Includes new features of

S5ystemlC version 2.1

Exrom
The 0)
Ground

David C. Black Jack Donovan

=)

. Vi) 7 e

Yl f.{‘l.t P T,
¢

A ST

SYSTEMC: FROM THE GROUND UP

This page intentionally left blank

SYSTEMC: FROM THE GROUND UP

By

David C. Black and Jack Donovan
Eklectic Ally, Inc.

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 1-4020-7989-3
Print ISBN: 1-4020-7988-5

©2004 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2004 Kluwer Academic Publishers
Boston

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Dedication

This book is dedicated to our spouses
Pamela Black and Carol Donovan,
and to our children

Christina, Loretta, & William Black,
Chris, Karen, Jenny, & Becca Donovan

This page intentionally left blank

Contents

Dedication v
Preface Xi
Why this Book Xi
Prerequisites for this Book xii
Book Conventions xiii
About the Examples Xiv
How to Use this Book Xiv
SystemC Background XV
The Evolution of SystemC XV
Open SystemC Initiative XVii
1. An Overview to System Design Using SystemC 1
1.1 Introduction 1
1.2 Language Comparison 2
1.3 Design Methods 3
14 What’s Next 3
1.5 Enhancing Productivity with SystemC 3
2. TLM-Based Methodology 11
2.1 Transaction-Level Modeling Overview 11
22 Abstraction Models 13
23 Another Look at Abstraction Models 15
24 TLM-Based Methodology 16

2.5 Summary 23

viii SystemC: From The Ground Up

3. Overview of SystemC 25
3.1 C++ Mechanics for SystemC 26
32 SystemC: A C++ Class for Hardware 30
33 Overview of SystemC Components 33
34 SystemC Simulation Kernel 38
4. Data Types 41
4.1 Numeric Representation 41
4.2 Native Data Types 43
4.3 Arithmetic Data Types 43
4.4 Boolean and Multi-Value Data Types 45
4.5 Fixed-Point Data Types 47
4.6 Operators for SystemC Data Types 51
4.7 Higher Levels of Abstraction and the STL 52
4.8 Choosing the Right Data Type 55
4.9 Exercises 56
5. Modules 57
5.1 A Starting Point: sc_main 57
52 The Basic Unit of Design: SC_MODULE 59
53 The SC_MODULE Class Constructor: SC_CTOR 60
54 The Basic Unit of Execution: SystemC Process 61
5.5 Registering the Simple Process: SC_THREAD 62
5.6 Completing the Simple Design: main.cpp 64
5.7 Alternative Constructors: SC_HAS_PROCESS 64
5.8 Two Basic Styles 66
59 Exercises 70
6. A Notion of Time 71
6.1 sc_time 71
6.2 sc_start() 72
6.3 sc_time_stamp () and Time Display 73
6.4 wait(sc_time) 74
6.5 sc_simulation_time(), Time Resolution and Time Units 75
6.6 Exercises 76
7. Concurrency 77
7.1 sc_event 78
7.2 Simplified Simulation Engine 79
7.3 SC_THREAD 81
74 Dynamic Sensitivity for SC_THREAD::wait() 81
7.5 Another Look at Concurrency and Time 83

7.6 Triggering Events: .notify() 86

Contents

7.7
7.8
7.9
7.10
7.11
7.12

SC_METHOD

Dynamic Sensitivity for SC_METHOD: next_trigger()
Static Sensitivity for Processes

dont_initialize

sc_event_queue

Exercises

8. Basic Channels

8.1
8.2
8.3
84
8.5

Primitive Channels
sc_mutex
sc_semaphore
sc_fifo

Exercises

9. Evaluate-Update Channels

9.1
9.2
9.3
9.4
9.5

Completed Simulation Engine

sc_signal, sc_buffer

sc_signal_resolved, sc_signal_rv

Template Specializations of sc_signal Channels
Exercises

10. Structure

10.1
10.2
10.3
104
10.5
106
10.7
10.8
10.9

Module Hierarchy

Direct Top-Level Implementation

Indirect Top-Level Implementation

Direct Sub-Module Header-Only Implementation
Indirect Sub-Module Header-Only Implementation
Direct Sub-Module Implementation

Indirect Sub-Module Implementation

Contrasting Implementation Approaches

Exercises

11. Communication

11.1
11.2
113
114
11.5
11.6
11.7

Communication: The Need for Ports
Interfaces: C++ and SystemC

Simple SystemC Port Declarations
Many Ways to Connect

Port Connection Mechanics

Accessing Ports From Within a Process
Exercises

90
92
93
96
97
98

99
100
100
102
104
107

109
111
113
116
118
120

121
121
123
124
125
125
126
127
128
128

129
129
130
135
136
138
141
142

ix

X SystemC: From The Ground Up

12. More on Ports 143
12.1 Standard Interfaces 143
122 Static Sensitivity Revisited 147
12.3 Specialized Ports 149
124 The sc_port<> Array 154
125 SystemC Exports 158
126 Connectivity Revisited 164
12.7 Exercises 166
13. Custom Channels and Data 167
13.1 A Review of Channels and Interfaces 167
132 The Interrupt, a Custom Primitive Channel 168
13.3 The Packet, a Custom Data Type for SystemC 170
134 The Heartbeat, a Custom Hierarchical Channel 174
13.5 The Adaptor, a Custom Primitive Channel 176
13.6 The Transactor, a Custom Hierarchical Channel 180
13.7 Exercises 186
14. Advanced Topics 187
14.1 sc_clock, Predefined Processes 187
142 Clocked Threads, the SC_CTHREAD 189
143 Programmable Hierarchy 193
144 Debugging and Signal Tracing 197
145 Dynamic Processes 199
146 SC_FORK/SC_JOIN 204
147 Error and Message Reporting 207
14.8 Other Libraries: SCV, ArchC, and Boost 211
149 Exercises 212
15. Odds & Ends 213
15.1 Determinants in Simulation Performance 213
15.2 Features of the SystemC Landscape 218
15.3 Next Steps 222
Acknowledgments 227
List of Figures 229
Notes 237

Index 239

Preface

Why this Book

The first question any reader should ask is “Why this book?” We decided
to write this book after learning SystemC and after using minimal documents
to help us through the quest of becoming comfortable with the language’s
finer points. After teaching several SystemC classes, we were even more
convinced that an introductory book focused on the SystemC language was
needed. We decided to contribute such a book.

This book is about SystemC. It focuses on enabling the reader to master
the language. The reader will be introduced to the syntax and structure of the
language, and the reader will also learn about the features and usage of
SystemC that makes it a tool to shorten the development cycle of large
system designs.

We allude to system design techniques and methods by way of examples
throughout the book. Several books that discuss system-level design
methodology are available, and we believe that SystemC is ideally suited to
implement many of these methods. After reading this resource, the reader
should not only be adept at using SystemC constructs efficiently, but also
have an appreciation of how the constructs work together and how they can
be used to create high performance simulation models.

We believe there is enough information to convey about the SystemC
language to justify this stand-alone book. We hope you agree. We also
believe that there is enough material for a second book that focuses on using
SystemC to implement these system-level design methods. With reader

xii SystemC: From The Ground Up

encouragement, the authors hope to start on a second book that delves
deeper into the application of the language (after recovering from the writing
of this book).

Prerequisites for this Book

As with every technical book, the authors must write the content
assuming a basic level of understanding; this assumption avoids repeating
most of an engineering undergraduate curriculum. For this book, we
assumed that the reader has a working knowledge of C++ and minimal
knowledge of hardware design.

For C++ skills, we do not assume that the reader is a “wizard”. Instead,
we assumed that you have a good knowledge of the syntax, the object-
oriented features, and the methods of using C++. The authors have found
that this level of C++ knowledge is universal to current or recent graduates
with a computer science or engineering degree from a four-year university.

Interestingly, the authors have also found that this level of knowledge is
lacking for most ASIC designers with 10 or more years of experience. For
those readers, assimilating this content will be quite a challenge but not an
impossible one.

For readers without any understanding of C++ or for those who may be
rusty, we recommend finding a good C++ class at a community college or
taking advantage of many of the online tutorials. For a list of sources, see
Chapter 15. We find (from our own experience) that those who have learned
several procedural languages (like FORTRAN or PL/I) greatly
underestimate the difficulty of learning a modern object-oriented language.

To understand the examples completely, the reader will need minimal
understanding of digital electronics.

Preface Xiii
Book Conventions

Throughout this book, we include many syntax and code examples.
We’ve chosen to use an example-based approach because most engineers
have an easier time understanding examples rather than strict Backus-Naur
Form' (BNF) syntax or precise library declarations. Syntax examples
illustrate the code in the manner it may be seen in real use with placeholders
for user-specified items. For more complete library information, we refer the
reader to the SystemC Language Reference Manual (LRM) currently at
version 2.0.1, which you can download from www.systemc.org.

Code will appear in monotype Courier font. Keywords for both
C/C++ and SystemC will be shown in bold. User-selectable syntax items
are in italics for emphasis. Repeated items may be indicated with an
ellipsis (...) or subscripts. The following is an example:

wait (name.posedge event () |event;...);
if (name.posedge()) { //previous delta-cycle
//ACTIONS. ..

Figure 1. Example of Sample Code

In addition, the following are standard graphical notations. The
terminology will be presented as the book progresses.

sc_thread o sc module
sc_method e -
sc_channel Adaptor/transactor

sc_port<> E sc_port<sc_interface>

sc_export

&
@® sc_interface

Method call e sc_prim channel

1

sc_event

Figure 2. Standard Graphical Notations

! John Backus and Peter Naur first introduced BNF as a formal notation to describe the syntax
of a given language. NAUR, Peter (ed.), “Revised Report on the Algorithmic Language
ALGOL 60.”, Communications of the ACM, Vol. 3 No.5, pp. 299-314, May 1960

Xiv SystemC: From The Ground Up

SystemC uses a naming convention where most SystemC specific
identifiers are prefixed with sc_ or SC . This convention is reserved for the
SystemC library, and you should not use it in end-user code (your code).

About the Examples

To introduce the syntax of SystemC and demonstrate its usage, we have
filled this book with examples. Most examples are not real-world examples.
Real examples just become too cluttered too fast. The goal of these examples
is to communicate concepts clearly; we hope that the reader can extend them
into the real world. For the most part, we used a common theme of an
automobile for the examples.

By convention, we show syntax examples stylistically as if SystemC is a
special language, which it is not. We hope that this presentation style will
help you apply SystemC on your first coding efforts. If you are looking for
the C++ declarations, please browse the LRM or look directly into the
SystemC Open SystemC Initiative reference source code
(www.systemc.org).

How to Use this Book

The authors designed this book primarily for the student or engineer new
to SystemC. This book’s structure is best appreciated by reading sequentially
from beginning to end. A reader already familiar with SystemC will find this
content to be a great reference.

Chapters 1 through 3 provide introductions and overviews of the
language and its usage. Methodology is briefly discussed.

For the student or engineer new to SystemC, the authors present the
language from the bottom up and explain the topics from a context of C++
with ties to hardware concepts. We provide exercises at the end of Chapters
4 through 14 to reinforce the concepts presented in the text. Chapter 15
backs up the basic language concepts with a discussion of areas to watch
when designing, writing, or using SystemC in a production environment.

Preface XV

For the student or engineer already familiar with SystemC, Chapters 4
through 11 will provide some interesting background and insights into the
language. You can either skip or read these early chapters lightly to pick up
more nuances of the language. The content here is not meant to be a
complete description of the language. For a thorough description, the reader
is referred to the SystemC LRM. Chapters 12 through 14 provide
intermediate to advanced material.

For the advanced reader, Chapter 15 provides performance tips and
information about gotchas and tidbits that may help with some of the day-to-
day usage of SystemC.

For the instructor, this book may provide part of an advanced
undergraduate class on simulation or augment a class on systems design.

In most of the examples presented in the book, the authors show code
fragments only so as to emphasize the points being made. Examples are
designed to illustrate specific concepts, and as such are toy examples to
simplify learning. Complete source code for all examples and exercises is
available for download from www.EklecticAlly.com/Book as a compressed
archive. You will need this book to make best use of these files.

SystemC Background

SystemC is a system design language based on C++. As with most design
languages, SystemC has evolved. Many times a brief overview of the history
of language will help answer the question “Why do it that way?” We include
a brief history of SystemC and the Open SystemC Initiative to help answer
these questions.

The Evolution of SystemC

SystemC is the result of the evolution of many concepts in the research
and commercial EDA communities. Many research groups and EDA
companies have contributed to the language. A timeline of SystemC is
included below.

Xvi SystemC: From The Ground Up
Table 1-1. Timeline of Development of SystemC
Date Version Notes
Sept 1999 0.9 First version; cycle-based
Feb 2000 0.91 Bug fixes
Mar2000 1.0 Widely accessed major release
Oct 2000 1.0.1 Bug fixes
Feb 2001 1.2 Various improvements
Aug 2002 2.0 Add channels & events; cleaner syntax
Apr 2002 2.0.1 Bug fixes; widely used
June 2003 2.0.1 LRM in review
Spring 2004 2.1 LRM submitted for IEEE standard

SystemC started out as a very restrictive cycle-based simulator and “yet
another” RTL language. The language has evolved (or is evolving) to a true
system design language that includes both software and hardware concepts.
Although SystemC does not specifically support analog hardware or
mechanical components, there is no reason why these aspects of a system
cannot be modeled with SystemC constructs or with co-simulation

techniques.

Preface Xvii
Open SystemC Initiative

Several of the organizations that contributed heavily to the language
development efforts realized very early that any new design language must
be open to the community and not be proprietary. As a result, the Open
SystemC Initiative (OSCI) was formed in 1999. OSCI was formed to:

¢ Evolve and standardize the language

e Facilitate communication among the language users and tool
vendors

e Enable adoption

¢ Provide the mechanics for open source development and
maintenance

The SystemC Verification Library

As you will learn while reading this book, SystemC consists of the
language and potential methodology-specific libraries. The authors view the
SystemC Verification (SCV) library as the most significant of these libraries.
This library adds support for modern high-level verification language
concepts such as constrained randomization, introspection, and transaction
recording. The first release of the SCV library occurred in December of
2003 after over a year of Beta testing.

Current Activities with OSCI

At present, the Open SystemC Initiative is involved with completing the
LRM and submitting it to the Institute of Electrical and Electronics
Engineers (IEEE) for standardization. Additionally, sub-committees are
studying such topics as synthesis subsets and formalizing terminology
concerning levels of abstraction.

This page intentionally left blank

Chapter 1

AN OVERVIEW TO SYSTEM DESIGN USING
SYSTEMC

1.1 Introduction

SystemC is a system design language that has evolved in response to a
pervasive need for a language that improves overall productivity for
designers of electronic systems. Typically, today’s systems contain
application-specific hardware and software. Furthermore, the hardware and
software are usually co-developed on a tight schedule, the systems have tight
real-time performance constraints, and thorough functional verification is
required to avoid expensive and sometimes catastrophic failures.

SystemC offers real productivity gains by letting engineers design both
the hardware and software components together as these components would
exist on the final system, but at a high level of abstraction. This higher level
of abstraction gives the design team a fundamental understanding early in
the design process of the intricacies and interactions of the entire system and
enables better system trade offs, better and earlier verification, and over all
productivity gains through reuse of early system models as executable
specifications.

2 SystemC: From The Ground Up
1.2 Language Comparison

Strictly speaking, SystemC is not a language, but rather a class library
within a well established language, C++. SystemC is not a panacea that will
solve every design productivity issue. However, when SystemC is coupled
with the SystemC Verification Library, it does provide in one language
many of the characteristics relevant to system design and modeling tasks that
are missing or scattered among the other languages. Additionally, SystemC
provides a common language for software and hardware, C++.

Several languages have emerged to address the various aspects of system
design. Although Ada and Java have proven their value, C/C++ is
predominately used today for embedded system software. The hardware
description languages (HDLs), VHDL and Verilog, are used for simulating
and synthesizing digital circuits. Vera and e are the languages of choice for
functional verification of complex application-specific integrated circuits
(ASICs). SystemVerilog is a new language that evolves the Verilog
language to address many hardware-oriented system design issues. Matlab
and several other tools and languages such as SPW and System Studio are
widely used for capturing system requirements and developing signal
processing algorithms.

Figure 1-1 highlights the application of these and other system design
languages. Each language occasionally finds use outside its primary domain,
as the overlaps in Figure 1-1 illustrate.

Language Comparison

Requirements

Architecture

HW/SW

Behavior

Functional st

Verification
Test bench . .

RTL

Gates

Transistors ' * Modified from DVCon
- Gabe Moretti EDN

Figure I-1. SystemC contrasted with other design languages

An Overview to System Design Using SystemC 3
1.3 Design Methods

Design methods surrounding SystemC are currently maturing and vary
widely. In the next few years, these methods will likely settle into a cohesive
design methodology (with a few variants among certain industry segments).
The resulting methodology will feel similar to the methodologies in use
today, but at higher levels of abstraction. To some, the concept of using one
unified language for hardware and software development appears
revolutionary, but this concept is clearly an evolutionary path for those who
frequently work in both domains.

Although tools and language constructs exist in SystemC to support
register-transfer-level (RTL) modeling and synthesis, a major reason for
using the language is to work at higher abstraction levels than RTL.
SystemC’s ability to model RTL designs enables support of design blocks
generated by higher level (behavioral or graphical entry) synthesis tools or to
support legacy design blocks.

1.4 What’s Next

Now that we have given you a map of where SystemC fits into the
modern design language landscape, we will discuss some motivation for
learning SystemC.

Unless a new language solves a problem that current languages do not
address, you have no practical reason for learning that language (other than
academic curiosity). The rest of this chapter will discuss the set of problems
that you need to address with new methodologies and the types of solutions
that SystemC is enabling. Understanding SystemC’s solutions should help
you understand some of the language trade offs that you may question when
you dive into language details presented in Chapter 3, SystemC Overview.

1.5 Enhancing Productivity with SystemC

The primary motivation for using SystemC is to attain the productivity
increases required to design modern electronic systems with their ever
increasing complexity. Without productivity advances, many new system
concepts will be impractical. In the next sections, we will examine system
complexity, methods for attacking this complexity, and SystemC-enabled
solutions.

4 SystemC: From The Ground Up
1.5.1 Increasing Design Complexity

The primary driver leading to the need for a new system design language
is the same that previously lead to the need for the current design languages:
increasing design complexity.

Modern electronic systems consist of many sub-systems and components,
but we will focus primarily on hardware, software, and algorithms. In
modern systems, each of these disciplines has become more complex.
Likewise, the interaction has become increasingly complex.

Interactions imply that trade offs between the domains are becoming
more important for meeting customer requirements. System development
teams find themselves asking questions like, “Should this function be
implemented in hardware, software, or with a better algorithm?” Systems are
so complex, just deriving specifications from customer requirements has
become a daunting task.

Figure 1-2 illustrates the complexity issues for hardware design in a large
system on a chip (SoC) design. The figure shows three sample designs from
three generations: yesterday, today (2003), and tomorrow. In reality,
tomorrow’s systems are being designed today. The bars for each generation
imply the code complexity for four common levels of abstraction associated
with system hardware design:

e Architecture
¢ Behavioral
e RTL

e Gates

An Overview to System Design Using SystemC 5

Complexity
4 100M

100M

@

=

8 1M

o

w

g

-

8

g 10K -

> e

= 1.5K &
100 g]

Yesterday 2003 Tomorrow

Figure 1-2. Design Complexity from Different Design Generation

Today’s integrated circuits (ICs) often exceed 10 million gates, which
conservatively translates to one hundred thousand lines of RTL code.
Today’s designs are practical because of the methodologies that apply RTL
synthesis for automated generation of gates. Tomorrow’s ICs, which are
being designed today, will exceed one hundred million gates, or roughly one
million lines of RTL code, if written using today’s methodologies.

Notice that Figure 1-2 considers only a single integrated circuit. It does
not reflect the greater complexity of a system with several large chips (ASIC
or field-programmable gate array, FPGA) and gigabytes of application
software. Many stop-gap approaches are being applied, but the requirement
for a fundamentally new approach is clear.

6 SystemC: From The Ground Up
1.5.2 Facing Design Complexity

SystemC supports several techniques for addressing the complexity of
modern designs. Today’s design community uses several approaches for
attacking the complexity issues that come with complex system design:

e Abstraction

e Design reuse

e Team discipline
® Project reuse

e Automation
Let’s look at each of these approaches in turn.

1.5.2.1 Abstraction

In the past, the primary technique for managing complexity for both the
software and hardware community has been to raise the level of abstraction
used for design. This approach will be the primary technique for the future
as well.

For software developers, the transition was from assembler code to
higher level languages like FORTAN and PL/I, and then to even more
abstract languages like Lisp, Ada, and multi-paradigm languages such as
C++. Today’s software practitioners grapple with a plethora of fifth-
generation languages as they strive to find the appropriate level of
abstraction, expressiveness, flexibility, and performance required to develop
and maintain modern systems. Modular programming, data hiding, object-
oriented design, generic programming, exception and constraint handling all
aim to manage complexity.

For the hardware community, the path started with polygon definitions
hand drawn on Mylar film. Gate-level design was enabled through a variety
of schematic capture tools and gate-level languages that appear very crude
by today’s standards. In the late 1980s, VHDL and Verilog enabled process-
independent ASIC simulation, documentation, and net list development, and
eventually RTL synthesis.

Unfortunately, the synthesizable RTL subsets of VHDL and Verilog
force hardware designers to specify behavior on every clock edge, which
offers less abstraction than C offers the software designer. While object-
oriented software design and C++ accelerated in the 1990s, EDA vendors
attempted to keep pace by offering behavioral synthesis tools that could
build circuits from more abstract VHDL and Verilog descriptions. For a

An Overview to System Design Using SystemC 7

variety of reasons, designers gave these tools a cool reception, and major
EDA vendors shifted their focus toward design reuse and meeting designer
productivity requirements.

As aresult, the hardware community has not coherently raised the design
abstraction level beyond RTL for almost 20 years, and the community has
instead focused on design reuse, team discipline, and automation.

1.5.2.2 Design Reuse

Reuse has emerged as the dominant productivity technique for RTL and
software design. Many excellent books have been written on this subject”.
Reuse will continue to be a major component of any new methodology to
address increased complexity.

Platform-based design is an evolution of design reuse to higher levels of
abstraction. Instead of reusing lower levels of design, whole compute
platforms are now reused and programmed for specific applications”.

Many times, we refer to design reuse as external reuse to distinguish this
technique from project reuse discussed in a later section.

1.5.2.3 Team Discipline

When we refer to team discipline, we refer to the tools and techniques
used to bring productivity to each engineer and the interactions among
engineers. This area encompasses anything from revision control to written
specifications and other documentation to design and code reviews.

In the past, team discipline techniques have been mostly applied locally
and without coordination to the architecture, software, and hardware groups.
Furthermore, team discipline has been applied with uneven acceptance
among these groups. In a highly disciplined organization, the deliverables
for each group may be defined, but this level of discipline is still not the
norm. To face the complexity issues for next generation designs, team
discipline needs to be more evenly applied across all of the system design
disciplines, coordinated more closely, and augmented with more tools.

The Software Engineering Institute’s (SEI) Capability Maturity Model
(CMM) has contributed much to elevating the software development process
from an art to a science. The hardware community has embraced this notion
with the MORE (Measure of Reuse Excellence) grading system, but all

2 Keating, M., Bricaud, P. 2002. Reuse Methodology Manual for System-On-A-Chip Designs.
Norwell, Massachusetts: Kluwer Academic Publishers.

3 Chang, H., Cooke, L., Hunt, M., Martin, G., McNelly, A., Todd, L. 1999. Surviving the SOC
Revolution: A Guide to Platform-Based Design. Norwell, Massachusetts: Kluwer
Academic Publishers.

8 SystemC: From The Ground Up

system designers would do well to adopt similar philosophies across the
entire spectrum of system design.

1.5.2.4 Project Reuse

Project reuse is the term we use to describe code that is defined for a
project and is reused by others within the project or on the next project.
Engineers on the project may reuse the code at the original level of
abstraction, or they may refine the code to a new and lower level of
abstraction by adding design details. Project reuse will allow code developed
by the architecture group to be reused by the software group, hardware
functional verification group, and the hardware design group. We will
discuss the SystemC mechanism for project reuse, refinement with adaptors,
in the next chapter and in greater detail in Chapter 13, Custom Channels.

1.5.2.5 Automation

Another important method for tackling design complexity is design
process automation. The EDA industry has continually provided tools that
improve designer productivity, and will continue to do so.

This productivity comes with a price—both monetary and team
discipline. Most EDA tools come with coding guidelines to maximize tool
performance and engineer productivity. In particular, with the exponentially
increasing amount of RTL code required in modern systems, automatic code
generation will play an increasing role, and adherence to guidelines for the
code generation tools will be essential. Team discipline techniques go a long
way towards optimal leveraging of the EDA tools they use.

In addition to automatic code generation, automation written by the
development team (usually during unpaid overtime) has always been
necessary to some extent, and it will continue to be of prime importance for
system design flows.

1.5.3 SystemC and Methods to Attack Complexity

SystemC supports all of the complexity attacking methods just discussed
(or else we would not have included them in a book about SystemC).
SystemC efficiently supports all of these methods because it leverages C++.

One of SystemC’s greatest strengths is its ability to provide higher levels
of abstraction for all components of a design. Managing abstraction is the
strongest weapon in combating complexity.

C++ programmers have been applying design reuse and enforcing team
discipline for years by leveraging the features in C++ and other tools, and
they have been distributing their software with high quality to a wide

An Overview to System Design Using SystemC 9

number of compute platforms. A great example is the relatively high quality
of free (or nearly free) software available over the web via the GNU license
and others.

SystemC implements project reuse by leveraging C++ interfaces to
separate communications from algorithms. This leveraging allows
independent refinement of a block’s functionality and communication (I/O)
through the use of interfaces and adapters as lightly described in the next
chapter and discussed in detail in Chapter 13, Custom Channels.

Over two dozen EDA companies currently support SystemC by
providing automation solutions. Again, the C++ community provides a
plethora of design productivity tools that are cheaply or freely available over
the Internet.

Facing design complexity effectively with these five techniques is why
SystemC is emerging as today’s design language standard and is adding
users each day.

The next chapter explores a new system design methodology, a
transaction level model-based methodology, enabled by SystemC.

This page intentionally left blank

Chapter 2
TLM-BASED METHODOLOGY

This chapter examines a methodology that enables you to model your
large system designs at higher level of abstraction and realize actual
productivity gains offered by SystemC.

2.1 Transaction-Level Modeling Overview

In the past, when many systems were a more manageable size, a system
could be grasped by a single person known by a variety of titles such as
system architect, chief engineer, lead engineer, or project engineer. This
guru may have been a software engineer, hardware engineer, or algorithm
expert depending on the primary technology leveraged for the system. The
complexity was such that this person could keep most or all of the details in
his or her head, and this technical leader was able to use spreadsheets and
paper-based methods to communicate thoughts and concepts to the rest of
the team.

The guru’s background usually dictated his or her success in
communicating requirements to each of the communities involved in the
design of the system. The guru’s past experiences also controlled the quality
of the multi-discipline trade offs such as hardware implementation versus
software implementation versus algorithm improvements.

In most cases, these trade offs resulted in conceptual disconnects among
the three groups. For example, cellular telephone systems consist of very
complex algorithms, software, and hardware, and teams working on them
have traditionally leveraged more rigorous but still ad-hoc methods.

These methods usually consist of a software-based model; sometimes
called a system architectural model (SAM), written in C, Java, or a similar
language. The model is a communication vehicle between algorithm,
hardware, and software groups. The model may be used for algorithmic
refinement or used as basis for deriving hardware and software subsystem
specifications. The exact parameters modeled are specific to the system type

12 SystemC: From The Ground Up

and application, but the model is typically un-timed (more on this topic in
the following section). Typically, each team then uses a different language to
refine the design for their portion of the system. The teams leave behind the
original multi-discipline system model and in many cases, any informal
communication among the groups.

With rapidly increasing design complexity and the rising cost of failure,
system designers in most product domains will need a similar top-down
approach but with an improved methodology. An emerging system design
methodology based on Transaction-Level Modeling (TLM) is evolving from
the large system design methodology discussed above. This emerging
methodology has significantly more external and project design reuse
enabled by a language like SystemC.

Transaction-level modeling is an emerging concept without precise
definitions. A working group of Open SystemC Initiative (OSCI) is currently
defining a set of terminology for TLM and will eventually develop TLM
standards. In reality, when engineers talk of TLM, they are probably talking
about one or more of four different modeling styles that are discussed in the
following section.

The underlying concept of TLM is to model only the level of detail that
is needed by the engineers developing the system components and sub-
system for a particular task in the development process. By modeling only
the necessary details, design teams can realize huge gains in modeling speed
thus enabling a new methodology. At this level, changes are relatively easy
because the development team has not yet painted itself into a corner with
low-level details such as a parallel bus implementation versus a serial bus
implementation.

Using TLMs makes tasks usually reserved for hardware implementations
practical to run on a model early in the system development process. TLM is
a concept independent of language. However, to implement and refine TLM
models, it is helpful to have a language like SystemC whose features support
independent refinement of functionality and communication that is crucial to
efficient TLM development.

Before exploring this new design methodology we will explore some of
the background and terminology around TLM.

TLM-Based Methodology 13

2.2 Abstraction Models

Several sets of terminology have been defined for the abstraction levels
traditionally used in system models. We are presenting a slight variation of a
model developed and presented by Dan Gajski and Lukai Cai at CODES
(HW/SW Co-Design Conference) 2003 that is illustrated in Figure 2-1.

The first concept necessary for understanding TLM is that system and
sub-system communication and functionality can be developed and refined
independently. In this terminology, the communication and functionality
components can be un-timed (UT), approximately-timed (AT), or cycle-
timed (CT).

Abstraction Terminology

A
More Accurate
Cycle-
2 Timed [
©
[=
ke
= Approximate- |
LE Timed
Un-Timed _|
| | | -
| [[e
Un- Approximate- Cycle- More Accurate
Timed Timed Timed
Communication

Figure 2-1. Abstraction Terminology

A model that is cycle-timing accurate for communication and for
functionality is usually referred to as a register-transfer level (RTL) model.
We refer to models with un-timed communication and functionality as a
SAM. The RTL model is traditionally used for automatic synthesis to gates.
Many times the SAM is used for algorithmic refinement and can be refined
to approximately-timed communication and/or functionality.

The other four points plotted on the graph are usually collectively
referred to as TLMs, and rely on approximately-timed functionality or
communication. Approximately-timed models can rely on statistical timing,

14 SystemC: From The Ground Up

estimated timing, or sub-system timing requirements (or budgets) derived
from system requirements.

A model with cycle-timed communication and approximately-timed
functionality has been referred to as a Bus Functional Model(BFM) in older
methodologies and the label is retained here. The three remaining TLMs
have not yet developed commonly accepted names. For now, we will use the
names developed by Gajski and Cai.

Table 2-1. Timing of Transaction-Level Models

Model Communication Functionality
SAM UT uUT
Component assembly UT AT

Bus arbitration AT AT

Bus functional CT AT
Cycle-accurate AT CT
computation

RTL CT CT

All of these models are not necessary for most systems. In reality, most
systems only need to progress through two or three points on the graph in
Figure 2-1. With a language that supports refinement concepts, the
transformation can be quite efficient.

TLM-Based Methodology 15

2.3 Another Look at Abstraction Models

In this section, to build out your understanding of how TLM can be
useful, we present a less rigorous and more example-based discussion of
TLM. We will assume a generic system containing a microprocessor, a few
devices, and memory connected by a bus.

The timing diagram in Figure 2-2 illustrates one possible design outcome
of a bus implementation. When first defining and modeling the system
application, the exact bus-timing details do not affect the design decisions,
and all the important information contained within the illustration is
transferred between the bus devices as one event or transaction (component-
assembly model).

Further into the development cycle, the number of bus cycles may
become important (to define bus cycle-time requirements, etc.) and the
information for each clock cycle of the bus is transferred as one transaction
or event (bus-arbitration or cycle-accurate computation models).

When the bus specification is fully chosen and defined, the bus is
modeled with a transaction or event per signal transition (bus functional or
RTL model). Of course, as more details are added, more events occur and
the speed of the model execution decreases.

In this diagram, the component assembly model takes 1 “event,” the bus
arbitration model takes approximately 5 “events,” and the RTL model takes
roughly 75 “events” (the exact number depends on the number of
transitioning signals and the exact simulator algorithm). This simple
example illustrates the magnitude of computation required and why more
system design teams are employing a TLM-based methodology.

16 SystemC: From The Ground Up

Generic Bus Timing

Component Assembly Model Transaction

I
\ i

_Bus Arbitration Model Transactions
oK K i A A

- Py -~ . S

jeca R O

bus_reqcoﬂ1T><

Y

o

evice 0 re{équest X X

bus_gnt<0..1> X devicé:eOgrantg X X

bus_ack :_ AX ackimwledge X
addr_data X addr X dataélX data1:>< data2><:

Figure 2-2. Generic Bus Timing Diagram

2.4 TLM-Based Methodology

Now that we have discussed some of the TLM concepts, we can look
more closely at a TLM-based methodology as illustrated in Figure 2-3.

In this methodology, we still start with the traditional methods used to
capture the customer requirements, a paper Product Requirements Document
(PRD). Sometimes, the product requirements are obtained directly from a
customer, but more likely the requirements are captured through the research
of a marketing group.

From the PRD, a SAM is developed. The SAM development effort may
cause changes or refinement to the PRD. The SAM is usually written by an
architect or architecture group and captures the product specification or
system critical parameters. In an algorithmic intensive system, the SAM will
be used to refine the system algorithms.

The SAM is then refined into a TLM that may start as a component
assembly type of TLM and is further refined to a bus arbitration model. The
TLM is refined further as software design and development and hardware
verification environment development progresses.

TLM-Based Methodology

—> Requirements Definition

\

Requirements
Document

v

| System Architecture Model
Development

SW
Design
and
Development

RTL to GDSII Flow

\J
Figure 2-3. TLM-Based Flow

HW
Verification
Environment
Development

17

18 SystemC: From The Ground Up

If the proper design language and techniques are used consistently
throughout the flow, then the SAM can be reused and refined to develop the
TLM. The TLM has several goals:

1. Refinement of implementation features such as HW/SW partitioning; HW
partitioning among ASICs, FPGAs, and boards; bus architecture
exploration; co-processor definition or selection; and many more

2. Development platform for system software

. “Golden Model” for the hardware functional verification

4. Hardware micro-architecture exploration and a basis for developing
detailed hardware specifications

W

In the near future, if EDA tools mature sufficiently, the TLM code may
be refined to a behavioral synthesis model and be automatically converted to
hardware from a higher-level abstraction than the current RTL synthesis
flows. Today, the hardware refinement is likely done through a traditional
paper specification and RTL development techniques, although the
functional verification can now be performed via the TLM as outlined later
in this chapter.

At first, development of the TLM appears to be an unnecessary task.
However, the TLM creates benefits including:

e Earlier software development
e Earlier and better hardware functional verification test bench

¢ Creates a clear and unbroken path from customer requirements to
detailed hardware and software specifications

After reading this book, you and your team should have the knowledge to
implement TLMs quickly and effectively. The following section discusses in
detail the benefits your team will bring to your organization when applying
this methodology: early software development and early hardware functional
verification.

TLM-Based Methodology 19
2.4.1 Early Software Development

In complex systems where new software and new hardware are being
created, software developers must often wait for the hardware design to be
finalized before they can begin detailed coding. Software developers must
also wait for devices (ICs and printed circuit boards) to be manufactured to
test their code in a realistic environment. Even then, creating a realistic
environment on a lab workbench can be very complex. This dependency
creates a long critical path that may add so much financial risk to a project
that it is never started.

Figure 2-4 illustrates a traditional system development project schedule.
The arrows highlight differences a TLM-based methodology would make.
The time scale and the duration of each phase depend on the project size,
project complexity, and the makeup of the system components (hardware,
software, and algorithms).

Schedule Motivation

Architecture
Design

SW Development

SW Verification
HW Design
HW Functional
Verification
HW Implementation —'—'—

YT

System Verification

TO T T2 T3 T4 T5 T6 L T8 TS

Figure 2-4. Schedule Benefits of Earlier Software Development

20 SystemC: From The Ground Up

Creating a TLM from the SAM slightly lengthens the architectural design
phase of a project, but it offers several potential benefits:

e Ability to start refining and testing software earlier, thereby reducing
the overall development cycle

e Ability to provide earlier and more realistic hardware/software trade
off studies at a time when changes are easier, thus improving overall
system quality

e Ability to deliver executable models to customers both for validating
the specification and driving changes, and acceleration of product
adoption

¢ Ability to cancel (or redefine) an unrealistic project before spending
even larger sums of money

Any opportunity to begin the software development work earlier warrants
consideration. Indeed, the bottom line financial returns for just starting
software development earlier, may dictate the adoption of this new
methodology without the other benefits listed above.

2.4.2 Better Hardware Functional Verification

System design teams are always looking for ways to provide more and
better functional verification of the hardware. The number of cases required
to functionally verify a system is growing even faster than the actual system
complexity.

Verifying the hardware interaction with the actual software and firmware
before creating the hardware is becoming increasingly more important. With
the chip mask set costs exceeding several hundred thousand dollars, finding
out after making chips that a software workaround for the hardware is
impossible or too slow is not acceptable. As a result, many teams are
developing simulation and emulation techniques to verify the hardware
interaction with the software and firmware.

Additionally, with the increase in size and complexity of the hardware, it
is increasingly important to verify that unforeseen interactions within the
chip, between chips, or between chips and software do not create
unacceptable consequences. Debugging these interactions without
significant visibility into the state of the chip being verified is very tough.

Very large Verilog or VHDL simulations along with emulation strategies
have traditionally been used for system-level functional verification. With
increasing system complexity, Verilog and VHDL simulations have become
too slow for such verification. Hardware emulation techniques have been

TLM-Based Methodology 21

used when simulation has been too slow, but emulation techniques often
have limited state visibility for debugging, and they can be very expensive.

When a design team develops a TLM, it is straightforward to refine the
model to a verification environment through the use of adapters as outlined
in the following section.

2.4.3 Adapters and Functional Verification

This section is a very brief overview of how a TLM model can be used as
part of an overall system functional verification strategy. With modern
systems, the hardware design is not fully debugged until it is successfully
running the system software. This approach enables functional verification
of the hardware with the system software prior to hardware availability.
More details about implementation of this approach are given in Chapter 13,
Custom Channels, and other sources”,

To show one way that adapters can be applied to a TLM to create a
verification environment, we will assume a generic system that looks like
Figure 2-5. The generic system is composed of a microprocessor, memory, a
couple of devices, and a bus with an arbiter.

DSP
£ Coprocessor
Data . Bus Program
Memory Manager Memory
Mmr ‘\
D \ TLM Interface Auto
I?;l’:'ay \ Bus IIF
Bus Activity
Model

Figure 2-5. Generic System

4 Grotker, T., Liao, S., Martin, G., Swan, S. 2002. System Design with SystemC. Norwell
Massachusetts: Kluwer Academic Publishers.

22 SystemC: From The Ground Up

For our discussions, we will concentrate on communication refinement
and assume that the functionality of the devices, the memory, and the
microprocessor will be approximately-timed or cycle-timed as appropriate
throughout the design cycle.

In this very simple example, we assume that RTL views of the
microprocessor and memory are not available or not important at this point
in the verification strategy. In this case, the RTL for the two devices could
be functionally verified by insertion of an adapter as illustrated in Figure
2-6.

This approach dictates that the adapter converts the timing-accurate
signals of the bus coming from the RTL to a transaction view of the bus. The
RTL sees the bus activity that would be created by the microprocessor,
memory, and arbiter. Bus activity is propagated only to the non-RTL portion
of the system after the adapter creates the transaction. This propagation
creates a very high performance model compared to a traditional full RTL
model.

