three parts: classical fields are discussed in Chaps. 1, 2,
3, 4 and 5, introduction to the quantum theory of fields is given in Chaps. 6, 7, 8, 9
and 10, and selected relatively modern developments are presented in Chaps. 11, 12,
13 and 14. We presented most of this material in three semesters using traditional
tools: chalk and a blackboard. At the end of each chapter there are exercises with
hints for solutions. Some are strictly tied up with the lectures, others deal with topics
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vi Preface

discussed at length only during the problem-solving classes. We have also included
a short Appendix in which we have collected some basic facts about generalized
functions. Interested students can find hundreds of books on field theory. Our list
of literature includes only those books or original papers which are explicitly men-
tioned in the text.

Many students commented on parts of our lecture notes. We are very grateful to
them all. We are particularly indebted to P. Balwierz, M. Eckstein, T. Rembiasz and
P. Witaszczyk for providing lists of mistakes and unclear points. Needless to say, the
full responsibility for mistakes and shortcomings still present lies entirely with us.
Errata, very likely necessary in spite of our efforts, will be posted on the web page
http://th-www.if.uj.edu.pl/ztp/Edukacja/index.php belonging to the Department of
Field Theory of the Marian Smoluchowski Institute of Physics, Jagiellonian Uni-
versity.

Kraków, Poland Henryk Arodź
June 2010 Leszek Hadasz
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Chapter 1
Introduction

Abstract Sinus-Gordon field as an effective description of a system of coupled
pendulums in a constant gravitational field. Sinus-Gordon solitons. The electromag-
netic field, gauge potentials and gauge transformations. The Klein-Gordon equation
and its solutions.

By definition, any physical system which has infinitely many degrees of freedom
can be called a field. Systems with a finite number of degrees of freedom are called
particles or sets of particles. Kinematics and dynamics of particles is the subject
of classical and quantum mechanics. In parallel with these theories of particles
there exists a classical and a quantum theory of fields. In this chapter we present
two important examples of classical fields: the sinus-Gordon effective field and the
electromagnetic field.

Statistical mechanics deals with large ensembles of the particles interacting with
a thermal bath. If the particles are replaced by a field or a set of fields, the corre-
sponding theory is called the statistical field theory. This branch of field theory is
not presented in our lecture notes.

1.1 Example A: Sinus-Gordon Effective Field

Let us take a rectilinear wire with M + N + 1 pendulums hanged on it at points xi .
Here i = −M, . . . , N ,where M, N are natural numbers. The points xi are separated
by a constant distance a. The length of that part of the wire where the pendulums are
hanged is equal to (M + N )a. Each pendulum has a very light arm of length R, and
a point mass m at the free end. It can swing only in the plane perpendicular to the
wire. All pendulums are fastened to the wire stiffly, hence their swinging twists the
wire (accordingly). The wire is elastic with respect to such twists. Each pendulum
has one degree of freedom which may be represented by the angle φ(xi ) between
the vertical direction and the arm of the pendulum. All pendulums are subject to the
constant gravitational force. In the configuration with the least energy all pendulums
point downward and the wire is not twisted. We adopt the convention that in this case
the angles φ(xi ) are equal to zero. Because of the presence of the wire φ(xi ) = 0

H. Arodź, L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
DOI 10.1007/978-3-642-15624-3_1, C© Springer-Verlag Berlin Heidelberg 2010
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2 1 Introduction

is not the same as φ(xi ) = 2πk, where k = ±1,±2, . . .—in the latter case the
pendulums point downward but the wire is twisted, hence there is a non vanishing
elastic energy. Therefore, the physically relevant range of φ(xi ) is from minus to
plus infinity.

The equation of motion for each pendulum, except for the first and the last ones,
has the following form

m R2 d2φ(xi , t)

dt2
= −mgR sinφ(xi , t)+ κ φ(xi − a, t)+ φ(xi + a, t)− 2φ(xi , t)

a
,

(1.1)
where κ is a constant which characterizes the elasticity of the wire with respect to
twisting. The l.h.s. of this equation is the rate of change of the angular momentum
of the i-th pendulum. The r.h.s. is the sum of all torques acting on the pendulum: the
first term on the r.h.s. of Eq. (1.1) is related to the gravitational force acting on the
mass m, the second term represents the elastic torque due to the twist of the wire.

The equations of motion for the two outermost pendulums differ from Eq. (1.1)
in a rather obvious way. In the following we shall assume that these two pendulums
are kept motionless by some external force in the downward position, that is that

φ(x−M , t) = 0, φ(xN , t) = 2πn, (1.2)

where n is an integer. If we had put φ(x−M) = 2πl with an integer l we could
stiffly rotate the wire and the pendulums l times by the angle−2π in order to obtain
l = 0. Therefore, the conditions (1.2) are the most general ones in the case of
motionless, downward pointing outermost pendulums. In fact, these two pendulums
can be removed altogether—we may imagine that the ends of the wire are tightly
held in vices.

In order to predict the evolution of the system we have to solve Eqs. (1.1) assum-
ing certain initial data for the angles φ(xi , t), i = −M + 1, . . . , N − 1, and for
the corresponding velocities φ̇(xi , t). This is a rather difficult task. Practical tools
to be used here are numerical methods and computers. Numerical computations are
useful if we ask for the solution of the equations of motion in a finite, and not too
large time interval. When the number of pendulums increases, sooner or later we
will be incapable of predicting the evolution of the system except for very short
time intervals unless we restrict initial data in a special way. One such special case
is the limit of small oscillations around the least energy configuration, φ(xi ) = 0,
when we can linearize equations of motion (1.1) using the approximation sinφ ≈ φ.
The resulting equations are of the same type as for a system of coupled harmonic
oscillators which is discussed in textbooks on classical mechanics.

It turns out that there is another special case which can be treated analytically.
We call it the field theoretical limit because, as we explain below, we pass to an
auxiliary system with an infinite number of degrees of freedom. Let us introduce
a function φ(x, t), where x is a new real continuous variable. By assumption, this
function is at least twice differentiable with respect to x , and such that its values at
the points x = xi are equal to the angles φ(xi , t) introduced earlier. Hence, φ(x, t)
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smoothly interpolates between φ(xi , t). Of course, for a given set of the angles one
can find infinitely many such functions. For any of them the following identity holds

φ(xi−a, t)+φ(xi+a, t)−2φ(xi , t) =
∫ a

0
ds1

∫ 0

−a
ds2
∂2φ(s1 + s2 + x, t)

∂x2

∣∣∣∣∣
x=xi

.

Now comes the crucial assumption: we restrict our considerations to such motions
of the pendulums that there exists the interpolating function φ(x, t) of continuous
variables x, t such that

∫ a

0
ds1

∫ 0

−a
ds2
∂2φ(s1 + s2 + x, t)

∂x2

∣∣∣∣∣
x=xi

≈ a2 ∂
2φ(x, t)

∂x2

∣∣∣∣∣∣
x=xi

(1.3)

for all times t and at all points xi . For example, this is the case when the second
derivative of φ with respect to x is almost constant when x runs through the interval
[xi − a, xi + a], for all times t . With the approximation (1.3) the identity written
above can be replaced by the following approximate one

φ(xi − a, t)+ φ(xi + a, t)− 2φ(xi , t) ≈ a2 ∂
2φ(x, t)

∂x2

∣∣∣∣
x=xi

.

Using this formula in Eq. (1.1) we obtain

m R2 d2φ(xi , t)

dt2 ≈ −mgR sinφ(xi , t)+ κa
∂2φ(x, t)

∂x2

∣∣∣∣
x=xi

. (1.4)

Let us now suppose that our function φ(x, t) obeys the following partial differ-
ential equation,

m R2 ∂
2φ(x, t)

∂t2
= −mgR sinφ(x, t)+ κa

∂2φ(x, t)

∂x2
, (1.5)

where x ∈ [−Ma, Na], and

φ(−Ma, t) = 0, φ(Na, t) = 2πn, (1.6)

where n is the same integer as in (1.2). Then, it is clear that φ(xi , t) obey Eq. (1.4)
and the boundary conditions (1.2). Hence, if condition (1.3) is satisfied we obtain
the approximate solution of the initial Newton equations (1.1).

The nonlinear partial differential equation (1.5) is well-known in mathematical
physics under the jocular name ‘sinus-Gordon equation’ which alludes to the Klein–
Gordon equation. This latter equation is a cornerstone of relativistic field theory—
we shall discuss it in Sect. 1.3. The sinus-Gordon equation can be transformed to a
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standard form by dividing by mgR, and by rewriting it with the new, dimensionless
variables

τ =
√

g

R
t, ξ =

√
mgR

κa
x, �(ξ, τ ) = φ(x, t).

The resulting standard form of the sinus-Gordon equation reads

∂2�(ξ, τ )

∂τ 2 − ∂
2�(ξ, τ )

∂ξ2 + sin�(ξ, τ ) = 0. (1.7)

There are many mathematical theorems about Eq. (1.7) and its solutions. One
of them says that in order to fix the solution uniquely, one should specify the ini-
tial data, that is the values of �(ξ, τ ), and ∂�(ξ, τ )/∂τ at a chosen instant of the
rescaled time τ = τ0 and for all ξ in the interval [ξ−M , ξN ] (which corresponds to
the interval [x−M , xN ]). One should also specify the so called boundary conditions,
that is the values of � at the boundaries ξ = ξ−M , ξ = ξN of the allowed range of
ξ for all values of τ . In our case their form follows from conditions (1.2),

�(ξ−M , τ ) = 0, �(ξN , τ ) = 2πn. (1.8)

In order to specify the initial data we have to provide an infinite amount of real num-
bers (the values of�(ξ, τ0), ∂�(ξ, τ )/∂τ |τ=τ0 ) because ξ is a continuous variable.
For this reason the dynamical system defined by the sinus-Gordon equation has an
infinite number of degrees of freedom. This system, called the sinus-Gordon field,
is mathematically represented by the function �, and the sinus-Gordon equation is
its equation of motion. The sinus-Gordon field is said to be the effective field for the
set of pendulums. Let us emphasize that the sinus-Gordon effective field gives an
accurate description of the dynamics of the original system only if condition (1.3) is
satisfied. Such a reduction of the original problem to dynamics of an effective field,
or to a set of effective fields in other cases, has become an extremely efficient tool in
theoretical investigations of many physical systems considered in condensed matter
physics or particle physics.

Let us end this section with examples of nontrivial solutions of the sinus-Gordon
equation in the standard form (1.7). Let us assume that � does not depend on the
rescaled time τ , that is that � = �(ξ)—such solutions are referred to as static.
Then, Eq. (1.7) reduces to the following ordinary differential equation

�′′(ξ) = sin�(ξ), (1.9)

where ′ denotes derivative with respect to ξ . Multiplying this equation by �′ we
obtain

1

2
(�′2)′ = −(cos�)′,
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and after integration,

1

2
�
′2 = c0 − cos�, (1.10)

where c0 is a constant. The boundary conditions (1.8) imply that

c0 = 1+ 1

2
�
′2(ξ−M) = 1+ 1

2
�
′2(ξN ). (1.11)

It follows that c0 ≥ 1, and that �′(ξ−M) = ±�′(ξN ).
Let us first consider the case c0 = 1. Square root of Eq. (1.10) with c0 = 1 gives

�′ = 2 sin

(
�

2

)
, (1.12)

or

�′ = −2 sin

(
�

2

)
, (1.13)

which can easily be integrated. Apart from the trivial solution � = 0, there exist
nontrivial solutions, denoted below by �+,�−. Integrating Eqs. (1.12) and (1.13)
we find that

ln | tan

(
�

4

)
| = ±(ξ − ξ0),

where ξ0 is an arbitrary constant, and signs +,− correspond to (1.12) and (1.13),
respectively. It follows that

�±(ξ) = ±4 arctan[exp(±(ξ − ξ0))] mod 4π. (1.14)

Formula (1.14) implies that �′±(ξ) �= 0 for all finite ξ , and �′±(ξ)→ 0 if ξ →∞
or ξ →−∞. Therefore, conditions (1.11) can only be satisfied if

ξ−M = −∞, ξN = +∞.

With the help of identity

arctan(1/x) = π/2− arctan x

one can show that formula (1.14) gives in fact two solutions which obey the condi-
tions (1.8):

�±(ξ) = ±4 arctan(exp(ξ − ξ0)). (1.15)
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It is clear that

lim
ξ→+∞�±(ξ) = ±2π.

Hence, the integer n in (1.8) can be equal to 0 or±1 (n = 0 corresponds to the trivial
solution � = 0). Let us summarize the case of c0 = 1. Static solutions obeying the
boundary conditions (1.8) exist only if the range of ξ is from −∞ to +∞, and the
nontrivial solutions have the form (1.15). The solution �+ is called the soliton, and
�− the antisoliton. ξ0 is called the location of the (anti-)soliton. There are no static
solutions with |n| > 1.

Coming back to our pendulums, the solitonic solutions (1.15) are relevant if the
condition (1.3) is satisfied. The two integrals on the l.h.s. of condition (1.3) can be
rewritten as integrals of �′′± with respect to the dimensionless variables

ξ1,2 =
√

mgR

κa
x1,2.

Then, the limits of the integration ranges are given by 0 and ±α, where

α =
√

mgRa

κ
.

We see that condition (1.3) is certainly satisfied if

α→ 0,

because in this limit the range of integration shrinks to a point. The value of the
dimensionless parameter α can be made small by, e.g., choosing a wire with large
κ or by putting the pendulums close to each other (small a). Furthermore, note that
ξN = αxN/a, ξ−M = αx−M/a, x−M = −Ma, xn = Na. It follows that ξN ,−M

can tend to ±∞ when α→ 0 only if N ,M →∞. Thus, the number of pendulums
has to be very large.

The case c0 > 1 is a little bit more complicated. Equation (1.10) is equivalent to
the following equations

�′ = ±√2c0 − 2 cos�, (1.16)

which give the following relations

∫ �(ξ)
0

ds
1√

1− c−1
0 cos s

= ±√2c0(ξ − ξ−M). (1.17)

These relations implicitly define the functions�(ξ) which obey Eq. (1.9). The inte-
gral on the l.h.s. of relations (1.17) can be related to the elliptic integral of first kind
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(see, e.g. [1]), and �(ξ) is given by the inverse of an elliptic function. The constant
c0 is determined from the following equation, obtained by inserting the second of
the boundary conditions (1.8) in formula (1.17):

∫ 2πn

0
ds

1√
1− c−1

0 cos s
= ±√2c0 (ξN − ξ−M ). (1.18)

Note that now ξ−M , ξN have to be finite, otherwise the r.h.s. of this equation would
be meaningless.

One may also solve Eq. (1.16) numerically. These equations are rather simple and
can easily be tackled by computer algebra systems like Maple c© or Mathematica c©.
Equations (1.16) are considered on the interval (ξ−M , ξN ). They are formally
regarded as evolution equations with ξ playing the role of time. The boundary con-
dition �(ξ−M) = 0 is now regarded as the initial condition for �(ξ). The constant
c0 is adjusted by trial and error until the calculation gives �(ξN ) ≈ 2πn with the
desired accuracy. For example, choosing ξ−M = −10, ξN = 10 we have obtained
c0 ≈ 1.00000008 for k = ±1, c0 ≈ 1.0014 for k = ±2, and c0 ≈ 1.0398 for
k = ±3.

These solutions of the sinus-Gordon equation with c0 > 1 are pertinent to the
physics of the set of pendulums when the parameter α has sufficiently small value,
as in the case c0 = 1. For given natural numbers N ,M , the values of ξ−M , ξN
are calculated from formulas ξ−M = −αM, ξN = αN . In the limit α → 0 with
ξ−M , ξN kept non vanishing and constant, the number of pendulums has to increase
indefinitely.

1.2 Example B: The Electromagnetic Field

We have just seen an example of effective field—the sinus-Gordon field φ(x, t)—
introduced in order to provide an approximate description of the original physical
system: the pendulums. Now we shall present an example from another class of
fields, called fundamental fields. Such fields are regarded as elementary dynamical
systems—according to present day physics there are no experimental indications
that they are effective fields for an underlying system. The fundamental fields appear
in particular in particle physics and cosmology. Later on we shall see several such
fields. Here we briefly recall the classical electromagnetic field. It should be stressed
that this field is a physical entity, a part of the material world. Our main goal is to
show that Maxwell equations can be reduced to a set of uncoupled wave equations.

According to nineteenth century physics, the electromagnetic field is represented
by two functions 
E(t, 
x), 
B(t, 
x), the electric and magnetic fields respectively. Here

x is the position vector in the three dimensional space R3, and t is the time. The
fields obey Maxwell equations (we use the rationalized Gauss units)
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(a) div 
E = ρ, (c) div 
B = 0,

(b) rot 
B − 1
c
∂ 
E
∂t = 1

c

j, (d) rot 
E + 1

c
∂ 
B
∂t = 0,

(1.19)

where ρ is the electric charge density, and 
j is the electric current density. ρ and 
j
are functions of t and 
x . c is the speed of light in vacuum.

Suppose that there exist fields 
E(t, 
x), 
B(t, 
x) obeying Maxwell equations
(1.19). Acting with div operator on Eq. (1.19b), using the identity div(rot) ≡ 0 and
Eq. (1.19a), we obtain the following condition on the charge and current density

∂ρ

∂t
+ div 
j = 0. (1.20)

This is a well-known continuity equation. It is equivalent to conservation of electric
charge. From a mathematical viewpoint, it should be regarded as a consistency con-
dition for Maxwell equations—if it is not satisfied they do not have any solutions.

Equation (1.19c) is satisfied by any field 
B of the form


B = rot 
A, (1.21)

where 
A(t, 
x) is a (sufficiently smooth) function of 
x . Vice versa, one can prove that
any 
B which obeys Eq. (1.19c) has the form (1.21). From (1.21) and Eq. (1.19d)
follows the identity

rot

(

E + 1

c

∂ 
A
∂t

)
= 0.

There is a mathematical theorem (Poincaré lemma) which says that identity of the
form rot 
X = 0 implies that the vector function 
X is a gradient of a scalar function
σ , 
X = ∇σ . Therefore, there exists function A0 such that


E + 1

c

∂ 
A
∂t
= −∇A0

(the minus sign is dictated by tradition). Thus,


E = −1

c

∂ 
A
∂t
−∇A0. (1.22)

The functions A0, 
A are called gauge potentials for the electromagnetic field.
Note that the choice of A0, 
A for a given electric and magnetic fields is not unique—
instead of A0, 
A one may also take


A′(t, 
x) = 
A(t, 
x)−∇χ(t, 
x), A′0(t, 
x) = A0(t, 
x)+ 1

c

∂χ(t, 
x)
∂t

, (1.23)
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where χ(t, 
x) is a sufficiently smooth and otherwise arbitrary function of the indi-
cated variables. The freedom of choosing the gauge potentials is called the gauge
symmetry, and formulas (1.23) can be regarded as transformations of the gauge
potentials, called the gauge transformations. Often they are called local gauge trans-
formations in order to emphasize the fact that the function χ is space and time
dependent. One should keep in mind the fact that the presence of the gauge trans-
formations is a consequence of our choice of the mathematical description in terms
of the potentials. The fields 
E, 
B do not change under these transformations. The
potentials A0, 
A and A′0, 
A′ from formulas (1.23) describe the same physical situa-
tion. The freedom of performing the gauge transformations means that the potentials
form too large a set of functions to describe a given physical configuration of the
electromagnetic field. Nevertheless, it turns out that the description in terms of the
potentials is the most economical one, especially in quantum theory of particles
or fields interacting with the electromagnetic field. In fact, it has been commonly
accepted that the best mathematical representation of the electromagnetic field—
one of the basic components of the material world—is given by the gauge potentials
A0, 
A.

Expressing 
E and 
B by the gauge potentials we have explicitly solved Eqs.
(1.19c, d). Now let us turn to Eqs. (1.19a, b). First, we use the gauge transformations
to adjust the vector potential 
A in such a way that

div 
A = 0. (1.24)

This condition is known as the Coulomb gauge condition. One can easily check that
for any given 
A one can find such gauge function χ that 
A′ obeys that condition,
provided that div 
A vanishes sufficiently quickly at the spatial infinity. For that mat-
ter, from a physical viewpoint it is sufficient to consider electric and magnetic fields
which smoothly1 vanish at the spatial infinity. For such fields there exist potentials
A0, 
A which also smoothly vanish as |
x | → ∞. It is quite natural to assume that the
gauge transformations leave the potentials within this class. Therefore, we assume
that the gauge function χ smoothly vanishes at the spatial infinity. We might have
assumed that it could approach a non vanishing constant in that limit. However, such
constant gives trivial gauge transformation because then the derivatives present in
formulas (1.23) vanish. For this reason it is natural to choose this constant equal
to zero. Note that now the Coulomb gauge condition fixes the gauge completely.
By this we mean that if both 
A and 
A′, which are related by the local gauge trans-
formation (1.23), obey the gauge condition, then χ = 0, that is the two potentials
coincide. This follows from the facts that if (1.24) is satisfied by 
A and 
A′ then χ
obeys Laplace equation 
χ = 0, and the only vanishing at the spatial infinity and
nonsingular solution of this equation is χ = 0.

1 This means that all derivatives of the fields with respect to the Cartesian coordinates xi also
vanish at the spatial infinity.
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The condition that χ vanishes at the spatial infinity is also welcome for another
reason—it makes a clear distinction between (local) gauge transformations and
global transformations. The global transformations will be introduced in Chap. 3.
They are given by χ which are constant in time and space. Such transformations can
act nontrivially on fields other than the electromagnetic field. With the definitions
we have adopted, the global transformations are not contained in the set of gauge
transformations.

Equations (1.19a,b) are reduced in the Coulomb gauge to the following equations


A0 = −ρ, 1

c2

∂2 
A
∂t2

−
 
A + 1

c
∇ ∂A0

∂t
= 1

c

j . (1.25)

Solution of the first equation has the form

A0(t, 
x) = 1

4π

∫
d3x ′ ρ(t, 
x

′
)

|
x − 
x ′ | , (1.26)

provided that ρ vanishes sufficiently quickly at the spatial infinity to ensure that
the integral is convergent. The r.h.s. of formula (1.26) is often denoted as −
−1ρ.
Because the potential A0 is given just by integral (1.26)—there is not any evolution
equation for it to be solved—it is not a dynamical variable. In the final step, formula
(1.26) is used to eliminate A0 from the second of the Eqs. (1.25). We also eliminate
∂ρ/∂t with the help of continuity Eq. (1.20). The resulting equation for 
A can be
written in the form

1

c2

∂2 
A
∂t2

−
 
A = 1

c

jT , (1.27)

where


jT = 
j − ∇(
−1div 
j), (1.28)

and


−1div 
j(t, 
x) = − 1

4π

∫
d3x ′ div 
j(t, 
x ′)

|
x − 
x ′ | .

Of course, we assume that div 
j vanishes sufficiently quickly at the spatial infinity.

jT is called the transverse part of the external current 
j . The reason for such name
is that

div 
jT ≡ 0, (1.29)

as it immediately follows from the definition of 
jT . For the same reason, the poten-
tial 
A which obeys the Coulomb gauge condition is called the transverse vector
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potential. Note that identity (1.29) is a necessary condition for the existence of solu-
tions of Eq. (1.27)—applying the div operator to both sides of (1.27) and using the
Coulomb condition we would obtain a contradiction if (1.29) was not true.

To summarize, the set of Maxwell equations (1.19) has been reduced to Eq. (1.27)
and to the Coulomb gauge condition (1.24). Equation (1.27) determines time evo-
lution of the electromagnetic field. It plays the same role as Newton equation in
classical mechanics. From a mathematical viewpoint, Eq. (1.27) is a set of three
linear, inhomogeneous, partial differential equations: one equation for each compo-
nent Ai of the vector potential.2 These equations are decoupled, that is they can be
solved independently from each other. They are called wave equations.

Similarly as in the case of the sinus-Gordon equation (1.7), in order to determine
uniquely a solution of Eq. (1.27) we have to specify the initial data at the time t0:


A(t0, 
x) = 
f1(
x), ∂ 
A(t, 
x)
∂t

∣∣∣∣∣
t=t0

= 
f2(
x), (1.30)

where 
f1, 
f2 are given vector fields, vanishing at the spatial infinity. Moreover, in
order to ensure that the Coulomb gauge condition is satisfied at the time t = t0 we
assume that

div 
f1 = 0, div 
f2 = 0. (1.31)

It turns out that conditions (1.31) and Eq. (1.27) imply that div 
A = 0 for all times t .
The point is that Eq. (1.27) implies that div 
A obeys the homogeneous equation

1

c2

∂2div 
A
∂t2 −
(div 
A) = 0.

Due to the assumptions (1.31) the initial data for this equation are homogeneous
ones, that is

div 
A|t=t0 = 0, ∂t div 
A|t=t0 = 0,

where ∂t is a short notation for the partial derivative ∂/∂t . We shall see in the next
section that this implies that

div 
A = 0

for all times. In consequence, we do not have to worry about the Coulomb gauge
condition provided that the initial data (1.30) obey the conditions (1.31)—the
Coulomb gauge condition has been reduced to the constraint on the initial data.

2 We adhere to the convention that vectors denoted by the arrow have components with upper
indices.
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1.3 Solutions of the Klein–Gordon Equation

Considerations of the electromagnetic field have led us to the evolution equation of
the form

�φ = η(t, 
x), (1.32)

where

� ≡ 
− 1

c2

∂2

∂t2 ,

φ is a function of (t, 
x), and η is an a priori given function, called the source. The
wave Eq. (1.32) is a particular case of more general Klein–Gordon equation

�φ − m2φ = η(t, 
x), (1.33)

where m2 is a real, non-negative constant of the dimension cm−2, and φ is a real
or complex function. The Klein–Gordon equation is the basic evolution equation
in relativistic field theory. It also appears in non relativistic settings. For example,
sinus-Gordon equation (1.7) reduces to the Klein–Gordon equation with just one
spatial variable ξ if we consider � close to 0, because in this case sin� can be
approximated by �. Therefore, one should be acquainted with the solutions of the
Klein–Gordon equation.

Let us introduce concise, four-dimensional relativistic notation:

x = (ct, 
x), k = (k0, 
k), kx = ck0t − 
k 
x, d4x = cd3xdt, d4k = d3kdk0.

Here k0 is a real variable, and 
k is a real 3-dimensional vector called the wave vector.
k0 and 
k have the dimension cm−1. ω = ck0 is a frequency. Furthermore, we shall
often use x0 = ct instead of the time variable t and call it time too. This notation
reflects Lorentz invariant structure of space-time. In particular, the form of kx cor-
responds to diagonal metric tensor of the space-time (ημν) = diag(1,−1,−1,−1),
where diag denotes the diagonal matrix with the listed elements on its diagonal.
Note that kx is dimensionless.

Because the Klein–Gordon equation is linear with respect to φ and has constant
coefficients, we may use the Fourier transform technique for solving it. We denote
by φ̃(k) Fourier transform of φ(x). It is defined as follows

φ̃(k) =
∫

d4x eikxφ(x). (1.34)

The inverse Fourier formula has the form

φ(x) = 1

(2π)4

∫
d4k e−ikxφ̃(k). (1.35)
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Analogously,

η̃(k) =
∫

d4x eikxη(x).

The Klein–Gordon equation is equivalent to the following algebraic (!) equation
for φ̃

(k2
0 − 
k2 − m2) φ̃(k) = η̃(k). (1.36)

Its solutions should be sought in a space of generalized functions. Excellent intro-
duction to theory of generalized functions with its applications to linear partial dif-
ferential equations can be found in, e.g., [2]. Some pertinent facts can be found in
Appendix A.

One can prove that the most general solution of Eq. (1.36) has the form

φ̃(k) = “
η̃(k)

k2
0 − 
k2 − m2

”+ C(k0, 
k) δ(k2
0 − 
k2 − m2), (1.37)

where C(k0, 
k) is an arbitrary smooth function of the indicated variables. The first
term on the r.h.s. denotes a particular solution of the inhomogeneous Eq. (1.36).
We have put the quotation marks around it because in fact that term written as it
stands does not have any mathematical meaning. We explain and solve this problem
shortly. The second term on the r.h.s. gives the general solution of the homogeneous
equation

(k2
0 − 
k2 − m2) φ̃(k) = 0.

Formula (1.37) is in accordance with the well-known fact that the general solu-
tion of an inhomogeneous linear equation can always be written as the sum of a
particular solution of that equation and of a general solution to the corresponding
homogeneous equation.

The problem with the term in quotation marks is that it is not a generalized func-
tion. In consequence, its Fourier transform, formula (1.35), does not have to exist,
and indeed, it does not exist. One can see this easily by looking at the integral over
k0—there are non integrable singularities of the integrand at k0 = ±ω(
k)/c, where

ω(
k) = c

√

k2 + m2. (1.38)

In order to obtain the correct formula for the solution we first find a generalized
function G̃(k) which obeys the equation

(k2
0 − 
k2 − m2) G̃(k) = 1. (1.39)



14 1 Introduction

The corresponding G(x) is calculated from formula analogous to (1.35). It obeys
the following equation

(�− m2)G(x) = δ(x), (1.40)

and is called Green’s function of the Klein–Gordon equation. Knowing G̃(k), we
may replace the “ ” term by the mathematically correct expression

“
η̃(k)

k2
0 − 
k 2 − m2

” → η̃(k)G̃(k),

provided that η̃ is a smooth function of k0, 
k.
Important Green’s functions for the Klein–Gordon equation have Fourier trans-

forms of the form

G̃(k) = c2

2ω(
k)
(

1

ck0 − ω(
k)± i0+
− 1

ck0 + ω(
k)± i0+

)
. (1.41)

The meaning of the symbol ±i0+ is explained in the Appendix. The choice +i0+
in both terms of formula (1.41) gives so called retarded Green’s function

G R(x−y) = c2

(2π)4

∫
d4k

e−ik(x−y)

2ω(
k)
(

1

ck0 − ω(
k)+ i0+
− 1

ck0 + ω(
k)+ i0+

)
.

(1.42)

The integral over k0 can be calculated with the help of contour integration in the
plane of complex k0. The trick consists in completing the line of real k0 to a closed
contour by adding upper (lower) semicircle with the center at k0 = 0 and infinite
radius when x0 − y0 < 0 (x0 − y0 > 0). We obtain

G R(x − y) = −ic

2(2π)3
�(x0 − y0)

∫
d3k

ω(
k)
(

e−ik(x−y) − eik(x−y)
)∣∣∣∣

k0=ω(
k)/c
,

(1.43)

where �(x0 − y0) denotes the step function.3

Green’s function G R is used in order to obtain a particular solution of the inho-
mogeneous Klein–Gordon equation, denoted below by φη. Namely,

φη(x) =
∫

d4 y G R(x − y)η(y). (1.44)

3 �(x) = 1 for x > 1, �(x) = 0 for x < 0. Value of �(0) does not have to be specified because
the step function is used under the integral. Formally, the step function is a generalized function,
and for such functions their values at a given single point are not defined. Therefore, in that theory
the question what is the value of �(0) is meaningless.
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This solution is causal in the classical sense: the values of φη(x0, 
x) at a certain
fixed instant x0 are determined by values of the external source η(y0, 
y) at earlier
times, i.e., y0 ≤ x0. More detailed analysis shows that the contributions come only
from the interior and boundaries of the past light-cone with the tip at the point x ,
that is from y such that (x − y)2 ≥ 0, x0 − y0 ≥ 0. This can be seen from the
following formula, see Appendix 2 in [3],

G R(x) = − 1

2π
�(x0)

[
δ(x2)−�(x2)

m

2
√

x2
J1(m

√
x2)

]
,

where x2 = (x0)2 − 
x2, and J1 is a Bessel function. Therefore, waves of the field
emitted from a spatially localized source η travel with velocity not greater than
the velocity of light in vacuum c. Choosing the −i0+ in formula (1.41) we would
obtain so called advanced Green’s function, which is anti-causal—in this case φη(x)
is determined by values of η(y) in the future light cone, y0 ≥ x0, (x − y)2 ≥ 0.
In general, the choice of Green’s function is motivated by the underlying physical
problem. On purely mathematical grounds there are infinitely many Green’s func-
tions. All have the form G R(x) + φ0(x), where φ0(x) is a certain solution of the
homogeneous Klein–Gordon equation.

Now let us turn to the general solution of the homogeneous Klein–Gordon equa-
tion. The second term in formula (1.37) gives

φ0(x) = 1

(2π)4

∫
d4k e−ikxC(k0, 
k)δ(k2

0 − 
k2 − m2). (1.45)

With the help of formula

δ(k2
0 − 
k2 − m2) = δ(k0 − ω(
k)/c)

2ω(
k)/c + δ(k0 + ω(
k)/c)
2ω(
k)/c

φ0 can be written in the form

φ0(x) =
∫

d3k√
2(2π)3ω(
k)

(
a+(
k)e−ikx + a−(
k)eikx

)∣∣∣
k0=ω(
k)/c

, (1.46)

where

a±(
k) = C(±ω(
k),±
k)
(2π)2

√
4πω(
k)

.

The functions a±(
k) are called the momentum space amplitudes of the field φ0. The
part of φ0(x) with a+ (a−) is called the positive (negative) frequency part of the
Klein–Gordon field. If we require that all values of φ(x) are real, we have to restrict
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the amplitudes a± by the condition

a∗+(
k) = a−(
k), (1.47)

where ∗ denotes the complex conjugation.
Formula (1.46), regarded as a relation between the amplitudes and the field φ0,

can be inverted. It is convenient first to introduce the operator P̂
k(y0),

P̂
k(y
0)φ(y0, 
y) = i

∫
d3 y

(
f ∗
k (y

0, 
y)∂φ(y
0, 
y)

∂y0
−
∂ f ∗
k (y

0, 
y)
∂y0

φ(y0, 
y)
)
,

(1.48)
where f
k is a normalized plane wave

f
k(y
0, 
y) = e−iky√

2(2π)3ω(
k)
(1.49)

with k0 = ω(
k)/c. Simple calculations show that

P̂
k(y
0) f
k′(y

0, 
y) = δ(
k − 
k′), P̂
k(y
0) f ∗
k′(y

0, 
y) = 0, (1.50)

for any choice of y0. It follows that

P̂
k(y
0)φ0(y

0, 
y) = a+(
k). (1.51)

Note that there is no restriction on the choice of y0 present on the l.h.s. of this
formula.

Formulas (1.51) and (1.47) inserted in formula (1.46) give the following identity

φ0(x) =
∫

d3k
(

f
k(x)P̂
k(y
0)φ0(y

0, 
y)+ c.c.
)
. (1.52)

Here c.c. stands for the complex conjugate of the preceding term. At this point it is
convenient to define several new functions:

�(+)(x) = − ic

2(2π)3

∫
d3k

ω(
k)e
−ikx
∣∣∣∣
k0=ω(
k)/c

,

�(−)(x) = (�(+)(x))∗, �(x) = �(+)(x)+�(−)(x), (1.53)

called Pauli–Jordan functions. They obey the homogeneous Klein–Gordon equa-
tion. After simple manipulations, identity (1.52) can be rewritten in the following
form
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φ0(x) = −
∫

d3 y

[
�(x − y)

∂φ0(y)

∂y0 + ∂�(x − y)

∂x0 φ0(y)

]
. (1.54)

This very important formula gives an explicit solution to the homogeneous Klein–
Gordon equation in terms of the initial data. We just take y0 = ct0, where t0 is the
initial time instant at which φ0(y0, 
y), ∂φ0(y0, 
y)/∂y0|y0=ct0 are explicitly speci-
fied as the initial data. In particular, we see from formula (1.54) that vanishing initial
data imply that φ0(x) = 0. This result was used at the end of the previous section.

Explicit formula for the Pauli–Jordan function �(x) has the form (Appendix 2
in [3])

�(x) = − 1

2π
sign(x0)

[
δ(x2)−�(x2)

m

2
√

x2
J1(m

√
x2)

]
,

where

sign(x0) = +1 if x0 > 0, sign(x0) = −1 if x0 < 0.

One can see from this formula that the initial data are propagated in space with the
velocity not greater than c. In particular, if the initial data taken at the time t0 vanish
outside certain bounded region V in space, φ0(x) at later times t > t0 certainly
vanishes at all points 
x which can not be reached by a light signal emitted from V .
Another implication of formula (1.54) is the Huygens principle: the value of φ0 at
the point 
x at the time t is a linear superposition of contributions from all points in
space at which the initial data do not vanish (and which do not lie too far from 
x).
This principle reflects the linearity of the Klein–Gordon equation.

Exercises

1.1 (a) Check that the functions

φ+,v(ξ, τ ) = 4 arctan (exp[γ (ξ − vτ)]) ,
φ+,+(ξ, τ ) = 4 arctan

(
v sinh(γ ξ)

cosh(vγ τ)

)
, φ+,−(ξ, τ ) = 4 arctan

(
sinh(vγ τ)

v cosh(γ ξ)

)
,

where γ = 1/
√

1− v2 and v is a real parameter such that 0 ≤ |v| < 1, are solutions
of the sinus-Gordon equation (1.7). Justify their interpretation: φ+,v represents the
soliton moving with constant velocity v, φ+,+—two solitons, φ+,−—a pair soliton
+ antisoliton.
(b) Comparing the asymptotic forms of solutions at τ → −∞ and τ → +∞ show
that there is a repulsive force between the two solitons, and an attractive one in the
case of the soliton + antisoliton pair.
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(c) Check that the substitution v = iu, u-real, in the φ+,− solution gives real-valued
solution of the sinus-Gordon equation which is periodic in time. Interpret this solu-
tion as a bound state of the soliton with the antisoliton.
Hints: In the cases of φ+,+, φ+,− consider the limits τ →±∞. Use formula

arctan
x − y

1+ xy
= arctan x − arctan y.

In order to show the presence of the forces, analyze shifts of the position of the
soliton and the antisoliton with respect to the trajectory of the single (anti-)soliton.

1.2 (a) The advanced Green’s function G A for the Klein–Gordon equation is
obtained by choosing −i0+ in both terms in formula (1.41). Obtain formula analo-
gous to (1.43) in this case.
(b) Prove that also G F (x) defined as

G F (x) = 1

(2π)4

∫
d4k

e−ikx

k2 − m2 + i0+
,

where k2 = k2
0 − 
k2, is another Green’s function for the Klein–Gordon equation.

G F is related to the free propagator of the scalar field, and it plays an important role
in quantum theory of such fields. What is the choice of the signs± in formula (1.41)
in this case?

1.3 Using G R prove that


A(t, 
x) = 1

4πc

∫
d3 y


jT (t, 
y)
|
x − 
y| ,

where t = t − |
x − 
y|/c, is a solution of the wave Eq. (1.27).



Chapter 2
The Euler–Lagrange Equations and Noether’s
Theorem

Abstract Stationary action principle and the general form of the Euler–Lagrange
equations. Notion of symmetry in classical field theory. Noether’s conserved
currents.

2.1 The Euler–Lagrange Equations

We know from classical mechanics that equations of motion for many systems can
be derived from the stationary action principle. This fact is rather mysterious if
regarded on a purely classical level. It turns out that actually it is a simple conse-
quence of the fact that such classical systems can be regarded as a classical limit of
quantum models. We shall see later on in Chap. 11 how the classical action appears
in the quantum theory. This situation does not change when we pass to field theory,
that is if the number of degrees of freedom is infinite.

Let us recall the basic facts about the stationary action principle in classical
mechanics. For simplicity, we consider the case of a particle with just one degree of
freedom, that is with one-dimensional configuration space. Let q be a coordinate on
that space. The trajectory of the particle is given by the function of time q(t). The
action functional is defined on a space of smooth trajectories q(t). By definition, it
has the following form

S[q] =
∫ t ′′

t ′
dt L(q(t), q̇(t); t), (2.1)

where L is called Lagrange function. All considered trajectories q(t) start from a
point q ′ at the time t ′, and end at a point q ′′ at the time t ′′,

q(t ′) = q ′, q(t ′′) = q ′′. (2.2)

The stationary action principle says that the actual (physical) trajectory qphys(t) of
the particle obeys the condition

H. Arodź, L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
DOI 10.1007/978-3-642-15624-3_2, C© Springer-Verlag Berlin Heidelberg 2010
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δS[q]
δq(t)

∣∣∣∣
q(t)=qphys(t)

= 0. (2.3)

The object on the l.h.s. of this formula is called the functional, or variational, deriva-
tive of the action functional S with respect to q(t). Such a derivative is defined
as follows. Consider a family of trajectories of the form q(t) + δq(t), where the
trajectory q(t) is fixed, and δq(t) is an arbitrary smooth function of t such that

δq(t ′) = 0 = δq(t ′′). (2.4)

Thus, the trajectory q(t)+δq(t) obeys the condition (2.2). It is assumed also that all
time derivatives of δq(t) obey the conditions (2.4). Next, we consider the difference
S[q + εδq] − S[q], where ε is a real number. The functional derivative δS/δq is
defined by the following formula

lim
ε→0

S[q + εδq] − S[q]
ε

=
∫ t ′′

t ′
dt
δS[q]
δq(t)

δq(t). (2.5)

In the case of the action functional (2.1) with a smooth Lagrange function1 this
definition gives

δS[q]
δq(t)

= ∂L

∂q(t)
− d

dt

(
∂L

∂q̇(t)

)
, (2.6)

and the condition (2.3) acquires the well-known form of Euler–Lagrange equation
for qphys(t).

As known from courses on classical mechanics, this formalism can easily be
generalized to the case of an arbitrary finite number of degrees of freedom, when
instead of the single coordinate q we have a finite number of them, qi (t), i = 1 . . . n.

Lagrangian formalism does not guarantee that the Euler–Lagrange equations
derived from a given Lagrange function lead to acceptable equations of motion,
from which one could predict the actual trajectory of the particle. For example,
L = q gives the Euler–Lagrange ‘equation’ of the form 1=0. Another such exam-
ple: L = q̇ f (q) gives 0=0 as the Euler–Lagrange equation for any smooth function
f . In the former example there is no solution, while in the latter case arbitrary
smooth function2 q(t) is a solution, therefore the equation has no predictive power.
The second example is an extreme case of degenerate Euler–Lagrange equations.

Another example of problematic Euler–Lagrange equations can appear when the
number of degrees of freedom is greater than 1. In the following, we use the short
notation q = (qk) for the full set of coordinates on the configuration space. The
Euler–Lagrange equations can be written in the following form

1 L is regarded as a function of q, q̇ and t .
2 This assumption has been made in the derivation of the Euler–Lagrange equation (2.6).
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Hik(q, q̇)q̈
k = ∂L

∂qi
− Bik(q, q̇)q̇

k − ∂2L

∂q̇ i∂t
, (2.7)

where

Hik = ∂2L

∂q̇ i∂q̇k
, Bik = ∂2L

∂ q̇ i∂qk
.

In mathematical theorems about the existence and uniqueness of solutions of a
system of ordinary differential equations, it is usually assumed that the system can
be written in Newton form, that is with extracted highest order derivatives,

q̈k = Fk(q, q̇). (2.8)

This is possible if the symmetric matrix Ĥ = (Hik) is nonsingular, detĤ �= 0.
In the opposite case, there exists at least one eigenvector e0 = (ek

0) of Ĥ with the
eigenvalue equal to 0,

Hikek
0 = 0.

Let us multiply both sides of Eq. (2.7) by ei
0 and sum over i . We obtain the following

condition

ei
0

(
∂L

∂qi
− Bik(q, q̇)q̇

k − ∂2 L

∂q̇i∂t

)
= 0. (2.9)

The eigenvector e0 is a function of (q, q̇) because Ĥ depends on these variables.
Therefore, condition (2.9) is a relation between qi , q̇k . Notice that its existence
follows from properties of the Lagrange function only. For this reason it is called a
primary Lagrangian constraint. If there are other eigenvectors of Ĥ with zero eigen-
value we obtain more of these constraints. The total number of nontrivial primary
constraints is not larger than the number of linearly independent eigenvectors of
Ĥ with zero eigenvalues.3 If the matrix Ĥ has K such eigenvectors, we can extract
from the Euler–Lagrange equations (2.7) only n−K accelerations q̈ i . The existence
and uniqueness of the solutions in such a case is not obvious. These problems are
analyzed in a branch of classical mechanics called the theory of constrained systems.
Analogously, there exist constrained field theoretic systems. We shall see examples
of such systems in Chap. 4.

As a final remark about Euler–Lagrange equations in classical mechanics, let
us note that the stationary action principle, which follows from quantum mechanics,
has led to the variational problem in which, by assumption, both ends of the physical
trajectory qphys are fixed. Such a problem is not always equivalent to the initial

3 It may happen that some of the relations (2.9) reduce to trivial identities like 0 = 0.
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value problem, in which we fix the initial position and velocity. For example, if the
configuration space of a particle is a circle, the variational problem has infinitely
many solutions, while the initial value problem has just one.

The field theory is obtained when the number of degrees of freedom increases to
infinity, n → ∞. In this case, however, more popular is the description in terms of
functions of continuous variables. Thus, qi (t) is replaced by a set of N functions of
x = (t, 
x), denoted in this chapter by ua(x), a = 1 . . . N . We assume that (t, 
x) ∈
R4. This is sufficient for most applications in the theory of particles or condensed
matter systems, but in cosmology with a strong gravitational field one has to use
more general Riemann spaces with non vanishing curvature instead of R4. Typical
action functional has the following form

S[u] =
∫ t ′′

t ′
dt
∫

R3
d3x L(ua(x), ∂μua(x); x), (2.10)

where ∂μua = ∂ua/∂xμ. L is called the density of the Lagrange function, or the
Lagrangian in short. In most cases it does not contain second or higher order deriva-
tives of the fields ua(x). The explicit dependence on x usually appears when the
fields ua , which are the dynamical variables, interact with certain external fields,
which are represented by explicitly given functions of x . The external fields are
fixed a priori—there is no equation of motion for them to be solved.

The stationary action principle says that physical fields ua obey the Euler–
Lagrange equations

δS[u]
δua(x)

= 0, (2.11)

where, again, the ends of all trajectories ua(t, 
x) of the fields are fixed, that is

ua(t
′, 
x) = u′a(
x), ua(t

′′, 
x) = u′′a(
x). (2.12)

Here u′a, u′′a are a priori given functions of 
x . Moreover, boundary conditions for ua

at the spatial infinity have to be specified, that is we assume that

lim
|
x |→∞

ua(t, 
x) = u∞a (t, θ, φ), (2.13)

where u∞a (t, θ, φ) is an a priori fixed function of time t , and of the spherical angles
θ, φ which parameterize the sphere of infinite radius. The definition of the functional
derivative in the case of the fields ua essentially coincides with (2.5). In the new
notation, it is written as

lim
ε→0

S[ua(x)+ εδua(x)] − S[ua]
ε

=
∫ t ′′

t ′
dt
∫

R3
d3x

δS[ua]
δub(t, 
x)δub(t, 
x), (2.14)
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where the test functions δub(t, 
x) vanish together with all their partial derivatives
when t = t ′, t = t ′′, or when |
x | → ∞. Then, the trajectories u + εδu obey the
conditions (2.12) and (2.13). The definition (2.14) applied to the action functional
(2.10) gives

δS[ub]
δua(t, 
x) =

∂L
∂ua(t, 
x) − dμ

(
∂L

∂(ua,μ(t, 
x))
)
. (2.15)

In this formula dμ denotes the total derivative with respect to xμ—the variables xμ

can appear in ∂L
∂(ua,μ(x))

through ua(x) and ua,μ(x) = ∂μua(x), as well as explicitly
(that is through the external fields).

We shall see many examples of Euler–Lagrange equations (2.11) in field theory
in the next chapters. The examples considered in the previous chapter are also of the
Lagrange type:

Lsinus−Gordon = 1
2 (∂τ�)

2 − 1
2 (∂ξ�)

2 + cos�− 1, (2.16)

LMaxwell = − 1
4 FμνFμν − 1

c jμ(x)Aμ(x), (2.17)

where

Fμν = ∂μAν − ∂ν Aμ, j0 = c ρ, ∂0 = 1

c
∂t .

Let us end this section with three short remarks. First, various Lagrangians can
give identical Euler–Lagrange equations. For example,

L′ = L+ dμFμ(ua(x), x) (2.18)

gives the same Euler–Lagrange equations as L.
Second, we have assumed that in the field theory case Lagrangian L depends on

ua(x) and ∂μua(x) taken at the same space-time point x . Lagrangians of this type
are called local.

Third, one can generalize the formalism presented above to include Lagrangians
which contain partial derivatives of ua of the second or higher order. In fact, almost
no changes are needed—only the r.h.s. of formula (2.15) should be changed appro-
priately. It is not difficult to compute it. Lagrangian L can also contain derivatives
of an order higher than any fixed natural number. In such a case the Lagrangian is
usually regarded as a nonlocal one. The point is, that the Taylor series relates the
field with shifted arguments to derivatives of all orders of the field with unshifted
arguments, namely

ua(x + x0) = ua(x)+ xμ0 ∂μua(x)+ 1

2
xμ0 xν0 ∂μ∂νua(x)+ · · · .



24 2 The Euler–Lagrange Equations and Noether’s Theorem

For example, a nonlocal Lagrangian containing the term ua(x)ua(x + x0) with con-
stant non vanishing x0 can be written as a sum of local terms with derivatives of all
orders.

2.2 Noether’s Theorem

Noether’s theorem states that invariance of a field theoretical model under a contin-
uous group of transformations G implies the existence of integrals of motion, that
is functionals of fields and their derivatives which are constant in time provided that
the fields obey the corresponding equations of motion.

The transformations forming the continuous group G can act both on space-time
points x and the fields ua . The space-time points are represented by their Cartesian
coordinates, x = (xμ), and the space-time metric in these coordinates is given by
the diagonal matrix η = diag(1,−1 − 1 − 1). The fields are represented by the
functions ua(x) of the coordinates. Elements of G are denoted by ( f (ω), V (ω)),
where ω = (ω1, ω2, . . . ωs) = (ωα)α=1,2,...s is a set of continuous, real parameters
(often called coordinates) on the group, s is called the dimension of the group G.
In fact, for our purposes it is enough to consider only a certain vicinity of the unit
element of the group (the identity transformation). For this reason we do not have
to specify the range of values of the parameters ωα . However, we adopt the usual
convention that ω = 0 corresponds to the identity transformation which does not
change either x or ua . Furthermore, we assume that f (ω), F(ω) depend on the
parameters ωα smoothly, that is that x ′, u′a(x ′) given by formulas (2.19) and (2.20)
below, are smooth functions of ωα in certain vicinity of ω = 0.

In the present chapter we assume that the parameters ω do not depend on the
space-time coordinates xμ. Such transformations are called global ones,4 to distin-
guish from local symmetry transformations for which ω = ω(x). We have already
seen the example of local symmetry: the gauge transformations of the potentials
Aμ(x) discussed in the previous chapter.

The transformations f, F act on x and ua(x), respectively, as follows:

x → x ′ = f (x;ω), (2.19)

ua(x)→ u′a(x ′) = Fa(ub(x);ω). (2.20)

As elements of the group, these transformations are invertible. Hence, the functions
ub(x) can be expressed by the functions u′c(x ′), and x by x ′.

In the calculations presented below we need an infinitesimal form of these trans-
formations

4 Nevertheless, up to formula (2.30) below we do not make use of the assumption that the transfor-
mations are global. Only the derivation of Noether’s identity (2.31) from formula (2.30) depends
on it.
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x ′ = x + ωαξα(x)+ . . . , (2.21)

u′a(x) = ua(x)+ ωαDαua(x)+ . . . , (2.22)

where

ξα(x) = ∂ f (x;ω)
∂ωα

∣∣∣∣
ω=0

, (2.23)

Dαub(x) = ∂Fb(u(x);ω)
∂ωα

∣∣∣∣
ω=0

− ξμα (x)
∂ub(x)

∂xμ
. (2.24)

The dots denote terms of the second or higher order in ωα . Formula (2.21) is
obtained by taking the Taylor expansion of the r.h.s. of formula (2.19) with respect
to ωα around ω = 0. It is consistent with the condition x ′(ω = 0) = x . Formula
(2.22) follows from the Taylor expansion of both sides of formula (2.20)—on the
l.h.s. of it, formula (2.21) for x ′ is used. The four-vectors ξα(x) = (ξμα (x)), where
α = 1 . . . s, are called Killing four-vectors. Dαub(x) is called Lie derivative of ub

in the direction ξα at the point x .
Let us now specify what we mean by the invariance of the field theoretic model

with Lagrangian L(ua(x), ∂μua(x); x) under transformations (2.19) and (2.20). By
S�[u]we denote the action functional calculated for the fields ua on the whole space
R3 in the time interval [t ′, t ′′]:

S�[u] =
∫
�

d4x L(ua(x), ∂μua(x); x),

where

� = {(ct, 
x) : t ∈ [t ′, t ′′], 
x ∈ R3}.

Transformation (2.19) acting on � gives a new region �′:

�′ = f (�;ω).

The action functional calculated for the new functions u′a(x ′) in the new region �′
has the form

S�′ [u′] =
∫
�′

d4x ′ L(u′a(x ′),
∂u′a(x ′)
∂x ′μ ; x ′).

We say that the transformation ( f, F) is a symmetry transformation of our model if

S�′ [u′] = S�[u] +
∫
∂�

d Sμ Kμ(u; x;ω), (2.25)
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for all choices of t ′, t ′′. In condition (2.25) x ′, u′a are related to x, ua by trans-
formations (2.19) and (2.20), and ∂� denotes the three-dimensional boundary of
the four-dimensional region �. Note that condition (2.25) is a relation between the
action functionals computed for arbitrary functions ua(x), even those which do not
obey the Euler–Lagrange equations. In field theoretical jargon, one says that (2.25)
is an ‘off-shell’ condition. ‘On-shell’ would mean that ua(x) were solutions of the
Euler–Lagrange equations.

The last term on the r.h.s. of this formula is called the surface term. With the help
of Stokes theorem it can also be written as the four-dimensional volume integral

∫
∂�

d SμKμ(u; x;ω) =
∫
�

d4x
d K ρ

dxρ
,

where d/dxρ denotes the total derivative.
Postulate (2.25) might seem quite strange. Similarly as in the case of stationary

action principle, its origin lies in quantum mechanics. In particular, the surface term
can be related to a change of phase factor of state vectors. Nevertheless, one can
show also on purely classical grounds, that the postulate (2.25) correctly captures
the idea of the symmetry of the model.5 One expects that in such a model, symmetry
transformations acting on physically admissible fields give physically admissible
fields. Which fields are physically admissible? By assumption, those fields which
are solutions to the pertinent Euler–Lagrange equations. Therefore, it is important
to check whether the symmetry transformations applied to a solution of the Euler–
Lagrange equations give a solution to the same equations. Below we show that
indeed, this is the case.

Let us compute the functional derivative δ/δua(x) of both sides of condition
(2.25). The surface term has a vanishing derivative because the test functions used
in the definition (2.14) vanish on ∂�. The derivative of S�[u] also vanishes because
we now consider the fields ua(x) which obey the Euler–Lagrange equations (2.11).
The r.h.s. is regarded as a composite functional of ua , and in order to compute its
functional derivative we use a chain rule analogous to the one well known from
calculus. Hence, if ua(x) are solutions of the Euler–Lagrange equations,

δS�[u]
δub(y)

=
∫
�

d4x
δS�′ [u′]
δu′a(x ′)

∣∣∣∣
u′(x ′)=F(u(x);ω)

δFa(u(x);ω)
δub(y)

= 0. (2.26)

Let us introduce the new notation

δFa(u(x);ω)
δub(y)

≡ δF

δu
(a, x; b, y).

5 One should not confuse the symmetry of a model with the symmetry of a concrete physical state.
For example, a model which is invariant under rotations can predict the existence of physical states
which are not invariant under rotations.
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Its purpose is to mark the fact that this functional derivative can be regarded as
an integral kernel of certain linear operator δF/δu. For transformations (2.20) this
operator is nonsingular, that is there exists a linear operator (δF/δu)−1 such that

∫
�

d4 y
δFa(u(x);ω)
δub(y)

(
δF

δu

)−1

(b, y; c, z) = δacδ(x − z),

where the first δ on the r.h.s. is Kronecker delta, while the second one is Dirac
four-dimensional delta. Therefore, (2.26) implies that

δS�′ [u′]
δu′a(x ′)

∣∣∣∣
u′(x ′)=F(u(x);ω)

= 0,

but this means that u′a(x ′) obeys the Euler–Lagrange equations in the region �′.
As the next step in our analysis of the invariance condition (2.25) we derive the

so called Noether’s identity. The l.h.s. of this identity gives an explicit formula for
the integrals of motion. The main part of the derivation is just a calculation of the
first two terms of the Taylor expansion of the l.h.s. of condition (2.25) with respect
to ωα . The change of the integration variable from x ′ to x gives

d4x ′ = Jd4x,

where J is the Jacobian corresponding to transformation (2.19), that is

J = det

[
∂x ′μ

∂xν

]
.

Using formula (2.21) we may write

J = 1+ ∂δx
μ

∂xμ
+ · · · , (2.27)

where

δxμ = ωαξμα (x). (2.28)

Here and in the subsequent calculations, the multi-dots denote terms of the second

or higher order in ωα . The Taylor expansion of L
(

u′a(x ′),
∂u′a(x ′)
∂x ′μ ; x ′

)
has the fol-

lowing form:

L(u′b(x ′),
∂u′b(x ′)
∂x ′μ

; x ′) = L(u(x), ∂u(x)

∂xμ
; x)+ ∂L

∂xλ
δxλ

+ ∂L
∂ua(x)

(
u′a(x ′)− ua(x)

)+ ∂L
∂(ua,ν(x))

(
∂u′a(x ′)
∂x ′ν

− ∂ua(x)

∂xν

)
+ · · · . (2.29)
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Next, we use formulas (2.21) and (2.22):

u′a(x ′)− ua(x) = δua(x)+ ∂ua(x)

∂xλ
δxλ + · · · ,

where

δua(x) = ωαDαua(x),

and

∂u′a(x ′)
∂x ′ν

− ∂ua(x)

∂xν
= ∂xμ

∂x ′ν
∂u′a(x ′)
∂xμ

− ∂ua(x)

∂xν

= ∂

∂xν
(
u′a(x ′)− ua(x)

)− ∂(δxμ)
∂xν

∂ua(x)

∂xμ
+ · · ·

= ∂

∂xν
(
δua(x)

)+ ∂2ua(x)

∂xν∂xλ
δxλ + · · · .

Therefore,

JL
(

u′a(x ′),
∂u′a(x ′)
∂x ′μ

; x ′
)
= L (ua(x), ∂μua(x); x

)+ ∂δxμ
∂xμ

L (u(x), ∂μu(x); x
)

+ ∂L
∂xν

δxν + ∂L
∂ua(x)

∂ua(x)

∂xλ
δxλ + ∂L

∂(ua,ν(x))

∂2ua(x)

∂xν∂xλ
δxλ

+ ∂L
∂ua(x)

δua(x)+ ∂L
∂(ua,ν(x))

∂

∂xν
δua(x)+ · · ·

= L (ua(x), ∂μua(x); x
)+ d

(
δxμL (ua(x), ∂μua(x); x

))
dxμ

+
[
∂L
∂ua(x)

− d

dxν

(
∂L

∂(ua,ν(x))

)]
δua + d

dxν

(
∂L

∂(ua,ν(x))
δua

)
+ · · · .

This last expression is substituted in S�′ [u′] on the l.h.s. of condition (2.25). On
the r.h.s. of that condition we have L (ua(x), ∂μua(x); x

)
and Kμ(ua; x;ω). Notice

that

Kμ(ua; x;ω = 0) = 0,

because ω = 0 corresponds to the trivial transformation u′a(x ′) = ua(x), x ′ = x .
Therefore,

Kμ(ua; x;ω) = ωαKμα (ua; x)+ · · · .

Now it is clear that condition (2.25) can be written in the following form
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∫
�

d4x
d

dxν

(
K ναω

α − Lδxν − ∂L
∂(ua,ν(x))

δua

)

=
∫
�

d4x δua(x)

[
∂L
∂ua(x)

− d

dxν

(
∂L

∂(ua,ν(x))

)]
+ · · · . (2.30)

Because the parameters ωα vary continuously in an interval around ω = 0, we
may take the derivative with respect to ωα of both sides of (2.30) and put ω = 0
afterwards. In this way we obtain Noether’s identity

∫
�

d4x
d jνα
dxν

=
∫
�

d4xDαua(x)

[
∂L
∂ua(x)

− d

dxν

(
∂L

∂(ua,ν(x))

)]
, (2.31)

where the current density jνα is defined as follows

jνα = K να(ua; x)− Lξνα −
∂L

∂(ua,ν(x))
Dαua(x). (2.32)

The fact that this identity exists is known as Noether’s theorem.
Noether’s identity (2.31) reduces to a conservation law when the fields ua obey

the Euler–Lagrange equations—then the r.h.s. of the identity vanishes, and therefore

∫ t ′′

t ′
dt
∫

R3
d3x

(
d j0
α

dt
+ d jk

α

dxk

)
= 0. (2.33)

With the help of Gauss theorem, the second term on the l.h.s. of formula (2.33)
can be written as integral over a sphere of radius increasing to infinity. Therefore,
if the spatial components j k

α of the current density vanish sufficiently quickly when
|
x | → ∞ that term gives a vanishing contribution. The integral with respect to time
is trivial. The result can be written in the form

Qα(t
′′) = Qα(t

′), (2.34)

where

Qα(t) =
∫

R3
d3x j0

α(t, 
x). (2.35)

Because t ′, t ′′ are arbitrary, this means that the ‘charges’ Qα, α = 1, . . . , s, are
constant in time if the fields ua obey the pertinent Euler–Lagrange equations.

Often one postulates a condition of invariance stronger than (2.25), obtained by
omitting the integrals. In this sense, it is the local version of condition (2.25). It has
the following form

J (x)L
(

u′a(x ′),
∂u′a(x ′)
∂x ′μ

; x ′
)
= L

(
ua(x),

∂ua(x)

∂xμ
; x

)
+ d Kμ

dxμ
. (2.36)
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This condition leads to the continuity equation

d jνα
dxν

= 0, (2.37)

where jνα are still given by formula (2.32). Equation (2.37) is the local version of
the conservation law (2.34) of the charges Qα . The derivation of (2.37) from the
condition (2.36) is essentially the same as in the case of global condition (2.25) and
global conservation law (2.34).

Exercises

2.1 Let S[φ] denotes a functional which assigns (real or complex) numbers to the
functions φ defined on R D. The functional derivative δS[φ]

δφ(x) is a generalized function
defined as follows

lim
ε→0

S[φ + ε f ] − S[φ]
ε

=
∫

R D
d Dx

δS[φ]
δφ(x)

f (x),

for arbitrary test function f ∈ S(RD) (see the Appendix). Calculate δS[φ]
δφ(x) for:

(a) S[φ] = φ(x0)with fixed x0,

(b) S[φ] = d pφ(x)
dx p

∣∣∣
x=x0

,

(c) S[φ] = ∫
R D

d D y h(y)φ(y), where h(y) is a fixed function of y,

(d) S[φ] = exp
{

1
2

∫
R D

d D y
∫

RD

d Dz φ(y)G(y, z)φ(z)
}

.

2.2 During its propagation in the space-time a structureless, relativistic string
sweeps a world-sheet Xμ(t, s) (two-dimensional generalization of the world line
of a particle). Here t is the time, and s ∈ [0, 2π ] is a parameter along the string.
We consider only the closed string for which Xμ(t, 0) = Xμ(t, 2π) at all t . We
also assume that the vector Ẋμ ≡ ∂t Xμ(t, s) is time-like and X ′μ ≡ ∂s Xμ(t, s) is
space-like. For the simplest string, the so called Nambu–Goto string, the pertinent
action is proportional to the area of the world-sheet,

SNG = γ
∫ t2

t1
dt
∫ 2π

0
ds
√(

ẊμX ′μ
)2 − (Ẋμ Ẋμ

) (
X ′μX ′μ

)
,

with the dimensional constant γ.

(a) Rewrite this action in terms of the determinant of the induced world-sheet metric
gab, which can be read off from the identity

d Xμ(t, x)d Xμ(t, s) = gab(s, t)dσ
adσ b, σ 0 = t, σ 1 = s.
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(b) Let gab denotes the inverse of the induced metric, gabgbc = δa
c , and let

g ≡ det(gab). Using a well-known formula for the determinant check that
the variation of g that corresponds to a variation of the induced metric can be
written in the form

δg = ggabδgab.

Show that the equation of motion of the closed Nambu–Goto string can be written
as the Laplace equation for Xμ(s, t):

�g Xμ(s, t) = 0, �g(. . .) = 1√−g
∂a

(√−ggab∂b(. . .)
)
.

2.3 Check the invariance of SNG under the infinitesimal space-time translations
δXμ = ωμ and rotations δXμ = ωμνXν, ωμν + ωνμ = 0, where ωμ,ωμν
are constants. Show that the corresponding conserved quantities—the total energy-
momentum and angular momentum of the closed Nambu–Goto string—have the
form

Pμ = γ
∫ 2π

0
ds
√−gg0a∂a Xμ,

Mμν = γ
2

∫ 2π

0
ds
√−gg0a [Xμ∂a Xν − Xν∂a Xμ

]
,

respectively.

2.4 Transformation rule for a scalar field � under the dilatation xμ → x ′μ = eλxμ

reads:

�′(x ′) = e−λd��(x), (2.38)

where d� is the so called canonical scaling dimension of the field �, i.e. dim(�)
= cm−d� . The action functional for a free massless scalar field, propagating in D-
dimensional space-time, has the form

S[�] = 1

2

∫
d Dx ∂μ�∂

μ�.

(a) In the system of units where h̄ = 1 the action should be dimensionless. Find the
value d� which follows from this requirement.

(b) Prove that the action of the massless free field� is invariant under the dilatation
(2.38). Is the Lagrangian invariant as well?

(c) Find the form of the relevant conserved current.
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2.5 Consider the action functional for an interacting massless scalar field in D-
dimensional space-time,

S[�] =
∫

d D x
(

1
2∂μ�∂

μ�− λ�n
)
, (2.39)

where n ≥ 3 is an integer and λ is a (coupling) constant. For which values of D and
n the action (2.39) possesses a dilatational invariance? What is the dimension of λ
in these cases?

2.6 Consider the Lagrangian

LU = tr
(
∂μU †∂μU

)

with U (x) being a unitary, N × N matrix.
(a) Check that it is invariant under the transformations

U (x)→ A†U (x)B, (2.40)

where A and B are arbitrary constant, N × N unitary matrices with unit
determinant (i.e. A, B ∈ SU(N )).

(b) For A and B close to the unit N × N matrix IN we may write

A = exp

⎧⎨
⎩i

N 2−1∑
a=1

εaT a

⎫⎬
⎭ , B = exp

⎧⎨
⎩i

N 2−1∑
a=1

ηa T a

⎫⎬
⎭

where εa, ηa are real, infinitesimal parameters (playing the role of the ω
parameters used in the derivation of Noether’s current) and T a are linearly
independent over R, Hermitian, traceless, N × N matrices.
Find the expression for the conserved charges that exist thanks to this symmetry.



Chapter 3
Scalar Fields

Abstract The Lorentz and Poincaré groups. Equation of motion and energy-
momentum tensor for a real scalar field. Domain walls in a model with sponta-
neously broken Z2 symmetry. Complex scalar field with U(1) symmetry and the
Mexican hat potential. The Goldstone mode of the field. Global vortex and winding
number.

3.1 The Lorentz and Poincaré Groups

In this and the next two chapters we review the main types of classical fields appear-
ing in particle physics. We begin with the presentation of several models which
involve only scalar fields. In Chap. 4 we discuss vector fields, and in Chap. 5 spinor
fields. The main common feature of all these fields is simplicity of their transforma-
tion laws under Poincaré transformations of Minkowski space-time. For this reason,
they are called the relativistic fields. Moreover, Poincaré transformations are sym-
metries of corresponding action functionals in the sense described in the previous
chapter. Therefore, we first discuss the Lorentz and Poincaré groups.

Let us endow Minkowski space-time M with a Cartesian coordinate system (xμ),
in which the metric on M has the diagonal form η = diag(1,−1,−1,−1). Matrix
elements of η are denoted as ημν , where μ, ν = 0, 1, 2, 3. The inverse matrix η−1

coincides with η, but by convention its matrix elements have upper indices. Hence,
ημν are matrix elements of η−1. Minkowski space-time has a very simple structure.
In particular, it can be covered by one Cartesian coordinate system, and then its
points can be identified with the set of four coordinates xμ, x = (xμ). Poincaré
transformations of M have the form

x ′μ = Lμνxν + aμ, (3.1)

where Lμν and aμ do not depend on xν and are real. By definition, they preserve the
form of the metric η, that is

∂x ′μ

∂xρ
∂x ′ν

∂xλ
ημν = ηρλ. (3.2)

H. Arodź, L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
DOI 10.1007/978-3-642-15624-3_3, C© Springer-Verlag Berlin Heidelberg 2010
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For comparison, the transformation of a general second rank covariant tensor field
aμν(x) has the form

∂x ′μ

∂xρ
∂x ′ν

∂xλ
a′μν(x ′) = aρλ(x).

Because η is constant on M in the Cartesian coordinates, the arguments x, x ′ may
be omitted. It is clear that (3.2) actually means that η′ = η. This shows that (3.2) is
indeed an invariance condition. The partial derivatives in (3.2) can easily be calcu-
lated, and that condition is equivalently written as

LμρLνλημν = ηρλ. (3.3)

Transformations of the form

x ′μ = Lμνxν (3.4)

with Lμν obeying condition (3.3) are called general Lorentz transformations. They
form a subset of Poincaré transformations, obtained by putting aμ = 0. One may
associate with the Lorentz transformation a four by four matrix L̂ with real elements
Lμν ,

L̂ = (Lμν) .
Here the first index μ enumerates rows and the second index ν columns of this
matrix. The same convention holds also for the metric tensor η = (ημν): the first
index (μ) enumerates rows and the other one (ν) columns. Condition (3.3) can be
written in the matrix form

L̂T ηL̂ = η, (3.5)

where T denotes the transposed matrix, i.e., (L̂T )
μ
ν = Lνμ. It follows from (3.5)

that

(detL̂)2 = 1,

hence the Lorentz transformations are represented by nonsingular matrices with
determinant equal to +1 or −1. Another consequence of the matrix condition (3.5)
is the following formula for the inverse of the Lorentz matrix

L̂−1 = η−1 L̂T η.

For matrix elements,

(L̂−1)μν = ημλ(L̂T )λρηρν = ημλLρληρν = Lμν,
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where we have used the standard conventions about lowering and raising indices by
the metric tensor and its inverse.

Condition (3.5) implies that the four by four unit matrix I4, the inverse matrix
L̂−1, and the matrix product L̂1 L̂2, all are Lorentz transformations if L̂, L̂1, L̂2
are. Therefore, the set of all Lorentz transformations forms a matrix group, called
the general Lorentz group. It can be regarded as a subset of 16 dimensional space
of all four by four real matrices, determined by conditions (3.3) or (3.5), which
are constraints on 16 elements of the general four by four real matrix. There are
10 independent constraints because the matrix on the l.h.s. of condition (3.5) is
automatically symmetric, hence elements lying above its diagonal are identical with
the ones placed symmetrically below the diagonal. The 10 constraints allow us to
express 10 matrix elements by the remaining 6. Therefore, the general Lorentz group
is six dimensional.

The general Lorentz group regarded as a set is not connected. We have seen that
we can have either detL̂ = +1 or detL̂ = −1. Moreover, condition (3.3) considered
for μ = ν = 0 can be written in the form

(L0
0)

2 = 1+ Li
0Li

0,

which shows that either L0
0 ≥ 1 or L0

0 ≤ −1. It turns out that the general Lorentz

group has four connected components which differ by signs of detL̂ and L0
0. Only

one of them, namely that characterized by

detL̂ = +1, L0
0 ≥ 1, (3.6)

is also a group, a subgroup of the general Lorentz group. It is called the proper
orthochronous Lorentz group, or Lorentz group in short, and is denoted by L↑+. This
is the only connected component which contains the unit matrix. Other connected
components can be obtained by taking products of matrices from L↑+ with one of
the three matrices

T = diag(−1, 1, 1, 1), P = diag(1,−1− 1− 1), T P.

Lorentz transformations corresponding to matrices T , P , T P change direction of
time, give spatial reflection 
x → −
x , or both, respectively. Definitions of rela-
tivistic fields given below refer only to the Lorentz group L↑+. The transformations
T, P, T P are usually included at a later stage. In our lecture notes we shall not
discuss them, except for short occasional remarks.

By definition, the Poincaré group P consists of transformations (3.1) such that
L̂ ∈ L↑+. Elements of P are denoted as (L̂, a), where a = (aμ). The group multi-
plication in P follows from superposition of two transformations (3.1):

(L̂2, a2)(L̂1, a1) = (L̂2 L̂1, L̂2a1 + a2). (3.7)
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The unit element has the form (I4, 0), where I4 denotes four by four unit matrix.
Furthermore, (L̂, a)−1 = (L̂−1,−L̂−1a). The Poincaré group is ten dimensional.

The Poincaré group has many subgroups. One of them consists of all transfor-
mations of the form (L̂, 0). It is isomorphic with the Lorentz group L↑+. Another
subgroup is isomorphic with the group of all translations in Minkowski space-time
denoted by T4. That subgroup consists of all transformations of the form (I4, a).
Each element of the Poincaré group can be uniquely written as the product of
Lorentz transformation and translation,

(L̂, a) = (I4, a)(L̂, 0).

Moreover, using the multiplication law (3.7) one can check that

(L̂, 0)(I4, a)(L̂, 0)
−1 = (I4, L̂a).

The last two properties together with the multiplication law (3.7) are summarized in
the statement that the Poincaré group is a semidirect product of the group T4 of all
translations in Minkowski space-time and of the Lorentz group L↑+ .1

The translations in Minkowski space-time have the form

x ′μ = xμ + aμ.

It is clear that a parametrization of the translations convenient for applications of
Noether’s theorem is provided by aμ themselves. The Cartesian components of the
corresponding Killing vectors have the form

ξμα =
∂x ′μ

∂aα

∣∣∣∣
a=0

= δμα , (3.8)

where α = 0, 1, 2, 3.
Finding a suitable parametrization of the Lorentz group is more cumbersome. We

use the mathematical theorem which says that with the help of exponential mapping
one can parameterize a vicinity of unit matrix by certain matrices from a vicinity of
the zero matrix. In the case of the Lorentz group, this means that for each L̂ from
such vicinity of the unit matrix I4 there exists just one real matrix ε̂ such that

L̂ = exp ε̂. (3.9)

It is clear that L̂ = I4 is obtained for ε̂ = 0. Let us write condition (3.5) in the
following form

1 In the case of so called direct product multiplication law would have the form (L̂1, a1)(L̂2, a2) =
(L̂1 L̂2, a1 + a2).
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η−1 L̂T η = L̂−1.

By inserting formula (3.9) we obtain the condition

η−1ε̂T η = −ε̂, (3.10)

which in fact says that the matrix ηε̂ is antisymmetric. With our conventions for
indices ε̂ = (εμν) and ηε̂ = (εμν). Therefore,

εμν = −ενμ.

In consequence,

ε0
i = εi

0, ε
i
k = −εk

i , ε
0
0 = ε1

1 = ε2
2 = ε3

3 = 0. (3.11)

Note that ε̂ is not antisymmetric. As the parameters on the Lorentz group in a
vicinity of the unit matrix we take εμν with μ < ν, that is those elements of
the matrix ε̂η̂−1 which lie above its diagonal. This matrix is antisymmetric. The
corresponding Killing vectors are calculated from the formula

ξ
μ
αβ =

∂x ′μ

∂εαβ

∣∣∣∣
ε=0
,

where x ′μ = Lμνxν and α < β. Because

x ′μ = (L̂ η̂−1)μν(η̂x)ν ≡ Lμνxν,

and

∂Lμν

∂εαβ

∣∣∣∣
ε=0

= δμα δνβ − δμβ δνα,

we obtain

ξ
μ
αβ = (δμα ηβν − δμβ ηαν)xν . (3.12)

Let us recall that we regard the Poincaré transformations as transformations of
points of Minkowski space-time. Therefore, xμ and x ′μ are coordinates of two
points with respect to the chosen single Cartesian reference frame in the space-time.
The parameters ε12, ε13, ε23 correspond to transformations which do not change x0,
that is to spatial rotations. For example, when all εαβ except ε12 are equal to zero
and ε12 is infinitesimally small, we obtain an infinitesimal rotation around the x3

axis by the angle ε12:

x ′0 = x0, x ′3 = x3, x ′1 = x1 − ε12x2, x ′2 = x2 + ε12x3,
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where all terms with second and higher powers of ε12 have been neglected. The
parameters ε01, ε02, ε03 give the so called Lorentz boosts. This name is justified by
the fact that boosts transform a particle at rest into a particle moving with non zero
velocity. For example, if only ε01 is not equal to zero then, for ε01 infinitesimally
small,

x ′0 = x0 − ε01x1, x ′1 = x1 − ε01x0, x ′2 = x2, x ′3 = x3,

where again we have kept only the terms constant or linear in ε01. These formulas
imply that the boost acting on a particle which is at rest at the point 
x0, and which
has the world-line x(t) = (ct, 
x0), gives the particle moving with the infinitesimal
velocity −ε01 along the x1 axis in the negative direction.

Formulas (3.8) and (3.12) are used in this and the next chapters, where we apply
Noether’s theorem to relativistic fields. We adopt the stronger, local form (2.36) of
the invariance condition. Note that in the case of Poincaré transformations (3.1) the
Jacobian J = detL̂ is equal to +1 because L̂ ∈ L↑+.

3.2 The Real Scalar Field

Configuration space of the relativistic real scalar field is a space of real functions
φ(
x) on R3, and trajectories of the field are described by real function φ(x), x =
(ct, 
x), on Minkowski space-time. By definition, the scalar field φ has the following
transformation law under the Poincaré transformations

φ′(x ′) = φ(x), (3.13)

where

x ′μ = Lμνxν + aμ, L̂ ∈ L↑+.

This definition implies that

φ′(x) = φ(L̂−1(x − a)). (3.14)

Comparing (3.13) with the general formula (2.20) we see that in the present case F is
trivial, F(φ(x);ω) = φ(x). As the parameters ω we choose aμ and εμν introduced
in the last section. Therefore, the first term in definition (2.24) of the Lie derivative
vanishes, and

Dφ(x) = −ξρ(x)∂φ(x)
∂xρ

,
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where as the Killing vector ξ we now take ξα or ξαβ given by formulas (3.8) and
(3.12), respectively.

The invariance condition in the local form, with vanishing surface term and in
absence of external fields has the form

L
(
φ′(x ′), ∂φ

′(x ′)
∂x ′ν

)
= L

(
φ(x),

∂φ(x)

∂xν

)
. (3.15)

Using formula (3.13) we find that

∂φ′(x ′)
∂x ′ν

= ∂xρ

∂x ′ν
∂φ(x)

∂xρ
= L ρ

ν

∂φ(x)

∂xρ

(recall that L ρ
ν = (L̂−1)

ρ
ν . Therefore, condition (3.15) acquires the form

L
(
φ(x), L ρ

ν

∂φ(x)

∂xρ

)
= L

(
φ(x),

∂φ(x)

∂xν

)
.

It is clear that this condition does not impose any restriction on dependence of the
Lagrangian on the field φ, and that the derivatives ∂νφ can appear only in Lorentz
invariant combinations.

In almost all applications of the real scalar field, pertinent Lagrangian has the
form

L = 1

2
ημν∂μφ(x)∂νφ(x)− 1

2
m2φ2 − V (φ(x)), (3.16)

where m2 is a real constant, and V (φ) is a simple function of φ—a polynomial in
most cases—called the interaction potential2 of the field φ. Also non-polynomial
V (φ) are considered, e.g., exponential, logarithmic or a trigonometric function. The
Euler–Lagrange equation corresponding to Lagrangian (3.16) has the form

∂μ∂
μφ(x)+ m2φ(x)+ V ′(φ(x)) = 0, (3.17)

where V ′ = dV/dφ. Simple calculation shows that V (φ) = c2φ
2 + c1φ + c0 leads

to the Euler–Lagrange equation of the Klein–Gordon type, namely

∂μ∂
μφ(x)+ (m2 + 2c2)φ(x) = −c1,

which can be reduced to the homogeneous Klein–Gordon equation by a constant
shift of the field φ.

The first really new Euler–Lagrange equation, with a term quadratic in φ, is
obtained when V (φ) = λφ3 with constant λ. In mathematical terminology, it is

2 The term ‘potential’ is reserved for the sum m2φ2/2+ V (φ).
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a nonlinear partial differential evolution equation of hyperbolic type. At present,
there are no methods which would allow us to construct a general solution of such
equations. Particular examples of solutions can be obtained with the help of approx-
imation methods, which include numerical calculations with the use of computers.
Sometimes one can find analytic solutions, especially when one is interested in
particularly symmetric ones. In general, nonlinear partial differential equations of
the hyperbolic type can lead to quite complicated and surprising time evolution of
the field. Coming back to our Euler–Lagrange equation, it turns out that the intro-
duced above cubic V (φ) is not quite satisfactory, because, as we show in the next
paragraph, the corresponding energy is not bounded from below. This fact does not
mean that some mathematical inconsistency is present. The point is that all physical
objects in Nature discovered until now seem to have energy bounded from below. In
consequence, models in which the energy is not bounded from below are regarded
as less interesting ones.

The energy and momentum of the field are identified with the integrals of motion
obtained from Noether’s theorem applied to time and space translations, respec-
tively. We already know the Killing vectors for the translations and the Lie deriva-
tives of the scalar field. The surface term in formula (2.32) is absent. Simple calcu-
lations give the currents corresponding to the four independent translations,

jμα = −Lδμα + ∂μφ(x)∂αφ(x). (3.18)

Often one introduces so called energy-momentum tensor Tμν . It is defined by the
following formula

jμα = Tμνξ
ν
α . (3.19)

Thus,

Tμν = ∂μφ(x)∂νφ(x)− Lδμν = jμν . (3.20)

The continuity equations dμ jμα = 0 imply that

∂νT να = 0.

The total energy E and momentum Pi of the field are defined as

E =
∫

R3
d3x j0

0 , Pi = −
∫

R3
d3x j0

i . (3.21)

The minus sign in the formula for Pi is due to the metric tensor ημν used here to
raise the index i . Using formulas (3.16) and (3.18) we obtain

j0
0 =

1

2
∂0φ∂0φ + 1

2
∂iφ∂iφ + 1

2
m2φ2 + λφ3, (3.22)
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and

j0
i = ∂0φ ∂iφ. (3.23)

Note that non-vanishing momentum is possible only when the field varies in time
and space. Moreover, the momentum does not depend on the potential m2φ2/2 +
V (φ).

Because φ(x) can take arbitrary real values, also the cubic term λφ3 in j0
0 can

have arbitrary values, from minus to plus infinity. Arbitrarily large positive values of
energy are regarded as physically acceptable, but at the same time one does expect
that the values of energy are bounded from below. Therefore, the model with cubic
interaction potential is used mainly as a relatively simple example of field theory
with interaction, convenient for illustrating methods of field theory. Note that also
the Klein–Gordon model (V (φ) = 0) would have the energy unbounded from below
if m2 < 0. Precisely for this reason, we have assumed that in the Klein–Gordon
equation (1.33) m2 ≥ 0.

Much more interesting is the model with quartic interaction energy

V (φ) = λ

4!φ
4(x), (3.24)

where λ > 0 in order to ensure that the corresponding total energy E is bounded
from below, and the factor 1/4! is included for a later convenience. Now the Euler–
Lagrange equation (3.17) has the form

∂μ∂
μφ(x)+ m2φ(x)+ λ

3!φ
3(x) = 0. (3.25)

The total energy E is given by the following formula

E =
∫

R3
d3x

(
1

2
∂0φ∂0φ + 1

2
∂iφ∂iφ + 1

2
m2φ2 + λ

4!φ
4
)
. (3.26)

Due to the presence of the positive quartic term, the energy is bounded from below
also for negative m2.

It turns out that physical predictions of the model crucially depend on the sign
of m2. Let us first consider the case m2 ≥ 0. It is obvious that the minimal value
of the total energy E = 0 is obtained for φ(x) = 0. This trivial trajectory of the
field is called the classical ground state3 of the field. If the field is close to the
ground state, then we may neglect in Eq. (3.25) the interaction term λφ3/3!, and
we obtain the familiar Klein–Gordon equation. The fields which are close to the
ground state form a so called ground state sector in the space of solutions of the
Euler–Lagrange equations. Fields from this sector can be written as superpositions

3 Often another term is used, namely the classical vacuum.
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of the plane waves f
k introduced in Sect. 1.3 with the amplitudes a±(
k) which are
approximately constant in time as long as the interaction term is small.

The model (3.24) with m2 < 0 is a little bit more intricate. It exhibits spontaneous
symmetry breaking, and it has sectors characterized by a topological charge. First,
let us notice that the Lagrangian can be rewritten in the form

L = 1

2
∂μφ(x)∂μφ(x)−U (φ)+ 3m4

2λ
,

where

U (φ) = λ

4!
(
φ2 − 6|m2|

λ

)2

(3.27)

(|m2| denotes the modulus of m2). Furthermore, we omit the last term in L because
it does not contribute to the Euler–Lagrange equation and gives a trivial constant in
T 0

0. Energy density T 0
0 calculated from the new Lagrangian has the form

T 0
0 =

1

2
∂0φ(x)∂0φ(x)+ 1

2
∂iφ(x)∂iφ(x)+U (φ). (3.28)

We see that it is bounded from below by 0. It reaches its minimal value 0 for constant
φ = ±φ+, where

φ+ =
√

6|m2|
λ
, (3.29)

see Fig. 3.1.
Thus, there are two classical ground states ±φ+. They are transformed into each

other by the transformation S

S : φ(x)→ Sφ(x) = −φ(x).

Fig. 3.1 The shape of the
potential U (φ) given by
formula (3.27)

U(  )

– + +
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Actually, this transformation is a symmetry of the model: the Lagrangian does not
change its form if we write it as a function of Sφ. It follows that Sφ(x) is a solu-
tion of the Euler–Lagrange equation together with φ(x). The fact that the classical
ground states of the model are not invariant under that symmetry transformation is
called the spontaneous symmetry breaking (SSB). In the case m2 > 0 the symmetry
S also is present, but the ground state φ = 0 is invariant under it.

Examples of the spontaneous symmetry breaking are already ubiquitous in clas-
sical mechanics. For example, consider a point particle with one dimensional con-
figuration space and with the energy mq̇2/2 + V (q), where V (q) = a(q2 − b2)2,
a and b are positive constants. There are two classical ground states q = ±b with
the same energy (equal to zero), and none of them is invariant under the symmetry
transformation q →−q. The quantum mechanical counterpart of this model has the
Hamiltonian Ĥ = p̂2/(2m) + V (q̂), where p̂, q̂ are momentum and position oper-
ators, respectively. It turns out that this quantum Hamiltonian has a single ground
state (with the energy >0)—the degeneracy of the ground state is absent. The cor-
responding wave function ψ(q) is a symmetric function of q, hence it is invariant
under the symmetry transformation.

This lack of SSB in the quantum case one can explain with the help of Heisenberg
uncertainty relation. If the quantum particle is confined to a finite segment of the
q-axis of the length �q, then it can not have any fixed value of momentum p—all
momenta from a band of width �p ≈ h̄/�q are present. Because we look for the
least energy state, we assume that this band contains the momenta with modulus
from 0 up to �p—a shift of the band towards higher momenta would give higher
expectation values of the kinetic energy p̂2/(2m). Thus, we may estimate that the
expectation value of the kinetic energy is not larger than (�p)2/(2m). It is clear
that this contribution is minimized when in the ground state the particle occupies
as large an interval �q as possible. The only limitation is that the particle should
avoid the regions where the potential V has large values, otherwise the gain in the
kinetic energy would be overcompensated by an increase of the expectation value
of the potential energy. This means that the values of the ground state wave function
should be as close to zero as possible in such regions. Therefore, we expect that
the normalized ground state wave function does not vanish close to both minima of
the potential V (q), and in other regions it is close to zero. Then �q is as large as
possible, and the expectation value of the potential energy is small. The quantum
particle adjusts its wave function globally in space taking into account all minima
of the potential. Not surprisingly, there exists just one state that has the least energy.

In the heuristic reasoning presented above, we have been concerned directly with
energy eigenfunctions. The complementary view is obtained by inspecting time evo-
lution of a wave packet which initially is localized around one of the minima of the
potential, say q = −b. Even if the initial wave function vanishes in the region q ≥ 0
at the initial instant t = 0, due to quantum tunneling through the potential barrier
which separates the two minima of V (q) it will not vanish in that region when
t > 0. Actually, it turns out that the wave packet oscillates between the two minima.
If we switch on a ‘cooling procedure’, that is if we gradually take away some energy
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from the particle, it will finally reach the ground state with the corresponding wave
function evenly distributed around each of the two minima.

Similar results are obtained for systems with an arbitrary finite number of degrees
of freedom, for instance, for several particles. Of course, the probability of tunneling
of all particles decreases with the number of particles. For example, in the case of
N mutually noninteracting, different particles it is equal to the product p1 p2 · · · pN ,
where pi is the probability of tunneling for the i-th particle, i = 1, 2 . . . , N . Of
course pi < 1. It follows that in the field theoretical limit, when the number of
degrees of freedom is infinite, the tunneling probability vanishes. In particular, the
‘wave function’ of our scalar field φ will stay close to one of the vacuum fields φ+,
−φ+ forever if it is localized around it at a certain initial time. Therefore, we expect
that the degeneracy of the ground state can be present also in a quantum version of
our model (3.27). The spontaneous symmetry breaking in field theory does not have
to disappear when we pass to a quantum version of the classical model.

