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Preface to the Second Edition 

In the Preface to the first edition, originally published in 1980, we mentioned 
that this book was based on the author's lectures in the Department of 
Mechanics and Mathematics of the Lomonosov University in Moscow, 
which were issued, in part, in mimeographed form under the title "Probabil­
ity, Statistics, and Stochastic Processors, I, II" and published by that Univer­
sity. Our original intention in writing the first edition of this book was to 
divide the contents into three parts: probability, mathematical statistics, and 
theory of stochastic processes, which corresponds to an outline of a three­
semester course of lectures for university students of mathematics. However, 
in the course of preparing the book, it turned out to be impossible to realize 
this intention completely, since a full exposition would have required too 
much space. In this connection, we stated in the Preface to the first edition 
that only probability theory and the theory of random processes with discrete 
time were really adequately presented. 

Essentially all of the first edition is reproduced in this second edition. 
Changes and corrections are, as a rule, editorial, taking into account com­
ments made by both Russian and foreign readers of the Russian original and 
ofthe English and Germantranslations [Sll]. The author is grateful to all of 
these readers for their attention, advice, and helpful criticisms. 

In this second English edition, new material also has been added, as 
follows: in Chapter 111, §5, §§7-12; in Chapter IV, §5; in Chapter VII, §§8-10. 
The most important addition is the third chapter. There the reader will 
find expositians of a number of problems connected with a deeper study of 
themes such as the distance between probability measures, metrization of 
weak convergence, and contiguity of probability measures. In the same chap­
ter, we have added proofs of a number of important results on the rapidity of 
convergence in the central Iimit theorem and in Poisson's theorem on the 
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approximation of the binomial by the Poisson distribution. These were 
merely stated in the first edition. 

We also call attention to the new material on the probability of large 
deviations (Chapter IV, §5), on the centrallimit theorem for sums of depen­
dent random variables (Chapter VII, §8), and on §§9 and 10 of Chapter VII. 

During the last few years, the Iiterature on probability published in Russia 
by Nauka has been extended by Sevastyanov [S10], 1982; Rozanov [R6], 
1985; Borovkov [B4], 1986; and Gnedenko [G4], 1988. It appears that these 
publications, together with the present volume, being quite different and 
complementing each other, cover an extensive amount of material that is 
essentially broad enough to satisfy contemporary demands by students in 
various branches of mathematics and physics for instruction in topics in 
probability theory. 

Gnedenko's textbook [G4] contains many well-chosen examples, includ­
ing applications, together with pedagogical material and extensive surveys of 
the history of probability theory. Borovkov's textbook [B4] is perhaps the 
most like the present book in the style of exposition. Chapters 9 (Elements of 
Renewal Theory), 11 (Factorization of the Identity) and 17 (Functional Limit 
Theorems), which distinguish [B4] from this book and from [G4] and [R6], 
deserve special mention. Rozanov's textbook contains a great deal of mate­
rial on a variety of mathematical models which the theory of probability and 
mathematical statistics provides for describing random phenomena and their 
evolution. The textbook by Sevastyanov is based on his two-semester course 
at the Moscow State University. The material in its last four chapters covers 
the minimum amount of probability and mathematical statistics required in 
a one-year university program. In our text, perhaps to a greater extent than 
in those mentioned above, a significant amount of space is given to set­
theoretic aspects and mathematical foundations of probability theory. 

Exercises and problems are given in the books by Gnedenko and 
Sevastyanov at the ends of chapters, and in the present textbook at the end 
of each section. These, together with, for example, the problern sets by A. V. 
Prokhorov and V. G. and N. G. Ushakov (Problems in Probability Theory, 
Nauka, Moscow, 1986) and by Zubkov, Sevastyanov, and Chistyakov (Col­
lected Problems in Probability Theory, Nauka, Moscow, 1988) can be used by 
readers for independent study, and by teachers as a basis for seminars for 
students. 

Special thanks to Harold Boas, who kindly translated the revisions from 
Russian to English for this new edition. 

Moscow A. Shiryaev 
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This textbook is based on a three-semester course of lectures given by the 
author in recent years in the Mechanics-Mathematics Faculty of Moscow 
State University and issued, in part, in mimeographed form under the title 
Probability, Statistics, Stochastic Processes, I, II by the Moscow State 
University Press. 

We follow tradition by devoting the first part of the course (roughly one 
semester) to the elementary theory of probability (Chapter I). This begins 
with the construction of probabilistic models with finitely many outcomes 
and introduces such fundamental probabilistic concepts as sample spaces, 
events, probability, independence, random variables, expectation, corre­
lation, conditional probabilities, and so on. 

Many probabilistic and statistical regularities are effectively illustrated 
even by the simplest random walk generated by Bernoulli trials. In this 
connection we study both classical results (law of !arge numbers, local and 
integral De Moivre and Laplace theorems) and more modern results (for 
example, the arc sine law). 

The first chapter concludes with a discussion of dependent random vari­
ables generated by martingales and by Markov chains. 

Chapters II-IV form an expanded version ofthe second part ofthe course 
(second semester). Here we present (Chapter II) Kolmogorov's generally 
accepted axiomatization of probability theory and the mathematical methods 
that constitute the tools ofmodern probability theory (a-algebras, measures 
and their representations, the Lebesgue integral, random variables and 
random elements, characteristic functions, conditional expectation with 
respect to a a-algebra, Gaussian systems, and so on). Note that two measure­
theoretical results-Caratheodory's theorem on the extension of measures 
and the Radon-Nikodym theorem-are quoted without proof. 
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The third chapter is devoted to problems about weak convergence of 
probability distributions and the method of characteristic functions for 
proving Iimit theorems. We introduce the concepts of relative compactness 
and tightness of families of probability distributions, and prove (for the 
realline) Prohorov's theorem on the equivalence of these concepts. 

The same part of the course discusses properties "with probability I " 
for sequences and sums of independent random variables (Chapter IV). We 
give proofs of the "zero or one laws" of Kolmogorov and of Hewitt and 
Savage, tests for the convergence of series, and conditions for the strong law 
of !arge numbers. The law of the iterated logarithm is stated for arbitrary 
sequences of independent identically distributed random variables with 
finite second moments, and proved under the assumption that the variables 
have Gaussian distributions. 

Finally, the third part ofthe book (Chapters V-VIII) is devoted to random 
processes with discrete parameters (random sequences). Chapters V and VI 
are devoted to the theory of stationary random sequences, where "station­
ary" is interpreted either in the strict or the wide sense. The theory of random 
sequences that are stationary in the strict sense is based on the ideas of 
ergodie theory: measure preserving transformations, ergodicity, mixing, etc. 
We reproduce a simple proof (by A. Garsia) of the maximal ergodie theorem; 
this also Iets us give a simple proof of the Birkhoff-Khinchin ergodie theorem. 

The discussion of sequences of random variables that are stationary in 
the wide sense begins with a proof of the spectral representation of the 
covariance fuction. Then we introduce orthogonal stochastic measures, and 
integrals with respect to these, and establish the spectral representation of 
the sequences themselves. We also discuss a number of statistical problems: 
estimating the covariance function and the spectral density, extrapolation, 
interpolation and filtering. The chapter includes material on the Kalman­
Bucy filter and its generalizations. 

The seventh chapter discusses the basic results of the theory of martingales 
and related ideas. This material has only rarely been included in traditional 
courses in probability theory. In the last chapter, which is devoted to Markov 
chains, the greatest attention is given to problems on the asymptotic behavior 
of Markov chains with countably many states. 

Each section ends with problems of various kinds: some of them ask for 
proofs of statements made but not proved in the text, some consist of 
propositions that will be used later, some are intended to give additional 
information about the circle of ideas that is under discussion, and finally, 
some are simple exercises. 

In designing the course and preparing this text, the author has used a 
variety of sources on probability theory. The Historical and Bibliographical 
Notes indicate both the historial sources of the results and supplementary 
references for the material under consideration. 

The numbering system and form of references is the following. Each 
section has its own enumeration of theorems, Iemmas and formulas (with 
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no indication of chapter or section). For a reference to a result from a 
different section of the same chapter, we use double numbering, with the 
first number indicating the number ofthe section (thus, (2.10) means formula 
(10) of §2). For references to a different chapter we use triple numbering 
(thus, formula (11.4.3) means formula (3) of §4 of Chapter II). Works listed 
in the References at the end of the book have the form [Ln], where L is a 
Ietter and n is a numeral. 

The author takes this opportunity to thank his teacher A. N. Kolmogorov, 
and B. V. Gnedenko and Yu. V. Prokhorov, from whom he leamed probability 
theory and under whose direction he had the opportunity of using it. For 
discussions and advice, the author also thanks his colleagues in the Depart­
ments of Probability Theory and Mathematical Statistics at the Moscow 
State University, and his colleagues in the Section on probability theory ofthe 
Steklov Mathematical Institute of the Academy of Seiences of the U.S.S.R. 

Moscow A. N. SHIRYAEV 

Steklov Mathematicallnstitute 

Translator's acknowledgement. I am grateful both to the author and to 
my colleague, C. T. lonescu Tulcea, for advice about terminology. 

R. P. B. 
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Introduction 

The subject matter of probability theory is the mathematical analysis of 
random events, i.e., of those empirical phenomena which-under certain 
circumstance-can be described by saying that: 

They do not have deterministic regularity (observations of them do not 
yield the same outcome); 

whereas at the same time 

They possess some statistical regularity (indicated by the statistical 
stability of their frequency). 

Weillustrate with the classical example ofa "fair" toss ofan "unbiased" 
coin. It is clearly impossible to predict with certainty the outcome of each 
toss. The results of successive experiments are very irregular (now "head," 
now "tail ") and we seem to have no possibility of discovering any regularity 
in such experiments. However, if we carry out a !arge number of "indepen­
dent" experiments with an "unbiased" coin we can observe a very definite 
statistical regularity, namely that "head" appears with a frequency that is 
"close" to 1. 

Statistical stability of a frequency is very likely to suggest a hypothesis 
about a possible quantitative estimate of the "randomness" of some event A 
connected with the results of the experiments. With this starting point, 
probability theory postulates that corresponding to an event A there is a 
definite number P(A), called the probability of the event, whose intrinsic 
property is that as the number of "independent" trials (experiments) in­
creases the frequency of event Ais approximated by P(A). 

Applied to our example, this means that it is natural to assign the proba-
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bility ! to the event A that consists of obtaining "head" in a toss of an 
"unbiased" coin. 

There is no difficulty in multiplying examples in which it is very easy to 
obtain numerical values intüitively for the probabilities of one or another 
event. However, these examples are all of a similar nature and involve (so far) 
undefined concepts such as "fair" toss, "unbiased" coin, "independence," 
etc. 

Having been invented to investigate the quantitative aspects of"random­
ness," probability theory, like every exact science, became such a science 
only at the point when the concept of a probabilistic model had been clearly 
formulated and axiomatized. In this connection it is natural for us to discuss, 
although only briefly, the fundamental steps in the development of proba­
bility theory. 

Probability theory, as a science, originated in the middle ofthe seventeenth 
century with Pascal (1623-1662), Fermat (1601-1655) and Huygens 
(1629-1695). Although special calculations of probabilities in games of chance 
had been made earlier, in the fifteenth and sixteenth centuries, by ltalian 
mathematicians (Cardano, Pacioli, Tartaglia, etc.), the first general methods 
for solving such problems were apparently given in the famous correspon­
dence between Pascal and Fermat, begun in 1654, andin the first book on 
probability theory, De Ratiociniis in Aleae Ludo (On Calculations in Games of 
Chance), published by Huygens in 1657. lt was at this timethat the funda­
mental concept of "mathematical expectation" was developed and theorems 
on the addition and multiplication of probabilities were established. 

The real history of probability theory begins with the work of James 
Bernoulli (1654-1705), Ars Conjectandi (The Art of Guessing) published in 
1713, in which he proved (quite rigorously) the first Iimit theorem of prob­
ability theory, the law of large numbers; and of De Moivre (1667-1754), 
Miscellanea Analytica Supplementum (a rough translation might be The 
Analytic Method or Analytic Miscellany, 1730), in which the central Iimit 
theorem was stated and proved for the first time (for symmetric Bernoulli 
trials). 

Bernoulli deserves the credit for introducing the "classical" definition of 
the concept of the probability of an event as the ratio of the number of 
possible outcomes of an experiment, that are favorable to the event, to the 
number of possible outcomes. · 

Bernoulli was probably the first to realize the importance of considering 
infinite sequences of random trials and to make a clear distinction between 
the probability of an event and the frequency of its realization. 

De Moivre deserves the credit for defining such concepts as independence, 
mathematical expectation, and conditional probability. 

In 1812 there appeared Laplace's (1749-1827) great treatise Theorie 
Analytique des Probabilities (Analytic Theory of Probability) in which he 
presented his own results in probability theory as weil as those of his pre­
decessors. In particular, he generalized De Moivre's theorem to the general 
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(unsymmetric) case of Bernoulli trials, and at the same time presented Oe 
Moivre's results in a more complete form. 

Laplace's most important contribution was the application of proba­
bilistic methods to errors of observation. He formulated the idea of consider­
ing errors of observation as the cumulative results of adding a !arge number 
of independent elementary errors. From this it followed that under rather 
general conditions the distribution of errors of observation must be at least 
approximately normal. 

The work of Poisson (1781-1840) and Gauss ( 1777 -1855) belongs to the 
same epoch in the development of probability theory, when the center of the 
stage was held by Iimit theorems. In contemporary probability theory we 
think of Poisson in connection with the distribution and the process that 
bear his name. Gauss is credited with originating the theory of errors and, in 
particular, with creating the fundamental method of least squares. 

The next important period in the development of probability theory is 
connected with the names of P. L. Chebyshev (1821-1894), A. A. Markov 
(1856-1922), and A. M. Lyapunov (1857-1918), who developed effective 
methods for proving Iimit theorems for sums of independent but arbitrarily 
distributed random variables. 

The number of Chebyshev's publications in probability theory is not 
!arge-four in all-but it would be hard to overestimate their roJe in proba­
bility theory and in the deve'Iopment of the classical Russian school of that 
subject. 

"On the methodological side, the revolution brought about by Chebyshev 
was not only his insistence for the first time on complete rigor in the proofs of 
Iimit theorems, ... but also, and principally, that Chebyshev always tried to 
obtain precise estimates for the deviations from the limiting regularities that are 
available for !arge but finite numbers of trials, in the form of inequalities that are 
valid unconditionally for any number of trials." 

(A. N. KOLMOGOROV [30]) 

Before Chebyshev the main interest in probability theory had been in the 
calculation of the probabilities of random events. He, however, was the 
first to realize clearly and exploit the full strength of the concepts of random 
variables and their mathematical expectations. 

The leading exponent of Chebyshev's ideas was his devoted student 
Markov, to whom there belongs the indisputable credit of presenting his 
teacher's results with complete clarity. Among Markov's own significant 
contributions to probability theory were his pioneering investigations of 
Iimit theorems for sums of independent random variables and the creation 
of a new branch of probability theory, the theory of dependent random 
variables that form what we now call a Markov chain. 

"Markov's classical course in the calculus of probability and his original 
papers, which are models of precision and clarity, contributed to the greatest 
extent to the transformation ofprobability theory into one ofthe most significant 
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branches of mathematics and to a wide extension of the ideas and methods of 
Chebyshev." 

(S. N. BERNSTEIN [3]) 

To prove the central Iimit theorem of probability theory (the theorem 
on convergence to the normal distribution), Chebyshev and Markov used 
what is known as the method of moments. With more general hypotheses 
and a simpler method, the method of characteristic functions, the theorem 
was obtained by Lyapunov. The subsequent development of the theory has 
shown that the method of characteristic functions is a powerful analytic 
tool for establishing the most diverse Iimit theorems. 

The modern period in the development of probability theory begins with 
its axiomatization. The first work in this direction was done by S. N. Berns­
tein (1880-1968), R. von Mises (1883-1953), and E. Borel (1871-1956). 
A. N. Kolmogorov's book Foundations ofthe Theory of Probability appeared 
in 1933. Here he presented the axiomatic theory that has become generally 
accepted and is not only applicable to all the classical branches ofprobability 
theory, but also provides a firm foundation for the development of new 
branches that have arisen from questions in the sciences and involve infinite­
dimensional distributions. 

The treatment in the present book is based on Kolmogorov's axiomatic 
approach. However, to prevent formalities and logical subtleties from obscur­
ing the intuitive ideas, our exposition begins with the elementary theory of 
probability, whose elementariness is merely that in the corresponding 
probabilistic models we consider only experiments with finitely many out­
comes. Thereafter we present the foundations of probability theory in their 
most general form. 

The 1920s and '30s saw a rapid development of one of the new branches of 
probability theory, the theory of stochastic processes, which studies families 
of random variables that evolve with time. We have seen the creation of 
theories of Markov processes, stationary processes, martingales, and Iimit 
theorems for stochastic processes. Information theory is a recent addition. 

The present book is principally concerned with stochastic processes with 
discrete parameters: random sequences. However, the material presented 
in the second chapter provides a solid foundation (particularly of a logical 
nature) for the-study of the general theory of stochastic processes. 

1t was also in the 1920s and '30s that mathematical statistics became a 
separate mathematical discipline. In a certain sense mathematical statistics 
deals with inverses of the problems of probability: lf the basic aim of proba­
bility theory is to calculate the probabilities of complicated events under a 
given probabilistic model, mathematical statistics sets itself the inverse 
problern: to clarify the structure of probabilistic-statistical models by 
means of observations of various complicated events. 

Some of the problems and methods of mathematical statistics are also 
discussed in this book. However, all that is presented in detail here is proba­
bility theory and the theory of stochastic processes with discrete parameters. 



CHAPTER I 

Elementary Probability Theory 

§I. Probabilistic Model of an Experiment with a 
Finite Number of Outcomes 

1. Let us consider an experiment of which all possible results are included 
in a finite number of outcomes w 1, ... , wN. We do not need to know the 
nature of these outcomes, only that there are a finite number N of them. 

We call w 1, ... , wN elementary events, or sample points, and the finite set 

!l={w1, ... ,wN}, 

the space of elementary events or the sample space. 

The choice of the space of elementary events is the first step in formulating 
a probabilistic model for an experiment. Let us consider some examples of 
sample spaces. 

ExAMPLE 1. For a single toss of a coin the sample space n consists of two 
points: 

n = {H, T}, 

where H = "head" and T = "tail". (We exclude possibilities like "the coin 
stands on edge," "the coin disappears," etc.) 

ExAMPLE 2. For n to.sses of a coin the sample space is 

n = {w: w = (a 1, ... , a"), a; = HorT} 

and the general number N(Q) of outcomes is 2". 
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ExAMPLE 3. First toss a coin. lf it falls "head" then toss a die (with six faces 
numbered 1, 2, 3, 4, 5, 6); if it falls "tail", toss the coin again. The sample 
space for this experiment is 

Q = {H1, H2, H3, H4, H5, H6, TH, TT}. 

We now consider some more complicated examples involving the selec­
tion of n balls from an urn containing M distinguishable balls. 

2. EXAMPLE 4 (Sampling with replacement). This is an experiment in which 
after each step the selected ball is returned again. In this case each sample of 
n balls can be presented in the form (a 1, ••. , an), where a; is the Iabel of the 
ball selected at the ith step. lt is clear that in sampling with replacement 
each a; can have any of the M values 1, 2, ... , M. The description of the 
sample space depends in an essential way on whether we consider samples 
like, for example, (4, 1, 2, 1) and {1, 4, 2, 1) as different or the same. lt is 
customary to distinguish two cases: ordered samples and unordered samples. 
In the first case samples containing the same elements, but arranged 
differently, are considered to be different. In the second case the order of 
the elements is disregarded and the two samples are considered to be the 
same. To emphasize which kind of sample we are considering, we use the 
notation {a1, ••. , an) for ordered samples and [a 1, ..• , an] for unordered 
samples. 

Thus for ordered samples the sample space has the form 

Q = {ro: w = (a1, ... , an), a; = 1, ... , M} 

and the number of (different) outcomes is 

N(Q) =Mn. (1) 

If, however, we consider unordered samples, then 

Q = {ro: w = [a1, .•• , an], a; = 1, ... , M}. 

Clearly the number N(Q) of (different) unordered samples is smaller than 
the number of ordered samples. Let us show that in the present case 

N(Q) = CM+n-l• (2) 

where q = k !f[l! (k - l) !] is the number of combinations of l elements, 
taken k at a time. 

We prove this by induction. Let N(M, n) be the number of outcomes of 
interest. lt is clear that when k ::::;; M we have 

N(k, 1) = k = c~. 
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Now suppose that N(k, n) = C~+n- 1 for k ::5; M; we show that this formula 
continues to hold when n is replaced by n + 1. For the unordered samples 
[a 1, •.• , an+ 1] that we are considering, we may suppose that the elements 
are arranged in nondecreasing order: a 1 ::5; a2 ::5; • • • ::5; an. It is clear that the 
number of unordered samples with a 1 = 1 is N(M, n), the number with 
a 1 = 2 is N(M - 1, n), etc. Consequently 

N(M, n + 1) = N(M, n) + N(M - 1, n) + · · · + N(l, n) 

= qHn-1 + C~-1+n-1 + ''' c: 
= (C~\1n- C~\1n- 1 ) + (C~+!1+n- C~+-1 1+n-1> 

+ .. · + ( c:! i - c:) = C~\\ ; 
here we have used the easily verified property 

q- 1 + Ci = Ci+ 1 

of the binomial coefficients. 

ExAMPLE 5 (Sampling without replacement). Suppose that n ::5; M and that 
the selected balls are not returned. In this case we again consider two pos­
sibilities, namely ordered and unordered samples. 

For ordered samples without replacement the sample space is 

Q = {w: w = (a 1, .•• , an), ak =I a1, k =I l, ai = 1, ... , M}, 

and the number of elementsoftbisset (called permutations) is M(M - 1) · · · 
(M - n + 1). We denote this by (M)n or A~ and call it "the number of 
permutations of M things, n at a time"). 

For unordered samples (called combinations) the sample space 

Q = {w: w = [a1, ••• , an], ak =I a1, k =I l, ai = 1, ... , M} 

consists of 

N(n) = c~ (3) 

elements. In fact, from each unordered sample [a 1, ••• , an] consisting of 
distinct elements we can obtain n! ordered samples. Consequently 

N(Q) · n! = (M)n 

and therefore 

N(Q) = (M;n = C~. 
n. 

The results on the numbers of samples of n from an urn with M balls are 
presented in Table 1. 
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TableI 

With 
M" c~+n-! replacement 

Without 
(M). c~ replacement 

Ordered Unordered ~ pe 

For the case M = 3 and n = 2, the corresponding sample spaces are 
displayed in Table 2. 

ExAMPLE 6 (Distribution of objects in cells). We consider the structure of 
the sample space in the problern of placing n objects (balls, etc.) in M cells 
(boxes, etc.). For example, such problemsarisein statistical physics in study­
ing the distribution of n particles (which might be protons, electrons, ... ) 
among M states (which might be energy Ievels). 

Let the cells be numbered 1, 2, ... , M, and suppose first that the objects 
are distinguishable (numbered 1, 2, ... , n). Then a distribution of the n 
objects among the M cells is completely described by an ordered set 
(a 1, ••• , a.), where ai is the index of the cell containing object i. However, 
if the objects are indistinguishable their distribution among the M cells 
is completely determined by the unordered set [a 1, ••• , a.], where a; is the 
index of the cell into which an object is put at the ith step. 

Comparing this situation with Examples 4 and 5, we have the following 
correspondences: 

(ordered samples) .... (distinguishable objects), 

(unordered samples) .... (indistinguishable objects), 

Table 2 

(1, 1) (1, 2) (1, 3) [1, 1] [2, 2] [3, 3] With 
{2, 1) (2, 2) (2, 3) [1, 2] [1, 3] replacement 
(3, 1) (3, 2) (3, 3) [2, 3] 

(1, 2) (1, 3) [1, 2] [1, 3] Without 
(2, 1) (2, 3) [2, 3] replacement 
(3, 1) (3, 2) 

Ordered V nordered ~ pe 
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by which we rnean that to an instance of an ordered (unordered) sarnple of 
n balls frorn an urn containing M balls there corresponds (one and only one) 
instance of distributing n distinguishable (indistinguishable) objects arnong 
M cells. 

In a sirnilar sense we have the following correspondences: 

( I. . h 1 ) (a cell rnay receive any nurnber) sarnp mg Wit rep acernent ~ f b. t , o o ~ec s 

. . (a cell rnay receive at rnost) (sarnplmg w1thout replacernent) ~ b" t . one o ~ec 

These correspondences generate others of the sarne kind: 

(

an unordered sarnple in) (indistinguishable objects in the ) 
sarnpling without problern of distribution arnong cells 

~ 

replacernent when each cell rnay receive at 
rnost one object 

etc.; so that we can use Exarnples 4 and 5 to describe the sarnple space for 
the problern of distributing distinguishable or indistinguishable objects 
arnong cells either with exclusion (a cell rnay receive at rnost one object) or 
without exclusion (a cell rnay receive any nurnber of objects). 

Table 3 displays the distributions of two objects arnong three cells. For 
distinguishable objects, we denote thern by W (white) and B (black). For 
indistinguishable objects, the presence of an object in a cell is indicated 
by a +. 

Table 3 

lwiBIIIIwiBIIIwiiBI 1++11 111++111 I 1++1 
jBJwl II Jw!BI II Iw! BI 

I BI lwll IBiwll 

JwJBI I Jwl 

I Blwl I I 
I Bi Iw! I 

Distinguishable 
objects 

I JwiBI 

I Bi 

lwiBI 

IB!wl 

L-I +..LI +_JI _ __jl L-I +_LI_..!...! +__jl 

I 1+1+! 

~---1 +~I +___,1'---'1 I + I 

1+1+1 

I ndist inguishable 
objects 

1+1 
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Table 4 

N(Q) in the problern of placing n objects in M cells 

~ Distinguishable Indistinguishable 
objects objects 

n 
s 

Without exclusion M" ql+n-1 With 
(Maxwell- (Bose- replacernent 
Boltzrnann Einstein 
statistics) statistics) 

With exclusion (M). q, Without 
(Ferrni-Dirac replacernent 
statistics) 

Ordered Unordered ~ sarnples sarnples e 

N(Q) in the problern of choosing n balls frorn an urn 
containing M balls 

The duality that we have observed between the two problems gives us 
an obvious way of finding the number of outcomes in the problern of placing 
objects in cells. The results, which include the results in Table 1, are given in 
Table 4. 

In statistical physics one says that distinguishable ( or indistinguishable, 
respectively) particles that are not subject to the Pauli exclusion principlet 
obey Maxwell-Boltzmann statistics (or, respectively, Bose-Einstein statis­
tics). If, however, the particles are indistinguishable and are subject to the 
exclusion principle, they obey Fermi-Dirac statistics (see Table 4). For 
example, electrons, protons and neutrons obey Fermi-Dirac statistics. 
Photons and pions obey Bose-Einstein statistics. Distinguishable particles 
that are subject to the exclusion principle do not occur in physics. 

3. In addition to the concept of sample space we now need the fundamental 
concept of event. 

Experimenters are ordinarily interested, not in what particular outcome 
occurs as the result of a trial, but in whether the outcome belongs to some 
subset of the set of all possible outcomes. We shall describe as events all 
subsets A c n för which, under the conditions ofthe experiment, it is possible 
to say either "the outcome w E A" or "the outcome w rt A." 

t At most one particle in each cell. (Translator) 
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For example, Iet a coin be tossed three times. The sample space n consists 
of the eight points 

n = { HHH, HHT, ... , TTT} 

and ifwe are able to observe (determine, measure, etc.) the results of all three 
tosses, we say that the set 

A = {HHH, HHT, HTH, THH} 

is the event consisting of the appearance of at least two heads. If, however, 
we can determine only the result of the first toss, this set A cannot be consid­
ered to be an event, since there is no way to give either a positive or negative 
answer to the question of whether a specific outcome w belongs to A. 

Starting from a given collection of sets that are events, we can form new 
events by means of Statements containing the logical connectives "or," 
"and," and "not," which correspond in the language of set theory to the 
operations "union," "intersection," and "complement." 

If A and B are sets, their union, denoted by A u B, is the set of points that 
belong either to A or to B: 

Au B ={wen: weA or weB}. 

In the language of probability theory, A u B is the event consisting of the 
realization either of A or of B. 

The intersection of A and B, denoted by A n B, or by AB, is the set of 
points that belong to both A and B: 

An B = {w e !l: w e A and weB}. 

The event A n B consists of the simultaneous realization of both A and B. 
For example, if A = {HH, HT, TH} and B = {TT, TH, HT} then 

Au B = {HH, HT, TH, TT} ( =!l), 

A n B = {TH, HT}. 

If A is a subset of n, its complement, denoted by Ä, is the set of points of 
n that do not belong to A. 

If B\A denotes the difference of B and A (i.e. the set of points that belong 
to B but not to A) then Ä = !l\A. In the language of probability, Ä is 
the event consisting of the nonrealization of A. For example, if A = 
{HH, HT, TH} then Ä = {TT}, the event in which two successive tails occur. 

The sets A and Ä have no points in common and consequently A n Ä is 
empty. We denote the empty set by 0. In probability theory, 0 is called an 
impossible event. The set n is naturally called the certain event. 

When A and B are disjoint (AB = 0), the union A u B is called the 
sum of A and B and written A + B. 

If we consider a collection d 0 of sets A s;; n we may use the set-theoretic 
operators u, n and \ to form a new collection of sets from the elements of 
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d 0 ; these sets are again events. If we adjoin the certain and impossible 
events n and 0 we obtain a collection d of sets which is an algebra, i.e. a 
collection of subsets of n for which 

(l)Qed, 
(2) if A E d, BE d, the sets A u B, A n B, A\B also belong to d. 

lt follows from what we have said that it will be advisable to consider 
collections of events that form algebras. In the future we shall consider only 
such collections. 

Here are some examples of algebras of events: 

(a) {Q, 0}, the collection consisting of n and the empty set (we call this the 
trivial algebra); 

(b) {A, Ä, Q, 0}, the collection generated by A; 
(c) d = {A: A s Q}, the collection consisting of all the subsets of Q 

(including the empty set 0). 

lt is easy to checkthat all these algebras of events can be obtained from the 
following principle. 

We say that a collection 

of sets is a decomposition of n, and call the D; the atoms of the decomposition, 
if the D; arenot empty, are pairwise disjoint, and their sum is Q: 

D 1 + ·· · + Dn = Q. 

For example, if n consists of three points, n = {1, 2, 3}, there are five 
different decompositions: 

~t={Dtl with D1 = {1,2,3}; 

~2 = {Dt, D2} with D1 = {1,2},D2 = {3}; 

~3 = {Dt, D2} with D1 = {1, 3}, D2 = {2}; 

~4 = {Dt, D2} with D1 = {2, 3}, D2 = {1}; 

~s = {Dt, D2, D3} with D1 = {1}, D2 = {2}, D3 = {3}. 

(For the generat number of decompositions of a finite set see Problem 2.) 
If we consider all unions of the sets in ~. the resulting collection of sets, 

together with the empty set, forms an algebra, called the algebra induced by 
~. and denoted by IX(~). Thus the elements of IX(~) consist of the empty set 
together with the sums of sets which are atoms of ~-

Thus if ~ is a decomposition, there is associated with it a specific algebra 
f1l = IX(~). 

The converse is also true. Let !11 be an algebra of subsets of a finite space 
Q. Then there is a unique decomposition ~ whose atoms are the elements of 
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81, with 81 = 1X(.92). In fact, Iet D E 81 and Iet D have the property that for 
every BE 81 the set D n B either coincides with D or is empty. Then this 
collection of sets D forms a decomposition .92 with the required property 
1X(.92) = 81. In Example (a), .92 is the trivial decomposition consisting of the 
single set D 1 = n; in (b), .92 = {A, A}. The most fine-grained decomposition 
.@, which Consists of the Singletons {w;}, W; E Q, induces the a)gebra in 
Example (c), i.e. the algebra of all subsets of n. 

Let .92 1 and .922 be two decompositions. We say that .922 is finer than .92 1, 

and write .92 1 ~ .922, if1X(.92 1) ~ 1X(.922). 
Let us show that if n consists, as we assumed above, of a finite number of 

points w 1, ... , wN, then the number N(d) of sets in the collection .;;1 is 
equal to 2N. In fact, every nonempty set A E d can be represented as A = 
{w;,, ... , w;.}, where w;1 E n, 1 ~ k ~ N. With this set we associate the se­
quence of zeros and ones 

(0, ... ,0, 1,0, ... ,0, 1, ... ), 

where there are ones in the positions i 1, ... , ik and zeros elsewhere. Then 
for a given k the number of different sets A of the form {w;,, ... , w;J is the 
same as the number of ways in which k ones (k indistinguishable objects) 
can be placed in N positions (N cells). According to Table 4 (see the lower 
right-hand square) we see that this number is C~. Hence (counting the empty 
set) we find that 

N(sJ) = 1 + C1 + ... + cz = (1 + 1)N = 2N. 

4. We have now taken the first two steps in defining a probabilistic model 
of an experiment with a finite number of outcomes: we have selected a sample 
space and a collection ,s;l of subsets, which form an algebra and are called 
events. We now take the next step, to assign to each sample point (outcome) 
w; E n;, i = 1, ... , N, a weight. This is denoted by p(w;) and called the 
probability ofthe outcome w;; we assume that it has the following properties: 

(a) 0 :s; p(w;) :s; 1 (nonnegativity), 
(b) p(w1) + · · · + p(wN) = 1 (normalization). 

Starting from the given probabilities p(w;) of the outcomes w;, we define 
the probability P(A) of any event A E d by 

P(A) = L p(w;). (4) 
{i:w;eA) 

Finally, we say that a triple 

cn, .;;~, P), 

where {l = {w1, ... , WN}, ,s;/ is an a)gebra Of SUbSetS Of {land 

p = {P(A); A E d} 
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defines ( or assigns) a probabilistic model, or a probability space, of experiments 
with a (finite) space Q of outcomes and algebra d of events. 

The following properties of probability follow from (4): 

P(0) = 0, 

P(Q) = 1, 

P(A u B) = P(A) + P(B)- P(A n B). 

In particular, if A n B = 0, then 

P(A + B) = P(A) + P(B) 

and 

P(A) = 1 - P(A). 

(5) 

(6) 

(7) 

(8) 

(9) 

5. In constructing a probabilistic model for a specific situation, the con­
struction of the sample space Q and the algebra d of events are ordinarily 

not diffi.cult. In elementary probability theory one usually takes the algebra 
d to be the algebra of all subsets of Q. Any difficulty that may arise is in 
assigning probabilities to the sample points. In principle, the solution to this 
problern lies outside the domain of probability theory, and we shall not 
consider it in detail. We consider that our fundamental problern is not the 
question of how to assign probabilities, but how to calculate the proba­
bilities of complicated events (elements of d) from the probabilities of the 
sample points. 

It is clear from a mathematical point of view that for finite sample spaces 
we can obtain all conceivable (finite) probability spaces by assigning non­
negative numbers Pt, ... , PN• satisfying the condition Pt + · · · + PN = 1, to 
the outcomes Wt, ... , wN. 

The validity of the assignments of the numbers Pt, ... , PN can, in specific 
cases, be checked to a certain extent by using the law of large numbers 
(which will be discussed later on). It states that in a long series of "inde­

pendent" experiments, carried out under identical conditions, the frequencies 

with which the elementary events appear are "close" to their probabilities. 
In connection with the difficulty of assigning probabilities to outcomes, 

we note that there are many actual situations in which for reasons of sym­
metry it seems reasonable to consider all conceivable outcomes as equally 

probable. In such cases, if the sample space consists of points rot, .. , wN, 

with N < oo, we put 

and consequently 

P(A) = N(A)/N (10) 
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for every event A E .91, where N(A) is the number of sampie points in A. 
This is called the classical method of assigning probabilities. lt is clear that 
in this case the calculation of P(A) reduces to calculating the number of 
outcomes belanging to A. This is usually done by combinatorial methods, 
so that combinatorics, applied to finite sets, plays a significant roJe in the 
calculus of probabilities. 

ExAMPLE 7 (Coincidence problem). Let an urn contain M balls numbered 
I, 2, ... , M. We draw an ordered sample of size n with replacement. It is 
clear that then 

Q = {w: w = (a 1, ... , an), a; = I,: .. , M} 

and N(Q) = Mn. Using the classical assignment of probabilities, we consider 
the Mn outcomes equally probable and ask for the probability of the event 

A = {w: w = (a 1, ... , an), a; # ai, i # j}, 

i.e., the event in which there is no repetition. Clearly N(A) = M(M - 1) · · · 
(M - n + 1), and therefore 

(M)n ( 1 ) ( 2 ) ( n - 1) P(A) = Mn = 1 - M 1 - M . . . 1 - ~ . (11) 

This problern has the following striking interpretation. Suppose that 
there are n students in a class. Let us suppose that each student's birthday 
is on one of 365 days and that all days are equally probable. The question 
is, what is the probability P n that there are at least two students in the class 
whose birthdays coincide? If we interpret selection of birthdays as selection 
of balls from an urn containing 365 balls, then by (11) 

(365)n 
pn = 1 - 365n . 

The following table lists the values of P n for some values of n: 

n 4 16 22 23 40 64 

pn 0.016 0.284 0.476 0.507 0.891 0.997 

It is interesting to note that (unexpectedly !) the size of class in which there 
is probability t of finding at least two students with the same birthday is not 
very !arge: only 23. 