This approach is just one way of applying adapters. The system-critical
parameters, the system size, the system complexity, and more will contribute
to a verification plan that will define a system-specific approach for
application of adapters.

DsP
“pd Coprocessor
Data Bus Program
Memory Manager Memory
""‘--\._
Arbiter HH“““&
. N i >
" TLM interface — At
Display i
3 /' (L]
Pin and Cycle Auto
Accurate Interface-—-.x‘ 3 IB":s e
RERRARR
Adapter
TLM interface ——»
Bus Activity
Model

Figure 2-6. Adapter Example

TLM-Based Methodology 23
2.5 Summary

A new TLM-based methodology is emerging to attack the design
productivity of complex systems. The benefits of adopting this style of
methodology are derived from early software development, early functional
verification, and higher system quality. The productivity improvements
derived from TLM-based methodology are huge and are the major
motivation for adoption. Now, it is time to explore SystemC, a language that
enables this new methodology.

This page intentionally left blank

Chapter 3
OVERVIEW OF SYSTEMC

Chapters 1 and 2 gave a brief context for the application of SystemC.
This chapter discusses the SystemC language, but still presents an overview
of the language elements. Details are discussed in-depth in subsequent
chapters. Despite our best efforts not to use any part of the language before it
is fully explained, some chapters may occasionally violate this goal due to
the interrelated nature of SystemC. This chapter briefly discusses the major
components of SystemC and their general usage and interactions as a way of
giving context for the subsequent chapters. This chapter also provides this
information as a brief overview for those times when unexplained SystemC
components are required because of SystemC construct interactions.

The following diagram illustrates the major components of SystemC. To
give a context throughout the book, we have included a duplicate of this
diagram at the beginning of each new chapter. Bolded type indicates the
topics discussed within that chapter.

User libraries scv Other IP
Predefined Primitive Channels: Mutexs, FIFOs, & Signals
Channels &

(é Threads & Methods Interfaces Data 'lypes:
@ | Simulation Logic,
B Kernel Integers,
%) Events, Sensitivity Modules & Fixed point

& Notifications Hierarchy

C++ STL

Figure 3-1. SystemC Language Architecture

For the rest of this chapter, we will discuss all of the components within
the figure that are outlined in bold, but only after discussing the SystemC
development environment and a few of the hardware-oriented features

26 SystemC: From The Ground Up

provided by SystemC. Much greater detail will be presented in subsequent
chapters.

SystemC addresses the modeling of both software and hardware using
C++. Since C++ already addresses most software concerns, it should come
as no surprise that SystemC focuses primarily on non-software issues. The
primary area of application for SystemC is the design of electronic systems,
but SystemC has been applied to non-electronic systems”.

3.1 C++ Mechanics for SystemC

We would like to start with the obligatory Hello SystemC program but
first let’s look at the mechanics of compiling and executing a SystemC
program or model.

As stated many times in this book, SystemC is a C++ class library,
therefore, to compile and run a Hello SystemC program, one must have a
working C++ and SystemC environment.

The components of this environment include a:

e SystemC-supported platform
¢ SystemC-supported C++ compiler
® SystemC library (downloaded and compiled)

e Compiler command sequence, make file, or equivalent

The latest OSCI reference SystemC release (2.0.1 at this writing)° is
available for free from www.systemc.org. The download contains scripts and
make files for installation of the SystemC library as well as source code,
examples, and documentation. The install scripts are compatible with the
supported operating systems, and the scripts are relatively straightforward to
execute by following the documentation.

The latest OS requirements can be obtained from the download in a
readme file currently called INSTALL. SystemC is supported on various
flavors of Sun Solaris, Linux, and HP/UX. At this time, the OS list is limited
by the use of some assembly code that is used for increased simulation
performance in the SystemC simulation kernel. The current release is also
supported for various C++ compilers including GNU C++, Sun C++, and HP

> For example, read the book, Microelectrofluidic Systems: Modeling and Simulation by
Tianhao Zhang et al., CRC Press, ISBN: 0849312760.

6 SystemC version 2.1 should be available during the summer of 2004, and supports more
platforms and compilers including MacOS X. Be sure to read the release notes carefully.

Overview of SystemC 27

C++. The currently supported compilers and compiler versions can also be
obtained from the INSTALL readme file in the SystemC download.

For beginners, this list should be considered exhaustive, although some
hardy souls have ported various SystemC versions to other unsupported
operating systems and C++ compilers. In addition, you will need gmake
installed on your system to quickly compile and install the SystemC library
with the directions documented in the INSTALL file.

The flow for compiling a SystemC program or design is very traditional,
and is illustrated in Figure 3-2 for GNU C++. Most other compilers will be
similar. The C++ compiler reads each of the SystemC code file sets
separately and creates an object file (usual file extension of . o). Each file set
usually consists of two files typically with standard file extensions. We use
.h and .cpp as file extensions, since these are the most commonly used in
C++. The .h file is generally referred to as the header file and the .cpp file
is often called the implementation file.

Compilation Flow

systemc
STL

filen.h

filen.cpp /

:> 1 ~—~---—---)-

Object Link Executable
Files L File

Compiler

Figure 3-2. SystemC Compilation Flow

After creating the object files, the compiler (actually the loader or linker)
will link your object files and the appropriate object files from the SystemC
library (and other libraries such as the standard template library or STL).
The resulting file is usually referred to as an executable, and it contains the
SystemC simulation kernel and your design functionality.

The compiler and linker need to know two special pieces of information.
First, the compiler needs to know where the SystemC header files are
located (to support #include <systemc.h>). Second, the linker needs to
know where the compiled SystemC libraries are located. This is typically

28 SystemC: From The Ground Up

accomplished by providing an environment variable named SYSTEMC, and
ensuring the Makefile. rules use the information.” If using gcc, the
command probably looks something like this:

g++ -I$ (SYSTEMC) /include \
-L$ (SYSTEMC) /lib-$ (ARCH) -lsystemc \
$ (SRC)

Figure 3-3. Partial gcc Options to Compile and Link SystemC

The downloadable examples available from our website include
Makefiles setup for Linux and gcc. Please refer to your C++ tool manuals
for more information.

For the hardcore engineer types, you now have everything you need to
compile and run a Hello SystemC program; we have provided the
obligatory program in Figure 3-4. Keywords for both C++ and SystemC are
in bold. The rest of you now have an overview of how to compile and run
the code examples in this book as well as your own SystemC creations.
Everyone is now ready to dive into the language itself.

7 For some installations, dynamic libraries may also be referenced if using the SystemC
Verification library.

Overview of SystemC

29

#include <systemc.h>
#include <iostream>
SC_MODULE (Hello SystemC) {//declare the module class
sc_in clk iclk; //define the clock port
SC_CTOR (Hello SystemC) {//create a constructor
SC_METHOD (main method) ;// register the main
// process
sensitive << iclk.neg();//specify clk
// sensitivity
dont initialize(); //skip initial call
}
void main method(void) {
std::cout << sc_time stamp()
<<" Hello world!™"
<< std::endl;

}

}i

int sc_main(int argc, char* argv[]) {
//declare a time constant
const sc_time t PERIOD (8,SC NS) ;
//create periodic clock
sc_clock clk ("clk", t PERIOD) ;
//create an instance
HelloWorld iHelloWorld ("iHelloWorld") ;
//connect the clock port and clock
iHelloWorld. iclk (clk) ;
// invoke the simulator
sc_start (10, SC_NS) ;
return O;

Figure 3-4. Hello_SystemC Program Example

30 SystemC: From The Ground Up

3.2 SystemC: A C++ Class for Hardware

SystemC provides mechanisms crucial to modeling hardware while using
a language environment compatible with software development. SystemC
provides several hardware-oriented constructs that are not normally available
in a software language but are required to model hardware. All of the
constructs are implemented within the context of the C++ language. This
section looks at SystemC from the viewpoint of the hardware-oriented
features. The major hardware-oriented features implemented within
SystemC include:

e Time model
e Hardware data types
® Module hierarchy to manage structure and connectivity

e Communications management between concurrent units of
execution

e Concurrency model

The following sections briefly discuss the implementation of these
concepts within SystemC.

3.2.1 Time Model

SystemC tracks time with 64 bits of resolution using a class known as
sc_time. Global time is advanced within the kernel. SystemC provides
mechanisms to obtain the current time and implement specific time delays.
To support ease of use, an enumerated type defines several natural time units
from seconds (SC_SEC) to femtoseconds (SC_FSEC).

For those models that require a clock, a class called sc_clock is
provided. This clock class is discussed in Chapter 14, Advanced Topics. The
clock discussion is deferred to later chapters of the book, since many
applications in SystemC do not require a clock (but do require a notion of
time). Additionally, clocks do not add to the fundamental understanding of
the language. By the later chapters, you should be able to implement the
clock class yourself with the fundamentals learned throughout the book.
However, you may find that you will still use the sc_clock class as a
convenience.

Overview of SystemC 31
3.2.2 Hardware Data Types

The wide variety of data types required by digital hardware are not
provided inside the natural boundaries of C++ native data types, which are
typically 8-, 16-, 32-, and 64-bit entities.

SystemC provides hardware-compatible data types that support explicit
bit widths for both integral (e.g., sc_int<>) and fixed-point (e.g.,
sc_fixed<>) quantities. These data types are implemented using templated
classes and generous operator overloading, so that they can be manipulated
and used almost as easily as native C++ data types.

Furthermore, digital hardware can represent non-binary quantities such as
tri-state and unknown state. These are supported with four-state logic
(0,1,X,Z) data types (e.g., sc_logic). SystemC provides all the necessary
methods for using hardware data types, including conversion between the
hardware data types and conversion from hardware to software data types.

Finally, hardware is not always digital. SystemC does not currently
directly support analog hardware; however, a working group has been
formed to investigate the issues associated with modeling analog hardware
in SystemC. For those with immediate analog issues, it is reasonable to
model analog values using floating-point representations and providing the
appropriate behavior.

3.2.3 Hierarchy and Structure

Large designs are almost always broken down hierarchically to manage
complexity, easing understanding of the design for the engineering team.
SystemC provides several constructs for implementing hardware hierarchy.
Hardware designs traditionally use blocks interconnected with wires or
signals for this purpose. For modeling hardware hierarchy, SystemC uses the
module entity interconnected to other modules using channels. The hierarchy
comes from the instantiation of module classes within other modules and is
discussed in Chapter 10, Structure.

32 SystemC: From The Ground Up
3.2.4 Communications Management

The SystemC channel provides a powerful mechanism for modeling
communications, and the channel is one of the major contributions of
SystemC version 2.0. Conceptually, a channel is more than a simple signal
or wire. Channels can represent complex communications schemes that
eventually map to significant hardware such as the AMBA bus®. At the same
time, channels may also represent very simple communications such as a
wire or a FIFO (first-in first-out queue). Channels are discussed in Chapters
8 Basic Channels, 9 Signals, and 13 Custom Channels.

The ability to have several quite different channel implementations used
interchangeably to connect modules is a very powerful feature that enables
an implementation of a “simple bus” replaced with a more detailed hardware
implementation, and eventually implemented with gates. We briefly explore
some of these concepts in Chapter 13, Custom Channels and in Chapter 14,
Advanced Topics.

SystemC provides several built-in channels common to software and
hardware design. These include sc mutex, sc_fifo, sc_signal<> and
others discussed later.

Finally, modules connect to channels via the port class, sc_port<>, a
templated class that uses interface classes. Built-in interface classes include
sc_ mutex if, sc fifo in if<>, and others that are discussed fully in
Chapters 10 Structure, 11 Connectivity, and 12 More on Ports.

3.2.5 Concurrency

Concurrency in a simulator is always an illusion. Simulators execute the
code on a single physical processor. Even if you did have multiple
processors performing the simulation, the number of units of concurrency in
real hardware design will always outnumber the processors used to do the
simulation by several orders of magnitude. Consider the problem of
simulating the processors on which the simulator runs.

Simulation of concurrent execution is accomplished by simulating each
concurrent unit (defined by an SC METHOD, SC THREAD, or SC_CTHREAD).
Each unit is allowed to execute until simulation of the other units is required
to keep behaviors aligned in time. In fact, the simulation code itself
determines when the simulator makes these switches by the use of events.
This simulation of concurrency is the same for SystemC, Verilog, VHDL, or

8See AMBA AHB Cycle Level Interface Specification at www.arm.com.

Overview of SystemC 33

any other hardware description languages (HDL). In other words, the
simulator uses a cooperative multi-tasking model. The simulator merely
provides a kernel to orchestrate the swapping of the various concurrent
elements, called processes. SystemC provides a simulation kernel that will
be discussed lightly in the last section of this chapter. This kernel will be
investigated more thoroughly in Chapter 6, A Notion of Time and in Chapter
9, Evaluate-Update Channels.

3.2.6 Summary of SystemC Features for Hardware Modeling

SystemC implements the structures necessary for hardware modeling by
providing constructs that enable concepts of time, hardware data types,
hierarchy and structure, communications, and concurrency. This section has
presented an overview of SystemC relative to hardware design requirements
for any design language. The following section discusses a complete set of
language construct categories implemented in SystemC.

3.3 Overview of SystemC Components

In this section, we briefly discuss all the components of SystemC that are
highlighted in Figure 3-1, which is the illustration that we will see at the
beginning of each chapter throughout the book.

3.3.1 Modules and Hierarchy

Before getting started, it is necessary to have a firm understanding of two
basic types of processes in SystemC. As indicated earlier, the SystemC
simulation kernel schedules the execution of simulation processes.
Simulation processes are simply member functions of SC_MODULE classes
that are also “registered” with the simulation kernel.

Because the simulator kernel is the only caller of these member
functions, they need no arguments, and they return no value. They are
simply C++ functions that are declared as returning a void and having an
empty argument list.

An SC_MODULE class can also have processes that are not executed by
the simulation kernel, but are invoked as function calls within the simulation
processes of the SC_MODULE class as normally done in C++.

34 SystemC: From The Ground Up
3.3.2 Threads and Methods

From a software perspective, processes are simply threads of execution.
From a hardware perspective, processes provide necessary modeling of
independently-timed circuits. Simulation processes are member functions of
an SC_MODULE that are registered with the simulation kernel. Registration
occurs during the elaboration phase (during the execution of the constructor
for the SC_MODULE class) using an SC_METHOD, SC_ THREAD, or
SC_CTHREAD’ SystemC macro.

The most basic type of simulation process is known as the SC_METHOD
process. This process is to be distinguished from the object-oriented concept
of a class method or member function in C++. An SC_METHOD is simply a
member function of an SC_MODULE class where time does not pass between
the invocation and return of the function. In other words, an SC_METHOD is a
purely normal function that happens to have no arguments and returns no
value. A characteristic of a method process is that the simulator kernel
repeatedly calls it.

The other basic type of simulation process is known as the SC_THREAD.
This differs from the SC_METHOD in two ways. First, whereas SC_METHODs
are invoked multiple times, the SC_THREAD is only invoked once. Second,
an SC_THREAD has the option to suspend itself and potentially allow time to
pass before continuing. In this sense, an SC_THREAD is similar to a
traditional software thread of execution.

There is a special case of the SC_THREAD known as the SC_CTHREAD.
This process is simply a thread process that has the requirement of being
sensitive to a clock. Sensitivity will be discussed later.

The SC_ METHOD, SC THREAD, and SC_CTHREAD are the basic units
of concurrent execution. The simulation kernel invokes each of these
processes, therefore they are generally never invoked directly by the user.
The user indirectly controls execution of the simulation processes by the
kernel as a result of events, sensitivity, and notification.

o SC_CTHREAD is under consideration for deprecation; however, several synthesis tools

depend on it at the time of writing.

Overview of SystemC 35
3.3.3 Events, Sensitivity, and Notification

Events, sensitivity, and notification are very important concepts for
understanding the implementation of concurrency by the SystemC simulator.

Events are implemented by the SystemC sc_event class. Events are
caused or fired through the sc_event member function, notify. The
notify member function can occur within a simulation process
(sC_METHOD, SC_THREAD,or SC_CTHREAD) or as a result of activity in a
channel. When an SC_METHOD, SC_THREAD, or SC_CTHREAD process is
sensitive to an event, and the event occurs, the simulation kernel schedules
the process to be invoked.

SystemC has two types of sensitivity: static and dynamic. Static
sensitivity is implemented by applying the SystemC sensitive command
to an SC_METHOD, SC_THREAD, or SC_CTHREAD at elaboration time
(within the constructor). Dynamic sensitivity lets a simulation process
change its sensitivity on the fly. The SC_METHOD implements dynamic
sensitivity with a next trigger (arg) command. The SC_THREAD
implements dynamic sensitivity with a next (arg) command. Both
SC_METHOD and SC_THREAD can switch between dynamic and static
sensitivity during simulation.

3.3.4 SystemC Data Types

Several hardware data types are provided in SystemC. Since the SystemC
language is built on C++, all of the C++ data types are available, and the
ability exists to define new data types for new hardware technology (i.e.,
multi-valued logic) or for applications other than electronic system design.

Hardware data types for mathematical calculations like sc_ fixed<> and
sc_int<> allow modeling of complex calculations like DSP functions and
evaluate the performance when implemented in custom hardware or in
processors without full floating-point capability.

Familiar data types like se¢_logic and sc_1v<> are provided for RTL
designers who need a data type to represent basic logic values or vectors of
logic values.

36 SystemC: From The Ground Up
3.3.5 Channels and Interfaces

Hardware designs typically contain hierarchy to reduce complexity. A
block represents each level of hierarchy. VHDL refers to blocks as
entity/architecture pairs, which separate an interface specification from the
body of code for each block. In Verilog, blocks are called modules, and
contain both interface and implementation in the same code. SystemC
separates the interface/implementation similar to VHDL. The C++ notion of
header (.h file) is used for the entity and the notion of implementation
(. cpp file) is used for the architecture.

Blocks communicate via ports/pins and signals or wires in traditional
HDLs. In SystemC, modules are interconnected using either primitive
channels or hierarchical channels. Both types of channels connect to
modules via ports. The powerful ability to have interchangeable channels is
implemented through a component called an interface.

Interestingly, module interconnection happens programmatically in
SystemC, during the elaboration phase. This interconnection lets designers
build regular structures using loops and conditional statements (see Chapter
14, Advanced Topics). From a software perspective, elaboration is simply
the period of time when modules invoke their constructor methods.
Currently, SystemC only allows construction prior to the start of simulation.

3.3.6 Summary of SystemC Components

Now, it is time to tie all of these basic concepts together into one
illustration, Figure 3-5. This illustration is used many times throughout the
book when referring to the different SystemC components. It can appear
rather intimidating since it shows almost all of the concepts within one
diagram. In practice, most SC_MODULEs will not contain all of the illustrated
components.

Overview of SystemC 37

SystemC Components

Modules

y

.t Ports

Threads . .
& Methods .euewessssesesst™""

Figure 3-5. SystemC Components

The figure shows the concept of an SC_MODULE that can contain
instances of other SC_MODULEs. An SC_METHOD, SC_THREAD, or
SC_CTHREAD can also be defined within an SC_MODULE.

Communication between modules and SC_METHODs, SC_THREADs, and
SC_CTHREADs is accomplished through various combinations of ports,
interfaces, and channels. Coordination between simulation processes
(8C_METHOD, SC_THREAD, SC__ CTHREAD) is accomplished through events.

The rest of this book describes all of these components and their
interaction with the SystemC simulation kernel in detail.

38 SystemC: From The Ground Up
3.4 SystemC Simulation Kernel

The SystemC simulator has two major phases of operation: elaboration
and execution. A third, often minor, phase occurs at the end of execution,
and could be characterized as post-processing or cleanup.

Execution of statements prior to the sc_start () function call is known
as the elaboration phase. This phase is characterized by the initialization of
data structures, the establishment of connectivity, and the preparation for the
second phase, execution.

The execution phase hands control to the SystemC simulation kernel,
which orchestrates the execution of processes to create an illusion of
concurrency.

sc_main() SystemC Simulation Kernel

Execute code possibly

i1 issuing events or While ;

Elaborate ~ :: updates. Either suspend processes skl Ey ()
i1 waiting or exit entirely. immediate
; gy : Ready

sc_start, —» |nitialize —> Evaluate -

.notify(t)
timed

.notify(SC_ZERO_TIME)
delayed

Figure 3-6. SystemC Simulation Kernel

The illustration in Figure 3-6 should look very familiar to those who
have studied Verilog and VHDL simulation kernels. Very briefly, after
sc_start () all simulation processes (minus a few exceptions) are
randomly invoked during initialization. After initialization, a simulation
process is run when an event to which it is sensitive occurs. Several
simulation processes may begin at the same instant in simulator time.
Because of this case, all of the simulation processes are evaluated and then
their outputs are updated. An evaluation followed by an update is referred to
as a delta-cycle. If no additional simulation processes need to be evaluated at
that instant (as a result of the update), then simulation time is advanced.
When no additional simulation processes need to run, the simulation ends.

This brief overview of the simulation kernel is meant to give you an
overview for the rest of the book. This diagram will be used again to explain

Overview of SystemC 39

important intricacies later. It is very important to understand how the kernel
functions to fully understand the SystemC language. We have provided an
animated version of this diagram walking through a small code example at
our website, www.EklecticAlly.com. The SystemC LRM (Language
Reference Manual) specifies the behavior of the SystemC simulation kernel,
and is the definitive source. We encourage the reader to use any or all of

these resources during their study of SystemC to fully understand the
simulation kernel.

This page intentionally left blank

Predefined Primitive Channels: Mutexes, FIFOs, & Signals
roads Channels &
Higeal Moo Interfaces Data types:
Simulation Logic,
Kemel Integers,
| Events, Sensitivity Modules & Fixed point
Chapter 4 _ & Notifications Hierarchy

DATA TYPES

SystemC has a number of predefined data types to support hardware
designs spanning from the native C++ data types to specialized fractional
fixed-point representations. Choosing a data type depends on the range of
values to be represented, the required precision, and the required operations.
Choice of a data type also affects the speed of simulation, synthesizability,
and synthesis results. The data types used differ depending on the level of
abstraction represented in your model.

4.1 Numeric Representation

Representation of literal data is fundamental to all languages. C++ allows
for simple integers, floats, Booleans, characters, and strings.

To support hardware data representations, SystemC provides a unified
string representation using C-style strings. It is possible to convert both to
and from this format. SystemC uses the following syntax for strings:

sc_string name ("0 base [sign] number [e[+|-] expl");
// no whitespace

Figure 4-1. Syntax of sc_string

Where base is one of b, o, d, or x for binary, octal, decimal, and
hexadecimal, respectively. The sign allows specification of signed (empty),
unsigned (us), signed magnitude (sm), and canonical signed digit (csd)
numbers. number is an integer in the indicated base. The optional exponent
exp is always specified using decimal. Eleven specific representations from
the SystemC LRM are shown in the table below. Notice the enumeration
column, se¢_numrep, which is used when converting into a unified string.

42 SystemC: From The Ground Up

Table 4-1. Unified String Representation for SystemC

sc_numrep Prefix Meaning sc_int<S>(-13)"

SC_DEC od Decimal "-0d13"

SC_BIN Ob Binary "0b10011"

SC_BIN US Obus Binary unsigned "Obus01101"

SC_BIN SM Obsm Binary signed "-O0bsm01101"
magnitude

SC_ocCT Oo Octal "0o03"

SC_OCT US Oous Octal unsigned "Oousl5"

SC_ OCT SM Oosm Octal signed "-0osm03"
magnitude

SC_HEX 0x Hex "Oxf3"

SC HEX US Oxus Hex unsigned "0xus0d"

SC_HEX SM Oxsm Hex signed "-0xsm0d"
magnitude

SC_CsD Ocsd Canonical signed "0csd-010-"
digit

Here are some examples of literal data in SystemC:

sc_string a ("0d13"); // decimal 13
a = sc_string ("0b101110") ; // binary of decimal 44

Figure 4-2. Example of sc_string

19413 for unsigned types

Data Types 43

4.2 Native Data Types

SystemC supports all the native C++ data types: int, long int, int,
unsigned int, unsigned long int, unsigned short int, short,
double, float, char, and bool

For many SystemC designs, the built-in C++ data types should be
sufficient. Native C++ data types are the most efficient in terms of memory
usage and execution speed of the simulator.

// Example native C++ data types

int spark_offset; // Adjustment for
// ignition
unsigned repairs =0; // Count repair
// incidents
unsigned long mileage; // Miles driven
short int speedometer; // -20..0..100 MPH
float temperature; // Engine temp in C
double time of last request; //Time of bus
//activity
std:: string license plate;// Text for license
// plate
const bool WARNING LIGHT = true;// Status

// indicator
// Direction of travel
enum compass {SW,W,NW,N,NE,E, SE, S} ;

Figure 4-3. Example of C++ Built-in Data Types

4.3 Arithmetic Data Types

SystemC provides two sets of numeric data types. Arithmetic operations
may be performed on numeric data. One set models data with bit widths up
to 64-bits wide; another set models data with bit widths larger than 64-bits
wide. Most of the native C++ data types have widths, ranges, and
interpretations that are compiler-implementation-defined to match the host
computer for execution efficiency.

44 SystemC: From The Ground Up
4.3.1 sc_int and sc_uint

Most hardware needs to specify actual storage width at some level of
refinement. When dealing with arithmetic, the built-in sc_int and
sc_uint (unsigned) numeric data types provide an efficient way to model
data with specific widths from 1- to 64-bits wide. When modeling numbers
with data whose width is not an integral multiple of the simulating
processor’s data paths, some bit masking and shifting must be performed to
fit internal computation results into the declared data format.

Thus, any data type that is not native to both the C++ language and the
processor width will simulate slower than the native types. Thus, built-in
C++ data types are faster than sc_int and sc_uint.

sc_int<LENGTH> NAME..;
sc_uint<LENGTH> NAME..;

Figure 4-4. Syntax of Arithmetic Data Types

Significant speed improvements can be attained if all sc_ints are 32 or
fewer bits by simply setting the -D_32BIT compiler flag.

GUIDELINE Do not use sc_int unless or until prudent. One necessary
condition for using sc_int is when using synthesis tools
that require hardware representation.

4.3.2 sc_bigint and sc_biguint

Some hardware may be larger than the numbers supported by native C++
data types. SystemC provides sc_bigint and sc_biguint for this
purpose. These data types provide large number support at the cost of speed.

sc_bigint<BITWIDTH> NAME...;
sc_biguint<BITWIDTH> NAME...;

Figure 4-5. Syntax of sc_bigint and sc_biguint

Data Types 45

// SystemC integer data types

sc_int<5> seat position=3; //5 bits: 4 plus sign
sc_uint<13> days_SLOC(4000); //13 bits: no sign
sc_biguint<80> revs_ SLOC; // 80 bits: no sign

Figure 4-6. Example of SystemC Integer Data Types

GUIDELINE: Do not use sc_bigint for 64 or fewer bits. Doing so
causes performance to suffer compared to using sc_int.

4.4 Boolean and Multi-Value Data Types

SystemC provides one set of data types for Boolean values and another
set of data types for unknown and tri-state values.

4.4.1 sc_bit and sc_bv

For ones and zeroes, SystemC provides the sc_bit, and for long bit
vectors SystemC provides sc_bv<> (bit vector) data types. These types do
not support arithmetic data like the sc_int types, and these data types don’t
execute as fast as the built-in bool and Standard Template Library bitset
types. As a result, these data types are being considered for deprecation (i.e.,
removal from the language).

sc_bit NAME...;
sc_bv<BITWIDTH> NAME..;

Figure 4-7. Syntax of Boolean Data Types

sc bit and sc bv come with some supporting data constants,
SC_LOGIC 1 and SC LOGIC 0. For less typing, if using namespace
so_dt, then type Log 1 and Log 0,oreventype ‘1’ and *0’.

Operations include the common bitwise and, or, xor operators (i.e., &,
|, M). In addition to bit selection and bit ranges (i.e., [1 and range ()),
sc_bv<> also supports and reduce(), or reduce(),
nand reduce(), nor reduce (), xor reduce (), and
xnor reduce () operations. Reduction operations place the operator
between all adjacent bits.

46 SystemC: From The Ground Up

sc_bit flag(sC LOGIC 1); // more efficient to use bool
sc_bv<5> positions = "01101";

sc_bv<6> mask = "100111";

sc_bv<5> active = positions & mask;// 00101

sc_bv<l> all = active. and reduce (); // SC _LOGIC 0
positions. range (3,2) = "00";// 00001

positions [2] = active[0] * flag;

Figure 4-8. Examples of bit operations

4.4.2 sc_logic and sc_lv

More interesting than the Boolean data types are the multi-value data
types used to represent unknown and high impedance (i.e., tri-state)
conditions. SystemC represents these with the sc_logic and sc_lv<>
(logic vector) data types. These types are represented with SC_LOGIC 1,
SC_LOGIC 0, SC_LOGIC X, and SC_LOGIC_ Z. For less typing, if using
namespace sc_dt, thentype Log 1, Log 0,Log X, andLog Z,oreven
type'1','0"','X'and 'Z"'.

Because of the overhead, these data types are considerably slower than
their sc_bit and sc_bv counterparts. For best performance, always use
built-in types such as bool.

sc_logic NAME [, NAME] ...;
sc_lv<BITNIDTH> NAME [, NAME]...;

Figure 4-9. Syntax of Multi-Value Data Types

SystemC does not represent other multi-level data types or drive
strengths like Verilog’s 12-level logic values or VHDL’s 9-level
std logic values. However, you can create custom data types if truly
necessary, and you can manipulate them by operator overloading in C++.

sc_logic buf (sc_dt::Log Z) ;

sc_1lv<8> data drive ("zz01XZ1Z") ;

data drive.range (5,4) = "ZZ";// ZZZZXZ1Z
buf = '1"';

Figure 4-10. Examples of 4-Level Logic Types

Data Types 47

4.5 Fixed-Point Data Types

SystemC provides the following fixed-point data types: sc_fixed,
sc_ufixed, sc_fix, sc ufix, and the fast variants of them.

Integral data types do not satisfy all design types. In particular, DSP
applications often need to represent numbers with fractional components.
SystemC provides eight data types providing fixed-point numeric
representation. While native £loat and double data types satisfy high-
level representations, realizable hardware has speed and area requirements.
Also, integer-based DSP processors do not natively support floating point.
Fixed-point numbers provide an efficient solution'' in both hardware and
software.

A number of parameters that control fixed-point behavior (e.g., overflow
and underflow) must be set. What follows will briefly cover these aspects,
but for full information, please see the SystemC LRM.

IMPORTANT: To improve compile times, the SystemC header code omits
fixed-point data types unless the
#define SC INCLUDE FX is specified prior to
#include <systemc.h> in your code.

sc_fixed<WL, IWL[, QUANT[,OVFLW[,NBITS] > NAME...;
sc_ufixed<WL, IWL[,QUANT [, OVFLW[,NBITS] > NAME...;
sc_fixed fast<WL,IWL[,QUANT[,OVFLW[,NBITS]> NAME...;
sc_ufixed fast<WL,IWL[,QUANT[,OVFLW[,NBITS]> NAME...;

sc_fix fast NAME (WL, IWL [, QUANT [, OVFLW [, NBITS]) ...;
sc_ufix fast NAME (WL, IWL [, QUANT [, OVFLW [, NBITS])...;
sc_fixed fast NAME (WL, IWL [, QUANT [, OVFLW [, NBITS])...;
sc_ufixed fast NAME (WL, IWL [, QUANT [, OVFLW [, NBITS])...;

Figure 4-11. Syntax of Fixed-Point Data Types

These data types have several easy-to-remember distinctions. First, those
ending with _fast are faster than the others are because their precision is

1 At the time of writing, fixed-point data types were not synthesizable; however, private
discussions indicate some EDA vendors are considering this as a possible new feature.

48 SystemC: From The Ground Up

limited to 53 bits. Internally, fast types are implemented using C++
double'.

Second, the prefix sc_ufix indicates unsigned just as uint are
unsigned integers. Third, the past tense ed suffix to f£ix indicates a
templated data type that must have static parameters defined using compile-
time constants.

Remember that fixed is past tense (i.e., already set in stone), and it
cannot be changed after compilation. On the other hand, you can
dynamically change those data types lacking the past tense (i.e., the fix
versions). Non-ed types are still active, and you can change them on the fly.

The parameters needed for fixed-point data types are the word length
(wz), integer-word length (IwL), quantization mode (QuanT), overflow mode
(ovrLw), and number of saturation bits (¥B1Ts). Word length (wr) and
integer word length (zwr) have no defaults and need to be set.

The word length establishes the total number of bits representing the data
type. The integer word length indicates where to place the binary decimal
point and can be positive or negative. Figure 4-12 below illustrates how this
works.

A. WL=5 B. WL=5 C. WL=5
Ll SR
. = AL . / A
Iiill!l‘l! ilililf‘fj Lflf[f[flr
_.__Y_____._)“
IWL=5 IWL=3 IWL=0
D. WL=5 E. WL=5
>, e e s SR
~ rid
fefefefr]o]oe] Lelefelelefe]e]
~ S
IWL=7 IWL = -2
i = integer bit f=fraction bit s=sign bit

Figure 4-12. Fixed-Point Formats

12 This implementation takes advantage of the linearly scaled 53-bit integer mantissa inside a
64-bit IEEE-754 compatible floating-point unit. On processors without an FPU, this
behavior must be emulated in software, and there will be no speed advantage.

Data Types 49

The Figure 4-12shows examples with the binary point in several
positions. Consider example B in the preceding figure. This could be
declared as sc_fixed<5, 3>, and would represent values from —4.75 up to
3.75 in 1/4 increments.

You can select several overflow modes from a set of enumerations that
are listed in the next table. A similar table for the quantization modes is also
shown. Overflow mode, quantization mode, and number of saturation bits all
have defaults. You can establish defaults by setting up
sc_fxtype context objects for the non-ed data types.

Table 4-2. Overflow Mode Enumerated Constants

Name Overflow Meaning
SC_SAT Saturate

SC_SAT ZERO Saturate fo zero
SC_SAT SYM Saturate symmetrically
SC_WRAP Wraparound

SC_WRAP_SYM Wraparound symmetrically

50

SystemC: From The Ground Up

Table 4-3. Quantization Mode Enumerated Constants

Name

Quantization Mode

SC_RND
SC_RND_ZERO
SC_RND_MIN_INF
SC_RND_INF
SC_RND_CONV
SC_TRN

SC_TRN_ZERO

Round

Round towards zero

Round towards minus infinity
Round towards infinity
Convergent rounding"
Truncate

Truncate towards zero

The following examples should help explain the syntax for the fixed-

point data types.

const sc_ufixed<19,3> PI ("3.141592654") ;
sc_fix oil temp(20,17,SC_RND INF,SC SAT);
sc fixed fast<7,1l>valve opening;

Figure 4-13. Examples of Fixed-Point Data Types

Only the word length and integer word length are required parameters. If
not specified, the default overflow is SC_WRAP, the default quantization is
SC_TRN, and saturation bits defaults to one.

A special note applies if you intend to set up arrays of the fix types.
Since a constructor is required, but C++ syntax does not allow arguments for
this situation, it is necessary to use the sc_fxtype context type to

establish the defaults.

For significantly more information, refer to section 6.8 of the SystemC

LRM.

13 Convergent rounding is probably the oddest. If the most significant deleted bit is one, and
either the least significant of the remaining bits or at least one of the other deleted bits is

one, then add one to the remaining bits.

Data Types

51

4.6 Operators for SystemC Data Types

The SystemC data types support all the common operations with operator

overloading.
Table 4-4. Operators
Comparison == .I= 3. 8= @ 4=
Arithmetic ++ -= * /% + -
Bitwise ~ & | "
Assignment = &= |= = ¥= /= %= 4= -= <<= >>=

In addition, SystemC provides special methods to access bits, bit ranges,
and perform explicit conversions.

Table 4-5. Special Methods

Bit Selection
Range Selection
Conversion

(to C++ types)

Testing
Bit Reduction

bit(idx), [idx]

range (high, low), (high, low)

to_double (), to_int(),
to_int64 (), to_long(),
to_uint (), to_uinté4d (),
to_ulong (), to_string(type)

is_zero(), is_neg(), length()

and_reduce () ,nand_reduce (),
or_reduce () ,nor_reduce(),
xor_reduce (), xnor_reduce ()

In general, all the common combinations you would expect are present.
For more information, refer to the SystemC LRM.

One often overlooked aspect of these data types (and C++ data types) is
mixing types in arithmetic operations. It is OK to mix similar data types of
different lengths, but crossing types is dangerous. For example, assigning the
results of an operation involving two sc_ints to an sc_bigint does not
automatically promote the operand to sc_bigint for intermediate
calculations. To accomplish that, it is necessary to have one of the arguments

52 SystemC: From The Ground Up

be an sc_bigint or perform an explicit conversion of one of at least one of
the operand arguments. Here is an example (addition):

sc_int<3> d(3);
sc_int<5> e(15);
14)

I

sc_int<5> f(
sc_int<7> sum d + e + £;// Works

sc_int<64> g ("0x7000000000000000") ;

sc_int<64> h ("0x7000000000000000") ;

sc_int<64> 1("0x7000000000000000") ;

sc_bigint<70> bigsum = g + h + i; // Doesn’'t work
bigsum = sc bigint<70>(g) + h + i;// Works

Figure 4-14. Example of Conversion Issues

4.7 Higher Levels of Abstraction and the STL

The basic C++ and SystemC data types lack structure and hierarchy. For
these, the standard C++ struct and array are good starting points.
However, a number of very useful data type classes are freely available,
which provides another benefit of having a modeling language based upon
C++.

The Standard Template Library (STL) is the most popular of these
libraries, and it comes with all modern C++ compilers. The STL contains
many useful data types and structures, including an improved character array
known as string. This book will not attempt to cover the STL in any detail,
but a brief overview may stimulate you to search further.

The STL has generic containers such as the vector<>,map<>, list<>,
and deque< >, which may contain various data types. These containers can
be manipulated by STL algorithms such as for each (), count (),
min element (), max element(), search(), transform(),
reverse (), and sort () . These are just a few of the algorithms available.

Data Types 53

The STL container vector< > closely resembles the common C++ array,
but with several useful improvements. First, the vector< > may be resized
dynamically. Second, and perhaps more importantly, accessing an element
of a vector<> can have bounds checking for safety. The example below
demonstrates use of an STL vector< >.

#include <vectors>
int main (int argc, char* argv([]) {
std: :vector<int> mem (1024) ;
for (unsigned i=0; i!= 1024; i++) {
// Following checks access (safer than mem[I])
mem.at (i) = -1; // initialize memory to known
// values
}//endfor

mem.resize (2048); // increase size of memory

} //end main()

Figure 4-15. Example of STL Vector

Large sparsely-used memories occupy too much space when
implemented as arrays or vectors. These memories require the attributes of
an associative map such as the STL map< >. A map< > requires specification
of both the index and the value data types. Only index values that you have
assigned occupy storage space. Thus, you can represent a large data space
with minimal real memory.

54 SystemC: From The Ground Up

#include <iostream>
#include <map>
int main(int argc, char* argv[]) {
typedef unsigned long ulong;
std: :map<ulong, int> lmem; //possible 2%64
//locations !
// Fill ten random locations with random values
while (lmem.size() < 10) {
// 10 random memory location/values
Imem [rand ()] =rand() ;
}//endwhile
// Display memory contents
typedef std::map<ulong, int>::const iterator iter;
for (iter iv=1lmem.begin() ; iv! =1mem. end () ; ++iv) {
std::cout << std::hex
<< "Imem[" << iv->first
<< "]=" << iv->second << ";" << std::endl;
}//endfor
}//end main ()

Figure 4-16. Example of an STL Map

Data Types 55
4.8 Choosing the Right Data Type

A frequent question is, “Which data types should be used for this
design?” The best answer is, “Choose a data type that is closest to native
C++ as possible for the modeling needs at hand.” Choosing native data types
will always produce the fastest simulation speeds.

The table below gives an idea of performance.