Let us now have a look at small perturbations of the classical ground states. For
concreteness, we consider perturbations of φ+, that is the fields of the form

φ(x) = φ+ + ε(x), (3.30)

where ε(x) is small in comparison with φ+. Substituting formula (3.30) in Eq. (3.25)
(in which m2 = −|m2| < 0), expanding with respect to ε and keeping only the terms
linear in ε we again obtain the Klein–Gordon equation, namely

(∂μ∂
μ + 2|m2|) ε(x) = 0. (3.31)

We see that ε(x) has the effective mass coefficient m2
eff = 2|m2|which is positive. In

consequence, ε(x) can be written as a superposition of the normalized plane waves
f
k(x) with the frequencies k0 = ±ω(
k)/c, where

ω(
k) = c
√

k 2 + m2

eff

is positive. Small perturbations around the other ground state φ− have the same
effective mass coefficient.

Analogous expansion around φ = 0 leads to the following equation

(∂μ∂
μ − |m2|)ε(x) = 0.

It also has the plane wave solutions f
k(x), but now

ω(
k) = c
√

k 2 − |m2|.

We see that the modes with the wave vectors 
k such that 
k 2 < |m2| have imaginary
frequencies. They do not oscillate in time, but monotonically increase if Imk0 < 0 or
decreases if Im k0 > 0. The increasing amplitude means that after some time ε(x)
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is no longer a small correction to φ+ and one has to include the terms quadratic
and cubic in ε(x). Therefore, the linear approximation around φ = 0 is of limited
use. One says that the constant field φ = 0 is unstable with respect to the small
oscillations, as opposed to the constant fields ±φ+. It is clear that that difference in
the behavior of the small perturbations is due to the fact that the field potential U (φ)
has minima at ±φ+, while at φ = 0 it has a local maximum.

The presence of SSB is a special property that can have rather interesting con-
sequences. Related to the presence of the two ground states in the model (3.27) is
the existence of a particular class of static solutions of the field Eq. (3.25). These
solutions, called planar domain walls, smoothly interpolate between the two ground
states in the following sense. Let us choose a plane in the space. Without any loss
of generality it can be the x3 = 0 plane. Then, the coordinates x1, x2 parameterize
the plane, and x3 varies in the direction perpendicular to the plane. Let us assume
that the field φ is constant along the planes parallel to the x3 = 0 plane, i. e., that
φ can depend only on x3: φ = φ(x3). Planar domain walls are the solutions which
merge with the two ground states when x3 →±∞, that is, by definition, they obey
the following boundary conditions

lim
x3→−∞

φ(x3) = −φ+, lim
x3→+∞

φ(x3) = φ+. (3.32)

When φ depends only on x3, Eq. (3.25) is reduced to the following ordinary
differential equation

∂2
3φ + |m2|φ − λ

3!φ
3 = 0. (3.33)

Multiplying it by 2∂3φ, and integrating we obtain the equation

(∂3φ)
2 + |m2|φ2 − 2λ

4! φ
4 = const. (3.34)

The boundary conditions (3.32) determine the integration constant

const = |m2|φ2+ −
2λ

4! φ
4+ =

3|m2|2
λ

.

Equation (3.34) can be written in the form

1

2
(∂3φ)

2 −U (φ) = 0. (3.35)

It is easy to check that

φd(x
3) = φ+ tanh

√|m2|(x3 − x3
0)√

2
(3.36)
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obeys Eq. (3.35) and the boundary conditions (3.32). In the solution (3.36), x3
0 is

another integration constant. Its value is arbitrary. Physically, it gives position of the
domain wall along the x3-axis, and its change corresponds to a translation of the
domain wall parallel to the (x1, x2)-plane. Note that φd(x3) vanishes at x3 = x3

0 ,
and the potential energy U (φd(x3)) has the largest value there. For large positive x3

φd(x
3) ∼= φ+ − 2φ+ exp(−

√
2|m2|(x3 − x3

0)),

and for large negative x3

φd(x
3) ∼= −φ+ + 2φ+ exp(

√
2|m2|(x3 − x3

0)).

Thus, for |x3 − x3
0 | � l0, where l0 = 1/

√
2|m2|, the domain wall solutions practi-

cally merge with the classical ground states. The constant l0 is equal to the inverse
of the effective mass coefficient meff. It essentially gives the thickness of the planar
domain walls. The function φd(x3) is plotted in Fig. 3.2.

Energy density for the domain wall is given by

T 0
0 =

1

2
(∂3φd)

2 +U (φd) = 3m4

λ cosh4(
√|m2|(x3 − x3

0)/
√

2)
.

–φ+

x0 – 10
3 x0 + 10

3x0
3

x3

φd (x
3)

φ+

Fig. 3.2 The plot of the function φd (x3)
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Fig. 3.3 The energy density
across the domain wall

x3
0

x3

T  

0
0(x3)

It has maximal value at x3 = x3
0 , and it exponentially approaches 0 when x3 →

±∞, see Fig. 3.3. Note that φd vanishes precisely at x3 = x3
0 . Existence of at

least one zero is implied by the boundary conditions (3.32) because φ(x3) is by
assumption a continuous function of x3.

The total energy of the domain wall is of course infinite, because of the inte-
gration over x1, x2. Energy density per unit area, denoted below by σ , is finite and
constant along the domain wall. It is given by the integral

σ =
∫

dx3 T 0
0 =

3m3
eff

2λ

∫ +∞

−∞
ds

cosh4 s
= 2m3

eff

λ
. (3.37)

Note that σ becomes infinite when the coupling constant λ decreases to zero. Such
singularity at λ = 0 means that the domain wall can not be obtained in a perturbative
expansion in positive powers of λ. In this sense, the presence of the domain walls is
a non perturbative phenomenon.

Because of their infinite energy, strictly planar infinite domain walls are physi-
cally not possible. Nevertheless, they are quite useful in theoretical analysis of other
domain walls which have finite energy. There exist closed domain walls, e.g., spher-
ical ones, which have finite total energy. The corresponding solutions of Eq. (3.25)
are not static—φ depends also on time. Such solutions approach ±φ+ in the direc-
tions perpendicular to the domain wall, but the domain wall shrinks or expands. The
total potential energy is approximately equal to σ S, where S denotes the area of
the domain wall, regarded (approximately) as an infinitely thin surface. The total
energy also contains a finite kinetic energy which does not vanish because of the
time dependence of φ. If at a given point of the domain wall its curvature is not
very large, one may expect that the solution will not be very different from φd(x3)

around that point, except that now x3 is replaced by a coordinate perpendicular to
the domain wall. Another class of finite energy domain walls appears in condensed
matter physics. They just end on the boundaries of the material in which they are
created. If the bulk of the material is sufficiently large, the surface effects can be
neglected, and again, our infinite planar domain wall can be quite reasonable first
approximation.

Let us investigate small perturbations of the planar domain wall. Substituting
φ(x) = φd(x3) + ε(x) in Eq. (3.25) and neglecting terms which are quadratic or
cubic in ε we obtain the following linear equation for ε(x)
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∂μ∂
με − |m2|ε + λ

2
φ2

d(x
3)ε = 0. (3.38)

Coefficients in this equation do not depend on x0, x1, x2. Therefore, we may fac-
torize the dependence on these variables. It is convenient to take exponentials as the
basis functions, other solutions can be written as linear combinations of them. Thus,
we consider ε(x) of the form

ε(x) = exp(−ik0x0) exp(ik1x1 + ik2x2)ψ(x3).

It is understood that in fact we take the real or imaginary part of this expression
because ε(x) should have real values. Equation (3.38) is reduced to the following
equation for ψ(x3)

k2
0ψ = [(k1)

2 + (k2)
2]ψ − ∂2

3ψ + |m2|(3 tanh2 x3

2l0
− 1)ψ, (3.39)

where we have put x3
0 = 0 for simplicity. Suppose that we know the solutions of the

auxiliary eigenvalue problem

− 1

2
∂2

3ψ +
|m2|

2
(3 tanh2 x3

2l0
− 1)ψ = κψ, (3.40)

where κ is the eigenvalue and ψ the eigenfunction. Then,

k2
0 = (k1)

2 + (k2)
2 + 2κ.

It is clear that if there exists negative eigenvalue κ then we can have k2
0 < 0 if

k2
1, k

2
2 are sufficiently small. This would imply that exponentially growing modes

are present. In physical realizations of the domain wall, we can never exactly con-
struct the one given by φd—small perturbations are always present. If there is a
growing mode having finite energy per unit square it will significantly modify the
domain wall or even destroy it. Therefore, it is important to check the sign of the
eigenvalues κ .

When looking for eigenvalues it is important to specify which eigenfunctions
are allowed for. In our case, relevant are such eigenfunctions which can give the
perturbations ε(x) with finite energy per unit area. Thus, apart from ψ vanishing
when x3 →±∞, we also admit eigenfunctions which become plane waves in these
limits because one can construct from them wave packets with finite energy.

It turns out that there exists just one eigenfunction with κ = 0, called the trans-
lational zero mode, and all other eigenfunctions have strictly positive eigenvalues
(κ > 0). The existence of the zero mode is related to the translational invariance
of the model, which is responsible for the presence of the arbitrary constant x3

0 in
the domain wall solution (3.36). This solution inserted on the l.h.s. of Eq. (3.33)
gives an identity. Let us differentiate both sides of this identity with respect to x3

0
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and put x3
0 = 0 afterwards. The resulting identity has the form (3.40) with the

eigenfunction

ψ0(x
3) = ∂ψd(x3 − x3

0)

∂x3
0

∣∣∣∣∣
x3

0=0

= −∂ψd(x3)

∂x3 =
√

3

4λ

m2
eff

cosh2(meff x3/2)
, (3.41)

and κ = 0. The zero mode ψ0(x3) does not vanish for any finite x3. There is a theo-
rem, discussed in textbooks on quantum mechanics, which says that the eigenvalue
corresponding to such non vanishing eigenfunction is the smallest one. Therefore,
all other eigenvalues κ are positive.4 In conclusion, the planar domain wall is stable
with respect to the small perturbations.

The perturbation of the planar domain wall given by ε(x) = aψ0(x3), where a
is a small number, is time independent. It results in the uniform, parallel shift of the
domain wall along the x3-axis,

φd(x
3)+ aψ0(x

3) ∼= φd(x
3 + a).

The perturbations with (k1)
2 + (k2)

2 > 0 give waves traveling along the planar
domain wall.

3.3 The Complex Scalar Field

The complex scalar field is mathematically represented by a function φ(x), x ∈ M,
which can have complex values. Similarly as in the case of real scalar field, we
require that under the Poincaré transformations x ′ = L̂x + a

φ′(x ′) = φ(x). (3.42)

Typical Lagrangian for the complex scalar field has the form

L = ∂μφ∗(x)∂μφ(x)− m2φ∗(x)φ(x)− V (φ∗(x)φ(x)), (3.43)

where ∗ denotes the complex conjugation. Equivalently, one may replace the com-
plex scalar field by two real scalar fields φ1(x), φ2(x),

φ(x) = 1√
2
(φ1(x)+ iφ2(x)).

4 Actually, the eigenvalue problem (3.40) is explicitly solved in textbooks on quantum mechanics.
It turns out that apart from the zero mode there is one bound state with 0 < κ < |m2| and a
continuum of eigenfunctions with κ ≥ |m2|.
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Lagrangian (3.43) is equal to

L = 1

2
∂μφ1∂

μφ1 + 1

2
∂μφ2∂

μφ2 − 1

2
m2φ2

1 −
1

2
m2φ2

2 − V

(
φ2

1 + φ2
2

2

)
.

This form of the Lagrangian suggests a generalization to the so called O(N )
models. Let 
φ denote a multiplet of N real scalar fields


φ(x) =

⎛
⎜⎜⎜⎝

φ1(x)
φ2(x)
...

φN (x)

⎞
⎟⎟⎟⎠ ,

and 
φ 2 =∑N
i=1 φiφi . Lagrangian of the O(N ) model has the form

L = 1

2
∂μ 
φ∂μ 
φ − 1

2
m2 
φ 2 − V

( 
φ 2
)
.

It has a global O(N ) symmetry which consists of transformations


φ′(x) = O 
φ(x),

where O denotes arbitrary N×N real matrix which obeys the condition OTO = IN ,
OT denotes the transposed matrix, IN is the N by N unit matrix. Such matrices
form the orthogonal matrix group O(N ). The O(N ) models play an important role
in applications of field theory. They also provide a testing ground for certain math-
ematical techniques developed in field theory.

Lagrangian (3.43) is invariant under the Poincaré transformations. Moreover, it
also possesses a U (1) global symmetry. The U (1) group consists of all complex
numbers z such that |z| = 1, or equivalently, of all phase factors exp(iα). The U (1)
transformations of the complex scalar field have the form

φ′(x) = exp(iqα)φ(x), (3.44)

where q is an integer different from 0. For a non integer q the transformation (3.44)
would be multi-valued. Of course, α does not depend on x , as expected for the
global transformations. Note that the space-time points x are not transformed. In
such cases one says that the symmetry is an internal one.

Let us calculate the conserved current jν corresponding to the U (1) symmetry
using the formalism developed in Chap. 2. As the parameter on the group in a vicin-
ity of the unit element we may take α. The Lie derivative of the field φ has the
form

Dφ(x) = iqφ(x). (3.45)
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Lagrangian (3.43) contains also the complex conjugate field φ∗. Its transformation
law is obtained by taking the complex conjugate of formula (3.44), and

Dφ∗(x) = −iqφ∗(x). (3.46)

Formula for the conserved current follows from the general formula (2.32). In the
present case K = 0, ξ = 0, and as the fields ua we take φ, φ∗. Alternatively, we
could take the real fields φ1, φ2. Simple calculation gives

jν = iq
(
∂νφφ

∗ − φ∂νφ∗
)
. (3.47)

The corresponding conserved charge Q is given by the integral

Q =
∫

R3
d3x j0.

Note that Q vanishes if the imaginary part of φ is equal to zero, or if φ is constant
in time.

The choice V (φ∗φ) = 0 in Lagrangian (3.43) gives the free complex scalar field
model. In this case the Euler–Lagrange equations are linear in φ. They coincide with
the familiar Klein–Gordon equation for the real and imaginary parts of φ.

Another important particular choice of the interaction potential U gives the Gold-
stone model. In this case

L = ∂μφ∗∂μφ −U (φ∗φ), (3.48)

where

U (φ∗φ) = λ

4!
(
φ∗(x)φ(x)− 12|m2|

λ

)2

(3.49)

(V = U − m2φ∗φ with m2 < 0). The potential U regarded as a function of |φ| is
shown in Fig. 3.4. Often it is called the ‘Mexican hat’ potential. This name refers to
the characteristic shape of the surface obtained by plotting U over the plane (φ1, φ2).

Calculation of the term proportional to φ∗φ shows that m2 = −|m2| is nega-
tive. In fact, the Goldstone model is the complex field analogue of the model (3.27)
discussed in the previous section.

Let us find the classical ground states in this model, that is the fields for which
the energy density T 0

0 acquires its minimal value. Energy density for the field φ with
Lagrangian (3.48) is easily obtained from the general formulas given in Chap. 2. It
has the following form

T 0
0 = ∂0φ

∗∂0φ + ∂iφ
∗∂iφ + λ

4!
(
φ∗(x)φ(x)− 12|m2|

λ

)2

. (3.50)
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Fig. 3.4 The potential
U (|φ|2) given by formula
(3.49)

U(|  |2)

|  |2
0 a2

It is clear that the least energy density is obtained for any constant φ such that

φ∗φ = a2, (3.51)

where

a =
√

12|m2|
λ

. (3.52)

The set of all classical ground states is called the vacuum manifold. We denote it by
V . In the model discussed in the previous section it consists of just two points ±φ+.
In the Goldstone model, the vacuum manifold is defined by condition (3.51), hence
consisting of all constant fields of the form

φ = a exp(iβ), (3.53)

where β ∈ [0, 2π), can be regarded as a circle of radius a. There is no classical
ground state which would be invariant under the U (1) transformations (3.44)—
these transformations move the classical ground states along the vacuum manifold.
Thus, we see that the Goldstone model exhibits spontaneous breaking of the U (1)
symmetry.

Let us compare the present example of SSB with the one discussed in the pre-
vious section. The main difference is that U (1) is a continuous group, while the
symmetry S together with the identity I : φ(x)→ φ(x) form the two element dis-
crete group Z2, Z2 = {S, I }. This difference has profound physical consequences.
In particular, it turns out that the real fields φ1, φ2 are not well suited to describe the
physical contents of the model, analogously as, for instance, Cartesian coordinates
are not the best choice when considering a problem which has only axial symme-
try. Much better parametrization of the complex field φ of the Goldstone model is
provided by two real fields χ(x),�(x) introduced as follows:
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φ(x) = (a + χ(x)) ei�(x), (3.54)

where a is given by formula (3.52) and� ∈ [0, 2π). Thus, χ = 0 and� = const =
β corresponds to the classical ground state a exp(iβ). Parametrization of the field
space by χ,� is mathematically correct, provided that χ �= −a. Let us assume for
a while that this is the case. In order to derive equations of motion for χ,� one
could use the Euler–Lagrange equation for the original field φ and formula (3.54).
However, more enlightening is another way: we use the field transformation (3.54)
directly in Lagrangian (3.48). This gives

L(χ,�) = ∂μχ ∂μχ + (a + χ)2 ∂μ� ∂μ�− λ

4!χ
2(2a + χ)2. (3.55)

This Lagrangian is used to generate the Euler–Lagrange equations for the fields
χ,�. The resulting equations are equivalent to the ones obtained by substituting
formula (3.54) in the Euler–Lagrange equation for φ. This follows from a general
property of the stationary action principle, namely that nonsingular transformations
of fields in the action functional lead to equivalent Euler–Lagrange equations.

Let us prove that property. The transformation of the fields has the form ua =
Fa(vb), where (vb) is the set of new fields. By definition, the action functional for
the new fields has the form

S̃[vb] = S[ua]|ua=Fa(vb) .

Functional derivatives of S̃ and S are related by the following formula

δ S̃[v]
δva(x)

=
∫

d4 y
δS[u]
δub(y)

Kba(y, x), (3.56)

where

Kba(y, x) = δFb(vc(y))

δva(x)
.

The assumption that the field transformation is nonsingular means that there exists
(K−1)ac(x, z) such that

∫
d4x Kba(y, x) (K−1)ac(x, z) = δbcδ(y − z).

Therefore,

∫
d4x

δ S̃[ v]
δva(x)

(K−1)ac(x, z) = δS[u]
δuc(z)

. (3.57)
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Relations (3.56) and (3.57) imply equivalence of the Euler–Lagrange equations
obtained from S and S̃,

δS[u]
δua(x)

= 0 ⇔ δ S̃[v]
δva(x)

= 0.

In the case of a singular transformation, it could happen that the r.h.s. of formula
(3.56) vanishes, and then δ S̃/δva = 0, even if δS[u]/δub(x) �= 0.

Lagrangian (3.55) does not contain any potential for the � field. This field is
called the Goldstone field or Goldstone mode. The Euler–Lagrange equation for it
has the form

∂μ

(
(a + χ)2 ∂μ�(x)

)
= 0. (3.58)

If χ is close to its ground state value 0 we may neglect χ in Lagrangian (3.55) and
in Eq. (3.58). This is the so called London approximation, named after F. London
and H. London who used an analogous approximation in theory of superconductors.
In this case Eq. (3.58) acquires the form of wave equation (i.e., the Klein–Gordon
equation with m2 = 0). Note also that when χ = 0, that is when only the Goldstone
field is present, the field φ = a exp(i�) does not leave the vacuum manifold V .
Energy density (3.50) is reduced to

T 0
0(�) = a2 (∂0� ∂0�+ ∂i� ∂i�).

Note that it contains only terms with derivatives—this is a characteristic feature of
Goldstone fields, seen also in other models.

Now let us have a look at the χ field. Assuming that its values are small in
comparison with a and keeping in Lagrangian (3.55) only the terms quadratic in χ
and � we obtain the so called free part of the Lagrangian,

L0 = ∂μχ∂μχ − 2|m2|χ2 + a2∂μ�∂
μ�. (3.59)

It is clear that the Euler–Lagrange equations generated from L0 have the form of
separate Klein–Gordon equations for � and χ , with mass coefficients equal to 0
and 2|m2|, respectively. Note another peculiarity of the Goldstone field �: already
Lagrangian (3.55) is quadratic in�, hence we do not need any assumption that� is
small.

We have seen in the previous section that the presence of nontrivial vacuum man-
ifold results in the presence of the domain walls, which are surface-like extended
objects. Non triviality of the vacuum manifold in the Goldstone model suggests the
existence of extended objects which are line-like. They are called vortices.

In the real scalar field model (3.27) the vacuum manifold consists of two points
±φ+. Let us assume that there are two points 
x1, 
x2 in the space, such that
φ(t0, 
x1) = φ+ and φ(t0, 
x2) = −φ+ at a certain time t0. Let us try to extend the
field all over the three-dimensional space. We take a certain small vicinity of 
x1 and



3.3 The Complex Scalar Field 55

assume that φ(t0, 
x) = φ+ for all 
x from that vicinity. Similarly, we take a certain
small vicinity of 
x2 and φ(t0, 
x) = −φ+ in it. Increasing gradually the two regions,
we finally arrive at the stage where they fill the whole space and touch each other
at certain surface. The field φ is not continuous at that surface. In order to remove
the discontinuity let us replace this surface by a layer of finite thickness, and choose
φ(t0, 
x) such that it smoothly interpolates between±φ+ across the layer. The result-
ing field configuration φ(t0, 
x), now defined on the whole space, is taken as initial
data for the field Eq. (3.25). We have also to specify the time derivative of φ in order
to have the complete set of initial data. We do not impose any special restrictions
on this part of the initial data, we may take for example ∂tφ(t, 
x)|t=t0 = 0. In this
manner we have constructed a domain wall, which in general is curved. The solution
of the field equation corresponding to such initial data has a nontrivial dependence
on time. Note that the function φ(t0, 
x) has to vanish on a surface lying somewhere
inside the border layer, because it changes the sign across it. On that surface the
potential energy U (φ) has local maximum. The planar domain wall discussed in the
previous section is distinguished by the fact that it is static. The solution presented
there shows that the field φ of the static domain wall reaches the ground state values
only asymptotically at the spatial infinity in the directions perpendicular to the wall.
Finally, let us stress that the existence of the domain wall is the consequence of the
choice of the values of the function φ(t0, 
x) at the points 
x1, 
x2 and of its continuity,
irrespectively of the form of the Euler–Lagrange equation.

In the case of the Goldstone model the vacuum manifold is the circle given by
formula (3.53). Therefore, in analogy with the case of domain walls we choose a
circle C of radius R0 in the space, parameterized by the angle θ ∈ [0, 2π), and we
assume that at different points of this circle the scalar field takes different values
from the vacuum manifold. The simplest choice is φ(t0, 
y) = a exp(iθ) for 
y ∈ C .
Actually, there also exist other possibilities which we will discuss later. Now, let us
try to define the smooth field φv(t0, 
x) in the whole space. It is a more complicated
task than in the case of the domain wall because φ is not constant on the circle.
First, let us expand the circle C to an infinite cylinder C × R1 by adding at each
point 
y ∈ C a straight-line perpendicular to the plane of the circle. On each such
straight-line φv is a constant, equal to φ(t0, 
y). Next, we expand the cylinder to the
whole space. In this step, each point of the cylinder is translated along half of the
straight-line perpendicular to the cylinder. We assume that φv(t0, 
x) is constant on
each such half-line. In this manner we have uniquely assigned a value to φv at each
point of the space, except for the symmetry axis of the cylinder C × R1, where φv
is not continuous—approaching this axis from various directions perpendicular to
it, we obtain different values of φv . To remove this discontinuity we choose inside
the initial cylinder C × R1 a cylindrical volume Uε around the symmetry axis, and
allow the field φv to depart from the vacuum manifold in it.

Mathematical arguments based on the homotopy theory show that a smooth func-
tion φv(t0, 
x) can be obtained only if φv vanishes somewhere in Uε . To see this,
suppose that φv does not vanish inside the cylinder C×R1. Then, the modulus of φv
does not vanish too, and the phase factor φv/|φv| is well-defined. It is a continuous
function of 
x because by assumption φv is a continuous function. Phase factors can
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be regarded as points of the unit circle S1 = {z : |z| = 1} in the complex plane.
Now, consider

f (ε, θ) = φv(t0, 
x)/|φv(t0, 
x)|

with points 
x restricted to a circle Cε , which is co-planar and concentric with C and
has the radius ε < R0. Each circle Cε is parameterized by the same angle θ which
parameterizes the circle C . Because | f (ε, θ)| = 1, it is clear that f (ε, θ) with
fixed ε is a continuous mapping from Cε to the circle S1. Moreover, the definition
of f (ε, θ) implies that it is a continuous function of ε, too. For ε = 0 f (ε, θ) is
constant because the circle Cε=0 is just a point, the center of the circle C . For ε = R0
we obtain the initial circle C , and f (R0, θ) = exp(iθ). Thus, we have constructed
a continuous deformation of the constant mapping f (0, θ) into f (R0, θ). But this
contradicts a theorem from the homotopy theory that says that such deformations do
not exist. Therefore, the assumption that φv �= 0 must be false. Because the presence
of the zeros of φ is implied by the homotopy theory, they are called the topological
zeros.

The nonexistence of continuous deformations of the constant mapping into the
exponential mapping exp(iθ) can be described in terms of so called winding number
W [ f ], which characterizes any smooth mapping f (θ) from C to S1. The winding
number is defined as follows

W [ f ] = 1

2π i

∫ 2π

0
dθ

1

f

d f

dθ
, (3.60)

where | f (θ)| = 1. Let� f (θ) denote the phase of f , f (θ) = exp(i� f (θ)). Formula
(3.60) can be written in the form

W [ f ] = 1

2π

∫ 2π

0
dθ

d� f

dθ
= �� f

2π
,

where �� f is the total change of the phase � f during one pass along the circle C ,
�� f = � f (2π)−� f (0). Here by definition

� f (2π) = lim
θ→2π−

� f (θ).

Because f (θ) is continuous on the circle C , we have f (2π) = f (0) and� f (2π) =
�(0)+ 2πn, where n is an integer. Therefore, W [ f ] = n is an integer.

The winding number is constant under continuous deformations of the mapping
f . In general, such a deformation f → g is represented by a function h(σ, θ) which
is continuous in σ , differentiable in θ , and such that h(0, θ) = f (θ), h(1, θ) =
g(θ). Here σ ∈ [0, 1] and θ parameterizes the circle C as before. Moreover, we
demand that h has values in the unit circle S1, i.e., that |h(σ, θ)| = 1 for all σ and θ .
Let us consider W [h] obtained by inserting h on the r.h.s. of the formula (3.60). It is
clear that the integral gives a continuous function of σ with integer values. Such a
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function has to be constant, hence W [ f ] = W [g]. For the constant mapping f (0, θ)
the winding number is equal to zero. On the other hand, for f (R0, θ) = exp(iθ)
formula (3.60) gives W [ f (R0, θ)] = +1. Therefore, these two mappings can not be
continuously deformed into each other.

From the mathematical arguments presented above we know that φv has to vanish
at least at one point in each transverse cross section of the infinite cylinder C × R1.
Note that at such points the potential energy U (φv) has a local maximum. Therefore,
one may expect that the presence of several zeros of φv in these cross sections would
increase the energy of the field. For this reason we assume that there is just one zero
of φv in each transverse section of the cylinder. Let us choose one such cross section,
e.g., the one with the circle C . The zero of φv in this cross section is enclosed by
the circles Cε of the arbitrarily small radius ε. Let us pick one such circle Cε and
shift it continuously through all planes parallel to the circle C in such a way that it
does not pass through the zeros of φv. The winding number is constant during such
translation. Because ε can be arbitrarily small, we see that the zeros have to form a
continuous infinite line in the space.

Already at this point it is clear that such a field configuration has infinite total
energy. The contribution to the potential energy from each finite segment of that
line is proportional to its length. Analogously as in the case of domain walls, this
does not diminish the physical relevance of the vortices. Vortices akin to the ones
discussed here are experimentally observed in superfluid 4 He.

Let us summarize our considerations. The field φv has the values a exp(iθ) on
the cylinder C × R1 and outside it. Inside the cylinder, the field smoothly reaches
the value zero on a continuous line going to infinity in both directions. Such field φv
is taken as a part of the initial data for the field equation

∂μ∂
μφ + λ

12

(
|φ|2 − 12|m2|

λ

)
φ = 0, (3.61)

which follows from Lagrangian (3.48). The remaining part of the initial data fixes
∂tφ at the initial time t0. There are no special restrictions on its choice. Such field
φ(t0, 
x) characterized by the unit winding number is called the infinite vortex. The
field equation determines the time evolution of it. One may also construct initial
data for which the line of zeros is closed. Such closed vortices have finite length,
and finite total energy. Their time evolution can be rather nontrivial.

As in the case of domain walls, one may ask about a static vortex. To find it, we
proceed analogously as in the case of the domain walls. We assume that the field has
a special form φsv, frequently called the static vortex Ansatz, which is characterized
by a high symmetry, and has the winding number equal to +1. In the cylindrical
coordinates (θ, ρ, z) in the space

φsv = aF(ρ)eiθ , (3.62)

where F is an unknown function of the cylindrical radius ρ. The presence of the
topological zero is ensured by the assumption
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F(0) = 0. (3.63)

Thus, the z-axis coincides with the line of the topological zeros. The field φsv should
approach the vacuum manifold at least when ρ → ∞. Therefore, we also assume
that

lim
ρ→∞ F(ρ) = 1 (3.64)

(this does not exclude that F(ρ) = 1 for finite ρ). Formula (3.62) implies that
φsv is homogeneous along the z-axis. Moreover, φv is axially symmetric in the
generalized sense that the effect of rotation around the z-axis can be compen-
sated by a global U (1) transformation. Indeed, after a rotation by θ0 we have
φ′sv(θ, ρ) = exp(−iθ0)φsv(θ, ρ), and subsequent U (1) symmetry transformation
φ′sv(θ, ρ)→ exp(iθ0)φ′sv(θ, ρ) restores the initial field φsv(θ, ρ).

For the field of the form (3.62) Eq. (3.61) is reduced to

F̃ ′′ + F̃ ′

s
− F̃

s2
+ F̃ − F̃3 = 0, (3.65)

where s = √|m2|ρ is the dimensionless variable replacing ρ, F̃(s) = F(ρ), and ′
denotes d/ds. Of course, also F̃ obeys conditions (3.63) and (3.64). Unfortunately,
an exact analytic form of the solution F of Eq. (3.65) is not known. Assuming that
F̃(s) can be expanded in powers of s for small s, and solving Eq. (3.65) order by
order in s we find that

F̃(s) ∼= c1s + c3s3 + . . . ,

where c3 = −c1/8. For large s more natural is an expansion in powers of 1/s. It
gives

F̃(s) ∼= 1− 1

2s2
+ . . . .

Approximate solution of Eq. (3.65) obeying conditions (3.63) and (3.64) can easily
be found with the help of numerical methods. It has the form shown in Fig. 3.5. In
particular, we find that c1 ≈ 0.583.

Note that for small values of ρ

φsv(θ, ρ) = c1a|m|(x + iy)+ . . . ,

where x, y are the Cartesian coordinates in the plane perpendicular to the line of
the topological zeros of φsv (the z axis). The dots denote terms of cubic and higher
order in x, y, and i is the imaginary unit. Thus, first order derivatives of φsv with
respect to x or y taken at x = y = 0 do not vanish. In this sense, the topological
zero of φsv is of the first order.
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0

F(s)~
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1

Fig. 3.5 The plot of the function F̃(s)

We already know that the infinitely long vortex has infinite total energy. It also
turns out that the energy per unit length is infinite. This energy is given by the
integral

∫
dxdy T 0

0 = 2π
∫ ∞

0
dρ ρ

[
a2(∂ρF)2 + a2 F2

ρ2 + V (F2)

]
.

The factor 2π comes from integration over the angle θ . Because F ∼= 1 for large s,
the term F2/ρ2 gives a divergent contribution to the integral over ρ. Note that that
term comes from the gradient energy ∂iφ

∗∂iφ. The energy density T 0
0 of the rec-

tilinear vortex described above has maximal value on the line of topological zeros.
In physical situations, the vortex is created in a vessel of a finite size. It ends on the
walls of the vessel, or forms a loop inside it. In all such cases the total energy is
finite.

So far we have considered the simplest vortex which has the winding number
equal to +1. Taking the exponential exp(−iθ) instead of exp(iθ), we obtain the so
called anti-vortex which has the winding number equal to−1 and the same function
F(ρ) as the vortex. Furthermore, one can also take exp(inθ) with integer n, |n| > 1.
Such fields have the winding number equal to n. The field Eq. (3.61) does not have
static solutions of this type, except for very special cases. Physically, the reason is
that in general the vortices interact with each other. Static multi-vortex solutions
exist when Eq. (3.61) is modified by adding new terms corresponding to certain
external forces acting on the vortices.

The presence of a vortex in the initial data has significant consequences for the
time evolution of the complex scalar field. The total winding number is constant
in time, because the field is a continuous function of time. For this reason, the
winding number is called the topological charge. It is an integral of motion of a
non-Noether’s type, because its existence is not related to some global continuous
symmetry. The space of all fields φ is divided into so called topological sectors—
each sector contains all fields which have the same winding number. Note that in
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the sectors with non vanishing winding number, decomposition (3.54) of the field φ
into the Goldstone field � and the massive real field χ is not correct because of the
presence of topological zeros.

Vortices can appear also in the topologically trivial sector, that is the one with the
total winding number equal to 0. Here one can have vortices (n > 0) and antivortices
(n < 0) in equal numbers, or finite (anti-)vortex loops, which can disappear by
shrinking to a point. In this process the line of zeros gradually shrinks to a point
and disappears. Nevertheless, such a closed vortex can live quite a long time. Vor-
tices can annihilate with antivortices. All these processes are very interesting from
a physical point of view.

Exercises

3.1 We know from Chap. 1 that the sinus-Gordon equation (1.7)

(
∂2
τ − ∂2

ξ

)
�(ξ, τ )+ sin�(ξ, τ ) = 0 (3.66)

possesses the static solution of the form

�+(ξ) = 4 arctan eξ .

(a) Let �(ξ, τ ) = �+(ξ) + εχ(ξ, τ ). By inserting this Ansatz into (3.66), and
keeping only the terms constant and linear in ε, find the approximated equation
satisfied by χ(ξ, τ ).

(b) We shall look for the solution of the equation obtained in point (a) of the form

χ(ξ, τ ) = eiωτψ(ξ).

Prove that

(
− d2

dξ2
+U1(ξ)

)
ψ(ξ) = ω2ψ(ξ). (3.67)

with

U1(ξ) = cos�+(ξ) = 1− 2

cosh2 ξ
.

(c) Show that

ψ0(ξ) = ∂ξ�+(ξ) = 2

cosh ξ



3.3 The Complex Scalar Field 61

is a solution of (3.67) with ω = 0. How is this result—the existence of a zero
mode of (3.67)—related to the fact that �+(ξ − ξ0) is a solution of the sinus-
Gordon equation for any constant ξ0? Calculate (up to the terms of the order ε2)
the energy of the field �+(ξ)+ εφ0(ξ). Is the result surprising?

(d) The solution of the Eq. (3.67), which does not diverge for |ξ | → ∞, can be
either worked out by transforming this equation into the hypergeometric equa-
tion, or can be found in textbooks on quantum mechanics. It is of the form

ψk(ξ) = Ak f1(k, ξ)+ Bk f2(k, ξ), k ∈ R+,

where Ak and Bk are constants, ω = √k2 + 1,

f1(k, ξ) = N1 (tanh ξ cos kξ − k sin kξ) ,

f2(k, ξ) = N2 (tanh ξ sin kξ + k cos kξ) .

The normalization constants Nα, α = 1, 2, are chosen such that

∫ ∞

−∞
dξ fα(k, ξ) fβ(k

′, ξ) = δαβδ(k − k ′).

Using these functions, write down the general form of the perturbation χ(ξ, τ ), and
show by a direct calculation that its contribution to the energy is (apart from the
contribution from the zero mode ψ0(ξ)) strictly positive. What does this mean for
the stability of the perturbed sinus-Gordon soliton?

3.2 Let U (x) be a smooth matrix valued field in the Minkowski space-time M , with
the values in the SU (N ) group. Thus, U = U (x) ∈ SU(N ), x ∈ M . Prove that for
the current

jμ = 1

24π2 ε
μνρλtr

(
U †∂νU U †∂ρU U †∂λU

)
,

the continuity equation ∂μ jμ = 0 holds. Next, check that the ‘charge’

B = 1

24π2

∫
R3

d3x εi jk tr
(

U †∂iU U †∂ jU U†∂kU
)
,

is conserved.
Note that here we do not assume that the field U (x) obeys any Euler–Lagrange

equation, and that we do not invoke Noether’s theorem. Such conservation laws are
called topological ones.
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3.3 An effective Lagrangian, describing interacting pion fields πa(t, 
x), a =
1, 2, 3, can be written with the help of the matrix field U (x), with values in the
SU(2) group, which we shall parameterize as

U (x) = exp

{
− i

Fπ
πaσa

}
, (the sum over a is understood),

where σ1 =
(

0 1
1 0

)
, σ2 =

(
0−i
i 0

)
, σ3 =

(
1 0
0 −1

)
, are Pauli matrices, and Fπ is a

constant (called the pion decay constant). The effective Lagrangian has the form

L = F2
π

4
tr
(
∂μU †∂μU

)
+ 1

4
m2 F2

π tr
(

U† +U − 2
)
,

where m denotes the pion rest mass. Derive the Euler–Lagrange equations for the
fields πa(x), and the formula for the energy which follows from L.

3.4 Let us choose a specific form of the pion fields,

πa(x) = Fπna P(r), (3.68)

where r = √xi xi is the radial coordinate in the spherical coordinate system, and na

denotes the radial versor.

(a) Calculate, for the fields given by (3.68), the form of the charge B defined in
Exercise 3.2.

(b) By inserting the Ansatz (3.68) into the Euler–Lagrange equations derived in the
problem 3.3 find the equation satisfied by P(r).

3.5 Let the theory under consideration be specified by the Lagrangian

L = 1

2
∂μ 
φ∂μ 
φ −U

( 
φ(t, 
x)) ,
where 
φ(t, 
x) = {φi (t, 
x), i = 1, . . . , N } is a set of N scalar fields in the D + 1
dimensional space-time (with D spatial dimensions).

Prove the Derrick theorem which states that for D > 1 there are no static, finite
energy solutions to the Euler–Lagrange equations that follow from L.
Hints:

1. Show that the equations of motion satisfied by a static configuration can be
derived by minimizing the energy.

2. Write the total energy as a sum of kinetic and potential energy, and analyze how
they behave under the variation of 
φ(
x) induced by the scaling of the spatial

coordinates 
x → λ
x, i.e. for δ 
φ(
x) = 
φ
(
(1 + δλ)
x

)
− 
φ(
x) with arbitrary

infinitesimal δλ. Show that for D > 1 the energy has no stationary points under
this specific variation of the fields, and thus no finite energy, static solution exists.



Chapter 4
Vector Fields

Abstract The U (1) gauge group, parallel transport and gauge covariant derivatives.
Abelian gauge field and the minimal coupling prescription. SU (N ) gauge group.
Non-Abelian gauge field. The Yang-Mills equation. Gauge invariant energy-
momentum tensor. The Higgs mechanism. Massive vector field (the Proca field).

Real or complex relativistic vector field Wμ(x) has, by definition, the following
transformation law under the Poincaré transformations1

W ′
μ(x

′) = L ν
μ Wν(x), (4.1)

where x ′ = L̂x + a, L̂ ∈ L↑+. The most important classes of vector fields are
related to gauge transformations and gauge invariance (known also as local sym-
metry groups or gauge symmetries). The set of electromagnetic potentials Aμ intro-
duced in Chap. 1 is the simplest example of a vector field of this kind. In this case the
gauge transformations are related to the U (1) group introduced in Chap. 3, formula
(3.44). This group is Abelian and the corresponding vector field is generally called
the Abelian gauge field. Another example is the non-Abelian gauge field, which is
a matrix-valued vector field related to the SU (N ), N ≥ 2, group. Yet another kind
of vector field—the Proca field—appears when a continuous global symmetry is
spontaneously broken in the presence of a gauge field. When introducing all these
fields we will pay attention to the related mathematical aspects, but only to the
minimal level needed for a clear formulation of the theory.

In this and subsequent chapters we use so called natural units. They are obtained
by attaching the constants c and h̄ to the fields, or parameters or variables, in such a
way that they disappear from all formulas in which they are present as coefficients.
Often one says that in these units c = h̄ = 1, but this could be misleading—we
remove these constants of Nature from the formulas by the appropriate redefining
of the fields and other quantities present in these formulas.

1 There can be a caveat to this transformation law, see formula (4.43) and the remark preceding it.

H. Arodź, L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
DOI 10.1007/978-3-642-15624-3_4, C© Springer-Verlag Berlin Heidelberg 2010
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4.1 The Abelian Gauge Field

In this section we explain how the postulate of invariance under local U (1) trans-
formations can be satisfied by introducing a vector field: the Abelian gauge field. In
Chap. 3 we introduced the Lagrangian

L0 = ∂μφ∗∂μφ − m2φ∗φ (4.2)

for the free complex scalar field φ. As we already know, this Lagrangian is invariant
under the following linear transformations

φ′(x) = eiqαφ(x), (4.3)

where q is a fixed integer (different from 0 in order to avoid the trivial case), and
α ∈ [0, 2π). Because the factor eiqα does not depend on x, these transformations
are called global.

The U (1) group is the set of all phase factors z = exp(iα), α ∈ [0, 2π)
with the group multiplication given by the ordinary multiplication of complex
numbers. This group is Abelian. Formula (4.3), which involves the phase factors
zq = exp(iqα), α ∈ [0, 2π), says that the field φ transforms under a representation
of the U (1) group. By definition, this means that the mapping

R : z → zq

has the following properties:

(a) it is continuous with respect to z ∈ U (1),
(b) it preserves the product, that is

R(z1z2) = R(z1)R(z2)

for all z1, z2 ∈ U (1),
(c) R(1) = 1.

The condition (c) is not trivial—recall that 1q is multi-valued for non-integer q.
Let us show that conditions (a)–(c) imply that q has to be an integer. Applying R to
both sides of the identity

1 = lim
ε→0+ ei(2π−ε),

and using the condition of continuity we have

R(1) = R

(
lim
ε→0+ ei(2π−ε)

)
= lim
ε→0+ R

(
ei(2π−ε)) = lim

ε→0+ ei2πq e−iεq = ei2πq .
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Because R(1) = 1, we obtain the condition exp(i2πq) = 1 which is satisfied only
by integer q.

The theory of gauge fields is based on gauge transformations and gauge invari-
ance. The gauge transformations form an infinite dimensional group, generally
called the gauge group. In the present case, the pertinent gauge group is a subgroup
of the continuous direct product of the U (1) groups, and it is called the local U (1)
group. Let us recall that the direct product G1 × G2 of two groups G1, G2 is the
set of all pairs (g1, g2), where g1 ∈ G1, g2 ∈ G2, with the group multiplication
defined by

(g1, g2)(g
′
1, g

′
2) = (g1g′1, g2g′2).

The pair (g1, g2) can be regarded as a mapping F defined on the two-element set
{1, 2}, and such that F(i) ∈ Gi for i = 1, 2. The set of all such mappings can be
identified with the set G1×G2. Now, let us take the continuous index x with values
in the Minkowski space-time M . The continuous direct product

∏
x∈M U (1) is the

set of mappings z(x) defined on M and such that z(x) ∈ U (1) for each x ∈ M . The
set of all such mappings is very large. It turns out that in field theoretic applications,
it is sufficient to consider the subgroup of

∏
x∈M U (1) consisting of all mappings

z(x) which are smooth functions of x and such that

z(x)→ 1 when |
x | → ∞. (4.4)

Only this subgroup, denoted as U (1)loc, is called the local U (1) group. The elements
of U (1)loc can be written in the exponential form

z(x) = exp(iχ(x)), (4.5)

where χ(x) is a smooth function of x . Moreover, we demand that χ and all its
derivatives with respect to xμ vanish at the spatial infinity, i.e., when |
x | → ∞.
One reason for the restriction to U (1)loc is that we want to exclude transformations,
which can change asymptotic (that is at |
x | → ∞) behavior of derivatives of the
field, and in consequence transform the scalar field configurations having finite total
energy and momentum into ones with infinite energy or momentum. Another justifi-
cation for the assumption that χ vanishes at the spatial infinity comes from quantum
theory. It turns out that for a particular subset of such transformations, namely with
χ constant in time, there exists a simple implementation in the quantum theory of
the field φ. An example can be found in Sect. 14.1.

By assumption, the local U (1) transformations of the field φ have the form

φ′(x) = eiqχ(x)φ(x), (4.6)

where χ(x) is the function introduced in formula (4.5). The non vanishing integer
q has the same value as in formula (4.3)—in this sense both (4.3) and (4.6) involve
the same representation of the U (1) group.
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Note that χ(x) = constant �= 0 is not allowed by the definition of the gauge
group. Therefore, the global U (1) group is not a subgroup of the local one. However,
the U (1)loc contains elements, which in a sense approximate the elements of the
global U (1). Such elements have the function χ(x) constant in a compact region �
in M , χ(x) = α for x ∈ �. By enlarging that region, we can have function χ , which
is constant on the arbitrarily large compact subset of M . Of course, we may combine
the local and global U (1) transformations—in this way we obtain transformations
of the form

φ′(x) = eiq(α+χ(x))φ(x)

with arbitrary constant α ∈ [0, 2π) and χ vanishing when |
x | → ∞.
Lagrangian (4.2) is not invariant under the U (1)loc group because the gauge

transformations change the form of the term with derivatives:

∂μφ
′∗(x)∂μφ′(x) = (∂μφ∗(x)− iq∂μχ(x) φ

∗(x)
) (
∂μφ(x)+ iq∂μχ(x) φ(x)

)
.

In order to make the Lagrangian invariant we first define a covariant derivative. The
reason is that in the case of gauge transformations, the notion of derivative is not
well represented by the ordinary partial derivative, which just compares values of
the field at neighboring points,

∂μφ(x) = lim
ε→0

φ(xν + δνμε)− φ(xν)
ε

.

The problem lies in the difference present in the numerator on the r.h.s. of this
formula: one would expect from a meaningful difference that it commutes with
the gauge transformations (4.6), while the one present in the numerator does not.
The solution to this problem is well-known in mathematics: one should introduce a
connection and the related covariant derivative. In the case of local U (1) group, the
connection is represented by a vector field Aμ(x) which has the following transfor-
mation law under the local U (1) transformations

A′μ(x) = Aμ(x)− ∂μχ(x). (4.7)

The covariant derivatives with respect to xμ have the form

Dμ(A)φ(x) = ∂μφ(x)+ iq Aμ(x)φ(x), (4.8)

Dμ(A)φ
∗(x) = ∂μφ∗(x)− iq Aμ(x)φ

∗(x).

They commute with the gauge transformations, e.g.,

Dμ(A
′)φ′(x) = exp(iqχ(x)) Dμ(A)φ(x).

In physical literature, the connection Aμ is called the Abelian gauge field.
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The connection can be used to define a parallel transport of the field φ along a
directed path C in Minkowski space-time M . Let x0 be the starting point and y0 the
end point of the path C , φ0 = φ(x0) is the value of the field φ at the point x0. By
definition, the parallel transport of φ0 to the point y0 along the path C yields the
complex number W [y0, x0;C]φ0, where

W [y0, x0;C; A] = exp

(
−iq

∫
C

dxμAμ

)
. (4.9)

Note that |W [y0, x0;C; A]| = 1, hence W [y0, x0;C; A] ∈ U (1). When the line
C is smoothly parameterized by σ ∈ [0, 1] with x(0) = x and x(1) = y, the line
integral can be written as the integral over σ ,

∫
C

dxμAμ =
∫ 1

0
dσ

dxμ

dσ
Aμ(x(σ )).

The parallel transport commutes with the gauge transformations in the following
sense

W [y0, x0;C; A′] φ′(x0) = exp(iqχ(y0))W [y0, x0;C; A] φ(x0), (4.10)

where φ′, A′μ are given by formulas (4.6) and (4.7). On the l.h.s. of formula (4.10),
we first perform the gauge transformation and next the parallel transport, while on
the r.h.s. the order of these operations is reversed. As the meaningful difference of
values of φ at different points x, y one can take, for instance,

φ(y)−W [y, x;C; A]φ(x).

According to this formula, we first parallel transport φ(x) to the point y, and then
compare it with φ(y). Note that such difference depends on the directed path C con-
necting x with y. Let us take yμ = xμ+εδμν , and the rectilinear segment connecting
y with x (directed from y to x) as the path C . Then

Dν(A)φ(x) = lim
ε→0

W [x, y;C; A]φ(y)− φ(x)
ε

(4.11)

(Exercise 4.1).
In order to obtain a Lagrangian invariant under the gauge transformations, it suf-

fices to replace the ordinary partial derivatives in the Lagrangian L0 by the covariant
ones,

L1 = Dμ(A)φ
∗Dμ(A)φ − m2φ∗φ. (4.12)

This simple recipe is called ‘the minimal coupling prescription’. Lagrangian L1
contains two fields: Aμ and φ.



68 4 Vector Fields

Because L1 does not contain derivatives of Aμ, the Euler–Lagrange equation for
Aμ has the form

0 = ∂L1

∂Aμ
= iqφ ∂μφ∗ − iqφ∗ ∂μφ + 2q2φ∗φAμ.

This equation implies that Aμ(x) remains undetermined at points x such that
φ(x) = 0, and

Aμ = i

2q

(
∂μφ

φ
− ∂μφ

∗

φ∗

)

if φ(x) �= 0. Thus, the model defined by the Lagrangian L1 is acceptable only if
we add the assumption that φ(x) �= 0 on the whole Minkowski space-time. Then,
the gauge field is expressed by the scalar field. It is an example of the so called
composite gauge field: it has the right behavior with respect to Poincaré and U (1)loc

gauge transformations, but it is not an independent field when the Euler–Lagrange
equations are taken into account. Quite interesting models of this kind are obtained
if the single complex scalar field φ is replaced by a multiplet 
φ of n > 1 complex
scalar fields φ1, φ2, . . . , φn which belong to the same representation of the U (1)
group and obey the condition 
φ∗ 
φ = 1, which excludes 
φ = 0. The Lagrangian
has the form (4.12) with φ, φ∗ replaced by 
φ, 
φ∗. Note that due to the condition

φ∗ 
φ = 1 one field out of 2n real scalar fields Reφ1, Imφ1,Reφ2, Imφ2, . . . can be
expressed by the remaining ones, so we have 2n − 1 independent real scalar fields.
These models are called the C Pn−1 models.

Another gauge invariant model is obtained by adding to the Lagrangian L1 a cer-
tain Lagrangian LA(Aμ, ∂ν Aμ) for the Aμ field. Of course, LA should be invariant
under the local U (1) transformations. We assume also that the Lagrangian LA is
local. Let us take a gauge transformation (4.7) with χ(x) of the form

χ(x) = −aμxμg(x),

where g(x) is a smooth function such that g(x) = 1 in a vicinity of certain point
x0 in M and g(x) = 0 far away from it, aμ are arbitrary real constants. Formula
(4.7) gives A′μ(x0) = Aμ(x0) + aμ. Because x0 can be any point in M , we see
that the gauge invariance of LA is possible only if this Lagrangian does not depend
on Aμ. Moreover, the dependence on the derivatives has to be restricted. Let us
consider the symmetric part of the tensor ∂ν Aμ, that is (∂ν Aμ + ∂μAν)/2. The
gauge transformations with χ(x) = −aμνxμxνg(x)/4, where aμν are arbitrary real
constants such that aμν = aνμ, change the symmetric part at the point x0 by aμν .
On the other hand, the antisymmetric part of the tensor ∂ν Aμ, or equivalently,

Fμν = ∂μAν − ∂ν Aμ, (4.13)
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is invariant under all gauge transformations. Therefore, the requirement of gauge
invariance implies that LA can be a function of Fμν only.

Because LA should also be a Lorentz invariant, it has to be a function of the
invariants

I1 = FμνFμν, I2 = εμνλρFμνFλρ,

where εμνλρ is the totally antisymmetric symbol, ε0123 = +1. I2 is not invariant
under the reflections T, P introduced in Sect. 3.1. Therefore, if we add I2 to the
Lagrangian, the resulting model will not be invariant with respect to these reflec-
tions. It turns out that in physical applications of the four-dimensional Abelian gauge
field, the I2 term is not needed.

The Lagrangian which gives the Euler–Lagrange equations for Aμ of the Klein–
Gordon type has the form

LA = − 1

4e2 FμνFμν, (4.14)

where e2 is an arbitrary positive constant. In the natural units (‘h̄ = 1 = c’) the
action functional is dimensionless, Aμ(x) has the dimension cm−1 as implied by
formulas (4.7) and (4.8), therefore e2 is dimensionless.2 The minus sign in formula
(4.14) is present, because then the corresponding energy density is non-negative, see
formula (4.49) below.

To summarize, the requirement of invariance with respect to the local U (1) sym-
metry is satisfied when the initial Lagrangian (4.2) is extended by including the
Abelian gauge field Aμ(x). When this field is a dynamical field independent of φ,
the simplest gauge invariant Lagrangian has the form

L = Dμ(A)φ
∗ Dμ(A)φ − m2φ∗φ − 1

4e2
FμνFμν. (4.15)

Instead of the Aμ field, we may use the equivalent field Bμ(x) = Aμ(x)/e. After
rewriting the Lagrangian L with the use of the field Bμ, the constant e appears only
in the covariant derivatives,

Dμ(B)φ = ∂μφ + ieqBμ(x)φ(x).

From Lagrangian (4.15) we obtain the following Euler–Lagrange equations:

∂νFνμ = jμ, (4.16)

2 This is true only in the case of four-dimensional space-time. In D-dimensional space-time the
volume element d D x in the action functional does not cancel the dimension of I1, and in conse-
quence e2 has the dimension equal to cmD−4.



70 4 Vector Fields

where

jμ = qe2 (iφ∗∂μφ − iφ∂μφ∗ − 2q Aμφ∗φ
)
, (4.17)

and

Dμ(A)D
μ(A) φ + m2φ = 0. (4.18)

Equation (4.16) has the form of the Maxwell equation with the current density jμ.
Therefore, the electromagnetic field can be regarded as an example of the U (1)
gauge field. The model with the Lagrangian (4.15) is known under the name ‘scalar
electrodynamics’, which emphasizes the fact that the current jμ is constructed from
the scalar field.

The presence of the gauge invariance is a signal that the model is formulated
in terms of fields some components of which are redundant. The redundant com-
ponents are not needed to describe physical phenomena—their only role is to sim-
plify theoretical formulation of the model. Observables, that is quantities which are
at least in principle measurable, do not depend on them. Therefore, as far as the
observables are concerned, the redundant components can have arbitrary values.
The gauge transformations change the redundant components, and do not change
the physically relevant ones.

In the case of U (1) gauge field Aμ(x) the redundant component can be found
explicitly. We assume that each function Aμ(x) and its derivatives vanish suffi-
ciently quickly in the limit |
x | → ∞. The redundant component is related to the
longitudinal part 
AL of the vector potential 
A, defined as follows


AL = ∇ψ,

where

ψ = 
−1(div 
A(x)).
Here 
−1 denotes a Green’s function of the 3-dimensional Laplace operator 
, see
formula (1.28). Gauge transformations (4.7) imply that 
A′ = 
A + ∇χ (because

A = (Ai ) = (−Ai )), hence

ψ ′(x) = 
−1(div 
A′(x)) = ψ(x)+ χ(x).

Therefore, the redundant component is given precisely by ψ . Let us introduce the
transverse part 
AT of the vector potential 
A and the longitudinal part 
EL of the
electric field 
E :


AT = 
A − 
AL , 
EL = −∇A0 − ∂0 
AL .

Both 
AT and 
EL are gauge invariant because


A′L = 
AL + ∇χ.
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The gauge field Aμ can be decomposed into the gauge invariant (physical) part and
the part containing only ψ (the so called gauge part):


A = 
AT +∇ψ, A0 = −
−1div 
EL − ∂0ψ.

As we can see, the explicit separation of the physical and the redundant components
of the Abelian gauge field is possible. However, one should add that in most cases
such separation only complicates calculations because the formula defining ψ is
rather complicated and, moreover, it is not Lorentz covariant. In the case of non-
Abelian gauge fields, discussed in the next section, such explicit extraction of the
gauge component of the field is not possible.

The Abelian gauge field is an example of constrained systems mentioned in
Chap. 2. The Eq. (4.16) can be written in the following form

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ∂2

0

(
A0


A
)
= 


(
A0


A
)
+
(

∂0∇ 
A + j0

−∇(∂0 A0 +∇ 
A)+ 
j
)
.

The matrix on the l.h.s. is singular. The corresponding constraint is obtained by
multiplying both sides of this equation by the four-vector (1, 0, 0, 0). It has the form


A0 + ∂0∇ 
A + j0 = 0.

Note that it coincides with the μ = 0 component of Eq. (4.16) (the Gauss law of
electrodynamics).

4.2 Non-Abelian Gauge Fields

Let us consider the following generalization of Lagrangian (4.2)

L0 = ∂μ 
φ †∂μ 
φ − m2 
φ † 
φ, (4.19)

where 
φ is a multiplet of N complex scalar fields, † denotes Hermitian conjugation.
This Lagrangian is invariant under the global U (N ) transformations


φ′(x) = u 
φ(x),

where u ∈ U (N ), U (N ) denotes the group of all unitary N by N matrices. Thus,
u†u = IN and |det u| = 1, where IN is the N by N unit matrix.

The U (N ) group contains a subgroup isomorphic with the U (1) group. It consists
of all matrices of the form exp(iα)IN , α ∈ [0, 2π). Determinants of these matrices
are equal to exp(i Nα). Because the U (1) gauge group was already considered in
connection with the Abelian gauge field, we would like to exclude this subgroup
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of U (N ). Therefore we consider the SU (N ) group, which is a subgroup of U (N ),
formed by all unitary matrices which have the determinant equal to +1. The SU (N )
group also contains matrices which belong to the U (1) subgroup, namely matrices
of the form exp(i2πk/N )IN , where k = 0, 1, . . . , N − 1. These matrices form
a discrete subgroup of U (1), denoted by Z N and called the center of the SU (N )
group.

Let us note that there is no gauge field in Minkowski space-time associated with
a local version of the Z N group alone. The point is that the corresponding gauge
transformations, and the functions χ(x) in (4.5), can not be continuous functions
of x ∈ M unless the transformation is the trivial one (multiplication of 
φ by 1).
Therefore, formula (4.7) can not be applied here —it contains derivatives of the
discontinuous function χ(x). The Z N gauge field is feasible if the continuous space-
time is replaced by a discrete set of points, e.g., an infinite lattice.

The SU (N ) gauge transformations of the multiplet of the scalar fields, have the
form


φ ′
(x) = ω(x) 
φ(x), (4.20)

where ω(x) ∈ SU (N ) for all x from M . In analogy to the case of the U (1)loc

group, we require that the matrix elements of ω(x) are smooth functions on M , and
that ω(x) → IN when |
x | → ∞. All such mappings ω(x) form the local SU (N )
group, denoted by SU (N )loc. Lagrangian (4.19) is not invariant under such local
transformations, and the cure is the same as before—the ordinary derivatives should
be replaced by covariant ones. According to the mathematical theory of connections,
in the present case the covariant derivative has the form

Dμ(A) 
φ(x) = ∂μ 
φ + i Âμ(x) 
φ, (4.21)

where the connection, or the non-Abelian gauge field, Âμ(x) for all μ = 0, 1, 2, 3
and x ∈ M belongs to the Lie algebra of the SU (N ) group. This algebra consists of
all N by N , Hermitian and traceless matrices:

Â†
μ(x) = Âμ(x), tr Âμ(x) = 0. (4.22)

Furthermore, the connection has the following transformation law under the SU (N )
gauge transformations

Â′μ(x) = ωx Âμ(x) ω
−1
x + i∂μωx ω

−1
x , (4.23)

where we have introduced the short notation

ωx ≡ ω(x).

The form of transformation law (4.23) is such that
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Dμ(A
′) 
φ ′(x) = ωx Dμ(A) 
φ(x).

This formula justifies the name ‘covariant derivative’ for Dμ(A).
Formula (4.11), which relates the covariant derivative to the parallel transport,

holds also in the case of non-Abelian covariant derivative (4.21) if the phase factor
W [x, y;C; A] is replaced by the unitary matrix

Ŵ [x, y;C; Â] = P exp

(
−i
∫

C
dxμ Âμ

)
.

The symbol P means that the exponential is path-ordered. Such an exponential is a
rather complicated object. In order to compute it, first one has to solve the differen-
tial equation

i
dŴ [σ ; Â]

dσ
= ẋμ(σ ) Âμ(x(σ )) Ŵ [σ ; Â],

with the initial condition

Ŵ [0; Â] = IN .

Here σ is the parameter along the path C , introduced below formula (4.9). The path
ordered exponential is given by Ŵ [1; Â]:

P exp

(
−i
∫

C
dxμ Âμ

)
= Ŵ [1; Â].

The calculations are nontrivial because the matrices ẋμ(σ ) Âμ(x(σ )) with different
values of σ in general do not commute. In the Abelian case, this problem does not
appear and the path ordered exponential coincides with the ordinary one.

Transformation law (4.23) preserves the Hermiticity and tracelessness of Âμ(x).
Hermiticity of the first term on the r.h.s. of formula (4.23) is obvious. The Hermitian
conjugation of the second term gives −iωx ∂μω

−1
x . Using the formula

∂μ(ω
−1
x ) = −ω−1

x ∂μωx ω
−1
x ,

which follows from the identity

0 = ∂μ IN = ∂μ
(
ωx ω

−1
x

)
= ωx ∂μ(ω

−1
x )+ ∂μωx ω

−1
x ,

we recover the i∂μωx ω
−1
x term. Therefore, Â′μ(x) is a Hermitian matrix too. Now

let us compute tr Â′μ(x):
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tr Â′μ(x) = tr Âμ(x)+ i tr
(
∂μωx ω

−1
x

)
= tr Âμ(x),

because

tr
(
∂μωx ω

−1
x

)
= 0. (4.24)

This last formula follows from the fact that

1 = det(ωx+ε)det(ω−1
x ) = det

(
ωx+ε ω−1

x

)
= det

(
I + εμ∂μωx ω

−1
x + . . .

)

= 1+ εμ tr
(
∂μωx ω

−1
x

)
+ . . . ,

where the dots denote terms with higher second and higher powers of εμ. Differenti-
ation with respect to εμ and substitution ε = 0 gives formula (4.24). Thus, tr Âμ(x)
is invariant under the gauge transformations (4.23).

The conditions (4.22) cut from the space of all N by N complex matrices the
N 2 − 1 dimensional subset—the Lie algebra of SU (N ) group—which is a linear
space over real numbers (and not over complex numbers, because linear combi-
nations with complex coefficients do not preserve Hermiticity of matrices). Let
(T̂a), a = 1, 2, . . . N 2 − 1, be a basis in this subspace. The matrices T̂a are of
course Hermitian and traceless. For simplicity, we use only an orthogonal basis,
that is such that

tr(T̂a T̂b) = 1

2
δab. (4.25)

The matrix commutator [T̂a, T̂b] is anti-Hermitian and traceless. Multiplying it
by −i we obtain an element of the Lie algebra, and therefore it can be written as a
linear combination of matrices T̂a with real coefficients. Hence,

− i[T̂a, T̂b] = fabcT̂c, (4.26)

where fabc are real numbers, called the structure constants of the Lie algebra in
the chosen basis. The Jacobi identity for matrix commutators, [[Ta, Tb], Tc] +
[[Tc, Ta], Tb][[Tb, Tc], Ta] = 0, implies the Jacobi identity for the structure con-
stants,

fabd fdce + fcad fdbe + fbcd fdae = 0.

It turns out that condition (4.25) implies that the structure constants are antisymmet-
ric in all three indices (Exercise 4.2).

The gauge field Âμ(x) can be expanded in the basis (T̂a),

Âμ(x) = T̂a Aa
μ(x), (4.27)
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where the vector fields Aa
μ(x) have real values, and a = 1, . . . , N 2 − 1. Thus,

the number of these fields is equal to N 2 − 1. We may equivalently use the matrix
notation Âμ, or the multiplet notation Aa

μ(x).
In physical applications such as in the theory of electro-weak interactions

(Glashow–Salam–Weinberg model, N = 2), or in the theory of strong interactions
of quarks (quantum chromodynamics, N = 3), the non-Abelian gauge field appears
as the dynamical field, not reducible to other fields. In the first step in the con-
struction of the gauge invariant Lagrangian for this field, we find the non-Abelian
counterpart of the field strength tensor Fμν . In the Abelian case it is given by formula
(4.13), but Fμν in that form, generalized by merely replacing the Abelian gauge
field by Âμ, has a rather complicated transformation law under the non-Abelian
gauge transformations (4.23). The correct non-Abelian field strength tensor F̂μν
with a simple transformation law is obtained by calculating the commutator of the
covariant derivatives:

Dμ(A)Dν(A) 
φ(x)− Dν(A)Dμ(A) 
φ(x) = i F̂μν(A)(x) 
φ(x), (4.28)

where

F̂μν(A)(x) = ∂μ Âν(x)− ∂ν Âμ(x)+ i[ Âμ(x), Âν(x)]. (4.29)

The gauge transformation of F̂μν follows directly from this definition,

F̂μν(A
′)(x) = ωx F̂μν(A)(x)ω

−1
x , (4.30)

where Â′μ is given by formula (4.23). F̂μν is antisymmetric in indices μ, ν, and it

has values in the Lie algebra of the SU (N ) group. Its expansion in the basis T̂a has
the form

F̂μν(x) = T̂a Fa
μν(x), (4.31)

where

Fa
μν(x) = ∂μAa

ν (x)− ∂ν Aa
μ(x)− fabc Ab

μ(x)A
c
ν(x). (4.32)

This last formula is obtained by substituting formula (4.27) in the definition (4.29),
and using (4.26). By analogy with the Abelian case,

Êi = F̂0i , B̂k = −1

2
εijk F̂i j

are called the non-Abelian electric and magnetic fields, respectively. Their physical
significance is not so profound as in the Abelian case because they are not invari-
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ant with respect to the gauge transformations. Only gauge-invariant quantities are
accepted as observables.

As the Lagrangian for the non-Abelian gauge field Âμ we take

L = − 1

2g2 tr(F̂μν F̂μν) = − 1

4g2 Fa
μνFaμν, (4.33)

where g is a dimensionless positive constant. This Lagrangian is invariant with
respect to the gauge transformations, Poincaré transformations, and P, T reflec-
tions.

Similarly as in the Abelian case, we may rescale the field

Âμ = gB̂μ.

Then

B̂ ′μ(x) = ωx B̂μ(x) ω
−1
x + i

g
∂μωx ω

−1
x ,

and

F̂μν(A) = gF̂μν(B),

where

F̂μν(B) = ∂μ B̂ν − ∂ν B̂μ + ig[B̂μ, B̂ν].

Because such rescaling is a nonsingular transformation of the field, the formulations
using Âμ or B̂μ are equivalent.

The Euler–Lagrange equation for the non-Abelian gauge field has the form

∂L
∂Aa

μ

− ∂ν
(

∂L
∂(Aa

μ,ν)

)
= 0,

where L is given by formula (4.33). Because

∂L
∂Aa

μ

= 1

g2
fabc Ab

ν Fcμν,
∂L

∂(∂ν Aa
μ)
= − 1

g2
Faνμ,

we obtain the following equation

∂νFaνμ − fabc Ab
νFcνμ = 0, (4.34)

which is known as the Yang–Mills equation. Comparing it with Eq. (4.16) for the
Abelian gauge field (with jμ = 0), the main difference is the presence of several
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terms with the structure constants fabc—all are nonlinear with respect to Aa
μ. If these

terms were absent ( fabc = 0) we would obtain N 2 − 1 linear equations of the form
(4.16) with jμ = 0, and Aa

μ could be regarded as a set of N 2−1 independent copies
of the Abelian gauge field. Because of the presence of nonlinear terms, the Yang-
Mills equation is rather difficult to solve. Only very few explicit analytic solutions
of it are known.

The Yang–Mills equation can be rewritten in the form

∂ν
(
∂ν Aaμ − ∂μAaν) = jaμ

Y M , (4.35)

where

jaμ
Y M = fabc

[
∂ν(A

bν Acμ)+ Ab
νFcνμ

]
.

Taking ∂μ of both sides of Eq. (4.35) we obtain the continuity equation

∂μ jaμ
Y M = 0.

The l.h.s. of Eq. (4.35) has the same form as the l.h.s. of Eq. (4.16), but the conserved
current jaμ

Y M is constructed only from the non-Abelian gauge field. Therefore, we
may say that the non-Abelian gauge field is charged. The charge density is given by
the μ = 0 component of the conserved current j aμ

Y M . Of course, this charge is the
non-Abelian one, not related at all to the electric charge.

The Yang–Mills equation can also be written in the matrix form. Multiplying
both sides of Eq. (4.34) by T̂a , and using formula (4.26) in order to eliminate fabc,
we obtain

∂ν F̂νμ + i
[

Âν, F̂νμ
]
= 0. (4.36)

Each term with a fixed value of ν on the l.h.s. of this equation is a particular case of
covariant derivative of the field-strength tensor, in general defined by the following
formula

Dρ(A)F̂
μν = ∂ρ F̂μν + i

[
Âρ, F̂μν

]
. (4.37)

Simple calculation shows that

Dρ(A
′)F̂ ′μν(x) = ωx Dρ(A)F̂

μν(x) ω−1
x ,

where Â′μ, F̂ ′μν are given by formulas (4.23) and (4.30), respectively. In the com-
ponent notation,

(Dρ(A)F̂
μν)a = ∂ρFaμν − fabc Ab

ρFcμν.
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Notice that by now we have introduced two covariant derivatives, see formulas
(4.21) and (4.37). They have different forms because they act on objects which trans-
form in different ways under the SU (N ) gauge transformations, cf. formulas (4.20)
and (4.30). For that matter, these transformation laws define two representations
of the SU (N ) group, namely the fundamental representation in the case of (4.20),
and the adjoint one in the case of (4.30). Instead of the multiplet of N scalar fields
transforming under the fundamental representation according to formula (4.20), one
can consider other multiplets 
� which transform under arbitrary (nontrivial) repre-
sentation R of the SU (N ) group. Then, the transformation law and the covariant
derivative have the form


� ′
(x) = R̂(ω(x)) 
�(x) (4.38)

Dμ(A) 
�(x) = ∂μ 
�+ i Aa
μ(x)R̂a 
�(x), (4.39)

where R̂a are counterparts of the matrices T̂a . They are called generators of the
representation R̂. Specifically, R̂a can be obtained from the following formula

R̂a = −i
∂ R̂(exp(iεa T̂a))

∂εa

∣∣∣∣∣
ε=0

.

One can prove that the commutator of the generators R̂a contains the same structure
constants as are present in formula (4.26),

[R̂a, R̂b] = i fabc R̂c. (4.40)

Needless to say, the multiplet of real vector fields Aa
μ present in the covariant deriva-

tive (4.39) is the non-Abelian gauge field discussed earlier in this section.
The Yang–Mills equation (4.34) corresponds to Eqs. (1.19a,b) of Chap. 1 (with

ρ = 0, 
j = 0). The remaining Eqs. (1.19c,d) also have their non-Abelian counter-
part, namely

Dμ F̂νρ + Dρ F̂μν + Dν F̂ρμ = 0. (4.41)

Inserting here the definition (4.29) of the field-strength tensor, and using the Jacobi
identity for commutators of matrices, we find that (4.41) is just an identity. It is
called the Bianchi identity. There is an interesting theorem which says that if some
Ĥμν(x) has values in Lie algebra of the SU (N ) group, is antisymmetric in μ, ν,
and obeys the Bianchi identity with arbitrary Âμ, then it coincides with F̂μν up to
multiplication by a real constant.

Energy-momentum tensor for the non-Abelian gauge field follows from Noe-
ther’s formula (2.32). As far as translations in space-time are concerned, the vector
field behaves like a set of independent scalar fields, see formula (4.1) with L̂ = I4.
Therefore



4.2 Non-Abelian Gauge Fields 79

DαAa
μ(x) = −∂αAa

μ(x).

Of course, K να = 0, ξνα = δνα , and the fields ua now coincide with Aa
μ. The general

formula (2.32) gives

T μν =
1

g2 ∂ν Aa
ρ Faρμ − δμν L, (4.42)

where L has the form (4.33). The first term on the r.h.s. of formula (4.42) can be
written in the form 2tr (∂ν Âρ F̂ρμ)/g2 which shows that it is not invariant with
respect to the SU (N ) gauge transformations. This means that T 0

0, T
0
i computed

from formula (4.42) can not be accepted as energy and momentum densities, respec-
tively, because such important characteristics of the gauge field should belong to the
set of observables. There is a simple way to find an improved energy-momentum
tensor T

μ

ν which is conserved and gauge invariant [4]. The trick is based on the
observation, that thanks to the gauge invariance, it is possible to modify the trans-
formation law (4.1) by associating a gauge transformation with the Poincaré trans-
formation. Then, formula (4.1) is replaced by a more general transformation law of
the form

Â′μ(x ′) = L ν
μ

(
ωx Âν(x) ω

−1
x + i∂νωx ω

−1
x

)
. (4.43)

Furthermore, ωx is adjusted in order to give a suitably modified Lie derivative Dα .
For the present goal of computing the conserved gauge invariant energy-

momentum tensor, it is sufficient to consider infinitesimal transformations. Then,

ωx = IN + i X̂(x)+ . . . , (4.44)

where X̂ is Hermitian and traceless in order to ensure that ωx ∈ SU (N ). The
dots stand for terms with higher powers of X̂ . Formula (4.44) follows from the
exponential parametrization of the SU (N ) group in a vicinity of the unit matrix,
ωx = exp(i X̂(x)). Inserting formula (4.44) on the r.h.s. of (4.23) we obtain the
infinitesimal form of gauge transformations of Âμ

Â′μ(x) = Âμ(x)+ i[X̂ , Âμ] − ∂μ X̂ + . . . . (4.45)

Now, let us consider infinitesimal translations in the direction α. The corresponding
Killing vector is ξμα = δμα . For these translations we choose X̂α(x) = Âα(x). Then
the calculation of the Lie derivative in the case of transformation law (4.43) gives

Dα Âμ = F̂μα(x). (4.46)

Now Noether’s formula (2.32) gives the improved energy-momentum tensor
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T
μ

ν = −
1

g2 Fa
νρ Faμρ − δμν L, (4.47)

or in the matrix form

T
μ

ν = −
2

g2 tr(F̂νρ F̂μρ)− δμν L. (4.48)

From formula (4.48) we immediately see that indeed, T
μ

ν is gauge invariant. In
particular, the gauge invariant energy density of the non-Abelian gauge field has the
form

T
0

0 =
1

2g2

(
Fa

0k Fa
0k +

1

2
Fa

ik Fa
ik

)
. (4.49)

It is clear that T
0

0 is non negative.
Formula (4.47) for the improved energy-momentum tensor can be used also for

the Abelian gauge field: we just put fabc = 0, and assume that the index a has only
one value so that it can be omitted. In this case the matrix notation for the field
Aμ is of course superfluous. The matrix ωx should be replaced by the phase factor
z(x) = exp(iχ(x)).

The theory of non-Abelian gauge fields is very intricate and beautiful. Combining
rather elegant mathematical formalism with highly nontrivial physics, it belongs to
the most interesting branches of modern theoretical physics. We shall return to it in
Chap. 12.

4.3 The Higgs Mechanism and a Massive Vector Field

Lagrangians (4.14) and (4.33) do not contain any dimensional parameters (in the
natural units). This fact is often rephrased as the statement that the gauge fields are
massless, but this is not quite correct. First, there does not exist any notion of mass
of a field—one can meaningfully talk only about the mass of a particle obtained after
quantization of the field in a Fock space. In the case of the Abelian gauge field, such
particles have physical properties of photons, in particular they are massless, that is
their four-momentum is light-like, see Chap. 6. Thus, in this case the term ‘massless’
is to some extent justified. In the case of non-Abelian gauge fields quantization
is rather nontrivial, and properties of the quantum version of these fields are still
under investigation. Apparently, there exist several versions of the quantum theory
of non-Abelian gauge fields, in literature called ‘phases’. The one which seems to
describe the observed strong interactions of quarks inside hadrons, does not actually
contain massless particles corresponding to the gauge field. Instead, it predicts the
existence of massive particles called glueballs, which correspond to some composite
fields built from the non-Abelian gauge field Âμ. Therefore, in this case the term
‘massless’ is not appropriate.
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In the case of the so called massive vector field, the corresponding Lagrangian
contains a parameter with the dimension of mass (cm−1 in the natural units). It
turns out that quantum theory of these fields leads to particles with non vanishing
rest mass.

Perhaps the most natural way to introduce the massive vector fields is through the
so called Higgs mechanism. We shall only present the Abelian version of it within
the framework of the scalar electrodynamics with Lagrangian (4.15) modified in the
scalar field sector: the mass term −m2φ∗φ is replaced by the potential (3.49). Thus,
the total Lagrangian has now the form

L = Dμφ
∗Dμφ − λ

4!
(
φ∗φ − 12|m2|

λ

)2

− 1

4e2 FμνFμν, (4.50)

where the covariant derivatives are given by formulas (4.8). This version of the
scalar electrodynamics is known as the Abelian Higgs model, and the scalar field φ
is called the Higgs field.

The vacuum manifold in the Abelian Higgs model is given by the conditions

|φ| =
√

12|m2|
λ

, Fμν = 0, Dμφ = 0, (4.51)

which are obtained by minimizing the gauge-invariant energy density T 0
0 obtained

from Lagrangian (4.50) and Noether’s formula, with the translational Lie derivative
improved in the manner described at the end of the previous section. The general
solution of (4.51) has the form

φ0 = a exp(iqβ(x)), A0
μ = −∂μβ(x), (4.52)

where β(x) is an arbitrary smooth function of x and a = √
12|m2|/λ. It is clear

that β(x) and β(x) + 2πk/q, where k is an integer, give the same vacuum fields.
Solution (4.52) contains fields which are gauge equivalent and therefore describe
the same physical situation. Nevertheless, gauge transformations (4.6) are not suf-
ficient to completely remove the phase factor exp(iqβ(x)) because the elements of
the local U (1) group have to be equal to 1 in the limit |
x | → ∞. In particular,
β = constant �= 0 can not be removed by the gauge transformations. Thus, in spite
of the gauge symmetry we have an infinite amount of classical ground states of the
form (4.52), including the ones with constant phases β ∈ [0, 2π/q) and A0

μ = 0.
Nontrivial global U (1) symmetry transformation changes one such ground state into
another. Thus, the Abelian Higgs model exhibits spontaneous breaking of the global
U (1) symmetry. In this respect, it is similar to the Goldstone model of Chap. 3.

The reasoning which has lead to vortices in the Goldstone model, Sect. 3.3, can
also be repeated in the present case—vortices also exist in the Abelian Higgs model.
Single static vortex can be described as a narrow, rectilinear flux of magnetic field
surrounded by an axially symmetric current of the U (1) charge carried by the scalar
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field. It turns out that such vortices have finite energy per unit length, in contradis-
tinction to the vortices of the Goldstone model.

The Higgs mechanism works in the sector of configuration space of the scalar
field singled out by the condition φ(x) �= 0 for all x ∈ M . The vacuum manifold
belongs to this sector, while the vortices do not because of ‘topological zeros’ of the
same origin as in the case of vortices discussed in Chap. 3. Thus, we now consider
only the functions φ(x)which do not vanish on the whole Minkowski space-time M .
Such φ(x) can be uniquely decomposed into modulus and phase,

φ(x) = (a + H(x)) ei�(x), (4.53)

cf. formula (3.54). Here H(x) is a real scalar field such that H > −a. The field
transformation (Reφ, Imφ) → (H,�) is nonsingular in the considered sector of
the configuration space of the scalar field. Let us insert parametrization (4.53) in
Lagrangian (4.50). We obtain

L = ∂μH∂μH + q2(a + H)2WμWμ (4.54)

− λ
4! (2a + H)2 H 2 − 1

4e2 ZμνZμν,

where

Wμ = Aμ + 1

q
∂μ�, Zμν = ∂μWν − ∂νWμ. (4.55)

We see that the� field has completely disappeared from Lagrangian (4.54). In fact,
the new form (4.54) of Lagrangian (4.50) is more transparent where the physical
contents of the Abelian Higgs model in the sector without vortices is concerned. The
point is that the Euler–Lagrange equations, as well as observables like the energy-
momentum tensor, explicitly contain the H and Wμ fields which are gauge invariant,
while � and Aμ are hidden inside Wμ.

The Euler–Lagrange equations derived from Lagrangian (4.54) have the form

∂μ∂
μH + 2|m2|H = −λa

4
H 2 − λ

12
H3 + q2(a + H)WμWμ, (4.56)

∂μZμν + 2q2e2a2W ν = −2q2e2 (2a + H) H W ν . (4.57)

In the limit of weak fields, we may neglect all terms on the r.h.s.’s of these equa-
tions. Then the field H obeys the Klein–Gordon equation with the positive mass
m2

H = 2|m2|, while Eq. (4.57) is reduced to the so called Proca equation:

∂μZμν + m2
W W ν = 0, (4.58)

where m2
W = 2q2e2a2 > 0. Note that acting with ∂ν on both sides of Eq. (4.58) we

obtain the constraint
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∂νW ν = 0. (4.59)

The vector field which obeys the Proca equation with m2
W > 0 is called Proca field.

Quantum theory of it leads to particles which have positive mass mW and spin equal
to one.

The name ‘Higgs mechanism’ refers to the previously described phenomenon
of hiding the original U (1) gauge field Aμ(x) and the would-be Goldstone field
�(x), and forming the physically relevant massive vector field Wμ. The presence of
covariant derivatives in the initial Lagrangian (4.50) is one of the prerequisites for
this mechanism to work. The non-Abelian version of the Higgs mechanism is a key
ingredient of the Glashow–Salam–Weinberg model of electroweak interactions.

Exercises

4.1 Check formula (4.11).
Hint: Parameterize the segment C as follows

x(σ ) = x + (1− σ) ε e(ν),

where e(ν) is the unit 4-vector in the direction ν, eμ(ν) = δμν , and write the numerator
in formula (4.11) in the form

W [x, y;C; A]φ(y)− φ(x) = iqεAν(x)+ ε∂νφ(x)+O(ε2).

4.2 Prove that condition (4.25) implies that the structure constants fabc are antisym-
metric in all indices.
Hints: Definition (4.26) implies that

fabc = − fbac.

In order to show that also fabc = − facb multiply both sides of (4.26) by T̂c and take
trace in order to obtain formula

tr
(
[T̂a, T̂b]T̂c

)
= i

2
fabc.

Next show that the l.h.s. of this formula is equal to

tr
(

T̂c T̂a T̂b − T̂a T̂cT̂b

)
= − i

2
facb.

4.3 Prove that

Ŵ [x, y;C; Â′] = ω(y) Ŵ [x, y;C; Â] ω−1(x),

where Â′ is given by formula (4.23).
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Hint: Find the relation between Ŵ [σ ; Â] and the solution of the equation

i
dŴ [σ ; Â′]

dσ
= ẋμ(σ ) Â′μ(x(σ )) Ŵ [σ ; Â′],

with the initial condition

Ŵ [σ = 0; Â′] = IN .

4.4 Assuming the transformation law (4.23) for Âμ prove that

Dμ(A) 
� ′
(x) = R̂(ω(x)) Dμ(A) 
�(x).

Hints:

1. In the case of representation R the non-Abelian version of formula (4.11) has the
form

Dν(A) 
�(x) = lim
ε→0

R̂(Ŵ [x, y;C; Â]) 
�(y)− 
�(x)
ε

.

2. Use the formula proved in Exercise 4.3.

4.5 ∗ F̂μν = 1
2ε
μναβ F̂αβ is called the dual tensor of the non-Abelian field strength

tensor F̂μν. Prove that

tr
(∗ F̂μν F̂μν

)
= ∂μKμ,

where

Kμ = εμναβ tr

(
F̂να Âβ − 2i

3
Âν Âα Âβ

)
.

Hint: In order to facilitate the calculations, consider separately the terms with two,
three and four Â′s.

4.6 The Georgi–Glashow model describes a three component real scalar field φa,

a = 1, 2, 3, interacting with the non-Abelian gauge field Aa
μ of the SU (2) type. It

has the following Lagrangian

L = −1

4
Fa
μνFaμν + 1

2

(
Dμφ

)a (
Dμφ

)a − λ
4

(
φaφa − μ2

)2
,

where
(
Dμφ

)a = ∂μφa − εabc Ab
μφ

c, Fa
μν = ∂μAa

ν − ∂ν Aa
μ − εabc Ab

μAc
ν. Assume

that
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Aa
0 = 0, Aa

i = εaiknk P(r)− 1

r
, φa = −na H(r)

r
,

where the indices a, i, k take values 1,2,3, r = √xk xk is the radial coordinate, and
na = xa

r is the radial unit vector. Find the equations for P(r) and H(r)which follow
from the Euler–Lagrange equations.
Answer:

r2 H ′′ + λ

g2

(
H 2 − μ2g2r2

)
H = 2H P2,

r2 P ′′ + P H 2 = P(P2 − 1),

where ′ denotes the derivative d/dr .

4.7 Lagrangian for a complex Proca field has the form

L = −1

2
Z∗μνZμν − m2W ∗

μWμ,

where Zμν = ∂μWν − ∂νWμ, and m2 > 0. Find the formula for the energy density
T00 of this field. Prove that the total energy E = ∫ d3x T00 is non negative if Wμ
obeys the corresponding Euler–Lagrange equation.
Hints: The field Wν has the transformation law (4.1). The energy density is obtained
with the help of the formalism of Chap. 2:

T00 = ∂0W ∗
i ∂0Wi + 1

2
Z∗ik Zik + m2W ∗

i Wi − ∂i W ∗
0 ∂i W0 − m2W ∗

0 W0.

The problem lies in the negative contribution of the W0 component. The Euler–
Lagrange equation has the Proca form (4.58), hence ∂μWμ = 0 and in consequence

∂μ∂
μ Wν + m2Wν = 0.

In order to prove that E ≥ 0 first show that

E = ∫ d3x
[

1
2 Z∗ik Zik + m2W ∗

i Wi + Z∗0i Z0i − ∂i W ∗
0 ∂i W0

+∂0W ∗
i ∂i W0 + ∂i W ∗

0 ∂0Wi − ∂i W ∗
0 ∂i W0 − m2W ∗

0 W0
]
.

Next, applying integration by parts (assume that all components of the field vanish
sufficiently fast when 
x → ∞), the Proca equation, and the condition ∂μWμ = 0,
prove that

E =
∫

d3x

[
1

2
Z∗ik Zik + m2W ∗

i Wi + Z∗0i Z0i + m2W ∗
0 W0

]
≥ 0.





Chapter 5
Relativistic Spinor Fields

Abstract The Dirac equation. Transformation law of a relativistic bispinor.
SL(2;C) and Spin(4) groups. The free classical Dirac field. The Weyl spinor fields.
The U (1) × U (1) symmetry of the massless Dirac field. The Majorana field. The
Grassmann versions of the classical (bi-)spinor fields.

5.1 The Dirac Equation, Spin(4) and SL(2, C) Groups

Discovery of the relativistic wave equation for spin 1/2 particles (electrons) by
P.A.M. Dirac in 1928 is regarded as one of the most outstanding achievements of
theoretical physics in the twentieth century. Apart from the well-known physical
consequences, it has revealed a new class of relativistic wave equations, and subse-
quently new relativistic fields with intricate mathematical properties. In this section
we recall the main facts about the Dirac equation. The classical Dirac field, as well
as certain related fields, are introduced in the next sections.

The Dirac equation is the basic equation of relativistic quantum mechanics of
a single spin one-half particle. It governs time evolution of wave function of such
a particle,1 replacing in this role the non-relativistic time-dependent Schroedinger
equation. Therefore, in this section we consider quantum mechanics of the single
particle, which has a finite number of degrees of freedom, and not a field theory.