EXAMPLE 8 (Prizes in a lottery). Consider a lottery that is run in the following 
way. There are M tickets numbered 1, 2, ... , M, of which n, numbered 
1, ... , n, win prizes (M;?: 2n). You buy n tickets, and ask for the probability 
(P, say) of winning at least one prize. 
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Since the order in which the tickets are drawn plays no role in the presence 
or absence ofwinners in your purchase, we may suppose that the sample space 
has the form 

0 = {w: w = [a1, •.. , an], ak "# a,, k "# l, a; = 1, ... , M}. 

By Table 1, N(Q) = CM. Now Iet 

A0 = {w: w = [a1, ••• , an], ak "# a1, k "# l, a; = n + 1, ... , M} 

be the event that there is no winner in the set of tickets you bought. Again 
by Table 1, N(A 0 ) = CM-n· Therefore 

P(A ) = CM-n = (M- n)n 
° CM (M)n 

= (1 _ ~) (1 - _n ) ... (1 - n ) 
M M-1 M-n+1 

and consequently 

P = 1 - P(A 0 ) = 1 - (1 - ~) (1 - _n ) ... (1 - n ) . 
M M-1 M-n+1 

If M = n2 and n-+ oo, then P(A 0)-+ e- 1 and 

P -+ 1 - e- 1 ~ 0.632. 

The convergence is quite fast: for n = 10 the probability is already P = 0.670. 

6. PROBLEMS 

I. Establish the following properties of the operators n and v: 

AvB= BuA, AB= BA (commutativity), 

A u (B v C) = (A v B) v C, A(BC) = (AB)C (associativity), 

A(B v C) = AB v AC, A v (BC) = (A v B)(A v C) (distributivity), 

A VA= A, 

Show also that 

AA = A (idempotency). 

AvB=AnB, AB= AvB. 

2. Let Q contain N elements. Show that the number d(N) of different decompositions of 
Q is given by the formula 

(12) 

(Hint: Show that 
N-1 

d(N) = I c~- 1 d(k), where d(O) = 1, 
k=O 

and then verify that the series in (12) satisfies the same recurrence relation.) 
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3. For any finite collection of sets A 1, ••• , A., 

P(A 1 u · · · u A.) ~ P(A 1) + · · · + P(A.). 

4. Let A and B be events. Show that AB u BA is the event in which exactly one of A 
and B occurs. Moreover, 

P(AB u BA) = P(A) + P(B) - 2P(AB). 

5. Let A 1, ••• , A. be events, and define S0 , S1 , ••• , s. as follows: S0 = 1, 

S, = L P(Ak, n · · · n Ak), 1~r~n, 
J, 

where the sum isover the unordered subsets J, = [k 1, ..• , k,] of {1, ... , n}. 
Let Bm be the event in which each of the events A 1, •.. , A. occurs exactly m times. 

Show that 

n 

P(Bm) = L: ( -1)•-mc~s,. 
r=m 

In particular, for m = 0 

P(B0 ) = 1 - S1 + S2 - · · • ± s •. 
Show also that the probability that at least m of the events A 1, ••• , A. occur 

simultaneously is 

r=m 

In particular, the probability that at least one ofthe events A 1, ••• , A. occurs is 

P(B1) + · · · + P(B.) = S, - S2 + · · · ± S •. 

§2. Some Classical Models and Distributions 

1. Binomial distribution. Let a coin be tossed n times and record the results 
as an ordered set (a 1, •.• , a,.), where a; = I for a head ("success") and a; = 0 
for a tail (" failure "). The sample space is 

Q = {w: w =(ab ... , a,.), a; = 0, 1}. 

To each sample point w = (a 1, .•. , a,.) we assign the probability 

p(w) = {l-a•qn-r.a,, 

where the nonnegative numbers p and q satisfy p + q = 1. In the first place, 
we verify that this assignment of the weights p(w) is consistent. It is enough 
to show that Lroen p(w) = 1. 

We consider all outcomes w = (a 1, ••• , a,.) for which Li a; = k, where 
k = 0, 1, ... , n. According to Table 4 (distribution of k indistinguishable 
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ones in n places) the number of these outcomes is C~. Therefore 

n 

L p(w) = L C~lq•-k = (p + q)" = I. 
wen k=O 

Thus the space n tagether with the collection d of all its subsets and the 
probabilities P(A) = LweA p(w), A E d, defines a probabilistic model. It is 
natural to call this the probabilistic model for n tosses of a coin. 

In the case n = 1, when the sample space contains just the two points 
w = 1 (" success ") and w = 0 (" failure "), it is natural to call p( 1) = p the 
probability of success. We shall see later that this model for n tosses of a 
coin can be thought of as the result of n "independent" experiments with 
probability p of success at each trial. 

Let us consider the events 

k = 0, 1, ... , n, 

consisting of exactly k successes. lt follows from what we said above that 

(1) 

and L~=o P(Ak) = I. 
The set of probabilities (P(A 0 ), ... , P(A.)) is called the binomial distribu­

tion (the number of successes in a sample of size n). This distribution plays an 
extremely important role in probability theory since it arises in the most 
diverse probabilistic models. We write P.(k) = P(Ak), k = 0, I, ... , n. 
Figure 1 shows the binomial distribution in the case p = ! (symmetric coin) 
for n = 5, 10, 20. 

We now present a different model (in essence, equivalent to the preceding 
one) which describes the random walk of a "particle." 

Let the particle start at the origin, and after unit time Iet it take a unit 
step upward or downward (Figure 2). 

Consequently after n steps the particle can have moved at most n units 
up or n units down. lt is clear that each path w of the particle is completely 
specified by a set (a 1, ..• , a.), where a; = + 1 if the particle moves up at the 
ith step, and a; = - 1 if it moves down. Let us assign to each path w the 
weight p(w) = p•<w>q•-v<w>, where v(w) is the number of + 1's in the sequence 
w = (a 1, ... , a.), i.e. v(w) = [(a 1 + · · · + a.) + n]/2, and the nonnegative 
numbers p and q satisfy p + q = I. 

Since Lroen p(w) = 1, the set ofprobabilities p(w) tagether with the space 
n of paths w = (a 1, •.. , a.) and its subsets define an acceptable probabilistic 
model of the motion of the particle for n steps. 

Let us ask the following question: What is the probability of the event Ak 
that after n steps the particle is at a point with ordinate k? This condition 
is satisfied by those paths w for which v(w) - (n - v(w)) = k, i.e. 

n+k 
v(w) = - 2-. 
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Figure 1. Graph of the binomial probabilities P .(k) for n = 5, 10, 20. 

The number of such paths (see Table 4) is qn+kl/2, and therefore 

P(Ak) = c~n+kJ/2pln+kJt2qln-kJt2. 

19 

k 

Consequently the binomial distribution (P(A _ n), ... , P(A0 ), ••• , P(An)) 
can be said to describe the probability distribution for the position of the 
particle after n steps. 

Note that in the symmetric case (p = q = !) when the probabilities of 
the individual paths are equal to 2-n, 

P(Ak) = C~n+kl/2 · r". 
Let us investigate the asymptotic behavior of these probabilities for large n. 

If the number of steps is 2n, it follows from the properties of the binomial 
coefficients that the largest of the probabilities P(Ak), I k I :::;:; 2n, is 

P(Ao) = C'in · 2- 2". 

n 

Figure 2 
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-4 -3 -2 -1 0 2 3 4 

Figure 3. Beginning of the binomial distribution. 

From Stirling's formula (see formula (6) in Section 4) 

n! "'fon e-nnn.t 

Consequently 

cn = (2n)! "'22n __ I_ 
2n (n!)2 fo 

and therefore for large n 
I 

P(A0 ) --. 

Fn 
Figure 3 represents the beginning of the binomiai distribution for 2n 

steps of a random walk (in cantrast to Figure 2, the time axis is now directed 
upward). 

2. Multinomial distribution. Generaiizing the preceding model, we now 
suppose that the sampie space is 

n = {w: w = (al, ... ' an), ai = bl, ... ' b,}, 

where b1, ••• , b, are given numbers. Let vi(w) be the number of elements of 
w = (a 1, ••• , an) that are equal to bi> i = 1, ... , r, and define the probability 
ofwby 

where Pi~ 0 and p1 + · · · + p, = 1. Note that 

where Cn(n 1, •.• , n,) is the number of (ordered) sequences (a 1, ••• , an) in 
which b1 occurs n1 times, ... , b, occurs n, times. Since n1 elements b1 can 

t The notationf (n) - g(n) means that f (n)jg(n) -+ 1 as n -+ oo. 
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be distributed into n positions in c:· ways; n2 elements b2 into n - nt 
positions in c::..n, ways, etc., we have 

n! (n- nt)! ... 1 
n1 ! (n- nt)! n2 ! (n- nt- n2)! 

n! 

Therefore 

' ( ) ' n! n n ( )" 1... P w = 1... Pt' · · · P( = Pt + · · · + Pr = 1, 
11 I ... n I 

(rJE!l {"t~O, ... ,n,.~O.} 1• r• 
n1 + ··· +n,.=n 

and consequently we have defined an acceptable method of assigning 
probabilities. 

Let 

An,, .... nr = {w: vt(w) = n1, •.. , v,(w) = n,}. 

Then 

(2) 

The set of probabilities 

{P(An,, ... ,n)} 

is called the multinomial (or polynomial) distribution. 
We emphasize that both this distribution and its special case, the binomial 

distribution, originate from problems about sampling with replacement. 

3. The multidimensional hypergeometric distribution occurs in problems that 
involve sampling without replacement. 

Consider, for example, an urn containing M balls numbered 1, 2, ... , M, 
where M 1 balls have the color b1, .•. , M, balls have the color b" and 
M 1 + · · · + M, = M. Suppose that we draw a sample of size n < M without 
replacement. The sample space is 

and N(Q) = (M)n. Let us suppose that the sample point~ are equiprobable, 
and find the probability of the event Bn,, .... nr in which nt balls have 
color bt, ... , n, balls have color b" where nt + · · · + n, = n. 1t is easy to 
show that 
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and therefore 

N(B ) C"' ... C"' P{B ) = n1 , ••• ,n, = M 1 M,. 

"•·····"' N(O.) CÄc 
(3) 

The set of probabilities {P(Bn,, ... ,nJ} is called the multidimensional 
hypergeometric distribution. When r = 2 it is simply called the hypergeometric 
distribution because its "generating function" is a hypergeometric function. 

The structure of the multidimensional hypergeometric distribution is 
rather complicated. For example, the probability 

C"• C"2 

P{Bn,, n) = ~M M, ' (4) 

contains nine factorials. However, it is easily established that if M -+ oo 
and M 1 -+ oo in such a way that MtfM-+ p (and therefore M 2/M-+ 1- p) 
then 

(5) 

In other words, under the present hypotheses the hypergeometric dis­
tribution is approximated by the binomial; this is intuitively clear since 
when M and M 1 are large (but finite), sampling without replacement ought 
to give almost the same result as sampling with replacement. 

ExAMPLE. Let us use (4) to find the probability of picking six "lucky" num­
bers in a lottery of the following kind (this is an abstract formulation of the 
"sportloto," which is weil known in Russia): 

There are 49 balls numbered from 1 to 49; six of them are lucky ( colored 
red, say, whereas the rest are white). We draw a sample of six balls, without 
replacement. The question is, What is the probability that all six of these 
balls are lucky? Taking M = 49, M 1 = 6, n1 = 6, n2 = 0, we see that the 
event of interest, namely 

has, by (4), probability 

B6 ,0 = {6 balls, alllucky} 

1 
P(B6,o) = c6 ~ 7.2 X 10- 8• 

49 

4. The numbers n! increase extremely rapidly with n. For example, 

10! = 3,628,800, 

15! = 1,307,674,368,000, 

and 100! has 158 digits. Hence from either the theoretical or the computa­
tional point of view, it is important to know Stirling's formula, 

n! = J2im (;)" exp(t~n), 0 < (}n < 1, (6) 
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whose proof can be found in most textbooks on mathematical analysis 
(see also [69]). 

5. PROBLEMS 

I. Prove formula (5). 

2. Show that for the multinomial distribution {P(A.,, ... , A.J} the maximum prob­
ability is attained at a point (k 1, ••• , k,) that satisfies the inequalities npi- 1 < 
ki :5: (n + r - 1)pi, i = 1, ... , r. 

3. One-dimensional /sing model. Consider n particles located at the points 1, 2, ... , n. 
Suppose that each particle is of one oftwo types, and that there are n1 particles ofthe 
firsttype and n2 ofthe second (n 1 + n2 = n). We suppose that all n! arrangements of 
the particles are equally probable. 

Construct a corresponding probabilistic model and find the probability of the 
eventA.(m 11 ,m 12 ,m2 t.m22) = {v11 = m11 , ••• ,v22 = m22},whereviiisthenumber 
of particles of type i following particles of typej (i,j = 1, 2). 

4. Prove the following inequalities by probabilistic reasoning: 

n 

"'ck = 2" L... n ' 
k=O 

I (C~)2 = Ci •. 
k=O 

"' ( -1)"-kck = c· L. m m-1, 
k=O 

I k(k - 1)C~ = m(m- 1)2m-z, 
k=O 

m ~ n + 1, 

m ~ 2. 

§3. Conditional Probability. Independence 

1. The concept of probabilities of events Iets us answer questions of the fol­
lowing kind: If there are M balls in an urn, M 1 white and M 2 black, what is 
the probability P(A) of the event A that a selected ball is white? With the 
classical approach, P(A) = MtfM. 

The concept of conditional probability, which will be introduced below, 
Iets us answer questions of the following kind: What is the probability that 
the second ball is white (event B) under the condition that the firstball was 
also white (event A)? (We are thinking of sampling without replacement.) 

lt is natural to reason as follows: if the first ball is white, then at the 
second step we have an urn containing M - 1 balls, of which M 1 - 1 are 
white and M 2 black; hence it seems reasonable to suppose that the ( condi­
tional) probability in question is (M 1 - 1 )/(M - 1 ). 
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We now give a definition of conditional probability that is consistent 
with our intuitive ideas. 

Let (Q, d, P) be a (finite) probability space and A an event (i.e. A e d). 

Definition 1. The conditional probability of event B assuming event A with 
P{A) > 0 (denoted by P(BIA)) is 

P(AB) 
P(A) . (1) 

In the classical approach we have P(A) = N(A)/N(O.), P(AB) = 
N(AB)jN(O.), and therefore 

P(BIA) = N(AB). 
N(A) 

(2) 

From Definition 1 we immediately get the following properties of con­
ditional probability: 

P(AIA) = 1, 

P(0IA) = 0, 

P(BIA) = 1, B2A, 

lt follows from these properties that for a given set A the conditional 
probability P( ·I A) has the same properties on the space (0. n A, d n A), 
where d n A = {B n A: Be d}, that the original probability PO has on 
(O.,d). 

Note that 

however in general 

P(BIA) + P(BIA) = 1; 

P(BIA) + P(BIA) ::1: 1, 

P(BIA) + P(BIÄ) ::1: 1. 

ExAMPLE 1. Consider a family with two children. We ask for the probability 
that both children are boys, assuming 

(a) that the older child is a boy; 
(b) that at least one ofthe children is a boy. 
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The sample space is 

Q = {BB, BG, GB, GG}, 

where BG means that the older child is a boy and the younger is a girl, etc. 
Let us suppose that all sample points are equally probable: 

P(BB) = P(BG) = P(GB) = P(GG) = t. 
Let A be the event that the older child is a boy, and B, that the younger 

child is a boy. Then A u Bis the event that at least one child is a boy, and 
AB is the event that both children are boys. In question (a) we want the 
conditional probability P(AB I A), and in (b ), the conditional probability 
P(ABIA u B). 

lt is easy to see that 

P(ABIA) = P(AB) = i = ~ 
P(A) ! 2' 

P(AB) ! 1 
P(AB I A u B) = P(A u B) = ! = '3. 

2. The simple but important formula (3), below, is called the formula for 
total probability. lt provides the basic means for calculating the probabili­
ties of complicated events by using conditional probabilities. 

Consider a decomposition ~ = {A 1 , •.• , An} with P(A;) > 0, i = 1, ... , n 
(such a decomposition is often called a complete set of disjoint events). 1t 

is clear that 

B = BA 1 + · · · + BAn 

and therefore 
n 

P(B) = L P(BA;). 
i= 1 

But 

P(BA;) = P(B I A;)P(A;). 

Hence we have theformulafor total probability: 

n 

P(B) = L P(B I A;)P(A;). (3) 
i= 1 

In particular, if 0 < P(A) < 1, then 

P(B) = P(BIA)P(A) + P(BIÄ)P(Ä). (4) 
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EXAMPLE 2. An urn contains M balls, m of which are "lucky." We ask for the 
probability that the second ball drawn is lucky (assuming that the result of 
the first draw is unknown, that a sample of size 2 is drawn without replace­
ment, and that all outcomes are equally probable). Let A be the event that 
the first ball is lucky, B the event that the second is lucky. Then 

m(m- 1) 

P(BIA) = P(BA) = M(M- 1) = m- 1 
P(A) m M- 1' 

M 

m(M- m) 
_ P(BÄ) M(M- 1) m 

P(B I A) = P(Ä) = M - m = M - 1 

M 

and 

P(B) = P(BIA)P(A) + P(BIÄ)P(Ä) 

m-1 m m M-m m 
=M-1·M+M-1· M =M. 

lt is interesting to observe that P(A) is precisely mjM. Hence, when the 
nature of the first ball is unknown, it does not affect the probability that the 
second ball is lucky. 

By the definition of conditional probability (with P(A) > 0), 

P(AB) = P(B I A)P(A). (5) 

This formula, the multiplication formula for probabilities, can be generalized 
(by induction) as follows: If A 1, ... , An-l are events with P(A1 · · · An_ 1) > 0, 
then 

P(A 1 ···An)= P(A1)P(AziA1) · · · P(AniA1 · · · An-l) (6) 

(here A1 ···An = A1 n A 2 n · · · n An). 

3. Suppose that A and B are events with P(A) > 0 and P(B) > 0. Then 
along with (5) we have the parallel formula 

P(AB) = P(A I B)P(B). (7) 

From (5) and (7) we obtain Bayes's formula 

P(A IB) = P(A)P(BIA). 
P(B) 

(8) 



§3. Conditional Probability. Independence 27 

If the events A1, .•• , An form a decomposition of Q, (3) and (8) imply 
Bayes's theorem: 

P(A;)P(BIA;) 
(9) 

In statistical applications, A1, •.. , An (A 1 + · · · +An = Q) are often 
called hypotheses, and P(A;) is called the a priorit probability of A;. The 
conditional probability P(A; I B) is considered as the a posteriori probability 
of A; after the occurrence of event B. 

EXAMPLE 3. Let an urn contain two coins: A1, a fair coin with probability 
t of falling H; and A 2 , a biased coin with probability! of falling H. A coin is 
drawn at random and tossed. Suppose that it falls head. We ask for the 
probability that the fair coin was selected. 

Let us construct the corresponding probabilistic model. Here it is natural 
to take the sample space tobe the set Q = {A 1H, A1T, A2 H, A2 T}, which 
describes all possible outcomes of a selection and a toss {A 1H means that 
coin A 1 was selected and feil heads, etc.) The probabilities p( w) of the various 
outcomes have to be assigned so that, according to the Statement of the 
prob lern, 

and 

With these assignments, the probabilities of the sample points are uniquely 
determined: 

P(A2 T) = !. 

Then by Bayes's formula the probability in question is 

P(A 1)P(HIA 1) 3 
P(A 1 IH) = P(A 1)P(HIA 1) + P(A 2)P(HIA2) = 5' 

and therefore 

4. In certain sense, the concept of independence, which we are now going to 
introduce, plays a central role in probability theory: it is precisely this concept 
that distinguishes probability theory from the general theory of measure 
spaces. 

t Apriori: before the experiment; a posteriori: after the experiment. 
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If A and B are two events, it is natural to say that B is independent of A 
if knowing that A has occurred has no effect on the probability of B. In other 
words, "B is independent of A" if 

P(BIA) = P(B) 

(we are supposing that P(A) > 0). 
Since 

it follows from (10) that 

P(AB) 
P(BIA) = P(A) , 

P(AB) = P(A)P(B). 

(10) 

(11) 

In exactly the same way, if P(B) > 0 it is natural to say that "Ais independent 
of B" if 

P(A I B) = P(A). 

Hence we again obtain (11), which is symmetric in A and Band still makes 
sense when the probabilities of these events are zero. 

Afterthese preliminaries, we introduce the following definition. 

Definition 2. Events A and Bare called independent or statistically independent 
(with respect to the probability P) if 

P(AB) = P(A)P(B). 

In probability theory it is often convenient to consider not only independ­
ence of events (or sets) but also independence of collections of events (or 
sets). 

Accordingly, we introduce the following definition. 

Definition 3. Two algebras .911 and .912 of events (or sets) are called independ­
ent or statistically independent (with respect to the probability P) if all pairs 
of sets A 1 and A 2 , betonging respectively to .91 1 and .912 , are independent. 

For example, Iet us consider the two algebras 

where A1 and A2 are subsets of n. lt is easy to verify that .91 1 and .912 are 
independent if and only if A 1 and A 2 are independent. In fact, the independ­
ence of .911 and .912 means the independence of the 16 events A1 and A 2 , 

A1 and Ä 2 , ••• , Q and 0. Consequently A1 and A 2 are independent. Con­
versely, if A1 and A 2 are independent, we have to show that the other 15 
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pairs of events are independent. Let us verify, for example, the independence 
of A1 and A2 • Wehave 

P(A 1A2 ) = P(A 1)- P(A 1A2 ) = P(A 1)- P(A 1)P(A 2 ) 

= P(A 1) • (1 - P(A 2)) = P(A 1)P(A2). 

The independence of the other pairs is verified similarly. 

5. The concept of independence of two sets or two algebras of sets can be 

extended to any finite number of sets or algebras of sets. 
Thus we say that the sets A1, •.• , An are collectively independent or 

statistically independent (with respect to the probability P) if for k = 1, ... , n 
and 1 ::::;; i 1 < i2 < · · · < ik ::::;; n 

(12) 

The algebras d 1, ... , d n of sets are called independent or statistically 
independent (with respect to the probability P) if all sets A 1, .•• , An belonging 
respectively to d 1, ... , d n are independent. 

Note that pairwise independence of events does not imply their indepen­
dence. In fact if, for example, 0 = { w 1 , w 2 , w 3 , w4 } and all outcomes are 
equiprobable, it is easily verified that the events 

are pairwise independent, whereas 

P(ABC) = i # (!)3 = P(A)P(B)P(C). 

Also note that if 

P(ABC) = P(A)P(B)P(C) 

for events A, B and C, it by no means follows that these events are pairwise 
independent. In fact, Iet 0 consist of the 36 ordered pairs (i, j), where i, j = 

1, 2, ... , 6 and all the pairs are equiprobable. Then if A = {(i,j):j = 1, 2 or 5}, 
B = {(i,j):j = 4, 5 or 6}, C = {(i,j): i + j = 9} we have 

but also 

P(AB) = i # i = P(A)P(B), 

P(AC) = 316 # /8 = P(A)P(C), 

P(BC) = / 2 # /8 = P(B)P(C), 

P(ABC) = 3~ = P(A)P(B)P(C). 

6. Let us consider in more detail, from the point of view of independence, 
the classical model (0, d, P) that was jntroduced in §2 and used as a basis 
for the binomial distribution. 
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In this model 

n = {w: (1) = (a1, ... ' a"), a; = 0, 1}, d = {A: A s;;; !1} 

and 

(13) 

Consider an event A s;;; n. We say that this event depends on a trial at 
time k if it is determined by the value ak alone. Examples of such events are 

Let us consider the sequence of algebras .Ji/1, .912 , ••• , d", where dk = 
{Ak, Ak, 0, !1} and show that under (13) these algebras are independent. 

It is clear that 

P(Ak) = L p(w) = L pr.a,qn-r_a, 
{ro:ak= 1} {co:ak= 1} 

=p 
(at, ... ,Dk-1• Dk+ l• ... • an) 

n-1 
X q<n-1)-(a, + ... +ak-l +ak+ 1 + ... +an) = p L c~-1p'q<n-l)-l = p, 

i=O 

and a similar calculation shows that P(Ak) = q and that, for k =I= l, 

P(AkA1) = p2, P(AkA1) = pq, P(AkA1) = q2• 

lt is easy to deduce from this that dk and .911 are independent for k =1= l. 
lt can be shown in the same way that .Ji/1, .912 , ••• , d" are independent. 

This is the basis for saying that our model (!1, d, P) corresponds to "n 
independent trials with two outcomes and probability p of success." James 
Bernoulli was the first to study this model systematically, and established 
the law of large numbers (§5) for it. Accordingly, this model is also called 
the Bernoulli scheme with two outcomes (success and failure) and probability 
p of success. 

A detailed study of the probability space for the Bernoulli scheme shows 
that it has the structure of a direct product of probability spaces, defined 
as follows. 

Suppose that we are given a collection (!11, 811, P 1), ... , (!1,., PJ", P,.) of 
finite probability spaces. Form the space n = n1 X n2 X ... X n,. of points 
w = (a 1, ..• , a"), where a;Ell;. Let d = 811 ® · · · ® PJ" be the algebra of 
the subsets of n that consists of sums of sets of the form 

A = B1 X B2 X ... X B" 

with B; E BI;. Finally, for w = (a1, ... , a") take p(w) = p1(a1) · · · p"(a") and 
define P(A) for the set A = B1 x B2 x · · · x B" by 

P(A) = 



§3. Conditional Probability. Independence 31 

lt is easy to verify that P(O) = 1 and therefore the triple (0, .91, P) defines 
a probability space. This space is called the direct product of the probability 
spaces (01, 841, P1), ... , (0., &~., P.). 

We note an easily verified property of the direct product of probability 
spaces: with respect to P, the events 

A1 = {w: a 1 E Btl, ... , A. = {w: a. E B.}, 

where B; E 14;, are independent. In the same way, the algebras ofsubsets ofO, 

.911 = {A 1: A 1 = {w:a1 EBtl, B1 E&ltl, 

are independent. 
lt is clear from our construction that the Bernoulli scheme 

(0, .91, P) with 0 = {w: w = (a 1, ..• , an), a; = 0 or 1} 

.91 = {A: A ~ 0} and p(w) = pr."'qn-r.a, 

can be thought of as the direct product of the probability spaces (0;, 14;, P;), 
i = 1, 2, ... , n, where 

0; = {0, 1}, 14; = { {0}, {1}, 0. 0;}, 

P;({1}) = p, P;({O}) = q. 

7.PROBLEMS 

l. Give examples to show that in general the equations 

are false. 

P(BIA) + P(BIA) = 1, 

P(BIA) + P(BIA) = 1 

2. An urn contains M balls, of which M 1 are white. Consider a sample of size n. Let Bi 
be the event that the ball selected at the jth step is white, and Ak the event that a sample 
of size n contains exactly k white balls. Show that 

P(BiiAk) = k/n 

both for sampling with replacement and for sampling without replacement. 

3. Let A 1, ••• , A. be independent events. Then 

4. Let A1, .•• , A. be independent events with P(A;) = P;· Then the probability P0 

that neither event occurs is 

" 
Po= fl(l-p;). 

i=l 
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5. Let A and B be independent events. In terms of P(A) and P(B). find the probabilities 
ofthe events that exactly k, at least k, and at most k of A and B occur (k = 0, 1, 2). 

6. Let event A be independent of itself, i.e. Jet A and A be independent. Show that 
P(A) is either 0 or 1. 

7. Let event A have P(A) = 0 or 1. Show that A and an arbitrary event B are inde­
pendent. 

8. Consider the electric circuit shown in Figure 4: 

Figure 4 

Each of the switches A, B, C. D, and E is independently open or closed with 
probabilities p and q, respectively. Find the probability that a signal fed in at "input" 
will be received at "output". lf the signal is received, what is the conditional prob­
ability that E is open? 

§4. Random Variables and Their Properties 

1. Let (fl, d, P) be a probabilistic model of an experiment with a finite 
number of outcomes, N(Q) < oo, where d is the algebra of all subsets of 
n. We observe that in the examples above, where we calculated the probabil­
ities of various events A E d, the specific nature of the sample space n was 
of no interest. We were interested only in numerical properties depending 
on the sample points. For example, we were interested in the probability of 
some number of successes in a series of n trials, in the probability distribution 
for the number of objects in cells, etc. 

The concept "random variable," which we now introduce (later it will 
be given a more general form) serves to define quantities that are subject to 
"measurement" in random experiments. 

Definition 1. Any numerical function ~ = ~(w) defined on a (finite) sample 
space n is called a (simple) random variable. (The reason for the term "simple" 
random variable will become clear after the introduction of the general 
concept of random variable in §4 of Chapter II.) 
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ExAMPLE 1. In the model of two tosses of a coin with sample space n = 
{HH, HT, TH, TT}, define a random variable~ = ~(w) by the table 

w HH HT TH TI 

~(w) 2 1 1 0 

Here, from its very definition, ~( w) is nothing but the number of heads in the 
outcome w. 

Another extremely simple example of a random variable is the indicator 
( or characteristic function) of a set A E d: 

wheret 

{ 1, WEA, 

IA(w) = 0, w(tA. 

When experimenters are concerned with random variables that describe 
observations, their main interest is in the probabilities with which the 
random variables take various values. From this point of view they are 
interested, not in the distribution ofthe probability P over (Q, d), but in 
its distribution over the range of a random variable. Since we are considering 
the case when n contains only a finite number of points, the range X of 
the random variable~ is also finite. Let X = {x 1, ... , xm}, where the (differ­
ent) numbers x 1, ... , Xm exhaust the values of ~. 

Let f!l' be the collection of all subsets of X, and Iet BE f!l'. We can also 
interpret B as an event if the sample space is taken to be X, the set of values 
of ~. 

On (X, f!l'), consider the probability P,O induced by ~ according to the 
formula 

PlB) = P{w: ~(w) E B}, BE f!l'. 

It is clear that the values of this probability are completely determined by 
the probabilities 

P~(x;) = P{w: ~(w) = x;}, X; EX. 

The set of numbers {P~(x 1 }, .•. , P~(xm)} is called the probability distri­
bution of the random variable ~. 

t The notation /(A) is also used. For frequently used properties of indicators see Problem I. 
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ExAMPLE 2. A random variable ~ that takes the two values 1 and 0 with 
probabilities p ("success") and q ("failure"), is called a Bernoullit random 
variable. Clearly 

X= 0, 1. (1) 

A binomial (or binomially distributed) random variable ~ is a random 
variable that takes the n + 1 values 0, 1, ... , n with probabilities 

x = 0, 1, ... , n. (2) 

Note that here and in many subsequent examples we do not specify the 
sample spaces (Q, d, P), but are interested only in the values of the random 
variables and their probability distributions. 

The probabilistic structure of the random variables ~ is completely 
specified by the probability distributions {PlxJ, i = 1, ... , m}. The concept 
of distribution function, which we now introduce, yields an equivalent 
description of the probabilistic structure of the random variables. 

Definition 2. Let x E R 1. The function 

F~(x) = P{w: ~(w)::;;; x} 

is called the distribution function of the random variable ~. 

Clearly 

F~(x) = L PlxJ 
{i:Xi$X} 

and 

P~(xi) = F~(xJ- F~(xi- ), 

where F~(x-) = limyix F~(y). 
Ifwe suppose that x 1 < x 2 < · · · < xm and put F~(x0) = 0, then 

i = 1, ... , m. 

The following diagrams (Figure 5) exhibit P~(x) and F~(x) for a binomial 
random variable. 

1t follows immediately from Definition 2 that the distribution F ~ = F ~(x) 
has the following properties: 

(1) F ~( - oo) = 0, F ~( + oo) = 1 ; 
(2) F ~(x) is continuous on the right (F ~(x+) = F~(x)) and piecewise constant. 

t We use the terms "Bernoulli, binomial, Poisson, Gaussian, ... , random variables" for what 
are more usually called random variables with Bernoulli, binomial, Poisson, Gaussian, ... , dis­
tributions. 
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/ -----, 
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Figure 5 

Along with random variables it is often necessary to consider random 
vectors ~ = (~ 1 , ••. , ~,) whose components are random variables. For 
example, when we considered the multinomial distribution we were dealing 
with a random vector v = (v1, ... , v,), where V;= v;(w) is the number of 
elements equal tob;, i = 1, ... , r, in the sequence w = (a 1, ... , an). 

The set of probabilities 

P~(x 1 , ••• , x,) = P{w: ~ 1 (w) = x 1, ... , ~,(w) = x,}, 

where X; EX;, the range of ~;, is called the probability distribution of the 
random vector ~. and the function 

where X; E R 1, is called the distribution function of the random vector ~ = 
(~1·····~,). 

For example, for the random vector v = (v 1, .•• , v,) mentioned above, 

(see (2.2)). 

2. Let ~ 1 , ... , ~r be a set of random variables with values in a (finite) set 
X s; R 1 . Let fll' be the algebra of subsets of X. 
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Definition 3. The random variables ~ 1- ..• , ~r are said to be independent 

(collectively independent) if 

P{~ 1 = x 1, ... , ~r = x,} = P{~ 1 = xd · · · P{~, = x,} 

for all x 1 , ... , x, EX; or, equivalently, if 

P{~1EB1, ... ,~,EB,} = Pg1EBd···P{~,EB,} 

for all B1, ..• , B, E !!C. 

We can get a very simple example of independent random variables 

from the Bernoulli scheme. Let 

n = {w: w = (a1, ... ' an), a; = 0, 1}, p(w) = pr.a;qn-r.a, 

and ~;(w) = a; for w = (a1, ... , an), i = 1, ... , n. Then the random variables 

~ 1, ~ 2 , ..• , ~n are independent, as follows from the independence of the events 

A 1 = { w: a 1 = 1}, ... , An = { w: an = 1}, 

which was established in §3. 

3. We shall frequently encounter the problern of finding the probability 

distributions ofrandom variables that are functionsf(~ 1 , •.. , ~,) ofrandom 

variables ~ 1 , ... , ~r· For the present we consider only the determination 

of the distribution of a sum ( = ~ + 11 of random variables. 
lf ~ and 11 take values in the respective sets X = {x 1 , ••• , xd and Y = 

{y 1, •.. , y1}, the random variable ( = ~ + 11 takes values in the set Z = 

{z: z = X; + yi, i = 1, ... , k;j = 1, ... , /}. Then it is clear that 

P;(z) = P{( = z} = P{~ + 1J = z} = L P{~ =X;, 1J = Yi}. 
{(i.j):x;+yi=z) 

The case of independent random variables ~ and 11 is particularly import­

ant. In this case 

and therefore 
k 

P,(z) = L P~(x;)P~(y) = L P~(x;)P~(z -X;) (3) 
{(i, j):x;+yi=z) i=1 

for all z E Z, where in the last sum P~(z - X;) is taken tobe zero if z - x; ~ Y. 
For example, if ~ and 11 are independent Bernoulli random variables, 

taking the values 1 and 0 with respective probabilities p and q, then Z = 
{0, 1, 2} and 

P,(O) = P~(O)P~(O) = q2 , 

P,(1) = P~(O)P~(1) + P~(1)P~(O) = 2pq, 

P,(2) = P~1)P~(1) = p2• 
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lt is easy to show by induction that if ~ 1, ~2 , ... , ~" are indepcndent 
Bernoulli random variables with P{~; = 1} = p, P{~; = 0} = q, then the 
random variable ( = ~ 1 + · · · + ~n has the binomial distribution 

k = 0, 1, ... , n. (4) 

4. We now turn to the important concept ofthe expectation, or mean value, 
of a random variable. 

Let (Q, d, P) be a (finite) probability space and ~ = ~(w) a random 
variable with values in the set X= {x1, ... , xd. Ifwe put A; = {w: ~ = x;}, 
i = 1, ... , k, then ~ can evidently be represented as 

k 

~(w) = L x;I(A;), (5) 
i= 1 

where the sets A 1, ... , Ak form a decomposition of n (i.e., they are pairwise 
disjoint and their sum is n; see Subsection 3 of §1). 

Let P; = Pg = x;}. lt is intuitively plausible that ifwe observe the values 
of the random variable ~ in "n repetitions of identical experiments ", the 
value X; ought to be encountered about p;n times, i = 1, ... , k. Hence the 
mean value calculated from the results of n experiments is roughly 

1 k 

- [np 1x 1 + · · · + npkxk] = L P;X;. 
n i=1 

This discussion provides the motivation for the following definition. 

Definition 4. The expectation t or mean value of the random variable ~ = 
D= 1 x;I(A;) is the number 

k 

E~ = L X;P(A;). 
i=1 

Since A; = {w: ~(w) = x;} and P~(x;) = P(A;), we have 
k 

E~ = L x;Plx;). 
i= 1 

Recalling the definition of F ~ = F ~(x) and writing 

!!.F~(x) = F~(x) - F~(x - ), 

we obtain P ~(x;) = !!.F ~(x;) and consequently 
k 

E~ = I x;I!.F~(x;). 
i= 1 

(6) 

(7) 

(8) 

t Also known as mathematical expectation, or expected value, or (especially in physics) expec­
tation value. (Translator) 
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Before discussing the properties of the expectation, we remark that it is 
often convenient to use another representation of the random variable ~, 

namely 
l 

~(w) = L xjl(B), 
j= 1 

where B 1 + · · · + B1 = n, but some of the xj may be repeated. In this case 
E~ can be calculated from the formula L~= 1 xj P(B), which differs formally 
from (5) because in (5) the X; are all different. In fact, 

L xjP(B) =X; L P(B) = x;P(A;) 
{j: xj = x;) {j: xj = x;) 

and therefore 
l k 

L xjP(B) = L x;P(A;). 
i= 1 i= 1 

5. We Iist the basic properties of the expectation: 

(1) lf~ ~ 0 then E~ ~ 0. 
(2) E(a~ + b1J) = aE~ + bE1], where a and bare constants. 
(3) lf ~ ~ 1J then E~ ~ E1J. 
(4) IE~I::;;; El~l. 
(5) lf ~ and 1J are independent, then E~11 = E~ · E1J. 
(6) (E\~1]1)2 :s; E~2 ·E1J 2 (Cauchy-Bunyakovskii inequality).t 
(7) lf ~ = l(A) then E~ = P(A). 