Table 4-6. Data Type Performance

Fastest Native C/C++ Data Types (e.g., int, double and bool)
sc_int<>, sc_uint<>
sc_bit, sc_bv<>
sc_logic, sc_lv<>
sc_bigint<>, sc_biguint<>

sc_fixed fast<>, sc_fix fast,
sc_ufixed fast<>, sc_ufix fast

Slowest sc_fixed<>, sc_fix, sc_ufixed<>, sc_ufix

Some types of modeling tools may impose requirements on data types.
For instance, RTL synthesis tools generally require all data to be in sc_*
data types, and do not synthesize floating-point or fixed-point data types.

56 SystemC: From The Ground Up

4.9 Exercises

For the following exercises, use the samples provided at
www.EklecticAlly.com/Book/.

Exercise 4.1: Examine, compile, and run the examples from the website,
datatypes and uni_string rep. Note that although these examples
include systemc.h, they only use data types.

Exercise 4.2: Write a program to read data from a file using the unified
string representation and store in an array of sc_uint. Output the values as
SC_DEC and SC_HEX SM.

Exercise 4.3: Write a program to generate 100,000 random values and
compute the squares of these values. Do the math using each of the
following data types: short, int, unsigned, long, sc_int<8>,
sc_uint<19>, sc_bigint<8>, sc_bigint<100>,
sc_fixed<12,12>. Be certain to generate numbers distributed over the
entire range of possibilities. Compare the run times of each data type.

Exercise 4.4: Examine, compile, and run the example addition. What
would it take to fix the problems noted? Try adding various sizes of
sc_bigint<>.

Predefined Primitive Channels: Mutexes, FIFOs, & Signals
Threads & Methods cyocelonido PR
Simulation Logic,
s Events, Sensitivity Modules & nmm
& Notifications Hierarchy
Chapter 5
MODULES
SC_MODULE

This chapter lays the foundation for SystemC models. In this chapter, we
explore how to put together a minimal SystemC program in preparation for
an exploration of time and concurrency in the later chapters. With respect to
hierarchy, this chapter only touches the very top level. Chapter 10, Structure
will discuss hierarchy in more detail.

5.1 A Starting Point: sc_main

All programs need a starting point. In C/C++, the starting point is called
main. In Verilog and VHDL, it might superficially appear that every process
starts at once. In reality, some time passes between initializing the code and
beginning the simulation. SystemC having its roots in C/C++ exposes the
starting point, and that starting point is known as sc_main.

The top level of a C/C++ program is a function named main (). Its
declaration is generally:

int main (int argc, char* argv[]) {
BODY OF PROGRAM
return EXIT CODE; // Zero indicates success

}

Figure 5-1. Syntax of C++ main()

In the figure above, argc represents the number of command-line
arguments including the program name itself. The second argument,
argv [], is an array of C-style character strings representing the command
line that invoked the program. Thus, argv [0] is the program name itself.

SystemC usurps this procedure and provides a replacement known as
sc_main (). The SystemC library provides its own definition of main (),

58 SystemC: From The Ground Up

which in turn calls sc_main () and passes along the command-line
arguments. Thus, the form of sc_main () follows:

int sc_main(int argc, char* argvl]) {
ELABORATION
sc_start(); // <-- Simulation begins & ends
// in this function!
[POST-PROCESSING]
return EXIT CODE; // Zero indicates success

}

Figure 5-2. Syntax of sc_main()

By convention, SystemC programmers simply name the file containing
sc_main (), as main.cpp to indicate to the C/C++ programmer that this is
the place where everything begins'®. The actual main () routine is located in
the SystemC library itself.

Within se¢_main (), code executes in three distinct major phases. Let us
examine these phases, which are elaboration, simulation, and post-
processing.

During elaboration, structures needed to describe the interconnections of
the system are connected. Elaboration establishes hierarchy and initializes
the data structures. Elaboration consists of creating instances of clocks,
design modules, and channels that interconnect designs. Additionally,
elaboration invokes code to register processes and perform the connections
between design modules. Within each design, additional layers of design
hierarchy are possible.

At the end of elaboration, sc_start () invokes the simulation phase.
During simulation, code representing the behavior of the model executes.
Chapter 7, Concurrency will explore this phase in detail.

Finally, after returning from sc_start (), the post-processing phase
begins. Post-processing is mostly optional. During post-processing, code
may read data created during simulation and format reports or otherwise
handle the results of simulation.

Post-processing finishes with the return of an exit status from
sc_main (). A non-zero return status indicates failure, which may be a
computed result of post-processing. A zero return should indicate success
(i.e., confirmation that the model correctly passed all tests). Many coders

14
This naming convention is not without some controversy in some programming circles;
however, most groups have accepted it and deal with the name mismatch

Modules 59

neglect this aspect and simply return zero by default. We recommend that
you explicitly confirm the model passed all tests.

We now turn our attention to the components used to create a system
model.

5.2 The Basic Unit of Design: SC_MODULE

Complex systems consist of many independently functioning
components. These components may represent hardware, software, or any
physical entity. Components may be large or small. Components often
contain hierarchies of smaller components. The smallest components
represent behaviors and state. In SystemC, we use a concept known as the
SC_MODULE to represent components.

DEFINITION: A SystemC module is the smallest container of functionality
with state, behavior, and structure for hierarchical
connectivity.

A SystemC module is simply a C++ class definition. Normally, a macro
SC_MODULE is used to declare the class:

#include <systemc.h>
SC_MODULE (module name) {
MODULE_BODY

b

Figure 5-3. Syntax of SC_MODULE

SC_MODULE is a simple cpp'> macro:

#define SC MODULE (module name) \
struct module name: public sc_module

Figure 5-4. SystemC Header Snippet of SC_MODULE as #define

15 ¢pp is the C/C++ pre-processor that handles # directives such as #define.

60

SystemC: From The Ground Up

Within this derived module class, a variety of elements make up the
MODULE BODY:

Ports

Member channel instances

Member data instances

Member module instances (sub-designs)
Constructor

Destructor

Process member functions (processes)

Helper functions

Of these, only the constructor is required; however, to have any useful
behavior, you must have either a process or a sub-design. Let us first look at
the constructor in Section 5.3, and then a simple process in Section 5.4. This
sequence lets us finish in Section 5.5 with a basic example of a minimal

design.

5.3 The SC_MODULE Class Constructor: SC_CTOR

The SC_MODULE constructor performs several tasks specific to SystemC.
These tasks include:

Initializing/allocating sub-designs (Chapter 10, Structure)

Connecting sub-designs (Chapters 10, Structure and 11,
Connectivity)

Registering processes with the SystemC kernel (Chapter 7,
Concurrency)

Providing static sensitivity (Chapter 7, Concurrency)

Miscellaneous user-defined setup

Modules 61

To simplify coding, SystemC provides a C-preprocessor (cpp) macro,
SC_CTOR (). The syntax of this macro follows:

SC_CTOR (module name)
Initialization // OPTIONAL

Subdesign Allocation
Subdesign Connectivity
Process Registration
Miscellaneous_ Setup

Figure 5-5. Syntax of SC_CTOR

Let us now examine the process, and see how it fits.
5.4 The Basic Unit of Execution: SystemC Process

The process is the basic unit of execution in SystemC. From the time the
simulator begins until simulation ends, all executing code is initiated from
one or more processes. Processes appear to execute concurrently.

DEFINITION: A SystemC process is a member function or class method of
an SC_MODULE that is invoked by the scheduler’® in the
SystemC simulation kernel.

The prototype of a process member function for SystemC is:

void PROCESS NAME (void');

Figure 5-6. Syntax of SystemC Process

A SystemC process takes no arguments and returns none. This syntax
makes it simple for the simulation kernel to invoke. There are several kinds
of processes, and we will discuss all of them eventually. For the purposes of
simplification, we will look at only one process type in this chapter'.

16 We will look closely at the scheduler in Chapter 7, Concurrency.

7 The keyword void is optional here, and it is typically left out.

18 Chapter 7, Concurrency looks at the more common process types (e.g., SC_THREAD and
SC_METHOD) in more detail, and Chapter 14 Advanced Topics finishes out the
discussion of processes with less common types (e.g., SC_CTHREAD and dynamic
processes).

62 SystemC: From The Ground Up

The easiest type of process to understand is the SystemC thread,
SC_THREAD. Conceptually, a SystemC thread is identical to a software
thread. In simple C/C++ programs, there is only one thread running for the
entire program. The SystemC kernel lets many threads execute in parallel, as
we shall learn in Chapter 7, Concurrency.

A simple SC_THREAD begins execution when the scheduler calls it and
ends when the thread exits or returns. An SC_THREAD is called only once'”,
just like a simple C/C++ program. An SC_THREAD may also suspend itself,
but we will discuss that topic in the next two chapters.

5.5 Registering the Simple Process: SC_THREAD

Once you have defined a process method, you must identify and register
it with the simulation kernel. This step allows the thread to be invoked by
the simulation kernel’s scheduler. The registration occurs within the module
class constructor, SC_CTOR, as previously indicated.

Registration of a SystemC thread is coded by using the cpp macro
SC_THREAD inside the constructor as follows:

SC_THREAD (process_name) ; //Must be INSIDE constructor

Figure 5-7. Syntax of SC_THREAD

The process name is the name of the corresponding member method
of the class. C++ lets the constructor appear before or after declaration of the
process method. Here is a complete example of an SC_THREAD defined
within a module:

//FILE: simple process _ex.h
SC_MODULE (simple process ex) {
SC_CTOR (simple process ex)
SC_THREAD (my_thread_process) ;

}

void my thread process(void) ;

b

Figure 5-8. Example of Simple SC_THREAD

' An SC_THREAD is similar to a Verilog initial block or a VHDL process that
ends with a simple wait;.

Modules 63

Traditionally, the code above is placed in a header file that has the same
name as the module and has a filename extension of . h. Thus, the preceding
example could appear inside a file named simple process ex.h.

Notice that my thread process is not implemented, but only
declared. In the manner of C++, it would be legal to implement the member
function within the class, but implementations are traditionally placed in a
separate file, the . cpp file.

It is also possible to place the implementation of the constructor in the
.cpp file, as we shall see in the next section. As an example, the
implementation for the my thread process would be found in a file
named simple process_ex.cpp, and might contain the following:

//FILE: simple process ex.cpp
void simple process ex::my thread process(void)
std::cout << "my thread process executed within "
<< name ()
<< std::endl;

Figure 5-9. Example of Simple SC THREAD Implementation

Using void inside the declaration parentheses is not required; however,
this approach clearly states the intent, and it is a legal construct of C++.

Test bench code typically uses SC_THREAD processes to accomplish a
series of tasks and finally stops the simulation. On the other hand, high-level
abstraction hardware models commonly include infinite loops. It is a
requirement that such loops explicitly hand over control to other parts of the
simulation. This topic will be discussed in Chapter 7, Concurrency.

20 Some situations in C++ using templates require the legality of this syntax.

64 SystemC: From The Ground Up
5.6 Completing the Simple Design: main.cpp
Now we complete the design with an example of the top-level file for

simple process_ex. The top-level file for a SystemC model is placed in
the traditional file, main. cpp.

//FILE: main.cpp
int sc main(int argc, char* argv[]) { // args unused
simple process_ex my_instance ("my_instance") ;
sc_start () ;
return 0; // unconditional success (not
// recommended)

Figure 5-10. Example of Simple sc_main

Notice the string name constructor argument '"'my instance' in the
preceding. The reason for this apparent duplication is to store the name of
the instance internally for use when debugging. The sc_module class
member function name () may be used to obtain the name of the current
instance.

5.7 Alternative Constructors: SC_HAS PROCESS

Before leaving this chapter on modules, we need to discuss an alternative
approach to creating constructors. The alternative approach uses a cpp macro
named SC_HAS PROCESS.

You can use this macro in two situations. First, use SC_HAS PROCESS
when you require constructors with arguments beyond just the instance name
string passed into SC_CTOR (e.g., to provide configurable modules). Second,
use SC_HAS PROCESS when you want to place the constructor into the
implementation (i.e., .cpp file).

You can use constructor arguments to specify sizes of included
memories, address ranges for decoders, FIFO depths, clock divisors, FFT
depth, and other configuration information. For instance, a memory design
might allow selection of different sizes of memories with an argument:

My memory instance("instance", 1024);

Figure 5-11. Example of SC_HAS_PROCESS Instantiation

Modules 65

To use this alternative approach, invoke SC_HAS PROCESS, and then
create conventional constructors. One caveat applies. You must construct or
initialize the module base class, sc_module, with an instance name string.
That requirement is why the SC_CTOR needed an argument. The syntax of
this style when used in the header file follows:

//FILE: module name.h
SC_MODULE (module name) {
SC_HAS PROCESS (module name) ;
module name (sc_module name instname/[, other args..])
sc_module (instname)
[, other initializers]

{

CONSTRUCTOR_BODY

Figure 5-12. Syntax of SC_HAS_PROCESS in the Header

The syntax for using SC_HAS PROCESS in a separate implementation
(i.e., separate compilation situation) is similar.

//FILE: module name.h
SC_MODULE (module name) {
SC_HAS PROCESS (module name) ;
module name (sc_module name instname[,other args..]) ;

}i

//FILE: module name.cpp
module name: :module name (
sc_module name instname[, other args..])
: sc_module (instname)
[, other initializers]

{
}

CONSTRUCTOR BODY

Figure 5-13. Syntax of SC_HAS_PROCESS Separated

In the preceding examples, the other args are optional.

66 SystemC: From The Ground Up

5.8 Two Basic Styles

We finish this chapter with two templates for coding SystemC designs.
First, we provide the more traditional style, which leans heavily on headers.
Second, our recommended style places more elements into the
implementation. Creating a C++ templated module usually precludes this
style due to C++ compiler restrictions.

Use either of these templates for your coding and you’ll do well. We’ll
visit these again in more detail in Chapter 10 when we discuss the details of
hierarchy and structure.

5.8.1 The Traditional Template

The traditional template illustrated in Figure 5-14 and Figure 5-15 places
all the instance creation and constructor definitions in header (. h) files. Only
the implementation of processes and helper functions are deferred to the
compiled (.cpp) file. Let’s remind ourselves of the basic components in
each file. First, the #ifndef/#define/#endif prevents problems when
the header file is included multiple times. Using NAME_H definition is fairly
standard. This definition is followed by file inclusions of any sub-module
header files by way of #include.

Next, the SC_MODULE({...}; surrounds the class definition. Don’t forget
the trailing semicolon, which is a fairly common error. Within the class
definition, ports are usually the first thing declared because they represent
the interface to the module. Local channels and sub-module instances come
next. We will discuss all of these later in the book.

Next, we place the class constructor, and optionally the destructor. For
many cases, the SC_CTOR () {...} macro proves quite sufficient for this. The
body of the constructor provides initializations, connectivity of sub-modules,
and registration of processes. Again, all of this will be discussed in detail in
following chapters.

The header finishes out with the declarations of processes, helper
functions and possibly other private data. Note that C++ or SystemC does
not dictate the ordering of these elements within the class declaration.

Modules 67

#ifndef NAME H
#define NAME H
#include "submodule.h"

SC_MODULE (NAME) {
Port declarations
Channel/submodule instances
SC_CTOR (NAME)
: Initializations
Connectivity
Process registrations
Process declarations
Helper declarations

#endif

Figure 5-14. Traditional Style NAME.h Template

The body of a traditional style simply includes the SystemC header file,
and the corresponding module header just described. The rest of this file
simply contains external function member implementations of the processes
and functions, which will be described in upcoming chapters. Note that it is
possible to have no implementation file if there are no processes or helper
functions in the module.

#include <systemc.h>

#include "NAME.h"

NAME: : Process {implementations }
NAME: :Helper {implementations }

Figure 5-15. Traditional Style NAME.cpp Template

68 SystemC: From The Ground Up
5.8.2 Recommended Alternate Template Form

For various reasons (discussed in Chapter 10, Structure), we recommend
a different approach that is more conducive to independent development of
modules. For now, we’ll just present the template in Figure 5-16 and Figure
5-17 and note the differences.

First, the header contains the same #define and SC_MODULE
components as the traditional style. The differences reside in how the
channel/sub-module definitions are implemented and movement of the
constructor into the implementation body. Notice that the channel/sub-
modules are implemented in a different manner (using pointers).

#ifndef NAME H
#define NAME H
Submodule forward class declarations
SC_MODULE (NAME) {
Port declarations
Channel/Submodule* definitions
// Constructor declaration:
SC_CTOR (NAME) ;
Process declarations
Helper declarations
}i

#endif

Figure 5-16. Recommended Style NAME.h Template

Modules

69

#include <systemc.h>

#include "NAME.h"

NAME: : NAME (sc_module name nm)

sc_module (nm)

, Initializations

{ Channel allocations
Submodule allocations
Connectivity
Process registrations

gAME::Process {implementations }

NAME: :Helper {implementations }

Figure 5-17. Recommended Style NAME.cpp Template

70 SystemC: From The Ground Up
5.9 Exercises

For the following exercises, use the samples provided at
www.EklecticAlly.com/Book/.

Exercise 5.1: Compile and run the simple process ex example from
the website. Add an output statement before sc_start () indicating the end
of elaboration and beginning of simulation.

Exercise 5.2: Rewrite simple process_exusing SC_HAS PROCESS.
Compile and run the code.

Exercise 5.3: Add a second SC_THREAD to simple process_ex. Be
sure the output message is unique. Compile and run.

Exercise 5.4: Add a second instantiation of simple process ex.
Compile and run.

Exercise 5.5: Write a module from scratch using what you know. The
output should count down from 3 to 1 and display the corresponding words
“Ready”, “Set”, “Go” with each count. Compile and run.

Try writing the code without using SC_MODULE. What negatives can you
think of for not using SC MODULE? [HINT: Think about EDA vendor-
supplied tools that augment SystemC.]

Predefined Primitive Channels: Mutexes, FIFOs, & Signals
Threads & Methods ‘i"“"""“r & S
Simulation Logic,
T Events, Sensitivity Modules & ..—'mg“;.t
Chapter 6 & Noiifcations Hierarchy —
A NOTION OF TIME

This chapter briefly describes the fundamental notion of time provided
by SystemC. We will defer an exploration of many of the intricacies of time
until after we discuss events in Chapter 7, Concurrency. Although the time
data type itself is simple, the underlying mechanisms are all part of the

simulation kernel also discussed in Chapter 7.

6.1 sc_time

SystemC provides the sc_time data type to measure time. Time is
expressed in two parts: a numeric magnitude and a time unit. Possible time

unit specifiers are:

sc Ssec //
scmMs //
scus //
SscC NS //
scps //
sc Fs //

seconds
milliseconds
microseconds
nanoseconds
picoseconds
femtoseconds

The time data type is declared with the following syntax:

Figure 6-1. Syntax of sc_time Units

sc_time name.., // no initialization
sc_time name (magnitude, timeunits)...;

Figure 6-2. Syntax of sc_time

72 SystemC: From The Ground Up

SystemC allows addition, subtraction, scaling, and other related
operations on sc_time objects. Simple examples include:

sc_time t PERIOD(5, SC_NS) ;

sc_time t TIMEOUT (100, SC_MS) ;

sc_time t MEASURE, t CURRENT, t LAST CLOCK;

t MEASURE = (t CURRENT-t LAST CLOCK) ;

if (t MEASURE > t HOLD) { error ("Setup violated") }

Figure 6-3. Examples of sc_time

Note the convention used to identify time variables. This convention aids
understanding of code. In addition, hard coding of constants is discouraged
because it reduces both readability and reusability. One special constant
shouldbe noted, SC_ZERO TIME, whichissimply sc_time (0, SC SEC).

6.2 sc_start()

sc_start() is a key method in SystemC. This method starts the
simulation phase, which consists of initialization and execution. Of interest
to this chapter, sc_start () takes an optional argument of type sc_time.
This syntax lets you specify a maximum simulation time. Without an
argument, sc_start () specifies that the simulation may run forever. If you
provide a time argument, simulation stops after the specified simulation time
has elapsed.

sc_start(); //sim "forever"
sc_start (max sc_time); //sim no more than max sc_time

Figure 6-4. Syntax of sc_start()

The following example, which is based on the previous chapter’s simple
process example, illustrates limiting the simulation to sixty seconds.

int sc_main(int argc, char* argvl(]) { // args unused
simple process_ex my_ instance ("my instance");
sc_start(60.0,SC SEC); // Limit sim to one minute
return 0 ;

Figure 6-5. Example of sc_start()

A Notion of Time 73

Note that internally, SystemC represents time with a 64-bit integer

(uinté64). This data type can represent a very long time but not infinite
time.

6.3 sc_time_stamp () and Time Display

SystemC’s simulation kernel keeps track of the current time and is
accessible withacalltothesc_time stamp () method.

cout << sc_time stamp() << endl;

Figure 6-6. Example of sc_time_stamp()

Additionally, the ostream operator<< has been overloaded to allow
convenient display of time.

ostream object << desired sc time object;

Figure 6-7. Syntax of ostream << overload

Here is a simple example and corresponding output:

std::cout << " The time is now "
<< sc_time stamp ()
<< "I" << gtd::endl;

Figure 6-8. Example of sc_time_stamp () and ostream << overload

The time is now 0 ns!

Figure 6-9. Output of sc_time_stamp() and ostream << overload

A more complete example follows in the next section.

74 SystemC: From The Ground Up
6.4 wait(sc_time)

It is often useful to delay a process for specified periods of time. You can
use this delay to simulate delays of real activities (e.g., mechanical actions,
chemical reaction times, or signal propagation). The wait () method
provides syntax allowing delay specifications in SC_THREAD processes.
When a wait () is invoked, the SC_THREAD process blocks itself and is
resumed by the scheduler at the specified time. We will discuss SC_THREAD
processes in further detail in the next chapter.

wait (delay sc time); // wait specified amount of time

Figure 6-10. Syntax of wait () with a Timed Delay

Here are some simple examples:

void simple process ex::my thread process (void)
wait (10,SC NS);
std::cout<< "Now at "<< sc_time stamp() << std::endl;
sc_time t DELAY(2,SC MS); // keyboard debounce time
t DELAY *= 2;
std::cout<< "Delaying "<< t DELAY<< std::endl;
wait (t DELAY) ;
std::cout << "Now at " << sc_time stamp ()
<< std: :endl;

% ./run_example
Now at 10 ns
Delaying 4 ms
Now at 4000010 ns

Figure 6-11. Example of wait()

A Notion of Time 75
6.5 sc_simulation_time(), Time Resolution and Time Units

There are times when you may want to manipulate time in a native C++
data type and shed the time units. For this purpose,
sc_simulation time () returns time as a double in the current default
time unit.

sc_simulation time()

Figure 6-12. Syntax of sc_simulation_time ()

To establish the default time unit, call
sc_set default time unit (). You must call this routine prior to all
time specifications and prior to the initiation of sc_start (). You may
precede this call by specifying the time resolution using
sc_set time resolution().

These methods have the following syntax:

//positive power of ten for resolution

sc_set time resolution(value, tunit);

//power of ten >= resolution for default time unit
sc_set default time unit(value, tunit);

Figure 6-13. Syntax to set time units and resolution

Rounding will occur if you specify a time constant within the code that
has a resolution more precise than the resolution specified by this routine.
For example, if the specified time resolution is 100 ps, then coding 20 ps
will result in an effective value of O ps.

Because the simulator has to keep enough information to represent time
to the specified resolution, the time resolution can also have an effect on
simulation performance. This result depends on the simulation kernel
implementation.

GUIDELINE: Do not specify more resolution than the design needs.

The following example uses the sc_time data type and several of the
methods discussed in this chapter. For this example, we know that the
simulation will not run for more than two hours (or 7200 seconds). The
value of t will be between 0.000 and 7200.000 since the resolution is in
milliseconds.

76 SystemC: From The Ground Up

int sc_main(int argc, char* argv([]) {// args unused
sc_set time resolution (1,SC MS) ;
sc_set default time unit(1,SC_SEC) ;
simple_ process_ex my_instance ("my instance") ;
sc_start(7200,SC SEC); // Limit simulation to 2
// hours
double t = sc_simulation time();
unsigned hours = int(t / 3600.0);
t -= 3600.0*hours;
unsigned minutes = int(t / 60.0);
t -= 60.0*minutes;
double seconds = t;
cout<< hours<< " hours "
<< minutes<< " minutes "
<< seconds<< " seconds" //to the nearest ms
<< endl;
return O ;
}

Figure 6-14. Example of sc_time Data Type

6.6 Exercises

For the following exercises, use the samples provided in
www.EklecticAlly.com/Book/.

Exercise 6.1: Examine, compile, and run the example time flies, found
on the website.

Exercise 6.2: Modify time flies to see how much time you can model
(days? months?). See how it changes with the time resolution.

Exercise 6.3: Copy the basic structure of time flies and model one
cylinder of a simple combustion engine. Modify the body of the thread
function to represent physical actions using simple delays. Use std: : cout
statements to indicate progress.

Suggested activities include opening the intake, adding fuel and air, closing
the intake, compressing gas, applying voltage to the spark plug, igniting fuel,
expanding gas, opening the exhaust valves, closing the exhaust valves. Use
delays representative of 800 RPM. Use time variables with appropriate
names. Compile and run.

Predefined Primitive Channels: Mutexes, FIFOs, & Signals
Channels &
Threads & Methods Interfaces Data types:
Simulation e Logic,
Kemel | Integers,
Events, Sensitivity Modules & | Fixed point |
Chapter 7 & Notifications Hierarchy

CONCURRENCY

Processes & Events

Many activities in a real system occur at the same time or concurrently.
For example, when simulating something like a traffic pattern with multiple
cars, the goal is to model the vehicles independently. In other words, the cars
operate in parallel.

Software typically executes using a single thread of activity, because
there is usually only one processor on which to run, and partly because it is
much easier to manage. On the other hand, in real systems many things
occur simultaneously. For example, when an automobile executes a left turn,
it is likely that the left turn indicator is flashing, the brakes are engaged to
slow down the vehicle, engine power is decreased as the driver lets off the
accelerator, and the transmission is shifting to a lower gear. All of these
activities can occur at the same instant.

SystemC uses processes to model concurrency. As =0 — =G
with most event-driven simulators, concurrency is not
true concurrent execution. In fact, simulated 56%5
concurrency works like cooperative multi-tasking. In
other words, the concurrency is not pre-emptive. Each process in the

simulator executes a small chunk of code, and then voluntarily releases
control to let other processes execute in the same simulated time space.

As with any simulator, understanding how the simulator handles
concurrency enables the designer to use the simulation kernel more
effectively and write more efficient models. This understanding will also
help avoid many traps.

The simulator kernel is responsible for starting processes and managing
which process executes next. Due to the cooperative nature of the simulator
model, processes are responsible for suspending themselves to allow
execution of other concurrent processes.

78 SystemC: From The Ground Up

SystemC presently provides two major process types, SC_THREAD
processes and SC_METHOD processes. A third type, the SC_CTHREAD, is a
minor variation on the SC_THREAD process that we will discuss separately as
an advanced topic in Chapter 14.

7.1 sc_event

Before we can discuss how processes work in the simulator, it is
necessary to discuss events. Events are key to an event-driven simulator like
the SystemC simulation kernel.

An event is something that happens at a specific point in time. An event
has no value and no duration. SystemC uses the sc_event class to model
events. This class allows explicit launching or triggering of events by means
of a notification method.

DEFINITION: A SystemC event is the occurrence of an sc_event
notification and happens at a single point in time. An event
has no duration or value.

Once an event occurs, there is no trace of its occurrence other than the
side effects that may be observed as a result of processes that were sensitive
to or waiting for the event. The following diagram illustrates an event e _rdy
“firing” at three different points. Note that unlike a waveform, events have
no time width.

Event
Timeline

e_rdy%

to 4 t 13
Figure 7-1. Graphical Representation of an Event

Because events have no duration, you must be watching to catch them.
Quite a few coding errors are due to not understanding this simple rule. Let’s
restate it.

RULE: To observe an event, the observer must be watching for the
event.

SystemC lets processes wait for an event by using a dynamic or static
sensitivity that we will discuss shortly. If an event occurs, and no processes
are waiting to catch it, the event goes unnoticed. The syntax to declare a
named event is simple:

Concurrency 79

sc_event event name; [, event name;]...;

Figure 7-2. Syntax of sc_event

Remember that sc_events have no value, and you can perform only two
actions with an sc_event: wait for it or cause it to occur. We will discuss
details in the next sections.

7.2 Simplified Simulation Engine

Before proceeding, we need to understand how event-driven simulation
works. The following simplified*' flow diagram illustrates the operation of
the SystemC simulation kernel.

sc_main () SystemC Simulation Kernel

Execute code possibly

ssuing events or f While =
Elaborate updates. Either suspend processes <patify()
waiting or exit entirely. Ready immediate

Advance

sc_start() — 3 nitislize —> Evaluate bl

Cleanup l .notify (SC_ZERO_TIME) .notify (t)
delayed timed

Figure 7-3. Simplified Simulation Engine

First, elaboration occurs as previously discussed in Chapter 5, Modules.
During elaboration, SystemC modules are constructed and various
simulation parameters are established. This elaboration phase is followed by
acallto sc_start (), which invokes the simulation kernel. This call begins
the initialization phase. Processes (e.g., SC_THREAD processes) defined
during elaboration need to be started. During the initialization phase, all**
processes are placed initially into a ready pool.

DEFINITION: A process is ready whenever it is available to be executed.

! We discuss the remaining details in Chapter 9, Evaluate-Update Channels.
2 Actually most, but we will discuss this in a later section of this chapter.

80 SystemC: From The Ground Up

We sometimes say that processes are placed into the pool of processes
ready to execute. The following diagram depicts process and event pools.

Ready Running Waiting Events

prannnnun
“

Figure 7-4 Process and Event Pools

Simulation then proceeds into the evaluation phase. One by one
processes are randomly® taken from the ready pool by designating them as
running and invoked. Each process executes until it either completes (e.g.,
viaa return) or suspends (e.g., callswait ()).

During execution, a process may invoke immediate event notification
(i.e., event.notify ()) and possibly cause one or more waiting processes
to be placed in the ready state. It is also possible to generate delayed or
timed event notifications as indicated by E1-E4 in the preceding figure.
Completed processes are discarded. Suspended processes are placed into a
waiting pool. Simulation proceeds until there are no more processes ready to
run.

DEFINITION: SystemC enters the waiting state whenever it encounters an
explicitwait (), orin some cases performs a return.

At this point, execution exits the evaluate bubble at the bottom of Figure
7-3 with one of three possibilities: waiting processes or events that are zero
time delayed, non-zero time delayed, or neither.

First, there may be processes or events (to be discussed shortly) waiting
foran SC_ZERO_TIME delay (.notify(0)). This delay is known as a delta-
cycle delay. In this case, waiting pool processes with zero time delays are
placed back into the ready pool. Zero time events originating from delayed
notifications may cause processes waiting on those events to also be placed
into the ready pool. Another round of evaluation occurs if any processes
have been moved into the ready pool.

2 Although not truly random, the SystemC specification allows that different
implementations may choose any ordering as is convenient for simulation.

Concurrency 81

Second, there may be processes or events, scheduled for later, waiting for
a non-zero time delay to occur. In this case, time is advanced to the nearest
time indicated. Processes waiting on that specific delay will be placed into
the ready pool. If an event occurs at this new time, processes waiting on that
event are placed into the ready pool. Another round of evaluation occurs if
any processes have been moved into the ready pool.

Third, it is possible that there were no delayed processes or events. Since
there are no processes in the ready pool, then the simulation simply ends by
returning to sc_main and finishing cleanup. It is not possible to successfully
re-enter sc_start in the current definition of SystemC.

7.3 SC_THREAD

SC_THREAD processes are started once and only once by the simulator.
Once a thread starts to execute, it is in complete control of the simulation
until it chooses to return control to the simulator.

SystemC offers two ways to pass control back to the simulator. One way
is to simply exit (e.g., return), which has the effect of terminating the
thread for the rest of the simulation. When an SC_THREAD process exits, it is
gone forever, therefore SC_THREADs typically contain an infinite loop
containing at least one wait.

The other way to return control to the simulator is to invoke the module
wait method. The wait suspends the SC_THREAD process.

Sometimes wait is invoked indirectly. For instance, a blocking read or
write of the sc_fifo invokes wait when the FIFO is empty or full,
respectively. In this case, the SC_THREAD process suspends similarly to
invoking wait directly.

74 Dynamic Sensitivity for SC_THREAD::wait()

As indicated previously, SC_THREAD processes rely on the wait method
to suspend their execution. The wait method supplied by the sc_module
class has several syntaxes as indicated below. When wait executes, the state
of the current thread is saved, the simulation kernel is put in control and
proceeds to activate another ready process. When the suspended process is

82 SystemC: From The Ground Up

reactivated, the scheduler restores the calling context of the original thread,
and the process resumes execution at the statement after the wait.”

wait (time) ;

wait (event) ;

wait (event; | event,.); // any of these

wait (event; & event,.); // all of these

wait (timeout, event); // event with timeout

wait (timeout, event; | event,.); //any event with
// timeout

wait (timeout, event; & event,.); //all events with
// timeout

wait(); // static sensitivity

Figure 7-5. Syntax of SC_THREAD wait()

We have already described the first syntax in Chapter 6, A Notion of
Time; this syntax provides a delay for a specified period. The next several
forms specify events and suspend execution until one or all the events have
occurred. The operator | is defined to mean any of these events; whichever
one happens first will cause a return to wait. The operator & is defined to
mean all of these events in any order must occur before wait returns. The
last syntax, wait (), will be deferred to a joint discussion with static
sensitivity later in this chapter.

Use of a timeout is handy when testing protocols and various error
conditions. When using a timeout syntax, the Boolean function
timed out () may be called immediately after the wait to determine
whether a time out caused execution to resume.

sc_event ack event, bus error event;

wait (t MAX DELAY, ack event | bus error event);
if (timed out()) break; // path for a time out

Figure 7-6. Example of timed_out() and wait()

2% This magic is handled by the SystemC library’s scheduler. A detailed description of how
context switches are managed goes beyond the scope of this book.

Concurrency 83

Notice when multiple events are or’ed, it is not possible to know which
event occurred in a multiple event wait situation as events have no value
(Section 7.1). Thus, it is illegal to test an event for true or false.

if (ack _event) do something; // syntax error!

Figure 7-7. Example of Illegal Boolean Compare of sc_event()

It is ok to test a Boolean that is set by the process that caused an event;
however, it is problematic to clear it properly. We now need to learn how to
generate event occurrences.

7.5 Another Look at Concurrency and Time

Let’s take a look at a hypothetical example to better understand how time
and execution interact. Consider a design with four processes as illustrated in
Figure 7-8. For this discussion, assume the times, ti, t3, and t3 are non-zero.
Each process contains lines of code or statements (stmtya;, stmtyy, ...) and
executions of wait methods (wait (tl),wait (t2),...)

Process_A() { Process B() { Process_C() { Process_D() {
/18 t, /7R t, /@ £, /7@
stmt,,; stmty,; stmt.,; stmty, ;
stmt,,; stmtg,; stmt,; stmt,,;
wait(t,); wait(t,); wait(t,); wait(t,);
stmt,,; Stmty,; stmtg,; stmty,;
stmt,,; stmty,; stmt,; wait (
wait(t,);a wait(t,); wait(t,); SC_ZERO_TIME) ;
stmt,g; stmtg,; stmtgg; stmt,,;
stmt,.; stmty.; stmt,,; wait(t,):
wait (t,); wait (t,); wait (t,); }

} 1 }

Figure 7-8. Four Processes

Notice that Process D skips ta. At first glance, it might be perceived
that time passes as shown below. The uninterrupted solid and hatched line
portions indicate program activity. Vertical discontinuities indicate a wait.

84 SystemC: From The Ground Up

Process_A
Process B
Process C

Process D

= £ t; ts
Figure 7-9. Simulated Activity—Perceived

Each process’ statements take some time and are evenly distributed along
simulation time. Perhaps surprisingly that is not how it works at all. In fact,
actual simulated activity is shown in the next figure.

Al; RA2; AS5; R6;
Process A L A3; RA4; . L
Bl; B2; g B5; B6;
Process B k B3;B4; ke L
" " .Cl; Cc2; C3: cd: .CS; C6H;
rocess_| . "
D1; D2;
D3; D4;
Process D f# : [
>
to t; t2 ts

Figure 7-10. Simulated Activity—Actual

Each set of statements executes in zero time! Let’s expand the time scale
to expose the simulator’s time as well. This expansion exposes the operation
of the scheduler at work.

Concurrency 85

No simulated
F/% time elapses
£t) t B

Process A

Process B

C3;C4;
Process C

Process D

Y

55 i 5 o

Figure 7-11. Simulated Activity with Simulator Time Expanded

Notice that the ordering of processes appears quite non-deterministic in
this example. This non-determinism is specified by the SystemC standard.
Now for any given simulator and set of code, there is also a requirement that
the simulation be deterministic in the sense that one may rerun the
simulation and obtain the same results.

All of the executed statements in this example execute during the same
evaluate phase of a delta cycle. If any of the statements had been a delayed
notification, then multiple delta cycles may have occurred during the same
instant in time.

As a final consideration, the previous diagrams would be equally valid
with any or all of the indicated times t, t, or t3 as zero (ie.,
SC_ZERO _TIME). Once you grasp these fundamental concepts,
understanding SystemC behaviors will become much easier.

86 SystemC: From The Ground Up
7.6 Triggering Events: .notify()
Events occur explicitly by using the notify () method. This method has

two syntax styles. The authors prefer the object-oriented style to the
function-call style.

// Object-oriented style (preferred)
event name.notify(); //immediate notification
event name.notify (SC_ZERO TIME) ; // delayed

// notification
event name.notify(time); //timed notification

// Functional-call style
notify (event name); //immediate notification
notify (event name, SC _ZERO TIME) ; // delayed

// notification
notify (event name, time); //timed notification

Figure 7-12. Syntax of notify()

Invoking an immediate notify () causes any processes waiting for the
event to be immediately moved from the wait pool into the ready pool for
execution.

Delayed notification occurs when a time of zero is specified. Processes
waiting for a delayed notification will execute only after all waiting
processes have executed or in other words executes on the next delta-cycle
(after an update phase). This is quite useful as we shall see shortly. There is
an alternate syntax of .notify delayed (), but this syntax may be
deprecated since it is redundant.

Timed notification would appear to be the easiest to understand. Timed
events are scheduled to occur at some time in the future.

One confounding aspect of timed events, which includes delayed events,
concerns multiple notifications. An sc_event may have no more than a
single outstanding scheduled event, and only the nearest time notification is
allowed. If a nearer notification is scheduled, the previous outstanding
scheduled event is canceled.

In fact, scheduled events may be canceled with the .cancel () method.
Note that immediate events cannot be canceled because they happen at the
precise moment they are notified (i.e., immediately).

Concurrency 87

event name.cancel () ;

Figure 7-13. Syntax of cancel() Method

The best way to understand events is by way of examples. Notice in the
following example that all of the notifys execute at the same instant in
time.

sc_event action;

sc_time now(sc_time stamp()); //observe current time
//immediately cause action to fire

action.notify () ;

//schedule new action for 20 ms from now
action.notify (20, SC MS);

//reschedule action for 1.5 ns from now
action.notify(1.5,SC _NS) ;

//useless, redundant

action.notify (1.5, SC NS);

//useless preempted by event at 1.5 ns
action.notify(3.0,SC _NS);

//reschedule action for next delta cycle
action.notify(SC_ZERO_TIME) ;

//useless, preempted by action event at SC_ZERO TIME
action.notify (1, SC SEC);

//cancel action entirely

action.cancel () ;

//schedule new action for 1 femtosecond from now
action.notify(20,8C _FS);

Figure 7-14. Example of sc_event notify() and cancel() Methods

To illustrate the use of events, let’s consider how one might model the
interaction between switches on a steering wheel column and the remotely-
located signal indicators (lamps). The following example models a
mechanism that detects switching activity and notifies the appropriate
indicator. For simplicity, only the stoplight interaction is modeled here.

