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PREFACE

Th~ concepts of angular momentum and rotational invariance play
an important part in the analysis of physical systems. They have a
special significance in quantum mechanics, for here we find that caleu-
lations may be divided in a natural way into two parts, namely (i) the
computation of quantities which are invariant under rotations (for
example the Slater integrals of atomic spectroscopy) and (ii) the evalua-
tion of expressions which depend only on the rotational properties of
the various operators and state vectors involved. It is remarkable
that the structure of an expression of this latter kind is primarily a
function of the complexity of the system being studied (e.g. the number
of angular momenta in the coupling scheme) and is relatively independent
of its precise physical nature. This fact has made it possible to develop a
very general theory of angular momentum algebra, from which can be
derived computational methods applicable to problems in such fields
as atomic, molecular and nuclear spectroscopy, nuclear reactions, and
the angular correlation of successive radiations from nuclei.

It has been my aim not only to give an account of this theory, but
also to provide a practical manual for the physicist who wishes to use’
the associated computational methods. To this end I have paid attention
to questions of notation and phase convention and have included tables
of formulas and references to numerical compilations, so as to facilitate
the evaluation of the various coefficients defined in the text.

The reader is assumed to have a general knowledge of quantum
mechanics; an acquaintance with the theory of group represerfations
should not be necessary. 4

The text is based upon the notes of lecture courses given during the
last few years in the Universities of Birmingham, Manchester, Paris,
Copenhagen, and Uppsala. The greater part of the writing was done
while T was a member of the CERN Theoretical Study Division in
Copenhagen. I am grateful to Professor Niels Bohr for the privilege of
working during that time in the friendly and stimulating atmosphere of
his Institute. A number of colleagues have contributed by discussions
and criticisms. In particular I should like to thank K. Alder, G. Field,
B. H. Flowers, P. O. Olsson and A. Winther.

London, 1957 A. R. Edmonds
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CHAPTER 1

Group Theoretical Preliminaries

1.1. Introduction

The subject of this book is the detailed development of the uses of the
principle of conservation of angular momentum in the analysis of
physical systems. While this principle is by no means trivial in classical
mechanics, it is of fundamental importance in the quantum mechanics
of many-particle systems. Such systems include the more complex
atoms, the atomic nuclei treated from the point of view of the inde-
pendent particle model, and experiments in which particles are emitted
from or absorbed by nuclei.

We shall first discuss the relevance of conservation of the angular
momentum of a system in classical mechanics, and see how it is related
to the symmetry of the Hamiltonian of the system with respect to
rotations of the frame of reference. Thus even in a classical aualysis
we find that the theory of the group of rotations in three dimensions is
bound up with the idea of angular momentum,

TaE SYMMETRY OF THE HAMILTONIAN." A constant of the motion
is a function of the canonical variables which does not change with
time, and in the classical mechanics a knowledge of all the constants of
the motion of a system amounts to a solution of the equations of motion.
Now for any function u of the canonical variables which does not
depend explicitly on the time the Poisson bracket of the function with
the Hamiltonian is zero; for

B, H] =0,
An infinitesimal contact transformation may be defined as a contact trans-
formation which changes the canonical variablesg;, p; (¢ = ¢, 2, ..., n)
by an infinitesimal amount:

¢ — g = q; + 6q.
P =i = p: + ops

The generating function ¥ of the infinitesimal transformation differs

1For a more detailed treatment see any advanged textbook on classical mechanics,
e.g. Goldstein (1950).

3



4 1 - GROUP THEORETICAL PRELIMINARIES

only infinitesimally from the generating function of the identity trans-
formation, which is D ¢;p}. We may write it therefore as

F=3 qp.+¢Gg,p)

where ¢ is an infinitesimal parameter. It is customary to call G(q, p’)
the generating function of the infinitesimal transformation, in spite of
the fact that this is also the name of the quantity F. It may be shown
that the change in a function % of the canonical variables due to this
transformation is

u = ¢fu, G].
Hence reblacing u by the Hamiltonian H, we have
0H = ¢[H, G].

Thus we deduce that the constants of the motion are the generating
functions of those infinitesimal contact transformations which leave
the Hamiltonian invariant.

We find in particular that the angular momentum components are
the generating functions of the infinitesimal rotations about the cor-
responding axes of the frame of reference. Thus if the angular momentum
i8 a constant of the motion, then the Hamiltonian of the system is
symmetric with respect to rotation of the frame of reference about the
origin. We say that the group of the Hamiltonian, i.e. the group of trans-
formations which leave the Hamiltonian invariant, contains the group
SO(3) of rotations in three-dimensional space. This fact is of importance
in quantum mechanics, for the theorem of Wigner-Eckart states® that
if T is an element of the group Gy of the Hamiltonian H, and if  is an
eigenvector of H, then Tu is also an eigenvector of H with the same
eigenvalue. This implies that all eigenvectors of H belonging to a
given irreducible representation of Gy have the same eigenvalue, i.e.
are degenerate in energy; however this statement contains group
theoretical terminology which has not yet been explained.

In the case of a system with rotational symmetry, the theorem
implies that, as is well known, the angular momentum eigenvectors
are eigenvectors of the energy and that the set of states with the same
total angular momentum and different values of the z-component is
degenerate.

¥See Wigner (1927), Eckart (1930).
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1.2. Elementary Theory of Groups®

The concept of group is a generalization of the properties of a large
number of systems of mathematical interest; such systems as the set
of all permutations of n objects, the set of all rotations of a rigid body,
the set of all nonsingular linear transformations on a given vector space.

An abstract group is defined without reference to any particular
physical or mathematical system. It is in fact a set of elements among
which a law of composition is defined such that the composition of any
two elements a and b of the group taken in this order and denoted by
ba is an element of the set.*

We must add to this property the following conditions:

ju—y

The associative law c(ba) = (cb)a.
2. There exists a unit element 1, which leaves any element a unaltered
on composition with it:

la = al = a.

3. To each element a corresponds an inverse ¢ ' which gives on com-
position with a the unit element:

The number of elements in a group, its order, may be finite, or denumer-
ably or nondenumerably infinite. Among finite groups are the symmetry
groups of the regular solids and the permutation groups on a finite
number of objects. The positive and negative integers form a group of
denumerably infinite order with respect to addition. The simplest group
with a nondenumerable set of elements is the set of real numbers with
respect to addition, or equivalently the set of all translations of a point
on a line.

A subgroup h of a group g is a set of elements of g which itself fulfills
the group conditions. The unit element must thus belong to A, and if
a and b both belong to h, then so do ¢™* and ba.

The groups we shall be concerned with are those with a nondenumer-
able infinity of elements. Let us consider first the set of all nonsingular
linear homogeneous transformations on an n-dimensional vector space;
we suppose the transformation matrices to have complex coefficients.
This set clearly forms a group with respect to composition of the trans-
formations (i.e. to matrix multiplication); it is known as the full linear
group GL(n). Restriction of these transformations to unitary trans-

*The reader is referred for a more detailed treatment of the applications of the
theory of groups to quantum mechanics to the well-known works of Weyl (1931),
Wigner (1931), Eckart (1930), van der Waerden (1931), and Bauer (1933).

‘Note that in general ab = ba.
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formations gives us the unilary group U(n), which is a subgroup of
GL{n), this relation being symbolized by

U(n) C GL(n)

We_may make the further restriction that the unitary matrices have
determinant. +1, i.e. are unimodular. The resulting group is called the
,specqu unitary group SU(n). The group of all real linear homogeneous
transformations on an n-dimensional space which preserve the distance
between two points, defined in the Euclidean sense, i.e. the rotations
and, reflections about the origin, is called the orthogonal group O(n).
Et corresponds to the set of all real n:X n orthogonal matrices. We
shdll be concerned particularly with rotations in 3-space, namely with
the unimodular orthogonal group SO(3):

We come now to the question of how to label the elements of a group
of ithe type with which we have just been dealing. Evidently in the case
of the elements of GL(n) we would need n’ complex numbers to specify
ahy element, since the matrix elements are independent. Imposition of
restrictions (e.g. orthogonality) on the matrix elements will reduce the
number of independent quantities; and in the case of the rotation
group O(3) we need only three real numbers, a fact well known from
geometry. For any rotation of a rigid body may be symbolized by three
real numbers. ‘

1.3. The Euler Angles

The most useful way of defining these three numbers, i.e. of param-
eterizing the rotation group, is that of Euler; there are, however, several
conventions in existence for choosing the so-called Euler angles. We
shall consider this choice with some care, for ambiguities in the definition
of the Euler angles entail confusion in questions of the phases of matrix
elements of finite rotations, etc.

The convention we shall use is that employed frequently by workers
in the theories of molecular spectra (Herzberg 1939) and of the collective
model of the atomic nucleus (Bohr 1952). It differs, for example, from
those of Wigner (1931) (who employs a left-handed frame of reference)
and of Casimir (1931).

The general displacement of a rigid body due to a rotation about a
fixed point may be obtained by performing three rotations about two
of three mutually perpendicular axes fixed in the body. We shall assume
a right-handed frame of axes; we shall further define a posifive rotation
about a given axis to be one which would carry a right-handed screw
in the positive direction along that axis. Thus a rotation about the
z-axis which carried the z-axis into the original position of the y-axis
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Fig. 1.1

would be considered to be positive. The rotations (see Fig. 1.1) are to

be performed successively in the order:

1. A rotation o(0 < o < 27) about the z-axis, bringing the frame of
axes from the initial position S into the position S’. The axis of this
rotation is commonly called the vertical.

. A rotation B(0 < B < ) about the y-axis of the frame S’, called
the line of nodes. Note that its position is in general different from
the initial position of the y-axis of the frame S. The resulting position
of the frame of axes is symbolized by S”.

. A rotation v(0 < v < 27) about the z-axis of the frame of axes S/,
called the figure axts; the position of this axis depends on the prev1ous
rotations « and 8. The final position of the frame is symbolized by
S’’. The possible values of «, 8, and « are restricted so as to preserve
a 1:1 correspondence between parameters and rotations;® we shall
not always adhere to exactly the same choice of bounds on the
a, B, ¥ but assume that some similar arrangement is made to preserve
the 1 : 1 correspondence.

It should be noted that the polar coordinates ¢, 8 with respect to the
original frame S of the z-axis in its final position are identical with the
Euler angles «, 8 respectively.

In the description of the general rotation just given, the rotations

B and v have been defined with respect to the frame of reference carried

with the moving body. It is convenient in many applications always to

refer rotations to the original fixed frame of axes S.

sExcept when 8 = 0, when a rotation (@0y) = (@'0y") ifa + v =a’ + 7.
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We shall now show that the rotation of a rigid body described above
by the parameters afy is the result of carrying out in order the following
rotations of the body about the fixed axes of S:

1’) a rotation v about the z axis.

2') a rotation 8 about the y axis.

3) a rotation « about the z axis.

We imagine that the rotation D(afy) has already been carried out
according to the procedure depicted in Fig. 1.1. Now we suppose the
body to be fixed, and the frame S to be moved into coincidence with
the frame S’/ in the body. This rotation is done in three steps:

1) a rotation y about the 2’/ axis (in S’’/). This brings the S”
frame into coincidence with S’”’.

2’") a rotation 8 about the y’// axis; the S’ axis is thus brought into
coincidence with S’’’.

3’") a rotation a about the 2’’’ axis.

Now we can suppose that the position S of the frame was obtained
by a rotation starting in the position S’’/; this rotation would be the
inverse of the one considered, namely D™ '(aBy). The rotation of the
frame S given by 1/, 2”/, 3" thus corresponds to a rotation D(aBy)
described from the frame S’’. The assertion made above is thus evi-
dently correct.

1.4. Representation Theory

A very important part, from a physical point of view, of the theory
of groups is that concerned with the representation of the elements of a
group by linear transformations.

We mean by a representation of degree n of a group G that to every
element a of G is assigned a linear transformation 7'(a) on a vector
space ®, of dimension 7 in such a way that these linear transformations
obey the law of composition:

(1.4.1) T(a)-T(b) = T{ab).

It may be the case that to each group element corresponds a distinct
transformation; we speak then of a faithful representation. On the other
hand we get a representation which fulfills (1.4.1) by choosing for
each and every transformation the identity transformation.

When a definite coordinate system is chosen in the space ®, each
transformation 7'(a) corresponds to a square nonsingular matrix. The
orthogonal unit vectors which establish this coordinate system are called
the basts of the representation. If we replace the coordinate system by
another obtained from it by a transformation S, the group element a
will be represented by the transformation S7'(a)S™'. We have again
a representation of G, which is said to be equivalent to the former one.

Let us consider how such a representation might arise; we take for
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example the set of all sufficiently well-behaved functions on the surface
of a sphere. A given function may be represented by a vector in a
function space whose basis vectors are chosen functions forming &
complete orthogonal set—say, the spherical harmonics. A rotation of
the sphere will induce linear transformations in this function space;
these give a representation of the rotation group.

RepuciBILITY. Suppose there exists a subspace ®’ of ® such that
all vectors lying in this subspace are transformed by a given trans-
formation T into vectors of ®'. We say then that the subspace ®’
is tnvartant under the transformation 7. If ®’ is invariant under all
transformations T'(a) representing the group G, the transformations
T’(a) which are induced in ®' themselves give a representation of G.
If we picture the transformations as matrices, then we may choose
such a basis that all the representation matrices in a given representation
take the form of Fig. 1.2, where the submatrix P corresponds to the

P R

= S
O

OO

|
i
]

Fig. 1.2

transformations on the subspace ®’. (The rectangular submatrix R
will usually, but not necessarily, contain nothing but zeros.) A repre-
sentation based on a space ® is called irreducible if ® contains no sub-
space other than itself and the null space which is invariant under the
transformations 7T'(a) representing the group G.

An example of an irreducible representation is that given by the
spherical harmonics of a given order I. It is well known that (due to
the invariance of the Laplace equation under rotations of the frame of
reference) a spherical harmonic Y,,, is transformed by rotation of the
frame of reference into a function expressible as a sum of spherical
harmonics with the same ! but with m running over the whole range
—1 < m < 1, each with an appropriate coefficient; the coefficients are
the matrix elements of the representation. Since any Y. may be trans-
formed by some rotation into a function containing any other with the
same [, the representation of degree 2! 4+ 1 whose basis is the set of
functions Y, _;, ¥; 441, -+, Y111, Yy.; 18 irreducible.



CHAPTER 2

The Quantization of Angular Momentum

2.1. Definition of Angular Momentum in Quantum Mechanics

ANGULAR MoMENTUM IN CrassicaL MEecHANICS. In the classical

theory the angular momentum of a system of n massive particles is
defined as a vector, given by

L = Zr.-Xp.-

sm]
where r;, p; are the position vector and linear momentum respectively
of the ¢th particle. We may write down a similar integral expression for
a continuous distribution of matter. Provided that there are no external

torques operating on the system, all three components of L are constants
of the motion, and may take any finite values whatever.

THE INTRODUCTION OF QUANTIZATION. The historic paper of
Bohr (1913) on the spectrum of the hydrogen atom introduced for the
first time the postulate that the angular momentum of a system was
quantized, i.e. that it could only take values which were integer multiples
of the quantum of action A times 1/2x. Sommerfeld (1916) suggested
that the direction as well as the magnitude of the angular momentum
of an electron in a closed orbit was quantized; that is, that only certain
directions of orientation of the angular momentum vector with respect
to a fixed axis were possible.

From that time onwards spectroscopists studying the structure of
atoms made use of empirical rules for dealing with the coupling of the
angular momenta involved (cf. Landé (1923)). Difficulties in inter-
pretation of these rules continued until the discovery of wave and
matrix mechanics, and the establishment of a definite procedure for
making the step from the classical to the quantum theory.

DzerivaTioN oF THE CoMMuTATiON RULEs. In classical mechanies
the angular momentum of a particle about a point O is defined as

(2.1.1) L=rXp
where r is the position vector of the particle with respect to O and p
is its linear momentum.

In quantum mechanics the components of position and linear momen-
tum of a particle obey the commutation relations'

1We employ the alternative and equivalent notations zi, z,, z;s or z, y, z for com-
ponents of positions, etc.

10



21 - DEFINITION OF ANGULAR MOMENTUM 11
[x:, p;] = 1hé:;; [z, x;] = O; [pi, p;]1 =0
where ,,7=12,3

We apply these relations to find the commutation rules for the com-
ponents of angular momentum. For example

(L., L,] = (yp., — 2p.)(zp. — zp.) — (z2p. — 2p.)(yp. — 2p,)

= yp.(pz — 2zp.) + zp,(2p. — p.2) = ih(zp, — yp.)
Thus we obtain
(2.1.2) (L., L, = <tL,; [L,, L,] = L,; [L,, L] = ikL,.

D1FFERENTIAL OPERATOR EXPRESSIONS FOR THE COMPONENTS OF
ANGULAR MomEeENTUM. We may express the operators of angular

morflentum in the differential operator form; we take p, = —h(9/9x)
ete.”

L, = ——zh(y-a% - z-;—y)
(2.1.3) L=~ 2 -2 2)

L, = —ih(xé% — 5%)

These equations may be written in terms of the spherical polar coordi-
nates

wf - e d
L, = zh(sm v -+ cot 8 cos ¢ aqa)
(2.1.4) L, = ih(—cos 9 + cot #sin —E—’—>
" v Y ¢ 9
L = —in>

de

Thus we see that the angular momentum operators are proportional
to the operators of infinitesimal rotations’ (cf. Dirac’s displacement
operators, Dirac (1947) §25).

The square of the total angular momentum is defined as

(2.1.5) L =L+ L+ L:

This operator commutes with L,, L,, and L, as may be shown by use
of (2.1.2). It is given in terms of the spherical differential operators by

*Schiff (1949) p. 20.
3Goldstein (1950) pp. 124, 263.
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gl L i(- _e_) l_a_f_]
(2.1.6) L= h[sin 500 "0 056 575 5

2.2. Angular Momentum of a System of Particles

PRELIMINARY REMARKS. In classical mechanics the angular momen-
tum of a system of n particles relative to a point O is given by

(2.2.1) L = Zr; X p" = Z L"

i=1 t=]

where r,, p;, and L, are the position vector with respect to O, the linear
momentum, and angular momentum respectively of the 7th particle.
Since the quantum mechanical operators relating to different particles
commute, we may take over this definition into quantum mechanics
with the knowledge that the components L., L,, L, of L obey the same
commutation rules as the components of the angular momenta L; of
individual particles.

Now we may write down differential operator expressions for the
components of the total angular momentum in terms of the 3n coordi-
nates of the particles in the obvious way, namely by writing down an
expression corresponding to (2.1.3) or (2.1.4) for each of the n particles.
However it is instructive to go about the problem in a different way.*

THE INVARIANTS AND EULER ANGLES OF A SYSTEM OF n PARTICLES.
A number of invariants, i.e. quantities whose values are unchanged by
rotation of the frame of coordinates, may be built up from the 3n
coordinates of the n particles. There are obviously the n lengths r; of
the position vectors r,. There are also the scalar products of the vectors
taken two at a time. We must decide how many of these scalar products
need to be specified to fix the relative orientation of all the vectors.
If we choose any two vectors, say r, and r,, and specify the scalar product
(r;-1;), each of the remaining n — 2 vectors is fixed by specifying the
values of two scalar products. There are thus 1 4+ 2(n — 2) = 2n — 3
independent scalar products. The total number of independent invariants
is thus 3n — 3. There remain 3 independent quantities; these may be
supposed to determine the 3 Euler angles (see (1.3)) of a moving frame
of reference which is associated with the motion of the n particles. If the
n particles move together rigidly about the origin of coordinates, i.e.
if the 3n — 3 invariants are constants of the motion we have the well-
known case of the rotation of a rigid body; the moving frame is fixed
in the body. If the motion is not rigid and n > 2, it is not so easy to
specify the Euler angles in terms of the coordinates; nevertheless there
is no real ambiguity in their specification since, as we have seen, there
are only 3 independent quantities with which they may be associated.

‘Cf. Sommerfeld (1939) Vol. II p. 776.
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THE ToTAL ANGULAR MOMENTUM IN TERMS OF THE EULER ANGLES.
The operators of infinitesimal rotations about the instantaneous Euler
axes (the vertical, the line of nodes, and the figure axis) are first expressed
in terms of the infinitesimal rotations about the fixed z, y, and z axes.
It is well known that these infinitesimal rotations may be compounded
as vectors; it follows that the operator of infinitesimal rotation about
the line of nodes is given by

— = —gsin + cos 2

» * da, da,
where a, and a, are angles, analogous to «, measured about the fixed
z and ¥ axes respectively. Similarly the infinitesimal rotation about the
figure axis is

0 . . . 0 ;)
3y cosasmﬂaax +smasmﬁaa’ + cosﬂaa
We have in analogy with L, = —1k(3/da) also
. 0 . O
L, = —ik 9a’ L, = —ih 9,

and we may invert the equations for 3/da, 9/38, 3/dy to obtain

. g . 0 cosa 0
L, = —-zh{—cosa cotﬂaa - smaaB + sinﬁa'y}
. . 0 ¢ sina 9
(2.2.2) L, = —zh{—- sin « cot Baa + cosa 8 + sin B a'y}
. 0
L, = —ih %0

The square of the total angular momentum is given by (2.1.5) and
(2.2.2) as

9’ d
L’ = h’{———a — cot B —
2.2.3) B 9B

1 (& '), 2cos8 & }
sin’ﬁ(aaz + 6’72) + sin’ 8 da Ay

2.3. Representation of the Angular Momentum Operators

ExTENDED DEFINITION OF THE OPERATORS. In this section we
derive the Hermitian matrix representations of the system of operators
(2.1.2). For the purpose of this discussion the operators are supposed
to be defined by the commutation relations (2.1.2); we shall see that
this gives a greater content to our theory than just assuming that all
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their properties are expressed in terms of differential operators. In
particular, this definition permits the existence of spin, which, as is
well known, cannot exist in the framework of classical mechanics. To
emphasize the extension of this definition, we shall employ the symbols
J., J,, and J, for the components of angular momentum in general.
L will be kept to symbolize orbital angular momentum only. It is
convenient to use the non-Hermitian operators J, and J_, defined by

(2.3.1) Jo=J. 4+, Jo=J, — ],
They obey the commutation relations

2 —_— . —
(232) [J ’ J*] - 0: [Jn J+] - kJ+

[J., J-1= —hJ_; J.,J_] = 2hJ,.

Basis or THE REPRESENTATION. We choose as basis of our repre-
sentation the simultaneous normalized eigenvectors of the commuting
operators J* and J,. The choice of J, is quite arbitrary. The eigenvectors
u(jm) are labeled by the symbols j and m which are related by a 1 : 1
correspondence to the eigenvalues of J* and J,. Eigenvectors with
distinet symbols j and/or m are supposed to have distinct eigenvalues
A; and/or N\, of J* and J, and vice versa. That is, eigenvectors u(j m)
with different values of j and/or m are orthogonal.’ All the elements of
the basis which we consider are supposed to possess the same set of
eigenvalues with respect to those operators I' which, together with J*
and J, form a complete commuting set for the system being studied
(cf. Dirac (1947) p. 57).

The matrix element of any operator O is defined in the angular
momentum representation by the relation®

Ouly jm) = 2. uly’ § m)(y' §’ m'|6ly jm)

-

o 5 molely 5m) = (uty 37 m), outy j m)

where the expression on the right is the Hermitian or scalar product;
the assumed orthonormality of the u(jm) implies that

(2.3.3) (u(j’ m’), u(g m)) = 0;/i0m'm

The correspondence between the symbols m and the eigenvalues A,
of J, is made by writing

(2.3.49) Ju(g m) = mhu(j m)

5See Dirac (1947) p. 32.
¢ symbolizes the eigenvalues of the operator I' mentioned above; it will be
omitted where not relevant.
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Since all the angular momentum operators commute with J* they
send any u(jm) into another vector which is also an eigenvector of
J? with the same eigenvalue (i.e. the same 7). For we have
(2.3.5) T2 Ju(j m) = JJu(sg m) = \;Ju(j m)

where J is any of the J,, J,, J, or a linear combination of them, and
\; is the eigenvalue of J? corresponding to the symbol j. We may there-
fore restrict our considerations to a subset of eigenvectors u(j m) which

all have the same eigenvalue of J*, i.e. which are all labeled by the
same J.

Let us consider the matrix component of the equation
JJo = JJ, =k,
(see (2.3.2)) between j m’' and 7m. We have
(2.3.6) (m" — mk(j m'|J.|j m) = B(j m'|J.|j m)

I.e. the only nonvanishing matrix elements of J, are for m’ — m = 1.
Hence we may write

(2.3.7) Jau(j m) = zhu(j m+1)

where z,, 18 a number which may be complex. A similar argument shows

that
(2.3.8) Ju(y m) = zohu(f m—1)

It is easy to see from the definition (2.3.1) of J,. and J_ and from the

fact that the operators J, and J, are Hermitian that z,, and z.,, are
complex conjugate,

(2.3 -9) x,’,,,+1 = :L':.

Hence the commutation relation J,J_. — J_J, = 2hJ, implies that
Tm-1Tm-1 — ThZn, = 2m. Le. we have a difference equation for |z,.|*:

(2.3.10) |Tm1|® — |Za|® = 2m
The general solution contains an arbitrary constant C:
(2.3.11) |Za|? = C — m(m + 1)

Now for any finite value of C the right-hand side becomes negative
for sufficiently large positive or negative values of m; however |z.|* is
necessarily non-negative. The apparent contradiction is removed when
we see that the relation (2.3.6) is satisfied for any values of m when the
matrix element of J, is zero, i.e. when |z,|* is zero. We may therefore

suppose that |z,|’ takes nonzero values only over a restricted range
of values of m:

(2.3.12) m=m+1l,m+2 --,m—2 @ —1
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where the lower and upper bounds m and 7 differ by an integer. The
eigenvectors u(j m) which enter into the representation thus have m
valuesm + 1, m + 2,...,m — 1, 7. The bounding values m and 7 are
found by solving the quadratic equation derived from (2.3.11):

0=C—-—m(m+1)
We obtainm = —3% —3(1 +40)} @ = —3 +3(1 + 40)}
ILe.
(2.3.13) C=m(m+1) and m= —m — 1.

Since 7 and m differ by an integer, 2/ is a positive integer and 7 may
only take the values 0, 3}, 1, 3,2, ....

TeE EiGENVALUES oF J°. The operator J* is given in terms of
J, and J_ by

(2.3.14) P=3.J_+J.J)+ Jo

Its eigenvalues in the scheme just considered may therefore be computec
by use of the results already obtained. We must thus find A; in

Jou(j m) = Mu(j m)
where m takes one of the values (2.3.12) and we make use of (2.3.4)

(2.3.7), (2.3.8), (2.3.9), (2.3.11), and (2.3.13).
We get

M= (s + fzal) +

=p-2f[m(m+1)—(m——l)m+ﬁi(ﬁ+1)—m(m+1)1+m”ﬁ

= m(m + 1A’

which is, as expected, independent of m. Now we identify 7 with th
symbol j used to label eigenvectors of J*; the task of constructing th
representations of the angular momentum operators is now completec

The results are as follows:
A basis of a representation of the angular momentum operators i

given by the simultaneous eigenvectors u(jm) of J* and J, where
and m are given by

(2.3.15) Ju( m) = R5(G+Du(j m)

and
Ju(g m) = hmu(s m)

and the values of j and m are subject to certain restrictions.
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(i) For a given representation j is fixed and may take one of the values
0,4 1,32 ....