Properties (1) and (7) are evident. To prove (2), Iet 

Then 

and 

~ = :LxJ(A;), 1J = LY/(B). 
i j 

a~ + b1] = a:L xJ(A; n B) + b LYil(A; n B) 
i,j i,j 

= L (ax; + byi)l(A; n B) 
i,j 

i, j 

= :Lax;P(A;) + LbyiP(B) 
i j 

= a:Lx;P(A;) + b LYiP(B) = aE~ + bE1J. 
i j 

t Also known as the Cauchy-Schwarz or Schwarz inequality. (Translator) 
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Property (3) follows from (1) and (2). Property (4) is evident, since 

IE~I = ltx;P(A;)I s tlx;IP(A;) = El~l. 
To prove (5) we note that 

E ~11 = E ( t x;I(A;)) ( ~ yi/(Bi)) 

=EI x;yil(A; n B) =I x;yiP(A; n B) 
i.j i,j 

=I X;yjP(A;)P(B) 
i, j 

39 

where we have used the property that for independent random variables the 
events 

A; = {w: ~(w) = x;} and Bi= {w: IJ(w) = yj} 

are independent: P(A; n B) = P(A;)P(B). 
To prove property (6) we observe that 

~2 = I x? /(A;), 
i 

and 

Ee =I x?P(A;), 
i 

Let Ee > 0, E17 2 > 0. Put 

1]2 = I yJI(B) 
j 

E11 2 = I yJP(B). 
j 

- IJ IJ = --. 

JR 
Since 21eiil s e2 + 1] 2 , we have 2E leiil s Ee2 + E1]2 = 2. Therefore 
E leiil s 1 and (E 1~171) 2 s E~ 2 · E1J 2 • 

However, if, say, Ee = 0, this means that L; x?P(A;) = 0 and conse­
quently the mean value of ~ is 0, and P{w: ~(w) = 0} = 1. Therefore if at 
least one of Ee or E17 2 is zero, it is evident that EI ~IJ I = 0 and consequently 
the Cauchy-Bunyakovskii inequality still holds. 

Remark. Property (5) generalizes in an obvious way to any finite number of 
random variables: if ~ 1 , ... , ~rare independent, then 

The proof can be given in the same way as for the case r = 2, or by induction. 
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EXAMPLE 3. Let e be a Bernoulli random variable, taking the values 1 and 0 
with probabilities p and q. Then 

ee = 1. P{e = 1} + o. P{e = o} = P· 

EXAMPLE 4. Let e1, ••• , en be n Bernoulli random variables with P{e; = 1} 
= p, P{e; = O} = q, p + q = 1. Then if 

Sn= e1 + · · · + en 
we find that 

ESn = np. 

This result can be obtained in a different way. lt is easy to see that ESn 
is not changed if we assume that the Bernoulli random variables e1, .•• , en 
are independent. With this assumption, we have according to (4) 

k = 0, 1, ... , n. 

Therefore 

n n 

ESn = L kP(Sn = k) = L kC:pkqn-k 
k=O k=O 

n n! kn-k 
= k~o k· k!(n- k)!p q 

~ (n-1)! k-l(n-1)-(k-1) 
= np '-' P q 

k=l (k- 1)!((n- 1)- (k- 1))! 

_ .;, (n- 1)! 1 (n-1)-1 _ 

- np ~~o /!((n- 1)- /)! pq - np. 

However, the first method is more direct. 

6. Let e = Li X;l(AJ, where A; = {ro: e(w) = X;}, and cp = cp(e(w)) is a 
function of e(w). lf Bi = {ro: cp(e(w)) = Yi}, then 

and consequently 

But it is also clear that 

cp(e(w)) = LYil(Bj), 
j 

Ecp = LYiP(Bj) = LYiP",(y). 
j j 

cp(e(w)) = L cp(x;)I(A;). 
i 

(9) 
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Hence, as in (9), the expectation of the random variable qJ = ({J( e) can be 
calculated as 

EqJ(e) = I qJ(xj)P~(x;). 
i 

7. The important notion of the variance of a random variable e indicates 
the amount of scatter of the values of e around Ee. 

DefinitionS. The variance (also called the dispersion) ofthe random variable 
e (denoted by ve) is 

ve = E<e - Ee)2• 

The number q = + JVf. is called the standard deviation. 
Since 

we have 

ve = Ee2 - <Ee)2• 

Clearly V e ;;:::; 0. It follows from the definition that 

V(a + be) = b2 Ve, where a and bare constants. 

In particular, Va = 0, V(be) = b2 Ve. 
Let e and r, be random variables. Then 

v<e + r,) = E«e - Ee) + (r, - Er,))2 

= ve + Vr, + 2E(e- Ee)(r,- E17). 

Write 

cov(e, r,) = E(e - Ee)(r, - Er,). 

This number is called the covariance of e and r,. If ve > 0 and Vr, > 0, then 

<e ) - cov(e, r,) 
P '"- Jve-vr, 

is called the correlation coefficient of e and r,. lt is easy to show (see Problem 
7 below) that if p(e, r,) = ± 1, then e and "are linearly dependent: 

"= ae + b, 

with a > 0 if p(e, r,) = 1 and a < 0 if p(e, r,) = -1. 
We observe immediately that if e and r, are independent, so are e - Ee 

and r, - Er,. Consequently by Property (5) of expectations, 

cov(e, r,) = E(e - Ee) · E(r, - Er,) = 0. 
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Using the notation that we introduced for covariance, we have 

V(~+ 17) = V~+ VIJ + 2cov(~, 17); (10) 

if ~ and 17 are independent, the variance of the sum ~ + 17 is equal to the sum 

of the variances, 
V(~+ 17) = V~ + VIJ. (11) 

lt follows from (10) that (11) is still valid under weaker hypotheses than 

the independence of ~ and IJ. In fact, it is enough to suppose that ~ and 17 are 

uncorrelated, i.e. cov( ~, 17) = 0. 

Remark. If ~ and 17 are uncorrelated, it does not follow in general that they 

are independent. Here is a simple example. Let the random variable I)( take 

the values 0, n/2 and n with probability l Then ~ = sin I)( and 17 = cos I)( are 

uncorrelated; however, they are not only stochastically dependent (i.e., not 

independent with respect to the probability P): 

P{~ = 1, 1J = 1} = 0 #! = P{~ = 1}P{IJ = 1}, 

but even functionally dependent: ~2 + 17 2 = 1. 
Properties (10) and (11) can be extended in the obvious way to any num­

ber of random variables: 

(12) 

In particular, if ( 1, ... , (" are pairwise independent (pairwise uncorrelated 
is sufficient), then 

(13) 

ExAMPLE 5. If ~ is a Bernoulli random variable, taking the values 1 and 0 
with probabilities p and q, then 

V~= E(~- E~)2 = (~- p)z = (1 - p)z p + pzq = pq. 

lt follows that if ~ 1 , ... , ~" are independent identically distributed Bernoulli 

random variables, and Sn = ~ 1 + · · · + ~"' then 

vsn = npq. (14) 

8. Consider two random variables ~ and IJ. Suppose that only ~ can be ob­

served. If ~ and 17 are correlated, we may expect that knowing the value of ~ 

allows us to make some inference about the values of the unobserved vari­

able 17· 
Any functionf = f(O of ~ is called an estimator for IJ. We say that an esti­

mator f* = f*(~) is best in the mean-square sense if 

E(l] - /*(~))2 = inf E(l]- f(e)) 2 . 

J 
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Let us show how to find a best estimator in the class of linear estimators 
A.(~) = a + b~. We consider the function g(a, b) = E('l- (a + b~))2 • Differ­
entiating g(a, b) with respect to a and b, we obtain 

og~~ b) = - 2E['7 - (a + b~)], 

og(a, b) 
ob = - 2E[('1 - (a + b~))~], 

whence, setting the derivatives equal to zero, we find that the best mean­
square linear estimator is A.*(~) = a* + b*~, where 

a* = E17 - b*E~, b* = cov(~, '7) 
V~ . (15) 

In other words, 

(16) 

The number E('l - A.*(~))2 is called the mean-square error of observation. 
An easy calculation shows that it is equal to 

Consequently, the !arger (in absolute value) the correlation coefficient 
p(~, '1) between ~ and 'I· the smaller the mean-square error of observation 
ß*. In particular, if jp(~. '7)1 = 1 then ß* = 0 (cf. Problem 7). On the other 
band, if e and '7 are uncorrelated (p(e, '7) = 0), then A.*(~) = E17, i.e. in the 
absence of correlation between ~ and '1 the best estimate of '1 in terms of ~ is 
simply E17 (cf. Problem 4). 

9.PROBLEMS 

1. Verify the following properties ofindicators JA= JA(w): 

J0 =0, J0 =1, 

The indicator of Uf=t Ai is 1- nf=t (1- JA,), the indicator of Ui=t Ai is 
nl=l (1- JA,), and the indicator of.D=l Ai is .D=l JA;• 

where A ~Bis the symmetric difference of A and B, i.e. the set (A\B) u (B\A). 
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2. Let~ 1, ... , ~. be independent random variables and 

~min = min(~,, ... , ~.), ~max = max(~,, ... , ~.). 

Show that 

n 

P{~min ~ x} = 0 Pg; ~ x}, 
i= 1 

P{~max < x} = 0 P{~; < x}. 
i=l 

3. Let ~ 1, ..• , ~. be independent Bernoulli random variables such that 

P{~; = 0} = 1 - A.;~, 

P{~; = 1} = A.;~, 

where ~ is a small number, ~ > 0, A.; > 0. 
Show that 

P{~ 1 + · · · + ~. = 1} = (t/}~ + 0(~2 ), 
P{~ 1 + · · · + ~. > 1} = 0(~2). 

4. Show that inL"" <a<"" E(~ - a) 2 is attained for a = E~ and consequently 

inf E(~ - a)2 = V~. 
-oo<a<oo 

5. Let~ be a random variable with distribution function F~(x) and Iet m,. be a median 
of F~(x), i.e. a pointsuchthat 

F~(m,.-) ~ t ~ F~(m,). 
Show that 

inf E I ~ - a I = E I ~ - m,J 
-oo<a<oo 

6. Let P~(x) = P{~ = x} and F~(x) = P(~ ~ x}. Show that 

(
X - b) 

Pa~+b(x) = p~ -a- , 

Fa~+b(x) = F~(x : b) 
for a > 0 and - oo < b < oo. lf y ~ 0, then 

F~,(y) = F~( +Jy)- F~( -JY) + P~( -JY). 
Let e+ = max(e, 0). Then 

{
0, X< 0, 

F~+(x) = F~(O), x = 0, 

F~(x), X> 0. 
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7. Let~ and rJ be random variables with V~ > 0, Vq > 0, and Iet p = p(~, q) be their 
correlation coefficient. Show that I p I ~ 1. If I p I = 1, find constants a and b such 
that rJ = a~ + b. Moreover, if p = 1, then 

(and therefore a > 0), whereas if p = -1, then 

rJ- Eq ~- E~ 

JVrJ =- JW 
(and therefore a < 0). 

8. Let ~ and rJ be random variables with E~ = Eq = 0, V~ = Vq = 1 and correlation 
coefficient p = p(~, q). Show that 

E max(e, q2) ~ 1 + Jl=P2. 
9. Use the equation 

( lndicator ofi ~1 A) = in (1 - I A), 

to deduce the formula P(B0 ) = 1 - S 1 + S2 + · · · ± s. from Problem 4 of §1. 

10. Let ~ t. •.• , ~. be independent random variables, cp 1 = cp 1 ( ~ t. ..• , ~k) and cp2 = 

cp 2(~k+ 1, ... , ~.), functions respectively of ~ t. ... , ~k and ~k+ 1, ••• , ~ •. Show that the 
random variables cp 1 and cp 2 are independent. 

11. Show that the random variables ~ 1, ••• , ~. are independent if and only if 

F~•·····~"(Xt. ... , x.) = F~,(x 1 ) • • • F~"(x.) 

for all Xt. •.. , x., where F~, . .... ~"(x 1 , ... , x.) = Pg 1 ~ x 1, .•. , ~. ~ x.}. 

12. Show that the random variable ~ is independent of itself (i.e., s and s are inde­
pendent) if and only if ~ = const. 

13. Under what hypotheses on ~ are the random variables~ and sin ~ independent? 

14. Let~ and rJ be independent random variables and rJ # 0. Express the probabilities 
ofthe events P{~rJ ~ z} and PglrJ ~ z} in terms ofthe probabilities P~(x) and P~(y). 

§5. The Bernoulli Scheme. I. The Law of 
Large Numbers 

1. In accordance with the definitions given above, a triple 

(Q, .91, P) with Q = {w: w = (a 1, ... , a.), a; = 0, 1}, 

.91 = {A: A ~ Q}, p(w) = pr.a,qn-r.a, 

is called a probabilistic model of n independent experiments with two out­
comes, or a Bernoulli scheme. 
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In this and the next section we study some limiting properties (in a sense 
described below) for Bernoulli schemes. Thesearebest expressed in terms of 

random variables and of the probabilities of events connected with them. 
We introduce random variables ~ 1 , ... , ~n by taking ~;(w) = a;, i = 

1, ... , n, where w = (a 1, ... , an). As we saw above, the Bernoulli variables 
~;(w) are independent and identically distributed: 

P{~; = 1} = p, P{~; = 0} = q, i = 1, ... , n. 

lt is natural to think of ~; as describing the result of an experiment at the 
ith stage ( or at time i). 

Let us put S0(w) = 0 and 

sk = ~1 + .. · + ~k• k = 1, ... , n. 

As we found above, ES" = np and consequently 

(1) 

In other words, the mean value of the frequency of "success", i.e. S"jn, 
coincides with the probability p of success. Hence we are led to ask how much 

the frequency S"jn of success differs from its probability p. 

We first note that we cannot expect that, for a sufficiently small e > 0 
and for sufficiently large n, the deviation of Sn/n from p is 1ess than s for all 
w, i.e. that 

I Siw) I ---p ::;;e, 
n 

WE!l. (2) 

In fact, when 0 < p < 1, 

P{~ = 1}= P{~ 1 = 1, ... ,~" = 1} = p", 

P{~ = o} = P{~ 1 = 0, ... , ~" = 0} = q", 

whence it follows that (2) is not satisfied for sufficiently small e > 0. 
We observe, however, that when n is large the probabilities of the events 

{Sn/n = 1} and {S"jn = 0} are small. lt is therefore natural to expect that the 
total probability of the events for which I[S.(w)jn]- PI> e will also be 
small when n is sufficiently large. 

We shall accordingly try to estimate the probability of the event 

{w: I[S"(w)jn] -PI > e}. Forthis purpose we need the following inequality, 

which was discovered by Chebyshev. 
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Chebyshev's inequality. Let (Q, d, P) be a probability space and ~ = ~(w) a 
nonnegative random variable. Then 

for alle> 0. 

PROOF. We notice that 

where l(A) is the indicator of A. 
Then, by the properties of the expectation, 

which establishes (3). 

Coroßary. lf ~ is any random variable, we havefor 8 > 0, 

P{J~I;;::: 8}:::; EJ~J/8, 

P{J~I;;::: B} = P{~2 ;;::: 82} :::; E~2je2 , 

P{J~- E~J;;::: 8}:::; V~/82 • 

(3) 

(4) 

In the last ofthese inequalities, take ~ = S,./n. Then using (4.14), we obtain 

Therefore 

{I s.. I } pq 1 p -;;- - p ;;::: 8 :::; ne2 :::; 4n82 ' (5) 

from which we see that for large n there is rather small probability that the 
frequency S,./n of success deviates from the probability p by more than 8. 

For n;;::: 1 and 0:::; k:::; n, write 

Then 

p{l S,. - P I ;;::: 8} = 2: P,.(k), 
n {k:i(kfn)-pl~e) 

and we have actually shown that 

pq 1 2: P,.(k) :::; -2 :::; -2' 
{k:i(kfn)-pi~e) ne 4ne 

(6) 
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np 
np _ ...... n_e---y-----n--p + ne n 

Figure 6 

i.e. we l}ave proved an inequality that could also have been obtained analytic­
ally, without using the probabilistic interpretation. 

It is clear from (6) that 

L Pik)--+ 0, n--+ oo. (7) 
{k:l(k/n)-pl<:•l 

We can clarify this graphically in the following way. Let us represent the 
binomial distribution {P"(k), 0 :S k :Sn} as in Figure 6. 

Then as n increases the graph spreads out and becomes ftatter. At the same 
time the sum of P"(k), over k for which np- n8 :S k < np + m:, tends to 1. 

Let us think of the sequence of random variables S0 , S ~> ... , S" as the 
path of a wandering particle. Then (7) has the following interpretation. 

Let us draw lines from the origin of slopes kp, k(p + e), and k(p - e). Then 
on the average the path follows the kp line, and for every e > 0 we can say that 
when n is sufficiently large there is a large probability that the point S" 
specifying the position of the particle at time n lies in the interval 
[n(p- e), n(p + e)]; see Figure 7. 

We would like to write (7) in the following form: 

n--+ oo, 

k(p + e) 

I 
s~ 

lkp 

I 
I 
I 

I 
I 
I 

k(p- e) 

~r+~~~~------~ 
2 3 4 5 n k 

Figure 7 

(8) 
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However, we must keep in mind that there is a delicate point involved 
here. lndeed, the form (8) is really justified only if P is a probability on a 
space (0, d) on which infinitely many sequences of independent Bemoulli 
random variables e1, e2 , ••• , are defined. Such spaces can actually be 
constructed and (8) can be justified in a completely rigorous probabilistic 
sense (see Corollary 1 below, the end of §4, Chapter II, and Theorem 1, §9, 
Chapter II). For the time being, ifwe want to attach a meaning to the analytic 
statement (7), using the language of probability theory, we have proved only 
the following. 

Let (Q<">, .!111"', p<n>), n ~ 1, be a sequence of Bemoulli schemes such that 

and 

n<n) = {w(n). w1"1- (a1"1 a1"1) a1"1- 0 1} 
• - 1 ' ••• , n ' i - ' ' 

.Jil<n> = {A: A s;;; 0 1"1}, 

p<"l( w<"l) = pra~ tf- r.a<.", 

S~"1(w1"1) = e\"1(w1"1) + · · · + e~"1(w1" 1), 

where, for n =:;; 1, e\"1, ••• ' e~n) are sequences of independent identically 
distributed Bemoulli random variables. 

Then 

p<n>{w<">: I S~"'(w<"l)- PI~~:}= L P"(k)--. 0, 
n {k: l<k/n)- PI"' •I 

n--. oo. (9) 

Statements like (7)-(9) go by the name of James Bemoulli's law of large 
numbers. We may remark that to be precise, Bemoulli's proof consisted in 
establishing (7), which he did quite rigorously by using estimates for the 
"tails" of the binomial probabilities P"(k) (for the values of k for which 
l(k/n)- PI ~ ~:). A direct calculation of the sum of the tail probabilities of 
the binomial distribution Ltk:l<ktn> _PI"' •I P "(k) is rather diffi.cult problern for 
large n, and the resulting formulas are ill adapted for actual estimates of the 
probability with which the frequencies S"/n differ from p by less than E:. 

Important progress resulted from the discovery by De Moivre (for p = !) 
and then by Laplace (for 0 < p < 1) of simple asymptotic formulas for P"(k), 
which led not only to new proofs of the law of large numbers but also to 
more precise statements ofboth local and integrallimit theorems, the essence 
of which is that for large n and at least for k "' np, 

P"(k) "' 1 e-<k-npJ>t<2npq>, 

~ 
and 

1 J &./"ii/Pii L P"(k) "'-- e-xz/2 dx. 
{k:l(k/n)- PI :S•I j2;r. -•./n~Pii 
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2. The next section will be devoted to precise Statements and proofs of these 
results. For the present we consider the question of the real meaning of the 
law of !arge numbers, and of its empirical interpretation. 

Let us carry out a !arge number, say N, of series of experiments, each of 
which consists of "n independent trials with probability p of the event C of 
interest." Let S~/n be the frequency of event C in the ith series and N, the 
number of series in which the frequency deviates from p by less than e: 

N, is the number of i's for which i(S~/n) - pi ~ e. Then 

NJN"' P, (10) 

where P, = P{i(S~/n)- Pi~ e}. 
lt is important to emphasize that an attempt to make (10) precise inevitably 

involves the introduction ofsome probability measure,just as an estimate for 
the deviation of Sn/n from p becomes possible only after the introduction of a 
probability measure P. 

3. Let us consider the estimate obtained above, 

{I Sn I } "' k 1 P - - p ~ e = L Pn( ) ~ -.2, 
n {k: l<k/n)- PI~ •J 4m; 

(11) 

as an answer to the following question that is typical of mathematical 
statistics: what is the least number n of observations that is guaranteed to 
have (for arbitrary 0 < p < 1) 

(12) 

where oc is a given number (usually small)? 
1t follows from (11) that this number is the smallest integer n for which 

1 
n ~ 4e2oc · (13) 

For example, if oc = 0.05 and e = 0.02, then 12 500 Observations guarantee 
that (12) will hold independently of the value of the unknown parameter p. 

Later (Subsection 5, §6) weshall see that this number is much overstated; 
this came about because Chebyshev's inequality provides only a very crude 
upper bound for P{i(Sn/n)- Pi ~ e}. 

4. Let us write 

C(n,e) = {w:l 8"~w)- pl ~ e}. 
From the law of large numbers that we proved, it follows that for every 
e > 0 and for sufficiently large n, the probability of the set C(n, e) is close to 
1. In this sense it is natural to call paths (realizations) w that are in C(n, e) 
typical (or (n, e)-typical). 
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We ask the following question: How many typical realizations are there, 
and what is the weight p( w) of a typical realization? 

Forthis purpose we first notice that the total number N(Q) ofpoints is 2", 
and that if p = 0 or 1, the set of typical paths C(n, e) contains only the single 
path (0, 0, ... , 0) or (1, 1, ... , 1). However, if p = t, it is intuitively clear that 
"almost all" paths (all except those of the form (0, 0, ... , 0) or (1, 1, ... , 1)) 
are typical and that consequently there should be about 2" of them. 

lt turns out that we can give a definitive answer to the question whenever 
0 < p < 1; it will then appear that both the number of typicai reaiizations 
and the weights p(w) are determined by a function of p called the entropy. 

In order to present the corresponding resuits in more depth, it will be 
heipful to consider the somewhat more generai scheme of Subsection 2 of 
§2 instead of the Bernoulli scheme itself. 

Let (p 1, p2 , ••• , Pr) be a finite probability distribution, i.e. a set ofnonnega­
tive numbers satisfying p1 + · · · +Pr= 1. The entropy ofthis distribution is 

r 

H = - L p;Inp;, (14) 
i= I 

with 0 ·In 0 = 0. lt is clear that H ~ 0, and H = 0 if and only if every p;, 
with one exception, is zero. The function f(x) = -x In x, 0 :s; x :s; 1, IS 

convex upward, so that, as know from the theory of convex functions, 

f(xl) + ·~ · + f(xr) :s; I(x 1 + ·; · + x'). 

Consequently 

H = - L Pi In Pi :s; - r . r • In r = In r. r PI + · · · + P (PI + · · · + P) 
i= 1 r r 

In other words, the entropy attains its largest value for p1 = · · · = Pr = 1/r 
(see Figure 8 for H = H(p) in the case r = 2). 

If we consider the probabiiity distribution (P~> p2 , ••• , Pr) as giving the 
probabilities for the occurrence of events A 1, A 2 , ••• , A" say, then it is quite 
clear that the "degree of indeterminancy" of an event will be different for 

H(p) 

ln z 

0 p 

Figure 8. The function H(p) = - p In p- (1 - p)ln(l - p). 
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different distributions. If, for example, Pt = 1, p2 = · · · = Pr = 0, it is clear 
that this distribution does not admit any indeterminacy: we can say with 
complete certainty that the result of the experiment will be At· On the other 
band, if Pt = · · · =Pr= 1/r, the distribution has maximal indeterminacy, 
in the sense that it is impossible to discover any preference for the occurrence 
of one event rather than another. 

Consequently it is important to have a quantitative measure of the in­
determinacy of different probability distributions, so that we may compare 
them in this respect. The entropy successfully provides such a measure of 
indeterminacy; it plays an important role in statistical mechanics andin many 
significant problems of coding and communication theory. 

Suppose now that the sample space is 

n = {w: w = (at, ... ' an), ai = 1, ... ' r} 

and that p(w) = p'tJ(ruJ · · · p•;<m>, where v,(w) is the number of occurrences of i 
in the sequence w, and (Pt• ... , Pr) is a probability distribution. 

Fore> 0 and n = 1, 2, ... ,Iet us put 

{ I vi(w) I . } C(n, e) = w: -n-- Pi < e,z = 1, ... , r . 

It is clear that 

r {I vlw) I } P(C(n,e)) ~ 1- i~t P -n-- Pi ~ e , 

and for sufficiently large n the probabilities P{l(vlw)/n)- pd ~ e} are 
arbitrarily small when n is sufficiently large, by the law of large numbers 
applied to the random variables 

J! ( ) _ {1, ak = i, 
'ok w - . ' 0, ak =I= z 

k = 1, ... , n. 

Hence for large n the probability of the event C(n, e) is close to 1. Thus, as in 
the case n = 2, a path in C(n, e) can be said tobe typical. 

If all Pi > 0, then for every w e n 

p(w) = exp{ -n kt (- vk~w) Inpk)}. 

Consequently if w is a typical path, we have 

L - _k_In Pk - H ~ - L _k_ - Pk In Pk ~ - " L In Pk. I r ( v (w) ) I r I v (w) I r 
k=t n k=t n k=l 

It follows that for typical paths the probability p( w) is close to e-"8 and­
since, by the law of large numbers, the typical paths "almost" exhaust n 
when n is large-the number of such paths must be of order e"8 . These con­
siderations Iead up to the following proposition. 
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Theorem (Macmillan). Let P; > 0, i = 1, ... , r and 0 < B < 1. Then there is 
an n0 = n0 (e; p 1, ••. , p,) such thatfor all n > n0 

(a) en{H-t) ~ N(C(n, llt)) ~ en{H+•>; 

(c) P(C(n, e1)) = I p(w)-+ 1, n-+ oo, 
WEC{n, En) 

where 

e1 is the smaller of Bande/{- 2 kt/n Pk} 
PROOF. Conclusion (c) follows from the Iaw of Iarge numbers. To estabiish 
the other conclusions, we notice that if w E C(n, e) then 

k = 1, ... , r, 

and therefore 

p(w) = exp{- L vk In Pd < exp{ -n L Pk In Pk - e1n L In Pk} 

~ exp{ -n(H - fe)}. 

Simiiariy 

p(w) > exp{- n(H + fe)}. 

Consequently (b) is now estabiished. 
Furthermore, since 

P(C(n, e1)) ~ N(C(n, e1)) • min p(w), 
coeC(n,t:t} 

we have 

N(C( )) < P(C(n,el)) 1 = en{H+{l/2)e) 
n, llt - · p( ) < n(H+(l/2)e) mm w e 

weC(n, ei) 

and simiiariy 

N(C(n, llt)) ~ P(C(n, ~))) > P(C(n, Bt))en<H-012>•>. 
max w 

Since P(C(n, e1))-+ 1, n-+ oo, there is an n1 suchthat P(C(n, e1)) > 1 - e 
for n > n1, and therefore 

N(C(n, e1)) ~ (1 - e) exp{n(H - f)} 

= exp{n(H - e) + (fne + In(1 - e))}. 
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Let n2 besuchthat 

!ne + ln(l - e) > 0. 

for n > n2 • Then when n 2::: n0 = max(n 1, n2 ) we have 

N(C(n, et)) ;;:::: e"<H- •l. 

This completes the proof of the theorem. 

5. The law of large numbers for Bernoulli schemes Iets us give a simple and 
elegant proof of Weierstrass's theorem on the approximation of continuous 
functions by polynomials. 

Letf = f(p) be a continuous function on the interval [0, 1]. We introduce 
the polynomials 

which are called Bernstein polynomials after the inventor of this proof of 
Weierstrass's theorem. 

If ~ 1 , •.. , ~" is a sequence of independent Bernoulli random variables 
with P{~i = 1} = p, P{~i = 0} = q and Sn= ~ 1 + · · · + ~"' then 

Ef(~") = Bn(p). 

Since the function f = f(p), being continuous on [0, 1], is uniformly con­
tinuous, for every e > 0 we can find {J > 0 such that I f(x) - f(y)l ~ e 
whenever lx- yl ~ fJ. It is also clear that the function is bounded: lf(x)l ~ 
M < oo. 

Using this and (5), we obtain 

lf(p)- Bn(p)l =I ktO [f(p)- I(~) J c:pkqn-k I 
~ I lf(p)- f(~) I C~pkqn-k 

{k:j(k/n)-piS~} n 

+ I lf(p)- f(~) I c:lqn-k 
{k:i(k/n)- Pi>~} n 

2M M 
~ e + 2M I c:lqn-k ~ e + --2 = e + --2 . 

{k:i(k/n)- Pi>~~ 4nb 2nb 

Hence 

lim max lf(p)- Bn(p)l = 0, 
n-+oo Os;ps;1 

which is the conclusion of Weierstrass's theorem. 



§6. The Bernoulli Scheme. II. Limit Theorems (Local, Oe Moivre-Laplace, Poisson) 55 

6. PROBLEMS 

l. Let ~ and 11 be random variables with correlation coefficient p. Establish the following 
two-dimensional analog ofChebyshev's inequality: 

P{l~- E~l ~ F-JV'i, or 1'1- EIJI ~ efill} :::;; 1
2 (1 + jl=IJI). 

e 

(Hint: Use the result of Problem 8 of §4.) 

2. Let f = f(x) be a nonnegative even function that is nondecreasing for positive x. 
Then for a random variable ~ with I~( w) I :::;; C, 

Ef<e)- f(e) < P{l;; _ E;;l > e} < Ef(~- E~). 
f(C) - ., ., - - f(e) 

In particular, if f(x) = x 2, 

E~2 - e2 V~ 
cz :::;; P{l~- E~l ~ e}:::;; ~· 

3. Let ~ 1 , ••• , ~. be a sequence ofindependent random variables with V~;~ C. Then 

p - ~e :::;;-. {1 ~ 1 +···+~. E(~ 1 +···+~.)~} C 
n n ne2 

(15) 

(With the same reservations as in (8), inequality (15) implies the validity of the Jaw of 
!arge numbers in more general contexts than Bernoulli schemes.) 

4. Let ~ 1 , ••. , ~. be independent Bernoulli random variables with P{e; = 1} = p > 0, 
P{~; = -1} = 1 - p. Derive the following inequality of Bernstein: there isanurober 
a > 0 such that 

p{ I~·- (2p- 1) I~ e} ~ 2e-a•2n, 

where s. = ~ 1 + · · · + ~. and e > 0. 

§6. The Bernoulli Scheme. II. Limit Theorems 
(Local, De Moivre-Laplace, Poisson) 

t. As in the preceding section, let 

Then 

and by (4.14) 

Sn= ~1 + · · · + ~n· 

Sn 
E-= p, 

n 
(1) 

(2) 
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lt follows from (1) that S"/n- p, where the equivalence symbol - has been 
given a precise meaning in the law of large numbers as the assertion 
P{I(S,./n)- PI ~ B}-+ 0. 1t is natural to suppose that, in a similar way, the 
relation 

(3) 

which follows from (2), can also be given a precise probabilistic meaning 
involving, for example, probabilities of the form 

or equivalently 

(since ES,.= np and VS,. = npq). 
If, as before, we write 

for n ~ 1, then 

p{ I S,. - ES,. I < x} = L P,.(k). JVS:, - {k: i(k- np)/ JiiP41 :S x) 

(4) 

We set the problern of finding convenient asymptotic formulas, as n-+ oo, 
for P,.(k) and for their sumover the values of k that satisfy the condition on 
the right-hand side of ( 4). 

The following result provides an answer not only for these values of k 
(that is, for those satisfying I k - np I = 0(~}} but also for those satisfying 
lk- npl = o(npq)213• 

Local Limit Theorem. Let 0 < p < 1 ; then 

P,.(k) "" 1 e-<k-npJ2J<2npql, 

~ 
uniformly for k suchthat lk - npl = o(npq)213 , i.e. as n-+ oo 

sup 
{k:lk-npl :Sq>(n)) 

where lp(n) = o(npq)213• 

P,.(k) _ 1 
1 e-(k-np)2J(2npq) 

J2nnpq 

-+ 0, 

(5) 
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The proof depends on Stirling's formuia (2.6) 

where R(n) --+ 0 as n --+ oo. 

Then if n --+ oo, k--+ oo, n - k --+ oo, we have 

ck = n! 
"k!(n-k)! 

.)2M e-"n" 1 + R(n) 

J2nk · 2n(n - k) e-kkk. e-<n-kl(n - k)"-k (1 + R(k))(1 + R(n- k)) 

1 1 + t:(n, k, n - k) 

= J2nn ~ (1 _ ~) · (~r(• - ~)" k· 

where t: = t:(n, k, n - k) is defined in an evident way and t:--+ 0 as n--+ oo, 
k --+ oo, n - k --+ oo. 

Therefore 

Write ß = kjn. Then 

1 (p)k(1 p)n-k 
P"(k) = J A -;;: -1 :. (1 + e) 

2nnß(1 - ß) P - 1' 

= 1 exp{k In~ + (n - k) In 1 - p} · (1 + t:) 
j2nnß(1 - ß) P 1 - ß 

= J2nnß~ 1 _ ß) exp{n[~In~ + (1- ~)In~= :J}(l + t:) 

1 exp{- nH(ß)}(1 + e), 
J2nnß(1 - ß) 

where 

X 1- X 
H(x) = xin- + (1- x)In-1-. 

p - p 

We are considering vaiues of k suchthat lk- npl = o(npq)213, and con­
sequently p - ß--+ 0, n--+ oo. 
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Since, for 0 < x < 1, 

X 1- X 
H'(x) =In- -In--, 

p 1- p 

H"( ) - 1 1 X--+--
X 1- x' 

H"'( ) 1 1 
x = - x2 + (1 - x)2 ' 

if we write H(ß) in the form H(p + (ß - p)) and use Taylor's formula, we 
find that for sufficiently !arge n 

H(ß) = H(p) + H'(p)(ß- p) + tH"(p)(ß- p)2 + O(lß- pi 3 ) 

= ~(~ + ~)(ß- P)2 + O(lß- Pl 3 ). 
2 p q 

Consequently 

PnCk) = J 1 exp{- -2n (ß- p)2 + nO(Iß- pl 3)} (1 + ~:). 
2nnß(1 - ß) pq 

Notice that 

_!!_ (ß - p)2 = _!!_ (~ - p)2 = (k - np)2 
2pq 2pq n 2npq 

Therefore 

Pn(k) = 1 e-<k-npl21<2 npql(1 + ~:'(n, k, n- k)), 
~ 

where 

1 + ~:'(n, k, n- k) = (1 + ~:(n, k, n- k))exp{n O(IP- ßl 3)} 

and, as is easily seen, 

supl~:'(n, k, n - k)l-+ 0, n--+ oo, 

if the sup is taken over the values of k for which 

lk - npl ::::;; qJ(n), qJ(n) = o(npq)2!3. 

This completes the proof. 

p(1 - p) 

ß(1 - ß) 



§6. The Bernoulli Scheme. II. Limit Theorems (Local, De Moivre-Laplace, Poisson) 59 

Coroßary. The conclusion ofthe locallimit theorem can be put in thefollo"}l!!il 
equivalentform: For all x E R1 suchthat x = o(npq)116, andfor np + xy'npq 
an integer jrom the set {0, 1, ... , n}, 

Pn(np + x.jniq) "' 1 e-xztz, 
J2nnpq 

i.e. as n -+ oo, 

sup 
{x:lxl:s;l/l(n)} 

where tf;(n) = o(npq) 116 • 

Pinp + xJnPtj) _ 1 
1 -x2 /2 ___,==e 

J2nnpq 

-+ 0, 

(7) 

(8) 

With the reservations made in connection with formula (5.8), we can 
reformulate these results in probabilistic language in the following way: 

P{Sn = k}"' 1 e-<k-npJztcznpqJ, 
J2nnpq 

ik- npi = o(npq)213 , (9) 

p n -~2 { S-np } 1 
JnPq = x "' J2nnpq e , (10) 

(In the last formula np + x.jniq is assumed to have one of the values 
0, 1, ... , n.) 

lf we put tk = (k - np)/JnPtj and Atk = tk+ 1 - tk = 1/JnPtj, the pre­
ceding formula assumes the form 

(11) 

lt is clear that Atk = 1/Jniq-+ 0 and the set of points {tk} as it were 
"fills" the realline. lt is natural to expect that (11) can be used to obtain the 
integral formula 

P{a < Sn - np ~ b} "' _1_ ib e-xz/2 dx, 
JnPti fo a 

- oo < a ~ b < oo. 

Let us now give a precise statement. 