In this model, the process turn knob thread provides a stimulus and
interacts with the process stop signal thread. The idea is to have
several threads representing different signal indicators, and
turn_knob thread directs each indicator to turn on or off via the

88 SystemC: From The Ground Up

signal stop and signals off events. The indicators provide their
Status via the stop indicator onand stop indicator off events.

turn knob thread 4

> stop signal thread

Figure 7-15. Turn of Events Illustration

//FILE: turn_of events.h
SC_MODULE (turn of events) {
// Constructor
SC_CTOR (turn_of events) {
SC_THREAD (turn knob thread) ;
SC_THREAD (stop_signal thread) ;
}
sc_event signal stop, signals off;
sc_event stop indicator on, stop_indicator off;
void turn_knob_thread(); // stimulus process
void stop signal thread(); // indicator process
}i//endclass turn of events

Figure 7-16. Example of turn_of_events Header

An interesting aspect of the implementation shown in the following
figure is consideration of process ordering effects. Recall the rule that “To
see an event, a process must be waiting for it.” It is because of this
requirement that the turn_knob thread implementation starts out with
wait (SC_ZERO_TIME). Without that pause, if turn knob thread runs
first, then the stop signal thread will never see any events because it
will not have executed the first wait (). As a result, the simulation would
starve and exit.

Similarly, consider what would happen if the signals off event were
issued before signal stop. If an unconditional wait for acknowledgement

Concurrency 89

occurred, the simulation would exit. It would exit because the
turn_knob_ thread would be waiting on an event that never occurs
because the stop signal thread was not in a position to issue that
event.

//FILE: turn_of events.cpp
void turn of events::turn knob thread() {
// This process provides stimulus using stdin
enum directions {STOP="S", OFF="F"};
char direction; // Selects appropriate indicator
bool did stop = false;
// allow other threads to get into waiting state
wait (SC_ZERO TIME) ;
for(;;) {
// Sit in an infinite loop awaiting keyboard
// or STDIN input to drive the stimulus..
std::cout << "Signal command: ";
std::cin >> direction;
switch (direction) ({
case STOP:
// Make sure the other signals are off
signals off.notify () ;
signal stop.notify(); // Turn stop light on
// Wait for acknowledgement of indicator
wait (stop indicator on) ;
did stop = true;
break;
case OFF:
// Make the other signals are off
signals off.notify() ;
if (did_stop) wait(stop indicator off) ;
did stop = false;
break;
} //endswitch
}//endforever
}//end turn knob thread ()

Figure 7-17. Example of Turn of Events Stimulus

90 SystemC: From The Ground Up

void turn of events:: stop signal thread() ({
for(;;) {
wait (signal stop) ;
std: :cout << "STOPPING P << std: :endl;
stop_indicator on.notify () ;
wait (signals off) ;
std::cout << "Stop off @« @ ------ " << std::endl;
stop indicator off.notify () ;
}//endforever
}//end stop signal thread()

Figure 7-18. Example of Turn of Events Indicator

The preceding example, turn_of events, models two processes with
SystemC threads. The turn_knob thread takes input from the keyboard
and notifies the stop signal thread. Sample output might look as
follows (user input highlighted):

)

% ./turn of events.x
Signal command: S
STOPPING !!!!111]
Signal command: F
Stop off ------

Figure 7-19. Example of Turn of Events Output

7.7 SC_METHOD

As mentioned earlier, SystemC has more than one type of process. The
SC_METHOD process is in some ways simpler than the SC_THREAD; however,
this simplicity makes it more difficult to use for some modeling styles. To its
credit, SC_METHOD is more efficient than SC_THREAD.

What is different about an SC_METHOD? One major difference is
invocation. SC_METHOD processes never suspend internally (i.e., they can
never invoke wait ()). Instead, SC_METHOD processes run completely and
return. The simulation engine calls them repeatedly based on the dynamic or
static sensitivity. We will discuss both shortly.

Concurrency 91

In some sense, SC_METHOD processes are similar to the Verilog always@
block or the VHDL process. By contrast, if an SC_THREAD terminates, it
never runs again in the current simulation.

Because SC _METHOD processes are prohibited from suspending
internally, they may not call the wait method. Attempting to call wait
either directly or implied from an SC_METHOD results in a runtime error.

Implied waits result from calling SystemC built-in methods that are
defined such that they may issue a wait. These are known as blocking
methods. The read and write methods of the sc_fifo data type,
discussed later in this book, are examples of blocking methods. Thus,
SC_METHOD processes must avoid using calls to blocking methods.

The syntax for SC_METHOD processes follows and is almost identical to
SC_THREAD except for the keyword SC_METHOD:

SC_METHOD (process_name) ;//Located INSIDE constructor

Figure 7-20. Syntax of SC_METHOD

A note on the choice of these keywords might be useful. The similarity of
name between an SC_METHOD process and a regular object-oriented method
betrays its name. It executes without interruption and returns to the caller
(the scheduler). By contrast, an SC_THREAD process is more akin to a
separate operating system thread with the possibility of being interrupted and
resumed.

Variables allocated in SC_THREAD processes are persistent. SC_METHOD
processes must declare and initialize variables each time the method is
invoked. For this reason, SC_METHOD processes typically rely on module
local data members declared within the SC_MODULE. SC_THREAD processes
tend to use locally declared variables.

GUIDELINE: To differentiate threads from methods, we strongly
recommend adopting a naming style. One naming style
appends _thread or method as appropriate. Being able to
differentiate processes based on names becomes useful
during debug.

92 SystemC: From The Ground Up
7.8 Dynamic Sensitivity for SC_METHOD: next_trigger()
SC_METHOD processes dynamically specify their sensitivity by means of

the next trigger () method. This method has the same syntax as the
wait () method but with a slightly different behavior.

next trigger (time);
next trigger (event) ;
next trigger (event; | event;.); //any of these
next trigger (event; & event,.) ; //all of these

//required
next trigger (timeout, event); //event with timeout
next trigger(timeout, event; | event;.) ; //any + timeout

timeout, event; & event;.); //all + timeout
) ; //re-establish static sensitivity

next trigger
next trigger

—~ e~ -

Figure 7-21. Syntax of SC_METHOD next_trigger()

As with wait, the multiple event syntaxes do not specify order. Thus,
with next trigger (evtl & evt2), it is not possible to know which
occurred first. It is only possible to assert that both evtl and evt2
happened.

The wait method suspends SC_THREAD processes; however,
SC_METHOD processes are not allowed to suspend. The next trigger
method has the effect of temporarily setting a sensitivity list that affects the
SC_METHOD. next trigger may be called repeatedly, and each invocation
encountered overrides the previous. The last next trigger executed
before a return from the process determines the sensitivity for a recall of the
process. The initialization call is vital to making this work. See the
next trigger code in the downloads section of the website for an
example.

You should note that it is critical for EVERY path through an
SC_METHOD to specify at least one next trigger for the process to be
called by the scheduler. Without a next trigger or static sensitivity
(discussed in the next section), an SC_METHOD will never be executed again.
A safeguard can be adopted of placing a default next trigger as the first
statement of the SC_METHOD, since subsequent next triggers will
overwrite any previous. A better way to manage this problem exists as we
will now discuss.

Concurrency 93
7.9 Static Sensitivity for Processes

Thus far, we’ve discussed techniques of dynamically (i.e., during
simulation) specifying how a process will resume (either by SC_THREAD
using wait or by SC_METHOD using next trigger). SystemC provides
another type of sensitivity for processes called static sensitivity. Static
sensitivity establishes the parameters for resuming during elaboration (i.e.,
before simulation begins). Once established, static sensitivity parameters
cannot be changed (i.e. they’re static). It is possible to override static
sensitivity as we’ll see.

Static sensitivity is established with a call to the sensitive () method
or the overloaded stream operator<< that is placed just following the
registration of a process. Static sensitivity applies only to the most recent
process registration. sensitive may be specified repeatedly. There are two
syntax styles:

// IMPORTANT: Must follow process registration
sensitive << event [<< event]..;// streaming style
sensitive (event [, event]..); // functional style

Figure 7-22. Syntax of sensitive

We prefer the streaming style as it feels more object-oriented, reduces
typing, and keeps us focused on C++.

For the next few sections, we will examine the problem of modeling
access to a gas station to illustrate the use of sensitivity coupled with events.
Initially, we model a single pump station with an attendant and only two
customers. The declarations for this example in Figure 7-24 illustrate the use
of the sensitive method.

94 SystemC: From The Ground Up

Early Gas Station

%,

W

Customer #1 \‘{o:,
HFf}'."e u
R

“Please, fill ?
the tank”

Pump
Customer #2 Attendant

Figure 7-23. Initial Gas Station [llustration

SC_MODULE (gas_station) {
sc_event e _requestl, e_request2;
sc_event e tank filled;
SC_CTOR (gas_station) ({
SC_THREAD (customerl_thread) ;
sensitive (e tank filled); // functional
// notation
SC_METHOD (attendant method) ;
sensitive << e_requestl
<< e _request2; // streaming notation
SC_THREAD (customer2_ thread) ;
Joid attendant _method() ;
void customerl thread();
void customer2 thread();

}i

Figure 7-24. Example of Gas Station Declarations

The gas_station module has two processes with different sensitivity
lists and one, customer2_ thread, which has none. The
attendant method implicitly executes every time an e _requestl or

e request2 event occurs (unless dynamic sensitivity is invoked by the
simulation process).

Concurrency 95

Notice the indentation used in Figure 7-24. This format helps draw
attention to the sensitivity being associated with only the most recent process

registration.
Here are some fragments of the implementation code focused on the
elements of this chapter. You can find the full code in the downloads section

of the website.

void gas_station:: customerl thread() {

for (;;) {
wait(EMPTY_TIME) ;
cout << "Customerl needs gas" << endl;

do {
e requestl.notify () ;
wait(); // use static sensitivity

} while (m_tankl == 0) ;
} //endforever
}//end customerl thread()

// omitting customer2 thread (almost identical

// except using wait(e request2) ;)

void gas_station:: attendant method() {
if (Im filling) {

cout << "Filling tank" << endl;

m filling = true;
next trigger (FILL TIME) ;

} ei;e {

e_filled.notify (SC_ZERO_TIME) ;
cout << "Filled tank" << endl;

m _filling = false;

}//endif
}//end attendant method ()

Figure 7-25. Example of Gas Station Implementation

96 SystemC: From The Ground Up

The preceding code produces the following output:

Customerl needs gas
Filling tank
Filled tank

Figure 7-26. Example of Gas Station Sample Output

7.10 dont_initialize

The simulation engine description specifies that all processes are
executed initially. This approach makes no sense in the preceding
gas_station model as the attendant method would fill the tank before
being requested.

Thus, it becomes necessary to specify some processes that are not
initialized. For this situation, SystemC provides the dont initialize
method. The syntax follows:

// IMPORTANT: Must follow process registration
dont initialize () ;

Figure 7-27. Syntax of dont_initialize()

Note that the use of dont initialize requires a static sensitivity list;
otherwise, there would be nothing to start the process. Now our
gas_station module contains:

SC_METHOD (attendant_method) ;
sensitive (fillup request) ;
dont_initialize () ;

Figure 7-28. Example of dont_initialize()

Concurrency 97
7.11 sc_event_queue

In light of the limitation that sc_events may only have a single
outstanding schedule, sc_event queues have been added in SystemC
version 2.1. These additions let a single event be scheduled multiple times
even for the same time! When events are scheduled for the same time, each
happens in a separate delta cycle.

sc_event queue event_ name, ("event name;")..;

Figure 7-29. Syntax of sc_event_queue

sc_event queue is slightly different from sc_event.
First, sc_event queue objects do not support immediate notification since
there is obviously no need to queue these. Second, the .cancel () method
is replaced with .cancel all() to emphasize that it cancels all
outstanding sc_event queue notifications.

sc_event queue action;

sc_time now(sc_time stamp()); //observe current time

action.notify (20, SC MS);//schedule for 20 ms from now

action.notify (1.5,SC NS);//another for 1.5 ns from
//now

action.notify(1.5,8C N8);//another identical action

action.notify(3.0,SC NS);//another for 3.0 ns from

/ /now

action.notify(SC_ZERO TIME) ;//for next delta cycle

action.notify(1,SC SEC);//for 1 sec from now

action.cancel all(); // cancel all actions entirely

Figure 7-30. Example of sc_event_queue

The .cancel () method is not currently implemented; although, an
obvious extension might be to allow canceling notifications at specific times.
Another extension might be obtaining information on how many outstanding
notifications exist (.pending()).

98
7.12 Exercises
For the following exercises,

www.EklecticAlly.com/Book/.

Exercise 7.1: Examine, predict the
turn of events example.

Exercise 7.2: Examine, predict the
gas_station example.

Exercise 7.3: Examine, predict the
method_delay example.

Exercise 7.4: Examine, predict the
next trigger example.

SystemC: From The Ground Up

use the

behavior,

behavior,

behavior,

behavior,

samples

compile,

compile,

compile,

compile,

provided

and run

and run

and run

and run

in

the

the

the

the

Exercise 7.5: Examine, predict the behavior, compile, and run the
event filled example. If using SystemC version 2.1, compile the
simulation a second time with the macro SYSTEMC21 defined (-
DSYSTEMC21 command-line option for gcc).

Predefined Primitive Channels: Mutexes, FIFOs, & Signals
| Msssavaoss | et | g
Simulati L . o
Kemel Events, Sensitivity Modules & it émm
Chapter 8 . &Notffications | Hierarchy |
BASIC CHANNELS

Thus far, we have communicated information between concurrent
processes using events and using ordinary module member data. Because
there are no guarantees about which processes execute next from the ready
state, we must be extremely careful when sharing data.

Events let us manage this aspect of SystemC, but they require careful
coding. Because events may be missed, it is important to update a handshake
variable indicating when a request is made, and clear it when the request is
acknowledged.

Data Communication

Request
Fill-up

Fill Tank
Figure 8-1. Gas Station Processes and Events

Let’s consider the gas station example again as illustrated in Figure 8-1.
The customer notices an empty tank ®. The attendant has to be watching
when the customer requests a fill-up @, and make note of it if in the middle
of filling up another customer @. More to the point, if the attendant waits on
either customer’s request (i.e., wait(e requestl|e request2)), the
semantics of sc_event doesn’t allow the attendant to know which customer

100 SystemC: From The Ground Up

made the request after the event happens. That is why the gas_station
model uses the status of the gas tank as an indicator to choose whether to fill
the tank. Similarly, the customer must watch to see if the tank actually was
filled when the attendant yells done @.

SystemC has built-in mechanisms, known as channels, to reduce the
tedium of these chores, aid communications, and encapsulate complex
communications. SystemC has two types of channels: primitive and
hierarchical. This chapter concerns itself with primitive channels.
Hierarchical channels are the subject matter of Chapter 13, Custom
Channels.

8.1 Primitive Channels

SystemC’s primitive channels are known as primitive because they
contain no hierarchy, no processes, and are designed to be very fast due to
their simplicity. All primitive channels inherit from the base class
sc_prim channel.

SystemC contains several built-in primitive channels. We will discuss
channels exhibiting evaluate-update behavior in Chapter 9, Evaluate-Update
Channels. In Chapter 13, Custom Channels, we will discuss custom
primitive channels as an advanced topic. This chapter focuses on the
simplest channels, sc_mutex, sc_semaphore, and sc_fifo.

8.2 sc_mutex

Mutex is short for mutual exclusion object. In computer programming, a
mutex is a program object that lets multiple program threads share a
common resource, such as file access, without colliding.

During elaboration, a mutex is created with a unique name; subsequently,
any process that needs the resource must lock the mutex to prevent other
processes from using the shared resource. The process should unlock the
mutex when the resource is no longer needed. If another process attempts to
access a locked mutex, that process is prevented until the mutex becomes
available (unlocked).

SystemC provides mutex via the sc_mutex channel. This class contains
several access methods including both blocked and unblocked styles.
Remember blocking methods can only be used in SC_THREAD processes.

Basic Channels 101

sc_mutex NAME;

// To lock the mutex NAME (wait until
// unlocked if in use)
NAME. lock () ;

// Non-blocking, returns true if success, else false
NAME . trylock ()

// To free a previously locked mutex
NAME .unlock () ;

Figure 8-2. Syntax of sc_mutex

The example of the gas station attendant is a good example of a resource
that needs to be shared. Only one car at a time is filled, assuming there is
only a single gas pump.

Another example of a resource requiring a mutex would be the controls
of an automobile. Only one driver at a time can sit in the driver’s seat. In a
simulation modeling the interaction of drivers across town with a variety of
vehicles, this might be interesting to model.

sc_mutex drivers seat;

car->drivers_seat.lock(); // sim driver acquiring
// driver's seat
car->start () ;
.. // operate vehicle
car->stop () ;
car->drivers_seat.unlock(); // sim driver leaving
// vehicle

Figure 8-3. Example of sc_mutex

An electronic design application of a sc_mutex might be arbitration for
a shared bus. Here the ability of multiple masters to access the bus must be
controlled. In lieu of an arbiter design, the sc_mutex might be used to
manage the bus resource quickly until an arbiter can be arranged or
designed.

102 SystemC: From The Ground Up

In fact, the mutex might even he part of the class implementing the bus
model as illustrated in the following example:

class bus
sc_mutex bus_access;

void write(int addr, int data) {
bus _access.lock() ;
// perform write
bus access.unlock() ;

}

};//endclass

Figure 8-4. Example of sc_mutex Used in Bus Class

Used with an SC_METHOD process, access might look like this:

void grab bus method () {
if (bus_access.trylock()) {
/* access bus */
}//endif

Figure 8-5. Example of sc_mutex with an sc_method

One downside to the sc_mutex is the lack of an event that signals when
an sc_mutex is freed, which requires using trylock repeatedly based on
some other event or time based delay. Remember, unless your process waits
(via a wait or return), you will not allow the process that currently owns
the resource to free the resource, and the simulation will hang.

8.3 sc_semaphore

For some resources, you can have more than one copy or owner. A good
example of this would be parking spaces in a parking lot.

To manage this type of resource, SystemC provides the sc_semaphore.
When creating an sc_semphore object, it is necessary to specify how many
are available. In a sense, a mutex is merely a semaphore with a count of one.

Basic Channels 103

An sc_semaphore access consists of waiting for an available resource and
then posting notice when finished with the resource.

sc_semaphore NAME (COUNT) ;

//To lock a mutex, NAME (wait until
// unlocked if in use)
NAME .wait () ;

// Non-blocking, returns true if success else false
NAME. trywait ()

//Returns number of available semaphores
NAME.get value()

//To free a previously locked mutex
NAME .post () ;

Figure 8-6. Syntax of sc_semaphore

It is important to realize that the sc_semaphore::wait () is a
distinctly different method from the wait () method previously discussed in
conjunction with SC_THREADs. In fact, under the hood, the
sc_semaphore: :wait () is implemented with the wait (event).

A modern gas station with self-service would be a good example for
using semaphores. A semaphore could represent the number of available gas

pumps.

SC_MODULE (gas_station)
sc_semaphore pump (12) ;
void customerl thread {
for (;;)
// wait till tank empty

// find an available gas pump
pump.wait () ;
// £ill tank & pay

Figure 8-7. Example of sc_semaphore—gas_station

104 SystemC: From The Ground Up

A multi-port memory model is a good example of an electronic system-
level design application for sc_semaphore. You might use the semaphore
to indicate the number of read or write accesses allowed.

class multiport RAM {
sc_semaphore read ports(3);
sc_semaphore write ports(2);

void read (int addr, int& data) {
read_ports.wait () ;
// perform read
read_ports.post () ;

}

void write (int addr, int data) (
write ports.lock() ;
// perform write
write ports.unlock() ;

}

}; //endclass

Figure 8-8. Example of sc_semaphore—multiport_ RAM

Other examples might include allocation of timeslots in a TDM (time
division multiplex) scheme used in telephony, controlling tokens in a token
ring, or perhaps even switching information to obtain better power
management.

8.4 sc_fifo

Probably the most popular channel for modeling at the architectural level
is the sc_fifo. First-in first-out queues (i.e., FIFOs) are a common data
structure used to manage data flow. FIFOs are some of the simplest
structures to manage.

In the very early stages of architectural design, the unbounded” STL
deque<> (double ended queue) provides an easy implementation of a FIFO.
Later, when bounds are determined or reasonable guesses at FIFO depths
and SystemC elements come into stronger play, the sc_fifo<> may be
used.

% Limited only by the resources of the simulation machine itself.

Basic Channels 105

By default, an sc_fifo<> has a depth of 16. The data type (i.e.,
typename) of the elements also needs to be specified. An sc_fifo may
contain any data type including large and complex structures (e.g., a TCP/IP
packet or a disk block).

sc_fifo<ELEMENT TYPENAME> NAME (SIZE);

NAME .write (VALUE) ;

NAME .read (REFERENCE) ;

.= NAME.read () /* function style */

if (NAME.nb read (REFERENCE)) { // Non-blocking
// true if success

}

if (NAME.num available() == 0)
wait (NAME.data written event()) ;
if (NAME.num free() == 0)

next trigger (NAME.data read event());

Figure 8-9. Syntax of sc_fifo—Abbreviated

For example, FIFOs may be used to buffer data between an image
processor and a bus, or a communications system might use FIFOs to buffer
information packets as they traverse a network.

Some architectural models are based on Kahn process networks” for
which unbounded FIFOs provide the interconnect fabric. Given an
appropriate depth, you can use sc_£ifo for this purpose as illustrated in the
next very simple example.

26 Kahn, G. 1974. The semantics of a simple language for parallel programming, in Proc.
IFIP74, J.L. Rosenfeld (ed.), North-Holland, pp.471-475.

106 SystemC: From The Ground Up

SC_MODULE (kahn_ex) {

sc_fifo<double> a, b, y;

-

// Constructor
kahn ex::kahn ex() : a(10), b(10), y(20)

{
}

void kahn_ex: :addsub_thread() {
for(;;) {
y.write (kA*a.read() + kB*b.read()) ;
y.write (kA*a.read() - kB*b.read()) ;
}//endforever

Figure 8-10. Example of sc_fifo kahn_ex

Software uses for FIFOs are numerous and include such concepts as
mailboxes and other types of queues.

Note that when considering efficiency, passing pointers to large objects is
most efficient. Be sure to consider using a safe pointer object if using a
pointer. The shared ptr<> of the GNU publicly licensed Boost library,
http://www.boost.org, makes implementation of smart pointers very straight
forward.

Generally speaking, the STL may be more suited to software FIFOs. The
use of the STL deque<> might be used to manage an unknown number of
stimulus data from a test bench.

In theory, an sc_fifo could be synthesized at a behavioral level. It
currently remains for a synthesis tool vendor to provide the functionality.

Basic Channels 107
8.5 Exercises

For the following exercises, use the samples provided in
www.EklecticAlly.com/Book/.

Exercise 8.1: Examine, predict the output, compile, and run mutex_ex.

Examine 8.2: Examine, compile, and run semaphore_ ex. Add another
family member. Explain discrepancies in behavior.

Exercise 8.3: Examine, compile, and run fifo fir. Add a second filter
stage to the network.

Exercise 8.4: Examine, compile, and run fifo of ptr. Discuss how
one might compensate for the simulated transfer of a large packet.

Exercise 8.5: Examine, compile, and run fifo of smart ptr. Notice
the absence of delete.

This page intentionally left blank

Predefined Primitive Channels: Mutexes, FIFOs, & Signals
Toosamanoss | S| oy
Simulati Logic,
Kemnel Integers,
Events, Sensitivity Modules & Fixed point
Chapter 9] & Notifications Hierarchy

EVALUATE-UPDATE CHANNELS
SC_SIGNALS

The preceding chapter considered synchronization mechanisms common
to software. This chapter delves into electronic hardware®’,

Electronic signals behave in a manner approaching instantaneous
activity. Generally, electronic signals have a single source (producer), but
multiple sinks (consumer). It is quite important that all sinks “see” a signal
update at the same time.

The easiest way to understand this concept is to consider the common
hardware shift register. This model has a number of registers or memory
elements as indicated in the following diagram.

regl regz reg3 reg4

1 2 3 4
DATA DQQDQQDQQDQQ

= = = [F

Figure 9-1. Shift Register

2 1t is unclear whether the concepts discussed here have any application outside of electrical
signals.

110 SystemC: From The Ground Up

Data moves from left to right synchronous to the clock labeled sync. In
software (e.g., C/C++), this would be modeled with four ordinary
assignments:

Q4 = 0Q3;
Q3 = Q2;
Q2 = Q1;
Ql = DATA;

Figure 9-2. Example of Modeling a Software-Only Shift Register

For this register to work, ordering is very important. In hardware, things
are more difficult. Each register (regl...reg4) is an independent concurrent
process. Recall that the simulator places no order requirements on the
processes. Below is a diagram from Chapter 7, Concurrency. Consider each
process to represent a register from the preceding design.

No simulated
time elapses

o t 2
1:A2; B5;R6;
Process_A e A3; A4
?
B5;B&; |
Process B B3;p4]
Cl;C2;
s Ch;C6;
Process_C
D1;D2; D4
Process D
>

Figure 9-3. Simulated Activity with Four Concurrent Processes

Since there is no guarantee that one assignment will take place before the
other, we need to find some other solution. One idea might be to use events
to force an ordering. This design would have Process_A wait for an event
from Process_ B before assigning its register, Process B wait for an
event from Process_C before assigning its register, and so on. This design
requires coding both a wait and notify for each register, and it can
become quite tiresome.

Another solution involves representing each register as a two-deep FIFO.
This approach seems unnecessarily complex requiring two storage locations
for the data and two pointers/counters to manage the state of the FIFO.

Evaluate-Update Channels 111
9.1 Completed Simulation Engine

To solve this problem, simulators have a feature known as the evaluate-
update paradigm. The following diagram is the complete SystemC
simulation kernel with the added update phase. It is possible to go from
evaluate to update and back. This cycle is known as the delta-cycle. Even
when the simulator moves from evaluate to update to advance time, we say
that at least one delta-cycle has occurred. Let’s see how the delta-cycle is
used.

sc_main() SystemC Simulation Kernel

i Execute code possibly

| issuing events or While =
updates. Either suspend processes -_n°t1f_Y{ }
‘ waiting or exit entirely. Ready immediate

isc:_s:art{) * Silabe —> i Al

Time
Delta
\ Cycle
Cleanup = Update ‘notify (t)
timed

.notify(5C_7ERO
_TIME) delayed

Figure 9-4. Full SystemC Simulation Engine

Special channels, known as signal channels use this update phase as a
point of data synchronization. To accomplish this synchronization, every
channel has two storage locations: the current value and the new value.
Visually, there are two sets of data: new and current.

New Current

si=v2 [~ s1| v0
s2=v3 P s2| vi

update ()

Figure 9-5. Signal Channel Data Storage

When a process writes to a signal channel, the process stores into the new
value rather than into the current value, and the process calls

112 SystemC: From The Ground Up

request update () to cause the simulation kernel to call the channel’s
update () method during the update phase.

After the evaluate phase has completed (i.e., there are no more processes
in the ready state), the kernel calls the update () method for each channel
instance that requested an update. The update () method may do more than
simply copy the new value into the current value. It may resolve contentions
and notify sc_events (e.g., to indicate a change and wake up a process in
the waiting state).

An important aspect of this paradigm is the current value remains
unchanged. If a process writes to an evaluate-update channel and then
immediately (i.e., without suspending) accesses the channel, it will find the
current value unchanged.

This behavior is a frequent cause for confusion for simulation neophytes.
Those familiar with HDLs should not be surprised. Shortly, we will discuss
techniques to make this less of a surprise.

Another consideration is that the new value will contain only the last
value written during a given delta cycle. Thus, writing repeatedly overwrites
the previous new value.

Evaluate-Update Channels 113

9.2 sc_signal, sc_buffer

The sc_signal<> primitive channel and its close relative,
sc_buffer<>, both use the evaluate-update paradigm. Here is the syntax
for declaration, reading, and writing:

sc_signal<datatype> signame[, signame;l...;
signame.write (newvalue) ;
signame.read (varname) ;
sensitive << signame.default event();
wait (signame.default event()|...);
if (signame.event() == true) |

// occurred in previous delta-cycle

Figure 9-6. Syntax of sc_signal

The write () method contains the evaluate phase portion of the
evaluate-update behavior. The write () method includes a call to the
protected sc_prim channel::request update () method. The call to
sc_signal: :update () is hidden, and the call occurs during the update
phase when the kernel calls it as a result of the request_update.

The event () method is special. Normally, it is impossible to determine
which event caused a return from wait (); however, for sc_signal
channels (including other derivatives mentioned in this chapter), the
event () method may be called to see if the channel issued an event in the
immediately previous delta-cycle. This ability to determine which event
caused the last return from wait () does not preclude the occurrence of other
events in the previous cycle.

It should be noted that sc_signal<> is essentially identical to VHDL’s
signal. For Verilog, the analogy is a reg that uses non-blocking
assignments (<=) exclusively.

An example of usage and the slightly surprising results®® are in order.

2 This usage may surprise non-HDL experienced folks. HDL-experienced users should
understand the VHDL or Verilog analogy.

114 SystemC: From The Ground Up

// Declare variables

int count;
sc_string message_ temp;
sc_signal<int> count sig;

sc_signal<sc_string> message sig;

// Initializing during 1lst delta cycle
count_sig.write(10);
message sig.write("Hello");

count = 11;

message _temp = "Whoa";

cout << "count is " << count << " "
<< "count_sig is " << count_sig << endl
<< "message temp is '" << message temp << "' "
<< "message sig is '" << message sig << "'"
<<endl

<< "Waiting" << endl;
wait (SC_ZERO TIME) ;

// 2nd delta cycle
count = 20;
count_sig.write(count) ;

cout << '"count is " << count << " "
<< "count_sig is " << count_sig << endl
<< "message temp is '" << message temp << "' "
<< "message sig is '" << message sig << "'"
<<endl

<< "Waiting" << endl;
wait (SC_ZERO_TIME) ;

// 3rd delta cycle

message sig.write(message temp = "Rev engines");
cout << "count is " << count << " "
<< "count_sig is " << count_sig << endl
<< "message temp is '" << message temp << "' "
<< "message sig is '" << message _sig << "'"
<<endl

<< "Done" << endl;

Figure 9-7. Example of sc_signal

Evaluate-Update Channels 115

The example in Figure 9-7 produces the result shown in Figure 9-8.
Notice how the current value remains unchanged until a delta-cycle has
occurred.

count is 11 count _sig is 0

message temp is 'Whoa' message sig is
Waiting

count is 20 count sig is 10

message temp is 'Whoa' message sig is 'Hello'
Waiting

count is 20 count sig is 20

message_temp is 'Rev engines' message sig is 'Hello'
Waiting

Figure 9-8. Example of sc_signal Output

Because the code uses a naming convention (i.e., appended _sig to the
signals), it is relatively easy to spot the evaluate-update signals and make the
mental connection to the behavior. Without the naming convention, one
might wonder if the identifiers represent some other channel (e.g.,

sc_fifo<>).

In addition to the preceding syntax, SystemC has overloaded the
assignment and copy operators to allow the following dangerous syntaxes:

varname = signame.read() ;
signame = newvalue;
varname = signame;

Figure 9-9. Syntax of sc_signal (Dangerous)

The reason we consider these syntaxes dangerous relates to the issue of
the evaluate-update paradigm. Consider the following example:

// Convert rectangular to polar coordinates

r = X;
if (r '=0&& r !'=1) ¥ =1r * r;

if (y =0) r=1r + y*y;

cout << "Radius is " << sqgrt(r) << endl;

Figure 9-10. Dangerous sc_signal

Without sufficient context, the casual reader would be quite surprised at
the results shown below. Assume on entry x=3, y=4, r=0.

116 SystemC: From The Ground Up

Radius is 0

Figure 9-11. Example of sc_signal Output (Dangerous)

Even when using what might be considered the safer syntax, you must be
careful. We strongly suggest that you use a naming style.

One beneficial aspect of sc_signal<> and sc_buffer<> channels is a
restriction that only a single process may write to a given signal during a
specific delta-cycle. This restriction avoids the potential danger of two
processes non-deterministically asserting a value and creating a race
condition. A runtime error is flagged in this situation if and only if you have
defined the compile-time macro DEBUG_SYSTEMC. You can find an example
of this danger in the danger ex example.

9.3 sc_signal_resolved, sc_signal_rv
There are times when it is appropriate to have multiple writers. One of

these situations involves modeling buses that have the possibility of high
impedance (i.e., Z) and contention (i.e., X).

Multiple Drivers on a Bus

BUS
SA SR

ER

Figure 9-12. Tri-State Bus

SystemC provided the specialized channels sc_signal resolved and
sc_signal rv<>?°

29
__rvmeans resolved vector.

Evaluate-Update Channels 117

sc_signal resolved name;
sc_signal rv<WIDTH> name;

Figure 9-13. Syntax of sc_signal_resolved and sc_signal_rv

The base functionality has identical semantics to
sc_signal<sc logic>; however, it allows for multiple writers and
provides built-in resolution functionality as follows:

Table 9-1 Resolution Functionality for sc_signal_resolved

A\B rO! i’l!’ X’ rer
o’ o’ Ty rYr rnr
flf l'x! Fli’ !’XI Il!
!x! !X! Fxf Fx!' fx.r
rgr ror L Ty ror

One minor failing of SystemC is the lack of direct support for several
common system-level bus concepts. Specifically, SystemC has no

mechanisms for pull-ups, pull-downs, nor various open-source or open-drain
variations.

For these, you have to create your own channels, which is not too
difficult. The easiest way is to create a class derived from an existing class
that almost works. Here is the resolution table for a pull-up functionality.

Table 9-2. Resolution Functionality for sc_signal_resolved

A\B rQ’ rqr rx’ rer
ro’ ror ' ' rg’
g lngr e e g
'xXT | THr TR ARy !
rge ror rr 5'd

r

Notice that there is only one difference in the table (shaded). The custom
channel in Figure 9-14 implements this resolution for a single-bit pull-up
functionality.

118 SystemC: From The Ground Up

struct ea signal pullup: public sc_signal resolved

ea_signal pullup() {}

explicit ea signal pullup(const char* nm)
:sc_signal resolved(nm) {}

virtual void update() {
sc_logic_resolve::resolve(m new val, m val vec);
if (m new val == SC_LOGIC Z) {

m _new_val = SC_LOGIC 1;

}
base type::update() ;

}// end update

}:;//endstruct ea signal pullup

Figure 9-14. Example of ea_signal_pullup

Note that the protected method sc_logic resolve::resolve () is
not currently documented in the LRM and could theoretically be removed.
We hope it will be added to the final specification considering how prevalent
concepts such as pull-ups are at the system level. For more information,
study the source code of the Open SystemC Initiative reference
implementation.

9.4 Template Specializations of sc_signal Channels

SystemC has several template specializations that bear discussion. A
template specialization occurs when a definition is provided for a specific
template value. If there is more than one template variable involved, we call
it a partial specialization.

For example, sc_signal has a single template variable representing the
typename. SystemC defines some additional behaviors for
sc_signal<bool> that are not available for the general case. Thus, an
sc_signal<char:> does not support the concept of a posedge event ().

Evaluate-Update Channels 119

The specialized templates sc_signal<bools> and
sc_signal<sc logic> have the following extensions:

sensitive << signame.posedge event ()
<< signame.negedge event () ;
wait (signame.posedge event ()
| signame .negedge event()) ;
if (signame.posedge event ()
| signame .negedge event ()) {

Figure 9-15. Syntax of Specializations posedge and negedge

For sc_logic, a posedge event occurs on any transition to
SC_LOGIC_ 1, which includes SC_LOGIC X and SC_LOGIC z. The same is
true of transitions to SC_LOGIC 0 and the negedge event.

The Boolean posedge () and negedge () methods apply similarly to
the event () method, and they only apply to the immediately previous
delta-cycle.

It is notable that sc_buf fer does not support these specializations.

120 SystemC: From The Ground Up

9.5 Exercises

For the following exercises, use the samples provided in
www.EklecticAlly.com/Book/.

Exercise 9.1: Examine, compile, and run signal ex.

Exercise 9.2: Examine, compile, and run buffer ex.

Exercise 9.3: Examine, compile, and run danger ex.

Exercise 9.4: Examine, compile, and run resolved ex. Observe the
definition of DEBUG_SYSTEMC in . . /Makefile.defs.

Exercise 9.5: Examine the interactive simulation illustrating the
simulation engine under the web page www.EklecticAlly.com under Library
Tutorials SimulationEngine.

Predefined Primitive Channels: Mutexes, FIFOs, & Signals
Threads & Method o Data types:
Simulation Logic,
Kemel Integers,
Events, Sensitivity Modules & Fixed point
Chapter 1 0 & Notifications Hierarchy
STRUCTURE
Design Hierarchy

This chapter describes SystemC’s facilities for implementing structure,
sometimes known as design hierarchy. Design hierarchy concerns both the
hierarchical relationships of modules discussed here and the connectivity
that allows modules to communicate in an orderly fashion. Connectivity will
be discussed in Chapter 11.

10.1 Module Hierarchy

Thus far, we have only examined modules containing a single level of
hierarchy with all processes residing in a single module. This level of
complexity might be acceptable for small designs, but real system designs
require partitioning and hierarchy for understanding and project
management. Project management includes documentation and practical
issues such as integration of third-party intellectual property.

Design hierarchy in SystemC uses instantiations of modules as member
data of parent modules. In other words, to create a level of hierarchy, create
an sc_module object that represents the sub-module within the parent
module.

Consider the hierarchy in Figure 10-1 for the following discussions and
examples. In this case, we have a parent module named Car, and a sub-
module named Engine. To obtain the hierarchical relationship, we create an
Engine object and a body object within the definition of the Car class.

122 SystemC: From The Ground Up

Design Hierarchy

sc_main
SC_MODULE’ s
pcar i

Car

eng_ 1

Engine

fuelmix i

exhaust_i FuelMix

cyl il

Cylinder

Exhaust

Body

Wheel

Wheel FR

Figure 10-1. Module Hierarchy

Module instantiation occurs inside the constructor. You can define the
code that implements the constructor in either the header file or the
implementation file. Since hierarchy reflects an internal implementation
decision, the authors prefer to see the constructor defined in the
implementation. The only time this cannot be done this way is when
defining a templated module, a relatively rare occurrence, due to compiler

restrictions™’.

C++ offers two basic ways to instantiate modules. First, a module object
may be created directly by declaration. Alternatively, a module object may
be indirectly referenced by means of a pointer and dynamic allocation.

Creation of hierarchy at the top level (sc_main) is slightly different from
instantiation within modules. This difference results from differences in C++
syntax requirements for initialization outside of a class definition.

0 A future version of C++ compiler/linker toolsets may fix this restriction.

Structure 123

Because it is likely you may see any combination of these approaches,
we will illustrate all six approaches:

¢ Direct top-level

¢ Indirect top-level

¢ Direct sub-module header-only
¢ Direct sub-module

¢ Indirect sub-module header-only

¢ Indirect sub-module

There are likely a few more variants, but understanding these should
suffice.

10.2 Direct Top-Level Implementation

First, we illustrate top-level with direct instantiation, which has already
been presented in Hello SystemC and is used in all the succeeding
discussions. It is simple and to the point. Sub-design instances are simply
instantiated and initialized in one statement.

//FILE: main.cpp
#include "Wheel.h"
int sc_main (int argc, char* argv[])
Wheel wheel FL("wheel FL");
Wheel wheel FR("wheel FR");
sc_start();

}

Figure 10-2. Example of main with Direct Instantiation

124 SystemC: From The Ground Up
10.3 Indirect Top-Level Implementation

A minor variation on this approach, main with indirect instantiation,
places the design on the heap and adds two lines of syntax with both a
pointer declaration and an instance creation via new. This variation takes
more code; however, it adds the possibility of dynamically configuring the
design with the addition of if-else and looping constructs.

A design with a regular structure might even construct an array of
designs and programmatically instantiate and connect them up. We will
discuss connectivity in the next section of this chapter.

