
Stochastic Mechanics 

Random Media 

Signal Processing 

and Image Synthesis 

Mathematical Economics and Finance 

Stochastic Optimization 

Stochastic Control 

Applications of 
Mathematics 
Stochastic Modelling 
and Applied Probability 

6 
Edited by I. Karatzas 

M. Yor 

Advisory Board P. Bremaud 
E. Carlen 
W. Fleming 
D. Geman 
G. Grimmett 
G. Papanicolaou 
J. Scheinkman 

Springer-Verlag Berlin Heidelberg GmbH 



Applications of Mathematics 

Fleming/Rishel, Deterministic and Stochastic Optimal Control ( 197 5) 
2 Marchuk, Methods of Numerical Mathematics (1975, 2nd. ed. 1982) 
3 Balakrishnan, Applied Functional Analysis (1976, 2nd. ed. 1981) 
4 Borovkov, Stochastic Processes in Queueing Theory (1976) 
5 Liptser/Shiryaev, Statistics of Random Processes I: General Theory 

(1977, 2nd. ed. 2001) 
6 Liptser/Shiryaev, Statistics of Random Processes II: Applications 

(1978,2nd.ed.2001) 
7 V orob' ev, Game Theory: Lectures for Economists and Systems Scientists ( 1977) 
8 Shiryaev, Optimal Stopping Rules ( 1978) 
9 Ibragimov/Rozanov, Gaussian Random Processes (1978) 

10 Wonham, Linear Multivariable Control: A Geometric Approach 
(1974,3rd.ed. 1985) 

II Hida, Brownian Motion (1980) 
12 Hestenes, Conjugate Direction Methods in Optimization (1980) 
13 Kallianpur, Stochastic Filtering Theory (1980) 
14 Krylov, Controlled Diffusion Processes (1980) 
15 Prabhu, Stochastic Storage Processes: Queues, Insurance Risk, and Dams ( 1980) 
16 Ibragimov/Has'minskii, Statistical Estimation: Asymptotic Theory (1981) 
17 Cesari, Optimization: Theory and Applications (1982) 
18 Elliott, Stochastic Calculus and Applications (1982) 
19 Marchuk/Shaidourov, Difference Methods and Their Extrapolations (1983) 
20 Hi jab, Stabilization of Control Systems ( 1986) 
21 Protter, Stochastic Integration and Differential Equations (1990) 
22 Benveniste/Metivier/Priouret, Adaptive Algorithms and Stochastic 

Approximations (1990) 
23 Kloeden/Platen, Numerical Solution of Stochastic Differential Equations 

(1992, corr. 3rd. printing 1999) 
24 Kushner/Dupuis, Numerical Methods for Stochastic Control Problems 

in Continuous Time (1992) 
25 Fleming/Soner, Controlled Markov Processes and Viscosity Solutions ( 1993) 
26 Baccelli/Bremaud, Elements of Queueing Theory ( 1994) 
27 Winkler, Image Analysis, Random Fields and Dynamic Monte Carlo Methods 

(1995) 
28 Kalpazidou, Cycle Representations of Markov Processes (1995) 
29 Elliott/ Aggoun/Moore, Hidden Markov Models: Estimation and Control {1995) 
30 Hernandez-Lerma/Lasserre, Discrete-Time Markov Control Processes ( 1995) 
31 Devroye/Gyorfi/Lugosi, A Probabilistic Theory of Pattern Recognition {1996) 
32 Maitra/Sudderth, Discrete Gambling and Stochastic Games (1996) 
33 Embrechts/Kliippelberg/Mikosch, Modelling Extremal Events for Insurance 

and Finance (1997, corr. 2nd printing 1999) 
34 Duflo, Random Iterative Models ( 1997) 
35 Kushner/Yin, Stochastic Approximation Algorithms and Applications (1997) 
36 M usiela/Rutkowski, Martingale Methods in Financial Modelling ( 1997) 
37 Yin, Continuous-Time Markov Chains and Applications (1998) 
38 Dembo/Zeitouni, Large Deviations Techniques and Applications (1998) 
39 Karatzas, Methods of Mathematical Finance (1998) 
40 Fayolle/Iasnogorodski/Malyshev, Random Walks in the Quarter-Plane ( 1999) 
41 Aves/Jensen, Stochastic Models in Reliability (1999) 
42 Hernandez-Lerma/Lasserre, Further Topics on Discrete-Time Markov Control 

Processes ( 1999) 
43 Yong/Zhon, Stochastic Controls. Hamiltonian Systems and HJB Equations ( 1999) 
44 Serfozo, Introduction to Stochastic Networks (1999) 
45 Steele, Invitation to Stochastic Calculus (2000) 



Robert S. Liptser Albert N. Shiryaev 

Statistics of 
Random Processes 
II. Applications 

Translated by A. B. Aries 
Translation Editor: Stephen S. Wilson 

Second, Revised and Expanded Edition 

Springer 



Authors 

Robert S. Liptser 

Tel Aviv University 
Department of 
Electrical Engineering Systems 
Ramat Aviv, P.O. Box 39040 
69978 Tel Aviv, Israel 
e-mail: liptser@eng.tau.ac.il 

Translation Editor 

Stephen S. Wilson 

31 Harp Hill 

Albert N. Shiryaev 

Steklov Mathematical Institute, 
Russian Academy of Sciences 
Gubkina 8, 117966 Moscow, Russia 
e-mail: shiryaev@ genesis.mi.ras.ru 

Cheltenham, Gloucestershire, GL52 6PY, United Kingdom 
e-mail: techtrans@cwcom.net 

Managing Editors 

I. Karatzas 
Departments of Mathematics 
and Statistics 
Columbia University 
New York, NY 10027, USA 

M.Yor 
CNRS, Laboratoire de Probabilites 
Universite Pierre et Marie Curie 
4 Place Jussieu, Tour 56 
F-75230 Paris Cedex os, France 

Mathematics Subject Classification (2ooo): 
6oGxx, 6oHxx, 6oJxx, 62Lxx, 62Mxx, 62Nxx, 93Exx, 94A05 

Title of the Russian Original Edition: Statistika slucha!nykh protsessov. 
Nauka, Moscow, 1974 
Cover pattern by courtesy of Rick Durrett (Cornell University, Ithaca) 

Library of Congress Cataloging-in-Publication Data 
Liptser, R. Sh. (Robert Shevilevich) [Statistika sluchainykh protsessov. English] Statistics of random 
processes I Robert Liptser, Albert N. Shiryaev; translated by A. B. Aries; translation editor, Stephen 
S. Wilson.- 2nd, rev. and expanded ed. p. em.- (Applications of mathematics, ISSN 0172-4568; 5-6) 
Includes bibliographical references and indexes. Contents: 1. General theory- 2. Applications. 
ISBN 978-3-642-08365-5 ISBN 978-3-662-10028-8 (eBook) 
DOI 10.1007/978-3-662-10028-8 
1. Stochastic processes. 2. Mathematical statistics. I. Shiriaev, Al'bert Nikolaevich. II. Title 
III. Series QA274.L5713 2ooo 519.2'3-dc21 

ISSN 0172-4568 
ISBN 978-3-642-08365-5 
This work is subject to copyright. All rights are reserved, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
re~itation, broadcasting, reproduction on microfilm or in any other way, and storage in 
data banks. Duplication of this publication or parts thereof is permitted only under the 
provisions of the German Copyright Law of September 9, 1965, in its current version, and 
permission for use must always be obtained from Springer-Verlag Berlin Heidelberg GmbH. 
Violations are liable for prosecution under the German Copyright Law. 

© Springer-Verlag Berlin Heidelberg 2001 
Originally published by Springer-Verlag Berlin Heidelberg New York in 2001 
Softcover reprint of the hardcover 1st edition 2001 

Printed on acid- free paper SPIN: 10640137 41/3142CK - 5 4 3 2 1 o 



Preface to the Second Edition 

At the end of 1960s and the beginning of 1970s, when the Russian version 
of this book was written, the 'general theory of random processes' did not 
operate widely with such notions as semimartingale, stochastic integral with 
respect to semimartingale, the Ito formula for semimartingales, etc. At that 
time in stochastic calculus (theory of martingales), the main object was the 
square integrable martingale. In a short time, this theory was applied to such 
areas as nonlinear filtering, optimal stochastic control, statistics for diffusion­
type processes. 

In the first edition of these volumes, the stochastic calculus, based on 
square integrable martingale theory, was presented in detail with the proof of 
the Doob-Meyer decomposition for submartingales and the description of a 
structure for stochastic integrals. In the first volume ('General Theory') these 
results were used for a presentation of further important facts such as the 
Girsanov theorem and its generalizations, theorems on the innovation pro­
cesses, structure of the densities (Radon-Nikodym derivatives) for absolutely 
continuous measures being distributions of diffusion and ItO-type processes, 
and existence theorems for weak and strong solutions of stochastic differential 
equations. 

All the results and facts mentioned above have played a key role in 
the derivation of 'general equations' for nonlinear filtering, prediction, and 
smoothing of random processes. 

The second volume ('Applications') begins with the consideration of the 
so-called conditionally Gaussian model which is a natural 'nonlinear' exten­
sion of the Kalman-Bucy scheme. The conditionally Gaussian distribution of 
an unobservable signal, given observation, has permitted nonlinear filtering 
equations to be obtained, similar to the linear ones defined by the Kalman­
Bucy filter. Parallel to the explicit filtering implementation this result has be­
ing applied in many cases: to establish the 'separation principle' in the LQG 
(linear model, quadratic cost functional, Gaussian noise) stochastic control 
problem, in some coding problems, and to estimate unknown parameters of 
random processes. 

The square integrable martingales, involved in the above-mentioned mod­
els, were assumed to be continuous. The first English edition contained two 
additional chapters (18 and 19) dealing with point (counting) processes which 
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are the simplest discontinuous ones. The martingale techniques, based on the 
Doob-Meyer decomposition, permitted, in this case as well, the investigation 
of the str~cture of discontinuous local martingales, to find the corresponding 
version of Girsanov's theorem, and to derive nonlinear stochastic filtering 
equations for discontinuous observations. 

Over the long period of time since the publication of the Russian (1974) 
and English (1977, 1978) versions, the monograph 'Statistics of Random 
Processes' has remained a frequently cited text in the connection with the 
stochastic calculus for square integrable martingales and point processes, non­
linear filtering, and statistics of random processes. For this reason, the authors 
decided not to change the main material of the first volume. In the second 
volume ('Applications'), two subsections 14.6 and 16.5 and a new Chapter 20 
have being added. In Subsections 14.6 and 16.5, we analyze the Kalman-Bucy 
filter under wrong initial conditions for cases of discrete and continuous time, 
respectively. In Chapter 20, we study an asymptotic optimality for linear and 
nonlinear filters, corresponding to filtering models presented in Chapters 8-
11, when in reality filtering schemes are different from the above-mentioned 
but can be approximated by them in some sense. 

Below we give a list of books, published after the first English edition and 
related to its content: 

- Anulova, A., Veretennikov, A., Krylov, N., Liptser, R. and Shiryaev, A. (1998) 
Stochastic Calculus [4] 

- Elliott, R. (1982) Stochastic Calculus and Applications [59] 
- Elliott, R.J., Aggoun, L. and Moore, J.B. (1995) Hidden Markov Models [60] 
- Dellacherie, C. and Meyer, P.A. (1980) Probabilites et Potentiel. Theorie des 

Martingales [51] 
- Jacod, J. (1979) Calcul Stochastique et Problemes des Martingales [104] 
- Jacod, J. and Shiryaev, A.N. (1987) Limit Theorems for Stochastic Processes 

[106] 
- Kallianpur, G. (1980) Stochastic Filtering Theory [135] 
- Karatzas, I. and Shreve, S.E. (1991) Brownian Motion and Stochastic Calculus 

[142] 
- Krylov, N.V. (1980) Controlled Diffusion Processes [164] 
- Liptser, R.S. and Shiryaev, A.N. (1986, 1989) Theory of Martingales [214] 
- Meyer, P.A. (1989) A short presentation of stochastic calculus [230] 
- Metivier, M. and Pellaumail, J. (1980) Stochastic Integration [228] 
- 0ksendal, B. (1985, 1998) Stochastic Differential Equations [250] 
- Protter, P. (1990) Stochastic Integration and Differential Equations. A New Ap-

proach [257] 
- Revuz, D. and Yor, M. (1994) Continuous Martingales and Brownian Motion 

[261] 
- Rogers, C. and Williams, D. (1987) Diffusions, Markov Processes and Martin-

gales: Ito Calculus [262] 
- Shiryaev, A.N. (1978) Optimal Stopping Rules [286] 
- Williams, D. (ed) (1981) Proc. Durham Symposium on Stochastic Integrals [308] 
- Shiryaev, A.N. (1999) Essentials of Stochastic Finance [288]. 

The topics gathered in these books are named 'general theory of random 
processes', 'theory of martingales', 'stochastic calculus', applications of the 
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stochastic calculus, etc. It is important to emphasize that substantial progress 
in developing this theory was implied by the understanding of the fact that 
it is necessary to add to the Kolmogorov probability space ( !1, :F, P) the 
increasing family (filtration) of a-algebras (:Ft)t>o, where Ft can be inter­
preted as the set of events observed up to timet~ A new filtered probability 
space (!1, :F, (:Ft)t~o, P) is named the stochastic basis. The introduction of 
the stochastic basis has provided such notions as: 'to be adapted (optional, 
predictable) to filtration', semimartingale, and others. It is very natural that 
the old terminology also has changed for many cases. For example, the no­
tion of the natuml process, introduced by P.A. Meyer for the description 
of the Doob-Meyer decomposition, was changed to predictable process. The 
importance of the notion of 'local martingale', introduced by K. Ito and S. 
Watanabe, was also realized. 

In this publication, we have modernized the terminology as much as pos­
sible. The corresponding comments and indications of useful references and 
known results are given at the end of every chapter headed by 'Notes and 
References. 2'. 

The authors are grateful to Dr. Stephen Wilson for the preparation of the 
Second Edition for publication. Our thanks are due to the member of the 
staff of the Mathematics Editorial of Springer-Verlag for their help during 
the preparation of this edition. 



Table of Contents 

Preface to the Second Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V 

11. Conditionally Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . 1 
11.1 Assumptions and Formulation of the Theorem of Conditional 

Gaussian Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
11.2 Auxiliary Lemmas...................................... 3 
11.3 Proof of the Theorem of Conditional Gaussian Behavior..... 9 

12. Optimal Nonlinear Filtering: Interpolation and Extrapola­
tion of Components of Conditionally Gaussian Processes . 17 
12.1 Optimal Filtering Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
12.2 Uniqueness of Solutions of Filtering Equations: Equivalence 

of a-Algebras Ftt; and Ftt;o,W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
12.3 Optimal Filtering Equations in Several Dimensions . . . . . . . . . 32 
12.4 Interpolation of Conditionally Gaussian Processes . . . . . . . . . . 38 
12.5 Optimal Extrapolation Equations. . . . . . . . . . . . . . . . . . . . . . . . . 49 

13. Conditionally Gaussian Sequences: Filtering and Related 
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 
13.1 Theorem on Normal Correlation.......................... 55 
13.2 Recursive Filtering Equations for Conditionally 

Gaussian Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 
13.3 Forward and Backward Interpolation Equations . . . . . . . . . . . . 77 
13.4 Recursive Equations of Optimal Extrapolation . . . . . . . . . . . . . 88 
13.5 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 

14. Application of Filtering Equations to Problems of Statistics 
of Random Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 
14.1 Optimal Linear Filtering of Stationary Sequences 

with Rational Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 
14.2 Maximum Likelihood Estimates for Coefficients 

of Linear Regression .................................... 107 
14.3 A Control Problem with Incomplete Data (Linear System 

with Quadratic Performance Index) ....................... 113 



X Table of Contents 

14.4 Asymptotic Properties of the Optimal Linear Filter ......... 121 
14.5 Recursive Computation of the Best Approximate Solutions 

(Pseudo-solutions) of Linear Algebraic Systems ............. 132 
14.6 Kalman Filter under Wrong Initial Conditions ............. 138 

15. Linear Estimation of Random Processes .................. 145 
15.1 Wide-Sense Wiener Processes ............................ 145 
15.2 Optimal Linear Filtering for some Classes of Nonstationary 

Processes .............................................. 157 
15.3 Linear Estimation of Wide-Sense Stationary Random Pro-

cesses with Rational Spectra ............................. 161 
15.4 Comparison of Optimal Linear and Nonlinear Estimates ..... 170 

16. Application of Optimal Nonlinear Filtering Equations to 
some Problems in Control Theory and Estimation Theory 177 
16.1 An Optimal Control Problem Using Incomplete Data ....... 177 
16.2 Asymptotic Properties of Kalman-Bucy Filters ............. 184 
16.3 Computation of Mutual Information and Channel Capacity 

of a Gaussian Channel with Feedback ..................... 190 
16.4 Optimal Coding and Decoding for Transmission of a Gaussian 

Signal Through a Channel with Noiseless Feedback ......... 195 
16.5 Asymptotic Properties of the Linear Filter under Wrong 

Initial Conditions ....................................... 214 

17. Parameter Estimation and Testing of Statistical Hypotheses 
for Diffusion-Type Processes .............................. 219 
17.1 Maximum Likelihood Method for Coefficients 

of Linear Regression .................................... 219 
17.2 Parameter Estimation of the Drift Coefficient 

for Diffusion-Type Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 
17.3 Parameter Estimation of the Drift Coefficient 

for a One-Dimensional Gaussian Process .................. 230 
17.4 Two-Dimensional Gaussian Markov Processes: 

Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 
17.5 Sequential Maximum Likelihood Estimates ................ 244 
17.6 Sequential Testing of Two Simple Hypotheses 

for Ito Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 
17.7 Some Applications to Stochastic Approximation ............ 256 

18. Random Point Processes: Stieltjes Stochastic Integrals .... 261 
18.1 Point Processes and their Compensators ................... 261 
18.2 Minimal Representation of a Point Process: Processes of the 

Poisson Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 
18.3 Construction of Point Processes with Given Compensators: 

Theorems on Existence and Uniqueness ................... 277 



Table of Contents XI 

18.4 Stieltjes Stochastic Integrals ............................. 286 
18.5 The Structure of Point Processes with Deterministic 

and Continuous Compensators . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 

19. The Structure of Local Martingales, Absolute Continuity 
of Measures for Point Processes, and Filtering ............ 309 
19.1 The Structure of Local Martingales ....................... 309 
19.2 Nonnegative Supermartingale: Analog of Girsanov's Theorem 315 
19.3 Optimal Filtering from the Observations of Point Processes .. 325 
19.4 The Necessary and Sufficient Conditions for Absolute Conti-

nuity of the Measures Corresponding to Point Processes . . . . . 336 
19.5 Calculation of the Mutual Information and the Cramer-Rao-

Wolfowitz Inequality (the Point Observations) .............. 345 

20. Asymptotically Optimal Filtering ......................... 355 
20.1 Total Variation Norm Convergence and Filtering ........... 355 
20.2 Robust Diffusion Approximation for Filtering .............. 371 

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 

Index ......................................................... 399 



Table of Contents of Volume 5 

Preface to the Second Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V 

Introduction.................................................. 1 

1. Essentials of Probability Theory and Mathematical 
Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
1.1 Main Concepts of Probability Theory . . . . . . . . . . . . . . . . . . . . . 11 
1.2 Random Processes: Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . 20 
1.3 Markov Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
1.4 Brownian Motion Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
1.5 Some Notions from Mathematical Statistics................ 34 

2. Martingales and Related Processes: Discrete Time. . . . . . . . 39 
2.1 Supermartingales and Submartingales on a Finite Time Interval 39 
2.2 Submartingales on an Infinite Time Interval, 

and the Theorem of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 45 
2.3 Regular Martingales: Levy's Theorem . . . . . . . . . . . . . . . . . . . . . 47 
2.4 Invariance of the Supermartingale Property for Markov Times: 

Riesz and Doob Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

3. Martingales and Related Processes: Continuous Time .... 57 
3.1 Right Continuous Supermartingales....................... 57 
3.2 Basic Inequalities, the Theorem of Convergence, and Invari-

ance of the Supermartingale Property for Markov Times. . . . . 60 
3.3 Doob-Meyer Decomposition for Supermartingales . . . . . . . . . . 64 
3.4 Some Properties of Predictable Increasing Processes . . . . . . . . 74 

4. The Wiener Process, the Stochastic Integral over the Wiener 
Process, and Stochastic Differential Equations . . . . . . . . . . . . 85 
4.1 The Wiener Process as a Square Integrable Martingale . . . . . . 85 
4.2 Stochastic Integrals: Ito Processes . . . . . . . . . . . . . . . . . . . . . . . . 92 
4.3 Ito's Formula .......................................... 123 
4.4 Strong and Weak Solutions of Stochastic Differential Equations132 



XIV Table of Contents of Volume 5 

5. Square Integrable Martingales and Structure 
of the Functionals on a Wiener Process ................... 161 
5.1 Doob-Meyer Decomposition for Square Integrable Martingales 161 
5.2 Representation of Square Integrable Martingales ............ 170 
5.3 The Structure of Functionals of a Wiener Process ........... 174 
5.4 Stochastic Integrals over Square Integrable Martingales ...... 182 
5.5 Integral Representations of the Martingales which are Con-

ditional Expectations and the Fubini Theorem for Stochastic 
Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 

5.6 The Structure of Functionals of Processes 
of the Diffusion Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 

6. Nonnegative Supermartingales and Martingales, 
and the Girsanov Theorem ............................... 219 
6.1 Nonnegative Supermartingales ........................... 219 
6.2 Nonnegative Martingales ................................ 228 
6.3 The Girshanov Theorem and its Generalization ............ 238 

7. Absolute Continuity of Measures corresponding to the Ito 
Processes and Processes of the Diffusion Type ............ 251 
7.1 The Ito Processes, and the Absolute Continuity 

of their Measures with respect to Wiener Measure .......... 251 
7.2 Processes of the Diffusion Type: the Absolute Continuity 

of their Measures with respect to Wiener Measure .......... 257 
7.3 The Structure of Processes whose Measure is Absolutely 

Continuous with Respect to Wiener Measure . . . . . . . . . . . . . . . 271 
7.4 Representation of the Ito Processes as Processes 

of the Diffusion Type, Innovation Processes, and the Struc-
ture of Functionals on the Ito Process ..................... 273 

7.5 The Case of Gaussian Processes .......................... 279 
7.6 The Absolute Continuity of Measures of the Ito Processes 

with respect to Measures Corresponding to Processes of the 
Diffusion Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 

7.7 The Cameron-Martin Formula ........................... 297 
7.8 The Cramer-Wolfowitz Inequality ........................ 299 
7.9 An Abstract Version of the Bayes Formula ................. 303 

8. General Equations of Optimal Nonlinear Filtering, 
Interpolation and Extrapolation of Partially Observable 
Random Processes ........................................ 317 
8.1 Filtering: the Main Theorem ............................. 317 
8.2 Filtering: Proof of the Main Theorem ..................... 319 
8.3 Filtering of Diffusion Markov Processes .................... 326 
8.4 Equations of Optimal Nonlinear Interpolation .............. 329 
8.5 Equations of Optimal Nonlinear Extrapolation ............. 331 



Table of Contents of Volume 5 XV 

8.6 Stochastic Differential Equations with Partial Derivatives for 
the Conditional Density (the Case of Diffusion Markov Pro-
cesses) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 

9. Optimal Filtering, Interpolation and Extrapolation 
of Markov Processes with a Countable Number of States. 351 
9.1 Equations of Optimal Nonlinear Filtering .................. 351 
9.2 Forward and Backward Equations of Optimal Nonlinear 

Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 
9.3 Equations of Optimal Nonlinear Extrapolation ............. 368 
9.4 Examples .............................................. 371 

10. Optimal Linear Nonstationary Filtering .................. 375 
10.1 The Kalman-Bucy Method .............................. 375 
10.2 Martingale Proof of the Equations of Linear Nonstationary 

Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 
10.3 Equations of Linear Nonstationary Filtering: 

the Multidimensional Case ............................... 392 
10.4 Equations for an Almost Linear Filter for Singular BoB .... 400 

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 

Index ......................................................... 425 



11. Conditionally Gaussian Processes 

11.1 Assumptions and Formulation of the Theorem 
of Conditional Gaussian Behavior 

11.1.1. Let ( 8, ~) = ( Bt, ~t), 0 ~ t ~ T, be a random process with unobserv­
able first component and observable second component. In employing the 
equations of optimal nonlinear filtering given by (8.10) one encounters an es­
sential difficulty: in order to find 11"t(8), it is necessary to know the conditional 
moments of the higher orders 

11"t(82) = M(8~i.r1), 11"t(83) = M(8li.r1). 

This 'nonclosedness' of the equations given by (8.10) forces us to search for 
additional relations between the moments of higher orders so as to obtain a 
closed system. 

In the case considered in the previous chapter the random process (8, e) 
was Gaussian, which yielded the additional relation 

(11.1) 

enabling us to obtain from (8.10) the closed system of equations given by 
(10.10)-(10.11) for the a posteriori mean 11"t(8) = M(8tl.r1) and the a poste­
riori variance 'Yt(B) = 11"t(82)- [11"t(8)] 2 . 

The present chapter will deal with one class of random processes ( 8, e) = 
( Bt, ~t), 0 ~ t ~ T, which are not Gaussian but have the important property 
that (P-a.s.) the conditional distribution F~~(x) = P{8t ~ xl.r1} is Gaussian, 
yielding, in particular, (11.1). 

For such processes (we call them conditionally Gaussian processes) the 
solution of problems of filtering, interpolation and extrapolation can be ob­
tained as in the case of the Gaussian process (8,~), considered in Chapter 10. 
A detailed investigation of these problems is given in the next chapter. 

11.1.2. Let us now describe the processes involved and indicate the basic 
assumptions. 

Let us consider as given some (complete) probability space ( {}, :F, P) with 
a nondecreasing right-continuous family of sub-u-algebras (:Ft), 0 ~ t ~ T, 
and let W1 = (W1(t),:Ft) and W2 = (W2(t),:Ft) be mutually independent 

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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Wiener processes. The random variables Bo and ~0 are assumed to be inde­
pendent of the Wiener processes W1 and W2. 

Let ( (), ~) = ( Bt, ~t), 0 ~ t ~ T, be a (continuous) process of the diffusion 
type with 

dOt= [ao(t,~) + at(t,~)Bt]dt + bt(t,~)dWt(t) + b2(t,~)dW2(t), {11.2) 

d~t = [Ao(t, ~) +At (t, ~)Bt]dt + B(t, ~)dW2(t). {11.3) 

Each of the {measurable) functionals ai(t, x), Ai(t, x), bi(t, x), B(t, x), 
i = 0, 1, j = 1, 2, is assumed to be nonanticipative (i.e., Bt-measurable where 
Bt is the u-algebra in the space CT of continuous functions x = {x8 , s ~ T} 
generated by the functions X 8 , s ~ t). 

It is assumed that for each x E CT, 

J.T (.~, {Ia;{!, x)l + IA;{t, x) I} + i~' b~(t, x) + B2(t, x)) dt < oo. 
{11.4) 

Along with {11.4) assuring the existence of the integrals in {11.2) and 
{11.3), the following conditions will also be assumed: 

{1) for each x E CT, 

1T[A~(t,x) + A~(t,x)]dt < oo; 

inf B 2 (t,x) 2: C > 0, 0 ~ t ~ T; 
xEC 

(11.5) 

{11.6) 

{2) for any x, y E CT, 

{3) 

IB(t,x)- B(t,y)i2 ~ L11t ixs- Ysi 2dK(s) + L2ixt- Ytl 2, {11.7) 

B2(t,x) ~ L1 1t {1 + x~)dK(s) + £2{1 + x~), {11.8) 

where K(s) is a nondecreasing right-continuous function, 0 ~ K(s) ~ 1; 

1T MIAt(t,~)Btidt < oo, 

MIBtl < oo, 0 ~ t ~ T, 

P { { Al<•.eJm:d« oo} ~ 1, 

where mt = M(Btl.rf). 

(11.9) 

{11.10) 

{11.11) 
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The following result is the main one in this chapter. 

Theorem 11.1. Let {11.4}-{11.11} be fulfilled and let {with probability 1} the 
conditional distribution Feo (a) = P( Oo :::; al~o) be Gaussian, N ( mo, 'Yo), with 
0 :::; 'Yo < oo. Then the random process ( (}, ~) = ( Ot, ~t), 0 :::; t :::; T, satisfying 
Equations {11.2} and {11.3} is conditionally Gaussian, i.e., for any t, and 
0 :=:; to :=:; t1 < · · · < tn :=:; t, the conditional distributions 

Fe~(xo, ... ,xn) = P(Ot0 :=:; Xo, ... ,Otn :=:; XniJ1) 

are (P-a.s) Gaussian. 

The proof of this theorem (see Section 11.3) is based on a number of 
auxiliary lemmas which will be given in the following section. 

11.2 Auxiliary Lemmas 

11.2.1. Let 1J = (?Jt,:Ft), 0:::; t:::; T, denote any of the processes~= (~t,:Ft) 
or { = ({t,:Ft), where~ is an observable component of a process (9,~) with 
the differential 

(11.12) 

and { is a solution of the equations 

(11.13) 

By virtue of (11.4)-(11.11) 1 and Theorem 4.6, this equation has a unique 
continuous solution. 

Write 

_ ( ) ( ) ba(t,x)A ( ) 
a0 t,x = ao t,x - B(t,x) o t,x, (11.14) 

- ( ) ( ) ba(t,x) ( ) a1 t,x = a1 t,x - B(t,x)A1 t,x, (11.15) 

and consider the equation (with respect to Ot, 0 :=:; t :=:; T) 

Bt = Oo + fot[ao(s, 17) + a1 (s, ?J)Os]ds+ fo\t(s, TJ)dWt(s) +lot~~;:~~ dTJs· 

(11.16) 
Lemma 11.1. For each t, 0 :=:; t :::; T, Equation {11.16} has a (unique) 
continuous, .7{0 'W~o'f/ -measurable solution Ot, given by the formula 

1 Throughout this section (11.4)-(11.11) are assumed to be satisfied. 
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Ot = q,t(7J) [oo + 1t q,_;-1(7J}iio{s,7J}ds + 1t q,_;-1(7J}bt{s,7J}dWt{s) 

+ {t q,_;-1(71) b2{s, 7J) d7Js] {11.17} 
lo B(s, 71) 

where 

(11.18} 

PROOF. It is not difficult to show that by virtue of {11.4}-(11.6} all the 
integrals in {11.17} and {11.18} are defined. 

Applying now the Ito formula we convince ourselves that the process Ot, 
0:::; t:::; T, given by the right-hand side of {11.17} satisfies Equation {11.16}. 
Thus, to complete the proof of the lemma it is only necessary to establish 
the uniqueness of the solution. 

Let Llt = Ot - 0~ be the difference of two continuous solutions of Equa­
tion {11.16}. Then 

and, therefore, 

ILltl:::; 1t liit{S, 7J)IILlslds. 

From this, by Lemma 4.13, we obtain: ILltl = 0 (P-a.s.) for any t, 0 :::; t :::; 
T. Therefore, 

P{ sup ILltl > o} = o. 
o::;t:s;T 

0 

Let 7J = e. In this case, Ot is a .rfo,W~o~-measurable random variable. 
According to Lemma 4.9, there exists a functional Qt(a,x,y) defined on 
{[0, T] x R1 x CT x CT) which, for each t and a, is Bt+ x Bt+-measurable 
such that for almost all t, 0 :::; t :::; T, 

Ot = Qt(Oo, Wt, e) (P-a.s.). 

Following the notation in Equations {11.14} and {11.15}, Equation (11.2} 
can be written as follows: 

Comparing this equation with {11.16} we note that, by virtue of 
Lemma 11.1, for almost all t, 0 :::; t :::; T, 
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Ot = Qt(Oo, W11e) (P-a.s). (11.19) 

From this and from (11.3) it follows that the process e = (et, Ft), 0 $ t $ 
T, yields the stochastic differential 

(11.20) 

11.2.2. Consider now the two random processes (a,/3,!;.) = [(at,f3t,et),Ft] 
and (a, /3, {.) = [(a.t,Bt, f.t), Ft], 0 $ t $ T, given by the equations 

da.t = 0, a.o = Oo, 
df3t = dW1(t), /3o = 0, 

det = [Ao(t, e)+ A1(t, e)Qt(a., /3, e)Jdt + B(t, e)dW2(t) (11.21) 

and 

da.t = 0, a.o = Oo, 
df3t = dW1(t), /3o = 0, 

df.t = B(t, {.)dW2(t), f.o =eo, (11.22) 

respectively. 
Let Jl.or.,{3,t; ( = Jl.Bo,Wt.t;) and Jl.or.,{3,~ (= Jl.o0 ,w1 ,~) be measures corresponding 

to the processes (a.,/3,e) and (a.,/3,{). 

Lemma 11.2. The measures Jl.or.,{3,t; and Jl.or.,{3,~ are equivalent 

(11.23) 

Further, 

are given by the formulae 

(11.24) 

(11.25) 
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PROOF. Note first that (see Section 13.1) 

( ~~ ~ )+=(~~ ~ )· 
0 0 B 2(t, x) 0 0 B- 2 (t, x) 

(11.26) 

Since Bt = Qt(Bo, w,e) = Qt(a,/3,e) for almost all t (P-a.s), 0:::; t:::; T, 
and since (11.2) and (11.3) are satisfied, 

Then, by the multidimensional analog of Theorem 7.20, f..tat,/M. « f.Lat,/3,i' 

According to Lemma 4.9, there exists a measurable function Qt(a, x, y) 
defined on ([0, T] x IR1 x Cr x Cr) which, for each t and a, is Bt+ x Bt+­
measurable such that for almost all t, 0:::; t :::; T, (P-a.s.) 

-€ - -et = Qt(Bo, W1,e), 

where of, 0:::; t:::; T, is a solution of Equation (11.16) with rJ = { 
By Lemma 4.10, for almost all t, 0:::; t:::; T, (P-a.s.) 

Qt(a,/3,e) = Qt(a,/3,e). 

Therefore, the process e = (et, :Ft), 0 :::; t :::; T, also has the differential 
(compare with (11.20)) 

aet = [Ao(t,e) + Al(t,e)Qt(Bo, wbe)Jdt + B(t,e)dW2(t). 

Hence 

From this, by the multidimensional analog of Theorem 7.19 and 
Lemma 4.10 the proof follows. 0 

11.2.3. Let (B,e) be a random process obeying Equations (11.2), (11.3). De­
note by ( mt ( x), Bt+) a functional2 such that for almost all t, 0 :::; t :::; T, 

and let 

(11.27) 

2 See Lemma 4.9. 
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Lemma 11.3. The random process W = (Wt, :F'f), 0 $ t $ T, is a Wiener 
process. 

PROOF. From (11.27) and (11.3) we obtain 

- () t A1(s,e)[ 
Wt = W2 t + Jo B(s,e) ()8- m8 (e)Jds. 

From this, with the help of the Ito formula, we find that 

(11.28) 

(11.29) 

As in the proof of Theorem 7.17, from (11.29) we deduce that (P-a.s.) 

M(eiz(w,-w.>i.r.D = e-(z2 f2}(t-8). 0 

11.2.4. 
Lemma 11.4. Let f.Lt; and f.L~ be measures corresponding to the processes e 

and e defined by {11.21} and {11.22}. Then f.Lt; "'f.L~ and the densities 

df.L df.L-
4't(e) = -d t;(t,e), 1/Jt(e) = -d e(t,e) 

f.L~ f.Le 

are given by the formulae 

(t) = ex { t Ao(s,e) + A1(~,e)m8(e) dt 
4't "' P lo B 2(s,e) "' 8 

-~ t [Ao(s,e) + A2(s~e)m8(e)J2 ds}, 
2 lo B 2(s,e) 

(11.30) 

·'· (t) = {- t Ao(s,e) + Al(s,e)m8(e) .1c 
<rt "' exp Jo B2(s, e) "":.8 

~ t Ao(s,e) + A2(s,e)ms(e)]2 d } 
+2}0 B2 (s,e) 8 · 

(11.31) 

PROOF. From (11.27) we find 

det = [Ao(t,e) +Al(t,e)mt(e)Jdt+B(t,e)dWt. (11.32) 

Let e = (e, Ft), 0 $ t $ T, be a random process with the differential 

(11.33) 
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By virtue of (11. 7), (11.8), and Theorem 4.6, Equation (11.33) has a 
unique strong solution. Hence, the measures J.Le and JL( coincide (compare 
(11.33) with (11.22)). 

The absolute continuity of the measure JL£. with respect to the measure 
J.Le (and therefore with respect to f..L() follows from Theorem 7.20. It will also 
be shown that J.Le « JL£.. 

By Lemma 11.2, 

J.Le(r) = M[X(f.Er)?ft(a,,B,e)J 

= M[X(f.Er)M(?ft(a, ,8, e)IFf)J = l M[?ft(a, ,8, e)iJ1J£.=xdJL£.(x). 

Hence J.Le « f..L£.· (11.30) and (11.31) follow from Theorem 7.20 and 
Lemma 6.8. 0 

11.2.5. Let 

-(a ,8 'C)= 'Pt(a,,B,f,) 
Pt , , .. 'Pt <e) , 

and for each t, 0:::; t :::; T, let Pt(a, b, x) denote a (measurable) functional 

Then, because the measures J.Le and JL( are the same, we deduce from 
Lemmas 4.10, 11.2 and 11.4 that 

(11.34) 

Lemma 11.5. Let ft(Bo, Wt, e) be a .rto,Wt.f._measurable functional with 
Mlft(Bo, Wt,e)l < oo. Then we have the following (Bayes) formula: 

M[ft(Bo, Wt.e)l.rfJ = 1: ft(a,c,e)Pt(a,c,e)df..lw(c)dFf.o(a), (11.35) 

where J.Lw 0 is a Wiener measure on the measurable space ( Cr, Br) of the 
continuous functions Cr = {c8 ,0:::; s:::; T}, and Ff.0 (a) = P{Bo:::; aleo}. 

Formula (11.35) is the Bayes formula (7.178), which was proved in The­
orem 7.233 . 

3 See also Notes 1 and 2 to this theorem. 
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Corollary. Let 

/.(Do, W,, e) = exp { i [ zu8o + ~ z; W, (t;)] } , 

where 0:::; t1 :::; · · · :::; tk :::; t. Then the conditional characteristic function 

M (ex+ [~eo+ ~z;W,(t;)]} ~) 
= f:L.:x+ [~a+ ~ z;c.;]}Pt( a, c, {)dJ<w ( c)dF,, (a), (11.36) 

where ct; are the values of the continuous functions c = (c8 }, 0:::; s :::; T, at 
points ti. 

11.3 Proof of the Theorem of Conditional Gaussian 
Behavior 

11. 3.1. As a preliminary, let us prove the following: 

Theorem 11.2. Let {11.5}-{11.11} be satisfied, and with probability 1, let 
the conditional distribution 

F~0 (a) = P(8o:::; aleo) 

be Gaussian, with parameters 

mo = M(Boleo}, 'Yo = M[(Bo- mo)2 leo], o :::; 'Yo < oo. 

Then the conditional distribution 

G~~(a,ct, ... ,Cn} = P{8o:::; a, Wt(h):::; Ct, ... , Wt(tn):::; eniJ1} 
is Gaussian for any t, 0 :::; t1 :::; · · · :::; tn :::; t, and n = 1, 2, .... 

11.3.2. 
PROOF OF THEOREM 11.2. The proof of this theorem is based on (11.36) 
for a conditional characteristic function. 

From (11.36) it is seen that to prove the theorem it would suffice to 
show that for almost all w the measure Pt(a,c,e)dJLw(c)dF~0 (a) is Gaussian. 
However, the verification of this fact is difficult. 

We start by writing lnpt(a,,B,e) in a more convenient form. 
Using the notation given by (11.14), (11.15}, and (11.18} we set 
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Then from ( 11.17), we find that 

At(t, e) 
B(t,e) [Qt(Oo,wt.e)-mt(e)J = ut{t,e)+Oou2{t,e) 

+u2{t,e) 1t 93(s,e)dWt(s). 

By virtue of {11.34), this enables us to write 

lnpt(Oo, Wt,e) 

= 1t {ut(s,e) + 92(s,e) [oo + 18 93(u,e)dWt(u)]} dW8 

(11.37) 

{11.38) 

{11.39) 

-~lot {ut(s,e)+g2(s,e) [oo+ 18 93(u,e)dWt(u)] r ds. {11.40) 

For each t, 0 ~ t ~ T, let ..:::li{t, x), i = 1, 2, 3 be Bt-measurable functionals 
such that 

and let ..:::lj{t, x, y), j = 4, 5, be Bt x Bt-measurable functionals such that 

..:::l4{t, Wt.e) = 1t u2(s,e) 18 93(u,e)dWt(u)dW8 

-lot 9t(s,e) lo8 93(u,e)dWt(u)ds, 

..:::ls{t, Wt.e) = -lot 92(s,e) lo8 93(u,e)dWt(u)ds. 

With the help of the Ito formula and the relation 
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- () [tAt(s,e) 
Wt = W2 t + Jo B(s, e) (08 - m8)ds, 

it is easy to obtain the following relations: 

and (i = 1,2) 

fat 92(s,e) 1 8 93(u,e)dWt(u)dWs 

= fat 92(s,e)dW81t 93(s,e)dWt(s) 

-lot 9a(t,e) 1 8 92(u,e)dW udWt(s), 

fat 9i(s,e) 1 8 ga(u,e)dWt(u)ds 

= fat 9i(s,e)ds 1t ga(s,e)dWt(s) 

-fat 92(s,e) 1 8 9i(u,e)dudWt(s). 

(11.41) 

{11.42) 

Using {11.40), the definition of Llt{t, x), Ll2{t, x), Lla{t, x), Ll4{t, x, y), 

Ll5(t,x,y) and Lemmas 4.10 and 11.2, we find that for a E IR1, 

lnpt(a, Wt.t) = Llt(t,e) + a[Ll2(t,{) + Lls(t, Wt.{)] 
2 - a 2 -

+Ll4(t, wt.e)- 2~a(t,e) 

-41t g~(s,{) (18 ga(u,{)dWt(u)) 
2 

ds. (11.43) 

Using the definitions of .Ll4(t,x,y) and Lls(t,x,y) as well as (11.41), (11.42), 

Lemmas 4.10 and 11.2, and the independence of the processes Wt and{, we 

conclude that the conditional distribution of these variables (for a fixed {) is 

(P-a.s.) Gaussian. 
To prove that the measure Pt(a,c,e)dJtw(c)dF~0 (a) is Gaussian it is 

enough to show (because of the equivalence J.t.~ "' J.l.f.) that the measure 

Pt(a, c, {)dJtw(c)dF~0 (a) 

is Gaussian. 
To this end we show that the characteristic function (see {11.36)) 

~.( ......... ) = L:L exp {+·+ t.·;4 ;]} 

XPt(a, c,{)dJtw(c)dF~0 (a), (11.44) 
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0 ;:; tt ;:; · · · ;:; tk ;:; t, is the characteristic function of a Gaussian distribution. 
Let 

l(a, t, e, zo, ... , Zk) = 1 exp {i [zoa + t ZjCt3 ] } Pt(a, c, e)dp,w(c). 
Cr J=l 

Then the desired characteristic function is given by the formula 

cpt(Zo, ... , Zk) =I: I(a, t, e, zo, ... , Zk)dFeo(a). 

If we can show that I(a, t, e, zo, ... , Zk) has the form 

I(a, t, e, zo, ... , Zk) = exp{ ~(t, a, e, zo, ... , Zk)} 

(11.45) 

(11.46) 

where ~(t, a, e, Zo, ... , Zk) is quadratic in the variables a, Zo, ... , Zk, and is 
nonnegative definite in z1, ... , Zk, then the conclusion of the theorem will 
follow from ( 11.45), Gaussians of Feo (a), and the fact that cpt ( zo, ... , Zk) is a 
characteristic function. 

(11.46), with ~(t, a, e, ')'o, ... , Zk) having the above properties, follows from 
Lemma 11.6 below, which is of interest on its own merits. 

Lemma 11.64 . Consider a random vector f3 = (/3~, ... ,/3n) and a Wiener 
process W = (Wt) = (W1(t), ... , Wm(t)), t ;:; T, with independent compo­
nents and suppose that the system (/3, W) is Gaussian. 

Let b = (b11 ... , bn) be a row vector and let B(t) and Q(t) be (m x m) 
matrices such that Q(t) is symmetric and nonnegative definite and 

Tr 1T [B(t)B*(t) + Q(t)Jdt < oo. 

Then 

= exp (bM/3+ ~bRb* + ~Tr 1T B(t)B*(t)F(t)dt), (11.47) 

where R is a nonnegative definite matrix, and F(t) is a nonpositive definite 
matrix defined by the Ricatti equation 

F(t) = 2Q(t)- F(t)B(t)B*(t)F(t), F(T) = 0. (11.48) 

PROOF. The existence of a unique continuous solution for (11.48) is estab­
lished as in the proof of Theorem 7.21 for Equation (7.142). 

4 This lemma generalizes Theorem 7.21. 
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Define the random processes TJ = (TJt) and e = (et), t ~ T, by (TJo =eo = 0) 
and 

dTJt = B(t)dWt, 
det = B(t)B*(t)F(t)etdt + B(t)dWt. {11.49) 

According to the multidimensional analog of Theorem 7.19, the measures J.L~ 
and J.L, which correspond to the processes e and 11 are equivalent. At the 
same time, using certain properties of pseudo-inverses, namely A= AA+ A 
and A+ = A*(AA*)+ (see {1 °) and {6°), Subsection 13.13), we obtain from 
(7.138) 

:~~ (TJ(w)) = exp (1T TJ;r(s)B(s)dW8 - ~ 1T TJ;r(s)B(s)B*(s)F(s)TJ8 ds). 

We now show that 

:~~ (TJ(w)) = exp ( -1T [1t B(s)dW8 ] * Q(t) [1t B(s)dW8 ] dt 

-~Tr 1T B(t)B*(t)F(t)dt). {11.50) 

Indeed, using the identities TJTF(T)TJT = 0, TJoF(O)TJo = 0, (11.48), and the 
Ito formula (see Example 2, Subsection 4.3.3), we find 

0 = TJTF(T)TJT - TJoF(O)TJo 

= 21T 11; F(t)B(t)dWt + 21T 11;[Q(t)- ~F(t)B(t)B*(t)F(t)]TJtdt 

-Tr 1T B(t)B*(t)F(t)dt. 

This and {11.49) prove (11.50). On the other hand, 

M[M(exp{b,B}I.rj,),=d = M [M(exp{b,B}I.rj,) :~~ (TJ)] 

= M exp{b,B}ddJ.L~ (TJ). 
J.LrJ 

Therefore, according to {11.50), 

T(b) = M[M(exp{b,B}I.rj,),=d exp ( ~Tr 1T B(t)B*(t)F(t)dt). {11.51) 

Since (,B, W) forms a Gaussian system, so does (,B, TJ), and, hence, by 
the multidimensional analogs of Theorems 5.16 and 5.21, the martingale 
(M(,Bl.r;'), ;:;') admits the representation 
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M(.BI.r;') = M.B + 1t g(s)d71s, t ::; T, 

where the (n x m) matrix g(t) is such that 

Tr 1T g(t)B*(t)B(t)g(t)dt < oo. 

Let DT = M[(.B- M(.BI.rf))(.B- M(.BI.rf))*]. 
Using the theorem on normal correlation (Theorem 13.1), it is possible 

to show that DT coincides (P-a.s.) with the conditional covariance M[(.B­
M(.Bi.rf))(.B- M(.BI.rf))*.rf]. Therefore, since P(.B ::; xl.rf) is Gaussian 
and J.Le and J.L71 are equivalent, by Lemma 4.10 we find that 

M(exp{b.B}I.rf) 71=e =exp (b [M.B+ 1T g(t)detl + ~b*DTb). 

The random vector J:J' g(t)det is Gaussian and has zero mean. Denote by GT 
its covariance matrix and set R = ! ( DT + GT). Then 

M[M(exp({b.B}I.rf)77=eJ = exp(bM.B + b* Rb). (11.52) 

The above and (11.51) complete the proof of Lemma 11.6, and, therefore, 
also of Theorem 11.2. 0 

11.9.9. 
PROOF OF THEOREM 11.1. Let 0 ::; to < t1 < · · · < tn ::; t ::; T be some 
decomposition of the interval [0, T]. Then, considering (11.19), we have 

where, according to Lemma 11.1, 

Qt; (Oo, W1. e) = 4>t; (e) { Oo + 1t; 4>;1(e)a(s, e)ds 

+ fot; 4>;1(e)bl(s,e)Dwl(s)+ fot4>; 1 (e)~~;::~t.tes}· 
Hence 
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M [ exp { i ~ z,Q,, (Do, w,, {)} .1]] 

~ exp{ i ~ ZJ [<I',, (e) (f <1'; 1({)0o(s,{)ds + t <1'; 1({) ~l::~~ tJe,])} 

xM ( exp { i ~ z,<l',, [no+ f <1'; 1({)b,(s,{)dWt(s)]} .1]) . 
Applying Lemma 11.6. we find that 

{11.53) 

where lli'k;{t, e) II is some nonnegative definite symmetric matrix. 
Because of the arbitrariness of zo, Z1, ... , Zn, it follows from {11.53) that 

the conditional distribution 

P(8t0 :::; ao, ... , Btn :::; anl-11) 

is Gaussian for any to < t1 < · · · < tn:::; t and n = 1, 2, .... D 

Note. Let 0 :::; s :::; to < · · · < tn :::; t. Then the conditional distribution 

P(Bto :::; ao, ... Btn :::; anl.rf••e) 

is also (P-a.s.) Gaussian; this follows from the normality of the distributions 
P(Bs,:::; a, 8t0 :::; ao :::; · · · :::; atn :::; anl-11). 

11. 3. 4. For the needs of problems of filtering, interpolation and extrapolation 
of the conditionally Gaussian processes, the parameters mt = M(BtiJ:i) and 
'Yt = M[(Bt- mt)21.1ll of the conditional distribution Fe~ (a) = P(8t :::; al-11) 
are of special interest. They could be found if an explicit form of the elements 
8;(t,e) and i'k;{t,e) entering into {11.53) can be determined, 

In the next chapter it will be shown, however, that for finding the param­
eters mt and 'Yt (as well as other characteristics of the conditionally Gaussian 
processes) it is simpler to make use of the general equations of filtering, in­
terpolation and extrapolation developed in Chapter 8. 
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Notes and References. 1 

11.1-11.3. The importance of distinguishing the class of conditionally Gaussian 
processes for effective solution of problems of optimal nonlinear filtering was noted 
by Liptser (194]. Conditionally Gaussian processes were discussed in Liptser and 
Shiryaev (205]. The proof of the theorem of conditional normality has been first 
given here. 

Notes and References. 2 

11.1-11.3. Despite the fact that the conditionally Gaussian model {11.2), (11.3) 
is nonlinear with respect to the observable component, its attractiveness is ac­
counted for by many properties inherited from the Kalman-Bucy model {10.1), 
{10.2). For example, since the conditional distribution of an unobservable signal, 
given observations, is Gaussian, so that it is completely described by the conditional 
expectation and variance, differential equations for these parameters define the fil­
ter similar to the Kalman-Bucy one (see next section). The conditionally Gaussian 
model can be used as motivation for creating the so-called extended Kalman filter, 
the applicability of which is described in (253]. 



12. Optimal Nonlinear Filtering: Interpolation 
and Extrapolation of Components 
of Conditionally Gaussian Processes 

12.1 Optimal Filtering Equations 

12.1.1. Let ( 0, e) = ( Ot, et), 0 ::::; t ::::; T, be a continuous random diffusion-type 
process with 

dOt= [ao(t,e) + at(t,e)Ot]dt + bt(t,e)dWt(t) + b2(t,e)dW2(t), (12.1) 

det = [Ao(t,e) + At(t,e)Ot]dt + B(t,e)dW2(t). (12.2) 

Assume that the conditions given by (11.4)-(11.11) formulated in the 
previous chapter are satisfied. If the conditional distribution F~0 (a) = P(Oo::::; 
aleo) is (P-a.s.) Gaussian, N(mo,'Yo), then in accordance with Theorem 11.1 
the conditional distribution F~~ (a) = P(Ot ::::; ai.rl) will also be Gaussian, 
N(mt, 'Yt)· Hence if MO~ < oo, 0 ::::; t ::::; T, then one of the moments of this 
distribution- the a posteriori mean mt = M(Otl.rl)- will be an optimal (in 
the mean square sense) estimate of Ot from e& = {es, s::::; t}. The knowledge 
of the variance 'Yt = M([Ot- mtJ21.rl) of this distribution enables us to find 
the filtering error 

(12.3) 

Theorem 12.1, given below, contains equations that mt and 'Yt must sat­
isfy. By virtue of conditional normality of the process ( 0, e) these equations 
turn out to be closed ones. 

It should be emphasized that Theorem 12.1 provides as a particular case 
the filtering equations deduced for the Kalman-Bucy scheme in Chapter 10. 
Whereas in the Kalman-Bucy scheme the process (O,e) was Gaussian, and 
as a result the optimal filter was linear, in the conditionally Gaussian case 
the optimal filter is, generally speaking, nonlinear. 

12.1.2. The deduction of equations for mt and 'Yt based on the use of the 
fundamental theorem of filtering (Theorem 8.1) is carried out according to 
the following scheme. 

According to (12.1) 

Ot =Oo+ 1t[ao(s,e)+at(s,e)Os]ds+xt, (12.4) 

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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where 

Xt = lot[bt(s,e)dWt(s) + b2(s,e)dW2(s)]. {12.5) 

From {12.4} and {12.5) with the help of the Ito formula we find that 

Ol = e~ +lot (20s[ao(s,e) + at(s,e)es] + [b~(s,e) + b~(s,e)Jds +it, {12.6) 

where 

{12.7) 

Denote 
(12.8) 

and 

- 2 - 2 2 ht = Ot, Ht = 20t[ao(t, e)+ at(t, e)Ot] + [b1 (t, e)+ b2(t, e)J. {12.9) 

Then Equations {12.4) and (12.6) can be written as follows: 

ht = ho + lot Hsds + Xt. 

ht = ho + lot Hsds + Xt. 

{12.10) 

{12.11) 

Therefore, the unobservable processes ht and ht have the form which was 
assumed in Theorem 8.1. 

In order to take advantage of this theorem, we need to find conditions 
under which the assumptions given by (8.6)-(8.8) involved in the formulation 
of the theorem are satisfied (other assumptions are satisfied due to (11.4)­
(11.11)). In our case, (8.6)-(8.8) are reduced to the following 

sup MOt < oo; {12.12) 
O:S;t:ST 

loT M[ao(s,e) + at(s,e)Os]2ds < oo; {12.13) 

loT M {20s [ao(s, e) +at (s, e)Os] + [b~(s, e) + b~(s, e)]}2ds < oo; {12.14) 

loT M{Ao(s,e) + At(s,e)es}2ds < oo. {12.15) 

In order to have these conditions satisfied, and also to be able to assert 
that X = (xt,Ft) and X = (it,.1't), 0 ~ t ~ T, are square integrable 
martingales, we shall require the following conditions to be satisfied. 
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For all x E CT, 0::::; t::::; T: 

lat(t,x)l::::; L, IAt(t,x)l::::; L; 

1T M(a6(t, e)+ bt{t, e)+ b~(t, e)Jdt < oo; 

MB6 < oo. 

(12.16) 

(12.17) 

(12.18) 

In order to prove the sufficiency of these conditions, as a preliminary we 

shall prove the following lemma. 

Lemma 12.1. In the assumptions given by {12.16}-{12.18}, 

M [ sup ot] < oo. 
o::;t::;T 

PROOF. Put 

TN= inf {t: supB! ~ N}, 
s:St 

(12.19) 

taking TN = T if sups:ST B! < N. Then, by virtue of Holder's inequality, 

Bti\TN = [fJo + 1ti\TN ao(s,e)ds + 1ti\TN at(s,e)BsdS 

2 tiiTN ] 4 

+ t; 1 bi(s,e)dWi(s) 

< 125 [ot + (J.'MN ao(s, e)ds )' 

+ (1tMN at(s,e)Bsds) 
4 + t, (1tiiTN bi(s,e)dWi(s)) 

4
] 

< 125[B6+(ti\TN)3 1tiiTN a6(s,e)ds 

+(t 1\ TN )3 1ti\TN at(s, e)B!ds + t, (foti\TN bi(s, e)dWi(s)) 
4
]. 

(12.20) 

According to Lemma 4.12, 

i = 1,2. 
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Hence, since Oa = OaATN for s:::; t 1\ TN, 

MOtiiTN:::; 125[MO~+T3 1T Ma~(s,e)ds 

+T3L4 1t MO!ATNds + 36Tt.1T Mbt(s,e)ds], 

i.e., 

MotATN :::; C1 + C2fot MB!11TNds, 

where C1, C2 are constants. Therefore, by Lemma 4.13, 

M(}4 < C e02t < C e02T tiiTN - 1 - 1 I 

and, by the Fatou lemma, 

MOt:::; limN-+ooMOt11TN :::; C1e02T. 

Thus 
sup Mot< oo. 

O$t$T 

(12.21) 

(12.22) 

We shall show now that M[supo<t<T Btl < oo. Substituting t 1\ TN for t 
we obtain from (12.20) - -

sup Ot :::; 125 [(}~ + T3 {T a~(s, e)ds + T3 L 4 {T O!ds 
o::;t:::;T Jo Jo 

+ t sup I ft bi(s,e)dWi(s)l
4
]. 

i=1 O$t$T lo 

According to (3.8) and Lemma 4.12, 

M 0~~ETlfo\i(s,e)dWi(s{:::; (~) 4 
36T foT Mbt(s,e)ds, i = 1,2. 

Hence, due to (12.22) and (12.16)-(12.18), 

M [ sup ot] 
O$t$T 

:::; 125[MO~+T3 {T Ma~(s,e)ds+T4L4 sup MO! 
lo o::;t:::;T 

+ m 4 
36Tt { Mb/(s,{)ds] < oo 

D 
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Thus the conditions given by (12.12) follow from the assumptions given 
by {12.16)-(12.18). It is verified in an obvious manner that these assump­
tions guarantee the validity of (12.13)-(12.15). From the explicit form of the 
processes Xt and Xt and the assumptions given by (12.16)-(12.18) it can be 
easily deduced that X = (xt, :Ft) and Xt = (it, :Ft), 0 ::; t ::; T, are square 
integrable martingales. Therefore, the conditions of Theorem 8.1 in the case 
considered are satisfied. 

Taking into account that (x, W2) = f~ b2(s, e)ds, we find from (8.9) that 

mt = mo + lot[ao(s,e) + a1(s,e)ms]ds 

rt {b ( C) A1(s,e)[M(B~I:F.f)- m~]} dW (12.23) 
+ lo 2 s, ... + B(s,e) s, 

where 

Next, M(B~I:F.f)- m~ = 'Ys· Hence, it follows from (12.23) that 

dmt = [ao(t,e) + a1(t,e)mt]dt 

+ b2(t,e)B(t,e)+'YtA1(t,e) 1dc -(A (t C)+A (t C) )dtJ 
B 2(t,e) c.,t o '"' 1 '"' mt . 

(12.24) 

Denote now 8t = M(Bll.ri), so that 8t - ml = 'Yt· Then, taking into 
account the equality (x, W2)t = J~ 2Bsb2(s,e)ds, again from (8.9) we obtain 

8t = 8o +lot [2ao(s, e)ms + 2a1 (s, e)8s + b~(s, e) + b~(s, e)Jds 

+lot { 2msb2(s,e) + B-1(s,e)[Ao(s,e)8s + A1(s,e)M(B~I:F!) 

-8s(Ao(s,e) + A1(s,e)ms)] }dws, 

or 

8t = 8o +lot [2ao(s, e)ms + 2a1 (s, e)8s + b~(s, e)+ b~(s, e)]ds 

t -1 { 3 e } -+loB (s,e) 2msb2(s,e)B(s,e)+A1(s,e)[M(Bsi:F8 )-8sms] dW8 • 

(12.25) 

From the Ito formula and (12.24) we find that 
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(12.26) 

which together with (12.25) yields the following representation for 'Yt = 8t -
m 2. 

t. 

(12.27) 

Since the conditional distribution P(Bs :S aiF!) is Gaussian, then (see 
(11.1)) 

M(B~IF.n = 3ms8s- 2m~ (= 8sms + 2ms'Ys)· 

Hence in (12.27) the stochastic integral is equal to zero and therefore 

It = 'Yo+ fot [2at(s,ehs + b~(s,e) + b~(s,e) 
_ (b2(s, e)B(s, e)+ rsAt (s, e)) 2] ds. 

B(s,e) 

Thus we have proved: 

(12.28) 

Theorem 12.1. Let (0, e) be a random process with differentials given by 
{12.1} and {12.2}. If {11.4}-{11.8} and {12.16}-{12.18} are satisfied and the 
conditional distribution P(Oo :S aleo) is Gaussian, N(mo,/o), then mt and 
'Yt satisfy equations 

dmt = [ao(t,e)+at(t,e)mt]dt 

+ b2(t, e)B(t, e)+ ,tAl (t, e) [dC _ (A (t C)+ A (t C) )dtJ 
B 2 (t,e) .. t o ,., 1 ,., mt , 

(12.29) 
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. _ 2 (t 1:) +b2(t 1:)+b2(t 1:)- (b2(t,e)B(t,e)+'YtAl(t,e)) 2 (12 30) 
'Yt- a1 ,., 'Yt 1 ,., 2 ,., B(t,e) , . 

subject to the conditions mo = M(Boleo), 'Yo= M[(Bo- mo)2leo]. 

Note 1. From (12.29) and (12.30) it follows that the a posteriori moments 
mt and 'Yt are continuous in t (P-a.s.). 

Note 2. Let A1(s,x) = 0, i.e., let the observable process e = (et), 0:::; t:::; 
T, have the differential 

(12.31) 

and let the observable process B = (Bt), 0 :::; t :::; T, satisfy the equation 

From the proof carried out above (see (12.27)) it is seen that even without 
the assumption of normality of the conditional distribution P(Bo :::; aleo) the 
parameters mt and 'Yt satisfy the equations 

b2(t, e) 
dmt = [ao(t,e) + al(t,e)mt]dt + B(t,e) [det- Ao(t,e)dt], (12.32) 

i't = 2al(t,eht + b~(t,e). (12.33) 

Note 3. Let mo. (t, s) = M[Btl.r1"e] for s:::; t and 

'Yo.(t,s) = M[(Bs- mo.(t,s)) 2 i.J1••e]. 

Then m 0,(t,s) and 'Yo.(t,s) satisfy (at t > s) Equations (12.19) and (12.30), 
solved under the conditions mo. (s, s) = 08 , 'Yo. (s, s) = 0. The proof is similar 
to the deduction of the equations for mt and 'Yt and exploits the fact that 
the conditional distribution P(Bt :::; aiF!··e) is Gaussian (see the note to 
Theorem 11.1). From Equation (12.30) and the condition 'Yo.(s,s) = 0 it 
follows that 'YO. (t, s) does not actually depend on 08 • 

12.1. 3. We shall discuss now one particular case of the system of equations 
given by (12.1) and (12.2) for which the filtering equations given by (12.29) 
and (12.30) permit an explicit solution. 

Theorem 12.2. Let B = B(w) be a random variable with MB4 < oo. Assume 
that the observable process e = (et), 0:::; t:::; T, permits a differential 

where the coefficients Ao, A1, B satisfy the conditions of Theorem 12.1, and 
the conditional distribution P(B :::; aleo) is Gaussian. Then mt = M(BIJ1) 

and 'Yt = M[(Bt - mt)21J1J are given by the formulae 
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'Yo 
'Yt = 2 . 

1 + "' rt (At s,~ ) ds ,o Jo B s,~ 

PROOF. Due to (12.29) and (12.30), mt and 'Yt satisfy the equations 

(12.34) 

(12.35) 

(12.36) 

(12.37) 

solutions of which, as it is easy to verify, are determined by (12.34) and 
(12.35). 

In the case considered, (12.34) and (12.35) can be obtained immediately 
from the Bayes formula, (11.35), without using general filtering equations for 
conditionally Gaussian random processes1. 

Indeed, if 'Yo > 0, then, due to (11.35), 

P(O ~ al.rf) = M{X[e~aJI.rf} 

1a 1 { (a- mo) 2 

= -oo -./2rr"(o exp - 2"(o 

ft A1(s,e) ( ( )) -
+ Jo B(s,e) a- ms e dWs 

1 t [A1(s,e) J 2 
} -2 Jo B(s,e) (a- ms(e)) ds da. 

From this it follows that the conditional distribution P(() :::; al.rf) has the 
density 

dP(B ~ ai.rf) 
da 

= _1_exp{- (a- mo)2 

-./2rr"(o 2"(o 

[tA1(s,e)( ( )) -
+ Jo B(s,e) a- ms e dWs 

1 t [A1(s,e) ] 2 
} -2 Jo B(s,e) (a- ms(e)) ds . (12.38) 

On the other hand, the conditional distribution P(()t ~ al.rf) is Gaussian: 

1 In order to deduce equations for mt and 'Yt one can drop the assumptions given 
by (12.15) and (12.16). 
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dP(O :5 aiJ1) = _1_ exp {-(a- mt)2}. (12.39) 
da y'21Fii 2'Yt 

Equating the terms in (12.38) and (12.39) with a and a2, we obtain 

1 11t (A1(s,e)) 2 1 
- 2'Yo - 2 o B(s, e) ds = - 2'Yt (P-a.s.) (12.40) 

mo + 1t Al(s,e) dWa + 1t (Al(s,e)ma(e))2 ds = mt (P-a.s.). (12.41) 
'Yo o B(s, e) o B(s, e) 'Yt 

(12.35) follows immediately from {12.40). If we take into account now that 

dWt = des- (Ao(s,e) + Al(s,e)ms(e)]ds 
B(s,e) 

then we obtain the required representation, (12.34), from {12.41). 
If P( 'Yo = 0) > 0, then in order to deduce (12.34) and {12.35) one should 

consider a Gaussian distribution P£(0 :5 aleo) , with parameters mij = mo, 
-yfi = -y0+c:, c: > 0, instead of the distribution P(B :5 aleo). Then the associated 
values m~ and 'YF will be given by (12.34) and (12.35) with the substitution 
of -yij ='Yo+ c: for 'Yo, in which the passage to the limit should be carried out 
with c:.!. 0. D 

12.2 Uniqueness of Solutions of Filtering Equations: 
Equivalence of u-Algebras J1 and J=to,W 
12. 2.1. For a conditionally Gaussian process ( 8, e) the a posteriori moments 
mt = M(OtiJ1) and 'Yt = M((Bt - mt)2IJ1J satisfy, according to Theo­
rem 12.1, Equations (12.29) and (12.30). Therefore, this system of equations 
has the FLadapted solution (F~ = (J1), 0 :5 t :5 T). In this section we show 
that any continuous solution of this system is unique. Thus, solving this 
system of equations, we shall obtain moments mt and 'Yt of the conditional 
distribution Bt. 

Theorem 12.3. Let the conditions of Theorem 12.1 be satisfied. Then the 
system of equations 

dx(t) = (ao(t,e) + a1(t,e)x(t)]dt + b2(t,e)B(t~~(:~(t)Al(t,e) 

x(det- (Ao(t,e) + Al(t,e)x(t))dt], (12.42) 
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y(t) = 2a1(t,~)y(t) +b~(t,~) +b~(t,~) 

_ (b2(t, ~)B(t, ~) + y(t)A1 (t, ~)) 2 

B(t,~) ' 
(12.43) 

subject to the initial conditions 

x(O) = mo, y(O) ='Yo (I mol < oo, 0 ~ 'Yo < oo) 

has a unique, continuous, .ri-measurable solution for any t, 0 ~ t ~ T. 

PROOF. Let Yl (t) and y2(t), 0 ~ t ~ T, be two nonnegative continuous 
solutions of Equation (12.43). Then 

Denote 

( ) (I ( )I I b2(s,~) I) A~(s,~) ] 
r1 s,~ = 2 a1 s,~ + B(s,~) A1(s,~) + B2(s,~) [y1(s) + Y2(s). 

Then (12.44) can be rewritten as follows: 

IY1(t)- Y2(t)1 ~ 1t r1(s,~)IY1(s)- Y2(s)lds. 

Hence, due to Lemma 4.13, 

P{y1(t) = Y2(t)} = 1, 0 ~ t ~ T, 

and, by virtue of the continuity of the solutions of y1(t) and Y2(t), 

p { sup IYl(t)- Y2(t)1 = o} = 1, 
O~t~T 

which proves the uniqueness of continuous solutions of Equation (12.43). 
Let now X1 (t) and x2(t) be two continuous solutions of Equation (12.42). 

Then 

and therefore 
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where 

I b2(s,~) I y(s)A~(s,~) 
r2(s,~) = la1(s,~)l + B(s,~)A1(s,~) + B2(s,~) · 

Hence, again applying Lemma 4.13 to (12.45), we find that x1(t) = x2(t) 
(P-a.s.) for any t, 0::::; t::::; T. From this we obtain: 

p { SUp lx1(t)- X2(t)l = 0} = 1. 
o::;t::;T 

0 

Note. As proved above, "'t• 0 ~ t ~ T, is the unique continuous solution 
of Equation (12.43). Let us show that if P('ro > 0) = 1, then P{inft::;T "'t > 
0} = 1. 

Indeed, by virtue of continuity, "'t is greater than 0 for sufficiently small 
t > 0. Set r = inf(t ::::; T : "'t = 0), taking r = oo if inft<T "'t > 0. Then, for 
t < r 1\ T, the values 8t = "'t 1 are defined which satisfy the equation 

(12.46) 

where 

Therefore, P{ r ::::; T} = 0. In other words, 

inf "'t = (sup8t)-l > 0 (P-a.s.). 
t::;T t::;T 
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12.2.2. In deducing filtering equations for a process (0, e) it was assumed that 
this process was a solution to Equations {12.1) and {12.2) for some Wiener 
processes W1 and W2. It was not, however, assumed that the process {O,e) = 
{Ot,et), 0 ~ t ~ T, was a strong solution (i.e., .rfo,eo,Wt,W2 -measurable at 
any t) of this system of equations. 

It is easy to bring out the conditions under which this system has a unique 
continuous strong solution. 

Theorem 12.4. Let g(t, x) denote any of the nonanticipative functionals 
ai(t, x), Ai(t, x), bi(t, x), B(t, x), i = 0, 1, j = 1, 2, 0 ~ t ~ T, x E Cr. 
Assume that: 

{1} for any x, y E Cr, 

Jg(t, x)- g(t, y)J 2 ~ L1 lot (xs- Ys) 2dK(s) + L2(xt- Yt) 2; 

{2} 

where K ( s) is some nondecreasing right continuous function, 0 ~ K ( s) ~ 
1, and L1, L2 are constants; 

{3} 

lal(t,x)l ~ L1. IA1(t,x)l ~ L2; 

{4) M(05n + e5n) < oo for some integer n ~ 1. 

Then the system of equations given by {12.1} and {12.2} has a continuous 
strong solution. This solution is unique, and SUPo$;t~T M(Ofn + e;n) < 00. 

PROOF. The theorem can be proved in the same way as in the one- dimen­
sional case (Theorem 4.9). D 

12.2.3. We shall discuss now the question of the equivalence of a-algebras 
.rff and .rfo,W, 0 ~ t ~ T, where W = (Wt,.rff) is a Wiener process with the 
differential (see (11.27)) 

(12.47) 

According to (12.29), (12.30) and (12.47), the processes mt, et, /t, 0 ~ t ~ 
T, form a weak solution of the system of equations 
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dmt = [ao(t, e) + a1 (t, e)mt]dt + [ ~(t, e) + 'Y~tt~~;)] dWt, 

llet = [Ao(t,e) + At(t,e)mt]dt + B(t,e)dWt, (12.48) 

[ ( ) b2(t,e> A < >I] 2 > A~(t,e> 2 i't = 2 a1 t,e - B(t,e) 1 t,e 'Yt + b1(t,e - B 2(t,e) 'Yt, 

for given mo = M(Ooleo}, eo, and 'Yo = M[(Oo- mo)2leo]. 
Let us investigate the problem of the existence of a strong solution to 

this system of equations. A positive answer to this problem will enable us 
to establish the equivalence of 0"-algebras n and ;rto,W' 0 ::::; t ::::; T, which, 
in its turn, will imply that the (innovation) processes wand eo contain the 
same information as the observable process e. 

Theorem 12.5. Let the functionals ai(t,x), Ai(t,x),b;(t,x), B(t,x), i = 0, 1, 
j = 1, 2, satisfy {1} and {2) of Theorem 12.4. Let also 'Yo = 'Yo(x), 
ai(t, x), Ai(t, x), b;(t, x) and B-1(t, x) (i = 0, 1; j = 1, 2} be uniformly 
bounded. Then the system of equations given by {12.48) has a unique strong 
(i.e., ,r;no,-yo.~o.w -measurable for each t) solution. In this case 

J1 = J=to,W, 0::::; t::::; T. (12.49} 

PROOF. Let x E CT. Let 'Yt = 'Yt(x) satisfy the equation 

'Yt(x) = 'Yo(x) +lot [2at(s,x)'Y8 (x) + b~(s,x)- ~~~::~~ -y;(x)] ds. (12.50) 

Equation (12.50) is a Ricatti equation and its (nonnegative continuous) 
solution exists and is unique for each x E CT (compare with the proof of 
Theorem 12.3). It is not difficult to deduce from {12.50) that 

'Yt(x) ~ exp {lot alt{s, x)ds} { 'Yo(x)+ 1t exp [ -218 a1(u, x)du] b~(s,x)ds}. 
By virtue of the assumptions made above it follows that the 'Yt(x) are uni­
formly bounded over x. 

We shall show that the function 'Yt(x) satisfies the Lipschitz condition 

ht(X) - 'Yt(Y)I 2 ::::; L 1t lxs- 'YsldK(s}, Xo =Yo 

for a certain nondecreasing right continuous function K(s}, 0::::; K(s) ::::; 1. 
From {12.50) we obtain 
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'Yt(x)-'Yt(Y) = 1t{ 2[ih(s,x)rs(x)-al(s,y)rs(Y)] 

[ 2 ) 2 ( )] [A~(s, x) 2 A~(s, y) 2 ( )] }d + bl(s,x -bl s,y - B2(s,x) 'Ys(x)- B2(s,y) 'Ys y s. 

(12.51) 

Due to (1) of Theorem 12.4 

ia1(t,x)rt(x)- al(t,y)'Yt(Y)I2 

:=:; 2ri(x)iai(t,x)- a1(t,y)l2 + 2lai(t,xWirt(x)- 'Yt(Y)I2 

:=:; do fotixs-Ysl 2dK(s)+dllxt-Ytl2+d2i'Yt(X)-'Yt(YW, (12.52) 

where do, d1 and d2 are constants whose existence is guaranteed by uniform 
boundedness of the functions al(t,x) and 'Yt(x), X E Cr. 

Similarly, 

(12.53) 

and 

I A~(t,x) 2 ( ) _ A~(t,y) 2 ( )I 
B2(t, x) 'Yt x B2(t, y) 'Yt y 

:=:; ds1t ixs-Ysi2dK(s)+d6ixt-Ytl2+d7i'Yt(x)-'Yt(YW· (12.54) 

From (12.51)-(12.54) we find that 

I'Yt(x)- 'Yt(Y)I 2 :=:; dafot [1 8 (xu- Yu)2dK(u)] ds 

+dg1t (xs- Ys) 2ds + d10 1t i'Ys(x)- 'Ys(Y)I2ds 

:=:; daT lot (xs- Ys) 2dK(s) + dg1t (xs- Ys) 2ds 

+d10 1t i'Ys(x)- 'Ys(Y)I 2ds. 

Hence, by Lemma 4.13, 

I'Yt(x)- 'Yt(Y)I2 :=:; [dsT 1t (xs- Ys) 2dK(s) + dg1t (x 8 - y8 ) 2ds] ed10t 

:=:; dn 1t (xs- Ys) 2dK(s), (12.55) 
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where 

- K(s) + s d T 
K(s) = K(T) + T' du = e 10 [d8T + d9)(K(T) + T). 

Let us consider now the first two equations of the system of equations 
given by {12.48), with 'Yt = 'Yt(e) substituted, being, as it was shown above, a 
continuous uniformly bounded solution of the third equation of this system: 

dmt = [ao{t,e) + at(t,e)mt]dt + [bt{t,e) + i(~·:1 'Yt(e)] dWt 

det = [Ao{t,e) + At(t,e)mt]dt + B(t,e)dWt. {12.56) 

According to the assumptions of the theorem and the properties of the 
functional 'Yt(x) established above, the system of equations given by {12.56) 
has a unique strong (i.e., _r;no•eo,W_measurable for any t) solution (see 
the note to Theorem 4.6). But mo = M(Ooleo) is .ra-measurable. Hence 
.r;no.eo,W = .r;o.W, 0:::; t :::; T. Therefore, et is .r;o.W -measurable, for any t. 

Thus J1 ~ :Ffo.w. The correctness of the reverse inclusion J1 2 .rfo,W, 
follows from the construction of the innovation process W (see {12.47)). 0 

Note 1. Note that in the Kalman-Bucy scheme 

ao(t, x) = ao(t) + a2(t)xt, a1 {t, x) = a1 (t), 

Ao(t,x) = Ao(t) + A2(t)xt, At{t,x) = At{t), 
B(t, x) = B(t), bi(t, x) = bi(t), i = 1, 2. 

{12.57) 

In this case the coefficients in the equation determining 'Yt are determin­
istic functions, and the equations for mt and et have the following form 

dmt = [ao(t) + at(t)mt + a2(t)et]dt + [bt(t) + A~~i;t] dWt, 

det = [Ao(t) + At(t)mt + A2(t)et]dt + B(t)dWt. {12.58) 

This system has a unique strong solution under the same assumptions 
under which the Kalman-Bucy filtering equations were deduced {see {10.10), 

(10.11)). Hence, in this case :Ff = .r;o.w, 0:::; t:::; T. 

Note 2. The equality :Ff = ;:eo,W remains valid also in the case of multi­
dimensional processes 8 and e (with explicit modifications in the conditions 
of Theorem 12.5 due to the multidimensionality). These matters will be dis­
cussed in the next section. 
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12.3 Optimal Filtering Equations in Several Dimensions 

Let us extend the results of the previous sections to the case where each of 
the processes 8 and e is vectorial. 

12.3.1. Assume again that we a given a certain (complete) probability space 
( {l, :F, P) with a nondecreasing right continuous family of sub-u-algebras 
(:Ft), 0 ~ t ~ T. Let W1 = (Wl(t),:Ft) and W2 = (W2(t),:Ft) be two mutu­
ally independent Wiener processes, where W1(t) = [W11 (t), ... , W1k(t)] and 
W2(t) = [W21(t), ... , W21(t)]. 

The partially observable random process 

(e,e)=[(el(t), ... ,ek(t)),(6(t), ... ,et(t)),:Ft], o~t~r, 

will be assumed to be a diffusion-type process with the differential 

2 

d(}t = [ao(t, e)+ al(t, e)Ot]dt + L bi(t, e)dWi(t), 
i=l 

2 

det = [Ao(t,e) + Al(t,e)et]dt + :L Bi(t,e)dWi(t). 
i=l 

Here elements of the vector functions (columns) 

ao(t, x) 
Ao(t, x) 

(aol(t, x), ... , aok(t, x)), 
(A01 (t, x), . .. , A01(t, x)) 

and matrices 

a1(t,x) = llaU)(t,x)ll(kxk)• 

b1(t,x) = llb~}l(t,x)ll(kxk)• 

B1(t,x) = IIB~l(t,x)ll(lxk)• 

A1(t,x) = IIAW(t,x)ll(lxk)• 

b2(t,x) = llb~I)(t,x)ll(kxl)• 

B2(t,x) = IIBi:)(t,x)ll(lxl) 

are assumed to be measurable nonanticipative functionals on 

{[o, T] x c~, B1o,r1 x B~ }, x = (x1, ... , x1) E c~. 

(12.59) 

(12.60) 

The following conditions (1)-(7) are the multidimensional analog of 
(11.4)-(11.11), essentially used in proving Theorems 11.1 and 12.1 (x E C~, 
indices i and j take all admissible values): 

(1) 

iT [laoi(t,x)l + la~})(t,x)l + (b~}l(t,x)) 2 + (b~I\t,x)) 2 
+(B~)(t,x))2 + (B~)(t,x))2]dt < oo; 
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(2) 

1T[(Aoi(t,x))2 + (A~~)(t,x))2]dt < oo; 

(3) the matrix B o B(t,x) = Bl(t,x)Bi(t,x) + B2(t,x)B2(t,x) is uniformly 

nonsingular, i.e., the elements of the reciprocal matrix are uniformly 

bounded; 
(4) if g(t,x) denotes any element of the matrices B1(t,x) and B2(t,x), then, 

for x,y E C~, 

(5) 

(6) 

(7) 

g2(t,x) ~ L1 lot (1 + lxsl2)dK(s) + L2(1 + lxtl2), 

where lxtl2 = x~(t) + · · · xl(t) and K(s) is a nondecreasing right contin­

uous function, 0 ~ K(s) ~ 1; 

MIBj(t)l < oo, 0 ~ t ~ T; 

P { foT(A~~l(t,e)mj(t))2dt < oo} = 1, 

where mi(t) = M[Bj(t)!Fz]. 

12. 3. 2. A generalization of Theorem 11.1 to the multidimensional case is the 

following. 
Theorem 12.6. Let conditions {1)-(7) be satisfied and, with probability 
one, let the conditional distribution2 Fe0 (ao) = P(Bo ~ aoleo) be (P-a.s.) 

Gaussian, N(mo, 'Yo), where the vector mo = M(BoiFg) and the matrix 

'Yo = M[(Bo - mo)(Bo - mo)*l.r5J is such that Tr-yo < oo (P-a.s.). Then 
a random process (B,e) = [(B1(t), ... ,Bk(t)),(6(t), ... ,el(t))] satisfying the 
system of equations given by {12.59} and (12.60} is conditionally Gaussian, 
i.e., for any tj, 0 ~ t0 < t 1 < · · · < tn ~ t, the conditional distribution 

2 For 00 = {01 (0), ... ,lh(O)} and ao = (a01, ... ,aok), {Bo::; ao} is understood as 
the event {81(0)::; ao1, ... ,8k(O)::; aok}· 
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Fe~(ao, .. . ,an)= P{Ot0 ~ ao, .. . Otn ~ aniJ1} 

is (P-a.s.) Gaussian. 

The proof of this theorem is analogous to the proof of Theorem 11.1. 
Hence we shall discuss only particular details of the proof which can present 
difficulties due to the multidimensionality of these processes. 

First ofall note that we can consider in (12.60)' Bt(t,x) = 0 and B2(t,x) = 
B(t, x) since, due to Lemma 10.4, there exist mutually independent Wiener 
processes 

such that 

(12.61) 

where 

D(t, x) = .j(B o B)(t, x), 
d2(t, x) = (b o B)(t, x)(B o B)-112(t, x), (12.62) 

d1(t, x) = [(b o b)(t, x)- (b o B)(t, x)(B o B)-1(t, x)(b o B)*(t, x)] 112 

with 

BoB= BtBi +B2Bi, boB= btBi +b2B2, bob= btbi +b2b2. 

Next, if ft(00 , W11 e) is a (scalar) _rfo,Wt,e_measurable function with 
Mlft(Oo, Wt.e)l < oo, then there is a Bayes formula (compare with {11.35)) 

M(/t(Oo, Wt.e)IJ1) = { { ft(a,c,e)Pt(a,c,e)dJ.tw(c)dFeo(a), {12.63) 
J.JRk lo~ 

where a E JRk, c E C~, J.tw is a Wiener measures in (C~,B~) and 

Pt(a,c,e) = exp{ fot[At(s,e)(Qs(a,c,e)- ms(e))J*(B*(s.e))-1dWs 

-~ fot[At(s,e)(Qs(a,c,e)- ms(e))]*(B{s,e)B*{s,e))-1 

x[At{s,e)(Qs{a,c,e)- ms(e))]ds }· {12.64) 
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Here: 

Wt =lot B-1(s,e)des -lot B-1(s,e)[Ao(s,e) +Al(s,e)ms(e)Jd(12.65) 

is a Wiener process (with respect to (.rf), 0 $ t $ T); 

Qt(a,wbe) = Pt(e)[a+ lot P:;- 1 (e)ao(s,e)ds 

and 

+lot P:;- 1(e)bl (s, e)dWl (s)+ lot P:;- 1(e)b2(s, e)B-1(s, e)des] 

dP~~e) = al(t,e)Pt(e), Po(e) = Eckxk)i 

ao(t, x) = ao(t, x)- b2(t, x)B- 1(t, x)A0(t, x), 

a1(t,x) = a1(t,x)- b2(t,x)B-1(t,x)A1(t,x). 

With the help of (12.63), and in the same way as in the case of the one­
dimensional processes (} and e' first we verify normality of the conditional 
distributions 

0 $ to $ · · · $ tn $ t, and second we establish normality of the distributions 

P(Bt0 $ ao, ... , Btn $ an 1Ft~). 

12.3.3. Assume also that in addition to (1)-(7), the following conditions are 
satisfied 

(8) 

(9) 

(10) 

k 

M L Bf(o) < oo. 
i=l 
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The following result is the multidimensional analog of Theorems 12.1 and 
12.3 

Theorem 12.7. Let conditions (1}-(10} be satisfied. Then the vector mt = 

M(Otl.r!) and the matrix 'Yt = M{(Ot- mt)(Ot- mt)*l.r!} are unique con­
tinuous :Ff -measurable for any t solutions of the system of equations 

dmt = [ao(t, e)+ a1 (t, e)mt]dt + [(b o B)(t, e)+ 'YtAi(t, e)J(B o B)-1(t, e) 

x[det- (Ao(t,e) + A1(t,e)mt)dt], (12.66) 

'Yt = a1 (t, eht + 'Ytai(t, e) + (b o b)(t, e) - [(b o B)(t, e) + 'YtAi(t, e)] 
x (B o B)-1(t, e)[(b o B)(t, e)+ 'YtAi(t, e)]* (12.67) 

with initial conditions mo = M(Ooleo), 'Yo= M {(Oo -mo) x (Oo -mo)*leo}. If 
in this case the matrix 'Yo is positive definite, then the matrices "ft, 0 ~ t ~ T, 
will have the same property. 

PROOF. In this theorem the proof of the deduction of Equations (12.66) and 
(12.67) corresponds to the pertinent proof of Theorem 12.1 carried out for 
the components 

and 

The uniqueness of solutions of the system of equations given by (12.66) and 
(12.67) is proved as in Theorem 12.3. 0 

Let us discuss the proof of the last statement of the theorem. We shall 
show that the matrices 'Yt have inverses Ot = 'Yt-1, 0 ~ t ~ T. It is seen that 
for sufficiently small t = t(w) such matrices exist due to the nonsingularity 
of the matrix 'Yo and the continuity (P-a.s.) of the elements of the matrix 'Yt 
in t. 

LetT= inf{t ~ T: det'Yt = 0}, with T = oo if info<t<T det'Yt > 0. Then 
fort < T 1\ T the matrices Ot = 'Yt1 are defined. Note no...;; that fort < T 1\ T, 

d d . . . -1" 
0 = dt E = dt ("ftOt) = "ftOt + "ftOt = "ftOt + 8t 8t. 

Hence 
(12.68) 

Taking into account Equation (12.67), we obtain from this that for t < 
r/\T 
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8t = -ai(t,e)tSt- btiit(t,e) + Ai(t,e)(B o Br1(t,e}At(t,e) 

where 

-tSt[(b o b)(t,e>- (b o B)(t,e)(n o n}-1(t,e}(b o B)*(t,e)JtSt. 
(12.69) 

iit(t, x) = a1(t, x) - (b o B)(t, x)(B o B)-1(t, x)A1(t, x). 

On the set { w : T :::; T} the elements of the matrix bt must increase 
as t t T. We shall show that actually all the elements of the matrix bt are 
bounded. 

Denote by Gt(e) a solution of the matrix differential equation 

(12.70) 

The matrix Gt (e) being a fundamental matrix, it is, as is well known, 
nonsingular. 

Let Vt = Gt(e)otGt(e). Then from (12.69) and (12.70), fort< rAT we 
find 

"Vt = a1(t, e>Vt + Ytai(t, e> + Gt(e){ -ai(t, e)tSt- ota1(t, e> 
+Ai(t, e)(B o B)-1(t, e)At(t, e) 

-tSt[(b o b)(t, e> - (b o B)*(t, e><n o n)-1(t, e)(b o B)*(t, e>ltSt}a;(e). 
(12.71) 

Since the matrix bob-(boB)(BoB)-1(boB)* is symmetric and nonnegative 
definite, we obtain from (12.71} 

TrYt:::; TrVo + 1T Tr{Gs(e)Ai(s,e)(B oB)-1(s,e)At(s,e)a:(e)}ds, 

which together with the nonsingularity of the matrix Gt (e) proves the bound­
edness (P-a.s.) of elements of the matrix Ot. Therefore P(r:::; T) = 0. 

12.3.4. We shall present, finally, the multidimensional analog of Theorem 12.2. 

Theorem 12.8. Let fJ = (9t, ... , fJk) beak-dimensional mndom variable with 
I::=t MfJt < oo. Assume that the observable process et = (et(t), ... ,ez(t)), 
0 :::; t :::; T, has the differential 

dez = [Ao(t,e) + At(t,e)fJJdt + B(t,e)dW2(t), 

where the coefficients A0 , A 11 B satisfy the conditions of Theorem 12.6 and 
the conditional distribution P(fJ:::; aleo) is Gaussian, N(mo, 'Yo). Then mt = 
M(9tiJ1) and 'Yt = M[(fJ- mt)(9- mt)*l.ril are given by the formulae 
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mt = [E+/'o 1t Ai(s,~)(B(s,~)B*(s,~))- 1A1 (s,~)ds]-l (12.72) 

x [mo+/'o 1tAi(s, ~)(B(s, ~)B*(s, ~))- 1 (~8 -Ao(s, ~)ds)] , 

/'t = [E + /'o 1t Ai(s, ~)(B(s, ~)B*(s, ~))- 1 A1 (s, ~)ds] -l /'O· {12.73) 

The proof is similar to the pertinent proof of Theorem 12.2. 

12.4 Interpolation of Conditionally Gaussian Processes 

12.4.1. We shall consider the ( k + i)-dimensional random process ( 0, ~) = 
[{{It (t), ... , Ok(t)), (6 (t), ... , (z(t) )], governed by the system of stochastic dif­
ferential equations (12.59) and (12.60), and satisfying (1)-(10). Let the con­
ditional distribution P(Oo ~ al~o) be Gaussian, N(mo, /'o). Then, due to 
Theorem 12.6, the conditional distribution P(Os ~ ai.rf), s ~ t, is (P-a.s.) 
Gaussian with parameters 

m(s, t) = M(OsiFf), 

f'(s, t) = M[(08 - m(s, t))(Os -.m(s, t))*l.rfJ. 

It is clear that the components mi(s, t) = M[Oi(s)l.rfJ of the vec­
tor m(s, t) = [mt(s, t), ... , mk(s, t)J are the best (in the mean square 
sense) estimates of the components ()i(s), i = 1, ... , k of the vector 08 = 
[Ot(s), ... , Ok(s)] from the observations ~b = {~8 , s ~ t}. 