The wave function of the single Dirac particle has the form of a column of four
complex numbers, ψ(x) = (ψα(x)), α = 1, 2, 3, 4. It is called the Dirac bispinor.
In the absence of interactions of the Dirac particle, it obeys the Dirac equation

iγμ∂μψ − mψ = 0. (5.1)

The 4 by 4 matrices γμ satisfy Dirac relations

{γ μ, γ ν} = 2ημν I4, (5.2)

1 Often called the Dirac particle.

H. Arodź, L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
DOI 10.1007/978-3-642-15624-3_5, C© Springer-Verlag Berlin Heidelberg 2010
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where {A, B} = AB + B A (the anti-commutator of matrices), ημν is the metric
in Minkowski space-time in Cartesian coordinates, and I4 denotes the 4 by 4 unit
matrix. The first question about the Dirac relations is whether there exist matrices
which obey it. Dirac has shown that one may take, for example,

γ 0 = γ 0
D ≡

(
σ0 0
0 −σ0

)
, γ i = γ i

D =
(

0 σi
−σi 0

)
, (5.3)

where σ0 is the 2 by 2 unit matrix, and σi , i = 1, 2, 3, are Pauli matrices. Matrices
(5.3) are called the Dirac representation of the γ μ matrices. There exists a math-
ematical theorem which says that all γ μ matrices can be obtained from arbitrary
particular representation by a similarity transformation. Therefore, any set of Dirac
matrices γ μ can be obtained from γ μD ,

γ μ = A−1γ
μ
D A, (5.4)

where A is a nonsingular 4 by 4 matrix (detA �= 0) [5]. Solutions of Dirac equation
(5.1) with the various choices of γ μ matrices are of course related, namely

ψ(x) = A−1ψD(x), (5.5)

where ψD is a solution of Eq. (5.1) with γ μ matrices in the Dirac representation.
Before we conclude that the quantum mechanical models with the various

choices of γ μ matrices are equivalent, we have also to check whether the scalar
product of Dirac bispinors is independent of the choice of representation. Such a
scalar product has the form

〈ψ1|ψ2〉 =
∫

d3x ψ1γ
0ψ2, (5.6)

where ψ1, ψ2 are Dirac bispinors, and

ψ(x) = ψ†(x)A† Aγ 0. (5.7)

Here † denotes the matrix Hermitian conjugation of the bispinor regarded as one-
column complex matrix. The scalar product (5.6) can be written in the form

〈ψ1|ψ2〉 =
∫

d3x ψ†
1 A† Aψ2 =

∫
d3x ψ†

1Dψ2D (5.8)

from which we see that its value does not depend on the choice of the representation
of γ μ matrices. Therefore, the quantum mechanical models based on Dirac equa-
tion (5.1) and scalar product (5.6) are indeed equivalent. Note that formula (5.8)
also shows that the scalar product is positive definite.
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Dirac equation (5.1) is invariant under Poincaré transformations x ′ = L̂x + a.
Transformation law of the Dirac bispinor under such transformations has the form

ψ ′(x ′) = S(L̂)ψ(x), (5.9)

or equivalently

ψ ′(x) = S(L̂)ψ(L̂−1(x − a)), (5.10)

where S(L̂) is a nonsingular 4 by 4 matrix which obeys the following condition

S−1(L̂)γ μS(L̂) = Lμνγ
ν. (5.11)

By definition, the invariance of Eq. (5.1) means that if ψ(x) obeys that equation,
then so does ψ ′(x). We check that indeed this is the case by inserting ψ ′(x) in
Eq. (5.1) and using condition (5.11) together with the relation

∂ψ ′(x)
∂xμ

= S(L̂)(L̂−1)λμ
∂ψ(y)

∂yλ
,

where yλ = (L̂−1)λν(x
ν − aν).

The existence of the matrix S(L̂) for arbitrary Lorentz transformation follows
from the quoted theorem about the equivalence of all representations of γ μ matrices.
Let us denote the r.h.s. of condition (5.11) by γ ′μ. Because

{γ ′μ, γ ′ν} = LμρLνσ {γ ρ, γ σ } = 2LμρLνσ η
ρσ I4 = 2ημν I4,

the matrices γ ′μ obey Dirac relations (5.2). Here we have used the relation

η−1 = L̂η−1 L̂T ,

which is obtained by taking the matrix inverse of both sides of condition (3.5) in
which L̂ is replaced by L̂−1 (it is a Lorentz matrix as well). Therefore, γ ′μ are
related to the γ μ matrices by a similarity transformation of the form (5.4) with
S(L̂) playing the role of the matrix A.

Condition (5.11) determines the matrix S(L̂) up to multiplication by a number
which can depend on L̂ . In order to prove this assertion, let us suppose that two
matrices S1(L̂) and S2(L̂) obey condition (5.11) with the same Lorentz matrix L̂ .
Then

S−1
1 (L̂)γ

μS1(L̂) = S−1
2 (L̂)γ

μS2(L̂)

and

S1(L̂)S
−1
2 (L̂)γ

μ = γ μS1(L̂)S
−1
2 (L̂)
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for μ = 0, 1, 2, 3. Next, we use a lemma which says that any nonsingular matrix
which commutes with all γ μ matrices has the form c0 I4, where c0 is a complex
number different from 0. Therefore,

S1(L̂) S−1
2 (L̂) = c0(L̂)I4, S1(L̂) = c0(L̂) S2(L̂).

The lemma used above can be proved first in the Dirac representation simply by
explicit calculation, that is by writing down the four commutativity conditions and
solving them for matrix elements of S1(L̂)D S−1

2 (L̂)D . Next we transform the S(L̂)D
matrices to the original representation with the help of formula

S(L̂)D = AS(L̂)A−1, (5.12)

which follows from (5.5) and (5.9).
The arbitrary multiplicative constant c0 in each matrix S(L̂) can be used to adjust

the determinant of this matrix. We choose it in such a way that the matrix S(L̂) has
unit determinant,

det S(L̂) = 1. (5.13)

This condition still leaves the freedom of multiplying S(L̂) by −1, or ±i because
(−1)4 = (±i)4 = 1. In the next paragraph we eliminate ±i from this list.

In the considerations presented above we have not yet used the fact that Lμν in
condition (5.11) are real. In order to derive the consequences of this for S(L̂), we use
the so called Majorana representation of Dirac matrices, in which all Dirac matrices
have imaginary elements. For example, we may take

γ 0
M = i

(
0 −σ1
σ1 0

)
, γ 1

M = i

(
σ0 0
0 −σ0

)
, (5.14)

γ 2
M =

(
0 −σ2
σ2 0

)
, γ 3

M = i

(
0 σ0
σ0 0

)
.

In this representation the r.h.s. of condition (5.11) is imaginary. Thus, the S(L̂)M
matrices transform imaginary matrices γ μM into imaginary matrices. It turns out that
there exist matrices S(L̂)M which are real. They are crucial for the relativistic invari-
ance of the theory of the Majorana field discussed in Sect. 5.4. Therefore, it is natural
to add one more restriction on the matrices S(L̂) in the original representation: they
should become real when transformed to the Majorana representation. Due to this
reality condition it is not possible to multiply S(L̂) by ±i .

To summarize, the condition (5.11) strengthened by the assumption (5.13) and
the reality condition determine the matrix S(L̂) in the Majorana representation up
to the overall sign factor. Next, we may pass to the other representations by the
similarity transformation analogous to (5.12). It is easy to see from (5.11) that the
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similarity transformation of S(L̂) can have exactly the same form as the transforma-
tion of Dirac matrices γ μ.

Condition (5.11) applied two times gives

S−1(L̂1)S
−1(L̂)γ μS(L̂)S(L̂1) = Lμν S−1(L̂1)γ

νS(L̂1) = (L̂ L̂1)
μ
ργ
ρ.

This formula implies that

S(L̂)S(L̂1) = c0 S(L̂ L̂1), (5.15)

where c0 = ±1.
The notation S(L̂) suggests that we consider a function of L̂ . Actually, there

is a subtlety which should be discussed. The point is that for the given L̂ there
exist two matrices S(L̂) satisfying condition (5.11). They differ only by the sign.
It turns out that this ambiguity can be removed by a more restrictive definition of
S(L̂), only at the price that S(L̂) would not be a continuous function of L̂ , but we
shall not discuss this mathematical point in detail. Let us only mention that the sign
ambiguity is related to the fact that the L↑+ group, regarded as a topological space is
not simply connected (that is, there exist closed paths (loops) in it, which can not be
contracted to a point without leaving the group on some intermediate stages of the
contraction). The situation is analogous to the problem of removing the ambiguity
of sign in

√
z, where z is a complex number. We have the choice: either

√
z is not

continuous along a cut in the complex plane or it is double valued. We assume that
S(L̂) is a continuous function of L̂ , therefore it has to be double valued. We may
write (5.15) in the form

S(L̂1)S(L̂2) = S(L̂1 L̂2), (5.16)

but it is understood that S(L̂) is double valued. Also S(I4) = I4 in the same sense,
that is actually S(I4) = ±I4. Strictly speaking, the matrices S(L̂) do not form a
representation of the L↑+ group, because for a representation the mapping L̂ → S(L̂)
has to be single valued.

It remains to show that the matrices S(L̂) obeying (5.11), (5.13) and (5.16)
actually exist. We first find an explicit formula for these matrices, which is valid
in the vicinity of the trivial Lorentz matrix L̂ = I4 in which the exponential
parametrization (3.9) is defined. Because the L↑+ group is connected, every ele-
ment L̂ of it can be obtained as a product of elements L̂1, L̂2, . . . , L̂n from that
vicinity, L̂ = L̂1 L̂2 . . . L̂n . Therefore, with the help of formula (5.16) we obtain
S(L̂) = S(L̂1)S(L̂2) . . . S(L̂n). In spite of the fact that L̂ can be written as such a
product in many ways, S(L̂) is determined uniquely, except for the factor c0 = ±1.
The reason is that such an S(L̂) obeys condition (5.11) with fixed Lμν , it has a
unit determinant and it is real in the Majorana representation. Therefore, the above
reasoning that proves that c0 = ±1 applies also to this matrix.

The formula for S(L̂) has the form
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S(L̂) = ± exp

(
1

8
ωμν [γ μ, γ ν]

)
. (5.17)

Here [, ] denotes the commutator of the matrices, and ωμν = ημσωσν . The matrix
ω̂ = (ωμν) is related to L̂ through the exponential parametrization,

L̂ = exp ω̂.

S(L̂) given by formula (5.17) is real in the Majorana representation. In order to
check that it has the unit determinant, we use the formula det(exp â) = exp(tr â)
valid for any matrix â. The determinant is equal to 1, because the trace of the com-
mutator of matrices vanishes. Condition (5.11) can be checked in the following way.
First, we introduce auxiliary matrices

X (τ ) = ± exp

(
1

8
ωμν[γ μ, γ ν]τ

)
,

�ρ(τ ) = X (τ )−1γ ρX (τ ),

where τ is a real parameter. In particular,

X (1) = S(L̂), �ρ(0) = γ ρ. (5.18)

Let us compute d�ρ(τ)/dτ ,

d�ρ(τ)

dτ
= −1

4
ωμνX (τ )−1(γ μγ νγ ρ − γ ργ μγ ν)X (τ ).

Applying Dirac relation (5.2) to the r.h.s. of this formula we obtain

d�ρ(τ)

dτ
= ωρν�ν(τ )

(see Exercise 5.1). Consistent with the second condition (5.18) solution of this equa-
tion has the form

�ρ(τ) = (exp(τ ω̂)
)ρ
ν
γ ν.

Putting τ = 1 we obtain relation (5.11).
Matrices of the form (5.17) and their products form a group called Spin(4). When

constructing this group we have used the Dirac matrices in a fixed representation.
However, the Spin(4) groups obtained for various choices of such representation are
related by the similarity transformation of the form (5.12), hence all these groups
are isomorphic to each other. It turns out that the Spin(4) group is isomorphic to
the SL(2,C) group, which consists of all 2 × 2 complex matrices with the unit
determinant. This isomorphism is seen directly when we construct the Spin(4) group
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in the so called spinor representation of the Dirac matrices, where

γ 0 =
(

0 σ0
σ0 0

)
, γ k =

(
0 −σk
σk 0

)
. (5.19)

Simple calculation gives then

1

8
ωμν[γ μ, γ ν] =

(
M̂ 0
0 −M̂†

)
,

where

M̂ = 1

2
ω0kσk − i

4
εiksωikσs .

Here εiks is the three dimensional totally antisymmetric symbol, ε123 = +1.
In consequence,

S(L̂) =
(
� 0
0 (�†)−1

)
, (5.20)

where

� = ± exp M̂ . (5.21)

Furthermore, det� = 1 because trM̂ = 0. One can show that the set of all matrices
� given by formula (5.21) together with their inverses and their products coincides
with the group of all 2× 2 complex matrices with the unit determinant, denoted as
SL(2,C). It is the smallest connected group containing all such products.

Condition (5.11) in the spinor representation (5.19) written for S(L̂) of the form
(5.20) is equivalent to the following two relations

�†σ̃ μ� = Lμνσ̃
ν, �−1σμ(�†)−1 = Lμνσ

ν. (5.22)

Here we use the notation (σμ) = (σ0,−σk), (σ̃
μ) = (σ0, σk). The two relations

(5.22) are equivalent to each other. With the help of identity

Tr(σ̃ μσ̃ ν) = 2δμν,

the first of relations (5.22) gives

Lμν =
1

2
Tr(�†σ̃ μ�σ̃ ν). (5.23)
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Formulas (5.22) and (5.23) relate the Lorentz matrix L̂ = (Lμν) to the SL(2,C)
matrix �. Using (5.22) and (5.23) one can prove that the matrix (Lμν) obtained
from formula (5.23) belongs to L↑+ for any � ∈ SL(2,C).

In the quantum mechanical context, apart from the invariance of the Dirac equa-
tion under Poincaré transformations, one has also to check that the scalar product
(5.6) is invariant. Only then one may say that the quantum mechanics of the Dirac
particle is Poincaré invariant. It turns out that the scalar product is indeed invariant,
but we skip the proof.

5.2 The Dirac Field

All spinor fields have a rather peculiar property: continuous rotations around certain
fixed axis in the space by the angle which increases from 0 to 2π do not reproduce
the initial field when the rotation angle becomes equal to 2π . The initial field is
obtained for the angle equal to 4π . For example, let us take

ω̂ = φ
⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ .

Then,

L̂(φ) = exp ω̂ =
⎛
⎝ cosφ − sinφ 0

sinφ cosφ 0
0 0 1

⎞
⎠ ,

and in the spinor representation of the Dirac matrices

M̂ = i

2
φσ3, �(φ) = exp M̂ = cos

φ

2
σ0 + i sin

φ

2
σ3.

It is clear that L̂(φ) represents the rotation by angle φ around the third axis. For
φ = 0 we obtain � = σ0. Taking the sign + in formula (5.21) we have S(φ = 0) =
I4. Let us now increase φ in a continuous manner to 2π . Then, �(φ)→ −σ0, and
in consequence S(2π) = −I4. Increasing φ further, we obtain S = I4 for φ = 4π .

The formulas for L̂(φ) and �(φ) used above have been obtained by writing the
exponential function as the series, exp x =∑∞

l=0 xl/ l!, and noticing that

ω̂2l = φ2l(−1)l

⎛
⎝ 1 0 0

0 1 0
0 0 0

⎞
⎠ , (σ3)

2l = σ0,

where l = 0, 1, 2, . . .. Furthermore, the odd powers ω̂2l+1 can be calculated by
writing them as the product
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ω̂ω̂2l = φ2l+1(−1)l

⎛
⎝ 0 −1 0

1 0 0
0 0 0

⎞
⎠ .

An analogous trick is used in order to calculate (σ3)
2l+1. Finally, we recognize the

series expansions for sinφ/2 and cosφ/2.
The classical Dirac field is represented by ψ(x) = (ψα), where α = 1, 2, 3, 4

and ψα are complex numbers. By definition, under the Poincaré transformations
x ′ = L̂x + a

ψ ′(x ′) = S(L̂)ψ(x),

as in the previous section. The important difference is that now ψ(x) is not inter-
preted as a wave function with the probabilistic interpretation. In particular, there
is no need to introduce a scalar product. Dirac equation (5.1) is obtained as the
Euler–Lagrange equation for the following Lagrangian

L = i

2
(ψγ μ∂μψ − ∂μψγμψ)− mψψ. (5.24)

As the independent dynamical variables we may take Reψα, Imψα or, equivalently,
ψα,ψα . In the following discussion we use this latter choice. Then the Euler–
Lagrange equation corresponding to ψ has the form (5.1), while functional deriva-
tives with respect to ψα, α = 1, 2, 3, 4, give

i∂μψγ
μ + mψ = 0. (5.25)

When we relateψ with ψ using formula (5.7), this last equation becomes equivalent
to Dirac equation (5.1). In order to check this, we notice that formulas (5.3) and (5.4)
imply that

(γ 0)† = A† Aγ 0(A† A)−1, (γ i )† = −A† Aγ i (A† A)−1. (5.26)

Taking the Hermitian conjugation of Dirac equation (5.1), eliminating (γ μ)† with
the help of the formulas given above, multiplying the resulting equation by A† Aγ 0,
and finally anti-commuting γ 0 with γ i , we obtain Eq. (5.25).

Lagrangian (5.24) has real values, and it is invariant with respect to Poincaré
transformations. In order to check this latter property, it is convenient first to derive
the transformation law of the field ψ . Formulas (5.7) and (5.9) give

ψ ′(x ′) = ψ(x ′)†(S(L̂))† A† Aγ 0.

Next, using formulas (5.17) and (5.26) on the r.h.s. of this formula we obtain

ψ ′(x ′) = ψ(x ′)S−1(L̂). (5.27)
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The invariance of the Lagrangian follows from (5.9), (5.27) and (5.11).
Lagrangian (5.24) is invariant also with respect to global U (1) transformations

of the form

ψ ′(x) = exp(iα)ψ(x), ψ ′(x) = exp(−iα)ψ(x), (5.28)

where α ∈ [0, 2π). Noether’s theorem applied to this internal continuous symmetry
gives the conserved current

jμ(x) = ψ(x)γ μψ(x). (5.29)

A model with local U (1) symmetry can be obtained from Lagrangian (5.24) by
replacing the ordinary derivatives with covariant ones, as described in the previous
chapter.

The energy-momentum tensor for the Dirac field can be calculated from the fol-
lowing formula

Tμν = −Lδμν −
∂L
∂(ψα,μ)

Dνψα − ∂L
∂(ψα,μ)

Dνψα, (5.30)

where the Lie derivatives have the form

D νψ
α = −∂νψα, Dνψα = −∂νψα.

These formulas follow from Noether’s theorem applied to the translational symme-
try of Dirac Lagrangian (5.24). In particular, the energy density of the Dirac field is
equal to

T 0
0 = −

1

2
i(ψγ k∂kψ − ∂kψγ

kψ)+ mψψ. (5.31)

It is not bounded from below. Hence, the classical Dirac field model is not acceptable
from a physical viewpoint. It turns out that the remedy consists in quantizing the
Dirac field, see the next chapter. The same is also true for the Weyl and Majorana
fields discussed below.

5.3 The Weyl Fields

The Dirac field can be decomposed into two so called Weyl fields. This decomposi-
tion is Lorentz invariant. It yields an interesting new perspective on the Dirac field.
Definition of the Weyl fields involves γ5 matrix introduced as follows

γ5 = i

4!εμνλσ γ
μγ νγ λγ σ , (5.32)
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where εμνλσ is the four dimensional antisymmetric symbol, ε0123 = +1. Because
Dirac matrices with different values of indices anti-commute,

γ5 = iγ 0γ 1γ 2γ 3. (5.33)

This formula is useful when checking that

γ5γ
μ + γ μγ5 = 0, (γ5)

2 = I4. (5.34)

The γ5 matrix is Hermitian in the Dirac representation, as well as in all represen-
tations of Dirac matrices which are unitarily equivalent to the Dirac representation,
i.e., when the matrix A in formula (5.4) is unitary. Finally, as follows from formulas
(5.26),

(γ5)
† = A† Aγ5(A

† A)−1. (5.35)

Let us introduce two matrices

P± = 1

2
(I4 ± γ5). (5.36)

They have the following properties

P+ + P− = I4, (P±)2 = P±, P+P− = 0 = P−P+. (5.37)

The Weyl fields ψR, ψL are defined as follows

ψR(x) = P+ψ(x), ψL(x) = P−ψ(x), (5.38)

where ψ is the Dirac field. ψR, ψL are eigenvectors of γ5, namely

γ5ψR(x) = ψR(x), γ5ψL(x) = −ψL(x). (5.39)

It is clear that

ψ(x) = ψR(x)+ ψL(x). (5.40)

The letters R or L stand for ‘right-handed’ or ‘left-handed’, respectively. These
traditional names for the Weyl fields refer to helicity of particles which appear in
quantum versions of models with these fields.

The decomposition (5.40) of the Dirac field into Weyl fields is interesting because
it is preserved by Poincaré transformations (5.9). If we decompose ψ ′(x ′),

ψ ′(x ′) = ψ ′R(x ′)+ ψ ′L (x ′), ψ ′R,L(x) = P±ψ ′(x),
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then

ψ ′R(x ′) = S(L̂)ψR(x), ψ
′
L(x

′) = S(L̂)ψL(x). (5.41)

These formulas are the consequence of the fact that the matrices S(L̂), γ5 commute,

S(L̂)γ5 = γ5S(L̂). (5.42)

This very important property of the γ5 matrix follows from the definition (5.32) and
relation (5.11),

S−1(L̂)γ5S(L̂) = i

4!εμνλσ LμδL
ν
κLλαLσβγ

δγ κγ αγ β

= i

4! det L̂ εδκαβ γ
δγ κγ αγ β = γ5

because det L̂ = 1 for Lorentz matrices from the L↑+ group. Thus, γ5 is invari-
ant under such Lorentz transformations. Because of transformation laws (5.41), the
Weyl fields can be regarded as independent relativistic spinor fields.

Let us write Lagrangian (5.24) for the Dirac field as a function of the Weyl fields.
From now on we use a representation for γμ that is unitarily equivalent to the Dirac
representation, hence γ5 is Hermitian. The Majorana and spinor representations
belong to this class. The Dirac field is eliminated with the help of formula (5.40),
while for the conjugate Dirac field ψ we first use the following formulas

(ψR) = ψP−, (ψL) = ψP+,

next P+P− = 0, P+γ μP+ = 0, and other similar formulas. It turns out that

L = 1
2 i[(ψR)γ

μ∂μψR − ∂μ(ψR)γ
μψR] + 1

2 i[(ψL)γ
μ∂μψL − ∂μ(ψL)γ

μψL ]
−m(ψL)ψR − m(ψR)ψL . (5.43)

Dirac equation (5.1) is split as follows

iγ μ∂μψR − mψL = 0, iγ μ∂μψL − mψR = 0. (5.44)

The conserved current (5.29) is a sum of two separate terms for ψR and ψL ,

jμ = (ψR)γ
μψR + (ψL)γ

μψL . (5.45)

The two terms in (5.45) have identical form because U (1) transformations (5.28)
act on ψR and ψL in exactly the same manner. We see from formula (5.43) and Eqs.
(5.44) that the parameter m can be regarded as a measure of the coupling of the
ψR, ψL fields in the Dirac Lagrangian (5.24). In the case of m = 0 the Lagrangian
is split into two separate parts, each one being relativistically invariant.
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The form (5.43) of the Lagrangian for the Dirac field reveals that in the case of
m = 0 the U (1) symmetry (5.28) is enlarged to U (1)R ×U (1)L symmetry, defined
by the following transformation laws:

U (1)R : ψ ′R(x) = eiωψR(x), ψ ′R(x) = e−iωψR(x), ψ
′
L(x) = ψL(x), (5.46)

U (1)L : ψ ′L(x) = eiδψL(x), ψ ′L(x) = e−iδψL(x), ψ
′
R(x) = ψR(x), (5.47)

where ω, δ are two independent real, continuous parameters. Let us replace these
parameters by α, β such that

ω = α + β, δ = α − β.

It is clear that for β = 0 we obtain the familiar U (1) symmetry (5.28) which exists
also when m �= 0. On the other hand, for α = 0 we have a new U (1) symmetry,
called the chiral symmetry. The chiral transformation of the Dirac field has the form

ψ ′(x) = eiβψR(x)+ e−iβψL(x)

= eiγ5βψR(x)+ eiγ5βψL(x) = exp(iγ5β) ψ(x), (5.48)

and for the conjugate Dirac field

ψ
′
(x) ≡ ψ ′(x) = ψ(x) exp(iγ5β). (5.49)

Noether’s theorem applied to the chiral transformations gives the conserved current
of the form

jμ5 = ψRγ
μψR − ψLγ

μψL = ψγμγ5ψ. (5.50)

Simple calculation with the use of Dirac equation (5.1) and its conjugate (5.25)
shows that

∂μ jμ5 = 2imψγ5ψ.

Thus, the current jμ5 is conserved when m = 0.
Note that there is the possibility of a new spinor field theory involving just one

of Weyl fields, let it be ψR , with the Lagrangian

LR = i

2
[(ψR)γ

μ∂μψR − ∂μ(ψR)γ
μψR], (5.51)

and with the constraint

γ5ψR = ψR, (5.52)
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see (5.39). This model is relativistically invariant. It contains half degrees of free-
dom of the Dirac field. Of course, there also exists the model with ψR replaced
by ψL .

The constraint (5.52) can be explicitly solved. For example, in the spinor repre-
sentation (5.19) of the Dirac matrices,

γ5 =
(
σ0 0
0 −σ0

)
, (5.53)

and conditions (5.39) give

ψR =
(
ξ

0

)
, ψL =

(
0
ζ

)
, (5.54)

where ξ, ζ are arbitrary two-component complex spinors, often called Weyl spinors.
The Dirac field ψ can be written as

ψ(x) =
(
ξ(x)
ζ(x)

)
.

For this reason, the Dirac field is called a bispinor field. Lagrangian LR expressed
by the spinor ξ has the form

LR = i

2

(
ξ†σ̃ μ∂μξ − ∂μξ †σ̃ μξ

)
. (5.55)

Models with only one Weyl field ψR or ψL are not invariant under the spatial
reflection. The spatial reflection P acts on the Dirac field in the same manner as on
the bispinor wave function in quantum mechanics of the Dirac particle, namely

Pψ(x0, 
x) = eiηγ 0ψ(x0,−
x),

where the constant factor exp(iη) is called the intrinsic parity of the field. This
definition implies that

P ψR = (Pψ)L , P ψL = (Pψ)R .

Hence, the operator P intertwines between the spaces of the right- and left-handed
fields, while for the invariance we need an operator that acts within one such space.
The Dirac field model with Lagrangian (5.24) is invariant under the spatial reflec-
tion.

Formulas (5.20) and (5.24) give the Poincaré transformations of Weyl spinors:

ξ ′(x ′) = �ξ(x), ζ ′(x ′) = (�†)−1ζ(x). (5.56)

There exist old conventions about indices of the Weyl spinors, namely
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ξ = (ξα), ζ = (ζα̇), ξ∗ = (ξ α̇), ζ ∗ = (ζα),

where ∗ denotes complex conjugation, and α, α̇ = 1, 2. Accompanying are conven-
tions for indices of the SL(2,C) matrices:

� = (�αβ), (�†)−1 = (((�†)−1)
β̇
α̇ ), �

∗ = (�α̇
β̇
), (�T )−1 = (((�T )−1) βα ).

For example, the transformation law of the ζ ∗ spinor is written in the form

ζ ′∗α (x ′) = ((�T )−1) βα ζ
∗
β (x).

The transformation laws of the spinors ξ, ζ, ξ∗, ζ ∗ are not independent. The rea-
son is that for any matrix � ∈ SL(2,C) the following identity is true

(�T )−1 = ε̂�ε̂−1, (5.57)

where

ε̂ = iσ2 =
(

0 1
−1 0

)
.

The simple way to check this identity consists in explicit computation of both sides
of it, and taking into account the fact that det� = 1. Matrix elements of ε̂ are
denoted as εαβ , while matrix elements of ε̂−1 as εαβ . Note that ξαξα = 0, and
ξαξ

′α = −ξ ′αξα because εαβεβσ = δσα . Due to identity (5.57) the spinor ε̂−1ζ ∗ has
the same transformation law as the spinor ξ in the first formula (5.56). Therefore,
it should have the upper index without the dot. The complex conjugation adds or
removes the dot, ε̂ lowers the spinor index and ε̂−1 rises it. For instance, if ζ = (ζα̇)
then ζ ∗ = (ζα), or if ξ = (ξα) then ξα = εαβξβ .

Let us end this section with the remark that the γ5 matrix exists only when the
space-time has an even dimension. This is a consequence of the theorem about the
size of Dirac matrices [5], saying that in d-dimensional space-time γ μ matrices are
quadratic with the number of columns and rows equal to 2[d/2], where [d/2] denotes
the integer part of d/2. For example, when d = 2 we may take as the Dirac matrices

γ 0 = σ1, γ
1 = σ2.

The γ5 matrix should obey the relations (5.34) by definition. The explicit formula
(5.32) is valid only when d = 4. Let us assume that d is odd, and let us suppose that
γ5 obeying (5.34) exists. Then, the set of d + 1 matrices

γ 0, γ 1, . . . , γ d−1, iγ5

satisfies all requirements for Dirac matrices in (d+1)-dimensional space-time. Their
size is equal to 2[d/2] = 2(d−1)/2. On the other hand, the theorem quoted above says
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that the Dirac matrices have the size 2[(d+1)/2] = 2(d+1)/2, which is larger by the
factor of 2. This contradiction shows that γ5 can not exist. In consequence, also the
Weyl fields can only be defined in an even dimensional space-time.

5.4 The Majorana Field

The fact that the matrices S(L̂) are real in the Majorana representation, suggests
that there exists a relativistic real bispinor field ψ = (ψα), α = 1, 2, 3, 4, with real
components ψα . Poincaré transformations of such a bispinor,

ψ ′(x ′) = S(L̂)ψ(x) (5.58)

give bispinors ψ ′ also with real components. Moreover, the Dirac equation in the
Majorana representation,

iγ μM∂μψ(x)− mψ(x) = 0, (5.59)

contains matrices iγ μM which have real elements. Therefore this equation is compati-
ble with the assumption that ψ is real. The real field ψ which has the transformation
law (5.58) and obeys Eq. (5.59) is called the Majorana field. It contains half degrees
of freedom of the Dirac field. Note that the U (1) transformations (5.28) can not
be defined for the Majorana field because they would violate the condition that the
field has real values. For the same reason it is not possible to introduce a local U (1)
gauge symmetry which would determine coupling of the Majorana field to a certain
Abelian gauge field. In particular, the Majorana field can not be coupled to the elec-
tromagnetic field in the minimal way, that is by replacing ordinary derivatives with
the covariant ones.

On the other hand, the current ψγμψ still exists and is conserved, but it should
not be interpreted as the current of electric charge. Actually, the presence of the
conserved current might seem a paradox, because there is a theorem, known as the
inverse Noether’s theorem, that says that in such a case there exists the correspond-
ing continuous symmetry. However, among assumptions of that theorem is the very
existence of Lagrangian. All field equations considered in previous sections were of
the Lagrange type, that is they could be obtained as Euler–Lagrange equations from
certain Lagrangians. The Majorana field is different in this respect. A straightfor-
ward attempt to obtain a Lagrangian for it, just by taking Dirac Lagrangian (5.24) in
the Majorana representation and assuming thatψ is real, fails because it gives L = 0
(Exercise 5.2a). Trying a more general and systematic approach, let us assume that
the Lagrangian has the following form

L(ψ, ∂μψ) = Aαβψ
αψβ + Bμαβψ

α∂μψ
β,
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where Aαβ, Bμαβ are constants. The Euler–Lagrange equation obtained from this
Lagrangian has the form

(
Bμβα − Bμαβ

)
∂μψ

β − 2Aαβψ
β = 0.

This equation should have the same set of solutions as Majorana equation (5.59).
One can prove that this is not possible for any choice of Aαβ, Bμαβ (Exercise 5.2b).
We shall return to the question about the Lagrangian at the end of this section.

The Majorana field can be introduced in another way, often preferred in literature.
We present it working with Dirac equation (5.1) in Dirac representation (5.3). Let
us define charge conjugate Dirac field ψc:

ψc(x) = iγ 2
Dψ

∗(x), (5.60)

where ∗ denotes the complex conjugation and ψ(x) is the Dirac field. The name
‘charge conjugate’ reflects the fact that if ψ(x) obeys the Dirac equation with an
external electromagnetic field Aμ(x),

iγ μD (∂μ + iq Aμ(x))ψ(x)− mψ(x) = 0,

then ψc(x) obeys the equation

iγ μD (∂μ − iq Aμ(x))ψc(x)− mψc(x) = 0.

The change of sign of the coupling to the external electromagnetic field is interpreted
as change of sign of the electric charge carried by the field. Let us impose on the
Dirac field the following condition

ψc(x) = ψ(x),

called the Majorana condition. This condition is invariant under Poincaré transfor-
mations because in the Dirac representation

γ 2
D S∗D(L̂) = SD(L̂)γ

2
D .

Note that the Majorana condition breaks the U (1) symmetry (5.28) of the Dirac
Lagrangian. The Majorana condition is satisfied by a bispinor of the form

ψM(x) =
(

ξ(x)
−iσ2ξ

∗(x)

)
,

where ξ(x) can be an arbitrary two-component complex spinor. Such bispinor ψM

is invariant under the charge conjugation. It is called the Majorana field in the Dirac
representation. The real valued Majorana field (ψα) introduced above in the Majo-
rana representation can be identified with Re ξ, Im ξ .
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There is yet another version of Majorana field, which does not have the problem
with the existence of Lagrangian. In this version ψα(x) are anticommuting, that is

{ψα(x), ψβ(y)} = 0 (5.61)

for all α, β = 1, 2, 3, 4, and for all x, y ∈ M . Here {A, B} = AB + B A. Thus,
ψα(x) are not real numbers as in the previous version. Nevertheless, one can for-
mulate consistent rules for operating with such ‘variables’. The mathematical struc-
ture relevant here is called Grassmann algebra, and ψα(x) are called its generat-
ing elements. Because their number is infinite, the algebra is infinite dimensional.
The whole algebra is obtained by taking first all formal products of the generating
elements, and next by including all formal linear combinations of such products.
Because x is a continuous variable, such linear combinations generally have the
form of sums over discrete bispinor indices α, β, . . . , and integrals over x, y, z, . . ..
Various products can be related to each other only by applying the rule (5.61). For
example, ψα(x)ψβ(y) is not reducible to a linear combination of the generating
elements, except for α = β, x = y when that product is equal to 0 according to
(5.61). In the case of the Majorana field we have an infinite amount of the generating
elements. Let us note that in the case of a finite number of generating elements one
can construct only a finite number of independent products, because all powers of a
single generating element vanish. For example, exp(ψα(x)) = 1+ ψα(x) exactly!

One can also define a derivative with respect to the generating element ψα(x). It
is denoted as

δ

δψα(x)
, (5.62)

and called the Grassmann derivative. In the first step we just define that

δa

δψα(x)
= 0,

δψβ(y)

δψα(x)
= δβα δ(y − x), (5.63)

where a is a number. Let F be an element of the Grassmann algebra. It can be written
as a linear combination of the generating elements and their products. By definition,
the derivative acts on F linearly, that is term by term in that linear combination.
Also as a part of the definition, the derivative acts on products of numbers and/or
generating elements according to the Leibniz rule, with the modification that symbol
(5.62) of the Grassmann derivative anti-commutes with the generating elements, and
with other Grassmann derivatives. For example, let us take

F = a + b(y)ψβ(y)+
∫

d4xd4 y c(x, y)ψβ(x)ψγ (y),

where a, b(y) and c(x, y) have complex values. Then
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δF

δψα(z)
= b(y)δ(y − z)δβα +

∫
d4 y c(z, y)δβαψ

γ (y)−
∫

d4x c(x, z)δγαψ
β(x).

Another ingredient of the theory of the anti-commuting Majorana field is a con-
jugation, denoted by ∗. By definition, this operation has the following properties

(AB)∗ = B∗A∗, (a A)∗ = a∗A∗, (A∗)∗ = A,

where a is a complex number, a∗ denotes its complex conjugate, and A, B are ele-
ments of the Grassmann algebra. The assumption that the Majorana field has real
values is represented in the Grassmann version by the assumption that

(ψα(x))∗ = ψα(x). (5.64)

Now we are ready to formulate the Grassmann version of the Majorana field. We
take the action in the form

S =
∫

d4x L, (5.65)

with the following Lagrangian

L = i

2
(ψγ

μ
M∂μψ − ∂μψγμMψ)− mψψ, (5.66)

where ψα = ψβ(γ 0
M )βα . L has the same form as the Dirac Lagrangian (5.24), but

nowψ is the anti-commuting real Majorana field. Lagrangian (5.66) does not vanish
precisely because ψα(x) do not commute. It is real in the sense that L∗ = L. When
checking this it is helpful first to notice that the matrices γ 0

Mγ
μ
M are symmetric. The

Grassmann version of the stationary action principle has the form

δS

δψα(x)
= 0, (5.67)

where S is regarded as an element of the Grassmann algebra. It gives the Majo-
rana equation (5.59) for the anti-commuting field ψα(x). This equation should be
regarded as a restriction on the generating elements ψα(x) of the initial Grassmann
algebra. General solution of the Majorana equation can be written in the form of the
Fourier transformation

ψα(x) =
∫

d3k
∑
λ=1,2

∑
ε=±

e−εiω(
k)x0+i 
k 
xψ(ε)αλ (
k)cλε (
k), (5.68)

where ω(
k) =
√

m2 + 
k2, and ψ(ε)αλ (
k) are the four independent solutions of the
homogeneous matrix equation
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(
ε ω(
k)γ 0

M − kiγ i
M

)
ψ
(ε)
λ (

k)− mψ(ε)λ (
k) = 0. (5.69)

cλε (
k) present in solution (5.68) are independent generating elements of certain
Grassmann algebra, which is a subalgebra of the original algebra generated by all
ψα(x). ψα(x) given by formula (5.68) are not independent, nevertheless they still
anti-commute as in (5.61).

The anti-commuting Majorana field does not allow for the U (1) symmetry
because multiplication by exp(iα) violates the reality condition (5.64). Neverthe-
less, the current jμ = ψγμMψ = ψα(γ 0

Mγ
μ
M )αβψ

β is conserved—Eq. (5.59) implies
that ∂μ jμ = 0. Because now the Lagrangian exists, it seems that this time we do
contradict the inverse Noether’s theorem. The solution of this ‘paradox’ is quite
simple: the would-be current is always equal to zero precisely because ψα, ψβ

anticommute with each other.
The field theory of the classical anti-commuting field ψ(x) does not have direct

physical meaning. Lagrangian (5.66) is an element of Grassmann algebra, as well
as integrals of motion constructed from this Lagrangian with the help of Noether’s
identity (its derivation can easily be repeated in the present case). Therefore, such
integrals of motion do not have direct physical meaning, because there is no way
to compare them with the results of measurements which are represented by num-
bers. Classical Grassmann field theory should be regarded as an auxiliary theoretical
construction which acquires physical meaning only when embedded into a quantum
field theory. Then it yields predictions that can be compared with experimental data.
Lagrangian (5.66) appears in a path integral formulation of the quantum field theory.
This formulation is presented in Chap. 11.

Let us note that there exist Grassmann versions of the Dirac and Weyl fields.
Particularly interesting is the Grassmann version of the Weyl spinor field ξ(x) =
(ξα(x)), α = 1, 2. It allows for the Lorentz invariant mass term, which is not
possible in the c-number version with Lagrangian (5.55). In this case the full set
of independent generating elements consists of ξα(x) and ξ∗α̇(x). The conjugation
is defined as follows:

(aξα(x))∗ = a∗ξ∗α̇(x), (aξ∗α̇(x))∗ = a∗ξα(x),

where a is a complex number, a∗ its complex conjugation. The Lagrangian has the
form

L = i

2

(
ξ∗α̇ σ̃ μα̇β∂μξ

β − ∂μξ∗α̇ σ̃ μα̇βξβ
)
+ m

2

(
ξαεαβξ

β − ξ∗α̇εαβξ∗β̇
)
.

This Lagrangian is ‘real’ in the sense that it is invariant under the conjugation, i.e.,
L∗ = L. Of course L is not a number, it is just an element of Grassmann algebra.
The mass term does not vanish because

ξαξβ = −ξβξα, ξ∗α̇ξ∗β̇ = −ξ∗β̇ ξ∗α̇.
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Exercises

5.1 Check that

ωμν(γ
μγ νγ ρ − γ ργ μγ ν) = −4ωρσγ

σ ,

where ωμν = −ωνμ.
Hint: Use Dirac relations (5.2) and notice that ωμνημν = 0.
5.2 (a) Check that the matrices αi

M = γ 0
Mγ

i
M are symmetric. Next, prove that the

Dirac Lagrangian (5.24) with γ μ = γ μM vanishes if the non-Grassmann bispinor ψ
is real.
(b) Prove that the Euler–Lagrange equation obtained from the following Lagrangian

L(ψ, ∂μψ) = Aαβψ
αψβ + Bμαβψ

α∂μψ
β,

where ψ is the real valued Majorana field, is not equivalent to Majorana equation
(5.59) independently of the choice of the constants Aαβ, Bμαβ . Two equations are
equivalent if sets of their solutions coincide.
Hints: Consider matrices Â = (Aαβ), B̂μ = (Bμαβ). Notice that we may assume

ÂT = Â, (B̂μ)T = −B̂μ. Considering constant ψ solutions of the Majorana equa-
tion deduce that Â = 0 if m = 0, and that Â−1 exists if m �= 0. Next, use solutions
of the Majorana that have constant derivatives ∂μψ in order to show that Â = 0 also
in the m �= 0 case, and that B̂μ = 0.

5.3 Show (by acting on the Dirac equation (5.1) with an operator iγ μ∂μ + m) that
every component of the Dirac spinor satisfies the Klein–Gordon equation.

5.4 Prove that the matrices
{
� J
} = {I4, γ

μ, γ5, γ
μγ5, σ

μν} , where σμν =
i
2

[
γ μ, γ ν

]
, form a basis in the vector space (over the complex number field) of

4× 4 matrices.
Hint: Check that tr (� J�K ) does not vanish if and only if J = K and use this to
prove that for λi ∈ C :

16∑
J=1

λJ�
J = 0 ⇒ λJ = 0, J = 1, . . . , 16.

5.5 Let ψ(±) αλ (
k), λ = 1, 2, denote linearly independent solutions of the Dirac
equation in the momentum space:

(
ε ω(
k)γ 0

αβ − kiγ i
αβ − m

)
ψ
(ε) β
λ (
k) = 0,

where ω(
k) =
√

m2 + 
k2. Denote

uαλ(
k) = ψ(+) αλ (
k), vαλ (

k) = ψ(−) αλ (−
k).
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Show the following identities:

(
ω(
k)γ 0 − kiγ i − m

)
uλ(
k) ≡ (/k − m) uλ(
k) = 0,(

ω(
k)γ 0 − kiγ i + m
)
vλ(
k) ≡ (/k + m) vλ(
k) = 0.

5.6 For the Dirac bispinors normalized as

uλ(
k)†uσ (
k) = ω(

k)

m
δλσ , vλ(
k)†vσ (
k) = ω(


k)
m
δλσ

(m > 0), demonstrate the identities

ūλ(
k)uσ (
k) = δλσ , v̄λ(
k)vσ (
k) = −δλσ ,

and

2∑
λ=1

uαλ(
k) ūβλ(
k) =
(
/k + m I4

2m

)αβ
,

2∑
λ=1

vαλ (

k) v̄βλ (
k) =

(
/k − m I4

2m

)αβ
.

Hint: In order to check the last two formulas notice that the u1(
k), u2(
k), v1(
k), v2(
k)
form a basis in the vector space of the Dirac bispinors. Decompose an arbitrary
bispinor in this basis and, using this decomposition, check that the actions of both
sides of the identities we are after on such arbitrary bispinor coincide.

5.7 Derive the Gordon identities

ūλ( 
p)γ μuσ (
q) = 1

2m
ūλ( 
p)

[
(p + q)μ + iσμν(p − q)ν

]
uσ (
q),

and

ūλ( 
p)γ μγ5uσ (
q) = 1

2m
ūλ( 
p)

[
(p − q)μγ5 + iσμν(p + q)νγ5

]
uσ (
q).

What would the analogous identities for the bispinors vλ(
k) look like?

5.8 Check that ψ̄(x)ψ(x) and ψ̄(x)γ5ψ(x) are scalars under the Poincaré trans-
formations (with L ∈ L↑+), while ψ̄(x)γ μψ(x) and ψ̄(x)γ5γ

μψ(x) behave like
four-vectors.

Remark: ψ̄(x)ψ(x) and ψ̄(x)γ5ψ(x), and similarly ψ̄(x)γ μψ(x), ψ̄(x)γ5γ
μ

ψ(x) behave differently under reflections 
x → −
x, but those do not belong to L↑+.
Had we studied them we would have discovered that ψ̄(x)γ5ψ(x) is in fact a pseu-
doscalar and ψ̄(x)γ5γ

μψ(x) a pseudovector (like, for instance, a vector product of
three dimensional vectors).



Chapter 6
The Quantum Theory of Free Fields

Abstract Canonical quantization of the free real scalar field. Difficulties with the
Schroedinger representation. Inequivalent representations of the canonical com-
mutation relations. The Fock representation. Basic quantum observables: the total
energy and momentum of the field. Description of quantum states in terms of par-
ticles. The field operator as a generalized function. The classical Dirac field as a
system with constraints. The Faddeev-Jackiw method and quantization of the free
Dirac field. The Dirac vacuum, the Fock representation and the appearance of a
free, relativistic, spin 1/2 particle and its antiparticle. Extraction of the physical of
degrees of freedom of the free electromagnetic field. The canonical quantization
of the electromagnetic field, the Fock representation and the appearance of a free,
massless particle (the photon).

Quantum field theory, that is the quantum theory of systems with an infinite num-
ber of degrees of freedom, provides an explanation of rather nontrivial phenomena,
including the very fact that the world seems to be built of well-defined quantum par-
ticles with intrinsic characteristics like spin, electric charge, and so forth. Also, the
fact that particles come in a great number of perfectly identical copies, is explained
if we assume that in Nature there physically exist certain quantum fields. These
fields are the basic physical constituents of the material world whereas the particles
are secondary.

Quantum field theory still has some unsolved problems. Among them is the
question of how to find an appropriate Hilbert space in which one could have a
probabilistic interpretation of the quantum field theory, in terms of objects directly
accessible by methods of experimental physics (various ‘particles’ in most cases).
This is a very difficult problem, especially when interactions are present, as opposed
to the case of quantum mechanics, where there is no doubt what is the pertinent
Hilbert space.

In this chapter we describe three main types of free quantum fields. By definition,
‘the free quantum field’ means that the evolution equation for the field operator in
the Heisenberg picture is linear. The free quantum fields are very well understood
from both physical and mathematical viewpoints.

H. Arodź, L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
DOI 10.1007/978-3-642-15624-3_6, C© Springer-Verlag Berlin Heidelberg 2010
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6.1 The Real Scalar Field

Configuration space of the classical real scalar field consists of smooth, real func-
tions φ(
x) of the vector 
x ∈ R3. Field trajectories in this space are represented by
the functions φ = φ(t, 
x) of the time t and 
x . Lagrangian of this field has the form1

L = 1

2

(
∂0φ ∂0φ − ∂iφ ∂iφ − m2φ2

)
. (6.1)

It is a function of φ(t, 
x) and ∂0φ(t, 
x), which are regarded as independent argu-
ments of L because there is no relation between them at a given time t . We assume
that m2 > 0. An example of a quantum field with m = 0 is discussed in Sect. 6.3.

The canonical momentum for the field φ is defined as follows

π(t, 
x) = ∂L
∂(∂0φ(t, 
x)) . (6.2)

This formula corresponds to p = ∂L/∂q̇ known from classical mechanics. In our
case

π(t, 
x) = ∂0φ(t, 
x). (6.3)

Note that the canonical momentum differs from the density T 0i of the conserved
momentum,

T 0i = −∂iφ ∂0φ.

In classical mechanics of a free particle the two momenta coincide.
There is no derivation of quantum theory from the classical one. The reason is

that the quantum theory is much more general. Actually, it is the classical theory
which is derived from the quantum theory as an approximation that is valid only if
certain conditions are satisfied. The historical fact that certain classical theories were
discovered a long time before the quantum ones, can be to some extent explained by
the lack of sufficiently precise experimental equipment which could allow physicists
in the past to observe microscopic phenomena. Another reason is that the majority
of phenomena that we can directly perceive by our senses, can be understood in
terms of classical physics with a satisfactory accuracy. Thus, the quantum theory
is postulated, not derived. Nevertheless, there exist several so called methods of
quantization. In fact, they should be regarded merely as certain heuristic rules of
how to arrive at (hopefully) consistent quantum theories. Such rules work in certain
cases, while in others they have to be modified or even abandoned.

In this chapter we use the most popular method of quantization called the canon-
ical quantization. It is a straightforward generalization of the method applied when

1c = h̄ = 1, x0 = t
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passing from classical to quantum mechanics. Thus, we assume that there exist Her-
mitian field operators φ̂(
x) and Hermitian canonical momentum operators π̂(
x),
which obey the following commutation relations: for all 
x, 
y ∈ R3

[φ̂(
x), φ̂(
y)] = 0, [π̂(
x), π̂(
y)] = 0, [φ̂(
x), π̂(
y)] = iδ(
x − 
y)I, (6.4)

where I denotes the identity operator. The field and canonical momentum oper-
ators are considered here in the Schroedinger picture. In the natural units [φ̂] =
cm−1, [π̂] = cm−2. The Hermiticity of the field and of the canonical momentum
operators is the quantum counterpart of the fact that the classical φ(
x), π(
x) are
real.

We also have to postulate the form of operators corresponding to observables.
We use the heuristic principle of correspondence, which says that the dependence
of quantum observables on the field and canonical momentum operators should
resemble the dependence of the corresponding classical observables on the classical
field φ and on the classical canonical momentum π . Because the classical energy is
given by the formula

E = 1

2

∫
d3x (π2 + ∂iφ ∂iφ + m2φ2),

we postulate that the quantum Hamiltonian in the Schroedinger picture has the form

Ĥ = 1

2

∫
d3x

(
π̂2 + ∂i φ̂ ∂i φ̂ + m2φ̂2

)
. (6.5)

Similarly, the momentum operator is postulated as

P̂i = −1

2

∫
d3x

(
π̂ ∂i φ̂ + ∂i φ̂ π̂

)
, (6.6)

where we have taken the Hermitian part of the product of noncommuting operators.
In quantum mechanics, the assumptions made above would be sufficient to define

the quantum model, and we could pass to the calculations of the spectrum of the
Hamiltonian, evolution of wave packets, and so forth. In quantum field theory
much more is needed. The point is that the postulates listed above specify only
the algebraic structure of the quantum model. In the case of the quantum mechanics
analogous algebraic structure, that is commutation relations between position and
momentum operators, and a formula for Hamiltonian, is essentially sufficient to
determine the full quantum model. Theorem by J. von Neumann says that there is
just one realization of such commutation relations in a Hilbert space up to unitary
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equivalence.2 For example, in a one dimensional case it is sufficient to take the
well-known L2(R1) space with p̂ = −i∂/∂q and q̂ = q·, where the notation q·
means that q̂ψ(q) = qψ(q). Here q is a Cartesian coordinate on R1. This is the
Schroedinger representation of the quantum mechanics.

In the case of field theory there is a problem with finding a Hilbert space real-
ization of the algebraic structure. It can be solved in several models, including the
ones presented in this chapter, but in many others it is an open question. In fact, the
algebraic structure postulated in (6.4) in conjunction with formulas (6.5) and (6.6)
leads to two problems. To see them, let us try the straightforward generalization of
the Schroedinger representation

π̂(
x) = −i
δ

δφ(
x) , φ̂(
x) = φ(
x)·, (6.7)

where the dot after φ(
x)means multiplication of numbers. These operators are sup-
posed to act on complex functionals�[φ], which are counterparts of wave functions
ψ(q) from quantum mechanics. The configuration space of the real scalar field con-
sists of functions φ(
x), and the functional �[φ] is just a complex function on this
space, in full analogy with the quantum mechanical wave function ψ(q). In order to
mark functionals clearly, we use the square bracket around the argument.

The first problem appears when we try to define a scalar product of the func-
tionals. We need a scalar product because otherwise we could not use the standard
probabilistic interpretation of the quantum theory. Formula written by analogy with
the scalar product in the space L2(R), namely

〈�1|�2〉 =
∫ ∏


x∈R3

dφ(
x)�∗1 [φ]�2[φ], (6.8)

does not have any operational meaning because of the undefined infinite product,
and therefore it is useless for calculating probabilities of quantum processes. It turns
out that there exists a solution to this problem, but it is not straightforward.

The second problem has a more technical character, nevertheless it has to be
dealt with. It turns out that Hamiltonian (6.5) and momentum operator (6.6) are
not properly defined. As we know, the first functional derivative is a generalized
function defined as follows:

lim
ε→0

�[φ + ε f ] −�[φ]
ε

=
∫

d3x
δ�[φ]
δφ(
x) f (
x),

for arbitrary test functions f (
x) from the space S(R3). Let us now consider the
action of the square of the operator π̂(
x) on a functional �[φ]. Because the

2 The theorem actually says about the realizations of so called Weyl relations, which are closely
related to the canonical commutation relations, but not equivalent to them. Nevertheless our slightly
imprecise description of the theorem captures its meaning.
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functional derivative δ�[φ]/δφ(
x) is a generalized function of the variable 
x , it can
not be regarded as a functional of φ. The reason is that in order to be a functional,
it should have a well-defined numerical value, whereas the generalized function
of 
x does not necessarily have any definite numerical value at given 
x, see the
Appendix. Hence, the second and higher functional derivatives require a special
definition—it is not correct to regard them as functional derivatives of the first func-
tional derivative of �[φ]. The definition is recursive. The n-th (n ≥ 1) functional
derivative δn�[φ]/δφ(
x1)δφ(
x2) . . . δφ(
xn) by definition is a generalized function
of 
x1, . . . , 
xn , hence it is a functional on the space of smooth and vanishing at
infinity functions f (
x1, 
x2, . . . , 
xn). It turns out that it is sufficient to consider func-
tions of the form f (
x1, 
x2, . . . , 
xn) = f1(
x1) f2(
x2) · · · fn(
xn), where the functions
fi (
xi ) are test functions from S(R3). The n-th functional derivative acts on such
function f giving a number �(n)[ f, φ], which in physics literature is often written
as the integral

�(n)[ f, φ] =
∫ n∏

i=1

d3xi
δn�[φ]

δφ(
x1)δφ(
x2) . . . δφ(
xn)
f1(
x1) f2(
x2) · · · fn(
xn).

Now, �(n)[ f, φ] for any fixed f may be regarded as a functional of φ(
x), and we
may calculate the first functional derivative of this functional with respect to φ(
x).
The (n + 1)-st functional derivative of �[φ] is defined by the formula

∫
d3xn+1

δ�(n)[ f ]
δφ(
xn+1)

fn+1(
xn+1) (6.9)

=
∫

d3xn+1

n∏
i=1

d3xi
δn+1�[φ]

δφ(
xn+1)δφ(
x1)δφ(
x2) . . . δφ(
xn)

n+1∏
i=1

fi (
xi ).

It is a generalized function of the (n + 1) vectors 
x1, 
x2, . . . , 
xn+1.

The trouble with the π̂2 operator in Hamiltonian (6.5) is that it contains the sec-
ond functional derivative in which 
x1 = 
x2 = 
x , that is

δ2�[φ]
δφ(
x1)δφ(
x2)

∣∣∣∣
x1=
x2=
x
.

In general, such an object does not have mathematical meaning. In particular, it
does not have to be a generalized function of 
x . For example, let us consider the
functional �1[φ] =

∫
d3x φ2(
x). Then,

δ�1[φ]
δφ(
x1)

= 2φ(
x1),
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and

δ2�1[φ]
δφ(
x1)δφ(
x2)

= 2δ(
x1 − 
x2).

It is clear that the substitution 
x1 = 
x2 = 
x gives the meaningless result δ(0).
The product π̂ φ̂ present in the momentum operator also leads to a mathematically
undefined term. Let us calculate

π̂(
x1)φ̂(
x2)�1[φ]
= −i

δ

δφ(
x1)
(φ(
x2)�1[φ]) = −iδ(
x1 − 
x2)�1[φ] − iφ(
x2)

δ

δφ(
x1)
�1[φ].

It is clear that the first term on the r.h.s. becomes meaningless if we put 
x1 = 
x2 = 
x .
Thus, the straightforward Schroedinger representation is not good in the quantum
field theory.

The solution to these two problems: finding the Hilbert space and constructing
physically relevant operators in it, is quite intricate. The very fact that it exists is
far from trivial. Before presenting it in detail, let us first sketch the underlying idea.
First, we assume that the correct Hamiltonian differs from the one given by formula
(6.5) by a term of the form c0 I , where c0 is a number. There is a formulation of
quantum dynamics which is insensitive to this difference: the Heisenberg picture.
If ÔS is an operator in the Schroedinger picture, its counterpart in the Heisenberg
picture is defined by the formula

ÔH (t) = ei Ĥ tÔSe−i Ĥ t , (6.10)

provided that the Hamiltonian Ĥ does not depend on time. The terms c0 I cancel
each other on the r.h.s. of this formula. Therefore time evolution of operators in the
Heisenberg picture is correct in spite of the fact that Hamiltonian (6.5) is wrong.
Also the Heisenberg evolution equation derived with the use of this Hamiltonian,

dÔH (t)

dt
= i[Ĥ , ÔH (t)] +

(
dÔS

dt

)

H

(t), (6.11)

has the correct form. In the second term on the r.h.s. of this formula we first calculate
the time derivative in the Schroedinger picture and next we transform the obtained
operator to the Heisenberg picture as in formula (6.10). One may ask whether it is
possible to obtain a concrete form of such an evolution equation when the Hamilto-
nian is not defined yet, because formula (6.5) is meaningless. The answer is that we
will use only the algebraic operator relations in the form of commutators, and for
such limited purposes Hamiltonian (6.5) is as good as the correct one. Thus, our first
step in the construction of the quantum model is just the choice of the Heisenberg
picture.
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In the next step we find a general solution of the evolution equations in the
Heisenberg picture. In this way we restrict the set of operators to be realized in the
as yet unknown Hilbert space to the subset relevant from a physical viewpoint. It
turns out that for operators from this subset one can explicitly construct realizations
in Hilbert spaces. We will also find the correct form of observables like the Hamilto-
nian or the total momentum of the field, but they are defined only for the physically
relevant fields and in the chosen Hilbert space, not on the abstract level of algebraic
relations (6.4), (6.5) and (6.6). It turns out that in such a restricted framework, the
correctly defined observables differ from the symbolic expressions like (6.5) and
(6.6) by terms of the form c0 I , as assumed. We shall see that in the case of field
theory there are infinitely many unitarily inequivalent choices of the Hilbert space
realizations.

Because all observables are built from the field and its canonical momentum, it is
sufficient to consider Heisenberg evolution equations only for these two operators.
Both operators do not depend on time in the Schroedinger picture. The fact that
the field and the canonical momentum operators are considered in the Heisenberg
picture is denoted simply by adding the time argument t . The evolution equations
have the form

∂φ̂(t, 
x)
∂t

= i[Ĥ , φ̂(t, 
x)] = π̂(t, 
x), (6.12)

∂π̂(t, 
x)
∂t

= i[Ĥ , π̂(t, 
x)] = −m2φ̂(t, 
x)+�φ̂(t, 
x). (6.13)

Here we follow the tradition that the time derivatives of the field and its canonical
momentum operators in the Heisenberg picture are denoted as partial derivatives.
� denotes the Laplacian with respect to 
x . In order to obtain the r.h.s.’s of these
equations we have used the canonical commutation relations (6.4), and the fact that
the Hamiltonian commutes with the exponentials exp(±i Ĥ t).We have also applied
the formula [AB,C] = A[B,C] + [A,C]B. For example,

i[Ĥ , π̂(t, 
x)]

= eit Ĥ i

2

∫
d3 y

(
∂φ̂(
y)
∂yi

∂

∂yi
[φ̂(
y), π̂(
x)] +

(
∂

∂yi
[φ̂(
y), π̂(
x)]

)
∂φ̂(
y)
∂yi

)
e−i t Ĥ

+ im2

2
eit Ĥ

∫
d3 y

(
φ̂(
y) [φ̂(
y), π̂(
x)] + [φ(
y), π̂(
x)] φ̂(
y)

)
e−i t Ĥ

= eit Ĥ i

2

∫
d3 y

(
∂φ̂(
y)
∂yi

∂

∂yi
iδ(
y − 
x)+

(
∂

∂yi
iδ(
y − 
x)

)
∂φ̂(
y)
∂yi

)
e−i t Ĥ

+ im2

2
eit Ĥ

∫
d3 y φ̂(
y)2iδ(
y − 
x)e−i t Ĥ = �φ̂(t, 
x)− m2φ̂(t, 
x).

Eliminating π̂ in Eq. (6.13) with the help of Eq. (6.12) we obtain the Klein–Gordon
equation
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∂2φ̂(t, 
x)
∂t2 −�φ̂(t, 
x)+ m2φ̂(t, 
x) = 0 (6.14)

for the field operator φ̂(t, 
x) in the Heisenberg picture.
General solution of Eq. (6.14) can be found in the same manner as in Chap. 1. It

has the following form

φ̂(t, 
x) =
∫

d3k
(

e−ikxã(
k)+ eikxb̃(
k)
)
, (6.15)

where

kx = ω(
k)t − 
k 
x, ω(
k) =
√

k2 + m2,

and

b̃(
k) = ã†(
k)

because of the Hermiticity of the field operator. For a later convenience we rescale
the ã operators,

ã(
k) = â(
k)√
2(2π)3ω(
k)

.

Thus,

φ̂(t, 
x) =
∫

d3k√
2(2π)3ω(
k)

(
e−ikxâ(
k)+ h.c.

)
, (6.16)

where h.c. stands for the Hermitian conjugate of the preceding term.
Solution (6.16) contains an arbitrary operator valued function â(
k), where 
k ∈

R3. Next, we require that φ̂(t, 
x) together with the canonical conjugate momentum
given by formula (6.12) obey canonical commutation relations (6.4). It turns out that
those relations are satisfied provided that

[â(
k), â(
k′)] = 0, [â†(
k), â†(
k′)] = 0, [â(
k), â†(
k ′)] = δ(
k − 
k′)I. (6.17)

These conditions are a kind of (‘canonical’) constraints on the operators â(
k). Their
derivation is rather simple. Using the operators P̂
k(t) introduced in Sect. 1.3 we may
extract the operators â(
k),

â(
k) = P̂
k(t)φ̂(t, 
x). (6.18)
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Thus,

â(
k) = i
∫

d3x
[

f ∗
k (t, 
x)π̂(t, 
x)− ∂0 f ∗
k (t, 
x)φ̂(t, 
x)
]
, (6.19)

where the time t can be chosen arbitrarily. Formula (6.19) and its Hermitian conju-
gate are inserted on the l.h.s.’s of the commutation relations (6.17). Next we use the
canonical commutation relations (6.4) transformed to the Heisenberg picture

[φ̂(t, 
x), φ̂(t, 
y)] = 0, [π̂(t, 
x), π̂(t, 
y)] = 0,

[φ̂(t, 
x), π̂(t, 
y)] = iδ(
x − 
y)I. (6.20)

Note that the operators in each commutator are taken at the same time t . For this
reason relations (6.20) are called the equal time canonical commutation relations.

With the help of formula (6.16) and relations (6.17) we can compute commu-
tators of the field and the canonical momentum operators at arbitrary times. For
example,

[φ̂(x), φ̂(y)] = i�(x − y)I, (6.21)

where �(x − y) is the Pauli–Jordan function introduced in Sect. 1.3. For brevity,
we use here the four-dimensional notation x = (x0, 
x). Of course, for x0 = y0 for-
mula (6.21) reduces to the first of equal time commutation relations (6.20). Taking
derivatives of both sides of (6.21) with respect to x0 or y0 we obtain commutation
relations of the types [φ̂(x), π̂(y)], and [π̂(x), π̂(y)]. The formula quoted at the
end of Sect. 1.3 shows that the Pauli–Jordan function vanishes when (x − y)2 < 0.
Therefore, all these commutators vanish if x is spatially separated from y. When a
field and its canonical momentum in the Heisenberg picture have this property, the
field is called the local quantum field. Our scalar field is the example of such a field.

The total energy and the total momentum of the quantum scalar field have the
form of integrals over the whole space R3, see formulas (6.5) and (6.6). If these
integrals are replaced by integrals over a compact subset V of R3 (without chang-
ing the integrands) we obtain so called local observables. For example, instead of
Ĥ we take

ĤV = 1

2

∫
V

d3x
(
π̂2 + ∂i φ̂∂i φ̂ + m2φ̂2

)
.

In the case of the local quantum field such local observables commute with each
other if the corresponding sets V do not intersect.

The physically relevant quantum field is given by solution (6.16) of the Heisen-
berg evolution equations, with the restriction that the operators â, â† obey the
commutation relations (6.17). It is clear that in order to solve the problem of
the existence of Hilbert space realization, it is sufficient to find such a realization of
the operators â, â†. Let us first remove the mathematical complications introduced
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by the fact that the vector variable 
k is continuous. For example, due to the presence
of the Dirac delta on the r.h.s. of the third relation (6.17), â(
k) is a generalized
function of 
k, and therefore it does not have any definite value for a given 
k. In most
cases this is not important because â, â† appear in integrals over the wave vector 
k,
but here it would hamper our considerations. We introduce an infinite, discrete set
of operators âi , â†

i , i = 1, 2, . . . , which are related to â(
k), â†(
k) by the following
(invertible) formulas:

âi =
∫

d3k hi (
k)â(
k), â†
i =

∫
d3k h∗i (
k)â†(
k), (6.22)

or

â(
k) =
∞∑

i=1

h∗i (
k)âi , â†(
k) =
∞∑

i=1

hi (
k)â†
i . (6.23)

The functions hi (
k), i = 1, 2, . . . , form a complete, orthonormal set of functions,
that is

∫
d3k h∗i (
k)h j (
k) = δi j ,

∞∑
i=1

h∗i (
k)hi (
k′) = δ(
k − 
k′). (6.24)

Precise form of these functions is not needed here. The operators âi , â†
j obey the

following commutation relations

[âi , â j ] = 0, [â†
i , â

†
j ] = 0, [âi , â

†
j ] = δi j I, (6.25)

which are equivalent to (6.17).
Let us now consider the infinite tensor product of the spaces L2(R1),

H∞ =
∞⊗

i=1

L2(R1).

In a slightly imprecise description of this space, its elements have the form of linear
combinations of a finite number of formal infinite products

f1(ξ1) f2(ξ2) . . . , (6.26)

where fi (ξi ) are elements of the L2(R1) space. Such products of functions with
different arguments are formal because we do not care about their convergence—
we are not interested in their numerical value. Except for the convergence, such
products have all the properties of products with a finite number of factors. Without
any loss of generality we may assume that all fi appearing in the formal products
are normalized, that is that
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∫
dξ f ∗i (ξ) fi (ξ) = 1. (6.27)

We need the following auxiliary operators in the Hilbert space L2(R1) of functions
f (ξ) of one real variable ξ ∈ R1

α̂(ξ) = 1√
2

(
ξ + d

dξ

)
, α̂†(ξ) = 1√

2

(
ξ − d

dξ

)
. (6.28)

These operators satisfy the following commutation relation

[α̂(ξ), α̂†(ξ)] = I.

Operators âi , â†
i have a realization in the space H∞, namely we may take

âi = α̂(ξi ), â†
i = α̂†(ξi ). (6.29)

Thus, the space H∞ is large enough to allow for the realizations of all operators
âi , â†

i , i = 1, 2, . . .. Note that there also exist other realizations. For example,
instead of α̂, α̂† we may use α̂ + cI, α̂† + c∗ I, where c is a complex number.

It remains to introduce a scalar product such that â†
i is Hermitian conjugate to âi .

Natural definition of the scalar product 〈h|h′〉 of the two formal products

h =
∞∏

i=1

fi (ξi ), h′ =
∞∏
j=1

f ′j (ξ j )

has the form

〈h|h′〉 =
∞∏

i=1

〈 fi | f ′i 〉L2 , (6.30)

where

〈 fi | f ′i 〉L2 =
∫

R1
dξ f ∗i (ξ) f ′i (ξ)

is the scalar product in L2(R1). The infinite product in (6.30) should be
convergent—the scalar product has to have a definite numerical value because it
gives probability amplitude in the quantum theory. In order to ensure the conver-
gence, we assume that all formal products (6.26) are constructed from the same
normalized function f0(ξ) except for a finite number of factors. In other words, in
the product

∏∞
i=1 fi (ξi ) we have fi (ξi ) = f0(ξi ) for all i ≥ N , where N is a natural

number (which depends on the product). Let us denote by H f0 the subset of H∞
consisting of all such formal products and of their linear combinations. Because
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〈 f0| f0〉L2 = 1, the product in (6.30) contains only a finite number of factors which
may differ from 1, hence it has a definite numerical value. Assuming that the scalar
product is anti-linear in its left argument3 and linear in its right argument, we can
compute the scalar product of the arbitrary two elements of H f0 . The standard math-
ematical procedure of completion of H f0 with respect to the norm provided by the
scalar product yields the Hilbert space which we denote also by H f0 .

It is clear that the operators âi , â
†
i , as well as the finite order polynomials con-

structed from them, act within H f0 . Therefore, this space is sufficient for the Hilbert
space realization of our quantum field φ̂. Note that there are infinitely many sub-
spaces of H∞ of the described type. They differ from each other by choice of
f0 ∈ L2(R1). It turns out that this freedom of choice of the subspace allows for
various realizations of the quantum field φ̂ which are truly inequivalent—they lead
to different physical predictions.

After solving the Heisenberg evolution equations (6.12)÷(6.13), and seeing that
the operators âi , â

†
i have realizations in the Hilbert spaces constructed above, we

are prepared to define observables. Let us begin from the Hamiltonian. Using the
formula π̂ = ∂0φ̂ and inserting the solution (6.16) for φ̂ in formula (6.5) we obtain
(Exercise 6.2)

Ĥ = 1

2

∫
d3k ω(
k)

(
â(
k)â†(
k)+ â†(
k)â(
k)

)
. (6.31)

Next, we write Ĥ in the form

Ĥ = 1

2

∫
d3kd3k′ δ(
k − 
k ′)

√
ω(
k)

√
ω(
k′)

(
â(
k ′)â†(
k)+ â†(
k)â(
k′)

)
,

and use the second formula (6.24) (the completeness relation) to eliminate the Dirac
delta. Introducing the notation

gi (
k) =
√
ω(
k) hi (
k), â[gi ] =

∫
d3k gi (
k)â(
k).

we finally obtain

Ĥ = 1

2

∞∑
i=1

(
â[gi ](â[gi ])† + (â[gi ])†â[gi ]

)
. (6.32)

We know from the discussion given at the beginning of this section that Ĥ given
by formula (6.5) is not properly defined. Formula (6.32) is not equivalent to (6.5)
because we have substituted the solution of the Klein–Gordon equation for φ̂. Nev-
ertheless, the problem is still present. Namely, it turns out that Ĥ given by formula

3 That is 〈c1h1 + c2h2|h〉 = c∗1〈h1|h〉 + c∗2〈h2|h〉, where c1, c2 are complex numbers.
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(6.32) has an infinite expectation value in any normalized state |ψ〉. Let us show
this. The operators â[gi ], (â[gi ])† obey the following commutation relations

[
â[gi ], (â[gi ])†

]
= ci I, (6.33)

where

ci =
∫

d3k ω(
k)|hi (
k)|2.

Relations (6.33) follow from the definition of these operators and from the third
relation (6.17). We assume that the functions hi (
k) vanish in the limit |
k| → ∞
sufficiently quickly to ensure convergence of the integral giving ci . These integrals
are bounded from below by a positive number, namely

ci ≥ |m| > 0,

because the functions hi are normalized to 1, and ω(
k) ≥ |m| > 0 (remember that
we have assumed m2 > 0). Furthermore,

∞∑
i=1

â[gi ](â[gi ])† =
∞∑

i=1

(
(â[gi ])†â[gi ] + ci I

)
,

as follows from relation (6.33). Because the operators (â[gi ])†â[gi ] are positive
definite4, expectation value of each term in the sum on the r.h.s. is bounded from
below by |m|〈ψ |ψ〉, and the whole sum is divergent. Hence, operator (6.31) has
an infinite expectation value in any state |ψ〉 �= 0. Obviously, such an operator
can not be accepted as the Hamiltonian of a physical system. Note that the infinity
appears because the sum in formula (6.32) involves an infinite number of terms. It is
a consequence of the fact that the field has an infinite number of degrees of freedom.

In view of the argument given above, it is clear that the term â[gi ](â[gi ])† should
be removed from the Hamiltonian. This should not be done in an arbitrary way
because we could loose the correspondence with the classical theory from which
we have started, and we would also have to recalculate the Heisenberg evolution
equations (6.12) and (6.13), their solution (6.16) and so on. The best approach con-
sists in a ‘soft’ modification of the Hamiltonian, such that the new Hamiltonian gives
the same Heisenberg evolution equations as before. Such modifications exist. Using
commutation relation (6.33) we may write

4 Operator Â is positive definite if its expectation value 〈ψ | Â|ψ〉 in arbitrary state |ψ〉 �= 0 is
positive.
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Ĥ =
∞∑

i=1

(â[gi ])†â[gi ] + 1

2

∞∑
i=1

ci I.

The last term on the r.h.s. is infinite. However, we can simply drop it because it
is proportional to the identity operator and therefore it does not matter when com-
puting commutators. Thus, we postulate that the quantum Hamiltonian for the real
scalar field has the form

Ĥ =
∞∑

i=1

(â[gi ])†â[gi ] =
∫

d3k ω(
k)â†(
k)â(
k). (6.34)

The procedure applied above, that is the application of the commutation relation
with the term proportional to the identity operator omitted, in order to remove the
operators â(
k)â†(
k) is called the normal ordering. In the normally ordered operator,
all operators â†(
k) stand to the left of all operators â(
k). Such operators are denoted
by two colons, e.g., : Ĥ :. At this stage, one can also replace

∑∞
i=1 ci by a real

number 2E0. The resulting Hamiltonian differs from (6.34) only by the term E0 I ,
which gives only a trivial shift of the whole spectrum of the Hamiltonian. However,
we shall see in Chap. 10, that in the case of the Fock realization, described below,
postulates of relativistic invariance imply that we have to put E0 = 0.

The Fock realization is distinguished by the fact that the corresponding Hilbert
space H f0 , called the Fock space and denoted by HF , contains a normalized state
|0〉, called the vacuum state, such that for all 
k ∈ R3

â(
k)|0〉 = 0. (6.35)

Condition (6.35) is equivalent to

âi |0〉 = 0 (6.36)

where i = 1, 2, . . ., with âi defined by formulas (6.22). In the realization (6.29)
condition (6.36) is equivalent to the following equations

(
ξi + d

dξi

)
f0(ξi ) = 0,

which have the following normalized solution

f0(ξi ) = (π)−1/4 exp

(
−1

2
ξ2

i

)
.
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Therefore the vacuum state has the form

|0〉 =
∞∏

i=1

f0(ξi ). (6.37)

Let us remind ourselves that on the r.h.s. of this formula, we have the formal product
of functions—it does not have any numerical value. On the other hand, the scalar
product 〈0|0〉 has a definite numerical value—definition (6.30) gives

〈0|0〉 = 1. (6.38)

Let us introduce the infinite ladder of states in the Fock space

|0〉, |
k〉, . . . |
k1 
k2 . . . 
kn〉, . . . (6.39)

where

|
k1 
k2 . . . 
kn〉 = 1√
n! â

†(
k1)â
†(
k2) . . . â

†(
kn)|0〉. (6.40)

The scalar products of these states can be computed with the help of commutation
relations (6.17) and condition (6.35)—we do not have to use the concrete realization
in the space HF . For example,

〈
k1|
k2〉 = 〈0|â(
k1)â
†(
k2)|0〉 = 〈0|â†(
k2)â(
k1)|0〉 + δ(
k1 − 
k2)〈0|0〉 = δ(
k1 − 
k2),

because â(
k1)|0〉 = 0. A similar calculation with multiple use of relations (6.17)
gives

〈
k1 
k2 . . . 
kn|
k ′1 
k′2 . . . 
k′n〉 (6.41)

= 1
n!
∑

permutations δ(

k1 − 
k′i1

)δ(
k2 − 
k′i2
) . . . δ(
kn − 
k′in

),

where (i1, i2, . . . , in) is a permutation of the set (1, 2, . . . , n). The sum is over all
such permutations. It arises, because the state |
k1 
k2 . . . 
kn〉 does not depend on the
order of the wave vectors 
k1, 
k2, . . . , 
kn , as follows from the fact that the operators
â†(
k) present in definition (6.40) commute with each other. Furthermore,

〈
k1 
k2 . . . 
kn|
k ′1 
k′2 . . . 
k′m〉 = 0 (6.42)

if n �= m. By definition, the set of states (6.39) is a basis in the Fock space. Thus,
any state |ψ〉 from HF can be written in the form

|ψ〉 = ψ0|0〉 +
∫

d3k ψ1(
k)|
k〉 + . . . (6.43)

+ ∫ d3k1 . . . d3kn ψn(
k1, 
k2, . . . , 
kn)|
k1 
k2 . . . 
kn〉 + . . . .
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Here ψ0 is a complex number, the probability amplitude for finding the vacuum
state |0〉 in |ψ〉. By assumption, the functions ψn(
k1, . . . , 
kn) are symmetric in

k1, . . . , 
kn . Note that it is not a restriction on the states |ψ〉 from HF . The point
is that in any case, only symmetric parts of these functions contribute to the r.h.s.
of formula (6.43) because |
k1 . . . 
kn〉 are symmetric in 
k1, . . . , 
kn . The physical
interpretation of the functions ψn is given below. Simple calculation in which we
use (6.41) and (6.42) yields the following formula for the norm of the state |ψ〉

||ψ ||2 = 〈ψ |ψ〉 = |ψ0|2 +
∫

d3k |ψ1(
k)|2 + . . . (6.44)

+ ∫ d3k1d3k2 . . . d3kn |ψn(
k1, 
k2, . . . , 
kn)|2 + . . . .

The Fock space HF consists of all the vectors |ψ〉 of the form (6.43), such that the
r.h.s. of formula (6.44) is finite. From the physical viewpoint, vectors from HF rep-
resent states of the quantum field, in a complete analogy with states of a particle in
quantum mechanics. Using the Fock space we can construct a perfect quantum field
model which has a beautiful interpretation in terms of relativistic, non-interacting
quantum particles.

At this point the construction of the quantum theory of the real scalar field is
almost finished. It remains only to introduce operators representing other basic
observables of the real scalar field, apart from the energy represented by Hamilto-
nian (6.34). We find them following the same steps as in the case of the Hamiltonian.
Inserting solution (6.16) in formula (6.6) for the total momentum of the field we
obtain

P̂ i = 1

2

∫
d3k ki

(
â(
k)â†(
k)+ â†(
k)â(
k)

)
.

The normal ordering gives the operator of the total momentum of the field

P̂i =
∫

d3k ki â†(
k)â(
k). (6.45)

There are six more observables for the scalar field which follow from Noether’s
theorem for Lorentz transformations, which are also symmetries of the classical
model (6.1), similarly as the space-time translations which have led to the total
energy and momentum integrals of motion. In the classical model such integrals of
motion have the form

Mμν =
∫

d3x (T 0μxν − T 0νxμ), (6.46)

where Tμν = ∂μφ∂νφ − ημνL are the components of the symmetric energy-
momentum tensor. Repeating the usual steps, that is: replacing φ, π by the operators
φ̂, π̂ , inserting solution (6.16), and applying the normal ordering, we obtain six
Hermitian operators
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M̂rs =− i

2

∫
d3k

(
kr ∂ â†(
k)

∂ks
â(
k)− kr â†(
k)∂ â(
k)

∂ks

−ks ∂ â†(
k)
∂kr

â(
k)+ ks â†(
k)∂ â(
k)
∂kr

)
, (6.47)

M̂0r = − i

2

∫
d3k ω(
k)

(
∂ â†(
k)
∂kr

â(
k)− â†(
k)∂ â(
k)
∂kr

)
− i

2

∫
d3k

kr

ω(
k) â
†(
k)â(
k),

(6.48)
where r, s = 1, 2, 3, and M̂rs = −M̂sr . The operators M̂rs represent the three
components of the total angular momentum of the field. The operators M̂0r give the
quantum counterpart of the initial position of the center-of-energy of the field. To
see this, notice that formula (6.46) in the case μ = 0, ν = r can be written in the
form

M0r =
∫

d3x xr T 00 − Pr x0.

The position 
X = (Xr ) of the center-of-energy of the field is defined as follows

∫
d3x xr T 00 = E Xr ,

where E = ∫ d3x T 00 is the total energy of the field. Therefore

E Xr = M0r + Pr x0.

This formula says that the center-of-energy moves in the space with the constant
velocity 
P/E along a straight line that passes through the point which has Cartesian
coordinates equal to M0r/E .

In the just constructed quantum theory of the free real scalar field one can com-
pute the spectrum of the Hamiltonian and of the total momentum. It turns out that
the elements of the basis (6.39) are eigenstates of the Hamiltonian, and of the total
momentum of the field. In order to prove that, it is convenient to use the following
formulas

[Ĥ , â†(
k)] = ω(
k)â†(
k), [P̂i , â†(
k)] = ki â†(
k), (6.49)

which are obtained directly from definitions (6.34) and (6.45) and commutation rela-
tions (6.17). Let us compute Ĥ |
k1 
k2 . . . 
kn〉. We insert formula (6.40) and commute
operator Ĥ with the operators â†(
k) using (6.49) until it reaches the state |0〉. Each
such commutation yields a term proportional to ω(
ki ). The last term, in which Ĥ
acts directly on |0〉, vanishes because
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Ĥ |0〉 = 0, (6.50)

as follows from condition (6.36). Therefore

Ĥ |
k1 
k2 . . . 
kn〉 =
(

n∑
i=1

ω(
ki )

)
|
k1 
k2 . . . 
kn〉. (6.51)

A similar calculation gives

P̂i |0〉 = 0, P̂ i |
k1 
k2 . . . 
kn〉 =
⎛
⎝ n∑

j=1

ki
j

⎞
⎠ |
k1 
k2 . . . 
kn〉. (6.52)

Because the states (6.39) form the basis in the Fock space, they form the complete
set of eigenstates of both Ĥ and P̂i . Of course, these operators commute with each
other

[Ĥ , P̂i ] = 0, [P̂i , P̂k] = 0. (6.53)

Formulas (6.53) become obvious when we notice that

[â†(
k)â(
k), â†(
k ′)â(
k ′)] = 0

for arbitrary 
k, 
k ′, as can be checked by a direct calculation with the use of commu-
tation relations (6.17).

Formulas (6.51)÷(6.52) yield plenty of information about the properties of the
quantum model. First, the quantum field in the vacuum state |0〉 has zero energy and
momentum. In consequence, the operator

U (b0, 
b) = exp(−ib0 Ĥ + ibk P̂k), (6.54)

which represents the translations in time (x0 → x0 + b0) and space (
x → 
x + 
b),
see Chap. 10, leaves the vacuum state unchanged,

U (b0, 
b)|0〉 = |0〉. (6.55)

The quantum field in the state |
k〉 has total momentum equal to 
k and the energy

equal to ω(
k) =
√

m2 + 
k2. Moreover, the Schroedinger equation in the Fock space

i
∂|t〉
∂t

= Ĥ |t〉 (6.56)

(h̄ = 1), for the states of the form
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|t〉1 =
∫

d3k ψ1(t, 
k)|
k〉

is reduced to the equation

i
∂ψ1(t, 
k)
∂t

=
√

m2 + 
k2 ψ1(t, 
k), (6.57)

which in turn coincides with the Schroedinger equation in the momentum repre-
sentation for a free relativistic particle with the rest mass equal to m. Therefore,
the states |ψ〉1 can be regarded as quantum states of a relativistic particle with the
rest mass m. For this reason they are called one-particle states, and they form the
so called one-particle sector of the Fock space. Note that this particle has positive
energy. The problem of states with negative energy, which is present in relativistic
quantum mechanics of a single particle based on the Klein–Gordon equation, does
not appear here.

The total momentum of the quantum field in the states |
k1 
k2 . . . 
kn〉 with n ≥ 2
is equal to

∑n
i=1

ki , and the total energy to

∑n
i=1 ω(


ki ). Therefore these states, as
well as their ‘linear combinations’

|t〉n =
∫

d3k1d3k2 . . . d
3kn ψn(
k1, 
k2, . . . , 
kn, t) |
k1 
k2 . . . 
kn〉,

can be regarded as states of n noninteracting identical relativistic particles with
the rest mass m. The particles are identical because the n-particle wave function
in momentum representation ψ(
k1, 
k2, . . . , 
kn, t) is symmetric with respect to per-
mutations of 
k1, 
k2, . . . , 
kn . They do not interact with each other because the total
energy is equal to the sum of kinetic energies ω(
ki ) of the particles—there is no
interaction energy. We see from formula (6.43) that the Fock space is decomposed
into sectors with fixed numbers of identical relativistic, noninteracting particles. The
fact that the states of the field can be described in terms of quantum particles, is
called the particle interpretation of the quantum theory of the free real scalar field.
Of course, the Fock space also contains states which are linear combinations of
states with a various number of particles. Such states do not have any concrete
number of particles, one may only ask about the probability of finding a chosen
number of particles.

The operators â†(
k), â(
k) are called (particle) creation and annihilation opera-
tors, respectively. Because

â†(
k)|
k1 
k2 . . . 
kn〉 =
√

n + 1|
k 
k1 
k2 . . . 
kn〉, (6.58)

the creation operator transforms the states from the n-particle sector into states from
the sector with n + 1 particles. The annihilation operator ‘moves’ the states in the
opposite direction, namely
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â(
k)|
k1 
k2 . . . 
kn〉 = 1√
n

[
δ(
k1 − 
k)|
k2 
k3 . . . 
kn〉 (6.59)

+δ(
k2 − 
k)|
k1 
k3 . . . 
kn〉 + . . .+ δ(
kn − 
k)|
k1 
k2 . . . 
kn−1〉
]
.

Formula (6.51) does not depend on the detailed form of ω(
k). Therefore it is valid
also for ω(
k) = 1,

N̂ |
k1 
k2 . . . 
kn〉 = n|
k1 
k2 . . . 
kn〉,

where

N̂ =
∫

d3k â†(
k)â(
k). (6.60)

For the obvious reason operator N̂ is called the particle number operator. It com-
mutes with the Hamiltonian and with the total momentum operator. Therefore the
translation operator U (a0, 
a), defined by formula (6.54), does not change the num-
ber of particles. In particular, this number is constant in time because U (a0, 
a = 0)
is the time evolution operator (whereas U (a0 = 0, 
a) represents the space trans-
lation by the vector 
a). This feature of the quantum field is related to the lack of
interaction between particles. In general, interactions in relativistic quantum field
theories can create or destroy particles.

The operator U (b0, 
b) can be used in order to shift the argument of the field
operator,

U−1(b0, 
b) φ̂(x0, 
x)U (b0, 
b) = φ̂(x0 + b0, 
x + 
b). (6.61)

Here φ̂ has the form (6.16), therefore this formula is equivalent to

U−1(b0, 
b) â(
k)U (b0, 
b) = e−ib0ω(
k)+i 
b
k â(
k). (6.62)

Probably the easiest way to check formula (6.62) is to apply both sides of it to each
basis state (6.39) in the Fock space, to use formula (6.59) and the fact that the basis
states are eigenstates of Ĥ , P̂i .

Let us note that the quantum field operator φ̂(x), given by formula (6.16), should
not be regarded as an operator valued function of x ∈ M . Rather, it is a generalized
function of x . This means that φ̂(x) is not an operator in the Fock space for any
fixed x . A well-defined operator is obtained when we ‘smear’ the field with a test
function h(x) of the class S(R4)

φ̂[h] =
∫

d4x h(x) φ̂(x). (6.63)
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To illustrate this point, let us compute the norm of the state φ̂[h]|ψ〉. It should be
finite if this state belongs to HF . The square of the norm is equal to

〈ψ |(φ̂[h])2|ψ〉

(for simplicity we have assumed that the test function has real values). The operator
(φ̂[h])2 can be split into four terms containing â†â†, â†â, ââ, ââ†, respectively.
Using commutation relations (6.17) we can transform the last term into the sum of
a term containing â†â and of the term

∫
d3kd3k′

2(2π)3
√
ω(
k)ω(
k ′)

∫
d4xd4x ′ h(x)h(x ′)eikx−ik′x ′δ(
k − 
k ′)〈ψ |I |ψ〉

=
∫

d3k

2(2π)3ω(
k)
∫

d4xd4x ′ h(x)h(x ′)eik(x−x ′).

This expression is finite because also the Fourier transform

h̃(k) = 1

(2π)2

∫
d4x e−ikxh(x)

of the test function h(x) is of the class S(R4) (in the variable k ∈ R4). On the other
hand, if we try to replace the test function by the Dirac delta, h(x) → δ(x − x0)

and φ̂[h] → φ̂(x0), then we obtain the integral
∫ d3k

2(2π)3ω(
k) which is divergent.

It turns out that the remaining three types of terms (â†â†, â†â, ââ) can give finite
contributions also when h(x) is replaced by δ(x−x0). This can be seen by expanding
the state |ψ〉 as in (6.43) and using formulas (6.58) and (6.59). Then it becomes clear
that there exist normalized states |ψ〉 ∈ HF such that the expression obtained in this
way is finite. We conclude that φ̂[h]|ψ〉 belongs to HF at least for some |ψ〉 ∈ HF ,
and that φ̂(x)|ψ〉 does not belong to HF for any x ∈ M and any |ψ〉 �= 0 from
HF . Thus, φ̂(x) can not be regarded as an operator in the Fock space5, as opposed
to the smeared field operator φ̂[h]. For this reason powers of φ̂(x), e.g. φ̂2(x), are
meaningless, in general. Such powers are present in formula (6.5), so it is not a
surprise that the final form (6.34) of the Hamiltonian is not equal to (6.5).