//FILE: main.cpp
#include "Wheel.h"
int sc_main(int argc, char* argv[]) {
Wheel* wheel FL; // pointer to FL wheel
Wheel* wheel FR; // pointer to FR wheel

wheel FL = new Wheel ("wheel FL"); // create FL
wheel FR = new Wheel ("wheel FR"); // create FR
sc_start () ;

delete wheel FL;
delete wheel FR;

Figure 10-3. Example of main with Indirect Instantiation

Structure 125

10.4 Direct Sub-Module Header-Only Implementation

When dealing with sub-modules (i.e., beneath or within a module), things
become mildly more interesting because C++ semantics require use of an
initializer list for the direct approach:

//FILE:Body.h
#include "Wheel.h"
SC_MODULE (Body) {
Wheel wheel FL;
Wheel wheel FR;
SC_CTOR (Body)
wheel FL("wheel FL"), //initialization
wheel FR("wheel FR") //initialization
{
// other initialization
}
}i

Figure 10-4. Example of Direct Instantiation in Header

10.5 Indirect Sub-Module Header-Only Implementation

Use of indirection renders the instantiation a little bit easier to read for
the sub-module header-only case; however, no other advantages are clear.

//FILE:Body.h
#include "Wheel.h"
SC_MODULE (Body) {
Wheel* wheel FL;
Wheel* wheel FR;
SC_CTOR (Body) {
wheel FL = new Wheel ("wheel FL");
wheel FR = new Wheel ("wheel FR");
// other initialization

Figure 10-5. Example of Indirect Instantiation in Header

126 SystemC: From The Ground Up
10.6 Direct Sub-Module Implementation

One disadvantage of the preceding approach is that it exposes the
complexities of the constructor body to all potential users. Moving the
constructor into the implementation (i.e., the module. cpp file) requires the
use of SC_HAS PROCESS.

//FILE:Body.h
#include "Wheel.h"
SC_MODULE (Body) {
Wheel wheel FL;
Wheel wheel FR;
SC_HAS PROCESS (Body) ;
Body (sc_module name nm) ;

//FILE: Body.cpp
#include "Body.h"
// Constructor
Body: :Body (sc_module name nm)
: wheel FL("wheel FL"),
wheel FR("wheel FR"),
sc_module (nm)

{

// other initialization

Figure 10-6. Example of Direct Instantiation and Separate Compilation

Structure 127

10.7 Indirect Sub-Module Implementation

Moving the module indirect approach into the implementation file has
the advantage of possibly supplying pre-compiled object files, and this
approach may be good for intellectual property (IP) distribution. This
advantage is in addition to the possibility of dynamically determining the
configuration discussed previously.

//FILE:Body.h
struct Wheel;
SC_MODULE (Body) {
Wheel* wheel FL;
Wheel* wheel FR;
SC_HAS PROCESS (Body) ;
Body (sc_module name nm); // Constructor

//FILE: Body.cpp

#include "Wheel.h"
// Constructor
Body: :Body (sc_module name nm)

: sc_module (nm)

{
wheel FL = new Wheel ("wheel FL");
wheel FR = new Wheel ("wheel FR");
// other initialization

Figure 10-7. Example of Indirect Separate Compilation

Notice the absence of #include Wheel.h in Body.h of the preceding
example. This omission could be a real advantage when providing Body for
use by another group (such as IP). You need to provide only Body.h and a
compiled object or library (e.g., Body .o or Body.a) files. You can then
develop your implementation independently. This approach is good for both
internal and external IP distribution.

128 SystemC: From The Ground Up
10.8 Contrasting Implementation Approaches

The following table contrasts the features of the six approaches.

Table 10-1. Comparison of Hierarchical Instantiation Approaches

Level Allocation Pros Cons
Main Direct Least code Inconsistent with
other levels
Main Indirect Dynamically Involves pointers
configurable
Module Direct All in one file Requires sub-
header only Eagier to understand ~ module headers
Module Indirect All in one file Involves pointers
header only pynamically Requires sub-
configurable module headers
Module Direct with Hides implementation Requires sub-
separate module headers
compilation
Module Indirect Hides sub-module Involves pointers
with headers and
separate implementation
compilation Dynamically
configurable

Some groups have the opinion that the top-level module should
instantiate a single design with a fixed name (e.g., Design_top) and then
only deal with the lower levels in a consistent fashion. Some EDA tools
perform all this magic for you.

10.9 Exercises

For the following exercises, use the samples provided at
www.EklecticAlly.com/Book/.

Exercise 10.1: Examine, compile, and run the sedan example. Which
styles are simplest?

Exercise 10.2: Examine, compile, and run the convertible example.
Notice the forward declarations of Body and Engine. How might this be an
advantage when providing IP?

Predefined Primitive Channels: Mutexes, FIFOs, & Signals
Threads & Method Channes & me:
Simulation . (he
ey Events, Sensifivity Modules & s
Chapter 11 & Noiffications Hierarchy e
COMMUNICATION
Ports

This chapter describes SystemC’s facilities for implementing
connectivity, which enables orderly communication between modules.

11.1 Communication: The Need for Ports

Hierarchy without the ability to communicate between modules is not
very useful, but what is the best way to communicate? There are two
concerns: safety and ease of use. Safety is a concern because all activity
occurs within processes, and care must be taken when communicating
between processes to avoid race conditions. Events and channels are used to
handle this concern.

Ease of use is more difficult to address. Let us dispense with any solution
involving global variables, which are well known as a poor methodology.
Another possibility is to have a process in an upper-level module. This
process would monitor and manage events defined in instantiated modules.
This mechanism is awkward at best.

SystemC takes an approach that lets modules use channels inserted
between the communicating modules. SystemC accomplishes this
communication with a concept called a port. Basically, a port is a pointer to
a channel outside the module.

130 SystemC: From The Ground Up

Consider the following example:

Communication Via sc_ports

sc fifo<int> c;

_'.-vwri te()..
read () L

modB mB (1Al

modA mA i
. YU port pB |
A thread ereevs,,,, ¢ B thread UL LT .

“Pointer Access
Figure 11-1. Communication Via Ports

The process A thread in module modA communicates a value contained
in local variable v by calling the write method of the parent module’s
channel c. Process B_thread in module modB may retrieve a value via the
read method of channel c.

Notice that access is accomplished via pointers pA and pB. Notice also
that the two processes really only need access to the methods write and
read. More specifically, modA only needs access to write, and modB only
needs access to read. This separation of access is managed using a concept
known as an interface, which is described in the next section.

11.2 Interfaces: C++ and SystemC

C++ defines a concept known as an abstract class. An abstract class is a
class that is never used directly, but it is used only via derived sub-classes.
Partly to enforce this concept, abstract classes usually contain pure virtual
functions. Pure virtual functions are not allowed to provide an
implementation in the abstract class where they are defined as pure. This
restriction in turn compels any class derived from the abstract class to
override all the pure virtual functions, or in other words, the class derived

Communication 131

from the abstract class must provide an implementation for all the pure
virtual functions.

The following diagram illustrates the concept. Pure virtual functions are
identified by 1) the keyword wvirtual and 2) the =0; to indicate they’re
pure.

struct My Interface { Abstract Class

virtual T1 My methA(.)=0; o » Pure virtual methods
* No data

virtual T2 My methB(.)=0; O

R N

class My Derivedl struct My Derived?2

: public My Interface { : public My Interface {
T1 My methA(..) {..} O T1 My methA(..) {..}
72 My_methC(..) (..} () 72 My_methc(..) (..} D

private:

private:
T5 my_datal; D T3 my_dataZ; :I

bi }i

Figure 11-2. C++ Interface Class Relationships

If a class contains no data members and only contains pure virtual
methods, it is known as an interface class. Here is a short example of an
interface class:

struct my interface {
virtual void write (unsigned addr, int data) = 0;
virtual int read(unsigned addr) = 0;

}i

Figure 11-3. Example of C++ Interface

The concept of interfaces has a powerful property when used with
polymorphism. Recall from C++ that polymorphism is the following idea: A
derived class can be processed by a member function of the parent class. For
example, if a member function simply determines the number of “elements”
in a module, it doesn’t matter what the elements are in the module.

Consider the preceding figure of C++ interface class relationships. A
function using My Interface mightaccess My methA () . If the current
objectis of class My Derived2, then the actual My methA () call results in
My Derived2::My methA() .

132 SystemC: From The Ground Up

If an object is declared as a pointer to an interface class, it may be used
with multiple derived classes. Suppose we define two derived classes as
follows:

struct multiport memory arch: public my interface {
virtual void write (unsigned addr, int data) {
mem[addr] = data;
}// end write
virtual int read(unsigned addr)) {
return mem[addr] ;
}//end read
private:
int mem[1024];

bi

struct multiport memory RTL: public my interface {
virtual void write (unsigned addr, int data) {
// complex details of RTL memory write
}// end write
virtual int read(unsigned addr)) {
// complex details of RTL memory read
}// end read
private:
// complex details of RTL memory storage

bi

Figure 11-4. Example of Two Derivations From Interface Class

Suppose now we write some code to access the classes derived above.

void memtest (my interface mem) {
// complex memory test

multiport memory_arch fast;
multiport memory RTL slow;
memtest (fast) ;
memtest (slow) ;

Figure 11-5. Example of C++ Interface

Communication 133

As seen in the preceding example, the same code may access multiple
variations of a design. You can think of an interface as the application
programming interface (API) to a set of derived classes. This same concept
is used in SystemC to implement ports.

DEFINITION: A SystemC interface is an abstract class that inherits from
sc_interface and provides only pure virtual declarations
of methods referenced by SystemC channels and ports. No
implementations or data are provided in a SystemC
interface.

We now provide the concise definition of the SystemC channel.

DEFINITION: A SystemC channel is a class that implements one or more
SystemC interface classes and inherits from either
sc_channel or sc _prim channel. A channel
implements all the methods of the inherited interface
classes.

By using interfaces to connect channels, we can implement modules
independent of the implementation details of the communication channels.

134 SystemC: From The Ground Up

Consider the following diagram:

Power of Interfaces

sc_fifo<T>

Figure 11-6. The Power of Interfaces

In one design, modules modA and modB are connected via a FIFO. With
no change to the definition of modA or modB, we can swap out the FIFO for a
different channel. All that matters is for the interfaces used to remain
constant. In this example, the interfaces are sc_fifo out if<T> and
sc_fifo in if<T>. In the next few sections, the mechanics of using
interfaces are described.

Communication 135

11.3 Simple SystemC Port Declarations

Given the definition of an interface, we now present the definition of a
port.

DEFINITION A SystemC port is a class templated with and inheriting
from a SystemC interface. Ports allow access of channels

across module boundaries.

Specifically, the syntax of a simple SystemC port follows:

sc_port<interface> portname;

Figure 11-7. Syntax of Basic sc_port

SystemC ports are always defined within the module class definition.
Here is a simple example:

SC_MODULE (stereo_amp) {
sc_port<sc_ fifo in if<int> > soundin p;
sc_port<sc_fifo out if<int> > soundout p;

}i

Figure 11-8. Example of Defining Ports within Module Class Definition

Notice the extra blank space following the greater-than symbol (>). This
is required C++ syntax when nesting templated classes.

136 SystemC: From The Ground Up

11.4 Many Ways to Connect
Given the declaration of a port, we now address the issue of connecting

ports, channels, modules, and processes. The following diagram illustrates
the types of connections that are possible with SystemC:

Port Connections

connections top

Ml mil - Chl olz

Figure 11-9. Connectivity Possibilities

This diagram is quite busy. Let’s examine the pieces by name, and then
discuss the rules of interconnection.

First, there are three modules represented with rectangles. The enclosing
module instance is named top. The two sub-module instances within top
arenamed miland mi2.

Each of the modules has one or more ports represented with squares.
Directional arrows within the ports indicate the primary flow of information.
The ports for topare pl, p2, p3, p4, p5, and pé6, which use interfaces
named if1, if2, if3, if4, if5,and ife, respectively.

The ports for mil are pA, pB, pC, and pG, which are connected to
interfaces named 1£1, 1fB, ifD,and if6, respectively.

Module M1 also provides interfaces 1fW and ife.

Communication 137

The ports for mi2 are pD[0], pD[1], pE, and pF, which are connected
to interfaces named 1£3, 1 £D, and ifF, respectively.

Next, three instances of channels represented with hexagonal shapes exist
within top. These arenamed c1i, c2i,and c3i.

Each channel implements one or more interfaces represented by circles
with a bent arrow. The arrow is intended to indicate the possibility of a call
returning a value. It is possible for a channel to implement only a single
interface. Channel c1i implements interfaces ifB and ifD.Channel c2i
implements interfaces ifX and ifY. Finally, channel c3i implements
interfaces 1£5, 1fF, and 1£Z.

Last, there are three processes named prl, pr2, and pr3. For this
description, we don’t need to know what type of processes (i.e., threads vs
methods). There are two explicit events, evl and ev2 used for signaling
between processes.

From this diagram, several rules may be observed. As we already know,
processes may communicate with other processes at the same level either via
channels or synchronized via events. Processes may communicate with
processes outside the local design module through ports bound to channels
by way of interfaces. Processes may also communicate with processes in
sub-module instances via interfaces to channels connected to the sub-module
ports or by way of interfaces through the module itself of an sc_export (to
be discussed later). Any other attempt at inter-process communication is
either forbidden or dangerous.

Ports may connect via interfaces only to local channels, ports of sub-
modules, or to processes indirectly.

There are a few interesting features that will be discussed later. First,
module instance mil implements an interface 1fW. We will discuss this
topic in Chapter 13, in Custom Channels.

Second, port pD appears to be an array of size 2. We will discuss port
arrays in Chapter 12, More on Ports.

Third, port p5 and port pC illustrate a new type of port for SystemC
version 2.1 known as an sc_export. We will discuss this topic in the next
page chapter.

138 SystemC: From The Ground Up

As a summary, let’s view this information in a tabular format.

Table 11-1Ways to Interconnect

From To Method

Port Sub-module Direct connect via
sc_port

Process Port Direct access by process

Sub-module Sub-module Local channel
connection

Process Sub-module Local channel _
connection —or- via
sc_export

—or- interface
implemented by sub-

module’!
Process Process Events or local channel
Port Local Direct connect via
channel sc export

11.5 Port Connection Mechanics

Modules are connected to channels after both the modules and channels
have been instantiated. There are two syntaxes for connecting ports: by-
name and by-position. Due to the error-prone nature of positional notation
(especially since the number of ports on modules tends to be large and
changes), the authors strongly prefer connection by-name. Here are both
syntaxes.

mod_inst.portname (channel instance); // Named
mod_instance(channel instance,..); // Positional

Figure 11-10. Syntax of Port Connectivity

An example should help greatly. We’ll use a simple video mixer example
with a color space transformation. For this example, we will use two
standard ~ SystemC interface classes, sc fifo in if and
sc_fifo out if, which support read() and write(value),
respectively. First, we introduce the module definitions.

3 this case, the module is also known as a “hierarchical channel”, which will be discussed
later.

Communication 139

//FILE: Rgb2YCrCb.h

SC_MODULE (Rgb2YCrCb) {
sc_port<sc_fifo in if<RGB_ frame> > rgb pi;
sc_port<sc fifo out if<YCRCB frame> > ycrcb po;

}i

Figure 11-11. Example of Port Interconnect Setup (1 of 3)

//FILE: YCRCB Mixer.h

SC_MODULE (YCRCB Mixer) {
sc_port<sc fifo in if<float> > K pi;
sc_port<sc fifo in if<YCRCB frame> > a pi, b pi;
sc_port<sc fifo out if<YCRCB frame> > y po;

)i

Figure 11-12. Example of Port Interconnect Setup (2 of 3)

//FILE: VIDEO Mixer.h

SC_MODULE (VIDEO Mixer) {
// ports
sc_port<sc fifo in if<YCRCB_ frame> > dvd _pi;
sc_port<sc fifo out if<YCRCB frame> > video po;
sc_port<sc_fifo in if<MIXER ctrls> > control;
sc_port<sc_ fifo out if<MIXER state> > status;
// local channels
sc_fifo<float> K;
sc_fifo<RGB frame> rgb graphics;
sc_fifo<YCRCB frame> ycrcb graphics;
// constructor
SC_HAS_PROCESS (VIDEO Mixer) ;
VIDEO Mixer (sc_module name nm);
void Mixer thread() ;

Figure 11-13. Example of Port Interconnect Setup (3 of 3)

Now, let’s look at interconnection of the preceding modules using both
named and positional syntaxes.

140 SystemC: From The Ground Up

VIDEO Mixer::VIDEO Mixer (sc_module name nm)
sc_module (nm)

// Instantiate

Rgb2¥YCrCb RgbZYCer_i ("Rgb2YCer_i " ;

YCRCB Mixer YCRCB Mixer i ("YCRCB Mixer i");
// Connect

Rgb2Y¥CrCb_i.rgb pi(rgb_graphics) ;
Rgb2Y¥CrCb_i.ycrcb_po(ycrcb_graphics) ;
YCRCB Mixer i.K pi(K);

YCRCB Mixer I.a pi(dvd pi);

YCRCB_Mixer i.b_pi(ycrcb_graphics);

YCRCB Mixer i.y po(video_po) ;

Figure 11-14. Example of Port Interconnect by Name

Although slightly more code than the positional notation, the named port
syntax is more robust, and tools exist to reduce the typing tedium.

VIDEO Mixer::VIDEO_Mixer (sc_module name nm)
sc_module (nm)

// Instantiate

Rgb2¥YCrCb Rgb2YCer_i ("RgbZYCer_i ") ;

YCRCB Mixer YCRCB Mixer i ("YCRCB Mixer i");

// Connect

Rgb2YCrCb_ i (rgb_graphics,ycrcb graphics) ;
YCRCB_Mixer i (K,dvd pi,ycrcb graphics,video_po) ;

Figure 11-15. Example of Port Interconnect by Position

The problem with positional connectivity is keeping the ordering correct.
In large designs, middle- and upper-level modules frequently have a large
number of ports (potentially multiple 10’s), and it is common to add or
remove ports late in the design. Using a positional notation can quickly lead
to debug problems. That is why we recommend avoiding the positional
syntax entirely, and always using a named port approach.

GUIDELINE: Whenever possible use the named port interconnection style.

Communication 141

How does it work? Whereas the complete details require an extensive
investigation of the SystemC library code, we can provide a short answer.
When the code instantiating an sc_port executes, the operator () is
overloaded to take a channel object by reference and saves a pointer to that
reference internally for later access by the port. Thus, we recall a port is an
interface pointer to a channel that implements the interface.

11.6 Accessing Ports From Within a Process

Connecting ports between modules and channels is of no great value
unless a process somewhere in the design can initiate activity over the
channels. This section will show how to access ports from within a process.
The sc_port overloads the C++ operator-> (), which allows a simple
syntax to access the referenced interface.

portname->method(optional args) ;

Figure 11-16. Syntax of Port Access

Continuing the previous example, we now illustrate port access in action.
In the following, control and status are the ports; whereas, K is a local
channel instance. Notice use of the operator-> when accessing ports.

void VIDEO Mixer: :Mixer thread() {

switch (control-s>read()) {
case MOVIE: K.write(0.0f); break;
case MENU: K.write(1.0f); break;
case FADE: K.write(0.5f); break;
default: status->write (ERROR) ; break;

Figure 11-17. Example of Port Access

A mnemonic may help here. P is for port and P is for pointer. When
accessing channels through ports, always use the pointer method (i.e., —>).

142 SystemC: From The Ground Up

11.7 Exercises

For the following exercises, use the samples provided in
www.EklecticAlly/Book/.

Exercise 11.1: Examine, compile, and run the video mix example.

Exercise 11.2: Examine, compile, and run the equalizer ex example.

Predefined Primitive Channels: Mutexes, FIFOs, & Signals
Channels &
Threads & Methods Interfaces Data types:
Simulation Logic,
Kemel Integers,
Events, Sensitivity Modules & Fixed point
Chapter 12 & Notifications Hierarchy

MORE ON PORTS

Specialized & sc_export

This chapter continues our discussion of ports as we go beyond the basics
and explore intermediate concepts. We start out with a look at some standard
interfaces that can be used to build ports. Next, we discuss built-in
specialized ports and their conveniences, especially with regard to static
sensitivity. Finally, we present the concept of port arrays, and finish the
chapter with a new type of port, sc_export, that is new to SystemC version
2.1.

12.1 Standard Interfaces

SystemC provides a variety of standard interfaces that go hand in hand
with the built-in channels discussed previously. This section describes these
interfaces. This presentation is a more precise definition of the syntax, and
this material provides a basis for creating custom channels that will be
discussed in Chapter 13.

12.1.1 sc_fifo interfaces

Two interfaces, sc_fifo in if<>, and sc_fifo out if<>, are
provided for sc_fifo<>. Together these interfaces provide all of the
methods implemented by sc_fifo<>. In fact, the interfaces were defined
prior to the creation of the channel. The channel simply becomes the place to
implement the interfaces and holds the data implied by a FIFO functionality.

The interface, sc_fifo out if<>, partially shown in Figure 12-1,
provides all the methods for output from a module into an sc__ £i fo<>. The
module pushes data onto the FIFO using write () or nb _write (). The
num_ free () indicates how many locations are free, if any. The
data_read event () method may be used to dynamically wait for a

144 SystemC: From The Ground Up

location to be freed. We’ve discussed all of these methods in Chapter 8§,
Basic Channels when we discussed the sc_ £i fo<> channel.

Notice in the following figure that the interface itself is templated on a
class name just like the corresponding channel.

// Definition of sc_fifo<T> output interface
template <class T>
struct sc_fifo out if: virtual public sc interface {
virtual void write (const T&) = 0;
virtual bool nb write (const T&) = 0;
virtual int num free()const = 0;
virtual const sc_eventé&
data read event () const=0;

b

Figure 12-1. sc_fifo Output Interface Definitions—Partial

The other interface, sc_fifo in if<>, provides all the methods for
input to a module from an sc_fifo<>. The module pulls data from the
FIFO using read () or nb_read (). The num available () indicates
how many locations are occupied, if any. The data_written event ()
method may be used to dynamically wait for a new value to become
available.

Again, we discussed all of these methods in Chapter 8, when we
discussed the sc_fifo<> channel.

More on Ports 145

Here is the corresponding portion of the interface definition from the
SystemC library:

// Definition of sc_fifo<T> input interface
template <class T>
struct sc_fifo in if : virtual public sc_interface {

virtual void read(T&) = 0;
virtual T read() = 0;
virtual bool nb read(T&) = 0;

virtual int num available() const = 0;
virtual const sc_event&
data written event() comnst = 0;

Figure 12-2. sc_fifo Input Interface Definitions—Partial

Something interesting to notice about the sc_fifo interfaces is that if
you simply use the read () and write () methods in your module and do
not rely on the other methods, then your use of these interfaces is very
compatible with the corresponding sc_signal<> interfaces, which we will
discuss next. In other words, it is almost conceivable to simply swap out the
interfaces; however, doing so would be dangerous. Remember
sc_fifo::read() and sc_fifo::write () block waiting for the FIFO
to empty; whereas, sc_signal::read () and sc_signal: :write() are
non-blocking.

12.1.2 sc_signal interfaces

Similar to sc_fifo<>, two interfaces, sc_signal in if<>, and
sc_signal out if<>, are provided for sc_signal<s>. In addition, a
third interface, sc_signal inout if<>, provides bi-directional
capability. Together these interfaces provide all of the methods provided by
sc_signal<>. Again, the interfaces were defined prior to the creation of
the channel. The channel simply becomes the place to implement the
interfaces and provides the request-update behavior implied for a signal.

The request portion of the behavior is provided by the
sc_signal inout_ if<> interface.

146 SystemC: From The Ground Up

Here is a portion of the interface definition as provided in the SystemC
library:

// Definition of sc_signal<T> input/output interface
template <class T>
struct sc signal inout if: public sc signal in if<T>

{

virtual void write (const T&) = 0;

b

#define sc signal out if sc signal inout if

Figure 12-3. sc_signal Input Interface Definitions - Partial

There are two rather interesting things to notice in the preceding
interface. First, sc_signal out if<> is defined as a synonym to
sc_signal inout if<>. This definition lets a module read the value of
an output signal directly rather than being forced to keep a local copy in the
manner that VHDL requires.

The other feature to notice is how sc_signal inout if<> inherits the
input behavior from sc_signal in if<>. In fact, the sc_signal<>
channel inherits directly from this channel, sc_signal inout if<>,
rather than the other two interfaces.

The update portion of the behavior is provided as a result of a call to
request update () that is provided indirectly as a result of a call from
sc_signal::write (). The update is implemented with the protected
sc_signal: :update () method call. The sc_signal in if<> interface
provides access to the results through sc¢_signal: :read().

// Definition of sc_signal<T> input interface
template <class T>
struct sc_signal in if : virtual public sc interface {
virtual const sc_event&
value changed event () comnst = 0;
virtual const T& read() comst = 0;
virtual const T& get data ref() comst = 0;
virtual bool event () comnst = 0;

b

Figure 12-4. sc_signal Input Interface Definitions

More on Ports 147
12.1.3 sc_mutex and sc_semaphore interfaces

The two channels, sc_mutex and sc_semaphore, also provide
interfaces for use with ports. It is interesting to note that neither interface
provides any event methods for sensitivity. If you require event sensitivity,
you must write your own channels and interfaces as discussed in the next
chapter.

// Definition of sc mutex if interface

struct sc mutex if: virtual public sc interface
virtual int lock() = 0;
virtual int trylock() = 0;
virtual int unlock() = O0;

}i

Figure 12-5. sc_mutex Interface Definitions

// Definition of sc semaphore if interface
struct sc semaphore if : virtual public sc_interface

{

virtual int wait() = 0;

virtual int trywait() = 0;
virtual int post() = 0;

virtual int get value() const = 0;

Figure 12-6. sc_semaphore Interface Definitions

12.2 Static Sensitivity Revisited

Recall from Chapter 7, Concurrency, that processes can be made
sensitive to events. Also recall from Chapter 8, Basic Channels, that standard
channels often provide methods that provide references to events (e.g.,
sc_fifo::data_written_event ()). Since ports are defined on
interfaces to channels, it is only natural to want sensitivity to events defined
on those channels.

For example, it might be nice to create an SC_METHOD statically sensitive
to the data written event or perhaps monitor an sc_signal for any
change in the data using the value changed event. You might even want

148 SystemC: From The Ground Up

to monitor a subset of possible events such as a positive edge transition (i.e.,
falseto true)onan sc_signal<bool>.

This approach has a minor difficulty. Ports are pointers that become
initialized during elaboration, and they are undefined at the point in time
when the sensitive method needs to know about them. SystemC provides
a solution for this difficulty in the form of a special class, the
sc_event finder.

The sc_event finder lets the determination of the actual event be
deferred until after elaboration. Unfortunately, the sc_event finder hasa
minor complication. An sc_event finder must be defined for each event
defined by the interface. Thus, it is commonplace to define template
specializations of port/interface combinations to instantiate a port, and
include an sc_event finder in the specialized class.

Suppose you want to create a port with sensitivity to the positive edge
event of a Boolean signal port using the
sc_signal in if<bool>::posedge event () member function as
shown in the following example:

struct ea port sc signal in if bool
public sc port<sc signal in if<bool>,1>
{ typedef sc _signal in if<bool> if type; //typing aid
sc_event finders& ef posedge event() const {
return *new sc_event finder t<if type>(
*this,
&1if type::posedge event
)i

Figure 12-7. Example of Event Finder

Let’s examine the preceding example. First, our custom event finder is
inheriting from a port specification on the second line. Second, to save some
typing, we’ve created a typedef called if type, which refers to the
interface specialization. The new method, ef _posedge event () 2 creates
anew event finder object and returns a reference to it. The constructor
for an sc_event finder takes two arguments: a reference to the port
being found (*this), and a reference to the member function,

32 The prefix ef is a convention. Some groups might prefer a suffix, ef. In any case a
convention should be adopted.

More on Ports 149

(posedge_event ()) that returns a reference to the event of interest. The
preceding example returns a reference to the event finder, which can be used
by sensitive.

Now, the preceding specialization may be used as follows:

SC_MODULE (my module) {
ea port sc signal in if bool my p;

SC CTOR(..) {
SC_METHOD (my method) ;
sensitive << my p.ef posedge event();

}

void my method() ;

.

Figure 12-8. Example of Event Finder Use

A related and useful concept for sensitivity lists in SystemC is the ability
to be sensitive to a port. The idea is that a process, typically an SC_METHOD,
is concerned with any change on an input port. Obviously, this may be coded
directly.

As a syntactical simplification, SystemC also allows specifying a port
name if and only if the associated interface provides a method called
default event () thatreturns a reference to an sc_event. The standard
interfaces for sc_signal and sc_buffer provide this method. If you
design your own interfaces, you will need to supply this method yourself.

12.3 Specialized Ports

Event finders are not particularly difficult to code; however, they are
additional coding. To reduce that burden, SystemC provides a set of
template specializations that provide port definitions on the standard
interfaces and include the appropriate event finders.

It is important to know the port specializations for two reasons. First, you
will doubtless have need for the common event finders at some point.
Second, you will encounter their use in code from other engineers.

150 SystemC: From The Ground Up

Let’s take a look at the syntax of FIFO specializations:

// sc_port<sc_fifo in if<T> >
sc_fifo in<T> name fifo ip;
sensitive << name fifo ip.data_written();
value = name fifo ip.read();

name_fifo ip.read(value);

if (name fifo ip.nb_read(value))...

if (name fifo ip.num available())...
wait (name fifo ip.data_written_event());

Don’t use.

// sc_port<sc fifo out if<T> > Prefer the

sc_fifo out<T> name fifo op;
sensitive << name fifo op.data_read();
name_fifo op.write(value);

if (name fifo op.nb_write(value))...
if (name fifo op.num free())...

wait (name fifo op.data_read event());

-> syntax.

Figure 12-9. Syntax of FIFO Port Specializations

These specializations have a minor downside that has to do with how
ports are to be referenced. Notice in the following syntax figures that
methods such as read () are defined. Recall from the last chapter that
processes invoke port methods using operator-> (). With specialized
ports, you may also use dot (e.g., my sig.read()). This syntax has the
unfortunate effect of creating bad habits that could cause you to stumble
later.

You may still use the pointer methods in processes. With exception to the
new sc_event finder methods and initialization, we recommend you try
to stick to the pointer form whenever possible.

GUIDELINE: Use dot (.) in the elaboration section of the code, but keep
to arrow (—>) in processes.

This style will help you differentiate port accesses from local channel
accesses and reduce confusion.

More on Ports 151

Let’s look at an example using the FIFO port specializations using the
guideline:

// Equalizer.h
SC_MODULE (Equalizer) {
sc_fifo_in<double> raw_fifo ip;
sc_fifo_out<double> equalized_fifo op;
void equalizer thread(); Only available in
SC_CTOR (Equalizer) { ort specialization.
SC_THREAD (equalizer_ thread);
sensitive << raw_fifo ip.data_written();

};

// Equalizer.cpp

void Equalizer::equalizer thread() {
for (;;) |
double sample;
wait () ;

raw_fifo ip->nb read(sample) ;

. /* process data */

equalized fifo op->write(result) ;
}//endforever

Figure 12-10. Example Using FIFO Port Specializations

152 SystemC: From The Ground Up

Now we’ll examine specialized ports for evaluate-update channels such
as sc_signal<>. We left out the obvious duplication of member functions
such as read () that are better handled using the arrow (->) operator.

//sc_port<sc_signal_in if<T>>
sc_in<T> name sig ip;
sensitive << name sig ip.value changed() ;

// Additional sc_in specializations..
sc_in<bool> name bool sig ip;
sc_in<sc_logic> name log sig ip;
sensitive << name sig ip.pos() ;
sensitive << name sig ip.neg() ;

// sc_port<sc_signal out if<T> >
sc_inout<T> name sig op;

sensitive << name sig op.value changed() ;
sc_inout resolved<N>name rsig op;
sc_inout rv<N> name rsig op;
sc_out<T>name_rsig op;

sc_out resolved<T> name rsig op;

sc_out rv<T> name rsig op;

// everything under sc_in<T> plus the following..
name_sig op.initialize(value) ;

name sig op = value; // <--DON'T USE!!!

Figure 12-11. Syntax of Signal Port Specializations

In the preceding syntax, there are several features to note. First, there is
the initialize () method. This method may be used at elaboration to
establish the initial values of signal ports. This approach is handy to model
start-up conditions properly rather than wait a delta-cycle and mess with
synchronizing processes at the start.

We also included one additional syntax that we especially don’t like, the
assignment operator (=), on the last line. When used, this operator can be
especially confusing because unless you realize the name on the left is a
signal port, the behavior will appear to be bizarre. Remember that signals
have an evaluate-update behavior, which is quite different from ordinary
assignment.

GUIDELINE: To avoid confusion, never use the assignment operator
shortcut with sc_signal or sc_port<sc signals.
Instead, prefer the write () method.

More on Ports 153

Let’s look at an example using signal port specializations. This example
is a typical hardware block, a 32-bit linear feedback shift register (LFSR)
commonly used with built-in self-test (BIST). Notice the use of pos () and
initialize().

//FILE: LFSR ex.h
#ifndef LFSR EX H
#define LFSR EX H
SC_MODULE (LFSR_ex) {
// Ports
sc_in<bool> sample;
sc_out<sc_int<32> > signature;
sc_in<bool> clock;
sc_in<bool> reset;
// Constructor
SC_CTOR (LFSR_ex) {
// Register process
SC_METHOD (LFSR_ex method) ;
sensitive << clock.pos() << reset;
signature.initialize(0) ;
!
// Process declarations & Local data
void LFSR ex method() ;
sc_int<32> LFSR_reg;
b

#tendif

Figure 12-12. Example of Signal Port Specializations - Header

154 SystemC: From The Ground Up

//FILE: LFSR _ex.cpp
#include <systemc.h>
#include "LFSR.h"
void LFSR ex::LFSR_ex method() {
if (reset->read() == true) {
LFSR reg = 0;
signature->write (LFSR_reg) ;
} else {
bool lsb =LFSR_reg[31] "LFSR_reg[25] “"LFSR_reg[22]
“LFSR_reg[21] “LFSR _reg[15] "LFSR_reg[11]
“LFSR_reg[10] "LFSR_reg[9] "LFSR reg[7]
“LFSR_reg[6]"LFSR reg[4]"LFSR reg[3]
“LFSR_reg[1] “LFSR _reg[0]
* sample->read() ;
LFSR_reg.range (31,1) = LFSR reg.range(30,0);

LFSR _reg[0] = 1sb;
signature->write (LFSR_reg) ;
}//endif

Figure 12-13. Example of Signal Port Specializations - Implementation

12.4 The sc_port<> Array

The sec_port<> provides a second parameter we have not yet discussed,
the array size parameter. The idea is to provide for the possibility of a
number of like-defined ports. This is referred to as a multi-port or port array.

For example, a communications system might have a number of Tl
interfaces all with the same connectivity. Another example might be an
abstract hierarchical communications channel that may have any number of
devices connected to it. The full se¢_port syntax follows.

sc_port <interface[,N] > portname;
// N=0..MAX Default N=1

Figure 12-14. Syntax of sc_port<> Declaration Complete

For N # 0, then precisely N channels must be connected to the port. The
case where N = 0 is a special case that allows an almost unlimited number of
ports. In other words, you may connect any number of channels to the port.

More on Ports 155

An example with a drawing may help with understanding.

Multi-Ports

Switch switch i

switch_thread

Tl ip request_op| \

Figure 12-15. Tlustration of sc_port<> Array Connectivity

Here is the header code for the switch:

//FILE: Switch.h

SC_MODULE (Switch) {
sc_port<sc fifo in if<int>, 4> Tl ip;
sc_port<sc signal out if<bool>,0> request op;

}i

Figure 12-16. Example of sc_port<> Array Declaration

Channels are connected to port arrays the same way ordinary ports are
connected, except port arrays have more than one connection. In fact, the
basic port syntax simply relies on the default that N = 1. When N > 1, each
connection is assigned a position in the array on a first-connected first-
position basis.

156 SystemC: From The Ground Up

Here is the corresponding example for the connections:

//FILE: Board.h

#include "Switch.h"

SC_MODULE (Board) {
const unsigned REQS;
Switch switch_i;
sc_fifo{int> tla, €1B, t1C, tl1D;
sc_signal<bool> request[9];
SC_CTOR (Board) : switch_i("switch_i")
{

From preceding
example.

// Connect 4 Tl channels to the switch

// input T1 ports

switch_i.T1_ip(tlA); switch_i.T1 ip(tlB);

switch i.T1 _ip(tlC); switch_i.T1 ip(tlD);

// Connect 9 request channels to the

// switch request output ports

for (unsigned i=0;i!=9;i++) {
switch_i.request_op(request[i]);

}//endfor

}//end constructor

Figure 12-17. Example of sc_port<> Array Connections

The preceding example illustrates several things. First, a fixed port array
of size 4 is connected directly to four FIFO channels. Second, an unbounded

array is connected to an array of channels using a for-loop.

Access to port arrays from within a process is accomplished using an
array syntax. This class also provides a method, size (), that may be used
to examine the declared port size. This method is useful for situations where

the array bounds are unknown (i.e., N = 0).

More on Ports 157

Here is the code implementing the process accessing the multi-ports:

//FILE: Switch. cpp
void Switch::switch thread() {
// Initialize requests
for (unsigned i=0;i!=request op.size();i++)
request opl[i] ->write(true);
}//endfor
// Startup after first port is activated
wait (T1 ip[0]->data written event ()
|T1 ip[1]->data written event ()
|T1 ip[2]->data written event ()
|T1 ip[3]->data written event ()
)i
for (;;)
for (unsigned i=0;i!=T1 ip.size();i++) {
// Process each port..
int value = T1 ipl[i]->read();
}//endfor
}//endforever
}//end Switch::switch thread

Figure 12-18. Example of sc_port<> Array Access

Notice that the size () method requires the dot operator because it’s
defined in the specialized port class (e.g., request_op or T1_ip) rather
than in the external channel (e.g., request [i] ortlA, tl1B, tlc, t1D).On
the other hand, port access to the channel uses the arrow operator as would
be expected.

One current syntactical downside to wait () syntax may be seen in the
preceding syntax. If you need to use “any event in the attached channels,”
current syntax requires an explicit listing.

Version 2.1 offers an alternate possibility with dynamic threads
(specifically, fork/join statements). One could create and launch a separate
thread to monitor each port and provide communication back via a shared
local variable. We will examine this feature in Chapter 14, Advanced
Topics.

158 SystemC: From The Ground Up

12.5 SystemC Exports

SystemC version 2.1** provides a new type of port called the
sc_export. This port is similar to standard ports in that the declaration
syntax is defined on an interface, but this port differs in connectivity. The
idea of an sc_export is to move the channel inside the defining module,
and use the port externally as though it were a channel. The following figure
illustrates this concept:

modA mA
sc_export pA

int> C\‘

sc fifo<

A thread

B thread

c.write(v); -~ v=pB->read() ;

Pointer Access

Figure 12-19. How sc_export Works

Contrast this concept with Figure 11-9 where we originally investigated
ports.

The observant programmer might ask, why use sc_export at all? After
all, one could just access the internal sc_channel instance name directly
using a hierarchical access. That approach works only if the interior channel
is publicly accessible. For an IP provider, it may be desirable to export only
specific channels and keep everything else private. Thus, sc_export allows
control over the interface.

Another reason for using sc_export is to provide multiple interfaces at
the top level. Without sc_export, we are left to using the hierarchical
channel, and that allows for only a single top-level set of interfaces.

B af you do not have version 2.1 available, don’t fret. You can access much of the
functionality using hierarchical channels.

More on Ports 159

With export, each sc_export contains a specific interface. Since
connection is not required, sc_export also allows creation of “hidden”
interfaces. For example, a debug or test interface might be used internally by
an IP provider, but not documented for the end user. Additionally, it allows a
development team or IP provider to develop an “instrumentation model” that
can be used extensively during architectural exploration and then dropped
during regression runs when visibility is less needed and performance is key.