In this section we shall deduce forward (overt at fixed s) and backward 
(over s at fixed t) equations (of interpolation) for m(s, t) and l'(s, t). Let 
me.(t,s) = M((hi.r1•·e) and 

l'(t, s) = M[(Ot- me. (t, s))(Ot- me. (t, s))*i.r1••e]. 

According to the multidimensional analog of Note 3 to T~eorem 12.1, 
me. (t, s) and l'(t, s) satisfy fort~ s the system of equations (compare with 
(12.66), (12.67)) 

dtme. (t, s) = [ao(t, ~) + (a(t, ~)- l'(t, s)c(t, ~))me. (t, s)Jdt 
+[(boB)(t, ~)+l'(t, s)Ai(t, ~)J(BoB)- 1 (t, ~)[d~t-Ao(t, ~)dt], 

(12.74) 

df'~; 8 ) = a(t, ~)l'(t, s) + l'(t, s)a* (t, ~) + b(t, ~)- l'(t, ~)c(t, ~)l'(t, ~), {12. 75) 

where 
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a(t,x) = a1(t,x)- (boB)(t,x)(BoB)- 1(t,x)A1(t,x), 
b(t, x) = bob(t, x)-(boB)(t, x)(BoB)-1(t, x)(boB)*(t, x), (12.76) 

c(t,x) = Ai(t,x)(B o B)-1(t,x)At(t,x). 

The system of equations given by {12.74) and {12.75) can be solved under 
the conditions m9. (s, s) = 98 , -y(s, s) = 0 (zero matrix of the order (kxk)) and 
has, as has the system of equations given by {12.66) and {12.67), a unique 
continuous solution. From this it follows, in particular, that -y( t, s), as the 
solution of Equation {12.75) with -y(s, s) = 0, does not depend on 98 • 

12.4.2. In deducing equations for m(s, t) and -y(s, t) the following two lemmas 
will be employed. 

Lemma 12.2. Let the matrix cp!(e), t 2:: s, be a solution of the differential 
equation 

(12.77) 

with cp:(e) = E(kxk)• 

q!(e) = 1t (cp~(e))- 1 [ao(u, e)du + {(b o B)(u, e)+ -y(u, s)Ai(u,e)} 

x(B o B)-1(u,e){tteu- Ao(u,e)du}]. (12.78) 

Then 
{12.79) 

PROOF. It is easy to convince oneself of the validity of (12. 79) if one applies 
the Ito formula. 0 

Lemma 12.3. Let 0 :$ s :$ t :$ T. Then 

mt = cp!(e)[m(s, t) + q!(e)] (P-a.s.), 

'Yt = -y(t, s) + cp!(e)'Y(s, t)(cp!(e))* {P-a.s.) 

PROOF. Since J1 ~ J1··e, then 

mt = M(9ti:Ff) = M[M(9tiJ1··E)IJ1J = M(mB.(t, s)i:Ff). 

Note that the elements of the vector XN~P!(e)9s, where 

are integrable. Hence 

XNM[mB.(t, s)IJ1J = M[XN~P!(e)(9s + q!(e))IJ1] 
= XN~P!(e)[m(s, t) + qHe)J, 

(12.80) 

(12.81) 

(12.82) 
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which together with (12.82) proves the representation given by (12.80). 
Next, since 

M[(Bt- mo. (t, s))(mo. (t, s)- mt)*l.rf••e] = 0 (P-a.s.) 

it follows that 

'Yt = M[(Bt- mt)(Bt- mt)*l.rf] 

= M { [(Bt- mo. (t, s)) +(mo. (t, s)- mt)] 

x[(Bt- mo.(t,s)) + (mo.(t,s)- mt)]*l.rf} 

= M{M[(Br- mo. (t, s))(Bt- mo. (t, s))*l.rf"ell.rf} 

+M{(mo. (t, s)- mt)(mo. (t, s)- mt)*l.rf} 

= -y(t,s) + M{(mo.(t,s)- mt)(mo.(t,s)- mt)*l.rf}. (12.83) 

Noting that 

we find 

mo. (t, s)- mt = <p~(e)[es + q!(e)] - <p~(e)[m(s, t) + q!(e)] 
= <p~(e)[es- m(s, t)], 

M {(mo. (t, s)- mt)(mo. (t, s) - mt)*IFl} 

= cp~(e)M[(Bs- m(s, t))((Bs- m(s, t))*l.rf](<p~(e))* 
= cp~(eh(s, t)(cp~(e))*. 

Together with (12.83) this proves (12.81). 0 

12.4.3. From (12.80) and (12.81) it is easy to obtain representations for 
m(s, t) and -y(s, t) which illustrate how these interpolation characteristics 
change with the change oft. 

Theorem 12.9. Let {1)-{10) be satisfied, and let the conditional distribution 
P(Bo S aleo) be Gaussian. Then m(s, t) and -y(s, t) permit representations 

m(s, t) = ms + 1t -y(s,u)(cp~(e))* Ai(u,e)(B o B)- 1(u,e) 

x[deu- (Ao(u,e) + Al(u,e)mu)du], {12.84) 

-y(s, t)= (E+'Ys 1t(cp~(e))* Ai(u, e)(BoB)- 1(u, e)Al (u, e)cp~(e)du) -l 'Ys· 

{12.85) 
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PROOF. From (12.80) we find 

m(s, t) = (cp!(.;))- 1mt- q!(.;). (12.86) 

The matrix cp~(.;) is fundamental. Hence an inverse matrix (cp~(.;))- 1 ex­
ists and, according to (12.77), at t;::: s 

d(cp!~;n- 1 = -(cp!(.;))- 1[a(t,.;)- 'Y(t, s)c(t,.;)] 

with (cp:(.;))-1 = E(kxk)· 

From (12.86), (12,.87) and (12.29) we find by the Ito formula 

(12.87) 

m(s, t) = m8 + 1t (cp~(.;))- 1 ['Yu- f'(U, s)]Ai(u,.;)(B o B)-1(u,.;) 

x[d.;u- (Ao(u,.;) +Ao(u,.;)m,.)du]. (12.88) 

But, due to (12.81), 

(cp~(.;))- 1 [1',.- f'(u, s)] = ')'(s, u)(cp~(.;))*. 

Substituting this expression into (12.88) we arrive at the representation 
sought, i.e., (12.84). 

We shall now prove (12.85). From (12.81) we obtain 

(12.89) 

Differentiating the right-hand side in (12.89) and taking into account 
(12.30), (12.87) and (12.75), after simple transformations we find that 

(12.90) 

Equation (12.90) is a Ricatti equation, a solution of which exists and 
is unique. In order to solve it, let the matrices Ut, t ;::: s, be given by the 
formulae 

These matrices are nonsingular, and 

dut- 1 
-1 ( t ( ) ) • ( ) t ( ) -1 --;u- = -Ut 'Ys cp8 .; c t,.; cp8 .; Ut , 

From this we obtain 

where U; 1'Ys = 'Ys· 
Comparing (12.90) and (12.91) we find 

u- 1 =E. 
8 

(12.91) 
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-y(s, t) = ut-l'Ys. 

which proves the required representation given by (12.85). 0 

Note. Together with (12.90) the equation for m(s, t) obtained from 
(12.84), is called the forward equation of optimal nonlinear interpolation. 

12.4.4. Let us deduce now for m(s, t) and -y(s, t) representations indicating 
how they must be changed for s t t. 

Theorem 12.10. Let {1}-{10}, be satisfied and let the conditional distribu­
tion P(9o :5 al~o) be Gaussian, N(mo,'Yo). In addition, let 

p { inf det')'t > o} = 1. 
O::;;t~T 

Then 

m(s, t) = mt-lt[ao(u,~)+at(u,~)m(u, t)+b(u,~)'Y; 1 (m(u, t)-mu)]du 

-1t(boB)(u,~)(BoB)- 1 (u,~)[a,eu- (Ao(u,~) 
+A1 (u, ~)m(u, t))du], (12.92) 

-y(s,t) = 'Yt-1t{[a(u,~)+b(u,~)'Y; 1]'Y(u,t) 

+-y(u, t)[a(u,~) + b(u,~)'Y; 1]*- b(u, ~) }du, 

where a(u, x) and b(u, x) are given by (12. 76). 

(12.93) 

In order to prove this theorem we shall establish as a preliminary the 
following two lemmas. 

Lemma 12.4. Let P{inft<Tdet-yt > 0} = 1, and let the matrix R!(~) be a 
solution of the system of differential equations 

(12.94) 

Then 
(12.95) 

PROOF. Let U! = -y(s, t)(<p!(~))•. Then, due to (12.90), and {12.77), 
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dUt 
d/ -')'(s, t)(<p;(e))*c(t, e)<p~(e)'r(s, t)(<p;(e))* 

+')'(s, t)(<p~(e))*[a(t,e)- "Y(t, s)c(t,e)]* 

= U!a*(t,e)- U!c(t,e)[<p;(eh(s,t)(<p;(e))* +"Y(t,s)]. 

But, according to (12.81), 

Hence 

d~! = U![a*(t,e)- c(t,eht]· (12.96) 

Let v; be a fundamental matrix solution of (12.96), i.e., let 

d':f = v;[a*(t,e)- c(t,e)'rt], v88 = E(kxk)· (12.97) 

Since V8t = VJ(V0)-1 and the matrix (V0)-1 is a solution of the system 

of equations 

the matrix v8t is differentiable in s and, for s < t, 

(12.98) 

But 

U! = u:v; = ')'8 V8t, 

where ')'8 and V8t are differentiable in s. Hence, the matrix U! is also differ­
entiable in s and 

dU! _ d"Y 8 vt dV8t 
ds - ds 8 + "Y 8 ds · 

From (12.30), in the notation of (12.76) we have 

~~ = a(s,eh8 + "Ysa*(s,e) + b(s,e)- "Ysc(s,ehs, 

which, together with (12.97), yields 

dUt 
dss [a(s,ehs + ')'sa*(s,e) + b(s,e)- ')'sC(S, ehsl~t 

-"Ys(a*(s,e)- c(s,ehs)V8t 

= [a(s, e)+ b(s, eh; 1]U!. 

(12.99) 

(12.100) 
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From {12.94} and {12.100} it follows that Uf = R~U!. But Uf = 'Yt; hence 
U! = (R!}-1'Yt 1 which proves {12.95). D 

Lemma 12.5. Let {Ft), 0 :::; t :::; T, be a nondecreasing family of a-algebras, 
let W = (Wt, .1't) be a Wiener process, and let a = (at, Ft) and b = (bt, .1't) 
be random processes with J{ latidt < oo, J0T b~dt < oo (P-a.s.). Then, for 
0 :5 s :5 t :5 T, 

lo8 audu lt budWu = lo
8 

[1t bvdWv] du-lo8 [lou avdv] budWu. {12.101} 

PROOF. It is obvious that 

lo8 audu lt budWu = lo8 audu lot budWu - lo8 audu lo8 budWu. {12.102} 

By the Ito formula, 

lo
8 

audu lo
8 

budWu = lo8 [lou bvdWv] audu + lo8 [lou avdV] budWu, 

hence the right-hand side in {12.102} is equal to 

lo
8 

audu lot budWu - lo
8 [lou bvdWv] audu- lo

8 [lou avdv] budWu 

= lo8 
au [1t bvdWv] du - lo

8 [lou avdv] budWu, 

which proves {12.101}. D 

12.4.5. 
PROOF OF THEOREM 12.10. According to {12.84} and {12.95}, 

m{s, t) = m8 + lt [R:(e)]-1'YuAi{u,e)(B 0 B)-ll2(u,e}dW Ul {12.103} 

where 

dW u = (B o B}_1, 2{u,e)[deu- (Ao(u,e) + Al{u,e)mu}du]. 

The matrix R~(e) is fundamental. Hence Rg(e) = Rg(e)R:(e}, and, there­
fore, 

{12.104} 

From {12.103} and {12.104} we find 

m{s, t) = ms +~(e) lt [R.Q(e)r1'YuAi (u, e)(BoB)-112 ( u, e}dW u· {12.105} 
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Next, from (12.94) and Lemma 12.5 we obtain 

ds [Rg(.n lt (R0(e))-11'uAi(u,e)(B o B)-112 (u,e)dW u J 

·= (a(s,e) + b(s,eh;-1] 

x [Rg(e) 1t(R0(e))- 11'uAi(u,e)(BoB)-112 (u,e)dWu] ds 

-')'sAi(s, e)(B o B)-112 (s, e)dWs 

= [a(s, e)+ b(s, eh;1][m(s, t) - ms]ds- l'sAi(s, e)(B 0 B)-112(s, e)dW S· 

But (see (12.29)) 

dms = [ao(s, e) +at (s, e)ms]ds + (b o B)(s, e)(B o B)-112(s, e)dW s 

+l'sAi(s,e)(B o B)-112 (s,e)dW 8 • 

Consequently, 

dsm(s, t) = [ao(s, e)+ a1 (s, e)ms]ds + (b o B)(s, e)(B o B)- 112 (s, e)dW s 

+[a(s, e)+ b(s, eh;1][m(s, t) - ms]ds 

= [ao(s,e) +a1(s,e)m(s,t)]ds 

+(b o B)(s, e)(B o B)-1(s, e) 

x[des- (Ao(s,e) +A1(s,e)m(s,t))ds] 

+[a(s, e)+ b(s, eh;1][m(s, t) - ms]ds 

-al (s, e)[m(s, t) - ms]ds 
+(b o B)(s, e)(B o B)-1(s, e)Al(s, e)[ms - m(s, t)]ds. 

According to (12.76) 

[a(s,e) + b(s,e)/';1]- al(s,e) 

-(b o B)(s,e)(B o B)-1(s,e)Al(s,e) = b(s,eh;1. 

Therefore, 

d8 m(s, t) = [ao(s,e) + a1(s,e)m(s, t)]ds + b(s,eh;1[ms- m(s, t)]ds 

+(b o B)(s,e)(B o B)- 1(s,e) 

x[des- (Ao(s,e) +A1(s,e)m(s,t))ds], 

which proves (12.92). 
Next let us deduce Equation (12.93) for ')'(s, t). From (12.95) and (12.90) 

we obtain 

f'(s, t) = l's- Rg(e) lt (RQ(e)t1f'uc(u, ehu[(Ro(e))*t1du(Ro(e))* · 

(12.106) 
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Differentiating (12.106) with respect to s, and taking into account (12.99) 
and (12.94), we find that 

d-y(s, t) 
ds = a(s,()'Ys +-y8 a*(s,() + b(s,() 

--ysc(s, ehs- [a(s, () + b(s, ()'Y; 1JI'Ys- -y(s, t)] 
-['Ys- -y(s, t)j[a(s, () + b(s, ()'Y; 1j* + "fsC(s, ()'Ys 

= [a(s,() + b(s,()'Y; 1]'Y(s, t) + -y(s, t)[a(s,() + b(s,()'Y; 1]* 
-b(s, (). 

D 

Note 1. Equations (12.92) and (12.93) are linear with respect to m(s, t) 
and -y(s, t). Hence uniqueness of continuous solutions can be established in a 
standard manner. 

Note 2. If (b o B)(t, x) = 0, then Equations (12.92) and (12.93) become 
essentially simpler: 

m(s,t) = mt-1t{ao(u,()+a1(u,()m(u,t) 

-(b o b)(u,()'Y~ 1 [m(u, t)- mu] }du, (12.107) 

-y(s,t) = 'Yt-1t{[a1(u,()+(bob)(u,()'Y~ 1 ]'Y(u,t) (12.108) 

+-y(u, t)[a1 (u, ()+(bob)(u, ()'Y~ 1]* -(bob)(u, () }du. 

Note 3. The Kalman-Bucy scheme discussed in Chapter 10 is a particular 
case of the estimation problems for conditionally Gaussian processes. Hence 
in this scheme the equations for m(s, t) and -y(s, t) also hold true. Note that 
taking into consideration the specific character of the Kalman-Bucy scheme, 
these equations can be deduced under the same assumptions as those for 
mt and 'Yt (see Theorem 10.3), requiring, in addition, nonsingularity of the 
matrices 'Yt, 0 :::; t :::; T, in deducing backward equations. 

12.4.6. Let us discuss one more class of interpolation estimates for condition­
ally Gaussian processes. 

Since the conditional distributions P(08 :::; a, Bt :::; biFl) for s :::; t are (P­
a.s.) Gaussian, then the conditional distribution P(08 :::; al.rff, Bt) will also be 
Gaussian. 
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Let 

ih[j(s,t) = M(OslFf,Ot = (3), 

.:Y{j(s,t) = M{(Os- m{j(s,t))(Os- m{j(s,t))*IJ1,0t = (3}. 

Theorem 12.11. If the conditions given by {1)-{10} are satisfied and the 
conditional distribution P(Oo :::; aleo) is (P-a.s.) Gaussian, then 

ih[j(s, t) = m(s, t) + 'Y(s, t)[cp!(e))*'Yt(f3- mt), 
.:Y{j(s, t) = 'Y(s, t)- 'Y(s, t)[cp~(e))*'Ytcp!(eh(s, t), 

(12.109) 

(12.110) 

where 'Yt is the pseudo-inverse of the matrix ')'t, and cp!(e) is defined in 
{12. 77). 

PROOF. Since 

M(OtlFf) = mt, M(OslJ1) = m(s, t), 

cov (Ot, BtlFf) = ')'t, cov (Os, BslJ1) = 'Y(s, t), 

cov (Os, BtlJ1) = M[(Os- m(s, t))(Ot- mt)*IFt], 

then, by the theorem on normal correlation (Theorem 13.1), 

ih[j(s, t) = m(s, t) + cov (Os, BtlFfht(fJ- mt), (12.111) 

i'[j(s,t) = ')'(s,t) -cov(Os,BtiFfht[cov(08 ,0tiJ1)]*. (12.112) 

We shall show that (P-a.s.) 

(12.113) 

Indeed, since 

cov (08 , BtlFl) = M[(Os- m(s, t))M {(Ot- mt)*l.rf"~}IFfJ 

and, according to {12.79) and (12.81), 

M{(Ot- mt)*l.rf"~} = {M[(Ot- mt)l.rf··~]}* = {mo.(t,s)- mt}* 

= { cp!(e)[Bs + q;(e)J- cp!(e)[m(s, t) + q!(e)]}* 
= [Bs -m(s,t)]*(cp!(e))*, 

then 

which proves (12.113). 
We obtain (12.109) and (12.110) from (12.111)-(12.113). D 
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Note 1. If in addition to the conditions of Theorem 12.11 it is assumed 
that P(info:::;t~rdet-yt > 0) = 1, then, differentiating (12.109) and (12.110) 
with respect to s, we find that 

mf3(s, t) = {3-lt[ao(u, ~)+at (u, ~)mf3(u, t)+b(u, ~h;; 1 (ihf3(u, t)-mu)]du 

-1t(boB)(u,~)(BoB)- 1 (u,~) 
x[~u- (Ao(u,~) +At(u,~)ihf3(u,t))du], (12.114) 

if3(s,t) = -1t{[a(u,~)+b(u,~)'Y;; 1 ]if3(u,t) 

+if3(U, t)[a(u, ~) + b(u, ~)'Y;; 1j*- b(u, e) }du. (12.115) 

Note 2. From (12.110) it follows that if3(s, t) does not actually depend on 
{3. 

Note 3. Consider the Gaussian Markov process (Bt), 0 $ t $ T, with the 
differential 

dOt= [ao(t) + at(t)Bt]dt + b(t)dW(t) (12.116) 

and a given Gaussian random variable Bo. Assume that the deterministic 
functions a0 ( t), a1 ( t) and b( t) are such that 

1T lai(t)jdt < oo, i = 0, 1; 

Take, for 0 :::; s $ t $ T, 

R(t) = M[Bt- r(t)] 2 , R(3(S, t) = M[(Bs- Tf3(s, t))21Bt = {Jj. 

If we assume in (12.60) that At(t,x) = 0 and B2(t,x) = 0 and observe 
that ~o does not depend on Bo, then it is not difficult to see that 

r(t) = mt, R(t) = 'Yt 

and 

rf3(s, t) = ih(3(s, t), Rf3(s, t) = if3(s, t). 

Therefore, according to (12.29) and (12.30)3 , 

3 See also Note 3 in Subsection 12.4.5. 
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r(t) = r(O} +lot [ao(s) + at(s)r(s}]ds (12.117} 

and 

R(t) = R(O} + +21ot at(s)R(s}ds +lot b~(s)ds. (12.118} 

For r13(s, t) and R13(s, t}, from {12.114} and (12.115} (on the assumption 
that info:::;t:$T R(t) > 0} we find that 

1t [ b2(u) ] r13(s,t)={3-
8 

ao(u)+at(u)rf3(u,t)+ R(u)(r/3(u,t)-r(u)) du. 

(12.119} 

1t { [ b2(u)] 1 } R13(s, t) = -2 
8 

a1(u) + R(u) R13(u, t)- 2b2 (u) du. (12.120} 

The analogs of (12.109} and (12.110} are the formulae: 

r13(s, t) = r(s) + R(s) exp (lt a1(u)du) R+(t}({3- r(t}}, (12.121} 

R13(s, t) = R(s)- R2 (s) exp ( 21t a1(u}du) R+(t). (12.122} 

12.5 Optimal Extrapolation Equations 

12. 5.1. In this section extrapolation equations for conditionally Gaussian 
processes are deduced which enable us to compute optimal (in the mean 
square sense) estimates of variables Ot, from the observations e~ = {eu. u ~ 
s }, s ~ t ~ T. Unlike the problems of filtering and interpolation considered 
above, these equations will be deduced not for a general process ((}'e) given 
by Equations (12.1} and (12.2} but only for two particular cases given below. 
The restriction of the class of processes ( (}, e) considered arises from the fact 
that the conditional distributions P(Ot ~ aiF!} fort > s are not, generally 
speaking, Gaussian. 

12.5.2. Fort~ s, let 

(12.123} 

As in the case of interpolation, equations of two types can be deduced for 
these characteristics: forward equations (in t for fixed s) and backward (in 
s t t for fixed t). We can see from the forward equations how the prediction 
of values of Ot deteriorates as t increases. The backward equations allow us 
to establish a degree of improvement for prediction of values of Ot with 'the 
increase of data', i.e., with the increase of s. Note that the backward equations 
of extrapolation could be deduced from the general equations of extrapolation 
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obtained in Chapter 8. We shall present here another and, we think, more 
natural development. 

Assume that {0,{) = (Ot,{t), 0 ~ t ~ T, is.a {k+l)-dimensional diffusion 
process with 

2 

dOt = [ao(t) + at(t)Ot]dt + L bi(t, {)dWi(t), {12.124) 
i=l 

2 

det = [Ao(t,{) + At(t,{)Ot]dt + L Bi(t,{)dWi(t), {12.125) 
i=l 

where the coefficients satisfy the conditions given by {1)-{10) with the el­
ements of the vector ao(t) and the matrix a1 (t) being deterministic time 
functions and the conditional distribution P(Oo ~ al{o) being Gaussian. 

Next let c,o! be the fundamental matrix solution of the equation 

dcp! () t dt = a1 t cpa, t ~ s, {12.126) 

with c,o: = E(kxk)· Under these assumptions we have the following. 

Theorem 12.12. Let the process (0, {) be governed by the system of equations 
given by {12.124} and (12.125}. Then for each fixed s, 0 ~ s ~ t ~ T, nt(t,s) 
satisfies the equation 

dnt(t,s) 
dt = ao(t) + at(t)nt{t, s) {12.127) 

with nt(s,s) =rna, where rna is defined by Equations (12.66} and {12.67}. 
For fixed t, 

nt(t,s) = nt{t,O)+ loa cp~[(boB)(u,{)+-yuAi(u,{)](BoB)- 1 (u,{) 
X [deu- (Ao(u,{) + At(u,{)rnu)du], {12.128) 

where rnu and 'Yu can be found from Equations {12.66} and {12.67}, and 

nt(t,O)=cp~ [rno+ fot(cp~)- 1ao(s)ds]. {12.129) 

PROOF. Let us note that 

where, according to {12.66), rnt can be represented as follows: 
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mt = m 8 + 1t[ao(u) +at(u)mu]du 

+ 1t(boB)(u,f.)+"!uAi(u,f.)](BoBt112(u,f.)dWu. {12.130) 

But 

M (1t [(b o B)(u,f,) + "/uAi(u,f,)](B o B)-112(u, f.)dW ul.r_;) = 0; 

hence, taking the conditional expectation M(·l.1"5) on both sides of (12.130), 
we arrive at Equation (12.127). 

In order to deduce {12.128), we take s = 0 in (12.130). With the help 
of the Ito formula it is not difficult to convince oneself that the (unique) 
continuous solution mt of Equation (12.130) with s = 0 can be expressed as 
follows: 

mt = cp~ [ mo + 1t (cp0)-1ao(u)du 

+ 1t (cp0)-1 [(b o B)(u,f,) + "fuAi(u, f.)](B o B)-112(u,f,)dW u l· 
From this we find that 

mt = nt(t,O)+ 18 cp~[(boB)(u,f.)+"!uAi(u,f.)](BoB)-lf2 (u,f,)dWu 

+ 1t cp~[(boB)(u,f.) +"!uAi(u,f,)](BoB)-lf2(u,f.)dWu. (12.131) 

Subtracting the conditional expectation M(·l.1"5) from both sides of 
(12.131), we obtain the desired representation, (12.128). 0 

12. 5. 3. Let it be required to extrapolate the values of f.t from f,g = { f.u, u :::; 
s}, s :5 t, along with predicting the values of fh. 

We shall again assume that the conditional distribution P(Oo :::; alf.o) is 
Gaussian and (1)-(10) are satisfied, and 

Ao(t,x) = Ao(t) + A2(t)xt, at(t,x) = at(t), At(t,x) = At(t), 

where the elements of the vectors and the matrices ai(t) and Ai(t), i = 0, 1, 2, 
are deterministic functions. In other words, let 

2 

dOt = [ao(t) + at(t)Ot + a2(t)f.t]dt + L bi(t, f.)dWi(t), (12.132) 
i=l 

2 

df.t = [Ao(t) +At (t)Ot + A2(t)f.t]dt + L Bi(t, f.)dWi(t). (12.133) 
i=l 



52 12. Optimal Nonlinear Filtering 

Next, let 41! be the fundamental matrix of the system (t > s) 

d41! = ( a1(t) a2(t) ) 4~t 
dt A1(t) A2(t) 8 ' 

where 

41! = E((k+l)x(k+l))· 

Theorem 12.13. Under the assumptions made, n 1(t, s) and n2 (t, s) (for each 
s) are solutions of the system of equations 

dt ao(t) a1(t) a2(t) n1(t, s) ( ~) '"'J:·•> ~ ( A,(t) ) + ( A1 (t) A2 (t) ) ( n2(t, s) ) 
(12.134) 

with nl(s, s) = m2, n8(s, s) = e8. 
For fixed t, 

( n1(t, s)) 
n2(t,s) 

_ (n1(t,O)) 
- n2(t, 0) 

t 41s ([(boB)(u,e)+'YuAi(u,e)](BoB)- 112(u,e)) dW 
+ lo u (BoB)lf2(u,e) u' 

(12.135) 

and 

( n1(t,O)) = 4~t ( mo) + {t 4~t ( ao(s) ) ds. 
n2(t,O) 0 eo }0 8 Ao(s) 

(12.136) 

PROOF. Taking into consideration the assumptions on the coefficients of the 
system from {12.66) and (12.133) we find that 

(~t) = (2s) + 1t (~o\~)) du+ 1t (il\~) ~~\~)) (~u) du 

+it ([(b o B)(u,e) + 'YuAi(u, e)](B o B)-112 (u,e)) dW 
8 (B o B)lf2(u,e) u· 

From this (as in proving the preceding theorem) (12.134) and {12.135) 
can easily be deduced. D 

Note. For the particular case of Equations {12.132) and (12.133) corre­
sponding to the Kalman-Bucy scheme (see Chapter 10) the forward and 
backward equations of extrapolation hold true only under the assumptions 
of Theorem 10.3 



Notes and References 53 

Notes and References. 1 

12.1-12.5. The results related to this chapter are due to the authors. They have 
been partially published in [205, 207-209]. 

Notes and References. 2 

12.1-12.5. References to other filtering models for which filtering equations 
have a 'closed form' Catl be found in Benesh [16], Daum [47], Pardoux [252] and 
Yashin [321,323]. 



13. Conditionally Gaussian Sequences: 
Filtering and Related Problems 

13.1 Theorem on Normal Correlation 

13.1.1. The two previous chapters dealt with problems of filtering, interpo­
lation and extrapolation for the conditionally Gaussian processes ( 8, e) in 
continuous timet~ 0. In the present chapter these problems will be investi­
gated for random sequences with discrete time t = 0, Ll, 2Ll, ... , having the 
property of 'conditional normality' as well. 

It should be emphasized that the complex tools of the theory of martin­
gales, taken advantage of in the case of continuous time, will not be used in 
this chapter. In essence, all the results of this chapter can be deduced from 
the theorem on normal correlation (Theorem 13.1). Hence, the reader who 
wishes to become acquainted with the theory of filtering and related problems 
for the case of discrete time can start reading this chapter without studying 
the previous chapters. 

The comparison of the results for discrete time and continuous time shows 
that there is a great similarity between them, at least formally. Moreover, a 
formal passage to the limit (with Ll -t 0) enables us to obtain the perti­
nent results for the case of continuous time from the results of this chapter. 
However, rigorous justification is not easy and requires, in fact, all the tools 
employed in the two previous chapters. 

13.1.2. For the formulation and proof of the main result of this section- a 
theorem on normal correlation - we need some properties of pseudo-inverses 
of matrices. 

Consider a matrix equation 

AXA=A. (13.1) 

If A is a square nonsingular matrix, then this equation has a unique 
solution X = A -l. If the matrix A is singular, or even rectangular, then 
a solution of Equation (13.1), even if it exists, cannot be defined uniquely. 
Nevertheless, there exists (as will be proved below), in this case also (for a 
certain class of matrices), a single-valued matrix satisfying Equation (13.1). 
From now on this matrix will be denoted by A+ and called a pseudo-inverse 
matrix. 

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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Definition. A matrix A+ (of the order n x m) is called the pseudo-inverse 
with respect to the matrix A = A(mxn)• if the following two conditions are 
satisfied: 

AA+A =A, 

A+= UA* = A*V, 

where U and V are matrices. 

(13.2) 

(13.3) 

It follows from (13.3) that rows and columns of the matrix A+ are, re­
spectively, linear combinations of rows and columns of the matrix A*. 

Lemma 13.1. The matrix A+ satisfying {13.2} and (13.3} exists and is 
unique. 

PROOF. Let us start by proving the uniqueness. Let At and At be two 
different pseudo-inverse matrices. 

Then 

AAt A= A, At = UtA* = A*Vt. 

and 

AAt A= A, At = U2A* = A*V2, 

for some matrices Ut, Vt. U2, and V2. Let D = At - At, U = Ut - U2, 
V = Vt- V2, Then1 

ADA= 0, D = U A* = A*V. 

But D* = V* A; hence, 

(DA)*(DA) =A* D* DA = A*V* ADA= 0, 

and therefore DA = 0. 
Making use of the formula D* = AU* we find that 

DD* = DAU* = 0. 

Therefore At - At = D = 0. 
In order to prove the existence of the matrix A+, assume first that the 

rank of the matrix A (of the order m x n with m 2:: n) is equal to n. 
We shall show that in this case the matrix 

(13.4) 

satisfies (13.2) and (13.3). 

1 0 denotes the zero matrix. 
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(13.2) is obviously satisfied since 

AA+ A= A( A* A)-1(A* A)= A, 

where A* A is a nonsingular matrix of the order n x n. The equality A+ = U A* 
is satisfied with U = (A* A)-1 . The equality A+ = A*V can be satisfied as is 
easy to verify, if it is assumed that V =A( A* A)-2 A*. 

Similarly it can be shown that if the rank of the matrix A (of the order 
m x n with m :::; n) is equal to m, then the matrix 

(13.5) 

is the pseudo-inverse with respect to the matrix A. 
In order to prove the existence of a pseudo-inverse matrix in the general 

case we shall make use of the fact that any matrix A of the order m x n of 
rank r can be represented as a product 

A=B·C, (13.6) 

with matrices B(mxr) and C(rxn) of rank r :::; m 1\ n. 
Indeed, let us construct a matrix B having r independent columns of the 

matrix A. Then all the columns of the matrix A can be expressed in terms 
of columns of the matrix B, which is justified because (13.6) determines a 
'skeleton' decomposition of the matrix A. 

Now set 
A+= c+B+, 

where, according to (13.4) and (13.5), 

Then 

c+ = C*(CC*)-1, 

B+ = (B*B)- 1B*. 

AA+ A= BCC*(CC*)- 1(B* B)-1 B* BC = BC =A. 

(13.7) 

(13.8) 

(13.9) 

Next, if it is assumed that U = C*(CC*)-1(B* B)- 1(CC*)- 1C, it can be 
easily checked that: 

UA* =A+. 

Analogously, if V = B(B*B)-1(CC*)- 1(B*B)-1B*, then A+= A*V. 0 
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19.1.9. We shall present a number of properties of pseudo-inverse matrices 
to be used further on: 

{1°) AA+ A= A, A+ AA+ =A+; 
{2°) (A*)+ = (A+)*; 
{3°) (A+)+ =A; 
{4°) (A+ A)2 =A+ A, (A+ A)*= A+ A, (AA+)2 = AA+, (AA+)* = AA+; 
(5°) (A* A)+ = A+(A*)+ = A+(A+)*; 
{6°) A+= (A* A)+ A*= A*(AA*)+; 
(7°) A+ AA* =A* AA+ =A*; 
{8°) if Sis an orthogonal matrix, then (SAS*)+ =SA+ S*; 
{9°) if A is a symmetric nonnegative definite matrix of order n x n of rank 

r < n, then 
{13.10) 

where the matrix T(rxn) of rank r is defined by the decomposition 

A=T*T; {13.11) 

{10°) if the matrix A is nonsingular, then A+= A- 1. 

The properties given above can be verified by immediate calculation. Thus 
{1 °) and {2°) follow from {13.2) and {13.6)-{13.9). The equalities 

where 

iJ = C*(CC*)-1, C = (B* B)- 1 B*, 

give a skeleton decomposition of the matrix A+ from which {3°) follows. {4°) 
follows from {1°), {2°) and {13.7)-{13.9). In order to prove {5°), one should 
make a skeleton decomposition A = BC and represent the matrix A* A as 
a product iJ{J where iJ = C* and C = B* BC. (6°) and (7°) follow from 
{lo)-(so). 

In order to prove {8°) it suffices to note that, by virtue of the orthogonality 
(SS* = E) of the matrix S, 

(SAS*)(SA+S*)(SAS*) = SAA+ AS*= SAS*. {13.12) 

Next, if A+= UA* = A*V, then 

SA+ S* = S(U A*)S = SU(S* S)A* S = U(SA* S) = U(SAS*)*, {13.13) 

with U =SUS*. 
Similarly, it is established that 

SA+ S* = (SAS*)*V {13.14) 

with V = SVS*. 
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It follows from {13.12)-{13.14) that (SAS*)+ =SA+ S*. 
Finally, {9°) follows from the skeleton decomposition A= T*T and {13.7)­

{13.9). 

Note. According to {9°), in the case of symmetric nonnegative definite 
matrices A the pseudo-inverse matrix A+ can be defined by {13.10) where 
the matrix Tis defined from the decomposition A= T*T. This decomposition 
is not, in general, unique. The pseudo-inverse matrix A+ = T*(TT*)- 2T is, 
however, defined uniquely regardless of the way of decomposing A as T*T. 
Therefore, in the case of symmetric nonnegative definite matrices A, the 
pseudo-inverse matrix 

A+ = { A -l if the matrix A is nonsingular, 
T*(TT*)- 2T, if the matrix A is singular. 

{13.15) 

13.1..4. We recall that the random vector { = {6, ... , {n) is called Gaussian 
{normal), if its characteristic function 2 

n 

cp~(z) = M exp[iz*{], z = (zt. ... , Zn), z*{ = L Zi{i, 
i=l 

is given by the formula 

cp~(z) = exp [iz*m- ~z· Rz], {13.16) 

where m = (mt. ... ,mn) and R = IIRi;ll is a nonnegative definite symmetric 
matrix of the order ( n x n). The parameters m and R have a simple meaning. 
The vector m is a vector of the mean values, m = M{, and the matrix R is 
a matrix of covariances 

R = cov {{, {) = M{{- m)({ - m)*. 

Let us note a number of simple properties of Gaussian vectors. 

{1) If { = ({t, ... , {n) is a Gaussian vector, A(mxn) a matrix and a = 
(at, ... , am) a vector, then the random vector 1J = A{+ a is Gaussian 
with 

<pn(z) = exp { iz*(a +Am)- ~z*(ARA*)z} {13.17) 

and 
M7J=a+Am, cov(ry,7J)=Acov{{,{)A*. {13.18) 

2 In algebraic operations, vectors a are regarded as columns, and vectors a• are 
regarded as rows. 
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(2) Let (0,~) = [(01, ... ,0k),(6, ... ,~1)] be a Gaussian vector with mo = 
MO, me = M~, Doo = cov(O,O) = M(O- m9)(0- mo)*, Dee = 
cov (~, ~) = M(~- me)(~- me)* and Doe = cov (0, ~) = M(O- mo)(~­
me)· 
If Doe= 0, then the (Gaussian) vectors 0 and~ are independent and 

ct'(o,e)(zl. z2) = cpo(z1)cpe(z2), 

where Z1 = (zu, ... , zlk), z2 = (z21, ... , z21) and 

cpo(zt) = exp [izimo- ~ziDooz1], 

~Pe(z2) = exp [iz~me- ~z~Deez2] . 
(3) Let ~ = (6, ... , ~n) be a Gaussian vector with m = M~ and R = 

cov ( ~, ~). Then there exists a Gaussian vector e = ( e1 , ... , en) with in­
dependent components, Me= 0 and cov(e,e) = E(nxn)• such that 

(13.19) 

For this purpose let us introduce a Gaussian vector3 v = (vt. ... , vn) 
independent of~. with Mv = 0, cov (v, v) =E. Assume T = R112; 

(13.20) 

Since the vectors ~ and v are independent, then the vector e is also 
Gaussian. It is seen that Me = 0. Compute now the covariance cov ( e, e). 
We have 

cov (c-,e) = Mee* = (T+)* RT+ + (E- TT+)(E- TT+)*. 

But by property (4°) of pseudo-inverse matrices 

(E- TT+)* = E- TT+, (E- TT+)2 = E- TT+ 

and 

Hence, cov (~, ~) = E, which proves the independence of the components 
of the vector e. 
Next we obtain from (13.20) 

T*e = T*(T+)*(~- m) + (T*- T*TT+)v 

= (~- m)- (E- T*(T+)*)(~- m) + (T*- T*TT+)v. 

ButT* = T*TT+ (from (7°)), T*(T+)* = (T+T)* = T+T (from (4°)), 
and (E-T+T)cov (~.~)(E-T+T)* = (E-T+T)(T*T) x (E-T+T) = 0, 
which proves the equality R112e = ~ - m. 

3 Here we assume that the initial probability space is sufficiently 'rich'. 
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( 4) Let en, n = 1, 2, ... , be a sequence of Gaussian vectors converging in 
probability to a vector e. Then e is also a Gaussian vector. 
Indeed, let mn = Men and Rn = cov (en, en)· Then, since P-limn-+oo en = 
e and I exp[iz*enll ~ 1, by the Lebesgue dominated convergence theorem 

lim exp [iz*mn- -2
1 z* Rnz] = lim M exp[iz*en] = M exp[iz*eJ. 

n-+oo n-too 

From this, by virtue of the arbitrariness of z, there exist a vector m and 
a nonnegative definite matrix R such that 

m = limmn, R =limE-n. 
n n 

Therefore, 

M exp[iz* eJ = exp [iz*m- ~ z* Rz] , 

which proves the normality of the vector e. 
13.1.5. 
Theorem 13.1 (Theorem on normal correlation). Let (0, e) = ([01, ... , Ok], 
[el, ... ,ed) be a Gaussian vector with 

mo = MO, me =Me, 

Doo = cov(O,O), Doe= cov(O,e), Dee= cov(e,e). 

Then the conditional expectation M (Ole) and the conditional covariance 

cov (0, Ole) = M {[0- M(Ole)][o- M(Oie)J*Ie} 

are given by the formulae 

PROOF. Set 

M(Ole) = mo + DoeDte(e- me), 

cov(O,Oie) = Doo- DoeD"t_(Doe)*. 

fJ = (0- mo) + c(e- me), 

(13.21) 

(13.22) 

(13.23) 

where we want to select the matrix C(kxl) such that MfJ(e- me)* = 0. 
If such a matrix exists, then it is a solution of the linear system 

Doe+ CDee = o. 
If Dee is a positive definite matrix, then 

c =-Doe De/· 

Otherwise it can be assumed that 

(13.24) 

(13.25) 
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C = -DoeD{e. {13.26) 

According to (3), the property given in Subsection 13.1.4, there exists a 
Gaussian vector c with Me:= 0, Mc:c:* = E, such that 

~-me= D~~2c:. 

Then, setting T = D~~2 , we obtain 

Do,e = M[(O- mo)(~- me)*]= M(Ot- mo)c:*T = doc:T, 

where doc:= M(O- mo)c:*. Therefore, 

Doe = doc:T, DoeD"teDee = doc:T(TT)+TT = doc:T, 

where we take advantage of (1°), (4°) and (5°), according to which it follows 
that 

Dte = (TT)+ = T+T+, T(TT)+TT = TT+T+TT = TT+(T+T)*T 

= (TT+) 2T = TT+T = T, 

i.e., 

Doe= DoeD"teDee' 

which proves (13.24) with C = -DoeD"te. 
Therefore, the vector 

has the property that Mry(~- me)* = 0. 

(13.27) 

Since (0,~) is Gaussian, so is "l· Moreover, the vector (ry,~) will also be 
Gaussian, since the characteristic function 

'P(fl,e)(zl,z2) = Mexp[izrry+iz~~l 

= M exp{izr[(O- m 0 ) + C(~- me)]+ iz~~} 

can be written in the same form as (13.16) due to the normality of the vector 
(0, ~). Next, Mry = 0 and Mry(~- me)* = 0. 

Hence, according to (2), given in Subsection 13.1.4, the Gaussian vectors 
TJ and ~ are independent. 

Therefore, 

M(ryJ~) = Mry = 0 (P-a.s.), 

which, together with (13.27), yields (13.21). 
In order to prove (13.22), note that 0 - M(OJ~) = TJ and, due to the 

independence of~ and ry, 
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cov (0, Ole;)= M(?J?J*Ic;) = M1111* (P-a.s.). (13.28) 

But, according to (13.27), 

M1111* = Doo + DoeDteD~.E.D"[eD'Oe- 2DoeDt_DeeDteD8e 

= Doo - DoeD"[eDeeD"[eD'Oe = Doo- DoeDteD'Oe, (13.29) 

where we take advantage of the fact that, according to (1°), D"[eDeeD"[e = 
Dte. 

From (13.28) and (13.29) we obtain (13.22) for cov (0, Ole;). 0 

13.1.6. 
Corollary 1. If k = l = 1 and D.; > 0, then 

M(Oic;) = MO + cov~~,.;) (.;-Me;), 

D(Oic;) =DO- cov~~,.;), 

where D(Oic;) = M {[0- M(Oic;))2 lc;}. 

(13.30) 

(13.31) 

Assuming uo = +v'DB, ue = +y'J')(, and introducing the correlation 
coefficient 

cov (0, .;) 
p= , 

uoue 

(13.30) and (13.31) can be rewritten as follows: 

Corollary 2. If 

M(Oic;) = MO + p uo (.;- M.;), 
ue 

(13.32) 

(13.33) 

where c1, c2 are independent Gaussian variables with M ci = 0, Dei = 1, 
i = 1, 2, and B~ + B~ > O,then 

= b1B1 + b2B2.; 
B~ +B~ ' 

(Btb2 - b1B2)2 

B~+B~ 

(13.34) 

(13.35) 

Corollary 3. Let the random variables (O,.;b ... ,.;,)form a Gaussian vector 
where .;1, ... , .;, are independent and D.;i > 0. Then 
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In particular, if MO = Mei = 0, then 

Note. Let [O,eJ = [(81, ... , Ok), (6, ... , ez)) be a random vector specified on 
a probability space (il,F,P). Let g be a certain sub-a-algebra ofF (g ~F). 
Assume that (P-a.s.) the conditional (with respect to g) distribution of a 
vector (O,e) is Gaussian with means M(Ojg) and M(eig), and covariances 
du = cov(O,OIQ), d12 = cov(O,elg), and d22 = cov(e,elg). Then the vector 
of conditional expectations M(Oie, g) and the conditional matrix of covari­
ances cov(O,Oie,g) are given (P-a.s.) by the formulae 

(13.36) 

(13.37) 

This result is proved in the same ways as in the case g = {0, il} and will 
be used frequently from now on. 

13.1. 7. 
Theorem 13.2. Under the assumptions of Theorem 13.1, the conditional 
distribution4 P(O :::; xle) is Gaussian with parameters M(Oie) and cov (0, Ole) 
given (respectively) by {13.21}, and {13.22). 

PROOF. It suffices to show that the conditional characteristic function 

M (exp[iz*O]Ie) = exp (iz* M(Oie)- ~z*cov (0, O)z) . 

According to (13.27) and (13.21), 

0 =me+ DeeD~(e- Me)+"'= M(Oie) + ry, 

where the Gaussian vectors e and 'f/ are independent. Hence 

M(exp[iz*O]Ie) = exp[iz* M(Oie)]M(exp[iz*ry]le) 

= exp[iz* M(Oie)]M exp[iz*ry] 

= exp [iz* M(Bie)- ~z*cov (0, Ble)z] . 

4 By {0 ~ x} we mean the event {01 ~ x1, ... , Ok ~ xk}· 

(13.38) 
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Note. Let the matrix cov (0, Ole)= Doo- DoeDt'eD8e be positive definite. 

Then the distribution function P(O ~ xle) = P(Ot ~ x1, ... , Ok ~ xkle) has 

{P-a.s.) the density 

[det(Doo - DoeDt'eDoe)J- 112 

= (21r)k/2 

X exp{ -~(x- M(Oie))*[Doo- DoeDteD8et1 

x(x- M(Oie)) }· {13.39) 

D 

13.1. 8. The theorem on normal correlation allows us to establish easily the 

following auxiliary results. 

Lemma 13.2. Let bt. b2, B1, B2, be matrices of the orders k x k, k x l, l x k, 

l x l, respectively, and let 

b 0 b = btbi + b2b;, 

b o B = btB; + b2B2, 

BoB= BtBi +B2B2. 

Then the symmetric matrix 

bob- (b o B)(B o B)+(b o B)* 

is nonnegative definite. 

{13.40) 

(13.41) 

PROOF. Let c1 = (c:u, ... ,elk], c2 = [c:21, ... ,c:2t] be independent Gaussian 

vectors with independent components, M C:ij = 0, Dc:ii = 1. 

Set 

Then, according to (13.22), 

0 = btct + b2c:2, 

e = Btct + B2c:2. 

bob- (b o B)(B o B)+(B o B)* = cov (o, ole), 

which proves the lemma since the matrix of covariances cov (0, Ole) is non­

negative definite. D 

Lemma 13.3. Let R(nxn)• P(mxm) be nonnegative definite symmetric ma­
trices, and let Q(mxn) be an arbitmry matrix. Then the system of linear 

algebraic equations 
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(R + Q* PQ)x = Q* Py (13.42) 

is solvable (for x) given any vector y = (y1, ... , Ym), and one solution is 
given by 

x = (R + Q* PQ)+Q* Py. (13.43) 

PROOF. Let 8 = (81, ... , Bm), c = (c1, ... , en) be independent Gaussian 
vectors with MB = 0, cov (0, B) = P, cov (c,c) = E. Set e = Q*B + R 112c. 
Then, in this case, Dee = cov (B, e) = PQ, Dee = cov (e, e) = R + Q* PQ, 
since it was proved in Theorem 13.1 that the system Dee + CDee = 0 is 
solvable with respect to C and that C = -DeeD"te. As applied to the present 
situation, this implies that the system 

PQ + C(R + Q* PQ) = 0 (13.44) 

is solvable with respect to C and that C = -PQ[R + Q* PQ]+. 
From the solvability of the system given by (13.44) follows the solvability 

(with respect to C*) of the adjoint system 

Q* P + [R + Q* PQ]C* = 0. (13.45) 

Now consider an arbitrary vector y. Assume x = -C*y. Then, multiplying 
(13.45) by ( -y), we obtain (R + Q* PQ)x = Q* Py, which proves the lemma. 

D 

Lemma 13.4. Let Bt = (B1(t), ... ,Bn(t)), t = 0, 1, ... , be a Gaussian Markov 
process with mean r(t) =MOt and correlation 

R(t, s) = M[(Bt- r(t))(Bs- r(s))*], t, s = 0, 1, .... 

Then we can find a sequence of independent Gaussian vectors 

c(t) = (c1(t), ... ,cn(t)), t ~ 1, 

with Mc(t) = 0 and Mc(t)c*(t) = E(nxn)• such that 

Bt+l = [r(t + 1)- R(t + 1, t)R+(t, t)r(t)] + R(t + 1, t)R+(t, t)Bt 
+[R(t + 1, t + 1)- R(t + 1, t)R+(t, t)R*(t + 1, t)PI2c(t + 1). 

PROOF. Put vt+l = Bt+l- M(Bt+liBt)· By the theorem on normal correla­
tion, 

M(BtHIBt] = r(t + 1) + R(t + 1, t)R+(t, t)(Bt- r(t)). 

From this it follows that the vectors Vi, t ~ 1, are independent Gaussian. 
Indeed, for t > s, because of the Markovian nature of the process (Bt), t = 
0, 1, ... , 
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and therefore 

MvtV8* = M[Ot- M(Otl0t-1))(0s- M(OsiOs-1))*] 

= M{M[Ot- M(OtiOt-1)IOs,Os-1][0s- M(OsiBs-1)]*} = 0. 

The equality Mvt V:,* = 0 for t < s is verified in a similar way. 
Next we find from (13.22), that 

MvtH\'t'+1 = R(t + 1, t + 1)- R(t + 1, t)R+(t, t)R*(t + 1, t). 

Therefore by (3) we can find a Gaussian vector et+l such that (see (13.19)) 

vt+1 = [R(t + 1, t + 1)- R(t + 1, t)R+(t, t)R*(t + 1, t)FI2e-(t + 1), 

Met+l = 0, cov(et+l!C't+l) =E. 

The independence of the Gaussian vectors C't, t = 1, 2, ... , follows from 
the independence of the vectors Vt, t = 1, 2, ... , and from the method of 
construction of vectors et according to (13.20). 

The required recursive equation for Ot follows now from the formulae for 
vt+1 and the representation for the conditional expectation M(Ot+liOt)· 0 

13.2 Recursive Filtering Equations for Conditionally 
Gaussian Sequences 

13. 2.1. On a probability space (a, :F, P), let there be given a partially ob­
servable random sequence (0,~) = (Ot,~t), t = 0, 1, ... , where 

Ot = (01(t), ... , Ok(t)), ~t = (6(t), ... , ~z(t)), 

defined by recursive equations 

Ot+l = ao(t,~)+a1(t,~)Ot+b1(t,~)e1(t+1) 
+b2(t,~)e-2(t + 1), 

~t+l = Ao(t,~) + A1(t,~)Ot + B1(t,~)e-1(t + 1) 
+B2(t, ~)e-2(t + 1). 

(13.46) 

{13.47) 

Here, e1(t) = (e-u(t), ... ,C'Ik(t)) and e2(t) = (c:21(t), ... ,e-2z(t)) are in­
dependent Gaussian vectors with independent components, each of which is 
normally distributed, N(O, 1), while 

ao(t,~) = (aOl(t,~), ... ,aok(t,e)), 

Ao(t, ~) = (A01(t, ~), ... , Aot(t,e)) 

are vector functions and 
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bl(t,~) = llbg)(t,~)ll, 

B2(t,~) IIB;~)(t,~)ll, 
Bl(t,~) = IIBW(t,~)ll, 
Al(t,~) = IIA~})(t,~)ll, 

are matrix functions having (respectively) the orders k x k, k x l, l x k, l x l, 
k X k, l X k. 

Any element of these vector functions and matrices is assumed to be 
nonanticipative, i.e., .rf-measurable where .rf = u{~o, ... ,~t} for any t = 
0, 1, .... 

The system of equations given by (13.46) and (13.47) can be solved under 
the initial conditions of ( Bo, ~o), where the random vector ( 00 , ~o) is assumed 
to be independent of sequences (ct, c2) = [e:1 (t), c2(t)], t = 1, 2, .... As to 
the coefficients of the system of equations given by (13.46) and (13.47) and 
the initial conditions of ( Bo, ~o), the following assumptions will be adopted 
throughout the chapter. 

(1) If g(t,~) is any of the functions5 a0i,Aoi,bgl,b~~),BW,B~), then 

Mlg(t,~W < oo, t = 0, 1 .... 

(2) With probability one 

lag)(t,~)l:::; c, IAg)(t,~)l:::; c. 

(3) M(IIBoll 2 + ll~oll 2 ) < oo, where, for 
n 

X = (xl, ... , Xn), llxll 2 = L xr 
i=l 

(4) The conditional distribution P(Bo :::; al~o) is (P-a.s.) Gaussian. 

It follows from (1)-(3) that, at any timet< oo, 

M(IIBtll 2 + ll~tll 2 ) < 00. 

(13.48) 

(13.49) 

13.2.2. If the sequence (B,~) is assumed to be partially observable, the prob­
lem of filtering involves the construction of an estimate for the unobservable 
variables Bt from the observations ~5 = (~o, ... , ~t)· Let Ft;~ (a) = P(Bt :::; 
ai.rf), 

mt = M(Btl.rf), It= M[(Bt- mt)(Bt- mt)*l.rfJ. 

It is obvious that, due to (13.49) the a posteriori mean 

is the optimal estimate (in the mean square sense) of the vector Bt based on 
the variables ~S = { ~o, .... , ~t}, and 

5 For simplicity, arguments in the functions considered are sometimes omitted. 
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k 

Tr M"(t = LM[9i(t)- mi(tW 
i=l 

yields the estimation error. 
In the case of an arbitrary partially observable sequence (9, e) it is difficult 

to find the form of the distribution F~~ (a) and its parameters mt, "'t. For 
the sequences (B,e) governed by the system of equations given by (13.46) 
and (13.47) with the additional assumption of normality of the conditional 
distribution P(9o ~ aleo) the solution of the problem of filtering (i.e., finding 
mt and "'t) becomes possible. The following result, analogous to Theorem 11.1 
for the case of continuous time, is the basis for the method of solution. 

Theorem 13.3. Let {1}-(4) be satisfied. Then the sequence (B,e) governed 
by {13.46) and {13.47) is conditionally Gaussian, i.e., the conditional distri­
butions 

are (P-a.s.) Gaussian for any t = 0, 1, .... 

PROOF. Let us establish the normality of the conditional distribution P(9t < 
ai.ri). This suffices for our present purposes; the proof for the general case 
will be given in Subsection 13.3.6. 

The proof will be carried out by induction. Assume that the distribution 
F~~ = P(9t ~ al.ri) is normal, N(mt,"ft)· 

Because of (13.46) and (13.47), the conditional distribution 

P(9t+l ~ a,et+l ~ xi,r1,9t =b) 

is Gaussian with vector of mathematical expectations 

(13.50) 

and with covariance matrix 

( bob boB) 
B = (boB)* BoB ' (13.51) 

where bob= btbi + b2b2, boB= btBi + b2B2, and BoB= BtBi + B2B2. 
Let Vt = (9t,et), z = (zt. ... , Zk+l)· Then the conditional characteristic 

function of the vector Vt+l is given by the formula 

M(exp[iz*vt+lll.ri,Bt) = exp [iz*(Ao(t,e)+At(t,e)9t)- ~z*B(t,e)z]. 
(13.52) 
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Assuming that, for some t, 

M( exp[iz* (A1 (t, ~)Bt)]j.r[) 

= exp [iz* ( A1(t,~)mt- ~z*(AI(t,~htAi(t,~))z)], (13.53) 

we obtain from (13.52) and (13.53) 

M(exp[iz*VtH]I.rf) = exp[iz*(Ao(t,~) + A1(t,~)mt)- ~z*B(t,~)z 

-~z*(Al(t,~htAi(t,~))z]. 
Therefore, by induction, the conditional distributions 

P(Bt+l ::::; a, ~t+l ::::; xj.r[) 

are Gaussian. 
Consider now the vector 

(13.54) 

By virtue of the theorem on normal correlation (and its accompanying note) 
there exists a matrix C such that 

It follows from this that the conditionally Gaussian vectors 1J and ~t+l (under 
the condition :Ff) are independent. Hence (z = (z1. ... , zk)) 

M[exp( iz*BtH)I:Ff, ~t+l] 
= M{exp(iz*[M(Bt+li.rf) + C(~t+l- M(~t+ll.rf)) + 'TJ]I.rf,~t+l} 
= exp(iz*[M(Bt+ll.rf) + C(~t+l- M(~t+ll.rf))])M{exp(iz*1J)I:Ff,~t+l} 
= exp(iz*[M(BtHI.rf) + C(~t+l- M(~tHI.rf))])M{exp(iz*1J)I.rf,~t+l}· 

(13.55) 

Due to (13.54), the conditional distribution P(1J ::::; yj:Ff) is Gaussian. To­
gether with (13.55) this proves the normality of the conditional distribution 
P(Bt+l ::::; aj:Fz+l). 

Thus, for all t, t = 0, 1, ... , the conditional distributions P(Bt ::::; aj.r[) are 
Gaussian. 0 

Note. It can be shown in like fashion that if, at some s, the distribution 
P(B, ::::; aj:Ff) is Gaussian, then the conditional distributions P(Bt ::::; aj:Fz) 
will be the same for all t ~ s. 
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19.2.9. Conditional normality of the sequence (9,{) enables us to deduce 
a closed system (compare with Section 12.1) of recursive equations for the 
parameters mt, 'Yt. 

Theorem 13.4 In {1)-(4) the parameters mt and 'Yt can be defined by the 
recursive equations6 

mt+l = [ao + a1 mt] (13.56) 

+[boB+at'YtAi][BoB+At'YtAi]+[{t+t-Ao-Atmt], 
'Yt+l = [antai +bob] (13.57) 

-[boB+ antAi][B o B + AntAi]+[b o B + antAi]*. 

PROOF. Let us find first the parameters of the conditional Gaussian distri­
bution 

P(Ot+t :5 a,{t+t :5 xl.rf) = M[P(Ot+t :5 a,{t+I :5 xl9t,.rf)IJ1J. 

Due to (13.50), 

M(Ot+tl.rf) = ao(t,{) + at(t,{)mt, 
M({t+tl.rf) = Ao(t,{) + At(t,{)mt. (13.58) 

In order to find the matrices of covariances, let us take advantage of the 
fact that, according to (13.56)-(13.58), 

Ot+t- M(Ot+tl.rf) = a1(t,{)[Ot- mt] 
+bt (t, {)e:1 (t + 1) + b2(t, {)e:2(t + 1), 

{t+t- M({t+tl.rf) = At(t,{)[Ot- mt] 
+Bt(t,{)e:t(t + 1) + B2(t,{)e:2(t + 1). (13.59) 

We obtain from this 

du = cov (Ot+l• Ot+tl.rf) = a1(t, {)'Ytai(t, {) + (b o b)(t, {), 

d12 = cov (Ot+t.{t+tl.rf) = at(t,{)'YtAi(t,{) + (b o B)(t,{), 
d22 = cov ({t+t,{t+tl.rf) = At(t,{)'YtAi(t,{) + (B o B)(t,{). 

Since the conditional (under the condition J1) distribution of the vector 
( (Jt+ 1. {t+t) is normal, by virtue of the theorem on normal correlation (and 
its accompanying note) 

and 
6 In the coefficients a0 , A0 , ••. , bob, the arguments (t,~) are omitted. 
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cov (Ot+I, Ot+liFf, et+l) = du - d12df2di2. (13.61) 

Substituting here the expressions for M(Ot+IIJ1), M(et+IIJ1), du,d12 
and d22, we obtain recursive equations (13.56) and (13.57) from (13.58) and 
(13.59). 0 

Corollary 1. Let 

ao(t, e) = ao(t) + a2(t)et, 
al(t,e) = al(t), 

bi(t,e) = bi(t), 

Ao(t, e) = Ao(t) + A2(t)~t, 

A1(t,e) = A1(t), 

Bi(t, ~) = Bi(t), i = 1, 2, 

where all the functions aj(t), Aj(t), bi(t), Bi(t), j = 0, 1, 2, and i = 1, 2, are 
functions only oft. If the vector ( Oo, ~o) is Gaussian, then the process ( Ot, ~t) 
t = 0, 1, 2, ... , will also be Gaussian. In this case the covariance "'t does not 
depend on 'chance' and, therefore, Tr "'t determines the mean square estima­
tion error corresponding to Ot based on the observations ~5 = (eo, ... , ~t). 

Corollary 2. Let a partially observable sequence (0, ~) = (Ot, ~t), t = 0, 1, .. . , 
satisfy for t 2: 1 the system of equations 

Ot+l = ao(t,~) + al(t,e)Ot + b1(t,e)c1(t + 1) + b2(t,~)c2(t + 1), (13.62) 

~t = Ao(t-1,~)+AI(t-1,~)0t+BI(t-1,~)ci(t)+B2(t-1,e)c2(t), (13.63) 

with P(01 ~aiel)"' N(ml,"fl)· 
Although the system of equations for Ot+l and et, considered in a formal 

way, does not fit the scheme of {13.46) and {13.47), nevertheless, in finding 
equations for mt = M(OtiJ1) and "ft = cov (Ot, OtiFf), one can take advan­
tage of the results of Theorem 13.4. Indeed, we find from {13.62} and {13.63} 
that 

et+l = Ao(t, e)+ A1 (t, e)[ao(t, e) + a1 (t, eWt + b1 (t, e)cl (t + 1) 
+b2(t,~)c2(t + 1)] + B1(t,~)ci(t + 1) + B2(t,e)c2(t + 1). 

Setting 

Ao = Ao + A1ao, A1 = A1a1, 
B1 = A1b1 + B~, B2 = A1b2 + B2, (13.64) 

we note that the sequence (0,~) satisfies Equations {13.46) and {13.47), and 
mt and "'t satisfy Equations {13.56) and {13.57). 

Corollary 3 (Kalman-Bucy Filter). Let the Gaussian sequence (0, 0 satisfy 
the equations 
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Bt+l = ao(t) + a1(t)Bt + b1(t)c1(t + 1) + b2(t)c2(t + 1), 

et = Ao(t) + A1(t)Bt + B1(t)c1(t) + B2(t)c2(t). 
(13.65) 

(13.66) 

Then, due to {13.56) and {13.57) and the previous corollary, mt and'Yt satisfy 
the system of equations 

mt+l = [ao(t) + a1(t)mt] + P'Y(t)Q~(t) 

where 

x [et+l- Ao(t + 1)- A1(t + 1)ao(t)- A1(t + 1)al(t)mt], 
(13.67) 

'Yt+l = [a1(t)'Ytai(t) + b o b(t)]- P'Y(t)Q~(t)P;(t), (13.68) 

P~'(t) = b1(t)[A1(t + 1)bl(t) + B2(t + 1))* + b2(t)[A1(t + 1)b2(t) 

+B2(t + 1))* + al(t)'ytai(t)Ai(t + 1), (13.69) 

Q~'(t) = [A1(t + 1)b1(t) + B1(t + 1)][A1(t + 1)b1(t) + B1(t + 1))* 

+[A1(t + 1)b2(t) + B2(t + 1))[A1(t + 1)b2(t) + B2(t + 1))* 

+A1(t + 1)al(t)'ytai(t)Ai(t + 1). (13.70) 

With the help of the theorem on normal correlation we obtain the follow­

ing expressions for mo = M(Boleo) and 'Yo= cov (Bo, Boleo): 

mo = MOo+ cov (Bo, Bo)Ai(O)[A1(0)cov (Bo, Bo)Ai(O) + B o B(O)j+ 

x[eo- Ao(O)- A1(0)MBo), (13.71) 

'Yo = cov(Bo,Bo)- cov(Bo,Bo)Ai(O)[Al(O)cov(Bo,Bo)Ai(B) 

+B o B(O)j+ A1(0)cov (Bo,Bo). (13.72) 

Note. In the assumptions of the theorem, the conditional distribution 

P(Bt ~ biFf,Bs =a), t 2': s, is also Gaussian and its parameters ma(t,s) = 

M(Btl.rf,Bs =a) and 'Ya(t,s) = cov(Bt,Bti:Ff,Bs =a) satisfy, fort 2': s the 
system of equations 

ma(t+1,s) = [ao(t,e)+al(t,e)ma(t,s)] 

+[b o B(t, e)+ a1 (t, eha(t, s)Ai (t, e)J 
x [B o B(t, e)+ A1(t, e)'Ya(t, s)Ai(t, e)J+ 

X [et+l- Ao(t,e)- Al(t,e)ma(t, s)], (13.73) 

'Ya(t+1,s) = [al(t,eha(t,s)ai(t,e)+bob(t,e)] 

-[b o B(t, e)+ a1(t, eha(t, s)Ai(t, e)) 

x [B o B(t, e)+ A1(t, eha(t, s)Ai(t, e)J+ 

x [b o B(t, e)+ a1(t, e)'Ya(t, s)Ai(t, e)]*, (13.74) 

with ma(s, s) =a, 'Ya(s, s) = 0. 
It follows from (13.74) that 'Ya(t,s), fort 2': s, does not depend on a. 
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13.2.4. Notice a number of useful properties of the processes mt and "ft, 
t = 0, 1, ... , assuming the conditions of Theorem 13.4 to be satisfied. 

Property 1. For any t = 0, 1, ... , the values of mt and (Ot - mt) are 
uncorrelated, i.e., 

M{m;(ot- mt)} = M{(Ot- mt)*mt} = 0, 

and, therefore, 

(13.75) 

Property 2. The conditional covariance 'Yt does not depend explicitly on 
the coefficients ao(t, e) and Ao(t, e). 

Property 3. Let 'Yo and all the coefficients of the system of equations given 
by (13.46) and {13.47), possibly with the exception of the coefficients ao(t, e) 
and Ao(t, e), be independent of e. Then the conditional covariance 'Yt is a 
function of timet alone and 'Yt = M{(Ot- mt)(Ot- mt)*}. In this case the 
distribution of the value of L1t = Ot- mt is normal, N(O, 'Yt)· 

Property 4. The estimate of mt is unbiased: 

Mmt =MOt, t = 0, 1, .... (13.76) 

13. 2. 5. In the following theorem a special representation is given for the 
sequence et, t = 0, 1, ... , (compare with Theorem 7.12), which will be used 
frequently further on. 

Theorem 13.5. Let {1}-(4) be satisfied. Then there exist Gaussian vectors 
e( t) = (e1, ... , lt ( t)) with independent coordinates and with 

Me(t) = 0, Me(t)e*(s) = c5(t- s)E(lxl) 

such that (P-a.s.) 

et+l = Ao(t,e) +At(t,e)mt 
+[(B o B)(t,e) + At(t,ehtAi(t,eWI2e(t + 1). 

(13.77) 

(13.78) 

If, in addition, the matrices (BoB)(t,e) +At(t,ehtAi(t,e) are nonsin­
gular (P-a.s.}, t = 0, ... , then7 

-t - T(eo,e) 1 2 .rt - .rt ' t = ' ' .... (13.79) 

PROOF. Assume first that for all t = 0, 1, ... , the matrices (B o B)(t, e) 
are positive definite. Then, since the matrices A 1(t,ehtAi(t,e) are at least 
nonnegative definite, the matrices [(B 0 B)(t, e)+ At (t, e) X 'YtAi(t, e)Jll2 are 
positive definite and, therefore, the following is a random vector 

7 All the u-algebras considered here are assumed to be augmented by sets of :F­
measure zero. 
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e(t + 1) = [(B o B)(t,e) + A1(t,ehtAi(t,e)t 112[A1(t,e)(Bt- mt) 
+B1(t,e)c1(t + 1) + B2(t,e)c2(t + 1)]. (13.80) 

The conditional (conditioned on .:Ft) distribution of the vector Bt is Gaus­
sian according to Theorem 13.3, and the random vectors c1(t+1) and c2(t+1) 
do not depend oneS = (eo, ... ,et)· Hence it follows from (13.80) that the 
conditional distribution P(e(t + 1) :S: xlFi) is Gaussian and it is not difficult 
to compute 

M[e(t + 1)i.:Fll = o, 
cov (e(t + 1),e(t + 1)i.:Fl) = E{lxl)· 

(13.81) 

(13.82) 

From this it is seen that the parameters of the conditional distribution 
of the vector e(t + 1) do not depend on the condition and, therefore, the 
(unconditional) distribution of the vector e(t + 1) is also Gaussian. Here 

Me(t + 1) = o, cov (e(t + 1), e(t + 1)) = E(lxl)· 

In a similar way it can be shown, employing Theorem 13.3, that at any 
t the joint distribution of the vectors (e(l), ... , e(t)) is also Gaussian with 
cov (e(u), e(v)) = c5(u-v)E. From this follows the independence of the vectors 
£(1), . .'., e(t). The required representation, (13.78), follows explicitly from 
(13.80) and (13.47). 

In order to prove (13.79) note first of all that, according to (13.78), 

(13.83) 

If the matrix (B o B)(t,e) + A1(t,ehtAi(t,e) is nonsingular, then, due to 
(13.78), 

e(t) = [(B o B)(t -1,e) + A1(t -l,eht-1Ai(t -l,e)]-112 

x[et- Ao(t -1,e)- A1(t- l,e)mt-1]· 

Hence .r; 2 .rfeo,e), which, together with (13.83), proves the coincidence 
of the O"-algebras Fi and .rfeo,e), t = 1, 2, .... 

Assume now that at some timet the matrix (BoB)(t, e)+A1(t, ehtAi(t, e) 
is singular (with positive probability). 

Let us construct (at the expense of extending the main probability space) 
a sequence of independent Gaussian random vectors z(t) = (z1 (t), ... , zz(t)), 
Mz(t) = 0, Mz(t)z*(t) = E(lxl), independent of the processes c1(t),c2(t), 
t 2':: 0, and the vectors (Bo, eo) as well. Set 

e(t + 1) = v+(t,e)[A1(t,e)(Bt- mt) + Bt(t,e)c1(t + 1) 
+B2(t, e)c2(t+l)]+(E-D+(t, e)D(t, e))z(t+1), (13.84) 

where D(t,e) = [(B o B)(t,e) + A1(t,ehtAi(t,e)] 112. It is easy to convince 
oneself that the sequence £(1), £(2), ... , of the vectors thus defined has the 
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properties given in the formulation of the theorem. In order to prove (13. 78) 
it obviously suffices to show that 

D(t, e)e(t+ 1) = At (t, e)[Bt-mt]+Bt (t, e)ct (t+ 1)+B2(t, e)c2(t+ 1). (13.85) 

Multiplying the left- and right-hand sides in (13.84) by D(t, e), we obtain 

D(t, e)e(t+1) = [At(t, e)(Bt-mt)+Bt (t, e)ct (t+1)+B2(t, e)c2(t+1)] 
-[E- D(t,e)D+(t,e)][At(t,e)(Bt- mt) 
+Bt(t,e)ct(t + 1) + B2(t,e)c2(t + 1)] 
+D(t,e)[E- b+(t,e)D(t,e)Jz(t + 1). (13.86) 

By the first property of pseudo-inverse matrices, D[E- D+ D] = D­
DD+ D = 0, and, therefore, (P-a.s.) 

D(t,e)[E- n+(t,e)D(t,e)Jz(t + 1) = o. (13.87) 

Write 

((t + 1) = [E- D(t,e)D+(t,e)][At(t,e)(Bt- mt) + Bt(t,e)ct(t + 1) 
+B2(t,e)c2(t + 1)]. 

Then 

M((t + 1)(*(t + 1) = M{M(((t + l)(*(t + l)IFf)} 
= M{(E- DD+)DD*(E- DD+} 
= M {(DD* - DD+ DD*)(E- DD+)} 
= M[(DD* - DD*)(E- DD+)] = 0. 

Consequently, ((t+ 1) = 0 (P-a.s.), which, together with (13.86) and (13.87), 
proves (13.85). 0 

Note. When the matrices B o B(t, e) +At (t, e) and 'YtAi (t, e), t 2 0, are 
nonsingular: 

,....£- ,.-Eo,€ t- 1 2 · .r£ - .r£ ' - ' ' ... ' 

hence, the sequence e = (e(1), e(2), ... ) (by analogy with the definition given 
in Subsection 7.4.2) is naturally called an innovation sequence. 
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13.3 Forward and Backward Interpolation Equations 

13.3.1. For the random sequence (B, ~) = (Bt,~t), t = 0, 1, .. . , governed by 
Equations (13.46) and {13.47), interpolation is understood as a problem of 
constructing an optimal (in the mean square sense) estimate of the vector 88 

from the observations ~5 = { ~o, ... , ~t}, t 2::: s. 
For t 2::: s, let 

m(s, t) = M(Bsl.rf), -y(s, t) = cov (Bs, BsiFl) 

denote (respectively) the vector of mean values and the matrix of covari­
ances of the conditional distribution IIa(s, t) = P(Bs ::; ai.rf). It is seen that 
m(s, t) is an optimal estimate of 88 from ~5. For this estimation both forward 
equations (overt at fixed s) and backward equations (overs at fixed t) can 
be deduced. The forward equations demonstrate how much the interpola­
tion improves with the increase of the data, i.e., with the increase oft. The 
backward equations are of interest in those statistical problems where the 
vector ~b = { ~0 , ••. , ~t} is known and by means of which the unobservable 
component 88 for all s = 0, ... , t has to be estimated. The backward equa­
tions provide a convenient recursive technique for calculating the estimates 
m(t -1, t) from m(t, t) = mt and ~t, m(t- 2, t) from m(t -1, t), m(t, t), ~t-1, 
and ~t, etc. 

13.3.2. (1)-(3) in Section 13.2 will be assumed to be satisfied 
For the deduction of forward equations of interpolation the following the­

orem is useful. 

Theorem 13.6. If the conditional distribution IIa(s, s) = P(B8 ::; aiFf) is 
normal (P-a.s.), then the distributions IIa(s, t) = P(Bs ::; aiFf) at t 2::: s are 
also normal. 

In order to prove this we shall need: 

Lemma 13.5. If the conditional distribution IIa(s, s) = P(Bs ::; aj.rf) is 
normal, then the conditional expectation 

ma(t,s) = M(BtiFl,Bs =a), t 2::: s, 

permits the representation 

(13.88) 

where the matricesB 

8 n:-==1• Au denotes the product of the matrices At-1, ... , A •. 
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cp: = E(kxk)• 

cp! = g { a1(u, e)- [b o B(u, e)+ a1(u, e)'y(u, s)Ai(u, e)] 

x[(B o B)(u,e) + A1(u, eh(u, s)Ai(u, e)J+ A1(u, e)} {13.89) 

and the vectors 

'¢! = ~ cp~- 1 { ao(u,e)+[(boB)(u, e)+a1(u,e)'y(u, s)Ai(u, e)] {13.90) 

X [(B 0 B)(u,e) + A1(u,e)'y(u, s)Ai{u,e)J+(eu+1- Ao(u,e))} 

do not depend on a. The matrices ')'(u, s), u ;:::: s, can be defined from the 
equations 

'l'(u, s) = [a1(u- 1, eh(u- 1, s)ai(u- 1, e)+ (b 0 b)(u- 1, e)J 

-[(b o B)(u- 1, e)+ a1(u- 1, eh(u- 1, s)Ai(u- 1, e)] 

X [(B 0 B)(u- 1, e)+ A1(u- 1, eh(u- 1, s)Ai(u- 1, e)J+ 

X [(boB)(u-1, e)+a1 (u-1, eh(u-1, s)Ai (u-1, e)]* {13.91) 

with an initial condition 'l'(s, s) = 0. 

PROOF. Note first that the pertinent analog of {13.88) was given in 
Lemma 12.2 (compare {13.88) with {12.79)). 

According to the note to Theorem 13.4, ma{t, s) and '/'a{t, s) = cov (fit, 
Bti:Ff,B = a) satisfy Equations {13.73), {13.74) with an initial condition 
ma(s, s) =a, 'Ya(s, s) = 0. Since 'l'a(t, s) does not depend on a we shall write 
')'(t,s) = 'l'a(t,s). {13.88) can be deduced from {13.73) by induction. D 

PROOF OF THEOREM 13.6. Let us first show that the conditional distri­
bution P(Bs :$a, et :$ xl.rf_ 1) is Gaussian. For this purpose we compute the 
conditional characteristic function 

M(expi[ziBs + z2etJI.Ff_1) 

= M(exp i[ziBs]M {exp i(z2etJI.rf_1, Bs}l.rf-1). {13.92) 

It is obvious that 

M(expi(z2etll.rf_1,Bt-I.Bs) = exp{iz2(Ao{t -1,e) + A1(t -1,e)Bt-1) 

-~z2(BoB)(t-1,e)z2}· {13.93) 
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Next, 

P{fh-1 ::; bl.J1_1,(18 } "'N(me.(t -1, s),"f(t -1, s)) 

and, due to (13.93), 

M {M[exp i(z2~t)IJ1-1, Bt-l, Bs]IFf-1, Bs} 

= exp { i[z2Ao(t- 1, ~)] - ~z2(B o B)(t- 1, ~)z2} 
xM{expi[z2AI(t -1,e)Bt-1]1Ff_1,Bs} 

= exp { iz2Ao(t- 1,~)- ~z2(B o B)(t- 1, e)z2} 

x exp{ i[z2A1(t- 1,e)me.(t -1, s)] 

-~z2A1(t -1,~)'y(t -1,s)Ai(t -1,e)z2) }· 

By Lemma 13.5. 

me. (t- 1, s) = <p!- 1Bs + 7/1!- 1 (P-a.s.). 

Hence 

M{expi[z2etli.J1_1,Bs} = exp{iz2(Ao(t -1,e) +A1(t -1,~)7/1!- 1 ) 

-~z2((B o B)(t- 1, e)+ A1(t- 1, e)'y(t- 1, s) 

xAi(t -1,~))z2 + iz2A1(t- 1,e)cp!-1Bs }, 

which, together with (13.92), leads to the equality 

M(expi[ziBs + z2~tJIFf_ 1 ) = exp{ iz2(Ao(t -1,e) + A1(t -1,e)7/l!-1) 

-~z2((B o B)(t- 1, ~) + A1(t- 1, e) 

x-y(t -1,s)Ai(t -1,~))z2 }M{expi[ziBs 

+z2(Al(t -1,e)cp!-1Bs)]IJ1-tl. (13.94) 

Lett= s+l. Sincethedistributioniia(s,s) = P(Bs::; alF!) rv N(m8 ,-y8 ), 

it follows from (13.94) that the distribution P(Bs ::; a, es+l ::; xlF!) is also 
Gaussian. It is not difficult to deduce from this that the distribution IIa(s, s+ 
1) is Gaussian. It can be proved by induction from (13.94) that for any t > s 
the conditional distribution IIa(s, t) is also Gaussian. D 

Note. Normality of the conditional distributions P{Bs::; al.J1,Bu = b} for 
u < s ::; t can be proved in the same way. 



80 13. Conditionally Gaussian Sequences 

13.3.3. Therefore, according to Theorem 13.6 the distribution IIa(s, t) 
P(08 ~ aiFl) ,..., N(m(s, t), f'(s, t)), if the distribution IIa(s, s) is Gaussian. 
Let us find forward equations (of interpolation) for m(s, t) and l'(s, t). 

Theorem 13.7. If IIa(s, s) ,..., N(m8 , f'8 ), then m(s, t) and f'(s, t) fort > s 
satisfy the equations 

m(s, t + 1) = m(s, t) + f'(s, t)(rp!)* A;'(t, m(B o B)(t, ~) + A1(t,~)'YtAi'(t, ~)]+ 
x [~t+l - Ao(t, ~) - A1 (t, ~)mt], (13.95) 

'"Y(s, t + 1) = '"Y(s, t) - '"Y(s, t)( rp!)* Ai' (t, ~) 
x[(B o B)(t,~) + Al(t,~}'YtAi(t,~)J+ 
xA1 (t, ~)rp!')'( s, t), (13.96) 

where m(t, t) = mt, f'(t, t) = f't 1 and the matrices rp! are defined from 
{13.89}. 

PROOF. From Theorem 13.6 it follows that the conditional distribution 
P(08 ~ a, et ~ xiFf-1) is normal. Parameters of this distribution could be 
obtained from (13.94), but it is easier to find them by taking advantage of 
the theorem on normal correlation. 

According to the note to this theorem, 

(13.97) 

where 
d12 = cov(08,et1Fl-1), (13.98) 

d22 = cov (et,~tiFl-1) = A1(t-1,eht-1Ai(t-1,e)+(BoB)(t-1,e). (13.99) 

In order to find d12, note that, due to Lemma 13.5. 

Next, 

mt-1 = M(Ot-11Fl-1) = M[M(Ot-1IFl-1, 08)1Fl-1] 

= M[rp!-108 + 1P!-11Fl-tl 
= rp!- 1m(s,t-1)+1P!-1. (13.100) 

M[Ot-1- mt-1l.rf_1,08] = rp!- 108 + 1P!-1 - [rp!-1m(s,t -1) + 1P!-1J 

= rp!-1[08 - m(s, t- 1)], (13.101) 

M[~tiFl- 1 ] = Ao(t -1,e) + A1(t- 1,e)mt-1, 

and, by Lemma 13.5, 

(13.102) 



13.3 Forward and Backward Interpolation Equations 81 

M{[~- M(~tl.rf-1)]*1.rf-1,Bs} 
= M{[A1(t -1,~)(Bt-1- mt-1) 

+B1(t -1,e)c1(t) + B2(t -1,e)c2(t)J*I.rf_1,Bs} 

= M{[A1(t -1,e)(Bt-1, -mt-d]*i.rf_1,Bs} 

= [Bs-m(s,t-1)]*(cp~- 1 )*Ai(t-1,e). (13.103) 

Hence, from (13.100)-(13.103), we find that 

d12 = cov(Bs,etl.rf-1) 

= M{[Os- m(s,t -1)][et- M(etl1:"f_1)]*1.rf-d 

= M{[Bs- m(s, t -1)][Bs- m(s,t -1)]*(cp~- 1 )* Ai(t -1,e)l.rf-d 

= 'Y(s,t -1)(cp;-1)*Ai(t -1,e). (13.104) 

We obtain (13.95) from (13.97), (13.98), (13.102) and (13.104). 
In order to deduce Equation (13.96), it should be noted that, according 

to the note to the theorem on normal correlation 

(13.105) 

where 
(13.106) 

We obtain the required equation, (13.96), for ')'(s, t) from (13.105), (13.106), 
(13.104) and (13.99). 0 

13.3.4. 
Theorem 13.8. If the matrices (B o B)(u,e), u = 0, 1, .. . , are nonsingular, 
then solutions m(s, t) and ')'(s, t) of Equations {13.95) and {13.96) are given 
by the formulae 

m(s,t) = [E+'Ys~(cp~)*Ai(u,~)((BoB)(u,e) 

+A1(u,{h(u, s)Aj(u, {))-1 A1(u,{)10~ l-1 

x [ ms + 'Ys ~(cp~)* Ai(u,e)((B o B)(u, ~) + A1(u,~)'Y(u, s) 

xAi(u,~))- 1 (eu+l- Ao(u,~)- A1(u,e)1/I~)J, (13.107) 
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-r(s, t) ~ [E + -y, ~(.,~)" A;(u,e)((B o B)(u,e) 

+At( u, e)'Y(u, s)Ai( u, e))-1 A, (u, ell':]_, -y., (13.108) 

where cp~,,P~ and -y(u,s) are defined by {19.89}, {19.90} and {19.91}. 

PROOF. Let us show first that at all t > s, 

'Yt-1 = -y(t- 1, s) + cp!-1-y(s, t- 1}( cp!-1 )*. (13.109} 

Indeed, 

'Yt-t = cov(Ot-t.Ot-tl.ri-1) = M{[Ot-1- mt-tl!Ot-1- mt-t]*l.ri-1} 
= M {[Bt-l -mo. (t- 1, s) +mo. (t- 1, s) - mt-t] 

x[Bt-1- mo.(t -1, s) + mo.(t -1, s)- mt-t]*l.ri-1} 

= M{M[(Ot-1- mo.(t -1, s))(Bt-1- mo.(t -1, s))*l.ri-1, Osll.ri-1} 

+M {(mo.(t -1, s)- mt-t)(mo. (t- 1, s)- mt-t)*l.ri-1} 

= M{'Y(t -1,s}l.ri_1)} +M{cp!-1(0s- m(s,t -1}} 

x(08 - m(s,t -1)}*(cp!-1)*1.ri-l} 

= -y(t -1, s) + cp!-1-y(s, t -1}(cp!-1)*, 

where (13.100} is used: 

ffit-1 = cp!-1m(s, t- 1} + 1/J!-1. 

We obtain from (13.96} and (13.109} 

-y(s, t) = -y(s, t -1}- -y(s, t -1}(cp!- 1 (~))* Ai(t -1,~} 
x[(B o B)(t -1,~} + A 1(t -1,~}-y(t -1, s)Ai(t -1,~} 
+At(t- 1, ~)cp!- 1 -y(s, t- 1}(cp!-1}* Ai(t- 1, ~)]- 1 

xAt(t -1,~}cp!- 1 -y(s,t -1). (13.110} 

For t > s, define 

- t-1 At(t -1,~} = At(t- 1,~}cp8 , 

(~)(t-1,~} = (BoB)(t-1,~}+At(t-1,~}'Y(t-1,s}Ait-1,~}. (13.111} 

Then -y(s, t) will satisfy (overt> s) the equation 

-y(s,t) = -y(s,t-1)--y(s,t-1}Ai(t-1,~} 

x[(~)(t -1,~} + At(t -1,~}-y(s,t -1}Ai(t -1,~}]- 1 

xA1(t -1,~}-y(s,t -1}. 
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Along with (13.111), let Ao(t- 1,e) = Ao(t -1,e) + At(t- 1,e)v,~- 1 . 
Then Equation (13.95) can be rewritten as follows: 

m(s,t) = m(s,t-1)+1(s,t-1)Ai(t-1,e) 

x [(B?R)(t- 1, e)+ A1(t- 1, eh(s, t- 1)Ai(t- 1, e)r1 

X [et - Ao(t- 1, e)- At (t- 1, e)m(s, t - 1)]. 

Solutions of this equation (see also Theorem 13.15) can be defined by 
(13.107) and (13.108). 0 

13.3.5. We shall discuss one more class of interpolation problems involving 
the construction of the optimal (in the mean square sense) estimates of a 
vector Os from the observations eS = {eo, ... , et} and the known value of 
Ot = {3 (compare with Subsection 12.4.6). 

Write 

Ilo:f3(s, t) = P(08 ::::; ai.rf, Ot = {3), t ~ s, 

and 

ih(l(s,t) = M(Osl.rf,et = {3), if3(s,t) = cov(Bs,Osl.rf,et = {3). 

Theorem 13.9. If the conditional distribution IIa(s) = P(Bs ::::; aiF;) is 
normal, then the a posteriori distribution Ilo:f3(s, t) at all t ~ s is also normal. 

PROOF. Let us calculate the conditional characteristic function 

M{expi[z*Os + z*Ot]l.rf} = M{expi[z*Os]M(expi[zOt]iFf,Bs)iFf}. 

where z = (z1, ... , zk) and z = (z17 ••• , zk)· According to the note to Theo­

rem 13.4, the distribution P(Ot ::::; f3i0s, Ff) is Gaussian, N(mo. (t, s), "Yo. (t, s)). 
By Lemma 13.5, mo. (t, s) = <p!Os + v,;, and the covariance "Yo. (t, s) does not 
depend on 08 : ')'o.(t,s) = "f(t,s). Hence 

and 

M { exp[iz*Ot]l.rf, Os} = exp [iz*(<p!Os + v,;)- ~z*"Y(t, s)z] 

M(exp i[z*Os + z*Ot]i.rf) = exp [i(z*V,;)- ~z*"Y(t, s)z] 

xM(expi[z*Bs + z*<p;Os]i.rf). (13.112) 

However, the conditional distribution P(Os ::::; o:l.rf) is Gaussian (Theo­
rem 13.6). Hence, it follows from (13.112) that the distribution P(Os ::::; a, Ot ::::; 
f3i.rf) will also be Gaussian; this, along with the normality of the distribution 

P(Ot :::; f3i.rf) (see the note to Theorem 13.3) proves the normality of the a 

posteriori distribution Ilo:f3(s, t) = P(Os ::::; al.rf, Ot = {3). 
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19.9.6. The techniques applied in proving Theorem 13.9 enable us to com­
plete the proof of Theorem 13.3. 

PROOF OF THEOREM 13.3. We have 

M ( expi [t,z;os] Ff) 
= M{ (expi[~z;os])M(exp[iz;Ot]IFf,Oo, ... ,Ot-l)IFf} 

~ M { ( expi [~z;o.]) M(exp[iz'9,]1.1-i,0,_1) .1]} 
~ M { exp i [~ z;o, + zt_,o,_, + zi('l'l-19,_, + .Pl-1) l .1]} 

x exp { -~z;"((t, t- 1)zt} = exp { i[z;1/J:_1]- ~z;"((t, t- 1)zt} 

= M{ (expi [~z;os]) 
xM[expi(zt-1 + (cp~-1)*zt)*Ot-11Ff,Ot-21Ff }· {13.113) 

The distribution P(Ot-1 ~ f31Ff,Ot-2) is normal (see the note to Theo­
rem 13.6); its a posteriori mean depends linearly on Ot-2, and the covariance 
does not depend on Ot-2 at all, since equations analogous to Equations (13.95) 
and (13.96) hold for them. Hence, 

M{expi[zt-1 + (cp~_ 1 )*zt]Ot-11Ff,Ot-2} 

= exp [i(Zt-1 + ( cp~_ 1 )* Zt)(a(t - 1, t - 2)0t-2 + b(t - 1, t- 2)) 

-~(zt-1 + (cpL1)*zt)*c(t -1, t- 2)(zt-1 + (cp~- 1 )*zt)], (13.114) 

where a(·), b( ·) and c( ·) are matrix functions (their explicit forms are of no 
consequence now), dependent only on time and eb· It follows from this that 
Ot-2 enters into the exponent of the right-hand side of (13.114) linearly, and 
the variables Zt. Zt-1 quadratically. 

Therefore, 
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= exp{ i[z;'I/J:-1 + (zt-l + (cp~-l)*zt)*b(t -1, t- 2)]- ~z;')'(t,t -1)zt 

-~(Zt-l + (cp~_ 1 )*zt)*c(t -1, t- 2)(zt-1- (cpL1)*zt)} 

xM(expi[~z;os + {zt-2 + (zt-l + (cp~_ 1 )*zt) 

xa(t- 1, t- 2}}0t-2] l.rt). {13.115) 

Extending the techniques of 'splitting off' variables given above we can 
see that the characteristic function 

too is (negative) exponential in the nonnegative definite quadratic form of the 
variables zo, ... , Zt, which proves the conditional normality of the sequence 
(0, e) governed by Equations (13.46) and (13.47). 

13. 3. 7. Let us continue our study of the interpolation problem discussed in 
Subsection 13.3.5. 

