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Preface to the Second Edition

At the end of 1960s and the beginning of 1970s, when the Russian version
of this book was written, the ‘general theory of random processes’ did not
operate widely with such notions as semimartingale, stochastic integral with
respect to semimartingale, the Ité formula for semimartingales, etc. At that
time in stochastic calculus (theory of martingales), the main object was the
square integrable martingale. In a short time, this theory was applied to such
areas as nonlinear filtering, optimal stochastic control, statistics for diffusion-
type processes.

In the first edition of these volumes, the stochastic calculus, based on
square integrable martingale theory, was presented in detail with the proof of
the Doob—Meyer decomposition for submartingales and the description of a
structure for stochastic integrals. In the first volume (‘General Theory’) these
results were used for a presentation of further important facts such as the
Girsanov theorem and its generalizations, theorems on the innovation pro-
cesses, structure of the densities (Radon-Nikodym derivatives) for absolutely
continuous measures being distributions of diffusion and It6-type processes,
and existence theorems for weak and strong solutions of stochastic differential
equations.

All the results and facts mentioned above have played a key role in
the derivation of ‘general equations’ for nonlinear filtering, prediction, and
smoothing of random processes.

The second volume (‘Applications’) begins with the consideration of the
so-called conditionally Gaussian model which is a natural ‘nonlinear’ exten-
sion of the Kalman—Bucy scheme. The conditionally Gaussian distribution of
an unobservable signal, given observation, has permitted nonlinear filtering
equations to be obtained, similar to the linear ones defined by the Kalman—
Bucy filter. Parallel to the explicit filtering implementation this result has be-
ing applied in many cases: to establish the ‘separation principle’ in the LQG
(linear model, quadratic cost functional, Gaussian noise) stochastic control
problem, in some coding problems, and to estimate unknown parameters of
random processes.

The square integrable martingales, involved in the above-mentioned mod-
els, were assumed to be continuous. The first English edition contained two
additional chapters (18 and 19) dealing with point (counting) processes which
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are the simplest discontinuous ones. The martingale techniques, based on the
Doob-Meyer decomposition, permitted, in this case as well, the investigation
of the structure of discontinuous local martingales, to find the corresponding
version of Girsanov’s theorem, and to derive nonlinear stochastic filtering
equations for discontinuous observations.

Over the long period of time since the publication of the Russian (1974)
and English (1977, 1978) versions, the monograph ‘Statistics of Random
Processes’ has remained a frequently cited text in the connection with the
stochastic calculus for square integrable martingales and point processes, non-
linear filtering, and statistics of random processes. For this reason, the authors
decided not to change the main material of the first volume. In the second
volume (‘Applications’), two subsections 14.6 and 16.5 and a new Chapter 20
have being added. In Subsections 14.6 and 16.5, we analyze the Kalman—Bucy
filter under wrong initial conditions for cases of discrete and continuous time,
respectively. In Chapter 20, we study an asymptotic optimality for linear and
nonlinear filters, corresponding to filtering models presented in Chapters 8-
11, when in reality filtering schemes are different from the above-mentioned
but can be approximated by them in some sense.

Below we give a list of books, published after the first English edition and
related to its content:

— Anulova, A., Veretennikov, A., Krylov, N., Liptser, R. and Shiryaev, A. (1998)
Stochastic Calculus [4]

— Elliott, R. (1982) Stochastic Calculus and Applications [59)

— Elliott, R.J., Aggoun, L. and Moore, J.B. (1995) Hidden Markov Models [60]

— Dellacherie, C. and Meyer, P.A. (1980) Probabilités et Potentiel. Théorie des
Martingales [51]

— Jacod, J. (1979) Calcul Stochastique et Problémes des Martingales [104]

— Jacod, J. and Shiryaev, A.N. (1987) Limit Theorems for Stochastic Processes
[106]

— Kallianpur, G. (1980) Stochastic Filtering Theory [135]

— Karatzas, I. and Shreve, S.E. (1991) Brownian Motion and Stochastic Calculus
(142)

— Krylov, N.V. (1980) Controlled Diffusion Processes [164]

— Liptser, R.S. and Shiryaev, A.N. (1986, 1989) Theory of Martingales [214]

— Meyer, P.A. (1989) A short presentation of stochastic calculus {230]

— Meétivier, M. and Pellaumail, J. (1980) Stochastic Integration [228]

— Oksendal, B. (1985, 1998) Stochastic Differential Equations [250]

— Protter, P. (1990) Stochastic Integration and Differential Equations. A New Ap-
proach [257]

- Flevuz, D. and Yor, M. (1994) Continuous Martingales and Brownian Motion
261]

— Rogers, C. and Williams, D. (1987) Diffusions, Markov Processes and Martin-
gales: It6 Calculus [262]

— Shiryaev, A.N. (1978) Optimal Stopping Rules [286]

— Williams, D. (ed) (1981) Proc. Durham Symposium on Stochastic Integrals {308]

— Shiryaev, A.N. (1999) Essentials of Stochastic Finance [288].

The topics gathered in these books are named ‘general theory of random
processes’, ‘theory of martingales’, ‘stochastic calculus’, applications of the
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stochastic calculus, etc. It is important to emphasize that substantial progress
in developing this theory was implied by the understanding of the fact that
it is necessary to add to the Kolmogorov probability space ({2, F,P) the
increasing family (filtration) of o-algebras (F;);>o, where F; can be inter-
preted as the set of events observed up to time t. A new filtered probability
space (2, F,(Fi)t>0,P) is named the stochastic basis. The introduction of
the stochastic basis has provided such notions as: ‘to be adapted (optional,
predictable) to filtration’, semimartingale, and others. It is very natural that
the old terminology also has changed for many cases. For example, the no-
tion of the natural process, introduced by P.A. Meyer for the description
of the Doob-Meyer decomposition, was changed to predictable process. The
importance of the notion of ‘local martingale’, introduced by K. Ité and S.
Watanabe, was also realized.

In this publication, we have modernized the terminology as much as pos-
sible. The corresponding comments and indications of useful references and
known results are given at the end of every chapter headed by ‘Notes and
References. 2'.

The authors are grateful to Dr. Stephen Wilson for the preparation of the
Second Edition for publication. Our thanks are due to the member of the
staff of the Mathematics Editorial of Springer-Verlag for their help during
the preparation of this edition.
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11. Conditionally Gaussian Processes

11.1 Assumptions and Formulation of the Theorem
of Conditional Gaussian Behavior

11.1.1. Let (0,€) = (0:,&:), 0 <t < T, be a random process with unobserv-
able first component and observable second component. In employing the
equations of optimal nonlinear filtering given by (8.10) one encounters an es-
sential difficulty: in order to find m;(0), it is necessary to know the conditional
moments of the higher orders

m(6%) = M(B2|F), m(6°) = M(63|FF).

This ‘nonclosedness’ of the equations given by (8.10) forces us to search for
additional relations between the moments of higher orders so as to obtain a
closed system.

In the case considered in the previous chapter the random process (6, &)
was Gaussian, which yielded the additional relation

74(8%) = 3m,(8)my(62) — 2[ms(6))3, Gy

enabling us to obtain from (8.10) the closed system of equations given by
(10.10)—(10.11) for the a posteriori mean m;(6) = M(6,|FF) and the a poste-
riori variance v;(8) = m;(82) — [m(8))%.

The present chapter will deal with one class of random processes (6, ) =
(6¢,€:), 0 <t <T, which are not Gaussian but have the important property
that (P-a.s.) the conditional distribution Fy: (z) = P{6; < | F¢} is Gaussian,
yielding, in particular, (11.1).

For such processes (we call them conditionally Gaussian processes) the
solution of problems of filtering, interpolation and extrapolation can be ob-
tained as in the case of the Gaussian process (8, £), considered in Chapter 10.
A detailed investigation of these problems is given in the next chapter.

11.1.2. Let us now describe the processes involved and indicate the basic
assumptions.

Let us consider as given some (complete) probability space (£2, F, P) with
a nondecreasing right-continuous family of sub-c-algebras (F;), 0 <t < T,
and let W; = (Wy(t),F;) and W2 = (W(t), F;) be mutually independent

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001



2 11. Conditionally Gaussian Processes

Wiener processes. The random variables 6y and & are assumed to be inde-
pendent of the Wiener processes W; and W,.

Let (6,€) = (6:,4:), 0 <t < T, be a (continuous) process of the diffusion
type with

db; = [ao(t,€) + ax(t, £)6:]dt + b1 (¢, )dW1(t) + ba(t, €)dWa(t),  (11.2)

dé: = [Ao(t, &) + A1(t,€)0:)dt + B(t,&)dWa(t). (11.3)

Each of the (measurable) functionals a;(t,z), Ai(t,z), b(t,z), B(t,z),
1=0,1, j = 1,2, is assumed to be nonanticipative (i.e., B;-measurable where
B, is the o-algebra in the space Cr of continuous functions z = {z5,s < T'}
generated by the functions z,, s < t).

It is assumed that for each x € Cr,

1=0,1 =12

| ' ( S (st )| + A2} + 3 Bt z) + Bz(t,:c)) dt < oo.
0
(11.4)

Along with (11.4) assuring the existence of the integrals in (11.2) and
(11.3), the following conditions will also be assumed:

(1) for each z € Cr,
T
/ [A2(t,z) + A2(t, z)]dt < oo (11.5)
0
inf B3 (t,z) >C >0, 0<t<T; (11.6)
z€eC
(2) for any z,y € Cr,

i
|B(t,z) - B(t,y)I” < Ll/ |zs — ys|?dK (s) + Lalze — wl*,  (1L.7)
0

B?*(t,z) < L, /t(l + 22)dK(s) + La(1 + z2), (11.8)
0

where K(s) is a nondecreasing right-continuous function, 0 < K(s) < 1;

3)

T
/ M|A;(t,€)8,|dt < oo, (11.9)
0
M| <00, 0Lt<T, (11.10)
T
P {/ A%(t, &)midt < oo} =1, (11.11)
0

where m; = M(0,|F¥).
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The following result is the main one in this chapter.

Theorem 11.1. Let (11.4)~(11.11) be fulfilled and let (with probability 1) the
conditional distribution F¢y(a) = P(6y < alé) be Gaussian, N(mq, o), with
0 < v < 00. Then the random process (0,€) = (6;,&;), 0 <t < T, satisfying
Equations (11.2) and (11.8) is conditionally Gaussian, i.e., for any t, and
0<ty <t <---<t, <t, the conditional distributions

Fe(t)(x(),...,xn) = P(Oto S :1:0,...,0tn §$n|ff)
are (P-a.s) Gaussian.

The proof of this theorem (see Section 11.3) is based on a number of
auxiliary lemmas which will be given in the following section.

11.2 Auxiliary Lemmas

11.2.1. Let n = (n:, Ft), 0 < t < T, denote any of the processes { = (&, F;)
or £ = (&, F:), where £ is an observable component of a process (, &) with
the differential

dé; = [Ao(t,€) + Ai1(t,£)6:]dt + B(t,£)dW(t), (11.12)
and £ is a solution of the equations
dé; = B(t,&)dWa(t), & = &. (11.13)

By virtue of (11.4)—(11.11)! and Theorem 4.6, this equation has a unique
continuous solution.

Write
ao(t,z) = aplt,z) ~ QBL’E%Z;—;AO(L:E), (11.14)
dl(t,:z:) = al(t,:z:) - bgg:’i; Al(t,.’L‘), (1115)

and consider the equation (with respect to 6;, 0 <t < T)

t bZ(s’ 77)

o Bls,n) ™
(11.16)
Lemma 11.1. For each t, 0 < t < T, Fquation (11.16) has a (unique)

continuous, ff 0. Wi _measurable solution 8:, given by the formula

b= b0+ [ ao(sn) + n(s,mlds.. [ ba(s,ai(s) +

! Throughout this section (11.4)~(11.11) are assumed to be satisfied.
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0. = &:(n) l90+ / tdi; H(m)ao(s, m)ds + /0 td%‘ Y(m)ba (s, m)dW1(s)

-1 2251 ,
/ (n ) Blo.n) ] (11.17)
where .
&:(n) = exp {/0 &l(s,n)ds}. (11.18)

PROOF. It is not difficult to show that by virtue of (11.4)—(11.6) all the
integrals in (11.17) and (11.18) are defined. 5

Applying now the It6 formula we convince ourselves that the process 6,
0 <t < T, given by the right-hand side of (11.17) satisfies Equation (11.16).
Thus, to complete the proof of the lemma it is only necessary to establish
the uniqueness of the solution.

Let A; = 6, — 68, be the difference of two continuous solutions of Equa-
tion (11.16). Then

t
A= / 81 (s,7) Aeds,
0

and, therefore,

t
14| < /0 |y (s, 7)1 A ds.

From this, by Lemma 4.13, we obtain: |[A;| =0 (P-a.s.) forany ¢,0 <t <
T. Therefore,
P{ sup |At|>0}=0. O

0<t<T

Let n = &. In this case, 6, is a ff 0. W1.¢{_measurable random variable.
According to Lemma 4.9, there exists a functional Q:(a,z,y) defined on
([0,T) x R! x Cr x Cr) which, for each t and a, is B;+ x B,+-measurable
such that for almost all ¢, 0 <t < T,

0: = Qi(60,W1,€) (P-as.).

Following the notation in Equations (11.14) and (11.15), Equation (11.2)
can be written as follows:

ba(t,€)
B(t,¢)

Comparing this equation with (11.16) we note that, by virtue of
Lemma 11.1, for almost all ¢, 0 <t < T,

d; = [ao(t,€) + a1(t,€)6:]dt + ba(t, §)dW(t) + 55 dé:-
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by = Q¢(6o, W1,€) (P-as). (11.19)

From this and from (11.3) it follows that the process & = (&;,F;),0 <t <
T, yields the stochastic differential

d&; = [Ao(t, €) + A1(t,€)Q:(60, W1, €)]dt + B(t, £)dWa(t). (11.20)

11.2.2. Consider now the two random processes (a, §,£) = (o, B, &), Fi
and (o, B,€) = [(, Br, &), Fi], 0 < t < T, given by the equations

dat = 0’ Qo = 007
dﬂt = dWl(t)a 130 = Oa

dés = [Ao(t,€) + Ax(t,§)Qs(a, B,)]dt + B(t,€)dWs(t)  (11.21)
and
dag = 0, op =0y,
dfy = dWi(t), Bo=0,
d§ = B(t,£)dW2(t), &o = &o, (11.22)
respectively.

Let po,p,6 (= too,wy,¢) and p, gz (= kg, w, £) be measures corresponding
to the processes (a, 8,¢) and (a, 8, €).

Lemma 11.2. The measures pq,p,¢ and p, 5 & are equivalent

Haft ™ Bap (11.23)
Further,

- dpta da
oulef,8) = P00 BE), el B) = GEEE (1 B0)

are given by the formulae

t = - -
(Pt(a’ﬁag) = eXp{/ AO(S’E)+A1(3,€~)Qs(a,ﬂ,£)d£~s

B2(s,¢)
By TGRSO ACTER ) (11.24)
2 B(s,) O
s - M4 gptes0

S, S, s y 2
+2 | t Ao( 5)+f}31§(55g2 (@ 6,6)] s}_ (11.25)
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PROOF. Note first that (see Section 13.1)

00 0 + 00 0
01 0 =01 o . (11.26)
0 0 B2(t,z) 0 0 B~2(t,x)

Since 8; = Q:(6o, W, &) = Q¢(c, 5, §) for almost all t (P-a.s), 0 <t < T,
and since (11.2) and (11.3) are satisfied,

¢ A ) A ) t\&, Y, 2
o[ gt )

Then, by the multidimensional analog of Theorem 7.20, 4 g, < B g,é

According to Lemma 4.9, there exists a measurable function Q,(a,z,v)
defined on ([0,T] x R! x Cr x Cr) which, for each t and a, is B+ X By+-
measurable such that for almost all ¢, 0 <t < T, (P-a.s.)

été = Q~t(00’ WI, é)!

where étg, 0 <t < T, is a solution of Equation (11.16) with n = £.
By Lemma 4.10, for almost all t, 0 < ¢ < T, (P-a.s.)

Qi B,€) = Qu(a, B,€).

Therefore, the process £ = (£;,F:), 0 < t < T, also has the differential
(compare with (11.20))

dé = [Ao(t, &) + Ax(t, €)Qe(80, W1, £)]dt + B(t, £)dWs(t).

Hence

/ [Ao(t,6) + A1, Qu(e 8,1, _ | _
0 B2(t,¢) ‘

From this, by the multidimensional analog of Theorem 7.19 and

Lemma 4.10 the proof follows. O
11.2.3. Let (0,€) be a random process obeying Equations (11.2), (11.3). De-
note by (m:(z),B;+) a functional? such that for almost all t, 0 <t < T,
mi(€) = M(6|Ff) (P-as.),

and let

 Td todg, Ao(s §) + Ai(s,§)m (5)

W, = / - 2> ds 11.27

=)y B9 B(s.6) (11.27)

2 See Lemma. 4.9.
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Lemma 11.3. The random process W = (Wt,]-'f), 0<t<T,isa Wiener
process.

PROOF. From (11.27) and (11.3) we obtain

I ¢ Al(sag)
We=Walt) + | Frg s —ma(€)lds. (11.28)

From this, with the help of the It6 formula, we find that

e,'z'v_v't - eizW, +iz ‘-431((’“ g)) izW,, [ou - mu(ﬁ)]du

t 2 [t —
+iz / W dW,(u) — 5 / e*Wudy, (11.29)
] ]
As in the proof of Theorem 7.17, from (11.29) we deduce that (P-a.s.)
M(eiz(-V—Vg—W,)'}f) — e_(z2/2)(t—-s). 0

11.2.4.
Lemma 11.4. Let p; and Bg be measures corresponding to the processes £

and € defined by (11.21) and (11.22). Then p¢ ~ pg and the densities

3N % -
(Pt(é) - dug(t’g)’ ¢t(€) (t 5)
are given by the formulae
ould) = exp { /0 Ao(5,€) ;:%s)m,(e) &,
* [Ao(s,€) + Aa(s, §)m3(£)]2
B2(s, )

bl = exP{_ /0 Ao(s,8) ;2?;,(85)"“(9 i

+l/t Ao(s,E)+A2(s’£)m’(€)]2ds}- (11.31)
2Jo

: (11.30)

B?(s,¢)
PROOF. From (11.27) we find
dé, = [Ao(t, £) + A1(t,§)my(€)|dt + B(¢, €)dW,. (11.32)
Let € = (€, F;), 0 <t < T, be a random process with the differential
d€, = B(t,§)dW,, & = . (11.33)
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By virtue of (11.7), (11.8), and Theorem 4.6, Equation (11.33) has a
unique strong solution. Hence, the measures Mg and A coincide (compare
(11.33) with (11.22)).

The absolute continuity of the measure p¢ with respect to the measure
g (and therefore with respect to ug) follows from Theorem 7.20. It will also
be shown that Hg < g

By Lemma 11.2,

pg(I') = Mxery¥e(e, B,6)]
MxeeryM (e(e, B, €)1 FF)] = /F Mpi(a, B, )| Ff le=sdpe ().

Hence pz < pe. (11.30) and (11.31) follow from Theorem 7.20 and
Lemma 6.8. a

11.2.5. Let

— 7\ _ Sot(aaﬂ’g)
pt(aaﬂ’ €) - Wt(g) ’

and for each t, 0 <t < T, let p(a, b, z) denote a (measurable) functional

pt(a’ ﬂa 6) = pt(aa ﬁaZ)E:g (P-a.s.).

Then, because the measures pz and Kg are the same, we deduce from
Lemmas 4.10, 11.2 and 11.4 that

B,s,¢)

1 1" Af(s,€)
_5 0 Bz(s’g)

pr(, Br€) = exp{ /0 A8 10, (@, B, €) — me (€)W

[Qs(a,ﬂ,S) _ms(g)]zds}' (1134)

Lemma 11.5. Let fi(6y, W1,£) be a ff 0. W18 _measurable functional with
M| f(60, W1,€)| < 0o0. Then we have the following (Bayes) formula:

M[ft(eo’Wl’S)lft{] = /;oo ft(aa ¢, €)Pt(a, c, g)dﬂW(C)ngo(a), (11-35)

where pw () is a Wiener measure on the measurable space (Cr,Br) of the
continuous functions Cr = {¢,,0 < s < T}, and F¢,(a) = P{6 < a|éo}.

Formula (11.35) is the Bayes formula (7.178), which was proved in The-
orem 7.233.

3 See also Notes 1 and 2 to this theorem.
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Corollary. Let

k
ft(6o, W1,§) = exp {z [2000 + szwl(tj)] } ,

=1

where 0 < t; < -+ < tx <t. Then the conditional characteristic function

k
M| exp{i 2000+ZZle(tj) F

j=1
00 k
/ Cexp i zoa+2zjct pt(a, c,§)dpw (c)dFe,(a), (11.36)
T j=1

where c;; are the values of the continuous functions ¢ = (c;), 0 < s < T, at
points t;.

11.3 Proof of the Theorem of Conditional Gaussian
Behavior

11.8.1. As a preliminary, let us prove the following:

Theorem 11.2. Let (11.5)-(11.11) be satisfied, and with probability 1, let
the conditional distribution

Fgo(a) = P(fo < aléo)
be Gaussian, with parameters
mo = M(6ol€o), Yo = M[(6o — mo)*|&a], 0 <0 < oo
Then the conditional distribution
Ge(a,c1,- .. cn) = P{B0 < a,Wi(t1) S c1,..., Wiltn) < cal FF}

is Gaussian for anyt, 0<t; <.--<t, <t,andn=1,2,....

11.5.2.
PROOF OF THEOREM 11.2. The proof of this theorem is based on (11.36)
for a conditional characteristic function.

From (11.36) it is seen that to prove the theorem it would suffice to
show that for almost all w the measure p,(a, ¢, §)duw (c)dF,(a) is Gaussian.
However, the verification of this fact is difficult.

We start by writing ln p:(a, 8,€) in a more convenient form.

Using the notation given by (11.14), (11.15), and (11.18) we set
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n(t.d) = Frol {@ o] [ #7 ©aols, as
+ [ a0 - mt<s)}, (11.37)
_ A9
9266 = Frg 26 (11.38)
as(t.6) = T Oh(1,6). (11.39)
Then from (11.17), we find that
Al(t’g)

e (@00 W1,6) = mu(©)] = 91(t,8) + boga(t,€)

t

+0a(t,6) [ ga(s, AW (9)
0
By virtue of (11.34), this enables us to write
In pt(007 Wla&)
i 8
- [{oeo+ne.on+ [ awomiw]}aw
0 0

-3 /0 t{g1<s,e)+gz<s, &) [oo+ /0 " gs(u, s)dW1<u)] }2 ds. (11.40)

Foreacht, 0 <t <T,let A;(t,z), i = 1,2,3 be B;-measurable functionals
such that

2469 = [ 0000, - 5 [0,
Aq(t,€) = /0 02(s,E)dW, — /0 01(,€)ga(s, )ds,
: 1/2

Da(t,€) = ( / [92(3,0]2‘15) ,

and let A;(t,z,y), j = 4,5, be By x Bi-measurable functionals such that
B4 W18) = [ 02,9 [ osw, O ),
- [[060 [ oo rawsunas,
As(t,W,€) = — /0‘ g2(s,§) /03 93(u, £)dW; (u)ds.

With the help of the Itd formula and the relation
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it is easy to obtain the following relations:

(05 — ms)ds,

/ n(s) [ " ga(u, €)W, (u) W,
0 0
- / 92(s, £)dW, / ga(s, £)dWi (s)
0 0
- / 03(t,6) / g2 (u, €)dWW LW (3), (11.41)
0 0

and (i = 1,2)
[ at5,6) [ st )aws s
0 0
- / gi(s,€)ds / 03(5,£)AWi(s)
0 0
_ / 92(s,€) / 9:(u, €)dudW (). (11.42)

Using (11.40), the definition of Ai(t,z), A2(t, ), As(t, z), A4(t z,Y),
As(t, z,y) and Lemmas 4.10 and 11.2, we find that for a € R,

In p;(a, Wy, €) = Ai(t,€) + a[Az(t,ﬁ) + As(t, W, 8)]
~ 2 -~
+A4(t, W1,8) - 5 83(0.6)

_% /0 " 5.8 ( /0 " galu, g')dWl(u)>2 ds. (11.43)

Using the definitions of A4(t,z,y) and As(t,z,y) as well as (11.41), (11.42),
Lemmas 4.10 and 11.2, and the independence of the processes W; and §~,~ we
conclude that the conditional distribution of these variables (for a fixed §) is
(P-a.s.) Gaussian.

To prove that the measure p;(a,c,€)duw(c)dFg,(a) is Gaussian it is
enough to show (because of the equivalence pg¢ ~ pg) that the measure

pt(a’ (&) E)d/J'W (c)deo (a‘)

is Gaussian.
To this end we show that the characteristic function (see (11.36))

0120y -+, 2 / /CT exp {'L [zoa+ ZchtJ] }

xpi(a, c, g)d/‘W(c)deo (a), (11.44)
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0<t <+ <t <1, is the characteristic function of a Gaussian distribution.
Let

k
I(a,t,f, 200+ -+ 2k) =/ exp{ i [zoa + szct]} }pt(a, c,é)d,uw(c).

c =

Then the desired characteristic function is given by the formula

o o
ee(20,- -5 2k) =/ I(a,t,§, 20,...,2k)dFg (a). (11.45)
-0
If we can show that I(a,t,é, 20, .-, 2k) has the form
I(a,t,€,20,...,2x) = exp{®(t,a,&, 2o, . .. ,2k) } (11.46)
where ®(t,a,£,2,...,2) is quadratic in the variables a,29,...,2k, and is
nonnegative definite in zj,..., 2, then the conclusion of the theorem will

follow from (11.45), Gaussians of F¢,(a), and the fact that ¢;(z,...,z2;) is a
characteristic function. _

(11.46), with (¢, a, &, 70, - - - , 2x) having the above properties, follows from
Lemma 11.6 below, which is of interest on its own merits.

Lemma 11.6%. Consider a random vector 8 = (B1y-..-,Brn) and a Wiener
process W = (W) = (Wi(t),...,Wi(t)), t < T, with independent compo-
nents and suppose that the system (8, W) is Gaussian.

Let b = (b1,...,b,) be a row vector and let B(t) and Q(t) be (m x m)
matrices such that Q(t) is symmetric and nonnegative definite and

T
Tr / [B(#)B*(t) + Q(t)]dt < oo.
0

Mexp (b,B - /0 ’ [ /0 t B(s)dWs] "o [ /0 t B(s)dWS] dt)

1 1 T
exp (bMﬂ + EbRb* + 5T / B(t)B*(t)I‘(t)dt) , (11.47)
0

Then

T(®)

where R is a nonnegative definite matriz, and I'(t) is a nonpositive definite
matriz defined by the Ricatti equation

I(t) = 2Q(t) — ['(¢t)B(t)B*(t)['(t), I'(T)=0. (11.48)

PROOF. The existence of a unique continuous solution for (11.48) is estab-
lished as in the proof of Theorem 7.21 for Equation (7.142).

4 This lemma generalizes Theorem 7.21.
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Define the random processes ) = (1) and € = (&),t < T, by (0 = & = 0)
and

dn. = B(t)dW;,
d¢, = B(t)B*(t)I'(t)&dt + B(t)dW,. (11.49)

According to the multidimensional analog of Theorem 7.19, the measures .
and p, which correspond to the processes { and 7 are equivalent. At the
same time, using certain properties of pseudo-inverses, namely A = AA*A
and AT = A*(AA*)* (see (1°) and (6°), Subsection 13.13), we obtain from
(7.138)

T

T
2 (1(w)) = exp ( /0 n: () B(s)dW, — % /0

dity s F(S)B(S)B*(S)F(s)nsds> :

‘We now show that

%ﬁf(ﬂ(w)) = exp (— /OT [/OtB(s)dWs]*Q(t) [/OtB(s)dW,] dt

_%Tr /0 ’ B(t)B*(t)I"(t)dt) . (11.50)

Indeed, using the identities n3.I'(T)nr = 0, ngI"(0)ne = 0, (11.48), and the
1t6 formula (see Example 2, Subsection 4.3.3), we find

0 = np[(T)nr — g L'(0)no

T T 1
2 [ D@BOW. +2 [ nilQw) - TOBOB Or @)t
0 0

T
~Ty / B(t)B*(8)['(t)dt.
0
This and (11.49) prove (11.50). On the other hand,
MM ({8}l = M | M(ep A S )|

Mexp{bﬂ}gz—:(n)-

Therefore, according to (11.50),
T
T(b) = M[M(exp{bB}|FD)yme] exp (%ﬁ /0 B(t)B*(t)F(t)dt) . (1151)

Since (B,W) forms a Gaussian system, so does (8,7), and, hence, by
the multidimensional analogs of Theorems 5.16 and 5.21, the martingale
(M(B|F),F;) admits the representation
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t
M(BIF]) = MB + /0 o(s)dns, t<T,

where the (n X m) matrix g(t) is such that

T
Tr / 9(t)B*(t) Bt)g(t)dt < oo.
0

Let Dy = M((8 — M(B|F3))(8 — M(B|F7))"].

Using the theorem on normal correlation (Theorem 13.1), it is possible
to show that Dr coincides (P-a.s.) with the conditional covariance M[(8 —
MB|FL))(B — M(B|F71))* F7). Therefore, since P(8 < z|F}) is Gaussian
and p¢ and p, are equivalent, by Lemma 4.10 we find that

T 1
M (exp{bB}| F7)n=¢ = exp (b [M B+ /0 g(t)d&] + §b*DTb> :

The random vector fo (t)d¢; is Gaussian and has zero mean. Denote by G
its covariance matrix and set R = (DT + Gr). Then

M{M(exp({bBHFR)pme] = exp(BMB+ b*RE).  (1152)
The above and (11.51) complete the proof of Lemma 11.6, and, therefore,
also of Theorem 11.2. O

11.3.5.
PROOF OF THEOREM 11.1. Let 0 <ty <t; < --- < t, <t < T be some
decomposition of the interval [0, T]. Then, considering (11.19), we have

(exp{ szotj} ) =M (exp {iisztj(GOaWh&)} ff)a

where, according to Lemma 11.1,

2]
Qtj (OO’WIag) = ¢t:,' (5){00 +/0. 458_1({)&(3,5)(18

+ /0 7 871 (€)bs (5, ) Dun (s) + / 1) ”253 8 }

Hence
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M[exp iZZthj(eo,Wl,f) ff]

=0

= e 'i:z;%lzj ([ 85 Oaa(s, €)ds + /:45? Caetd)

n—1 t;
xM [ expqi} 2, [90+/0 QJI(E)bl(S,E)dwl(S)]} ff)

Jj=0

Applying Lemma 11.6. we find that
n
M | exp iszOtj Ff
j=0

R 1 o .
= exp zszJj(t,E) -3 Z 2k 2k (8, &) ¢ » (11.53)
j=0 k

,j =0

where ||9x;(t, £)|| is some nonnegative definite symmetric matrix.
Because of the arbitrariness of 2o, 21, . .., 2, it follows from (11.53) that
the conditional distribution

P(6s, < ag,..-,0;, < an|F?)

is Gaussian for any to <t; < - <t, <tandn=12,... O

Note. Let 0 < s <tg < --- < t, <t. Then the conditional distribution
P(oio S alO, .. 'ot“ S anlj.'toa,f)

is also (P-a.s.) Gaussian; this follows from the normality of the distributions
P(g.s’ _<.. a')oto S Qg S U S at,, S an|-7:t£)'

11.8.4. For the needs of problems of filtering, interpolation and extrapolation
of the conditionally Gaussian processes, the parameters m; = M (OtI}'f ) and
4¢ = M[(8; — m;)?|F¥] of the conditional distribution Fei(a) = P(6, < alF¥)
are of special interest. They could be found if an explicit form of the elements
0;(t,€) and Ax;(t,§) entering into (11.53) can be determined,

In the next chapter it will be shown, however, that for finding the param-
eters m; and ; (as well as other characteristics of the conditionally Gaussian
processes) it is simpler to make use of the general equations of filtering, in-
terpolation and extrapolation developed in Chapter 8.
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Notes and References. 1

11.1-11.3. The importance of distinguishing the class of conditionally Gaussian
processes for effective solution of problems of optimal nonlinear filtering was noted
by Liptser [194]. Conditionally Gaussian processes were discussed in Liptser and
Shiryaev [205]. The proof of the theorem of conditional normality has been first
given here.

Notes and References. 2

11.1-11.3. Despite the fact that the conditionally Gaussian model (11.2), (11.3)
is nonlinear with respect to the observable component, its attractiveness is ac-
counted for by many properties inherited from the Kalman-Bucy model (10.1),
(10.2). For example, since the conditional distribution of an unobservable signal,
given observations, is Gaussian, so that it is completely described by the conditional
expectation and variance, differential equations for these parameters define the fil-
ter similar to the Kalman-Bucy one (see next section). The conditionally Gaussian
model can be used as motivation for creating the so-called extended Kalman filter,
the applicability of which is described in [253].



12. Optimal Nonlinear Filtering: Interpolation
and Extrapolation of Components
of Conditionally Gaussian Processes

12.1 Optimal Filtering Equations

12.1.1. Let (0,€) = (6:,&),0 <t < T, be a continuous random diffusion-type
process with

db; = [ao(t, &) + a1(t,€)0:)dt + by (t, &) AW (t) + ba(t, £)dWa(t),  (12.1)

dé; = [Ao(t, &) + Au(t,€)8:ldt + B(t, §)dWa(2). (12.2)

Assume that the conditions given by (11.4)-(11.11) formulated in the
previous chapter are satisfied. If the conditional distribution F¢,(a) = P(6y <
al&o) is (P-a.s.) Gaussian, N(mg,7o), then in accordance with Theorem 11.1
the conditional distribution Fet(a) = P(6: < a|F¥) will also be Gaussian,
N(my,~;). Hence if M6? < 00, 0 <t < T, then one of the moments of this
distribution — the a posteriori mean m; = M (6;|F¢) — will be an optimal (in
the mean square sense) estimate of 6; from &} = {&, s < t}. The knowledge
of the variance v = M([0; — m¢)2|FF) of this distribution enables us to find

the filtering error
Ay = M(6; - m;)? (= M) (12.3)

Theorem 12.1, given below, contains equations that m,; and -; must sat-
isfy. By virtue of conditional normality of the process (6,£) these equations
turn out to be closed ones.

It should be emphasized that Theorem 12.1 provides as a particular case
the filtering equations deduced for the Kalman-Bucy scheme in Chapter 10.
Whereas in the Kalman-Bucy scheme the process (6,£) was Gaussian, and
as a result the optimal filter was linear, in the conditionally Gaussian case
the optimal filter is, generally speaking, nonlinear.

12.1.2. The deduction of equations for m; and 7; based on the use of the
fundamental theorem of filtering (Theorem 8.1) is carried out according to
the following scheme.

According to (12.1)

t
6 = 8 + /0 [a0(s,€) + a1(s,E)Blds + z, (12.4)

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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where )
Ty = /0 [b1(s, €)dW1(s) + ba(s, £)dWo(s)]. (12.5)

From (12.4) and (12.5) with the help of the It6 formula we find that

t
6 =65 + /0 (205[ao(s, ) + a1(s,£)05] + [b3(s, &) + b3 (s, £)]ds + &, (12.6)

where ,
Ty = /(; 293[b1(3,€)dW1(8) + bg(s, f)dWZ(s)]. (12.7)
Denote
he =6;, Hi=ao(t,€)+ ai(t,€)6; (12.8)
and

ho=67, Hy=20[a0(t,€)+a1(t,€)8,] + [bi(t,€) + b3(t,€)].  (12.9)
Then Equations (12.4) and (12.6) can be written as follows:

t
ht = h0+/ H3d8+$t, (1210)
0

by

i

t
ko +/ H,ds + %,. (12.11)
0

Therefore, the unobservable processes h; and h; have the form which was
assumed in Theorem 8.1.

In order to take advantage of this theorem, we need to find conditions
under which the assumptions given by (8.6)-(8.8) involved in the formulation
of the theorem are satisfied (other assumptions are satisfied due to (11.4)-
(11.11)). In our case, (8.6)—(8.8) are reduced to the following

sup M6} < oo; (12.12)
o<tLT
T
/ Mlao(s,€) + ax(s, €)0,%ds < oo; (12.13)
0

/OT M{28;[a0(s,€) + a1(s,£)8s] + [b(s, €) + b3(5,€)]}°ds < 005 (12.14)

/ " M{Ao(s,€) + Ay (s,£)8,)ds < oo, (12.15)
1}

In order to have these~conditions satisfied, and also to be able to assert
that X = (z;,F) and X = (%, F), 0 < t < T, are square integrable
martingales, we shall require the following conditions to be satisfied.
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Forallz € Cpr,0<t < T

lar(t2) < L, As(t,2)| < I (12.16)
T
/ Mal(,€) + b4(t, €) + BA(t, )ldt < oo; (12.17)
0
M6 < oo. (12.18)

In order to prove the sufficiency of these conditions, as a preliminary we
shall prove the following lemma.

Lemma 12.1. In the assumptions given by (12.16)-(12.18),

M [ sup e;‘] < 0. (12.19)
0<t<T

PROOF. Put

TN =inf{t:sup9§2N},

s<t

taking 7y =T if sup,<p 6% < N. Then, by virtue of Holder’s inequality,

tATN tATN
Oinrn = [90+ /0 ’ ao(s,€&)ds + /0 ’ ay(s,€)05ds
2
+; /0
125 [03 + (/MTN ao(s,ﬁ)ds)
0
tATN tATN 4
6.d bi(s, €)dW;
([T s) +Z(/ (5,6) (s))}

tIATN

4
bi(sv f)dW,(S):|

4

IA

< 125 [03 + (¢t ATN)? / T (s, )ds
0
3 tATN 4 4 2 tATN 4
+(EATN) /0 al(s,f)esds+; ( /0 b,-(s,é)dW,-(s)) }
(12.20)

According to Lemma 4.12,

4

tATN T
M ( / b,-(s,g)dW,-(s)) < 36T / Mbi(s,€)ds, i=1,2.
0 0
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Hence, since 0; = Ospry for s<tA7n,

T
M}, < 125 lM03+T3 /0 Maj(s,€)ds

t 2 T
+T3L4 / M6, ds+36T) / Mb;‘(s,g)ds},
0 i=1"0

ie.,
t
M6}, <C1+Cy /o Mé63,. . ds, (12.21)
where C1, C; are constants. Therefore, by Lemma 4.13,
M6}, < C1eft < C1efT,
and, by the Fatou lemma,
Meg < MN-—)ooMog/\‘rN < ClngT'
Thus
sup M6} < co. (12.22)
0<t<T

We shall show now that M([supyc;<r 6] < co. Substituting t A 7y for ¢
we obtain from (12.20)

sup 87 < 125

T T
b + T3 / aj(s,€)ds + T3L* / 0%ds
0<t<T 0 0

2 4
+Z sup l
4

i=1 0StsT
4 T
< (5) 36T/0 Mbi(s,€)ds, i=1,2.

/0 bi(s, €)dWi(s)

According to (3.8) and Lemma 4.12,

4

M sup
0<t<T

Hence, due to (12.22) and (12.16)—(12.18),

/0 b5, €)W (s)

T
M6} + T3 / Maj(s,€)ds + T*L* sup Mo?
0

M[ sup 02‘] < 125
0<t<T

0<t<T
4 4 2 T
= 4
+ <3) 36Ti§=1: /0 Mb (s,g)ds] < 0.
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Thus the conditions given by (12.12) follow from the assumptions given
by (12.16)—(12.18). It is verified in an obvious manner that these assump-
tions guarantee the validity of (12.13)-(12.15). From the explicit form of the
processes z; and Z; and the assumptions given by (12.16)—(12.18) it can be
easily deduced that X = (z;,F;) and X; = (&, F;), 0 < t < T, are square
integrable martingales. Therefore, the conditions of Theorem 8.1 in the case
considered are satisfied.

Taking into account that (z, W) = fot ba(s, &)ds, we find from (8.9) that

t
me = mo + /0 lao(s, €) + a1(s, E)my]ds

¢ 1(s, §)[M(82|F§) — m3)
+/0 {bz(s,£)+ B-0) }dW,, (12.23)

where

— [t dE — (Ao(s,€) + Ai(s,€)m,)ds
w “/0 B(s,€)

Next, M(82|F§) — m2 = ~,. Hence, it follows from (12.23) that

dm; = [ao(t,€) + ai(t,&)my]dt
+b2(t7 &)B(t’ 6) + 7tA1 (t,f)
B2(t,€)

[dgt - (Ao(t,E) + Al(t’g)mt)dt]'
(12.24)

Denote now 8; = M(62|FF), so that 6, — m? = <. Then, taking into
account the equality (%, Wa); = f(f 205b2(s, €)ds, again from (8.9) we obtain

t
8 = 8o+ /0 [2a0(s, €)ms + 2a1(s, )0, + b3(s,€) + b3(s, £)]ds

+/0 {2m3b2(s,§)+B"1(s,£)[Ao(S,E)5s+A1(3»€)M(93|f§)

—0s (AO(S’ 5) + Al(s’ §)ms)] }dwm

or
= & +/ [2a0(s, E)ms + 2a1(s,€)0, + b2(s, &) + b2 (s, €)]ds

¢
+/ B71(s,¢) {2m,b2(s,£)B(s,§) + A1(5,E)[M (B3| FE) — 6,my)} dW .
0
(12.25)
From the It6 formula and (12.24) we find that



22 12. Optimal Nonlinear Filtering

2

my = m%+/() (2m3[a0(31€)+a1(31€)ms]
ba(s,€)B(5,€) + s A1(s,£) ]
+ B(s,¢) ] )ds

t bz(s E)B(S &) +73A1(3 5)
+/0 2m, B(s,¢)

whlch together with (12.25) yields the following representation for v; = §; —

mt
t
Y% = ’Yo+/
0

_ (52(5,€)B(s,) + 1 Ai(5,6) )
( B(s,€) )lds

dW,, (12.26)

2a1(s,€)7s + b3 (s, &) + b3(s, )

t Ai(s,6)

3| F¢ _ __
* o B(s8) B g (MO F;) — 6ms — 2mgya}dW,.  (12.27)

Since the conditional distribution P(f, < a|F%) is Gaussian, then (see

(11.1))
M(83|FE) = 3m,8, — 2m3 (= 8,m, + 2m,7,).
Hence in (12.27) the stochastic integral is equal to zero and therefore

t
Y = “ro+/0 [201(8,6)%+bf(s,€)+b§(s,€)

_ (bz(s,é)B(s, £) +%A1(s’5)>2 ds
B(s,€) '

(12.28)

Thus we have proved:

Theorem 12.1. Let (0,£) be a random process with differentials given by
(12.1) and (12.2). If (11.4)-(11.8) and (12.16)-(12.18) are satisfied and the

conditional distribution P(6y < a|éo) is Gaussian, N(mo,vo), then m; and
~¢ satisfy equations

dmy = [ao(t,€) + ai(t, §)m.dt

be(t, E)B(Ef()t"z)'ﬁfil(t &) [d& (Ao(t, &) + A1 (¢, E)mt)dt]

(12.29)
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2
o= 20, 030, 0, 0)— (2L LEEIIACE) (1750

subject to the conditions mo = M(8oléo), Yo = M[(60 — mo)?|€o]-

Note 1. From (12.29) and (12.30) it follows that the a posteriori moments
m; and 7; are continuous in t (P-a.s.).

Note 2. Let A;(s,z) =0, i.e., let the observable process £ = (§), 0 <t <
T, have the differential

de; = Ao(t,€)dt + B(t,€)dWa(t), (12.31)
and let the observable process 8 = (6;), 0 <t < T, satisfy the equation
dgt = [a'O(t’ g) + a1 (tv g)ot]dt + bl(t’ g)dWI (t) + b2(t1 €)dW2(t)

From the proof carried out above (see (12.27)) it is seen that even without
the assumption of normality of the conditional distribution P(6o < al{o) the
parameters m; and <y, satisfy the equations

dmy = [ao(t, &) + ax(t, §)muldt + bz(: g [dé; — Ao(t, £)dt], (12.32)
¥t = 2a1 (t’ 5)’Yt + b%(ta E) (12'33)

Note 3. Let myg,(t,s) = M[thff”g] for s <t and
Yo, (t, s) = M[(8, — mo, (t, 5))*| 7).

Then mg, (t, s) and e, (t, s) satisfy (at t > s) Equations (12.19) and (12.30),
solved under the conditions mg, (s, s) = 85, Ve, (s, s) = 0. The proof is similar
to the deduction of the equations for m; and 7 and exploits the fact that
the conditional distribution P(#; < a|F?-¢) is Gaussian (see the note to
Theorem 11.1). From Equation (12.30) and the condition 7y, (s,s) = 0 it
follows that vy, (¢, s) does not actually depend on 6.

12.1.8. We shall discuss now one particular case of the system of equations
given by (12.1) and (12.2) for which the filtering equations given by (12.29)
and (12.30) permit an explicit solution.

Theorem 12.2. Let 6 = 6(w) be a random variable with M6* < co. Assume
that the observable process & = (&), 0 <t < T, permits a differential
g, = [Ao(t, &) + Au(t, §)6ldt + B(t, £)dWa(t),

where the coefficients Ag, A1, B satisfy the conditions of Theorem 12.1, and
the conditional distribution P(0 < a|é) is Gaussian. Then m; = (0[]—'5)
and v, = M[(6; — m:)2|FF] are given by the formulae
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mo+’70+f0 Bl :E [d€s — Ao(s, §)ds]
K3

me = (12.34)
Ay(s.6)
1470 J (,;(;0) ds
"= 10 (12.35)

7
1+ f ('131(:555 ) ds

PROOF. Due to (12.29) and (12.30), m: and 1, satisfy the equations

7tAl (8, E)

dm; = W‘)—[dgt - (AO(t’g) + A1 (ta §)mt)dt]7 (1236)
2

solutions of which, as it is easy to verify, are determined by (12.34) and
(12.35).

In the case considered, (12.34) and (12.35) can be obtained immediately
from the Bayes formula, (11.35), without using general filtering equations for

conditionally Gaussian random processes!.

Indeed, if v9 > 0, then, due to (11.35),
P(6 < al|F}) = M{xp<alF7}

/ e 1 (o — mg)?
exp{ —————
—00 277'70 2'70

¢ Al(s’g) X7
o Bls,g) @ MO

3 Pfomio] e

From this it follows that the conditional distribution P(6 < a|F}) has the
density

dPO<aF) _ _1_ [ (a—mo)?
da V2T0 270
tAl(saé) A7
+ [ B a-m@)am,

A1(s,€) 2
2/0 [B(s g)( - s(ﬁ))] ds}- (12.38)

On the other hand, the conditional distribution P(6;, < a|F{) is Gaussian:

! Tn order to deduce equations for m; and 4, one can drop the assumptions given
by (12.15) and (12.16).
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dP9<a)F) 1 (a —m,)?
Equating the terms in (12.38) and (12.39) with a and a2, we obtain
11 YA\, 1
- éj)’—(; — 5/0 ( B(S,é) ds = —"2'; (P-a..s.) (1240)

mo P AL(s,8) t( Ai(s, ma(€) 2 m
Yo * o B(s,¢) dW’+/0 ( B(s,€) ) ds = ” (P-as.). (12.41)

(12.35) follows immediately from (12.40). If we take into account now that

d€s — [Ao(s,§) + Ai(s,€)m;(£))ds
B(s,¢)

then we obtain the required representation, (12.34), from (12.41).

If P(vyo = 0) > 0, then in order to deduce (12.34) and (12.35) one should
consider a Gaussian distribution P*(6 < al€p) , with parameters m§ = mo,
Y5 = Yo+e€, € > 0, instead of the distribution P(6 < a|&). Then the associated
values m{ and ~§ will be given by (12.34) and (12.35) with the substitution
of 7§ = o + € for vy, in which the passage to the limit should be carried out
with € | 0. O

th =

12.2 Uniqueness of Solutions of Filtering Equations:
Equivalence of o-Algebras .’F'f and .’Ff"’w

12.2.1. For a conditionally Gaussian process (6,£) the a posteriori moments
my = M(6,|FF) and v, = M[(6; — ms)2|FF] satisfy, according to Theo-
rem 12.1, Equations (12.29) and (12.30). Therefore, this system of equations
has the Fé-adapted solution (F¢ = (]—‘f ), 0 <t <T). In this section we show
that any continuous solution of this system is unique. Thus, solving this
system of equations, we shall obtain moments m; and v, of the conditional
distribution ;.

Theorem 12.3. Let the conditions of Theorem 12.1 be satisfied. Then the
system of equations

d2(t) = [ao(t,) + ax(t, E)z(t)]dt + bg(t,£)B(ti3£2)(t-l’-£y)(t)z41(t,f)

x[dg: — (Ao(t,€) + As(t,§)=(t))dt], (12.42)
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U(t) = 2a1(t,)y(t) + b3 (¢, &) + b3(t, €)

_ (22(t,9B(t,6) + y )AL, 0
( e ) , (12.43)

subject to the initial conditions
z(0) =mo, y(0) =7 (Imo| < 00,0 < ¥ < 00)
has a unique, continuous, ]-'f -measurable solution for anyt, 0 <t <T.

PROOF. Let y:1(t) and y2(t), 0 < t < T, be two nonnegative continuous
solutions of Equation (12.43). Then

ba(s:6) o (s, )’) ly1(s) — a(s)lds

n® - <2 [ (ol +| 22

2
+ gzg 5)[141(3 )+ y2(8)]|yi(s) — ya(s)lds.  (12.44)
Denote
(5 =2 (loa(s 01+ | ZES 4,0 ) + BB ) +a(e)]

Then (12.44) can be rewritten as follows:

t
w1 (t) — 1 ()] < /0 r1.(5,€)ly1(s) — ya(s)|ds.
Hence, due to Lemma 4.13,
Plyi(t) =32(t)} =1, 0<t<T,

and, by virtue of the continuity of the solutions of y; (¢) and y3(t),
P{ sup im0 - w1 =0} =1,
0<t<T

which proves the uniqueness of continuous solutions of Equation (12.43).
Let now z;(t) and z2(t) be two continuous solutions of Equation (12.42).
Then

b2(31€)
B(s,¢)

xl(t) _m2(t) = /(; [al(s’g) + Al(s,ﬁ)
y(s)Al(s,€)

T B(sg)

] [z1(s) — z2(s)]ds

and therefore



12.2 Uniqueness of Solutions of Filtering Equations 27

|Z1(2) — z2(t)] < /0 r2(s,€)|z1(s) — 22(s)lds, (12.45)

where

ba(s,€)
B(s,§)

Hence, again applying Lemma 4.13 to (12.45), we find that z;(t) = z2(t)
(P-a.s.) for any t, 0 <t < T. From this we obtain:

y(s)43(s,8)

r2(s,€) = lai(s, &)| + B2(s,¢)

m(@l

P{ sup |z1(t) — z2(t)| = } =1. O
0<t<

Note. As proved above, ¢, 0 <t < T, is the unique continuous solution
of Equation (12.43). Let us show that if P(yy > 0) = 1, then P{inf,<7; >
0} =1.

Indeed, by virtue of continuity, v; is greater than 0 for sufficiently small
t > 0.Set 7 =inf(t <T:+ =0), taking 7 = oo if infy<7y; > 0. Then, for
t <7 AT, the values §; = ;! are defined which satisfy the equation

2
&=—m¢@ﬁ+(§g§)—ﬁ%m& bo=n3l,  (12.46)
where
(t,2) = (t,0) - o Ar(t2)

On the set {w : 7 < T}, limy, 86 = oo (P-a.s.). However, according to
(12.46),

8 = exp{—Z/Ot &1(s,§)ds} {50+/0texp [2 /0 &1(u,£)du]
(He8 -0

T T 42
< exp {2/0 |&1(s,§)|ds} [6o+ A g;g‘::gds} < 0.

Therefore, P{r < T} = 0. In other words,

-1
tlélg")’t = <?2¥6t> >0 (P-as.).
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12.2.2. In deducing filtering equations for a process (6, £) it was assumed that
this process was a solution to Equations (12.1) and (12.2) for some Wiener
processes W1 and W;. It was not, however, assumed that the process (6,¢) =
(6,&), 0 < t < T, was a strong solution (i.e., ff°’£°’w"W’-measurable at
any t) of this system of equations.

It is easy to bring out the conditions under which this system has a unique
continuous strong solution.

Theorem 12.4. Let g(t,z) denote any of the nonanticipative functionals
a;(t, ), Ai(t,x),b;(t,z),B(t,z), 1 = 0,1, j = 1,2, 0 <t < T, ¢ € Cr.
Assume that:

(1) for any x,y € Cr,
t
l9(t,2) — g(t, 9)I? < Ly /0 (25 — a)?dK (5) + Ln(ze — e)’;
(2)
t
@(t,z) < Ly / (1+ 22)dK(s) + Ly(1 + 22),
0

where K (s) is some nondecreasing right continuous function, 0 < K(s) <
1, and Ly, Ly are constants;

(3)

laa(t,2)| < Ly, |As(t,2)| < Lo;

(4) M(63™ + £€3") < oo for some integer n > 1.

Then the system of equations given by (12.1) and (12.2) has a continuous
strong solution. This solution is unique, and supg<,<7 M (62" + £27) < oo
PROOF. The theorem can be proved in the same way as in the one- dimen-
sional case (Theorem 4.9). O

12.2.3. We shall discuss now the question of the equivalence of o-algebras
Féand FEoW 0<t < T, where W = (W, F¥) is a Wiener process with the
differential (see (11.27))

dW; = B7!(t,€)[d€: — (Ao(t,€) + Ar(t,€)me)dt], Wo=0.  (12.47)

According to (12.29), (12.30) and (12.47), the processes my, &;,v:, 0 < t <
T, form a weak solution of the system of equations



12.2 Uniqueness of Solutions of Filtering Equations 29

_ 1 A1(t,€)
dme = [ao(t,6) + a(, meldt + (e, ) + 2]
dé = [Ao(t,€) + As(t,€)meldt + B(t, €)dW,, (12.48)
o ba(t,€) A3(t,€)
Y= 2 [al(t,ﬁ) B, g)Al(t 5)]] Ye + b3(t, &) — B;(t,g)%z’

for given mo = M (8o/o), €0, and o = M[(6o — mo)?|&0].

Let us investigate the problem of the existence of a strong solution to
this system of equations. A positive answer to this problem will enable us
to establish the equivalence of o-algebras .7-'5 and ff"’w, 0 <t < T, which,
in its turn, will imply that the (innovation) processes W and &, contain the
same information as the observable process €.

Theorem 12.5. Let the functionals a;(t, z), Ai(t, z),b;(t,z), B(t,z), i = 0,1,
Jj = 1,2, satisfy (1) and (2) of Theorem 12.4. Let also v = 7o(z),
ai(t, z), Ai(t,),bi(t,x) and B~(t,xz) (i = 0,1; j = 1,2) be uniformly
bounded. Then the system of equations given by (12.48) has a unique strong

(i.e., FrorotoW measurable for each t) solution. In this case
FE=FV 0<t<T (12.49)
PROOF. Let x € Cr. Let vy, = () satisfy the equation

(@) =@ + [ [28s(5,0070) + Blo.2) - D) as. (1250)

Equation (12.50) is a Ricatti equation and its (nonnegative continuous)
solution exists and is unique for each z € Cr (compare with the proof of
Theorem 12.3). It is not difficult to deduce from (12.50) that

Ye(z) < exp {/Ot %B1(s, $)d3} {’)’0(1)+/0texp [-—2 /Osél(u, x)du} b?(s,x)ds}.

By virtue of the assumptions made above it follows that the +,(z) are uni-
formly bounded over z.
We shall show that the function v;(z) satisfies the Lipschitz condition

t
[ve(z) — n(y)? < L/O s —ys|dK(s), Zo =10

for a certain nondecreasing right continuous function K(s), 0 < K(s) < 1.
From (12.50) we obtain
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t
W(@)-n(y) = /0 21 (5,275 (2) a1 (5, 9)7a(v)]

(e, 2) (o)~ | D)~ ALy | }ds.

(12.51)
Due to (1) of Theorem 12.4
|a1(t, ) (z) — a1 (t, y)n(y)I?
27} (@)|ar(t,2) — a1(t,9)|* + 20@1 (8, 2) % |7 (z) — w(y)

i
do / |2 ~ys*dK (s)+di|ze—ye | +dave(2) -1 (w)]?,  (12.52)
0

I

AN

where dy,d; and dy are constants whose existence is guaranteed by uniform
boundedness of the functions @,(t,z) and v (z), z € Cr.
Similarly,

i
b3 (t, z) = b (¢, 9)I* < ds/ |25 — ys|?dK (5) + dalz; — sl (12.53)
0

and

Ai(t,z) Ai(t,y)
B2(t,z) (e )_B2ty g )‘

< ds/O |$s—ys|2dK(3)+d6|$t—yt|2+d7|’7t($)—’7t(y)|2- (12.54)
From (12.51)—(12.54) we find that
i) =@l < da | t [ —yu)2dK(u)] ds
+do [ (a0 =P + g [ o) = wiw) e
t

t
< dsT / (22 — ya)2dK (s) + do / (20 — go)ds
0 0

t
+dio /0 e () — 7o () [2ds.

Hence, by Lemma 4.13,

IA

bre(z) — % (w)* [dsT /0 (s - 0 V2K (5) + do /0 (2 - ys)2ds] edot

IA

dll Lt(xs - ys)zdk(s)’ (12'55)
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where

B(s) = K(s)+s

= m, d11 = 6me[d8T + dg](K(T) + T)

Let us consider now the first two equations of the system of equations
given by (12.48), with v, = v;(£) substituted, being, as it was shown above, a
continuous uniformly bounded solution of the third equation of this system:

dm; = [ao(t,€) + ax(t,€)my]dt + [bl(t,g) + f;l((tt’g%(&)} dW,
dé; = [Ao(t,€) + Ar(t,€)my]dt + B(t, €)dW,. (12.56)

According to the assumptions of the theorem and the properties of the
functional 7;(z) established above, the system of equations given by (12.56)

has a unique strong (i.e., .7-';'""’5°’W-measurable for any t) solution (see
the note to Theorem 4.6). But mg = M(6|&) is ]-'g-mea.surable. Hence

ftm"’s" W .7"5"’W, 0 <t < T. Therefore, &; is ff"’w-measurable, for any t.

Thus ff c ff"’w. The correctness of the reverse inclusion F5 D ff"’W,
follows from the construction of the innovation process W (see (12.47)). O

Note 1. Note that in the Kalman-Bucy scheme

ao(t,z) = ao(t) + az(t)z:, a1(t,z) = ai(t),
Ao(t,.’L‘) = Ao(t) + A2(t).’L‘t, Al(t,z) = Al(t), (12.57)
B(t,z) = B(t), b(t,z)="bt), i=1,2.

In this case the coefficients in the equation determining <, are determin-
istic functions, and the equations for m; and &; have the following form

Al(t)')’t
B(t)
dé, = [Ao(t) + A1(t)me + Aa(t)&)dt + B(t)dW,. (12.58)

dm; = [ao(t) + a1(t)m1 + az(t)&]dt + [bl(t) + ] th,

This system has a unique strong solution under the same assumptions
under which the Kalman-Bucy filtering equations were deduced (see (10.10),

(10.11)). Hence, in this case ff = ]-'f"’W, 0<t<T.

Note 2. The equality F¥ = F:W remains valid also in the case of multi-
dimensional processes § and ¢ (with explicit modifications in the conditions
of Theorem 12.5 due to the multidimensionality). These matters will be dis-
cussed in the next section.
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12.3 Optimal Filtering Equations in Several Dimensions

Let us extend the results of the previous sections to the case where each of
the processes 6 and £ is vectorial.

12.3.1. Assume again that we a given a certain (complete) probability space
(2, F, P) with a nondecreasing right continuous family of sub-o-algebras
(F), 0 <t <T. Let Wy = (Wi(t), Ft) and Wp = (Wy(t), F;) be two mutu-
ally independent Wiener processes, where Wy (t) = [Wyy(t), ..., Wik(t)] and
Wa(t) = [Wa(t), ..., Wal(t)).

