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Preface

The current form of modern approximation theory is shaped by many new de-
velopments which are the subject of this series of conferences. The International
Meetings on Approximation Theory attempt to keep track in particular of fun-
damental advances in the theory of function approximation, for example by (or-
thogonal) polynomials, (weighted) interpolation, multivariate quasi-interpolation,
splines, radial basis functions and several others. This includes both approxima-
tion order and error estimates, as well as constructions of function systems for
approximation of functions on Euclidean spaces and spheres.

It is a piece of very good fortune that at all of the IDOMAT meetings, col-
leagues and friends from all over Europe, and indeed some countries outside Europe
and as far away as China, New Zealand, South Africa and U.S.A. came and dis-
cussed mathematics at IDOMAT conference facility in Witten-Bommerholz. The
conference was, as always, held in a friendly and congenial atmosphere.

After each meeting, the delegates were invited to contribute to the proceed-
ing’s volume, the previous one being published in the same Birkhiuser series as
this one. The editors were pleased about the quality of the contributions which
could be solicited for the book. They are refereed and we should mention our
gratitude to the referees and their work.

The recent meeting in August 2001 was particular in that it was held at the
time of Professor Manfred Miiller’s retirement. It was therefore both a celebration
of approximation theory and of the many mathematical contributions Professor
Miiller made to approximation theory, as well as his friendship with many of the
meeting’s delegates, including, of course, the editors of this volume. We are grateful
for the fine contributions that were delivered at the time of the conference, several
of which are now included in this book. It is meant not only as a proceedings of
the IDOMAT meeting, but also as a Festschrift in honour of Manfred Miiller. This
volume is therefore in its entirety dedicated to him.

At this point we also thank the Deutsche Forschungsgemeinschaft (Bonn)
for providing the majority of the financial support of this conference and the
publisher for accepting the proceedings into its International Series of Numerical
Mathematics.

Also we would like to thank all participants for their efforts towards making
this a successful meeting.



viii Preface

Leading experts and colleagues in approximation theory and quite a number
of young researchers made the conference a stimulating event, with interesting
discussions and scientific interactions to support and initiate future research. In
this sense the success of the IDOMAT conferences in the years 1995, 1998 & 2001
and the positive resonance will encourage us to continue in future this series of In-
ternational Meetings with new developments in approximation theory and applied
mathematics in Witten-Bommerholz.

Witten-Bommerholz, August 2002

Martin D. Buhmann
Detlef H. Mache

3rd International Meeting on Approximation Theory
Witten - Haus Bommerholz (Germany)
August 20-24, 2001



List of Participants

1. Bavinck, Herman, Delft University of Technology,
Faculty of Information Technology and Systems, Mekelweg 4
NL-2628 CD Delft, The Netherlands;
e-mail: bavinck@its.tudelft.nl

2. Beatson, Rick, University of Canterbury,
Department of Mathematics and Statistics, Private Bag 4800
Christchurch, New Zealand;
e-mail: R.Beatson@math.canterbury.ac.nz

3. Berdysheva, Elena E., Universitidt Erlangen-Niirnberg,
Mathematisches Institut, Bismarckstr. 1 1/2
D-91054 Erlangen, Germany;
e-mail: berdyshe@mi.uni-erlangen.de

4. Berens, Hubert, Universitit Erlangen-Niirnberg,
Mathematisches Institut, Bismarckstr. 1 1/2
D-91054 Erlangen, Germany:;
e-mail: berens@mi.uni-erlangen.de

5. Blum, Heribert, Universitat Dortmund,
Institut fir Angewandte Mathematik, Lehrstuhl X, Vogelpothsweg 87
D-44221 Dortmund, Germany;
heribert.blum@math.uni-dortmund.de

6. Braess, Dietrich, Ruhr-Universitidt Bochum,
Fakultat fir Mathematik, Universitatsstr. 150
D-44780 Bochum, Germany;
e-mail: braess@num.ruhr-uni-bochum.de



10.

11.

12.

13.

14.

List of Participants

Bruin, Marcel G. de, Delft University of Technology,

Faculty of Information Technology and Systems, Department of Applied
Mathematical Analysis, Mekelweg 4

2628 CD Delft, The Netherlands;

e-mail: m.g.debruin@its.tudelft.nl

Buhmann, Martin D., Justus-Liebig Universitit Giessen,
Mathematisches Institut, Arndtstr. 2

D-35392 Giessen, Germany

e-mail: Martin. Buhmann@math.uni-giessen.de

Butzer, Paul L., RWTH Aachen,

Lehrstuhl A fiir Mathematik, Templergraben 55
D-52056 Aachen, Germany;

e-mail: butzer@rwth-aachen.de

Davydov, Oleg, Universitat Giessen,
Mathematisches Institut, Arndtstr. 2
D-35392 Giessen, Germany

e-mail: Oleg. Davydov@math.uni-giessen.de

Delvos, Franz J., Universitét-Gesamthochschule-Siegen,
Fachbereich Mathematik, Holderlinstr. 3

D-57068 Siegen, Germany;
delvos@mathematik.uni-siegen.de

Felten, Michael, FernUniversitat-GHS-Hagen,
LG Numerische Mathematik, Liitzowstr. 125
D-58084 Hagen, Germany;

e-mail: michael.felten@fernuni-hagen.de

Fernandez, Noemi Lain, Medizinische Universitat Liibeck,
Institut fiir Mathematik, Wallstr. 40

D-23560 Liibeck, Germany;
fernande@math.mu-luebeck.de

Filbir, Frank, Medizinische Universitat Liibeck,
Institut fiir Mathematik, Wallstr. 40

D-23560 Liubeck, Germany;
filbir@math.mu-luebeck. de

Fredebeul, Christoph, Universitit Dortmund,

Institut fiir Angewandte Mathematik, Lehrstuhl VIII. Vogelpothsweg 87
D-44221 Dortmund, Germany;

e-mail: Christoph. Fredebeul@math.uni-dortmund. de



List of Participants

16.

17.

18.

19.

20.

21.

22.

23.

24.

Grajewski, Matthias, Universitdt Dortmund,
Institut fiir Angewandte Mathematik, Vogelpothsweg 87
D-44221 Dortmund, Germany;

Heilmann, Margaretha, Universitdt-Gesamthochschule-Wuppertal,
Gaufistr. 20, D-42097 Wuppertal;
e-mail: heilmann@math.uni-wuppertal.de

Hollenhorst, Manfred, Universitdt Giessen,
HRZ, Heinrich-Buff-Ring 44

D-35392 Giessen, Germany;

e-mail: hollenhorst@hrz.uni-giessen.de

Impens, Chris, University of Gent,

Department of Pure Mathematics and Computer Algebra, Galglaan 2
B-9000 Gent (Belgium);

e-mail: ci@cage.rug.ac.be

Koster, Michael, Universitdt Dortmund,
Institut fiir Angewandte Mathematik
D-44221 Dortmund, Germany;

Kroo, Andras, Hungarian Academy of Sciences,
Mathematical Institute, Redltanoda u. 13-15
H-1053 Budapest, Hungary;

e-mail: kroo@renyi.hu

Leviatan, Dany, Tel Aviv University,
School of Mathematical Sciences
69978 Tel Aviv, Israel;

e-mail: leviatan@math.tau.ac.il

Lubinsky, Doron S., Witwatersrand University Johannesburg,
Mathematics Department

Wits 2050, South Africa;

and: Georgia Institute of Technology,

Atlanta, Georgia, 30332-1060, U.S.A.

e-mail: lubinsky@math.gatech.edu

Luh, Lin-Tian, Providence University,
Dept. of Mathematics, Shalu Town,
Taichung County, Taiwan;

e-mail: ltluh@pu.edu.tw



xii

25.

26.

27.

28.

29.

30.

31.

32.

33.

List of Participants

Mache, Detlef H., Universitat Dortmund,

Institut fiir Angewandte Mathematik (Lehrstuhl VIII), Vogelpothsweg 87
D-44221 Dortmund, Germany;

e-mail: Detlef. Mache@math.uni-dortmund.de

Mache, Petra, FernUniversitat-GHS-Hagen,
Lehrgebiet Numerische Mathematik, Liitzowstr. 125,
D-58084 Hagen, Germany;

e-mail: Petra. Mache@fernuni-hagen.de

Martin, Uwe, Universitit Dortmund,
Institut fiir Angewandte Mathematik, Vogelpothsweg 87,
D-44221 Dortmund, Germany;

Mazure, Marie L., Université Joseph Fourier,
LMC - IMAG, BP 53

38041 Grenoble Cedex 9, France;

e-mail: mazure@imag.fr

Meckbach, Sabine, Universitat — GHS — Kassel,

Fachbereich 17 — Mathematik / Informatik, Hollindische Str. 36,
D-34109 Kassel, Germany;

e-mail: meckbach@hrz.uni-kassel.de

Méhauté, Alain Le, Université de Nantes,

Department de Mathématiques, 2 rue de la Houssiniere,
F-44072 Nantes Cedex, France;

e-mail: alm@math.univ-nantes.fr

Mhaskar, Hrushikesh, California State University,
Department of Mathematics

Los Angeles, CA 90032, U.S.A;

e-mail: hmhaska@calstatela.edu

Miiller, Manfred W., Universitdt Dortmund,

Institut fiir Angewandte Mathematik (Lehrstuhl VIII), Vogelpothsweg 87
D-44221 Dortmund. Germany:

e-mail: mueller@math.uni-dortmund.de

Obermaier, Josef, GSF-Forschungszentrum

fiir Umwelt und Gesundheit,

Institut flir Biomathematik und Biometrie, Ingolstidter Landstr. 1
D-85764 Neuherberg, Germany;

e-mail: josef.obermaier@gsf.de



List of Participants xiii

34. Pinkus, Allan, Technion,
Department of Mathematics,
32000 Haifa, Israel;
e-mail: pinkus@tz.technion.ac.il

35. Plonka, Gerlind, G. Mercator-Universitat-GHS-Duisburg,
Fachbereich Mathematik, Lotharstr. 65,
D-47057 Duisburg, Germany;
e-mail: plonka@math.uni-duisburg.de

36. Priinte, Ludger, Universitdt Dortmund,
Institut fiir Angewandte Mathematik, Vogelpothsweg 87,
D-44221 Dortmund, Germany;

37. Rasa, Ioan, Technical University Cluj-Napoca,
RO-3400 Cluj-Napoca, Romania;
e-mail: Toan. Rasa@math.utcluj.ro

38. Reimer, Manfred, Universitat Dortmund,
Institut fiir Angewandte Mathematik (Lehrstuhl IIT), Vogelpothsweg 87
D-44221 Dortmund, Germany;
e-mail: reimer@math.uni-dortmund.de

39. Revers, Michael, Universitat Salzburg,
Mathematisches Institut, Hellbrunnerstr. 34
A-5020 Salzburg, Austria;
e-mail: Michael Revers@sbg.ac.at

40. Rohwer, Carl, University of Stellenbosch,
Department of Mathematics, University of Stellenbosch, Private Bag X1
Matieland, 7602, South Africa
e-mail: chr@maties.sun.ac.za

41. Sablonniére, Paul, INSA de Rennes,
20 Avenue des Buttes de Coesmes
35043 Rennes cédex, France;
e-mail: Paul sablonniere@insa-rennes.fr

42. Schaback, Robert, Universitdt Gottingen,
Institut fiir Numerische und Angewandte Mathematik, Lotzestr. 16-18
D-37083 Gottingen, Germany;
e-mail: schaback@math.uni-goettingen.de

43. Schempp, Walter, Universitiat-GHS-Siegen,
Fachbereich Mathematik, Lehrstuhl I, Holderlinstr. 3
D-57068 Siegen, Germany;
schempp@mathematik.uni-siegen.de



xiv List of Participants

44. Skrzipek, Michael R., FernUniversitat-GHS- Hagen,
Fachbereich Mathematik, Litzowstr. 125
D-58084 Hagen, Germany;
e-mail: michael.skrzipek@fernuni-hagen.de

45. Stockler, Joachim, Universitdt Dortmund,
Institut fiir Angewandte Mathematik, Lehrstuhl VIII
D-44221 Dortmund, Germany;
e-mail: joachim.stoeckler@math.uni-dortmund.de

46. Straufl, Hans, Universitat Erlangen-Niirnberg,
Institut fir Angewandte Mathematik, Martensstr. 3
D-91058 Erlangen, Germany;
e-mail: strauss@am.uni-erlangen.de

47. Szabados, Jézsef, Hungarian Academy of Sciences,
Alfred Renyi Institute of Mathematics, Redltanoda u. 13-15
H-1053 Budapest, Hungary;
e-mail: szabadosQrenyi.hu

48. Szwarc, Ryszard, Wroclaw University,
Institute of Mathematics, pl. Grunwaldzki 2/4
PL-50-384 Wroclaw, Poland;
e-mail: szwarc@math.uni.wroc.pl

49. Totik, Vilmos, University of Szeged,
Bolyai Institute, Aradi v. tere 1
H-6720 Szeged, Hungary;
e-mail: totik@math.u-szeged.hu or totik@math.usf.edu

50. Vértesi, Peter, Hungarian Academy of Sciences,
Alfred Renyi Institute of Mathematics, Realtanoda u. 13-15
H-1053 Budapest, Hungary;
e-mail: veter@renyi.hu

51. Wang, Renhong, Dalian University of Technology,
Institute of Mathematical Sciences
Dalian 116024, P.R. China;
e-mail: renhong@dlut.edu.cn



Advanced Problems in Constructive Approximation
(Eds.) M.D. Buhmann and D.H. Mache

International Series of Numerical Mathematics Vol. 142, 1-19
(© 2002 Birkh&duser Verlag Basel (ISBN 3-7643-6648-6)

Linear Perturbations of the Classical
Orthogonal Polynomials which are Eigen-
functions of Linear Differential Operators

H. Bavinck

Abstract

In this paper we consider polynomials orthogonal with respect to an inner
product which consists of the inner product of the classical orthogonal poly-
nomials combined with some perturbation and we give a survey of the work
done to derive linear differential operators having these orthogonal polyno-
mials as eigenfunctions.

1 Introduction

In his paper [24] S. Bochner classified the sequences of real or complex polynomials
{Pn(x)}>2., of areal variable z with deg(P,(z)) = n, which are eigenfunctions of
a second-order linear differential operator. He showed that, up to a complex linear
change of variables, the only systems of polynomials with this property are the
well-known polynomials of Jacobi, Laguerre and Hermite, the Bessel polynomials
and the polynomials {z"} . For certain values of the parameters the first three
are orthogonal with respect to a real weight function. Recently Kwon and Little-
john [44] followed Bochner’s work showing that, up to a real change of variable,
there are six distinct orthogonal polynomial systems (Jacobi, Laguerre, Hermite,
Bessel, twisted Jacobi and twisted Hermite) that arise as eigenfunctions of a lin-
ear differential operator. H.L.. Krall tried to classify all differential operators of the
form

A(x,D) =) ai(x)D}, (1)
i=0
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having orthogonal polynomials, {(polynomials orthogonal with respect to a real
weight function) as eigenfunctions, where D = L, r is an integer > 3, {a:(z)},_,
are real continuous functions on R. It is not difficult to see that if (1) has real
polynomials as eigenfunctions, then a;(z) has to be a real polynomial of degree

<ifor all i =0,1,2,...,r. Thus the differential operator must have the form
A®D)=) Z ayx’ @)
i=1

and the eigenvalues{\,} -, such that
A(x,D)P,(x) = AnPn(x), 3)

with Ag = 0 and A, does not vanish for all n € N\{0}. In [42] H.L. Krall showed,
that if r is the smallest order of a differential operator of the form (2) having certain
orthogonal polynomials as eigenfunctions, then r must be even and he gave an
example of a fourth-order operator having nonclassical orthogonal polynomials as
eigenfunctions. In another paper [43] he classified all fourth-order linear differential
operators having orthogonal polynomials as eigenfunctions and he discovered two
more of such operators. More than forty years later his son A.M. Krall {39] (see
also [40]) studied the orthogonal polynomials which are eigenfunctions of these
new operators, using the technique of distributional weight functions. A.M. Krall
found weight functions and the explicit representations for the polynomials and
he derived several properties of them including the appropriate boundary value
problems. Because of their similarity to the corresponding classical polynomials
A .M. Krall called these polynomials Laguerre type, Jacobi type and Legendre type
polynomials.

2 Koornwinder’s representation

oc

In 1984 T.H. Koornwinder {38] considered the polynomials {P,‘l"ﬂ’M'N(x)}n:O,
now usually called Jacobi type polynomials, orthogonal with respect to the inner
product

(f.9) = 2a+/3+1;cz;f1+2ﬁ+1 / f@)g(z)(1 — 2)*(1 4 ) dx +
+Mf(=1)g(-=1)+ N f(1)g(1),

M > 0,N > 0, > —1,8 > —1. He gave an explicit representation of these

o
polynomials in terms of the classical Jacobi polynomials { (e ﬁ)( )} and their

derivatives. In the cases 3 =0, N =0anda=3=0,M =N thegf_correspond
to polynomials studied earlier by A.M. Krall [39]. Furthermore, using the limit
relation

L;:i\l(x) = lim P’a 3,0, N( _ 25*117)

B—o00
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Koornwinder introduced the polynomials {Lg*N (m)}oo now usually called La-

=0’
guerre type polynomials, given by "

LN () = [1 +N (”’ * ‘1’)} L@(g) + N(" :: O‘) DL (x), (4)

n

which are orthogonal with respect to the inner product
1 o0 o
== Tde + N 0 N > —1. 5
(19 = fagT |, f@s@aede+ Nj©Og(0), N200>-1 (5)

For a € {0, 1,2} these polynomials in have been considered in [39], [48] and [41].

3 Differential operators

After Koornwinder’s paper [38] it became a challenge to find a differential oper-
ator having the Laguerre type polynomials {Lz*N (m)}zozo as eigenfunctions and
a differential operator having the Jacobi type polynomials { P&#M:N(z)}> as

n=0
eigenfunctions. In the case of Laguerre type polynomials this would generalize the

operators found by H.L. Krall [43], L.L. Littlejohn and A.M. Krall [48], and L.L.
Littlejohn [41] for a € {0,1,2} respectively and the problem was solved by J.
and R. Koekoek [29] (see also [35]). Since for the classical Laguerre polynomials

{Lg{l)(x)} it is known that

n=0
LL{Y (x) = nL{Y (x) (6)

with
L® = —xD? — (a +1 - x)D, (7)

they looked for an operator of the form

L® 4+ NA(@) (8)

where -
A .= Z a;j(x; a)Di,

i=1

and for numbers {a%a)} such that
n=0

[(L@ . nI) +N (A(") - a,‘,{”I)J LeN(z) =0 (9)

for n € N. Here I denotes the identity operator. By substituting (4) into (9) and by
equating the coefficients of N and N? on both sides, J. and R. Koekoek obtained
two systems of equations and they showed that the two systems of equations for
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oo

the unknown constants {a(na) } and the unknown functions {a;(z; a)};-, , have
n=1

a unique solution given by

1
agla)=<”j;f+ ),ne{1,2,3,...} (10)
and
It e+l (a+2 :
ai(m,a)—ﬁ (-1) J(j_1><z_]>(a+3)z 0, 1€{1,2,3,...}. (11)

Actually they guessed the result and proved afterwards that this solution satisfies
both systems of equations. From (11) it follows at once that in the case N > 0 the
differential operator L(®) + NA(®) is of order 2a + 4 if o« € N and of infinite order
if a ¢ N.

4 Sobolev type orthogonal polynomials

Using the method of [38] H.G. Meijer and H. Bavinck [52], [22] introduced poly-
nomials orthogonal with respect to the inner product

I'2a + 2) o
(f,g) - 22&+1Fa+1 / f l—ZL')diU+

+M[f(~1)g(=1) + fF(D)g()] + N[ (-1)g'(=1) + £ (1)g'(L)],

M >0,N >0,a > —1. Since (z,z) # (1,3:2) , these polynomials are no longer or-
thogonal to a weight function and in [23] are dealt with properties of the zeros and
recurrence relations. Such a kind of inner product, involving derivatives evaluated
at certain points, has been called Sobolev type. In [34], [35] R. Koekoek studied
the polynomials {L%MO*M““*MI (z)}zo:(), polynomials which are orthogonal with
respect to the inner product

l
(f.9)= a+1/ f@)g(@)ste ™z + 3 Mef®(0)g ™0, (12)

k=0

a>—-1,My>0for ke{0,1,2,...,1} and | € N. If [ = 0 they are Laguerre type
polynomials, for [ > 1 we call them Sobolev type Laguerre polynomials.