Theorem 13.10. If the conditional distribution lla(s) = P(08 :$ o:IF!) 
is normal, then the pammeters ihf3(s, t) and 7f3(s, t) of the distribution 
lla,f3(s, t) = P(08 :$ al.rf, Ot = {3) for all t > s can be defined by the re­
lations (compare with {12.109} and {12.110}) 

ihf3(s, t) = m(s, t) + ')'(s, t)(cp!)*"Yi(/3- mt), {13.116) 

7f3(s, t) = ')'(s, t)- ')'(s, t)(cp!)*"Yicp!')'(s, t) 

with ihf3(s, s) = {3, 7f3(s, s) = 0. 

(13.117) 

PROOF. The conditional distribution P(08 :$a, Ot :$ f31.rf) is normal. Hence, 
according to the note to the theorem on normal correlation, 

ihf3(s, t) = M(Osl.rf,Ot = {3) = M(Osl.rf) + d12dt2({3- M(Otl.rf)) (13.118) 

and 

where 

du = cov (Os, Osl.rf) = "Y(s, t), 

d12 = cov (Os, Otl.rf), 

d22 cov (Ot, Otl.rf). 

(13.119) 

(13.120) 
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According to (13.100) and Lemma 13.5, 

M[(Bt- mt)*IJ1, Bs] = e;(cp~)* + (1/1~)*- (m*(s, t)(cp;)*) + (1/1!)* 
= (Bs- m(s,t))*(cp;)*. 

Hence, 

d12 = cov (Bs, BtlJ1) = M[(Bs- m(s, t))(Bt- mt)*IJ1J 
= M{(Bs- m(s, t))M[(Bt- mt)*IJ1, Bs]IFf} 
= du(cp!)* = -y(s,t)(cp8 )*. (13.121) 

We obtain (13.116) and (13.117) from (13.118)-(13.121). D 

Note. It follows from (13.117) that the covariance i'.B(s, t) does not depend 
on /3. 
13. 3. 8. We shall deal now with the deduction of backward interpolation equa­
tions (overs at fixed t) for m(s, t), -y(s, t) and ih,B(s, t), i'.B(s, t). 

Theorem 13.11. Let {1}-(4) be satisfied. Then the moments ih,B(s, t) and 
i'.B(s, t) satisfy the equations (overs< t) 

ih,B(s,t) = m(s,s+1)+-y(s,s+1)(cp!+1)*-r:+l 

X [ih,B(s + 1, t) - ms+l], 

i'.B(s,t) = i'.B(s, s + 1) + -y(s, s + 1)(cp!+l)*-r:+li'.B(s + 1, t) 

(13.122) 

x-y:+lcp!+l-y(s, s + 1) (13.123) 

with ih,B(t, t) = /3, i'.B(t, t) = 0. 

PROOF. We obtain from (13.116) and (13.117) the following: 

ih,B(s, s + 1) = m(s, s + 1) + -y(s, s + 1)(cp!+1)*-r:+l(/3- ms+l), (13.124) 

i'.B(s, s + 1) = -y(s, s + 1) - -y(s, s + 1)(cp!+l )*-r:+l cp!+1-y(s, s + 1). (13.125) 

Let us show that, for the process ((),e) governed by Equations (13.46) and 
(13.47) and for all s < u :::; t, 

(13.126) 

For this purpose we shall consider the arbitrary measurable bounded 
functions f(Bs), xt+l(B,e), g~(e), A(Bu) of Bs, (Bu+l, ... ,Bt,eu+b ... ,et), 
(eo, ... , eu), Ou, respectively, and note that for s < u, 
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and 

M {.A(Ou)90 (~)M[f(Os)x!.+l (0, ~)IF~, Ou]} 

= M{>.(Ou)9o(~)f(Os)x!.+l(O,~)} 

= M{.A(Ou)90(~)f(Os)M[x!+ 1 (0,~)1F~,Ow .. ,Ou]} 

= M {>.(Ou)g0 (~)f(Os)M[x!.+l (0, ~)IF~, Ou]} 

= M {>.(Ou)g0 (~)M[f(Os)IF~, Ou]M[x!.+l(O, ~)IF~, Ou]}. 

Therefore, by virtue of the arbitrariness of the functions >.(08 ) and g~(~), 

M[f(Os)IF~, Ou]M[x!.+l(O,~)IF~, Ou] 

= M[f(Os)X!.+l (0, ~)IF~, Ou] 

= M {M[f(Os)X!+l (O,~)I.rl, Ou, ... , Ot]IF~, Ou} 

= M{x!+l (O,~)M[f(Os)l.rl, Ou, ... , OtJIF~, Ou}· 

Because of the arbitrariness of xt+l (0, ~), the required equality, (13.126), 
follows. 

Taking into account (13.126), we find that 

n~f3(s, t) = M[IIa,o.+I (s, s + 1)IF!, Ot = ,8]. 

It follows from this formula that 

rhf3(s, t) = M[mo.+ 1 (s, s + 1)IF!, Ot = ,8], 

which, together with (13.124), leads to Equation (13.122). 

(13.127) 

We shall employ the following known formula to compute the conditional 
covariances: if~.~ are random vectors such that M~*~ < oo, and if g is a 
certain a-algebra, then 

According to this formula and (13.127) 

if3(s,t) = cov(Os,OsiF!,Ot=.B) 

= M[cov (Os, Osl.rl, Ot, Os+t)l.rl, Ot = ,8] 

+cov [M(Osl.rl, Ot, Os+t), M(Osl.rl, Bt, Os+t)l.rl, Ot = ,8] 

= M[cov(Os,Osl.r_;+l,Os+l)IF!,Ot = .8] 

+cov [M(OsiF!+l, Os+t), M(OsiF!+l, Os+l)l.rl, Ot = ,8] 

= M[io.+ 1 (s,s + 1)1Ft~,Ot = ,8] 

+cov [mo.+ 1 (s, s + 1), mo.+1 (s, s + 1)IF!, Ot = .8] 

= if3(S, s + 1) + M[(mo.+l (s, s + 1)- m{3(s, t)) 

xmo.+ 1 (s, s + 1)- mf3(s, t))*IF!, Ot = ,8]. (13.129) 
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But it follows from (13.122) and (13.124) that 

me.+1 (s, s +I)- ih,B(s,t) = -y(s, s + I)(cp:+l)*'Yt+l[Os+l- ih,B(s + 1,t)], 
(13.130) 

which together with (13.129) leads to Equation (13.123). 

Theorem 13.12. Let {1}-(4) be satisfied. Then the moments m(s, t) and 
-y(s, t) of the conditional distribution IIa(s, t) = P(08 :::; al.rf) satisfy, for 
s < t, the (backward} equations 

m(s, t) = m(s, s + 1) + -y(s, s + 1)(cp:+l)*'Yt+l[m(s + 1, t)- ms+l], (13.131) 

-y(s, t) = i'(s, s +I)+ -y(s, s + 1)(cp:+l )*'Yt+l'Y(s +I, t)'Yt+l cp:+l-y(s, s + 1) 
(13.132) 

with m(t, t) = mt, -y(t, t) = 'Yt 1 i'(s, s + 1) = i'.B(s, s + 1). 

PROOF. Equation (13.131) can be deduced immediately from (I3.I22). In 
order to deduce (13.132) let us make use of (I3.I27) and (I3.128). We obtain 

-y(s, t) = cov (08 , Oal.rf) 

= M[cov (Oa, Osl.rf, Os+l)l.rfJ 

+cov [M(Osl.rf, Oa+l), M(Osl.rf, Os+l)l.rfJ 

= M[cov (Os, Oal.r;+l, Os+dl.rf] 

+cov [M(Osl.r;+l, Oa+l), M(Osl.r;+l• Os+l)l.rfJ 
= i'(s, s +I)+ M {[me.+1 (s, s + 1) - m(s, t)] 

x [m8.+1 (s, s +I) - m(s, t)]*l.rf}. (13.133) 

But, according to (I3.I22) and (I3.I3I), 

me.+1 (s, s + 1)- m(s,t) = -y(s, s + 1)(cp:+l)*'Yt+1[08+1- m(s +I, t)], 

which, together with (13.133), yields Equation {13.132). 0 

13.4 Recursive Equations of Optimal Extrapolation 

1:1.4.1. Extrapolation is understood as estimation of vectors Ot, ~t from the 
observations ~g = {~o, ... ,~8 }, where t > s. As in the case of continuous 
time (Section 12.5) equations of extrapolation will be deduced only in two 
particular cases due to the fact that the conditional distributions 

P( Ot :::; a, ~t :::; biF!) 

are, generally speaking, no longer Gaussian. 
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Before formulating the theorems, we shall set forth the way of identifying 
the cases for which extrapolation estimates can be constructed. 

Due to (13.56) and (13.78), 

mt+l = [ao(t,~) + at(t,~)mt] 

+[(b o B)(t, ~) + a1 (t, ~)rtAi(t, ~)] 

x [(B o B)(t, ~) + At(t, ~)ryAHt,~)]+ 

x [(B o B)(t, ~)+At (t, ~)rtAi(t, eWI2e(t + 1), (13.134) 

~t+l = [Ao(t,~)+At(t,~)mt] 

+[(B o B)(t,e) + At(t,~)rtAi(t,e)] 112e(t + 1). (13.135) 

Denote by 

the optimal (in the mean square sense) estimates Ot and ~t from e~ 

{~o, ... , ~so}· Since nt(t, s) = M[M(OtiFf)IF!] = M[mtiF!) and 

M(e(t + 1)IF!) = o 

for all t + 1 > s, then equations for nt(t,s) and n2(t,s) can be found by 
taking M(-IF!) on both sides in (13.134) and (13.135). 

It is easy to see from this that the simultaneous determination of n1 ( t, s) 
and n2(t, s) becomes possible if 

ao(t,~) = ao(t) + a2(t)~t, at(t,e) = a1(t), 

Ao(t,~) = Ao(t) + A2(t)~t, At(t,~) = At(t) 

(13.136) 

(13.137) 

where the matrix functions ai(t) and Ai(t), i = 1, 2, and the vectors a0 (t) 
and Ao(t) depend only on time. 

If we are interested in nothing but estimation of variables Bt, then deter­
mination of n1 (t, s) becomes possible if we require (13.136) with a2 (t) = 0 to 
be satisfied. 

13.4.2. 
Theorem 13.13. Let {1}-(4}, {13.136} and {13.137} be satisfied. Then the 
moments n1(t, s) and n2(t, s) satisfy the equations 

nt(t+1,s) = ao(t)+at(t)nt(t,s)+a2(t)n2(t,s), 

n2(t + 1,s) = Ao(t) + At(t)nt(t,s) + A2(t)n2(t,s), 

with n1 (s, s) = m 8 , n2(s, s) = ~s· 
If {13.136} is satisfied and, in addition, a2(t) = 0, then 

nt(t + 1, s) = ao(t) + at(t)nt(t, s), nt(s, s) = m 8 • 

(13.138) 

(13.139) 

(13.140) 
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Proof is immediate by taking M(·I.F.f) on both sides of (13.134) and 
(13.135). 

Let us now consider the backward equations for n1(t, s) and n2(t, s). 

Theorem 13.14. Let {1}-(4}, {13.136} and {13.137} be satisfied. Then 

where 

( n1(t,s+1)) = (n1(t,s))+4it-1(D1(s,e)·Df(s,e)) 
n2(t,s+1) xn2(t,s) s+l E 

x[es+l- Ao(s)- A1(s)ms- A2(s)es], (13.141) 

D1(s,e) = (boB)(s,e) +a1(s,ehsAi(s,e), 

D2(s,e) = (B o B)(s,e) + A1(s,ehsAi(s,e). 

E = E(lxl)• the matrix 4i! can be defined by the recursive equations 

(13.142) 

and 

( n1(t,O)) =4it (mo) + ~4it-1 (ao(u)). 
n2(t, 0) 0 eo L...., u Ao(u) 

u=O 

(13.143) 

If {13.136} is satisfied, and, in addition, a2(t) = 0, then 

n1(t,s+ 1) = n1(t,s) +t~J!+H(boB)(s,e) +a1(s)'ysAi(s,e)J 

x [(B o B)(s, e)+ A1(s, ehsAi(s, e)J+ 
x[es+l- Ao(s,e) + A1(s,e)ms], (13.144) 

where the matrix 1/J! can be defined by the equations 

1/J! = a1(t -1)1/J!-1, 1/J! = E(kxk)• (13.145) 

and 
t-1 

n1(t, 0) = 1/J&mo + L 1P!-1ao(u). (13.146) 
u=O 

PROOF. By induction we obtain from (13.134) and (13.135) the following: 

( mt) _ 4it (m t:) + ~ 4it-1 (ao(u)) 
et - o o.,o f;:;, u Ao(u) 

+ ~ 4it-1 (D1(u,e)Df(u,e)D~12 (u, e)) e(u + 1). 
L...., u D1/2( t:) 
u=O 2 u,., 

(13.147) 
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Take the conditional expectation M(·l.r!+l) on both sides in (13.147). 

Then, taking into account that M[E(u + 1)i.r!+1J = 0, u > s, we easily find 
from (13.147) that 

( nl(t,s+1)) = (n1(t,s)) +4>t-1 (Dl(s,e)Dt(s,e)n~12 (s,e))E(s+ 1 )· 
n2(t, s + 1) n2(t, s) s+l D~l2 (s,e) ' 

this, together with (13.135), leads to the system of equations given by 
(13.141). 

(13.144) can be deduced in a similar way. D 

13.5 Examples 

13. 5.1. We shall present here examples which illustrate the potential appli­
cations for the equations of filtering, interpolation and extrapolation deduced 
above. 

EXAMPLE 1 (Parameter Estimation). Let () = (B1, ... , ()k) be a Gaussian 
vector with M() = m and cov(B,B) = 'Y· It is required to estimate() from 
the observation of the l-dimensional process et, t = 0, 1, ... , satisfying the 
recursive equations 

(13.148) 

with eo= 0. 
Assuming9 (1)-(4) we obtain, from (13.56) and (13.57), for mt = M(BIFl) 

and 'Yt = cov (B, BIFff), recursive equations 

mt+l = mt +'YtAi(t,e)[(BlBi)(t,e) +Al(t,ehtAi(t,e)J+ 

X [et+l - Ao(t, e) - Al (t, e)mt], (13.149) 

'Yt+l = "'t- 'YtAi(t, e)[(BlBi)(t, e)+ A1(t, ehtAi(t, e)J+ A1(t, eht, (13.150) 

with mo = m, 'Yo= 'Y· 

Theorem 13.15. If the matrices (B1Bi)(t, e) are nonsingular (P-a.s.), t = 
0, 1, ... , then solutions of Equations (13.149) and (13.150} are given by the 
formulae10 

9 Assumption (2) in this case can be replaced by the condition 
MTr Al(t,e)Ai(t,e) < oo. 

10 Compare with Theorems 12.2 and 12.8. 
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m,+1 = [ E + ~ t. Al(s, ~)(B1Bi)- 1 (s, ~)Al(s, ~) r1 

X [ m + ~ t. Ai(s, ~)(B1Bi)- 1 (s, me.+1 - Ao(s, en l , 
(13.151) 

~<+1 = [ E + ~ t. Ai(s, e)(B1Bi)-1(s, eJA1 (s, ~) r1 ~· (13.152) 

PROOF. By Theorem 13.3, the conditional distribution P{O ::::; ai.J1} is 
Gaussian (P-a.s.) with the parameters (mt,~t)· 

Assume that the matrix 'Yt is positive definite. Then the conditional dis­
tribution P{O::::; ai.J1} has the density 

~ ( let)_ dP{O::::; ai.J1} 
J9 a <,o - da . 

The conditional distribution P{~t+l::::; bi.J1,o} is also (P-a.s.) Gaussian 
with the parameters { (Ao(t, ~) + A1 (t, ~)0), (B1Bi)(t, ~) }. Since the matrices 
(B1Bi)(t, ~), t = 0, 1, ... , are nonsingular (P-a.s. ), the distribution P{ ~t+l ::::; 
bi.J1, 0} has the density 

~ (blct+l o) = (dP{~t+l::::; bi.J1,o} 
Jet+l .. o , db · 

But according to the Bayes formula, there exists a density 

given by the formula 

Let us write 

g2(t + 1, ~) = (211')(k+l)/2 .J det 'Yt · det(B1Bi)(t, ~) 

X { fet+l (~t+l~~~~ x)fo(xl~~)dx. 
JJRk 

(13.153) 

(13.154) 

(13.155) 

By Theorem 13.3, the density /o(al~~+l) is (P-a.s.) Gaussian with the 
parameters ( mt+ 11 'Yt+l), where 'Yt+l is a positive definite matrix. Taking this 
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fact as well as (13.154) and (13.155) into account, we find from (13.153) that 
(P-a.s.) 

(gt(t + 1,e)r1 exp {-~(a- fflt+t)*'Ytil(a- ffitH)} 

= [g2(t + 1,e)r1 exp{ -~(a- mt)*'Yt'1(a- mt) 

-~(et+1- Ao(t,e)- At(t,e)a)*(B1BD-1(t,e) 

x(et+l- Ao(t,e)- At(t,e)a) }· (13.156) 

Equating now the square and linear forms over a in the left- and right­
hand sides of (13.156), respectively, we obtain, by virtue of the arbitrariness 
of the vector a, the recursive equations 

'Yt,;1 = 'Yt1 + Ai(t,e)(BtBi)-1(t,e)At(t,e), (13.157) 

'Yt,;tmt+t = 'Yf' 1mt + Ai(t,e)(BtBi)-1(t,eHet+1- Ao(t,e)J. (13.158) 

If the matrix 'Yo = "( is positive definite then by induction it follows that 
recursive equations (13.157) and (13.158) hold true for all t. Hence, in the 
case where "( is nonsingular, (13.151) and (13.152) for mt+1, 'Yt+l• t ;::: 0, 
follow from (13.157) and (13.158). 

If the matrix"( is singular, then, assuming "fg ='Yo+ eE, e > 0, we find 
"fFH and m~+l from (13.151) and (13.152) with the substitution of"(+ eE 
for "(. In particular, 

After a passage to the limite ..j.. 0, we obtain the required representations 
for mt+l and "ft+l for any symmetric nonnegative definite matrix "(. 0 

Note. Let m~n) and "f~n) be parameters of the a posteriori distributions 
P(O ~ a!.rl), corresponding to the a priori distributions P(O ~ a) "' 
N(m(n)' 'Y(n)). 

Let 0 < "((n), Tr"((n) < 00. Then, iflimn--too('Y(n))-1 = 0 and the ma­
trices E!=oAi(s,e)(BtBi)-1(s,e)A1(s,e) are nonsingular (P-a.s.), it is not 
difficult to prove that there exist 

and 

- 1' (n) mt= tmmt, n--too 
it = lim "((n) 

n--too t 
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iht+l = it+l [~Ai(s,e)(B1Bi)- 1 (s,e)(s,e)(e8+l- Ao(s,e))]. (13.159) 

Note that the estimate given by (13.159) coincides with the maximum like­
lihood estimate for the vector() from the observations e~+l = {eo, 0 0 0 'et+l}· 

13.5.2. 
EXAMPLE 2 (Interpolation of a Gaussian Markov Chain). Let 

()t = (()l(t), 0 0 0 ,()k(t)), t = 0, 1, 0 0 0 

be the Markov chain defined by the recursive equations 

(13.160) 

where ao(t), al(t) and b(t) depend only on t, and the random vector eo "' 
N(m,-y), 

Let us discuss the problem of estimating the variables ()8 on the assump­
tion that ()t = (3, s < t. 

Let 

ih[J(s, t) = M(()81()t = (3), 

,:Y(s, t) = if3(s, t) = M[(()8- ih[J(S, t)(()8- ih[J(s, t))*l()t = (3], 

ffit = M()t, 'Yt- = COV (fh, ()t)· 

Then, according to Theorems 13.4 and 13.10, 

(13.161) 

and 

ih[J(s, t) = mt+'Yt(~P!)*-yi(f3-mt), ,:Y(s, t) = -y8--y8(<p!)*'Yi~P!'Y8, (13.162) 

where <p~ = a1(t- 1) · · · a1(s). In particular, if Ot+l = ()t + c:1(t + 1), then 

ih[J(s, t) = m + 8 + 'Y ((3-m), i(s, t) = (s + -y) [1 - 8 + 'Y] . (13.163) 
t+-y t+-y 

EXAMPLE 3 (Interpolation with Fixed Delay). Let us discuss the problem 
of estimating the variables ()8 from the observations eg+h = {eo, 0 0 0 'e8+h} 
where his a fixed value., Let mh(s) = m(s, s +h), 'Yh(s) = -y(s, s +h), and 
assume that for all s, s = 0,1, ... , the matrices -y(s,s + 1)(~P!+l)*-y;_;1 are 
nonsingular. 

Then the forward equation given by (13.95) yields 

mh(s + 1) = m(s + 1, s +h)+ -y(s + 1, s + h)(~P!t~)* Ai(s + h, e) 

x[(B o B)(s + h,e) + A1(s + h,eh8+hAi(s + h,e)J+ 

x[e8+h+l- Ao(s + h,e)- A1(s + h,e)m8+hl· (13.164) 
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From the backward equation given by (13.131}, on the assumption of 
nonsingularity of the matrices -y(s, s + 1}(cp!+h)*-y_;-_;1, we obtain 

m(s + 1, s +h)= ms+l + [-y(s, s + 1}(cp!+1)*-y_;-_;1t 1 [mh(s)- m(s, s + 1)], 
(13.165) 

which, together with (13.164), yields the following equation for mh(s): 

mh(s + 1) = ms+l + ['Y(s, s + 1)(cp!+1)*-y;J1]-1[mh(s)- m(s, s + 1)] 

+-y(s + 1, s + h)(cp!t~)* Ai (s + h,~)[(B o B)(s + h, ~) 
+A1(s + h,ehs+hAi(s + h,e)J+ 
x[es+h+l- Ao(s + h,e) + A1(s + h,e)ms+hl· (13.166) 

Similarly, from the forward equation given by (13.96) we find for 'Yh(s + 
1) = -y( s + 1, s + h + 1) that 

'Yh(s + 1) = -y(s + 1, s +h) - -y(s + 1, s + h)(cp!t~)* Ai (s + h, e) 
x[(B o B)(s + h,e) + A1(s + h,~hs+hAi(s + h,e)J+ 
xA1(s, h,e)cp!t~(s + 1, s +h). (13.167) 

From (13.132) we obtain 

-y(s + 1, s +h) = ['Y(s, s + 1)(cp!+l)*-y;J1t 1['Yh(s)- ,:Y(s, s + 1)] 

x [-r;J1 ¥'!+1-r(s, s + 1)t1. 

Substituting this expression for -y(s + 1, s +h) in (13.166} and (13.167) 
we obtain equations describing the evolution ofmh(s) and 'Yh(s). In this case 
mh(O) = m(O, h) and 'Yh(O) = -y(O, h) are defined from the forward equations 
given by (13.95) and (13.96). 

In the particular case h = 1, 

m1 (s + 1) = ms+l + 'Ys+lAi (s + 1, e)[(B o B)(s + 1, ~) 
+A1(s + 1,ehs+IAi(s + 1,e)J+ 
X [es+2 - Ao(s + 1, e) - Al (s + 1, e)ms+d· (13.168) 

13.5.3. 
EXAMPLE 4 (Linear Prediction of Stationary Sequences). Let ~t, t = 
0, ±1, ±2, be a stationary wide-sense process with M~t = 0 and the spec­
tral density 

(13.169) 

Let it be required to construct an optimal (in the mean square sense) 
linear estimate of the variables ~t from ~g = {~o, ... ,~8 }, s :$ t. 

We shall construct the Gaussian process et, t = 0, ±1, ... , with Met = 0 
and the spectral density J(>.) = j(>.). Such a process can be obtained by 
solving the equation 
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where c:(t), t = 0, ±1, o 0 0' is a sequence of Gaussian random variables with 

{ 1, t = s 
Mc:(t) = 0, Mc:(t)c:(s) = c5(t, s) = O, t =I 8 ° 

Set Bt = et+l- c:(t + 1)0 Then for (Bt,et), t = 0,±1,0 o 0' we obtain the 
system of equations 

1 1 1 
Bt+l = - 2Bt- 2et + 2 c:(t + 1), 

et+l = ot + c:(t + 1)0 (130170) 

According to Theorem 13013, n1(t, s) = M(BtiF!) and n2(t, s) = M(etiF!) 
can be defined from Equations (130138) and (130139): 

1 1 
n1(t+1,s) = - 2 n1(t,s)-2n2(t,s), 

n2(t+1,s) = n1(t,s), (130171) 

with nl (s, s) = ms, n2(s, s) = eso 
'Ys and the initial condition m 8 = M(BsiF!) entering into (130171) can be 

defined by the equations (see (13056) and (13o57)) 

1 1 1- 'Ys 
ffis+l = -2ms- 2es + 2(1 + 'Ys) (es+l - ms), (130172) 

'Ys 
'Ys+l = 1 + 'Ys o (130173) 

Note here that mo = 0, 'Yo= 1. 
Indeed, by virtue of the stationarity of the process (Ot.et), t = 0, ±1, 0 0 0' 

parameters du =MOl, d12 =MOtet, and d22 = Mel are easily found from 
the following system obtained from (130170): 

d22 = du + 1. 

Thus, du = 1, d12 = 0, d22 = 2, and, by the theorem on normal correla­
tion, mo = 0, 'Yo = 1. 

Returning to the initial process et, t = 0, ±1, 0 0 0' we find that optimal 
linear prediction can be defined from (130171)-(130173) where (in (130172)) 
et should be substituted for et (see Lemma 1401)0 
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Notes and References. 1 

13.1. The theorem on normal correlation (Theorem 13.1), proved in general 
by Marsaglia [225] (see also Anderson [3]), has been repeatedly used in several 
chapters of this book. The authors owe the proof of Theorem 13.2 to Kitsul. For 
the properties of pseudo-inverse matrices see also Gantmacher [69]. Lemma 13.3 
was proved by Pjatetsky (Masters Thesis). 

13.2-3.5. The material of these sections is based on the papers of Liptser and 
Shiryaev [213], and Glonti [77-79]. 

Notes and References. 2 

13.1. The theorem of normal correlation in a general setting uses the Moore­
Penrose pseudo-inverse matrix. This matrix is also extensively employed in sta­
tistical applications and in Kalman filtering for the discrete-time case. The main 
properties of the pseudo-inverse matrix and its various applications can be found 
in Albert [1]. 



14. Application of Filtering Equations to 
Problems of Statistics of Random Sequences 

14.1 Optimal Linear Filtering of Stationary Sequences 
with Rational Spectra 

14.1.1. The objective of this chapter is to show how the equations of optimal 
nonlinear filtering obtained for conditionally Gaussian random sequences can 
be applied to solving various problems of mathematical statistics. In partic­
ular, the present section deals with the problem of linear estimation of un­
observable components of a multidimensional stationary wide-sense process 
(discrete time) with rational spectral density in the components accessible 
for observation. 

The possibility of applying the filtering equations obtained above to this 
problem is based on the fact {Theorem 14.1) that any stationary sequence 
with a rational spectrum is a component of a multidimensional process satis­
fying a system ofrecursive equations of the type given by {13.46) and {13.47). 

More precisely, let 'T/(t), t = 0, ±1, ±2, ... , be a (real or complex) station­
ary wide-sense random process permitting the spectral representation 

where 4>(d,\) is an orthogonal {random) measure with 

M4>{d-X) = 0, Ml4>(d-XW = ~~' 

n-1 

Pn-l{z) = I>kzk, 
k=O 

n 

Qn(z)=Lakzk, an=1, ak,bkElR1 . 

k=O 

{14.1) 

Assume that all the roots of the equation Qn(z) = 0 lie within the unit 
circle. 

It follows from {14.1) that the process 'T/(t) has the rational spectral density 

f (,\) = Pn-l(e' ) I ·A 12 
n Qn(eiA) {14.2) 

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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Construct from the measure ~( d>.) the process 

e(t) = /_: ei~(t-1)~(d>.). 

It is clear that 

11r d>. 
Me(t) = 0, Mle(t)12 = -2 = 1, 

-tr 7r 

and 
Me(t)e(s) = e'~(t-s)_ = cS(t, s), 11r • d>. 

-'lr 27r 

where c5(t, s) denotes the Kronecker function. 

(14.3) 

{14.4) 

It follows from (14.4) that the sequence of values of e(t), t = 0, ±1, ... , 
is a sequence of uncorrelated variables. 

In addition to the process rJ( t), permitting the spectral representation 
given by (14.1), we shall define new processes 'TJ1(t), ... , rJn(t) by the formulae 

'TJi(t) = /_: ei~twi(ei~)~(d>.), j = 1, ... , n, (14.5) 

where the frequency characteristics Wi(z), j = 1, ... , n, are selected in the 
following specific manner: 

n-1 

Wj(z) = z-(n-i)Wn(z) + L f3kz-(k-i+ 1), j = 1, ... , n- 1; (14.6) 
k=j 

n-1 

Wn(z) = -z-1 L ak wk+1(z) + z-1!3ni 
k=O 

j-1 

(14.7) 

f31 = bn-1, f3j = bn-j- L !3ian-i+l• j = 2, ... , n. (14.8) 
i=1 

It follows from (14.6) and (14. 7) that 

Wj(z) = z-1[Wi+l(z) + !3il 

and 

W.(z) ~ z-1 [-~ a• Ww (z) +lin]· 
It is not difficult to deduce from this that 

(14.9) 

(14.10) 

Wn(z) = z- 1 [-~ akz-(n-k-1)Wn(z) + ~ {3jz-(j-k) + f3nl , (14.11) 
k=O j=k+1 
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and, therefore, 

{14.12) 

where P~~1 (z) is a polynomial of degree less than or equal to n- 1. 
Next, due to {14.9)-{14.12), 

p(i) (z) 
Wi(z) = Q:(z) , {14.13) 

where the polynomials P~·~\ (z) also have degree less than or equal ton- 1 
and, due to {14.8), 

{14.14) 

Thus 771(t) = 17(t). 

Theorem 14.1. The stationary {wide-sense) process 17(t)1 t = 0, ±11 ••• 1 

with spectral representation given by {14.1) is one component of the n­
dimensional stationary (wide-sense) process ( '171 ( t), ... , '17n ( t)) 1 '171 ( t) = 77( t) 1 

obeying the system of recurrent equations 

11i(t + 1) = '17i+l(t) + .Bie(t + 1), j = 1, ... , n- 1, 
n-1 

'17n(t + 1) = - L ai'17i+1(t) + .Bne(t + 1). {14.15) 
j=O 

The process e(t), t = 0, ±1, ... , permits the representation given by {14.3) 

M17i(s)e(t)=O, s<t, j=1, ... ,n, 

and the coefficients .81, ... , .Bn are given by (14.8). 

{14.16) 

PROOF. Note first that from {14.12) and {14.13) it follows that all the poles 
of the functions Wi(z) lie within the unit circle. 

Taking advantage of {14.6), {14.7) and {14.5), we find easily that the 
process ( '171 ( t), ... , '17n ( t)) satisfies the system ofrecursive equations given by 
{14.15). 

Let us establish now the validity of {14.16). Let1 

A=(·: 
-ao 

1 0 
0 1 .~.] ' B = (~~) . 

1 ... 
.Bn 

-an-1 

1 In algebraic operations Yt is regarded as a column vector. 

{14.17) 
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Then in matrix notation the system of equations given by (14.15) permits 
the representation 

yt = AYi-1 +Bet· (14.18) 

Let t > s. Then, due to (14.18) and (14.4), 

MY8 €(t) = AMYs-1€(t) = A2 MYs-2€(t) = · · · =AN MYs-NE(t); 

in this case, for each j, j = 1, ... , n, 

Therefore, in order to prove (14.16), it suffices to show that 

lim AN= 0 
N-too 

(0 is the zero matrix). 

(14.19) 

The eigenvalues of the matrix A are the roots of the equation Qn(z) = 0 
and, therefore, they lie within the unit circle. Transform the matrix A into a 
Jordan form 

A= CJC-1, 

where the eigenvalues of the matrix A are on the main diagonal of the matrix 
J. Let >. be a maximal eigenvalue of the matrix A. Then, since LXI < 1, no 
element of the matrix JN exceeds in magnitude the values of N!>.IN-1. But 
AN= CJN c- 1 and N!X!N-1 -t 0, N -too, which proves (14.19). D , 

Note 1. If TJ(t), t = 0, ±1, ... , is a real process, then each of the processes 
ry1 (t), ry2 (t), ... , TJn(t) is also real. Here the covariance matrix r = Myt~* 
satisfies the equation 

r = AFA* + BB*. 

If t > s, then 
COY (yt, Ys) = MytYS* = At-s r, 

which follows from the equalities 

yt = AYi-1 + Bc(t) = A2Yi-2 + ABc(t- 1) + Bc(t) 

Similarly, at t < s, 

t-1 

= At-sYs + L At-1-j Bc(j + 1). 
j=2 

cov(Yt,Ys) =F(A*)s-t. 

(14.20) 

(14.21) 

(14.22) 

Note 2. If ry(t), t = 0, ±1, ... , is a Gaussian process, then c(t), t = 
0, ±1, ... , is a Gaussian sequence of independent random variables. 
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14.1.2. We can take advantage of {14.15) in order to deduce filtering equa­
tions of stationary sequence components with rational spectra. 

Let Vt = [lit, et] = [(li1(t), ... , lik(t)), (6(t), ... , et(t))), t = 0, ±1, ... , 
be a real stationary (wide-sense) (k + l)-dimensional process permitting the 

representation 
(14.23) 

where W(z) = IIWr,q(z)ll is the matrix of order N x m, N = k + l, with the 
rational elements p,(r,q) 

Wr,q(z) = Qn(~~;)1 , {14.24) 
nr,q 

and 4>(d>-.) = [4>1(d>-.), ... , 4">m(d>-.)] is the random vector measure with un­

correlated components M4">j(d>-.) = 0, Ml4>j(d>-.)12 = d)..j2tr. Assume as well 

that the roots of the equations Q~;,~ (z) = 0 lie within the unit circle. 
Applying Theorem 14.1 to each of the processes 

!11" i>.t i>. 
Vp,r,q(t) = -1r e Wr,q(e )4>p(d>-.), (14.25) 

after simple transformations for the vector et = (6(t), ... 'et(t)) and the vec­

tor Bt (composed of the vector lit= (li1(t), ... ,lik(t)) and all those additional 

components of the type 172 (t), ... , 1Jn(t), which arise by Theorem 14.1 in 
the system of equations given by (14.15)), we obtain the system of recursive 

equations 

Bt+l = a1Bt + a2et + bc(t + 1), 

et+l = A1Bt + A2et + Bc(t + 1), (14.26) 

where c( t) = ( c1 ( t), ... , em ( t)) is the sequence of uncorrelated vectors with 

uncorrelated components, Mcj(t) = 0, Mc~(t) = 1, 

cj(t) = L: ei>.(t-l)q,j(d>-.). (14.27) 

The matrices ai, Ai, band B, i = 1, 2, in (14.26), can be found by immediate 

computation. 
Assume now that in the vector Vt = (lit, et) the first component is unob­

servable. Consider the problem of constructing for each t, t = 0, 1, ... , the 

linear optimal (in the mean square sense) estimate for lit from the observa­

tions (eo, ... ' et)· 
If Vt, t = 0, 1, ... , is a Gaussian process, then by Theorem 13.4 and 

Corollary 1 of the theorem, mt = M(Btl.rf) and i't = M([Ot- mt][Bt- mt)*) 
can be defined from the system of equations 

mt+l = almt + a2et (14.28) 

+(bB* +a1 i'tAi)(BB* +A1 i'tAi)+ (et+l-Al mt-A2et), 
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i't+l = a1 i'tai + bb* 
-(bB* +ad'tAi)(BB* +Ali'tAi)+(bB* +ali'tAi)*, (14.29) 

to be solved under the initial conditions 

mo = M(Boleo), i'o = M([Bo - mo][Bo - mo)*). 

According to the theorem on normal correlation (Theorem 13.1), 

mo = cov (Bo, eo)cov +(eo, eo)eo, 
A A A + A 

i'o = cov (Oo, Oo) - cov (Oo, eo)cov (eo, eo)cov (Oo, eo). 

(14.30) 

(14.31) 

Since rht = M(Btl.r!) depends linearly on eo, ... ,et, for the Gaussian 
process 'Yt = [ Ot, et] the solution of the problem of constructing the optimal 
linear estimate of Ot from eo, ... , et is given by Equations (14.28) and (14.29). 

In the general case the optimal (in the mean square sense) linear estimate 
can be also defined from the same equations. This assertion is validated by 
the following: 

Lemma 14.1. Let (a,/3) be a random vector with M(a2 + {32 ) < oo and let 
( 0:, i3) be the Gaussian vector with the same two first moments as in (a, {3), 
i.e., 

Mail= Ma/3. 

Let l(b) be the linear function of bE IR1, such that {P-a.s.) 

l(i3) = M(aii3). (14.32) 

Then l(/3) is the optimal (in the mean square sense) linear estimate of the 
value of a from {3, Ml(f3) = Ma. 

PROOF. First of all note that the existence of the linear function l(/3) with 
the property given by (14.32) follows from the theorem on normal correlation. 

The unbiasedness (Ml(/3) = Ma) of the linear estimate follows from the 
following explicit chain of equalities: 

Ml(/3) = Ml(i]) = M[M(O:jiJ)J = Mii: = Ma. 

Next, if Z(/3) is some other linear estimate, then 

M[ii: -l<i3W 2: M[ii: - l(i3W. 

Hence, by virtue of the linearity of the estimates l(/3) and Z(/3), 
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M[o: -f(~)]2 = M[& -f(,8)]2 ~ M[& -1(,8)]2 = M[o: -t(mJ2, 

which proves the optimality (in the mean square sense) of l(~) in the class of 
linear estimates. 0 

Note. The assertion of the lemma holds true if a and ~ are vectors, a: = 
(o:I. ... 'O:k), ~ = (~I. ... ' ~l)· 

In order to apply Lemma 14.1 to prove that the optimal estimate of Ot 
from eo •... 'et is defined by the system of equations given by (14.28) and 
(14.29), it remains only to note that the process (Ot,et) satisfying {14.26) 
and the Gaussian process defined by the same system have the same first two 
moments. 

14.1.8. To illustrate the approach suggested above to the problems of es­
timating components of stationary processes we shall discuss the following. 

EXAMPLE 1. Let Ot and (t, t = 0, ±1, ... , be mutually uncorrelated station­
ary (wide-sense) sequences with MOt = M (t = 0 and the spectral densities 

I (A) 1 I (A) = 1 
J8 = lei.X+ctl2' J( lei.X+c212' 

where ICil < 1, i = 1,2. 
We shall assume that Ot is a 'useful signal', (t is 'noise', and that the 

process 
(14.33) 

is observed. 
According to Theorem 14.1, we can find uncorrelated sequences e-1(t) and 

e2(t), t = 0, ±1, ... , with Mei(t) = 0, Mei(t)ei(s) = 6(t, s), i = 1, 2, such 
that 

Ot+l =cOt+ et(t + 1), et+l = C2(t + e2(t + 1). (14.34) 

Taking into account (14.33) and (14.34), we obtain 

et+l = Ot+l + (t+l = (cl - C2)0t + c2et + et(t + 1) + e2(t + 1). 

Hence the 'unobservable' process Ot and the 'observable' process et satisfy 
the system of equations 

Ot+l = c10t + et(t + 1), 

et+l = (cl- c2)0t + c2et + et(t + 1) + e2(t + 1). (14.35) 

Due to (14.28) and (14.29), the optimal linear estimate mt, t = 0, 1, ... , of 
the values of Ot and the mean square filtering error 'Yt = M(Ot- mt)2 satisfy 
the recursive equations 

(14.36) 
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(14.37) 

Let us find the initial conditions m0 , 'Yo for this system of equations. 
The process (flt, et), t = 0, ±1, ... , is a stationary (wide-sense) process 

with MOt = Met = 0 and the covariances d11 = MOl, d12 = MOtet, and 
d22 =Mel satisfying, due to (14.35) and (14.20), the system of equations 

du = c~du + 1, 

d12 = c1(c1- c2)du + c1c2d12 + 1, 

d22 = (c1- c2)2du + c~d22 + 2c2(c1- c2)d12 + 2. 

From this we find 

1 
dll = -1 2' 

- cl 

1 
d12 = 1----::2 ' -q 

2-c~-c~ 
d22 = (1 - c~)(1 - c~)' 

which, together with (14.30) and (14.31), gives 

d12 1- ~ 
mo = -d eo = 2 2 2 eo' 22 - C1- C2 

d~2 1 1- c~ 1 
'Yo = du - d22 = 1- c~ - (1 - c~)(2- c~ - c~) = 2- ~ - ~ · 

Thus the optimal (in the mean square sense) linear estimate mt of the 
'useful signal' Ot from eo, ... , et and the mean square error 'Yt are defined by 
means of the system of equations given by (14.36) and (14.37), and can be 
solved under the initial conditions 

1 

In the case of estimation of the parameter Ot from the observations 
(e-N, ... ,eo, ... ,et) the system of equations given by (14.36) and (14.37) 
also holds true, and 

1 
'Y-N = 2 2 2. 

- cl- c2 

14.1.4. In conclusion, we note that the optimal linear estimates of interpo­
lation and extrapolation for a stationary sequence with a rational spectrum 
can be obtained (as in the case of filtering) from the results of the previ­
ous chapter if we discuss only Gaussian sequences with the same first two 
moments. 
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14.2 Maximum Likelihood Estimates for Coefficients 
of Linear Regression 

14.2.1. At t = 0, 1, ... , let the random process 

N 

e(t) =I: ai(t)oi + 11(t), 
i=1 

(14.38) 

be observed, where(}= (81, ... ,ON) is the vector (column) of unknown pa­

rameters, -oo < (}i < oo, i = 1, ... , n, a(t) = (a1 (t), ... , aN(t)) is the known 

vector function (row) and 77(t), t = 0, ±1, ... , is the Gaussian stationary ran­

dom process with M77(t) = 0 and the rational spectral density 

In (14.39), 

n-1 

Pn-1(z) = L bjzj, bn-1 =/= 0, 
j=O 

n 

Qn(z) = L ajZj, an = 1, 
j=O 

(14.39) 

where it is assumed that the roots of the equation Qn(z) = 0 lie within the 

unit circle. 
In order to obtain the estimates of maximal likelihood of the vector (} = 

( 81, ... , (} N) one needs to find the Radon-Nikodym derivative dJ.L~ j dJ.L~ of the 

measure J.L~, corresponding to the process e = (e(t)), t = 0, 1, ... , defined in 

(14.38), over the measure J.L~ for the same process with (} = 0 (0 is the zero 

vector). 
According to Theorem 14.1, the process 77(t), t = 0, ±1, ... , is a compo­

nent of the process ( 111 ( t), ... , 17n ( t)) with 111 ( t) = 77( t) defined by the equa­

tions 

17j(t + 1) 77J+1 (t) + /3jc(t + 1), j = 1, ... , n- 1, 
n-1 

17n(t + 1) = -ao771 (t) - L aj17J+1 (t) + f3nc(t + 1), (14.40) 
j=1 

where c(t), t = 0, ±1, ... , is some sequence of independent Gaussian random 

variables with Mc(t) = 0, Mc2 (t) = 1, and where the numbers {31, ... ,/3n are 

given by (14.8). 
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Since e(t +I} = a(t + I}e + '171(t + 1}, for the process (e1(t), ... ,en(t}}, 
with 6(t) = e(t}, ej(t) = '1'/j(t}, j = 2, ... 'n, we have the system of recursive 
equations 

6(t + 1} = a(t + I}e + e2(t) + /31e(t + 1}, 
ek(t + 1} = ek+l(t) + f3ke:(t + 1}, 1 < k < n, 

n-1 
en(t + 1} = -ao(6(t)-a(t)e)- L ajej+1(t}+/3ne(t+l}. {14.41} 

j=1 

For a fixed value of e let us write 

rfi(t) = M[(ei(t)- m~{t))(ei(t)- m~{t}}], i,j > 1. 

The system of equations given by {14.41) is a particular case of the system 
of equations given by {13.46} and {13.47}, and, therefore, m~(t) and rfi(t) 
satisfy Equations {13.56} and {13.57). It should be noted that the coefficients 
of the equations from which rfi(t) are defined do not include e. The initial 
conditions rfi(O} do not depend one either. Therefore, the elements of the 
matrix 1 9 (t) = JI'Yfj(t)JI do not depend on e. Hence we shall denote it simply 
by r(t) = llrij(t)ll, i,j ~ 2. 

For fixed e, the equations for m~(t}, k = 2, ... , n, according to {13.56} 
have the following form: 

B(t+I) = 9 (t)+f31!3k+r2k(t) 
mk mk+1 /3~ + 'Y22(t) 

x[et+l- a(t + I}e- m~(t)], 2 ~ k ~ n -I, {14.42} 

n-1 
m~(t + 1} = -ao(6(t)- a(t)e)- L aim~+l(t) 

j=1 

+ f31f3n - "E;~: aj'Y1,j+l (t) [c - (t + J)e- 9(t)j 
/3~ + 122(t) .. t+1 a m2 . 

{14.43} 

In solving the linear system of equations given by {14.42} and {14.43} we 
establish that 

{14.44} 

where Vo{t,e) is a .rl-measurable function linearly dependent on eo, ... ,et, 
and v1(t) = (vn(t), ... , VlN(t)) is a nonrandom vector function {row). 

Let us apply Theorem 13.5 to e1(t) = e(t). Then {for fixed e) there exists 
a sequence of independent Gaussian random variables e(t), t = 0, 1, ... , with 
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Me(t) = 0, Me2 (t) = 1, J1 = a{w : ~(0), ... , ~(t)}-measurable for each t 
(since {31 = bn_ 1 =/= 0), such that (P-a.s.) 

~(t + 1) = a(t + 1)0 + m~(t) + V !3? + /'22(t)f(t + 1). (14.45) 

Therefore, making use of (14.44), we obtain 

e(t + 1) = [a(t + 1) + V1(t)j0 + Vo(t,~) + {3(t)f(t + 1), (14.46) 

where 

But f(t), t = 0, 1, ... , are independent Gaussian random variables with 
Mf(t) = 0, Mf2(t) = 1. Hence, we find from (14.46) that 

dJ.L~ (t:(O) t:(t)) = { ~(O)a(O)O _ (a(0)0)2 
dj.L~ "' ' · · · ' "' exp cP 2c52 

~([~(s)- vo(s -1,~)][a(s) + v1(s -1))0 
+ ~ f32 (s -1) 

-~ [(a(s) + v1(s -1))0]2)} (14.47) 
2 f3 2 (s -1) ' 

where 82 = Mry2(0). 
Assume that at some t ~ N - 1 the matrix 

D _ a*(O)a(O) ~ [a(s) + Vt(S -1)]*[a(s) + v1(s- 1)] 
t - 82 + ~ (32 ( s - 1) (14.48) 

is nonsingular. Then from (14.47) we obtain the maximum likelihood estimate 
Bt (which maximizes the right-hand side of (14.47)) given by the formula 

e = D-1 { a*(O)~(O) ~ [a(s) + Vt(S -1)]*[~(s)- vo(s -1,~)]} 
t t 82 + ~ f32(s _ 1) · 

s=l 
(14.49) 

It is easy to deduce from (14.48) and (14.49) that the estimate Bt is 
unbiased (MoOt = 0) and that 

(14.50) 

With the help of simple transformations it follows from (14.47) and (14.49) 
that 

(14.51) 
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It is seen from this, in particular, that Bt is a sufficient statistic for the 
problem under consideration (see Section 1.5). 

We shall show now that in the class of unbiased estimates 

with M 'E~1 B~(t) < oo the estimate is Bt efficient, i.e., 

- - A A 1 Mo(flt- B)(Bt- B)*;::: Mo(Bt- B)(Bt- B)*= Df: . 

Indeed, according to the Cramer-Rao matrix inequality (1.50), 

M(Bt- B)(Bt- B)*;::: r 1(B), 

(14.52) 

(14.53) 

where Bt is an unbiased estimate of the vector B (MoOt = B) and I(B) = 
lllij(B)II is the Fisher information matrix with the elements 

But in our case, 
I(B) = Dt. (14.54) 

In order to prove (14.54), introducing the notation Dij(t) and Dij(t) for 
the elements of the matrices Dt and Df: 1 respectively, we note that 

d 8 N [ ] ln d:~ ceco), ... ,e(t)) = ~ Dkt(t)Bk Bt(t)- ~B1 , 
E kJ-1 

and therefore, 

Iij(B) = M { 8~i ln ~:~ ceco), ... ,e(t))} { 8~j ln ~:~ ceco), ... ,e(t))} 
N 

= L Djt(t)Dik(t)M[Bt(t)- Bl][Bk(t)- Bk] 
l,k=1 

~ 1~1 Dil(t)D,,(t)fi,.(t) ~ ~ D#(t) (t, Dm(t)fi,.)(t)) 

N 

= L Djt(t)o(i, t) = Dij(t). 
1=1 
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We obtain the required inequality (14.52) from (14.53) and (14.54), which 
proves the efficiency of the estimate Ot. 

Note. The method used above for the deduction of (14.49) and (14.51) 
can also be applied in the case where bn-1 = bn_2 = · · · = bn-m = 0, 
bn-m-1 /:- 0. 

L4-J~.2. 
EXAMPLE 2. Let e(t) = (} + 77(t), where (} is an unknown parameter, 
-oo < (} < oo, and 77(t), t = 0, ±1, ... , is a stationary Gaussian process 
with M77(t) = 0 and the spectral density 

I ei~ + 1 12 
f(>.) = e2(i~) + ei~ + 1 · 

2 

The maximum likelihood estimate of the unknown parameter (} can be 
also interpreted as an estimate of the mean Me(t) = 0 of the process e(t), 
t=0,±1, .... 

By Theorem 14.1 the process 77(t) is a component of the two-dimensional 
process (771(t),772(t)) with 711(t) = 71(t) defined by the recursive equations 

111(t + 1) = 112(t) + e(t + 1), 
1 1 

112(t + 1) = - 2771(t) -712(t) + 2e(t + 1) 

and a sequence of the independent Gaussian random variables e(t), t = 0, ±1, 
... , where Me(t) = 0 and Me2(t) = 1. From this we see that 

e(t + 1) = (} + 712(t) + e(t + 1), 

o- e(t) 1 
112(t + 1) = - 2 - 112(t) + 2e(t + 1). 

In accordance with this, m 9 (t) = M(712(t)i.r1) is a solution of the recursive 
equation 

o o- e(t) o ~ + 'Yt o 
mt+1 = - 2 - mt + -1 -(e(t + 1)- 0- m (t)), 

+ 'Yt 

where (see (13.57)) 

By virtue of Equation (14.20), 

2 12 
M711(t) = 5' 
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Hence 

12 2( ) 12 9 M[e(t) - (} = MTJ1 t = S' M[e(t) - 0]TJ2(t) = MTJ(t)TJ2(t) = - 15 , 

and, therefore, by the theorem on normal correlation {Theorem 13.1), 

1 5 
m8 (0) = 4((}- e{O)), 'Yo = 4' 

In solving the equation for m8(t) with the initial condition m8{0) = l{O­
e(o)), we obtain 

m8 (t) = ! II 2 + 'Ys [0- e(o)] 
t-1 ( 3 2 ) 

4 s=O 1 + 'Ys 

where 

1tii-1 ( ~+2-rs) ~~ ( ~+2-r;)· 111(t) = - - - L...., L...., 
4 s=O 1 + 'Ys s=O j=s+l 1 + 'Yj 

Now, due to {14.48) and {14.49), we have (t ~ 1) 

D = [~ ~ 1 + v1(s -1))2 ] 
t 12 + ~ 1 + -y(s- 1) ' 

0 = n-1 [~e(o) ~ {1 + v1(s -1)){e(s) -vo(s -1,e))] 
t t 12 + ~ 1 + -y(s- 1) · 
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14.3 A Control Problem with Incomplete Data (Linear 
System with Quadratic Performance Index) 

14.3.1. In this section we shall show how the optimal nonlinear filtering equa­
tions deduced in the preceding chapter can be applied to optimal control 
problems. 

It will be assumed that the state of some 'controlled' system is described 
by the process (9,~) = [(01(t), ... ,Ok(t)), (e1(t), .... e1(t))], t = 0, 1, ... ,T < 
oo, which obeys the equations 

9t+1 = c(t)ut + a(t)Ot + b(t)c:1(t + 1), 
~t+l = A(t)Ot + B(t)c:2(t + 1). (14.55) 

Here c(t), a(t), b(t), A(t) and B(t) are matrices of dimension (kxr), (kx k), 
(k x k), (l x k), (l x l), respectively, whose elements are deterministic bounded 
functions, t = 0, 1, ... , T- 1. The mutually independent random sequences 

c:1 (t) = (c:n (t), ... , elk(t) ), c:2(t) = (c:21 (t), ... , c:21(t)), t = 1, ... , T, 

in (14.55) are Gaussian with the independent components, Mc:ij(t) = 0, 
Mc:~i(t) = 1. 

The system of equations given by {14.55) can be solved under the initial 
condition Oo, where Oo is Gaussian, 

MOo = m, M[{Oo- mo)(Oo- mo)*] = -y, 

independent of the sequences C:i(t), i = 1, 2, t = 1, ... , T. (14.55) includes 
as well the vector column Ut = (u1(t,~), ... ,ur(t,~)), where at each t, t = 
0, 1, ... , T - 1, the functions ui(t, ~), playing the role of controlling actions, 
are J1 = u{w : eo, ... ' ~t}-measurable (eo = 0). 

All the controls u = (uo, ... , UT-1) discussed from now on will be assumed 
to satisfy 

r 

LMu~(t,~) < oo, t = 0, 1, ... ,T -1. (14.56) 
i=1 

Assume that the control performance of u = (uo, ... , UT-1) is measured 
by the quadratic performance index 

[
T-1 l 

V(u)=M t;(o;H(t)Ot+u;R(t)ut)+OrH(T)OT, (14.57) 

where H(t) and R(t) are deterministic, bounded, symmetric nonnegative def­
inite matrices of the orders (k x k) and (r x r), respectively. 

It is necessary to find the (optimal) control u = (u0 , .•• , fiT_ 1) for which 

V(u) = infV(u), (14.58) 

where 'inf' is taken over all the controls satisfying (14.56). 
This problem is an example of control problems with incomplete data 

where the control must be based on the observable part of the coordinates 
{ ~o, ~1, •.. ) describing the state of the control system. 
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14.3.2. In searching for optimal controls (in a given problem the existence 
of such controls will be clear in what follows), both the ideas of dynamic 
programming and the results of optimal nonlinear filtering will be employed. 

We shall introduce now some additional notation. 
Let P(t) and "'t, t = 0, 1, ... , T, be matrix functions of the order (k x k) 

defined as solutions of the recursive equations 

P(t) = H(t) + a*(t)P(t + 1)a(t) 

-a* (t)P(t+ 1)c(t) [R(t)+c* (t)P(t+ 1 )c(t)]+ c* (t)P(t+ 1)a(t) 

(14.59) 

with P(T) = H(T) and 

'Yt+l = a(t)'Yta'"(t) + b(t)b*(t) 
-a(thtA*(t)[B(t)B*(t) + A(t)'YtA*(t)]+ A(t)'Yta*(t) (14.60) 

with 'Yo = "'· Also let, 

D(t) = a(t)'YtA*(t) { [B(t)B*(t) + A(thtA*(t)] 112 } +, (14.61) 

and let p(t), t = 0, 1, ... , T, be a sequence of nonnegative numbers defined in 
a recursive manner: 

p(t) = p(t + 1) + Tr P 112(t + 1)D(t)D*(t)P112(t + 1), p(T) = 0. (14.62) 

It follows that, from (14.62), 

T-1 

p(t) = L Tr P 112(s + 1)D(s)D*(s)P112(s + 1). (14.63) 
s=t 

The matrices P( t) and "'t and the numbers p( t) are found from the coeffi­
cients of the system of equations given by (14.55) and the specified matrices 
H(t) and R(t). Hence they do not depend on the data and, being only func­
tions of t, can be found a priori. 

Note that the matrices P(t), t = 0, 1, ... , T, found from the system of 
recursive equations given by (14.59) are symmetric and nonnegative definite. 
In order to convince ourselves of this, let us consider the problem of filtering 
for processes 

Bs+l = a*(T- s)08 + H 112(T- s)€ 1(s + 1), 
(s+l = c*(T- s)08 + R 112(T- s)€2(s + 1), 

where €1(s) and €2(s) are independent Gaussian vectors with independent 
components whose means are equal to zero and whose variances are equal 
to one. Assume that Oo is a Gaussian vector, MOo = 0, MOo00 = H(t), 
independent of €1(s), €2(s), s = 0, ... , T- 1. 

If we compare (13.57) for .:Yt = M[(Ot - iht)(Bt - rht)*], where iht = 
M(Btl(l, ... , (t), with (14.59) for P(t) we shall see that P(t) = .:YT-t· There­
fore, the matrices P(t) are symmetric and nonnegative definite. 
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14.3.3. 
Theorem 14.2. In the class of controls satisfying (14.56} an optimal control 
u = (fio, ... , fir-1) exists and is given by the formulae 

u(t,e) = -[R(t) + c*(t)P(t + 1)c(t)]+c*(t)P(t + 1)a(t)iht, (14.64) 

where the matrices P(t) can be defined from {14.59}, and iht can be found 
from the recursive equations of optimal filtering 

iht+l = c(t)fit + a(t)m(t) 

+a(t)'ytA * (t)[B(t)B* (t)+A(t)'ytA *(t)]+ [et+l-A(t)mt] 

(14.65) 

with iho = m and the matrices 'Yt defined in {14.60}. 
The observable process et, t = 1, ... , T, in {14.65}, can be defined by the 

system of equations 

and 

Bt+l = c(t)fit + a(t)Bt + b(t)e1(t + 1), 

et+1 = A(t)Bt + B(t)e2(t + 1), 

T 

V(u) = p(O) + m* P(O)m + LTr H 112 (thtH 112 (t). 
t=O 

(14.66) 

(14.67) 

PROOF. Let u = (u0 , ... , ur-1 ) be some control satisfying (14.56). Then 

M Ei'=o o;ot < 00 and 

T T-1 

V(u) = ML M(o; H(t)BtiJ1) + M L u;R(t)ut. (14.68) 
t=O t=O 

For the control u = (uo, ... , ur-1), let 

mf = M(BfiJ1''), -yf = M[(Bf- mf)(Bf- mf)*], 

where the corresponding controlled processes Of and et were defined in 
(14.55). It should be emphasized that for any control u = (u0 , ... ,ur-1 ) 

subject to (14.56) the matrices -yf satisfy the system of recursive equations 
given by (14.60) (see Theorem 13.4 and Property 3 in Subsection 13.2.4). 
Since neither the coefficients of these equations nor the initial conditions de­
pend on the control, the matrices -yf are the same for different u. Hence, 
-yf = 'Yt (see (14.60)). Let us show now that in (14.68) 

{14.69) 
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We have 

M(Bf* H(t)Bfl:Ff) = M[(Bf- m~ + m~)* H(t)(Bf- m~- m~)J.rfJ 

= (m~)* H(t)m~ + 2M[(B~- m~)H(t)m~IFfJ 

+M[(Bf- mf)* H(t)(Bf- m~)I:Ff] 

{m~)* H(t)m~ + Tr M[H112(t)(Bf- m~)(Bf- m~)* H 112 (t)JFf] 

= {m~)* H(t)m~ + Tr H112 (t)M[(B~- m~)(B~- m~)*l.1f]H112 (t). 
(14.70) 

But, according to Property 3 in Subsection 13.2.4, 

M[(Bf- m~)(B~- mf)*I:FfJ = M[(B~- m~)(Bf- mf)*] = /t, 

which, together with (14.70), proves (14.69). 
Thus, due to {14.68) and (14.69), 

T T T-1 

V(u) = LTr H 112(t)rtH 112 (t) + ML(m~)* H(t)m~ + M L u;R(t)ut. 
t=O t=O t=O 

{14.71) 
Since the functions Tr H 112(t)rtH112 (t) depend only on t and do not 

depend on either the control or the processes describing the state of the 
system, it is obvious that the optimal control ii in the primary problem 
(assuming it exists) coincides with the optimal control in the problem of 
minimization of the functional 

V(u) = M (~(mf)* H(t)m~ +%: u;R(t)ut). 

The 'controlled' process mf is defined by the equation 

m~+l = c(t)ut + a(t)m~ 

{14.72) 

+a(t)rtA*(t)[B(t)B*(t) + A(t)rtA*(t)]+[ef+ 1 - A(t)mrJ. 
{14.73) 

According to Theorem 13.5, there exists a sequence of independent Gaussian 
vectors ~(t) = {£l'(t), ... ,ef{t)), t = 1, ... , T, with independent components 
Mef{t) = 0, M(~(t))2 = 1, i = 1, ... , l, such that 

m~+l = c(t)ut + a(t)m~ + D(t)e .. (t + 1). (14.74) 

It should be noted here that for every permissible u the values of ~(t) 
coincide (~(t) = e(t), t = 1, ... , T). This follows from (13.84) and the fact 
that the Of- mf do not depend on u (see (14.73) and {14.55)) 

Thus the primary problem of determining the optimal control for the 
system (14.55) and the functional (14.57) is reduced to a problem of finding 
the optimal control for the filtered system given by {14. 7 4) with the functional 
(14.72) ('the separation principle' [313]). 
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14-3.4. In finding optimal controls in this reduced problem the following two 
lemmas will be useful. 

Lemma 14.2. If u = (uo, ... , UT-d is the control subject to {14.56}, then 
for any nonnegative definite symmetric matrix S(t + 1) 

M[(mf+l)* S(t + l)mf+IIFf] 

= M[(mf+l)*S(t + l)mf+IImf,ut] 

= (mf)*a*(t)S(t + l)a(t)mf + u;c*(t)S(t + l)c(t)ut 

+2u;c*(t)S(t + l)a(t)mf 

+'I'r S 112 (t + 1)D(t)D*(t)S112 (t + 1). (14.75) 

PROOF. Due to (14.74), 

M[(mf+t)* S(t + 1)mf+IIFf] 

= M { [c(t)ut + a(t)mf- D(t)e(t + 1)]* 

xS(t + 1)[c(t)ut + a(t)mf + D(t)e(t + 1)]1 ;:f} 
= (mf)*a*(t)S(t + 1)a(t)mf + u;c*(t)S(t + 1}c(t)ut 

+2u;c*(t)S(t + 1)a(t)mf 

+2M(e*(t + 1)1Ff)D*(t)S(t + 1)(c(t)ut + a(t)mf) 

+M[e*(t + 1)D*(t)S(t + 1)D(t)e(t + 1)1J:f] 

= (mf)*a*(t)S(t + 1)a(t)mf + u;c*(t)S(t + 1}c(t)ut 

+2u;c(t)S(t + 1)a(t)mf + Tr S 112 (t + 1)D(t)D*(t)S112 (t + 1), 

where we took advantage of the fact that M(e(t + 1}l.t=f) = 0 and 

M[e*(t + 1)D*(t)S(t + 1)D(t)e(t + 1)1.1f] 

= M[e*(t + 1)D*(t)S(t + 1)D(t)e(t + 1)] 

= Tr s112 (t + 1)D(t)Me(t + 1)-e*(t + 1)D*(t)S112 (t + 1) 

= Tr S 112(t + 1)D(t)D*(t)S112(t). (14.76) 

D 
Note. Let 8(1), ... , 8(T) be a sequence of independent Gaussian vectors 

(8 ( t) = (81 ( t), ... , 81 ( t))) with the independent components having zero mean 
and unit variances. Consider the process m, t = 0, ... , T, defined by the 
recursive relations 

mt+l = c(t)ut + a(t)mt + D(t)8(t + 1), mo = m, (14.77) 
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where Ut = Ut(w) does not depend on J(t + 1). As in the proof of (14.75), we 
show here that 

M[m;+ls(t + 1)mt+llut, mt] 
= m;a*(t)S(t + 1)a(t)mt 

+u;c*(t)S(t + 1)c(t)ut 

+2u;c*(t)S(t + 1)a(t)mt 

+TrS112 (t + 1)D(t)D*(t)S112 (t + 1). (14.78) 

Let the matrices P(x) introduced above and the functions p(t), t = 
0, ... , T, be related to the scalar functions 

Qt(x) = p(t) + x* P(t)x, 

where x E JR.k. Since p(T) = 0, and P(T) = H(T), 

Qr(x) = x* H(T)x. 

(14.79) 

(14.80) 

Lemma 14.3. The functions Qt(x), t = 0, 1, ... , T, satisfy the recursive 
equations 

Qt(x) = i{}f { x* H(t)x + V* R(t)V + M[Qt+l(x:+i)J}, (14.81) 

x:+i = c(t)V + a(t)x + D(t)8(t + 1). (14.82) 

In this case, the inf in {14.81} can be attained on the r-dimensional vector 

V = -[R(t) + c*(t)P(t + 1)c(t)]+c*(t)P(t + 1)a(t)x. (14.83) 

PROOF. Let us verify that the functions Qt(x) = p(t) + x* P(t)x satisfy 
Equation (14.81), i.e., that 

p(t) + x* P(t)x = i{}f{ x* H(t)x + V* R(t)V + p(t + 1) 

+M[(x:+i)* P(t + 1)x:+il }· (14.84) 

Set 

J(V, x) = V*[R(t) + c*(t)P(t + 1)c(t)]V + 2V*c*(t)P(t + 1)a(t)x. (14.85) 

Then, taking into account the note to Lemma 14.2, we find that (14.84) 
is equivalent to the equations 

p(t) + x* P(t)x = p(t + 1) + Tr P112(t + 1)D(t)D*(t)P112 (t + 1) + inf J(V, x). v 
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But, due to (14.62), 

p(t) = p(t + 1) + Tr P 112(t + 1)D(t)D*(t)P112(t + 1). 

Hence, it need only be verified that 

for any x E JR.k. 

x* P(t)x = inf J(V,x) v 
(14.86) 

If the matrices R(t), t ~ 0, in J(V, x) were positive definite, then J(V, x) > 
-oo and infv J(V, x) would be attained on the vector 

V = -[R(t) + c*(t)P(t + 1)c(t)]+c*(t)P(t + l)a(t)x, (14.87) 

and it would be easy to check immediately that J(ii,x) = x* P(t)x. 
In order to prove (14.86) in the general case we shall consider the system 

of algebraic equations (with respect to V = (Vt, ... , Vr)) 

1 
2vJ(V,x) = 0, (14.88) 

i.e., the system 

[R(t) + c*(t)P(t + 1)c(t)V] = -c*(t)P(t + 1)a(t)x. (14.89) 

According to Lemma 13.3, this system is solvable and the vector V defined 
by (14.83) is one of its solutions. Hence the minimum of the quadratic form 
J(V,x) is attained on the vector V, and in order to verify (14.86) it remains 
only to establish that x*P(t)x = J(ii,x), i.e., that 

x* P(t)x = x* [H(t) + a*(t)P(t + 1)a(t + 1) (14.90) 

-a*(t)P(t +-l)c(t) (R(t) + c*(t)P(t)c(t))+ 

xc*(t)P(t + 1)a(t)Jx. 

The validity of this equality follows from the definition of the matrices 
P(t) (see Equation (14.59)). 0 

14.3.5. Returning to the proof of Theorem 14.2, consider the control 

u = (flo, ... , ilr-t) 

defined in (14.64). Then, due to Lemma 14.3, 

- M[Qt+I(mt+t)- Qt(mt)] = M[m;H(t)iht + u;R(t)iltl· (14.91) 

Summing (14.91) over t from 0 to T- 1 and taking into account that 
mo = m, we find 
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T-1 
Qo(m) = MQT(ihT} + L M[m;H(t}iht + u;R(t}ilt] 

t=O 
T T-1 

= L:Mm;H(t)mt + L Mu;R(t}ilt. (14.92} 
t=O t=O 

On the other hand, let u = (Uo, ... , UT-d be any of the controls satisfying 
(14.56). Then, due to Lemmas 14.2 and 14.3, 

-M[Qt+1(m~+l)- Qt(m~)] ~ M[(m~)* H(t)m~ + u; R(t)ut], 

whence it follows that 

T T-1 
Qo(m) ~ LM(m~)*H(t)m~ + L Mu;R(t)u. (14.93} 

t=O t=O 

The comparison of (14.92} with (14.93} proves the optimality of the con­
trol u = (ilo, ... ,ilT-1)· (14.67} follows from (14.71}, {14.79} and the fact 
that 

T 

V(u) = Qo(m) + L:Tr H 112(t)'ytH112(t). 0 
t=O 

Note. Let fJo = m be a deterministic vector, b(t) = 0. Consider the problem 
(with complete data) of controlling the deterministic process flt, t = 0, ... , T, 
with 

8t+1 = c(t)ut + a(t)fJt, Oo = m, {14.94} 

and the functional 

T T-1 
V(u) = 'L,fJ;H(t)fJt + L u;H(t)ut. {14.95} 

t=O t=O 

In this particular case, the optimal control is 

ilt = -[R(t) + c*(t)P(t + 1}c(t)]+c*(t}P(t + 1}a(t)Ot, {14.96} 

where 

and 
V(u) = m* P{O}m. {14.97} 
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14.4 Asymptotic Properties of the Optimal Linear Filter 

14.4.1. Consider the filtering problem2 for the Gaussian process 

(o,e) = I<Bt(t), ... , ok(t)), <el<t), ... • et(t))J, t = o, 1, ... , 

satisfying the recursive equations 

ot+l = a1Bt + a2et + btct(t + 1) + b2c2(t + 1), 

et+t = AtBt + A2et + Btct(t + 1) + B2c2(t + 1) (14.98) 

with the constant matrices at.a2,bt.b2,At.A2,B1 and B2 of order (k x k), 
(k x l), (k x k), (k x l), (l x k), (l x l), (l x k), (l x l), respectively. 

Let fit = M(OtiJ1) and 'Yt = M((Ot- int)(Bt- rht)*]. Then, according to 
Theorem 13.4, the error matrix 'Yt satisfies the equation 

'Yt+l = a1 'Ytai + b o b 
-(boB+antAi](BoB+AntAi]+[boB+antAi]*, (14.99) 

where bob= btbi + b2b2, boB= btBi + b2Bi and BoB= BtBi + B2Bi. 
In this section we investigate the asymptotic behavior of the matrices 'Yt 

at t-+ oo. Under the assumptions formulated later in Theorem 14.3 we shall 
show that limt~oo 'Yt = "(0 exists and 0 < Tr ')'0 < oo. 

The existence of such a limit is crucial for the application since in this 
case the optimal mean square estimate fit, t ~ 0, 'tracks' the values of Bt, 
t ~ 0, with finite error even when 

k 

LMOJ(t)-+ oo, t-+ oo. 
j=l 

Before passing to a clarification of the conditions guaranteeing the ex­
istence of the limit 'Yo = limt~oo 'Yt, note that it is enough to consider the 
system of equations 

Ot+l = aOt + bct(t + 1), 
et+l = AOt + Bc2(t+1) (14.100) 

instead of the system of equations given by (14.98), with Oo = Oo, eo= eo, 

(14.101) 

b = ((bob) - (b o B)(B o B)+ (boB)*], B = (B o B)112, (14.102) 

since the equations for 'Yt in (14.98) and (14.100) will coincide. 
Indeed, if fi8, (t + 1, t) = M(OtHIJ1+1, Bt), then 

2 Regarding the notation adopted here, see Section 13.2. 
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'Yt+l = M[(Bt+l- mt+lHBt+l- mt+d*] 

= M[(Bt+l- me,(t + 1,t) + me,(t + 1,t)- mt+l) 

X (Bt+l -me, (t + 1, t) +me, (t + 1, t) - mt+l)*] 

= M[(Bt+l -me, (t + 1, t))(Bt+l -me, (t + 1, t) )*] 

+M[(me, (t + 1, t)- mt+l)(me, (t + 1, t)- mt+l)*]. 

Due to (13.91), 

M[(Ot+l- me, (t + 1, t))(Bt+l- me, (t + 1, t))] = -y(t + 1, t) 

=bob- (b o B)(B o B)+(b o B)* = bb*, 

and it follows from the definition of me, (t + 1, t), due to the note to Theo­
rem 13.4, that 

me, (t + 1, t) = a1Bt- a2~t + (b o B)(B o B)+(~t+l- A1Bt- A2~t). 

Since mt+l = M[me, (t+ 1, t)JJ1+1], we obtain from the recursive equation 
for me, (t + 1, t) that 

mt+l = a1m(t, t + 1) + a2~t 
+(b o B)(B o B)+(,t+l - A1m(t, t + 1)- A2,t), 

where m(t, t + 1) = M[Btl.rf+lJ. Consequently, 

and 

me, (t + 1)- mt+l = [a1- (b o B)(B o B)+ A1](Bt- m(t, t + 1) 

= a(Bt- m(t, t + 1)), 

M[(me, (t + 1, t)- mt+l)(me, (t + 1, t)- mt+l)*] = a-y(t, t + 1)a*, 

where 

-y(t, t + 1) = M[(Bt- m(t, t + 1))(Bt- m(t, t + 1))*]. 

But, according to (13.110), 

-y(t, t + 1) = 'Yt- 'YtAi[B o B + AntAi]+ Ant· 

Therefore, for 'Yt, t > 0, we have: 

'Yt+l = [a1- (b o B)(B o B)+ A1ht[a1- (b o B)(B o B)+ A1]* 

+[bob- (b o B)(B o B)+(b o B)*] 

-[a1 - (b o B)(B o B)+(b o B)*]'YtAi 

x[B o B + AntAi]+ Ant[al- (b o B)(B o B)+(b o B)*]*. 
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Hence, in what follows, we shall discuss only the system of equations given 
by (14.100) and study the asymptotic behavior of the matrices 'Yt satisfying 
the recursive equation 

'Yt+l = a'Yta* + bb*- a'YtA*[BB* + A'YtA*]+ A'Yta. 

Theorem 14.3. Let the following conditions be satisfied: 

{1} the rank of the block matrix 

( A ) G1 = Aa 

Aak-1 

of dimension (kl x k) is equal to k; 

(14.103) 

{2} the rank of the block matrix G2 = (b ab ... ak-1b) of dimension (k x lk) 
is equal to k; 

{3} the matrix BB* is nonsingular. 

Then limt-+oo 'Yt = 'Yo exists and does not depend on 'Yo. Tr 'Yo < oo and the 
matrix 'Yo is the unique solution (in the class of symmetric positive definite 
matrices) of the matrix equation 

(14.104) 

14.4.2. Before proving this theorem let us make some auxiliary assertions. 

Lemma 14.4. Let D and d be matrices of dimension (l x k) and (k x k), 
respectively, and let 

be block matrices of dimension ( nl x k). 
Then the matrices D';.Dk and D~Dn, n > k, are either both singular or 

both nonsingular. 

PROOF. From the rule for multiplication of block matrices it follows that 

n-1 

D~Dn = DicDk + L_(d*)iD*Ddi. (14.105) 
i=k 

It is seen from this that the singularity of the matrix D~Dn implies the 
singularity of the matrix DicDk. 
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Let now the matrix DicDk be singular. We shall show that the matrices 
D;Dn, n > k are also singular. 

Denote by x = (x1, ... , Xk) a nonzero column vector such that 

x*DicDkx = 0. (14.106) 

We shall show that Ddix = 0 for all j ~ k. Since 

k-1 

D'kDk = L)d*)i D* Ddj, 
j=O 

due to (14.106) it follows that 

Dx = 0, Ddx = 0, ... , Ddk-lx = 0. (14.107) 

Set 

Yo = x, YI = dx = dyo, YJ+l = dy;, j ~ k- 1. 

Then 
Dyo = 0, Dy1 = 0, ... , DYk-1 = 0. (14.108) 

But the system of vectors (yo, Yl! ... , Yk), where each vector has the di-
mension k, is linearly dependent. Hence, there exist numbers eo, ... , Ck, not 
all equal to zero, such that 

k 

LC;Y; = 0. 
j=O 

Let i = max[j ~ k: c; :f. 0]. Then, from (14.109), we obtain 

i-1 

Yi = :Ecjy;, 
j=O 

' Cj C·=--, 
3 Ci 

and, therefore, 

i-1 i-1 

dk-i ~ 'dk-i ~ ' Yk = Yi = ~c; Y; = ~C;Yk-i+J· 
j=O j=O 

Hence, due to (14.108), 

i-1 

Ddkx = Dyk = L cjDYk-i+J = 0. 
j=O 

(14.109) 

We establish by induction from this that Ddix = 0, j ~ k, which, together 
with (14.105), proves the statement of the lemma. D 

Corollary. Let D = D(kxl) 1 d = d(kxk) be some matrices and let 
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Dn = (D dD · · · a,n-t D) 

be a block matrix of order (k x nl), n ~ k. Then the matrices DnD~ and 
DkD'k are either both singular or both nonsingular. 

Lemma 14.5. Let()= [Ot(t), ... ,Ok(t)], t = 0, 1, ... , be a Gaussian sequence 
satisfying the recursive equation 

Ot+l = a()t + be(t + 1), Oo = 0, (14.110) 

where a and b are matrices of dimension (k x k) and e(t) is a sequence 
of independent Gaussian vectors e(t) = (et(t), ... ,ek(t)) with independent 
components, Mei(t) = 0, MeJ(t) = 1, j = 1, ... , k, t = 0, 1, .... 

If the matrix G2 = (b ab ... ak-1b) of dimension (k x lk) has mnk k, then 
the matrix Tt = M()t()t at t ~ k is positive definite. 

PROOF. We find from (14.110) that 

Hence, 

Tt+l = MOt+tOt+l = M[aOt + be(t + 1)][a0t + be(t + 1)]* 

= aMOtO;a* + bMe(t + 1)e"(t + 1)b*. 

Tt+l = aTta" + bb*, To= 0. 

Therefore 

Tt = bb*, T2 = bb* + abb* a*, ... , 
Tt = bb*+abb*a*+···++at-1bb"(a*)t-1. 

Let t = k. Then, obviously, Tt = G2G2 and at t > k 

t-1 

Tt = G2G; + l:aibb*(a*)i. 
j=k 

(14.111) 

(14.112) 

Since the rank of the matrix G2 is assumed to be equal to k, then the 
rank of the matrix G2G2 is also equal to k. It follows, therefore, from (14.112) 
that for t ~ k the matrix Tt is nonsingular. D 

Lemma 14.6. Let (0,{) = ([01, ... ,0n],[{1,···JN]) be a Gaussian vector 
with the positive definite matrices3 

COV (0, 0) = M[(O- MO)(O- MO)*], 

cov({,eiO) = M[(e- M(elo))(e- M(eiO))*]. 

(14.113) 

(14.114) 

3 By the theorem on normal correlation (Theorem 13.1) the matrices cov ({,{I B) 
and cov (0, Ol{) do not depend on 9 and {, respectively. 
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Then the matrix 

{14.115) 

is also positive definite. 

PROOF. Because of the nonsingularity of!he matrices gi~en by (14.113) and 
(14.114), the Gaussian distributions4 P(O :5 a) and P(e :5 biO = a) have 
the densities fe(a) and fe1e(bla). It can be easily deduced from this that 
there exists a density fe(b). Hence, it follows from the Bayes formula that 

the distribution P(O :5 alt) has density fe1e(alb) as well, and 

t- -( lb) = fele(bla)fe(a) 
9le a fe(b) 

The existence of this (Gaus~i~} density implies that the corresponding 
matrix of the covariances cov (0, Ole) is nonsingular and, therefore, positive 
definite. D 

Lemma 14. 7. Let 'Y2, t = 0, 1, ... , be a solution of the equation 

'Yt+l = a-yta* + bb* - a-ytA*(BB* + A-ytA*)+ A-yta* (14.116) 

with the initial condition 'Y8 = 0 (0 being the zero matrix of order (k x k)). 
If the matrix BB* is positive definite, and the rank of the matrix G2 is equal 
to k, then the matrix 'Y2 is positive definite. 

PROOF. Let 02, t = 0, 1, ... , be a solution of the equation 

Ot+l = aOt + bc1(t + 1) (14.117) 

(see (14.100)) with Oo = 0. Then 'Y2 = M[(02 - m~)(02 - m~)*] and m~ = 
M(B2IJ1) where 

et+l = AO~ + Bc2(t + 1). (14.118) 

Write: 0 = 02; { = (et, ... ,ek)i 0 = (Og, ... ,Ok-1); € = (c2(1), ... ,c2(k)). 
Also, let 

B = diag(B···B), a= diag(a·. ·a) 

be block diagonal matrices in which only the blocks situated on the diagonals 
of the matrices B and a, respectively, are different from zero. Then the system 
of equations given by (14.118) for t = 0, 1, ... , k - 1 can be represented as 
t = aO +Be. The vectors (0, 0) and € are independent since the sequences 
c1(t) and c2(t), t = 1, 2, .... are independent. Hence 

4 - - -The notation { 8 :5 a} denotes the event{ 81 :5 a1, ... , On :5 an}. 
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and 

Because of the independence of the vectors 0 and e, from this it follows 
that 

Since the matrix BB* is nonsingular, the matrix 

BiJ* = diag (BB* · · · BB*) 

is also nonsingular. Next, the matrix cov (0, 0) = MO~(og)* is nonsingular by 
Lemma 14.5. Hence, by Lemma 14.6, the matrix 

will also be nonsingular. D 

Lemma 14.8. If the rank of the matrix G1 is equal to k, then for any vector 
x = (x1, ... ,xk), lxil < oo, i = 1, ... ,k, 

sup x*'YtX < oo. 
t2::0 

(14.119) 

PROOF. Let Xt = (x1(t), ... ,xk(t)), t = 0,1, ... T > k, be the controlled 
process satisfying the recursive equation Xt+l = a*xt + A*ut, xo = x, where 
the control Ut = (u1 (t, xo, ... , Xt), ... , uz(t, xo, ... , Xt)) is chosen to minimize 
the functional 

T-1 
Vr(x; u) = Xr'Yoxr + L[x;bb*xt + u;BB*ut]· (14.120) 

t=O 

According to the note to Theorem 14.2, the optimal control fit, t = 
0, 1, ... , T- 1, exists and is given by the formula 

fit = -[BB* + AP(t + 1)A*]+ AP(t + 1)a*xt, 

where Xt+l = a*xt + A*ut and 

P(t) = bb* + aP(t + 1)a*- aP(t + 1)A*[BB* + AP(t + 1)A*]+ 

xAP(t + 1)a*, P(T) ='Yo· (14.121) 

Comparing this equation with Equation (14.103) we convince ourselves 
that 

P(t) = 'YT-t· (14.122) 



128 14. Filtering Equations in Problems of Statistics 

Since (see (14.94}} for the optimal control u = (uo, ... , fir-1) 

Vr(x; u) = x* P(O}x = x*'Yrx, 

in order to prove the lemma it suffices to show that 

Vr(x; u) ~ c < oo, 

where the constant c does not depend on T. 

(14.123} 

By the conditions of the lemma, the matrix G1 has rank k. Hence, the 
matrix GiG1 is nonsingular. 

Consider the control Ut = (ftt(t, xo}, ... , ul(t, xo)) defined as 

u - { -Aak-t-1(GiGt)-1(a*)kxo, t ~ k 
t- 0, t > k . 

The associated controlled process Xt, t = 0, 1, ... ,Xt+t = a*xt + A"ftt, 
goes to zero in k steps, since 

k-1 

Xk = (a")kxo + ~)a")k-t- 1 A"ftt 
t=O 

~ (a•)' { E- [~(a•)k-t-l A • Aak-t-ll (GiGt)-1} xo 

= (a*)k{E- (GiGt)(GiG1}-1 }xo = 0. 

Consider the functional Vr(x; ft). Since ftt = 0. Xt = 0, t > k, we have 
supT>k Vr(x; u) < oo. But by virtue of the optimality of the control u = 
(uo, ... , ur-t}, 

sup Vr(x, u) ~ sup Vr(x, ft}. 
T~k T~k 

Hence 

sup x*'YrX = sup Vr(x; u) ~ sup Vr(x; ft} = max Vr(x, ft} < oo. 0 
T~O T~O T~O 0:5T:5k 

Lemma 14.9. Let 'Y?, t = 0, 1, ... , be the solution of Equation {14.116} with 
the initial condition 'Y8 = 0. If the rank of the matrix G1 is equal to k, then 
there exists 

t~~ 'Y? = 7°, (14.124} 

where 7° is a nonnegative definite symmetric matrix with Tr 7° < oo. If, 
in addition, the rank of the matrix G2 is equal to k and the matrix BB* is 
nonsingular, then the matrix 7° is positive definite. 

PROOF. According to Lemma 14.8, the values of x*'YrX are bounded for any 
T ~ 0 (lxil < oo, i = 1, ... , k}. Let us show that these values are monotone 
nondecreasing functions of T. 
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Let T2 > T1, u0 (Tl) and u0 (T2) be optimal controls corresponding to the 
observation durations T1 and T2, respectively. 

If x~(T1 ) and x~(T2) are trajectories of the controlled processes for the 
controls u0 (Tl) and ii.O(T2 ), respectively5 , then 

x*-y~2 x = V~2 (x; u0 (T2)) 
T2-l 

= L: [(x~(T2))*bb*(x~(T2)) + (u~(T2))* BB*(u~(T2))] 
t=O 

Tt-l 

> L: [(x~(T2))*bb*(x~(T2)) + (u~(T2))* BB*(u~(T2))] 
t=O 

> v~1 (x; u0{Tl)) = x*·m X. 

Hence, if u0 (Tn) is an optimal control on the interval Tn, and Tn+l = 
Tn + 1, then 

V~1 (x;u0 (Tl)) ~ V~2 (x;u0 (T2)) ~ ... ~ V~Jx;u0(Tn)), 

and, because of the uniform (over Tn) boundedness of the values of V~n (x; 
u0 (Tn)), there exists 

Because of the arbitrariness of the vector x it is seen that the limit matrix 
-y0 is symmetric nonnegative definite and that Tr -y0 < oo. 

If, finally, rank G2 = k and the matrix BB* is nonsingular, then, by 
Lemma 14.7, we have that x*/kX > 0 for any nonzero vector x. But x*"(TX is 
monotone nondecreasing in T. Hence, for any nonzero vector x the values of 
x*'YTX > 0, T > k, which proves the positive definiteness of the matrix -y0 • D 

14.4.9. 
PROOF OF THEOREM 14.3. Take the control 

where 
'Xt+l = a*xt + A*ut 

and the matrix -y0 is defined by (14.124). We shall show that 

r -·o- o t~~ Xt'Y Xt = . 

Due to {14.125) and (14.126), 

5 The index 0 in V:z'!(x; ·), u0 (T) and x~(T) indicates that 'Yo= 0. 

(14.125) 

(14.126) 

(14.127) 
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x;+t'Y0Xt+t = {a:; a+ u;A}T0{a"'xt + A"'ut} 
= x;{a1°a*- 2a1° A*(BB* + A1° A*)- 1 A1°a* 

+a1° A(BB* + A1° A*)-1[BB* + A1° A*] 
x(BB* + A1° A*)-1 A1°aa}xt-u;BB"'ut 

= x;{a1°a*-a1° A*(BB*+A1° A*)-1 A1°a*}xt-u;BB*ut. 
(14.128) 

1° is the limit of the sequence of matrices 1P satisfying (14.116), and the 
matrix BB* is nonsingular; hence it satisfies the equation 

1° = a1°a"' + bb* - a1° A*(BB* + A1° A*)-1 A1°a"'. 

We find from this and (14.128) that 

-· o- -· o- [-*bb*- + -•nn*-1 Xt+1T Xt+1- Xt'Y Xt = Xt Xt Ut Ut. 

Therefore, according to Lemma 14.9, 

T-1 

0 ~ Xr'Y0XT = x"',0x- L[x;bb"'xt- u;BB*ut] 
t=O 

~ x"',0x- VT(x; u0 (T)) -+ 0, T-+ oo. 

Now it is seen that, since the matrix 1° is nonsingular (Lemma 14.9), 

and 

lim XT = 0 
T-+oo 

T-1 

(14.129) 

lim V~(x; u0 (T)) = x*,-lx = lim ""'[x;bb*xt + u; BB*ut]· (14.130) 
T-+oo T-+oo L..J 

t=O 

Let 'Yo be any nonnegative definite symmetric matrix. Then, due to (14.120), 

T-1 

V~(x; u0 (T)) 5 VT(x;u(T)) ~ x-;.,oxT + L[x;bb*xt + u:;BB"'utl· (14.131) 
t=O 

Passing in these inequalities to the limit (T -+ oo) we find, taking into 
account (14.129) and (14.30), that 

lim x*'YTX = lim VT(x; u(T)) = lim V~(x; u0 (T)) = x*,0x. (14.132) 
T-+oo T-+oo T-+oo 

Therefore, because of the arbitrariness of the vector x, limT-+oo IT = 1° 
exists, and 1° does not depend on the initial matrix 'Yo· 

It was noted above that 1° is a positive definite solution of the matrix 
equation given by (14.104). We shall show that in the class of the positive 
definite symmetric matrices this solution is unique. 
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Indeed, let -y<1> and -y<2> be two such solutions. Denote by 'Y!i), t ~ 0, the 
solutions of {14.103) with -ya1> = -y<1> and -ya2> = 7<2>, respectively. Then, 
according to what we have already proved, 

lim -y¥> = 7° = -y(i), i = 1, 2. 
T~oo 

0 

Note 1. If supt>o Tr Mete; < oo, then in the formulation of Theorem 14.3 
one can discard the first assumption since Tr-yt ~ Tr Mete;. 

Note 2. Let the process (et.~t) = ([e1(t), ... ,ek(t)],[~1 (t), ... ,~,(t)]) sat­
isfy the recursive equations (Kalman-Bucy problem) 

et+l = a1et + b1e1(t + 1), 

~t = Atet + B1e2(t) (14.133) 

(compare with (14.100)). In order to formulate the conditions providing the 
existence of the limit limt~oo 'Yt in terms of the matrices at. b1, At and B1. 
it suffices to note the following. Since 

assuming 

a = a1- b1biAt[Atb1biAi + BtBit1 A1a1, 

A = A1a11 
b = [btbi- b1biAi(A1b1biAi + BtBi)-1 AtbtbiPI2 , 

B = (A1b1biAi + B1Bi)1l 2, 

reduces the problem of the existence of limt~oo 'Yt to the problem studied for 
the system given by (14.100). 

14.4-4-
EXAMPLE 3. Let et and ~t be one-dimensional processes with 

et+l = aet + bet(t + 1), ~t+l = Aet + Be2(t + 1). 

Then, if A =F 0, b =F 0 and B =F 0, the conditions of Theorem 14.3 are 
satisfied and the limiting filtering error -y0 = limHoo 'Yt bt = M(et - mt)2 ; 

mt = M ( e1l~o, ... , ~t)) can be defined as the positive root of the quadratic 
equation 
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14.5 Recursive Computation of the Best Approximate 
Solutions (Pseudo-solutions) of Linear Algebraic 
Systems 

14.5.1. Let the vector y = (YI. ... ,yk) and the matrix A= llaiill of order 
(k x n) and rank A :5 min(k, n) be given. Then the system of linear algebraic 
equations 

Ax=y (14.134) 

need have no solutions, generally speaking, and even if it has, the solution 
need not be unique. 

The vector x0 is said to be the best approximate solution (pseudo­
solution) of the system of equations given by (14.134) if 

(14.135) 

if, also, jy- Ax'i = infx IY- Axj, then 

lx012 :5 lx'l2 , (14.136) 

where 

k n 
2 

n 

IY - Axi2 = L Yi - L aijXj , lxl2 = L I xi 12 . 
i=l j=l j=l 

In other words, the pseudo-solution is an approximate solution having the 
least norm. 