The partially observable random process

(976) = [(al(t)’ e ’gk(t))v (f](t), tee 7€l(t))’ft]’ 0<t < T,

will be assumed to be a diffusion-type process with the differential

2
db; = [ao(t,€) + a1(t,€)6sldt + Y bi(t, €)dWi(t), (12.59)
=1
&, = [Ao(t, &) + Ay (t,€)0;)dt + Z B;(t,€)dWi(t). (12.60)
i=1

Here elements of the vector functions (columns)

ao(t,l') = (aol(t,.'l}),...,aok(t,.’l,‘)),
Ao(t,z) = (Aoi(t, ), .., Au(t, 7))

and matrices
a1(t,z) = o (t, )l kwky, A1t z) = AL (&, 2) | axkys
bi(t,z) = b5 (t, %)l exkys  b2(t,z) = 165 (2, 2)ll ey,
Bi(t,z) = |IBS (t,2)laxky,  Balt,z) = IBY (t,2)llaxiy
are assumed to be measurable nonanticipative functionals on
{[0,T) x C}, Bjory X By}, z = (21,...,m1) € Ch.

The following conditions (1)-(7) are the multidimensional analog of
(11.4)—(11.11), essentially used in proving Theorems 11.1 and 12.1 (z € Ck,
indices i and j take all admissible values):

(1)

T
/0 [laos(t 2)] + 16 (¢, 2)] + (6L (8, 2))? + (62 (¢, 2))°

+(BP (¢, 2))% + (BD (¢, 2))?] dt < oo;
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(2)
T a
[ Aot 21 + (45t ) <
(3) the matrix B o B(t,x) = By(t,z)Bj(t,) + Bz(t, 2) B3(t, z) is uniformly
nonsingular, i.e., the elements of the reciprocal matrix are uniformly
bounded;

(4) if g(t,z) denotes any element of the matrices Bi(t,z) and Bs(t, ), then,
for z,y € Ck,

T
l9(t,2) — g(¢, W) < L1 /0 l2s — ys2dK () + Lalze — wel?,

t
g°(t.z) < L1/ (1 + |as?)dK (5) + La(1 + |zf?),
0

where |z:|2 = 23(t) + - - - 7 (t) and K(s) is a nondecreasing right contin-
uous function, 0 < K(s) < 1;

(5)
T
/ M|AD (¢,€)8;(t)|dt < oo;
0
(6)
Mlgj(t)|<00, 0<t<T;
(7)

P { / T(A(-l-)(t €)m;(t))2dt < oo} =1
0 1j 9 7 *

where m;(t) = M[9j(t)|ft€]~

12.3.2. A generalization of Theorem 11.1 to the multidimensional case is the
following.

Theorem 12.6. Let conditions (1)-(7) be satisfied and, with probability
one, let the conditional distribution®> Fg,(ag) = P(fo < aoléo) be (P-as.)
Gaussian, N(mo,70), where the vector mg = M (Oolfg) and the matric
Yo = M[(6o — mo)(6o — mo)*lfg] is such that Tryo < oo (P-as.). Then
a random process (6,€) = [(61(2), - - -, 0k(t)), (€1(2),- - -, &(8))] satisfying the
system of equations given by (12.59) and (12.60) is conditionally Gaussian,
i.e., for any tj, 0 <tg <ty <---<tn <t, the conditional distribution

2 For 6o = {61(0),...,0x(0)} and ao = (@o1,...,a0k), {fo < ao} is understood as
the event {61(0) < aoy,...,0%(0) < aok}.
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Fe(ao, ... ,an) = P{0y, < aq,...6, < an|FE}
is (P-a.s.) Gaussian.

The proof of this theorem is analogous to the proof of Theorem 11.1.
Hence we shall discuss only particular details of the proof which can present
difficulties due to the multidimensionality of these processes.

First of all note that we can consider in (12.60) B;(t,z) = 0 and Ba(t,z) =
B(t,z) since, due to Lemma 10.4, there exist mutually independent Wiener
processes

Wl(t) = [W]l(t), ceey Wlk(t)], Wg(t) = Wzl(t), ceey Wzl(t)],

such that
t 2 N
/ Zb(s Qaw(s) = [ > o (),
/ ZB(s £)dWi(s / D(s, £)dWa(s), (12.61)
where
D(t,z) = V(BoB)t2),
dy(t,z) = (bo B)(t,z)(Bo B)~V/%(t,x), (12.62)

di(t,z) = [(bob)(t,z) - (bo B)(t,z)(B o B)™(t,z)(bo B)*(t,z)]*/?
with
BOB:BIBI-{-BgB;, bo B =bB] + bsB3, b0b=b1b;+b2b;.

Next, if fi(6o, W1,€) is a (scalar) ff 0:W1.6_measurable function with
M| f:(60, W1, )| < 00, then there is a Bayes formula (compare with (11.35))

M(f:(60, W1,€)|FF) = / / fi(a,c,€)pi(a, c,&)duw (c)dFe,(a), (12.63)

where a € R¥, ¢ € C%, pw is a Wiener measures in (C%, BE) and
pt(av C,§) = eXp{/O [Al(s,f)(Q,(a,c,f) ”mS(E))]*(B*(S'E))_ldWS
-3 | A6.0(@ua.08) = m©)" (Bls,€)B"(5,€)) !
0

X[Al(s’ E)(Qs(av c, é) - m,(f))]ds} (1264)
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Here:

me(€) = M(8|FF);

—Wt =/ B_l(s,g)déa “/ B_l(s,ﬁ)[Ao(S,ﬁ)+A1(s’£)ms(£)]d‘<12'65)
0 0

is a Wiener process (with respect to (.Ff ), 0<t<T);

Qi(a, W1,8) = &:(¢) [a+/ 8,1 (€)do(s, €)ds

/ 371(6)b1 (s, E)dWa (5)+ / B71(6)ba(s,6) B~ (s, )t

d®.(¢)

T = a1(t,)Pe(€), Po(€) = Egexry;

and

Go(t,z) = ao(t,z) — ba(t,2)B~1(t, ) Ao(t, z),
a1(t,z) = a1(t,z) - ba(t,z)B~1(t, ) A1 (t, ).

With the help of (12.63), and in the same way as in the case of the one-
dimensional processes § and &, first we verify normality of the conditional
distributions

P(8o < ag, W1(t1) < 91, -, Wi(ts) < yalFs),
0 <ty £+ <tp £, and second we establish normality of the distributions
P(0s, < ag,...,0;, < an|Ff).

12.8.3. Assume also that in addition to (1)-(7), the following conditions are
satisfied

(8)
ot @) <L, 14Q ¢, 2)] < L;
)
[ Mlatie. )+ 660"+ 6D ) < o
(10)

k
M 64(0) < 0
i=1
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The following result is the multidimensional analog of Theorems 12.1 and
12.3

Theorem 12.7. Let conditions (1)-(10) be satisfied. Then the vector m; =
M(6,|FE) and the matriz v, = M{(8; — my)(8; — mq)*|FE} are unique con-
tinuous ff -measurable for any t solutions of the system of equations

dmg = [ao(t,€) + a1(t, E)maldt + [(b o B)(t,€) + 1 AL(t,€)](B o B)!(¢,€)
X [d€e — (Ao(t, €) + Ax(t,€)me)dt], (12.66)

Ve = a(t,€)n +mai(t,€) + (bod)(t,€) — [(bo B)(¢,€) + 1 Ai(t €]
x(Bo B)7(t,€)[(bo B)(t,€) + 1. Ai (¢, €)]* (12.67)

with initial conditions mo = M (6o|é0), Yo = M{(60 —mo) X (6o —mo)*|C0}. If
in this case the matriz o is positive definite, then the matrices v, 0 <t < T,
will have the same property.

PROOF. In this theorem the proof of the deduction of Equations (12.66) and
(12.67) corresponds to the pertinent proof of Theorem 12.1 carried out for
the components

m;(t) = M(6;(t)|F7)
and
7 (t) = M{([8:(t) — ma(t)][6;(t) — m;(1)]|F5}.

The uniqueness of solutions of the system of equations given by (12.66) and
(12.67) is proved as in Theorem 12.3. a

Let us discuss the proof of the last statement of the theorem. We shall
show that the matrices v, have inverses §; = 7, 1, 0 <t<T.TItis seen that
for sufficiently small ¢ = t(w) such matrices exist due to the nonsingularity
of the matrix - and the continuity (P-a.s.) of the elements of the matrix v;
in t.

Let 7 = inf{t < T : dety, = 0}, with 7 = oo if info<;<r dety; > 0. Then
for t < 7 AT the matrices d; = v; * are defined. Note now that for t < 7 AT,

d_ d . g
0= —B= 2 (1) = b +1edy = by + 6726,

Hence

5,, = —(st’ytét. (1268)

Taking into account Equation (12.67), we obtain from this that for t <
TAT
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St = —6’1 (tvg)‘st - 6t6'1(t1€) + AI(t,f)(B ° B)_l(tyg)Al(t7€)
—8:[(bo b)(t,€) — (bo B)(t,£)(B o B)"!(t,£)(bo B)*(t,£))é:,
(12.69)

where
a1(t,z) = a1(t,z) — (bo B)(t,z)(B o B)~}(t, ) A1 (¢, z).

On the set {w : 7 < T} the elements of the matrix §; must increase
as t T 7. We shall show that actually all the elements of the matrix §; are
bounded.

Denote by G;(£) a solution of the matrix differential equation

dG;;t(é) = a1(t,8)Gi(£), Gol€) = Ekxk)- (12.70)

The matrix G¢(§) being a fundamental matrix, it is, as is well known,
nonsingular.

Let V; = G¢(€)6:G;(§). Then from (12.69) and (12.70), for t < 7 AT we
find

Vi = a1(t, Vs + V2ai(t, €) + Go(){—a1(t, £)6; — 6,81 (2, €)
+A3(t,€)(B o B)~!(t,€)Ax(t,€)
—8¢[(b o b)(t,€) — (bo B)*(t,€)(B o B)~!(t,£)(b o B)*(t,£)16:}G; (€).
(12.71)

Since the matrix bob—(boB)(BoB)~1(boB)* is symmetric and nonnegative
definite, we obtain from (12.71)

T
TV STV + [ TGO Ai(5,€)(B 0 B) (5,6 Aa(5,G3(O)}ds,
0
which together with the nonsingularity of the matrix G¢(£€) proves the bound-
edness (P-a.s.) of elements of the matrix d;. Therefore P(r < T) = 0.

12.3.4. We shall present, finally, the multidimensional analog of Theorem 12.2.

Theorem 12.8. Let @ = (6:,...,0k) be a k-dimensional random variable with

ZLI M6} < co. Assume that the observable process & = (&(t),...,&(t)),
0 <t <T, has the differential

d&l = [AO(t’ E) + Al(t’g)e]dt + B(t,f)sz(t),

where the coefficients Ay, Ay, B satisfy the conditions of Theorem 12.6 and
the conditional distribution P (8 < a|o) s Gaussian, N(mo, o). Then m; =
M (6,|Ff) and v, = M[(6 — m,)(6 — my)*|F¥] are given by the formulae
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t -1
me = [B4n [ AeOE6OF 6O Msod] 27

x [m0+’70 / A';(s,e)(B(s,s>B*(s,s)rl(des—Ao(s,s)ds)] ,
0

: -1
" [E+70 /0 A:(s,exB(s,e>B*(s,e>>-1A1(s,e>ds] Yo (12.73)

The proof is similar to the pertinent proof of Theorem 12.2.

12.4 Interpolation of Conditionally Gaussian Processes

12.4.1. We shall consider the (k + I)-dimensional random process (,¢) =
[(61(2),-..,0k(2), (&1(2), ..., &(t))], governed by the system of stochastic dif-
ferential equations (12.59) and (12.60), and satisfying (1)-(10). Let the con-
ditional distribution P(6y < aléo) be Gaussian, N(mg, o). Then, due to
Theorem 12.6, the conditional distribution P(6, < a|.7-'t‘E ), s £ ¢, is (P-a.s.)
Gaussian with parameters

m(svt) = M(03|ff),
v(s,t) = M[(8s — m(s,1)) (65 —m(s,t))*|F5].

It is clear that the components m;(s,t) = M][8;(s)|FF] of the vec-
tor m(s,t) = [mi(s,t),...,mi(s,t)] are the best (in the mean square
sense) estimates of the components 6;(s), i = 1,...,k of the vector 8, =
[61(s), . .., 0k(s)] from the observations &§ = {&,,s < t}.

In this section we shall deduce forward (over ¢ at fixed s) and backward
(over s at fixed t) equations (of interpolation) for m(s,t) and v(s,t). Let
ma, (t, ) = M(8,|F2*) and

V(t,s) = M[(6; — mg, (t, 5))(6; — me, (t, 5))*| F*].

According to the multidimensional analog of Note 3 to Theorem 12.1,
mg, (t, s) and (¢, s) satisfy for ¢ > s the system of equations (compare with
(12.66), (12.67))

dtmes (t’ 3) = [ao(t, 6) + (a(t,&) - 7(ta s)c(t,{))mg_, (t’ S)]dt
+[(boB) (¢, §)+7(t, 5)AL(t, €)(BoB) ™! (¢, €)[dé;— Ao (¢, £)dt],
(12.74)

d7((itt, 8) _ a(t, E)(t, s) +(t, 8)a* (8, €) +b(t, &) — (¢, E)c(t, )Y (¢, £), (12.75)

where
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a(t,r) = ai(t,z) — (bo B)(t,z)(B o B)"L(t,x) A1 (t, ),
b(t,z) = bob(t,z)—(boB)(t,z)(BoB)~(t,x)(boB)*(t,z), (12.76)
c(t,z) = Al(t,z)(Bo B)~(t,z)A(t, ).
The system of equations given by (12.74) and (12.75) can be solved under
the conditions mg, (s, s) = 05, (s, s) = 0 (zero matrix of the order (kx k)) and
has, as has the system of equations given by (12.66) and (12.67), a unique

continuous solution. From this it follows, in particular, that ~(t,s), as the
solution of Equation (12.75) with (s, s) = 0, does not depend on 8,.

12.4.2. In deducing equations for m(s,t) and (s, t) the following two lemmas
will be employed.

Lemma 12.2. Let the matriz ©%(£), t > s, be a solution of the differential

equation .
_d(pjt(g) = [a(t,€) — 1(t, s)c(t, )lws (€) (12.77)

with @3(§) = Ekxk),

7,(6) = / (¢2 (€)™ ao(u, E)du + {(b o B)(u,€) + 7(u, 8) A7 (1, €)}

x (B o B)~(u, £){déy — Ao(u, £)du}]. (12.78)

Then
me, (t,8) = 04 (€)[0s + gL (€)] (P-as.). (12.79)
PROOF. It is easy to convince oneself of the validity of (12.79) if one applies
the It6 formula. O

Lemma 12.3. Let 0 < s <t <T. Then
= @5()[m(s,t) + ¢ (6)] (P-as.), (12.80)
7 =t 8) + s (E)1(s, )(@h ()" (P-as.) (12.81)
PROOF. Since Ff C F¢**, then
= M(8|F§) = MM (8| F}"%)|Ff] = M(mo, (t,5)| 7). (12:82)
Note that the elements of the vector xn¢?%(£)6s, where
XN = X{liet (€)aL(©)ISN}»
are integrable. Hence

XN M(mo, (8, 9)|FE] = Mxneh(€)(0s + ¢ (€)1 FF]

xn L (€)[m(s,t) + g;(8)),

Ii
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which together with (12.82) proves the representation given by (12.80).
Next, since

M((8. = mo, t,5))(mo, (5, ) — m)* | Fo€] =0 (P-as.)
it follows that
Yo = M[(0: — me) (8 — me)*| Ff]
= M{{(6 ~ . (,5)) + (ma, (8,9) = m)

X[(8: — me, (t,)) + (ma, (t, s) — mo)]*| FE }

= M{M[(6r — mq, (%, 5))(6: — ma, (£, ))*|F7"*]| 77}
+M{(mq, (t,5) — my)(ma, (8, s) — me)*| 7}
= (t, ) + M{(me, (t,5) — m;)(ma, (t,5) —m;)*|F7}.  (12.83)
Noting that

PLE)Bs + g4(8)] — ©L(&)Im(s,t) + gL (E)]
= ¢}(€)[0s — m(s, 1)),

meg, (t,s) — my

we find
M{(me, (t,5) — me)(me, (, 5) — ms)*| F7}
= L (E)M[(85 — m(s, 1)) (85 — m(s,1))"|FF) (4 (€))*
= 9 ()7(s: ) (w5 (€))"
Together with (12.83) this proves (12.81). O

12.4.3. From (12.80) and (12.81) it is easy to obtain representations for
m(s,t) and 7(s,t) which illustrate how these interpolation characteristics
change with the change of ¢.

Theorem 12.9. Let (1)-(10) be satisfied, and let the conditional distribution
P(6y < aléo) be Gaussian. Then m(s,t) and v(s,t) permit representations

m(s,t) = m, +/ v(s,u)(#5 (§))* A7 (v, €)(B o B) ™! (u, &)
X[d€y — (Ao(u, &) + A1(y, £)my)du], (12.84)

t -1
V(s t)= (E+’Ys/ (5())" A (., §)(BoB) ™ (u, §) A (v, §)<P';(§)dU) Ys-
(12.85)
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PROOQF. From (12.80) we find

m(s,t) = (¢4(£))"'my — ¢4(£). (12.86)

The matrix ¢%(€) is fundamental. Hence an inverse matrix (¢ (£))~! ex-
ists and, according to (12.77), at t > s

WA _ o)t -rtslott )] (1280)

with (©3(£))™! = Egkxk)-
From (12.86), (12,.87) and (12.29) we find by the It6 formula
m(s,t) = m, + / (€4(€)) ™ P = 1w, )} A3 (1, €)(B 0 B) " (u,€)
x[d€s — (Ao(u,€) + Ao(u, €)my)dul. (12.88)
But, due to (12.81),
(@) v — ¥(u, 5)] = (s, W) ()"

Substituting this expression into (12.88) we arrive at the representation
sought, i.e., (12.84).
We shall now prove (12.85). From (12.81) we obtain

v(s,t) = (05(6)) " Ire —v(t, 8)][(£h ()] (12.89)

Differentiating the right-hand side in (12.89) and taking into account
(12.30), (12.87) and (12.75), after simple transformations we find that

dvftst’ Y - (s, 4O et RN, 1). (12.90)

Equation (12.90) is a Ricatti equation, a solution of which exists and
is unique. In order to solve it, let the matrices U;, t > s, be given by the
formulae

Ui=E -+ / ((€)) clu, E)p (€)du.

These matrices are nonsingular, and

dUt_l -1 t * ¢ 1 1
2 = U (@) et Ovs (U, U =E.
From this we obtain
-1
W 30) — (U7 19) 6 (€0) et U ), (12.91)

where U; 1y, = v,.
Comparing (12.90) and (12.91) we find
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'Y(S’ t) = Ut_l')'s,

which proves the required representation given by (12.85). O

Note. Together with (12.90) the equation for m(s,t) obtained from
(12.84), is called the forward equation of optimal nonlinear interpolation.

12.4.4. Let us deduce now for m(s,t) and ~(s,t) representations indicating
how they must be changed for s 1 t.

Theorem 12.10. Let (1)-(10), be satisfied and let the conditional distribu-
tion P(6p < al&) be Gaussian, N(mg,7). In addition, let

P{OslrtléTdet'yt > 0} =1.
Then

m(s,t) = mt"/[a0(u’€)+a’1(u1€)m(u)t)+b(u’€)71:1(m(u’t)_m‘u)]du

- / (bo B)(u,)(B 0 B)™ (u, ) [déu — (Ao(u, €)
+A4; (u, )m(u, t))dul, (12.92)

t
Aot) = = [ {faw,) + b 92w
s
#r(mlo(w ) + b T~ b &) fdu,  (12:99)
where a(u,z) and b(u, x) are given by (12.76).
In order to prove this theorem we shall establish as a preliminary the

following two lemmas.

Lemma 12.4. Let P{inf,<rdety; > 0} =1, and let the matriz R(£) be a
solution of the system of differential equations

det(g) = [a(t,€) +b(t, €)% IRL(E),  R3(€) = Ekxky- (12.94)

Then
(5, 8) (@4 (€))* = (RL(€) ™ e (12.95)
PROOF. Let U! = 7(s,t)(¢4(£))*. Then, due to (12.90), and (12.77),
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dut
dt

—7(3,8) (@4 (€)) " e(t, )05 (E) (s, ) (15 ()"

+7(s,t)(25(8))"1a(t,§) — 7(t, s)e(t, )]”
= Ula*(t,€) — Use(t, )0l (E)v(s, 1) (v (€))" + (2 8)]-

But, according to (12.81),

OLEY(s, ) (D5 (E)) + (L, s) = ¥

Hence
dU: T, *
5 = Usla’(t,€) —clt, )l (12.96)
Let V! be a fundamental matrix solution of (12.96), i.e., let
stt [, * ]
dt = Vs [a (t’E) - C(t, €)7t]y Vs = E(kxk)- (1297)

Since Vi = V{(V¢)~! and the matrix (Vg)~! is a solution of the system
of equations

d(Vg)?! . o _
( ((1)s) = —[a*(5,8) = (s, Ol (V) ™ (V)™ = ek
the matrix V! is differentiable in s and, for s <,
ds = —[a‘ (S,{) - c(S,§)’ys]Vs, ‘/t = E(kxk)- (1298)

But
U; = U;Vst = 7-9Vst$

where v, and V! are differentiable in s. Hence, the matrix Uy is also differ-
entiable in s and

dUut  dy, av
ds  ds ds
From (12.30), in the notation of (12.76) we have

Vi+7s

f?; = a(s,€)7s + 750" (s, €) + b(s,€) = Vsc(5,€)%s) (12.99)

which, together with (12.97), yields

aut * t
s~ a5, €7 + 700" (5,€) + b(s, &) — 5, V2

—¥s(a*(5,€) — c(s,E)7s) Vs
= [a(s,€) +b(s, &), U (12.100)
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From (12.94) and (12.100) it follows that U} = RLU?. But U} = 7;; hence
Ut = (R%)~ 14, which proves (12.95). O

Lemma 12.5. Let (F;), 0 <t < T, be a nondecreasing family of o-algebras,
let W = (W, Ft) be a Wiener process, and let a = (a¢, F;) and b = (b, F3)

be random processes with fOT lag|dt < oo, f(;r b2dt < co (P-as.). Then, for
0<s<t<LT,

/audu/de / [/ de] /0 [/Oua,,dv] budW,. (12.101)

PROOQF. It is obvious that

8 t 3 t 3 E}
/ audu/ b, dW,, =/ audu/ b, dW,, —/ audu/ b, dW,. (12.102)
0 s 0 0 0 0

By the It6 formula,

8 8 8 u S u
/ audu/ b dW,, = / [/ bvde] aydu +/ [/ avdv] by dW,,
o LJo o LJo

hence the right-hand side in (12.102) is equal to

/audu/de /[/ de]audu—/ [/Oua,,dv]buqu
=/0 [/ude]du—/o [/0 avdv]deu,

which proves (12.101). O

12.4.5.
PROOF OF THEOREM 12.10. According to (12.84) and (12.95),

m(s,t) = ms + /t[R?(é)]’l”YuA’{(u, €)(BoB)™/?(u,€)dW,, (12.103)

where
= (B o B)™2(u,£)[déu — (Ao(u,€) + A1(u, §)ma)du].
The matrix R¥(§) is fundamental. Hence R§(§) = R§(£) R (€), and, there-

fore,
[RY (&)™ = Ry(&)[RY (€)1 * (12.104)
From (12.103) and (12.104) we find

m(s, t) =ms+RS(E)/ [RE()) ™ A (u, €)(BoB) ™ V/2(u, £)dW . (12.105)
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Next, from (12.94) and Lemma 12.5 we obtain

4 [R©) [ (Rs(E) i) (B e B30, 4]
~ [als,€) + bls, 77

«[rs@) [ (R3E) A0, OB o B W ds

e i(5,€)(B o B3 (s, )W,
= [a(5,) + b(s, £)7[m(s,) ~ malds — 75435, €)(B 0 B)™/*(s,€)dW
But (see (12.29))

dms = [ao(s, &) + a1(s, £)ms]ds + (bo B)(s,€)(B o B)™V/2(s,£)dW
+75 A} (s,€)(B o B)™V/2(s,€)dW .

Consequently,

dem(s,t) = [ao(5,€) + a1 (s, E)m,]ds + (bo B)(s,£)(B o B)™/*(s,£)dW,
+la(s, &) + b(s, E); lm(s, t) — my]ds
= [ao(s,€) + a1(s,§)m(s, t)]ds
+(bo B)(s,£)(BoB)!(s,€)
x[d€s — (Ao(s, &) + Ar(s, E)m(s, t))ds]
+[a(s, &) + b(s, €); '[m(s, t) — ms]ds
—ay(s, &)[m(s,t) — ms|ds
+(bo B)(s,€)(Bo B)~1(s,£) A1 (s,&)[ms — m(s,t)]ds.

According to (12.76)
[a(s,é) + b(sa g)’y;l] - al(saé)
—(bo B)(s,€)(B o B)™(s,£)A1(s, &) = b(s, ) !
Therefore,
dym(s,t) = [ao(s,€) + ai(s,€)m(s, t)lds + b(s,€)v; ms — m(s, t)]ds
+(bo B)(s,€)(Bo B)"!(s,€)
X [dés - (AO(S7£) + Al(s,g)m(sit))ds]a

which proves (12.92).
Next let us deduce Equation (12.93) for v(s,t). From (12.95) and (12.90)
we obtain

y(s,t) = / (RO uc(u, E)val(RE (€)1 du(RY(©))"-
(12.106)
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Differentiating (12.106) with respect to s, and taking into account (12.99)
and (12.94), we find that

dy(s,t)

8 = a(s,€)7 +a*(5,) + b(s,)

—Ys¢(8,€)Ys — [a(s, &) + b(s, 5)'7;1][73 — (s, t)]
—vs = (s, )]la(s,€) + b(s, )77 1" + vec(5,€)7s

= [a(s,€) +b(s, )77 (s, t) +v(s, B)[als, €) + b(s, &), ']*
—b(ss é)

O

Note 1. Equations (12.92) and (12.93) are linear with respect to m(s,t)
and (s, t). Hence uniqueness of continuous solutions can be established in a
standard manner.

Note 2. If (bo B)(t,x) = 0, then Equations (12.92) and (12.93) become
essentially simpler:

m(s, t) = my _/ {aO(u’ E) +a1(us {)m(u, t)

~(bob)(u, &)yy Hm(u,t) — mu]}du, (12.107)

A1) = w- [ {[al(u, 6+ bob)wenrws)  (12.108)

(s 8){as (u, €)-+ (Bob) (1, §>v;11*—<bob><u,s>}du-

Note 8. The Kalman-Bucy scheme discussed in Chapter 10 is a particular
case of the estimation problems for conditionally Gaussian processes. Hence
in this scheme the equations for m(s,t) and v(s,t) also hold true. Note that
taking into consideration the specific character of the Kalman-Bucy scheme,
these equations can be deduced under the same assumptions as those for
m, and +y; (see Theorem 10.3), requiring, in addition, nonsingularity of the
matrices vy, 0 <t < T, in deducing backward equations.

12.4.6. Let us discuss one more class of interpolation estimates for condition-
ally Gaussian processes.

Since the conditional distributions P(8, < a,8; < b|.FF) for s <t are (P-
a.s.) Gaussian, then the conditional distribution P(8, < a|F¥,8,) will also be
Gaussian.
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Let
ma(s,t) = M(0,|FE, 0, = B),
’7ﬂ(s’t) = M{(os - mﬂ(sx t))(08 - mﬁ(sxt))*|ft€70t = ﬂ}

Theorem 12.11. If the conditions given by (1)-(10) are satisfied and the
conditional distribution P(6y < a|ép) is (P-a.s.) Gaussian, then

mg(s,t) = m(s,t) +’7(S t)[os (O] v (B — my), (12.109)
Ap(s,t) = 7(s,t) = (s, )L W L(E)v(s,t),  (12.110)

where ;" is the pseudo-inverse of the matriz v;, and ¢ (€) is defined in
(12.77).

PROOF. Since

M(0t|ff) = My, M(osiff) =m(svt)’
cov (Ot,Otlff) = 7, COV (03,03|f5) =7(s,1),
cov (85, 04| FF) = M[(6, — m(s,t))(6; — me)*|Fe],

then, by the theorem on normal correlation (Theorem 13.1),

mg(s,t) = m(s,t) + cov (8s, 0| F )7 (B — my), (12.111)
Fa(s,t) = ~(s,t) — cov (85, 0| FE )yilcov (8s, 6| FF))*.  (12.112)

We shall show that (P-a.s.)
cov (85, 05| FF) = ¥(s,t)(5(6))"- (12.113)
Indeed, since
cov (s, 0:|F¢) = M[(8, — m(s, t)) M{(6; — me)*| "¢} FF)
and, according to (12.79) and (12.81),
M{(8, — me)*|F7%} = {M[(6, — mo)|F7 1} = {mq, (t, 5) — me}”

= {5185 + gL (©)] ~ KL (E)[m(s, t) + g ()1}
= [03 - m(s,t)]*(wi(ﬁ))*,

then
cov (0, 0c|FF) = M[(6, — m(s,1))(6s — m(s,1))*|F{] (2} (€))",

which proves (12.113).
We obtain (12.109) and (12.110) from (12.111)~(12.113). o



48 12. Optimal Nonlinear Filtering

Note 1. If in addition to the conditions of Theorem 12.11 it is assumed
that P(infoci<r dety; > 0) = 1, then, differentiating (12.109) and (12.110)
with respect to s, we find that

ﬁ"ﬁ(s’t) = IB_/[ao(u’€)+a1(u’E)mﬁ(u’t)"'b(u’{)')';l(mﬂ(u’t)—mu)]du

_/3 (bo B)(u,&)(B o B)~}(u,£)
X[de ~ (Ao(u,€) + A1, g (u, ))dul, (12114)

o(s,) = = [ {10, + b0, 7 Hialws
+9p(u, t)[a(u, €) + b(u, )77 ']* - b(u, E)}du. (12.115)

Note 2. From (12.110) it follows that 44(s, t) does not actually depend on
8.

Note 3. Consider the Gaussian Markov process (6;), 0 <t < T, with the
differential
db; = [ag(t) + a1(t)6:]dt + b(t)dW (t) (12.116)

and a given Gaussian random variable §y. Assume that the deterministic
functions ag(t),a;(t) and b(t) are such that

T T
| sl <oo, i=03 [ Bt < oo
0 0
Take, for 0< s <t<T,

’I"(t) =M0t) Tﬁ(s,t) =M(08|0t =ﬂ)’

R(t) = M[0, — r(t)]?, Rp(s,t) = M[(65 — r5(s,t))?|0; = 3]

If we assume in (12.60) that A;(t,z) = 0 and Bs(¢,z) = 0 and observe
that £ does not depend on 6y, then it is not difficult to see that

r(t) =m¢,  R(t) =y
and
’l"ﬁ(S,t) = Thﬁ(s,t), Rﬁ(S,t) = ﬁﬁ(s’t)'

Therefore, according to (12.29) and (12.30)3,

3 See also Note 3 in Subsection 12.4.5.
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r(t) = r(0) +/0 [ao(s) + a1(s)r(s)|ds (12.117)

and .

R(t) = R(0) + +2/0 a1(s)R(s)ds + /Ot b3(s)ds. (12.118)

For rg(s,t) and Rga(s,t), from (12.114) and (12.115) (on the assumption
that info<¢< R(t) > 0) we find that

b (u)
R(w) (rg(u,t) — r(u))] du.

(12.119)
Rpg(s,t) ——2/t a (u)+ﬂ“—) Rg(u t)—lbz(u) du.  (12.120)
B\S, 1) = \ 1 R(u) slU, 5 . .
The analogs of (12.109) and (12.110) are the formulae:

ro(s,) =8 - | [ao<u) T ax(wra(u,t) +

ra(s,t) = r(s) + R(s) exp (/ al(u)du> R*(t)(B —r(t)), (12.121)

Rg(s,t) = R(s) — R%(s)exp (2 /t al(u)du> R*(t). (12.122)

12.5 Optimal Extrapolation Equations

12.5.1. In this section extrapolation equations for conditionally Gaussian
processes are deduced which enable us to compute optimal (in the mean
square sense) estimates of variables 6;, from the observations £ = {&,,u <
s}, s £t < T. Unlike the problems of filtering and interpolation considered
above, these equations will be deduced not for a general process (6,£) given
by Equations (12.1) and (12.2) but only for two particular cases given below.
The restriction of the class of processes (6,£) considered arises from the fact
that the conditional distributions P(8; < a|F¢) for t > s are not, generally
speaking, Gaussian.

12.5.2. For t > s, let
ni(t,s) = M(6:/F%), na(t,s) = M(&|F?). (12.123)

As in the case of interpolation, equations of two types can be deduced for
these characteristics: forward equations (in t for fixed s) and backward (in
s 1t for fixed t). We can see from the forward equations how the prediction
of values of 0; deteriorates as t increases. The backward equations allow us
to establish a degree of improvement for prediction of values of 6; with ‘the
increase of data’, i.e., with the increase of s. Note that the backward equations
of extrapolation could be deduced from the general equations of extrapolation
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obtained in Chapter 8. We shall present here another and, we think, more
natural development.

Assume that (6,£) = (6¢,&:),0 <t < T, is.a (k + l)-dimensional diffusion
process with

2
df; = [ao(t) + a1(t)6eldt + ) _ bi(t, £)dWi(t), (12.124)
i=1
2
&, = [Ao(t,€) + A1(t,€)6i]dt + Y Bi(t,£)dWi(t),  (12.125)
i=1

where the coefficients satisfy the conditions given by (1)—(10) with the el-
ements of the vector ao(t) and the matrix a;(t) being deterministic time
functions and the conditional distribution P(6y < a|&,) being Gaussian.
Next let % be the fundamental matrix solution of the equation
dot
7“;1 —ai(t)et, t>s, (12.126)

with ¢ = E(xyr). Under these assumptions we have the following.

Theorem 12.12. Let the process (6, &) be governed by the system of equations
given by (12.124) and (12.125). Then for each fized s, 0 < s <t < T, ny(t,s)
satisfies the equation

dnl (ta 3) _
dt

with nq(s,s) = ms, where m, is defined by Equations (12.66) and (12.67).
For fized t,

ao(t) + a1(t)ni(t, s) (12.127)

m(t,s) = m(60)+ [ Ghlbo BYw,) +rAi(w OB © B) " (we)
x[d€u — (Ao(w, §) + A1(u, §)my)dul, (12.128)
where m,, and v, can be found from Equations (12.66) and (12.67), and

t
n1(t,0) = b [mo +/ (cpﬁ)'lao(s)ds] . (12.129)
0
PROOF. Let us note that

ni(t,s) = M(6:|F§) = MIM (8| F7)| FE] = M (mq|FE),

where, according to (12.66), m, can be represented as follows:
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t
m; = mg+ / [@o(u) + a1(u)my)du
8

+ [ (60B) (s €)1, (w, )} (BoB) 2w, . (12130
But

M (/ [(bo B)(u,€) + 1udi(u,£)|(B o B)"/?(u,£)dW,

ff) =0;

hence, taking the conditional expectation M (-|F¢) on both sides of (12.130),
we arrive at Equation (12.127).

In order to deduce (12.128), we take s = 0 in (12.130). With the help
of the Ité formula it is not difficult to convince oneself that the (unique)
continuous solution m; of Equation (12.130) with s = 0 can be expressed as
follows:

t
my = @} [m0+/ (v8)Lao(u)du
0

t
+ / (02)"[(bo B)(w,€) + 1Al (w, ))(B o B)™Y2(u, )T, |
From this we find that

my = n(t,0) +/08 @Ll(b o B)(u,€) + 1uAi(y, E))(B o B)"V/*(u,£)dW,

+ / @L[(bo B)(u,€) + YAl (u, (B o B)"/*(u,£)dW,. (12.131)

8

Subtracting the conditional expectation M(-|F¢) from both sides of
(12.131), we obtain the desired representation, (12.128). a

12.5.8. Let it be required to extrapolate the values of & from £§ = {£u,u <
s}, s <t, along with predicting the values of 6;.

We shall again assume that the conditional distribution P(6y < a|ép) is
Gaussian and (1)-(10) are satisfied, and

Ao(t,:l?) = Ao(t) + Az(t).’l)t, al(t,:z:) = al(t), Al(t,.’t) = Al(t),
where the elements of the vectors and the matrices a;(t) and A;(t), i =0,1,2,
are deterministic functions. In other words, let

2
8, = [ao(t) + a1(t)0: + aa(t)&ldt + Y bi(t,£)dWi(t), (12.132)

i=1

2
g = [Ao(t) + A1(t)6, + A2()&]dt + Y Bit, £)dW;(t). (12.133)

i=1
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Next, let & be the fundamental matrix of the system (t > s)

d} ai(t) a2(t) \ 4
@t (All(t) () ) &,

where

P, = E((k+1)x (k+1))-

Theorem 12.13. Under the assumptions made, n(t, s) and na(t, s) (for each
s) are solutions of the system of equations

dna(t,3)
( é:t_sz) (?o((tt))> * ((Xl(;t)) ?422(8) ) (Z;Ezg ) (12.134)

with ny (s, s) = mg, ns(s,s) =&,
For fized t,

m(ts)\ _ (m(t,0)
(mies) = (mieo)
o (1(60B) () + At (1, )| (BoB) (1, £)
A (BoB)/2(u,€) )
(12.135)

(3)-a(2)- [(5)e  omom

PROOF. Taking into consideration the assumptions on the coefficients of the
system from (12.66) and (12.133) we find that

(&) = (&) + | (o) e | t (250 ) (goe) e
[ (o B0 i Ol@ o B O ar,

From this (as in proving the preceding theorem) (12.134) and (12.135)
can easily be deduced. (]

Note. For the particular case of Equations (12.132) and (12.133) corre-
sponding to the Kalman-Bucy scheme (see Chapter 10) the forward and
backward equations of extrapolation hold true only under the assumptions
of Theorem 10.3
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Notes and References. 1

12.1-12.5. The results related to this chapter are due to the authors. They have
been partially published in [205,207-209].

Notes and References. 2

12.1-12.5. References to other filtering models for which filtering equations
have a ‘closed form’ can be found in Benesh [16], Daum [47], Pardoux [252] and
Yashin [321,323].



13. Conditionally Gaussian Sequences:
Filtering and Related Problems

13.1 Theorem on Normal Correlation

18.1.1. The two previous chapters dealt with problems of filtering, interpo-
lation and extrapolation for the conditionally Gaussian processes (6,£) in
continuous time ¢ > 0. In the present chapter these problems will be investi-
gated for random sequences with discrete time ¢t = 0, A, 24, ..., having the
property of ‘conditional normality’ as well.

It should be emphasized that the complex tools of the theory of martin-
gales, taken advantage of in the case of continuous time, will not be used in
this chapter. In essence, all the results of this chapter can be deduced from
the theorem on normal correlation (Theorem 13.1). Hence, the reader who
wishes to become acquainted with the theory of filtering and related problems
for the case of discrete time can start reading this chapter without studying
the previous chapters.

The comparison of the results for discrete time and continuous time shows
that there is a great similarity between them, at least formally. Moreover, a
formal passage to the limit (with A — 0) enables us to obtain the perti-
nent results for the case of continuous time from the results of this chapter.
However, rigorous justification is not easy and requires, in fact, all the tools
employed in the two previous chapters.

18.1.2. For the formulation and proof of the main result of this section — a
theorem on normal correlation — we need some properties of pseudo-inverses
of matrices.

Consider a matrix equation

AXA= A (13.1)

If A is a square nonsingular matrix, then this equation has a unique
solution X = A~L. If the matrix A is singular, or even rectangular, then
a solution of Equation (13.1), even if it exists, cannot be defined uniquely.
Nevertheless, there exists (as will be proved below), in this case also (for a
certain class of matrices), a single-valued matrix satisfying Equation (13.1).
From now on this matrix will be denoted by A* and called a pseudo-inverse
matrix.

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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Definition. A matrix A% (of the order n x m) is called the pseudo-inverse
with respect to the matriz A = A(;mxn), if the following two conditions are
satisfied:

AATA = A, (13.2)

At =UA* = A", (13.3)

where U and V are matrices.

It follows from (13.3) that rows and columns of the matrix A* are, re-
spectively, linear combinations of rows and columns of the matrix A*.

Lemma 13.1. The matriz At satisfying (13.2) and (18.3) exists and is
unique.

PROOF. Let us start by proving the uniqueness. Let A] and A be two
different pseudo-inverse matrices.
Then

AA1+A =A, Af' =UA* = A*V,
and
AA;'A =A, A}' = UzA* = A*V;,

for some matrices Uy, V;1,Us, and V5. Let D = A'l" - AF, U = Uy — Uy,
V =V, — Va, Then!

ADA=0, D=UA*=A"V.
But D* = V*A; hence,
(DA)*(DA) = A*D*DA = A*V*ADA =0,

and therefore DA = 0.
Making use of the formula D* = AU* we find that

DD* = DAU* =0.

Therefore Af — A} = D =0.

In order to prove the existence of the matrix A*, assume first that the
rank of the matrix A (of the order m x n with m > n) is equal to n.

We shall show that in this case the matrix

At = (A*A) 1At (13.4)
satisfies (13.2) and (13.3).

1 0 denotes the zero matrix.
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(13.2) is obviously satisfied since

AATA = A(A*A)1(A*A) = 4,
where A* A is a nonsingular matrix of the order nxn. The equality AT = U A*
is satisfied with U = (A*A)~1. The equality A* = A*V can be satisfied as is
easy to verify, if it is assumed that V = A(A*A4)~24*.

Similarly it can be shown that if the rank of the matrix A (of the order
m X n with m < n) is equal to m, then the matrix

At = A*(AAMT (13.5)

is the pseudo-inverse with respect to the matrix A.

In order to prove the existence of a pseudo-inverse matrix in the general
case we shall make use of the fact that any matrix A of the order m x n of
rank 7 can be represented as a product

A=B-C, (13.6)

with matrices B(mxr) and C(rxn) of rank r <m An.

Indeed, let us construct a matrix B having r independent columns of the
matrix A. Then all the columns of the matrix A can be expressed in terms
of columns of the matrix B, which is justified because (13.6) determines a
‘skeleton’ decomposition of the matrix A.

Now set
At =C*tBT, (13.7)
where, according to (13.4) and (13.5),
ct = ¢c*(ceHt, (13.8)
B* = (B*B)"!B*. (13.9)

Then
AATA = BCC*(CC*)"I(B*B)‘IB*BC = BC = A.

Next, if it is assumed that U = C*(CC*)~1(B*B)~}(CC*)~1C, it can be
easily checked that:

UA* = AT,
Analogously, if V = B(B*B)~}(CC*)"}(B*B)~!B*, then At = A*V. O
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18.1.3. We shall present a number of properties of pseudo-inverse matrices
to be used further on:

(1°) AATA=A, ATAAT = AT,
(2°) (A%)* = (A*)%;
(3) (AN =4
(4°) (AYA)2 =A% A, (ATA)* = AT A, (AAT)? = AA*, (AAT)* = AAT,
(5°) (A*A)*t = AT (A")* = AT (AT);
(6°) At = (A*A)TA* = A*(AAM)*;
(7°) ATAA* = A*AAT = A%,
(8°) if S is an orthogonal matrix, then (SAS*)* = SAtS*;
(9°) if A is a symmetric nonnegative definite matrix of order n x n of rank
r < n, then
At =T*(TT*) T, (13.10)

where the matrix T\, xn) of rank r is defined by the decomposition
A=T"T, (13.11)
(10°) if the matrix A is nonsingular, then A* = 471,

The properties given above can be verified by immediate calculation. Thus
(1°) and (2°) follow from (13.2) and (13.6)—(13.9). The equalities

At =Cc*B* =C*(cCc*)"Y(B*B)"'B* = BC,
where
B=c*cc*)™, ¢=(B*B)"'B",
give a skeleton decomposition of the matrix A* from which (3°) follows. (4°)
follows from (1°), (2°) and (13.7)-(13.9). In order to prove (5°), one should
make a skeleton decomposition A = BC and represent the matrix A*A as
a product BC where B = C* and C = B*BC. (6°) and (7°) follow from
(1°)-(5°).
In order to prove (8°) it suffices to note that, by virtue of the orthogonality
(8S* = E) of the matrix S,
(SAS*)(SA+S*)(SAS*) = SAATAS* = SAS*. (13.12)
Next, if AT = UA* = A*V, then
SA*S* = S(UA*)S = SU(S*S)A*S = U(SA*S) = U(SAS*)*, (13.13)
with U = SUS*.
Similarly, it is established that
SATS* = (SAS*)*V (13.14)

with V = SV §*.
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It follows from (13.12)-(13.14) that (SAS*)* = SA+S*.
Finally, (9°) follows from the skeleton decomposition A = T*T and (13.7)-
(13.9).

Note. According to (9°), in the case of symmetric nonnegative definite
matrices A the pseudo-inverse matrix A% can be defined by (13.10) where
the matrix T is defined from the decomposition A = T*T'. This decomposition
is not, in general, unique. The pseudo-inverse matrix A* = T*(TT*)~2T is,
however, defined uniquely regardless of the way of decomposing A as T*T.
Therefore, in the case of symmetric nonnegative definite matrices A, the
pseudo-inverse matrix

A+ — { A1 if the matrix A is nonsingular, (13.15)

T*(TT*)~2T, if the matrix A is singular.

18.1.4. We recall that the random vector £ = (£;,...,&,) is called Gaussian
(normal), if its characteristic function 2

<p5(z) = Mexp[iz*{], z= (zl’ T ,Zn), Z*g = Z%’&h

i=1
is given by the formula
.k 1 *
we(z) = exp |i2*m — 2% Rz|, (13.16)
where m = (mq,...,my,) and R = ||R;;| is a nonnegative definite symmetric

matrix of the order (n x n). The parameters m and R have a simple meaning.
The vector m is a vector of the mean values, m = M§, and the matrix R is
a matrix of covariances

R = cov (§,8) = M(§ ~ m)(§ —m)".

Let us note a number of simple properties of Gaussian vectors.

(1) If & = (&1,-..,&s) is a Gaussian vector, A(nxn) @ matrix and a =
(a1,-..,am) a vector, then the random vector = Af + a is Gaussian
with )

Yn(2) = exp {’iz*(a + Am) — Ez*(ARA*)z} (13.17)
and
Mn=a+ Am, cov(n,n) = Acov(£,£)A*. (13.18)

2 In algebraic operations, vectors a are regarded as columns, and vectors a* are
regarded as rows.
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Let (6,¢) = [(61,...,6k),(&1,-..,&)] be a Gaussian vector with mg
MO, m¢ = ME, Dgg = cov(0,0) = M(0 — mg)(0 — mg)*, Dee

COV)(E, §) = M(£ — mg)(§ — me)* and Degg = cov (6,€) = M (6 ~me)(§
meg).

If Dg¢ = 0, then the (Gaussian) vectors § and ¢ are independent and

P0,6)(21, 22) = po(21)pe(22),

where 21 = (211, ..., 21k), 22 = (221,...,22) and
. 1
wo(z1) = exp [zzfmg - Eszoeh] )

L 1 *
pe(z2) = exp [zzzmg - §z2D5£z2] .

Let £ = (§1,...,&n) be a Gaussian vector with m = M¢ and R =

cov (§,€). Then there exists a Gaussian vector € = (g1,...,&,) with in-
dependent components, Me = 0 and cov (&, €) = E(nxn), such that

¢€=RY% +m. (13.19)

For this purpose let us introduce a Gaussian vector® v = (vq,...,v,)
independent of ¢, with Mv =0, cov (v,v) = E. Assume T = R/?;

e=(TH)*(¢-m)+(E-TT ). (13.20)

Since the vectors £ and v are independent, then the vector ¢ is also
Gaussian. It is seen that Me = 0. Compute now the covariance cov (g, €).
We have

cov (¢,€) = Mee* = (TH)*RTt + (E = TT*)(E — TT*)*.

But by property (4°) of pseudo-inverse matrices
(E-TT*)*=E-TT*, (E-TT")*=E-TT*
and
(THY*RT* = (TH)*T*TT* = [(TH)*T*|[TT*) =TT*.

Hence, cov (£,£) = E, which proves the independence of the components
of the vector e.
Next we obtain from (13.20)

T*e = T*(T*)* (€ —m)+ (T* - T*TT*)v

= ({-m) = (BE=T*(TT)" )€ ~m)+ (T* - T*"TT*)w.

But T* = T*TT* (from (7°)), T*(T*)* = (T*T)* = T*T (from (4°)),
and (E—T*T)cov (§,6)(E-THT)* = (E-T+T)(T*T)x (E-T*T) =0,
which proves the equality RY/2¢ = ¢ — m.

3 Here we assume that the initial probability space is sufficiently ‘rich’.
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(4) Let &,, n = 1,2,..., be a sequence of Gaussian vectors converging in
probability to a vector £. Then £ is also a Gaussian vector.
Indeed, let m,, = M&, and R,, = cov (§,,&,). Then, since P-limp_,o0 &5 =
¢ and |expliz*€,]| < 1, by the Lebesgue dominated convergence theorem

n—o0

. . % 1 * . . % .
lim exp [zz Mn = 52 an] = nll)néo M expliz*&,] = M expliz*€].
From this, by virtue of the arbitrariness of z, there exist a vector m and
a nonnegative definite matrix R such that
m=limm,, R=IlimR,.
n n

Therefore,

] - % 1 *
M exp[iz*€] = exp [iz*m — 2% Rz|,

which proves the normality of the vector &.

13.1.5.
Theorem 13.1 (Theorem on normal correlation). Let (6,£) = ([61,...,6k],
[€1,...,&]) be a Gaussian vector with

mg = M8, m¢= ME,

Dgg = cov (6,8), Dgg =cov(6,£), Dee=cov(,§).
Then the conditional expectation M(6|€) and the conditional covariance
cov (6,61€) = M{[0 — M(01£)][0 — M(0|€)]*|¢}

are given by the formulae

M (81€) = mg + Doe D (€ — me), (13.21)
cov (8,6|€) = Dgg — Dog Dy (Doe)*- (13.22)

PROOF. Set
n = (8 — mg) + C(€ — mg), (13.23)

where we want to select the matrix Cixxy such that M (€ —meg)* =0.
If such a matrix exists, then it is a solution of the linear system

Dg¢ + CDge = 0. (13.24)
If D¢¢ is a positive definite matrix, then
C = —Dge D' (13.25)

Otherwise it can be assumed that
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C = —Dg¢ D}, (13.26)

According to (3), the property given in Subsection 13.1.4, there exists a
Gaussian vector € with Me = 0, Mee* = E, such that

Then, setting T = Dééz

, we obtain
Dy = M[(6 — mg)(& — me)*] = M(0; — mg)e*T = dpc T,
where dg. = M (6 — mg)e*. Therefore,
Dg¢ = dg. T, Dg¢D};Deg = doe T(TT)YTT = dy. T,

where we take advantage of (1°), (4°) and (5°), according to which it follows
that

D& =TTt =T*T*, T(TT)*TT = TT*T*TT =TTH(T*T)*'T
= (ITHT =TT*T =T,
ie.,
DOE = DefD&DgE,
which proves (13.24) with C = —Dp¢ Df;.
Therefore, the vector
n = (8 — me) — Do D3 (€ — me) (13.27)

has the property that Mn(§ — m¢)* = 0.
Since (6, &) is Gaussian, so is 7. Moreover, the vector (n,£) will also be
Gaussian, since the characteristic function

Pme)(21,22) = Mexplizin + iz3€]
= Mexp{iz}[(8 — mo) + C(€ — me)] +iz3¢}

can be written in the same form as (13.16) due to the normality of the vector
(0,€). Next, Mn =0 and Mn(§ — me)* = 0.

Hence, according to (2), given in Subsection 13.1.4, the Gaussian vectors
7 and £ are independent.

Therefore,

M(|§) =Mn=0 (P-as.),

which, together with (13.27), yields (13.21).
In order to prove (13.22), note that § — M(6|¢) = n and, due to the
independence of £ and 7,
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cov (6,0|¢) = M(1m*|§) = Mmm* (P-as.). (13.28)
But, according to (13.27),
Mmm* = Dgg + DogD&Dg(D&Dze - 2D95D2'£D55D2'€D;£
= Dgg — Dog Df; Dee D} Dge = Dog — Dog D Dj,  (13.29)

where we take advantage of the fact that, according to (1°), D&D&D& =
D{.

134
From (13.28) and (13.29) we obtain (13.22) for cov (6, 6|¢). a
13.1.6.
Corollary 1. If k =1 =1 and D¢ > 0, then
M(6]¢) = M8 + 93",%’5—)(5 — M¢), (13.30)
cov?(6,€)
D(6|¢) = D8 — D (13.31)

where D(6]¢) = M{[0 — M(6]¢)]2|¢}.

Assuming o9 = +V D8, o¢ = ++/D€ and introducing the correlation
coefficient

__cov (6,8)
- Og0¢

(13.30) and (13.31) can be rewritten as follows:
g
M(Ol¢) = MO + (6 = M), (13.32)
D(6l¢) = o3(1 - p*). (13.33)
Corollary 2. If
0 = biey +boea, & = Biey + Baey,

where €1,€2 are independent Gaussian variables with Me; = 0, De; = 1,
i=1,2, and B? + BZ > 0,then

_ b1B1 +b2B;
M(6§) = BT B 3 (13.34)
_ (Bibg — b1 By)?
D(6l¢) = BT B2 (13.35)
Corollary 3. Let the random variables (6,&1,...,&) form a Gaussian vector

where £1,...,& are independent and D§; > 0. Then
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cov (6, {,

g &M%

M(elgh'--:&l M0+Z

In particular, if M8 = M¢; =0, then

0'&1’ 1€l Z COVD(Z.“ 51’ z.

Note. Let [0,€] = [(61,- - ., 6k), (&1, - - . ,&)] be a random vector specified on
a probability space (2, F, P). Let G be a certain sub-c-algebra of F (G C F).
Assume that (P-a.s.) the conditional (with respect to G) distribution of a
vector (6,€) is Gaussian with means M (8|G) and M (£|G), and covariances
d11 = cov (8,6|G), di2 = cov (8,&|G), and d22 = cov (£,£|G). Then the vector
of conditional expectations M(6|¢,G) and the conditional matrix of covari-
ances cov (6, 0|¢, G) are given (P-a.s.) by the formulae

M(61¢,G) = M(6]G) + di2d3,[€ — M(EIG)], (13.36)
cov (0, 0|§, g) = d11 - dlzd;éd’{z. (13.37)

This result is proved in the same ways as in the case G = {0, 2} and will
be used frequently from now on.

13.1.7.

Theorem 13.2. Under the assumptions of Theorem 18.1, the conditional
distribution® P(0 < z|€) is Gaussian with parameters M(6|¢) and cov (8, 6|€)
given (respectively) by (13.21), and (13.22).

PROOF. It suffices to show that the conditional characteristic function
M (expliz*6]|€) = exp (iz*M(OI{) - %z*cov (6, 0)2) . (13.38)

According to (13.27) and (13.21),
6 = mg + Doe Df (€ — ME) + 1 = M(6]€) + n,
where the Gaussian vectors ¢ and 7 are independent. Hence

M (expliz*6]|€) = expliz* M (6]£)] M (exp[iz*n]€)
expliz" M (6]€)] M expliz*n]

exp |iz* M(0|¢) ~ %z*cov (0,0|§)z] .

4 By {6 < z} we mean the event {61 < z1,...,6; < Zk}.
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Note. Let the matrix cov (6, 8|€) = Deg — D¢ D, Dy be positive definite.
Then the distribution function P(8 < z|¢) = P(61 < z1,...,0k < xx|€) has
(P-a.s.) the density

[det(Dgo - D9€D+ Dgg)]"l/2
P(:L‘l,...,:l:klﬁ) = (27r)k/§€

1 . .-
X exp{—i(:c ~ M(61€))*[Dsp — Dog D D]

x (2 — M(9|§))}. (13.39)

O

18.1.8. The theorem on normal correlation allows us to establish easily the
following auxiliary results.

Lemma 13.2. Let by, by, By, Ba, be matrices of the orders k x k, k x 1, I Xk,
I x 1, respectively, and let

bob = byb} + bab},
boB = byB! + byB3, (13.40)
BoB = BB} + B;Bj.

Then the symmetric matriz
bob— (boB)(BoB)*(boB)* (13.41)
is nonnegative definite.

PROOF. Let &1 = [e11,- - -, €1k}, €2 = [€21,. - ., €21] be independent Gaussian
vectors with independent components, Me;; = 0, De;; = 1.
Set

0 = bie1 + baeg,
§ = B1€1 +B262.

Then, according to (13.22),
bob— (bo B)(BoB)*(BoB)*=cov(6,6[f),

which proves the lemma since the matrix of covariances cov (6,6|¢) is non-
negative definite. O

Lemma 13.3. Let R(nxn), Pimxm) be nonnegative definite symmetric ma-
trices, and let Q(mxn) be an arbitrary matriz. Then the system of linear
algebraic equations
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(R+Q*PQ)r=Q*Py (13.42)
is solvable (for x) given any vector y = (y1,...,Ym), and one solution is
given by

i=(R+Q"PQ)*Q*Py. (13.43)

PROOF. Let 6 = (61,...,6m), € = (€1,...,€,) be independent Gaussian
vectors with M@ = 0, cov (,8) = P, cov (e,e) = E. Set £ = Q*8 + R/,
Then, in this case, Dy = cov (8,£) = PQ, D¢ = cov(§,€) = R+ Q*PQ,
since it was proved in Theorem 13.1 that the system Dg¢ + CDge = 0 is
solvable with respect to C and that C = —Dng . As applied to the present
situation, this implies that the system

PQ+C(R+Q*'PQ)=0 (13.44)

is solvable with respect to C' and that C = —PQ[R + Q*PQ]*.
From the solvability of the system given by (13.44) follows the solvability
(with respect to C*) of the adjoint system

Q*P+[R+ Q*PQ|C* =0. (13.45)

Now consider an arbitrary vector y. Assume £ = —C*y. Then, multiplying
(13.45) by (—y), we obtain (R + Q*PQ)Z = Q* Py, which proves the lemma.
O

Lemma 13.4. Let 6; = (61(t),...,0.(t)), t =0,1,..., be a Gaussian Markov
process with mean r(t) = M6, and correlation

R(t,s) = M[(6; — r(t))(8s — r(s))*], t,s=0,1,....
Then we can find a sequence of independent Gaussian vectors
£(t) = (e1(t),. .- ea(t)), t21,
with Me(t) = 0 and Me(t)e*(t) = Enxn), such that

041 = [r(t+1) — R(t + 1,t)RH (¢, t)r(t)] + R(t + 1,t)R* (¢, 1)6;
+[R(t+1,t+1) = R(t + 1,t)R*(t,t)R*(t + 1,8)]2e(t + 1).

PROOF. Put Vi41 = 0;41 — M(60;41]6;). By the theorem on normal correla-
tion,

M(6;4110:]) = r(t + 1) + R(t + 1,t)R* (¢,t)(6; — r(t)).

From this it follows that the vectors V;, t > 1, are independent Gaussian.
Indeed, for ¢ > s, because of the Markovian nature of the process (6;), t =
0,1,...,

M[Gt - M(0t|0t_1)|08,03_1] = M[0t|05] b M[0t[03] = 0,
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and therefore

MV,V = M6, — M(6:]0:1))(6s — M(6,]8,_1))*]
= M{M][6; — M(64|6:-1)|6s,04_1)[0s — M (84]8~1)]"} = O.

The equality MV;V;* =0 for t < s is verified in a similar way.
Next we find from (13.22), that

MV VY, = R(t+1,t +1) = R(t + 1,t)RT(t,t)R*(t + 1,¢).
Therefore by (3) we can find a Gaussian vector &;4; such that (see (13.19))
Vig1 = [R(¢+ 1,6 +1) — R(t+ L)R¥ (8, )R* (t + 1, 1)) 2e(t + 1),

MEH.,] = 0, cov (5t+1,5t+1) =E.

The independence of the Gaussian vectors €;, t = 1,2,..., follows from
the independence of the vectors V;, t = 1,2, ..., and from the method of
construction of vectors ¢; according to (13.20).

The required recursive equation for 8; follows now from the formulae for
Vi+1 and the representation for the conditional expectation M (0;41|6;). O

13.2 Recursive Filtering Equations for Conditionally
Gaussian Sequences

13.2.1. On a probability space (2, F, P), let there be given a partially ob-
servable random sequence (0,&) = (6;,&),t =0,1,..., where

0 = (61(2),---,6k(t), & = (&a(t),.., &u(t)),

defined by recursive equations

Orr1 = ao(t,€) + a1(t, )0, +bi(t,er(t +1)

tba(t, €)ea(t + 1), (13.46)
§t+1 = Ao(t,f) + Al(t7€)9t + Bl(t’g)sl(t + 1)
+B3(t, &)ea(t + 1). (13.47)

Here, €1(t) = (€11(t),...,€1k(t)) and e3(t) = (e21(t),...,e2(t)) are in-
dependent Gaussian vectors with independent components, each of which is
normally distributed, N(0,1), while

aO(t’ E) = (0'01 (tv E)v v ,afOk(t, &))1
AO(tv £) = (AOI(ty E)y sy AOl(t’E))

are vector functions and
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bi(t,8) = (67O, ba(t &) = B¢, 6)ll,  But,€) = B¢, ),
By(t,€) = [BY (4,6, ai(t,€) = llalPt,6)ll, Ai(t,€) = 4D ¢, ),

are matrix functions having (respectively) the orders k x k, k x [, I x k, I x I,
kxk,lxk.