(ii) There are 25 + 1 values of m allowed for a particular j, namely
m=—j,—j+1,...,7—1,3.

We symbolize the (25 + 1)-dimensional representation whose basis
is given by the eigenvectors u(j, —j), u(j, —j + 1), ..., u(j ) by .
It is clear that, by successive use of the operators J, or J_, we may
transform any vector in this set into any other. The representation is
therefore in the group theoretical sense rreducible.

THE MATRICES OF THE ANGULAR MoMENTUM OPERATORS. The
matrix elements of J, and J_ are given by (2.3.7), (2.3.8), (2.3.9),
(2.3.11), and (2.3.13), but only up to a phase. The choice of this phase
is quite arbitrary but must be followed consistently. The convention
established by Condon and Shortley (1935) of taking this phase as
+1 is now almost universal. We make this choice and obtain

(2.3.16)  Ju(jm) = R[(j — m)(G + m + D m+1)
2.3.17)  Jau(im) =[G+ m(G — m+ DPuG m—1)

Hence the nonzqro matrix elements of J, and J, are

(G m1l.ljm) = Al — m)(G + m + D)

(G m=1lLljm) = Al + m)(G ~ m + D
(2.3.18)

G mAT 15 m) = =2h(G — m)( + m + DI

Gm=1Tim) = MG+ m)(i — m + D]

THE SPIN REPRESENTATION. The matrices of the angular momentum
operators are of particular interest for the case j = }; they are namely

(3 m’|J.|} m) & m'[|J,[} m) 3 m'|J.13 m)
m m
(2.3.19) m\ +: -1 m\ +31 -3 m\ +% -
+3] 0 h/2  +3| 0 —ik/2 +3 0
-3lwm2 0 —%l/2 0 -3 0 —hn/2

These are the Pauli spin matrices,” and are frequently written (%/2)e.,

'W. Pauli (1927).
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(k/2)e, and (%/2)e, where

(2.3.20) 0',==(0 1); 0',=(0 *i); 0,=(1 0).
1 0 i 0 0 —1

2.4. The Physical Significance of the Quantization of
Angular Momentum

The most immediate consequence of quantization upon the angular
momentum of a system is that the components no longer commute.
The uncertainty principle therefore makes it impossible to measure
simultaneously the values of all three (or even two) components of
angular momentum. '

We have the rule for the minimum uncertainties of measurement
AA and AB of any two noncommuting operators A and B:

@2.4.1) @A) - @By > {% (4, 31}2

where the bars imply expectation values. Now if, as we have already
supposed, we choose to measure the component along the z-axis, ob-

taining a value Am, then we have for the minimum uncertainties of
J,and J,,

W= mh

4 Jo = 4

Another striking feature of the quantization is the fact that the measured
values of total angular momentum and of its component in a given
direction can take only certain values, namely A’j(j + 1) and km(m =
—J,—J+1,...,7, thus justifying the postulates of the older theories.
In fact, the expression %%(j 4 1) for the square of the length of the
angular momentum vector was discovered empirically by spectro-
scopists.® It is important to note that the angular momentum veetor
can never point exactly in the direction of the z-axis; the maximum
value of m is ;7 while the length of the vector isV j(j + 1). This is
associated with the uncertainty in measurement of the = and y com-
ponents. Another important feature is the possibility of half-odd integer
values of the eigenvalues of angular momentum which arises, as already
mentioned, from the generalization of the concept of angular momentum.
We may obtain a more accurate measure of the uncertainty in J, and
J, than the above inequality in the following way. We have

(24.2) (AJ.)*-(ad,)* >

(AJ:::)2 = (Jx - '-_iz)z = _J—: - (7z)2 = -j—i

3Cf. Landé (1923).
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and a similar expression for J,. The expectation value of the square
of the angular momentum is given by

T =G+ 1) = TP+ T4 T2 = (AT )P+ (AT + m*h?
Hence
(2.4.3) (AJ) + (AJ)" = A(F* +j — m?)

The minimum fluctuation in the measurements of J, and J, clearly
occurs for |m| = j, i.e. when the angular momentum vector points as
nearly as possible along the z-axis. We might imagine the vector moving
in an unobservable way about the z-axis, keeping the angle between
itself and the axis constant. This picture will be made more concrete
when we examine the orbital wave functions, which describe the prob-
ability density of a moving particle. There is however one case in which
the components J, and J, are sharply defined; namely when the total
angular momentum is zero.

2.5. The Eigenvectors of the Angular Momentum
Operators J* and J,

THE E1GENFUNCTIONS OF ORBITAL ANGULAR MoMENTUM. We shall
consider first the eigenvectors of J* and J, when they appear in the
form L? (2.1.6) and L, (2.1.4). The task in hand is thus to construct the
simultaneous eigenfunctions of the two eigenvalue equations, i.e. the
expressions for the u(j m) in the r representation.’

The solution of the equation

LM&@=—M%M&@=Wm@

isclearly A/h = m = 0, &1, £2, ... and ¢(8, ¢) = a(f) exp tmp. m is
restricted to integer values since ¥ must be a single-valued function of ¢.
We now suppose that the function ¢(8, ¢) is an eigenfunction of L? with
eigenvalue A*l(l + 1) and of L, with eigenvalue hm, |[m| < I and write it
as

(2.5.1) Vim(0) exp ime.

The eigenfunction ¥, _;(6) and in succession all the other eigenfunctions
Vi,-141(0), ... may be constructed by application of the differential
operators (cf. (2.1.4))

. d . 0
2.5. =L = 1 exp 10 | = __)
(2.5.2) L, =1L,+:iL, =" xpw(e—%—,zco’oe

°Cf. Schiff (1949) p. 130.
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and

. . a . 0
(2.5.3) L. =1L, — 1L, =hexp — w(—-aa + 2 cot 08<p)

We compare the results of these applications with the expressions
Laulm) = k(0 — m)(A 4+ m + DPull m+1)
and
Lull—-10) =0

obtained by reference to the matrices of the angular momentum opera-
tors (2.3.16) and (2.3.17), so that the members of the set of eigen-
functions are correctly related to each other with respect to phase and
normalization. The overall normalization will be specified later.

The above equations give immediately

J
Py Y, -(0) — lecot 8 ¢, _,(8) =0

from which we get

log ¢,_;(6) = llogsin & + C
ie.
¥r-1(6) = a(sin 6)’

where a is independent of 6 and ¢.
We have also

L.¥:1.(0) exp imep h(“a- — m cot 0)¢zm(0) exp i(m + le

EY
R — m)T 4+ m + Dm0 exp i(m + De.

Hence

l{/lm+1(0) =[(l—-—m(U+ m+ 1)}'*(3‘% — m cot 6)

- We apply this relation (I -+ m) times to the known ¢, _,(8) to obtain,
after rearrangement,

[ A=t T d N
Yun(0) = (=1) a[(zz)y(z T m)!] (sin 6) (d - e) (sin )

Now we wish to normalize our eigenfunctions so that the integral of
the probability over the sphere is unity. This implies for the eigenfunc-
tion ¢, _;(6, ¢) that

-/r; j; lp;k“‘(o? ‘P)‘I’l —1(6: ‘P) sin 6 d@ dq:! =1

1.e.
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2m’f (sin 0)*'*' do = 1
0

Hence

1 [(2z+1)!]*
¢ = om .

We define Y,,.(8, ¢) as the normalized eigenfunction, and have therefore
2x x

(2.5-4) f f Yl*m(o, ¢) Yl'm'(a’ ¢) Sin 0 de d(P = alllammr
0 0

and"

(=D [@+ D@ — W'}
Ylm(oy 59) = 1 [: ]
(s o)m[a(c:s o)] (sin 6)** exp imep

Application of Leibnitz’ theorem to the expressions for Y,..(6, ¢) and
Y,_.(8, ¢) and comparison of the resulting series shows that

(2.5.6) Y, _n(8,0) = (=D"Y1.(0, ¢)

It is not always convenient to define the Y,,, so that they have the
symmetry relation (2.5.6). We shall see in Chapter 3 that it is an advan-
tage from some points of view to take the function which is defined by

(2.5.7) Din(0, 0) = ©)'Y1a(8, 0)
and which has the symmetry property
(2.5.8) Di-m(0, @) = (—1)"""Dt(0, o)

However Y,,, is the most commonly used convention (cf. Condon and
Shortley (1935)). But the Y,,(6, ¢) of Bethe (1933) differ from our
Y. by (—1)" and the Y,,.(6, ¢) of Schiff (1949) are equal to our Y,
for negative m and differ by (—1)" for positive m.

The Y,.(0, ) may be expressed in terms of the associated Legendre
Sfunctions, whose properties will now be discussed.

We have assumed that the Y,.(6, ¢) are solutions of the eigenvalue
equation L% = A’\y i.e.

_p 1_6_(- _61) 191],_2
h[sinaao s 6+ el |V T M

If we take ¢ = y,,(0) exp ime we have

__hz[ L4 (o) _,ﬂi_]mm = B 4.(0)

sin 6 d@ sin® 6
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The same equation appears when we separate the Laplace equation
or the wave equation in spherical coordinates:

2 —_ _1_6 2 ]. a i
A+ K)y = [rzar( )+r2s1neae<smeaa>

TR

r® sin? 06

S

taking a solution ¢ = R(r) 0(0)®(¢) and the separation constants m’
and A. The Y,,.(6, ¢) are thus the spherical harmonzcs.

THE AsSOCIATED LEGENDRE IFuNcTIONS. If we write cos 8 = z and
A = I(l + 1) we obtain Legendre’s differential equation

2.5.9) (1 — 29 %@—% —~ 2% (‘Z [l(l + 1) — mey =0

It is known that for x real and between —1 and 41, this equation has
one-valued continuous solutions for { and m integers. It is no restriction
to assume that [ is a non-negative inleger. The solution which is finite
at all points z, —1 < x < +1, which is the one we require, is only
nonzero for |m| < I. The equation is satisfied by the associated Legendre
funetions of the first and second kinds,

_ gy CP@)

dz™ Qi) = (1 — :cz)’"’f@_l@

(2.5.100 P73 = (1 dz™

where m is a positive integer and £;(z), Q,(x) are the Legendre functions.
(We shall not be concerned with the second solution Q7%(z) which is not
finite at all points z, —1 < x < +1). This definition is that of Ferrers,
and is used when the argument is real. The definition of Hobson, namely

)m/z d P;(Z) "Z(Z) — ( )m/2 d Ql(z)

(2.5.11) P = (¢ R

is used when the argument is complex;'® it is not employed in this book.
The Legendre polynomials P;(z) are defined by the generating function

(2.5.12) (1 — 2zh + K = Pu(z) + hP,(x) + K*Py(x) + ---
whence

Pyz) = 1, Pi@) =z, Pyx) = 3(32° — 1),

Pi,(x) = 3(52° — 3x), ---

and generally

1Cf, Hobson (1931) p. 93, Whittaker and Watson (1946) pp. 323-5.
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N N e (20— 20t
2.5.13) Pi(z) = ?;5( DTS — DI — 2r)!

1 —_—
- gFl(—l,l—i— 1, 157 ’”)

where » = 1/2 or (I — 1)/2, whichever is integer. In particular
P(1) =1, Py(—2) = (—1)'P,x)
The polynomials are given by the Rodrigues formuls,

1 d

(2.5.19) Pu(a) = guj o @ — D'

and satisfy the differential equation
dzy dy
2 pr— — —_—
(2.5.15) (1 — 2% 2 2x l + I+ Dy =0

The second solution of this equation is the Legendre function Q,(z).
The Legendre polynomials are orthogonal:

201,
2k 4+ 1

a result which may be obtained by integrating by parts, making use
of the Rodrigues formula.

We follow Hobson (1931) p. 99 and Bateman (1932) p. 361, and
generalize the definition of the associated Legendre function P7(x) to
include negative values of m. Equations (2.5.10) and (2.5.14) are
combined to give

(2.5.16) f_ " PP do =

1 _ 2\m/2 dl+m
( Zl:ll:') dxl+m (x2 - l)l

We suppose this relation to define the P7(z) form = —1, —2, ... , —L.

Application of Leibnitz’ theorem to the appropriate Rodrigues formulas
shows that

(2.5.17) Pi(z) =

(2.5.18) Pi™(z) = (—D" 8 )), Pi()
The Rodrigues formula also shows that
(2.5.19) Pi(—z) = (—D'""P7x)

The following difference equations are satisfied by the P7(x)
(25.20) (I — m + DPPL(2) — (21 + DaP7@) + (I + m)Pr () = 0

"See also Darwin (1928).
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2.521) 2P — (I — m+ DA — )PP () — Pru@@) =0
(25.22) Pla(@) — 2P%) — (0 + m)(1 — 2HP77'@) =0

(I — m + DPP.(z) + (1 — 2HPT ()

(2.5.28)
— {4+ m+ DxPiz) =0
@521 = 2)VPTV@ — 2mePi(z)
+ @+ m = m+ DA~ 2P () =0
oszm (L~ ) EPI@ = (4 P = (L= m + DPT@)

= (I + m)P7_.(z) — lxP7(x)

Important integral relations are

v 26,.,(1 !

(2.5.26) B Pi(x)P(z) dx = @1 + (1>(_{Z_—1jl)7rb)!
{‘l m n d amn Z !

(2.5.27) /., Pi@)P() 1 ——xxz h m((l j_":g)!

The first term of the asymptotic expansion'® of P7(cos 6) for large 1
is given by

P7(cos 6)
(2.5.28) ,
a2\ ( l) T @I_] -1
= (=D (wlsinﬁ/ "OS[ L+3)0—3+ 5 | +007)
where

e<O0<mT—4¢ >0, I>m, l>>lE

RELATIONS BETWEEN THE EIGENFUNCFIONS Y;,, AND THE ASSOCIATED
LEGENDRE I'uNcrioNs. Comparison of the definition of the Y,,(8, »)
and the Rodrigues formula for the P7(cos 8) shows that the functions
are releted by

2520) Y0, 0) = (-—1)’“[(% 4*;(&” ;)!m)!]iP’?(cos 6) exp imop

In particular we have

¥
(2.5.30) Vi, 0) = (25 Pueos 0

We shall find when we come to deal with tensor operators, that to
avoid annoying factors it is convenient to use the notation of Racah

mErdélyi (1953) §3.9.1.
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(1942), namely to define

(2.5.31) C“"-——-( £ );Y (8, ¢)
s “ 2%k + 1/ *r\Y

2.6. The Spin Eigenvectors

It was shown in (2.3) that representations of the angular momentum
operators exist for half-odd-integer values of j and m. The basis vectors
u(j m) for such representations may not be expressed in terms of single-
valued continuous functions on a sphere, as can the u(j m) for integer
7 and m. We must therefore be content to consider them as quantities
which have certain transformation properties under infinitesimal rota-
tions, and which are normalized according to (2.3.3); the scalar product of
the eigenvectors is no longer supposed to be associated with an inte-
gration over configuration space, as in (2.5.4).

There is, however a useful notation for these eigenvectors which is
frequently employed, namely to write them as column vectors. Let us
take an arbitrary linear combination v of a set of 25 + 1 eigenvectors
u(j m), which form the basis of a representation D,

v = D u(j m)(mly)

m

If J is an angular momentum operator, we have
' = Jo = > u(j m)(jm'|J|j m)(ml)
The new coefficients (m|v’) are thus given by
(mly’) = 22 (7 m’|J|j m)(mlv)

That is, the coefficients transform contragrediently to the eigenvectors
u(jm), and the set of coefficients (m|v) belonging to a vector » may be
represented as a column vector from the point of view of matrix multi-
plication. In this scheme an eigenvector u(j m) will appear as

0im

51‘—1 ,m

LO—; m

(We suppose, as always, that the m values labeling rows and columns
in a matrix decrease from left to right and from top to bottom,).In
Particular the eigenvectors u(} 3) and u(3 —%) may be written-as.

(2.6.1) w3 §) ~ (é): ud -4 ~ ((1))
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(5:)

If the spin is a function of position, this column vector will appear as

(v-2)

f (@ + [p-@1") dr = 1

and a general spin vector as

where

Thus we may consider a spin % particle to be described by a pair of
functions on the configuration space.

DIFrFERENTIAL OPERATORS IN SPIN SpacE. The eigenvectors u(3 3
u(} —3) define a linear unitary space of two dimensions, the so-called
spin space; and the transformations corresponding to the matrices
(2.3.19) may be considered to be equivalent to certain differential
operators in this space. We shall henceforth write for conciseness

(2.6.2) u@ P =x+;  w@G -3 =x-
and the differential operators

9 _ 9 _
(2.6.3) o = A+ PV J-

It is easy to see that in the DY representation we may equate the

angular momentum operators with linear differential operators in
the following way; i.e. the results of operating with the quantities
(2.6.4) on the x’s given by (2.6.2) correspond to the results of operating
with the matrices (2.3.19):

J, ~ g (x-8+ + x.+9-)

R
J, ~ '% (x-0+ — x+9-)
(2.6.4) 5
J, ~ 5 (X+a+ — x-0.)
J+ ~ hX+6_
J_ ~ hx-0.
The square of the total angular momentum appears as

P = J(J, = 1) + J.J-
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h?
(265) = Z (X+X+a+a+ + x-x-9-9- + 2x.x-9.0- + 3x+0+ + 3X—a—)

= W'k(k + 1) where % = %(x.0, + x_9.)

These spinor differential operator expressions lead us to a new and
useful way of representing the angular momentum eigenvectors. Let
us consider an arbitrary monomial in the x.,, x_, say'®

x+x<
Then it is clearly a simultaneous eigenvector of J, and J* when they
are expressed in the form (2.6.4) and (2.6.5). Moreover, the eigenvalues

are
-g(::: — 3) and ff(x :2'_ y)(x —2‘— y + 1)

respectively. The result of operation with J, or J_ is to change the
values of z and y but to leave the degree x 4 y unchanged. These facts
imply that the set of 2j + 1 monomials x\*"x™™ where m = —j,
—j+1,...,7 — 1,7 form a basis for the D' representation of the
angular momentum operators. If we normalize these monomials by

writing

i+m f-m

. _ X+ X-

(26.6) M= TG G = miP

we find that their behavior under application of the angular momentum
operators in the form (2.6.4) follows exactly that of the u(j m) in (2.3.15),
(2.3.16), and (2.3.17). This representation arises from the correspondence
between the rotation group SO(3) and the group of unitary unimodular
(determinant +1) 2 X 2 matrices SU(2). The reader is referred to
works on group theory for further details. See for example Eckart
(1930), Weyl (1931), Van der Waerden (1931), Bauer (1933).

2.7. Angular Momentum Eigenfunctions in the Case of Large !

We shall examine, by means of the WKB method, the behavior of
the angular momentum eigenfunctions ¥,,.(6, ¢) when ! is large. The
most significant result will be that the probability density |¢(8, ¢)|%,
apart from rapid oscillations, approaches that of a classical particle
moving in a circular orbit. The substitutions

mz

3
a=sm6=[l—m], w=[1—a;2]*y,

e= [0+ D]}, cosO = [“l(z—f_f)?

1‘S‘.uch an expression may be considered as derived from a symmetric state vector
flescnb.ing (z + y) spin } particles; such a system has no physical significance in
1tself since spin } particles obey Fermi-Dirac statistics. Cf. Pauli (1941).
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are made in the Legendre equation (2.5.9), and furnish the equation

d*w (a2 - 22 + s”)
2 —
2.7.1) o+ (T =0

AppLICATION OoF THE WKB MEgTHOD. Putting w = exp (5S(x)/¢)
we obtain

(2.7.2)

.d2S_.(dS>2 @ -+

®a " \a) T I
The reasoning of the WKB method (cf. Schiff (1949) p. 178) shows that if

d [a"' -z + ez]*
®dz 1 —2°

2<a2 -2+ 52)

1 -z

(2.7.3) <1, then

either

1 — 2\ . z 2 __ ‘2 Y
or

1 — 2\ % 1 z I Y |
w(x)%B((aT:%%;exp:t—éf (ﬁl——%z)dx

according to whether a® + ¢ > z°ora® + ¢ < 2°. L.e. in the oscillatory
region (a* + ¢ > z°) we have

- A i f*(a — ) :
(2.7.5) Y,.(0, ¢) = @ = exp =+ ef T2 dx-exp ime

It is easy to see that when |m| <[, i.e. when a — 1, the expression
obtained for Y,, is compatible with the first term of the asymptotic
expansion (2.5.28) for P7(cos 8).

ProBaBiLiTy DENsITY. The probability density P(cos 8) oscillates
rapidly with cos 6 (note the number of zeros of P7(cos 8) is | — |m|),
but if we consider the average of these oscillations, we have

de = 4
¥ = (sin®> 8 — cos® 6)'’

(2.7.6)  Plcos 8) = f 1Y 0n(8, )|

except in the neighborhood of cos § = sin 6, where the expression
on the right becomes infinite, while P(cos §) does not. This expression
on the right is the classical density distribution in cos § of a point
particle moving in a circular orbit about the origin, the axis of the
orbit making an angle © with the z-axis. (The density is inversely
proportional to the quantity d(cos 6)/dt.) The classical density distri-
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bution is zero for § < x/2 — O, while P(cos 6) has a finite value in this
region, decreasing roughly exponentially to zero as 8 decreases. Clearly
the larger [, the closer P(cos ) will approach the classical distribution.

UNCERTAINTY IN DIRECTION OF ANGULAR MOMENTUM VECTOR.
The quantum mechanical probability density, not being time dependent,
gives us no information about the motion of the particle in its orbit.
Moreover we have no information about the coordinate of the axis of
rotation; it is as if the orbit ‘“‘precessed’’ in an unobservable way about
the z-axis.

REPRESENTATION OF AN ANGULAR MoOMENTUM WHOSE DIRECTION
1s WELL DEFINED. We note, however, that if m = [ the direction of
the angular momentum vector is relatively well defined (cf. (2.4)). In
this case we have [ |Y,,(6, ¢)|* dp =2 A(sin 8)*' and for large I the
probability distribution is that of a particle moving in a well-defined
orbit whose axis is the z-axis.

It is possible to represent such an orbit, or such a system with a
well-defined angular momentum vector with any orientation simply by
carrying out a unitary transformation which corresponds to a rotation
of coordinates from one S’ whose z-axis coincides with the angular
momentum axis to the actual coordinate system S. In the system S’
the orbit is represented by Y,,(#’, ¢’). The transformation to eigen-
vectors defined in the system S is

(2.7.7) 2 Y6, 0000 @By) = Y (0, )

where a 8y are the Euler angles associated with the rotation of axes and
the coefficients D are the matrix elements of finite rotations (cf. Chapter
4). In the sufficiently typical case when the axis points in a direction
in the z, z plane whose angle with the z-axis is 8, we have (see Eq.
(4.1.27)) for the above series

. (Ql)' /7 ﬁ L+m . B 1-m
(2.7.8) Z..: Y;,,,(G,go)l:(l Tl = m)!] (cos 5) (sm -2-) .

The indeterminacy in the value of m in such a state vector is, of course,
associated with the impossibility of measuring ¢ and L, = —1%(3/dp)
simultaneously.

2.8. Time Reversal and the Angular Momentum Operators

We shall use in the following chapters a number of properties of the
so-called time-reversed angular momentum operators. The properties
of the operators of orbifal angular momentum under time reversal, i.e.
the replacement of ¢ by —¢, are easily found. The définition of L in
terms of r and p shows that L,, L,, and L, must be replaced by —L,,
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—L,, and —L, respectively. The orbital angular momentum eigen-
functions, being associated with solutions of a Schrodinger equation,
may be simply replaced by their complex conjugates.

However the properties of the spin operators and eigenvectors under
time reversal are not so evident; the reader is referred to the paper of
Wigner (1932), who shows that the operation of time reversal when
spin is involved must correspond to a unitary operator U accompanied
by a complex conjugation K,. I.e.

(2.8.1) K = UK,
We shall examine the set of eigenvectors #%(j m) associated with the
time reversed angular momentum operators KJ K = —J,, KJ K =

—J,, KJ.K = —J, (denoted by J., J,, J,), which are analogous to
the eigenvectors u(j m) associated with J,, J,, and J,. Since J* = J°
and J, = —J, we have

wWjm) ="a(j mu(j —m)
The matrices of J, and .J, are obtained in the same way as those of
J. and J,; and we find a consistent scheme when we take
(2.8.2) @(jm) = (—=1)"""u(j —m)

The relation is arbitrary within a phase independent of m; the choice
above corresponds, in the case of integer 7, to the phase of the function

Din (2.5.8).



CHAPTER 3

The Coupling of Angular Momentum Vectors

3.1. The Addition of Angular Momenta

DiscussioN oF A CrassicaL MopeL. The total angular momentum
of a classical mechanical system composed of two parts, each having
an angular momentum whose magnitude and direction are well defined,
is casily obtained. It is given by the vector L which is the resultant
of the addition of the two vectors L; and L,. However we have seen
in Chapter 2 that in quantum mechanics, even in the limit of large
angular momenta, we do not specify the angular momentum of a
system in such a way that we may speak of the direction of the angular
momentum vector; we know only the magnitude of the vector and its
projection on a given axis. It is therefore instructive to consider the
derivation of the angular momentum of a classical system which cor-
responds to this situation; we take two vectors L, and L, whose lengths
l,, I, and whose projections m,, m, on the z-axis are fixed, but whose
orientations are otherwise undefined; in fact we suppose the angles
@1, ¢2 t0 take equally probably any values between 0 and 2. It follows
that the resultant angular momentum vector L has a probability
distribution over a range of lengths and orientations. An elementary
application of the principle of vector addition (see Fig. 3.1) shows that
(i) the projection m on the z-axis is fixed, being the sum of the projections
of the vectors L, and L, : m = m, + m,; (i) the length ! of the vector
and correspondingly the angle ¢ with the z-axis, must fall within a range
of values. The bounds on this range depend on the values of m, and Mo,
but must always be consistent with the requirement |I, — L <1<
L + 1,; (iii) the angle ¢ may take equally probably any value between
0 and 27.

We may compute the probability density P(l) for I; (i.e. the probability
that the length of L lies between I and I + dl is P(l) dl). If we suppose
L, to rotate at a constant rate about the z-axis with respect to L,, we
have that P(l) is inversely proportional to dl/dt. We have in fact

! = m® + I}sin® 6, 4+ Esin® 6, — 1,1, sin 6, sin 6, cos (o1 — @2)

where 6,, 6, are the angles made by L;, L, with the z-axis. Hence
31
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Fig. 3.1
dl ! 2 2 2 . 2 2 2
P() ~ ) 2U[1*(m® + lisin” 8, + L;8in” 6;)
— I — m* = lisin® 6, — I; sin* 0,
(3.1.1) — m?2sin® 6, — mal; sin® 6,]7?

The probability density becomes infinite at the bounding values of !
and varies smoothly between them.

When we go over to quantum mechanics, we replace our continuously
varying probability density P(l) by the squares of the coefficients in
the series of terms obtained by analyzing a state specified by the quantum
numbers j,, m,; j., m, into states specified by the quantum numbers
3, m of total angular momentum. Although we shall go about computing
the coefficients in a quite different way from that in which we obtained
P(l), we shall find their behavior (allowing for the fact that the angular
momenta take discrete values) similar to that of P(I), especially when
large values of angular momenta are considered.