It is well known6 that such a solution x0 is given by the formula 

(14.137) 

where A+ is the matrix which is the pseudo-inverse with respect to the matrix 
A (see Section 13.1). 

It is seen from (14.137) that in order to find pseudo-solutions it is nec­
essary for the pseudo-inverse matrix A+ to be found. As will be shown in 
this section, taking advantage of the optimal filtering equations given by 
(13.56) and (13.57), one can, however, offer recursive procedures for find­
ing the pseudo-solutions which do not require the 'pseudo-inversion' of the 
matrix A. 

6 See, for example, Chapter 1, Section 5, in [69). 
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14.5.2. Let us start with the case where the system of algebraic equations 
Ax = y is solvable (k ~ n). In this case the pseudo-solution x0 = A+y is 
distinguished among all the solutions x by the fact that its norm is the least, 

i.e., lx0 1 ~ lxl. 
Let us introduce some additional notation. Let t = 1, 2, ... , k be the 

numbers of the rows of the matrix A, let at be the rows of the matrix A, 

and let Yt be the elements of the vector y, t = 1 ... , k, 

Consider for each t (solvable) systems of linear algebraic equations7 

(14.138) 

Let 
(14.139) 

Theorem 14.4. The vectors Xt and the matrices "ft, t = 1, ... , k, satisfy the 
system of recursive equations 

'Yo= E, 

where 

and the vector Xk coincides with the pseudo-solution x0 • 

(14.140) 

(14.141) 

(14.142) 

If the rank of A is equal to k, then (at+l'Yta;+l)+ = (at+l'Yta;+1)- 1 for 
all t = 0, ... , k - 1. 

PROOF. Let fJ = (fJ1, ... , fJk) be a Gaussian vector with MfJ = 0, MfJfJ* = E, 
and let 

(14.143) 

Then, by the theorem on normal correlation (Theorem 13.1) and the fact 
that Me = 0, MOW)* =A;' M(e)W)* = AtA;, we have 

mt = M(fJiet) = A;(AtA;)+e. 

7 The dimension of the vector x is equal to n for any t. 
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But by (6°) of Section 13.1 regarding pseudo-inverse matrices, 

A;(AtA;)+ =At, 

Hence 
mt = Atet. 

Next, again by the theorem on normal correlation, 

(14.144) 

'Yt = E-At At= E- A;(AtA;)+ At (14.145) 
= MOO*- MO(et)*(M(et)(et)*)+(MO(et)*)* = M[(O- mt)(O- mt)*]. 

On the other hand, the system of equations given by (14.143) can be 
represented in the following equivalent form adopted in the filtering scheme 
considered above: 

(14.146) 

(compare with the system of equations given by {13.46) and (13.47) ). We find 
from the filtering equations given by (13.56) and (13.57), as an application 
of (14.146), that 

mt+l = mt + 'Yta;+1(at+l'Yta;+1)+(et+l- at+lmt). mo = 0, (14.147) 

'Yt+l = 'Yt- 'Yta;+l(at+nta;+1 )+at+I'Yt, 'Yo= E. (14.148) 

Thus, the required recursive equation, (14.141), for 'Yt is established. In 
order to deduce (14.140) from (14.147) we proceed as follows. 

Let z = O*x. Then 

Metz = MAtOO*x = Atx = yt, 

Metz = MatOO*x = atx = Yt, 
Mmtz = MAtetz =At Metz = Atyt = Xt· (14.149) 

Multiplying the left- and right-hand sides of (14.147) by z and then taking 
the mathematical expectation of the expressions obtained, we find 

Mmt+IZ = Mmtz + 'Yta;+1 (at+l'Yta;+l)+[Met+IZ- at+lMmtz], 

which, together with (14.149), leads to the desired equation, (14.140). 
It also follows from (14.139) and (14.137) that Xk = x0 • 

In order to prove the concluding part of the theorem, for each prescribed 
t, let 

t 

b = at+l- L C8 ass, 
s=l 

(14.150) 

where the numbers c1, ... , Ct are chosen so that the value of bb* is minimal. 
Denoting by c the vector row (cl! ... , Ct), we shall write (14.150) in vectorial 
form 
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(14.151) 

Then 

From this, because of the minimality of the value of bb*, it follows that 
the vector c = ( c17 ... , Ct) satisfies the system of linear algebraic equations 
c(AtA;) = at+lA; and, therefore, 

It follows from (14.151) and (14.152) that 

and 

b = at+l(E- At At) 

bb* = at+l(E- 2At At+ (At At)2)a;+1 

= at+1(E- At At)a;+l = at+nta;+l, 

(14.152) 

where we have made use of (4°), one of the properties of pseudo-inverse 
matrices (see Section 13.1). 

If the rank of the matrix A is equal to k, then the ranks of the matrices 
At, t = 1, ... , kt, are all equal tot. Hence, for any t = 1, ... , k, the row at+l 
is not a linear combination of the rows a17, ... , at, and, therefore, bb* > 0. 
But bb* = at+l"Yta;+l• hence at+l"Yta;+l > 0. 0 

14.5.3. Let us discuss now the case where the system of algebraic equations 
Ax = y is insolvable. It turns out that in this case in order to find the pseudo­
solution x0 = A+y, a recursive procedure can be constructed which does not 
require 'pseudo-inversion' of the matrix A. 

Assume that the matrix A= llaijll has the order (k x n). In describing 
recursive processes it is essential to distinguish between the cases k :::; n and 
k > n. Here we consider only the case k :::; n. 

Theorem 14.5. Let k:::; n and let the rank of A equal k. Then the pseudo­
solution x 0 = A+y coincides with the vector Xk obtained from the system of 
recursive equations (14.140) and (14.141). 

In order to prove this we need the following. 

Lemma 14.10. Let B be a matrix of order (m x n) and let E be the unit 
matrix of order ( n x n). Then 

lim(aE + B* B)-1 B* = n+ 
a~O 7 

(14.153) 
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PROOF. We have 

lim(aE + B* B)-1a = E- B+ B. 
a.j.O 

(14.154) 

Ll(a) = B+ -(aE+B*B)-1B* = (aE+B*B)- 1[(aE+B*B)B+ -B*] 
= (aE + B* B)-1[aB+ + B* BB+- B]. 

But B* BB+ = B* (see {7°), Section 13.1). Hence 

Ll(a) = a(aE + B* B)-1 B+ 

and 

since B+(B+)• = (B* B)+ (see {5°), Section 13.1). 

{14.155) 

If B* B is a diagonal matrix, then the validity of {14.153) follows from 
{14.155), since the zeros on the diagonals of the matrices B* B and (B* B)+ 
coincide. Otherwise, with the aid of orthogonal transformation of S (S* = 
s-1), we obtain 

S*(B* B)S = diag (B* B), S*(B* B)+ S = diag (B* B)+ 

and 

S* Ll(a)(Ll(a))* S = a[aE + diag (B* B)]-1 

xdiag (B" B)+[aE + diag (B* B)t1 -+ 0, a ..j.. 0. 

From this, because of the nonsingularity of the matrix S, we obtain 

Ll(a)(Ll(a))* -+ 0, a ..j.. 0. 

Thus {14.153) is established. 
In order to prove {14.154), it remains only to note that, due to {14.153), 

E- B+B = E -lim(aE+ B*B)-1B*B 
a.j.O 

= E -lim(aE + B* B)-1(B* B + aE- aE) 
a.j.O 

= lim(aE + B* B)-1a. 
a.j.O 

D 

PROOF OF THEOREM 14.5. If the system Ax = y is solvable, then the 
required statement follows from Theorem 14.4. Let us proceed to the general 
case. 

First of all we shall show that the vector Xt = At yt can be obtained in 
the following way: 

Xt = limxf, 
a.j.O 

{14.156) 
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where xf, a > 0 is a solution of the solvable system of linear equations 

(14.157) 

Indeed, let the vector xf(t) = (xf(t), ... ,x~(t)) minimize the functional 

t m 

J(x0 ) = l:[asX0 - Ys] 2 +a L(xj)2 , 

s=1 j=1 

where X 0 = (xf, ... , x~). Then it is not difficult to see that 

xf = (aE + A;At)- 1 A;yt. (14.158) 

It follows immediately that xf is a solution of the solvable system of 
equations given by (14.157). But, by Lemma 14.10, 

lim(aE + A;At)-1 A;= At, 
o,!-0 

which, together with (14.158), proves the equality 

Xt = limxf. 
o,!.O 

We can deduce recursive equations for the vectors xf, t :::; k. For this pur­
pose let us take advantage of the technique applied in proving the previous 
theorem. 

Let () = (()1, ... , ()n) be a Gaussian vector with M() = 0, M()()* = E, and 
let et, t = 1, ... , k, be a Gaussian sequence of independent random variables 
with Met = 0, Me~ = 1, independent of the vector (). 

Set 
(14.159) 

where ()t -().Then mf = M(fltlet, ... ,et) = M(e1e1, ... ,et) and 'Yf = 
M[(()-mf)(()-mf)*], according to Theorem 13.4, satisfy the following system 
of equations: 

(14.160) 

0 0 'Yfat+l at+l 'Yf 
'Yt+1 = 'Yt - + o * , 'Yt: =E. (14.161) 

a at+l 'Yt at+ 1 

According to Theorem 13.15, the solutions mf and 'Yf of these equations 
are given by the formulae 

t-1 
mf = (aE+A;At)- 1 l:a;+les+l = (aE+A;At)- 1A;et, (14.162) 

s=O 
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(14.163) 

Let Llr = Yt - atxr, Lla = (Ll~, ... , LlV, c: = (c:1. ... , c:k) and EtLla = 
yt- Atxa, where Et is the matrix formed by the first t rows of the unit matrix 
E of dimension (k x k). Set z = (}*xa + o:- 112c:* Lla. Then 

M(tz = M[atB + o:112c:t][B*xa + o:- 112c:* Lla] = atxa + Llf = Yt· 
M(t z = M[AtB + o:112 EtLla][B*xa + o:- 112c:* Lla] 

= Atxa + EtLla = yt, (14.164) 

Mmfz = (o:E + A;At)-1 A;M(tz = (o:E + A;At)-1 A;yt = xf. (14.165) 

Multiplying (on the right) the left- and right-hand sides of (14.160) by z, 
then taking the mathematical expectation and taking into account relations 
(14.164) and (14.165), we find that 

(14.166) 

From Lemma 14.10 we have 

lim'Yf =E-At At (= 'Yt)· a.j.O 

Since the rank of A is equal to k, O:t+l'Yfat+l > 0 for all o: :::: 0, which 
follows from (14.163) and Theorem 14.4. Hence in (14.161) we may take the 
limit as o: ..!- 0, yielding for 'Yt = lima.j.o 'Yf the equation 

'Yo= E. 

Finally, taking the limit as o: ..!- 0 in (14.166), we obtain from (14.156) the 
required equation, (14.140). D 

Note. The system of recursive relations given by (14.166) and (14.161) for 
o: > 0 holds true for the case k > n, rank A $ n as well. Thus, with the aid 
of this system the vectors x~ = ( o:E + A* A) - 1 A* y --t A+ y for the matrix A 
(k x n) of rank r $ min(k, n) can be found (see Lemma 14.10). 

14.6 Kalman Filter under Wrong Initial Conditions 

Here, we consider a Kalman filtering model with a vector signal Bt (of size k) 
and a vector observation (t (of size£) defined by recursions 

Bt+1 = aBt+bc:1(t+1) 
(t+1 = A(t + Bc:2(t + 1), (14.167) 
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where a, A, b, and Bare matrices of dimension (k x k), (l x k), (k x k), (l x l) 
respectively and ((et(t))t:;:::t, (e2(t))t:;:::l are zero-mean vector white noises (of 
sizes k, l respectively) with unit covariance matrices. White noises ((et(t))t>l 
and (e2 (t))t:;::: 1 are assumed to be orthogonal to each other. The recursion for 
Ot is subject to a random initial condition Oo with M000o < oo orthogonal 
to ((e1(t))t:;:::t. (e2(t))t<::l· Assume that ~o = 0 and that BB* is a nonsingular 
matrix. If 

mo = MOo and 'Yo = M(Oo- m)(Oo - m)* 

are known parameters, then the Kalman filter is defined as (see Corollary 3 
to Theorem 13.4) 

mt = amt-1 + a'Yt-tA*[A'Yt-lA* + BB*r1 (~t- Amt-d (14.168) 

'Yt = a'Yt-1a* + bb*- a'Yt-lA*[A'Yt-lA* + BB*r1 A'Yt-la*, 

subject to the initial conditions mo and 'YO· For every fixed t, mt is the 
orthogonal projection M(Otl~[l,tJ) of Ot on the linear space generated by 
(1, ~1, .. ·, ~t) while 

i.e., mt is a linear optimal (in the mean square sense) filtering estimate for Ot, 
given the observation ~[l,t) = {~8 , 1 ~ s ~ t}. If (Oo, (el(t),e2(t))t:;:::o) forms 
the Gaussian object, then mt is the conditional expectation for Ot given the(!­
algebra generated by ~[l,t)· If only the noises (e1(t), e2(t))t:;:::o are Gaussian but 
00 is not, the Kalman filter (14.168) creates only the linear optimal estimate, 
that is for any t 

(14.169) 

where 7rt is the conditional expectation M(Otl~[l,tJ) defined by a nonlinear 
filter of more sophisticated structure than the Kalman filter. Nevertheless, 
the use of the Kalman filter instead of the nonlinear one makes sense, if fflt 
'forgets' the distribution of Oo in the sense that (11·11 2 is the Euclidean norm) 

(14.170) 

Assume now that even the parameters mo and 'Yo of the distribution 00 

are unknown. Then one can apply wrong m~ and 'Yb (nonnegative definite 
matrix). In this case, m~, -y;, being defined by the same Kalman filter, are 
neither the orthogonal projection nor the matrix of filtering errors. Moreover, 
the use of such a filter makes sense provided that 

lim Mllm~- 7rtll 2 = lim Mllm~- mtll2 = 0. 
t--too t--too 

(14.171) 

We establish below the validity of (14.171) under the assumptions of Theo­
rem 14.3 on matrices 
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In what follows, we assume that matrices G1. G2 have rank k. Then by 
Theorem 14.3 limt-too "'t = 'Y exists and is independent of 'YO· Moreover, "f is 
a positive definite matrix, being the unique solution (in the class of symmetric 
positive definite matrices) of the algebraic equation 

'Y = a'Ya* + bb*- a"(A*[A'YA* + BB*]-1 A"fa* (14.172) 

and 

For further analysis, introduce, the so-called Kalman gain 

Kt = a"(tA*(A"ftA* + BB*)-1 

and note that there exists a limit matrix 

K := a"(A*(A'YA* + BB*)-1 = lim Kt. (14.173) t-too 
Lemma 4.11. Let the assumptions of Theorem 14.3 be fulfilled. Then the 
eigenvalues of the matrix a - K A lie inside the unit circle. 

PROOF. With Kt-1 defined as above, the recursion for 'Yt can be rewritten 
as 

"'t =(a- Kt-1Aht-1(a- Kt-1A)* + bb* + Kt-1BB* K;_1 

and, therefore, passing to limit with t ---+ oo, we find 

'Y =(a- KA)'Y(a- KA)* + bb* + KBB* K*. (14.174) 

Let cp be a left eigenvector of the matrix a - K A corresponding to eigenvalue 
.X (.X*). Since 'Y is a positive definite matrix, <p"f<p* = c > 0. Then, multiplying 
the right-hand side of (14.174) from the left by cp and from the right by cp*, 
we arrive at a linear equation with respect to J.XJ 2 

c = J.XJ 2c + cp[bb* + K BB* K*]cp* 

which implies I .XI ::::; 1. If simultaneously cpK '# 0, cpb '# 0, then, by virtue of 
the assumption that BB* is positive definite, we have cp[bb* + K BB* K*]cp* = 
c1 > 0 and so, I .XI < 1. Hence, it remains to show only that 'cpK = 0, cpb = 0' 
contradicts the assumptions of the lemma. Assume 'cpK = 0, cpb = 0' holds. 
Then cp is the left eigenvector of the matrix a with the eigenvalue .X. In this 
case, the (kxk)-matrixG2G2 = bb*+abb*a*+· · ·+ak-1bb*(a8 - 1)* is singular: 

cpG2G2cp* = 0 

and at the same time the rank of G2 is k. The contradiction obtained confirms 
the statement of the lemma. 0 
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14.6.1 Asymptotically Optimal Kalman Filter. Assume the rank of both G1 
and G2 is k. Consider a linear Kalman type filter in which the limiting matrix 
'Y involves 'Y instead of "ft 

(14.175) 

subject to a reasonable initial condition mo. 

Theorem 14.6. Assume Bo is an arbitrarily distributed random vector with 
MIIBoll 2 < oo. Denote mt = M(Btl~[1,tj) and 1rt = M(Bti~[O,tj). Then 

1. limt--too M(Bt- mt)(Bt- mt)* = limt-too M(Bt- mt)(Bt- mt)* = "(; 
2. with Gaussian noises (e-1(t),e-2(t))t?:1• 

lim M(Bt- 1rt)(fh- rrt)* = lim M(Bt- mt)(Bt- mt)* = 'Yi t-+oo t-+oo 

3. 8 with Gaussian noises (e1(t),e-2(t))t?:b Bt -rrt.t--+ oo converges in 
distribution to a zero-mean Gaussian vector with covariance "(. 

PROOF. 1. Let us note that 

M(Bt - mt)(Bt - mt)* = M(Ot - mt)(Bt - mt)* 

+M(mt- mt)(mt - mt)*. 

It suffices therefore to show that 

{14.176) 

We now convert the recursion for mt to a form more relevant for verifying the 
validity of {14.176). Introduce an innovation difference (see Theorem 13.5) 

€t = [A'Yt-1A* + BB*t 112 (~t - Amt-d 

which forms white noise (€t)t>1 with a unit covariance matrix. Then, by the 
definition of the matrices Kt-1 and K (see (14.173)) 

mt = amt-1 + K(~t- Amt-1) + (Kt-1- K)[A'Yt-1A* + BB*] 112et {14.177) 

and at the same time 

mt = Amt-1 + K(~t - Amt-1)· 

(14.177) and {14.178) imply for L1t = mt - mt the recursion 

L1t =(a- KA)L1t-1 + (Kt-1- K)[A'Yt-1A* + BB*] 112-et. 

Denote by Vi = M L1tL1i and note that (14.179) implies 

8 Here, we give a simple proof of the result from [224]. 

{14.178) 

(14.179) 
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vt =(a- KA)vt-1(a- KA)* + (Kt-1- K)[A-rt-1A* + BB*](Kt-1- K)*. 

Since by Lemma 4.11 the eigenvalues of the matrix (a-KA) lie within the 
unit circle and Kt-1 - K--+ 0, t--+ oo, it follows that limt-too Vt = 0. 

2. We use the upper bound M(Ot-1rt)(Ot-1rt)" ::; M(Ot-mt)(Ot-mt)" and 
the lower bound M(Ot - 7rt)(Ot - 7rt)" 2::: M(Ot - 1rf}(Ot - 7rf')*, where 7rt = 
M(Otl0o,e[1,t))· Under the assumption made, the conditional distributions 
P(Ot::; xl0o,e(1,t)), t 2::: 0 are Gaussian with probability one (see Chapter 13), 
and moreover 1rt' is defined as: 

1r~ = a1r~_ 1 + a-y~_ 1 A*[A-y~_ 1A* + BB*t1(et- A1r~_ 1 ) 
'Y~ = a-y~_ 1 a* + bb*- a-y~_ 1 A*[A-y~_ 1A" + BB*t1 A-y~_ 1a 

subject to 1r0 = 00 , 'Yo = 0. By Theorem 14.3 limt-+oo 'Yt = -y, that is 

lim M(Ot- 1rn(ot- 1rn· = 'Y· t-tO 

Coupled with the first statement of the theorem, this implies the validity of 
the second statement as well. 

3. Since for any t, fh- 7rf' is a zero-mean Gaussian vector with covari­
ance 'Yt, its distribution converges weakly to the distribution of a zero-mean 
Gaussian vector with covariance 'Y· Therefore (see, for example, Theorem 4.1 
in [19]) the required result holds provided that 7rt - 1rt' --+ 0, t --+ 0 in proba­
bility. To verify this, note that 

M(1rt - 1r~)(1rt- 1rn* = M(Ot - 1rt)(Ot - 7rt)" - M(Ot - 7r~)(Ot- 1rn". 

Thus 3. is implied by 2. D 

Notes and References. 1 

14.1-14.2. In these sections we have systematically used the fact that a sta­
tionary sequence with rational spectrum is a component of a multidimensional 
stationary process obeying the system of recursive equations given by (14.15) (see 
also Section 15.3). The idea of deducing recursive equations has been borrowed 
from Laning and Battin [184]. 

14.3. The optimal control problem for a linear system with a quadratic per­
formance index has been studied by Krasovsky and Lidsky [162], Letov [188] and 
Kalman, Falb and Arbib [141]. The same control problem with incomplete data has 
been presented in Aoki [5], Meditch [227] and Wonham [311]. 

14.4. Theorem 14.3 is analogous to the similar result due to Kalman [139] for 
the case of continuous time, see also Section 16.2. 
' 14.5. The results obtained in this section have been obtained by Albert and 
Sittler [2] and also Zhukovsky and Liptser [334]. 



Notes and References 143 

Notes and References. 2 

14.1. The application of the Kalman filter of the minimal dimension for a 
homogeneous finite-state-space Markov process as an unobservable signal can be 
found in [200,201). 

14.6. For the continuous time case, statements similar to Theorem 14.6 can 
be found in Ocone and Pardoux [249). Statement 3. of Theorem 14.6 is proved 
differently in Makowski and Sowers [224). Different approaches to the analysis for 
discrete time filters can be found in Budhiraja and Ocone [33). 



15. Linear Estimation of Random Processes 

15.1 Wide-Sense Wiener Processes 

15.1.1. In the previous chapter the interrelation between properties in the 
'wide' and in the 'strict' sense, which is frequently applied in probability 
theory, was used in finding optimal linear estimates for stationary sequences 
with rational spectra. Thus it was enough for our purposes to consider the 
case of Gaussian sequences (Lemma 14.1) for the construction of the optimal 
mean square linear estimate. This technique will now be used in problems of 
linear estimation of processes with continuous time. Here the consideration 
of the concept of a wide-sense Wiener process turns out to be useful. 

15.1.2. 
Definition. The measurable random process W = (Wt), t 2:: 0, given on a 
probability space (il, :F, P) is called a wide-sense Wiener process if 

Wo = 0 (P-a.s.), 

MWt = 0, t 2:: 0, 

MWtWs = t t\ s. (15.1) 

It is clear that any Wiener process is a wide-sense Wiener process at the 
same time. Another example of a wide-sense Wiener process is the process 

Wt = 1rt- t, (15.2) 

where II = (7rt), t 2:: 0, is a Poisson process with P(7ro = 0) = 1 and 
P(Trt = k) = e-t(tk fk!). 

Let :Ft, t 2:: 0, be a nondecreasing family of sub-a-algebras of :F, let 
z = (zt, :Ft), t 2:: 0, be a Wiener process, and let a = (at(w), :Ft), t 2:: 0, be 
some process with Ma~(w) > 0, 0 < t < T. Then the process 

W, - rt aa(w) dz 
t- lo JMa~(w) s• 0 :'5 t :'5 T, (15.3) 

is another example of a wide-sense Wiener process. Note that this process 
has (P-a.s.) a continuous modification. 

It is seen from the definition that a wide-sense Wiener process is a 'process 
with orthogonal increments', i.e., 

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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if S1 < S2 < t1 < b 
Let lf>(d>.), -oo < ).. < oo, be the orthogonal spectral measure with 

Mlf>(d>.) = 0, Mllf>(d.>-.)12 = d>.j21r. It is known from the spectral theory 
of stationary processes that for any measurable function cp(>.), such that 

one can define the stochastic integral1 

having the following two essential properties: 

M I: cp(>.)l!>(d>.) = 0, (15.4) 

! 00 !00 1 !00 
M -oo Ct'l(..\)lf>(d)..) -oo Ct'2(..\)lf>(d)..) = 27r -oo Ct'l(..\)<p2(>.)d..\. (15.5) 

Lemma 15.1. The random process 

00 i.>.t 
Wt = J e .)..- 11f>(d..\) 

-oo ~ 
(15.6) 

is a wide-sense Wiener process. 

PROOF. Only the property MW8 Wt = s 1\ t is not obvious. In order to verify 
it we shall denote by ..::1 = (t1, t2) and ..::1' = (st. s2) two nonintersecting 
intervals. Then 

But if 

{ 1 tELl 
x~(t) = 0', t 1- Ll, 

then, by virtue of Parseval's theorem, 

1 This integral is the limit (in the mean square) of the explicitly defined integrals 
I(cpn,tl>) of the simple functions l{'n(>.), n = 1, 2, ... , such that J~oo lcp(>.)­
cpn(>.Wd>. -+ 0, n -+ oo (compare with the construction of the Ito integral in 
Section 4.2). 
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_!_1oo (ei>.t2 -ei..\tl)(e-i..\s2 -e-i..\sl)d; =1oo XL1(t)XL1'(t)dt=0. 
27T -oo A -oo 

Hence 
M[Wt2 - Wt1)[Ws2 - Ws1l = 0. {15.7) 

Similarly, it can be shown that 

M[Wt2 - Wt1]2 = /_: (XL1(t))2dt = t2 - t1. {15.8) 

It follows from {15. 7) and {15.8) that this process is a process with un­
correlated increments and with MWl = t. Hence, if t > s, then 

MWtWs = M[Wt- Ws + Ws]Ws = MW; = s = t 1\s. 

Similarly, at t < s 
0 

It is useful to note that if the wide-sense Wiener process Wt, t ~ 0, is 
Gaussian, then it has a continuous modification that is a Brownian motion 
process. Indeed, becauseofthenormality, M[Wt-Ws] 4 = 3{M[Wt-WsJ2)2 = 
3lt - sl2. Hence, by the Kolmogorov criterion {Theorem 1.10) the process 
considered has a continuous modification that by definition (see Section 1.4) 
is a Brownian motion process. 

15.1.9. Let /{-} E L2[0, T]. Using the wide-sense Wiener process W = (Wt), 
t ~ 0, one can define the Ito stochastic integral {in a wide sense) 

{15.9) 

by defining 
{15.10) 

(where /n(t) is an array of simple functions Un(t) = fn(tin)) for tin) < t ~ 
ti11, 0 = t~n) < tln) < · · · < t~n) = T), having the property that 

lim 1T [/(t) - fn(tWdt = 0. 
n 0 

{15.11) 

The integral thus defined has the following properties (compare with Sub­
section 4.2.5): 

IT( all+ bh) = aiT(h) + blT(h), a, b =constant, /i E L2[0, T], {15.12) 

1t f(s)dWs = 1" f(s)dWs + 1t f(s)dW8 , {15.13) 

where 
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(15.14) 

and X(utJ(s) is the characteristic function of the set u < s ~ t. The process 

It(t) = f~ f(s)dW8 is continuous overt in the mean square 

M 1t f(s)dW8 = 0, (15.15) 

M 1t ft(s)dW81t h(s)dW8 = 1t fl(s)h(s)ds, fiE L2(0, T]. (15.16) 

If2 

then 

1t g(s)ds 1t f(s)dW8 = lot (18 g(u)du) f(s)dW8 

+lot (lo
8 

f(u)dWu) g(s)ds. (15.17) 

The existence of the integral in (15.9) and the properties formulated can 
be verified in the same way as in the case of the Ito stochastic integral for a 
Wiener process (see Section 4.2). 

15.1.4. Let a(t),b(t),f(t), t ~ T, be measurable (deterministic) functions 
such that 

Set 

loT ia(t)idt < oo, loT b2 (t)dt < oo, 

1T (IJ(t)a(t)i + if(t)b(tW) dt < oo. 

et = 1t a(s)ds +lot b(s)dW8 , 

where W8 , s 2:: 0, is a wide-sense Wiener process. 

(15.18) 

(15.19) 

(15.20) 

2 The last integral in ( 15.17) exists due to the Fubini theorem and the inequality 

M { [[ f(u)dW.[Iu(•ll"-' S { ( M [[ f(u)dw.J') ''' lu(•ll"-' 

= 1T (1" /2 (u)du) 
112

ig(s)ids < oo. 
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With this process the integral I~ f(s)d~s can be defined by setting 

t f(s)d~s = l.i.m.n L fn(tkn))[~t(n) - ~t(n)], (15.21) 
~ k k+1 k 

where fn(t) is a sequence of simple functions such that 

lim {T [la(t)llf(t)- fn(t)l + b2 (t)lf(t)- fn(tWJdt = 0. 
n Jo 

The integrals I~ f(s)d~s thus defined are J1-measurable and have the prop­
erty that (P-a.s.) 

1t f(s)d~s = 1t f(s)a(s)ds + 1t f(s)b(s)dW8 , 0 ~ t ~ T (15.22) 

(compare with Subsection 4.2.11). 

15.1.5. Let v = (vt), t 2:: 0, be a process with orthogonal increments, with 
M(vt - 1/8 ) = 0 and 

(15.23) 

where I: a2 (u)du < oo. For deterministic (measurable) functions f(t) satis­
fying the condition 

one can also define the stochastic integral 

1T f(s)dvs 

as the limit (in the mean square) of the corresponding integral sums 

""fn(Skn))[v (n) -1/ (n)] 
~ 8 k+t 8 k 

k 

(15.24) 

(15.25) 

at n -too, where the sequence of the simple functions fn(s) is such that 

The correctness of such a definition can be established in the same way 
as in the case of stochastic integrals of a square integrable martingale3 for 
which the corresponding predictable increasing process is absolutely contin­
uous with probability one (see Theorem 5.10). 

3 It is useful to note that any square integrable martingale is a process with or­
thogonal increments. 
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Note two useful properties of the integral in (15.25); 

M 1T f(s)dv8 = 0; 

M 1T ft(s)dvsfoT h(s)dvs = 1T ft(s)fs(s)a2 (s)ds 

(it is assumed that I: Jl(s)a2 (s)ds < oo, i = 1, 2). 

(15.26) 

{15.27) 

In the case, where the process v = (vt), t ~ 0 is also a martingale and 
a2 (u) > 0, 0 ~ u ~ T, the process 

W, _ t dv8 

t- } 0 a(s) (15.28) 

is a Brownian motion process (as was shown in Theorem 5.12). Discarding 
the assumption on the martingale property leads us to the following result. 

Lemma 15.2. Let v = (vt), t ~ 0, be a process with orthogonal increments, 
M(vt - V 8 ) = 0, 

M(vt- V8 ) 2 = lt a2 (u)du. 

/finfo~u~Ta2(u) > 0 and I: a2(u)du < oo, then the process4 

W, _ t dv8 

t- } 0 a(s) 

is a wide-sense Wiener process. 

PROOF. It is seen that MWt = 0, MWl = t. Finally, due to (15.27), 

MWtWs = M t dvu r dvu 
Jo a(u) Jo a(u) 

4 As usual, 

{tvs dvu {tvs dvv 
= M Jo X(u~t) a(u) Jo X(v~s) a(v) 

tvs 
= Jo X(u~t)X(u~s)du = t /1. s. 

D 
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15.1.6. Let the deterministic (measurable) functions a0 (t),a1(t) and b(t) be 
such that 

i = 0, 1. (15.29) 

Consider the linear equation 

(15.30) 

where W = (W.), s::?: 0, is a wide-sense Wiener process, and x0 is a random 
variable uncorrelated with W with M x~ < oo (as in the case of the Wiener 
process, Equation (15.30) will be written symbolically as dxt = [ao(t) + 
al(t)xt]dt + b(t)dWt)· 

If W = (W.), s::?: 0, is a Wiener process, then, according to Theorem 4.10, 
Equation (15.30) has a unique continuous (P-a.s.) solution given by the for­
mula 

Xt = exp {lot a1(u)du} { Xo +lot exp [ -~o· a1(u)du] ao(s)ds 

+lot exp [-lo• a1(u)du] b(s)dW8 }· (15.31) 

The stochastic integral on the right-hand side of (15.31) is defined for a 
wide-sense Wiener process as well. (15.31) in the case of the Wiener process 
w. holds true also in the mean square sense. Hence, it also holds true in the 
mean square sense when w. is a wide-sense Wiener process which proves the 
existence of a solution of equation (15.30) with a wide-sense Wiener process 
given by (15.31). It is not difficult to convince oneself, using (15.17), that the 
process Xt, 0 $ t $ T, is continuous in the mean square. Let Yt, 0 $ t $ T, be 
another similar solution of Equation (15.30). Then ..1t = Xt- Yt, 0 $ t $ T, 
satisfies the equation 

and, therefore, is a continuous (P-a.s.) process, whence 

l..1tl slot lal(s)ll..1.1ds. 

By Lemma 4.13, ..18 = 0 (P-a.s.), 0 $ t $ T. Hence 

P { sup ixt - Yti > o} = 0. 
o:=;t:=;T 
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Now let W = (Wb ... , Wn) be ann-dimensional wide-sense Wiener pro­
cess (each of the processes Wi = (Wi(t)), t ~ 0, i = 1, ... , n, is a wide-sense 
Wiener process, and the components Wi, Wi at i ::1 j are uncorrelated). 

Let there be given the random vector x0 = (xt(O), ... ,xn(O)), uncorre­
lated with W, E~=l Mx~(O) < oo, the vector function ao(t) = (a01(t), ... , 
aon(t)), and the matrices a1(t) = lla}j(t)ll and b(t) = llbij(t)ll of dimension 
(n X n). We shall also assume that for the elements aoi(t), a}it) and bij(t) 
the associated conditions given by (15.29) are satisfied. Then, as in the case 
n = 1, the equation 

Xt=xo+ lot[ao(s)+at(s)xs]+ lotb(s)dWs (15.32) 

has the unique continuous (in the mean square) solution Xt = (x1 (t), ... , xn(t)) 
given by the formula 

Xt = P~ { xo +lot (4>0)-1ao(s)ds +lot (4>0)- 1b(s)dW8 }, (15.33) 

where Pb is the fundamental matrix 

d4>h ( ) t dt = a1 t 4>0 , (15.34) 

For the process Xt so obtained, let nt = Mxt, F(t, s) = M(xt- nt)(xs­
n8 )*, Ft = F(t, t). 

Theorem 15.1. The vector nt and the matrix Ft are solutions of the differ­
ential equations 

dnt dt = ao(t) + at(t)nt, 

d~t = a1(t)Ft + Ftai(t) + b(t)b*(t). 

The matrix F(t,s) is given by the formula 

r(t ) _ { 4>~F8 , 
,s - Ft(4>:)*, 

where P~ = Pb(4>0)-1, t ~ s. 

t ~ s, 
t ~ s, 

(15.35) 

(15.36) 

(15.37) 

PROOF. Equation (15.35) can be obtained by averaging both sides in (15.32). 
It follows from (15.33) that the solution of Equation (15.35) is defined by the 
formula 

(15.38) 

Next, let Vi = Xt - nt. Then it follows from (15.33) and (15.38) that 
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Vt = P~ { Vo +lot (4»~)- 1 b(s)dW8 }, (15.39) 

from which, due to the lack of correlation of x0 and W, we obtain 

rt = Mvtvt* 

= P~ { MVo V0* + M lot (4»~)- 1b(s)dW8 (lot (if>~)- 1 b(s)dW8) *}(if>~)*. 

Since the components of the process W are uncorrelated, from (15.15) 

and (15.16) it follows that 

Therefore, 

M lot (4»~)- 1 b(s)dW8 (lot (4»~)- 1b(s)dW8) * 

= lot (4»~)- 1 b(s)b*(s)[(4»~)- 1 ]*ds. 

rt = p~ {To+ lot (4»~)- 1 b(s)b*(s)[(if>~)- 1 ]*ds} (4»~)*. 

By differentiating the right-hand side of this relation and taking into 
account (15.34) we arrive at the required equation, (15.36). 

Let us now establish (15.37). Let t 2:: s. Then 

T(t, s) = Mvt~* 

= 4»~{ MVoV0* 

+M [lot (4»0)-1b(u)dWu] [lot X(s2:u)(4»0)-1b(u)dWu] (4»~)*} 

= 4»!4»~ {To+ los (4»0)-1b(u)b*(u)[(4»0)-1]*du} (if>~)*= 4»!Ts. 

The other side of (15.37) can be verified fort~ s in the same fashion. D 

15.1. 7. For the process Xt, 0 ~ t ~ T, satisfying Equation (15.30), fort> s 
let 

R(t,s) = T(t,s)r8+. 

For s < u < t, let us show that 

R(t, s) = R(t, u)R(u, s). (15.40) 
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In order to prove this relation it suffices to consider the case where x0 = 0, 
ao(s) = 0, and Ws is a Wiener process. Then it follows from the theorem on 
normal correlation (Theorem 13.1} that 

M(xtlxu) = R(t, u)xu. 

It follows from (15.33} that the process Xt is a Markov process, and, in 
particular, 

Consequently, 

and, therefore, 

M(xtx:r: - R(t, u)xux:r:) = 0, 

which proves (15.40). 
Thus, for the process Xt, 0 ::::; t ::::; T, satisfying Equation (15.32}, the 

function R(t, s) satisfies (15.40}. The converse holds true, in a certain sense, 
as well. 

Theorem 15.2. Let x = (x1 (t}, ... , Xn(t}}, 0 ::::; t ::::; T be a random process 
with the first two moments nt = Mxt and F(t, s) = M[(xt - nt)(Xs - n8 )*] 
given. Assume that the matrix R(t, s) = F(t, s)r: satisfies {15.40} and that 
the following assumptions are satisfied 

{1} there exist a vector ao(t) and matrices a1(t) and B(t) such that their 
elements belong to Lt[O,t]; 

(2} the elements of the matrices R(t, s) are continuous overt (t > s}, and 

R(t,s) = R(s,s) + 1t a1(u)R(u,s)du; 

{9} the elements of the matrices 'Yt = F(t, t) are continuous and 

Ft = Fo +lot [at(u)Fu + Fuai(u)]du +lot B(u}du; 

(4) the elements of the vectors nt are continuous overt, and 

nt =no+ lot[ao(u)+at(u}nu]du. 
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Then there exists a wide-sense Wiener process Wt = (W1{t), ... , Wn(t)), such 
that (P-a.s.) for all t, 0 $ t $ T, 

Xt = xo + 1t [ao(s) + a1(s)x8 ]ds + 1t B 112(s)dW8 • {15.41) 

PROOF. Let Wt, 0 $ t $ T, be some n-dimensional wide-sense Wiener pro­
cess, and let xo be an n-dimensional vector with the same first two moments 
as xo and independent of Wt, 0 $ t $ T. Assume that for almost all s, 
0 $ s $ T, the matrices B(s) are nonnegative definite. Let the process Xt, 
0 $ t $ T, be a solution of the equation (Subsection 15.1.6) 

Xt = Xo + 1t [ao(s) + a1(s)x8 ]ds + 1t B112 (e)dW8 • 

Then, due to Theorem 15.1 and assumptions {1)-{4), the first two mo­
ments in the processes Xt and Xt coincide. Therefore, the first two moments 
in the processes 

also coincide. 

Vt = Xt- Xo -lot [ao(s) + a1(s)x8 ]ds, 

iit = Xt- xo -lot [ao(s) + al(s)xs]ds, {15.42) 

But iit = J~ B 112 (s)dW8 is a process with orthogonal increments and, 
hence, so also is the process Vt, 0 $ t $ T. 

If the matrices B(t) are positive definite for almost all t, 0 $ t $ T, the 
process 

Wt = 1t B-112(s)dv8 , 

by the multidimensional version of Lemma 15.2, is a wide-sense Wiener pro­
cess. Hence Vt = J~ B 112 (s)dW8 , which, together with {15.42), proves {15.41) 
in this case. 

If the matrices B(t) for almost all t, 0 $ t $ T, are nonnegative definite, 
then 

where Zt, 0 $ t $ T, is an n-dimensional wide-sense Wiener process uncor­
related with the initial process Xt, 0 $ t $ T. (Such a process exists, if the 
initial probability space is sufficiently 'rich'). Then, as in Lemma 10.4, we can 
show that the process Wt, 0 $ t $ T, thus defined is a wide-sense Wiener 
process. 



156 15. Linear Estimation of Random Processes 

Let us show now that the assumption made on the nonnegative definite­
ness of the matrices B(t) (for almost all t, 0 :::; t :::; T) is a consequence of 
conditions (2) and (3) of the theorem. 

The properties of the matrices B(t) depend only on the properties of 
the first two moments of the process Xt, 0 :::; t :::; T; hence, without loss of 
generality, this process can be considered Gaussian. Then, by the theorem on 
normal correlation, the matrix 

r(t + Ll, t + Ll)- r(t + Ll, t)r+(t, t)r*(t + Ll, t), o:::; t:::; t + Ll:::; r, 

is symmetric and nonnegative definite. By the properties of pseudo-inverse 
matrices (see Section 13.1), 

r+(t, t) = r+(t, t)r(t, t)r+(t, t), (r+(t, t))* = (r*(t, t))+ = r+(t, t). 

Hence, the matrix 

r(t + Ll, t + Ll)- r(t + Ll, t)r+(t, t)r(t, t)(r+(t, t))* r*(t + Ll, t) 
= r(t + Ll, t + Ll)- R(t + Ll, t)r(t, t)R*(t + Ll, t) (15.43) 

is also symmetric and nonnegative definite. After simple transformations we 
find from (12.43), (2), (3) and the formula r(u, t)r+(t, t)r(t, t) = r(u, t), 
u 2: t (see the proof of Theorem 13.1), that 

1 
B(t) =lim A {r(t + Ll, t + Ll)- R(t + Ll, t)r(t, t)R*(t + Ll, t)} 

.:l.l-0 L..l 

(for almost all t, 0 :::; t :::; T). Consequently, the matrices B(t) for almost all 
t are nonnegative definite. 0 

EXAMPLE. Let W = (Wt), 0:::; t:::; 1, be a wide-sense Wiener process and 
let 

et = W1 · t + Wt 

(i.e., det = W1dt + dWt, eo= 0). 
Using the theorem above, we shall show that there exists a wide-sense 

Wiener process Wt, 0:::; t:::; 1, such that (P-a.s.) 

rt 3es -
et = Jo 1 + 38 d8 + Wt 

(compare with Theorem 7.12). 
Indeed, in our case Met= 0 and r(t, 8) =Metes = 3t8 + t 1\8. We obtain 

from this, for t 2:: 8 > 0, 

R(t, 8 ) = 3t8 + 8 = 3t + 1. 
382 + 8 38 + 1 

This function satisfies the condition of (15.40) and it is easy to see that 
3 

a0 (t) = 0, a1(t) = - 3 , B(t) = 1. + t 

Note that in our case the values of Wt are .rf-measurable for all t, 0 :::; t :::; 1. 
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15.2 Optimal Linear Filtering for some Classes 
of Nonstationary Processes 

15.2.1. Let W1 = (Wu, ... , Wlk) and W2 = (W211 ... , W21) be mutually 
uncorrelated wide-sense Wiener processes. We shall discuss the random pro­
cess (e,e) = [8t,et], t 2::: 0, whose components 8t = [81(t), ... ,8k(t)] and 
et = [6(t), ... ,ez(t)], t 2::: 0, satisfy the system of stochastic equations 

d8t = [ao(t) + a1(t)8t + a2(t)et]dt + b1(t)dW1(t) + b2(t)dW2(t), 

det = [Ao(t) + A1(t)8t + A2(t)et]dt + B1(t)dW1(t) + B2(t)dW2(t) 
(15.44) 

where the coefficients satisfy the conditions of Subsection 10.3.1. Assume as 
well that the vector of the initial values of ( Oo, eo) is uncorrelated with the 
processes W1 and W2, with M(808o + eoeo) < oo. 

Taking advantage of the results of Chapter 10, let us construct optimal 
(in the mean square sense) linear estimates of the unobservable component 
Bt from the observations e~ = { es, s ::; t}. 

Definition. We shall say that the vector At = [A1 (t, e), ... , Ak(t,e)] is a linear 
estimate of the vector 8t from e~. if the values of Aj(t, e) belong5 to a closed 
linear subspace generated by the variables es. s ::; t; j = 1, ... 'k. 

The linear estimate At = [A1 (t, e), ... , Ak(t, e)] will be called optimal if for 
any other linear estimate Xt = [X1 (t, e), ... , Xk(t, e)J the following holds: 

M[8i(t) - Aj(t, e)]2 ::; M[Oi(t)- Xi(t, eW, j = 1, ... , k. 

Note that the value of Aj(t, e) is frequently written M(Oj(t)l.rf) and called 
the wide-sense conditional mathematical expectation of the random variable 
ej(t) with respect to the 0'-algebra .r;. 
15.2.2. 
Theorem 15.3. The optimal linear estimate At of the vector Bt from the 
observations e~ can be defined from the system of equations 

dAt = [ao(t) + a1(t)At + a2(t)et]dt + [(b o B)(t) + l'tAi(t)] 

x(B o B)-1(t)[det- (Ao(t) + A1(t)At + A2(t)et)dt], (15.45) 

"tt = a1(tht+l'tai(t)+(bob)(t) (15.46) 
-[(b o B)(t) + l'tAi(t)](B o B)-1(t)[(b o B)(t) + /'tAi(t)]*, 

with 
(15.47) 

5 In the sense of convergence in the mean square. 
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'Yo= cov(Oo,Oo)- cov(Oo,eo)cov+(eo,eo)cov*(Oo,eo). (15.48) 

In this case 'Yt = M[(Ot- At)(Ot- At)*]. 

PROOF. Let (Ot,{t), t ~ 0 be the Gaussian process satisfying {15.44) where, 
instead of the processes (W11 W2), the mutually independent Wiener pro­
cesses (W11 W2) are considered. Assume that the first two moments in (00 , {o) 
are the same as those in the vector ( Oo' eo) and that ( Oo' {o) does not depend 
on the processes (Wt. W2). Let 

Xt = M(Oti:F·f), 'Yt = M[(Ot- Xt)(Ot - Xt)*]. 

Then, according to Theorem 10.3, Xt and i't satisfy the system of equations 
given by (15.45) and (15.46) with the substitution of et for {t and At for 
Xt, and with 'Yt = 'Yt· It follows from (15.45) that the estimate At is linear 
(compare with (15.33)). 

Let us show now that the estimate At is optimal. Let q;(t, e) be some linear 
estimate of O;(t) from e8, and let q~n> (t, e) be a sequence of linear estimates 
from et(n)' ... 'et(n)' where 

0 n 

T (n) - {t(n) t(n)} C T(n+l) = {t(n+l) t(n+l)} t(n) = 0 t(n) = t 
- 0 • • • · • n - 0 • • • • • n+l • 0 - • n - • 

such that 

q;(t, e) = l.i.m.nq~n) (t, e). 

Set X,~n>(t,{) = M(O;(t)i.rfn) where .rfn = u{w: {t<n>, ... {t<n>}, and denote 
, ' 0 n 

by AJn) (t, e) the estimate obtained from x;n) (t, e) by means of the substitu-

tion of the values of {t<n>, ... , {t<n> for et<n>, ... , et<n>. By Lemma 14.1, the 
0 n 0 n 

linear estimate AJn> (t, e) is an optimal linear estimate of Ot from the values 
of et~n)' ... 'et~n)' i.e., 

But 

M[A;(t,e)- AJn>(t,e)] 2 = M[X;(t,{)- Xjn>(t,{)] 2 • 

It can be established in the same way as in the proof of Lemma 10.1 that 

limM[X;(t,{)- X]n>(t,{)] 2 = o. 
n 

Hence, 

M[O;(t)- A;(t,e)J2 = limM[O;(t)- AJn>(t,e)J2 
n 

~ limM[O;(t)- q~n>(t,eW = M[O;(t)- q;(t,e)J2 , 
n 
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which proves the optimality of the estimate .X;(t, ~), j = 1, ... , k. D 

Note. It can be verified in similar fashion that the optimal (in the mean 
square sense) linear estimates of interpolation and extrapolation for the pro­
cess (Ot, et) satisfying the system of equations given by (15.44) can be ob­
tained from the corresponding estimates for the case of the Gaussian pro­
cesses (Ot,tt)· 

15. 2. 9. We present now two examples illustrating the possibilities of the ap­
plication of Theorem 15.3. 

These examples are particularly useful in the sense that the processes 
considered are given in the form of a system of equations different from 
(15.44), the system considered above. 

EXAMPLE 1. Let Yt and Zt be mutually independent Wiener processes. Con­
sider the process (Ot, et), t ~ 0, satisfying the system of stochastic equations 

dOt = -Otdt + (1 + Ot)dyt 
~t = Otdt + dzt, (15.49) 

where eo = 0 and Oo is a random variable independent of the Wiener processes 
Yt, Zt, t ~ 0, with MOo = m and M(Oo- m)2 = 'Y > 0. 

Set 

W1(t) =lot J~(;:808 ) 2 dys, W2(t) = Zt· 

These two processes are mutually uncorrelated wide-sense Wiener processes, 
and 

dOt = -Otdt + VM(1 + Ot)2dW1(t), 

det = Otdt + dW2(t). (15.50) 

Unlike (15.49), this system is a particular case of the system of equations 
given by (15.44). Hence, by Theorem 15.3, the optimal linear estimate At of 
values of Ot from eA = (e8 , s ~ t) and the filtering error 'Yt = M[Ot - .Xtj2 can 
be defined from the equations 

d.Xt = -.Xtdt + 'Yt(~t - .Xtdt), .Xo = m, 

'tt = -2'Yt + M(I + Ot)2 - 'Yl, 'Yo= 'Y· 

For the complete solution of the problem it is necessary to compute 

M(I + Ot)2 = 1 + 2nt + ..1t + n~, 

where 
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We find from (15.50) that 

and, due to the Ito formula 

Llt = M(Ot - nt)2 

= M { (Oo- no) 2 - 21ot (Os- n8 ) 2ds 

+lot (1 + 08 ) 2ds + 21ot (08 - n8 )(1 + 08 )dy} 

= Llo - 21ot Ll8 ds + lot (1 + Lls + 2n8 + n;)ds. 

Therefore, the optimal linear estimate At and the error 'Yt can be defined 
from the system of equations 

d>-t ->.tdt + 'Yt(det - >-tdt), 
"rt = - 2"ft - 'YZ + 1 + Llt + 2nt + n~, 
itt -nt, 
Llt = - Llt + 1 + 2nt + n~, (15.51) 

where >.o =no = m and 'Yo= Llo = "f· 

EXAMPLE 2. Again let y and Zt be mutually independent Wiener processes, 
and let the process (Ot, et), t 2: 0, be defined from the equations 

dOt = -Otdt + dyt, 
det = -Oldt + dzt, (15.52) 

where eo = 0 and Oo is Gaussian, MOo = 0, MO'fi = ~' independent of the 
processes Yt and Zt· Consider the problem of linear estimation of the variables 
Ot and O'f from e& = { es, s ::; t}. 

Let 01(t) = Bt and 02(t) = O'f. With the aid of the Ito formula we can 
easily see that 

d02(t) = -302(t)dt + 301(t)dt + 30~(t)dYt· 

Thus, 01 ( t) and 02 ( t) satisfy the system of stochastic equations 

d01(t) -01(t)dt + dyt, 
d02(t) = [-302(t) + 301(t)Jdt + 30~(t)dYt· (15.53) 
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Let 

W1(t) = Yt, W2(t) = J2 1t Bi(s)dys- ~' W3(t) = Zt· 

It is not difficult to verify that W1(t), W2(t) and W3(t) are mutually un­
correlated wide-sense Wiener processes. Therefore, the processes 01 ( t), 02 ( t) 
and et satisfy the system of equations 

dB1(t) -B1(t)dt + dW1(t), 
3 3 

dB2(t) = [-302(t) + 301(t)]dt + "2dW1(t) + J2dW2(t), 

det = B2(t)dt + dW3(t), (15.54) 

where eo= 0 and the vector (01(0),02(0)) has the following moments: 

MB1(0) = MB2(0) = 0, MBi(O) = ~' 

MB~(O) = MBZ = 15 . 
8 

(15.54) is of the type (15.44), and, therefore, optimal linear estimates for 
01 ( t) = Bt and 02 ( t) = B"f can be found from the system of equations given 
by (15.45) and (15.46). 

15.3 Linear Estimation of Wide-Sense Stationary 
Random Processes with Rational Spectra 

15.3.1. The object ofthis section is to show how Theorem 15.3 can be applied 
to the construction of optimal linear estimates for the processes listed in the 
title of the section. The pertinent results for random sequences were discussed 
in Section 14.1. Let 'rJ = ('Tlt), -oo < t < oo, be a real stationary (wide-sense) 
process permitting the spectral representation 

=leo i>.tPn-1(i>.)!P(d>.) 
'Tlt -oo e Qn(i>.) ' (15.55) 

where .P(d>.) is the orthogonal spectral measure, M!P(d>.) = 0, 

n-1 

Pn-1(z) = 2:)kzk, 
k=O 

n-1 

Qn(z) = zn + L akzk, 
k=O 

and the real parts of the roots of the equation Qn(z) = 0 are negative. 
Consider the processes 
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(15056) 

where the frequency characteristics of W1(z), j = 1, o o o, n are selected in the 
following special way: 

n-1 

Wj(z) = z-(n-j)Wn(z) + L f3kz-(k-J+ 1), j = 1, 0 0 0, n- 1, (15057) 

and 

with 

k=j 

n-1 

Wn(z) = -z-1 LakWk+l(z) +z-1f3n 
k=O 

j-1 

f31 = bn-1, {3j = bn-j- Lf3ian-j+i> j = 2,0 o o ,no 
i=1 

It follows from (15057) and (15058) that 

W1(z) = z- 1[WH1(z) + {31], j = 1, 0 0 0, n- 1, 

Wn(z) = z- 1 - L akWk+1(z) + f3n ° [ 
n-1 l 
k=O 

We obtain from this 

and, therefore, 
Wn(z) = P~~1 (z)/Qn(z), 

where P~~1 (z) is a polynomial of degree less than no 
Then, we obtain from (15060) and (15o61) 

P~~1(z) 0 

Wj(z) = Qn(z) , J = 1, 0 0 0, n- 1, 

(15058) 

(15059) 

(15o60) 

(15061) 

(15062) 

where the polynomials P~~1 (z) have degree less than n - 1, and, due to 
(15059), 

W ( ) = Pn-1(z) 
1 z Qn(z) o 

(15063) 

Therefore, the process 7J1(t) = TJt, t;::: 00 
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Theorem 15.4. The stationary wide-sense process 7J1(t) = 7Jt, permitting the 
spectral representation given by {15.55}, is a component of then-dimensional 
stationary {wide-sense) process fit= {7J1(t), ... ,7Jn(t)) satisfying the linear 
stochastic equations 

d7J;(t) = 7J;H(t)dt + .B;dWt, j = 1, ... , n- 1, 
n-1 

d7Jn(t) = - L a;7J;+1(t)dt + .BndWt {15.64) 
j=O 

with the wide-sense Wiener process 

1oo ei>.t _ 1 
Wt = .A 4>(dA) 

-oo z 
(15.65) 

and the coefficients .81. ... ,.Bn given by (15.59). In this case M7J;(O)Wt = 0, 
t ~ 0, j = 1, ... , n. 

In order to prove this theorem we shall need the following lemma. 

Lemma 15.3. Let W(z) be some frequency characteristic with 
f~oo IW(iA)I2dA < oo, and let 

(t = I: ei>.tW(iA)ll>(dA), {15.66) 

where 4>(dA) is the orthogonal spectral measure with Mll>(dA) = 0 and 
Ml4>(dA)i2 = dA/21r. Then with probability one, 

1t l(s Ids < oo, t < oo, (15.67) 

1t 1oo ei>.t _ 1 
( 8 ds = .A W(iA)ll>(dA). 

0 -oo t 
(15.68) 

PROOF. The integrability of l(sl follows from the Fubini theorem and the 
estimate 

1t Ml(slds $ 1t (M(;) 112ds $ (t 1t M(;ds) 
112 

= t (;1r I: IW(iA)I2dAY'
2 < 00. 

Therefore, the integral J~ (8 ds exists and, due to (15.66), 

t (8 ds = 1t 100 ei>.sW(iA)ll>(dA)ds. Jo o -oo 
(15.69) 
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Let us show that in the right-hand side of (15.69) a change of integration 
order is possible: 

it/_: ei,\sW(i-\)!P(d-\)ds = /_: (it ei,\sds) W(i-\)!P(d-\). (15.70) 

Let the function cp(-\) be such that f~oo lcp(-\)12d-X < oo. Then, due to (15.5) 
and the Fubini theorem, 

which by virtue of the arbitrariness of cp(-\) proves (15.70). 
To complete the proof it remains only to note that 

15.3.2. 

ei-\t - 1 

i-\ 

PROOF OF THEOREM 15.4. It is clear that 

r/j(t)- rlj(O) = /_: [ei,\t- 1]Wi(-\)!P(d-\), j = 1, ... , n- 1, 

and, according to (15.60), 

D 

1oo ei-\t _ 1 1oo ei,\t _ 1 
rJi(t) -ryi(O) = -oo i-\ Wi+1(i-\)!P(d-\) + /3i -oo i-\ !P(d-\). 

(15.71) 

By Lemma 15.3, 

(15.72) 

and, by Lemma 15.1, the process 

1oo ei-\t _ 1 
Wt = ·,x !P(d-\) -oo t 

(15.73) 
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is a wide-sense Wiener process. Hence, we obtain from (15.71)-(15.73), for 
t > s, 

TJ;(t)- TJ;(s) = lt TJ;+1(u)dy + .B;[Wt- W8 ], j = 1, ... ,n -1, 

which in differential form is: dTJ;(t) = TJ;+tdt + .B;dWt. 
The last equation in this system of equations given by (15.64) can be 

established in similar fashion. 
We shall now verify the lack of correlation between the variables TJ;(O) 

and Wt fort ;::: 0 and j = 1, ... , n. For this purpose we shall write the system 
of equations given by (15.64) in matrix form 

with the matrices 

A=(.~ 
-ao 

1 
0 

di'it = Ai]tdt + BdWt, 

0 
1 ~ ) ' B = (~1·) . 

. . . .Bn 
-an-1 

(15.74) 

Note that (15.74) remains valid fort;::: T (T < 0) as well if, instead of Wt, 
we consider the wide-sense Wiener process 

l oo eiAt _ eiAT 

Wt(T) = -oo i.X 4i(d.\), (15.75) 

i.e., 

ijo =fiT+ £0 Aijudu + BWo(T). 

But MWtWo(T) = 0 (see the Parseval equality in Lemma 15.1). Therefore 
M iio Wt = M fiT Wt + J~ AM iiu Wtdu. By solving this equation for M fiT Wt, 
T :::; 0, we find that 

M - T:lT -ATM- TIT T/0 YYt = e TJT YYt• (15.76) 

The eigenvalues of the matrix A lie within the left-half plane, and the 
elements of the vector MfiTWt are bounded and independent ofT. Hence, 

lim MijoWt = 0. 
T-t-oo 

To complete the proof it remains only to show that the process fit is a 
wide-sense stationary process (fort ;::: 0). 

It follows from (15.56) that Mijt = 0. Next, according to Theorem 15.1, 
the matrix Ft = Miitiii is a solution of the differential equation 

(15.77) 
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It is seen from (15.56) that the matrices Ft do not depend on t. Let 
r =Ft. Then the matrix r satisfies the system of algebraic equations 

AF+FA*+BB*=O. (15.78) 

Taking advantage of Equation (15. 77) and of the fact that the eigenvalues 
of the matrix A lie within the left-half plane, it is not difficult to show that 
the solution of the system of equations given by (15. 78) is unique and given 
by the formula 

F = {o e-Au BB*e-A"udu. 
}_oo 

(15.79) 

Finally, it follows from (15.74) that the matrix F(t,s) = Mfifi! is given 
by the formula 

{ eA(t-s>r t > s 
F(t, S) = reA"(t-;)' s ~ t.' (15.80) 

This proves that the process fit, t ~ 0 is a wide-sense stationary process. 0 

15. 3. 3. Consider the partially observable wide-sense stationary process Vt = 
(Ot,et) = ((OI(t), ... , Ok(t)), (ei(t), ... ,ez(t))], -oo < t < oo, permitting the 
spectral representation 

(15.81) 

where W(z) is the matrix of dimension (k + l) x n with elements 

W. (z) = p(rq) (z)/Q(rq)(z) 
rq nrq-l nrq ' (15.82) 

where P~:!~ 1 (z) and Q[~(z) are polynomials of degree nrq- 1 and nrq 
(respectively) with the coefficient of znrq in Q[~(z) being equal to one, 

and where the roots of the equation Q[~ (z) = 0 lie within the left-half 
plane. The measure 4>(d.X) = (4>1(d.X), ... ,4>n(d.X)) is a vectorial measure 
with uncorrelated components M4>j(d.X) = 0 and Ml4>i(d.X)I2 = d.Xj21r. 

It is assumed that Ot is an unobservable component to be estimated from 
the observations es, 0 ~ s ~ T. In the case t = T we have a filtering problem; 
in the case T ~ t we have an interpolation problem; in the case t ~ T, we 
have an extrapolation problem. 

For the sake of brevity we shall consider only the problem of optimal (in 
the mean square sense) linear filtering. In order to apply Theorem 15.3 it 
suffices to show that the process Vt = ( Ot' et)' t ~ 0' can be represented as a 
component of the process satisfying a system of equations of the type given 
by (15.44). 

Usin~ Theorem 15.4, we find that the vector Vt is a component of the 
vector ( Ot, et) having the dimension 
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n nq 

N = L L nrq, (15.83) 
q=lr=l 

where nrq is the degree of the fraction denominator Wrq(z) and nq is the 
number of noncoincident elements of Wrq in the column of index q in the 
matrix W(z). 

It is obvious that the vector Bt contains all the components of the vector 
Bt. Hence, by estimating the vector Bt the problem of estimating the vector 
Bt is also solved. By Theorem 15.4, (Bt,et), t 2: 0, satisfies the system of 
stochastic equations 

dOt [a1Bt + a2et]dt + bdWt 

det = [A1Bt + A2et]dt + BdWt. (15.84) 

with matrix coefficients of the appropriate dimensions and the vector wide­
sense Wiener process Wt = (W1(t), ... , Wn(t)). 

If the matrix BB* is positive definite, then we can apply Theorem 15.3. 
Indeed, for this purpose it suffices to establish that there exist mutually 

uncorrelated wide-sense Wiener processes 

W1(t) = (Wu(t), ... , W1,n-1(t)), W2(t) = (W21(t), ... , W21(t)) 

such that 

(15.85) 

The feasibility of such a representation can be proved in the same way as 
in Lemma 10.4. In this case, the matrices b1, b2, B1 and B2 can be defined by 
the equalities 

b1bi + b2b2 = bb*, b1Bi + b2Bz = bB*, B1Bi + B2Bz = BB*, (15.86) 

Note. If the matrix BB* is singular, then according to the result of Sec­
tion 10.4, there is a possibility of obtaining linear (nonoptimal) estimates for 
Bt, close (in the mean square sense) to optimal linear estimates. 

15.3.4. Let us indicate here an example illustrating the techniques of finding 
optimal linear estimates. Let 

W(z) = (~ 0) z+a 

~~· 
z+a z+{3 

a> 0,{3 > O,c; > O,i = 1,2. 

Then, 

l oo ei.>.t 
Bt = .jC1 -.,-<P1(d.X), 

_ 00 tA +a 
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If we let 

then et = Ot + 71t and the problem of estimating Ot from e~ = (es, s ~ t) 
is a conventional problem of estimating the 'signal' Ot in additive 'noise' 11t· 
According to Theorem 15.4, there exist mutually uncorrelated wide-sense 
Wiener processes W1 ( t) and W2 ( t) such that 

dOt= -alJtdt + y'cldW1(t), d71t = -f371tdt + JC2dW2(t). 

Therefore, the partially observable process (Ot, et), t 2:: 0 satisfies: 

dOt = -aOtdt + y'cldW1(t); 
det = [-(a- f3)0t- f3et]dt + y'cldW1(t) + JC2dW2(t). 

Applying Theorem 15.3 to this system, we find that the optimal linear es­
timate At and its error 'Yt = M(Ot - At)2 can be found from the system of 
equations 

(15.87) 

Let us find the initial conditions Ao and 'Yo = M(Oo- Ao)2 • By Theo­
rem 15.3, 

Let 

By (15.78), 

where 

D = (du d12) . 
d12 d22 

AD+DA* +BB* = 0 

( -a 0) 
A= {3- a -{3 ' 

B _ (Ft 0) - Ft y'c2 . 
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Hence 

and 

-2adu + c1 = 0, 

(.8- a)du- (,B + a)d12 + c1 = 0, 

2(,8- a)d12 - 2,8d22 + C1 + C2 = 0, 

C! 
du = 2a' 

d _ ac2 + ,Bc1 
22- 2a,B . 

Thus, the optimal linear estimate of Ot from e~ = {es, s::::; t} can be found 
from (15.87), solvable under the conditions 

(15.88) 

If we wish to estimate Ot from e:.r = { es, - T ::::; s ::::; t} where T > 0, then 
At and "'t can also be obtained from (15.87) with 

(15.89) 

Letting T --* oo, it is easy to show from (15.87) and (15.89) that the 
optimal linear estimate Xt and the estimation error i' = M[Xt - Ot] 2 of the 
value of Ot from e:oo = {es, -oo < s::::; t} can be defined by the equalities 

Xt = (het +/_too e-o2 (t-s)[8o- 8182Jesds, 

where 

and 

In particular, for a= ,B, i.e., when the spectra of the signal and the noise 
are 'similar', we have: 
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15.4 Comparison of Optimal Linear 
and Nonlinear Estimates 

15.4.1. Let Ot, t ~ 0, be a Markov process with two states 0 and 1, P(Oo = 
1) = 1ro, whose transient probability Pta(t, s) = P(Ot = 1108 = a), a = 0, 1, 
satisfies the Kolmogorov equation 

dPta(t, s) = A(1 _ 2P ( )) dt la t, S , A> O,t > s. (15.90) 

We shall assume that the process Ot (called a 'telegraph signal') is unob­
servable, and that what is observed is the process 

et = lot Osds + Wt, (15.91) 

where Wt, t ~ 0 is a Wiener process independent of Ot, t ~ 0. 
Using the problem of filtering Ot from e~ = {es, s :5 t} as an example, we 

shall compare optimal linear and nonlinear estimates. 
The optimal (in the mean square sense) nonlinear estimate 1rt of the value 

of Ot from {e8 ,s :5 t}, is the conditional mathematical expectation 1rt = 

M(Otl.rf) = P(Ot = 1l.rf). 
According to {9.86), 1rt, t ~ 0 is a solution of the stochastic equation 

d1rt = A(1- 21rt)dt + 7rt(1 - 1rt)(det - 1rtdt). (15.92) 

In particular, it is seen from this equation that the optimal estimate 1rt is 
actually nonlinear. 

In order to construct the optimal linear estimate At it suffices to consider 
the filtering problem for the process Ot from the values of a·s, s:::; t}, where 
- t- - - -et = f0 Osds + Wt, Wt is some Wiener process and 08 is a Gaussian process 
independent of Wt, t ~ 0, and having the same first two moments as the 
process Ot, t ~ 0. 

Making use of Equation (15.90), in standard fashion we find that nt = 
MOt satisfies the equation 

dnt dt = A(1 - 2nt), no = 1ro, (15.93) 

and the correlation function K(t, s) can be defined by the equality K(t, s) = 
K(s, s)e-2>.it-s1 where K(s, s) = M[08 - n8 ] 2 = n 8 - n~. In solving Equa­
tion (15.93) we find nt = ![1- {1- 2n0 )e-2>.t]. 

Consequently, 

M(Ot- nt)2 = K(t, t) = ~[1- (1- 27ro)2e-4>.t] 

and limHoo M(fh - nt)2 = ~· 
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It is not difficult to see now that the required Gaussian process Bt, t ~ 0, 
having MOt = nt and M(Bt- nt)(Bs- n8 ) = K(t, s), can be constructed in 
terms of the solution of the stochastic differential equation 

(15.94) 

where W1(t) is a Wiener process independent of Wt, t > 0 (see also Theo­
rem 15.2). Then, setting W2(t) = Wt, we obtain 

(15.95) 

Applying Theorem 15.3 to the system of equations given by (15.94) and 
(15.95), we find that At = M(Btl.rf) and It = M(Ot- At) 2 satisfy the system 
of equations 

(15.96) 

"rt = -4Ait +A-,;, 'Yo = no - n~. (15.97) 

We can show (see also Theorem 16.2) that limt-+oo It =I( A) exists, where 
/(A) is the unique positive solution of the equation 

Hence, 

and, therefore, 

I( A) = y\ + 4A2 - 2A, 

{ 
y'>. + O(A), 

I(A) = 
~ + 0(1/A), At oo. 

(15.98) 

(15.99) 

(15.100) 

15.4.2. Let us find now the value of 8(A) = limHoo M(Ot - 7rt)2 for the 
optimal nonlinear estimates 7rt, t ~ 0. 

According to Theorem 7.12, the process W = (Wt,:Ff), t ~ 0, defined by 

Wt = ~t -1t 11"8 ds, 

is a Wiener process. Hence, Equation (15.92) can be rewritten as 

drrt = A(1- 2rrt)dt + 7rt(1- 1rt)dWt, rro =no. 

(15.101) 

(15.102) 

Next, since M(Ot -7rt)2 = Mrrt(1-rrt), to find 8(A) one has to know how 
to find limt-+oo Mrrt(1 - 7rt) for the process 7rt, t 2: 0, with the differential 
given by (15.102). 

According to Theorem 4.6, Equation (15.102) has a unique strong (:Ftw­
measurable at each t ~ 0) solution. We can show that this solution is 
a Markov process whose one-dimensional distribution density q(t, x) = 
dP(rrt ::::; x)jdx satisfies the forward Kolmogorov equation 
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aq(t, x) a [ ( ) ( )) 1 a2 [ 2 2 ( )) at =-ax A 1-2X q t,x +2 ax2 X {1-x) q t,X , t ~ 0. {15.103) 

Due to the fact that the process 7rt, t ~ 0, is (in the terminology of Markov 
chain theory) positive recurrent6 

&(.X)= lim M7rt{1-7rt) = lim 11 x{1- x)q(t,x)dx 
t-+oo t-+oo 0 

exists and 

&(.X) = 11 
x{1- x)q(x)dx, {15.104) 

where q(x) is the unique probability (q(x) ~ 0, f 0
1 q(x)dx = 1) solution of 

the equation 

{15.105) 

It is easy to find that this solution is given by the formula 

{ 2~ } 1 exp -~ :z:2(1-:z:)2 

q(x) = 1 { 2~ } dy 
fo exp - y{1-y) y2(1 y)2 

{15.106) 

Hence, 

r1 ( 2~ ) dx 
&(.X)= Jo exp -~ ~ 

1 ( 2~ ) :z: ' fo exp - :z:{1-:z:) :z:2(1-:z:)2 

or, by virtue of the symmetry of the integrands with respect to the point 
X _1 

- 2• 
r1/2 ( 2~ ) dx 

&(.X)= Jo exp -~ ~ 
r1/2 ( 2~ ) dx {15.107) 

Jo exp - :z:(1-:z:) :z:2(1-:z:)2 

Let us investigate lim~to &(.X). Substituting in {15.107) the variables 

2-X 
y = x{1- x) - 8-X, 

we find that 

{15.108) 

Since, for 0 < c < oo, 

6 See Lemmas 9.3 and 9.4 in Chapter 4, [147]. 
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loo e-Y Vy: 8c dy < oo, 

by the Lebesgue theorem on dominated convergence (Theorem 1.4) 

100 Jy + 8>.. 100 lim e-Y --dy = e-Ydy = 1. 
.X.j.O 0 Y 0 

Next, 

2). roo e-Y dy = 2). [ r1 e-Y dy + d(>..)l ' 
lo y'y(y + 8>..) lo y'y(y +By) 

where 

d(>..) = roo e-Y dy ' 
11 y'y(y + 8>..) 

d(O) = limd(>..) = :__dy < 1. 100 -y 

.X.j.O 1 y 

Hence, by the theorem on the mean (e- 1 :::; c(>..) :::; 1), 

2). roo e-Y dy - 2). [c(>..) r1 dy + d(>..)]. 
lo y'y(y + 8>..) lo y'y(y + 8>..) 

But 

r1 dy = -ln>.. [1 + ln8 _ [2~+2+8>..]]; 
lo y'y(y + 8>..) ln>.. ln>.. 

therefore, 
8(>..) = -2>..ln >.. [c(>..) + 0(1/ ln >..)], >.. -l. 0. (15.109) 

Just as we showed the existence of 

lim M11't(1 -11't) = r1 x(1- x)q(x)dx, t-too Jo 
we can also show that the limits 

exist, and that 

(15.110) 

Note that one can arrive at (15.110) in the following way. By the Ito 
formula, from (15.102) it follows that 
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7rt(1- 7rt) = no(1- no)+ >-fot (1- 27r8 ) 2ds -lot 1r;(l- 7r8 ) 2ds 

+ 1t (1- 27r8 )7r8 (1- 1rs)dWs. 

It follows from this that 

M7rt(1- 7rt) = no(1- no)+ >-fot M(1- 27r8 ) 2ds -lot M1r;(l- 7r8 ) 2ds, 

or, 

(15.111) 

But it is natural to expect that limt-too d[M 1rt (1 - 7rt) ]/ dt = 0. Together with 
(15.111), this leads to (15.110). Noting now that (1- 2x) 2 = 1- 4x(1- x), 
we obtain from (15.110) 

1 . M7rf(1 - 7rt)2 1 
lim M7rt(1- 7rt) = -4 - hm 4>. = -4 + 0(1/>.). (15.112) 

t-+oo t-+oo 

Thus, by combining estimates (15.109) and (15.112), we obtain 

8 (>.) = { ;-2>-ln>.(c(>. + 0(1/ln>.)), >. ..1- 0 
4 + 0(1/>.), >. t 00. 

(15.113) 

Along with (15.100) for the effectiveness value c(>.) = -y(>.)/8(>.) of the 
optimal nonlinear estimate with respect to the optimal linear estimate we 
find the following expression 

{
- 2dtn.X [c(>.) + o(1)], >. ..1- 0 

c:(>.) = 
1 + o(1), >.too. 

(15.114) 

It is seen from this that for small >., (i.e., when the average occupation 
time of the 'telegraph signal' in the 0 and 1 states is long) the linear filter is 
inferior to the nonlinear filter with respect to the mean square error. In the 
case >.too, the two filters are equivalent and function equally 'poorly': 

8(>.)"' lim M(Bt- nt)2 = ~; -y(>.)"' lim M(Bt- nt)2 = ~; >.-+ oo; 
t-+oo 4 t-+oo 4 

i.e., for large >. they yield the same error as an a priori filter for which the 
average value of nt is taken as an estimate of the value of Bt. 

Since limt-.oo M(Bt - nt)2 = ~ at all >. > 0, it is seen from (15.100) that 
for small>. the optimal linear filter functions 'well' (from the point of view of 
asymptotic 'tracking' of the process Bt in comparison with the a priori filter), 
i.e., 
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Under these conditions (i.e., for small >.) the nonlinear filter provides, 
however, a higher accuracy of 'tracking': 

limHoo M~Bt- 11"tj: = 8.Xln ~[c(>.) + 0 (1/ln>.)], >.-!- 0. 
limt-+oo M B - nt " 

This remark points to the fact observed in filtering problems that the 
'gain' obtained with the aid of an optimal nonlinear filter increases as the 
'tracking' accuracy of an optimal filter improves. 

Notes and References. 1 

15.1-15.3. In these sections the general equations of optimal filtering for linear 
estimation of random processes have been used. 

15.4 Optimal linear estimates and nonlinear estimates have been compared by 
Stratonovich [296] and Liptser [193]. 

Notes and References. 2 

15.4. Related results can be found in Khasminskii and La.zareva [149, 150], 
Khasminskii, La.zareva and Stapleton [151], and Khasminskii and Zeitouni [152]. 



16. Application of Optimal Nonlinear Filtering 
Equations to some Problems in Control 
Theory and Estimation Theory 

16.1 An Optimal Control Problem Using Incomplete 
Data 

16.1.1. In this section the results obtained in Section 14.3 for linear control 
problems (using incomplete data) with quadratic performance index are 
extended to the case of continuous time. 

We shall assume that the partially observable controlled process ((},e) = 
[(01 (t), ... ,Ok(t));(6(t), ... ,et(t))], 0::::; t::::; T, is given by the stochastic 
equations 

dOt = [c(t)ut + a(t)Ot]dt + b(t)dW1(t), 
det = A(t)Otdt + B(t)dW2(t). (16.1) 

The matrices c(t), a(t), b(t), A(t), B(t) have the dimensions (k x r), (k x k), 
(k x k), (l x k), (l x l), respectively; their elements Cij(t), aij(t), bij(t), Aij(t), 
Bij(t) are deterministic functions of time, with 

lcij(t)l::::; c, laij(t)l::::; c, lbij(t)l::::; c, 

for all admissible values i, j. We shall also assume that the elements of the 
matrices (B(t)B*(t))- 1 are uniformly bounded. The independent Wiener pro­
cesses W1 = (Wu(t), ... , W1k(t)), W2 = (W21(t), ... , W21(t)), 0::::; t::::; Tin 
(16.1) do not depend on the Gaussian vector Oo (MOo= mo, cov(Oo,Oo) = 
"Yo), and eo = 0. 

The vector Ut = (ul (t, e), ... ' Ur(t, e)] in (16.1) is called a control action 
at timet. The measurable processes Uj(t, e), j = 1, ... 'r, are assumed to be 
such that 

(16.2) 

and the values of Uj(t, e) are .J"f-measurable. 
The controls u = ( Ut), 0 ::::; t ::::; T, for which the system of equations given 

by (16.1) has a unique strong solution and for which the condition given by 
(16.2) is satisfied, will be called henceforth admissible controls. 

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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16.1. 2. To formulate the optimality criterion, let us introduce a performance 
index into our consideration. 

Let hand H(t) be symmetric nonnegative definite matrices of the order 
(k x k). Denote by R(t) symmetric uniformly1 positive definite matrices (of 
dimension ( r x r)). Assume that the elements of the matrices H ( t) are R( t) 
are measurable bounded functions of t. 

Consider the performance functional 

V(u;T) = M { ()Th(}T + 1T[e;H(t)Ot + u;R(t)ut]dt} 

for each admissible control u = (ut), 0 $ t $ T. 
The admissible control u is called optimal if 

V(u; T) = infV(u; T), 
u 

where 'inf' is taken over the class of all admissible controls. 
For admissible controls u, set 

mf = M(Oti.rf), 'Y~ = M[(Ot- mf)(Ot- mf)*], 

(16.3) 

(16.4) 

where Ot and et are the processes corresponding to this control, and which 
are defined by the system of equations given by (16.1). 

Theorem 16.1. In the class of admissible controls the optimal control u = 
(fit), 0 $ t $ T, exists and is defined by the formulae 

(16.5) 

where the nonnegative definite symmetric2 matrix P(t) = IIPij(t)ii of order 
(k x k), 0 $ t $ T, is the solution of the Ricatti equation 

- d~;t) = a*(t)P(t) + P(t)a*(t) + H(t) 

-P(t)c(t)R- 1(t)c*(t)P(t), P(T) = h, (16.6) 

and the vector rht is defined by the system of equations 

dfht = [c(t)fit + a(t)fht]dt 

+-rtA*(t)(B(t)B*(t))-1 [det- A(t)fhtdt], rho= mo =MOo. 

(16.7) 

1 The elements of the matrices R- 1 (t) are uniformly bounded. 
2 The nonnegative definiteness and symmetry of the matrix P(t) satisfying Equa­

tion (16.6) can be proved in the same way as in the case of discrete time (see 
Section 14.3). 
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'Yt = a(t)'yt + l'ta*(t) + b(t)b*(t) -l'tA*(t)(B(t)B*(t))-1 A(t)'yt, 

l'o(t) = cov (Bo, Bo). (16.8) 

In this case, 

V( ii; T) ~ p(O) + m,jP(O)"'<J +'II [1T H 112(th1H112 (t)dt + h112')'Th1i'] , 
(16.9) 

where 
T k 

p(t) = 1. L Dij(s)Pij(s)ds, 
t i,j=l 

(16.10) 

and Dij(t) are elements of the matrix 

D(t) = /'tA*(t)[B(t)B*(t)t 1 A(tht· (16.11) 

PROOF. First of all note that, under the assumptions made above, 

M [.~~;T~6:<tJ] < oo, 

which is proved as in Lemma 12.1. Next, in the same way as in the proof of 
Theorem 14.2, it can be established that 

V(u;T) = M{BrhOr+ 1T[B;H(t)Bt+u;R(t)ut]dt} 

= M { M(BrhOriFf) + 1T[M(B; H(t)BtiFz) + u;R(t)ut]dt} 

= M { (mT)*hmT +lot [(mf)* H(t)mf + u;R(t)ut]dt 

+Tr [ h112l'rh112 + 1T H 112(t)'yf H 112 (t)dt]}. (16.12) 

It should be noted that the function l'f does not depend on the control 
u and coincides with the function l't satisfying Equation (16.8) (see Theo­
rem 12.1). Hence, 

V(u; T) = Tr [ hl/2/'Thl/2 + 1T Hll2(t)'ytHll2(t)dt] 

+M { (mf)*hmf + 1T[(mf)* H(t)mf + u;R(t)ut]dt}, 

(16.13) 
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where, according to the same Theorem 12.1, mf, 0 ~ t ~ T, is obtained from 
the equation 

dmf = [c(t)ut + a(t)mf]dt + 'Yt(B(t)B*(t))- 1 [~f- A(t)mfdt], mf = mo, 
(16.14) 

with the process ef, 0 ~ t ~ T, defined by (16.1). 
According to the vector version of Lemma 11.3, the process WU = 

(w;',.rf), o ~ t ~ T, 

w;' = 1t n-1(s)[de: - A(s)m:du], (16.15} 

is a Wiener process. Hence, from (16.14) and (16.15), 

dmf = [c(t)ut + a(t)mf]dt + 'YtA * (t)(B* (t) )-1dl¥;. (16.16) 

16.1.9. To solve the primary problem we shall consider the following auxiliary 
problem. 

Let (il,:F,P) be some probability space, with (:Ft). 0 ~ t ~ T, a nonde­
creasing family of sub-u-algebras of :F, z = (zt, :Ft) an r-dimensional Wiener 
process, and u = ( Ut, :Ft), an r-dimensional process satisfying the condition 

{T r 

M Jo L:uJ(t,w)dt < oo, 
0 j=l 

(16.17} 

where (ut(t, w), ... , ur(t, w)) = Ut· Let us associate the control u = (ut, :Ft). 
0 ~ t ~ T, with the governed process 

dJJ.f = [c(t)ut + a(t)JJ.f]dt + 'YtA*(t)(B*(t))- 1dzt, (16.18) 

where c(t), a(t}, A(t) and B(t) are the matrices introduced above, and Jl.g = 
mo. As before, we shall call the control u = (Ut,:Ft), 0 ~ t ~ T, admissible if 
for this control (16.17) is satisfied and Equation (16.18} has a unique strong 
solution. 

Let the functional 

V(u; T) ~ M { (~ )" h(~) + J.T ((14')" H(t)J4' + u; R(t)u,]dt} (16.19) 

be the performance index. We shall show that in this problem the optimal 
control u = ( Ut, :Ft) is defined by the formulae 

(16.20} 

where ilt, 0 ~ t ~ T is found from the equation 

dilt = [a(t)- c(t)R-1(t)c*(t)P(t)]iltdt + 'YtA*(t)(B*(t))- 1dzt, ilo =mo. 
(16.21} 
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For this purpose introduce the function 

Q(t, x) = x* P(t)x + p(t}, x E JR\ 0::::; t ::::; T, 

where P(t) is defined by (16.6} and p(t) by (16.10}. 

(16.22) 

Lemma 16.1. The function Q(t, x) = x* P(t)x + p(t) is a solution of the 
differential equation 

4>(t, x, Q(t, x)) = 0, (16.23} 

where 

4>(t,x,Q(t,x)) = x*H(t)x+x*a*(t)grad,Q(t,x) 

1 ~ D ( )82Q(t,x) 8Q(t,x) +- L., ij t + --'--:':----'-
2 . . l 8xi8Xj 8t 

l,J= 

+ min[u* R(t)u + u*c*(t)grad ,Q(t, x)] 
u 

with u = (u1, ... ,ur), Q(T,x) = x*hx. 

PROOF. Because of the positive definiteness of the matrices R(t), 0::::; t ::::; T, 
the quadratic form 

J(u; t) = u* R(t)u + u*c*(t)grad.,Q(t, x) 

is positive definite and attains its minimum on the vector 

fit(x) = (fil(t,x), ... ,fir(t,x)) 

satisfying the system of linear algebraic equations 

graduJ(u; t) = 0. 

Since gradu J(u; t) = 2R(t)u + c*(t)grad,Q(t,x), 

fit(x) = -~R- 1 (t)c*(t)grad,Q(t,x). 
But 

grad .,Q(t, x) = 2P(t)x. (16.24) 

Hence, 
fit(x) = -R- 1(t)c*(t)P(t)x. (16.25) 

Due to (16.6} and (16.22), 

!_Q(t ) _ * dP(t) * dp(t) 
8t ' X - X dt X + dt 

= x* [-a* (t)P(t)-P(t)a(t)-H(t)+P(t)c(t)R-1 (t)c* (t)P(t)]x 
k 

- L Dij(t)Pij(t) (16.26) 
i,j=l 



182 16. Application of Optimal Nonlinear Filtering Equations 

and 

{16.27) 

(16.24)-(16.27) together with the equality J(u; t) = minu J(u; t), indicate 
that the function Q(t, x) = x* P(t)x + p(t) satisfies Equation (16.23). 0 

Let us show now that for the auxiliary problem the control defined by 
(16.20) is optimal. 

It is seen from (16.23) that 

4>(t,P.t.Q(t,P,t)) = 0. {16.28) 

Let now Ut = (u1(t), ... , ur(t)), 0 :::; t :::; T, be any admissible control and 
Itt= (Jtt(t), ... ,Jtk(t)) be defined by 

{16.29) 

Then it follows from {16.23) and the inequality J(u; t) :::; J(u; t) that 

.P(t, Jtt, Q(t, Jtt)) ;::: 0. (16.30) 

By applying the Ito formula to Q(t, ilt) we obtain 

Q(T,P,r)-Q(O,P,o) = 1T[ aQ~~ils) + (c(s)us+a(s)P.s)*gradJlQ(s,jls) 

1 ~ ( )a2Q(s,Jts)] +2 L.t Di; s a- .a-. ds 
i,j=l p., p., 

+ 1t [grad p.Q(s, jl8 )]*'YsA*(s)(B*(s))-1dzs. 

(16.31) 

Taking into account (16.28) we find that 

Q(T, ii.T) - Q(O, ilo) = -1T [(P.s)* H(s)ils +(us)* R(s)ua]ds 

+ 1T [grad p.Q(s, ils)]*'Y8 A*(s)(B*(s))-1dzs. 

{16.32) 

Taking now the mathematical expectation on both sides of this equality 
and taking into account the equality P.o = mo, we obtain 
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Similarly, applying the same technique to Q(t, 1-Lt), we find that 

Q(O, mo) ::::; M { (ilT )*hilT+ 1T [(tLt)* H(t)tLt + (ut)* R(t)ut]dt}. (16.34) 

Comparing (16.33) with (16.34) we obtain 

V(u;T) = Q(O,m0 )::::; V(u;T). (16.35) 

The control u defined by (16.20) is admissible since the linear equation 
given by (16.21) has a solution, which is unique and strong (Theorem 4.10). 
(16.17) is satisfied by the vector version of Theorem 4.6. Together with (16.35) 
this proves that the control u is optimal in the class of admissible controls. 

16.1.4. 
COMPLETION OF THE PROOF OF THEOREM 16.1. Let us consider the 
processes 

0::::; t::::; T, 

in more detail. 
It follows from (16.14) and (16.1) that with probability one the values of 

er- mf and e~- m~ coincide (the index 0 corresponds to the 'zero' control 
Ut = 0, 0 ::::; t ::::; T). Hence, it is seen from (16.15) that with probability one 
all the processes "W; coincide ("W; = ~) and, therefore, Equation (16.16) 
can be written as follows: 

dmf = [c(t)ut + a(t)mf]dt + !tA*(t)(B*(t))- 1dW~. 
Let now u be any admissible control, and let ~u =(~f), 0::::; t::::; T, be an 

associated process where 

J1" = a{w; ~:, s::::; t}. 

Let us take advantage of the results of Subsection 16.1.3, setting :Ft = J1" 
and Zt = ~. Let U be the class of all admissible controls u = ( Ut), 0 ::::; t ::::; T, 
which are ;:;"-measurable at any timet. Since for any u 

0::::; t::::; T, 

the control u given by (16.20) belongs to U for any u (the admissibility of the 
control u follows from Theorem 4.10 and the vector version of Theorem 4.6). 
Hence (see (16.35)), V(u;T) ::::; V(u;T) for all u E U and, in particular, 
V ( u; T) ::::; V (u; T). By virtue of the arbitrariness of the control u it follows 
that the control u is optimal. 

Finally, note that (16.9) follows from (16.13) and the equalities 

V(u; T) = Q(O, m0 ) = m~P(O)mo + p(O). 0 
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Note. As in the case of discrete time {Section 14.3), the theorem proved 
above exhibits the so-called 'principle of separation' (which holds true in a 
more general situation, for which see [313]), according to which the optimal 
control problem with incomplete data decomposes into two problems: a filter­
ing problem and a control problem with complete data for a certain system. 

16.1. 5. Consider a particular case of the system of equations given by {16.1). 
Let b(t) = 0, A(t) = E(k x k), and B(t) = 0. Then in the control problem of 
the process (} = (Ot), 0 < t $ T, with 

{16.36) 

where (}0 is a deterministic vector with performance functional 

V(u; T) = (}Th(}T + 1T [o; H(t)Ot + u;R(t)ut]dt, 

the optimal control u = ( Ut), 0 $ t $ T, exists and is given by the formula 

fit = -R-1(t)c*(t)P(t)Ot, 

where P(t) is a solution of Equation {16.6). In this case 

V(u;T) = infV(u;T) = 00P(0)00 • 
u 

{16.37) 

{16.38) 

This result can be obtained by the same techniques as in the proof of 
Theorem 16.1. It can also be obtained from this theorem by a formal passage 
to the limit if we set B(t) = cE, c .J.. 0. 

16.2 Asymptotic Properties of Kalman-Bucy Filters 

16. 2.1. Consider the Gaussian partially observable random process ( (}, ~) = 
[(01(t), ... ,Ok(t)), (~1 (t), ...• ~t(t))], t;:::: 0, satisfying the system of stochastic 
equations 

dOt = [a10t + a2~t]dt + b1dW1(t) + b2dW2(t) 
ciet = [A10t + A2~t]dt + B1dW1(t) + B2dW2(t), {16.39) 

with the constant matrices al!a2,Al!A2,bl,b2,B1 and B2 of the orders 
(k x k), (k x l), (l x k), (l x l), (k x k), (k x l), (l x k) and (l x l), respectively. 
The mutually independent Wiener processes W1 = (Wu(t), ... , Wlk(t)) and 
W2{t) = (W21(t), ... , W2z(t)), t;:::: 0 are supposed (as usual) to be indepen­
dent of a Gaussian vector with initial values ( Oo, ~o). 