Any element of these vector functions and matrices is assumed to be
nonanticipative, i.e., ff-measurable where .Ff = a{&,...,&} for any t =
0,1,....

The system of equations given by (13.46) and (13.47) can be solved under
the initial conditions of (6, o), where the random vector (g, £o) is assumed
to be independent of sequences (e1,€2) = [e1(t),€2(t)], t = 1,2,.... As to
the coefficients of the system of equations given by (13.46) and (13.47) and
the initial conditions of (6o, &), the following assumptions will be adopted
throughout the chapter.

(1) If g(¢,&) is any of the functions® ag;, Ao, bfjl), bff), Bf;), ijz), then
M|g(t,€)|? <00, t=0,1.... (13.48)
(2) With probability one
o ¢ O <, 14709l <e.

(3) M([|6oll* + I€0ll?) < oo, where, for
T = (xla---axn), ”-’1»'”2 Z.’Ez.

(4) The conditional distribution P(6y < a|p) is (P-a.s.) Gaussian.
It follows from (1)—(3) that, at any time ¢t < oo,
M (181 + lI€ell®) < oo (13.49)

13.2.2. If the sequence (6, ) is assumed to be partially observable, the prob-
lem of filtering involves the construction of an estimate for the unobservable
variables 8; from the observations &§ = (&,...,&). Let Fe(a) = P(6: <

alF),
=M@OFD), = M6 —me) (6 — me)*|F].
It is obvious that, due to (13.49) the a posteriori mean
my = (ma(t),. .., mg(t))

is the optimal estimate (in the mean square sense) of the vector 6; based on
the variables & = {&o,....,&:}, and

5 For simplicity, arguments in the functions considered are sometimes omitted.
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Tr My, = Z MBi(t) — my(t))?

yields the estimation error.

In the case of an arbitrary partially observable sequence (6, £) it is difficult
to find the form of the distribution Fg(a) and its parameters my,~;. For
the sequences (6,£) governed by the system of equations given by (13.46)
and (13.47) with the additional assumption of normality of the conditional
distribution P(6y < a|€g) the solution of the problem of filtering (i.e., finding
my and ;) becomes possible. The following result, analogous to Theorem 11.1
for the case of continuous time, is the basis for the method of solution.

Theorem 13.3. Let (1)-(4) be satisfied. Then the sequence (6,&) governed
by (13.46) and (13.47) is conditionally Gaussian, i.e., the conditional distri-
butions

P(90 Sa()’"',et Satlj:f)
are (P-a.s.) Gaussian for anyt =0,1,....
PROOF. Let us establish the normality of the conditional distribution P(f; <
a|.7—'f). This suffices for our present purposes; the proof for the general case
will be given in Subsection 13.3.6.
The proof will be carried out by induction. Assume that the distribution

Fee = P(6: < alFf) is normal, N(my, ).
Because of (13.46) and (13.47), the conditional distribution

P01 < a, €41 < T|FF,0; = b)

is Gaussian with vector of mathematical expectations

_[ao+aib
Ag+Ab= (Ao n Alb) , (13.50)
and with covariance matrix
bob boB
B= ((bo B)* Bo B) , (13.51)

where bo b = b1b] + b2b3, bo B = b1 B} + b2Bj, and Bo B = BB} + B2Bj3.
Let vy = (04,&:), 2 = (21,...,2k+1)- Then the conditional characteristic
function of the vector v is given by the formula

M(exp[iz*utﬂ]lff,et) = exp [iz*(Ao(t,§)+A1(t, £)6,) — %Z*B(t,ﬁ)z] .
(13.52)
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Assuming that, for some %,
M (expliz* (A1 (t, €)6:)]|FF)
= exp [iz* (Al(t,ﬁ)mt - %z*(Al(t, 1AL, §))z)] . (13.53)
we obtain from (13.52) and (13.53)

M(expliz sl ) = expiz*(Ao(t,€) + As(t, m) — 3'B(t,8)2

~37 (A1t A,

Therefore, by induction, the conditional distributions
P(8:41 < a,&41 < z|Fy) (13.54)

are Gaussian.
Consider now the vector

N =[0er1 — M(6p41|F7)] — Cléesr — M(Eey1|FE)]-

By virtue of the theorem on normal correlation (and its accompanying note)
there exists a matrix C such that

Mn(&41 — M(&41|F7))*|FE] =0 (P-as.).

It follows from this that the conditionally Gaussian vectors n and £;4; (under
the condition F¥) are independent. Hence (z=(21,.-y2K))

Mexp(i2*0e41)|F5 , &e41]
= M{exp(iz*[M (01| F) + C(€r41 — M(Er41|FF)) + 1]\ FE, 41}
= eXP(iZ*[M(9t+1|ff) + C(&t4+1 — M(§t+1|.7-‘f))])M{exp(iz*n)|.7-'f, 41}
= exp(iz*[M(9t+1|.7-'f) + C(€e+1 — M(§t+1|.7:f))])M{exp(iz*n)|.7:f,§t+1}.
(13.55)

Due to (13.54), the conditional distribution P(n < y|F¥%) is Gaussian. To-
gether with (13.55) this proves the normality of the conditional distribution
P(6p41 < alFpyy).

Thus, for all t, ¢ = 0,1,.. ., the conditional distributions P(§; < alff ) are
Gaussian. O

Note. It can be shown in like fashion that if, at some s, the distribution
P(0, < a|F§) is Gaussian, then the conditional distributions P(6; < a|F¥)
will be the same for all ¢ > s.
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13.2.3. Conditional normality of the sequence (6,£) enables us to deduce
a closed system (compare with Section 12.1) of recursive equations for the
parameters mg, ;.

Theorem 13.4 In (1)-(4) the parameters m; and v; can be defined by the

recursive equations®

mip1 = [ap + a1my) (13.56)
+[boB+a1v: A7][BoB+ A1 v Aj) [€r41—Ao— Army),
Yi+1 = [alvta'l‘ +bo b] (1357)

—[bo B + a1 Aj][Bo B + A1y Aj]T[bo B + a1 Af]*.

PROOQF. Let us find first the parameters of the conditional Gaussian distri-
bution

P(041 < a,€41 < Z\FE) = M[P(0141 < a, €41 < z|0s, FE)IFE).
Due to (13.50),
M1 Ff) = ao(t,€) + a1(t, &ymy,
M(&41|FF) = Ao(t,€) + A1(t,E)m,. (13.58)

In order to find the matrices of covariances, let us take advantage of the
fact that, according to (13.56)-(13.58),
Oer1 — M(811|FF) = as(t,€)[6 — m]
+b1(t,€)er(t + 1) + ba(t, §)ea(t + 1),
€41 — M(&41|F7) = A, €)[0: — ma]
+Bl(t,£)€1(t + 1) + Bz(t, E)Ez(t + 1). (13.59)
‘We obtain from this

di1 = cov (Bes1,0er1|F5) = ar(t,€)mal(t,€) + (bob)(t,£),
d12 = COoVv (0t+1) §t+1|'7:t€) = al(t) §)7tAI(t1§) + (b o B)(t,g),
oz = cov (€41, &4 FF) = A1(t, €)1 AL (t,€) + (B o B)(t, £).
Since the conditional (under the condition ff ) distribution of the vector

(6t+1,Et+1) is normal, by virtue of the theorem on normal correlation (and
its accompanying note)

M8l FF & + 1) = M(41|F7) + diaddy (641 — M(41|F7))  (13.60)

and

5 In the coefficients ao, Ao, ..., bo b, the arguments (t,£) are omitted.
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oV (Bg41, O+ 1| F5, E41) = dir — diadydty. (13.61)

Substituting here the expressions for M (0,41]FF), M(E41|FF), di1,daz
and dp2, we obtain recursive equations (13.56) and (13.57) from (13.58) and
(13.59). ]

Corollary 1. Let

ao(t,€) = ao(t) +az(t):,  Ao(t,€) = Ao(t) + A2(t)&:,
a1(t,€) = a1(t),  Ai(t,€) = Ai(2),
bi(t’ 6) = bi(t)s B’i(tvg) = Bi(t)v 1=1,2,
where all the functions a;(t), A;(t), bi(t), Bi(t), § = 0,1,2, and i = 1,2, are
functions only of t. If the vector (6o,&o) is Gaussian, then the process (6;,&;)
t=0,1,2,..., will also be Gaussian. In this case the covariance v; does not

depend on ‘chance’ and, therefore, Trv; determines the mean square estima-
tion error corresponding to 6, based on the observations &§ = (&,...,&).

Corollary 2. Let a partially observable sequence (6,€) = (6:,&:),t=0,1,...,
satisfy for t > 1 the system of equations

Or+1 = ao(t, &) + a1(t,€)0: + ba(t,E)er(t + 1) + ba(t,&)ea(t +1), (13.62)

& = Ao(t—1,8)+A1(t—1,€)0,+ By (t—1,8)e1(t) + Ba(t —1,€)ea(t), (13.63)

with P(01 < alfl) ~ N(ml,'yl).

Although the system of equations for ;.1 and &;, considered in a formal
way, does not fit the scheme of (18.46) and (13.47), nevertheless, in finding
equations for my = M(8;|F¢) and v, = cov (81, 0:|FF), one can take advan-
tage of the results of Theorem 13.4. Indeed, we find from (13.62) and (13.63)
that

Eerr = Ao(t,8) + A1(t, €)[ao(t, &) + a1(t, €)6; + bi(t,E)er(t + 1)
+ba(t,E)ea(t + 1)) + Bi(t, €)er(t + 1) + Ba(t, &)ea(t + 1).
Setting
Ag = Ay +Ajag, A = Ajas,
B, = Albl + Bl, By = f‘ilbz + Bz, (13.64)

we note that the sequence (0,§) satisfies Equations (13.46) and (18.47), and
my and 7 satisfy Equations (18.56) and (13.57).

Corollary 3 (Kalman-Bucy Filter). Let the Gaussian sequence (6, £) satisfy
the equations
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Oi+1 = ao(t) + al(t)é’t + bl(t)El(t + 1) + bz(t)EJg(t + 1), (13.65)
& = Ao(t) + Al(t)et + Bl(t)El(t) + Bz(t)&'z(t). (13.66)
Then, due to (18.56) and (13.57) and the previous corollary, m; and y; satisfy
the system of equations
mer1 = [ao(t) + a1(t)me] + P—y(t)Q—t(t)
X (€41 — Ao(t + 1) — A1t + Dao(t) — A1t + Das(t)m],

(13.67)
vt = lar (E)neal(t) +bob(t)] - Py (D@} 1P} (1), (13.68)
where
Py (t) = bi(t)[Ar(t + 1)ba(t) + Ba(t +1)]* + ba(t)[A1(t + 1)b2(2)
+By(t + 1)]* + a1(t)yea (t) ALt + 1), (13.69)

Q4(t) = [A1(t + 1)b1(2) + Bi(t + D][A1(t + 1)ba () + Ba(t + 1)]*
+[A1(t + 1)ba(t) + Ba(t + 1)][Ax (¢ + 1)ba(t) + Ba(t + 1)]*
FAL(E + Dai () nal @) AL+ 1), (13.70)

With the help of the theorem on normal correlation we obtain the follow-
ing expressions for mo = M (6p|¢o) and o = cov (6o, 6o%0):
mo = M00 + cov (00, 90) ’{(0)[141 (O)COV (00, ao)A’{ (0) + Bo B(O)]+
x[€o — Ao(0) — A1(0)M8o), (13.71)

Y0 = cov (6o, 80) — cov(6o, 60)A1(0)[A1(0)cov(6o, 6o) A1 (6)
+B o B(0)]* A1(0)cov (6o, 6o). (13.72)
Note. In the assumptions of the theorem, the conditional distribution
P4, < b|Ff,0, = a), t > s, is also Gaussian and its parameters mq(t, s) =
M(8;|Ff,0, = a) and 7,(t,s) = cov (0;,04|F5,0, = a) satisfy, for t > s the
system of equations
ma(t +1, 3) = [ao(t,ﬁ) + al(tv g)ma(t’ s)]
+[bo B(t,€) + axr(t, §)alt, ) A1 (8, )]
x[B o B(t,€) + A1(t, €)va(t, s) AL (£, )]
X [€r+1 — Ao(t,€) — A1(t,6)ma(t, s)], (13.73)

Ya(t +1,8) = [a1(t,E)Va(t, s)ai(t, §) +bo b(t, £)]
~[bo B(t,§) + a1(t,€)valt, ) 1(t,€)]
x[B o B(t,£) + A1(t,€)1a(t, )AL (£, )]
x[bo B(t,£) + a1(t, )t )AL, )", (13.74)

with mq(s, s) = a, Ya(s,s) =0.
It follows from (13.74) that v,(t,s), for t > s, does not depend on a.
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18.2.4. Notice a number of useful properties of the processes m; and 7,
t =0,1,..., assuming the conditions of Theorem 13.4 to be satisfied.

Property 1. For any t = 0,1,..., the values of m; and (8; — m;) are
uncorrelated, i.e.,

M{mg(0: — me)} = M{(6: — m¢)*me} =0,
and, therefore,
M0;"0t = Mm;'mt +M(9t -—mt)*(Ot —mt). (1375)

Property 2. The conditional covariance 7; does not depend explicitly on
the coefficients ag(t,£) and Ag(¢,€).

Property 3. Let vo and all the coefficients of the system of equations given
by (13.46) and (13.47), possibly with the exception of the coefficients ao(t, €)
and Ay(t,€), be independent of £&. Then the conditional covariance 7; is a
function of time ¢ alone and v, = M{(8; — m:)(0; — m;)*}. In this case the
distribution of the value of A; = §; — m; is normal, N(0,).

Property 4. The estimate of m; is unbiased:

Mmt=M9t, t=0,1, (1376)

18.2.5. In the following theorem a special representation is given for the
sequence &, t = 0,1,..., (compare with Theorem 7.12), which will be used
frequently further on.

Theorem 13.5. Let (1)-(4) be satisfied. Then there exist Gaussian vectors
Z(t) = (81,...,&(t)) with independent coordinates and with

ME(t) =0, ME(t)*(s) = d(t — s)Euxy (13.77)
such that (P-as.)
§t+1 = Ao(tf) +A1(t7£)mt
+((Bo B)(t,€) + Ai(t, €)1 Ai (¢, €)]/%E(t +1).  (13.78)

If, in addition, the matrices (B o B)(t,&) + A1(t, €)v A} (¢, &) are nonsin-
gular (P-as.), t=0,..., then”

FE=FEP, t=12,.... (13.79)

PROOF. Assume first that for all ¢ = 0,1,..., the matrices (B o B)(t,£)
are positive definite. Then, since the matrices A;(t,£)v: A} (¢, &) are at least
nonnegative definite, the matrices [(Bo B)(t,£) + A1 (t, £) x v A%(t, £)]*/? are
positive definite and, therefore, the following is a random vector

7 All the o-algebras considered here are assumed to be augmented by sets of F-
measure zero.
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Zt+1) = [(BoB)(t,8) + Ai(t, €)1 AL (¢, €)]7V2[A1 (8, €)(6: — me)
+B1(t,€)e1(t + 1) + Ba(t, €)ea(t + 1)) (13.80)

The conditional (conditioned on F¥) distribution of the vector 8, is Gaus-
sian according to Theorem 13.3, and the random vectors £; (t+1) and ex(t+1)
do not depend on &§ = (&, ...,&). Hence it follows from (13.80) that the
conditional distribution P((¢ + 1) < z|F¢) is Gaussian and it is not difficult
to compute

Mt +1)|Ff] =0, (13.81)

cov (E(t + 1),E(t + 1)| %) = Eqx)- (13.82)
From this it is seen that the parameters of the conditional distribution

of the vector €(t + 1) do not depend on the condition and, therefore, the
(unconditional) distribution of the vector (t + 1) is also Gaussian. Here

ME(t+1) =0, cov(E(t+1),2(t+1)) = Eqxy.

In a similar way it can be shown, employing Theorem 13.3, that at any
t the joint distribution of the vectors (£(1),...,2(t)) is also Gaussian with
cov (8(u),&(v)) = §(u—v)E. From this follows the independence of the vectors
#(1),...,&(t). The required representation, (13.78), follows explicitly from
(13.80) and (13.47).

In order to prove (13.79) note first of all that, according to (13.78),
FEC FlfoD, (13.83)

If the matrix (B o B)(t,€) + A1(t, &)1t A}(t,€) is nonsingular, then, due to
(13.78),

—E-(t) = [(B ° B)(t - 17&) + Al(t - 175)7t—1AI(t - 175)]_1/2
X[§ — Ao(t — 1,€) — Ar(t — 1,§)mu-1].

Hence ff 2 ft(&’ ’E), which, together with (13.83), proves the coincidence
of the o-algebras F& and F\*°% t=1,2,....

Assume now that at some time ¢ the matrix (BoB)(t, £)+A1(t, €)1 A} (¢, €)
is singular (with positive probability).

Let us construct (at the expense of extending the main probability space)
a sequence of independent Gaussian random vectors 2(t) = (21(¢),..., zi(t)),
Mz(t) = 0, M2(t)z*(t) = E(x1), independent of the processes €;(t), 2(t),
t > 0, and the vectors (6o, £o) as well. Set

E(t+1) = D*(t,8)[A1(t,6)(0: — m:e) + Bi(t,&)er(t +1)
+By(t, &)ea(t+1)]+(E—-D7 (t,€) D(t, £))2(t+1), (13.84)

where D(t,£) = [(B o B)(t,£) + A1(t, €)1 A% (¢, €)]Y/2. 1t is easy to convince
oneself that the sequence #(1),(2),..., of the vectors thus defined has the
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properties given in the formulation of the theorem. In order to prove (13.78)
it obviously suffices to show that

D(t,£)&(t+1) = A1 (t,£)[0e—my]+ B1(t, €)e1(t+1)+ Ba(t, £)ea(t+1). (13.85)
Multiplying the left- and right-hand sides in (13.84) by D(t, ), we obtain
D(t,§)E(t+1) = [A1(¢,£)(6—me)+Bi (¢, €)er(t+1)+Ba(t, £)ea(t+1)]

—[E - D(t’E)D-‘- (t7 E)][Al(tv 6)(0{, - mt)

+Bl(t,€)61(t + 1) + Bg(t, §)€g(t + 1)]
+D(t,€)[E — D*(t,€)D(t, €)]z(t + 1). (13.86)

By the first property of pseudo-inverse matrices, D[E — D¥D] = D —
DD*D = 0, and, therefore, (P-a.s.)

D(t,€)[E — D*(t,&)D(t,€)]z(t + 1) = 0. (13.87)
Write

{(t+1) = [E—D(t,€)D*(t,€)][A1(t,€)(8: — me) + Bu(t,)er(t + 1)
+B2(tv 6)62(t + 1)]
Then
MC(t+1)C*(t+1) = M{M(((t+1)¢* (¢ + 1)IFF)}
= M{(E - DD¥)DD*(E — DD*}
= M{(DD* - DD*DD*)(E — DD*)}
= M[(DD* — DD*)(E — DD%)] = 0.
Consequently, ((t+1) = 0 (P-a.s.), which, together with (13.86) and (13.87),
proves (13.85). a

Note. When the matrices B o B(t,£) + A1(t,€) and v A} (¢,€), t > 0, are
nonsingular:

Fr=F0% t=1,2,...;

hence, the sequence = (£(1),(2),...) (by analogy with the definition given
in Subsection 7.4.2) is naturally called an innovation sequence.
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13.3 Forward and Backward Interpolation Equations

18.8.1. For the random sequence (6,€) = (6;,&;),t = 0,1,..., governed by
Equations (13.46) and (13.47), interpolation is understood as a problem of
constructing an optimal (in the mean square sense) estimate of the vector 6,
from the observations &§ = {&o,...,&}, t > s.

For t > s, let

m(s,t) = M(6s|F¢), 7(s,t) = cov (8, 04| FF)

denote (respectively) the vector of mean values and the matrix of covari-
ances of the conditional distribution IT,(s,t) = P(6, < a|F¥). It is seen that
m(s,t) is an optimal estimate of 8, from &f. For this estimation both forward
equations (over t at fixed s) and backward equations (over s at fixed t) can
be deduced. The forward equations demonstrate how much the interpola-
tion improves with the increase of the data, i.e., with the increase of t. The
backward equations are of interest in those statistical problems where the
vector & = {€o,...,&} is known and by means of which the unobservable
component §, for all s =0,...,t has to be estimated. The backward equa-
tions provide a convenient recursive technique for calculating the estimates
m(t —1,t) from m(t,t) = m; and &, m(t —2,t) from m(t —1,t), m(t,t), &—1,
and &, etc.
18.8.2. (1)—(3) in Section 13.2 will be assumed to be satisfied

For the deduction of forward equations of interpolation the following the-
orem is useful.

Theorem 13.6. If the conditional distribution IT,(s,s) = P(6, < a|F¢) is
normal (P-a.s.), then the distributions II,(s,t) = P(0s < a|F¥) att > s are
also normal.

In order to prove this we shall need:

Lemma 13.5. If the conditional distribution II,(s,s) = P(0, < a|F§) is
normal, then the conditional expectation

Ma(t,s) = M(8:|F7,0, =), t>s,
permits the representation
Ma(t, s) = ooy, (13.88)

where the matrices®

8 TI.C ST A A, denotes the product of the matrices A;-1,..., As.

u=s
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©s = Ekxr),
t—1
o = H{al(u, €) — [bo B(u,€) + a1 (u, €)1(u, 8) A1 (u, )]

x[(B o B)(u,€) + A1(u, §)v(u, s)A] (u, )] Au (v, E)} (13.89)

and the vectors
Z«: { (1 £)+[(boB) (u, €) -1 (u, ) 7(u, $) Al (u, €)]  (13.90)

x[(B o B)(u,&) + Au(u, £)7(u, 8) A (u, )] (Eus —Ao<u,s>>}

do not depend on a. The matrices y(u,s), u > s, can be defined from the
equations

Y(w,8) = [a1(u - 1,€)y(u—1,s)aj(u—1,£) + (bobd)(u —1,8)]
=[(boB)(u—1,€) + a1(u—1,)v(u — 1,5) A7 (u — 1,€)]
x[(BoB)(u~—1,€) + Ai(u ~ 1,€)y(u - 1,5)Aj(u - 1,€)]*
x[(boB)(u—1,€)+a1(u—1,&)y(u—1,s) A} (u—-1,€)]*  (13.91)

with an initial condition (s, s) = 0.

PROOF. Note first that the pertinent analog of (13.88) was given in
Lemma 12.2 (compare (13.88) with (12.79)).

According to the note to Theorem 13.4, mq(t,s) and v, (t,s) = cov (6,
6,|F5,6 = ) satisfy Equations (13.73), (13.74) with an initial condition
Mo (8, 8) = &, Yal(s,s) = 0. Since 7, (t, s) does not depend on o we shall write
7(t, 8) = Ya(t,s). (13.88) can be deduced from (13.73) by induction. g

PROOF OF THEOREM 13.6. Let us first show that the conditional distri-
bution P(0; <a,& < zlff_l) is Gaussian. For this purpose we compute the
conditional characteristic function

M (expi[2}6, +z§£t]|.7-'f 1)
= M(expi[2}0,|M {expi[23&]|FF_,, 0, FE_ ;). (13.92)

It is obvious that
M(expi[z3€]|Fs_1,6:-1,85) = exp{iZS(Ao(t L&) + Ai(t—1,£)6,_,)

~5EB OB~ 1.6z}, (13.99)
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Next,
P{ot—l S blft{_l,os} ~ N(meu (t - 1,3),’7(t - la S))
and, due to (13.93),

M{M[expi(23€)| Ff_y,60-1,05]|Ff 1,65}
= exp {i[z;Ao(t -1,8)] - -;-z;(B o B)(t — 1,{)22}
x M {expi[z3 A1 (t — 1,{)0t—1]|ff_1, 65}

— exp {iz;Aoa ~1,6) - 353(BoB)(t - L&)zZ}
x exp{i[z;Ala 1,6)me,(t—1,5)]

1 *
A - 1O - L 941 - 1) |
By Lemma 13.5.
me, (t —1,8) = @i 10, + i1 (P-as.).

Hence
M{opilz6l1F 1,0} = exp{ iz (ot ~1,) + Ai(e - 1Y)
~25((BoB)(t~1,) + Ai(t - L~ 1,9)
X A(t — 1,6))2 + iz st - 1,§)<p:‘103},
which, together with (13.92), leads to the equality
M(expilz}s + €I FEL) = exp{iz;<Ao<t 1,6 + At - L,EPE)
~25((BoB)t - 1,6) + At - 1,8

xy(t —1,8)A(t — 1,{))Z2}M{exp'i[zfes

+25(A1(t - L,EGT 0T} (13.99)

Let ¢ = s+1. Since the distribution IT,(s, s) = P(6s < a|F§) ~ N(ms,7s),

it follows from (13.94) that the distribution P(8, < a,&1 < z|F%) is also
Gaussian. It is not difficult to deduce from this that the distribution IT,(s, s+
1) is Gaussian. It can be proved by induction from (13.94) that for any ¢ > s
the conditional distribution IT4(s,t) is also Gaussian. O

Note. Normality of the conditional distributions P{8, < a|¥7,8,, = b} for
u < s <t can be proved in the same way.
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13.3.3. Therefore, according to Theorem 13.6 the distribution II,(s,t) =
P(6, < a)FF) ~ N(m(s,t), v(s, t)), if the distribution I7,(s, s) is Gaussian.
Let us find forward equations (of interpolation) for m(s,t) and ~(s,t).

Theorem 13.7. If II,(s,s) ~ N(mg,s), then m(s,t) and y(s,t) fort > s
satisfy the equations

m(s,t+1) = m(s,t) +(s,8)(¢3)" A1 (t,6)[(B o B)(t,€) + Ax(t, )y AL (t,€)]"
X[€e41 — Ao(t, ) — Au(t, €)me], (13.95)

')’(S,t + 1) = 7(31t) - ’)’(S, t)(<P§)*AI(t1€)
x[(Bo B)(t,€) + A1(t, )1 A1 (¢, €)]*
XAl(tig)Soi’Y(sit)’ (1396)

where m(t,t) = my, ¥(t,t) = v, and the matrices ¢ are defined from
(13.89).

PROOQOF. From Theorem 13.6 it follows that the conditional distribution
P, < a,& < xl]-'f_l) is normal. Parameters of this distribution could be
obtained from (13.94), but it is easier to find them by taking advantage of
the theorem on normal correlation.

According to the note to this theorem,

M(Bs16, FE ) = M(B,|FE_ ) + diadblte — M(EJFEL),  (13.97)

where
diz2 = cov (85, &|FE_,), (13.98)

dag = cov ({t,Etlff_l) = A1(t-1,€)v:-1A1(t—1,€)+(BoB)(t—1,£). (13.99)
In order to find d;3, note that, due to Lemma 13.5.
M1 = M(0,_1|Ff_y) = MIM(0,—1|Ff_y,0,)| 4]
= Mlpt™0, + 1 Fy)

= @ Im(s,t —1) + i1, (13.100)
Next,
M(6s—1 — mu1|Fr_1,605] = @t70, + 9471 — [0t im(s, ¢ — 1) + LY
= ¢t 1[0, — m(s,t - 1)], (13.101)
MG|F ] = Ao(t — 1,6) + Ax(t — 1,&)my, (13.102)

and, by Lemma 13.5,
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MA[e — M(&IFE_ )| Fi_q, 06}

M{[A1(t = 1,€)(6;—1 — ms_1)

+By(t —1,8)e1(t) + Ba(t — 1,8)ea(t)]*|FE_,, 65}

M{[A1(t = 1,8)(Be-1, —me—1)]*|F;_y, 04}

= [6, — m(s,t — 1)]*(¢5 )" Al(t - 1,¢). (13.103)

Hence, from (13.100)—(13.103), we find that

diz = cov(0a, &l F7_y)

= M{[6, — m(s,t = D)][& — M(&IFL))" 17}

= M{[6s — m(s,t — 1)][6s — m(s,t = ]* (¢} ™")* A (t - LEOIFE1}

= (st — (i) Al(t - 1,€). (13.104)
We obtain (13.95) from (13.97), (13.98), (13.102) and (13.104).

In order to deduce Equation (13.96), it should be noted that, according
to the note to the theorem on normal correlation

v(s,t) = cov (65, Oslff_l,ft) =dy - d12d‘2+2d-1’-2y (13.105)
where
dyy = cov (8,0, F_,) = (s, t - 1). (13.106)
We obtain the required equation, (13.96), for (s, t) from (13.105), (13.106),
(13.104) and (13.99). O
18.8.4.

Theorem 13.8. If the matrices (B o B)(u,€), v =0,1,..., are nonsingular,
then solutions m(s,t) and (s,t) of Equations (13.95) and (13.96) are given
by the formulae

t—1

m(s,t) = [E +7s Y (#4)" At (w,€)((B o B)(u,8)

u=s
-1

+A1(u, €)v(u, 5) A7 (4, €)) " As(u, )0}

t—1

X [ms +7s Y (#2) A5 (w, )((B o B)(4,€) + A1(u,€)Y(u, )

u=s

X A3 (4, €))7 (Eur1 — Ao(u, &) — Al(u,E)«b;‘)} , (13.107)
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t-1

Y(s,t) = |E+7 ) (¢4)"Ai (w,€)((B o B)(u,£)

u=s
-1

+A; (u, £)v(u, s) A (u, §))'1A1 (u, &)y | s, (13.108)

where %, ¥y and y(u, s) are defined by (13.89), (13.90) and (13.91).

PROOF. Let us show first that at all t > s,
Y1 =7t —1,8) + o5 (s, t — 1)(h7H)*. (13.109)
Indeed,
Ye-1 = cov (Br—1, 01| Fi_y) = M{[Bs—1 — me_q][B—1 — my1]*|F7_1}
= M{[6;—1 —me,(t —1,5) + mg,(t — 1,5) — ms_1]
X[0;—1 — ma, (t — 1,8) +ma, (t — 1,8) — me—_1]*|FE_;}
= M{M[(6e-1 —mo, (t — 1,5))(Be—1 — mo, (t = 1,5))*|F_y, 6] F1_1}
+M{(mq, (t - 1,8) — me—1)(mg, (t — 1,8) — me_1)*| F5_, }
= M{y(t—1,8)|F_ )} + M{p\ (8 — m(s,t — 1))
X (85 = m(s,t = 1))" (k™)1 51}
= (t—1,8) + i (st - 1)(e71),
where (13.100) is used:
mi-1 = @i Im(s,t — 1) + L.
We obtain from (13.96) and (13.109)
7(37t) = ’)’(S,t - 1) - ')’(S,t - 1)((p.t9—1(€))*AI(t - 176)
X[(BoB)(t—1,8) + A1(t — 1,6)7(t — 1,5)A1(t — 1,€)
+A1(t - 1,8t (s, t — 1)) AT (¢ - 1,8)] 7}
xAy(t — 1,80t 1y(s,t — 1). (13.110)
For t > s, define
Ai(t—1,6) = Ai(t - 1,8)p4 7Y,
(Bo B)(t—1,€) = (BoB)(t—1,6)+A1(t—1,€)7(t~1,5)Ajt—1,¢). (13.111)
Then ~y(s,t) will satisfy (over ¢ > s) the equation
7(31 t) = 7(Sat - 1) - ')’(8,t - 1)1‘1;("’ - 175)
x[(BoB)(t—1,8) + A1(t — 1,E)v(s,t — 1) A} (t — 1,¢)] "
xAi(t—1,€)v(s,t - 1).



13.3 Forward and Backward Interpolation Equations 83

Along with (13.111), let Ao(t — 1,€) = Ao(t — 1,€) + Ar(t — 1,€)pi~2.
Then Equation (13.95) can be rewritten as follows:
m(s,t) = m(s,t —1) +(s,t = )A}(t - 1,£)
x(BoB)(t - 1,) + A1t - 1,&)7(s,t - DA (¢ - 1,6)] ™"
x[ét - AO(t - 176) - Al(t - lvg)m(svt - 1)]

Solutions of this equation (see also Theorem 13.15) can be defined by
(13.107) and (13.108). O

13.8.5. We shall discuss one more class of interpolation problems involving
the construction of the optimal (in the mean square sense) estimates of a

vector 6, from the observations &§ = {&,...,&} and the known value of
6, = B (compare with Subsection 12.4.6).
Write

(s, t) = P, < alff,et =p0), t=s,
and
fug(s,t) = M(6,|FE,0, = B), Fp(s,t) = cov (8, 05|75, 0 = B).

Theorem 13.9. If the conditional distribution II,(s) = P(6s < o|F§) is
normal, then the a posteriori distribution II4g(s,t) at allt > s is also normal.

PROOF. Let us calculate the conditional characteristic function
M{expi[z*0, + 7°6,)|FE} = M{expi[z*0,|M(expi[26:)| Ff ,0,)| F5 }.

where z = (21,...,2;) and Z = (%,..., Zk). According to the note to Theo-
rem 13.4, the distribution P(6; < (|6, F¥) is Gaussian, N (mg, (t, 5), 7, (t, 5)).
By Lemma 13.5, mg, (¢, s) = ¢%0s + 9%, and the covariance -, (¢, s) does not
depend on 6;: 7, (t,s) = 7(t, s). Hence

Mi{expliz 0] 75,6,} = exp [i2* (640, + v8) - 52900,
and
M(expilz*6, + 5 04]|F) = exp [i(zwz) - 1eac, s)z]

x M (expi[2*0, + 5* 04 0,]|FF). (13.112)

However, the conditional distribution P(6, < a|F¥) is Gaussian (Theo-
rem 13.6). Hence, it follows from (13.112) that the distribution P(6; < , 8, <
ﬂ|.7-'f) will also be Gaussian; this, along with the normality of the distribution
P(6; < B|FF) (see the note to Theorem 13.3) proves the normality of the a
posteriori distribution II,s(s,t) = P(6, < a].’l-‘te ,60: = B).
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13.3.6. The techniques applied in proving Theorem 13.9 enable us to com-
plete the proof of Theorem 13.3.

PROOF OF THEOREM 13.3. We have
¢

M (expi lZz:&} ff)

8=0

t—1

M { (expi [Z 2;03]) M (expliz;6;)|FF, 0o, ..., 0:—1)
s=0
t—1

M{ (expi lz z;03]) M (expliz*0;)|FF, 0:-1) ff}
s=0

t—1
= M{expi [Z 2305 + 2;_10e-1 + 2} (p4_10e—1 + ¢f—1)l

3=0

g
ff}

1 1
X exp {—§zfv(t,t - l)zt} = exp {i[zhbf_l] - Ezt*'y(t,t - l)zt}

M{ (expi [E z;eSD

X Mlexpi(z—1 + (0}_1)*2)*0e-1|F5 B2

Ft } (13.113)

The distribution P(6;_; < ﬂ|}'f ,0:_2) is normal (see the note to Theo-
rem 13.6); its a posteriori mean depends linearly on 6,_5, and the covariance

does not depend on 8;_ at all, since equations analogous to Equations (13.95)
and (13.96) hold for them. Hence,

M{expizi—1 + (i_1)* 2)0e—1|FF, 6s—2}

= exp|i(ze—1 + (p;-1)"2)(a(t — 1,t — 2)6e_p + b(t — 1,¢ — 2))
—%(ZH +(pp-1)"z) c(t = 1,1 — 2)(2e-1 + (wi'l)‘Zt)], (13.114)

where a(-),b(-) and ¢(-) are matrix functions (their explicit forms are of no
consequence now), dependent only on time and &. It follows from this that
0,2 enters into the exponent of the right-hand side of (13.114) linearly, and
the variables z, z;_1 quadratically.

Therefore,

t
M [exp (z Z z:0s>
=0

y
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% * * 1 *
= eXP{Z[zt Pio1 + (2e-1 + (Ph-1)"2)*b(t — 1,t — 2)] - 3% y(t,t — 1)z
1 * *
~ 5o + o) 5) elt = 1t = Deecs = (oh)5)

t—3
xM (expi [Z 2505 + {zt—2 + (2-1 + (¥}_1)*2)

=0

xa(t —1,t — 2)}0t_2]

ff) (13.115)

Extending the techniques of ‘splitting off’ variables given above we can
see that the characteristic function
]-‘f]

t
M [exp (z Z z;‘93)
8=0

too is (negative) exponential in the nonnegative definite quadratic form of the
variables zp,..., 2, which proves the conditional normality of the sequence
(0,€) governed by Equations (13.46) and (13.47).

18.8.7. Let us continue our study of the interpolation problem discussed in
Subsection 13.3.5.

Theorem 13.10. If the conditional distribution IIo(s) = P(8, < o|F%)
is normal, then the parameters mp(s,t) and Ag(s,t) of the distribution
I (s t) = P(6s < a|FE,0, = B) for all t > s can be defined by the re-
lations (compare with (12.109) and (12.110))

mﬁ(s’t) = m(sat) + 7(3’ t)(‘Pg)*'ﬁ-(ﬂ - mt)’ (13'116)

J8(s,t) = v(s,t) — v(s,8)(0}) 1 ¥l (s, 1) (13.117)
with mg(s,s) = B, 43(s,s) =0.

PROOF. The conditional distribution P(8, < a, 8, < 8|Ff) is normal. Hence,
according to the note to the theorem on normal correlation,

mp(s,t) = M(6,|FF, 0, = B) = M(0,|FF) + di2dy (B — M(6,|F5)) (13.118)

and
A(s,t) = di1 — di2d3,d3, (13.119)

where
di1 = cov (8s,0|FF) = (s, t),
dia = cov (85,0, F7),
dyy  cov (B, 0| F5). (13.120)
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According to (13.100) and Lemma 13.5,

M{(6: —me)*|F7,05] = 0(ph)" + (¥8)* — (m*(s,£)(¢%)") + ()"
(6s — m(s,1))" (02)".

Hence,
diz = cov (65, 00| FF) = M[(6s — m(s,2))(6, — my)"| F]
= M{(8, — m(s, ) M[(8, — ms)*|FE, 0,)| FE}
= du(ph)* = 7(s,t)(s)*. (13.121)
We obtain (13.116) and (13.117) from (13.118)—(13.121). a

Note. It follows from (13.117) that the covariance 73(s,t) does not depend
on 3.

13.3.8. We shall deal now with the deduction of backward interpolation equa-
tions (over s at fixed t) for m(s,t), v(s,t) and mg(s,t), 75(s,t).

Theorem 13.11. Let (1)-(4) be satisfied. Then the moments mg(s,t) and
Yp(s,t) satisfy the equations (over s < t)

ﬁ”Lg(S,t) = m(sy s+1)+(s,s+ 1)(‘p:+1)*7:+1
x[mg(s + 1,t) — mg4a], (13.122)

Fa(s,t) = Ap(s, s +1) + (8,8 + 1)(051)* 71 98(s + 1,)
XYFaeit (s, s +1) (13.123)

with ﬁlﬂ(t7t) =P, ’7ﬁ(ty t) =0.
PROOF. We obtain from (13.116) and (13.117) the following:
ma(s,s+1) =m(s,s+1) + (s, s + 1) (@3t )* v 1(8 — matr), (13.124)

Fo(s,5+1) = 7(s,5 +1) =158 + D02 ) vh1 05+ (s, s +1). (13.125)

Let us show that, for the process (6, £) governed by Equations (13.46) and
(13.47) and for all s < u <,

P(0, < o|Ff,0u,...,0:) = P(8, < a|F§,6,). (13.126)

For this purpose we shall consider the arbitrary measurable bounded

functions f(es)y Xf;+1(0’ 6)1 96‘(5), A(911) of 93, (0u+1y ey ot’é‘u-}-l’ cee ,ét))
(%o, - - - ,€u), By, respectively, and note that for s < u,

M{Xfl"f’l(e? €)|}.’5,03’ cee 7014} = M{Xfﬂ—l(o, 6)'-7:5’ eu}
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and

MA{MB4)g8 (€)M1f (8)Xur1 (8, €)1 FL, 0ul}
= M{X(8.)95 (§) £ (6s)Xz+1(6,)}
= M{X0.)95 () f (0a) M[x 41 (8, ) F5, 0, Bul}
= M{X(6u)g5(€)f (0)M[x41(6, )| 75, Bul}
= M{X(64)g5 (E)MIF(6:)| 75, ulM[x(,41(6, €)1 75, Bul}-
Therefore, by virtue of the arbitrariness of the functions A(6,) and g§(§),

M[f(03)|7"5, Ou]M[xLH(G,E)l]:S,Hu]
= M[f(0)X%41(6,6)|F5, 6u)
= M{M[f(0s)X. 410, €)1, Ous .., O)| FS, 0}
= M{xL;1(0,)MIF(0)|FF,bu, ... 0| FE, 0u}.

Because of the arbitrariness of x£_,(8,), the required equality, (13.126),
follows.

Taking into account (13.126), we find that
Hop(s,t) = M40, (5,5 + 1)|F5,6, = B]. (13.127)
It follows from this formula that
ﬁ"ﬁ(s’t) = M[m9s+x(s’s + 1)|-7:te,ot = ﬂ]’

which, together with (13.124), leads to Equation (13.122).

We shall employ the following known formula to compute the conditional
covariances: if £,£ are random vectors such that M¢*€ < oo, and if G is a
certain o-algebra, then

cov (£,£1G) = Mlcov (€,£1G,€)IG] + cov [M(£]G, €), M(£]G, £)|G).  (13.128)
According to this formula and (13.127)

Ta(s,t) = cov (8, 0,|F¢, 6 = B)
= Mlcov (05, 04| FF, 8, 0ar1)| 5, 0 = B]
+cov [M (85| FF, 82, 8s41), M (8|7, B, 6441)| 5,61 = ]
= Mlcov (8, 64|75y, 0541) |5, 6: = 6]
+cov [M(9,|f§+1,03+1), M(98|}-§+1198+1)|}-§’05 =g
= Mo, (5,5 + D)7, 6. = ]
+cov [, ,,(s,s +1),7e,,,(s,5 + 1)|F§,6, = 6)
= qp5(s,8 + 1) + M[(hg,, (5,8 + 1) —ma(s,t))
xihg,,, (5,8 + 1) — mg(s, t))*|F7, 0 = B]. (13.129)
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But it follows from (13.122) and (13.124) that

ﬁlean(s’ s+ 1) - r'hg(s,t) = 'Y(S’ s+ 1)(‘P:+1)*’Y:+1[93+1 - ﬁlg(s + l’t)]’
(13.130)
which together with (13.129) leads to Equation (13.123).

Theorem 13.12. Let (1)-(4) be satisfied. Then the moments m(s,t) and
y(s,t) of the conditional distribution I,(s,t) = P(8, < a|FF) satisfy, for
s < t, the (backward) equations

m(s,t) = m(s,s +1) +v(s,s + 1)(st1)*v} . [m(s + 1,8) — my41], (13.131)

v(s,t) = A(s,8 + 1) +v(s, s + 1) (@it )* v 117 (s + 1, )75 05 v (s, 8 + 1)
(13.132)
with m(t,t) = my, v(t,t) = v, (s, s + 1) = (s, s + 1).

PROOF. Equation (13.131) can be deduced immediately from (13.122). In
order to deduce (13.132) let us make use of (13.127) and (13.128). We obtain
v(s,t) = cov (8, 0,]F5)
= M[cov (93,03|ff,03+1)|ff]
ooV [M (8515, 054+1), M (8| FF, 0541)| 7]
= Mlcov (8, 05| FE, 1, 0041)|FF]
tcov [M(93|'7:5+1’ Os41), M(03|f§+1, 98+1)l~7:t£]
= q(s,s + 1) + M{[rhe,,,(s,s + 1) — m(s,t)]
X[, ,, (5,8 + 1) — m(s, t)]*| F£ }. (13.133)
But, according to (13.122) and (13.131),
m0a+1(3’ s+ 1) - m(s’t) = '7(3’ s+ 1)(‘P:+1)*’Y;F+1[93+1 - m(s + l’t)]’
which, together with (13.133), yields Equation (13.132). O

13.4 Recursive Equations of Optimal Extrapolation

13.4.1. Extrapolation is understood as estimation of vectors 6;, &; from the
observations & = {&o,...,&s}, where t > s. As in the case of continuous
time (Section 12.5) equations of extrapolation will be deduced only in two
particular cases due to the fact that the conditional distributions

P(6: < a,& < b|FE)

are, generally speaking, no longer Gaussian.
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Before formulating the theorems, we shall set forth the way of identifying
the cases for which extrapolation estimates can be constructed.
Due to (13.56) and (13.78),

M1 = [ao(t, &) + ar(t, §)my]
+[(bo B)(t, &) + a1(t, §) 1 Ai(t,€)]
X[(B o B)(t,€) + A1 (t, )7y AT (¢, 6)]F
x[(B o B)(t,€) + A1(t, )1 A1 (£, )/ 2E(t + 1), (13.134)

€41 = [Ao(t, &) + AL(t, €)my
+[(B o B)(t,€) + A1(t, )1 A} (t,€)] /8t + 1).  (13.135)

Denote by
ni(t,s) = M(8:|F5), mna(t,s) = M(&|F5)

the optimal (in the mean square sense) estimates 6; and & from £§ =
{€o ..., Eso}- Since ni(t,s) = M[M(6;|F¢)|FE] = Mlmy|F§) and

MEE+1)|FE) =0

for all t + 1 > s, then equations for n1(¢,s) and na(t,s) can be found by
taking M(:|F$) on both sides in (13.134) and (13.135).

It is easy to see from this that the simultaneous determination of n, (¢, s)
and ng(t,s) becomes possible if

ao(t,€) = ao(t) +a2(t)é, a1(t,§) = ai(?), (13.136)
Ao(t,€) = Ao(t) + A2(t)é:, A1(t,€) = Ai(?) (13.137)

where the matrix functions a;(t) and A;(t), ¢ = 1,2, and the vectors ao(t)
and Ap(t) depend only on time.

If we are interested in nothing but estimation of variables 6;, then deter-
mination of n1(t, s) becomes possible if we require (13.136) with a(t) =0 to
be satisfied.

18.4.2.
Theorem 13.13. Let (1)-(4), (13.136) and (13.137) be satisfied. Then the
moments ni(t,s) and na(t,s) satisfy the equations
ni(t+1,s) = ao(t) + a1(t)ni(t, s) + az(t)na(t, s), (13.138)
’nz(t +1, S) = Ao(t) + Al(t)nl(t,s) + Az(t)ﬂa(t, S), (13.139)

with n1(s, s) = mg, na(s,s) = &;,.
If (18.136) is satisfied and, in addition, az(t) =0, then

ni(t +1,8) = ao(t) + a1(t)ni(t,s), ni(s,s) = ms. (13.140)
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Proof is immediate by taking M(-|F%) on both sides of (13.134) and
(13.135).
Let us now consider the backward equations for n;(t,s) and na(t, s).

Theorem 13.14. Let (1)-(4), (13.136) and (13.187) be satisfied. Then

(Z;gzig) _ (x'iiff’t,si)) ratt (Dl(s,s);EDéf (s,€)>

X [€as1 — Ao(s) — A1(s)m, — Az(s)&,],  (13.141)

where

Di(s,€) = (bo B)(s,£) + a1(s,£)7:A1(s, ),
Dy(s,§) = (BoB)(s,8) + Ai(s,€)7: 41 (s, §)-

E = E(x1), the matriz &t can be defined by the recursive equations

a1(t—1) az(t-1 _
djt (All((t - 1)) Azz((t — 1))) ¢:1 1’ ¢: = E(kxl)x(k.xl); (13.142)

() -4(2) S (). oo

If (18.186) is satisfied, and, in addition, as(t) =0, then

ni(t, s +1) = m(t,s) + Y716 o B)(s,€) + ar(s)1s41(s, €)]
X[(BOB (3,6) +A1(3,€)78 1(3,5 ]+

and

X[€s4+1 — Ao(s, &) + A1(s, &)ms), (13.144)
where the matriz ¢% can be defined by the equations
Vi =at -9 95 = Egxk, (13.145)
and
na(t,0) = Yimo +Z¢ (13.146)
u=0

PROOF. By induction we obtain from (13.134) and (13.135) the following:

(Zt) = & (mobo) + iqsz—l (Zz((z)))

u=0
t—1
v-1 ( Di(u, s)D+(u s)DW(u,o) _
+L ( DY*(u,6) fut

(13.147)
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Take the conditional expectation M (|]-'f '+1) on both sides in (13.147).

Then, taking into account that M[&(u + 1)|.7-'§ +1] =0, u > s, we easily find
from (13.147) that

ni(t, s+ 1)\ _ (n1(t8)) | g1 [ Di(5,6)D5 (5,6)Dy/%(s,€) . .
(et = (e ) + o < Dy )T

this, together with (13.135), leads to the system of equations given by
(13.141).
(13.144) can be deduced in a similar way. O

13.5 Examples
13.5.1. We shall present here examples which illustrate the potential appli-

cations for the equations of filtering, interpolation and extrapolation deduced
above.

EXAMPLE 1 (Parameter Estimation). Let § = (61,...,6k) be a Gaussian
vector with M8 = m and cov (6,8) = ~. It is required to estimate 6 from

the observation of the I-dimensional process &, t = 0,1,..., satisfying the
recursive equations

Ev1 = Ao(t, &) + A1(8,€)0 + By(t,€)ex(t +1) (13.148)
with £, = 0.

Assuming® (1)-(4) we obtain, from (13.56) and (13.57), for m; = M(6|FF)
and 7, = cov (8, 8| FF), recursive equations

myy1 = me +nA5 (4 €)[(B1BY) (¢, €) + At €)1 ATt €)]F
X [€e+1 — Ao(t, €) — Ax(t,€)m], (13.149)
Yer1 = Y — VAL, (BB} (8, €) + A1 (t, )7 AL (8, )] T A1 (2, €)e, (13.150)

with mg =m, 70 = 7.

Theorem 13.15. If the matrices (B B})(t,£) are nonsingular (P-as.), t =
0,1,..., then solutions of Equations (18.149) and (18.150) are given by the
formulae'®

9 Assumption (2) in this case can be replaced by the condition
M Tr Ay (t,£) A5 (¢, €) < co.
10 Compare with Theorems 12.2 and 12.8.
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¢ -1
Mey1 = [E +7)_ Af(s,€)(B1B}) (s, €) Al (s, 5)}

s=0

X [m + 7ZAI(31 g)(BlB;)_l(& E)(£3+1 - AO(sag)):| ’

§=0

(13.151)

. -1
Yet1 = E+'yZAI(s,E)(Ble)_l(s,ﬁ)Al(s,E)] . (13.152)

8=0

PROOF. By Theorem 13.3, the conditional distribution P{6 < a|.7-'f} is
Gaussian (P-a.s.) with the parameters (mq, &;).

Assume that the matrix v; is positive definite. Then the conditional dis-
tribution P{# < a|F¢} has the density

3
folalet) = LU= A7}

The conditional distribution P{¢;41 < b|FF,0} is also (P-a.s.) Gaussian
with the parameters {(Ao(¢, &) + A1(¢,£)8), (B1B7)(t,€)}. Since the matrices
(B1B7)(t,&),t=0,1,..., are nonsingular (P-a.s.), the distribution P{£;4+; <
b|F¢,6} has the density

(dP{&1 < b|F},0
f5t+1 (blg(t)-‘-lv 0) = t+1db : } ’

But according to the Bayes formula, there exists a density

_ dP{f < al]:t€+1}

fo(algs™) =

given by the formula

f9(a|£(t))f€z+1 (§t=1|§(t)’ a)

t41y _ .
folal§g™) = Ter Feoun (Eortl€h, 2) fo(@lEL)dm (P-as.). (13.153)

Let us write
gi1(t +1,€) = (2m)*/2/det ve41, (13.154)

g2(t+1,6) = (27r)("+’)/2\/det'yt~det(B1Bf)(t,§)
X/wc f€t+1(§t+1|§(t)a$)f6($|€(t))d$~ (13.155)

By Theorem 13.3, the density fo(al¢it!) is (P-a.s.) Gaussian with the
parameters (m¢41,7Yt+1), where ;41 is a positive definite matrix. Taking this
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fact as well as (13.154) and (13.155) into account, we find from (13.153) that
(P-a.s.)

[91(t +1,8)] L exp {—%(a = myp1)*yih(a — mt+1)}
= e + 1,6 exp{ = (@~ m)27 o - mo
~5 (€1 — Aol ) ~ Ar(6,8)0)" (BB (1,6)

X (€cs1 — Ao(t, ) Al(t,g)a)}. (13.156)

Equating now the square and linear forms over a in the left- and right-
hand sides of (13.156), respectively, we obtain, by virtue of the arbitrariness
of the vector a, the recursive equations

Yo =1+ Al(,€)(B1BY) T (¢, £) Ax(t, ), (13.157)

Yodimesr =¥ me + AT, 6)(B1B:) Mt )1 — Ao(t,€)]. (13.158)
If the matrix 49 = 7 is positive definite then by induction it follows that
recursive equations (13.157) and (13.158) hold true for all ¢. Hence, in the
case where v is nonsingular, (13.151) and (13.152) for m;y1,¥e+1, t > O,
follow from (13.157) and (13.158).

If the matrix ~ is singular, then, assuming v§ = v + €F, € > 0, we find
Y41 and mg,,; from (13.151) and (13.152) with the substitution of v + eE
for «. In particular,

: -1

Vg1 = {E +(RE)) A'{(s,é)(B1BI‘)_1(s,§)A1(s,E)} [y + €E].
8=0

After a passage to the limit € | 0, we obtain the required representations

for my4+1 and 741 for any symmetric nonnegative definite matrix «. O

Note. Let mﬁ") and *yt(") be parameters of the a posteriori distributions
P(6 < a|Ff), corresponding to the a priori distributions P(§ < a) ~
N(m(")’ fy(n))_

Let 0 < ™, Try(™ < oo. Then, if limy,_,0o(y™)~! = 0 and the ma-
trices Zi=0 A3(s,8)(B1B7)~1(s,£)A1(s, £) are nonsingular (P-a.s.), it is not
difficult to prove that there exist

(n)

- . ~ . (n
my = lim m;’, A = lim v
n—o0 n—o0

)

and
-1

t
Fer1 = | D Ai(s,6)(B1B}) " (s,0)Ai(s,8)|

$=0
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M1 = Fet1 ZA (5,€)(B1B7) ™ !(s,€)(5,€) (€541 — Ao(5,6))| - (13.159)

=0

Note that the estimate given by (13.159) coincides with the maximum like-
lihood estimate for the vector § from the observations &5t = {&, ..., &1}
13.5.2.

EXAMPLE 2 (Interpolation of a Gaussian Markov Chain). Let
0, = (61(2),...,6k(t)), t=0,1,...
be the Markov chain defined by the recursive equations
Or1 = ao(t) + a1(t)6; + b(t)er(t + 1), (13.160)

where ag(t),a:1(t) and b(t) depend only on ¢, and the random vector 6 ~
N(m,7),

Let us discuss the problem of estimating the variables 6, on the assump-
tion that 6, = G, s <.

Let

mp(s,t) = M(6s|0: = B),
A(s,t) = Ap(s,t) = M[(0s — p(s,t)(0s — mp(s,t))*|0: = B),
my = M0t, Yt— = COV (0t7 0t)

Then, according to Theorems 13.4 and 13.10,
miy1 = ao(t) + a1(t)me, Yeq1 = a1(t)yeai(t) + b(t)d* () (13.161)

and

mp(s,t) = me+7(08) v (B—mu),  A(s,t) = vs—7s (L) * 75 ©%vs, (13.162)

where ¢ = a1(t — 1) - - a1(s). In particular, if 6,41 = 6; + €1(¢t + 1), then

s+y

fnp(s,t) =m " 7] . (13.163)

(s t) = (s +7) [1—

EXAMPLE 3 (Interpolation with Fixed Delay). Let us d1scuss the problem

of estimating the variables 8; from the observations Eo = {€o0,..-,&s+h}
where h is a fixed value., Let mh(s) m(s,s + h), vn(s) = 'y(s s+ h) and
assume that for all s, s = 0,1,..., the matrices (s, s + 1)(p2+!)*v;}; are
nonsingular.

Then the forward equation given by (13.95) yields

mu(s+1) = m(s+1,s+h) +7(s + 1,5 + h)(@3IM)* A% (s + h, €)
x[(Bo B)(s+h,&) + A1(s + h, €)Ys+r AT (s + h, €)]F
X [Es+n+1 — Ao(s + h, &) — Ar(s + h,E)msyn].  (13.164)
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From the backward equation given by (13.131), on the assumption of
nonsingularity of the matrices (s, s + 1)(¢2th)*y. +11, we obtain

m(s+ 1,5+ h) = map1 + [7(s,5 + 1)(03) 7] 7 ma(s) — m(s, s +1)],
(13.165)
which, together with (13.164), yields the following equation for m(s):

ma(s +1) = map1 + [v(s, 8+ D@5 4] ima(s) — m(s, s +1)]
+7(s + 1,8+ B)(@510)* A1 (s + h,€)[(B o B)(s + h, )
+A1(s + h, E)Ys+n AT (s + b, E)]F
X[Eorht1 — Ao(s+h,€) + Ar(s + h,E)masn].  (13.166)

Similarly, from the forward equation given by (13.96) we find for v (s +
1) =v(s+1,s+ h+1) that

Mm(s+1) = (s +1,s+h) —(s+1,s+h)(1h) A} (s + h,€)
X[(Bo B)(s+ h,&) + A1(s + h,€)ve1n AT (s + b, §)]F
x A1(s,h, )@t (s +1,5 + h). (13.167)

From (13.132) we obtain

Y(s+1,84+h) = [v(s, s+ 1)(@5™) v, 17w (s) — F(s, s + 1)]
X[V (s, s + 1)L

Substituting this expression for v(s + 1,s + h) in (13.166) and (13.167)
we obtain equations describing the evolution of my(s) and ~(s). In this case
mp(0) = m(0, k) and y,(0) = (0, k) are defined from the forward equations
given by (13.95) and (13.96).

In the particular case h =1,

mi(s+1) = M1 +Ys4147(s + 1,E)[(B o B)(s +1,¢)
+A1(s + 1, €)1 45 (s +1,€)]F
X[fs_,_g - A()(S + l,ﬁ) — AI(S + 1,£)m3+1]. (13.168)

18.5.8.
EXAMPLE 4 (Linear Prediction of Stationary Sequences). Let &, t =
0,+1, +2, be a stationary wide-sense process with M¢; = 0 and the spec-
tral density
e +1/?
'621‘)\ + Leu + %,2
Let it be required to construct an optimal (in the mean square sense)
linear estimate of the variables ft from §0 = {Eo, . ,53} s<t.
We shall construct the Gaussian process &, t = 0, £1,.. ., with Mé&=0
and the spectral density f(A) = f()). Such a process can be obtained by
solving the equation

Fo) = (13.169)



96 13. Conditionally Gaussian Sequences

41 + %(£t+1 +&) = e(t+ 2) +e(t+1),

where €(t), t =0,+1,.. ., is a sequence of Gaussian random variables with

1, t=s

Me(t) =0, Me(t)e(s) = 8(t,s) = {0, e

Set 8, = &1 — €(t + 1). Then for (8:,&;), t = 0,=£1,..., we obtain the
system of equations

1 1 1
Op1 = =50 — 56 + et +1),

€t+1 = 0t + e(t + 1) (13170)

According to Theorem 13.13, ny (¢, s) = M (6:|F¢) and na(t, s) = M(&]FE)
can be defined from Equations (13.138) and (13.139):

1 1
nl(t + 1,8) = _Enl(t’s) - §n2(tvs)a
ny(t +1,8) = ny(t,s), (13.171)

with ny(s, s) = mg, na(s,s) = &.
7s and the initial condition m, = M(6,)F¢) entering into (13.171) can be
defined by the equations (see (13.56) and (13.57))

1 1 1—-7
Mgt = =5, = 5€ + m(€“+l —m,), (13.172)
Yo+l = 7 1’7 . (13.173)

s

Note here that mg =0, v = 1.