2. For - oo < a ~ b < oo Iet 

Pn(a, b] = L Pn(np + xJnPtj), 
a<xsb 

where the summation is over those x for which np + x.jniq is an integer. 
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lt follows from the local theorem (see also (11)) that for all tk defined by 
k = np + t~ and satisfying I tk I ::::;; T < oo, 

where 

sup le(tk, n)l --+ 0, 
itkl:s;T 

n --+ oo. 

Consequently, if a and b are given so that - T ::::;; a ::::;; b ::::;; T, then 

(12) 

(13) 

L P,.(np + tkJnj}q) = L lltk e-t~/2 + L e(tk> n) lltk e-tlt2 
a<tk:s;b a<tk:Sb fo a<tk:Sb fo 

= ~ ib e-"2' 2 dx + R~1l(a, b) + R~2>(a, b), (14) 
V 2n a 

where 

R~l>(a, b) = L lltk e-tl/2 - _1_ ib e-x2f2 dx, 
a<tk:s;bfo fo a 

lltk 2 
R~2>(a, b) = L e(tk, n) -- e-tk12. 

a<tk:s;b fo 

From the standard properties of Riemann sums, 

sup IR~1 >(a, b)l--+ 0, n --+ oo. (15) 
-T:s;a:s;b:s;T 

lt also clear that 

sup IR~2>(a, b)l 
-T:s;a:s;b:s;T 

"' lltk 2 2 ::::;; sup le(tk, n)l· L. ;;;::, e-tk! 
ltkl:s;T ltkl :s;T v 2n 

::::;; sup le(tk, n)l 
itkl:s;T 

x [-1- JT e-"212 dx + sup IR~1 >(a, b)l]--+ 0, (16) fo -T -T:s;a:s;b:s;T 

where the convergence of the right-hand side to zero follows from (15) and 
from 

_1_ fT e-x2/2 dx ::::;; _1_ foo e-x2f2 dx = 1, 
fo -T fo -oo 

(17) 

the value of the last integral being weil known. 
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We write 

<l>(x) = _1_ fx e-t2f2 dt. 
Jhc -oo 

Then it follows from (14)-(16) that 

sup IPn(a, b] - (<l>(b) - <l>(a))l ~ 0, n~ oo. (18) 
-TsasbsT 

We now show that this result holds for T = oo as weil as for finite T. By 
(17), corresponding to a given E > 0 we can find a finite T = T(E) suchthat 

1 JT -- e-x212 dx > 1-! E. 
j2n -T 

(19) 

According to (18), we can find an N suchthat for all n > N and T = T(E) 
we have 

sup IPn(a, b] - (<l>(b)- <l>(a))l <! E. (20) 
-T$a$b$T 

lt follows from this and (19) that 

Pn(- T, T] > 1 - t E, 

and consequently 

Pi- oo, T] + P"(T, oo) ~ te, 
where Pn(- oo, T] = lims!-oo Pn(S, T] and Pn(T, oo) = limstoo Pn(T, S]. 

Thereforefor -oo ~ a ~ -T< T~ b ~ oo, 

I Pn(a, b] - _I_ ib e-x2f2 dx I 
-J2n a 

~ IPn(- T, T] - ~ fT e-x2f2 dx I 
v 2n -r 

+I Pn(a,- T]- fo 1-T e-x2J2 dx I+ I Pn(T, b]- fo s: e-x2J2 dx I 

1 1 s-T < -E + P (-oo - T] + -- e-x212 dx + P (T. oo) -4 n ' M- n ' v 2n - oo 

1 ("' 2 1 1 1 1 + -J2n Jr e-x /2 dx ~ 4E + 2E +SE + SE = E. 

By using (18) it is now easy to see that Pia, b] tends uniformly to <l>(b)­
<l>(a) for - oo ~ a < b ~ oo. 

Thus we have proved the following theorem. 
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De Moivre-Laplace Integral Theorem. Let 0 < p < 1, 

Pn(a, b] = L Pn(np + xJniq), 
a<xsb 

Then 

sup IPn(a, b]- ~ ib e-x212 dxl ~ 0, 
-cosa<bsco V 2n a 

n~ oo. (21) 

With the same reservations as in (5.8), (21) can be stated in probabilistic 
language in the following'way: 

I { Sn- ESn ::::;; b}- ~ ib e-x212 dx I~ 0, 
sup P a < ~ v 2n a 

-cosa<bsoo v VSn 

n~ oo. 

It follows at once from this formula that 

as n ~ oo, whenever -oo::::;; A < B::::;; oo. 

EXAMPLE. A true die is tossed 12 000 times. We ask for the probability P that 
the nurober of 6's lies in the interval (1800, 2100]. 

The required probability is 

k (l)k(5)12000-k. 
P = L: c 12 ooo - -1BOO<ks2100 6 6 

An exact calculation of this sum would obviously be rather difficult. 
However, if we use the integral theorem we find that the probability P in 
question is (n = 12 000, p = i. a = 1800, b = 2100) 

( 2100 - 2000 ) ( 1800 - 2000 ) Cl>( 126 fL 
Cl> j12000·i·i -Cl> j12000·i·i = vu)- Cl>{- 2v 6) 

~ Cl>(2.449) - Cl>(- 4.898) ~ 0.992, 

where the values of Cl>(2.449) and Cl>( -4.898) were taken from tables of Cl>(x) 
(this is the normal distribution function; see Subsection 6 below). 

3. We have plotted a graph of Pn(np + xvfnN) (with x assumed such that 
np + xßPq is an integer) in Figure 9. 

Then the local theorem says that when x = o(npq) 1' 6 , the curve 
(1/j2impq)e-x2 f2 provides a close fit to Pn(np + xJnN). On the other hand 

the integral theorem says that Pn(a, b] = P{aßPq < Sn-np::::;; bßPq} = 
P{np + aßPq < Sn::::;; np + bßPq} iscloselyapproximated bytheintegral 
(1/JiTr:)J: e-x2f2 dx. 
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We write 

P.(np + xjnpq) 

0 

Figure 9 

Fn(x) = Pn(- oo, x] ( {Sn-np }) 
=P Jn'N~x. 

Then it follows from (21) that 

sup /Fn(x)- <l>(x)/--+ 0, n --+ oo. 
-oosx::::;;oo 

X 

(23) 

lt is natural to ask how rapid the approach to zero is in (21) and (23), 
as n--+ oo. We quote a result in this direction (a special case of the Berry­
Esseen theorem: see §6 in Chapter 111): 

(24) 

lt is important to recognize that the order of the estimate (1/Jn'N) 
cannot be improved; this means that the approximation of Fn(x) by <l>(x) 
can be poor for values of p that are close to 0 or 1, even when n is large. This 
suggests the question of whether there is a better method of approximation 
for the probabilities of interest when p or q is small, something better than 
the normal approximation given by the Iocal and integral theorems. In this 
corinection we note that for p = !, say, the binomial distribution {Pn(k)} is 
symmetric (Figure 10). However, for small p the binomial distribution is 
asymmetric (Figure 10), and hence it is not reasonable to expect that the 
normal approximation will be satisfactory. 

P.(k) P.(k) 

0.3 0.3 
/ p = 1. n = 10 r'- p =!, n = 10 

0.2 
I \ 

0.2 I 
I 

0.1 I \ 0.1 
I 

2 4 6 8 10 
0 

2 4 6 8 10 

Figure 10 
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4. It turnsout that for small values of p the distribution known as the Poisson 
distribution provides a good approximation to {P"(k)}. 

Let 

P"(k) = nP q ' = ' ' ... ' n, {ck k "-k k - 0 1 

0, k - n + 1, n + 2, .. , 

and suppose that p is a function p(n) of n. 

Poisson's Theorem. Let p(n)-+ 0, n-+ oo, in such a way that np(n)-+ A., 
where A. > 0. Thenfor k = 1, 2, ... , 

P"(k)-+ nk, n-+ oo, (25) 

where 
A.ke- J. 

k = 0, 1, .... (26) 1tk = k!' 

The proof is extremely simple. Since p(n) = (A./n) + o(1/n) by hypothesis, 
for a given k = 0, 1, ... and sufficiently large n, 

P"(k) = C~pkqn-k 

But 

n(n- 1)···(n- k + 1)[~ + oO)T 
n(n- 1) · · · (n - k + 1) [, ( )]k ,k = k ~~.+o1 -+11., 

n 
n-+ oo, 

and 

[ A. ( })]n-k 1 - n + 0 n -+ e-.1., n-+ oo, 

which establishes (25). 

The set of numbers {nt. k = 0, 1, ... } defines the Poisson probability 
distribution (nk ~ 0, _Lk=o nk = 1). Notice that all the (discrete) distributions 
considered previously were concentrated at only a finite nurober of points. 
The Poisson distribution is the first example that we have encountered of a 
(discrete) distribution concentrated at a countable nurober of points. 

The following result of Prokhorov exhibits the rapidity with which P"(k) 
converges to nk as n-+ oo: if np(n) = A. > 0, then 

00 2A. L IPn(k)- nki:::;;- · min(2, A.). 
k=O n 

(27) 

(A proof of a somewhat weaker result is given in §12, Chapter 111.) 



§6. The Bernoulli Scheme. II. Limit Theorems (Local, De Moivre-Laplace, Poisson) 65 

5. Let us return to the De Moivre-Laplace Iimit theorem, and show how it 
implies the law of large numbers (with the same reservation that was made 
in connection with (5.8)). Since 

it is clear from (21) that when e > 0 

P ....!!. - p :::::; e --- e-x212 dx--. 0, {I s I } 1 s·..(iifiq 
n .jiic -• .;nrpq n--. oo, (28) 

whence 

n-. oo, 

which is the conclusion of the law of large numbers. 
From (28) 

p{ I Sn - p I :::::; e} "' _1_ s·.;nrpq e- x2J2 dx, 
n .jiic -• .;nrpq n-. oo, (29) 

whereas Chebyshev's inequality yielded only 

p{ I ~ - p I :::::; e} ~ 1 - :e; . 
It was shown at the end of §5 that Chebyshev's inequality yielded the estimate 

1 
n >-­-42 e a. 

for the number of observations needed for the validity of the inequality 

Thus with e = 0.02 and a. = 0.05, 12 500 observations were needed. We can 
now solve the same problern by using the approximation (29). 

We define the number k(a.) by 

-- e-x212 dx = 1 - a.. 
1 Jk(<Z) 

fo -k(<Z) 

Since e .J{.n!Pq) ~ 2ejn, if we define n as the smallest integer satisfying 

2ejn ~ k(a.) (30) 

we find that 

(31) 
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We find from (30) that the smallest integer n satisfying 

F(11.) 
n ;;:::: 4e2 

guarantees that (31) is satisfied, and the accuracy of the approximation can 
easily be established by using (24). 

Taking e = 0.02, 11. = 0.05, we find that in fact 2500 Observations suffice, 
rather than the 12 500 found by using Chebyshev's inequality. The values 
of k(11.) have been tabulated. We quote a nurober ofvalues of k(11.) for various 
values of 11.: 

(X k(a) 

0.50 0.675 
0.3173 1.000 
0.10 1.645 
0.05 1.960 
0.0454 2.000 
0.01 2.576 
0.0027 3.000 

6. The function 

cll(x) = _1_ fx e-t2J2 dt, 
Jiir -co 

(32) 

which was introduced above and occurs in the De Moivre-Laplace integral 
theorem, plays an exceptionally important role in probability theory. It is 
known as the normal or Gaussian distribution on the real line, with the 
(normal or Gaussian) density 

-3 -2 -1 ° I I 
X 

0.67 1.96 2.58 

Figure 11. Graph of the normal probability density rp(x). 
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-3 -2 

1.0 

0.9--
<ll(x) =-=- e-y';z dy 1 IX 

j2n oo 

-1 °111111 2 
1111 I 

0.25111 I 
0.52111 I 

0.67 I 1 
I I 

0.841 I 
1.281 

X 
3 4 

Figure 12. Graph of the normal distribution <l>(x). 

We have already encountered (discrete) distributions concentrated on a 
finite or countable set of points. The normal distribution belongs to another 
important dass of distributions that arise in probability theory. We have 
mentioned its exceptional role; this comes about, first of all, because under 
rather general hypotheses, sums of a large number of independent random 
variables (not necessarily Bernoulli variables) are closely approximated by 
the normal distribution (§4 of Chapter 111). For the present we mention only 
some of the simplest properties of qJ(x) and <D(x ), whose graphs are shown in 
Figures 11 and 12. 

The function qJ(x) is a symmetric bell-shaped curve, decreasing very 
rapidly with increasing lxl: thus <p(l) = 0.24197, <p(2) = 0.053991, qJ(3) = 
0.004432, qJ(4) = 0.000134, qJ(5) = 0.000016. lts maximum is attained at 
x = 0 and is equal to (2n)- 1 i 2 ~ 0.399. 

The curve <D(x) = (1/fo) J~ oo e-' 212 dt approximates 1 very rapidly 
as x increases: <D(l) = 0.841345, <D(2) = 0.977250, <D(3) = 0.998650, <D(4) = 
0.999968, <D( 4, 5) = 0.999997. 

For tables of qJ(x) and <D(x), as well asofother important functions that 
are used in probability theory and mathematical statistics, see [Al]. 

7. At the end of subsection 3, §5, we noticed that the upper bound for the 
probability of the event {w: I(Sn/n)- PI:?:: t:}, given by Chebyshev's inequal­
ity, was rather crude. That estimate was obtained from Chebyshev's inequal­
ity P{X;::.: s} :-::;:; EX2/t:2 for nonnegative random variables X;::.: 0. We may, 
however, use Chebyshev's inequality in the form 

(33) 

However, we can go further by using the "exponential form" of Chebyshev's 



68 I. Elementary Probability Theory 

inequality: if X~ 0 and A. > 0, this states that 

P{X ~ e} = P{e;.x ~ eA•} ~ EeA<X-•>. 

Since the positive number A. is arbitrary, it is clear that 

P{X ~ e} ~ inf EeA<X-•>. 
).>0 

(34) 

(35) 

Let us see what the consequences of this approach are in the case when 
x = s";n, s" = e1 + · · · + e", P(e; = 1) = p, P(e; = o> = q, i ~ 1. 

Let us set qJ(A.) = EeA~ •• Then 

qJ(A.) = 1 - p + peA 

and, under the hypothesis ofthe independence of el, e2, ... , e", 
EeAS" = [qJ(A.)]". 

Therefore, (0 < a < 1) 

p {s" ~ a} ~ inf EeA(S,Jn-a) = inf e-n[Aa/n-lnq>(A/n)] 

n A>o A>o 

= inf e-n[as-lnq>(s)] = e-PJSUPo>o[as-lnq>(s)]. (36) 
s>O 

Similarly, 

(37) 

The function f(s) = as - log[1 - p + pes] attains its maximum for 
p ~ a ~ 1 at the point s0 (f'(s0 ) = 0) determined by the equation 

• a(1- p) 
e o - ----:-:------''-:-

- p(1- a)" 

Consequently, 
sup f(s) = H(a), 
s>O 

where 
a 1-a 

H(a) = a ln- + (1 - a) ln -1 -p -p 

is the function that was previously used in the proof of the local theorem 
(subsection 1). 

Thus, for p ~ a ~ 1 

P{; ~ a} ~ e-nH<a>, (38) 
and therefore, since H(p + x) ~ 2x2 and 0 ~ p + x ~ 1, we have, for e > 0 
andO ~ p ~ 1, 
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p{;- p ~ e}:::;; e-2ns2. (39) 

We can establish similarly that for a:::;; p:::;; 1 

p {::::;; a}:::;; e-nH(al, (40) 

and consequently, for every e > 0 and 0 :::;; p :::;; 1, 

p{; _ p:::;; -e}:::;; e-2ns2. (41) 

Therefore, 

(42) 

Hence, it follows that the number n3 (1X) of Observations of the inequality 

(43) 

that are guaranteed tobe satisfied for every p, 0 < p < 1, is determined by the 
formula 

(44) 

where [ x] is the integral part of x. If we neglect "integral parts" and compare 
n3 (1X) with n1 (IX)= [(41Xe2t 1 ], we find that 

n1(1X) = ~1~j ~ 
"'"'' a!O. n3 (1X) 2 1 2 

IX n-
IX 

It is clear from this that when IX ! 0, an estimate of the smallest number of 
observations needed that can be obtained from the exponential Chebyshev 
inequality is more precise than the estimate obtained from the ordinary 
Chebyshev inequality, especially for smalliX. 

There is no difficulty in applying the formula 

~- e-y2f2 dy,...., --e-x2f2 1 Joo 1 
fo x -/bcx ' X-+ 00, 

to show that P(IX) ,...., 2log(2/1X) when IX! 0. Therefore, 

n2(1X)-+ 1, IX! 0. 
n3 (1X) 

lnequalities like (38)-(42) are known as inequalities for the probability of 
Zarge deviations. This terminology can be explained in the following way. 
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The De Moivre-Laplace integral theorem makes it possible to estimate in 
a simple way the probabilities of the events {IS,.- npi ~ x.jn} characteriz­
ing the "standard" deviation (up to order .jn) of S,. from np. Even the 
inequalities (39), (41), and (42) provide an estimate of the probabilities of the 
events {w: IS,.- npi ~ xn}, describing deviations of order greater than Jn, 
in fact of order n. 

We shall continue the discussion of probabilities of large deviations, in 
more general situations, in §5, chap. IV. 

8. PROBLEMS 

1. Let n = 100, p = /0 , -fo-, 130 , 1~, 150 • Using tables (for example, those in [Al]) of the 
binomial and Poisson distributions, compare the values of the probabilities 

P{lO < SIOO::;; 12}, 

P{33 < SIOO ::;; 35}, 

P{20 < S 100 ::;; 22}, 

P{40 < SIOO ::;; 42}, 

P{50 < SIOO ::;; 52} 

with the corresponding values given by the normal and Poisson approximations. 

2. Let p = t and z. = 2S. - n (the excess of 1 's over O's in n trials). Show that 

sup lfoP{Z2• = j} - e- P/4 "1 --+ 0, 
j 

n--+ oo. 

3. Show that the rate of convergence in Poisson's theorem is given by 

I A_ke-ll n2 
s~p P.(k)-~ ::;; --;;--· 

§7. Estimating the Probability of Success 
in the Bernoulli Scheme 

1. In the Bernoulli scheme (Q, d, P) with n = {w:w = (x 1, ••• , x,.), X;= 

0, 1)}, d = A: A s; Q}, 

p(w) = pr.xiqn-'f.xi, 

we supposed that p (the probability of success) was known. 
Let us now suppose that p is not known in advance and that we want to 

determine it by observing the outcomes of experiments; or, what amounts 
to the same thing, by observations ofthe random variables ~ 1 , •.• , ~ ... where 
~;(ro) =X;. This is a typical problern of mathematical statistics, and can be 
formulated in various ways. Weshall consider two of the possible formula­
tions: the problern of estimation and the problern of constructing con.fidence 
intervals. 

In the notation used in mathematical statistics, the unknown parameter 
is denoted by 0, assuming a priori that (} belongs to the set e = [0, 1]. We 
say that the set (Q, d, Pe; (} E 0) with Pe(W) = (J'f.Xi(1- ot-r.xi is a probabil-
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istic-statistical model ( corresponding to "n independent trials" with probabil­
ity of "success" lJ e E>), and any function T" = T"(w) with values in E> is 
called an estimator. 

If Sn= ~ 1 + · · · + ~n and r: = SJn, it follows from the law of large 
numbers that r: is consistent, in the sensethat (e > 0) 

P9{11!'- lJI ~ e}--+ 0, n --+ oo. 

Moreover, this estimator is unbiased: for every (} 

E9 r: = lJ, 

where E9 is the expectation corresponding to the probability P 9 • 

(1) 

(2) 

The property of being unbiased is quite natural: it expresses the fact that 
any reasonable estimate ought, at least "on the average," to Iead to the 
desired result. However, it is easy to see that r: is not the only unbiased 
estimator. For example, the same property is possessed by every estimator 

b1x1 + · · · + b x T"= nn, 
n 

where b1 + · · · + bn = n. Moreover, the law of large numbers (1) is also 
satisfied by such estimators (at least if lbd ~ K < oo; see Problem 2, §3, 
Chapter III) and so these estimators T" are just as "good" as r:. 

In this connection there arises the question of how to compare different 
unbiased estimators, and which of them to describe as best, or optimal. 

With the same meaning of "estimator," it is natural to suppose that an 
estimator is better, the smaller its deviation from the parameter that is being 
estimated. On this basis, we call an estimator T,. efficient (in the dass of un­
biased estimators T") if, 

(} E E>, (3) 

where V9 T" is the dispersion ofT", i.e. E9(T"- Oi. 
Let us show that the estimator r:, considered above, is efficient. Wehave 

* _ (Sn) _ V9 Sn _ nlJ(l - lJ) _ lJ(l - lJ) 
V9 Tn - V9 - 2 - 2 - • n n n n 

(4) 

Hence to establish that r: is efficient, we have only to show that 

. fV T. lJ(l - lJ) m 9 n ~ • (5) 
Tn n 

This is obvious for (} = 0 or 1. Let (} e (0, 1) and 

P9(xi) = ox•(1 - lJ)1-x,, 

lt is clear that 
n 

p9(w) = n P9(xJ 
i= 1 
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Let us write 

L0(w) = In Po(w)o 

Then 

Lo(w) = In 0 ° LX;+ In(1 - O)L(l -X;) 

and 

oLo(w) L(X; - 0) 
---ae = 0(1 - 0) 

Since 

ro 

and since Tn is unbiased, 

0 = Eo T,. = L T,.(w)po(W)o 
ro 

After differentiating with respect to 0, we find that 

(OPo(w)) 

0 = L opo(w) = L ---ae Po(w) = Eo[OLo(w)J' 
ro oO "' Po(w) oO 

( opo(w)) 

1 = "T. ae ( ) = E [T. oL8(w)] '2 n Po(w) Po w o n oO 0 

Therefore 

1 = e{<r..- O) aL;~w)] 

and by the Cauchy-Bunyakovskii inequality, 

2 [aLo(w)J 2 
1 ::;; E0[T" - 0] 0 E8 aB , 

whence 
2 1 

Eo[T" - 0] ~ In(O)' (6) 

where 

I"<o> = [aL;~w>T 
is known as Fisher's informationo 

From (6) we can obtain a special case of the Rao-Cramer inequality 

for unbiased estimators T": 

(7) 
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In the present case 

[oL6(w)J 2 [L(~; - 0)] 2 n9(1 - 9) n 
/"(9) = Eo -ai} = Eo 9(1 - 9) = [9(1 - 9)]2 = 9(1 - 9)' 

which also establishes (5), from which, as we already noticed, there follows 
the efficiency of the unbiased estimator T: = Sn/n for the unknown param­
eter 9. 

2. It is evident that, in considering T: as a pointwise estimator for 9, we have 
introduced a certain amount of inaccuracy. It can even happen that the 
numerical value of T: calculated from observations of x 1, ••• , Xn differs 
rather severely from the true value 9. Hence it would be advisable to deter­
mine the size of the error. 

It would be too much to hope that T:( w) differs little from the true value 
9 for all sample points w. However, we know from the law of large numbers 
that for every (j > 0 and for sufficiently large n, the probability of the event 
{19- T:(w)i > b} will be arbitrarily small. 

By Chebyshev's inequality 

P {in_ *I ~} < V6 T: = 9(1 - 9) 
6 V T n > u - (j2 nb2 

and therefore, for every A. > 0, 

Po{! 9 - T:l :::;; A. J9(1 : 9)} 2:: 1 - ; 2 • 

If we take, for example, Ä. = 3, then with P0-probability greater than 0.888 
(1 - (1/3 2 ) = ~ ~ 0.8889) the event 

!9- T:l:::;; 3J9(l ~ 9) 

will be realized, and a fortiori the event 

since 9(1 - 9):::;; t. 
Therefore 

!9- T:i:::;; 3 r.::• 
2y n 

In other words, we can say with probabiliP' greater than 0.8888 that the exact 
value of 9 is in the interval [T: - (3/2-Jn), T: + (3/2vfn)]. This statement 
is sometimes written in the symbolic form 
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e~r:± 3;: (~88%), 
2-yn 

where " ~ 88%" means "in more than 88% of all cases." 
The interval [T: - (3/2Jn), r: + (3/2Jn)J is an example of what are 

called confidence intervals for the unknown parameter. 

Definition. An interval of the form 

where t/1 1 ( w) and t/1 i w) are functions of sample points, is called a con.fidence 
interval of reliability 1 - {J ( or of signi.ficance Ievel {J) if 

for all () E 0. 

The preceding discussion shows that the interval 

[ * A. * A. J Tn - 2Jn' Tn + 2Jn 
has reliability 1 - (1/ A. 2). In point of fact, the reliability of this confidence 
interval is considerably higher, since Chebyshev's inequality gives only 
crude estimates of the probabilities of events. 

To obtain more precise results we notice that 

{w: I()- T:i ~ A.J()(1; ())} = {cv: t/1 1(T:, n) ~ () ~ t/JiT:, n)}, 

where t/1 1 = t/1 1(T:, n) and t/1 2 = t/JiT:, n) are the roots of the quadratic 
equation 

(e - r:)2 = A. 2 eo - e), 
n 

which describes an ellipse situated as shown in Figure 13. 

(J 

T* . 
Figure 13 
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Now Iet 

Then by (6.24) 

n { Sn- n8 } F 6(x) = P6 J $.; x . 
n8(1 - 8) 

1 
sup IF:J(x)- «l>(x)l :S; J 

x n8(1 - 8) 

Therefore if we know a priori that 

o < ~ $.; 8 $.; 1 - ~ < 1, 

where ~ is a constant, then 

1 
sup IF9(x)- «l>(x)l :S; ;: 

x ~v'n 

Let A.* be the smallest A. for which 

2 
(2«l>(A.) - 1) - ;: :2: 1 - b*, 

~v'n 

75 

where b* is a given significance Ievel. Putting b = b* - (2/~Jn), we find 
that A.* satisfies the equation 

For !argen we may neglect the term 2/~Jn and assume that A.* satisfies 

«l>(A.*) = 1 - ~b*. 

In particular, if A. * = 3 then 1 - b* = 0.9973 .... Then with probability 
approximately 0.9973 

r: - 3 J8(1 ~ 8) :S; 8 $.; r: + 3 J80 ~ 8) (8) 

or, after iterating and then suppressing terms of order O(n- 314), we obtain 
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T"* - 3 T"*(l - T"*) ~ () ~ T"* + 3 T"*(1 - T"*) (9) 
n n 

Hence it follows that the confidence interval 

[ * 3 T* 3 ] 
Tn - 2.Jn' n + 2.Jn (10) 

has (for large n) reliability 0.9973 (whereas Chebyshev's inequality only 
provided reliability approximately 0.8889). 

Thus we can make the following practical application. Let us carry out 
a large number N of series of experiments, in each of which we estimate the 
parameter () after n Observations. Then in about 99.73% of the N cases, in 
each series the estimate will differ from the true value of the parameter by 
at most 3/2.Jn. (On this topic see also the end of §5.) 

3. PROBLEMS 

1. Let it be known a priori that 8 has a value in the set S 0 !;;;;; [0, 1]. Construct an unbiased 
estimator for 8, taking values only in S 0 • 

2. Under the hypotheses of the preceding problem, find an analog of the Rao-Cramer 
inequality and discuss the problern of efficient estimators. 

3. Under the hypotheses of the first problem, discuss the construction of confidence 
intervals for 8. 

§8. Conditional Probabilities and Mathematical 
Expectations with Respect to Decompositions 

1. Let (Q, d, P) be a finite probability space and 

a decomposition ofQ (D; E d, P(D;) > 0, i = 1, ... , k, and D1 + · · · + Dk = 
Q). AlsoIetAbe an event from d and P(AID;) the conditional probability of 
A with respect to D;. 

With a set of conditional probabilities {P(A ID;), i = 1, ... , k} we may 
associate the random variable 

k 

n(w) = L P(AID;)ID;(w) (1) 
i= 1 

(cf. (4.5)), that takes the values P(AID;) on the atoms of D;. To emphasize 
that this random variable is associated specifically with the decomposition 
~. we denote it by 

P(AI~) or P(AI~)(w) 
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and call it the conditional probability of the event A with respect to the de­
composition ~-

This concept, as weil as the more general concept of conditional probabili­
ties with respect to a a-algebra, which will be introduced later, plays an im­
portant role in probability theory, a role that will be developed progressively 
as we proceed. 

We mention some of the simplest properties of conditional probabilities: 

P(A +BI~)= P(AI~) + P(BI~); (2) 

if ~ is the trivial decomposition consisting of the single set n then 

P(A I Q) = P(A). (3) 

The definition of P(A I~) as a random variable Iets us speak of its expec­
tation; by using this, we can write the formula (3.3) for total probability 
in the following compact form: 

EP(A I~)= P(A). (4) 

In fact, smce 
k 

P(AI~) = I P(AID;)In.(w), 
i= 1 

then by the definition of expectation (see (4.5) and (4.6)) 
k k 

E P(A I~) = I P(A I Di)P(D;) = I P(ADi) = P(A). 
i= 1 i= 1 

Now Iet Yf = Yf(w) be a random variable that takes the values y1, .•• , Yk 
with positive probabilities: 

k 

Yf(w) = I Y)n/w), 
j= 1 

where Dj = {w: Yf(w) = yj}. The decomposition ~" = {D1, ... , Dd is called 
the decomposition induced by Yf. The conditional probability P(A I~") will 
be denoted by P(A IY/) or P(A IY/)(w), and called the conditional probability 
of A with respect to the random variable Yf. We also denote by P(A I Yf = y) 
the conditional probability P(A ID), where Dj = {w: Yf(w) = yj}. 

Similarly, if Yf 1, Yfz, ..• , Yfm are random variables and ~",,"2 , ••• ,"m is the 
decomposition induced by Yf 1, Yfz, ... , Yfm with atoms 

Dy,,y2 ,. •• ,ym = {w: Yf1(w) = Y1• · · ·' Yfm(w) = Ym}, 

then P(A I D",," 2 , ••• ,"J will be denoted by P(A IYf1, Yfz, •.• , Yfm) and called the 
conditional probability of A with respect to Yft. Yfz, ... , Yfm· 

EXAMPLE 1. Let ~ and Yf be independent identically distributed random var­
iables, each taking the values 1 and 0 with probabilities p and q. For k = 
0, 1, 2, Iet us find the conditional probability P(~ + Yf = k I Y/) of the event 
A = {w: ~ + Yf = k} with respect to Yf· 
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To do this, we first notice the following useful general fact: if e and 11 are 
independent random variables with respective values x and y, then 

P(e + 11 = zl11 = y) = P(e + y = z). 
In fact, 

Pce + 11 = !111 = y) = Pce + 11 = z, 11 = y) 
P(17 = y) 

Pce + Y = z,11 = y) 
P(17 = y) 

= P(e + y = z). 

P(e + y = z)P(y = 17) 
P(17 = y) 

Using this formula for the case at band, we find that 

P(e + 11 = kl11) = P(e + 11 = kl11 = O)I1~=o1Cw) 

Thus 

or equivalently 

+ P(e + 11 = kl11 = 1)/1~=1 1(w) 

= P(e = k)I1~=o1(w) + P{e = k- 1}/1~=1)(w). 

{
q(l - '1), 

PCe + 11 = kl11) = p(1 - 11) + q11, 
P11, 

k = 0, 
k = 1, 

k = 2, 

(5) 

(6) 

(7) 

2. Let e = ec w) be a random variable with values in the set X = {X 1' ... ' Xn}: 
I 

e = 'LxJ4w), 
j= 1 

and Iet !!) = {D 1, ••• , Dk} be a decomposition. Just as we defined the ex­
pectation of e with respect to the probabilities P(A),j = 1, ... , l. 

I 

Ee = L xjP(A), (8) 
j= 1 

it is now natural to define the conditional expectation of e with respect to !?} 

by using the conditional probabilities P(Ail !!)), j = 1, ... , I. We denote 
this expectation by E(el !!)) or E(el !!)) (w), and define it by the formula 

I 

E(el ~) = L xjP(Ajl ~). (9) 
j= 1 

According to this definition the conditional expectation E ( e I ~) ( w) is a 
random variable which, at all sample points w belanging to the same atom 
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P(-) 
(8) 

E~ 

1(3.1) 
(10) 

P(·ID) E(~ID) 

j(l) 1(11) 

P(-1 f0) 
(9) 

E(~lf0) 

Figure 14 

Di> takes the same value "LJ= 1 xiP(AiiDJ This observation shows that the 
definition of E(~lf0) could have been expressed differently. In fact, we could 
first define E(~ I DJ, the conditional expectation of ~ with respect to D;, by 

(10) 

and then define 
k 

E(~lf0)(w) = L E(e/DJI0 ,(w) (11) 
i= 1 

(see the diagram in Figure 14). 
lt is also useful to notice that E(~ I D) and E(~ I f0) are independent of the 

representation of ~-
The following properties of conditional expectations follow immediately 

from the definitions: 

E(a~ + b17 I E0) = aE(~ I 92) + bE(17 I 92), 

E(~IO) = E~; 

a and b constants; (12) 

(13) 

E(CJ 92) = C, C constant; (14) 

E(~ I 92) = P(A I 92). (15) 

The last equation shows, in particular, that properties of conditional prob­
abilities can be deduced directly from properties of conditional expectations. 

The following important property generalizes the formula for total 
probability (5): 

EE(~ I 92) = E~. (16) 

For the proof, it is enough to notice that by (5) 
I I I 

EE(~I92) = E L xiP(Ail92) = L xiEP(Ail92) = L xiP(A) = E~. 
j=l j=l j=l 

Let 92 = {Db ... , Dd be a decomposition and 17 = 17(w) a random 
variable. We say that 17 is measurable with respect to this decomposition, 
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or ~-measurable, if ~~ ~ ~. i.e. '1 = 17(w) can be represented in the form 
k 

17(w) = L y;I n, (w), 
i= 1 

where some Yi might be equal. In other words, a random variable is ~­
measurable if and only if it takes constant values on the atoms of ~-

ExAMPLE 2. If ~ is the trivial decomposition, ~ = {0}, then '7 ts ~-measur­
able if and only if '1 = C, where C is a constant. Every random variable 
'1 is measurable with respect to ~~-

Suppose that the random variable '1 is ~-measurable. Then 

and in particular 

To establish (17) we observe that if ~ = LJ= 1 xiA1, then 
I k 

and therefore 

~'1 = L L xiyiiAjD, 
j= 1 i= 1 

I k 

E(~'71 ~) = L L xiyiP(AiDd.@) 
j= 1 i= 1 

I k k 

= L L XiYi L P(AiDdDm)InJw) 
j=1 i=1 m=1 

I k 

= L L xiyiP(AiDdDi)In.(w) 
j= 1 i= 1 

I k 

= L L xiyiP(AiiDi)In,(w). 
i= 1 i= 1 

On the other band, since I~, = In, and In, · I Dm = 0, i :1: m, we obtain 

17E(~I ~) = [t1 YJn.(w)] · lt1 xiP(Ail.@)] 

= [t1 YJn,(w)] · mt1 lt1 xiP(AiiDm)] • InJw) 

k I 

= L L YixiP(AiiDi) · In,(w), 
i= 1 j= 1 

which, with (19), establishes (17). 

(17) 

(18) 

(19) 

Weshall establish another important property of conditional expectations. 
Let ~1 and .@2 be two decompositions, with ~1 ~ .@2 (.@2 is "finer" 
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than .@ 1 ). Then 

E[E(~IEZl2)IEZl1J = EW EZl1). 

For the proof, suppose that 

EZl1 = {Dll, ... , D1m}, 

Then if ~ = LJ= 1 xiAi' we have 
I 

E(~IEZl 2 ) = L xiP(AiiEZl2), 
j= 1 

and it is sufficient to establish that 

Since 
n 

P(AiiEZl 2 ) = L P(AiiDzq)ID2•' 

q=1 

we have 
n 

E[P(AiiEZlz)IEZl1] = L P(Ai IDzq)P(DzqiEZl1) 
q=1 

m n 

L ID,p · L P(AiiD2q)P(D2qiD 1p) 
p=1 q=1 

m 

= L ID,p · L P(AiiDzq)P(DzqiD1p) 
p=1 {q:D2qSD1p} 

m 

= L ID,p. P(AjiD1p) = P(AjiEZl1), 
p=1 

which establishes (21). 
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(20) 

(21) 

When .@ is induced by the random variables 1J 1, •.. , l'lk (.@ = EZl~, ..... ~J, 

the conditional expectation EW EZl~, ..... ~J is denoted by E(~IIJ 1 , ... , l'lk), 
or E(~IIJ 1 , ... , '1k)(w), and is called the conditional expectation of ~ with 

respect to 11 1, ..• , l'lk. 
lt follows immediately from the definition of E(~ll'/) that if ~ and 11 are 

independent, then 

(22) 

From (18) it also follows that 

E(IJI 11) = '1· (23) 
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Property (22) admits the following generalization. Let ~ be independent 
of ~ (i.e. for each D;E Elfi the random variables~ andIn; are independent). 
Then 

E(~l ~) = E~. (24) 

As a special case of (20) we obtain the following useful formula: 

E[E(~I~t.~z)l~tJ = E(~l~t~ (25) 

ExAMPLE 3. Let us findE(~ + ~I~) for the random variables~ and ~ consid­
ered in Example I. By (22) and (23), 

E(~ + ~~~) = E~ + ~ = p + ~­

This result can also be obtained by starting from (8): 

2 

E(~ + ~~~) = L kP(~ + ~ = k/~) = p(l- ~) + q~ + 2p~ = p + ~-
k=O 

EXAMPLE 4. Let ~ and ~ be independent and identically distributed random 
variables. Then 

(26) 

In fact, ifwe assume for simplicity that ~ and ~ take the values 1, 2, ... , m, 
we find (1 :5 k :5 m, 2 :5 I :5 2m) 

P( ~ = k I~ + ~ = I) = P( ~ = k, ~ + ~ = I) = P( ~ = k, ~ = I - k) 
P( ~ + ~ = I) P( ~ + ~ = I) 

P(~ = k)P(~ = I - k) P(~ = k)P(~ = I - k) 

P~+~=l) P~+~=l) 

= P(~ = k I~ + ~ = 1). 