5 The inversion method and its applications
At a conference in Erice (June 1990) R. Askey [25] raised the problem of finding

difference equations for generalizations of the Meixner polynomials, which are or-
thogonal with respect to a weight function obtained by adding a point-mass to
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the ordinary weight function for Meixner polynomials. The following limit relation
connects the Meixner polynomials {M,(z;3,¢)},,, defined by

winsa- o () 0)

with the Laguerre polynomials:
liny Mn(fﬁ;a +1,¢) =L (z), n=0,1,2,....
c— —C

H. Bavinck and R. Koekoek decided to investigate the easier case of Charlier
polynomials first and solved the problem [20] in that case using a new technique
which I will call the inversion method. Later H. Bavinck and H. van Haeringen
[18] treated the case of Meixner polynomials by the same method. In both discrete
cases the difference operator turned out to be of infinite order for all relevant values
of the parameters. In [4] this inversion method was used in the Laguerre case to
retrieve the differential operator found by J. and R. Koekoek [29] in a direct way.
For Laguerre polynomials the method is based on two well-known formulae

DL{) (x) = LI (x), n=1,2.3,... (13)

and the generating function

S L (@i =1 -t)" Texp (%) : (14)

n=0

It follows that

A-t771 = (1-t)*exp (%) (1—¢)=* 7 Lexp (ti)

o< o0
= S LGV (=) ST LY (2t
m=0 k=0
= > (Z L&:i""”(—x)Lia“’(w)) .
n=0 \k=0

By comparing the coefficient of *~7 on both sides one obtains

ZLf L (@) = 5y, j<iyijEN

or

S L T (o)Lt (@) = 6y, G<idiEN. (15)
k=j
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Formula (15) can be interpreted as follows. If we define the matrix T = (t;;)7 ;¢

with entries )

o @), <

N 0, J >,
then this matrix T is a triangular matrix with determinant 1 and the inverse U of
this matrix is given by T7! = U = (us5)¢;—o With entries

—a—-i—1 . .
Uij = { (I;Jg—; (=), gt
, J>1.

This leads to the following lemma (see [33] Lemma 5)

Lemma 5.1 Suppose that for a certain k € N we have the system of equations

ZAi(a:)DHkLE:’)(x) =F,(x), n=k+1,k+2,k+3,...,
=1

where {A;(z)}io, are independent of n. Then this system has a unique solution
given by

Ai(z) = ”’“ZL( a=i=k=D(_ VFiak(z), i=1,2,3,....

In order to apply this lemma one has to cope with three problems:

Problems

o
1. Find an expression for the numbers {aﬁla)}
n=1

2. Show the equivalence of the two systems or at least show that all the solutions
of one of the systems are also solutions of the other one.

3. Write the coefficients, found by means of Lemma 1, in such a way that the
finite order of the differential operator in the case of o € N can be seen.

These problems have been solved in [4], the last one by a tedious computation.

In [33] J. Koekoek, R. Koekoek and H. Bavinck looked for a linear differential
operator of a special form having the polynomials {Lﬁ’M*N(:c)}::U, orthogonal
with respect to the inner product (of Sobolev type if N > 0)

(f.9) = Uoo J(@)gla)a®e e + MF(0)g(0) + N'(0)g(0),

I'(a+1)
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with M > 0,N > 0, > —1, as eigenfunctions. The aim was to find operators
o) o0 o)

A@ Bl €@ and numbers {a%“)} ,{ﬁ,(la)} ,{’y,({’)} such that for
n=0 n=0

n=20,1,2,...

n=0
(L —nI) + M(A® — o{T)
+N(B® — 1) + MN(C® — 4@ 1)|LaMN(x) = 0. (16)

Here L(® is given by (7) and A(®) = A(®(x), B(®) = B®(x),C® = C(a)(x)
are of the form

o0 o0 o>
A (x) =Y ai(x;0)D, BW(x) = ) bi(x;a)D!, C(x) = 3 cilx; o)D"
i=1 i=1 i=1
Clearly we have to take a(()a) = (()a) = ’y(ga) = 0. It is clear that similar of problems
as mentioned above for the operator A and the numbers {a%a)} , which
n=1

occur here again, return here in a much more complicated way for the operators
oo

B(®_ C(®) and the numbers { éa)}
n=1

fact that the operators B(® and C(®) are no longer determined uniquely. Lemma
1 plays an important role in deriving the unknown operators, but showing that
the operators are of finite order if & is a nonnegative integer causes considerable
difficulties. We state the main result of [33]:

and {’y,(la)} . A new phenomenon is the
n=1

Theorem 5.2 For a > —1 and M? 4+ N? > 0 the only differential equations of the
form (16) satisfied by the polynomials {Lg’M’N(m)}:czo are those where the coeffi-

cients {ai(z;a)}oe, , {bi(z; @) }io, and {ci(z;@)}io, and the numbers {a;‘”}w g

o0 o0
{ ﬁ,(f‘)} and {’y,(la)} are determined explicitly in the paper, and ﬁ§“> is arbi-

n=2 n=1
trary. Only if N 5@ =0 and o« € N the order of this differential equation is finite
and equal to
20+4 ifM>0and N=0
20+8 ifM=0and N >0
4o+ 10 of M >0 and N > 0.

Otherwise the differential equation is of infinite order.

For the orthogonal polynomials which are orthogonal with respect to a dis-
crete measure (Charlier, Meixner etc.) we mean by a Sobolev type inner product
an inner product involving differences (see [2], [3]). The inversion method is also
used to derive a difference equation of infinite order for Sobolev type Charlier
polynomials [5] and in [21] Sobolev type Meixner polynomials are studied in such
a normalization, that they can be compared to Sobolev type Laguerre polynomi-
als. It turns out that these Sobolev type Meixner polynomials are eigenfunctions
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of a difference operator of infinite order for all values of the parameter 3, whereas
the corresponding Sobolev type Laguerre polynomials are eigenfunctions of a dif-
ferential operator, which for nonnegative integer values of the parameter is of
finite order. In [31] J. and R. Koekoek extended the inversion method to Jacobi
polynomials and in {30] they used the new inversion formula to obtain a direct
way to derive the differential equations for symmetric generalized ultraspherical
polynomials, found earlier in {36] by ingenious guessing. A survey of the inversion
formulas and some applications are given in [37]

6 The existence of differential and
difference operators

One of the problems we met in the preceding section was that of showing the

equivalence of some systems of equations and another was that of finding the
o0
numbers {aﬁf')} . The first problem is due to the fact that it is not a priori

n=1
sure that a differential or difference operator of the desired form exists. In two
papers, written independently, [28] and [6] the existence problem is treated and
o<
also a construction for the numbers {a;")} is found. We state a part of the
n=

results in [6].

6.1 Notations

Let {Pn(z)},., be polynomials with deg[P,(x)] = n for each n € N and let
{An}or, be real numbers with Ay = 0 and {A,} ., not all equal to zero such
that {P,(z)},., is a polynomial set of solutions of

o0

Lx)y(x) = > L=)DH(E) = A\ (§)- (17)

i=1

Here {l;(z)};2, are polynomials with deg[l;(z)] <1¢ for alli e {1,2,3, ...}.

Dgt(8) may be read as the derivative Dy(x) = 11—%(;@, the forward difference

Ay(x) = y(x + 1) — y(x) or the backward difference Vy(x) = y(x) — y(x — 1).
Dyt(§) = Ds(D} 1(5)).) € {00, €,3,..} and DEH(E) = 1(5).
If A® i e N, indicates the difference operator, defined by

AD = a2 (awlE] (18)

(see [11]) then we can also take D%T(§) =AWy(x), i €N.
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6.2 Linear perturbations

Let {Qn(z)},—, be polynomials with deg[Q,(z)] < n foreachn =0,1,2,... with

Qn(@) =) qniPe() (19)
k=0
and {P¥(z)}.~, be the polynomials given by
PH(z) = Po(z) + uQn(z), n=10,1,2,...,n e R. (20)
The aim is to find an operator A of the form
A)y(x) = aix)DH(E), (21)
i=1
where {a;(z)};2, are polynomials with degfa;(z)] < for all 4 = 1,2,3, ..., and
real numbers {a, },- , with ap = 0 such that
(L + nA)PL(x) = (An+pon)Ph(x), n=0,1,2,.... (22)

Definition 6.1 Let {P,(z)},r, and {Q.(z)}or, be as stated. We call the poly-
nomials {P¥(x)},~, gwen by (20) a linear perturbation of {Pn(z)},~, of
the class m (m € N) when the following conditions are satisfied:

1. ifn<mthen q,r =0 for all k € {0,1,2,...,n}

2. n>mthen ¢nn #0,¢nn-1 #0 and ¢n i, =0 for all k € {0,1,2,...,m —
1}.

We now state the main result.

Theorem 6.2 Let {P¥(z)}", be a linear perturbation of { P,(x)}.—, of the class
m.

Then a necessary and sufficient condition for the existence of an operator A of the
form (21) and real numbers {an }or, such that (22) holds, is

n n
gk D A= X-1)gGs = > A = Me)n ik, (23)
j=k+1 j=k+1

forallne{1,2,3,...},ke {0,1,2,...,n— 1}.
If m = 0, then the real numbers {an}.-., and the operator A are uniquely deter-
mined. If m > 0, then oy, ag, ag, .. ., ay can be chosen arbitrarily and the operator
A is uniquely determined when ay,as,as, ..., any are chosen.
The numbers {o}, . .| are given by

n=cm+ Y (A —A1)gi (24)

j=m+l
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6.3 Application to Sobolev type orthogonal polynomials

Let {P,(z)}.-, be a system of orthogonal polynomials relative to a positive-
definite real moment functional o, which satisfy a differential or difference equation
of the form (17). Let ¢ be the symmetric bilinear form (of Sobolev type if [ > 0
and g > 0) defined by

o(p,q) = (o,pq) + up" ()¢ (c),

where p(# 0) and ¢ are real constants, [ € {0,1,2,...} , p and g are any real
polynomials and the notation

p(z) = D} SO Len

is used. If ¢ is positive-definite then in the case Dy = [—[§ it is shown in [28] that

if P,g”(c) # 0 for all n = [,l + 1,1 +2,..., then the corresponding orthogonal
polynomials {P#(z)} . satisfy a differential equation (possibly of infinite order)
of the form (22), where a3, a2, as, - . . , a; can be chosen arbitrarily and the operator
A of the form (21) is uniquely determined when a1, as, as, ..., q; are chosen. We
derive this and the corresponding result for differences directly from Theorem 6.2.
If we write

", DY P (§)D] Py (1
K?STYS)('/E’y) = Z : <0>_(]3)2(;)>)( )a n,r,s €N,
=0 h

then (see [51], [1], [3]) the polynomials {P¥(z)},., can be written as (20) with

Qu(z) = K" (¢,¢) Pu(z) — PO() K™ (z, ),

hence o "
P/ (c)P, " (c)
Ink=—"—"F"p57 k€{0,1,2,...,n -1 (25)
0, P2 " J
and
= K (cyc). (26)

It follows that if PT(Ll)(c) #0foralln=101+1,1+2,..., then {P¥(z)} ~,isa
linear perturbation of class  of { P, (z)},_, and by using summation-by-parts (23)
easily follows.

6.4 Special and symmetric linear perturbations

In [6], [7] two other kinds of linear perturbations are introduced, meant for symmet-
ric orthogonal polynomials (Hermite, Gegenbauer). The special linear perturbation
corresponds to a symmetric bilinear form (of Sobolev type if I > 0 and p > 0)
defined by

é(p.q) = (o.pq) + 1up'" (0)g'"(0),
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and the symmetric linear perturbation corresponds to a symmetric bilinear form
(of Sobolev type if I > 0 and g > 0) defined by

é(p,q) = (o, pqg) + p (p”’(C)q“)(C) +pD(=c)q® (—C)> :

If the orthogonal polynomials with respect to o are symmetric, then the orthogonal
polynomials with respect to both these perturbed functionals are symmetric as
well. For these two cases theorems similar to Theorem 1 are derived.

6.5 Conclusion

In the papers [5], [18], [20], [21], [36], [29] and [33] (in the case M = 0, N > 0) dif-
ferential and difference operators (in some cases of finite order, in some other cases
of infinite order) are constructed having certain systems of orthogonal polynomi-
als as eigenfunctions. All these orthogonal polynomials are linear perturbations
of the classical orthogonal polynomials. The classical orthogonal polynomials are
eigenfunctions of a differential or difference operator L of the second order with
eigenvalues A,. In the papers mentioned above tedious proofs were needed to show
the existence of an operator of the form L+uA having the linear perturbations
of the classical orthogonal polynomials as eigenfunctions with eigenvalues of the
form A, + po,. By the results in [6], [7] in all these cases and in many more such
proofs have become superfluous and moreover it is shown that for a certain value
of m € N, depending on the situation, the numbers a,, as a3, ..., oy, are arbitrary

and for the numbers {a,},~ ., the explicit expression (24) is given.

6.6 Two linear perturbations

In [10] combinations of two linear perturbations are considered and in [19] for the
symmetric polynomials combinations of two linear special and/or symmetric per-
turbations are studied. We state the main result of [10] with a small modification
shown in [19}:

Theorem 6.3 Let {P,(z)},., be a system of orthogonal polynomials relative to
a positive-definite moment functional o and let {)\n}f;o be a sequence of real
numbers with Ao = 0 and {)\,}.o, not all equal to zero such that {P,(z)}o,
are eigenfunctions of a linear differential or difference operator L with eigenvalues

{An}oro . If c1 and cy are real constants, 11 and ly are nonnegative integers,
PU(e))#0 foralln e {Ii,l, +1,1;+2,...} (27)

and
PU2)(cy) #0 for alln € {lo, Iy + 1,15+ 2,...}, (28)

then the polynomials { P*¥ (z)}.—, , orthogonal with respect to the bilinear form of
Sobolev type defined by

¥(p,q) = (o, pq) + up'™ (c1)g" (c1) + vp''?) (c2)q") (c2), (29)
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where u > 0,v > 0, and p and g are any polynomials, are eigenfunctions of one
(or more if min(ly,l5) > 0) linear differential or difference operators of form

L+ pA +vB + pvC (30)

with eigenvalues
{An + pan + vBn + prym}ol, - (31)

Here ag = o = 0 = 0 and the numbers {ozn}ill=1 (if 11 > 0), {ﬂn}fle (3f l2 > 0)
and {7, }7nRY (i min {l, 15} > 0) can be chosen arbitrarily. The operators
A,B and C and the numbers {an}; 2 41 {Bn}ncio 41 94 {¥n}nemingiy 15} +197€

uniquely determined, when {ozn}lnlz1 {Bn ile and {'yn}::‘l{l"lz} are fized.

7 The finite order cases

Krall [43] found three fourth-order linear differential operators having orthogonal
polynomials as eigenfunctions, which A.M. Krall [39] called Laguerre type, Jacobi
type and Legendre type polynomials. They have all three become the fathers of
a large family of finite order linear differential operators having (Sobolev type)
orthogonal polynomials as eigenfunctions. For the non-Sobolev cases it has been
conjectured by Magnus [25] that if orthogonal polynomials are eigenfunctions of a
differential operator (3) then they must be orthogonal with respect to a classical
weight function w(zx) plus possibly point masses at the endpoints of the support of
w(z). Strong support to Magnus’ conjecture is given in [45], [46]. For the connection
with spectral theory and a general survey of the field the reader is referred to [26],
[27].

7.1 The Sobolev type Laguerre polynomials

o0

We consider the Sobolev type Laguerre polynomials {Lﬁ*Ml*M%x, l1, l2)}
which are orthogonal with respect to the inner product

n=0"

(p,q) = mljr—l—)/o p(z)q(z)z"e " dz + Myp")(0)g“(0) + Map"'2) (0)¢"2) (0),

(32)
where o > —1,M; > 0,M5 > 0 and ly,l € N, [; < l5. These polynomials are
generalizations of the Laguerre polynomials, which are known to be eigenfunctions
of the second order linear differential operator

L® = —xD? — (a+1-x)D

with eigenvalues A, = n,n € N.
As an application in [10] it follows that there exist linear differential operators

Alel) - Aledz) ¢lelilz) (yeually of infinite order) and numbers {aﬁ{"‘l)} ,
n=>0
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o0

{ (e l2)}oo , {7(a b lz)} such that the polynomials {Lg-M:-Mz (a:,ll,lg)}n_O
n=0 -

are solutions of the differential equation

(L = n) + My (A€ — L) + 0, (A - af11)

+M1M> (C(a’ll’l2) — 'y,(la’ll’h)l)]y(z:) =0. (33)

M8

Here Al®D =

Il
<

i=

aj(x;a,)DY, 1 € {l3,12}, C@nl2) = 3" ¢(x;a,1y,13)D!
i=1
af™!

and I denotes the identity operator. Further we have to take D - a((,a’l2) =

I
(a’ll’l2) = 0 and the values { (o, l’)} (if I > 0), { (a’b)} ,{ (a’l”lz)} '
n=1 n=1 n=1

(1f Iy > 0) can be chosen arbitrarily; for the other values formulas are given. To
each choice of the arbitrary values corresponds precisely one linear differential op-
erator of the form (30), usually of infinite order. In [15] it is shown that if all
the arbitrary values are chosen to be 0 and further o € N, then the correspond-
ing operators Aga’ll),A(()a 12) and C alilz) o6 of finite order: A( D is of order
200+ 41+ 4,1 € {l1,l2} and ng A 12) is of order 4a + 41, + 4l + 6. Further it was
proved that any other choice of the arbitrary values will lead to an operator of
infinite order and also that if « ¢ N, then the operator is of infinite order for any
choice of the arbitrary values. In a number of special cases this problem has been
considered before (see [9] for a complete survey). Here we only mention the case
M, = 0, which for [; = 0 has been treated in [29] (see also [4] and [12]) and in
general in [8], and the case I} = 0,1y = 1, which was studied in {33].

7.2 The Sobolev type Jacobi polynomials

We consider the Sobolev type Jacobi polynomials {Pﬁ'ﬁvl\/’h]‘/’2 (z,0,12) }:ozo, which
are orthogonal with respect to the inner product

p,q) = 2a+ﬁ+1§fza++ﬁ1+25+1)/ z)(1—z)*(1+)%de  (34)

+Mp") (1)) (=1) + sz“ﬂ( >q<lz><1>,

a, 8> -1, l1,ls € N, M, My > 0. These polynomials are generalizations of the
Jacobi polynomials, which are eigenfunctions of the linear differential operator

L@H) = (x2 ~1)D? + [a — B+ (o + B+ 2)x]D,

with eigenvalues
MNeB) = nn+a+B+1) neN.

As a consequence of the perturbation theory [10] there exists a class of linear
differential operators of the form

L(:8) + MIA(“’ﬁ*ll) + MZB(aﬂ,lz) + Mlec(a,ﬁyll,lz) (35)



14 H. Bavinck

for which the Sobolev type Jacobi polynomials are eigenfunctions with eigenvalues
of the form

{,\<a,ﬁ> + Mia(@Bl) 4 MoBLBil) 1 My Moy(oBs zl,zz)}

n=0

Here o{™#") = pleothla) = JeBilula) — g the values of { (.8, ll)} (if &y >

l min{ly,l2}
0),{ﬁ£“’ﬁ”2)}::1 (if I > 0),{7,(,“'5"””} » " (i min {l,l2} > 0) can be

chosen arbitrarily and for the other values formulas are given. To each choice of
the arbitrary values corresponds a linear differential operator of the form (35),
usually of infinite order.

Further it is shown in [16] that, if all the arbitrary values are chosen to be 0,

then for the corresponding operators Af)a’ﬁ’ll), Bf)a’ﬁ’l"’) and Cga’ﬁ’ll’h) we have:

Aga’ﬂ’ll) is of order 26 + 41, + 4, if B € N, Bga’ﬁ’l’) is of order 2a + 4y + 4, if
a €N, and Cg"‘"’"l""’) is of order 2 + 28 + 4l; + 415 + 6, if o, 8 € N. Any other
choice of the arbitrary values will lead to one or more operators of infinite order.

In the case [; = ls = 0 this was proved by J. Koekoek and R. Koekoek
[32] (see also {13]). An important tool in their work was the inversion formula
for Jacobi polynomials, introduced in {31]. They also showed that the operator
Af)a’ﬂ ) i always of infinite order if 5 ¢ N, that Béa’ﬁ 9 i always of infinite order
if o ¢ Nand CE)a,ﬁ,O,O) is always of infinite order if o, ¢ N. Such a result is likely
to be true for the operators A(()a’ﬁ’ll), Bga’ﬁ’h) and Cga’ﬁ’ll’l"’) in general.

7.3 The Sobolev type Gegenbauer polynomials

>0

n=0’

We consider the Sobolev type Gegenbauer polynomials {P,?’Ml’Mz’ll’l"'(m)}
orthogonal with respect to the inner product

2a+2
(f9) = ST (g 1 1) / f(@)g(@)(1 — z%)*dx
+ M [f) (-1 >g“1><—1> + f”“(l)g”‘)(l)]
+ M[f1) (~1)g") (1) + fU2)(1)g"2) (1)), (36)

M, > 0,Ms > 0, > —1,11,l13 € NJl; < l3. They are generalizations of the
Gegenbauer or ultraspherical polynomials, which are eigenfunctions of the linear
differential operator

L@ : =(x2 - 1)D? + 2(a + 1)xD,

with eigenvalues A = n(n + 2a + 1), n € N. As a consequence of the theory
of two symmetric linear perturbations treated in [19] there exist linear differential
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operators A(®D | € {l;,lx}and C(®!12) and numbers {a%a’l)} . Jde {h, 2}
and {’y,(la’l"lz)} such that
n=0

(L) = 31) + 2y (A — alr'T) + Mg (At — aflr)

+ My M, (C(a,h,lz) _ 7r(lrx,ll,lz)Iﬂ ngMlyA’[lel,lQ(l.) -0 (37)

for n € N. Here aéa’l‘) = aéa’m = 'y((,a’ll’lz) = 0, the values of {aﬁla’ll)} h_ (f

; (al2) |2 (lid2) M e .
1> 0),{an AR _ (if min(ly,13) > 0) can be chosen arbitrarily

and for the other values formulas are given in [19]. To each choice of the arbitrary
values corresponds a linear differential operator such that (37) holds, usually of
infinite order.