6.2 The Dirac Field

We know from Sect. 5.4 that there exist two versions of the classical Dirac field:
with either complex or Grassmann values. Both are not satisfactory from a physical
viewpoint, and both can be used as a starting point for constructing the quantum

5 Nevertheless, we will use the traditional term ‘field operator’ for φ̂(x).
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theory of that field. It turns out that the resulting quantum theory of the Dirac field
does not have any flaws. It can be regarded as one of the most remarkable achieve-
ments of theoretical physics.

We choose the classical anticommuting Dirac field because then the way to the
quantum theory is shorter. The Lagrangian also has the usual form (5.24) for this
version of the classical Dirac field,

L = i

2

(
ψγμ∂μψ − ∂μψγμψ

)− mψψ, (6.64)

where ψ = (ψα), ψ = (ψα), α = 1, 2, 3, 4, and we take the matrices γ μ in
the Dirac representation (5.3). In the matrix notation, ψ is a column, while ψ is a
row. Let us stress that ψα, ψα are independent generating elements of a complex

Grassmann algebra – there is no relation of the form ψ = γ 0ψ† (which holds for
the complex Dirac field). In this algebra we define the conjugation6

(ψα)∗ = ψβ(γ 0)βα, (ψα)
∗ = (γ 0)αβψ

β. (6.65)

The conjugation is antilinear, that is (c1φ+ c2χ)
∗ = c∗1φ∗ + c∗2χ∗, where c1, c2 are

complex numbers, c∗i is the complex conjugate to ci , and φ, χ are arbitrary elements
of the Grassmann algebra. Moreover, (φχ)∗ = χ∗φ∗. Lagrangian (6.64) is ‘real’ in
the sense that L∗ = L, see Exercise 6.5.

The Euler–Lagrange equations have the general form

δS

δψα(x)
= 0,

δS

δψα(x)
= 0,

where

S =
∫

d4x L.

In the present case we obtain

iγ μ∂μψ − mψ = 0, i∂μψγ
μ + mψ = 0. (6.66)

The conjugation interchanges these equations.
We shall again apply the canonical quantization method. In the case of Grass-

mann valued fields we postulate fundamental relations of the kind (6.4) with the
commutators replaced by anticommutators. It turns out that such a heuristic rule
yields, after a number of steps, a consistent quantum theory. Unfortunately, there

6 Notice the order: the conjugation is introduced in the algebra, hence it is secondary to it. There-
fore, it is not correct to interpret (6.65) as relations between the generating elements. Formulas
(6.65) say that, e.g., the element conjugate to ψα by definition is equal to ψβ(γ

0)βα .
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are several problems which were absent in the case of the scalar field. First, the
straightforward definition of canonical momenta leads to the presence of constraints.
Namely,

πα = ∂L
∂(∂0ψα)

= − i

2
ψβ(γ

0)βα, π
α = ∂L

∂(∂0ψα)
= − i

2
(γ 0)αβψ

β. (6.67)

The minus sign in the first formula appears because ∂0ψ
α is the second factor in

the product iψγ 0∂0ψ . Relations (6.67) show that the canonical variables are not
independent. Such relations can not be carried over to the quantum theory because
they contradict the canonical anticommutation relations. For example, the canonical
anticommutation relations

{ψ̂α(
x), π̂β(
y)} = iδαβ δ(
x − 
y)I, {ψ̂α(
x), ψ̂β(
y)} = 0.

are not compatible with the operator counterpart of the first constraint (6.67),

obtained just by replacing πα, ψβ by the operators π̂α, ψ̂β , respectively. Inserting
this constraint in the first canonical anticommutation relation and using the second
one we obtain the contradiction (0 = I ). Therefore, in the presence of the constraints
the quantization has to be done in a more refined way. One possibility is to use a gen-
eralization of canonical formalism for systems with constraints invented by Dirac,
see, e.g., [6]. However, in the present case one may apply an approach proposed by
Faddeev and Jackiw [7]. It gives the same result as the former approach but it is a
bit simpler.

The approach by Faddeev and Jackiw is based on the fact that the two actions

S =
∫ t2

t1
dt
∫

d3x L, S′ = S +
∫ t2

t1
dt
∫

d3x
∂ f (ψ,ψ)

∂t
,

or, equivalently, the two Lagrangians

L, L′ = L+ ∂ f (ψ,ψ)

∂t
,

give equivalent quantum theories, see Sect. 11.1. Here f (ψ,ψ) can be an arbitrary
differentiable function of ψ and ψ .

Let us write Lagrangian (6.64) in the form

L = iψγ 0∂0ψ − i

2
∂0(ψγ

0ψ)+ i

2

(
ψγ i∂iψ − ∂iψγ

iψ
)
− mψψ. (6.68)

According to the remark above, we may abandon the second term on the r.h.s. of
this formula. The new Lagrangian has the form
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L′ = iψγ 0∂0ψ + i

2

(
ψγ i∂iψ − ∂iψγ

iψ
)
− mψψ.

This Lagrangian gives the following canonical momentum conjugate with ψα

π ′α(t, 
x) =
∂L′

∂(∂0ψα(t, 
x)) = −iψβ(t, 
x)(γ 0)βα (6.69)

(the minus sign is correct!).
Lagrangian L′ can be written in the form

L′ = ∂0ψ
απ ′α − T 0

0, (6.70)

where

T 0
0 =

i

2

(
∂iψγ

iψ − ψγ i∂iψ
)
+ mψψ (6.71)

coincides with the density of the energy obtained from Noether’s theorem applied
to the Lagrangian L′.

Now comes the crucial observation: formula (6.70) has a form of relation
between Lagrangian and Hamiltonian, well-known from canonical formalism in
classical mechanics. This tells us that ψβ(t, 
x) is not a configurational variable!
Instead, it is directly related to the canonical momentum conjugate with ψα , as
shown by formula (6.69). Now we guess that the right way to construct the quan-
tum version of the model is to postulate the following equal-time anticommutation
relations

{ψ̂α(t, 
x), ψ̂β(t, 
y)} = 0, {ψ̂α(t, 
x), ψ̂β(t, 
y)} = 0, (6.72)

{ψ̂β(t, 
x), ψ̂α(t, 
y)} = (γ 0)αβδ(
x − 
y)I, (6.73)

where ψ̂α, ψ̂β are Heisenberg picture operators corresponding to the classical
Grassmann fields ψα,ψβ . The last anticommutation relation follows from the
canonical anticommutation relation7

{π̂ ′β(t, 
x), ψ̂α(t, 
y)} = −iδαβδ(
x − 
y)I.

The obvious candidate for the quantum Hamiltonian of the Dirac field is the operator

Ĥ =
∫

d3x T 0
0,

7 The canonical commutation relation (6.4) can be written in the form [π̂(t, 
x), φ̂(t, 
y)] = −iδ(
x−

y)I . We replace [,] by {, } precisely in this version.
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where T 0
0 has the form (6.71) with the classical fields ψ,ψ replaced by the corre-

sponding operators. Thus,

Ĥ = i

2

∫
d3x

(
∂i ψ̂γ

i ψ̂ − ψ̂γ i∂i ψ̂
)
+ m

∫
d3x ψ̂ψ̂. (6.74)

Similarly as in the case of the scalar field, this Hamiltonian is understood merely
as a formal expression which hopefully gives correct commutators. It turns out that
indeed, it gives the correct commutators because it differs from the correct Hamil-
tonian by a multiple of the identity operator.

Let us repeat the steps known from the considerations of the scalar field. We start
from the Heisenberg evolution equations

∂ψ̂α(t, 
x)
∂t

= i[Ĥ , ψ̂α(t, 
x)], ∂ψ̂α(t, 
x)
∂t

= i[Ĥ , ψ̂α(t, 
x)]. (6.75)

The commutators present in these equations can be reduced to the basic anticom-
mutators (6.72) and (6.73) with the help of the identity

[AB,C] = A{B,C} − {A,C}B. (6.76)

Multiplication of Eqs. (6.75) by iγ 0, and computation of the commutators gives the

Dirac equations for the operators ψ̂α, ψ̂β ,

iγ μ∂μψ̂ − mψ̂ = 0, (6.77)

i∂μψ̂γ
μ + mψ̂ = 0. (6.78)

The general solution of Eq. (6.77) has the form

ψ̂(t, 
x) =
∫

d3p

(2π)3/2
∑

s=±1/2

[
v(+)s ( 
p)â(+)s ( 
p)ei( 
p
x−ωt)+v(−)s ( 
p)â(−)s ( 
p)ei( 
p
x+ωt)

]
,

(6.79)
where

ω( 
p ) =
√

m2 + 
p 2,

and â±s ( 
p ) are certain operators.
For each fixed wave vector 
p ∈ R3, the four bispinors v±s ( 
p) form a basis in the

space of bispinors. The components of them are complex numbers, not Grassmann
elements. By definition, the basis bispinors obey the following algebraic equations

(
±ω( 
p)γ 0 − γ ipi

)
v(±)s ( 
p) = mv(±)s ( 
p),



134 6 The Quantum Theory of Free Fields

and

�3v
(±)
s ( 
p) = sv(±)s ( 
p),

where s = ±1/2,

�3 = 1

2

(
σ3 0
0 σ3

)
.

The matrix �3 coincides with the operator of the third component of spin in rel-
ativistic quantum mechanics of the Dirac particle. The basis bispinors obey the
following orthogonality and normalization conditions

(vεr ( 
p))†vε
′

s ( 
p) = δrsδεε′, (6.80)

where the indices ε, ε′ have the values +,−. Here v† = (v∗)T , ∗ denotes the com-
plex conjugation and T the matrix transposition.

Equation (6.78) can be transformed into Eq. (6.77) by Hermitian conjugation and
multiplication by γ 0. Therefore, the general solution of Eq. (6.78) can be expressed
by the general solution (6.79), namely

ψ̂(t, 
x) = ψ̂†(t, 
x)γ 0. (6.81)

Here † denotes the Hermitian conjugation of the field operator in a certain Hilbert
space, yet to be defined. Note that due to the Dirac equations (6.77)÷(6.78), the

two initially independent Dirac fields ψ̂(x), ψ̂(x) have become related by formula
(6.81). In a field theoretical jargon one says that these fields are independent ‘off-
shell’, and equivalent to each other ‘on-shell’.

Using the inverse Fourier transform and relations (6.80) we express the operators
â(±)s ( 
p) by the Dirac field

â(±)s ( 
p) = 1

(2π)3/2
e±iωt ((v(±)s ( 
p))†)α

∫
d3x e−i 
p
x ψ̂α(t, 
x). (6.82)

Because of (6.72)÷(6.73), these operators obey the following algebraic relations

{â(ε)s ( 
p), â(ε
′)

s′ ( 
p ′)} = 0, {â(ε)s ( 
p), (â(ε
′)

s′ ( 
p ′))†} = δss′δεε′δ( 
p − 
p ′)I, (6.83)

where again ε, ε′ = +,−. Relation involving two operators â† is obtained from the
first of relations (6.83) by Hermitian conjugation.

Similarly as in the case of the scalar field, we would like to see realizations of
the operators â(ε)s . The construction of such realizations is analogous to the one pre-
sented in the previous section. We take an orthonormal and complete set of functions
hi ( 
p, ε, s) of the continuous variable 
p and of discrete variables ε, s,
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∑
ε=±,s=±1/2

∫
d3 p hi ( 
p, ε, s)h j ( 
p, ε, s) = δi j , (6.84)

∞∑
i=1

h∗i ( 
p, ε, s)hi ( 
p ′, ε′, s′) = δss′δεε′δ( 
p − 
p ′).

and define

âi =
∑
ε,s

∫
d3 p hi ( 
p, ε, s) â(ε)s ( 
p), â†

i =
∑
ε,s

∫
d3 p h∗i ( 
p, ε, s)(â(ε)s ( 
p))†, (6.85)

where i = 1, 2, . . . . The inverse formulas have the form

â(ε)s ( 
p) =
∞∑

i=1

h∗i ( 
p, ε, s)âi , (â
(ε)
s ( 
p))† =

∞∑
i=1

hi ( 
p, ε, s)â†
i . (6.86)

It is clear that it suffices to find realizations of the operators âi , â†
i . These operators

obey the following anticommutation relations obtained from (6.83)

{âi , â
†
j } = δi j I, (6.87)

{âi , â j } = 0, {â†
i , â

†
j } = 0.

We again consider an infinite dimensional linear space H∞ spanned by formal,
infinite products of functions

g1(x1)g2(x2) . . . ,

but in the present case, the functions gi (xi ) are the first order polynomials in xi ,

gi (xi ) = ci xi + di ,

where xi are Grassmann elements anticommuting with each other, and ci , di are
complex numbers. Thus, x2

i = 0, and xi x j = −x j xi . Let us introduce operators

β̂x , β̂
†
x acting in the two-dimensional complex space of the first order polynomials

c1x + c2, where x is a Grassmann element:

β̂x (c1x + c2) = c1, β̂
†
x (c1x + c2) = c2x .

Equivalently, we may write that

β̂x = d

dx
, β̂†

x = x ·,
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where the dot means that the operator acts as the multiplication by x . For example,
x(c1x + c2) = c2x because x2 = 0. The operators β̂x , β̂

†
x obey the following

anticommutation relation

{β̂x , β̂
†
x } = I.

In the basis formed by the two monomials, namely 1 and x , these operators are
represented by the matrices

β̂x ↔
(

0 0
1 0

)
, β̂†

x ↔
(

0 1
0 0

)
.

The operators âi , â
†
j have the following realization in the space H∞:

âi = β̂xi , â†
i = β̂†

xi
. (6.88)

Note that β̂†
x (cx) = 0. In consequence, there exist normalizable states |ψ〉 in H∞

such that â†
i |ψ〉 = 0. Such states do not exist in the Fock space of the scalar field.

The space H∞ is very large. Our operators can be realized in its subspace H
spanned on formal products which differ only by a finite number of factors. In other
words, in all these basis formal products, for sufficiently large i we have by assump-
tion gi (xi ) = g∞(xi ), where g∞(x) is a fixed first order polynomial, the same for
all elements of H. The scalar product in this space is defined as follows

〈g1g2 · . . . |g′1g′2 · . . .〉 =
∞∏

i=1

〈gi |g′i 〉, (6.89)

where for gi = ci xi + di and g′i = c′i xi + d ′i

〈gi |g′i 〉 = c∗i c′i + d∗i d ′i .

We also assume that

〈g∞|g∞〉 = 1.

Strictly speaking, the linear space H with the scalar product introduced above
should be called the pre-Hilbert space. To obtain the Hilbert space, we have to
complete it with respect to the norm given by the scalar product using a standard
mathematical procedure.

In the second step towards the quantum theory of the Dirac field we construct
basic observables. They are represented by operators in H. The obvious candidate

for the quantum Hamiltonian has the form (6.74) with ψ̂, ψ̂ given by formulas (6.79)
and (6.81). Because these fields obey the Dirac equations (6.77)÷(6.78) we may



6.2 The Dirac Field 137

write the Hamiltonian in the form

Ĥ = i

2

∫
d3x

(
ψ̂†∂t ψ̂ − ∂t ψ̂

†ψ̂
)
,

and

Ĥ =
∑

s=±1/2

∫
d3p ω( 
p)

(
(â(+)s ( 
p))†â(+)s ( 
p)− (â(−)s ( 
p))†â(−)s ( 
p)

)
, (6.90)

where in the last step we have used formula (6.79). Notice that Hamiltonian (6.90)

is already normally ordered. This is due to the fact that in formula (6.74) the field ψ̂
always stands to the left of the field ψ̂ . At this point we could repeat the construction
of the Fock space as in the previous section. The vacuum state |0〉 would be defined
by the conditions

â(±)s ( 
p)|0〉 = 0,

and the complete set of basis states would be generated from it by the operators
(â(±)s ( 
p))† as in formula (6.40). However, considerations analogous to the ones
presented at the end of previous section show that the associated with the operator
(â(−)s ( 
p))† contribution to the eigenvalues of the Hamiltonian is equal to −ω( 
p),
hence it is negative. Therefore Hamiltonian (6.90) can not be accepted because its
eigenvalues extend from −∞ to +∞. Such systems have not been found in Nature,
hence the quantum Dirac field with Hamiltonian (6.90) is unphysical.

There exists a slight modification of the Hamiltonian (6.90) which solves this
problem. Using the anticommutation relation (6.83), and dropping the term propor-
tional to the identity operator I we obtain the following operator

ĤD =
∑

s=±1/2

∫
d3p ω( 
p)

(
(â(+)s ( 
p))†â(+)s ( 
p)+ â(−)s ( 
p)(â(−)s ( 
p))†

)
, (6.91)

It has non-negative expectation values because

〈ψ |(â(+)s ( 
p))†â(+)s ( 
p)|ψ〉 = ||â(+)s ( 
p)|ψ〉||2 ≥ 0,

and

〈ψ |â(−)s ( 
p)(â(−)s ( 
p))†|ψ〉 = ||(â(−)s ( 
p))†|ψ〉||2 ≥ 0.

Here || · || denotes the norm defined by the scalar product. Notice that the argument
presented in previous section, that one should avoid operators of the form ââ†, is
based on the commutation relation (6.33)—it does not work here. Moreover, ĤD

and Ĥ give the same Heisenberg evolution equations because they differ only by a
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multiple of the identity operator. Therefore, ĤD is a good candidate for the Hamilto-
nian of the quantum Dirac field, provided that we can find a Hilbert space in which
this Hamiltonian has finite eigenvalues. It turns out that such a Hilbert space exists,
as shown below.

Let us define the Dirac vacuum state |0〉D . By definition, it is a normalized state
that obeys the following conditions

â(+)s ( 
p)|0〉D = 0, (â(−)s ( 
p))†|0〉D = 0 (6.92)

for all s = ±1/2, 
p ∈ R3. Such a state can be found in the space H∞, because this
space contains vectors such that â†

i |ψ〉 = 0, as pointed out below formula (6.88). It
is clear that

ĤD|0〉D = 0. (6.93)

The Dirac vacuum state is sometimes called the Dirac sea. The reason is that one
may heuristically write

|0〉D = “

⎛
⎝ ∏

s=±1/2

∏

p∈R3

(â(−)s ( 
p))†
⎞
⎠ ”|0〉.

Then, the second condition (6.92) is satisfied because relations (6.83) imply that the
square of each operator (â(−)s ( 
p))† vanishes. In view of that “formula” the Dirac
vacuum may be regarded as the state in which all negative energy states are occu-
pied, hence the sea of negative energy particles. Because the infinite product over

p ∈ R3 is not defined, that “formula” can not serve as the definition of the Dirac
vacuum.

The basis states in the Fock space of the quantum Dirac field, analogous to the
ones given by formulas (6.39) and (6.40) for the quantum scalar field, are defined as
follows

|(+) 
p1s1, 
p2s2, . . . , 
pMsM ; (−)
q1r1, 
q2r2, . . . , 
qN rN 〉 (6.94)

= 1√
n!m! â

(−)
−rN
(−
qN ) . . . â

(−)
−r1
(−
q1)(â

(+)
sM ( 
pM ))

† . . . (â(+)s1 ( 
p1))
†|0〉D,

where ri , s j = ±1/2 and M, N = 0, 1, 2, . . .. It is understood that M = 0 or N = 0

means that operators (â(+)s j ( 
p j ))
† or â(−)ri (−
qi ), respectively, are absent. The reason

for using â(−)−s (−
q) and not â(−)s (
q) is that the states (6.94) are eigenstates of the
operator of the total momentum of the quantum Dirac field, with eigenvalues equal
to the sum of the wave vectors 
pn, 
qi , as discussed below. For a similar reason, we
take as the spin indices −ri instead of ri because then the states are eigenstates of
an operator of the total spin with the corresponding eigenvalues equal to

∑N
n=0 rn+∑M

i=0 si . It turns out that the states (6.94) are the eigenstates of the Hamiltonian,
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ĤD|(+) 
p1s1, . . . , 
pM sM ; (−)
q1r1, . . . , 
qN rN 〉

=
⎛
⎝ N∑

i=0

ω(
qi )+
M∑

j=0

ω( 
p j )

⎞
⎠ |(+) 
p1s1, . . . , 
pM sM ; (−)
q1r1, . . . , 
qN rN 〉,

(6.95)

where ω(
k) =
√

m2 + 
k2. The derivation of this formula is essentially identical as
in the case of the quantum scalar field, formula (6.51). Instead of the first formula
(6.49) we now have

[ĤD, (â
(+)
s ( 
p))†] = ω( 
p)(â(+)s ( 
p))†, [ĤD, â

(−)
s (
q)] = ω(
q)â(−)s (
q). (6.96)

The commutators on the r.h.s.’s of formulas (6.96) have been calculated with the
help of identity (6.76). We also have used the basic anticommutation relations
(6.83).

It turns out that the states (6.94) are also eigenstates of the total momentum of
the Dirac field. Starting from Noether’s theorem applied to the spatial translations,
and using formulas (6.79) and (6.81) we obtain the following operator

P̂i =
∑

s=±1/2

∫
d3p pi

[
(â(+)s ( 
p))†â(+)s ( 
p)+ (â(−)s ( 
p))†â(−)s ( 
p)

]
,

where i = 1, 2, 3. Next, we apply the same modification as in the Hamiltonian:
we anticommute the operators in the second term and drop the generated term pro-
portional to the identity operator. Furthermore, in the second term on the r.h.s. we
change the integration variable 
p → −
p and the summation index s → −s. The
resulting operator has the form

P̂i =
∑

s=±1/2

∫
d3p pi

(
(â(+)s ( 
p))†â(+)s ( 
p)+ â(−)−s (− 
p)(â(−)−s (− 
p))†

)
. (6.97)

It is adopted as the operator of the total momentum of the quantum Dirac field.
Calculations similar to the case of the Hamiltonian show that

P̂k |(+) 
p1s1, . . . , 
pM sM ; (−)
q1r1, . . . , 
qN rN 〉 =

=
⎛
⎝ N∑

n=1

qk
n +

M∑
j=1

pk
i

⎞
⎠ |(+) 
p1s1, . . . , 
pM sM ; (−)
q1r1, . . . , 
qN rN 〉. (6.98)

Notice that the vectors 
qn enter the eigenvalues of P̂k with the plus sign, precisely
because we have − 
p in the second term in the formula (6.97).

We have seen that the sectors ‘+’ and ‘−’ give identical contributions to the
eigenvalues of the observables ĤD, P̂k . In fact, this is true also for the remaining
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six observables M̂μν related to the Poincaré symmetry.8 However, these two sectors
do differ when we take into account the internal U (1) symmetry of the Lagrangians
L or L′. This global symmetry group acts on the classical Grassmannian fields ψ,ψ
as follows

ψ ′(x) = eiαψ(x), ψ ′(x) = e−iαψ(x).

The corresponding total conserved charge has the form

Q = e
∫

d3x ψγ 0ψ,

where e is a constant. This expression suggests that in the quantum theory the charge
is represented by the following operator

Q̂ = e
∫

d3x ψ̂γ 0ψ̂ = e
∫

d3xψ̂†(t, 
x)ψ̂(t, 
x)

= e
∑

s

∫
d3p

(
(â(+)s ( 
p))†â(+)s ( 
p)+ (â(−)s ( 
p))†â(−)s ( 
p)

)
.

One can easily check that this operator commutes with ĤD , hence its eigenval-
ues and expectation values are constant in time. Nevertheless, this operator is not
satisfactory because it has an infinite expectation value in the Dirac vacuum |0〉D.
Therefore, we perform the by now standard manipulation, consisting in anticom-
muting the two operators (â(−)s ( 
p))†, â(−)s ( 
p) and dropping the term proportional
to the identity operator (such an operation does not influence commutation relations
with all other operators). In this way we obtain the correct total U (1) charge operator

Q̂ D = e
∑

s

∫
d3p

(
(â(+)s ( 
p))†â(+)s ( 
p)− â(−)−s (− 
p)(â(−)−s (− 
p))†

)
(6.99)

In the second term on the r.h.s. we have changed the summation index s →−s and
the integration variable 
p → −
p in order to have the same operators as in formula
(6.94). The operator Q̂D has the form analogous as the Hamiltonian and the total
momentum operators. It is clear that the basis states (6.94) are its eigenstates with
the eigenvalues equal to

Q = e(M − N ). (6.100)

Thus, the ‘−’ and ‘+’ states have the U (1) charges of the opposite sign.

8 It turns out that eigenstates of M̂μν are not given by the basis states (6.94), but by certain integrals
over the wave vectors 
p, 
q and linear combinations over the indices si , ri . Nevertheless, the sectors
‘+’, ‘−’ give similar contributions to the eigenvectors and to the corresponding eigenvalues.
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The Fock space of the quantum Dirac field is spanned on the basis states (6.94).
States from this space have all the properties of quantum states of non-interacting
particles of the rest mass m and spin 1/2. Moreover, there are two species of the
particles which differ by value of the U (1) charge, which can be equal to +e or
−e. One of the species is called the particle, the other one antiparticle.9 Thus, the
operators

âs( 
p) = â(+)s ( 
p), â†
s ( 
p) = (â(+)s ( 
p))† (6.101)

are the particle annihilation and creation operators, while

d̂s( 
p) = (â(−)−s (− 
p))†, d̂†
s ( 
p) = â(−)−s (− 
p) (6.102)

are the antiparticle annihilation and creation operators, respectively. The field oper-
ator (6.79) now can be written in the form

ψ̂(t, 
x) =
∫

d3p

(2π)3/2
∑

s=±1/2

[
v(+)s ( 
p)âs( 
p)ei( 
p
x−ωt) + v(−)−s (− 
p)d̂†

s ( 
p)ei(ωt− 
p
x)] .
(6.103)

It has the following commutation relation with the total charge operator Q̂D

[Q̂D, ψ̂(t, 
x)] = −e ψ̂(t, 
x). (6.104)

Using this relation, one can easily prove that the state ψ̂ |φ〉 has the total U (1) charge
by e smaller than the state |φ〉.

Multiparticle wave functions in the momentum representation are defined by
expanding a general state vector from the Fock space into the basis vectors (6.94).
For example, states describing two particles and two antiparticles have the form

|φ〉(2,2) =
∑
s1,s2

∑
r1,r2

∫
d3p1d3p2d3q1d3q2 φ

(2,2)( 
p1s1, 
p2s2; 
q1r1, 
q2r2)

|(+) 
p1s1, 
p2s2; (−)
q1r1, 
q2r2〉.

Because the operators â(−) ( or (â(+))† ) in the definition (6.94) anticommute, we
may assume without loss of generality that the wave function is antisymmetric with
respect to the arguments 
q1r1, 
q2r2 (or 
p1s1, 
p2s2).

On the other hand, the behavior of the wave function under the interchange of
the whole groups of variables, for example

9 Let us note that strictly speaking it is not correct to identify them with the real world electron and
positron. Such identification would be correct if we could switch off the electromagnetic, weak and
gravitational interactions. Nevertheless, the electrons and positrons can approximately be described
by the above constructed quantum theory when the interactions are negligibly small.
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(
q1r1, 
q2r2)↔ ( 
p1s1, 
p2s2),

is not fixed. Such operations are related to the so called charge conjugation, which
is represented by the transformation

â(−)−r (−
q)↔ (â(+)r (
q))†, (â(−)−r (−
q))† ↔ â(+)r (
q). (6.105)

It commutes with the Hamiltonian ĤD, hence it is a symmetry of the quantum the-
ory. Formula (6.105) determines the transformation of the basis states (6.94). The
corresponding transformations of general states are defined by writing the states as
linear combinations of the basis states. In general, the charge conjugation symmetry
does not imply any particular symmetry of a concrete wave function.

Finally, let us have a look at the single particle and antiparticle sectors in the
Fock space. The pertinent state vectors have the form

|φ〉(±)1 =
∑

s

∫
d3pφ(±)1 ( 
ps)|(±) 
ps〉, (6.106)

where φ(±)1 ( 
ps) is the single particle (antiparticle) wave function in the momentum
representation. The index s describes the spin degrees of freedom of the particle.
Time evolution of a single state is governed by the Schroedinger equation

i∂t |φ(t)〉(±)1 = ĤD|φ(t)〉(±)1 . (6.107)

Using formulas (6.91) and (6.105) and anticommutation relation (6.83), we obtain
the Schroedinger equation for the single particle or antiparticle wave functions

i∂tφ
(±)
1 (t, 
ps) = ω( 
p)φ(±)1 (t, 
ps). (6.108)

Thus both particle and antiparticle have positive energies equal to ω( 
p). The prob-
lem of unbounded from below, negative energies of the Dirac particle, present in
the relativistic quantum mechanics, is absent here. One may say, that in a sense
the negative energy states have been transformed into positive energy states of the
antiparticle.

6.3 The Electromagnetic Field

The described below construction of the quantum theory of free electromagnetic
field is based on results of Sects. 1.2 and 4.1. It is very similar to the quantum
theory of the real scalar field presented in Sect. 6.1. Therefore we shall discuss only
the main points.

We consider the free electromagnetic field without any external sources. Its
Lagrangian has the form
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L = −1

4
FμνFμν, (6.109)

where Fμν = ∂μAν − ∂ν Aμ. Moreover, we use the Coulomb gauge condition, that
is

A0 = 0, ∇ 
A = 0. (6.110)

These conditions eliminate the spurious degrees of freedom which do not contribute
to the physically relevant quantities, like the electric or magnetic fields. On the other
hand, they are not Lorentz invariant. It is important to realize that this fact does not
necessarily destroy the Lorentz invariance of the theory of the electromagnetic field,
because the gauge conditions do not influence the physical degrees of freedom. In
fact, it turn out that the Lorentz invariance is not broken, but it is not explicit. We
shall not discuss this rather complicated issue here.

The condition ∇ 
A = 0 can be explicitly solved. Let us write 
A in the form of the
Fourier transform


A(t, 
x) = 1

(2π)3/2

3∑
α=1

∫
d3k 
eα(
k)aα(t, 
k)ei 
k 
x , (6.111)

where 
eα(
k) are fixed real vectors, called polarization vectors. They are normalized
as follows


eα(
k)
eβ(
k) = δαβ. (6.112)

We assume that 
k �= 0, and we take


e3 =

k
|
k| . (6.113)

We shall see that photons with 
k → 0 give the vanishing contribution to the total
energy and momentum of the electromagnetic field. For this reason the assumption
that 
k �= 0, or equivalently that aα(t, 
k = 0) = 0, is consistent with the physics of
the electromagnetic field. We also assume that


eα(−
k) = 
eα(
k) for α = 1, 2. (6.114)

The complex number aα(t, 
k) is called the amplitude of the mode (
k, α) of the
electromagnetic field. The fact that 
A is real is equivalent to the conditions

a∗α(t,−
k) = aα(t, 
k) (6.115)
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for α = 1, 2, and a∗3(t,−
k) = −a3(t, 
k), where * denotes the complex conjugation.
From ∇ 
A = 0 we obtain the condition


k
eα(
k)aα(t, 
k) = 0 (6.116)

It is automatically satisfied10 for 
k = 0, and it implies that for 
k �= 0

a3(t, 
k) = 0. (6.117)

Thus, the space of vector potentials 
A compatible with the Coulomb gauge condition
is parameterized by the Fourier amplitudes a1,2(t, 
k) obeying conditions (6.115).

Let us express the Lagrange function L , defined as

L =
∫

d3xL,

by the Fourier amplitudes introduced above. Because A0(t, 
x) = 0, the Lagrangian
has the form

L = 1

2
∂0 Ai∂0 Ai − 1

4
Fik Fik . (6.118)

Inserting here formula (6.111) and using conditions (6.112) and (6.115) we obtain11

L = 1

2

2∑
α=1

2∑
i=1

∫
d3k

[
ȧi
α(t, 
k)ȧi

α(t, 
k)− 
k2ai
α(t, 
k)ai

α(t, 
k)
]
. (6.119)

Here we have split aα(t, 
k) into the real and imaginary parts

aα(t, 
k) = a1
α(t, 
k)+ ia2

α(t, 
k).

Conditions (6.115) imply that the Fourier amplitudes are not independent,

a1
α(t, 
k) = a1

α(t,−
k), a2
α(t, 
k) = −a2

α(t,−
k). (6.120)

In order to write the Lagrangian in terms of the independent Fourier amplitudes, let
us restrict the wave vectors 
k = (k1, k2, k3) to W , where W is the subset of R3 such
that k3 ≥ 0. Thus, as the independent dynamical variables, traditionally called the
modes of the electromagnetic field, we take a1,2

α (t, 
k) where 
k ∈ W and α = 1, 2.

10 We assume that the vector potential 
A vanishes at the spatial infinity sufficiently quickly to
ensure finiteness of the integral

∫
d3x 
A(t, 
x). Then 
eα(
k)aα(t, 
k) is finite at 
k = 0.

11 Let us remember that we use the convention that the arrow denotes vectors with upper indices.
Thus, 
A = (Ai ) and Fik = −∂i Ak + ∂k Ai .
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Strictly speaking, we still have some double counting of the modes with k3 = 0,
but these modes actually do not contribute to L because the plane k3 = 0 has zero
volume in R3.

The Lagrange function written in terms of the independent Fourier amplitudes
has the from

L =
2∑
α=1

2∑
i=1

∫
W

d3k
[
ȧi
α(t, 
k)ȧi

α(t, 
k)− 
k2ai
α(t, 
k)ai

α(t, 
k)
]
. (6.121)

Canonical momenta associated with ai
α(t, 
k), where 
k ∈ W , are given by the func-

tional derivatives

παi (t, 
k) =
δL

δȧi
α(t, 
k)

= 2ȧi
α(t, 
k).

The classical Hamiltonian corresponding to L has the form

H =
2∑
α=1

2∑
i=1

∫
W

d3k

[
1

4
παi (t, 
k)παi (t, 
k)+ 
k2ai

α(t, 
k)ai
α(t, 
k)

]
. (6.122)

This form of the theory of classical electromagnetic field is a convenient starting
point for constructing the corresponding quantum model. The questions of Hilbert
space, the choice of realization of operators, etc., are settled in full analogy with
the case of the real scalar field. Therefore we shall omit detailed discussion of these
points.

We postulate the equal-time canonical commutation relations

[
π̂αi (t, 
k), â j

β(t, 
k ′)
]
= −iδαβδi jδ(
k − 
k ′)I,

[
π̂αi (t, 
k), π̂βj (t, 
k ′)

]
= 0,[

âi
α(t, 
k), â j

β(t, 
k ′)
]
= 0, (6.123)

where 
k ∈ W , and the quantum Hamiltonian (to be changed to the normal ordered
one later on)

Ĥ =
2∑
α=1

2∑
i=1

∫
W

d3k

[
1

4
π̂αi (t, 
k)π̂αi (t, 
k)+ 
k2 âi

α(t, 
k)âi
α(t, 
k)

]
.

By assumption, the operators âi
α, π̂

α
i are Hermitian. Heisenberg evolution equations

have the form

˙̂ai
α(t, 
k) =

1

2
π̂αi (t, 
k), ˙̂παi (t, 
k) = −2
k2 âi

α(t, 
k). (6.124)
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Thus, the operators âi
α obey the following equation

¨̂ai
α(t, 
k) = −
k2âi

α(t, 
k). (6.125)

Its general Hermitian solution has the form

âi
α(t, 
k) =

1√
2|
k|

[
ei |
k|t(d̂ i

α(

k))† + e−i |
k|t d̂i

α(

k)
]
. (6.126)

The factor 1/
√

2|
k| has been introduced for later convenience. Let us introduce the
following operators

âα(
k) = d̂1
α(

k)+ i d̂2

α(

k), â†

α(

k) = (d̂1

α(

k))† − i(d̂2

α(

k))†,

âα(−
k) = d̂1
α(

k)− i d̂2

α(

k), â†

α(−
k) = (d̂1
α(

k))† + i(d̂2

α(

k))†,

where 
k ∈ W . The canonical commutation relations (6.123) are equivalent to

[(d̂ i
α(

k))†, d̂ j

β(

k′)] = −1

2
δi jδαβδ(
k − 
k ′), [d̂ i

α(

k), d̂ j

β(

k′)] = 0,

where 
k ∈ W . Simple calculation gives

[âα(
k), â†
β(

k′)] = δαβδ(
k − 
k ′), [âα(
k), âβ(
k ′)] = 0 (6.127)

for all 
k ∈ R3. These commutators are essentially the same as in the case of the
scalar field, except for the index α. The field operator can now be written in the
form


̂A(t, 
x) =
2∑
α=1

∫
R3

d3k√
2(2π)3|
k|


eα(
k)
[
e−i |
k|t+i 
k 
x âα(
k)+ h.c.

]
, (6.128)

where h.c. stands for the Hermitian conjugation of the preceding term.
The Hamiltonian expressed by the operators âα, â†

α has the form

Ĥ = 1

2

2∑
α=1

∫
R3

d3k |
k|
(

â†
α âα + âαâ†

α

)
.

At this point we can recognize the same mathematical structures as in the case of
the real scalar field. Therefore we repeat the steps from there. The Hamiltonian is
changed to the normally ordered one,
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Ĥ =
2∑
α=1

∫
R3

d3k |
k| â†
α(

k)âα(
k), (6.129)

and the Hilbert space is spanned by the basis states

|0〉, |
kα〉 = â†
α(

k)|0〉, . . . . (6.130)

The vacuum state |0〉 is defined by the condition

âα(
k)|0〉 = 0 (6.131)

for all 
k ∈ R3 and α = 1, 2. We see that the states of this quantum field can
be regarded as states of particles, called photons, with the two polarizations corre-
sponding to α = 1, 2. These polarizations are called transverse because the cor-
responding polarization vectors 
eα(
k) are perpendicular to 
k. The single particle
basis state |
kα〉 is an eigenstate of the Hamiltonian (6.129), with the energy equal
to |
k| that coincides with the energy of a free relativistic particle with vanishing rest
mass. Thus, photons are massless. They do not interact with each other, because all
multiparticle eigenstates of the Hamiltonian have eigenvalues equal to the sum of
the energies of the participating photons. The single photon wave function in the
momentum representation φ1

α(t, 
k) obeys the Schroedinger equation

i∂tφ
1
α(t, 
k) = |
k| φ1

α(t, 
k),

which follows from the general Schroedinger equation

i∂t |φ〉 = Ĥ |φ〉,

if we restrict |φ〉 to the single photon sector, where

|φ〉 =
2∑
α=1

∫
d3k φ1

α(t, 
k)|
kα〉.

The operators â†
α(

k) commute with each other. Therefore the n-photon basis

states |
k1α1, 
k2α2, . . . , 
knαn〉, as well as the corresponding n-photon wave func-
tion φn(
k1α1, 
k2α2, . . . , 
knαn〉, is symmetric with respect to permutations of the
variables 
kiαi , 
k jα j . Thus, the free photons are massless bosons.
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Exercises

6.1 We have shown in the text that relations (6.17) follow from the canonical com-
mutation relations (6.20). Prove also that the converse is true: (6.20) follows from
(6.17).

6.2 Show that Hamiltonian (6.5) can be written in the form (6.31) if φ̂ is given by
solution (6.16).
Hints:

1. Obtain φ̂(
x), π̂(
x) in the Schroedinger picture by putting t = 0 in pertinent
formulas in the Heisenberg picture.

2. Use the integrals

∫
d3x ei(
k±
k′)
x = (2π)3δ(
k ± 
k ′),

∫
d3k ki â(
k)â(−
k) = 0.

6.3 Prove that the operators

L̂k = 1

2
εkrs M̂rs,

where M̂rs are given by formula (6.47), obey the commutation relations

[L̂k, L̂s] = iεksp L̂ p,

characteristic for quantum angular momentum.

6.4 Find the wave functional �0[φ] for the vacuum state |0〉 ∈ HF of the free real
scalar field.
Hints:

1. Use formula (6.19) with t = 0 and (6.7) in order to find the Schroedinger repre-
sentation of the operators â(
k ).

2. Find a Gaussian type functional that obeys the equation â(
k )�0[φ] = 0, where

k ∈ R3.

6.5 Check that Lagrangian (6.64) is real, that is that L∗ = L.
Hint: Matrices γ μ in the Dirac representation have the following properties

(γ μ)∗ = γ 0γ μT γ 0, γ 0T = γ 0,

where ∗ and T denote the complex conjugation and the transposition of matrices,
respectively.

6.6 Using the relation (6.104) prove that the state ψ̂ |φ〉 has the total U (1) charge
equal to Q − e if the state |φ〉 has the charge Q.
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6.7 The canonical momentum conjugate to Ai is given by the following formula
πi = ∂L/∂(∂0 Ai ) = ∂0 Ai , where L is given by (6.118). Using (6.128) obtain the
equal time commutation relation

[ Âi (t, 
x), π̂ j (t, 
y)] = i

(
δi j − ∂i∂ j

�

)
δ(
x − 
y).

Check that the non-canonical form of the r.h.s. is consistent with the Coulomb gauge
condition.

Hint: Use the Fourier representation of the Dirac delta. For example,�−1δ(
x−
y) =
−(2π)−3

∫
d3k |
k|−2 exp(i 
k(
x − 
y)).





Chapter 7
Perturbative Expansion in the φ4

4 Model

Abstract Problems with an exact construction of the quantum φ4
4 model.

Interaction picture. The Gell-Mann–Low formula for Greeen’s functions. Generat-
ing functional for Green’s functions. The exponential Wick formula. The Feynman
free propagator. Regularized Feynman diagrams in four-momentum space. Normal
ordered interaction. Cancelation of vacuum bubbles.

We have seen three examples of quantum fields. On the one hand they are extremely
important because they show the main features of quantum fields, for example, the
appearance of quantum particles. On the other hand, we have obtained only non-
interacting particles, and this fact obviously reduces the relevance of the discussed
fields for a description of the physical phenomena. It is necessary to find quantum
field theories (in literature called rather modestly ‘models’) which give interacting
particles. Unfortunately, it turns out that this is not an easy task. The level of com-
pleteness of the analysis of the quantum fields presented in the previous chapter
remains as yet an unreachable ideal in the case of models with interactions. Gen-
erally speaking, one is forced either to consider very special models, often of little
physical relevance, or to resort to a perturbative expansion. This latter possibility is
widely used in most applications of the quantum field theory. It is neither simple nor
satisfactory from theoretical viewpoint: it leads to rather cumbersome calculations,
and the perturbative series has rather bad convergence properties. Nevertheless, the
perturbative approach is a very popular and important tool with many spectacular
applications in particle physics and statistical mechanics.

In this chapter we present a derivation of the standard perturbative expansion in
powers of interaction. On the basis of a set of assumptions we shall obtain concrete,
sensible, approximate formulas for Green’s functions. Rules for constructing such
perturbative formulas are quite precise. The main ideas of the perturbative expansion
are presented here in the example of φ4

4 model, that is a real scalar field φ in the four-
dimensional space-time with the self-interaction of the form φ4. We have chosen
this relatively simple model in order to get rid of ‘kinematical’ complications which
appear when there are several fields or several coupling constants.

H. Arodź, L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
DOI 10.1007/978-3-642-15624-3_7, C© Springer-Verlag Berlin Heidelberg 2010
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7.1 The Gell-Mann–Low Formula

We consider a relatively simple model which on the classical level is defined by the
Lagrangian

L = 1

2
∂μφ ∂

μφ − m2
0

2
φ2 − λ0

4! φ
4. (7.1)

Here m2
0 and λ0 are finite, positive constants. In principle, they can be determined

experimentally, by measuring certain physical quantities which are calculable in the
model and therefore depend on these constants.

Let us first try the same steps as in the case of the free fields. The energy corre-
sponding to (7.1) is given by the formula

E =
∫

d3x

(
1

2
∂0φ ∂0φ + 1

2
∂iφ ∂iφ + m2

0

2
φ2 + λ0

4! φ
4

)
. (7.2)

The canonical momentum conjugate with φ is defined as always, as

π(t, 
x) ≡ ∂L
∂φ,0(t, 
x) . (7.3)

In the present case it is equal to

π(t, 
x) = ∂0φ(t, 
x). (7.4)

With the same motivation as for the free real scalar field (Sect. 6.1), we introduce
the Hermitian operators φ̂(t, 
x), π̂(t, 
x) in the Heisenberg picture, and postulate the
equal-time canonical commutation relations

[
φ̂(t, 
x), π̂(t, 
y)

]
= iδ(
x − 
y)I,[

φ̂(t, 
x), φ̂(t, 
y)
]
= 0 = [π̂(t, 
x), π̂(t, 
y)] , (7.5)

as well as the quantum Hamiltonian

Ĥ =
∫

d3x

[
1

2
π̂2(t, 
x)+ 1

2
∂i φ̂(t, 
x)∂i φ̂(t, 
x)+ m2

0

2
φ̂2(t, 
x)+ λ0

4! φ̂
4(t, 
x)

]
.

(7.6)
Heisenberg evolution equation1

1 We assume that the operator Ô does not depend on time in the Schroedinger picture.
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∂tÔ(t) = i
[

Ĥ , Ô(t)
]

(7.7)

gives

∂t φ̂(t, 
x) = i[Ĥ , φ̂(t, 
x)], ∂t π̂(t, 
x) = i[Ĥ , π̂(t, 
x)]. (7.8)

Because the Hamiltonian is constant in time, the time t on the r.h.s. of formula (7.6)
can be chosen arbitrarily. Therefore, we can compute the commutators on the r.h.s.
of Eqs. (7.8) using the equal time commutators (7.5). We obtain

∂t φ̂(t, 
x) = π̂(t, 
x),

and

∂t π̂(t, 
x) = 
φ̂(t, 
x)− m2
0φ̂(t, 
x)−

λ0

3! φ̂
3(t, 
x),

where 
 denotes the three-dimensional Laplacian. It follows from these equations
that the operator φ̂(t, 
x) obeys the equation

(∂2
t −
+ m2

0)φ̂(t, 
x)+
λ0

3! φ̂
3(t, 
x) = 0. (7.9)

Notice that this equation has the same form as the classical equation (3.25), except
that instead of the classical field φ(t, 
x) there is the field operator φ̂(t, 
x).

We have seen in Sect. 6.1 that in the case of the free scalar field the ‘naive’
Hamiltonian (6.5) was replaced by the correct one (6.34). Nevertheless, Hamiltonian
(6.5) gave the correct evolution equation (6.14). One should expect that also in the
present case the ‘naive’ Hamiltonian (7.6), as well as evolution equation (7.9), do
not have a mathematical meaning. The reason is that they involve products of the
type

φ̂(x1) . . . φ̂(xn)|x1=...=xn=x ,

where n = 2, 3, 4.We use here the four-dimensional notation xi = (ti , 
xi ). If φ̂(x)
is a generalized function of x , as suggested by the example of the free quantum
scalar field, such products are not defined in general. Yet another difficulty is the
nonlinearity of Eq. (7.9)—because of it, we would not be able to find its general
solution, even if we managed to define the φ̂3(x) term.

Because we do not know how to define and solve the Heisenberg evolution
equation (7.9), we may try to use the interaction picture in which time evolution
is split between states and operators in such a way that the operators evolve as in
the free field model. Let us quote the main formulas—their derivations can be found
in textbooks on quantum mechanics. The Hamiltonian Ĥ does not depend on time,
hence it has the same form in both the Schroedinger and Heisenberg pictures. Let
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us split it into the free part Ĥ0S and the interaction part V̂S , both taken here in the
Schroedinger picture marked by the subscript S:

Ĥ = Ĥ0S + V̂S,

where

Ĥ0S = 1

2

∫
d3x

[
π̂2(
x)+ ∂i φ̂(
x)∂i φ̂(
x)+ m2

0φ̂
2(
x)

]
, V̂S = λ0

4!
∫

d3x φ̂4(
x).

Similarly as in the case of free fields, the question of the powers of the field operator
will be addressed later. In general, these operators separately depend on time in the
Heisenberg picture, while Ĥ = Ĥ0(t)+V̂ (t) is constant. For brevity, the Heisenberg
picture is denoted just by the presence of the time argument.

Time evolution of states in the interaction picture is given by the unitary operator
UI (t, t0),

|t〉I = UI (t, t0)|t0〉I ,

where

UI (t, t0) = ei Ĥ0S t e−i Ĥ(t−t0)e−i Ĥ0S t0 . (7.10)

Operator ÔS from the Schroedinger picture is represented in the interaction picture
by the operator

ÔI (t) = ei Ĥ0S tÔSe−i Ĥ0S t , (7.11)

and in the Heisenberg picture by

Ô(t) = ei Ĥ t ÔSe−i Ĥ t . (7.12)

Comparing the last two formulas we obtain the relation

ÔI (t) = UI (t, 0)Ô(t)UI (0, t). (7.13)

The operator UI (t, t0) can also be written in the Dyson form

UI (t, t0) = T exp

(
−i
∫ t

t0
dt ′ V̂I (t

′)
)
. (7.14)

The r.h.s. of this formula is understood as the series

T exp

(
−i
∫ t

t0
dt ′ V̂I (t

′)
)
= I +

∞∑
n=1

(−i)n

n! T

(∫ t

t0
dt ′ V̂I (t

′)
)n

,
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where T denotes the chronological, or time ordering. It is defined as follows:

T

(∫ t

t0
dt ′ V̂I (t

′)
)n

=
∫ t

t0
dt1 . . .

∫ t

t0
dtnT

(
V̂I (t1)V̂I (t2) . . . V̂I (tn)

)
,

where

T
(

V̂I (t1)V̂I (t2) . . . V̂I (tn)
)

=
∑

P

�(ti1 − ti2)�(ti2 − ti3) . . . �(tin−1 − tin )V̂I (ti1)V̂I (ti2) . . . V̂I (tin ).

The sum is over the set of all permutations (t1, t2, . . . , tn) → (ti1 , ti2 , . . . , tin ),
and � denotes the step function.

The operator ÔI (t) obeys the following evolution equation

dÔI (t)

dt
= i[Ĥ0S, ÔI (t)],

obtained from the definition (7.11) by differentiation with respect to time. In partic-
ular,

dφ̂I (t, 
x)
dt

= ieit Ĥ0S [Ĥ0S, φ̂S(
x)]e−i t Ĥ0S = π̂I (t, 
x),

and

dπ̂I (t, 
x)
dt

= ieit Ĥ0S [Ĥ0S, π̂S(
x)]e−i t Ĥ0S = 
φ̂I (t, 
x)− m2
0φ̂I (t, 
x).

These two equations imply that φ̂I (t, 
x) obeys the following equation

(
∂2

∂t2
−
+ m2

0

)
φ̂I (t, 
x) = 0. (7.15)

It coincides with the operator Klein–Gordon equation, known from Chap. 6. As
shown there, its general solution has the form

φ̂I (t, 
x) =
∫

d3k√
2(2π)3ω(
k)

(
e−ikxâI (
k)+ h.c.

)
, (7.16)

where k0 = ω(
k).
Canonical commutation relations do not change their form under similarity trans-

formations, hence φ̂I (t, 
x), π̂I (t, 
x) have the equal-time commutation relations of
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the form (7.5). Similarly as in the case of the free scalar field, one can show that
âI (
k), â†

I (

k′) have the following commutation relations

[
âI (
k), â†

I (

k ′)
]
= δ(
k − 
k ′)I,

[
âI (
k), âI (
k′)

]
= 0. (7.17)

The form of solution (7.16), as well as commutation relations (7.17), are the same
as in the case of the free scalar field. Therefore, it is quite natural to consider the
Fock space with the basis

|0I 〉, â†
I (

k)|0I 〉, 1√

2
â†

I (

k)â†

I (

k ′)|0I 〉, . . . , (7.18)

where the state |0I 〉 is defined by the condition

âI (
k)|0I 〉 = 0

for all 
k ∈ R3.

In the next step, we insert in the Hamiltonian Ĥ0I the solution (7.16) for φI , and
dφ̂I /dt for π̂I . Then, the Hamiltonian is expressed by the ‘creation’ and ‘annihila-
tion’ operators â†

I (

k), âI (
k). In order to obtain a well-defined operator Ĥ0I in the

Fock space we apply the normal ordering : :, as discussed in the previous chapter.
The problem with the definition of the interaction operator V̂I is more severe. It

is not to be solved by the normal ordering only—a more drastic modification of the
interaction, in literature called a regularization, is needed in order to convert it into
a well-defined operator in the Fock space spanned on the basis vectors (7.18). We
shall denote such a regularized interaction by V̂Ig in the interaction picture, and by
V̂Sg in the Schroedinger picture (in order to obtain the Schroedinger picture opera-
tor it is sufficient to put t = 0 in the interaction or Heisenberg picture operators).
The problem is generated by the integral

∫
d3x over the infinite space. It turns out

that the normal ordered monomial : φ̂4
I (t = 0, 
x) : is a generalized function of 
x .

Therefore, it may be integrated with a test function g(
x), and

V̂Sg = λ0

4!
∫

d3x g(
x) : φ̂4
I (t = 0, 
x) :

is a well-defined operator, while λ0
∫

d3x : φ̂4
I (t = 0, 
x) : /4! is not because

the constant function equal to 1 is not a test function. For Hermiticity of V̂Sg the
function g(
x) has to be real-valued (Exercise 7.1).

We do not want to ascribe to the regularizing function g(
x) any physical meaning.
Therefore, we should remove it by taking the limit

g(
x)→ 1.
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There is a hope that such a limit, called the removal of the regularization, can be
considered in a mathematically rigorous manner, at least on the level of the measur-
able quantities, like scattering cross-sections or energies of bound states, and that the
results obtained in that limit do not contradict the basic physical requirements, such
as the unitarity of the time evolution in the quantum theory or Poincaré invariance.
Particularly difficult is the problem of recovering the Poincaré invariance, because
the presence of the fixed test function g(
x) almost surely breaks that invariance, and
therefore it has to reappear ‘from nowhere’ in that limit. A concrete realization of
such a programme in the case of interacting fields in the four-dimensional space-
time does not exist yet. Anyway, in the following considerations we shall use the
regularized interaction Hamiltonian in order to avoid mathematically meaningless
formulas.

Note that the states (7.18) are not eigenstates of the full regularized Hamilto-
nian Ĥ =: Ĥ0S : + V̂Sg . Therefore, there is little hope that they will become the
eigenstates after the regularization is removed. This casts a shadow on the physical
meaning of these states. In particular, they can hardly be regarded as particle states
with definite numbers of particles, and 
k is not equal to momentum of any particle.
Needless to say, the exact eigenvalues and eigenstates of the Hamiltonian Ĥ are not
known.

To summarize, an explicit construction of the quantum φ4
4 model is beyond our

reach. This model is not exceptional in this respect. In fact, we do not know the
explicit construction of any physically important model with (self)coupled quantum
fields defined in the four-dimensional space-time.2 On the other hand, one can con-
struct so called perturbative quantum field theories which are well-defined in every
finite order of expansion with respect to a pertinent interaction Hamiltonian. It turns
out that such surrogate quantum field theories can yield predictions which agree
with experimental data amazingly well. Principles applied in the construction of the
perturbative quantum field theories turn out to be very fruitful. There is no doubt
that the perturbative expansion is the indispensable tool in applications of quantum
field theory. On the other hand, many physically interesting quantities can not be
reliably calculated within the perturbative approach.

We will not present the full perturbative φ4
4 model. We shall concentrate

on the so called Green’s functions, often also called the correlation functions,
G(n)(x1, x2, . . . , xn), where n is a natural number and xi , i = 1, 2, . . . , n, are
points in Minkowski space-time. The Green’s functions are defined as the vacuum
expectation values of the time ordered products of the quantum fields in the Heisen-
berg picture,

G(n)(x1, x2, . . . , xn) = 〈0|T
(
φ̂(x1)φ̂(x2) · · · φ̂(xn)

)
|0〉. (7.19)

2 In the case of fields defined in two- or three-dimensional space-time the situation is a little bit
better.
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Here T denotes the time ordering, and |0〉 is the vacuum state in the model, that
is the normalized eigenstate of Ĥ with the lowest eigenvalue E0—we assume
that such eigenvalue exists. By shifting the Hamiltonian, Ĥ → Ĥ − E0 I, the
eigenvalue is shifted to 0. Then, the vector |0〉 does not depend on time because
i∂t |0〉 = Ĥ |0〉 = 0. From now on we assume that

Ĥ |0〉 = 0.

The Green’s functions play a very important role in applications of the quantum
field theory, in particular in calculations of scattering amplitudes of particles. On
the mathematical side, Green’s functions are generalized functions of n independent
four-vectors xi . Therefore, in general it does not make sense to ask for the value
of such a function at fixed values of all xi , see the Appendix. Also, one can not
construct a well-defined generalized function of a smaller number of variables, say
x2, x3, . . . , xn , just by putting, for example, x1 = x2. The resulting object in general
is not a generalized function of x2, x3, . . . , xn . This is analogous to putting x = y
in the product δ(x)δ(y)—the resulting object (δ(x))2 is not a generalized function
of x .

The Gell-Mann–Low formula gives G(n) in terms of the interaction picture field
φ̂I and the state |0I 〉. In the first step in the derivation of this formula we express
φ̂ by φ̂I and perform the time ordering. Let (i1, i2, . . . , in) be the permutation of
(1, 2, . . . , n) such that x0

i1
≥ x0

i2
≥ · · · ≥ x0

in
. Then,

G(n)(x1, x2, . . . , xn) = 〈0|φ̂(xi1) . . . φ̂(xin )|0〉.

Next, we apply the following formulas, which are obtained from (7.13):

φ̂(xk) = U−1
I (x

0
k , 0)φ̂I (xk)UI (x

0
k , 0),

and

UI (x
0
j , 0)U

−1
I (x

0
k , 0) = UI (x

0
j , x0

k ).

The result has the form

G(n)(x1, x2, . . . , xn) = (7.20)

〈0|U−1
I (x

0
i1
, 0)φ̂I (xi1)UI (x0

i1
, x0

i2
)φ̂I (xi2) . . . φ̂I (xin )UI (x0

in
, 0)|0〉.

In the second step we eliminate the vacuum state |0〉 in favor of |0I 〉. The reason
is that we know how the operator φ̂I acts on |0I 〉, while the state |0〉 is in fact
completely unknown. First, we prove the formula

lim
t→±∞〈ψ |e

i Ĥ t |χ〉 = 〈ψ |0〉〈0|χ〉, (7.21)
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where |ψ〉, |χ〉 are vectors from the Hilbert space of the model.
We assume that we have the following completeness relation

|0〉〈0| +
∫ ∞

E1

d E
∑

a

|E, a〉〈a, E | = I,

where E denotes the eigenvalues of the Hamiltonian, E1 > 0 is the lowest energy
eigenvalue above the vacuum energy E0 = 0. The index a denotes a set of
other quantum numbers (which are eigenvalues of observables commuting with the
Hamiltonian). Let us insert this completeness relation on the l.h.s. of formula (7.21).
We obtain

lim
t→±∞〈ψ |e

i Ĥ t |χ〉 = 〈ψ |0〉〈0|χ〉 + lim
t→±∞

∫ ∞

E1

d E ei Et f (E),

where

f (E) =
∑

a

〈ψ |E, a〉〈a, E |χ〉.

The completeness relation implies that

∫ ∞

E1

d E f (E) = 〈ψ |χ〉 − 〈ψ |0〉〈0|χ〉 <∞,

hence the function f (E) is integrable. Here we use the fact that the states |ψ〉, |χ〉
have finite scalar products with any vector belonging to the Hilbert space. The inte-
gral

∫ ∞

E1

d E ei Et f (E)

vanishes in the limits t → ±∞ under certain assumptions about f (E). The proof
is based on theorems about asymptotic behavior of Fourier transforms, but we shall
not go into mathematical details of it. Roughly, the reason for the vanishing of the
integral is that the integrand is the product of f (E) with the very quickly oscillating
in the limits t → ±∞ functions of E , namely cos(Et) and sin(Et). Then, the
integral is a sum of positive and negative contributions which in that limit cancel
each other out.

Formula (7.21) implies that

lim
T→+∞〈ψ |UI (0,−T )|0I 〉 = lim

T→+∞〈ψ |e
−i Ĥ T |0I 〉 = 〈ψ |0〉〈0|0I 〉.
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Here we have used the fact that Ĥ0|0I 〉 = 0. Let us choose3

〈ψ | = 〈0|T
(
φ̂(x1) . . . φ̂(xn)

)
.

We obtain

G(n)(x1, x2, . . . , xn) = lim
T→+∞

〈0|T (φ̂(x1) . . . φ̂(xn)
)
UI (0,−T )|0I 〉

〈0|0I 〉 . (7.22)

Similarly,

lim
T ′→+∞

〈0I |UI (T
′, 0)|χ〉 = lim

T ′→+∞
〈0I |e−i Ĥ T ′ |χ〉 = 〈0I |0〉〈0|χ〉.

Taking

|χ〉 = T
(
φ̂(x1) . . . φ̂(xn)

)
UI (0,−T )|0I 〉

〈0|0I 〉 ,

we obtain the following formula

G(n)(x1, x2, . . . , xn) = lim
T,T ′→+∞

〈0I |UI (T ′, 0)T
(
φ̂(x1) . . . φ̂(xn)

)
UI (0,−T )|0I 〉

〈0I |0〉〈0|0I 〉 .

(7.23)
We have seen in the derivation of formula (7.20) that

T
(
φ̂(x1) . . . φ̂(xn)

)

= U−1
I (x

0
i1
, 0)φ̂I (xi1)UI (x

0
i1
, x0

i2
)φ̂I (xi2) . . . .φ̂I (xin )UI (x

0
in
, 0).

Therefore, the numerator on the r.h.s. of formula (7.23) contains the time ordered
product of operators which can be written as

T
(
φ̂I (x1) . . . φ̂I (xn)UI (∞,−∞)

)
.

The denominator in formula (7.23) is equal to 〈0I |UI (∞,−∞)|0I 〉, as it follows
from formulas (7.10) and (7.21). Thus, we have derived the following remarkable
formula, first obtained by Gell-Mann and Low in 1954,

3 Here we simplify a little bit. In order to be sure that the state |ψ〉 belongs to the Hilbert space

one should integrate T
(
φ̂(x1) . . . φ̂(xn)

)
with a test function h(x1, x2, . . . , xn). Assume that such

a ‘technical’ step is done implicitly.
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G(n)(x1, x2, . . . , xn) = 〈0I |T
(
φ̂I (x1) . . . φ̂I (xn)UI (∞,−∞)

)|0I 〉
〈0I |UI (∞,−∞)|0I 〉 , (7.24)

where

UI (∞,−∞) = T exp

(
−i
∫ +∞

−∞
dt V̂Ig(t)

)

= T exp

(
−i
λ0

4!
∫

d4x g(
x) : φ̂4
I (t, 
x) :

)
.

Formula (7.24) is the starting point for the construction of the perturbative expansion
for the Green’s functions.

The employed regularization involves only the space coordinates 
x . It turns out
that the integral over infinite time interval also needs a regularization. Therefore,
specifically for the purpose of the perturbative approach we will use a more symmet-
ric regularization. The point is, that in the context of the perturbative calculations
of the Green’s functions, it suffices to regularize the expression for UI (∞,−∞)
because we shall need only the Gell-Mann–Low formula. The new, symmetric reg-
ularization utilizes a real-valued test function g(x1, x2, x3, x4) which is symmetric
with respect to permutations of the four-dimensional variables x j , j = 1, 2, 3, 4.
Each x j denotes a point in Minkowski space-time. As always with test functions, it
is also assumed that this function is smooth and that it vanishes quickly (e.g., expo-
nentially) when one or more coordinates xμi →∞. The symmetrically regularized
UI (∞,−∞) has the form

UI (∞,−∞) = T exp
(
−i V̂Ig[φ̂I ]

)
, (7.25)

where now

V̂Ig[φ̂I ] = λ0

4!
∫ 4∏

i=1

d4xi g(x1, x2, x3, x4)φ̂I (x1)φ̂I (x2)φ̂I (x3)φ̂I (x4). (7.26)

With this regularization we do not need to introduce the normal ordering. Notice
that the operator V̂Ig is Hermitian, because the function g is real and symmetric
with respect to permutations of the four-vectors xi .

7.2 The Generating Functional for Green’s Functions: Wick
Formula

The generating functional Z [ j] for the Green’s functions is defined as follows:

Z [ j] = 〈0|T exp

(
i
∫

d4x j (x)φ̂(x)

)
|0〉, (7.27)
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where j (x) is smooth and quickly vanishing at infinity, real function on Minkowski
space-time (again a test function), sometimes called the external source. Equiva-
lently, we may also write

Z [ j] = 1+
∞∑

n=1

i n

n!
∫

d4x1 . . . d
4xn j (x1) . . . j (xn)G(n)(x1, x2, . . . , xn). (7.28)

This last formula is obtained from the definition (7.27) by writing the exponential
function as the series and using the definition (7.19) of G(n). Let us use the Gell-
Mann–Low formula (7.24) in each term of the sum in (7.28) and reintroduce the
exponential function. In this way we obtain yet another formula for Z [ j] :

Z [ j] =
〈0I |T

(
exp
(

i
∫

d4x j (x)φ̂I (x)
)

UI (∞,−∞)
)
|0I 〉

〈0I |UI (∞,−∞)|0I 〉 . (7.29)

It is clear from formula (7.28) that

G(n)(x1, . . . , xn) = (−i)n
δn Z [ j]

δ j (x1) . . . δ j (xn)

∣∣∣∣
j=0
. (7.30)

In the φ4
4 model the regularized evolution operator UI is given by formulas (7.25)

and (7.26). The numerator in formula (7.29), from now on denoted by Z I [ j], can
be written in the form

Z I [ j] = exp

(
−iVIg

[
−i
δ

δ j

])
Z0[ j], (7.31)

where

Z0[ j] = 〈0I |T exp(i
∫

d4x j (x)φ̂I (x))|0I 〉, (7.32)

and

VIg

[
−i
δ

δ j

]
= λ0

4!
∫ 4∏

i=1

d4xi g(x1, x2, x3, x4)
δ4

δ j (x1) . . . δ j (x4)
. (7.33)

Here we have used the fact that each derivative δ/δ j (x) gives i φ̂I (x) inside the
T-ordered product. The denominator in (7.29) is equal to Z I [ j = 0].

The functional Z0[ j] can be explicitly calculated. The most helpful formula in
this task is Wick formula, which has the form
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T exp

(
i
∫

d4x j (x)φ̂I (x)

)
= (7.34)

exp
(
− 1

2

∫
d4xd4x ′ j (x)�F (x − x ′) j (x ′)

)
: exp

(
i
∫

d4x j (x)φ̂I (x)
)
:,

where

�F (x − x ′) = 1

(2π)4

∫
d4 p e−i p(x−x ′) i

p2 − m2
0 + i0+

. (7.35)

Because the expectation value of the normal ordered exponential function on the
r.h.s. of formula (7.34) in the state |0I 〉 is equal to 1, we immediately obtain

Z0[ j] = exp

(
−1

2

∫
d4xd4x ′ j (x)�F (x − x ′) j (x ′)

)
. (7.36)

The (generalized) function�F is called the Feynman, or the causal, free propagator.
By taking the derivatives δ2/δ j (x)δ j (x ′) of both sides of the Wick formula and
putting j = 0 we find that

�F (x − x ′) = 〈0I |T
(
φ̂I (x)φ̂I (x

′)
)
|0I 〉. (7.37)

It follows from this formula that�F is the 2-point Green’s function of the free scalar
field.

In order to prove Wick formula (7.34), we use the technique of the auxiliary
differential equation. Let us introduce the operator

Ŵ (t) = T exp

(
i
∫ t

−∞
dx

′0
∫

d3x ′ j (x ′)φ̂I (x
′)
)
,

where x ′ = (x ′0, 
x ′
). The l.h.s. of the Wick formula is equal to Ŵ (+∞). Operator

Ŵ (t) obeys the following differential equation

− i
dŴ (t)

dt
=
∫

d3x j (t, 
x)φ̂I (t, 
x)Ŵ (t), (7.38)

and the condition

lim
t→−∞ Ŵ (t) = I.

Equation (7.38) can be written in the form

−i
dŴ (t)

dt
=
(

Â(t)+ Â†(t)
)

Ŵ (t),
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where

Â†(t) =
∫

d3x j (t, 
x)φ̂(−)I (t, 
x), Â(t) =
∫

d3x j (t, 
x)φ̂(+)I (t, 
x).

Here

φ̂
(+)
I (t, 
x) =

∫
d3k√

2(2π)3ω(
k)
e−ikxâI (
k)

is the positive frequency part of the field φ̂I . The negative frequency part is given by
φ̂
(−)
I (t, 
x) = (φ̂(+)I (t, 
x))†. The operators Â†(t) with different values of t commute

with each other. This fact is crucial for checking that another operator X̂(t), defined
by the formula

X̂(t) = α̂(t)Ŵ (t),

where

α̂(t) = exp

(
−i
∫ t

−∞
dt ′ Â†(t ′)

)
,

obeys the following equation

− i
d X̂(t)

dt
= α̂(t) Â(t)α̂−1(t) X̂(t). (7.39)

The operators Â†(t ′), Â(t) have a special property: their commutator is proportional
to the identity operator,

[ Â†(t ′), Â(t ′′)] = i
∫

d3x ′d3x ′′ j (t ′, 
x ′) j (t ′′, 
x ′′)�(−)(t ′ − t ′′, 
x ′ − 
x ′′)I, (7.40)

where

�(−)(x ′ − x ′′) = i

2(2π)3

∫
d3 p

ω( 
p)e
i(x ′−x ′′)p.

The r.h.s. of Eq. (7.39) can be simplified with the help of the following formula,
which is valid for linear operators B̂, Ĉ

eĈ B̂e−Ĉ = B̂ + [Ĉ, B̂] + 1

2! [Ĉ, [Ĉ, B̂]] + 1

3! [Ĉ, [Ĉ, [Ĉ, B̂]]] + . . . . (7.41)
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In order to prove (7.41), let us consider B̂(s) = exp(sĈ)B̂ exp(−sĈ), where s is a
real parameter. Of course, B̂(0) = B̂, and B̂(1) coincides with the l.h.s. of formula
(7.41). It is obvious that

d B̂(s)

ds
= [Ĉ, B̂(s)], d2 B̂(s)

ds2
= [Ĉ, [Ĉ, B̂(s)]], etc. (7.42)

On the other hand, the Taylor expansion of B̂(s) around s = 0 has the form

B̂(s) = B̂(0)+ s B̂′(0)+ s2

2! B̂′′(0)+ . . . .

Formula (7.41) follows from this expansion when we replace the derivatives B̂(k)(0)
by the commutators in accordance with formulas (7.42), and put s = 1.

In our case B̂ = Â(t) and Ĉ = −i
∫ t
−∞ dt ′ Â†(t ′). Because of the special prop-

erty mentioned above, only the first two terms on the r.h.s. of formula (7.41) do not
vanish. Therefore,

− i
d X̂(t)

dt
=
(

Â(t)− i
∫ t

−∞
dt ′ [ Â†(t ′), Â(t)]

)
X̂(t), (7.43)

where the commutator on the r.h.s. is given by formula (7.40). Equation (7.43) has
the following solution

X̂(t) = exp

(
i
∫ t

−∞
dt ′ Â(t ′)

)
exp

(∫ t

−∞
dt ′′
∫ t ′′

−∞
dt ′ [ Â†(t ′), Â(t ′′)]

)
,

which obeys the condition limt→−∞ X̂(t) = I . Now we can compute Ŵ (t) from
the formula Ŵ (t) = α̂−1(t)X̂(t). In particular, in the limit t →+∞

Ŵ (∞) = exp

(
i
∫

d4x j (x)φ̂(−)I (x)

)
exp

(
i
∫

d4x ′ j (x ′)φ̂(+)I (x ′)
)

exp

[
i
∫

d4x ′d4x ′′ �(t ′′ − t ′) j (x ′) j (x ′′)�(−)(x ′ − x ′′)
]
, (7.44)

where x ′ = (t ′, 
x ′), x ′′ = (t ′′, 
x ′′).
The product of the first two exponentials on the r.h.s. of this formula, is just the

normal ordered exponent that is present on the r.h.s. of the Wick formula:

exp

(
i
∫

d4x j (x)φ̂(−)I (x)

)
exp

(
i
∫

d4x ′ j (x ′)φ̂(+)I (x ′)
)

= : exp

(
i
∫

d4x j (x)φ̂I (x)

)
: . (7.45)
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Therefore, it remains to show that

− 1

2

∫
d4x ′

∫
d4x ′′ j (x ′) j (x ′′)�F (x

′ − x ′′) =

i
∫

d4x ′d4x ′′ �(t ′′ − t ′) j (x ′) j (x ′′)�(−)(x ′ − x ′′). (7.46)

Let us start from formula (7.35) for�F in which d4 p = d3 p dp0 . The integral over
p0 can be calculated with the help of contour integration in the plane of complex
p0. First, we replace i0+ by iε, where ε > 0—the original expression is recovered
in the limit ε → 0+ which we shall take at the very end of the calculation. The

integrand has simple poles at p0± = ±
√

m2
0 + 
p 2 − iε. The real line (Im p0 = 0)

is completed to a closed contour by including the upper half-circle at the infinity if
(x ′ − x ′′)0 < 0 , or the lower half-circle if (x ′ − x ′′)0 > 0. In each case only one
pole contributes to the integral. We obtain

�F (x
′ − x ′′)

=
∫

d3 p

2(2π)3ω( 
p)
[
�((x ′ − x ′′)0)e−i p(x ′−x ′′) +�((x ′′ − x ′)0)eip(x ′−x ′′)

]
,

(7.47)

where now in the exponentials p0 = ω( 
p). In the second term we have changed
the integration variable 
p →−
p. The r.h.s. of formula (7.47) can be rewritten with
�(−) function introduced in Sect. 1.3, namely

�F (x
′−x ′′) = −i

[
�(t ′ − t ′′)�(−)(x ′′ − x ′)+�(t ′′ − t ′)�(−)(x ′ − x ′′)

]
(7.48)

(t ′ = x
′0, t ′′ = x

′′0). Formula (7.46) is obtained by multiplying both sides of
formula (7.48) by j (x ′) j (x ′′), integrating over d4x ′, d4x ′′, and changing the inte-
gration variables, x ′ → x ′′, x ′′ → x ′, in the first term on the r.h.s. This completes
the derivation of Wick formula (7.34).

7.3 Feynman Diagrams in Momentum Space

We shall consider the Fourier transform of the n-point Green’s function,

G̃(n)(k1, k2, . . . , kn) =
(2π)−2n

∫
d4x1 . . . d4xn ei(k1x1+...+kn xn) G(n)(x1, x2, . . . , xn). (7.49)

Comparison with formula (7.30) for G(n) suggests that it would be useful to com-
pute the Fourier transform of the functional derivative δ/δ j (x). This can be done as
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follows. The Fourier transform of the external source j (x) is defined by the formula

j̃(q) = 1

(2π)2

∫
d4 y e−iqy j (y)

(note the minus sign in the exponent). Therefore,

δ j̃(q)

δ j (x)
= e−iqx

(2π)2
.

The inverse Fourier transform of the external source has the form

j (x) = 1

(2π)2

∫
d4k eikx j̃(k).

Functional F[ j] with j (x) expressed by j̃(k) becomes the functional F̃[ j̃]:

F[ j] = F̃[ j̃].

Therefore,

1

(2π)2

∫
d4x eikx δF[ j]

δ j (x)
= 1

(2π)2

∫
d4x eikx

∫
d4q

δ j̃(q)

δ j (x)

δ F̃[ j̃]
δ j̃(q)

= 1

(2π)4

∫
d4x eikx

∫
d4q e−iqx δ F̃[ j̃]

δ j̃(q)
=
∫

d4q δ(q − k)
δ F̃[ j̃]
δ j̃(q)

= δ F̃[ j̃]
δ j̃(k)

.

The inverse Fourier transform gives

δF[ j]
δ j (x)

= 1

(2π)2

∫
d4k e−ikx δ F̃[ j̃]

δ j̃(k)
.

Perturbative computations of the Green’s functions could be based on the formu-
las (7.29) and (7.30) in which

Z [ j] = Z I [ j]
Z I [0] , (7.50)

where Z I [ j] is given by formula (7.31) and Z I [0] = Z I [ j = 0]. However, it turns
out that it is more convenient to use another, equivalent, formula. First, we pass to
the Fourier transforms. Then,

G̃(n)(k1, k2, . . . , kn) = (−i)n
1

Z̃ I [0]
δn Z̃ I [ j̃]

δ j̃(k1) . . . δ j̃(kn)

∣∣∣∣∣
j̃=0

. (7.51)



168 7 Perturbative Expansion in the φ4
4 Model

The functional Z̃ I is given by the formula Z I [ j] = Z̃ I [ j̃]. Formula (7.31), written
in terms of the Fourier transforms has the form

Z̃ I [ j̃] = exp

(
−i ṼIg

[
−i
δ

δ j̃

])
Z̃0[ j̃], (7.52)

where

ṼIg

[
−i
δ

δ j̃

]
= VIg

[
−i
δ

δ j

]

= λ0

4!
∫

d4q1 . . . d
4q4 g̃(q1, q2, q3, q4)

δ4

δ j̃(q1) . . . δ j̃(q4)
, (7.53)

and

Z̃0[ j̃] = Z0[ j] = exp

[
− i

2

∫
d4k1d4k2 δ(k1 + k2)

j̃(k1) j̃(k2)

k2
1 − m2

0 + i0+

]
. (7.54)

Formula (7.53) contains the Fourier transform of the regularizing function g,

g̃(q1, q2, q3, q4) = 1

(2π)8

∫
d4x1 . . . d

4x4 e−iq1x1...−iq4x4 g(x1, x2, x3, x4).

Note that g̃(q1, . . . , q4) is symmetric with respect to permutations of q1, . . . , q4.

The unregularized interaction

V̂I = λ0

4!
∫

d4x φ̂4
I (x)

is obtained when

g(x1, x2, x3, x4) =
∫

d4x δ(x1 − x)δ(x2 − x)δ(x3 − x)δ(x4 − x),

or equivalently

g̃(q1, q2, q3, q4) = 1

(2π)4
δ(q1 + q2 + q3 + q4). (7.55)

Of course, such g is not allowed here because the integral of the product of δ’s is
not a test function. The return to the unregularized interaction will be possible when
we modify our perturbative model in a special way. The procedure for this is called
the renormalization. It is described in the next chapter.

In the next step toward the perturbative expansion, we replace the variational
derivatives −iδ/δ j̃ by β̃, and j̃ by −iδ/δβ̃, where β̃(q) is a new test function[8].
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This is done with the help of the following trick

δn Z̃ I [ j̃]
δ j̃(k1) . . . δ j̃(kn)

∣∣∣∣∣
j̃=0

= δn Z̃ I [ j̃]
δ j̃(k1) . . . δ j̃(kn)

∣∣∣∣∣
j̃=0

ei
∫

d4qβ̃(q) j̃(q)
∣∣∣
β̃=0

=
(

Z̃0

[
−i
δ

δβ̃

]
δn

δ j̃(k1) . . . δ j̃(kn)
exp

(
−i ṼIg

[
−i
δ

δ j̃

])
ei
∫

d4qβ̃(q) j̃(q)
)∣∣∣∣

j̃=0=β̃

= in
(

Z̃0

[
−i
δ

δβ̃

] (
β̃(k1) . . . β̃(kn) exp(−i ṼIg[β̃])

))∣∣∣∣
β̃=0

,

where

ṼIg[β̃] = λ0

4!
∫

d4q1 . . . d
4q4 g̃(q1, q2, q3, q4)β̃(q1)β̃(q2)β̃(q3)β̃(q4), (7.56)

and

Z̃0

[
−i
δ

δβ̃

]
= exp

(
1

2

∫
d4 p1d4 p2 δ(p1 + p2)

δ

δβ̃(p1)
�F (p1)

δ

δβ̃(p2)

)

= exp

(
1

2

∫
d4 p

δ

δβ̃(p)
�F (p)

δ

δβ̃(−p)

)
, (7.57)

with

�F (p) = i

p2 − m2
0 + i0+

. (7.58)

�F (p) is called the free or Feynman propagator of the real scalar field in four-
momentum space. Thus, finally

G̃(n)(k1, k2, . . . , kn) = Z̃ (n)I

Z̃ (0)I

, (7.59)

where

Z̃ (n)I =
(

Z̃0

[
−i
δ

δβ̃

] (
β̃(k1) . . . β̃(kn) exp(−i ṼIg[β̃])

))∣∣∣∣
β̃=0

. (7.60)

In the case n = 0 the factors β̃(ki ) are absent.
Note that formulas (7.59) and (7.60) imply that

G̃(n) = 0 (7.61)

for any odd n.
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The N -th order perturbative approximation for G̃(n) with even n is obtained by
truncating the series

exp(−i ṼIg[β̃]) =
∞∑

l=0

(−i)l

l! Ṽ l
Ig[β̃] (7.62)

to the first N +1 terms. It is clear that the perturbative computation of G̃(n) involves
the following three steps. First, evaluation of the indicated functional derivatives.
Next, computation of the integrals over the four-momenta. Finally, removal of
the regularization. This latter step will be discussed in the next chapter. Now we
shall show how one can facilitate the differentiation using a graphical notation, the
famous Feynman diagrams.

We begin from a graphical representation of the terms that are present in formula
(7.60) for Z̃ (n)I . The factors β̃(k1), . . . , β̃(kn) are represented by small crosses

×
k1

×
k2

. . . ×
kn (7.63)

They are called the external vertices, and ki the external four-momenta. The func-
tional ṼIg[β̃] is called the internal vertex, and it is depicted as

�� ��
����
�

(7.64)

The small crosses at the ends of the lines denote the factors β̃(q). The lines emanat-
ing from the vertex dot are sometimes called ‘legs’.

The exponent in Z̃0

[
−i δ

δβ̃

]
, formula (7.57), is depicted as a dumb-bell

� � = 1

2

∫
d4 p

δ

δβ̃(p)
�F (p)

δ

δβ̃(−p)
. (7.65)

The circles denote the functional derivatives δ/δβ̃. Thus, formula (7.57) can be pre-
sented as

Z̃0

[
−i
δ

δβ̃

]
=

∞∑
k=0

1

k! (
� �)k . (7.66)

Non vanishing contributions to Z̃ (n)I can only appear if the number of the deriva-
tives exactly matches the number of the factors β̃ equal to n+4l in the l-th order. The
l-th order means that we consider contributions which come from the (l+1)-th term
in the series (7.62) (the term with l = 0 is the first term). Therefore, 2l+n/2 dumb-
bells are needed. Now let us consider the differentiation in more detail. According
to the Leibniz rule each derivative δ/δβ̃ acts on each factor β̃, and
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δβ̃(q)

δβ̃(p)
= δ(q − p).

Pictorially, the differentiation removes the circles from the dumb-bells and the
crosses from the external or internal vertices. The lines from the dumb-bells either
connect two vertices or form a loop at one internal vertex, see, e.g., Figs. 7.1 and 7.2.
The remaining expressions

∫
d4 p �F (p) from the dumb-bells (7.65) we associate

with the lines.
The factor 1/2 can actually be omitted for the following reason. Let us consider

the two derivatives from one dumb-bell. Acting on a certain pair of β̃’s, say the
product β̃(q)β̃(k), they give

1

2

∫
d4 p δ(q − p)δ(k + p)�F (p)+ 1

2

∫
d4 p δ(q + p)δ(k − p)�F (p)

=
∫

d4 p δ(q − p)δ(k + p)�F (p),

because in the second term we may change the integration variable p → −p, and
�F (p) = �F (−p). Graphically,

(×q × k) q k ,

where

q � � k =
∫

d4 p δ(q + p)δ(k − p)�F (p). (7.67)

Fig. 7.1 The first order contributions to Z̃ (2)I . The numerical coefficients in front of graphs (12 and
3 in this example) are called the combinatorial factors

Fig. 7.2 The graphs giving the second order contributions to Z̃ (2)I . The factor 1/2! is not included
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The line is called ‘external’ if it is attached to at least one external vertex, or
‘internal’ if both its ends are attached to one or two internal vertices. If β̃(q) (or
β̃(k)) comes from one of the internal vertices, the corresponding Dirac delta from
(7.67) ‘eats’ the integral over q (or k) present in ṼIg, see formula (7.56). In conse-
quence, all integrals over q1, . . . , q4 from ṼIg disappear, and therefore each internal
vertex contributes only with the factor

−iλ0

4! g̃(p1, p2, p3, p4),

where pi denote the four-momenta from the lines attached to the internal vertex
with their signs chosen in accordance with the following rule: the four-momentum
p from a line enters the two functions g̃ in the two vertices adjacent to that line with
the opposite signs: +p in one vertex and −p in the other. Because of invariance of
the dumb-bell with respect to the change p → −p, it does not matter in which of
the two vertices we take +p.

If β̃ comes from one of the external vertices, the Dirac delta produced by its
differentiation is utilized in order to remove the integral d4 p present in (7.67). Thus,
if the line (7.67) is attached to one or two external vertices there is no integral
coming with it. In the case of the two external vertices, the contribution has the
form

k1
� � k2 = δ(k1 + k2)�F (k1). (7.68)

Note also that in total we have (2l + n/2)! contributions obtained by permuting
the dumb-bells—the Leibniz rule yields all these terms. Such contributions are equal
to each other, therefore it is sufficient to take one of them and multiply it by the
factor (2l+n/2)!. This factor exactly cancels the factor 1/(2l+n/2)!which appears
because we pick only the k = (2l+n/2)-th power of the dumb-bell. All other terms
in (7.66) give vanishing contributions, either because they have too many or too
few derivatives. Therefore, we can forget about the factor 1/(2l + n/2)! and about
permuting the dumb-bells.

The factor 1/ l! present in formula (7.62) has to be included as a prefactor in front
of each perturbative contribution in the l-th order.

Let us have a look at the perturbative contributions to Z̃(2)I . All of them have
two external vertices (7.63). In the zeroth order the only non vanishing contribution
comes from the k = 1 term in (7.66), and it is given by formula (7.68). In the first
order (l = 1) we have one internal vertex (7.64) and three dumb-bells. The resulting
contribution has the form presented in Fig. 7.1 (Exercise 7.3).

The closed lines present in Fig. 7.1 appear when a single dumb-bell ‘eats’ two
crosses from one internal vertex. The second term in Fig. 7.1 is the product of terms
corresponding to the two subdiagrams: the one given by formula (7.67), and the
other given by the two circles. This latter one has the form
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�

��

�	

��

�	

= −iλ0

4!
∫

d4 p d4q g̃(p,−p, q,−q)�F (p)�F (q). (7.69)

Note that the expression on the r.h.s. would become meaningless if g̃ was replaced
with the Dirac delta (7.35). Apart from the factor δ(0), there would be present square
of the divergent integral

∫
d4 p�F (p). This integral is an example of the so called

ultraviolet divergences (UV), to be discussed in the next chapter.
In the second order, we have two internal vertices (l = 2), and five dumb-bells—

we have to compute the tenth order functional derivative of the product of ten β̃’s.
The corresponding Feynman diagrams have the form presented in Fig. 7.2.

In order to obtain the second order contribution to Z̃ (2)I , this result has to be
multiplied by 1/2!.

It is clear that the number of diagrams rapidly increases with the order l. A certain
reduction of this number occurs when we use the normal ordered interaction : ṼIg :
instead of ṼIg . Let us compute the derivatives (−i)4δ4/δ j (x1) . . . δ j (x4) of both
sides of Wick formula (7.34) and put j = 0 afterwards. We obtain

T
(
φ̂I (x1) . . . φ̂I (x4)

)
=: φ̂I (x1) . . . φ̂I (x4) : +�F (x1 − x2) : φ̂I (x3)φ̂I (x4) :

+�F (x1 − x3) : φ̂I (x2)φ̂I (x4) : + . . .+�F (x3 − x4) : φ̂I (x1)φ̂I (x2) :
+ [�F (x1 − x2)�F (x3 − x4)+�F (x1 − x3)�F (x2 − x4)

+ �F (x1 − x4)�F (x2 − x3)] I. (7.70)

Analogously, for i �= j

T
(
φ̂I (xi )φ̂I (x j )

)
=: φ̂I (xi )φ̂I (x j ) : +�F (xi − x j )I. (7.71)

It follows from these formulas that

: φ̂I (x1) . . . φ̂I (x4) := T
(
φ̂I (x1) . . . φ̂I (x4)

)
−�F (x1 − x2)T

(
φ̂I (x3)φ̂I (x4)

)

−�F (x1 − x3)T
(
φ̂I (x2)φ̂I (x4)

)
− . . .−�F (x3 − x4)T

(
φ̂I (x1)φ̂I (x2)

)

+ [�F (x1 − x2)�F (x3 − x4)+�F (x1 − x3)�F (x2 − x4)

+ �F (x1 − x4)�F (x2 − x3)] I. (7.72)

Therefore, the modification

T
(
φ̂I (x1) . . . φ̂I (x4)

)
→: φ̂I (x1) . . . φ̂I (x4) :

is represented on the level of the generating functional Z [ j] by
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δ4

δ j (x1) . . . δ j (x4)
→ δ4

δ j (x1) . . . δ j (x4)
+�F (x1 − x2)

δ2

δ j (x3)δ j (x4)

+�F (x1 − x3)
δ2

δ j (x2)δ j (x4)
+ . . .+�F (x3 − x4)

δ2

δ j (x1)δ j (x2)

+�F (x1 − x2)�F (x3 − x4)+�F (x1 − x3)�F (x2 − x4)

+�F (x1 − x4)�F (x2 − x3). (7.73)

After introducing the β̃’s we finally obtain

: ṼIg[β̃] := λ0

4!
[∫

d4q1 . . . d
4q4 g̃(q1, . . . , q4)β̃(q1) . . . β̃(q4)

− 6
∫

d4 p
∫

d4q1d4q2�F (p)g̃(p,−p, q1, q2)β̃(q1)β̃(q2)

+3
∫

d4 pd4q �F (p)�F (q)g̃(p,−p, q,−q)

]
. (7.74)

The third term on the r.h.s. of this formula does not depend on β̃. Therefore, it
cancels out in the quotient Z̃ (n)I /Z̃ (0)0 , and we may omit it. The change to the normal
ordered interaction ṼIg →: ṼIg : is graphically presented in Fig. 7.3.