We have supposed up to now that there is no interaction between
the two parts of the system; if we introduce an interaction it is well
known that, although the total angular momentum L will be unaltered,
the vectors L, and L, will precess about the axis of L. Now this is a
quite well-defined statement when the orientation of the vectors is
specified; however in our model it corresponds only to the values of
m, and m, varying over a certain range, the sum m, + m, remaining
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constant. We shall see that this corresponds in quantum mechanics
to the case where an interaction connects states of different m,, m,,
these quantities being no longer good quantum numbers.

THE QuanTuM MECHANICAL ProBLEM. We base our treatment on
the operator equation

(3.1.2) J = J: + Jz

The operators J, and J; commute, for they refer to independent systems;
this implies that the components of J obey the commutation relations
(2.1.2).

We shall study the unitary transformation which expresses the simul-
taneous eigenvectors v(y 7, m, J. m,) of the complete set of commuting
operators T, Ji, J.., J3, J2. in terms of the simultaneous eigenvectors of
the similar set T, J3, J3, J?, J. (T represents the other operators in the
complete set which, due to their invariance under rotation, do not enter
into the discussion). It will be noticed that J; and J: appear in each
set; they commute with J* and J, as well as with J,, and J,,, as is
casily shown.

We have from (3.1.2) that

Jz = Jln + J2l
This implies immediately that the magnetic quantum numbers satisfy
(3.1.3) m = m; + m,

a result identical with that obtained in the classical case.
We now consider the values of 7 which arise from particular values
of j,, 7.. We first express J” in terms of the original operators:

V= (. + )+ (T + J2) + (T + J2)°
(3.1.4) =i+ J:+ 2(J:-J)
=J 4+ Jo 4 Jindoo + Jidar + 2J,.J0,

It will be noticed that J* connects states with different m, and m..
Let us apply J* to the state v(y j; ji 72 J»), i.e. the state with the maxi-
mum values of m, and m,. We see from (3.1.4) that this state is an
eigenstate of J°, with eigenvalue

R+ 1) = i + D + 505 + 1) + 25152}
= k(G + 0+ 5+ D
Ie.j = j, + j,, and we have
o(y Ju i Jo J2) = € Wy j1 J2 Gatia i) (Sreal)

where w(y j, j, j m) is an eigenvector of T', Ji, J3, J%, J.; (the relative
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phase is as yet unspecified). Now we consider the states v(y j, 7, —1 j» J2)
and v(y J1 j1 j2 32— 1). It is clear that these states are connected by J°.
Now a certain linear combination of these two states corresponds to
the state w(y 5, J2 71+72 71 +j.—1). For (2.3.17) implies

J-w(y Ji 2 Jitda 1 Fdn) = Wiy + 22wy Gi G2 fitda uFia—1)
= ¢"(J1- + J2 )0y 1 Ji1 Ja J2)
= h{(Zj,)*v('y J1Ji—173sJs) + (2.7.2)*”(')’ J1J1J2J2— 1}
One can construct a state orthogonal to this one, namely
(2.7.?)%(7 J1ii—13275) — (2.7.1)%(7 J1J1J2 Ja—1)

Application of (3.1.4) shows that this state is an eigenstate of J?,

the eigenvalue being A*(5, + 7.) (51 + j. — 1), i.e
J=h+Jj—1

When m = j, + 7, — 2 the states involved are v(y j, j1—2, 72 72),
v(y i 1i—134272—1), v(vJ1 J1J2J=—2). We can, in the same way as
before, construct out of these 3 states two states with j values which
have already been found, namely w(y 7, 72, 71 +72, 71 +72—2), w(¥ 71 J2
J1+ja—1, ji+j.—2). There remains one other state orthogonal to
these two, which we could show by calculation to be an eigenstate of
J?, with j = 5, + j. — 2. However we can see that it could in any
case not have j = j, + j; or j, + j. — 1, since this would imply
the existence of fwo states with j = 7, + j,, m = j, + 7, or two with
J=5+7J.— 1, m =7 <+ j, — 1 which could be obtained by appli-
cation of the operator J,. Now we may go on in this way, reducing
m = m; -+ m, by one at each step, and obtaining at each step one more
new value of j in the sequence j;, + o, 51 + 72 — L, + 72 — 2, . ...

This process continues until either m; = —j, or my, = —j,. The
sequence of possible values of j is thus

(315) jl +j2)j1 +j2 - 17j1 +.72 — 2; DI l]l —J2l + 11 I.Tl —j2!'

and to each value of j corresponds 2 + 1 stateswithm = 7,7 — 1,...,
—7. The number of states in the two representations must be the same;
in fact

fi1+ia

2 @+ D =@+ D&+ D).
The result (3.1.5) corresponds to the weaker limits on [ in the classical
model discussed, and is identical with the addition rule for angular
momenta found empirically by spectroscopists before the discovery
of wave or matrix mechanics.
Now if two angular momenta commute, they must refer to different
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particles or to different properties of the same particle, e.g. the orbital
and spin angular momenta of an electron. It follows that a state vector
of the type v(y j; m, j» m.) may be split up into a sum of products of
factors relating to the separate parts of the system:

(3.1.6) v('y J1 Ma jz mz) = Z :(a; I mx)vz(az jz mz)

xi1Qg

Thus from the point of view of the representations of the rotation
group, the v(y j, m, j, m,) are linear combinations of the basis elements
of the product representation ©*’ X D, This representation, of
dimension (27, + 1)(2j, + 1), is reducible, i.e. the representation space
splits up into a number of invariant irreducible subspaces, each cor-
responding to one of the allowed values of j. The determination of the
allowed values of j may be carried out by group theoretical methods
(cf. Weyl (1931) p. 123, Eckart (1930) ete.).

3.2. Commutation Relations between Components

ofJ;,,Joand J

The following commutation relations involving the components of J
may be confirmed by substitution for these components according to
(3.1.2), remembering that the components of J, commute with those
of J..

The components of J satisfy the commutation relations (2.1.2):

3.2.1) /., J,] = hd,; [J., J.] =l |/, J.] = thd..

The following relations are also valid for the components J, and J.
[Jey Jiz] =0 [Jay J1y) = 0y, U,y Ji] = —2hd,,.

(3.2.2) [Jo, Jiul = 0 [Jy, Ji.] = hd\. [Ty, Ji] = —thd,,
J.,, J7.] =0 [J., Ji.] =dy, [J,, Ji] = —thdy,

It is convenient to rewrite these using the non-Hermitian operators

(3.2.3) Jo =J,+ 1S, Jiw = Ji+ 2y,

J.-':"'Jz‘-'in, Jl_::le'—?:le, etc-
We have then

(3.2.4) I, J1] =0, e, J1] = FhJ,.
[J--) Jl-.-] = :!:2hJ1,, [J’, Jl-l-] = :thl-h

3.3. Selection Rules for the Matrix Elements of J; and J»

The commutation relations between the components of J, and J
imply certain selection rules on the matrix elements of J, in the
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(v 71 j2 j m) scheme. Similar rules of course apply to the matrix elements
of J..

(3.3.1) The matriz elements of J., are diagonal in m.
We have from [J,, J,,] = 0 that
w'(§* m|J i m) — (5 ' Jj mym = 0

I.e. the matrix element is zero unless m' — m = 0.
(3.3.2) The operator J,, tncreases m by one

J._ decreases m by one.
The relation [J,, J,.] = £hJ,. gives

m/(§' m'|J1lg m) — (5 m!| Ty )d mm = (" m' [Tl m).

Hence m’ — m = =1 is a necessary condition for (7' m'|J,.|j m) to be
nonzero.

(3.3.3) The matriz elements of the components of J, are zero if
7" —aJ > L

Suppose on the contrary that j =37+ 14X X > 0. Then
G’ m'|Ji.|jm) =0 for m’ >j+ 1. But we bave [J,, Ji,] = 0.
Therefore

(7' m'\J. |7 m'—=1)-(3 m'—1|J. ] ™

and (j' m'|J..|j m) is zero for all m, m’. It is easy to see from the relations
[J_, Ji.] = —2kJ,, and [J,, J,.] = AJ._ that all matrix elements of
J. between 5 = j + 1 4 X and j must be zero. A similar proof applies
for j < j — 1.

3.4. The Choice of the Phases of the States w(y j, j, jm)

We have seen how it is in principle possible to construct eigenvectors
of J? and J, from linear combinations of eigenvectors of I3 T, Ta e
The phases of these new eigenvectors with respect to the original ones
or with respect to each other have not as yet been specified.

The first choice of phase is that which is implicit in identifying the
eigenvector of highest j and m with the eigenvector in the original
scheme to which, as we have seen in (3.1), it corresponds uniquely:

(3-4-1) 'w("le jz j1+3'2j1+j2) == 'U('Y jl jl jz j‘z)

We now have to relate the phases of the w(y 7, j. j m) with different j.
Note first that, since J,, cleariy does not commute with J* it must
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connect states of different j. Following from the selection rule (3.3.3),
the 7 values may only differ by one. In analogy with (2.3), we may
make an arbitrary choice of phase for the nondiagonal matrix elements
of Ji..

Before this is done, we must show that all matrix elements of J,,
between states of given j and j/ have the same phase. We have from
(3.2.4) and (3.3.2) that

(7 m+1|J. |7 m)(j m|Jyi]j" m—1)
— (G m+1|J. |7 m)(§’ m|J. |5 m—1) =0

and the matrix elements of J, are by convention (2.3.16), real and
positive. Hence all matrix elements of J,, between states of given j
and 7/ have the same phase. Equation (3.2.4) gives us also

(7 m+1|J. |7 m)(G m|J.,|j+1 m)
— (G m+1J LG+ mADGH1 m+1]JT .| j+1 m)
= —h(j m+11J:.[j+1 m)
Ie.
(F m4+1JLli+1 m+1) = [(j4+1 m+1{J.[j+1 m)]™
X A(G mJ g1 m)(G mA1T .| m) + (G m+1{J1, | j+1 m)}

If we take m = —j — 1 in the above equation we shall find that
(7, —7lJ1.17+1, —7) has the phase of the matrix elements of J,, between
7; 7+ 1. Suppose this phase is real and positive. Then all matrix elements
of J,, between 7; 7+ 1 are real and non-negative.

Thus we are at liberty to prescribe the convention:

(3.4.2) All matrix elements of J,. which are nondiagonal in j
are real and non-negaiive.

Since J, = J,, + J,, has only zero matrix elements between states
of different j, it follows that the corresponding matrix elements of J,,
are real and nonpositive. These conventions are identical with those
of Condon and Shortley (1935).

3.5. The Vector-Coupling Coefficients

DreriNiTION. The eigenvectors w(y j, j. j m) are given in terms of the
v(y j, m, j, m,) by the unitary transformation (cf. Dirac (1935) §17)

(3'5'1) wly hJed m) = Z v(y 7, My Ja mz)(jl my Ja m2|j1 32] m)

maimy
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It is clear that the additional quantum numbers v need not enter the
coefficients. The inverse transformation is
(3‘5-2) v(y Jy My Ja M) = }m:, wly j1 72§ M(Gr J2 J m|j, my Jq )
where the coefficients (j; j2 7 ml|j: m1 j» m») are the complex conjugates
of the corresponding (j; M. j2 Maljs j» J m). We shall see later that the
coefficients are, with the choice of phases already made, in fact real.
They are called vector-coupling, Wigner, or Clebsch-Gordan coefficients;
they form unitary matrices of dimension (27, +1)(2j, +1) with rows
and columns being labelled by the pairs m,, m, and j, m respectively.
The vector addition rules (3.1.3) and (3.1.5) imply that the coefficients
are zero unless the conditions on j and m are satisfied.

Untrary PropErTIES. The unitary properties of the coefficient
Mmatrix for given j,, j; are expressed by

(3'5'3) Z (jl m{ j2 mé[jl j2J m)(jl ij mljl m, j2 mZ) = Bm;'mxanu'ﬂu

8.5.4) ".l:f. (J1d2 37 m' |52 my g mo){(J1 M Ja Me|J1 J2 7 M)
= Bi'ism'ma(jl j2 j)

where 8(j, j» j) = 1 if j satisfies (3.1.5) and is zero otherwise.

Since m = m, + m, is a good quantum number on both sides of
the transformation, the square matrix just considered may be split up
into submatrices, each corresponding to a given value of m. BEach
Submatrix is itself unitary, and so we have

E_ (j1 m{ ja m—mi|js ja § m)(Jr J2 J mljy my J, m—m,)
(3.5.5) ! =

ama'ml

Z (J1 323 m|j, My Jo m—m){J: M J2 m—ma|jr J2 J M)
(3.5.6) m
= 6i’i5(j1j2j)

RECURSION RELATIONS. We shall now derive recursion relations
between the vector-coupling coefficients, which with the above equations
(3.5.5) and (3.5.6) and the phase conventions (3.4.1) and (3.4.2) will
enable us to determine completely all coefficients.

First we define the function A (j, m) which will be used in the ensuing

calculations. It is given by

(3.5.7) AG,m) = [(j + m(i — m + DY
Evidently

(3.58) A, mt1) = AG, —m) = [ + m + DG — m}
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and

A(j, —m+1) = A(j, m)

Now suppose we know all the coefficients (j; m, j. malj, j2 j m) for a
given j and m, i:e. we know the state w(y j, j.j m) in terms of the
o(y j, my j» m;). We may use the operator J_ = J,_ + J,- to obtain
w(y 7, j2 j m—1), and shall express the result in the m,m, scheme.
Since the quantum numbers j, and j, are unaltered in the following
considerations, we drop them temporarily in the interest of clarity.

J_ > v(m, my)(m, my|j m)

= (Gm=1|J-{jm) 3 o(m{ m)(mi mi|j m—1)

This is equal to the result of the application of J,- + J,_:
Z (71 m1—1]J1_|j1 myv(m,—1 my)(m, mzlj m)

m,ymg

+ 2 (G2 mi—1|J5-15: mpo(mi mi—1)(mi mi|5 m)

my'my

We substitute for the matrix elements of J_, J,_, and J,_ (see (2.3.17))
and equate coefficients of v(m, m,) in the two expressions above, making
use of the A (7, m) notation just defined.

A(g, m)(m, mzl.? m—1) = A(j, m;+1)(m,+1 ma|j m)
+ A(j:, my=+1)(m, m2+1‘j m)

A similar recursion relation is obtained by application of J, =
Jis + Jast

(3.5.9

A(7, m~+1)(m, mzl] m+1) = A(j, my)(m,—1 m2|.7 m)
+ A(j2 ma)(m, mz“"1|j m)

(3.5.10)

Tir Paases oF CerTaiN V-C Corrricients. The conventions
(3.4.1) and (3.4.2) are now used to determine the argument of
(G1 71 7> Malds j2 7 ) i.e. those coefficients where m, = j;, m = j. We
consider the matrix elements of the operator product J.J,,. The com-
mutation relations (3.2.4) show that

J+le = "'th-n- + JuJ+

The matrix component of this equation between states j + 1, i+ 1;
3,7 1s

GH1 1T Tl ) = GHLiHUT A1 DG+ D)
= —h(j+1j+11J. 059
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Note that there is only one nonzero term in the summation on the left
and that the matrix element of J,.J. is zero. Now the left-hand side
is real and positive as a result of conventions (2.3.16) and (3.4.2). Hence

—h 25 (G142 341 41150 ma gy ma) (s mulJ1e]Gi mi)
X (Jr mi o mo]gr J2 3 5) > 0
(Here and in the following work m, is assumed to take the value m — m,
so that the V-C coefficient in question is nonzero.) The recursion relation
(3.5.10) shows that when m = j, the sign of (j, m, ja m.|j; j. 7 J) alter-
nates with m,. L e.
arg (ji my §, mo|f, j2 7 5) = (=177 arg (Ji ju J= malgi J2 5 9)-
We have therefqre from the above inequality that
arg (j1 j1 J2» Maldy 72 7 5) arg (4u jr Jo malgs J2 J+174+1)
X 2, (G M Jo maldy G2 3 DG mulJT1s] g mi)

mimy’

X l(]l my Ja mé“l Je J+1 .7+1)| >0
The matrix element of J,, is real and positive by (2.3.16). Hence
arg (J: j1 jo malds 32 5 5) -arg (Jy ji J2 malgr j2 J+17+1) = 1

But we know from (3.4.1) that arg (ji ji j2 Jolds J2 u+i2 51472 = 1.
Hence

(3.5.11) arg (j1 Ji Je mzljl J235) =1
for all allowed ;.

REALITY OF THE V-C CoErrriciENTs. All the V-C coefficients with
given j,, j», and j are connected by the recursion relations (3.5.9), (3.5.10).
These relations have real coefficients, so the fact that we have shown in
(3.5.11) that one of the set is real implies that they are all real. That is,

the use of the conventions (3.4.1) and (3.4.2) results in the reality of
all V-C coefficients.

CasE WHEN ONE oF THE j VALUES 18 Zgro. The V-C coeflicients
are easily evaluated when this happens. We see from (3.4.1) that

(3.5.12) (jm00]j0jm) =1

When the resultantj = 0andj, = j», the recursion relation (3.5.9) shows
that the coefficients (j, m. j1 —maljy j: 00) are independent of m,
apart from the sign, which alternates with m,. The unitary condition

(3.5.6) and the result (3.5.11) show that
(3.5.13)  (ji miji —mlfi§i 00) = (=)™ + D7
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SyMMETRY PROPERTIES OF THE V-C COEFFICIENT. When we have
to deal with the addition of two angular momenta, say J, and J,, we
must pay attention to the order in which they are coupled, i.e. which
of the two is associated with the angular momentum J, in the preceding
arguments. The reason for this is apparent when we recall convention
(3.4.2), namely that all matrix elements of J,, nondiagonal in j are
chosen to be non-negative, which implies that the corresponding matrix
elements of J,, are nonpositive.

It follows that the matrix elements of J,, in the schemes (¥ ja j» J M)
and (v j» j.j m) are of opposite sign. Now J,, connects only those
states whose 7’s differ by one or zero (cf. (3.3.3)); hence for successive
values of j the eigenvectors w(j, j, j m) and w(j, j.j m) will change
their relative phase. However, when j = j, + j, the eigenvectors will
have the same phase, for the convention (3.4.1) implies that the states
W(a 75 Jatis Jotds) and w(Gy Ja Jo+Ja JotJa) are identical and the states
with other values of m may be obtained simply by application to these
of the operator J_ a sufficient number of times (cf. (2.3.17)). Hence for a
general value of j we must have

w(jajoj m) = (=1 w(gy ja j m).
The V-C coefficients are related accordingly:
(3514) (]a me jb mb|ja ij m) = (—1)i°+ib_i(jb my ja ma|jb juj m)

We may obtain other symmetry relations for the V-C coefficients by
recourse to the concept of time reversal (2.8). We replace the operator

equation
Lh+J.= J
b
d J1=""]2+J3=j2+J3

where J, = —J, is a “time reversed” angular momentum operator. This
operator has eigenvectors %(j, ms) which are related to those of Ja by
(2.8.2).

These results suggest that the coefficient (j. —ms js Maljz Ja J1 m,)
may be related to (jy My j» Malfs j2 Js Ms). We investigate this possibility
by writing down the recursion relations for (j2 —mz Js Ms|f2 Ja J1 M)
corresponding to (3.5.9) and (3.5.10); we make use of the symmetry
properties of the function A(j, m) (see (3.5.8))

A(Gy, m)(Go —me Js Ms|Jz Jo Jr ma—1)
= A(Jz, m2)(j» —mat+1 7, My J2 Ja 51 M)
+ A(js, my+1)(j2 — Mo 3 ma+1\j2 Ja I my)
Ay, m+1)(G —me §a M| 2 Ja Jr M+ 1)
= A(j2, Mo+ 1)(Go —ma—1 js Ma|J2 Js J1 M)
+ A(js, ma)(Go —Ma2 ja my—1|72 Ja I M)
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On comparing these recursion relations with the original ones (3.5.9)
and (3.5.10) we see that the quantity (—1)™(j; —ms Js Ma|fz Ja J1 M1)
has the same recursion relations as (j; m, j. Ma|j1 72 Ja ms). It follows
that these quantities differ only by a factor independent of the magnetic
quantum numbers

(J1 M1 Ja M| Js Jo Js M) = C-(—=D™(ja —m, Js M| Jz2 Ja 1 M1)
The modulus of C is easily found by use of the unitary property (3.5.6).
The argument of C is given by (3.5.11) to be (—1)". For we have,
taking the special values m;, = j,, my = J,

arg (41 Ji J2 Ja—1ldr o Js 3s) = 1
arg (j j1—Js Ja Jalje da Jr o) = (=1)**"*7  (by (3.5.11) and (3.5.14))
The final symmetry relation is
(jl My J2 mzljl jz 73 ms)

cami( 24 + 1Y . . L
= (=" ('é:';j—’i—I) (J2 —ma s ma|Jz Js 51 ™)
Other symmetry relations of this type are obtained in the same way.
For example

(3.5.15)

(jl m, jz mzljx jz .7.3 ma)

e (235 + 1V .
= (=1 (ij i 1) (72 ma Jy _mll]:! J1 J2 Ma)

We may reverse the signs of all three m’s by applying (3.5.15) three
times. This gives the relation

(3.5.16)

(3.5.17) ' (Jx m, jz mzljx jz ja ma)

= (=D"7(G —my o —me|fi Ja Ja —ma)
3.6. Computation of the Vector-Coupling Coefficients

The problem in hand is the computation of the matrix of vector-
coupling coefficients belonging to & given pair of values of j, and j..
We have already remarked that this matrix may be split Into unitary
submatrices corresponding to the possible values of m. The elements of
these submatrices are linked by the recursion relations (3.5.9) and
(3.5.10), and the submatrix for m = j, + j., with one element, is
specified by the convention (3.4.1).

We shall see how, by use of the recursion relation (3.5.9), all coefficients
with a given 7 may be computed from those with the maximum m value,
namely m = j. The latter coefficients are obtained by use of the recursion
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relation (3.5.10), the unitary condition (3.5.6), and the phase convention
(3.4.1).

Thus all coefficients of the form (j, m, 7, m,lj, j» 7 J) are computed
first. For the sake of clarity we shall omit the arguments j,, j» in the
symbols representing the V-C coefficients, which are not directly relevant
to the calculation in hand.

We specialize the recursion relation (3.5.10) to give

0 = [(j: + m)(G — my + DImi—1 m,)5 7)
+ (G + 7 — m + DG — § + m)Pm, mf|jj)

(3.6.1)

L.e.

.. B ) — 1 (. —J 1 ! .
(m,—1 ’mz‘JJ) B —I:(‘L Jr(-]‘z + ZI)E‘;I 3‘(3’”11 —': Il; m):‘ (m, méhj)

which by successive application gives

(my mz!]])

e {_1\i2—m (.72 +.7 - m\)!(jl + jz - _7')!(_7.1 + m)! :r
(6.2 =(=1 [<2jl> =7 T 50 + D'Gs — 5 % m) 1 — ml

X (4 mz|j 3)

The magnitude of (j; ji j 7 —71/j1 Jz J J) is obtained by use of the unitary
condition

i1

3.63) 3 (e mali ) =

That is, we have

2 (Jo +7 — m)(d +J — J')'(Jl + my)! -
(51 'mzljj)l Z (250 (=41 + jo + WG — 7+ m) (7, — my)! 1

Now equation A.1.3 in Appendix 1 gives the sum over m,,

Z (41 + m)(J +J — my)!
(j1 — m)!(Ga — J + mo)!

(Jl + 7.+ 7+ D=7 + 72 + NG — ~ J2 + )!
(2 + 1)'(]1 + 7. — D1

(3.6.4)

Hence

210127 + D! T
3.6.5) (4 1ded—dildrdza Dl = [(jl +j2_%_'7j>J£ i)?;jl)__ F L

The phase of this coefficient is given by (3.5.11):

[ (27012 + D!
(jl + jz + .7 + 1)!(j1 - jn +J)I_

-3

3.6.6) (j1Jid2d—01517230) = +
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We now go on to compute the general V-C coefficient from those with
m = j. The recursion relation (3.5.9).is rewritten as

[(G+ m(G — m + DI me]j m—1)
3.6.7) = (G — m)G + mi + DPmi+1 ma|j m)
+ [(Ge = m + m)(Go + m — my + D (my ma4-1]5 m)
We may express this relatidn as
(3.6.8) q(mq, m—1)(m, mq|j m—1)
= g(m,+1, m)(m,+1 my|j m) — g(m,, m)(m, my+1|7 m)
where

m4m, (1+ 1)‘(2—-|— — m, !(_ )y ]
@69 am,m = (=D [(j i m Zs!(;‘ + Z)z]

Making use of the finite difference notation, we have

q(m,, m—1)(m, my|lj m—1) = Afg(m,, m)(m, m;|j m)}

mi

and
q(my, m)(m, my|j m) = f}"""{q(mnj)(mlj—mxl'jj)}

Now the nth difference of a function f(x) is given by’

£'f(z) = > (- 1)"*'(’:)f(:c + »)

()
Therefore

(G mu fa maljr G2 § M)

—1)i-m i-m -
i) D <—1)~(’ sm)q(ml+s, ) (m+s milj )

q(m, m) =

i+ D) G+ = NG —m) G —m) G+m) 1 —m)!
Gi++Hi+DMa—5+D N —n+2 +J'.)!(.’i1 +m) (o +ma)
(i Fma+8) (24§ —my —8)!
slh—m—8)!G—m—8)!(a—j+mi+

= §(m; +my, m){

X 3 (—1)stiim

where we have substituted from (3.6.2), (3.6.6) and (3.6.9) and the
summation is over positive integer s such that the arguments in the
denominator are non-negative. This formula is identical with that
obtained by Racah (1942, eq. 15), and we follow his method for trans-

forming it into a more symmetric expression, by making use of equations
A.1.1 and A.1.2 in Appendix 1.

1ICf. Jordan (1947), Milne-Thomson (1933}, ete.
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hese give

(jl +m;+-8) !(jz +j—m —3)!

(___1):+7':-—m; -
s1Gi—mu—8)!(G—m—8)!(a—j+mi+s)!

81(Ga—j+m+8)! Ga+ma—uw) (=i +ia+j—w) G — ja—m —s+u)lul

z (—1)stis—m:

(i +m) Gy — ja+3) G +ma) (— j1 + 12 +5)!
(5t —je—m+u) WGi—j—m, +u) !(j‘f'm —u)l(a+me—u) (=5 +j8+j—“) tu!

I (—1)istma=u

) putting z = j; + m; — u we have

(2j+1)(j1+:fz*j)!(jl—j:+j)l(—fl+jz'FJ)l]§
G +ja+3+1)!

my J2 malfy 2 jm) = 8(my + my, m)[

X [Gu+ma) LGy —ma) (G2 A-ma) 1(Ga — ma) 1 +m) 1 (G —m) ]
1
2 (i ja — 1 —2) Vs —mu —2) (G2 +me — )1 — 2+ +2) 1(j — r —ms +-2) |

X 2 (=1)*

umber of derivations of the general formula for the vector coupling
Keient have been given. That of Racah (1942) has already been
tioned; other notable derivations are that of Wigner (1931), which
:es use of group theoretical methods, and that of Schwinger (1952)
thich an elegant operator method is employed.®

Te may obtain from (3.6.11) simpler formulas for certain values of
arguments of the V-C coefficient.