Further it is shown in [17] that, if all the arbitrary values are chosen to be 0
and « € N, then for the corresponding operators Aga’l) (1€ {l1,12}) and Cga’ll’h)
we have: Aéa’l) is of order 2a+4{+4 and Cg"’ll’h) is of order 4a+4i; +4l5+6. Any
other choice of the arbitrary values will lead to one or more operators of infinite
order. In the case My = 0,1; = 0, this was shown by R. Koekoek [36], (see also
[30]). The case [; = 0,12 = 1 has been dealt with in [14].
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(0,1) Pal-type Interpolation:
A General Method for Regularity
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Abstract

Hermite-Birkhoff interpolation and Pal-type interpolation have been receiv-
ing much attention over the years. Also during the previous 15 year the
subject of interpolation in non-uniformly distributed nodes has been looked
into.

The methods of proof of regularity often were quite dependent on the
problem at hand, and the purpose of this note is to treat a possible ‘gen-
eral’ method of finding polynomial pairs that lead to a regular interpolation
problem; for sake of simplicity so-called (0, 1) Pél-type interpolation is looked
into.

Keywords: Pal-type interpolation, regularity

AMS Subject classification: 41A05

1 Introduction

The study of Hermite-Birkhoff interpolation is a well-known subject (cf. the ex-
cellent book [1]). Recently the regularity of some interpolation problems on non-
uniformly distributed nodes on the unit circle have been studied.

Along with the continuing interest in interpolation in general, a number of
papers on Pél-type interpolation have appeared, cf. [2], [3], [4], [5], [6], [7]-

In this paper the attention will be focused on interpolation problems of the
following kind:
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given two polynomials p(z) resp. ¢(z), with simple zeroes
{zi}j=1 € C resp. {w;}jL; € C (nodes),
given data {c;}2;, {d;}72, € C,
find P, € g, k=m+n—1with Py(z)=c¢; (1<i<n)
and P{(w;) =d; (1< j<m).
Here I, is the set of polynomials of degree at most k with complex coefficients.

Although very often the method of proof of regularity depends on the problem
at hand, one can, nevertheless, distinguish two main tools as indicated in [5]:

1. Prove that the square system of homogeneous linear equations for the un-
known coefficients of the polynomial Py has a non-vanishing determinant.

2. Find a differential equation for Py (or for a factor of Py) and show that if
this equation has a polynomial solution, the solution must be the trivial one.

The aim of this paper is to study the second method in a ‘general setting’. The
layout of the paper is as follows: in Section 2 the results will be given with some
examples, followed by the proofs in Section 3. Finally a (short) list of references is
given.

2 Main results and examples

Consider the node-generating polynomial for the values

p(z) =[] (- =) (1)
i=1
and that for the values of the first derivative
q(z) = [[ (z —wy), (2)
=1

each having simple zeroes.
Remark. It is allowed that p and ¢ have (a) common zero(es).
We then have the following result

Theorem 2.1 If there exist polynomials g(z), r1(z), r2(z) such that
p(z) = (a0 + 2)g(2) + r1(2)q(2), (3)

p'(2) = Bog(z) + r2(2)q(2), Bo # 0, (4)
satisfying the condition
glw;) #0, 1< j<m, (5)
then (0,1) Pdl-type interpolation on the zeroes of {p(z).q(z)} is regular
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1. for a; =0,
2. for ay # 0 of and only if —Bo/oq & {1,2,...,m — 1}.

Examples

1. Let p1(2), p2(z) be any two co-prime polynomials with simple zeroes, then
the (0, 1) Pal-type interpolation problem on {p1(z)p2(2), p2(2)} is regular.

Put ap = ay =0, fo = 1 and 71(2) = p1(2), q(2) = p2(2), p(2) = p1(2)p2(2).
For any 72(z), the polynomial g(z) follows from (4) and therefore satisfies g(w;) =
p'(w;): because the zeroes of ¢ are also zeroes of p and moreover simple, then
p'(w;) # 0 and (5) is satisfied.

2. For p(z) = 2™ — o™, a # 0 and ¢(z) any divisor of
2" — nnzn—l _ O[n’ (n _ l)n—lnn +an 7& 0’

the (0, 1) P4l-type interpolation problem on {p(z), g(z)} is regular.
Put a1 = 0,0 # 0 and n = a9/By in ((3),(4)). The condition (5) follows
from (4) as w; # 0. For the record: the choice

N n-1 1 n n—1 n
2)=—=—2""" — —ra(2)(2" — nnz — o
9(2) B B 2(2)( n )
with arbitrary ro(2) and r1(2) = 1+ nra(z) leads to ((3),(4)) for g the full polyno-
mial as indicated above; in case q is a divisor, the polynomials r1, r2 have to be
multiplied by the complementary factor of ¢ leading to the full polynomial. The
condition on 7 implies that the zeroes of ¢(z) are simple.

3. For p(z) = 2™ — a", «a # 0 and ¢(z) any divisor of 2”1 +na™, n # 0, the
(0,1) P4l-type interpolation problem on {p(z), ¢(z)} is regular.

This is the case ag, a1 # 0, By = nay: for the full polynomial r1(z) =
Bo, r2(2) = a1z + a9 — 1/Bp. As —fp/a1 = —n < 0 the condition on the quotient
is fulfilled; the calculation of g is left to the reader.

The next theorem is an example of what could be done in a very general
setting: we use a simple connection between the coefficient of g(z) from (6) and
from (7).

Theorem 2.2 If there exist polynomials g(z), r1(2), r2(z) such that
p(2) = (a0 + auz + a22)g(2) + r1(2)g(2), (6)
with ag + a1z + apz? having two different (complex) roots zy, z2, and
P'(2) = (o1 + 2022)9(2) +2(2)q(2), Bo #0, (7)

satisfying the conditions
g(w;) #0, 1<j<m, (8)
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and

/ 7 Q0 £, (9)

21

then the (0,1) Pdl-type interpolation problem on the zeroes of {p(z), q(z)} is regu-
lar.

To keep a long story short, two simple examples will be given only.

Examples
1. For n even, the (0,1) Pal-type interpolation problem on

{z" —a™, (n —2)2" — n22""% 4+ 22"},

with o, £ # 0 and o™ # €™ is regular.
For n odd, the conditions on «, £ are: a, £ #0, o™ # ££*, £" # 2(n+ 1)a™.
The proof uses ag + a1z + az2? = 22 — €2, 11(2) = —2/€2, ro(z) = —1/€2
and g(z) = {(n - 2)2"/2 + a"}/&2. The conditions come in to ensure that ¢ has
simple zeroes and because of (8), (9).

2. Under the condition o™ # 1/(n + 1), the (0,1) Pél-type interpolation
problem on the pair p(z) = z(z — 1)(z"*!/(n+ 1) — a2z + a™1), ¢(z) = 2" — o™
is regular.

The proof uses g+ a1z +ag2? = 22—z, 11(2) = —(22 - 2)2(22—1), r2(2) =
—4(22 = 2)%, g(z) = {22"3 - 3272 + (n +2)2"/(n + 1) — 2a™23 + 30722 —
20"z + o™t
The condition on « originates from (9). The zeroes of p(z) are automatically simple
(p(z) satisfies the differential equation

(2% = 2)p'(2) — (22 — V)p(2) = q(2)

with solution
(22 = 2)(z"T /(n+1) —a"z + C);

multiple zeroes of the second factor are zeroes of 2™ — o™ - with absolute value
— and the choice C = a™*! does the trick).

3 Proofs

The interpolation problem has been formulated in the introduction as:

— given polynomials p(z) and ¢(z) of degrees n and m respectively with simple
zeroes

~ find a polynomial P(z) of degree at most n + m — 1 with

P(z;) = 0 (z the zeroes of p(z). P'(w;) =0 (w; the zeroes of ¢(z).  (10)
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Because of the first condition in (10), we can write
P(z) = p(2)Q(z), degreeQ(z) <m — 1. (11)
The second condition of (10) then leads to
p(w;)Q'(w;) + p'(w;)Q(w;) = 0, with w; the m zeroes of ¢(z). (12)
Proof of Theorem 2.1. Inserting ((3),(4)) into (12) and using (5) we find
(ap + a1w;)Q' (wy) + BoQw;) =0, 1 < j < m. (13)
Because of the degree restriction on @, at most m ~ 1, this immediately implies

(ap + 12)Q'(2) + BoQ(2) = 0. (14)

Solving this linear first order ordinary differential equation for the cases a; = 0
(distinguishing a9 = 0 or ag # 0) and a3 # 0, we find that Q(z) has to be
identically zero under the condition stated in the theorem (a1 # 0 was the only
case that (14) really had a non-trivial polynomial solution of degree at most m —1;
that is where —8p/a1 & {1,2,...,m — 1} comes in). a

Proof of Theorem 2.2. Proceeding as in the previous proof, but now the degree of
the polynomial on the left-hand side of the equation could be equal to the degree
of g(z) ,we arrive at the differential equation

(g + 12 + a222)Q'(2) + (a1 + 2022)Q(2) = Cq(2) (15)

for the polynomial @ of degree at most m — 1. The equation (15) can be integrated
at once and we find

(o + a1z + 2222)Q(2) = C/Z q(¢)d¢ + D. (16)

Now the left-hand side has a zero for z = 23 and z = 2z9; the first gives D = 0
and the second, in view of the condition stated in (9), that C' = 0. Thus @ = 0,
implying P = 0. O
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De la Vallée Poussin Means for
the Hankel Transform

Wolfgang zu Castell & Frank Filbir

Abstract

We give a construction of a de la Vallée Poussin kernel for the Hankel trans-
form based on the convolution structure on the space L' (R, /1., ). In contrast
to the classical way to define such a kernel, our construction directly leads
to an approximate identity for the underlying space.

1 Introduction

One of the most important problems in Fourier analysis deals with the difficulty
that the Fourier transform

F(e) = /_ T f@)e € ds,  €eR,

of a function f € L!(R) need not belong to L'(R) itself and therefore the inverse
Fourier integral may not exist. Nevertheless, in summability theory one tries to
attack the problem by introducing summability kernels into the inverse Fourier
integral leading to approximate solutions. Let us briefly recall this fundamental
concept.

In the classical setting we usually start with a function A € L!(R) with
ffcx h(z) dxz = 1 which is given as the inverse Fourier transform of a function

H e LY(R), ie.,

h(z) = 51; /_ b H(E)e™t d¢, z€R.
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To obtain a summability kernel from h we set hx(z) = Mh(Az), A > 0. This
naturally gives rise to an approximation process in L!(R) of the following form:

Ali_{I;o If = haxfllpawmy =0, feL'(R).

Note that the convolution operator can be written as an inverse Fourier integral.
The Fourier transform of the summability kernel thereby acts as a mollifier:

frhr(z) = l/w H (§> F(£)e¢ de¢ r€R
27 oo A ’ '

The most prominent examples in classical Fourier analysis are the Fejér kernel,
the de la Vallée Poussin kernel and the Bochner-Riesz kernel. In all of these cases
the defining function H is compactly supported; to be precise the Fejér kernel o,
is given by its Fourier transform C7(£) = max(1 — |£],0) and the Bochner-Riesz
kernel analogously by the function Ss(¢) = max(1 — |£]?,0)%, § > 0. Note that the
Fejér kernel is the special case § = 1 of the Cesaro kernel C5(£) = max(1 — |£], 0)?,
§>0.

The de la Vallée Poussin kernel usually is defined as v(z) = 201(2z) — 01 (),
z € R. It is a well-known fact that the Fejér kernel and the de la Vallée Poussin
kernel can be expressed as a convolution of two characteristic functions, i.e., the
function x[g,1] convolved with itself for the Fejér kernel and the function x(p,1) con-
volved with X[g o) for the de la Vallée Poussin kernel. Nevertheless, this observation
is crucial for our construction. For further information on the classical theory we
refer the reader to the monographs [3] and [9].

In the present paper we deal with the construction of summability methods
for the Hankel transform

Fe) = /0 T j@Endu(z),  ECR,,

the kernel of which is given by a Bessel function of the first kind and of order
v > —% (cf. (2.1) below for the definition of the function .J,)

Jo(z) = T(w +1) (g)f J, (), zeRy, (1.1)

with du, (z) denoting the measure (2/T'(v + 1)) " 'z?*T!dz. The transform is well
defined for all functions f € LY'(R ., ).

We want to construct a de la Vallée Poussin kernel as well as a Fejér kernel.
Taking the obvious definition for these kernels as in the classical case does not
lead to approximate identities since the inverse Hankel transform of the function
max(1—¢&,0), £ € Ry, does not belong to L'(R, ) for all v > —1. We therefore
have to choose another way to define analogue summability kernels.

This problem is known from orthogonal polynomials in the algebraic case. In
[6] Themistoclakis and the second named author have defined a de la Vallée Poussin
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kernel for expansions in terms of orthogonal polynomials using the convolution
structure for the underlying space of functions. We want to follow their idea in
the continuous case, i.e., we will use the convolution structure on L'(R,,u,) to
define approximate identities for the Hankel transform. In a forthcoming paper
the authors will investigate the approximation properties of this new kernel.

To make the paper self-contained we recall some facts from special functions
in the second section which will be needed in the sequel. We then introduce classical
summability kernels for the Hankel transform. In this section we will briefly sketch
the basic material about the convolution structure related to the Hankel transform.
In the last section we finally give the construction of the de la Vallée Poussin kernel.

2 Facts from special functions

The Bessel function of the first kind and of index v can be defined by its series
representation

T\Y — —1)* 2
@) = (3) ;W((E)k—fﬁ (3) f LeRm,. (2.1)

Here and throughout the paper we assume v > —%.
Working with the Hankel transform it is more convenient to use the following
modified definition

= (cDF o
Ju(x)zr(u+1)’§m<§) =0F1[V+1‘—I],xeR+,

(2.2)
giving the relation (1.1).
Let us briefly introduce the hypergeometric notation. The function ,Fj with
p numerator parameters ai, ..., a, and ¢ denominator parameters by,...,b, in C,
p,q € No, is defined by the following formal power series.

ay,...,0qp

— (a1)k - (ap)p 2*
qu{bh...,bq Z]ZZ z€C,

S bk (b KL

where we used the Pochhammer symbol (a), = a-(a+1)---(a+v —1),v €
N, (a)p =1 for a € C.

The series converges for all z € C, if p < g and for |2| < 1, if p = ¢+
1. For p > g + 1 the only point of convergence is z = 0. Further information
especially concerning the calculus for hypergeometric functions can be found in
the monograph [7].

The most prominent example is Gauss’ hypergeometric function o F;. We will
need the following two well-known properties of this function.
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The first is known as Euler’s integral representation. For Rc > ®b > 0 and
lz| < 1, it states:

yb F(C) 1 = b a
2F‘[ K H BRSCICED) /0 T A e T (23)

There are several relations between hypergeometric functions of squared ar-
gument and functions of a single argument known as quadratic transformations.
One of these reads (cf. [1] (3.1.11))

a,a—b+%
1

2] :(1+$)2a2F1|: b+§

(1+x)

zFl[ 9 zQ], lz] < 1. (2.4)

Using both of these properties we can show a modified version of an integral
representation which can be found in the tables (cf. for example (8], p. 55).

a,b l 4z

Lemma 2.1 Let a,b € C and Rb > 0. Then the following representation holds
true.

a,a—b+%
b+ 3
r(+3) / 21 2

= ——== sin ¢ - [1 —2xcosd+ x°]"*dg, x| < 1.
V) s | | .

o Fy [

zQ] = (2.5)

Proof. From (2.3) we have using (2.4)

a’a—b+l 2l = —2a a,b 4x _
2F1{ b+ 1 2 m]—(1+x)22F1{2bt(1_+x_)2]_
- I a1 -1 drzr \*
= T2 (5) (1+2x) 2 A [7(1 - T)]b (1 _ m) 5
= 52?2 A [r(1 = 7)1 =227 — Dz + 2%~ *dr.

Setting cos ¢ = 27 — 1 and using the duplication formula for the gamma function

2z—-1
[(2z) = NG I'(z)l (z + %) ,  zeC\-N, (2.6)

to simplify the constant in front of the integral completes the proof. 0
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3 Classical summability kernels for the
Hankel transform

In this section we present some classical summability kernels related to the Hankel
transform. To have a good reference as well as for the sake of completeness we
will first of all present some basic facts on convolution structures generated by the
Bessel functions and the related Hankel transform.

Let dp,(z) denote the measure c—m2“+1 dx on the positive real axis R,
where ¢, = 2"T'(v + 1). The following product formula for Bessel functions plays a
key role in the present paper.

FV—I—l
Val(v+ 1)

where a,b € R, and ¢ = /a2 + b2 — 2abcos ¢.

If we interpret the parameters a and b as the lengths of two sides of a triangle
adjacent to the angle ¢, ¢ is the length of the third side of this triangle.

To introduce the convolution structure it is more convenient to rewrite the
product formula (3.1) in the following way

T (ax)T, (bx) = .y / T, (cx)sin® ¢ d, z€eR,, (3.1)

TMan)700) = [ TAex)Kfa,be) dufd,  wERy (32
0
where the kernel is defined by

Pr+1) ot b =7 F e~ (@b 2

K, aba = 3
(@b )= v+ D) (@)

a,b,c € R+7

where (t) 4 = max(t,0). Note that from (3.2) we obtain [° K, (a,b,c) du.(c) =1,
i.e., K,(a,b,c) du,(c) is a probability measure on R .

We now define a generalized translation operator on the space of all continuous
functions with compact support C.(R) by

/ f fI? Y % ) d/l,,(Z), T,y € R+'

It can be shown that this operator can be extended to all the spaces LP(R 4, p,,),1 <
p < 00, and to the space of bounded continuous functions Cy, (R ). Moreover, this
operator is a bounded linear operator on all of these spaces with norm not greater
than one. Furthermore, the measure dyu,, is invariant with respect to this operator,
ie.,

|16 duta = [T 11 duto),
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for all f € C.(R4) and y € R,. In a more abstract context the measure is
interpreted as Haar measure for the underlying algebraic structure.

Using this translation we define the convolution of two functions f,g €
LI(R+7HV) by

froly) = / " H@)Ty9(@) dunl(®), v e Ry (3.3)

It can easily be checked that the convolution is commutative and that || f *
allr < Il llgllx for all f,g € L*(R4, p,,). Thus L} (R4, p1,) becomes a commuta-
tive Banach algebra. The Gelfand transform with respect to this Banach algebra
is given by the Hankel transform, i.e.,

o) = / " f@) T (€2) dpo (@) (3.4)
= g_”/ooo f(@)d (€)™ dr, €€ R,

Note that the transform is self-inverse, i.e.,

f(z) = / TR OT(a6) dp(©), e Ry

From this facts we immediately get the important convolution theorem

~ —~

(f*x9) (€) = f(©)-3(6), €€Ry, fgeL'(Ry ).

Let us now introduce summability kernels for the Hankel transform. As men-
tioned above the general concept to construct a summability kernel hy is to start
with a function A € L}(Ry,p) with [;° h(x) dp,(z) = 1 and then to define
hx(z) = Ah(Az). We will now state the underlying functions corresponding to the
analogues of the classical summability kernels of approximation theory.

e The Cesaro kernel is defined by its Hankel transform

Cs(€) = (1—)xp(€), E€Ry, §>0,

where x[o,1) denotes the characteristic function of the interval [0,1]. Let us
mention two special cases. For § = 0 we get the Dirichlet kernel while § = 1
leads to the Fejér kernel.

e The Hankel transform of the Bochner-Riesz kernel is given by

Rs(€) = (1 —€)°xp(€), E€Ry, §>0.
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We now give explicit representations of the above defined kernels in terms of special
functions. An important tool for getting this representations is the beta function
integral

T(a)L(b)

Bla.b) = vatn)

1
= / (1 —¢)e= 101 g, a,be C\ -N.
0

For the inverse Hankel transform of the Cesaro kernel we obtain the following
series

Cs(x) = / " G (6) T, () dun ()

0
_ 1 = (_1)k z\2k [t 8 £2k+20+1
- ?I;k!r(wkﬂ)'(i) /0(1“5)5 dg

_ ii (-1)* <£)2k1"(2k+21/+2)1"(6+1)
o KIv+k+1) \2 T(2k +2v +6 +3)

Note that the function 7, is analytic in the whole complex plane. Interchang-
ing summation and integration is therefore satisfied. Using the duplication formula
for the gamma function (2.6) and the relation (a), = Matv) we can further con-

I'(a)
clude that for z € R,
T+ & -1)*T (k+v+3) 2 2k
Cs(z) = Qu+5+1 Zk' k +‘$;'_3)F(k+y+6+4) <§>

B L@+ 1T (v+32) = (—1)k (v+32) 2\ %
T utsHIT (V ;3)I‘(12/ ) Z k! (V+6%3)k (ij_ 5+T4)k (Z)

k=0
_ L@+ 1) (v+3) v+3 z?
‘WMHMw+”nwu—%V“[v+%%wM# -5)- 9

In the introduction we mentioned that the Fejér kernel does in general not
define an approximate identity in L'(R., u1,)). To show why this is the case, let us
look at the asymptotic behavior of the kernel. From ([7], 5.11.2(4) and 5.11.1(19))
we have

(M)

1/—|— 5 T
13 y+5+3y+5+4 e
543 s
SUCEL JICEL. S
( ) 22’y+1ﬁ ?
for large * € Ry, where v = —% — g - 3 It follows that Cs € LY (R4, p,) for

(5>1/+%.
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For the Bochner-Riesz kernel, we have

Rs(z) = /Owﬁs(é)Ju(xg)dﬂy(g)
1 ¢ ("1)k x\ 2k 1 )
= X mmerrry (5) [ 0-ere

T +1) i (-1)* (E)zk
v+l — EKT(v+d+k+2) \2

. I +1)
- 2 HT (v +6+1) Jvts41(x), zcRy. (3.6)

From ([12], 7.21(1)) we have for large x € R, the asymptotic expansion for
the Bessel functions

J(z) ~ (2rz)"F (cos (s-5n-5)+0 (i)) . (3.7)

Taking into account the order of magnitude of the measure u, for large z €
R, it follows that Rs(z) ~ O (m“"s_%). Thus the kernel belongs to L'(Ry, u,)

and therefore defines an approximate identity, if § > v + %

The Hankel transform of order v = %, d € N, is also called Fourier-Bessel
transform. It is the Fourier transform of radial functions on R? which is a well-
studied topic in classical Fourier analysis. The bound § > v + % = 4—;—1 is called
eritical indez (cf. [9], Cor. 4.16). Chanillo & Muckenhoupt [4] studied weak type
estimates for Bochner-Riesz means of radial functions in LP(R¢). Further exten-
sions have been given by Colzani, Travaglini & Vignati (cf. [5] and the references

therein).