Thus, in the case of normal ordered interaction we have two internal vertices,
namely

(7.75)

which appear in the combination shown in Fig. 7.3. Due to the presence of the 2-leg
internal vertex, we now have new Feynman diagrams, in addition to the former ones
with the 4-leg internal vertex. The new diagrams exactly cancel all diagrams which
have one or more internal lines starting and ending at the same internal vertex. To
summarize, in the case of the normal ordered interaction, again only the vertices
(7.63) and (7.64) are used in construction of the diagrams, but there is the additional
rule that each internal line connects two different 4-leg vertices. It is clear that the net
number of Feynman diagrams which have to be taken into account is significantly
smaller in the case of normal ordered interaction. From now on we use the normal
ordered interaction unless explicitly stated otherwise.

Fig. 7.3 The change to the normal ordered interaction
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Another simplification is due to the denominator Z̃ (0)I in formula (7.59): it turns
out that it cancels all the so called ‘vacuum bubbles’ in the perturbative expansion
of the numerator Z̃ (n)I . By vacuum bubbles we mean (sub)diagrams which do not
contain any external vertices. Examples can be seen in the first two lines of Fig. 7.2.
The first graph in the second line of Fig. 7.2 contains the vacuum bubble which is
present also when we take the normal ordered interaction. Let us consider a graph �
with n external and l internal vertices which does not contain any vacuum bubbles
as its subdiagrams. Such a graph is a contribution of the l-th order to Z̃ (n)I , that is, a
contribution to

(
(−i)l

l!(2l + n
2 )!
(

� �
)2l+ n

2

[
β̃(k1) . . . β̃(kn)

(
: ṼIg[β̃] :

)l
])∣∣∣∣

β̃=0

.

In the orders l + m, where m > 0, the graph � will appear as a subgraph in larger
graphs. Because it has n external vertices, the accompanying subgraphs have to be
vacuum bubbles which in total have m internal vertices. These larger graphs are
contributions to

(
(−i)l+m

(
� �

)2l+2m+ n
2

(l + m)!(2l + 2m + n
2 )!

[
β̃(k1) . . . β̃(kn)

(
: ṼIg[β̃] :

)l+m
])∣∣∣∣∣

β̃=0

. (7.76)

In order to form the subgraph �, we have to pick 2l + n/2 dumb-bells from the full
set, which counts 2l+2m+n/2 of them. This gives (2l+2m+n/2)!/(2m)!(2l+n/2)!
possibilities. Similarly, we have to choose l internal vertices for the subgraph � out
of l + m vertices—there are (l + m)!/ l!m! possibilities. Therefore, that part of the
expression (7.76) which contains � as a subgraph is equal to

�
1

(2m)!
((

� �
)2m (−i)m

m! (: ṼIg :)m
)∣∣∣∣
β̃=0

. (7.77)

Next, notice that

(
1

(2m)!
(

� �
)2m (−i)m

m! (: ṼIg :)m
)∣∣∣∣
β̃=0

=
(

Z̃0

[
−i
δ

δβ̃

]
(−i)m

m! (: ṼIg :)m
)∣∣∣∣
β̃=0

because the powers of the dumb-bell other than 2m give vanishing contributions.
Thus, the sum of all the contributions of the order l + m to Z̃ (n)I such that they
contain the subgraph � multiplied by vacuum bubbles is equal to

�

(
Z̃0

[
−i
δ

δβ̃

]
(−i)m

m! (: ṼIg :)m
)∣∣∣∣
β̃=0

. (7.78)
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Finally, we sum such contributions from all orders l + m, where l is fixed and m =
1, 2, . . .. We also add the initial graph � without any accompanying vacuum bubbles
by including the m = 0 term in the sum. The result is equal to

� Z̃ (0)I . (7.79)

The factor Z̃ (0)I cancels with the denominator in formula (7.59). Thus, we have
proved that when computing from formula (7.59) the perturbative contributions to
G̃(n), we may abandon the denominator Z̃ (0)I , as well as the vacuum bubbles in the

expansion of the numerator Z̃ (n)I .

Perturbative contributions of the l-th order to the four-point Green’s function
G̃(4)(k1, k2, k3, k4) involve four external vertices (7.63), l internal vertices (7.64),
and 2l+2 dumb-bells. In the zeroth order we have the Feynman diagrams presented
in Fig. 7.4. Analytically, this contribution has the form (Exercise 7.4)

δ(k1 + k2)δ(k3 + k4)�F (k1)�F (k3)+ δ(k1 + k3)δ(k2 + k4)�F (k1)�F (k2)

+ δ(k1 + k4)δ(k2 + k3)�F (k1)�F (k2). (7.80)

In the first order there is just one diagram, see Fig. 7.5. The corresponding contri-
bution to G̃(4) is equal to

− iλ0 g̃(k1, k2, k3, k4)

4∏
j=1

�F (k j ). (7.81)

The diagrammatic representation of the second order contribution to G̃(4) is shown
in Fig. 7.6.

All the second order contributions presented in Figs. 7.2 and 7.6 would contain
divergent integrals if g̃ was replaced with the Dirac delta (7.55).

k1

k4k3

k1

k4

k1

k3

k4k2

k2

k3

k2

Fig. 7.4 The zeroth order contributions to G̃(4)

k1

k2 k3

k4

4!

Fig. 7.5 The first order contributions to G̃(4). The second graph is eliminated by the normal
ordering prescription
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k1

k3 k3

k3

k3

k3

k3 k3

k3k2 k2

k2k2

k2

k2

k2k2

k4

k4

k4

k4

k1

k1 k1

k1

k1

k1

k1 k1

k4 k4

k4

k4

k4

k4

k3

(4!)2 )( + +

+ + +192 (

+ + + )

Fig. 7.6 The graphs giving the second order contributions to G̃(4). The factor 1/2! is not included

Exercises

7.1 Check that the operator V̂Sg = λ0
4!
∫

d3x g(
x) : φ̂4
I (
x) : is Hermitian. Here g(
x)

is a real-valued test function.
Hint: Write φ̂I (
x) in the form φ̂I (
x) = φ̂(+)I (
x)+ φ̂(−)I (
x), where φ̂(+)I (
x) contains
the âI part of φ̂ (put t = 0 in formula (7.16)).

7.2 Find a general formula for the function f (E) introduced in Sect. 7.1 in the case
of the free, real scalar field discussed in Chap. 6. Here

|ψ〉 = ψ0|0〉 +∑∞
n=1

∫
d3k1 . . . d3kn ψn(
k1, . . . , 
kn) |
k1, . . . , 
kn〉,

|χ〉 = χ0|0〉 +∑∞
n=1

∫
d3k1 . . . d3kn χn(
k1, . . . , 
kn) |
k1, . . . , 
kn〉,

As an example, compute f (E) in the case

ψn = χn = δn1ψ1(
k1),

where ψ1(
k) = exp(−a
k 2), a > 0 is a constant.
Answer:

f (E) =
∞∑

n=1

∫
d3k1 . . . d

3kn δ

(
E −

n∑
i=1

ω(
ki )

)
ψ∗n (
k1, . . . , 
kn)χn(
k1, . . . , 
kn),

where ω(
k) =
√

m2
0 + 
k 2.

In the example, this formula gives
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f (E) = 4π �(E − m0) E
√

E2 − m2
0 exp

(
−2a(E2 − m2

0)
)
,

where � is the step function.

7.3 Check the combinatorial coefficients shown in the front of the diagrams in
Figs. 7.1 and 7.2.

7.4 Check that the zeroth and first order contributions to G̃(4) in the considered
model are indeed given by formulas (7.80) and (7.81).

7.5 Consider the real scalar field φ̂I with the regularized interaction of the form

V̂ (3)Ig = λ0

3!
∫

d4x1d4x2d4x3 g(x1, x2, x3) : φ̂I (x1)φ̂I (x2)φ̂I (x3) :,

where g(x1, x2, x3) is a real-valued, symmetric test function, and λ0 �= 0 is a cou-
pling constant.
(a) Construct Feynman diagrams in this model.
(b) Find all diagrams contributing to G̃(3) in the third order and their combinatorial
coefficients.

7.6 In the quantum spinor electrodynamics (QED for short), defined by the
Lagrangian

L = −1

4
FμνFμν + ψ̄(iγ μ∂μ − m0)ψ − e0ψ̄γ

μAμψ

the generating functional for the Green’s functions has the form

ZQED[η, η̄, J ] =
〈0|T exp

(
i
∫

d4x
(

Jμ(x) Âμ(x)+ η̄α(x)ψ̂α(x)+ ˆ̄ψα(x)ηα(x)
))
|0〉.

Here Âμ(x) and ψ̂α(x), ˆ̄ψα(x) are electromagnetic and Dirac field operators in the
Heisenberg picture. The Green’s functions are the vacuum expectation values of
time ordered products of these field operators. Jμ(x) is a classical, commuting
source function, while η̄α(x), ηα(x) are independent, anticommuting (Grassmann)
functions.

(a) Express the Green’s functions through functional derivatives of Z [η, η̄, J ];
remember, that similarly as Grassmann functions the Grassmann functional
derivatives anticommute, for instance

{
δ

δηα(x)
,

δ

δηβ(y)

}
=
{

δ

δηα(x)
,

δ

δη̄β(y)

}
= 0.
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(b) Repeating the steps which led to (7.29), derive the Gell-Mann–Low formula

Z QED[η, η̄, J ] =
〈0I |T exp

(
i
∫

d4x
(

Jμ ÂIμ + η̄αψ̂Iα + ˆ̄ψIαη
α
))

UI (∞,−∞)|0I 〉
〈0I |UI (∞,−∞)|0I 〉 ,

where

U (∞,−∞)
= T exp

(
−ie0

∫
d4x ˆ̄ψI (x)γ μ ÂIμ(x)ψ̂I (x)

)
≡ T exp

(
−i V̂ QED

I [ψ, ψ̄, A]
)
.

7.7 Derive the Wick formula for the spinor fields

T exp

(
i
∫

d4x
(
η̄(x)ψ̂(x)+ ˆ̄ψ(x)η(x)

))

= exp

(
−
∫

d4x
∫

d4x ′ η̄(x)SF (x − x ′)η(x ′)
)

: exp

(
i
∫

d4x
(
η̄(x)ψ̂(x)+ ˆ̄ψ(x)η(x)

))
:

where

SF (x − x ′) = i
∫

d4k

(2π)4
e−ik(x ′−x ′′) /k + m0

k2 − m2
0 + i0+

= 〈0I |T
(
ψ̂I (x)

ˆ̄ψI (x
′)
)
|0I 〉.

7.8 Prove that

T exp

(
i
∫

d4x Jμ(x) ÂIμ(x)

)

= exp

(
−1

2

∫
d4x

∫
d4x ′ Jμ(x)DF (x − x ′)μν J ν(x ′)

)

: exp(

(
i
∫

d4x Jμ(x) ÂIμ(x)

)
:

where

DF (x − x ′)μν = −iημν

∫
d4k

(2π)4
e−ik(x ′−x ′′)

k2 + i0+
= 〈0I |T

(
ÂIμ(x) ÂIν(x

′)
)
|0I 〉.
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7.9 The numerator appearing in the Gell-Mann–Low formula in QED,

ZQED
I [η, η̄, J ] ≡ 〈0I |T exp

(
i
∫

d4x
(

Jμ ÂIμ + η̄ψ̂I + ˆ̄ψIη
))

UI (∞,−∞)|0I 〉,

can be rewritten as

ZQED
I [η, η̄, J ] = exp

(
−i V̂ QED

[
1

i

δ

δη̄
,−1

i

δ

δη
,

1

i

δ

δ J

])
ZQED

0 [η, η̄, J ],

where

ZQED
0 [η, η̄, J ]
= 〈0I |T exp

(
i
∫

d4x
(

Jμ(x) ÂIμ(x)+ η̄(x)ψ̂I (x)+ ˆ̄ψI (x)η(x)
))
|0I 〉,

and

V QED
[

1

i

δ

δη̄
,−1

i

δ

δη
,

1

i

δ

δ J

]
= ie0

∫
d4x

δ

δη̄(x)
γ μ

δ

δη(x)

δ

δ Jμ(x)
.

Using the results of the problems 7.7 and 7.8 derive the formula for the momentum
space Green’s functions in QED, analogous to formula (7.60).

7.10 Find (without calculating the involved integrals over the internal momenta) the
perturbative expression for the QED Green’s function

G̃QED
2 (p) =

∫
d4x ei p(x−y)〈0|T (ψ(x)ψ̄(y)) |0〉

up to the terms of the order e4
0.

7.11 Discuss what simplification occurs (i.e., which Feynman diagrams are absent)
when we replace the interaction V̂ QED

I [ψ, ψ̄, A] with its normal ordered form.



Chapter 8
Renormalization

Abstract General description of ultraviolet divergences in the φ4
4 model. Loop and

one-particle irreducible (1PI) diagrams. Superficial degree of divergence. Renormal-
ization of the one-loop contribution to the four-point Green’s function (the sunset
diagram). BPHZ subtraction scheme. Lorentz invariant renormalization of the two-
point Green’s function. The renormalization constants Z1, Z3, δm2 and the multi-
plicative renormalization.

The perturbative contributions to the Green’s functions, discussed in the preceding
chapter, contain the regularizing function g or its Fourier transform g̃. Its presence is
necessary in order to obtain mathematically meaningful formulas. This is generally
true not only for the :φ4

4 : model, but also for other models of quantum field theory.
Apart from the mathematical correctness, one would also like to have a physical
motivation for the presence and the form of such a function. In some cases it can
be provided. Then the regularizing function has a concrete form, and it is called a
formfactor. It has a definite physical interpretation. Usually it encodes the fact that
considered quantum particles are not point-like when, for example, they are bound
states of more fundamental objects, like nucleons which are bound states of quarks
and gluons.

Much more difficult is the case when such a physical justification is not available.
This happens when the corresponding quantum particles seem to be truly elemen-
tary objects, like, for example, fundamental particles of the Standard Model—so
far, there is no compelling experimental evidence for the existence of some internal
structure of quarks, leptons, or gauge vector bosons. In this case the regularizing
function should be removed from the theory. The problem is that this must not
be done in a straightforward manner because then we would get mathematically
meaningless expressions. The procedure which allows for the removal of the regu-
larizing function g is called the renormalization. Renormalization of the perturbative
expansion is certainly among the most intricate constructions in theoretical physics.
Its main parts were known by 1955, but important contributions were also made
around 1970 in connection with the Standard Model.

In this chapter, we outline the renormalization on the example of the :φ4
4 :model.

In Sect. 8.1 we carry out a reconnaissance into the problem of ultraviolet (UV)

H. Arodź, L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
DOI 10.1007/978-3-642-15624-3_8, C© Springer-Verlag Berlin Heidelberg 2010
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divergences, which would appear if g̃ was replaced by the Dirac delta (7.55). In the
subsequent sections these divergences are analyzed in more detail, and finally the
problem is solved by adding to the initial interaction so called counterterms.

8.1 Ultraviolet Divergences

We have seen in the preceding chapter that the perturbative contribution to a Green’s
function, represented by a given graph �, contains integrals over the four-momenta
associated with the internal lines of the graph. The integrand essentially has the form
of a product of the propagators �F and of the g̃ functions1. Let us suppose for a
while that we substitute for g̃ in the integrand its limiting form (7.55). It is clear that
due to the presence of Dirac deltas, a certain number of the integrals can be trivially
calculated. Let us eliminate in this manner as many integrations as possible. It can
happen that no integrals are left. The corresponding graphs are called tree graphs.
Examples are given in Fig. 8.1.

Graphs where some integrals remain present after using all the Dirac deltas are
called loop graphs. By definition, the number of independent loops L in the graph
� is equal to the number of the remaining four-dimensional integrals over the four-
momenta, and the four-momenta, over which we still have to integrate are called the
loop momenta. Thus, only the graphs with L �= 0 can have the UV divergences—
that is the integrals over the loop four-momenta which become divergent when we
extend the integration range2 from−∞ to+∞. The presence of the UV divergences
is of course a consequence of the fact that without the regularizing function g̃ the
model is mathematically incorrect.

It is clear that the calculation of the number of independent loops L can be done
separately for each connected component of the graph �. Here we use the term
‘connected’ in the meaning known from topology of subsets of R3. Each connected

Fig. 8.1 Examples of tree graphs in the λ0φ
4 model

1 In the rather general discussion below, we neglect numerical factors which are present in the
perturbative contributions, because they are not important in the qualitative analysis of the UV
divergences.
2 Let us recall that in calculus, the integrals of the type

∫ +∞
−∞ are defined as the limit of

∫ M2
M1

when
M1 →−∞, M2 →+∞.
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component is a diagram in its own right, disconnected from the remaining part of the
graph �. The perturbative contribution corresponding to � is equal to the product of
contributions of all connected subgraphs of it. Therefore, from now on we consider
only connected graphs.

An explanation is in order as to why we have referred to the topology of figures
in R3, while so far all graphs have been drawn in the plane R2. There exist graphs
which are better presented as figures in the space R3. If drawn in the plane they
would contain superfluous crossings which are not the internal vertices (7.64). The
graph is called non planar if it is not possible to draw it on the plane without super-
fluous crossings of lines, under the assumptions that all its lines are continuous and
all external lines extend to the infinity.3 A simple example is given in Fig. 8.2.

Let us consider a connected graph � with l internal vertices. We assume that
the graph is nontrivial, that is that l > 0. It turns out that the Dirac deltas can
always be combined to produce at least one delta which does not contain any four-
momentum attached to an internal line: it is δ

(∑n
i=1 ki

)
, where ki are the external

four-momenta for the graph. The perturbative contribution of each connected graph
� is proportional to such δ. In order to show this, let us pick an internal vertex A of
�—it will serve as the starting point for the following procedure. In the first step we
choose one internal line, let us denote it as I1, attached to that vertex. The associated
with it four-momentum is denoted as p. The line I1 ends at another internal vertex B.
Both vertices have their δ’s. The four-momentum p appears in both of them, with
the opposite signs. Thus, we have a product of the form

δ

(
3∑

i=1

qAi + p

)
δ

⎛
⎝ 3∑

j=1

qB j − p

⎞
⎠ ,

where qAi , qB j are the four-momenta associated with the other three lines ema-
nating from A, B, respectively. One of the δ’s is used to perform the integral∫

d4 p related to the internal line I1, and to eliminate p from the other δ yielding

δ
(∑3

j=1 qAj +∑3
j=1 qB j

)
. We may imagine that the two vertices are dragged

to each other along the line I1 and merged, thus producing a six-leg ‘vertex’ AB

Fig. 8.2 Example of a non planar graph. The horizontal line is continuous in spite of the drawing—
it just runs behind the vertical one. This graph has 3 independent loops

3 If this assumption is abandoned the graphs can be drawn on the plane, see Exercise 8.1.
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proportional to δ
(∑3

j=1 qAj +∑3
j=1 qB j

)
. In the second step, we pick another

internal vertex C connected with AB by at least one internal line, and we repeat the
reasoning from step 1, thus obtaining an effective ‘vertex’ ABC with 8 legs. We
continue this procedure until all l internal vertices of � are merged into one ‘vertex’
that has 2l + 2 legs. The lines emanating from such an effective ‘vertex’ can form
loops of the type shown in Fig. 7.1—to this kind of ‘vertices’ the normal ordering
prescription does not apply of course—and there are n lines that end at the external
vertices. Therefore, the resulting final δ will be just δ

(∑n
i=1 ki

)
because the two

ends of any line forming the loop introduce the zero four-momentum, q − q = 0.
The number of the loops in the final effective ‘vertex’ is equal to (2l + 2− n)/2

because only the n external lines are not looped. This number is equal to the number
of independent loops L in the graph �, hence

L = l + 1− n

2
.

On the other hand, counting the ends of the n external and I internal lines of the
graph � we obtain the following relation

n + 2I = 4l. (8.1)

Note that it implies that n is even. Elimination of n with the help of the latter formula
gives

L = I − l + 1. (8.2)

This formula has a simple heuristic justification: each internal line brings in one
four-dimensional integral d4p, and each internal vertex one δ. One can combine
these δ’s to produce one that contains only the external momenta, and the remain-
ing l − 1 δ’s can be used to eliminate the integrals. Therefore, the number of the
remaining four dimensional integrations is equal to I − l + 1.

When investigating the UV divergences one may focus on the so called one-
particle irreducible (1PI) graphs. By definition, such a graph is connected and, more-
over, it is not possible to split it into disconnected parts by cutting one internal line.
Furthermore, the Feynman propagators �F are removed from all the external lines.
This latter property is marked by removing the dots from the ends of the external
lines. Examples of these graphs are given in Fig. 8.3, while Fig. 8.4 shows graphs
which are not of the 1PI type.

Fig. 8.3 Examples of 1PI graphs
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Fig. 8.4 Examples of one-particle reducible graphs

We may restrict considerations of the UV divergences to the 1PI graphs for the
following reasons. First, the external lines of graphs do not introduce any integra-
tions. Moreover, the same is true for each internal line which is the only link between
two parts of a non-1PI graph � (cutting it would break the graph into disconnected
parts). The four-momentum p associated with this line appears in two δ’s:

δ

⎛
⎝

j∑
i=1

ki − p

⎞
⎠ δ

⎛
⎝ n∑

i= j+1

ki + p

⎞
⎠ = δ

⎛
⎝

j∑
i=1

ki − p

⎞
⎠ δ

(
n∑

i=1

ki

)
,

see Fig. 8.5. One of them eliminates the integral associated with the line.
Let us have a look at the L four-momentum integrals (in a certain 1PI graph �)

which are left after using all Dirac δ’s (we still imagine that g̃ is replaced by the
Dirac δ according to (7.55)). If all components of the loop four-momenta pi , i =
1, . . . L , are restricted to the interval [−M,M] there are no UV divergences.4 Let
us introduce a 4L-component vector w: its first four components are equal to p1,
the next four to p2, and so on. The integral

∏L
i=1 d4pi can be written as d4Lw. The

restrictions −M ≤ pμi ≤ M mean that we integrate over the hypercube of size 2M
with the center located at the origin in the 4L-dimensional space R4L of vectors w.
As far as the limit M → ∞ is concerned, we may replace the hypercube by the
4L-dimensional ball of the radius M in that space. In the spherical coordinates in
the R4L space

Fig. 8.5 The boxes denote subgraphs of the one particle reducible graph �

4 The integrals may still be divergent for specific values of the external momenta, because denom-
inators of some propagators can be equal to zero. In order to avoid such divergences, we may
replace i0+ in the denominators by iε, where ε > 0. The limit ε → 0+ is taken after we perform
the integrations over loop momenta. G̃(n)(k1, k2, . . . , kn) is not a smooth function of the external
momenta—rather, it is a generalized function of them. Singularities of these functions usually have
certain physical meaning. We shall not discuss them because their presence does not jeopardize the
very existence of the perturbative contributions.



186 8 Renormalization

d4Lw = w4L−1 dw d�,

where d� is the solid angle element in that space and w denotes the modulus of w,
0 ≤ w ≤ M . The integral over the solid angle does not generate any UV divergences
by definition—the range of integration over each spherical angle is finite. On the
other hand, for large w the integrand behaves like

w4L−1w−2I ,

where the second factor comes from the propagators of I internal lines of �. Let us
introduce the superficial degree of divergence ω(�). It is defined for a 1PI graph �
with L independent loops and I internal lines by the formula

ω(�) = 4L − 2I. (8.3)

It is clear that the integral overw is divergent in the limit M →∞when ω(�) ≥ 0.
In particular, in the case ω(�) = 0 we have a logarithmic divergence.5 Using for-
mulas (8.1) and (8.2) we obtain

ω(�) = 4− n. (8.4)

Thus, in our model the superficial degree of divergence is nonnegative only for 1PI
graphs with 2 or 4 external lines.

It turns out that ω(�) < 0 does not mean that the integral is convergent. The
point is that in the reasoning presented above, we have assumed that the loop
four-momenta pi become infinite in the synchronized manner implied by the limit
w → ∞. Actually, we expect that the loop integrals are finite, independently of
the way the infinite four-momenta limit is taken. In particular, we may repeat the
reasoning presented above for each 1PI subgraph γ of �. If ω(γ ) ≥ 0 for one or
more such subgraphs we again encounter the UV divergence. An example of such
a subgraph is presented in Fig. 8.6. One can prove that the 1PI graph � does not

Fig. 8.6 The example of 1PI graph � such that ω(�) = −4 < 0, while ω(γ ) = 0 for its 1PI
subgraph γ shown inside the box

5 In some rather special cases the integral can be finite even if ω ≥ 0, because the integral over the
solid angle � can vanish. We shall not consider such exceptions.
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have any UV divergences if superficial degrees of divergence of it and of all its 1PI
subgraphs are negative.

To summarize, our preliminary analysis has shown that in the :φ4
4: model it suf-

fices to remove the UV divergences from 2- and 4-point 1PI graphs with loops.
Such graphs directly appear in the perturbative contributions to G(2),G(4), and also
as subgraphs in graphs with 6 or more external lines. The limit

g̃(q1, q2, q3, q4)→ 1

(2π)4
δ(q1 + q2 + q3 + q4) (8.5)

will exist if we replace all such potentially UV divergent parts by certain UV con-
vergent terms. The model :φ4

4 : belongs to the class of so called perturbatively renor-
malizable field theories. A model is perturbatively renormalizable if the number of
external lines n in superficially divergent graphs (1PI graphs with ω(�) ≥ 0) is
bounded from above by a finite number n0—in the case of the :φ4

4 : model n0 = 4.
In certain models ω(�) ≥ 0 only for a finite number of graphs. Such models are
called superrenormalizable. Of course, the :φ4

4 : model is not superrenormalizable.
In nonrenormalizable models the number of external lines in superficially diver-

gent graphs is not bounded from above. We shall see by the end of Sect. 8.4, that
the renormalized perturbative expansion in such models contains an arbitrary large
number of constants, whose values are not predicted by the theory—they have to
be determined experimentally. It is believed that such models have little predictive
power, and therefore they are not popular.

One should note here that Einstein’s theory of gravity is nonrenormalizable when
quantized in a straightforward, canonical manner. This is one of several obstacles in
obtaining the quantum theory of the gravitational field. For that matter, it is not obvi-
ous at all that Einstein’s theory of gravity should be quantized—it can happen that
it is merely an effective theory, that is, an approximate description of effects which
in fact are described much better by another, perhaps more general theory which
has a satisfactory quantum version. Many theorists investigate so called superstring
models with precisely that goal in mind. At the moment such a deeper theory has
not been established, mainly because as yet there are no experimental data to test
various proposals.

The (non)renormalizability of a model has a certain connection with the dimen-
sionality of pertinent coupling constants. This can be clearly seen in the example of
:φ4

d : models, where d is the dimension of space-time. The action functional has the
form

S =
∫

dd x

(
1

2
∂μφ∂

μφ − 1

2
m2

0φ
2 − λ0

4! φ
4
)
. (8.6)

In the units c = 1 = h̄ the action S is dimensionless by assumption, [S] = cm0.
Let us take d = 3. Then, [φ] = cm−1/2 and [λ0] = cm−1. In the l-th order of
the perturbative expansion graphs are proportional to λl

0 and this constant has the
dimension cm−l . In order to have the dimension of the whole graph contribution
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equal to the dimension of G̃(n) = cm5n/2, negative powers of three-momentum are
needed because [p] = cm−1. This suggests better and better convergence of the
integrals over the three-momenta as l increases, and therefore superrenormalizabil-
ity of the model. Indeed, the superficial degree of divergence is equal to

ω = 3L − 2I = 3− l − n

2

(we have used formulas (8.1) and (8.2) and the fact that the space-time has three
dimensions). It is clear that there is only one case in which we have ω ≥ 0:
n = 2, l = 2: it is the second graph in Fig. 8.3. Note that this graph can appear as
the divergent subgraph in other 1PI graphs with ω < 0. Therefore the total number
of UV divergent graphs is infinite. The case n = 2, l = 1 is excluded by the normal
ordering. The :φ4

3 : model is superrenormalizable.
Let us now take d = 4. Then [λ0] = cm0, and the analogous reasoning suggests

that the appearance of UV divergences is not related to the order l of the perturbative
expansion, apart from the trivial condition l > 1. Indeed, we already know that
ω = 4− n.

Adding still one space-time dimension, d = 5, gives [λ0] = cm1. In this case
we need the positive powers of five-momenta in order to have the right dimension
of the perturbative contributions (now [φ] = cm−3/2 and [G̃(n)] = cm7n/2). This
suggests that UV divergent graphs will appear for any n if l is large enough. Indeed,
the formula for the superficial degree of divergence

ω = 5L − 2I = 5+ l − 3

2
n,

shows that ω ≥ 0 for an arbitrarily large number n of external lines, if we take suffi-
ciently large order of the perturbative expansion. Hence, the model :φ4

5 : is nonrenor-
malizable. In general, increasing dimensionality of space-time worsens the situation
as far as the UV divergences are concerned. Satisfactory models from the perturba-
tive point of view are still possible, but they require a very special sets of fields,
as well as Lagrangians with symmetries which lead to mutual cancelations of the
UV divergent contributions. Examples of such cancelations are given in Chap. 13,
where we discuss so called supersymmetric models.

8.2 The Example

The goal of the renormalization is to define the limit (8.5) term by term in the per-
turbative expansion. We already know that this can not be done in a straightforward
manner just by replacing g̃ by the r.h.s. of formula (8.5), because then we would get
the UV divergent integrals over loop four-momenta. Below we consider in detail the
graph presented in Fig. 8.7. Using this graph, we introduce the main ingredient of
the renormalization, which is called the subtractions.
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k k2 3p

k k1 4q

Fig. 8.7 The 1PI graph A1 renormalized in this section

We will use the following one-parameter family of the regularizing functions

g̃(q1, q2, q3, q4) = 1

(2π)4
δ(q1 + q2 + q3 + q4)

4∏
i=1

(
m2

0 − M2

q2
i − M2 + iε

) N
2

, (8.7)

where N is a natural number and ε > 0.We shall take the limit ε → 0+ later, when
there will be no risk of vanishing denominators. This choice of g̃ is called the Pauli–
Villars (P–V) regularization. The limit (8.5) corresponds to M → ∞. It should be
noted that the function g̃ given by (8.7) does not belong to the space S(R4) of test
functions. Rather, it is a generalized function. Nevertheless, it vanishes sufficiently
quickly when qi →∞, so that the loop integrals are finite, see below. This function
g̃ has the advantage that it is invariant with respect to Lorentz transformations of the
four-momenta. Moreover, it has the simple algebraic form which harmonizes with
the form of the free propagator �F (q).

Because each internal vertex has four legs enumerated by the four-momenta qi ,
we may ascribe the P–V factors

(
m2

0 − M2

q2
i − M2 + iε

)N/2

to the legs. Therefore, one may formulate the P–V regularization in the equivalent
way, by saying that the internal vertex has the form as if the limit M → ∞ was
taken, that is

�
�

��
�

�
� = λ0

4!(2π)4 δ(q1 + q2 + q3 + q4),
(8.8)

but the free propagators �F , formula (7.58), associated with each internal line are
replaced by the P–V regularized propagator �P−V ,

�F (p)→ �P−V (p) = i

p2 − m2
0 + iε

(
m2

0 − M2

p2 − M2 + iε

)N

(8.9)

(each internal line has two P–V factors coming from two legs of adjacent internal
vertices). Actually, this latter formulation of the P–V regularization is the original
one. Note that �P−V with N = 1 may also be written in the following forms
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�P−V (p) = i

p2 − m2
0 + iε

− i

p2 − M2 + iε
= −i

∫ M2

m2
0

dλ

(p2 − λ+ iε)2
. (8.10)

Formula (8.7), and the substitution (8.9), imply that the factors [(m2
0−M2)/(q2

i −
M2 + iε)]N/2 appear also on the external lines of graphs. Because such lines do
not play any role as far as the UV divergences are concerned, we may take the
limit M →∞ for each external line right now. Therefore, the external lines do not
introduce any factors in the P–V regularized 1PI graphs (�F ’s have already been
removed).

The Pauli–Villars regularization is sufficient for rendering all 1PI graphs UV
finite: the superficial degree of divergence of P–V regularized 1PI graphs is negative.
Computation of ω for such a graph, denoted by �reg, differs from the one presented
in the preceding section only on one point: now the contribution of each internal
line behaves like (p2)−N−1. Therefore,

ω(�reg) = 4L − 2(N + 1)I = 4− 4l + 2I (1− N ).

It is negative for all l > 1, even if we take the lowest possible N = 1. When
l = 1 we would have to take a larger N , e.g., N = 2, but the perturbative expansion
does not contain any 1PI graphs with l = 1 because of the normal ordering. It
turns out that expressions which require the P–V regularization with N = 2, appear
when applying the BPHZ subtraction scheme to the 2-point Green’s function, see
Sect. 8.4. In the following considerations, we use the regularization with N = 1
unless explicitly stated otherwise.

The regularized formula represented by the graph A1 has the form6

A1(k
2;M) = − λ2

0

(4!)2(2π)8
∫

d4p

∫ M2

m2
0

dλ1

∫ M2

m2
0

dλ2
1

(p2 − λ1 + iε)2[(k − p)2 − λ2 + iε]2 ,

where k = k1 + k2. Next, we use the identity

1

a2b2 =
∫ 1

0
dz

6z(1− z)

[a(1− z)+ bz]4 ,

which is obtained from the simpler identity

1

ab
=
∫ 1

0

dz

[a(1− z)+ bz]2

6 We denote the graph and the formula corresponding to it by the same letter. The presence of P–V
regularization is marked by adding the argument M .
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by differentiation with respect to a and b. The latter identity can easily be checked
by elementary calculation of the integral over z. Thus,

A1(k
2;M) = − λ2

0

(4!)2(2π)8
∫

d4 p
∫ M2

m2
0

dλ1

∫ M2

m2
0

dλ2

∫ 1

0
dz

6z(1− z)

[(p2 − λ1 + iε)(1− z)+ ((k − p)2 − λ2 + iε)z]4 . (8.11)

Let us shift the integration variable p:

p = p′ + kz, d4 p = d4 p′.

The reason for this shift is that the denominator in formula (8.11) depends on p′
only through p

′2,

[. . .] = p
′2 + k2z(1− z)− λ1(1− z)− λ2z + iε. (8.12)

The expression (8.12) vanishes when

p′0 = ±
√
( 
p ′
)2 + λ1(1− z)+ λ2z − k2z(1− z)− iε.

At these points (in the complex p′0 plane) the integrand in the formula (8.11) has
poles. Because λ1,2 ≥ m2

0, ε > 0, and z ∈ [0, 1], when

k2 ∈ (−∞, 4m2
0) (8.13)

the poles lie close to the real axis, see Fig. 8.8. In this case the integral over p′0
along the contour presented in Fig. 8.8 vanishes. The integrals along the two arcs
of the circle vanish when the radius of the circle increases to infinity. Therefore, the
integral along the real axis is equal to the integral along the imaginary axis. The
integration over imaginary p′0 is equivalent to the integration over real variable p4,
introduced by the formula

p′0 = i p4,

p4 ∈ (−∞,+∞), and

dp′0d3 p′ = idp4d3 p′, p
′2 = −p2

4 − 
p ′2.
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Fig. 8.8 The integration contour in the complex p′0 plane. The position of the poles is marked by
the small crosses

Therefore,

A1(k
2;M) = −i

λ2
0

(4!)2(2π)8
∫

dp4

∫
d3 p

∫ M2

m2
0

dλ1

∫ M2

m2
0

dλ2

∫ 1

0
dz

6z(1− z)

[−p2
4 − 
p 2 + k2z(1− z)− λ1(1− z)− λ2z + iε]4 , (8.14)

where we have omitted ′ in the integration variable 
p. The transition from formula
(8.11), (8.12), (8.13) and (8.14) is called the Wick rotation.

The integration variables 
p and p4 together form a Euclidean four-momentum
pE = ( 
p, p4), d4 pE = dp4d3 p. The integrand in (8.14) depends only on p2

E =
p2

4+ 
p 2. Therefore, we introduce the four-dimensional spherical angles�1,�2,�3:

pE = |pE |

⎛
⎜⎜⎝

sin�1 sin�2 sin�3
sin�1 sin�2 cos�3
sin�1 cos�2
cos�1

⎞
⎟⎟⎠ ,

where 0 ≤ �1,�2 ≤ π, 0 ≤ �3 < 2π . Then,

d4 pE = |pE |3d|pE |d�,

where the four-dimensional solid angle element has the form

d� = sin2�1 sin�2d�1d�2d�3.

The full solid angle is equal to 2π2, that is

∫
d� = 2π2.
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Therefore,

A1(k
2;M) = −2iπ2 λ2

0

(4!)2(2π)8
∫ ∞

0
d|pE |

∫ M2

m2
0

dλ1

∫ M2

m2
0

dλ2

∫ 1

0
dz

6z(1− z) |pE |3
[|pE |2 − k2z(1− z)+ λ1(1− z)+ λ2z − iε]4 . (8.15)

Because of the assumption (8.13) the real part of the expression in the bracket in the
denominator does not vanish. Therefore, we may now take the limit ε → 0+. The
integrals over |pE |, λ1, λ2 are elementary. We finally obtain the following formula

A1(k
2;M) = iπ2 λ2

0

(4!)2(2π)8
∫ 1

0
dz

(
ln

M2 − k2z(1− z)

M2(1− z)+ m2
0z − k2z(1− z)

− ln
M2z + m2

0(1− z)− k2z(1− z)

m2
0 − k2z(1− z)

)
.

In the limit M →∞

A1(k
2;M) = −2iπ2 λ2

0

(4!)2(2π)8 ln
M

m0
+ (terms finite in the limit M →∞).

The logarithmic divergence in the limit M → ∞ is the expected one, because the
superficial degree of divergence of graph A1 is equal to 0.

The divergent term does not depend on k2. Therefore, the difference

A1(k
2;M)− A1((

(0)
k )2;M),

where
(0)
k is a fixed four-vector, also remains finite when we remove the regulariza-

tion. The renormalized contribution of graph A1 is defined as follows

Aren
1 (k2)

d f= lim
M→∞

(
A1(k

2;M)− A1((
(0)
k )2;M)

)
. (8.16)

Note that this definition trivially implies that

Aren
1 (

(0)
k

2

) ≡ 0. (8.17)

This identity is called the renormalization condition.

The four-vector
(0)
k is called the subtraction point. In the :φ4

4 : model the subtrac-

tion point is usually given in terms of four four-vectors
(0)
ki , i = 1, 2, 3, 4, such that
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4∑
i=1

(0)
ki= 0, (

(0)
ki )

2 = −μ2,
(0)
ki

(0)
k j= 1

3
μ2 for i �= j, (8.18)

where μ is a positive parameter with the dimension of mass. This choice for
(0)
ki is

called the symmetric subtraction point. For an example of it, see Exercise 8.3. In

the case of graph A1 we have k = k1 + k2, therefore we take
(0)
k =

(0)
k1 +

(0)
k2 . In

consequence,

(
(0)
k )2 = −4

3
μ2.

It follows from definition (8.16) that

Aren
1 (k

2) = iπ2 λ2
0

(4!)2(2π)8
∫ 1

0
dz ln

m2
0 − k2z(1− z)

m2
0 + 4

3μ
2z(1− z)

. (8.19)

Let us recall that this formula is obtained under the assumption (8.13). We shall not
present a calculation of A1 in case it is not satisfied.

Formula (8.19) for the renormalized contribution of graph A1 takes a particularly
simple form when m2

0 = 0 :

Aren
1 (k

2)

∣∣∣
m2

0=0
= iπ2 λ2

0

(4!)2(2π)8 ln

(
− 3k2

4μ2

)
.

In this case the restriction (8.13) has the form k2 < 0.
The subtraction of A1(− 4

3μ
2;M) can equivalently be regarded as an ad hoc mod-

ification of the interaction by adding to it a new term, called the counterterm. It is
chosen in such a way, that the difference

A1(k
2;M)− A1

(
−4

3
μ2;M

)

appears automatically when calculating the full second order contribution to G̃(4).
The second order contribution in the original model, i.e. without the counterterm, is
presented in Fig. 7.6. In order to implement the subtraction we introduce a second
internal vertex with four legs, c.f. the vertex (7.64), with a suitably adjusted coeffi-
cient. In Fig. 7.6 there are three graphs of the form A1, which differ from each other
only by the external momenta. We need the counterterm for each of them. Because
the subtraction is done at the symmetric point, the subtracted terms are identical.
Therefore, it is sufficient to add coefficient 3 in front of the counterterm for graph
A1. It is convenient to introduce the constant C1 such that



8.3 BPHZ Subtractions 195

A1

(
−4

3
μ2;M

)
= −i

λ2
0

(4!)2(2π)8 C1. (8.20)

In the limit M →∞

C1 ∼= 2π2 ln
M

m0
.

In order to implement the subtractions, it suffices to replace ṼIg[β̃] given by formula
(7.56) by ṼIg[β̃] + δ1ṼIg[β̃], where

δ1ṼIg[β̃]= λ2
0C1

16(2π)4

∫
d4q1d4q2d4q3d4q4 g̃(q1, q2, q3, q4)β̃(q1)β̃(q2)β̃(q3)β̃(q4).

(8.21)
Here δ1ṼIg[β̃] is the total counterterm for the three graphs from the first line of
Fig. 7.6. Note that such modification of the interaction is equivalent to the change
of the coupling constant

λ0 → λ0 + 3C1

32π4λ
2
0. (8.22)

In the second order of the perturbative expansion, we also have the second graph
from Fig. 8.3. This graph has two independent loops which share one internal line.
In this case subtractions are more complicated. We shall apply the general BPHZ
prescription which is described in the next section.

8.3 BPHZ Subtractions

Let � be a 1PI graph in the regularized :φ4
4: model with n external four-momenta

k1, k2, . . . , kn. The analytical expression corresponding to it has the form

A� = δ
(

n∑
i=1

ki

) ∫
d4 p1 . . . d

4 pL I�(p1, . . . , pL ; k1, . . . , kn−1;M),

where L is the number of independent loops in the graph. A� is finite due to the
presence of the regularization, but the existence of the limit M → ∞ requires the
subtractions. The integrand I� is the product of the Pauli–Villars regularized propa-
gators�P−V , and of numerical factors. The four-momentum kn has been eliminated
from it because kn = −∑n−1

i=1 ki .
The graph � can have subgraphs: parts which are graphs of the :φ4

4 : model in
their own right. The subgraphs are denoted by γ, γ ⊂ �. Subgraph γ is called a
proper one if γ �= �, and the proper subgraph γ ⊂ � is called a renormalization
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part of � if it is 1PI and ω(γ ) ≥ 0. Two renormalization parts γ1, γ2 of � are
disconnected, γ1 ∩ γ2 = ∅, if they do not have any common vertices.

The BPHZ subtractions are defined in terms of Taylor expansions with respect to
the external momenta. Let f (k1, . . . , kn−1) be a function of the external momenta

k1, . . . , kn−1, smooth in a vicinity of certain fixed four-momenta
(0)
k1, . . . ,

(0)
kn−1 . It

is convenient to use the following notation

Tω f (k1, . . . , kn−1)
d f= f (

(0)
k1, . . . ,

(0)
kn−1)+

(
ki−

(0)
ki

)μi ∂ f

∂kμi
i

∣∣∣∣∣
k j=

(0)
k j

+ . . .

+ 1

ω!
(

ki1−
(0)
ki1

)μi1

. . .

(
kiω−

(0)
kiω

)μiω ∂ω f

∂k
μi1
i1
∂k
μi2
i2
. . . ∂k

μiω
iω

∣∣∣∣∣
k j=

(0)
k j

,

where ω is a nonnegative integer. Thus, Tω f denotes the first ω + 1 terms of the

Taylor series for f around
(0)
ki , i = 1, . . . , n−1. In the case ω = 0 it is just f (

(0)
k1,

. . . ,
(0)

kn−1). In the considerations below n = 2 or n = 4, because in the model :φ4
4 :

all 1PI graphs with n > 4 external lines have ω(�) < 0. The Taylor expansions are
made around the four-momenta from the symmetric point (8.18).

According to the prescription worked out by N. N. Bogoljubov and O. S. Para-
siuk, with later contributions by K. Hepp and W. Zimmermann (hence the acronym
BPHZ), the subtractions should be done in the following manner. The integrand I�
should be replaced by R� which is defined as follows

R� =
{

I i.s.
� if ω(�) < 0,

I i.s.
� − Tω(�) I i.s.

� if ω(�) ≥ 0,
(8.23)

where

I i.s.
� = I� +

∑
{γ1...γS :γi∩γk=∅}

I�/{γ1...γS}
S∏

i=1

(
−Tω(γi ) I

i.s.
γi

)
. (8.24)

The sum in the last formula is over all families of disconnected renormalization parts
of the graph �. One such family is denoted as {γ1 . . . γS : γi ∩ γk = ∅}. The symbol
I�/{γ1...γS} denotes that part of the integrand I� which does not belong to any of the
subgraphs γ1 . . . γS from the given family. The superscript i.s. stands for ‘internal
subtractions’. The internal subtractions are defined recursively, by application of
formula (8.24) to γi . Only graphs which do not contain any renormalization part,
do not require the internal subtractions. If ω(�) ≥ 0, such 1PI graph � is called
primitively divergent.
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The renormalized contribution of the graph � is defined as follows

Aren
� = δ

(
n∑

i=1

ki

)
lim

M→∞

∫
d4p1 . . . d

4 pL R�(p1, . . . , pL ; k1, . . . , kn−1;M).

(8.25)
The main theorem about BPHZ subtractions says that the limit M →∞ exists, and
that Aren

� is a generalized function of the external four-momenta. Moreover, the limit
M → ∞ commutes with the integrals, that is it can already be taken in the whole
integrand R� before the integration. Therefore, in principle the regularization is not
necessary as far as only Feynman diagrams with the subtractions are considered.
However, investigation of Aren

� without a regularization is much harder, because
only the convergence of the integral of R� is guaranteed, and not of the integrals of
the separate contributions to R� , given by the terms in the sums present in formulas
(8.23) and (8.24). For this reason, it is convenient to introduce the regularization and
to take the limit M →∞ after the integration over the loop four-momenta. Such an
auxiliary regularization is often referred to as the intermediate one.

The fact that the subtractions improve the convergence of the integrals over loop
four-momenta has a simple intuitive explanation. All the terms in the Taylor expan-
sion of I� have the same dimensionality. Therefore, the positive dimension intro-
duced by the powers of the external momenta standing in front of the derivatives
has to be compensated by the negative dimension of the derivatives. This means
that the terms with derivatives of sufficiently high order necessarily have a negative
superficial degree of divergence. Therefore, one may expect that the integrals over
the loop four-momenta will remain finite in the limit M → ∞, except for the first
ω(�) + 1 terms of the Taylor expansion. These terms are specifically removed by
the subtractions.7

Note that formulas (8.23), (8.24) and (8.25) can be applied directly to the arbi-
trary 1PI graph �, in any order of the perturbative expansion. We do not need to
consider graphs from the lower orders except for the renormalization parts of �.

In a particular case where ω(�) < 0 and all renormalization parts γi of � are
disconnected and primitively divergent, the BPHZ prescription is reduced to inde-
pendent subtractions for each γi . For example, if � has only two renormalization
parts γ1, γ2, which are disconnected, then we have three families of disconnected
renormalization parts {γ1}, {γ2}, {γ1, γ2}, and in consequence

R� = I� − I�/γ1 (Tω(γ1) Iγ1)− I�/γ2 (Tω(γ2) Iγ2)+ I�/{γ1,γ2}(Tω(γ1) Iγ1)(Tω(γ2) Iγ2)

= I�/{γ1,γ2}(Iγ1 − Tω(γ1) Iγ1)(Iγ2 − Tω(γ2) Iγ2).

See also Exercise 8.4.
It can happen that all the renormalization parts are nested, that is they form

the ordered sequence of subgraphs γ1 ⊃ γ2 ⊃ . . . ⊃ γS. Then, we have just
S one-element families of disconnected renormalization parts, but now the inter-

7 One may remove more terms than necessary. Such an operation is called an oversubtraction.
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Fig. 8.9 The first nontrivial 1PI graph contributing to G̃(2). Its 1PI part, obtained by removing�F
from the external lines, is denoted as A2. The meaning of the small arrows is explained in the text

nal subtractions are needed. The BPHZ prescription gives the nested sequence of
subtractions. For example, let ω(�) < 0 and S = 2. Then,

R� = I� − I�/γ1 Tω(γ1) I
i.s.
γ1
− I�/γ2 Tω(γ2) Iγ2 ,

where

I i.s.
γ1
= Iγ1 − Iγ1/γ2 Tω(γ2) Iγ2 .

Using the identities

I� = I�/γ1 Iγ1 , I�/γ2 = I�/γ1 Iγ1/γ2

we find that

R� = I�/γ1

(
I i.s.
γ1
− Tω(γ1) I

i.s.
γ1

)
.

In the next section we consider the graph shown in Fig. 8.9. In that case, the
renormalization parts are neither disconnected or nested—they overlap—and it is
not obvious what is the correct way of making the subtractions. One of the advan-
tages of the BPHZ prescription is that it can be easily applied in such less obvious
cases.

8.4 Renormalization of the 2-Point Green’s Function

In the second order of the perturbative expansion for G̃(2) we have the 1PI graph A2
presented in Fig. 8.9. When ascribing the four-momenta to the lines of this graph
we have taken into account the fact that in the limit (8.5), or even before taking
that limit if we use the Pauli–Villars regularization (8.7), the four-momenta are not
independent due to the Dirac deltas at the internal vertices. Moreover, we have put
arrows on the lines in order to indicate at which end of the line the four-momentum
ascribed to the line is taken with the plus sign: the rule is that it is the end the arrow
points to. At the other end of the line it is taken with the minus sign. One may
imagine that the four-momentum flows along the line, from a source at one end to a
sink at the other end—the four-momentum flowing into the sink is counted with the
plus sign. In the model :φ4

4 : we can put an arrow on a given line as we wish because
�F and d4 p are not sensitive to the change p →−p.
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The corresponding to this graph, unrenormalized, Pauli–Villars regularized con-
tribution to G̃(2)(k1, k2;M) has the form

96�F (k1)�F (k2)δ(k1 + k2)A2,

where

A2 =
∫

d4 pd4q IA2(p, q; k1;M),

and

IA2(p, q; k1;M) =
(

λ0

4!(2π)4
)2

�P−V (q − p)�P−V (p)�P−V (k1 − q).

The external lines are not regularized.
The graph A2 has two independent loops. We expect that it is quadratically

divergent in the limit M → ∞ because ω(A2) = 2. The BPHZ prescription can
remove the UV divergences from the graph, but it turns out that it violates Lorentz
invariance. Therefore, we shall modify the prescription in such a way that the renor-
malized perturbative contributions to G̃(2) will be manifestly Lorentz invariant.

The graph A2 contains three renormalization parts γi , i = 1, 2, 3, shown in
Fig. 8.10. In the limit M → ∞ they are logarithmically divergent, ω(γi ) = 0. We
can form three families of disconnected renormalization parts, each family has just
one element: {γ1}, {γ2}, {γ3}. According to formula (8.24)

I i.s.
A2
= IA2 −�P−V (q− p)T0 Iγ1 −�P−V (k1−q)T0 Iγ2 −�P−V (p)T0 Iγ3 . (8.26)

As the external four-momenta for the subgraph γ1 we may take k1 ≡ p1 and −
(q − p) ≡ p2 (the four-momenta flowing into the internal vertex on the l.h.s. of the
graph). Therefore,

Iγ1 =
(

λ0

4!(2π)4
)2

�P−V (p1 − q) �P−V (p2 + q),

and

T0 Iγ1 =
(

λ0

4!(2π)4
)2

�P−V (
(0)
k1 −q) �P−V (

(0)
k2 +q),

γ
1

γ
2

γ
3

Fig. 8.10 The three renormalization parts of the graph A2
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where
(0)
ki are the four-momenta of the symmetric subtraction point (8.18). For the

subgraph γ2, we may take as the external four-momenta k1 ≡ p1, q − k1 ≡ p2,

hence

T0 Iγ2 =
(

λ0

4!(2π)4
)2

�P−V (
(0)
k1 +

(0)
k2 −p) �P−V (p).

In the case of γ3 the external four-momenta are k1 ≡ p1,−p ≡ p2, and

T0 Iγ3 =
(

λ0

4!(2π)4
)2

�P−V (
(0)
k1 −q) �P−V (

(0)
k2 +q).

The renormalized contribution of graph A2 is given by the formulas

Aren
2 = lim

M→∞

∫
d4pd4q RA2(p, q; k1;M), (8.27)

where

RA2(p, q; k1;M) =
I i.s.

A2
(p, q; k1;M)− I i.s.

A2
(p, q; (0)k1;M)− (k1−

(0)
k1)

μ
∂ I i.s.

A2
(p,q;k1;M)
∂kμ1

∣∣∣∣
k1=

(0)
k1

− 1
2 (k1−

(0)
k1)

μ(k1−
(0)
k1)

ν
∂2 I i.s.

A2
(p,q;k1;M)
∂kμ1 ∂kν1

∣∣∣∣
k1=

(0)
k1

. (8.28)

Inspection of the integral (8.27) shows that it can be calculated term by term if we
use the Pauli–Villars regularization with N = 2. One can also check that

 i.s
A2

d f=
∫

d4pd4q I i.s.
A2
(p, q; k1;M)

depends on the Lorentz scalar k2
1 when k2

1 < 0, and also on
(0)
k1
(0)
k2= μ2/3,

(
(0)
k1)

2 = ((0)k2)
2 = −μ2. When k2

1 ≥ 0, also a dependence on sign(k0
1) may appear,

because the sign of k0
1 is Lorentz invariant for time- and light-like k1.

The subtracted terms in formula (8.28) explicitly contain the fixed four-vector
(0)
k1 . One may worry that this is not compatible with the Lorentz invariance. The
point is that, as we shall see in Chap. 10, if the model is Lorentz invariant then
G̃(k1) introduced by the formula

G̃(2)(k1, k2) = δ(k1 + k2)G̃(k1), (8.29)
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has the property

G̃(Lk1) = G̃(k1) (8.30)

for arbitrary proper, ortochronous Lorentz transformations (L ∈ L↑+). In the pertur-
bative expansion, this property should hold separately for the total contribution in
each order (that is for the sum of contributions from all graphs in the given order).
Graph A2 is the only second order graph contributing to G̃(2). Therefore, it should
give a Lorentz invariant expression. It turns out that this is not the case. Let us
assume that k2

1 < 0. Then,  i.s
A2

depends only on k2
1, and

∂ i.s
A2
(k2

1;M;μ)
∂kμ1

∣∣∣∣∣
k1=

(0)
k1

= 2
(0)
k1μ

∂ i.s
A2
(k2

1;M;μ)
∂(k2

1)

∣∣∣∣∣
k2

1=−μ2

,

∂2 i.s
A2
(k2

1;M;μ)
∂kμ1 ∂kν1

∣∣∣∣∣
k1=

(0)
k1

=

2ημν
∂ i.s

A2
(k2

1;M;μ)
∂(k2

1)

∣∣∣∣∣
k2

1=−μ2

+ 4
(0)
k1μ

(0)
k1ν

∂2 i.s
A2
(k2

1;M;μ)
∂(k2

1)∂(k
2
1)

∣∣∣∣∣
k2

1=−μ2

,

where ημν are components of the Minkowski metric tensor. Therefore,

∫
d4 pd4q RA2(p, q; k1;M) =  i.s

A2
(k2

1;M;μ)− i.s
A2
(−μ2;M;μ)

− (k2
1 + μ2)

∂ i.s
A2
(k2

1;M;μ)
∂(k2

1)

∣∣∣∣∣
k2

1=−μ2

− 2(k1
(0)
k1 +μ2)2

∂2 i.s
A2
(k2

1;M;μ)
∂(k2

1)∂(k
2
1)

∣∣∣∣∣
k2

1=−μ2

.

The last term is not compatible with the Lorentz invariance because in general

(Lk1)
(0)
k1 �= k1

(0)
k1.

Fortunately, the harmful term may be omitted, because it is not necessary for
the removal of the UV divergences. One can easily see that by taking the particular

subtraction point, namely such thatμ2 = 0,
(0)
k1= 0. Then that term simply vanishes,

so the UV divergences are removed without it. One can also give another argument.
The two derivatives with respect to k2

1 lower the dimension by 4, hence that term has
the superficial degree of divergence equal to −2. Therefore, it is finite in the limit
M →∞, and in consequence irrelevant for the removal of UV divergences.

In order to preserve the Lorentz invariance we have to modify the subtraction
procedure for the 2-point Green’s function: after introducing the intermediate regu-
larization we first compute i.s

A2
(k2

1;M;μ), and next we subtract the first two terms

of the Taylor series with respect to k2
1 at k2

1 = −μ2,
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 ren
A2
(k2

1;μ) = lim
M→∞

(
 i.s

A2
(k2

1;M;μ)

− i.s
A2
(−μ2;M;μ)− (k2

1 + μ2)
∂ i.s

A2
(k2

1;M;μ)
∂(k2

1)

∣∣∣∣
k2

1=−μ2

)
. (8.31)

Note that such  ren
A2
(k2

1;μ) obeys the following identities (the renormalization con-
ditions)

 ren
A2
(−μ2;μ) = 0,

∂ ren
A2
(k2

1;μ)
∂(k2

1)

∣∣∣∣∣
k2

1=−μ2

= 0. (8.32)

Similarly as in the case of graph A1, the subtractions (8.31) can be interpreted as
the result of adding to the interaction ṼIg[β̃] the counterterm

δ2ṼIg[β̃] = λ2
0

12(2π)8

∫
d4q1d4q2 δ(q1 + q2)β̃(q1)β̃(q2)

[
B1 + B2(q

2
1 + μ2)

]
,

(8.33)
where

B1 =  i.s
A2
(−μ2;M;μ), B2 =

∂ i.s
A2
(k2

1;M;μ)
∂(k2

1)

∣∣∣∣∣
k2

1=−μ2

.

This corresponds to adding the term

δ2S = − λ2
0

12(2π)8

∫
d4x

[
(B1 + B2μ

2)φ2(x)+ B2∂μφ(x)∂
μφ(x)

]
(8.34)

to the action functional (8.6). The internal subtractions are implemented by the
counterterm (8.21).

The counterterms δ1ṼIg, δ2ṼIg remove all UV divergences in the order λ2. In
the next order the divergences reappear, and new counterterms have to be included.
They also have the general form (8.21) and (8.33), because there are no other types
of divergent graphs than the ones already considered: quadratically divergent 1PI
graphs with 2 legs and logarithmically divergent 1PI graphs with 4 legs. The con-
stants C1, B1, B2 will have new values. Thus, in spite of the ad hoc modifications
(the inclusion of the counterterms), the action functional preserves its original form
(8.6). Generally, the action functional in perturbatively renormalizable models may
change its form, but after a finite number of such changes it reaches its stable form,
in which only coefficients are changed when we go to still higher orders.

Note that as far as the removal of the UV divergences is concerned, the con-
stants B1, B2,C1 may be changed by adding to them finite, independent of M con-
stants b1, b2, c1 of appropriate dimensionality. Then, the renormalization conditions
change their form, e.g., instead of (8.32) we have
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 ren
A2
(−μ2;μ) = −b1,

∂ ren
A2
(k2

1;μ)
∂(k2

1)

∣∣∣∣∣
k2

1=−μ2

= −b2.

The new ren
A2
(k2

1;μ) differs from the one given by formula (8.31) by the term−b1−
(k2

1 + μ2)b2. Such freedom in the concrete form of subtracted terms implies that
actually the renormalized perturbative expansion contains arbitrary finite constants.
Their number is equal to the number of renormalization conditions, and is finite
in the renormalizable models. On the other hand, in nonrenormalizable models the
number of such constants increases indefinitely with the increasing order of the
perturbative expansion—this fact greatly diminishes the predictive power of these
models.

8.5 The Multiplicative Renormalization

We have seen how to renormalize separate graphs. Now we will look at the effect
of the renormalization on the whole Green’s functions, which are given by an infi-
nite series of graphs8. The theory is regularized in order to avoid mathematically
meaningless expressions that correspond to the 1PI graphs with loops. We use the
version of the Pauli–Villars regularization with N = 2, described at the beginning of
Sect. 8.2. The existence of the limit M →∞ is secured by adding the counterterms
to the interaction ṼIg[β̃] given by formula (7.56). Their general form reads

δṼIg = δ1ṼIg + δ2ṼIg,

where

δ1ṼIg = (Z1 − 1)
λ0

4!
∫ 4∏

i=1

d4qi g̃(q1, q2, q3, q4) β̃(q1)β̃(q2)β̃(q3)β̃(q4), (8.35)

and

δ2ṼIg = 1

2

∫
d4q1d4q2 δ(q1 + q2)β̃(q1)β̃(q2)

[
(1− Z3)(q

2
1 − m2

0)+ δm2 Z3

]
.

(8.36)

8 This series is likely not convergent. Typically, one expects that perturbative expansions in quan-
tum field theory yield a so called asymptotic series which form a special class of divergent series.
In most applications of the perturbative expansions, the series is either cut to a finite sum of graphs
(then the problem of convergence disappears), or it is restricted to an infinite subclass of graphs
which are distinguished by their particularly simple analytical contributions (and then sometimes
one can compute the sum).
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The constants Z1, Z3, δm2 are adjusted order by order in the perturbative expansion.
Because these constants are divergent in the limit M → ∞, they are called the
infinite renormalization constants.

For example, a comparison with the results of Sects. 8.2 and 8.4 for the graphs
A1, A2 gives

Z1 = 1+ 3λ0C1

2(2π)4
, Z3 = 1− λ2

0 B2

6(2π)8
, δm2 = λ

2
0 B1 + λ2

0(m
2
0 + μ2)B2

6(2π)8
,

where we have neglected all the terms which give higher than the second powers of
λ0 in the perturbative expansion for the Green’s functions.

Let us denote by G̃(n)s (p1, p2, . . . , pn; λ0,m2
0, μ,M) the Fourier transform of

the n-point Green’s function, calculated by means of the regularized perturbative
series with the BPHZ subtractions. Here the subscript s refers to the subtractions,
M to the Pauli–Villars regularization with N = 2, and μ to the subtraction point.
The subtractions are implemented by the counterterms (8.35) and (8.36). The limit
M →∞ of that function exists, and it is called the renormalized Green’s function,

G̃(n)ren(p1, p2, . . . , pn; λ0,m
2
0, μ) ≡ lim

M→∞ G̃(n)s (p1, p2, . . . , pn; λ0,m
2
0, μ,M).

(8.37)
There exists a certain, very important relation between G̃(n)s (pi ; λ0,m2

0, μ,M), and
the corresponding regularized Green’s function without any subtractions denoted by
G̃(n)(p1, p2, . . . , pn; λ0,m2

0,M). The relation has the following form

G̃(n)s (p1, p2, . . . , pn; λ0,m
2
0, μ,M) = Z

− n
2

3 G̃(n)(p1, p2, . . . , pn; λb,m
2
b,M),

(8.38)
where

λb = λ0 Z1 Z−2
3 , m2

b = m2
0 + δm2. (8.39)

Relation (8.38) shows that the subtractions are equivalent to the shift of the mass
parameter m2

0 → m2
b, and to the rescaling of the Green’s function by the factor

Z−n/2
3 and of the coupling constant λ0 by the factor Z1/Z2

3. It is often called the
formula of the multiplicative renormalization. The constants λb, m2

b are called the
bare coupling constant and the bare mass parameter, respectively.

In order to prove relation (8.38), we just calculate the effects of the counterterms
δ1ṼIg, δ2ṼIg on a graph � constructed in the regularized model without the coun-
terterms. Let us start from δ1ṼIg. The graphs are generated from formulas (7.59)
and (7.60), but now ṼIg is replaced by

ṼIg + δ1ṼIg = λ0 Z1

4!
∫ 4∏

i=1

d4qi g̃(q1, q2, q3, q4) β̃(q1)β̃(q2)β̃(q3)β̃(q4).
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Therefore, the net effect of the counterterm δ1ṼIg is that λ0 is replaced by λ0 Z1 in
all internal vertices.

The counterterm δ2ṼIg contributes to the functional Z̃ (n)I the factor

exp(−i
∫

d4x δ2VI [β̃]) =

exp
(

i
2

∫
d4q1d4q2

[
(Z3 − 1)(q2

1 − m2
0)− δm2 Z3

]
δ(q1 + q2)β̃(q1)β̃(q2)

)
.

It yields a new internal vertex with two legs and the factor f0 ≡ i(Z3 − 1)(q2
1 −

m2
0)− iδm2 Z3 associated with it.9 With the new internal vertex available, each line

of a given graph � can be ‘decorated’ by putting the new vertex on it arbitrarily
many times. We consider here graphs for Green’s functions that contain external
vertices as well as the propagators �F on the external lines. Any two neighbour-
ing vertices are connected by a line which represents �F , and the four-leg internal
vertices (7.64) contain the regularizing function (8.7). Summing all graphs obtained
from � by decorating all its lines with the new internal vertex, we effectively obtain
again the graph �, but each line of it now represents the whole sum

�F (p)+�F (p) f0�F (p)+�F (p)( f0�F (p))
2 + . . .

= �F (p)
1

1− f0�F (p)
= 1

Z3

i

p2 − (m2
0 + δm2)+ i0+

.

Thus, the inclusion of the counterterm δ2ṼIg is equivalent to multiplying each line
by 1/Z3 and shifting the mass parameter m2

0 by δm2.

In the last step in the derivation of formula (8.38), we collect the factors 1/Z3
from all the lines of the graph: this gives the overall factor (1/Z3)

I+n . Formula
(8.1) implies that I + n = 2l + n/2. Hence, the overall factor can be written in
the form (Z−2

3 )
l Z−n/2

3 , which shows that we may ascribe the factor Z−2
3 to each

internal vertex (there are l of them), and Z−1/2
3 to each external vertex. In other

words, the factor 1/Z3 on each line of the graph is written as (1/
√

Z3)
2 and each

1/
√

Z3 is moved to the internal or external vertices adjacent to the line. In this way
1/Z3 disappears from all lines. The net result of the inclusion of the counterterms
is that each internal vertex (7.64) is multiplied by Z1 Z−2

3 , the mass parameter m2
0

is replaced by m2
0 + δm2, and the graph is multiplied by Z−n/2

3 . This holds for each
graph � in the perturbative expansion for G̃(n)(p1, p2, . . . , pn; λ0,m2

0,M).
1PI irreducible Green’s functions �̃(n), often also called proper vertices, are

obtained from the perturbative expansion for G̃(n) by throwing away all graphs that
are not 1PI and removing the propagators �F from the external lines. Calculation
of the effects of inclusion of the counterterms differs only slightly from the one

9 The factor 1/2 is canceled by the combinatorial factor 2, which appears because the vertex can
be connected to two lines in two ways.
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presented above. Because the external lines are absent now, we miss the factors
1/
√

Z3 needed for obtaining λb in the internal vertices adjacent to the external lines.
We introduce these factors by multiplying the graph by 1 = (√Z3/

√
Z3)

n. There-
fore, in the present case we have the factor

√
Z3 for each external vertex instead of

1/
√

Z3 obtained in the case of Green’s functions. Thus, the formula for the proper
vertices analogous to (8.38) has the form

�̃(n)s (p1, p2, . . . , pn; λ0,m
2
0, μ,M) = Z

n
2
3 �̃

(n)(p1, p2, . . . , pn; λb,m
2
b,M).

(8.40)
In the limit M → ∞ the l.h.s. of this formula gives the renormalized 1PI Green’s
function,

�̃(n)ren(p1, p2, . . . , pn; λ0,m
2
0, μ) ≡ lim

M→∞ �̃
(n)
s (p1, p2, . . . , pn; λ0,m

2
0, μ,M).

(8.41)
Formulas (8.38) and (8.40) loose mathematical meaning in the limit M → ∞

because then Z3, λb, and m2
b are divergent. Of course, these divergences cancel each

other and produce the finite limit—the renormalized Green’s functions or the proper
vertices, respectively—but the renormalized functions do not have the forms given
on the r.h.s.’s of formulas (8.38) and (8.40) with meaningful constants Z3, λb,m2

b.

Exercises

8.1 Show that a graph equivalent to the one presented in Fig. 8.2 can be drawn on a
plane (without the intersections of lines) if the external lines have a finite length.

8.2 Check renormalizability of the models λ0 : φn
d :, where n > 2 is a natural

number and d ≥ 2 is the dimension of space-time, by computing:

(a) the dimension of the coupling constant λ0,
(b) the superficial degree of divergence.

8.3 Construct an explicit example of the symmetric subtraction point.
Hint. Assume that

(0)
k1= (0, 0, 0, μ),

(0)
k2= (0, 0, α, β),

(0)
k3= (0, x, y, z),

and choose α, β, x, y, z in order to obey conditions (8.18). Check that
(0)
k4= − (0)

k1

− (0)
k2 −

(0)
k3 obeys these conditions automatically.

8.4 Graph � has the form presented in Fig. 8.11. The dashed boxes mark its renor-
malization parts γ1, γ2. They are not disconnected. Prove that
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Fig. 8.11 The graph �

R� =
(

λ0

4!(2π)4
)−1

Rγ1 Rγ2 .

8.5 Prove that the superficial degree of divergence of the QED graph � in four-
dimensional space-time with n p external photon lines and ne external fermion (elec-
tron or positron) lines is equal to

ω(�) = 4− 3

2
ne − n p.

How would the formula for ω(�) look like had we considered QED in the D-dimen-
sional space-time?
The rules for Feynman diagrams in QED can be found in, e.g., [9, 10, 5].

8.6 Derive the general form of the Feynman’s parametric representation:

n∏
i=1

1

Aαi
i

= �(α)∏n
i=1 �(αi )

∫ 1

0

n∏
i=1

dxi δ

(
1−

n∑
i=1

xi

) ∏n
i=1 xαi−1

i[∑n
i=1 xi Ai

]α ,

where α =
n∑

i=1
αi .

8.7 Prove the formula:

∫
d Dk

(k2 + 2k · Q − M2 + i0+)n
= i(−1)nπ

D
2
�
(
n − D

2

)
�(n)

(Q2 + M2)
D
2 −n,

where for all D−vectors the scalar product is a · b = a0b0 − 
a · 
b.
Hint. Deform the contour of integration over k0 onto imaginary axis in the complex
k0 plane and perform the resulting integral by rewriting it in the spherical coordi-
nates in D-dimensional Euclidean space. The value of the integral over the angular
variables can be obtained by comparing the results of calculating the D-dimensional
Gaussian integral

ID =
∞∫

−∞

D∏
k=1

dxk e−
∑D

k=1(xk)
2
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μμ νν

Fig. 8.12 One-loop contributions to the two-point, 1PI, QED Green’s functions

in Cartesian and spherical coordinates; the integral over the radial direction can be
performed with the help of an integral representation of the Euler beta function and
its relation to the gamma function.

8.8 The graph in Fig. 8.12a represents the one-loop, momentum space contribution
to the electron self-energy. (a) Write down its integral representation and denote it
by −i(2π)4�1(/p,m0).
(b) In 4-dimensional space-time the integral appearing in −i(2π)4�1(/p,m0) is
divergent, with the superficial degree of divergence equal 1 (compare with the Prob-
lem 8.5). Regularize it by assuming that the number of space-time dimensions D is
sufficiently small and then evaluate using the Feynman’s parametric representation
to combine the denominators and the formula derived in the Problem 8.7.
Hint. Since the index μ of the Dirac matrices takes in D-dimensional space-time D
values, the formulae

γμγ
μ = DI4, γμ/qγ

μ = (2− D)/q

will be useful (derive them!)
Answer:

�1(/p,m0)= e2
0

8π2+ε �(ε)
∫ 1

0
dx
(
(2−ε)m0−(1−ε)(1−x)/p

) (
xm2

0 − x(1− x)p2
)−ε

where D = 4− 2ε.
(c) The divergence of �1(/p,m0) in four-dimensional space-time reveals itself as
a pole of the gamma function for ε → 0. To obtain the renormalized one-loop
contribution to the electron self-energy apply the subtraction procedure (with the
subtraction point p = 0), i.e. calculate

�ren
1 (/p,m0) = lim

ε→0

(
�1(/p,m0)−�1(0,m0)− pμ

∂�1(/p,m0)

∂pμ

∣∣∣
p=0

)
.

(d) Prove that the one-loop corrected, renormalized electron propagator is given by
the formula

SF(/p,m0) = i

(2π)4
(
/p − m0 −�ren

1 (/p,m0)+ i0+
)−1 +O

(
e4

0

)
.
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8.9 Denote by μν(p) = −i(2π)4
(

pμ pν − p2ημν
)
π1(p2) the 1PI contribution to

the photon propagator (the so called vacuum polarization tensor) specified by the
graph b) in Fig. 8.12.
(a) Calculate it using the same strategy as in Exercise 8.8.
Hint. Check that in D-dimensional space-time

D
∫

d Dk kμkν f (k2) = ημν
∫

d Dk k2 f (k2)

where f (k2) is some function and, using the result of Exercise 8.7, derive the for-
mula

∫
d Dk

2kμkν − ημνk2

(
k2 − m2

0 + x(1− x)p2
)2 = −iπ2−εημν�(ε)

(
m2

0 − x(1− x)p2
)1−ε

.

Answer:

π1(p
2) = − e2

0

2π2+ε �(ε)
∫ 1

0
dx x(1− x)

(
m2

0 − x(1− x)p2
)−ε

.

(b) Compute the renormalized, one-loop contribution to the photon propagator

choosing the subtraction point at
(0)
p with (

(0)
p )2 = −μ2.

Answer:

π ren
1 (p2) = e2

0

2π2

∫ 1

0
dx x(1− x) log

m2
0 − x(1− x)p2

m2
0 + x(1− x)μ2

.

(c) Choose the free photon propagator in the transversal form

Dμν0 (p) =
i

(2π)4

(
−ημν + pμ pν

p2 + i0+

)
1

p2 + i0+
.

Prove that the one-loop corrected, renormalized photon propagator is given by the
formula

Dμν1 (p) =
i

(2π)4

(
−ημν + pμ pν

p2 + i0+

)
1

(1− π ren
1 (p2))(p2 + i0+)

+O
(

e4
0

)
.

8.10 Start with the QED Lagrangian with the physical quantities (field operators ψ
and Aμ,, electron mass m0 and electric charge e0) replaced by the “bare” quantities
ψb, Abμ,mb and eb :

Lb = −1

4
Fμνb Fbμν + ψ̄b

[
iγμ

(
∂μ + ieb Aμb

)− mb
]
ψb.
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Relate the bare and physical (renormalized) quantities through the renormalization
constants

ψ = Z−1/2
2 ψb, Aμ = Z−1/2

3 Aμb , e0 = Z1/2
3 eb, m0 = mb +�m.

The fact that the electromagnetic field renormalization constant is equal to the
inverse of the electric charge renormalization constant is a peculiarity of QED
related to the gauge invariance of this theory.
(a) Determine the form of

δL = Lb − L

where L is of the same form as Lb, with the bare quantities replaced with the phys-
ical ones, i.e.:

L = −1

4
FμνFμν + ψ̄

[
iγμ

(
∂μ + ie0 Aμ

)− m0
]
ψ.

(b) Treating −δL as an additional contribution to the interaction Hamiltonian (the
counterterms) derive the form of additional Feynman diagram vertices which appear
thanks to its presence.
(c) Calculate the values of Z2, Z3 and �m which result in the contribution to the
electron and photon propagators equivalent to the subtractions applied in the Exer-
cises 8.8 and 8.9.
Answer:

Z2 = 1− e2
0

8π2+ε (1− ε)�(ε)
∫ 1

0
dx (1− x)

(
x2m2

0

)−ε
,

�m = m0
e2

0

8π2+ε �(ε)
∫ 1

0
dx
(
1+ (1− ε)x) (x2m2

0

)−ε
,

Z3 = 1− e2
0

2π2+ε �(ε)
1∫

0

dx x(1− x)
(

m2
0 + x(1− x)μ2

)−ε
.



Chapter 9
Renormalization Group

Abstract Relation between subtracted Green’s functions with different choices
for the subtraction point in the φ4

4 model. The running coupling constant. Func-
tional equations of the renormalization group. Differential r. g. equations of the
Gell-Mann–Low and the Callan–Symanzik type. The β function. Reliability of
the perturbative approximations. The phenomenon of dimensional transmutation in
renormalized quantum field theory.

The precise form of the perturbatively calculated and renormalized contributions to
the Green’s functions depends on the adopted scheme of subtractions. In particular,
with the subtraction at the symmetric point (8.18) the dependence on the parameter
μ appears. The choice of the subtraction point is not dictated by any concrete phys-
ical phenomena. On the contrary, the motivation for introducing it has been a purely
mathematical one: the subtractions secure the existence of the limit M → ∞ (the
removal of the regularization), and the mathematical formalism itself does not point
to any specific value of μ. Therefore, it is desirable to investigate the dependence
of the renormalized Green’s functions on μ in more detail. Another arbitrariness,
also present in the renormalized perturbative expansion, has the form of the finite
constants which can be included in the BPHZ subtractions, as discussed at the end
of Sect.8.4—it should be controlled too.

9.1 Renormalization Group Equations

Renormalization group equations for the renormalized Green’s functions (in the
:φ4

4 : model) follow essentially from formula (8.38). That formula implies a rela-

tion between the Green’s functions G̃(n)s , obtained with two choices μ, μ′ of the
symmetric subtraction point, because on the r.h.s. there is the Green’s function in it
without any subtractions. Simple calculation shows that

G̃(n)s (p1, p2, . . . , pn; λ0,m
2
0, μ,M) =

z
n
2
3 G̃(n)s (p1, p2, . . . , pn; λ0z−1

1 z2
3,m

2
0 −�m2, μ′,M), (9.1)

H. Arodź, L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
DOI 10.1007/978-3-642-15624-3_9, C© Springer-Verlag Berlin Heidelberg 2010
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where

z3 = Z ′3
Z3
, z1 = Z ′1

Z1
, �m2 = δm ′2 − δm2.

In this chapter we regard p1, . . . , pn, λ0 > 0, m2
0 > 0, μ2 > 0, M2 > 0 as

variables. Taking the limit M → ∞ on both sides of formula (9.1), we obtain the
relation between the renormalized Green’s functions with the two choices for the
subtraction point. Below we prove that the constants z1, z3, �m2 remain finite in
that limit. Their asymptotic values (at M →∞) depend on μ, μ′, m2

0, λ0.
The constants z1, z3 are dimensionless. Therefore, they may be regarded as

functions of the following three independent dimensionless variables: μ′/μ,
m2

0/μ
2, λ0 :

z1 = z1

(
μ′

μ
,

m2
0

μ2
, λ0

)
, z3 = z3

(
μ′

μ
,

m2
0

μ2
, λ0

)
.

The asymptotic value of �m2 is written in the form

�m2 = m2
0

[
1− μ

′2

μ2 m

(
μ′

μ
,

m2
0

μ2 , λ0

)]
, (9.2)

where m is a dimensionless function of the indicated variables. Let us also introduce
the running coupling constant (often called the effective coupling constant)

λ

(
μ′

μ
,

m2
0

μ2
, λ0

)
d f= λ0z−1

1 z2
3. (9.3)

Of course, for μ′ = μ the two subtraction points and the corresponding countert-
erms coincide, hence z1 = 1, z3 = 1, m = 1, λ = λ0.

The relation between the renormalized Green’s functions that follows from (9.1)
in the limit M →∞ can be written in the form

G̃(n)ren(p1, p2, . . . , pn; λ0,m
2
0, μ) = z

n
2
3

(
μ′

μ
,

m2
0

μ2
, λ0

)

G̃(n)ren

(
p1, p2, . . . , pn; λ

(
μ′

μ
,

m2
0

μ2 , λ0

)
, m2

0
μ
′2

μ2 m

(
μ′

μ
,

m2
0

μ2 , λ0

)
, μ′

)
. (9.4)

Thus, if the change of the subtraction point μ→ μ′ is accompanied by the
substitutions
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λ0 → λ′ = λ
(
μ′

μ
,

m2
0

μ2 , λ0

)
, m2

0 → m
′2 = m2

0
μ
′2

μ2 m

(
μ′

μ
,

m2
0

μ2 , λ0

)
, (9.5)

and by the multiplication by zn/2
3 , we recover G̃(n)ren(p1, p2, . . . , pn; λ0,m2

0, μ). For-
mulas (9.5) can be regarded as a one-parameter family of transformations param-
eterized by t ≡ μ′/μ. This parameter has values in the infinite interval (0,∞),
and t = 1 gives the identity transformation. One may consider the pair (λ0,m2

0)

as coordinates on a plane. Then transformations (9.5), considered for a continuous
range of t around t = 1, give the curve

(
λ

(
t,

m2
0

μ2
, λ0

)
, m2

0t2m

(
t,

m2
0

μ2
, λ0

))

in that plane. Such a curve is called the renormalization group trajectory (or r.g.
flow) passing through the point (λ0,m2

0). The family of transformations (9.4) and
(9.5) parameterized by t ∈ (0,∞) is called the renormalization group.

The formula for the proper vertices analogous to (9.4) has the form

�̃(n)ren(p1, p2, . . . , pn; λ0,m
2
0, μ)

= z
− n

2
3 �̃

(n)
ren

(
p1, p2, . . . , pn; λ

(
μ′
μ
,

m2
0
μ2 , λ0

)
, m2

0
μ
′2
μ2 m

(
μ′
μ
,

m2
0
μ2 , λ0

)
, μ′
)
.(9.6)

It follows in the limit M → ∞ from a relation between the proper vertices analo-
gous to (9.1).

Note that formulas (9.4) and (9.6) may easily be generalized to cases where the
two subtraction schemes differ by much more than merely the concrete values of μ.
The divergent in the limit M → ∞ renormalization constants Z1, Z3, δm2 and
Z ′1, Z ′3, δm2′ may correspond to any two renormalization schemes that can differ by
the choice of regularization, as well as by the method of subtracting the divergent
terms. Still, we define z1 = Z ′1/Z1, etc., as above, and obtain formulas that relate
the renormalized Green’s functions calculated in the two renormalization schemes.

Formulas (9.4) and (9.6) provide the convenient starting point for a calcu-
lation of z1, z3,�m2, or equivalently z3, λ,m. We shall use the continuity of
the renormalized 1PI Feynman graphs contributing to �̃(2)ren and �̃(4)ren with respect
to the parameter μ′, see below. The perturbative contributions are generalized
functions of the external momenta, and therefore they can be singular at some
momenta. For example, Aren

1 (k
2) given by formula (8.19) is singular at k2 = 0

in the case m2
0 = 0. However, one can prove1 that the renormalized contri-

butions to G̃(n)ren(p1, . . . , pn), after dropping the δ
(∑n

i=1 pi
)

factor and elimi-

nating pn

(
becausepn = −∑n−1

i=1 pi

)
, become smooth functions of the external

1 The proof can be found in, e.g. [11].
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Fig. 9.1 The graph representing the first order contribution to �̃(4)

four-momenta p1, . . . , pn−1 in the space-like domain defined by the inequalities
p2

i < 0, pi pk < 0, where i, k = 1, . . . n − 1. In fact, this is the reason why the
four-momenta of the symmetric subtraction point are space-like.

Let us consider formula (9.6) with n = 4 and pi =
(0)
p i (μ

′), where
(0)
p i (μ

′) are
the four-momenta from the symmetric point (8.18) with μ replaced by μ′. Due to
the subtractions, the contributions of all the graphs with one or more loops to

�̃(4)ren

(
(0)
p 1 (μ

′), . . . ,
(0)
p 4 (μ

′); λ
(
μ′

μ
,

m2
0

μ2 , λ0

)
, m2

0
μ
′2

μ2 m

(
μ′

μ
,

m2
0

μ2 , λ0

)
, μ′

)
,

vanish, c.f. the renormalization condition (8.17). The only nonvanishing contribu-
tion, equal to −iλ/(2π)4, comes from the tree graph shown in Fig. 9.1. Therefore,
just for these particular external four-momenta, relation (9.6) can be written in the
form

�̃4(
(0)
p 1 (μ

′),
(0)
p 2 (μ

′),
(0)
p 3 (μ

′); λ0,m
2
0, μ) = −i

λ

(
μ′
μ
,

m2
0
μ2 , λ

)

(2π)4z2
3

= − iλ0

(2π)4z1
,

(9.7)
where �̃4 is defined by the formula

�̃(4)ren(p1, p2, p3, p4; λ0,m
2
0, μ) = δ

(
4∑

i=1

pi

)
�̃4(p1, p2, p3; λ0,m

2
0, μ).

The l.h.s. of formula (9.7) is a nontrivial sum of 1PI graphs unless μ′ = μ. In
the latter case it is equal to−iλ0/(2π)4 �= 0. Because of the continuity with respect
to μ′, it also does not vanish for μ′ �= μ, at least when μ′ is sufficiently close to μ.
Therefore, formula (9.7) implies that for such μ′

z1 �= 0, z1 <∞.

The functions z3 and m can be determined from formula (9.4), in which we put

n = 2 and pi =
(0)
p i (μ

′). The Green’s function on the r.h.s. is given by the zeroth
order contribution. Therefore formula (9.4) can be written in the form
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G̃(−μ′2; λ0,m
2
0, μ) = −

iμ2z3

μ′2
(
μ2 + m2

0 m

(
μ′
μ
,

m2
0
μ2 , λ0

)) , (9.8)

where the function G̃ is defined by (8.29) and is represented by a nontrivial sum
of graphs. The r.h.s. is given by the tree graph (7.68). Contributions from all other
graphs vanish due to the subtractions, c.f. the renormalization conditions (8.32).
The subtractions for the 1PI graphs with two external lines contain two terms, see
formula (8.31). The presence of the term with the derivative implies the second
renormalization condition (8.32), which leads to the formula

G̃ ′(−μ′2; λ0,m
2
0, μ) = −

iμ4z3

μ′4
(
μ2 + m2

0 m

(
μ′
μ
,

m2
0
μ2 , λ0

))2 , (9.9)

where

G̃ ′(−μ′2; λ0,m
2
0, μ) =

∂G̃
(

p2; λ0,m2
0, μ

)
∂(p2)

∣∣∣∣∣
p2=−μ′2

.

The notation in (9.8) and (9.9) takes into account the fact that G̃(p) actually is a
function of p2 when the four-momentum p1 is space-like. This function of p2 is
denoted by G̃(p2). Relations (9.8) and (9.9) give

z3

(
μ′

μ
,

m2
0

μ2 , λ0

)
= i G̃2

G̃′
, m

(
μ′

μ
,

m2
0

μ2 , λ0

)
= μ

2

m2
0

(
G̃

μ′2G̃ ′
− 1

)
, (9.10)

where for brevity we have omitted the arguments of G̃ and G̃′.We conclude that z3
and m are finite, at least for μ′ sufficiently close to μ.

Apart from proving the finiteness of z1, z3 and m, formulas (9.7) and (9.10) show
also that these functions are uniquely determined by the renormalized Green’s func-
tions. Thus, we may say that formula (9.4) determines λ, z3 and m uniquely at least
forμ′ close enough toμ. This fact is crucial for the derivation of the renormalization
group equations presented below.

In the first step we derive a set of functional equations for λ, z3, m. Let us add
a third subtraction point μ′′. Formula (9.4) relates the corresponding renormalized
Green’s functions

G̃(n)ren(pi ; λ0,m
2
0, μ)

= z
n
2
3

(
μ′′
μ
,

m2
0

μ2
, λ0

)
G̃(n)ren

(
pi ; λ

(
μ′′
μ
,

m2
0

μ2
, λ0

)
,m2

0
μ
′′2

μ2
m

(
μ′′
μ
,

m2
0

μ2
, λ0

)
, μ′′

)
.

(9.11)
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On the other hand,

G̃(n)ren(pi ; λ′,m′2, μ′)

= z
n
2
3

(
μ′′
μ′ ,

m
′2

μ
′2 , λ

′
)

G̃(n)ren

(
pi ; λ

(
μ′′
μ′ ,

m
′2

μ
′2 , λ

′
)
,m

′2μ
′′2

μ
′2 m

(
μ′′
μ′ ,

m
′2

μ
′2 , λ

′
)
, μ′′

)
,

(9.12)

where λ′,m ′2 are defined in formulas (9.5). Inserting formula (9.12) on the r.h.s. of
(9.4), we obtain the relation

G̃(n)ren(pi ; λ0,m
2
0, μ) = z

n
2
3

(
μ′

μ
,

m2
0

μ2
, λ0

)
z

n
2
3

(
μ′′

μ′
,

m
′2

μ
′2 , λ

′
)

G̃(n)ren

(
pi ; λ

(
μ′′

μ′
,

m
′2

μ
′2 , λ

′
)
,m

′2μ
′′2

μ
′2 m

(
μ′′

μ′
,

m
′2

μ
′2 , λ

′
)
, μ′′

)
. (9.13)

Because of the above mentioned uniqueness of λ, z3 and m, comparing the rela-
tions (9.11) and (9.13), we conclude that λ, z3 and m obey the following functional
equations2

λ

(
μ′′
μ
,

m2
0

μ2
, λ0

)
= λ

(
μ′′
μ′ ,

m2
0

μ2
m

(
μ′
μ
,

m2
0

μ2
, λ0

)
, λ

(
μ′
μ
,

m2
0

μ2
, λ0

))
, (9.14)

m

(
μ′′
μ
,

m2
0

μ2
, λ0

)
= m

(
μ′
μ
,

m2
0

μ2
, λ0

)
m

(
μ′′
μ′ ,

m2
0

μ2
m

(
μ′
μ
,

m2
0

μ2
, λ0

)
, λ

(
μ′
μ
,

m2
0

μ2
, λ0

))
,

(9.15)

and

z3

(
μ′′
μ
,

m2
0

μ2
, λ0

)
= z3

(
μ′
μ
,

m2
0

μ2
, λ0

)
z3

(
μ′′
μ′ ,

m2
0

μ2
m

(
μ′
μ
,

m2
0

μ2
, λ0

)
, λ

(
μ′
μ
,

m2
0

μ2
, λ0

))
.