Indeed, by virtue of the stationarity of the process (6,&;), t =0, £1,...,
parameters di; = M0?, djz = M6,&;, and dyy = M €2 are easily found from
the following system obtained from (13.170):

1 1 1 1
din = Zdu + Zd22 + §d12 + g
1 1 1
dig = —§d11 - '2'd12 + X

dyg = di1 + 1.

Thus, d1; =1, d12 =0, da2 = 2, and, by the theorem on normal correla-
tion, mg =0, v = 1. _

Returning to the initial process &, t = 0,+1,..., we find that optimal
linear prediction can be defined from (13.171)-(13.173) where (in (13.172))
&; should be substituted for & (see Lemma 14.1).
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Notes and References. 1

13.1. The theorem on normal correlation (Theorem 13.1), proved in general
by Marsaglia [225] (see also Anderson [3]), has been repeatedly used in several
chapters of this book. The authors owe the proof of Theorem 13.2 to Kitsul. For
the properties of pseudo-inverse matrices see also Gantmacher [69]. Lemma 13.3
was proved by Pjatetsky (Masters Thesis).

13.2-3.5. The material of these sections is based on the papers of Liptser and
Shiryaev [213], and Glonti [77-79).

Notes and References. 2

13.1. The theorem of normal correlation in a general setting uses the Moore—
Penrose pseudo-inverse matrix. This matrix is also extensively employed in sta-
tistical applications and in Kalman filtering for the discrete-time case. The main
properties of the pseudo-inverse matrix and its various applications can be found
in Albert [1].



14. Application of Filtering Equations to
Problems of Statistics of Random Sequences

14.1 Optimal Linear Filtering of Stationary Sequences
with Rational Spectra

14.1.1. The objective of this chapter is to show how the equations of optimal
nonlinear filtering obtained for conditionally Gaussian random sequences can
be applied to solving various problems of mathematical statistics. In partic-
ular, the present section deals with the problem of linear estimation of un-
observable components of a multidimensional stationary wide-sense process
(discrete time) with rational spectral density in the components accessible
for observation.

The possibility of applying the filtering equations obtained above to this
problem is based on the fact (Theorem 14.1) that any stationary sequence
with a rational spectrum is a component of a multidimensional process satis-
fying a system of recursive equations of the type given by (13.46) and (13.47).

More precisely, let n(t), t = 0,+1,+2,..., be a (real or complex) station-
ary wide-sense random process permitting the spectral representation

T P 1(6”‘)
t)= | eMIZLo(d)), 14.1
o) = [ e day (141)
where &(d)) is an orthogonal (random) measure with
d/\

M®(dX) =0, M|B(dN)|? =

n
P_1(2) = Zbkz Qn(z)=Zakzk, an=1, ak,bxeR.

Assume that all the roots of the equation Q,(2z) = 0 lie within the unit
circle.

It follows from (14.1) that the process n(t) has the rational spectral density
Pa_1(e?) 2

fa(A) = e

(14.2)

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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Construct from the measure $(dA) the process

us
e(t) = / erE=Dg(d)). (14.3)
It is clear that
T dX
M t) = M t 2 = —
s =0, Mef= [ F=1
and . A
Me(t)g(s) =/ e”‘(t")z— = 4(t, s), (14.4)
- s

where 4(t, s) denotes the Kronecker function.

It follows from (14.4) that the sequence of values of £(t), t = 0, %1, ...,
is a sequence of uncorrelated variables.

In addition to the process 7(t), permitting the spectral representation
given by (14.1), we shall define new processes 71 (t), . .., 7a(t) by the formulae

n;(t) = / eMW;(eMB(dN), j=1,...,n, (14.5)

where the frequency characteristics W;(z), j = 1,...,n, are selected in the
following specific manner:

n—1
Wj(z) = 2" DIWo(2) + D Bez™®*94D, j=1,...,n—1;  (146)
k=j
n-1
Wi(z) = =271 Z axWi1(2) + 27185; (14.7)
k=0
j-1
Bi=bn1, Bi=bnj—> Bitn_js1, j=2,...,n (14.8)
i=1
It follows from (14.6) and (14.7) that
Wj(2) = 27 [Wj1(z) + B (14.9)
and
n—1
Wn(z) = 271 [— z axWis1(2) + ﬁn] . (14.10)
k=0

It is not difficult to deduce from this that

n—1 n—1
Wa(z) =271 l— Y ar R OWL () + D Bz 4 ﬁn} , (14.11)
k=0

j=k+1
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and, therefore,

P (2)
Wa(z) = 2=, 14.12
where P,S'i)l (2) is a polynomial of degree less than or equal to n — 1.
Next, due to (14.9)—(14.12),
P(J) (z)
Wj(z) = 21— 14.13

where the polynomials P(J )1(2) also have degree less than or equal ton — 1
and, due to (14.8),

PY (2) = P,_1(2). (14.14)
Thus m1(t) = n(t).

Theorem 14.1. The stationary (wide-sense) process n(t), t = 0,1, ...,
with spectral representation given by (14.1) is one component of the n-
dimensional stationary (wide-sense) process (m1(t),...,nu(t)), m(t) = n(t),
obeying the system of recurrent equations

'I’)j(t-l-l) = ’I’]j+1(t)+,3j€(t+1), i=1...,n—-1,

n-1

Ma(t+1) = =Y ans1(t) + Baclt +1). (14.15)
j=0

The process €(t), t = 0,£1, ..., permits the representation given by (14.3)
Mn;(s)Et) =0, s<t, j=1,...,n, (14.16)
and the coefficients fi,...,Bn are given by (14.8).

PROOF. Note first that from (14.12) and (14.13) it follows that all the poles
of the functions W;(2) lie within the unit circle.
Taking advantage of (14.6), (14.7) and (14.5), we find easily that the

process (11(t), ..., (t)) satisfies the system of recursive equations given by
(14.15).
Let us establish now the validity of (14.16). Let!
0 1 0o ... 0
0 0 1 ... 0 ’gl
A= ... ... ...... ... |, B=|"]. (14.17)
o o o ... 1
—ag —@] —G3 ... —Gp_1 Pn

! In algebraic operations Y; is regarded as a column vector.
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Then in matrix notation the system of equations given by (14.15) permits
the representation

Y; = AY;_1 + Bey. (14.18)
Let t > s. Then, due to (14.18) and (14.4),
MY,E(t) = AMY,_1E(t) = A’MY,_5&(t) = --- = AN MY,_nE(2);
in this case, for each j, 7 =1,...,n,
) 1/2
x| p@ (giry]?
P ()| dx
= 2y1/2 _ 1
[May(s - N)E() < (Minyts = MPP/2 = | [ 12500 2] <o
Therefore, in order to prove (14.16), it suffices to show that
lim AN =0 (14.19)
N-o0

(0 is the zero matrix).

The eigenvalues of the matrix A are the roots of the equation @Q,(2) =0
and, therefore, they lie within the unit circle. Transform the matrix A into a
Jordan form

A=cJCc™!,

where the eigenvalues of the matrix A are on the main diagonal of the matrix
J. Let X be a maximal eigenvalue of the matrix A. Then, since ]_:\| <1, no
element of the matrix J fv exceeds in magnitude the values of N|A|V—1. But
AN =CJNC~! and N|A|N-! = 0, N — 0o, which proves (14.19). O

Note 1. If n(t), t = 0,+£1, ..., is a real process, then each of the processes
n(t), n2(t), ..., Nn(t) is also real. Here the covariance matrix I' = MY;Y*
satisfies the equation

I' = A'A* + BB*. (14.20)

If t > s, then
cov (Y, Y;) = MYY = A°T, (14.21)

which follows from the equalities
Y; = AY;_1 + Be(t) = A%Y;_, + ABe(t — 1) + Be(t)
t-1
= ATV, + ) ATVIBe(G+1). (14.22)
=2

Similarly, at t < s,
cov (Y, Y,) = T'(A*)*°.

Note 2. If n(t), t = 0,%1,..., is a Gaussian process, then &(t), t =
0,£1,..., is a Gaussian sequence of independent random variables.
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14.1.2. We can take advantage of (14.15) in order to deduce filtering equa-
tions of stationary sequence components with rational spectra.
Let ve = [0:,&] = [(61(8),..,0k(2), (Ga(2),- .., &(®))], t = 0,1,
be a real stationary (wide-sense) (k + !)-dimensional process permitting the
representation .
v = / M (M) B(dN), (14.23)
where W (z) = ||[Wy.4(2)|| is the matrix of order N x m, N =k +{, with the

rational elements
P (er)

Wrq(2) = 6’2‘5’1,.“(,)‘, (14.24)

rq
and ®(d\) = [B1(d)),...,Pm(dN)] is the random vector measure with un-
correlated components M 45 ;(dX) = 0, M|®;(d))|? = d\/27. Assume as well

that the roots of the equations Qn na) (2) = 0 lie within the unit circle.
Applying Theorem 14.1 to each of the processes

T
Upmalt) = / MW, (628, (dN), (14.25)

after simple transformations for the vector & = (£1(t), ... ,&(t)) and the vec-
tor 6, (composed of the vector 8, = (61(t),...,0k(t)) and all those additional
components of the type 72(t), ..., nn(t), which arise by Theorem 14.1 in
the system of equations given by (14.15)), we obtain the system of recursive
equations

ét+1 = alét + agt: + bE(t + 1),
Eir1 = A10; + As€e + Be(t+1), (14.26)

where &(t) = (€1(t),. . .,&m(t)) is the sequence of uncorrelated vectors with
uncorrelated components, Me;(t) =0, Mel(t) =1,

gj(t) = /_ ) A t-Dp,(dN). (14.27)

The matrices ai, A;,b and B, i = 1,2, in (14.26), can be found by immediate
computation.

Assume now that in the vector v; = (;,&;) the first component is unob-
servable. Consider the problem of constructing for each ¢, ¢t = 0,1,..., the
linear optimal (in the mean square sense) estimate for 8; from the observa-
tions (&, .- -,&t)-

If v, t = 0,1, ..., is a Gaussian process, then by Theorem 13.4 and
Corollary 1 of the theorem, rh; = M(0,|Ff) and 4, = M ([6; — he) [0 — 70e)*)
can be defined from the system of equations

M1 = a1miy + a2és (14.28)
+(bB*+a1%: A})(BB* + A14: A7) T (41— A1 — Azés),



104 14. Filtering Equations in Problems of Statistics
Y41 = ar¥za] + bb*
—(bB*+a1%. A1) (BB"+ A1 A])* (bB* +a1%: 47)*, (14.29)
to be solved under the initial conditions
o = M(boléo), Fo = M([Bo — rio][fo — 100]*).
According to the theorem on normal correlation (Theorem 13.1),

g = cov (6o, £o)cov * (€0, €0) o, (14.30)

40 = cov (6o, fo) — cov (B0, &o0)cov T (&0, &0 )cov (6o, &o). (14.31)

Since m; = M (54.7"5) depends linearly on &,...,&;, for the Gaussian
process y; = [6;,&;] the solution of the problem of constructing the optimal
linear estimate of 6; from &y, ..., &; is given by Equations (14.28) and (14.29).

In the general case the optimal (in the mean square sense) linear estimate
can be also defined from the same equations. This assertion is validated by
the following:

Lemma 14.1. Let (o, 8) be a random vector with M(a? + 5%) < oo and let
(&, B) be the Gaussian vector with the same two first moments as in (a, (),
i.e.,

M&' = Mot, MG =Mpg, i=1,2,

Mag = Map.
Let I(b) be the linear function of b € R!, such that (P-a.s.)
U(B) = M (a|B). (14.32)

Then I(B) is the optimal (in the mean square sense) linear estimate of the
value of a from 3, MI(8) = Ma.

PROOF. First of all note that the existence of the linear function [(3) with
the property given by (14.32) follows from the theorem on normal correlation.

The unbiasedness (MI(3) = Ma) of the linear estimate follows from the
following explicit chain of equalities:

MU(B) = MI(B) = M[M(&|B)] = M& = Me.
Next, if f(ﬂ) is some other linear estimate, then
Mla - (B = M[a - L(B)]>.

Hence, by virtue of the linearity of the estimates I(3) and I(8),
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Mla - I(B))* = M[a - I(B)]* > Ma - I(B)]* = Ml - L(B)],

which proves the optimality (in the mean square sense) of /(8) in the class of
linear estimates. O

Note. The assertion of the lemma holds true if o and 8 are vectors, a =
(alv cee aak), B = (:61’ cee ,:Bl)'

In order to apply Lemma 14.1 to prove that the optimal estimate of 6,
from &,...,& is defined by the system of equations given by (14.28) and
(14.29), it remains only to note that the process (6;,¢&;) satisfying (14.26)
and the Gaussian process defined by the same system have the same first two
moments.

14.1.8. To illustrate the approach suggested above to the problems of es-
timating components of stationary processes we shall discuss the following.

EXAMPLE 1. Let 6; and (;,t = 0, %1, ..., be mutually uncorrelated station-
ary (wide-sense) sequences with M6, = M¢; = 0 and the spectral densities

1 1
T 3 . 19 A = Ty 1909
le> + 12 fe(N) le™ + cg|?

fo(A) =

where |¢;| < 1,7 =1,2.
We shall assume that 8; is a ‘useful signal’, ¢; is ‘noise’, and that the

process
£ =06+ G (14.33)

is observed.

According to Theorem 14.1, we can find uncorrelated sequences &, (¢) and
ea(t), t = 0,41, ..., with Me;(t) = 0, Me;(t)ei(s) = 6(t,s), i = 1,2, such
that

0i41 = Oy + 81(t +1), &1 =cals+ea(t +1). (14.34)

Taking into account (14.33) and (14.34), we obtain
€41 = Orp1 + Ge41 = (a1 — )0t + 2&e + a1 (t + 1) +ea(t + 1).

Hence the ‘unobservable’ process 8; and the ‘observable’ process &; satisfy
the system of equations

bry1 = 10 +e1(t +1),
i1 (1 —€2)0: +cobs +e1(t + 1) + ea(t + 1). (14.35)
Due to (14.28) and (14.29), the optimal linear estimate m;, t = 0,1,..., of

the values of §; and the mean square filtering error v, = M(6; — m;)? satisfy
the recursive equations

1+ci(er — ey
2+ (a1 —c2)*y

Myyy = cime + i1 — (c1 — c2)my — c264), (14.36)
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(14 ci(er — c2)ye)?
2+ (c1—c2)?v
Let us find the initial conditions myg, 7o for this system of equations.
The process (6;,&:), t = 0,%1,..., is a stationary (wide-sense) process
with M6; = M¢ = 0 and the covariances dj; = M6?2, dio = M6,&, and
d2a = ME? satisfying, due to (14.35) and (14.20), the system of equations

Yer1=Cr+1- (14.37)

din = cddi+1,

di2 = ci(er — c2)di1 + c1cdiz + 1,

doe = (Cl — Cz)2d11 + C%d22 + 202(61 — 62)d12 + 2.
From this we find

1 1 2—c?—-c2

d T — dig = ——= = ——
11 I—C%’ 12 ].—C%’ d22 (I—C%)(].—'C%)’
which, together with (14.30) and (14.31), gives
di2 1-—- c%
mo = d22€0 =gsa- 250,
a2, 1 1-c 1

PTG, TS G- Ae-4-B 2-4-3

Thus the optimal (in the mean square sense) linear estimate m; of the
‘useful signal’ 6; from &p, ..., & and the mean square error 7, are defined by
means of the system of equations given by (14.36) and (14.37), and can be
solved under the initial conditions

1- 1

mo=—=——=80, T=5—""3"3
250 2 _ o2
2 c"l’ c2 2—ct—c;

In the case of estimation of the parameter 6; from the observations
(é-ny-.-s€0,---,&) the system of equations given by (14.36) and (14.37)
also holds true, and

m _ 1—C2 5 1
-N 2—61 2 —-N; 7-=N 2—0%—03.

14.1.4. In conclusion, we note that the optimal linear estimates of interpo-
lation and extrapolation for a stationary sequence with a rational spectrum
can be obtained (as in the case of filtering) from the results of the previ-
ous chapter if we discuss only Gaussian sequences with the same first two
moments.
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14.2 Maximum Likelihood Estimates for Coeflicients
of Linear Regression

14.2.1. Att=0,1,..., let the random process

N
£(t) = Y ai()6i +n(t), (14.38)

i=1
be observed, where 8 = (y,...,0n) is the vector (column) of unknown pa-
rameters, —0o < 0; < 00,4 =1,...,n, a(t) = (a1(t),...,an(t)) is the known
vector function (row) and 7(t), t = 0,%1,..., is the Gaussian stationary ran-

dom process with Mn(t) = 0 and the rational spectral density

Po_1(e?)|?

o |- (14.39)

fn()\) =

In (14.39),

n—1
Paoy(z) =) _b;2%, b1 #0,
j=0

n
Qn(2) = Zajzj, an, =1,
J=0

where it is assumed that the roots of the equation Qn(2) = 0 lie within the
unit circle.

In order to obtain the estimates of maximal likelihood of the vector § =
(61, --,0n) one needs to find the Radon-Nikodym derivative dpg / dug of the
measure /J,g, corresponding to the process £ = (£(t)), t = 0,1,..., defined in
(14.38), over the measure #2 for the same process with 8 = 0 (0 is the zero
vector).

According to Theorem 14.1, the process 7n(t), t = 0,£1, ..., is a compo-
nent of the process (71 (t),-..,7n(t)) with n1(t) = n(t) defined by the equa-
tions

nj(t+1) = ﬂj+1(t)+ﬂj8(t+l), ji=1...,n-1,
n—1
Mt +1) = —agm(t) - }: a;n;j+1(t) + Bne(t +1), (14.40)
j=1
where £(t), t = 0,1, ..., is some sequence of independent Gaussian random

variables with Me(t) = 0, Me%(t) = 1, and where the numbers i, ..., B, are
given by (14.8).
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Since £(t +1) = a(t + 1)8 + n1(t + 1), for the process (£1(t),...,&n(2)),
with & (t) = &(t), &;(t) = n;(t), 7 = 2,...,n, we have the system of recursive
equations

&1(t+1) = a(t+1)0 + &(t) + Bre(t + 1),
E(t+1) = &eya(t) + Bre(t+1), 1<k<n,

n—1
En(t+1) = —ao(a(t)—a(t)8)— Y _ a;€i41(t)+Bne(t+1).  (14.41)

=1
For a fixed value of @ let us write

mi(t) = Mg (®)IFF], k>1,

2 (t) = M[(&:(t) - md@®) (&) —mit))], 45> 1.

The system of equations given by (14.41) is a particular case of the system
of equations given by (13.46) and (13.47), and, therefore, m{(t) and 'yfj(t)
satisfy Equations (13.56) and (13.57). It should be noted that the coefficients
of the equations from which 'yfj (t) are defined do not include 8. The initial

conditions 'yfj (0) do not depend on @ either. Therefore, the elements of the
matrix 7% (¢) = ||'yfj (t)]| do not depend on 6. Hence we shall denote it simply

by W(t) = ||7ij(t)”7 1,J 2 2.
For fixed 6, the equations for m{(t), k = 2,...,n, according to (13.56)
have the following form:

B1Bk + Yok (2)

B3 + v22(t)
X[€p1 —a(t+1)0 —mf(t)], 2<k<n-—1, (14.42)

mi(t+1) = md, (t) +

n—1
mé(t+1) = —ao(&a(t) — a(t)d) — Y a;mf,, ()
j=1

B1Bn — Y51 am 41 (t)
B3 + y22(t)

(€41 — ot +1)8 — mi(t))].
(14.43)

In solving the linear system of equations given by (14.42) and (14.43) we
establish that
m(t) = wo(t, €) + v (1), (14.44)

where v(t,£) is a Ff-measurable function linearly dependent on &, ..., &,
and v (t) = (v11(t),...,v1n(t)) is a nonrandom vector function (row).

Let us apply Theorem 13.5 to &;(t) = £(t). Then (for fixed 0) there exists
a sequence of independent Gaussian random variables &(t), t = 0,1,..., with
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ME(t) = 0, M&(t) = 1, Ff = o{w : £(0),...,£(t)}-measurable for each ¢
(since By = bp—1 # 0), such that (P-as.)

£t +1) = a(t +1)0 + mi(t) + 1/ 62 + v22(1)E(t + 1). (14.45)

Therefore, making use of (14.44), we obtain

Et+1) =[a(t+1) + v1(2)])6 + vo(t, &) + B(H)E(t + 1), (14.46)

B(t) = \/ﬂ% + Y22(t).

But é( ) = 0,1,..., are independent Gaussian random variables with
ME(t) = 0, M&%(t) = 1. Hence, we find from (14.46) that

CLE@) = exp{§(0)0(0)9 _ (a(0)6)

where

dug
74 €0, = o

L — (s — 1, vi(s —1)]8
+Z<[§( o 1322][?(1) )+ vi(s — 1))

1
1 [(a(s) +va(s = 1))8)?
-3 T 1) ) } (14.47)

where 62 = Mn?(0).
Assume that at some t > N — 1 the matrix

_ 2 00) zt: [a(s) +v(s = DI*[afs) + va(s — 1))

0 1) (14.48)

is nonsingular. Then from (14.47) we obtain the maximum likelihood estimate
0; (which maximizes the right-hand side of (14.47)) given by the formula

6, = {a (0)€(0 Z [o(s) +va(s — D)]*[€(s) — wo(s = 1,8)]
L F(s-1)
(14.49)
It is easy to deduce from (14.48) and (14.49) that the estimate 6, is
unbiased (Moét = 6) and that

My|(6, - 6)(6, - 6)"] = D; . (14.50)

With the help of simple transformations it follows from (14.47) and (14.49)
that

L E() = exp {O*Dtét - %G*Dte} . (14.51)
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It is seen from this, in particular, that ét is a sufficient statistic for the
problem under consideration (see Section 1.5).
We shall show now that in the class of unbiased estimates

6, = (6:1(t), ... , 0 (t))
with M Eﬁl 62(t) < oo the estimate is 6, efficient, i.e.,
My(6; — 6)(8; — 6)* > My (6, — 6)(6, — 6)* = D;*. (14.52)
Indeed, according to the Cramer-Rao matrix inequality (1.50),
M6, - 6)(8, — 0)* > I71(0), (14.53)

where ; is an unbiased estimate of the vector 6 (Mg, = 6) and I(6) =
[|;;(8)|| is the Fisher information matrix with the elements

15(6) = My {a% In 225 (s( ) (t))} {63 (5(0) (t))} -
But in our case,
I1(0) = (14.54)

In order to prove (14.54), 1ntroduc1ng the notation D;;(t) and D;;(t) for
the elements of the matrices D; and D;! respectively, we note that

ldugO t—NDteét 1)
R €00 = 3 k,<>k[,()_§,],
and therefore,

9 du ¥ )

39 7710 dﬂ£ (6(0) ,f(t)) ——;Dﬂ(t)[ol(t)-—ol],

8 . dul 8  dul
I;;(0) = M{a—mlnaz—é(ﬁ(o),---,é(t))} {aT,jlnd—Zé(E(O),---,é(t))}

= Y Dj(t)Du(t)M[Bi(t) — 61][6k (t) — 64]

lLk=1

= Z Djl(t)Dzk le ZDﬂ(t) (Z Dzk t)le (t)>

Lk=1

2

b4

2

- ZDﬂ(t)J(i, l) = Dj;(t).

=1

-~
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We obtain the required inequality (14.52) from (14.53) and (14.54), which
proves the efficiency of the estimate 6,.

Note. The method used above for the deduction of (14.49) and (14.51)
can also be applied in the case where b,_1 = b,_3 = -+ = bp_;m = 0,

bn—m—l 7é 0.

14.2.2.

EXAMPLE 2. Let £(t) = 6 + n(t), where 0 is an unknown parameter,
—00 < 8 < o0, and n(t), t = 0,%1, ..., is a stationary Gaussian process
with Mn(t) = 0 and the spectral density

e 41 2
12260 L air o L
e2(i)) + etA + 3

)

The maximum likelihood estimate of the unknown parameter @ can be
also interpreted as an estimate of the mean M{(t) = 6 of the process £(t),
t=0,41,....

By Theorem 14.1 the process 7)(t) is a component of the two-dimensional
process (m(t), n2(t)) with n1(t) = n(t) defined by the recursive equations

m(e+1) = mle) + e+ 1),
m(t+1) = —3m) - mlE) + e+ 1)

and a sequence of the independent Gaussian random variables £(t), t = 0, 1,
..., where Me(t) = 0 and Me?(t) = 1. From this we see that

Et+1)=0+n(t) +e(t+1),

nmt+1)= —0———2‘6(1)

— () + —;—e(t+ 1).

In accordance with this, mé (£) = M (n2(t)|F¥) is a solution of the recursive
equation

6 —&(¢) 5+
i = =Ty M ) -0 m(),
where (see (13.57))
2
_ 1 (5+7)
Yer1 =Tt g o
By virtue of Equation (14.20),
Mui(t) = &, Mr3(t) = 5, and Mm(t)na(t) = 5.
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Hence

2 9

ME(t) - 6° = Mri(¢) = 15— MIE(t) ~ 6)ma(t) = Mn(t)a(t) = ~ 7.

and, therefore, by the theorem on normal correlation (Theorem 13.1),
1 5
8(0) — =(f _ =2
m(0) = 30~ €0)), w=1.
In solving the equation for m®(t) with the initial condition m®(0) = 3(6—
£(0)), we obtain

t—1

3
m'o = 111 (e <o)

5T (22 [her -0+ 2240

3=0j=s+1
= 1p(t,&) — 11(t)6,

where
155/ 242,
w(t.6) = 5 1T (3522 ) &

4 =0 1 + ’YS

t—1 t—1 3 1
5 + 2')’] 1 b) + ’ys

+3 11 (—2—) [—s(s) +2—¢(s+1)|,
520 j=si1 1+ Y5 2 14,

—_

t—1 3 t—1 t—1 3

3 + 2y, 2 4 2y,
== -2 - —z 7).
n(t) 4H( 1+73> ZZ( 1+7,~>

$=0 $=0 j=s+1

Now, due to (14.48) and (14.49), we have (¢t > 1)

5 &K1+m(s—1)?
D“[E+; 1+17(s—1) ]

5 _ p-1|5 ~ (L+vi(s — 1))(E(s) — vo(s — 1,€))
é, = D, [—156(0)+$2=‘I ! 1+'y(s—1)0 ]
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14.3 A Control Problem with Incomplete Data (Linear
System with Quadratic Performance Index)

14.8.1. In this section we shall show how the optimal nonlinear filtering equa-
tions deduced in the preceding chapter can be applied to optimal control
problems.

It will be assumed that the state of some ‘controlled’ system is described

by the process (6,€) = [(61(t),...,0k(t)), (&1(),...,&(@)], t =0,1,...,T <
00, which obeys the equations
Oi41 = c(t)us + a(t)f; + b(t)er(t +1),
€41 = A(t)0: + B(t)es(t +1). (14.55)
Here c(t), a(t), b(t), A(t) and B(t) are matrices of dimension (kxr), (kxk),

(kx k), (Ix k), (I x1), respectively, whose elements are deterministic bounded
functions, t =0,1,...,T — 1. The mutually independent random sequences

e1(t) = (enn(t), ..., ew(t)), €2(t) = (eaa(t),...,eat)), t=1,...,T,
in (14.55) are Gaussian with the independent components, Me;;(t) = 0,
Me%(t) = 1.
The system of equations given by (14.55) can be solved under the initial
condition 6y, where 6 is Gaussian,

M6y =m, M][(6 —mo)(fo —mo)*] =1,

independent of the sequences €;(t), 1 = 1,2, t = 1,...,T. (14.55) includes
as well the vector column u; = (u;(t,£),...,u(t,€)), where at each ¢, t =
0,1,...,T — 1, the functions u;(t, &), playing the role of controlling actions,
are ff = o{w: &,...,&}-measurable (§ = 0).

All the controls u = (ug, .. .,ur-1) discussed from now on will be assumed
to satisfy .
> Mul(t,€) <oo, t=0,1,...,T -1 (14.56)
i=1
Assume that the control performance of u = (ug,...,ur-1) is measured

by the quadratic performance index
T-1
V(u) =M | > (6; H(t)8: + uj R(t)us) + 05H(T)0r | , (14.57)
t=0

where H(t) and R(t) are deterministic, bounded, symmetric nonnegative def-
inite matrices of the orders (k x k) and (r x r), respectively.
It is necessary to find the (optimal) control @ = (dy, ..., @p-3) for which

V(@) = inf V (), (14.58)

where ‘inf’ is taken over all the controls satisfying (14.56).

This problem is an example of control problems with incomplete data
where the control must be based on the observable part of the coordinates
(%0, &1, .. .) describing the state of the control system.
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14.3.2. In searching for optimal controls (in a given problem the existence
of such controls will be clear in what follows), both the ideas of dynamic
programming and the results of optimal nonlinear filtering will be employed.
We shall introduce now some additional notation.
Let P(t) and v, t =0,1,...,T, be matrix functions of the order (k x k)
defined as solutions of the recursive equations

P(t) = H(t)+a*@t)P(t + 1)a(t)
—a*(t)P(t+1)c(t)[R(t)+c* (t) P(t+1)c(t)] T c* (t) P(t+1)a(t)
(14.59)
with P(T) = H(T) and

Te+1 = a(t)yva*(t) + b(t)b*(t)
—a(t)1A*()[B(t)B* () + A(t)nA™ (1) T A(t)wea” (t) (14.60)

with v = «. Also let,
D(t) = a(t)7A"(?) { [B(t)B*(t) + A(t)y. A* ()] 2}+ , (14.61)

and let p(t), t =0,1,...,T, be a sequence of nonnegative numbers defined in
a recursive manner:

p(t) = p(t + 1) + Tr PY2(t + 1)D(t) D*(t) P2t + 1), p(T) =0. (14.62)

It follows that, from (14.62),

T-1
p(t) = Y Tr PY%(s + 1) D(s)D*(s)P*/*(s + 1). (14.63)
s=t

The matrices P(t) and v, and the numbers p(t) are found from the coeffi-
cients of the system of equations given by (14.55) and the specified matrices
H(t) and R(t). Hence they do not depend on the data and, being only func-
tions of ¢, can be found a priori.

Note that the matrices P(t), t = 0,1,...,T, found from the system of
recursive equations given by (14.59) are symmetric and nonnegative definite.
In order to convince ourselves of this, let us consider the problem of filtering
for processes

fs41 = a*(T — s)0, + HY*(T ~ s)é1(s + 1),
c*(T - 8)8, + RYA(T — 5)&3(s + 1),

where €;(s) and &(s) are independent Gaussian vectors with independent
components whose means are equal to zero and whose variances are equal
to one. Assume that 6, is a Gaussian vector, My = 0, M 0090 = H(t),
independent of &(s), &2(s), s =0,...,T — 1.
If we compare (13.57) for 4, = M[(Gt m:)(0; — 7M4)*], where i, =
M(6;|éy, ..., &), with (14.59) for P(t) we shall see that P(t) = 47-¢. There-
fore, the matrices P(t) are symmetric and nonnegative definite.

£s+1 =
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14.8.5.
Theorem 14.2. In the class of controls satisfying (14.56) an optimal control
@ = (@, ..., Ur-1) exrists and is given by the formulae

i(t, &) = —[R(t) + c* () P(t + 1)c(®)] T c*(t) P(t + 1)a(t) e, (14.64)

where the matrices P(t) can be defined from (14.59), and My can be found
from the recursive equations of optimal filtering

M1 = c(t)ie + a(t)m(t)
+a(t) 1. A* (t)[B(t) B* (t)+A() v A" ()] [€er1— At)ri]
(14.65)
with Mg = m and the matrices 7 defined in (14.60).

The observable process &, t = 1,...,T, in (14.65), can be defined by the
system of equations

Or41 = c(t)is + a(t)f; + b(t)er(t + 1),

€v1 = A(t)0; + B(t)ea(t + 1), (14.66)
and g
V(@) = p(0) + m* P(O)m + Y Tr H/2(t)y, H'/?(t). (14.67)
=0

PROOF. Let u = (uo,...,ur—1) be some control satisfying (14.56). Then
MY, 6:6; < co and

T T-1
V() =M MO HE)6F) + MY uR(t)ue. (14.68)
t=0 t=0

For the control u = (ug,...,ur-1), let
mi = MEI\F), A = M6} - m})(E; - mi)’),

where the corresponding controlled processes 6 and &' were defined in
(14.55). It should be emphasized that for any control v = (ug,...,ur—1)
subject to (14.56) the matrices +;* satisfy the system of recursive equations
given by (14.60) (see Theorem 13.4 and Property 3 in Subsection 13.2.4).
Since neither the coefficients of these equations nor the initial conditions de-
pend on the control, the matrices ;' are the same for different u. Hence,
7¥ = 7, (see (14.60)). Let us show now that in (14.68)

MY *H(t)6¥|FE ) = (m¥)*H(t)m® + Tr H/2(t)nHY?(t).  (14.69)
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We have
M@ H()6FF ) = M[w" mt +m¥) H(t)(0) —mi —m¥)|FF ]
= (m¥)*H(t)m} +2M[(6} — my')H(t)m¥|F7 |

+M[(0F — my)* H(t)(6} — )Iff}
= (m¥)*H(tymy + Tr MHY?(8)(6} — m) (6} — mp)* HY2(t)| Ff']
= (my)*H(t)mY + Tr HY2 () M[(6F — my)(6F — mi) |7 JHY2(t).

(14.70)
But, according to Property 3 in Subsection 13.2.4,
M6 —my) (6 —m¢)*|FE ] = M{(8F — m)(6} —m})*] =,
which, together with (14.70), proves (14.69).
Thus, due to (14.68) and (14.69),
T-1
Z'I‘rHl/z(t)'y HY2(t) + MZ my)* H(t)m} + M) ui R(t)u;.
=0 t=0 t=0
(14.71)

Since the functions Tr H'/2(t)y, H/2(t) depend only on t and do not
depend on either the control or the processes describing the state of the
system, it is obvious that the optimal control % in the primary problem
(assuming it exists) coincides with the optimal control in the problem of
minimization of the functional

T T-1
V=M (Z(mg)*ﬂ(t)m;f +y) ut‘R(t)ut> ) (14.72)
t=0 t=0
The ‘controlled’ process m} is defined by the equation
m¢ = c(t)us + a(t)my
+a(t)nA*(t)[B()B*(t) + A(t)nA* (O] [6, — AE)my].

(14.73)

According to Theorem 13.5, there exists a sequence of independent Gaussian

vectors £(t) = (€1(¢),...,&'(t)),t =1,...,T, with independent components
MEeL(t) =0, M(E,(t))> =1,i=1,...,l, such that

m,; = c(t)us + a(t)my + D(t)e“(t + 1). (14.74)

It should be noted here that for every permissible u the values of €%(t)
coincide (8“(t) = &(t), t = 1,...,T). This follows from (13.84) and the fact
that the 8* — m¥ do not depend on u (see (14.73) and (14.55))

Thus the primary problem of determining the optimal control for the
system (14.55) and the functional (14.57) is reduced to a problem of finding
the optimal control for the filtered system given by (14.74) with the functional
(14.72) (‘the separation principle’ [313]).
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14.3.4. In finding optimal controls in this reduced problem the following two
lemmas will be useful.

Lemma 14.2. If u = (uo,...,ur-1) is the control subject to (14.56), then
for any nonnegative definite symmetric matriz S(t + 1)

M{(mit)*S(t + V)mi 17 ]

M[(miy1)" S(t + 1)miy|my, we

(m¥)*a*(£)S(t + Da(tym® + urc*(t)S(t + 1)e(t)u;
+2uyc*(t)S(t + 1)a(t)my

+Tr SY2(t + 1) D(t)D*(t)SY3(t + 1). (14.75)

PROOF. Due to (14.74),
M((m¥,)*S(t + 1)miyq | FF ]

M{[c(t)ut + a(t)ym® - D(t)E(t +1)]*

xS(t + 1)[c(t)us + a(t)m¥ + D(t)&(t + 1)]| ff"}

(m¥)*a*(t)S(t + Da(t)ymy + usc*(t)S(t + 1)c(t)ue

+2urc* (t)S(t + 1)a(t)ymy

F2ME* (¢ + 1)|FE)D*t)S(t + 1)(c(t)us + a(t)my)

+MI[E*(t + 1)D*(£)S(t + 1)D(t)&(t + 1)|FF ]

= (m¥)*a*(t)S(t + L)a(t)my + uic* (t)S(t + e(t)u:
+2ulc(t)S(t + 1)a(t)m¥ + Tr SY/2(t + 1)D(t) D*(t)S'/3(t + 1),

where we took advantage of the fact that M(g(t + DIFE) =0 and

MIg*(t + 1)D*(t)S(t + 1)D(t)e(t + 1) ]
= M[E*(t +1)D*(t)S(t +1)D(t)e(t +1)]
= TrSY2(t + 1)D(t)Me(t + 1)z*(t + 1) D* (t)S*/2(t + 1)
= Tr SY2(t + 1) D(t) D*(t)SY/?(¢). (14.76)
_ _ a
_ Note. Let 6(1),...,0(T) be a sequence of independent Gaussian vectors
(8(t) = (81(t), - - -, 8:(t))) with the independent components having zero mean

and unit variances. Consider the process m, t = 0,...,T, defined by the
recursive relations

Mep1 = c(t)us + a(t)mg + D(£)3(t + 1), mo =m, (14.77)
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where u; = u;(w) does not depend on §(t + 1). As in the proof of (14.75), we
show here that

Mlmi 1 S(E + 1)meyfue, my]
= mya*(t)S(t + 1)a(t)m,

+ugc* (t)S(t + 1)c(t)u,

+2uyc* () S(t + 1)a(t)m,

+Tr SY2(t + 1)D(t) D* (£)SY/2(t + 1). (14.78)
Let the matrices P(z) introduced above and the functions p(t), t =
0,...,T, be related to the scalar functions
Q:(z) = p(t) + " P(t)z, (14.79)
where z € RX. Since p(T) = 0, and P(T) = H(T),
Qr(z) =z*H(T)z. (14.80)

Lemma 14.3. The functions Qi(x), t = 0,1,...,T, satisfy the recursive
equations

Qu(z) = inf {&"H()z + VROV + M[Qenr )]}, (14.81)

where V € R", z € R,
i) = c(t)V +a(t)z + D(t)5(t + 1). (14.82)
In this case, the inf in (14.81) can be attained on the r-dimensional vector
V = —[R(t) + c*(t)P(t + V)c(t)] T " (t) P(t + 1)a(t)z. (14.83)

PROOF. Let us verify that the functions Q.(x) = p(t) + z*P(t)z satisfy
Equation (14.81), i.e., that

p(t) + z*P(t)x = ir‘}f{x*H(t)x +V*R@)V +p(t +1)
+M[(z5)* Pt + 1)zhY } (14.84)
Set

J(V,z) = V[R(t) + " (t)P(t + 1)c(®)]V + 2V*c* (£)P(t + 1)a(t)z. (14.85)

Then, taking into account the note to Lemma 14.2, we find that (14.84)
is equivalent to the equations

p(t) + * P(t)z = p(t + 1) + Tr PY/2(t + 1)D(t) D*(t) P/t + 1) + inf J(V, z).
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But, due to (14.62),
p(t) = p(t + 1) + Tr PY/2(t + 1)D(t) D* (t) P*/2(t + 1).
Hence, it need only be verified that
z*P(t)r = ix‘}f J(V,z) (14.86)
for any = € R¥.

If the matrices R(t), t > 0, in J(V, z) were positive definite, then J(V,z) >
—oo and infy J(V, z) would be attained on the vector

V = —[R(t) + c*(t) P(t + 1)c(t)] T c* (¢) P(t + )a(t)z, (14.87)

and it would be easy to check immediately that J(V,z) = z* P(t)z.
In order to prove (14.86) in the general case we shall consider the system
of algebraic equations (with respect to V = (V4,...,V;))

%VJ(V, z) =0, (14.88)
i.e., the system
[R(t) + c*(t)P(t + 1)c(t)V] = —c*(t) P(t + )a(t)z. (14.89)

According to Lemma 13.3, this system is solvable and the vector V defined
by (14.83) is one of its solutions. Hence the minimum of the quadratic form
J(V, x) is attained on the vector V, and in order to verify (14.86) it remains
only to establish that z* P(t)z = J(V,z), i.e., that

*P(t)z = z* [H(t) +a* ()Pt + a(t + 1) (14.90)
—a*(t)P(t +1)c(t) (R(t) + c*(t) P(t)c(t) ™
xc*(t)P(t + l)a(t)] z.

The validity of this equality follows from the definition of the matrices
P(t) (see Equation (14.59)). O

14.8.5. Returning to the proof of Theorem 14.2, consider the control
@ = (dg,...,lUr-1)
defined in (14.64). Then, due to Lemma 14.3,
— M[Qi+1(et1) — Qe(The)] = My H (), + Gz R(t)is). (14.91)

Summing (14.91) over t from 0 to T — 1 and taking into account that
Mo = m, we find
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T-1
Qo(m) = MQr(r) + Y M} H(t)m, + i R(t)i]
T = T-1
D MmiH(t)yme + Y Miy R(t)dy. (14.92)

t=0 t=0

On the other hand, let u = (up, . .., ur-1) be any of the controls satisfying
(14.56). Then, due to Lemmas 14.2 and 14.3,

—M[Qiy1(mgyy) — Qe(mi)] < M{(m)* H(t)my + ui R(t)ud],

whence it follows that
T T-1
Qo(m) <> M(m)*H(t)m} + Y Mu}R(t)u. (14.93)
t=0 t=0

The comparison of (14.92) with (14.93) proves the optimality of the con-
trol @ = (#g,...,0r-1). (14.67) follows from (14.71), (14.79) and the fact
that

T
V(@) = Qo(m) + Y Tr H'/2(t)n H'(t). O
t=0
Note. Let 6y = m be a deterministic vector, b(t) = 0. Consider the problem
(with complete data) of controlling the deterministic process 6;,t =0, ..., T,
with
0t+1 = c(t)ut + a(t)et, 00 =m, (1494)
and the functional
T T-1
V() =) 07H(t)0: + > ufH(t)u,. (14.95)
=0 t=0
In this particular case, the optimal control is
iy = —[R(t) + c* () P(t + 1)c(t)]Tc* () P(t + 1)a(t)F;, (14.96)
where
ét+1 = C(t)’&t + a(t)ét, éo =m,
and

V(@) = m* P(0)m. (14.97)
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14.4 Asymptotic Properties of the Optimal Linear Filter

14.4.1. Consider the filtering problem? for the Gaussian process
(évg) = [(él(t)1 s 7ék(t))7 (él(t)v e 7él(t))]7 t= 07 la ey

satisfying the recursive equations

Oir1 = a18; + agfs + brer(t + 1) + boesy(t + 1),
£t+1 = A19t + A2§t + Blsl(t + 1) + BzEQ(t + 1) (1498)

with the constant matrices ay, ag, b1,b2, A1, A2, By and B; of order (k x k),
(kx 1), (kxk), (kxI),(xk),({x1),(xk), (I x]l), respectively.

Let m; = M(§t|ff) and 7, = M[(6; — ;) (6; — 7)*]. Then, according to
Theorem 13.4, the error matrix -y, satisfies the equation

Y41 = a.lfytaI +bo b
—~[boB+a;17iA}|[BoB+A17: A}t [boB+a1v: A7]*, (14.99)

where bo b = b b} + b2b3, bo B =b,B} + b2B5 and Bo B = BB} + B»B;.

In this section we investigate the asymptotic behavior of the matrices v,
at ¢ — 00. Under the assumptions formulated later in Theorem 14.3 we shall
show that lim;_,00 ¢ = ¥° exists and 0 < Try° < 0.

The existence of such a limit is crucial for the application since in this

case the optimal mean square estimate my, t > 0, ‘tracks’ the values of ét,
t > 0, with finite error even when

k
ZM@?(t) — 00, t— 00
Jj=1

Before passing to a clarification of the conditions guaranteeing the ex-
istence of the limit v° = lim;_,o 7:, note that it is enough to consider the
system of equations

Oiv1 = aby + bE](t + 1),
1 = Ab, +B€2(t+1) (14.100)

instead of the system of equations given by (14.98), with 8y = o, & = &,
a=a;~(boB)(BoB)*A;, A=A, (14.101)

b=[(bob) — (bo B)(BoB)*(boB)*|, B=(BoB)Y2 (14.102)

since the equations for 7, in (14.98) and (14.100) will coincide.
Indeed, if my, (t + 1,t) = M(8y11|F;,,,0:), then

2 Regarding the notation adopted here, see Section 13.2.
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Yerr = M[(Bes1 — met1) (Gr41 — Mmeg1)”]

M| (841 — mg, (8 + 1,8) + mg, (¢ +1,8) — my41)

X(ét+1 —mg, (t + l,t) + mg, (t + l,t) - mt+1)*]
= M[(6r41 — my,(t +1,8))(Be41 — mg, (t +1,8))7]
+M([(mg, (t + 1,t) — myp1)(mg, (t + 1,8) — me41)”].
Due to (13.91),
M{(Bers = mg, (¢ +1,)Bepr — mg, (¢ + L,H)] = 2t +1,1)
=bob— (boB)(BoB)t(boB)* = bb*,

and it follows from the definition of my, (t + 1,¢), due to the note to Theo-
rem 13.4, that

mg,(t+1,t) = a10; — az€; + (bo B)(B o B)* (&41 — A10; — Azfy).

Since m¢41 = M{mg, (t+1, t)lff ', 1], we obtain from the recursive equation
for mg, (t + 1,t) that

Megr = aym(t,t + 1) + agé;
+(bo B)(B o B)* (§41 — Aim(t,t + 1) — As&),
where m(t,t +1) = M[§t|.7"t£+1]. Consequently,
mg,(t +1) —myp1 = [ay — (bo B)(Bo B)* A;)(6; — m(t, ¢ + 1)
= a(f; — m(t,t + 1)),

and

M((mg, (t 4 1,8) — myq1)(mg, (t + 1,8) — mey1)*] = ay(t, t + 1)a”,
where

v(t,t + 1) = M[(8; — m(t,t + 1))(G; — m(t,t + 1))*].
But, according to (13.110),
Yt t+1) =1 — %Ai[Bo B+ Ai1 Al T Ay

Therefore, for -y, t > 0, we have:

Yer1 = [a1 — (bo B)(Bo B)* Aj]yila1 — (bo B)(Bo B)T Ay]*
+[bob— (boB)(Bo B)*(bo B)*|
~[a1 — (bo B)(B o B)*(bo B)*|1:A]
x[BoB + A17tA’i‘]+A1'yt[a1 — (bo B)(Bo B)*(bo B)*]*.
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Hence, in what follows, we shall discuss only the system of equations given
by (14.100) and study the asymptotic behavior of the matrices v; satisfying
the recursive equation

Yi+1 = a')’ta* + bb* — a'ytA* [BB* + A’)’tA*]+A'yta. (14103)
Theorem 14.3. Let the following conditions be satisfied:
(1) the rank of the block matriz

A

Gy = Aa

A
of dimension (kl x k) is equal to k;
(2) the rank of the block matriz G3 = (b ab...a*~b) of dimension (k x lk)

is equal to k;
(3) the matrizx BB* is nonsingular.

Then lim;_,oo v: = ¥° exists and does not depend on vo. Try° < 0o and the
matriz ¥° is the unique solution (in the class of symmetric positive definite
matrices) of the matriz equation

v = aya* + bb* — ayA*(BB* + AvA*) 1 Avya*. (14.104)

14.4.2. Before proving this theorem let us make some auxiliary assertions.

Lemma 14.4. Let D and d be matrices of dimension (I x k) and (k x k),
respectively, and let

D

D, = bd 3 nZk,

D
be block matrices of dimension (nl x k).
Then the matrices Dy Dy and D} Dy, n > k, are either both singular or
both nonsingular.
PROOF. From the rule for multipiication of block matrices it follows that
n—1 ) ]
DD, = DiDi+ Y _(d*)’D*Dd’. (14.105)
=k
It is seen from this that the singularity of the matrix D}, D,, implies the
singularity of the matrix D} Dy.
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Let now the matrix D} D; be singular. We shall show that the matrices
D} D,,, n > k are also singular.

Denote by = (21, ...,Zk) a nonzero column vector such that
z*Di Dz = 0. (14.106)
We shall show that Dd?z = 0 for all j > k. Since
k-1 . _
D;D, =) (d")D*Dd?,
=0
due to (14.106) it follows that
Dr=0, Ddz=0,..., Dd*'z=0. (14.107)
Set
Yo=2, y1=dr=dyo, Yj+1=dy;, j<k-1
Then
Dyo = 0, Dy1 = 0, ey Dyk_l =0. (14.108)
But the system of vectors (yo,y1,- - -,Yk), where each vector has the di-
mension k, is linearly dependent. Hence, there exist numbers ¢y, . .., ¢k, not
all equal to zero, such that
k
Y cjy; =0. (14.109)
=0

Let ¢ = max([j < k: ¢; # 0]. Then, from (14.109), we obtain

i—1 c

_§ : / /o J
Yi = ijj, cj - _Za
i—0 '3

and, therefore,
i-1 i-1
gk =d" "ty = chdk_'yj = chyk—ﬁj-
= =

Hence, due to (14.108),

i—1
Dd*z = Dy* = " ¢ Dyg_iy; = 0.
j=0

We establish by induction from this that Dd’z = 0, j > k, which, together
with (14.105), proves the statement of the lemma. |

Corollary. Let D = D(kx1), d = d(xxx) be some matrices and let
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D, =(DdD-.-d""'D)
be a block matriz of order (k x nl), n > k. Then the matrices DnD,'L and

Dkf),’: are either both singular or both nonsingular.

Lemma 14.5. Let 6 = [01(t),...,0k(t)], t =0,1,..., be a Gaussian sequence
satisfying the recursive equation

0t+1 = a0t + bE(t + 1), 00 = O, (14110)

where a and b are matrices of dimension (k x k) and £(t) is a sequence
of independent Gaussian vectors e(t) = (e1(t),...,ex(t)) with independent
components, Me;(t) =0, Me(t)=1,j=1,...,k, t=0,1,....

If the matriz G2 = (b ab...a*~1b) of dimension (k x lk) has rank k, then
the matriz I't = M6:6} att > k is positive definite.

PROOF. We find from (14.110) that
Ft+1 = M0t+10:+1 = M[a0t + bE(t + 1)][0'0t + b&'(t + 1)]*
= aM6,6}a* + bMe(t + 1)e* (¢ + 1)b".

Hence,
Liy1 =alia* +bb*, Ip=0. (14.111)

Therefore

Iy = bb*, Iy =>bb*+ abb*a*,...,

I; = bb* +abb*a® +--- + +a'~1bb* (a*)'" 1.
Let t = k. Then, obviously, I; = G2G3 and at t > k

t-1
I, =GyG3+ ) abb*(a®). (14.112)
i=k

Since the rank of the matrix G, is assumed to be equal to k, then the
rank of the matrix G G35 is also equal to k. It follows, therefore, from (14.112)
that for ¢ > k the matrix I} is nonsingular. O

Lemma 14.6. Let (6,€) = ([04,...,0),[€1,...,€xn)) be a Gaussian vector
with the positive definite matrice

cov (8,8) = M[(6 — M)(6 — M), (14.113)
cov (,€]6) = M[(€ — M(£16))(€ - M(£1))*)- (14.114)

3 By the theorem on normal correlation (Theorem 13.1) the matrices cov (€,€16)
and cov (0, 6|£) do not depend on 6 and &, respectively.
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Then the matriz
cov (6, 01€) = M[(6 — M(61€))(6 — M(61¢))"] (14.115)
is also positive definite.

PROOF. Because of the nonsingularity of the matrices given by (14.113) and
(14.114), the Gaussian distributions? P(§ < a) and P(¢ < bl§ = a) have
the densities f;(a) and fz5(bla). It can be easily deduced from this that
there exists a density f;(b). Hence, it follows from the Bayes formula that

the distribution P(f < a|é) has density f4,£(alb) as well, and

fz5(bla) f5(a)
fe®)
The existence of this (Gaussian) density implies that the corresponding

matrix of the covariances cov (8, 8|€) is nonsingular and, therefore, positive
definite. O

f5¢(alb) =

Lemma 14.7. Let 42, t =0,1,..., be a solution of the equation
Ye41 = ayea* + bb* — ay; A*(BB* + Ay, A*)T Avya* (14.116)

with the initial condition ¥§ = 0 (0 being the zero matriz of order (k x k)).
If the matriz BB* is positive definite, and the rank of the matriz Go is equal
to k, then the matriz vQ is positive definite.

PROOF. Let 62, ¢t =0,1,..., be a solution of the equation
0t+l = a0t + b€1(t + 1) (14117)

(see (14.100)) with 8y = 0. Then 79 = M[(6? — m?)(6? — mQ)*] and m? =
M (62| F§) where
&+1 = ABD + Bea(t +1). (14.118)

Write: é = 0]?;, é = (611 . ,gk) 0 = (00’ . 10k—1); €= (52(1)’--"52(k))'
Also, let

B =diag(B---B), @=diag(a---a)

be block diagonal matrices in which only the blocks situated on the diagonals

of the matrices B and a, respectively, are different from zero. Then the system

of equatlons given by (14. 118) for t = 0,1,...,k — 1 can be represented as

£ = @b + B&. The vectors (0 6) and £ are 1ndependent since the sequences
€1(t) and e3(t), t = 1,2,.... are independent. Hence

4 The notation {# < a} denotes the event{; < a1,...,0, < an}.



14.4 Asymptotic Properties of the Optimal Linear Filter 127
M(£16) = aM (616)
and
£ — M(€)9) = ald — M(616)] + Be.

Because of the independence of the vectors § and £, from this it follows
that

cov (€,£]6) = acov (8, 6|6)a* + BB*.
Since the matrix BB* is nonsingular, the matrix
BB* = diag (BB* - -- BB*)

is also nonsingular. Next, the matrix cov (4,8) = M 89(6%)* is nonsingular by
Lemma 14.5. Hence, by Lemma 14.6, the matrix

cov (6,6]) = M[(63 — M(621F%)) (88 — M(82]FE))*] = 8

will also be nonsingular. O

Lemma 14.8. If the rank of the matriz Gy is equal to k, then for any vector

z=(z1,...,Zk), |Ti| <o00,i1=1,...,k,
supz*yir < o0o. (14.119)
>0

PROOQF. Let z; = (z1(t),...,zx(t)), t = 0,1,...T > k, be the controlled
process satisfying the recursive equation x;11 = a*z; + A*us, o = z, where
the control u; = (u; (¢, zo,.-.,2Zt),- -, w(t, Zo,...,2)) is chosen to minimize
the functional

T-1
Vr(z;u) = zpvoxT + Z[a:;‘bb*mt + u; BB*uy). (14.120)
t=0

According to the note to Theorem 14.2, the optimal control s, ¢t =
0,1,...,T — 1, exists and is given by the formula

iy = —[BB* + AP(t + 1)A*|Y AP(t + 1)a* %,
where #;47 = a*%; + A*4; and

P(t) = bb* +aP(t+1)a* —aP(t +1)A*[BB* + AP(t +1)A*]*
xAP(t+1)a*, P(T)=1. (14.121)
Comparing this equation with Equation (14.103) we convince ourselves

that
P(t) = yr-e. (14.122)
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Since (see (14.94)) for the optimal control @ = (o, ..., 4T-1)
Vr(z; @) = 2* P(0)x = z*yrz,
in order to prove the lemma it suffices to show that
Vr(z; @) < ¢ < 00, (14.123)

where the constant ¢ does not depend on T'.
By the conditions of the lemma, the matrix G; has rank k. Hence, the
matrix GG, is nonsingular.

Consider the control iy = (4(t, zo),. .., W(t,zo)) defined as
. [ —AdtY(GIGy) Y (a*)rx, t<k
U = .
0, t>k
The associated controlled process &, t = 0,1,...,%47 = a*3t + A*dy,

goes to zero in k steps, since

k-1
T = (a*)k.’L‘o + Z(a*)k—t—lA*’llt
t=0

k-1

— (a*)k {E—- [Z(a*)k—t—lAtAak—t—ll (G;GI)—-I} Zo
t=0

= (a")*{E - (G1G1)(GiG1) '}zo = 0.

Consider the functional Vp(z;d). Since 4 = 0. £ = 0, t > k, we have
supps i Vr(z;u) < oo. But by virtue of the optimality of the control @ =
("7‘0’ e ,ﬁT—1)7

sup VT(x’ ﬂ‘) < sup VT(x’ﬁ)
T>k T>k

Hence

sup z*yrz = sup Vp(z; @) < sup Vp(r;4) = max Vp(z,4) <oco. O
T>0 T>0 T>0 0<T<k

Lemma 14.9. Let 42, t = 0,1, ..., be the solution of Equation (14.116) with

the initial condition 4 = 0. If the rank of the matriz G, is equal to k, then

there exists
lim 49 = 4°, (14.124)

t—o0

where 70 is a nonnegative definite symmetric matriz with Try° < oo. If,
in addition, the rank of the matriz G4 is equal to k and the matric BB* is
nonsingular, then the matriz v° is positive definite.

PROOF. According to Lemma 14.8, the values of *~yrx are bounded for any
T >0 (Jzs| < 00,3 =1,...,k). Let us show that these values are monotone
nondecreasing functions of T
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Let Ty > T, @°(T1) and @°(T%) be optimal controls corresponding to the
observation durations 77 and T3, respectively.

If #9(T1) and #9(T3) are trajectories of the controlled processes for the
controls 4°(T1) and @°(T3), respectively®, then

8z = VP (2;3°(T2))

Ty—-1

> [(E(T2))*bb* (2)(T2)) + (5 (Tz))* BB* (@(T2))]
t=0

T1—-1
> [(E2(T2))*bb" (82(T2)) + (@(T3))* BB* (& (T2))]
=0

v

v

ngl (z; ﬁo(Tl)) = z*yp .

Hence, if @°(T},) is an optimal control on the interval T}, and T,;; =
T, +1, then

VE, (2;8°(T1)) < Vi, (2;@°(T2)) < - <V, (2;@%(Tw)),

and, because of the uniform (over T,,) boundedness of the values of V (z;
@°(T,)), there exists

. 0 (.. ~0 — *n0
T’l.l'r_>n0o Vr, (z;4°(T,)) = z* v =.

Because of the arbitrariness of the vector z it is seen that the limit matrix
+° is symmetric nonnegative definite and that Tr+° < co.

If, finally, rank Go = k and the matrix BB* is nonsingular, then, by
Lemma 14.7, we have that z*,x > 0 for any nonzero vector z. But z*vyrz is
monotone nondecreasing in T'. Hence, for any nonzero vector x the values of
z*yrx > 0, T > k, which proves the positive definiteness of the matrix °. O

14.4.8.
PROOF OF THEOREM 14.3. Take the control

Uy = —[BB* + AY°A*| 1 Ay%a* T, (14.125)

where
Tt+1 = a*Tt + A*Ut (14126)

and the matrix 4° is defined by (14.124). We shall show that
Jim z:v°z, = 0. (14.127)

Due to (14.125) and (14.126),

5 The index 0 in V2(z;-), @°(T) and #9(T) indicates that vo = 0.
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{ZTia + T AW {a*T; + ATy}
= 7;{a7%"* — 2a7°A*(BB* + Ay’ A*)" ' 47°a*
+ay’A(BB* + Ay°A*)"1[BB* + Ay"A*]
x(BB* + Ay’ A*)"1Ay%a%}z, — W} BB*u,
= T;{ay’a*—ay’A*(BB*+ Ay’ A*) "1 Ay%a*}z,—u} BB*U;.
(14.128)

—% 0=
Tip1Y T+l

0 is the limit of the sequence of matrices + satisfying (14.116), and the
matrix BB* is nonsingular; hence it satisfies the equation

70 = a7%a* + bb* — ar®A*(BB* + Ar°A*)"1 440"
We find from this and (14.128) that

T3 17 Te1 — Tp7°% = [Z1 00T, + U; BB W)
Therefore, according to Lemma 14.9,

T-1
0 < 7992y =2*y°z — ) _[Z;bb°T: — U BB T
t=0
< *9% — V(z;3%(T)) - 0, T — oo.

Now it is seen that, since the matrix 7° is nonsingular (Lemma 14.9),
lim Ty =0 (14.129)
T—o0

and

T-1
hm VR2(z;@%(T)) = z*v%z = hm Z[azt"‘bb*mt +u; BB*w;).  (14.130)

Let o be any nonnegative definite symmetric matrix. Then, due to (14.120),

T-1
VP(z; @0(T)) < Vp(z; @(T)) < TpyoZr + »_[Z;0b*T: + 3 BB*Ty]. (14.131)
t=0

Passing in these inequalities to the limit (" - oo) we find, taking into
account (14.129) and (14.30), that

. * — I .~ — 0¢,...~0 — *:0
qllr)noox 1 = Tlgréo Vr(z; 4(T)) = Tlgréo Vr(z;@°(T)) = z*y z. (14.132)

Therefore, because of the arbitrariness of the vector z, limr_,oo 77 = 7°
exists, and 7% does not depend on the initial matrix ~,.