Other summability kernels for the Hankel transform like the Gaussian kernel
and the Poisson kernel and their behavior with respect to pointwise convergence
have been studied in some detail by Stempak (cf. [10] and [11]). We further men-
tion the work of Betancor and Rodriguez-Mesa. They studied questions of norm
convergence for the Hankel transform (cf. for example [2] and the references cited
there).

4 Construction of the de la Vallée Poussin kernel
We are now able to define the de la Vallée Poussin kernel for the Hankel transform:
Vi) = X * X (€).  EERL, rs>0. (4.1)

Recall that * denotes the convolution associated with the Hankel transform as
given by (3.3).
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To derive an explicit representation of the de la Vallée Poussin kernel we
will use the opposite direction. We will first calculate the Hankel transform of
the characteristic function xo,] and then use the convolution theorem to get the
desired result.

Proposition 4.1 The Hankel transform of order v > ——% of the characteristic func-
tion Xjo,,), T > 0, is the Bessel function

7.21/+2

m L7D+1(r§)7 5 € R+~ (42)

Xio.(&) =

Proof. From the representation (2.1) it directly follows that

d 14 — 14
. [2¥Ju(2)] = 2¥Ju_1(2).

Since 2¥J,_1(z)|.=0 = 0 we have that

1
/ ) dr = J41(t),  tE€Ry.
0

Using this formula gives
v+2

éu

r

1
/ v, (Erx) dz
0

7.21/-{-2

2V+1F(V + 2)

o€ = €7 /0 2, (¢x) de =

7,2u+2(7.§)—(l/+1)JV+1(7-§) — To41(r€), £eR,.

O
Let us just remark that equation (4.2) also follows from (3.6) by letting 6 — 0.

From the proposition we immediately have

Corollary 4.2 Forr,s >0 and v > —% we have

(,r.s)2u+2

Vi(z) = 2+2T2(y 4 2)

TJvs1(rz) - Tt (sx), zeR,. (4.3)

Again the asymptotic relation (3.7) leads to an estimate for the order of
magnitude for large arguments. The kernel V7 (x) thus satisfies VI (z) ~ O (z72)
for £ — oo. Since J,41(0) = 1 we can conclude that the integral

/ \Toir(re) o (52)] dps(2), 75 >0,
0
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exists and is finite, i.e., the kernel belongs to L(R, 11, ). Therefore the de la Vallée
Poussin kernel as defined by equation (4.1) generates an approximate identity in
the sense described above.

We are now able to prove the explicit representation for the Hankel transform
of the de la Vallée Poussin kernels for £ < r — s.

Theorem 4.3 Forr >s >0 and v > —% the de la Vallée Poussin kernel vanishes
for all € > r+s. The kernel decreases for r — s < £ < r+ s while for £ <r—s we
have

s

/? _ 1 2042 V+170
V0 = e Ty 2Fl[ v+ 2

], E<r—s. (4.4)

r2

Proof. Since the inverse of the Hankel transform is the transform itself, we have

Vi(e) = / T V@), (Ex) dun ()

(rs)?v+?

= 23420 (v + 1)[2(v + 2) /o ~7v+1(m)~7u+1(5$)-7u(§$)$2u+1 dz, £ € Ry

Setting w = /r2 + s2 — 2rscos ¢ and applying the product formula (3.1) we have

(Ts)2”+2 /n oo
3 sin ¢ X
2042 /7T(v + I(v+2)L (v + 3) Jo

* / T TAE) Toa (wr)e®H da dg,
0

Vi) =

For the inner integral we can use the following formula (cf. [12], p. 406)

0 a’b= "t if0<a <b,
/ Jular)y1(br)dr = { (2a)71, ifa="b, (4.5)
0 0, if a > b,

to get

oC

T &) Ty (wr)z? T de = T(v + 1) (v +2) x

0
x (g)u (%’)*Vﬁl /000 T (€2) Jy g (we) dr

= 22w+ DI (v +2)
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We modify the value of this function at £ = w to w™?*~2. We therefore have

—~ 1 ™
yr — 2u+2/ —2v—-2 _: 2042 d
s(é‘) 2U+1ﬁr (l/ + %) (T'S) o w sin ¢ ¢
82u+2 ™ Sin2u+2 ¢

do, 4.6
2+l (v+3) Jo (1 —2acosé +a?)+l ¢ (4.6)

where a = £. Since r > s we have 0 < a < 1. We can therefore apply (2.5) to
conclude

T 3
/ w22 6in? 2 g — N3N (l/ + 5) Py v+1,0 fi ‘
0 I'(v +2) v+2 |r2
Incorporating the result into (4.6) completes the proof. a

Let V7' = ([~ Vi(@)dp, (x))~' V5 and V], = AV](Az). A standard argument
from approximation theory then gives

Corollary 4.4 For f € L*(Ry, ), v > —%, and r,s >0, we have

/\li_)l{.lo | f = Vs x f||L1(R+M = 0. (4.7)
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Polynomial Bases on the Sphere

Noemi Lain Ferndndez

Abstract
Considering that the well-known basis of spherical harmonics of degree at
most n is not localized on the sphere, we construct better localized poly-
nomial bases by means of reproducing kernels. Such a construction leads
to the problem of finding sets of (n + 1)? points on the sphere that admit
unique polynomial interpolation. Finally, we present a possible construction
of polynomial wavelets on the sphere.

1 Introduction

Let Q:= {x € R®: ||z||2 = 1} denote the unit sphere embedded in the Euclidean
space R3 and let ¥ : [0, 7] x [0,27) — R3, (p,8) — (sin pcosf,sin psin @, cos p)
be its parameterization in spherical coordinates (p, 8). Corresponding to the surface
element dw(£), we have the inner product and L?(2)-norm

2r

| FoT@we = [ [sinpFe.0) TG dpas
0 0

(F,G)

IFI* = (F,F).

Furthermore, let Harm, (R?) denote the space of harmonic homogeneous polyno-
mials of degree n in three variables. Restricting these functions to {2, we obtain
the so-called spherical harmonics of order n. Throughout this paper, we will con-
centrate on the space V,, := II,,|q. It can be shown that

Vo = P Harmy (Q), (1)
k=0

where this direct sum decomposition has to be understood in the sense that any
spherical polynomial of degree < n is the restriction of a harmonic polynomial of



40 Noemi Lain Fernandez

degree less or equal to n to the sphere. Since dim Harmg(92) = 2k + 1, it follows
that N := dim V,, = 37 _,(2k+ 1) = (n+ 1)2. An L?(Q)-orthonormal basis of V,,
that is not localized on the sphere is given by

. (ok+1 . -
{ij(,ﬂ»o)= Z—:P,lfl(cosp) e’ k=0,...,n, j:—k,...,k}, (2)

where

Pl(t) = (k= )t " (1 —t2)i/? —JPk(t) 7=0,...,k, te[-1,1]

k (k+])' dti ’ RS s L]y
denote the associated Legendre functions and Py stands for the Legendre polyno-
mial of degree k normalized according to the condition Py (1) = 1. From now on,
this basis will be referred to as the basis of spherical harmonics.

A way of constructing better localized bases is by means of reproducing ker-
nels. Let {Y{ : j= —k,...,k, k=0,...,n} be an arbitrary L?(Q2)-orthonormal
basis of V,,. It is straightforward to check that the reproducing kernel of Harm ()

is given by
k

Gk(&a 77) = Z Yk—](g)Yk] (7])7 5777 €

j=—k
Using now the addition theorem (see [4]) for Harmy(€2), one comes up with the
following theorem
Theorem 1.1 The unique reproducing kernel of V,, is given by

n n

Knl&m) = Y Gu(6n) =) 2t PE m) = kale o), Eme (3)
k=0 k=0

2
In particular, K,,(§,¢&) = (n_4—|7—r_1) for all £ € Q. It should be observed that

Kn(&,m) = kn(€ - 1) as a zonal function, only depends on the Euclidean product
of the vectors £ and 7. Therefore, it is invariant with respect to rotations, i.e.,
transformations of the group SO(3).

2 The space V,

2.1 Scaling functions

In contrast to the spherical harmonics ij introduced in (2), the functions K, () :
2 x @ — R defined in (3) have the property of being the spherical polynomials
with minimal L2(©2)-norm among all spherical polynomials of degree < n that
attain the value 1 when evaluated at a prescribed point. The following theorem
establishes this localization property.
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Theorem 2.1 Let £ € Q. Then
|2 | = min (171 - P e i, Ple) = 1), ()

Proof. Let {ij, k=0,...,n, j=—k,...,k} be an arbitrary L2({2)-orthonormal
basis of V,, and let P € V,, with P(§) = 1. The polynomial P can be expressed in
terms of its Fourier sum

n k
:ZZ (P,Y})Y] (€ £eq.
k=0 j=

As a consequence of the Cauchy-Schwarz inequality and the addition theorem, we
obtain

2

n k
1 = (P)°= ZZ (P,Y})Y] (€

53 (ii Vo

<
k=0 j=—k =0 j=—Fk
Kn(£,€) >2
= ||P||?2 Kn(&,6) = ||P|? | ),
1P Kol ©) = 1717 (e

where the last equality follows from the fact that

1En (€, )| = (Kn(€, ), Kn(&, )02 = (Kal€,€)?. O

Our aim is to study the problem of characterizing sets of points {7;, i=1,..., N}
such that the functions {¢? := K, (n;,-), ¢ =1,..., N} constitute a basis of the
space V. The functions {¢7, i =1,..., N} will be called scaling functions. As the
following observation shows, the linear independence of the scaling functions is
reflected in the regularity of an N x N matrix. Given {n;, i=1,...,N} C Q, we
can construct the interpolation matrix

Yo(m) Y{(m) Yo(ms) ... Yo (nw)
Yl_l("h) Y1‘1(772) Y1~1(773) Y1_1(77N)
Y10(771) Y10(772) Y10(773) s YIO (77N)
Yim) Yim) Yi(m) ... Yi(nw)
An=1 : S 5)
Y, (m) Y, ™me) Y, "(ms) ... Y. (nN)
Yo(m)  Yi(m)  Yi0m) .. Yi(mw)
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By virtue of the addition theorem, one can directly see that the symmetric positive
semidefinite matrix ®,, := A} A, has the entries

n k
®u(r,s) =Y > Y () Y (0s) = Kn(nr,7s) = (Kn(nr, ), Kn(ns,)) -
k=0 j——k

Therefore, the matrix ®,, is a Gram matrix and will be positive definite, in partic-
ular regular, if and only if the functions involved, i.e., the scaling functions, are lin-
early independent. As det ®,, = |det A,|?, we can study the regularity of either A,
or ®,, to determine whether the scaling functions constitute a basis of V,, or not.

Definition 2.2 A set of points {n;, i = 1,...,N} C Q for which the associated
scaling functions constitute a basis of V,, is called a fundamental system of V.

2.2 Examples
2.2.1 Linear polynomials

As we deal with low-dimensional matrices {dim V; = 4), we can give a complete
characterization of the F.S. of V,, and state conditions under which the scaling
functions constitute an orthogonal basis of V;,.

Theorem 2.3 Four points {n1,n2, 13,74} C Q form a fundamental system of V1 if
and only if they do not lie on a circle.

Proof. Let {mx = (ni,m2,m3), k = 1,...,4} be four points on the sphere. The

Gram matrix ®1 = (K1(m:,7;)), ;—, 4 attains the form

1+3n-m 1+3m-n2 1+3nm-n3 14314

_ 1| 143mm 143n2-n2 1+43n2-m 1+ 302 m4
47 14+3n3-m 14313172 1+3’I73~7’)3 14+3n3-n4
1+3ns-m 1+3ns-m2 1+3n3-m3 1+3n4-m

P,

It is immediate to see that we can decompose ®; into the product ®; = ﬁATA
with
1 1 1 1
V3ni V3ny V3ny V3nj
V3ni V3ns V3ny V3
Vani V3nd V3ni Va3

As det &, = (;11;)4 (det A)?, the matrix ®; is regular if and only if A is regular.
But A is equivalent to the matrix

A=

1 0 0 0

V30t VB(mi =0 VB —nb) V3@mi-nl)
V3t V33 — i) V3(mE i) V(i —nf) |’
V3n! VB(ms —nt) VB3 —nd) V3(mi—n})

which will be regular if and only if the vectors nns, 7193, n174 are not coplanar. O
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Theorem 2.4 The scaling functions {Ki(m:,-), i = 1,...,4} are orthogonal if and
only if {n;, i = 1,...,4} are the vertices of a reqular tetrahedron inscribed in Q.
In this case, the matriz ®1 assumes the diagonal form % 1.

Proof. “=": Orthogonality of the scaling functions implies that

. 1 .
6ij:<¢%7W}>:K1(nianj):q)l("v]):E(1+377i'77j)7 Lj=1,....,4. (6)

Hence, we get the following system of six linear equations

1
Wi'ﬂj:—§ for 1<i<j<A4. )
As K is invariant with respect to rotations, we can assume without loss of general-
ity that n; = (0,0, 1). The first three equations (for s = 1) in (7) enforce the points
n2,ms and 74 to lie on a circle parallel to the equator at latitude 6 =arccos (—1),

ie.,
2v/2 2v/2 1
nk:(icosek,isin&g,w—) for k = 2,3,4. (8)
3 3 3
Accordingly, our system (7) becomes
1
cos(fp —b3) = —=,
2
1
cos(fp —64) = —2,
2
cos(f3 — 04) = L
3 4 - 23
which yields
2 4
P2 =, p3 :a+§, p4:(>z+?7T with « € [0, 27).

Combining this fact with (8), we conclude that the points {n;, i = 1,...,4} are
the vertices of a regular tetrahedron inscribed in the sphere.

“e”: As Ki(-,) is invariant with respect to rotations, we can assume without loss
of generality that

22 1

7)1:(0,0,1) ) 772:( 3 505_5)5
_ (Y2 V6 _ V2 V6
n3 = 3 ) 3 ) 3 ’ N4 = 3 ) 3 ) 3 )

are the vertices of a regular tetrahedron. A straightforward calculation shows that
the matrix ®, attains the desired form. 0O



44 Noemi Lain Ferndndez

2.2.2 General degree n

With dim V;, =(n+1)2, the structure of the Gram matrices becomes very compli-
cated and it is not possible to give a complete characterization of the fundamental
systems. Nevertheless, one can prove the following result

Theorem 2.5 If {n;, i = 1,...,N} C Q lie on a circle, then they do not form a
fundamental system.

Proof. Basically, the proof is a direct consequence of Theorem 2.3. We have that

Yoo (m ) Yo0 (774) Yoo (7)5) Yoo (N )
Yy Y(m) Y7 (ma) Yy '(ns) Yy (w)
YL () YP(na)  YP(ns) Y ()
A Y1 (m) Yi(ng)  Yi(ns) Y (nw)
Y5 % (m) Y52 (ma) Yy 2(ns) Y5 % (nn)
Yy &771) Yy tm) Yy 075) Yy (UN)

If the N points lie on a circle, then any four of them also lie on a circle. Therefore
using Theorem 2.3, the submatrix constituted by the first four rows of A, will
have rank less or equal to three. Consequently, the entire matrix A, will have rank
less or equal to N —1 and hence be singular. O

With n growing, the analysis of the regularity of the matrices A, becomes
inaccessible, so we have to restrict our analysis to specific choices of point constella-
tions. A possible way of constructing fundamental systems is due to B. Stinderman
[6]- A similar but more general result is found in M. v. Golitschek and W.A. Light
[3]- Another description of specific sets of points which admit unique polynomial
interpolation is also given in Y. Xu [7].

3 Wavelets

For the particular case of equidistant nodes on symmetric latitudes, the matrices
involved attain an accessible form and it is possible to carry out the following
construction of polynomial wavelets on the sphere.

Given | € N, we can define the spaces

W, = n+l@Vn:span{Yk,j, k:n+1,...,n+l,j:fk,...,k}.

Note that d := dim W,, = dim V,4;—dim V,, = [(l + 2n + 2). Again, the goal
is to identify functions, then called wavelets, which form a localized basis of the
space W,,. In accordance with the definition of the scaling functions, we define the
wavelets in terms of reproducing kernels.
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Definition 3.1 Let S:={&,i=1,...,d} C Q. We call

n+l
O = O O = Y ZERE-0), i=1...d, £€9, ()
s=n+1

the wavelet functions corresponding to the set S.

The wavelet functions have the following properties, which do not depend on the
choice of the set S of points.

Theorem 3.2 Let S := {&, ¢ = 1,...,d} C Q and let {¢7, i = 1,...,d} be the
corresponding wavelet functions.

(i) The inner product of wavelets may be calculated as follows
(WF 7)) =v3(&), 4i=1,...,d

i) Let {7, 7=1,...,N} denote the scaling functions with respect to {n;, 7 =
J j
1,...,N} C Q. The wavelets and the scaling functions are orthogonal to each

other:
( f,go?)z(), 1=1,...,d,5=1,...,N.

(iii) The wavelet Y7 is localized around &; :

d =min {||P|| : P € W, P(&)=1}. 10
] R )= 1o
Proof. To verify (i), we show that the wavelets satisfy a reproduction property in
W,. Let Q@ € W,,. Then

W7, Q) = (Knp(&i 1), Q) — (Kn(&i, ), Q) = Q(&:)-

Consequently, the reproducing kernel of W, is represented by the wavelets {¢f*, i =
1,...,d}. Assertion (ii) follows directly from the definition of the participating
functions. The proof of (iii) is along the same lines of Theorem 2.1. O

Analogously, we can now ask ourselves for which sets S, the wavelets consti-
tute a basis of the space W,,. As the next subsection shows, it is possible to give
an answer for the case [=2.

3.1 A possible construction for the case [ = 2

By definition W, := V,, 12—V, and d = dim W,,=4n+8. A possible multiresolution
construction consists in adding at each level n the totality of (2n+3)+ (2n+5) =
4n+8 points distributed equidistantly on two symmetric latitudes. As the following
theorem shows, the totality of these points forms a fundamental system of W,,.
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Theorem 3.3 Let p € (0,7) such that
P (xcosp)#0 foralll=n+1,n+2, m=0,...,1L (11)

Then S := {nx := ¥(p, 23:’4{‘3), k=1,....2n +3}U {§ := ¥(w — p,%&), j=
1,...,2n 4+ 5} constitutes a fundamental system of W,,.