This establishes the first equation in (26). To prove the second, it is enough 
to notice that 

2E(el~ + ~) = E(~l~ + ~) + E(~l~ + ~) = E(~ + ~~~ + ~) = ~ + ~-

3. We have already noticed in §1 that to each decomposition ~ = 
{D1, ••. , Dk} ofthe finite set n there corresponds an algebra oc(~) ofsubsets 
of n. The converse is also true: every algebra fJl of subsets of the finite space 
n generates a decomposition ~ (f!l = oc( ~)). Consequently there is a one­
to-one correspondence between algebras and decompositions of a finite 
space n. This should be kept in mind in connection with the concept, which 
will be introduced later, of conditional expectation with respect to the special 
systems of sets called u-algebras. 

For finite spaces, the concepts of algebra and u-algebra coincide. lt will 
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turn out that if fJI is an algebra, the conditional expectation E (~I ffl) of a 
random variable ~ with respect to fJI (to be introduced in §7 of Chapter II) 
simply coincides with E( ~I!!&), the expectation of ~ with respect to the de­
composition !'.& such that fJI = a( !'.&). In this sense we can, in dealing with 
finite spaces in the future, not distinguish between E(~lffl) and E(el!'.&), 
understanding in each case that E(~lffl) is simply defined tobe E(el!'.&). 

4. PROBLEMS 

1. Give an example of random variables ~ and r, which are not independent but for 
which 

(Cf. (22).) 

2. The conditional variance of ~ with respect to ~ is the random variable 

Show that 

V~= EV(~I~) + VE(~I~). 

3. Starting from (17), show that for every function f = f(r,) the conditional expectation 
E(~lr,) has the property 

E[f(r,)E(~ Ir,)] = E[~J(r,)]. 

4. Let~ and r, be random variables. Show that inf1 E(r, - f(~))2 is attained for f*(~) = 
E(r, I~). (Consequently, the best estimator for r, in terms of ~.in the mean-square sense, 
is the conditional expectation E(r, Im. 

5. Let ~ 1 •••. , ~ •• -r be independent random variables, where ~~> •.. , ~. are identically 
distributed and -r takes the values 1, 2, ... , n. Show that if S, = ~ 1 + · · · + ~' is the 
sum of a random number of the random variables, 

and 

ES,= Er· E~ 1 • 

6. Establish equation (24). 

V(S,Ir) = rV~ 1 

§9. Random Walk. I. Probabilities of Ruin and 
Mean Duration in Coin Tossing 

1. The value of the Iimit theorems of §6 for Bernoulli schemes is not just 
that they provide convenient formulas for calculating probabilities P(S. = k) 
and P(A < s. ~ B). They have the additional significance of being of a 
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universal nature, i.e. they remain useful not only for independent Bernoulli 
random variables that have only two values, but also for variables of much 
more general character. In this sense the Bernoulli scheme appears as the 
simplest model, on the basis of which we can recognize many probabilistic 
regularities which are inherent also in much more general models. 

In this and the next section weshall discuss a number of new probabilistic 
regularities, some of which are quite surprising. The ones that we discuss are 
again based on the Bernoulli scheme, although many results on the nature 
of random oscillations remain valid for random walks of a more general 
kind. 

2. Consider the Bernoulli scheme (Q, d, P), where Q = { w: w = (x 1, ... , xn), 
xi = ± 1}, d consists of all subsets of n, and p(w) = pv<wlqn-v(wl, v(w) = 
(L xi + n)/2. Let ~i(w) = xi, i = 1, ... , n. Then, as we know, the sequence 
~ 1> ••• , ~n is a sequence of independent Bernoulli random variables, 

p+q=l. 

Let us put S0 = 0, Sk = ~ 1 + · · · + ~k• 1 ~ k ~ n. The sequence S0 , 

S 1, ... , Sn can be considered as the path of the random motion of a particle 
starting at zero. Here Sk+ 1 = Sk + ~b i.e. if the particle has reached the 
point Sk at time k, then at time k + 1 it is displaced either one unit up (with 
probability p) or one unit down (with probability q). 

Let A and B be integers, A ~ 0 ~ B. An interesting problern about this 
random walk is to find the probability that after n steps the moving particle 
has left the interval (A, B). lt is also of interest to ask with what probability 
the particle leaves (A, B) at A or at B. 

That these are natural questions to ask becomes particularly clear if we 
interpret them in terms of a gambling game. Consider two players (first 
and second) who start with respective bankrolls (- A) and B. If ~i = + 1, 
we suppose that the second player pays one unit to the first; if ~i = -1, the 
first pays the second. Then Sk = ~ 1 + · · · + ~k can be interpreted as the 
amount won by the first player from the second (if Sk < 0, this is actually 
the amount lost by the first player to the second) after k turns. 

At the instant k ~ n at which for the firsttime Sk = B (Sk = A) the bank­
roll ofthe second (first) player is reduced to zero; in other words, that player 
is ruined. (If k < n, we suppose that the game ends at time k, although the 
random walk itself is weil defined up to time n, inclusive.) 

Before we turn to a precise formulation, Iet us introduce some notation. 
Let x be an integer in the interval [A, B] and for 0 ~ k ~ n Iet s: = x + Sk, 

r~ = min{O ~ l ~ k: Si= A or B}, (1) 

where we agree to take r~ = k if A < Si < B for all 0 ~ l ~ k. 
Foreachkin 0 ~ k ~ n and x E [A, B], the instant r~, called a stopping 

time (see §11), is an integer-valued random variable defined on the sample 
space n (the dependence of r~ on n is not explicitly indicated). 
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lt is clear that for alll < k the set {w: rt = I} is the event that the random 
walk {Sf, 0:::; i :::; k}, starting at time zero at the point x, leaves the interval 
(A, B) at time I. lt is also clear that when I:::; k the sets {w: rt = I, Sf = A} 
and {w: rt = I, Sf = B} represent the events that the wandering particle 
leaves the interval (A, B) at time I through A or B respectively. 

For 0 :::; k :::; n, we write 

dt = L {w: rt = I, St = A}, 
Oslsk 

(2) 
fit = L {w: rt = I, Sf = B}, 

Os ISk 

and Iet 

be the probabilities that the particle leaves (A, B), through A or B respectively, 
during the time interval [0, k]. For these probabilities we can find recurrent 
relations from which we can successively determine cx 1(x), ... , cxix) and 
ß1(x), ... , ßix). 

Let, then, A < x < B. lt is clear that cx0 (x) = ß0(x) = 0. Now suppose 
1 :::; k :::; n. Then by (8.5), 

ßk(x) = P(~t) = P(~tiS~ = x + 1)P(~ 1 = 1) 

+ P(~tiS~ =X- 1)P(~I = -1) 

= pP(~:1s: = x + 1) + qP(fl:ls: = x- 1). (3) 

W e now show that 

P(.16~1 Sf = X + 1) = P(.16~::: D, P(.1ltl Sf = X - 1) = P(.16~= D. 
To do this, we notice that ~t can be represented in the form 

~t = {w:(x,x + ~ 1 , ... ,x + ~ 1 + ··· + ~k)EBt}, 
where Bt is the set of paths of the form 

(X, X + X 1, ... , X + X 1 + · · · Xk) 

with x 1 = ± 1, which during the time [0, k] first leave (A, B) at B (Figure 15). 
We represent Bt in the form Bt·x+ 1 + Bt·x- 1, where Bt·x+ 1 and Bt·x- 1 

are the paths in Bt for which x 1 = + 1 or x 1 = - 1, respectively. 
Notice that the paths (x, x + 1, x + 1 + x 2, ... , x + 1 + x 2 + · · · + xk) 

in Bt·x+ 1 are in one-to-one correspondence with the paths 

(x + 1, x + 1 + x 2, ... , x + 1 + x 2, ... , x + 1 + x 2 + · · · + xk) 

in Bt ~ ~. The same is true for the paths in Bt·x- 1. U sing these facts, tagether 
with independence, the identical distribution of ~ 1 , ••. , ~k> and (8.6), we 
obtain 
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A~-----------------------

Figure 15. Example of a path from the set B:. 

P(ai:ISf =X+ 1) 

= P(al:l~ 1 = 1) 

= P{(x, x + ~1> ••• , x + ~ 1 + .. · + ~k)eB:I~1 = 1} 

= P{(x + 1,x + 1 + ~2 , ... ,x + 1 + ~2 + ... + ~k)eB:~D 
= P{(x + 1,x + 1 + ~ 1 , ... ,x + 1 + ~1 + ... + ~k-1)eB:~D 
= P(a~:~D. 

In the same way, 

P(al:l Sf = X - 1) = P(a~:= D. 
Consequently, by (3) with x E (A, B) and k ::::;; n, 

ßk(x) = Pßk-1 (x + 1) + qßk-1 (x - 1), (4) 

where 

0::::;; l::::;; n. (5) 

Similarly 

(6) 

with 

CX1(A) = 1, 0::::;; l::::;; n. 

Since cx0{x) = ß0(x) = 0, x E (A, B), these recurrent relations can (at least 
in principle) be solved for the probabilities 

oc1(x), ... , 1Xn(x) and ß1(x), ... , ßn(x). 

Putting aside any explicit calculation of the probabilities, we ask for their 
values for large n. 

For this purpose we notice that since ~ _1 c ~. k ::::;; n, we have 
ßk- 1 (x) ::::;; ßk(x) ::::;; 1. It is therefore natural to expect (and this is actually 
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the case; see Subsection 3) that for sufficiently large n the probability ßn(x) 
will be close to the solution ß(x) of the equation 

ß(x) = pß(x + 1) + qß(x - 1) 

with the boundary conditions 

ß(B) = 1, ß(A) = 0, 

that result from a formal approach to the limit in (4) and (5). 

(7) 

(8) 

To solve the problern in (7) and (8), we first suppose that p =F q. We see 
easily that the equation has the two particular solutions a and b(qjp)x, where 
a and b are constants. Hence we Iook for a solution of the form 

ß(x) = a + b(qjpy. 

Taking account of (8), we find that for A ~ x ~ B 

ß(x) = (qfpY - (qjp)A. 
(qjp)B _ (qjp)A 

(9) 

(10) 

Let us show that this is the only solution of our problem. lt is enough to 
show that all solutions of the problern in (7) and (8) admit the representa­
tion (9). 

Let ß(x) be a solution with ß(A) = 0, ß(B) = 1. We can always find 
constants ii and 6 such that · 

ii + b(qjp)A = P(A), ii + b(qjp)A+ 1 = ß(A + 1). 

Then it follows from (7) that 

ß(A + 2) = ii + b(qjp)A+Z 

and generally 

ß(x) = ii + b(q/p)x. 

Consequently the solution (10) is the only solution of our problem. 
A similar discussion shows that the only solution of 

IX(x) = pa.(x + 1) + qa.(x - 1), 

with the boundary conditions 

xe(A, B) 

a.(A) = 1, a.(B) = 0 

is given by the formula 

(pjq)B _ (qjp)x 
IX.( X) = (pjq)B _ {pjp)A' A ~X~ B. 

(11) 

(12) 

(13) 

If p = q = j-, the only solutions ß(x) and a.(x) of (7), (8) and (11 ), ( 12) are 
respectively 

and 

x-A 
ß(x) =B-A (14) 
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B-x 
1X(x) = B - A. (15) 

We note that 

1X(x) + ß(x) = 1 (16) 

for 0 ~ p ~ 1. 
We call 1X(x) and ß(x) the probabilities of ruin for the first and second 

players, respectively (when the first player's bankroll is x - A, and the second 
player's is B - x) under the assumption of infinitely many turns, which of 
course presupposes an infinite sequence of independent Bernoulli random 
variables~~> ~2 , ••• , where ~; = + 1 is treated as a gain for the first player, 
and ~; = -1 as a loss. The probability space (Q, d, P) considered at the 
beginning of this section turns out to be too small to allow such an infinite 
sequence of independent variables. We shall see later that such a sequence 
can actually be constructed and that ß(x) and 1X(x) are in fact the probabilities 
of ruin in an unbounded number of steps. 

We now take up some corollaries of the preceding formulas. 
If we take A = 0, 0 ~ x ~ B, then the definition of ß(x) implies that this 

is the probability that a particle starting at x arrives at B before it reaches 0. 
It follows from (10) and (14) (Figure 16) that 

{
x/B, p = q = !, 

ß(x) = (q/pY- 1 (1?) 
(qjp)B - 1' p "f q. 

Now Iet q > p, which means that the game is unfavorable for the first 
player, whose limiting probability of being ruined, namely IX = 1X(O), is given 
by 

(q/p)B - 1 
IX = -:-(q---'-/p=)Bi.-'-_----:(-q/-:-p)-,-A · 

Next suppose that the rules ofthe game are changed: the original bankrolls 
of the players are still (- A) and B, but the payoff for each player is now t, 

ß(x) 

Figure 16. Graph of ß(x), the probability that a particle starting from x reaches B 
before reaching 0. 
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rather than 1 as before. In other words, now Iet P(~; = t) = p, P(~; = -t) = 
q. In this case Iet us denote the limiting probability of ruin for the first player 

by a112 • Then 

(q/p)2B _ 1 

and therefore 

(qjp)B + 1 
a1/2 = a. (q/p)B + (q/p)A < a, 

if q >.p. 
Hence we can draw the following conclusion: if the game is unfavorable 

to thefirst player (i.e., q > p) then doubling the stake decreases the probabi-lity 
of ruin. 

3. We now turn to the question of how fast an(x) and ßn(x) approach their 

limiting values a(x) and ß(x). 
Let us suppose for simplicity that x = 0 and put 

an = an(O), 

lt is clear that 

Yn = P{A < Sk < B, 0 ~ k ~ n}, 

where {A < Sk < B, 0 ~ k ~ n} denotes the event 

n {A < Sk < B}. 
0:5k:5n 

Let n = rm, where r and m are integers and 

(1 = ~1 + · · · + ~m' 
(2 = ~m+ 1 + · · · + ~2m' 

(. = ~m(r-1)+1 + · · · + ~rm· 
Then if C = I A I + B, it is easy to see that 

{A < Sk < B, 1 ~ k ~ rm} <;;: {1( 1 1 < C, ... , I(. I < C}, 

and therefore, since ( 1, .•• , (. are independent and identically distributed, 

r 

Yn ~ P{l(1l < C, ... , I(. I< C} = 0 P{l(d < C} = (P{i(11 < C})'. (18) 
i= 1 

We notice that V ( 1 = m[1 - (p - q)2 ]. Hence, for 0 < p < 1 and suffi­

ciently Iarge rn, 

(19) 
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If p = 0 or p = 1, then P{ IC 1 1 < C} = 0 for sufficiently !arge m, and 
consequently (19) is satisfied for 0 ~ p ~ 1. 

lt follows from (18) and (19) that for sufficiently !argen 

(20) 

where t: = d1m < 1. 
According to (16), cx + ß = 1. Therefore 

(cx - cx.) + (ß - ß.) = y., 

and since cx ;;::: a., ß ;;::: ß., we have 

t: < 1. 

There are similar inequalities for the differences cx(x) - cx.(x) and ß(x) - ßix). 

4. We now consider the question of the mean duration of the random walk. 
Let mk(x) = E '~ be the expectation of the stopping time T~, k ~ n. Pro­

ceeding as in the derivation of the recurrent relations for ßk(x), we find that, 
for x E (A, B), 

mk(x) = ET~ = I IP(T~ = I) 
ls;ls;k 

I [. [pP(T~ = ll~t = 1) + qP(T~ = ll~t = -1)] 
ls;ls;k 

I [. [pP(c~::: f = l- 1) + qP(T~~ I = I- 1)] 
1 s;ls;k 

I (l + 1)[pP(c~::: f = /) + qP(T~~ f = /)] 
Os;ls;k-1 

= pmk_ 1(x + 1) + qmk_ 1(x - 1) 

+ I [pP(c~::: f = l) + qP(T~~ f = /)] 
Os;ls;k-1 

= pmk- 1(x + 1) + qmk- 1(x- 1) + 1. 

Thus, for x E (A, B) and 0 ~ k ~ n, the functions mk(x) satisfy the recurrent 
relations 

(21) 

with m0(x) = 0. From these equations together with the boundary conditions 

(22) 

we can successively find m1(x), ... , mnCx). 
Since mk(x) ~ mk+ 1(x), the Iimit 

m(x) = !im m.(x) 
n-+ oo 
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exists, and by (21) it satisfies the equation 

m(x) = 1 + pm(x + 1) + qm(x - 1) (23) 

with the boundary conditions 

m(A) = m(B) = 0. (24) 

To solve this equation, we first suppose that 

m(x) < oo, x E (A, B). (25) 

Then if p # q there is a particular solution of the form xj(q - p) and the 
general solution (see (9)) can be written in the form 

X (q)x m(x) = -- + a + b - . 
q-p p 

Then by using the boundary conditions m(A) = m(B) = 0 we find that 

1 
m(x) = -- (Bß(x) + Acx(x) - x], 

p-q 
(26) 

where ß(x) and cx(x) are defined by (10) and (13). If p = q = !, the general 
solution of (23) has the form 

m(x) = a + bx - x 2, 

and since m(A) = m(B) = 0 we have 

m(x) = (B - x)(x - A). (27) 

It follows, in particular, that if the players start with equal bankrolls 
(B = - A), then 

m(O) = B2 • 

If we take B = 10, and suppose that each turn takes a second, then the 
(limiting) time to the ruin of one player is rather long: 100 seconds. 

We obtained (26) and (27) under the assumption that m(x) < oo, x E (A, B). 
Let us now show that in fact m(x) is finite for all x E (A, B). We consider only 
the case x = 0; the general case can be analyzed similarly. 

Let p = q = !. We introduce the random variable Stn defined in terms of 
the sequence S0 , St. ... , Sn and the stopping time Ln = L~ by the equation 

n 

stn = L Sk/{tn=k}(w). (28) 
k=O 

The descriptive meaning of St" is clear: it is the position reached by the 
random walk at the stopping time Ln· Thus, if Ln< n, then stn = A or B; 
ifrn = n, then A ::;; St" ::;; B. 
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Let us show that when p = q = !, 
ESt" = 0, 

ESL =Ern. 

To establish the first equation we notice that 
n 

EStn = L E[Sk/{tn=k)(w)] 
k=O 

n n 

= L E[Sn/{tn=k)(w)] + L E[(Sk- Sn)/{tn=k)(w)] 
k=O k=O 

n 

= ESn + L E[(Sk- Sn)/{tn=k)(w)], 
k=O 

where we evidently have ESn = 0. Let us show that 
n 

L E[(Sk- Sn)/{tn=k)(w)J = 0. 
k=O 

(29) 

(30) 

(31) 

To do this, we notice that {rn > k} = {A < S1 < B, ... , A < Sk < B} 
when 0::; k < n. The event {A < S1 < B, ... , A < Sk < B} can evidently 
be written in the form 

(32) 

where Ak is a subset of { -1, + 1}k. In other words, this set is determined by 
just the values of ~ 1, ... , ~k and does not depend on ~k + 1> ••• , ~n. Since 

{rn = k} = {rn > k- 1}\{rn > k}, 

this is also a set of the form (32). lt then follows from the independence of 
~ 1 , ••• , ~n and from Problem 10 of §4 that the random variables Sn - Sk and 
/{tn=kJ are independent, and therefore 

E[(Sn - Sk)/{tn=kJ] = E[Sn - Sk] · E/{tn=kJ = 0. 

Hence we have established (29). 
We can prove (30) by the same method: 

n n 

ESL = L ESf/{tn=k) = L E([Sn + (Sk - Sn)YJ{tn=k)) 
k=O k=O 

n 

n 

+ E(Sn- Sk)2/{tn=k)J =ES; - L E(Sn- Sk)2I{tn=k) 
k=O 

n n 

= n - L (n - k)P(rn = k) = L kP(rn = k) = Ern. 
k=O k=O 



§9. Random Walk. I. Probabilities of Ruin and Mean Duration in Coin Tossing 93 

Thus we have (29) and (30) when p = q = !. For general p and q 

(p + q = 1) it can be shown similarly that 

ES,. = (p - q) ·Er., 

E[S,.- r.·E~t] 2 = V~~·Er., 

whereE~ 1 = p- q, V~ 1 = 1- (p- q)2 • 

(33) 

(34) 

With the aid of the results obtained so far we can now show that 
lim.~oo mn(O) = m(O) < 00. 

lf p = q = !. then by (30) 

(35) 

lf p # q, then by (33), 

E max(IAI, B) 
r. :-:;; I I ' p-q 

(36) 

from which it is clear that m(O) < oo. 
W e also notice that when p = q = ! 

and therefore 

It follows from this and (20) that as n--+ oo, Er. converges with exponential 
rapidity to 

There is a similar result when p # q: 

5. PROBLEMS 

Er. --+ m(O) = cxA + ßB, exponentially fast. 
p-q 

1. Establish the following generalizations of (33) and (34): 

es:. = x + (p - q)E-c~. 

E[S,~- -r~ · E~t] 2 = V~t ·E-r~. 

2. Investigate the Iimits of IX(x), ß(x), and m(x) when the Ievel A ! - oo. 

3. Let p = q = t in the Bernoulli scheme. What is the order of E I S.l for !arge n? 
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4. Two players each toss their own symmetric coins, independently. Show that the 
probability that each has the same number ofheads after n tosses is r 2" L~=o (C~)2 • 
Hence deduce the equation D=o (C~)2 = Ci •. 

Let u. be the firsttime when the number ofheads for the first player coincides with 
the number of heads for the second player (if this happens within n tosses; u. = n + 1 
ifthere is no such time). Find Emin(u., n). 

§10. Random Walk. II. Refiection Principle. 
Arcsine Law 

1. As in the preceding section, we suppose that ~ 1 , ~ 2 , .•. , ~ 2• is a sequence 
of independent identically distributed Bernoulli random variables with 

P(~; = 1) = p, 

sk = ~ 1 + ... + ~k, 
P(~; = -1) = q, 

1 :::;; k :::;; 2n; S0 = 0. 

We define 

(J2n = min{1 :::;; k :::;; 2n: sk = 0}, 

putting (J2n = 00 if sk =I= 0 for 1 :::;; k :::;; 2n. 
The descriptive meaning of (J 2• is clear: it is the time of first return to 

zero. Properties of this time are studied in the present section, where we 
assume that the random walk is symmetric, i.e. p = q = l 

For 0 :::;; k :::;; n we write 

u2k = P(S2k = 0), (1) 

It is clear that u0 = 1 and 

Our immediate aim is to show that for 1 :::;; k :::;; n the probability fi.k is 
given by 

(2) 

It is clear that 

{(J2• = 2k} = {S1 =I= 0, S2 =I= 0, ... , S2k-1 =I= 0, S2k = 0} 

for 1 :::;; k :::;; n, and by symmetry 

!2k = P{S1 =1= o, ... , s2k-1 =1= o, s2k = O} 

= 2P{S1 > o, ... , s2k-1 > o, s2k = o}. (3) 
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A sequence (S0 , ... , Sk) is called a path of length k; we denote by Lk(A) 
the number of paths of length k having some specified property A. Then 

and s2k+ 1 = alk+ 1• ... ' sln = alk+ 1 + ... + aln). 2-ln 

= 2L2k(S1 > o, ... , slk-1 > o, slk = O). r 2\ 

where the summationisover all sets (a 2k+ 1o ••• , a2n) with ai = ± 1. 

(4) 

Consequently the determination of the probability.f2k reduces to calcula­

ting the number of paths L2k(S 1 > 0, ... , S lk _ 1 > 0, S lk = 0). 

Lemma 1. Let a and b be nonnegative integers, a - b > 0 and k = a + b. 
Then 

a-b 
Lk(S 1 > 0, ... , Sk _ 1 > 0, S k = a - b) = -k- Ck. ( 5) 

PROOF. In fact, 

Lk(S1 > 0, ... , Sk- 1 > 0, Sk = a - b) 

= Lk(S1 = 1, S2 > 0, ... , Sk- 1 > 0, Sk = a - b) 

= Lk(S1 = 1, Sk =a-b)- Lk(S1 = 1, Sk =a-b; 

and 3 i, 2 ~ i ~ k- 1, suchthat Si ~ 0). (6) 

In other words, the number of positive paths (S 1, S2, ... , Sk) that originate 
at (1, 1) and terminate at (k, a - b) is the same as the total number of paths 
from (1, 1) to (k, a - b) after excluding the paths that touch or intersect the 
time axis.* 

W e now notice that 

Lk(S 1 = 1, Sk = a - b; 3 i, 2 ~ i ::; k - 1, suchthat Si ::; 0) 

= Lk(S 1 = -1,Sk =a-b), (7) 

i.e. the number of paths from IX = (1, 1) to ß = (k, a - b), neither touching 
nor intersecting the time axis, is equal to the total number of paths that 

connect IX* = (1, -1) with ß. The proof of this statement, known as the 
refiection principle, follows from the easily established one-to-one corre-

spondence between the paths A = (S 1, ... , Sa, Sa+l• ... , Sk) joining IX and 
ß, and paths B = ( -S1, ••• , - Sa, Sa+ 1, ... , Sk)joining IX* and ß (Figure 17); 

a is the first point where A and B reach zero. 

* A path (S1 , ... , Sk) is called positive (or nonnegative) if all S; > 0 (S; ;e: 0); a path is said to 
touch the time axis if Si ;e: 0 or else Si :s; 0, for I :s; j :s; k, and there is an i, I :s; i :s; k, such 
that S; = 0; and a path is said to intersect the time axis if there are two times i and j such that 

S; > 0 and Si < 0. 
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Figure 17. The reflection principle. 

From (6) and (7) we find 

Lk(S1 > 0, ... , Sk- 1 > 0, Sk =a-b) 

= Lk(S1 = 1, Sk = a-b)- Lk(S1 = -1, Sk = a - b) 

Ca-1 ca a-bca 
= k-1- k-1 =-k- k• 

which establishes (5). 

Tuming to the calculation off2k, we find that by (4) and (5) (with a = k, 
b = k- 1), 

!2k = 2L2k<s~ > o, ... , s2k-1 > o, s2k = O) · 2-lk 

=2L2k-t(S1 >0, ... ,S2k-t = 1)·2- 2k 

2 2-2k 1 ck 1 = · ·2k_ 1 2k-1= 2ku2<k-1J· 

Hence (2) is established. 
We present an alternative proof of this formula, based on the following 

observation. A Straightforward verification shows that 

1 
2k u2(k-1) = u2(k-1l - u2k• 

At the same time, it is clear that 

and therefore 

{u2n = 2k} = {0"2n > 2(k- 1)}\{u2n > 2k}, 

{u2n > 21} = {S1 =F 0, ... , S21 =F 0} 

{u2n = 2k} = {S1 =F 0, ... , S2<k- 1l =F O}\{S1 =F 0, ... , S2k =F 0}. 

Hence 

f2k = P{St =F 0, ... , S2<k-1l =F 0} - P{S1 =F 0, ... , S2k =F 0}, 

(8) 
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a 

Figure 18 

and consequently, because of (8), in order to show that j~" = (1/2k)u 2(k-rJ 

it is enough to show only that 

Lzk(S r # 0, ... , Szk # 0) = Lzk(Szk = 0). (9) 

Forthis purpose we notice that evidently 

Lzk(Sr # 0, ... , Szk # 0) = 2Lzk(Sr > 0, ... , S2" > 0). 

Hence to verify (9) we need only establish that 

2L2k(Sr > 0, ... , S2k > 0) = L 2k(Sr ~ 0, ... , S2k ~ 0), (10) 

and 

(11) 

Now (1 0) will be established if we show that we can establish a one-to-one 
correspondence between the paths A = (S1, ..• , S2k) for whiil:h at least one 
S; = 0, and the positive paths B =(Sr, ... , S2k). 

Let A = (Sr, ... , S zk) be a nonnegative path for which the first zero occurs 
at the point a (i.e., Sa = 0). Let us construct the path, starting at (a, 2), 
(Sa + 2, Sa+ r + 2, ... , S~k + 2) (indicated by the broken lines im Figure 18). 
Then the path B = (Sr, ... , Sa-r• Sa + 2, ... , S2k + 2) is positive .. 

Conversely, Iet B = (Sr, ... , S 2k) be a positive path and b the last instant 
at which Sb = 1 (Figure 19). Then the path 

A = (Sr, ... , Sb, Sb+ r - 2, ... , Sk- 2) 

b 

Figure 19 
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2k 

-m 

Figure 20 

is nonnegative. lt follows from these constructions that there is a one-to-one 
correspondence between the positive paths and the nonnegative paths with 
at least one Si = 0. Therefore formula (10) is established. 

We now establish (11). From symmetry and (10) it is enough to show that 

L2k(S1 > 0, ... , S2k > 0) + L2iS1 ~ 0, ... , S2k ~ 0 and 3 i, 
1 ::;; i ::;; 2k, suchthat Si = 0) = L 2k(S2k = 0). 

The set of paths (S2k = 0) can be represented as the sum of the two sets 
~1 and ~2 , where ~1 contains the paths (S0 , ••• ,S2k) that havejust one 
minimum, and ~ 2 contains those for which the minimum is attained at at 
least two points. 

Let e 1 E ~ 1 (Figure 20) and Iet y be the minimum point. We put the path 
e1 = (S0 , S1, ••• , S2k) in correspondence with the path er obtained in the 
following way (Figure 21). We reftect (S0 , S1, ••• , S1 ) around the vertical 
line through the point l, and displace the resulting path to the right and 
upward, thus releasing it from the point (2k, 0). Then we move the origin to 
the point (I, - m). The resulting path er will be positive. 

In the same way, if e2 E ~ 2 we can use the same device to put it into 
correspondence with a nonnegative path et. 

2k 

Figure 21 
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Conversely, Iet Cf = (S1 > 0, .... , S 2k > 0) be a postttve padm with 
S2k =2m (see Figure 21). We make it correspond to the path C 1 that is 
obtained in the followihg way. Let p be the last point at; which· S~ = m. 
Reftect (SP, ... ,.S2,.,) with respect to the verticalline x = p and'displace the 
resulting path downward and to the left until·its right-hand end. cC!JÜDcides 
with the point (0;.0). Then we move the·origin to the left~handend of the 
resulting path (this isjustthe path drawn in Figure 20);. The:resulting path 
C1 = (S0 , ... , S2k) has a minimum at S2k = 0. A similar cons.ttrlliCtion 
applied to paths (S 1 ~· 0; ... , S zk ~ 0 and 3 i, 1 ~ i ~ 2k, with Si, = (:)~ Ieads 
to paths for whichthere are atleast twominimaandS2k = 0. Henec:vrehave 
established a one.o.to~ne correspondence, which establishes (11)~ 

Therefore we have. established (9)' and· consequently also• the fbmmla 
fzk = Wz(k.-1) - U2J< = 0/2k)uz(k'-l)• 

By Stirling's formula 

k -2k 1 
u2k.=Czk·2 "'fo' k-+oo. 

Therefore 

1 
fzk "' 2j1ck312' k-+ 00. 

Hence it follows·that the expectation ofthe firsttime when zero•is.reached, 
namely 

... 
Emin(u2,.,2n). = L 2kPCu2,. = 2k) + 2nu2,. 

can be arbitrarily ]arge~. 

k= 1 

" 
= L Uz<k-l) + 2nuz,., 

k= 1 

In addition, 'Lk= 1 u2<k-l> = oo, and consequently the limitin& value of 
themean timefor the walk to)reach zero (in anunbounded numbelrofsteps) 
is oo. 

This property accounts for many of the unexpected properties of the 
symmetric random walk that we have been discussing. For example, it 
would be natural to suppose that after time 2n the number of zero net scores 
in agame between two equally matched players (p = q = t>. i.e. the number 
of instants i at which Si = 0, would be proportional to 2n. Howev.er~ in fact 

the number of zeros has order fo (see [F1] and (15) in §9, Chapter VII). 
Hence it follows, in particular; that, contrary to intuition, the· "typical" walk 
(S0 , S~> ... , S,.) does not have a sinusoidal character (so that rougbey: half the 
time the particle would be on the positive side and half the time on the·negative 
side), but instead must resemble a stretched-out wave. The precise formulation 
of this statement is given by the arcsine law, which we proceed to investigate. 
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2. Let P Zk, zn be the probability that during the interval [0, 2n] the particle 
spends 2k units of time on the positive side. * 

Lemma 2. Let u0 = 1 and 0 :.::;; k :.::;; n. Then 

(12) 

PROOF. It was shown above that.f2k = u2 <k- 1> - u2k. Let us show that 

k 

u2k = 2: .t2, · u2(k-r)· (13) 
r=1 

Since {S 2k = 0} s; {a2n:.::;; 2k}, we have 

{Szk = 0} = {Szk = 0} n {azn:.::;; 2k} = L {Szk = 0} n {azn = 2/}. 
1 $l$k 

Consequently 

llzk = P(Szk = 0) = L P(Szk = 0, O'zn = 21) 

L P(Szk = Olazk = 2/)P(a2n = 21). 
1 $l$k 

But 

P(S2k = Ola2n = 21) = P(S2k = OIS1 =I= 0, ... , S21 - 1 =I= 0, S21 = 0) 

= P(S21 + (~21+1 + · · · + ~2k) = OIS1 =I= 0, ... , S21-1 =I= 0, S21 = 0) 

= P(S21 + (~21+1 + ... + ~2k) = OJS21 = 0) 

= P(~21+t + · · · + ~2k = 0) = P(S2(k-IJ = 0). 

Therefore 

U2k = L P(S2(k-l) = O)P(a2n = 21), 
l$1$k 

which establishes: (13). 
We turn now to the proof of (12). lt is obviously true for k = 0 and k = n. 

Now Iet 1 :.::;; k ~ n - 1. lf the particle is on the positive side for exactly 2k 
instants, it must pass through zero. Let 2r be the time of first passage through 
zero. There:are two possibilities: either Sk ~ 0, k :.::;; 2r, or Sk :.::;; 0, k :.::;; 2r. 

The nuniber of paths of the first kind is easily seen to be 

(1·22rr ) 22(n-r)p _ 1 22n f p 
2· .JJ.r • 2(k-r), 2(n-r) - 2 · · 2r · 2(k-r), 2(n-r) · 

* We say that the particlecis on the positive side in the interval [m - I, m] if one, at least, ofthe 
values S,. _ 1 and S,. is positive. 
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The corresponding number of paths of the second kind is 

! · 22" • J~r · P2k, 2(n-r)· 

Consequently, for 1 ~ k ~ n - 1, 

1 k 1 k 

p2k, 2n = 2 r~1 f2r 'P2(k-r), 2(n-r) + 2 r~1 J2r · P2k, 2(n-r)· {14) 

Let us suppose that P 2k, 2m = u 2k · u 2m- 2k holds form= 1, ... , n- 1. Then 
we find from (13) and (14) that 

k k 

P2k. 2n = tu2n- 2k · :L 1~. · u2k- 2. + tu2k • I !2. • u2n- 2r- 2k 
r= 1 r= 1 

= tu2n-2k. ll2k + tu2k. U2n-2k = ll2k. U2n-2k· 

This completes the proof of the Iemma. 

Now Iet y(2n) be the number of time units that the particle spends on the 
positive axis in the interval [0, 2n]. Then, when x < 1, 

P - < -- ~ X = L p 2k, 2n · { 1 y(2n) } 
2 2n (k,1/2<(2k/2n):s;x} 

Since 

as k -+ oo, we have 

1 
p = u . u "' ---,===== 

2k,2n 2k 2(n-k) njk(n- k)' 

as k -+ oo and n - k -+ oo. 
Therefore 

1 [k ( k)]-1/2 I P2k,2n- I -· - 1-- -o, 
{k: 1/2 <(2k/2n):s;x} {k: 1/2 <(2k/2n):s;x} nn n n 

whence 

1 fx dt L p2k,2n -- -+ 0, 
{k: 1/2<(2k/2n):s;x} 1t 1/2 jt(1- t) 

But, by symmetry, 

L p2k,2n-+ t 
(k:kfn:s; 1/2} 

n-+ oo. 

n-+ oo, 
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and 
1 Jx dt 2 . r:. 1 
_ = - arcsm v' x - 2· 
1t 1/2 jt(1 - t) 1t 

Cons:equently we have proved the following theorem. 

Theorem :(Arcsine Law). The probability that the fraction .of the time spent 
by the 'Partide on' the positive side is at most x tends to 2n- 1 arcsin Jx: 

L P 2k, 2.-+ 2n- 1 arcsin Jx. 
(k:k/n:5x) 

WeT.emarkthatthe integrand p(t).in the integral 

1 1. X dt 

1t 0 Jt(l - t) 

representsa. U-shaped curve that tends to, infinity as t --+ 0 or 1. 
Hence itfollows that, for large n, 

:P{o < y(.·2.n)< ß.} > p{! < y(. 2n) < l. + ß} 
2n - · 2 -2n - 2 ' 

(15) 

i.e., it is;more likely that the fraction ofthe time 'S,pellt by the particle on the 
positivesirleis close to. zero. or .one, than to the 'intuitive value t. 