It was noted above that 40 is a positive definite solution of the matrix
equation given by (14.104). We shall show that in the class of the positive
definite symmetric matrices this solution is unique.
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Indeed, let v(!) and 4(® be two such solutions. Denote by 'yt(i), t >0, the
solutions of (14.103) with v{” = 4@ and ¥ = 4@, respectively. Then,
according to what we have already proved,

i @ _ 0 _ & ;_

Am yp’ =v"=7"Y, i=12 a
Note 1. If supy>o Tr M 6,67 < oo, then in the formulation of Theorem 14.3

one can discard the first assumption since Tr~y; < Tr M6,6;.

Note 2. Let the process (6;,&:) = ([61(t),-..,0k()], &1 (2), ..., &(t)]) sat-
isfy the recursive equations (Kalman-Bucy problem)
bry1 = @16y +bier(t +1),
£t = A10t + B1€2(t) (14133)
(compare with (14.100)). In order to formulate the conditions providing the

existence of the limit lim;_,o ¢ in terms of the matrices a;,b;, A1 and Bj,
it suffices to note the following. Since

tv1 = Aia10; + Alblel(t + 1) + Bl€2(t + 1),

assuming
a = a) — blb;Al[AlblbIAI +BIBI‘]"1A1a1,
A = Ajay,
b = [bib} — bybT AL(A1byb AL + B1B}) 1 A6,63]V2,
B = (A1bbt At + B B})Y/?,

reduces the problem of the existence of lim;_, 7y to the problem studied for
the system given by (14.100).

14.4.4.
EXAMPLE 3. Let 8; and £; be one-dimensional processes with

0t+1 =a0t+b£1(t+1), £t+1 =A0t+B€2(t+1)

Then, if A # 0, b # 0 and B # 0, the conditions of Theorem 14.3 are
satisfied and the limiting filtering error 4% = lim;_y00 7: (1 = M(6; — my)?;
my = M(61|&,...,&)) can be defined as the positive root of the quadratic
equation

B%(1 — a? b2B2
2+ [——(—Az——l—bz]'y— = =0
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14.5 Recursive Computation of the Best Approximate
Solutions (Pseudo-solutions) of Linear Algebraic
Systems

14.5.1. Let the vector y = (y1,...,¥x) and the matrix A = ||a;;|| of order
(k xn) and rank A < min(k, n) be given. Then the system of linear algebraic
equations

Az =y (14.134)

need have no solutions, generally speaking, and even if it has, the solution
need not be unique.

The vector z° is said to be the best approximate solution (pseudo-
solution) of the system of equations given by (14.134) if

ly — Az°|? = inf |y — Az|?; (14.135)
x

if, also, |y — Az’| = inf; |y — Az|, then

|z°% < |2, (14.136)
where
k n 2 n
ly — Az|? = Z Yi — Zaijl‘j , =2 = Z |z;12.
i=1 j=1 j=1

In other words, the pseudo-solution is an approximate solution having the
least norm.
It is well known® that such a solution z° is given by the formula

0 = Aty, (14.137)

where At is the matrix which is the pseudo-inverse with respect to the matrix
A (see Section 13.1).

It is seen from (14.137) that in order to find pseudo-solutions it is nec-
essary for the pseudo-inverse matrix At to be found. As will be shown in
this section, taking advantage of the optimal filtering equations given by
(13.56) and (13.57), one can, however, offer recursive procedures for find-
ing the pseudo-solutions which do not require the ‘pseudo-inversion’ of the
matrix A.

® See, for example, Chapter 1, Section 5, in [69].
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14.5.2. Let us start with the case where the system of algebraic equations
Az = y is solvable (k < n). In this case the pseudo-solution z° = A%ty is
distinguished among all the solutions x by the fact that its norm is the least,
ie., |2°] < |zl

Let us introduce some additional notation. Let ¢ = 1,2,...,k be the
numbers of the rows of the matrix A, let a; be the rows of the matrix A,

ay

a
and let y; be the elements of the vector y,t =1...,k,
hn
yt
Consider for each ¢ (solvable) systems of linear algebraic equations’
Az =, (14.138)

Let
z, = Afy', v =FE-AfA. (14.139)

Theorem 14.4. The vectors x; and the matrices v, t = 1,...,k, satisfy the
system of recursive equations

Ter1 = Te + 7ta:+1(at+l7ta:+1)+(yt+l —a44131), To =0, (14.140)
Yea1 = Yo = ot (@+1main) Faan, v =E, (14.141)
where
. v+ = [ lacrimaia]™h acimaiy, >0,
a a = 14.142
(at+17e t+1) {0, ag417:05 4, =0, ( )

and the vector =i coincides with the pseudo-solution x°.

If the rank of A is equal to k, then (air1maty)™ = (ary1veai,,) ™t for
allt=0,...,k—1.

PROOF. Let 8 = (64, .. .,0k) be a Gaussian vector with M@ = 0, M66* = E,
and let
&= Ash. (14.143)

Then, by the theorem on normal correlation (Theorem 13.1) and the fact
that M€t =0, MO(€H)* = AF, M(£4)(&4)* = A A}, we have

me = M(0l€") = A7 (A A7) *E"

7 The dimension of the vector z is equal to n for any t.
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But by (6°) of Section 13.1 regarding pseudo-inverse matrices,
A7 (AAY)T = A
Hence
my = AfFet. (14.144)

Next, again by the theorem on normal correlation,

v = E—AfA; = E - A} (A A}V A, (14.145)
= M8 — MO(E')" (M(£)(€")")F (MO(E)")" = M[(6 — me)(6 — me)”].
On the other hand, the system of equations given by (14.143) can be

represented. in the following equivalent form adopted in the filtering scheme
considered above:

biy1="0;, Oo=06; 41 =0¢410, & =0 (14.146)

(compare with the system of equations given by (13.46) and (13.47)). We find
from the filtering equations given by (13.56) and (13.57), as an application
of (14.146), that

Mir1 = My + 10511 (@e4170541) T (Eeb1 — Gep1me), mo =0,  (14.147)

Yer1 =Tt — Ve 1(Ge+1720541) Tar17e, Y0 = E. (14.148)

Thus, the required recursive equation, (14.141), for +; is established. In
order to deduce (14.140) from (14.147) we proceed as follows.
Let z = 6*z. Then

Mé¢'z = MA60*z = Az = oY,
Méz = Ma,00*z = agx =y,
Mmyz = MAYE 2z = Af Metz = Ayt = .. (14.149)

Multiplying the left- and right-hand sides of (14.147) by z and then taking
the mathematical expectation of the expressions obtained, we find

Mmyy12 = Mmyz + veagy (aer1veas 1) [ME1z — a1 Mmy 2],

which, together with (14.149), leads to the desired equation, (14.140).

It also follows from (14.139) and (14.137) that z = z°.

In order to prove the concluding part of the theorem, for each prescribed
t, let

t
b=az41 — chass, (14.150)

s=1
where the numbers ¢y, ..., ¢; are chosen so that the value of bb* is minimal.
Denoting by c the vector row (cy, ..., ¢t), we shall write (14.150) in vectorial

form
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b= a4+l — CAt. (14151)
Then
bb* = at+1a:+1 - 2at+1AZc* + CAtA:C.

From this, because of the minimality of the value of bb*, it follows that

the vector ¢ = (¢y,...,¢t) satisfies the system of linear algebraic equations
c(AtA}) = a1 A} and, therefore,
c= at+1A: (AtAt*)+ = at+1At+. (14152)

It follows from (14.151) and (14.152) that
b= at+1(E - A?-At)
and

bb* = at+1(E - 2A2_At + (A:-At)z)a:‘*_l
= a1 (E — Af Ap)afyy = arpimabyg,

where we have made use of (4°), one of the properties of pseudo-inverse
matrices (see Section 13.1).

If the rank of the matrix A is equal to k, then the ranks of the matrices
As, t=1,..., ks, are all equal to t. Hence, for any t = 1,. .., k, the row a;41
is not a linear combination of the rows a,,,...,a:, and, therefore, bb* > 0.
But bb* = as417a},;, hence ai1veaiy; > 0. O

14.5.8. Let us discuss now the case where the system of algebraic equations
Az = y is insolvable. It turns out that in this case in order to find the pseudo-
solution x® = A%y, a recursive procedure can be constructed which does not
require ‘pseudo-inversion’ of the matrix A.

Assume that the matrix A = ||a;;|| has the order (k x n). In describing
recursive processes it is essential to distinguish between the cases k < n and
k > n. Here we consider only the case k < n.

Theorem 14.5. Let k < n and let the rank of A equal k. Then the pseudo-
solution % = Aty coincides with the vector xi obtained from the system of
recursive equations (14.140) and (14.141).

In order to prove this we need the following.

Lemma 14.10. Let B be a matriz of order (m x n) and let E be the unit
matriz of order (n x n). Then

lim(aE + B*B)~'B* = B*, (14.153)
ol
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liir(}(aE +B*B)"'a=E - B*B. (14.154)
[+

PROOQOF. We have

A(a) = B* — (aE + B*B)"'B* = (aE + B*B)"}[(aE + B*B)B* — B*]
= (aE + B*B) '[aB* + B*BB* - B].

But B*BB* = B* (see (7°), Section 13.1). Hence
A(e) = a(aE + B*B)"'B*
and
A(a)(A(a))* = a*(aE + B*B)"Y(B*B)*(aE + B*B)™?, (14.155)

since B (B*1)* = (B*B)* (see (5°), Section 13.1).

If B*B is a diagonal matrix, then the validity of (14.153) follows from
(14.155), since the zeros on the diagonals of the matrices B*B and (B*B)*
coincide. Otherwise, with the aid of orthogonal transformation of S (S* =
S~1), we obtain

S*(B*B)S = diag (B*B), S*(B*B)*S =diag(B*B)*
and

S*A(a)(A(a))*S = alaE + diag (B*B)]™!
xdiag (B*B)*[aE +diag (B*B)]™' -0, «l0.

From this, because of the nonsingularity of the matrix S, we obtain
A(a)(A(@))* =0, «alO.

Thus (14.153) is established.
In order to prove (14.154), it remains only to note that, due to (14.153),

E-B*B = E- lii%(aE +B*B)"'B*B
[

E - liirg(aE + B*B)"Y(B*B + oE - aE)
«

lim(aE + B*B) " la.
al0
O

PROOF OF THEOREM 14.5. If the system Az = y is solvable, then the
required statement follows from Theorem 14.4. Let us proceed to the general
case.

First of all we shall show that the vector z; = A}y® can be obtained in

the following way:
z; = limzf, (14.156)
all
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where z¢, a > 0 is a solution of the solvable system of linear equations
(aE — A} A)xd = Ayt (14.157)

Indeed, let the vector zg(t) = (2§ (t),...,z%(t)) minimize the functional

t m
J(z®) = Z[asza - y-ﬁ]z + aZ(z;‘)2,
s=1 j=1
where % = (z§,...,z2%). Then it is not difficult to see that

¥ = (aF + AL A) 1Ayt (14.158)

It follows immediately that z{* is a solution of the solvable system of
equations given by (14.157). But, by Lemma 14.10,

lim(aE + A} A;) 1A} = Af,
all
which, together with (14.158), proves the equality
= limzy.
T ;i% x§
We can deduce recursive equations for the vectors z§, t < k. For this pur-
pose let us take advantage of the technique applied in proving the previous

theorem.
Let 8 = (61, -..,60y,) be a Gaussian vector with M6 = 0, M66* = E, and

let &;,t =1,...,k, be a Gaussian sequence of independent random variables
with Me;, = 0, Me? = 1, independent of the vector 6.
Set
€t+1 = at+10t + 01/2€t+1, a > 0, (14159)

where 8; = 0. Then m = M(8:|&1,...,&) = M(6l¢1,...,&) and 7f =
M[(0—mg)(8—m§)*], according to Theorem 13.4, satisfy the following system
of equations:

O %
Vi Q41

[e3 [e3
M1 =My T T o *
a+ a1 0ty

(€41 — arpamg), mg =0,  (14.160)
Ve 10t+17%

, & =FE. 14.161
a+ at417508 4 T ( )

'7ta+1 = -
According to Theorem 13.15, the solutions m$ and +§* of these equations
are given by the formulae

t—1
m& = (aE+ AjA)™ Y ahaber1 = (B + AT A)TIAYE,  (14162)

8=0
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t—1 -1
W= (aE + Za:_,_las“) = a(aE + A} A;) L. (14.163)

§=0
Let AY =y — a2y, A = (A%,...,49), € = (e1,...,6k) and E;A* =
yt— A;x%, where E; is the matrix formed by the first t rows of the unit matrix
E of dimension (k x k). Set z = §*z* + a~1/2¢* A*, Then
Mé&z = Mlah + o/ 2%&,)[0* 2% + o~ V2e* A%) = 0,2 + AX = y.
Mgz = M[A0 + o'/ 2E,A%)[0*z* + a~V/2e* A?
= Auix® + EA* =4, (14.164)

Mmgz = (aE + AjA) "A;ME 2 = (aE + Aj A;) 1AMyt = 22 (14.165)

Multiplying (on the right) the left- and right-hand sides of (14.160) by z,
then taking the mathematical expectation and taking into account relations
(14.164) and (14.165), we find that

O %
Tt Q1

—_— —at412;), z§ =0. 14.166
o T anPa, (Ye+1 — at417;),  f ( )

o —_ (s
Tip =T +

From Lemma 14.10 we have
limy? = E~Af A (=)
al0

Since the rank of A is equal to k, ay+173a} +1 > 0 for all @ > 0, which
follows from (14.163) and Theorem 14.4. Hence in (14.161) we may take the
limit as | 0, yielding for ; = limy o ¥{* the equation

Ye+1 =N — 'Yta:+1(at+l7ta:+1)_lat+17ty Yo = E.
Finally, taking the limit as @ | 0 in (14.166), we obtain from (14.156) the
required equation, (14.140). O

Note. The system of recursive relations given by (14.166) and (14.161) for
a > 0 holds true for the case k > n, rank A < n as well. Thus, with the aid
of this system the vectors z{f = (aF + A*A)~1A*y — Aty for the matrix A
(k x n) of rank r < min(k,n) can be found (see Lemma 14.10).

14.6 Kalman Filter under Wrong Initial Conditions

Here, we consider a Kalman filtering model with a vector signal 8, (of size k)
and a vector observation &; (of size £) defined by recursions

0t+l = a0t + b€1(t + 1)
At + Bey(t + 1), (14.167)

§t+l
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where a, A, b, and B are matrices of dimension (k x k), (£ x k), (kx k), (£x £)
respectively and ((¢1(t))¢>1, (€2(¢))t>1 are zero-mean vector white noises (of
sizes k, £ respectively) with unit covariance matrices. White noises ((£1(t))¢>1
and (e2(t))¢>1 are assumed to be orthogonal to each other. The recursion for
0, is subject to a random initial condition 8y with M50y, < oo orthogonal
to ((€1(t))e>1, (€2(t))e>1. Assume that § = 0 and that BB* is a nonsingular
matrix. If

mo = M6y and o= M(fo —m)( —m)*

are known parameters, then the Kalman filter is defined as (see Corollary 3
to Theorem 13.4)

my = amg—1 + a%_lA*[A'yt_lA* + BB*]_I(& - Amt_l) (14.168)
Y = ayi—1a* +bb* — ay—1A*[Ay—14* + BB*|"1Ay_1a”,

subject to the initial conditions mo and . For every fixed ¢, m; is the
orthogonal projection M(6:|€[1,q) of 6; on the linear space generated by
(1’€1y tt 7£t) Whlle

M= M(et - mt)(et - mt)*,

i.e., mq is a linear optimal (in the mean square sense) filtering estimate for 6;,
given the observation £p;, = {£s,1 < s < t}. If (6o, (€1(2), €2(t))e>0) forms
the Gaussian object, then m; is the conditional expectation for 8; given the o-
algebra generated by £[; ). If only the noises (£1(t), 2(t)):>0 are Gaussian but
o is not, the Kalman filter (14.168) creates only the linear optimal estimate,
that is for any ¢

Yt Z M(Xt - Wt)(Xt - 7'l't)*, (14169)

where 7 is the conditional expectation M (6;|[;4) defined by a nonlinear
filter of more sophisticated structure than the Kalman filter. Nevertheless,
the use of the Kalman filter instead of the nonlinear one makes sense, if m;
‘forgets’ the distribution of 6y in the sense that (|| - ||? is the Euclidean norm)

. _ 2 _
tl_l)noao M|m; — m||* = 0. (14.170)

Assume now that even the parameters mo and vp of the distribution g
are unknown. Then one can apply wrong my and ~; (nonnegative definite
matrix). In this case, m}, v, being defined by the same Kalman filter, are
neither the orthogonal projection nor the matrix of filtering errors. Moreover,
the use of such a filter makes sense provided that

. r_ 2 = 1 ! __ 2 —
tlggo M||m; — me| tl_lf{.loM“mt m||° = 0. (14.171)

We establish below the validity of (14.171) under the assumptions of Theo-
rem 14.3 on matrices
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A
Aa

Gy = . and G2=(bab---ak‘1b).
Agh-1
In what follows, we assume that matrices G;, G5 have rank k. Then by
Theorem 14.3 lim; o, ¢ = v exists and is independent of vy. Moreover, « is

a positive definite matrix, being the unique solution (in the class of symmetric
positive definite matrices) of the algebraic equation

v = aya* + bb* — ayA*[AyA* + BB*]" 1 A~ya* (14.172)

and
tlj’r{.lo M(Gt - mt)(Ot - m,)* =.
For further analysis, introduce, the so-called Kalman gain
K; = ay;A*(Ay;A* + BB*)™!
and note that there exists a limit matrix
K := ayA*(AyA* + BB*)™! = lim K;. (14.173)
t-»00

Lemma 4.11. Let the assumptions of Theorem 14.8 be fulfilled. Then the
eigenvalues of the matriz a — KA lie inside the unit circle.

PROOF. With K;_; defined as above, the recursion for 7; can be rewritten
as

Ve = (a - Kt_lA)’yt_l(a - Kt_lA)* + bb* + K;_1BB* :_1

and, therefore, passing to limit with ¢ — oo, we find

v=(a— KA)y(a — KA)* + bb* + KBB*K™*. (14.174)
Let ¢ be a left eigenvector of the matrix a — KA corresponding to eigenvalue
A (X*). Since v is a positive definite matrix, ¢yp* = ¢ > 0. Then, multiplying
the right-hand side of (14.174) from the left by ¢ and from the right by ¢*,
we arrive at a linear equation with respect to |A|?

¢ = |M\%c+ g[bb* + KBB*K*|¢*

which implies |A| < 1. If simultaneously 9K # 0, @b # 0, then, by virtue of
the assumption that BB* is positive definite, we have [bb* + K BB*K*|p* =
¢1 > 0 and so, |A| < 1. Hence, it remains to show only that ‘0K = 0,pb = 0’
contradicts the assumptions of the lemma. Assume ‘0K = 0, pb = 0’ holds.
Then ¢ is the left eigenvector of the matrix a with the eigenvalue A. In this
case, the (k x k)-matrix GoG% = bb*+abb*a*+- - -+a*~1bb*(a®~!)* is singular:

pG2G3p™ =0

and at the same time the rank of G5 is k. The contradiction obtained confirms
the statement of the lemma. O
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14.6.1 Asymptotically Optimal Kalman Filter. Assume the rank of both G4
and G3 is k. Consider a linear Kalman type filter in which the limiting matrix
~ involves <y instead of v;

My = aMy—1 + ayA*[AvA* + BB*|71(¢, — Amy_,) (14.175)

subject to a reasonable initial condition myg.

Theorem 14.6. Assume 6y is an arbitrarily distributed random vector with
M]||6o]1? < oo. Denote my = M(8:|€11,¢) and me = M(0|€j05)- Then

1. llmt_)oo M(ot - mt)(et - mt)* = llmt_)oo M(Ot - ﬁlt)(gt - ﬁlt)* =,
2. with Gaussian noises (€1(t),e2(t))e>1,

tl—l»Igo M8, — m)(0 — )" = tl_‘glo M0 — me) (6 — M) = ;

3. 8 with Gaussian noises (£1(t),e2(t))e>1, 6: — m,t — 00 converges in
distribution to a zero-mean Gaussian vector with covariance .

PROOF. 1. Let us note that

M8y — ) (0 — Me)* = M(6; — my)(8; — ms)*
+M(mt - ﬁlt)(mt - ﬁ'lt)*.

It suffices therefore to show that
i —-m 2 =
thm M|lmy — my||* = 0. (14.176)

We now convert the recursion for m; to a form more relevant for verifying the
validity of (14.176). Introduce an innovation difference (see Theorem 13.5)

& = [Ay—14* + BB 7Y% (¢, — Amy_y)

which forms white noise (&;):>; with a unit covariance matrix. Then, by the
definition of the matrices K;_; and K (see (14.173))

my = amy—1 + K (& — Amy_1) + (K1 — K)[Ay;_1A* + BB*|"%5, (14.177)
and at the same time
My = Amy—1 + K (& — Amy_1). (14.178)
(14.177) and (14.178) imply for A; = m; — M, the recursion
Ay =(a—KA)Ai1 + (K1 — K)[Av-1A* + BB*|Y%,.  (14.179)
Denote by V; = M A A} and note that (14.179) implies

8 Here, we give a simple proof of the result from [224].
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Vi = (a— KAVi_1(a — KA)* + (Kie1 — K)[AYe—1A* + BB*|(K¢—1 ~ K)*.

Since by Lemma 4.11 the eigenvalues of the matrix (a — K A) lie within the
unit circle and K;_1 — K = 0, t — oo, it follows that lim;—, . Vz = 0.

2. We use the upper bound M (8; —m;) (0 —m¢)* < M(6;—m¢) (0 —m¢)™ and
the lower bound M(0; — m;)(6; — m¢)* > M (8, — 73)(6; — 7§)*, where 7p =
M (64]60,&[1,,))- Under the assumption made, the conditional distributions
P(6; < x|6,&[1,4)), t > 0 are Gaussian with probability one (see Chapter 13),
and moreover 7y is defined as:

m = amp_y +av}_|A*[Av)_ A" + BB*|7 (& — Am_y)
Y = avp-1a” +bb" —ay)_ 1 A*[Av]_ A" + BB*| 7' Ay)_a

subject to 7§ = 6p,5 = 0. By Theorem 14.3 lim;_, o, 7f = 7, that is
lim M(8, — )6, — 73)" = 7.

Coupled with the first statement of the theorem, this implies the validity of
the second statement as well.

3. Since for any t, 8, — 7y is a zero-mean Gaussian vector with covari-
ance vy, its distribution converges weakly to the distribution of a zero-mean
Gaussian vector with covariance 7. Therefore (see, for example, Theorem 4.1
in [19]) the required result holds provided that m; — 77 — 0, ¢ = 0 in proba-
bility. To verify this, note that

M(my — ) (me — )" = M (0 — )0 — m)* — M(6; — 7)) (6, — mp)".
Thus 3. is implied by 2. ]

Notes and References. 1

14.1-14.2. In these sections we have systematically used the fact that a sta-
tionary sequence with rational spectrum is a component of a multidimensional
stationary process obeying the system of recursive equations given by (14.15) (see
also Section 15.3). The idea of deducing recursive equations has been borrowed
from Laning and Battin [184].

14.3. The optimal control problem for a linear system with a quadratic per-
formance index has been studied by Krasovsky and Lidsky [162], Letov [188] and
Kalman, Falb and Arbib [141]. The same control problem with incomplete data has
been presented in Aoki [5], Meditch [227] and Wonham [311].

14.4. Theorem 14.3 is analogous to the similar result due to Kalman [139] for
the case of continuous time, see also Section 16.2.

' 14.5. The results obtained in this section have been obtained by Albert and
Sittler [2] and also Zhukovsky and Liptser [334].
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Notes and References. 2

14.1. The application of the Kalman filter of the minimal dimension for a
homogeneous finite-state-space Markov process as an unobservable signal can be
found in [200,201].

14.6. For the continuous time case, statements similar to Theorem 14.6 can
be found in Ocone and Pardoux [249]. Statement 3. of Theorem 14.6 is proved
differently in Makowski and Sowers [224]. Different approaches to the analysis for
discrete time filters can be found in Budhiraja and Ocone [33].



15. Linear Estimation of Random Processes

15.1 Wide-Sense Wiener Processes

15.1.1. In the previous chapter the interrelation between properties in the
‘wide’ and in the ‘strict’ sense, which is frequently applied in probability
theory, was used in finding optimal linear estimates for stationary sequences
with rational spectra. Thus it was enough for our purposes to consider the
case of Gaussian sequences (Lemma 14.1) for the construction of the optimal
mean square linear estimate. This technique will now be used in problems of
linear estimation of processes with continuous time. Here the consideration
of the concept of a wide-sense Wiener process turns out to be useful.

15.1.2.
Definition. The measurable random process W = (W;), t > 0, given on a
probability space (§2, F, P) is called a wide-sense Wiener process if

Wo = 0 (P-as.),
MW, =0, t>0,
MWW, = tAs. (15.1)

It is clear that any Wiener process is a wide-sense Wiener process at the
same time. Another example of a wide-sense Wiener process is the process

Wt = ¢ ~— t, (152)

where IT = (m), t > 0, is a Poisson process with P(mp = 0) = 1 and
P(m = k) = e~t(tF/K!).

Let F;, t > 0, be a nondecreasing family of sub-o-algebras of F, let
z = (z,Ft), t > 0, be a Wiener process, and let a = (a;(w), F;), t > 0, be
some process with Ma?(w) > 0, 0 < t < T. Then the process

¢ a,(w)
W, = —_—
o vVMa(w)
is another example of a wide-sense Wiener process. Note that this process
has (P-a.s.) a continuous modification.

It is seen from the definition that a wide-sense Wiener process is a ‘process
with orthogonal increments’, i.e.,

dz,, 0<t<T, (15.3)

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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M[Wtz - th]Wsz - WSl] =0,

if 81 < sy <t1 <o

Let #(d)\), —00 < A < oo, be the orthogonal spectral measure with
M®(d)) = 0, M|®(dN)|> = dA/2w. Tt is known from the spectral theory
of stationary processes that for any measurable function ¢()), such that

(o o]
| eoPar <o,
—00
one can define the stochastic integrall
o0
16.)= [ eaay),
—00

having the following two essential properties:

M / " o(\B(dA) =0, (15.4)

o0

M [ ': 2@y [ Z 2@ = o | “amMa. (155)

Lemma 15.1. The random process

o0 ei)\t -1
W, = / =2 a(dN) (15.6)

—0o0
is a wide-sense Wiener process.
PROOF. Only the property MW ,W; = sAt is not obvious. In order to verify

it we shall denote by A = (t1,t3) and A’ = (s1,s2) two nonintersecting
intervals. Then

M[Wtz - th][Wsz - Wsl] M[Wtz - th][Wu - Wsl]
d

L [% i A A A
. sy i »
2T /;oo(e'l 2_61 1)(6 1 82—6 ' 81))\2'

But if
(1, teA
XA(t)_ {O, t¢ A,

then, by virtue of Parseval’s theorem,

! This integral is the limit (in the mean square) of the explicitly defined integrals
I{n,®) of the simple functions ¢n(A), n = 1,2,..., such that ffzo le(X) —
@n(N)]?d\ = 0, n = oo (compare with the construction of the Itd integral in
Section 4.2).
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Atz _ 1)\t1 —idsa _ _,)‘31 dA _ o0 gt =
( (e ),\2 = xa(t)xa(t)dt =
—00

Hence
M[Wt2 - th][Wsz - Wsl] =0. (157)
Similarly, it can be shown that
o0
MWy, - W, ]? =/ (xa(t)?dt =tz —t;. (15.8)
—00

It follows from (15.7) and (15.8) that this process is a process with un-
correlated increments and with MW? = t. Hence, if t > s, then

MWW, = MW, — W, + W,]W, = MW2 =s=tAs.

Similarly, at t < s
MWW, =tAs. O

It is useful to note that if the wide-sense Wiener process Wi, t > 0, is
Gaussian, then it has a continuous modification that is a Brownian motion
process. Indeed, because of the normality, M[W,—W,]* = 3(M[W,~W,]?)? =
3|t — s|?. Hence, by the Kolmogorov criterion (Theorem 1.10) the process
considered has a continuous modification that by definition (see Section 1.4)
is a Brownian motion process.

15.1.8. Let f(-) € Lo[0,T]. Using the wide-sense Wiener process W = (W),
t > 0, one can define the It6 stochastic integral (in a wide sense)

T
Ir(f) = /0 f(s)dWs, (15.9)
by defining
Ir(f) =lim, Y fn(tfc"))[Wti,rl - Wyl (15.10)
k

(where f,(t) is an array of simple functions (fu(t) = fa(t™) for t™ < t <
5:21, 0=t{" <t{™ <... <t =T), having the property that

lim / — fa(t))%dt = (15.11)

The integral thus defined has the following properties (compare with Sub-
section 4.2.5):

Ir(afi +bf2) = alr(fi1) + bIr(f2), a,b= constant, f; € L2[0,T], (15.12)

/ot f(8)dW, = /0“ F(s)dW, + /u t f(s)dW,, (15.13)

where



148 15. Linear Estimation of Random Processes

t T
/ F(s)dW, = /0 £ (8)AWs, (15.14)

and X(u)(8) is the characteristic function of the set u < s < t. The process
I(t) = fot f(8)dW; is continuous over ¢ in the mean square

M/O f(s)dW, =0, (15.15)

M /0 fi(s)dw, /0  fa(s)aw, = /0 f1(8)fa(s)ds, i € Lal0, 7). (15.16)
If2

T T
/ lg(s)lds < oo, / (s)ds < oo,
0 0

/Ot g(s)ds /Otf(s)dWs = /Ot (/03 g(u)du) F(s)dW,

+ /0 t ( /0 | f(u)qu) g(s)ds.  (15.17)

The existence of the integral in (15.9) and the properties formulated can
be verified in the same way as in the case of the It6 stochastic integral for a
Wiener process (see Section 4.2).

15.1.4. Let a(t),b(t), f(t), t < T, be measurable (deterministic) functions
such that

then

T T
/ la(2)|dt < oo, / b(t)dt < oo, (15.18)
0 0
T
[ (a0 + r@poP) de < oo (15.19)
Set . .
€ = /0 a(s)ds + /0 b(s)dW,, (15.20)

where W, s > 0, is a wide-sense Wiener process.

2 The last integral in (15.17) exists due to the Fubini theorem and the inequality

M /0 ' lo(e)lds < /0 i (M [ / ’f<u)dwu]2)l/2 l9(s)lds
- / i ( /o ’ f’(u)du) " o(e)lds < oo

/08 flu)dW,
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With this process the integral f; f(s)d€s can be defined by setting
/0 t F(s)d€, =lim., ; f,,(t}c"))[gtm — ), (15.21)
where f,(t) is a sequence of simple functions such that
lim /OT[Ia(t)Hf(t) — Fa@)| + B @)IF(2) = falt) )t = 0.

The integrals fot f(s)d€s thus defined are ff-measurable and have the prop-
erty that (P-a.s.)

/ f(s)de, = / £(s)a(s)ds + / F(s)b(s)dWs, 0<t<T  (15.22)
0 0 0

(compare with Subsection 4.2.11).

15.1.5. Let v = (1), t > 0, be a process with orthogonal increments, with
M(vy —vs) =0 and

M(v, —v,)% = /t a?(u)du, (15.23)

where fOT a?(u)du < co. For deterministic (measurable) functions f(t) satis-
fying the condition

/ ' a?(u) f3(u)du < oo, (15.24)
0

one can also define the stochastic integral
T
/ f(s)dvs (15.25)
0
as the limit (in the mean square) of the corresponding integral sums
PR ACDITETS
% k+1 k
at n — oo, where the sequence of the simple functions f,(s) is such that

T
/o |fn(s) = f(s)%a®(s)ds - 0, n — oo.

The correctness of such a definition can be established in the same way
as in the case of stochastic integrals of a square integrable martingale® for
which the corresponding predictable increasing process is absolutely contin-
uous with probability one (see Theorem 5.10).

3 1t is useful to note that any square integrable martingale is a process with or-
thogonal increments.
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Note two useful properties of the integral in (15.25);

T
M/o f(s)dvs = 0; (15.26)

T T T
= S S 2S .
M /0 f1(s)dv, /0 fa(s)dv, = /0 f1(5)a(s)a2(s)ds (15.27)

(it is assumed that fOT F2(s)a?(s)ds < o0, i = 1,2).
In the case, where the process v = (1), t > 0 is also a martingale and
a®(u) > 0,0 < u < T, the process

b dy,
W, = /0 ) (15.28)

is a Brownian motion process (as was shown in Theorem 5.12). Discarding
the assumption on the martingale property leads us to the following result.

Lemma 15.2. Let v = (1), t > 0, be a process with orthogonal increments,
M(l/t - Vs) = 0,

M(v; —v,)% = /t a’(u)du.

If info<u<ra®(u) > 0 and f(;'r a?(u)du < oo, then the process*

¢ dv,

"e= | o)

is a wide-sense Wiener process.

PROOF. It is seen that MW, = 0, MW2 = t. Finally, due to (15.27),

qu £l qu _ tVs tVs
MWW, = M/ A a_(u_)_ = M/o X(u<t) (u)/ X(@w<s) 7N (v)

tVs
= /0 X(u<t)X(u<s)du =t A s.

4 As usual,

t dv, _ T dv,
o a(s)  Jo X305y
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15.1.6. Let the deterministic (measurable) functions ag(t), a1(t) and b(t) be
such that

T
/ |ai(t)]dt < oo, / b3(t)dt < 00, i=0,1. (15.29)
0 0

Consider the linear equation

Ty =To+ /ot [ao(s) + a1(s)zs]ds + /Ot b(s)dWs, (15.30)

where W = (W), s > 0, is a wide-sense Wiener process, and z, is a random
variable uncorrelated with W with Mz3 < oo (as in the case of the Wiener
process, Equation (15.30) will be written symbolically as dx; = [ao(t) +
a1(t)z:]dt + b(t)dWs).

If W = (W), s > 0, is a Wiener process, then, according to Theorem 4.10,
Equation (15.30) has a unique continuous (P-a.s.) solution given by the for-

mula
= exp{ /0 t al(u)du} {xo+ /0 " exp [— /0 sal(u)du} ao(s)ds
+ /o  exp [- /o | al(u)du] b(s)dWs}. (15.31)

The stochastic integral on the right-hand side of (15.31) is defined for a
wide-sense Wiener process as well. (15.31) in the case of the Wiener process
W, holds true also in the mean square sense. Hence, it also holds true in the
mean square sense when W, is a wide-sense Wiener process which proves the
existence of a solution of equation (15.30) with a wide-sense Wiener process
given by (15.31). It is not difficult to convince oneself, using (15.17), that the
process x;, 0 < t < T, is continuous in the mean square. Let y;,0 <t < T, be
another similar solution of Equation (15.30). Then A; = z; — v, 0 <t < T,
satisfies the equation

¢
At=/ a1(s)Aqds
0

and, therefore, is a continuous (P-a.s.) process, whence
t
4 < [ la@ladds
0
By Lemma 4.13, A; =0 (P-a.s.),0 <t <T. Hence

P{ sup |z — yi >0} =0.
0<t<T
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Now let W = (Wy,...,W,) be an n-dimensional wide-sense Wiener pro-
cess (each of the processes W; = (W;(t)),t >0,i=1,...,n, is a wide-sense
Wiener process, and the components W;, W; at ¢ # j are uncorrelated).

Let there be given the random vector zo = (21(0),...,Zn(0)), uncorre-
lated with W, Y1, M2?(0) < oo, the vector function ao(t) = (ao1(t),.. .,
aon(t)), and the matrices a1(t) = [laj;(t)|| and b(t) = ||bi;(¢)|| of dimension
(n x n). We shall also assume that for the elements ao;(t), a}j(t) and by;(t)
the associated conditions given by (15.29) are satisfied. Then, as in the case
n = 1, the equation

20 = 70 + /0 '(a0(s) + a1(s)zs] + /0 bs)aw, (15.32)

has the unique continuous (in the mean square) solution z; = (z1(t),...,Zn(t))
given by the formula

zy = D} {xo + /Ot@g)_lao(s)ds + /Ot(ég)“lb(s)dWs} , (15.33)

where @} is the fundamental matrix

do; T
—d't—' = al(t)éo, ¢0 = E(nxn)- (15.34)

For the process x; so obtained, let ny = Mx,, I'(t,s) = M(x; — ny)(zs —
ng)*, It = I'(¢,¢).

Theorem 15.1. The vector n; and the matriz Iy are solutions of the differ-
ential equations

% = ao(t) + a1(t)ne, (15.35)
% = a1()T3 + Leai(t) + b()b" (2). (15.36)

The matriz ['(t,s) is given by the formula

_ [ &eir,, t>s,
r (t’s)‘{n@:)n t<s,

where &, = §(HF)"1, t > s.

(15.37)

PROOF. Equation (15.35) can be obtained by averaging both sides in (15.32).
It follows from (15.33) that the solution of Equation (15.35) is defined by the
formula

ny = &} {no + /Ot(dig)'lao(s)ds} . (15.38)

Next, let V; = z; — n;. Then it follows from (15.33) and (15.38) that
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t
vi=a{vo+ [ (@) osiaw,}, (15.39)
0
from which, due to the lack of correlation of o and W, we obtain

I, = MV,Vy

ot {MVOV;,* +M /0 t(d)ﬁ)“lb(s)dWS ( /0 t(@g)‘lb(s)dW3>*} (@)

Since the components of the process W are uncorrelated, from (15.15)
and (15.16) it follows that

*

M [ (@8 b(s)dW, ( / t@a)-lb(s)dws)
= [[@rsor @l

Therefore,

L, = {ro + @s)-1b<s)b*<s>[(@3)-11*ds} (@)".

By differentiating the right-hand side of this relation and taking into
account (15.34) we arrive at the required equation, (15.36).
Let us now establish (15.37). Let ¢t > s. Then

I(t,s) = MV,V}

q’)f,{MVoVO"
-y @) wane | [ Xtz (@) b) <¢a>*}

- #a3 {ro + "(@:;)*b@)b‘(u)[(ds:;)-‘]*du} @) = BT,

The other side of (15.37) can be verified for ¢ < s in the same fashion. O

15.1.7. For the process z;, 0 < t < T, satisfying Equation (15.30), for t > s
let

R(t,s) = I'(t,s)I;t.
For s < u < t, let us show that

R(t,s) = R(t,u)R(x, s). (15.40)
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In order to prove this relation it suffices to consider the case where z¢ = 0,
ao(s) =0, and W, is a Wiener process. Then it follows from the theorem on
normal correlation (Theorem 13.1) that

M(z¢|zy) = R(t,u)xy.

It follows from (15.33) that the process z; is a Markov process, and, in
particular,

M(z¢|zs, 20) = M(ze|zy) (P-as.).
Consequently,
M(zy — R(t, u)zy|zs,24) =0,
and, therefore,
M(zxil} — R(t,u)zzi ) =0,

which proves (15.40).

Thus, for the process z:, 0 < t < T, satisfying Equation (15.32), the
function R(t, s) satisfies (15.40). The converse holds true, in a certain sense,
as well.

Theorem 15.2. Let z = (z1(t),...,zn(t)), 0 <t < T be a random process
with the first two moments ny = Mz, and I'(t,s) = M[(z; — n¢)(zs — ng)*]
given. Assume that the matriz R(t,s) = I'(t,s)I";t satisfies (15.40) and that
the following assumptions are satisfied

(1) there ezist a vector ao(t) and matrices a;(t) and B(t) such that their
elements belong to L1]0,t];
(2) the elements of the matrices R(t, s) are continuous overt (t > s), and

¢
R(t,s) = R(s, s) +/ a1(u)R(u, s)du;
-]
(3) the elements of the matrices y; = I'(t,t) are continuous and
¢ t
=1y +/ [@1(w) [y + Iyat(u))du + / B(u)dy;
0 0

(4) the elements of the vectors n; are continuous over t, and

ng =mng + /()t[ao(u)+a1(u)nu]du.
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Then there erists a wide-sense Wiener process Wy = (W1 (t), ..., Wn(t)), such
that (P-a.s.) for allt, 0 <t < T,

Ty = To + /Ot[ao(s) + a1(s)zs]ds + /Ot BY?(s)dW,. (15.41)

PROOF. Let Wt, 0 <t < T, be some n-dimensional wide-sense Wiener pro-
cess, and let Zo be an n-dimensional vector with the same first two moments
as zo and independent of Wy, 0 < t < T. Assume that for almost all s,
0 < s < T, the matrices B(s) are nonnegative definite. Let the process Z;,
0 <t < T, be a solution of the equation (Subsection 15.1.6)

Ty = &0 + /0 t[ao(s) + a1(8)E,]ds + /0 t BY?(e)dW,.

Then, due to Theorem 15.1 and assumptions (1)—(4), the first two mo-
ments in the processes x; and Z; coincide. Therefore, the first two moments
in the processes

Vi = Tp — Tg — /Ot[ao(s) + a;(s)z;]ds,

Dy = &y — T — /0 [ao(s) + a1(s)Z,)ds, (15.42)

also coincide. 5

But 7y = fot B/2(5)dW, is a process with orthogonal increments and,
hence, so also is the process vy, 0 <t < T.

If the matrices B{(t) are positive definite for almost all ¢, 0 <t < T, the
process

t
Wt=/ B™1Y2(s)dy,,
0

by the multidimensional version of Lemma 15.2, is a wide-sense Wiener pro-
cess. Hence vy = fot BY/2(s)dW,, which, together with (15.42), proves (15.41)
in this case.
If the matrices B(t) for almost all ¢, 0 <t < T, are nonnegative definite,
then
t t
Wi= (B2 dv, + [ (B - (BY2e)* (B2 o)z,
0 0
where z;, 0 <t < T, is an n-dimensional wide-sense Wiener process uncor-
related with the initial process z;, 0 < t < T. (Such a process exists, if the
initial probability space is sufficiently ‘rich’). Then, as in Lemma 10.4, we can

show that the process W;, 0 < t < T, thus defined is a wide-sense Wiener
process.
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Let us show now that the assumption made on the nonnegative definite-
ness of the matrices B(t) (for almost all ¢, 0 <t < T) is a consequence of
conditions (2) and (3) of the theorem.

The properties of the matrices B(t) depend only on the properties of
the first two moments of the process z;, 0 < t < T'; hence, without loss of
generality, this process can be considered Gaussian. Then, by the theorem on
normal correlation, the matrix

Pit+At+A)-T't+ ATt + A,t), 0<t<t+A<LT,
is symmetric and nonnegative definite. By the properties of pseudo-inverse
matrices (see Section 13.1),
It(t,t) = T, (Et), (D) = (D (t,t)T = T'H(t,t).
Hence, the matrix
L+ At+A)~Tt+ AT (¢, )L, (T (1)) T (t + A, t)
=It+At+A4)— R+ A)I(t,t)R*(t+ A,t) (15.43)
is also symmetric and nonnegative definite. After simple transformations we
find from (12.43), (2), (3) and the formula I'(u,t)I"*(t,t)['(¢,t) = '(u,t),
u > t (see the proof of Theorem 13.1), that

B(t) = lim %{F(t +A,¢+ A) = R(t + AT, )R (t + A, 1))

(for almost all ¢, 0 < t < T'). Consequently, the matrices B(t) for almost all
t are nonnegative definite. O

EXAMPLE. Let W = (W;), 0 <t < 1, be a wide-sense Wiener process and
let
G =W, -t+ W

(i.e., d{t = Wldt + th, 50 = 0)
Using the theorem above, we shall show that there exists a wide-sense
Wiener process Wy, 0 <t <1, such that (P-a.s.)

£ 3¢, =
£t_/o 1+3sds+Wt

(compare with Theorem 7.12).
Indeed, in our case M§; = 0 and I'(t,s) = M&&; = 3ts+t A s. We obtain
from this, for t > s > 0,
3ts+s  3t+1
R(t,s) = = .
) =32 7s ~3r1
This function satisfies the condition of (15.40) and it is easy to see that

ao(t) = 0, al(t) = B(t) =1.

+3t’

Note that in our case the values of W, are ff-measurable forallt,0 <t <1.
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15.2 Optimal Linear Filtering for some Classes
of Nonstationary Processes

15.2.1. Let W, = (Wll, “es ,Wlk) and W2 = (W21, A ,W2l) be mutually
uncorrelated wide-sense Wiener processes. We shall discuss the random pro-
cess (0,€) = [6;,&], t > 0, whose components 8, = [61(t),...,0k(t)] and
& = [€1(),. .., & ()], t > O, satisfy the system of stochastic equations

db; = [ao(t) + a1(t)0: + az(t)&]dt + by (t)dWi(t) + ba(t)dWa(t),
d&; = [Ao(t) + A1(2)0; + A2(t)&s)dt + By (t)dWi(t) + Ba(t)dWa(t)
(15.44)

where the coefficients satisfy the conditions of Subsection 10.3.1. Assume as
well that the vector of the initial values of (g, &) is uncorrelated with the
processes Wi and Wy, with M (6360 + £§&o) < oo.

Taking advantage of the results of Chapter 10, let us construct optimal
(in the mean square sense) linear estimates of the unobservable component
6; from the observations &§ = {&,,s < t}.

Definition. We shall say that the vector \; = [A;(¢,£), ..., A (¢, €)] is a linear
estimate of the vector 6; from &, if the values of \;(t,£) belong® to a closed
linear subspace generated by the variables &, s <t; j=1,...,k.

The linear estimate \; = [A1(¢,£), ..., Ak(t,£)] will be called optimal if for
any other linear estimate \; = [\1(¢,€),. .., M(t, £)] the following holds:

M9;(t) — \j(t, €))% < M[8;(t) — X;(t, €)%, j=1,...,k.

Note that the value of A;(t, £) is frequently written M (6;(t) |7¥) and called
the wide-sense conditional mathematical expectation of the random variable
6;(t) with respect to the o-algebra FE.

15.2.2.
Theorem 15.3. The optimal linear estimate A\, of the vector 6; from the
observations £ can be defined from the system of equations
dAe = [ao(t) + ar(t)Ae + az(t)éeldt + [(bo B)(t) + 7 AL(t)]
x(B o B)1(t)[d&; — (Ao(t) + A1(t)s + A2(t)&;)dt], (15.45)

Yo = a1(t)y + mai(t) + (bob)(t) (15.46)
~[(b o B)(t) + % Ai ($))(B o B)"!(¢)[(bo B)(t) + AL ()",

with
Ao = M6y + cov (8o, &o)cov T (€0, £0) (€0 — M&), (15.47)

5 In the sense of convergence in the mean square,
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Yo = Cov (00, 00) — Cov (00, fo)COV +(€0, €0)COV *(00, 50) (15.48)
In this case vy = M[(6; — Ae)(6; — A¢)*].

PROOF. Let (8;,£;), t > 0 be the Gaussian process satisfying (15.44) where,
instead of the processes (Wi, W3), the mutually independent Wiener pro-
cesses (W, Wy) are considered. Assume that the first two moments in (6, §0)
are the same as those in the vector (6y, &) and that (00, 50) does not depend
on the processes (W1, W3). Let

e = M@IFE), 5= M[(6, — X)(6, - 3,)").

Then, according to Theorem 10.3, X¢ and 7; satisfy the system of equations
given by (15.45) and (15.46) with the substitution of &, for & and ), for
X¢, and with y; = 4. It follows from (15.45) that the estimate A is linear
(compare with (15.33)).

Let us show now that the estimate ), is optimal. Let g;(t,£) be some linear

estimate of 6;(t) from &}, and let (")(t, &) be a sequence of linear estimates
from &,¢n), ..., €y where
0 n

T = 0, ) ST = ), D)0 = 0,0 =1,
such that
g;(t,€) = lim.ng{”(t,8).
Set 5\§") (t,€) = M(éj(t)|f§n) where ffm =ofw: ft(()n), . "ét&"’}’ and denote

by A§”) (t,€) the estimate obtained from :\;") (t,€) by means of the substitu-
tion of the values of ét(,.),...,ft(,.) for ;... & . By Lemma 14.1, the
0 n (1] n

linear estimate /\g-") (t,€) is an optimal linear estimate of 6; from the values
Of ftgn) yooo ,gtsln), i.e.,

MB;(t) = (1, ) < M(B;(t) - ¢ (1,€))*
But
Mi(t,€) = A7 (6,01 = M[%;(8,€) — A (8, €))%,
It can be established in the same way as in the proof of Lemma 10.1 that
lim M[3;(t,€) = X (¢,€))* = 0
Hence,

M{;() = X8, OFF = lim M{o;(8) - XV (¢, O

IA

lim MI6;(t) — 4" (¢, ©))° = M(6;(t) — 45 (8, )%
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which proves the optimality of the estimate \;(t,£), j =1,...,k. |

Note. It can be verified in similar fashion that the optimal (in the mean
square sense) linear estimates of interpolation and extrapolation for the pro-
cess (0;,&;) satisfying the system of equations given by (15.44) can be ob-
tained from the corresponding estimates for the case of the Gaussian pro-
cesses (Ot,&)

15.2.8. We present now two examples illustrating the possibilities of the ap-
plication of Theorem 15.3.

These examples are particularly useful in the sense that the processes
considered are given in the form of a system of equations different from
(15.44), the system considered above.

EXAMPLE 1. Let y; and z; be mutually independent Wiener processes. Con-
sider the process (6,&:), t > 0, satisfying the system of stochastic equations
df; = —0:dt + (1 + 6;)dy;

d&t = etdt + dzt, (1549)
where £ = 0 and 6y is a random variable independent of the Wiener processes
Yt, 2, t > 0, with My = m and M(6y —m)? =~ > 0.

Set
to1+46,
1(t) = —_—dy,,
W= ) TAraTogE

These two processes are mutually uncorrelated wide-sense Wiener processes,
and

Wg(t) = Zt.

d6, = —0ydt + /ML + 0;)2dWi (t),
dé; = 0,dt + dWi(t). (15.50)

Unlike (15.49), this system is a particular case of the system of equations
given by (15.44). Hence, by Theorem 15.3, the optimal linear estimate ); of
values of 6; from &} = (£,,s < t) and the filtering error y; = M[6; — \;]? can
be defined from the equations

dAt = —Atdt + 7t(d€t - Atdt)a A0 =1m,
= —2’7t+M(1+9t)2—7t2, Yo ="1-
For the complete solution of the problem it is necessary to compute

M@1+6,)2=1+2n; + A; +n2,

ny = M6, A;=M(6; - nt)2;

where
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t
n: =N —/ ngds.
0

We find from (15.50) that
¢
g = Ng — / ngds
0

and, due to the It6 formula

At M(Gt - nt)z

M{(Bo — ng)? — 2/:(03 — ny)ds

+/0 (1+¢93)2ds+2/0 (65 —n,)(1+0s)dy}

t t
A0—2/ Asds+/ (1+ As + 2n, +n?)ds.
0 0

Therefore, the optimal linear estimate A; and the error v; can be defined
from the system of equations

dhe = —Xdt + v (d€; — Aedt),

Yo = =2y — 9 + 1+ A + 204 4 2,

iy = —ng,

Ay = —A;+142n, +n2, (15.51)

where Ag = ng =m and vy = 4o = 7.

EXAMPLE 2. Again let y and z; be mutually independent Wiener processes,
and let the process (6;,&;), t > 0, be defined from the equations

db; = —6.dt + dy;,
d¢; = —63dt + dz,, (15.52)

where & = 0 and 6y is Gaussian, M@, = 0, M2 = %, independent of the

processes y; and z;. Consider the problem of linear estimation of the variables
6; and 63 from & = {&,s < t}.

Let 61(t) = 6; and 62(t) = 63. With the aid of the It6 formula we can
easily see that

da(t) = —302(t)dt + 301 (t)dt + 362(t)dy;.
Thus, 6;(t) and 62(t) satisfy the system of stochastic equations

)
doy(t) = —01(t)dt + dy,
dfy(t) = [—3602(t) + 361 (t)]dt + 362(t)dys. (15.53)



15.3 Linear Estimation of Wide-Sense Stationary Random Processes 161

Let
Wi =uee Wa(®) = V2 [ Bhlo)dn, - L. Wat) = 5.

It is not difficult to verify that W (t), Wy (t) and W3(t) are mutually un-
correlated wide-sense Wiener processes. Therefore, the processes 61 (t), 62(t)
and &; satisfy the system of equations

d01 (t) = —01 (t)dt + dWl(t),
3

3
d2(t) = [—302(t) + 361(t))dt + Edwl(t) + ﬁdW2(t),
dé; = G2(t)dt + dW3(t), (15.54)
where £y = 0 and the vector (6;(0),62(0)) has the following moments:
M6:(0) = M6(0) =0, M62(0) = % M8,(0)95(0) = M62 = %
MOZ(0) = MO§ = 1—85-

(15.54) is of the type (15.44), and, therefore, optimal linear estimates for
6,(t) = 6; and ;(t) = 63 can be found from the system of equations given
by (15.45) and (15.46).

15.3 Linear Estimation of Wide-Sense Stationary
Random Processes with Rational Spectra

15.8.1. The object of this section is to show how Theorem 15.3 can be applied
to the construction of optimal linear estimates for the processes listed in the
title of the section. The pertinent results for random sequences were discussed
in Section 14.1. Let = (), —00 <t < 00, be a real stationary (wide-sense)
process permitting the spectral representation

® it Pn-1(BN)
ixt-n—1
= et ——————P(d)), 15.55
m= [ enTeiSay (15.55)
where &(d)\) is the orthogonal spectral measure, M$(d\) = 0,

dA

2 = ——
MIB(@N = 5,

n—1 n-1
Pn—l(z) = Z bkzka Qn(z) =2z"+ Z akzk,
k=0 k=0

and the real parts of the roots of the equation @,(z) = 0 are negative.
Consider the processes
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o o}
n;(t) = / eEMW,(EA)B(dN), j=1,...,n, (15.56)
— 00
where the frequency characteristics of W;(2), j = 1,...,n are selected in the
following special way:
. n_l o
Wi(z) = 2 DWo(2) + 3 Bz~ ®=4D, j=1,...,n—1, (15.57)
k=j
and
Wo(z) = —271 Z akWhi1(2) + 2716, (15.58)
with
Br=bn1, Bi=bnj— D BiGn_jsi, j=2,...,n (15.59)
i=1
It follows from (15.57) and (15.58) that
W;(z) = “I[Wj+1(z Y+6, i=1,...,n—-1,
Wa(z) = 2~ l Zaka+1 +ﬁn] : (15.60)

‘We obtain from this
n—1 n—1 '
Wn(z) =z"1|- Z ag Z_(n_k_l)Wn(Z) + Z ,sz_(J—k) + 6nl,
k=0 j=k+1

and, therefore,
Wa(2) = Py (2)/Qu(2), (15.61)

where P( )1 (2) is a polynomial of degree less than n.
Then, we obtain from (15.60) and (15.61)

_ (J) (Z)
Qn( )’

where the polynomials P(] )1(z) have degree less than n — 1, and, due to
(15.59),

W;(2) =1,...,n—1, (15.62)

Pr-1(2)
Wl (2) = o) (15.63)

Therefore, the process 71 (t) = n, t > 0.



15.3 Linear Estimation of Wide-Sense Stationary Random Processes 163

Theorem 15.4. The stationary wide-sense process m(t) = 1, permitting the
spectral representation given by (15.55), is a component of the n-dimensional
stationary (wide-sense) process 7y = (n1(t),...,nn(t)) satisfying the linear
stochastic equations

dnj(t) = T]J'+1(t)dt +ﬂdet, ] = 1,. ey 1,

n—1

dna(t) = = aymi41(t)dt + BadW, (15.64)
3=0

with the wide-sense Wiener process

00 ei/\t -1
W, = / ——B(d)) (15.65)
oo GA

and the coefficients By,...,Bn given by (15.59). In this case Mn;(0)W; =0,
t>0,j=1,...,n.

In order to prove this theorem we shall need the following lemma.

Lemma 15.3. Let W(z) be some frequency characteristic with
ffooo |[W (i))]%2d) < oo, and let

G = / - EMW(EN)D(dN), (15.66)

where ®(d)\) is the orthogonal spectral measure with M®(d)\) = 0 and
M|®(d))|? = d\/2r. Then with probability one,

¢
/ |¢slds < 00, t < o0, (15.67)
0

t e8] ei/\t -1 )
/0 Cods = /_ T WEe@N. (15.68)

PROOF. The integrability of |{,| follows from the Fubini theorem and the

estimate
t t t
/0 M|(o|ds /0 (M¢H)Y2%s < (t /0 Mcfds>
-t (i / ” |W(i)\)|2d)\>l/2 < 0.
27 J_ o

Therefore, the integral fot {sds exists and, due to (15.66),

1/2

INA

t t o0
— iAs .
/0 Csds-—/o /_ooe W (iA)P(dN)ds. (15.69)
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Let us show that in the right-hand side of (15.69) a change of integration
order is possible:

/Ot /_Z MW (IN)B(dA)ds = / > ( /0 ‘ eusds) WENS(dN).  (15.70)

—00

Let the function ¢()) be such that [ [p())|2dA < co. Then, due to (15.5)
and the Fubini theorem,

M /0 t /_ : N W (IN)B(dN)ds /~ : P(A\)P(dN)

t oo
% / / MW (INB(\)dAds
0 J—oo
1 o0 t .
— ( / e""ds) W ENB(N)dA
2m —00 0

- M /_ Z < /0 t ei’\sds) W (iA)®(dN) / ” S()B(AN),

-0

which by virtue of the arbitrariness of ¢()) proves (15.70).
To complete the proof it remains only to note that

e -1 ¢ ids
) - = /0 e**ds. O
15.8.2.
PROOF OF THEOREM 15.4. It is clear that
{o o]
0 () — 1;(0) = / [ — W, (NS(dA), j=1,...,n—1,
—00
and, according to (15.60),
00 ei,\t_l ) oo e'i./\t___l
@ -m0) = [ S Wa@e@) + 4 / —Laan).
Lo IA oo EA
(15.71)

By Lemma 15.3,

00 gidt _ | t poo
[ S winive@n = [ [T e winane@s
z 0 J—oo

—0o0

t
= / nj+1(s)ds, (15.72)

0

and, by Lemma 15.1, the process
00 ei)\t -1

W =/ - D(dA) (15.73)

oo A
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is a wide-sense Wiener process. Hence, we obtain from (15.71)-(15.73), for
t>s,

t
n () = my(s) =/ nis1(W)dy + B, Wi = W], j=1,...,n1,

which in differential form is: dn;(t) = n;41dt + B;dW;.

The last equation in this system of equations given by (15.64) can be
established in similar fashion.

We shall now verify the lack of correlation between the variables 7;(0)
and W, fort > 0 and j = 1,...,n. For this purpose we shall write the system
of equations given by (15.64) in matrix form

with the matrices
0 1 0 ... 0
B
a0 0 1.0 ’ B=(...
—ap —a1 ... ... —0p-1 ﬂn

Note that (15.74) remains valid for t > T (T < 0) as well if, instead of W4,
we consider the wide-sense Wiener process

00 ez‘At _ eiAT .
—00

ie.,

0
o = fir + / Aﬁudu + BWO(T).
T

But MW, Wy(T') = 0 (see the Parseval equality in Lemma 15.1). Therefore
MWy = MirW, + fTO AMT7j,,Widu. By solving this equation for M7rWy,
T <0, we find that

MW, = e~ 4T Mijp W,. (15.76)

The eigenvalues of the matrix A lie within the left-half plane, and the
elements of the vector MijrW, are bounded and independent of T'. Hence,

lim MW, = 0.
T——o00

To complete the proof it remains only to show that the process 7j; is a
wide-sense stationary process (for t > 0).