Proof. In order to prove the linear independence of the wavelet functions corre-
sponding to the set S, we have to study the regularity of the matrix

—(n+1 n —(n+2 n
B, =Y, 0yt oy 0 T (12)

where Yi denotes the column vector given by

Y‘ch = (ij (771)7 s 7ij ("72n+3)7 ij (51)7 KR Ylg(§2n+5))T-

Making use of the fact that the spherical harmonics are functions with separated
variables, we can transform B,, into an equivalent block matrix by multiplication
with regular matrices. First we construct the diagonal block matrix

P (P 0 ), (13)

Fonys

where I}, = \/Lﬁ (6 o (l_j)(k_l)i) € C™*" js the n x n-dimensional Fourier
k,j=1,...,n
matrix. Second we employ the permutation matrix P; such that P; B, assumes

the form

_ n+1 n+1 —(n+2) —(n+1) —(n+1) n+2

Pl B" - [ Yn+1 ’ Yn+2 ’ Yn+2 ’ Yn+1 ’ Yn+2 ’ Yn+23

—n —-n 0 0 n n T
Yn+1’Yn+2""’Yn+1’Yn+2""7Yn+1’ n+2 ] . (14)

The matrix B,, is regular if and only if the product P; B, F is regular. Let z :=

: NT .
cosp and let vi := (Yi) denote the transpose of the column vector Y. In the
way we have chosen the nodes on the two latitudes cos p and cos(m — p)=— cos p,

we have that v2 := ( (v?)!, (v1)?), where
k k k

; 2k +1 i 2mis
1 _ 71 o 2n+3
(vi) —(\/TP;J (:v)e%“) e C e,
s=1,....2n+3
a 2k 1 ; LS, =
vé)2 = ( _i_ PIL]](_x) €§"—+‘Z’> c C?n+o’
V 4n
s=1,...,2n+5

contain the first 2n + 3 and second 2n 4+ 5 components of v{, respectively. Further-
more, we will denote by u(r) the 7-th entry of a vector u. Let us now compute the
entries of the matrix P, B,, F. Given a row vjk of P1B,,, the r-th entry of V{-, F is
given by

and
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() ifl<r<2n+3

) 1 2n+3
vi F(r) = Worn Z Y/ (p,0,) eznis(1-)(s=D)
s=1
2n+3
(2k+1) |J| 421”-_(4_ 1
._____P sngglis—rs+ris )
47T(2TL+3) (COSp) s:Zl €
2n+3
(2k+1) i L (r—1)
— =P 2ia (1= P Chy r+l)s,
ir(2n £ 3) F (cos p) e2n¥3 ; en+3

(i) f2n+4 <r <4n+8,ie,r=2n+3+1(I=1,...,2n+5)

2n+5 .
viF(r) = N Z Y (n — p,8,) ezis (106D
n
2n+5
%Pﬁl cos(m — p Z e2n+5 (Js—ls+lt+s—1)
m(2n
2n+5

= %Pm(cos(ﬂ'— 621?5 (I-1) Z 62"+5(J I+1)s

7(2n

Observe that

2§3622n7:3 (j—r+1)s __ 2n+3 ifj —r+1=0 mod (ZTL + 3)’ (15)
10 otherwise,
and
2n+5 if 4
Z eBs-t+ns _ [ 25 ifj—1+1=0 mod (2n+5), (16)
- 0 otherwise.
Let
1/2
o im (D) o, a7
4w
and
1/2 _
e (280 ) )
s

for j=—k,...,kand k=n+1,n+ 2. .
In view of (15) and (16), we can conclude that v F has only two nonzero
entries. To be precise, we obtain
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forj >0 ‘
' ax Pl () inr=j+1,
vi F(r) =< b Pl(-z) inr=2n+j+4,
0 otherwise,
and for j <0
_ akPk_]_'(x) inr=2n+4+4yj,
vi F(t) =S b Py%(—z) inr=4n+9+j,
0 otherwise.

For 0<j<n, we observe that the nonzero entries of vi F are located between
1<r<n+1 and 2n+4<r<3n-+4. (19)
For —n<j < —1, nonzero entries occur at positions
n+4<r<2n+3 and 3n+9<r<4n+8. (20)

Therefore, the only rows of P;B,F (for fixed j with —n < j < n) with nonzero
entries at the same positions are the ones corresponding to the multi-indices (n +
1,7) and (n +2,75).

For j = £(n + 1), £(n + 2), it can be seen that

ant1 Pritl (2) ifr=n+2,
VEIIR(r) = bup1 PPN (—2)  ifr=3n+5,
0 otherwise,
. anya PLfl(z)  ifr=n+2,
VZi2F(""> =9 bnyo Pﬁjf(—:v) if r = 3n + 5,
0 otherwise,
—(n+2) Un42 P':ll::QZ (l’) ifr=n + 27
Vn+2 F(T) = bn+2 P:i;(_l') ifr=3n+ 7,
0 otherwise,
—(n+1) an+1 Pr?jll(x) ifr=n+3,
Vi1 F(r) = bni1 P,;Lj__ll(—a?) if r=3n+38§,
0 otherwise,
—(n+1) An+2 Pnnill(z) if r = n+37
V'n,+2 F(T) = bn+2 P,?_tll(—z) ifr=3n+ 87
0 otherwise,
Qy+2 P,’I’j;(.r) ifr=n+3,

VITIR(r) = bugo PIF3(—2) ifr=3n+6. (21)
0 otherwise.
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Hence, the rows vi F corresponding to the first three and the last three
expressions of (21) have nonzero entries at the same positions. In view of (19),
(20) and (21), let P, be the permutation matrix

P2 = [ent2,€3n+5, €3n+7: €nt3, €3n+6; €3n+8, Entd, €304, - - -

<3 €2n43,€4n+8,€1,€2n44,€2,€2n45,---,Ent1, 6’3n+4]~ (22)
Then the product P;B,F P5 is the diagonal block matrix
PIB'ILFP2 == dlag (A17A2a Bna BTL—17 ey BOa DI Bn—la Bn)a

where A;, Ay € R3*3, and B,, € R?*? with m = 1,...,n, are given by

An+1 Pnj:ll () bpt1 P:Ll( ) 0

A = ant2 P, n+2 () bngo PG (—1) 0 ;
ant2 P i3 () 0 bny2 Pri3(—x)
11 Pnrf () 0 bn1 P (—2)

Ay = any2 P, n+2 ) () 0 bui2 Prly(—z) |,
an+2 Pn+2 () bnya2 Pnni_22("z) 0

and
B _ ( an+1 P () bngr P (= :c))
m

ant2 Prio(z)  bnga Plio(—1)
In order to prove the regularity of B,,, we now simply have to guarantee the
regularity of the matrices Ay, Ay and B,, (m = 0,...,n). Making use of the
different parity of the functions P;%, and P}%, (m = 0,...,n) and bearing in
mind the definition of ax; and by ; in (17) and (18), respectively, we are in a
position to establish the equivalence of the matrices

B 2P () 0
By (m=0,...,n)  and ( 0 2P () )

Hence, By, will be regular if and only if P{*(z) #0forall k=n+1,n+2, m =
0,...,n. Expanding the determinant of A; by the last column and respectively the
determinant of Ay by the second column, we obtain analogously that the matrices
A; and Aj are regular if and only if P:j;(:c) # 0 and P (z), P25 (z) #0. O

3.2 Matrix notation

Let

v

(€)Y (€. Y2(€). YO - Vi ™()s - Y(E))
(Y, YR E), - Y E), o Vi ©)

Furthermore, let {n;, i =1,..., N} and {¢;,  =1,...,d} be fundamental systems
of V,, and W,,. Since the corresponding scaling and wavelet functions constitute

T
n
Z,
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bases of the spaces V,, and W,,, for any F;, € V,, and G,, € W,, there exist coeflicient
vectors a” = (af,...,a%) € CV and b™ = (b7,...,b7) € C¢, such that F, and
G, admit a representation in terms of the scaling and wavelet functions as

N n
Fu) = Zazwz(a=Za222"’4:1m(n3-5>

d n+l

Ga©) = e =St Y 2’“4:11%(53'5)
s=1 s=1 k=n+1
d n+l k "
= D > arv (€)Y ©). (24)
s=1 k=n+1j=—

Introducing matrix notation, we obtain the following lemma

Lemma 3.4 Let A, and B, be the matrices introduced in (5) and (12) and let
F, €V, and G, € W, be functions with an expansion as in (23) and (24). Then

() Fule) = Za" oH€) = 5T ALa" and G(E) = > b (€) = ZTB,br.

r=1

(ii) (oF,..., %) = Ayl and (Pr,... .95 = Bzl

3.3 Two-scale relations and decomposition

In this section, we will only study the case | = 2. Let F,,, 2 € Vi42. Furthermore,
consider (n+3)? points {n;, 1 = 1,..., (n+1)2}uU{§;, j =1,...,4n+8} distributed
on n + 3 latitudes zx = cospx (k = 1,...,n + 3), where the latitude at height
zi contains (2k + 1) equidistantly distributed points and the last two latitudes
are chosen symmetric to the equator, i.e., cos ppy2 = — coS pr43. On account of
Theorem 2.1 in [3], the totality of these points constitutes a F.S. for V40 =
V. ® W,,. Moreover, due to Theorem 3.3 of the previous section, we are in a
position to affirm that the points {§;, 7 = 1,...,4n + 8} constitute a F.S. of
W,,. In this section, we work out the relationship between the coefficient vectors
a2, a™ and b” in the so-called two-scale relation

(n+3)? (n+1)? 4n+8
Fura(€) = >0 af™?eit2e) = Y apei(e) + D (o)
k=1 k=1 k=1
F.(§) + G(§), (25)

I
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where F,, € V,,, G, € W, and the functions {¢}, i = 1,...,N} and {9}, j =
1,...,4n + 8} are the scaling and wavelet functions corresponding to the funda-
mental systems {n;, i=1,...,N} and {§;, j=1,...,4n + 8}.

Using the matrix notation introduced above, equation (25) can be rewritten as

=T 2 T =T
Yn+2An+2an+ =V¥Yn Ana”™ + zZ, B, b".

n A, "
An+2a+2:< Bn ) ( Zn ) (26)

The following lemma establishes how in view of (25) we can decompose a function
of V12 into wavelets of W,, and scaling functions of V,,.

That is

Lemma 3.5 Let the scaling functions {¢?, i = 1,...,N}, the wavelets {¢;, j =
1,...,4n + 8} and the corresponding matrices Any2,An and B, be based on a
fundamental system {n;, i=1,...,N}U{E;, j=1,...,4n+8} of the form presented
in Theorem 3.3.

1. (Reconstruction) Let the coefficient vectors a™ and b™ in (25) be given. Then

ant? = A7l ( An B ) ( f)n > (27)

2. (Decomposition) Let the coefficient vector a™+2 in (25) be given. Then

n A—l n
(2)- (5 )

The proof follows directly from (26). Given a fundamental system defined as in
Theorem 3.3, we can give the explicit expression of B, 1.

Theorem 3.6 Let B,, be the matriz in (12) corresponding to the fundamental sys-
tem defined in Theorem 3.3 with © = cos p. Its inverse B, is given by F P, C Py,
where F, P1 and Py are as in (13), (14) and (22) and C is the diagonal block

matric

dzag (Dl,Dz,Cn,Cn_l, .. .,Co, ... ,Cn_l,Cn)

with
-1 -1
Cnt1 Ant2
2P (x) 2P ,(x) 2%2
Cn = iy n2 € R“*%,
n+1 n+42
2P£"+1(—x) 2P;"+2(4m)
—1 -1
Ant1 —CQni2 0
2P (@) 2P, (—a)
b b 3x3
1 — ntl n+2 O X
b 2@ 2P 1 € R
—@n42 nyy by baya bniz

2 Pl (a) 2 PIfi(—2)  PR(-a)
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and i i
s | —Gy, 42 0
2 Poiy(a) 2 Prf;(-o)
D2 — —an+2 a‘;j—l br_Hla b;-}-z by_Hl-z c R3X3.
2 P, (-2) 2 P (-2 PIi(-o)
bv_Hl-l b'r_r:-2 0
2 PrH (@) 2 Prfy (-2

The constants a, and by fork=n+1,n+2 and j = —k,...,k are defined
as in (17) and (18).

The analysis of other values of [ is still a question of ongoing research. Also
the question of which latitudes to choose to obtain well-conditioned Riesz bases
remains open and will be our main focus of interest in the future.
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A Shooting Method for
Symbolic Computation of Splines

Christoph Fredebeul

Abstract

Similar to the case of linear ODEs, where boundary value problems are
turned into initial value problems by application of the shooting method,
an algorithm is presented allowing recursive calculation of the polynomials
that piecewise determine a spline. Tests indicating the usefulness of the new
algorithm are given.

1 Introduction

When attempting to calculate a spline of given degree that should interpolate a
given set of data, two approaches are under consideration. From the numerical
point of view, having to deal with roundoff errors and stability, B-splines are pre-
ferred [1]. In case of symbolic computation, e.g. with MAPLE, one is interested in
calculating the polynomials defining the spline piecewise. Their coefficients result
as the solution of a large system of linear equations. Now, if the amount of data
is large (more than 100, say), this approach becomes inefficient, although special
structures of the data (equidistant grid, rational numbers) are exploited.

In this paper an algorithm based on a recursion is presented that avoids
solving a linear system of equations. Hence, the storage requirement is drastically
reduced. This is of particular importance in the case of symbolic computation, since
the length of a number may vary during the calculation due to exact arithmetic!
Similar to the case of linear ordinary differential equations, where boundary value
problems are turned into initial value problems by application of the shooting
method, the presented algorithm first calculates basic solutions all satisfying the
left boundary conditions. Now, the desired spline results from a linear combination
of these basic solutions. The free parameters are determined by the boundary
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conditions of the right end of the interval. The efficiency of the new algorithm
compared to the one given in MAPLE is documented. The source code is listed in
the appendix.

2 Symbolic shooting for splines

Let d, N € N, d << N, and a set of data D := {(zx,yx) € R?|k =0,...,N} be
given. Now, a function s € C4 [z, zn] is called interpolating spline (of degree
d), if s(zx) =y, k=0,...,N, and $|[z,_, z,) € Oa, k=1,...,N holds, i.e.,

d

8| zr1,zx)(T) = P(T) = Za[k],ixi, 1<k<N.
=0

However, to be uniquely determined, d — 1 additional conditions have to be posed
to s. Here, instead of discussing all possibilities, we restrict ourselves to the cases
given in MAPLE. For odd d, the resulting s are known as natural splines, i.e.,
determined by the boundary conditions
d—1
sO(xp) =0, 1= —5— *tLod=1, k=0,N.

For even d, a similar (but nonsymmetric) set of conditions is taken.

For simplicity, we present the algorithm for the case of d odd, d > 3. The
handling of the exceptions d = 1,2 as well as the case of d even may be obtained
directly from the source code.

The basic idea

As we have seen above, in each interval Iy := [rr_1,2%] a spline of degree d
is represented by a polynomial pj; of degree d. Hence, due to the smoothness
conditions in zx and the interpolation conditions in xx and xg,;, the polynomial

Plk+1] 18 given by

Ye+1 — Plk ($k+1)
Pir+11(2) := Py (@) + ez — )4 €Ikl = (Ths1 [—]:Ek)d ' @)

However, there is one obstacle preventing us from using (1) directly as a recursion.
The first polynomial pyy; is not uniquely determined by the boundary conditions
in zg and the interpolation conditions in z¢ and z1. It still possesses § := (d—1)/2
degrees of freedom, « := (e, ..., as) say. Since the coefficients apji, 1 =0,...,d,
of py; depend linearly on o we have

&

appi(a) = a0 + Z Q)i (2)
=1
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and hence
s

puy = Pajp + > cupp (3)
1=1
with uniquely determined polynomials ppj;, { = 0,...,d. Now, supposing that Dlk]
depends linearly on «, we see from (1) that the same is true for Clk), 1-e.

)
Clk] = Clxjo + Z QUCk)1s (4)
=1
with

Yk+1 — Prjo(Th+1) =P (Trs1)
= =—— l=1,...,4 5
Clk]o (Trt1 — a:k)d »  Clk]L (-Tk+1 — xk)d’ ’ ) ( )

Hence, by induction it follows that

é

Pk) = p[k]0+zalp[k]l, k=1,...,N. (6)
=1

with uniquely determined polynomials py);. Now we are able to exploit the recur-
sive structure indicated by (1).

The algorithm

For a more compact presentation, we introduce some abbreviations. For given data
{(k,yx), k=0,...,N}, let us denote

m(z) = (1,z,...,2HT (7
and  A; = (ap), i=0,....d, 1=0,...,9, (8)
a = (Log,...,a5)7 (9)
ap = Apaq, (10)
ty = ((?>(~xk)d_i> , i=0,....,d, (11)

1
S AT 12

for k =1,..., N. Observe that p;(z) = (m(z))? Ava and (z — zx)? = (m(z))Ttx.
Now, the algorithm consists of the following steps.
L. Let o = (ap2,- -, apujs,apja), d > 3 odd, resp. o = (aqy3), d = 3 the free
coefficients of pj;). Determine A; from the initial conditions pfﬁ(xo) = 0,
l=04+1,...,d—1, and the interpolatory conditions pn)(Tk) =y, k=0,1.
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2. For k=1,...,N — 1, define Ag4; recursively by
Ak+1 = Ak + witk (yk+1e¥1 - (m(xk+1))TAk) (13)

with e; := (1,0,...,0)T € R%*! It is not necessary to store the Ay, k =
2,...,N —1. Only A; and Apn are needed.

3. Determine a from the boundary conditions pg\l,) (zn) =0,1=6+1,...,d-1,
where pyy(z) = (m(z))T Aya.

4. Finally, starting with a; := A&, we recursively gain

akt1 = ak + wi (Ye+1 — (M(zks1))Tak) i, (14)

k=1,...,N —1, and hence the desired coefficients of the polynomials pjx) =
(m(z)Tar, k=1,...,N.

All these calculations can be done efficiently using standard MAPLE commands,
e.g. from the Linalg-package. Symbolic computation is useful especially in steps 1
and 3, whereas it does not seem to be required in steps 2 and 4. But the opposite
is true. Rewriting (14) yields

ak+1 = (I — wit(m(zr+1))") ak + wryksate
which is stable iff arbitrary products Hf;:i M, 1 <i< 3 <N, of the matrices
My, = (I — witi(m(ze+1))")

are bounded. Computations of the eigenvalues of some products in the case of an
equidistant grid indicate that this is not true. With growing length of the product
one eigenvalue also grows rapidly, giving rise to growing errors in numerical com-
putation. Indeed, this approach is highly unstable when floating point arithmetic is
used. But, of course, no instability arises in case of symbolic computation. Hence,
as demonstrated in the next section, this algorithm is useful in the case that exact
arithmetic is demanded.

3 Comparison with MAPLE

From a careful examination of the new algorithm fastspline (see Appendix A)
with respect to the expressions that have to be calculated we see that the asymp-
totic computatitional cost is O(%NdQ). Since the structure of the linear system is
exploited in Maple, this cost is about O(4Nd?). Roughly, we may expect an aver-
age factor of about 3. In what follows we compare the run times (given in seconds)
of two test examples calculated for different d and N. All calculations were done
on a Pentiwmn 1T 650 MHz PC with 128 MB RAM, using MAPLI V, R4.
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As a first example, the function f(z) = z® was evaluated on the grid zj :=

k/N, k = 0,...,N, all done in exact arithmetic. In Table 1, the run times of
fastspline versus spline are given. Here, the average of the new algorithm is
better than expected; it even grows with increasing N, probably as a result of the
overhead in storing numbers of varying length (due to the use of exact arithmetic).
Due to their direct calculation, especially the values of the new algorithm with
respect to degrees one and two are drastically better than those from spline.

Table 1: Run times of spline (upper) and fastspline (lower), f(z) = z°

N .d 1 2 3 4 5 6 7
25 0.055 0.170 0.330 0.610 0.960 1.505 2.180
0.005 0.105 0.235 0.250 0.345 0.395 0.525
50 0.230 0.555 1.250 2.270 3.520 6.500 10.165
0.010 0.180 0.500 0.570 0.790 1.115 1.725
100 0.880 2.200 1.815 8.750 15.205  28.650 50.480
0.020 0.360 1.100 1.355 2.720 4.900 8.225
200 3.485 9.265  20.035  36.080 70.685  135.170  251.710
0.045 0.725 2.750 4.370 12.470  26.985 52.425
400 14.405  39.615  87.360 165.000  375.245 766.715 1498.210
0.140 1.520 8.865  16.235 78.965 187.720  377.675
800 60.010 176.740 414.050 827.820 2226.729
0.315 3.360  30.910  81.110  559.484

As a second example we took the function g(x) = sin(x). Hence, the f-values are no
longer rational numbers and continuing the calculation with symbolic expressions
produces ugly high run times in MAPLE (see Table 2).

Table 2: Run times of spline (upper!) and fastspline (lower row), f(z) =
sin(x), symbolic calculation

N .d 1 2 3 4 5 6 7
25 0.875 10.265 43.235  106.352 260.384 421.240 743.773
0.199 .395 1.355 1.980 3.135 5.020 6.185
50 3.592  35.395 179.833 711.383 2140.325 —T —T
0.444 1.935 6.855 17.180 23.495 79.170  213.665
100 18.317 217.533 —T —T —T
0.514 5.230 63.839  211.090 1133.008
200 _ T __ T _ T
0.950  21.704 1748.510

Hence, we evaluate the f-values as real numbers to a given precision and con-
vert them into rational numbers without loss of accuracy. In Table 3, the run

n the case N = 100, d = 3, and N = 200, d = 1, the following MAPLE error message occurs:
Error, (in collect/series) too many levels of recursion
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times are given for different d and N after approximating the f-values within
10 digits (MAPLE-standard) of accuracy using MAPLE’s evalf and convert
routines. Again, there is an obvious advantage of fastspline (see proc cover-
fastspline) compared to the rational variant of spline (see proc cover-
spline), this time concerning both d and N. Even in comparison to spline (using
floating point arithmetic) the new algorithm yields comparable run times.