The syntax follows sc_port, but without the multi-port possibility.

sc_export<interface> portname;

Figure 12-20. Syntax of sc_export<> Declaration

Connectivity to an sc_export requires some slight changes since the
channel connections have now moved inside the module. Thus, we have:

SC_MODULE (modulename) {
sc_export<interface> portname;
channel cinstance;

SC_CTOR (modulename) {
portname (cinstance) ;

}
b

Figure 12-21. Syntax sc_export<> Internal Binding to Channel

Let’s look at a simple example. This example provides a process that is
toggling an internal signal periodically. The sc_export in this case is
simply the toggled signal. For compactness, this example includes the entire
module definition in the header.

160 SystemC: From The Ground Up

SC_MODULE (clock gen) {
sc_export<sc_ signal<bool> > clock xp;
sc_signal<bool> oscillator;
SC_CTOR (clock gen)
SC_METHOD (clock method) ;
clock xp(oscillator); // connect sc_signal
// channel
// to export clock xp
oscillator.write(false);

void clock method () {
oscillator.write(!oscillator.read()) ;
next trigger (10,SC NS);

}
bi

Figure 12-22. Example of Simple sc_export<> Declaration

To use the above sc_export, we provide the corresponding
instantiation of this simple module.

#include "clock gen.h"

clock gen clock gen_ i;

collision detector collision detector i;

// Connect clock

collision detector i.clock(clock gen i.clock xp);

Figure 12-23. Example of Simple sc_export<> Instantiation

Another powerful possibility with sc_export is to let interfaces be
passed up the design hierarchy as illustrated in the next figure.

More on Ports 161

The following figure illustrates this idea:
Hierarchy with sc_exports

modA maA modB mB

sc_export pA
‘modC mC

Figure 12-24, sc_export Used with Hierarchy

Just like sc_port, the sc_export can be bound directly to another
sc_export in the hierarchy. Here is how to accomplish this binding:

SC_MODULE (modulename) {
sc_export<interface> xportname;
module minstance;
SC_CTOR (modulename) , minstance ("minstance") {
xportname (minstance. subxport) ;

}
Vi

Figure 12-25. Syntax of sc_export<> Binding to sc_export<>

The sc_export allows easy access to internal channels for debug. One
nice aspect of sc_export is the lack of a requirement for a connection. By
contrast. an sc_port requires a connection.

sc_export has some caveats that may not be obvious. First, it is not
possible to use sc_export in a static sensitivity list. On the other hand, you
can access the interface via operator->(). Thus, one can use
wait (xportname->event ()) on suitably defined interfaces accessed
within an SC_THREAD.

Second, as previously mentioned, it is not possible to have an array of
sc_export in the same manner as sc_port. On the other hand, suitable
channels may allow multiple connections, which may make this issue moot.

162 SystemC: From The Ground Up

The following is an example of how an sc_export might be used to
model a complex bus including an arbiter to be provided as an IP
component. First let’s look at the customer view:

Customer View

‘\ South_Bus_if
Figure 12-26. Example of Customer View of IP

This would be provided as the following header file:

//CBus.h

#ifndef CBUS H

#define CBUS_H

#include "CBus_if.h"

class North bus; // Forward declarations

class South bus;

class Debug bus;

class CBus_rtl;

SC_MODULE (CBus) {
sc_export<CBus North if> north p;
sc_export<CBus_ South if> south p;
SC_CTOR (CBus) ;

private:

North bus* nbus ci; South bus* sbus ci;
Debug bus* debug ci; CBus_rtl* rtl i;

i

#endif

Figure 12-27. Example of sc_export Applied to a Bus

Notice how the preceding is independent of the implementation, and the
end user is not compelled to hook up either bus. In addition, the debug
interface is not provided in this example header. Here is the implementation
view:

More on Ports

Vendor View

%

Figure 12-28. Example of Vendor View of IP

Here is the implementation code, which may be kept private:

163

//FILE: CBus.cpp

#include "CBus.h"
#include "North bus.h"
#include "South bus.h"
#include "Debug bus.h"
#include "CBus rtl bus.h"

// Local instances

nbus ci = new North bus
sbus ci = new South bus
debug _ci = new Debug bus("debug ci
rtl i = new CBus_rtl("rtl i");
// Export connectivity

north p(nbus ci);

south p(sbus ci) ;

// Implementation connectivity

("nbus_ci"
(

"sbus ci™

)
)

7

")

CBus: :CBus (sc_module name (nm) : sc_module (nm) {

7

Figure 12-29. Example of sc_export Applied to a Bus Constructor

In the preceding code, notice the debug interface is not provided to the

customer. This would be an optional aspect of the IP.

164 SystemC: From The Ground Up

12.6 Connectivity Revisited

Let’s review port connectivity. The following diagram is copied from the
previous chapter. It should become second nature to understand how to

accomplish all the connections illustrated.

Port Connections

connections top

M1 mil ©hl cijs

pé

pr3

pr2

Figure 12-30. Connectivity Possibilities

More on Ports 165

All of the possible connections are illustrated in this one figure. This
figure is a handy reference when reviewing the SystemC connection rules,
which are listed below:

L.

Processes may communicate with other processes in the same
module using channels. For example, process pr2 to process pr3
via interface i £x on channel c21i.

Processes may communicate with other processes in the same
module using events to synchronize exchanges of information
through data variables instantiated at the module level (e.g.,
within the module class definition). For example, process pr2 to
process prl via event evl.

Processes may communicate with processes upwards in the
design hierarchy using the interfaces accessed via sc_port. For
example, process pr2 via port p2 using interface 1 £2.

Processes may communicate with processes in sub-module
instances via interfaces to channels connected to the sub-module
ports. For example, process pr3 to module mi2 via interface ifz
on channel c31.

sc_exports may connect via interfaces to local channels. For
example, port p5 to channel ¢31 using interface 1 £5.

sc_ports may connect directly to sc_ports of sub-modules.
For example, port p1 is connected to port pA of sub-module mil

sc_exports may connect directly to sc_exports of sub-
modules. For example, port pé6 is directly connected to port pG of
sub-module mil.

sc_ports may connect indirectly to processes by letting the
processes access the interface. This is just a process accessing a
port described previously. For example process prl
communicates with sub-module mi1 through interface i fw

sc_port arrays may be used to create multiple ports using the
same interface. For example, pD[0] and pD[1] of sub-module
mi2 constitute a port array.

166 SystemC: From The Ground Up

Finally, we present an equivalent diagram to the preceding. In this
diagram, channels appear as slightly thickened lines. The sc_ports are
represented with a square containing a circle to indicate the presence of an
interface. This style is often used to simplify the schematic representation,
but at the expense of slightly hiding the underlying functionality. In the next
chapter, we will investigate more complex channels known as hierarchical
channels.

Hidden Channels

connections top

ifB ifD

Figure 12-31. Hidden Channels

12.7 Exercises

For the following exercises, use the samples provided at
www.EklecticAlly.com/Book/.

Exercise 12.1: Examine, compile, and run the static sensitivity
example.

Exercise 12.2: Examine, compile, and run the connections example.
See if you can identify all the connections shown in the figures in this
chapter.

Predefined Primitive Ch Is: My FIFOs, & Signals
Channels &
Threads & Methods Interfaces Data types:
Simulation Logic,
Kemel Integers,

Ewvents, Sensitivity Modules & Fixed point
Chapter 13 & Notifications Hierarchy]
1

CUSTOM CHANNELS AND DATA

Primitive & Hierarchical

By now, we’ve covered much of the syntax of SystemC. Now we will
focus on some of the more abstract concepts from which SystemC derives
much of its power. This chapter illustrates how to create custom channels of
a variety of types including: primitive channels, custom signals, custom
hierarchical channels, and custom adapters. Of these, custom signals and
adaptors are probably the most commonly encountered.

13.1 A Review of Channels and Interfaces

Modules control and process data. Channels implement communications
between modules. Interfaces provide a mechanism to allow independence of
modules from the mechanisms of communication, channels.

Channels come in two flavors: primitive and hierarchical. The basic
premise of a channel is a class that inherits from an interface. The interface
makes a channel usable with ports. In addition, channels must inherit either
from sc_prim channel or sc_channel. This distinction in these latter
two base classes is one of distinct capabilities and features. In other words,
sc_prim channel has capabilities not present in sc_channel and visa
versa.

Primitive channels are intended to provide very simple and fast
communications. They contain no hierarchy, no ports, and no sc_METHODS
or sc_THREADS. Primitive channels have the ability to implement the
evaluate-update paradigm. We will discuss how to do this in Section 13.2.

By contrast, hierarchical channels may access ports, they can have
processes and contain hierarchy as the name suggests. In fact, hierarchical
channels are really just modules that implement one or more interfaces.
Hierarchical channels are intended to model complex communications buses
such as PCI, HyperTransport™, or AMBA™. We will briefly look at
custom hierarchical channels in Section 13.4.

168 SystemC: From The Ground Up

Channels are important in SystemC because they enable several
concepts:

* Appropriate channels enable safe communication between processes

e Channels in conjunction with ports clarify the relationships of
communication (producer vs. consumer)

Interfaces are important in SystemC because they enable the separation
of communication from processing.

Let us now proceed and examine various channel designs.

13.2 The Interrupt, a Custom Primitive Channel

We discussed events in Chapter 7, Concurrency, and we saw how
processes may use events to coordinate activities. We introduced hierarchy
and ports in Chapter 10, Structure. We left the question of how we could
provide a simple event or interrupt between processes located in different
modules unanswered.

One approach might take a channel that has an event and simply use the
side effect like sc_signal<bool>. However, using side effects is
unsatisfying. Let us see how we might create a custom channel just for this

purpose.

A proper channel must have an interface or interfaces to implement. The
ideal interface provides only the methods required for a particular purpose.
For our channel, we’ll create two interfaces. One interface for sending
events is called ea interrupt gen if, and another interface for
receiving events is called ea_interrupt evt if. To allow and simplify
use in static sensitivity lists, we’ll specify a default event.

The interfaces are shown in the Figure 13-1. Notice that interfaces are
required to inherit from the sc_interface base class. Also, the
default event has a specific calling signature to be properly recognized
by sensitive.

Custom Channels and Data 169

struct ea interrupt gen if: public sc_interface {
virtual void notify () = 0;
virtual void notify(sc_time t) = 0;

Vi

struct ea_ interrupt evt if: public sc_interface ({
virtual const sc_event& default event () const = 0;

}i

Figure 13-1. Example of Custom Channel Interface

Next, we look at the implementation of the primitive channel shown in
Figure 13-2. The implementation has four features of interest.

First, the channel must inherit from sc_prim channel and the two
interfaces defined previously.

Second, the constructor for the channel has similar requirements to an
sc_module; it must construct the base class sc_prim channel. This
channel is provided in only one format, which is a format that requires an
instance name string.

Third, the channel must implement the methods compelled by the
interfaces from which it inherits.

Fourth, we specify a private implementation of the copy constructor to
prevent its use. Simply put, a channel should never be copied. This feature of
the implementation provides a compile-time error if copying is attempted.

170 SystemC: From The Ground Up

#include "ea interrupt_evt if .h"
#include "ea_ interrupt _gen if.h"

struct ea interrupt

public sc_prim channel
public ea interrupt_evt if
, public ea_interrupt gen if

// Constructors
explicit ea interrupt ()
sc_prim channel (
sc_gen unique name ("ea interrupt")) {}
explicit ea interrupt (sc _module name nm)
sc_prim channel (nm) {}

// Methods
void notify() { m interrupt.notify(); }
void notify (sc_time t) { m_interrupt.notify (t) ; }

const sc_event& default event() const
{ return m interrupt; }
private:
sc_event m_interrupt;
// Copy constructor so compiler won't create one
ea_interrupt (const ea interrupts&) {}

bi

Figure 13-2. Example of Custom Interface Implementation

13.3 The Packet, a Custom Data Type for SystemC

Creating custom primitive channels is not very common; however,
creating an sc_signal channel or an sc_fifo is. SystemC defines all the
necessary features for both of these channels when used with built-in data
types. For custom data types, SystemC requires you to define several
methods for your data type.

The reasons for the required methods are easy to understand. For
instance, both channels support read and write methods, which involve
copying. For this reason, SystemC requires the definition of the assignment
operator (i.e., operator=()). Also, sc_signal supports the method
value changed event (), which implies the use of comparison. In this

Custom Channels and Data 171

case, SystemC requires the definition of the equality operator (i.e.,
operator==()).

Finally, there are two other methods required by SystemC, streaming
output (i.e., ostream& operator<< ()) and sc_trace. Streaming output
allows for a pleasant printout of your data structure during debug. The trace
function allows all or parts of your data type to be used with the SystemC
trace facility, and this function enables viewing of trace data with a
waveform viewer. We’ll cover waveform data tracing in the next chapter.

Consider the following C/C++ custom data type, which might be used for
PCI-X transactions:

struct pcix trans

int devnum;

int addr;

int attril;

int attr2;

int cmd;

int data [8];

bool done;

Figure 13-3. Example User Defined Data Type

This structure or record contains all the information necessary to carry on
a PCI-X transaction; however, it is not usable with an sc_signal channel
oran sc_fifo. Let’s add the necessary methods to support this usage.

172 SystemC: From The Ground Up

//FILE: ea pcix trans.h
struct pcix trans {
int devnum;
int addr;
int attril;
int attr2;
int cmd;
int data([8];
bool done;
// Required by sc signal<> and sc_fifo<>
ea pcix trans& operator= (const ea pcix trans& rhs)

{

devnum = rhs.devnum; addr = rhs.addr;
attrl = rhs.attrl; attr2 = rhs.attr2;
cmnd = rhs.cmnd; done = rhs.done;

for (unsigned i=0;1i!=8;i++) datal[i] =rhs.datal[i];
return *this;

}

// Required by sc_signal<>

bool operator== (comst ea pcix trans& rhs) const {
return (
devnum ==rhs.devnum && addr
attrl ==rhs.attrl && attr2
cmnd ==rhs.cmnd && done

rhs.addr &&
rhs.attr2 &&
rhs.done &&

data[0]==rhs.data[0] && data[ll== rhs.datall]&&
data[2]==rhs.data[2] && datal[3]== rhs.data[3]&&
datal[4]==rhs.datal4] && data[5]== rhs.datal[5]&&
data[6]==rhs.data[6] && datal[7]== rhs.datal7]);

}
b

// Required functions by SystemC
ostream& operator<< (ostream& file,
const ea pcix trans& trans);

void sc_trace (sc_trace file*& tf,
const ea pcix trans& trans,
sc_string nm) ;

Figure 13-4. Example of SystemC User Data Type

Custom Channels and Data

We provide example implementations of the latter two methods here:

173

//FILE: ea pcix trans.cpp
#include <systemc.h>
#include "ea pcix trans.h"
ostream& operator<<(ostream& oOs,
const ea pcix trans& trans)

os << "{" << endl << " "
<< "cmnd: " << trans.cmnd << ", "
<< "attrl:" << trans.attrl << ", "

<< "done:" << (trans.done?"true":"false")
<< endl << "}";
return os;
} // end
// trace function, only required if actually used
void sc trace(sc_trace file*s& ¢tf,
const ea pcix trans& trans,
sc_string nm)

sc_trace(tf, trans.devnum, nm + ".devnum");
sc_trace(tf, trans.addr, nm + ".addr");
sc_trace(tf, trans.datal7], nm + ".datal[7]");
sc_trace(tf, trans.done, nm + ".done");

} // end trace

Figure 13-5. Example of SystemC User Data Type Implementation

It should be noted that the sc_trace method is only necessary if used;
however, best practices suggest that you should always provide this method.
Observe that this method is always expressed in terms of other traces that are

already defined (e.g., the built-in ones).

In some cases, it may be difficult to determine an appropriate
representation. For example, char* or string have no real equivalent. In
these cases, you may either convert to an unsigned fixed-bit-width vector
(e.g., sc_bit), or omit it completely. However, remember that converting
these representations is for ease of debug and doing so is usually of much
more value than you might think. The same may be said of appropriate

representation for ostream.

174 SystemC: From The Ground Up

You may also wish to implement ifstream or ofstream to support
verification needs.

As you can see, the added support is really quite minimal, and it is only
required for custom data types.

13.4 The Heartbeat, a Custom Hierarchical Channel

Hierarchical channels are interesting, because they’re really hybrid
modules. Technically, a hierarchical channel must inherit from
sc_channel; however, sc_channel is really just a #define for
sc_module. Hierarchical channels must also inherit from an interface to
allow them to be used with sc_port.

Why would you define a hierarchical channel? One use of hierarchical
channels is to model complex buses such as PCI, AMBA™, or
HyperTransport™. Another common use of hierarchical channels, adaptors
and transactors will be discussed in the next section.

To keep things simple, we’ll model a simple clock or heartbeat. This
clock will differ from the standard hardware concept that typically uses a
Boolean signal. Instead, our heartbeat channel will issue a simple event. This
usage would correspond to the posedge event used by so many hardware
designs.

Because it’s simple, the heartbeat is much more efficient simulation-wise
than a Boolean signal. Here is the header for our simple interface:

struct ea heartbeat if: public sc_interface {
virtual const sc_event& default event() const = 0;
virtual const sc_event& posedge event () const

bi

Il
o

Figure 13-6. Example of Hierarchical Interface Header

It’s no different than a primitive channel interface. Notice that we use
method names congruent with sc_signal. This convention will simplify
design refinement. The careful design of interfaces is key to reducing work
that is done later.

Let’s look at the corresponding channel header, which inherits from
sc_channel instead of sc_prim channel and has a process,
SC_METHOD.

Custom Channels and Data 175

#include "ea heartbeat if.h"
struct ea heartbeat
public sc channel, public ea heartbeat if {
SC_HAS PROCESS (ea_heartbeat) ;
// Constructor (only one shown)
explicit ea heartbeat (sc_module name nm,
sc_time period)
sc_channel (nm)
m_period(period)

7

{

SC_METHOD (heartbeat method) ;
sensitive << m heartbeat;

}

// User methods

const sc_event& default event() const
{ return m_heartbeat; }
const sc_event& posedge event () const
(return m _heartbeat; }
void heartbeat method(); // Process
private:
sc_event m _heartbeat; // *The* event
sc_time m period; // Time between events

// Copy constructor so compiler won't create one
ea_heartbeat (const ea heartbeat&);

}i

Figure 13-7. Example of Hierarchical Channel Header

176 SystemC: From The Ground Up

Let’s see how it’s implemented:

#include <systemc.h>
#include "ea heartbeat.h"

void ea heartbeat::heartbeat method(void) {
m_heartbeat.notify (m period) ;

}

Figure 13-8. Example of Hierarchical Channel Interface Header

In the next chapter, we’ll see the built-in SystemC clock, which has more
flexibility at the expense of performance.

13.5 The Adaptor, a Custom Primitive Channel

Also known in some circles as transactors, adaptors are a type of channel
specialized to translate between modules with different interfaces. Adaptors
are used when moving between different abstractions. For example, an
adaptor is commonly used between a test bench that models communications
at the transaction level (i.e., TLM), and an RTL implementation that models
communications at the pin-accurate level. Transaction-level communications
might have methods that transfer an entire packet of information (e.g., a
PCI-X transaction). Pin-accurate level communications use Boolean signals
with handshakes, clocks, and detailed timing.

To make it easy to understand, we’re going to investigate two adaptors.
In this section, we’ll see a simple primitive channel that uses the evaluate-
update mechanism. In the following section, we’ll investigate a hierarchical
channel. For many of the simpler communications, an adaptor needs nothing
more than some member functions and a handshake to exchange data. This
often meets the requirements of a primitive channel. Actually, many of the
simpler adaptors could go either way, since they don’t require an evaluate-
update mechanism.

Custom Channels and Data 177

Adaptor - Primitive Channel

ea_interrupt evt if
ea_interrupt gen if

sc_signal<bool>

-

resp _rtl

v

Figure 13-9. Before and After Adaptation

We will now discuss an example design. The example design includes a
stimulus (stim) and a response (resp) that are connected via an
ea_interrupt channel described in an earlier section. We now would like
to replace resp with a refined RTL version, resp _rtl, that requires an
sc_signal<bool> channel interface. The before and after example design
is graphically shown in Figure 13-9.

178 SystemC: From The Ground Up

Here is the adaptor’s header:

#include "ea interrupt_gen_ if.h"
struct interrupt2sigbool

: public sc_prim channel

, public ea_interrupt gen if

, public sc_signal in if<bool>

// Constructors
explicit interrupt2sigbool ()
sc_prim channel (
sc_gen unique name ("interrupt2sigbool")) {}
explicit interrupt2sigbool (sc_module name nm)
sc_prim channel (nm) {}
// Methods for ea interrupt gen if
void notify() {
m_delay = SC_ZERO TIME; request update(); }
void notify(sc_time t) {
m_delay = t; request update(); }
// Methods for sc_signal in if<bools

const sc_event& value changed event () const
{ return m_interrupt; }

const sc_event& posedge event () const

{ return value changed event(); |}

const sc_event& negedge event () const

{ return value changed event(); }

const sc_event& default event() const

{ return value changed event(); }

// true if last delta cycle was active
const bools read() comst
m_val = event(); return m_val;

}

// get a reference to current value (for tracing)

const bool& get data ref () comst { return read(); }
// was there a value changed event?
bool event () comst {

return (simcontext ()->delta count()==m delta+l) ;

}

// continued next figure..

Figure 13-10. Example of Primitive Adaptor Channel Header (1 of 2)

Custom Channels and Data 179

bool posedge() const { return event(); }
bool negedge () comst { return event(); }
const sc_signal bool devals delayed () const

const sc signal in if<bool>* iface = this;
return RCAST<const sc_signal bool devalé&>
(*iface);
}
protected:
// every update is a change
void update() {
m_interrupt.notify (m delay);
m delta = simcontext ()->delta count();
}
private:
sc_event m interrupt;
mutable bool m val;
sc_time m delay;
uinté64 m delta; // delta of last event
// Copy constructor so compiler won't create one
interrupt2sigbool (const interrupt2sigboolé&) ;

Figure 13-11. Example of Primitive Adaptor Channel Header (2 of 2)

The first thing to notice is all the methods. Most of these are forced upon
us because we are inheriting from the sc_signal in if<boolsx class.
Fortunately, most of them may be expressed in terms of others for this
particular adaptor. Another way to handle excess methods is to provide
stubbed error messages with the assumption that nobody will use them.*

The second feature of interest is the manner in which evaluate-update is
handled. In the notify () methods, we update the delay and make a
request update () call to the scheduling kernel. When the delta-cycle
occurs, the kernel will call our update () function that issues the
appropriately delayed notification.

For the most part, this adaptor was simple. The hard part was obtaining a
list of all the routines that needed to be implemented as a result of the
interface. Listing the routines is accomplished easily enough by simply

Sl § you use this approach, we strongly suggest the error messages be implemented with the
error reporting mechanism discussed in Chapter 14, Advanced Topics and be classified as
SC_FATAL.

180 SystemC: From The Ground Up

examining the interface definition in the Open SystemC Initiative library
source code.

A third feature to note is the wuse of the «call to
simcontext () ->delta count (), which is not documented in the LRM.
While we don’t encourage this type of freedom, it is sometimes necessary.
Note that the LRM and SystemC have not finalized on the standard
specification at the time of this book’s first edition. We believe a few details
like this need to be added to the LRM. The main point of this example is the
adaptor.

Finally, for those not completely up on their C++, a comment on the
mutable bool. The keyword mutable means changeable even if const.
This keyword is used for situations like this. The read () method is defined
as const in the sc_signal in if<bool> interface. So we have to
implement it, and the implementation must satisfy the const directive (i.e.,
it may not change any internal state). It also is required to return a reference
(&). We are using the member function event () to obtain the value, which
is not a reference. So, we create a member data m_val which can be used by
reference. In order to store the return value of event () we have to change
the unchangeable; hence, mutable. We are not violating the spirit of the
const.

13.6 The Transactor, a Custom Hierarchical Channel

When a more complex communications interface is encountered, such as
one that requires processes, hierarchy, or ports, then a hierarchical channel
solution is required. Such is the case with the following processor interface
problem. On one side, we have a peripheral, an 8K x 16 memory that is
normally controlled by a processor. On the other side, we have a test bench
that needs to use simple transaction calls to verify the functionality of the
memory. This adaptor is often referred to as a transactor because it allows
the test bench to convert transactions into pin-level stimulus.

Custom Channels and Data 181

Graphically, here are the elements of the design:

Transactor - Hierarchical Channel

test bench mem arch

Architectural
model

sc_signal<bool>

mem rtl

Memory as
RTL model

sc_s ign';al <int>
ea_heartbeat

Figure 13-12. Test Bench Adaptation Using Hierarchical Channels

There are actually potentially two hierarchical channels in this picture.
The architectural model of the memory is a module implementing an
interface, in this case the CPU_1if.

Let’s take a look at the CPU interface:

struct CPU if: public sc_interface ({
virtual void write (unsigned long addr, long data)=0
virtual long read(unsigned long addr)=0;

Y

Figure 13-13. Example of Simple CPU interface

182 SystemC: From The Ground Up

The corresponding memory implementation is a trivial channel:

//FILE: mem arch.h
#include "CPU if.h"
struct mem: public sc_channel, CPU if

// Constructors & destructor
explicit mem(sc_module name nm,
unsigned long ba, unsigned sz)
sc_channel (nm), m base(ba), m size(sz)
{ m_mem = new long[m size]; }
~mem() { delete [] m mem; }
// Interface implementations
virtual void write (unsigned long addr,
if (m_start <= addr && addr < m base+m size) {
m_mem[addr-m _base] = data;
}
}
virtual long read(unsigned long addr) ({
if (m_start <= addr && addr < m base+m size) {
return m_mem[addr-m_base] ;

long data) {

} else {
cout << "ERROR:"<<name ()<<"@"<<sc_time stamp ()
<< ": Illegal address: " << addr << endl;
sc_stop(); return 0;
}
}
private:
unsigned long m base;
unsigned m_size;
long m_mem/[] ;
mem(const mem&); // Disable

b

Figure 13-14. Example of Hierarchical Channel Implementation

Custom Channels and Data 183

Now, suppose we have the following timing diagram for the pin-cycle

accurate interface:

CPU PCA Timing

oK LML L L L L L L

LD _ |

__ GEEEEsED——

&2 CEI L > EEE—

Write Idle Read Write2 Read2

Figure 13-15. CPU Pin-Cycle Accurate Timing

Notice that write transactions take place in a single clock cycle; whereas,
read has a one-cycle delay for the first read in a burst. Also, this interface
assumes a bi-directional data bus. Address and read/write have a non-
asserted state. We’ll allow this to be a don’t care situation for this design.

184 SystemC: From The Ground Up

Here is the transactor’s header:

#include "CPU_if.h"
#include "ea heartbeat if.h"
SC_MODULE (cpu2pca), CPU if

// Ports

sc_port<ea heartbeat ifsck; // clock

sc_out<boolx> 1d; // load/execute command
sc_out<bool> rw; // read high/write low
sc_out<unsigned long> a; // address

sc_inout rv<32> d; // data

// Constructor
SC_CTOR (cpu2pca) {}
// Interface implementations
void write (unsigned long addr, long data);
long read(unsigned long addr) ;
private:
cpu2pca (const cpu2pcas&); // Disable

bi

Figure 13-16. Example of Hierarchical Transactor Channel Header

Clearly, with the preceding example, the basics of a module are present,
but the addition of inheriting from CPU_1if simply adds some methods to be
implemented, namely read () and write ().

An interesting point to ponder with channels (especially adaptors and
transactors) is the issue of member function collisions. What if two or more
interfaces that need to be implemented have identically-named member
functions with identical argument types? There are two solutions. Prior to
SystemC version 2.1, this situation required renaming or otherwise
modifying the interfaces. This is an ugly situation, but cannot be avoided.
With the advent of sc_export<> in SystemC 2.1, it is possible to isolate
each interface to an sc_export<s.

Custom Channels and Data 185

Here is the implementation code for the transactor:

#include <systemc.h>
#include "cpu2pca.h"
enum operation {WRITE=false, READ=true};
void cpu2pca: :write (unsigned long addr, long data) ({
wait (ck->posedge event()) ;
ld->write (true) ;
rw->write (WRITE) ;
a->write (addr) ;
d->write(data) ;
wait (ck->posedge event());
ld->write (false) ;
iong cpu2pca: :read (unsigned long addr) {
wait (ck->posedge event()) ;
1d->write (true) ;
rw->write (READ) ;
a->write (addr) ;
d->write (FLOAT) ;
wait (ck->posedge event());
1ld->write (false) ;
return d->read() .to long();

Figure 13-17. Example of Hierarchical Transactor Implementation

The code for an adaptor/transactor can be very straightforward. For more
complex applications, such as a PCI-X bus interface, the design of an
adaptor may be more complex.

Transactors and adaptors are very common in SystemC designs, because
they allow high-level abstractions to interface with lower-level
implementations. Sometimes these hybrids are used as part of a design
refinement process. At other times, they merely aid the development of
verification environments. There are no fixed rules about which levels have
to use them.

186 SystemC: From The Ground Up
13.7 Exercises

For the following exercises, use the samples provided in
www.EklecticAlly/Book/.

Exercise 13.1: Examine, compile, and run the interrupt example.
Write a specialized port for this channel to support the method pos ().

Exercise 13.2: Examine, compile, and run the pcix example. Could this
process of converting a struct to work with an sc_signal be automated?

Exercise 13.3: Examine, compile, and run the heartbeat example.
Extend this channel to include a programmable time offset.

Exercise 13.4: Examine, compile, and run the adapt example. Notice
the commented out code from the adaptation of resp to resp rtl.

Exercise 13.5: Examine, compile, and run the hier chan example.
Examine the efficiency of the calls. Extend the design to allow back-to-back
reads and writes in a cycle efficient manner.

Chapter 14

ADVANCED TOPICS
Clocks, Clocked Threads, Programmable Hierarchy, Signal
Tracing, & Dynamic Processes

Congratulations for keeping up to this point. This section begins with a
basic discussion of clocks and then quickly accelerates to a discussion of
SC_CTHREADS, programmable hierarchy, waveform tracing, and a very
advanced discussion of dynamic threads and SC_FORK/SC JOIN.

If you are able to follow this section, you are ready to take on the world.
However, if you become discouraged, come back and reread the chapter
after gaining a little SystemC coding experience.

14.1 sc_clock, Predefined Processes

Clocks represent a common hardware behavior, a repetitive Boolean
value. If you are a hardware designer, it is likely you’ve been concerned
about the late discussion of this topic. This topic is delayed for a reason.

Clocks add many events, and much resulting simulation activity is
required to update those events. Consequently, clocks can slow simulations
significantly. Additionally, quite a lot of hardware can be modeled
adequately without clocks. If you need to delay a certain number of clock
cycles, it is much more efficient to execute a wait for the appropriate delay
than to count clocks as illustrated in Figure 14-1.

wait (N*t PERIOD) // one event -> FAST!

OR

for(i=1; i<=N;i++) // creates many events -> slow
wait (clk->posedg event())

Figure 14-1. Comparing Wait Statements to Clock Statements

188 SystemC: From The Ground Up

More importantly, many designs can be modeled without any delays. It
all depends on information to be derived from the model at a particular stage
of a project.

A clock can be easily modeled with SystemC. Indeed, we have already
seen an example of a clock modeled with just an event, namely the
heartbeat example. More commonly, clocks are modeled with an
sc_signal<bool> and the associated event.

Clocks are so common that SystemC provides a built-in hierarchical
channel known as an sc_clock. Clocks are commonly used when modeling
low-level hardware where clocked logic design currently dominates.

sc_clock name ("name", period
[,duty cycle=0.5,first=0,rising=true]) ;

Figure 14-2. Syntax of sc_clock

Notice the optional items indicated by their defaults.

Some caveats apply to sc_clock. First, if declared within a module,
sc_clock must be declared and initialized prior to its use. Second, if you
want to communicate a clock as an output to the module, you must provide a
process sensitive to the clock that assigns the output signal port. An
alternative approach available with SystemC version 2.1 is to use an
sc_export<sc_signal in if<bool> >.

Advanced Topics 189

For example:

SC_MODULE (clock_gen) {
sc_port<sc_signal out if<bool> > clkl p;
sc_export<sc_signal in if<bool> > clk2 p;//SysC2.1
sc_clock clkl;
sc_clock clk2;

SC _CTOR (clock gen)
: clkl("clkl",4,SC_NS)
, clk2("clk2",6,SC_NS)

SC_METHOD (clkl method) ;
sensitive << clkl;
clk2_p(clk2);

}

void clkl method () {
clkl p->write(clkl) ;

}
}i

Figure 14-3. Example of sc_clock

Consider that the first method used for clk1 involves additional activity,
which inevitably slows the simulation. This method also entails more code.

14.2 Clocked Threads, the SC_CTHREAD

SystemC has two basic types of processes: the sC_THREAD and the
SC_METHOD. A variation on the SC_THREAD, the clocked SC_CTHREAD, is
popular for behavioral synthesis tools. This popularity is partly because
synthesized logic tools currently produce fully synchronous code, and it is
partly because the SC_CTHREAD provides some new facilities to simplify
coding.

SC_CTOR (module name)
SC_CTHREAD (NAME cthread, clock name.edge()) ;

}

Figure 14-4. Syntax of SC_CTHREAD

190 SystemC: From The Ground Up

Some of the simpler facilities provided by this new process are a new
form of wait () and a level-sensitive wait, called wait until (). The
syntaxes are:

wait (N); // delay N clock edges
wait until (delay expr),; // until expr true @ clock

Figure 14-5. Syntax of Clocked Waits

In addition, the delay expression, delay expr, must be expressed using
delayed signals. In other words, all arguments for wait until () must be
of the form signal.delayed(). The delayed() method is a special
method that provides the value at the end of a delta-cycle.

Neither of these is extremely interesting. They are correspondingly
almost equivalent to the following SC_THREAD code assuming the thread is
statically sensitive to a clock edge:

for(i=0;i!=N;i++) wait(); //similar as wait (N)
do wait () while(!expr) ; // sames as
// wait_until (dexpr)

Figure 14-6. Example of Code Equivalent for Clocked Thread

Although the preceding is functionally equivalent to the statements
referenced in the comments, the SC_CTHREAD implementations are faster.
This improved speed is because SC_CTHREAD implementation does not have
to actually resume and suspend at each intermediate wait (). Notice that
wait until() is not really level sensitive since it only tests at the clock
edge defined for the process.

Of greater interest, SC_CTHREAD provides the concept of watched
signals, which effectively changes the behavior of wait (). When a watched
signal activates, execution jumps to a new area upon return from wait ()
rather than proceeding to the next statement. SystemC has two forms of
watching: global and local.

The simplest form of watching is global. The effect of globally watched
signal activation is to restart the clocked thread at the beginning.

Advanced Topics 191

The syntax is simple and follows:

SC_CTOR (module name) {
SC _CTHREAD (NAME cthread) ;

watching (signal.delayed () =true) ;
}

Figure 14-7. Syntax of Global Watching

By contrast, a more controllable form of watching involves using four
macros, W_BEGIN, W DO, W _ESCAPE, and w_END. These macros are always

used as a set in the order indicated, and they define three regions in the code
being watched.

In the first region, the signals being watched are declared. In the second
region, the code being watched is coded. In the last region, the code to
handle the occurrence of watched signal activation is provided. Here is a
synopsis of the syntax:

W_BEGIN
watching (delay expr) ;
W _DO
Code being watched
W_ESCAPE
Code handling escape condition
W_END

Figure 14-8. Syntax of Local Watching

This syntax is equivalent to the following code:

#define WAIT(A) wait(A); if (expr) throw(W ESCAPE) ;
try {

Code being watched // use WAIT() instead of wait()
} catch(W ESCAPE)

Code _handling escape condition

}

Figure 14-9. Example of Code Equivalent to Local Watching

The advantage of the syntax is coding simplification. Also, these
extensions allow for nesting and combination with the global watching.
Doing this with ordinary code quickly becomes onerous.

192 SystemC: From The Ground Up
An example should help in understanding. This code models a simple
processor (no caching) used in the design of a collision-avoidance system for

a futuristic automobile.

#include "processor.h"

SC _HAS PROCESS (processor) ;
processor: :processor (sc_module name nm) //Constructor

sc_module (nm)

// Process registration

SC_CTHREAD (processor cthread, clock p.pos());
watching (reset p.delayed() false) ;

}//endconstructor }}}
void processor::processor cthread() { //{{{

// Initialization
pc = RESET ADDR;

wait () ;
for(;;) {
W_BEGIN
watching (abort p.delayed() == true);
W_DO
read instr();
switch (opcode) {
case STORE ACC:
bus p->write (operandl,acc) ;
break;
case INCR:
acc++;
result = (ace != 0);
break;

W_ESCAPE
cout << sc_time stamp ()
<< " WARN: Aborting" << endl;

W_END
}//endforever
} // endcthread

Figure 14-10. Example Code Using Clocked Threads and Watching

We’ll note one last point. Unlikesc THREAD, which upon exiting never
runs again, SC_CTHREAD restarts on the next clock edge. If you want to stop

an SC_CTHREAD, then call the halt () method.

Advanced Topics 193

There has been some discussion of deprecating SC_CTHREAD. However,
SC_THREAD functionality may need to be augmented by the extra
mechanisms of watching and the resulting simplified syntax before
eliminating this feature.

14.3 Programmable Hierarchy

Programmable elaboration is an aspect of SystemC that may be obvious
to some but not to others. The code that performs elaboration (i.e.,
instantiates modules and channels) is simply executable C++ code. This
means that it is possible to use standard C++ constructs such as 1f-then-
else, switch, for, and while loops.

Thus, it is conceivable to have simulations that configure themselves. In
some cases, this configurability is a matter of convenience. For instance,
configurability is appropriate for a large regular structure. In other cases,
configurability may be a way to test various aspects of the design. Let’s look
at a couple of examples.

varports_ i

1[0]

rcv_p
xmt_p
170]
rcv_p

xmt_p

i[N]

rcv_p

xmt_p

Figurel4-11. Design with 1-N Ports

First, we consider a design that supports a variable number of devices
attached externally. Take for example, an Ethernet or USB port. The
specification diagram looks something like the previous figure.

194 SystemC: From The Ground Up

To test this design, the verification team would like a single executable
that can be configured when run to handle 0 to 16 devices with varying FIFO
depths. Here is the supporting code:

#include <systemc.h>
#include "varports.h"
#include "device.h"
int main(int argc, char* argv([]) {
/* Figure out N from command-line */

varports* varports i;
devicex device i[N]; //N previously set to 16
sc_fifo<int>* v2d[N];
sc_fifo<int>* d2v|[N];
varports i = new varports(..init parameters...);
// nDevices set through command line or equivalent
for (unsigned i=0;i!=nDevices;i++) {
sc_string nm; // for unique instance names
// Create instances
nm = sc_string::to string("device name i[%d]",1i);

device i[i] = new device(nm.c_str());

nm = sc_string::to string("v2d[%d]",1i);

v2d[i] = new sc_fifo<int>(nm.c_str(),fifo _depth);
nm = sc_string::to string("d2v[%d]",1i);

d2v[i] = new sc_fifo<int>(nm.c str(),fifo depth);

// Connect devices to varports using channels
device i[i]->rcv p(*v2d[il]);
device i[i]->xmt p(*d2v[i]);
varports i-srcv p(*d2v[i]);
varports i->xmt p(*v2d[i]);

}//endfor

Figure 14-12. Example of Configurable Code with 1-N Ports

The preceding example uses arrays of pointers to both the instances and
the channels connecting them. We could have dynamically set the array size;
however, it would not save enough resources to justify the complexity and
effort.

Our second example recognizes the importance of configuration
management. A design may start out with a TLM and eventually be refined
to RTL. It is desirable to be able to run simulations that easily select portions

Advanced Topics 195

of the design to run at TLM or RTL levels. TLM portions will simulate
quickly; RTL portions will represent something closer to the final
implementation and will simulate more slowly. This configurability lets the
verification engineer keep simulations running quickly, and he or she can
focus on finding problems in a particular area.