It follows from (15.56) that M7} = 0. Next, according to Theorem 15.1,
the matrix Iy = M#,j; is a solution of the differential equation

Iy = AT, + IA* + BB*. (15.77)
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It is seen from (15.56) that the matrices I do not depend on ¢. Let
I' = I;. Then the matrix I" satisfies the system of algebraic equations

AT + TA* + BB* = 0. (15.78)

Taking advantage of Equation (15.77) and of the fact that the eigenvalues
of the matrix A lie within the left-half plane, it is not difficult to show that
the solution of the system of equations given by (15.78) is unique and given
by the formula

0
r= / e 4“BB*e~4""du. (15.79)
—00

Finally, it follows from (15.74) that the matrix I'(t,s) = M7j7: is given
by the formula

eAt-9r  t>s,
I(t,s) = { AR S (15.80)

This proves that the process 7j;, t > 0 is a wide-sense stationary process. [

15.8.8. Consider the partially observable wide-sense stationary process vy =

(0, &) = [(61(t),- -, 6k(2)), (£1(2),...,&(t))], —o0 < t < oo, permitting the
spectral representation

o )
v = / MW (iX)D(dN), (15.81)
—-00
where W (z) is the matrix of dimension (k + ) x n with elements
Weg(2) = Prri1(2)/Q40(2), (15.82)

where P,E:Z)_ (z) and Q(rq)(z) are polynomials of degree n,q; — 1 and nyq

Nyq
(respectively) with the coeflicient of z™ in Qgi)(z) being equal to one,

and where the roots of the equation str‘f’)(z) = 0 lie within the left-half
plane. The measure $(d)\) = (P1(dN),...,Pn(d))) is a vectorial measure
with uncorrelated components M®;(d\) = 0 and M|®;(d))|? = d)\/2m.

It is assumed that 6, is an unobservable component to be estimated from
the observations €;, 0 < s < T'. In the case t = T we have a filtering problem;
in the case T' > t we have an interpolation problem; in the case t > T, we
have an extrapolation problem.

For the sake of brevity we shall consider only the problem of optimal (in
the mean square sense) linear filtering. In order to apply Theorem 15.3 it
suffices to show that the process vy = (6¢,&;), t > 0, can be represented as a
component of the process satisfying a system of equations of the type given
by (15.44).

Using Theorem 15.4, we find that the vector v; is a component of the
vector (6, &) having the dimension
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n Ngq

N=3"Y ny, (15.83)

qg=1r=1

where n,, is the degree of the fraction denominator W,4(z) and ng is the
number of noncoincident elements of Wy, in the column of index ¢ in the
matrix W(z).

It is obvious that the vector 5t contains all the components of the vector
6;. Hence, by estimating the vector 6; the problem of estimating the vector
0, is also solved. By Theorem 15.4, (6;,&), t > 0, satisfies the system of
stochastic equations

db, = [a18; + az€:]dt + bdW,

g = [A1b, + As6,)dt + BdWw,, (15.84)
with matrix coefficients of the appropriate dimensions and the vector wide-
sense Wiener process Wy = (Wi(t),..., Wa(t)).

If the matrix BB* is positive definite, then we can apply Theorem 15.3.

Indeed, for this purpose it suffices to establish that there exist mutually
uncorrelated wide-sense Wiener processes

W](t) = (Wu(t), e ,Wl,n_[(t)), Wz(t) = (W21(t), ceey Wzl(t))
such that
bW, = bIWI(t) + b2W2(t), BW, = BIW1(t) + Bsz(t). (15.85)

The feasibility of such a representation can be proved in the same way as
in Lemma 10.4. In this case, the matrices by, b2, By and By can be defined by
the equalities

bib + bybl = bb*, by B} +byB} =bB*, BB} + ByB} = BB*, (15.86)

Note. If the matrix BB* is singular, then according to the result of Sec-
tion 10.4, there is a possibility of obtaining linear (nonoptimal) estimates for
6¢, close (in the mean square sense) to optimal linear estimates.

15.8.4. Let us indicate here an example illustrating the techniques of finding
optimal linear estimates. Let

vy g
zta
W(z) = , a>0,6>0,¢,>0,1=1,2.
Yo vea
z+a z+8
Then,

0 00 eiAt & (d)
=V [ ),
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o] e‘lAt 5 oo eiAt
b=va [ et va [ e,

If we let
u\t
,/cz/ T ﬁdiz(d)\)

then & = 6; + m: and the problem of estimating 6; from & = (&,s < t)
is a conventional problem of estimating the ‘signal’ 8; in additive ‘noise’ ;.
According to Theorem 15.4, there exist mutually uncorrelated wide-sense
Wiener processes Wy (t) and Wa(t) such that

dot = —aﬁtdt + \/adWI(t), d’l]t = —ﬂ’l]tdt + \/C—de2(t)
Therefore, the partially observable process (:,&:), t > 0 satisfies:

db; = —abidt + \fc1dWi(t);
dé; = [—(a — B)6; — B&dt + /crdWi(t) + /c2dWa(t).
Applying Theorem 15.3 to this system, we find that the optimal linear es-

timate ); and its error v; = M(8; — A\;)? can be found from the system of
equations

e = —ands+ LMD, (5 - ayn, - peoyar
1
4o = 2y oy - 1220 (15.87)

Let us find the initial conditions Ao and v9 = M(fy — Ao)?. By Theo-
rem 15.3,

M6y&o (M6o&o)?

Ao = —0 ME ———-¢, 0= M6b; - Me

Let
diy d
du = M3, dig = Moo, dop=ME, D= (di; d;z) '
By (15.78),
AD + DA* + BB* =0

where

() (8 )
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Hence
—2adi;+¢ =0,
(B —a)diy — (B+a)diz+c1 =0,
2(B - a)d1z —2Bdy + ¢ +c2 = 0,
and
_a _oa _acy+fe
di = 70" diz = %0 day = 5ap

Thus, the optimal linear estimate of 6; from & = {¢5, s < t} can be found
from (15.87), solvable under the conditions

c1

- acy + By

c1c20

§07 Yo = 2a(062 + ,Bcl) .

(15.88)

If we wish to estimate ; from & . = {¢5,—T < s < t} where T > 0, then
X: and v; can also be obtained from (15.87) with

c1f8

acy + fBey

_ c1ca0
2a(acy + Bey)’

Letting T — oo, it is easy to show from (15.87) and (15.89) that the
optimal linear estimate A; and the estimation error ¥ = M [At — 6:]? of the
value of 6; from &t = {£s, —00 < s <t} can be defined by the equalities

A = &1, 7-T (15.89)

t

where

(B — ) + 1

bo=0iB, b =T

, 52=61(ﬂ——a)+a,

and

\/(a202+5201)ﬁ(il(:"c2)_ac2—ﬁcl’ a8,

2t
I

cic —
2a(c1+c2)? a= '3 '

In particular, for a = (3, i.e., when the spectra of the signal and the noise
are ‘similar’, we have:

~ ¢
A= ——&.

c+c2
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15.4 Comparison of Optimal Linear
and Nonlinear Estimates

15.4.1. Let 6;,t > 0, be a Markov process with two states 0 and 1, P(6p =
1) = mp, whose transient probability Pi(t,s) = P(6; = 1|6s = a), a = 0,1,
satisfies the Kolmogorov equation

dPla(t, S)
dt

We shall assume that the process 6, (called a ‘telegraph signal’) is unob-
servable, and that what is observed is the process

= A1 - 2P14(t,s)), A>0,t>s. (15.90)

t
& = / bsds + Wy, (15.91)
0

where Wy, t > 0 is a Wiener process independent of 8;, t > 0.

Using the problem of filtering 6; from ¢§ = {&,,s < t} as an example, we
shall compare optimal linear and nonlinear estimates.

The optimal (in the mean square sense) nonlinear estimate 7, of the value
of §; from {&;,s < t}, is the conditional mathematical expectation m, =
M(6,|F}) = P(6: = 1|F5).

According to (9.86), m;, t > 0 is a solution of the stochastic equation

d7l't = )\(1 - 27Tt)dt + 7rt(1 - Wt)(dﬁt - ﬂtdt). (1592)

In particular, it is seen from this equation that the optimal estimate m; is
actually nonlinear.

In order to construct the optimal linear estimate ) it suffices to consider
the filtering problem for the process 8; from the values of {&;,s < t}, where
§~t = fot 6,ds + Wt, W, is some Wiener process and 6, is a Gaussian process
independent of W;, t > 0, and having the same first two moments as the
process 6;, t > 0.

Making use of Equation (15.90), in standard fashion we find that n, =
M8, satisfies the equation

dnt
dt
and the correlation function K (¢, s) can be defined by the equality K(t,s) =
K(s,s)e~2Mt=sl where K(s,s) = M[f, — n,]?> = n, — n2. In solving Equa-
tion (15.93) we find n, = 1[1 — (1 — 2no)e=2].
Consequently,

= A(]. - 2nt), ng = mo, (1593)

M(B, ) = K(6,2) = 511 — (1 — 2m0)%e™*]

and lim¢_,0o M(6; — ny)% = i—.
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It is not difficult to see now that the required Gaussian process 6, t >0,
having M@; = n, and M(6; — n:)(0, — n,) = K(t,s), can be constructed in
terms of the solution of the stochastic differential equation

df, = M1 — 26,)dt + VXdW,(¢), (15.94)

where W (t) is a Wiener process independent of W, t >0 (see also Theo-
rem 15.2). Then, setting W3 (t) = W;, we obtain

dé;, = O,dt + dWa(t). (15.95)

Applying Theorem 15.3 to the system of equations given by (15.94) and

(15.95), we find that A; = M(9t|.7~'f) and y; = M(6; - \¢)? satisfy the system
of equations

d\: = )\(1 - 2)\t)dt + ’)’t(dft - )\tdt), Ao = ng, (1596)

A = =AMy + A =92, Yo =no —nd. (15.97)

We can show (see also Theorem 16.2) that lim;_,, : = () exists, where
7(A) is the unique positive solution of the equation

YE(A) +4xy(A) = A = 0. (15.98)
Hence,
F(A) = VA +4X2 = 2), (15.99)

and, therefore,

{\/X+O(A), 210,
¥(A) = (15.100)
1+0@1/3), Atoo.

15.4.2. Let us find now the value of §(\) = lim;oo M(6; — )2 for the
optimal nonlinear estimates m, t > 0. o
According to Theorem 7.12, the process W = (W, .’Ff), t > 0, defined by

t
W,=¢& — / meds, (15.101)
0

is a Wiener process. Hence, Equation (15.92) can be rewritten as
dmy = M1 — 2m;)dt + m(1 — m)dW,, mo = no. (15.102)

Next, since M(8; — m;)? = Mm(1 —m), to find §()) one has to know how
to find lim;_ oo M7 (1 — ;) for the process m;, t > 0, with the differential
given by (15.102). ‘

According to Theorem 4.6, Equation (15.102) has a unique strong (F,"-
measurable at each ¢ > 0) solution. We can show that this solution is
a Markov process whose one-dimensional distribution density q(t,z) =
dP(m; < z)/dz satisfies the forward Kolmogorov equation
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Oq(t,z) _
ot

Due to the fact that the process 7, t > 0, is (in the terminology of Markov
chain theory) positive recurrent?®

[,\(1 2z)q(t, ac)]+2(9 2[::: (1-z)%q(t,z)], t=>0. (15.103)

1
6() = tl_l_glo Mmy(1 - m) = tl_iglo/o z(1 - z)q(t, z)dx

exists and

1
0\ = /0 z(1 — z)q(x)dz, (15.104)

where ¢(z) is the unique probability (¢(z) > 0, fol g(z)dx = 1) solution of
the equation

2
2N~ 2)q(e)) = 3 521 —2)(e).  (15.105)

It is easy to find that this solution is given by the formula

22 1
€xp {_:z:(l—:z:) } zZ(1-7)?

q(z) = — . (15.106)
Jo exp {_y(fiyi} y’ff—y)’
Hence,
b oo (-5 ) =5
5\ = 2 (-=isy) = )

1 22
fO €xp (_a:(l—x)) x’(lz—z)!
or, by virtue of the symmetry of the integrands with respect to the point

1
.'E-—-§,

1/2 2) d
fO €xp (— a:(l—-:z:)) 1:(1-1-::::)
1/2 2) dr
fO €xp (_z(l—zi) z’(lfziz
Let us investigate limyo 6()). Substituting in (15.107) the variables

2)
z(l —x)

50 = (15.107)

y= —8A1

we find that

0o _y [yt _dy
22 [y e v y+8x

o _, [y+8X
Jy ey -2 dy

5(\) = (15.108)

Since, for 0 < ¢ < o0,

6 See Lemmas 9.3 and 9.4 in Chapter 4, [147].
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o0
[y+8
/ e’V y+ cdy<oo,
0 Y

by the Lebesgue theorem on dominated convergence (Theorem 1.4)

lim/ ev,/|? + dy = / e Vdy = 1.
Ao Jo V Y 0

oo - dy B 1 v dy
2 /o Vi +83) 2 [/o i@ty d(/\)] ’

Next,

where

® - dy . eV
d/\=/ e Y ———, d0=llmd)\=/ —dy < 1.
W= [T, 0 =mdn = [ S

Hence, by the theorem on the mean (e~! < ¢(A) < 1),

2)\/00 e‘y———dy—— —2) [c()\) /1 Y +d()\)1 .
o Vyly+8) o Vyly+83) _
But
/1 dy 1y [1+h1_8_ 2vT+8X+2+8)].
o Vyly+8X\) In X In ]’
therefore,

(A) = —22InA[c(A) +O(1/InX)], AlO. (15.109)
Just as we showed the existence of
1
lim Mm(1 —m) = / z(1 — z)g(z)dz,
t—>00 0
we can also show that the limits
. _ 2 : 201 _ 2
tll,IEoM(l 2m)°, tl_l}I{.loMﬂ't (1 =m)%,
exist, and that
lim M(1 - 2m,)% = = lim Mr2(1 - m,)? (15.110)
t—oo ¢ A i=oo t t) - )

Note that one can arrive at (15.110) in the following way. By the Ito
formula, from (15.102) it follows that
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t t
me(l —m) = no(l —no) + /\/ (1 —2m,)2%ds — / 72(1 — m,)%ds
0 0

t
+/ (1 = 2m,)ms (1 — 7, )dW .
0
It follows from this that
t t
Mm(1 — m) =no(1 —ng) + )\/ M(1 - 2m,)%ds — / Mr3(1 - mg)2ds,
0 0

or,
d[Mm (1 — )]
dt
But it is natural to expect that lim; o d[M7¢(1 —m;)]/dt = 0. Together with
(15.111), this leads to (15.110). Noting now that (1 — 2z)? = 1 — 4z(1 — z),
we obtain from (15.110)

=AM (1 —2m)? — M72(1 — m)2. (15.111)

. 1 . Mn2(1 - m)?
Jim Mm(1—m) = 7 — lim ——75——

Thus, by combining estimates (15.109) and (15.112), we obtain

5(N) = { ;2;\31(1\53()/\ +0(1/1nA), A * o (15.113)

Along with (15.100) for the effectiveness value €(A) = (\)/d(\) of the
optimal nonlinear estimate with respect to the optimal linear estimate we
find the following expression

——L[e(A) +o(1)], ALO
e = wvams ) +olt) (15.114)
1+ 0(1), At oo

= % +0(1/X).  (15.112)

It is seen from this that for small A, (i.e., when the average occupation
time of the ‘telegraph signal’ in the 0 and 1 states is long) the linear filter is
inferior to the nonlinear filter with respect to the mean square error. In the
case A T 0o, the two filters are equivalent and function equally ‘poorly’:

1 1
~ i —_ 2 —_ = ~ N _ 2 — . .
(S(A) tl—l-)rgo M(ot TLt) 7 ’)’(A) tl—l)rgo M(Ot nt) 7k A — 00;
i.e., for large A they yield the same error as an a priori filter for which the
average value of n; is taken as an estimate of the value of ;.

Since limg—yoo M(8; — )2 = § at all A > 0, it is seen from (15.100) that

for small X the optimal linear filter functions ‘well’ (from the point of view of

asymptotic ‘tracking’ of the process ; in comparison with the a priori filter),
ie.,

limt_)oo M(0t - At)Z
limt._,oo M(Ot - nt)2

=4vVX+0()\), AlO.
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Under these conditions (i.e., for small \) the nonlinear filter provides,
however, a higher accuracy of ‘tracking’:

lim;— 0o M (8 — m)?

limg—y00 M (8 — n¢)?

= 8/\ln§[c()\) +0(1/lA)], Arlo.

This remark points to the fact observed in filtering problems that the
‘gain’ obtained with the aid of an optimal nonlinear filter increases as the
‘tracking’ accuracy of an optimal filter improves.

Notes and References. 1

15.1-15.3. In these sections the general equations of optimal filtering for linear
estimation of random processes have been used.

15.4 Optimal linear estimates and nonlinear estimates have been compared by
Stratonovich [296] and Liptser [193].

Notes and References. 2

15.4. Related results can be found in Khasminskii and Lazareva [149, 150],
Khasminskii, Lazareva and Stapleton [151], and Khasminskii and Zeitouni [152].



16. Application of Optimal Nonlinear Filtering
Equations to some Problems in Control
Theory and Estimation Theory

16.1 An Optimal Control Problem Using Incomplete
Data

16.1.1. In this section the results obtained in Section 14.3 for linear control
problems (using incomplete data) with quadratic performance index are
extended to the case of continuous time.

We shall assume that the partially observable controlled process (8,£) =
[(61(2),...,0k(t)); (&a(t),...,&(t))], 0 < t < T, is given by the stochastic
equations

do; = [c(t)us + a(t)O:]dt + b(t)dW;(t),
d¢; = A(t)6.dt + B(t)dWa(t). (16.1)
The matrices c(t), a(t), b(t), A(t), B(t) have the dimensions (kx7), (kX k),
(kx k), (I xk), (I x1), respectively; their elements ¢;;(t), a;;(t), b;;(t), Ai;(t),
Bi;;(t) are deterministic functions of time, with

lcij(t)l <e¢ 'a'ij(t)| <g lbij(t)l <cg

T T
/0 A% (t)dt < oo, /0 BZ(t)dt < oo

for all admissible values 4,j. We shall also assume that the elements of the
matrices (B(t)B*(t)) ™! are uniformly bounded. The independent Wiener pro-
cesses W, = (Wll(t), .. .,Wlk(t)), W, = (W21(t), ,ng(t)), 0<t<Tin
(16.1) do not depend on the Gaussian vector 8y (M8y = myg, cov (6o,6p) =
70), and § =0.

The vector u; = [u1(t,£),...,ur(t,€)] in (16.1) is called a control action
at time t. The measurable processes u;(t,§), j =1,...,r, are assumed to be
such that

T r
M / D (u(t,€))*dt < oo, (16.2)
0 o1

and the values of u;(t,£) are F¥-measurable.

The controls u = (u;), 0 <t < T, for which the system of equations given
by (16.1) has a unique strong solution and for which the condition given by
(16.2) is satisfied, will be called henceforth admissible controls.

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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16.1.2. To formulate the optimality criterion, let us introduce a performance
index into our consideration.

Let h and H(t) be symmetric nonnegative definite matrices of the order
(k x k). Denote by R(t) symmetric uniformly! positive definite matrices (of
dimension (r x r)). Assume that the elements of the matrices H(t) are R(t)
are measurable bounded functions of t.

Consider the performance functional

T
ViyT)=M {H}hGT +/ [0; H(t)0; + u;‘R(t)ut]dt} (16.3)
)}
for each admissible control u = (u;), 0 <t < T.
The admissible control i is called optimal if
V(i) = ifo V(yT), (16.4)

where ‘inf’ is taken over the class of all admissible controls.
For admissible controls u, set

my = M(B|Ff), ~F = M[(6, — mP) (8, — m¥)],

where 6; and & are the processes corresponding to this control, and which
are defined by the system of equations given by (16.1).

Theorem 16.1. In the class of admissible controls the optimal control i =
(@i¢), 0 <t < T, erists and is defined by the formulae

@y = —R™(t)c" (t)P(t)ny, O0<t<T, (16.5)
where the nonnegative definite symmetric? matriz P(t) = || P;;(t)|| of order
(k x k), 0 <t <T, is the solution of the Ricatti equation

dP(t)

% = a*(t)P(t) + P(t)a*(t) + H(t)
—P(t)c(t)R™(t)c* (t)P(t), P(T) = h, (16.6)
and the vector m, is defined by the system of equations
diny = [e(t)a: + a(t)imy]dt

7 A% (£)(B()B* (£))Y[d€, — A(t)imedt], 7o = mo = Mbo.
(16.7)

! The elements of the matrices R™*(t) are uniformly bounded.

2 The nonnegative definiteness and symmetry of the matrix P(t) satisfying Equa-
tion (16.6) can be proved in the same way as in the case of discrete time (see
Section 14.3).
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Ay = at)y + vea® (t) + b()b*(t) — 1 A*(t)(B(t)B*(£)) "L A(t)n,
Yo(t) = cov (6o, bo). (16.8)

In this case,

T
V(i@;T) = p(0) + m§P(0)ymo + Tr [ / HY2(t)y, H/?(t)dt + B/ 2yphV/2| |
0

(16.9)
where
p(t) = / Z D;;(s)Pi;(s)ds, (16.10)
t =1
and D;;(t) are elements of the matriz
D(t) = mA*(t)[B(t)B* ()] A(t) - (16.11)

PROOF. First of all note that, under the assumptions made above,

k
M| su 64 ) < oo,
[o<,£TZ >]

which is proved as in Lemma 12.1. Next, in the same way as in the proof of
Theorem 14.2, it can be established that

Vig,T) =M {O}hOT + /T[O{H(t)Bt + u:R(t)ut]dt}
0

M {M(a;heﬂfg) + / T[M(agH(t)mff) + u:R(t)u,,]dt}
0

= M{(m%)*hm'qﬂ + / t[(m;‘)*H (t)m¥ + ug R(t)us)dt
0

T
+Tr |:h1/2'y%h1/2+ / H1/2(t)7gH1/2(t)dt]}. (16.12)
0

It should be noted that the function 4} does not depend on the control
u and coincides with the function <, satisfying Equation (16.8) (see Theo-
rem 12.1). Hence,

T
V(u;T) = Tr [hl/zwhl/2+ / H1/2(t)'ytH1/2(t)dt}
0

T
+M {(m;‘)*hm;‘ + / [(m¥)*H(t)my + u;‘R(t)ut]dt} ,
0

(16.13)
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where, according to the same Theorem 12.1, m¥, 0 < ¢t < T, is obtained from
the equation

dmy = [e(t)ur + a(t)my]dt + w(B(t)B* () [d&} — A(t)midt], m{ = my,
(16.14)
with the process £, 0 <t < T, defined by (16.1).

Accordmg to the vector version of Lemma 11.3, the process wY =
(Wi, FE),0<t<T,

¢
W, = / B71(s)[d¢¥ — A(s)m¥dul), (16.15)
0
is a Wiener process. Hence, from (16.14) and (16.15),
dm¥ = [c(t)us + a(t)m?]dt + v, A*(t)(B*(t)) " 1dW, . (16.16)

16.1.8. To solve the primary problem we shall consider the following auxiliary
problem.

Let (£2,F, P) be some probability space, with (#;), 0 <t < T, a nonde-
creasing family of sub-o-algebras of F, z = (2;, ;) an r-dimensional Wiener
process, and u = (u¢, F:), an r-dimensional process satisfying the condition

/ Zu (t,w)dt < oo, (16.17)
where (u1(t,w),...,ur(t,w)) = u;. Let us associate the control u = (us, ),
0 <t < T, with the governed process

dpy = [e(tyue + a(t)py]dt + 7 A% (t)(B* (t)) " dz, (16.18)

where ¢(t),a(t), A(t) and B(t) are the matrices introduced above, and p§ =
myg. As before, we shall call the control v = (us, Ft), 0 <t < T, admissible if
for this control (16.17) is satisfied and Equation (16.18) has a unique strong
solution.

Let the functional

V(wT) = M{ ()" h( / ((u3)*H(t)pi + up R(t) ut]dt} (16.19)
be the performance index. We shall show that in this problem the optimal
control @& = (4, F;) is defined by the formulae

i = ~R ()" @) P(t)fi, (16.20)
where fi;, 0 <t < T is found from the equation

dfic = [a(t) — c(t)R () (D) P)]fiedt + 1eA* (£)(B* (1) 'dz1,  fio = mo.
(16.21)
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For this purpose introduce the function
Q(t,z) =z*P(t)z+p(t), zeR*, 0<t<T, (16.22)
where P(t) is defined by (16.6) and p(t) by (16.10).

Lemma 16.1. The function Q(t,z) = z*P(t)z + p(t) is a solution of the
differential equation
&(t,z,Q(t, x)) =0, (16.23)

where
&(t,z,Q(t, 7)) = m*H(t)x+z*a*(t)grasz<t z)

9%Q(t, ) 3Q(t,z)
2 ; D;(®) 0z;0z; ot

+m'}n[u*R u + u*c*(t)grad ; Q(¢, )]

with v = (u1,...,ur), Q(T,z) = z*hz.
PROOF. Because of the positive definiteness of the matrices R(t),0 <t < T,
the quadratic form

J(u;t) = u*R(t)u + u*c*(t)grad ;Q(¢, z)
is positive definite and attains its minimum on the vector

g (z) = (41 (L, x),. . ., Ur(t, )
satisfying the system of linear algebraic equations
grad,J(u;t) = 0.

Since grad,, J(u;t) = 2R(t)u + c*(t)grad zQ(t, z),

fig(z) = —%R‘l(t)c* (t)grad . Q(t, 7).
But
grad ;Q(t, z) = 2P(t)z. (16.24)

Hence,
iy (z) = —R™1(t)c* (t)P(t)z. (16.25)

Due to (16.6) and (16.22),

2 _ 9P . dp(t)
EQ(t’z) Tdt Tdt

z*[~a* () P(t)-P(t)a(t)~H(t)+P(t)c(t) R (t)c* () P(t))x
k
— 3" Di(t)P;(t) (16.26)

i,j=1
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and

8%Q(t, )
(16.24)-(16.27) together with the equality J(@;t) = min, J(u;t), indicate
that the function Q(¢,z) = z* P(t)z + p(t) satisfies Equation (16.23). O

Let us show now that for the auxiliary problem the control defined by
(16.20) is optimal.
It is seen from (16.23) that

P(t, fit, Q(t, fir)) = 0. (16.28)

Let now u; = (u1(t),...,ur(t)), 0 <t < T, be any admissible control and
pe = (p1(t), - - -, px(t)) be defined by

dus = [c(t)us + a(t)us)dt + v Af (B*(t)) " dz. (16.29)
Then it follows from (16.23) and the inequality J(@;t) < J(u;t) that
D(t, pe, Q(t, pe)) 2 0. (16.30)
By applying the It6 formula to Q(t, ji;) we obtain

T s ii
Q(T’ﬁT)“Q(O»ﬂO) =/0 {B_Q'%+(c(s)ﬂ3+a(s)ﬁa)*gradﬁQ(sa/13)

Z 8 9°Q(s, fis)
i,j=1

+ /0 (erad 2Q(s, )]s A* (5) (B (5)) " dzs.
(16.31)

Taking into account (16.28) we find that
T
QT fir) = @O, o) = = [ 1(5)" H&)a + (a0)" R(s)ialds

T
+/0 [grad zQ(s, fis)]*7s A* (s)(B*(s)) " 'dzs.
(16.32)

Taking now the mathematical expectation on both sides of this equality
and taking into account the equality fip = mp, we obtain

T
Q0,mo) = M {(ﬁT)*hﬁT +/0 ()" H(t) 1 + (ﬂt)*R(t)ﬁtldt}- (16.33)
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Similarly, applying the same technique to Q(t, 11;), we find that

T
Q(0,mo) < M {(ﬁT)*hﬁT +/0 [(ue)* H (t)se + (Ut)*R(t)ut]dt}- (16.34)

Comparing (16.33) with (16.34) we obtain
V(i T) = Q(0,mo) < V(1 T). (16.35)

The control % defined by (16.20) is admissible since the linear equation
given by (16.21) has a solution, which is unique and strong (Theorem 4.10).
(16.17) is satisfied by the vector version of Theorem 4.6. Together with (16.35)
this proves that the control % is optimal in the class of admissible controls.

16.1.4.
COMPLETION OF THE PROOF OF THEOREM 16.1. Let us consider the
processes

W =W, F), 0<t<T,

in more detail.

It follows from (16.14) and (16.1) that with probability one the values of

0¥ —m¥ and 62 — m? coincide (the index 0 corresponds to the ‘zero’ control

u; =0, 0 <t <T). Hence, it is seen from (16.15) that with probability one
all the processes W, coincide (W, = W?) and, therefore, Equation (16.16)

can be written as follows:
dm? = [c(t)uq + a(t)m¥ldt + v, A* (£)(B*(t)) " dW ..
Let now T be any admissible control, and let £€* = (¢7),0 <t < T, be an
associated process where

}'f; = a{w;{f, s <t}

Let us take advantage of the results of Subsection 16.1.3, setting F; = ffv
and z; = W?._Let U be the class of all admissible controls u = (u;),0 <t < T,

which are ff“-measurable at any time ¢. Since for any u

o e =0
FEoFV =7V, o<t<T,

the control @ given by (16.20) belongs to U for any @ (the admissibility of the
control 4 follows from Theorem 4.10 and the vector version of Theorem 4.6).
Hence (see (16.35)), V(#;T) < V(u;T) for all w € U and, in particular,
V(@& T) < V(w;T). By virtue of the arbitrariness of the control % it follows
that the control % is optimal.

Finally, note that (16.9) follows from (16.13) and the equalities

V(@ T) = Q(0,mo) = mgP(0)mo + p(0). U
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Note. As in the case of discrete time (Section 14.3), the theorem proved
above exhibits the so-called ‘principle of separation’ (which holds true in a
more general situation, for which see [313]), according to which the optimal
control problem with incomplete data decomposes into two problems: a filter-
ing problem and a control problem with complete data for a certain system.

16.1.5. Consider a particular case of the system of equations given by (16.1).
Let b(t) =0, A(t) = E(k x k), and B(t) = 0. Then in the control problem of
the process 8 = (6;), 0 <t < T, with

%%t = c(t)u; + a(t)by, (16.36)

where 6 is a deterministic vector with performance functional
T
V(wT) = O5h0r + / (02 H(£)0, +u} R(t)uedt,
0

the optimal control & = (#%;), 0 <t < T, exists and is given by the formula
ity = —R™(t)c* (t) P(t)6;, (16.37)
where P(t) is a solution of Equation (16.6). In this case

V(&%) = inf V(u; T) = 63 P(0)6o. (16.38)

This result can be obtained by the same techniques as in the proof of
Theorem 16.1. It can also be obtained from this theorem by a formal passage
to the limit if we set B(t) =€E, ] 0.

16.2 Asymptotic Properties of Kalman—-Bucy Filters

16.2.1. Consider the Gaussian partially observable random process (6, £) =
[(61(2), ..., 0k(t)), (€1(P), ..., &(t))], t = O, satisfying the system of stochastic
equations

v d0t = [a10t + a2€t]dt + bldWl(t) + b2dW2(t)
d{t = [Alet + Azﬁt]dt + BldW1(t) + B2dW2(t), (1639)

with the constant matrices a1, a2, A1, As,b1,b2,B; and B> of the orders
(kxk), (kx1), (Ixk), (Ix1l), (kxk), (kxl), (Ixk)and (I x1), respectively.
The mutually independent Wiener processes Wy = (W11 (t), ..., Wik(t)) and
Wa(t) = (Wai(t),..., Wa(t)), t > 0 are supposed (as usual) to be indepen-
dent of a Gaussian vector with initial values (6g, &o)-

If the matrix (B o B) = B1B} + B2 Bj is positive definite, then, according
to Theorem 10.3, the mean vector m; = M (0t|ff) and the covariance matrix
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Ve = M[(8: — me)(8: — me)] (16.40)
satisfy the system of equations

dm, = [a1m, + asér)dt + [(bo B) +.A31(B o B)~![dé; — (Arms + Agti)dt],

(16.41)

= a1y +mai — [(bo B) + % Af](Bo B) ' [(bo B) + 7 Af] + (bob), (16.42)
where (b o b) = b1b} + b2b3 and (bo B) = by B + byB3.

The components of the vector m, = M(6;|F¢) are the best (in the mean
square sense) estimates of the corresponding components of the vector 8,
from the observations £§. The elements of the matrix «; and its trace Try;
exhibit the accuracy of ‘tracking’ the unobservable states 6; by the estimate
my. In this case, as in the analogous problem for the case of discrete time,
the critical question (with respect to applications) is: when does the matrix
v¢ converge as t T 00? The present section deals with the investigation of the
existence of lim;_,, v; and the techniques for its computation.

16.2.2. Before giving a precise formulation, let us note first that by setting
a = a1 - (bo B)(Bo B)'4,,
b = [(bob) — (bo B)(BoB) }(bo B)*]'/2,
B = [BoB]'?, A=A, (16.43)

Equation (16.42) can be rewritten in a more convenient form:
4 = ay; + yia* + bb* — 'ytA*(BB*)_lA'yt. (16.44)

This equation coincides with the equation for the covariance of the pair
of Gaussian processes (6, £) satisfying the system

df, = abydt + bdW, (¢),
d¢, = Abydt + BdWi(t). (16.45)

So, in terms of the behavior of the matrices «; for t — oo it is enough to
consider the simpler system of equations given by (16.45) instead of (16.39).

Theorem 16.2. Let the system of equations given by (16.45) satisfy the
following conditions:

(1) the rank of the block matriz

A
G =| 4 (16.46)
Adk-1

of dimension (kl X k) is equal to k;
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(2) the rank of the block matriz
G = (bab...a* 1b) (16.47)

of dimension (k x lk) is equal to k;
(83) the matriz BB* is nonsingular.

Then, for s = M(0; —m¢)(6; —me)*, lime—y o0 v = v exists. This limit v does
not depend on the initial value vo and is the unique (in the class of positive
definite matrices) solution of the equation

ay + va* + bb* — yA*(B*B)"'Ay = 0. (16.48)
Before proving this theorem we shall prove some auxiliary lemmas.

16.2.5.
Lemma 16.2. Let D and A be matrices of dimensions (I x k) and (k x k),
respectively. We shall form the block matriz (of order (nl x k))

D
DA

D, =
D
Then the matrices D}.D,, and f(;‘r e~4’tD*De~4tdt, 0 < T < oo, are either
both singular or both nonsingular.

PROOF. According to Lemma 14.4, the matrices D} D,, and D; Dy , n > k,
are either both singular or both nonsingular. If the matrix Df Dy is singular,

then, by that lemma, there exists a nonzero vector z = (z1,...,Z,) such that
DAz =0,j=0,1,...,k,k+1,....
But, then,
o0
e~ Aty
Z J! 'z) =0,
J=
and, therefore,
T
T* / e 4"t D*De~4tdtz = 0, (16.49)
0

which proves the singularity of the matrix fOT e~ A"t D*De~4tdt.
Otherwise, let (16.49) be satisfied. Then, obviously, z*e~4"*D*De~ 4tz =
0,0 <t <T. Hence,
De 4tz =0 (16.50)

and (after differentiation over t)
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DAe 4tz = 0,

DA*-te=4t = o, (16.51)

It follows from (16.50) and (16.51) for ¢t = 0 that DAYz =0, j =0,...,k—1,
which is equivalent to the equality z* Dy Dyx = 0. O

Corollary. Let Dy, = (D AD ... A*"1D) be a block matriz of order (k x ki)
where D and A are matrices of dimensions (k x 1) and (k x k), respectively.
Then the matrices DD} and foT e~ AtDD*e~4"tdt are either both singular
or both nonsingular.

Lemma 16.3. If the matriz Gy has rank k then, for t > 0, the matrices v,
defined by Equation (16.44) are positive definite.

PROOF. The matrix +v; is the covariance matrix of the conditionally Gaus-
sian distribution P(8; < a|FF). If this distribution has a (P-a.s.) density
then obviously the matrix «; will be positive definite. Considering the system
of equations given by (16.45) and taking into account Corollary 1 of Theo-
rem 7.23 (see Subsection 7.9.5), we see that the distribution P(8; < a|Ff),
t > 0, has a density (P-a.s.) if the distribution P(f; < a) also has a density,

which is equivalent to the condition of positive definiteness of the matrix
Iy = cov (6, 8;).

According to Theorem 15.1, the matrices I'; are solutions of the differential
equation )
Ft = aFt + Fta* + bb* (1652)

From this we find
t
T, = e*Tpe®t + ¢ [/ e"“bb*e‘“"ds] et
0

But, by virtue of the corollary to Lemma 16.2, the matrices I}, t > 0, are
positive definite, since so also is the matrix GG (rank G, = k). O

Lemma 16.4. If the rank of the matriz Gy is equal to k, then the elements
of all the matrices v; are uniformly bounded.

PROOF. Consider the auxiliary problem of control of the deterministic pro-
cess oy = (x1(t), ..., xk(t)), 0 <t < T, satisfying the equation

dz:
dt

with the performance functional

=a*r + A%, x0 =1, (16.53)
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T
V(4 T) = zpyorr + / [z;bb*z + ui BB*uy)dt.
0

The controls u;, 0 < t < T, are chosen from the class of admissible controls
(see the previous section).
According to (16.37), the optimal control i, exists and is given by the
formula
iy = —(BB*)" ! Ayp 4y, (16.54)

where %; is the solution of Equation (16.53) with u; = 4i;, 0 <t < T In this
case V(i;T) = z*yrz. Since the elements of the matrices 7; are continuous
functions, to prove the lemma it suffices to show that all the elements of the
matrices yr for T > 1 are uniformly bounded.

Since rank G = k, the matrix G7G is nonsingular and, by Lemma 16.2,
so is the matrix

1
/ e"% "t A* Aedt.
0
Take now a special control

- 1 _g* _ _
iy = —Ae at(foea’A*Ae as) 1:1:, OStSI,
0, t>1,

and let Z; be the solution of Equation (16.53) with u; = #;. By solving this
equation we find that £; = 0, t > 1. But then, because of optimality of the
control %, 0 <t<T,T > 1,

1
z*yrT < / [£:6b*E, + @ BB*iig]dt < oo. 0
0

Lemma 16.5. Let 4 be the solution of (16.44) with v§ = v = 0 and
rank G; = k. Then 7° = lim;_,o07? exists and is the nonnegative definite
symmetric matriz satisfying the equation

ay® + 7%* + bb* — 1 A*(BB*)"1A° = 0. (16.55)
If, in addition, rank Gg = k, then v° is a positive definite matriz.

PROOF. By virtue of the assumption that rank G; = k it follows from the
previous lemma that the elements of all the matrices 4, ¢ > 0, are uniformly
bounded.

We shall show that for 79 = 0 the function z*4%z is monotone nonde-
creasing in T'. Let T, > T3. Then, denoting by u.(T;) and z:(7;) the optimal
controls and their associated processes in the auxiliary control problems,
1=1,2,..., we find that
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T2
o / (2o(T2))*bb* ©2(Ts) + (ue(T))* BB ua (T3)|dt
0
T
> [ (ouT) 8 () + (uel2) BB (T
0

Ty
> /0 [(ze(T1))*bb* x4 (T1) + (ue(Th))* BB*ue(Th)]dt = ™y, .

From boundedness and monotonicity of the functions z*y%z follows the ex-

istence of the matrix 7% = limr_,o, 7% with the properties stated.
If, in addition, rank G = k, then, by Lemma 16.3, the matrices 7 are
nonsingular and consequently the matrix 7° = lim;_,, 7{ is also nonsingular.
O

16.2.4.
PROOF OF THEOREM 16.2. Set 7° = lim;—,0 7} for 7o = 0, and set

U, = —(BB*)"144°z,, (16.56)

where T; is the solution of Equation (16.53) with u; = %; and To = z. We
shall show that Z; — 0, t = oo. For this purpose it is enough, for example,
to show that
s ok O
tll)r&:z:t'y Ty =0, (16.57)

since the matrix 7° is symmetric and positive definite.
Due to (16.53), (16.55) and (16.56),

4 @47) = Tnola® - A"(BB") " Al'E,
+Z;la — v°A*(BB*) ' AY°Iz, - T;7° A*(BB*) "1 A"z,
= ~Z;bb*T, — T;1"A*(BB*)"'(BB*)(BB*) " 4"z,
= —[z}0b"T + U BB Ty].

Therefore, by Lemma 16.5,
T
0 < Z57°Zr = z*¢°z - / [Z;bb*T, + Uy BB*u;|dt
0

T
< x'yoa: —/ [(‘I:':bb*fit +11t*BB*ﬁt]dt
0
=z’ -1z =0, T - oo, (16.58)

where i, is the optimal control defined in (16.54).
It also follows from (16.58) that

T
lim / (Z;60*T, + U, BB*u,;|dt = z*7z. (16.59)
0

T—o0
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Next, let 7o be an arbitrary nonnegative definite matrix. Then
T
TTYTr + / [Z;bb*T; + ul BB U] dt
0
T
> r*yrz = Irve¥r + / [Z;bb* %, + 4y BB*i;]dt
0
T
2 / [Z7bb* % + Gy BB*)dt
0

T

> / [%;bb*%; + 4} BB*t;|dt = z*~3, (16.60)
0

where %; = —(BB*)~'A+3._,%,, and #; is the solution of Equation (16.53)

with u; = ;. It follows from these inequalities and (16.59) that

lim Z5y0Er + %% > limr,ox*yrz > limp_, 2*yrz > lim :c*'y%x.
T—o0 T—o00

But, according to (16.57), limz—c0 T Y0Z7 = 0 and lim_y00 2*722 = *9°z
(see Lemma 16.5). Hence limy_, o 2*yrz (= 2*yz) does exist,

lim z*yrz = z*+°z,
T—o00

and

— 1 — A0
v=lm 97 ="
The limit matrix v = limy_, v does not depend on the value of vy and
satisfies Equation (16.48).
The uniqueness of the solution of this equation (in the class of positive
definite matrices) can be proved as in Theorem 14.3. O

Note. If the eigenvalues of the matrix a lie in the left-hand plane, then
one can remove the first assumption, (I), of Theorem 16.2, since the Trvy; <
Tr M6,6; < o0, t2>0.

16.3 Computation of Mutual Information and Channel
Capacity of a Gaussian Channel with Feedback

16.3.1. Let (12, F, P) be some probability space, with (F;), 0 <t < T, a
system of nondecreasing sub-c-algebras of F. Let 8 = (6;,F;),0<t < T, be
some transmitted information to be transmitted over a channel with Gaussian
white noise. To make this description precise we suppose a Wiener process
W = (Wi, F:), independent of the process 8 = (6;,F;), 0 <t < T, to be
given. If the received signal & = (&, F:) has the form
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d&, = ai(0)dt + dW;, & =0, (16.61)

ie., .
&= /0 as(0)ds + Wy, (16.62)

then the message 8 is said to be transmitted over the white Gaussian channel
without feedback®. The functionals as(6), 0 < s < T, with P( fo |as{0)|ds <
00) = 1 determine the coding and are assumed to be nonanticipative.
In the case where the received signal € = (&, F;), 0 <t < T, permits the
representation
dé; = a,(0,€)dt + Wi, €& =0, (16.63)

with the nonanticipative functional a;(8,£), 0 <t < T,

T
P (/0 las(6, &)\dt < oo> _1,

then the transmission is said to occur over the white Gaussian channel with
noiseless feedback.

Therefore, in the case of noiseless feedback, the received signal £ is sent
back and can be taken into account in the future in transmitting the infor-
mation 6.

Let (6, Bp) be a measure space to which the values of the signal § = (6;)
0 <t <T, belong.

We shall denote by (Cr, Br) the measure space of continuous functions
on [0,T], z = (), 0 < t < T, with 2o = 0. Let pw, p¢ and pg ¢ be measures
corresponding to the processes W, ¢ and (6,§).

If a certain coding a¢(6,&), 0 <t < T, is chosen, then it is natural to ask
how much information I7(8, £) is contained in the received signal § = {£;,s <
t} about the transmitted signal 6 = {6,,s < t}. By definition

_ du
12(6,6) = MIn 72265 (6,6), (16.64)

setting I(#,£€) = oo if the measure g ¢ is not absolutely continuous with
respect to the measure pg X .

Theorem 16.3. Let the following conditions be satisfied:

(1) Equation (16.68) has a strong (i.e., ff W _measurable for each t, 0 <t <
T) solution;

3 In the engineering literature, instead of writing (16.62) its formal analog, £@t) =
a:(0) + Wy, is used; W, is called white Gaussian noise.
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(2)
t
/ Ma?(6,¢)dt < .
(]

Then . T
1r(0,6) = 3M | 1ak(6,6) ~aH(e), (16.65)

where

@(€) = M(as(6,8)|F5). (16.66)

PROOF. According to the assumptions made above and Lemmas 7.6 and
7.7, pe < pw and pg ¢ < po X pw. Hence, due to the note to Theorem 7.23,

_duee __ duee due
dlpe x e 9,€) = d[ﬂo X pw ] / (€)- (16.67)

But, due to Lemmas 7.6 and 7.7,

dp,g,g . T —_1- T 5
e x MW-]-(O’O = exp [/0 at(0,€)d¢; 2/0 a; (6, E)dt} , (16.68)

_d_'u'_ﬁ... = ex g _1 TE2
£(6) = "U, a(ede~ 5 [ t@)dt], (16.69)
where
(x) = M(ay(6, &) Ff |-
Here,
T T T
/ Ma2(&)dt = / M[M(ay(6,&))FE))2dt < / Ma2(,€)dt < oco.
0 0 0
It follows from (16.67)—(16.69) that
L )—a - = a —a
ngtt 6,0 = [ 10,9 -~} [ 1a20,0) -6
- /0 ([atw,g)—at(s)]at(e,e)
-Jeie.0 -]

T
+ [ ul0,€) ~ (@, (16.70)
0

From this, by the properties of stochastic integrals,
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_Guog =1 T o2 % a 2
Mhn o @9 = 3 /0 M(a(8,€) — 200(6, €)(€) +T(©))t

T
_ % /0 Mas(6,8) — @ (&))dt
T
_ %/0 M { Mlay(6,€) - T(©)| 7} at

T
-1 /0 M[a2(6,€) — 2(€)]dt. (16.71)

16.8.2. We use this theorem to prove the fact that (subject to ‘power’ limi-
tation) feedback does not increase the channel capacity.
By definition, for a channel with feedback

C =sup %IT(O,E), (16.72)

where ‘sup’ is taken over all the information 6 and the nonanticipative func-
tionals {a;(6,¢), 0 <t < T} for which Equation (16.63) has a unique strong
solution and

T
51,- /0 Ma2(6,€)dt < P (16.73)

with the constant P characterizing the power constraint of the transmitter.
Due to (16.71),

1 T
0<1(6.6) = M [ (0.0~ e
T
< lM/ a2(8,&)dt < T (16.74)
2 0 2
Therefore, p
C< X (16.75)
We shall show now that for a channel without feedback
1 P
Cp = sup TIT(G’E) =3 (16.76)

where ‘sup’ is taken over all the signals # and the nonanticipative functionals
a(0), 0 <t < T, for which

1 T
T /0 Ma2(6)dt < P.

Since C > Cy, then it will follow from (16.75) and (16.76) that feedback does
not improve the channel capacity:

C=Cy=

P
3 (16.77)
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For this purpose we consider the following example.

EXAMPLE 1. Consider a;(x) = z;, and §* = (6%), 0 <t < T, a Gaussian
stationary process with M82 = 0 and the correlation function

K(t,s) = Pexp{—alt — s|}.

We shall assume that the received signal £ = (£), 0 < t < T, at the
channel output can be expressed as

dé; = 07dt +dW,, & =0,

where W = (W), t > 0, is a Wiener process independent of the process 6.
According to Theorem 15.2, the process ¢ has the differential

dof = —ab3dt + V2aPdz,

where z = (2;), t > 0, is a Wiener process independent of W.
 Let m¢ = M(02|FF), v& = M(62 — m&)2. By Theorem 10.1,
dmg = —amgdt + 7 (dé — mgdt), m§ =0,
¥ = —207F +2aP — ()%, 5 =P. (16.78)

From (16.78) and the normality of the process %, the assumptions of
Theorem 16.3 are satisfied and, therefore,

[e 1 T o\ 2 T a\2 PT 1 T a\2
Ir(0%,€6) = = M(67)“dt — M(mg)dt| = — — = M(mg)*dt.
2 1Jo 0 2 2

(16.79)
Let us show that T
lim [ M(m&)2%dt=0. (16.80)
C!TOO )

By Theorem 7.12, the process W = (W, F¢) with W, = & — fot mdds is a
Wiener process.
Therefore

dmg = —am{dt + y2dW,,
and, hence,
¢
mg = e“"t/ e y2dW ,,
0
and by the properties of stochastic integrals we obtain

t
M(mg)? = / &2 ()24
1]

¢
< / ¢~2e(t-9) p2gs — prl =€
0

< — (16.81)
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since 7 = M(63 — m{)? < M(63)2 = P. The required relation (16.80)
follows from (16.81).
Thus we have proved the following theorem.

Theorem 16.4. Let the conditions of Theorem 16.3 be satisfied. Then the
capacity C of the channel with feedback coincides with the capacity Cy of the
channel without feedback and

P

C=Co=—2-

16.4 Optimal Coding and Decoding for Transmission of
a Gaussian Signal Through a Channel with Noiseless
Feedback

16.4.1. The theory of optimal nonlinear filtering of conditionally Gaussian
processes developed in the preceding chapters enables us to find the optimal
method for transmission of a Gaussian process through channels with additive
white noise using instant noiseless feedback.

Assume first that the signal to be transmitted is a Gaussian random
variable 6 with M6 = m, D8 = v > 0, where the parameters m and v are
known at both the transmitting and the receiving ends.

The signal £ = (&), 0 < t < T at the transmitter output is assumed to
satisfy the stochastic differential equation

de, = A(t,0,€)dt +dW,, & =0, (16.82)

where W = (W), 0 < t < T, is a Wiener process independent of 8. The
nonanticipative functional A = (A(t,6,€)), 0 <t < T, determines the coding
and is assumed to be such that Equation (16.82) has a unique strong solution

with
T
P {/ A%(s,0,8)ds < oo} =1.
0

We shall also assume that the functionals A = (A(¢,8,£)), 0 <t < T, are
subject to the constraints

t
% / MA?%(s,0,¢)ds < P, (16.83)
0

where P is given constant. (The coding satisfying the conditions listed above
will be called admissible).
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At each instant of time t the output signal ét(g) can be constructed from
the received signal &§ = {&,,s < t}.

The nonanticipative functional § = (ét(f)), 0 <t < T, specifying the
decoding must be chosen, naturally, to reproduce the signal 6 in the optimal
manner.

Set

A(t) = inf M8 — 6,(6)]?, 0<t<T,

where ‘inf’ is taken over all the admissible codings A = (A(s,0,£)), s > 0,
and the decodings 6;(¢). The problem is to find optimal coding, decoding (if
such exist, of course) and the minimal reproduction error A(t) as a function
of time.

Since (with given coding)

M6 - 6,())% > M[8 — my())?,

where m, = M(6|F}), then it is seen that A(t) = inf 4 M[#~m,]? and that the
optimal decoding (of the signals £5) is the a posteriori mean m, = M(8|FF).

Thus the primary problem is reduced to the problem of finding only the
optimal coding.

16.4.2. Consider first the subclass of admissible coding functions A(t, 6, £)
linearly dependent on 6:

A(t,6,8) = Ao(t,€) + Au(t,£)6, (16.84)

where Ag = (Ao(t,§)) and A; = (A1(¢,€)), 0 < t < T, are nonanticipative
functionals. Let

A*(t) = inf M][6 — m4)2 16.85

(t) A ][0 —my] (16.85)

The problem is to find the optimal coding function (Ag, A7) which attains
the ‘inf’ in (16.85).

Let some coding (A, A1) be chosen, and let £ = (£),0 <t <T, bea
process satisfying the equation

dé = [Ao(t,§) + A1(¢,£)0)dt + dW;, & =0. (16.86)
Then, according to Theorem 12.1, m; = M(8)F) and
T = M[(6 — my)?| Ff]
satisfy the equations
dmy = 1 A1(t,€)[d€: — (Ao(t, &) + Ar(t, §)my)dt]. (16.87)

Y =- ?A%(tvg)v (1688)
with mg = m, 7 = 7. Equation (16.88) has the solution (Theorem 12.2)
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_ 2
1+ fy A3(s,€)ds’

Tt

and it is seen that P(info<s<7 s > 0) = 1. Hence, we obtain from (16.88)

B A%,
Yt

and, therefore,

t
Iny; —lny = —/ 75 A% (s,€)ds,
0
ie., .
V¢ = Y exp {—-/ ’y,Af(s,{)ds} . (16.89)
0
Since

M[AO(t1 é) + Al(t,€)9]2
= M{[Ao(t, é) + mtAl(t’g)] + [0 - mt]Al(tr {)}2
= M{Ao(t,€) + A1(t,&)me}? + M7, A3(2, ), (16.90)

then, due to the boundedness of (16.83),
¢
/ M~y,A%(s,£)ds < Pt. (16.91)
0

Hence, by the Jensen inequality (Me™" > e~ "), (16.89) and (16.91),
' My, >ye Pt 0<t<T (16.92)
Therefore, for the specified coding (Ao, A1) we have
M0 — m)? = My, > ye P (16.93)
and, consequently (see (16.85)),
A*(t) > ve P (16.94)

For the optimal coding (A§, A7) the inequalities in (16.91) and (16.92)
have to be equalities. This will occur if we take

Aj(t) = \/gep o2, (16.95)

since then the corresponding 7; (see (16.88)) will be equal to ye~F*.
Comparing (16.90) with the equality

[ Mvicais)as = | vicits)as = e,
0 0
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we find that the equality
Ay(t,€7) + AT(t)m;(€7) =0 (16.96)

must also be satisfied, where, according to (16.87), the optimal decoding m}
can be defined by the equation

dm = /Pye PY2dgr, mE =m, (16.97)

and the transmitted signal £* = (§;), 0 < t < T (see (16.86)), satisfies the
equation

p
dé; = /;e"tﬂ(e —-m)dt +dW;, & =0. (16.98)

It is seen from (16.97) that the optimal decoding can also be expressed
as follows:

t
m+ \/1_377./ e~ (Ps/2)ger
0

P t
m+ /Py [e_(Ptﬂ){{ + 5/0 e“'(P’/2)§;ds] . (16.99)

Equation (16.98) shows that the optimal coding operation involves trans-
mitting not the message 8 during all the time, but the divergence § — m}
between the value 6 and its optimal estimate m} multiplied by \/P/~;.

Thus we have proved the following lemma.

%*
my

Lemma 16.6. In the class of admissible linear coding functions given by
(16.84) the optimal coding (A§, A1) exists and is given by the formulae

Af(t) = \/gep o2, (16.100)

AL, €%) = —AL(t)m]. (16.101)

The optimal decoding my and the transmitted signal £f satisfy Equa-
tions (16.97) and (16.98).
The reproduction error is

A*(t) = ye Pt (16.102)

Note 1. Consider the class of linear coding functions Ag(t) + A1(t)8 which
do not employ feedback. In other words, we shall assume that the functions

Ap(t) and A;(t) depend only on time fOT [AZ(t) + A%(t))dt < oo and

t
% / M{Ao(s) + Ay(s)8]2ds < P, 0<t<T.
0
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Since
M[Ao(s) + A1(s)8]* = [Ao(s) + mAi ()] + 7AL(s),
then from the above power constraint we find that
/t A%(s)ds < £t.
0 v

It follows from this that

g 5 7

v = > :
" 14 [fA2(s)ds T 1+ Pt

and, consequently, the minimal mean square reproduction error (without the
employment of feedback) is

- s _ 2> 0
A(t) = inf M[6 — my) 21T

But, for the coding functions,

Ay = \/g, Ao(t) = —Ai1(t)m

the mean square error is equal to v/(1 + Pt) exactly. Hence,

i 2
A(t) = .
O =137
Note 2. Let us note another property of the process £* which is an optimal

transmitted signal. If (Ao, A;) is some admissible coding, then, according to
Theorem 7.12 and Equation (16.86),

dgt = [Ao(t, é) + A1 (t, E)mt]dt + th,

where W = (W, F}) is a Wiener process.

For the optimal signal £*, A§(t,&*) + Aj(t,£*)m; = 0. Hence, the process
& = (&), 0 <t < T, coincides with the corresponding innovation process
W = (W, F§'). Consequently, in the optimal case the transmission is such
that only the innovation process W = (W, ff') has to be transmitted.
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16.4.3. Let us show now that the coding (Aj, A7) found in Lemma 16.6 is
also optimal in the sense that it has the greatest information I,(8,£) about
6 in the received message &§ = {¢s,s <t} foreach t,0 <t <T.
Let I, = suply(6,£) where ‘sup’ is taken over all the signals & =
{&,s < t} satisfying Equation (16.82) with admissible coding functions
= (A(t,6,6)),0<t<T.

Lemma 16.7. The process £* = {£},0 < s < T} found in Lemma 16.6 is
also optimal in the sense that, for this process
. Pt
I, =L(0,¢) = - 0<t<T. (16.103)
PROOF. Let A = (A(t,0,£)), 0 <t < T, be some admissible coding. Then
it follows from Theorem 16.3 and (16.83) that

¢
L(6,¢) = / MI[A%(s,0,€) — A (s,€)|ds < %/ MA%(s,0,¢)ds < %
0
_ (16.104)
where A(s, ) = M[A(s,6,8)|75].
On the other hand, let us take A(s, 6,£*) = Aj(s, &) +Aj(s)8 with Aj(s, &)
and Aj(s) defined in Lemma 16.6. Then, due to (16.101),

M[A(s,6,€")|F5] = Ag(s,€7) + Af(s)m; =0,
and, therefore, according to (16.104) and (16.90),

1/t P
I,(6,€%) = 5/0 M[A§(s,€) + A} (s)6)%ds = -—2-5,

which together with (16.104), proves the required equality, (16.103). a

16.4.4. It will be shown here that the linear coding (Aj, A7) is optimal in
the class of all admissible codings.

To prove this statement we will find useful (16.105), given below: in a
certain sense this inequality is analogous to the Cramer—-Rao inequality.

Lemma 16.8. Let 6 be a Gaussian random variable, let 6 ~ N(m,v), and
let 8 be some random variable. Then

MI[f - 6] > ye=21(00), (16.105)

PROOF. Let €2 = M[0 — §]2. Without loss of generality, we can take 0 <
€2 < 0o. Consider now the e-entropy H.(8) = inf{I(9,0) : M(6 — 8)* < £?}.
According to the known formula for the e-entropy H.(8) of the Gaussian
variable 6 (see formula (12) in [159])



16.4 Optimal Coding and Decoding for Gaussian Signal 201

1 v
H,(6) = 5 Inmax (5_2 1) . (16.106)
Consequently,
~ 1.~ 1 0%
> >t =cip—2
1(6,6) > H.(6) > 2ln62 5 nM[0_9]2,
which proves the required inequality, (16.105). O

Theorem 16.5. Let 0 be the Gaussian random variable transmitted over the
channel described by Equation (16.82). Then

A(t) = A*(t)— = ye~ Pt (16.107)

and, therefore, in the class of all admissible codings the linear coding (Ag, A})
found in Lemma 16.6 is optimal.

PROOF. It is clear that A(t) < A*(t) = ye~Ft. Hence, to prove the theorem
it suffices to show that
A(t) > ve Pt (16.108)

Let £ = (&), 0 <t < T, be a process corresponding to some admissible
coding (see (16.83)), and let § = 6;(¢) be some decoding. Then, due to
Lemma 16.8, . .

M0 — 0,(&))? > vexp(-21(9, 64(€)). (16.109)

But, as is well known, I(8,6;(¢)) < I,(6,¢). In addition, by Lemma 16.7,
It(91E) < It(ovg*) = Ijt/2 Hence1

M8 — 6, ()1 2 ve™ ™",

which proves the required inequality, (16.108). O

16.4.5. The method used in proving Lemma 16.6 can also be used for finding
optimal linear coding for the cases where: the transmitted message 6 = (6;),
0 <t <T,is a Gaussian process with the differential

df;, = a(t)6dt + b(t)dWs, (16.110)

the Wiener process W = (Wt), 0 <t < T, does not depend on the Gaussian
random variable 6y with the prescribed values M6y = m and Dfy = v > 0;
and |a(t)| < K, |b(t)| < K.

We shall assume (compare with (16.86)) that the process £ = (&), 0 <
t < T, obtained at the channel output is the unique strong solution of the
equation

dé; = [Ao(t,€) + A1(t,€)6:)dt +dWy, & =0, (16.111)
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where the Wiener process W = (W;), 0 <t < T, does not depend on W; 6,
and the (nonanticipative) coding functions Ay(t,£) and A;(t, &) satisfy the
conditions

T
P {/ A2(t,&)dt < oo} =1, sup |Ai(t,z)| < oo;
0

z€C,t<T
and the power constraint
M[AO(tyé-) + Al(t7€)0t12 S Pv

for the prescribed constant P.
Let

A*(t) = inf M[8, — 6,(€)]?,

where ‘inf’ is taken over all the described admissible coding functions and
decodings 6;(€). It is clear that

* I _ 2
A*(t) = jnf M6 —mel’,

where my = M (0| F5).