(9.16)

The functional equations obtained above can be used in order to generate various
differential equations (or rather identities). Equations of the Gell-Mann–Low type
are obtained by differentiating both sides of the functional equations with respect to
μ′′, and putting μ′′ = μ′ afterwards. In the case of Eq. (9.14) we obtain

t
∂λ(t,m2

0/μ
2, λ0)

∂t
= β

(
m2

0

μ2
m

(
t,

m2
0

μ2
, λ0

)
, λ

(
t,

m2
0

μ2
, λ0

))
, (9.17)

2 In the presented approach to the renormalization group they are just identities which follow from
the definitions of λ, m and z3. Nevertheless, we shall call them equations as in most textbooks.
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where

t = μ′/μ,

and the Gell-Mann–Low function β(m2/μ2, λ) is defined as follows:

β

(
m2

μ2 , λ

)
d f= ∂λ(x,m2/μ2, λ)

∂x

∣∣∣∣
x=1
. (9.18)

From Eq. (9.15), we analogously obtain

t
∂ ln m(t,m2

0/μ
2, λ0)

∂t
= γm

(
m2

0

μ2
m

(
t,

m2
0

μ2
, λ0

)
, λ

(
t,

m2
0

μ2
, λ0

))
, (9.19)

where

γm

(
m2

μ2 , λ

)
d f= ∂m(x,m2/μ2, λ)

∂x

∣∣∣∣
x=1
. (9.20)

Finally, Eq. (9.16) gives

t
∂ ln z3(t,m2

0/μ
2, λ0)

∂t
= γ

(
m2

0

μ2 m

(
t,

m2
0

μ2 , λ0

)
, λ

(
t,

m2
0

μ2 , λ0

))
, (9.21)

where

γ

(
m2

μ2
, λ

)
d f= ∂z3(x,m2/μ2, λ)

∂x

∣∣∣∣
x=1
. (9.22)

These differential equations are supplemented with the ‘initial conditions’

λ

(
1,

m2
0

μ2
, λ0

)
= λ0, m

(
1,

m2
0

μ2
, λ0

)
= 1, z3

(
1,

m2
0

μ2
, λ0

)
= 1. (9.23)

Note that in order to calculate the functions β, γm and γ it is sufficient to know the
functions λ, m and z3 for all t from an arbitrarily small open interval containing
t = 1. The differential equations (9.17), (9.19) and (9.21) can be used in order to
calculate these functions for t outside that arbitrarily small interval.

Another set of differential equations, called the Callan–Symanzik equations, is
obtained by differentiation of the functional equations (9.14)÷(9.16) with respect to
μ′, next putting μ′ = μ, and finally changing the notation μ′′ → μ′. The deriva-
tives of the l.h.s.’s of the functional equations vanish, while on the r.h.s.’s we obtain
derivatives with respect to all the three arguments. For example, Eq. (9.14) gives the
Callan–Symanzik equation for the running coupling constant:
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t
∂λ(t,m2

0/μ
2, λ0)

∂t
− m2

0

μ2 γm

(
m2

0

μ2 , λ0

)
∂λ(t,m2

0/μ
2, λ0)

∂(m2
0/μ

2)

− β
(

m2
0

μ2
, λ0

)
∂λ(t,m2

0/μ
2, λ0)

∂λ0
= 0. (9.24)

The differentiation with respect to μ′ and subsequent substitution μ′ = μ applied
to formula (9.4) gives the Callan–Symanzik equation for G̃(n)ren :

μ
∂G̃(n)ren

∂μ
+ β

(
m2

0

μ2 , λ0

)
∂G̃(n)ren

∂λ0

+ m2
0

[
γm

(
m2

0

μ2 , λ0

)
+ 2

]
∂G̃(n)ren

∂m2
0

+ n

2
γ

(
m2

0

μ2 , λ0

)
G̃(n)ren = 0. (9.25)

The Callan–Symanzik equation for �̃(n)ren has a similar form. It can readily be
obtained from relation (9.6).

9.2 The Running Coupling Constant

The running coupling constant plays an important role in assessing reliability of the
perturbative approximation. Let us introduce the dimensionless function g̃(n) (which
should not be confused with the regularizing function g̃ considered in the previous
chapters) such that

G̃(n)ren(pi ; λ0,m
2
0, μ) = md0

0 g̃(n)
(

pi

μ
; λ0,

m2
0

μ2

)
, (9.26)

where d0 = −3n is the dimension of G̃(n)ren in the mass units3. We have assumed
that m0 �= 0. The perturbative contributions to the renormalized Green’s function
can always be written in the form (9.26). One can see this from the formulas for
the BPHZ subtractions and for the free propagator �F (k): all external and internal
four-momenta k j are written as k j = μ k j/μ, where μ > 0, and the factors μ are
extracted, e.g.,

i

k2 − m2
0 + i0+

= μ−2 i

k2/μ2 − m2
0/μ

2 + i0+
.

3 In such units that h̄ = 1, c = 1 the field φ(x) has the dimension cm−1, and the vacuum state
vector |0〉 is dimensionless, hence [G(n)] = cm−n . The Fourier transform changes the dimension
by +4n. Therefore, [G̃(n)] = cm+3n = [m0]−3n .
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The factors μ can also be extracted from the four-momenta
(0)
p i which appear

in the symmetric subtraction point (8.18), from the cutoff parameter M (M2 =
μ2 M2/μ2), as well as from the four-momenta in δ(

∑
pi ). Finally, we write

μ = m0 μ/m0 and collect all factors m0. This gives the overall factor md0
0 . The

definition (9.26), used on both sides of relation (9.4), gives

g̃(n)
(

pi

μ
; λ0,

m2
0

μ2

)
=
(
μ′

μ

)d0

md0/2

(
μ′

μ
,

m2
0

μ2
, λ0

)

zn/2
3

(
μ′

μ
,

m2
0

μ2
, λ0

)
g̃(n)

(
pi

μ′
; λ
(
μ′

μ
,

m2
0

μ2
, λ0

)
,

m2
0

μ2
m

(
μ′

μ
,

m2
0

μ2
, λ0

))
. (9.27)

Let us take the particular four-momenta pi ,

pi = μ
′

μ
p

i
, (9.28)

where the momenta p
i

are fixed. Then, the four-vectors pi/μ, pi/μ
′ present in

formula (9.27) can be written as

pi

μ
= t

p
i

μ
,

pi

μ′
= p

i

μ
,

where t = μ′/μ. Therefore,

g̃(n)
(

t
p

i

μ
; λ0,

m2
0

μ2

)
= td0 md0/2zn/2

3 g̃(n)
(

p
i

μ
; λ, m2

0

μ2 m

)
, (9.29)

where m, z3 and λ are functions of t,m2
0/μ

2 and λ0 as shown in (9.27). Using the
definition (9.26) again, we see that

G̃(n)ren(t p
i
; λ0,m

2
0, μ) = td0 zn/2

3 G̃(n)ren(pi
; λ,m2

0 m, μ). (9.30)

On both sides of this relation we have the renormalized Green’s functions with the
same subtraction point μ.

Relation (9.30) shows that the renormalized Green’s functions calculated at the
four-momenta t p

i
in the model with the coupling constant λ0, are related to the

Green’s functions calculated at the four-momenta p
i

in the model with the cou-
pling constant λ. It is essentially a consequence of the straightforward dimensional
analysis applied to relation (9.4).

Suppose that there exists t0 such that λ(t,m2
0/μ

2, λ0) → 0 when t → t0.
Because λ is the actual coupling constant on the r.h.s. of formula (9.30),
one may hope that for pi ≈ t0 p

i
one can obtain a good approximation to



220 9 Renormalization Group

G̃(n)ren(t p
i
; λ0,m2

0, μ) by taking into account only the first few terms in the per-

turbative expansion for G̃(n)ren on the r.h.s. of formula (9.30). On the other hand, if
λ diverges at a certain t = t∞, i.e., λ(t,m2

0/μ
2, λ0) → ∞ when t → t∞, the

perturbative approximation is not trustworthy at the four-momenta pi ≈ t∞ p
i
.

A more precise meaning of these statements is as follows. Suppose that we have
calculated the perturbative approximation for G̃(n)ren(pi

; λ0,m2
0, μ) up to a certain

finite order in λ0 at certain four-momenta p
i
. Relation (9.30) says that when we use

such a perturbative formula with the rescaled four-momenta t p
i

instead of p
i
, we

may take as the four-momenta again p
i
, but the coupling constant λ0 should then be

replaced by λ (of course one should also include the prefactors td0 zn/2
3 , and m). It is

clear that we can trust the perturbative formula with the four-momenta equal to t p
i

when λ < λ0, and we should be concerned about its usefulness if λ� λ0. At t∞ our
approximation completely breaks down. In practice, such considerations yield infor-
mation about the reliability of the perturbative approximation only for very small or
very large four-momenta, because working with the perturbative approximations for
λ one usually finds that t0, t∞ are either equal to 0 or very large. Also note that all
components of all four-momenta in formula (9.30) are rescaled by the same factor
t It remains an open question what happens if we keep finite, e.g., the momenta 
pi

and rescale only the components p0
i (the energies).

We have just seen that the behavior of the running coupling constant as the
function of t is crucial for checking in which asymptotic region we may trust the
perturbative approximation. In order to investigate the behavior of λwe use the Gell-
Mann–Low equation (9.17), which has to be considered together with Eq. (9.19) for
m. The functions β, γm can be computed from their definitions (9.18) and (9.20). To
this end, we only need to know λ and m for t ≈ 1. For this we may use formulas
(9.7) and (9.10) in which �̃4 and G̃ are calculated perturbatively.

As an example, let us find the form of Eqs. (9.17) and (9.19) in the 1-loop approx-
imation, in which only graph A1 (Fig. 8.7) is present, apart from the zeroth order
graphs. The self-energy graph A2, Fig. 8.9, has two independent loops, therefore it
is discarded. Thus,

Z1 = 1+ 3λ0C1

2(2π)4
, Z3 = 1, δm2 = 0.

It follows that

z(1)3 = 1, m(1)
(
μ′

μ
,

m2
0

μ2 , λ0

)
= μ2

μ
′2 =

1

t2 ,

where the superscript (1) denotes the 1-loop approximation. Definition (9.20) gives
γ
(1)
m = −2. In order to find β(1) we use the one-loop approximation for �̃4,
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�̃4 = − iλ0

(2π)4
− 3iλ2

0

8(2π)6

∫ 1

0
dz ln

3m2
0/μ

2 + 4t2z(1− z)

3m2
0/μ

2 + 4z(1− z)
+O(λ3

0), (9.31)

where we have used the result (8.19) together with the combinatorial factor (4!)2
shown in the first line of Fig. 7.6. The factor 3 in front of the integral appears
because there are three 1PI graphs (the first line in Fig. 7.6) which contribute to
�̃4 — because the subtraction point is the symmetric one they give identical contri-
butions. Since z(1)3 = 1, formulas (9.3), (9.7), (9.18), and (9.31) give

β(1)

(
m2

0

μ2 , λ0

)
= 3λ2

0

16π2

∫ 1

0
dz

4z(1− z)

4z(1− z)+ 3m2
0/μ

2
. (9.32)

Therefore, the Gell-Mann–Low equation (9.17) in the 1-loop order has the form

t
∂λ

∂t
= 3λ2

16π2

∫ 1

0
dz

4z(1− z)

4z(1− z)+ 3m2
0/(μ

2t2)
. (9.33)

The integral over z is elementary, but it gives a rather complicated function of t . The
result (9.33) holds in the renormalization scheme used in Chap. 8.

One can simplify the approximate form of the β function by adopting a special
renormalization scheme. Especially attractive in this respect is the so called mass
independent (MI) renormalization scheme in which one puts m0 = 0 in the con-
stants Z1, Z3, but of course not in the original Feynman graphs. It turns out that
such subtractions are sufficient for the removal of the UV divergences.

For example, let us reconsider the graph A1 from Sect. 8.2. In the MI scheme we
replace definition (8.16) of the renormalized contribution by

AM I
1 (k2)

d f= lim
M→∞

(
A1(k

2;M)− A1((
(0)
k )2; M)|m0=0

)
, (9.34)

where in the first term on the r.h.s. we still keep the original value m0 > 0. With this
new definition, formula (8.19) for Aren

1 is replaced by

AM I
1 = iπ2 λ2

0

(4!)2(2π)8
∫ 1

0
dz ln

3m2
0 − 3k2z(1− z)

4μ2z(1− z)
.

It is clear that AM I
1 does not obey the renormalization condition (8.17).

The MI renormalization scheme has the same types of counterterms as discussed
in Sect. 8.5, only concrete values of the constants Z1, Z3, δm2 are different. There-
fore, the multiplicative renormalization formulas (8.38) and (8.40) are still valid.

Let us calculate the β function in the MI scheme in the 1-loop approximation.
Because, Z1, Z3 do not depend on m2

0, the same is true for z1, z3 and, in conse-
quence, for λ defined by formula (9.3). Therefore, the dimensional analysis applied
to λ in the MI scheme implies that it is a function of t = μ′/μ and λ0,
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λ = λM I (t, λ0).

Definition (9.18) implies that β in Eq. (9.17) depends only on λ. Hence, in the MI
scheme, the Gell-Mann–Low equation (9.17) decouples from the equation for m,

t
∂λM I (t, λ0)

∂t
= βM I (λM I (t, λ0)). (9.35)

In order to calculate βM I we need λM I for t ≈ 1. The perturbative approximation
for it can be directly found from definition (9.3), and the definitions of z1, z3 given
at the beginning of Sect. 9.1. For example, if we calculate βM I in the 1-loop order,
we may put z3 = 1 as before. The counterterm giving Z1 is essentially defined by
formula (9.34). Including appropriate numerical factors and taking the limit M→∞
we find that

zM I
1 = lim

M→∞
Z ′1
Z1
= 1− 3λ0

16π2 ln t +O(λ2
0).

Therefore,

λM I = λ0 + 3λ2
0

16π2 ln t +O(λ3
0), (9.36)

and finally in the 1-loop approximation

βM I (λ0) = 3λ2
0

16π2 . (9.37)

Let us insert formula (9.37) on the r.h.s. of Eq. (9.35),

t
∂λM I (t, λ0)

∂t
= 3

16π2 (λ
M I (t, λ0))

2.

The solution of this equation with the ‘initial condition’

λM I (1, λ0) = λ0

has the form

λM I (t, λ0) = λ0

1− 3
16π2 λ0 ln t

. (9.38)

Comparing (9.38) with formula (9.36), we see that the first two terms in the expan-
sions in powers of λ0 coincide, but (9.38) contains terms of an arbitrarily high order.
Formula (9.38) is often called the renormalization group improved version of (9.36).
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Of course, formula (9.38) is not the exact formula for the running coupling constant,
because we have used the approximate form of the β function.

Formula (9.38) implies that

t0 = 0, t∞ = exp

(
16π2

3λ0

)
≈ (7.25× 1022)1/λ0 .

Thus, we may expect that when the four-momenta become large, the quality of the
perturbative approximation will worsen.

In the model λ0 : φ3
6 :, which involves the real scalar field in a six-dimensional

space-time with the (self)interaction λ0 : φ3 :, one finds that the first non-vanishing
contribution to the β function has the form

βM I (λ0) = −a1λ
3
0,

where a1 is a positive constant. In this case, the Gell-Mann–Low equation (9.35)
gives

λM I (t, λ0) = λ2
0

1+ 2a1λ
2
0 ln t

.

Hence, in this model

t0 = ∞, t∞ = exp

(
− 1

2a1λ
2
0

)
< 1.

Now the accuracy of the perturbative approximation is better at the large four-
momenta t p

i
, t � 1, and worse at the four-momenta t p

i
, t < 1. Models in which

λ→ 0 as t →∞ are called asymptotically free. The :φ3
6 : model is renormalizable,

but it is not very interesting because of the large dimensionality of the space-time,
and also because the corresponding quantum Hamiltonian likely is not bounded
from below. A much more interesting asymptotically free model is provided by the
quantum Yang—Mills fields. This model is the main ingredient of modern theories
of interactions of particles. It is discussed in Chap. 12.

9.3 Dimensional Transmutation

The dimensional transmutation is the phenomenon of emerging physical mass scale
in superficially massless quantum field models. For example, the classical theory of
the Yang–Mills fields contains a dimensionless coupling constant g and no explicit
mass parameter (m0 = 0). On the other hand, there are many indications of particles
called glueballs with a non-zero rest mass in the quantum version of that theory. It
is a puzzle as to how the non-zero rest mass can be obtained in a theory, in which
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no dimensional parameter is available. In fact, it can not be obtained in the classical
theory, but the quantum theory of the Yang–Mills field actually contains a dimen-
sional parameter, namely the subtraction parameter μ, or equivalent parameters in
other renormalization schemes. This answer is not fully satisfactory because μ has
no physical meaning—it can have arbitrary positive values. However, it turns out
that by using μ one can construct a parameter of the dimension of mass which is
constant on the renormalization group trajectory, hence that parameter belongs to
the set of physical characteristics of the model.

Defined within the perturbative approach and physically meaningful quantity
F(λ0,m2

0, μ) should be constant on the trajectories (9.5) of the renormalization
group transformations—in other words, F should be invariant under the renormal-
ization group transformations.

F(λ0,m
2
0, μ) = F

(
λ

(
μ′

μ
,

m2
0

μ2 , λ0

)
,m2

0
μ
′2

μ2 m

(
μ′

μ
,

m2
0

μ2 , λ0

)
, μ′
)
. (9.39)

The differential form of this condition is obtained by differentiation with respect to
μ′ and putting μ′ = μ,

μ
∂F(λ0,m2

0, μ)

∂μ

+β
(

m2
0

μ2 , λ0

)
∂F(λ0,m2

0, μ)

∂λ0
+m2

0

[
2+ γm

(
m2

0

μ2 , λ0

)]
∂F(λ0,m2

0, μ)

∂m2
0

= 0.

(9.40)

It is the Callan–Symanzik equation for F . Note that the renormalized Green’s func-
tions G̃(n)ren do not obey condition (9.39)—they are not invariant with respect to the
renormalization group transformations (9.5).

In the massless case (m0 = 0) Eq. (9.40) is reduced to

μ
∂F(λ0, μ)

∂μ
+ β(λ0)

∂F(λ0, μ)

∂λ0
= 0. (9.41)

It is clear that F(λ0, μ) = μ does not obey this condition. On the other hand, let us
take

F(λ0, μ) = �(λ0, μ)
d f= μ exp

(
−
∫ λ0

a

dλ′

β(λ′)

)
, (9.42)

where a is a constant. Simple calculation shows that �(λ0, μ) obeys condition
(9.40), hence it is the renormalization group invariant. It provides the physically
meaningful mass scale. Of course, λ0 and the constant a should be chosen in such a
way that the integral in the exponent exists.
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Exercises

9.1 Compute�(λ0, μ) for the massless : φ4
4 : and : φ3

6 : models using the results of
Section 9.2. Analyze the behavior of � when λ0 → 0+.

9.2 Using the value of the Z3 renormalization constant, calculated for the subtrac-

tion point
(0)
p such that (

(0)
p )2 = −μ2 in Exercise 8.10,

Z3 = Z3(μ) = 1− e2
0

2π2+ε �(ε)
1∫

0

dx x(1− x)
(

m2
0 + x(1− x)μ2

)−ε
,

and the relation e(μ) = √Z3(μ) eb, find the form of the one-loop beta function in
QED in the case μ� m0.

Answer:

β(e(μ)) = e3(μ)

12π2 +O
(

e5(μ)
)
.





Chapter 10
Relativistic Invariance and the Spectral
Decomposition of G(2)

Abstract The requirements for a relativistically invariant quantum field theory.
Generators of the unitary representations of the universal covering group of the
Poincaré group, and their commutation relations. The spectral decomposition of the
two-point function G(2) in the quantum theory of the real scalar field. The contribu-
tion of the single particle states. The pole of G̃(2) at the physical value of p2 of the
single particle. Finite mass corrections to the renormalized two-point function.

We have seen how one can perturbatively compute Green’s functions in the :φ4
4 :

model. For purely mathematical reasons, we have had to introduce the regularizing
function g, which does not have any physical meaning. Next, we have shown that
one can redefine the model (by including the subtractions) in such a way that the
regularizing function can be removed. This is done graph by graph, and the sum of
all such renormalized graphs up to a certain finite order defines the renormalized,
perturbative Green’s functions. Computations of infinite sums of graphs are possible
only in rather special cases, because calculations of contributions represented by
graphs with a large number of loops in general are prohibitively complicated.

In the presence of the regularizing function, the model, and in particular the
interaction Hamiltonian V̂Ig, is well-defined in the Fock space spanned on the basis
states |0I 〉, â†

I (

k)|0I 〉, . . .. We expect that the perturbatively calculated renormalized

Green’s functions are approximations of Green’s functions of a certain relativistic
model which can be called the exact :φ4

4 : model. We have already mentioned in
Chap. 7 that we do not know how to construct such an exact model. Neverthe-
less, accepting a number of reasonable assumptions about its properties, we can
derive certain formula for the exact Green’s function G̃(2), known as the spectral
decomposition. The assumptions include the relativistic invariance and the particle
interpretation. Next, by comparing the spectral decomposition with the perturba-
tive, renormalized Green’s function G̃(2)ren, we shall see that if the latter is to be an
approximation to the exact Green’s function, the mass parameter m2

0 of the initial
Lagrangian (7.1) has to be chosen in a special way. Only in the zeroth order is this
parameter equal to m2, that is to the square of the rest mass of the scalar particle
associated with the field φ̂(x). In general, m2

0 = m2 (1+ a2λ
2
0+ a3λ

3
0+ . . .), where

a2, a3, . . . are dimensionless functions of m2/μ2. They can be calculated within the
framework of the renormalized perturbative expansion.

H. Arodź, L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
DOI 10.1007/978-3-642-15624-3_10, C© Springer-Verlag Berlin Heidelberg 2010
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10.1 Relativistic Invariance in QFT

Similarly as in Sect. 3.1, we consider the proper ortochronous Lorentz transforma-
tions, which form the group L↑+, and the translations in Minkowski space-time (the
group T4). Together they form Poincaré group P ,

P = {(L̂, a) : L̂ ∈ L↑+, a ∈ T4}.

In the present context of relativistic invariance we adopt the so called passive
interpretation of the Poincaré transformations

x
′μ = Lμνxν + aμ, (10.1)

where L̂ = (Lμν), a = (aμ) do not depend on xμ. Namely, formula (10.1) is
regarded as the change of Cartesian coordinates on Minkowski space-time M . Thus,
xμ and x

′μ are coordinates of the same point in M . Alternative (so called active)
interpretation assumes that we use one Cartesian coordinate system in M and (10.1)
defines transformation of the points in M : the point x with the coordinates xμ is
moved to the point x ′ with the coordinates x

′μ.
Thus, the Poincaré transformation (10.1) now represents a change of inertial ref-

erence frame in which we investigate the fields. The fundamental assumption is that
such frames are equivalent in the sense that all physical laws, which in particular
say which phenomena are possible and which are not, are identical in all of them.1

The group multiplication in P has the form

(L̂2, a2)(L̂1, a1) = (L̂2 L̂1, L̂2a1 + a2). (10.2)

The Poincaré group is the most important group of symmetries of Minkowski space-
time. Its unitary irreducible representations (UIR’s) appear in the definition of the
relativistically invariant quantum field theory (QFT) given below.

The theory of the symmetry of quantum systems was developed mainly by
E. P. Wigner. It belongs to the most beautiful pieces of theoretical physics. Below
we briefly outline the main points of that theory.

Let us begin from the observation that physical states2 of the quantum system
are represented by (that is, they are in one-to-one correspondence with) rays in a

1 This does not have to be true if one generalizes Poincaré transformations (10.1). For example,
often one performs the Lorentz transformation to a rest frame of an accelerated particle. Such
a Lorentz transformation is time-dependent, because the particle changes its velocity. The rest
frame is non-inertial, and the transformation is not a symmetry. The physics in the rest frame is
different from the one in the inertial laboratory frame, because in the former case any physical
object (particles or fields) is affected by special forces like centrifugal one. In the rest frame they
are real forces, which in quantum field theory may lead, e.g., to creation of particle-antiparticle
pairs. Such forces are absent in the inertial laboratory frame.
2 For brevity, we discuss here only pure states. The most general space of states includes mixed
states, represented by density operators. However, such mixed states can be regarded as composed
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Hilbert space H, and not with vectors in H. The ray [ψ] is the set of all vectors
from H obtained from a single vector |ψ〉 by multiplying it by an arbitrary complex
number different from 0. Thus,

[ψ] = {c|ψ〉 : c ∈ C, c �= 0}. (10.3)

Any concrete vector belonging to the given ray is called the representative of that
ray. Actually, it is sufficient to consider normalized rays, obtained by adding the
restrictions

|c| = 1, 〈ψ |ψ〉 = 1.

In the following we use only the normalized rays. The space of physical pure states
can be identified with the space of all normalized rays in H. We will denote it
by RH.

As we know from quantum mechanics, physical predictions are obtained by cal-
culating scalar products of vectors from H. More precisely, physically relevant is

([ψ] | [χ ]) d f= |〈ψ |χ〉|.

It does not depend on the choice of the representatives of the rays, as opposed to
the scalar product. Expectation values of an observable Â, given by the formula
〈ψ | Âψ〉, also do not depend on the choice of representative c|ψ〉 of the normalized
ray [ψ].

Let us consider a certain Poincaré transformation of the states of a quantum sys-
tem. It is represented by an operator UR in the space RH. Thus, UR transforms
each normalized ray into a normalized ray. Both [ψ] and UR[ψ] represent states of
the field with respect to the reference frame (xμ). We may look at the field in the
state [ψ] also from the reference frame (x

′μ) defined by (10.1). Then we shall see
the field in a state represented by [ψ ′]. The operator UR is defined by the formula
[ψ ′] = UR[ψ]. Thus, the state UR[ψ] of the field seen from the reference frame
(xμ), and the state [ψ] seen from the reference frame (x

′μ), look the same. If the
transformation is to be a symmetry of the system, it should leave invariant both the
space of states and the product ([ψ] | [χ ]), that is

(i) UR RH = RH, (i i) (UR[ψ] |UR[χ ]) = ([ψ] | [χ ])

for all [ψ], [χ ] ∈ RH. The meaning of the condition (i) is that the full space RH of
states of the quantum field in the reference frame (xμ) coincides with the full space
of states UR RH of that field in the reference frame (x

′μ). The condition (i i) says
that the probability of finding the state [ψ] in the state [χ ], both states given with

of several pure states, therefore one may introduce the notion of symmetry using only the pure
states.
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respect to the reference frame (xμ), does not change if we look at these states from
the reference frame (x

′μ). The conditions (i), (i i) give the precise formulation of
the equivalence of the two inertial reference frames.

Wigner has shown that every symmetry transformation UR can be represented in
the Hilbert space H by an operator U such that:

(I a) UH = H

and

(I b) 〈Uψ |Uψ〉 = 〈ψ |ψ〉

for all |ψ〉 from H. Moreover,

(I c) U (|ψ〉+|χ〉) = U |ψ〉+U |χ〉

for all |ψ〉, |χ〉 from H, and either

(I d) U (c|ψ〉) = c U |ψ〉

or

(I e) U (c|ψ〉) = c∗U |ψ〉,

where c is an arbitrary complex number, c∗ its complex conjugation. It is clear
that U transforms rays into rays, and precisely this transformation of rays coincides
with UR .

In the case (I d) the operator U is unitary, while in the case (I e) it is called
antiunitary. The properties (I b − I e) allow us to compute 〈Uψ |Uχ〉 also when
ψ �= χ because

〈ψ1|ψ2〉 =1

4
〈ψ1 + ψ2|ψ1 + ψ2〉 − 1

4
〈ψ1 − ψ2|ψ1 − ψ2〉

− i

4
〈ψ1 + iψ2|ψ1 + iψ2〉 + i

4
〈ψ1 − iψ2|ψ1 − iψ2〉.

The r.h.s. of this formula contains only the norms of vectors |ψ1〉 ± |ψ2〉, |ψ1〉 ±
i |ψ2〉, to which we may apply (I b). Using that formula for |ψ1〉 = U |ψ〉, |ψ2〉 =
U |χ〉 we find that in the unitary case (I d)

〈Uψ |Uχ〉 = 〈ψ |χ〉.

In the antiunitary case U |ψ〉 ± iU |χ〉 = U (|ψ〉 ∓ i |χ〉) and therefore

〈Uψ |Uχ〉 = 〈χ |ψ〉.
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In the relativistically invariant QFT we demand that each Poincaré transformation
is a symmetry. Hence, for each element (L̂, a) from P we have an operator U (L̂, a)
in H, which has the properties (I a)− (I c), and also (I d).

We choose (I d) and not (I e) for the following reason. The Poincaré group
includes the trivial transformation (I4, 0). It is natural to demand that it is repre-
sented by the unit operator I in H

U (I4, 0) = I, (10.4)

and this operator is of course unitary. Another natural assumption is that the operator
U (L̂, a) depends on L̂ and a in a continuous manner. In particular, U (L̂n, an)→ I
if the sequence (L̂n, an) is convergent to the trivial element (I4, 0) when n → ∞.
Now, suppose that the operators U (L̂n, an) are antiunitary. Then, for any |ψ〉 ∈ H

U (L̂n, an)(i |ψ〉) = −iU (L̂n, an)|ψ〉.

Because of the continuity the l.h.s. is convergent to i |ψ〉 while the r.h.s. to −i |ψ〉,
and we obtain a contradiction. Thus, all operators U (L̂, a) have to be unitary.

Yet another requirement imposed on the operators U (L̂, a) stems from the fact
that two consecutive Poincaré transformations, first g1 = (L̂1, a1) and then g2 =
(L̂2, a2), are equivalent to the product transformation g2g1 = (L̂2 L̂1, L̂2a1 + a2).
It is natural to demand that the same holds for the corresponding transformations of
the rays in H, that is that

UR(L̂2, a2)UR(L̂1, a1) = UR(L̂2 L̂1, L̂2a1 + a2). (10.5)

On the level of the operators in the Hilbert space H property (10.5) is represented
by the formula

U (g2)U (g1) = exp(iω(g2, g1))U (g2g1), (10.6)

where ω(g2, g1) is a real-valued function of the indicated variables. The phase factor
exp(iω) is called the cocycle. We assume that it is a continuous function of g1, g2.

The set of all unitary operators U (g) in the given Hilbert space H, where g ∈ P , is
called a unitary, projective representation of the Poincaré group if all U (g) obey the
conditions (10.4) and (10.6), and also the condition of continuity with respect to g.
‘Projective’ refers to the presence of the cocycle—in the case ω(g2, g1) = 1 for all
g1, g2 ∈ P we just say ‘unitary representation’.

The presence of the cocycle is a characteristic feature of symmetry of the quan-
tum systems. For many groups, e.g., SU (N ) groups, it can be removed just by
redefining the representation operators U (g). In the case of rotations (the SO(3)
group), as well as for the Lorentz and Poincaré groups which contain SO(3) as
a subgroup, the cocycle can not be completely removed. Wigner has proved that
all unitary projective representations of P can be divided into two classes. In the
first class, relevant for bosonic fields and integer spin particles, the cocycle can
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be removed completely just by redefining U (g). In the second class, related to
fermionic fields and particles of half-integer spin, the cocycle can be removed only
if we introduce a double-valued unitary representation: for any given g ∈ P we
have two operators ±U (g). It is a well-known fact that in the theory of continuous
multivalued complex functions of a complex variable z ∈ C one can remove the
multivaluedness by extending the domain of the z variable from C to an appro-
priate Riemann surface. In the case of representations of the Poincaré group, there
exists an analogous construction: each double valued unitary representation U of
P in H is equivalent to a single-valued unitary representation (also in H) of a
group P̃ larger than P . That new group is called the universal covering group. It
consists of all the pairs of the form (�, a), where a is an arbitrary translation as
before, while � is an arbitrary element of the SL(2,C) group. Let us recall that
the SL(2,C) group consists of all the 2 by 2 complex matrices with the determi-
nant equal to +1. Such a set of matrices forms the group with respect to matrix
product. The relation between SL(2,C) and L↑+ was discussed in Sect. 5.1, see
formulas (5.22) and (5.23). We recall it in Sect. 10.3 below. Because � and −�
give the same L̂ ∈ L↑+, SL(2,C) covers P twice. The group product in P̃
has the form (�1, a1)(�2, a2) = (�1�2, L̂(�1)a2 + a1), where L̂(�1) is the
Lorentz transformation corresponding to�1. The unit element has the form (σ0, 0).
Thus,

Ũ (�, a)H = H,
〈Ũ (�, a)ψ |Ũ (�, a)χ〉 = 〈ψ |χ〉

for all |ψ〉, |χ〉 ∈ H, and

Ũ (�1, a1)Ũ (�2, a2) = Ũ (�1�2, L̂(�1)a2 + a1).

The correspondence between SL(2,C) and L↑+ becomes an isomorphism if we
take �’s from a certain not-too-large vicinity of the 2 by 2 unit matrix σ0. Such
�’s can be smoothly parameterized by the 6 real parameters known from Sect. 3.1:
ω12, ω23, ω31, ω01, ω02, ω03. Thus, in that vicinity of the unit element of P̃ , we
may use as the parameters ω and a: g = (�(ω), a), where ω denotes the six real
parameters specified above. It is clear that �(ω = 0) = σ0.

It turns out that in the case of continuous unitary representations of P̃ which
appear in QFT, the operators Ũ (�(ω), a) can be written as an infinite series with
respect to ωμν ’s and aμ’s:

Ũ (�(ω), a) = I + iaμ P̂μ + i

2
ωμν M̂μν + . . . , (10.7)

where by definition

M̂μν = −M̂νμ.
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This last condition is related to the fact that ωμν = −ωνμ. The factor 1/2 is intro-
duced in order to cancel the factor 2 from

ωμν M̂μν = 2
( 3∑

i=1

ω0i M̂0i + ω12 M̂12 + ω23 M̂23 + ω31 M̂31

)
.

Because Ũ (g) are unitary operators, the operators P̂μ, M̂μν are Hermitian—this is
the reason for extracting the factors i in the second and third term on the r.h.s. of
formula (10.7). P̂μ, M̂μν are called the generators of the representation Ũ in the
chosen parametrization (ω, a).

The group structure of P̃ implies commutation relations for P̂μ and M̂μν. In
order to derive them we first notice that

P̂μ = −i
∂Ũ (�(ω), a)

∂aμ

∣∣∣∣∣
ω=0, a=0

, M̂μν = −i
∂Ũ (�(ω), a)

∂ωμν

∣∣∣∣∣
ω=0, a=0

. (10.8)

Now, consider the following identity

Ũ (σ0, a1) Ũ (σ0, a2) = Ũ (σ0, a1 + a2) = Ũ (σ0, a2) Ũ (σ0, a1).

The derivative with respect to aμ1 taken at a1 = 0 gives

i P̂μŨ (σ0, a2) = ∂Ũ (σ0, a2)

∂aμ2
= iŨ (σ0, a2)P̂μ. (10.9)

This formula implies that the operators P̂μ are invariant with respect to transla-
tions, that is that

Ũ−1(σ0, a2)P̂μŨ (σ0, a2) = P̂μ. (10.10)

The l.h.s. of this formula is, by definition, the transformation of the operator P̂μ cor-
responding to the symmetry represented by Ũ . It is a general postulate of quantum
theory that the action of unitary symmetry transformation Ũ (g) on operator Q̂ in
the Hilbert space H has the form

Q̂ → Q̂′ d f= Ũ−1(g)Q̂Ũ (g). (10.11)

Let us take the derivative of both sides of formula (10.9) with respect to aν2 at
a2 = 0. The result can be written as

[P̂μ, P̂ν] = 0. (10.12)
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We see that the generators of space-time translations commute with each other. In
relativistically invariant theory, the generator of time translations P̂0 coincides with
the quantum Hamiltonian of the considered field, and P̂i coincide with components
of the operator of the total momentum of the field.

The first part of formula (10.9), namely

i P̂μŨ (σ0, a2) = ∂Ũ (σ0, a2)

∂aμ2
,

can actually be regarded as a set of differential equations for Ũ (σ0, a2). Because P̂μ
commute, the solution which obeys the condition Ũ (σ0, 0) = I has the form

Ũ (σ0, a2) = exp(iaμ2 P̂μ). (10.13)

Acting with −i∂/∂aμ on both sides of another identity, namely

Ũ (�, 0) Ũ (σ0, a) = Ũ (σ0, L(�)a) Ũ (�, 0), (10.14)

we obtain after putting a = 0

Ũ (�, 0)P̂μ = P̂νL(�)νμŨ (�, 0). (10.15)

This formula can be written in the form

Ũ−1(�, 0)P̂μŨ (�, 0) = L(�)μν P̂ν, (10.16)

(as always, we raise the indices using ημν : P̂ν = ηνμ P̂μ). Formula (10.16) says
that the operators P̂μ transform under the Lorentz transformations as components
of a four-vector. Formula (10.15) implies the commutation relation between P̂μ and
M̂ρλ: we take the derivative of both sides of it with respect to ωρλ and we put ω = 0.
Because L(�)νμ = δνμ + ωνμ +O(ω2), we have

∂L(�)νμ
∂ωρλ

= δνρημλ − δνλημρ,

and therefore

M̂ρλ P̂μ = −i(P̂ρημλ − P̂λημρ)+ P̂μM̂ρλ,

or

[M̂ρλ, P̂μ] = i(ημρ P̂λ − ημλ P̂ρ). (10.17)
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Finally, let us consider the identity

Ũ−1(�(ω), 0) Ũ (�(ω1), 0) Ũ (�(ω), 0) = Ũ (�−1(ω)�(ω1)�(ω), 0),

where �−1(ω) ≡ (�(ω))−1. Its derivative with respect to ω1μν at ω1 = 0 gives

Ũ−1(�, 0)M̂μνŨ (�, 0) = L(�)μσ L(�)νρ M̂σρ, (10.18)

where� = �(ω) (Exercise 10.1). This formula shows that the operators M̂μν trans-
form as components of a second rank tensor.

Note that formula (10.14) implies that the operators Mσρ have a nontrivial trans-
formation law also with respect to the translations:

Ũ−1(σ0, a)M̂σρŨ (σ0, a) = M̂σρ + Ũ−1(σ0, a)(aρ P̂σ − aσ P̂ρ),

(Exercise 10.2).
Taking the derivative of both sides of formula (10.18) with respect to ωαβ at

ω = 0, and lowering the indices, we find that

[M̂αβ, M̂μν ] = i(ηαμM̂βν − ηαν M̂βμ + ηβν M̂αμ − ηβμM̂αν). (10.19)

We have emphasized in Chap. 2 that a symmetry transformation in the classical
field theory transforms solutions of the pertinent field equations into solutions of the
same equations. Similarly as in Chap. 2, we will use the general notation ui (x) for
the classical fields. Their relativistic transformation law can be written in the general
form as

u′i (x) = Vik(L̂)uk(L̂
−1(x − a)). (10.20)

In particular, Vik(L̂) = δik when ui (x) is a set of scalar fields, Vik(L̂) = Lμν for a
vector field ui (x) = W ν(x), or V (L̂) = S(L̂) if {ui } = ψ is the Dirac field. The
corresponding quantum fields in the Heisenberg picture are denoted by ûi (x). By
definition, their transformation law has the form (10.11), that is

û′i (x)
d f= Ũ−1(�, a) ûi (x) Ũ (�, a). (10.21)

The quantum field is called a scalar, vector, bispinor, etc., if the definition (10.21)
implies that

(I I ) û′i (x) = Vik(L̂(�)) ûk(L̂
−1(�)(x − a)), (10.22)

where Vik(L̂(�)) has the same form as in the classical case (10.20).
In particular, the quantum field φ̂(x) is called the relativistic scalar field if it

obeys the condition
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(I I ′) Ũ−1(�, a)φ̂(x)Ũ (�, a) = φ̂(L̂−1(�)(x − a)) (10.23)

for all (�, a) ∈ P̃ . Differentiation of this formula with respect to aμ and ωμν gives,
after putting a = 0, ω = 0, the conditions

[P̂μ, φ̂(x)] = −i∂μφ̂(x), (10.24)

[M̂μν, φ̂(x)] = −i(xν∂μ − xμ∂ν)φ̂(x). (10.25)

Actually, one can prove that they are equivalent to (10.23).
To summarize, the first requirement for a relativistically invariant quantum

field theory is that in the Hilbert space of the model there exists unitary
representation Ũ of the group P̃ . The second requirement concerns the quantum
fields: we demand that the transformed quantum field û′i (x), which is defined by
formula (10.21), is a solution of the Heisenberg equation of motion together with
ûi (x), and that the quantum field ûi (x) obeys the condition (10.22).

It turns out that in order to obtain the representation Ũ it is sufficient to know the
operators P̂μ, M̂μν obeying the commutation relations (10.12), (10.17), (10.19),
(10.24) and (10.25). The proof of this theorem is based on the fact that any element
of the group P̃ can be written as a product of sufficiently many elements from a
small vicinity of the unit element (σ0, 0). The same is true for representation opera-
tors Ũ . For each factor in that product we may use the expansion (10.7), in which the
terms denoted by dots may be neglected. Therefore, in practice one rarely explic-
itly introduces the unitary operators Ũ—it is sufficient to consider the generators
P̂μ, M̂νσ .

The third group of requirements for a relativistically invariant quantum field
theory is related to its particle interpretation. Such an interpretation means that in
the Hilbert space of the model there exists a basis which consists of states with
definite numbers of particles, including a single state without any particles3: the
vacuum state |0〉. Generic state is a superposition of these basis states—it can have
components with various numbers of particles. In general, such basis states are not
eigenstates of the Hamiltonian of the quantum field, because of interactions between
particles which can lead to the creation or annihilation of them, while the eigenstates
can change in time only by a phase factor, hence their particle content is constant in
time. In the free field models discussed in Chap. 6 such interactions are absent,
and in consequence the basis states in the Fock space can be chosen in such a
way that they are eigenstates of the pertinent Hamiltonians and particle number
operators.

In the theory with the particle interpretation, physical characteristics of a given
state of the field can be regarded as contributions from the particles present in that
state. For example, the total energy of the field in a certain state with a definite

3 If in the classical system spontaneous symmetry breaking is present, one has to pick one of the
several classical ground states in order to construct the corresponding quantum model, and then the
quantum vacuum state corresponds to that chosen classical ground state. The remaining classical
ground states are not incorporated into such quantum theory.
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number of particles, that is the expectation value of the Hamiltonian in that state,
has the form of the sum of the kinetic energies of the particles and energies of inter-
actions between them, weighted by appropriate probability densities. The vacuum
state |0〉 does not contain any particles. Hence, there is no kinetic or interaction
energy involved, and such a state should be the eigenstate of the quantum Hamilto-
nian of the field with vanishing eigenvalue, E = 0:

Ĥ |0〉 = 0. (10.26)

For the same reason, it is assumed that E = 0 is the smallest eigenvalue of Ĥ—
when the particles are present the energy is larger because of the relativistic kinetic
energies

√ 
p 2 + m2, where m is the rest mass of the particle.4 Furthermore, the
state without any particles should have the vanishing total momentum,

P̂i |0〉 = 0. (10.27)

Now we are ready to state the third group of requirements for the relativistic
invariance in QFT. In accordance with conditions (10.26) and (10.27), we demand
that the vacuum is invariant under space-time translations:

(I I I a) Ũ (σ0, a)|0〉 = |0〉. (10.28)

One more requirement is that the vacuum state should look identical to all
observers related to each other by the Lorentz transformations:

Ũ (�, 0)|0〉 = eiχ(�)|0〉,

where eiχ(�) is a phase factor, which can depend on � ∈ SL(2,C). This phase
factor has the property

eiχ(�1)eiχ(�2) = eiχ(�1�2)

for all �1,�2 ∈ SL(2,C), which is obtained by applying both sides of the identity
Ũ (�1, 0)Ũ (�2, 0) = Ũ (�1�2, 0) to the vacuum state. One can show that the map-
ping SL(2,C) " � → eiχ(�) is a one dimensional unitary representation of the
SL(2,C) group. On the other hand, it is known that all the unitary representation of
this group are infinite dimensional, except for the trivial one for which eiχ(�) = 1.
Thus, the phase factors are equal to 1, and

(I I I b) Ũ (�, 0)|0〉 = |0〉 (10.29)

for all � ∈ SL(2,C).

4 Notice that this means that we hope that the particles and the vacuum state can be defined in such
a manner that the interaction energies can not render the total energy of the states with particles
negative.
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In classical theory the energy can always be shifted by a constant. In the relativis-
tically invariant quantum field theory this is no longer true. The structure of such a
theory is so tight, that such freedom is not allowed. To see this, let us suppose that
the vacuum state has non vanishing energy or momentum,

P̂μ|0〉 = pμ(0)|0〉.

Applying both sides of formula (10.16) to the vacuum state and using (10.29) we
find that

pν(0) = L(�)νμ pμ(0)

for all L̂ from the L↑+ group. This is possible only if pν
(0) = 0. Thus, the vacuum

has to have vanishing energy and momentum if the quantum model is relativistically
invariant. Another consequence of the lack of freedom of adding a constant to
the energy is that the energy of a single free particle of momentum 
p, which
is equal to

√ 
p 2 + m2 as we have found when discussing the free quantum field
models, also can not be shifted by a constant.

Apart from the presence of the vacuum state, we also assume that there are states
of the quantum field which contain just a single stable particle. In general, a quantum
field theoretic model can predict the existence of several such particles. We shall
label them with the index K = a, b, . . . . In order to simplify the discussion we
assume that all these particles are massive, that is that their rest masses mK are
strictly positive. States of K -th particle are represented by rays in a subspace H(1)K
of the full Hilbert space H. Such single particle states have the special property
that they evolve in time as states of the free relativistic particle, because by the
assumption in these states there are no other particles with which the given particle
could interact. As the basis in H(1)K we may take the normalized eigenstates of the

total momentum 
̂P , and of a certain component of the spin operator. In particular,

P̂ i | 
p, λ, K 〉 = pi | 
p, λ, K 〉,

where λ stands for the projection of spin of the K -th particle on, e.g., x3-axis. In the
single particle subspace, 
p is of course equal to the momentum of the particle. The
energy eigenvalue is the function of the momentum,

P̂0| 
p, λ, K 〉 = EK ( 
p )| 
p, λ, K 〉, (10.30)

where

EK ( 
p ) =
√

p 2 + m2

K . (10.31)
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Note that formula (10.31) contains the square of mK , which is insensitive to the
sign of mK . It is merely a convention that non-vanishing masses of particles in
relativistically invariant theories are positive.

Let us stress that the masses m K should not be confused with the mass parameters
present in classical Lagrangians, e.g., with m0 present in Lagrangian (7.1) in the case
of :φ4

4 : model, see Sect. 10.4 for a detailed discussion. Only in special cases, like the
free quantum fields, or models with special symmetries, the rest mass of the particle
(m K ) is equal to the corresponding mass parameter (m0) in the pertinent classical
Lagrangian.

The general vector |ψ〉 from the Hilbert space H(1)K has the form

|ψ〉 =
∑
λ

∫
d3p ψλ( 
p )| 
p, λ, K 〉, (10.32)

where

〈ψ |ψ〉 =
∑
λ

∫
d3p ψλ( 
p )ψλ( 
p ) <∞.

All vectors of the form (10.32) are eigenvectors of the operator P̂μ P̂μ = (P̂0)
2−

(

̂P)2. In fact,

P̂μ P̂μ|ψ〉 =
∑
λ

∫
d3pψλ( 
p )P̂μ P̂μ| 
p, λ, K 〉

=
∑
λ

∫
d3pψλ( 
p )(E2

K ( 
p )− 
p 2)| 
p, λ, K 〉 = m2
K |ψ〉.

Because they have finite norm, they are true eigenvectors of the operator P̂μ P̂μ. For
a comparison consider the two-particle sector of the free scalar field, see Sect. 6.1.
The vectors |
k1, 
k2〉 are eigenvectors of P̂μ P̂μ in the sense that

P̂μ P̂μ|
k1, 
k2〉 = M2(
k1, 
k2)|
k1, 
k2〉,

where

M2(
k1, 
k2) =
(√


k 2
1 + m2

0 +
√

k 2

2 + m2
0

)2

− (
k1 + 
k2)
2

= 2(m2
0 +

√

k 2

1 + m2
0

√

k 2

2 + m2
0 − 
k1
k2),

but there is the crucial difference is that in the latter case the eigenvalues of P̂μ P̂μ
form a continuous set, hence the corresponding eigenvectors do not have a finite
norm. Therefore, they do not belong to the Hilbert space H. The vectors (10.32)
have finite norm, they belong to the Hilbert space, and the eigenvalues m2

K are a
part of the discrete spectrum of P̂μ P̂μ.
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Each space H(1)K , K = a, b, . . . , is invariant under the representation Ũ of P̃ ,
that is

Ũ (�, a)|ψ〉 ∈ H(1)K if |ψ〉 ∈ H(1)K .

This mathematical fact has an obvious physical meaning—the type of the particle
does not change if we look at the particle from another inertial reference frame.
In particular, all states Ũ (�, a)|ψ〉 belong to the same eigenspace of the operator
P̂μ P̂μ. This follows from formulas (10.10) and (10.16):

P̂μ P̂μŨ (�, a)|ψ〉 = Ũ (�, a)Ũ−1(�, a)P̂μŨ (�, a)Ũ−1(�, a)P̂μŨ (�, a)|ψ〉
= Ũ (�, a)L(�) ρμ P̂ρL(�)μσ P̂σ |ψ〉 = Ũ (�, a)P̂ρ P̂ρ |ψ〉 = m2

K Ũ (�, a)|ψ〉.

Moreover, if the space H(1)K could be split into two or more nontrivial (that is, dif-

ferent from {0}) subspaces H(1a)
K , H(1b)

K , etc., each of them being invariant under
the representation Ũ , we would rather regard the states from these subspaces as
states of different particles, Ka, Kb, etc. In such a case, we accordingly redefine
the particle label K in (10.30), so that finally the spaces H(1)K do not contain any
nontrivial invariant subspaces. In mathematical language, the unitary representation
Ũ restricted to such a subspace is irreducible. Mathematical investigations of unitary
irreducible representations of the group P̃ have shown that in the case m2

K > 0 the

basis states in H(1)K are labelled by the momentum 
p, and the projection of spin
λ = −s,−s + 1, . . . , s − 1, s, where the spin s has one value chosen from the set
of numbers 0, 1/2, 1, .... The value s of the spin is included into the particle label
K . It does not change when we look at the particle from various inertial reference
frames, i.e., it is invariant with respect to the Poincaré transformations, in contrary
to the spin projection which can be changed, for example, by a rotation.

The particle label K also includes the rest mass mK , as well as other characteris-
tics of the particle such as its electric charge, various parities, strangeness, etc. Each
of them is invariant with respect to the Poincaré transformations.

Let us summarize:

(IIIc)

The pure states of the quantum field that contain only a sin-
gle particle of type K are represented by rays in the sub-
space H(1)K of the full Hilbert space H. The representation
Ũ restricted to this subspace is irreducible. In particular,
P̂μ P̂μ|ψ〉 = m2

K |ψ〉 for all |ψ〉 ∈ H(1)K . Such |ψ〉 are nor-
malizable.

Note that with such a definition of the relativistic quantum particle—as a subclass
of the states of the quantum field—a stable bound state of two or more particles is a
particle too. Of course, such a particle should not be called an elementary one.

Let us return to the real scalar quantum field. In the case of the free field, the
operators P̂0 ≡ Ĥ , P̂ i , M̂ik and M̂0i constructed in Sect. 6.1 obey the commutation



10.2 The Spectral Decomposition of G(2) 241

relations (10.12), (10.17) and (10.19). Therefore, we have the representation Ũ of
the group P̃ in the Fock space HF . Also the commutation relations (10.24) and
(10.25) are satisfied. Hence, this field is indeed a relativistic scalar quantum field.
The vacuum state |0〉 has the properties (10.28) and (10.29). The vectors |
k〉, which
form the basis in single particle subspace do not have any additional label λ. This
suggests that the particle is spinless, s = 0. In order to check that, one should
rotate the basis vector with momentum equal to zero. This actually means acting
with Ũ (u, 0), where u ∈ SU (2) ⊂ SL(2,C), on the vector |
0 〉.5 In the case of
a spinless particle, this state should be invariant with respect to all rotations. It is
sufficient to check this for infinitesimal rotations, when we may use formula (10.7)
with a = 0, ω0i = 0, and with omission of the terms denoted by dots. Using
formula (6.47), we find that M̂ik |
0 〉 = 0, hence indeed Ũ (u, 0)|
0 〉 = |
0 〉. The rest
mass of the particle coincides with the mass parameter m in the Lagrangian (6.1).

In the case of :φ4
4 : model,6 we are not able to provide even the Hilbert space H,

not to mention the representation Ũ .We hope that at least for small λ0, such a quan-
tum model exists, and that its properties do not differ drastically from those of the
free real scalar field (which is obtained when λ0 = 0). In particular, we expect that
there exists a single vacuum state |0〉, which is invariant under the Poincaré group,
and a sector H(1) describing a single spinless particle with the rest mass m > 0. Such
expectations are to some extent supported by the fact that using the renormalized
perturbative expansion in λ0, one can construct approximate generators P̂μ, M̂μν in
the interaction picture Fock space, introduced in Sect. 7.1. They obey the required
commutation relations up to the considered order of the perturbative expansion.
The problem with the renormalized perturbative expansion is that we do not know
whether it really approximates (in the sense of the theory of asymptotic series) that
hypothetical exact theory.

10.2 The Spectral Decomposition of G(2)

In this section we derive a very important formula for the Green’s function G(2),
known as the spectral decomposition. It follows from the postulates of relativistic
invariance, and from the assumptions about particle interpretation of the quantum
field. For the sake of simplicity we will again discuss the real scalar quantum field
only.

Let us first introduce the 2-point Wightman’s function W (2). It is defined as fol-
lows

W (2)(x1, x2) = 〈0|φ̂(x1)φ̂(x2)|0〉, (10.33)

5 The subgroup SU (2) of SL(2,C) consists of all 2 by 2 matrices which are unitary (u† = u−1)
and unimodular (det u = 1). It is the universal covering group of the SO(3) subgroup of L↑+.
6 We mean here a model without the regularizing function g.
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where φ̂(x) is the quantum field operator in the Heisenberg picture, and x1, x2 are
points in Minkowski space-time. W (2)(x1, x2) is a generalized function of x1, x2.

Green’s function G(2) is defined by the formula

G(2)(x1, x2) = 〈0|T (φ̂(x1)φ̂(x2))|0〉
= �(x0

1 − x0
2)〈0|φ̂(x1)φ̂(x2)|0〉 +�(x0

2 − x0
1)〈0|φ̂(x2)φ̂(x1)|0〉. (10.34)

Therefore,

G(2)(x1, x2) = �(x0
1 − x0

2)W
(2)(x1, x2)+�(x0

2 − x0
1)W

(2)(x2, x1). (10.35)

Formula (10.23) with � = σ0, a = x , and formula (10.13) give

φ̂(x) = exp(i P̂μxμ)φ̂(0) exp(−i P̂νxν). (10.36)

Using this formula and the property (10.28) of the vacuum state, we obtain the
following expression for the Wightman’s function

W (2)(x1, x2) = 〈0|φ̂(0) exp[i P̂μ(x2 − x1)
μ]φ̂(0)|0〉. (10.37)

Thus, the translational invariance of the quantum field theory implies that W (2)

depends only on x1−x2. In consequence, also G(2)(x1, x2) is a generalized function
of x1 − x2 only.

The invariance with respect to Lorentz transformations implies that

φ̂(x) = Ũ−1(�, 0)φ̂(L̂(�)x)Ũ (�, 0), Ũ (�, 0)|0〉 = |0〉. (10.38)

Therefore,

W (2)(L̂x1, L̂x2) = W (2)(x1, x2) (10.39)

for all L̂ ∈ L↑+.
In the next step we use the completeness relation in the full Hilbert space H of

the model

|0〉〈0| +
∫

d3p | 
p 〉〈 
p | +
∫∑
α

|α〉〈α| = I, (10.40)

where {|0〉, | 
p 〉, |α〉} is a basis in H. The vectors |α〉 form a basis in the part of
the Hilbert space orthogonal to the vacuum and the single particle subspaces—these
vectors are enumerated by a set of quantum numbers denoted here by α. The symbol∫∑

α is used in order to denote that among these quantum numbers there can be
continuous as well as discrete ones. The basis is chosen in such a way that each
vector |α〉 is an eigenstate of the total four-momentum of the field,
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P̂μ|α〉 = pμα |α〉. (10.41)

Of course,

P̂μ|0〉 = 0, P̂μ| 
p 〉 = pμ| 
p 〉, (10.42)

where

p0 = E( 
p ) =
√

p 2 + m2,

and m is the rest mass of the particle. Inserting (10.40) on the r.h.s. of formula
(10.37), and using (10.41)÷(10.42), we obtain

W (2)(x1, x2) = |〈0|φ̂(0)|0〉|2 +
∫

d3p |〈0|φ̂(0)| 
p 〉|2 exp(−i p(x1 − x2))

+
∫∑

α

|〈0|φ̂(0)|α〉|2 exp(−i pα(x1 − x2)). (10.43)

In the contribution from the single particle sector, given by the last term in the first
line, we have p = (p0, 
p ), where p0 = E( 
p ) = √ 
p 2 + m2.

In the next section we prove that

|〈0|φ̂(0)| 
p 〉|2 = m

E( 
p ) |〈0|φ̂(0)|

0 〉|2, (10.44)

where |
0 〉 is the basis vector in the single particle sector with the momentum equal
to zero. Therefore, the contribution of the single particle states can be written in the
form

∫
d3p |〈0|φ̂(0)| 
p 〉|2 exp(−i p(x1 − x2)) = c0W (2)

m (x1, x2), (10.45)

where

W (2)
m (x1, x2) = 1

2(2π)3

∫
d3p

E( 
p ) exp(−i p(x1 − x2)), (10.46)

and

c0 = 2(2π)3m|〈0|φ̂(0)|
0 〉|2. (10.47)

Note that c0 ≥ 0.
W (2)

m (x1, x2) is the 2-point Wightman’s function for the free scalar field with
mass parameter equal to m. This fact can easily be checked with the help of for-
mula (6.16) for the free scalar field. The W (2)

m (x1, x2) function is of course Lorentz
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invariant: for all L̂ ∈ L↑+

W (2)
m (L̂x1, L̂x2) = W (2)

m (x1, x2), (10.48)

because the theory of the free scalar field constructed in Sect. 6.1 is Lorentz invari-
ant. Formula (10.48) can also be obtained directly by rewriting the integral in for-
mula (10.46) in the Lorentz invariant form,

W (2)
m (x1, x2) = 1

(2π)3

∫
d4 p�(p0)δ(p

2 − m2) exp(−i p(x1 − x2)). (10.49)

In the case of the free scalar field, formula (6.16), simple calculation gives c0 = 1.
Therefore, we expect that c0 is strictly positive, c0 > 0, also for a sufficiently small
λ0 > 0.

Now let us consider the contribution of the multi-particle states. It is given by the
last term on the r.h.s. of formula (10.43). It is convenient to introduce the generalized
function

ρ(q) = (2π)3
∫∑
α

|〈0|φ̂(0)|α〉|2δ4(q − pα). (10.50)

Then, formula (10.43) can be rewritten in the form

W (2)(x1, x2) = (〈0|φ̂(0)|0〉)2

+ c0W (2)
m (x1, x2)+ (2π)−3

∫
d4q ρ(q) exp(−i(x1 − x2)q). (10.51)

The function ρ(q) is positive, ρ(q) ≥ 0, in the sense that

∫
d4q ρ(q)χ(q) ≥ 0

for any non-negative test function χ(q). This property of ρ(q) follows directly from
its definition:

∫
d4q ρ(q)χ(q) = (2π)3

∫∑
α

|〈0|φ̂(0)|α〉|2χ(pα) ≥ 0.

Comparing formulas (10.39), (10.48) and (10.51) we obtain the equality

∫
d4q ρ(q) exp(−iq(x1 − x2)) =

∫
d4q ρ(q) exp(−iq(L̂x1 − L̂x2))

for any L̂ ∈ L↑+. The r.h.s. of this formula is equal to
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∫
d4q ρ(L̂q) exp(−iq(x1 − x2)),

because the scalar product in the exponent as well as the four-dimensional volume
element d4q are Lorentz invariant. The Fourier transformation in the space of gen-
eralized functions is invertible. Therefore,

ρ(L̂q) = ρ(q) for all L̂ ∈ L↑+, (10.52)

that is, ρ(q) is Lorentz invariant.
Another important property of ρ(q) is that it vanishes when q0 < 0. The reason

for this is that the energies p0
α of the multiparticle states are positive because, for

the assumed small value of the coupling constant λ0, attractive interactions between
particles are not strong enough to form bound states with negative total energy.
Taking into account the property (10.52), we may write ρ(q) in the standard form

ρ(q) = �(q0)σ (q2), (10.53)

where σ(q2) is called the multiparticle spectral function. Furthermore, we expect
that if λ0 is small enough, so that no bound states of the particles can be formed,
then

σ(q2) = 0 for q2 < 4m2,

because the smallest value of p2
α is obtained for two particles with the total momen-

tum 
q = 
0 (then q0 = 2m, and q2 = 4m2). In the case of the free scalar field
σ(q2) = 0, because the states |α〉 contain at least two particles, while in the free
field operator there is only one annihilation operator.

Formula (10.51) can now be written in the form

W (2)(x1, x2) = (〈0|φ̂(0)|0〉)2 + c0W (2)
m (x1, x2) (10.54)

+ 1

(2π)3

∫ ∞

4m2
d M2 σ(M2)

∫
d4q �(q0)δ(q2 − M2) exp(−iq(x1 − x2))

= (〈0|φ̂(0)|0〉)2 + c0W (2)
m (x1, x2)+

∫ ∞

4m2
d M2 σ(M2)W (2)

M (x1, x2),

where W (2)
M (x1, x2) denotes the 2-point Wightman’s function of the free scalar field

with the mass parameter M . The integration variable is M2. Formula (10.54) is
called the spectral decomposition of the Wightman’s function.

The spectral decomposition for G(2) is obtained by inserting (10.54) on the r.h.s.
of formula (10.35):
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G(2)(x1, x2) = |〈0|φ̂(0)|0〉|2 + c0G(2)m (x1, x2)+
∫ ∞

4m2
d M2 σ(M2)G(2)M (x1, x2).

(10.55)
Here G(2)m , G(2)M denote Green’s functions of the free scalar field with mass param-
eters equal to m and M ≥ 2m, respectively.

The Fourier transform of formula (10.55), (see the definition (7.49) with n = 2)
has the form G̃(2)(k1, k2) = δ(k1 + k2)G̃(k1), where

G̃(k1) = (2π)4|〈0|φ̂(0)|0〉|2δ4(k1)

+ ic0

k2
1 − m2 + i0+

+
∫ ∞

4m2
d M2 σ(M2)

i

k2
1 − M2 + i0+

. (10.56)

It is clear that G̃(k1) has the property (8.30).
The spectral decomposition (10.56) shows that G̃(k1) has the simple pole at k2

1 =
m2 with the residue ic0 where c0 > 0. The perturbative results for G̃(k1), discussed
in Chaps. 7 and 8, have to be reconsidered in this respect. This will be done in
Sect. 10.4.

10.3 The Contribution of the Single Particle Sector

This section is devoted to the derivation of formula (10.44). We shall see how pow-
erful the requirement of relativistic invariance is: it implies that all basis states | 
p 〉
can be obtained from, e.g., the state |
0〉, by applying the representation operators Ũ .

We shall use so called Hermitian boosts: the Hermitian, positive definite matrices
Hp ∈ SL(2,C) determined from the condition

m H 2
p = p0σ0 + piσi , (10.57)

where σi are Pauli matrices, p = (p0, pi ) is a given four-momentum such that
pμ pμ = m2 and p0 > 0, m > 0. Simple calculation shows that

Hp = (p
0 + m)σ0 + pkσk√

2m(p0 + m)
.

We know from Chap. 5 that

�−1σμ(�†)−1 = L(�)μνσ
ν

for any � ∈ SL(2,C), or equivalently

�σμ�† = L(�−1)μνσ
ν = σ νL(�) μν . (10.58)

It is convenient to introduce the matrix
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â
d f= aμσ

μ = aμσμ.

Multiplying both sides of formula (10.58) by aμ and summing over μ we obtain

�â�† = a
′μσμ, (10.59)

where

a
′μ = L(�)μνa

ν . (10.60)

Comparing (10.57) with (10.59) and (10.60) we see that L̂(Hp) is a Lorentz trans-
formation which transforms the 4-vector (m, 0, 0, 0) into (p0, 
p).

Note that instead of Hp we may take H ′
p = Hpu, with arbitrary u ∈ SU (2).

The corresponding Lorentz transformation L̂(H ′
p) = L̂(Hp)L̂(u) contains L̂(u),

which is a spatial rotation, because it does not change the 4-vector (m, 0, 0, 0):
u mσ0 u† = mσ0. The boost H ′

p is not Hermitian in general. One can prove that
arbitrary matrix � ∈ SL(2,C) can be written in the form � = Hpu, where Hp is
the Hermitian boost and u ∈ SU (2).

Now, let us consider the vector Ũ (�, 0)|
q 〉 from the space H(1). Formula (10.16)
implies that it is an eigenvector of P̂μ:

P̂μŨ (�, 0)|
q 〉 = Ũ (�, 0)Ũ−1(�, 0)P̂μŨ (�, 0)|
q 〉
= Ũ (�, 0)L(�)μν P̂ν |
q 〉 = L(�)μνq

νŨ (�, 0)|
q 〉.

We see that the eigenvalues are equal to L(�)μνqν , where q0 = E(
q) =√
q 2 + m2. Because the operators P̂i , i = 1, 2, 3, form the complete set of
commuting observables in H(1), the vector Ũ (�, 0)|
q〉 has to be proportional to
| 
Lq〉, where 
Lq denotes the spatial part of the 4-vector L̂(�)q, i.e., (Lq)i =
Li

0 E(
q)+ Li
kqk . Thus,

Ũ (�, 0)|
q〉 = N (�, 
q)| 
Lq〉, (10.61)

where the coefficient N can depend on � and 
q.
In order to calculate the coefficient N , we use the normalization condition for the

basis vectors,

〈
q |
q ′〉 = δ3(
q − 
q ′).

Because

〈
q |
q ′〉 = 〈
q |Ũ †(�, 0)Ũ (�, 0)|
q ′〉 = N (�, 
q)N (�, 
q ′)〈 
Lq| 
Lq ′〉,

we have the condition
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δ3(
q − 
q ′) = N (�, 
q)N (�, 
q ′)δ3( 
Lq − 
Lq
′
).

Next, on the r.h.s. of this condition we use the formula

δ3( 
Lq − 
Lq
′
) = E(
q)

E( 
Lq)
δ3(
q − 
q ′) (10.62)

which is proved at the end of this section. It follows that

|N (�, 
q)|2 = E( 
Lq)

E(
q) .

Thus,

N (�, 
q) =
√

E( 
Lq)

E(
q) exp(iχ(�, 
q)),

where exp(iχ) is a phase factor.
Let us now take 
q = 0 and � = Hp. Then

N (Hp, 0) =
√

E( 
p )
m

exp(iχ(Hp, 0)),

and formula (10.61) says that

Ũ (Hp, 0)|
0〉 =
√

E( 
p)
m

exp(iχ(�, 
q))| 
p 〉,

or

| 
p 〉 =
√

m

E( 
p) exp(−iχ(�, 
q))Ũ (Hp, 0)|
0 〉. (10.63)

Formula (10.44) follows immediately from (10.63), (10.23) and (10.29):

|〈0|φ̂(0)| 
p 〉|2 = m

E( 
p) |〈0|φ̂(0)Ũ (Hp, 0)|
0 〉|2

= m

E( 
p ) |〈0|Ũ (Hp, 0)Ũ
−1(Hp, 0)φ̂(0)Ũ (Hp, 0)|
0 〉|2 = m

E( 
p) |〈0|φ̂(0)|

0 〉|2.

It remains to prove formula (10.62). Let us regard 
q ′ as a fixed vector and 
q as a
variable. We shall use the general formula

δ3( 
F(
q)) = 1

|detM̂(
q0)|
δ3(
q − 
q0), (10.64)
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where 
q0 is the vector such that 
F(
q0) = 
0, and the Jacobi matrix

M̂ =
[
∂Fi

∂q j

]∣∣∣∣
q=
q0

is nonsingular. It is assumed that apart from 
q0 there are no other vectors 
q for
which 
F(
q) = 
0. In our case


F(
q) = 
Lq − 
Lq ′,

that is

Fi (
q) = Li
0 E(
q)+ Li

sqs − Li
0 E(
q ′)− Li

sq
′s,

where

E(
q) =
√

q 2 + m2, E(
q ′) =

√

q ′2 + m2. (10.65)

Let us first prove that 
F(
q) = 
0 only for 
q = 
q ′. These two vectors are momenta of
the particle of the rest mass m. The corresponding energies have the form (10.65).
The energies corresponding to the momenta 
Lq, 
Lq ′ are given by formulas

E( 
Lq) =
√
( 
Lq)2 + m2 = L0

0 E(
q)+ L0
i q

i ,

E( 
Lq ′) =
√
( 
Lq ′)2 + m2 = L0

0 E(
q ′)+ L0
i q
′i .

Therefore, equation 
F(
q) = 
0 is equivalent to the equality of the 4-momenta

(
E( 
Lq)

Lq

)
=
(

E( 
Lq ′)

Lq ′

)
.

Acting on both sides of this equality with the inverse Lorentz transformation L̂−1

we obtain the equivalent equation

(
E(
q)

q
)
=
(

E(
q ′)

q ′

)
,

which has 
q = 
q ′ as the only solution.
The elements Mi

k of the Jacobi matrix M̂ at the point 
q0 = 
q ′ have the form

Mi
k(
q ′) = Li

k +
Li

0q
′k

E(
q ′) .
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In order to compute detM̂ we use the following trick. Let us introduce another
matrix Â = [Ak

s], where

Ak
s = Lk

s −
Lk

0L0
s

L0
0

,

and consider the matrix B̂ = M̂ ÂT , where T denotes the matrix transposition.
Using the following properties of the Lorentz transformations

Li
s Lr

s = Li
0Lr

0 + δir , (10.66)

Li
s L0

s = Li
0L0

0, (10.67)

we find that

Bi
r = Mi

s( Â
T )s r = Mi

s Ar
s = δir + ci dr ,

where

ci = Li
0, dr = 1

E(
q ′)

(
Lr

sq
′s − Lr

0L0
sq

′s

L0
0

)
.

Straightforward calculation gives

detB̂ = 1+ 
c 
d = 1+ Li
0Li

sq
′s

E(
q ′) − Li
0Li

0L0
sq

′s

E(
q ′)L0
0

.

The r.h.s. of this formula can be simplified with the help of another identity satisfied
by the Lorentz matrices, namely

Li
0Li

0 = L0
0L0

0 − 1.

On the other hand,

detB̂ = detM̂ det Â.

Because, as we show below,

det Â = 1

L0
0

, (10.68)

we obtain

detM̂ = L0
0 +

L0
sq

′s

E(
q ′) =
E( 
Lq ′)
E(
q ′) .
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Thus, indeed formula (10.64) gives (10.62).
In order to compute det Â we use the fact that detL̂ = 1. Because

1 = detL̂ = det

(
L0

0 L0
k

Li
0 Li

k

)
= L0

0det

(
1

L0
k

L0
0

Li
0 Li

k

)

= L0
0 det

⎛
⎜⎜⎜⎝

1
L0

k

L0
0

0 Li
k − Li

0 L0
k

L0
0

⎞
⎟⎟⎟⎠ = L0

0 det Â,

we see that formula (10.68) is indeed true.

10.4 The Pole of the Perturbative G̃(2)

The perturbative approach to the Green’s functions in the :φ4
4: model has been dis-

cussed in Chap. 7. We have seen that G(1) ≡ 0, that is that 〈0|φ̂(x)|0〉 = 0. For this
reason, the first term in the spectral decompositions (10.54) and (10.56) vanishes.

The renormalized perturbative contribution to the G̃(k) function is schematically
depicted in Fig. 10.1. The lines represent

�F (k) = i

k2 − m2
0 + i0+

,

while the dark circle, denoted by ren, stands for the sum of all 1-particle irreducible
renormalized graphs contributing to the 2-point function. Analytically, G̃(k) is given
by the geometric series

G̃(k) = �F (k)+�F (k)  
ren �F (k)+�F (k)( 

ren �F (k))
2 + . . .

= �F (k)

1− ren�F (k)
.

Therefore, in the perturbative approach

G̃(k) = i

k2 − m2
0 − i ren + i0+

. (10.69)

Πren Πren Πren

Fig. 10.1 The schematic picture of the perturbative contributions to G̃(k)
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On the other hand, formula (10.56) shows that G̃(k) is a regular function of k2 for
k2 < 4m2, apart from the simple pole at k2 = m2 (remember that 〈0|φ̂(0)|0〉 = 0):

lim
k2→m2

(k2 − m2) G̃(k) = ic0. (10.70)

Moreover, 1/G̃(k) is a smooth function of k2 in a vicinity of k2 = m2. Therefore,
for k2 < 4m2 the perturbatively calculated  ren should also be a function of k2

only, smooth in a vicinity of k2 = m2. Renormalization schemes have to respect
these conditions.

Inserting (10.69) on the l.h.s. of formula (10.70), we obtain the condition

lim
k2→m2

k2 − m2

k2 − m2
0 − i ren(k2)+ i0+

= c0, (10.71)

where c0 > 0. Therefore, the denominator has to vanish at k2 = m2:

m2 − m2
0 − i ren(k2 = m2) = 0. (10.72)

This condition determines the mass parameter m2
0 present in the Lagrangian (7.1).

The value of m2 is provided by a measurement of the rest mass of the particle7.
Let us analyze condition (10.72) order by order. In the lowest order, ∼ λ0

0, there
are no 1-particle irreducible graphs contributing to G̃(2). Hence,  ren

(0)(k
2) = 0 and

m2
0 = m2. (10.73)

Thus, in the zeroth order, the mass parameter m2
0 is equal to the rest mass squared

of the scalar particle. Comparing (10.69) with (10.56) we also find that in the zeroth
order

σ (0) = 0, c(0)0 = 1.

The first non vanishing contribution to  ren(k2) appears in the λ2
0 order. It is

represented by the graph from Fig. 8.9. Let us denote it by  ren
(2)(k

2). Now formula
(10.72) has the form

m2
0 = m2 − i ren

(2)(k
2 = m2). (10.74)

7 Also the coupling constant λ0 is determined, at least in principle, by a comparison of the results
of measurements of, e.g., a scattering cross section with perturbatively calculated theoretical pre-
diction. However, it is clear that such λ0 depends on the subtraction point μ which is present in the
perturbative formulas. Hence, in fact it should be regarded as the running coupling constant at that
value of μ.
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 ren
(2)(m

2) contains m2
0 in the free propagators �F (k), hence (10.74) is actually an

equation for m2
0. However, because  ren

(2) is already proportional to λ2
0, we may

replace m2
0 by m2 in the free propagators—this does not change the term propor-

tional to λ2
0. Thus, in the second order

m2
0 = m2 − i  ren

(2)(k
2 = m2)

∣∣∣
m2

0=m2
. (10.75)

The mass parameter m2
0, which in the zeroth order was equal to m2, now has to be

corrected in accordance with formula (10.75). The term−m2
0φ

2/2 in the Lagrangian
can be written in the form

−1

2
m2φ2 + i

2
 ren
(2)(k

2 = m2)

∣∣∣
m2

0=m2
φ2.

The term i
2  

ren
(2)(k

2 = m2)

∣∣∣
m2

0=m2
φ2 is called the finite mass counterterm. It is

finite because it is calculated from the renormalized ren
(2)(k

2). Also in higher orders

finite counterterms of this type are necessary. Without them, the perturbative :φ4
4 :

model would not be compatible with the relativistic invariance and the particle
interpretation.

Exercises

10.1 Derive formula (10.18).
Hint: �−1(ω)�(ω1)�(ω) = �(ω̃), where ω̃ is determined from the formula
L̂−1(ω)L̂(ω1)L̂(ω) = L̂(ω̃).

10.2 Obtain the transformation law of M̂μν with respect to the translations in space-
time.
Hint: Compute derivatives of both sides of formula (10.14) with respect to ωμν

assuming that � = �(ω) and next put ω = 0.

10.3 Check that the free real scalar field obeys the relation (10.24).

10.4 Starting from formula (10.71) prove that

c0 = 1

1− i ren ′(k2 = m2)
,

where ′ denotes the derivative with respect to k2.
Hint: Apply de l’Hospital rule known from calculus.





Chapter 11
Paths Integrals in QFT

Abstract Path integral formulas for the evolution operator in quantum mechanics.
Path integral formula for the generating functional Z [ j] in the quantum theory of
the real scalar field. Rederivation of the perturbative expansion for the φ4

4 model.
Integration over Grassmann variables. Path integral formula for the generating func-
tional in the theory of the quantum Dirac field.

The time evolution of states of an isolated quantum system is described by a unitary
operator U in pertinent Hilbert space. Path integrals are used in order to write matrix
elements of U in the form which makes explicit connection with certain classical
theory, hence they facilitate studies of the classical limit of the quantum theory.
In many cases in field theory we are not able to construct the quantum theory
explicitly. Then path integrals can be used as a heuristic tool, with which we can
guess many features of the sought for quantum theory. An outstanding example of
such ‘reversed’ use of path integrals is provided by non-Abelian gauge fields, to be
discussed in the next chapter.

We start our introduction to the formalism of path integrals with a very simple
example of a single, spinless, one-dimensional particle where the quantum theory
is well-known. Next, we pass to the relativistic quantum scalar field for which
we already know the perturbative expansion for the Green’s functions. Finally, we
introduce path integrals for fermionic fields—in this case anti-commuting classical
variables appear.

11.1 Path Integrals in Quantum Mechanics

In this section we show how the path integrals are derived in the framework of
operator formalism of quantum mechanics. We consider a spinless, nonrelativistic
particle of mass m. It can move only along a straight line, which we call the x
axis, and it is subject to forces described by a smooth classical potential V (x). The
quantum Hamiltonian for such a particle has the form

Ĥ = T ( p̂)+ V (x̂), (11.1)

H. Arodź, L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
DOI 10.1007/978-3-642-15624-3_11, C© Springer-Verlag Berlin Heidelberg 2010

255
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where x̂, p̂ = −i h̄d/dx are the position and momentum operators in the Schroedin-
ger picture, and

T ( p̂) = p̂2

2m

is the kinetic energy operator. In the present section we write the Planck constant
h̄ because the natural units are very rarely used in quantum mechanics. The Hamil-
tonian Ĥ does not depend on time, therefore the evolution operator is given by the
formula

U (t ′′, t ′) = exp

[
− i

h̄
Ĥ(t ′′ − t ′)

]
. (11.2)

This operator is fully described by its matrix elements 〈x ′′|U (t ′′, t ′)|x ′〉 in the basis
of eigenstates |x〉 of the position operator x̂

x̂ |x〉 = x |x〉.

The matrix elements 〈x ′′|U (t ′′, t ′)|x ′〉 can be expressed by an integral over a
certain set of trajectories in the phase space of the particle. Let us divide the interval
[t ′′, t ′] into N subintervals [ti−1, ti ], where

ti = t ′ + ε i, i = 0, . . . , N , ε = (t ′′ − t ′)/N ,

with t0 ≡ t ′, tN ≡ t ′′. Then

〈x ′′|U (t ′′, t ′)|x ′〉 = 〈x ′′|U (t ′′, tN−1)U (tN−1, tN−2) . . .U (t1, t
′)|x ′〉. (11.3)

Next, we insert N identity operators of the form

I =
∫ +∞

−∞
dp |p〉〈p|,

where |p〉 is the eigenstate of the momentum operator

p̂|p〉 = p|p〉,

and also N − 1 identity operators of the form

I =
∫ +∞

−∞
dx |x〉〈x |.

For the sake of clarity, the integration variables x, p in all identity operators are
appropriately numbered. We obtain the following formula
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〈x ′′|U (t ′′, t ′)|x ′〉 =
∫ +∞

−∞
. . .

∫ +∞

−∞
dpN dpN−1dxN−1 . . . dp1dx1〈x ′′|pN 〉

〈pN |e− i
h̄ ε Ĥ |xN−1〉〈xN−1|pN−1〉〈pN−1|e− i

h̄ ε Ĥ |xN−2〉〈xN−2|pN−2〉
〈pN−2|e− i

h̄ ε Ĥ |xN−3〉〈xN−3|pN−3〉 . . . 〈p1|e− i
h̄ ε Ĥ |x ′〉. (11.4)

The scalar products of the form 〈x |p〉 are normalized plane waves

〈x |p〉 = 1√
2π h̄

e
i
h̄ xp
. (11.5)

We are interested in the limit ε → 0. Therefore, ε is small and the matrix elements
of the exponentials in formula (11.4) can be rewritten as follows

〈pk+1|e− i
h̄ ε Ĥ |xk〉

=
[

1− i

h̄
ε

(
T (pk+1)+ V

(
xk + xk+1

2

))
+O(ε2)

]
e−

i
h̄ pk+1xk

= e
− i

h̄ ε
(

T (pk+1)+V
(

xk+xk+1
2

))
e−

i
h̄ pk+1xk +O(ε2). (11.6)

Using formulas (11.5) and (11.6) we transform (11.4) to the following form

〈x ′′|U (t ′′, t ′)|x ′〉 =
∫ +∞

−∞
dpN

2π h̄

∫ +∞

−∞
. . .

∫ +∞

−∞

N−1∏
l=1

dpldxl

2π h̄

exp

(
i

h̄
ε

N−1∑
k=1

[
pk+1

xk+1 − xk

ε
− T (pk+1)− V

(
xk + xk+1

2

)])
(1+O(ε2)).

(11.7)

Note that the number of integrals over the momenta is larger by 1 than over the
positions. We expect that in the limit ε → 0 the terms marked as O(ε2) can be
neglected. Unfortunately, precise control of these terms turns out to be very difficult.
It is a major obstacle in obtaining a mathematically rigorous definition of the path
integrals.

The action functional for the path (x(t), p(t)) in the phase space of the particle
has the form

S[x(t), p(t)] =
∫ t ′′

t ′
dt
[
ẋ(t)p(t)− H(p(t), x(t))

]
.

Let us take the path (p(N )(t), x(N )(t)) in the phase space such that p(N )(t) is con-
stant in each interval (tk, tk+1] introduced above—the value of p(N )(t) in that inter-
val is denoted as pk+1 (here k = 0, 1, N − 1), see Fig. 11.1. Moreover, the function
x(N )(t) is linear in each time interval, namely



258 11 Paths Integrals in QFT

t0 t1 t2

tN–1 tN

t

p

p1

p2

pN

Fig. 11.1 The function p(N )(t)

x(N )(t) = xk + (t − tk)
xk+1 − xk

ε
if t ∈ [tk, tk+1],

see Fig. 11.2. Note that the momentum part of the phase space path in general is
not continuous, while the position part is always continuous. The velocity ẋ(t) is
constant during the introduced time intervals and equal to (xk+1 − xk)/ε. It is not
correlated at all with the values pk+1 of the momentum in these time intervals.
In particular, the relation pk+1/m = (xk+1 − xk)/ε, which would correspond to
p(t)/m = ẋ(t), is not true in general—this relation holds only for the paths which
are the physical trajectories of the particle, that is for solutions of classical Hamilton
equations, while here we consider arbitrary paths. In the limit ε → 0, equivalent to

x

xN

xN–1

x1

x0

t t t t t t1–210 N N

Fig. 11.2 The function x(N )(t)
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the limit N →∞, the functions x(N )(t) remain continuous, but in general they are
not differentiable in the whole interval (t ′, t ′′).

The value of the action functional S for the path (p(N )(t), x(N )(t)), denoted by
SN , is calculated as follows:

SN =
N−1∑
k=0

∫ tk+1

tk
dt (pẋ − H)

=
N−1∑
k=0

ε

[
pk+1

xk+1 − xk

ε
− T (pk+1)− V

(
xk + xk+1

2

)](
1+O(ε2)

)
,

where we have used the following approximation

∫ tk+1

tk
dt V (x(N )) = εV

(
xk + xk+1

2

)
+O(ε2).

Therefore, formula (11.7) can be written in the form

〈x ′′|U (t ′′, t ′)|x ′〉

=
∫ +∞

−∞
dpN

2π h̄

∫ +∞

−∞
. . .

∫ +∞

−∞

N−1∏
l=1

dpldxl

2π h̄
exp

(
i

h̄
SN

)(
1+O(ε2)

)
. (11.8)

In the cases where the O(ε2) terms do not give any contribution to the limit N →∞
we may write

〈x ′′|U (t ′′, t ′)|x ′〉 = lim
N→∞

∫ +∞

−∞
dpN

2π h̄

∫ +∞

−∞
. . .

∫ +∞

−∞

N−1∏
l=1

dpldxl

2π h̄
exp

(
i

h̄
SN

)

(11.9)

Formula (11.9) gives the representation of the matrix elements 〈x ′′|U (t ′′, t ′)|x ′〉
in terms of integration over the set of paths in the phase space—for each concrete
choice of values of the integration variables x1, . . . , xN−1, p1, . . . , pN we have the
paths (xN (t), pN (t)) in the phase space. That formula is often written in a concise
form as

〈x ′′|U (t ′′, t ′)|x ′〉 =
∫

x(t ′) = x ′
x(t ′′) = x ′′

∏
t∈(t ′,t ′′)

dp(t)dx(t)

2π h̄
exp

(
i

h̄
S[p, x]

)
, (11.10)

or, in an even more concise form,

〈x ′′|U (t ′′, t ′)|x ′〉 =
∫
[dpdx

2π h̄
] exp

(
i

h̄
S[p, x]

)
. (11.11)
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These short forms can be misleading: one does not see from them that the number
of integrals over p and x is different, and that the functions p(t) are not continu-
ous. Moreover, the paths x(t) have fixed ends, while p(t) do not. One should also
remember that ẋ(t) is not related to p(t).

The integrals over momenta can be calculated, because T (p) = p2/(2m) and
these integrals have the Gaussian form. Using

∫ +∞

−∞
dp exp(−ap2 + bp) =

√
π

a
exp

(
b2

4a

)
,

we obtain

∫ +∞

−∞
dpk+1 exp

(
i

h̄

[
pk+1(xk+1 − xk)− ε

p2
k+1

2m

])

=
√

2π h̄m

iε
exp

(
im

2h̄ε
(xk+1 − xk)

2
)
.

In consequence,

〈x ′′|U (t ′′, t ′)|x ′〉 =
(

m

2π i h̄ε

) N
2
∫ +∞

−∞
. . .

∫ +∞

−∞

N−1∏
l=1

dxl

exp

(
N−1∑
k=0

[
im

2h̄ε
(xk+1 − xk)

2 − iε

h̄
V

(
xk+1 + xk

2

)])(
1+O(ε2)

)
. (11.12)

On the other hand, the action functional for a path x(t) in the configuration space of
the particle has the form

S[x(t)] =
∫ t ′′

t ′
dt L(x(t), ẋ(t)),

where

L = m

2
ẋ2 − V (x(t)).

Therefore,

S[xN (t)] =
N−1∑
k=0

∫ tk+1

tk
dt L(xN (t), ẋN (t))

=
N−1∑
k=0

[
m(xk+1 − xk)

2

2ε
− ε V (

xk+1 + xk

2
)

] (
1+O(ε2)

)
. (11.13)
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and

〈x ′′|U (t ′′, t ′)|x ′〉

= lim
N→∞

(
m

2π i h̄ε

) N
2
∫ +∞

−∞
. . .

∫ +∞

−∞

(
N−1∏
l=1

dxl

)
exp

(
i

h̄
S[xN (t)]

)
, (11.14)

if the O(ε2) terms do not give any contribution in the N →∞ limit. This formula
is written in a concise form as

〈x ′′|U (t ′′, t ′)|x ′〉 = N
∫

x(t ′) = x ′
x(t ′′) = x ′′

[dx(t)] exp

(
i

h̄
S[x(t)]

)
. (11.15)

Formula (11.14) gives the matrix elements of the time evolution operator in terms
of the integral over a set of paths x(t) in the classical configuration space of the parti-
cle. The paths have fixed ends, they are continuous, but in general not differentiable.
Note that the paths do not go back in time—it is clear from Fig. 11.2 that for such
paths there would be three or more integration variables at given time tk , while in
our derivation we have introduced just one.