Configurability may be achieved by using conditional code (e.g., i1f-
else) around the areas of interest. For example, consider the hierarchical
channel design of the previous chapter (hier chan example). Suppose we
package both the architectural model and the behavioral model within a
wrapper that lets us configure the design at run time.

We can read the configuration instance names into an STL map<>. An
example of the wrapper code is shown in Figure 14-13. The code shown
defaults to an architectural implementation, mem_arch. Both an RTL and
bsyn configuration are supported; although, the selection of an RTL version
only produces a warning message.

196 SystemC: From The Ground Up

SC_MODULE (mem) {

sc_export<CPU ifs> CPU p;
mem_arch* mem_arch i;
mem_bsyn* mem_bsyn i;
cpu2pca* cpu2pca_i;
ea_heartbeat* clock;
sc_signal<bool> 1d;
sc_signal<bools> rw;
sc_signal<unsigned long> a;
sc_signal rv<32> d;

SC_HAS PROCESS (mem) ;
explicit mem(sc_module name nm,

unsigned long ba, unsigned sz)
sc_channel (nm)

if (cfglname()] == "rtl") {
cout << "WARN: " cfg[name()]
<< " not yet supported " << endl;
}
if (cfglname()] == "bsyn") {
clock = new ea heartbeat ("clock",
sc_time(10,S8C NS)) ;

mem bsyn i = new mem bsyn("mem bsyn i",ba,sz);
mem_bsyn i->1d(1d); mem bsyn i->rw(rw);
mem_bsyn i->af(a); mem bsyn i->d(d);

mem_bsyn i->ck(*clock) ;
cpu2pca_i = new cpu2pca ("cpu2pca i");
cpu2pca_i->1d(1ld); cpu2pca_i->rw(rw);
cpu2pca_i->a(a); cpu2pca_i->d(d);
cpu2pca_i->ck(*clock) ;
CPU_p (*cpu2pca_1i) ;

} else {
mem arch i = new mem arch("mem arch i",ba,sz);
CPU_p(*mem_arch i) ;

}//endif

Figure 14-13. Example of Configurable Code to Manage Levels

Advanced Topics 197
14.4 Debugging and Signal Tracing

Until this point, we have assumed the use of standard C++ debugging
techniques such as in-line print statements or using a source code debugger
such as gdb. Hardware designers are familiar with using waveform-viewing
tools that display values graphically.

While SystemC does not have a built-in graphic viewer, it can copy data
values to a file in a format compatible with most waveform viewing utilities.
The format is known as VCD or Value Change Dump format. It is a simple
text format.

Obtaining VCD files involves three steps. First, open the VCD file. Next,
select the signals to be traced. These two steps occur during elaboration.
Running the simulation (i.e., calling sc_start ()) will automatically write
the selected data to the dumpfile. Finally, close the trace-file. Here is the
syntax presented in sequence:

sc_trace file* tracefile;
tracefile = sc_create ved trace file(tracefile name) ;
if (!tracefile) cout <<"There was an error."<<endl;

sc_trace(tracefile,signal name,"signal name") ;

sc_start(); // data is collected

sc_close vcd trace file(tracefile);

Figure 14-14. Syntax to Capture Waveforms

It is required that the signal names being traced are defined before calling
sc_trace. Also, it is possible to use hierarchical notation to access signals
in sub-modules. It is possible to trace ordinary C++ data values, and ports as
well. The trace filename should not include the filename extension since the
sc_create vecd trace file automatically does this. Notice the error
checking of the file creation using operator! () .

198 SystemC: From The Ground Up

Here is a simple coding example:

//FILE: wave.h

SC_MODULE (wave) {
sc_signal<bool> brake;
sc_trace file* tracefile;

double temperature;

bi

//FILE: wave.cpp
wave: :wave (sc_module name nm) //Constructor

sc_module (nm) {

tracefile = sc_create ved trace file("wave");

sc_trace(tracefile,brake, "brake") ;

sc_trace(tracefile, temperature, "temperature") ;
}//endconstructor

wave: : ~wave () {
sc_close vecd trace file(tracefile);
cout << "Created wave.vcd" << endl;

Figure 14-15. Example of Simple Waveform Capture

Notice the use of a destructor to close the file. This is the safest way to
ensure the file will be closed. If additional modules are instantiated in the
example above, they would need to include appropriate sc_trace syntax
within their constructors.

Another moderately complex example of signal tracing may be found in
the tracing example from the book website.

Advanced Topics 199

Here is some sample output viewed with the opensource gtkwave®”

viewer:

8ene x| GTKWave

File Edt Traces Time Markers View Help
QAQAKWHN S eV @wr @9

Signals Waves

Time
SystemC. clock =(

SystemC _grani_op =(
SystemC_request_ip =
SystemC transact_sig[1:0]=*
SystemC.addr_sig[31:0] =t

SystemC data_rcv_sig|31:0] =

SystemC.date_snd_sig[31:0] =«

il i PP | ve—

SE0BTADY

Figure 14-16. Sample Waveform Display From gtkwave

In addition to VCD files, SystemC supports WIF (Waveform Interchange
Format) simply by using the sc_create wif trace file call. Some
EDA vendors may also provide their own custom formats and support.

14.5 Dynamic Processes

Thus far, all the process types discussed have been static. In other words,
once the elaboration phase completes, all sC_THREAD, SC_METHOD, and
SC_CTHREAD processes have been established. SystemC 2.1 introduces the
concept of dynamically spawned processes. This concept is not new. In the
examples that came with SystemC 2.0.1, there was a fork-join example;
however, it was not considered part of the official SystemC release. This
feature was added with SystemC 2.1.

Dynamic processes are important for several reasons. At the top of the
list is the ability to perform temporal checks such as those supported by PSL
Sugar, Vera, and other verification languages.

For instance, consider a bus protocol with split transactions and timing
requirements. Once a request is issued, it is important to track the

3 Available from http://www.cs.man.ac.uk/apt/tools/gtkwave/index.html

200 SystemC: From The Ground Up

completion of that transaction from a verification point of view. Since
transactions may be split, each transaction will require a separate thread to
monitor. Without dynamic process support, it would be necessary to pre-
allocate a number of statically defined processes to accommodate the
maximum number of possible outstanding requests.

Let’s look at the syntax and requirements that enable dynamic processes.

First, to enable dynamic processes, it is necessary to use a pre-processor
macro prior to the invocation of the SystemC header file.

Here’s one way to do this:

#define SC_INCLUDE DYNAMIC PROCESSES
#include <systemc.h>

Figure 14-17. Syntax to Enable Dynamic Threads

Other mechanisms involve the C++ compilation tools. For example,
GNU gcc has a -D option (e.g., -DSC_INCLUDE DYNAMIC PROCESSES).

Next, functions need to be declared for use as processes. Functions may
be either normal functions or methods (i.e., member functions of a class).
The dynamic facilities of SystemC version 2.1 allow for either SC_THREAD
or SC_METHOD style processes. Unlike static processes, dynamic processes
may have up to eight arguments and a return value. The return value will be
provided via a reference variable. For example, consider the following
declarations:

void inject();//ordinary func w/ no args or return
int count changes(sc_signal<int>& sig);//ordinary
//function
bool TestChan::Track (sc_signal<packet>& pkt);//meth
void TestChan: :Errors (int maxwarn, int maxerr) ;//meth

Figure 14-18. Example Functions Used as Dynamic Processes

Having declared and defined functions or methods to be used as
processes, only registering them with the kernel remains. You can register
the dynamic processes within an SC_THREAD or with restrictions within an
SC_METHOD.

Advanced Topics

The basic syntax is as follows:

201

)i

sc_process_handle hname = sc_spawn(//ordinary
//function

/*void*/sc_bind(&funcName, ARGS..),//no return value
processName,
spawnOptions

)i

sc_process _handle hname = sc_spawn(//member function
/*void*/sc_bind(smethName, object, ARGS..)//no

//return

processName,
spawnOptions

Figure 14-19. Syntax to Register Dynamic Processes with Void Return

sc_process_handle hname = sc_spawn(//ordinary
//function
&returnVar, sc_bind(&funcName, ARGS..)
processName,
spawnOptions

)i

&returnVar, sc_bind(&methodName, object, ARGS ..)
processName,
spawnOptions

)i

sc_process_handle hname = sc_spawn(//member function

Figure 14-20. Syntax to Register Dynamic Processes with Return Values

Note in the preceding that object is a reference to the calling module,
and normally we just use the C++ keyword this, which refers to the calling

object itself.

202 SystemC: From The Ground Up

By default, arguments are passed by value. To pass by reference or by
constant reference, a special syntax is required:

sc_ref (var) // reference
sc_cref (var) // constant reference

Figure 14-21. Syntax to Pass Process Arguments by Reference

The processName and spawnOptions are optional; however, if
spawnOptions are used, then a processName is mandatory. All processes
should have unique names. Fortunately, uniqueness of a process name
includes the hierarchical instance as a prefix (i.e.,name ()). If a process
spawns a process, then its name is used to prefix the spawned process name.

Spawn options are determined by creating an sc_spawn_option object
and then invoking one of several methods that set the options.

Here is the syntax:

sc_spawn option objname;
objname.set stack size(value);
objname .set method() ;//register as SC METHOD
objname.dont initialize();

objname.set sensitivity(event ptr);
objname.set sensitivity(port ptr);

objname.set sensitivity (interface ptr) ;
objname.set sensitivity(event finder ptr);

Figure 14-22. Syntax to Set Spawn Options

One last comment before we look at an example. The method
sc_get cur process handle () may be used by the spawned process to
reference the calling object. In particular, it may be useful to access name () .

That’s a lot of syntax. Fortunately, you don’t need to use all of it. Let’s
take a look at an example of the simplest case. This example is an
SC_THREAD that contains no parameters and returns no result. In other
words, it looks like an SC_THREAD that just happens to be dynamically
spawned. We highlight the important points.

Advanced Topics 203

##idefine SC INCLUDE DYNAMIC PROCESSES
#include <systemc.h>

void spawned thread() {/ This will be spawned
cout << "INFO: spawned_thread "
<< sc_get curr process_handle () ->name()
<<"@" << sc_ time stamp () << endl;
wait (10,SC NS) ;
cout << "INFO: Exiting" << endl;
J
void simple spawn::main thread() ({
wait (15,SC NS);
sc_spawn (sc_bind (&spawned thread)) ;
cout << "INFO: main_ thread " <<name ()
<<" @ "<<sc time stamp() <<endl;
wait (15,8C NS) ;
cout << "INFO: main thread stopping "
<<" @ "<<sc time stamp () <<endl;

Figure 14-23. Example of a Simple Thread Spawn

If you keep a handle on the spawned process, then it is also possible to
await the termination of the process via the
sc_process handle::wait () method. For example:

sc process handle h =
sc_spawn (sc_bind (&spawned thread)) ;
// Do some work
h.wait(); // wait for the spawned thread to return

Figure 14-24. Example of Waiting on a Spawned Process

Be careful not to wait on an SC_METHOD process; currently; there is no
way to terminate an SC_METHOD. Extensions to address this shortcoming are
expected in SystemC version 2.2.

An interesting observation about sc_spawn is that it may also be used
within the constructor, and it may be used with the same member function
multiple times as long as the process name is unique. This capability also
means there is now a way to pass arguments to SC_THREAD and SC_METHOD
as long as you are willing to use the longer syntax.

204 SystemC: From The Ground Up

A dangerous aspect of spawned threads relates to the return value. If you
pass a function or method that returns a value, it is critical that the
referenced return location remain valid throughout the lifetime of the
process. The result will be written without respect to whether the location is
valid upon exit, possibly resulting in a really nasty bug.

The creation and management of dynamic processes is not for the faint of
heart. On the other hand, learning to manage dynamic processes has great
rewards. One of the simpler ways to manage dynamic processes is discussed
in the next section on fork/join.

14.6 SC_FORK/SC_JOIN

Another use of dynamic threads is dynamic test configuration. This
feature is exemplified with a verification strategy sometimes used by Verilog
suites using fork/join. Although this technique does not let you create new
modules or channels dynamically (because processes may choose to
stimulate ports differently on the fly), you can reconfigure tests. Let’s see
how this might be done.

Consider the DUT in the following figure.

AXI ' PCIX
USB? m— DUT

HT] — e HTZ

Figure 14-25. High-Level Model of a Design to be Tested

For each interface (AXI, USB2, etc.), an independent process can be
created either to send or receive information likely to be generated in a real
system.

Advanced Topics 205

Using these processes and fork/join, a high-level test might look as
follows (Note: Syntax will be explained shortly):

DataStream dl, d2;
SC_FORK

sc_spawn (sc_bind (&AXI xmt,this,sc ref(dl)),"pl"),
sc_spawn (sc_bind (&PCI_rcv, this,sc ref(dl)), "p2"),
sc_spawn (sc_bind (&HT1 xtm, this,sc ref(d2)),"p3"),
sc_spawn (sc_bind (&PCIX rcv, this,sc ref(d2)),"p4")

SC_JOIN

Figure 14-26. Example of fork/join Application

Here is the syntax for SystemC fork/join:

SC_FORK
COMMA SEPARATED LIST OF SPAWNS
SC_JOIN

Figure 14-27. Syntax for fork/join

Let’s look at an example that involves a number of syntax elements
discussed thus far. First, let’s inspect the header for this module.

//FILE: Fork.h
SC_MODULE (Fork)

sc_fifo<double> wheel 1f, wheel rt;

SC_HAS PROCESS (Fork) ;

Fork (sc_module name nm);// Constructor

// Declare a few processes to be used with
// fork/join

void fork thread() ;

bool road thread (sc_fifo<double>& which) ;

Figure 14-28. Example Header for fork/join Example

Notice that we pass a FIFO channel by reference so that road_thread
can possibly access the FIFO channel. Passing ports or signals by reference
would be a natural extension of this idea.

206 SystemC: From The Ground Up

Now, let’s inspect the code:

//FILE: Fork.cpp

#define SC_INCLUDE DYNAMIC PROCESSES
#include <systemc.h>

#include "Fork.h"

Fork: :Fork (sc_module name nm) //{{{
: sc_module (nm)
{

SC_THREAD (fork thread) ;

|

void Fork::fork thread() { //{{{
bool 1f up, rt up; // use for return values
SC_FORK
sc_spawn (&1f up,
sc_bind (&Fork::road thread, this,
sc_ref (wheel 1f)
),
"1f" // process name
) /*endspawn*/,
sc_spawn (&rt_up,
sc_bind (&Fork: :road thread, this,
sc_ref (wheel rt)
),
"rt" // process name
) /*endspawn*/
SC_JOIN
}//end Fork:fork thread
bool Fork::road thread(sc fifo<double>& which) { //
// Do some work
return (road > 0.0);
}//end Fork::road thread

Figurel4-29. Example of fork/join

The full example may be found in the downloaded examples as Fork.
This example also illustrates the use of sc_spawn instead of SC_THREAD.
Using a capitalized word Fork was done to avoid collision with the Unix
system call fork, which has nothing to do with SystemC’s SC_FORK. Recall
that SystemC is a cooperative multi-tasking system. Please don’t confuse
Unix’s fork facilities with these concepts.

Advanced Topics 207

14.7 Error and Message Reporting

Reporting messages is an important art, and many a project has created
utilities to standardize this reporting within the project. Messages have
classifications including informational, warning, error, and fatal.
Additionally, messages usually apply to a variety of areas and need to be
isolated to their source to aid debugging. For simulations, it is also important
to identify the time that a message occurs. Because simulations provide a
tremendous amount of output data, it is important that messages be
standardized and easy to identify.

SystemC’s version 2.1 adds an error reporting system that greatly
simplifies this task. Throughout our examples thus far, you have seen a
stylized format of error management. In this short section, we will examine a
subset of the error-reporting facilities in SystemC version 2.1. For more
information, you are referred to the SystemC version 2.1 release notes and
the example documentation that accompanies the release.

We need a few definitions first. Every message is associated with an
identifying name. This labeling is used to keep messages from different parts
of the design properly identified. A message identifier is simply a character
string:

char* MSGID = "UNIQUE STRING";

Figure 14-30. Syntax of Message Identifier

208 SystemC: From The Ground Up

Next, all messages need to be classified. SystemC version 2.1 has the
following classifications:

SC_INFO — informational only

SC_WARNING — possible problem

SC_ERROR - problem identified probably serious

SC_FATAL - extremely serious problem probably ending simulation

Figure 14-31. Error Classifications

For each classification, a variety of actions may be taken. For the most
part, defaults are sufficient. Possible actions include the following actions
taken from the SystemC version 2.1 example documentation:

SC_UNSPECIFIED - Take the action specified by a configuration rule
of a lower precedence.

SC_DO_ NOTHING — Don’t take any actions for the report, the action will
be ignored, if other actions are given.

SC_THROW — Throw a C++ exception (sc_exception) that represents
the report. The method sc_exception: :get report() can be used
to access the report instance later.

SC_LOG — Print the report into the report log, typically a file on disk.
The actual behavior is defined by the report handler function.
SC_DISPLAY - Display the report to the screen, typically by writing it
into the standard output channel using std: : cout.

SC_INTERRUPT - Interrupt simulation if simulation is not being run in
batch mode. Actual behavior is implementation defined, the default
configuration calls sc_interrupt here (...) debugging hook and
has no further side effects.

SC_CACHE_REPORT - Save a copy of the report. The report could be
read later using sc_report handler::get cached report () .The
reports saved by different processes do not overwrite each other.
SC_STOP - Call sc_stop().See sc_stop () manual for further
detail.

SC_ABORT - The action requests the report handler to call abort () .

Figure 14-32. Error Actions

Advanced Topics 209

SystemC has a large class of setup that may be specified for message
reporting. For basic designs, the following syntax should suffice:

sc_report handler::set log file name ("filename") ;
sc_report handler::stop aftar (SC ERROR, MAXERRORS);
sc_report handler::set actions (MSGID, CLASS,ACTIONS) ;

Figure 14-33. Syntax for Basic Message Setup

The following code, named report, illustrates the basics of message
handling:

char* sim name = "mysim";
char* sim vers = "$Headers$';
int sc main(int argc, char* argv[])
sc_report handler::set log file name ("run.log");
sc_report handler::stop after (SC ERROR, 100);
sc_report handler::set actions (
sim name,
SC_INFO,
SC_CACHE REPORT|SC_LOG
)i
SC REPORT INFO (sim name,sim vers) ;
../* Body of main */
sc_start();
sc_report* rp =
sc_report handler::get cached report();
if (rp) {
cout << rp->get msg() << endl;
cout << sim name << " FAILED" << endl;
return 1;
} else {
cout << sim name << " PASSED" << endl;
return 0;

Figure 14-34. Example of main.cpp with SystemC Error Reporting

210 SystemC: From The Ground Up

extern char* sim name;

void mymod::some_thread() {
wait (2,SC_NS);
SC_REPORT INFO (sim name, "Sample info");
SC_REPORT_ WARNING (sim name, "Sample warning") ;
SC_REPORT ERROR (sim name, "Sample error");
SC_REPORT FATAL (sim name, "Sample fatal");

Figure 14-35. Example of Reporting in a Module

Here is a sample of the output:

0 s: Info: mysim: $Header: /../mysim/main.cpp,v 1.2.. $
2 ns: Info: mysim: Sample info

2 ns: Warning: mysim: Sample warning

In file: mymod.cpp:21

In process: mymod i.some thread @ 2 ns

2 ns: Error: mysim: Sample error

In file: mymod.cpp:22

In process: mymod_i.some_thread @ 2 ns

Figure 14-36. Example of Output Messages

You can enhance the output by using a syntax-highlighting editor and
setting up a coloring scheme for log files.

Advanced Topics 211

14.8 Other Libraries: SCV, ArchC, and Boost

Beyond the core of SystemC, several libraries are available for the
serious SystemC user to explore. These include:

The SystemC Verification library, the SCV, has an extensive set of
features useful for verification. The original set was donated by
Cadence Design Systems; their www.testbuilder.net website is the
best source of information.

The ArchC architecture description language is an open-source
architecture description language used to describe processors.
Several models are already available. ArchC was designed at the
Computer Systems Laboratory (LSC) of the Institute of Computing
of the University of Campinas (IC-UNICAMP). See www.archc.org
for more information.

The Boost website provides free peer-reviewed portable C++ source
libraries. The emphasis is on libraries that work well with the C++
Standard Library. See www.boost.org for more information.

212 SystemC: From The Ground Up
14.9 Exercises

For the following exercises, use the samples provided at
www.EklecticAlly.com/Book/.

Exercise 14.1: Examine, compile, and run the clock gen example.
Exercise 14.2: Examine, compile, and run the processor example.
Exercise 14.3: Examine, compile, and run the varports example.

Exercise 14.4: Examine, compile, and run the manage example. Can you
think of a simpler way to manage different implementations that leverages
C++?

Exercise 14.5: Examine, compile, and run the cruisin example.

Exercise 14.6: Examine, compile, and run the wave example. View the
VCD data using a waveform viewer. Obtain gtkwave from
http://www.cs.man.ac.uk/apt/tools/gtkwave/index.html if necessary.

Exercise 14.7: Examine, compile, and run the tracing example.

Exercise 14.8: Examine, compile, and run the simple spawn example.
Modify it to spawn an SC_METHOD that is statically sensitive to a signal of
your choice with dont_initialize().

Exercise 14.9: Examine, compile, and run the Fork example. Can you
nest fork/join? Explain how to do this.

Exercise 14.10: Examine, compile, and run the report example. Apply
these concepts to an earlier example.

Chapter 15

ODDS & ENDS
Performance, Gotchas, and Tidbits

This chapter wraps up with a few simple observations on using SystemC
to its greatest advantage. The authors provide hints about ways to keep
simulation performance high and provide observations about the modeling
language in general. This chapter contains no exercises. We leave
application to your individual creativity.

15.1 Determinants in Simulation Performance

We sometimes hear comments from folks such as, “We tried SystemC,
but our simulations were slower than Verilog.” Such comments betray a
common misconception. SystemC is not a faster simulator. The Open
SystemC Initiative reference version of the SystemC simulator has several
opportunities for optimization, and there are EDA vendors hoping to
capitalize on that situation. More importantly, simulation performance is not
so much about the simulator as it is the way the system is modeled.

KEY POINT: SystemC simulation speed is linked directly to the use of
higher levels of modeling using un-timed and transaction-
level concepts.

For all simulators (e.g., SPICE, Verilog, VHDL, or SystemC), there are
fundamental tasks that must be performed: moving data, updating event
queues, keeping track of time, etc. Any simulator simulating detailed pin-
level activity and timing information will provide a certain level of
performance. Almost all simulators for a given class of detail will perform
within a factor of two or so.

No so long ago, cycle-based simulators were all the rage due to their
advertised speed. Problems arose when designers discovered that these
simulators didn’t provide the same level of accuracy as their event-driven
counterparts, but that was exactly the reason they ran faster!

214 SystemC: From The Ground Up

That said, RTL simulates at RTL speeds. Certainly, there are simulators
that do RTL better than others, but they still have the limitation of keeping
track of all the same details. A good optimizer may improve performance by
finding commonalities, but the improvement will be bounded.

GUIDELINE: To improve simulation performance, reduce details and
model at higher levels of abstraction whenever possible.

It is possible to obtain dramatic speed improvements by keeping as much
of the system as possible at very high levels of abstraction, and only using
details where absolutely required.

Part of the problem lies with understanding what a given simulation is
supposed to accomplish. Ask yourself, “What is this simulation model
supposed to answer?” For example, early in the design process the architect
may wish to know if a new algorithm even works. At this level, timing and
pins are not really interesting. A simple executable that takes input data and
produces output for analysis is all that is required. Timing should not be a
part of this model. Sequential execution is probably sufficient.

Another set of questions might be, “Have all the parts been connected?
Have we defined paths for all the information required to perform the system
functions?” These questions may be answered by creating a module for
every component and using a simple transaction-level model to interconnect
the pieces. Cycle accuracy should not be a concern at this point in the
design.

15.1.1 Saving Time and Clocks

How can you live without time or clocks™? This is really quite simple.
For instance, suppose you need to model time to determine performance.
Rather than coding a wait for N rising edges, it is much more efficient to
simply delay by N¥*clock period.

Another common technique occurs when using handshakes. If you need
to wait for a signal, then simply wait on the signal directly. The hardware
may do sampling at clock edges, but that wastes time.

% We ask this question from an electronic system design perspective, not from a
philosophical perspective.

Odds & Ends 215

If you really need to synchronize to the clock, then do both, as follows:

wait (acknowledge->posedge event()) ;
if (! clock->event()) wait (clock->posedge event());

Figure 15-1. Synchronized wait for a Signal

Perhaps you need to transfer information from one port to another in the
design. Even though you know the result will be delayed through a FIFO
over multiple clocks, there is no need to create a FIFO. Just read it from the
input, delay, and write it to the output.

In->read (packet) ;
wait (50*CLOCK PERIOD) ;
Out->write (packet) ;

Figure 15-2. Example of FIFO Elimination

Events are also a powerful way of communicating information. If you
don’t really need to test the value of a signal but are only interested in the
change, it is more efficient to use an event than a sc_signal<bool>.
Earlier in the book, we illustrated some primitive channels to do just this
(e.g., in the heartbeat example).

Another overlooked issue is using too much resolution. Does your clock
really need to oscillate at 100 MHz? Perhaps it would suffice to use a higher-
level clock. Do you really need to measure picoseconds, or are nanoseconds
or even milliseconds sufficient?

15.1.2 Moving Large Amounts of Data

So, the model is efficiently using time, but it still appears to be
simulating too slowly. Perhaps you are attempting to move too much data.
Do you really need to move the data or do you just need to record the fact
that data was moved and that an appropriate amount of time has passed?

216 SystemC: From The Ground Up

For example, perhaps you could model the movement of chunk of data as
follows instead of moving the actual data:

struct payload ({
unsigned long byte count;
unsigned value; // a single unique value

bi

Figure 15-3. struct for Payload

Now, you will need to modify the read/write routines in the channels to
do something like this:

void Bus<payload>::write (unsigned addr, payload data)

wait (data.byte_count*t_ BYTE DELAY) ;
// transfer the data

Figure 15-4. Bus Write with Payload

Perhaps, you need to transfer the data, but how much data do you really
need to test the problem at hand? For instance, if dealing with video
graphics, would a small 64 x 48 pixel buffer suffice to test an algorithm,
rather than a full 640 x 480 or larger frame?

Perhaps, you need to transfer a large block of data across the bus, but can
you model it using smart pointers instead? In other words, manage the chunk
of simulator memory with a pointer. We recommend you use a Boost.org
smart pointer, or the equivalent, to avoid problems with memory leaks or
corruption.

Odds & Ends 217

Thus, you might have:

struct payload {
unsigned long byte count;
smart ptr<int> pValues;
payload (unsigned long bc)
: byte count (bc)
{

pValues = new int[bc];

}

}i

Figure 15-5. Smart Pointer with Payload

Now, you are simply passing around a pointer and only manipulating the
data when it really needs to be manipulated.

Do you really need to fully populate a memory, or would a sparse
memory model suffice? The SystemC Verification library contains a very
nice sparse memory model that is very easy to use.

15.1.3 Too Many Channels

Another interesting area for SystemC designers to watch is channels.
Every channel interaction involves at least two calls (producer and
consumer), two events, and possibly two copy operations. Hierarchical
sc_port to sc_port connections are very efficient because they simply
pass a pointer to the target channel at elaboration time. With the advent of
SystemC version 2.1, you will also find sc_export to sc_export
hierarchical connections are similarly efficient. If you find yourself writing a
process that simply copies one port to another, consider the possibility of
rearchitecting the connectivity.

15.1.4 Effects of Over Specification

Often designers tend to think in terms of the final implementation rather
than the general problem being designed. This approach sometimes results in
over specification. For instance, a behavior may be specified as a finite state
machine (FSM), when the real issue is simply a handshake or data transfer.
Be careful when presented with myriads of detail to abstract the real needs
of the design.

218 SystemC: From The Ground Up
15.1.5 Kaeep it Native

Keeping data native has already been discussed under data types earlier
in the book, but this topic bears repeating. Data types are an abused subject.
Does the model at hand really need to specify 17 bits, or would a simple int
suffice? Native C++ data types will simulate many times faster than their
SystemC hardware-specific counterparts. Similarly, what do you gain using
sc_logic?Is the unknown value relevant to the current level of modeling?
Once again, the issue is to model only those items that will affect the results
of the simulation.

15.1.6 C++ Compiler Optimizations

Depending on the stability of your model, you may want to consider
looking at optimizing your use of the C++ compiler. Many times, default
make scripts assume that the developer wants maximum debug visibility
and the compiler obliges with additional visibility that may affect simulation
performance.

When looking for maximum performance, make sure that your SystemC
library and your system design are compiled without a debug option.
Additionally, some compilers have switches that perform additional runtime
optimizations at the expense of increased compile time. If you plan to run
extensive simulation with the same model, it may pay to wade through the
documentation for your compiler.

Another example, ensuring that #ifndef is on the first line of a header
file improves performance for some compilers.

15.2 Features of the SystemC Landscape

Because SystemC is a C++ class library rather than a truly independent
language, SystemC has some aspects that seem to annoy its users
(particularly experienced designers from an RTL background). This section
simply notes these aspects. Keep in mind that part of the power of SystemC
is the fact that it is C++, and therefore, it is extremely compatible with
application software.

Odds & Ends 219
15.2.1 Things You Wish Would Just Go Away

For the novice, just getting a design to compile can be a challenge. This
section lists some of the most common problems. All of them relate directly
to C++.

Syntax errors in #include files often are reported as errors in the
including implementation (i.e., .cpp file). The most common error is
forgetting to put the trailing semicolon on a SC_MODULE, which is really a
class.

The use of semicolons in C++ may seem odd at times. The class and
struct require a closing semicolon.

class myclass | p
/) Bodi’/_,J Rec!ulred
.] semicolon

}i

Figure 15-6. C++ Class Requires Semicolon

On the other hand, function definitions and code blocks do not require a
semicolon.

void myfunction ({

Bod -
, {1 Bedy _| No semicolon

Figure 15-7. C++ Function Does Not Use Semicolon

Similarly, SC_FORK/SC JOIN have the odd convention of using
commas. This punctuation is used because they are really just fancy macros.

SC FORK | No braces

sc_spawn (..) ,

sc_spawn (..), Commas except

sc:spawn (...) i for last one
SC JOIN _

- :i No semicolon

Figurel 5-8. C++ Fork/Join Idiosyncrasy

220 SystemC: From The Ground Up

SystemC relies heavily on templates. The templates have the annoying
space between the greater than brackets.

sc_port<sc_signal_in_if<int> > data_ip;

Required space

Figure 15-9. C++ Template Idiosyncrasy

Inside the basic syntax of a module, sensitive and
dont initialize methods must be tied to the immediately preceding
SC_THREAD, SC_METHOD or SC_CTHREAD registration. This tying is usually
a lot easier to deal with if you indent the code slightly relative to the
registration. For example:

SC_CTOR (SomeModule) {
SC_METHOD (sync_method) ;
sensitive << clock; Indented relative
dont_initialize(); | to registration
SC_METHOD (monitor_method) ;
sensitive << rqgst << ack;
dont_initialize();
SC_THREAD (compute_thread) ;
}

Figure 15-10. Example of Using Indents to Highlight Registrations

dont initialize brings up another issue common to SC_METHOD.
Unless you specify otherwise, all processes are executed once at
initialization despite the appearance of static sensitivity unless
dont initialize is used. For some, this can be confusing at first. Try to
remember that all simulation processes are run during initialization unless
dont_ initialize is applied.

15.2.2 Feature Solutions

What is the best way to address these idiosyncrasies besides just learning
them? We highly recommend obtaining language-sensitive text editors with
color highlighting, and we recommend obtaining lint tools designed
specifically for SystemC. The authors’ favorite text editor is vim in graphical
mode, also known as gvim. You can obtain a copy of vim from
www.vim.org for almost any platform.

Odds & Ends 221

Other users are quite successful using emacs (graphical of course) or
nedit. All three of these editors have environments available for download
that support SystemC. You can obtain these from our website.

There are a few C++ lint tools and at least one lint tool focused on
SystemC that is commercially available’’. Some EDA tools have built-in
lint-like checkers. Your mileage will vary, and we highly recommend a
careful evaluation before committing to any of these tools.

15.2.3 Conventions and Coding Style

Coding styles are a well-known issue. Probably one of the best books
written on this subject for hardware design is the Reuse Methodology
Manual for System-on-a-Chip Designs by Michael Keating and Pierre
Bricaud. Most of the concepts presented there have direct application to
SystemC. Let’s just touch on a few.

A name is a name, right? Wrong! Names of classes, variables, functions
and other matters are a critical part of making your code readable and
understandable. If you have been observant, you will notice we’ve inserted
various naming conventions specific to SystemC in the examples. For
instance, processes always have a suffix of _thread, _method or
cthread. This convention is used because wait () results in a runtime error
when used with SC_METHOD, and visa versa for next trigger ().

Similarly, we adopted a convention when addressing ports and probably
you should do likewise for using anything sc_signal or otherwise
supporting the evaluate-update paradigm.

Thus, it should come as no surprise that the authors are developing a
recommended coding style for SystemC and that we are planning to support
it with commercially available lint tool rule-sets.

37, . . .
Actis Design www.actisdesign.com.

222 SystemC: From The Ground Up

15.3 Next Steps

If you have read this far, you are probably considering adopting SystemC
for an upcoming project. Or, perhaps you have already started, and you are
looking for help moving forward. This section provides some ideas.

15.3.1 Guidelines for Adopting SystemC

In the fall of 2003, the authors presented a paper on the subject of
language adoption, “How to Really Mess Up Your Project Using a New
Language” at the Synopsys User’s Group in Boston, MA. We included a
number of key points, which we provide for your consideration.

1. Don’t do it alone - obtain management support.

Doing things the same way will produce the same results regardless

of the language.

Look at the big picture, the product or system - not the small tasks.

Don’t skimp on training - obtain good formal training.

Obtain mentoring.

Adopting the new paradigm is necessary to gain the advantages of a

new language.

7. Specifications should use the appropriate level of abstraction for the
new paradigm.

8. Put coding discipline in place quickly with coding guidelines, lint
tools, and reviews.

9. Choose templates approved by seasoned experts in the new language.

10. Start automation and environment simply and cleanly.

11. Evaluate EDA tools for the big picture.

12. Insist on well-documented and supported tools in all areas including
tools version and configuration.

13. Apply the technology to a pilot project that focuses on the big
picture.

N

ok w

There are a number of companies supporting SystemC methodologies. A
quick visit to the OSCI website www.systemc.org can provide a starting
point. Or, visit our website www.EklecticAlly.com for our view.

Odds & Ends

223

15.3.2 Resources for Learning More

For the readers who would like more information on SystemC
extensions, we recommend the following resources for further study.

Table 15-1. SystemC Resources

Type

Details

1 Website

Starting point for SystemC. Retrieved March 2004
from: http://www.systemc.org/. This site has several
great papers and white papers as well as email forums
for getting help or discussing SystemC.

2 Website

Starting point for SystemC Verification Library.
Retrieved March 2004 from: http://www.testbuilder.net/

3 Website

The European SystemC Users Group web site. This site
has additional quality papers and additional news and
activities. Retrieved March 2004 from: http://www-
ti.informatik.uni-tuebingen.de/~systemc/

4 Website

The web site for the recently formed North American
SystemC Users Group. Focused on SystemC activities
in North America. Retrieved March 2004 from: http://
WWW.nascug.org

5 Website

References for SystemPerl HDL tools. Retrieved March
2004 from: http://www.veripool.com/

224

SystemC: From The Ground Up

For the readers still gasping for help with C++, here are some additional
recommendations for further study.

Table 15-2. C++ Resources

Type

Details

1 Book

Koenig, A., Moo, B., Accelerated C++. Boston:
Addison-Wesley, 2000. A highly recommended
textbook for learning to speak C++ natively.

2 Book

Bjarne Stroustrup. The C++ Programming Language.
Florham Park, New Jersey:Addison Wesley, 2000.
Probably the best C++ reference and is written by the
creator of C++,

3 Book

Kyle Loudon. C++ Pocket Reference. Sebastopol,
California: O’Reilly & Associates, Inc., 2003. A
convenient and reasonably organized quick reference.
Good for those who are not yet C++ experts.

4 Book

Nicolai M Josuttis. The C++ Standard Library: A
Tutorial and Reference. Indianapolis, Indiana: Addison-
Wesley, 1999. A complete reference and good tutorial
for the STL, a very useful library for modeling.

5 Website

Stroustrup, B. Definitive reference for C++ by the
author of C++. Retrieved March 2004 from:
http://www.research.att.com/~bs/C++.html

6 Tool

van Heesch, D. Documentation system for C++ code.
Retrieved March 2004 from:
http://www.stack.nl/~dimitri/doxygen/index.html

7 Website

References for C++ programming. Retrieved March
2004 from: http://www.cplusplus.com/

8 Book

Henricson, M., Nyquist. E., Industrial Strength C++.
Upper Saddle River, New Jersey: Prentice Hall, 1996.
(Online Version:
http://www.elho.net/dev/doc/industrial-strength.pdf)

9 Web
book

A free online book. Retrieved March 2004 from:
http://www.mindview.net/Books/TICPP/ThinkingInCP
P2e.html

Odds & Ends

225

10 Article Hoff, T. C++ Coding Standard. Retrieved March 2004
from:
http://oopweb.com/CPP/Documents/CodeStandard/
VolumeFrames.html.

11 Article Baldwin, J. 1992. An Abbreviated C++ Code Inspection
Checklist. Retrieved March 2004 from:
http://www.chris-lott.org/resources/
cstyle/Baldwin-inspect.pdf

12 Book Pressman, R., Software Engineering: A Practitioner’s
Approach. McGraw-Hill, 2001. (Online Version:
http://www.rspa.com/about/sepa.html)

13 Web Free C++ class based on an inexpensive tool. Retrieved

class March 2004 from: http://www.codeWarriorU.com/

14 Web Free C++ class. Retrieved March 2004 from:

class http://www.free-ed.net/fr03/1fc/030203/120/

We hope you’ll be ready for our next book when we introduce topics
such as the SystemC Verification library, and we go deeper into a discussion
of SystemC design methodologies and design styles. We also expect to
provide updates as SystemC version 2.2 that is just now appearing on the
horizon.

This page intentionally left blank

Acknowledgments

e Qur inspiration was provided by:

e Mike Baird, President of Willamette HDL, who provided basic
knowledge

e Wes Campbell of Eklectic Ally Inc. who brought us together
e QOur reviewers provided feedback that helped keep us on track:
e Chris Donovan
e Ronald Goodstein, First Shot Logic Simulation and Design
¢ Mark Johnson, LogicMeister Consulting
¢ Rob Keist
e Chris Macionski, Bright Eyes Consulting
¢ Nasib Naser, Synopsys Inc.
e Suhas Pai, Qualcomm Incorporated
e Our Graphic Artist
¢ Felix Castillo
e Our Technical Editors helped us say what we meant to say:
¢ Kyle Smith, Smith Editing

e Richard Whitfield

Most important of all, we acknowledge our wives, Pamela Black and
Carol Donovan. These wonderful women (despite misgivings about two
wild-eyed engineers) supported us cheerfully as we spent many hours
researching, typing, discussing, and talking to ourselves while pacing around
the house as we struggled to write this book over the past year.

We also acknowledge our parents who gave us the foundation for both
our family and professional life.