Usiqga table of arcsines and noting that the convergence in (15) is indeed 
quite rf}.pid, we find that 

P{y~) ~ ,Qf024} ~ 0.1, 

P{Y~2:) .~ o:t} .~ o.2, 

p{Y;:)~ 0.2} ~ 0.3, 
pf';:)-~ 0:65} ~ 0.6. 

Hence,if,.:say, n = 1000, then in1almut one case in ten, the particle spends 
only 24 units of time on the positive axis and therefore spends the greatest 
amounhoftime, 976 units, on the nt!gative axis. 

J.PROBLSMS 

1. How fasLdoes Emin(u2., 2n)-+ oo as·n -+ oo? 

2. Let '• ='.min{l~ k ~ n: Sk ='J}..where·we take '• = oo if Sk < 1 for 1 ~ k ~ n. 
What;isrthe Iimit of.Emin(T., n) as:n--+ oo .for.syrnmetric (p = q = -!-) and for un­

symmetric(p # q) walks? 
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§ 11. Martingales. Some Applications to the 
Random Walk 
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1. The Bernoulli random walk discussed above was generated by a sequence 
~ 1 , ••• , ~n of independent random variables. In this and the next section we 
introduce two important classes of dependent random variables, those that 
constitute martingales and Markov chains. 

The theory of martingales will be developed in detail in Chapter VII. 
Here we shall present only the essential definitions, prove a theorem on the 
preservation of the martingale property for stopping times, and apply this 
to deduce the "ballot theorem." In turn, the latter theoremwill be used for 
another proof of proposition (10.5), which was obtained above by applying 
the reftection principle. 

2. Let (Q, .91, P) be a finite probability space and ~1 ~ ~2 ~ · · • ~ ~n a 
sequence of decompositions. 

Definition 1. A sequence of random variables ~ 1, ••• , ~n is called a martingale 
(with respect to the decomposition ~1 ~ ~2 ~ · · · ~ ~n) if 

(1) ~k is ~k-measurable, 
(2) E(~k+ 1 l~k) = ~k• 1::;; k::;; n- 1. 

In order to emphasize the system of decompositions with respect to which 
the random variables form a martingale, we shall use the notation 

(1) 

where for the sake of simplicity we often do not mention explicitly that 
1 ::;; k::;; n. 

When ~k is induced by ~ 1 , ... , ~n, i.e. 

instead of saying that ~ = (~k• ~k) is a martingale, we simply say that the 
sequence ~ = ( ~k) is a martingale. 

Here are some examples of martingales. 

ExAMPLE 1. Let 17 1, ••• , IJn be independent Bernoulli random variables with 

P(IJk = 1) = P(IJk = -1) = !, 
sk = '11 + ... + IJk and ~k = ~~, ..... ~k' 

We observe that the decompositions ~k have a simple structure: 
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where 

D+ = {w:ry 1 = +1}, D- = {w: ry 1 = -1}, 

17), = {D + + D + - D- + D- -} 
::uz ' ' ' ' 

where 

n++ = {w:11 1 = +1,ry2 = +1}, ... ,n-- = {w:ry 1 = -1,ry2 = -1}, 

etc. 

It is also easy to see that !!2~ 1 ••••• ~. = f)s 1 , •••• s.· 
Let us show that (Sb f)k) forms a martingale. In fact, Skis f)k-measurable, 

and by (8.12), (8.18) and (8.24), 

E(S~<+ 1 l!.!lk) = E(Sk + 'lk+tlf)k) 

= E(Sk I f)k) + E(ryk+ tl f)k) = Sk + Eryk+ 1 = Sk. 

If we put S0 = 0 and take D0 = {Q}, the trivial decomposition, then the 

sequence (Sk, f)k)o~k~n also forms a martingale. 

EXAMPLE 2. Let ry 1, ... , 1fn be independent Bernoulli random variables with 

P(ry; = 1) = p, P(ry; = -1) = q. lf p =F q, each of the sequences ~ = (~k) 

with 

.;k = sk - k(p - q), where sk = 1'/t + ... + 1Jk, 

is a martingale. 

ExAMPLE 3. Let ry be a random variable, f) 1 ~ · · · ~ f)n, and 

(2) 

Then the sequence ~ = (~b f)k) is a martingale. In fact, it is evident that 
E(ry I f)k) is f)k-measurable, and by (8.20) 

In this connection we notice that if ~ = (~k' f)k) is any martingale, then 
by (8.20) 

~k = E(~k+tlf)k) = E[E(~k+21f)k+t)!f)k] 
= E(~k+21f)k) = .. · = E(~nlf)k). (3) 

Consequently the set of martingales ~ = (~b f)k) is exhausted by the 

martingales of the form (2). (We note that for infinite sequences ~ = 

(~k• f)k)k~t this is, in general, no Ionger the case; see Problem 7 in §1 of 
Chapter VII.) 
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ExAMPLE 4. Let '11, ... , 17n be a sequence of independent identically distributed 
random Variables, Sk = 171 + ··· + 11k• and ~1 = ~Sn• ~2 = ~Sn,Sn-t, ... , 
~" = ~s",s"_ 1 , ••. ,s,· Let us show that the sequence ~ = (~b ~k) with 

S" Sn-1 ~' Sn+1-k ~' s 
~1=-,~2=--1, ... ,c,k= 1 k'''''"'"= 1 n n- n+ -

is a martingale. In the first place, it is clear that ~k ~ ~k+ 1 and ~k is ~k­
measurable. Moreover, we have by symmetry, for j ::;; n - k + 1, 

(compare (8.26)). Therefore 

n-k+1 

(n- k + 1)E(171i~k) = I E(17jl~k) = E(Sn-k+ 11~k) = sn-k+ 1• 

and consequently 
j= 1 

~' = Sn-k+1 =E( I~) 
Sk n _ k + 1 111 k , 

and it follows from Example 3 that ~ = (~b ~k) is a martingale. 

(4) 

Remark. From this martingale property of the sequence ~ = (~k• ~k)1 ,;;k,;;n• 

it is clear why we will sometimes say that the sequence (Sdk)1 ,;;k,;;n forms a 
reversed martingale. (Compare problern 6 in §1 of Chapter VII.) 

ExAMPLE 5. Let 17 1, ... , 17n be independent Bernoulli random variables with 

P(17; = + 1) = P(17; = -1) = !, 
Sk = 17 1 + · · · + 11k· Let A and B be integers, A < 0 < B. Then with 0 < il < 
n/2, the sequence ~ = (~k• ~d with ~k = ~s,, ... ,sk and 

~k = (cos il)-k exp{iil(sk- B; A)} (5) 

is a complex martingale (i.e., the real and imaginary parts of ~k form 
martingales ). 

3. 1t follows from the definition of a martingale that the expectation E~k is 
the same for every k: 

E~k = E~ 1 . 

It turns out that this property persists if time k is replaced by a random 
time. 

In order to formulate this property we introduce the following definition. 

Definition 2. A random variabler = r(w) that takes the values 1, 2, ... , n is 
called a stopping time (with respect to a decomposition (~k) 1 ,;;k,;;n• ~ 1 ~ 
~2 ~ · · · ~ ~n) if, for k = 1, ... , n, the random variable J{r=k}(w) is ~k­
measurable. 
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If we consider ~k as the decomposition induced by observations for k 
steps (for example, ~k = ~~ ...... ~k' the decomposition induced by the 
variables 17 1, ••• , 17k), then the ~k-measurability of I 1,=kJ(w) means that the 
realization or nonrealization of the event {r = k} is determined only by 
observations for k steps (and is independent of the "future "). 

If fJik = cx(~k), then the ~k-measurability of I 1,=kJ(w) is equivalent to the 
assumption that 

{'r = k} EfJik. (6) 

Wehave already introduced specific examples of stopping times: the times 
r;, u2" introduced in §§9 and 10. Those times are special cases of stopping 
times of the form 

rA = min{O < k ~ n: ~k E A}, 

uA = min{O ~ k ~ n: ~k E A}, 
(7) 

which are the times (respectively the firsttime after zero and the first time) 
for a sequence ~0 , ~ 1, •.• , ~~~ to attain a point of the set A. 

4. Theorem 1. Let ~ = (~k• ~k) 1 sksn be a martingale and r a stopping time 
with respect to the decomposition (~k) 1 :s;k:s;n· Then 

(8) 

where 
n 

~. = L ~kii•=kJ(w) (9) 
k=l 

and 
(10) 

PR.ooF (compare the proofof(9.29)). Let D E ~1 • Using (3) and the properties 
of conditional expectations, we find that 

1 n 

= P(D) · 1~1E(~I-II•=IJ ·In) 

1 n 

= P(D) 1~1E[E(~"~~~) ·I!•= II ·In] 

1 n 

= P(D) 1~1E[~"II•=IJ ·In] 

1 
= P(D) E(e"In) = E(e"ID), 
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and consequently 

E(e,l~t) = E(enl~t) = e1. 

The equation Ee, = Ee1 then follows in an obvious way. 
This completes the proof of the theorem. 

Corollary. For the martingale (Sk, ~k) 1 sksn of Example 1, and any stopping 
timet (with respect to (~k)) we have theformulas 

ES,= 0, Es;= Er, (11) 

known as Wald's identities (c,f (9.29) and (9.30); see also Problem 1 and 
Theorem 3 in §2 of Chapter VII). 

5. Let us use Theorem 1 to establish the following proposition. 

Theorem 2 (Ballot Theorem). Let rt 1, ..• , rtn be a sequence of independent 
identically distributed random variables whose values arenonnegative integers, 
Sk = fit + .. · + fik, 1 ~ k ~ n. Then 

P{Sk < kforallk, 1 ~ k ~ niSn} = (1- ~nr. (12) 

where a+ = max(a, 0). 

PRooF. On the set {ro: Sn~ n} the formula is evident. We therefore prove 
(12) for the sample points at which Sn < n. 

Let us consider the martingale e = (ek> ~k) 1 sksn introduced in Example 
4, With ek = Sn+l-k/(n + 1- k) and ~k = f?)Sn+t-k .... ,Sn· 

We define 

t = min{1 ~ k ~ n: ek ~ 1}, 

taking r = n on the set {ek < 1 for all k such that 1 ~ k ~ n} = 
{max1s 1sn(S1/l) < 1}. It is clear that e, = en = S1 = 0 on this set, and 
therefore 

{ max SI,< 1} = { max ~1 < 1, Sn< n} s;; {e, = 0}. (13) 
ls;ls;n ls;ls;n 

Now Iet us consider those outcomes for which simultaneously 
max1slsn(S1/l) ~ 1 and Sn< n. Write a = n + 1 - r. It is easy to see that 

(1 = max{1 ~ k ~ n: sk ~ k} 

and therefore (since Sn < n) we have a < n, Sa ~ a, and Sa+ 1 < a + 1. 
Consequently fla+ 1 = Sa+ 1 - Sa < (a + 1) - a = 1, i.e. rta+ 1 = 0. There­
fore (1 ~ sa = sa+ 1 < (1 + 1, and consequently sa = (1 and 

e,= Sn+l-t =Sa=l. 
n+1-t a 
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Therefore 

{ max ~';;::; 1,Sn < n} ~ {e, = 1}. 
1 :s;l:s;n 

(14) 

From (13) and (14) we find that 

{ max SI, ~ 1, Sn < n} = {e, = 1} n {Sn< n}. 
1 :s; I :Sn 

Therefore, on the set {Sn < n}, we have 

where the last equation follows because e, takes only the two values 0 and 1. 
Let us notice now that E(e,ISn) = E(e,l.@1), and (by Theorem 1) 

E(e,l.@1) = e 1 = S,jn. Consequently, on the set {Sn< n} we have P{Sk < k 
for all k suchthat 1 ::;; k ::;; n I Sn} = 1 - (Sn/n). 

This completes the proof of the theorem. 

We now apply this theorem to obtain a different proof of Lemma 1 of 
§10, and explain why it is called the ballot theorem. 

Let e 1, ..• , en be independent Bernoulli random variables with 

sk = e 1 + ... + ek and a, b nonnegative integers such that a - b > 0, 
a + b = n. We are going to show that 

a-b 
P{S1 > 0, ... , Sn> OISn =a-b}= --b. 

a+ 

In fact, by symmetry, 

P{S1 > 0, ... , Sn> OISn =a-b} 

= P{S1 < 0, ... , Sn < OISn = -(a - b)} 

= P{S1 + 1 < 1, ... , Sn+ n < niSn + n = n- (a-b)} 

(15) 

= P{'71 < 1, ... , '11 + · · · + '7n < nl'11 + · · · + '7n = n- (a-b)} 

=[1 _n-(a-b)J+ =a-b=a-b' 
n n a+b 

where we have put 'lk = ek + 1 and applied (12). 
Now formula (10.5) follows from (15) in an evident way; the formula was 

also established in Lemma 1 of §10 by using the reftection principle. 
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Let us interpret ~; = + 1 as a vote for candidate A and ~; = -1 as a vote 
for B. Then Skis the difference between the numbers of votes cast for A and 
B at the time when k votes have been recorded, and 

P{S1 > 0, ... , s. > OIS. =a-b} 

is the probability that A was always ahead of B, with the understanding that 
A received a votes in all, B received b votes, and a - b > 0, a + b = n. 
According to (15) this probability is (a - b)/n. 

6. PROBLEMS 

1. Let !')0 ~ 9) 1 ~ · · · ~ !'). be a sequence of decompositions with !')0 = {!l}, and Iet 
'lk be !'}k-measurable variables, 1 ::;; k ::;; n. Show that the sequence ~ = (~b !')k) with 

k 

~k = I[,.,, - E('ld!'),_,)J 
l= I 

is a martingale. 

2. Let the random variables '7 1, ... ,,.,k satisfy E('1kl'11, ... ,,.,k_ 1) = 0. Show that the 
sequence ~ = (~k) 1 ,;k:sn with ~ 1 = '7 1 and 

k 

~k+ I = I 'Ii+ l!i('II• ... ' '1;), 
i=l 

where fi are given functions, is a martingale. 

3. Show that every martingale ~ = (~;. 9Jk) has uncorrelated increments: if a < b < 
c < d then 

4. Let ~ = (~" ... , ~.) be a random sequence such that ~k is !'}k-measurable 
(!'} ~ 9J2 ~ · · · ~ 9J.). Show that a necessary and sufficient condition for this 
sequence tobe a martingale (with respect to the system (P}k)) isthat E~, = E~ 1 for 
every stopping time r (with respect to (!')k)). (The phrase "for every stopping time" 
can be replaced by "for every stopping timethat assumes two values.") 

5. Show that if ~ = (~k• !')k)1 ,;k,;n is a martingale and r is a stopping time, then 

for every k. 

6. Let~ = (~b !')k) and,., = ('lk• 9)k) be two martingales, ~ 1 = 'lt = 0. Show that 

E~.'l. = I E(~k - ~k-IX'Ik - 'lk-1) 
k=2 

and in particular that 

E~; = IE(~k- ~k-1)2 • 
k=2 
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7. Let q1 , ..• , q. be a sequence of independent identically distributed random variables 
with Eq; = 0. Show that the sequence ~ = (~k) with 

~k = (.i Y/;) 2 
- kEqf, 

a= 1 

~ _ expA.(qt + ··· + Yik) 
k- (E exp A.q 1)k 

is a martingale. 

8. Let q1, ••• , q. be a sequence of independent identically distributed random variables 
taking values in a finite set Y. Let f 0(y) = P(q 1 = y), y E Y, and Jet f 1(y) be a non­
negative function with Lye r f 1 (y) = 1. Show that the sequence ~ = (~k, !?&Z) with 

f0( = D~, . .... ~"' 

~ - };(q.)···f.(qd 
k - Jü<q.) · · · fo<qk)' 

is a martingale. (The variables ~k, known as likelihood ratios, are extremely important 
in mathematical statistics.) 

§12. Markov Chains. Ergodie Theorem. 
Strong Markov Property 

1. We have discussed the Bernoulli scheme with 

Q = {w: w = (x 1, ••• , x.), X; = 0, 1}, 

where the probability p(w) of each outcome is given by 

p(w) = p(x 1) • · · p(x.), (1) 

with p(x) = pxq 1 - x. With these hypotheses, the variables ~ 1, .•. , ~. with 
~;(w) = X; are independent and identically distributed with 

P(~ 1 = x) = · · · = P(~. = x) = p(x), 

If we replace (1) by 

p(w) = p1(x 1) · · · p.(x.), 

X= 0, 1. 

where p;(x) = pf(1 - p;), 0 :::;;; Pi :::;;; 1, the random variables ~ 1, .•. , ~. are 
still independent, but in general are di.fferently distributed: 

P(~ 1 = x) = p1(x), ... , P(~. = x) = p.(x). 

Wenowconsider a generalization that Ieads todependent random variables 
that form what is known as a Markov chain. 

Let us suppose that 

Q = {w: w = (x0 , x 1, .•. , x.), X; EX}, 
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where X is a finite set. Let there be given nonnegative functions p0(x), 
p1(x, y), ... , Pn(x, y) suchthat 

L p0(x) = 1, 
xeX 

L Pk(x, y) = 1, k = 1, ... , n; y EX. 
(2) 

yeX 

Foreach w = (x0 , x 1 , •.• , xn), put 

p(w) = Po(Xo)P1(Xo, X1) · · · Pn(Xn-1• Xn). (3) 

It is easily verified that LcoenP(w) = 1, and consequently the set ofnumbers 
p(w) together with the space n and the collection of its subsets defines a 
probabilistic model, which it is usual to call a model of experiments that form 
a Markov chain. 

Let us introduce the random variables eo. e1, ... ' en with ei(w) = Xj. A 
simple calculation shows that 

P(eo = a) = Po(a), 

P(eo = ao, · · ·, ek = ak) = Po(ao)P1(ao, a1) · · · Pk(ak-1• ak). 
(4) 

We now establish the validity of the following fundamental property of 
conditional probabilities: 

P{ek+1 = ak+tlek =ab ... , eo = ao} = P{ek+l = ak+1lek = ak} (5) 

(under the assumption that P(ek = ak, ... , eo = a0) > 0). 
By (4), 

P{ek+l = ak+tlek = ak, ... , eo = ao} 

P{ek+1 = ak+t•···,eo = ao} 
P{ek = ak, ... , eo = ao} 

Po(ao)Pl(ao,at)···pk+l(ak,ak+l) ( ) 
= = Pk + 1 ab ak + 1 · 

Po(ao) · · · Pk(ak-1• ak) 

In a similar way we verify 

P{ek+l = ak+tlek = ad = Pk+t(ak,ak+t), 

which establishes (5). 

(6) 

Let ~f = ~~o ..... ~k be the decomposition induced by eo, ... , ek, and 
~f = oc(~f). 

Then, in the notation introduced in §8, it follows from (5) that 

(7) 

or 
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If we use the evident equation 

P(ABIC) = P(AIBC)P(BIC), 

we find from (7) that 

P{~n =an, ... , ~k+1 = ak+1I~Ü = P{~n =an, ... , ~k+1 = ak+11~k} (8) 

or 

P gn = an, · · · , ~k + 1 = ak + 1l ~ o, · · · , ~d = P { ~n = an, · · · , ~k + 1 = ak + d ~k} · 
(9) 

This equation admits the following intuitive interpretation. Let us think 
of ~k as the position of a particle "at present," (~0 , ••• , ~k- das the "past," 
and (~k+ 1, ••. , ~n) as the "future." Then (9) says that ifthe past and the present 
are given, the future depends only on the present and is independent of how 
the particle arrived at ~k, i.e. is independent of the past ( ~0 , ••. , ~k _ 1 ). 

Let F = (~n =an, ... , ~k+t = ak+ 1), N = gk = ad, 

B = {~k-1 = ak-1• ... , ~o = ao}. 

Then it follows from (9) that 

P(FINB) = P(FIN), 

from which we easily find that 

P(FB IN) = P(F I N)P(B IN). (10) 

In other words, it follows from (7) that for a given present N, the future F 
and the past B are independent. It is easily shown that the converse also 
holds: if (10) holds for all k = 0, 1, ... , n - 1, then (7) holds for every k = 0, 
1, ... , n - 1. 

The property of the independence of future and past, or, what is the same 
thing, the lack of dependence of the future on the past when the present is 
given, is called the Markov property, and the corresponding sequence of 
random variables ~0 , •.. , ~~~ is a Markov chain. 

Consequently if the probabilities p(w) of the sample points are given by 
(3), the sequence (~0 , •.• , ~ .. ) with ~;(w) = X; forms a Markov chain. 

We give the following formal definition. 

Definition. Let (Q, d, P) be a (finite) probability space and let ~ = (~0 , ••• , ~") 

be a sequence of random variables with values in a (finite) set X. If (7) is 
satisfied, the sequence ~ = (~0 , ..• , ~ .. ) is called a (finite) Markov chain. 

The set X is called the phase space or state space of the chain. The set of 
probabilities (p11(x)), x EX, with p0(x) = P(~0 = x) is the initial distribution, 
and the matrix IIPk(x,y)ll, x, yeX, with p(x,y) = P{~k = Yl~k-1 = x} is 
the matrix of transition probabilities (from state x to state y) at time 
k = 1, ... ,n. 
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When the transition probabilities pk(x, y) are independent of k, that is, 
Pk(x, y) = p(x, y), the sequence ~ = (~0 , ... , ~") is called a homogeneaus 
Markov chain with transition matrix llp(x, y)ll-

Notice that the matrix llp(x, y)ll is stochastic: its elements arenonnegative 
and the sum of the elements in each row is 1: LY p(x, y) = 1, x EX. 

We shall suppose that the phase space X is a finite set of integers 
(X = {0, 1, ... , N}, X = {0, ± 1, ... , ± N}, etc.), and use the traditional 
notation Pi = p0(i) and Pii = p(i,j). 

It is clear that the properties of homogeneaus Markov chains completely 
determine the initial distributions Pi and the transition probabilities Pii· In 
specific cases we describe the evolution of the chain, not by writing out the 
matrix IIPiill explicitly, but by a (directed) graph whose vertices are the states 
in X, and an arrow from state i to state j with the number Pii over it indicates 
that it is possible to pass from point i to pointj with probability Pii· When 
Pii = 0, the corresponding arrow is omitted. 

Pii 

~-i j 

EXAMPLE 1. Let X = {0, 1, 2} and 

IIPijll = (P i). 
3· 0 3 

The following graph corresponds to this matrix: 

I I z z 

~a~--'>! 
0~2 ........ 

2 
3 

Here state 0 is said tobe absorbing: ifthe particle gets into this state it remains 
there, since p00 = 1. From state 1 the particle goes to the adjacent states 0 
or 2 with equal probabilities; state 2 has the property that the particle remains 
there with probability 1 and goes to state 0 with probability f. 

EXAMPLE 2. Let X= {0, ± 1, ... , ±N}, Po= 1, PNN = P<-N><-N> = 1, and, 
for lil < N, 

{
p, j = i + 1, 

Pii = q, j = i - 1, 
0 otherwise. 

(11) 
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The transitions corresponding to this chain can be presented graphically in 
the following way (N = 3): 

This chain corresponds to the two-player game discussed earlier, when each 
player has a bankroll N and at each turn the first player wins + 1 from the 
second with probability p, and loses (wins -1) with probability q. If we 
think of state i as the amount won by the first player from the second, then 
reaching state N or - N means the ruin of the second or first player, respec­
tively. 

In fact, if '71, '72 , ••• , 'ln are independent Bernoulli random variables with 
P('l; = + 1) = p, P('l; = -1) = q, S0 = 0 and Sk = 171 + · · · + 'lk the 
amounts won by the first player from the second, then the sequence S0 , 

S1, ... , Sn is a Markov chain with p0 = 1 and transition matrix (11), since 

P{Sk+1 =jiSk = ik,Sk-1 = ik- 1, ... } 

= P{Sk + 'lk+1 = jiSk = ib Sk-1 = ik-1• .. . } 

= P{Sk + 'lk+ 1 = j I Sk = ik} = P{'lk+ 1 = j - ik}. 

This Markov chain has a very simple structure: 

0 :s; k :s; n - 1, 

where 17 1,172 , ••• , 'ln is a sequence of independent rand.om variables. 
The same considerations show that if ~0 , 17 1, ••• , 'ln are independent 

random variables then the sequence ~0 , ~ 1 , ••• , ~n with 

0 :s; k :s; n - 1, (12) 

is also a Markov chain. 
lt is worth noting in this connection that a Markov chain constructed in 

this way can be considered as a natural probabilistic analog of a (deter­
ministic) sequence x = (x0 , ••• , x") generated by the recurrent equations 

We now give another example of a Markov chain of the form (12); this 
example arises in queueing theory. 

ExAMPLE 3. At a taxi stand Iet taxis arrive at unit intervals of time ( one at a 
time). If no one is waiting at the stand, the taxi leaves immediately. Let 'lk be 
the nurober of passengers who arrive at the stand at time k, and suppose that 
171, ... , 'ln are independent random variables. Let ~k be the length of the 
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waiting line at time k, eo = 0. Then if ek = i, at the next time k + 1 the length 
ek+ 1 of the waiting line is equal to 

. {'1k+1 j= 
i- 1 + '1k+ 1 

In other words, 

if i = 0, 
if i ~ 1. 

ek+ 1 = <ek - 1)+ + '1k+ 1• 0 ::::; k ::::; n - 1, 

where a+ = max(a, 0), and therefore the sequence e = (eo, ... , en) IS a 
Markov chain. 

EXAMPLE 4. This example comes from the theory of branching processes. A 
branching process with discrete times is a sequence of random variables 
eo, e1, ... ' en, where ek is interpreted as the nurober ofparticles in existence 
at time k, and the process of creation and annihilation of particles is as 
follows: each particle, independently of the other particles and of the "pre­
history" of the process, is transformed into j particles with probability pi, 

j = 0, 1, ... , M. 
We suppose that at the initialtime there is just one particle, eo = 1. If at 

time k there are ek particles (numbered 1, 2, ... , ek), then by assumption 
ek+ 1 is given as a random sum of random variables, 

): - 1'/(k) + ... + 1'/(k) 
~k+1- 1 ~· 

where 1'/!k> is the nurober of particles produced by particle nurober i. It is 
clear that if ek = 0 then ek+ 1 = 0. lfwe suppose that all the random variables 
1'/~k>, k ~ 0, are independent of each other, we obtain 

P{ek+1 = ik+dek = ik, ek-1 = ik-1• ... } = P{ek+1 = ik+l1ek = id 
= P{l'/\k> + · · · + 11!~> = ik+ d. 

It is evident from this that the sequence eo, e 1, ... , en is a Markov chain. 
A particularly interesting case isthat in which each particle either vanishes 

with probability q or divides in two with probability p, p + q = 1. In this 
case it is easy to calculate that 

is given by the formula 

{
c{l2pi12qi- if2, j = o, ... , 2i, 

Pii = 0 in all other cases. 

2. Let ~ = ( ~k, fll, ßJ>) be a homogeneaus Markov chain with st~rting vectors 
(rows) fll = (pi) and transition matrix fll = IIPiill- lt is clear that 
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Weshall use the notation 

for the probability of a transition from state i to state j in k steps, and 

for the probability of finding the particle at point j at time k. Also Iet 

p!k) = IIP!~ 1 11. 

Let us show that the transition probabilities p!~1 satisfy the Kolmogorov­
Chapman equation 

PWII = "p\klpH! 
I) f..J ICI rlJ' (13) 

IX 

or, in matrix form, 

p<k+l) = p<kl .IJl>Hl (14) 

The proof is extremely simple: using the formula for total probability 
and the Markov property, we obtain 

P!~+l) = P(~k+l =jl~o = i) = L P(~k+l =j, ~k = IXI~o = i) 
IX 

= L P(~k+l = j I ~k = 1X)P(~k = IX I ~0 = i) = L P~]P!~1 • 
IX IX 

The following two cases of (13) are particularly important: 

the backward equation 

P\~+ tJ = "P· p<'! IJ L., IIX <XJ 
(15) 

V 

and the forward equation 

P~~ + 1) = " p\klp . 
I) L., IIX IXJ (16) 

IX 

(see Figures 22 and 23). The forward and backward equations can be written 
in the following matrix forms 

p<k+ 1) = pik). IJl>, (17) 

(18) 
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0 I+ I 

Figure 22. For the backward equation. 

Similarly, we find for the (unconditional) probabilities pjk> that 

P<_k+l) = 'p<k>p<l! 
1 ~ (J. 7J' (19) 

or in matrix form 

In particular, 

fll (k+ 1) = fll (k). [J:D 

(.forward equation) and 

nJ<k+ I)= fl](l). [J](k) 

( backward equation). Since IJ=D0 > = IJ=D, fll O> = I], it follows from these equations 
that 

Consequently for homogeneous Markov chains the k-step transitJon 
probabilities pjJ> are the elements of the kth powers of the matrix IJ=D, so that 
many properties ofsuch chains can be investigated by the methods ofmatrix 
analysis. 

j 

0 k k +I 

Figure 23. For the forward equation. 
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ExAMPLE 5. Consider a homogeneous Markov chain with the two states 0 and 
1 and the matrix 

lt is easy to calculate that 

IP = (Poo Pot)· 
PIO Pll 

IP2 = ( PÖo + Po1P10 Po;(Poo +Pli)) 
Pto(Poo +Pli) Ptt + PotPto 

and (by induction) 

IPn = (1 - Pli 1 - Poo) 
2- Poo -Pli 1 -Pli 1 - Poo 

+ (Poo + Pli - 1t ( 1 - Poo 
2- Poo- P11 -(1 -Pli) 

(under the hypothesis that IPoo +Pli - 11 < 1). 

-(1 - Poo)) 
1- Pli 

Hence it is clear that if the elements of IP satisfy IPoo + p11 - 11 < 1 (in 
particular, if all the transition probabilities pij are positive), then as n-+ oo 

IPn 1 (1 -Pli 
-+2-Poo-Pll 1-Ptt 

1 - Poo), 
1- Poo 

and therefore 

lim p!nl = 1 -Pt! 
n •o 2 - Poo - Pli' 

1. (n) 1 - Poo 
Im P;t = ----'-----
n 2- Poo- P11 

(20) 

Consequently if I p00 + p11 - 11 < 1, such a Markov chain exhibits 
regular behavior of the following kind: the influence of the initial state on 
the probability of finding the particle in one state or another eventually 
becomes negligible (ptjl approach Iimits ni, independent of i and forming a 
probability distribution: n0 ~ 0, n1 ~ 0, n0 + n1 = 1); if also all pij > 0 
then n0 > 0 and n 1 > 0. 

3. The following theorem describes a wide dass of Markov chains that have 
the property called ergodicity: the Iimits ni = limn pij not only exist, are 
independent of i, and form a probability distribution (ni ~ 0, Li ni = 1), but 
also n i > 0 for all j (such a distribution n i is said to be ergodie ). 

Theorem 1 (Ergodic Theorem). Let IP = llPijll be the transition matrix of a 
chain with a finite state space X = { 1, 2, ... , N}. 

(a) lf there is an n0 suchthat 

min p!~o) > 0 
1} ' 

(21) 
i,j 
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then there are numbers n 1, ••• , nN suchthat 

(22) 

and 

(23) 

for every i EX. 
(b) Conversely, if there are numbers n ~> ... , nN satisfying (22) and (23), there 

is an n0 suchthat (21) holds. 
(c) 1he numbers (n 1, ... , nN) satisfy the equations 

PROOF. (a) Let 

Since 

we have 

j = 1, ... , N. 

m<.n> = min p\~l 
J I) ' 

M~nl = max p~~;>. 
i 

P(n+ 1) = "P· p<n) 
l} L._. HX CXJ' 

a 

m<.n+ 0 = min p\~+ 1l = min" P· p<n) > min "P· min p<n) = m<.nl 
J t) ~ ta a) - L... ta. aJ J ' 

i i a. i a a 

(24) 

(25) 

whence m<.n> < m<.n+ 1> and similarly M(nl > M<.n+ ll Consequently to establish 
)-) )-). , 

(23) it will be enough to prove that 

M<.n> - m<.n> --+ 0 
J J , n --+ oo, j = 1, ... , N. 

Let e = min;, j pl'jol > 0. Then 

P\~o+n) = "p\no)p(n) = " [p\no) - ep\"l]p<") + 1: "p<.">p<n) 
lJ L... ta a) L... ux Ja: a1 L... }a. a} 

a a a 

= " [p\no) - sp<.">]p<n) + sp<.~n) 
L..., 1a Ja aJ JJ' 

But p~:o> - sp}:> ~ 0; therefore 

P\~o+n) > m<.nl." [p\no) - sp("l] + sp\~n) = m("l(1 - s) + sp\~n) 
IJ - J L., 1a )a JJ J JJ ' 

a 

and consequently 

m\no+n) > m<."l(1 - s) + sp\~n) 
J - J )) • 

In a similar way 

M}"o+n> ~ M}"l(l - s) + sp)J">. 

Combining these inequalities, we obtain 

M(no+n> _ m<.no+n> < (M<.n> _ m<.">). (1 _ s) 
J J - J J 
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and consequently 

M(kno+n> _ m<.kno+n> < (M<.n> _ m<.n>)(1 _ c:)k ! 0 
J J - J J ' 

k --+ 00. 

Thus M)npl - m)npl --+ 0 for some subsequence np, np --+ oo. But the 
difference M<n> - m<.n> is monotonic in n and therefore M(nl - m<.n> --+ 0 

J J ' J J ' 
n--+ oo. 

If we put ni = limn m)n>, it follows from the preceding inequalities that 

I P(n) - n ·I < M(n) - m<.n> < (1 - c;)ln/no]- 1 
I) J - J J -

for n ~ n0 , that is, p\~;> converges to its Iimit ni geometrically (i.e., as fast as a 
geometric progression). 

lt is also clear that m)n> ~ m)noJ ~ c: > 0 for n ~ n0, and therefore ni > 0. 
(b) Inequality (21) follows from (23) and (25). 
(c) Equation (24) follows from (23) and (25). 
This completes the proof of the theorem. 

4. Equations (24) play a major role in the theory of Markov chains. A 
nonnegative solution(n 1, ... , nN)satisfying L:, n, = 1 is said tobe astationary 
or invariant probability distribution for the Markov chain with transition 
matrix IIPiill. The reason for this terminology is as follows. 

Let us select an initial distribution (n 1, ... , nN) and take Pi = ni. Then 

P?> = L n,p,i = ni , 

andin general pjn> = ni. In other words, if we take (n 1, ... , nN) as the initial 
distribution, this distribution is unchanged as time goes on, i.e. for any k 

P((k = j) = P((0 = j), j = 1, ... , N. 

Moreover, with this initial distribution the Markov chain ( = ( (, n, IP) is 
really stationary: the joint distribution of the vector ( (k, (k + 1, ••• , (k+ 1) is 
independent of k for all/ (assuming that k + I :s;; n). 

Property (21) guarantees both the existence of Iimits ni = lim pl';>, which 
are independent of i, and the existence of an ergodie distribution, i.e. one 
with ni > 0. The distribution (n 1, ..• , nN) is also a stationary distribution. 
Let us now show that the set (n 1, •.• , nN) is the only stationary distribution. 

In fact, Iet (nb ... , nN) be another stationary distribution. Then 

and since P~1 --+ ni we have 

nj = I <n •. n) = nj . 
• 

These problems will be investigated in detail in Chapter VIII for Markov 
chains with countably many states as weil as with finitely many states. 
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We note that a stationary probability distribution (even unique) may 
exist for a nonergodie ehain. In faet, if 

then 

p2n = (0 1) 
1 0 ' 

p2n+ 1 = (1 0) 
0 1 ' 

and eonsequently the Iimits !im Pl~;> do not exist. At the same time, the 
system 

j = 1, 2, 

reduees to 

of whieh the unique solution satisfying n 1 + n 2 = 1 is (!, !). 
We also notiee that for this example the system (24) has the form 

from whieh, by the eondition n0 = n1 = 1, we find that the unique stationary 
distribution (n0 , n 1) eoineides with the one obtained above: 

1 - P11 1- Poo 
no = ' 

2- Poo- P11 
TC1 = . 

2 - Poo - P11 

We now eonsider some eorollaries of the ergodie theorem. 
Let A be a set of states, A ~ X and 

Consider 

{ 1, X EA, 
IA(x) = 0, x~A. 

vA(n) = IA(~o) + · · · + IA(~n) 
n + 1 

whieh is the fraetion of the time spent by the particle in the set A. Sinee 

E[IA(~k)l~o = i] = P(~kEA/~o = i) = LPI~l(=plkl(A)), 
jeA 
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we have 

and in particular 

1 n 

E[vA(n)l~o = i] = -- L Plkl(A) 
n + 1 k=o 

1 n 

E[v{i}(n)leo = i] = -- L PW· 
n + 1 k=o 

lt is known from analysis (see also Lemma 1 in §3 of Chapter IV) that if 
an -+ a then (a0 + · · · + an)/(n + 1) -+ a, n -+ oo. Hence if Pl~l-+ ni, k -+ oo, 
then 

where nA = L ni. 
jr:A 

For ergodie chains one can in fact prove more, namely that the following 
result holds for IA(~0), ••• , IA(en), .... 

Law of Large Numbers. If eo. ~ 1, ••• form a.finite ergodie Markov chain, then 

n-+ oo, (26) 

for every e > 0 and every initial distribution. 