Table 3: Run times of spline (top): floating point arithmetic?, cover-spline
(middle) and cover-fastspline (lower row): floats converted to rational numbers,

f(z) = sin(z)

N .d 1 2 3 4 5 6 7
25 0.095 0.060 0.120 0.180 0.460 0.585 0.805
0.540 0.245 0.480 0.815 1.240 2.265 2.860
0.010 0.145 0.285 0.375 0.430 0.480 0.660
50 0.080 0.260 0.520 0.840 1.320 1.880 2.720
0.280 0.780 1.551 2.855 4.640 7.935 11.136
0.015 0.225 0.635 0.730 0.995 1.385 2.069
100 0.330 0.770 1.785 3.110 4.785 6.905 9.760
1.060 2.840 5.914 10.785 18.840  31.694 50.105
0.030 0.450 1.383 1.905 3.500 5.695 9.190
200 1.240 3.195 6.995 12.265 19.206  28.300 40.259
4170  11.073  24.445 45.955 86.130 150.986  273.315
0.065 0.995 3.915 7.325 15.620  30.085 57.680
400 5.936  15.535  32.985 58.020 92.060 138.435  199.929
19.715  52.931 118.770  230.945  473.682 883.808 1703.076
0.270 2.360  17.050 35.721  100.960 201.721  410.415
800 17.805  52.068 120.862 —2 365.878
61.461 182.189 472.326 1053.501  2380.871
0.450 3.720  67.220  197.924  655.977

Conclusions

As been indicated by the tests above, the new algorithm is fast, especially faster
than the one implemented in MAPLE and robust in the sense that it is able
to solve some problems whereas Maple does not. The restriction to non-numeric
computation (i.e. no floating point arithmetic should be used!) is not critical since
the run times of cover - fastspline and spline are still comparable. Hence, in
the case of many points, the new algorithm is very recommendable.

Acknowledgement: The author would like to thank Ralf Tenberg for his patience
and his advise in many fruitful discussions.
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4 Source code

fastspline := proc(X,Y,z,d)
local dmih,dh,N,i,k,1,a,p,b,bl,m,monome,bincof,koef,loesvec,hilfmat,mip2,
hilfvect,koef2,hilfvec2,hilf;

monome := proc(x, d)
local 1,mon;
mon := linalg[vector] (d+1);
mon[1] := 1;
for 1 from 1 to d do
mon[1+1] := x*mon[1]; od;
RETURN (evalm(mon) ) ;
end:

# begin of the usual testings, taken from the original
Maple-"spline"

if nargs = 3 then RETURN(fastspline(X,Y,z,3)) fi;

if d = (’linear’) then RETURN(fastspline(X,Y,z,1)) fi;

if d (’quadratic’) then RETURN(fastspline(X,Y,z,2)) fi;

if d = (’cubic’) then RETURN(fastspline(X,Y,z,3)) fi;

if d = (’quartic’) then RETURN(fastspline(X,Y,z,4)) fi;

if type([X, Y1, [vector, vectorl)

then N := linalg[’vectdim’](X);
if linalg[’vectdim’](Y) <> N then ERROR(‘incompatible dimensions‘) fi
elif type([X, Y], [list, list])
then N := nops(X);
if nops(Y) <> N then ERROR(‘incompatible dimensions‘) fi
else ERROR(‘1st and 2nd arguments must be two lists or two vectors‘) fi;
if not type(z,name)
then ERROR(‘3rd argument (the variable) must be a name‘) fi;
if not type(d,posint)
then ERROR(‘4th argument (the degree) must be a positive integer‘) fi;

N := N-1;

for i to N do

if type(X[i],numeric) and type(X[i+1],numeric) and X[i+1] <= X[i]
then ERROR(‘X values (knots) must be in strictly ascending‘) fi

od;
# .... end of the usual testings, taken from the original
Maple-"spline"

# begin of special case d=1
if d = 1 then
p:=[1;
for i from 1 to N-1 do
hilf := (Y[i+11-Y[i1)/(X[i+11-X[i1);
p := lop(p), [z < X[i+1], simplify(hilf*(z-X[11)+Y[i1)1];
od;
hilf := (Y[N+11-Y[N])/(X[N+1]-X[ND);
p := [op(p), [simplify(hilf#(z-X[N1)+Y[N]1)1];
if nops(p) = 1 then RETURN(op(p[11))
else RETURN(’piecewise’(seq(op(i), i=p))) fi:
fi;
# .... end of special case d=1
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# begin of special case d=2 .....
if d = 2 then
hilf := (Y[2]-Y([1])/(X[2]-X[1])"2;
b := evalm([Y[1]+hilf*X[1]~2, -2+«X[1]1*hilf, hilf]);
mip2:=monome(X[2],d);
bincof:=([seq((-1)~(d-k)*binomial(d,k), k=0..d)]);
m := linalg[vector] ([seq(z"k, k=0..d)]);
p :=[1;
for i from 1 to N-1 do
p := [op(p), [z < X[i+1], linalg[multiply] (m,b)]];
for 1 from 1 to d+1 do
hilfvec2[1] := mip2(d+2-1]#bincof[1]; od;
mip2:=monome (X[i+2],d);
hilf linalg[multiply] (mip2,b);
hilf := (Y[i+2]~hilf)/(X[i+2]-X[i+1])"d;
for 1 from 1 to d+1 do
b[1] := b[1]l+hilfvec2[1])*hilf; od:

od;
p := [op(p), [linalglmultiply] (m,b)]];
if nops(p) = 1 then RETURN(op(pl[1]))
else RETURN(’piecewise’ (seq(op(i), i=p))) fi:

fi;

# .... end of special case d = 2

# begin of general case d >= 3 .... # begin of step 1
(left boundary conditions) .

p := convert([seq(alil*z~i, i=0..d)], ‘+¢);

dmih := floor((d-1)/2);
dh := floor(d/2);
koef := seq(alk], k=2..dmilh), ald];
loesvec := solve({seq(simplify(subs(z=X[1], diff(p,z$k))), k=dmih+1..d-1)},
{seq(alk] ,k=dmih+1..d-1)});

p := subs(op(loesvec), p);
loesvec := solve({seq(subs{(z=X[k], p)-Y[k],k=1..2)}, {al0]l, al1l});
p := subs(op(loesvec), p);
m linalg[genmatrix] ({p}, [koef], hilfvect);
m := linalg[augment] (-hilfvect, m);
hilfmat := linalg[matrix](d+1, dmlh+1);
for k from 1 to dmih+1 do

for 1 from 0 to 4 do

hilfmat [1+1,k] := coeff(m[1,k], z, 1); od:

i

od:

bl := evalm(hilfmat);

# .... end of step 1 (left boundary conditions)
# begin of step 2 (first main loop)

b := evalm(bl);
bincof := ([seq((-1)"(d-k)*binomial(d,k), k=0..d)]1);
mip2 := monome(X[2], d);
for i from 1 to N-1 do
for 1 from 1 to d+1 do
hilfvec2[1l] := mip2[d+2-1]#*bincof[1]; od;
mip2 := monome (X[i+2],d);
hilfvect := linalg[multiply](mip2,b);
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hilfvect(1] := hilfvect[1]-Y[i+2];
for 1 from 1 to d+1 do
for k from 1 to dmih+l do
hilfmat[1l,k] := hilfvec2[1]*hilfvectlk]; od:

od:

b := linalg[matadd](b, hilfmat, 1, -1/(X[i+2]-X[i+1])"d);
od;
# .... end of step 2 (first main loop)
# begin of step 3 (right boundary conditions)

koef2 := linalg[vector]([1,koefl);
m := linalglvector] ([seq(z"k, k=0..d)]);
p := linalg[multiply](m,linalg[multiply] (b,koef2));

loesvec := solve({seq(simplify(subs(z=X[N+1], diff(p,z$k))), k=dh+1

{koef});
hilfvect := subs(op(loesvec), evalm(koef2));
# .... end of step 3 (right boundary conditions)
# begin of step 4 (second main loop)

b := linalg[multiply] (bl,hilfvect);
mip2 := monome(X[2],d);
p := [1;
for i from 1 to N-1 do
p := [op(p),[z < X[i+1],linalgmultiply] (m,b)1];
for 1 from 1 to d+1 do
hilfvec2[1] := mip2[d+2-1]1*bincof[1]; od;
mip2 := monome(X[i+2],d);
hilf := linalg[multiply] (mip2,b);
hilf := (Y[i+2]-hilf)/(X[i+2]-X[i+1])"4d;
for 1 from 1 to d+1 do
b[1] := b[1]l+hilfvec2[1]*hilf; od:
od;
p := [op(p), [linalg[multiplyl{(m,b)]];

if nops(p) = 1 then op(p[1]) else ’piecewise’(seq(op(i), i=p)) fi:

end:
# .... end of step 4 (second main loop) # .... end
of general case d >= 3 # .... end of "fastspline"

# Here are the additional test routines:

# convert floating point numbers into rational
numbers # and start "fastspline" afterwards
cover_fastspline := proc(X,Y,z,d)

local Xr, Yr;

Xr:=convert (X,rational,exact);

Yr:=convert(Y,rational,exact);

evalf (fastspline(Xr,Yr,z,d));
end:

# the same as above for "spline" cover_spline :=
proc(X,Y,z,d)

# generate run times by applying the following
procedure # in the case of non-rational data ....

..d-1)},
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:= proc(knoten,maxgrad)

local grad, xdat, ydat, k, n, ab, s3, sc3, fs3, zeit;
zeit:=linalg[matrix] (3,maxgrad) :

n:=knoten:

for grad from 1 to maxgrad do

od:

xdat :=evalf([seq((k-1)/n,k=1..n+1)]):
ydat:=evalf([seq(sin(xdat[k]),k=1..n+1)]):
ab:=time():
s3:=spline(xdat,ydat,x,grad) :
zeit[1,grad] :=time()-ab;

ab:=time():
sc3:=cover_spline(xdat,ydat,x,grad):
zeit[2,grad] :=time()-ab;

ab:=time():
fs3:=cover_fastspline(xdat,ydat,x,grad):
zeit[3,grad]l :=time()-ab;

RETURN (evalm(zeit));

end:

# ...,

and by a similar procedure in the case of rational

arithmetic: # drop the evalfs, evaluate x~5 instead of
sin(x), # drop cover_spline and the following two lines #
and call fastspline instead of cover_fastspline.
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Error Estimates for the Carathéodory-Fejér
Method in Polynomial Approximation

Manfred Hollenhorst

Abstract

In the Carathéodory-Fejér method one computes — starting from a complex
power series absolutely convergent on the unit disk — a polynomial which is
{(hopefully) a better approximation to the function given by the power series
than the truncated power series (with respect to the supremum norm). In this
article we show that — under fairly restrictive conditions on the coefficients
of the power series — the Carathéodory-Fejér method gives an asymptotically
optimal approximation and in some cases is really a better approximation
than the truncated power series.

1 Introduction

The Carathéodory-Fejér method in polynomial approximation can be regarded as
a nonlinear approximation operator. We start from the development of a function
f into a power series:

f(z):co—l—clz+6222+-~- , (1)

which we assume to be absolutely convergent on S!, the boundary of the unit disc
in the complex plane C, and from the polynomial p,, of degree n which forms the
beginning of this series:

pn(z) =cg+C12 +0232 +..,+ann

After choosing n and m the coefficients ¢n41,. .., Cnym+1 are utilized to mod-
ify the coefficients of p,,, and f is then approximated by the modified polynomial
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Cpn,m (the Carathéodory-Fejér approximating polynomial). We consider the error
of this approximation with respect to the supremum norm on S', namely

IF|| = sup{|F()| : |2] = 1}
We define the minimum deviation with respect to this norm by
E.(f) =min{||f — P||: Pe,} ,

where II,, denotes the space of polynomials of degree < n.
In this article an estimate is given which shows that the error norm in the
approximation by C,, , is asymptotically optimal, i.e.,

If = Cr,mll < En(f)(1 + 0(1))

if m — oo as n — oo, under the condition that |c,4;| < ¢/ }enqs| for all
positive integers j, where

g < (V13—-1)/6 = 0.43426

We also prove that if ¢, > 0 for all &k > n, if 0 < cpyjp1 £ Yenyj for
j=1,2,--- ,mwith some v < 1, and if n sufficiently large, but m(n) = o(n/ log n),
then

”f—Cn,m” < “f"pn”

This means that under the fairly restrictive assumptions made above we can
guarantee that C, ., is a better approximation to f than py,, i.e., the truncated
power series of f.

2 Carathéodory-Fejér approximation

The starting point of this method is a theorem about the approximation of complex
polynomials by meromorphic functions of a certain class, namely the famous

Theorem 2.1 (Carathéodory and Fejér [1])
Let fn.m be a polynomial with complex coefficients of the form

+1 2 1
frm(2) = cnp12™ T+ cppa2™ P 4+ Cppmpr 2T

where n and m are positive integers. Let G, be the set of functions which are defined
and continuous on A = {z: 2z € C and |z| > 1} and which have a development of
the form

uniformly convergent on A.
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(i) Then a function g. exists in G,, with

1 fn.m = gull = f{[| fo,m — gll : g € Gn}

(i) A function g. is a best approzimation to fn m from G, in the sense of (i) if
and only if
nm+1902" + 0Z" T+ 4G
o+ qiz+ -+ g™

(2)

fnym(z) - g*(Z) = €n,m<

holds for all z € S, where €, m is one of the numbers with largest possible
modulus fulfilling (2).

Remark 2.2 From (2) we see that fnm — g« is of constant modulus |en m| on S*
and can be written as €, 2" ™! times the reciprocal of a Blaschke product. It
has poles only in the interior of the unit circle.

Let us return to the case of a function f with a development (1) absolutely
convergent on S'. Then the Carathéodory-Fejér approximation method proceeds
as follows:

1.) The part cCpims22"T™ 2 + cpimysz™t™H3 4.0 is neglected.
+m+ +m+- g

2.) From fom(2) = car12™™ 4+ cnioz™ 2 4+ o 4 cpime12™T ! we compute
g, the best approximation from G,,, by solving a singular value problem.
But for polynomial approximation of course only the terms with nonnegative
exponents of z can be used. So if

g*(Z): Z ak;Zk
k=—o00

is a solution of the above Carathéodory-Fejér problem, we utilize

n
gnm(z) = Z arz®
k=0
and discard .
Hym(z) = Z arz®
k=—o00
3.) The n+1 terms from the beginning of the series (1) are then added to g, ,m(2)
in order to form the Carathéodory-Fejér approximation polynomial to f:
Cn’m =pPn + gn,m

The Blaschke product form of the error in the Carathéodory-Fejér problem was —
to the knowledge of the author — first exploited for polynomial approximation by
S. Darlington [2].
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3 Error estimate for finite series

In order to show that C,, ,,, is a “good” polynomial approximation to f, we have to
ensure that Hy, », and cpem+22" ™ 2+ cpym432" ™3 4. .- are negligible relative
to E,[f). We first consider only the approximation of polynomials of higher degree
(i-e., the fn m in the Carathéodory-Fejér theorem), so we only need to estimate
|| Hori

We now derive three systems of equations by comparing coefficients in (2) in
order to determine the coefficients of gn m and Hy ., explicitly. First we multiply
(2) with the denominator of the right-hand side:

n+m+1 n m m
E cpz® — E apz® E 47 = epmz" ™! E g;zm™!
=0 3=0

k=n+1 k=—o00

Equating the coefficients of 2"t™tF+1 we get for k=0,1,...,m:
Cntm+19k + Cntmk+1 + -+ + Cntkt10m = €nmGp, g, (3)

Comparing the coefficients of 2"*t'*! yields for I =0,1,...,m —1

nqQis1+an-1Qi2+ - FAntiom+1gm = Cnp1Q+Cnt2qi—1+ - +Cnpir1q0 =: 71 (4)

The coefficients of 2, 2”7, ... giverise to an infinite set of recursion formulae
for the coefficients ax—, (k=n,n—1,...):

akgo + ak—1q1 + -+ + Gk—mgm =0 (5)
From (3) follows that the column vector

U= (qov(hv"’ aqMaqual,"' aam)/

is a solution of the eigenvalue problem

INu = ep.mu (6)
with
0 | 0 o0 Tagma
: 0
0 En+m,+1 v En+2
L 0 . A 0 Cr4+m-+1 En+7n N Cn41
I':=
0 0 Cntm+1 0 0
0 .
0 Cn+m+1 - Cn+2

Crn4m+1 Cn4m o Cni1 0 s s 0
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Remark 3.1 Equation (6) can also be formulated as a singular value problem with
half the number of rows, but in the sequel we will exploit some well-known properties
of eigenvalue problems.

We now come to the central estimate of the neglected part of the series
solution of the Carathéodory-Fejér problem.

Proposition 3.2 Assume that

fn,m(z) — Cn+lzn+1 4 cn+22n+2 4ot Cn+m+lzn+m+1
has complex coefficients cx satisfying for j =1,...,m
lent1+il < @ lensal (7)

where g < (\/T?: —1)/6 ~ 0.43426, and let
h:=g(2—-3¢%/(1—2¢°

Let furthermore

g«(z) = Z ax 2"

k=-—-oc

be a solution of the Carathéodory Fejér problem for fp m, i.e.

”fn,m - g*” = inf{”fn,m _gH g€ Gn} )
and let )
H, n(2) = Z apz®
k=—o0

Then .
gh"t lent1]

— 29— 2g% + 3¢g3

1Hl| < -

Proof. We choose
Cn+1 !

’ \/§lcn+1|

where the nonzero elements are the (m + 1) st and the (2m + 2) nd components
of the vector. Then we have

w:=(0,---,0,1/v/2,0,---,0

En+lcn+1 + Cn+lan+1

= lcp . 8
T a1l ®)

l€n,m| = wTw =

The asterisk denotes the Hermitian transpose of a vector or matrix.
€n,m can be chosen positive because any complex factor of modulus 1 in a
solution of (2) can be incorporated in the coefficients go,q1,- -+ , ¢m -
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If we choose on the other hand
v = (’Uo,’Ul,-~- ,’Um_l,O,ﬁ(),il,"' ,-ﬂm_l,()), with 2Z’Ujﬁj=1

we have

l’U*F’Ul < 2|Cn+m+1| lvlim—l + VU2 + -+ vm—lvll
+ 2|cntm!| |[V2Tm—1 + U3Tm—2 + -+ + Upm—1D2| + - - - + 2|t 3| [Vm—1Tm—1
< lent1l((m — 1)g™ + (m — 2)g™ " + - + 2¢° + ¢°)
d, 1 g2
2
<le —(—) = v __
lent1lg dg(l —g) |Cn+1|(1 —9)? len+1l

where the last inequality holds because of g < 1/2.

So the eigenvector u consisting of the coefficients gx and their complex con-
jugates cannot have zeroes in its (m + 1) st and (2m + 2) nd components, and we
can assume ¢,, = 1. From the first equation in (3) we obtain

do = En+m+1/€n,m
and consequently
lgo| < g™

2m — 2 of the remaining equations in (5) yield the following system of linear
equations:

(I-T)j=n~
with
A - — — ’
q = (q17Q2, o ydm—-1,41,4G9, ’qm—l)
o - — ’
Y= 1/€n,m . (Cn+m7 5 Cng2,Cndmy - ey Cn+2)
0 ...0 0 .0 Chimat
0 En+m+1 e En+4
T.— 1 0 e 0 En+’m+1 En+7n e En+3
enm 0 0 Cngmat 0 . 0
O Cn4m+1--- Cn+4
Crntm+1 Cntm -+ Cn+3 0 cee 0

In the following we shall denote by a vector or a matrix enclosed in verti-
cal bars the vector or matrix of the corresponding absolute values. Comparisons
between vectors and matrices. which will be denoted by <, will be carried out
component by component.
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From (7) and (8) we have the estimates

IT|<T
with
0 0 0o 0o g™
: 0
0o g” g’
T o 0 0 gm gm—l g2
‘ 0 0 ¢g™ O 0
0 .
U g
gm gm—l 92 0 0
and
] S(gm‘l,gm‘Q,---,92,979’“*1,9’“‘2,-..792,g) =14
If we define T'- 4 =: 8, we have for j =1,. -1
=" g T T g T )T = g 4 P g
J
and correspondingly for j =m,...,2m — 2
%Z_ — (gmgjfmﬂ}»l _+_gm—1gj—m 4. +g2m—jg)gj—2m+l — 92j*2m+2 4. +92 )
J

For
T:=max{d;/¥; :j=1,...,2m — 2}

we have therefore
2

g
<
7'_1__92

So we can estimate § by the product of the inverse of the coefficient matrix
and the right-hand side of the system of equations defining it:

dl = (1= T) " < | S T3 < S5

=0 =0

(9)

)

Explicitly we have for j =1,...,m~1

gy < 228 g
q]_l 229
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Now we can give an estimate for the right-hand sides in (4) :

m—l

Il < lentisllai-s! < |cn+1|——2; Zg 9" < lennl {5
Jj=0 Jj=

Especially we have

lent1lg

We then determine estimates for the ax by induction.
Let us now assume that

Icn+1|ghj

<

for j =1,2,...,1 —1 with{ < m — 1. Then we have from (4)

-1

|an—-l| = |rm—1—l e Zan—qu—l+j|
=0
|Cn+1|9 ‘]2 7o 1-g
< J
Syl G Z o) 9T
2-322\' _

_ lenpalg't! 1—g° \T=2¢
- — 992 — 92 1-g2

1-2g 1-20"14+ 55~ 1

!
. |Cn+llg 1 1 _92 N 'Cn+1|g 1
= 1+ = h
1-—2g2 1—2g2 1 - 2g2
For I =m,m+1,... the induction proceeds as above and yields
Ian—l| = l - Zanfl—{»j Qm—jl
=1
m ] 2
lentilg 1-4° 1—g
< — 1 J
—1—2g2jz_; 97\ 1+ 22) 1242

I+1 2 2\ [—m (2735]2)7” -1
_lensalg 1—g (2—3g) 1—247

C1-2¢g7 1-2¢2 \1-2¢° 1+ 55 -1

]
< Cny1| gt 14 1-4° _ ’Cn+1f9hz
1—2g2 1—2g2 1—2g2
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Summing over all a; with negative [ we have

-1
lcnt1lg B! |cnt1] g h™H!
H, < < =
” .m”_ Z |al|—1_2921_h 1_29_292+3g3

l=—0c0

4 Error estimates for infinite power series

With the aid of the above estimate of the “neglected” part in the Carathéodory-
Fejér problem we can prove the following result about polynomial approximations,
which is a modification of theorems from the author’s dissertation [5], which was
written under the auspices of Prof. Dr. G. Meinardus:

Theorem 4.1 Assume that the series f(z) = co + c1z + c222 + -+ is absolutely
convergent on the unit disc {z : |z| < 1}, let pn, Cnm , and E,(f) be defined as
above.