This page intentionally left blank

List of Figures

Figure 1. Example of Sample Codeccovrviiniiirninirenenniinniniiinnn, Xiii
Figure 2. Standard Graphical NOtations........c..uecccsvinmiiineiinmneninnon, Xiii
Figure 1-1. SystemC contrasted with other design languagesc.coevuvnne. 2
Figure I-2. Design Complexity from Different Design Generations............. 5
Figure 2-1. Abstraction Terminologyc.coaeiiirerrrinincininnineniennninienninnn 13
Figure 2-2. Generic Bus Timing Diagramcceeveeniiniiniiennninnsnonieninns 16
Figure 2-3. TLM-Based FIOWcocccovirvinninniiincniniininneieesnenns 17
Figure 2-4. Schedule Benefits of Earlier Software Development................ 19
Figure 2-5. GENEIIC SYSIEIM cuvetuivuereirrisrisiamssiemiussseesiseenieeniansesinsssnasssennes 21
Figure 2-6. Adapter EXample..........cccccvevviivniivciiincnniinncnnnninininennne 22
Figure 3-1. SystemC Language ArchiteCture.........ccuvvveirvmmisvoneniveinninnnines 25
Figure 3-2. SystemC Compilation FIOWcccccviniiininnmninniinnion. 27
Figure 3-3. Partial gcc Options to Compile and Link SystemC............c...... 28
Figure 3-4. Hello_SystemC Program Example..........cceevevienivieiiniriiiinianns 29
Figure 3-5. SystemC COMPONENLSvvvurirverisreriiisinsssinssinsisesiesnisemiesinsesiens 37
Figure 3-6. SystemC Simulation Kernelc.c.coovreiiiviinnninniiiinninnin, 38
Figure 4-1. Syntax Of SC_StING ..covveivrirueisstirimsiiinrsimninieniinionesieeierisone 41
Figure 4-2. Example of SC_SIING....c.covviririreriniirierinrinniionniniennseenvenneee 42
Figure 4-3. Example of C++ Built-In Data Types.....ccoceveecinieniinnccnienannna. 43
Figure 4-4. Syntax of Arithmetic Data Types.......cccvrcvmveenievreniviiennviiiiainann 44
Figure 4-5. Syntax of sc_bigint and sc_biguintcecvvereeiecsvininseneiceennnnns 44
Figure 4-6. Example of SystemC Integer Data TYPescccvevrvriiinereinninnne 45

Figure 4-7. Syntax of Boolean Data Types....covivenereienienininiininiiniieniiennes 45

230 SystemC: From The Ground Up

Figure 4-8. Examples of bit OPErations.......oveveversievinneniiinininieniininnesncanes 46
Figure 4-9. Syntax of Multi-Value Data Types ...c..cocrercrimnrirerecceenensenienne 46
Figure 4-10. Examples of 4-Level Logic Types ...cocovivienrinriesinneniiincninanes 46
Figure 4-11. Syntax of Fixed-Point Data Typescccooevvariniincinnieniininninne 47
Figure 4-12. Fixed-Point FOrmats.....c..cccconeernniieniiiiinininiiniiine i, 48
Figure 4-13. Examples of Fixed-Point Data Types.....cc.ccecivvcnrinicniinnirnenne 50
Figure 4-14. Example of Conversion ISSUes «..c.ccveiierieniniiiniisinnnniieininnan, 52
Figure 4-15. Example of STL VECIOr «.uuvvciiiviinniiiiiineniniininieniinnnien 53
Figure 4-16. Example of an STL Map ..oocovvvvieviininniiniiniiiiinicninc e 54
Figure 5-1. Syntax of CH++ mMain().....cccorvviviinserenieenieenimnineniniinennrs 57
Figure 5-2. Syntax of sC_mMain()ccocccoreirveiineenimnrninionninninennerneniennnen 58
Figure 5-3. Syntax of SC_MODULEccocnviimniminniiinin e 59
Figure 5-4. SystemC Header Snippet of SC_MODULE as #define 59
Figure 5-5. Syntax of SC_CTOR.......c.ccoivvimmriniiniiiiiniceeccnsensns 61
Figure 5-6. Syntax of SystemC Process......c.covveevvinimniniincnnnniiiinninneniien 61
Figure 5-7. Syntax of SC_THREADccccovmmvniiiiimiiiiiiicnn i 62
Figure 5-8. Example of Simple SC_THREADc.ccccevinrimimnniiniiniinienccnnns 62
Figure 5-9. Example of Simple SC_THREAD Implementation.................. 63
Figure 5-10. Example of Simple SC_MaiN.....cceeeenrinvennioninniinieneineiniinieeennns 64
Figure 5-11. Example of SC_HAS_PROCESS Instantiationc...eceeuveen 64
Figure 5-12. Syntax of SC_HAS_PROCESS in the Header........ccc.ccouruenne 65
Figure 5-13. Syntax of SC_HAS_PROCESS Separated..........cccovverervennnns 65
Figure 5-14. Traditional Style NAME.h Templatecc.cccoviecnvvirnninrinnnnn 67
Figure 5-15. Traditional Style NAME.cpp Templateccccovevvirvniinnnencnne 67
Figure 5-16. Recommended Style NAME.h Templateccccoeicvivniienrennnann 68
Figure 5-17. Recommended Style NAME.cpp Templateccccceeveviineencann 69
Figure 6-1. Syntax of sc_time UNItscccvivereiicirinniniiinienen e, 71
Figure 6-2. Syntax of SC_IMEcoivevvvecriinsiiiieivniiiiiiienes e 71
Figure 6-3. Examples of SC_tIMEccoccovinvineeniiinnninienienen 72
Figure 6-4. Syntax of SC_start()....c.ocvieerreecniviniiinieiieiieniennenenencenee e 72
Figure 6-5. Example of SC_Start()c.covveorenmernrmnniemoninenninieninn, 72
Figure 6-6. Example of sc_time_stamp()......ocevruirvueirioremmsmrminneeniecnionenann 73
Figure 6-7. Syntax of ostream << overloadcocvieviviieeiiiiinninineiiiienne, 73
Figure 6-8. Example of sc_time_stamp () and ostream << overload........... 73
Figure 6-9. Output of sc_time_stamp() and ostream << overload 73
Figure 6-10. Syntax of wait () with a Timed Delayccccoevenvevrnrercniiniennnnn, 74
Figure 6-11. Example of Wait()......ccouuireriinienirennininieiisinniinnecninneneee 74
Figure 6-12. Syntax of sc_simulation_time ().e.eoveeervernrveseriveneriniennneeeennnns 75
Figure 6-13. Syntax to set time units and resolution.........ccccvvureerverenicneene. 75

Figure 6-14. Example of sc_time Data Type ...c.coccvivirvininvcniinencniiinnn, 76

List of Figures 231
Figure 7-1. Graphical Representation of an Event..coccoveeinniiiiniiiniin, 78
Figure 7-2. Syntax OF SC_EVEINL ¢+ertreenmmemtmmeminumeniianniesiinniniintesieennateinenin 79
Figure 7-3. Simplified Simulation Engine -.e..veeeevusessrisrenccniisninnicninininenne, 79
Figure 7-4 Process and Event POOIS.....cvveviisviniinirenienrinieniinniieennien, 80
Figure 7-5. Syntax of SC_THREAD Wait()...c.coeoevrsreerarnnininnisniniiincinannnnn, 82
Figure 7-6. Example of timed_out() and wWait() «...ceeeesesiivsaressenaienninennecnniinn 82
Figure 7-7. Example of Illegal Boolean Compare of sc_event() «-««-«seeeeene &3
Figure 7-8. FOUT PrOCESSES settrreretrtiirenmmineitiasnsmeecsivmstsistarirnsisristetirsssesssrnassiass 83
Figure 7-9. Simulated Activity—Perceived...c...c.ovininiiniinininnn, 84
Figure 7-10. Simulated Activity—Actual v.ieveeerviieniieeiinninnicninnieniin, 84
Figure 7-11. Simulated Activity with Simulator Time Expanded --++-+evove-- 85
Figure 7-12. Syntax of notjfy() .. 86
Figure 7-13. Syntax of cancel() Method «+e-eeereeveiereriiinnminmniniiesennenenincens 87
Figure 7-14. Example of sc_event notify() and cancel() Methods............... 87
Figure 7-15. Turn of Events IIUStration «.-cceseseeeeessrerrienriosinescrisscssinnenenes 88
Figure 7-16. Example of turn_of_events Header......cccoooonvievviinninnninniinninne 88
Figure 7-17. Example of Turn of Events StMUIUS «--«evcoverereeariseisiarenaiuanens 89
Figure 7-18. Example of Turn of Events Indicator....cooevovveinemnveiininnianiinne, 90
Figure 7-19. Example of Turn of Events Output ««.c.ocoveveniieniniiiiiiiiiinninns 90
Figure 7-20. Syntax of SC_METHOD ::covvveetceserensianisennniiinisienonn 91
Figure 7-21. Syntax of SC_METHOD next_trig@er() «e...:«sseseresumsvussrerininns 92
Figure 7-22. Syntax of SENSItiVe «reovvesesrmiminiinminiininiiiniiiiiienn, 93
Figure 7-23. Initial Gas Station IUStration «.e.eeoveveesseeiresnrereinneneieciiniens 94
Figure 7-24. Example of Gas Station Declarations.....«.ocovevrmvviniiisiiiniiinnes 94
Figure 7-25. Example of Gas Station Implementation: -« e sssserererianiens 95
Figure 7-26. Example of Gas Station Sample Qutput- . ccerereereeerisvecnrennnnens 96
Figure 7-27. Syntax of dont_initialize()«« ..sseeereesersrsssneniisinnnenniiienone 96
Figure 7-28. Example of dont_initialize()er«e+eseresesmresisssimniiniinninnenines 96
Figure 7-29. Syntax Of SC_EVEN_QUEUE +reecerereermmrioresrirerisiieimnisiiicinenienes 97
Figure 7-30. Example Of SC_EVENt_QUEUE +--creeerrererisrisnenrisesisenenssiennnin 97
Figure 8-1. Gas Station Processes and Events «««.cccovesreeeiiiinninnniiiinieennin. 99
Figure 8-2. Syntax OF SC_IMULEX +-++evvverereetreermossssinmminnietiniiiiieee, 101
Figure 8-3. Example Of SC_MULEX «ererrertrsrerrimestimniniiniininitiioniiin, 101
Figure 8-4. Example of sc_mutex Used in Bus Class««+ttesseveereicenniniiinns 102
Figure 8-5. Example of sc_mutex with an sc_method ««..ccesvveerereninncnnne, 102
Figure 8-6. Syntax of sc_semaphore .. 103
Figure 8-7. Example of sc_semaphore—gas_station «««s-«s+ssevesseressiniennnes 103
Figure 8-8. Example of sc_semaphore—multiport_RAM -woveevieiricnnnainnn 104
Figure 8-9. Syntax of sc_fifo—Abbreviated........cccvvviiinmininninieiiiinninen 105
Figure 8-10. Example of sc_fifo kahn_ex...csvsemrroseanniiniinnniiiiininin 106

232 SystemC: From The Ground Up

Figure 9-1. Shift ReGISter . ceoeererrerierivenininniiiiiiii e 109
Figure 9-2. Example of Modeling a Software-Only Shift Register -« 110
Figure 9-3. Simulated Activity with Four Concurrent Processes:« -+« «--«+s« 110
Figure 9-4. Full SystemC Simulation Engine .. 111
Figure 9-5. Signal Channel Data StOrage.- .-« esusrerrsermeesisisiinieeniinn 111
Figure 9-6. Syntax of SC_Signali-s eeseeereversrnrmienminiiiiiiineeeiiinienis 113
Figure 9-7. Example of SC_Signal « s eiresevesesivimisiinniiitiieiiinan 114
Figure 9-8. Example of Sc_signal QUEPUL - ereeessemsersismmemniimsinsienciisiesans 115
Figure 9-9. Syntax of sc_signal (Dangerous) ... 115
Figure 9-10. Dangerous SC_SigNal. . ec.ecrerrerereerinesieneineceniiniennecensone 115
Figure 9-11. Example of sc_signal Output (Dangerous)-««.+--ssureererrenens 116
Figure 9-12. Tri-State BUS «rerreererrereerinemreneimiceniiiiiiiesennesnns 116
Figure 9-13. Syntax of sc_signal_resolved and sc_signal_rv «-...cccconvines 117
Figure 9-14. Example of ea_signal_pullupc.ccecovvivniiniininniniiinn, 118
Figure 9-15. Syntax of Specializations posedge and negedge -« ++++-eseere- 119
Figure 10-1. Module Hierarchy «..eoveeveveiiiiniiniiinmiiienien, 122
Figure 10-2. Example of main with Direct Instantiation «....ooceeeericrinninnas 123
Figure 10-3. Example of main with Indirect Instantiationc.ovevverivennne 124
Figure 10-4. Example of Direct Instantiation in Header.....c.cccovccineinnnnnn 125
Figure 10-5. Example of Indirect Instantiation in Header +«.-+--:+ecevesreeiere 125
Figure 10-6. Example of Direct Instantiation and Separate Compilation .. 126
Figure 10-7. Example of Indirect Separate Compilationccocccvrvnsierninn 127
Figure 11-1. Communication Via POrts «.«..coccvveviniiniiiiinnnn 130
Figure 11-2. C++ Interface Class Relationships e-sorevseeiiniiniiini, 131
Figure 11-3. Example of C++ Interface ..o, 131
Figure 11-4. Example of Two Derivations From Interface Class.-.«...c--. 132
Figure 11-5. Example of C++ Interface .. cooevrverermiinvniniiiiiiiiiiin, 132
Figure 11-6. The POWer Of INTEIfaces «««-esterreeerssverenreremnenieneeiinniiniinns 134
Figure 11-7. Syntax of BasiC SC_POIT..csseruirsestsiinierasienismmmirsenoninsnineones 135
Figure 11-8. Example of Defining Ports within Module Class Definition 135
Figure 11-9. Connectivity POSSIDIlItIES «+oveevesvevrvsvmimniiiiisiiiiiiicinn 136
Figure 11-10. Syntax of Port CONNECHVILY «eerveresrevimeiisirnnniiiniiinnns 138
Figure 11-11. Example of Port Interconnect Setup (1 of 3)..veeeeveiieinnnnns 139
Figure 11-12. Example of Port Interconnect Setup (2 of 3)..vecrvrvicviivenneen 139
Figure 11-13. Example of Port Interconnect Setup (3 of 3)...cccvvnviverinnnnn 139
Figure 11-14. Example of Port Interconnect by Name «....ocovevenviinnniniiennn 140
Figure 11-15. Example of Port Interconnect by Position -« .:sserevscersuinienns 140
Figure 11-16. Syntax Of POIt ACCESS «oveerererereereriserssiansiniuniaesesineinraineas 141

Figure 11-17. Example of POTt ACCESS +vvivvveiervimiiiiiiniiiiiiiiniiiie et 141

List of Figures 233
Figure 12-1. sc_fifo Output Interface Definitions—Partial -.......cooveenennniene 144
Figure 12-2. sc_fifo Input Interface Definitions—Partial -.eeseeerieeveiriiinnia 145
Figure 12-3. sc_signal Input Interface Definitions - Partial.......cocoovvinninne 146
Figure 12-4. sc_signal Input Interface Definitions «ewseeeescrreeresnsrrverarianas 146
Figure 12-5. sc_mutex Interface Definitions ««sseeseseserereermorniererersinieiuninnes 147
Figure 12-6. sc_semaphore Interface Definitions «.....ccocevviseviiniiiniinnnnes 147
Figure 12-7. Example of Event FINder. oo evereseierssinererennineninisierniinnnnes 148
Figure 12-8. Example of Event Finder USe «oerevessersssinmninraenninnesieriinnnnnas 149
Figure 12-9. Syntax of FIFO Port Specializations «:«sseesvesessicirisseesninnnnn, 150
Figure 12-10. Example Using FIFO Port Specializations.....c.csoosesvereuennns 151
Figure 12-11. Syntax of Signal Port Specializations -« vceooevvevevnuiceniciiins 152
Figure 12-12. Example of Signal Port Specializations - Header--++e-+-ec+ 153
Figure 12-13. Example of Signal Port Specializations - Implementation.. 154
Figure 12-14. Syntax of sc_port<> Declaration Complete - v wesereveesenen. 154
Figure 12-15. Tlustration of sc_port<> Array Connectivityooeeseeverreces 155
Figure 12-16. Example of sc_port<> Array Declaration «.....c.creverserersenss 155
Figure 12-17. Example of sc_port<> Array CONNECtions »++etsersessssmmereuses 156
Figure 12-18. Example of SC_pOrt<> AITay ACCESS:«reseseererseussrssrernernaunnes 157
Figurg 12-19. How sc_export WOTKS s eeeererierieruninniuninieinniiienianinesiniiemiseienes 158
Figure 12-20. Syntax of sc_export<> Declaration -+« s eiwsssessseiresiesens 159
Figure 12-21. Syntax sc_export<> Internal Binding to Channel -«-.se.c... 159
Figure 12-22. Example of Simple sc_export<> Declaration -+e....ccoeuvercesn. 160
Figure 12-23. Example of Simple sc_export<> Instantiation «........cccoveveees 160
Figure 12-24. sc_export Used with Hierarchy ... 161
Figure 12-25. Syntax of sc_export<> Binding to sC_eXport<s «.eseseeeeres 161
Figure 12-26. Example of Customer View Of IP «veeevreeeviiminnecnicsninininnes 162
Figure 12-27. Example of sc_export Applied to @ Bus wevemiinieiiniinis 162
Figure 12-28. Example of Vendor View Of [P« e ieeerrvereaiiincrinnenicennrincnnnnee 163
Figure 12-29. Example of sc_export Applied to a Bus Constructor -« ...« 163
Figure 12-30. Connectivity PosSiDilities s reeereserssvenieniniiininneiiiinne, 164
Figure 12-31. Hidden Channels sccectesesssrsssseaesnrersrmesessrsroriesressierersessassonsanens 166
Figure 13-1. Example of Custom Channel Interface «««.ooeveeisvesiisvenninniniss 169
Figure 13-2. Example of Custom Interface Implementation «...covvevvenine 170
Figure 13-3. Example User Defined Data Type ... 171
Figure 13-4. Example of SystemC User Data Type-:««sssssssseeeereacsassuenseans 172
Figure 13-5. Example of SystemC User Data Type Implementation 173
Figure 13-6. Example of Hierarchical Interface Header :«.ereeoseeereeesnenieniane 174
Figure 13-7. Example of Hierarchical Channel Header -+ -s+eeeresreresirenianens 175
Figure 13-8. Example of Hierarchical Channel Interface Header.«..«.-...... 176
Figure 13-9. Before and After Adaptation ««eseeveeemceesseriniiniinnisienniinion 177
Figure 13-10. Example of Primitive Adaptor Channel Header (1 of 2)..... 178

234 SystemC: From The Ground Up

Figure 13-11. Example of Primitive Adaptor Channel Header (2 of 2)..... 179
Figure 13-12. Test Bench Adaptation Using Hierarchical Channels «........ 181
Figure 13-13. Example of Simple CPU interface - . eoveseesesrmesinvuniasisseennsne 181
Figure 13-14. Example of Hierarchical Channel Implementation ««-+:------ 182
Figure 13-15. CPU Pin-Cycle Accurate Timing --ccoeeeeeseesesessrisreernnsaainns 183
Figure 13-16. Example of Hierarchical Transactor Channel Header:+.... 184
Figure 13-17. Example of Hierarchical Transactor Implementation ---«-... 185
Figure 14-1. Comparing Wait Statements to Clock Statements.......resesrsene 187
Figure 14-2. Syntax OF SC_CLOCK rreeerssssrennmrannneciininiiunninnitreinicnin. 188
Figure 14-3. Examp]e OF SC_CLOCK «rersrernvuranssnntiniivnnniiinniiiinsinnnniensniinn. 189
Figure 14-4. Syntax of SC_CTHREAD +sesesrirsieiiismininnsiiiisesiinsreninise 189
Figure 14-5. Syntax of Clocked Waits.-..cereersivisiminiiininniininiin. 190
Figure 14-6. Example of Code Equivalent for Clocked Thread «...ccoeveenee 190
Figure 14-7. Syntax of Global WatChing --..«sssreesesisissisininsiniisisiinnnnns 191
Figure 14-8. Syntax of Local Watching ... 191
Figure 14-9. Example of Code Equivalent to Local Watching -« .ccveeeereee. 191
Figure 14-10. Example Code Using Clocked Threads and Watching -+----- 192
Figurel4-11. Design WILH 1-2V POTLS «+cvvsvrerernneensrnerionserossenectnssrnssnnesniessnsones 193
Figure 14-12. Example of Configurable Code with 1-N Ports...c..covvesuenens 194
Figure 14-13. Example of Configurable Code to Manage Levels -«::---e 196
Figure 14-14. Syntax to Capture Waveforms «..ovesiseisviniininiiininin, 197
Figure 14-15. Example of Simple Waveform Capture ««.oceorveeenresinieneninnn, 198
Figure 14-16. Sample Waveform Display From gtkwave ««.eoevieveeinnennne, 199
Figure 14-17. Syntax to Enable Dynamic Threads «.....ccccovvvniiinniiinnnnne, 200
Figure 14-18. Example Functions Used as Dynamic Processes «s«.«:«:-:-s 200

Figure 14-19. Syntax to Register Dynamic Processes with Void Return .. 201
Figure 14-20. Syntax to Register Dynamic Processes with Return Values201

Figure 14-21. Syntax to Pass Process Arguments by Reference.....cesveevens 202
Figure 14-22. Syntax to Set Spawn Options «ieseseeressiessiessisismniinisnsiie 202
Figure 14-23. Example of a Simple Thread Spawn -««cecceereseresvenescnnnanans 203
Figure 14-24. Example of Waiting on a Spawned Processc.ccvuevevurinans 203
Figure 14-25. High-Level Model of a Design to be Testedcoocvvevesierinnan 204
Figure 14-26. Example of fork/join Application:ccecevvmiimivinsniicninnnne 205
Figure 14-27. Syntax for fork/jOin eeresreescsussiimsiniininiisiniiiiiiiins 205
Figure 14-28. Example Header for fork/join Example «-.eereeecienacnreeninias 205
Figurel4-29. Example Of fOork/join - oeovereereservsvinnininiiinini, 206
Figure 14-30. Syntax of Message Identifier .. -sosermvermnssninincncncsiiienns 207
Figure 14-31. Error ClassifiCations «:s«eseeseeerraresmsunsiiniiiniiniiiienai. 208
Figure 14-32. EITOT ACHONS: +teerrererererinsamrmreestioienniannaessinanearmassnssassonces 208
Figure 14-33. Syntax for Basic Message SEtup «« e evesreessssmsrssnsessscssisannine 209

Figure 14-34. Example of main.cpp with SystemC Error Reporting......... 209

List of Figures 235

Figure 14-35. Example of Reporting in a Module......cvvevmiiniriinnciriiinnne 210
Figure 14-36. Examp]e of Output Messages .. 210
Figure 15-1. Synchronized wait for a Signal ... 215
Figure 15-2. Example Of FIFO ElIMINALION c+evvevrerserrsreeeserssesansenrerssevarssases 215
Figure 15-3. struct for Pay]oad .. 216
Figure 15-4. Bus Write with Payload..ccccerreieriimniiniinniini, 216
Figure 15-5. Smart Pointer with Payload.......ccoveeerrvenimneinninniiniiennininiennn. 217
Figure 15-6. C++ Class Requires Semicolon .ceweessisremveiiasiisiiiisiiniinens 219
Figure 15-7. C++ Function Does Not Use Semicolon ««e.eeeeesurerernersruernnns 219
Figure]5-8, C++ Fork/Join Idiosyncrasy ... 219
Figure 15-9. C++ Temp]ate Idiosyncrasy .. 220

Figure 15-10. Example of Using Indents to Highlight Registrations......... 220

This page intentionally left blank

Reader’s Notes

This page intentionally left blank

Index

#ifndef 218
#include 219

sc_fifo 32, 100, 104, 105, 106, 144,

145, 147, 170, 171

sc_mutex 32, 100, 101, 102, 147

sc_prim_channel 100, 133, 167, 169,

abstraction 6 174

adaptor 176, 178, 185 sc_semaphore 100, 102, 103, 104, 147

AMBA 32 sc_signal 32, 113, 114, 152, 168, 170,
171, 174

analog 31

and_reduce 45, 51
approximately-timed 13
ArchC 211

automation 8

BFM See Bus Functional Model
bit 51
bitset 45
blocking 100
bool 43, 45, 46
boost library 211
Boost library
shared_ptr 106
bus functional model 14

cancel 86, 87
Capability Maturity Model 7
channels 217
primitive 100, 167
sc_buffer 113, 119
sc_channel 133, 158, 167, 174
sc_clock 30

sc_signal_resolved 116, 117
sc_signal_rv 116, 117
sc_signal<bool> 118
specialized signals 118
write 113, 116
Channels 32
char 43
cleanup 38
clocks 30, 214
sc_clock 187, 188, 189
CMM 7
coding styles 221
compilers
gec 28
HP 27
Sun 26
complexity 6
concurrency 30, 32, 83
constants
Log_045, 46
Log_145,46
Log_X 46
Log 7 46

240

SC_LOGIC_045, 46
SC_LOGIC_1 45, 46
SC_LOGIC_X 46
SC_LOGIC_Z 46
conversions
to_double 51
to_int 51
to_int64 51
to_long 51
to_string 51
to_uint 51
to_uint64 51
csd 41
CT See cycle-timed
cycle-timed 13

data type performance 55
data types
bool 43, 46
char 43
double 43, 47
fixed-point 47
float 43, 47
int 43
long 43
native 218
sc_bigint 44, 51
sc_biguint 44
sc_bit 45, 46
sc_bv 45, 46
sc_dt 45, 46
sc_event 78, 79, 83
sc_fixed 31, 35, 47
SC_INCLUDE_FX 47
sc_int 31, 35, 44, 51
sc_logic 31, 35, 46
sc_lv 35, 46
sc_string 41, 42
sc_time 30, 71, 72, 76
sc_ufixed 47
sc_uint 44
short 43
signed 41
unsigned 41, 43
default
SC_TRN 50
SC_WRAP 50
default_event 149
delayed 187, 190

SystemC: From The Ground Up

delayed notification 80, 85, 86
delta_count 180

delta-cycle 38, 85

deque 106

design reuse 7

direct 123

double 43, 47

dynamic process 199

editors
emacs 221
nedit 221
vim 220
elaboration 34, 35, 36, 38, 58
environment 26
errors, common
#include 219
closing semicolon 219
required space for template 220
SC_FORK/SC_JOIN 219
evaluate-update 111, 115, 221
event finder 148, 149
events 32, 34,37, 110, 113, 119
cancel 86, 87
delayed 80, 86
delayed notification 85
next_trigger 92
notify 35, 80, 86, 87, 179
notify_delayed 86
sc_event 35, 78, 79, 83
timed_out 82
Events 78, 87
default_event 149
sc_event_finder 148, 150
execution 38

FIFO 104

fixed-point 47
SC_INCLUDE_FX 47

float 43, 47

fork 204, 206

GNU 26, 27
gtkwave 199, 212

halt 192

hardware data types 31
HDL 33

heartbeat 174, 186

Index

Hello_SystemC 26, 28, 29

hierarchical channel 174, 180

hierarchical channels See channels,
hierarchical

hierarchy 121, 122

HP/UX 26

indirect 123, 124

initialization 79

install 26, 27

install environment 26

instantiate 122, 124, 128

instantiation 122

int 43

interfaces
sc_fifo_in_if 32, 143, 144
sc_fifo_out_if 143
sc_interface 133
sc_mutex_if 32
sc_signal_inout_if 145, 146
sc_signal_out_if 145, 146

join 204
Kahn process networks 105

language comparison 2
Language Reference Manual 39
length 51

Linux 26, 28

Log 045,46

Log 145,46

Log_X 46

Log_7Z 46

long 43

LRM 39

main.cpp 64

make 26

map 53

Measure of Reuse Excellence 7

modules
SC_HAS_PROCESS 126
sc_module 121

MORE7

mutex 100, 101, 102

nand_reduce 45, 51

241

negedge 119
negedge_event 119
next_trigger 35, 92
nor_reduce 45, 51
notify 35, 86, 87, 179
notify delayed 80
notify immediate 80
notify_delayed 86

Open SystemC Initiative 12
operators
and_reduce 45, 51
length 51
nand_reduce 45, 51
nor_reduce 45, 51
or_reduce 45, 51
range 45, 51
xnor_reduce 45, 51
xor_reduce 45, 51
or_reduce 45, 51
OSCI See Open SystemC Initiative

port declarations 135
ports
multi-port 154, 156
port array 154, 156
sc_export 137, 138, 158, 159
sc_port 32, 135, 138, 141, 152, 155
sc_port array 154
posedge 118, 119
posedge_event 118, 119
PRD 16
primitive channel 170
primitive channels See channels,
primitive
processes
dynamic 199
fork 204, 206
join 204
naming convention 221
SC_CTHREAD 32, 34, 37, 78, 187,
189
SC_FORK 187, 204, 206
SC_JOIN 187, 204
SC_METHOD 32, 34, 37, 78, 90, 91,
92
sc_spawn 202, 203, 206
SC_THREAD 32, 34, 37, 74, 78, 79,
81, 90, 100, 103, 190, 192

242

wait 187, 190, 203
Processes

SC_CTHREAD 61

SC_METHOD 61

SC_THREAD 61, 62, 63
Product Requirements Document 16
programmable hierarchy 193
project reuse 8

range 45, 51

register-transfer level 3

report 209, 212

request_update 112, 113, 179
resources 223

RTL 35, 214, See register-transfer level

SAM See System Architectural Model
sc_bigint 44, 51
sc_biguint 44
SC_BIN 42
SC_BIN_SM 42
SC_BIN_US 42
sc_bit 45, 46
sc_buffer 113, 119
sc_bv 45, 46
sc_channel 133, 158, 167, 174
sc_clock 187, 188, 189
sc_create_vcd_trace_file 197
SC_CSD 42
SC_CTHREAD 32, 34, 37, 61, 78, 187,
189
halt 192
W_BEGIN 191
W_DO 191
W_END 191
W_ESCAPE 191
wait_until 187, 190
watching 190, 191, 193
SC_CTOR 60, 61, 62, 64, 65, 66
SC_DEC 42
sc_dt 45, 46
sc_event 35, 78, 79, 83, 99
sc_event_finder 148, 150
sc_export 137, 138, 158, 159
sc_fifo 32, 100, 104, 105, 106, 144, 145,
147, 170, 171
sc_fifo_in_if 32, 143, 144
sc_fifo_out_if 143
sc_fixed 47

SystemC: From The Ground Up

SC_FORK 187, 204, 206
SC_HAS_PROCESS 64, 65, 126
SC_HEX 42
SC_HEX_SM 42
SC_HEX_US 42
SC_INCLUDE_DYNAMIC_PROCESSE
S 200
SC_INCLUDE_FX 47
sc_int 44, 51
sc_interface 133
SC_JOIN 187, 204
sc_logic 46
SC_LOGIC_0 45, 46
SC_LOGIC_1 46
SC_LOGIC_X 46
SC_LOGIC_Z 46
sc_lv 35, 46
sc_main 57, 58, 64, 122
SC_METHOD 32, 34, 37, 61, 78, 90, 91,
2
sc_module 64, 65, 121
SC_MODULE 59, 60, 61, 66, 68
sc_mutex 32, 100, 101, 102, 147
lock 101
trylock 101
unlock 101
sc_mutex_if 32
sc_numrep 41
SC_OCT 42
SC_OCT_SM 42
SC_OCT_US 42
sc_port 32, 135, 138, 141, 152, 155
sc_port array 154
sc_prim_channel 100, 133, 167, 169, 174
request_update 179
update 179
SC_RND 50
SC_RND_CONYV 50
SC_RND_INF 50
SC_RND_MIN_INF 50
SC_RND_ZERO 50
SC_SAT 49
SC_SAT_SYM 49
SC_SAT_ZERO 49
sc_semaphore 100, 102, 103, 104, 147
get_value 103
post 103
trywait 103
wait 103

Index

sc_set_default_time_unit 75
sc_set_time_resolution 75
sc_signal 32, 113, 114, 152, 168, 170,
171,174
event 110, 113, 119
write 113
sc_signal_inout_if 145, 146
sc_signal_out_if 145, 146
sc_signal_resolved 116, 117
sc_signal_rv 116, 117
sc_signal<bool> 118
negedge 119
negedge_event 119
posedge 118, 119
posedge_event 118, 119
sc_simulation_time 75
sc_spawn 202, 203, 206
sc_start 58, 72, 79, 81
sc_string 41, 42
SC_THREAD32, 34, 37, 61, 62, 63, 74,
78,79, 81, 90, 100, 103, 190, 192
sc_time 71, 72,76
sc_set_default_time_unit 75
sc_set_time_resolution 75
sc_simulation_time 75
sc_time_stamp 73
sc_trace 171, 173, 197, 198
SC_TRN 50
SC_TRN_ZERO 50
sc_ufixed 47
sc_uint 44
SC_WRAP 49
SC_ZERO_TIME 72, 80, 85
SCV library 211
semaphore 102, 103, 104
sensitive 35, 38, 78
sensitivity 34, 35
dynamic 35
next_trigger 35, 92
sensitive 35, 38, 78
static 35, 78, 82, 90
wait 74, 80, 81, 82
short 43
signed 41
signed magnitude 41
Simulation Engine 79
simulation kernel
delta_count 180
Simulation Kernel 27, 33, 34, 38

delta-cycle 38, 85
evaluate phase 85
evaluate-update 38, 111, 115
initialization 79
request_update 112, 113
sc_start 38, 72, 79, 81
Simulation Engine 79
update 109, 111
simulation performance 214
simulation process 33, 34, 35
simulation speed 213
sm 41
Solaris 26
specialized port 143, 148
Standard Template Library 104, 106
static sensitivity 143, 161
STL
bitset 45
deque 52, 104
list 52
map 52, 53
string 52
vector 52, 53
string 52
unified 41
structure 121, 124
System Architectural Model 11
SystemC Verification Library 2
SystemVerilog 2

team discipline 7
time
resolution 215
sc_time_stamp 73
SC_ZERO_TIME 72
time display 73
time model 30
time units
SC_FS 71
SC_MS 71
SC_NS 71
SC_PS 71
SC_SEC 71
SC_US 71
timed_out 82
TLM 12, 16, 18, 20, 21, See
to_double 51
to_int 51
to_int64 51

243

244

to_long 51

to_string 51

to_uint 51

to_uint64 51

top-level 124

Top-Level 123

Transaction-Level Model 11, 12, 14
transactor 180, 184, 185

unified

string 41
unified string 41
unsigned 41, 43
un-timed 13
update 109, 111, 179
UT See un-timed

Value Change Dump 197
VCD 197, 199, 212

Verilog 2, 32, 36, 38, 113
VHDL 2, 32, 36, 38, 113

SystemC: From The Ground Up

W_BEGIN 191

W_DO 191

W_END 191

W_ESCAPE 191

wait 74, 80, 81, 82, 187, 190, 203

wait_until 190

watching 190, 191, 193

Waveforms
gtkwave 199, 212
sc_create_vcd_trace_file 197
sc_trace 171, 173, 197, 198
Value Change Dump 197
VCD 197, 199, 212

write 116

xnor_reduce 45, 51
xor_reduce 45, 51

	SystemC : From the Ground Up
	Cover

	Dedication
	Contents
	Preface
	Why this Book
	Prerequisites for this Book
	Book Conventions
	About the Examples
	How to Use this Book
	SystemC Background
	The Evolution of SystemC
	Open SystemC Initiative

	1. An Overview to System Design Using SystemC
	1.1 Introduction
	1.2 Language Comparison
	1.3 Design Methods
	1.4 What's Next
	1.5 Enhancing Productivity with SystemC

	2. TLM-Based Methodology
	2.1 Transaction-Level Modeling Overview
	2.2 Abstraction Models
	2.3 Another Look at Abstraction Models
	2.4 TLM-Based Methodology
	2.5 Summary

	3. Overview of SystemC
	3.1 C++ Mechanics for SystemC
	3.2 SystemC: A C++ Class for Hardware
	3.3 Overview of SystemC Components
	3.4 SystemC Simulation Kernel

	4. Data Types
	4.1 Numeric Representation
	4.2 Native Data Types
	4.3 Arithmetic Data Types
	4.4 Boolean and Multi-Value Data Types
	4.5 Fixed-Point Data Types
	4.6 Operators for SystemC Data Types
	4.7 Higher Levels of Abstraction and the STL
	4.8 Choosing the Right Data Type
	4.9 Exercises

	5.Modules
	5.1 A Starting Point: sc_main
	5.2 The Basic Unit of Design: SC_MODULE
	5.3 The SC_MODULE Class Constructor: SC_CTOR
	5.4 The Basic Unit of Execution: SystemC Process
	5.5 Registering the Simple Process: SC_THREAD
	5.6 Completing the Simple Design: main.cpp
	5.7 Alternative Constructors: SC_HAS_PROCESS
	5.8 Two Basic Styles
	5.9 Exercises

	6. A Notion of Time
	6.1 sc_time
	6.2 sc_start()
	6.3 sc_time_stamp () and Time Display
	6.4 wait(sc_time)
	6.5 sc_simulation_time(), Time Resolution and Time Units
	6.6 Exercises

	7. Concurrency
	7.1 sc_event
	7.2 Simplified Simulation Engine
	7.3 SC_THREAD
	7.4 Dynamic Sensitivity for SC_THREAD::wait()
	7.5 Another Look at Concurrency and Time
	7.6 Triggering Events: .notify()
	7.7 SC_METHOD
	7.8 Dynamic Sensitivity for SC_METHOD: next_trigger()
	7.9 Static Sensitivity for Processes
	7.10�
	7.11�
	7.12�

	8. Basic Channels
	8.1 Primitive Channels
	8.2 sc_mutex
	8.3 sc_semaphore
	8.4 sc_fifo
	8.5 Exercises

	9. Evaluate-Update Channels
	9.1 Completed Simulation Engine
	9.2 sc_signal, sc_buffer
	9.3 sc_signal_resolved, sc_signal_rv
	9.4 Template Specializations of sc_signal Channels
	9.5 Exercises

	10. Structure
	10.1 Module Hierarchy
	10.2 Direct Top-Level Implementation
	10.3 Indirect Top-Level Implementation
	10.4 Direct Sub-Module Header-Only Implementation
	10.5 Indirect Sub-Module Header-Only Implementation
	10.6 Direct Sub-Module Implementation
	10.7 Indirect Sub-Module Implementation
	10.8 Contrasting Implementation Approaches
	10.9 Exercises

	11. Communication
	11.1 Communication: The Need for Ports
	11.2 Interfaces: C++ and SystemC
	11.3 Simple SystemC Port Declarations
	11.4 Many Ways to Connect
	11.5 Port Connection Mechanics
	11.6 Accessing Ports From Within a Process
	11.7 Exercises

	12. More on Ports
	12.1 Standard Interfaces
	12.2 Static Sensitivity Revisited
	12.3 Specialized Ports
	12.4 The sc_port<> Array
	12.5 SystemC Exports
	12.6 Connectivity Revisited
	12.7 Exercises

	13. Custom Channels and Data
	13.1 A Review of Channels and Interfaces
	13.2 The Interrupt, a Custom Primitive Channel
	13.3 The Packet, a Custom Data Type for SystemC
	13.4 The Heartbeat, a Custom Hierarchical Channel
	13.5 The Adaptor, a Custom Primitive Channel
	13.6 The Transactor, a Custom Hierarchical Channel
	13.7 Exercises

	14. Advanced Topics
	14.1 sc_clock, Predefined Processes
	14.2 Clocked Threads, the SC_CTHREAD
	14.3 Programmable Hierarchy
	14.4 Debugging and Signal Tracing
	14.5 Dynamic Processes
	14.6 SC_FORK/SC_JOIN
	14.7 Error and Message Reporting
	14.8 Other Libraries: SCV, ArchC, and Boost
	14.9 Exercises

	15. Odds & Ends
	15.1 Determinants in Simulation Performance
	15.2 Features of the SystemC Landscape
	15.3 Next Steps

	Acknowledgments
	List of Figures
	Notes
	Index