(23) 124) G +j:+mx+ma)l(jx+js~m1—ms)l]i

oo ol ok B ) = [(2]'1+252)!(jl-mx)l(jl+m1)l(jr-ﬂh)l(js+ma)!

@i +1D @) (—i+is+) G +h—m)G+m)!] ]i

thhhm—dlh s jm) = [(51+j,—j)!(51~f,+5>!(:a+f,+:'+1>!(-ﬁ+j=+m)10—m)!

3.7. The Wigner 3-j Symbol

ITRODUCTION OF THE CONCEPT OF CONTRAGREDIENT QUANTITIES.
us consider the coupling of two angular momentum eigenvectors
the same j to form a state with zero angular momentum. This

3 (see (3.5.13))
S (G mua(G —m)(—1)""" = (2 + D*(j500)

have obtained this symmetric expression (3.6.11) directly and rapidly by
laptation of the symbolic method of Kramers (cf. Kramers (1930), (1931);
man (1956)); however, the approach is rather different from that otherwise
in this book and the derivation will be published elsewhere.
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Since the right-hand side is invariant under rotations, we may say
that the quantities (—1)""™ u(j —m) transform under rotations con-
tragrediently’ to the u(j m). We may also, following Wigner, introduce
a quantity which behaves like a metric tensor, namely

j —_ (_1\itm
3.7.1) (m m,) = (=18, _
That is, we have

. N N
(3.7.2) E u(7 myu(j m)(m m’) = invariant

These properties of the angular momentum eigenvectors are closely
associated with their behaviour under time reversal* and under rotation
of the frame of reference through 180° about the y axis. These matters
are discussed in Chapters 2 and 4.

The concept of contragredient quantities leads us to the conclusion
that the vector-coupling coefficients are components of mixed tensors,
thus giving some explanation of their unsymmetric properties (cf.
(3.5.14), (3.5.15), (3.5.17), ete.)

A more symmetric quantity may thus be found by carrying out an
operation corresponding to raising or lowering of indices in tensor
algebra. Such a result is obtained by considering not the coefficient
associated with coupling 7, and j, to give j;, but with the coupling of
three angular momenta j,, 7., and j; to a resultant zero. However the
phase of the resulting quantity is important, since it is of advantage
to have maximum symmetry.

DEFINITION OF THE 3-j SymBoL. This maximum symmetry is
obtained in the so-called 3-j symbol of Wigner (1951) which is defined by

(jl .7..2 ja)
(3.7.3) m, M, M;

= (—1)"”"’""(23'2 + 1)_*(.7.1 my Js m2|j1 J2 Ja —my)

Its symmetry properties are easily derived from those of the V-C
coefficient. We have that an even permutation of the columns leaves the
numerical value unchanged:

(3.7.4) (J'l Js J‘a) _ (jz 2 jl) _ (js i ,-,)
m my; Ms mg My M \Mz M; M,
3See Weyl (1931) Chap. I, §3.
1Cf. (2.8) on ‘“‘time reversed’’ eigenvectors.
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while an . odd permutation is equivalent to multiplication by
(___ 1)11+1:+Ja:

(_1)i\+is+i:< jl j2 j3) —_ ( jz jl .73)
(3 7 5) m, my ms mq m, mgy

=(m Ja ﬁ)=(ﬁ g ﬁ)
ml m3 m2 m3 m2 ml

The analogue of (3.5.17) is

(3-7.6) (jl j2 j3> — (_1)i1+iz+is< jl jz j3 )
me my; Mg —_—m, —m; —My

These symmetry properties should be compared with those of the
similar symmetrized coefficients of Racah, Fano, etc. (cf. Table 3.1 at
the end of this chapter).

It may be seen from the symmetry properties that certain 3-7 symbols
must be identically zero. In this class for example, are

(% 2) (2 2 3)
1 -1 1 1 —2

and any 3-j symbol with m, = m, = m; = 0, and j, + 7. + 5 odd.
The orthogonality properties are not so convenient. They are

(3.7.7) E (2j3 + 1)( jl j2 ja)( jl j2 .73) = 6"“"“,6"“"“,

fams m, m, ms/\mi m, m,

Z:(jl J2 ﬁ)(jl g2 ﬂ)
(3.7.8) mmrA\m, m, my/\m, m, m

= (2j3 + 1)_151,:'.'5"..»-.'5(.7.1 Je .7'3)

where 8(7, j: ja) = 1if ji, 7, Ja satisfy the triangular condition, and is
zero otherwise.

The greater symmetry of the 3-j symbol will be found useful when it
is necessary to evaluate such quantities numerically; however the nota-
tion finds its main application in the discussion of the properties of the
6-7 and 9-5 symbols which, as is explained in Chapter 6, are invariant
quantities built up from vector-coupling coefficients.

[T XY

SPECIALIZED ForMuULAS FOR THE 3-j SymBor. The formulas given
in (3.6) for certain values of the arguments of the V-C coefficients are
repeated here for the 3-7 symbol
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) (" ! 8)==<——1>H~<2j+1)-*

m —m

D) ( o atn ) = (=)0 _,-.+m‘+m[ (21)1(252) (g1 + 72 +mu+ma) (g1 + o — 1 — M)
my my —my—my Ca+25m+DGi+m) gy —mi) 1 (Ga+me) (G —m

o (b 3
nh —n—msy My
_ (_1)_,.,+,.,+,,,_[ (@i) (=1 +e o) |G +a 1) 1 Gs — ) !
Gi++a+DIG—h+i) G+ i—i)(—h 4+ —m)!(Gs+m
REcURsiION RELATIONS FOR THE 3-j SymMBoL. A number of useful
recursion relations for the 3-j symbols may be obtained from an expres-
sion (6.2.8) for a product of a 3-j symbol and a 6-j symbol which is
given in Chapter 6. These relations are got by giving special values to
the arguments I,, l,, and I; of the 6-j symbol and evaluating the 6
symbol and some of the 3-j symbols by use of Tables 5 and 2.
Let us take for example, |, = 3, . = ja» — %, 13 = 72 — }. The sum
on the right reduces to two terms, and” we obtain finally

[(J + DI - 2j,>1*< g ’3)
m, m, M,
jl jz""% j3"'%)
m, mz—-% ma+%
- [(.72 - mz)(ja + ma)]i( It Jz-—% Js“'})
m, mz“"% ma"‘%
where J = j, + j» + 7s-
Alternatively, we may take I, = 1,1, = j; — 1, l; = j,. The recursion

relation obtained is now

((J + DU — 20 — 2i)(J — 2 + 1)1*( hoa J'3)

m, me my

(3.7.12) = [(7: + m)(Js — ma)l‘(

= [(.72 . mz)(j'z + m, + 1)(j3 + ms)(ja + m; — 1)]i
X( jl j3 j3—°1)
m, Mmy+1 my—1

— 2ma[(Gs + M) (s — ma)l*( i j"‘l)

m, my ms

(3.7.13)

— [(j2 + m)(Jo — m2 + D(Js — mg)(js — My — 1)]*

x( TR j,—l)
‘m1 mz'—l m3+1

where again J = j, + j. + Js.
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Such recursion relations make it possible in principle to compute any
3-j symbols starting from the formulas in Table 2 on page 125.

COMPUTATION OF 3-j SYMBOLS WITH m, = m; = my; = 0. We may
use the recursion relation (3.7.13) to get the general formula for the
frequently occurring symbol

(jl Ja ja)
0 0 O
We have first

(3.7.14) (9‘ J2 ’3>=o if j, + j2 + ju is odd
0 0 O

This 18 a consequénce of the symmetry (3.7.6y of the 3-j symbol. If
J = 71 + j2 + Ja is even, we have from (3.7.13),

Ji g2 Js\ _ 2[ 32l + DGs — Djs ];
0 0 0 (J + DU — 2 — 200 — 25, + D

X (.71 jz jz"‘l)
0 +1 -1
On applying (3.7.13) again,

Jvode ds\ _ [(J ~ 2j, — D(J — 2 + 2)]*

v (j, jat+1 j,—l)
0 o0 0
“he v-fold iteration of this relation implies

AW [ (J = 2)NJ — 2j)! ]}
0 0 O (J — 25, — 20)(J — 25, + 2w)!

(3.7.15)

3.7.16)

J

. J .
(E T ")’(5 — st ”)! (jl jatw j,—,)

J N\ .
G Ll

we set 2v = J — 2j, we have j, +v = J/2 and j;, — v = J/2 — ;..
ws (3.7.10) may be used to give

. J J . J/2 J
(71 2 ‘5“‘3*) =D (“2")"[(231)!(.1 ~ 231)!]*

- !
00 0 il -a)ps YV

X

.
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and we get finally
AN (_l)m[u — 2N — 2T — 23'3)!}*
0 0 0 J + !
3.7.17) J
("2‘)!

-G -G -5

3.8. Tabulation of Formulas and Numerical Values for
Vector-Coupling Coeflicients

if J 1s even.

It is not usually very practicable to obtain numerical values of the
V-C coefficients from the general formula (3.6.11), and tables of formulas
are available where one of the j values is fixed and the numerical value
is given in terms of the remaining arguments. Such tables are given by
Condon and Shortley (1935) for 7, = %, 1, $ or 2. A similar table for
§ = 3 is given by Falkoff, et al. (1952), and one for j = § by Saito and
Morita (1955)

Tabulation of corresponding formulas for the 3-j symbols makes it
easier to take advantage of the symmetry properties of these quantities;
formulas for j; = %, 1, 3, and 2 appear in Table 2.

Numerical values of a few V-C coefficients are given by Alder (1952);
the most extensive tabulation to date is that of Simon (1954), who
gives numerical values to ten decimal places of all V-C coeflicients up
to and including 7, = 4, j, = %, 7 = $. Numerical values for a number
of coefficients which differ only trivially from the 3-j symbols

(Ja a ja)

0 0 O

have been given by Shortley and Fried (1938) and Sharp, et al. (1954).
Ji J2 Js
0 0 O
use the general formula (3.7.17) but to start from a

0 0O

give}l by (3.7.9) and to use the recursion relation (3.7.16) as many
times as necessary. For example let us compute

(323)
0 00

COMPUTATION OF THE ( ) The quickest method is not to
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We have from (3.7.9) that
4 4 0\ _ [+ 0 4\ _1
<O 0 0> (0 0 O) 3
The symmetry properties (3.7.4) and (3.7.5), together with (3.7.16) give
[QT404=413_314_
7.2 (0 0 O) (0 0 0>—(0 0 0>’
[g._g}* 3 1 4\_(3 2 3
52 (0 0 o) (0 0 0)
(3 2 3) _ ( 4 )*
105

0 0 O

(J‘x J2 Js \

0 1 -1/

therefore
The coefficients of type

which are often used in angular correlation calculations may be got
from the
(jl 7 g»g)
0 0 O

3.9. Time Reversal and the Eigenvectors Resulting
from Vector Coupling

by application of (3.7.15).

it is of interest from several points of view (see for example (5.5)
and (5.11)) to study the properties under time reversal of the angular
momentum eigenvectors resulting from vector coupling according to
(3.5.1). In the case of integer j, as has been remarked in (2.8), time
reversal is equivalent to the taking of the compiex conjugate of the
function concerned.

Let us first consider an angular momentum eigenvector resulting from
coupling two systems represented by eigenvectors of the type i
which have the property (2.5.8) under complex conjugation:

‘I’(l] Zg lm) = Z (ll lz lm[lI m, Zz mz)@t;m;@l:mn

mimy

The reality and symmetry (3.5.17) of the V-C coefficients shows us that
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¥ (l, I, Im) has the same property under complex conjugation as the
original ¥)’s:

(3.9.1) V¥, L, Im) = (D™, I, 1 —m)

On the other hand if we chose to use the Y,,, with the property (2.5.6)
we should find that the resultant ¥(I, I, Il m) would nof share that
property under complex conjugation.

The result (3.9.1) is generalized immediately to the case of general
7’s and time reversal; the angular momentum eigenvector obtained by
vector coupling two sets of eigenvectors with the property (2.8.2)
under time reversal itself has this property.

Table 3.1.

1. Unsymmetrized V-C Coefficients. These are all numerically equal (insofar as the
authors have stated their assumptions about phases) to the V-C coefficient
defined by Condon and Shortley. The symbols used for the angular momentum
quanﬁum numbers are the same throughout for ease of comparison, and in some
places are different from those used by the authors mentioned.

a. Biedenharn (1952) Ciaisi |
b. Blatt and Weisskopf (1952) Cj,;,(fm; mi ms)

(1 32 mljs Ja T Ma) . . ..
c. Condon and Shortley (1935), G 2 3 mljs M1 2 ma) + also0 (Grjsmamal frjagm)

et al. . etc.
(J mjm; ma)
d. Eckart (1930) Arimims
e. Fano (1952) (Jr ma, g2 ma| (1 Ga)j m)
f. Jahn (1951), Alder (1952) Gl i iams
g. Rose (1953) C(f1 g2 J; M1 ma)
h. van der Waerden (1931) Lan-
dau and Lifschitz (1948) Ci. m,
i. Wigner (1931) RHA
j- Boys (1951) X, m, i, jo, M)

2. Symmetrized V-C Coeffictents. These are given relative to Wigner’s 3-j symbol,
which is given in terms of the V-C coefficient by (3.7.3).

)

' 3 32
. Fano (1952) (Gima, jama, Jams|0) = (—1)71—is*is
m; mas Mg

. jl j2 jS
b. Landau and Lifschitz (1948) S;m,;j,m,;7,m, = (—1)7*772%1s

my Mmaq M3

Y
C. Racah (1942) V(jlj2j3; mlfnﬁml) P (___1)1:'4’11"11

7ty M My

J1 J2 s
d. Schwinger (1952) X (J1jaja; mumems) =
M Me Mg



CHAPTER 4

The Representations of Finite Rotations

4.1. The Transformations of the Angular Momentum
Eigenvectors under Finite Rotations

INTRODUCTORY REMARKS. We have seen in Chapter 2 how the
2j + 1 angular momentum eigenvectors u(j, =7, u(g, =3+, ...,
u(j, j) form a basis for an irreducible representation of the angular
momentum operators. These operators are, when they are defined by
expressions such as (2.1.3) and (2.1.4), proportional to the infinitesimal
rotations. We may obtain finife rotations by iteration of the infinitesimal
rotations, and hence the 2j + 1 eigenvectors mentioned above form a
basis for a representation of the finite rotations. In other words, under
o finite rotation of the frame of reference a u(jm) is transformed into
a state vector which is an eigenvector of J* with the same j. This is a
familiar fact for the integer representations, for the u(lm) are then in the
r representation the spherical harmonics Y.a(6, ¢); and although the
angular momentum operators in the half-odd integer representations
may not be expressed as differential operators in configuration space,
we shall see that, in a certain sense, representations of finite rotations are
given by the corresponding transformations of the u(jm).

In the following discussions the term rotation will be interpreted as
a rotation of the frame of reference about the origin, the field points
(i.e. the physical system) being supposed fixed. Each point of three-
dimensional space is thus given new coordinates, which are functions
of the old coordinates and of the parameters which describe the rotation,
namely the Euler angles. _

Such a rotation of the frame of reference S into & new frame S’
may be described by the Euler angles o 8v; We use the notation of
(1.3). Let us consider the effect of such a rotation upon the description
of a field variable. At each point of space such a field variable takes a
numerical value; this value may be expressed as a function of the
coordinates of the point in question. Thus a point with coordinates
r, 6, ¢ with respect to the frame S will be associated with a value
f = f(r, 6, ¢) of the field variable. On the other hand the value of the
field variable at a point with the coordinates r, 6, ¢ in the new frame
S will in general no longer be f(r, 6, ¢) but some other function
f'(r, 6, ®).

Now the point with coordinates r, 6, ¢ in the new frame S’ will
have in general different coordinates in the old frame S, say r, ¢, ¢'.

b3
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It follows that the field function f'(r, 6, ¢) is given by

(41'1) f'(T, 6, ¢) = f(ri 0l1 ‘P’)'

The effect of such a rotation of the frame of reference upon the repre-
sentation of a field variable may be formally expressed by an operator
equation:

(412) D(a B'Y) f(f, 6, ‘P) = f'(T‘, o, ‘P) = f(rr 6, ﬁo’)'

The function f’ may be computed by expressing €', ¢’ as functions of
0, ¢; a, B8, v in the above equation:

(4.1.3) f'ir, 80,9) = f(r, 0'(8, 0;a B ), ¢'(8, p; 2 B7))

Now suppose that the function f is an eigenfunction of the operator
of orbital angular momentum L?. This operator is invariant under
rotation of the frame of reference; it follows that in the new frame S’/
the function f’ describing the field is still an eigenfunction of L?; more-
over it has the same eigenvalue, i.e. the same value of I. Thus the
sigenfunctions Y;.(8, ¢) of angular momentum transform according
to the scheme

(41.4) DE@BNYi(6,0) = Y0, ¢)

l
= 3 Yiul8, O(im’| Dlet B 1) lm).
We shall see that a relation of this kind is also meaningful in the case
of half-odd-integer angular momentum, although the u(jm) are not
then expressible as functions of the 6 and ¢:

i

(415 Dlafyuim) = 3 ulim)(Gm'| D §)|im)

ReraTioNs BETWEEN FINITE AND INFINITESIMAL RoraTioNs. We
shall now relate the operators D(a 8 v) associated with finite rotations
of the frame of reference to the operators of infinitesimal rotations. Let
us consider a positive rotation v of the frame about the z axis, i.e.
(007). A point P with coordinate ¢ in the new frame will correspond
to a point with coordinate ¢’ = ¢ 4 v in the old frame. That is,
f'(8, ¢) = (8, ¢’). This leads us to the differential expression

9 . 3
Ew D(a Bv)f(8, 9) = DlaB) 3 10, o).

Now we remember that L, = —th(d/d¢) and write therefore

@16 2 D@BVI0 e = Dt ; LA, 0.
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The solution of this differential equation for D(a B ) 18 clearly

(4.1.7) D@ Bvy) = clap) exp B L

where we consider the exponential as a formal operator series, and the
quantity c(a B) is independent of v.

A rotation 8 about the y axis is found in the same way to correspond
to the operator

w21,

On taking into account the results of (1.3), we find the following expres-
sion for the unitary operator

— 18
(4.1.8) D(a B 7v) exp % L exp 3 L, exp 5 Y.

Now the properties of the D(«a 8) are determined by the algebraic
properties of the operators L., L,, L,;i.e. by their commutation relations.
These relations are the same for the more general operators J,, J,, J,.
We therefore get a representation of the finite rotations when we
replace the L’s by J’s. That is, we may write

(4.1.9) D@ By) = exp hJ exp SJ, exp Y J,

THE MAaTriIX ELEMENTS ofF FINITE RoraTionNs. It is convenient
to write the matrix elements of D(aBy) in a more compact form; we put

(4.1.10) (j m'|D(a B¥)|jm) = Dlula B7)

and frequently represent the three Euler angles by one symbol «. The
matrix of D(a 8v) in the representation ®‘”’ may be symbolized by
D (a Bv). We shall also write

(4.1.11) Dm0 B 0) = d.7.(8)

We deal with representations in which the matrices of J, are diagonal;
therefore

(4.1.12) Do'mla By) = exp im’a d’.(B) exp imy,
and thus we need only consider the problem of evaluating the quantities
428 = (5 m|exn (£7,) 5 m)

Let us first take the spin representation j = 3. (2.3.19) shows that
the 2 X 2 unitary matrix exp (¢8/h)J, is equal to

exp M where M = g(o 1)
-1 0
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It is easy to demonstrate that

- (_1),,@2"(1 0)

01
and
2n+1
L
-1 0
where 7 is an integer. Since
M M M
expM=1+F+?'_+§'_
we have
m
m’\ +1 -1
4.1.13 _ , :
( ) exp (%ﬂ J”) _ +3 | cosB/2  sin /2

[V

—sin 8/2 cos 8/2

This gives, with (4.1.12), the transformation property of the spinors
under rotations of the frame of coordinates. This result may be obtained
in another way, namely by defining the spinors in terms of the stereo-
graphic projection of the surface of a sphere onto a plane. The points
of the plane are described by homogeneous complex coordinates.
Rotations of the sphere induce transformations on these coordinates,
which transform in the same way as the spinors.’

The spin matrices o,, 7,, o, (2.3.20), being proportional to the angular
momentum operators in the D¥’ representation, may be expected to
transform under rotations like the components of a vector. The reader
may show for himself by working out

S)(*)(w)a,iD(*)“l(w), ete.

that this is indeed the case.

We may now construct a generating function for the di’.(B) for
general 7 by making use of the representation of the u(jm) in terms of
the spinors (2.6.6).

We have

Die (s m) = OOy 5w ) D 8

1Cf. Whittaker (1917), Weyl (1931) Chap. IIT §8.
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For the special case D(0 8 0) we have, from (4.1.13)
D(0 B O)yu(j m)

(119 (X+ COSg — x- 8in g), -(x+ sing + x- cos g)’-- .

G+ m(G — mW

- X+ X~ ' G
= 2 G F G = i o=

That 1s

wan - (530 =23]
(4.1.15) Z( j+m )(J - m)(_,l),-_..'-.

j—m' —o o

20+m’ +m 2i—-20-m’'—m
(o) o)

Equation (4.1.15) gives us, for example, in the case j = 1, the matrix
d(8):
m
m’ +1 0 -1

+1 %(1 + cos B) —;l/-é:sin B8 %(1 — cos B)

0 —Vlasinﬁ cos B é—isinﬁ‘

1 | 1
-1 2(1 — cos B) /3 sin B8 -2-(1 + cos B)
This function may be expressed in terms of the Jacobi polynomial,
the properties of which will now be described briefly.
Tug Jacosr PoLyNoMmiAL. The notation of Szegs® Pi* ™ (z) is used

for the normalized orthogonal polynomials defined by the scalar product

@110 (e = [ 1 — D + 2 e do

The real quantities @ and 8 should be non-negative if this expression
is to be integrable; however most of the formal relations are valid without
this restriction.

1Szego (1939), Erdelyi (1953).



58 4 - REPRESENTATIONS GF FINITE ROTATIONS
The P!*"? (z) are normalized so that

(4.1.17) PLP(1) = (" N "‘)

They satisfy the Rodrigues formula

Peo@ = S - 90 + 2

(4.1.18)

CZ; [(1 _ x)a+n(l + z)ﬂ+n]

from which we may obtain the series expression

4.1.19) PeP@ =27 3 (" + "‘)(’” + ‘z)(x — )"+ 1)

=0 14 n
They have the symmetry relation
(4.1.20) P,*P(=2) = (=1)'P," (@)

and satisfy the differential equation

N dy

+nn+a+B+Dy=0
The scalar product, with the above normalization, has the value
1
[ =20 + 2P P QPSP @) do
(4.1.22) -

_ ga+h+1 Iw(n+a+1)1‘(n+6+1).5
Mtat+B8+1Tn+ DI +a+8+1) ™

a result obtained by partial integration using the Rodrigues’ formula.

RerLATIONS BETWEEN THE MATRIX ELEMENTS OF FINITE ROTATIONS
AND THE JacoBi PorLynomiars. Comparison of (4.1.15) and (4.1.19)
gives the matrix element in terms of the Jacobi polynomial:

(j + mHWj — m’)!]*
(7 + mi(G — m)!

6 é)m' +m( . é)m'-—m (= m? 4 m)
(cos > sin P;7 (cos B).'

Ariom(B) = [
(4.1.23)

This relation is strictly speaking only valid for non-negative values of
m' — m and m’ + m. Nevertheless all the results to be derived from
it are true for the general case, as may be checked by making use of the
symmetry properties of the di’.(8) which will be discussed shortly.
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The value of d'3(8) may be obtained easily by consideration of
the above expression. We make use of the Rodrigues formulas for
the Jacobi polynomial (4.1.18) and for the associated Legendre function
(2.5.17) to show that

P@ = (=" g~ )Py (x)
Hence
() (Z -+ m) m
dmo(B) = (D7 P;™(cos B)
(4.1.24) [(l )':I
(I — ) me

(see (2.5.18))
it fcllows from (4.1.12) and (2.5.29) that

4
(”(aB'Y) = ( 1 Ylm(ﬁ8 a);
(4.1.25) (21 + 1)

(the second relation js obtained by use of the symmetry property (4.2.6)).
In particular

(4.1.26) Do’ (@ Bv) = P(cos B)

‘We obtain from (4.1.15) another simple expression for a special choice
of arguments:

2 (i iem (2! 3 8 itmf 3 i—m
“.1.27) d2@) = (=1) [(j+m)!3(j-—m)!](cosi) (Sm‘z‘)

4.2. The Symmetries of the ©.7,

These symmetries are found by use of the matrix elements of the
rotation (070). Equation (4.1.14) shows immediately that

(4.2.1) A9 () = (=1 ™8 Aot —7) = (=1 ™60, —m.

We note that for the half-odd-integer representations, D(x)D(r) is not
equal to D(0); this is an illustration of the fact that in spin repre-
sentations there is a two-to-one, rather than one-to-one, correspondence
between the matrices and the rotations they represent, i.e. the overall
sign of a matrix in a spin representation may be reversed and the
resulting matrix still represents the same rotation. This ambiguity can
have no physical significance. The d}’,. are the elements of unitary
matrices and, moreover, are real; therefore

(4.2.2) deita(—B) = diim(B)
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Now the successive application of rotations to a frame of coordinates
corresponds to multiplication of the appropriate matrices which repre-
~ent the rotations; we have therefore

423) dl.x+B) = Z e () m(B) = (—1)" "™ ()

Similarly J
4.24)  dinr — B) = (=)' (=H) = (=)' .8

/\—«-’\———-\,/————«., D)

Now we have
4

dn(B) = 25 dPn (B + M)A n(—7) = (1) A8 + %)

Hence )

@25 N\ AR = (~D7 " (8)
Similarly

@28 ) a2 = ()" dRE

It is a simple matter to extend the symmetry relations to include
the complete matrix elements DY’.(aBvy) by use of (4.1.12). For
example, we use (4.2.4) to get

Dpiml@ By) = (=D Dy (—a, 847, 7)
In particular the complex conjugate of a matrix element is given by

427 DA@BY) = Din(—aB =) = (=D DI (@ B7)

4.3. Products of the D (o 8v)

The products dealt with here are of the type D42, (a B¥) D . (2 8 7).
Note that the values of the Euler angles in the two matrix elements are
the same. It is clear that such quantities are the matrix elements of
transformation of products of angular momentum eigenvectors of the
type u(jim,)u(jsm;). The results of Chapter 3 may be used when we
remember that the reduction of products of the w(jm) by use of the
vector-coupling coefficients corresponds to a similarity transformation
for the corresponding matrix elements. That is,

1(':: )ﬂh ( ) 3)'('::')’"2 (w)
(4.3.1) = 2 (Gi ml jo mi|jy Jo § MI+mY DY) s myrma(©)
X (g1 727 m1+mz|j1 my Js ms)
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where the values of j un the right are given by the angular momentum
addition rules Substitution of the 3-j symbols for the vector-coupling
coefficients gives®

D'(lix")'l 1 (w) m'(ni :')ﬂ s (w)

(4.3.2) _ Z (2 + 1)< o J2 ] )5)(:.2:(‘0)< v Js .7)
fmim m, m, m m, m, m

which leads, as a result of the unitary property of the matrices, to the
symmetric expression

E D:I{x").u( )5)(“) ( )Dgl")ﬂa(w)

myime'my’

(4.3.3) S S
5 ( g Ja Js) _ ( o d Ja)
m; m; my m; m; Ms

The inverse transformation to (4.3.2) is given by

¥ (jl Ja .7)5) () DI @( v ds j')
4.3.4) "wams \m{ mj m’ m m; m

o,
= i'4 (5) %
%+ 1 Dark(w

4.4. Recursion Relation for the di’.(8)

We may specialize the formulas of the previous section to the case
W=7 —%,7. = % 7 = 3. The 3-j symbols may then be evaluated by
1se of table 2 to give

du’n(B) = CLEE—) AR (- B €08 5 g
4.4.1) J

(; + m ) a8 4(B) -sin g

[his relation is of course useless when m = 7;in this case we use (4.1.27).
4.5. Computation* of the d%,(8)

A similarity transformation may be employed to express a D(0 8 0)
n terms of a rotation about the z-axis, i.e. a D{¢ 0 0), which is diagonal
n our representations:

45.1) DOBO) = D(-—’—zr- 6 0)1)(0 .-’§' O)D(ﬁ 0 O)D(O ’5’ 0)1)(32’- 0 0)

3See (4.6.5) for specialization of this result to spherical harmonics.
‘Based on method of Wigner (1951).
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Thus the problem of computing any matrix d‘”(8) is reduced to that
of computing the one matrix d‘”(x/2) which we symbolize by A‘”.
These matrices may be built up by use of the recursion relation (4.4.1)
and a number of them are exhibited in Table 4. In the D'’ representation
(4.5.1) gives

. co 2 . —im !’ : -
d’(y.z')’n(ﬂ) — Ze‘m x/ A,("yl)'m,e im ﬂA,(,,"):,,,e imx/2

(4.5.2)
(7) (J) (O) + 2 Z Af(n’)m Ar(u” ,,,x(’m”ﬁ)
m’'’'>0
where
k() = coszif m" — m = 0 (mod 4)
(4.5.3) = sheimi—m=1mdd
= —cosx if m — m = 2 (mod 4)
= —sinz if m" — m = 3 (mod 4)

4.6. Integrals Involving the D..(a 8 7)

The orthogonality and normalization of the D& .(a 8v) with respect
to integrations over the Euler angles are easily checked by reference
to the corresponding properties of the Jacobi polynomials.