(i) Assume |cnij| < g7 Yeng1|  for all positive integers j, where
9 < (VI3 —1)/6 ~0.43426 |

and let
h=g(2—3¢%)/(1 - 2g°)
Then

2ghnt1 2g™
— Comll < Ea(f) (1 1+ —=—
1= Comll < B9 (14 1= P ) (1 15

(ii) If, in addition to the assumptions of (i), m — oo asn — oo, then
If = Cnmll < En(f)(1 +0(1))

(iii) If for allk > n we have ¢x >0, 0 <cpyjt1 <yCuyjforj=1,2,---,m
with some v < 1, and if n sufficiently large, but m(n) = o(n/log n), then

If = Crmll < If = pall

Remark 4.2 Figure 1 shows the estimate of ||f — Cnml|| given in (i) divided by
E.(f) depending on g for degrees n = 5 (solid line), n = 10 (dot-dashed), and
n = 15 (dashed) with m = n.

Proof. ad (i): Let

1 2 1
fam(2) = cng12™ T+ eng22™ 2+t Cagmgr 2T
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Figure 1: Estimation factor in (i) of Theorem 1

as above; then due to the constant modulus of the error curve (see, e.g., Klotz [8])

Gnm(2) =X r_o arz® is the polynomial of best approximation to f,, m —

degree n, and the error norm is

| fr,m = Hnm = Gnmll = |€n,ml
Applying the general inequality

|En(f) - En(g)| < ||f _gH

we get
H|fn,m"Hn,m_gn,m”_En(fnm” S HHan P

and consequently
| ”fn,m - gn,mH - En(fn,m)| < 2||Hnm”
The linear functional L defined for all functions ¢ continuous on S! by

L(¢) = 1 #(z)z " %dz

o 2m S1
supplies a lower estimate of the approximation error, so that

1cn,+1 l S En(fn.m,)

H, ., of
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So under the assumptions of the theorem we have from Proposition 3.2

||fn,m - gn,m” — En(fn,m) < 2||Hn,m|| < 29hn+1
En(fn,m) - |Cn+1| —1- 29 - 292 + 393

Another consequence of the general inequality cited above is

o0

= > ad

k=n+m+2

We also employ a simple estimate of the remainder of the series development

of f
o0 . gm+1 m+1
k2| < Cnt1| < E.(f
||k=§n+2 || 1_g|n+| 1-g¢ n( )
Combining the last three estimates we have
IIf = Crmll < lfaym +Pn = (Gnm + )l + ] Z Ckzk“
k=n+m+2
HTL m >
< Bl (10208220 1 S0 et
|Cn+1| k=n4+m+2
HTLTTL > HTLTTL
< En(f) <1+2—” * “)+|| > ckzk||<2+2—” * “)
lental k=mtmd2 |ental
|| Hn,m| gmtt || Hym|
< E(f)<<1+2 : + 24 2——
" len+1l 1-g |ent]

m+1 n+1
g 2gh
< F 1+2 1
- "(f)( - 1—9)( +1—29—292+393>

From this (i) and the asymptotic estimate in (ii) follow under the conditions
listed in the theorem.

ad (iii): We first show that under the condition of monotonically decreasing
coefficients as given in (iii) we have

gj-1<7g; (10)

for j =1,2,---,m:

Because the ¢ are real, we only need to consider a m+1 by m+ 1 eigenvalue
problem to determine €, ., and qo, g1, .- ., gm. According to the Perron-Frobenius
theorem (see e.g. Varga [12], p. 30) qo,¢1,...,gm are positive, and we can again
choose ¢, = 1 . The condition of irreducibility in this theorem can be easily verified
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by drawing the graph of the corresponding matrix, which is strongly connected
(see e.g. Varga [12], p. 20) because the last row and the last column contain only
nonzero elements.

Now according to (3)

gm—k (Cntm+10k + CntmGr+1 + -+ + Cotk+19m)/€nm
(Cn+ka+1 +- 4+ Cn+k+IQm)/6n,m

>
> (Cntm+1Gk+1 + -+ Cntk+2dm)/(€n,m?Y) = Gm—k—1/7
From (3) with &k = 0 we have the general estimate

m+1

€n,m <cpy1 + Z Cn+k |qm+1—k|
k=2
m+1

< epy1 +max{|g|:1=0,1,...,m—1} Z Crntk
k=2

So from (10) we conclude that

m+1

€n,m <cpt1+ v Z Cn+k
k=2

Again, from (3) we deduce

€n,mIm—k = Cn+m+19k + CnimGik+1 + *** + Cntkt1Gm

k—1 k—1 k—1
< Cntm—k+2Y @k + Cntm—k+1Y Qe+l T Cnt2Y gm

m+1
k—1
<y Z Cn+j
=2
Now let a,. .., a, be the zeroes of

Q) =g +qz+ -+ gmz™

Then from (10) and the Enestrém-Kakeya theorem (see e.g. Specht [11], p. 31)
or the Hurwitz [6] theorem results

max{la;|:j=1,...,m} <x
From (2) follows further

m—1

gu(2) = 2 ST Q) (11)
k=0
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We now estimate (4)

k k somt 1,
k+j—1241=2 Cn+l
TR = E Cntj+19k—j <ch+17 okt —’—6——
,ym—k—l m+1
S Cn+l
1 —~2
T

We utilize the development of 1/Q(z) by Wronskian functions (see e.g. Specht
[11], p. 12):

1/Q Zo,kz—'m k

with

ok = Za'{l el
where we sum over those nonnegative integers vy, ..., Uy for which v1+---+v,, =
k. We can interpret these m-tuples (v1,. .., v, ) as distributions of & indistinguishi-
ble objects into m cells (namely & times adding 1 to the exponents of a1, ..., ).
There are

k+m-—1
m—1
different ones among these distributions (see e.g. Riordan [9] p. 92), so we have

lok| S7k<k+nz; 1)

m

From (11) we have

n+l4k  m—l
Zk o Tk 2

— n+1 Zk
9.(2) Z Q) = St

n m—1

- § 2! § Tk Ontl4+k—m—j

j=—00  k=max{0,m—1-n+j}

o0
Tk E O.lzn+1+k—l—m

k=0 =0

From the uniqueness of the power series development of the function 2~ "g.(2)
in z = 0o we conclude

m—1

a; = E Tk Ontl+k—m—j
k=max{0,m—1-n+j}
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So under the assumption m < n we have the estimate

o 0o m—1 m_ 1\ m+l )

- n k )

| Hnmll <Y oyl <S55 2 21_22 cn+z( +i+ )7n+1+k+1_m
j=1 =1 k=0 1-v m—1

mz;’:’z‘lcn_,_[ f: n+j H(n-}-k-l—')
= m- )1 —~2) &7 I

Jj=1 k=1
27;2 Cn+l i dmt ,yn+j+m——1
m— U1 — %) 2 dy

_ my a dmTt (4t
= o D= ) dy T
LD vl m2<m Y S
m— D1 =) 2\ (=) TI= (n + m — F)
n m+1 m—1
my™ Y5 Catl Y Y m
S oD —?) 1—7 ( * 1—7) (n+m)

The last (very crude) estimate holds for n > m. By taking logarithms in the
last term we see that it converges to zero, if divided by Z;:;l Cn+l, With n — o0
under the condition m(n) = o(n/log n):

< nlogy + log m — log(m — 1)! — (m — 1) log(1 — ) + m log(2n) .

This shows finally that under the conditions of (iil) for n large enough

ocC
If = Comll S enim + [[Hamll + D>
k=n+m+2
&R || ool -
< Cnt1 + Z Cn+k <’7 + Tﬁv"“_) + Z Ck
k=2 1=2 Cnti k=n+m+2
oC
< Z Ck:“f_an : U

k=n+1

5 Remarks

1.) One can transfer the above results to polynomial approximation on the real
interval [—-1,+1] starting from a development of the function to be approx-
imated into Chebyshev polynomials, as the author did in his dissertation.
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Gutknecht and Trefethen showed that in this transfer one can — due to the
reality of the coefficients — improve the estimates by truncating the series

at —n instead of 0.

In the end of the 1970s the Carathéodory-Fejér method was applied to polyno-
mial and rational approximation independently by Gutknecht and Trefethen;
this was treated in a series of articles including estimates as the above but
requiring g < 1/72 | see, e.g., [3], [4] , and the literature cited there.

The conditions of the above theorem are fairly restrictive. For (i) and (ii) the
power series of f must have a convergence radius > 1/g, and moreover one
must choose as cn4+1 a coeflicient in this series which is “not too small”. The
conditions of (iii) are fulfilled if e.g. f with real coefficients in (1) has one
“dominating” algebraic-logarithmic singularity on the boundary of its circle
of convergence, which must be of radius greater than 1, see e.g. Jungen [7].
These restrictions were made precise in [10] by Saff and Totik who showed
that the set of functions for which the Carathéodory-Fejér method “works”
in the sense of giving a better approximation than p, for infinitely many n,
is of second category, i.e., it does not contain any ball with respect to the
norm we used.

The author wishes to thank the organizers of the IDoOMAT conference for
the opportunity to give a lecture and to publish his results. This encouraged
him to resume his study of the Carathéodory-Fejér method and to extend it
to rational approximation. He also thanks the referee for his suggestions to
improve the paper.
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Shape Preserving Widths of Weighted
Sobolev-Type Classes

V.N. Konovalov and D. Leviatan

1 Introduction

Let X be a real linear space of vectors z with norm ||z||x, W € X, W # 0, and
V C X,V # 0. Let L™ be a subspace in X of dimension dim L™ < n, n > 0.and
M"™ = M™(z°) := 2% + L™ be a shift of the subspace L™ by an arbitrary vector
2% € X. Denote
E(x,M™)x := inf -
(@, M")x = inf llz—ylx,

and let
EW,M")x := sup E(z, M™")x,
zeW

denote the deviation of the set W from M™.
The Kolmogorov n-width of W' is defined by

dn(W)x i= inf EOW, M")x, n>0.

If M™® NV # (), then we denote by

Ble,M"NV)x = _inf  [le—ylx,

the best approximation of the vector x € X by M" NV, and by

EW,M™"NV)x := sup E(z, M"NV)x,
€W

the deviation of the set W from M™" NV.
The quantity

dn(W,V)X ::}\?SE(I/V’MHQV)X’ n>0
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is called the relative n-width of W with the constraint V in X. These widths were
introduced by the first author in [1].

Evidently, if V = X, then the relative n-width d,,(W,V)x coincides with the
Kolmogorov n-width d,,(W)x. Clearly, d,(W,V)x > d,(W)x.

We also let A(X, L™) be the set of all linear maps A : X — L™. Then

EW,L"“":: inf _A
( )X . |z — Az||x

denotes the best linear approximation of the set W by L™. The linear n-width of
W is defined by . A
dn(W)hr .= L;ncfx EW, L™, n>0.

Let I = [a,b] be a finite interval in R, and let » € N and 0 < & < o0. For
1 < p < oo, and p(t) := dist{t,0I}, t € I, we denote

Wpo =W, (I):={z:1-R
D € ACioe(I), |27 p* || 1) < 13-

If @ =0, then we write W := W (I) := W} o(I). We also write L, for Lq(I).
Let

Aa(t) m i(_l)s—k <Z)x(t +k7), {Lt+sryCI,

k=0
s=0,1,...,

and denote by AS Wy, = AW, (I), s = 0,1,... the subclasses of functions
z € W), for which Afz(t) > 0, for all 7 > 0 such that [t,t+s7] C I. Analogously
we will use the notation A% L. In recent years shape preserving approximation has
become a central subject especially in application. This is due to the fact that in
CAGD and especially in questions of design, shape preservation is one of the main
considerations. Our results below show what one may expect to achieve and what
is beyond reach of any approximation process which involves approximation from
linear n-dimensional manifolds, when we preserve the shape of the approximants.

2 Unconstrained Kolmogorov and linear widths

We begin with some asymptotic relations for unconstrained Kolmogorov and linear
widths. First we have [2]

Theorem 2.1 Let I be a finite interval and letr € N, 1 < p,g<oc and0 < a < >,
be such thatr~a~;v)+37 > 0. If (r,p) # (1,1), and if (r,p) = (1,1) and 1 < g <2,
then L o

AWy, = porHmad g g bmmad Ga e gy s )
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If on the other hand, (r,p) = (1,1) and 2 < q < co, then

3
2

an™i <dpo(Wl,)r, <cm 3(log(n+1))%, n>1, (2)
where ¢; > 0 and co do not depend on n.

Thus we see that the asymptotic order of the Kolmogorov widths is indepen-
dent of « although the classes W , become bigger as « increases. The smallest
of course is W for which the above asymptotics are well known. In view of this
it is clear that the lower estimates in (1) and (2) need no proof. The proof of the
upper bounds is too long to be given here and we refer the reader to [2].

The exact orders of the widths of the classes Wll’a in Lg, 2 < g < o0, are not
known even when o = 0.

It turns out that the Kolmogorov widths of the smaller classes AW, ,,
0 < s <r, are, in general, of the same order of magnitude as those of the classes
Wy - However, they are significantly smaller for the class AQHW;’O‘.

What we have if 0 < s <, is (see [3]),

Theorem 2.2 Letr € N, 1 < p,q <00 and 0 < o < 00, be such thatr—a—%-f—% >
0. If (r,p) # (1,1) and if (r,p) = (1,1) and 1 < q < 2, then for each s =0,1,...,r,
A (ASWE )p, = n rHmax(G g} omaxtGihe -y >y (3)
If on the other hand, (r,p) = (1,1) and 2 < ¢ < oo, then for s =0, 1,
an”? < dn(AiWia)Lq <cpnE (log(n + 1))%, n>1, (4)
where ¢y > 0 and co do not depend on n.
But in case s = r + 1, we have [3],

Theorem 2.3 Letr € N, 1 < p,q <00 and 0 < o < 00, be such thatr—a—%-f—% >
0. Then L
(AW ), =0T s (5)

In view of (1) and (2), we don’t have to prove the upper bounds in (3) and
(4). The proof of the lower bounds is too long to be included in this paper and the
interested reader should consult [3]. On the other hand, it is interesting to note
that
(b—a)/PA Wy, 2 AW,
2 AW (6)
D AW n{z |2 (a) =0,0<i <7},

where I = [a, b], and that the latter set differs from AT W[ ™! by a linear subspace
of dimension r + 1. Hence, the lower bound in (5) for n > 2r + 1 follows from (3)
taking r + 1 instead of r there and applying it to s =7+ 1 and p = 1.
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For linear widths we can show [2] that

Theorem 2.4 Letr € N, 1 < p,q < o0 and0 < a < oo be such thatr—a-%-{-% > 0.
If (r,p) # (1,1), or if (r,p) = (1,1) and 1 < ¢ < 2, and if (r,q) = (1,00) and
2 < p <00, then

dn(Wga)le = TG =D+ —min{(3-3)+, %—%)H, n>r (7)
y q -

If on the other hand, (r,p) = (1,1) and 2 < q < 0o, then

nlw

an”t < dn(W1 )0 < con”# (log(n +1))*, n>1, (8)

and if (r,q) = (1,00) and 1 < p < 2, then

i

¥ < da(Wp o) < con”E(log(n+1)%, n21, ©)

where ¢1 > 0 and co do not depend on n.

The exact orders of the linear widths of the classes Wllya inLg, 2 < g < o0,
and those of the classes W, , in Lo, are not known even when o = 0.

We see the same phenomenon that the asymptotic order of the linear widths
is independent of o although the classes W, , become bigger as « increases. The
smallest of course is W, o for which the above asymptotics are well known. In view
of this it is clear that the lower estimates in (7), (8) and (9) need no proof. For
the proof of the upper bounds we refer the reader to [2].

We have here the same phenomenon as for the Kolmogorov widths, namely,
the linear widths of the smaller classes ASW] ,, 0 < s < r, are, in general,
of the same order of magnitude as those of the classes Wy ,. However, they are

significantly smaller for the class Ale;’a. Here we have for 0 < s <r (see [3]),

Theorem 2.5 Letr € N, 1 < p, g < oo and 0 < a < 00, be such thatr—a—%—f—% >
0. If (r,p) # (1,1), or if (r,p) = (1,1) and 1 < ¢ < 2 and if (r,q) = (1,00) and
2 < p < o0, then for each s =0,1,...,7,

. 1 1 H 1 1 1 1
d"(AiW;a)lLZZ — n—r+(;f;)+*Hlm{(;*5)+,(§—5)+}’

(10)
nZ>r.
If on the other hand, (r,p) = (1,1) and 2 < g < oo then for s = 0,1,
einF < da(ASWE " < e E (logn+1))?, n> 1, (11)
and if (r,q) = (1,00) and 1 < p < 2, then for s =0,1,
cn”E < dy (AYWL )M < en i (log(n +1))%, n> 1, (12)

where ¢; > 0 and ¢o do not depend on n.
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In the case s = r + 1 we show in [3] that

Theorem 2.6 Letr € N, 1 <p,q< o0 and 0 < a < oo, be such thatr—a—%—k% >
0. Then ‘ -
dn (AW i < prmmextnad o sy (13)

Again, in view of (7), (8) and (9), we do not have to prove the upper bounds
in (10), (11) and (12). Also as we have noted after Theorem 2.3, the lower bound
in (13) follows from (10).

Remark. Note that for each fixed ¢ and all p such that r — o — % + é > 0, the

Kolmogorov and linear widths of the classes A:LHWZ: o are of the same order of
magnitude.

3 Shape preserving widths

The most important shapes that we normally wish to preserve are positivity, mono-
tonicity and convexity. For positivity preserving widths we have, [4],

Theorem 3.1 Letr e N, 1 <p,g <00 and0 < a < o0, be such thatr—a—%%—% >
0. Then

1

cln—r+(max %,5}7max{§,%})+ < dn(A(iWT Aqu)Lq

" (14)
<o HGTDY n>
and in particular if 1 <qg<p<oo, and if 1 < p < q <2, then this implies
dn(A?{»W;’avAg_Lq)Lq - n—r+(max{%,%}—max{%v%}ﬁr’ n>r. (15)

Furthermore, (15) holds for all other cases of p and q, if we actually have the
(stronger) inequality r — o — % > 0. (Note that under our assumptions, the latter

always holds when q = co.) Finally, if (r,a,p) = (1,0,1) and 2 < g < oo, then

3
2

an”? <dy(AWig, AY L)L, < e i (ln(n+1)2, n>1,  (16)
where ¢ > 0 and ca do not depend on n.

Here too, the lower bounds in (14) and (16) follow by virtue of (3) and (4),
respectively.

One may be tempted to conjecture that (15) gives the correct asymptotics
in all missing cases as well. This however is not clear at all in view of the follow-
ing asymptotics for monotonicity and for convexity preserving widths that agree
instead with the right-hand side of (14). For monotonicity preserving widths we
show in [4],



84 V.N. Konovalov and D. Leviatan

Theorem 3.2 Letr € N, 1 < p,g < o0 and 0 < a < o0, be such thatr—a—%%—% >
0. Then
dn(A1+W’

(i1
o A4 L)L, < G, >
And for convexity preserving widths we obtain (see [4]),

Theorem 3.3 Letr € N, 1 < p,q <00 and 0 < a < 00, be such thatr-—a—%-k% >
0. If r > 1, then

da(DZW] o A2 L), = n G >y (17)
and if r = 1, then
d(AZW] A2 L), <0775, n> 1. (18)

Note that by virtue of (6), the lower bound in (18) for n > 2, can be obtained
from (17) with r =2 and p = 1.

Finally we deal with s-monotone functions with s > 3. We encounter here a
completely different behavior (see [6]), namely,

Theorem 3.4 Letr €N, seNand 1 <p,q < . For 3 < s <r, we have
dn (ASW],A%L,), =nH 4573 x>y (19)
q
Alsoifs=r+1,r > 2, then
r4lyr ATH] - =2
dn (AT Wy, AL Lq)LqAn , N2> (20)

Here too, the lower bound in (20) for n > 2r +1, follows by virtue of (6) from
(20) with 7 replaced by r + 1 and taking s =r + 1 and p = 1.