Quantum mechanical Green’s functions have the form of matrix elements of
time-ordered products of the position operator x̂H (t) in the Heisenberg picture,

x̂H (t) = exp

(
i

h̄
t Ĥ

)
x̂ exp

(
− i

h̄
t Ĥ

)
, (11.16)

namely

G(n)(t1, t2, . . . , tn) = 〈b|T
(
x̂H (t1)x̂H (t2) . . . x̂H (tn)

) |a〉, (11.17)

where |a〉, |b〉 are certain states. Using formula (11.16) and executing the time
ordering we obtain

G(n)(t1, t2, . . . , tn)

= 〈b| exp
(

i
h̄ tin Ĥ

)
x̂ U (tin , tin−1) x̂ . . .U (ti2 , ti1) x̂ exp

(
i
h̄ ti1 Ĥ

)
|a〉, (11.18)

where tin ≥ tin−1 ≥ . . . ti2 ≥ ti1 is the time ordered sequence obtained by permuting
t1, t2, . . . , tn . In order to obtain the path integral formula for the Green’s functions
we substitute for each operator x̂ in formula (11.18) its spectral representation,
namely

x̂ =
∫ ∞

−∞
dx |x〉 x 〈x |. (11.19)
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We distinguish the integration variables in formula (11.19) for n operators x̂ in
(11.18) by denoting them as x(tik ) with k = 1, 2, . . . , n, namely x(tik ) is used in the
spectral representation of that operator x̂ in formula (11.18) which has tik on both
sides. Moreover, we insert two identity operators of the form

I =
∫ ∞

−∞
dx f |x f 〉〈x f |, I =

∫ ∞

−∞
dxi |xi 〉〈xi |,

and the exponentials exp(± i
h̄ Tf Ĥ), exp(± i

h̄ Ti Ĥ), where Tf > tin ≥ ti1 > Ti .

After all these steps, the r.h.s. of formula (11.18) has the following form

∫ ∞

−∞
. . .

∫ ∞

−∞
dx f dxi dx(ti1) . . . dx(tin ) 〈b| exp

(
i

h̄
Tf Ĥ

)
|x f 〉

〈x f |U (Tf , tin )|x(tin )〉 x(tin ) 〈x(tin )|U (tin , tin−1)|x(tin−1)〉 x(tin−1) . . .

〈x(ti2)|U (ti2 , ti2)|x(ti1)〉 x(ti1)〈x(ti1)|U (ti1 , Ti )|xi 〉 〈xi | exp

(
− i

h̄
Ti Ĥ

)
|a〉.

For each matrix element 〈x(tik )|U (tik , tik−1)|x(tik−1)〉we use formula (11.15), which
involves paths connecting the points x(tik ), x(tik−1). These paths from consecutive
time intervals are combined to form long paths connecting the points x f , xi . There-
fore, the path integral representation of the Green’s function has the form

G(n)(t1, t2, . . . , tn)

= N
∫ ∞

−∞
dx f dxi 〈b| exp

(
i

h̄
Tf Ĥ

)
|x f 〉 〈xi | exp

(
− i

h̄
Ti Ĥ

)
|a〉

∫
x(Ti ) = xi

x(Tf ) = x f

[dx(t)] x(t1)x(t2) . . . x(tn) exp

(
i

h̄
S[x(t)]

)
. (11.20)

In the particular case of |a〉, |b〉 being eigenstates of Ĥ with the eigenvalues
Ea, Eb, respectively,

G(n)(t1, t2, . . . , tn)

= N
∫ ∞

−∞
dx f dxi ψ

∗
b (x f )ψa(xi ) exp

(
i

h̄
[Tf Eb − Ti Ea]

)

∫
x(Ti ) = xi

x(Tf ) = x f

[dx(t)] x(t1)x(t2) . . . x(tn) exp

(
i

h̄
S[x(t)]

)
, (11.21)

where ψa(xi ) = 〈xi |a〉, ψb(x f ) = 〈x f |a〉 are the wave functions corresponding to
the states |a〉, |b〉.

The main attractive feature of the path integral representation of the time evolu-
tion in the quantum theory is the explicit appearance of the classical action, see for
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example formula (11.15). This fact facilitates derivation of a classical limit of the
quantum theory. The topic of the classical limit of quantum theory lies outside the
scope of our considerations, but it is so important that we can not leave it without
a comment. Note that the classical action has appeared in formula (11.15), that has
been obtained as a result of the computation in which we have assumed that we know
the quantum Hamiltonian (11.1). Thus, the form of the classical action is dictated by
the quantum theory, and not vice versa. Furthermore, the path integral formulation
of quantum mechanics gives a rather simple explanation of the otherwise rather
strange fact, that equations of motion for a classical particle often have the form
of the Euler–Lagrange equations obtained from a stationary action principle: this
principle follows from a certain quantum theory in the path integral formulation by
taking the limit h̄ → 0. One may say that the existence of the Lagrangian form of
the classical equation of motion points to the fact that the classical theory is just a
classical limit of certain underlying quantum theory.

The path integral representation can also be used as a heuristic tool helping us
to construct a quantum theory which would correspond to a previously known clas-
sical theory. An example of such a use of the path integral is presented in the next
chapter, where we construct a renormalizable perturbative expansion for quantized
non-Abelian gauge fields. Let us give here another example.

It is a well-known fact in classical mechanics that the Lagrange functions L(x, ẋ)
and L ′ = L + ẋ f ′(x), where f is a differentiable function and f ′ = d f/dx ,
are equivalent in the sense that they give the same Euler–Lagrange equation. For
simplicity we consider a particle in the one-dimensional space R1. Let us insert the
action

S′ =
∫ Tf

Ti

dt
(
L + d f (x(t))

dt

) = S + f (x(Tf ))− f (x(Ti ))

in formula (11.21) instead of S. Because x(Ti ) = xi , x(Tf ) = x f , the net result of
such a change of the action is equivalent to the change of the wave functions ψa, ψb

by the phase factor exp(−i f/h̄),

ψa,b(x)→ exp
(− i

h̄
f (x)

)
ψa,b(x).

Thus, we see that the two quantum theories obtained from the actions S and S′,
respectively, are equivalent in the sense that there exists a (unitary) transformation
from one to the other—it consists in the multiplication of all wave functions by the
same x-dependent phase factor exp(−i f/h̄). The field theoretic version of this fact
was used in Sect. 6.2 in order to facilitate the quantization of the Dirac field.

Yet another type of applications of the path integrals is based on the fact that var-
ious matrix elements, originally given in terms of states and operators in the Hilbert
space, can be expressed by path integrals, which subsequently can be computed with
the help of efficient numerical approximation techniques.
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11.2 Path Integrals for Bosonic Fields

The path integral formula for Green’s functions in the case of bosonic fields is
obtained essentially by repeating the steps described in the previous section. For
brevity, we will discuss just one real, scalar field with the Lagrangian

L = 1

2
∂μφ∂

μφ − 1

2
m2

0φ
2 − V (φ), (11.22)

and the canonical momentum and Hamiltonian

π = ∂0φ, H = 1

2
π2 + 1

2
∂iφ∂iφ + 1

2
m2

0φ
2 + V (φ). (11.23)

We again use the natural units. The time variable is denoted by x0 or t , as convenient.
The counterpart of the position operator x̂ in the Schroedinger representation is

the time-independent field operator φ̂S(
x). Because

φ̂S(
x)φ̂S(
y)− φ̂S(
y)φ̂S(
x) = 0 for all 
x, 
y ∈ R3,

there exist eigenstates of the field operator, denoted as |φ〉:

φ̂S(
x)|φ〉 = φ(
x)|φ〉 for all 
x ∈ R3.

Thus, the eigenstates are labeled by the functions φ(
x) defined on the space R3.
The identity operator and the spectral representation of φ̂S have the following form

I =
∫
(dφ) |φ〉〈φ|, φ̂S(
x) =

∫
(dφ) |φ〉φ(
x)〈φ|, (11.24)

where

(dφ) =
∏

y∈R3

dφ(
y).

Of course, this last formula for the integration measure (dφ) should not be taken
literally—rather it is to be understood as a limit in which a discrete and finite
set of points 
x from the space R3 is becoming larger and denser, asymptotically
approaching the whole R3. Mathematically rigorous discussion of such a limit is
not necessary for our purposes.

Operators π̂S(
x), π̂S(
y) also commute with each other, therefore there exist the
eigenstates |π〉 such that

I =
∫
(dπ) |π〉〈π |, π̂S(
x) =

∫
(dπ) |π〉π(
x)〈π |, (11.25)
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where

(dπ) =
∏

y∈R3

dπ(
y).

The evolution operator has the form (11.2), where now

Ĥ = 1

2
π̂2 + 1

2
∂i φ̂∂i φ̂ + V (φ̂).

Here we assume that the operator expressions are suitably regularized if necessary.
Repeating the steps leading to formula (11.10), we obtain

〈φ′′|U (t ′′, t ′)|φ′〉 =
∫
φ(t ′, 
x) = φ′(
x)
φ(t ′′, 
x) = φ′′(
x)

[dπdφ] ei S[π,φ], (11.26)

where

[dπdφ] =
∏

x0∈(t ′,t ′′)

∏

x∈R3

dπ(x0, 
x) dφ(x0, 
x)
2π

and

S[π, φ] =
∫

R3
d3x

∫ t ′′

t ′
dx0

[
π(x0, 
x)∂0φ(x

0, 
x)− L
]
.

The integration in formula (11.26) is over paths in the phase space of the field.
Because Hamiltonian (11.23) is quadratic in the canonical momentum, we can inte-
grate over it. This gives the analog of formula (11.15),

〈φ′′|U (t ′′, t ′)|φ′〉 = N
∫
φ(t ′, 
x) = φ′(
x)
φ(t ′′, 
x) = φ′′(
x)

[dφ]ei S[φ], (11.27)

where

S[φ] =
∫

R3
d3x

∫ t ′′

t ′
dx0 L(φ(x0, 
x), ∂μφ(x0, 
x)).

Green’s functions are given by a formula analogous to (11.21)—instead of the
x̂H (t) operator, we now take the scalar field operator in the Heisenberg picture. If
both states |a〉, |b〉 are the vacuum state |0〉, then Ea = Eb = 0, and
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〈0|T
(
φ̂(x1) . . . φ̂(xn)

)
|0〉

= N
∫
(dφ′′)(dφ′)�∗0 [φ′′]�0[φ′]

∫
φ(Ti , 
x) = φ′(
x)
φ(Tf , 
x) = φ′′(
x)

[dφ]φ(x1) . . . φ(xn)e
i S[φ],

(11.28)

where �0[φ] = 〈φ|0〉 is the wave functional of the vacuum state. The time Tf is
later and Ti earlier than any of the times x0

k .

Unfortunately, in the most interesting cases the wave functional �0[φ] is not
known. We circumvent this problem with the help of formula

〈0|T (φ̂(x1) . . . φ̂(xn)
)|0〉 = lim

Tf →∞
Ti→−∞

〈χ |e−iTf Ĥ T
(
φ̂(x1) . . . φ̂(xn)

)
eiTi Ĥ |η〉

〈χ |e−i(Tf−Ti )Ĥ |η〉
,

(11.29)
which appeared in Chap. 7, in the derivation of the Gell-Mann–Low formula pre-
cisely in order to get rid of the vacuum state |0〉. Next, we use the field theoretic
version of formula (11.20) with

|a〉 = eiTi Ĥ |η〉, 〈b| = 〈χ |e−iTf Ĥ .

Because the exponentials with Tf , Ti on the r.h.s. cancel out, the numerator in
(11.29) can be written as

〈χ |e−iTf Ĥ T
(
φ̂(x1) . . . φ̂(xn)

)
eiTi Ĥ |η〉

= N
∫
(dφ′′)(dφ′) χ∗[φ′′] η[φ′]

∫
φ(Ti , 
x) = φ′(
x)
φ(Tf , 
x) = φ′′(
x)

[dφ]φ(x1) . . . φ(xn)e
i S[φ],

(11.30)

where χ [φ′′] = 〈φ′′|χ〉, η[φ′] = 〈φ′|η〉.
For the denominator we have

〈χ |e−i(Tf−Ti )Ĥ |η〉 = N
∫
(dφ′′)(dφ′) χ∗[φ′′] η[φ′]

∫
φ(Ti , 
x) = φ′(
x)
φ(Tf , 
x) = φ′′(
x)

[dφ] ei S[φ].

(11.31)
The path integral representation of the generating functional for the Green’s

functions

Z [ j] = 〈0|T exp

(
i
∫

d4x j (x)φ̂(x)

)
|0〉

follows from the formulas (11.29)÷(11.31):

Z [ j] = Z [ j]
Z [0] , (11.32)
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where

Z [ j] =
∫
(dφ′′)(dφ′) χ∗[φ′′] η[φ′]

∫
φ(−∞, 
x) = φ′(
x)
φ(∞, 
x) = φ′′(
x)

[dφ] ei S[φ]+i
∫

d4x j (x)φ̂(x).

(11.33)
Here Tf , Ti have been replaced by∞ and −∞, respectively.

Let us show how one can recover formulas (7.50) and (7.31), on which the deriva-
tion of the perturbative expansion was based, starting from the path integral (11.33).
In the first step we put

η[φ] = χ [φ] = exp

(
−1

2

∫
d3x φ(
x)

√
m2

0 −
 φ(
x)
)
.

These wave functionals correspond to the choice |η〉 = |χ〉 = |0I 〉made in Sect. 7.1,
see Exercise 6.6. Next, we use the following identity [10]

∫
d3x

[
φ′(
x)

√
m2

0 −
 φ′(
x)+ φ′′(
x)
√

m2
0 −
 φ′′(
x)

]

= lim
ε→0+

[ε
∫

d4x e−ε|x0|φ(x0, 
x)
√

m2
0 −
 φ(x0, 
x)],

where φ(x0, 
x) can be any function such that the integral on the r.h.s. exists and,
moreover,

lim
x0→∞

φ(x0, 
x) = φ′′(
x), lim
x0→−∞

φ(x0, 
x) = φ′(
x).

In order to check that identity, we change the integration variable from x0 to εx0,
next split the integration range into subintervals (−∞, 0], [0,+∞), take the limit
ε → 0+ separately in each subinterval, and note that

∫∞
0 dx0 exp(−x0) = 1.

In the next step we insert that identity on the r.h.s. of (11.33), and note that

∫
(dφ′′)(dφ′)

∫
φ(−∞, 
x) = φ′(
x)
φ(∞, 
x) = φ′′(
x)

[dφ] . . . =
∫
[dφ] . . . ,

where [dφ] =∏x∈M dφ(x). In the last path integral there are no restrictions on the
ends of the paths. The resulting formula

Z [ j] = lim
ε→0+

∫
[dφ] exp(i S[φ]

+ i
∫

d4x j (x)φ̂(x)− 1

2
ε

∫
d4x e−ε|x0|φ

√
m2

0 −
 φ) (11.34)

contains the integration over all the paths in the configuration space of the field,
without any restriction on the ends of the paths.

Finally, we use the correspondence φ(x)↔ −iδ/δ j (x) in order to write
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Z [ j] = exp

[
−iV

(
−i

δ

δ j (x)

)]
Z0[ j], (11.35)

where

Z0[ j] =
lim
ε→0+

∫
[dφ] exp

(
i S0[φ] + i

∫
d4x jφ − 1

2
ε

∫
d4x e−ε|x0|φ

√
m2

0 −
 φ
)
,

(11.36)

and

S0[φ] = 1

2

∫
d4x (∂μφ∂

μφ − m2
0φ

2).

As we know from Chap. 6, expressions of the form δ4/(δ j (x))4 are ill-defined.
The cure lies in introducing a regularization in the form of integration with a test
function g, see formula (7.33) in the case of V = λ0φ

4/4!. Henceforth we replace
V in formula (11.35) by its regularized form Vg .

The functional Z0[ j] can be calculated explicitly. To this end, we write it in the
form of the Gaussian integral,

Z0[ j] = lim
ε→0+

∫
[dφ] exp

(
− i

2

∫
d4xd4 y φ(x)Oε(x, y)φ(y)+ i

∫
d4x j (x)φ(x)

)
,

where

Oε(x, y) = −∂
2δ(x − y)

∂xμ∂yμ
+ m2

0δ(x − y)

− 1

2
iεe−ε|y0|

√
m2

0 −
 δ(x − y)− 1

2
iεe−ε|x0|

√
m2

0 −
 δ(x − y),

and change the integration variable φ in the path integral to φ1(x) = φ(x) −∫
d4z O−1

ε (x, z) j (z), where O−1
ε (x, z) is defined by the following equations:

∫
d4z Oε(x, z)O

−1
ε (z, y) = δ(x − y),

∫
d4z O−1

ε (x, z)Oε(z, y) = δ(x − y).

(11.37)
Such a shift of the integration variable does not change the ‘volume element’,
[dφ] = [dφ1], because dφ(x) = dφ1(x) for each fixed x , as follows from the
fact that

∫
d4z O−1

ε j does not depend on φ1. Therefore,
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Z0[ j] = lim
ε→0+

∫
[dφ1] exp

(
− i

2

∫
d4xd4 y φ1(x)Oε(x, y)φ1(y)

)

exp

(
i

2

∫
d4zd4 y j (z)O−1

ε (z, y) j (y)

)
.

The path integral gives a non-vanishing constant N0, which does not depend on j .
It cancels out in formula (11.32), because the same constant is also present in the
denominator.

It remains to compute O−1
ε . Because Oε(x, y) = Oε(y, x) also O−1

ε (x, y) is
symmetric in x, y, and then it is sufficient to consider only one of Eqs. (11.37), for
instance the first. Moreover, we may take the limit ε → 0+ in two steps: in the first
one we put e−ε|x0| = e−ε|y0| = 1 in Oε(x, y), but we keep the ε’s in front of the
exponentials. Let us seek O−1

ε in the Fourier form

O−1
ε (z, y) = (2π)−4

∫
d4k1d4k2 eik1z+ik2 y Õ−1

ε (k1, k2),

and substitute in the first Eq. (11.37) the Fourier representation of Oε(x, z):

Oε(x, z) = (2π)−4
∫

d4q eiq(x−z)(− q2 + m2
0 − iε

√
m2

0 + 
q 2
)
.

Simple calculations give

Õ−1
ε (k1, k2) = δ(k1 + k2)

k2
1 − m2

0 + iε
√

m2
0 + 
k 2

1

.

Thus, finally

Z0[ j] = N′ exp

[
− i

2

∫
d4k1d4k2 j̃(k1)

δ(k1 + k2)

k2
1 − m2

0 + i0+
j̃(k2)

]
, (11.38)

where j̃ is the Fourier transform of j .
Comparing our present results for the scalar field with formula (7.54), obtained

in Chap. 7, we see that Z0[ j] = Z0[ j] up to the constant N0. Furthermore, Z [ j] =
Z I [ j] if we take V = λ0φ

4/4!, compare formula (7.31). Thus, we have recovered
the results for the generating functional obtained in Chap. 7 in the framework of
operator approach. This gives us certain confidence in the path integral formulation,
in spite of some lack of mathematical rigor in it.
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11.3 Path Integral for Fermionic Fields

Field theoretical models of fundamental importance for physics, e.g., the standard
model of particle physics, usually involve several kinds of fields, among them are
fermionic ones. For this reason it is desirable to also have a path integral formulation
of the quantum theory of fermionic fields, similar to the one presented above for the
scalar field. This would provide a unified theoretical framework for investigating
such models, complementary to the operator formulation.

Our main objective is a path integral formula for Green’s functions of a fermio-
nic field, analogous to (11.28), or equivalently, for the pertinent generating func-
tional. For concreteness we consider the Dirac field ψ(x). The Green’s functions
are defined as the vacuum expectation values of time ordered products of the field
operators in the Heisenberg picture. There is an innocent looking difference in the
definition of the time ordered product (T -product) in bosonic and fermionic cases:
in the latter any interchange of two factors results in the change of the sign of the
T -product, i.e., the T -product is antisymmetric. For example,

〈0|T (. . . ψ̂αψ̂β . . .)|0〉 = −〈0|T (. . . ψ̂βψ̂α . . .)|0〉.

The T -product of anticommuting operators is defined as follows

T
(
ψ̂(t1)ψ̂(t2) . . . ψ̂(tn)

)

=
∑

P

sign(P) �(ti1 − ti2)�(ti2 − ti3) . . . �(tin−1 − tin )ψ̂(ti1)ψ̂(ti2) . . . ψ̂(tin ),

(11.39)

where we have omitted the bispinor indices. The sum is over the set of all permu-
tations (t1, t2, . . . , tn)→ (ti1, ti2 , . . . , tin ), and sign(P) is equal to +1 for even, and
−1 for odd permutations. The presence of the factor sign(P) is related to the fact
that the components of the quantized Dirac field taken at spatially separated points
anticommute. Without it we would get a contradiction. Let us take, for example,
t1 > t2,

T
(
ψ̂(t1)ψ̂(t2)

)
= ψ̂(t1)ψ̂(t2) �= 0.

On the other hand, if the T -product does not contain the sign factor,

T
(
ψ̂(t1)ψ̂(t2)

)
= T

(
−ψ̂(t2)ψ̂(t1)

)
= −ψ̂(t1)ψ̂(t2),

and we have the contradiction.
We would like to have a formula similar to (11.28). Because the T -product

present on the l.h.s. is antisymmetric, the classical fields in the product preceding
the exponential on the r.h.s. have to anticommute with each other. Thus, we need a
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path integral over a set of anticommuting classical fields. Let us begin from integrals
over a finite set of independent anticommuting elements θ1, . . . θN , where

θiθ j + θ jθi = 0.

Because in particular θ2
i = 0, the set of expressions one can construct from these

elements is rather small. There are 2N − 1 independent products, including the ele-
ments themselves, and the most general expression has the form

f (θ1, θ2, . . . θN ) = c0 + c1θ1 + . . .+ cN θN + c12 θ1θ2 + . . .+ c12...N θ1θ2 . . . θN ,

(11.40)
where c0, ci , c12, . . . are numbers. The set of all such expressions is called the
Grassmann algebra, and θ1, . . . θN are its generating elements. In the present case
its dimension is finite, equal to 2N . The integral is a linear mapping which ascribes
a number to each expression of the form (11.40) (by the integral we mean here
the definite one). Let us consider the integral of f over θ1, traditionally denoted as∫

dθ1 f . There are only two kinds of terms we have to deal with: terms which contain
θ1 and terms without it. As the value of the integral

∫
dθ1θ1 we may take an arbitrary

number different from 0—it is just a normalization of the integral. Therefore, we
assume that

∫
dθ1 θ1 = 1,

∫
dθ2 θ2 = 1, . . .

∫
dθN θN = 1. (11.41)

Apart from the linearity, we also assume that the integral is invariant under transla-
tions in the following sense:

∫
dθ1 f (θ1+ g, θ2, . . . θN ) =

∫
dθ1 f (θ1, θ2, . . . , θN ),

where g can be any expression which does not contain the element θ1. This require-
ment corresponds to the identity

∫∞
−∞ dx f (x + a) = ∫∞

−∞ dx f (x) for the ordi-
nary definite integral over the whole real axis. The invariance under translations is
achieved by assuming that

∫
dθk g(. . .�θk . . .) = 0 (11.42)

for any expression g that does not contain θk . In particular,
∫

dθk = 0 (in this
case g = 1). Formulas (11.41) would lead to contradictions if not supplemented
by another rule: the integration symbol

∫
dθk should be anticommuted with the

generating elements until it is just in front of θk—only then we may apply (11.41).
In order to see the contradiction, consider, for example,

∫
dθ1 θ1θ2 = θ2. On the

other hand, if we abandon the rule,
∫

dθ1 θ1θ2 = −
∫

dθ1 θ2θ1 = −θ2. With the rule
adopted, we have − ∫ dθ1 θ2θ1 = θ2

∫
dθ1 θ1 = θ2, as it should be.

Let us now take another Grassmann algebra, such that it can be regarded as a
finite dimensional analogue of the Grassmann algebra that will appear when we
come to the Dirac field. Now there are 4N independent generating elements denoted
as follows ψ1, . . . , ψN , ψ1, . . . , ψN , b

1, . . . , bN , b1, . . . , bN . It turns out that
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∫ N∏
j=1

dψ j dψ j exp
(
ψk Ak

lψ
l + iψkbk + ibkψ

k
)
= det Â exp

(
bk(A

−1)kl b
l
)
.

(11.43)
Here N by N matrix Â = [Ai

k] is nonsingular and its matrix elements Ai
k are

numbers. Derivation of formula (11.43) is left as Exercise 11.1.
Now let us turn to the Dirac field. Quantum theory of the free Dirac field has

been constructed in Sect. 6.2. In the case of an interacting Dirac field we proceed
analogously as in Sects. 7.1 and 7.2 for the real scalar field. Let us consider a model
with the Lagrangian of the form

L = L0(ψ,ψ)− V (ψ,ψ).

Here L0 is the free field part of the Lagrangian. It has the same form as the
Lagrangian (6.64) for the free Dirac field. V is the interaction term. We do not
need to specify its form. The generating functional for Green’s functions is defined
as follows

Z [η, η] = 〈0|T exp

(
i
∫

d4x
4∑
α=1

(ηαψ̂
α + ψ̂αηα)

)
|0〉, (11.44)

where the external sources η, η are generating elements of certain Grassmann alge-

bra, ψ̂ and ψ̂ are the Dirac field and its conjugate in the Heisenberg picture, |0〉 is
the vacuum state. Green’s functions are obtained by taking variational derivatives of
Z with respect to η, η and putting η = η = 0 afterwards. For example,

〈0|T (ψ̂α(x) ψ̂β(y))|0〉 =
δ2 Z

δηα(x)δηβ(y)

∣∣∣∣
η=η=0

.

The Gell-Mann–Low formula for the generating functional in the present case has
the form

Z [η, η]

=
〈0I |T

(
exp
[
i
∫

d4x
∑4
α=1 (ηαψ̂

α
I + ψ̂ Iαη

α)
]

exp(−i
∫

d4xVI (ψ I , ψI ))
)
|0I 〉

〈0I |T exp(−i
∫

d4xVI (ψ I , ψI ))|0I 〉
.

(11.45)

This formula is used in order to express Z by the generating functional Z0 for
Green’s functions of the free Dirac field:

Z [η, η] = Z I [η, η]
Z I [0, 0] , (11.46)
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where

Z I [η, η] = exp

(
−i
∫

d4x VI

(
i
δ

δη
,−i

δ

δη

))
Z0[η, η], (11.47)

and

Z0[η, η] = 〈0I |T (exp[i
∫

d4x
4∑
α=1

(ηαψ̂
α
I + ψ̂ Iαη

α)])|0I 〉. (11.48)

Thus, it suffices to provide the path integral representation for the generating func-
tional Z0.

The generating functional Z0 can be calculated with the help of free Dirac field
version of Wick formula. Such formula can be obtained by repeating the calculations
of Sect. 7.2 with the scalar field replaced with the free Dirac field, see Exercise 7.7.
The result has the form

Z0[η, η] = exp
(− i

∫
d4xd4 y ηα(x)S

α
F β(x − y)ηβ(y)

)
, (11.49)

where

SαF β(x − y) = −i〈0I |T (ψαI (x)ψ Iβ(y))|0I 〉 =
(
γ μ

∂

∂xμ
− im I4

)α
β


F (x − y).

SF is the inverse of the Dirac operator iγ μ∂μ − m I4, that is

∫
d4 y

(
iγ μ

∂

∂xμ
− m I4

)γ
α

δ(x − y)SαF β(y − z) = δγβ δ(x − z).

Therefore, the path integral representation for Z0 is obtained from formula (11.43)
by the following substitutions: Â−1 → −i SF , bk → ηβ(y), bs → ηα(x),
ψk → ψβ(y), ψ i → ψα(x). The discrete indices i, k are replaced by multi-indices
(α, x), (β, y). Instead of Ai

k we have now (−γ μ∂ /∂xμ − im I4)
γ
αδ(x − y), and

Z0[η, η]
= N−1

∫
[dψdψ] exp

[
i
∫

d4x
(L0(ψ,ψ)+ ηα(x)ψα(x)+ ψα(x)ηα(x)

)]
,

(11.50)

where

L0 = ψ
(

iγ μ
∂

∂xμ
− m I4

)
ψ.
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The constant N is determined from the condition Z0[0, 0] = 1:

N =
∫
[dψdψ] exp

(
i
∫

d4x L0(ψ,ψ)
)
.

Finally, by inserting (11.50) for Z0 in formula (11.47), we find the path integral
representation for the model with the interaction: the generating functional is given
by formula (11.46), where

Z I [η, η] = N−1
∫
[dψdψ]

exp
[
i
∫

d4x
(L0(ψ,ψ)− V (ψ,ψ)+ ηα(x)ψα(x)+ ψα(x)ηα(x)

)]
. (11.51)

Note that the coefficient N−1 cancels out in formula (11.46).
Comparing the derivations of the path integral representation for the real scalar

field, for the spinless particle, and for the Dirac field, we see that in the fermionic
case it is indirect, in the sense that it has been obtained by rewriting the known
formula (11.49) as the path integral, formula (11.50). There has been no reference
to Hilbert space, basis states like |φ〉 and wave functionals. For a derivation anal-
ogous to the ones presented in Sects. 11.1 and 11.2 we would need a Grassmann
analogue of the particle considered in Sect. 11.1 and its quantum mechanics. Such
a Grassmann analogue should have trajectories in a space with anti-commuting
coordinates instead of xi . It turns out that it can be constructed [10], and proceed-
ing in full analogy with the bosonic case one can first obtain the path integral in
quantum mechanics of such a particle, and next its field theoretic generalization.
Such a direct approach turns out to be rather complicated. Moreover, it is rather
artificial because the Grassmann analogues of the ordinary particles have not been
observed in Nature—one should not confuse such a Grassmann analogue with a
fermionic particle, e.g., an electron, which has an ordinary configuration space with
commuting coordinates xi .

Exercises

11.1 Compute the r.h.s. of formula (11.14) in the case of one dimensional, non

relativistic particle with the action S[x(t)] = ∫ t ′′
t ′ dt mẋ2(t)/2. Compare the result

with the formula

〈x ′′|U (t ′′, t ′)|x ′〉 =
√

m

2π i h̄(t ′′ − t ′)
exp
[
− i

m(x ′′ − x ′)2

2h̄(t ′′ − t ′)

]
,

known from textbooks on quantum mechanics.
Hints: Consider the Fourier transform

∫∞
−∞dx ′′ eikx ′′R, where R denotes the r.h.s.

of formula (11.14). Fourier transform of convolution of functions is equal to the
product of the Fourier transforms of these functions.
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11.2 Prove formula (11.43).
Hints: (a) Using the translational invariance of the integral replace ψk by ψk +
i( Â−1)klb

l and ψk by ψk + ib j ( Â−1)
j
k in order to simplify the exponent on the

l.h.s. of formula (11.43).
(b) Check that

∫ N∏
j=1

dψ j dψ j exp
(
ψk Ak

lψ
l
)
= 1

N !
∫ N∏

j=1

dψ j dψ j

(
ψk Ak

lψ
l
)N = det Â.





Chapter 12
The Perturbative Expansion for Non-Abelian
Gauge Fields

Abstract The invariant volume element in SU (N ) group (the Haar measure). The
Faddeev-Popov-DeWitt determinant for a given gauge condition. The Faddeev-
Popov ghost fields. The correct path integral representation of Green’s functions of
local gauge-invariant operators. Feynman diagrams for the pure non-Abelian gauge
field theory. The essential role of the gauge fixing term in the classical effective
action. BRST invariance of the effective action and of the measure in the path inte-
gral. Slavnov-Taylor identity for the generating functional for Green’s functions.

We have considered in Chap. 4 the classical non-Abelian gauge fields. From a phys-
ical viewpoint however, the quantum theory of these fields is much more important.
As we know from the case of the renormalizable :φ4

4 : model, it is possible to develop,
with some effort, a sensible perturbative expansion for the Green’s functions. On the
other hand, it is still practically impossible to construct an exact quantum version
of the model. The same is true for the non-Abelian gauge fields, but here even the
perturbative expansion is rather intricate. Its construction, completed around 1970,
is regarded as one of the most outstanding achievements of theoretical physics in
the second half of the twentieth century. It clearly shows the sophisticated beauty
of the non-Abelian gauge fields. In the present chapter, we construct the perturba-
tive expansion and obtain the very important Slavnov–Taylor identities for Green’s
functions of the quantized non-Abelian gauge fields. As the main tool we use the
path integrals.

Because of the utmost importance of the quantized non-Abelian gauge fields for
particle physics, an enormous effort has been put into non perturbative approaches
to their theory. Many important results have been obtained in this direction, never-
theless it is clear that a lot of work and new ideas are still needed in order to get
closer to the exact version of the quantum theory of these fields. Particularly hard
is the most important problem of finding the particle spectrum. It is known as the
problem of the confinement of gluons, and of quarks, when an interaction with quark
fields is included. We do not touch these fascinating topics here.

H. Arodź, L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
DOI 10.1007/978-3-642-15624-3_12, C© Springer-Verlag Berlin Heidelberg 2010
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12.1 The Faddeev–Popov–DeWitt Determinant

Trajectories of the classical non-Abelian gauge field of the SU (N ) type are repre-
sented by the matrix valued functions Âμ(x) on Minkowski space-time M . For each
x ∈ M andμ = 0, 1, 2, 3, Âμ(x) is an N×N Hermitian, traceless matrix. Note that
here the hat denotes just the matrix, not a quantum operator in a Hilbert space—in
the present chapter such operators will be denoted by the boldface Âμ. The gauge
fields related by the gauge transformation (4.23) are physically equivalent, that is
they have identical values of all the observables. It is quite natural to expect that in
the path integral in the quantum theory of such fields just one gauge field from each
class of the equivalent fields should appear, not all fields. To achieve this, we first
introduce a gauge condition

F( Âμ) = 0, (12.1)

so that in each class of physically equivalent fields there is exactly one gauge field
that satisfies it. In other words, the condition

F( Âωμ) = 0,

regarded as the equation for the SU (N ) matrix-valued gauge function ω(x), has
exactly one solution for every fixed gauge field Âμ. The elements of the SU (N )
group in a vicinity of the unit matrix IN can be parameterized by N2−1 real param-
eters, let us denote them by ta , a = 1, . . . , N 2 − 1, which form a local coordinate
system on the group. Therefore, the SU (N ) valued function ω(x) is equivalent to
N 2 − 1 real valued functions ta(x). The gauge condition (12.1) should uniquely
determine all these functions, hence it should be equivalent to N2 − 1 independent
equations for them. We shall write these equations as Fa( Âμ)(x) = 0.

We will use integration over the SU (N ) group regarded as a certain n-dimensio-
nal space, n = N 2−1. In the mathematical theory of Lie groups, such as the SU (N )
group, it is shown that one can introduce a volume element on the group, which in
mathematics is called the Haar measure. We denote it as dV (ω), where ω ∈ SU (N ).
When the group elements are parameterized by ta , such an infinitesimal volume
element has the form

dV (ω) = v(ta) dt1 . . . dtn, (12.2)

where v(ta) is a certain positive function of the parameters. Furthermore, the volume
element is invariant under the so called translations on the group, that is transforma-
tions of the form ω(ta) → ω0ω(ta) (the left translations), and ω(ta) → ω(ta)ω0
(the right translations), where ω0 ∈ SU (N ). The coordinates of the group element
ω0ω(ta) are denoted as ta , hence ω0ω(ta) = ω(ta

). Similarly, ω(ta)ω0 = ω(ta).
The invariance of the volume element means that

dV (ω0ω) = dV (ω) = dV (ωω0),
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or

v(t a
) dt 1

. . . dt n = v(ta) dt1 . . . dtn = v(ta) dt1 . . . dtn.

We shall not need the detailed form of the invariant volume element.
One way to eliminate the gauge equivalent fields from the path integral is to

include in its integrand the functional Dirac delta of the form1

δ[F( Â)] =
∏
a,x

δ(Fa( Âμ(x)),

but then the result of the integration would in general depend on the choice of the
gauge condition. This would not be satisfactory, because the choice of the gauge
condition should not affect the expectation values of observables represented by
gauge invariant operators. According to Faddeev and Popov, the functional Dirac
delta should be inserted in the path integral indirectly, namely one should hide it in a
numerical factor equal to 1, which certainly does not change the integral. Moreover,
it obviously does not depend on the choice of the gauge condition. The factor 1 is
constructed from the Dirac delta as follows

1 =M[ Â]
∫
[dω] δ[F( Âω)]. (12.3)

Here [dω] =∏x dV (ω(x)) is the measure (the infinitesimal volume element) in the
space of the gauge functions ω(x). Thus, with each point x ∈ M we associate the
invariant volume element in the SU (N ) group. Âω denotes the gauge transformed
field, i.e.,

Âωμ(x) = ω(x) Âμ(x)ω−1(x)+ i

g
∂μω(x) ω

−1(x). (12.4)

In the present chapter we use the rescaled gauge field introduced in Sect. 4.2 (below
formula (4.33)) and denoted there as B̂μ. M[ Â] is a functional of the gauge field
defined by formula (12.3). It is called the Faddeev–Popov–DeWitt determinant. Of
course it depends on the choice of F , but it is gauge invariant, that is

M[ Âω0 ] =M[ Â]

for any gauge function ω0(x). This follows from the invariance of the measure
dV (ω), namely

1 We will often omit the space-time index μ of Âμ in order to keep formulas transparent.
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1 =M[ Âω0 ]
∫
[dω] δ[F(( Âω0)ω)] =M[ Âω0]

∫
[d(ω0ω)] δ[F( Âω0ω)]

(ω′=ω0ω)= M[ Âω0 ]
∫
[dω′] δ[F( Âω′)] = M[ Âω0 ]

M[ Â] .

In the case of Âμ obeying the gauge condition (12.1), the integral in (12.3) is
determined by the form of the integrand in an arbitrarily small vicinity of the con-
stant ω = IN . Let us parameterize ω(x) in such a vicinity as follows:

ω(x) = IN + igεa(x) T̂a +O(
ε 2),

where the matrices T̂a , with a = 1, . . . , N2 − 1, have been introduced in Sect. 4.2.
Then, the volume element has the form dV (ω) = v(εa)dnε, where we may replace
v(εa) by v(0), and normalize the SU (N ) volume element by putting v(0) = 1.
Thus, as the measure [dω] in (12.3) we take [dω] = ∏x∈M dnε(x) ≡ [dε]. This
expression should be treated in the same spirit as the measures that appear in the
path integrals.

Formula (12.3) also contains F( Âω). For ω in the vicinity of IN

Âωμ(x) = Âμ(x)− ∂με̂(x)+ ig[ε̂(x), Âμ(x)] +O(
ε 2)

= T̂b(A
b
μ(x)− ∂μεb(x)− g facbε

a(x)Ac
μ(x))+O(
ε 2). (12.5)

The structure constants facb are antisymmetric in all indices, see Exercise 4.2.
Let us expand F( Âω) with respect to εa(x):

Fc( Âω)(x) = Fc( Â)(x)+
∫

d4 yd4z
δFc( Âω)(x)

δ( Âωμ)
b(y)

∣∣∣∣∣
ω=IN

δ( Âωμ)
b(y)

δεa(z)

∣∣∣∣∣
ε=0

εa(z)+O(
ε 2),

where Fc( Â)(x) = 0 because Âμ obeys the condition (12.1). Using formula (12.5)
we obtain

δ( Âωμ)
b(y)

δεa(z)

∣∣∣∣∣
ε=0

= −δab
∂

∂zμ
δ(y − z)− g facb Ac

μ(y)δ(y − z).

Therefore,

Fc( Âω)(x) =
∫

d4 y Mca(x, y)εa(y)+O(
ε 2), (12.6)

where

Mca(x, y) =
(
δab

∂

∂yμ
− g fadb Ad

μ(y)

)
δFc( Â)(x)

δAb
μ(y)

. (12.7)
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Formula (12.6) can be written in a concise form as

F( Âω) = M̂ε +O(ε2),

where the operator M̂ has the matrix elements Mcx;ay = Mca(x, y). Our assumption
about the uniqueness of the solution of the equation F( Âω) = 0 implies that M̂ is
nonsingular (i.e., M̂−1 exists).

After these preparations we can compute M. The definition (12.3) gives

1 =M[ Â]
∫
[dε] δ[M̂ε +O(
ε 2)] =M[ Â] (detM̂)−1.

Thus, for the gauge fields obeying gauge condition (12.1)

M[ Â] = detM̂ .

It is of course not clear how to actually compute the determinant of M̂ . Luckily, one
can evade this problem using the infinite dimensional version of formula (11.43),

detM̂ = N
∫
[dcdc] exp

(
−i
∫

d4xd4 y ca(x)Mab(x, y)cb(y)

)
, (12.8)

where ca(x), cb(y) are independent Grassmann fields, called antighost or ghost,
respectively. The factor −i in the exponent in (12.8) has been introduced for later
convenience. The factor N is not important as it will not appear in the final formula
for the generating functional for Green’s functions. The expression

Sgh[A, c, c] = −
∫

d4xd4 y ca(x)Mab(x, y)cb(y)

is often called the Faddeev–Popov–DeWitt action.
As an example, let us consider the Lorentz gauge condition

∂μAaμ(x) = 0. (12.9)

In this case

δFc( Â)(x)

δAb
μ(y)

= δbc
∂δ(x − y)

∂xμ
,

Mab(x, y) = −δab
∂2δ(x − y)

∂xμ∂xμ
+ g fadb Ad

μ(y)
∂δ(x − y)

∂xμ
,

and

Sgh =
∫

d4x
(

ca(x)∂μ∂
μca(x)− g facbca(x)∂

μ(Ac
μ(x)c

b(x))
)
. (12.10)
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Introducing the covariant derivative of the ghost field,

(Dμc)a(x) = ∂μca(x)− g facb Ac
μ(x)c

b(x),

we may write Sgh in the concise form

Sgh =
∫

d4x ca(x) ∂
μ[(Dμc)a(x)]. (12.11)

Note that the (anti-)ghost fields do not bear any spinor indices—they would yield
spinless particles if regarded as relativistic quantum fields. A spin zero fermionic
field violates the spin-statistics theorem, hence it can not be regarded as a physi-
cal field. In our considerations it has appeared only as an auxiliary mathematical
variable integrated over in formula (12.8).

The Lorentz gauge condition is used in applications of the non-Abelian gauge
fields in particle physics. It should be noted that this condition is not perfect because
among fields obeying it one can find gauge equivalent ones.2 This is the so called
Gribov problem with the gauge condition. It is also present for other choices of
gauge condition. The gauge equivalent solutions of the gauge condition are called
Gribov copies. The question of whether their presence has an influence on the
physical predictions obtained within the perturbative approach to the quantized
non-Abelian gauge fields, remains an open question. In the considerations below, in
which we use of the Lorentz condition, the Gribov copies are automatically included
in the path integral because we sum over all the gauge fields that obey that condition.

12.2 The Generating Functional for Green’s Functions

The Faddeev–Popov–DeWitt determinant is needed for construction of the correct
generating functional for Green’s functions in the non-Abelian gauge theory with
the classical action (4.33)

SY M [A] = −1

4

∫
d4x Fa

μνFaμν.

Let us begin by writing a path integral formula (analogous to (11.28)) for the vac-
uum expectation value (correlation function) of the time ordered product of gauge
invariant operators O1[A](x1), . . . ,On[A](xn) (in the Heisenberg picture), which
are constructed from the non-Abelian gauge field Aa

μ and its derivatives,3

2 Let us recall that we assume that ω(x) → IN when |
x | → ∞. This condition excludes, for
example, ω independent of x .
3 For brevity, we write A instead of Â if there is no risk of confusion.
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〈0|T (O1[A](x1) · · ·On[A](xn))|0〉
= N

∫
(d A′′)(d A′) �∗0 [A′′]�0[A′]

∫
A(Ti ) = A′

A(T f ) = A′′
[d A] ei SY M [A]

n∏
i=1

Oi [A](xi ).

(12.12)

Here �0[A] is the wave functional of the vacuum state of the gauge field. It is
defined on the configuration space of the field, and A′, A′′ denote points in that
infinite dimensional space. The single point A is represented by the set of func-
tions Aa

μ(
x), where 
x ∈ R3. The trajectory of the field may be denoted as A(t)—it
is the set of functions Aa

μ(t, 
x). Note that it is the trajectory that is customarily
adopted as the mathematical representation of the non-Abelian gauge field, and not
A = Aa

μ(
x)—the field itself is a physical object. (d A) denotes the measure (the

volume element) in the configuration space, (d A) =∏
x∈R3
∏N 2−1

a=1
∏3
μ=0 d Aa

μ(
x).
Formula (12.12) is not satisfactory because it contains the integral over all the

gauge fields, including the ones related by a gauge transformation. In order to
improve it, we multiply the r.h.s. of (12.12) by 1 in the form (12.3), and change
the order of the functional integrations by shifting the integral over ω(x) to the left.
Next we change the integration variable from A to B = Aω. The action SY M , the
expressions Oi [A](xi ), and M[A] are gauge invariant, hence we may simply replace
A by B.

The measure [d A] is also invariant, [d A] = [d B]. To see this, first notice that
the gauge transformation does not change the space-time arguments and Lorentz
indices of the field. Therefore, we need only to show the invariance of the N 2 − 1
dimensional volume element, that is the equality

N 2−1∏
a=1

d Ba
μ(x) =

N 2−1∏
a=1

d Aa
μ(x).

Let us split the gauge transformation into the shift Âμ → Âμ + i∂μωω−1 and the
‘rotation’ Âμ → Ĉμ = ω Âμω−1. None of them changes the volume element. In
the case of the shift, this follows from the fact that ∂μωω−1 does not depend on Aa

μ.
The ‘rotation’ does not change the volume element because it leaves the lengths and
angles unchanged. This can be seen from the invariance of the scalar product:

Xa
1 Xa

2 = 2tr(X̂1 X̂2) = 2tr(Ŷ1Ŷ2) = Y a
1 Y a

2 ,

where X̂i = ωŶiω
−1.

After these steps formula (12.12) acquires the following form

〈0|T (O1[A](x1) · · ·On[A](xn))|0〉 = N
∫
[dω]

∫
(d A′′)(d A′) �∗0 [A′′]�0[A′]

∫
B(Ti ) = A

′ω−1

B(T f ) = A
′′ω−1

[d B]M[B̂] δ[F(B)] ei SY M [B]
n∏

i=1

Oi [B](xi ).
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Now we change the integration variables A′ → B′ = A
′ω−1

, A′′ → B ′′ = A
′′ω−1

.
The measures (d A′), (d A′′) are invariant for exactly the same reasons as [d A]. The
wave functional�0 is assumed to be invariant up to multiplication by a phase factor4

which can depend on ω. Such a phase factor cancels out in the product�∗0�0. Thus,
the gauge function ω has been removed from all terms on the r.h.s. of the path
integral formula. In consequence, the integral

∫ [dω] has a constant integrand. This
integral yields a constant (the total volume of the gauge group) which is canceled by
an appropriate coefficient in the normalization factor N . Thus, writing everywhere
A instead of B, we finally have

〈0|T (O1[A](x1) · · ·On[A](xn))|0〉 = N
∫
(d A′′)(d A′) �∗0 [A′′]�0[A′]

∫
A(Ti ) = A

′
A(T f ) = A

′′
[d A]M[ Â] δ[F(A)] ei SY M [A]

n∏
i=1

Oi [A](xi ). (12.13)

The normalization factor N is determined from the condition 〈0|0〉 = 1, which
corresponds to taking n = 1 and O1[A] = I. Formula (12.13) explicitly incorporates
the gauge condition (12.1). It is clear from its derivation that the r.h.s. of it does not
depend on the form of F , in spite of its appearance.

In order to construct the perturbative expansion we have to write the integrand in
(12.13) in exponential form, from which we can read off the kinetic and interaction
parts. For M we use formula (12.8) with the ghosts. The functional Dirac delta
is dealt with by making use of the lack of dependence of the correlation function
on the form of F . Let us replace the condition (12.1) by an auxiliary gauge con-
dition of the form Fa( Â)(x) − λa(x) = 0 with certain functions λa(x). Because
δλa/δAb

μ = 0, we see from formula (12.7) that M̂ , and in consequence M, do
not depend on these functions. On the r.h.s. of formula (12.13) they are present
only in the factor δ[F(A)− λ]. Next, we multiply both sides of formula (12.13) by
exp(−i

∫
d4x λa(x)λa(x)/2α), and functionally integrate over λa . The real param-

eter α is often called the gauge parameter. On the r.h.s. we have the integral

∫
[dλ] δ[F(A)− λ] exp

(
− i

2α

∫
d4x λa(x)λa(x)

)
= exp(i Sg f [A]),

where

Sg f [A] = − 1

2α

∫
d4x Fa( Â)(x)Fa( Â)(x).

On the l.h.s. we obtain a constant factor. We divide by it and include it in the factor
N . Thus, we have obtained from (12.13) the following formula

4 This is an assumption because we are not able to compute �0, nor to prove that there exists
exactly one vacuum state.
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〈0|T (O1[A](x1) · · ·On[A](xn))|0〉 =
N
∫
(d A′′)(d A′) �∗0 [A′′]�0[A′]

∫
A(Ti ) = A

′
A(T f ) = A

′′
[d A][dcdc] ei S[A,c,c]

n∏
i=1

Oi [A](xi ),

(12.14)

where

S[A, c, c] = SY M [A] + Sgh[c, c] + Sg f [A]. (12.15)

Sg f [A] is called the gauge fixing term, and S[A, c, c] the classical effective action.
Now it should be clear that we may take as the generating functional

Z [ j, ξ, ξ ] = Z [ j, ξ, ξ ]
Z [0, 0, 0] , (12.16)

where

Z [ j, ξ, ξ ] =
∫
(d A′′)(d A′) �∗0 [A′′]�0[A′]∫

A(Ti ) = A
′

A(T f ) = A
′′
[d A][dcdc] ei S[A,c,c]+i

∫
d4x ( ja

μ(x)A
aμ(x)+ca(x)ξa(x)+ξa(x)c

a(x)). (12.17)

Suitable combinations of the derivatives −iδ/δ ja
μ(x) acting on Z will give, after

putting ja
μ = 0, ξa = 0, ξa = 0, formulas for vacuum expectation values of time

ordered products of components of the gauge field. Formula (12.17) also contains
Grassmann type external sources ξa, ξa for the ghost fields. They anticommute with
the ghost fields, and with themselves. The derivatives −iδ/δξa, iδ/δξa will give
Green’s functions in which the ghost fields are also present. Such more general
Green’s functions are in principle not needed, because the ghost fields are not phys-
ical fields, but auxiliary variables introduced in order to write the Faddeev–Popov–
DeWitt determinant in the exponential form. Nevertheless, corresponding to them
internal vertices and internal lines will appear in the perturbative expansion anyway,
and they have to be taken into account when discussing, e.g., the renormalizability
of the model. Therefore, it is useful to consider graphs in which the ghosts appear
as external lines.

Note that formula (12.17) can also be applied in the case of the free electromag-
netic field: one should put fabc = 0 and restrict the values of the Latin indices to
just 1. Then A1

μ can be identified with the electromagnetic field. The ghost fields are

needed only if detM̂ depends on the gauge field, because in the opposite case it is a
constant that does not matter. Formula (12.7) with fabc = 0 shows that the depen-
dence on the Abelian gauge field is possible only if F(A) is not linear in Aμ, for
example, F(A)(x) = (∂μ− Aμ(x))Aμ(x) (Exercise 12.1). In electrodynamics such
gauge conditions in practice are not used, because then even the quantum theory of
the free field would become quite complicated. The most popular gauge conditions:
Lorentz (∂μAμ = 0), Coulomb (∂i Ai = 0) and temporal (A0 = 0), all are linear
in Aμ.
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The presented above considerations that have forced us to introduce the ghost
fields, can be regarded as a spectacular example of the usefulness of the path inte-
grals in field theory. There had been some earlier suggestions about the presence of
ghost fields in the quantum theory of gauge fields, but only with the use of the path
integrals came a clear, to the point of obviousness, recognition of this fact.

12.3 Feynman Diagrams

The derivation of Feynman diagrams for the non-Abelian gauge fields is based on
the formulas (12.16) and (12.17) for the generating functional. The ghost part is
taken in the form (12.11)—we adopt the Lorentz gauge condition (12.9). We divide
the action S into the free and the interaction parts, and formally expand Z in powers
of the interaction. The calculations are very similar to those presented in detail in
Sect. 11.2 (below formula (11.33)) in the case of the scalar field. Therefore, we will
skip details of calculations and present only the main points.

The functional �0[A] is replaced by the wave functional of the vacuum state of
the free non-Abelian gauge field5

�0[A] = N0 exp

(
−1

2

∫
d3x Aai

√−� Aai
)
. (12.18)

The same trick as in Sect.11.2 gives

Z [ j, ξ, ξ ] = lim
ε→0+

∫
[d A][dcdc] exp

[
i S[A, c, c]

− ε
2

∫
d4x e−ε|x0|Aai

√−� Aai + i
∫

d4x ( ja
μAaμ + caξ

a + ξaca)
]
. (12.19)

By definition, the interaction part Sint of the action S contains all the terms that are
proportional to g or g2. Thus,

Sint[A, c, c] =
∫

d4x
(
g fabc∂μAa

ν AbμAcν

− g2

4
fabc fade Ab

μAc
ν AdμAeν − g facb ca∂μ(c

b Acμ)
)
. (12.20)

5 By the free non-Abelian gauge field we mean the field Aa
μ with the action that does not contain

the self-interactions present in the full Yang–Mills action. Such self-interactions are switched off
by equating to zero the structure constants, fabc = 0. The resulting model in fact contains the
collection of N 2−1 independent free gauge fields of the Abelian type, and it is not invariant under
the full SU (N ) gauge group.
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In this part of the action we replace the fields with the appropriate functional deriva-
tives with respect to the external currents:

Aa
μ(x)→−i

δ

δ j aμ(x)
, ca(x)→−i

δ

δξ a(x)
, ca(x)→ i

δ

δξa(x)
.

Then we may write

Z [ j, ξ, ξ ] = e
i Sint[−i δ

δ j ,−i δ
δξ
,i δ
δξ
] (

Z0[ j] Z0[ξ, ξ ]
)
, (12.21)

where

Z0[ j] = lim
ε→0+

∫
[d A] exp

(
i
∫

d4x ja
μAaμ

)
exp

(
i

2

∫
d4x [∂μAa

ν ∂
νAaμ

−∂μAa
ν ∂
μAaν − 1

α
∂μAa

μ ∂
νAaν + iεe−ε|x0|Aai

√−� Aai ]
)
,

and

Z0[ξ, ξ ] =
∫
[dcdc] exp

(
i
∫

d4x (cb∂
μ∂μcb + cξ + ξc)

)
.

The Gaussian path integrals on the r.h.s.’s of these formulas can be calculated in
the same way as shown in Chap. 11. The formula for Z0[ j] can be rewritten in the
form

Z0[ j] = lim
ε→0+

∫
[d A] exp

(
i

2

∫
d4xd4 y Aa

μ(x)Oμνεab(x, y)Ab
ν(y)

+i
∫

d4x ja
μ(x)A

aμ(x)

)
,

where

Oμνεab(x, y) = δab

[
ημν
∂2δ(x − y)

∂xλ∂xλ
−
(

1− 1

α

)
∂2δ(x − y)

∂xμ∂xν

−iε(ημν − δμ0δν0)e−ε|x0|√−� δ(x − y)
]
.

The substitution A = A′ − O−1
ε j (all indices suppressed) transforms the integral

into a pure Gaussian integral which yields a constant independent of j . It turns out
that in the limit ε → 0+

Z0[ j] = N exp

[
i

2

∫
d4xd4 y ja

μ(x) (O−1)
μν
ab (x − y) jb

ν (y)

]
, (12.22)
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where

(O−1)
μν
ab (x− y) = − δab

(2π)4

∫
d4k

e−ik(x−y)

k2 + i0+

[
ημν − (1− α) kμkν

k2 + i0+

]
, (12.23)

N is a constant. It follows from formula (12.23), that the free propagator of the
gauge field has the following form

Dμνab (k) = δab
i

k2 + i0+
[−ημν + (1− α) kμkν

k2 + i0+
]. (12.24)

In Feynman diagrams it is represented by a wavy line, see Fig. 12.1. The exponent in
formula (12.22) is symmetric with respect to the interchange (x, a, μ) ↔ (y, b, ν)
(in particular because Dμνab (k) = Dμνab (−k)), therefore we do not have to put any
arrow on such lines.

Note that the presence of the gauge fixing term is crucial for the existence of
O−1. Absence of this term in the action S would correspond to the limit α → ∞,
but then formula (12.23) becomes meaningless. The choice α = 0 is called the
Landau gauge. It makes sense once we decide to work only within the perturbative
approach—on the level of the action we may take α arbitrarily close to 0, but not
equal to. In the Landau gauge the propagator is transverse, that is

kμDμνab (k) = 0.

The choice α = 1 is called the Feynman gauge.
In the case of the functional Z0[ξ, ξ ] similar calculations give

Z0[ξ, ξ ] = N1 exp

[
i
∫

d4xd4 y ξa(x) (O−1
1 )

a
b(x − y) ξb(y)

]
, (12.25)

where

(O−1
1 )

a
b(x − y) = − δab

(2π)4

∫
d4 p

e−i p(x−y)

p2 + i0+
. (12.26)

As the free propagator of the ghost fields we take

�ab(p) = δab
i

p2 + i0+
. (12.27)

Fig. 12.1 The ghost and the
gauge field propagators
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Fig. 12.2 The internal
vertices of the SU (N )
non-Abelian gauge theory

3 4 3λ ρ λ

212 νc kµd

1
νa

It is represented graphically as the dashed line with an arrow, see Fig. 12.1. The
arrow points to that end at which there was the external source ξ . Thus, such arrow
does not show the flow of four-momentum as it was the case in Fig. 8.9.

The Sint part of the action gives the internal vertices of the Feynman diagrams,
see Fig. 12.2. The first vertex in that Figure corresponds to the first term on the
r.h.s. of formula (12.20). All three legs of this vertex bear indices of the same kind,
therefore when connecting such a vertex with the rest of the diagram we can do it
in 6 ways (if it were a scalar field instead of Âμ this would give the combinatorial
factor 3!). Summing all 6 possibilities we obtain the full, symmetric 3-leg vertex
with the contribution of the form

ig

(2π)2
fabcδ(k1+k2+k3)[(k1−k3)

μηλν+(k3−k2)
νημλ+(k2−k1)

λημν]. (12.28)

The linear dependence on the four-momenta ki reflects the presence of the derivative
∂μAa

ν in the pertinent term in (12.20).
In the case of the 4-leg vertex, there are 24 ways to connect with the rest of the

diagram. Summing them all we obtain the full, symmetric 4-leg vertex

− i
g2

(2π)4
δ(k1 + k2 + k3 + k4) [ fabc fade(η

μληνρ − ημρηλν)
+ face fadb(η

μρηνλ − ημνηλρ)+ fabe fadc(η
μληνρ − ημνηλρ)]. (12.29)

The third vertex in Fig. 12.2 corresponds to the ghost term in Sint. The analytical
expression associated with it has the form

i
g

(2π)2
fadb δ(k + p − q) pμ. (12.30)

The linear dependence on pμ reflects the presence of the derivative in the ghost term
in (12.20).

All the coupling constants in the action (12.20) are dimensionless. This fact sug-
gests that the perturbative expansion in the powers of Sint is renormalizable. Such
expectation is corroborated by a calculation of the superficial degree of divergence
of 1PI graphs. Let V3, V4, Vgh denote the numbers of internal vertices shown in
Fig. 12.2 (starting from the left), n and I the number of, respectively, external and
internal lines corresponding to the gauge field propagator Dμνab (the wavy lines), and
ngh (Igh)—the number of external (internal) ghost lines. Then,
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3V3 + 4V4 + Vgh = 2I + n, 2Vgh = 2Igh + ngh .

The number of independent loops and the superficial degree of divergence are given
by the formulas

L = I + Igh − V3 − V4 − Vgh + 1, ω = 4L + V3 + Vgh − 2I − 2Igh

(each vertex with three legs introduces one power of a four-momentum, see formulas
(12.28) and (12.30)). It follows from these formulas that

ω = 4− n − ngh. (12.31)

Thus, ω depends only on the number of external legs, similarly as in the case of the
renormalizable λ0φ

4
4 model.

Note that according to formula (12.31), the diagrams that have n = 0, ngh = 4
are logarithmically divergent. The corresponding counterterm would have the gen-
eral form (c c)2. Because there is no term of this kind in the action (12.20), the
presence of this counterterm in the effective action would pose a problem—it would
signal that the deep analysis carried out in the Sects. 12.1 and 12.2 was not pre-
cise enough. Luckily, this is not the case. Two external lines in the all diagrams
with n = 0, ngh = 4 have the arrows pointing outside the diagrams. Therefore,
the two internal vertices these two external lines start from are proportional to the
fixed external four-momenta, c.f. formula (12.30) and the last vertex in Fig. 12.2.
It follows that the superficial degree of divergence is in fact smaller by 2, i.e., it is
equal to −1—the controversial counterterm is not needed.

12.4 BRST Invariance and Slavnov–Taylor Identities

The classical effective action S[A, c, c], formula (12.15), is not gauge invariant by
its construction—it was precisely our goal in Sect. 12.1 to eliminate the freedom of
performing the gauge transformations. However, in 1975 C. Becchi, A. Rouet, R.
Stora, and independently I. V. Tyutin, discovered that this action is invariant with
respect to rather special transformations, which are usually written in the following
form:

A
′a
μ (x) = Aa

μ(x)+ δAa
μ(x), c

′a(x) = ca(x)+ δca(x), c′a(x) = ca(x)+ δca(x),
(12.32)

where

δAa
μ(x) = αθ (Dμc)a(x), δca(x) = 1

2
αgθ fabdcbcd , δca(x) = θ ∂μAaμ.

Here θ is a Grassmann parameter. It anticommutes with the ghost fields. Because
θ2 = 0, the above form of the transformations is the exact one, in spite of the
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notation which might suggest that, e.g., δAa
μ is an infinitesimal contribution. It turns

out that these transformations leave invariant the Lagrangian that corresponds to the
action S,

L = −1

4
Fa
μνFaμν − 1

2α
∂μAaμ∂ν Aaν + ca(x) ∂μ[(Dμc)a(x)]. (12.33)

Actually L is not the simplest BRST invariant object. There exist other invariants:
LY M = −Fa

μνFaμν/4, as well as

I a
1 (x) = αg fabdcb(x)cd(x)/2, I aμ

2 = α(Dμc)a(x)

(Exercise 12.3). Their presence facilitates checking the invariance of L.
Also the measure [d A][dcdc] is invariant with respect to the BRST transforma-

tions. In order to demonstrate this, it is sufficient to consider the products

N 2−1∏
a=1

d Aa
μ(x)

N 2−1∏
b=1

dcb(x)
N 2−1∏
d=1

dcd(x)

with an arbitrary fixed x ∈ M , μ = 0, 1, 2, 3. Because θ is a constant,

N 2−1∏
b=1

dc′b(x) =
N 2−1∏
b=1

dcb(x).

Next,

N 2−1∏
d=1

dc
′d(x) = (det Ĵ )−1

N 2−1∏
d=1

dcd(x),

where the matrix elements of the N 2 − 1 by N 2 − 1 matrix Ĵ have the form
Jab = δab + αgθ fadbcd(x). In derivation of this formula the antisymmetry of fadb
was used. Because θ2 = 0, det Ĵ = 1+ αgθ fadacd(x) = 1. Furthermore,

N 2−1∏
a=1

d A
′a
μ (x)

N 2−1∏
d=1

dc
′d(x) = det Ĵ (det Ĵ )−1

N 2−1∏
a=1

d Aa
μ(x)

N 2−1∏
d=1

dcd(x)

=
N 2−1∏
a=1

d Aa
μ(x)

N 2−1∏
d=1

dcd(x).

The BRST invariance of the Lagrangian, and of the measure, implies certain
identities for Green’s functions, called Slavnow–Taylor identities. It is convenient
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first to obtain the Slavnov–Taylor identity for a certain generating functional. The
Green’s functions will be considered next. Let us introduce an extended generating
functional Z ,

Z[ j, ξ, ξ , H, K ] = Z[ j, ξ, ξ , H, K ]
Z[0] , (12.34)

where

Z[ j, ξ,ξ , H, K ] = lim
ε→0+

∫
[dA][dcdc] exp

[
i S[A, c, c]

−ε
2

∫
d4x e−ε|x0|Aai

√−�Aai
]

exp
[
i
∫

d4x
(

j a
μ(x)A

aμ(x)+ ca(x)ξ
a(x)

+ξa(x)c
a(x)+ Ha(x)I

a
1 (x)+ K

μ

a (x)I
a
2μ

) ]
. (12.35)

Here Ha(x), K
μ

a (x) are new external sources. K
μ

a is of Grassmann type like ξa, ξa .
The expression

N [A, c, c] = exp
[
i
∫

d4x
(

j a
μ(x)A

aμ(x)+ ca(x)ξ
a(x)+ ξa(x)c

a(x)

−ε
2

e−ε|x0|Aai
√−�Aai

) ]
,

which is a part of the formula (12.35), is not invariant under the transformations
(12.32):

N [A′, c′, c′] = N [A, c, c] + iθ lim
ε→0+

∫
d4x
[

jaμ I a
2μ

+ ξa∂μAaμ − ξa I a
1 +

i

2
εe−ε|x0| (I ai

2

√−�Aai + Aai
√−�I ai

2

) ]
N [A, c, c]

The last term on the r.h.s. vanishes in the limit ε → 0. Note that I a
1 (x), I a

2μ(x), and

Aaμ(x) can be replaced by the variational derivatives −iδ/δHa(x), −iδ/δK
μ

a (x),
and −iδ/δ ja

μ(x), respectively.
The Slavnov–Taylor identity for Z follows from the fact that in the path integral

giving this functional, formula (12.35), we may perform a nonsingular change of the
integration variables, in particular the change given by formulas (12.32). Because
of the invariance of the integration measure, and of the whole integrand except
N [A, c, c], we have the following identity

Z[ j, ξ, ξ , H, K ] =Z[ j, ξ, ξ , H, K ]

+ θ
∫

d4x
[

jaμ(x)
δZ

δK
μ

a (x)
+ ξa∂μ

δZ
δ j a
μ(x)

− ξa
δZ

δHa(x)

]
.

From here, dividing by Z[0], we obtain the Slavnov–Taylor identity for the gener-
ating functional Z:
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∫
d4x

(
jaμ(x)

δZ
δK

μ

a (x)
+ ξ a∂μ

δZ
δ ja
μ(x)

− ξa
δZ

δHa(x)

)
= 0. (12.36)

The identities for Green’s functions are generated from (12.36) by taking vari-
ational derivatives with respect to ja

μ, ξ
a, ξa , and putting all the external sources,

including Ha, K
μ

a , to zero. Note that such identities involve Green’s functions,
which are the vacuum expectation values of time ordered products of not only the
fields Aa

μ(x), ca(c), ca(x), but also the composite fields Ia
1(x), I

a
2μ(x).

The Slavnov–Taylor identities encode, on the level of Green’s functions, the fact
that the Lagrangian (12.33) has the very specific form. This form of the Lagrangian
is the consequence of the gauge invariance of the original Yang–Mills Lagrangian
LY M . Therefore, violation of these identities would imply violation of the gauge
invariance.6

It is clear from the remarks above that also the renormalized Green’s functions
should obey the Slavnov–Taylor identities. In order to achieve this, various coun-
terterms introduced in the process of removing the UV divergences have to be inter-
related in the appropriate manner. With such restrictions on the counterterms, the
renormalization of non-Abelian gauge theories is quite nontrivial. The proof of the
renormalizability of these theories, provided by G. ’t Hooft and M. Veltman around
1970, requires in particular a rather special regularization, called the dimensional
regularization.

The quantum non-Abelian gauge field is asymptotically free—the Gell-Mann–
Low β function turns out to be negative, at least for small values of the coupling
constant g. Therefore the perturbative results are trustworthy only at very large four-
momenta. Unfortunately, nuclear phenomena and the structure of hadrons belong to
the realm of (relatively) low four-momenta physics, where the perturbative results
are not reliable.

Exercises

12.1 Find the form of the Faddeev–Popov–DeWitt action in the case of the
free Abelian gauge field with the ’t Hooft–Veltman non-linear gauge condition
(∂μ − Aμ)Aμ = 0.
Hint: δF(x)/δAμ(y) = ∂μδ(x − y)− 2Aμ(x)δ(x − y)

12.2 The gauge condition nμAa
μ(x) = 0, where n = (nμ) is a constant non-

vanishing four-vector, encompasses the Coulomb, the temporal (Aa
0 = 0) and other

popular gauge conditions. Show that with this gauge condition one can obtain for-
mula (12.14) in which the ghost fields are absent.

6 One should distinguish between the gauge invariance and the gauge independence. This last
term, often used in literature, refers to the lack of dependence on the concrete choice of the gauge
condition (12.1)
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Hint: Notice that Mca(x, y) contains the expression nμAd
μ(y), which is equal to

λd(y) when we consider the auxiliary gauge condition Fa(A)(x) = λa(x) used in
the derivation of formula (12.14). Therefore, the factor M[ Â] in formula (12.13),
in which we now have δ[F(A) − λ] instead of δ[F(A)], can be replaced by
M[ Â]|n Aa=λa . This factor does not depend on Aa

μ, hence it can be omitted (in fact
it is canceled by a factor in N ).

12.3 Check that LY M , I a
1 , and I a

2μ are invariant with respect to the BRST transfor-
mations.
Hint: In the case of LY M first prove that δ F̂μν = iαgθ [F̂μν, ĉ], where ĉ = T̂aca .
Next, write Fa

μνFaμν/4 as tr(F̂μν F̂μν)/2 and check that tr(δ F̂μν F̂μν) = 0.



Chapter 13
The Simplest Supersymmetric Models

Abstract The generating elements and their (anti-)commutation relations in the
N = 1 superalgebra. Multiplets of quantum states generated by elements of the
superalgebra. Example of a supersymmetric Lagrangian with free fields. The notions
of superspace, superfield and chiral superfield. The Wess-Zumino model and the
Feynman diagrams for it. Examples of mutual cancelation of ultraviolet divergences.
Glossary of formulas used in the analysis of the supersymmetric models.

The BRST invariance of the classical effective action for the non-Abelian gauge
fields is an example of symmetry with parameters of the transformation belonging
to the Grassmann algebra. Such symmetries, called supersymmetries, have become
increasingly popular in field theory in their own right. Below we present two exam-
ples of supersymmetric models: a free field model and the so called Wess–Zumino
model.

13.1 Simple Superalgebra

Supersymmetry algebra includes, beside the bosonic generators of the Poincaré
group P , at least one spinor generator Q̂. We will discuss in this chapter only the
four-dimensional Minkowski space-time and then the simplest possibility is to take
Q̂ to be the right-handed Weyl spinor Q̂α, α = 1, 2, of the Grassmann type (see
Chap. 5). This will lead us to the so called N = 1 supersymmetry. Our goal will
be thus to determine the allowed form of the super-algebra containing—beside the

generators of P—the generator Q̂α and its conjugate ˆ̄Qα̇ (notice that—to conform
with most of literature on supersymmetry — we have changed the notation for the
conjugate spinor from a ‘star’ to a ‘bar’).

Consider first the commutator [P̂μ, Q̂α]. It is a spinor quantity, so let us assume
that1:

1 See Sect. 13.6 for the notation and conventions.

H. Arodź, L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
DOI 10.1007/978-3-642-15624-3_13, C© Springer-Verlag Berlin Heidelberg 2010
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[P̂μ, Q̂α] = cσμ
αβ̇

ˆ̄Qβ̇ (13.1)

with some complex constant c. Consequently, upon conjugation of both sides

[P̂μ, ˆ̄Qβ̇ ] = −c∗σ̃ μβ̇γ Q̂γ . (13.2)

Using (13.1) and (13.2), the Jacobi identity

[P̂μ, [P̂ν, Q̂α]] + [P̂ν, [Q̂α, P̂μ]] + [Q̂α, [P̂μ, P̂ν]] = 0 (13.3)

and the relation [P̂μ, P̂ν] = 0, we get

|c|2 (σμσ̃ ν + σνσ̃ μ) = 0,

so that c = 0, and we have

[P̂μ, Q̂α] =
[
P̂μ, ˆ̄Qβ̇] = 0. (13.4)

In the spinor representation (see Eq. (5.19)) the Dirac matrices read

γ μ =
(

0 σμ

σ̃μ 0

)
, [γ μ, γ ν] =

(
σμν 0

0 σ̃ μν

)
.

It then follows from Eq. (5.17) that under the Lorentz transformation with antisym-
metric, infinitesimal ωμν the generator Qα transforms as

Q̂′α = (1+ 1
2ωμνσ

μν) βα Q̂β = Q̂α + i

2
ωμν

[
M̂μν, Q̂α

]
,

so that
[

M̂μν, Q̂α
]
= −i(σμν) βα Q̂β. (13.5)

Similar derivation gives

[
M̂μν, ˆ̄Qα̇] = −i(σ̃ μν)α̇

β̇

ˆ̄Qβ̇ . (13.6)

Consider now the anticommutator {Q̂α, Q̂β}. It is clearly a bosonic object and the
transformation properties of Q̂α under the Poincaré transformations constrain it to
be proportional to (σμν)

β
α M̂μν. In view of (13.4)

[
P̂μ, {Q̂α, Q̂β}

]
= 0
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while [P̂μ, M̂νρ] �= 0 (see Sect. 10.1), so that the proportionality constant must
vanish and we have

{Q̂α, Q̂β } = { ˆ̄Qα̇ , ˆ̄Qβ̇} = 0. (13.7)

Finally, {Q̂α, ˆ̄Qβ̇} ∝ σμαβ̇ P̂μ. The proportionality constant can be adjusted at will

by appropriately rescaling the generators, and we take

{Q̂α, ˆ̄Qβ̇} = 2σμ
αβ̇

P̂μ. (13.8)

This relation has very interesting consequences. Since

σμσ̃ ν = ημν I2 + 2σμν

and σμν are traceless, we have

tr(σμσ̃ ν) = 2ημν.

From (13.8) we thus get

(σ̃ ν)β̇α{Q̂α, ˆ̄Qβ̇} = 2 tr(σ̃ νσμ)P̂μ = 4P̂ν .

Taking ν = 0 we have for any state |ψ〉 �= 0

〈ψ |P̂0|ψ〉 = 1

4
〈ψ |Q̂1

ˆ̄Q1̇ + Q̂2
ˆ̄Q2̇ + ˆ̄Q1̇ Q̂1 + ˆ̄Q 2̇ Q̂2|ψ〉

= 1

4
〈ψ |Q̂α(Q̂α)† + (Q̂α)† Q̂α|ψ〉 ≥ 0. (13.9)

Here we have taken into account the fact that the Grassmann conjugation of the Weyl
spinors can finally be reduced to the Hermitian conjugation. Thus in any supersym-
metric theory

〈0|P̂0|0〉 = 0 ⇔ Q̂α |0〉 = 0 (13.10)

and all the states have non-negative energy.

13.2 Supersymmetry Multiplets

Let us have a look at the consequences of the supersymmetry algebra restricted to
the subspace of single particle states. The spatial components of the operator M̂μν,
generators of the rotations in the three dimensional space, are often denoted as
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M̂23 = −M̂32 = Ĵ 1, M̂31 = −M̂13 = Ĵ 2, M̂12 = −M̂21 = Ĵ 3,

or equivalently Ĵ i = 1
2ε

ijk M̂ jk . It follows from the commutation relation satisfied by

the operators P̂μ and M̂μν, see Eqs. (10.12), (10.17) and (10.19), that P̂μ, Ĵ 3 and


̂J 2 commute with each other if restricted to the subspace of states with vanishing
momentum P̂ i . As the basis in this subspace we take the states |
0, s, s3〉 such that

P̂μ|
0, s, s3〉 = mδμ0 |
0, s, s3〉,

̂J 2|
0, s, s3〉 = s(s + 1)|
0, s, s3〉, (13.11)

Ĵ 3|
0, s, s3〉 = s3|
0, s, s3〉,

where m > 0 is the mass of the particle, assumed to be positive. Now define rescaled
generators,

âα = 1√
2m

Q̂α, â†
α =

1√
2m

ˆ̄Qα̇ . (13.12)

In the particle’s rest frame, their algebra (with the form which follows from (13.7)
and (13.8)) is isomorphic to the algebra of two fermionic creation and annihilation
operators,

{âα, â†
β} = δβα , {âα, âβ} = {â†

α, â
†
β} = 0. (13.13)

We can construct their representation on the space spanned by the vectors |
0, s, s3〉
as follows. Suppose that |
0, s′, s ′3〉 is an eigenstate of P̂μ, 
̂J 2 and Ĵ 3. Then either
â1|
0, s′, s′3〉 = 0 or, thanks to (13.4) and (13.5), |
0, s, s3〉 = â1|
0, s ′, s ′3〉 is also an
eigenstate of these operators (although corresponding to different eigenvalues of the
latter two). Moreover, from the relation â2

1 = 1
2 {â1, â1} = 0 it follows that

â1|
0, s, s3〉 = 0

Analogous argument for â2 shows that we can always choose |
0, s, s3〉 to be annihi-
lated by âα, α = 1, 2.

From each of the states |
0, s, s3〉 we then construct three more states with the
same mass,

â†
α|
0, s, s3〉, â†

2 â†
1 |
0, s, s3〉.

Equation (13.6) implies that

[ Ĵ i , â†
α] =

1

2
(σ i â†)α
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from which it follows that

Ĵ 3â†
1 |
0, s, s3〉 = (s3 + 1

2 )â
†
1 |
0, s, s3〉, Ĵ 3â†

2 |
0, s, s3〉 = (s3 − 1
2 )â

†
2 |
0, s, s3〉,

(13.14)
and

Ĵ 3â†
2 â†

1 |
0, s, s3〉 = s3â†
2 â†

1 |
0, s, s3〉. (13.15)

Notice also that

[ Ĵ 1−i Ĵ 2, â†
1] = â†

2, [ Ĵ 1+i Ĵ 2, â†
2] = â†

1, [ Ĵ 1+i Ĵ 2, â†
1] = [ Ĵ 1−i Ĵ 2, â†

2] = 0.
(13.16)

From the relations above one may show that in general, starting with 2s+ 1 compo-
nent multiplet with spin s, and acting with â†

α we generate a spin (s + 1
2 ) multiplet,

a spin (s − 1
2) multiplet and one more spin s multiplet. Thus a general massive

representation has 4(2s+1) basis states, half of which is bosonic and half fermionic.
In particular, starting from the scalar |
0, 0, 0〉 we get an s = 1

2 doublet

â†
1 |
0, 0, 0〉 = |
0, 1

2 ,
1
2 〉, â†

2 |
0, 0, 0〉 = |
0, 1
2 ,− 1

2 〉,

and a second scalar

|
0, 0, 0〉′ = â†
2 â†

1 |
0, 0, 0〉

while working out the s = 1
2 case we get

â†
1 |
0, 1

2 ,
1
2 〉 = |
0, 1, 1〉, â†

2 |
0, 1
2 ,

1
2 〉 =

1√
2

(
|
0, 1, 0〉 + |
0, 0, 0〉

)
,

â†
2 |
0, 1

2 ,− 1
2 〉 = |
0, 1,−1〉, â†

1 |
0, 1
2 ,− 1

2 〉 =
1√
2

(
|
0, 1, 0〉 − |
0, 0, 0〉

)
,

â†
2 â†

1 |
0, 1
2 ,

1
2 〉 = |
0, 1

2 ,
1
2 〉′, â†

2 â†
1 |
0, 1

2 ,− 1
2 〉 = |
0, 1

2 ,− 1
2 〉′.

13.3 Representation of Supersymmetry in a Space of Fields

An important feature of supersymmetry algebra is that it can be realized in a field
theory and its generators may be represented in terms of integrals of conserved,
local currents,

Q̂α =
∫

d3x ĵ0
α(x), ∂μ ĵμα (x) = 0.
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The currents may in turn be expressed as local products of fields (for an example
see Exercise 13.2).

Let ξα and ξ̄α̇ denote Grassmann (anticommuting), constant parameters, satisfy-
ing

{ξα, ξβ} = {ξα, ξ̄β̇} = {ξ̄α̇ , ξ̄β̇} = 0,

which are supposed to anticommute with the supersymmetry generators, and to
commute with the generators of the Poincaré group,

{ξα, Q̂β } = {ξα, ˆ̄Qβ̇} = [ξα, P̂μ] = [ξα, M̂μν] = 0,

{ξ̄α̇, Qβ} = {ξ̄α̇ , ˆ̄Qβ̇} = [ξ̄α̇ , P̂μ] = [ξ̄α̇ , M̂μν] = 0. (13.17)

Using them, and another set of constant Grassmann parameters ηα, ηα̇ , we can
rewrite the supersymmetry algebra using only commutators,

[P̂μ, ξ Q̂] = [P̂μ, ξ̄ ˆ̄Q] = 0,

[M̂μν, ξ Q̂] = −i ξσμν Q̂, [M̂μν, ξ̄ ˆ̄Q] = −i ξ̄ σ̃ μν ˆ̄Q,
[ξ Q̂, ηQ̂] = [ξ̄ ˆ̄Q, η̄ ˆ̄Q] = 0, [ξ Q̂, η̄ ˆ̄Q] = 2(ξσμη̄)P̂μ, (13.18)

where, in the adopted conventions, ξ Q̂ = ξα Q̂α, ξ̄
ˆ̄Q = ξ̄α̇ ˆ̄Qα̇, e.t.c.

As was already discussed in Chap. 10, any quantum field in the Heisenberg pic-
ture û(x) transforms under a symmetry transformation, represented by a unitary
operator U , as

û ′(x) = U †û(x)U.

For a supersymmetry transformation parameterized by ξ, ξ̄

U = U (ξ, ξ̄ ) = ei(ξ Q̂+ ˆ̄Qξ̄ ),

and, up to the terms linear in ξ and ξ̄ ,

δξ û(x) ≡ û′(x)− û(x) = −i[ξ Q̂ + ξ̄ ˆ̄Q, û(x)]. (13.19)

In every specific case, the form of δξ û(x) must be consistent with the algebra
(13.18). In particular, for two subsequent SUSY transformations, Eq. (13.19) and
the Jacobi identity for commutators

[A, [B,C]] + [B, [C, A]] + [C, [A, B]] = 0

give

[δη, δξ ]û(x) ≡ (δηδξ − δξ δη)û(x) = −
[
[ηQ̂ + η̄ ˆ̄Q, ξ Q̂ + ξ̄ ˆ̄Q], û(x)

]
.
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Using (13.18), we thus get

[δη, δξ ]û(x) = 2(ξσμη̄ − ησμξ̄)[P̂μ, û(x)]. (13.20)

Moreover, if û(x) is scalar under the translations then (see Chap. 10, Eq. (10.24))

[P̂μ, û(x)] = −i∂μû(x), (13.21)

and we arrive at the condition

[δη, δξ ]û(x) = 2i(ησμξ̄ − ξσμη̄)∂μû(x). (13.22)

This is in fact a sufficient condition for consistency of (13.19) with (13.18).
The Eq. (13.22) was derived for the quantum field û(x), but its right hand side

also makes perfect sense when u(x) is a classical field. Our goal now will be to find
the simplest set of classical fields ui (x), and to define their supersymmetric vari-
ations δξui (x) so that (13.22) is satisfied. Moreover, we shall require the classical
action functional for the fields ui (x) to be invariant when we replace ui (x) with
ui (x)+ δξui (x).

As we have learned in the previous section, the simplest supersymmetric multi-
plet (obtained by starting from the state |
0, 0, 0〉) contains two states with total spin
s = 0, and a doublet of states with the total spin s = 1

2 and its two possible s3
components. We may thus try to construct its field theoretic realization in a model
containing a classical Weyl spinor field ψ and a complex scalar field ϕ. Let us start
with postulating—guided by the dimensional analysis—a transformation law for the
scalar field ϕ(x). The form of the action functionals for the scalar and Weyl fields
show that (in the system of units h̄ = c = 1) their dimensions read

[ϕ(x)] = cm−1, [ψ(x)] = [ψ̄(x)] = cm−
3
2 .

Now, [P̂μ] = cm−1 so that Eq. (13.8) gives

[Q̂] = [ ˆ̄Q] = cm−
1
2

and (since ξ Q̂ and ξ̄ ˆ̄Q have to be dimensionless for U (ξ) to make sense)

[ξ ] = [ξ̄ ] = cm
1
2 .

Because an infinitesimal transformation is linear in the transformation parameters
and [δξϕ] = [ϕ], it must therefore be of the form

δξϕ = aξψ + bξ̄ ψ̄ (13.23)

where a and b are complex constants to be determined from (13.22), and ψ̄ = (ψ)∗.
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Since δξψ also has the dimension cm− 3
2 and we assume that ϕ and ψ are the

only fields in the constructed model, the only choice for δξψ is

δξψα = cσμαα̇ξ̄
α̇∂μϕ (13.24)

with a constant c, and consequently

δξ ψ̄
β̇ = εβ̇α̇ (δξψα)∗ = −c∗(σ̃ μ)β̇βξβ∂μϕ∗ (13.25)

where the formula

εβαεβ̇α̇σ
μ
αα̇ = (σ̃μ)β̇β

was used. Equations (13.23), (13.24) and (13.25) give

δηδξϕ = ac(ξσμη̄)∂μϕ + bc∗(ησμξ̄)∂μϕ∗,

and the consistency condition

[δη, δξ ]ϕ(x) = 2i(ησμξ̄ − ξσμη̄)∂μϕ(x)

holds if

ac = −2i, b = 0. (13.26)

Furthermore (for θ being a constant spinor, introduced here to avoid writing down
explicitly the indices)

δηδξ θψ = ca(θσμξ̄ )
(
η∂μψ

)
,

and, using (13.26) with an appropriate Fierz identity (see Exercise 13.5), we get

δηδξ (θψ) = 2i(ησμξ̄)(θ∂μψ)− i(ησνξ̄ )(θσ
νσ̃ μ∂μψ). (13.27)

The consistency condition

[δη, δξ ]u(x) = 2i(ησμξ̄ − ξσμη̄)∂μu(x)

is satisfied for u(x) = ψ (and, by the complex conjugation, for u(x) = ψ̄) if and
only if the second term on the r.h.s. of (13.27) vanishes, or, equivalently, ψ obeys
the equation of the motion of a free, massless Weyl field,

σ̃ μ∂μψ = 0. (13.28)
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The consistency of field variations with the SUSY algebra is just a necessary
condition for the SUSY invariance of a given field theoretic model. We also need
to check whether the pertinent action functional is invariant. In view of (13.28),
we shall discuss the theory of a non-interacting Weyl spinor and a massless, free,
complex scalar with a Lagrangian of the form

L(1) = ∂μϕ∗∂μϕ + i

2

(
ψ̄σ̃ μ∂μψ − ∂μψ̄σ̃μψ

)
. (13.29)

Using (13.23), (13.24), (13.25) and taking into account (13.26) we get

δξL(1) = (a + ic∗)ξ∂μψ ∂μϕ∗ + (a∗ − ic)ξ̄∂μψ̄∂
μϕ (13.30)

+ i

2
∂μ
[
c
(
2ψ̄σ̃ νμξ̄∂νϕ + ψ̄ ξ̄∂μϕ

)+ c∗
(
2ξσνμψ ∂νϕ

∗ − ξψ ∂μϕ∗)] .
The Lagrangian itself is thus invariant if, and only if, a = c = 0, but then the
supersymmetry transformations are trivial. Fortunately, the presence in δξL(1) of a
total derivative does not spoil an invariance of the action functional. Therefore we
take a = −ic∗. Equation (13.26) then gives |c|2 = 2, and choosing conveniently
the phase factor we finally get

a = −√2, c = i
√

2.

The action

S =
∫

d4x L(1)

with the Lagrangian given by (13.29) is thus invariant under the SUSY transforma-
tions of the form

δξϕ(x) = −
√

2 ξψ(x), δξψ(x) = i
√

2 σμξ̄ ∂μϕ(x), (13.31)

and (13.31) ‘close on shell’, that is, the consistency conditions (13.22) are satisfied
provided the spinor field obeys the Eq. (13.28).

Let us count the number of (functional) degrees of freedom of the fields involved.
If we do not take into account the equations of motion (i.e. ‘off shell’), we have two
(real) bosonic and four fermionic degrees of freedom (remember that ϕ and ψα are
complex). If we now impose the equations of motion, then—since the e.o.m. for
ϕ, the d’Alembert equation, is of the second order and its solutions are determined
by two arbitrary functions, say ϕ(t, 
x)∣∣t=0 and ∂tϕ(t, 
x)

∣∣
t=0, while to determine a

solution of the first order Dirac equation one only needs to specifyψα(t, 
x)
∣∣
t=0—we

have two bosonic and two fermionic d.o.f. To match the degrees of freedom off shell
we thus have to introduce another complex scalar field, whose equation of motion
is trivial,
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F(x) = 0,

in order not to spoil the counting of the degrees of freedom on shell. The modified
Lagrangian thus reads

L = ∂μϕ∗∂μϕ + i

2

(
ψ̄σ̃ μ∂μψ − ∂μψ̄σ̃ μψ

)+ F∗F. (13.32)

Consequently, [F] = cm−2, and we can modify the transformation law of the spinor
field to be

δξψ(x) = i
√

2σμξ̄∂μϕ(x)+ d ξF(x) (13.33)

with some constant d, and postulate (matching the dimensions of fields)

δξ F(x) = gξ̄ σ̃ μ∂μψ(x), (13.34)

where g is yet another constant. We thus have

δηδξ (θψ) = −2i(θσμξ̄ )(η∂μψ)+ dg(η̄σ̃ μ∂μψ)(θξ)

= 2i(ησμξ̄)(θ∂μψ)− i(ησνξ̄ )(θσ
νσ̃μ∂μψ)+ 1

2
gd(ξσνη̄)(θσ

νσ̃μ∂μψ),

where we used the Fierz identity (13.89) and Eq. (13.81). Therefore,

[δη, δξ ](θψ)
= 2i

(
ησμξ̄ − ξσμη̄) (θ∂μψ)+ 1

2
(gd + 2i)

(
ξσνη̄ − ησνξ̄

)
(θσ νσ̃ μ∂μψ).