Equation (4.1.23) shows that

1 27 anw 27 ) i . ‘
"-1;5 j; -/0 j; 53;»173:3(& 6 'Y) D;,'-)m,(a B 'y) da sIn B dﬁ dvy

= Jmine S {:(‘71 + m)(G, — m)I(G + m)MJe — m,)']
2 (.}'1 -+ ml)!(Jl - ml) '(.72 + ml)'(.72 - ml)'

4/1 + t) (1 — t) P::n—lm:”“ .my +m1)(t)Pf':l_xm*;mx 1A1'+l’h)(t) dt

2
Whmh is by (4.1.22) equal 10 8, m, Omimadiia 1/(27, 4+ 1). That is,

TR B ) DY (e B ) dasin B dB dy

4.6.1)
1
m ml{sixfz- N
: 2n +1

Application of this result to (4.3.2) gives the symmetric expression
for the integral over the product of three D’s:

[ s s a8y
(4.6.2) X Do B ) da sin g dB dy

" - N . . .\
— ( Jv J2 33)( o D2 .73\
m{ my mi/\m my mg/

= Bml’m.' 6
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We may use (4.1.25) to specialize this integral to one over three spherical
harmonics:

2 ~
fo f Ym0, @) Yirmi(8, @) Yi,mi(6, @) sin 0 d6 de

4 000

m; m; Mg

Further specialization gives the integral over three Legendre functions:

1 [ . L L, L\
(4.6.4) = f P, (cos 8)P, (cos 6)P, (cos 8) sin 6 df =
2Jo 0O 0 0

The 3-j symbols with m, = m, = m; = 0 may be evaluated by the
methods discussed in (3.8).

Equation (4.3.2) may be specialized in the same way to give an
expression for the product of two spherical harmonics which have the
same angles for arguments.

3
Ym0, Vim0, 0) = 3 [(211 + 1)@ + DL+ 1)]

Im 41l'

(4.6.5)
% < L oL z) Y (o, g0)(1, L z)
, m M, M 0 0 O
Suppose the rotation (a 8+) is the result of the successive application

of, in that order, (a; 8, v1) and® (o, B: v2). Then we have

3),(,5'),,,(0( By) = Z; :Dfni’)m"(a2 B2 7v2) &f:,),m(al B v1)

The spherical harmonic addition theorem® is obtained by setting
j = | = integer and m’ = m = 0. Then

47

(4:.6-6) P;(COS OJ) = 2l + 1 Z Yikm(ot 90) Ylm(o’) ¢,)

where cos w = cos 0 cos 8’ 4 sin 0 sin 8’ cos (¢ — ¢’). In terms of the
function C&’ (cf. (2.5.31)) we have

Pycosw) = 2. C.0*(6, 9C (0, ¢')
(4.6.7) "

= 2. (—=D"CL(8, ClNE, ¢")

5Cf. Whittaker and Watson (1946) p. 328, Condon and Shortley (1935) p. 53.
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4.7. The D¢’ .(w) as Angular Momentum Eigenfunctions

Let us return to the consideration of the differential properties of
finite rotation operators with respect to variation of the parameters
afy (cf. (4.1)). We have seen that

H

CRAY 2 DBy = Dafv 3
In the same way
4.7.2) 55 DB = DB 5

where ¢, is the angle coordinate of a point in the frame of reference
measured about the line of nodes (the y axis in S’), and

(4.7.3) ;.f’,; D(@B7) = DiaB) 5—:——

where ¢, is the angle measured about the figure axis (the z axis in §"').
Thus to each differential operation z on the D(a 8v) with respect to
a, B, v corresponds a differential operation ¢ on a function defined in
coordinate space. Clearly we may write the result of application of a
succession ¢f operations z,, z;, Z,, . .

(4.7.4) <o LTt Dl By) = Dl B v) - &b

Now in (4.7.1), (4.7.2), and (4.7.3) we have made use of the angles
¢, o3, and ¢, to emphasize that the differential operators on the right-~
hand side work upon functions defined in coordinate space. They are
really identical with «, 8, and ¥ respectively, and so we see from these
equations and from (4.7.4) that the representation of infinitesimal
rotations given by the D’s corresponds to that given by the angular
momentum eigenvectors considered in (2.2).

We may make use of (2.2.2) and write

. a9 d a 0
L.DuBvy) = —-zh{ cos a cotﬁ-——t-—smaaﬂ B 7} D(a 8 %)
= D@ Bv)L. ;
L,DaBy) = -—ih{—sina cOtﬂ;")% + cosa—ﬁ" +:%‘%%} D@ 8 7)
= D(@Bv)L, ;

L.D(x§7) = —ih o= Diaf) = Da B L,
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It follows that

2

L’D@By) = h”{—-aa—ﬂz — cot 8 %

1 3’ 3’ 3’
~sn’ B (aaz + o 2 cos B ——)}D(aﬁ'r)

da dy
= D(a 8 y)L’

When we remember that the eigenvalue of L? is, according to (2.3.15)
R’l(l + 1), we see that we have constructed an eigenvalue equation
for L?; the matrix elements of D(a 8v) are clearly the eigenfunctions
of L? and L,. That is, we may rewrite the above equation in the form

3" 3, 1 (a’ 9’ o’ )

+ 10 + 1)}53‘.’.1(«: By) =0

where we have chosen the [ m; [ k matrix component of the operator
equation. Thus D1 (a B8v) is the eigenfunction of L? with eigenvalue
1’1l 4+ 1) and the eigenfunction of L, with eigenvalue im. It is simul-
taneously an eigenfunction with eigenvalue 4k of the angular momentum
operator —i%(d/dy). This operator is the analogue of L, in the moving
coordinate system and commutes with L? and L,.

It has been remarked by Bopp and Haag (1950) that the D%.(ax 87)
with half-odd-integer ; may be regarded as eigenfunctions of L® and
L,, although these are defined by (2.2.3) and (2.2.2) in terms of differ-
ential operators; a more concrete representation of the spin eigenvectors
is thus obtained.

(4.7.5) gives a differential equation for d%;.(8) which is defined by
(4.1.12) in terms of D(a B 7):

a d _m 4+ kK — 2mk cos B Dy
(4'7'6) {dBZ + COt B dB Sin2 B + l(l + 1)}d mk(ﬁ) - 0

We pass now to the quantum mechanics of the symmetric top®
a topic of great importance in the theories of molecular spectra’ and
of the collective model of the atomic nucleus.®

4.8. The Symmetric Top

The kinetic energy T of a rigid 'body with symmetry about the
figure axis which rotates about its center of mass is given by

(4.8.1) 2T = I(w} + wj3) + Ixws,

8Kronig and Rabi (1927), Dennison (1931), Casimir (1931).
"Herzberg (1939).
8Bohr and Mottelson (1953), (1955), Bohr (1952)."
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where w,, w,, and w; are the angular velocities about the z, y, and 2 axes
of the moving frame of reference fixed in the body, and I, = I, and I,
are the corresponding moments of inertia.

The angular velocities w,, w,, and w; are given in terms of the rates of
change of the Euler angles by the Euler geometrical equations®

w, = Bsiny — &sin B cosy
(4.8.2) ws = B cosy + asin B sin y
w3 =acosP + v

(Note the difference between these equations and those of (2.2); in this
case we refer to the moving axes, in the other to the fixed axes.)
Hence the kinetic energy is given in terms of the Euler angles by

(4.8.3) 2T = I,(8® + &’sin® B) + I(& cos B + v)°

On replacement of the time derivatives of the Euler angles by the
generalized momenta p, = 97/da etc., we have

2 2
_ D (_£9_§_§__ L)pz 1, 2c0osB
(4.8.4) 2T I, + Ilsinzﬂ_'_I3 i +I,sin23p" T, sin® g PP
The Schrodinger equation for the system is obtained by the substitu-
tions p, — —1h(9/9a) ete.:

_pd & 9 (!_ 2 )_9_
8.5 h {652 + cot 8 Py + 7, + cot” 8 P
1 8® 2cosB @

T on’ g 9a” s’ B 'aaay}‘l'(“ Bv) = E¥(a B ).

If we set I, = I, i.e. consider a rigid body whose ellipsoid of inertia has
spherical symmetry, (4.8.5) reduces to (4.7.5). The D%, are thus clearly
eigenfunctions of the corresponding Schrédinger equation. We may
effect a separation of (4.8.5) even when I,  I; by the ansatz

(4.8.6) Y(a 8v) = B(B) exp i(ma + kv)
The differential equation for B(8) is then

Kl d _ m'+ k* — 2mk cos B
o e + et 0 foe

sin’® B
_ B — I

9Cf. Synge and Griffith (1949) pp. 289, 424 et seq. See also Reiche and Rademacher
(1926).

(4.8.7)
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We see from (4.7.6) that the d'..(8) are still eigenfunctions of this
equation; however the energy corresponding to a given D', is different
from that in the case of the spherical rotator.

The eigenfunctions of the asymmetric rigid rotator are more compli-
cated than those just considered; they may nevertheless be expressed
as linear combinations of symmetric top eigenfunctions.*®

wMulliken (1941), King, Hainer, and Cross (1943), Van Winter (1954).



CHAPTER 5

Spherical Tensors and Tensor Operators

5.1. Spherical Tensors’

REeEpucTtioN oF CARTESIAN TENsORS. We shall examine the properties
of Cartesian tensors in three dimensions when they are subjected not
to the whole group of linear nonsingular transformations but to the
subgroup of orthogonal transformations. In this case a tensor of given
rank which is irreducible under the full group may be reduced; it will
be sufficient to illustrate this point by the simple example of a tensor of
rank 2, built up by taking all 9 products of the components of two vectors
x and y. A typical tensor component is thus

T,-k = T:Yi (i, k = 1, 2, 3)

The tensor T',, may, as is well known, be split into symmetric and
antisymmetric tensors

Sa = ‘}(Tu + Th'); A, = '%(Tik - Tk.')

Now under orthogonal transformations the scalar product (x-y) = |
> ": xy, is invariant; it follows that the symmetric tensor is reducible;
we extract the invariant quantity and obtain

G = 3@y + oy — 3&x-y)di)

A similar process may be carried out with tensors of higher rank; it
amounts simply to subtracting all the quantities which are invariant
under orthogonal transformations. In this way we may in principle
build up irreducible tensors of any rank from the components of the
basic vectors. It may also be shown that, if these tensors are constructed
from the components of a single vector r, then they are identical, apart
from constant factors, with the normalized harmonic polymonials

‘ylm(r)‘

Tee HarmoNic PorynomiaLs. A harmonic polynomial® H,(r) is
a homogeneous polynomial of degree ! in the components z, y, and z of
r, and which satisfies Laplace’s equation

AH,(r) =0

1Cf. Rose (1954).
3Cf. Erdélyi (1953) Chap. XI.

68
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The harmonic polynomials may be generated as follows: we take a
vector v of zero amplitude (i.e. (v-v) = 0)

v=(=2t1— 8+ )
Now we have
Ar-a)' = I(I — 1)(a-a)(r-a)'~* where a = constant.

Hence A(r-v)' = 0 and the coefficients of the powers of ¢ in _(r-v)’ =
[y + ¢z — 22t — (y — 12)°]' are themselves harmonic polynomials.
That is, we have the generating function

1l
(5.1.1) v+ 1z — 22t — (y — @) = ¢ Z‘ H,.(¢"
Thus there are 2l + 1 independent harmonic polynomials of a given
degree [.

The functions r'H,,.(r) are one-valued continuous functions on the
unit sphere which are themselves solutions of the Laplace equation.
Hence the 2! 4 1 functions r'H,;.(r) (m = 0, 1, ..., +I) are linear
combinations of the 2! 4+ 1 spherical harmonics Y,,.(6, ¢). We shall
define the normalized harmonic polymonial or solid harmonic as

(5.1.2) Yim® = 7'Y1.(0, ¢)

A number of the Y;,.(r) are presented as functions of z,y, and 2z in
Table 1.

THE SpHERICAL TENSOR NoraTiON. We define the spherical com-
ponents® of a vector r as

(5.1.3) Tar = =F-\17—-2- x1y); r=z=2
ie = Lot —r);  v= )
. ﬂ -1 +1/) ‘\/i

thus the solid harmonic Y,.(r) is expressed in this notation as

]
(5.1.4) A ult) = (%) r. (m = +1,0)

We may construct similar expressions for the components of any ether
quantity which transforms like a vector under rotations. With the aid
of this convention we may use the vector-coupling methods derived in
Chapter 3 to construct spherical tensors of any rank from the spherical
components of a given set of vector quantities. In general we have
(5.1.5) T(l m) = Z T(l1 m;)T(lg mz)(ll m; lg malll lz l M)

Mmima

*Note that this convention differs from that of (2.3.1).
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and the corresponding inverse expression for T'(l, m,)T(l; ms), (5.1.9),
where T(l, m,), . .. are the components of any spherical tensors which
transform under rotations in the same way as Yi,n,, . . . respectively.
Formula (4.6.5) may be adapted for the case of solid harmonics:

‘ylunx(r) ‘yla’n.(r)

_ 2L + DL+
(5.1.6) = ;[ @l + D ] (L, my L, ms|l, L I m)

X (L0, 0|, L Loy ..
Note that the only ! values appearing on the right are those satisfying
I, + I, + 1 = even integer.*

We may make use of the unitary properties (3.5.4) of the V-C co-
efficients to show from (5.1.6) that a tensor operator T'(l m) formed
according to (5.1.5) from two solid harmonics Yi,m,(r), Yi,m,(r) is
related to Y;.(r) by

} ' '
.1.7) T(m) = [(2" ;(212(_2:,1;L 1)] (1 0 L Ol I 10" 714, (0).

As an example we consider the familiar cross-product of two vectors
x X y. The formulas for the V-C coefficients given in Table 5.2 are used.
If we define

TAm) = 3, TuYm(lm1m,l11m)

we get the result
T(L —1) = 75 (~2-io + 2u0-0)
T(L0) = 275 (=i + Tt
T(11) = —\1/——2 (—%oy+1 + T41%0)
Le.

(5.1.8) T(1 m) = —7’2 x X )n

The inverse transformation to (5.1.5) is given by the orthogonality
of the V-C coefficients; thus

(5.1.9) T(L, m)T(l, my) = Z T m)(l L I m|l, mi bl my).

‘See (3:7.14).
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The process of polarization® may be used to introduce new variables
into spherical tensors without altering the transformation properties.
Thus a new tensor of type I, m may be gotten from %,,(r) by the

application up to ! times of polarizing operators a-V, b-V, ... ete.,
where a, b, ... are any vectors and
d 0 0
1.1 V= —ay — — — a_y —
(5 1 O) a-Vv a1y 67'__1 + Qo aro a—_; 6T+1

The properties of the gradient operator V will be examined more
closely in (5.7).

5.2. Tensor Operators in Quantum Mechanics

DEeriNiTION OF THE TENSOR OPERATOR.. A finite rotation of the
frame of reference of a quantum mechanical system about the origin
may be considered to induce a canonical transformation® on the coordi-
nates and momenta, and a corresponding unitary transformation on all
operators relating to the system. To each rotation (« 8v) = (w) corre-
sponds a unitary transformation D (a 8 v) = D(w) and we may write
for any operator Q:

Q- Q" = DD ()

We extend the concept of spherical tensor discussed in the previous
section to that of an irreducible tensor operator T(k) which is a set of
2k + 1operators T(k q) (g = —k, —k + 1, ..., k — 1, k) which trans-
form under rotations of the frame of coordinates like the components
of the spherical tensor Y,,, namely as

’ k
(5.2.1) DTk D7 '(w) = 2. Tk ¢) D¢ (w)
Q' =—k
Since the operators of total angular momentum of the system are
multiples of the infinitesimal rotation operators, we may replace the
unitary transformation on the left by a commutator, giving for any
component of angular momentum J;

(5:22) e, T 9] = 3 TG @)k ¢ |elk 0
ie.
(5.2.3) [J., Tk @] = T(k q=£1) k[ F @k = ¢ + DI

[Jo, T(k )] = T(k 9)-hq

5Cf. Weyl (1939), Falkoff and Uhlenbeck (1950).
*Dirac (1947).
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which are equivalent to the more compact relations
[J,-13, Tk @11 = B*k(k + DTk @); [Jo, T(k 9] = hgT(k @)
(Le. 3[Js, [Jo, Tk @11 + 3/, s, TCe @11 + [Jo, [Jo, T(k 9)]]
=Bkt + DTk g).)

These commutators correspond to the definition of tensor operator
given by Racah (1942).

The. most familiar examples of tensor operators are the position
vector r and linear momentum p of a particle, which are tensor operators
of rank 1, i.e. vector operators.” The angular momentum J of a system is
clearly itself a vector operator. Other tensor operators arise when we
consider the multipole moments of systems of particles; for example
the electric quadrupole moment of the nucleus.

We may build up tensor operators of higher rank by exactly the same
methods as discussed for c-number tensors in (5.1). It may be necessary
to pay attention to symmetrization when dealing with operators whose
components do not commute. The parity of an operator is an important
quantity in quantum mechanics. It is clear that all components of a
given tensor operator have the same parity for the parity operator
commutes with rotations; and the parity of a tensor operator built up
by the methods of (5.1) is given by the product of the parities of the
constituent tensor operators. For example, the dipole moment of a
system has odd, the quadrupole moment even parity.

The scalar product of two tensor operators of the same rank is repre-
sented conventionally® by

(5.2.4) T-U) = }_:_‘, (=) Tk QUE —q)

and not by the expression gotten by use of (5.1.5) with [ = m = 0;
the two forms differ only by a constant factor. There are many physical
problems where we encounter quantities which may be expressed as
the scalar or tensor product of two tensor operators, which are usually
related to different parts of the system. We shall see that such a form-
alism introduces a great simplification into the calculations, expecially
when allied with the use of 6-j and 9-j symbols, which will be discussed
in the next chapter.

ExampLEs oF USE oF THE TENsOR OPERATOR NoTATION. The term
representing the interaction between the atomic nucleus and the electric
field of the surrounding electrons, which is responsible for the hyperfine
structure, is given by

,-e,, Cp r,,-r,-
(5.2.5) H = Zl—rf%—;—‘ = 2 ‘%—i—-,rf,Pz( )

st T rpls

\’Cf. Giittinger and Pauli (1931), Wigner (1931), Condon and Shortley (1935).
8Cf. Racah (1942).
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where e, r; and e,, r, are the charges and position vectors of the electrons
and protons respectively. We consider the quadrupole term (I = 2).
The spherical harmonic addition theorem (4.6.7) makes it possible to
separate the expression into functions of electron and proton coordinates:

(526) H, = ; (—1)m Z 61,7’:,0,(,‘2)(01,, ¢p) Z eir:l-lo_(?")‘(ai, 901')

which is of the form of (5.2.4); the matrix elements of H’ will be evaluated
in Chapter 7.

The tensor product of tensor operators arises in the treatment of the
so-called tensor interaction between nucleons. This interaction is
usually written

(5.2.7) Siz = J(Tm){(dl 'r12)2(62.rl2) - ']; (a4 '62)}

Ti2 3
where r1,, is the vector joining the nucleons 1 and 2 and ¢, and ¢, are
their respective spin operators. It may also with advantage be written®
as the scalar product

81 = (S-L)

where S(2) is the irreducible tensor operator of rank 2 formed from
¢, and ¢, and L(2) is a product of the scalar J(r,,) and the irreducible
tensor operator of rank 2 formed from the unit vector r,;/r,,. Here
again we see that the operators in the scalar product refer to different
parts of the system. The spin tensor may be constructed by polarization:

]
sem) = (32) - V)@ V) Yanld)

The orbital tensor appears as

}
L(2m) = (%) "%%:_2)' Yom(T12)

5.3. Factorization of the Matrix Elements of Tensor
~ Operators (Wigner-Eckart Theorem)°

Consider the component 7'(k ¢) of a tensor operator acting on a
state vector of a system which is a simultaneous eigenvector of the
angular momentum operators J?, J, of this system. We call the state
vector u(yjm). Let us examine the effect of a finite rotation w of the
coordinate system on the quantity T(kq)u(yjm). We have

D@)[Tk quly j m)] = [D)T(k 9 D™ ()1 Dwuly j m)

°Cf. Elliott (1953).
19Wigner (1931), Eckart (1930).
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Reference to the definition (5.2.1) of the tensor operator shows us that
this is equal to

X Tk guly § m)DE) D)

Thus the vector T'(k ¢)u(y j m) is transformed according to the product
representation D X D’ of the rotation group, and hence may be
expressed by use of vector-coupling coefficients as a linear combination
of quantities each of which is transformed according to an irreducible
representation.
Thus we get

T(k Quly j m) = 2. (kg j mlk j j’ m)®(5 m)
That is,

& m') = 2 Tk quly j m)(k g j mlk j j’ m")

q

by the orthogonality of the V-C coefficients. The ®(j' m’) are simul-
taneous eigenvectors of J* and J, with eigenvalues j' and m/'.
The matrix element of T'(kq) in the scheme u(yym)

(' § ' |Tk Qly 3 m) = uly’ §" m'), T(k Quly j m))
is, due to the assumed orthonormality of the u(yjm), equal to
(56.3.1 ly’ §* m"), ®(5' m)(k g j mlk j ' m')

We now prove a theorem which is used in the interpretation of the
result (5.3.1).

TraeoreM. Consider the transformation
vl jm) = Zp:w(ﬁjm)(ﬁjmlajm)
Then (supposing m < j),
v j m41) = 2w j m+1)(B j mtlle jmtl)

B
But

. ol i m)
RG — MG + m+ DEEI™

= gw(ﬂjm-i-l)(ﬁjmlaj?'t)

va j m+1) =

from the original expression (cf. (2.3.16)). Hence

B j m+lla jm+1) = B j mla jm)
and

(5.3.2) the transformation coefficients (8j mlajm) are inde-
pendent of m.
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Thus we see that the left-hand factor in (5.3.1) is independent of m;i.e.
does not depend on the choice of orientation of the frame of reference. It
is in fact determined solely by the physical properties of the operator
and system. The geometrical or rotational dependence of the matrix
element is concentrated in the right-hand factor, the vector-coupling
coefficient.

This factorization is fundamental in the calculus of tensor operators,
and is the basis of the great simplification of formulas which results
from its use. The above theorem may be proved in a somewhat different
way by starting with the definition (5.2.3) of the tensor operator in
terms of the commutators with the components of angular momentum.

5.4. The Reduced Matrix Elements of a Tensor Operator

DeriNiTION. It is convenient to define scalar quantities which differ
slightly from the left-hand factor in (5.3.1). ' The V-C coefficient is
replaced by one more symmetrical in the quantum numbers of initial
and final states, by use of the symmetry relation (3.7.4). We have then
the definition of the reduced or double-bar matrix elements

Gy’ j" m'|T(k @y § m)

= (—1)" (B'm’ j—mlj’ jkq &' FT® |y 9

@k + 1)}
(5.4.1) =<—1>"'-"'( 7’k j)@' 7Ty )
—m’ q m

— v-ivirkgimlkggmy , .,
= (-1 ST o @y 9.

The convention we have adopted is that of Racah (1942); it is com-
pared with the conventions and notations used by some other workers
in Table 5.1.

The orthogonality of the V-C coefficients (3.5.4) enables us to write
the alternative expression

akk'aqa'(')', J’l IT(k) | I’Y .7)

= (2 + 1} ,,,‘V,;" (=D JF ¢|f m' §—m)
X O jm|FEQly § m)
_ iemef 3K g

—-m' g m

X (' § m'| Tk @y § m)
=3 <—-1>""""( S j)(« ' TGk Qly § m)

mm'q m, q, m
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CompuraTiON OF REDUCED Matrix ELeEMENTS. The double-bar
matrix elements are computed in practice in the obvious way; we
choose the easiest to compute of the components (v’ j' m'|T(k @)|y j m)

and divide it by
ieemef 7 kg
(__1) ( J J )
-m q m

It is usually best to take m’ = m =g = Oorm’ = m = 3,9 = 0, so
that the simpler formulas of (3.7.17) or Table 2 may be employed.
We have for example

(5.4.3) WHLID = hé@ + 1@ + DI
and
(5.4.4) G|ISIIY) = »VE

We use (4.6.3) to obtain the double-bar matrix elements for the spherical
harmonics Y,,(6p) where 7, 0, ¢ are the particle coordinates. We get
(cf. Racah (1942))

’ ' * ' k l
G545 CIYBID = (=1 [(21 + l)(2k4—: D! + 1)] (f) . 0)

(5.4.6) (U||CEI|1D = (=D + DEL + 1)]l<l' I:) (:)
. 0
(For definition of C¢¥ see (2.5.31).)

TRANSITION PROBABILITIES. In the notation of Condon and Short-
ley (1935), p. 98, the total intensity of a line summed over the intensities
of its components, i.e. over magnetic quantum numbers and polariza-
tions is

S j, o ) = 2 |@jm|TCgle i m)I’
5.4.7 mam’
= | 1@l I

by (5.4.1) and (3.7.8), where T(k) is the operator inducing transitions.