Write
ve = M[(8; — my)?|FE). (16.112)
Then
A*(t) = inf Mn,. 16.113
®) (AoAy) Tt ( )

If the coding (Ao, A1) is given, then, by Theorem 12.1,
dmy = a(t)medt + v A1(8,€)[dé — (Ao(t, &) + A1(t,€)me)dt],  (16.114)
A = 2a(tyy. — 17 AL, €) + b (2) (16.115)

with mo = m, v = 1.
As in (16.90), we find that

M[Ao(t,€) + A1 (t, &)ms)® + M7 AL(2,€)] < P. (16.116)

Note that Equation (16.115) is equivalent to the integral equation

Y = 7Yexp {2/()ta(s)ds—-/0t %A%(s,g)ds}
+/0t b2(s)exp {Q/Ota(u)du—/gt'yuAf(u,g)du} ds.

Due to the Jensen inequality (Me~" > e~ ") we obtain
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M0, — my]® > yexp {Z/t a(s)ds ~ /t M’ysAf(s,f)ds}

/b2 exp{ /a(u du—/ My, A%(u, {)du}ds,

(16.117)

which, together with the inequality M~, A%(t,£) < P (following from (16.116))
yields for M+~; the estimate from below:

My, > 'yexp{2/t[ (s)——] ds}
/ b2(s exp{ / [ (u)—g] du} ds.  (16.118)

We shall indicate now the coding (A§, A}) for which in (16.118) equality
is attained. Since, by assumption, v = v > 0, it follows that P{inf,<7~; >
0} =1 (Theorem 12.7), and consequently for all ¢, 0 <t < T, we can define

the functions
AiE) = |, (16.119)
Yt

AG(t, &) = —Aj(t,€)*m], (16.120)
where
mi = M@F ), % =MO-m)*IF ], € =(&), 0<t<T,
is the solution of the equation
de; = [Ag(L, &%) + AL(t,£%)8,dt + dW,, & = 0. (16.121)

It should be emphasized that, due to (16.119), (A}(¢,£*))%y; = P and,
therefore (see (16.115)),

= [2a(t) — Ply; +0%(t), =~ (16.122)

This linear equation has the unique solution

3 = yexp {2/; [a(s) - -’23] ds} + /Ot b2(s) exp {2 /Ot [a(u) - g] du} ds,

(16.123)
which does not depend on the signals £.
Comparing (16.113), (16.118) and (16.123) we see that
A*(t) =+, 0<t<T. (16.124)

Thus we have the following theorem.
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Theorem 16.6. In transmitting, according to the scheme (16.111), the Gaus-
sian process 0 subject to Equation (16.110), the optimal transmission is de-
scribed by the equation

P
dg; = 4 /7[0t —m}|dt +dW;, £ =0, (16.125)
t
where the optimal decoding m{ = M (0t|.7-"f') is defined by the equation
dm; = a(t)midt + \/Py;d¢;, m§=m, (16.126)
and
e = [2a(t) - Ply; +0°(t), 7% =1 (16.127)

The minimal reproduction error is

A*t) = ’yexp{?/ot [a(s) - 12:'-] ds
+/0t b2(s)exp{2/: [a(u)— g] du} ds}. (16.128)

Corollary. If a(t) = b(t) = 0, then (compare with (16.102))

A*(t) = ye L.

Note 1. If, in transmitting according to the scheme given in (16.111) feed-
back is not used, then the optimal coding functions Ay(t) and A, (t) are given
by the formulae

P

A(t) = D,’

fio(t) = —/il(t)Mot'

In this case the mean square reproduction error A(t) is found from the
equation

At) = 2a(t) A(t) + b2(t) ~ 5%5%:), A(0) = ~.

In order to compare the values of A*(t) and A(t) let us consider the
following example.

EXAMPLE 2. Let a(t) = -1, v = %, m = 0, i.e., let the process 6, t >
0, be a stationary Gaussian Markov process with df; = —6:dt + dW; and
8o ~ N(0,1). Then M6, =0, D8, = 1 and A(t) = —24(t) + 1 — 2PA%(¢),
A(0) = 3. It is easy to show from this that
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< s JI¥2P-1
Ap = Jim At) = 5 —.

At the same time, according to (16.128),

1 1 1
*(1) — -@+P) | 2
AW =gpte [2 2+P]’
and, therefore, Ap = lim;_,oo A*(t) = 1/(2 + P). Hence,
a4 ____op
A (2+P)(WV1+2P-1)

and, therefore,
4p N{\/2/P, P — o0,
Ap 1, P 0.

In other words, feedback yields a much smaller reproduction error for large
P than is the case without feedback. For small P the reproduction errors are
asymptotically (for t — o0o) equivalent in the two cases.

"~ Note 2. The coding (Ag, A}) found in Theorem 16.6 is also optimal in the
sense that
It(07§*) = SupIt(07 6), (16129)

where ‘sup’ is taken over all admissible linear codings, and I;(6, ) is defined
in (16.64). (16.29) can be proved in the same way as Lemma 16.7.

16.4.6. Consider now the coding functions A;(6;,£) which are not linear in
0. The constraints on A;(a, ) guaranteeing the existence of a unique strong
solution to the equation

dé, = Ay(6,,€)dt + dW, (16.130)

will now be made more stringent.
Thus we assume that A;(a,z),t < T, a € R}, z € C satisfies

A%(a,z) < Li(1 4+ a® +22) + L, /Ot(l + z2)dK (s), (16.131)
and, fﬁr arbitrary t < T, a’,a” € [-N,N], N < o0, 2, 2" € C,
[As(a’,2') — As(a”,2")]? < Li(a’ — a")? + Ly(N)(z} — z})?
+Ly(N) /0 ‘@ - 22K (s), (16.132)
where Ly, Ly, L3(N), L4(N) are certain constants (L3(N) and Ls(N) depend

on N) and K (s) is a monotone nondecreasing right continuous function such
that 0 < K(s) < 1.



206 16. Application of Optimal Nonlinear Filtering Equations

(16.131) and (16,132) ensure the uniqueness and existence of a strong
solution to (16.130); this is proved in the same way as in Theorems 4.6 and
4.9, bearing in mind that

supM&?k <oo, k=1,2,....

t<T
Theorem 16.7. Suppose that a Gaussian process 0, governed by equa-
tion (16.110) is being transmitted according to the scheme given by (16.130),
where the functionals A¢(a, ) satisfy the requirements of (16.181) and (16.132)

and the constraint
MA%(6,,6) < P. (16.133)

Then the optimal transmission of the process 0 is described by (16.125)-
(16.128).

16.4.7. The proof of Theorem 16.7 (to be given in Subsection 16.4.8) will be
based on the fact that for each ¢ the mean square error of the estimate is
bounded from below by A*(t), given by (16.128) (see Theorem 16.5).

In order to obtain such a lower bound let us formulate first some auxiliary
results. Introduce the following notation:

(1) pe(B) = dP(6, < B)/dp;

(2) m(B) = dP(8, < B F})/dB;

(3) I(6§,¢&8) will be the mutual information between 6§ and &;
(4) I(6;,&%) will be the mutual information between 6, and &;

(5)
o= [ (%m(ﬂ))zﬂ{l(ﬂ)dﬂ

will be the Fisher information;

(6)
F(6:,€8) = / Z (%ﬂt(ﬁ))zﬂil(ﬁ)dﬁ

will be the Fisher conditional information.

Lemma 16.9. Assume that the functional A¢(a,z) is uniformly bounded to-
gether with its partial derivatives 8*A¢(a1x)/0at, i = 1,2,3, x € C. Then

1(0:,88) = 1(65,¢5) — % /0 b?(s)[MF(85,83) — F(85)]ds. (16.134)

PROOF. Note first of all, that due to (16.110), the variance I of the random
variable 6; is given by the equation (Theorem 15.1)
ali

— =20l + b2(t), (16.135)
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with the initial condition I'y = « > 0. Hence, for all t < T, the variables I}
are positive and the Gaussian distributions P(8; < 8), t < T, have a density
p¢(B) which satisfies the forward equation of Kolmogorov

0p:(B) _ a2pt(ﬂ)
at op?

By virtue of Corollary 1 to Theorem 7.23, and because of the existence of
the density p;(8), the conditional density m;(8) exists and is given by the
formula

—a(t)g%(ﬂpt(ﬂ)) + %bz(t) (16.136)

7'rt(ﬂ) = pt(ﬂ)M{exP[/o (As(53a£) _ZS(E))dWS

1t s -
-5 | 4. —As@))?ds]

6, = ﬂ}, (16.137)

where A,(£) = M(Ay(65,€)|7%), (W, F&) is a Wiener process, and the pro-
cess 6 is given on the probability space ({2, F, P), which is identical to the
primary probability space (£2, F, P) and has the same distribution as 6;.

According to the theorem on normal correlation (Theorem 13.1), the pro-
cess 0~s, s < t, permits the representation

6, = MO, + I'T cov (6, 0:)(6; — M6;) + 75,
where 7}, s < t, is independent of 6,. Let
Ag(a,b,x) = A, (MO, + I cov (85,0:) (b — M6:) + a, ).

Then (16.137) for m;(5) can be rewritten as follows:
i
7Tt(ﬂ) = Pt(ﬂ)M €xp [/0 (As(ﬁsaﬂa g) —KS(E))dWs

1t -
—3 /0 (As(ns,ﬁ,ﬁ)—As(ﬁ))zds]. (16.138)

From (16.138) and the assumptions on A:(a,z), it follows that:

(1°) the density m;(3) is twice continuously differentiable (P-a.s.) with respect
to B, —00 < B < o
(2°)

T
M / b2 (t)F (0, £5)dt < oo;
0
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(3°) the density m;(83) satisfies the equation (see Theorem 8.6))

2
dnp) = |-a0) ggtomion + £ o o)) a

+me(B)[A:(8,€) ~ Ac(©)]dWe,  m0(B) = po(B)-

(16.139)
Let us now estimate the information I(6;,£§). By definition
6:) 7:(6:)
1(6, €% =M1n”—‘(—‘=MM(1n FE
Guto) =M%, @) )|
=M / ﬂ (16.140)

Let ¢(8) = m(B8) In(m¢(8)/p:(B)). Using (16.140), (16.136) and the identity
mo(B) = po(B), the Itd formula gives us

o) = [ (w281 1] [-ate) Zeomaon + E2 Lo as

¢ WS(ﬂ) A A,
N /0 [m 0, 11] 74(8)[A4a (B, £) — Aa(£)1dVW,

+3 | mO)A.0.0 - Au(e)ds

s(6) i) b2(s) &
/Ps(ﬂ)[ a(s)z5 ( ps(0)) + — ‘aﬁ(ﬂs(ﬁ))]ds. (16.141)

According to (16.140),

1(6,68) = M / oe(8)dB.

With this in mind, let us integrate the right-hand side of Equation (16.141)
with respect to the measure d3dP. We obtain

2CI N t(s) 0°
M [~ 20 | 000 + B oot a6
b%(s) 8?

= [ [ratrgpeeon+ =2 Zouton] as =o.

Thus the integral (with respect to the measure d3 dP) of the last member on
the right in (16.141) is zero for all t < T
Next we find, using the Fubini theorem, that
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[o°] t
M [ / 74(8)(As(6,€) — Aa(€))?ds dB
- / M / J(As(B,€) — Au(€))?dBds
= 5 8 03, '__s 2 §
3 [ MMIAL0,) - F ()75

= 5 [ M40 - A0)ds = 105,80,

where the last equation follows from Theorem 16.3.
Note that under the assumptions made,

m[” /{[ 2 28 1] 4o - A(é)lws(ﬂ)}zdsdﬂ<oo-

Therefore, it is easy to deduce that the integral (with respect to the measure
dB dP) of the third member from the right in the right-hand side of (16.141)
is zero. Finally, it is easy to verify (by integrating by parts) that the (d3dP)
integrals of the quantities

t 2(5) 52
/0 [—a(s)—%(ﬁﬂs(ﬂ)) + -bé—)aa—ﬂz(ﬂ's(ﬂ))] ds,

/ot o (m MEZD B%(m,w))ds

are equal to zero.
Hence,

00 t 2
10,69 = 106,6)+ 30 [ [ 16) g (ma(o)linms(8) ~ Inpu(B)ldsds

(16.142)
Using the Fubini theorem and integrating by parts, we find
o0 t 2
M /_ _ /0 b2(s)aiﬂ2-(7rs(ﬂ))ln7rs(ﬂ)dsdﬂ
t 9 oo 62
_ /0 b2(s)M /_ ~ Sm(e) (s ds
t
= — / b%(s) MF(8,,£5)ds. (16.143)
0

Similarly,
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0 i 62
M /_ _ /0 b2(s)6—ﬂ—2—(1r3(,3))1np3(,8)dsd,8
t 00 62
=M /0 b*(s) /_ . a—ﬂ2(7r3(ﬂ))ln ps(B)dB ds
t (o] 62
=M /0 b%(s) /_ . a—ﬂz(lnps(ﬂ))ws(ﬁ)dﬂds
-/ 8(s) I 2 (1npu(6))ps(8)dB ds
0 -0 3,32 ° °

ey Z%(lnps(ﬂ))(%(ps(ﬂ))dﬂds

¢

- / b%(s)F(8,)ds. (16.144)
0

The statement of the lemma now follows from (16.142)—(16.144). d

Let
me = M(0:|FF), 7 = M[(8, — m)2|FF),  A(t) = M(8, — m,).
Lemma 16.10. If 6; is a Gaussian variable such that Iy = D@y > 0, then
F(6:) = I7 1. (16.145)
If, in addition, we assume the hypotheses of Lemma 16.9, then
MF(8,,€8) > A™L(¢). (16.146)

PROOF. (16.145) follows from immediate calculations. The inequality given
by (16.146) follows from the two explicit identities

/_ ) mt%(m(ﬂ))dﬁ —o, - /_ - ﬂ%(m(ﬂ))dﬁ -1,

according to which

1= / N (me — B) [%(m(ﬂ))vr; 1(ﬁ)] m(B)dg, (16.147)

-00

and from the Cauchy-Schwarz inequality applied to (16.147). Actually, it
follows from (16.147) that

(/:’(mt ~ P /: (%(m(ﬂ»)z m‘l(ﬁ)dﬁ> "

(veF (6, 5))'/2. (16.148)

—
IA

Il
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Thus, taking expectations on both sides of (16.148) and using the Cauchy-
Schwarz inequality, we obtain

1 < [M(7:F(8:, €5)) /%) < My, MF(8;,€8) = A(t)MF(8,,¢b).

The required relation, (16.146), follows from this if we can now show that
A(t) > 0.

But, since I(0;,m¢) < I(0:,8}) < 1(65,¢%) (1(6;,m;) is the mutual infor-
mation between 6; and m;), Lemma 16.8, Theorem 16.3 and (16.133) imply

A(t) > Iyexp{—2I(6;,m:)} > I exp{—21(65,¢5)}
> Le P'>0, t<T.

Corollary. Under the assumptions of Lemma 16.9,

I(0,,88) < I(8%,€8) — % / t B2 (s)(A™Y(s) = I'TY)ds. (16.149)
0

16.4.8.

PROOF OF THEOREM 16.7. It is enough to show that A(t) > A*(t), where
A*(t) is given by (16.128). Assume first that the assumptions of Lemma 16.9
are satisfied. Then, as a consequence of Lemma 16.8, Theorem 16.3, the
relation I(6;,m:) < I(0;,&}), and (16.149), we find that

t
A(t) 2 I, exp {-—Pt + / b2(s)(A™1(s) - F;l)ds} . (16.150)

0
On the other hand, since A(t) = M (62 — m?), the quantities A(t), ¢t > 0, can

be estimated by taking the expectation of (6> — m2). Note that m;, t > 0,
permits the It differential (Theorem 8.1)

dm; = a(t)m.dt + P, (€)dW;, mo = M6y, (16.151)

where

Vi(6) = M[0:(Ax(6:,€) — Ae(9))|FF].
According to the It6 formula and using (16.110) and (16.151), we find that

(62 —m?) = (62 —m3) + /0 [20(s) (62 — m2) + b3(s) — $2(€))ds

t _ t .
+2/0 b(s)0sdW, ——2/0 Ps(E)mdW .

Taking the expectations on both sides we obtain
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A@) =+ [ 2als)As) +5(6) - MU2OIds (16.152)

Let
A(t + Pt — /bz(s)(A Y(s) — ;7 1)ds. (16.153)

ut—l

According to (16.150), the fact that the variables u; are nonnegative and
ug = 0, (16.135) and (16.153) imply

% = P— = A~ () My2(€). (16.154)
From this it follows that
t
Pt > / AL (s)My2(€)ds. (16.155)
0

Equation (16.1532) for A(t) is equivalent to the following integral equa-
tion:

a®) = vow{ [ atw) - 47 Mv(Elau |
+ /0 t exp { /st[2a(u) — A (w) M«pﬁ(&)]du} b (s)ds

From this and from (16.155) we have

A(t) > yexp {2 /0 t [a(u) - g] du}
+ /0 " exp {2 / t [a(u) - g] du}bZ(s)ds = A*(t)

(see (16.128)). Thus, if A(a,z) satisfies the conditions of Lemma 16.9, one
has A(t) > A*(t).

We shall show that this inequality holds true also in the case where
Ai(a, z) only satisfies the requirements of Theorem 16.7. For this purpose we

approximate A;(a,z) by a sequence of functionals (Ag") (a,z),n=1,2,...)
which for any n satisfy the assumptions of Lemma 16.9 and, in addition,
A6, €) = 1im.n A (6,,8). Let £ = (¢{™), t < T, be the process defined
by

de™ = A™ (0,6t + aw;, €M =o.
It is possible to show that for any ¢t < T,

lim M(& ~ &) =0, lim M[A7 (6, 6™ = MAF(6,,€).
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Set
P (t) = max[P, M[A{™ (6,,6™)]2).

Then it is seen that P,(t) » P as n — oo for each t < T'. Let m(") =
M(0t|.7-'5( )) and An(t) = M(6; — m{™)2. Since the functional A(")(a x)
satisfies the hypothesis of Lemma 16.9 and M [A(") (6, €))% < Po(t), w
have that A,(t) > A% (t), where

2,0 = vou {2 [ [aw - 22 )
+ /0 exp {2 / t [a(u)—P"T(u)] du} b(s)ds.

Clearly, lim,, A, (t) = A*(t) (see (16.128)).
Let us construct a sequence of decoding functionals {,\ﬁ’“’”) (x),k,N =
2,...} for which

2
lim lig lim M [(0t - ,\g’“”)(g("))]] = M(6, — my)>. (16.156)

Then, by the optimality of decoding of m§"), we have
Mg, = AV (€ 2 MG - m? > A3(0).
Taking limits in the inequality
Mg, - XV (EM)P 2 451

with respect to n, N and k (in that order), we obtain the required lower
bound A(t) > A*(t).

Thus, in order to complete the proof of the theorem we only need to
establish the existence of the functionals )\gk’N)(x) with the property given
by (16.156).

Let 0 = s(()k) < sgk) <. < sfck) =t be a sequence of subdivisions such

(k)

that max;{s;; — sf] — 0, k — o0. Define a measurable functional )\gk)(x) S0

that
2B (z) = M(8,1€P, ..., 68

8 ?°

g=z
By the Lévy theorem (Theorem 1.5),
>\§’°) (&) > my (P-as.).

Also we have mean square convergence since the variables [)\Ek) ©2 k =
1,2,..., are uniformly integrable (M [,\§’°’ (6)]* < M6}). The functional
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k k
M (@) =A@l )

can be approximated for any k& by a sequence of finite, bounded functionals

,\§"’N) (z), continuous in the variables xg;), . ,:z:gl,f), in the sense that

AP (@) = pw —lim AN (2),

where pw is the Wiener measure on the measurable space (C,B) of con-
tinuous functions z = (;,0 < t < T). Let p¢ be a measure on the same
space, corresponding to the process £ defined by (16.130). (16.133) guaran-
tees the absolute continuity of u¢ with respect to the Wiener measure uw
(Theorem 7.2). Hence

M (@) = pe — lim X" ().

Since the ,\§’°’N) (z) are bounded, it is possible to choose a sequence (AS’“’N) (z),
N =1,2,...) so that ,\§’°) &= l.i.m.N)\gk’N)(O. It is not difficult to see that
the )\gk’N)(w) so obtained have the property given by (16.156). O

16.5 Asymptotic Properties of the Linear Filter under
Wrong Initial Conditions

Consider a filtering problem for a vector signal 8; (of size k) and a vector
observation &; (of size £) defined by the linear It6 equations with respect to
independent vector Wiener processes V; (of size k) and W; (of size £) with
independent components

do;
dge

where a, b, A, and B are matrices of sizes k X k, k x k, £ x k, and £ x £
respectively. Assume 6 is a random vector with (|| -||? is the Euclidean norm)
M]||60||? < oo. Denote by mg = M6y and v(0) = M(6y — mg)(6o — mo)*.
Assume also that BB* is a positive definite matrix. Then the Kalman filter
(see Chapter 10), subject to the initial conditions mg and ~(0),

afedt + bdV,
Ab,dt + BdW,, (16.157)

dm; = amqudt +(t)A*(BB*)~!(d&; — Am,dt)
d’;# = ay(t) + y(t)a* + bb* — y(t)A*(BB*) ' Ay(t) (16.158)

creates the optimal (in the mean square sense) linear filtering estimate m;
for 6;: my = M(6:/€[0,s)) and the matrix of filtering errors

Y(t) = M(8; — me) (6 — ma)™.
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If 6y is a Gaussian vector, then m; coincides with the conditional expectation
for 6; given the o-algebra generated by §jo 4: m¢ = M (6;|§j0,4))-

A crucial role in stabilizing the Kalman filter is played by the properties
of the Ricatti equation for (t). By Theorem 16.2, lim;_,, ¥(t) = 7 exists
provided that the matrices

A

Aa
G = : and Gy =(bab - ak1b)

Aak—-l

have rank equal to k. Moreover, the matrix v is the unique solution, in the
class of positive definite matrices, of the algebraic equation

ay + ya* + bb* — yA*(BB*) 14y =0, (16.159)

so that « is independent of v(0).
The next lemma plays an important role in the asymptotic analysis of the
Kalman filter under wrong initial conditions.

Lemma 16.11. Assume that the matrices G1,G2 have rank equal to k. Then
the matriz a — YA*(BB*)~' A has eigenvalues with negative real parts.

PROOF. Denote a — yA*(BB*)~'A by K and rewrite (16.159) in the form
Ky +vK* 4 bb* + yA*(BB*) 4y =0. (16.160)

Let o be a left eigenvector of K corresponding to an eigenvalue A (A*). Then,
multiplying (16.160) from the left by ¢ and from the right by ¢*, we obtain

(2Re \)pyp* 4 pbb** 4+ pyA*(BB*) 1 Ayp* =0 (16.161)
which implies Re A < 0. We show that, under the assumption made,
Re A < 0. (16.162)

Assume Rel = 0. Then @b = 0 and @yA*(BB*)"Y2 = 0 and so

@yA*(BB*)~ 1A = 0. The definition of K then implies that ¢ K = ¢a, that is
@ (p*) is also a left (right) eigenvector of a (a*). We now use the assumption
that the rank of G is k. By this assumption the matrix G2G? is nonsingular.
On the other hand, the vector ¢* is a right eigenvector of this matrix with
eigenvalue zero. The contradiction obtained validates (16.162). a
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16.5.1 Asymptotically Optimal Kalman Filter. Assume mgo and (0) are un-
known. Let the linear filter (16.158) be supplied with wrong initial conditions
mg and v, where 7 is the limit value of v(¢), ¢ — co. In this case, we arrive
at a Kalman type filter

dimy = amdt +yA*(BB*)~1(d¢;, — Amgdt). (16.163)
Theorem 16.8. Assume that the rank of G1 and Gy is equal to k. Then
tl—l)r{olo M(Ot - ﬁu)(at - ’I’Aﬁt)* = .
PROOF. Since

M(8, — ) (0 — 7a)* = M(8; — me) (6, — my)"
+M(mt — ﬁu)(mt - ﬁlt)*

it suffices to show that
tl_l_gl° M(mt - mt)(mt - mt) =0. (16164)

Although the random vector 6y is not assumed to be Gaussian but, since in
this proof only the second moments for random objects are used, one can as-
sume, without loss of generality, that 6y is Gaussian with parameters mg and
7(0). Then m; = M(6:/0,) and therefore (see Chapter 10, Subsection 10.2)

t —
W, = / @TA"&ds (16.165)
0

is an innovation Wiener process.
Putting Ay = m; — m, and taking into account (16.165), we find

dA; = KAt + [y(t) — 4] A*B~1dW,. (16.166)

Denote V; = M A;Af. Using the It6 formula, applied to A; A}, we arrive at
the matrix differential equation

d‘/t * * *)—1 *
5 = KV + VK" + () —1AT(BB*) T Alx(t) - "
Since [y(t) — 9] = 0, t — oo and since by Lemma 16.11 the eigenvalues of
the matrix K lie within the unit circle, we obtain V; — 0, t — oo. O
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16.5.2 Kalman Model with Non-Gaussian Initial Conditions. Assume 6, is a
non-Gaussian random vector such that M||6p||? < oco. In this case we also
compare the estimate produced by the filter given in (16.163) with the optimal
one m; = M (8|€[o,s)) defined by the Kushner-Zakai filter (see Chapter 8) under
the known distribution of 6. If the assumptions of Theorem 16.8 are fulfilled,
we apply a Kalman type filter (16.163) and obtain the filtering estimate ;.
In parallel with this estimate, the optimal one m; = M(6;|£jo,4)) is defined by
the Kushner-Zakai filter (see Chapter 8).

Theorem 16.9. Let the assumptions of Theorem 16.8 be fulfilled. Then

1. hmt._,oo M(ﬁlt — rt)(mt - 7I't)* = 0,’
2. 6y —my, t = 0o converges in distribution to a zero-mean Gaussian vector
with covariance matriz 7.

PROOF. 1. Evidently only lim; oo M (6;—m:)(6;:—m:)* = 7 has to be checked.
To this end, we use upper and lower bounds (for nonnegative definite matrices
D',D", D' < D” is taken to mean that D" — D’ is a nonnegative definite
matrix):

. SMet“ﬁlt gt_ﬁ"’t *
M (6 — m:)(0: — 7:) { > MEBt - w:))((et - w;’))*,

where 7 = M (6:|60,&[0,)- Although 6, is a non-Gaussian vector, the condi-
tional distribution P(8; < x|6o,&p,q) is Gaussian (P-a.s.) (see Chapter 13)
and moreover 7§ is defined by the linear filter (16.158) subject to the initial
conditions 6 and 0 (zero matrix), respectively. Denote by v°(t) the solution
of the corresponding Ricatti equation. Under the assumptions of the theo-
rem lim;_,, v°(t) = 7. Coupled with Theorem 16.8 this yields the required
conclusion.

2. 0;—7g, t — oo converges in distribution to a zero-mean Gaussian vector
with covariance matrix «y. Therefore, the required statement holds provided
that limy_,oo M||m§ — m¢||2 = O (see Theorem 4.1 in [19]). It is clear that this
is implied by

M(m; — mg)(My — 7g)*

= M(6; — M) (0 — ™))" — M(6y — 73) (6 — )"
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Notes and References. 1

16.1. The proof of Theorem 16.1 is essentially based on the results related
to Chapter 12, concerning the equations for a posteriori means and variances in
the case of conditionally Gaussian processes (see also Meditch [227], and Wonham
[313)).

16.2. Theorem 16.2 was obtained by Kalman [139].

16.3. The results presented here can be found in the paper of Kadota, Zakai
and Ziv [126].

16.4. The transmission of a Gaussian random variable though the channel
with feedback has been discussed in Shalkwijk and Kailath [274], Zigangirov [335],
Djashkov and Pinsker [54], Khasminskii (see problem 72 in the supplementary ma-
terial in [147]) and Nevelson and Khasminskii [243]. The proof of Theorem 16.4
based on the employment of optimal nonlinear filtering equations is due to the au-
thors and Katyshev (diploma paper). The proof of Lemma 16.7 and Theorem 165 is
due to Ihara [95]. Theorem 16.6 has been proved by the authors, and Theorem 16.7
by Liptser [193].

Notes and References. 2

16.1. An analysis of the sensitivity of a criterion in the linear quadratic Gaussian
control problem can be found in Kabanov and Di Masi [112]. Singularly perturbed
two-scaled stochastic control models are investigated in Kabanov and Pergamen-
shchikov [121,122] and in Kabanov and Runggaldier [123]. A control problem for a
counting process is considered in Kabanov [111].

16.4. A control problem with incomplete data and information processing, closed
in some sense to a coding procedure, can be found in Kuznetsov, Liptser and Sere-
brovski [182].

16.5. A problem of stability for nonlinear filters with correct initial conditions
is studied by Kunita [168,170] and Stettner [294]. For the case of wrong initial
conditions for both linear and nonlinear filters see Ocone and Pardoux [249], Delyon
and Zeitouni [52], Atar and Zeitouni [9, 10], see also Budhiraja and Ocone [33],
Makowski and Sowers [224].



17. Parameter Estimation and Testing of
Statistical Hypotheses for Diffusion-Type
Processes

17.1 Maximum Likelihood Method for Coefficients
of Linear Regression

17.1.1. Let £ = (&), 0 <t < T, be a random process with

N
&= ai(t)d; +m, (17.1)

i=1
where 8 = (60y,...,0N) is a vector column of the unknown parameters,
—00< 60; <00,i=1,...,N, and oy = (ai1(t),...,an(t)) is a known vector
function with the measurable deterministic components «a;(t), i = 1,...,N.

The random process n = (1), —00 < t < 00, is assumed stationary, M7y = 0,
Gaussian, with the rational spectral density

Pa_1(iN) |2

fQ) = onN | (17.2)

where
n—1 ) n .
Pn—l(z) = Z ij]7 bn-—l 7& 07 Qn(z) = Za‘jzjv an = 1
=0 =0

and the roots of the equation Q,(z) = 0 lie within the left half-plane.
Starting from the optimal filtering equations deduced earlier, we shall
find maximum likelihood estimates of the vector # from the observations

& =1{&,0<s<T}

17.1.2. We shall assume that the functions a;(t) have derivatives! g;(t), j =
1,...,N, and

T
/ g3(t)dt < oo. (17.3)
0
According to Theorem 15.4, the process n = (n;), 0 <t < T, is a compo-
nent of the n-dimensional process (n:1(t),...,nn(t)), where 0 = n;1(t), satis-

fying the equations

! More precisely, o;(t) = fot g;(s)ds.

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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dT]j(t) = 7]j+1(t)dt + ,Bdet, ] =1,...,n— 1, (17.4)
n—1
dnn(t) = =) ajnjg1(t)dt + Bnd Wy, (17.5)
=0
where W = (W;), 0 <t < T, is a Wiener process independent of 7,(0),
j=1,...,n, and the numbers 3;, j =1,..., N, are given by the formulae

j-1
Br=bn-1, Bj=bp_1- Zﬂian—j+iy J=2,...,n
=1

According to the assumption, 87 = b,—1 # 0 and

N
dé, = [Zgi(t)ei +nz(t)] dt + BydW;. (17.6)
i=1

Hence, if g, = (91(t), ..., gn(t)) is a vector row function, and 6 = (64,...,60N)
is a vector column, then

dé; = [g:0 + m2(t)|dt + BrdW; (17.7)
and

dn]-(t) = nj+1(t)dt+,@det, J =2;...,n—1,
n—1

dnn(t) = [—ao(& — ;) — Z ajn]-“(t):l dt + B.dW;. (17.8)

Jj=0

In the system of equations given by (17.7) and (17.8), the components
n2(t), ..., nn(t) are unobservable. The process &; is observable.
We shall fix some 6 € RN and denote by

mi(t,€) = M[n;(t)|és,0<s<t], j=2,...,n,
v (t) = M(n;(t) - m{(t,€)(n; () - mi(t, ), 4,i=2,...,m,

the associated processes & and 7;(t).
According to the equations of Theorem 10.3, the covariances 'yfj (t) do not
depend on 6. Here 7;;(t) = ~¢;(t) satisfy (10.82) and

dml(t,€) = m¥y (t,€)dt + @%ﬁ@[d& — (96 + ml(t, £))dt],

j=2...,n-1 (17.9)
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n-—1
dmfl.(t’g) = [_ao(ét h ate) - Z ajmg+1(t1€)] dt
j=1

L P1Bn :;%vzn(t) [dé: — (9.0 + m8(t,€))dt].  (17.10)

Next, by Theorem 7.17, the process £ = (&), 0 < t < T, permits the
differential -
dé; = [9:0 +mi(t,€)]dt + B1dWy, (17.11)

where W = (W, F¥) is a Wiener process and

P {/OT(mg(t,g))zdt < oo} =1.

Along with the process £ = (§;), 0 <t < T, we shall consider the process
& =& +PiWs, & =m(0), (17.12)

and the processes mg(t, €),j =2,...,n—1, satisfying the system of equations
given by (17.9) and (17.10) where, instead of &, the process £ is used.

Let 4° and fi be measures on (Cr, Br) corresponding? to the processes
€ = (&) and € = (§), 0 <t <T, defined by (17.11) and (17.12). Due to
Theorem 7.19, Lemma 4.10 and the fact that & and & = 7,(0) are Gaussian
random variables (D§y = Dé > 0), the measures u® and ji are equivalent
and

. foof _ 1(00)? [T g6 +mi(t,€)
'E(&) = exp{ 52 2 g2 +/0 52 dé
1 (T [g:0 + mi(t, &)
5 /0 7 dt §, (17.13)

where §2 = M2 (= Mn}(0)).
Let us examine the structure of the functions m§(t, &) occurring in (17.13).
It is easy to deduce from Equations (17.9) and (17.10)3 that

m(t,€) = vo(t,€) + 1a(t)6, (17.14)
where the (¢, £) are ]-"f-measurable for each ¢, and

vi(t) = (va(t), ..., 1N ()
is a deterministic vector (row) function.
me Borel c-algebra in the space Cr of continuous functions z = (z,),

0<s<T.
3 For the pertinent considerations for the case of discrete time, see Section 14.2.
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We obtain from (17.13) and (17.14)

al ocof 1 (06)? T (ge +n1(2)8 + wo(t, €)

dé;

1 (7 [(gs + ()6 + (2, €))2
3 /0 7 dt 3. (17.15)
Suppose that the matrix
T
_ 920 [g¢ + v1()]*[ge + v1(2)]
Dr = 52 + /0 2, dt (17.16)

is positive definite. Then by differentiating we find from (17.15) that the
vector

* T *
r() = Dz’ {%"—f—" + [t OF e, - uo(t,as)dt)} (17.17)

maximizes (17.15) and, consequently, is the maximum likelihood estimate of
the vector 6.

17.1.3. We examine now some properties of the estimates éT(ﬁ). It follows
from (17.16), (17.17) and (17.11) that

* T *
D;l {0‘0;09 +/0 [gt +[;/%1(t)] [gt +V1(t)]0dt}
* t *
+D;1{aoa((;7271(0) n [ lg¢ +[;/%)1(t)] dV—V't}

* t *
6+ D71 {aoag;h(O) 4 (gt +;21(t)] th} . (17.18)
0 i

br(¢)

and, therefore,

) Mbr () =9, (17.19)
M([(67(€) - 6)(br(¢) — 6)*] = D (17.20)

After simple transformations we find that
dy® A 1.,
Tﬂ-({) =exp < 0*DrOr(€) — 50 Dr6 ;. (17.21)

It follows from this that the estimate 67(¢) is a sufficient statistic (see
Section 1.5). Finally, as in the case of discrete time (see Section 14.2), it can

be shown that the estimate 6r(¢) is efficient.
Thus we have the following theorem.

Theorem 17.1. Let the matriz Dr defined by (17.16) be positive definite.

Then (17.17) gives the mazimum likelihood estimate O1(€) of the vector 6 in
the scheme given by (17.1). This estimate is unbiased and efficient.
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17.1.4.
EXAMPLE. Let us estimate the mean @ of the stationary Gaussian process
&, —00 < t < 0o, with spectral density
ix+1
(A2 + i +1
from the observations 55 ={£,0<s<T}.
Let 1, = & — 0. Then 1 is stationary Gaussian with M7, = 0 and spectral
density f(A). By Theorem 15.4, the process 7; is a component of the two-
dimensional process (11 (t), n2(t)), 7 = m(t), satisfying the equations

dm(t) = na(t)dt + dW,
dna(t) = [-m(t) — n2(t)]dt,

f) =

y

and, therefore,
d&; = ne(t)dt + dW;,
dnz = [0 — & — ma(t)]dt.
For each fixed 6 € R1, let
m®(t,€) = M(na(t)|7f) and () = Mlm(t) - m®(t,8))%.

By Theorem 10.3 and the equations for the processes (£(t), 72(t)), we obtain
the following equations for m®(t, &) and «(t):

dmo(t, 5) = [0 & - mo(t,f)]dt + ’y(t)[d& - mo(t,f)dt],
A(t) = —2v(t) — ¥*(2).

These equations can be solved under the initial conditions

m®(0,€) = M[n2(0)|&)] = M[n2(0)|n1(0) + 6],
7(0) = M[n2(0) — m®(0,¢))?,

which can be derived from the theorem on normal correlation (Theorem 13.1).
According to that theorem,

Mmn;(0)n2(0)

™08 = 70

(EO - 0):

2
1(0) = Mn(0) = W_L%W_)

In order to find the moments Mn?(0), Mn2(0), Mn;(0)n2(0) we shall take
advantage of the stationarity of the process (m (&), 72(t)), —o0o < t < 0o, and
of the fact that the matrix
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_ () mt)m(t)
r=uM (m (tl)nz(t) n%(tz) )

is the unique solution of the system of equations (Theorem 15.4)

A+ TA*+BB*=0

01 1
We find from this that
1
Mni(0) -1, Mnj(0)= 3.

with

M (0)n2(0) = —%, m?(0,¢) = %(e—go), ¥(0) = j_l,

Thus, it is easy to verify that

m(,6) = op{~ [ @+a(as)

X{%(O—Eo) + exp [ [a +7(U))du] (6 - €)ds

+/0t exp [/08(1 + 7(u))dU] 7sd€s}-

It follows from this formula (see (17.14)) that
m(t7€) = VO(t1£) +v (t)e,

and it is easy to compute that

w(6) = exp{- [0+ 2(o)as) {—%‘l ~ [ow| @+ e uan
+/0t exp [/08(1 +7(U))dU] vudiu},
n(t) = exp{—/ot(l-l-'y(s))ds} {% +/0texp [/03(1 +'y(u))du] ds}.

Since D¢y = Mn?(0) = 1, from (17.16) we see that Dy = 1+f0T vi(t)dt >
0 (in our case g; = 0) and that the maximum likelihood estimate 67(¢) for
M, of the process &; is given by the formula
br(e) = & + foT v1(t)(d&: — vo(t, €)dt)
1+ [ v2(t)de
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17.2 Parameter Estimation of the Drift Coefficient
for Diffusion-Type Processes

17.2.1. Let 6 be an unknown parameter, —oco < § < oo, and let &€ = (&, F),
0 <t < T, be the diffusion-type process with the differential

de, = Bay(€)dt + dW,, & =0, (17.22)

where W = (W;, F;) is a Wiener process and a;(x) is a nonanticipative
functional, 0 <t < T, z € Cr.

Consider the problem of estimating the parameter 6 in the drift coefficient
Ba;(¢) from the observations ¢ = {¢,,s < T'}.

We shall assume that the functionals a;(z) satisfy the conditions

T T
Py (/0 al(¢)dt < oo) = Py (/0 a?(W)dt < oo) =1, (17.23)

where the index 6 in P, emphasizes the fact that the distribution of the
process £ is being considered for the prescribed value 6.

According to Theorem 7.7, the measures ug and pw (pg(B) = Py{w:€ €},
B € Br), defined on (Cr, Br) are equivalent and

d,u.E T g2 [T
Tow ——=(£) = exp {0/0 a:(§)dé; — —2—/0 a?(g)dt}. (17.24)

It follows from this that, under the condition Ps{ fOT a(¢)dt > 0} = 1,
0 € R!, the maximum likelihood estimate éT(f) is given by the formula

fo at (E)dft

br(¢) = (17.25)
Jo a¥(€)dt’
Let us investigate some properties of this estimate.
Theorem 17.2. Suppose the following conditions are satisfied:
sup / Mpyal8(¢)dt < oo, (17.26)
01<6<0,

T -16

sup My (/ af(&)dt) < 00, (17.27)
0,<6<6, 0

for any 01,02 (—o0 < 6; < 02 < 00).
Then the bias br(0) = Mp[01(§) — 0] and the mean square error Br(8) =
Mpy[07(€) — 6)? are defined by the formulae
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-1
bT(G)—iMe (/ ?(E)dt) , (17.28)

-2

T -1 T
Br(8) = M, ( /0 af(§)dt> +%Me ( /0 af(g)dt) . (17.29)

17.2.2. As a preliminary we prove the following two lemmas.

Lemma 17.1. Let § = §(z) be a Br-measurable function with

sup M964(§) < 00
01<0<6,

for any 01,05 (—00 < 01 <02 < 00). If

T
sup Mg/ af(&)dt <00, —00<8;<6y<o00, (17.30)
0,<60<8, 0

then the function Myd(€) is differentiable over 6 and

& Mo (6) = Mo [ (€) / as(€) th] . (17.31)
PROOF. Let
d ] T 2
o(6,W) = Zfv%(W) = exp {9/0 as(W)dW, —% 0 (W)dt}.

The function (6, W) is differentiable over 6 and (P-a.s.)

Op(6, W)

T T
0 - [/0 ay(W)dw, — 0/0 af(W)dt] o(6,W). (17.32)

Let —00 < 6; < 62 < 0. Then, due to (17.32),
Mp,6(€) — Mg, 8(§) = MS(W)[0(62, W) — (61, W)

= M§(W) /9 i [ /0 Tat(W)th -0 /0 ) af(W)dt] (8, W)do

Note that, according to the assumptions of the lemma,
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[/ as(W)dW, —O/T af(W)dt]
o [6(€) [/ ar(£)dé: — 0/ a( é)dt]

5(¢) /0 a(€)dW,

J,
- J,
- [

8 T 1/2
2 2
< /e1 [Mg& (§)Mg/0 ay (E)dt] df < 0.

Hence, by the Fubini theorem,

©(6,W)dd

dé

02

T T
MS§(W) [ /0 as(W)dW; — @ /0 af(W)dt] (6, W)do

61
02

T T
= [ Mose) [ /0 ar(€)dé; — 6 /0 a?(é)dt] d

01

= /: M, [5(5) /OT at(ﬁ)th] df,

and, therefore,

62 T
M, 6(€) — Mg, 6(¢) = /e [Mg (5(5) /0 at(§)th)}d0. (17.33)

It follows from this that Mgd(€) is an absolutely continuous function. We
shall show now that, in (17.33),

T T T
Mo (€) [ /0 at@)dwt] = Myb(¢) [ /0 ar(£)dt; — 0 /0 af(adt]

is continuous in 6.
Let

T T
51(6) = 8(€) /0 a()de,  B2(8) = 5(6) /0 a2(e)dt.

Then
T
Mpé(§) [/0 at(ﬁ)th} = Mpg01(€) — 0Mpd2(§),

and to prove continuity it suffices to establish that



228 17. Parameter Estimation and Testing of Statistical Hypotheses

sup MgdZ(€) < o0, i=1,2, (17.34)
61<6<6,

for any 6; < 6,. Indeed, when these conditions are satisfied the functions
Myb;(€), ¢ = 1,2, as has been shown, will be absolutely continuous and,
consequently, continuous.

‘We have
T 4
Maaf(s>s{M954(£>M9 [ /0 at@)d&] }

where, due to the Hélder inequality (p = 4, ¢ = 4/3),

/0 ’ at(odstr

T T 4
M, [/0 at(ﬁ)th+0/o af(E)dt]

T 4 T 4
2 [Mg ( /0 at(é)th) +6* M, ( /0 af(f)dt)}

T T
36T / Mya} (€)dt + T3 / Ma%(g)dt]. (17.35)
0 0

My

IA

23

IA

(Here the estimate

T 4 T
M, ( /0 at(ﬁ)th) < 36T /0 Myaf(€)dt,

proved in Lemma 4.12 is used). The required estimate of (17.34) with ¢ =1
follows from (17.35) and (17.30). The estimate of (17.34) with ¢ = 2 can be
established analogously.

Lemma 17.2. Let 4(z) be a Br-measurable function and let

sup Mpé3(¢) < o0 (17.36)
01<0<6,
for any 61 < 6;. If r
sup ‘Mg/ al8(€)dt < oo, (17.37)
0:1<6<6; 0

then the function Myd(§) is twice differentiable over 8 and
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2 T 2 T
d Ag;g(ﬁ) = Myd(&) [( /0 at(é)th) - /0 af(g)dt}. (17.38)

PROOF. Due to (17.31) and the definition of the functions 6;(£) and 62(£)
(see the proof of Lemma 17.1),

& Mod(€) = Mods(€) — Moda(e). (17.39)

Hence to prove the existence of the second derivative d2Mgé(£)/d6? it is
enough to verify, due to Lemma 17.1, that

sup Mpéi(€) < oo, i=1,2, (17.40)
0,<0<02

for any 6y < 6a.
Due to the Cauchy-Schwarz inequality,

T 8
Mybi(e) = [M958(€)Mo ( /0 m(&)dst) ]

Using the Holder inequality (p = 8, ¢ = 8/7) and Lemma 4.12, we find

that
T 8
My ( /0 at(e)dst)

T T 8
Mo, [/0 at(ﬁ)th-l'e/o af(&)dt}

T 8 T 8
27 [Mo ( /0 at(ﬁ)th) + 608 M, ( /0 af(g)dt>]

T T
27 [284T3 / MaS(¢)dt + 68T7 / Mga}“(g)dt}. (17.41)
0 0

1/2

IA

IN

Analogously, it can be shown that
1/2

] ] .
Mosh(e) < | Mod®(&) My / a3 (€)dt
L 0

T 1/2
< | Med® ()T / Mea:‘*(E)dt]
0

L

We obtain the required inequalities given by (17.40) from the above inequal-
ities and the assumptions of the lemma. To complete the proof it remains
only to note that (17.38) follows from (17.39) and (17.31). O
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17.2.3.
PROOF OF THEOREM 17.2. Due to (17.22) and (17.25)

JT ay() )W,

/) = 17.42
) = (17.42)
Hence the bias
A f:at(ﬁ)th
br(8) = My[6 — 0] = My=—r—m——. 17.43
T(6) o[0T (&) — 6] ) fOTaf(g)dt ( )
By the assumptions of the theorem and (17.31),
foa®aw, _d [T, 17
My fOTaf(E)dt = deM" /0 a;(§)dt|
which, together with (17.43), proves (17.28).
Next we obtain from (17.42)
T ir v -2
Br(6) = My[6r(¢) — 6] = My [/ at(ﬁ)th] [/ af(&)dt]
0 0
But, by Lemma 17.2,
d2M9[fo (E dt] -2
dg?
T -2 T 2 T
- M, [ / af(&)dt] {( / at@)dwt) - a?(é)dt}
T -1
= Br(®)- M l / a?(&)dt] ,
0
which is equivalent to (17.29). a

Note. A more detailed investigation of the values of br(8) and Br(6) for
the case where a;(z) = z; is carried out in the next section.

17.3 Parameter Estimation of the Drift Coefficient
for a One-Dimensional Gaussian Process

17.3.1. We shall assume that the observable process ¢ = (¢, F;),0<t < T,
has the differential
dé = 0&dt +dW;, & =0 (17.44)
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(compare with (17.22)), where 6 is the unknown parameter, —co < 6 < oo.
According to (17.25), the maximum likelihood estimate

_Jogds _ &-T
fy gdt 2 fy &t

since, due to the It6 formula, fOT &dey = (€2 - T).
Let us calculate the bias bpr(8) = My(6r(¢) — 6) and the mean square

error Br(0) = Mg[0r(£) — 6.
We introduce the auxiliary function

pr(6,a) = 202 + 2a
’ (VOZ + 2a + 0)e~VO?+2T 4 (/62 + 2 — 0)eVo+2aT

or(€)

(17.45)

1/2

(17.46)
Theorem 17.3. The bias br(8) and the mean square error Br(6) are given
by the formulae

br(6) = /0 ~ 535 {exp (—g) o7, a)} da (17.47)

Br(0) = w0 (<) [ " pr(6,a)da

+ /OT a;—; {exp (—9—2?) pr (9, a)} da. (17.48)

PROOF. In order to find the values of b7(6) and Br(8) we shall take advan-
tage of (17.28) and (17.29), obtained in Theorem 17.2. As a preliminary we
shall verify that the assumptions of this theorem are satisfied.

The process &€ = (&, Ft), 0 <t < T, with differential given by (17.44) is
Gaussian with Mp&; = 0 and variance I;(8) = Mp€?, satisfying the equation
(see Theorem 15.1)

17}
%l =20I(0) +1, Ip()=0.
We find from this

_ _l 20, _
L,(6) = 55(* - 1),

which implies (17.26) of Theorem 17.2.
To verify (17.27) and to compute the mathematical expectations

My [f:‘ €2dt)~! and Mg[fOT €2dt]~? used in finding by (6) and Br(6), we shall
proceed as follows.
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Let a > 0 and
T
Yr(8,a) = Myexp —a/ £2dt p . (17.49)
0
If we assume
oo
/ a*r8,a)da < 00, —co<f<oo, k=1,2,..., (17.50)
0
then the moments My| fOT €2dt]7*,k-1,2, ..., can be found using the function
¥r(8, a):
T —k 00
2 1 k-1
M, / & dt = ———'/ a® (8, a)da. (17.51)
0 (k=1)! Jo

Actually, if for any integer k = 1,2, ..., (17.50) is satisfied, then, by the
Fubini theorem,

00 00 T
/ 19 (8, a)da = / a*~1Mj exp (—a / efdt> da
0 0 0
00 T
= Mo/ a*lexp (—a/ §t2dt) da
0 0
T -k
(k—l)!Mg(/ fdt) , k=1,2,....
0

Therefore, let us find the functions ¥ (8, a) and verify the validity of the
inequalities (17.50).

17.8.2.
Lemma 17.3. The function

Yr(0,a) = exp (—%T-) pr(0,a), (17.52)
where pr(8,a) is defined in (17.46).

PROOF. Let A = v/62 + 2a, 6 < a < co. Denote by pgo and tex the measures
on (Cr, Br) corresponding to the processes £9 and £€* having the differentials

g} = 0¢ldt +dW;, € =0,
d&} = N}t +dw,, £ =o.

According to Theorem 7.19, the measures ¢ and pex are equivalent and



17.3 Parameter Estimation of the Drift Coefficient 233

dpgo oy _ _ Tosgr  2=X T a2
W(&)—exp{w N [ eaer -5 ey

Hence,
T T
Yr(6,a) = Mg exp{-a/ €3dt} = Mexp{—a/ (€f)2dt}
0 0
T T
- Mexp{—a [ @rare-x [ ga
62 =X [T a2
i /0 ) dt}_ (17.53)
Using
a+ & ; X 0, (17.54)
we obtain, finally,
T
Yr(6,a) = Mexp{[e— A]/ €£\d€£\}
0

T ]

exp <£‘%€T) M exp {0—;—>‘(§%)2} .
The random variable £} is Gaussian, N(0,1/2A(¢**T — 1)) and, therefore
(Lemma 11.6),

Mexp {H_Q_A(@‘)z} - (o3 ) "

This, together with (17.53), leads to the following representation:
2 1/2

(A= 6)(e22T —1) +2) ’

where, according to (17.54), A = v2a + 62. After simple transformations we

obtain the desired representation, (17.52), from (17.55). O
Note. If 0 =0, a = -;—, then

P 0l M —1/Tw2dt = 0l
T ' exp 2 Jo t = pr '

2 1
el +e T~ vcoshT

(compare with the example from Section 7.7).

Pr(6,a) = O0/IT [ (17.55)
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COMPLETION OF THE PROOF OF THEOREM 17.3. By analyzing (17.52),
we find that the inequalities given by (17.50) are satisfied for any k = 1,2, .. ..
Hence, (17.47) and (17.48) follow from (17.28), (17.29), (17.51) and (17.52).
O

17.3.3.
Theorem 17.4. The mazimum likelihood estimate 01 (&) is strongly consis-
tent, i.e., for each 8, —co < 6 < o0,

Py {Tlgr;o r(€) = 9} =1. (17.56)

PROOF. We obtain from (17.49)
T
My exp {—/ Efdt} = yr(6,1),
0

where

Yr(6,1) = exp{(—g— ‘2;02>T}

) 277 G2 V2
(V0% +2 —0) + (V82 + 2 + 0) exp(—2TV/2 + 62) '

Since limr 00 ¢¥1(8,1) =0, —00 < 6 < 00, then

o0
Py (/ £2dt = oo) =1. (17.57)
0
It is seen that T
R dw,
or(¢) =0+ fLT;Eu (17.58)
Jo &adt

Hence, in order to prove (17.56) it suffices to show that
T
aw,
Py | lim 5751—20 =1, —00<f< oo
T—oo fo gtzdt

This follows from the following general statement.

Lemma 17.4. Let the Wiener process W = (W, F), t > 0, be given on a
probability space and let there also be given the random process f = (fi, Ft),
t > 0, such that:

(1)

T
P(/ ftzdt<oo)=1, 0<T < oo;
0
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P(/wafdt=oo>=

Then the random process z = (2,,Gs), $ > 0, with 2z, = [§° f:dW,, G, = F,,
where T, = inf(t : fot 2du > s), is a Wiener process and with probability one*

o Jo fudWa _
t—o0 f 2du

(2)

(17.59)

PROOF. Let z; denote fot fudW,. By the Ité formula we obtain the following
representation for z; = z,:

) ) Tt A2 )
e'L)\zt — ez)\z. 4 1)\/ ez)\z.,fu W _ ? / z)m:., ffdu
Ta Ts

Then by a change of variables in the Lebesgue integral

Tt t t
/ ez)\zu f,fdu — / ez)\z-,-u du = / ez)\Zu du. (17_60)
Ta 3 s

From the above and the equation

Tt
M (/ ei)\(z.,
Ts

we obtain the equation for V; = M(e*z=%)|G,), t > s:

gs> =0 (P-as)

Vt-l——/Vdu,

ie., M( iX(ze— z.)|g ) — e_>\2(t s)/2 (P as)

Thus (z,Gt), t > 0, is a Gaussian martingale with M (2, —z,)%|Gs] =t —s
which has right continuous trajectories having limits to the left.

By virtue of Theorem 1.10 and the equation M (z; — z,)* = 3(t—s)? which
follows from the normality of the variable z; — z; with M(2; — z;) = 0 and
M(zy — z,)% = t — s, the process (z,G:), t < 0 has continuous trajectories
(more precisely continuous modification).

Consequently, (z:,G:), t > 0, is a Wiener process (see Theorem 4.1).

Next let us prove (17.59). Let

Jo fudWs
Jy F2du

4 Under f(; fudW, a continuous modification of the stochastic integral is under-
stood which exists for any f € P according to (4.47).

U
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and define 7, = inf{t : fot f2du > s}. Since 7,, s > 0, is a right continu-
ous nondecreasing function of s (Lemma 5.6), to prove (17.59) it suffices to
establish that with probability one n,, — 0, s = co. But for s > 0,

b fudWa 2

Mr = S =,
s 2
o f2du s

and the law of the iterated logarithm (1.35) implies that with probability one

lim,_, o0 25/8 = 0.
Lemma 17.4 and, therefore, Theorem 17.4, also, have been proved. O

17.4 Two-Dimensional Gaussian Markov Processes:
Parameter Estimation

17.4.1. Suppose that on the interval 0 < t < T we observe the two-
dimensional Gaussian Markov stationary process & = (£1(t), £2(t)) with zero
mean M§,(t) = M&(t) =0, —co < t < 0o, and differential

d& = A&idt + dW,. (17.61)
Here W, = (W1(t), Wa(t)) is a Wiener process with independent components

independent of &, and
_(—61 —02
A= ( 9, _92) (17.62)

is a matrix composed of the coordinates of the vector § = (61, 62) with §; > 0
and —oo < 63 < oo where 0, is to be estimated from the observations {g =
{gsa 0<s< T}‘

We shall construct the maximum likelihood estimates 8, (T, £) and 05(T, €)
of the unknown parameters 6; and 6,

Theorem 17.5.

(1) The mazimum likelihood estimate 61 (T, £) is the solution of the equation

—_ _2,(1,¢) |€2(0) +€3(0) + l/T[Sz(t) +&5(t))dt
v N RN T
- [ 600 +a0d0) (17.63)
(2) The estimate
0 (T 5) fO [gl(t d£2 t) - 52(t)d€1(t)] (17.64)

fo [€3(¢) + £2(t))dt
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(8) The conditional distribution®
Py(02(T,€) < al2(t) +£3(t),t < T)
is (Pp-a.s.) Gaussian with the parameters
M[02(T, €)I€3(¢) + €3(t),t < T) = 65, (17.65)
T -1
My[(6a(t,€) - 0)*|€3(t) + &5(2),t < T) = [/O (€2(8) + §§(t))dt}

(17.66)
In particular, the random variable distribution

. T
[62(T, €) —9]\/ /O [63(2) + €3(0)]t

does not depend upon 6 = (01,02) and is Gaussian, N(0,1).

17.4.2. Before proving this theorem we shall make two auxiliary statements.

Lemma 17.5. For each t, 0 <t < T, the Gaussian vector (£1(t), &2(t)) has
independent components with D&;(y) = 1/26,,i=1,2.

PROOF. We shall note first of all that the assumption of the stationarity of
the process &, —~00 < t < oo, implies §; > 0, since the eigenvalues of the
matrix A must lie within the left-half plane.

Let I' = M¢&;:£;. Then by Theorem 15.1, the matrix

Iny I
I =
(FIZ Fzz)
is the unique solution of the equation A’ + 'A* + E =0, i.e.,
—201I'1, — 26022+ 1=0,

—201I'12 + 02(I'11 — I2) = 0,
20115 — 26115, +1 =0.
From this we find F11=F22=1/201,F12=0. O

Corollary. The distribution function

Fy(z1,z2) = Po(£1(0) < z1,&2(0) < z2)
5 P, denotes the probability distribution corresponding to a fixed 8 = (61, 62).
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has the density

?Fy(x1,T2)

fe(xlax2) = 6113181:2

0
= 71 exp{—0}(z? + z2)}. (17.67)

To formulate the following statement we shall introduce some notation.

Let (C%,B2) (Cr x Cr, Br x B;) be the measurable space of the functions
¢ = {(c1(t), c2(t)),0 < t < T} where each function ¢;(t), 1 = 1,2, is continu-
ous. We shall denote the functions in C% with c;(0) = z1, c2(0) = z2 by ¢®
where = = (21, x2). Let ,ug be the measure on (C2, B%) corresponding to the
process £ = (&), 0 < r < T with the prescribed § = (1, 65), and let uw- and
pZ. be the measures on (C#, B%.) corresponding to the process W = z + W,
(i.e., WF(t) =& + Wi(t), i = 1,2) and the process £ with the differential

deF = AEFdt + dW,, €2 =1. (17.68)

If the set B € B%, then
ug(l“) =/ ugz (B) fo(z1, 22)dx1dxs. (17.69)
{z€R2:c*€B}

Indeed, the solutions of Equations (17.61) and (17.68) are given by the
formulae

t

o oo [erar]
0
t

£ = et [:1:+/ e"A’dWS] ,
0

respectively.
Hence, from the independence of the random variables &, and fOT e~ AsdW,,
it follows that

Py{¢ € Bléo =z} = Pp{¢" € B}ul.(B),

which obviously proves (17.69).
Introduce a new measure® v on (CZ, BZ) by defining for B € B2

W(I) = / e (B)dz1dzs. (17.70)
{z€R2:cz€ B}
For brevity, instead of (17.70) we shall write dv(z,y*) = duw-(y®)dz1dz2,

y® € C2.
By Theorem 7.19, the measures ug, and pw-= are equivalent and

6 Note that the measure v introduced is nonnegative and o-finite.
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dpg,

T T
T (W®) = exp [ / (Wi‘)*A*de—% / (Wtz)*A*AWt’dt}. (17.71)
IJ’W” 0 0

Hence, by the Fubini theorem we obtain from (17.69) and (17.70)

d,ugz

9
I =
l‘l‘f( ) r dll'W"'

(Y*) fo(x1, x2)dv(z, y"),

where fo(x1,2) is defined by (17.67). From this follows the absolute conti-
nuity of the measure ug with respect to v and the density:

d [’} 9 T T
{f(&)=;Tlexp{—e%(§%<0)+§%<o>)+ | eade-3 [ eaagay.