If the matrix (BoB)= B1Bi +B2B2 is positive definite, then, according 
to Theorem 10.3, the mean vector mt = M(OtiJ1) and the covariance matrix 
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'Yt = M[(Ot- mt)(Ot- mt)*] (16.40) 

satisfy the system of equations 

dmt = [atmt + a2et]dt +[(boB)+ 'YtAi](B o B)-1[det- (Atmt + A2et)dt], 
(16.41) 

i't =ant +'Ytai- [(boB) +'YtAi](BoB)-1[(boB) +'YtAi] +(bob), (16.42) 

where (bob) = btbi + b2b2 and (boB)= btBi + b2B2. 
The components of the vector mt = M(Otl.rf) are the best (in the mean 

square sense) estimates of the corresponding components of the vector Ot 
from the observations eA. The elements of the matrix 'Yt and its trace Tr 'Yt 
exhibit the accuracy of 'tracking' the unobservable states Ot by the estimate 
mt. In this case, as in the analogous problem for the case of discrete time, 
the critical question (with respect to applications) is: when does the matrix 
'Yt converge as t too? The present section deals with the investigation of the 
existence of limt-+oo 'Yt and the techniques for its computation. 

16. 2. 2. Before giving a precise formulation, let us note first that by setting 

a = at - (b o B)(B o B)-1 At, 
b = [(bob) - (b o B)(B o B)-1(b o B)*]t/2 , 

B = [B o Bjll2 , A = At. 

Equation (16.42) can be rewritten in a more convenient form: 

i't = a'Yt + 'Yta* + bb* - 'YtA*(BB*)-t A'Yt· 

(16.43) 

(16.44) 

This equation coincides with the equation for the covariance of the pair 
of Gaussian processes (0, e) satisfying the system 

dOt = aOtdt + bdWt(t), 
det = AOtdt + BdW2(t). (16.45) 

So, in terms of the behavior of the matrices 'Yt for t -+ oo it is enough to 
consider the simpler system of equations given by (16.45) instead of (16.39). 

Theorem 16.2. Let the system of equations given by (16.45} satisfy the 
following conditions: 

(1} the rank of the block matrix 

( 
A ) Gt = Aa 

Aak-t 

(16.46) 

of dimension (kl x k) is equal to k; 
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{2) the rank of the block matrix 

G2 = (bab ... ak-1b} 

of dimension (k x lk) is equal to k; 
{3) the matrix BB* is nonsingular. 

(16.47} 

Then, for-yt = M(Ot-mt)(Ot-mt}*, limt-~-oo'Yt = 'Y exists. This limit-y does 
not depend on the initial value 'Yo and is the unique (in the class of positive 
definite matrices) solution of the equation 

a-y + -ya* + bb*- -yA*(B* B)-1 A-y = 0. (16.48} 

Before proving this theorem we shall prove some auxiliary lemmas. 

16.2.3. 
Lemma 16.2. Let D and L1 be matrices of dimensions (l x k) and (k x k}, 
respectively. We shall form the block matrix (of order (nl x k)) 

( 
D ) DLl 

Dn= · 
DLln-1 

Then the matrices D;Dn and I{ e-..a•t D* De- 4 tdt, 0 < T < oo, are either 
both singular or both nonsingular. 

PROOF. According to Lemma 14.4, the matrices D;Dn and D';,Dk , n ~ k, 
are either both singular or both nonsingular. If the matrix D'kDk is singular, 
then, by that lemma, there exists a nonzero vector x = (xt. ... , Xn) such that 
DL1ix = 0, j = 0, 1, ... , k, k + 1, .... 

But, then, 

and, therefore, 

x* loT e-..a•t D* De-L1tdtx = 0, (16.49} 

which proves the singularity of the matrix I{ e-..a•t D* De-4 tdt. 
Otherwise, let (16.49} be satisfied. Then, obviously, x*e-Ll*t D* De-L1tx = 

0, 0 :::; t :::; T. Hence, 
(16.50} 

and (after differentiation overt) 



16.2 Asymptotic Properties of Kalman-Bucy Filters 187 

DL1e-..:ltx = 0, 

(16.51) 

It follows from (16.50) and (16.51) fort= 0 that DLlix = 0, j = 0, ... , k -1, 
which is equivalent to the equality x* D'kDkx = 0. 0 

Corollary. Let Dk = (D LlD ... ,1k-l D) be a block matrix of order (k x kl) 
where D and L1 are matrices of dimensions (k x l) and (k x k), respectively. 
Then the matrices DkD'k and J{ e-..:lt DD*e-..:l*tdt are either both singular 
or both nonsingular. 

Lemma 16.3. If the matrix G2 has rank k then, fort > 0, the matrices 'Yt 
defined by Equation {16.,44) are positive definite. 

PROOF. The matrix 'Yt is the covariance matrix of the conditionally Gaus­
sian distribution P(Ot ~ al-11). If this distribution has a (P-a.s.) density 
then obviously the matrix 'Yt will be positive definite. Considering the system 
of equations given by (16.45) and taking into account Corollary 1 of Theo­
rem 7.23 (see Subsection 7.9.5), we see that the distribution P(Ot ~ al-11), 
t > 0, has a density (P-a.s.) if the distribution P(Ot ~ a) also has a density, 
which is equivalent to the condition of positive definiteness of the matrix 

According to Theorem 15.1, the matrices rt are solutions of the differential 
equation 

(16.52) 

From this we find 

rt =eat roea•t +eat [lot e-asbb*e-a"sds] ea•t. 

But, by virtue of the corollary to Lemma 16.2, the matrices rt, t > 0, are 
positive definite, since so also is the matrix G2Gi (rank G2 = k). 0 

Lemma 16.4. If the rank of the matrix G1 is equal to k, then the elements 
of all the matrices 'Yt are uniformly bounded. 

PROOF. Consider the auxiliary problem of control of the deterministic pro­
cess Xt = (x1 (t), ... , Xk(t)), 0 ~ t ~ T, satisfying the equation 

dxt * A* dt = a Xt + Ut, Xo =X, (16.53) 

with the performance functional 
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V(u;T) = x;.-yoxT + 1T[x~bb"xt + u~BB"ut]dt. 
The controls Ut, 0 :::; t :::; T, are chosen from the class of admissible controls 
(see the previous section). 

According to (16.37), the optimal control fit exists and is given by the 
formula 

(16.54) 

where Xt is the solution of Equation (16.53) with ut = fit, 0 :::; t :::; T. In this 
case V(u; T) = x"'YTX· Since the elements of the matrices 'Yt are continuous 
functions, to prove the lemma it suffices to show that all the elements of the 
matrices 'YT for T > 1 are uniformly bounded. 

Since rank G1 = k, the matrix GiG1 is nonsingular and, by Lemma 16.2, 
so is the matrix 

Take now a special control 

ftt = e Jo e e x, { -A -at( r1 -a*sA*A -as)-1 
0, 

0 :::; t :::; 1, 
t > 1, 

and let Xt be the solution of Equation (16.53) with Ut = ftt. By solving this 
equation we find that Xt = 0, t ~ 1. But then, because of optimality of the 
control fit, 0 :::; t :::; T, T > 1, 

x*'YTX:::; 11 [xtbb"xt + ft~BB*ftt]dt < oo. 0 

Lemma 16.5. Let -yf be the solution of {16 .. 4,4) with 'Y8 = 'Yo = 0 and 
rank G1 = k. Then -y0 = limt-too -yf exists and is the nonnegative definite 
symmetric matrix satisfying the equation 

a-y0 + -y0a* + bb*- -y0 A*(BB")-1 A-y0 = 0. (16.55) 

If, in addition, rank G2 = k, then -y0 is a positive definite matrix. 

PROOF. By virtue of the assumption that rank G1 =kit follows from the 
previous lemma that the elements of all the matrices -yf, t ~ 0, are uniformly 
bounded. 

We shall show that for 'Yo = 0 the function x*-y!J.x is monotone nonde­
creasing in T. Let T2 > T1. Then, denoting by Ut(Ti) and Xt(Ti) the optimal 
controls and their associated processes in the auxiliary control problems, 
i = 1, 2, ... , we find that 
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x*')'T2 X = 1T2 ((xt(T2))*bb*xt(T2) + (ut(T2))* BB'"ut(T2)]dt 

~ 1T1 ((xt(T2))*bb*xt(T2) + (ut(T2))* BB*ut(T2)]dt 

~ 1T1 ((xt(TI))*bb*xt(T1) + (ut(T1))* BB*ut(T1)]dt = x*'i'T1 X. 

From boundedness and monotonicity of the functions x*')'~X follows the ex­
istence of the matrix ')'0 = limT-too ')'~ with the properties stated. 

If, in addition, rank G2 = k, then, by Lemma 16.3, the matrices "Yr are 
nonsingular and consequently the matrix "Yo = limt-+oo "Yr is also nonsingular. 

D 

16.2.4. 
PROOF OF THEOREM 16.2. Set "Yo = limt-too "Y2 for "Yo = 0, and set 

- (BB*)-1A O-Ut=- ')' Xt, {16.56) 

where Xt is the solution of Equation {16.53) with Ut = 1Lt and 'Xo = x. We 
shall show that Xt --* 0, t --* oo. For this purpose it is enough, for example, 
to show that 

1. -· 0- 0 1m Xt'i' Xt = , t-too 

since the matrix ')'0 is symmetric and positive definite. 
Due to {16.53), {16.55) and {16.56), 

:t (x;"Y0'Xt) = xt"Yo[a*- A*(BB*)-1A]"Y0xt 

{16.57) 

+xt(a- ')'0 A*(BB*)-1 A"Y0]xt- xt"Y0 A*(BB*)-1 A')'0'Xt 

= -xtbb*'Xt - xt"Y0 A*(BB*)-1(BB*)(BB*)-1 A')'0'Xt 

= -[xtbb*xt +utBB*ut]· 

Therefore, by Lemma 16.5, 

0 < x*"'0X - Tt T = x*'j'0x- foT(x;bb*'Xt + utBB*ut]dt 

$ X')'0x- foT[xtbb'"xt + utBB*fit]dt 

= x*["Y0 - "Y~]x--* 0, T--* oo, 

where fit is the optimal control defined in {16.54). 
It also follows from {16.58) that 

lim fT [xtbb*xt + u; BB*ut]dt = x*')'0x. 
T-too}0 

{16.58) 

{16.59) 
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Next, let 'Yo be an arbitrary nonnegative definite matrix. Then 

xT'YoXT + foT [x;bb*xt + u:BB*ut]dt 

~ x*/TX = XT/OXT + 1T[x;bb*xt + u;BB*ilt]dt 

> foT[x;bb*xt +u;BB*ilt]dt 

~ 1T[x;bb*xt +u;BB*ut]dt = x*1~x, {16.60) 

where Ut = -(BB*)-1 Al~- 1 Xt, and Xt is the solution of Equation {16.53) 
with Ut = Ut· It follows from these inequalities and {16.59) that 

But, according to {16.57), limT--+oo XT/OXT = 0 and limT--+oo x*/~X = x*1°x 
(see Lemma 16.5). Hence limT--+ooX*/TX (= x*1x) does exist, 

and 

lim x*/TX = x*1°x, 
T--+oo 

1. 0 
/=1m/T=/· T--+oo 

The limit matrix 1 = limT--+oo /T does not depend on the value of 'Yo and 
satisfies Equation {16.48). 

The uniqueness of the solution of this equation {in the class of positive 
definite matrices) can be proved as in Theorem 14.3. D 

Note. If the eigenvalues of the matrix a lie in the left-hand plane, then 
one can remove the first assumption, (I), of Theorem 16.2, since the 'I'r/t ~ 
Tr MfMJ; < oo, t ~ o. 

16.3 Computation of Mutual Information and Channel 
Capacity of a Gaussian Channel with Feedback 

16. 3.1. Let ( {}, :F, P) be some probability space, with ( Ft), 0 ~ t ~ T, a 
system of nondecreasing sub-a-algebras of F. Let (} = (Ot, :Ft), 0 ~ t ~ T, be 
some transmitted information to be transmitted over a channel with Gaussian 
white noise. To make this description precise we suppose a Wiener process 
W = (Wt,:Ft), independent of the process(}= (Ot,Ft), 0 ~ t ~ T, to be 
given. If the received signal e = (et. :Ft) has the form 
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(16.61) 

i.e., 

(16.62) 

then the message (} is said to be transmitted over the white Gaussian channel 

without feedbac~. The functionals a8 (B), 0 :$ s :$ T, with P(J0T las(B)Ids < 
oo) = 1 determine the coding and are assumed to be nonanticipative. 

In the case where the received signal~ = (~t, :Ft), 0 :$ t :$ T, permits the 
representation 

d~t = at(B, ~)dt + dWt, ~o = 0, 

with the nonanticipative functional at(B, ~), 0 :$ t :$ T, 

(16.63) 

then the transmission is said to occur over the white Gaussian channel with 
noiseless feedback. 

Therefore, in the case of noiseless feedback, the received signal ~ is sent 
back and can be taken into account in the future in transmitting the infor­
mation B. 

Let ((}, Bo) be a measure space to which the values of the signal(}= (Bt) 
0 ::$ t :$ T, belong. 

We shall denote by ( Cr, Br) the measure space of continuous functions 

on (0, T], x = (xt), 0 :$ t :$ T, with xo = 0. Let J.lw, J.lt; and J.lB,t; be measures 
corresponding to the processes W, ~and (B, ~). 

If a certain coding at ( (}, ~), 0 :$ t :$ T, is chosen, then it is natural to ask 
how much information Ir(B, ~)is contained in the received signal~= {~8 , s :$ 

t} about the transmitted signal(}= {B8 , s :$ t}. By definition 

df.lot; 
Ir(B,~) = Mln d[ ' ] (B,~), 

J.lB X J.lt; 
(16.64) 

setting Ir(B, ~) = oo if the measure J.lB,t; is not absolutely continuous with 
respect to the measure J.lo x J.lt;. 

Theorem 16.3. Let the following conditions be satisfied: 

{1) Equation (16.63) has a strong (i.e., ;:f·W -measurable for each t, 0 :$ t :$ 

T) solution; 

3 In the engineering literature, instead of writing (16.62) its formal analog, e(t) = 
at(O) + Wt, is used; Wt is called white Gaussian noise. 
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{2) 

Then 

{16.65) 

where 
{16.66) 

PROOF. According to the assumptions made above and Lemmas 7.6 and 
7.7, J.Le « J.Lw and J.Le,e « J.Le x J.Lw. Hence, due to the note to Theorem 7.23, 

{16.67) 

But, due to Lemmas 7.6 and 7. 7, 

{16.68) 

(16.69) 

where 

Here, 

loT Ma~(f.)dt =loT M[M(at(O,f.)i.rfWdt:::; loT Ma~(O,f.)dt < oo. 

It follows from {16.67)-(16.69) that 

ln d[ dJ.Le,e ) {0, f.) = fT [at(O, f.) - lit(f.)]df.t - ~ fT [a~(O, f.) - a~(f.)]dt 
J.Le x J.Le lo 2 lo 

= 1T ([at(O,f.)- lit(f.)]at(O,f.) 

-~[a~(O,f.) -a~(f.)])dt 

+ loT[at(O,f.)- lit(f.)]dWt. {16.70) 

From this, by the properties of stochastic integrals, 
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M ln dJ.Lo,e (B, e) 
d[J.Lo x J.Le] 

~for M[a~(e,e)- 2at(B,e)at(e) +a~(e)Jdt 

~for M[at(B,e)- at(eWdt 

= ~ lT M { M[at(B, e)- at(e)J2 1 .rt} dt 

1 {T [ 2( 2 = 2 Jo Mat B,e) -at(e)Jdt. (16.71) 

16.3.2. We use this theorem to prove the fact that (subject to 'power' limi­
tation) feedback does not increase the channel capacity. 

By definition, for a channel with feedback 

1 
c =sup Tlr(B,e), (16.72) 

where 'sup' is taken over all the information B and the nonanticipative func­
tionals {at(B,e), 0::; t::; T} for which Equation (16.63) has a unique strong 
solution and 

f for Ma~(e,e)dt::; P (16.73) 

with the constant P characterizing the power constraint of the transmitter. 
Due to (16.71), 

Therefore, 
C< P_ 

- 2 
We shall show now that for a channel without feedback 

(16.74) 

(16. 75) 

(16. 76) 

where 'sup' is taken over all the signals Band the nonanticipative functionals 
at(B), 0::; t::; T, for which 

~ lT Ma~(B)dt::; P. 

Since C ;:=:: C0 , then it will follow from (16.75) and (16.76) that feedback does 
not improve the channel capacity: 

p 
C=Co = -. 

2 
(16.77) 
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For this purpose we consider the following example. 

EXAMPLE 1. Consider at(x) = Xt, and (} 01 = (Of), 0 $ t $ T, a Gaussian 
stationary process with M(Jf = 0 and the correlation function 

K(t, s) = Pexp{ -alt- sl}. 

We shall assume that the received signal e = (et), 0 $ t $ T, at the 
channel output can be expressed as 

det = (}fdt + dWt, eo = 0, 

where W = (Wt), t:?: 0, is a Wiener process independent of the process (}01 • 

According to Theorem 15.2, the process (}f has the differential 

d(}f = -aOfdt + .;2;;Pdzt, 

where z = (zt), t:?: 0, is a Wiener process independent of W. 
Let mf = M(OfiJ1), 'Yf = M((Jf- mf)2 . By Theorem 10.1, 

dmf = -amfdt + 'Yf(det - mfdt), m0 = 0, 
i'f = -2a'Yf + 2aP- (1'f)2 , 'Yo= P. (16.78) 

From (16. 78) and the normality of the process (}01 , the assumptions of 
Theorem 16.3 are satisfied and, therefore, 

Ir(O", () ~ Ht M(o:') 2dt- { M(mf) 2dt] ~ 7 -i { M( mf)2dt. 

(16.79) 
Let us show that 

lim [T M(mf)2dt = 0. 
atoo Jo (16.80) 

By Theorem 7.12, the process W = (Wt, J1) with Wt = et - f~ m~ds is a 
Wiener process. 

Therefore 

and, hence, 

ma -e-at 1t eas,,PdW t - IS 8> 
0 

and by the properties of stochastic integrals we obtain 

(16.81) 
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since -yf = M(Of - mf)2 ~ M(Of)2 = P. The required relation (16.80) 
follows from (16.81). · 

Thus we have proved the following theorem. 

Theorem 16.4. Let the conditions of Theorem 16.3 be satisfied. Then the 
capacity C of the channel with feedback coincides with the capacity Co of the 
channel without feedback and 

p 
C=Co = -. 

2 

16.4 Optimal Coding and Decoding for Transmission of 
a Gaussian Signal Through a Channel with Noiseless 
Feedback 

16.4.1. The theory of optimal nonlinear filtering of conditionally Gaussian 
processes developed in the preceding chapters enables us to find the optimal 
method for transmission of a Gaussian process through channels with additive 
white noise using instant noiseless feedback. 

Assume first that the signal to be transmitted is a Gaussian random 
variable() with M() = m, DO = 'Y > 0, where the parameters m and 'Y are 
known at both the transmitting and the receiving ends. 

The signal e = ( et), 0 ~ t ~ T at the transmitter output is assumed to 
satisfy the stochastic differential equation 

(16.82) 

where W = (Wt), 0 ~ t ~ T, is a Wiener process independent of (). The 
nonanticipative functional A = (A( t, (),e)), 0 ~ t :::; T, determines the coding 
and is assumed to be such that Equation (16.82) has a unique strong solution 
with 

P { 1T A2(s,o,e)ds < oo} = 1. 

We shall also assume that the functionals A = (A(t, 9, e)), 0 :::; t ~ T, are 
subject to the constraints 

I fot MA2(s,o,e)ds ~ P, (16.83) 

where P is given constant. (The coding satisfying the conditions listed above 
will be called admissible). 
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At each instant of timet the output signal iit(€) can be constructed from 
the received signal e~ = { €s' s $ t}. 

The nonanticipative functional ii = (iit(€)), 0 $ t $ T, specifying the 
decoding must be chosen, naturally, to reproduce the signal () in the optimal 
manner. 

Set 

where 'inf' is taken over all the admissible codings A= (A{s,O,€)), s 2:: 0, 
and the decodings Bt(€). The problem is to find optimal coding, decoding {if 
such exist, of course) and the minimal reproduction error Ll(t) as a function 
of time. 

Since (with given coding) 

M[()- Bt(€}f 2:: M[O- mt(€W, 

where mt = M(OI.rf), then it is seen that Ll(t) = infA M[O-mtJ2 and that the 
optimal decoding {of the signals €~) is the a posteriori mean mt = M(OI.rf). 

Thus the primary problem is reduced to the problem of finding only the 
optimal coding. 

16.4.2. Consider first the subclass of admissible coding functions A(t, (), €) 
linearly dependent on 0: 

A(t, 0, €) = Ao(t, €) +At (t, €)0, (16.84) 

where Ao = (Ao(t,€)) and At = (At(t,€)), 0 $ t $ T, are nonanticipative 
functionals. Let 

Ll*(t) = inf M][O- mt]2 • 
(Ao,At) 

(16.85) 

The problem is to find the optimal coding function (A0, Ai) which attains 
the 'inf' in (16.85). 

Let some coding (Ao, At) be chosen, and let € = (€t), 0 $ t $ T, be a 
process satisfying the equation 

d€t = [Ao(t,€) + At(t,€)0]dt + dWt, €o = 0. 

Then, according to Theorem 12.1, mt = M(OIFf) and 

'Yt = M[(O- mt)2 IJ1J 
satisfy the equations 

dmt = 'YtAt(t,€)[d€t- {Ao(t,€) + At(t,€)mt)dt]. 

"rt = -'Yl A~(t, €), 

(16.86) 

(16.87) 

(16.88) 

with m0 = m, 'Yo = 'Y· Equation (16.88) has the solution (Theorem 12.2) 
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'Yt = t 2 ' 
1 + 'Y f0 A1 (s, e)ds 

'Y 

and it is seen that P(info:$s:$T 'Ys > 0) = 1. Hence, we obtain from (16.88) 

'Yt = -"(tA~(t, e), 
'Yt 

and, therefore, 

i.e., 

Since 

M[Ao(t, e)+ A1 (t, e)B]2 

= M{[Ao(t,e) + mtAl(t,e)J + [B- mt]Al(t,e)}2 

= M{Ao(t,e) + A1(t,e)mt}2 + M'YtA~(t,e), 

then, due to the boundedness of (16.83), 

lot M"f8A~(s,e)ds:::; Pt. 

(16.89) 

(16.90) 

(16.91) 

Hence, by the Jensen inequality (Me-TJ > e-M11), (16.89) and (16.91), 

M'Yt :2: "(e-Pt, 0:::; t:::; T. 

Therefore, for the specified coding (Ao, A1) we have 

M[B- mt]2 = M'Yt :2: "(e-Pt 

and, consequently (see (16.85)), 

L1*(t) :2: "(e-Pt. 

(16.92) 

(16.93) 

(16.94) 

For the optimal coding (A0, Ai) the inequalities in (16.91) and (16.92) 
have to be equalities. This will occur if we take 

Ai(t) = ~ePt/2, (16.95) 

since then the corresponding 'Yt (see (16.88)) will be equal to "(e-Pt. 
Comparing (16.90) with the equality 

lot M'Y;(Ai(s))2ds =lot "f;(Ai(s))2ds = Pt, 
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we find that the equality 

(16.96) 

must also be satisfied, where, according to (16.87), the optimal decoding m; 
can be defined by the equation 

(16.97) 

and the transmitted signal C = (e;), 0 :::; t :::; T (see (16.86)), satisfies the 
equation 

(16.98) 

It is seen from (16.97) that the optimal decoding can also be expressed 
as follows: 

m; = m + J"P1fot e-(Ps/2)dC 

= m + JP1 [e-<Pt/2le; + ~lot e-<Ps/2le;ds J . (16.99) 

Equation (16.98) shows that the optimal coding operation involves trans­
mitting not the message () during all the time, but the divergence () - m; 
between the value () and its optimal estimate m; multiplied by vfPFit. 

Thus we have proved the following lemma. 

Lemma 16.6. In the class of admissible linear coding functions given by 
{16.84) the optimal coding (A0, Ai) exists and is given by the formulae 

Ai(t) = ~ePtf2 , (16.100) 

A0(t, e*) = -Ai(t)m;. (16.101) 

The optimal decoding m; and the transmitted signal e; satisfy Equa­
tions {16.97) and {16.98}. 

The reproduction error is 

(16.102) 

Note 1. Consider the class of linear coding functions A 0 (t) + A1 (t)O which 
do not employ feedback. In other words, we shall assume that the functions 

Ao(t) and A1(t) depend only on time J0T[A~(t) + AHt)]dt < oo and 

1 rt t lo M[Ao(s) + A1(s)0]2ds:::; P, 0:::; t:::; T. 
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Since 

then from the above power constraint we find that 

1t p 
Ai(s)ds::; -t. 

0 'Y 

It follows from this that 

- 'Y > _'Y_ 
It- 1 + 'Y f~ Ai(s)ds - 1 + Pt' 

and, consequently, the minimal mean square reproduction error (without the 
employment of feedback) is 

Ll(t) = inf M[B- mt]2 2:: 1 +'Pt. 

But, for the coding functions, 

Ao(t) = -A1(t)m 

the mean square error is equal to 'Y / (1 + Pt) exactly. Hence, 

- 'Y 
Ll(t) = 1 + Pt' 

Note 2. Let us note another property of the process C which is an optimal 
transmitted signal. If (A0 , At) is some admissible coding, then, according to 
Theorem 7.12 and Equation (16.86), 

det = [Ao(t,e) + Al(t,e)mt]dt +dWt, 

where W = (Wt,Ff) is a Wiener process. 
For the optimal signal C, A0(t, C)+ Ai(t, e*)m; = 0. Hence, the process 

e* = ( e;), 0 ::; t ::; T, coincides with the corresponding innovation process 

W = (Wt, .rf\ Consequently, in the optimal case the transmission is such 

that only the innovation process W = (Wt,.rf.) has to be transmitted. 
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16.4.3. Let us show now that the coding (A0,Ai) found in Lemma 16.6 is 
also optimal in the sense that it has the greatest information lt(O, e) about 
(}in the received message e& = {es, s ~ t} for each t, 0 ~ t ~ T. 

Let It = suplt(O,e) where 'sup' is taken over all the signals eS = 
{es, s ~ t} satisfying Equation {16.82) with admissible coding functions 
A= (A(t,O,e)), 0 ~ t ~ T. 

Lemma 16.7. The process f" = {e;,o ~ s ~ T} found in Lemma 16.6 is 
also optimal in the sense that, for this process 

(16.103) 

PROOF. Let A= (A(t,o,e)), 0 ~ t ~ T, be some admissible coding. Then 
it follows from Theorem 16.3 and (16.83) that 

1 [t -2 1 t Pt 
It(o,e) = 2 lo M[A2(s,o,e) -A (s,e)Jds ~ 2 lo MA2(s,o,e)ds ~ 2 , 

{16.104) 
where A(s,e) = M[A(s,o,e)IF.n 

On the other hand, let us take A(s, O,e*) = A0(s, e)+Ai(s)O with A0(s, e) 
and Ai(s) defined in Lemma 16.6. Then, due to (16.101), 

M[A(s,O,e*)IF!J == A0(s,e*) + Ai(s)m: = 0, 

and, therefore, according to {16.104) and (16.90), 

It(O,e*) = ~ fot M[A0(s,e) + Ai(s)0]2ds = ~t, 

which together with (16.104), proves the required equality, (16.103). D 

16.4.4. It will be shown here that the linear coding (A0,Ai) is optimal in 
the class of all admissible codings. 

To prove this statement we will find useful {16.105), given below: in a 
certain sense this inequality is analogous to the Cramer-Rao inequality. 

Lemma 16.8. Let(} be a Gaussian random variable, let(}"' N(m,')'), and 
let 0 be some random variable. Then 

(16.105) 

PROOF. Let c-2 = M[(}- 0]2 • Without loss of generality, we can take 0 < 
c-2 < oo. Consider now the c-entropy He(O) = inf{I(O, 0) : M((}- 0)2 ~ c-2}. 

According to the known formula for the c-entropy He(O) of the Gaussian 
variable (} (see formula (12) in [159]) 
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Ht:(O) = ~ lnmax (~, 1). (16.106} 

Consequently, 

- 1 'Y 1 'Y 
1(9, 9) ~ Ht:(O} ~ 21n c2 = 21n M[O _ 0]2 , 

which proves the required inequality, (16.105). D 

Theorem 16.5. Let() be the Gaussian random variable transmitted over the 
channel described by Equation {16.82}. Then 

Ll(t) = Ll*(t)- = 'Ye-Pt (16.107} 

and, therefore, in the class of all admissible codings the linear coding (A0, Ai) 
found in Lemma 16.6 is optimal. 

PROOF. It is clear that Ll(t):::; Ll*(t) = 'Ye-Pt. Hence, to prove the theorem 
it suffices to show that 

(16.108} 

Let e = ( et}, 0 :5: t :5: T, be a process corresponding to some admissible 
coding (see (16.83}}, and let e = Bt(e) be some decoding. Then, due to 
Lemma 16.8, 

(16.109} 

But, as is well known, I(O,Bt(e)):::; It(e,e). In addition, by Lemma 16.7, 
lt(O, e) :5: lt(O, e*) = Pt/2. Hence, 

M[e- Bt(e)J2 ~ 'Ye-Pt, 

which proves the required inequality, (16.108}. D 

16.4.5. The method used in proving Lemma 16.6 can also be used for finding 
optimal linear coding for the cases where: the transmitted message()= (Ot}, 
0 :::; t :::; T, is a Gaussian process with the differential 

(16.110} 

the Wiener process W = (Wt}, 0:::; t:::; T, does not depend on the Gaussian 
random variable Oo with the prescribed values MOo = m and DOo = 'Y > 0; 
and la(t)l :5: K, lb(t)l :5: K. 

We shall assume (compare with (16.86)} that the process e = (et}, 0 :::; 
t :::; T, obtained at the channel output is the unique strong solution of the 
equation 

(16.111} 
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where the Wiener process W = (Wt), 0 ~ t ~ T, does not depend on W; (}0 

and the {nonanticipative) coding functions A0 (t,e) and A1{t,e) satisfy the 
conditions 

P {loT A~(t, e)dt < oo} = 1, 

and the power constraint 

for the prescribed constant P. 
Let 

sup IA1{t,x)l < oo; 
xEC,t~T 

where 'inf' is taken over all the described admissible coding functions and 
decodings Bt(e). It is clear that 

where mt = M(Ot!Fl). 
Write 

Then 

Ll*(t)= inf M[Ot-mt]2 , 
(Ao,At) 

Ll*(t) = inf M'Yt· 
(Ao,At) 

If the coding (A0 , AI) is given, then, by Theorem 12.1, 

(16.112) 

(16.113) 

dmt = a(t)mtdt + 'YtAl (t, e}[det- (Ao(t, e)+ A1(t, e)mt)dt], (16.114) 

'tt = 2a{t}'Yt - 'Y~ A~(t, e) + b2 (t) {16.115) 

with mo = m, 'Yo = 'Y· 
As in (16.90), we find that 

M[Ao(t,e) + Al{t,e)mt]2 + M['YtA~(t,e)J ~ P. (16.116) 

Note that Equation {16.115) is equivalent to the integral equation 

'Yt = -yexp { 2 lot a(s)ds- lot 'YsA~(s,e)ds} 

+ 1t b2(s) exp { 21t a(u)du -1t 'YuA~(u, e)du} ds. 

Due to the Jensen inequality (M e-'1 ~ e-M71) we obtain 
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M[Ot- mt]2 ;::: -yexp { 21ot a(s)ds -lot M-y8A~(s,e)ds} 

+lot b2(s)exp{21t a(u)du-1t M-yu.A~(u,e)du}ds, 
(16.117) 

which, together with the inequality M-ytAHt, e) ::; p (following from (16.116)) 
yields for M 'Yt the estimate from below: 

M-yt ;::: -yexp { 21ot [a(s)- ~] ds} 

+lot b2(s) exp { 21t [a(u)- ~] du} ds. (16.118) 

We shall indicate now the coding (A(i, Ai) for which in (16.118) equality 
is attained. Since, by assumption; 'Yo = 'Y > 0, it follows that P{inft<T 'Yt > 
0} = 1 (Theorem 12.7), and consequently for all t, 0::; t::; T, we can define 
the functions 

Ai(t,f') = fP., y:;; 
A0(t,e*) = -Ai(t,e)*m;, 

where 

is the solution of the equation 

(16.119) 

(16.120) 

(16.121) 

It should be emphasized that, due to (16.119), (Ai(t,e*))2-y; = P and, 
therefore (see (16.115)), 

-r: = [2a(t) -Ph: + b2 (t), 'Yo = 7. (16.122) 

This linear equation has the unique solution 

-y; = -yexp { 21ot [a(s)- ~] ds} + 1o\2 (s) exp { 21ot [a(u)- ~] du} ds, 

(16.123) 
which does not depend on the signals e. 

Comparing (16.113), (16.118) and (16.123) we see that 

Ll*(t) = -y;, 0::; t::; T. (16.124) 

Thus we have the following theorem. 
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Theorem 16.6. In transmitting, according to the scheme {16.111}, the Gaus­
sian process Ot subject to Equation {16.110}, the optimal transmission is de­
scribed by the equation 

de; = ~[Ot - mt]dt + dWt, eo = 0, y:r; {16.125) 

where the optimal decoding m; = M(OtiJ:f) is defined by the equation 

{16.126) 

and 
i't = [2a{t)- Ph;+ b2{t), 'Yo = 'Y· {16.127) 

The minimal reproduction error is 

.1*(t) = "(exp{ 21t [a(s)- ~] ds 

+ 1t b2 (s)exp { 21t [a(u)- ~] du} ds }· (16.128) 

Corollary. If a(t) = b{t) = 0, then (compare with {16.102}} 

.1*(t) = 'Ye-Pt. 

Note 1. If, in transmitting according to the scheme given in {16.111) feed­
back is not used, then the optimal coding functions A0 (t) and A1{t) are given 
by the formulae 

- [P 
A1(t) = y "'iJO;' Ao(t) = -A1(t)MOt. 

In this case the mean square reproduction error Ll(t) is found from the 
equation 

Li(t) = 2a(t)Ll(t) + b2(t)- :Ot Ll2(t), Ll{O) = 'Y· 

In order to compare the values of Ll*(t) and Ll(t) let us consider the 
following example. 

EXAMPLE 2. Let a(t) = -1, 'Y = ~. m = 0, i.e., let the process Ot, t 2:: 
0, be a stationary Gaussian Markov process with dOt = -Otdt + dWt and 
Oo "'N(O, ~). Then MOt= 0, DOt = ~ and ..1(t) = -2Ll(t) + 1- 2PLl2 (t), 
Ll{O) = ~· It is easy to show from this that 
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Llp = lim Li(t) = v'f+2P- 1. 
t-+oo 2P 

At the same time, according to (16.128), 

.1*(t) = _1_ +e-(2+P)t [! __ 1_] 
2+P 2 2+P ' 

and, therefore, Llj, = limt-+oo .1*(t) = 1/(2 + P). Hence, 

.1* 2P 
_E_ - -----===,...---Li- (2+P)(v'1+2P-1)' 

and, therefore, 

~p "' { J21P, p -t oo, 
Llp 1, p -t 0. 

In other words, feedback yields a much smaller reproduction error for large 
P than is the case without feedback. For small P the reproduction errors are 
asymptotically (fort-too) equivalent in the two cases. 

Note 2. The coding (A0, Ai) found in Theorem 16.6 is also optimal in the 
sense that 

(16.129) 

where 'sup' is taken over all admissible linear codings, and lt(B,t;) is defined 
in (16.64). (16.29) can be proved in the same way as Lemma 16.7. 

16.4.6. Consider now the coding functions At(Bt,f;) which are not linear in 
Ot. The constraints on At(a,x) guaranteeing the existence of a unique strong 
solution to the equation 

(16.130) 

will now be made more stringent. 
Thus we assume that At(a,x), t ~ T, a E R\ x E C satisfies 

A~(a,x) ~ Lt(l + a2 + x~) + L21t (1 + x~)dK(s), (16.131) 

and, for arbitrary t ~ T, a', a" E (-N,N], N < oo, x',x" E C, 

[At(a',x')- At(a",x")]2 ~ Lt(a'- a")2 + L3(N)(x~- x~')2 

+L4(N) lot (x~- x~)2dK(s), (16.132) 

where £ 11 L2 , L3(N), L4(N) are certain constants (L3(N) and L4(N) depend 
on N) and K ( s) is a monotone nondecreasing right continuous function such 
that 0 ~ K(s) ~ 1. 
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(16.131) and (16,132) ensure the uniqueness and existence of a strong 
solution to (16.130); this is proved in the same way as in Theorems 4.6 and 
4.9, bearing in mind that 

supMelk < oo, k = 1, 2, .... 
t$T 

Theorem 16.7. Suppose that a Gaussian process Ot governed by equa­
tion {16.110} is being transmitted according to the scheme given by (16.130}, 
where thefunctionals At(a,x) satisfy the requirements of (16.131) and (16.132) 
and the constraint 

(16.133) 

Then the optimal transmission of the process fh is described by {16.125)­
(16.128). 

16.4. 7. The proof of Theorem 16.7 (to be given in Subsection 16.4.8) will be 
based on the fact that for each t the mean square error of the estimate is 
bounded from below by Ll*(t), given by (16.128) (see Theorem 16.5). 

In order to obtain such a lower bound let us formulate first some auxiliary 
results. Introduce the following notation: 

(1) Pt(f3) = dP(Ot ~ f3)/df3; 
(2) 1rt(f3) = dP(Ot ~ f3i:J1)/d{3; 
(3) I(Ob, eb) will be the mutual information between Ob and eb; 
(4) I(Ot,eb) will be the mutual information between.Ot and eb; 
(5) 

will be the Fisher information; 
(6) 

will be the Fisher conditional information. 

Lemma 16.9. Assume that the functional At(a, x) is uniformly bounded to­
gether with its partial derivatives aiAt(alx)jaai, i = 1,2,3, x E C. Then 

I(Ot,e~) = I(Ob,e~)- ~lot b2 (s)[MF(Os,e~)- F(Os)]ds. (16.134) 

PROOF. Note first of all, that due to (16.110), the variance Tt of the random 
variable Ot is given by the equation (Theorem 15.1) 

dTt 2 dt = 2a(t)rt + b (t), (16.135) 
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with the initial condition Fo = 'Y > 0. Hence, for all t ~ T, the variables Ft 
are positive and the Gaussian distributions P(Ot ~ {3), t ~ T, have a density 
Pt(/3) which satisfies the forward equation of Kolmogorov 

8pt(f3) = -a(t)!_(/3p ({3)) + ~b2(t)82pt(f3) 
at 8/3 t 2 a132 · {16.136) 

By virtue of Corollary 1 to Theorem 7.23, and because of the existence of 
the density Pt(/3), the conditional density 7rt{/3) exists and is given by the 
formula 

{16.137) 

where As(e) = M(As(Os,e)IFf), (Wt,.rf) is a Wiener process, and the pro­
cess Ot is given on the probability space (n, f:, F), which is identical to the 
primary probability space (il,F,P) and has the same distribution as Ot. 

According to the theorem on normal correlation (Theorem 13.1), the pro­
cess 08 , s ~ t, permits the representation 

- 1 -Os = MOs + rt- cov (Os, Ot)(Ot -MOt)+ fis, 

where ij8 , s ~ t, is independent of Ot. Let 

- -1 As(a, b, x) = As(MOs + rt COV (Os, Ot)(b- MOt)+ a, x). 

Then {16.137) for 7rt{/3) can be rewritten as follows: 

7rt(f3) = Pt(f3)M exp [fo\As(7Js, /3, e)- As(e))dW s 

1 rt - - 2 ] -2 lo (As(7Js,/3,e)- As(e)) ds . {16.138) 

From {16.138) and the assumptions on At(a,x), it follows that: 

{1 °) the density 7rt{/3) is twice continuously differentiable (P-a.s.) with respect 
to /3, -oo < /3 < oo; 
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(3°) the density 7rt(f3) satisfies the equation (see Theorem 8.6)) 

[ 8 b2 (t) 82 ] dt7rt(f3) = -a(t) 8{3 (f37rt(f3)) + - 2- 8{32 ( 7rt(f3)) dt 

+Trt(f3)[At(f3,e)- At(e)JdWt, 7ro(f3) = Po(f3). 
(16.139) 

Let us now estimate the information I(Ot, e&). By definition 

J(() ct) = Ml 7rt(Bt) = MM (l 7rt(Bt) I :Ff) 
t,.,o n Pt(Ot) n Pt(Ot) t 

100 7rt(f3) 
= M -oo 7rt(f3) ln Pt(f3) d{3. (16.140) 

Let l.{)t(f3) = 7rt(f3)ln(7rt(f3)/Pt(f3)). Using (16.140), (16.136) and the identity 
7ro(f3) = po(f3), the Ito formula gives us 

With this in mind, let us integrate the right-hand side of Equation (16.141) 
with respect to the measure d{3 dP. We obtain 

Thus the integral (with respect to the measure d{3 dP) of the last member on 
the right in (16.141) is zero for all t:::; T. 

Next we find, using the Fubini theorem, that 
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where the last equation follows from Theorem 16.3. 
Note that under the assumptions made, 

Therefore, it is easy to deduce that the integral (with respect to the measure 
d/3 dP) of the third member from the right in the right-hand side of (16.141) 
is zero. Finally, it is easy to verify (by integrating by parts) that the ( d/3 dP) 
integrals of the quantities 

t ( rrs(/3)) 8 
Jo a(s) In Ps(/3) af3(f3rrs(f3))ds 

are equal to zero. 
Hence, 

I(Bt, ~~) = I(B~, ~~) + ~M I: lot b2(s) :;2 (rr8 (/3))[ln rrs(/3) -1nps(f3)]dsdf3. 

(16.142) 
Using the Fubini theorem and integrating by parts, we find 

(16.143) 

Similarly, 
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Let 

mt = M(fhl.rf), 'Yt = M[(Bt- mt) 2IJ1], Ll(t) = M(Bt- mt)2 • 

Lemma 16.10. If Bt is a Gaussian variable such that Ft = DBt > 0, then 

(16.145) 

If, in addition, we assume the hypotheses of Lemma 16.9, then 

(16.146) 

PROOF. (16.145) follows from immediate calculations. The inequality given 
by (16.146) follows from the two explicit identities 

according to which 

(16.147) 

and from the Cauchy-Schwarz inequality applied to (16.147). Actually, it 
follows from (16.147) that 

1 ,; (f_)n. - (32)~,(mdf3. [j :(3 ( ~,((3))) \,, ((J)d(J r 
= ('YtF(Ot,~b)) 112 . (16.148) 



16.4 Optimal Coding and Decoding for Gaussian Signal 211 

Thus, taking expectations on both sides of {16.148) and using the Cauchy­
Schwarz inequality, we obtain 

The required relation, {16.146), follows from this if we can now show that 
L1(t) > 0. 

But, since I(th, mt) $ I(Ot, eb) $ I(Ob, eb) (I(Ot, mt) is the mutual infor­
mation between Ot and mt}, Lemma 16.8, Theorem 16.3 and {16.133} imply 

L1(t) ~ Tt exp{ -2/{0t, mt}} ~ Tt exp{ -21{0~, e~)} 
~ rte-Pt > 0, t $ T. 

Corollary. Under the assumptions of Lemma 16.9, 

I(Ot,e~) $ I(O~,e~)- ~lot b2{s)(L1-1{s)- F8-
1 )ds. 

16.4.8. 

D 

{16.149} 

PROOF OF THEOREM 16.7. It is enough to show that L1(t) ~ L1*(t), where 
L1*(t) is given by {16.128}. Assume first that the assumptions of Lemma 16.9 
are satisfied. Then, as a consequence of Lemma 16.8, Theorem 16.3, the 
relation I(Ot, mt) $ I(Ot, eb}, and {16.149}, we find that 

L1(t) ~ Tt exp { -Pt +lot b2(s)(L1-1(s)- r; 1}ds}. {16.150} 

On the other hand, since L1(t) = M(Oi- mi}, the quantities L1(t), t ~ 0, can 
be estimated by taking the expectation of (Oi- mi}. Note that mt, t ~ 0, 
permits the Ito differential {Theorem 8.1) 

{16.151) 

where 

According to the Ito formula and using {16.110) and {16.151), we find that 

(Ol- ml) = (0~ - m~) +lot [2a{s)(O~- m~) + b2(s)- .,P~(e}]ds 

+2lot b(s)OsdWs- 2lot '1/Js(e)msdWs. 

Taking the expectations on both sides we obtain 
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(16.152) 

Let 

(16.153) 

According to (16.150), the fact that the variables Ut are nonnegative and 
uo = 0, (16.135) and (16.153) imply 

~t = P- = L1- 1 (t)M1/Ji(e). (16.154) 

From this it follows that 

(16.155) 

Equation (16.1532) for L1(t) is equivalent to the following integral equa­
tion: 

L1(t) = ')'exp {1t[2a(u)- L1- 1(u)M1/J;(e)Jdu} 

+ 1t exp {1t[2a(u)- L1- 1(u)M1/J;(e)Jdu} b2 (s)ds. 

From this and from (16.155) we have 

L1(t) ~ ')'exp { 21t [a(u)- ~] du} 

+ 1t exp { 21t [a(u)- ~] du} b2 (s)ds = L1*(t) 

(see (16.128)). Thus, if At(a,x) satisfies the conditions of Lemma 16.9, one 
has L1(t) ~ f1*(t). 

We shall show that this inequality holds true also in the case where 
At(a,x) only satisfies the requirements of Theorem 16.7. For this purpose we 

approximate At(a,x) by a sequence of functionals (A~n)(a, x), n = 1, 2, ... ) 
which for any n satisfy the assumptions of Lemma 16.9 and, in addition, 
At(flt,e) = l.i.m.nA~n)(tlt,e). Let e<n) = (ein>), t $ T, be the process defined 
by 

dein) = A~n>(th,ein))dt + dWt, e~n) = 0. 

It is possible to show that for any t $ T, 

limM(et- ein))2 = 0, limM[A~n)(Ot,e<n>W = MA;(ot,e). 
n n 
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Set 

Then it is seen that Pn(t) --+ P as n --+ oo for each t ::; T. Let min) = 

M(fhjJ=-;<nJ) and L\n(t) = M(Ot- min))2 . Since the functional Ain)(a,x) 
satisfies the hypothesis of Lemma 16.9 and M[A}n) (Ot, e<n>)F ::; Pn(t), we 
have that L\n(t) ~ L\~(t), where 

L\~(t) = /' exp { 21t [a(u)- Pn~u)] du} 

+ 1t exp { 21t [a(u)- Pn~u)] du} b2(s)ds. 

Clearly, limn L\~(t) = L\*(t) (see (16.128)). 

Let us construct a sequence of decoding functionals Pik,N) (x), k, N = 
1, 2, ... } for which 

limlimlimM [<et- ,\ik,N)(e<n>)J] 2 = M(Ot- mt)2 . 
k N n 

Then, by the optimality of decoding of m~n), we have 

M[Ot- -\}k,N)(e<n>)] 2 ~ M[Ot- m}n)] 2 ~ L\~(t). 

Taking limits in the inequality 

(16.156) 

with respect to n, N and k (in that order), we obtain the required lower 
bound L\(t) ~ L\*(t). 

Thus, in order to complete the proof of the theorem we only need to 
establish the existence of the functionals ,\~k,N) ( x) with the property given 
by (16.156). 

Let 0 = s~k) < s~k) < · · · < Skk) = t be a sequence of subdivisions such 

that maxj[s;~1 - sj]-+ 0, k--+ oo. Define a measurable functional -\}k)(x) so 
that 

By the Levy theorem (Theorem 1.5), 

-\}k> (e) --+ mt (P-a.s.). 

Also we have mean square convergence since the variables [-\~k)(e)J2, k = 

1, 2, ... , are uniformly integrable (M[-\~k) (e)J 4 ::; MOf). The functional 
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..\(k}(x) = ..\(k)(x(k) x(k)) 
t t SQ ' • • • ' Bk 

can be approximated for any k by a sequence of finite, bounded functionals 
,(k,N}( ) t" . th . bl (k} (k} . th th t "'t x , con muous m e vana es Xs 0 , ••• , X 8 k , 1n e sense a 

where J.Lw is the Wiener measure on the measurable space ( C, B) of con­
tinuous functions x = (xt, 0 ~ t ~ T). Let J.Lt; be a measure on the same 
space, corresponding to the process e defined by (16.130). (16.133) guaran­
tees the absolute continuity of J.Lt; with respect to the Wiener measure J.Lw 
(Theorem 7.2). Hence 

..\~k)(x) = J.Lt; -lim..\~k,N)(x). 
N 

Since the ..\~k,N} (x) are bounded, it is possible to choose a sequence (..\~k,N) (x), 

N = 1, 2, ... ) so that ..\~k)(e) = l.i.m.N..\~k,N}(e). It is not difficult to see that 
the ..\~k,N}(x) so obtained have the property given by (16.156). D 

16.5 Asymptotic Properties of the Linear Filter under 
Wrong Initial Conditions 

Consider a filtering problem for a vector signal flt (of size k) and a vector 
observation et (of size £) defined by the linear Ito equations with respect to 
independent vector Wiener processes vt (of size k) and Wt (of size £) with 
independent components 

dOt = aOtdt + bdvt 

det = AOtdt + BdWt, (16.157) 

where a, b, A, and B are matrices of sizes k x k, k x k, .e x k, and .ex .e 
respectively. Assume Oo is a random vector with (11·11 2 is the Euclidean norm) 
MIIOoll 2 < oo. Denote by mo = MOo and ')'(0) = M(Oo- mo)(Oo- mo)*. 
Assume also that BB* is a positive definite matrix. Then the Kalman filter 
(see Chapter 10), subject to the initial conditions m0 and 'Y(O), 

dmt = amtdt + 'Y(t)A*(BB*)- 1(det- Amtdt) 

d~~t) = a')'(t) + 'Y(t)a* + bb*- 'Y(t)A*(BB*)-1A'Y(t) (16.158) 

creates the optimal (in the mean square sense) linear filtering estimate mt 
for Ot: mt = M(Otle[o,tj) and the matrix of filtering errors 

'Y(t) = M(Ot- mt)(Ot- mt)*. 
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If Bo is a Gaussian vector, then mt coincides with the conditional expectation 
for Bt given the u-algebra generated by ero,t): mt = M(Btlero,tJ)· 

A crucial role in stabilizing the Kalman filter is played by the properties 
of the Ricatti equation for 7(t). By Theorem 16.2, limt-+oo 7(t) = "Y exists 
provided that the matrices 

G 1 - ( :a ) and G2 = ( b ab ... ak- 1b) 
- AaL1 

have rank equal to k. Moreover, the matrix "Y is the unique solution, in the 
class of positive definite matrices, of the algebraic equation 

a"Y +')'a*+ bb* - 7A*(BB*)-1 kt = 0, {16.159) 

so that ')'is independent of ')'{0). 
The next lemma plays an important role in the asymptotic analysis of the 

Kalman filter under wrong initial conditions. 

Lemma 16.11. Assume that the matrices Gt. G2 have rank equal to k. Then 
the matrix a- 7A*(BB*)- 1 A has eigenvalues with negative real parts. 

PROOF. Denote a- "YA*(BB*)- 1A by K and rewrite {16.159) in the form 

{16.160) 

Let cp be a left eigenvector of K corresponding to an eigenvalue>.(>.*). Then, 
multiplying {16.160} from the left by cp and from the right by cp*, we obtain 

{2Re >.)cp')'cp* + cpbb*cp* + cp')'A*(BB*)-1 kycp* = 0 {16.161) 

which implies Re >. $ 0. We show that, under the assumption made, 

Re>. < 0. {16.162) 

Assume Re>. = 0. Then cpb = 0 and cp')'A*(BB*)-112 = 0 and so 
cp')'A*(BB*)-1 A= 0. The definition of K then implies that cpK =cpa, that is 
cp (cp*) is also a left {right} eigenvector of a (a*). We now use the assumption 
that the rank of G2 is k. By this assumption the matrix G2G2 is nonsingular. 
On the other hand, the vector cp* is a right eigenvector of this matrix with 
eigenvalue zero. The contradiction obtained validates {16.162). D 
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16.5.1 Asymptotically Optimal Kalman Filter. Assume mo and -y(O) are un­
known. Let the linear filter (16.158) be supplied with wrong initial conditions 
mo and -y, where 'Y is the limit value of -y(t), t -+ oo. In this case, we arrive 
at a Kalman type filter 

(16.163) 

Theorem 16.8. Assume that the mnk of G1 and G2 is equal to k. Then 

PROOF. Since 

it suffices to show that 

M(Ot- mt)(Ot- mt)* 
+M(mt- mt)(mt- mt)* 

(16.164) 

Although the random vector Oo is not assumed to be Gaussian but, since in 
this proof only the second moments for random objects are used, one can as­
sume, without loss of generality, that 00 is Gaussian with parameters m0 and 
-y(O). Then mt = M(Otle[o,tj) and therefore (see Chapter 10, Subsection 10.2) 

W t = {t det - Ams ds 
lo B 

(16.165) 

is an innovation Wiener process. 
Putting Llt = mt - mt and taking into account (16.165), we find 

(16.166) 

Denote Vt = M LltLl;. Using the Ito formula, applied to LltLl;, we arrive at 
the matrix differential equation 

dV. 
dtt = Kvt + VtK* + ['Y(t)- -yJA*(BB*)- 1 A[-y(t)- -y]*. 

Since ['Y(t) - 'Y] -+ 0, t -+ oo and since by Lemma 16.11 the eigenvalues of 
the matrix K lie within the unit circle, we obtain Vt -+ 0, t -+ oo. 0 
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16.5.2 Kalman Model with Non-Gaussian Initial Conditions. Assume Bois a 
non-Gaussian random vector such that MIIBoll 2 < oo. In this case we also 
compare the estimate produced by the filter given in (16.163) with the optimal 
one 7rt = M{ Ble[o,t]) defined by the Kushner-Zakai filter (see Chapter 8) under 
the known distribution of Bo. If the assumptions of Theorem 16.8 are fulfilled, 
we apply a Kalman type filter {16.163) and obtain the filtering estimate mt. 
In parallel with this estimate, the optimal one 7rt = M{Btle[o,tj) is defined by 
the Kushner-Zakai filter {see Chapter 8). 

Theorem 16.9. Let the assumptions of Theorem 16.8 be fulfilled. Then 

1. limt-+oo M(mt - 7rt)(mt - 7rt)* = O; 
2. Bt - mt, t -t oo converges in distribution to a zero-mean Gaussian vector 

with covariance matrix 'Y. 

PROOF. 1. Evidently only limt-+oo M(Bt-7rt)(Bt-7rt)* = 'Y has to be checked. 
To this end, we use upper and lower bounds {for nonnegative definite matrices 
D', D", D' ~ D" is taken to mean that D" - D' is a nonnegative definite 
matrix): 

( )( )* { ~ M(Bt- iht)(Bt - mt)* 
M Bt - 7rt Bt - 7rt > M(B _ 1ro)(O _ 1ro)* 

- t t t t ' 

where 7rf = M(BtiBo,e[o,tj). Although Bois a non-Gaussian vector, the condi­
tional distribution P(Bt ~ xiBo, e[o,tJ) is Gaussian (P-a.s.) (see Chapter 13) 
and moreover 7rf is defined by the linear filter {16.158) subject to the initial 
conditions Bo and 0 {zero matrix), respectively. Denote by "f0 (t) the solution 
of the corresponding Ricatti equation. Under the assumptions of the theo­
rem limt-+oo "f0 (t) = 'Y· Coupled with Theorem 16.8 this yields the required 
conclusion. 

2. Bt -7rf, t -t oo converges in distribution to a zero-mean Gaussian vector 
with covariance matrix 'Y. Therefore, the required statement holds provided 
that limt-+oo Mi11rf- mtll 2 = 0 {see Theorem 4.1 in [19]). It is clear that this 
is implied by 

M(mt - 1rf}(mt - 1rf}* 

M(Bt - iht)(Bt - iht)* - M(Bt- 11'f)(Bt - 1rf}*. 

0 



218 16. Application of Optimal Nonlinear Filtering Equations 

Notes and References. 1 

16.1. The proof of Theorem 16.1 is essentially based on the results related 
to Chapter 12, concerning the equations for a posteriori means and variances in 
the case of conditionally Gaussian processes (see also Meditch [227], and Wonham 
(313]). 

16.2. Theorem 16.2 was obtained by Kalman [139]. 
16.3. The results presented here can be found in the paper of Kadota, Zakai 

and Ziv [126]. 
16.4. The transmission of a Gaussian random variable though the channel 

with feedback has been discussed in Shalkwijk and Kailath [274], Zigangirov (335], 
Djashkov and Pinsker (54], Khasminskii (see problem 72 in the supplementary ma­
terial in [147]) and Nevelson and Khasminskii [243]. The proof of Theorem 16.4 
based on the employment of optimal nonlinear filtering equations is due to the au­
thors and Katyshev (diploma paper). The proof of Lemma 16.7 and Theorem 165 is 
due to Ihara (95]. Theorem 16.6 has been proved by the authors, and Theorem 16.7 
by Liptser [193]. 

Notes and References. 2 

16.1. An analysis of the sensitivity of a criterion in the linear quadratic Gaussian 
control problem can be found in Kabanov and Di Masi (112]. Singularly perturbed 
two-scaled stochastic control models are investigated in Kabanov and Pergamen­
shchikov [121, 122] and in Kabanov and Runggaldier [123]. A control problem for a 
counting process is considered in Kabanov [111]. 

16.4. A control problem with incomplete data and information processing, closed 
in some sense to a coding procedure, can be found in Kuznetsov, Liptser and Sere­
brovski [182]. 

16.5. A problem of stability for nonlinear filters with correct initial conditions 
is studied by Kunita [168, 170] and Stettner [294]. For the case of wrong initial 
conditions for both linear and nonlinear filters see Ocone and Pardoux [249], Delyon 
and Zeitouni [52], Atar and Zeitouni [9, 10], see also Budhiraja and Ocone [33], 
Makowski and Sowers [224]. 



17. Parameter Estimation and Testing of 
Statistical Hypotheses for Diffusion-Type 
Processes 

17.1 Maximum Likelihood Method for Coefficients 
of Linear Regression 

11.1.1. Let e = (et), 0 :5 t :5 T, be a random process with 

N 

et = L ai(t)Bi + t]t, 
i=l 

(17.1) 

where B = ( 01, ... , B N) is a vector column of the unknown parameters, 
-oo < Bi < oo, i = 1, ... , N, and at = (a1 (t), ... , aw(t)) is a known vector 
function with the measurable deterministic components ai(t), i = 1, ... , N. 
The random process TJ = (TJt), -oo < t < oo, is assumed stationary, Mt]o = 0, 
Gaussian, with the rational spectral density 

where 
n-1 

Pn-l(z) = Lb;zi, 
j=O 

!(A)= I Pn-l(iA) 12 

Qn(iA) ' 

n 

bn-1 :f: 0, Qn(z) = La;zi, an= 1 
j=O 

and the roots of the equation Qn(z) = 0 lie within the left half-plane. 

(17.2) 

Starting from the optimal filtering equations deduced earlier, we shall 
find maximum likelihood estimates of the vector B from the observations 
eJ' = { es, 0 :5 s :5 T}. 

11.1.2. We shall assume that the functions a;(t) have derivatives1 g;(t), j = 
1, ... ,N, and 

1T gJ(t)dt < 00. (17.3) 

According to Theorem 15.4, the process 1J = ("'t), 0 :5 t :5 T, is a compo­
nent of then-dimensional process ("'l(t), ... , "'n(t)}, where "'t = "ll(t), satis­
fying the equations 

1 More precisely, a;(t) = J: g;(s)ds. 

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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dTJ;(t) = 'f/;+1(t)dt + f3;dWt, j = 1, ... , n- 1, {17.4) 

n-1 

d'fJn(t) = - L a;'f/;+1 (t)dt + f3ndWt, {17.5) 
j=O 

where W = (Wt), 0 :::; t :::; T, is a Wiener process independent of 77;{0), 
j = 1, ... , n, and the numbers (3;, j = 1, ... , N, are given by the formulae 

j-1 

fJ1 = bn-11 f3; = bn-1- :E f3ian-j+i· j = 2, ... , n. 
i=1 

According to the assumption, fJ1 = bn-1 "I 0 and 

det = [t,gi(t)Oi + 772(t)] dt + fJ1dWt. {17.6) 

Hence, if 9t = (g1 (t), ... , 9N(t)) is a vector row function, and 0 = {01. ... , ON) 
is a vector column, then 

{17.7) 

and 

{17.8) 

In the system of equations given by {17.7) and {17.8), the components 
772(t), ... , 17n(t) are unobservable. The process et is observable. 

We shall fix some 0 E JRN and denote by 

m~(t,e) = M[77;(t)les,O::;s::;t], j=2, ... ,n, 
'Yf;(t) = M[(77;(t)-mf{t,e))(77;(t)-m~{t.e))], i,j=2, ... ,n, 

the associated processes et and 77; ( t). 
According to the equations of Theorem 10.3, the covariances 'Yf; ( t) do not 

depend on 0. Here 'Yi;(t) = 'Yf;(t) satisfy {10.82) and 

dm~(t,e) = m~+l(t,e)dt+ (31(3; ;~'Y2;(t)[det- (gtO+mg(t,e))dt], 

j = 2, ... , n- 1. {17.9) 
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dm~(t, e) = [-ao(et- atB)-I: ajm~+l (t,e)] dt 
J=l 

+(JdJn ;r"2n(t) [det- (gtB + m~(t,e))dt]. (17.10) 

Next, by Theorem 7.17, the process e = (et), 0 :S t :S T, permits the 
differential 

(J -det = [gtB + m2 (t,e)Jdt + fJ1dWt, (17.11) 

where W = (Wt, :Ff) is a Wiener process and 

Along with the process e = (et), 0:::; t :S T, we shall consider the process 

(17.12) 

and the processes m~(t, e), j = 2, ... 'n-1, satisfying the system of equations 
given by (17.9) and (17.10) where, instead of e, the process e is used. 

Let 1-le and ji, be measures on ( Cr, Br) corresponding2 to the processes 
e = (et) and e = (et), 0 :S t :S T, defined by (17.11) and (17.12). Due to 
Theorem 7.19, Lemma 4.10 and the fact that eo and eo= 171(0) are Gaussian 
random variables (Deo = Deo > 0), the measures J.t8 and ji, are equivalent 
and 

where 82 = Me5 (= Mry~(O)). 
Let us examine the structure of the functions m~(t, e) occurring in (17.13). 

It is easy to deduce from Equations (17.9) and (17.10)3 that 

(17.14) 

where the vo(t, e) are ..rff-measurable for each t, and 

v1 (t) = (vu (t), ... , vlN(t)) 

is a deterministic vector (row) function. 

2 BT is the Borel a-algebra in the space CT of continuous functions x = (x.), 
0 < s < T. 

3 Fo~ th; pertinent considerations for the case of discrete time, see Section 14.2. 



222 17. Parameter Estimation and Testing of Statistical Hypotheses 

We obtain from (17.13) and (17.14) 

d/-L8 (i:) _ { eoao9 _! (ao9)2 {T (gt + 111(t))8 + llo(t, e) ric 

djl .. - exp 82 2 82 + } o {3~ ""-t 

-~ 1T [(gt + v1(t)~ + vo(t,e)J2 dt }· (17.15) 

Suppose that the matrix 

D = a(iao + {T [gt + 111(t)]*[gt + v1(t)] dt 
T 82 lo {3~ 

(17.16) 

is positive definite. Then by differentiating we find from ( 17.15) that the 
vector 

OT(e) = n:r1 { a~;o + foT [gt + ;{t)]* (df.t -vo(t,e)dt)} (17.17) 

maximizes (17.15) and, consequently, is the maximum likelihood estimate of 
the vector 9. 

17.1.3. We examine now some properties of the estimates OT(e). It follows 
from (17.16), (17.17) and (17.11) that 

OT(e) = D:r1 { 008~09 + 1T [gt + ;;'t)]* [gt + ll1(t)]9dt} 

+D_1 {a0ao711(0) + t [gt +v1(t)]* dW} 
T 82 lo {3~ t 

= 9 + D-1 {a(iao711(0) + ft [gt + ll1(t)]* dW } (17.18) 
T 82 lo {3~ t ' 

and, therefore, 
MoT(e) = 9, 

M[(OT(e)- 9)(0T(e)- 9)*] = D"T1. 
After simple transformations we find that 

d; (e) = exp { 9* DTOT(e) - ~9* DT9} . 

(17.19) 
(17.20) 

(17.21) 

It follows from this that the estimate OT(e) is a sufficient statistic (see 
Section 1.5). Finally, as in the case of discrete time (see Section 14.2), it can 
be shown that the estimate OT(e) is efficient. 

Thus we have the following theorem. 

Theorem 17 .1. Let the matrix DT defined by ( 17.16) be positive definite. 
Then {17.17} gives the maximum likelihood estimate OT(e) of the vector 9 in 
the scheme given by {17.1}. This estimate is unbiased and efficient. 
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17.1.4. 
EXAMPLE. Let us estimate the mean B of the stationary Gaussian process 
et. -oo < t < oo, with spectral density 

I i.X + 1 12 
f(.X)= (i.X) 2 +i.X+1 ' 

from the observations eJ' = { es, 0 :::; s :::; T}. 
Let TJt = et- B. Then TJt is stationary Gaussian with MTJt = 0 and spectral 

density j(.X). By Theorem 15.4, the process TJt is a component of the two­
dimensional process ( TJ1 ( t), TJ2 ( t)), TJt = TJ1 ( t), satisfying the equations 

and, therefore, 

dTJ1(t) = TJ2(t)dt + dWt, 
dTJ2(t) = [-TJ1(t)- TJ2(t)]dt, 

det = TJ2(t)dt + dWt, 
dT]2 = [B-et - TJ2(t)Jdt. 

For each fixed B E JR.1 , let 

m6 (t,e) = M(TJ2(t)1Fl) and 'Y(t) = M[TJ2(t)- m 6 (t,e)f 

By Theorem 10.3 and the equations for the processes (e(t), TJ2(t)), we obtain 
the following equations for m6 (t,e) and 'Y(t): 

dm6 (t,e) = [B-6 -m6(t,e)Jdt+'Y(t)[~t -m6 (t,e)dt], 
i'(t) = -2'Y(t) - 'Y2(t). 

These equations can be solved under the initial conditions 

m6 (o,e) = M[TJ2(0)Jeo] = M[TJ2(0)J'T71(0) +B], 
'Y(O) = M[TJ2(0) - m6 (0, e)J2, 

which can be derived from the theorem on normal correlation (Theorem 13.1). 
According to that theorem, 

o(O c) = M TJ1 (O)TJ2(0) (c _ B) 
m ·~ MTJ~(O) ~o ' 

(O) = M 2(0) = (MTJ1(0)TJ2(0))2 
'Y T/2 MTJHO) 

In order to find the moments Mry~(O), MTJ~(O), MTJ1(0)TJ2(0) we shall take 
advantage of the stationarity of the process (TJ1(t),TJ2(t)), -oo < t < oo, and 
of the fact that the matrix 
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r = M ( 11~(t) '111(t)112(t)) 
- 'Tll(t)'T12(t) 'Tl~(t) 

is the unique solution of the system of equations (Theorem 15.4) 

AF + r A*+ BB* = 0 

with 

We find from this that 

2( 2 1 M711 0)- 1, M712(0) = 2. 

1 8 1 1 
M711(0)712(0) = -2, m (o,e) = 2(0- eo), 1'(0) = 4· 

Thus, it is easy to verify that 

m 8(t,e) = exp{ -1t(1 +'Y(s))ds} 

X { ~(0- eo)+ 1t exp [18 
(1 + 'Y(u))du] (0- e8)ds 

+ 1t exp [1
8

(1 +'Y(u))du] /'8de8 }· 

It follows from this formula (see (17.14)) that 

m(t, e) = vo(t, e) + Vl (t)O, 

and it is easy to compute that 

vo(t,e) = exp { -1t (1 + 'Y(s))ds} {-~ -1t exp [1 8 
(1 + 'Y(u))du] eudu 

+ 1t exp [1 8 
(1 + 'Y( u))du] 'Yudeu}, 

v1(t) = exp{-1t(1+')'(s))ds}{~+ 1texp[18 (1+'Y(u))du]ds}. 

Since Deo = M71~(0) = 1, from (17.16) we see that DT = 1+ J{ v~(t)dt > 
0 (in our case Yt = 0) and that the maximum likelihood estimate OT(e) for 
MOt of the process et is given by the formula 

OT(e) = eo+ J{ Vl (t)(det - vo(t, e)dt) 
1 + J{ v~(t)dt 
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17.2 Parameter Estimation of the Drift Coefficient 
for Diffusion-Type Processes 

17.2.1. Let 0 be an unknown parameter, -oo < 0 < oo, and let e = (et,Ft), 
0 $ t $ T, be the diffusion-type process with the differential 

(17.22) 

where W = (Wt,Ft) is a Wiener process and at(x) is a nonanticipative 
functional, 0 $ t $ T, x E Cr. 

Consider the problem of estimating the parameter () in the drift coefficient 
Oat(e) from the observations eJ' = {e8 ,s $ T}. 

We shall assume that the functionals at(x) satisfy the conditions 

Po (1T a~(e)dt < oo) =Po (for a~(W)dt < oo) = 1, (17.23) 

where the index () in Po emphasizes the fact that the distribution of the 
process e is being considered for the prescribed value 0. 

According to Theorem 7.7, the measures p.~ and J.Lw (p.~(B) = Po{w:e E}, 
BE Br), defined on (Cr,Br) are equivalent and 

(17.24) 

It follows from this that, under the condition Po{f{ a~(e)dt > 0} = 1, 
() E R 1, the maximum likelihood estimate Or( e) is given by the formula 

Br(e) = fo: at(e)det. 
fo a~(e)dt 

Let us investigate some properties of this estimate. 

Theorem 17.2. Suppose the following conditions are satisfied: 

sup fT Moa:6(e)dt < oo, 
o1~o~o2 lo 

for any Ot. 02 (-oo < 01 < 02 < ooJ. 

(17.25) 

(17.26) 

(17.27) 

Then the bias br(O) = Mo[Or(e)- OJ and the mean square error Br(O) = 
Mo[OT(e) - 0] 2 are defined by the formulae 
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( 
T )-1 

bT(B) = :0Me lo a~(t;)dt , 

( 
T ) - 1 2 ( T ) -2 

Br(B)=Melo a~(t;)dt +:02Me lo a~(t;)dt 

17. 2. 2. As a preliminary we prove the following two lemmas. 

Lemma 17.1. Let 8 = 8(x) be a BT-measurable function with 

sup Me84 (t;) < oo 
e1 ::;e::;e2 

for any 81.82 (-oo < 81 < 82 < oo). If 

sup Me fT a~(t;)dt < oo, -oo < 81 < 82 < oo, 
e1 ::;e::;o2 10 

then the function Me8(t;) is differentiable over{} and 

PROOF. Let 

(17.28) 

(17.29) 

(17.30) 

(17.31) 

dp,e { {T {}2 {T } 
cp(B, W) = dJ.L! (W) = exp {} lo at(W)dWt- 2 Jo a~(W)dt . 

The function cp(B, W) is differentiable over{} and (P-a.s.) 

a<p(B, W) [ {T {T 2 l {){} = Jo at(W)dWt- {} Jo at (W)dt cp(B, W). (17.32) 

Let -oo < 81 < 82 < oo. Then, due to (17.32), 

Me2 8(t;)- Me1 8(t;) = M8(W)[cp(B2, W)- <p(BI. W)] 

= M8(W) fo~2 [loT at(W)dWt- {}loT a~(W)dt] <p(B, W)dB. 

Note that, according to the assumptions of the lemma, 
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!.~' M O(W) [f.T a,(W)dW,- B J.T a/(W)dt] <p(B, W)dB 

~ f M, low [{ a,(e)<J<,- B { a1<eldt]l dB 

= fe~2 Mol8(~) 1T at(~)dWtl d(} 

:0 J.:' [M,O'(e)M, J.T a1(e)dt]
112 

dB< oo. 

Hence, by the Fubini theorem, 

M8(W) fe~2 [1T at(W)dWt- (} 1T a~(W)dt] cp(B, W)d(} 

= l~2 Mo8(~) [1T at(~)d~t- (} 1T a~(~)dt] d(} 

= l~2 M8 [8(~) 1T at(~)dWtl dB, 

and, therefore, 

(17.33) 

It follows from this that Mo8(~) is an absolutely continuous function. We 
shall show now that, in (17.33), 

is continuous in (}. 
Let 

Then 

and to prove continuity it suffices to establish that 
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(17.34) 

for any fh < 82. Indeed, when these conditions are satisfied the functions 
Me~i(e), i = 1, 2, as has been shown, will be absolutely continuous and, 
consequently, continuous. 

We have 

where, due to the HOlder inequality (p = 4, q = 4/3), 

M, [t a,({)d{.r 

~ M, [J.T a,({)dW, + 0 t a1({)dt] 
4 

,;; 23 [M• ({ a,({)dw,)' +U'M, ({ a1({)dt) '] 

~ 23 [36T 1T Meat(e)dt+04T 3 1T Ma~(e)dt]. 
(Here the estimate 

(17.35) 

proved in Lemma 4.12 is used). The required estimate of (17.34) with i = 1 
follows from (17.35) and (17.30). The estimate of (17.34) with i = 2 can be 
established analogously. 

Lemma 17.2. Let ~(x) be a 8T-measurable function and let 

sup Me~8 (e) < oo 

for any 81 < 82. If 

91~9~92 

sup 'Me fT a:6 (e)dt < oo, 
111~~~~~~2 lo 

then the function Me~(e) is twice differentiable over 0 and 

(17.36) 

(17.37) 
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(17.38) 

PROOF. Due to (17.31) and the definition of the functions 81(e) and 82 (e) 
(see the proof of Lemma 17.1), 

d 
d()M98(e) = M981(e)- ()M982(e). (17.39) 

Hence to prove the existence of the second derivative d2 M98(e)Jd()2 it is 
enough to verify, due to Lemma 17.1, that 

sup M98f(e) < oo, i = 1, 2, (17.40) 
9t~9~92 

for any ()1 < ()2· 

Due to the Cauchy-Schwarz inequality, 

Using the Holder inequality (p = 8, q = 8/7) and Lemma 4.12, we find 

that 

Mo ([ a,(()d(, )' 

Mo [t a,(C)dW.+ 8 { a1<c}dt r 
< 27 [M• ({ a,({)dw,) 

8 
+li'Mo ([ a1(€)dt) '] 

< 27 [284T 3 for Ma~(e)dt+e8T7 for M9at6 (e)dt]. (17.41) 

Analogously, it can be shown that 

Mob~(€) ,; [ Mo58(C)M, ([ ai(()dt) ']''' 

< [ Mo58(()T'lr Moa)6(0dt ]''' 

We obtain the required inequalities given by (17.40) from the above inequal­

ities and the assumptions of the lemma. To complete the proof it remains 

only to note that (17.38) follows from (17.39) and (17.31). 0 
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17.2.3. 
PROOF OF THEOREM 17.2. Due to (17.22) and (17.25) 

BT(~) = () + foTTat(~)dWt. 
J0 a~(~)dt 

Hence the bias 

bT(B) = Mo[BT(~)- B) =Me I:J'Tat~~)dWt 
fo at (~)dt 

By the assumptions of the theorem and (17.31), 

M. J: at(~)dWt = !:_M. [ {T a2(~)dt]-1 
o foT a~(~)dt d() o Jo t ' 

which, together with (17.43), proves (17.28). 
Next we obtain from (17.42) 

But, by Lemma 17.2, 

d2 Mo[f0T a~(~)dtt2 

d()2 

~ Me [t ai(e)dtr { (t a,(e)dW,)'-t ai(e)dt} 

~ Br(9) -M [t a1(e)dtr, 
which is equivalent to (17.29). 

(17.42) 

(17.43) 

D 

Note. A more detailed investigation of the values of bT(B) and BT(B) for 
the case where at(x) = Xt is carried out in the next section. 

17.3 Parameter Estimation of the Drift Coefficient 
for a One-Dimensional Gaussian Process 

17.3.1. We shall assume that the observable process~= (~t,Ft), 0:::; t:::; T, 
has the differential 

(17.44) 
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(compare with (17.22)), where 0 is the unknown parameter, -oo < 0 < oo. 
According to (17.25), the maximum likelihood estimate 

BT(~) = J{ ~td~t = (j,- T , 
J{ eidt 2 foT (fdt 

(17.45) 

since, due to the Ito formula, J{ ~t~t = !l~f.- TJ. 
Let us calculate the bias bT(O) = Mo(BT(~) - 0) and the mean square 

error BT( 0) = Mo [BT(~) - 0]2. 
We introduce the auxiliary function 

[ ]

1/2 

() 2../02 + 2a 
PT ,a = ( ) ( Jo2 + 2a + O)e-v'042aT + ( Jo2 + 2a- O)ev'042aT 

(17.46) 
Theorem 17.3. The bias bT(O) and the mean square error BT(O) are given 
by the formulae 

bT(O) = 100 :o { exp (- 0~) PT(O, a)} da (17.47) 

BT(O) = exp (- 0~) loT PT(O,a)da 

+loT a ::2 { exp (- 0~) PT(O, a)} da. (17.48) 

PROOF. In order to find the values of bT(O) and BT(O) we shall take advan­

tage of (17.28) and (17.29), obtained in Theorem 17.2. As a preliminary we 

shall verify that the assumptions of this theorem are satisfied. 
The process ~ = (~t, :Ft), 0 :::; t :::; T, with differential given by (17.44) is 

Gaussian with Mo~t = 0 and variance Ft(O) = Mo(f, satisfying the equation 
(see Theorem 15.1) 

dFt(O) = 20r, (O) + 1 
dt t ' 

Fo(O) = 0. 

We find from this 

Ft(O) = 2
1
0 (e20' -1), 

which implies (17.26) of Theorem 17.2. 
To verify (17.27) and to compute the mathematical expectations 

Mo[f0T ~fdtJ- 1 and Mo[f0T ~fdtJ- 2 used in finding bT(O) and BT(O), we shall 
proceed as follows. 
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Let a> 0 and 

1/Jr(B, a) = Mo exp {-a 1T ~fdt} . {17.49) 

If we assume 

100 ak-11/lr(B,a)da < oo, -oo < () < oo, k = 1,2, ... , {17.50) 

then the moments Mo[f0T ~fdttk, k-1, 2, ... , can be found using the function 
1/Jr(B, a): 

M, [f e:dtr• ~ (k ~ 1)! f.oo a'- 1V>T(8,a)da. {17.51) 

Actually, if for any integer k = 1, 2, ... , {17.50) is satisfied, then, by the 
Fubini theorem, 

100 ak- 11/lr(B,a)da = 100 ak-1Moexp (-a 1T ~fdt) da 

= Mo100 ak- 1 exp (-a 1T ~fdt) da 

~ (k -1)!Mo (f.T E:dt r•, k ~ 1, 2, .... 

Therefore, let us find the functions 1/Jr( (),a) and verify the validity of the 
inequalities {17.50). 

17.3.2. 
Lemma 17 .3. The function 

1/lr(B,a) = exp (- 8~) Pr(B,a), 

where pr(B,a) is defined in {17.46}. 

{17.52) 

PROOF. Let .A= ../82 + 2a, () :5 a< oo. Denote by J.Leo and J.Lt;.A the measures 
on ( Cr, Br) corresponding to the processes ~6 and e having the differentials 

~: = o~fdt + dWt, 
d~t = >.~t dt + dWt, 

~g = 0, 

~G = o. 
According to Theorem 7.19, the measures J.Leo and J.Lt;,A are equivalent and 



17.3 Parameter Estimation of the Drift Coefficient 233 

Hence, 

1/JT(B, a) = Me exp {-a 1T t;}dt} = M exp {-a 1T (f.f)2dt} 

= M exp{ -a 1T (f.t') 2dt + (B- A) 1T f.t'df.t' 

(}2 ; A21T (f.t')2dt}. (17.53) 

Using 
(17.54) 

we obtain, finally, 

1/JT(B, a) = M exp { [B- A]1T f.Nf.t'} 

= M exp { (}; A[(f.~) 2 - T]} 
= exp (A;(} T) M exp {(};A (f.~) 2 }. 

The random variable f.~ is Gaussian, N(O, 1/2A(e2>.T -1)) and, therefore 

(Lemma 11.6), 

{ (} - A >. 2 } [ 2A ] 112 

M exp -2-(f.T) = ((A- B)(e2>.T -1) + 2A 

This, together with (17.53), leads to the following representation: 

_ (>.-8/2)T 2A [ ] 
1/2 

1/JT(B,a)-e (A-B)(e2>.T_1)+2A ' (17.55) 

where, according to (17.54), A = J2a + 02 • After simple transformations we 

obtain the desired representation, (17.52), from (17.55). D 

Note. If(}= 0, a= !, then 

1/JT ( 0, ~) = M exp { -~ 1T Wt2dt} = PT ( 0, ~) 

= VeT:e-T = ~ 
(compare with the example from Section 7.7). 
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COMPLETION OF THE PROOF OF THEOREM 17.3. By analyzing (17.52), 
we find that the inequalities given by (17.50) are satisfied for any k = 1, 2, .... 
Hence, (17.47) and (17.48) follow from (17.28), (17.29), (17.51) and (17.52). 
0 

17.3.3. 
Theorem 17.4. The maximum likelihood estimate Br(e) is strongly consis­
tent, i.e., for each 0, -oo < 0 < oo, 

Po { lim Or( e) = o} = 1. T-too 
(17.56) 

PROOF. We obtain from (17.49) 

Me exp { -1T eidt} = 1/Jr(O, 1), 

where 

{( 0 ~) } 1/Jr(O, 1) = exp -2- 2 T 

{ }
1/2 

2v'2 + 02 

x ( y'02 + 2- 0) + ( y'02 + 2 + 0) exp( -2Tv'2 + 02) 

Since limr-too '1/Jr(O, 1) = 0, -oo < 0 < oo, then 

Po (100 
eidt = oo) = 1. (17.57) 

It is seen that 
rT c dW, 

Br(e) = o + Jo <,t t 
for (fdt 

(17.58) 

Hence, in order to prove (17.56) it suffices to show that 

Po (lim J{ etdWt = o) = 1, -oo < 0 < oo. 
T-too f{ eldt 

This follows from the following general statement. 

Lemma 17.4. Let the Wiener process W = (Wt,Ft), t 2: 0, be given on a 
probability space and let there also be given the random process f = (It, Ft), 
t 2: 0, such that: 

(1} 

P (1T #dt < oo) = 1, 0 < T < oo; 
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(2) 

p (100 
ffdt = 00) = 1. 

Then the random process z = (zs,9s), s :=:: 0, with Z8 = JC:' ftdWt, 98 = :Fr,, 

where r8 = inf(t: J~ f~du > s), is a Wiener process and with probability one4 

rtf dW. 
lim Jo u u = 0. 

t--+oo J; f~du (17.59) 

PROOF. Let Xt denote J; fudWu. By the Ito formula we obtain the following 
representation for Zt = xr.: 

Then by a change of variables in the Lebesgue integral 

(17.60) 

From the above and the equation 

we obtain the equation for Vi= M(ei.X(z.-z,)l9s), t > s: 

>.21t Vi = 1 - 2 
8 

Vudu, 

i.e., M(ei.X(z.-z,)IQs) = e-.X2(t-s)/2 (P-a.s.). 

Thus (zt, 9t), t :=:: 0, is a Gaussian martingale with M[(zt -z8 ) 219s] = t-s 
which has right continuous trajectories having limits to the left. 

By virtue of Theorem 1.10 and the equation M(zt -z8 ) 4 = 3(t-s)2 which 
follows from the normality of the variable Zt- z8 with M(zt- z8 ) = 0 and 
M(zt - z8 ) 2 = t - s, the process (zt, 9t), t ~ 0 has continuous trajectories 
(more precisely continuous modification). 

Consequently, (zt, 9t), t :=:: 0, is a Wiener process (see Theorem 4.1). 
Next let us prove (17.59). Let 

4 Under J; fudWu a continuous modification of the stochastic integral is under­

stood which exists for any f E Pt according to (4.47). 
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and define 7"8 = inf{t : J~ f~du > s}. Since 7"8 , s ~ 0, is a right continu­
ous nondecreasing function of s (Lemma 5.6), to prove (17.59) it suffices to 
establish that with probability one rJr. -+ 0, s -+ oo. But for s > 0, 

J;• fudWu Z 8 

T"Jr, = fTs J2d = -, 
Jo u u s 

and the law of the iterated logarithm (1.35) implies that with probability one 
lims-+oo Z 8 / s = 0. 

Lemma 17.4 and, therefore, Theorem 17.4, also, have been proved. 0 

17.4 Two-Dimensional Gaussian Markov Processes: 
Parameter Estimation 

11.4.1. Suppose that on the interval 0 :::; t :::; T we observe the two­
dimensional Gaussian Markov stationary process et = (6 (t), 6(t)) with zero 
mean M6(t) = M6(t) = 0, -oo < t < oo, and differential 

(17.61) 

Here Wt = (W1(t), W2(t)) is a Wiener process with independent components 
independent of eo, and 

(17.62) 

is a matrix composed of the coordinates of the vector(}= (B1, B2) with (}1 > 0 
and -oo < (}2 < 00 where (}2 is to be estimated from the observations eif = 
{ es, 0 :::; s :::; T}. 

We shall construct the maximum likelihood estimates 01 (T, e) and 02 (T, e) 
of the unknown parameters B1 and B2 

Theorem 17.5. 

{1} The maximum likelihood estimate 01 (T, e) is the solution of the equation 

01 (~,e) - 2o1(T,e) [e~(o) + e~(o) + ~ foT re~(t) + e~(t)Jdt] 
= foTre1(t)de1(t) +6(t)d6(t)J. (17.63) 

{2} The estimate 

02 (r,e) = J{[6(t)d6(t)- 6(t)d6(t)J 

J{re?(t) + e~(t)Jdt 
(17.64) 
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{9) The conditional distribution5 

is (P8 -a.s.) Gaussian with the pammeters 
~ 2 2 Me[02(T, e)lel (t) + e2(t), t ~ TJ = o2, (17.65) 

M,[(li,(t, {) - 8)21{1{t) +{~(t), t ,; Tj ~ [t ({/(t) Hi{t))dtr 

(17.66) 
In particular, the mndom variable distribution 

does not depend upon 0 = (011 02 ) and is Gaussian, N(O, 1). 

11.4.2. Before proving this theorem we shall make two auxiliary statements. 

Lemma 17.5. For each t, 0 ~ t ~ T, the Gaussian vector (e1(t), 6(t)) has 
independent components with Dei(Y) := 1/2fh, i = 1, 2. 

PROOF. We shall note first of all that the assumption of the stationarity of 
the process et, -oo < t < oo, implies Ot > 0, since the eigenvalues of the 
matrix A must lie within the left-half plane. 

Let r := Mete;. Then by Theorem 15.1, the matrix 

r = (ru r12) 
Ft2 n2 

is the unique solution of the equation Ar + r A*+ E = 0, i.e., 

20tFt2- 201F22 + 1 = 0. 

From this we find ru = r22 = 1/20t. Ft2 = 0. D 

Corollary. The distribution function 

5 P6 denotes the probability distribution corresponding to a fixed (J = ( (}1 , (}2 ). 
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has the density 

(17.67) 

To formulate the following statement we shall introduce some notation. 
Let ( Cf, Bf.) ( CT x CT, BT x Bt) be the measurable space of the functions 

c = { ( c1 (t), c2(t)), 0 :::; t :::; T} where each function ci(t), i = 1, 2, is continu­
ous. We shall denote the functions in Cf with c1(0) = x1, c2(0) = x2 by ex 
where x = (x 17 x2). Let J.L~ be the measure on (C:j.,B'f) corresponding to the 
process.;= (.;t), 0 :::; r :::; T with the prescribed()= (()~, ()2), and let J.Lwx and 
J.L~x be the measures on ( C:j., B'f) corresponding to the process Wt = x + Wt 
(i.e., W{(t) =.; + Wi(t), i = 1, 2) and the process.;"' with the differential 

d.;;= A.;fdt + dWt, eo = x. (17.68) 

If the set BE B'f, then 

J.L~(r) = { J.L~x (B)fo(x~, x2)dx1dx2. 
l{xEIR2 :c"'EB} 

(17.69) 

Indeed, the solutions of Equations (17.61) and (17.68) are given by the 
formulae 

respectively. 

.;t = eAt [eo+ lot e-AsdWs] , 

.;; = eAt [x +lot e-Asdws], 

Hence, from the independence of the random variables eo and I:{ e-Asdws, 
it follows that 

Po{.; E Bleo = x} = Po{ ,;x E B}J.L~x (B), 

which obviously proves (17.69). 
Introduce a new measure6 von (Cf, B'f) by defining forB E B'f 

v(F) = { J.Lwx(B)dx1dx2. 
l{xEIR2 :c"'EB} 

(17.70) 

For brevity, instead of (17.70) we shall write dv(x,yx) = dJ.Lwx(yx)dx1dx2, 
yx E C:j.. 

By Theorem 7.19, the measures J.L~x and J.Lwx are equivalent and 

6 Note that the measure v introduced is nonnegative and a-finite. 
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Hence, by the Fubini theorem we obtain from (17.69) and (17.70) 

JL~ (F) = { ddJL~., (yx)fe(xl, x2)dv(x, yx), 1r JLwx 

where fe(Xt, x2) is defined by (17.67). From this follows the absolute conti­
nuity of the measure JL~ with respect to v and the density: 

~~(e) = ; exp { -Or(a(o) + ei(O)) +loT e; A*det- ~loT e; A* Aetdt}. 

(17.72) 
Thus we have proved the following lemma. 

Lemma 17 .6. The measure JL~ is absolutely continuous with respect to the 
measure v and its density dJL~(e)/dv is defined by (17. 72). 

17.4.3. 
PROOF OF THEOREM 17.5. Formulae (17.63) and (17.64) for the maxi­
mum likelihood estimates Bl(T, e) and 02(T, e) follow from (17. 72), since they 
provide the minimum of ln(dJL~(e)/dv), as can be verified by direct calcula­
tion. 

Let us go on now to prove the concluding point of the theorem. 
Let 'r/t = e~ ( t) + e~ ( t). With the aid of the Ito formula it can be calculated 

that 

dryt = 26(t)del(t) + 26(t)d6(t) + 2dt 
= 26(t)[-lh6(t)- 826(t)]dt + 26(t)dWl(t) 

+26(t)[826(t)- 816(t)]dt + 26(t)dW2(t) + 2dt 
= -2el[er<t) + ei<t)Jdt + 2dt + 2[6(t)dW1(t) + 6(t)dw2(t)J 
= 2[1- elrJt]dt + 2J77tW1(t), (17.73) 

where (on the assumption that rJs > 0) 

Wl(t) = ft el(s) dWl(s) + ft 6 (s) dW2(s). 
10 vr;; 10 ..fij; 

(17.74) 

It follows from Theorem 4.1 that (Wl(t),Ft), 0 ~ t ~ T is a Wiener 
process. Consequently, for the prescribed 8 = (81,lh), the aggregation A = 
(D, :F, FtP, rJt, W1(t)) provides a weak solution7 of the stochastic differential 
equation 

7 See Definition 8 in Section 4.4. 
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(17.75) 

Let us show now that for each t, 0:::; t:::; T, 'f/t is .1{0 'w1 -measurable and 
P{inft~T 'f/t > 0} = 1. In other words, the process 'f/t = e~(t) + e~(t) is the 
strong solution of Equation (17.75), where the Wiener process (Wt(t),Ft), 
0 ::=; t:::; T, was defined in (17.74). 