Consequently, if

gd = −2i, (13.35)

then we get

[δη, δξ ]ψα = 2i
(
ησμξ̄ − ξσμη̄) ∂μψα

without using the equations of motion. Similarly,

δηδξ F = gc ξ̄ σ̃ μσ νη̄ ∂μ∂νϕ + 2i ησμξ̄ ∂μF = gc ξ̄ η̄ ∂μ∂
μϕ + 2i ησμξ̄ ∂μF,

where (13.35) was employed, so that, without using the equations of motion, we get
the closure of the supersymmetry algebra on the auxiliary field F :

[δη, δξ ]F = 2i(ησμξ̄ − ξσμη̄)∂μF.
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Finally,

δξL = δξL(1) + g ξ̄ σ̃ μ∂μψ F∗ − g∗ξσμ∂μψ̄ F

+ id

2

[
ξσμ∂μψ̄ F − ξσμψ̄ ∂μF

]+ id∗

2

[
ξ̄ σ̃ μ∂μψ F∗ − ξ̄ σ̃ μψ ∂μF∗

]

= δξL(1) + (g∗ − id)ξσμψ̄ ∂μF − (g + id∗)ξ̄ σ̃ μψ ∂μF∗

+∂μ
[(

g + id∗
2

)
ξ̄ σ̃ μψ F∗ − (g∗ − id

2

)
ξσμψ̄ F

]
.

The action

∫
d4x L

is thus invariant provided

g = −id∗. (13.36)

The final form of the SUSY variations, keeping the action with the Lagrangian
(13.32) invariant and satisfying the classical counterpart of the consistency condition
(13.22), reads

δξϕ(x) = −
√

2 ξψ(x),

δξψ(x) = i
√

2 σμξ̄∂μϕ(x)−
√

2 ξF(x), (13.37)

δξ F(x) = i
√

2 ξ̄ σ̃ μ∂μψ(x).

13.4 The Superspace

The field ϕ̂(x) can be viewed as an operator ϕ̂(0) translated from 0 to an arbitrary
space-time point x ,

ϕ̂(x) = ei xμ P̂μϕ̂(0)e−i xμ P̂μ. (13.38)

The presence in a theory of the generators Q̂ and ˆ̄Q allows us to define a more
general object: the superfield

Ŝ(x, θ, θ̄ ) = ei(xμ P̂μ+θα Q̂α+ ˆ̄Qα̇ θ̄ α̇ )ϕ̂(0)e−i(xμ P̂μ+θα Q̂α+ ˆ̄Qα̇ θ̄ α̇ ) (13.39)

(do not confuse it with the action functional), where θα, θ̄ α̇ are Grassmann variables.
The set of variables (x, θ, θ̄ ) defines a structure called the superspace.
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The definition (13.39) allows us to find the form of a translation (parameterized
by the commuting variable a and the Grassmann numbers ξ, ξ̄ ) on the superspace.
We have

Ŝ(x ′, θ ′, θ̄ ′) = ei(aμ P̂μ+ξα Q̂α+ ˆ̄Qα̇ ξ̄ α̇ ) Ŝ(x, θ, θ̄ ) e−i(aμ P̂μ+ξα Q̂α+ ˆ̄Qα̇ ξ̄ α̇ ). (13.40)

The Baker–Campbell–Hausdorff formula

eAeB = eA+B+ 1
2 [A,B]

with A, B such that [A, [A, B]] = [B, [A, B]] = 0, then gives

exp
(

i(aμ P̂μ + ξα Q̂α + ˆ̄Qα̇ ξ̄ α̇)
)

exp
(

i(xμ P̂μ + θα Q̂α + ˆ̄Qα̇ θ̄ α̇)
)
=

exp
(

i
[
(xμ + aμ + iξασμαα̇θ̄

α̇ − iθασμαα̇ξ̄
α̇)P̂μ + (θα + ξα)Q̂α + ˆ̄Qα̇(θ̄ α̇ + ξ̄ α̇)

])

so that

x ′ = x + a + iξσ θ̄ − iθσ ξ̄ ,

θ ′ = θ + ξ, (13.41)

θ̄ ′ = θ̄ + ξ̄ .

By definition, the superfield that is scalar with respect to the translation (13.41)
satisfies

Ŝ′(x ′, θ ′, θ̄ ′) = Ŝ(x, θ, θ̄ ). (13.42)

From (13.40)

Ŝ′(x, θ, θ̄ ) = e−i(aμ P̂μ+ξα Q̂α+ ˆ̄Qα̇ ξ̄ α̇ ) Ŝ′(x ′, θ ′, θ̄ ′) ei(aμ P̂μ+ξα Q̂α+ ˆ̄Qα̇ ξ̄ α̇ ),

and, using (13.42), we have up to the terms linear in a, ξ, ξ̄

Ŝ′(x, θ, θ̄ ) = e−i(aμ P̂μ+ξα Q̂α+ ˆ̄Qα̇ ξ̄ α̇ ) Ŝ(x, θ, θ̄ ) ei(aμ P̂μ+ξα Q̂α+ ˆ̄Qα̇ ξ̄ α̇ )

= Ŝ(x, θ, θ̄ )− iaμ
[

P̂μ, Ŝ(x, θ, θ̄ )
]

(13.43)

−i
[
ξα Q̂α, Ŝ(x, θ, θ̄ )

]
− i
[ ˆ̄Qα̇ ξ̄ α̇, Ŝ(x, θ, θ̄ )

]
.

From (13.41) and (13.42) we also have
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Ŝ′(x, θ, θ̄ ) = Ŝ(x − a − iξσ θ̄ + iθσ ξ̄ , θ − ξ, θ̄ − ξ̄ )
= Ŝ(x, θ, θ̄ )− (aμ + iξσμθ̄ − iθσμξ̄

) ∂

∂xμ
Ŝ(x, θ, θ̄ )− ξα ∂

∂θα
Ŝ(x, θ, θ̄ )

− ξ̄ α̇ ∂
∂θ̄ α̇

Ŝ(x, θ, θ̄ ).

Comparing this result with (13.43) we get

i
[

P̂μ, Ŝ(x, θ, θ̄ )
]
= ∂

∂xμ
Ŝ(x, θ, θ̄ ), (13.44)

i
[
ξα Q̂α, Ŝ(x, θ, θ̄ )

]
= ξα

(
∂

∂θα
+ iσμαα̇θ̄

α̇ ∂

∂xμ

)
Ŝ(x, θ, θ̄ ) ≡ ξαQα Ŝ(x, θ, θ̄ ),

i
[ ˆ̄Qα̇ ξ̄ α̇, Ŝ(x, θ, θ̄ )

]
= ξ̄ α̇

(
∂

∂θ̄ α̇
+ iθασμαα̇

∂

∂xμ

)
Ŝ(x, θ, θ̄ ) ≡ Q̄α̇ ξ̄

α̇ Ŝ(x, θ, θ̄ ),

where

Qα = ∂

∂θα
+ iσμαα̇θ̄

α̇ ∂

∂xμ
, Q̄α̇ = − ∂

∂θ̄ α̇
− iθασμαα̇

∂

∂xμ
(13.45)

are differential operators generating supersymmetric transformations on the space
of scalar superfields.

We can expand the superfield Ŝ(x, θ, θ̄ ) in a power series in θ, θ̄ . Since the square
of a Grassmann variable is zero, this expansion terminates after few terms

Ŝ(x, θ, θ̄ ) = ϕ̂(x)+ θψ̂(x)+ θ̄ ˆ̄ψ(x)+ θθ F̂(x)+ θ̄ θ̄ Ĝ(x) (13.46)

+(θσμθ̄)v̂μ(x)+ θ̄ θ̄ θ λ̂(x)+ θθ θ̄ ˆ̄λ(x)+ θθ θ̄ θ̄ D̂(x).

The SUSY variations of the component fields ϕ̂, ψ̂, . . . , D̂ can now be computed
by comparing the formula

δξ S(x, θ, θ̄ ) = δξ ϕ̂(x)+ θδξ ψ̂(x)+ θ̄ δξ ˆ̄ψ(x)+ θθδξ F̂(x)+ θ̄ θ̄ δξ Ĝ(x)

+ (θσμθ̄)δξ v̂μ(x)+ θ̄ θ̄ θδξ λ̂(x)+ θθ θ̄δξ ˆ̄λ(x)+ θθ θ̄ θ̄ δξ D̂(x)

with (see (13.43) and (13.44))

δξ Ŝ(x, θ, θ̄ ) = −i
[
ξα Q̂α, Ŝ(x, θ, θ̄ )

]
− i
[ ˆ̄Qα̇ ξ̄ α̇, Ŝ(x, θ, θ̄ )

]

= −(ξαQα + Q̄α̇ ξ̄
α̇)Ŝ(x, θ, θ̄ ), (13.47)
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where Qα, Q̄α̇ in the last line are given by (13.45). In particular,

δξ D̂(x) = i

2

∂

∂xμ

(
ξσμ ˆ̄λ(x)− λ̂(x)σμξ̄

)
(13.48)

—the supersymmetric variation of the θθ θ̄ θ̄ term of the superfield (which is cus-
tomarily named a D-term) is a total derivative.

The general superfield Ŝ contains four scalar, four Weyl and one vector field. One
can construct superfields with a smaller number of components, transforming into
each other under the SUSY transformations. We may use to this end a supersym-
metric covariant derivative Dβ, a first order (in θα) differential operator such that
its action on a superfield does not change its transformation properties, i.e.

δξDβ Ŝ(x, θ, θ̄ ) ≡ −(ξαQα + Q̄α̇ ξ̄
α̇)Dβ Ŝ(x, θ, θ̄ )

= −Dβ(ξ
αQα + Q̄α̇ ξ̄

α̇)Ŝ(x, θ, θ̄ ) ≡ Dβδξ Ŝ(x, θ, θ̄ ),

what is equivalent to requiring

{Qα, Dβ } = {Q̄α̇ , Dβ} = 0.

An operator satisfying these conditions is of the form

Dβ = ∂

∂θβ
− iσμ

ββ̇
θ̄ β̇

∂

∂xμ
. (13.49)

Similarly, a first order differential operator in θ̄ α̇, anticommuting with Qα and Q̄α̇
has the form

D̄β̇ =
∂

∂θ̄ β̇
− iθβσμ

ββ̇

∂

∂xμ
. (13.50)

The chiral superfield (an object important enough to deserve a separate ‘name’
�̂) is a superfield satisfying

D̄β̇ �̂(x, θ, θ̄ ) = 0.

Let

yμ = xμ − iθασμαα̇θ̄
α̇.

We have

D̄β̇ yμ = −iθβσ ν
ββ̇

∂

∂xν
xμ − i

∂

∂θ̄ β̇
θασ

μ
αα̇θ̄

α̇ = −iθβσ ν
ββ̇
δμν + iθασμαα̇δ

α̇

β̇
= 0
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and

D̄β̇ θ
α = 0, D̄β̇ θ̄

α̇ = δα̇
β̇
.

Changing variables and defining

�̂(x, θ, θ̄ ) = ˆ̃
�(y, θ, θ̄ ),

we get

D̄β̇ �̂(x, θ, θ̄ ) = D̄β̇
ˆ̃
�(y, θ, θ̄ )

=
(

D̄β̇ yμ
∂

∂yμ
+ D̄β̇ θ

α ∂

∂θα
+ D̄β̇ θ̄

α̇ ∂

∂θ̄ α̇

)
ˆ̃
�(y, θ, θ̄ )

= ∂

∂θ̄ β̇
ˆ̃
�(y, θ, θ̄ ).

Consequently, the chiral superfield is an arbitrary function of θ and y,

�̂(x, θ, θ̄ ) = ˆ̃
�(y, θ).

Writing it as a power series in θ we get

ˆ̃
�(y, θ) = ϕ̂(y)+√2 θαψ̂α(y)+ θαθα F̂(y), (13.51)

and further

ϕ̂(x − iθσμθ̄) = ϕ̂(x)− i(θσμθ̄)∂μϕ̂(x)− 1

2
(θσμθ̄)(θσν θ̄)∂μ∂νϕ̂(x)

= ϕ̂(x)− i(θσμθ̄)∂μϕ̂(x)− 1

4
θθ θ̄ θ̄∂μ∂

μϕ̂(x),

√
2θαψ̂α(x − iθσμθ̄) = √2θαψ̂α(x)− i

√
2θα(θσμθ̄)∂μψ̂α(x) (13.52)

= √2θαψ̂α(x)+ i√
2
θθ ∂μψ̂(x)σ̃

μθ̄ ,

θθ F̂(x − iθσμθ̄) = θθ F̂(x).

Using (13.47) with �̂ substituted for Ŝ, we see that the obtained in this section
SUSY transformations of the fields ϕ̂, ψ̂ and F̂ have the form coinciding with
(13.37).
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13.5 The Wess–Zumino Model

Let us define the classical, chiral superfield

�(x, θ, θ̄ ) = ϕ(y)+√2 θαψα(y)+ θαθα F(y), (13.53)

where ϕ and F are classical, complex scalar fields and ψ is a classical (Grassmann
type) Weyl field. As in the previous section yμ = xμ− iθσμθ is a formal argument,
and the fields ϕ(x), ψ(x) and F(x) may be obtained as in Eq. (13.52).

Since the covariant derivative satisfies the Leibniz rule, the product of chiral
superfields is again a chiral superfield,

D̄α̇�i = 0, i = 1, 2, ⇒ D̄α̇(�1�2) = 0. (13.54)

The SUSY variation of the θθ coefficient (the F-term) in the expansion of a chiral
field is a total derivative (see (13.52), (13.51) and (13.37)). We can thus construct
a SUSY invariant expression by integrating over the space-time expressions of the
form

a1�
∣∣
θθ
+ a2��

∣∣
θθ
+ a3���

∣∣
θθ
+ . . .

with |θθ denoting the θθ component and with constant ai . As we shall see in a
moment, this gives the mass and the interaction terms in the action functional; to
obtain the kinetic term more work is needed.

It follows from the definitions (13.49) and (13.50), that the covariant derivatives
satisfy an algebra of the form

{Dα, Dβ} = {D̄α̇, D̄β̇} = 0,

{Dα, D̄β̇} = −2iσμ
αβ̇

∂

∂xμ
, (13.55)

and consequently D̄α̇(D̄ D̄) = 0.We may now use an antichiral field, i.e.,

�̄(x, θ, θ̄ ) = ϕ∗(x + iθσ θ̄)+√2 θ̄ ψ̄(x + iθσ θ̄)+ θ̄ θ̄ F∗(x + iθσ θ̄), (13.56)

satisfying Dα�̄ = 0, to construct a chiral field

�K = 1

4
�(D̄ D̄)�̄ (13.57)

which will finally yield a kinetic term in a SUSY invariant action functional.
It is customary to replace the |θθ operation with an integration over the Grass-

mann variables θα. Let us define
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∫
d2θ =

∫
dθ1dθ2,

∫
d2θ̄ =

∫
d θ̄ 2̇d θ̄ 1̇,

hence
∫

d2θ θθ =
∫

d2θ̄ θ̄ θ̄ = 2. (13.58)

From (13.52) we thus see that
∫

d4x �(x, θ, θ̄ )
∣∣
θθ
= 1

2

∫
d4xd2θ �(x, θ, θ̄ ).

Let us notice that the difference between D̄α̇ and ∂/∂θ̄ α̇ is an ordinary space-time
derivative multiplied by a coefficient which does not depend on θ̄ . Since the rules
of the Grassmann integration make it equivalent to the differentiation,

∫
dη f (η) = ∂

∂η
f (η),

we have
∫

d4xd2θ �(D̄ D̄)�̄ =
∫

d4xd2θ D̄ D̄(��̄) =
∫

d4xd2θ
∂

∂θ̄ α̇

∂

∂θ̄α̇
��̄

= 1

2

∫
d4xd2θd2θ̄ ��̄.

The integral appearing on the l.h.s. of this identity is SUSY invariant, thanks to the
chirality of�(D̄ D̄)�̄.On the other hand, even if��̄ is no longer a chiral superfield,
the SUSY invariance of the integral on the r.h.s. can be inferred from (13.48).

Before we finally construct an action functional containing only the fields which
build up the chiral field � and its conjugate �̄, it is useful to perform the dimen-

sional analysis. We have already seen that θ and θ̄ carry the dimensions cm
1
2 , ϕ and

ψ have dimensions cm−1 and cm− 3
2 , respectively, so that the whole superfield �

has the dimension cm−1. From (13.58) it then follows that the measures d2θ and
d2θ̄ have the dimensions cm−1 each, the dimension of the measure d4xd2θ is thus
cm3 and the dimension of d4xd2θd2θ̄ is equal to cm2.

In order to construct a (perturbatively) renormalizable theory, we have to build
a dimensionless action which contains no coupling constants with positive length
dimensions. The only possibility (the so-called Wess–Zumino action) with the
super-kinetic term quadratic in the fields is thus

SW Z = 1

2

∫
d4xd2θ

(
1

2
�D̄2�̄+ 1

2
m�2 + 1

3
g�3

)
+ c.c.

= 1

8

∫
d4xd2θd2θ̄ ��̄+ 1

2

∫
d4xd2θ

(
1

2
m�2 + 1

3
g�3

)
+ c.c. (13.59)
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with the coupling constants: m having the dimension cm−1 (or, equivalently, the
mass dimension +1) and dimensionless g. In terms of the component, scalar fields
ϕ(x), F(x) and ψα(x) we have

SW Z =
∫

d4x LW Z ,

where

LW Z =∂μϕ∗∂μϕ + iψ̄σ̃μ∂μψ + F∗F + m(Fϕ + F∗ϕ∗)− m

2
(ψψ + ψ̄ψ̄)

+ g
(
Fϕϕ + F∗ϕ∗ϕ∗ − ϕψψ − ϕ∗ψ̄ψ̄)+ (4−div). (13.60)

It is slightly more convenient to rewrite (13.60) in terms of the Majorana spinor

�M =
(
ψα
ψ̄α̇

)
.

Since in the spinor representation

γ5 =
(

I2 0
0 −I2

)
,

we have

ψψ = 1

2
�̄M(1+ γ5)�M , ψ̄ψ̄ = 1

2
�̄M(1− γ5)�M ,

and (13.60) takes the form

LW Z = ∂μϕ∗∂μϕ + m(Fϕ + F∗ϕ∗)+ 1

2
�̄M(i/∂ − m)�M + F∗F

+ g
(
Fϕϕ + F∗ϕ∗ϕ∗

)− g

2
ϕ�̄M (1+ γ5)�M − g

2
ϕ∗�̄M (1− γ5)�M . (13.61)

The equations of motion for the F and F∗ fields are purely algebraic

F = −mϕ∗ − g(ϕ∗)2,
F∗ = −mϕ − gϕ2.

(13.62)

Inserting (13.62) back into (13.61) we arrive at the Wess–Zumino model Lagrangian
expressed entirely in terms of the fields ϕ(x),�M (x) and their conjugates,

LW Z = ∂μϕ∗∂μϕ − m2ϕ∗ϕ + 1

2
�̄M(i/∂ − m)�M

− g

2
ϕ�̄M (1+ γ5)�M − g

2
ϕ∗�̄M (1− γ5)�M (13.63)

− mg
(
ϕ∗ϕ2 + (ϕ∗)2ϕ

)
− g2(ϕ∗)2ϕ2.
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The price one pays for this simplification is—as we already know—that the
obtained action is the SUSY invariant only on shell, i.e. only when the equations
of motion for the spinor field are taken into account.

Let us now sketch the Feynman rules of the theory which is obtained upon quan-
tization of the Wess–Zumino model. The first line of (13.63) defines the free action,
and consequently in the interaction picture the operators ϕ̂(x), �̂M (x), together
with their Hermitian conjugates, satisfy the Klein–Gordon and Dirac equations

∂μ∂
μϕ̂(x)+ m2ϕ̂(x) = 0,

(i/∂ − m)�̂M(x) = 0.

One can then show, analogously as in Chap. 6 for the real scalar field, that the
complex scalar field operator ϕ̂(x) can be represented as

ϕ̂(x) =
∫

d3k√
2(2π)3ω(k)

(
e−ikxâ(
k)+ eikxb̂†(
k)

)
,

where k0 = ω(
k) =
√
k2 + m2 and

[â(k), â†(
q)] = [b̂(k), b̂†(
q)] = δ(
k − 
q), [â(k), b̂(
q)] = [â(k), b̂†(
q)] = 0.

This gives the ϕ field propagator

〈0I |T
(
ϕ̂(x)ϕ̂†(y)

)
|0I 〉 = �F (x − y) =

∫
d4k

(2π)4
e−ik(x−y) i

k2 − m2 + i0+
.

(13.64)
The operator �̂M(x) can be constructed with the help of the formulae (5.68) and
(5.69) by ‘promoting’ the generating elements of the Grassmann algebra cλε (
k) to
be the operators, acting on in appropriate Hilbert space and satisfying the usual
anticommutation relations. Calculating the propagator for the Majorana field we get

〈0I |T
(
�̂M(x)

ˆ̄�M (y)
)
|0I 〉 = SF (x − y) =

∫
d4k

(2π)4
e−ik(x−y) i(/k + m)

k2 − m2 + i0+
.

(13.65)
Graphically, we shall denote the scalar field propagator with the wavy line, directed
from the ϕ† to the ϕ field and the Majorana field propagator by the solid line. In
the latter case the arrow just points in the direction in which the momentum flows
(Fig. 13.1).

Fig. 13.1 Propagators in the
Wess–Zumino model
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Fig. 13.2 Vertices in the
Wess–Zumino model

The second and the third line line of (13.63) allow us to read off the interaction
vertices. Up to the factor (2π)4 and the four-momentum conservation Dirac delta,
they are specified in Fig. 13.2.

Let us end this section by presenting two examples of a phenomenon which
makes supersymmetric models especially interesting—the cancelation of some
divergences appearing in the Green’s functions due to the opposite signs of con-
tributions from the bosonic and fermionic fields. Our first example is the one-loop
correction to the scalar field self-energy, given by the contributions from the graphs
in the Fig. 13.3. The superficial degree of divergence of the first two graphs is equal
(in the four-dimensional space-time) to two—if we try to calculate the integrals
by restricting the modulus of integration momentum by a cut-off �, they diverge
like �2. In the dimensional regularization the contribution from the first graph is2

Ia(p) = 2(−1)
g2

4

∫
d Dk

Tr(1− γ5)(/k + m)(1+ γ5)(/k + /p + m)

(k2 − m2 + i0+)
(
(k + p)2 − m2 + i0+

)

= −4g2
∫

d Dk
k(k + p)

(k2 − m2 + i0+)
(
(k + p)2 − m2 + i0+

) ,

Fig. 13.3 The one-loop graphs contributing to the scalar field self-energy

2 Notice the additional symmetry factor 2 which appears for the Majorana spinors and would not
be present for the Dirac spinor fields.
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while the second graph yields

Ib = 4g2
∫

d Dk
1

k2 − m2 + i0+
.

Consequently,

Ia(p)+ Ib = 4g2
∫

d Dk
p(k + p)− m2

(k2 − m2 + i0+)
(
(k + p)2 − m2 + i0+

) .

Using Feynman’s parametrization

1

ab
=
∫ 1

0

dx

[ax + b(1− x)]2

in order to combine the denominators we get

Ia(p)+ Ib = 4g2
∫ 1

0
dx
∫

d Dk
p(k + p)− m2

(
(k + xp)2 + x(1− x)p2 − m2

)2

= 4g2
∫ 1

0
dx
(
(1− x)p2 − m2

) ∫ d Dq[
q2 + x(1− x)p2 − m2

]2 ,

where in the last line we have changed the integration variable k → q = k − xp
and neglected the term odd in q. The obtained integral diverges for large |q| = �
only as log�—the quadratic divergences of the diagrams 13.3.a and 13.3.b have
canceled each other.

The contribution to the scalar field self-energy depicted as the graph in Fig. 13.3c
is already only logarithmically divergent and reads

Ic(p) = 4g2m2
∫

d Dk
1

(k2 − m2 + i0+)
(
(k + p)2 − m2 + i0+

)

= 4g2m2
∫ 1

0
dx (1− x)p2

∫
d Dq[

q2 + x(1− x)p2 − m2
]2 .

The quantity

Ia(p)+ Ib + Ic(p) = 4g2 p2
∫ 1

0
dx(1− x)

∫
d Dq[

q2 + x(1− x)p2 − m2
]2

calculated at zero external momentum, p = 0, gives the one-loop correction to the
scalar field mass. From this formula it follows the remarkable result, that in the
Wess–Zumino model this correction actually vanishes.
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Similar mechanism in the minimal supersymmetric extension of the Standard
Model (MSSM) allows to solve the so called hierarchy problem: it ‘protects’ the
mass of the Higgs particle from receiving large, physically unacceptable perturba-
tive corrections.

Our second example is the one-loop correction to the ϕ�̄M�M interaction vertex.
Two of the four contributions are depicted in Fig. 13.4 (we encourage the reader to
draw and analyze the remaining two contributions).
We have

Ia(p, q) = g3
∫

d Dk
(1+ γ5)(/k + /q + m)(1+ γ5)(/k + m)(1− γ5)(
(k − p)2 − m2

) (
(k + q)2 − m2

) (
k2 − m2

)

= 4mg3
∫

d Dk
(1+ γ5)/k(

(k − p)2 − m2
) (
(k + q)2 − m2

) (
k2 − m2

) ,

and

Ib(p, q) = 2mg3
∫

d Dk
(1+ γ5)(/p − /k + m)(1− γ5)(

(k − p)2 − m2
) (
(k + q)2 − m2

) (
k2 − m2

)

= 4mg3
∫

d Dk
(1+ γ5)(/p − /k)(

(k − p)2 − m2
) (
(k + q)2 − m2

) (
k2 − m2

) .

The sum

Ia(p, q)+ Ib(p, q) = 4mg3
∫

d Dk
(1+ γ5)/p(

(k − p)2 − m2
) (
(k + q)2 − m2

) (
k2 − m2

)

is finite for D = 4.

Fig. 13.4 The one-loop graphs contributing to the fermion-scalar interaction vertex
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13.6 Notation and Conventions

The notation traditionally used in modern analysis of supersymmetric models can
be somewhat cumbersome. In this section we have gathered main definitions with
the hope that such a glossary will help the student.

For the antisymmetric symbol with two indices we choose

ε12 = ε1̇2̇ = 1, ε12 = ε1̇2̇ = −1 (13.66)

which gives

εαβεβγ = δαγ . (13.67)

The ε symbol is used to raise and lower the spinor indices:

ψα = εαβψβ, χ̄ α̇ = εα̇β̇ χ̄β̇ , (13.68)

and consequently

ψα = εαβψβ, χ̄α̇ = εα̇β̇ χ̄ β̇ . (13.69)

Let θα be a constant spinor (Grassmann type). By definition, we have

∂

∂θβ
θα = δαβ (13.70)

which gives

∂

∂θβ
θα = εαγ ∂

∂θβ
θγ = εαβ. (13.71)

Similarly

∂

∂θβ
θα = εαβ, εαβ

∂

∂θβ
= − ∂

∂θα
. (13.72)

Analogous formulae hold for the conjugated spinors (with dotted indices).
We have chosen the ‘NW–SE’ (north west–south east) convention for the product

of the spinors,

ψχ ≡ ψαχα = −χαψα = χαψα = χψ, (13.73)

and the ‘SW–NE’ conventions for the product of the conjugated spinors

ψ̄χ̄ ≡ ψ̄α̇χ̄ α̇ = −χ̄ α̇ψ̄α̇ = χ̄α̇ψ̄ α̇ = χ̄ ψ̄ . (13.74)
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The conjugation is defined as follows

(ψα)
∗ = ψ̄α̇,

(
χα
)∗ = χ̄ α̇ . (13.75)

It reverses the order in products,

(ψχ)∗ = (ψαχα)∗ = χ̄α̇ψ̄ α̇ = χ̄ ψ̄, (13.76)

and changes a complex number into its complex conjugate.
Three Pauli matrices σ i = −σi and the 2×2 identity matrix I2 can be assembled

into two ‘matrix four-vectors’

(
σμ
) = (I2, σ

i ),
(
σ̃ μ
) = (I2,−σ i ) = (σμ) . (13.77)

Thus, σ 0 = I2. Let us also define

σμν = 1

4

(
σμσ̃ ν − σνσ̃ μ) , σ̃ μν = 1

4

(
σ̃ μσ ν − σ̃ νσμ) . (13.78)

These matrices have the following structure of indices:

(
σμ
)
αβ̇
,

(
σ̃ μ
)α̇β
,

(
σμν

) β
α
,

(
σ̃ μν

)
α̇

β̇
. (13.79)

ψσμχ̄ ≡ ψασμ
αβ̇
χ̄ β̇ is a vector under the Poincaré transformations, ψσμνχ it an

(antisymmetric) tensor, etc.
With (13.66) and the definitions (13.77), it is also immediate to check the identity

σ̃ μα̇α = εαβεα̇β̇σμ
ββ̇
, (13.80)

which also gives

ψσμχ̄ ≡ ψασμαα̇χ̄ α̇ = εαβψβσμαα̇εα̇β̇ χ̄β̇ (13.81)

= −χ̄β̇εβαεβ̇α̇σμαα̇ψβ = −χ̄β̇ σ̃ μβ̇βψβ = −χ̄ σ̃ μψ.

The form of the Pauli matrices implies that under the conjugation

(
σ
μ

αβ̇

)∗ = σμβα̇ (13.82)

so that

(
ψσμχ̄

)∗ = (ψασμ
αβ̇
χ̄ β̇
)∗ = χβσμβα̇ψ̄ α̇ = χσμψ̄. (13.83)

Similarly,



13.6 Notation and Conventions 319

(
ψσμσ̃ νχ

)∗ = χ̄γ̇ σ̃ νγ̇ βσμβα̇ψ̄α̇ = χ̄ σ̃ νσμψ̄,
(
ψσμνχ

)∗ = χ̄ σ̃ νμψ̄ = −χ̄ σ̃ μνψ̄, (13.84)

(
χ̄ σ̃ μνψ̄

)∗ = χ̄σ νμψ̄ = −χ̄σμνψ̄.

Finally, let �D =
(
ψα
χ̄ α̇

)
be an arbitrary Dirac spinor. In the spinor representation its

charge conjugate is of the form �c
D =

(
χα

ψ̄α̇

)
. The Majorana condition �M = �c

M

thus gives ψ = χ , so that in the spinor representation the Majorana spinor has the
form

�M =
(
ψα

ψ̄α̇

)
. (13.85)

Exercises

13.1 In Sect. 13.2 we have discussed the representation of the supersymmetry alge-
bra on the one-particle, massive states. We want to repeat this analysis for massless
states. They can be chosen to satisfy

P̂μ|p, λ〉 = pμ|p, λ〉, Ŵμ|p, λ〉 = λ pμ|p, λ〉

where (pμ) = (E, 0, 0, E), Ŵμ is the Pauli–Lubanski four-vector,

Ŵμ = 1

2
εμνρλ P̂ν M̂ρλ

and λ = 1
E (

J · 
P) is the helicity. Show that one can always choose the state |p, λ〉

so that Q̂α|p, λ〉 = 0, α = 1, 2, ˆ̄Q1̇|p, λ〉 = 0, and that the only other state in the
supersymmetric multiplet is

1√
4E

ˆ̄Q2̇|p, λ〉.

What is the helicity of this state?

13.2 Find the form of a conserved current which exists thanks to an invariance of
the action functional defined by the Lagrangian (13.32) under the transformations
(13.37).

13.3 Check the validity of the relations

• θαθβ = − 1
2ε
αβθγ θγ ≡ − 1

2ε
αβ θθ,
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• θ̄ α̇ θ̄ β̇ = 1
2ε
α̇β̇ θ̄γ̇ θ̄

γ̇ ≡ 1
2ε
α̇β̇ θ̄ θ̄ ,

• εαβεα̇β̇σ ν
ββ̇
= (σ̃ ν)α̇α .

Using them prove the identities

(θσμθ̄)(θσ ν θ̄) = 1
2 θθ θ̄ θ̄ η

μν, θσμθ̄ θ∂μψ(x) = − 1
2θθ ∂μψ(x)σ

μθ̄ .

13.4 Taking into account that σμ form a basis of a (complex) vector space of 2× 2
matrices, show the basic Fierz identity:

δβα δ
γ̇

δ̇
= 1

2
σν
αδ̇
σ̃ γ̇ βν . (13.86)

13.5 Contracting both sides of (13.86) with ξαψβχ̄γ̇ η̄δ̇ show that

(ξψ)(χ̄ η̄) = −1

2
(ξσ νη̄)(χ̄ σ̃νψ) = 1

2
(ξσ νη̄)(ψσνχ̄). (13.87)

13.6 Contracting both sides of (13.86) with σμργ̇ η
αψβθ

ρξ̄ δ̇ show that

(ηψ)(θσμξ̄ ) = −1

2
(ησν ξ̄ )(θσ

μσ̃ νψ) = −1

2
(ησμξ̄)(θψ)− (ησν ξ̄ )(θσμνψ)

= −(ησμξ̄)(θψ)+ 1

2
(ησνξ̄ )(θσ

νσ̃μψ). (13.88)

13.7 Similarly as in Exercise 13.6, demonstrate that

(θξ)(η̄σ̃ μψ) = −1

2
(η̄σ̃νξ)(θσ

νσ̃ μψ) = −1

2
(η̄σ̃μξ)(θψ)− (η̄σ̃νξ)(θσνμψ)

= −(η̄σ̃ μξ)(θψ)+ 1

2
(η̄σ̃νξ)(θσ

μσ̃ νψ). (13.89)

13.8 Show that in the Wess–Zumino model the sum of the contributions from the
‘tadpole’ diagrams plotted in Fig. 13.5 vanishes.

Fig. 13.5 The tadpole
diagrams in the
Wess–Zumino model



Chapter 14
Anomalies

Abstract The splitting of the massless (1+1)-dimensional Dirac field into right-
and left- handed components. Quantization of the right- and left-handed fields. Con-
struction of the Hamiltonian and of the U(1) current operator. The non-conservation
of the U(1) current in the presence of an external Abelian gauge field. Derivation
of the U(1) anomaly equation. Cancelation of anomalies. Non-invariance of the
fermionic path integral measure under the axial U(1) transformations. Derivation of
the U(1) anomaly equation in the path integral formulation of the quantum theory
of the massless Dirac field in (3+1)-dimensions. The index of the Dirac operator.

The term ‘anomaly’ in quantum field theory refers to a case where a conserva-
tion law is lost on the way between classical and quantum versions of the theory.
This phenomenon was discovered in 1969 (S. Adler, W. A. Bardeen, J.S. Bell, R.
Jackiw), and it came as a surprise. Now it is rather well understood. Heuristically,
the presence of an anomaly is a direct consequence of the fact that in order to obtain
quantum observables it does not suffice just to replace in pertinent formulas classical
fields by their quantum counterparts. The careful approach to defining the quantum
observables involves a regularization, appropriate subtractions and a removal of the
regularization. Moreover, all this should be done in a physically relevant Hilbert
space. Such a procedure can give surprising results. The phenomenon of anomalies
is a very important example of that.

14.1 Simple Example of Anomaly

The model that we analyze below is distinguished by its mathematical simplicity1.
It is related to a model first considered by J. Schwinger (see, e.g., Sect. 11.3 in [11]),
but is significantly simpler, because we include only external gauge fields which by
assumption have a fixed form.

1 It is certainly simple when compared with other models, nonetheless we consider a system that
has an infinite number of degrees of freedom. Simplicity is a relative notion.

H. Arodź, L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
DOI 10.1007/978-3-642-15624-3_14, C© Springer-Verlag Berlin Heidelberg 2010
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We consider a massless Dirac field ψ(t, x) in a one-dimensional space, x ∈ R1.
The time variable has the usual range, t ∈ R1, hence the variables (t, x) can be
regarded as coordinates on the plane R2. This plane is pseudoeuclidean because the
metric tensor has the Minkowski form: η12 = η21 = 0, η00 = 1, η11 = −1. The
field ψ has two complex components,

ψ =
(
ψ+
ψ−

)
.

We use the c-number version of the classical Dirac field. In the case of (1+1)-
dimensional space-time we have two Dirac matrices γ 0, γ 1, and γ5 = γ 0γ 1. We
take the following representation for them

γ 0 = σ1, γ
1 = −iσ2, γ5 = σ3, (14.1)

where σi are Pauli matrices. The Dirac matrices and γ5 have the usual properties:

γ μγ ν + γ νγ μ = 2ημν I2, γ5γ
μ + γ μγ5 = 0, γ 2

5 = I2, γ
†
5 = γ5.

As the Lagrangian for the free, massless classical Dirac field we take

L0 = i

2
(ψγ μ∂μψ − ∂μψγμψ), (14.2)

where ψ = ψ†γ 0. The Dirac equation that follows from this Lagrangian as the
Euler–Lagrange equation has the form

γ μ∂μψ = 0. (14.3)

In the absence of the mass term m0ψψ , the Lagrangian L0 can be split into two
independent parts, L0 = L1 + L2, where

L1 = i

2
(ψ∗+ ∂0ψ+ + ψ∗+ ∂1ψ+ − ∂0ψ

∗+ ψ+ − ∂1ψ
∗+ ψ+), (14.4)

L2 = i

2
(ψ∗− ∂0ψ− − ψ∗− ∂1ψ− − ∂0ψ

∗− ψ− + ∂1ψ
∗− ψ−). (14.5)

Dirac equation (14.3) is equivalent to the following simple equations

∂0ψ+ + ∂1ψ+ = 0, (14.6)

∂0ψ− − ∂1ψ− = 0. (14.7)

The general solutions of Eqs. (14.6) and (14.7) have the form ψ+(t, x) = f (t −
x), ψ−(t, x) = h(t + x), where f, h are arbitrary differentiable functions. For this
reason ψ+ is called the right-mover field, and ψ− the left-mover field.
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We see that the fields ψ+, ψ− are independent of each other. The split of ψ
into ψ+ and ψ− is analogous to the decomposition of the (3+1)-dimensional Dirac
field into right- and left-handed components ψR, ψL , as discussed in Chap. 5. Such
decomposition is Poincaré invariant. This can be seen from the formulas

(
ψ+
0

)
= 1

2
(I2 + γ5)ψ,

(
0
ψ−

)
= 1

2
(I2 − γ5)ψ,

and the fact that γ5 is invariant with respect to the proper Lorentz transformations
in the (1+1)-dimensional space-time (Exercise 14.1). From now on we will consider
ψ+, ψ− separately, so we have two models: one with ψ+, and the other with ψ−.
We shall return to the Dirac field at the end of this section.

Let us generalize our two models by including interactions with classical external
gauge fields: Bμ(t, x) in the case of the right-mover field ψ+, and Cμ(t, x) in the
case ofψ−. We apply the minimal coupling rule, i.e., the only change in the pertinent
Lagrangian is

∂μψ+ → Dμ(B)ψ+ = ∂μψ+− i Bμψ+, ∂μψ− → Dμ(C)ψ− = ∂μψ−− iCμψ−.
(14.8)

Here Bμ and Cμ are arbitrary, but fixed—there is no evolution equation for them.
Models which differ only by the form of the external field should in general be
regarded as different (an exception to this is discussed below). Thus, we are led to
consider the two independent classes of models: one class with the Lagrangians of
the form

L+ = i

2
[ψ∗+ D0(B)ψ+ + ψ∗+ D1(B)ψ+ − (D0(B)ψ+)∗ψ+ − (D1(B)ψ+)∗ψ+]

(14.9)
and the Euler–Lagrange equations

D0(B)ψ+ + D1(B)ψ+ = 0, (14.10)

and the other class with

L− = i

2
[ψ∗− D0(C)ψ− − ψ∗− D1(C)ψ− − (D0(C)ψ−)∗ψ− + (D1(C)ψ−)∗ψ−]

(14.11)
and the Euler–Lagrange equations

D0(C)ψ− − D1(C)ψ− = 0. (14.12)

The models within one such class differ by the form of the external field.
The Lagrangian L+ is invariant with respect to the U+(1) group of transforma-

tions of the form

ψ+(t, x)→ eiχψ+(t, x), (14.13)
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where χ is a real parameter. As the consequence of this symmetry we have the
conserved current density

j μ+ (t, x) =
(
ψ+
0

)
γ μ
(
ψ+
0

)
(14.14)

that obeys the continuity equation

∂μ j μ+ (t, x) = 0,

provided that ψ+ obeys Eq. (14.10). Formula (14.14) gives the two-vector of the
form

( jμ+) =
(
ψ∗+ψ+
ψ∗+ψ+

)
. (14.15)

Similarly, L− is invariant with respect to the transformations

ψ−(t, x)→ eiηψ−(t, x) (14.16)

with arbitrary real η. These transformations form the group U−(1). Components of
the corresponding conserved current density are given by the formula

j μ− (t, x) =
(

0
ψ−

)
γ μ
(

0
ψ−

)
,

or in the two-vector form

( jμ−) =
(
ψ∗−ψ−
−ψ∗−ψ−

)
. (14.17)

Similarly as in the previous case,

∂μ j μ− (t, x) = 0,

provided that ψ− obeys Eq. (14.12).
Because Bμ,Cμ are fixed functions and not dynamical fields, there is no gauge

invariance of the type discussed in Chap. 4. Nevertheless, the particular form of
the coupling implies that models with various choices of these functions can be
equivalent to each other. Specifically, the model (14.9) with the external field Bμ
and the field ψ+ is equivalent to the model with the external field B′μ and the field
ψ ′+, if

B ′μ(t, x) = Bμ(t, x)+ ∂μχ(t, x), ψ ′+(t, x) = eiχ(t,x)ψ+(t, x), (14.18)
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where χ(t, x) is an arbitrary differentiable function that vanishes together with
its derivatives in the limit |x | → ∞. The conserved current jμ+ and all the other
physical quantities have exactly the same values in all the equivalent models. The
equivalence transformation in the models of the type (14.11) has the form

C ′μ(t, x) = Cμ(t, x)+ ∂μη(t, x), ψ ′−(t, x) = eiη(t,x)ψ−(t, x), (14.19)

where η(t, x) has the same properties as the function χ(t, x) above. Of course,
these equivalence transformations are akin to the gauge transformations of the type
U±,loc(1) of the classical Schwinger model, in which also Bμ and Cμ are dynamical
fields. The Lagrangian of the Schwinger model contains the standard kinetic terms
for these fields, i.e.,

−1

4
Fμν(B)F

μν(B)− 1

4
Fμν(C)F

μν(C),

where Fμν(B) = ∂μBν − ∂νBμ, Fμν(C) = ∂μCν − ∂νCμ. Because of that rela-
tionship, we will use the more popular name ‘gauge transformations’ also for the
transformations (14.18) and (14.19), instead of the more precise ‘equivalence trans-
formations’.

Using gauge transformations (14.18) and (14.19) we can eliminate B0,C0:

B0 = 0, C0 = 0.

These conditions, called the temporal gauge conditions, do not eliminate the gauge
transformations, but restrict them to the functions χ, η that do not depend on t ,
χ = χ(x), η = η(x). In all our considerations below, we assume that the external
fields have been transformed to the temporal gauge.

Now let us construct a quantum version of our models. By analogy with the
previously discussed (in Sect. 6.2) free Dirac field on the R3 space, we postulate the
equal time anticommutation relations for the fields ψ±, namely

{
ψ̂+(t, x), ψ̂+(t, x ′)

}
= 0,

{
ψ̂

†
+(t, x), ψ̂+(t, x ′)

}
= δ(x − x ′) I (14.20)

and

{
ψ̂−(t, x), ψ̂−(t, x ′)

}
= 0,

{
ψ̂

†
−(t, x), ψ̂−(t, x ′)

}
= δ(x − x ′) I. (14.21)

Note that at this point it is not possible to specify the (anti-)commutation relations
between the fields ψ̂+, ψ̂− because they act in different Hilbert spaces.

The classical energy density obtained from the Lagrangian L+ has the form

T00 = i

2
(D1(B)ψ+)∗ψ+ − i

2
ψ∗+ D1(B)ψ+.
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Therefore, we would like to take as the quantum Hamiltonian the operator2

i

2

∫
dx (D1(B)ψ̂+(t, x))†ψ̂+(t, x)+ h.c. (14.22)

Unfortunately, such an expression is not well-defined. First, we expect that ψ̂+(t, x)
is an operator-valued generalized function of (t, x), and we know that expressions
like (ψ̂+(t, x))†ψ̂+(t, x) should be avoided. In fact, the second relation (14.20) sug-
gests that indeed, such product is ill-defined. Second, assuming that we can ‘repair’
the products of the generalized functions, the integrand in that candidate formula
will be another generalized function, and as such it can only be integrated with a
test function. Such a test function is missing in that formula. Therefore, we first
consider the well-defined operator

Ĥε[B1] = − i

2

∫
dx f (x) ψ̂†

+(t, x + ε)W [ε; B1] D1(B)ψ̂+(t, x)+ h.c. , (14.23)

where ε > 0, f (x) is a test function (real-valued). The operator Ĥε[B1] is the
regularized form of the operator (14.22).

Similarly, the regularized two-current density ĵμ+,ε(t, x) has the form (14.15)
with j0+ = ψ∗+ψ+ = j1+ replaced by

ĵ0+,ε(t, x) = 1

2
ψ̂

†
+(t, x + ε)W [ε; B1] ψ̂+(t, x)+ h.c. = ĵ1+,ε(t, x). (14.24)

The factor

W [ε; B1] = exp

(
i
∫ x+ε

x
dx ′ B1(t, x ′)

)
(14.25)

is the parallel transporter from the point (t, x) to the point (t, x + ε) along the
rectilinear segment connecting these points. It is analogous to the one considered
in Chap. 4. We have included it in order to ensure that Ĥε[B1] is gauge invariant.
The corresponding to (14.18) gauge transformation in the quantum model (with χ
independent of t) has the form (Exercise 14.2)

U−1[χ, t] ψ̂+(t, x)U [χ, t] = exp(iχ(x)) ψ̂+(t, x), (14.26)

where

U [χ, t] = exp

(
i
∫

dx χ(x) Ĵ 0+(t, x)

)
. (14.27)

2 Let us recall that a term denoted as ‘h.c.’ is obtained by the Hermitian conjugation of the preced-
ing term or terms.
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Here Ĵ 0+(t, x) is the quantum counterpart of the classical charge density j0+(t, x)—it
will be obtained below from ĵ0+,ε . Because ĵ0+(t, x) is a generalized function of x ,
the function χ(x) should be a test function. Note that as far as the transformation law
(14.26) is concerned, we may add to Ĵ 0+ certain terms proportional to the identity
operator—they will cancel out in the product on the l.h.s. of formula (14.26). The
gauge invariance of the operator Ĥε[B1] means that

U−1[χ, t] Ĥε[B1 + ∂1χ ]U [χ, t] = Ĥε[B1].

The regularization employed in formula (14.23) for Ĥε[B1] consists of two steps.
The first step, that is the introduction of ε and W [ε; B1] is called the gauge invariant
point splitting. It is applied in order to ‘repair’ the product of generalized functions
without spoiling the gauge invariance. The second step consists in introducing the
test function f in order to secure the convergence of the integral over x . This step
is sometimes called the regularization in the infrared (because the problem lies at
large values of x), while the first step is the regularization in the ultraviolet. After a
calculation of Ĥε[B1] we shall attempt to take the limit ε → 0, f (x)→ 1. It turns
out that such a limit exists if we abandon some terms proportional to the identity
operator I . Of course, in the case of the current density only the first step—the
gauge invariant point splitting—is needed because there is no integration.

Analogously, in the case of the left-mover field ψ̂− we consider the operators

Ĥε[C1] = i

2

∫
dx f (x) ψ̂†

−(t, x + ε)W [ε;C1] D1(C)ψ̂−(t, x)+ h.c. , (14.28)

and

ĵ0−,ε(t, x) = 1

2
ψ̂

†
−(t, x + ε)W [ε;C1] ψ̂−(t, x)+ h.c. = − ĵ1−,ε(t, x). (14.29)

The change of sign in Ĥε[C1], as compared with Ĥε[B1], is due to the difference in
the signs of the terms containing D1(B)ψ+, D1(C)ψ− in Lagrangians (14.9) and
(14.11).

The Heisenberg equations of motion for the ψ̂+, ψ̂− fields have the form

∂0ψ̂+ + D1(B)ψ̂+ = 0, (14.30)

∂0ψ̂− − D1(C)ψ̂− = 0. (14.31)

They can easily be solved if B1, C1 do not depend on x , i.e., when

B1 = B(t), C1 = C(t). (14.32)

In this case

ψ̂+(t, x) = ei
∫ t

0 dt ′B(t ′) 1√
2π

∫
dp eip(x−t) ĉ+(p), (14.33)
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ψ̂−(t, x) = e−i
∫ t

0 dt ′C(t ′) 1√
2π

∫
dp eip(x+t) ĉ−(p). (14.34)

The anticommutation relations (14.20) and (14.21) are satisfied if

{ĉ+(p), ĉ+(p′)} = 0, {ĉ†
+(p), ĉ+(p′)} = δ(p − p′)I, (14.35)

{ĉ−(p), ĉ−(p′)} = 0, {ĉ†
−(p), ĉ−(p′)} = δ(p − p′)I. (14.36)

Let us construct the quantum Hamiltonian for the right-mover field. Note that the
integration in the parallel transporters is now trivial, W [ε; B1] = eiεB(t). Inserting
solution (14.33) in formula (14.23) and integrating over x we obtain

Ĥε[B] = eiεB(t)

4π

∫
dp′

∫
dp f̃ (p′ − p) eit (p′−p)−i p′ε (p− B) ĉ†

+(p′) ĉ+(p) +h.c. ,

where

f̃ (p′ − p) =
∫

dx e−i(p′−p)x f (x),

and B ≡ B(t). The limit f (x) → 1 corresponds to f̃ (p′ − p) → 2πδ(p′ − p).
Note also that f̃ ∗(p′ − p) = f̃ (p − p′). The limit ε → 0, f (x) → 1 gives the
operator

Ĥ0[B] =
∫

dp (p − B) ĉ†
+(p) ĉ+(p),

which is well-defined in the Fock space generated by the operators ĉ†
+(p) from the

vacuum state |0〉 such that ĉ+(p)|0〉 = 0 for all p ∈ R. It is clear that this operator
is not bounded from below. It is the same problem as that encountered in Sect. 6.2
in the case of the free massive Dirac field. We are going to use essentially the same
solution, that is, we will use the Dirac vacuum |0〉D instead of |0〉, and transform
the negative energy sector into the sector of anti-particles with positive energy.

Unfortunately, in the case of the massless Dirac field we have to pay more atten-
tion to the mathematical side of the theory. The reason is that the positive and
negative energy sectors are not well-separated—in fact they touch each other at
p = B. This has a rather unexpected consequence in that the integral

∫
dp (. . .)

in general can not be simply written as
∫ B
−∞dp(. . .) + ∫∞B dp(. . .)! This integral

is present already in formula (14.33). Because of the presence of the Dirac delta
on the r.h.s. of the anticommutation relation (14.35) ĉ+(p) is an operator-valued
generalized function of p. As explained in the Appendix, for the safe approach to
the decomposition of the integral, one should introduce a smooth function θκ (p)
that represents a smoothed step function �(p). Then,

∫
dp (. . .) =

∫
dp θκ(p − B)(. . .)+

∫
dp [1− θκ(p − B)](. . .).
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We shall use a function θκ(p) of the form

θκ (p) =
⎧⎨
⎩

1 when p ≥ κ
α(p) when −κ < p < κ

0 when p ≤ −κ,

where α(p) is a smooth monotonic function that interpolates between 0 and 1, and
κ > 0 is a constant. For simplicity, we also assume that α(p) + α(−p) = 1 for
p ∈ (κ,−κ). Then

θκ (B − p)+ θκ(p − B) = 1. (14.37)

The step function �(p − B) is obtained in the limit κ → 0+. The mathematically
correct decomposition of ψ̂+ into the positive and negative energy components has
the form

ψ̂+(t, x) = ψ̂(+)+ (t, x)+ ψ̂(−)+ (t, x), (14.38)

where

ψ̂
(+)
+ (t, x) = ei

∫ t
0 dt ′B(t ′) 1√

2π

∫
dp θκ(p − B) eip(x−t) ĉ+(p),

ψ̂
(−)
+ (t, x) = ei

∫ t
0 dt ′B(t ′) 1√

2π

∫
dp θκ(B − p) eip(x−t) ĉ+(p).

The first integral extends essentially over the interval [B−κ,∞) and the second over
(−∞, B + κ]. Such a smoothing of the decomposition is not needed in the case of
the massive Dirac field in Sect. 6.2, because there the positive and negative energy
sectors are well-separated: the operators â(+)s ( 
p), â(−)s ( 
p), present in formula (6.79)
are never equal to each other.

Let us recalculate Ĥε[B] using the decomposition (14.38). Inserting (14.38) in
formula (14.23), we obtain terms of the type ψ̂(+)†+ ψ̂

(+)
+ , ψ̂

(+)†
+ ψ̂

(−)
+ , ψ̂

(−)†
+ ψ̂

(+)
+ ,

ψ̂
(−)†
+ ψ̂

(−)
+ . In the last two we use the anticommutation relation (14.35). Next, we

take the limits f (x)→ 1 and ε → 0 in all the terms except two that are proportional
to the identity operator I . Finally, we apply the identity (14.37), and change the inte-
gration variable (p → −p) in two terms that contain the expression ĉ+(p)ĉ†

+(p).
We obtain

Ĥ [B] =
∫

dp θκ (p − B) (p − B) ĉ†
+(p)ĉ+(p)

+
∫

dp θκ (p + B) (p + B) ĉ+(−p)ĉ†
+(−p)

− f̃ (0)

4π

∫
dp θκ (B − p) (B − p) (eiε(B−p) + eiε(p−B)) I. (14.39)
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The third term is the consequence of using the second relation (14.35). It is singular
in the limit f → 1 because then f̃ (0) → ∫

dx1. This singularity can be called
the infrared one. There is also the singularity at ε = 0 which is of the ultraviolet
type. Therefore, we just omit that term, and define the quantum Hamiltonian of the
right-mover field as the sum of the first two terms in formula (14.39). In the κ → 0
limit

Ĥ+[B] =
∫ ∞

B
dp (p − B) â†

+(p)â+(p)+
∫ ∞

−B
dp (p + B) d̂†

+(p)d̂+(p), (14.40)

where

â+(p) = ĉ+(p) for p ∈ [B,∞), d̂+(p) = ĉ†
+(−p) for p ∈ (−B,∞).

â+(p), d̂+(p) are the annihilation operators for the right-mover particle and anti-
particle, respectively, â†

+(p), d̂†
+(p) are the corresponding creation operators.

Now let us turn to the current Ĵμ+ . Similarly as in the case of the Hamiltonian, our
calculations are restricted to the particular case of external fields (14.32). Starting
from formula (14.24), we would like to obtain an operator that is well-defined in
the Fock space based on the Dirac vacuum. Hence, it should contain, like Ĥ [B],
the normal ordered products â†

+â+, d̂†
+d̂+. To this end we use the decomposition

(14.38), and the relation (ε > 0)

{ψ̂(−)†+ (t, x + ε), ψ̂+(t, x)} = 1

2π

∫
dp θκ (B − p)e−i pε I,

which follows from the anticommutation relation (14.35). The term proportional to
I obtained from the anti-commutator above is omitted. The resulting expression for
the components of the current has the form

Ĵ 0+(t, x) = Ĵ 1+(t, x)

= ψ̂(+)†+ (t, x)ψ̂(+)+ (t, x)+ ψ̂ (+)†+ (t, x)ψ̂(−)+ (t, x)− ψ̂ (+)+ (t, x)ψ̂(−)†+ (t, x)

− ψ̂(−)+ (t, x)ψ̂(−)†+ (t, x). (14.41)

The transition from ĵμ+,ε to Ĵμ+ reminds the normal ordering (and in the limit κ → 0

it coincides with), hence we may write Ĵμ+ = limε→0 : ĵμ+,ε :.
The total charge operator Q̂+ is obtained as the limit f → 1 of the integral

Q̂+[ f ] = ∫ dx f (x) Ĵ 0+(t, x). Simple calculations with the use of identity (14.37)
give

Q̂+ =
∫

dp
[
θκ(p − B) ĉ†

+(p)ĉ+(p)− θκ (B − p) ĉ+(p)ĉ†
+(p)

]
. (14.42)
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In the limit κ → 0, after the change p → −p of the integration variable in the
second term,

Q̂+ =
∫ ∞

B
dp â†

+(p)â+(p)−
∫ ∞

−B
dp d̂†

+(p)d̂+(p). (14.43)

This operator has been calculated in the Heisenberg picture, hence it should be
constant in time if the charge is conserved. Because the field B can vary with time,
one may suspect that this is not the case. Unfortunately, the time derivative of Q̂+
gives the mathematically meaningless (but physically justified, see below) result

˙̂Q+ = −Ḃ
∫

dp θ ′κ(p − B)
(
ĉ†
+(p)ĉ+(p)+ ĉ+(p)ĉ†

+(p)
) = −Ḃδ(0)I.

The last equality is written because of (14.35). Here θ ′κ(q) = dθκ(q)/dq and∫
dq θ ′κ(q) = 1. We have also used the equality

θ ′κ(p − B) = θ ′κ (B − p)

that follows from the identity (14.37).
Let us check instead whether Ĵμ+ obeys the continuity equation. It is convenient

to use here the identities

∂0ψ̂
(±)
+ + (∂1 − i B) ψ̂(±)+

= ∓ Ḃ√
2π

ei
∫ t

0 dt ′B(t ′)
∫ ∞

−∞
dp θ ′κ (±p) ei(B+p)(x−t) ĉ+(B + p).

It turns out that the current (14.41) is not conserved, namely

∂0 Ĵ 0+ + ∂1 Ĵ 1+ = −
Ḃ

2π
I
∫

dp θ ′κ (p) = −
Ḃ

2π
I. (14.44)

This formula is called the anomaly equation.
Let us stress that the non-conservation of the current is the result of the very

construction of the quantum model. In particular, it is not a dynamical effect related
to some peculiar interactions between the particles. To illuminate this point, let us
compare the total charge Q̂+ with the operator q̂+ = limε→0

∫
dx ĵ0+,ε(t, x). Using

formulas (14.24) and (14.33) we obtain q̂+ = ∫
dp ĉ†

+(p)ĉ+(p). This operator
is constant in time, ˙̂q+ = 0, but it has an infinite expectation value in the Dirac
vacuum, and in every normalized state from the Fock space based on that vacuum.
The current ĵ μ+ = limε→0 ĵμ+,ε is conserved, ∂μ ĵ μ+ = 0. Thus, the anomaly is
generated by the normal ordering.

Moreover, let us consider also the difference
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ĵ0+,ε − Ĵ 0+ =
1

4π

∫
dp θκ (B − p)eiε(B−p) I + h.c.

The expression on the r.h.s. is a generalized function of ε, the Fourier transform of
θκ(B − p) (up to a factor). In order to consider the limit ε → 0+, we have to turn it
into an ordinary function of ε. To this end, we regularize it by replacing θκ(B − p)
with eσ pθκ(B − p), where σ > 0. At the end of calculations we shall consider the
limit σ → 0+. Thus, we consider now the ordinary integral

∫ ∞

−∞
dp θκ(B − p)e(σ−iε)p =

∫ B−κ

−∞
dp e(σ−iε)p +

∫ B+κ

B−κ
dp α(B − p)e(σ−iε)p

= e(σ−iε)(B−κ)

σ − iε
+
∫ κ
−κ

dp α(p)e(σ−iε)(B−p).

For σ > 0, this expression is regular function of ε, and we may put ε = 0. Therefore,

( ĵ0
+,ε=0 − Ĵ 0+)

∣∣∣
σ>0

= 1

2π

[
eσ(B−κ)

σ
+
∫ κ
−κ

dp α(p)eσ(B−p)

]
I

=
[

1

2πσ
+ B − κ

2π
+ 1

2π

∫ κ

−κ
dp α(p)+O(σ )

]
I,

where O(σ ) denotes the terms which vanish when σ → 0. The first term is singular
at σ = 0, but it does not depend on B and κ . We see that the time derivative of
ĵ0
+,ε=0 − Ĵ 0+ in the limit σ → 0 is equal to Ḃ I/2π , in agreement with the anomaly

Eq. (14.44).

The correct calculation of ˙̂Q+ should start from ˙̂Q+[ f ]. Using the anomaly equa-
tion we see that

˙̂Q+[ f ] =
∫

dx ∂1 f (x) Ĵ 1+(t, x)− Ḃ

2π
I
∫

dx f (x).

In the limit f → 1 the first term on the r.h.s vanishes, while the second becomes
proportional to the infinite ‘volume’ of the one-dimensional space (

∫
dx/2π cor-

responds to δ(0) in the meaningless formula for ˙̂Q+ shown below (14.43)). This is
in fact expected, because the external field (14.32) is constant in x , and therefore
the model possesses the invariance with respect to the spatial translations. For this
reason, the production rate for the charge density is the same over all the space.

The Hamiltonian and the current in the quantum theory of the left-mover field are
obtained in a completely analogous manner. The decomposition into the positive and
negative energy components reads

ψ̂−(t, x) = ψ̂(+)− (t, x)+ ψ̂(−)− (t, x), (14.45)
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where

ψ̂
(+)
− (t, x) = e−i

∫ t
0 dt ′C(t ′) 1√

2π

∫
dp θκ(C − p) eip(x−t) ĉ−(p),

ψ̂
(−)
− (t, x) = e−i

∫ t
0 dt ′C(t ′) 1√

2π

∫
dp θκ(p − C) eip(x−t) ĉ−(p).

The quantum Hamiltonian has the form

Ĥ−[C] =
∫ C

−∞
dp (C− p) â†

−(p)â−(p)+
∫ −C

−∞
dp (−p−C) d̂†

−(p)d̂−(p), (14.46)

where

â−(p) = ĉ−(p) for p ∈ (−∞,C], d̂−(p) = ĉ†
−(−p) for p ∈ (−∞,−C).

â−(p), d̂−(p) are the annihilation operators for the left-mover particle and anti-
particle, respectively. Note that the momenta of the left-mover particles (anti-
particles) are restricted from above by C (−C). Formula (14.46) has been obtained
from (14.28) in the limits f (x)→ 1, ε → 0, κ → 0, taken after omitting a singular
term proportional to the identity operator I .

The total charge of the left-mover field is given by the formula

Q̂− =
∫ C

−∞
dp â†

−(p)â−(p)−
∫ −C

−∞
dp d̂†

−(p)d̂−(p). (14.47)

As the anomaly equation we obtain

∂0 Ĵ 0− + ∂1 Ĵ 1− =
Ċ

2π
I. (14.48)

The anomaly Eqs. (14.44) and (14.48) have very similar structures. This fact
suggests that one can combine the two models, and the currents, in order to obtain a
conserved current. One possibility of such a cancelation of the anomaly is obtained
by considering the current Ĵμ = Ĵμ+ + Ĵμ− . Then ∂μ Ĵμ = (Ċ − Ḃ)I/2π = 0 if
we assume that B(t) = C(t). The current Ĵμ5 = Ĵμ+ − Ĵμ− remains not conserved,

∂μ Ĵμ5 = −Ḃ I/π . In this case the name ‘axial anomaly’ is used. The corresponding
classical currents jμ, jμ5 , and the condition B(t) = C(t), appear automatically if
we consider the classical Lagrangian

L = (L+ + L−)|B=C =
i

2
[ψγμDμ(A)ψ − (Dμ(A)ψ)γ μψ],

where

Dμ(A)ψ = ∂μψ − i Aμψ, Dμ(A)ψ = ∂μψ + i Aμψ.
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Here we have changed the notation: for clarity the field Bμ = Cμ is denoted as Aμ.
The condition Bμ = Cμ is compatible only with the subset of gauge transformations
(14.18) and (14.19) that is obtained by imposing the condition χ(t, x) = η(t, x).
Such restricted gauge transformations act on the Dirac field ψ as the local U (1)
transformations of the form

ψ ′(t, x) = eiη(t,x) ψ(t, x). (14.49)

The classical counterparts of the currents Ĵμ, Ĵμ5 have the form jμ = ψγμψ (the
vector current), jμ5 = ψγμγ5ψ (the axial vector current). Both classical currents
are conserved in the classical theory because they are the Noether currents corre-
sponding to the global symmetries of the Lagrangian L:

ψ ′(t, x) = eiα ψ(t, x), α ∈ [0, 2π), (14.50)

in the case of the vector current, and

ψ ′(t, x) = eiβγ5 ψ(t, x), β ∈ [0, 2π), (14.51)

for jμ5 .

One can also have as the conserved current Ĵμ5 . In this case we assume that

B(t) = −C(t). Then, the current Ĵμ is not conserved, ∂μ Ĵμ = −Ḃ I/π . The condi-
tion B(t) = −C(t) is automatically satisfied if we consider the classical Lagrangian
L5 = (L+ + L−)|B=−C with the gauge field Bμ(t, x) = −Cμ(t, x) = A5μ(t, x).
This last condition is compatible with the gauge transformations restricted by the
condition η(t, x) = −χ(t, x)—then ψ ′(t, x) = eiη(t,x)γ5 ψ(t, x). The Lagrangian
L5 can be written in the form

L5 = i

2
[ψγμDμ(A5)ψ − (Dμ(A5)ψ)γ

μψ],

where

Dμ(A5)ψ = ∂μψ − i A5μγ5ψ, Dμ(A5)ψ = ∂μψ + i A5μψγ5.

This Lagrangian is also invariant under the global U (1) transformations (14.50) and
(14.51), but only the axial vector current jμ5 = ψγμγ5ψ remains conserved also in
the quantum theory.

In the explicit construction of the quantum theory presented above we have con-
sidered the external gauge fields of the particular form (14.32). It turns out that the
results remain similar if we consider more general gauge fields. Then the r.h.s.’s
of the pertinent anomaly equations have a more general form, e.g., Ḃ is replaced
by εμνFμν/2, where Fμν = ∂μBν − ∂νBμ and εμν is the antisymmetric symbol
(ε01 = +1).
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14.2 Anomalies and the Path Integral

The derivation of the anomalies presented above relies heavily on the operator for-
malism in the quantum field theory. One may be puzzled about the source of anoma-
lies when we use the path integral formulation of the quantum theory. After all, in
the path integral there is the classical action which has the relevant symmetries, and
there are no Hilbert space operators. We address this question in a model which is
akin to the one discussed above, but the fields are now considered in the (3 + 1)-
dimensional Minkowski space-time M . In the present section x denotes points in M .

Let us consider the massless Dirac field interacting with an external, classical,
electromagnetic field Aμ(x), x ∈ M . The classical Lagrangian has the form

L = iψ̄(x) /Dψ(x), (14.52)

where

/D = γ μ (∂μ − i Aμ(x)
) ≡ γ μDμ.

Since γ5 = iγ 0γ 1γ 2γ 3 anticommutes with γ μ, μ = 0, . . . , 3, and consequently

eiαγ5 γ μ = γ μ e−iαγ5 ,

the Lagrangian (14.52) and the action S = ∫ d4x L are invariant under the so called
chiral rotations

ψ(x)→ ψ ′(x) = eiαγ5ψ(x), ψ̄(x)→ ψ̄ ′(x) = ψ̄(x)eiαγ5 , (14.53)

with constant α. Noether’s theorem gives the classical conserved current

jμ5 (x) = ψ̄(x)γ μγ5ψ(x).

Note that under an infinitesimal form of (14.53) with space-time dependent α =
α(x),

ψ ′(x) = (1+iα(x)γ5
)
ψ(x)+O

(
α2
)
, ψ̄ ′(x) = ψ̄(x)(1+iα(x)γ5

)+O
(
α2
)
,

the Lagrangian (14.52) transforms as

L(x)→ L′(x) = L(x)− (ψ̄(x)γ μγ5ψ(x)
)
∂μα(x)+O

(
α2
)
. (14.54)

Indeed

iψ̄ ′(x) /Dψ ′(x) = iψ̄(x) /Dψ(x)− (ψ̄(x)γ μγ5ψ(x)
)
∂μα(x)

− [ψ̄(x)γ μγ5 Dμψ(x)+ ψ̄(x)γ5γ
μDμψ(x)

]
α(x)+O

(
α2
)
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and

ψ̄(x)γ μγ5 Dμψ(x)+ ψ̄(x)γ5γ
μDμψ(x) = ψ̄(x)

{
γ μ, γ5

}
Dμψ(x) = 0.

In order to prove that the current jμ5 is not conserved on the quantum level we
shall consider the so called quantum effective action W [Aμ], defined in the path
integral approach as

eiW [Aμ] =
∫
[dψdψ̄] ei S.

The crucial observation is that the path integral measure [dψdψ̄] is not invariant
under the chiral rotations with α dependent on x .

First, we need to define the measure more precisely. Let φn(x) denote the nor-
malized eigenfunctions and λn the eigenvalues of the operator i /D:

i /Dφn(x) = λnφn(x),
∫

d4x φ†
n(x)φm(x) = δnm .

The completeness relation has the form

∑
n

φn(x)φ
†
n(y) = I4δ(x − y).

We can expand ψ(x) and ψ̄(x) in the basis formed by φn(x), φ
†
n(x) :

ψ(x) =
∑

n

anφn(x), ψ̄(x) =
∑

n

φ†
n(x)ān,

where an and ān are independent Grassmann variables. Then

[dψdψ̄] =
∏
m

∏
n

damdān .

Further, denote by a′n the coefficients of the decomposition of the chirally rotated
spinor ψ ′(x) = ψ(x)+ iα(x)γ5ψ(x) in this basis,

ψ ′(x) =
∑

n

a′nφn(x).

Using the orthogonality relation for the eigenfunctions φn(x) we have:

an =
∫

d4x φ†
n(x)ψ(x)

and
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a′n =
∫

d4x φ†
n(x)ψ

′(x)

=
∫

d4x φ†
n(x)ψ(x)+ i

∫
d4x α(x)φ†

n(x)γ5ψ(x)+O(α2)

= an + i
∫

d4x α(x)φ†
n(x)γ5

(∑
m

amφm(x)

)
+O(α2)

=
(
δnm + i

∫
d4x α(x)φ†

n(x)γ5φm(x)

)
am +O(α2) ≡

∑
m

Cnmam .

Now the path integral measure changes to

∏
m

∏
n

damdān →
∏
m

∏
n

da′mdā′n

and

∏
m

da′m =
(

det Ĉ
)−1∏

m

dam ,

where Ĉ denotes the infinite matrix [cnm]. The inverse determinant appears since
am and a′m are Grassmann variables (see Exercise 11.1).

Let us write Ĉ in the form Ĉ = I + ε̂, where

εnm = i
∫

d4x α(x)φ†
n(x)γ5φm(x).

Using the formula

ln det Ĉ = Tr ln Ĉ = Trε̂ +O(ε̂2)

we have

(det Ĉ)−1 = exp
{
−Tr ln Ĉ

}
= exp(−

∑
n

εnn)
(

1+O(α2)
)

= exp

{
−i
∫

d4x α(x)

(∑
n

φ†
n(x)γ5φn(x)

)}(
1+O(α2)

)
.

(14.55)

Since

B(x) ≡
∑

n

φ†
n(x)γ5φn(x)

= tr

(
γ5

∑
n

φn(x)φ
†
n(x)

)
= trγ5 · δ(0) “=" 0 · ∞,
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where the trace tr is over the bispinor indices, we see that B(x) is not a well defined
quantity. In order to obtain a meaningful expression for B(x) we shall introduce a
Gaussian regulator and define

B(x) = lim
M→∞ lim

x ′→x

∑
n

tr

(
γ5 e

i
(
λn
M

)2

φn(x)φ
†
n(x

′)
)

= lim
M→∞ lim

x ′→x
tr

(
γ5 e

−i /D
2
x

M2
∑

n

φn(x)φ
†
n(x

′)
)

= lim
M→∞ lim

x ′→x
tr

(
γ5 e

−i /D
2
x

M2

)
δ(x − x ′).

Using the representation

δ(x − x ′) =
∫

d4k

(2π)4
e−ik(x−x ′),

we get

B(x) = lim
M→∞ lim

x ′→x

∫
d4k

(2π)4
tr

(
γ5 e

−i /D
2
x

M2

)
e−ik(x−x ′)

= lim
M→∞

∫
d4k

(2π)4
tr

(
γ5 eikxe

−i /D
2
x

M2 e−ikx

)

= lim
M→∞

∫
d4k

(2π)4
tr

(
γ5 exp

{
− i

M2
eikx/D2

x e−ikx
})
.

Now,

/D2 = γ μγ νDμDν = 1

2

({γ μ, γ ν} + [γ μ, γ ν]) DμDν

= ημνDμDν I4 + 1

2
γ μγ ν[Dμ, Dν] = DμDμ I4 − i

2
γ μγ νFμν,

where the identity

[Dμ, Dν] = −i Fμν

has been used. Consequently,

/D2 e−ikx = e−ikx
[
−(k − A)2 − i∂μAμ − e

2
γ μγ νFμν

]
,
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and, changing the integration variable from k to q = 1
M (k − A), we get

B(x) = lim
M→∞

∫
d4k

(2π)4
tr

(
γ5 e

− i
M2

[
−(k−A)2−i∂μAμ− i

2 γ
μγ ν Fμν

])

= lim
M→∞M4

∫
d4q

(2π)4
tr

(
γ5 eiq2

e
− 1

M2

[
∂μAμ+ 1

2 γ
μγ νFμν

])
.

Expanding the exponent in powers of M−2, using the facts that

trγ5 = tr
(
γ5γ

μγ ν
) = 0, tr

(
γ5γ

μγ νγ ργ λ
) = −4iεμνρλ,

and

∫
d4q

(2π)4
eiq2 =

∫

R

dq0

2π
eiq2

0

3∏
j=1

∫

R

dq j

2π
e−iq2

j = i

16π2
,

we get

B(x) = lim
M→∞

i M4

16π2

[
1

2

(
1

2M2

)2

tr
(
γ5γ

μγ νγ ργ λ
)

FμνFρλ +O
(

M−6
)]

= 1

16π2 Fμν F̃μν,

where

F̃μν = 1

2
εμνρλFρλ.

Inserting this back into (14.55), we see that under the infinitesimal chiral transfor-
mation the integration measure changes according to the formula

[dψ ′] = exp

{
− i

16π2

∫
d4x α(x)Fμν(x)F̃

μν(x)

}
[dψ] +O(α2). (14.56)

Since α is real, we get the same formula for the chiral transformation of the measure
[dψ̄].

The chiral rotation can be viewed as a change of integration variables which does
not influence the value of the integral,

∫
[dψdψ̄] ei S[Aμ,ψ,ψ̄] =

∫
[dψ ′dψ̄ ′] ei S[Aμ,ψ ′,ψ̄ ′].
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Neglecting the terms of the order α2 we get with the help of (14.54) and (14.56) the
identity

0 =
∫
[dψ ′dψ̄ ′] ei S[Aμ,ψ ′,ψ̄ ′] −

∫
[dψdψ̄] ei S[Aμ,ψ,ψ̄]

= −i
∫
[dψdψ̄] ei S[Aμ,ψ,ψ̄]

∫
d4x

(
1

8π2α(x)Fμν F̃μν + ψ̄γ μγ5ψ∂μα(x)

)

= −i
∫
[dψdψ̄] ei S[Aμ,ψ,ψ̄]

∫
d4x α(x)

(
1

8π2
Fμν F̃μν − ∂μ(ψ̄γ μγ5ψ)

)
.

The vacuum expectation value of the quantum chiral current is given by

〈 Ĵμ5 (x)〉 = N−1
∫
[dψdψ̄] ei S[Aμ,ψ,ψ̄] ψ̄(x)γ μγ5ψ(x),

where N = ∫[dψdψ̄] ei S . Because α(x) is arbitrary, the identity obtained above
implies the axial anomaly equation of the form

∂μ〈 Ĵμ5 (x)〉 =
1

8π2
Fμν(x)F̃

μν(x). (14.57)

Let us end this section with a comment. Suppose that φn(x) is an eigenfunction
of the Hermitian operator i /D with a non-zero eigenvalue λn,

i /Dφn(x) = λnφn(x).

Since

{γ5, /D} = 0

the function γ5φn(x) is an eigenfunction of /D with an eigenvalue −λn. Eigenfunc-
tions corresponding to different eigenvalues are orthogonal, therefore

∫
d4x φ†

n(x)γ5e
i (i /D)

2

M2 φn(x) = e
i λ

2
n

M2

∫
d4x φ†

n(x)γ5φn(x) = 0.

This implies that for a constant parameter of the chiral rotation α, only the functions
φn(x) corresponding to the zero eigenvalues—the so called zero modes of the Dirac
operator i /D—contribute to the chiral variation of the path integral measure. Denote
these eigenfunctions as φ(0)i (x), i = 1, 2, . . . , n0. Since also γ5φ

(0)
i (x) is a zero

mode of i /D and γ5 is Hermitian, we can split the set of zero modes into mutually
orthogonal subsets of eigenfunctions of γ5 with the eigenvalues+1 and−1, denoted
by φ(0)i,+(x), i = 1, 2, . . . , ν+ and φ(0)i,−(x), i = 1, 2, . . . , ν−, correspondingly,
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γ5φ
(0)
i,±(x) = ±φ(0)i,±(x).

With this notation

∫
d4x B(x) =

∫
d4x

n0∑
i=1

φ
(0)
i (x)

†γ5φ
(0)
i

=
ν+∑

i=1

∫
d4x φ(0)i,+(x)

†γ5φ
(0)
i,+ +

ν−∑
i=1

∫
d4x φ(0)i,−(x)

†γ5φ
(0)
i,− = ν+ − ν−.

The quantity

ν+ − ν− ≡ ind(i /D+)

is called the index of the projected Dirac operator /D+ = /D(1 + γ5)/2. From the
calculations above we see that the index determines the chiral anomaly.

Exercises

14.1 The Lorentz group in (1+1)-dimensional space-time consists of real, two
by two matrices (Lμν), where L0

0 = L1
1 = cosh u, L1

0 = L0
1 = sinh u.

The parameter u (rapidity) can have an arbitrary real value. The corresponding
transformation law for the Dirac field has the form ψ ′(x ′) = S(L)ψ(x), where
x ′ = Lx , and the matrix S(L) obeys the conditions S(L1)S(L2) = S(L1L2),
S−1(L)γ μS(L) = Lμνγ ν .
(a) Check that

S(L) =
(

e
u
2 0

0 e− u
2

)
.

(b) Check that the Lagrangians L± (given by formulas (14.10) and (14.12)), as well
as γ5, are invariant with respect to the Lorentz transformations.

14.2 Derive formula (14.26).
Hints: Instead of Ĵ 0+(t, x) we may insert ĵ0+,ε(t, x) given by formula (14.24),
because the two charge densities differ from each other by a term proportional to
the identity operator I . Next, introduce the operators

U (s) = exp
(
is
∫

dx ′ χ(x ′) ĵ0+,ε(t, x ′)
)
, ψ̂s(t, x) = U−1(s)ψ̂+(t, x)U (s),

where s is a real parameter. Using the anticommutation relations (14.20) obtain in
the limit ε → 0 the equation
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dψ̂s(t, x)

ds
= iχ(x)ψ̂s(t, x).

Find its solution such that ψ̂s(t, x)|s=0 = ψ̂+(t, x) and put s = 1.

14.3 Derive the anomaly Eq. (14.48) for the left-mover current.

14.4 Check that the quantum effective action W [Aμ] is not invariant under the
gauge transformations Aμ(x)→ Aμ(x)+ ∂μα(x).
Hint: Consider δW [Aμ + ∂α]/δα(x).



Appendix A
Some Facts About Generalized Functions

We recall here some basic facts and formulas from the theory of generalized func-
tions. There are many mathematical textbooks on this subject. Physicists may find
useful concise texts, for example Chaps. 2÷4 in [12], or Chaps. 2÷3 in [11]. Com-
prehensive introduction to the subject can be found in [2].

The generalized functions that appear in field theory are of the so called Schwartz
class, denoted as S′(Rn) or S∗(Rn). The reason is that all such generalized functions
have a Fourier transform. The generalized function of the Schwartz class1 (g. f.) is,
by definition, a linear and continuous functional on the Schwartz space of functions,
denoted as S(Rn). Elements of S(Rn) are called test functions. They are complex
valued functions on Rn of the C∞ class. Moreover, it is assumed that such functions,
and all their derivatives, vanish in the limit |x | = √(x1)2 + (x2)2 + . . .+ (xn)2 →
∞, also when multiplied by any finite order polynomial in the variables x1, . . . , xn .
Here x denotes arbitrary point in Rn and x1, . . . , xn are its Cartesian coordinates.
The space S(Rn) is endowed with a topology, but we shall not describe it here.
Examples of test functions from the space S(R1) include e−ax2

and 1/ cosh(ax),
where a > 0 is a real constant. On the other hand, (1 + x2)−1 is not test function
from S(R1).

The value of a generalized function F ∈ S∗(Rn) on a test function f ∈ S(Rn) is
denoted in mathematical literature as 〈F(x), f (x)〉, but in physics the most popular
is the misleading notation

∫
dn x F(x) f (x), e.g.,

∫
dn x δ(x) f (x) in the case of the

Dirac delta. One should keep in mind that the integral here is merely a symbol that
replaces 〈 ,〉 from the mathematical notation—it is not the true integral. It may hap-
pen however, that a generalized function is represented by an ordinary function F(x)
such that the true integral

∫
dn x F(x) f (x) exists for all f ∈ S(Rn). Such F is called

regular g.f. For example, the step function �(x), x ∈ R1, is a regular generalized
function from S∗(R1), because the integral

∫∞
−∞dx�(x) f (x) = ∫∞0 dx f (x) exists

for every f ∈ S(R1). We show the integration range when we deal with the true
integral. The Dirac delta δ(x) is the prominent example of non regular g.f. In the
mathematical notation its definition has the form 〈δ(x), f (x)〉 = f (0).

1 Other names are also used: distribution for generalized function, and tempered distribution for
generalized functions of the Schwartz class.

H. Arodź, L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
DOI 10.1007/978-3-642-15624-3, C© Springer-Verlag Berlin Heidelberg 2010
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The derivative ∂i F of a g.f. F is defined as follows:

∫
dn x ∂i F(x) f (x) = −

∫
dn x F(x)∂i f (x)

for all test functions f . One should remember that this is the definition, and not the
formula of integration by parts. For example,

∫
dx

d�(x)

dx
f (x) = −

∫ ∞

−∞
dx �(x)

d f (x)

dx
= −

∫ ∞

0
dx

d f (x)

dx
= f (0),

hence �′(x) = δ(x). Derivative of g.f. always exists and is a generalized function.
The Fourier transform f̃ (k) = (2π)n/2 ∫Rn dn x exp(ikx) f (x) of a test function

f also is a test function from the space S(Rn). The g.f. F̃(x) ∈ S∗(Rn) such that
for every f ∈ S(Rn)

∫
dn x F̃(x) f (x) =

∫
dnk F(k) f̃ (k),

is called the Fourier transform of the g.f. F . It exists for any F ∈ S∗(Rn). The oper-
ation of taking the Fourier transform is continuous with respect to F . This property
is used in order to facilitate computation of the Fourier transform of �(x)—we
first compute the Fourier transform of e−εx�(x), where ε > 0, and take the limit
ε→ 0+ at the end.2 Thus,

∫
dx �̃(x) f (x) = lim

ε→0+

∫ ∞

−∞
dke−εk�(k) f̃ (k)

= lim
ε→0+

1√
2π

∫ ∞

0
dk
∫ ∞

−∞
dx eikx−εk f (x) = lim

ε→0+

i√
2π

∫ ∞

−∞
dx

1

x + iε
f (x).

The r.h.s. of this formula defines the g.f. denoted as i√
2π

1
x+i0+ . Therefore,

�̃(x) = i√
2π

1

x + i0+
.

Note that the g.f. 1
x+iε is regular if ε > 0.

One can prove that

1

x + i0+
= P

1

x
− iπδ(x),

where the principal value distribution P 1
x is defined as

2 The notation ε→ 0+ means that ε = 0 is approached from the side ε > 0.
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∫
dx P

1

x
f (x) = lim

ε→0+

(∫ −ε

−∞
dx

f (x)

x
+
∫ ∞

ε

dx
f (x)

x

)

(it is not regular). The result for �̃(x) obtained above is often written in the form

∫ ∞

0
dp eipx = i P

1

x
+ πδ(x).

The form of a generalized function can be probed only with test functions.
Because there is no test function with support consisting of just a single-point, it
is not possible to tell what is the value of g.f. at a given point. One can however
check whether a g.f., say F(x), is constant in a vicinity Vx0 of a point x0 ∈ Rn — it
is sufficient to show that all the first derivatives of F(x) vanish in that vicinity, i.e.,
that

∫
∂i F(x) f (x) = 0

for every test function that has its support in Vx0 ⊂ Rn . For example, for δ(x) ∈
S∗(R1) one may say that δ(x) = 0 on every interval (a, b) that does not contain 0,
and that δ(x) �= 0 at x = 0, but not that δ(1) = 0.

A consequence of the lack of definite value at a single point is that there is
no general definition of product of generalized functions. We know the gener-
alized functions F1(x) ∈ S∗(Rn), F2(x) ∈ S∗(Rn) if we know the values of∫

dn x F1(x) f (x),
∫

dn x F2(x) f (x) for every f ∈ S(Rn). It is not possible to
infer from this what values should have

∫
dn x F1(x)F2(x) f (x). Only in some

special cases, e.g., for certain regular generalized functions, such product can be
defined. In particular, there is no problem with multiplication by an ordinary func-
tion ψ(x), provided that ψ(x) f (x) ∈ S(Rn) for every f ∈ S(Rn). Then, the prod-
uct ψ(x)F(x) is the g.f. defined by the formula

∫
dn x (ψ(x)F(x)) f (x) =

∫
dn x F(x) (ψ(x) f (x)).

For example, if k is a fixed real number, eikxδ(x) is a generalized function, while
xaδ(x) with non integer constant a > 0 is not (not all functions xa f (x) belong to
S(R1) because of the problem with derivatives at x = 0).

On the other hand, there is no difficulty with a product of generalized functions
with different arguments. If F(x) ∈ S∗(Rn) and G(y) ∈ S∗(Rm), then we know∫

dn x F(x) f (x) and
∫

dm y G(y)g(y) for all f ∈ S(Rn), g ∈ S(Rm). The general-
ized function H(x, y) = F(x)G(y) ∈ S∗(Rn+m) is defined by its action on the test
functions h(x, y) ∈ S(Rn+m) of the form h(x, y) = f (x)g(y), namely

∫
dn xdm y H(x, y)h(x, y) =

∫
dn x F(x) f (x)

∫
dm y G(y)g(y).
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Such factorized test functions f (x)g(y) form a subset of S(Rn+m) that is
sufficiently large to uniquely determine H(x, y) on the whole space S(Rn+m). An
example: if x, y ∈ R1 are independent variables, then δ(x)δ(y) ∈ S∗(R2).

Finally, let us consider the question whether

∫
dx δ(x)

?=
∫ ∞

0
dx δ(x)+

∫ 0

−∞
dx δ(x),

or, in a more meaningful form, whether

δ(x) = 1δ(x) = (�(x)+�(−x))δ(x)
?= �(x)δ(x)+�(−x)δ(x).

The answer is that such a formula is wrong, because the products �(x)δ(x),
�(−x)δ(x) are not defined. The way to correct the splitting consists in replacing
�(±x) with two smooth functions θ1(x), θ2(x) that obey the condition θ1(x) +
θ2(x) = 1, and resemble �(x),�(−x), respectively. Moreover, these functions
should be such that θi (x) f (x) ∈ S(R1), i = 1, 2, for every f ∈ S(R1). Then we
may safely write

F(x) = θ1(x)F(x)+ θ2(x)F(x)

for any F(x) ∈ S∗(R1).
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Retarded Green’s function, 14
Right-mover field, 322
Running coupling constant, 212

S
Scalar electrodynamics, 70
Sinus-Gordon

antisoliton, 6
equation, 3
soliton, 6

SL(2,C) group, 92
Slavnov–Taylor identity, 292
Spectral decomposition for G(2), 245
Spin(4) group, 92
Spontaneous symmetry breaking, 43
Stationary action principle, 22
SU (N ) group, 72
Subtraction point, 193
Superficial degree of divergence, 186
Superfield, 305
Superrenormalizable model, 187
Superspace, 305
Supersymmetry algebra, 295
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Symmetric subtraction point, 194
Symmetry of quantum systems, 228
Symmetry transformation

classical, 25
quantum, 235

T
Topological charge, 59
Tree graphs, 182

U
U (1) group, 50
U (N ) group, 71

V
Vacuum bubbles, 175
Vacuum state, 122
Vector field, 63
Vortex, 57

W
Wess–Zumino model, 312
Weyl fields, 97
Weyl spinors, 100
Wick formula, 162
Wick rotation, 192
winding number, 56

Y
Yang–Mills equation, 76
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