APPROXIMATE FxPRrESSIONS FOR LARGE j. The result in Appendix 2
may be used to give an approximate expression for the matrix element
of a tensor operator between states of large angular momentum. We get

r 5 k ]
(548 @ j+ mralTC Qly j m) = dP(6)- ’gf‘f(l))ﬁ 2

where
m

ViG+ D)

cos 8 =
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In the case of diagonal matrix elements'' we see that the value repre-
sents, roughly speaking, the projection of the particular tensor component
(considered as a c-number expression) on the direction of the angular
momentum vector corresponding to 7, m (see (2.7)). When ¢ = 6§ = 0
the d becomes P, (cos §), and in particular'?

 JT@ |y D
27 + 1)}

The matrix element on the left clearly has the greatest magnitude of
all the diagonal matrix elements of T(k) for a given state v ;. If T(k)
represents a multipole moment, then (y j j|T'(k 0)]y 7 j) is conventionally
taken as the value of the moment for the state vj of the system (e.g.
the magnetic moment or electric quadrupole moment of a nucleus'®).

(5.4.9) (v j jITk )y j 5) =

5.5. Hermitian Adjoint of Tensor Operators™

Let us take the Hermitian adjoint of the defining equation (5.2.1)
We have

DTk 9)'D'(w) = 3 Tk ¢)'DF*(w).
Use of the symmetry property (4.2.7) of the D’s gives
DTk 9)'D™'(w) = X T(k ¢)'(= 1" D% _o(e)
I.e. the quantity (—1)°7(k —¢)' transforms under rotations in the
same way as T'(kq).
The concept of Hermitian adjoint of an operator may thus be gen-

eralized, and the Hermitian adjoint T' of a tensor operator T may be
defined by

(5.5.1) Tk @ = (=1)°(T%k —q)';

Tt clearly transforms under rotations like T; self-adjoint tensors
T' = T can only exist for integer k. Their components satisfy

(5.5.2) Tk @) = (=17 —qg)

USee (4.1.25).

2Since
ik A\ _ G @y
<_j 0 j) =@ +k+ ) }[(23' T B2 — k)!]

from (3.7.11).
13Cf. Blatt and Weisskopf (1952) pp. 23-39.
4Cf. Racah (1942), Wigner (1951), Schwinger (1952).
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This property is not conserved for tensor products; i.e. the tensor
product of two self-adjoint tensor operators is not itself self-adjoint.
However if we define a self-adjoint tensor operator by

(5.5.3) Tk @' = (—)**T(k —g)

the property is conserved for tensor products (cf. (3.9)) provided the
two tensors commute. Rose and Osborn (1954) discuss the problem of
finding the Hermitian adjoint of tensor operators which do not commute.
The property (5.5.2) is shared by tensor operators built up from Her-
mitian vector components V,, V,, V, according to the formulas of
Table 1 (see p. 124). These correspond to the phase convention with
symmetry (2.5.6) for the Y,, (example (5.1.3)). If on the other hand
we multiply these quantities by ¢* we obtain tensor operators with the
symmetry (2.5.8) of the 9,,,, which have the property (5.5.3).

The reduced matrix elements must, as a result of the symmetry
property of the V-C coefficients (see (54.1), (3.7.4), (3.7.5)) satisfy
the condition

(5.5.4) & M@y ) = (=D & ST @ 7)*
if we choose the definition (5.5.2). If we choose (5.5.3) we have

555 O FNT®Iy ) = (D" jIT@I H*
5.6. Electric Quadrupole Moment of Proton or Electron

We consider as an example of the foregoing the evaluation of the
electric quadrupole moment of a proton or electron in a quantum state
of definite angular momentum.

The classical quadrupole moment is

Q) = ¢ [ 3 — Md®s,

where p(r) is the density of charge. In quantum mechanics the result is

Q(p) = e f Y*0)(BF — r)y@d®r.

We define the tensor operator Q® by
o) = 438 — 1)

and take Q conventionally as'®

Q= iné”|m=(a‘no<”|m( 73 2)
0

15Cf. Ramsay (1953) p. 361.



5.7 - THE GRADIENT FORMULA 79

This is the quantity normally referred to as the quadrupole moment
of the system. Now we compute the expectation value of the quadrupole
moment in a state 7 m.

(J‘leé”Ijm)=(jl|Q‘”l|J)< 7 2)

—m m 0

(—-—m m 0 / -3 7 0
— Q.3m2 — J(] + 1)
32 — 1)

by use of Table 2 (see p. 125), agreeing with.the expression of Blatt
and Weisskopf (1952) p. 28.

5.7. The Gradient Formula

The Wigner-Eckart theorem finds an important application in the
derivation of the gradient formula,'® which gives the gradient of a
function F of the space coordinates when expressed in the form
F = &(r)Y (0, ¢).

We evaluate first the matrix el ments (I’ 0]V,|l 0) of the gradient
operator, which is an example of a ector operator. We have

It is therefore necessary to evaluate the quantities cos 0Y,,(8, ¢) and
sin 00Y,,.(6, ¢)/08. The properties of the Legendre functions (see
(2.5.20), (2.5.25)) give us

l+1 y
(21 + DL + 3 ~ '

) l
ti@i— D@ F DF Lo

COS 0Y1m(0, ¢) =

W(l+ 1) y
[(21 + D2l + 3 '

. 0
s 6 EY) Ylm(oa 90) -

3 (-1
(@2l — nEl+ npt

The only nonzero matrix elements of type (I’ 0|V,|l 0) are

Yl—l m

141 5 1
101Vl 0 = {or D@l + 3P (& - 7)o
z o, 1+1
(I=101Vell0) = rr =@ + P (5« T )‘P(")

16Cf. Bethe (1933) p. 558, Rose (1955) p. 24.
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The general matrix elements are given by

( vo1 o1
—
@ m |V, lm) = (=™ ;" 1“ lm’ (I 0|V, 0).
<O 0 0)
Evaluation of the 3-j symbols by use of Table 2 yields finally
(41 m~4u|V,.|l m)
. 14m 4 +
(2 e

(5.7.1) = 221 + 3)(2l + V)] \or
1
= (;{:_13) (Im1lpullll+l m+u)(£‘, - ;)@(r)
where
At =[l+m+ DA+ m+ 2P
At = =204+ m+ DI —m+ D
=l —-m4+ DI —-m+ 2P
(I—1 m+u|V,|l m)
B (=14 9, 1+1
(5.7.2) = 2@+ D@l - D (ar T )‘I’(’)
3
= -—(2l _l_ 1) (Im1lpllll-1 m-l-#)(;%, + ! -:: l)tb(r)
where

AT=[—-m—-D0—-mP
AT = 200+ m(1 — m]
AZ, = [0+ m — DI+ m}

5.8. Expansion of a Plane Wave in Spherical Waves

We consider first a plane wave of wave number k¥ moving in the direc-
tion of the positive z axis; it is given by
exp (tkz) = exp (tkr cos 6)

Since the wave is symmetric about the z axis, its expansion in spherical
waves can only contain Y,,.(8, ¢) with m = 0. The coefficients in the
expansion are, as a result of the orthogonality of the spherical harmonics,
(2.5.4)

Cio(r) = 2x f Y,,(8) exp (tkr cos 6) sin 6 d6
(]
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which are expressed in terms of the Bessel functions of the first kind
and half-odd-integer order (cf. Whittaker and Watson (1946) p. 398,
Morse and Feshbach (1953) p. 1574). Thus we get
- }
exp (ikr co8 6) = 3. ,-z,[g@z_:t__l)] J1es(Rn) Y 1 (8)
(5.8.1) £=0 kr

(-]

= Y i'[4x 2l + D}, (kn) Y.o(0)

I=0

where the spherical Bessel functions j;(z) are defined by

(5.8.2) 5@ = [;—z]}J 1+3(2)

The addition theorem (4.6.6) gives the expansion for a plane wave in
an arbitrary direction 6, &:

© !

(5.83)  exp (ken) = 4r 32 3 k0 Yin(8, ) Y(O, B).

=0 mm-—]

5.9. Vector Spherical Harmonics

The transformation under a rotation of the frame of reference of
the functions representing a vector field is more complicated than for
the case of a scalar field discussed in (4.1). We have to take into account
the fact that the components of the vector field are defined with respect
to the axes of the appropriate frame. A simple example will make the
situation clear; we consider a rotation a about the z axis (represented
by D(a 0 0)). For convenience the Cartesian components of the vector
field and the spherical polar coordinates of the field points are employed.
The field is described in the original frame S by V.(r, 6, o), V,(r, 0, ¢)
and V,(r, 0, ¢). In the new frame S’’’ obtained from S by the rotation
(a 0 0) the components are

V;(T, 0, ‘P) = CO8 (IV,(T, 0, ¢+a) + sin OIV,(T, 6, ¢+a)
V., 6, @) = —sin aV,(T, 0, o+a) + cos aV,,(?', 8, p+a)
V:(T, g, ‘P) = Vs(rr é, §0+a)

The operator J, of infinitesimal rotation about the z axis may be
found by allowing o« to become small. Thus we have

V' =1 + taJ,)V + 0@

where

. d ad
J.————z(xayn -é;)+e,)(
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e., e, and e, are the unit vectors along the z, y and z axes respectively
and X indicates the vector product. Analogous results for the com-
ponents J, and J, are easily obtained. The differential operators appear-
ing on the right in the expressions for the components of J are recognized
as (apart from a factor /) the components of orbital angular momentum
L. (Cf. (2.1.3)). We omit this factor % since the present discussion is of a
purely classical nature.
The components S., S, and S, of S are defined by

(5.9.1) S, = e, X; S, =e,X; S, = e,X

and satisfy the usual commutation relations of angular momentum
operators. (Cf. Franz (1950))
Thus we have

(5.9.2) J=L+S

The components of L commute with those of S. The components of
J have the important property that they commute with the curl operator:

(5.9.3) J VX =VXJ, (¢ =u=z,y,o0r2

Eigenvectors of S* and S, may now be found by taking suitable
linear combinations of the unit vectors e,, e, and e,. We define

1
e,, = —75 (e, + 7e,)
5.9.49) e, = e,

N |
e, = ,\/5 (ez - ieu)
and obtain

S’e, = 2e,

(5.9.5) where ¢ = +1,0

S-ea = g€,

Thus we have an angular momentum system with “spin” 1 (i.e. belonging
to the representation D). The spherical unit vectors e, have in addition
the following properties:

The complex conjugate is given by

(5.9.6) e* = (—1)%_, where ¢ = +1,0
and the scalar product by
(5.9.7) ete, = (—1%e,~e_y = 8,

A vector quantity whose components are given in the spherlcal notation
(5.1.3) appears as

(5.9.8) V=Y (—e) Ve,
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and the components themselves may be expressed as scalar products
(5.9.9) V.= e,V

We now make use of the fact that (5.9.2) is an example of angular
momentum addition (cf. Chap. 3) to evaluate the eigenvectors of

J? and J,, that is, the vector spherical harmonics. The application of
(3.5.1) gives

(5.9.10)  Y,ul6,0) = 2 Y.a(6, Qe (Im1g|llJ M)

They have the properties
(5.9.11) JY5u = J(J + DYsun
(5.9.12) J X5 = MY ;a0

2% 4
(5-9-13) _/; ]; Y?lu(gy ¢)'YJ'1'M'(0; @)sin 0d0de = 85501 0um-

As a result of the angular momentum addition rules, there are only
three different types of vector spherical harmonics with given J, M.
These three types divide into two classes from the point of view of
parity; thus we have

Y,,;» with parity (—1)7 corresponding to the magnetic field of
electric multipole radiation and the electric field of magnetic
multipole radiation.’

Y, ;41 u with parity (—1)7*' corresponding to the electric field of
electric multipole radiation'” and the magnetic field of magnetic
multipole radiation.

The eigenvalues of J* and J, have an additional significance; it
may be shown that a quantum with energy Aw associated with a field
represented by a vector spherical harmonic Y, »(6p) has total angular
momentum AV J(J + 1) and the component of its angular momentum
along the z axis is AM. (cf. Franz (1950), Blatt and Weisskopf (1952).)

These vector spherical harmonics may be generated from scalar
spherical harmonics by the use of certain operators; for example

(5.9.14) LY\, = VIl + 1) Yun

This result is proved by first writing the components of L in the spherical
tensor notation; i.e. we have (cf. (2.3.1))

1 1
L+] -_— = \/‘2L+, L_l - ﬂL-

vCf. Blatt and Weisskopf (1952) p. 799, Franz (1950).
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It follows from (2.3.16), (2.3.17) and Table 5.2 that we may write
(5.9.15) LYim = (=D'VII+ 1) YimoImtqgl, —q|l1lm)

Reference to (5.9.4) and (5.9.10) gives immediately the required expres-
sion (5.9.14).

We may also obtain vector spherical harmonies by application of the
unit vector r/r:

141 L
(5.9.16) r Ylm - [2l + 1] Yll+1m + [2l + 1] Yl I-1m

The gradient formula ((5.7.1), (5.7.2)) may be expressed in vector

form:
(L) D
vé(r)ylm - <2l + 1 dr é YI I+1lm

l [4+1
+(5) (@ +———)<1>Y”,,

Since the operator ¥V X commutes with the components of J, the
curl of a vector spherical harmonic is a linear combination of vector
spherical harmonics with the-same J and M. An arbitrary (sufficiently
well-behaved) vector field may be expressed as a series of multipole fields
each consisting of the product of a function of r and a vector spherical
harmonic; the result of applying the curl operator to the three typical
products of this kind is now given.'®

(5.9.17)

d , 1+2 (__z__)*
(5.9.18) V X (Y141 406, ¢)) = ?'(dr + )q" 21 + 1 Yiia

r

7 X GO0, ) = {2 - Do-(575) Yrrorm

-
+ l+1>*
+ (dr+ r )q)'(2l+1 Yitoiu

6920 VX GO¥i i ult, ) = (2 - L= e (LY v,

r

(56.9.19)

Note that the curl operator changes the parity of the function.
The divergence operator gives the following scalar quantities:

(5.921)  V-(@OY, 1.1 w8, 9) = (211111)( +’j’2)q>-y,,,

(5.9.22) V- (®")Y.:x(6, ¢)) = 0 for any ®(r)

BThe six expressions (5.9.18)-(5.9.23) are due to fil. lic. P. O. Olsson.
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(6923  V-(8(0)Y1.- (0, 9) = (21 i 1)*(% - L= 1)@-1’”,

The application of vector spherical harmonics to problems of the
electromagnetic field is discussed by Blatt and Weisskopf (1952) and
by Franz (1950). A different and more fundamental derivation of some
of the above results is given by Corben and Schwinger (1940).

5.10. Spin Spilerical Harmonics

These are defined in a similar way to the vector spherical harmonics;

in place of a vector field we have a spinor field. The operator of total
angular momentum is given by

" J=L+s

The operator s is associated with the representation DY of the group
of rotations, i.e. with transformations in spinor space.
The eigenvectors of J* and J, are thus given by

(56.10.1) Py = Z thxu(l miullsJ M)

hY

The choice of phase for the spherical harmonics (see (2.5.8) gives
convenient properties for & with respect to time reversal (cf. (3.9)
and (5.11) and Biedenharn and Rose (1953) p. 736).

5.11. Emission and Absorption of Particles

We consider the transition probability for the absorption or emission
of a particle by a system (say, a nucleus). The incident (or emitted)
particle is represented by the state vector u(y,j, m,), the target (or
remaining) particle by «(y; j, m;), and the product (or initial) system
by %(vs jo m.). The transition probability is given by the square modulus
of such a matrix element as

(5.11.1) (1 Js Mavs Jo Mo|R¥a Jo M)
= (U(‘Yx J1 mOuly, J» my), Ruly, e m.,))

where the operator R is defined by 1 + R = S, where S is the scattering
matrix of Heisenberg. In a first order perturbation treatment R is
proportional to the part H' of the Hamiltonian inducing the perturbation.

Now we may express the product u(y, j, m,)u(y, j, m,) representing
the separated parts of the system as a sum of terms each corresponding
to definite eigenvalues of the operators J-, J,, of the total angular:
momentum.
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uly: J1 m)ulys 3o ms)

5.11.2 .. .. . :
( ) = ; (v s J1 Jb Jo Ma)(G1 Jo Ja Ma|F2 ma Jo my)
where
v('Yl 'Yb jl jb ja ma)
(5.11.3)

= Z uly: J» m)ulys Jo ms)(J1 M1 Js mb]jl Js Ja Ma)

mimb

Now since R is a scalar operator, it is diagonaf in j, m,; hence we have
(v1 J1 mavs Je mb|R|'Y¢ Ja M)

= WO 7e Ji b Ja Ma), Rulya Jo m..))~(j1 Jo Ja MalJi ma Js my).

It follows from (5.3.2) that the first factor on the right is independent
of m,, i.e. is a scalar quantity; we may therefore write

(5.11.4) (v1 Jr M1 ve Jo Ms|Rlva o M)
= (¥ 51 5ol IRI¥a Ga)(G1 o Jo Maldi M1 Go m08)

where the scalar quantity (v v, J. 7o||Rllva. j.) 18 called the reduced
matriz element of R; the reader should be careful to distinguish the
reduced matrix element of this scalar operator from that of the com-
ponent of a tensor operator (5.4.1).

Tue REALITY OF THE MATRIX ELEMENTS oF R'®.  We now investigate
the conditions which must be satisfied if the matrix elements of R are
to be real. Use is made of the operation K of time reversal (cf. (2.8))
which commutes with K.

The operator K may be represented in general by

KzUKo

where U is a unitary matrix and K, is the operation of taking the
complex conjugate. If we consider states which are eigenvectors of
orbital angular momentum (5 = integex;) then U is the unit matrix 1.
In that case

(Kv, KRu) = (Kv, RKw) = (v, RW*

We shall see that if the angular momentum eigenvectors u(y j m) have
the property under time reversal

(5.11.5) Kuly jm) = (—=1)"""uly j —m)

19Cf, Biedenbharn and Rose (1953).
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then the matrix elements of R are real. For we have

(Ku(% J1 m)Kuly, j, my), RKu(y, ja ma))

= (71 Yo jl jb”RH'Ya ja)*(jl jb ja maljl m, jb mb)

which is, if the condition (5.11.5) is satisfied by the angular momentum
eigenvectors, equal to

(u('y, jl "'ml)u('Yb jb _mb)) Ru(’Ya ja _ma)) ‘(—l)iﬁm';iﬂm—“—m'

= (’Yl Yo jl ijRH'Ya Ja)(]l jb ja ma'jl m, jb mb)

by use of the symmetry property of the V-C coefficient (3.5.17). It
follows that the matrix elements of R and also the reduced matrix
elements (v: vs J1 Jul|B||va Jo) are real.

Thus if we choose the eigenfunctions of orbital angular momentum
with the Condon and Shortley phase, namely the Y,,., their property
under complex conjugation (2.5.6) makes it impossible to guarantee
the reality of the matrix elements of R. On the other hand, if we take
the eigenfunctions 9);, with the property (2.5.8), and if necessary
construct eigenvectors of half-odd-integer angular momentum by
compounding them with the spin eigenvectors which transform accord-
ing to (2.8.2) under time reversal, then the condition {5.11.5) is satisfied
and the matrix elements (v, j; m, vs J» ms|R|va o Mma) are always real
(see also (3.9)).

Table 6.1. Notations relating to tensor operators and reduced matrix elements.
We assume throughout the usual convention, that

@lelt) = [ viQu, dr

The g component of a tensor operator of rank k is written in these notes as T'(kq),
and the matrix elements between the states ajm and o'j'm’ as (o j m|T(kq)|a’ 7' m’).
This is identical with the notation of Schwinger (1952). Other notations, which are
equivalent to those already mentioned, are given below.

Racah (1942): g component of tensor operator of rank k: T'(®,
Matrix element of this operator: (a j m|T{P|a’ j' m’)

Wigner (19561): v component of tensor operator of rank ¢ : ¢,.
Matrix element of this operator between states with angula,r momenta
Lr, UN 3 (¢,

Landau and Lifschitz (1948): m component of tensor operator of rank j:fum,
Matrix element of this operator between states with angular momenta
Jama, jame @ (fGm)iima



88 5 + SPHERICAL TENSORS AND TENSOR OPERATORS

Table 6.1 (Continued)

Biedenharn and Rose (1953): u component of tensor operator of rank L, with parity
w(= £1) : T(Ly, ).
Matrix element of this operator between states with angular momenta
j;m,, ]m : (jﬂ?’th(Lﬂ, W)Ij?ﬂ)

Fano (1961): q component of tensor operator of rank k : T',.
Matrix element of this operator between states with angular momenta
J'm’ and jm : (J' m/| Tl m).

The double-bar matrix element, or reduced matrix element, is defined in these
notes as follows:

(o § mIT ko)l 7 m')=(—l)f""‘(ajHT(k)lla’j’)< 7k j')
—-m q@ m

This is identical with the definition of Racah (1942); however in his notation the
relation is:

Racah (1942)
(@ § m|T e §* m') = (=1)"""(a jIT®|le’ 7) X V(i j'k; —mm’ ¢)
The definition of Wigner (1951) is also equivalent to ours:

('//.lu tr\";'):("l)lﬂ( Lo l’)tn'

-~k T A

Other notations, which are not equivalent to ours, are given below; reference should
be made to Table 3.1 for the notations for Clebsch-Gordan (V-C) coefficients.
Schwinger (1952):

(vj mTkly' 3 m') = (=D TN 71X Gk §; —mqm')
Biedenharn and Rose (1953):
(J1 m|T(L w, m)|j m) = C(4i L j; my m—m,)(5:||T(Lx)||7) 6(x, w, 7.)
Landau and Lifschitz (1948):
(f“m} :;:: = (f”));:;(—l)m’ V 2.2 + 1 Sixmx: im;ijgs, —ms
Fano (19561):
2_ A" DRGIG m'y 5 —m)(= 1T m (Tl m) = (G GITe) X Sueds

Condon and Shortley (19356): We relate the analogous notation of TAS for vector
operators to our own by quoting equations (30) of Racah (1942):

@ JlIT" Nl §) = [3(G + DE@j + DP(a j T’ j)
(@ J)IT Ve’ j=1) = [§2] — D)@ + DINe ji Tia’ j—1)
@ TP’ j+1) = —[(G + D@ + D@j + ) ji Ti o’ j+1)



()i m % m2|jl 3 jm)

m,
>\ }

Table 6.2

1

-2

y 1 B : i

41 Pgtﬁig] Pr—m+%]
hor % + 1 %, + 1

i= 4 —Puﬁuﬁy [ﬁ+m+ﬂ*
2];+1 25, +1

(i mi 1 m2|jl 1jm)

m,

- [ (Gi 4+ M) + m + 1)]’ [(j, — m 4+ DG+ m+ 1)]* = m)(j, — '
h+1 : . J1 (5 )7, + 1

- @ + 1D + 2) 2 + DG+ 1) [ (2, :n- 1])(2]', 11 2) )]
. _ (j1+m)(jx—m+l)]* m G, — : }
Ji W S L E— D m)(j, + m + 1)

- 25(7 + 1) (7 + 1)]; [ 2505, + ;'; ]
- Ui — m(y — m + l)]* [( - m)(5 + } . . 3
i1 m)(j _ G i M] Pn+m+m,+

- 212 + 1) W2+ 1) 25,(24, +11) m)]

e 31gvd,

68



CHAPTER 6

The Construction of Invarants from the
Vector-Coupling Coefficients

6.1. The Recoupling of Three Angular Momenta

Tue Two CoupLING ScHEMES. Let us consider' the coupling of
three angular momenta j,, J,, js to give a resultant J. We note first that
there is no unique way to carry out this coupling; we might (I) first
couple 7, and j, to give a resultant j,,, and couple this to j; to give J,
or alternatively (II) couple j, to the resultant j,; of coupling j, and js.
We remember also that the order of coupling determines the phase of
the resulting state vector (see (3.5.14)).

If we choose some definite way to carry out the coupling, we find
that in general there are several values of intermediate angular momen-
tum (say j:,) which give a particular final J. Suppose for example
we couple j; = 1 and j, = 2. The possible values of j,; are 1, 2, and 2.
Then if j; = 1 and we require a final J = 3, either j,, = 2 or j;, = 3
can give this resultant when coupled to j;. The states obtained with
particular values of J and M but different intermediate values of j,,
are independent, and must be distinguished by specification of the
intermediate j values and the mode of coupling. Thus for a given JM
we have in general a system of states, and they are represented in
different ways by different modes of coupling; it follows that there
exists a unitary transformation connecting two such representations.

Let us denote the state vector arising from a type I coupling by
v((§1J2)J12, Ja, /M) and that from a type II coupling by v(jy, (72 ja)jzs, JM).
These state vectors are given respectively by the equations

w((J1 J2) Jrzs Js, JM)

= E V(g1 J2 Jrz Mu(Js ma)(Jrz M2 Js maljlz Js J M)
(6.1.1) mrams

Z w( gy mu(Ja m)u(Js ms)

mimamamaz

X (]1 m, Jq mz‘jl J2 Jiz m12)(j12 M2 js malsz ja J M)

ICf. for example Racah (1943).
90
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and
w(J1, (42 J3)Jas, J M)

( 1 ) = Z u(Jl ml)v(jz js jaa mza)(jl m, jzs mzsljl j23 J M)
6.1.2 mimas

= mmz;.m . u(Jr m)u(g> mayu(js ms)

X (]z my Js ’m3|j2 Ja jza m23)(j1 My Jas mzaljl Jas J M)

The unitary transformation connecting these two representations is
given by

w(Jyy (Ja Ja)Jas, I M) = Z w((J1 Ja2) Jras Js, J M)
(6.1.3) e

X (5 J2) Jazy Jsy J Mlju (7 J3) Jasy, J M)

We see from (5.3.2) that the transformation coefficients are independent
of M.

EvavuaTion oF THE RECoUPLING COEFFICIENTS. We now make use
of the orthogonality of the vector-coupling coefficients (3.5.3) and
(3.5.4) to obtain

((.71 jz)jlz; ja; Jljh (.72 j3)j237 J)
(6.1.4) = Z (jl2 Ja J M|j12 M1z Ja m3)(j1 jz sz mlzljl my Jz ms)

MMy My
MmigMsas

X (jz m ja maljz js jzs 'm23)(j1 m j23 m23|jl j23 J M)

where we have dropped the argument M in the transformation coefficient
as a result of (5.3.2). The M appearing in the V-C coefficients must of
course lie between —J and J. Other transformation coefficients arising
from the recoupling of three angular momenta will clearly differ only
in a trivial way from the form just discussed; to evaluate them we need
only make use of the rule for the changing of the order of coupling.
Now this transformation coefficient which we have just evaluated is
of great importance in quantum mechanical problems; for we find
that we often have to deal with the addition of a number of angular
momenta, involving the summation of products of vector-coupling
coefficients, the sum being over the magnetic quantum numbers m.
Now the vector-coupling coefficients are not invariant under rotations
of the frame of reference, while the quantities which we wish to compute
—such as energies, cross-sections, transition probabilities, etc.—are
usually scalars. Hence the V-C coefficients are associated in such a way
that they form scalar quantities, which are functions only of the j
values and not of the m’s. We shall see how we may evaluate directly
such scalar quantities as the transformation coefficient just derived,
eliminating the tedious computation of masses of V-C coefficients.
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DErINITION OF THE 6-j SyMBoL. We shall now define a quantity
associated with such transformations between coupling schemes of 3
angular momenta, namely the 6-j symbol.? The choice of normalization
is such as to give the symbol the maximum symmetry with respect to
permutations of its arguments. We define thus

3.71 J2 .712% — [(zjm + 1)(2j23 + 1)}-}_(_l)i;+i.+i.+.r
J3 J Jas

X ((J1 ) jres Jss I |31y (G2 Ja) Jaay J)
(6-1-5) = [(2j12 + 1)(2j23 + 1)]_i'("l)il+h+i'+l

X Z (,71 m, jz mzljl jz jlz m,+my)

mims

X (jlz my+ms Js M_ml“m2|jl2 Js J M)
X (jz my js M—mx"‘mzljz ja jzs M"'mx)
X (]1 My Jas M—mlljx Jos J M)

where we have taken advantage of the rule m, + m, = M to reduce
the number of indices of summation.