For this purpose we shall investigate some properties of the weak solutions 
of the equation of the type given by (17.75). Let A= (il,F, Ft, P, Xt, Zt) be 
the weak solution of the equation 

dxt = 2[1 - axt]dt + 2y'Xtdzt, a ~ 0, 

where xo is such that P(xo > 0) = 1, Mxo < oo. 
We shall prove that M supt~T Xt < oo. Let 

{ inf{t ::=; T: SUPs<t Xs ~ N}, 
aN= T -, if sup8~T X 8 < N. 

Then, due to (17.76), 

and, since M J;/\O'N yfx";dz8 = 0, we have: 

rt/\O'N 
M XtMN = M xo +2M Jo [1 - ax8 ]ds 

rt/\O'N 
< Mxo +2M lo [1 + axsMN]ds 

< M xo +2M 1t [1 + axs/\O'N ]ds 

< Mxo + 2T + 2a 1t Mxs/\O'Nds. 

It follows from this, by Lemma 4.13, that 

M XtMN ::=; (M Xo + 2T)e2aT, 

and, therefore (Fatou lemma), 

Mxt ::=; (Mxo + 2T)e2aT. 

Next, 

1T 11M~ I supxti\O'N ::=; xo + 2 [1 + ax8 ]ds + 2sup -.jX;dz8 

t~T 0 t~T 0 

and 

(17.76) 

(17.77) 

(17.78) 
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1T 11t/\o-N I 
M supxt/\o"N ::; Mxo + 2 [1 + aMxs]ds +2M sup JXs"dW8 • 

t~T 0 t~T 0 

By the Cauchy-Schwarz inequality and (4.54) 

11t/\17N I 
M sup y'X;dzs ::; 

t~T 0 

Hence, 

MsupXt/\o"N::;Mxo+2 r [1+aMxs]ds+4 r Mxsds 
T [ T ]1/2 

t~T lo lo 
Applying the Fatou lemma and using ( 17.78) we obtain the desired in­

equality, M supt<T Xt < oo. 
We shall show now that P{inft~T xr > 0} = 1. 
To prove this we set 

Tn = { inf{t::; T: infs~t X 8 ::; xo/(1 + n)}, 
oo, if infs~t X 8 > xo/(1 + n). 

It is easy to show from the Ito formula that 

1Tn!IT dz 
-lnx'Tn!IT = -lnxo + 2a(Tn 1\ T)- 2 ~· 

0 yXs 

Hence, for c: > 0, 

-X{xo>e} lnxrn!IT -X{xo>e} lnxo + X{xo>e}2a(Tn 1\ T) 

1Tn!IT dzs 
-2 X{xo>e} r-;;-

0 yXs 

1Tn11T dzs 
< -X{xo>e} lnxo + 2aT- 2 X{xo>e} r-r· 

0 yXs 

Since M J;n!IT X{xo>e}dzs/ yX; = 0, it follows that 

But 

- MX{xo>e} lnx'Tn!IT ::; MIX{xo>e} lnxol + 2aT. 

X{xo>e}X{xrni\T9} lnx'Tn!IT 

+X{xo>e}X{x'"n"r>l} ln X'TniiT 

< X{xo>e}X{xTni\T~l} lnx'Tn!IT +sup Xs, 
s~T 

(17. 79) 

(17.80) 
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which, together with ( 17 0 79), leads to the inequality 

MX{zo>e}X{z .. n"T:::;t}llnxT,rl 
:::; MIX{zo>e} lnxol + 2aT + M sup X 8 (= c(e) < oo}; 

s~T 

from this follows the inequality 

(17081} 

Let T = limn-+oo Tno Then taking the limit in (17081} as n -t oo we obtain 

MX{zo>e}X{T~T}X{z .. :::;t}llnxTI:::; c(e) < OOo 

On the set {r::; T}, llnxTI = OOo 
Hence, due to (17082}, 

P{xo > e,T:::; T,xT:::; 1} = Oo 

But xT = 0 on the set { T :::; T}; therefore, 

Finally, 

P{xo > e,T:::; T} = 00 

P{r:::; T} = P{r:::; T,xo > e} + P{r:::; T,xo:::; e} 
:::; P{xo:::; e}--+ 0, e ..j.. 0, 

which, together with (17083}, leads to the desired relation 

p {i~~Xt = 0} = P{T:::; T} = Oo 

(17082} 

(17083} 

Therefore, the process "'t = e~(t) + e~(t), 0 :::; t :::; T, is such that for any 
(} = (01, (}2), (}1 > 0, -00 < (}2 < oo, 

p9 { inf "'t > o} = 1. 
t~T 

(17o84} 

Let us use this result to prove the fact that for each t, 0 :::; t :::; T, the 

random variables "'t are J7°'w1 -measurableo 
Introduce the functions 

and 

_ { 1/(2.[Y}, 1/n:::; y < oo, 
Yn(Y) - 1/(2.jn}, 0:::; y :::; 1/n, 

bn(x) = 1 + 1z 9n(y)dyo 
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It is seen that 0 < 9n(Y) ~ 1/2../ii and limn--+oo bn(x) = ..fi. For each 
n = 1, 2, ... , we shall consider the equation 

71~n) = 77o + 2fot [1- Ot71~n)]ds + 2fot bn(11in>)dWt(s). (17.85) 

The coefficients of this equation satisfy the assumptions of Theorem 4.6, 
and, hence, this equation has the unique strong solution 71~n), 0 ~ t ~ T. Let 

( ) _ { inf{t ~ T: 71t ~ 1/n}, 
Un 11 - T, if infs<T 11s > 1/n. 

Then it is obvious that for each t ~ un(11), 71~n) = 1Jt (Po-a.s.) and un(71) = 
( (n)) C tl (n) B t th ' bl (n) Un 11 . onsequen y, f1tAu,.(rJ<">) = 71tAu,.(rJ)' u e vana es f1tAu,.(rJ<">) 

are J7°'"'1 -measurable. Hence so also8 are the variables 77tM,.(rJ)· But, due to 

( 17.84), limn--+oo u n ( 71) = T { Po-a.s.). It follows from this that 71t are .r;'0 'w 1 -

measurable for each t. 
By transforming expression (17.64) for 02(T, e) we find that 

rT rT rT -
jj2(T,e) = 02 + Jo e1(t)dW2(t)- Jo 6(t)dWt(t) = 02 + Jo y'ijtdW2(t)' 

J{[e~(t) + e~(t)Jdt J[ 71tdt 
(17.86) 

where 

{17.87) 

It follows from Theorem 4.2 that [(W1 (T), W2(t)), Ft], 0 ~ t ~ T, is a 
Wiener process. Now, 77o = e~{O) + e~(O) > 0 {P-a.s.) and Mo11o = 1/0t < oo 

for all(} = (Ot, 02) with Ot > 0, -oo < 02 < oo; hence, 71t is .r;'0 '"'1 -measurable 
for each t. But the process W2(t) does not depend on 77o and Wt(t). Hence 
the processes 11 = (f1t,Ft) and W2 = (W2(t),Ft) are mutually independent. 
It follows from this that (P-a.s.) the conditional distribution 

Po {loT y7jtdW2(t) ~ y 1Jt, t ~ T} 
is Gaussian, N(O, J{ 71tdt). In particular, this proves {17.65) and {17.66), and, 
therefore, Theorem 17.5. 0 

Note. Since, for any admissible(}= (Ot. 02), 

Po (fooo [e~(t) + e~(t)]dt = oo) = 1, 

8 The 0'-algebras .r;'0 '"'1 ' 0 ~ t ~ Tare assumed to be augmented by sets of PB 
measure zero for all admissible values (} = ( 81, 82). 
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it is easy to deduce from (17.63) and (17.64) that the estimates Oi(T,e), 
i = 1, 2, are consistent, i.e., for any c > 0, 

17.5 Sequential Maximum Likelihood Estimates 

17.5.1. AB in Section 17.2, let 8 be the unknown parameter, -oo < 8 < oo, 
to be estimated from the observations of the process e = (et,Ft), t ~ 0, with 
the differential 

(17.88) 

Under the assumptions given by (17.23), the maximum likelihood estimate 
OT(e) of the parameter 8 is given by (17.25). Generally speaking, this es­
timate is biased and its bias bT(fJ) and the mean square error BT(fJ) are 
defined (under the assumptions given by (17.26) and (17.27)) by (17.28) 
and (17.29), respectively. According to the Cramer-Rao-Wolfowitz theorem 
(Theorem 7.22): 

{ 1 + GrMB [JoT a~(e)dt] - 1
} 

2 
{ d [lT l-1 }

2 

BT(fJ) ~ T + d(JMB at(e)dt , 
MB fo a~(e)dt o 

(17.89) 
where equality need not, generally speaking, be attained. 

For this problem we shall study properties of sequential maximum likeli­
hood estimates obtained with the aid of the sequential schemes L1 = L1( r, 8) 
(see Section 7.8), each of which is characterized by the final time of obser­
vation r = r(e), the F$-measurable function 8(e) being the estimate of the 
parameter 8. 

Theorem 17.6. For all 8, -oo < 8 < oo, let 

P9 {100 
at(e)dt = oo} = 1. (17.90) 

Then the sequential scheme L1H = L1(rH,8H), 0 < H < oo, with 

(17.91) 

and 

(17.92) 
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has the following properties: 

Po(rH(~) < oo) = 1, -oo < () < oo, 

Mo8H(~) = B, -oo < () < oo, 

2 1 
Mo[8H(~)- B] := H' 

(17.93) 

(17.94) 

(17.95) 

The random variable 8H(~) is Gaussian, N(B, 1/ H). In the class LlH of un­
biased sequential schemes Ll( r, 8) satisfying the condition 

Po {loT a~(~)dt < oo} =Po {loT a~(W)dt < oo} = 1 (17.96) 

and the conditions 

(17.97) 

where His a given constant, 0 < H < oo, the scheme LlH = Ll(TH,8H) is 
optimal in the mean square sense: 

(17.98) 

PROOF. According to Theorem 7.10 and (17.96), the measures 1-{~ and J.{w 
corresponding to the processes~ (for fixed B) and W are equivalent and 

(17.99) 

This implies that the sequential maximum likelihood estimate is given by 

{J _ J;<~> at(~)d~t 
T(~)(~) - J;(~) a~(~)dt. (17.100) 

Setting r(~) = TH(~) in (17.100) and writing 8H(~) = fJTH<el' we obtain 
for the estimate 8H(~) the representation given by (17.92). To verify (17.93) 
it is enough to note that 

Po{rH(~) > t} = P {lot a~(~)ds < H}, 
from which, due to (17.90), it follows that 

Po{rH(~) = oo} =Po {loco a~(~)dt < H} = 0. 
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Next, 

1 rH(e) 
8H(e) = ()- H Jo at(e)dWt 

and, by Lemma 17.4, the value of [8H(e) - ()]VH is Gaussian distributed, 
N(O, 1) for each (). 

Finally, according to Theorem 7.22, for any unbiased scheme L1 = L1( r, 8) 
satisfying (17.96) and (17.97) it follows that 

-oo < () < oo. 

The comparison of this inequality with (17.95) indicates that the scheme 
L1H = L1( TH, 8 H) is optimal in the mean square sense. D 

17.5.2. (17.95) reveals the meaning of the constant H > 0 in the definition 
of the schemes L1H = L1(rH, 8H ): if it is required to construct the sequential 
scheme for which the error variance (for all (), -oo < () < oo) is equal to a 
given value c > 0, then the scheme L1H = L1( TH, 8 H) with H = 1/ c can be 
taken as the desired scheme. 

According to the statements of Theorem 17.6, this scheme has some defi­
nite advantages: it is unbiased, and the fact that the distribution of the value 
(8H(e) -O)VH is Gaussian, N(O, 1), makes it possible to construct confidence 
intervals for (). 

An essential question, however, arises: are these advantages simply due to 
the fact that the average observation time MoTH is too long? In the theorem 
given below for the case9 at(x) = Xt, the estimates of this average time are 
given as functions of the prescribed error variance 

Theorem 17. 7. Let the observable process et, t ;::: 0, have the differential 

(17.101) 

Then for the sequential scheme L1H = L1( TH, 8 H), H > 0, with all n = 
1, 2, ... , 

Mor/{(e) < oo, -oo < () < oo, (17.102) 

and 

MorH(e)::; 2[I()IH + 2VH] + )8(()2H 2 + 4H) + 2H, -oo > () < oo. 
(17.103) 

In the case()< 0 the following lower estimate holds for MorH(e): 

MorH(e);::: -2eH. (17.104) 

9 It follows from Theorem 17.4 that Pe{fo00 etdt = oo} = 1, IBI < 00. 
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PROOF. First of all we note that in our case the estimate 

1 rH<~> 
8H(t;) = H lo /;td/;t 

can be written as follows: 

since J; esdes = !(t;i- t). 
In order to prove (17.102), we note that, by the Ito formula, 

{f = 2() lot t;;ds + 21ot /;8 dW8 + t. 

We obtain from this 

(17.105) 

H = loTH(~) t;zdt = 2() loTH(~) (lot t;;ds) dt +21TH(~) (lot /;sdWs) dt 

+ T~(f;) 
2 ' 

and, consequently, 

Th $ 2H- 4() 1TH(~) (1T t;;ds) dt- 41TH(~) (1T /;8 dW8 ) dt 

$ 2H + 4j()jrH(t;) +4TH(/;) sup I t /;8 dWsl· (17.106) 
09$TH(~) lo 

Let 

Then we obtain from (17.106) 

r'i£(t;) - 4TH(/;)[j()jH + ,8]- 2H S 0, 

and, therefore, for each (), 

TH(t;) $ 2[i()jH + ,B] + y'4[j()jH + ,8]2 + 2H. (17.107) 

By Theorem 3.2, for p > 1, 

Hence, for p = 2m, 
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( 
2 )2m rH(f;) 

2m r:_ 1 Mo Jo ~sdWs 
2m 

= (2~r:_ 1) 2m (2m -1)!!Hm < oo, (17.108) 

since the random variable J;H(t;) ~8dW8 "'N(O, H). 
From (17.107) and (17.108) we obtain the inequality Mo[TH(~)Jn < oo, 

-oo < (} < oo, n = 1, 2, .... In particular, for the case n = 1, 

MorH(~) < 2[1BIH + (M6,82)112] + J8(B2 H 2 + M9,B2) + 2H 

< 2[IBIH + 2YH] + J8(B2 H 2 + 4H) + 2H. 

To deduce (17.104) it suffices to note that in the case(} < 0, the inequality 

follows from 
(17.104). 

rH(t;) 

TH(~) 2: -2BH- Jo ~sdWs 

(17.105). Averaging both sides of this inequality, we obtain 
0 

17.6 Sequential Testing of Two Simple Hypotheses 
for Ito Processes 

17. 6.1. On the probability space ( {l, :F, P), let there be given a nondecreasing 
family of a-algebras :Ft, t 2: 0, :Ft ~ :F, the Wiener process W = (Wt, :Fr) and 
the unobservable process(}= (Bt,:Ft), t 2: 0, independent of W. Assume fur­
ther that one of the hypotheses holds on the observable process~= (~t. :Ft), 
t 2: 0: 

Ho : d~t = dWt, ~o = 0; 

Ht : d~t = Btdt + dWt, ~o = 0. 

(17.109) 

(17.110) 

In other words, if the process (} is interpreted as a signal and the Wiener 
process as noise, then the problem being considered involves testing two hy­
potheses on the presence (hypothesis Ht) or the absence (hypothesis Ho) of 
the signal (} in the observations of the process ~. 

We shall discuss the sequential scheme Ll = Ll( r, 8) of hypothesis testing 
characterized by the timeT at the end of the observation and a function of the 
final decision 8. It is supposed that T = r(x) is a Markov time (with respect 
to the system Bt = a{x: X 8 , s ~ t}, where the x = (xt), t 2: 0 are continuous 
functions with x0 = 0) and the function 8 = 8(x) is 8T-measurable and takes 
only two values: 0 and 1. The decision 8(x) = 0 will be identified with a 
decision in favor of hypothesis Ho. If 8(x) = 1, then hypothesis H1 will be 
accepted. 
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For each scheme L1 = Ll(r, Ll), denote10 

a(L1) = Pt(8(e) = 0), ~(Ll) = Po{8(e) = 1}, 

called error probabilities of the first and second kind. 
It is well known11 that for the case Ot = c =F 0 in the class Lla,,B of 

sequential schemes L1 = Ll(r, 8), with a(Ll) ~ a, ~(Ll) ~ ~ (a and ~ are 
given constants, a+~ < 1) where Mor(e) < oo and M1r(e) < oo, there 
exists a scheme Li = Ll(f, J), optimal in the sense that 

(17.111) 

for any other scheme L1 = Ll(r, 8) E Lla,,B· 
It appears that in a certain sense this result can be extended to a more 

general class of random processes(}= (Ot,:Ft), t ~ 0. 
We shall assume that the process (} = ( Ot, :Ft), t ~ 0, satisfies the condition 

MIOtl < oo, t < 00 (17.112) 

and that 

Pt {100 m~(e)dt = oo} =Po {fooo m~(e)dt = oo} = 1, (17.113) 

where the functional mt(x), t ~ 0, is such that, for almost all t ~ 0, 

We shall denote by L1a,.B• the class of sequential schemes L1 = Ll( r, 8) with 
a(L1) ~ a and ~(Ll) ~ {3, where a+~ < 1 and 

r<~> 
MoJo m~(e)dt < oo, 

r<~> 
M1 lo m~dt < oo. (17.114) 

Theorem 17.8. Let {17.112) and {1~113} be satisfied. Then in the class 
Lla,.B there exists a scheme L1 = Ll(f, 8), optimal in the sense that for any 
other scheme L1 = L1(r,8) E L1a,,B 1 

t<~> r<~> 
Mo lo m~(e)dt ~ Mo lo m~(e)dt, 

t<~> r<~> 
Mt Jo m~(e)dt ~ Mt Jo m~(e)dt. (17.115) 

The scheme L1 = 8 ( f, 8) can be defined by the relations 

10 Pi denotes the probability distribution for the case where the process ~ being 
considered satisfies hypothesis Hi, i = 0, 1. Mi will denote the corresponding 
average. 

11 See, for example, Chapter 4, Section 2 in [282]. 
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where 

f{~) = inf{t : At(~) ¢ (A, B)}, 

<5(~) = { 1, Af(e) ~ B, 
0, Af(~) ~A, 

{17.116) 

{17.117) 

1-a: 
B=ln-(3-. 

In this case 
f(~) 

Mo 1 m~(~)dt = 2w((3, a:), 

f(~) 

M1 1 m~(~)dt = 2w{a:, (3), {17.118) 

where 
1-x x 

w(x,y) = {1- x)ln-- +xln--. 
y 1-y 

{17.119) 

Before proving this we shall make a few auxiliary observations. 

17.6.2. 
Lemma 17.7. For the scheme Li = Ll{f,6), 

PROOF. In the case of hypothesis Ho, ~t = Wt and 

P0{f{~) < oo) = P(f(W) < oo). 

Let 

un(W) = inf { t : lot m~(W)ds ~ n}. 

Then 

t(W)!ICTn(W) 1 t(W)!ICTn(W) 

Af(W)Mn(W)(W) = Jo mt(W)dWt- 2 Jo m~(w)dt 

and A~ Af(W)Aun(W)(W) ~B. Consequently, 

1
f(W)Aun(W) 1 1f(W)Mn(W) 

A~ mt(W)dWt- 2M m~(W)ds ~B. 
0 0 

Hence, 
t(W)Mn(W) 

M Jo m~(W)ds ~ 2{B - A) < oo, {17.120) 

since 0 < a: + {3 < 1 and, therefore. 
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B - A = ln [ 1 :a, 1 ~ 11] < oo. 
We obtain from (17.120) and (17.113) 

f(W) 

M 1 m~(W)ds $ 2(B- A) < oo. 

Since 

r"(W) {')() 

M Jo m~(W)ds 2: MX{f(W)=oo} Jo m~(W)ds, 

by (17.113) it follows that P(f(W) < oo) = 1. 
The equality Pt(f(~) < oo) = 1 can be proved in a similar way. It should 

be noted that, according to Theorem 7.12, the process ~t. t 2: 0, with differ­

ential given by (17.110), permits also the differential 

(17.121) 

for some Wiener process W = (Wt,:Ff), t 2: 0. Therefore, in the case of 

hypothesis H 1, 

(17.122) 

Corollary. The random variable >.-r(e)(~) takes (Po- and P1-a.s.) only two 
values: A or B. 

Lemma 17.8. For the scheme Ll = Ll(f, J) defined by (17.116} and (17.117), 
a(Ll) =a, j1(Ll) = /1. 

PROOF. Since 

and 

then, in order to prove the lemma, it is necessary to establish that 

(17.123) 

where 
(17.124) 

For this purpose consider two solutions a(x), b(x), A $ x $ B of the 
differential equations 



252 17. Parameter Estimation and Testing of Statistical Hypotheses 

It is seen that 

a"(x) + a'(x) = 0, a(A) = 1, a(B) = 0, 

b"(x) + b'(x) = 0, b(A) = 0, b(B) = 1. 

eA(eB-x- 1} ex - eA 
a(x) = B A ' b(x) = B A' e -e e -e 

and, due to (17.124}, 
a(O) = a, b(O) = {3. 

But 

Hence. 

rf(()llun(e) 

M1 Jo a'(..Xt(e))mt(e)dWt = 0 

(17.125} 

(17.126} 

(17.127} 

(17.128} 

and, therefore, taking the mathematical expectation M1(·) in (17.129} we 
obtain 

Mla(..X:r(e)~~u.,.(el(e)) =a. 

The function a(x), A :$ x :$ B, is bounded and limn-+oo CTn(e) = oo 
(P-a.s.). Hence, by the dominated convergence theorem (Theorem 1.4}, 
Ma(..X:r(e)(e)) =a. Using Lemma 17.7 and its corollary, we find that 

a = Mla(..X:r(()(e)) 

= 1. P1 {..X:r<el<e> =A}+ o · PP:rw<e> = B} = P1 P:r<el<e> =A}. 
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The formula Po{Ar(e)(e) = B} = f3 is proved in a similar manner. D 

Lemma 17.9. For the scheme Li = Ll(f,J), the formulae given by {17.118) 
hold true. 

PROOF. Denote by go(x) and g1(x), A:::; x:::; B, the solutions of the differ­

ential equations 

g~'(x) + ( -1)1+i · g~(x) = -2, Yi(A) = gi(B) = 0, i = 0, 1. (17.130) 

An easy calculation yields: 

{ 
(eB - eA+B-x))(B- A) } 

Yo(x) = 2 B A +A-x 
e -e 

and 
( ) = 2 { (eB - ex)(B- A) - B } 

91 X B A +x . 
e -e 

Taking into account (17.124) and (17.119), we find 

- Yo(O) = 2w(f3, a), 

91(0) = 2w(a,f3). 

(17.131) 

(17.132) 

(17.133) 

(17.134) 

Suppose the hypothesis Ho is valid and an(W) = inf{t : J~ m;(W)ds ~ 
n}, n = 1, 2, .... Then, applying the Ito formula to go(>.t(W)), we obtain 

r"(W)M,.(W) 
go(Ar(w)MN(W)(W)) = go(O) + Jo g'(>.t(W))mt(W)dWt 

1 r"(W)M,.(W) 
- 2 Jo [g'(>.t(W))-g"(>.t(W))]m~(W)dt 

r"(W)Au,.(W) 
= go(O) + Jo g'(>.t(W))mt(W)dWt 

1f(W)Au,.(W) 
+ m~(W)dt. (17.135) 

0 

Since 

r"(W)IIu,.(W) 
M Jo g'(>.t(W))mt(W)dWt = 0, 

then, by averaging both sides of (17.135), we arrive at the equality 

{f(W)IIu,.(W) 
M Jo m~(W)dt = -go(O) + Mg0 (>.r(W)M,.(W)(W)). 

Passing in (17.136) to the limit we obtain the desired equality, 

(17.136) 
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r(W) 

M 1 mi(W)dt = -go(O) = 2w(f3, a). 

The equality 
r<e> 

M1 1 mi(()dt = 91(0) = 2w(a,(3) 

can be proved in similar fashion. 0 
17.6.3. 
PROOF OF THEOREM 17.8. Let L1 = Ll(r, 8) be any scheme belonging to 
the class Lla,,B· Denote by f..Lr,e and f..Lr,W the restriction of the measures J.Le 
and J.Lw, corresponding to the process ( with differential given by (17.110) 
and the Wiener process W, to the a-algebra Bt. Then, due to the conditions of 
(17.112)-(17.114) and (17.121), we find from Theorem 7.10 that f..Lr,e "'f..Lr,w, 

df..L 1r(W) 1 1r(W) 
ln -d r,e (r, W) = m 8 (W)dW8 - -2 m~(W)ds, (17.137) 

f..Lr.W 0 0 

and 

(17.138) 

(17.140) 
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Note now that, because of the equivalence J-LT,t; rv J-LT,W, fori= 0, 1, 

P0{8(~) = i} = P{8(W) = i} 

M dJ-LT,W ( i:) = 1X{<5(t;)=i}_d __ r,., 
/-LT,f; 

= M1 { X{<5(t;)=i}M1 [ ~;;; (r,~),8(~) = i]} 

= P1{8(~)=i}M1 [~T,W(r,~)l8(~)=i]. 
J-LT,f; 

This implies that (17.141) can be transformed as follows: 

1 r<e> 2 Po{8(~) = 1} 
2M1 lo mt(~)dt 2:: -P1{8(~) = 1}ln P1{8(~) = 1} 

-P {8(~) = 0} l Po{ 8(~) = 0} 
1 n P1{8(~) = 0} 

= p {8(~) = 1} l PI{8(~) = 1} 
1 n Po{8(~) = 1} 

P1{8(~) = 0} 
+P1{8(~) = 0} ln Po{8(~) = O} 

1-a a 
2:: (1-a)ln-(3-+aln 1 _(3 

1 t<t;) 
= 2M1 lo m~(~)dt, 

where the last equality follows from Lemma 17.9. 
The inequality 

can be proved in similar fashion. 0 

Corollary. Let Ot = s(t), where s(t), t 2:: 0, is a deterministic differentiable 
function, such that f0

00 s2 (t)dt = oo and s(t)s'(t) 2: 0. (It follows from the 
assumptions that the function gj(t) = J; s2 (u)du is convex downwards, gj(O) = 
0, gj( oo) = oo). 

Let a, (3 be given numbers, 0 < a+ (3 < 1, and let Lla,/3 be the class of 
sequential schemes considered above. Denote by .1r = (T, 8r) the scheme 
belonging to the class Lla,/3 and having fixed duration of observation equal to 
T, 0 < T < oo (the Neyman-Pearson test is an example of such a scheme). 
Then the optimal scheme ii =(f)) E Lla,/3 has Mof:::; T, M1f:::; T. 
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Indeed, by the theorem proved above Mi J;<e> s2(t)dt ::; 4i(t), i = 0, 1, 
from which, by the Jensen inequality, 4i(T) ~ Mi4>(r(e)) ~ 4>(Mir(e)), and, 
therefore, T ~ MiT( e), i = 0, 1. 

17.7 Some Applications to Stochastic Approximation 

17. 7.1. Let (} be the unknown parameter, -oo < (} < oo, to be estimated 
from the observations of the process e = (et), t ~ 0, with the differential 

(17.142) 

The nonanticipative functionals Ao(t, x), A1 (t, x), B(t.x) prescribed on 
[0, oo) x C, where C is the space of continuous functions x = (xt), t > 0, 
assumed to be such that: 

(1) J:[A~(t, x) + A~(t, x) + B2(t, x)]dt < oo, T < oo, x E C. 
(2) B 2(t,x) ~ d > 0, t < oo, x E C; 
(3) J000 (A~(t,x)/B2 (t,x))dt = oo, x E C; 
(4) for B(t,x) (4.110) and (4.111) are satisfied. 

If the parameter(} were a Gaussian random variable N(O, a 2), independent 
of the Wiener process Wt, t ~ 0, then, according to (12.34) and (12.35), the 
conditional mathematical expectation mt = M(OtiJ1) and the conditional 
variance 'Yt = M[(Ot - mt)21J1J would be given by the formulae 

[ 1 ft A~(s,e) ] -l 
'Yt = a2 + Jo B2(s, e) ds ' 

which follow from the equations 

,tAl(t,e) 
dmt = B 2(t,e) [det- (Ao(t,e) + Al(t,e)mt)dt], mo = 0, 

. ~~ A~(t, e) 2 
'Yt =- B2(t,e) ' 'Yo= a . 

(17.143) 

(17.144) 

(17.145) 

(Note that with a 2 = oo and J;(AHs, x)j B 2(s, x))ds > 0, x E C, the esti­
mate mt defined by (17.143) is a maximum likelihood estimate for the pa­
rameter 0). 

In the case where nothing is known about the probabilistic nature of the 
parameter (}, it is natural to pose the question as to whether the estimate 
m~, t ~ 0, defined by the equation 

(17.146) 

where 0 < a 2 ::; oo, converges in a suitable sense to the true value of the 
parameter (}. 
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It follows from (17.143) that 

a e [ 1 {t A1(s,e) ] 
mt - = 'Yt - a2 + lo B(s,e) dWs . 

Hence, due to (3), above, 

-. I a ei -1. I t Al(s,e)dW I/ {t A~(s,e) d 
hmt--+oo mt - :5 lmt-too lo B(s,e) s lo B2(s,e) s. (17.147) 

But it follows from Lemma 17.4 that the upper limit in the right-hand 
side of (17.147) is zero (Po-a.s.) for any e. Consequently, if the true value 
of the unknown parameter is e, then (Po-a.s.) mf -t e, t -t oo, where the 
process mf, t 2: 0, can be defined by Equation (17.146); this is a typical 
example of a stochastic approximation algorithm. 

It is interesting to know how 'fast' the process mf, t 2: 0, converges to 
the estimated value of e. Since mf -t e with Po-probability one, then for 
Po-almost all w and for c > 0 there will be a least time r, ( w; o:), such that 
lmf - e1 :5 c for all t 2: r.,(w, a). (Note that the time T = r.,(w; o:) is not 
Markov). 

We shall investigate the mathematical expectation Mor.,(w; o:) of the time 
r,(w; a) needed for the estimation of the unknown parameter to within c, 
restricting ourselves to the case Ao = 0, A1 = 1 B = 1, o: = oo. 

Therefore, let the observable process et, t 2: 0, have the differential 

(17.148) 

For the sake of simplicity of writing we shall let mt m'f', r,(w) = 
r.,(w; oo). In the present case the stochastic approximation algorithm, (17.146), 
takes the following form 

(17.149) 

Since this equation has the solution 

et wt 
mt=t=e+-t-' 

we have: 

Tg(w) = inf { t : I :s I :5 c, s 2: t} . 
Theorem 17.9. For any e, -oo < e < oo, 

Po {rc(w) :5 ~} = P { sup IWti < vx} 
c 0$t$1 

and 
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where C is some constant, -0 < C < oo. 

PROOF. Let us take advantage of the fact that each of the processes 

W* = { tW1/t• t > 0, 
t 0, t = 0 

W**(t) = VdWt;d, 

(d > 0) is a Brownian motion process (see Subsection 1.4.4). Then12 

Po{re(w)::=;;} = P{lWtJ::=;tc:,t> ;} 

It is well known13 that 

= P{JWtl ::=;tc:,t> ;} 

P{tlWl;tl:::; tc:,t > ;} 

P{lWl;tl :::;c:,t> ;} 

P {IWsl:::; c:,O < s < ~} 
= P{IWt-efx21:::; c:,O < t < 1} 

= P{ ~1Wt-e2Jxl:::; c::X,o < t < 1} 
P{IWtl :::; y'X, 0:::; t:::; 1} 

p { sup IWtl < vx}. 
O~t9 

p { sup IWtl < vx} = t ( -1)k-1- r..rx e-(lf2)(y-2kVx)dy. (17.150) 
O~t9 k=-00 J21r L,;x 

Thus, the series on the right-hand side of (17.150) determines the proba­
bility distribution of the random variable c:2re(w). Since 

Po{c:2re(w):::; x} = p{ sup Wt2 :::; x} 
099 

and, from (3.8), M SUPo<t<l W? :::; 4, it follows that Moc:2re(w) < oo and, 
consequently, More(w) =-Cfc:2 , where the constant 

12 { Ot ~ a, t > s} denotes the event Ot ~ a for all t > s. 
13 See, for example, [291], p. 173. 
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c = r)O [1- _1_ f ( -1)k 1'1/'i e-(1/2)(y-2k'l/'i)2 dyl dx < oo. 0 
Jo ~ k=-oo -'1/'i 

Notes and References. 1 

17.1. The results of Chapters 7 and 10 have been repeatedly used here. 
17.2. The estimates of drift coefficient parameters for diffusion-type processes 

have been studied by Novikov [246] and Arato [6]. 
17.3. The results related to this section are due to Novikov [246]. 
17 .4. The parameter estimation of a two-dimensional Gaussian Markov process 

has been discussed in Arato, Kolmogorov and Sinai [7], Arato [6], Liptser and 
Shiryaev [205], and Novikov [246]. 

The maximum likelihood sequential estimates OH({) have been introduced by 
the authors. The properties of these estimates have been studied by Novikov [246] 
and the authors. Theorem 17.7 had been proved by Vognik. 

17.6. Theorem 17.8 generalizes one of the results obtained by Laidain [183]. 
17.7. Theorem 17.9 was proved in [289]. 

Notes and References. 2 

17.1-17.5 A parameter estimation for diffusion processes is considered in Ku­
toyants, Mourid and Bosq [180], Kutoyants [178], Kutoyants and Vostrikova [181]. 
For the case of a small diffusion parameter see also the book [179]. A parameter 
estimation and adaptive filtering are given in Yashin and Kuznetsov [324]. 

17.6. Theorem 17.8 has been generalized by Yashin [322]. 



18. Random Point Processes: Stieltjes 
Stochastic Integrals 

18.1 Point Processes and their Compensators 

18.1.1. In the previous chapters we described observable random processes 
X = (et), t ~ 0, which possessed continuous trajectories and had properties 
analogous, to a certain extent, to those of a Wiener process. Chapters 18 and 
19 will deal with the case of an observable process that is a point process 
whose trajectories are pure jump functions (a Poisson process with constant 
or variable intensity is a typical example). 

18.1. 2. We shall begin with some basic definitions. We assume that we are 
given a complete probability space (0, F, P) with a distinguished family F = 
(Ft), t ~ 0, of right continuous sub-a-algebras ofF augmented by sets of zero 
probability. 

LetT= (rn), n ~ 1, be a sequence of Markov times (with respect to the 
system F = (Ft), t ~ 0) such that1: 

{1) 
{2) 
(3) 

Tt > 0 (P-a.s.); 
Tn < Tn+t ({Tn < oo}: (P-a.s.)); 
Tn = Tn+l ({Tn = oo}: (P-a.s.)). {18.1) 

We shall write T 00 = limn-too T n for the limit point of the sequence T = 
(rn), n ~ 1. 

The random sequence T = ( T n)' n ~ 1' is fully characterized by a counting 
process 

Nt = LJ{Tn~t} 1 t ~ 0. 
n~l 

{18.2) 

In this connection it is clear that the investigation of the sequence T = 
(rn), n ~ 1, is equivalent to that of the process N = (Nt), t ~ 0. 

Definition 1. The sequence of Markov times T = (rn), n ~ 1, satisfy­
ing {18.1) is said to be a random point process. The process N=(Nt), t~O, 
defined in (18.2) is said to be a point process also (corresponding to the se­
quence T = (rn), n ~ 1). 

1 The notation'{< 71(A; (P-a.s.))' implies that P(A n {{ ~ 71}) = 0. 

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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Note 1. The point processes introduced above represent a particular case 
of the so-called 'multivariate point processes' to be defined as random se­
quences (T,cp) = (Tn,~n), where the Tn are Markov times satisfying (18.1) 
and the ~n are Frn/X-measurable random variables with values in some mea­
surable space (X, X). 

18.1.3. We shall note some simple properties of point processes N = (Nt), 
t :2: 0. It is seen from the definition that the process N is measurable (with 
respect to ( t, w)) and Ft-measurable for each t ;?:: 0 (in this connection, we 
shall use also the notation N = (Nt,Ft), t :2:0, for this process). Trajectories 
of these processes are (P-a.s.) right continuous, have limits to the left, and 
are piecewise constant functions with unit jumps. It is also clear that 

N,.n:::; n 

N,.oo = H;n N,.n 

(P-a.s.), 

(P-a.s.) 

(by definition N00 (w) = limt-+oo Nt(w)). 

EXAMPLE 1. A simple example of a point process is a process Nt = I { T :::; t}, 
t :2: 0, where T is a Markov time with P(r > 0) = 1. (In this case r 1 = r, 
Tn = oo, n;?:: 2). 

EXAMPLE 2. The Poisson process II= (7rt), t ;?:: 0, with parameter >., that 
is, a process with stationary independent increments, 

7ro = 0, 

P(7rt- 1!"8 = k) = e-.X(t-s)[>.(t- sW /k!, s:::; t, k = 0, 1, ... , 

is a point process with respect to the family of a-algebras Ft = F{ = a{w : 
1!"8 ,8:::; t}, t :2: 0. 

EXAMPLE 3. If N = (Nt, Ft), t :2: 0, is a point process and a is a Markov 
time (with respect to (Ft), t :2: 0), the process (Nu,u, Ft), t ;?:: 0, is also a 
point process. 

In this case 

where 

Ntl\<7 = L I{r;:~t}> 
n?:l 

ifrn:::;a, 
ifTn >a. 
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18.1.4. We shall consider, together with the process N = (Nt,Ft), t ~ 0, 
the point processes N(n) = (NtAT,., Ft), t ~ 0, for each n ~ 1. Since P(O ~ 
Nuvr,. ~ n) = 1, this process (as well as any bounded and nondecreasing 
process) is a submartingale of class D (see Section 3.3) and, therefore, a 
Doob-Meyer decomposition holds for it (see the corollary to Theorem 3.8): 

N (n) A(n) 
tA-r,. = fflt + t 1 

where (m~n), Ft), t ~ 0, is a uniformly integrable martingale, and (A~n), Ft), 

t ~ 0, is a predictable increasing process. 
By virtue of the equality 

and the uniqueness of the Doob-Meyer decomposition, it follows that 

mt(k) = mt(nA)-r,.' At(k) - At(n) - 11-r,.· (18.3) 

Since A~n+l) ~ A~~~ .. l), A~n+l) ~ A~n), we have that, for all t ~ 0, the 
process 

At = A~l) + l)A~n+I) - A~n)] (18.4) 
n~l 

is a right continuous, predictable increasing process and is such that AtAT,. = 

A~n) (compare with the proof of Theorem 3.9). 
ForT< T00 we set 

(18.5) 

Then 

- N A - N(n) A(n) - (n) ffltii'Tn - tii'Tn - tii'Tn - t - t - mt 

and, therefore, for each n ~ 1 the family of random variables { mtAT,., t < 
T 00 } forms a uniformly integrable martingale. By generalizing Definition 6 of 
Section 3.3, we can say that the random process M = (mt,Ft) defined for 
t < u (u is a Markov time with respect to the system F = (Ft), t ~ 0), is 
au-local martingale if there exists an (increasing) sequence of Markov times 
Un, n ~ 1, such that P(un < Un+I < u) = 1, P(liron Un = u) = 1, and, for 
each n, the sequence { mtAu,., t < u} forms a uniformly integrable martingale. 

According to this definition the arguments given above prove the follow­
ing: 

Theorem 18.1. A point process N = (Nt,Ft), t ~ 0, admits, for all t < T00 , 

the unique (up to stochastic equivalence) decomposition 

(18.6) 



264 18. Random Point Processes: Stieltjes Stochastic Integrals 

where m = (mt,:Ft), t < T00 , is a T00 -local martingale, and A= (At,:Ft), 
t 2:: 0, is a predictable increasing process. 

EXAMPLE 4. Let N = (Nt, :Ft), t 2:: 0, be a deterministic process with 
Nt = I[l,oo)(t) and trivial cr-algebras :Ft = {0, .!?}. Then, in the decomposition 
given by (18.6), mt = 0, At= Nt. 

EXAMPLE 5. Let II= (rrt,:F['), t 2::0, be a Poisson process with parameter 
A > 0. Then it can be easily verified that the process (1ft - At, :Ft') is a 
martingale. This implies that mt = 1ft -At and At = At in the decomposition 
given by (18.6). 

EXAMPLE 6. Let II = (rrt.:Ft), t 2:: 0, again be a Poisson process with 
parameter A> 0, Let T1 = inf{t 2:: 0: 1ft = 1} and let fi = (irt,:Ft) with 
irt = 1ftM1 • Then the decomposition given by (18.6) for the process fi has 
the form 

Definition 2. The predictable increasing process A = (At, :Ft), t 2:: 1, ap­
pearing in the decomposition (18.6) is called the compensator of the point 
process N = (Nt, :Ft), t 2:: 0. 

It is useful to note that the increasing process A= (At,:Ft), t 2:: 0, is a 
predictable process if and only if it is predictable in the sense of Definition 3, 
Section 5.4, in other words, is a process of class iP32 . 

The following two definitions will play an essential role from now on. 

Definition 3. A Markov time e (with respect to the family (:Ft), t 2: 0) is 
called predictable if a random point process Nt = I{o9 } is predictable. 

By virtue of Theorem T52, Chapter VII in [229], the Markov time e is 
predictable if and only if there exists an increasing sequence of Markov times 
(en), n 2::1, such that (P-a.s.) en< e and limn en= e. 

Definition 4. A Markov time cr (with respect to the family (:Ft), t 2:: 0) 
is said to be totally inaccessible if P(e = cr < oo) = 0 for each predictable 
Markov time e. 

In a specific sense the Markov times introduced above are diametrically 
opposite: predictable times correspond to predictable events, and totally in­
accessible times fully correspond to nonpredictable events. 

2 See the corresponding proof in, for example, [49], Theorem T27, Chapter V. 
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EXAMPLE 7. Let A= (At,Ft), t ~ 0, be a compensator of a point process 
N = (Nt, Ft)· Then, for a > 0, the time 

e = { inf(t ~ 0: At ~a) 
00 if A00 <a, 

(18.7) 

is a predictable Markov time (Theorem T16, chapter IV, in [49]). 

EXAMPLE 8. Let II = (7rt, Ft), t ~ 0, be a Poisson process where a = 
inf(t ~ 0 : 7rt = 1). The Markov time a is totally inaccessible. Indeed, let 
(an), n ~ 1, be a sequence of Markov times such that Un <a and limn Un =a 
on the set of positive probability. The process 1r~n) = 11"t+a .. - 7ra .. is also a 
Poisson process (by virtue of the strong Markovian property of the Poisson 
process II). Therefore, the time u<n> = inf(t ~ 0 : 1r~n) = 1) of the first 
jump of such a process has an exponential distribution. But., since 7ra .. = 0, 
u<n> = a- un, and, therefore, P(u = limun) = 0. The contradiction thus 
obtained demonstrates that the time a is totally inaccessible. 

18.1.5. Let 

At- = lim As and L1At = At - At-. 
stt 

Since the trajectories of compensator A = (At), t ~ 0, are (P-a.s.) nonde­
creasing right continuous functions, the number of jumps of At, t ~ 0, is at 
most countable. The lemma which follows shows that the magnitude of these 
jumps does not exceed unity, 

Lemma 18.1. With probability one 

sup L1At = sup L1At ~ 1. (18.8) 
t:$;T00 t<Too 

PROOF. We shall establish first that L1Aroo = Ar"" - A(roo)- = 0. Indeed, 
since Aroo ~ Ar .. , Aroo ~ limn Ar ... On the other hand, by virtue of (18.4) 
and the Fatou lemma (Theorem 1.2) 

AToo = A(l) + "[A(n+l)- A(n)] 
'T 00 L..J 'T 00 'T CXI 

= lim A (l) + ""lim[A (n+l) - A (n)] 
k n L..J k k n 

n~l 

< lim {A(l) + "[A(n+l)- A(n)]} k Tk L..J Tk Tk 
n~l 
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Hence, AToo = limk Ark and, therefore, AToo = A( roo)-' i.e., LlAToo = 0. Let 

B = inf (t ~ T00 : sup..1A8 > 1), 
s9 

assuming B = T00 if sup8 ::;roo LlA8 ~ 1. Then, in order to prove the lemma it 
suffices to establish that (P-a.s.) 

Aol\rk - A(OI\rk)- ~ 1, k = 1, 2, .... (18.9) 

Since the time B is predictable (Example 7), there exists an increasing se­
quence of Markov times (On), n 2: 1, such that Bn < B and limn Bn = B 
(P-a.s.). 

Thus we have from the decomposition 

(for a uniformly integrable martingale ( mtATk, :Ft) and an integrable process 
Atl\rk, t 2: 0) that, for each j < n, 

(18.10) 

From this, letting n --+ oo, by the Lebesgue theorem on dominated con­
vergence (Theorem 1.4) we find 

M(Aoi\Tk - A(ol\rk)-I:Fo;) = M(Noi\Tk - N(oi\Tk)-I:Fo;) ~ 1. 

By virtue of Theorem T35, Chapter 3, in [49]3 

Hence, from (18.11), by Levy's theorem (Theorem 1.5) we obtain 

M(Aol\rk- A(oMk)-I:Fo-) ~ 1. 

(18.11) 

(18.12) 

(18.13) 

But the values of Aoi\Tk are :Fo_-measurable (see Section 3.4, and also The­
orem T34, Chapter X, in [229]). Consequently, the value LlAoMk = Aoi\Tk -
A(8Mk)- is also :Fo--measurable and, by virtue of (18.13), LlAoMk ~ 1 (P­
a.s.), which was to be proved. D 

Lemma 18.2. Let a be a Markov time (with respect to the family (:Ft), t 2: 0}. 
Then ( ..1 denotes the symmetric difference of sets) 

(18.14) 

3 For the definition of the a-algebras :Ft see the note to Theorem 3.10. 
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P[({Nu < oo}Ll{Au < oo}) n ({a< Too})]= 0. (18.15) 

PROOF. Since the martingale ffitMn = NtMn - AtMn, t ~ 0, is uniformly 
integrable, we have (Theorem 3.6) M NuMn = M AuArn. But limn NuMn = 
NuA-roo and limn AuA-rn = Au/\r00 ; hence, by virtue of the monotone conver­
gence theorem (Theorem 1.1), M N u M = = M Au M"". 

Next, since 

{Nu < oo}Ll{Au < oo} 

({Nu < oo} n {Au= oo}) U ({Nu = oo} n {Au< oo}), 

in order to prove (18.15) we need to show that 

P{Nu < oo,Au = oo,a <Too}= P{Nu = oo,Au < 00,0' <Too}= 0. 
(18.16) 

We have MAuMn = MNuMn $ n < oo. Hence P{AuMn = oo} = 0 and 

P{Nu < 00, Au= 00,0' < T00 } 

= P{ Nu/\Tn < 00, Au/\Tn = 00, 0' $ Tn, 0' < Too} 

+P{Nu < oo,Au = oo,Tn < 0' <Too} 

= P{Nu < oo,Au = oo,Tn < 0' <Too} 

< P{Tn < 0' <Too}-+ 0, n-+ 00. 

In order to prove that the second expression in equality (18.16) is equal 
to zero probability, we shall consider the Markov times 

On= { inf(t $ T00 : At~ n), . 
Too lf A-roo < n. 

By virtue of Lemma 18.1, AtAOn $ n + 1. Hence, 

P{Nu = 00 < oo,Au < T00 } 

= P{Nu/I(Jn = oo,Au/\lln < 00,0' < Too,O':::; On} 

+P{Nu = oo,Au < 00,0' < Too,O' >On} 

< P{NuAOn = oo} + P{On < 0' < Too}• 

But MNuA6n MAuA6n $ n + 1 and, therefore, P{NuAOn = oo} = 0. 
Finally, since On t T00 and 0' < T00 , then P{On < 0' <Too}-+ 0, n-+ oo. 0 

18.1. 6. Processes with continuous compensators constitute an important 
class of point processes. The structure of such processes will be described in 
the lemma which follows. 

Lemma 18.3. A necessary and sufficient condition for the compensator At, 
t ~ 0, of a point process N = (Nt,:Ft), t ~ 0, to be (P-a.s.) continuous on 
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[0, T00 ] is that the process be left quasicontinuous on [0, T00 ), i.e., that for any 
nondecreasing sequence of Markov times (an), n ~ 1, 

PROOF. 

limNu.,.AToo, = Num.,. u.,.AToo {P-a.s.). 
n 

Necessity. Let a= limn an· Then, from the following equality, 

M[NTkAO'- NTkAu.,.] = M[ATkAU - ATkAu.,.], 

{18.17) 

and the continuity of At, t ~ 0, we have that NTkAu = limn NTkAu.,.. From 
this we have 

NTooAu = limlimNTkAu.,. = limlimNTkAun =lim NT Au . kn nk n con 

Sufficiency. We shall consider the potential II(k) = (IIfk), :Ft), t ~ 0, with 

nfk> = M(NTki:Ft)- NtATk· 

Because of the left quasicontinuity of the process N, 

MII~!) = MNTk- MNunATk ~ MNTk- MNuATk 
M[M(NTk I:Fu) - NuATk] 

= MII(k) n ~ oo, 
0' ' 

{18.18) 

i.e., the potential II(k) is regular (in the sense of Definition 7, Section 3.4). 
Hence, by virtue of Theorem 3.11, the potential II(k) permits the Doob­
Meyer decomposition 

{18.19) 

with a continuous predictable process B(k) = (Bfk>, :Ft), t ~ 0. It follows 
from the uniqueness of the Doob-Meyer decomposition {18.18), {18.19) and 
( ) (k) 18.6 , that Bt = -AtATk· Hence, forT< T00 , the compensator At has {P-
a.s.) continuous trajectories. This, together with the equality AToo = A(Too)-• 
proves that P(L1At =f. 0, t::::; T00 ) = 0. 0 

Corollary 1. The compensator At, t ~ 0, of the point process N = (Nt,:Ft), 
t ~ 0, is continuous ({ t ::::; T 00 }: (P -a.s.)) if and only if the jump times of the 
process Nt, t ~ 0, are totally inaccessible. 

In fact, if the compensator is continuous, the process is left quasicontin­
uous. Then, if 6 is a jump time and with positive probability On t 6 (::::; T00 ), 

then because of left quasicontinuity of N6, N6- = limn N6.,. = N6, which 
contradicts the assumption that 6 is a jump time. Therefore, the time 6 is 
totally inaccessible. 
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Conversely, let the Markov time 6 be such that there exists a sequence 
of times (6n), n ~ 1, such that 6n < 6 and 6n t 6 ~ T00 • The time 6 cannot 
be a jump time (since by assumption jump times are totally inaccessible) 
and therefore, limn N6" = N5, i.e., the process N is left quasicontinuous; by 
the previous theorem, the compensator At, t ~ 0, is continuous ({t ~ T00}: 

(P-a.s.)). 

Corollary 2. The point process Nt, t < T00 , with a continuous compensator 
is stochastically continuous: 

18.2 Minimal Representation of a Point Process: 
Processes of the Poisson Type 

18.2.1. Let N = (Nt,:Ft), t ~ 0, be a point process, and let 

Nt = ffit +At, t < T00 

be its Doob-Meyer decomposition. 

(18.20) 

The variables Nt are :Ft-measurable, but they may turn out to be mea­
surable also with respect to smaller u-algebras. Thus, for example, it can be 
seen that the Nt are :Ff-measurable (:Ff = u{w: N8 , s ~ t} and :Ff ~ :Ft)· 
It is also obvious that the family (:Ff), t ~ 0, is the smallest u-algebra family 
with respect to which the values Nt, t ~ 0, are measurable; in this case the 
process N = (Nt, :Ff), t ~ 0, is also a point process. For this process we have 
(if the family of u-algebras (:Ff), t ~ 0, is right continuous) the Doob-Meyer 
decomposition 

Nt = ffit +At, t < T00 , (18.21) 

which is naturally called the minimal representation of the point process N. 
The minimal representation given by (18.21) will play an essential role in 

the investigation of point process properties. Hence, we shall discuss in detail 
the question of right continuity for the family of u-algebras (:Ff), t ~ 0. 

Lemma 18.4. Let a space of elementary events Q be such that for each t ~ 0 
and w E Q there is an w' E Q such that N8 (w') = Nt118 (w) for all s > 0. 
Then the family of u-algebras (:Ff), t ~ 0, is right continuous: :Fl~ = :Ff, 
t ~ 0. 

PROOF. It is known (see, for example, Lemma 3, Chapter I, in [285]) that 
under the assumptions of the lemma, the u-algebra :Ff consists of the sets 
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A E Y: which possess a property implying that if w E A and N 8 (w') = N 8 (w), 
s ~ t, w' also belongs to A. 

Let us take a set A E Fft.. Let wE A and w' be such that N8 (w') = N8 (w), 
s ~ t. It follows from the right continuity of the trajectories of the process 
Nt, t ~ 0, that the point w' also belongs to the set A. Consequently, by 
virtue of the statement made in the preceding paragraph, the set A E Y:f 
and, therefore, Fft. = Y:f, t ~ 0. D 

Note 1. From now on we shall assume that the space of elementary out­
comes n satisfies the conditions of Lemma 18.4. This assumption holds for 
the minimal representation given by {18.21). In {18.21), the structure of the 
compensator A= (At, Y:f), t ~ 0, can be described as follows. 

Theorem 18.2. Let Ft(t) = P(r1 ~ t), and let 

Fi(t) = P(ri ~ tlri-1. ... , rt), i ~ 2, 

be regular conditional distribution functions. Then the compensator A = 
(At,Y:f), t < Toc)l of the point process N = (Nt,Y:f), t ~ 0, can be de­
fined by the formula 

At = L A!i)' {18.22) 
i~l 

-(i) 1tAT, dFi(u) 
At = ' o 1-Fi(u-) 

i ~ 1. {18.23) 

To prove this theorem we shall need two auxiliary assertions which are of 
interest by themselves. 

18.2.2. 
Lemma 18.5. Let 

Nt = L /{'Tn!5t}• t ~ 0, 
n~l 

be a point process and let()= O(w) be a Markov time with respect to the family 
(Y:f), t ~ 0, such that P(() < Too) = 1. Then there exist Borel functions 
'Pn = 'Pn(tt, ... , tn), n ~ 1, and a constant cpo such that (ro =OJ 

O(w) = L /{'Tn-1!58<Tn} · 'Pn-t{Tt, · · · 'Tn_t), 
n~l 

{18.24) 

i.e., on the set {0 < rt} the random variable O(w) is a constant and, on the 
sets {rn-1 ~ () < Tn} (n ~ 1}, O(w) = <J'n-l(rt(w), ... 1 Tn-l(w)). 

4 fst f(u}dFi(u) is understood as a Lebesgue-Stieltjes integral over a set (s, t], i.e., 

J: f(u}dFi(u) = f(s,t) f(u}dFi(u). (For more details see Section 18.4). 
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PROOF. We shall take advantage of the fact that the u-algebra Y::f coincides 
with au-algebra u{w: NsAt• t ~ 0}, and for any Markov time(} (with respect 
to the system (Ff), s ~ 0) the u-algebra 

Ff = u{w: NsAt,t ~ 0} 

(see, for example, Theorem 6, Chapter I, in [285]). 
The random variable (} is measurable with respect to the u-algebra Ff 

and, hence, there exist a countable set S C [0, oo) and a Borel function 
<p(xn; n E N), such that O(w) = <p(NtA8(w)(w); t E S). Therefore, O(w) = 
En>1 J{'Tn-1$8<Tn} · <p(NtA8i t E S). 

Note now that, on the set {rn-1 :5 (} < Tn}, 

n-1 

NtA8 = NtA'Tn-1 = L J{'Tk::>t} 
k=1 

and, consequently, on this set 

The function <p(L:~:=: J{'Tk9}i t E S) can obviously be represented as 
<f'n-1(71, ... ,Tn-1), where <f'n-1(t1,···•tn-1) is a Borel function of n -1 
variables. Hence, 

O(w) = L J{'Tn-l::>B<Tn} · <p(NtABi t E S) 
n~1 

= L J{'Tn-l::>B<Tn} · <f'n-1{71. • • • 'Tn-1)• 
n~1 

0 

Corollary. There exist Borel functions On(tt. ... , tn) and a constant Oo such 
that on the set {0 < Tn}, (} = On-1(7t. ... ,Tn-1)· In particular, (} 1\ Tn = 
On-1 1\ Tn and(} 1\ Tk = On-1 1\ Tk, k < n. 

Lemma 18.6. Let ( n, F, P) be a probability space and let (Ft), t ~ 0, be 
a nondecreasing family of sub-u-algebras of F. A necessary and sufficient 
condition for the integrable random process X = (xt, Ft), t ~ 0, to be a 
martingale is that, for any two-valued stopping time T, 

(18.25) 

PROOF. The necessity of {18.25) follows from Theorem 3.5. 
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To prove sufficiency we shall assume that there exist times s and t ( s < t) 
such that the set A= {w : X8 < M(xt!Fs)} has P(A) > 0. 

Construct a timer = tiA + slx. Since {r = t} = A E .1"8 ~ Ft and 
{ r = s} = A E .1"8 , r is a Markov time with respect to the system ( Ft), t 2: 0. 
Hence, 

Mx-r = MlAXt + MI-;rxs 
= M(IAM(xt!Fs)) + MI-;rxs 
< M(lAXs + I-;rxs) = Mxs, 

which fact contradicts the assumption that Mx-r = Mxo, i.e., P(A) = 0. 
For A= {w: x 8 > M(xt!F8 )}, the proof of P(A) = 0 is given in a similar 
~ D 

Note. The previous lemma shows that the martingale X = (xt, Ft), t2:0, 
can be defined as a random process such that: M!xtl < oo; Xt is Ft-measurable 
for each t 2: 0; for any two-valued stopping timer (with respect to the family 
(Ft), Mx-r = Mxo. 
18.2.3. 
PROOF OF THEOREM 18.2. To prove the theorem it suffices to show that 
for each n, n = 1,2, ... , the processes m<n) = (Nti\Tn- Ati\Tn,F/!) (where 
At is as defined in (18.22) and (18.23)) are uniformly integrable martingales, 
and the process A= (At, FtN), t 2: 0, is a predictable process. 

By virtue of Lemma 18.6, in order to prove that the process m<n) is a 
martingale, it suffices to establish that, for any stopping time() (with respect 
to (F/!), t 2: 0), 

(18.26) 

We have 

(18.27) 

i=l i=l 

where the ()i-1 were defined in the corollary to Lemma 18.5. 
According to (18.23), 

(18.28) 
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Let A(s) = Fi(s) and B(s) = J; dFi(u)/(1- F;(u- )). Then, by virtue of 
the formula 

A(t)B(t) =lot A(u- )dB(u) +lot B(u)dA(u) 

(the proof of which, in a more general case, will be given in Lemma 18.7), 

(18.29) 

M(A9(i) llr· h-1> ... , T1) = F;(O;_l); 
t.-1 1. 

(18.30) 

therefore, by virtue of (18.27), 

n 

MAeMn = MLFi(Oi-d· (18.31) 
i=l 

On the other hand, by virtue of the corollary to Lemma 18.5, e 1\ T; = 

ei-11\ Ti and e 1\ Ti-l= ei-11\ Ti-l· Hence, 

n 

MNeMn = MNeM1 + ML[NeM;- Ne/IT;_ 1 ] 

i=2 
n 

= M NeM1 + M L[Nei-111Ti - Nei-1An-1l 
i=2 

n 

= Mlh~9o} + MLI{r;~9;_ 1 } 
i=2 

n 

= F1(0o) + L MFi(ei-1)· 
i=2 

(18.32) 

We obtain the required assertion (18.26), by comparing (18.31) with (18.32). 
Further, since INtiiTn - AtiiTnl :::; NtiiTn + AtiiTn :::; n + Arn, and MArn = 

M Nrn :::; n, the martingale m<n) is uniformly integrable. 

Let us establish that the process At = Li>l A~i), t 2: 0, is predictable. 

To this end, it suffices to verify that each of th~ processes A~i), i = 1, 2, ... , 
is predictable. 
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Let Y = (yt, FtN), t ~ 0, be a nonnegative bounded martingale with 
trajectories having (P-a.s.) limits to the left. 

Then, since Ys-t = M(YsiF~t), from Levy's theorem {Theorem 1.5) it 
follows that Ys- = M(YsiF~). Furthermore, the variables I(s :5 rt} are 
F~ -measurable. Hence, 

t -{1) t dF1(s) 
M Jo YsdAs = M Jo I{s~-r1 }Ys 1 _ F1(s-) 

t dF1(s) 
= Jo M[I{s~-rt}Ys]1- F1(s-) 

t dF1(s) ft -{1) 
= Jo M[I{s~-rt}Ys-11-F1(s-) =M Jo Ys-dAs. 

Similarly, making use of the fact that the variables Fi(s) are F:{_ 1 -

measurable, we find that 

M fot YsdAs(i) M ft I dFi ( s) 
Jo = Jo {-r•-t <s~-r,}Ys1- Fi(s-) 

t N dFi(s) 
= M Jo M[I{-r,_ 1 <s~n}YsFn-11 1 _Fi(s-) 

t N dFi(s) 
= M Jo M[I{n-t<s~-r,}Ys-IF-r,_J 1 _ Fi(s-) 

rt -{i) 
= M Jo Ys-dA8 • 

It follows, from the equalities M I: y8dA~i) = M I: y8_dA~i), i ~ 1, thus 

obtained and from Lemma 3.2, that each of the processes A~i), t ~ 0, is 

predictable; consequently, the process At = Ei>1 A~i), t ~ 0, is predictable. 
- 0 

Corollary. If the functions Fi(t), i ~ 1, are {P-a.s.) continuous (absolutely 
continuous) the compensator At, t ~ 0 has (P-a.s.) continuous (absolutely 
continuous) trajectories. 

EXAMPLE. Let W = (Wt, Ft), t ~ 0, be a Wiener process r = inf(t~O, 
Wt = 1) ( T = oo if SUPt>o Wt < 1). Let us consider a point process N = 
(Nt,Fth, t ~ 0, with Nt;; I{-r9}· If we define the times 

Tn = inf { t ~ 0: Wt = 1- ~}, 
we shall see that Tn < T and limn Tn = T (P-a.s.). Hence the time T is 
predictable and, therefore, the (nondecreasing) process Nt, t ~ 0, is also 
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predictable. Consequently, as noted in Section 18.1, this process is predictable 
and, therefore, in the Doob-Meyer decomposition we have Nt = At+ mt, 
At = Nt, and mt = 0, t ;::: 0. 

We shall consider next the minimal representation of the process Nt = 
I{r~t}, t;::: 0. Let :Ff = a{w: Ns,s::; t} and N = (Nt,:FtN), t ~ 0. We shall 
show that the compensator A = (At, :Ff) of this process can be defined by 
the formula 

In fact, let F(t) = P(r::; t). According to (1.42), 

F(t) = ~1oo e_Y2/2dy v; t-1/2 

and, by virtue of (18.23), A1 = -ln(1- F(t 1\ r)). 

18.2.4. In the class of point process N = (Nt,:Ft), t;::: 0, there are some of 
relatively simple structure in which the compensator A= (At, :Ft), t;::: 0, has 
the form 

(18.33) 

where A= (>.t(w), :Ft), t ;::: 0, is some nonnegative predictable process, and bt 
is a deterministic nonnegative right continuous and nondecreasing function. 

In the case of a Poisson process (with parameter>.) At = >., bt = t. Hence, 
the point processes whose compensators satisfy formula (18.33) are naturally 
called Poisson type processes. 

Let N = (Nt, :Ft), t ;::: 0, be a point process with a compensator A = 

(At, :Ft), t ;::: 0. Consider the process N = (Nt, :Ff), t ;::: 0, and let Nt = 
At + mt, t ;::: 0, be its minimal representation. It is not easy, in general, to 
find the compensator At from the compensator At; this is the case, however, 
for the Poisson type process. 

Theorem 18.3. Let the compensator of a point process N = (Nt,:Ft), t ~ 0, 
be given by the formula At= J~ A8 db8 • Then 

At= 1t >..sdb8 , (18.34) 

- N where At= M(Ati:Ft_). 
In this case 

(18.35) 
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where 

x:- = {X;1
, ~t > o, 

0, .At= 0. 

PROOF. We shall show first that J~"X8db8 < oo ({t < T 00 }: (P-a.s.)). By 
virtue of (18.14), 

M lot I{s5:rn}Asdbs = MAtMn = MNtMn::::; n. 

Since the values I{s~Tn} for each s are :F{!_ -measurable, we have 

M lotiiTn "X8 db8 = M lot l{s~Tn}Asdbs ::::; n, 

and, therefore. (P-a.s.) on the sets {t ::::; Tn}, J~IITn "Xsdb8 < oo, n ~ 1. 

Consequently, J~"X8db8 < oo ({t < T00 }: (P-a.s)). 

Let Bt = J~"X8db8 , 0::::; t < T00 • This process is nondecreasing and right 
continuous. We shall show that the process B = (Bt,:Ff), t < T00 , is a 
predictable process. 

In fact, if Y = (Yt, :FtN) is a bounded nonnegative martingale which has 
limits to the left, then, by virtue of the equality Ys- = M(Ysi:Ff!_) and the 
:F{!_ -measurability of the function I{s~Tn}• we obtain 

tiiTn 
M Jo Ys"Xsdbs 

M 1t f{s~Tn}"XsM(Ysi:F~)dbs 
ti\Tn tMn 

M Jo Ys-"Xsdbs = Jo Ys-dB8 • 

Consequently, for each n ~ 1, the processes (BTATn:FtN), t ~ 0, are 
predictable processes (Lemma 3.2) and, therefore, the process (BtMoo,:Ff), 
t ~ 0, is also a predictable process. 

To prove that At= Bt it suffices to verify that the process m = (mt, :Ff) 
with mt = Nt- Bt is a T00-local martingale. 

But 

and 
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M[mtii'Tn - msii'Tn IF;"] = M[mtArn - msArn IF;"] 

+M [1::~n (Au- "Xu)dbul F.;"] 

M [1t f{u::;Tn}(Au- "Xu)dbul F.;"] 

= M [1t I{u::;,."}M(Au- "XuiF:'_)dbul F_;"] = 0. 

Thus, we have proved (18.34). 
To prove (18.35), we first note that 

where 

But 

At= lot A.x; dA. +at, 

tii'Tn 

MatATn = M Jo A8 (1- X.X;)dbs 

M lot I{s::;,."}M(AsiF~)[1- "X.X;]db. 

= M 1t I{s::;,.n}"Xs(1 - X.X;)dbs = 0. 

(18.36) 

Consequently, at = 0 ( {t < r 00 }: (P-a.s.)) which, together with (18.36), 
proves (18.35). 0 

Corollary. If At is a deterministic function, then At = At. 

It suffices to set At = 1, bt = At. 

Note. If the assumption At = J~ A8 db8 is not fulfilled, (18.35) might not 
hold. 

Indeed, the example given at the end of Section 18.3 shows that At is a 
discontinuous function, whereas At is an absolutely continuous function. 

18.3 Construction of Point Processes with Given 
Compensators: Theorems on Existence and Uniqueness 

18. 3.1. Consider a probability space (X, !3, J.L) where X is a space of piecewise­
constant functions x = (xt), t 2: 0, such that xo = 0, Xt = Xt- + (0 or 1), !3 
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is a a-algebra a{x: X8 ,s > 0}, and J.t is probability measure on (X, B). Let 
Bt = a{w: X8 , s ~ t} and ri(x) = inf{s ~ 0: X8 = i}, setting ri(x) = oo if 
limt-+oo Xt < i, and let Too(x) = limi-+oo Ti(x). 

We shall note that for each function x = (xt), t ~ 0, Xt = I:i>l I{r,(x)$;t} 

and the family of a-algebras (Bt), t ~ 0, is right continuous (Lemma 18.6). 
According to Section 18.1, the process X = (xt, Bt), t ~ 0 on the proba­

bility space (X,B,J.t), is a point process. the compensator A= (At(x),Bt) of 
this process can be defined (Theorem 18.2) by the formula 

At(x) = LA~i)(x), {18.37) 
i:;::l 

where 
(i) _ tAT,(x) dFi(u) 

At (x)- }0 1- Fi(u-)' {18.38) 

and the functions 

F1(t) = J.t{X: r1(x) ~ t}, Fi(t) = J.t{x: Ti(x) ~ tlri-l(x), ... ,r1(x)} 

are regular conditional distribution functions, i ~ 2. 
It follows from {18.38) that there exist Borel functions Qi(si; si-1• ... , s1, 

so), i ~ 1, so = 0, such that: 

(A) for fixed si-1! ... , s1. so, the function Qi(si; si-1• ... , s1. so), is nonde­
creasing right continuous with jumps not exceeding unity and, for Si-1 < 
oo, 

(B) Qi(si; Si-ll ... , s1. so) = 0 outside of the domain 

{(si, Si-1! ... , s1. so) : si > Si-1 > .. · > s1 > so}; 

(C) 

A~i) (x) = Qi(t !\ Ti(x); Ti-l (x), ... , r1 (x), 0). 

It is obvious from {18.37) and {18.38) that the measure J.t completely 
defines the compensator of a point process. 

The theorem given below demonstrates that the converse also holds in a 
certain sense. 

Theorem 18.4 (Existence Theorem). LetQi(SiiSi-l! ... ,sl,so), i ~ 1, be a 
sequence of Borel functions satisfying (A) and (B). Then, on the measurable 
space (X, B), there exists a probability measure J.t such that the process 
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and 

'"" (i) A= (At(x), Bt, JJ.), t ~ 0, with At(x) = L.J At (x), 
i~l 

A~i)(x) = Qi(t 1\ ri(x): Ti-l(x), ... , r1(x), 0), 

is a compensator of the point process X = (xt, Bt, JJ.), t ~ 05 . 

Before proving this theorem we shall give two lemmas. 

18.3.2. 
Lemma 18. 7. Let At and Bt, t ~ 0, be right continuous functions of bounded 
variation (on any finite interval of time). Then we have the following formu­
lae of integration by parts for Stieltjes integrals: 

and 

AtBt = AoBo + 1t As_dBs + 1t BadA8 ; 

AtBt = AoBo + 1t As_dBs + 1t Ba_dAs 

+ 2:<As- As-HBs- Bs_). 
s~t 

(18.39) 

(18.40) 

PROOF. We shall note first that the functions At and Bt have the limits to 
the left (at each point t > 0) At- = limstt A81 Bt- = limstt B8 since each 
of them can be represented as the difference of two nondecreasing functions. 
Further, all Stieltjes integrals considered, J: f(u)dAu, of the Borel functions 
f(u) can be understood as Lebesgue-Stieltjes integrals over the set (s, t], i.e., 

1t f(u)dAu = 1 f(u)dAu = J f(u)I(s,tJ(u)dAu. 
s (s,t) 

Therefore, in particular, for s ~ t, 

and 

1t I(o,s)(u)dAu =As-- Ao. 

To prove (18.39) we shall note, that by virtue of the Fubini theorem. 

5 The notation X = (xt, Bt, p,), t ~ 0, implies that the process (xt, Bt), t ~ 0, is 
being considered on a measurable space (X, B) with measure JL. 
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(At - Ao)(Bt - Bo) = { dA8 dBu 
J(O,tj X (O,t] 

= { l(s?.u)dAadBu + { l(s<u)dAsdBu 
J(O,tj X (O,t) J(O,tj X (O,t] 

= 1t (Bs - Bo)dAs 1t (Au- - Ao)dBu 

= 1t BsdAs + 1t Au_dBu - Bo(At- Ao) - Ao(Bt - Bo). 

From this we immediately obtain (18.39). 
Finally, to establish (18.40) we need only show that 

rt (Bs- Bs-)dAs = L LlBsLlAs, 
Jo s~t 

where 

Let 

A~= At- LLlAs. 
s9 

Then 

since A~ is a continuous· function, and Bt has no more than a countable 
number of discontinuity points. D 

Note 1. We shall write (18.39) as 

dAtBt = At_dBt + BtdAt. (18.41) 

Note 2. We shall agree that Ao- = Bo- = 0. Then (18.39) can be written 
as 

AtBt = { As_dBs + 1 BadAs. 
l(o,t] (O,tJ 

(18.42) 

Corollary. Let At~ 0. Then 

{t A::-tdAs ~ Af - A~ ~ t A:-ldAs. 
lo n lo (18.43) 
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18.3.3. 
Lemma 18.8. Let at, t ~ 0, be a nondecreasing right continuous function 
with Ao = 0 and let at, t ~ 0, be a measumble function with 

1t lasldAs < oo, t < 00. 

Then the equation 

Zt = Zo + 1t Zs-asdA8 {18.44) 

has a unique locally bounded (sups<t IZsl < oo, t < ooJ solution which has 
limits to the left and can be define[by the formula 

PROOF. Let 

Ut = Zo ITI1 + asLlAs], 
s~t 

Then, by virtue of {18.39), 

Zt = Ut vt = Zo + 1t Us_dVs + 1t VsdUs 

= Zo + t Us-V8a8dA~ + L VsUs-asLlAs 
Jo s~t 

= Zo + 1t Z8 -asdAs. 

{18.45) 

Thus, the function Zt given by {18.45) is a solution of Equation {18.44). 
We shall show that this solution is unique in the class of locally bounded 
solutions. 

Let z:, t ~ 0 be another solution. Let 

Zt = Zt- z:, L(t) =sup IZsl. a(s) = roslauldAu. 
s9 Jo 

Then, for any s ~ t, 

and, therefore, by virtue of {18.43), 
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r r a2 (s) 
IZsl ~ Jo IZu-llauldAu ~ L(t) Jo a(u-)da(u) ~ L(t)~. 

Similarly, 

and, in general, for s ~ t, and for any n ~ 1, 

From this we have Z8 = 0, s ~ 0, 0 

Cor.ollary. The equation 

(18.46) 

with Zo ~ 0 and ..1A8 ~ 1, At< oo, t ~ 0, has the unique nonnegative locally 
bounded solution 

Zt = Zoexp(-AD · IT(1- .::::lAs)· (18.47) 
s9 

18.9.4. 
PROOF OF THEOREM 18.4. Consider the equations 

(i) [t (i) . 
4>t = 1- Jo 4>s_dsQi(s, Bi-1• ... , so), i ~ 1. (18.48) 

By virtue of (18.47), the 4>~i) = 4>~i)(si-1! ... , so) are given by the formulae 

4>~i) (si-ll ... , so) = exp( -QHf; Bi-1! ... , so)) · Ill1-..1Qi(s; Bi-1• ... , so)] 

{18.49) 
with 

Let 

.::::lQi(s; Bi-ll ... , so) = Qi(s; Bi-ll ... , so)- Qi(s-; Bi-1• ... , so), 

Qf(t; Bi-1, ... , so) = Qi(t; Si-1, ... , so) - L ..1Qi(s; Bi-ll ... , so). 
s~t 

Fi(t; Bi-ll ... , so) = 1- 4>~i) (si-ll ... , so). {18.50) 

It follows from (18.49) that the Fi(t; Bi-ll ... , so) are Borel functions dif­
ferent from zero only for t > Bi-1 > · · · > s1 > 0 and are distribution 
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functions (of some random variable taking on, perhaps, a value +oo as well) 

for fixed si_1, ... , so. Furthermore, because of (A) (Subsection 18.3.1), 

Let 

lim Fi(t; Si-b ... , so) = 0. 
t.!.si-1 <co 

tl {ti-l 
Jo ... }0 

Fi(ti;si-1, ... ,st,O) 

xd.,_ 1 Fi-1(si-1i si, ... , st) · · · 

· · · x ds2F2(s2;s1,0)d, 1 F1(s1;0). 

(18.51) 

(18.52) 

It follows from Kolmogorov's theorem on measure extension that there 

exist a probability space ( n, :F, P) and random variables a 1 , a 2 , ... , given on 

it such that 

In this case 

P{a2 S a1 < oo} { H2(dt2,dt1) 
J{(tt.t2):t2'$.t1 <co} 

{ dt2F2(t2;h,O)dttF1(h;O) 
}{(tt,t2):t2'S.lt <co} 

= { dttF1(t1;0) [ { dt2F2(t2;t1,0)l = 0 
J(o,oo) J(o,tt] 

since F2(t2; tt, 0) = 0 for 0 S t2 S t1 < oo. 
It can be verified in a similar way that P{ ai+1 S ai < oo} = 0. Therefore, 

the relation ai = ai = oo holds (P-a.s.) on the set {w: ai S ai}, j > i. 
Let us denote by no the set of w E n for which there are i, i = 1, 2, ... , 

such that ai+1(w) = ai(w) < oo. It is clear that 

P(no) S LP{ai+1 = ai < oo} = 0. 
i 

Let us consider now the mapping <p of a space n \ no into a space X 

defined by the formula Xt(w) = Ei>1 I{u;(w)'S.t}· In other words, each point 

w E n \ no can be associated with a step function X E X such that the time 

Ti(x) of its ith jump is equal to ai(w). 
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We shall denote by v a measure on (X, B) induced by the mapping cp of 
the space Q \flo into X: J.L(B) = P{ cp- 1(B)}, BE B. 

The process X = (xt, Bt, J.L), t ;::: 0, is a point process and, by virtue of 
the decomposition (18.6), 

Xt = mt(x) + at(x), t < roo(x), 

where a = (at(x), Bt) is the compensator of the constructed process. By 
virtue of Theorem 18.2, at(x) = L:;i>l a~i)(x) where the a~i)(x) are defined 
according to (18.23). Recalling how the measure J.L was constructed and the 
definition of A~i)(x), and noting that a~i)(x) = A~i)(x), i = 1,2, ... , it follows, 
therefore, that at(x) = At(x). 

18.3.5. 
EXAMPLE 1. Let At, t ;::: 0 be a deterministic right continuous nondecreasing 
function with Ao = 0, ..1At $ 1. Then At, t ;::: 0, is the compensator of a 
certain point process. 

In fact, it suffices to set 

Ql (s; 0) =As, Qi(si; Bi-1 7 ••• , St, 0) =As, - As;t\s;-1' i ;::: 2. 

EXAMPLE 2. The process A= (At(x), Bt), t;::: 0, with continuous (for each 
x E X) nondecreasing trajectories, Ao(x) = 0, is the compensator of a point 
process. 

Indeed the processes A~ 1 )(x) = AtAT1 (x)(x) and A?)(x) = AtAT,_ 1 (x)(x)­
AtM;(x)(x) are adapted to the families (BtAT;(x)), t;::: 0, i;::: 1, respectively, 
which implies the existence of the functions Qi(si; Bi-1, ... , so) satisfying 
(A)-(C) (Section 18.3.1). 

18.3.6. 
Theorem 18.5 (Theorem on Uniqueness). Let A = (At(x), Bt, JL) and 
B = (Bt(x),Bt,v), t;::: 0, be compensators of point processes (xt,Bt,JL) and 
(xt, Bt, v), t;::: 0, respectively. Let()= B(x) be a Markov time (with respect to 
the system (Bt), t ;::: 0} such that J.L (or v) (P-a.s.), Att\9 = Btt\9· Then the 
narrowings J.L/ BoAToo and v / BoMoo of the measures J.L and v by the a-algebra 
BoMoo = a(UnBo~vr,.) coincide. 

We shall, prove this theorem on the basis of the two lemmas which follow. 
Let N = (xt. Bt, J.L), t ;::: 0, be a point process with a compensator A = 

(At(x), Bt) and let()= B(x) be a Markov time. Let us consider the 'stopped' 
process N = (it, Bt, J.L), t ;::: 0, where 

Xt = XtAO(x), Bt = a{x: Xst\9, s $ t}. 

Since the a-algebra Bt = Btt\0 (see, for example, Theorem 6, Chapter 1, 
in [285]), and the restricted measure J.L on a a-algebra Bo is jl = J.L/Bo, N = 
(xt,Bt,ji,), t;::: 1. Denote by A= (At(i),Bt) the compensator of this point 
process. 
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Lemma 18.9. If Xt = Xt/\O(x)• t;::: 0, then At(x) = At/\O(x). 

The proof follows immediately from the fact that the process 

(Xt -At, Bt, ji,) = Xt/\8- At/\(), BtA9, f.L) 

is a local martingale. 0 

Lemma 18.10. Let (il, F, P) be a probability space on which a random vari­
able a= a(w) and a sub-a-algebra g ~Fare given. Let F(t, w) = P(a $ tiQ) 
be a regular conditional distribution function and let F(t,w) be a measur­
able nondecreasing, right continuous (over t for fixed w) function such that 
0 $ F(t,w) $ 1 and F(t A a,w) = F(t A a,w) (P-a.s.) for each t E JR. Then 
F(t,w) = F(t,w) (P-a.s.) for each t E JR. 

PROOF. Let us consider first the case where the £T-algebra g = {0, il} is 
trivial, and F(t, w) is independent of w. Then the assertion of the lemma 
consists of the fact that the equality F(t A a) = F(t A a) (P-a.s.), t E JR, 
implies the correspondence of the functions F(t) and F(t). 

Write f3 = inf{t E JR : F(t) = 1} (/3 = oo if for all t E JR, F(T) < 1). 
Let a point f3 (!3 < oo) be a discontinuity point of the function F(t), i.e., 
1 = F(f3) > F(/3- ). Then P{a = {3} > 0 and, therefore, the set {w: a(w) = 
/3} is nonempty. Let us take an arbitrary point w0 E {w : a(w) = {3}. Then 
F(tA/3) = F(tAa(w0 )) = F(tAa(w0 )) = F(t/\{3) and, therefore, F(t) = F(t) 
for all t $ {3. In addition, since F(f3) = 1 and thus F(t) = F(t) for all t E R 
Let the point f3 ({3 < oo) be a continuity point. Then P{/3 -c: $ a(w) $ {3} > 
0, c: > 0. By taking a point 

w' E {w: f3- c: $ a(w) $ /3}, 

as before we can show that F(t) = F(t), t $ {3-c:. Because of the arbitrariness 
of c: > 0 we have that F(t) = F(t) for all t E R 

The case with f3 = oo can be treated similarly. 
Let us take now a general case. Since 

0 M I{F(tl\a,w)#F(tl\a,w)} (w) 

= M M[I{F(tl\a,w)#F(tl\a,w)}(w)IQ], 

for almost all (a, w) (with respect to measure F(da,w)P(dw)) F(t 1\ a, w) = 
F(t 1\ a,w). As in the case discussed above, we can deduce that, for almost 
all wand any t E JR, F(t,w) = F(t,w). 0 

PROOF OF THEOREM 18.5. Using the notation given before (Lemma 18.9), 
we shall note that it suffices to show that the equality 

ji,{x: At(x) = Bt(x), t;::: 0} = 1 
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implies that ji = v. Hence, without loss of generality, we need only establish 
that JL{X: At(x) = Bt(x), t;;::: 0} =I implies JL = v. 

Let 

FiA(t) = IJ.{7i(x) ~th-1>···,7t,7o}, 
FiB(t) = v{7i(x)~th-1>····7t,7o}, 7o:=O, i=I,2, .... 

Then, by virtue of (I8.23), fort~ 7i(x) it follows that 

dFl(t) = [I- FiA(t- )]dA?>, dFP (t) = [I -FiB (t- )]dBii). 

But A~i) = Bii), hence, by virtue of Lemma I8.8, (JL-a.s.) 

Fl(t 1\ 7i) =FiB (t 1\ 7i), i = I, 2, ... ; t ::::: 0, 

and, using Lemma I8.IO, this implies the equality (JL-a.s.) 

Fl(t)=FP(t), i=I,2, ... , t;:::o. 

Let us note that F('(t) and Ff(t) are deterministic functions. Hence, 
the fact that they are equal implies that the measures ll and v coincide 
on the O"-algebra Bn· Furthermore, F.f(t) = JL{72 ~ th} coincides (JL-a.s.) 
with F.f(t) = v{72 ~ t17t}. Hence, by taking the relation JL/Br1 = vfBr1 

into account, we find that JL{ 72 ~ t, 71 ~ s} = v{ 72 ~ t, 71 ~ s} and, 
therefore, JL/Br2 = vfBr2 • Similarly, for any n, ~-t/Brn = vfBr" and, therefore, 
JL/Boo = v/Boo where Boo= O"(UnBrn). 

18.4 Stieltjes Stochastic Integrals 

18.4.1. Let (D,F,P) be some probability space with a distinguished family 
(Ft), t;;::: 0, of right continuous sub-O"-algebras ofF augmented by sets from 
F of zero probability. 

Let us consider a point process N = (Nt, Ft) with compensator A = 
(At,Ft), t;;::: 0. The trajectories Nt(w), t;;::: 0, are nondecreasing right contin­
uous functions of t < 7 00 for each w E {l, and the trajectories are the same 
functions as those above for almost all w E {l. 

Let 

C = {(t,w): t < 7 00 (w)}, Ct = {w: (t,w) E C}, Cw = {t: (t,w) E C}, 

f = Ut(w),Ft), t;;::: 0, 

be a nonnegative process of class Pt (see Definition I in Section 5.4). Then 
for each t > 0 and for almost all w E Ct, we can define the Stieltjes integrals 

1t fs(w)dN8 , 1t fs(w)dA 8 , (I8.53) 
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understood (for fixed w) as Lebesgue-Stieltjes integrals over a set (0, t]. 
Stieltjes integrals play just as an essential role in the theory of point 

process as that which Ito's stochastic integrals play in the theory of diffusion­
type processes. 

Before investigating the properties of such integrals we shall consider an 
example which may reveal the significance of predictable processes (i.e., pro­
cesses of class P3 ~ P1; see Definition 3, Section 5.4) in the theory of inte­
gration in the Stieltjes sense. 

EXAMPLE 3. Let N = (Nt,:Ft), t ~ 0, be a Poisson process with parameter 
>. > 0. Then At = >.t and, if Is = Ns, it follows that 

t "" Nt(Nt + 1) Jo NsdNs=~Ns[Ns-Ns-]=1+2+···+Nt= 2 
0 s:S;t 

and, therefore, 

Further, 

t >.2t2 
M Jo NsdAs = - 2-, 

and the integral I~ Nsdms (over the martingale ms = Ns - As, so that 
I~ NsdNs -I~ NsdAs), is such that M I~ Nsdms = >.t. Similarly, 

Thus, unlike the Ito stochastic integrals 

1t fsdWs (! E Mt), 

the Stieltjes integrals (over the martingale ms = N8 -As) are not, in general, 
martingales (for f E P1). 

It is not difficult to establish, however, that if we consider the integrals 
I~ Ns-dNs and I~ N 8 -dA8 instead of the integrals I~ NadNs and I~ Ns_dAs, 
by virtue of the equalities 

1t Ns_dNs = LNs-[Ns- Ns-] = LNs[Ns- Ns-] 
0 s:S;t s~t 

- L[Ns- Ns-]2 = Nt(N~- 1) 
s:S;t 
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the expectation M J~ Ns_dNs = >.2t 2 /2 and, therefore, M J~ Ns_dms = 0. 
Similarly, M[f: Nu_dmuiFs] = 0; thus, the process (J~ Ns_dms, Fs), t 2: 0 
is a martingale. 

It follows that the stochastic integral J~ Ns_dms of the predictable func­
tion (Ns-) over the martingale (ms) is also a martingale, This property of 
predictable functions explains the role they play in the investigation of Stielt­
jes integrals. 

18.4.2. We shall note some properties of Stieltjes stochastic integrals 

1t fsdNs, 1t fsdAs and 1t fsdms ( = 1t fsdNs -1t fsdAs). 

Theorem 18.6. Let f = Ut, Ft), t 2: 0, be a nonnegative process with P(/t < 
oo) = 1, t 2: 0. 

If I E If> a, then 

M 1Too fsdNs = M 1Too fsdAs · (18.54) 

Iff E 1/>1, there exists a nonnegative process f E lf>a such that 

M 1Too fsdNs = M 1Too fsdAs. (18.55) 

Iff E lf>a, then for any C, 0 < C < oo, {P-a.s.) 

{1Too Us A C)dAs < 00} = {1roo fsdNs < 00}, (18.56) 

i.e., the symmetric difference of these sets has a zero P-probability. 

PROOF. We shall note first that by the integrals J;oo fsdNs and J;oo fsdAs 
we mean limits of the respective integrals J;" fsdNs and J;n fsdAs as n-+ oo. 

To prove (18.54) we need only verify that it holds only for the functions 
of the form Is = I{s~rn}. I{a<s~b}. e where e is a Fa-measurable nonnegative 
random variable with e ~ k < oo, since the general case follows from the 
given case by virtue of the monotone convergence theorem (Theorem 1.1). 
We have 

Me[NbArn - NaArn] 

= M(eM[mbArn - maArn IFa]) 

+Me[AbArn- Aal\rJ 

M 1Too I{s~rn} . I{a<s~b}dAs, 

since the process (mtl\rn, Ft), t 2: 0, is a uniformly integrable martingale and 
(Theorem 3.6, Note 3) 
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M[mbATn - maATn !Fa] = 0 (P-a.s.). 

To prove (18.55} we shall introduce the following notation. Let B{[O, oo)) x 
F beau-algebra of sets (t, w) in [0, oo) x a and P = 'P(F) be its sub-u-algebra 
of predictable sets, i.e., the smallest 0'-algebra on [0, oo) X a, generated by 
nonanticipative (in other words, F = (Ft}-adapted) processes which have 
left continuous trajectories on (0, oo). (It is useful to note that the u-algebra 
P = P(F) coincides with the smallest u-algebra generated by stochastic 
intervals [r, oo] = {(t, w) : t ;::: r(w)}, where the r are predictable (with 
respect to the system of u-algebras F = (Ft)) times. It also coincides (we 
took advantage of this fact in the proof of (18.54)) with the smallest u-algebra 
generated by sets of the form {0} x B (BE Fo) and (s, t] x B where BE .1"8 ; 

see [49], chapter IV). It can be easily shown that 'P(F) 2 P(G), where the 
system of nondecreasing u-algebras G = Wt}, t ;::: 0, is such that Ft 2 9t, 
t ;::: 0. The system G = pN = (Ff), t;::: 0, where N is the point process in 
question, will play a particular role from now on. For simplicity of notation 
we shall use P instead of P(FN). 

Let iP = {,8} be an aggregate of nonnegative predicable processes {3 = 
(.Bt(w), Ft), t ;::: 0, such that f3l(w) = f3t(w), w E a. We shall define on the 
sets B = {(t,w): f3t(w) = 1} E P two u-finite measures 

Nt(B} = M 1Too fsf3sdNs, N(B} = M 1Too {38 dN8 • 

We shall show that the measure Nt « N. In fact, let N(B) = 0. Then 

Therefore, P({3Tn = 0} = 1, n ;::: 1, and 

NJ(B} = M L JTn{3Tn = 0. 
n~l 

Hence, by the Radon-Nikodym theorem there exists a P-measurable non­
negative function j = Us, .1"8 } such that 

Nt(B) = L fs(w)d.N(s,w}, 

i.e., for any function ,8 E iP, 

But, by (18.54), 
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and, therefore 

M 1Too /s/3sdNs = M 1Too Jsf3sdAa. 