Before we undertake the proof, Iet us notice that we cannot apply the 
results of §5 directly to I A( e o), ... ' I A( ~n), ... ' since these variables are, in 
general, dependent. However, the proof can be carried through along the 
same lines as for independent variables if we again use Chebyshev's in­
equality, and apply the fact that for an ergodie chain with finitely many 
states there is a nurober p, 0 < p < 1, such that 

(27) 

Let us consider states i andj (which might be the same) and show that, 
for e > 0, 

n-+ oo. (28) 

By Chebyshev's inequality, 

Hence we have only to show that 

n-+ oo. 
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A simple calculation shows that 

where 

s = min(k, I) and t = lk- 11. 

By (27), 

P!~> = n. + e!~> 
l) J 1) ' 

Therefore 

where C 1 is a constant. Consequently 

1 n n (k, I) CI n n s t k I 

(n + 1)2 k~o 1~0 mij :::; (n + 1)2 k~o 1~0 [p + p + p + p] 

4C 1 2(n + 1) < ----''---;;-
- (n + 1)2 1 - p 

8CI -+ 0, 
(n + 1)(1 - p) 

n-+ oo. 

Then (28) follows from this, and we obtain (26) in an obvious way. 

5. In §9 we gave, for a random walk S0 , S1, ... generated by a Bernoulli 
scheme, recurrent equations for the probability and the expectation of the 
exit time at either boundary. We now derive similar equations for Markov 
chains. 

Let~ = (~0 , ... , ~n) be a Markov chain with transition matrix IIPijll and 
phase space X= {0, ± 1, ... , ±N}. Let A and B be two integers, -N:::; 
A :::; 0:::; B :::; N, and x EX. Let f!lk+ 1 be the set of paths (x0 , x 1, ... , xk), 
X; E X, that leave the interval (A, B) for the first time at the upper end, i.e. 
leave (A, B) by going into the set (B, B + 1, ... , N). 

For A :::; x :::; B, put 

In order to find these probabilities (for the first exit of the Markov chain 
from (A, B) through the upper boundary) we use the method that was 
applied in the deduction of the backward equations. 
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Wehave 

ßk(x) = P{(~o •... , ~k) E Bitk+ 1l ~o = x} 

= L Pxy · P{(~o. · · ·, ~k) E Bitk+ 1l ~o =X, ~1 = y}, 
y 

where, as is easily seen by using the Markov property and the homogeneity 
of the chain, 

P{(~o •. · ·, ~k) E Bitk+li ~o = x, ~1 = y} 

Therefore 

= P{(x,y, ~2• ••• , ~k)E.1itk+11~o = x, ~1 = y} 

= P{(y, ~2• ... ' ~k) E .1itkl~1 = y} 

= P{(y, ~1• · · ·, ~k-1) E Bitkl~o = y} = ßk-1(y). 

y 

for A < x < B and 1 ::::;; k ::::;; n. Moreover, it is clear that 

X = B, B + 1, ... ' N, 

and 

X= -N, ... ,A. 

In a similar way we can find equations for (J(k(x), the probabilities for first 
exit from (A, B) through the lower boundary. 

Let •k = min{O ::::;; I ::::;; k: ~~ f/: (A, B)}, where •k = k if the set { ·} = 0. 
Then the same method, applied to mk(x) = E(rk I ~0 = x), Ieads to the follow­
ing recurrent equations: 

mk(x) = 1 + L mk-1 (Y)Pxy 
y 

(here 1 ::::;; k ::::;; n, A < x < B). We define 

X 1: (A, B). 

It is clear that if the transition matrix is given by (11) the equations for 
(J(k(x), ßk(x) and mk(x) become the corresponding equations from §9, where 
they were obtained by essentially the same method that was used here. 

These equations have the most interesting applications in the limiting 
case when the walk continues for an unbounded length oftime. Just as in §9, 
the corresponding equations can be obtained by a formal limiting process 
(k-+oo). 

By way of example, we consider the Markov chain with states {0, 1, ... , B} 
and transition probabilities 

Poo = 1, PBB = 1, 
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and 

{
Pi > 0, ~ = ~ + 1, 

Pii = ri, J = 1, 

qi > 0, j = i - 1, 

for 1 :::;;; i :::;;; B - 1, where P; + qi + ri = 1. 
Forthis chain, the corresponding graph is 

ciJL.---~0 0 I 2 B 
q. Pt qB-1 B-I PB-I 

It is clear that states 0 and B are absorbing, whereas for every other state 
i the particle stays there with probability ri, moves one step to the right with 
probability p;, and to the left with probability qi. 

Let us find a(x) = limk ... oo ak(x), the Iimit ofthe probability that a particle 
starting at the point x arrives at state zero before reaching state B. Taking 
Iimits as k --+ oo in the equations for ak(x), we find that 

when 0 < j < B, with the boundary conditions 

a(O) = 1, a(B) = 0. 

Since ri - 1 - qi - Pi• we have 

and consequently 

aU + 1) - aU) = pj(a(1) - 1), 

where 

Po= 1. 

But 

j 

aU + 1) - 1 . ...:; L (a(i + 1) - a(i)). 
i=O 

Therefore 

j 

a(j + 1)- 1 = (a(1)- 1)· L Pi· 
i=O 
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If j = B - 1, we have a.(j + 1) = a.(B) = 0, and therefore 

1 
a_(l) = 1 = - "B 1 ' 

L..i= 1 Pi 

whence 

j = 1, ... , B. 

(This should be compared with the results of §9.) 
Now Iet m(x) = limk mk(x), the limiting value of the average time taken 

to arrive at one of the states 0 or B. Then m(O) = m(B) = 0, 

m(x) = 1 + L m(y)pxy 
y 

and consequently for the example that we are considering, 

m(j) = 1 + qim(j - 1) + rim(j) + pim(j + 1) 

for j = 1, 2, ... , B - 1. To find m(j) we put 

M(j) = m(j) - m(j- 1), j = 0, 1, ... , B. 

Then 

piM(j + 1) = qiM(j) - 1, 

and consequently we find that 

j = 1, ... , B- 1, 

M(j + 1) = piM(1)- Ri, 

where 

q1 ... qj 

P1 ... Pi' 

Therefore 
j-1 

m(i) = m(j)- m(O) = L M(i + 1) 
i=O 

j-1 j-1 j-1 

= L (pim(l)- Ri) = m(1) L Pi- L Ri. 
i=O i=O i=O 

1t remains only to determine m(l). But m(B) = 0, and therefore 

LB-1 R 
m(1) = L~=o1 i, 

i=O Pi 

and for 1 < j ~ B, 

j-1 "~-1R. i-1 

(j) " L..•=O I " R m =.L..Pi·"~- 1 .-.L.. i· 
•=0 L..•=O p, •=0 



§12. Markov Chains. Ergodie Theorem. Strong Markov Property 127 

(This should be compared with the results in §9 for the case r; = 0, P; = p, 

qi = q.) 

6. In this subsection we consider a stronger version of the Markov property 
(8), namely that it remains valid if time k is replaced by a random time (see 
also Theorem 2). The significance of this, the strong Markov property, can 
be illustrated in particular by the example of the derivation of the recurrent 
relations (38), which play an important roJe in the classification of the states 
of Markov chains (Chapter VIII). 

Let ~ = (~1> ... , ~n) be a homogeneous Markov chain with transition 
matrix IIP;)I; Iet ~~ = (~Üo:s;k:s;n be a system of decompositions, ~~ = 
~ ~o ..... ~k. Let BI~ denote the algebra a(~f) generated by the decomposition 
~~. 

We first put the Markov property (8) into a somewhat different form. Let 
B E BI~. Let us show that then 

P{~n =an, ... , ~k+1 = ak+1JB n (~k = ak)} 

= Pgn =an,···, ~k+1 = ak+1l~k = ak} (29) 

(assuming that P{B n (~k = ak)} > 0). In fact, B can be represented in the 
form 

B = I* go = a6, ... , ~k = at}, 

where I* extends over some set (a6' ... ' an Consequently 

P{~n =an,··., ~k+1 = ak+1lB n (~k = ak)} 

P{(~n = an, ... , ~k = ak) n B} 

P{(~k = ak) n B} 

I* P{(~n = a", .. ·, ~k = ak) n (~o = a6, ... , ~k = at)} 

P{(~k = ak) n B} 

But, by the Markov property, 

P{(~n = a", ... , ~k = ak) n (~o = a6, ... , ~k = at)} 

_ {p { ~" = a", ... , ~~ + 1 * = ak + 1l ~~ =* a6, .' .. , ~ =: at} 
- xP{~o-ao, ... ,~k-ad tfak-ak, 

0 if ak =I= at, 

(30) 

{P{~" =an, ... , ~k+1 = ak+1l~k = ak}P{~o = a6, ... , ~k = at} 

= if ak = at, 

0 if ak =I= at, 

{
pgn = a", ... , ~k+ 1 = ak+ tl ~k = ak}P{(~k = ak) n B} 

= if ak = at, 

0 if ak =I= at, -
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Therefore the sum L* in (30) is equal to 

P{ ~n = an, ... , ~k+ 1 = ak+ d ~k = ak}P{(~k = ak) n B}, 

This establishes (29). 
Let • be a stopping time (with respect to the system D~ = (DÜos;ks;n; see 

Definition 2 in §11). 

Definition. We say that a setBin the algebra .?6'~ belongs to the system of sets 
.?1~ if, for each k, 0 ~ k ~ n, 

B n {< = k} E.?lf, (31) 

It is easily verified that the collection of such sets B forms an algebra 
(called the algebra of events observed at time<). 

Theorem 2. Let ~ = (~0 , .•• , ~") be a homogeneaus Markov chain with 
transition matrix IIPiill, • a stopping time (with respect to .@~), BE .?6'~ and 
A = {w: • + I~ n}. Then !f P{A n B n (~t = a0 )} > 0, we have 

P{~t+l = a1, · · ·, ~t+1 = a1IA n B n (~< = ao)} 

= P{~t+l = a~> ... , ~t+1 = a1IA n (~< = ao)}, (32) 

and if P{A n (~< = a0 )} > 0 then 

For the sake of simplicity, we give the proof only for the case 1 = 1. Since 
B n (< = k) E elf, we have, according to (29), 

Pgt+1 = a1, An B n (~< = a0 )} 

L P{~k+1 = a1, ~k = ao, • = k, B} 
ks;n-1 

ks;n-1 

ks;n-1 

= Paoal. L pgk = ao, 't' = k, B} = Paoal. P{A n B n (~t = ao)}, 
ks;n-1 

which simultaneously establishes (32) and (33) (for (33) we have to take 
B= Q). 

Remark. When 1 = 1, the strong Markov property (32), (33) is evidently 
equivalent to the property that 

(34) 
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for every C s X, where 

Pao(C) = L Paoalo 
a1 eC 

In turn, (34) can be restated as follows: on the set A = {t :Sn- 1}, 
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(35) 

which is a form of the strong Markov property that is commonly used in the 
generat theory of homogeneous Markov processeso 

7. Let ~ = (~0 ,.0 0 0, ~ .. ) be a homogeneous Markov chain with transition 
matrix IIPiill, and Iet 

fl~) = pgk = i, ~I # i, 1 :S [ :S k - 11 ~0 = i} (36) 

and 

(37) 

for i -:1: j be respectively the probability of first return to state i at time k and 
the probability of first arrival at state j at time k. 

Let us show that 
II 

P!~l = "' f!~>p<.'!-k) 
IJ f_, I} JJ ' 

k= 1 
where p~~> = 1. (38) 

The intuitive meaning of the formula is clear: to go from state i to state j 
in n steps, it is necessary to reach state j for the first time in k steps (1 :S k :S n) 
and then to go from state j to state j in n - k stepso We now give a rigorous 
derivationo 

Let j be given and 

r = min{1 :S k :S n: ~k = j}, 

assuming that r = n + 1 if {o} = 00 Thenfl~l = P{r = kl~o = i} and 

Plj> = P{~,. = jl~o = i} 

L P{~,. =j,t = kl~o = i} 
1 SkSn 

L P{~t+n-k = j, t = kleo = i}, 
1 sksn 

(39) 

where the last equation follows because ~<+n-k = ~ .. on the set {t = k}o 
Moreover, the set { r = k} = { r = k, ~. = j} for every k, 1 :S k :S n. Therefore 
if P{~0 = i, r = k} > 0, it follows from Theorem 2 that 

P{~t+n-k = jl~o = i, t = k} = P{~t+n-k = jl~o = i, t = k, ~< = j} 

= P{ ~.+ .. -k = j I~. = j} = p}rk> 
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and by (37) 

n 

Plj' = I P{e,+n-k = jleo = i, -r = k}P{t = kleo = i} 
k=l 

n 

= ~ p\'!-kl:f\~) 
L,.. JJ IJ' 

k=l 

which establishes (38). 

8. PROBLEMS 

1. Let ~ = (~0 , ••• , ~.) be a Markov chain with values in X and f = f(x) (x EX) a 
function. Will the sequence (f(~0), ••• ,f(~.)) form a Markov chain? Will the 
"reversed" sequence 

(~ •• ~n-1• • • • • ~o) 

form a Markov chain? 

2. Let ßJ> = IIPiill, 1 :$; i, j :$; r, be a stochastic matrix and A. an eigenvalue of the matrix, 
i.e. a root of the characteristic equation detiiiP>- A.EII = 0. Show that A.0 = 1 is an 
eigenvalue and that all the other eigenvalues have moduli not exceeding 1. If all the 
eigenvalues A. 1, ••• , ..l.,. are distinct, then PI~, admits the representation 

Pl~l = ni + aiJ{1)A.~ + · · · + aiJ{r)A.~, 
where ni, aiJ{l), ... , aiJ{r) can be expressed in terms of the elements of IP>. (lt follows 
from this algebraic approach to the study ofMarkov chains that, in particular, when 
IA.1 1 < 1, ... , lA., I < 1, the Iimit lim PI,, exists for every j and is independent of i.) 

3. Let~= (~0 , ••• , ~.) be a homogeneous Markov chain with state space X and transi­
tion matrix ßJ> = IIP,.)I. Let 

Tcp(x) = E[cp(~,)l~o = x] ( = ~ cp(y)Pxy). 

Let the nonnegative function cp satisfy 
Tcp(x) = cp(x), x EX. 

Show that the sequence of random variables 

is a martingale. 

4. Let ~ = (~ •• fll, IP>) and ' = (~ •• fll, IP>) be two Markov chains with different initial 
distributions fll = (p1, ••• , p,) and Al = (p1, ••• , p,). Show that if mini.i Pii ~ e > 0 
then 

r 

L IPI"l- Pl"ll :$; 2(1 - e)". 
i=l 



CHAPTER II 

Mathematical Foundations of 
Probability Theory 

§1. Probabilistic Model for an Experiment with 
Infinitely Many Outcomes. Kolmogorov's Axioms 

1. The models introduced in the preceding chapter enabled us to give a 
probabilistic-statistical description of experiments with a finite number of 
outcomes. For example, the triple (Q, .91, P) with 

and p(w) = pY-a,qn-J:.a, is a model for the experiment in which a coin is tossed 
n times "independently" with probability p offalling head. In this model the 
number N(Q) of outcomes, i.e. the number of points in Q, is the finite 
number 2n. 

We now consider the problern of constructing a probabilistic model for 
the experiment consisting of an infinite number of independent tosses of a 
coin when at each step the probability offalling head is p. 

It is natural to take the set of outcomes to be the set 

Q = {w: w = (a 1, a2 , •• • ), a; = 0, 1}, 

i.e. the space of sequences w = (a1 , a2 , •• • ) whose elements are 0 or 1. 
What is the cardinality N(Q) of Q? It is weil known that every number 

a E [0, 1) has a unique binary expansion (containing an infinite number of 
zeros) 

(a; = 0, 1). 
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Hence it is clear that there is a one-to-one correspondence between the points 
w ofQ and the points a ofthe set [0, 1), and therefore n has the cardinality of 
the continuum. 

Consequently if we wish to construct a probabilistic model to describe 
experiments like tossing a coin infinitely often, we must consider spaces n 
of a rather complicated nature. 

Weshall now try to see what probabilities ought reasonably tobe assigned 
(or assumed) in a model of infinitely many independent tosses of a fair coin 

(p + q = t). 
Since we may take n to be the set [0, 1), our problern can be considered 

as the problern of choosing points at random from this set. For reasons of 
symmetry, it is clear that all outcomes ought to be equiprobable. But the 
set [0, 1) is uncountable, and if we suppose that its probability is 1, then it 
follows that the probability p(w) of each outcome certainly must equal 
zero. However, this assignment of probabilities (p(w) = 0, w E [0, 1)) does 
not Iead very far. The fact is that we are ordinarily not interested in the 
probability of one outcome or another, but in the probability that the result 
ofthe experiment is in one or another specified set A of outcomes (an event). 
In elementary probability theory we use the probabilities p(w) to find the 
probability P(A) ofthe event A: P(A) = LroeA p(w). In the present case, with 
p(w) = 0, w E [0, 1), we cannot define, for example, the probability that a 
point chosen at random from [0, 1) belongs to the set [0, t). At the same time, 
it is intuitively clear that this probability should be t. 

These remarks should suggest that in constructing probabilistic models for 
uncountable spaces n we must assign probabilities, not to individual out­
comes but to subsets of n. The same reasoning as in the first chapter shows 
that the collection of sets to which probabilities are assigned must be closed 
with respect to unions, intersections and complements. Here the following 
definition is useful. 

Definition 1. Let n be a set of points w. A system d of subsets of n is called 
an algebra if 

(a) 0Ed, 
(b) A, BE d => A u BE d, An BEd, 
(c) A E d => A E d 

(Notice that in condition (b) it is sufficient to require only that either 
A u BE dorthat A n BE d, since A u B = A n Band A n B = Au B.) 

The next definition is Reeded in formulating the concept of a probabilistic 
model. 

Definition 2. Let d be an algebra of subsets of n. A set function J1 = Jl(A), 
A E d, taking values in [0, oo ], is called a .finitely additive measure defined 
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on s1 if 

Jt(A + B) = ~t(A) + ~t(B). 

for every pair of disjoint sets A and B in s1. 
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(1) 

A finitely additive measure ll with Jt(Q) < oo is called finite, and when 
Jt(f!) = 1 it is called a finitely additive probability measure, or a finitely 
additive probability. 

2. We now define a probabilistic model (in the extended sense). 

Definition 3. An ordered triple (Q, s1, P), where 

(a) Q is a set ofpoints w; 
(b) s1 is an algebra of subsets of Q; 
(c) Pisa finitely additive probability on A, 

is a probabilistic model in the extended sense. 

It turns out, however, that this model is too broad to Iead to a fruitful 
mathematical theory. Consequently we must restriet both the class of sub­
sets of Q that we consider, and the class of admissible probability measures. 

Definition 4. A system :F of subsets of Q is a a-algebra if it is an algebra and 
satisfies the following additional condition (stronger than (b) of Defini­
tion 1): 

(b*) if A. E ff, n = 1, 2, ... , then 

U An Eff, 

(it is sufficient to require either that U A. E :#' or that n An E :#'). 

Definition 5. The space Q together with a a-algebra :F of its subsets is a 
measurable space, and is denoted by (Q, :#'). 

Definition 6. A finitely additive measure ll defined on an algebra s1 of subsets 
of Q is countably additive (or a-additive), or simply a measure, if, for all 
pairwise disjoint subsets A1, A 2 , ••• of A with IA. E s1 

llc~t A.) = n~tll(A.). 
A finitely additive measure ll is said to be a-finite if Q can be represented in 

the form 
00 

n = Ln., n. Es~, 
n=l 

with Jt(f!.) < oo, n = 1, 2, .... 
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If a countably additive measure P on the algebra A satisfies P(Q) = 1, 
it is called a probability measure or a probability (defined on the sets that 
belong to the algebra d). 

Probability measures have the following properties. 
If 0 is the empty set then 

P(0) = 0. 

If A, B E .91 then 

P(A u B) = P(A) + P(B)- P(A n B). 

If A, B E .91 and B s;;; A then 

P(B) ~ P(A). 

If An E d, n = 1, 2, ... , and U An E d, then 

The first three properties are evident. To establish the last one it is enough 
to observe that u:..l An= L:'=l Bn, where Bl =Al, Bn =Al(\ ... (\ 
An-l n An, n ;;::: 2, Bin Bi = 0, i # j, and therefore 

The next theorem, which has many applications, provides conditions 
under which a finitely additive set function is actually countably additive. 

Theorem. Let P be a .finitely additive set function de.fined over the algebra .91, 
with P(Q) = 1. Thefollowingfour conditions are equivalent: 

(1) Pisa-additive (Pisa probability); 
(2) Pis continuous from below, i.e. for any sets A1, A2 , .•• Ed suchthat 

Ans;;; An+l and U:=l An E d, 

(3) P is continuous from above, i.e. for an y sets A 1, A 2 , •.• such that An 2 An+ 1 

and n:..1 An E d, 
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(4) Pis continuous at 0, i.e. for any sets A1, A 2, ... e d suchthat An+ 1 s;;; An 
and n:=t An= 0, 

n 

PR.ooF. (1) => (2). Since 

00 

U An = At + (A2 \At) + (A3 \A2) + · · ·, 
n=l 

we have 

PC9
1
An) = P(Al) + P(A2\A 1) + P(A 3\A2) + ... 

= P(A 1) + P(A2) - P(A 1) + P(A 3)- P(A2) + · · · 
= lim P(An). 

n 

(2) => (3). Let n ~ 1; then 

P(An) = P(At \(At \An)) = P(At)- P(At \An). 

The sequence { A 1 \An} n ~ 1 of sets is nondecreasing (see the table in Subsection 
3 below) and 

Then, by (2) 

and therefore 

00 00 

U (A 1 \An) = A 1\ n An. 
n=l n=l 

= P(Al)- PC91(At\An)) = P(Al)- P(Al\ÖAn) 

= P(Al)- P(Al) + PCö An)= PCö An) 

(3) => (4). Obvious. 
(4) => (1). Let A1, A 2, ... e d be pairwise disjoint and Iet L:'= 1 An e d. 

Then 
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and since L~n+ 1 A;! 0, n--+ oo, we have 

3. We can now formulate Kolmogorov's generally accepted axiom system, 
which forms the basis for the concept of a probability space. 

Fundamental Definition. An ordered triple (Q, ff, P) where 

(a) n is a set of points w, 
(b) ff is a u-algebra of subsets of n, 
(c) Pisaprobability on ff, 

is called a probabilistic model or a probability space. Here Q is the sample space 
or space of elementary events, the sets A in ff are events, and P(A) is the 
probability of the event A. 

lt is clear from the definition that the axiomatic formulation ofprobability 
theory is based on set theory and measure theory. Accordingly, it is useful to 
have a table (pp. 136-137) displaying the ways in which various concepts are 
interpreted in the two theories. In the next two sections weshall give examples 
ofthe measurable spaces that are most important for probability theory and 
of how probabilities are assigned on them. 

4. PROBLEMS 

1. Let Q = {r: r e [0, 1]} be the set of rational points of [0, 1], d the algebra of sets 
each of which is a finite sum of disjoint sets A of one of the forms {r: a < r < b}, 
{r: a:;;; r < b}, {r: a < r:;;; b}, {r: a:;;; r:;;; b}, and P(A) = b- a. Show that P(A), 
A e d, is finitely additive set function but not countably additive. 

2. Let Q be a countableset and !F the collection of all its subsets. Put Jl(A) = 0 if A is 
finite and Jl(A) = oo if A is infinite. Show that the set function Jl is finitely additive 
but not countably additive. 

3. Let Jl be a finite measure on a cr-algebra §, A. e §, n = 1, 2, ... , and A = !im. A. 
(i.e., A = lim. A. = !im. A.). Show that Jl(A) = !im. Jl(A.). 

4. Prove that P(A !:::. B) = P(A) + P(B) - 2P(A n B). 
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5. Show that the "distances" p 1(A, B) and p 2(A, B) defined by 

Pt(A, B) = P(A /::, B), 

{
P(A /::, B) 

p2(A, B) = :(A v B) 

satisfy the triangle inequality. 

ifP(A VB)# 0, 

ifP(A VB)= 0 
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6. Let J1. be a finitely additive measure on an algebra d, and Iet the sets A1, A 2 , ••. E d 
be pairwise disjoint and satisfy A = L~ 1 A; E d. Then JJ.(A) ~ L~ 1 JJ.(A;). 

7. Prove that 

lim sup A. = lim inf A., lim inf A. = lim sup A., 

lim inf A. ~ lim sup A., lim sup(A. v B.) = lim sup A. v lim sup B., 

lim sup A. n lim inf B. ~ lim sup(A. n B.) ~ Iim sup A. n lim sup B •. 

If A. j A or A. ! A, then 

lim inf A. = lim sup A •. 

8. Let {x.} be a sequence of numbers and A. = (- oo, x.). Show that x = lim sup x. 
and A = Iim sup A. are related in the following way: (- oo, x) ~ A ~ (- oo, x]. 
In other words, Ais equal to either (- oo, x) or to (- oo, x]. 

9. Give an example to show that if a measure takes the value + oo, it does not follow in 
general that countable additivity implies continuity at 0. 

§2. Algebras and a-Algebras. Measurable Spaces 

1. Algebras and u-algebras are the components out of which probabilistic 
models are constructed. Weshall present some examples and a number of 
results for these systems. 

Let Q be a sample space. Evidently each of the collections of sets 

$'* = {0, Q}, $'* = {A:A s;;; Q} 

is both an algebra and a u-algebra. In fact, $'* is trivial, the "poorest" 
u-algebra, whereas $'* is the "riebest" u-algebra, consisting of all subsets 
ofQ. 

When Q is a finite space, the u-algebra $'* is fully surveyable, and com­
monly serves as the system of events in the elementary theory. However, when 
the space is uncountable the dass$'* is much too large, since it is impossible 
to define "probability" on such a system of sets in any consistent way. 

If A s;;; Q, the system 

$'A = {A, Ä, 0, Q} 
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isanother example of an algebra (and a a-algebra), the algebra (or a-algebra) 
generated by A. 

This system of sets is a special case of the systems generated by decomposi­
tions. In fact, Iet 

!!) = {D 1, D2 , •.. } 

be a countable decomposition of Q into nonempty sets: 

i # j. 

Then the system d = oc(f?)), formed by the sets that are unians of finite 
numbers of elements of the decomposition, is an algebra. 

The following Iemma is particularly useful since it establishes the important 
principle that there is a smallest algebra, or a-algebra, containing a given 
collection of sets. 

Lemma 1. Let $ be a collection of subsets of Q. Then there are a smallest 
algebra oc($) and a smallest a-algebra a($) containing all the sets that are in$. 

PROOF. The class ff* of all subsets of n is a a-algebra. Therefore there are at 
least one algebra and one a-algebra containing $. We now define oc($) 
(or a(S)) to consist of all sets that belang to every algebra (or a-algebra) 
containing $. It is easy to verify that this system is an algebra (or a-algebra) 
and indeed the smallest. 

Remark. The algebra oc(E) (or u(E), respectively) is often referred to as the 
smallest algebra (or a-algebra) generated by $. 

We often need to know what additional conditions will make an algebra, 
or some other system of sets, into a a-algebra. We shall present several results 
of this kind. 

Definition 1. A collection .# of Subsets of n is a monotonic class if An E .#, 
n = 1, 2, ... , tagether with An jA or An ! A, implies that A E .#. 

Let $ be a system of sets. Let J..l($) be the smallest monotonic class con­
taining $. (The proof of the existence of this class is like the proof of Lemma 1.) 

Lemma 2. A necessary and sufficient condition for an algebra d to be a 
a-algebra is that it is a monotonic class. 

PROOF. A a-algebra is evidently a monotonic class. Now Iet d be a monotonic 
class and An E d, n = 1, 2, .... lt is clear that Bn = Ui= 1 A; E d and 
Bn s;; Bn + 1 • Consequently, by the definition of a monotonic class, 
Bn i Uf; 1 A; E d. Similarly we could show that n)'; 1 A; E d. 

By using this Iemma, we can prove that, starting with an algebra d, we 
can construct the a-algebra a(d) by means of monotonic limiting processes. 
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Theorem 1. Let .s:l be an algebra. T hen 

Jl( .s:l) = a( .s:l). (1) 

PROOF. By Lemma 2, Jl(.s:l) <;; a(.s:l). Hence it is enough to show that Jl(.s:l) 
is a a-algebra. But At = Jl(.s:l) is a monotonic dass, and therefore, by Lemma 
2 again, it is enough to show that Jl(.s:/) is an algebra. 

Let A E Jt; we show that A E At. For this purpose, we shall apply a 
principle that will often be used in the future, the principle of appropriate sets, 
which we now illustrate. 

Let 
Ji = {B:BEAI,BEAI} 

be the sets that have the property that concerns us. lt is evident that 
.91 <;; Ji <;; At. Let us show that Ji is a monotonic dass. 

Let Bn E Ji; then Bn E At, Bn E At, and therefore 

Consequently 

lim j Bn = lim ~ Bn E At, 

lim j Bn = lim ~ Bn E At, 

lim ~ Bn E At, 

lim ~ Bn = lim j Bn E At, 

lim ~ Bn = lim j Bn E At, 

and therefore Ji is a monotonic dass. But Ji c:; At and At is the smallest 
monotonic dass. Therefore Ji = At, and if A E At = Jl(.s:l), then we also 
have A E At, i.e. At is dosedunder the operation oftaking complements. 

Let us now show that At is dosed under intersections. 
Let A E At and 

From the equations 

lim ~ (A (') Bn) = A (') lim ~ Bn, 

lim i (A n Bn) = A n lim i Bn 

it follows that At A is a monotonic dass. 
Moreover, it is easily verified that 

(A E Af B) <=> (B E Af A)· (2) 

Now Iet A E .s:l; then since .s:l is an algebra, for every B E .s:l the set 
A n B E .s:l and therefore 

.s;/ <;; Af A <;; Af · 

But At Ais a monotonicdass (since lim j AB" = A lim j Bn and lim ~AB" = 
A lim ~ Bn), and At is the smallest monotonic dass. Therefore At A = At for 
all A E .s:l. But then it follows from (2) that 

(A E At B) <=> (B E At A = At). 
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whenever A E d and BE .ß. Consequently if A E d then 

for every B E .ß. Since A is any set in d, it follows that 

Therefore for every B E .ß 

.ßB = .ß, 

i.e. if BE .ß and CE .ß then C n BE .ß. 
Thus .ß is closed under complementation and intersection (and therefore 

under unions). Consequently .ß is an algebra, and the theorem is established. 

Definition 2. Let Q be a space. A dass!!} ofsubsets ofQ is ad-system if 

(a) Q E !?}; 

(b) A, B, E !?}, A ~ B-= B\A E !?}; 

(c) An E !?}, An ~ An+ 1 -= UAn E !?}. 

If rff is a collection of sets then d(S) denotes the smallest d-system con­
taining rff. 

Theorem 2. If the collection rff of sets is closed under intersections, then 

d( rff) = a( S) (3) 

PROOF. Every a-algebra is a d-system, and consequently d(S) ~ a(S). Hence 
if we prove that d(S) is closed under intersections, d(rff) must be a a-algebra 
and then, of course, the opposite inclusion a(S) ~ d(S) is valid. 

The proof once again uses the principle of appropriate sets. 
Let 

rff 1 = {BE d(S): B n A E d(S) for all A ES}. 

lf B E S then B n A E rff for all A E rff and therefore rff ~ rff 1. But rff 1 is a 
d-system. Hence d(S) ~ rff 1• On the other band, rff 1 ~ d(S) by definition. 
Consequently 

Now Iet 

rff 2 = {BE d(S): B n A E d(S) for all A E d(S)}. 

Again it is easily verified that rff 2 is a d-system.lf B E S, then by the definition 
of S 1 we obtain that B n A E d(S) for all A E rff 1 = d(S). Consequently 
rff ~ rff 2 and d($) ~ $ 2 • But d(S) 2 rff 2 ; hence d(S) = rff 2 , and therefore 
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whenever A and Bare in d(C), the set A n B also belongs to d(C), i.e. d(C) is 
closed under intersections. 

This completes the proof of the theorem. 

We next consider some measurable spaces (Q, $') which are extremely 
important for probability theory. 

2. The measurable space (R, 86(R)). Let R = (- oo, oo) be the realline and 

(a, b] = {x ER: a < x ~ b} 

for all a and b, - oo ~ a < b < oo. The interval (a, oo] is taken tobe (a, oo ). 
(This convention is required' if the complement of an interval (- oo, b] is 
to be an interval of the same form, i.e. open on the left and closed on the 
right.) 

Let .91 be the system of subsets of R which are finite sums of disjoint 
intervals of the form (a, b]: 

n 

A E .91 if A = L (ah b;], n < oo. 
i= 1 

lt is easily verified that this system of sets, in which we also include the 
empty set 0, is an algebra. However, it is not a a-algebra, since if An = 
(0, 1 - 1/n] E .91, we have Un An = (0, 1) rt .91. 

Let 86(R) be the smallest a-algebra a(d) containing .91. This a-algebra, 
which plays an important roJe in analysis, is called the Bore[ algebra ofsubsets 
of the realline, and its sets are called Bore[ sets. 

lf ~ is the system of intervals ~ of the form (a, b ], and a(~) is the smallest 
a-algebra containing ~' it is easily verified that a(~) is the Bore! algebra. 
In other words, we can obtain the Bore! algebra from ~ without going 
through the algebra .91, since a(~) = a(rx(~)). 

We observe that 

(a, b) = U (a, b- ~], 
n=l n 

a < b, 

[a, b] = n (a- ~' b], 
n=l n 

a < b, 

{a}= n(a-~,a]. 
n=l n 

Thus the Bore! algebra contains not only intervals (a, b] but also the single­
tons {a} and all sets ofthe six forms 

(a,b), [a,b], [a,b), (-oo,b), (-oo,b], (a,oo). (4) 
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Let us also notice that the construction of 91(R) could have been based on 
any of the six kinds of intervals instead of on (a, b ], since all the minimal 
u-algebras generated by systems of intervals of any of the forms (4) are the 
same as 91(R). 

Sometimes it is useful to deal with the u-algebra 91(R) of subsets of the 
extended realline R = [- oo, oo]. This is the smallest u-algebra generated by 
intervals of the form 

(a,b] = {xER:a < x ~ b}, - oo ~ a < b ~ oo, 

where (- oo, b] is to stand for the set {x ER.: - oo ~ x ~ b}. 

Remark 1. The measurable space (R, 91(R)) is often denoted by (R, 91) or 
(R 1, 91 1). 

Remark 2. Let us introduce the metric 

lx- Yi 
p 1(x, y) = 1 + lx- Yi 

on the real line R (this is equivalent to the usual metric lx- yi) and Iet 
910(R) be the smallest u-algebra generated by the open sets Sp(x0) = 
{x ER: p 1(x, x0 ) < p}, p > 0, x0 ER. Then 910(R) = 91(R) (see Problem 7). 

3. The measurable space (R", fJB(R")). Let R" = R x · · · x R be the direct, or 
Cartesian, product of n copies of the realline, i.e. the set of ordered n-tuples 
x = (x1, ••• , xn), where - oo < xk < oo, k = 1, ... , n. The set 

I= I 1 X • · • X In, 

where Ik = (ak, bk], i.e. the set {x ER": xk E Ik, k = 1, ... , n}, is called a 
rectangle, and I k is a side of the rectangle. Let J be the set of all rectangles I. 
The smallest u-algebra u(J) generated by the system J is the Bore[ algebra 
of subsets of R" and is denoted by fJB(R"). Let us show that we can arrive at 
this Borel algebra by starting in a different way. 

Instead of the rectangles I = I 1 x · · · x In Iet us consider the rectangles 
B = B1 x · · · x Bn with Borel sides (Bk is the Borel subset of the realline 
that appears in the kth place in the direct product R x · · · x R). The smallest 
u-algebra containing all rectangles with Borel sides is denoted by 

fJB(R) ® · · · ® fJB(R) 

and called the direct product of the u-algebras 91(R). Let us show that in fact 

fJB(R") = fJB(R) ® · · · ® fJB(R). 
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In other words, the smallest a-algebra generated by the rectangles I = 
I1 x · · · x I" and the (broader) class of rectangles B = B 1 x · · · x B" with 
Borel sides are actually the same. 

The proof depends on the following proposition. 

Lemma 3. Let S be a class of subsets ofO., let B s;;; n, and de.fine 

Sn B = {A n B: A ES}. 

Then 

a(S n B) = a(S) n B. 

PRooF. Since S s;;; a{S), we have 

S n B s;;; a(S) n B. 

But a(S) n Bis a a-algebra; hence it follows from (7) that 

a(S n B) s;;; a{S) n B. 

(5) 

(6) 

(7) 

To prove the conclusion in the opposite direction, we again use the 
principle of appropriate sets. 

Define 

~B = {A E a(S): An BE a(S n B)}. 

Since a{S) and a(S n B) are a-algebras, ~Bis also a a-algebra, and evidently 

S!:;;; ~B!:;;; a(S), 

whence a(S) s;;; a(~B) = ~B s;;; a(S) and therefore a{S) = ~B· Therefore 

A nBEa(S n B) 

for every A s;;; a(S), and consequently a{C) n B s;;; a(C n B). 
This completes the proof of the Iemma. 

Proofthat ßi(R") and ßl ® · · · ® ßl are the same. This is obvious for n = 1. 
We now show that it is true for n = 2. 

Since ßi(R2 ) s;;; ßl ® ßl, it is enough to show that the Borel reetangle 
B1 x B2 belongs to ßi(R2 ). 

Let R2 = R1 x R2 , where R1 and R2 are the "first" and "second" real 
lines, ~1 = ßl1 x R2 , ~2 = R1 x ßl2 , where ßl1 x R2 (or R1 x ßl2) is the 
collectionofsetsoftheformB1 x R2 (or R1 x B2 ), withB1 E ßl1 (or B2 E ßl2 ). 