The 6-j symbol is of importance in all situations where recoupling
of angular momenta is involved; even when there are more than three
angular momenta the invariant quantities (i.e. the recoupling coefficients)
arising may be expressed in terms of 6-j symbols. A detailed investiga-
tion of the properties of this quantity is therefore justified.

6.2. The Properties of the 6-j Symbol

EVALUATION OF THE 6-j SYMBOL IN TERMS OF THE 3-j SYMBOLS.
We shall now discuss the 6-j symbol from another point of view, with
the purpose of clarifying its symmetry properties. To do this we make
use of the 3-j symbol instead of the ordinary V-C coefficient. We re-
member that the 3-j symbol is associated with the coupling of three
angular momenta to give zero resultant (a process which, contrary to
those already discussed, can only be carried out in one way). Thus
we may say that the expression

(6.2.1) Z u(gr m)u(g ma)u(Js mz)( i g Ja)

mem my Mg My
is a scalar; it follows that the set of (27, + 1)(27; + 1)(2j; + 1) 35
symbols with given values of 7,75, and j; and all possible corresponding
values of m,,m,, and m; may be regarded as a fensor which transformsunder
rotations contragrediently to the set of products u(j; m,)u(js mz)u(j; ms).

2Wigner (1951).
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Now we have already mentioned the possibility of defining a metric

tensor (me,> (cf. (3.7.1)); we may also define a corresponding
contraction process. In principle we should make use of the contragredient

metric tensor to [ 7 ,); however, this is easily shown to be identical
m m'

with (me’)' We shall carry out contractions of the indices (the mag-

netic quantum numbers) in products of 3-j symbols. We must remember
that the contractions may only occur between 3-j symbols which
contain the same j values. Thus the basic contraction process is exem-
plified by the expression

622 3 <j1 ga g)( jo Ja ])( ga )
™ \my my mg/\ma mg ms/ \ms Mg

The question now is, what is the simplest nontrivial combination of
products of 3-j symbols in which contractions may be carried out to
give a resultant scalar? We represent a 3-j symbol by a point which is
the vertex of three lines, each of which represents a j value. Each of
the j values must be contracted with a similar j value from another
3-j symbol; i.e. each line must terminate at another vertex. It is clear
that the simplest non-trivial diagram satisfying these conditions is a
tetrahedron. That is, we may make a sum of products of four 3-j symbols,
which contain all together six different j values, the six metric tensors
being included so that a scalar quantity is the result. Let us then draw
a tetrahedron (Fig. 6.1) and associate with each vertex a 3+ symbol

Fig. 6.1 .

and with each edge a j value. The three j values of each 3-j symbol
are the j values of the edges meeting at the corresponding vertex.

We may construct an alternative diagram, in which the j values
associated with each 3-j symbol occupy the edges of a face (Fig. 6.2).
Since the 3-j symbols are only nonzero when the corresponding j values



94 6.+ CONSTRUCTION OF INVARIANTS

Fig. 6.2

form triangles, Fig. 6.2 has a metrical significance; the quantity we
are constructing is only nonzero when the six 7 values chosen corre-
spond to the lengths of the sides of a tetrahedron. This type of diagram
is, however, of no use when we come to consider the 9-j symbol.

We choose a definite convention for carrying out the contraction
process; we remember the symmetry property of the 3-j symbols (3.7.4),
(3.7.5) and that the metric tensor is skew-symmetric for half-odd integer

J. . . .
i J2 Ja
%j4 j5 j6§
623 =3 <J’x s J)( Jo g J)( i g )( je ds js)
s1lm \ m, my my/ \m{ ms mi/\m. mi, ms/ \my, mi mj

><< i )( J2 )( Ja )( js )( Js )( y;)
my, mi/ \my; mi/ \my mi/ \ms mi/ \ms mi/ \mg m}

If we rewrite this expression using V-C coefficients making use of
(8.7.3) we may bring it into a form equivalent to (6.1.5). We note
that one of the indices of summation is free; the summation over six
indices is replaced by a summation over two, since we have the rule
m, + my + m; = 0.

SYMMETRIES OF THE 6-j SymMBoL. The form into which we have
cast the 6-j symbol makes it a simple matter to derive its symmetry
properties. It is clearly left invariant by any permutation of the columns;

gjl ga Js% _ gjz Ja m% _ 33'3 g jzg
de ds o js Jo s o Gu Js

— 3]2 jx jsgz }.71 ja jzz :§j3 jz ]ls
Js Js Je Ja Js Js Js Js Ja

(6.2.4)
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The 6-j symbol is also invariant against interchange of the upper
and lower arguments in each of any two columns. E.g.

(6.25) %Jl j2 ]32 — ;.71 j-’i ja%
.j4 js je j4 j2 js
In fact there are 24 operations generated by permutations of type
(6.2.4) or (6.2.5) which leave a 6-j symbol invariant, and these form a
group isomorphic with the symmetry group of a regular tetrahedron.
Any of these operations corresponds to a rotation and/or reflection of

the tetrahedron whose sides are labelled by the six values of j in the
symbol.

RELATIONs BETWEEN THE 6-j SYMBOLS AND THE V-C COEFFICIENTS.
The orthogonal properties of the V-C coefficients may be used to obtain
relations between 6-j symbols and the V-C coefficients starting from the
definition (6.1.5). We have for example

(jl My Ja mzljx J2 Jrz my+m;)
X (jm my+m. 73 m_ml—m2|j12 Ja ] m)
(6.2.6) =ZF®W””MM+M%H4WV’hh1
fas jﬂ j j23
X (]z my Ja m_ml‘mzljz Ja Jaa m—ml)
X (]1 my Jas m"f'm1|j1 Jas J m)
(_1)i1+i.+i.+i[(2j’2 + 1)(2‘723 + 1)]§3Jl .72 lez
j; j j23
(6 2.7) X (.71 m, Jas m—mdljx jza .7 m)
= Z (.71 my jz mzlj1 jz jlz m1+m2)
X (sz m,+m, ja m-ml—m2‘j12 ja .7 m)
X (,72 mg ja m—ml—m2lj2 ja jza m—mx)

We may also write equivalent and more symmetrical expressions with
the 3-7 symbols; for example,

E (_1)1,+l.+l;+m+n.+u.( jl l2 la)

Bipsps ml “2 __#3
(6.2.8) x( b ds l”)(l‘ b Ja)
—M1 Mo Mg/ \P1  —Hz Mg
,(ﬁ ja h»ﬁ ﬁj&
my Mg My L Ll
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ORTHOGONALITY AND Sum RurLks. The known unitary nature of
the recoupling transformations implies directly that the real 6-j symbols
have the property

(6.2.9) Z(2j+1>(2j"+1);jl I j'ui" Iod s = e

j3 j4 .7 jl j4 ]
That is,
(6.2.10) (25 + D + D]}g]f ja i
Jos Js ]
forms a real orthogonal matrix, rows and columns being labelled by
7 and j’.

Another relation for the 6-j symbols is given by composition of
recoupling transformations. We have

;Z (71 J2) J12y Jss jljn (32 Ja) Jas) ]')(ju (jz Ja) Jas, j|jz: (js J1) Ja1s J)
= ((/x jz)jm Jas j[jzy (ja DISTE))
which yields

Z (_l)in:+ilx+ix:(2j23 + 1);.71 .72 ]12% 3.72 Js ‘723%
s J Jwu) i 7 Jm

G211 Js
— %Ja ji jsli
Ja J
The sum rule of Biedenharn (1953) and Elliott (1953) is given by a

similar consideration of the recoupling of four angular momenta. We
take the transformation

(51 32) 12y Jas Jrzsy Ja Jl(ds Js) Jasy (G1 3O Gras 3)
This is equal to the product of twc successive recouplings of three
angular momenta:
(41 J2) Gazs Jsy Jreas Jay F|Ca Ja) Jass s Jisas Jas )
X ((Jz2 Ja) J2ss Jry Jrasy Jay 31(Js Ja)d2sy (G1 Ju) Jras )
We may alternatively carry out the recoupling in three stages, summing

over the intermediate states containing 7,,,:

Z ((.71 jz)sz, js: j123’ ju jl(jl jn)sz, j4; jl24; Ja» j)

fise

X (41 G2 Jizy Jas Jizas oy JI(G1 F) Tras Jos Jr2ay Jasr 9)
X (41 3D T1as J2» Jraes Jay J1(Fa J8) Joay (Gr GO Jrar D)



6.3 - NUMERICAL EVALUATIONS OF THE 6-j SYMBOL 97

Substitution of 6-j symbols into these two expressions gives

2]'1 j2 j12€2j23 jl jms}
o dis Ju)lis G i

(6-2.12) = Z (.__1)7.1+"!+!'l+1'¢.+ixa+fn+i14+fxaa+i+f1:s
X (27124 + l)gja Iz }3'72 Jr jl’g 3]3 Jis szs}
Juu J Jud s Jie Gd e 7 Juaa

a result which is used to obtain recursion relations for the 6-j symbols
(see (6.3.5)).

OTrHER NoTATIONS RELATED TOo THE 6-f SymBoL. The W coefficient
of Racah (1942) is related to the 6-j symbol by

(6.2.13) %JI s Js% = (WG G b b e )
L I, L
the U coefficient of Jahn (1951) by

6.2.14) (Bl (_pyirienen Ul fa b bi jo b)
( ) ;ll l, lsg (=D (275 + D@L + 1)]‘

The choice of phase in the 6-j symbol has the advantage that the
resulting quantity has symmetry properties which do not involve
powers of —1 or other factors.

A related coefficient, used in angular distribution problems, is defined
by Biedenharn, Blatt, and Rose (1952). It is

Z@bed;e f) = 77***[(2a + 1)(2b + 1)(2¢ + 1)(2d + D}
X W@bcd;e f)laOcOlac f0)
(The quantity on the right is a V-C coefficient.)

(6.2.15)

6.3. Numerical Evaluation of the 6-j Symbol

ForMuLAs FOR SPECIAL VALUES OF THE ARGUMENTS. Formulas in
terms of the arguments are easily obtained from the defining relation
(6.1.5) when one of the arguments is zero or 3 or when one of the
vector couplings involved has the form 7, + 7, = J.

We consider the case I, + I, = j,, which includes the other two cases.
We take m; = j; and m;, = —j, or my, = —j,. Then m;, = —I, and
m;, = l, and the sum on the right reduces to one term; the 3-j symbols
may be evaluated by the formula (3.7.11), giving finally

{i; 21:’ ll+lz} = (—=1)Jatiatii+ls

[ (24) 1 (21) 1 (1 70 0 +la 1) 11 -1 13 —79) 1(Gs -l -l =) 1 (G s —~0) 1 (Fa -1 —1)!
(20 +21s + 1) 101 +ss —h — 1) 1y +1 = 1) B +1s —50) 1 G+l -+l +- D) 1(h s = 0) 1+ =) 1h +a +ha+ 1)1
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The special cases give

(6.3.2) 3"* % j‘*f = (=D (@), + 1@ + DI
0 4 5
3:'1 g Js %

(6.3.3) 3 5—3% Jti

- (_1),-.+,-,+,-.[(j1 + js — 3G+ o = Js + 1)]*
@2 + D2 + 225 + D

"7 1 j’ ja ;
(6.3.4) } -3 53
- (e Gt o b DGt o = i)
272252 + 1)25s(2js + 1)
Expressions for the 6-j symbol with other values of the arguments

may be obtained from the above formulas by application of recursion
relations derived from the sum rule (6.2.12).

RecursioN ReraTioNs. We choose 3 as one of the j values on the
left of (6.2.12), which implies that the sum on the right reduces to two

terms.
ga b c%%b f d s(__l)m_.-b-.
d e f)(3 dta f+8
= —(2 + 1)3 a b c 2
(6.3.5) d+a e+3 f+48

X{a f e Hc d e %
3 et+d f+8) (3 et+} dta

+2€3a b csgaf esgc d ez
dta e—3 f+B) (3 e—~% f+B) (% e—% d+a

where a and B take the values =%} independently. Substitution from
the formulas (6.3.3) and (6.3.4) gives us a number of recursion relations.
We have, for example,

ga b c%
d e f
Xla+b+ec+Db+c—ac+d+e+Dic+d—ep

(6.3.6) =-2c[<b+d+f+1)(b+d—f)1*3“ b—% ""*f
| d—% e f
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+le+b—c+Dat+c—bd+e—c+Dic+e—d)

< 3& b c¢— lg
d e f
TaBurATION OF Formuras. Formulas derived in this way for 6-j
symbols with smallest argument 1, £, or 2 are given in Table 5.
Similar tabulations for the W or U coefficients have been made,
giving one argument the values %, 1, $, or 2 by Jahn (1951), Biedenharn
et al. (1952), Biedenharn (1952) and Simon et al. (1954). The case of
% is given by Edmonds and Flowers (1952). A tabulation for j = 3,
4, % has been published by Sato (1955).

GENERAL EXPRESSION FOR THE 6-j SyMBoL. A general formula has
been obtained by Racah (1942). He introduced the series expression
(3.6.19) for the V-C coefficient into the expression defining the invariant
in terms of these quantities, and after a tedious calculation obtained
a series with one index of summation. The result appears for the 6-
symbol as

6.3.7)

ylh h%=MﬁﬁﬁM%hhM%ﬁQMhthr‘h “%
ll lg l3 ll l2 l3

where
_Je+b—la—b+o~a+ b+ c)!]*
Amb@—[ @Fb+c+ D!
and
jzﬁi
L s

(=D*+1!
e === )= —L—L)e—1l,— jo— L) e— 1, — L,— j3) IX

X (,7'1+j2+l1+l2—z) !(j2+j3+l2+l3 _z) !(j8+jl+l3+ll_

and where the sum is over all positive integer values of z so that no
factorial in the denominator has a negative argument. Schwinger (1952)
has obtained a similar expression by another method.

NuMEeRICAL TABLES oF THE VALUES OF THE 6-j SymBor. There
exist now extensive numerical tabulations of the W-coefficient. The
tables of Biedenharn (1952) give the values exactly (i.e. as square roots
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of fractions). The ranges of values of arguments of his W(l, J, I, J,; s L)

are®

s 393, L : 0(1)8; I, I, : 0()4; Ji,J.: < 4

Simon, Van der Sluis, and Biedenharn (1954) give the values to ten
decimal places over a much wider range of arguments of W(abcd; ef),
namely

a:0HY; b:0H)E 0P
d :0(3)3; e:0(3)3; f:0(1)8

Sharp et al. (1954) give W(ljl'j’; s k) in terms of prime factors of the
numerator and denominator of the square of the coefficient:
L,U:001)4;s:03)4;7 = 4';0(3)5 and a few cases with j = j/ for
LU,s=20,1,2 They give also W(j 7,7 j1; L k) in prime factors for
The Z coeflicient (6.2.15) which of course may be obtained easily
from the above tables and the values of the 3-j symbol

(jl Jo ja>
0O 0 0

(cf. (3.8)) has been tabulated for limited ranges of arguments by Bieden-
harn (1953) and by Sharp et al. (1954).

6.4. The 9-j Symbol

AnorHER CoUPLING SCHEME FoR FoUR ANGULAR MoMENTA. We
have already considered one case of transformation between two coupling
schemes of four angular momenta; this gave rise to the Elliott-Bieden-
harn sum rule (6.2.12) for 6-j symbols. The transformation we shall
now deal with is of more general interest; the transformation coefficient
may not in this case be expressed as a simple product of two trans-
formations of type (6.1.3). The two types of state vectors to be con-
sidered which are built up from the four basic vectors u(j, m,), u(j, m,),
u(Js ms), and u(js m,) are w((jr j2)jre, (Js Ju)Jss, M) and w((Fy js) frs,
(J2 Ja)J2ey § m). The transformation

(41 J2)dras (Js Ga) Jsay J m|(Gr Ja)Jas, (Ja Ju) Jaa, 5 M)
which connects these two schemes may be performed in three steps;
a dummy index j’ is involved which we sum over in the final expression.
In each of the steps recoupling of only three angular momenta is carried
out, so that the transformation coefficient may be expressed in terms of
the 6-j symbols. We have thus, dropping as usual the superfluous
magnetic quantum numbers,

3Using the usual convention where the number in brackets is the interval of -
tabulation; i.e. 4(4)3 implies the values 4, 1, 4, 2, 8, 3 and 0(1)4 implies 0, 1, 2, 3, 4.
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(71 Ja) Jazs (Js J9) Jsas J1(Gr G2 dusy (G2 Go) Jaar 9)
= ,E ((J1 J2) 125 Jaay I3, (G2 Jaa) 3’y 3)
X (J2, (Js Jo) Jaas 3’1 Tss (J2 Ja) J2as 3°)
(6.4.1) X (J1, (Js 72035 31(J1 Ja)Tias Joe J)
= [(Zf12 + D2fac + (215 + D(2524 + 1)]}
X 2 (=D + 1

ngl 2 Jgg] ja 3233 au j;
Jso 3 3 VUi J Rd U3 S ds
Such a recoupling scheme occurs quite frequently, and we are led

to the examination of yet ancther kind of rotational invariant.

DEFINITION OF THE 9-j SymBoL. The 9-j symbol* is defined by the
relation

(41 jz)ij (73 .7'4).7.34; .7|(Jl js)jxs, (.72 j4)j24, i)

(6.4.2) | jjl Z j”‘l
= [(2j12 + 1)(2j34 + 1)(2j13 + 1)(2j24 + l)lilja jq. j34§
Jis Jes J

I.e. we have, choosing a symmetrical set of labels for the j's:
jll le jla
Ju Jer Jug = 2 (—1)*(2 + 1)
Js1 Ja ,7‘335 r
y ;y o J% %J Jaa y% 33 jas J$
Jsz Jsz k) (Jan K Jos K Ju
If we replace the 6-j symbols by the appropriate 3-j symbols, making

use of their orthogonality properties, we find the remarkably symmetric
expression

s |

jll j12 j13

j21 j22 j23

j31 j32 j33§
(6.4.4) S <y iz a>< jan y>< jar Jan ;z)
S Ny Mys mys/ \ Moy Mgy Mas/ \ Mgy Maz Mgy

X(]u j21 j:n)( iz jzz jaz)( Jiz Jas .733)
my; Mz Mgy, Myg Moz Mizz/ \Myz Maz Mgy

‘Wigner (1951).
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We can cast some light on the significance of this 9-j symbol by
returning to the discussion in (6.1) of the contraction process on products
of 3-j symbols. The next most complicated contraction diagram after
that associated with the 6-j symbol would appear to be that in Fig. 6.3.

Fig. 6.3

However this diagram may be shown to correspond to the product of
two 6-j symbols appearing in the Biedenharn-Elliott sum rule. Another
diagram with 9-j values which satisfies the conditions (3 lines leave
each vertex, each line terminates at two vertices) is the linkage of Fig.
6.4.

Fig. 6.4

Reference to the expression (6.4.4) for the 9-j symbol in terms of
3-j symbols shows that this diagram does indeed correspond to the 9-j
symbol; the labels on the lines give a possible assignment of j values.

THE SYMMETRIES OF THE 9-j SymMBoL. It is clear that we may
permute the rows or columns in the matrix forming the 9-j symbol, or
transpose the matrix itself, producing at most a change of sign of the
numerical value. An odd permutation of the rows produces an odd
permutation of the j’s in each of the last three of the 3-j symbols in
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(6.4.4), with no change in the first three; an odd permutation of the
columns, on the other hand, gives an odd permutation of the j’s in
each of the first three 3-j symbols. Transposition (i.e. replacing rows
by columns and vice versa) merely alters the ordering of the 3-j symbols
in the product. Hence the symmetry properties of the 3-j symbols
(3.7.4) and (3.7.5) show us that an odd permutation of rows or columns
produces a sign change of

(6-4-5) (__-1)511+ixn+i1:+isl+inn+ins+i:x+ian+ia:

An even permutation or a transposition clearly leaves the symbol
unchanged. The symmetry group’ may easily be shown to have 72
elements, being the product® of the three permutation groups of three,
three, and two objects respectively; i.e. G@ = S; X S3 X 8,.

ORTHOGONALITY AND SuM RuLes. These are derived in exactly the
same way as for the 6-j symbol; we have

> (s + D + D(@is + )22 + 1)

f1sise

(6.4.6) jl j2 jlz jl j2 j12

. . . . . . = 6illill'8il6i;ﬁ'
l]a Ja .73451.73 Js  Jaa
jla jﬁ‘ j j{x j;4 j

from the unitary property of the recoupling transformation on four
angular momenta. The multiplicative property of the transformations:

iz ((.71 ja)jm, (js j4)j84; ]l(]l ja)jxa; (.72 jt)jzh j)
X (71 Ja)Jrss (J2 Ja) Jzes JI(JI 30 Jray (G2 Ja) Jas, D)
= ((Jr J2)Jr2s (Ja Ja) Jaes JI(J! J&) Jray (J2 Ja) Jass b))

gives the sum rule

Z (— 1) atiaetinazine

i Ja Jujld J2 s
X l.?s j4 j345 j4 jz j245(2j13 + 1)(2j24 + 1)

64.7) dio g G M du
oo s i
= j4 '.7.3 ja4
ju g d

8Cf. Jahn and Hope (1954).
8See Littlewood (1950).
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Relations linking the 6-j symbols and the 9-j symbols may be obtained
by making usc of the orthogonality properties of the 6-j symbols or by
the composition of recoupling transformations. We get for example from
the expression (6.4.3) by use of the orthogonality of the 6-j symbols
(6.2.9) a relation which is of some use in computing numerical values
of 9-j symbols.

Ju Jiz B . .
. . %]11 Ji2 I‘g

Z(zﬂ+1) j21 Je2  Jeos ] .
(6.4.8) ’ Eju Jaa jsas J2s Jaz A
=(_1)2x§j21 Joz ]'23%3]'31 Jaz jaas
j12 A j32 A jll j21.

FurTHER REMARKS ON THE RECOUPLING OF FOoUR ANGULAR Mo-
MENTA. We have already seen how two different recoupling coefficients
associated with four angular momenta have been given in terms of a
product of two 6-j symbols and a sum of products of three 6-j symbols
(the 9-j symbol) respectively. It may be shown that every coefficient
associated with a recoupling of four angular momenta which is not
simply a recoupling of three of the four may be expressed in one or
other of the above ways. For example we have

((jl j2)j12} ja; j123; j45 Jl(j4 jZ)j24) j3, j234) jl) j)

— (___ 1)fx+i¢+iint+i:u.+2i

X (213 + D1z + 1D(Zf2e + D)(2nse + DI
jz j4 j24

X\ 7 J2as
lj 12 j 123 j3 5

The recoupling of four angular momenta is evidently involved in the
transition from LS to jj coupling; see for example Condon and Shortley
(1935) and, for the application of the 9-j symbol, Edmonds and Flowers
(1952). It arises also in the evaluation of matrix elements of tensor
products'of tensor operators, a subject dealt with in the next chapter.
The recoupling coefficients are also very important in the computation
of fractional parentage coefficients; these computations sometimes
involve the recoupling of five angular momenta, which brings in the
12-j symbols, to be mentioned shortly. The reader is referred to the
papers of Elliott (1953) and Jahn (1954).

OtaER NoTATIONS FOR THE 9-j SymBoL. The x function of Hope
and Jahn (cf. Hope (1951), Jahn and Hope (1954)) is defined directly

(6.4.9)
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in terms of the recoupling coefficient. We have thus
a b el
(6.4.10) K%+Dm%4mm+m%+nﬁcd.%
g h k
= x(abcd;e f;gh;k)
The 8 function of Schwinger (1952) is given by

ylﬁ m]
(—)+ieiv=inel 5o G0 g
ljla Jes  J 5
= S(J1 J2 Ja Ja; Jrz Jaa Jus Joa; J)

Fano’s X function is identical with the 9-j symbol, and is written
alternatively (cf. Fano (1952))

(6.4.115

hoJa ]
(6.4.12) X$ds Jo 7 =X(GrJadsdadads bk J)
110 k’ J5

The coefficient of Coester and Jauch (1953) is the same as the re-
coupling coefficient (6.4.1). Hence we have

(cc’|Taa’ b b d)le f) = ((a ble, (@’ )¢, d|(a ade, (b V)f, d)

(6.4.13) 5" b "l
= [(2c + 1)(2¢’ + 1)(2e + 1)(©2f + DIFKa’ b ¢
Loy odf

EvaLvaTioN oF THE 9-j SymBoL. The expression (6.4.3) giving the
9-j symbol in terms of 6-j symbols shows that a 9- symbol with one
argument zero reduces to a 6-j symbol times a factor:

A S M O
szof fcas ldfb5
ffo fl>q Safc

={d ¢ e; =0 e e;=%e 0 e
(6.4.14) Eb a es lf a c§ lb d
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I A U A U
LG 0

- ( 1)b+c+¢+f a
K%+n@ﬂ+m*dc

where the symmetry properties of the 9-j symbol have been used to
cover all cases.

Evaluation of the 6-j symbols in (6.4.3) is one way of determining
9-j symbols with no zero arguments. The symbol should be arranged
so that the smallest argument j.;, does not fall in the positions 13, 22
or 31. If this is done, the sum over x has at most (2j,:, + 1) terms, and
if Jmia < 2 we may make use of the formulas of Table 5, to give a fairly
simple expression in terms of 6-j symbols. For example we get for the
general 9-j symbol with jm:, = %:

3 bb+ﬁ

d e f
1d+% h &k 5
(_ 1)b+d+f+h

~ (2 + D[(2b + 1)(2b + 2)(2d + 1)(2d + 2T
(6.4.15) ([(=b+f+E+DO+f—k+PDE+R—Kk+}) |

x@d+h+k+aﬂd ’ Q
b k+3% h

+[b+f+Ek+DO-Ff+E+DA+R+EL D

xw—h+k+aﬂd e %
b k—3% h)._

However (6.4.8) sometimes gives a simpler expression in the 6-j symbols;
see for example (6.4.17).

Numerical values of certain 9-j symbols have been tabulated by
Sharp et al. (1954)

a b ¢
50,’ b e has been given for a,a’ =1,2; b,c:1(3)5 and g, h, k
1 with even integer values less than 9.

g h k 4

These choices of arguments are used in analysis of triple correlations
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of nuclear radiations in which the intermediate radiation is a gamma ray.

a b c

a f has been given for reactions with polarized particles with
channel spins < § and orbital angular momenta < 3.

E k1

THE 12-j SymBoLs. In the theory of fractional parentage coefficients
it is sometimes necessary to consider recoupling of five angular momenta,
and the 12-j symbols have therefore been introduced. There are two
distinet types of symbol, corresponding to the respective diagrams I
and IT in Fig. 6.5. The properties and applications of these quantities

Fig. 6.5

are discussed in the papers of Jahn and Hope (1954), Ord-Smith (1954)
and Elliott and Flowers (1955).