In particular, we obtain {18.55) from this. 

Note. If we consider the restriction of measures N1 and N to the u­
algebra P = P(FN) ~ P(F) = P, we can similarly establish the existence of 
a P-measurable function 

such that 

NJ(B) = L fs(w)dN(s,w), BE P, 

and 

M 1Too fadNs = M 1Too fsdAa· 

It is natural to call the function fs(w) the 'conditional mathematical ex­
pectation of f 8 (w) with respect to the u-algebra P with measure N'. In 
connection with this remark, we shall use also the notation MN(flP)t(w) or 
MN(flP)t for fs(w). 

We can make similar remarks regarding the function fs(w). 
We shall introduce the notation 

f<l(t) = l{f.<1At9} · ft, 
f>1 (t) = l{ft..:1At>1} · ft. 

A = { W : 1Too /sdAs < 00} , N = { W : 1Too fsdNs < 00} • 
We shall show first that up to sets of P-measure zero A~ N, i.e., P(IA ~ 

lN) = 1. 
For almost all w E A, 

L f>1 (t)LlAt = 1Too />1 (t)dAt ~ 1Too ftdAt < 00 
t~O 0 0 

and, therefore, the sum on the left-hand side of the above inequality contains 
only a finite number of terms. Consequently, for almost all w E A, 

1Too f>1(t)dNt = Lf>1(t)L1At(L1At)+ LlNt < 00. 
O t~O 

{18.57) 
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We shall next show that for almost all wE A, J;OQ f9(t)dNt < oo. 
Let 

Uk=inf{t~o:fot19(s)dAs~k}, k=1,2, .... 

Then, by (18.54), 

and, therefore, 

( {Tooi\Uk ) 
P Jo /5,.1(s)dN8 = oo = 0. 

Hence, 

P (1-roo f9(s)dNs = 00, 1-roo fsdAs < 00) 

= P (1-roo f9(s)dNs = oo, 1-roo fsdAs < oo,uk < oo) 

+P (1-roo f9(s)dNs = 00, 17"oo fsdAs < 00, O'k = 00) 

~ P (1-roo fsdAs < oo,uk < oo) + P (1-roo/\ak f9(s)dNs = oo) 

= P (1-roo f9(s)dAs < oo,O'k < 00)--+ 0, k--+ 00. (18.58) 

It follows from (18.57) and (18.58) that, modulo sets of P-measure zero 
A~ N and, in particular, for 0 < C < oo, 

(18.59) 

We shall establish the inclusion 

{1.,.00 UtA C)dAt < oo} ~ {1.,.00 ftdNt < oo}. (18.60) 

Since (P-a.s.) 

(18.61) 

it follows that 

{fo.,.oo Ut 1\ C)dAt < oo} ~ {1-roo I{f,>G}dAt < oo}, 
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which together with the inclusion established 

{1T"" Iu.>c}dAT < oo} ~ {1Too Iu.>c}dNt < oo}, 
yields 

(18.62) 

But 

Hence, 

(18.63) 

From (18.59), (18.63) and the inequality It :5 UtA C) + ftl{ft>C}• we 
obtain the required inclusion, (18.60). 

We shall establish the inverse inclusion, 

{1T"" ftdNt < 00} ~ {1Too UtA C)dAt < 00} · (18.64) 

To this end we shall note first that, since 

1Too (ft A C)dNt :5 1Too ftdNt, 

then 

{lao ftdNt < oo} ~ {1Too (ft A C)dNt < oo}. 
Hence to prove (18.64) we need only show that 

{1Too UtA C)dNt < 00} ~ {1Too UtA C)dAt < 00} • (18.65) 

Let us set ()k = inf{t ~ 0: J~Ut AC)dNt ~ k}, k = 1,2, .... Then it is 
clear that 

and, therefore, 

( {Tool\9k ) 
P lo Ut A C)dAt = oo = 0. (18.66) 
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It is also obvious that, by virtue of the definition of times (}k, k = 1, 2, ... , 

lim p ( roo Ut A C)dNt < oo, (}k < oo) = 0. (18.67) 
k-+oo Jo 

But 

P (1700 Ut A C)dAt = 00, 1Too Ut A C)dNt < 00) 
= P (1Too (ft A C)dAt = 001 1Too Ut A C)dNt < 00, (}k < 00) 

+P (1Too UtA C)dAt = 00, 1Too UtA C)dNt < 00, (}k = 00) 

( roo ) (1TooA9k ) :::; P lo UtA C)dNt < oo, (}k < oo +P 
0 

UtA C)dAt=OO , 

from which (18.65) follows immediately if we make use of (18.66) and (18.67). 
0 

Corollary 1. Modulo sets of P-measure zero, 

{A-roo < oo} = {N-roo < oo}. (18.68) 

Corollary 2. Iff E 4>a, for any C, 0 < C < oo, 

P (1Too fsdNs < 00) = 1 ¢:> P (1700 Us A C)dAs < 00) = 1. {18.69) 

Corollary 3. Let U00 = inf{t 2:: 0: At= oo}. Then (P-a.s.) U 00 = T00 • 

In fact, it follows from {18.15) that T00 :::; u00 (P-a.s.). But if T00 (w) :::; 
u00 (w), N-roo(w)(w) = oo and A-roo(w)(w) < oo, which fact contradicts {18.68). 

EXAMPLE. Let It= Nt · l{t$-rn}· We shall show that 

it = (Nt- + 1) 'f{t$-rn}' 

Indeed, let <p E 4>3 . Then 

M 1Too ft<ptdNt = M 1Tn Nt<ptdNt 

= M 1-r" IPt[Nt- + LlNt]dNt 

= M 1-r" IPt[Nt- + 1]dNt 

= M 1-roo ~Ptl{t$-rn}[Nt- + 1]dAt, 

{18.70) 
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which fact proves (18.70) because of the arbitrariness of cp E <P3. 

18.4.3. Let f E <P3 and let 

1t lfsldAs < oo ( {t <Too} : (P-a.s.)). 

Then, by virtue of Theorem 18.6, 

1t lfsldNs < 00 ({t <Too}: (P-a.s.)) 

and, consequently the variables 

where, as usual, mt = Nt- At are well defined and finite ( { t < T 00 } : ( P-a.s.). 

Theorem 18. 7. Let f E <P3. P(lftl < oo) = 1, t 2:: 0, and M = (Mti\Too, Ft), 
t 2:: 0. Then: 

(a) M J;oo lftldAt < oo implies M is a uniformly integrable martingale; 

(b) P{f~ lfsldA8 = oo,t <Too}= 0 implies M is a T00 -local martingale. 

PROOF. To prove (a), let e be a .1"8 -measurable random variable lei :::; k < oo. 
As in the proof of (18.54), it can be proved that for s < t:::; oo, 

i.e., M is a martingale. In particular, M(Mroo IFs) = Mrool\s, which fact, 
according to Theorem 2.7, proves that the martingale M is uniformly inte­
grable. 

Note. Statement (a) holds true only if M J;oo lftl(1- LlAt)dt < oo. 
To prove (b), we shall need a lemma which is of interest in itself, namely: 

Lemma 18.11. Let B = (Bt,Ft), t 2:: 0, be a nondecreasing right contin­
uous predictable process and let f3 = inf { t 2:: 0 : Bt = oo}, with f3 = oo if 
limt~oo Bt < 00. 

Then there-exists a sequence of Markov times (an), n = 1, 2, ... , such that 
O"n > (3, O"n t /3, and BtMn < n {P-a.s.). 

PROOF. Let us write f3n = inf{ t 2:: 0 : Bt 2:: n }, setting f3n = oo if 
limt~oo Bt < n. The times f3n are predictable (see Example 7 in Section 18.1, 
and (18.7)). 
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Therefore, for each n = 1, 2, ... , there exist times /Jn such that /Jn < f3n 
and, without loss of generality, we can assume P(/3n- /3n > 2-n) $ 2-n. Set 
an = /31 V · · · V /Jn· Then /Jn $ an < f3n (P-a.s.) and, since P(f3n - /Jn > 
2-n) $ 2-n, by virtue of the Borel-Cantelli lemma (Section 1.1) limn an= 
limn /3n = {3, with an t {3. Since an < f3n, BtAun < n. 0 

We shall use this lemma to prove (b) of Theorem 18.7. Set Bt = J~ lfsldA8 

and {3 = inf{t ~ 0 : Bt = oo}. Since P{T00 $ /3} = 1, by virtue of the 
preceding lemma there exist Markov times (an), n = 1, 2, ... , an < {3, ant /3, 
such that J;ooAun lftldAt $ n and, therefore, M rooAun l!tldAt $ n. By 
virtue of (a) of Theorem 18.7, the processes (MtArooAun,.1't) are uniformly 
integrable martingales for each n = 1, 2, .... 

This, together with the relations T00 1\ an t T00 , n --t oo, indicates that 
the process M = (MtAr001 .1't), t ~ 0, is a T00-local martingale. 0 

18.4.4. By virtue of Theorem 18.1 the process m = (mt,.1't), t < T00 , with 
mt = Nt- At, is a T00-local martingale. 

We can actually assert more than this, namely, that the process m is 
locally bounded, i.e., there exists a sequence of Markov times (an), n = 
1, 2, ... , such that an $ an+l, an --t Too (P-a.s) and supt lmtAun I $ kn < oo. 
Indeed, letting an= inf{t ~ 0: Nt+At;::: n} and an= T00 , if Nroo +Ar00 < n, 
then due to the fact that .tlNt $ 1 and .tlAt $ 1 (Lemma 18.1), we have 

lmtAunl $ n + 2 (= kn)· 

The above remark implies, in particular, that the process m = (mt, .1't), 
t < T00 , is a T00-locally square integrable martingale, i.e., there exists a se­
quence of Markov times (an), 1, 2, ... , such that 

an$ an+t. an--t T00 (P-a.s.) 

and 

sup M m~Au < oo. 
t n 

It follows from the fact that the Doob-Meyer decomposition is unique for 
a T00-local submartingale (m~AToo•.1't), t;::: 0 that there exists a unique (to 
within stochastic equivalence) predictable increasing process (m)t, t < T0 ,, 

such that, for any n = 1, 2, ... , the process (m~Aun- (m)tAun, .1't), t;::: 0, is a 
martingale. 

Lemma 18.12. The process (m)t, t < T00 , corresponding to the T00 -locally 
square integrable martingale m = (mt,.1't), t < T00 , is defined by the formula 

(18.71) 
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If MNToo < oo, then P(roo = oo) = 1 and the process m = (mt,Ft), 
t 2::: 0, is a square integrable martingale. 

PROOF. By virtue of (18.40), 

m~ = 21t m 8 _dm8 + L(..1m8 ) 2 , 
0 s~t 

(18.72) 

where 

Hence 

m~ = 21t ms_dms + Nt - 21ot ..1AsdN8 + 1t ..1A8 dA8 

= lot (2m8 - + 1- 2..1A8 )dm8 +lot (1- ..1A8 )dA8 • {18.73) 

It can easily be seen that the first integral on the right-hand side of {18. 73) 
is a r 00-local martingale, and the second integral is a predictable increasing 
process. Because of the uniqueness of the Doob-Meyer decomposition, the 
above gives (18.71). 

Let MNToo < oo. Then P(NToo < oo) = 1 and, therefore, P(roo = oo) = 1. 
Let O'n = inf{t 2::: n : Nt +At 2::: n}, assuming O'n = oo if NToo + AToo < n. 
Then, from {18.73) and Lemma 18.1, we have 

tl\a" 
Mm~Aa,. = M Jo {1- ..1A8 )dA8 :5 MA,.,. = MN,.,. :5 MNToo < 00. 

From this, by virtue of the Fatou lemma, we obtain 

Mm~ :5 MNToo < oo, 

which fact proves that the martingale m = (mt, Ft), t 2::: 0, is square inte­
grable. 0 

Corollary. Since MNT,. :5 n, then each of the processes (mtAT,.,Ft), t 2::: 0, 
n = 1, 2, ... , is a square integrable martingale. 

18.4.5. Let us consider next the process Mt = J~ f 8 dm8 • It follows from 

Theorem 18.7 that if/ E !Pa and P{f~ lfsldA8 < oo, t <Too} > 0, then 

M = (MtAToo, Ft), t 2::: 0, 

will be a T00-local martingale. The following theorem defines the result more 
exactly. 

Theorem 18.8. Let f E !Pa, P(l!tl < oo) = 1, t 2::: 0. Then: 



(a) 

(b) 

(c) 
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and M is a square integrable martingale; 

P {lot /~(1 - L1A8 )dA8 = oo, t < T00 } = 0 <=? M 

is a T 00 -locally square integrable martingale; 

P {loroo /~(1 - ilAs)dAs < 00} = 1 ::::} P { ~~~ JMtAr00 J < 00} = 1. 

PROOF. As to (a), let M J;oo /~{1 - LlA8 )dA8 < oo. We shall show first 
that, under this condition, P{f~ l!sldA8 = oo, t < Too} = 0 and, therefore, 
the values Mt are defined on the sets {(t,w): t < T00 (w)}. 

To this end, we note that, by virtue of the Cauchy-Schwarz inequality 

(lot 1/sJdAs) 
2 ~At lot f~dAs. (18.74) 

But Nt < oo ( {t < T00 }; (P-a.s.)) and, therefore, according to Lemma 18.2, 
At < oo ( {t < T00 }; (P-a.s.)). It follows from this and {18.74) that the process 
Mt is defined on the set {(t,w) : t < T00(w)} if only we can show that the 
condition P{J;oo /~(1- LlA8 )dA8 < oo} = 1 implies the relation 

P{lot J'1dAs = oo,t <Too} =0. 

We have 

lot J'1dAs = lot I{ilA.~l/2}/:dAs +lot 1{.:1A.>l/2}f:dAs 

= 1t I{tlA.~l/2}/:dAs + L 1: · I{tlA.>l/2}LlAs. 
0 s~t 

(18.75) 

Since At < oo ( {t < T00 }; (P-a.s.)), the number of jumps in A 8 , s ~ t, of 
magnitude larger than ! can only be finite. Hence, on the set {t < T00}, 

L 1: I{tlA.>l/2}L1As < 00. 
s9 
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Further, 

1t l{aA.9/2}f:dAs :::::; 21t l{aA.9/2}{1- LlAs)f:dAs 

:::::; 21Too /:{1- LlAs)dAs < 00. 

Thus, the values Mt are defined on the set {t < r 00 }. 

We shall consider next the square integrable martingales 

,M.(n) = (M~n), :Ft}, t :;:::: 0, n = 1, 2, ... , 

with 

- (n) r 
Mt = Jo fsdmsATn, 

where the integrals are to be understood as stochastic integrals over the 
square integrable martingales (mtATn,:Ft), t:;:::: 0. (The existence of such in­
tegrals follows from {18.71}, the inequality 

M 1Too J:d(m}sATn = M 1Tn /:{1- LlAs)dAs <co, 

and Theorem 5.10}. 
For each t :;:::: 0, the sequence (M~n>), n = 1, 2, ... , is fundamental in the 

mean square sense, since. due to (5.82}, we have 

l ti\Tn 
= M 1:(1- LlA8 )dA8 --t 0 {m < n,m --t oo,n --too). 

ti\Tm 

Consequently, there exists a square integrable process M = (Mt,:Ft), t :;:::: 

0, such that Mt = limn M~n). It can easily be seen that this process is a 
martingale and that 

- (n) -
Mti\Tn = Mti\Tn > {18.76} 

for s:::::; t, n = 1,2, .... 
Since 

1Too 
-2 2 sup M Mti\Tn :::::; M ft {1 - LlAt)dAt < oo, 

n 0 

the sequence (MtATn), n = 1, 2, ... , is uniformly integrable (see Section 1.1}, 
we obtain from {18. 76} 
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M[Mti\T00 IFs] = Msi\T00 • {18. 77) 

We shall show that Mt = Mt ({t < T00}; (P-a.s.)). 
In fact, starting from the definitions of the Stieltjes stochastic integral 

and the stochastic integral over a square integrable martingale, we can easily 
show that, for simple functions f E !l>3, the pertinent values MtArn = M~~~" 
and MtATn coincide (P-a.s.), t 2:: 0, n = 1, 2, .... 

By passing to the limit we can find from the above that these values 
coincide for all the functions f E !l>3. Thus, Mt = Mt ({t < T00 }; (P-a.s.)). 

It follows, from this relation, (18. 77) and Theorem 3.6, that 

M.,.n = M.,.n = M(M.,.oo IF.,.n) 

and, therefore, by virtue of Levy's theorem (Theorem 1.5), there exists (P­
a.s.) a limit limn M.,." which (by definition) is to be taken as the value of the 
integral 

1Too fsdms. 

Therefore, for all t 2:: 0, MtMoo = MtMoo (P-a.s.) which fact proves that 
the process M = (MtMoo, Ft), t 2:: 0, is a square integrable martingale by 
virtue of the square integrability of the process (MtMoo), t 2:: 0, and (18. 77). 

We shall next establish the inverse implication in (a). On the set 

{(t,w): t < T00 (w)}, 

let J: lfsldA < oo and let M = (MtAT00 ,Ft) be a square integrable martin­
gale. 

By virtue of Lemma 18.7, 

Obviously, 

and 

(Theorem 3.2). 

M~ = 21t Ms_dMs + L(L1M8 ) 2 • 

0 s9 

P (sup IMtAT00 I < oo) = 1 
t?:O 

On the set {t < T00 }, 

t IMs-fsldAs $sup IMsAT00 I· {t lfsldAs < 00 (P-a.s.). Jo s?:O Jo 

{18.78) 
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Consequently, by virtue of Lemma 18.7, M is a T00-local martingale. 
Hence we have, from (18.78) and the Fatou lemma 

M L (..1M 8 ) 2 ~ MM;<X>. 
S~Tn 

We find from this and (18.54) that, for any C such that 0 < C < oo, 

00 > MM;<X> ;::: M L (..1M 8 ) 2 

= M lorn (!'1 1\ C)[1 - 2..1As]d[Ns - As] 

+M lorn (!'1 1\ C)[1- L1As]dAs 

= M lorn (!'1 1\ C)(1- L1As)dAs. 

(18.79) 

(18.80) 

Letting C too and n-+ oo, we obtain from (18.80) the required inequality 

M lor<X> f'1(1- L1As)dAs < oo. 

As to (b), the implication part of the theorem follows from (a) of the 
same theorem and from Lemma 18.11 (compare with the proof of (b) in 
Theorem 18. 7). 

The inverse implication in (b) can be established as follows. If M is a 
T00-locally square integrable martingale there exist stopping times ak t Too 

such that for each k = 1, 2, ... , the process (MtMk, :Ft), t ;::: 0, is a square 
integrable martingale. Then, by virtue of (a), 

P (louk f'1(1- ..1As)dA8 = oo) = 0 

and, hence, 

P (lot !'1(1- L1A8 )dA8 = oo, t < T00 ) 

= P (lot /'1(1- ..1A8 )dA8 = oo, y{t < ak}) 
~ L P (lot !'1(1 - L1A8 )dA8 = 00, t < ak) = 0. 
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As to (c), let 

cp'(t) = I{f~(l-ilAt)ilA,>l}ft, 

cp"(t) = I{f~(l-ilAt)ilAt9}ft. 

These processes belong to class P3 and Mt = M~ + M~', where 

M~ =lot cp'(s)d[Ns- As], M~' =lot cp"(s)d[Ns- As]· 

We shall show that 

P {lo-r""' /;(1- ~As)dAs < 00} = 1 implies P { ~~~ IM~M""' I < oo} = 1. 

(18.81) 

We have 

But (P-a.s.) 

L (cp'(s))2 (1- ~As)~As = lo-r""' I{f_t(l-ilA.)ilA,>l}f.?(l- ~As)dAs 
S~TCX> 

:$lo7
""' f.?(1- ~As)dAs < oo. 

Hence the number of terms in the sum 'Es<-r""' (cp'(s))2(1- .dAs)LlAs is 
finite (P-a.s.). For ~As = 1 and .dAs = 0, cp'(s) = 0. Therefore, the number 

of nonzero terms in the sum 'Es<-r lcp'(s)l[.dNs + .dAs] is the same as in the 

sum 'Es<-r (cp'(s))2 (1- ~As)LlAs~ which fact, together with (18.82), proves 
(18.81).- ""' 

We shall show next that 

P {sup IM~M I < oo} = 1. 
t~O ""' 

(18.83) 

To this end we write 

and introduce stopping times Ok = inf { t ?: 0 : Dt ?: k}, setting Ok = T 00 on 

the set D-r""' < k. 
It is easy to see that Dok :$ k + 1 and 

(18.84) 
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By virtue of (a), the processes (M~~ok, :Ft), t ~ 0, for each k = 1, 2, ... , 
are square integrable martingales (with right continuous trajectories). Hence, 
according to Theorems 3.2 and 5.10, for c > 0 we have 

{ I II I } 1 ( II )2 1 k + 1 P sup Mt/\Ok > c S -M M 8k = -MDok S --. 
t~O C C C 

From this, 

P {sup IM~/\Too I > c} 
t~O 

p {sup IM~/\Ok I > c, ek = T 00} 
t~O 

and, therefore, 

+P {sup IM~~T I> c, ek <Too} 
t~O oo 

S P {sup IM~~okl > c} + P {Bk <Too} 
t~O 

k+1 < -- +P{Bk < T00}, 
c 

P {sup IM~'/\T I= oo} S P{Bk <Too}; 
t~O oo 

this fact, together with (18.84), proves (18.83). D 

18.4.6. To conclude this section we shall formulate a result to be used in 
investigating the requirements for absolute continuity of the measures which 
correspond to point processes (Section 19.4). 

Let processes f = (ft, :Ft), B = (Bt, :Ft), t ~ 0, belong to the class cP3, 

P(l!tl < oo) = 1, P(J~ lfsldA8 = oo, t < Too), and the process B = (Bt, :Ft) 
have nondecreasing right continuous trajectories with Bo = 0. We shall form 
a process Zt = Mt + Bt, where Mt = J~ fsd[Ns -As]· 

Lemma 18.13. If P(supt>o Zt < oo) = 1 and LlZt = Zt- Zt- S c < oo, 
then P(Br00 < oo) = 1. -

PROOF. By Theorem 18.7, the process M = (Mt,:Ft) is a T00-local martin­
gale. Therefore, there exists a sequence of stopping times O'n t T00 such that 
the processes (MtMn,:Ft), for each n = 1, 2, ... , are uniformly integrable 
martingales. 

We shall define the stopping times Bk = inf { t ~ 0 : Zt ~ k}, assuming 
Bk = oo on the set { supt>o Zt < k}. By virtue of the assumptions of the 
lemma, Zt/\Ok S k + c andlimk-+oo P(Bk < oo) = 0. Hence, 

MB<Tni\Ok = M{M<Tn/\Ok + B<T,.A8k} = MZCT,./\Ok S k +C. 
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From this, by virtue of Theorem 1.1, 

MBTooABk = MlimB.,.nAllk = limMBanAll,. ~ k + C 
n 

and, therefore, P(BTooAB,.) < oo = 1. 
Finally, we find 

P(BToo = oo) = P(BToo = oo,Ok = oo) + P(BT"" = oo,Ok < oo) 
= P(BTooAllk = oo, ek = oo) + P(BToo = oo, fh < oo) 

~ P(BTooAB" = oo) + P(Ok < oo) 
= P(Ok < oo) --t 0, k --too, 

thus proving the lemma. D 

Note. The statement of the lemma holds true if Zt = Mt + Bt, where Mt 
is a T 00-local martingale with right continuous trajectories. 

Lemma 18.14. Let (.1't), t ~ 0, be a nondecreasing, right continuous family 
of a-algebras .1't, let Y = (yt, .1't), t ~ 0, be a a-locally square integrable mar­
tingale with right continuous trajectories (a ~ oo), and let (Y} = ( (Y}t, .1't), 
t ~ 0, be a predictable increasing process such that (yl- (Y}t, .1't), t ~ 0, is a 
a-local martingale. 

Let (y}.,. = limt--t.,.(Y}t· If 

P{(y}.,. < oo} = 1, 

then P{sUPt<aiYtl < oo} = 1 and there exists a .1'.,.-measurable random vari­
able y.,., P{IYal < oo} = 1, such that 

P {lim Yt = y.,.} = 1. t--ta 

PROOF. Since the process Y is a a-locally square integrable martingale there 
exists a sequence of stopping times ant a such that y(n) = (YtMn, .1't), t ~ 0, 
for each n, n = 1, 2, ... , are square integrable martingales. Starting from the 
martingales y(n), n = 1, 2, ... , we can define the unique process (Y} analo­
gously to the corresponding process in Theorem 3.9 or to the compensator At 
of the point process Nt (Section 18.1). Let f = (/(t),.1't), t ~ 0, be a random 
process belonging to class cl>a (Definition 3 in Subsection 5.4.1) such that 
P{f~ J2(s)d(y} 8 = oo, t <a}= 0. In this case we can define, by generalizing 
Theorem 5.10, the stochastic integral 

.Jt(f) = 1t f(s)dys 

from the a-locally square integrable martingale Y so that the process .J = 
(.7t(/), .1't), t ~ 0, has right continuous trajectories. The process .J will also 
be a a-locally square integrable martingale with 
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The proof of this fact differs very little from the implication of assertion {b) 
of Theorem 18.8. 

We shall prove the next assertions of the lemma. To this end we define the 
a-locally square integrable martingale Y' = (y;, .1"t), t ~ 0, andY" = (y;', .1"t), 
t ~ 0, by 

y: = lot I{..:l(y).::;l}dYs, y:' =lot I{..:l(y).>l}dYs, 

where L1(y} 8 = (y} 8 - (Y}s-· It is seen that 

and 

(y'}t =lot J{..:l(y).:51}d{y}s, (y"}t =lot J{..:l(y).>l}d{y}s· 

We shall have proved the assertions of the lemma if we prove them for 
either of the processes Y' or Y". 

Let us prove first the assertions of the lemma for the process Y'. 
We shall define the stopping times Tn, n = 1, 2, ... , as follows: Tn = inf{t : 

(y'}t ~ n), assuming Tn =a if (y'}a < n. By virtue of the definition of (y'}t 
and the inequality (y'}t ~ (Y}t, we have 

(y'}tATn ~ n + 1, lim P{Tn <a}= 0. 
n--+oo 

It follows from this, in particular, that the processes (y;ATn•.1"t), t ~ 0, for 
each n = 1, 2, ... , are square integrable martingales. Hence, by Theorem 3.3 
we can define the random variables y~ATn = limt--too y:ATn (P-a.s.) with 
M(y~ATJ2 ~ n + 1, and, by virtue of Theorem 3.2, 

P {sup IY:ATn I = oo} = 0. 
t::=;a 

We shall show that P{supt::;a IY;I = oo} = 0. We have 

= P {sup IY~ATn I = oo, Tn = a} 
t::=;a 

+P {sup IY;I = oo, Tn <a} 
t::=;a 

< P {sup IY~ATn I = oo} + P{Tn < a} 
t::=;a 

= P{Tn < a} ~ 0, n ~ 00. 
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Set 

-1 -1,- I 
Yu = lmt-+uYt• I 1' I 'JL,. = lffit-+u Yt 

and note that IY~I ~ SUPt<u IY;I, i.e., P{IY~I < oo} = 1. 
Since y~ = y' ((Tn = ~; (P-a.s.)), we have 

-0' 

P{y~ > JL~} ~ P{Tn < a} --* 0, n -+ oo. 

Thus, we have proved the lemma for the process Y'. 
To prove the lemma for the process Y" we note that (P-a.s.) 

00 > (Y)u:::: (y")u = r J{Ll(y).>l}d(y)s = L J{Ll(y).>l}Ll(y)s. 
Jo s<u 

Therefore, the number of terms in the last sum is finite (P-a.s.). Hence, 

Y? = rt I{Ll(y).>l}dYs = L I{Ll(y).>l}LlYs, 
Jo s<u 

where Lly8 = Ys -Ys-, i.e., y;' is a right continuous piecewise constant function 
of t with a finite number of discontinuity points coinciding with no a, from 
which fact the required assertions follow obviously. D 

18.5 The Structure of Point Processes with 
Deterministic and Continuous Compensators 

18.5.1. Let a point process N = (Nt.:Ft), t :2: 0, have a deterministic com­
pensator At, t :2: 0. We shall write a00 = inf{t :2: 0 : At = oo}, setting 
a 00 = oo if limt-+oo At < oo. 

Theorem 18.9. The point process N = (Nt,:Ft), t < a00 , with a determin­
istic compensator is a process with independent increments and (P -a.s.) for 
s ~ t < a 00 , >. E lR, 

x exp[(ei>. -l)(A~- A~)], 

where .LlAt = At - At-, At' = At - I:s::;t LlAs. 

PROOF. Obviously, 

(18.85) 
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= (ei>• -1) 1t ei>.Nu-dNu 

= (ei>.- 1) 1t eiANu-d[Nu- Au] 

+(ei>.- 1) 1t ei>.Nu-dAu. (18.86) 

The first integral on the right-hand side of (18.86) is a uniformly integrable 
martingale fort < a 00 • Hence, (P-a.s.) 

M (1t ei>.Nu-d[Nu- Au]' Fs) = 0, s ::S t < aoo. (18.87) 

We shall let V.(t) = M(e1>.N'IF8 ), s::::;; t, and note that, by virtue of the 
theorem on dominated convergence (Theorem 1.4), V8 (t) = M(ei>.N•-IF8 ). 

Taking into account this remark, we find from {18.86) and (18.87) that 

V8 (t) = V.(s) + (ei>.- 1) 1t V8 (U- )dAu. (18.88) 

Since V8 (t) f. 0, for 

Us(t) = Vs(t)/Vs(s) = M(ei>.(N,-N.)IFs) 

we obtain 

By virtue of Lemma 18.8, a unique solution of this equation is given by 
(18.85), thus proving the theorem. 0 

Corollary. If At = t, the point process N = (Nt, Ft) is a Poisson process 
and 
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18.5.2. We shall show now that the point process N = (Nt,Ft), t ~ 0, with 
continuous compensators A = (At, Ft), t ~ 0, can be transformed into a 
Poisson process by a change of time. 

Let 

a(t) = inf{s ~ 0: A 8 > t}, 

and let the a-algebra 9t = Fu(t) and 7rt = Nu(t)· 

Theorem 18.10. Assume that the compensator At. t > 0, is continuous 
(P-a.s.) and that 

P { lim At = oo} = 1. 
t-too 

Then the process II = (7rt, 9t), t ~ 0, is a Poisson process (with a single 
parameter). 

PROOF. It is clear that the process II has piecewise constant, right contin­
uous trajectories, where the jumps of the trajectories are integers. 

Hence, to prove the theorem it suffices to show that the magnitude of 
jumps in the process II is equal to unity and (P-a.s.) 

M(eiA[11"t-11"s]i9s) = exp[(ei>.. -1)(t- s)]. (18.89) 

By virtue of (18.86), 

1
u(t) 

1
u(t) 

eiA11"t = ei>..1r. + (ei>.. -1) ei>..N,._d[Nu- Au]+ (ei>.. -1) ei>..N,_dAu. 
u(s) u(s) 

(18.90) 

The process (J~ ei>..N,._ d[Nu - Au], Ft), t < oo, is a local martingale. 
Hence, by virtue of the equality M Au(t) = t, 

(18.91) 

Further, making use of the continuity of the function At and taking into 
account the definition of the times a(t), we find (see also Section 1.1) 

1
u(t) ei>..N,._ dAu = 1u(t) ei>..N,.dAu = lt ei>..N.-<,.>du = lt ei>..11",.du. 

u(s) u(s) s s 
(18.92) 

Let us set V8 (t) = M(eiA11"t 198 ). Then, by virtue of (18.90)-(18.92), 

V8 (t) = Vs(s) + (ei>.. -1) lt V8 (u)du, 
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from which we can obtain {18.89) as in the previous theorem. 
We shall note, finally, that the magnitude of jumps in the process II is 

equal to unity. 
By differentiating both sides of {18.89) with respect to A and assuming 

A = 0, we find that the process (7rt - t, {It) is a martingale. Consequently, if 
fh = inf{t: 7rt > 0}, by virtue of Theorem 3.6 we have 

M7rtA01 = M(t A lit) ~ Mfh. 

Since P(01 > t) = P(7rt = 0), and M eiA1rt = exp{(ei>. -1)t}, it is not difficult 
to show that P(7rt = 0) = e-t and, therefore, M01 = 1. 

Hence M 1rtf\81 :5 1 and, by the Fatou lemma, M 11"81 :5 1. But 11"91 ;::: 1 
(P-a.s.). Consequently, 

P(1r91 = 1) = 1, 

i.e., the value of the first jump in the process II is equal to unity. Similarly, 
we can establish that the magnitude of the remaining jumps is also equal to 
unity {P-a.s.). D 

Notes and References. 1 

18.1. Martingale methods came into use in point-process theory after the work 
of Bremaud [26]. A martingale approach to point processes was discussed by Boel, 
Varaiya, and Wong [22], Van Schuppen [302], Jacod [103], Jacod and Memin [105], 
Segal [271], Davis [48], Kabanov, Liptser and Shiryaev [113], Grigelionis [88] and 
Segal and Kailath [273]. 

18.2. Theorem 18.2 is to be found in Chou and Meyer [37], and Jacod [103]. 
For Theorem 18.3, see also Segal and Kailath [273] and Kabanov, Liptser and 
Shiryaev [113]. 

18.3. Theorems 18.4 and 18.5 (on existence and uniqueness) are due to Orey 
[251], Jacod [103] and Kabanov, Liptser and Shiryaev [113]. Lemma 18.8 was proved 
by Doleans-Dade [56]. 

18.4. This section is based on Jacod [102], and Kabanov, Liptser and Shiryaev 
[113]. Equation (18.56), Theorem 18.8 and Lemma 18.4 are apparently presented 
here for the first time. 

18.5. Theorem 18.9 is due to Kabanov, Liptser and Shiryaev [113], and Bremaud 
[27]. 

Notes and References. 2 

18.1-18.5. The martingale approach to the investigation of point processes used 
in this chapter has been developed for description and analysis of multivariate point 
processes and integer-valued random measures, Jacod [104]. Exhaustive information 
on these subjects can be found in Liptser and Shiryaev [214], Jacod and Shiryaev 
[106]. 



19. The Structure of Local Martingales, 
Absolute Continuity of Measures for Point 
Processes, and Filtering 

19.1 The Structure of Local Martingales 

19.1.1. We established in Theorem 5.7 that any martingale (or local martin­
gale) of a Wiener process permitted a representation as a stochastic integral 
(see (5.42)). We shall show in Theorem 19.1 that a similar result also holds 
for point processes. 

Theorem 19.1. Let N = (Nt,Ffl), t? 0, be a point process with a compen­
sator A = (At, Ffl), t ? 0, and let Y = (yt, FtN) be a T00 -local martingale 
with right continuous trajectories. Then Y permits the representation 

Yt =Yo+ lot fsd[Ns- As], (19.1) 

where f = Ut, F fl) is a predictable process with 

P (lot lfsldAs = 00, t < T00) = 0. (19.2) 

1 9.1. 2. To prove the above result we shall investigate some properties of the 
T 00-local martingale Y. 

Lemma 19.1. There exists a sequence (an), n = 1, 2, ... , of Markov times 
{with respect to the family (Ffl), t? OJ such that: ant Too as n-+ oo; and 

M loUn IYtldNt < 00. (19.3) 

PROOF. Let (a~), n ? 1, be a sequence of Markov times a~ t T00 , with 
respect to the family (Ffl), t ? 0, such that the processes (YtM:,, Ffl), t ? 0, 
n = 1, 2, ... , are uniformly integrable martingales. Set an= Tn A a~. Then 

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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i=l 
n 

~ LMIM(Yu:,IF,:;)i ~ nMIYu:,l < oo, 
i=l 

which proves (19.3). 0 

Note 1. Let 0'~ = inf(t : At > n) and 0'~ = oo if Aroo ~ n. If O'n = 
r n 1\ u~ 1\ u~ then 

rn 10'n 
M lo IYt-ldNt < oo, M 

0 
IYt - Yt-ldNt < oo. {19.4) 

It is useful to note this result of the proof (see {18.54) and the proof of 
Lemma 3.2) 

M foO'n IYt-ldNt = M foO'n IYt-ldAt = M foO'n IM(Yu:,IJ='~)idAt 

~ M foun M(IYu:,IIF~)dAt = M[M(iYu:,IIF:..)Aunl· 

Note 2. It follows from (19.3), {19.4) and Section 18.4 that we have 
defined the conditional mathematical expectations MN(iyliP)t, MN(YIP)t 
MN(L1yiP)t (denoted by iYt'l, fit and LlY;, respectively; note that LlY; = 
fit- Yt- since yt:" = Yt-)· 

Lemma 19.2. The probability 

p (fotrYJ(l- L1Aa)+dAa = oo;t <Too) = 0. {19.5) 

PROOF. Let (un), n = 1, 2, ... , be the times defined in Note 1. Then to prove 
{19.5) it suffices to show that for each n = 1, 2, ... , 

{19.6) 

We have 

foun iYsi(1- L1Aa)+dAa = foun fYJ(1- L1A,)+ I{AA.:51/2}dAa 

+ foun fijJ{1- L1A8 )+ I{.:lA.>l/2/}dAa 

{= Qn + Rn). 
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But, by virtue of (18.54) and Lemma 19.1, 

MQn = M faun iYsl(1- LlAs)+ I{<lA.9/2}dAs 

< 2M 1Un iYsldAs =2M faun IYsldNs < 00, 

and 

Rn = L fYtl(1- LlAt)+ I{.<lA,>l/2}LlAt < oo (P-a.s.), 
t~Un 

since (Lemma 18.2) the compensator At can have only a finite number of 
jumps of magnitude greater than ! on the interval (0, an)· D 

Note. For each n = 1, 2, ... , 

19.1.3. Let Y = (yt,:Ft), t ~ 0, be a uniformly integrable martingale. Then 
MIYeol < oo (Yeo = limt-+eo Yt) and there exists a sequence of bounded F~­
measurable random variables y!:,), k = 1, 2, ... , such that 

Let us consider a sequence of uniformly bounded (for each k) martingales 
y(k) = (y;k), F{'), t ~ 0, y~k) = M(y!:,) IFf'), with right continuous trajec­
tories. (The existence of these modifications follows from the fact that the 
a-algebras F{' are right continuous and from the corollary to Theorem 3.1). 

According to (3.6), 

( 
(k) ) 1 (k) 1 P sup IYt - Yt I > c :S - · MIYoo - Yeo I :S -k2 · 

t~O c c 

Hence, by virtue of the Borel-Cantelli lemma, there exists a subsequence 
{ ki} such that 

p ( lim sup IYt- y~k;)l = o) = 1. 
k;~eo t~O 

(19.8) 

(We shall number the sequence { ki} as { k} from now on to avoid new nota­
tion). 

Lemma 19.3. There exists a sequence of Markov times (an), n = 1, 2, ... , 
(with respect to the family (F{'), t ~ 0} such that: ant 'Yeo as n -too; and, 
for each n, 
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1Un -. 
0 ~ (k) - + -hm M IYt- Yt 1(1- LlAt) dAt = 0. 

k-+oo 0 
(19.9) 

PROOF. We shall consider a random process B = (Bt, :Ff) with Bt = 
rt N - + Jo M(IYooii:Ft_)(1 - LlAs) dAs. 

By virtue of Lemma 19.2, 

P{inf(t;:::: 0: Bt = oo) ;:::: T00 } = 1. 

Hence, because of the predictability of the process Bt and Lemma 18.11, 
there exists a sequence of times (an), n = 1, 2, ... , such that O"n t T00 and 
Bun :=:; n (P-a.s.). 

From this we have 

M 1un M(IYooiiFr-)(1- LlAt)+dNt 

= M 1un M(IYooli:Ff-)(1- LlAt)+dA = MBun:::; n. (19.10) 

Further, since IYt-Y~k)I(1-LlAt)+:::; 2M(IYooii:FtN)(1-LlAt)+, by virtue 
of the theorem on dominated convergence (Theorem 1.4), (19.8), and (19.10), 
we obtain 

lim M rn IYt- y~k)l(1- LlAt)+dNt = 0. (19.11) 
k-+oo Jo 

The required relation, (19.9), follows immediately from (19.11) and the 
estimate 

Note. For each n = 1, 2, ... , 

1Un 
0 (k) - + -hm IYt-1 - Yt- 1(1- LlAt) dAt = 0. k-+oo 0 

19.1.4. Let us consider a T00-local martingale z = (zt,:Ff), t;:::: 0, with 

Zt = Yt- Yo -lot (Ys- Ys-)(1- LlAs)+d[Ns- As] 

and set zt = MN(ziP), Yt = M.N(YIP). 

Lemma 19.4. For each t > 0, 

D 

(zt- Zt-l)J{L1A,<l} = 0 (P-a.s.). (19.12) 
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PROOF. Let (an), n = 1, 2, ... , be a sequence of stopping times defined in 
Note 1 to Lemma 19.1 and let cp = ( 'Pt, :FtN), t ~ 0, be a predictable process 
with I'Ptl $ 1 (P-a.s.), t ~ 0. Then 

The required assertion, (19.12), follows from the above equality and from 
the definition of the conditional mathematical expectation MN(·IP) (Sec­
tion 18.4). 0 

1 9.1. 5. The main result related to the structure of local martingales Y = 
(Yt,:Ffl), t;::: 0, is the following. 

Theorem 19.2. 

{1) Any T00 -local martingale Y = (yt.:Ffl), t ~ 0, with right continuous 
trajectories permits the representation ({ t < T 00 }; (P -a.s.)) 

Yt =Yo+ 1t (Ys- Ys-)(1- LlAs)+ams, (19.13) 

(19.14) 

{2) If, in addition, Y is a T00 -locally square integrable martingale, then 

( t ~ 2 - +- ) P Jo IYs-Ys-1 (1-LlAs) dA8 =oo,t>T00 =0. (19.15) 

{3) IfY is a square integrable martingale, we have 

(19.16) 

(19.17) 

(19.18) 
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PROOF. We shall note first that, due to {19.8) and Lemma 19.3, we need to 
prove {19.13) only for the case of uniformly bounded martingales. Thus, let 
IYtl ;::;; d, t;::: 0, wEn. We shall define the martingale y = {ih,:F"{"), t;::: 0, 
by 

and note that 

lfitl < IYol + 2d lot {1- LlAs)+d[Ns- As] 

< IYol + 4d { Nt +lot {1 - LlAs)+ dAs} . {19.19) 

Since Nr .. ;5; nand the process Bt = J~(1- LlA~)dAs is nondecreasing, 
predictable and such that ({t < T00 }; (P-a.s.)) 

Bt ;5; 2At + LI{,:iA.>l/2}{1- LlAs)+ LlAs < oo, 
s~t 

by virtue of Lemma 18.11, there exists a sequence of times (an), n = 1, 2, ... , 
ant T00 , such that Bu .. ;5; n; this and {19.19) imply that the martingale Y is 
T00-locally bounded: 

lfitAB,.I ;::;; d + 4dn, On = Tn 1\ an. n = 1, 2, .... 

We shall consider next the uniformly bounded martingale z = (zt, :FtN) 
with Zt = 1 + C(YtAB,. - YtAB,.) where we choose the constant C -=I 0 so that 
P{inft Zt > 0} = 1. 

Then, by virtue of Lemma 19.4 for t ;::: 0, 

zt 
I{..:lA <l}- = 1 (P-a.s.). 

t Zt-
{19.20) 

Let Q be the restriction of P to the a-algebra :F~ and let Q' be a measure 
on (il,:F~) with dQ' = z00dQ where Zoo= limt--too Zt. 

It follows from Theorem 19.2 of the next section and from {19.20) that the 
compensators of the point processes N = (Nt, :Ff', Q) and N 1 = (Nt, :Ft, Q') 
coincide. Therefore, by virtue of Theorem 18.5, Q' = Q, i.e., z00 = 1 {Q-a.s.) 
and, for any t ;::: 0, 

Yt/\9,. = Yt/\9,. (P-a.s.). 

Since On t T 00 , we find from this that 

Yt = Yt ({t <Too}; (P-a.s.)). 
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(19.15) and {19.16) follow immediately from (19.14), Theorem 18.8 and from 
the fact that (C+)2C = c+ (see Section 13.1). 

Finally, (19.17) and (19.18) hold on account of the following: (ffi)t = 

J~(1- LlA8 )dA8 ; for the square integrable martingale Yt =Yo+ J~ / 8 dm8 , 

(y, m)t = lot fs(1 - LlAs)dAs 

(compare with Lemma 18.12). D 

19.2 Nonnegative Supermartingale: 
Analog of Girsanov's Theorem 

19.2.1. Let N = (Nt,Ft), t ~ 0, be a point process with a compensator 
A= (At,Ft), t ~ 0, and let f = (ft,Ft) be a predictable process such that 
P(l/tl < oo) = 1, t ~ 0, and 

P (lot lfsldA8 = 00, t < T00) = 0. (19.21) 

It follows from Theorem 18.7 that the process z = (zt, Ft), t > T00 , with 

Zt = 1 +lot fsdms, (19.22) 

is a T 00-local martingale 
Suppose that Zt ~ 0. Then the process z = (zti\7'00 ,Ft), t ~ 0 is a super­

martingale. In fact, let (CTn), n ~ 1, be a sequence of times such that O'n t T00 , 

n --+ oo, and the process (ztAun,Ft) is a martingale. Then MztMn = 1, 
M(ztMniFs) = ZsMn and, by virtue of the Fatou lemma, MztiiToo :5 1, 
M(ztl\7'00 IFs) :5 Zsl\7'00 • 

Lemma 19.5. Let z = (zt, Ft) be a nonnegative supermarlingale defined as 
in {19.22}. Then there exists a predictable process A= (At,Ft) such that1 

{1} 0 :5 At < oo; 
(2} LlAt = 1 implies At = 1; Zt- = 0 implies At = 1; 
{3} At ::5 (LlAt)-1; 

(4) the process J~ A8 dA8 is a right continuous process ({t < T00 }; (P-a.s.)) 
in the topology of the extended real line; 

1 Following Section 18.3, we assume Zo- = 0, Ao- = 0. 
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(5) 

and 

X exp (1t (1- A8 )dA~) , (19.24) 

where To= 0. 

PROOF. Since z is a nonnegative supermartingale, by virtue of Note 2 in 
Section 3.9 and (19.22), fort< Too we have 

Zt = 1 + 1t Zs-(Zs-)+ fsdms. (19.25) 

Let us denote by at the number of jumps of magnitude 1 of the com­
pensator A during time [0, t], and denote by f3t the number of jumps in the 
process N which occur during time [0, t] at the times of jumps of magnitude 1 
of the compensator A. That is, let 

O!t = 1t l{.aA.=l}dAs, f3t = 1t l{.aA.=l}dNs. 

The definition of CXt and f3t implies, first, that O!t ~ f3t, and, second, 
that the process (f3t - CXt, Ft), t ~ 0, is a nonpositive local martingale with 
{30 - a 0 = 0; this fact, in turn, implies that O!t = f3t (P-a.s.) and, therefore, 

Let 

and 

mt = Nt -At = Nt -At - 1t I{.aA.=l}d[Ns -As] 

1t (1- LlAs)(1- LlAs)+d[Ns- As]· 

A= min{IAtl, (LlAt)-1 }. 

We have from (19.25)-(19.28) that 

Zt = 1 + 1t Z8 _(As- 1)(1- LlAs)+dms. 

(19.26) 

(19.27) 

(19.28) 

(19.29) 
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We shall show that in (19.29) we can replace As by the function As defined 
in (19.28). 

To this end we note that the function As satisfies (1)-(3) of the theorem. 
Further, since llal-11 ::; la-11 and, for a 2: 0 and b 2: 1, laAb-11 ::; la-11, 

it follows that 

Zt-IAt -11(1- LlAt)+ ::; Zt-IIAtl-11(1- LlAt)+ 
::; Zt-IAt -11(1- .1At)+ 

= l!tl(1 - LlAt)(1- LlAt)+ ::; lftl. 

It follows from the above inequalities and (19.21) that 

1t Zs-IAs -11(1- LlAs)+dAs < 00 ({t < 700}; (P-a.s.)), 

and, consequently, that the process (zt, Ft), t < T00 , defined by 

is a T00-local martingale (Theorem 18.7). 
We shall show that, in fact, Zt = Zt ( {t < T00 }; (P-a.s.)). 

(19.30) 

The process (zt- Zt,Ft), t < T00 , is a T00-local martingale and, by virtue 
of (19.29) and (19.30), we have 

Zt- Zt = 1t Zs-(As- A8 )(1- LlAs)+d[Ns- As]· (19.31) 

By virtue of (19.28), we have 

At- At= At -IAtiA (LlAt)-1 =(At -IAtl) + (IAti-IAtiA (..1At)-1). 

Hence Zt- Zt = Ll~ + Ll~' where 

Ll~' = 1t Zs-(IAsi-IAsll\ (LlAs)- 1)(1- LlAs)+dms. 

We shall show that ( { t < T 00 }; ( P-a.s.)) Ll~ = Ll~ = 0. To this end we 
shall note first that AT, 2: 0. Indeed, we have from (19.29) that 

From this we conclude that AT, 2: 0 for zT, _ > 0 and LlAT, < 1. If zT, _ = 0 
or LlAT, = 1, by virtue of (19.27) we have AT, = 1. 
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The fact that the values of AT; are nonnegative and the definition of Ll~ 
imply that 

(19.32) 

Hence the T00-local martingale Ll' = (Ll~,Ft), t < T00 , has monotone 
nondecreasing trajectories with Ll0 = 0. Therefore Ll~ = 0 ( { t < T 00 }; ( P­
a.s.)). 

We shall show also that Ll; = 0 ( {t < T00 }; (P-a.s.)). 
Let O'j be a time of jump of the compensator A and let O'j -I Ti, i = 1, 2, .... 

Then we have from (19.29) that 

0::::; Zu; = Zu;-[1- (Au; -1)(1- LlAu;)+ LlAu;]· 

This fact implies that Au; ::::; (LlAu;)- 1 for LlAu; < 1 and Zu;- > 0. But, if 
LlAu; = 1 or Zu;- = 0, then we have again that Au;= 1::::; (LlAu;)-1. Hence, 
it follows from (19.32) and the equality Ll~ = 0 that (P-a.s.) 

1t Zs-(IA8 I-1Aal A (LlAa)-1)(1- LlAa)+dAa = 0, t >Too. 

Thus, 

This indicates that the T00-local martingale Ll" = (Ll;, Ft) has nondecreasing 
trajectories with Ll" = 0. Therefore, Ll; = 0 ({t < T00 }; (P-a.s.)). Thus 
Zt = Zt, thereby proving (19.23). 

We shall prove (19.24). Let ~ = inf{t ;::: 0 : Zt = 0}, setting ~ = oo if 
inft Zt > 0. The values J~ lAs -11(1- LlAs)+ds are finite fort< T1 A~. since 

00 > 1t lfaldAa ;::: 1t Za-IAa -11(1- LlAs)+dAs 

;::: inf Zu · t lAs- 11(1- LlAs)+dAs. 
u=::;t<TlAe lo 

Hence, for t < T1 A ~ the equation 

Zt = 1 -lot Z8 -(A8 - 1)(1- LlA8 )+dA8 

has a unique solution, namely 

(19.33) 

by virtue of Lemma 18.8. 
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If~> r1, from (19.23) we have 

z'T1 = z'T1 - + z'T1 -(A'T1 -1)(1- LlA'TJ+(l- LlA'T1 ) = A'T1 z'T1 -, 

since LlAt = 1 implies At = 1 by virtue of (2). 
It follows from the above and (19.33) that 

z'Tl = A'Tl . II [1 + (1- LlAs)+(l- As)Lls] exp [ rl (1- As)dA~] . (19.34) 
s<'Tt Jo 

Now let ~ :::; r1. Then ze = 0. The value ze can vanish at time ~ in two 
ways: in a continuous fashion, when ze- = 0; or in a jumpwise fashion, when 
ze- > 0 and ze = 0. 

According to (19.33), at least one of the following two relations holds for 
the first case: 

lim t A8dA~ = oo; 
ttu } 0 

Therefore, (19.34) is satisfied. 
We shall consider the case where ze- > 0, ze = 0. Then, if~ < r1, we 

have from (19.23) that 

1 + (1- Ae)(1- LlAe)+ LlAe = o 
and, consequently, (19.34) is satisfied. If~ = r1, we have from (19.23) that 
A'T1 = 0 and (19.34) is again satisfied. 

Thus, we have proved (19.34), which fact and (19.33) imply that (19.24) 
holds for t :::; r1. (Note that A'To = Ao = 1 in accord with the agreement 
zo- = 0 and the inference that Zt- = 0 implies At = 1). In the general case, 
(19.34) is established by induction. 

Let us prove, finally, (4). It is clear that 

t AsdAs = 2:::.xsLlAs + {t AsdA~. 
Jo s::;t Jo 

Since A8 LlA8 :::; 1, the process I:s<t A8 LlA8 is right continuous (in the 

topology of the extended real line). Further, if the function J~ A8dA~ is 
bounded on the interval [0, t], it will also be continuous on this interval. If 
this function is unbounded it will 'go' to infinity in a continuous way only, as 
was shown before. Hence, the function J~ A8 dA8 is right continuous (P-a.s.) 
in the topology of the extended real line. 0 

Corollary. Let A = (At, :Ft), t ~ 0, be a predictable process satisfying {1)-(4) 
of Lemma 19.!fl. Suppose the random process z = (zt,:Ft), t ~ 0, is defined 

2 {2) implies only that the first implication is satisfied. 
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fort < T 00 by {19.24) and fort ;::: T 00 by the equality Zt = ZtAroo where 
Zr00 = limttr00 Zt is a nonnegative supermartingale with Mzt :::; 1 and is a 
T00 -local martingale as well. In this case ({t < T00 }; (P-a.s.)) 

Zt = 1 + 1t Z8 -(A8 - 1){1- £1A8 )+d[N8 - As]· 

19.2.2. Let us suppose that a probability measure P' in addition to the prob­
ability measure P is given on a measurable space (.fl, :F). We shall consider 
point processes N = (Nt, :Ft, P) and N' = (Nt, :Ft, P'), and compensators 
A= (At,:Ft,P) and A'= (A~,:Ft,P'), t;::: 0, of the processes. 

It turns out that the compensators A' and A are related if we assume 
that the measure P' is absolutely right continuous with respect to measure 
P. To formulate the result we shall denote by Zt = M(dP' jdPI:Ft), t ;::: 0, a 
continuous modification of the martingale M(dP' jdPI:Ft), t;::: 0, which exists 
by virtue of the corollary to Theorem 3.1. We shall also write Zt = MN(z!P)t 
(see Section 18.4). 

Theorem 19.3. If P' « P, then (P' -a.s.) 

A~= 1t Z8 (Z8 _)+dA8 , t < T00 , 

ilAt = 1 implies Zt(Zt-)+ = 1. 

(19.35) 

(19.36) 

PROOF. Let f = (ft,:Ft), t;::: 0, be a nonnegative predictable process such 
that M' J;"" fsdA~ < oo where M' denotes the expectation under measure 
P'. Then, using Theorem 18.6, we find that 

roo 
M' = Jo ftdA~ = 

n<::l n<::l 

= M 1Too ZtftdNt = M 1Too ztftdAt 

= M 1Too ZtZt-(Zt-)+ ftdAt 

+M 1Too Zt{1- Zt-(Zt-)+)ftdAt• {19.37) 

We shall show that the last term in (19.37) is equal to zero. In fact, by 
virtue of Theorem 18.6, we have 
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rT~ rT~ 
M lo .Zt(1- Zt-(Zt-)+)ftdAt = M lo Zt(1- Zt-(zt_)+)ftdNt 

= Ml::>Tn(1-zTn-(zTn-)+)fTn =0 

(19.38) 

since if zTn _ = 0, then zTn = 0 (Note 2 to Theorem 3.5) and, therefore, also 

ZTn(1- ZTn-(zTn-)+) = 0. 

Further, by virtue of Lemma 3.2, 

M 1T~ ZtZt-(Zt-)+ ftdAt = MzT~ 1Too Zt(Zt-)+ ftdAt 

= M' 1Too Zt(Zt-)+ ftdAt• 

Hence this, together with (19.37) and (19.38), leads us to the relation 

M' 1T~ ftdA~ = M' 1T~ Zt(Zt-)+ ftdAt, 

from which, in particular, (19.35) follows. 
We shall prove next (19.36). Let (} be a jump time of the compensator A 

such that LlA9 = 1. 
This time is predictable (with respect to measure families of a-algebras 

completed by P and P' as well, since P' «: P). While proving Lemma 19.5 
we established, in particular, that if LlA9 = 1, then also LlN9 = 1. Therefore, 
(P-a.s.) and (P'-a.s.), LlN9 = 1. 

Further, since AT~ = limt-+Too At, the time(} < T00 (P-a.s. and P'-a.s.). 
Hence, 

L\A9 = M'(LlN9l.1'9-) = 1 

and, therefore, by virtue of (19.35), (P'-a.s.) 

1 = LlA9 = z9(Z9- )+ LlA9 = z9(ze- )+, 

thus proving (19.36). 

19.2.3. 

D 

Theorem 19.4 (Analog ofGirsanov's Theorem). Let the process>..= (>.t,.1't), 
t ~ 0, satisfy {1)-(4) of Lemma 19.5, and let the process z = (zt, .1't), t ~ 0, be 
defined by {19.24}, with MzT~ = 1. Then the compensators A= (At,.1't,P) 
and A' = (A~, .1't, P'), t ~ 0, for the point processes N = (Nt, .1', P) and 
N' = (Nt,.1't,P'), t ~ 0, with dP' = zT~dP, are related {P'-a.s.) by 

(19.39) 
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PROOF, By virtue of Theorem 19.3, it suffices to show that 

At= Zt(zt_)+ (P'-a.s.). 

By virtue of (19.23), 

Zt = Zt-[1 +(At -1)(1- LlAt)+(.LlNt- LlAt)]. 

(19.40) 

(19.41) 

Let g = (gt,Ft), t ~ 0, be a nonnegative predictable process such that 
M J;oo Zt9tdNt < oo. Then, from (19.41) and Theorem 18.6, we have 

roo 
= M lo Zt9tdNt 

= M 1Too Zt-[1+(At-1)(1-LlAt)+(LlNt-LlAt)]gtdNt 

= M 1Too Zt-[1 +(At -1)(1- LlAt)+(1- LlAt)]gtdNt 

roo 
= M lo Zt-[1 +(At- 1)(1- LlAt)+(l- LlAt)]gtdAt 

= M 1Too Zt-AtgtdAt, (19.42) 

where the last equality holds due to the fact that, if LlAt = 1, then At = 1 
(Lemma 19.5) and, therefore, also 

From (19.42) we have that Zt = Zt-At (P-a.s.). Consequently, Zt(Zt-)+ = 
Zt- (zt- )+At (P-a.s. and P'-a.s.). But, by virtue of Lemma 6.5, P' {inft~Too Zt > 
0} = 1. Hence, (P'-a.s.) Zt(Zt_)+ =At, t:::; T00 • 0 

19.2.4. We shall give some simple sufficient conditions which guarantee the 
condition M zT"" = 1; this condition was given in Theorem 19.4, implying 
that the supermartingale z = (zt,Ft), t:::; T00 , is a martingale (Lemma 6.4). 

Lemma 19.6. Let any of the following conditions be satisfied: 

{1) there exists a constant C < oo such that 

1Too IAt -11(1- LlAt)+dAt:::; C (P-a.s.); (19.43) 

{2) the compensator A is continuous (LlAt = 0, t ~ 0} and, for some constant 
C< oo, roo 

Jo (At- 1)2dAt :::; C (P-a.s.); (19.44) 
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{3} there exists a constant C < oo such that (P-a.s.) 

1Too (A _ 1)2 
1 ti.X - 11 dA~ + L I.Xt- 11(1- LlAt)+ LlAt :5 c. 

0 + t t<Too 
(19.45) 

Then M z.,.oo = 1. 

PROOF. For (1), by virtue of Theorem 18.7, we need only show that 

(19.46) 

To this end we note that since z = (zt, .1't), t ~ 0, is a local martingale, 
there exist times On t r 00 such that the processes (ztAO,.,Ft), t ~ 0, are 
uniformly integrable martingales with M Z8,. = 1 for each n = 1, 2, .... Tak­
ing advantage of this fact, Lemma 3.2 and an earlier theorem on monotone 
convergence (Theorem 1.1), we obtain 

M fo'l'oo Zt-IAt -11(1- LlAt)+dAt 

18,. 

= limM Zt-IAt -11(1- LlAt)+dAt 
n 0 

18,. 

= limMz9,. · I.Xt -11(1- LlAt)+dAt 
n 0 

:5 ClimMz9,. = C < oo, 
n 

thus proving (19.46). 
As to (2), denote by Zt(.X) the right-hand side in (19.24) and denote by 

Zt(.X2 ) the corresponding function when substituting A~ for .X. Since in the 
case in question LlAt = 0, it is seen from (19.24) that 

zl(.X) = Zt(.X2 ) exp [1t (1- A8 ) 2dA8 ] • 

It is easy to conclude from {19.44) and (1) that the process {zt(.X2),.1't) 
is a nonnegative supermartingale with Mzt(.X2 ) :51. Hence, 

M zi(.X) = M Zt(.X2 ) exp [lot (1- A8 ) 2dA8 ] :5 M Zt(.X2)e0 :5 e0 

and Mz~..(.X) :5 e0 where the times On were introduced to prove (1). 
The above implies that the values (z8,. (.X)), n 2:: 1, are uniformly integrable 

and, therefore, 

Mz.,.oo = limMzo (.X)= 1. n ,. 
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Regarding (3), we shall introduce three processes A (i) = (A~i), Ft), t 2: 0, 
i = 1,2,3, with 

d1) _ ,I(L\At>O) d2) _ ,I(L\At=O,I>.t-11>1/2) 
At - At ' At - At 

, (3) _ , /(L\At=O,I>.t-119/2) 
At -At . 

It is obvious that Zt(A) = Zt(A<l)) ·Zt(A<2>) ·Zt(A<3>), and that the following 
inequalities are satisfied: 

L IA~ 1 ) - 11(1- LlAt)+ LlAt :::; C; 
t<Too 

1Too (A (2) - 1)2dA < C· 
t t- ' 

0 

1T"" lAp> - 1ldAt :::; C. 

By virtue of (1), MzToo(A(l)) = 1 and hence measure P(1) with dP(1) = 
zToo(A<1>)dP is a probability measure. By virtue of Theorem 19.4, the point 
process (Nt, Ft, P< 1>) has the compensator (AF), Ft, P<1>), where 

A~1 ) = 1t A~1)dA8 =A~+ L A8 LlAs· 
0 s~t 

Hence, 

1T"" (A~2) - 1)2dA~1) = 1T"" (A~2) - 1)2dA~ = 1T"" (A~2) - 1)2dAt :::; C. 

Therefore, according to J0 zT00 (A<2>)dP(1) = 1 and, by virtue of Theo­
rem 19.4, the point process (Nt.Ft,P(2)) with dP(2) = zToo(A<2>)dP(1) has a 
compensator (A?), Ft, P(2)) such that 

Af> = 1t A~2) dAi1). 

It follows from the above that 

1Too IA~J)- 1ldA~2 ) = 17'oo lAP) -1IA~2)dAF) 

17'"" lAp>- 1IA~2>dA~ 

1Too IA~J)- 1IA~2)dAt 

= 1T"" lAp> - 1ldAt :::; C. 
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Hence, according to {1), 

and, therefore, 

1 = L eToo(..X<3>)dP(2) = L ZToo(..x<3>)zToo(..x<2>)dP(l) 

= L ZToo(..X(3))zToo(..X(2))zToo(.,X(l))dP = MZT00 (A), 

thus proving {3). 

19.3 Optimal Filtering from the Observations 
of Point Processes 

0 

19.3.1. Let {D, :F, P) be a complete probability space and let (:Ft), t 2:: 0, be 
a nondecreasing family of right continuous sub-a-algebras of :F augmented 
by sets from :F of zero probability. 

We shall assume that in this space a two-dimensional partially observable 
process (0, N) is given where N = (Nt, :Ft) is an observable process and()= 
(Ot, :Ft), t 2:: 0 is an unobservable component permitting the representation 

(19.47) 

In this case 

(a) X = ( Xt, :Ft) is a uniformly integrable martingale with right continuous 
trajectories; 

(b) at= a~ 1)- a~2) where a(i) = (a~i),:Ft), i = 1,2, ... , are nondecreasing 
predictable right continuous processes with 

M(a00(l) + a00<2>) < oo a(i) = lim a(i) i - 1 2· 
co t-too t ' - ' ' 

(19.48) 

(c) MIOol < oo. 

In the present subsection we shall obtain a representation for the con­
ditional mathematical expectations M(Otl:Ff), t 2:: 0, which is (under the 
assumption that MOl < oo, t 2:: 0) the optimal estimate of Ot from the 
observations N~ = {N8 , s $ t}. 

Let a~i) = M(a~i)l:Ff), i = 1,2, .... It is easy to verify that each of these 
processes is a submartingale of class D and, therefore, there exist integrable 
increasing P-predictable (see Section 18.1) processes a(i) = (a~i)' :Ff), i = 
1, 2, such that m(i) = a~i) - a~i) are uniformly integrable martingales. It 
follows from the above that 
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M(a(i) - a(i} I:F.N) = M(a.(i) - li(i) I:F.N) t s 8 t 8 s• 

and (Theorem 3.6) 

M(a(i} - a<i> I:F.N) = M(li(i) - li(i} I:F.N) 
T U q T t:r q ' 

where u and T are Markov times (with respect to pN = (:Ff), t 2:: 0), with 
P(u ~ r) = 1. 

Setting lit = li~ 1 ) - li~2>, we find that 

M(aT- aui:F:) = M(liT- liui:FN) (P-a.s.). (19.49) 

19.3.2. To formulate and prove the main theorem we shall introduce the 
notation: N A 

7rt(B) = M(Bti:Ft ), 1l't(B) = MN(7rt(B)IP); 

Ot = MN(BtiP). 

(19.50) 

(19.51) 

Theorem 19.5. Let the process (J = (Bt, :Ft), t 2:: 0, permit the representation 
given by {19.47}, and let (a)-(c) be satisfied. 

Then the process (7rt(B),:FtN), t 2:: 0, has a right continuous modification 
and permits the representation 

7rt(B) = 7ro(B) +lit+ 1t [Os -'Irs- (B) - .1li8](1 - LlAs)+ d[Ns -As], (19.52) 

where A = (At,:Ff), t 2:: 0, is the compensator of the point process N = 
(Nt,:Ff), t 2:: 0. 

We shall prove the theorem using a few lemmas. 

19.3.3. 
Lemma 19.7. The random process X= (xt,:Ff), t 2::0, with 

Xt = 7rt(B)- 7ro(B) -lit (19.53) 

is a uniformly integrable martingale and has a right continuous modification. 

PROOF. Since rro(B) =MOo, then 

lxtl ~ MIBol + llitl + M(IBol + latl + lxtii:F/") 
~ MIBol + (li~;,>+li~>) + M(IBol+a~+a~+lxtii:FtN) (19.54) 

and by (a)-( c) and Theorem 2.7 the family (X't), t 2:: 0 is uniformly integrable. 
Further, by virtue of (a) and (19.49) we have 

M(xt- x8i:F;") = M[(Bt- 08)- (at- a8)i:F;"] 

= M(xt - Xsi:F;") 
= M[M(xt- X8I:Fs)I:F;"] = 0. (19.55) 
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Therefore, X is a uniformly integrable martingale which is assumed to 
have right continuous trajectories because of the right continuity of the family 
(Ff), t :?: 0 (Lemma 18.4), and the corollary to Theorem 3.1. 0 

Corollary. The properties of the tmjectories Cit, {19.59}, and Lemma 19.7 
imply the existence of the right continuous modification 'll't(O) = (M(OtiFf)) 
having left limits. 

Note. According to Theorem 19.1, the martingale X permits the repre­
sentation 

(19.56) 

where 
(19.57) 

19.3.4. 
Lemma 19.8. Under the assumptions (a)-(c) we have 

~ = 11't(O) -1t't-(O)- L1at. (19.58) 

PROOF. (19.58) for~ follows from (19.53) and the corollary to Lemma 19.7 
since 

L1'Xt = 'll't(O) -'ll't-(0)- L1at, 
and the processes 'll't-(0) and L1at are P-predictable. 

19.3.5. 

(19.59) 

Lemma 19.9. Under the assumptions (a)-(c), for each n, n = 1, 2, ... , we 
have 

(19.60) 

PROOF. The random variables 11'.,. .. (0) are defined (at each n, n = 1, 2, ... ) 
by the relations 

J{7'n=t)'ll'Tn (0) = J{Tn=t)'ll't(O), t < 0. (19.61) 

Hence, to prove (19.60) it suffices to establish that P-a.s. 

J(Tn=t)'ll'Tn(O) = J(Tn=t)M(O.,.,.IF.t:), t < 00. (19.62) 

Due to the Ff -measurability of the random variable J(.,.n=t) we have 

J{Tn=t)'ll't(O) = N{J{Tn=t)Otl.1'f} 

= M{J(.,.n=t)O.,. .. IFf} 
= J(Tn=t)M(O.,. .. I.1'tN). (19.63) 

Further, according to Lemma 1.9 

l(T,.=t)M(O.,.,. IFf) = I(T,.=t)M(O.,.,. IF::). (19.64) 

The required equality given by (19.62) follows from (19.63) and (19.64). 
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19.3.6. 
Lemma 19.10. Under the assumptions (a)-(c) 

irt(B) = Bt (N-a.s.). (19.65) 

PROOF. Let ip(t,w) be a P-predictable process such that 

M 1Too i'P(t,w)BtldNt < 00. (19.66) 

Then, by the definition of Bt we find that 

M 1Too 'P(t,w)OtdNt = M 1Too ip(t,w)BtdNt 

= M L 'P(Tn,w)BTn 

= M L ip(Tn,w)M(BTJF:,:). (19.67) 
n~l 

In accord with (19.76), M(BTJF~) = 1l"Tn (B). Hence 

M L 'P(Tn,w)BTn = M L 'P(Tn,W)11"Tn(B) 
n~l n~l 

(19.68) 

From (19.68), (19.67) and the definition of irt(B) we obtain the equality 

M !Too 'P(t,w)OdNt = M !Too ip(t,w)irt(B)dNt, (19.69) 

which is equivalent to the assertion of the lemma. 0 

19.3. 7. The assertion of the theorem follows from (19.65), (19.58), (19.56) 
and the corollary to Lemma 19.7. 

19.3.8. We consider now the cases where (19.52) has a more obvious struc­
ture. 

Let us assume that instead of (a)-(c) the conditions which follow are 
satisfied: 

(a') X = ( Xt, Ft) is a square integrable martingale; 
(b') 

at = 1t H8da~, 
where H = (Ht,Ft), t:?: 0, is a predictable process a0 = (ar,:rt) is a 
nondecreasing right continuous predictable process with a8 = 0, and 

M (100 IHslda~) 2 
< oo; 
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(c') M05 < oo; 
( d') the compensators At and At of the processes N = ( Nt, Ft) and N = 

(Nt, :Ff") are related by 

At= 1t AsdA8 , (19.70) 

where A= (At, :Ft), t ;?: 0, is a nonnegative predictable process3 , 

We shall show that 

Cit= 1t M(HsiF::_)da~ (P-a.s.), (19.71) 

Bt- rrt_(O)- Llat = M { d(~~7)t + Of(At -1)1 Ff_} (N-a.s.), (19.72) 

where 
Of= Ot- + Llat. (19. 73) 

It follows from (19.72) that Ot =Of+ Llxt and therefore 

Bt =of+ .1x;. (19.74) 

In defining Cit, Of and ~ we use the following auxiliary lemma. 

Lemma 19 .11. Let f = Ut, :Ft) be a nonnegative predictable process with 
M ft < oo, t ;?: 0, and let cp = ('Pt. FtN) be a nonnegative predictable process. 
Then the process f = (lt,:Ff-) with ft = M(ftiFf"_) is predictable and 

M 1Too ft'PtdAt = M 1Too ft'PtdAt. (19.75) 

PROOF. It suffices to examine the case in which ft I(a<t~b)e and 
'Pt = I (a' < t ::::; b')ry where : a, b and a', b' are numbers; e and "1 are bounded 
variables, e ;?: 0, "1 ;?: 0; e is Fa-measurable; TJ is F!j -measurable. 

In this case ft = I(a<t9)M(ei:Ff-) and the predictability of the process 

ft follows from Levy's theorem (Theorem 1.5). 
We can consider without loss of generality that b' 1\b <Too and MAb'Ab < 

oo. Then according to Lemma 3.2 

3 This condition will be satisfied if the compensator is given by (18.33) (Theo­
rem 18.3). 
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b' 1\b b' 1\b 
M1 ryM(~I:Ff"_)dAt = M1 M(ry~j:Ff"_)dAt 

~1\a ~1\a 
N - -= M{M(ry~I:Fb'l\b)[Ab'l\b- Aa'l\a]} 

b'l\b 
= M~ry[Ab'l\b- Aa'Aa] = M1 ~rydAt, 

a'Aa 

which proves (19.75). 0 

Note. The lemma still holds true if the process f = (It, :Ft), t 2: 0, is such 
that Mlft I < oo, t 2: 0, and 

M 1T"" l!tiiPtdAt < oo. (19.76) 

19.3.9. By virtue of (b') and the note to Lemma 19.11 it can be easily verified 
that the process 

( M { 1t Hada~l :Ff} -lot M(Hsi:F;'_)da~,:Ff), t 2: 0, 

is a martingale. From this in particular, (19.71) follows for lit (compare with 
Theorem 7.12). 

The representations for Ot and ~ are proved in the next lemma. 

Lemma 19.12. Under the assumptions (a')-{d') 
• N 
Bt = M(BtAti:Ft_) (N-a.s.), (19.77) 

~ = M ( d(~~7)t I :Ft'-) (N-a.s.). (19.78) 

PROOF. We take a P-predictable process <p(t,w) such that 
M J;"" j<p(t,w)BtldNt < oo. Then by Lemma 19.11 and the note to this lemma 
we find that: 

M 1r"" <p(t,w)OfdNt = M 1r"" <p(t,w)BfdNt 

= M 1r"" <p(t,w)BfdAt 

= M 1r"" <p(t, w)Bf AdAt 

= M for"" <p(t,w)M(Bf Aj:Ff"_)dAt 

= M 1r"" <p(t,w)M(Bf AI:Ft!JdNt. 



19.3 Optimal Filtering from the Observations of Point Processes 331 

From this the required equality, (19. 77) follows. 
Let us establish the equality given by (19.78). Let 'P(t,w) be a P­

predictable process such that 

Then 

= Mxr00 L 'P(Tn,w)- MXr00 1700 'P(t,w)dAt 
n~l 0 

= MX700 1700 !p(t,w)dmt, (19. 79) 

where we have made use of the predictability of the process ( Xt-, Ft), 
Lemma 3.2, and the equality mt = Nt- At. 

The process m = ( mt, Ft) is a T 00-locally square integrable martingale 
with 

(m)t = 1t (1 - L1As)dA8 

(Lemma 18.12). Hence by virtue of (19.70) 

(m)t = 1t (1 - L1A8 )AsdA8 • 

As in the proof of Theorem 5.3, it can be established that 

(x,m)t =lot 9sd(m)s, 

where g = (gt, Ft) is a predictable process with 

1t g;d(m)s < oo ({t < 7 00 }; (P-a.s.)). 

(19.80) 

(19.81) 

From {19.80) and (19.81) we find that (x, m)t = J~ g8 (1 - L1A8 )A8 dA8 • Let 

d(x, m)t/dAt = 9t(1 - L1At)At. Then from (5.70) and (19.75) we obtain 
( 'P ( t, w) is f3- predictable bounded and compactly supported in t) 
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roo roo 
MxToo Jo r.p(t,w)dmt = M Jo r.p(t,w}d(x,m)t 

= M 1Too r.p(t,w)d(::)tdAt 

= M [Too (t w)M [ d(x, m)t I :;.:N] dA lo r.p ' dAt t- t 

= M [Too r.p(t w)M [ d(x, m)t I :;.:N ] dN lo ' dAt t-• t. 

from which the required formula, (19.78}, follows. 
To establish (19.72} it remains to show that 

nt-(0) = M(Bt-I:Ff-}, 

Llat = M(Llati:Ff-). 

(19.82} is a corollary to Theorem 1.6 since 

1rt-(O} = limns(O) = limM(Bsi:F;") = M(Bt-I:Ff-}, 
stt stt 

(19.82} 

(19.83} 

whereas (19.83} follows from {19.49} and the fact that the variable Llat is 
:Ff_ -measurable. 

Thus we have proved the following theorem. 

Theorem 19.6. Let (a' )-(ll) be satisfied. Then the conditional expectation 
1rt(O) (= M(Bti:Ff)) permits the representation 

1rt(O} = 7ro(O) + 1t M(Hsi:F;'_)das 

+ 1t { M [ d(~~~}s +Bs (~1: -1) I :F;'_]} 

x(1-LlA8 }+d[N- s-A8 ], (19.84} 

where 

Note. By virtue of (a')-(c'}, supt MOf < oo and therefore 7rt(O) is an 
optimal (in the mean square sense) estimate of Bt from the observations N8 , 

s ~ t. In this connection (19.84} can be naturally called an equation of 
(optimal nonlinear} filtering (compare with Theorem 8.1}. 
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19. 3.1 0. We give here a few exaroples4 illustrating the equation given in 
{19.84). 

EXAMPLE 1. Let 0 be a random variable taking on values b and a with 
probabilities 1f' and 1 - 1r, respectively (b > 0, a > 0). Let us assume that 
a point process Nt is to be observed with a compensator At = Ot. Let 1f't = 
P(O = biFf). Then by virtue of {19.84) and Of = (} 

d1rt = M [ 8(0, b) (:~: - 1) i.rf'!_] d[Nt- At], {19.85) 

where 8(·, ·) is the Kronecker delta. By virtue of {18.34) 

At= 1tM(OIF;r_)ds= 1t[b7rs-+a(1-1f'8 -)]ds. 

Hence 

M [ 8(0, b) (:~: -1) i.rf'!_] 

= M [8(0,b) (b1f't- +a~1-1f't-) -1)i.rf'!_] 

b1f't- (b - a )7rt- {1 - 1f't-) 
= b7rt- + a{1 - 1f't-) - 1f't- = a{1 - 1f't-) + b7rt- · 

Therefore, 

(b- a)1f't-{1- 1f't-) 
d1f't = b (1 ) [dNt- (b1f't- + a{1- 1f't_))dt]. 

1f't- + a - 1f't-
{19.86) 

Note. Let Na = (Nf,Ft) and Nb = (Ni,Ft), t ~ 0, be two Poisson 
processes with parameters a and b, respectively. Let 0 be a random variable 
(measurable with respect to Fe) taking on values a and b. Then it is easy to 
verify that the process 

Nf = 1(0 = b)Nf + 1(0 = a)Nf 

is a point process with compensator A= Ot. 

EXAMPLE 2. Let a = (at, Ft) be a Markov process with states a and b 
(a > 0, b > 0) and (stationary) densities of transient probabilities 

Ta,a = ->.., Aa,b = >.., Ab,a = >.., Ab,b = ->.., 

and let P(ao =b)= 1r, P(ao =a)= 1 -1f'. Further, let Na = (Nf,Ft) and 
Nb = ( Ni, Ft) be Poisson processes with parameters a and b, respectively. 

4 Compare with the examples of Section 9.4. 
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We assume that the processes a, Na and Nb are independent and that the 
process 

is to be observed. 
It is easy to see that the compensator of this process is the process 

At =a 1t !(as- = a)ds + b 1t !(as- = b)ds. 

Let us derive an equation for 1ft = P(at = bi:FtN). To this end, we set 
Bt = 8(at, b), where 8(·, ·)is the Kronecker delta. It was proved in Lemma 9.2 
that the process x = (xt, :Ft), t 2: 0, with~ 

Xt = Bt - Bo - 1t Aa. ,bds 

is a square integrable martingale. We note that 

1t Aa.,bds -1t Aa._,bds (P-a.s.) 

and 

(19.87) 

Because Na, Nb and a are independent we have (x, m)t = 0 where mt = 
Nt- At. By (18.34) 

At= a 1t (1- 'lrs-)ds + b 1t 1fs_ds. 

Therefore, 

dAt al(at- =a)+ bl(at- =b) 
dAt a(1 - 1rt-) + b7rt-

Hence as in Example 1 we infer that 

= 
(b- a)7rt- ·(1-1ft-) 

a(1 - 1rt-) + b7rt- · 

From (19.84), (19.87) and (19.88) we obtain 

(19.88) 
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(b- a)11't-(1- 11't-) 
d11't = >.(1- 211't)dt + (1 ) lnr · [dNt- (a(1- 11't-) + b11't-)dt]. 

a - 11't- + t-
(19.89) 

EXAMPLE 3. Let a = (at, :Ft) be a Markov process taking on values a > 0 
and b > 0 with P(ao = b) = 71', P(ao = a) = 1 - 71', and with the single 
transition a --t b: 

Aa,a = - >.; Aa,b = >.; Ab,a = 0; Ab,b = 1. 

We assume that the observable process 

Nt =lot !(as-= a)dN: +lot !(as- = b)dN:, 

where Na, Nb are the same processes as those in Example 2, and the processes 
Na, Nb and a are independent. 

Using the same technique as in Example 2 we find that the a posteriori 
probability 11't = P(at = bi:Ff) satisfies the equation 

(b- a)11't- (1 - 11't-) 
d1i't = >.(1-11't)dt+ (1 ) lnr [dNt-(a(1-11't-)+b11't-)dt]. (19.90) 

a - 11't- + t-

19.3.11. The next example involves the computation of Ot. 

EXAMPLE 4. Let W = (Wt, :Ft), t 2: 0, be a Wiener process and let T = 

inf(t : Wt = 1). Let Ot = Wtr.r and Nt = I(t 2: r). According to (1.42) 
the distribution function F(t) of the stopping time T is determined by the 
formula 

F(t) = f!.loo e_Y2/2dy. v; 1/Vt 

Hence, by Theorem 18.2 the compensator At is determined by the relation 

- 1tAT dF(u) 1 
At= =ln~~~~ 

0 1-F(u-) 1-F(tAr) 

and is an absolutely continuous (with respect to Lebesgue measure) function 
of time. At the same time the compensator At coincides with Nt since T is a 
P-predictable (as opposed toP-predictable-see Corollary 1 to Lemma 18.3) 
stopping time. (See also the example for Theorem 18.2). 

Therefore ( d') for At is not satisfied. 
We shall define 11't(O) using the representation given by (19.52) which has 

the form: 

in the given case. 
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Let (cpt,:F'f'1) be a P-predictable process such that M J;"" lcptBtldNt < oo. 
Then in accord with the definition of Ot we find that 

M 1T"" 'PtOtdNt = M 1T"" 'PtOtdNt 

= M cpT()T = M 'PT WT = M 'PT = M 1Too cpTdNt 

= M 1 00 'Ptl(r ~ t)dNt. 

From this it follows that N-a.s., Ot = I(r ~ t). 
Therefore 

and then 

{tAT 
7rt{O) = Jo {1- 11's-(O))d[N8 - A8 ] 

11't(O) = ' { 
1 - e(l-F(tAT)]-1 

1, 
t<T 
t ~ T. 

19.4 The Necessary and Sufficient Conditions for 
Absolute Continuity of the Measures Corresponding to 
Point Processes 

19.4.1. Let (X,B) be the measurable space introduced at the beginning of 
Section 18.3 and let f..L, [L be probability measures given on it. We shall con­
sider the point processes X = (xt, Bt, f..L) and X = (xt, Bt, [L) with the com­
pensators A= (At(x), Bt, f..L) and A= (At(x), Bt, [L), respectively. The present 
section deals with the question as to the conditions under which the measure 
[L is absolutely continuous with respect to the measure f..L· Since the compen­
sators A and A define uniquely the measures f..L and [L {Theorems 18.4 and 
18.5), it is natural to expect that the answer to the above question can be 
formulated in terms of the properties of the compensators A and A. 
19.4.2. Before formulating the main results we shall make some remarks. We 
shall assume throughout, from now on, that the a-algebras Bt, t ~ 0, are 
augmented by sets from B of zero f..L- and [L-probability. 

The compensators A and a are functionals having the following properties 
((J.L-a.s.) and [L-a.s.), respectively): 

{1) Ao(x) = 0, A 8 (x) :5 At(x), Ao(x) = 0, A8 (x) :5 At(x), s :5 t; 
(2) At(x) = AtAT00 (x)(x), At(X) = AAToo(x)(x), AToo(x)(x) = A(Too(x))-(x), 

AToo(x)(x) = A(Too(x))-(x); 
{3) almost all trajectories of A and A are right continuous; 
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(4) LlAt(x) ~ 1, LlAt(x) ~ 1. 

It follows from (18.37) and properties (A)-(C) (Subsection 18.3.1) that the 
functionals At ( x) and At ( x) can be considered from now on to be defined so 
that properties (1)-(4) listed are fulfilled for each x EX and t ~ 0. 

We shall deal with the situation in which the compensators A and A are 
related by 

At(X) = 1t A8 (x)dA8 (x) ({t < T00 }; (jl-a.s.)) (19.91) 

and 
LlAt(x) = 1 implies At(x) = I(t < T00 (x)) (jl-a.s.) (19.92) 

where A= (At(x), Bt) is some nonnegative predictable process. 
The process At(x) can be defined uniquely from (19.91) and (19.92). How­

ever, At ( x) can always be defined so that, for all x E X, 

At(x) ~ (LlAt(x))-1, 

1
9(x) 19,.(x) 

At(x)dAt(x) =lim At(x)dAt(x), 
0 n 0 

where 

O(x) = inf {t :5 T00 : 1t A8 (x)dA8 (x) = oo} 
and 

O(x) = oo if 100 A8 (x)dA8 (x) < oo 
and On(x), n = 1, 2, ... , is the sequence of stopping times such that 

On(x) < O(x), On(x) t O(x), 

LlAt(x) = 1 implies At(x) = J{t ~ O(x)}. 

An example of such a process At(x) is given by: 

[(dAt 1 ) At(x) = J{t ~ O(x)} · dAt (x) 1\ L1At(x) 

xl{LlAt(x) < 1} + I{L1At(x) = 1} ]· 

(19.93) 

(19.94) 

(19.95) 
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19.4.9. 
Theorem 19. 7. A necessary and sufficient condition for the measure j'.t to be 
absolutely continuous with respect to the measure J.L (j.t « J.L) is that (j.t-a.s.) 

(I) 

(II) 

(III) 

{19.96) 

L1At(x) = 1 implies .d.At(X) = 1, t < T00 j (19.97) 

1Too {1 - ~)2dAt(X) + 

x (1 - .dAt(x)) < oo. 

t<roo 
O<.<!.At(z)<l 

1- Ll.At(x)) 
2 

1- L1At(x) 

(19.98) 

PROOF. The necessity of conditions (I) and (II) was proved in Theorem 19.3. 
Hence Theorem 19.7 can be reformulated as follows: a necessary and sufficient 
condition, under assumptions (I) and (II), for the measure j'.t to be absolutely 
continuous with respect to the measure J.L is that condition (III) be satisfied. 
If conditions (I) and (II) are satisfied, then by virtue of the corollary to 
Lemma 19.5, we can define the random process z = (zt(..X), Bt, J.L) (see (19.24)) 
by 

· exp [lot (1- ..\ 8 )dA~] , (19.99) 

being a nonnegative supermartingale as well as a T00-local martingale. 
Let O'n, n = 1, 2, ... be a sequence of stopping times such that O'n t Too 

and let the processes z(n)(,.X) = (ZtACT .. (..\),Bt,J.L) for each n = 1,2, ... , be 
uniformly integrable martingales with5 MJLza .. (..\) = 1. 

We shall define on (X, B), the probability measures j.t(n), n = 1, 2, ... , with 
dj.t(n) =Zan (..\)dp,. 

By virtue of Theorem 19.4, the random processes _K(n) = (xt, Bt, j.t<n>), 
t;::: 0, are point processes with the compensators 

1tAtrn · 
-(n) At = 

0 
..\sdAs. {19.100) 

- -(n) -Consequently, (p,-a.s.) AtM .. = AtM ... t ;::: 0, and, therefore, by the 
uniqueness theorem (Theorem 18.5) the restriction of the measure j.t(n) and 
that of the measure J.L to the u-algebra Ba .. coincide. 

5 Ml-' is the expectation under measure J.l.· 
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Denote by 

f.Ln = J.LIBo-n' Pn = PI Bo-n' ji~n) = p,(n) IBo-n 

the restrictions of the measures {L, ji and p,(n) (respectively) to the a-algebra 
B S. - -(n) d -(n) th - d 

O"n> mce J.Ln = J.Ln an /-Ln << 1-ln, en 1-ln << J.Ln an 

ddiin = Mt<(z.,.JX)IB.,.J = z.,.J.X). 
J.Ln 

(19.101) 

The sequence (z.,.n (.X), B.,.n, J.L), n = 1, 2, ... , is a nonnegative martingale 
with Mt<z.,.n(.X) = 1. Hence (Theorem 2.6) there exists limnz.,.J.X) (= z(.X)). 

It is a well-known fact (see, for example, [74]) that the measure ji is 
absolutely continuous with respect to 1-L if and only if Pn ~ 1-ln, n :::: 1, and 
M~'z(.X) = 1. 

In the case of interest to us, it is rather difficult to verify that condi­
tion (III) is equivalent to the condition Mt<z(.X) = 1. Hence we shall use 
another criterion for absolute continuity of the two measures given in the 
lemma which follows. 

Lemma 19.3. Let (n, :F) be a measurable space, let (:Fn), n = 1, 2, ... , be 
a nondecreasing system of sub-a-algebras of :F, and let a(Un:Fn) = :F. Let ji 
and 1-L be probability measures on ( Q, :F) and let Pn, J.Ln be the restrictions of 
these measures to ( n' :Fn). 

For ji ~ 1-L it is necessary and sufficient that the following conditions be 
satisfied: 

(I} iin ~ f.Ln 1 n = 1, 2, ... ; 
(II) limn diin/dt-Ln exists (ji-a.s.) and is finite. 

PROOF. Necessity. If ji ~ J.L, then, obviously, Pn ~ 1-ln, n = 1, 2, .... Let 
p = diin/dt-Ln· As noted above, the sequence (pn, :Fn, J.L), n = 1, 2, ... , forms a 
nonnegative martingale with Mt<Pn = 1. Hence (t-L-a.s.) limn Pn exists and is 
finite. But ji ~ J.L, hence this limit exists and is finite under the measure ji. 

As to sufficiency, let iin ~ 1-ln and p = limn Pn (ji-a.s.). Denote v = 
!(J.L + ji), a= dji/dv, a= dt-L/dv, lin= djinfdv, an= dJ.Ln/dv. It is clear that 
t-L{a = 0} = 0, ji{a = 0} = 0 and an---+ a, lin---+ a, n---+ oo (v-, {L-and ji-a.s.). 

Further, for FE :F, 

ji(F) = l adv = l aa+adv + l a(1- a+a)dv 

= [aa+dJ.L+ [(1-a+a)dji= fraa+dJ.L+ji{Fn(a=O)}. 