(17.72)
Thus we have proved the following lemma.

Lemma 17.6. The measure ug is absolutely continuous with respect to the
measure v and its density dud(€)/dv is defined by (17.72).

17.4.3.
PROOF OF THEOREM 17.5. Formulae (17.63) and (17.64) for the maxi-
mum likelihood estimates 6, (T, €) and 82(T, £) follow from (17.72), since they
provide the minimum of ln(dug(ﬁ) /dv), as can be verified by direct calcula-
tion.

Let us go on now to prove the concluding point of the theorem.

Let n; = £3(t) +£2(t). With the aid of the It6 formula it can be calculated
that

2€1(t)dér(t) + 282(t)dEa(t) + 2dt

= 2£1(t)[—601&1(t) — 6282(t)]dt + 261 (t)dW1 ()

+262(¢)[0261(t) — 6162(t)]dt + 265(t)dW(t) + 24t

—26,[£3(t) + E3(t)]dt + 2dt + 2[&1 (£)dWi (t) + £a(t)dWa(t)]

2[1 — Byme]dt + 2/ (2), (17.73)

dng

Il

where (on the assumption that n, > 0)
vy = [ 8 “&a(s)
Wi(t) = /0 e dWi(s) +/0 /i dWa(s). (17.74)

It follows from Theorem 4.1 that (Wi (t),F:), 0 < t < T is a Wiener
process. Consequently, for the prescribed 6 = (6, 62), the aggregation A =
(2, F, FeP,n;, W1(t)) provides a weak solution? of the stochastic differential
equation

7 See Definition 8 in Section 4.4.
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dny = 2[1 — 01m:)dt + 2,/ dW1 (¢). (17.75)

Let us show now that for each t, 0 <t < T, n, is .ﬁ"”’W‘—measurable and
P{inf;<7n: > 0} = 1. In other words, the process n, = £3(t) + £3(t) is the
strong solution of Equation (17.75), where the Wiener process (Wi(t), Fe),
0 <t < T, was defined in (17.74).

For this purpose we shall investigate some properties of the weak solutions
of the equation of the type given by (17.75). Let A = (£2,F, F, P, x4, 2;) be
the weak solution of the equation

dry = 2[1 — azs]dt + 2v/z,dz, a >0, (17.76)

where z is such that P(zo > 0) =1, Mz < oo.
We shall prove that M sup,<r z: < co. Let

_ [ inf{t T :sup,c,zs > N},
IN =T, if sup,<p z, < N.

Then, due to (17.76),

tAON

tAON
Tiaon = To + 2/ 1 — az,]ds + / VZsdzs, (17.77)
0 0

. tA
and, since M f;" " \/Zsdz, = 0, we have:

tAON

Mzipoy = Mzo + 2M/ [1 — ax,]ds
0

tAON

M:I:o+2M/ 1+ azsnon]ds
0

iA

IA

t
Mzxg + 2M/ (1 + azsnoplds
0

IA

t
Maxo + 2T + 2a/ Mzopnopds.
0

It follows from this, by Lemma 4.13, that
Mzinoy < (Mzo + 2T)e?7,
and, therefore (Fatou lemma),
Mz, < (Mxo + 2T)e?T. (17.78)

Next,

tAON
/ VIsdzs
0

T
SUp Tinoy < To + 2/ (1 + az,]ds + 2sup
t<T 0 t<T

and
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tAON

VAW,

T
Msup Tipoy < Mzo+2 | (14 aMz,lds+ 2M sup
t<T 0 t<T

0

By the Cauchy-Schwarz inequality and (4.54)

tATN tAaN 211/2
M sup VTsdzs| < |Msup VZsdzs ]
t<T |Jo t<T |Jo
tAON 1/2 T 1/2
< 2(M/ :z:sds> <2 M/ Teds .
0 ()}
Hence,

r 1/2
/ Mzx,ds .
0

Applying the Fatou lemma and using (17.78) we obtain the desired in-
equality, M sup,«p ¢ < 00.

We shall show now that P{inf;<7z7 >0} = 1.

To prove this we set

. {inf{t < T :infeci 5 < z0/(1 + 1)},

T
Msup zipgy < Mzo + 2/ [1+aMz,)ds+ 4
t<T 0

00, if inf,<t T, > zo/(1 + n).

It is easy to show from the It6 formula that

Tn AT dZ
8

0 N

—Inz, ar = —Inzo+2a(rn AT) -2

Hence, for € > 0,

~X{zo>e} INZr AT = —X{zo>e} INT0 + X{zo>e}20(Tn A T)

9 /T,./\T dZs
o X{zo>e} \/E

T AT dZs
< - - T
S —X{zo>e} Inzo + 2aT 2/(; X{zo>e€} \/1'_.9'
(17.79)
Since M for"AT X{zo>e}d2s//Ts = 0, it follows that
- MX{:co>s} In Tr, AT < M'X{zo>e} In :Eo' + 2aT. (1780)

But

X{zo>¢€} ln.'IIT,./\T = X{zo>e} X{zr,arT<1} lnz‘rn/\T
+X (20>} X{zry ar>1} N T AT

X{zo>e} X{zryar<1} IRTr AT + SUD Zs,
s<T

IA
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which, together with (17.79), leads to the inequality

MX{IO>€}X{:C.,-"ATS1}l In IL‘.,.;{'!
< MIX{xo>s} Inzg|+ 2aT + Msupzs (= c(e) < );
s<T

from this follows the inequality
MX (20>} X{ru<T}X{zr, <1} In 27| < c(€) < 0. (17.81)
Let 7 = lim,, o0 7. Then taking the limit in (17.81) as n — oo we obtain
MX (20>} X{r<T}X{z- <1}/ InZ+| < €(€) < 0. (17.82)

On the set {7 < T}, |Inz,| = oo.
Hence, due to (17.82),

P{zg>e,7<T,z, <1} =0.
But zr = 0 on the set {r < T}; therefore,
P{zo>e,7<T}=0. (17.83)
Finally,

P{r<T} = P{r<T,z0 >¢}+ P{r < T,z <€}
P{xoSa}—’Q €~L0,

IA

which, together with (17.83), leads to the desired relation
i = = < =Vu.
P {tlél;xt O} P{r<T}=0

Therefore, the process n; = €2(t) + £2(t), 0 < ¢ < T, is such that for any
6= (01,02), 61>0, —oc0< b < 0,

P, {tlél;nt > 0} =1. (17.84)

Let us use this result to prove the fact that for each t, 0 < t < T, the

random variables 7, are .7-':7°’W‘—measurable.
Introduce the functions

1/(2y/y), 1/n<y< oo,
g"(y)z{l/@%), ogyéyl/:)

and
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It is seen that 0 < gn(y) < 1/2y/n and lim,,_, bn(z) = \/Z. For each
n=1,2,..., we shall consider the equation

t
0 = o +2 / L= 6Plds +2 [ baaM)aii(e).  (17.85)
0

The coefficients of this equation satisfy the assumptions of Theorem 4.6,
and, hence, this equation has the unique strong solution nt("), 0<t<T.Let

o) 1nf{t <T:nm <1/n},
Inlll) = if inf,<7 1 > 1/n.

Then it is obvious that for each t < an(n), n{™ =, (Ps-a.s.) and on(n) =

on(n™). Consequently, nt(:\‘zyn (nm)y = TtAn(n)- But the variables nt(:zyn (™)

are ff“’Wl-measurable. Hence so also® are the variables N¢noa(n)- But, due to
(17.84), limy, 00 0n(n) = T (Ps-a.s.). It follows from this that 7 are f[’“’W‘
measurable for each t. R

By transforming expression (17.64) for 65(T,£) we find that

bo(T) — 0, 4 o IO — [T &OAW) _ ()
fo [€3(t) + €3 (t)]dt fo nedt
(17.86)
where

_[Te Taw
_ /0 TAWL(0) + /0 W), (17.87)

It follows from Theorem 4.2 that [(Wy(T), Wa(t)),F:), 0 <t < T, is a
Wiener process. Now, 7o = £2(0) +£2(0) > 0 (P-as.) and Mo = 1/6; < 00
for all 8 = (6, 0;) with 8; > 0, —oo < 02 < o0; hence, 7, is f’m’ !_measurable
for each t. But the process Wz(t) does not depend on 79 and Wi (t). Hence
the processes n = (n;, ;) and W, = (Wg(t) F:) are mutually independent.
It follows from this that (P-a.s.) the conditional distribution

77t7t ST}

is Gaussian, N (0, fOT 7dt). In particular, this proves (17.65) and (17.66), and,
therefore, Theorem 17.5. O

T ~
Py {A \/ﬁtdW2(t) <y

Note. Since, for any admissible 8 = (61, 62),

P ( | €0+ e - oo) -1,

8 The o-algebras .7-""”W1 0 <t < T are assumed to be augmented by sets of Py
measure zero for all adm1ss1ble values 6 = (61, 62).
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it is easy to deduce from (17.63) and (17.64) that the estimates ;(T,¢),
i = 1,2, are consistent, i.e., for any £ > 0,

Jim Po{|6(T,€) - 6:] > e} = 0.

17.5 Sequential Maximum Likelihood Estimates

17.5.1. As in Section 17.2, let § be the unknown parameter, —oo < < o0,
to be estimated from the observations of the process £ = (&;,F:), t > 0, with
the differential

Under the assumptions given by (17.23), the maximum likelihood estimate
61(€) of the parameter 6 is given by (17.25). Generally speaking, this es-
timate is biased and its bias bp(f) and the mean square error Br(6) are
defined (under the assumptions given by (17.26) and (17.27)) by (17.28)
and (17.29), respectively. According to the Cramer—~Rao—~Wolfowitz theorem
(Theorem 7.22):

182
{1+;}§;M9 [y a?(€)at] 1} 4 v
Br(6) = 7 OTa?(ﬁ)dt +9 gaMe [/0 a; (f)dt}

-1} 2

?

(17.89)
where equality need not, generally speaking, be attained.

For this problem we shall study properties of sequential maximum likeli-
hood estimates obtained with the aid of the sequential schemes A = A(T,4)
(see Section 7.8), each of which is characterized by the final time of obser-
vation 7 = 7(£), the Fé-measurable function §(¢) being the estimate of the
parameter 6.

Theorem 17.6. For all , —co0 < 8 < 00, let
o0
Py {/ aZ(¢)dt = oo} =1. (17.90)
0
Then the sequential scheme Ay = A(Th,0n), 0 < H < 00, with
T
T (€) = inf (t : / a%(¢)ds = H) (17.91)
0

and

TH (€)
@O =5 [ (@ (17.92)
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has the following properties:

Py(ta(€) < 0) =1, —00<0< o0, (17.93)
Mpdp(€) =8, —o00<8 < o0, (17.94)
Moy (€) — 02 = % (17.95)

The random variable dg(€) is Gaussian, N(6,1/H). In the class Ay of un-
biased sequential schemes A(T,8) satisfying the condition

Py {/OT al(¢)dt < oo} =P {/OT a2(W)dt < oo} =1 (17.96)

and the conditions
Mpb2(€) < 00, My /0 " Q2e)dt < H, (17.97)
where H is a given constant, 0 < H < oo, the scheme Ay = A(TH,0H) is
optimal in the mean square sense:
M[61(8) - 6° < Mo[8(€) — 6)*. (17.98)

PROOF. According to Theorem 7.10 and (17.96), the measures uf,g and ,uﬁ,w
corresponding to the processes & (for fixed #) and W are equivalent and

dul (€) g2 [7©
Zi':i,_’:,(T(g)’g) =eXP{9/O as(§)dé; — 7/0 af(g)dt}. (17.99)

This implies that the sequential maximum likelihood estimate is given by

Jo© an(e)de
I a(e)at
Setting 7(€) = T (€) in (17.100) and writing 6y (€) = ém(g), we obtain

for the estimate & (€) the representation given by (17.92). To verify (17.93)
it is enough to note that

b.6)(6) = (17.100)

Po{ra(€) > t} = P{ / " a()ds < H},

from which, due to (17.90), it follows that

Po{7a(€) = 00} = Py { / " ()it < H} ~o.
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Next,

1 TH (§)
ou(€) =0- ﬁ/ a(§)dW;
0
and, by Lemma 17.4, the value of [6x(¢) — §]vH is Gaussian distributed,

N(0,1) for each 6.
Finally, according to Theorem 7.22, for any unbiased scheme A = A(r, §)
satisfying (17.96) and (17.97) it follows that

7(6) oy
Mg[6(€) - 6)* > [Me/ af(&)dt] > T < 8 < oo0.
0
The comparison of this inequality with (17.95) indicates that the scheme
Ay = A(7y, 6g) is optimal in the mean square sense. O

17.5.2. (17.95) reveals the meaning of the constant H > 0 in the definition
of the schemes Ay = A(1y,dy): if it is required to construct the sequential
scheme for which the error variance (for all §, —o0o < § < o0) is equal to a
given value € > 0, then the scheme Ay = A(7y,0y) with H = 1/¢ can be
taken as the desired scheme.

According to the statements of Theorem 17.6, this scheme has some defi-
nite advantages: it is unbiased, and the fact that the distribution of the value
(61(€)—0)vH is Gaussian, N(0,1), makes it possible to construct confidence
intervals for 6.

An essential question, however, arises: are these advantages simply due to
the fact that the average observation time My7y is too long? In the theorem
given below for the case® a;(z) = x;, the estimates of this average time are
given as functions of the prescribed error variance

Theorem 17.7. Let the observable process &, t > 0, have the differential
dé: = 6&:dt + dW,. (17.101)

Then for the sequential scheme Ay = A(ty,é), H > 0, with alln =
1,2,...,

Mpri(§) <00, —00<8< o0, (17.102)
and
My (€) <2[|0|H + 2vH| + /8(02H2 + 4H) + 2H, —o0 > 0 < 0.
(17.103)

In the case 6 < 0 the following lower estimate holds for Mg7g (£):
Mgty (€) > —26H. (17.104)

9 It follows from Theorem 17.4 that Pg{f0°° &dt = 00} =1, |0] < 0.



17.5 Sequential Maximum Likelihood Estimates 247

PROOF. First of all we note that in our case the estimate

TH (§)
GRS B

can be written as follows:

_ &ue — )
- 2H ’

since fot EdE, = 3(62 — t).
In order to prove (17.102), we note that, by the It6 formula,

t t
€2 =260 / €2ds +2 / EdW, +1t. (17.105)
0 0

We obtain from this

i (§) TH(€) t 7 (€) t
H = / £2dt = 20/ (/ gfds) dt+2/ (/ §de,,> dt
0 0 0 0 0

and, consequently,

TH (§) T 7H(§) T
T < 2H——40/0 /0 €2ds dt—4/ / £,dW, | dt
< 2H + 4|0|tu (&) + 4mu(§) sup / & (17.106)
o<t<m(§)
Let
~ o |[e
0<t<TH (€)

Then we obtain from (17.106)
5 (€) — 4ma(6)[101H + 8] — 2H <0,
and, therefore, for each 6,

r(€) < 20161H + B) + /AOH + AP + 2H. (17.107)

By Theorem 3.2, for p > 1,
P P
] ) < (—L) MB
p—1

P

TH(§)
/ £odW,
0

/Ots.,

MyB? = My ( sup
0<t<TH (€)

Hence, for p = 2m,
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2m
m 2m T (§)
Mo < <2m—1> M| [ esaw,
om \2™ —
= (o) Cm-DIA™ <o, (17.108)

since the random variable [ © ¢,dw, ~ N(0, H).
From (17.107) and (17.108) we obtain the inequality Mpy[TH(£)]"™ < oo,
—00 < 0 <o00,n=1,2,.... In particular, for the case n =1,
Morr(€) < 2(|6|H + (My*)'/?] + /8(62H? + My ) + 2H
< 2[|6|H + 2VH] + /8(02H? + 4H) + 2H.

To deduce (17.104) it suffices to note that in the case 8 < 0, the inequality

7H (§)
ri(€) > —26H — / £odW,
0

follows from (17.105). Averaging both sides of this inequality, we obtain
(17.104). a

17.6 Sequential Testing of Two Simple Hypotheses
for 1to6 Processes

17.6.1. On the probability space (£2, F, P), let there be given a nondecreasing
family of o-algebras F;,t > 0, F; C F, the Wiener process W = (W;, Fr) and
the unobservable process 8 = (6;, F;), t > 0, independent of W. Assume fur-
ther that one of the hypotheses holds on the observable process £ = (&, F;),
t>0:

Ho : d{t = th, fo = 0; (17109)

Hy:df = 0udt +dW;, € =0. (17.110)

In other words, if the process @ is interpreted as a signal and the Wiener
process as noise, then the problem being considered involves testing two hy-
potheses on the presence (hypothesis H;) or the absence (hypothesis Hyp) of
the signal € in the observations of the process €.

We shall discuss the sequential scheme A = A(r, §) of hypothesis testing
characterized by the time 7 at the end of the observation and a function of the
final decision 4. It is supposed that T = 7(x) is a Markov time (with respect
to the system B; = o{z : z,, s < t}, where the z = (x;), t > 0 are continuous
functions with zo = 0) and the function § = §(z) is B,-measurable and takes
only two values: 0 and 1. The decision §(z) = 0 will be identified with a
decision in favor of hypothesis Hy. If §(z) = 1, then hypothesis H; will be
accepted.
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For each scheme A = A(r, A), denote!®
a(Q) = Pi(6(8) =0), B(A) = PR{s¢) =1},

called error probabilities of the first and second kind.

It is well known!! that for the case 6; = ¢ # 0 in the class A, g of
sequential schemes A = A(7,4), with a(A) < o, (4Q) < B (a and 8 are
given constants, a + 8 < 1) where My7(£) < oo and M;7(£) < oo, there
exists a scheme A = A(#,4), optimal in the sense that

M()’F S M()T, M17: S M1‘7'7 (17111)

for any other scheme A = A(7,6) € Ay g

It appears that in a certain sense this result can be extended to a more
general class of random processes 8 = (6, F;), t > 0.

We shall assume that the process 8 = (6;, F;), t > 0, satisfies the condition

M| < 0, t<o0 (17.112)

and that

P {/ooo m2(€)dt = oo} =P {/Ooo m(€)dt = oo} =1, (17.113)

where the functional m;(z), t > 0, is such that, for almost all ¢t > 0,
me(€) = My(6,|FF) (P-as.).

We shall denote by A, g, the class of sequential schemes A = A(r, §) with
a(A) < a and B(A) £ 8, where o+ < 1 and

() 7(€)
M, / m2(€)dt < 00, M / m2dt < co. (17.114)
0 0

Theorem 17.8. Let (17.112) and (17.113) be satisfied. Then in the class
Ay g there exists a scheme A = A(7,6), optimal in the sense that for any
other scheme A = A(1,0) € Ay p,

#(£) )
Mo [ mie)at
0

7(8)
m/ m(€)dt
0

IA

T(€) )
%A m2(€)dt,

IA

T(€)
M, /0 m2(€)dt. (17.115)

The scheme A = §(7,8) can be defined by the relations

10 p; denotes the probability distribution for the case where the process ¢ being
considered satisfies hypothesis H;, ¢ = 0,1. M; will denote the corresponding
average.

11 See, for example, Chapter 4, Section 2 in [282].
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#E) = inf{t: M(©) ¢ (4,B)}, (17.116)
8¢ = {(1) i:gg i i’ (17.117)

where

t t
ME) = [ mi@de 5 [ mieds, A=mmi%s Bl

In this case

7(€)
My /0 m2(€)dt = 2w(B,a),

7€)
M, / mi(&)dt = 2w(a, B), (17.118)
0
where 1oz
w(z,y) =(1—-z)In +:1:]n1_y. (17.119)
Before proving this we shall make a few auxiliary observations.
17.6.2.

Lemma 17.7. For the scheme A = A(F,5),
| Po(7(€) < o) = Py(7(€) < o0) = 1.
PROOF. In the case of hypothesis Hy, £ = W; and
Py(7(€) < 00) = P(F(W) < 00).

Let
t
on(W) = inf {t : / m2(W)ds > n} .

0

Then
F(W)Aon(W) 1 [FW)Aca (W) )
AsWynanw) (W) = /0 my(W)dW; — 5 /0 my (w)dt
and A < A\;w)ae,w)(W) < B. Consequently,
F(W)Aan (W) 1 F(W)Aaa (W)
A< / my(W)dW; — 5M/ m2(W)ds < B.
0 0

Hence,

F(W)IAon (W)
/ m2(W)ds < 2(B — A) < oo, (17.120)

0
since 0 < a + 8 < 1 and, therefore.
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B—A=ln[}i,l——_—ﬁ] < o0
a B

We obtain from (17.120) and (17.113)
(W)
M/ m2(W)ds < 2(B — A) < co.
0
Since
(W) 00
M/ m3(W)ds > MX{;(W):@/ m2(W)ds,
0 0

by (17.113) it follows that P(F(W) < o0) = 1.

The equality P;(7(£) < 00) =1 can be proved in a similar way. It should
be noted that, according to Theorem 7.12, the process &, t > 0, with differ-
ential given by (17.110), permits also the differential

dé, = my(€)dt + dW, (17.121)

for some Wiener process W = (Wt,}'f ), t > 0. Therefore, in the case of
hypothesis Hj,

t t
2O = [ ma(©)dW, + 3 PG (17.122)

Corollary. The random variable \;()(£) takes (Po- and Pi-as.) only two
values: A or B.

Lemma 17.8. For the scheme A = A(7,8) defined by (17.116) and (17.117),
a(4) =a, B(4) = 6.

PROOF. Since
a(8) = Pi{3(¢) = 0} = Pi{dz(e) (€) = A}

and

B(4) = Py(3(€) = 1} = Po{rs(e) (€) = B},

then, in order to prove the lemma, it is necessary to establish that

Pi{di(€) = At =0a, Po={Xg(€) =B} =0, (17.123)

where 1
«a —
A=ln——, B=I
1-8 B

For this purpose consider two solutions a(z),b(x), A < z < B of the
differential equations

(17.124)
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a’(z) +a'(z) =0, a(4)=1, a(B)=0, (17.125)
¥'(x) +b(z) =0, b(A)=0, bB)=1. (17.126)
It is seen that
ed(eB-=-1) et —ef

and, due to (17.124),
a(0) =a, b(0) =2 (17.128)

We shall show that P{)z¢)(§) = A} = a. For this purpose let 0,(§) =

inf{¢ : fot m2(¢)ds > n}. Then, taking into account (17.122) and (17.125) and
applying the It6 formula to a(\:(£)), we find

HOAon(E) _
oo () = al0) + /0 & (\e())me (€)W,

1 F(E)Non(8)
" / [0’ (Ae(€)) + a” (Ae(£))Im2(€)dt
0

HE)Aon(€) -
But

F(€)Aon(£)
M; / [0 (e (E)yme(©)Pdt
0

IA

F(€)Aon(§)
sup [a/()]*M; / m? (€)dt
A<z<B 0

IA

n sup [a'(z)]? < oo.
A<Lz<B

Hence.

FE)ATw(©) -
M, /0 & (Me(E))me(€)dW, = 0

and, therefore, taking the mathematical expectation M;(-) in (17.129) we
obtain

Mia(Mzgynone)(§)) = a.

The function a(z), A < £ < B, is bounded and lim, e 0n(§) = o0
(P-a.s.). Hence, by the dominated convergence theorem (Theorem 1.4),
Ma(A#)(€)) = a. Using Lemma 17.7 and its corollary, we find that

o = Mia(M:g)(€))
= 1-Pi{dz)(§) = A} +0- P{A5¢) (&) = B} = Pi{Az(g)(§) = A}
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The formula Py{A;()(§) = B} = B is proved in a similar manner. a

Lemma 17.9. For the scheme A = A(,4), the formulae given by (17.118)
hold true.

PROOF. Denote by go(z) and g1(z), A < z < B, the solutions of the differ-
ential equations

g'(x) + (-1)" - gl(z) = -2, @i(A) =g:i(B)=0, i=0,1. (17.130)

An easy calculation yields:

golz) =2 { (e? - BZ;B__ZZ(B —4) 4 a- x} (17.131)
. (B - *)(B — A)
gl(x)=2{ 5 a —B+:1:}. (17.132)
Taking into account (17.124) and (17.119), we find
= 90(0) = 2w(B, a), (17.133)
91(0) = 2w(a, B). (17.134)

Suppose the hypothesis Hy is valid and o,(W) = inf{t : fot m2(W)ds >
n}, n=1,2,.... Then, applying the It6 formula to go(A¢(W)), we obtain

F(W)INo» (W) ,
00Ot wpnon ) (W) = 90(0) + /0 ¢ Oe(W))my(W)dW,
1 [FMIAeW) , \
-3/ (9 Ou(W)) =g (e (W) (W)
F(W)Aon (W)
= 90(0)+ / ¢ (W) me(W)dW,
0
‘T'(W)/\O'"(W)
+ / m2(W)dt. (17.135)
0
Since

F(W)IAG, (W) ,
M / o O W))yme (W)W, = 0,
0
then, by averaging both sides of (17.135), we arrive at the equality
F(W)Aon (W)
M | m2(W)dt = ~go(0) + Mao(swynoncwy W) (17.136)

Passing in (17.136) to the limit we obtain the desired equality,
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FW)
M / m2(W)dt = —go(0) = 2w(B, a).
0

The equality

7(€)
Ml/o m2(€)dt = g1(0) = 2w(a, B)

can be proved in similar fashion. 0O
17.6.3.

PROOF OF THEOREM 17.8. Let A = A(r,d) be any scheme belonging to
the class A, 3. Denote by pur¢ and p, w the restriction of the measures e
and pw, corresponding to the process £ with differential given by (17.110)
and the Wiener process W, to the o-algebra B;. Then, due to the conditions of
(17.112)—(17.114) and (17.121), we find from Theorem 7.10 that p, ¢ ~ prw,

ditre (W) 1 W)
In —=(7,W) = / ms(W)dW, — / mi(W)ds, (17.137)
d)u’T.W 0 2 0

and

d,u"rW 70 1 7(€) 2
In . (1,8) = /0 ms(é)d£3+§/0 m2(€)ds. (17.138)

There follows from this that

My ln dprw (1, €)= lMo/ m2(€)ds = -—M/ m2(W)ds; (17.139)
dpir.g 2 0
~(©)
M;In (Zi‘ff (r,€) = —M1 / m2(¢)ds. (17.140)
W 0

Making use of the Jensen inequality, we obtain

7(€)
%Ml /0 mf({)dt =M;In :Nf’g (T, E) = —M; In dd_l:i'%(ﬁr’ 6)
_m {Ml [m ‘jl"f W (. e>‘ 6(5)] }
> {li ["Z"W e)‘ 6(5)]}

- —P1{6(£)=1}1nM1[ Pr ‘ ]

—Pi{6(¢) =0} InM; [ d"’ W ( ‘ ]

Pi{3(¢) = 1}M1 2z (r, €)]5(¢) = 1]
P{5(¢) =1} -

Pi{5(§) = 0} My [ $22(r,€)18(¢) = 0]
P {6(¢) =0}

= —P{5(¢) = 1} In

—P{4(¢) =0}In

(17.141)
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Note now that, because of the equivalence pr ¢ ~ prw, for i =0,1,
Po{s(§) =i} = P{§(W) =i}
= MlX{&(f):i}?ﬂ(Tv €)

M, {X{a(g) M [d (7, 5)‘ ]}

me=ﬂM{ﬁ;fmakw=4.

This implies that (17.141) can be transformed as follows:

%Mﬂﬁ%sz—HW&“W%%%S%
~Pi{§(¢) = 0} ln%g%;%
= Pi{8(¢) = l}ln%
+P{8(¢) = 0} 1“%8:_3
> (1—a)1n1;a+a1n1fﬂ
=t [ mitoa

where the last equality follows from Lemma 17.9.
The inequality

F(€) 2 F(£) )
Mo [ e Mo [ mie)as
0

can be proved in similar fashion. O

Corollary. Let 6, = s(t), where s(t), t > 0, is a deterministic differentiable
function, such that f°° s2(t)dt = oo and s(t)s'(t) > 0. (It follows from the

assumptions that the function &(t) = fo s2(u)du is convex downwards, $(0) =
0, $(00) = 0).

Let a, B be given numbers, 0 < a + 8 < 1, and let A, g be the class of
sequential schemes considered above. Denote by Ar = (T,6r) the scheme
belonging to the class Ay g and having fized duration of observation equal to
T, 0 < T < oo (the Neyman-Pearson test is an ezample of such a scheme).
Then the optimal scheme A = (7,8) € Ay p has My < T, M7 <T.



256 17. Parameter Estimation and Testing of Statistical Hypotheses

Indeed, by the theorem proved above M; f:(g) s2(t)dt < &(t), i = 0,1,
from which, by the Jensen inequality, #(T') > M, P(7(€)) > S(M;7(£)), and,
therefore, T > M;7(£), i =0, 1.

17.7 Some Applications to Stochastic Approximation

17.7.1. Let 6 be the unknown parameter, —oo < 8 < 00, to be estimated
from the observations of the process £ = (&), t > 0, with the differential

dg, = [Ao(t, €) + A1(t,€)0)dt + B(t,€)dWs, & = 0. (17.142)

The nonanticipative functionals Ay(t,z), A1(t,z), B(t.z) prescribed on
[0,00) x C, where C is the space of continuous functions z = (z;), t > 0,
assumed to be such that:

(1) fo [A%(t,x) + A%(t,z) + B%(t,z)]dt < 00, T < 00, z € C.
(2) B2(t z) 2d>0,t< o0, z€C;

(3) [;7(A%(t,z)/B2(t,z))dt = 00, x € C;

(4) for B(t,z) (4.110) and (4.111) are satisfied.

If the parameter 6 were a Gaussian random variable N (0, o?), independent
of the Wiener process W;, t > 0, then, according to (12.34) and (12.35), the
conditional mathematical expectation m; = M(8;|F¢) and the conditional
variance v; = M[(8, — m;)2|F¢] would be given by the formulae

B A(s,€) 1 [ A9 17
mo= [ 5D, - auts.ash =[5+ [ EHE de”;g)

which follow from the equations

1At €)

me = "Bt g)

o A6 — (Ao(t, &) + A1(t,€)me)dt], mo =0,  (17.144)

2 42
Yy = ——-—B%?, 0 = o?. (17.145)
(Note that with a? = oo and fo (A%(s,z)/B?(s,z))ds > 0, = € C, the esti-
mate m; defined by (17.143) is a maximum likelihood estimate for the pa-
rameter 0).
In the case where nothing is known about the probabilistic nature of the
parameter 6, it is natural to pose the question as to whether the estimate
m2, t > 0, defined by the equation

dm = Ay (t, €)% B~2(t, E){d&: — (Ao(t,€) + Ai(t, O)m)dt},  (17.146)

where 0 < a? < o0, converges in a suitable sense to the true value of the
parameter 6.
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It follows from (17.143) that
1 tA
—6=r, [———2 +/ l(s’é)dWs] .
@ 0

B(s,¢)
/o sg) // Az(s 5)ds. (17.147)

But it follows from Lemma 17.4 that the upper limit in the right-hand
side of (17.147) is zero (Py-a.s.) for any 6. Consequently, if the true value
of the unknown parameter is 8, then (Ps-a.s.) m§ — 6, t — oo, where the
process mg&, t > 0, can be defined by Equation (17.146); this is a typical
example of a stochastic approximation algorithm.

It is interesting to know how ‘fast’ the process m{¥, t > 0, converges to
the estimated value of 6. Since m{* — 6 with Py-probability one, then for
Py-almost all w and for ¢ > 0 there will be a least time 7.(w; @), such that
|m& — 8] < € for all t > 7¢(w, ). (Note that the time 7 = 7.(w; ) is not
Markov).

We shall investigate the mathematical expectation My, (w; @) of the time
Te(w; @) needed for the estimation of the unknown parameter to within ¢,
restricting ourselves to the case 49 =0, A1 =1 B =1, a =o0.

Therefore, let the observable process &, t > 0, have the differential

Hence, due to (3), above,

Ti—r_ﬁt—)oolm? - 0I < i.l_n—lt--)oa

d¢, = 6dt + dW,. (17.148)

For the sake of simplicity of writing we shall let m; = m$°, 7.(w) =
Te(w; 00). In the present case the stochastic approximation algorithm, (17.146),
takes the following form

1
dmt = 't—{dét - mtdt} (17149)
Since this equation has the solution
€t Wi
=5 _g4 ¢
my t + t )
we have:
Te(w) = inf{t : W, <gs> t}.

Theorem 17.9. For any 6, —oo < 8 < 0o,
T
< —= 5% =
) ) {Ts(w) < 82} P {0531:21|th < \/5}

and
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C
MeT&‘ (w) = =
&
where C is some constant, —0 < C < oo.

PROOF. Let us take advantage of the fact that each of the processes

. _ th/t, t>0,
W, ‘{0, t=0

W*(t) = VAW, 4,
(d > 0) is a Brownian motion process (see Subsection 1.4.4). Then!?
Py {Ts(w) < 632} = P{|Wt| <te,t> Eﬁz}
= P{IWZI <tet> 832}
- P{t|Wl/t| <tet> E—‘TZ}
- P{IWI/t| <et> e%}
= P{|W3| <eg0<s< %}
= P{|W_/22| <6,0<t <1}
= P{\/?E|Wt_52/z| < 6—‘6/——5,0 <t< 1}
= P{{W;| < vz,0<t<1}
= P{ sup |Wy| < \/5}
0<t<1

It is well known!? that

o0
1 [VE
P{ sup Wil < vz} = -1)F— e~ (U/DW=2kv2) g, (17.150
{0921' | f} > e [ y. (17.150)

Thus, the series on the right-hand side of (17.150) determines the proba-
bility distribution of the random variable €27, (w). Since

k=—-o00

Po{er(w) <a} = P{ sup W <z
0<t<1

and, from (3.8), M supgc;<; W2 < 4, it follows that Mpe?r.(w) < oo and,
consequently, M7, (w) = C/e2, where the constant

12 oy < a,t > s} denotes the event a; < a for all t > s.
13 See, for example, [291], p. 173.
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c= — -1) ~WD@-%vE gyl dp < 00. O
/0 \/271' k;_ (= /\/‘ y|ers e

Notes and References. 1

17.1. The results of Chapters 7 and 10 have been repeatedly used here.

17.2. The estimates of drift coefficient parameters for diffusion-type processes
have been studied by Novikov [246] and Arato [6].

17.3. The results related to this section are due to Novikov [246].

17.4. The parameter estimation of a two-dimensional Gaussian Markov process
has been discussed in Arato, Kolmogorov and Sinai (7], Arato [6], Liptser and
Shiryaev [205], and Novikov [246].

The maximum likelihood sequential estimates 6 (¢) have been introduced by
the authors. The properties of these estimates have been studied by Novikov [246]
and the authors. Theorem 17.7 had been proved by Vognik.

17.6. Theorem 17.8 generalizes one of the results obtained by Laidain [183].

17.7. Theorem 17.9 was proved in [289)].

Notes and References. 2

17.1-17.5 A parameter estimation for diffusion processes is considered in Ku-
toyants, Mourid and Bosq [180], Kutoyants [178], Kutoyants and Vostrikova [181].
For the case of a small diffusion parameter see also the book [179]. A parameter
estimation and adaptive filtering are given in Yashin and Kuznetsov [324].

17.6. Theorem 17.8 has been generalized by Yashin [322].



18. Random Point Processes: Stieltjes
Stochastic Integrals

18.1 Point Processes and their Compensators

18.1.1. In the previous chapters we described observable random processes
X = (&), t > 0, which possessed continuous trajectories and had properties
analogous, to a certain extent, to those of a Wiener process. Chapters 18 and
19 will deal with the case of an observable process that is a point process
whose trajectories are pure jump functions (a Poisson process with constant
or variable intensity is a typical example).

18.1.2. We shall begin with some basic definitions. We assume that we are
given a complete probability space (£2, F, P) with a distinguished family F =
(F), t > 0, of right continuous sub-o-algebras of F augmented by sets of zero
probability.

Let T = (mn), n > 1, be a sequence of Markov times (with respect to the
system F = (F;), t > 0) such that!:

(1) 71 >0 (P-as.);
(2) Tn < Tnt1 ({Tn < 00} : (P-as.));

(3) Tn = Tns1 ({mn = o0} : (P-as.)). (18.1)
We shall write 7o, = lim,,_,o 7 for the limit point of the sequence T' =
(tn), n > 1.

The random sequence T' = (1,,), n > 1, is fully characterized by a counting
process
Ny =) Iir<oy, t20. (18.2)

n>1

In this connection it is clear that the investigation of the sequence T =
(Tn), m > 1, is equivalent to that of the process N = (Ny), t > 0.

Definition 1. The sequence of Markov times T = (7,), n > 1, satisfy-
ing (18.1) is said to be a random point process. The process N=(Ny), t>0,
defined in (18.2) is said to be a point process also (corresponding to the se-
quence T = (1,), n > 1).

! The notation ‘¢ < n(A4; (P-a.s.))’ implies that P(AN{¢ > n}) = 0.

R. S. Liptser et al., Statistics of Random Processes
© Springer-Verlag Berlin Heidelberg 2001
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Note 1. The point processes introduced above represent a particular case
of the so-called ‘multivariate point processes’ to be defined as random se-
quences (T, ) = (Tn,&n), where the 7, are Markov times satisfying (18.1)
and the &, are F,, /X-measurable random variables with values in some mea-
surable space (X, X).

18.1.3. We shall note some simple properties of point processes N = (IN;),
t > 0. It is seen from the definition that the process N is measurable (with
respect to (t,w)) and F;-measurable for each ¢ > 0 (in this connection, we
shall use also the notation N = (NV¢, F;), t > 0, for this process). Trajectories
of these processes are (P-a.s.) right continuous, have limits to the left, and
are piecewise constant functions with unit jumps. It is also clear that

N, <n (P-a.s.),

Tn —

N, =lmN,, (P-a.s.)
(by definition Neo(w) = limy_yo Ny (w)).

EXAMPLE 1. A simple example of a point process is a process N; = I{r < t},
t > 0, where 7 is a Markov time with P(7 > 0) = 1. (In this case 7, = T,
T =00, N 2> 2).

EXAMPLE 2. The Poisson process IT = (m;), t > 0, with parameter ), that
is, a process with stationary independent increments,

mo =0,

P(my —m, = k) = e M=\t - s)¥/k!, s<t, k=0,1,...,

is a point process with respect to the family of o-algebras F; = Fff = o{w :
s, 8 <t} t > 0.

EXAMPLE 3. If N = (N, F:), t > 0, is a point process and o is a Markov
time (with respect to (F:), t > 0), the process (Nins, Fi), t > 0, is also a
point process.

In this case

Nino = Z I{-rgst},

n>1
where

N Y if , <o,
n oo, ifm, >o0.
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18.1.4. We shall consider, together with the process N = (N, F), t > 0,
the point processes N = (Niar,.,F;), t > 0, for each n > 1. Since PO <
Ni¢ar, < n) = 1, this process (as well as any bounded and nondecreasing
process) is a submartingale of class D (see Section 3.3) and, therefore, a
Doob—Meyer decomposition holds for it (see the corollary to Theorem 3.8):

Ninr, =m{™ + A%,

where (m{™, %), t > 0, is a uniformly integrable martingale, and A™. 7,
t > 0, is a predictable increasing process.
By virtue of the equality

Nt/\Tk - = Nt/\Tn/\‘rk’ k S n
and the uniqueness of the Doob—Meyer decomposition, it follows that
k k
m® =m{ AP = AR . (18.3)

Since A" > Aﬁxj"”, AT > A e have that, for all ¢ > 0, the
process
A= AP + T[4 - A (18.4)
n>1
is a right continuous, predictable increasing process and is such that A¢a., =

A{™ (compare with the proof of Theorem 3.9).
For 7 < 1o, we set
my = Nt - At. (185)

Then
Minr, = Niar, — Airr, = Nt(n) - Aﬁ") = mﬁ")

and, therefore, for each n > 1 the family of random variables {ma-,,t <
Too} forms a uniformly integrable martingale. By generalizing Definition 6 of
Section 3.3, we can say that the random process M = (my, F;) defined for
t < o (o is a Markov time with respect to the system F = (F;), t > 0), is
a o-local martingale if there exists an (increasing) sequence of Markov times
On, n > 1, such that P(o, < 041 < 0) =1, P(lim, 0, = 0) = 1, and, for
each n, the sequence {m¢n,,,,t < o} forms a uniformly integrable martingale.

According to this definition the arguments given above prove the follow-
ing:

Theorem 18.1. A point process N = (Ny, Ft), t > 0, admits, for allt < 7o,
the unique (up to stochastic equivalence) decomposition

Nt =1m; + At, (186)
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where m = (my, Ft), t < Too, 18 @ Too-local martingale, and A = (As, Fy),
t >0, is a predictable increasing process.

EXAMPLE 4. Let N = (N, F;), t > 0, be a deterministic process with
N; = I1 ) (t) and trivial o-algebras F; = {0, £2}. Then, in the decomposition
given by (18.6), m; =0, A; = N;.

EXAMPLE 5. Let IT = (m, F7*), t > 0, be a Poisson process with parameter
A > 0. Then it can be easily verified that the process (m — A, FF) is a
martingale. This implies that m; = 7; — At and A; = Mt in the decomposition
given by (18.6).

EXAMPLE 6. Let IT = (m, Ff), t > 0, again be a Poisson process with
parameter A > 0, Let 7y = inf{t > 0 : m, = 1} and let II = (#;, F]) with

#fy = Wiary. Then the decomposition given by (18.6) for the process II has
the form

fe=[me—A-EAT)]+ A (EAT).

Definition 2. The predictable increasing process A = (A, F;), t > 1, ap-
pearing in the decomposition (18.6) is called the compensator of the point
process N = (N;, F;), t > 0.

It is useful to note that the increasing process A = (A;, F:), t > 0, is a
predictable process if and only if it is predictable in the sense of Definition 3,
Section 5.4, in other words, is a process of class $32.

The following two definitions will play an essential role from now on.

Definition 3. A Markov time 6 (with respect to the family (F;), t > 0) is
called predictable if a random point process N; = I{g<y) is predictable.

By virtue of Theorem T52, Chapter VII in [229], the Markov time 0 is
predictable if and only if there exists an increasing sequence of Markov times
(6r), n > 1, such that (P-a.s.) 8, < @ and lim, 6, = 6.

Definition 4. A Markov time o (with respect to the family (), t > 0)
is said to be totally inaccessible if P(0 = o < o0) = 0 for each predictable
Markov time 6.

In a specific sense the Markov times introduced above are diametrically
opposite: predictable times correspond to predictable events, and totally in-
accessible times fully correspond to nonpredictable events.

2 See the corresponding proof in, for example, [49], Theorem T27, Chapter V.
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EXAMPLE 7. Let A = (A, F;), t > 0, be a compensator of a point process
N = (N;, F;). Then, for a > 0, the time

oz{inf(tZO:AtEa)

00 if Ao < a, (18.7)

is a predictable Markov time (Theorem T16, chapter IV, in [49)]).

EXAMPLE 8. Let IT = (m,F{), t 2 0, be a Poisson process where ¢ =
inf(t > 0 : m¢ = 1). The Markov time ¢ is totally inaccessible. Indeed, let
(on), n > 1, be a sequence of Markov times such that o, < ¢ and lim, 0, =&
on the set of positive probability. The process 1rt(n) = Ti4q, — To, 1S also a
Poisson process (by virtue of the strong Markovian property of the Poisson
process IT). Therefore, the time ¢(® = inf(t > 0 : 7'l't(n) = 1) of the first
jump of such a process has an exponential distribution. But, since 7, = 0,
0™ = ¢ — ¢, and, therefore, P(¢ = lima,) = 0. The contradiction thus
obtained demonstrates that the time o is totally inaccessible.

18.1.5. Let
At_ = h‘?tl As a.nd AAt = At - At_.
8

Since the trajectories of compensator A = (4;), t > 0, are (P-a.s.) nonde-
creasing right continuous functions, the number of jumps of A, t > 0, is at
most countable. The lemma which follows shows that the magnitude of these
jumps does not exceed unity,

Lemma 18.1. With probability one
sup AA; = sup AA; <1 (18.8)

t<Too t<Too

PROOF. We shall establish first that AA, = A, — A(;_)- = 0. Indeed,
since A, > A,,, Ar > lim, A, . On the other hand, by virtue of (18.4)
and the Fatou lemma (Theorem 1.2)

A, = AD 4+ (Al - A
n>1

. . n+l
= hin AD 4 Z hlin[Afc ) _ AlM)

n>1

IA

lim { AD + 3 [AGD - A
n21

= lilxcn A,
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Hence, A, = limy A;, and, therefore, A, = A(,)-, i.e, AA;_ = 0. Let

Too

0=inf(t§'r°°:supAA3>1),

s<t

assuming 6 = 7o if sup,<,  AAs; < 1. Then, in order to prove the lemma it
suffices to establish that (P-a.s.)

Aopry = Aprry— <1, k=1,2,.... (18.9)

Since the time @ is predictable (Example 7), there exists an increasing se-
quence of Markov times (6,), n > 1, such that 6, < 6 and lim, 6, = 6
(P-as.).

Thus we have from the decomposition

Ninre = Minr, + Atar,

(for a uniformly integrable martingale (m¢a~,,F:) and an integrable process
Ainre, t > 0) that, for each j < n,

M(AG/\Tk - Ae,./\rk|-7:9,~/\-rk) = M(NGATk - Ne,./\-rk Ifej)' (18'10)

From this, letting n — oo, by the Lebesgue theorem on dominated con-
vergence (Theorem 1.4) we find

M(Apnr, — A@nr)-|Fo;) = M(Noar, — Ngar)-1Fo,;) < 1. (18.11)
By virtue of Theorem T35, Chapter 3, in [49]3

Fo-=0 U, |- (18.12)
J

Hence, from (18.11), by Lévy’s theorem (Theorem 1.5) we obtain
M(Appr — Aonr)-1Fo-) < 1. (18.13)

But the values of Agn,, are Fy_-measurable (see Section 3.4, and also The-
orem T34, Chapter X, in [229]). Consequently, the value AAgnr, = Aonr, —
A(gary)- is also Fg_-measurable and, by virtue of (18.13), AAgar, <1 (P-
a.s.), which was to be proved. a

Lemma 18.2. Let 0 be a Markov time (with respect to the family (F;),t > 0).
Then (A denotes the symmetric difference of sets)

MJV(,-/\;,-°° = MAO’/\Tco’ (1814)

3 For the definition of the o-algebras F; see the note to Theorem 3.10.
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P[({Ns < 00}A{A, < 00}) N ({7 < Too})] = 0. (18.15)

PROOF. Since the martingale min,,, = Nyar, — Aiar,, t 2 0, is uniformly
integrable, we have (Theorem 3.6) M Nyar, = MAsar,. But lim, Noar, =
Nyary, and limp Agar, = Asar,; hence, by virtue of the monotone conver-
gence theorem (Theorem 1.1), MNyar = MAopr,. .

Next, since

{N, < 00}A{A; < o0}
= ({N, < 0} N {4, = 00}) U({N; =00} N {A,; < 00}),

in order to prove (18.15) we need to show that

P{N, < 00,A; = 00,0 < Too} = P{Ny =00, A5 < 00,0 < Too} = 0.
(18.16)
We have M Agnr, = MNgpr, <n < oo. Hence P{A;pr, = 0o} =0 and

P{N, < 00,A; = 0,0 < Too}

P{Nypr, < 00,A5nr, = 00,0 < Tp,0 < Teo}
+P{N, < 00,A; =00,Tn <0 < Teo}

P{N, < 00,A; =00,Tp < 0 < Too}

< P{mh <0 < T} —0, n— oo

In order to prove that the second expression in equality (18.16) is equal
to zero probability, we shall consider the Markov times

0. = inf(t < 700 : A¢ > 1),
[ I if A, <n.

By virtue of Lemma 18.1, A;pg, < n + 1. Hence,

P{N, =00 < 0,45 < To }
= P{Nypg, = 00, Asng, < 00,0 < Too,0 < by}
+P{N, = 00,A, < 00,0 < Teo, 0 > O}
P{Nypg, = 0} + P{lp < 0 < Too }

IA

But MN,ypo, = MAgps, < n+ 1 and, therefore, P{Nypg, = oo} = 0.
Finally, since 6,, 1 Too and 0 < 7eo, then P{f, < 0 < 70} =+ 0,n = 00. 0O

18.1.6. Processes with continuous compensators constitute an important
class of point processes. The structure of such processes will be described in
the lemma which follows.

Lemma 18.3. A necessary and sufficient condition for the compensator Ay,
t > 0, of a point process N = (Ny, F;), t > 0, to be (P-a.s.) continuous on
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[0, 700] is that the process be left quasicontinuous on [0, 7o), i.e., that for any
nondecreasing sequence of Markov times (o,,), n > 1,

Iirrln Noorreoy = Nlim,, oporre,  (P-2.8.). (18.17)

PROOF.
Necessity. Let o = lim,, 0,,. Then, from the following equality,

M[ka/\a - NTkAo'n] = M[ATk/\O' - Ark/\a,.],

and the continuity of A;, ¢ > 0, we have that N, , = lim, N, ., . From
this we have

N,

o0

e = limlm Ny ap, = limlim Ny pp, = im Ny ap,, -
k n n k n eettmm

Sufficiency. We shall consider the potential I7() = (Ht(k),}'t), t > 0, with
I®) = M(N,, |F,) = Niar, . (18.18)
Because of the left quasicontinuity of the process N,

MI® = MN,, — MN, ar, = MN, — MNg,,
= M[M(N‘rkl}.a) - NUAT'I:]
= MIL(,"), n — 00,

i.e., the potential IT(®) is regular (in the sense of Definition 7, Section 3.4).
Hence, by virtue of Theorem 3.11, the potential IT®*) permits the Doob—
Meyer decomposition

a® = M® + B (18.19)

with a continuous predictable process B®*) = (Bt(k),}'t), t > 0. It follows
from the uniqueness of the Doob-Meyer decomposition (18.18), (18.19) and
(18.6), that Bt(k) = —Aar,. Hence, for 7 < 7, the compensator A; has (P-
a.s.) continuous trajectories. This, together with the equality A, = A(;.)-,
proves that P(AAt # 0,t < 7) = 0.

Corollary 1. The compensator A, t > 0, of the point process N = (Ny, Ft),
t >0, is continuous ({t < 7o }: (P-a.s.)) if and only if the jump times of the
process N, t >0, are totally inaccessible.

In fact, if the compensator is continuous, the process is left quasicontin-
uous. Then, if § is a jump time and with positive probability &, 1 & (£ 7o),
then because of left quasicontinuity of N5, Ns_ = lim, N5, = Ns, which
contradicts the assumption that 4 is a jump time. Therefore, the time 4 is
totally inaccessible.
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Conversely, let the Markov time § be such that there exists a sequence
of times (4,,), n > 1, such that §,, < ¢ and 4, 1 § < 7. The time § cannot
be a jump time (since by assumption jump times are totally inaccessible)
and therefore, lim,, N5, = Nj, i.e., the process N is left quasicontinuous; by
the previous theorem, the compensator Ay, t > 0, is continuous ({t < 750 }:
(P-a.s.)).

Corollary 2. The point process Ny, t < 7o, with a continuous compensator
18 stochastically continuous:

lim P(‘Ntl\Tsz/\Tm| > 6) =0, €>0.
st

18.2 Minimal Representation of a Point Process:
Processes of the Poisson Type

18.2.1. Let N = (Nt, F), t 2 0, be a point process, and let
Ny =m; + At, 1< Too (1820)

be its Doob—Meyer decomposition.

The variables IV; are JF;-measurable, but they may turn out to be mea-
surable also with respect to smaller o-algebras. Thus, for example, it can be
seen that the N; are F}¥-measurable (F¥ = o{w : N;, s <t} and F}¥ C F,).
It is also obvious that the family (F}¥), t > 0, is the smallest o-algebra family
with respect to which the values Ny, t > 0, are measurable; in this case the
process N = (N, FN), t > 0, is also a point process. For this process we have
(if the family of o-algebras (F}N), t > 0, is right continuous) the Doob-Meyer
decomposition

Ny =+ A, t < Teo, (18.21)

which is naturally called the minimal representation of the point process N.
The minimal representation given by (18.21) will play an essential role in

the investigation of point process properties. Hence, we shall discuss in detail

the question of right continuity for the family of o-algebras (FN), t > 0.

Lemma 18.4. Let a space of elementary events {2 be such that for eacht > 0
and w € (2 there is an w' € 2 such that Ng(w') = Nias(w) for all s > 0.
Then the family of o-algebras (FN), t > 0, is right continuous: F. = F}N,
t>0.

PROOF. It is known (see, for example, Lemma 3, Chapter I, in [285]) that
under the assumptions of the lemma, the o-algebra F}¥ consists of the sets
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A € F which possess a property implying that if w € A and N,(w’) = N,(w),
s <t, w also belongs to A.

Let us takea set A € F}} . Let w € A and w' be such that Ny(w') = N,(w),
s < t. It follows from the right continuity of the trajectories of the process
N;, t > 0, that the point ' also belongs to the set A. Consequently, by
virtue of the statement made in the preceding paragraph, the set A € FN
and, therefore, 7} = FN,t > 0. O

Note 1. From now on we shall assume that the space of elementary out-
comes {2 satisfies the conditions of Lemma 18.4. This assumption holds for
the minimal representation given by (18.21). In (18.21), the structure of the
compensator A= (Zt, ftN ), t > 0, can be described as follows.

Theorem 18.2. Let Fy(t) = P(11 <t), and let
Fi(t)=P(Ti<t[7’i_1,...,’7’1), 12> 2,

be regular conditional distribution functions. Then the compensator A=
(A4, FN), t < Too, of the point process N = (N3, FN), t > 0, can be de-
fined by the formula

A=Y 74", (18.22)
i>1
where? i gFya)
—(3) * i(U .
= — 0 >l :
A, /0 o IR (18.23)

To prove this theorem we shall need two auxiliary assertions which are of
interest by themselves.

18.2.2.
Lemma 18.5. Let

Nt = ZI{T,.St}, t>0,
n>1

be a point process and let § = 8(w) be a Markov time with respect to the family
(FN), t > 0, such that P(§ < 7o) = 1. Then there exist Borel functions
Pn = @n(t1,...,tn), n>1, and a constant pg such that (1o =0)

0w) =Y Iir,_y<o<r}  Pn-1(T1,. s To1)s (18.24)
n>1
i.e., on the set {6 < 71} the random variable 6(w) is a constant and, on the
sets {Tn—1 <0< 7} (n21), 0(w) = pp-1(11 (), - .-, Tn-1(w))-

4 f: f(u)dF;(u) is understood as a Lebesgue—Stieltjes integral over a set (s, 1), i.e.,
f: F(u)dF;(u) = f(s’ y f()dFi(u). (For more details see Section 18.4).
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PROOF. We shall take advantage of the fact that the o-algebra FJ¥ coincides
with a o-algebra o{w : Nya¢,t > 0}, and for any Markov time 6 (with respect
to the system (FV), s > 0) the o-algebra

]:gN =0{w H Ng/\t,t 20}

(see, for example, Theorem 6, Chapter I, in [285]).

The random variable 6 is measurable with respect to the o-algebra F3’
and, hence, there exist a countable set S C [0,00) and a Borel function
¢p(zn;n € N), such that O(w) = ¢(Npagw)(Ww);t € S). Therefore, O(w) =
ZnZl I{-r,,_159<r,.} - @(Ninost € S).

Note now that, on the set {r,—1 <8 < 1,},

n—1

Nino = Niar,_, = I{'rkst}
k=1

and, consequently, on this set

n—1
o(Nipost € 8) = (Z Itr<tyit € S) .
k=1

The function 90(2:;11 I{;,<s);t € S) can obviously be represented as
Yn-1(T1,--.,Tn-1), where @n,_1(t1,...,tn-1) is a Borel function of n — 1
variables. Hence,

Ow) = > Iir,_ <o<r} ¢(Nenoit € )
n>1
= Z I{'r,._1$0<1',.} ' (pn—l(Tla cee ,Tn—l)-
n>1
O
Corollary. There exist Borel functions 0,(t1,...,tn) and a constant 6y such

that on the set {6 < 7.}, 0 = On_1(71,...,Tn-1). In particular, 6 A1, =
On1ATp and OANTL =0p_1 ATk, k <n.

Lemma 18.6. Let (12, F, P) be a probability space and let (F;), t > 0, be
a nondecreasing family of sub-o-algebras of F. A necessary and sufficient
condition for the integrable random process X = (z;,F:), t > 0, to be a
martingale is that, for any two-valued stopping time 1,

Mz, = Mux,. (18.25)
PROOF. The necessity of (18.25) follows from Theorem 3.5.
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To prove sufficiency we shall assume that there exist times s and ¢ (s < t)
such that the set A = {w: z; < M(z¢|Fs)} has P(A) >0

Construct a time 7 = tI4 + sl7. Since {7 =t} = A € F; C F; and
{r = s} = A € F,, 7 is a Markov time with respect to the system (F;), t > 0.
Hence,

Mz, = MIszi + MIzz,
= M(IaM(z:|F,)) + MIzz,
< M(IA.’II3 + IX(L",) = Mz,,
which fact contradicts the assumption that Mz, = Mz, i.e., P(A) = 0.

For A = {w: zs > M(x:|Fs)}, the proof of P(A) = 0 is given in a similar
way. O

Note. The previous lemma shows that the martingale X = (x;, F;), t>0,
can be defined as a random process such that: M|z;| < 0o0; z; is F;-measurable
for each t > 0; for any two-valued stopping time 7 (with respect to the family
(F), Mz, = Mxy.

18.2.3.
PROOF OF THEOREM 18.2. To prove the theorem it suffices to show that
for each n, n = 1,2,..., the processes m(™ = (Niar, — Atar,, F7') (where

Ay is as defined in (18.22) and (18.23)) are uniformly integrable martingales,
and the process A = (4;, FV), t > 0, is a predictable process.

By virtue of Lemma 18.6, in order to prove that the process m™ is a
martingale, it suffices to establish that, for any stopping time 6 (with respect
to (FN), t > 0),

MNgn,, = MAgn-,. (18.26)
We have
n .
MZgn, = MY Agle =MS A5, =M (18.27)
21 3
(@) SN
= MZ Aet AT T MZM(AG;_U\ani—l; e ,Tl),

i=1

where the 8;_; were defined in the corollary to Lemma 18.5.
According to (18.23),

M(Ag,_,nr;|Tie1s. . T1) = /0°° [Loi_lAs %
- L R e

0i_1 u
=R [ ey (1829

dFi(S)
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Let A(s) = Fi(s) and B(s) = f; dFi(u)/(1 — Fi(u—)). Then, by virtue of
the formula

t ¢
A®)B(t) = / A(u=)dB(u) + / B(u)dA(u)
0 0
(the proof of which, in a more general case, will be given in Lemma 18.7),
it [ rs dF;(u)
[ sl

6i_1 dF;( u) 0i-1 F;(u~)dF;(u)
F(Oz—l) / 1— F(u_) A -TF',('U,——_)-

Ii

G;i-1 u
= R0 -1 [ l—f%(—)—;ﬂF(, )~ F(0)]. (18.20)

But F;(0) =0,i=1,2,..., and we find from (18.28) and (18.29) that

(Ag. wanlTimts 1) = Fi(0i-1); (18.30)
therefore, by virtue of (18.27),

MAgnr, = MY _ Fi(6i-1). (18.31)
i=1
On the other hand, by virtue of the corollary to Lemma 18.5, 8 A 1; =
0;_1ANT1; and O AT1;_1 = 0;_1 A Ti—1. Hence,

n
MNGAT,. = MNB/\Tl + MZ[NO/\‘R - NO/\Ti—l]
=2

n
= MNG/\Tl + MZ[N&—U\‘H - N9i—1/\7'-;—1]
=2

n
= MI{ <o) + M Z Hri<oin)

i=2
= Fi(6o) +iMFi(0i—l)' (18.32)
=2

We obtain the required assertion (18.26), by comparing (18.31) with (18.32).
Further, since |Niar, — Atar,| < Niar, + Atar, <n+A4,,, and MA, =
MN,, < n, the martingale m(™ is uniformly integrable.

Let us establish that the process 4; = s A(') t > 0, is predictable.

To this end, it suffices to verify that each of the processes Zﬁ”, i=12,...,
is predictable.
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Let Y = (y,FN), t > 0, be a nonnegative bounded martingale with
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