CompuraTioN ofF LS-jj CoupLing Corrrictents.” The LS-jj
coupling transformation coefficient is given by

((ll l2)L; (81 82)8; Jl(ll 31)j1, (l2 S2)j27 ‘I)

(6.4.16) Lo L L
= [(2L + 1)(28 + 1)(2j: + (2. + l)l*lsl 8 8
v Ja J

Since s, = s, = 3, S may take the values 0 or 1. If S = O the right-
hand side reduces easily by use of (6.4.14) to

(_1)lx+i.+.r+§[(2j1 + 1)(2j2 + 1)]%3J jl ]2§ '
2 P L oL
We may evaluate the 9-j symbol for S =1 by use of (6.4.8) and (6.4.14):

“Cf. Condon and Shortley (1935).
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(LR B
3;J L 1% L (=1 %J L, z,saw

33 xf : g 2027+ Dy 5 g,
(6.4.17) v Je

:_(_l)ngjl Ja Jégz, 2 L;
LER A K¢ SID N

where A is given the value (L + J)/2if L= Jor L+ }if L = J. We
get for example the transformation coefficient

(LWL, GHL, I =L+1uLHPh+ 3, LGP+ 3, J =L+ 1)

B [(zl +L+J+ DU+ L+ T+ L+ D=L+ L+ J)]*
- 2J2J + 1)(2l, + D)2, + 1)




CHAPTER 7

The Evaluation of Matrix Elements in
Actual Problems

7.1. Matrix Elements of the Tensor Product of Two
Tensor Operators |

TENSOR OPERATORS OPERATING ON THE SAME SystEM. The tensor
operators T(k,) and T(k;) are built up from the same coordinates,
momenta, etc.

The reduced matrix element of the tensor product X(K) of T(k,)
and T(k,) is given by
O FNXEy D) = 2 (ks qu koo @albi ks K QUK Q j m|K 7 7 m')

@122Qm

X (=DF@Q + 10 X G m | T gy 5 m')

y i me
X (v’ 7" m"iT(kz q:) l'Y Jjm)

The product of the reduced matrix elements of the individual operators
is on the other hand

O FITE Y 3G 37T |1y )
= Z (kl Q1 ju mnlkl jn jr mr)(k2 q2 jm]kz .7 jn mn)

q1qsmm’’

X (=DM 4+ 12 4+ D
X (,YI jl mrIT(kl ql)!,yn jn mu)(,yn j" m"|T(k2 Q2)I'Y .7 ’ﬂ‘L)

We have made use here of (5.4.2) and the symmetry properties (3.5)
of the V-C coefficients. Attention should be paid to the indices over
which summations are carried out.

On inspection of the two above equations we see that two coupling
schemes of the three angular momenta k,, k,, and j are involved. Thus
we may apply (6.1.5) and relate the two reduced matrix element expres-
sions by means of the 6-j symbol

o FIXBy ) = @K + DH-DF ¥ 3’“ b K‘
(7.1.1) 4 g 3 g
X & FITERIb 76 7 1TE b 9

TENSOR OPERATORS OPERATING ON DIFFErENT SysTEMs. The tensor
operators T(k,) and U(k,) are supposed to work on parts 1 and 2 respec-
tively of a system, i.e. they commute, and we shall derive an expression

109
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for the reduced matrix element of the tensor product in the coupled
scheme in terms of the reduced matrix elements of the individual
operators in the uncoupled scheme. The quantum numbers j, m,, j; m,,
and J M refer to the parts 1 and 2 and the whole system respectively.

We first make use of (5.4.2) and (3.5.14) to obtain an expression for
the reduced matrix element of X(X) in the coupled scheme (y 7, j; J M)
in terms of the matrix element in the uncoupled scheme (y j,. m, 7, m,):

&' 3t 35 JIXE by 4: 42 HEK + 1)7
= E (J'M'JMIJ'JKQ)(jlm1j2m2|j,j2JM)

(7.1.2) QMM 'mimsmy ' my’
X (G mi g5 mili G5 J* M= 1y +ineme
X ('Y' .7{ m] Jﬁ.” m;|X(K Q)I'Y jl —m, jz —ms)
The reduced matrix element of the simple product of 7T'(k, q,) and

U(k, ¢.) is now expressed in terms of the same matrix element of X(K Q);
we use here (5.4.2) and (5.1.9).

(v 71 33| TEIUG) | Iy 42 3271 + D2k, + D]
= 2O 3 allTED " G 33
(7.1.3) X (0" 3 BIUGE |y 5o )12k + 1)(2k, + D]7?
=mm;'m§.'cm.o (71 m{ 32 md| 5t 51 by @)(g3 m3 ja Ma| 54 Ja K2 a)
X (ks g1 ks @alks ks K Q) -(—1)72+ietmatms
X (' jiml jh mi XK Qly ji —my j» —ma)

We see immediately that these two expressions are associated with
different coupling schemes for the anguiar momenta ji j,, 75, 7, and the
left-hand sides are related by the corresponding transformation coefficient

&' L 35 TNXE |y 5r G2 HEK + 17H
= Z R HILCNTLED)

X (" jllUE |y )2k, + 12k, + 1]
X (71 3k, (32 J2)kay KI(GE 5D, (41 32, K)
Thus (6.4.2) gives the desired relation involving the 9-7 symbol:
(' 31 95 J'NIXED Ny Gr d2 )
= :Z (' FTE) [y 306 331 UK |y 72)
(7.1.5) i n k
X [ + D@J + DK + DI i 4 ks
J' J K

(7.1.4)"
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A number of useful relations may now be obtained by specializing
this formula, making use of the expressions (6.4.14) for the 9-j symbols
with one argument zero.

ScaLArR Propucr oF Two CommuriNg Tensor OperaTors. The
matrix element of the scalar product (T(k).U(k)) in the scheme
(v71 7. J M) is gotten by setting K = Oand k, = k, = kin (7.1.5).

(' g1 gz I M'|(T(k) -UED |y 51 j. J M)
(7.1.6) - (_1)n+f.'+J5J,J5M,M=J 7 JIE
E Ji Je
X 12 O FEITE Iy 76" FEU® |y 52)
SINGLE OPERATOR IN CoUPLED ScHEME. We obtain the reduced
matrix element of a tensor operator T(k) working only on part 1 in the
coupled scheme (v j,j. J M). We put k, = 0 in (7.1.5), substituting
Uk) = 1.
O 31 32 J[TE) |y 41 G J)
(7.1.7) —_ (_1)i1'+f:+.’+k[(2'] + 1)(2J' + 1)]};,7{ J' ]2;
J 5k
X (v FilITR)ly 30
In the same way for a tensor operator U(k) working only on part 2,
(' gy 33 I [[UE ||y 51 Gz I)
(7.1.8) = (~1)" RS + )@+ 1)]’3 M Jf%
J J2 k
X (v #U®E] . 52)

MAaTRIX ELEMENTS OF ANGULAR MoOMENTUM L, 1N SceEME (}, [ [ m).
We take a simple example of the application of (7.1.7); we compute the
expectation value of the z component of L, in the scheme defined by
the vector addition L. = L, + L..

We have for the reduced matrix element

(L LYL|L LD

— ﬁ(_l)l;+l.+l+1(2l + 1)311 l lz

I I, 1
by use of (5.4.3). Evaluation of the 6-j symbol gives

(ln la llILnlll; l, Q = Zl(ll + 1) + ZG + 1) — lz(ln + Q
@+ 1t 201 + 1]

zuzzl + 1@ + Hul
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This corresponds to the projection of L, ¢cnto the L axis, given in the
semiclassical procedure by

L) _Li+L -1 G+D+W+D—bh+1)
I+ D~ 200+ P 201 + DY

The expectation value of L,, in the state [, [, [ m is given by (5.4.1)

[ 1 1

(L LIm|L, L L 1Im) = (-1)‘.“’"< )(ll LIULL LD

—m 0 m

m{L(L, + H 4+ I+ 1) — L + 1}
20l + 1)

The result corresponds to the classical idea that L, is in a state of
precession about the direction of L, and that the mean value L,, of the
projection of L, onto the z axis is obtained by first projecting L, onto
L and then onto the z axis. (See Fig. 7.1)

Fig. 7.1

ZEEMAN ErFrEcT. The above results may be used in computing the
Zeeman splitting of atomic spectra with a weak field (cf. Condon and
Shortley (1935) p. 150). If the field is along the z axis we have in Condon
and Shortley’s notation,

H* = %ﬁ (L. + 28,

This quantity is to be computed for a state with definite J = L + 8,
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and we get
J 1 J

(SLJ M|H"|SLJ M) =<
-M 0 M

)[(SL JILIS L )

+ 2S L J|S||S L D]

M

=W FD BJWJ + 1) — L(L+1) + 88+ 1]
The reader may show for himself that Condon and Shortley’s result on
p. 151 is gotten by setting S = 3, L = [, and J = | + %.

Marrix ELEMENTS oF THE SpHERICAL HARMONICS IN jj-CoupLING.'
The reduced matrix elements of C* (for definition see (2.5.31)) in the
77 coupling scheme, i.e. the (3I'5'||C(k)||317), are obtained by reference to
(5.4.6) and (7.1.7). Note that the formulas are independent of whether
I =7 +4

G U U£3|CRIF T I+

e LS BRI R )
G+ 5+ k+ D!

™

Y (J‘ + 7+ k+ 1>,
X 2 '
(j, ti—k-— 1)!(j+ k — j’)y(j’ + k — J)'
2 : 9 : 2 !
GUUx3CRIFITLFD
=2-(—1)<f+'=-f'-1)n[<3" +i =BG +HE— P+ k= j’)!]*
(7.1.10) G +7+k+ D
(j' +Jj+ zg),
X 2 '
(Lt j=R)(Ltk=i=d)(itk—s =1),
2 ) 2 : 2 !

7.2. Selected Examples from Atomic, Molecular and
Nuclear Physics

CeNTRAL Two-Bopy INTERACTION. We consider the matrix elements
of a central interaction between two particles in a scheme where the
total angular momentum of the two particles is a good quantum number.
The interaction is supposed to be some function V(r,;) of the distance
712 between the particles, whose position with respect to an origin O
is given by two vectors r, and r,.

1Cf. Racah (1942).
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The expression

1 -
— = [r? + 72 — 27, cos 6;5]7}
T1a
where 6,, is the angle between r, and r,, may be developed in a series

of Legendre polynomials (see (2.5.12))

1 d g
-_ = kz: fo Pk(cos 012)
=0

¥
T12 >

where r. is the lesser and r, the greater of r, and ry. The interaction
V(ri2) (of which 1/7,, is a special case—the electrostatic interaction®)
may be developed in a similar series

Vire) = 2 (2k + 1) Vilry, r2)Pi(cos 0.2)
k=0
where
1 r" .
Vk(rly 7'2) =95 f V(Tm)Pk(OOS 0) sin 6 do
2 Jo

Expressions for the V, in the case of typical nuclear interactions, e.g.
the Gaussian

2
V) = —B exp — (22)

and the Yukawa

_ Bexp —ru/a
V() = — T3/ G
are given by Swiatecki (1951).

Now the quantity P.(cos 8;,) is given in terms of the angles of the
vectors 1,, I, by the spherical harmonic addition theorem (4.6.7) the
right hand side of which may be considered as a scalar product of the
tensors C® (8, ¢,) and C* (6, ¢2). The matrix element of Pi(cos 61,) in
the ‘coupled scheme follows from (7.1.6) and (5.4.6)

(I UV m'|Py(cos 0:5)|L I, 1 m)
= UV m|(Cs-Calh L. L m)
LU

_ (—.1)1,+l,’+15”’5mm'3
ElL L

b@u+n@u+n@u+n@u+nr

y (z, k u)(z, k z;)
0 0 0/\0 0 0/

8Cf. Condon and Shortley (1935) p. 174.
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which may be evaluated by reference to Table 5 (p. 130) and (3.8).
The radial part of the matrix element is expressed in terms of the
generalized Slaler integral

F®n, 1, nl Unj 1)

= (2k + 1) f f Vk(rl ’ r2)Rn1 i 1(r1)an 1 n(r2)Rn1 'l '(rl)R"z 'l 3 ’(T2)Tfr§ drl de
: 0 0

where R, (r) is the radial part of the appropriate single particle eigen-
function. Methods for evaluating such integrals in nuclear problems
are given by Swiatecki (1951) and Talmi (1952).

HyYPERFINE STRUCTURE oF SymMMmETRIC ToP MOLECULE.? The
electrostatic interaction between a nucleus and the remainder of elec-
trons and nuclei in the atom or molecule is given by

' l
H, =42 T&“ = + X ewe, =% Py(cos 6,)
ip Iy — T pl inl T

where e, is the charge of the pth proton with position vector r, in the
nucleus in question and e; is the charge of the ith electron or proton
with position vector r; in the remainder of the atom or molecule. 0, is
the angle between the vectors r; and r,.

'We consider the quadrupole term only in the multipole expansion

on the right, and use the spherical harmonic addition theorem (4.6.7)
to obtain

Ho = 3 (=D, 3 C(0:0)C % 00,) = (V-Q)

ira

where

€;
V=23C00), Q=X eiC (00,
We define now the following relevant quantities:

= spin angular momentum of nucleus in question.

J = angular momentum of the rest of the molecule (we _ssume the
coupling between I and J weak in comparison with those couplings
between the various angular momenta making up J).

K = component of J along the figure axis (z axis of moving frame).
M = component of J along the fixed 2 axis.
F = total molecular angular momentum (= I + J).

The reader is referred to Ramsey (1953) for a detailed traditional treatment of
this and allied problems. Octupole moment contributions to hyperfine structure
are computed by Schwartz (1955).
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The quadrupole splitting is then given by
=(aJ KBIF Mz|(V-Q)laJ KB I,F M)

2 J 1

where a, 8 represent all relevant quantum numbers not related to
angular momentum. The presence of the quantum number K should
be noted; this is associated with the fact that the symmetric top eigen-
function is of the form*

=(_1>I+J+F%F‘ ! J%(aJKHVHaJK)(BIHOHBI)

Dix @B y)-@J +

where a 8+ are the Euler angles of the molecule and E is the scalar
factor of the eigenfunction (cf. (4.8), Herzberg (1939)).

We refer to the previous example for the reduced matrix element of
the nuclear quadrupole moment; we have

@IIQlE D = (=D"-3 GBI X 67 - mﬁm/( I 2 I)
-1 0 I

_ 2l +3 | eQ
= @I+ 1)[1(21 - 1)] 2

Use is made again of the spherical harmonic addition theorem to
evaluate the z component of the tensor operator V:

Vo = Z _e%: 032)(00 ‘Ps)
—_ E( 1)«0(2)(6 ‘b) Z 29 C(z)(e” (I))

where 0, ®, O;,®,; are the angles of the fixed 2z axis and the position vector
of the sth electron respectively with respect to the frame of referenre
moving with the molecule.

Now we may evaluate the matrix element of C.>(6,®) observing
from the definition of the Euler angles (1.3) that 6 = 8,® = = — 7.

We get accordingly
(«J K M'|CP(68)|a J K M)

(2J + : [jffD‘”' (@ B 1)L (8, 7—v) Dirrla B ) dasin B dB dy

(2J + D j‘ffﬁu)* (@ 8 7) DB (x B ) DYn(a B7) dasin B dB dy

‘Cf. (4.1) for normalization of the angular part.
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where the relation (4.1.25) has been employed. The value of the integral
is given by (4.2.7) and (4.6.2)

(@ J K’ M'|C(D, ®)|« J K M)

=(_1)x'—u'(2J+1)< J 2 J)( J 2 J)
-M’ 0 M/\-K' —q K

Since we consider qnly matrix elements diagonal in K we have neces-
sarily ¢ = 0.

It is convenient to express ). (e;/r3)C$? (0, ®,) in terms of the
electrostatic potential V' due to the remainder of electrons and protons
of the molecule surrounding the nucleus with the quadrupole moment:

19'V

g gy L9V
E.-Tg CO (en q)n) 2 azlz

where the coordinate 2’ is in the frame of reference moving with the
molecule.’
We obtain finally the reduced matrix element of the electron operator

(@ J K||V|la J K)

=%<§a;._}; a(2J+1)(_1)J+K( J 2 J)

—-K 0 K
N 2J + 1 '
=5 <—-a—z—,§ a[3K - J(J + 1)][(2J - DE@J + )N + 1)]

Evaluation of the 6-j symbol gives us the quadrupole splitting in terms
of quantities supposed known:

N <a=V> BK’> = J(J + DI3CC + 1) — IU + DJWJ + D]
@~ 9 \a?/, 12T — 1)2J — DI + 1(2J + 3)

where C=FF+1)-II+1)—-JJ+1

This result corresponds to that of Ramsey (1953) p. 422. It may be
shown by a lengthy calculation (Ramsey (1953) p. 373) that the quadru-
pole interaction may be expressed directly® in terms of the angular
momentum operators I and J. The relevant factor is

3(I-1)*+31.J- I’y

This expression may be evaluated to give the same result as obtained
above.

$Cf. Ramsey (1953) p. 377.
sSee also Schwinger (1952)]Eq. 5.88.
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MacgnETic HYPERFINE STRUCTURE.” The interaction of a nuclear
magnetic moment with the spin magnetic moment of an electron is a
particular example of a fensor interaction, and is given by (cf. Kopfer-
mann (1940))

H, = —a,I-{s — 3’5,’;'5)} (1 > 0)

where I is the nuclear spin and r and s the position vector with respect
to the nucleus and the spin vector respectively of the electron. The
constant a; is given by

o = R )3 oo

where R = Rydberg constant

o = fine structure constant
a, = Bohr radius
m/M = electron-nucleon mass ratio

g(I) = nuclear g factor.

We may form a tensor operator X of rank 1, namely

X(lg) = 2. s(1 ¢:)C(0,9)(1 1 2 |12 1 @)

Q1ds

Then

{s _ 3r§'1;- s)} ~ VIoX

The factor /10 is easily obtained by computing the ¢ = 0 component
of X and comparing it with the z component of the left-hand side.
Now let J be the total angular momentum of all the electrons in the
atom and F = I 4 J be the total angular momentum of the atom.
Then the net effect of the magnetic interaction between nucleus and
electrons is

ABy = (@ J,I,F Me|Hyla J, I, F M)

(=17, /0 (@ + DIU + m*;F IJ $<a J\IXlla J)
1 J I

[2J(2J + 1)EJ + 2]

where we have employed (7.1.7) and Table 5 and the reduced matrix
element of X is supposed taken over all electrons. In L-S coupling the

7Cf. Trees (1953), Ramsey (1953).
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diagonal reduced matrix element of X is given by (7.1.5):
(@SLJ|X|laSLJ)

55 1 sl
= \/§(2J+1)zL 2 LS(aSHsHaS)(aLHYzH“L)
J 1 J

The reduced matrix elements on the right are given for I1-electron
spectra by (5.4.5). Their evaluation for various configurations is dis-
cussed by Racah (1942, 1943). The 9-j symbol is computed by means
of (6.4.17). We obtain, putting A = L,

S+L+J+1
SSISI ;SLJngLsz_*_(;é)L_l_l) §SJL$
Lo S (L 8 WIL J 1 J S 1

L T

INTENSITIES OF HYPERFINE TRANSITIONS FOR A SyMMmETRIC ToOP
MoLecuLE. In the rotating frame of coordinates only one component
of the electric dipole moment y’' has a nonzero expectation value,
namely ug = uin
_ The first step is transformation to the fixed frame of reference
(cf. (5.2.1)):

(ro = (}; w0, (@ B )

= (WD (@ Bv) = WhHCV (B, v)

where we have used (4.1.25) and (2.5.31).
We sum over final states and polarizations to obtain

Intensity ~ > |(I J, K: F; M,|ulC"@B, W J; K, F; M)|*

Mg

72
= g WU T K RICV LI, K, )

where the summation over the squares of 3-j symbols is given by (3.7.8).
Application of (7.1.8) results in ‘

2,7.- F, Ig
F; Jf 1

= ﬂ(,)2(2FI + 1)(2J¢ + 1)(2J! + 1)

2
|(J: KJICP NI, K]

;J.- F, I$< Ji 1 J,)
F f J ! 1 ""K s 0 K 7
where the reduced matrix element of C’ has been evaluated by the
method used in the previous example.

M52(2F ¢+ 1)

2
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SuM RULE ror TransiTions IN L-S CourLing. The total intensity
of, say, a dipole transition in L-S coupling is given, following Condon
and Shortley (1935) p. 238, by

S@SLJ,a’ SL'J') = |(@a SL J||P|le’ SL' J)]|*
which is shown by (7.1.8) to be equal to

3L J 8 g
J' L' 1
The orthogonality of the 6-j symbols (6.2.9) furnishes the sum rule
(cf. Condon and Shortley loc. cit.)

2

2J + 1@2J’ + 1) | L]|P|le’ L)|*

1 .
S S@SLJ, 8L ) = (gi i 1)|(a L{|P||e’ )|




APPENDIX 1

Theorems Used in Chapter 3

The binomial coefficient

(n)En(n—l)---(n-—-r+1)

r r!

is given for positive integer n by nl/r!(n — r)! and for negative integer
= —p, (v > 0) by

fr+r—1y _ (=D'v+r-—1
(—l)( r )— r riy — 1!

The addition theorem for the binomial coefficients,

20L2)-077)

is obtained ky considering the coefficients of z'y"™" on either side of
the identity = + y)"(z + )™ = (z + y)**™. If we suppose n and m
positive, we get immediately the relation

A1) X [elm = r + Aln — Al — AN = (m + m)!

T nlmirln + m — 1!

Wesetn > 0and m = —u(u > 0) and obtain

z,:(_l)’(t)<"+:: :" 1) - (u—n;l-r- 1)

On putting p = p 4+ r — 1 we have

_ (@ — 0! _pp=mlp—n! cp2n20,
(A1.2) 2 (=" oy T = nblp — 1 = 1)1 ‘fp?_ >0

In a similar way by putting n = —», m = —pu we get after the re-

placementsp =c+ o, v+ c—1=a,p+r—c—1=b,r —c = d,

ct+lb—0)! (@+b+4+ Dlla—20)l(b —d)!
ALY =) T DT b—o—dF DI
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APPENDIX 2

Approximate Expressions for Vector-Coupling
Coefficients and 6-j Symbols®

The vector-coupling coefficient arising when one of the angular
momenta involved is supposed small compared with the other two
may be expressed approximately as a matrix element of a certain finite
rotation. We must suppose also that the z components of the large
angular momenta are large compared with the small one. The relation,
using an obvious notation, is

(A2.1) Gmd M|jJJ m4+M) =< (=1)""7"7"dy_; (0

where

_ M |2 + 1) —2m |
m”“ﬁﬁiﬁ?amsma‘hw+nu+n]

When J is sufficiently large, we may of course write cos § = M/J,
etc. In giving the values to be inserted into the d function (cf. (4.1.11))
for cos @ and sin 6, it has been assumed that j is an integer. Similar
replacements may be made for cos 6/2 and sin §/2 when this is not the
case.

We take as a simple example

$
(11J M|LJ J+1 M+1) = [J(J + 1) +2JM + MM + 1)]

2J + D@2J + 2)
di(6) = 3(1 + cos 6)

and see that J does not have to be very large for the agreement to be
close.

The approximation problem for the 6-j symbols is more complicated,
and not only since there is a greater choice of which arguments become
large and which small. We shall consider one case which seems to be
of interest in practice, namely when all the arguments except one are
large. The corresponding approximate relation is |

J Ja Jl
Jj Jits Jot4

(__1)1;+J’g+1

= [@J, + nes, + np

(A2.2) 3 d3, .5.(0)

1The proof of these expressions, which may be carried out using a modified fomg
of Kramers’ symbolic method (cf. Kramers (1930, 1931), Brinkman (1956)) will
be published elsewhere.
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where

J(J +1) — Jl(Jl +1) ~- Jz(Jz
2[0:(Jy + DJo(Ja + DI

which corresponds to the 6-j symbol

3.1 J, J,%
1 J, J,

We have a more complicated expression for sin 8 (see Table 5 for

J J.  J

M)
When 6, = §, = 0 (and j = integer) we have
J J, J,s

J Ji Js

a result given by Racah (1951).

It is instructive to apply these relations to the formulas for the
matrix elements of tensor operators given in Chapters 5 and 7; the
correspondence between quantum mechanical and classical results is
clearly demonstrated. Such correspondences are of importance in such
problems as that of Coulomb excitation of nuclei, where, due to the
long range of the Coulomb interaction, large orbital angular momenta
are important.®

3Cf. Alder et al. (1956)

D (ef. (7.1)

cos § =

-~ (__1)J1+J,+J

= [@J: + D@J, + D]

(A2.3) 3 i Pi(cos 6)




124 TABLES

Table 1. Harmonic Pelynomials and Spherical Harmonics.

(ylm(r) = rl Ylm(e’ ‘P)

n Cylm(r) Ylm(o) ¢)
0 1 1
2vV'r 2vV'7

1 3
0 2\/;z
1 f3 .
0 l\/§ 22 — z° — 3"
4 N7
1 [15 .
:1 =F§\ ’-2—7; 2(x £ 1Y)
1B,
:2 \'2, (x = 1y)
l Z_ 2 — 2 — 2
0 4¢ (22 3z 3y°)z
- _:_l'_ g_l 2 — 2 — 2 *
-1 :FS" - (42 x ¥ )z £ 1Y)
=2 1\/10 2(x + 1y)’
4
1B e
-3 :F8 - (x £ 1)

1\/5 cos 0
F \/ sin @e™’
-1-\/5 (2 cosg® § — sin® 6)
4N
1 /15 . “io
=F2 o cos 6 s1n fe
1 (15 . 5 , w2ip

1 é;sm ﬂer

i\/;zr@ cos® § — 3 cos 0 sin’ 0)

=Fé\ ’—2;1- (4 cos® 0sin § — sin® f)e”®

\/105 cos 0 sin® g *'*
4
\, sin® 0"3"

)

1

rreducible tensors containing in addition the" components of some other vector r’ mq
constructed by polarization of the harmonics with the operator

’, — I_a_, I_a_. '_Q.
V=2 Ty, T

Rose (1954).
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ji 2 da =(_1)u[(jl+jz—ja)r(j,+js—jz)!<j2+j3—jo!]* 3! .
0o 0 o Gi+ 2+ g5 + D! GJ = NG - G ~ !

if J is even.

(Jx Ja 13>=0 if Jisodd where J = j, + j, + js

J+3 J 3 J-—u-;— J—- M43 ¥
(=1 J+3, 7,9
( M —M-} %> |27 +2)@J + 1)]
<J+1 J 1) (—py-| = MU = M + 1) ]*
(2] + 3)(2J +2)(2J + 1)
MoomM=l ) (J+1,J,1)
(J+1 J 1) (—pyw-[ T+ M+ DT~ M+ 1)-2]*
M M 0 L @7 + 3@ +2@T + 1)
4
(J J 1) (_1),,,,[0 - MJ +M+ 1).2];
@J + 2)@J + D)
M -M-1 1 G0
( J J 1) (—1)7¥ M :
M —M o (@7 + D + DJ]
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Table 3. Prime factors of factorials,
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Table 4.
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Table 5. Formulas for the 6-j symbol.
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Table 5 (Continued)
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