Hence if ji{ a = 0} = 0, then ji ~ 1-L· 
To verify that ji{ a = 0} = 0 under the conditions considered we note that 

since Pn ~ J.Ln ~ v, 
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( 11-a.s.) and (ji,-a.s.), (19.102) 

i.e., an = (diln/dJJ.n)an. According to the assumption made, limn diln/dJJ.n 
exists (ji,-a.s.). Hence limn an= limn diln/dJJ.n ·limn an or, which is the same, 

a= p. a (jl-a.s.). (19.103) 

Since by assumption ji.{p < oo} = 1 and ji.{ a > 0} = 1, then ji.{ a = 0} = 0, 
thus proving the lemma. 0 

Since instead of the sequence {an} we can consider without loss of gener­
ality the stopping times anAt, n = 1, 2, ... , t--+ 7 00 , it can be deduced from 
Lemma 19.13 that 

jl ( lim Zt(A) < oo) = 1 
t--tT00 

(19.104) 

is a necessary and sufficient condition for absolute continuity of jl « Jl. if 
conditions (I) and (II) are satisfied. 

To prove that (19.104) is equivalent to (19.98) (condition (III)) we note 
that due to (19.96) and (19.99) Zt(A) can be expressed as 

Zt(A) = exp(1t I(LlA8 = 0)1nA8 dN8 + 1t(1- A8 )dA; 

""" LlAs 1 - LlAs ) + ~ LlN8 1n LlAs + (1- LlN8 ) ln 1 _ LlAs . (19.105) 

Setting 
u = { y IYI:::; 1, 

(y) signy IYI > 1, (19.106) 

we consider the values zi(>-) given by the formula (compare with (19.105)): 

zf(>.) = exp (1t I(LlA8 = O)u(1nA8 )dN8 + 1t (1- A8 )dA; 

+ ~ u (ln ~~:) LlN8 + u (ln ~ = ~~:) (1- LlNs)). 
-r0<.4-A 8 <1 

(19.107) 

It is seen that the sets {0 < limt--tr00 Zt(A) < oo} and {0 < limt--troo zf(>.) < 
oo} coincide. Therefore, to prove the theorem it suffices to show that (19.98) 
is equivalent to the condition 

jl {o < lim zf(.>.) < oo} = 1. 
t--tT00 

(19.108) 



19.4 The Necessary and Sufficient Conditions for Absolute Continuity 341 

Further we note that lnz;'(A) can be represented as 

ln zf(A) = mt + Bt, (19.109) 

where 

and 

X [(1 - 11N.) - (1 - L1A.)], (19.110) 

Bt lot (A8 u(ln A8 ) + 1- A8)dA~ 

~ ( 11.A. ) - ( 1 - 11.A. ) -+ L.....J u ln L1As 11As + u ln 1 _ L1As (1- 11A.). 
s<t 

0<LlA 8 <1 

(19.111) 

The process Bt is a nondecreasing (predictable) function of t, since 
yu(ln y) + 1 - y ;::: 0 for y 2: 0, therefore by virtue of the inequality 
yu(ln y) ;::: y- 1, 

l1B8 2: 11A. ( ~~: - 1) + (1 - 11A.) ( ~ = ~~: - 1) = 0. (19.112) 

The process (mt, Bt, jl,), t 2: 0, is a 7 00-locally square integrable martingale 
(compare with Lemma 18.12 and Theorem 18.8), 

(m)t = lot u2 (lnA8 )A8dA~ 

~ { 2 ( 1 11A. ) 11A. L1A 2 ( 1 1 - 11A.) + L......i u n 11A LlA s + u n 1 - LlA 
s<t 8 8 8 

O<LlA 8 <1 

1- .::1.A. 2} 
X 1 - LlA. (1 - LlA.) - (LlB.) ' (19.113) 

where 
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By (19.109) and Lemma 18.14 the relation given by (19.108) is satisfied 
if 

jl((m)roo + Broo < oo) = 1. (19.114) 

From (19.111), (19.113) and the fact that LlB8 is nonnegative it follows that 
(19.114) is equivalent to the following relation 

( 1- LlAs) ] ) +cp 1 _ LlAs (1- LlA8 ) < 00 = 1. (19.115) 

where 
rp(y) = yu(lny) + 1- y. (19.116) 

It is easy to see that there exist constants c and C such that (y ~ 0) 

(19.117) 

Hence (19.115) is equivalent to the required relation, (19.98). 
Therefore, if (19.98) is satisfied, (19.104) will be also satisfied, i.e., jl «: J-L· 
Conversely, if jl «: J-L (19.104) will hold. Since Zroo(.A) = dil/dJ-L then 

jl(zroo (.A) = 0) = 0. Therefore (19.104) can be replaced with the equivalent 
conditions as follows: 

jl (-oo < lim lnzt(.A) < oo) = 1, 
t-+T00 

(19.118) 

jl (-oo < lim ln zf(.A) < oo) = 1. 
t-+r00 

(19.119) 

Next we take advantage of the fact that In zt(.A) permits the represen­
tation given by (19.109), also using the fact that ILlmtl :$ 2 as well as 
Lemma 18.13 by which it follows from (19.119) that 

jl(Broo < oo) = 1. (19.120) 

From (19.109), (19.119) and (19.120) it follows that 

jl (-oo < lim mt < oo) = 1. 
t-+T00 

(19.121) 

Let us show that in this case 

jl((m)roo < oo) = 1. (19.122) 

To this end we define the stopping times On= inf(t :$ T00 : m~ > n) assuming 
On= T00 on the set (supt~roo m~ :$ n). Since mt :$ n + 4 then Mjj,(m)on = 
M1-1mt :$ n + 4. Therefore (m)on < oo (jl-a.s.). 
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19.4.4- We shall formulate some assertions which follow immediately from 
Theorem 19.7 and which are of interest in themselves. 

Theorem 19.7. Let the point process X= (xt,Bt,J.L) have the continuous 
compensator At(x) (or, equivalently, the process X is left quasi-continuous). 
A necessary and sufficient condition for the measure il to be absolutely con­
tinuous with respect to the measure J.L is that (jL-a.s.) the following conditions 
be satisfied: 

(A) 

(19.123) 

(B) 

(19.124) 

where (.Xt(x), Bt) is some nonnegative predictable process. In this case 

dil { {t dAs(x) - } dJ.L (t, x) = exp Jo ln dAs(x) dx8 - [At(x) - At(x)] . (19.125) 

Corollary. Let the compensators At(x) and At(x) have the densities 

At(x) = 1t a8 (x)ds, At(x) = 1t a8 (x)ds, 

and 

1t as(x)[1- a~(x)as(x)]ds = 0, t ~ 0. (19.126) 

Then il « J.L if and only if (P,-a.s.) 

1t (1- Ja8 (x)a"t(x)) 2a8 (x)ds < oo. (19.127) 

EXAMPLE. Let X be the renewal process with Tn = a1 + ... +an where (ai) 
is a sequence of independent uniformly distributed random variables with 
the continuous distribution function F(t) = P(ai :=::; t). Then by virtue of 
Theorem 18.2 the compensator At(x) of this process can be defined by the 
formula 

At(x) = -ln IJ {1- F[(rk 1\ t)]- F[(rk-1 1\ t)]} 
k~l 

(19.128) 

and, if we assume in addition that the function F(t) has the density f(t), 
then 
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where 

f(s- Tn(x)) 
as(x) = 1 _ F(s _ Tn(x)), Tn(x) $ s < Tn+l(x). 

Assume that X is another renewal process with Tn = 0"1 + ... + O"n, 
F(t) = P(ui :::; t), F(t) = J~ i(s)ds: 

_ i(s-Tn(x)) 
a8 (x) = - , Tn(x) $ s < Tn+l(x). 

1- F(s- Tn(x)) 

Then the condition (19.127) can be rewritten as 

f l"n (1- Jv(s)v+(s))2v(s)ds < oo (ji-a.s.), 
n=l 0 

(19.129) 

where 

f(s) v(s) = j(~) 
v(s)=1-F(s)' 1-F(s) 

From (19.129) it follows that the measure ji « J.L if and only if F(t) = F(t), 
t ~ 0. 

Theorem 19.9. Let the compensators At(x) and At(x) of the point process 
X = (xt, Bt, J.L) and X = (xt, Bt, ji) be such that 

J.L(Ar00 (x)(X) < oo) = 1, ji(Ji-r00 (x)(x) < oo) = 1. 

Then a necessary and sufficient condition for ji « J.L to be absolutely 
continuous is that (ji-a.s.) 

(A) 

(B) 

LlAt(x) = 1::::? LlAt(x), t < T00 (x); 

(C) 
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PROOF. We need only show that in this case condition (C) is equivalent 
to assumption (III) of Theorem 19.7. But condition (C) together with the 
assumption jL{Ar=(x) < oo} = 1_implies that (ji,-a.s.) the number of jumps 
in the compensators At(x) and At(x) is finite. From this, condition (III) of 
Theorem 19.7 follows obviously and, therefore, ji, « J.t. 

Conversely, let ji « J.t· Then by virtue of the assumption p,(Ar=(x) < 
oo) = 1 condition (C) is obviously satisfied. Conditions (A) and (B) follow 
from Theorem 19.7 by virtue of the assumption ji « J.t· D 

19.4.5. Theorem 19.7 enables us to describe in terms of compensators all the 
point processes whose measure is absolutely continuous with respect to the 
Poisson measure J.£1r (compare with Theorem 7.11). 

Theorem 19.10. Let X = (xt,Bt,J-L"Ir) be a Poisson process with unit pa­
rameter and let X= (xt, Bt, ji) be a point process with the measure ji « J-L1r· 
Then the process X has the compensator 

At(X) =lot A8 (x)ds, t < oo, 

where (At ( x), Bt) is a nonnegative predictable process such that (ji,-a.s.) 

looo (1- VA 8 (x)) 2ds < oo. 

In this case 

dd~ (t, x) = exp {lot lnA8 (x)dx 8 +lot (1- A8 (x))ds}. (19.130) 

The proof follows immediately from Theorem 19.7; we have only to note 
that At ( x) = t and T 00 ( x) = oo for the Poisson process with unit parameter. 

19.5 Calculation of the Mutual Information and the 
Cramer-Rao-Wolfowitz Inequality (the Point 
Observations) 

D 

19.5.1. Let (O,:F, P) be a probability space, let (:Ft), t ~ 0, be a nondecreas­
ing family of sub-a-algebras of :F. We shall assume that a = (at, Ft) is the 
'transmitted information' (with values in the measurable space (A, A) to be 
transmitted with the help of the point process N = (Nt, :Ft) with range in 
the measurable space (X, B) (see Section 18.3). 

Let us consider on (X, B), (A, A) and (Ax X, Ax B) the probability mea­
sures J.tN(b) = P(N E B), J.ta(A) = P(a E A), J,La,N(A x B)= P(a E A, N E 

B) where A E A, B E B and assume that the conditions which follow are 
satisfied. 
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(I) There exists (J.La-a.s.) a regular version (to be denoted J.L';.r(B)) of the 
conditional probability P(N E Bla)a=a· 

(II) There exist (measurable) predictable functionals At (a, x) and At ( x) such 
that: 

(III) 

(1) At(a, x) = J~ A8 (a, x)dA8 (x) (for J.La-almost every a E A) is the com­
pensator of the point process (xt, Bt, J.L~); 

(2) LlAt(x) = 0, t ;:::: 0, x E X, and At(x) is the compensator of the 
process (xt, Bt, /LN ); 

(3) At (a, N) is the compensator of the point process ( Nt, :Ft, P). 

rC>O<N> 
M Jo I.Xt(a,N)lnAt(a,N)IdAt(N) < oo. 

Let 
dJ.LaN 

J(a,N)=Mlnd[ ' ](a,N) 
/La X /LN 

(19.131) 

be the Shannon information about the transmitted message a contained in 
the received signal N where, as usual, I(a, N) is assumed to be equal to oo if 
the measure J.La.,N is not absolutely continuous with respect to the measure 
[J.La x J.LN] (compare with (16.64)). 

Theorem 19.11. In assumptions (!)-(III) the mutual information 

rC>O<N> 
I( a, N) = M Jo At(a, N) ln.Xt(a, N)dAt(N). (19.132) 

PROOF. We shall show first that for J.La-almost every a E A the measure 
J.L';.r « /LN· By virtue of Theorem 19.7 We need only show that 

roo(N) 
M Jo (1- VAt(a, N))2dAt(N) < oo. (19.133) 

Since for y ;:::: 0, y ln y + 1 - y ;:::: 0 and for n = 1, 2, ... ( Tn < T 00 ) 

M 1Tn (1- At(a, N))dAt(N) = M[ATn (N)- ATn (a, N) 

= M[NTn - NTnl = 0, (19.134) 

we then obtain by condition (III) that 

roo(N) 
oo > M Jo At(a,N)lnAt(a,N)dAt(N) 

= limM rn At(a,N)lnAt(a,N)dAt(N) 
n Jo 
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= limM 1rn [>.t(a, N) ln>.t(a, N) + 1- >-t(a,N)]dAt(N) 
n 0 

= M foroo [>.t(a, N) ln At(a, N) + 1 - At(a, N)]dAt(N) ~ 0. 

(19.135) 

It is clear that there exists a constant C such that for y ~ 0 

C(ylny + 1- y) ~ (1- y'y)2. (19.136) 

Consequently, (19.133) follows from (19.135), (19.136), i.e., f-L'N « f-LN (t-Lo:­
a.s.). Set z(a,x) = (df-L'Nfdf-LN)(x) and show that (f-Lo: x f..LN-a.s.) 

( ) _ df-Lo:,N ( ) 
z a, x - d[ ] a, x . f-Lo: X f-LN 

(19.137) 

In fact, let cp(a, x) be a bounded Ax B-measurable functional. Then due 
to assumption (I) and the Fubini theorem 

f cp(a,x)df..Lo:,N(a,x) = Mcp(a,N) = MM[cp(a,N)IA] 
lAx X 

= 1 M[cp(a, N)la]o:=adf..Lo:(a) 

= 1xx [! cp(a,x)dt-L'N(x)] df-L (19.138) 

= r cp(a,x)z(a,x)d(f-Lo:Xf..LN](a,x), 
JAxX 

thus proving (19.137). 
By virtue of (19.125) and (II), 

1
Too(x) 

ln z(a, x) = 
0 

ln At(a, x)[dxt - dAt(a, x)] (19.139) 

1
Too(x) 

+ 
0 

[>.t(a, x) ln >-t(a, x)+1->.t(a, x)]dAt(x). 

Hence by Theorem 18.7, (19.139), (19.135) and (III), 

1
roo(N) 

I(a,N) = Mlnz(a,N) = M 
0 

>-t(a,N)ln>.t(a,N)dAt(N). 0 

Corollary. Let At(a, x) = J~ v8 (a, x)db8 where V8 = V8 (a, x) is a nonneg­
ative predictable process and b8 is a deterministic nonnegative right contin­
uous and nondecreasing function (compare with {18.33}). Then by virtue of 
Theorem 18.3, At(x) = J~v8 (x)db8 where 178 = l78 (x) is such that {P-a.s.} 
V 8 (N) = M[vs(a, N)I.Ff-.]. Then 
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roo(N) 
I(o:, N) = M Jo (vs ln Vs - Vs ln lls)dbs 

roo(N) 
M Jo (vs ln Vs -lls ln lls)dbs. 

Let bs = s and P(r00 = oo) = 11 and let 

djL~ N 
Ir(o:,N) = Mln d[ T ' T] 

ILa X ILN 

(19.140) 

where JL~,N 1 JL~ and JL~ are the restrictions of the measures JLa,N 1 JLa and 
JLN (respectively) to the a-algebms 

Then 

Ir(o:, N) = M 1T (vs ln Vs -lls ln lls)ds. 

Assume now that Vs(a, x) = 1 + As(a, x) where As(a, x) is subject to 
the power constraints 0 ~ As (a, x) ~ P, P being a given constant. Let us 
consider the channel capacity (compare with (16.72)) 

1 
C =sup Tir(o:, N), T > 0, 

where 'sup' is taken over all o: with values in (A, A) and the codings A = 
(As (a, x), s ~ T) satisfying the restrictions 0 ~ As (a, x) ~ p. Then (for the 
proof, see [110]) 

Q C=- -lnQ, 
e 

(19.141) 

where Q = (p + 1)(p+l)/P. In this case the presence of the feedback does not 
imply an increase in the channel capacity (compare with Theorem 16.4). 

EXAMPLE. Let o: = (at, Ft) be the Markov process with two states a and 
b (a > 0, b > 0) considered in Example 2 of Subsection 19.3.12. Let the 
observation be: 

Nt = 1t I(o:s- = a)dN: + 1t I( as- = b)dN:, 

where Na and Nb are two Poisson processes with parameters a and b, re­
spectively. In this case it is assumed that the processes o:, Na and Nb are 
mutually independent. Then 

Ir(o:,N) = M 1T As(o:,N)ln.X8 (o:,N)(a(1-11"s-) +brrs_)ds 
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where 

As(a, N) = al(as- =a)+ bl(a8 _ =b) 
a(1- 71'8 _) + brrs-

and 71'8 = P(a8 = biF,;") satisfies Equation (19.89). 

19.5.2. Let there be observed the point process X = (xt,Bt,J-Lo), t 2: 0, 
with the compensator Af(x), where ()is an unknown parameter: () E (a, b), 
-oo :::; a < b :::; oo. 

By relying on the previous results for the measure densities of the point 
processes we can show how to find lower bounds for mean square errors in 
the problems of estimating the functions j(()) from the observations of the 
process X. 

Let Ll = ( T( x), 8 ( T( x), x)) be some sequential estimation scheme (for de­
tails, see Section 7.8). Assume that6 

(1) 

(2) 

A:(x) =lot As(e,x)ds, x EX, 

where (.Xt(e,x),Bt) is a predictable process, 0 < At(e,x) < oo; 
(3) 

a r(x) r(x) a 
ae Jo At(O,x)dt = Jo ae.Xt(O,x)dt, xEX; 

(4) 

(5) 

1r(x) 

0 
1-Xt(O,x) -11dt < oo (1-Lo-a.s). 

6 M 8 is the expectation under the measure /1-B· 
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Next, let J.L be the measure corresponding to the Poisson process with unit 
parameter and let J.LT, J.Ls be the restrictions of the measures J.L and J.Le to the 
a-algebra Bt. By (5}, Theorem 19.10, and the inequality (1- ..fY}2 ~ II - Yi 
for y ~ 0, 

d T { r(z) r(z) } 
d:! (x) = exp lo ln .Xt(9, x)dxt + Jo [1 - .Xt(9, x}]dt . (19.142} 

Assume also that: 

(6} the function b(9) = Me<5(r(x},x)- /(9) is differentiable in 9 and 

d dj.LT {) (dj.LT ) 
d9M dJ.L!(x)<5(r(x},x) = M 89 dJ.L!(x) <5(r(x},x}, 

where M denotes the expectation under the measure J.L. 

Theorem 19.12. Under assumptions {1}-(6} for all 9 E (a, b) we have the 
Cramer-Rao-Wolfowitz inequality 

(19.143} 
PROOF. By (19.142}, (3} and (6}, 

d d 
d9 [b(9) + /(9)] = d9Me<5(r(x},x) 

dj.LT [ r(z) {) 
= M dJ.L! (x)<5(r(x},x) Jo Xt" 1(9,x) 89 .Xt(9,x}dxt 

r(z) {) l - lo 89 .Xt(9, x)dt 

r(z) {) 
= Me<5(r(x),x) lo .X;-1(9,x) 89 .Xt(9,x}[dxt- .Xt(9,x}dt]. 

(19.144} 

By (1}, (4} and Theorem 18.8, 

r(z) {) 
Me<5(r(x},x)Me lo .X;-1(9,x) 89 (.Xt(9,x)}[dxt- .Xt(9,x}dt] = 0, (19.145} 

which together with (19.144} yields the relation 

d r(z) {) 
d9[b(9) + /(9)] = M8 [<5(r(x},x)- M8<5(r(x),x)] lo .x;-1(9,x) 89 .Xt(9,x) 

x[dxt- .Xt(9,x)dt]. 
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From this, by {4), (5.82), Theorem 18.8 and the Cauchy-Schwarz inequality, 
we have 

(ddO[b(O) + f(O)]) 2 
:::::; Mo[8(r(x),x)- Mo8(r(x),xW 

[ 
T(x) a ]2 

xMo 1 .Xt" 1(0,x) ao.Xt(O,x)[dxt-At(O,x)dt] 

= Mo[8(r(x),x)- Mo8(r(x),x)] 2 

r(x) (a )2 
xMo Jo .Xt" 1(0,x) ait(O,x) dt 

= Mo[8(r(x),x)- f(O)- b(B)] 2 

r<x) (a )2 
xMo Jo .Xt" 1{0, x) ae.Xt(O, x) dt. 

The required inequality, {19.143), follows from the above by simply noting 
that 

Mo[8(r(x), x)- f(O)- b(0)]2 = Mo[8(r(x),x)- f(0)] 2 - b2 (0). 

Corollary. If 8(r(x), x) is an unbiased estimate for f(O), then 

1 
Mo[8(r(x),x)- f(OW ~ Mo J;(x) .Xt"l(O,x) (fo.Xt(O,x)) 2 dt. (19.146) 

EXAMPLE 1. Let 0 < 0 < oo, At(O,x) = 0, r(x) = T < oo. 
In this case the point process X = ( Xt, Bt, J.Lo) is a Poisson process with 

the parameter 0. If o(x) is an unbiased estimate of the parameter 0, then, by 
virtue of (19.146), 

In this case: 

2 0 
Mo[8(x) - 0] ~ f· 

dJ.Lo 
dJL (x) = exp(xrlnO + (1- B)T) 

(19.147) 

and, therefore, the maximum likelihood estimate is Or = xr jT . It is clear 
that this estimate is unbiased, MoOr= B, and it is easily seen that Mo(Or-
0) 2 = OfT. It follows from this and (19.147) that the maximum likelihood 
estimate Or is the optimal (in the mean square sense) estimate of 0 in the 
class of all unbiased estimates. 

EXAMPLE 2. Let At(O,x) = 0 · at(x), 0 < 0 < oo, where at(x) > 0, 
J~ a8 (x)ds < oo, t < oo, and J0

00 a8 (x)ds = oo {J.Lo-a.s.). We shall estimate 0 
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from the observations Xt, 0 ~ t ~ r(x), where r(x) is a Markov time with 
respect to the family (Bt), t ~ 0, such that 

r<x> lo {1 + a8 (x))ds < oo {J.Lo-a.s., (} > 0). 

It is easy to verify that J.Le « J.L7 where J.L is the Poisson measure with a 
unit parameter, and J.L7 is the restriction of J.L to the a-algebra Bt. Then 

d -r (1-r(x) 1-r(x) ) 
d~~ (x) = exp 

0 
ln(Oat(x))dxt + 

0 
[1- Oat(x)]dt 

and, therefore, the maximum likelihood estimate is 

O _ X-r(x) 
.,. - I;(x) at(x)dt. 

Assume that the time r(x) = TH(x) (compare with Section 17.5) where 

TH(x) = inf { t : lot a8 (x)ds > H}. 

In this case the estimate O.,.H = x.,.H(x)/ His unbiased and 

M,(b'"- 8)2 ~ M ( 8 J.;•(•l a,(~dt + m~(x) -8) 2 

1 (J 2 = H2Mo(m.,.H(x)) 

1 1TH(X) (} 
= H2 0Mo 0 at(x)dt = H' {19.148) 

where mf(x) = Xt- I: Oa8 (x)ds is a locally square integrable martingale with 
(m9}t =I: Oa8 (x)ds {Lemma 18.12). By virtue of {19.146), 

Mo(8(r(x),x)- 0)2 > 1 = e , 
- Mo I;(x) aE(x)(Oat(x))- 1dt Mo I;(x) at(x)dt 

which together with {9.148) shows that, in the class of all unbiased estimates 
8(r(x),x) satisfying the condition 

1
-r(x) 

Mo 
0 

at(x)dt ~ H, 

the sequential maximum likelihood estimate is optimal (compare with Theo­
rem 17.6). 
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Notes and References. 1 

19.1. The structure of local martingales for point processes was investigated 
by Davis [48), Boel, Varaiya and Wong [22), Chou and Meyer [37), Dellacherie [50), 
Kabanov [108, 109) and Grigelionis [88). 

19.2. The problems of the transformation of compensators by absolutely contin­
uous substitution ofthe measure were discussed in Bremaud [26), Jacod [101), Boel, 
Varaiya and Wong [22), Kabanov, Liptser and Shiryaev [113,119), Skorokhod [291), 
Grigelionis [86, 88) and Gikhman and Skorokhod [72). 

19.3. The equations of optimal nonlinear filtering from the observation of the 
point processes were also deduced (under various assumptions of generality) in Segal 
and Kailath [273), Bremaud [28,29), Davis [48), Segal, Davis and Kailath [272), Boel, 
Varaiya and Wong [22), Khadgijev [145, 146) Grigelionis [86), Van Schuppen [302), 
Galtchouk [68], Yashin [319,320), Snyder [292) and Snyder and Fishman [293). 

19.4. The necessary and sufficient conditions for the absolute continuity of two 
measures corresponding to point processes (Theorem 19.7) were obtained by Ka­
banov, Liptser and Shiryaev. Theorem 19.8 is due to Jacod and Memin [105], and 
Kabanov, Liptser and Shiryaev [119). Theorem 19.9 was proved in Kabanov, Liptser 
and Shiryaev [113, 119). 

19.5. The computations of the mutual information for jumplike processes were 
made in Grigelionis [87), Boel, Varaiya and Wong [22), and Kabanov [110], (19.141) 
is due to Kabanov [110). Formula (19.143) was obtained by Kutoyants. 

Notes and References. 2 

19 .1. A modern description of the structure for local martingales can be found 
in Liptser and Shiryaev [214), Jacod and Shiryaev [106], Elliott [59]. 

19.2. A Girsanov type theorem and the problem of change of probability mea­
sures, which are distributions of semimartingales are given in [204, 214]. 

19.3. A derivation of the filtering equation under observation not only of the 
point process but also a general semimartingale can be found in [214]. 

19.4. The necessary and sufficient conditions for absolute continuity of measures 
corresponding to multivariate point processes and semimartingales are presented in 
Kabanov, Liptser and Shiryaev [114-117) and Jacod and Shiryaev [106). 



20. Asymptotically Optimal Filtering 

In previous chapters, a number of filtering models, for which the 'filtering 
equation' admits a closed form, like the Kalman-Bucy filter (Chapter 10), 
the conditionally Gaussian filter (Chapters 11 and 13), the Wonham type 
filter and the Kushner-Zakai filter (Chapter 8), were presented. However 
in applications, realistic filtering models have a more complicated structure 
than those to which the filters mentioned above are immediately applicable. 
In this chapter, we consider examples for which the following approximation 
technique might be successful. To construct nearly optimal filters, instead of 
the original model a new model, where the underlying processes are replaced 
by simple ones, is applied. To explain such an approach in more detail, let 
us consider the filtering problem for a pair of random processes (X[, Y,;e)t~o, 
where X[ represents an unobservable signal and 1;e is a corresponding obser­
vation, and where cis a small parameter. Suppose the probabilistic structure 
of (Xi, Y,;e)t~o is too complicated for us to find the optimal (in the mean 
square sense) filtering estimate, but as c--+ 0, the pair (Xi, Y,;e)t~o converges 
(in some sense) to the limit pair (Xt, Yt)t~o which has a simpler description 
than the prelimit one, for example, it is a Markov diffusion process or, more 
specifically, a Gaussian diffusion. A natural procedure for creating a success­
ful filter for a prelimit model involves finding the optimal filter for the limit 
model and then using it for prelimit observations. 

The main problem in such an approach is the verification of the asymp­
totic optimality for the filters obtained. We give in this chapter two examples 
for which the asymptotic optimality can be checked effectively. 

20.1 Total Variation Norm Convergence and Filtering 

20.1.1. Consider the filtering problem for a pair of random processes 

(Xe' ye) = (Xi' 'Y,;e)09$T 

with right continuous trajectories having limits to the left. For fixed c denote 
by Qe the distribution of (Xe, ye), i.e., Qe is a probabilistic measure on the 
Skorokhod space D(R2 ; [0, T]). Assume Qe converges, as c--+ 0, in the total 
variation norm for a limit Q: 

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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lim IIQe - Qll = 0. 
e-+0 

{20.1) 

In other words, (20.1) means that (Xe, Y10 ) converges, as c-+ 0, in the afore­
mentioned sense for distributions, to a limit process (X,X) = (Xt, Xt)o<t<T 
having trajectories in D(IR2; [0, T]) and the distribution Q. - -

Consider a filtering problem for a signal u(Xi) and observation Y/ pro­
vided that u(x) is a measurable function such that Mu2 (Xi) < oo and 
Mu2 (Xt) < oo, t :5 T. Assume that the probabilistic structure of (X, Y) 
is simple, in the sense that the conditional expectation M(u(Xt)IY[o,tJ) can 
be computed with the help of one of the aforementioned classical filters. For 
convenience of notation, introduce a family of measurable functionals (1ft (Y), 
Y E D{IR; (0, T])), 0 :5 t :5 T such that 

1i't(Y) = M ( u(Xt)l Y[o,tJ), (Q-a.s.). 

Analogously define (1rf{Y): 1ri{Y10 ) = M(u(Xi)ll[g,t)), (Q10-a.s.). It is clear 
that the use of1ft(Y10 ) as a filtering estimate makes sense if 

since {20.2) is equivalent to the asymptotic optimality: for every t 

lim M (u(Xi) -1ri{Y10 ))2 = lim M (u(Xi) -1ft(Y10 ))2 
e-+0 e-+0 

= M (u(Xt) -1ft(Y)) 2 • 

(20.2) 

(20.3) 

We show that (20.3), for a bounded function u(x), is implied by {20.1). For 
unbounded u(x), verification of (20.3) requires the uniform integrability con­
dition. For the sake of simplicity, we restrict ourselves to consideration of 
a-asymptotically optimal filters. To this end, the following definition is use­
ful. 

Definition. The filtering estimate 7rf(Y10 ), t :5 T, is a-asymptotically optimal, 
if for every a > 0 

lim M ( u(Xi) - ?rt (Y10 }) 
2 :5 lim inf M ( u(Xi) - 1ri{Y10 ))2 +a. (20.4) 

e-+0 e-+0 

Theorem 20.1. Assume {20.1} and for some constant£, lu(x)l :5 £. Then 
1i't(Y10 ) is asymptotically optimal in the sense of {20.3}. 

Jaw -Corollary. For every fixed t > 0, 7ri{Y10 )---*1i't(Y), c-+ 0. 

PROOF. We choose versions of functionals 1i't(Y) and 1ri{Y) bounded by the 
same constant £. In what follows, the notation 'f' is used instead of 'J v 2 '. 

Note that since 1ri{Y10 ) is the optimal (in the mean square sense) filtering 
estimate, we have 
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J (u(Xt)- ni(Y))2 dQe ~ J (u(Xt) -1ft(Y))2 dQe 

and therefore, by (20.1), 

lim sup J (u(Xt)- ni(Y))2 dQ~ ~ J (u(Xt) -1ft(Y))2 dQ. (20.5) 
e-+0 

Show now that 

lim J (u(Xt) -1ft(Y))2 dQe = J (u(Xt) -1ft(Y))2 dQ 
e-+0 

liminf/ (u(Xt)- ni(Y))2 dQe ~ J (u(Xt) -1ft(Y))2 dQ. (20.6) 
e-+0 

Since u(x) and n;(·), 1ft(·) are bounded bye, we find 

If (u(Xt) -1ft(Y)) 2 dQe- J (u(Xt) -1ft(Y))2 dQI 

~ 4£211Qe- Qll-+ 0, c-+ 0. 

The filtering estimate 1ft(Y) is optimal in the mean square sense for the signal 

u(Xt) given the observation Y 8 , s ~ t. Therefore 

J (u(Xt)- ni(Y))2 dQ~ = J (u(Xt) -n~(Y))2 dQr 

+ J (u(Xt)- ni(Y))2 d(Qe- Q) 

> J (u(Xt) -1ft(Y))2 dQ- 4£2 11Qe- Qll 

-+ J (u(Xt)- 1ft(Y))2 dQ, c -t 0. 

Thus, the statement of the theorem is implied by (20.5) and (20.6). 0 

PROOF OF THE COROLLARY. It suffices to show the convergence of the 

characteristic functions ( i = H): for every v E lR 

Write 

lim M eiv11":(Y•) = M eiv1i',(Y). 
e-+0 

IMeiv11":(Y•)- Meiv1f.(Y)I ~ M leiv11":(Y•)- eiv'ii',(Y.)I 

+ I M ( eiv1i't(Y•) _ eiv1i',(Y)) I 

and note that the first term on the right-hand side of this inequality is 

bounded above by y'M(n;(Ye)- 1rt(Ye))2 while the second is bounded 

above by 2IIQe- Qll· 0 
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We show now the existence of the 8-asymptotically optimal filter, For 

(x)={x, lxl$n 
gn nsignx, lxl > n 

put un(x) = 9n(u(x)). For fixed n, define the functional ?i'f(Y) such that 
Q-a.s. 

Proposition 20.1. Assume that for some 'Y > 0 and any e 

supMiu(Xt)I2+"Y < oo. 
t~T 

(20.7) 

Then for every o > 0 there exists n.s such that 1i'~6 (Ye) is a 8-asymptotically 
optimal filtering estimate. 

PROOF. Since (20.7) implies the uniform integrability of (u(Xi) -wn6 (Y)) 2 , 

by virtue of Theorem 20.1 we obtain 

lim M ( u(Xt) - 1i'~6 (Ye) )2 = M ( u(X t) - 1i'~6 (Y)) 2 • (20.8) 
e-tO 

Therefore, it remains to show that one can choose appropriate n.s to arrive 
at (20.4). Write 

M (u(Xi) -1i'~6 (Ye))2 = M (u(Xi) -1t'i(Ye) + 1t'i(Ye) -1i'~6 (Ye))2 

= M (u(Xi)- 1l'i(Ye))2 

+M (11'i(Ye) -1f~6(Ye))2. 

Consequently a relevant choice of n.s has to guarantee 

limsupM (11':(Ye) -1i'~6 (Ye)) 2 $ 8. 
e-tO 

(20.9) 

Put 1l':•e(Ye) = M(un6 (Xt)ll(o,t]) and note that by Theorem 20.1 we have 

lim M (1l':,e (Ye) - 1f~6 (Ye)) 2 = 0. 
e-tO 

We establish now the validity of (20.9), with 

( SUPt<T limsupe-tO Mlu(Xt) 12+"Y) "Y 

n.s;::: 8 ' 

using a chain of upper bounds and (20. 7) 
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20.1.2. 

:s; M(7rf<P)-7r:'e(Ye))2 

= M ( M[u(Xi) -un6 (Xi)]IY(o,t]f 

< M (u(Xi)- Un6 (Xi)) 2 

< Mu2(Xi)I(iu(Xi)i >no) 
< Mlu(Xt)l2+-r 

( no )-r 
(20.10) 

0 

MODEL 1. Let (Xi, Y/k::o be defined by the Ito equations with respect to 
independent Wiener processes (W{k::o and (Wlk::o: 

dX[ = a( X[, l'te, 7Jt;e)dt + b(Xt)dWtx 
dl'te = A(X[, Y'te, 7Jt;e)dt + B(Yt)dWl (20.11) 

subject to the initial condition (Xo, Yo) which is a random vector independent 
of c, where 7Jtfe is a contamination affecting drifts. Functions a = a(x, y, z), 
A = A(x, y, z), b(x), B(y) are continuous and Lipschitz continuous in (x, y) 
uniformly in z and a(O, 0, z), A(O, 0, z) are bounded, and for some c > 0, 
b2 (x) 2:: c, B 2 (y) 2:: c. The random process (7Jtk::o is assumed to be a ho­
mogeneous ergodic Markov process with trajectories in D, independent of 
{(Wnt>o, (Wl)t>o, (Xo, Yo)}, having the unique invariant measure f..L· The 
main assumption -on (7Jt)t~O is that its transition probability Ay,t = >.(y, t, dz) 
converges in the total variation norm to its invariant measure J.L: 

lim ll>.y t- J.LII = 0, 'Vy E R 
t-+oo ' 

Put 

a(x, y) = j a(x, y, z)J.L(dz) A(x, y) = j A(x, y, z)J.L(dz). 

A candidate for a limit (Xt, Yt)t~o is defined by the Ito equations 

dXt = a(Xt, Yt)dt + b(Xt)dWtx 
dYt = A(Xt, Yt)dt + B(Yt)dWtx 

(20.12) 

(20.13) 

(20.14) 

subject to X 0 = X0 , Yo = Y0 • For fixed T > 0, denote by Qe and Q the 
distributions of (X[, l'te)o:::=;t:::=;T and (Xt, Yt)o:::=;t:::;;T, respectively. 

Theorem 20.2. For every fixed T > 0 

lim IIQe - Qll = 0. 
e-+0 
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The proof of this theorem is based on a number of auxiliary results for­
mulated below as lemmas. 

Lemma 20.1. For every bounded and continuous function f = f(x) 

P-lim [
1 f('17t/e)dt = jf(z)J.t(dz). 

e--+O Jo 
PROOF. Without loss of generality one can assume that the initial point '17o 
is fixed, the function f(z) is bounded, lf(z)l ~ 1, and J f(z)J.t(dz) = 0. Then 
the statement of the lemma holds if 

lim M ( [t f(178fe)ds)
2 

= 0. 
e--+O Jo 

By direct calculation we find 

M (1t f('17s/e)ds) 
2 

= 21t 18 M [M(J('178fe)l'178'/e)f('178'/e)] ds'ds 

~ 21t 18 M IMU('178/e)l17s'/e)f('178'/e)l ds'ds 

= 21t 18 J if f(z)[A(x, (s- s')/c, dz)f(x)i A(y, s' /c, dx)ds' ds 

= 21t 18 !If f(z)[A(x, (s-s')/c, dz)-J.t(dz)]f(x)i A(y, s' /c, dx)ds'ds 

< 21t 18 J 11Ax,(8 -s')/e- J.LIIA(y,s'/c,dx)ds'ds 

< 21t 18 J 11Ax,(8 -s')/e- J.ti!J.t(dx)ds'ds + 41t 18 11Ay,8' /e- J.tllds'ds. 

-t 0, c -t 0. 

0 
Let the function f be the same as in the proof of Lemma 20.1. Consider 

now an auxiliary filtering problem with the unobservable signal f(17tfe) and 
the observation (Xf, Y{). 

Lemma 20.2. For every t > 0 

P-!~M(f('17t/e)IX~,t]•l(:,o]) = j f(z)J.t(dz). 



20.1 Total Variation Norm Convergence and Filtering 361 

PROOF. Introduce the filtration (:Fi)t~o, generated by trajectories of the 

process ("7t) 1, and the square-integrable martingale (N;, :P;;e)o$8 9 : 

(20.15) 

Consider the filtering problem for Ni given the observation (X;, Y8e). By 

Theorem 8.5 we find (Fi = u{ x;,, Y8~, s' ::; s}) 

M(NfiFi) 
= M(NteiFg) (20.16) 

+ 18 b(~;,)M(M(Nfi:P),1e) [a(x;,,Y8~,"78'fe)-a~,]~F;,)dw:,·e 

+ 18 B(~~) M ( M (NfiF;,;e) [A( X;,, ~~,"78'fe)- A~,] I .r;,) dw:,·e, 

where 

a~= M ( a(X;, Y8e,'T78 je)l .r;) and A~= M (A(X;, Y8e,'T78 je)l .r;) 

and 

are independent innovation Wiener processes. Let us show that for s = t 

all terms on the right-hand side of (20.16) converge, as c: -+ 0, to zero in 

probability. Since 1/1::; 1 and J f(z)J.L(dz) = 0 

IM (NfiFg)l = If f(z)>.(y, tjc:, dz)l 

= If f(z)[>.(y, tjc:, dz)- J.L(dz)]l 

< ll>.y,tfe- J.LII -+ o, c:-+ o. 

For brevity of notation let us use a;, and W 8 , to denote either of { a(x;,, Y8~, 

'Tls'je)- a;,}Jb(X;) or {A(X;,, Y8e,'T78'je)- A;,}/B(Y8e) and either of the 

Wiener processes w:,•e or w:,·e, respectively. Using this notation, we show 

also that J~ M(Nfi:P), ;e)o:~,dWs' converges to zero in probability as c-+ 0. 

To this end, we apply the Lenglart-Rebolledo inequality (see, for example, 

Chapter 1, Section 9 in [214]) which, being adapted to the case considered, 

states that for any 'Y, 8 > 0 

1 All processes are defined on some probability space ( n, :F, P); :Ft = :Ft+, t ~ 0 
and :Fo is completed by P-zero sets from :F. 
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P(l1t M { M (NfiF;,;e) a~~jF;, }dWs'l ~ 'Y) 

:s; : 2 + P (1t ( M { M ( NfiF;, Je) a~, IF;,}) 2 ds' ~ 5) . 
Therefore, by virtue of the arbitrariness of 'Y, 5, the required convergence 
holds provided that 

(20.17) 

Under the assumptions made on the functions a(x, y, z), A(x, y, z), b(x), B(y) 
the random variable Ia;, I is bounded above by the F;,-measurable random 
variable 

f3!, = constant x (1 + sup IX:" I + sup IYs~'i) . 
s"'5s' s 11 '5s' 

Therefore, it suffices to prove that 

P-!~1t {M(M(NtiF;1e)IF:,)r ds' = o 
lim limsupP(/3% >c) = 0. 

c-too e-tO 
(20.18) 

To check the validity of the first part of (20.18), we use the Markov property 
of the process rJt: M(NfiF;,;e) = M(f(rJt;e)i'Tls'Je) and verify 

In fact, 

so that 

lim M t { M (/('Tltje) l'Tls' ;e)} 2 ds' = 0. 
e-tO Jo 

JM (/('Tltje)J'Tls'Je)J = if f(z).A.,<•-•'>I••s'je(dz)l 

= If f(z)[.-\17<•-•'>l••s'Je(dz)- p(dz)]l 

:s; ii.A.,<•-•'>I••s'Je- Pll, 

{20.19) 

M 1t { M (/('Tltje)i'Tls' ;e)} 2 ds' < 1t f li.Az,(t-s')/e- Pll2 Ay,s' je(dz)ds' 

< 21t f ii.Xz,(t-s')/e- Piip(dz)ds' 

+41t ii.Xy,s' Je - Piids' 

-+ 0 as c-+ 0. 
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We check now the validity of the second part of (20.18). Applying the Ito 
formula to V8e = (Xi) 2 +(Yn2 and taking into account the assumptions made 
on all the functions involved in (20.11) we arrive at (£ is some appropriate 
constant) 

V8e X~+ Y02 

+218 
[X;,a(X;,, Y8~, 'f/8 'fe) + Y8~A(X;,, Y8~, 'f/8 ' ;e)]ds' 

+ 1s (b2(x;,) + B 2(x;, )]ds' 

+218 
[X;,b(X;, )dW_:, + Y8~B(Y8~)dW:,] 

< X~ + Y02 + ft + £18 V8~ds' + Mi, 

where Mi = 2J;[x;,b(Xi,)dW_:, + Y8~B(~~)dW:,]. If X0 ,Yo are bounded 
random variables, then, applying the method of the proof for the last state­
ment of Theorem 4.6, one can conclude that sup8 <t MV8e :::; C, where C is 
independent of c. On the other hand, by the Gronwall-Beilman inequality 

SUP8 <t ~e :::; [X6 + Yfl +£t+sup8 <t IMffiJeet and since by the Cauchy-Schwarz 
and Doob inequalities -

MsupiMffl2 < 2VMIMtl2 
s:S;t 

it can be shown that M sups<t ~e :::; constant and so Mf3i :::; constant as 
well. For unbounded Xo, Yo the required property for /3[ is implied by the 
Chebyshev inequality. 

Thus, 

limsuplimsupP(/3: >c):::; P(IXol + IYol > L)--+ 0, L--+ oo. D 
c-+oo e-+0 

PROOF OF THEOREM 20.2. Denote by a;(x, y; {Xe, ye}) = 

M(a(x, y, 'f/8 ;e)IFi) and note that (P-a.s.) a;(Xff, Y8e; {Xe, ye}) = M(a(Xi, 
Y8e, 'TJs;e)IFff). Lemma 20.2 implies: for fixed s, x, y, 

(20.20) 

For fixed x, y, a;(x, y; {Xe, ye}) is bounded as well. Therefore, due to (20.20), 
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P-lim {T [a!(x,y; {Xe:, ye:})- a(x,y)]2 ds = 0. 
e:-+O lo (20.21) 

Next, we show that (20.21) remains true upon replacing x,y by x;, Y8e:: 

P-lim fT [a!(X!, Y:; {Xe:, ye:})- a(X!, Yae:)] 2 ds = 0. (20.22) 
e:-+0 lo 

Denote by [x] the greatest integer function and define the following random 
X e:,n xe: d xe:,n,m [ xe:,nl/ p t XE* IXEI processes: t = (nt]/n an t = m t m. u T = supt~T t . 

In the same way define Y,e:,n, Y,e:,n,m, and Yj.*. We show that for every C > 0, 
and m, n ~ 1 on the set { x;.:* + y,_;,.• $; C} 

1T [a!(X!•n,m, Yae:,n,m; {Xe:, ye:})- a(X!•n,m, Yae:,n,m)] 2 ds -t 0, (20.23) 

in probability as e -t 0. The proof of (20.23) is based on the fact that on the 
set {X;:*+ y,_;.·• $; C} the processes x:·n,m and Y,e:,n,m have a finite number 
(independent of e) of trajectories. Thus, (20.23) holds if for any continuous 
functions X 8 ,y8 ,0 $; s $; T and x~·m, y~·m, xJin• and Y'fin• defined similarly 
to Xe:,n,m y:e:,n,m x:•m and Y~·m 

t ' t ' J/n' J/n ' 

P-limo [T [a!(x~·m,y:·m; {xe:, ye:})- a(x:·m,y:·m)]2 ds = 0. (20.24) 
e:-+ Jo 

In turn, the validity of (20.24) follows from the chain of upper bounds: 

1T [a!(x:·m,y:•m; {Xe:, ye:})- a(x:•m,y:•m)]2 ds 

(nT)!jfn 
< L [a!(x:•m,y:·m;{Xe:,ye:}) -a(x:•m,y:•m)]2 ds 

j=l (j-1)/n 

(nTJ1T 2 

$; 2 L [a!(xjjn, Y'Jini {Xe:, ye:})- a(xjjn, Y'Jin)] ds. 
j=l 0 

For fixed n, m, each summand in the last sum converges to zero in probability 
as e -t 0. Thus, (20.23) holds. Consequently, (20.22) holds if 

lim lim sup P(XV + y,_;.•* ~ C) = 0 
C-+oo e:-+0 

(20.25) 

and for every C > 0 on the set { x;.:* + Y;.•* $; C} 

1T [a!(X!, Yae:; {Xe:, ye:})- a!(X!•n,m, yse:,n,m; {Xe:, ye:})]2 ds -t 0 

1T [a(X!, Y8e:)- a(X!•n,m, Yae:,n,m)] 2 ds -t 0 (20.26) 
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in probability as the limit limn,m lim sup.,-+0 is taken. It is clear that (20.24) is 
implied by Lemma 20.1. On the other hand, each offunctions a;(x, y; {X", Y"}) 

and a(x, y) inherits the Lipschitz property in x, y (with an absolute constant) 
which provides (20.26) under 

P- lim lim sup sup (IX! - x;·n,m I + IYs" - yse,n,m I) = 0. 
n,m e-tO sST 

The above holds by virtue of Lemma 20.1 as well. 
Thus, the validity of (20.22) is proved. 
In the same way, for A;(x,;, Y8"; {X", Y"}) = M(A(X,;, Y8", 7Js;e)IF%) and 

A(x, y), defined in (20.13), we obtain 

P-lim fr [A;(x;, Y8"; {X", Y"})- A(x;, v:.")] 2 ds = o. 
e-+0 Jo (20.27) 

For brevity, in what follows, a; and A; are used to designate a;(x,;, 
Y8"; {X", Y"}) and A;(x;, Ya"; {X", Y"}), respectively. It is known from The­
orem 7.12 that 

wx,e = t dX! - a;ds WY·" = {t dYs" - A;ds (20.28) 
t } 0 b(X;) ' t Jo B(Ys") 

are independent Wiener processes with respect to the filtration (F;)s>o, that 
is the process (X[, ~")t<::o is defined by the past-dependent Ito equations 

X[ Xo + 1t a;ds + lot b(X!)dW:·" 

~" = Xo + 1t A;ds + 1t B(Ya")dWJ'·". (20.29) 

Hence, by Theorems 7.19 and 7.20, for every T > 0 the measures Q" and Q 
are equivalent to the distribution of a pair of diffusion processes with respect 
to independent Wiener processes W£, W£' : 

Xt = Xo + 1t b(Xs)dW~, yt =Yo+ 1t b(Ys)dW~'. 
Thus, these measures are equivalent ( Q" "' Q) and the density dQ j dQ" at 
the point 'X", Y"' is given by the formula (see Theorems 7.19, 7.20) 

dQ (X" Y") ( {T a( X!, Ys") -a; dX" {T A(X_;, Ys") -A; dY" 
dQ" ' exp }0 b(X;) s + Jo B(~") s 

1 fr [(a(x,;, ~"))2 - (a;)2] 

-2 }0 b2 (X,;) ds 

1 {T [(A(X_;,Ys"))2 - (A;)2] ) 

-2 lo B 2 (Ya") ds · (20.30) 
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Taking into account that X[, Yr_e satisfy (20.29), formula (20.30) can be 
rewritten in the form 

:ge (Xe, ye) = exp ( Mf- ~(Me)T) (20.31) 

with the continuous martingale (Mt)t'5;T and its predictable quadratic vari­
ation ( (Me)t)t'5;T: 

Me = {T a( X;, y8e) -a; dW"'•e {T A(X;, Yn - A; dWy,e 
T Jo b(X;) 8 + Jo B(Yae) 8 

(Me) = {T { [a( X!, Yn - a~J2 [A( X!, Yn - A~]2 } d 
T Jo b2(X;) + B2(Y8e) s. 

By (20.22) and (20.27) (Me)T converges to zero in probability as c: -+ 
0. Therefore, the same convergence holds for Mf since by the Lenglart­
Rebolledo inequality (see, for example, Chapter 1, Section 9 in [214]) for any 
"'{,8 > 0 we have 

(20.32) 

Consequently, the density -§.(xe, ye) converges to 1 in probability as c:-+ 0. 

The statement of the theorem is now provided by the Scheffe theorem [19] 
since 

0 

We give here two examples of homogeneous ergodic Markov processes for 
which (20.12) holds. 

EXAMPLE 1. Let 1Jt be a diffusion Markov process defined by the Ito equa­
tion with respect to the Wiener process Wt,.,: 

d'T]t = a(TJt)dt + b(TJt)dWt,.,, 

where the drift and diffusion a(z) and b(z) are assumed to be continuously 
differentiable, having bounded derivatives and, for some constants£ and L, 

liminfa(z)signz < 0. 
lzi-HXl 

(20.33) 

It is well known that the transition probability >.(y, t, dz) of (TJt) admits the 
density p(y, t, z) (with respect to dz) being a solution of the forward Fokker-

Planck-Kolmogorov equation (.C*{-} =- tz(a(z){·}) + ~t;.(b2 (z){-})) 

ap(~t, z) = .C*p(y, t, z). (20.34) 
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Under assumptions (20.33), the invariant measure p,(dz) exists and admits 
a density m(z) (with respect to dz) which is the solution of the ordinary 
differential equation .C*m(z) = 0. It is well known (see, Chapter 4, Section 9, 
Lemma 9.5 and Chapter 3, Section 8, Example 2 of [148]) that the solution of 
the Cauchy problem for the partial differential equation (20.34) is stabilized 
in the sense that for every fixed y, z 

lim p(y, t, z) = m(z). 
t-too 

Then, taking into account that J p(y, t, z)dz = 1, J m(z)dz 
Scheffe theorem (see [19]) we obtain 

lim J Jp(y, t, z)- m(z)Jdz = 0, 
t-too 

that is nothing but (20.12). 

1, by the 

EXAMPLE 2. Let a homogeneous Markov process TJt take values in a finite 
state space { a1, ... , aN} and 'T)o be fixed. Denote by P the matrix of transition 
intensities of 1Jt and by p(t) = (p1(t), ... , PN(t)) the vector of transition 
probabilities (Pi,j(t) is the transition probability from ai to ai over the time 
interval [0, t]). The vector Pi(t) is defined by the Fokker-Planck-Kolmogorov 
equation 

dp(t) = p(t)P. 
dt 

(20.35) 

Assume that '0' is the simple eigenvalue of the matrix P. Then there exists 
a unique invariant distribution p = (p~, ... ,pN) such that limt-too Pi(t) = p, 
j = 1, ... , N. Hence, (20.12) holds since 

N 

ll>.y,t - J.J-11 =I: IPj(t) -PI· 
j=l 

20.1. 3. The asymptotic ( 8-asymptotic) optimality does not hold for many 
models which formally have a structure similar to that of Model 1. We give 
an example below. 

EXAMPLE 3. Consider a filtering model with the deterministic contamina­
tion 7Jt/e = sin(t/e): 

X[= Wtx, Y/ = 1t sin(s/e)X!ds + Wf. 

Since limt-t00 (1/t) J~ sin(s)ds = 0, the limit model is defined as: 

- y 
and Yt = Wt 
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and provides 1i't(Ye) = 0 and M(Xf - 1i't(Ye))2 = t. At the same time, 
1r[ (Ye) is defined by the Kalman filter (see Chapter 10) with pe ( t) = M (X[-
1ri{Ye))2 defined by the Ricatti equation: 

Pe(t) = 1- sin2 (t/e)(Pe(t))2 (t), pe(o) = 0. 

By the Bogolubov averaging principle [23], there exists lime-tO pe(t) = P 0 (t) 
defined by the Ricatti equation with the averaged coefficient 
lime-tO J; sin2 (s/e)ds = !: 

P 0 (t) = 1- ~(P0 (t)) 2 (t). 

Evidently, for any t > 0, P0 (t) < t and is bounded above by v'2, i.e., the 
asymptotic optimality for the filtering estimate 1i't(P:) is lost. 

The above example shows that under the deterministic contamination 
the loss of the asymptotic optimality can be expected. We introduce below 
another class of filtering models for which the asymptotic (&-asymptotic) 
optimality holds under deterministic contamination as well. 

MODEL 2. Let the observation ye = (Y,nt~o be a diffusion-type process 

Yt = 1t A(X;)ds + 1t B(Yae)dW8 , (20.36) 

where the unobservable process Xf (with trajectories in D) is independent of 
the Wiener process W = (Wt)t~O· The functions A(x) and B(y) are assumed 
to be Lipschitz continuous and B 2(y) ~ c > 0. 

We assume that there exists a random process X= (Xt)t~o, independent 
of W, with trajectories in D such that for every fixed T > 0 

P-lim {T (X[- Xt)2dt = 0. 
e--+0 Jo 

In parallel to ye, let us introduce the new diffusion-type process 

Yt = 1t A(X8 )ds + 1t B(Y8 )dW8 • 

(20.37) 

(20.38) 

As before, consider the filtering problem for the signal u(Xt) (Mu2(Xt) < 
oo, Mu2(Xt) < oo) and the observation ye, Let the filtering estimates 
1ri{Ye), 1ft(Y), and 1i't(Ye) be defined similarly to those for the previous 
model (Model 1). 

Theorem 20.3. Assume u(x) is a continuous function and (20.37} holds. 
Then for each t :5 T: 
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1. 1ft(Ye:) is asymptotically optimal and rri(Y"}~1ft(Y}, c -+ 0 if u is 
bounded; 

2. 1f~6 (Ye:), defined in Proposition 20.1, is asymptotically 6 -optimal if there 
exists f > 0 such that lu(x)l ::::; £(1 + lxl) and for some 1 > 0 and any c 

supMIXfi2+'Y < oo. 
t..:;T 

The proof of this theorem uses also the convergence in the total variation 
norm. 

Lemma 20.3. Let Re: and R be distributions of random processes (X t, Ynt<T 
and (Xt, Yt)t..:;T, respectively. Under (20.37} -

lim liRe: - Rll = 0. 
e:-tO 

(20.39) 

PROOF. Since (Wt) and (Xf,Xt) are independent, we assume, without 
loss of generality, that the pair (Xi, X t) is defined on the probability space 
( D', :F', P'), while (Wt) is defined on its copy ( D", :F", P") (the notation M' 
and M" is used for expectations with respect to P' and P", respectively). 
Thus, both processes (Y/) and (Y t) are determined on ( D' x D", :F' ®:F", P' x 
P"): 

~e:(w',w") = lot A(X;(w'))ds +lot B(Y."(w',w"))dW.(w") 

Yt(w',w") lotA(X.(w'))ds + lotB(Y.(w',w"))dW.(w"). (20.40) 

Let us introduce 

Zte:(w,w') = ( t A(X.(w'))- A(X;(w'))dW ( ") 
exp }0 B(Y.e:(w',w")) 8 w 

1 t [A(X.(w'))- A(X!(w'))] 2 ) 

-2 }0 B 2(Y."(w',w")) ds ' 
(20.41) 

and show that for every T > 0 

(M' x M")Zf(w', w") = 1. (20.42} 

For fixed w' and T, 

t [A(X.(w'))- A(X;(w'))] 2 < C( ') 
Jo B2(~c(w',w")) - w < oo, 

(P'-a.s.). 

Then by Theorem 6.1 M"Zf(w',w") = 1 (P'-a.s.) and, in turn, (20.42) holds. 
Denote by Qf the a-algebra generated by (X[,Xt, ~e:)t..:;T, and by pe: the 
restriction of P' x P" to Qf. Define the new probability measure p" with 
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dPe = Zj.(w',w")dPe, (20.43) 

i.e., Zj.(w',w") is the density of Pe with respect to pe, The structure of 
this density provides the following property for (Xt, Y/)t<T· The process 
(Xt(w'))t<T has the same distribution with respect to both measures pe and 
Pe while the distribution of (Y;;e(w',w"))t<T is changed. In fact, by Theo­
rem 7.12 

We( I ") = w, ( ")- rt A(Xs(w')) - A(X!(w')) d 
t w ,w t w lo B(Y'se(w',w")) s 

is a Wiener process with respect toPe, so that the process ('Y;;e(w',w"))t<T 
possesses the new representation with respect to Pe: -

Y;;e(w',w") = 1t A(X8 (w'))ds + 1t B(Y8e(w',w"))dW:(w',w"). 

Comparing this Ito equation with the second one from (20.40) we conclude 
that the distribution of ('Y;;e(w',w"))o~t~T with respect toPe coincides with 
the distribution of (Yt(w',w"))o<t<T with respect tope, Hence, repeating 
arguments from the proof of Theorem 7.1, we find that Re "' R and 

:; (Ye) =(M'xM") ( ZHw',w")i X[o,T]• l(o,T]) (P'xP")-a.s.(20.44) 

We show now that (20.39) holds. Equation (20.44) and the Jensen inequal­
ity imply liRe- Rli ~ (M' x M")l1- Zj.(w',w")i. Further, Zf(w',w") = 
exp(Mf- ~(Me)T) with 

Me = {T A(Xs(w'))- A(X!(w')) dW ( ") 
T lo B(Y;(w',w")) 8 w 

(Me) = {T [A(Xs(w'))- A(X!(w'))] 2 d 
T lo B 2(Y'se(w',w")) s. 

By virtue of {20.37), (Me)T ~ 0 in probability as c ~ 0 and the same 
convergence for Mf holds as well (see {20.32) or Problem 1.9.2 in [214]). 
Hence, Zf(w', w") ~ 1 in probability as c ~ 0 and by the Scheffe theorem 
(see [19]) the desired conclusion holds . 0 

PROOF OF THEOREM 20.3. Part 1. Since u is a bounded and continuous 
function 

{20.45) 

Using {20.45) and repeating the proof of {20.6), we obtain 
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lim I (u(Xt) -1ft(Y))2 dRe = I (u(Xt) -1ft(Y))2 dR 
e--+0 

liminf/ {u(Xt) -11"i(Y))2 dQe ;?:: J (u(Xt) -1ft{Y))2 dR. (20.46) 
e--+0 

The asymptotic optimality of 1ft(Ye) follows now from {20.46) and {20.5). 
The proof of the second statement of part 1 is the same as for the corollary 

to Theorem 20.1. 
Part 2. The proof is the same as for Proposition 20.1. D 

20.2 Robust Diffusion Approximation for Filtering 

In this section, we consider the filtering problem for a nonlinear model in 
which the unobservable signal Xt is a diffusion process defined by the Ito 
equation with respect to a Wiener process vt: 

{20.47) 

subject to the random initial condition Xo, MX~ < oo. We obtain mea­
surements at fixed time values tk, k = 0, 1 ... , {tk+l - tk = c-), so that the 
observation process yt,. is defined as: 

(20.48) 

where h(x) is some continuous function and (ekk:::t is an independent iden­
tically distributed sequence of zero-mean random variables independent of 
(vt), Xo. Under Me~ < oo, the attractiveness of this model is based on the 
following fact. For any distribution for 6, the sequence of random processes 
(~e)t;:~0 , e > 0, with ~e = yt", tk :::; t < tk+t. converges in the distribution, 
as e -+ 0, to a diffusion-type process with respect to the Wiener process Wt 
independent of {Xt) 

yt = 1t h(X8 )ds + BWt, 

where B = y'Mff. Such an approximation result allows one to apply the 
Kushner-Zakai filter (Chapter 8), corresponding to the limit model, for the 
prelimit observation. Namely, let us fix some continuous bounded function 
f(x) and, applying the Bayes formula, define the functional11"t(y), y ED (D 
is the Skorokhod space) such that {P-a.s.) 11"t(Y) = M{f(Xt)IY[o,t))· If 11"t(Y) 
is a continuous (in some sense) function of the arguments, it makes sense to 
take 11"t(Ye) as the filtering estimate for the signal f(Xt) under given Yae, 
s:::; t. Due to the weak convergence 

(Xt, ~e) ~ (Xt, yt), e-+ 0 
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and the continuity of the functional7rt(·), the distributions of (f(Xt), ?rt(Ye)) 
converge to the distribution of a limit (f(Xt), 7rt(Y) ). Therefore, we arrive at 
the asymptotic equivalence for prelimit and limit models: 

lim M (f(Xt)- 7rt(Ye))2 = M (f(Xt)- 7rt(Y))2 • 
e-+0 

However, if the distribution of 6 is not Gaussian, the resulting filtering esti­
mate 1rt(Ye) might be far from the optimal one even if cis too small. On the 
other hand, using the Bayes formula, one can find the optimal (in the mean 
square sense) filtering estimate 1rf{Ye) = M(f(Xt)ll(o,t)) for the prelimit 
model, which may be asymptotically better than ?rt(Ye), i.e., it may happen 
that 

limsupM (f(Xt) -1rHYe))2 < M (f(Xt)- 7rt(Y))2 . 
e-+0 

If ~1 is not Gaussian and, say, M~~ = oo, to remedy this situation, we make 
a preliminary nonlinear transformation of the observation with some smooth 
function G(x), hereinafter called the 'limiter', and show that filtering via the 
diffusion approximation implemented for the transformed signal might be 
asymptotically better and even optimal. The main assumption here is 

MG(~l) = 0, MG2(~1) < oo. 

Letting~~ = 0 and~~- ~~-1 = JeG(~[Yik - ytk_ 1 ]) and taking into 

account that~~- ~~- 1 ::::l JgG(~k) + G'(~k)h(Xtk_ 1 )c, we arrive at another 
diffusion limit for the sequence of random processes (~e,G)t~o, with ~e,G = 

~~. tk < t ~ tk+l: 

~a= 1t Aah(Xs)ds + BaWt, 

where Ba = .jMG2(~1) and Aa = MG'(~l). This type of diffusion approxi­
mation allows one to compare limiters using the parameter 

A2 
SNa = B~ 

G 

which naturally can be called the 'signal-to-noise' ratio. 

In what follows, we fix the following assumptions. 

1. (A-1) G is a differentiable function and G' is Lipschitz continuous. 
2. (A-2) a(x) and b(x) are Lipschitz continuous; b(x) is bounded. 
3. (A-3) h(x) is twice continuously differentiable, having bounded deriva­

tives h'(x), h"(x). 
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4. (A-4) (ek)k~l is a sequence of independent identically distributed ran­
dom variables, independent of X0 ,(\'t), such that M(G'(6))2 < oo, 

MG2(6) < oo, and MG(el) = 0. 
5. (A-5) For every A> 0, there exists a constant C(A, Bb)), depending on 

A and Bb = MG2(el), such that (.C = a(x) d~ + ~b2(x)~) 

V>.h(x) := Aj.Ch(x)j- ~b h2(x) :::; C(A, B'f;). 

6. (A-6) For every A > 0, M e>.lh(Xo)l < oo. 

20.2.1 Diffusion Approximation with Limiter. For brevity, W-lime-+oo de­
notes weak convergence in the Skorokhod-Lindvall and the local supremum 
topologies (see, for example, Chapter 6 in [214]). 

Theorem 20.4. Assume (A-1)-(A-4). Then 

W-lim(Xt, Yte,G)t>o = (Xt, YtG)t>o, e-+0 - -

with Y0G = 0, dYtG = Aah(Xt)dt + BadWt, where (Wt is a Wiener process 
independent of X0 , (Vt), and Aa = MG'(6), Ba = MG2{el). 

PROOF. Let us define the increasing function L~ = e[t/e], where [t] is the 
greatest integer function, and random processes 

(t/e) 
Mt·a = ..rc L: a(ek) 

k=l 

ue,G(t) = G'(~k), tk-1 < t:::; tk 
[t/e) 

u:·G = e L h(Xtk-1) [G'(Okh(Xtk-l)ve+ek)-G'(~k)]. {20.49) 
k=l 

Taking into account the mean value theorem and choosing appropriate ran­
dom values 0:::; Ok :::; 1, we arrive at Yte,G = J~ ue,G(s)h(Xs-e)dL; + Mt•G + 
u:.a. We show now that for every T > 0 

P-lim sup !u:·al = 0 
e-+Ot=:;T 

P-lim sup 11t [ue,G(s)- Aa]h(Xs-e)dL~~ = 0. 
e-+Ot=:;T 0 

{20.50) 

In fact, by virtue of assumption {A-1) the function G' is Lipschitz continuous 
and therefore supt<T IUt'GI :::; Tsupt<T h2 (Xt)Je--+ 0, e--+ 0. To verify the 
validity of the second part of (20.50) note that 
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t [t/e] 
N{ = f [ue,G(s)- Aa]h(Xa-e)dL! = e L h(Xt,._1 ) (G'(ek)- MG'(ek)) 

lo k=l 

is a square integrable martingale with respect to the filtration (.Ft)t>o gener­
ated by { Xtk-1 'ek; tk $ t, k $ [tIe)}. It is clear that the predictable quadratic 
variation of this martingale is defined as 

[T/e] 
{NE}t = e2 L h2(Xt,._l)M (G'(6)- MG'(e1))2. 

k=l 

Then, by Problem 1.9.2 in [214], SUPt:::;T INti converges to zero in probability 
since 

{Ne)t $ eTsuph2{Xt)MG'2{el)--+ 0, e--+ 0. 
t::5T 

For s < e, letting Xs-e = Xo, introduce now the process 

Y,_e,G = 1t Aah(Xa-e)dL! + M:·a 

and note that (20.50) implies: for every T > 0, P-lime-+0 SUPt<T l~e,G -
Y,_e,GI = 0. Obviously, the above also holds if we replace Y,_e,G by Y,_e,G = 

J: Aah(X8 )ds+M:·a. Thus, by Theorem 4.1 of [19] {Chapter 1, Section 4), 
the statement of the theorem is fulfilled provided that 

W-lim{Xt, Y;te,G)t>O = (Xt, y;tG)t>O· 
e-+0 - -

{20.51) 

Under the assumptions made, (}T,_e,G)t>o is defined by a continuous mapping, 
in the local supremum topology, of (Xt~ Mf'G)t>o, so that, taking into account 
the independence of (Xt) and (M:·a), only co;vergence 

W-lim(M:•a)t>o = (BaWt)t>o {20.52) 
e-+0 - -

has to be established. To this end, we note that 

M (Me,G) 2 - Le B2 --+ tB2 t = t G G {20.53) 

and apply the Donsker theorem {see, for example, Theorems 9.1.1 and 9.1.2 
in [214]) which states that {20.53) guarantees the weak convergence {in the 
Lindvall-Skorokhod topology) 

(M:•G)t'?.O ~ {Mt)t;::o, 

where {Mt)t>O is a zero-mean continuous Gaussian martingale with variance 
B'f;t. Therefore, by the Doob-Levy theorem {Theorem 4.1) Wt = _i0 Mt is 
the required Wiener process. D 
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20. 2. 2 Functional1rf (y). Let the limiter G be chosen and the assumptions 
(A-1)-(A-4) fulfilled. Then, by Theorem 20.4, the pair (Xt, Yte,G) converges 
in distribution (in the Skorokhod-Lindvall topology) to (Xt, Yt0 ). We create 
now a functional7rf(y), t E R+,Y E D, as a 13 ® V-measurable function, 
being Vt-measurable for fixed t, where 13 and 1J are the Borel a-algebras 
on R+ and D respectively and 'Dt = a{y E D : y8 , s ~ t}, such that for 
every t ~ 0, 1rf(Y0 ) = M(f(Xt)l1(~t]) (P-a.s). Let us assume the pair 

(Xt,Yt0 k::o is defined on the probability space (n,:F,P) where (O,F,P) is 
its copy (M denotes the expectation with respect toP, Xt is the copy of Xt)· 
On (0 X n,i"®:F,P X P) define the new pair (Xt,Yt0 )t?:O· Then, by the 
Kallianpur-Striebel formula [136], 

M /(Xt) exp { (I~ h(X8)d~0 - !Jf. I~ h2(X8 )ds)} 
M(f(Xt)l'l(~t]) = - { ( t - s2 t - ) } 

' M exp Io h(X8 )dYP - ==f" Io h2(X8 )ds 
(20.54) 

The right-hand side of (20.54) is presented via the Ito integral with respect to 
'dY8G' and so it does not determine explicitly the required functional7rf(y). 
To construct it, in what follows, we assume (A-2), (A-3), (A-5), and (A-6). 
By the Ito formula we find 

h(Xt)Yt0 = 1t h(Xs)dY8° + 1t Y8° Ch(Xs)ds 

+ 1t Y8°h'(Xs)b(Xs)dVs, 

where Yt, defined on (0, J", P), is a copy of the Wiener process Vt and the 
operator Cis defined in (A-5). Again applying the Ito formula we find 

h(Xt) = h(Xo) + 1t Ch(X8 )ds + 1t h'(X8 )b(X8 )dVs. 

Due to the independence of the processes Xt, Yt and Yt0 , for each fixed tra­
jectory of Yt0 the Ito integral I~[Yt0 -~0]h'(X8 )b(X8)dV8 is well defined, so 
that we arrive at 

1t h(Xs)dY8° = h(Xo)Yt0 + 1t [Yt0 - Y8°]Ch(s, Xs)ds 

+ 1t [Yt0 - ~0]h'(Xs)b(Xs)dYa. 
For y ED, put 

4>t(X,y) = exp (Yth(Xo) + 1t [(Yt- Ys)Ch(Xs)- ~b h2 (Xs)] ds) 

X exp (1t (Yt- Ys)h'(X8 )b(X8 )dV8 ) (20.55) 
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and then put 

rrf(y) := Mf(Xt)cP:_(X, y). 
MPt(X,y) 

(20.56) 

It is clear that this functional satisfies the required properties. 

Lemma 20.4. Assume {A-1}-{A-6} and suppose f(x) is a bounded continu­
ous function. Then for fixed t, rrf ( ·) is continuous on D in the local supremum 
topology. 

PROOF. Let us show that both Mf(Xt)Pt(X, y) and MPt(X, y) are contin­
uous functions in y. Since Pt(X, y) is uniformly continuous in probability at 
any point y E D and f is bounded, it suffices to check the uniform integra­
bility of Pt(X,y). To this end, we show that 

(20.57) 

Denoting {3(s) = 2(Yt- y8 )h'(Xs)b(X8 ) and noticing that there exists a con­
stant f such that lf3(s)l:::; sup89 !Yt- Yslf, we obtain 

M exp {1t f3(s)dVa- ~ 1t {32 (s)ds} = 1. 

Coupled with 'D>..h:::; C(.X, B'f:;), A= SUPs<t !Yt- Ysl (see (A-5)), we arrive at 
the following upper bound: there exists a-constant q(.X) such that 

MP~(X, y) :::; eq(>..)t M exp { 2!Ytllh(Xol}, 

that is (20.57) is implied by (A-6). D 

20.2.3 Analysis of the Limit Model. For a bounded continuous function f and 
limiter G, Theorem 20.4 and Lemma 20.4 guarantee the asymptotic filtering 
equivalence of the prelimit model to the limit one 

(20.58) 

that is the asymptotic filtering accuracy depends on the chosen limiter G. For 
a fixed limiter G, the limit filtering model is characterized by two parameters 
Aa, Be which define the 'signal-to-noise' ratio 

A2 
SNa = B~· 

G 
(20.59) 

The next lemma states that to a larger value of the 'signal-to-noise' ratio 
there corresponds a smaller value of the filtering error &a(t) = M(f(Xt) -
rrf(YG))2. 
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Lemma 20.5. The following implication holds: for every t > 0, 

SN0 1 :::; SN0 2 ==::;. £0 1(t);::: £0 2(t). 

PROOF. Let the limiter G be fixed. We define a new observable process 

_ ·vG 
Y,;G = _Lt_ 

A a 

and note that, since the u-algebras u{Y8°,s:::; t} and u{Y8°,s:::; t} coincide, 

the mean square filtering errors, corresponding to {Y8°, s :::; t} and {Y8°, s :::; 

t}, coincide as well. Therefore, to compare £0 1 ( t) and £0 2 ( t) one can use 

Y'r,01 and Y'r,02 as observation processes. From the description of the process 

¥,;0 (see Theorem 20.4), we find that 

(20.60) 

To simplify the notation, put 1' = Ba1 I Aa1 and 1" = Ba2 I Aa2. Since 

1 1 
("!')2 = -- and ("!")2 = --, 

SNa' SNa" 

we have that ("1') 2 ;::: ("1")2 . Take ("1') 2 > ("1") 2 and consider two observable 

processes: 

dYf' h(Xt)dt + 1" dWt 

dY! = h(Xt)dt + "f"dWt + V("Y')2 - ("1") 2dWt, 

where Wt is a Wiener process independent of (Xt, Wt). It is clear that the 

diffusion parameter for the first model is ("1") 2 while for the second it is ("1') 2 . 

Denote 

&-r' (t) = M (f(Xt)- M ( f(Xt)IY(~.tJ) f 
£-r,(t) M (f(Xt)- M ( f(Xt)IY(~,tJ)) 2 

and note that £-y' (t) = £a1 (t), £-y" (t) = £a2(t). Therefore, it remains to check 

only the validity of the following implication: 

(20.61) 

Taking into account that u{Y;, W 8 , s :::; t} 2 u{Y;, s :::; t}, we obtain £-y' (t) ;::: 

£(t), where £(t) = M(f(Xt)- M(f(Xt)IY[~,t]' W[o,tj))2 . Next, we prove 

(20.62) 

In fact, noticing that u{Y;, W 8 ,s:::; t} = a{Y;', W 8 ,s:::; t}, we conclude that 
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M ( f(Xt) il(~.tJ, Wro,t]) = M ( f(Xt) il(~,tJ, Wro.t]) . 

Moreover, the independence of the processes (Xt, Y(') and (Wt) implies the 
following chain of equalities: for all bounded random variables a and /3, which 
are measurable with respect to a-algebras a{Y;', s :::; t} and a{W8 , s ::=; t} 
respectively, and every bounded and measurable function g(x), 

M (a/3M ( g(Xt)i Y;', Wro,tJ)) = M (aj3g(Xt)) 

= M (ag(Xt)) M(/3) 

= M (aM ( g(Xt)ll[~,tJ)) M(/3) 

= M (a/3M ( g(Xt)ll[~,tJ)). 

Hence, by virtue of the arbitrariness of a, /3 we obtain (P-a.s.) 

M ( f(Xt)ll(~.tJ• Wro,tJ) = M ( f(Xt)ll(~.tJ) · 
Hence, (20.62) holds. 0 

Lemma 20.6. Assume that the distribution of the random variable 6 ad­
mits the twice continuously differentiable density p(x) for which the Fisher 
information is finite: 

1 = J (p'(x)) 2 dx < oo. 
P p(x) 

Then the limiter G0 ( x) = -p' ( x) / p( x) has maximal 'signal-to-noise' ratio 
among all limiters G which are smooth functions with J G(x)p(x)dx = 0 and 
J G2 (x)p(x)dx < oo: 

PROOF. Let G be an admissible limiter. Under the assumptions of the lemma 

SNc = (J G'(x)p(x)dx) 2 

J G2(x)p(x)dx 

Integrating by parts and applying the Cauchy-Schwarz inequality we obtain 

(! G'(x)p(x)dx) 
2 = (! G(x)p'(x)dx) 

2 
:::; lp j G2(x)p(x)dx, 

that is SNc ::=; lp· On the other hand, J(G0 (x)) 2p(x)dx = lp and, moreover, 
since 
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(Go)'(x) = p"(x)p(x)- (p'(x))2 
p2(x) ' 

it holds that 

0 

20. 2.4 Asymptotically Optimal Filter. Assume now that the distribution of 
the random variable 6 has a smooth positive density p(x) such that the 
limiter G0 (x) = -p'(x)jp(x) satisfies conditions (A-1) and (A-4). Then in 
the class of limiters G, satisfying these conditions, G0 (x) is the 'best' in 
the sense that it guarantees the following lower bound for the mean square 
filtering error: for every continuous and bounded function f 

Let us compare now this lower bound with the asymptotically optimal one 
corresponding to the conditional expectation 1rf{ye) = M(f(Xt)IY[g,t]). 

Let all random objects be defined on the probability space (n, :F, P) where 
( ii, F, P) is its copy ( M is the expectation with respect to the measure P; 
all random objects defined on (ii,F,P) are denoted by ....... ). On (n x ii,:F® 
F, P x P), let us define random variables 

where .1~~ = ~~-~~-~,and 

<PHX, Yc) = IJ ¢k(X, Yc). (20.63) 
k:tk~t 

By the Bayes formula 

1rc(Yc) = Mf(Xt)<Pl(x, Yc). 
t M<Pi(X, P) 

(20.64) 

The same type of formula is applied to generate the filtering estimate 
1rfo (Yc,Go ). In fact, the explicit formula for the conditional expectation 
1rfo (Y00 ) is defined as (see (20.56)): 

- - - co Mf(Xt)<i>t(X, Y ) 

M<Pt(X, yeo) 

<i>t(X, Y0 o) = exp (lot h(X8)d~0o-; 1t h2(X8 )ds). 
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Since the random process (yt~.ao) has piecewise-constant right continuous 
trajectories of bounded variation for every finite interval, the Ito integral with 
respect to 'dyt~.ao' coincides with the Stieltjes one with respect to 'dyt~.ao '. 
This property allows us to conclude that 

- - - ao 
7rao (Y~,ao) = MJ(Xt)~:_(X, y~. ) 

t M~t(X, y~.ao) ' 

~t(X, y~.ao) = exp (1t h(X8 )dY:,ao - ; 1t h2(X8 )ds). {20.65) 

Using {20.64) and {20.65), we show in the next theorem that the filtering 
estimate 1rfo (P•0 o) is asymptotically optimal. For sake of simplicity of the 
proof, we use in this theorem slightly restricted conditions. 

Theorem 20.5. Assume Ip < oo and ( A-1}-( A-5) with the limiter G0 • As­
sume also 

1. p(x) is three times continuously differentiable, and p'(x)fp(x) and 
p"(x)fp(x) are continuous and bounded; 

2. p"'(x + y)fp(x) is continuous and for small y it is bounded in x. 

If h is a bounded function, then for any bounded continuous function f and 
any fixed t > 0 

lim M (f(Xt)- 1r:(Y~)) 2 =lim M (J(Xt)- 1rf (Y~.ao)) 2 • 
~~o ~~o 

PROOF. It is clear that the statement of the theorem is equivalent to 

lim M (1rHY~) - 1rf (Y~.ao )) 2 = o. 
~~o 

Since the function f is bounded we choose both 1rf{Y~) and (7rf0 (Y~.ao)) 2 

bounded as well. Therefore the required convergence is implied by 

P- lim [1r:{Y~) - 7rf0 (Y~.ao )] = 0. 
~~o 

It is clear that this convergence is provided by 

{20.66) 

We prove the validity of {20.66) in two steps. 
Step 1. Since L1yt:·ao := Je"G0 (LlytVJe), by the mean value theorem, 

with appropriate random variables Ol, Ok E [0, 1], we obtain 
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- ao p" 2 -
= 1 + h(Xtk-1 ).1~:· + 2p (.;k) h (Xtk_ 1 )c 

+ (;;)' (.;k + Blh(Xtk_1 v'c) h3(Xtk_ 1 )c:312 

p"' (.;k + h(Xtk-1).fi- B~h(Xtk_J.fi) _ 
_ h3(X )c:3/2 

6p (.;k + h(Xtk-1).fi) tk-1 . 
- ao 

1 + h(Xtk-1).1~:· + Ok· 

Using the above and (20.63), we arrive at the multiplicative decomposition: 

ifJe:(X ye:)- ue:ifJ (X ye:,ao) 
t ' - t t ' ' 

where 

( """ - ao U{ = exp ~ ln[1 + h(Xtk_1 ).1~:· + Ok] 
k:tk~t 

-lot h(Xs)dY8e:,Go + ~ lot h2(X8 )). 

Hence lifJi{X, ye:)- ifJt(X, ye:,Go)l ~ ifJt(X, ye:,Go)l1- ~cl. 
Step 2. In the proof of Lemma 20.4 it has been shown that on the set 

{sups<t IYae:,aol ~ C} the value ifJt(X, ye:,Go) is bounded by a constant de­

pending on C. We use this to prove (20.66). In fact, (20.66) is implied by 

lim limp (sup lyse:,Go I > c) = 0 
C-+oo e:-+0 s~t 

limp (11- ~cl 2: (,sup lysc,Go I ~c) = 0, V( > 0, c > 0. (20.67) 
e:-+0 s~t 

The first part of (20.67) is nothing but one of the necessary conditions (see 
[19]) for the weak convergence 

· c,G0 G 0 

W- !~ (~ )t~O = (~ )t~O 

which has been proved in Theorem 20.4. 
To check the validity of the second part of (20.67), let us denote 
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and note that ~e(w) = MA~(w,w). Applying now arguments of the same type 
as those used in proving Theorem 20.4, it can be shown that P-lime--+O Ai(w, 
w) = 1 and, therefore, for large n, P-lime--+oMAi(w,w)I(Ai(w,w):::; n) = 1. 

Thus, the required conclusion holds by virtue of the uniform integrability 
which implies, under the assumptions of the theorem, that for every C > 0 

P- lim supJ(sup IYae,ao (w)l:::; C)M (I(Ai(w,w) > n)Ai(w,w)) = 0. 0 
n--+oo e:S 1 s:::;t 

Notes and References 

20.1. The asymptotic filtering equivalence, under weak convergence of the dis­
tributions of signals and observations, was established in Kushner [175], Kushner 
and Runggaldier [176], Liptser and Runggaldier [204]. The fact that the asymptotic 
filtering equivalence does not imply the asymptotic filtering optimality was empha­
sized by Goggin [80]. The proof of the asymptotic optimality is given in Kleptsina, 
Liptser and Serebrovski [156]. The general approach to the convergence in the total 
variation norm for distributions of random processes can be found in Kabanov, 
Liptser, and Shiryaev [118, 120]; see also Jacod and Shiryaev [106]. 

20.2. Theorem 20.4 and Lemma 20.4 were proved in Liptser and Zeitouni [217]. 
Results similar to Lemma 20.4, especially for a continuous function y ED, are well 
known from Rozovskii [265], Chaleyat-Maurel and Michel [36], and Picard [254]. 
Lemma 20.5 was proved in Zeitouni and Zakai [332] and in [217]. A statement 
similar to Lemma 20.6 is well known from Huber [92]. In the filtering setting under 
the diffusion approximation with collared noise a result of this type can be found 
in Liptser and Lototsky [202]. 

20.2.4. Theorem 20.5 is related to results of Goggin [80]. The general approach 
to the approximation of the conditional expectation (asymptotic optimality) can 
also be found in Goggin [81,82]. 
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- without feedback 191 
characteristic function 357 
- of Gaussian distribution 12 
- of Gaussian vector 59 
class 
- of admissible controls 178, 188 
- of conditionally Gaussian processes 

1,46 
- of limiters 379 
- of linear coding function 198 
- of linear estimates 105 
- of point processes 267 
- of positive definite matrices 123, 

186 
- of sequential schemes 249, 255 

- of unbiased estimates 110, 352 
class D 263, 325 
closed system of filtering equations 1, 

71 
coding 191 
- admissible 195 
- optimal 196, 198 
compensator of point process 264 
conditional 
- characteristic function 9, 64 
- covariance 14, 61 
- distribution 17, 22, 25, 37, 42,47 
- expectation 61, 67,256 
-- in wide-sense 157 
- Fisher information 206 
- Gaussian behavior 9 
- Gaussian distribution 1, 71 
- Gaussian processes 1 
- matrix of covariances 64 
-moments 1 
- normality 17,55 
- variance 256 
control 
- action 177 
- performance 113 
- problem 
-- with complete data 
-- with incomplete data 
controlled 
- process 115 
-system 113 

184 
177 

controlling deterministic process 120 
Cramer-Rao 
- -Wolfowitz 
-- inequality 350 
-- theorem 244 
- matrix inequality 110 

decision final 248 
decoding 196 
- with minimal reproducing error 196 
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distribution 
- conditionally Gaussian 1, 3, 9, 11, 

15,17,22,24,34,42,64,68,69, 75, 79, 
92,187,243 

Doob-Meyer decomposition 263, 268, 
275,295 

eigenvalue 102, 140, 142, 165, 166, 190, 
215,237,367 

estimate 
- for stationary sequence with rational 

spectra 145 
- maximum likelihood 94, 109, 219, 

236 
- optimal in mean square sense 68, 

185,332,355 
-- linear 95, 103 
extrapolation 1, 106, 159, 166 
- of conditionally Gaussian processes 

15,49,55,88,89 

feedback 190, 195, 205, 348 
filtering equations 1, 17, 24, 28, 99, 

113, 132, 134 
- Kalman-Bucy 31 
Fisher information 378 
frequency characteristic 100, 162, 163 
functional 
- in "separation principle" 116 
- of performance 178, 187 

inaccessible totally 264, 268 
incomplete data 113,177,184 
information 
- contained in innovation process 29 
- Fisher matrix 110 
-mutual 345,346 
- Shannon 346 
- transmitted 190,345 
innovation 
- difference 141 
-process 29,31,199 
- sequence 76 
- Wiener process 216, 361 
interpolation 106, 159, 166 
- of conditionally Gaussian processes 

1,15,38,40,55 
- with fixed delay 94 

joint distribution 75 
jump 
- first 265 
- magnitude 265, 311, 316 
- of compensator 318 

- time 268, 269, 321 
- trajectories 261 
- unit 262 

Kalman-Bucy filter 31, 72, 355 
- asymptotic property 184 

law of iterated logarithm 236 
linear prediction of stationary sequences 

95 

Markov time 261-263, 271,295,309, 
311,326,352 

- predictable 264, 265 
- totally inaccessible 264, 265, 268 
martingale 13 
- a-local 263 
- Too local 338 
- Too locally bounded 314 
- T00-local 264 
- characterization lemma 271 
- continuous 366 
- local 285 
- locally square integrable 295, 352 
- square integrable 18,299,361,374 
- uniformly integrable 263, 266, 294, 

311,323 
matrix 
- pseudo-inverse 47, 55, 57, 59, 76, 156 
- Ricatti equation 12 
minimal representation of point process 

269,275 
mutually 
- independent random sequences 113 
- independent Wiener processes 32, 

34,159,184 
- uncorrelated stationary sequence 

105 
- uncorrelated wide-sense Wiener 

processes 157, 159, 167 

noiseless feedback 191 
nonlinear 
- estimate 170,171,174 
-filter 17,139,174 
- filtering 1, 99, 195, 332 
-- equation 113 
- interpolation 42 
-model 371 
- transformation 372 

observable 
- part of coordinates 113 
- process 23, 29, 115 



- random sequence 67 
orthogonal 
- increments 145, 149, 150, 155 
- matrix 58 
- projection 139 
- random measure 99 
- spectral measure 146, 161, 163 
- transformation 136 

Poisson measure 345, 352 
predictable 
- events 264 
- functional 346 
- increasing process 263, 264, 296, 303 
- nonnegative process 275 
-process 272,309,313,315,331 
- right continuous process 325 
- set 289 
process 
- Brownian motion 147, 150, 258 
- conditionally Gaussian 1, 15, 24, 25, 

38,46,49,55 
- diffusion Markov 366 
- diffusion type 2, 287,368,371 
-- Markov 355 
- diffusion-type 17,32 
- Gaussian diffusion 355 
- innovation 29, 31, 199 
-- Wiener 216,361 
- partially 
-- observable 32, 67, 168,325 
- - observable controlled 177 
-- observable Gaussian 184 
-- observable wide-sense stationary 

166 
-point 261,267,275,284,302,309, 

314,321,333,343,351 
- Poisson 261,262,264,265,275, 287, 

306,333,345 
-- type 269,348 
- predictable 264,275,276, 287,309, 

313 
increasing 149, 263, 264, 295 

-- nondecreasing 314 
-- nonnegative 275,320,329,345 
- - right continuous 294 
- stationary 146 
- stationary Gaussian 111, 194,223 
-- Markov 236 
- stationary in wide-sense 95, 99, 101, 

106, 161, 165 
- stationary with independent 

increments 262 
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- wide-sense Wiener 145-147,151, 
156,161,167 

-Wiener 2, 12,28,34,44, 170,171, 
180,184,190,199,207,216,220,225, 
234,239,248,254,359,361,366,373, 
377 

pseudo-inverse 13 
- matrix 47,55-59,76, 132 
pseudo-solution 132, 135 

quasicontinuous left 268 

rational 
- spectra 145, 161 
- spectral density 99, 107, 219 
- spectrum 99,106 
Ricatti equation 12, 29, 41, 215, 368 

sequence 
- innovation 76 
- of independent Gaussian random 
-- variables 107, 111 
-- vectors 116, 125 
- of matrices 130 
- stationary 106 
- uncorrelated 
-- variables 100, 102 
-- vectors 103 
sequences mutually 
- independent random variables 113 
- uncorrelated stationary (wide-sense) 

105 
sequential 
- maximum likelihood estimate 244, 

245 
- scheme 244, 246 
- testing 248 
Skorokhod 
- -Lindvall topology 373-375 
- space 355, 371 
stopping time 271,272,300,301,304, 

313,335,338,342 
sufficient statistic 110, 222 

theorem 
- on conditional Gaussian behavior 3 
- on normal correlation 55 
transmission 191 
- of Gaussian process 195 
- of innovation process 199 
- optimal 204 

unbiased 
- maximum likelihood estimate 222 
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- sequential scheme 245 
unique solution 
- of algebraic Ricatti equation 140 
- of differential Ricatti equation 123 

vector Gaussian 59, 61, 63, 67, 74, 75, 
91,104,114,116,117,125,141,142, 
184 

white noise 139, 141 
Wiener measure 8, 214 