Remarks. (i) Note that the asymptotic relations are independent of ¢ and if
s =1 + 1 also independent of p. Note also that they become worse as s increases
(inside the range 3 < s <r+1).

(ii) It is worthwhile noting that as a byproduct we may conclude that the lower
bound in (2) with s = 7 > 3, excludes the possibility of Jackson-type estimates in-
volving the fourth modulus of smoothness of = evaluated at 1/n, in s-monotone ap-
proximation of x, by piecewise polynomials or splines with n equidistant knots and
thus also not by polynomials of degree < n. Moreover, it even excludes Jackson-
type estimates involving the generally bigger Cn~3w(z®),n=1),,.

(iii) Recall that up until now we knew that Shvedov [7] had shown that Jackson-
type estimates of s-monotone approximation of an s-monotone x, by polynomials
of degree < n, cannot be had with Cws2(x,n"!),. Thus the above is somewhat
unexpected to us in view of what seemed to have been a pattern that we have
Jackson-type estimates involving Cwa(z, n“l)p for monotone approximation, and
by Shvedov [7], it is impossible to have such estimates with wj(z,n™!),, and we
have Jackson-type estimates for convex approximation involving ws(x,n™!),,, while
again by Shvedov [7], it is impossible to have such estimates with wa(z,n™1),.
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4 Outline of proofs

Proof of Theorems 2.1 and 2.4. To prove upper bounds in Theorems 2.1 and 2.4

we divide the generic interval I = [—1, 1] by the partition points
, {1—("—;—1’)/’, i=0,1,...,n,
Bn,i = : A
—1+("—;Lt1)ﬁ, i=-1,...,—n,
where 8 = B(r,a,p,q) > 1 is to be prescribed. Given a function z € W} ,(I),
we define on each subinterval I, ; := Ign; = [lgni-1,t8mni), ¢ = 1,...,n, and
Ini = Igni = [tanitanit1], t = —1,...,—n, polynomial splines o;(-;z}, i =

4+1,...,%n, of degree < r + 1, with three fixed knots, yielding the estimates
r—141 - -« T
1) = 083 Mgt < a4 Q1) 00N, e @)
7=

i =1,...,n, and similar estimates for s = —1,..., —n. It is easy to check that the
length |1, ;| of the interval I,;, i = £1,..., +n, satisfies the inequalities

cln_ﬁ(n — i+ 1)'6_1 <Nl < ch_ﬂ(n — | + l)ﬂ_l, (22)

where ¢1 = ¢1(8), c2 = c2(8).

The combined spline oy, (t;z) == oi(t;z), t € In,;, ¢ = £1,...,+n is so
constructed that it belongs to C(1)(I) and it depends linearly on z. It follows from
(21) and (22) that for

we obtain
_ 1
lz(-) = orm(z; L, ) < cn pmalt 1< p,q< oo, (23)

where ¢ = ¢(r, o, p, q).

The upper bounds (23) already yield the required upper estimates in Theorem
2.1 for a partial range of p and ¢. We have to improve them when 2 < ¢ < 0o and
p < g. This we do by applying discretization techniques and except for the case
r = p =1, we obtain

dn (W;‘va)Lq <

1
enTTtE TR 1<p<2<g<oo,
en™’ 2<p<qg< oo,

where ¢ = ¢(r,a,p,q), foralln > r. If r = p =1 and 2 < g < 00, then we can only
prove

dn (Wi 4) S en”3 (log(n + 1)) :

L
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We obtain similar inequalities for the linear widths in Theorem 2.4. The lower
bounds in Theorems 2.1 and 2.4 are immediate consequences of the well-known
lower bounds for the smaller classes W. g

Proof of Theorems 2.2 and 2.5. As was noted above, the upper bounds in Theo-
rems 2.2 and 2.5 follow from the upper bounds in Theorems 2.1 and 2.4, respec-
tively. Thus, we only need to prove the lower bounds. To this end we choose a
system W27 = {4, , »:}77) of functions

1 . , - .
bemasl®) = I ( (14 22EL) (54 22E22)"),
) b n (24)

tel,i=1,...,2n.

It is easy to see that .., ,: € ASW](I),i=1,...,2n. Let

ST = {y | %) = aithrnpilt), te€I}

i=1

over this system, where a = (a1,...,a2,) € R and llallizn <1, be the positive
p-sector. Clearly, S} (¥27)) C AW (I). Hence
li li
dn(ASW)L, 2 da(Sy(¥75)), and  da(ATWP)ET 2 da(Sy (920))E0-
Using discretization techniques we reduce the problem of estimating the widths of
the positive p-sector S (¥27) in the function space Lg, to that of estimating the
widths of the positive p-sector in the space lg”. More precisely, we obtain

n —ryl 1 n
dn(SF (W21, > en ™54 dn (S (B, (25)
T in —r+1 1 ny\lin
dn (S} (2R > ™5 (S5 (E*)ig2, (26)
where
2n

SH(E™) :={ele=Y aie, a=(a1,...,a2,) € RY, |la|lz <1}
i=1

is the positive p-sector in R?™ over the system E?" of the standard orthonormal
vectors e i =1,...,2n.

Since S;F(E*™) contains the cube niéS;ro(EQ”) and the simplex S;F(E?"),
we apply well-known lower estimates of the Kolmogorov 2n-widths of St (E??)
and S;(E?") in 12", and get from (25) the needed lower bounds in Theorem 2.2.
Similarly, we use (26) to prove the lower bounds in Theorem 2.5. (]

Proof of Theorems 2.3 and 2.6. In order to prove the upper bounds in Theorems
2.3 and 2.6 we have to proceed in another way. We apply some ideas of V.M.
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Tikhomirov for obtaining the Kolmogorov widths of the classes A2+WI} in L.
Following Tikhomirov we reduce our problem to that of the isoperimetric problem
in R™. To that end we fix

1 1 1,4
B>(r+=-)r—a-—-+-) -, (27)
e+ he-a-lel)
and for any function x € ATIW;_Q we define the approximating spline o, ,,(; z)
on each subinterval I, ; = Ig n;, ¢ = £1,...,£(n—1), as the Lagrange polynomials
lr.n,i(iz) of degree r, which interpolate x(-) at the r + 1 equidistant points. For the
end intervals I, +, we take 0., (;2) := I 5. +(n-1)(-; z), respectively. Note that

the rth derivative z(") is nondecreasing on I. Also, without loss of generality, we
may assume that z(" () >0, ¢t € [0,1), and z(")(¢) <0, t € (—1,0].
Using well-known Whitney’s theorem we have

l2(-) = orm (T Moo < Mnil wrng, @==%1,...,£(n—1),

where

z(t1) — z(t2)|.

In view of definition of o, ,,(-; ) we conclude that for all 1 < ¢ < oo

Wron,i 1= €S8SUD ¢, ser,

12(-) = Orn (@5 My (rn ) < nil FTwrng, §=%1,...,£(n—1). (28)
Also it is easy to verify that
12() — O (@5 ) g1 1) < ] 7O (29)
So combining (28) and (29) we get
n—1 q
() = orn(@; ML,01) < ¢ (Z IIn,il“’“wﬁ,n,i> +elya"7 o7, (30)
i=1

where ¢ = ¢(r,a,p, q).
On the other hand, we have

ES
P

n*l
12 0%z, 0.0) = <Z ||z(r)pa”i”(ln’l+l))
i=1

Note that a.e.in I, ;41,1 =1,...,n — 1,

Z Wron.i S x(r) (t),
=1
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so that for each 1 <p < o0
i
1|pa1|Lp(In,i+l) Zwﬂ",i < llw(r)palle(In,i+l)'
j=1
Hence for all 1 < p < 0o we have
N

n—1 i

o™, (2o e Wr,n,i <L (31)
— p( it ) —
1= J:

If we put a; := c|In;|, b :== ||p*||L, (I, .11), and replace wyn; by 7i, then by (30)
and (31) we are in the setup of the following

Lemma 4.1 Letn € Nand 1 < p,qg <oo. Gwen a; >0 andb; >0,i=1,...,n,
let 7:= (71,...,7Tn) belong to the set

T, ={rinz0 1<i<n, QWO n)") <1}, 1<p<oon  (32)

i=1 j=1
Set n
fu(r) = (L abr?)", 1<q<o (3)
i=1

Then setting an,+1 := 0 and % + i =1,

n

max fy(7) < (;(!ai —ainlp; 1)), 1<p< oo (34)

Note that the right-hand side of (34) is independent of ¢q. Hence by (22) and (27),

i — ais1]| S en PUTD (i )PV o n 1,

and ) L
b; > cn“ﬁ(""'F)(n -1+ 1)([171)(0”“5)_57 i=1,...,n—1,

which in turn imply
1
lz(:) = orn (@5 ) n,00) <en™ "4, 1< g<oc (35)

where ¢ = ¢(r, @, p, q). We have similar inequalities for the interval (—1,0). This
completes the proof of upper bound in Theorem 2.3 for 1 < ¢ < 2.

To improve this upper bound for 2 < ¢ < oo, we first show that for each
x € lew"

P

H(l() — T (1 -))u',,(-)'l*% HLI(” <en UL (36)
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where ¢ = ¢(r, a, p, ¢) and

£g—1
wa(t) :=n"1—|t|+n P77, tel.
This we obtain by virtue of Lemma 4.1 since
Cl|Ini] S{n?an(t) SCQIImL i=:l:1,...,:l:n.
€lni

We proceed, using discretization techniques, to prove that there exist splines
Grn(z;-) from n-dimensional subspaces for which the estimate

[l:c() — (T ~)||Lq(1) < cn“"‘%, 2 < q< oo, (37)

holds, where ¢ = c(r, @, p, ¢). Combining (35) and (37) we get the upper bound in
Theorem 2.3. Since the splines o, ,(-; z), of (35) and &, n(x;-) of (37) are linear,
the proof of the upper bound in Theorem 2.6 is similar.

In order to prove the lower bounds in Theorems 2.3 and 2.6, we consider the
system \1121111 = {wm,n,l,i}?gl, where the functions ¥,41,.1,:(-) are defined by

(24) for p = 1, and replacing r by r + 1. Since ||7/’£:)1,n,1,i||Loo(I) = 1, we have
Yri1m1,i € ATHIWE I ST (W2, 1) denotes the positive 1-sector over the system
U2, then S§ (V21 ) C AVH'WZ,, whence

dn(Al+1W§o)Lq > dn(Sfr(\Ilfim))Lq.
Using discretization techniques, we obtain
n —r—1 n
dn (S1+(‘I’%+1,1))Lq 2cn qdn(SlJr(Ez ))lgna

where S; (E?") is the positive 1-sector over the system E?" := {e()}27 of the
standard orthonormal vectors e(?, i = 1, ..., 2n in R?*. The lower bounds in Theo-
rem 2.3 and 2.6 now follow from the well-known lower estimates of the Kolmogorov

widths. O

Proofs of Theorems 3.1, 3.2 and 3.3. In order to obtain upper bounds in Theorems
3.1-3.3, we take the polynomial splines o, »(z; -) of the proof of the upper bounds in
Theorem 2.2. These splines yield good approximation but, in general, they do not
preserve the shape. We use correcting splines of small norm on each subinterval I, ;,
i=*+1,...,%n, to modify o, ,(z;-) in a way that the resulting splines preserves
the shape. Due to the small norm of the correction we still obtain the same rate
of approximation.

More interesting is the proof of the lower bounds for monotone and convex
functions when 2 < ¢ < oo and p < g, namely, when the lower bounds in (3) are
too small. ~

To this end, we construct the system éfm = {¢rnpi(-)}7; of monotone

7(r)

functions such that ||¢r,n.p,i||L,,(I) = 1, their supports are subintervals fnz C I of
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length |fn,| = n~!, which do not intersect, Js,,,n,,,,,- vanish to the left of fn,i, and
Grnpil-) = en™™*5 to the right of I ;. For the positive p-sector S}(®r,) over
the system we have S} (®7,) C ALW]. Hence

dn—o(AY W], AL Ly)L, > dnoa(SF(8],), AL L)L, (38)

Using a discretization operator, we show that

1_

dn—2(S; (®7,), AL L)1, > en "5 " idn_o(SF(E™), AL )iy, (39)

q

where S (E™) is the positive p-sector in R™ over the system E™ := {£®}7 | of
vectors 1) := (1,...,1), é? :=(0,1,...,1), ..., &™) :=(0,...,0,1), and

A—lé- = {$IIL':($1,...,.CL‘7L)€R”, xlSwQS"'an}a

is the cone of vectors x = (z1,...,2,) with monotone coordinates.
All we need now is the estimate

dm(SX(E"),Ai),gzl m+1l<n, 1<p<g<oo, (40)

8 )
which readily follows from

Lemma 4.2 Let n € N, n > 1 and denote 6B} := {x |z € R", ||z||;r <8}. Then
for any 6.,0* > 0 one has

* N §* 6*
du1 (6. B7,6"B}),, — max {5* -2 _n_} ,
From (38) through (40) we obtain

1 1
,>en Tt

d(ALW7, AL L)L

where ¢ = ¢(r, p, q).
The proof of lower bounds for convex functions in Theorem 3.3 is similar. We

construct a system @:ﬁ’) = {qgr_n,p,i()}?:l of convex functions gzvﬁ,._,,upii(), such that
the positive p-sector over this system, S:,‘(é;’:,,) C A% W, . Hence
Ao (DLW A% Ly)p, > dua (S (D). AL Ly) L, (41)
Using a discretization operator we show
o ; _ 1_1 N o -

dnﬁQ(‘S‘]T((I);?’.p)v Ai[‘(l)Lq > cn U dan(‘SIT(E I)' Ai)”} (42)
where S]T(E”') is the positive p-sector in R” over the system E" := {en | of
vectors ¢ = (1.2,....n). @ = (0.1.....n = 1) ... €M) = (0, ..., 0,1), and

Ai ={r=@lr=(r.....0)eR" rn—u < <u, —x,1},



Shape Preserving Widths 91

is the cone of vectors * = (z1,...,z,) with convex coordinates. It follows by
Lemma 4.2 that

du(S7(E"),02), > 5o, mtl<n 1<p<q<oo,

which together with (41), (42) implies

1

da(A2WI, A2 L), > en e a,
where ¢ = ¢(r,p, ¢). O

Proof of Theorem 3.4. For the upper bounds we require the following lemma
which is interesting in its own right (see {5]).

Lemma 4.3 Let = € C?[a,b], be 3-monotone, and for m € N, set ¢; = tmi =

a+im~J|, i =0,1,...,m, where J := [a,b]. Then there exists a 3-monotone
quadratic spline oo m(z;-) with knots t;, 1 =1,...,m — 1, such that

" (tic1) <oy (zt) <z”(t;), te(tia,t), i=1,...,m,
and

3 _ -
12() = o2, (@3 M) < 5m 2 HPw(@"m =",

7
[0/ C) = b (@Ml sy < 5 a5 1)),

and
[2"() = o5 m (@i )|, _ 5y S wla"sm ™)),

Here w(x; h) is the ordinary modulus of continuity of x.

In particular we have

Corollary. Let x be 3-monotone and assume that x € W;, 1<p<oo. ForméeN,
lett;, ¢ =0,1,...,m, as in Lemma 4.3. Then there exists a 3-monotone quadratic
spline o9 m(x;-) with knotst;, i =1,...,m ~ 1, such that

z//(ti——l) < O'/le(z,t) < I//(ti)7 te (ti—lati)a i = 1~, <oy,

and 3
341, 3_1
lz(-) = o2.m(z; Mooy < oM 3+”|[|3 v,
’ / 7 _9p12-1
HI (')70-2.'m(z:')HLx(J) < §m p|Jl L)
and

o) = g m@lly gy S 7RI
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Given z € AiW;’;(I), 3 < s < r, we then construct a spline aryn(m(s—B);-)
with = n equidistant knots, which is 3-monotone and approximate well x(=3)

=3 () = o (@™, Mo < en~ TS,

where ¢ = ¢(r, s, p). Then by s—3 integrations and appropriate corrections yield an
s-monotone spline o, ,(z; ), which is close enough to z. Thus proving the required
upper bounds.

In order to prove the lower bounds, we construct a collection of functions
{¥r,sm,i}22, from AS W] (I), that behave very much like the truncated powers of
degree s — 1, such that the distance of any linear manifold M™ in L, (), to at least
one of them is no better than cn™"**T#73. To this end we have estimates from
below on the distance of the (s — 1)st derivatives are from the same derivatives of
arbitrary elements of the manifold, and we need to translate it to distance between
from the functions themselves. Instead, we replace the functions by the truncated
powers and apply the following lemma which is again interesting in its own right.

Lemma 4.4 For 7 € R, b > 0 denote
b s
Xsrp(t) = 5t —7), teR, seN.

Let s> 1 and ¥ € C*[r — a, 7+ a], a > 0, and assume that ¥'®) is nondecreasing
and 0 <) (t) < b, in [T — a,7 + a]. Then, if
||X.S7)',b - 1/}(8) “L1[T—a,r+a] > A;

where 0 < A < ab, then
52 45-3 s—173.—
“Xs,r,b - w”LﬂT—a,T—f—a] > 2 ds=3g5~1p 1A2.

Note that since we apply Lemma 4.4 for the (s — 1)st derivative we must have
s—1>1,i.e., s > 3. This is the main reason why the case s > 3 behaves so much
different than the case 1 < s < 2. O
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On Approximation Methods
by Using Orthogonal Polynomial Expansions

Rupert Lasser, Detlef H. Mache & Josef Obermaier

1 Introduction and basic facts

The following investigations start from a general point of view. Therefore let
(Pn)nen, be an orthogonal polynomial sequence (OPS) on the real line with re-
spect to a probability measure = with compact support S and card(S) = oc. The
polynomials P, are assumed to be real valued with deg(P,) = n.

Then the sequence (P,)neN, satisfies a three term recurrence relation of the fol-
lowing type

P (2)Po(x) = anPry1(z) + b Pr(z) + cnPooi1(z), n>1, (1)

with Py(z) = go and P1(z) = go(z—bo)/ag, where the coefficients are real numbers
with c1g0 > 0, cpan—1 > 0, n > 1, and (cp@n-1)neN, (bn)nen are bounded
sequences. On the contrary, if we define (P, )nen, by (1) we get an OPS with the
assumed properties, see [3].

With

mmaLﬁWWMW%ﬂ<&m>w @)

the corresponding orthonormal polynomials are given by p,(z) = v/h(n)P,(x).
By the Christoffel-Darboux formula, see [3], we have

5 @ P = Lo () L @B P@Pa) g
k=0

qdo rT—y
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For f € L1(S,n) one may form orthogonal expansion with respect to the
OPS by

f~Y" f(k)Pch(k), (4)

Is

where the Fourier coefficients are defined by

i = [ f@P@ dn(@) =< £.Pc> 5)
s
In this paper we will focus on weighted expansions
> an i f(k)Pyh(k), n — oo, (6)
k=0

and study convergence properties in various norms, e.g. for 1 < p < oo the L,-norm
when f € L,(S,7) C L(S, ) or for p = co the sup-norm when f € C(S).

For essential parts of our investigations we make the additional assumption
that there exists a point zg € S such that

[Po(z)] € Pu(zg) =1 forall ze€S, ne N (7)

Property (7) implies that the coefficients in (1) fulfill g = 1, ap + by = zo and
an+bn+cn:1, n>0
If the linearization coefficients g in

1+3
k=l

are non-negative, then there exists a normalized version of (P, )nenN, With property
(7). Those polynomials are associated with a so-called hypergroup structure on Ng
and there exist a lot of examples which are well studied, see [6] and [1]. Further
on we denote an OPS with property (7) by (Rn)neN,-

2 Approximate identities

Denote by B one of the Banach spaces C(S) or L,(S,7), 1 < p < 00, with respect
to the orthogonalization measure = and by || - || g the actual norm.

Let (an.k)o<n<oso,0<k<rn be a triangular matrix of complex numbers. Then we define
the generating polynomial A, by

An(z) = Z an kh(k) Pi(z) (9)

k=0
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and call the sequence (Ap)neN, & kernel. We also may identify A, with a continuous
linear operator from B into B by

= S ans R @E) = 3 <L R (0)

k=0 k=0 < Py, Py >

The weight coefficients a,, x have to be chosen appropriately to guarantee concrete
features of the approximation process.
Before one goes into details let us give the following definition.

Definition 2.1 We say that the sequence (A, )neN, 5 an approximate identity with
respect to B, if

Jim 4 f = fllp = Jim S ansf(K)Ph(R) ~ flla =0 for allf € B. (1)
k=

The Banach-Steinhaus theorem yields necessary and sufficient conditions for
(An)nen, to be an approximate identity, see [9].

Theorem 2.2 The sequence (An)neN, i an approrimate identity with respect to B
if and only if the following two conditions hold.

(i) lim,—o @n i =1 for all k € Ny.

(ii) There exists a constant C > 0 with || Anf|lB < C||fllB for all f € B and for
all n € Ng.

In [9] it is also shown that (A4, )neN, is an approximate identity with respect
to L,(S,m) if and only if it is an approximate identity with respect to C(S).
Moreover, if (An)nen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>