Alsolet.F1and.F2 bethesetsofintervalsinR1 andR 2 ,and.11 = .1"1 x R 2 , 

.J2 = R1 x .1"2 • Then, by (6), 

B1 x B2 = B1 n B2 E ~1 n ~2 = a(.i1) n B2 

as wastobe proved. 

= a{.J1 n B2) s;;; a(.J1 n .12) 
= a{J1 X J2), 
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The case of any n, n > 2, can be discussed in the same way. 

Remark. Let 910(R") be the smallest u-algebra generated by the open sets 

Sp(x0 ) = {x eR": p"(x, x0 ) < p}, x0 eR", p > 0, 

in the metric 
n 

p"(x, x0 ) = L 2-kP1(xk, xf), 
k=1 

where x = (xh ... , x"), x0 = (x?, ... , x~). 
Then 910(R") = 91(R") (Problem 7). 

4. The measurable space (R 00 , 91(R 00 )) plays a significant role in probability 
theory, since it is used as the basis for constructing probabilistic models of 
experiments with infinitely many steps. 

The space R oo is the space of ordered sequences of numbers, 

- oo < xk < oo, k = 1, 2, ... 

Let lk and Bk denote, respectively, the intervals (ak, bk] and the Borel subsets 
ofthe kth line (with coordinate xk). We consider the cylinder sets 

J(J1 x ··· x 1")= {x:x=(xhx2, ... ),x1 elh····x"el"}, (8) 

J(B1 x · · · x B") = {x:x = (x1, x 2 • • ·), x 1 e B1, ••• , x" e B,.}, (9) 

J(B") = {x: (x 1, ... , x") e B"}, (10) 

where B" is a Borelsetin 91(R"). Bach cylinder J(B1 x · · · x B"), or J(B"), 
can also be thought of as a cylinder with base in R" + 1, R" + 2 , ••• , since 

J(B1 X ••• X B") = J(B1 X ••• X B" X R), 

J(B") = J(B"+ 1), 

where B"+ 1 = B" x R. 
It follows that both systems of cylinders J(B1 x · · · x B") and J(B") 

are algebras. lt is easy to verify that the unions of disjoint cylinders 

J(J1 X ... X I") 

also form an algebra. Let 91(R 00), 911 (R 00 ) and 912(R 00) be the smallest 
u-algebras containing all the sets (8), (9) or (10), respectively. (The u-algebra 
911 (R 00 ) is often denoted by 91(R) ® 91(R) x · · · .) lt is clear that 91(R 00) ~ 
911(R 00) ~ 912(R 00). As a matter offact, all three u-algebras are the same. 

To prove this, we put 

fl" = {A eR": {x: (xh ... , x") e A} e 91(R 00)} 

for n = 1, 2, .... Let B" e 91(R"). Then 

B" E fl,. ~ 91(R 00 ). 
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But rtl" is a a-algebra, and therefore 

ßi(R") s; a(rtl") = rtln s; 91(R 00); 

consequently 

ßi2(R 00 ) s; ßi(R 00 ). 

Thus 91(R 00 ) = 91 1 (R 00 ) = 912(R 00 ). 

From now on we shall describe sets in ßi(R 00 ) as Borel sets (in R 00). 

Remark. Let 910(R 00 ) be the smallest a-algebra generated by the open sets 

Sp(x0) = {x E R 00 : p 00(X, x0) < p}, x0 E R 00 , p > 0, 

in the metric 
00 

Poo(x, x0 ) = L rkpl(xk, xf), 
k=l 

where x = (xt.x2, ... ), x0 = (x?,x~, ... ). Then 91(R 00 ) = 910(R 00 ) 

(Problem 7). 
Here are some examples of Borel sets in R oo: 

(a) {x E R 00 : sup Xn > a}, 

{x E R 00 : inf Xn < a}; 

(b) {x E R 00 : rrm Xn ~ a}, 

{x E R 00 : lim Xn > a}, 

where, as usual, 

Um Xn = inf SUPXm, 
n m2:n n m2:n 

( c) { x E R 00 : x" -+}, the set of x E R oo for which lim x" exists and is finite; 
(d) {x E R 00 : lim Xn > a}; 

(e) {x E Roo: L:'= 1 lxnl > a}; 
(f) {x E R 00 : Lk=l xk = Ofor at least one n ~ 1}. 

Tobe convinced, for example, that sets in (a) belong to the system 91(R 00 ), 

it is enough to observe that 

{x: sup Xn > a} = U {x: Xn > a} E 91(R 00 ), 

n 

{x: inf Xn < a} = U {x: Xn < a} E 91(R 00). 

n 

5. The measurable space (RT, ßi(RT)), where T is an arbitrary set. The space 
RT is the collection of real functions x = (x,) defined for t E Tt. In general 
we shall be interested in the case when T is an uncountable subset of the real 

t Weshall also use the notations x = (x,),.RT and x = (x,), t e RT, for elements of RT. 
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line. For simplicity and definiteness we shall suppose for the present that 
T = [0, oo). 

Weshall consider three types of cylinder sets 

.fr~. ... ,tn(/1 X ... X In)= {x: x,, EI I> ... ' x,n EI 1}, (11) 

.fr~. ... ,tn(Bl X ... X Bn) = {x: x,, E B1, ... 'x,n E Bn}, (12) 

.f,,, .... rJB") = {x: (x1,, ... , x,J E B"}, (13) 

where Ik is a set ofthe form (ak, bk], Bk is a Borelseton the line, and B" is a 
Borel set in R". 

The set .f,,, .... ln (11 X •.• X In) is just the set of functions that, at times 
t1, ••• , tn, "get through the windows" I 1, ... , In and at other times have 
arbitrary values (Figure 24). 

Let 91(Rr), 911 (RT) and 91 iRr) be the smallest a-algebras corresponding 
respectively to the cylinder sets (11), (12) and (13). lt is clear that 

(14) 

As a matter of fact, all three of these a-algebras are the same. Moreover, we 
can give a complete description of the structure of their sets. 

Theorem 3. Let T be any uncountable set. Then 91(RT) = 911(RT) = 912(Rr), 
and every set A E 91(RT) has thefollowing structure: there are a countableset of 
points t 1 , t 2 , •.• of T and a Bore[ set B in 91(R "')such that 

A = {x: (x,,, X12 , •• • ) E B}. (15) 

PRooF. Let tff denote the collection of sets of the form (15) (for various ag­
gregates (t1, t 2 , •• • ) and Borel sets B in 91(R"')). lf A 1, A 2 , ••• E t! and the 
corresponding aggregates are T!1l = (t\1l, t~1 >, ••• ), T!2l = (t\2 >, t~2 >, .. . ), ... , 

f----1t-t-, ----lf--12--------- --+--. 
I I 

Figure 24 
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then the set r<ool = Uk r<kl can be taken as a basis, so that every A<il has a 
representation 

A; = {x: (x,,, x,2 , ••• ) ES;}, 

where S; is a set in one and the same u-algebra f14(R 00 ), and -r; E r<ool. 
Hence it follows that the system C is a u-algebra. Clearly this a-algebra 

contains all cylinder sets of the form (1) and, since f14 2(RT) is the smallest 
u-algebra containing these sets, and since we have (14), we obtain 

(16) 

Let us consider a set A from C, represented in the form (15). Fora given 
aggregate (t 1, t 2 , •.• ), the same reasoning as for the space (R 00 , f14(R 00 )) shows 
that A is an element of the u-algebra generated by the cylinder sets ( 11 ). But 
this u-algebra evidently belongs to the u-algebra f14(RT); together with (16), 
this established both conclusions of the theorem. 

Thus every Bore! set A in the u-algebra f14(RT) is determined by restrictions 
imposed on the functions x = (x1), t E T, on an at mostcountableset ofpoints 
t 1, t 2 , ..•. Hence it follows, in particular, that the sets 

A1 = {x: sup x1 < C for all t E [0, 1]}, 

A 2 = {x: x1 = 0 for at least one t E [0, 1]}, 

A 3 = {x: X 1 is continuous at a given point t 0 E [0, 1]}, 

which depend on the behavior ofthe function on an uncountable set ofpoints, 
cannot be Bore! sets. And indeed none ofthese three sets belongs to f14(RIO.tl). 

Let us establish this for A1• If A1 E f14(R 10• 11), then by our theorem there 
are a point (t?, t~, .. . ) and a set S 0 E f14(R 00 ) suchthat 

It is clear that the function Yr = C - 1 belongs to A 1, and consequently 
(Yr?• .. . ) E S 0. Now form the function 

{c- 1, t E (t?, t~, .. . ), 
Zr= 0 0 c + 1, t rf {tl, t2, .. . ). 

It is clear that 

and consequently the function z = (z1) belongs to the set {x: (x1?, ... } E S 0 }. 

Butat thesametime itisclearthat itdoesnot belongto the set {x: sup x1 < C}. 
This contradiction shows that A1 rf f14(R 10• 11). 
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Since the sets Al> A 2 and A3 are nonmeasurable with respect to the 
u-algebra aJ[R10•11) in the space of all functions x = (x,), t e [0, 1], it is 
natural to consider a smaller class of functions for which these sets are 
measurable. lt is intuitively clear that this will be the case if we take the 
intial space to be, for example, the space of continuous functions. 

6. Tbe measurable space (C, aJ(C)). Let T = [0, 1] and Iet C be the space of 
continuous functions x = (x,), 0 ~ t ~ 1. This is a metric space with the 
metric p(x, y) = SUPreT lx,- y,l. We introduce two u-algebras in C: 
aJ(C) is the u-algebra generated by the cylinder sets, and aJ0(C) is generated 
by the open sets (open with respect to the metric p(x, y)). Let us show that in 
fact these u-algebras are the same: aJ(C) = aJ0(C). 

Let B = {x: x10 < b} be a cylinder set.lt is easy to see that this set is open. 
Hence it follows that {x: x,, < bl> ... , x," < bn} e aJ0{C), and therefore 
aJ(C) s;; bi0(C). 

Conversely, consider a set B P = {y: y e S p(x0 )} where x0 is an element of C 
and Sp(x0 ) = {x e C: SUPreTix,- x~l < p} is an openball with center at 
x0 • Since the functions in C are continuous, 

BP = {y e C: y e Sp(x0 )} = {y e C: m~x IYr- x~l < P} 

= n {y E C: IYr"- X~ I < p} E aJ(C), (17) 

'" 
where tk are the rational points of [0, 1]. Therefore aJ0(C) s;; aJ(C). 

The following example is fundamental. 

7. Tbe measurable space (D, aJ(D)), where Dis the space offunctions x = (x,), 
t e [0, 1], that are continuous on the right (x, = x,+ for all t < 1) and have 
Iimits from the left (at every t > 0). 

Just as for C, we can introduce a metric d(x, y) on D suchthat the u-algebra 
aJ0(D) generated by the open sets will coincide with the u-algebra aJ(D) 
generated by the cylinder sets. This metric d(x, y), which was introduced 
by Skorohod, is defined as follows: 

d(x, y) = inf{e > 0:3 A. e A: sup lx,- YA<r> + sup it- A.(t)l ~ e}, (18) 

where Ais the set of strictly increasing functions A. = A.(t) that are continuous 
on [0, 1] and have A.(O) = 0, A.(l) = 1. 

8. Tbe measurable space <OreT n,, PlreT !F,). Along with the space 
(RT, aJ(RT)), which is the direct product ofT copies of the realline together 
with the system of Borel sets, probability theory also uses the measurable 
Space <llreT Q,, I®IreT fF1), Which is defined in the following way. 
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Let T be any set of indices and (00 !#'1) a measurable space, t E T. Let 
n = niE T nl' the set of functions w = ( Wr), t E T, such that Wr E nl for each 
t E T. 

The collection of cylinder sets 

f 1,, ... , 1"(B1 X · · · X Bn) = {w: W11 E B 1, ... , W 1" E Bn}, 

where B1, E !#'1,, is easily shown to be an algebra. The smallest a-algebra 
containing all these cylinder sets is denoted by PlceT !#'0 and the measurable 
space <0 ni> PI !#'1) is called the direct product of the measurable spaces 
(00 !#'1), t E T. 

9. PROBLEMS 

1. Let :14 1 and :142 be a-algebras of subsets of n. Are the following systems of sets a­
algebras? 

:11 1 n :142 = {A: A E 141 and A E :142}, 

:11 1 u :142 = {A: A E 141 or A E :142}. 

2. Let @ = {D~> D2 , •• • } be a countable decomposition of n and :11 = a(!?C). Are there 
also only countably many sets in :11? 

3. Show that 

:1l(R") ® :11(R) = :11(R"+ 1). 

4. Prove that the sets (b)-(f) (see Subsection 4) belong to :14(R 00). 

5. Prove that the sets A 2 and A 3 (see Subsection 5) do not belong to :14(RI0 • 11). 

6. Prove that the function (15) actually defines a metric. 

7. Prove that .1!'0(R") = :11(R"), n ~ 1, and :110(R 00) = .1l'(R 00). 

8. Let C = C[O, oo) be the space of continuous functions x = (x,) defined for t ;;::: 0. 
Show that with the metric 

p(x, y) = I r• min[ sup lx,- y,l, 1], 
n=l O.s:r.s:n 

x,yeC, 

this is a complete separable metric space and that the a-algebra :140(C) generated by 
the open sets coincides with the a-algebra :14(C) generated by the cylinder sets. 

§3. Methods of lntroducing Probability Measures 
on Measurable Spaces 

1. The measurable space (R, PJ(R)). Let P = P(A) be a probability measure 
defined on the Bore} subsets A of the realline. Take A = (- oo, x] and put 

F(x) = P(- oo, x], XER. (1) 
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This function has the following properties: 

(1) F(x) is nondecreasing; 
(2) F(- oo) = 0, F( + oo) = 1, where 

F(- oo) = lim F(x), F(+oo) = limF(x); 
x!- oo xf oo 

(3) F(x) is continuous on the right and has a Iimit on the left at each x E R. 

The first property is evident, and the other two follow from the continuity 
properties of probability measures. 

Definition 1. Every function F = F(x) satisfying conditions (1)-(3) is called 
a distributionfunction (on the realline R). 

Thus to every probability measure P on (R, BI(R)) there corresponds (by 
(1)) a distribution function. lt turnsout that the converse is also true. 

Theorem 1. Let F = F(x) be a distribution function on the realline R. There 
exists a unique probability measure P on (R, BI(R)) such that 

P(a, b] = F(b)- F(a) (2) 

for all a, b, - oo =::;; a < b < oo. 

PRooF. Let .91 be the algebra of the subsets A of R that are finite sums of 
disjoint intervals of the form (a, b]: 

n 

A = L (ak, bk]. 
k=1 

On these sets we define a set function P 0 by putting 

n 

Po(A) = L [F(bk)- F(ak)], Aed. (3) 
k=1 

This formula defines, evidently uniquely, a finitely additive set function on .91. 
Therefore if we show that this function is also countably additive on this 
algebra, the existence and uniqueness of the required measure P on BI(R) 
will follow immediately from a general result of measure theory (which we 
quote without proof). 

Caratbeodory's Theorem. Let Q be a space, .91 an algebra of its subsets, and 
91 = u(d) the smallest u-algebra containing .91. Let Jlo be a u-additive measure 
on (Q, A). Then there is a unique measure Jl on (Q, u(d)) which is an extension 
of Jlo, i.e. satisfies 

Jl(A) = Jlo(A), Aed. 
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We are now to show that P 0 is countably additive on d. By a theorem 
from §1 it is enough to show that P0 is continuous at 0, i.e. to verify that 

Let A 1, A 2 , ••• be a sequence ofsets from d with the property An! 0. Let 
us suppose first that the sets An belong to a closed interval [- N, N], N < oo. 
Since Ais the sum offinitely many intervals ofthe form (a, b] and since 

P0 (a', b] = F(b)- F(a')--+ F(b)- F(a) = P0 (a, b] 

as a' ! a, because F(x) is continuous on the right, we can find, for every An, 
a set Bn E d such that its closure [Bn] t;: An and 

where e is a preassigned positive number. 
By hypothesis, n An = 0 and therefore n [Bn] = 0. But the sets [BnJ 

are dosed, and therefore there isafinite n0 = n0(e) suchthat 

no n [BnJ = 0. (4) 
n=l 

(In fact, [ -N, N] is compact, and the collection ofsets {[ -N, N]\[BnJln?;l 
is an open covering of this compact set. By the Heine-Bore! theorem there 
isafinite subcovering: 

no 
U ([- N, N]\[Bn]) = [- N, N] 

n=l 

and therefore n:<;, 1 [Bn] = 0). 
Using(4)and theinclusionsAno t;: Ano-l s; .. · t;: At. weobtain 

Po(An0 ) = Po( Ano\Q Bk) + Po(C\ Bk) 

= Po( Ano\Q Bk) ~ Po(91 (Ak\Bk)) 

no no 

~ L Po(Ak\Bk) ~ L e · 2-k ~ e. 
k=l k=l 

Therefore P0(An)! 0, n--+ oo. 
We now abandon the assumption that An s; [ -N, N] for some N. Take 

an e > 0 and choose N so that P 0 [ -N, N] > 1 - e/2. Then, since 

we have 

An= An r. [ -N, N] +An r. [ -N, N], 

Po(An) = Po(An[ -N, N] + Po(An r. [ -N, N]) 

~ Po(An r. [ -N, N]) + e/2 
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and, applying the preceding reasoning (replacing An by An n [- N, N]), we 
find that P 0 (An n [-N, N]) :::; e/2 for suffi.ciently large n. Hence once again 
P 0(An) ! 0, n -+ oo. This completes the proof of the theorem. 

Thus there is a one-to-one correspondence between probability measures 
P on (R, PA(R)) and distribution functions F on the realline R. The measure 
P constructed from the function F is usually called the Lebesgue-Stieltjes 
probability measure corresponding to the distribution function F. 

The case when 

{
0, X< 0, 

F(x) = x, 0 :::; x :::; 1, 

1, X > 1. 

is particularly important. In this case the corresponding probability measure 
(denoted by A.) is Lebesgue measure on [0, 1]. Clearly A.(a, b] = b- a. In 
other words, the Lebesgue measure of(a, b] (as weil as ofany ofthe intervals 
(a, b), [a, b] or [a, b)) is simply its length b - a. 

Let 

PA([O, 1]) = {A n [0, 1]: A E PA(R)} 

be the collection of Borel subsets of [0, 1]. lt is often necessary to consider, 
besides these sets, the Lebesgue measurable subsets of [0, 1]. We say that a 
set A s;;; [0, 1] belongs to ~([0, 1)] if there are Borel sets A and B suchthat 
A s;;; A s;;; Band A.(B\A) = O.It is easily verified that ~([0, 1]) is a a-algebra. 
lt is known as the system of Lebesgue measurable subsets of [0, 1]. Clearly 
PA([O, 1]) s;;; ~([0, 1]). 

The measure A., defined so far only for sets in PA([O, 1 ]), extends in a 
natural way to the system ~([0, 1]) ofLebesgue measurable sets. Specifically, 
if Ae~([O, 1]) and A s;;; A s;;; B, where A and Bei4([0, 1]) and A.(B\A) = 0, 
we define A:(A) = A.(A). The set function .A: = A:(A), A E g;j([O, 1]), is easily 
seen to be a probability measure on ([0, 1], ~([0, 1])). lt is usually called 
Lebesgue measure (on the system of Lebesgue-measurable sets). 

Remark. This process of completing ( or extending) a measure can be applied, 
and is useful, in other situations. For example, Iet (Q, $', P) be a probability 
space. Let ffP be the collection of all the subsets A of n for which there are 
sets B1 and B2 of $'such that B1 s;;; A s;;; B2 and P(B2 \B1) = Ö. The prob­
ability measure can be defined for sets A E /FP in a natural way (by P(A) = 

P{B 1)). The resulting probability space is the completion of (Q, $', P) with 
respect to P. 

A probability measure suchthat §"P = $' is called complete, and the cor­
responding space (Q, fi', P) is a complete probability space. 

The correspondence between probability measures P and distribution 
functions F established by the equation P(a, b] = F(b) - F(a) makes it 
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possible to construct various probability measures by obtaining the cor­
responding distribution functions. 

Discrete measures are measures P for which the corresponding distri­
butions F = F(x) are piecewise constant (Figure 25), changing their values 
at the points x 1, x 2 , ••• (ßF(x;) > 0, where ßF(x) = F(x)- F(x- ). In 
this case the measure is concentrated at the points x 1, x2 , ••• : 

The set of numbers (p 1, p2 , • .. ), where Pk = P( {xk}), is called a discrete 
probability distribution and the corresponding distribution function F = F(x) 
is called discrete. 

We present a table of the commonest types of discrete probability distri­
bution, with their names. 

Table 1 

Distribution 

Discrete uniform 
Bernoulli 
Binomial 

Poisson 
Geometrie 
Negative binomial 

Probabilities Pt 

1/N, k = 1, 2, ... , N 
P1 = p, Po= q 
C!/q•-t, k = 0, 1, ... , n 

e-k/k!, k = 0, l, .. . 
qt- 1p, k=O,l, .. . 
q: ~p"ql-', k = r, r + l, ... 

Parameters 

N = 1,2, ... 
0 ~ p ~ 1, q = 1 - p 
0 ~ p ~ l, q = 1 - p, 

n = l, 2, ... 
...1.>0 
0 ~ p ~ l, q = 1 - p 
0 ~ p ~ 1, q = 1 - p, 

r = 1, 2, ... 

Absolutely continuous measures. These are measures for which the corres­
ponding distribution functions are such that 

F(x) = f
00

f(t) dt, (5) 
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where I = f(t) arenonnegative functions and the integral is at first taken in 
the Riemann sense, but later (see §6) in that of Lebesgue. 

The function f = f(x), x eR, is the density of the distribution function 
F = F(x) ( or thc density of thc probability distribution, or simply thc dcnsity) 
and F = F(x) is called absolutely continuous. 

lt is clear that every nonnegative f = f(x) that is Riemann integrable and 
such that J~ a:J(x) dx = 1 defines a distribution function by (5). Table 2 
presents some important examples of various kinds of densities f = f(x) 
with their names and parameters (a density f(x) is taken tobe zero for values 
of x not listed in the table). 

Table2 

Distribution 

Uniform on [a, b] 

Normal or Gaussian 

Gamma 

Beta 

Exponential (gamma 
with rx = 1, ß = 1/1) 

Bilateral exponential 

Chi-squared, x.2 

(gamma with a 
rx = n/2, ß = 2) 

Student, t 

F 

Cauchy 

Density 

1/(b - a), a ::;; x ::;; b 

(2na2)-1i2e-<x-m)2/(2"2)' x ER 

x«-1e-xlfl 

----, x~O 
r(rx)ß" 

x'- 1(1 - x)'- 1 
_ ___:_ _ ___:__, 0 < X < 1 

B(r, s) - -

r(!{n + 1)) ( x2)-(n+1)/2 
(nn)l!2r(n/2) 1 + --; ' x eR 

(mfnY"'2 xmt2-1 

B(m/2, n/2) (1 + mx/n)<m+n)/2 

(J 
2 2 , xeR 

n(x + (J ) 

Parameters 

a,beR; a<b 

meR,a>O 

rx>O,ß>O 

r>O,s>O 

1>0 

1>0 

n = 1, 2, ... 

n =I, 2, ... 

m, n = 1,2, ... 

8>0 

Singular measures. These are measures whose distribution functions are 
continuous but have all their points of increases on sets of zero Lebesgue 
measure. We do not discuss this case in detail; we merely give an example of 
such a function. 
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We consider the interval [0, 1] and construct F(x) by the following pro­
cedure originated by Cantor. 

We divide [0, 1] into thirds and put (Figure 26) 
1 XE(!, i), z, 
1 XE(~,~), 4· 

F2(x) = 3 XE(~,!), 4· 
0, X= 0, 
1, x=1 

defining it in the intermediate intervals by linear interpolation. 
Then we divide each of the intervals [0, !J and ß, 1] into three parts and 

define the function (Figure 27) with its values at other points determined by 
linear interpolation. 

X 

Figure 27 
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Continuing this process, we construct a sequence of functions Fn(x), 
n = 1, 2, ... , which converges to a nondecreasing continuous function F(x) 
(the Cantor function), whose points of increase (x is a point of increase of F(x) 
if F(x + e) - F(x - e) > 0 for every e > 0) form a set of Lebesgue measure 
zero. In fact, it is clear from the construction of F(x) that the totallength of 
the intervals (!, ~), (~. ~). (~. !), ... on which the function is constant is 

1 2 4 1 00 (2)" 3 + 9 + 27 + ... = 3 n~O 3 = 1. (6) 

Let ..!V be the set of points of increase of the Cantor function F(x). 1t 
follows from (6) that A.(.%) = 0. At the same time, if Jl. is the measure cor­
responding to the Cantor function F(x), we have JJ.(.%) = 1. (We then say 
that the measure is singular with respect to Lebesgue measure A..) 

Without any further discussion of possible types of distribution functions, 
we merely observe that in fact the three typesthat have been mentioned cover 
all possibilities. More precisely, every distribution function can be represented 
in the form Pt F t + p2 F 2 + p3 F 3 , where F t is discrete, F 2 is absolutely 
continuous, and F3 is singular, and P; arenonnegative numbers, Pt + p2 + 
P3 = 1. 

2. Theorem 1 establishes a one-to-one correspondence between probability 
measures on (R, :JB(R)) and distribution functions on R. An analysis of the 
proof of the theorem shows that in fact a stronger theorem is true, one that in 
particular Iets us introduce Lebesgue measure on the realline. 

Let Jl. be a a-finite measure on (Q, d), where d is an algebra of subsets of 
n. lt turns out that the conclusion of Caratheodory's theorem on the ex­
tension of a measure and an algebra d to a minimal a-algebra a(d) remains 
valid with a a-finite measure; this makes it possible to generalize Theorem 1. 

A Lebesgue-Stieltjes measure on (R, :JB(R)) is a (countably additive) 
measure Jl. such that the measure JJ.(/) of every bounded interval I is finite. 
A generalized distribution ji.mction on the real line R is a nondecreasing 
function G = G(x ), with values on (- oo, oo ), that is continuous on the right. 

Theorem 1 can be generalized to the statement that the formula 

JJ.(a, b] = G(b) - G(a), a < b, 

again establishes a one-to-one correspondence between Lebesgue-Stieltjes 
measures Jl. and generalized distribution functions G. 

In fact, if G( + oo) - G(- oo) < oo, the proof of Theorem 1 can be taken 
over without any change, since this case reduces to the case when G( + oo) -
G( - oo) = 1 and G( - oo) = 0. 

Now Iet G( + oo) - G(- oo) = oo. Put 

{
G(x), lxl :::;; n, 

Gn(x) = G(n) x = n, 

G( -n), x = -n. 
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On the algebra d let us define a finitely additive measure Jl.o such that 
Jl.o(a, b] = G(b) - G(a), and let Jl.n be the finitely additive measure previously 
constructed (by Theorem 1) from Gn(x). 

Evidently Jl.n j Jl.o on d. Now let A1, A 2 , ••• be disjoint sets in d and 
A = I An e d. Then (Problem 6 of §1) 

CO 

Jl.o(A) ~ I Jl.o(An). 
n=l 

If I:'= 1 Jl.o(An) = oo then Jl.o(A) = In";. 1 Jl.o(An). Let us suppose that 
I Jl.o(An) < oo. Then 

CO 

Jl.o(A) = lim Jl.n(A) = lim I Jl.n(Ak). 
n n k= 1 

By hypothesis, I Jl.o(An) < oo. Therefore 

0 ~ Jl.o(A)- kt/o(Ak) = Ii!" Lt1 (JJ.n(Ak)- Jl.o(Ak))] ~ 0, 

since Jl.n ~ Jl.o . 
Thus a a-finite finitely additive measure Jl.o is countably additive on d, 

and therefore (by Caratheodory's theorem) it can be extended to a countably 
additive measure Jl. on a{d). 

The case G(x) = x is particularly important. The measure A. corresponding 
to this generalized distribution function is Lebesgue measure on (R, ffi(R)). 
As for the interval [0, 1] of the realline, we can define the system 9i(R) by 
writing A e 9i(R) if there are Borel sets A and B such that A s;;; A s;;; B, 
A(B\A) = 0. Then Lebesgue measure A: on ffi(R) is defined by I(A) = A(A) 
if A s;;; A s;;; B, A. e 9i(R) and A(B\A) = 0. 

3. The measurable space (R", ffi(R"). Let us suppose, as for the realline, that 
P is a probability measure on (R", ffi(R"). 

Let us write 

or, in a more compact form, 

Fn(x) = P(- 00, x], 

where x = (x1, •.• , Xn), (- oo, x] = (- oo, x 1] x · · · x (- oo, xJ. 
Let us introduce the difference operator L\a,, b,: R" -+ R, defined by the 

formula 

L\a,,b,Fn(Xl, ... , Xn) = Fn(Xl> ... , Xi-1• b;, X;+ 1 ... ) 

- Fn(Xl, ... 'Xi-1• a;, X;+ 1 .•. ) 
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where a; ~ b;. A simple calculation shows that 

~a1 b 1 • • • ~anbnFn{xl · · · Xn) = P(a, b], (7) 

where (a, b] = (a 1, b1] x · · · x (an, bnJ. Hence it is clear, in particular, that 
(in contrast to the one-dimensional case) P(a, b] is in generat not equal to 
Fn(b) - Fn(a). 

Since P(a, b] ~ 0, it follows from (7) that 

(8) 

for arbitrary a = (al, ... 'an), b = (bl, ... 'bn). 
It also follows from the continuity of P that Fn(x 1, ••• , xn) is continuous 

on the right with respect to the variables collectively, i.e. if x<kJ ! x, x<kJ = 

(x\kl, ... , x~kl), then 

It is also clear that 

and 

k-+ 00. 

Fn(+oo, ... , +oo) = 1 

lim Fn(x1, ... , Xn) = 0, 
x!Y 

if at least one coordinate öf y is - oo. 

(9) 

(10) 

(11) 

Definition 2. An n-dimensional distribution function (on R") is a function 
F = F(x 1 , ••. , xn) with properties (8)-(11). 

The following result can be established by the same reasoning as in 
Theorem 1. 

Theorem 2. Let F = Fn(x 1, •.• , xn) be a distributionfunction on R". Then there 
is a unique probability measure P on (R", BI(R")) suchthat 

(12) 

Here are some examples of n-dimensional distribution functions. 
Let F 1, .•. , F" be one-dimensional distribution functions ( on R) and 

It is clear that this function is continuous on the right and satisfies (10) and 
(11). lt is also easy to verify that 

~albl ... ~anbJn(Xl, ... 'Xn) = n [Fk(bk)- Fk(ak)] ~ 0. 

Consequently F n(X 1' ... ' Xn) is a distribution function. 
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The case when 

is particularly important. In this case 

xk < 0, 
0:::;; xk:::;; 1, 

xk > 1 

161 

The probability measure corresponding to this n-dimensional distribution 
function is n-dimensional Lebesgue measure on [0, 1]". 

Many n-dimensional distribution functions appear in the form 

FnCx1, · · ·, Xn) = f~ · · · f~ J"(t1, ... , tn) dt1 · · · dtn, 

where fn(t 1 , ••• , tn) isanonnegative function suchthat 

f_'Xloo · · · f_00
00 j"(t1, ... , tn) dt1 · · · dtn = 1, 

and the integrals are Riemann (more generally, Lebesgue) integrals. The 
function f = f"(t 1, ••• , tn) is called the density of the n-dimensional distri­
bution function, the density of the n-dimensional probability distribution, 
or simply an n-dimensional density. 

When n = 1, the function 

!( ) = _1_ -(x-m)2j(2a2) x ;;.-e , 
r:r....; 2n 

xeR, 

with u > 0 is the density of the (nondegenerate) Gaussian or normal distribu­
tion. There are natural analogs of this density when n > 1. 

Let IR = llriill be a nonnegative definite symmetric n x n matrix: 
n 

L: riiA.iA.i ~ 0, A; eR, i = 1, ... , n, 
i,j= 1 

When IR is a positive definite matrix, IIR I = det IR > 0 and consequently there 
is an inverse matrix A = llaiiii-

_IAI1/2 1 
fn(x1, ... , Xn)- (2n)"12 exp{ -2 L aij(x; - m;)(xi- m;)}, (13) 

where m; eR, i = 1, ... , n, has the property that its (Riemann) integral over 
the whole space equals 1 (this will be proved in §13) and therefore, smce it is 
also positive, it is a density. 

This function is the density of the n-dimensional (nondegenerate) Giaussian 
or normal distribution (with vector mean m = (m1, •.• , mn) and covariance 
matrix IR = A- 1 ). 
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Figure 28. Density of the two-dimensional Gaussian distribution. 

When n = 2 the density f 2{x1, x 2) can be put in the form 

1 

_ 2 (xl - m1)(x2 - m2) (x2 - m2)2]} 
p + 2 ' a 1a 2 a2 

(14) 

where a; > 0, IPI < 1. {The meanings ofthe parameters m;, a; and p will be 
explained in §8.) 

Figure 28 indicates the form of the two-dimensional Gaussian density. 

Remark. As in the case n = 1, Theorem 2 can be generalized to (similarly 
defined) Lebesgue-Stieltjes measures on (R", ~(R")) and generalized 
distribution functions on R". When the generalized distribution function 
Gn{x1, ... , x.,) is x1 · · · xn, the corresponding measure is Lebesgue measure 
on the Borel sets of R". lt clearly satisfies 

n 

A(a, b) = n (b;- a;), 
i= 1 

i.e. the Lebesgue measure of the "reetangle" 

(a, b] = (a 1, b1] X • • • X (an, bn] 

is its "content." 

4. The measurable space (R"", ~(R"")). For the spaces R", n ~ 1, the proba­
ability measures were constructed in the following way: first for elementary 
sets (rectangies (a, b]), then, in a natural way, for sets A = L (a;, b;], and 
finally, by using Caratheodory'.s theorem, for sets in ~(R"). 

A similar construction for probability measures also works for the space 
(R"", ~(R""}). 
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Let 

BE fJl(R"), 

denote a cylinder set in R"' with base BE fJl(R"). We see at once that it is 
natural to take the cylinder sets as elementary sets in R"', with their prob­
abilities defined by the probability measure on the sets of fJl(R "'). 

Let P be a probability measure on (R"', fJl(R"')). For n = 1, 2, ... , we 
take 

BE fJl(R"). (15) 

The sequence of probability measures P 1, P 2 , ••• defined respectively on 
(R, fJl(R)), (R 2, fJl(R 2)), •.• , has the following evident consistency property: 
for n = 1, 2, ... and BE fJl(W), 

(16) 

lt is noteworthy that the converse also holds. 

Theorem 3 (Kolmogorov's Theorem on the Extension of Measures in 
(R"', fJl(R"'))). Let Pt> P 2 , .•• be a sequence of probability measures on 
(R, fJl(R)), (R 2 , fJl(R 2 )), • •• , possessing the consistency property (16). Then 
there is a unique probability measure P on (R"', fJl(R"')) suchthat 

BE fJl(R"). (17) 

for n = 1, 2, .... 

PRooF. Let B" E fJl(R") and Iet J,.(B") be the cylinder with base B". We assign 
the measure P(J,.(B")) to this cylinder by taking P(J,.(B")) = P,.(B"). 

Let us show that, in virtue of the consistency condition, this definition is 
consistent, i.e. the value of P(J,.(B")) is independent of the representation of 
the set J,.(B"). In fact, Iet the same cylinder be represented in two way: 

J,.(B") = J,.+k(B"+k). 

It follows that, if (xt> ... , x,.+k) E R"+k, we have 

and therefore, by (16) and (18), 

P,.(B") = P,.+ 1((x1, ••• , x,.+ 1):(x1, .•• , x,.) E B") 
= ··· = P,.+k((x 1, .•. ,x,.+k):(x1, .•. ,x,.)EB") 
= pn+k(Bn+k). 

(18) 

Let d(R "') denote the collection of all cylinder sets B" = J ,.(B"), B" EfJl(R"), 
n = 1, 2, .... 
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Now letn h •... " '~" be disjoint,sets in d.(R 00). We may suppose without loss 
of geneniliWttbat~i = J~(B(), i -= 1, ... , k, for some n, where B~, ... , B~ are 
disjoint·,sets•in ilqR'!).Then 

i.e. the set flllUrtion P is'finitely:adtlitive on the algebra d(R 00). 

Let us -show ,timt !P ois "continuous: at zero," i.e. if the sequence of sets 
ßn l 0, m --+ oo, then ·p(ßn) --+ 0, n --+ oo. Suppose the contrary, i.e. let 
lim R~.i) = ,ß >\0. 'W..e -may suppose without loss of generality that {Bn} 
has thelfmm 

We,use-thetfdllow~g:property:-ofprobability measures Pn on (Rn, PA(Rn)) 
(see Problem~):Jf~.,ePA(Rn),foLa:given fJ > 0 we can find a compact set 
An E PA(:R"}such ftutt An !;;;;; B,. and 

Pn(Bn\An)-5. fJ/2n+ 1• 

Therefore • if 

we hav.e 

Formttheseti.C.,= ru= 1 A"r.and let Cnbesuch that 

1Cn = {x: (x~o ... , xn) E Cn}. 

Then, sincethe·sets tS.,:decrease, we obtain 

n n 

:fl~ \C .. ) 5. L P(B .. \.ak> 5. L P(ßk \Ak) 5. fJ/2. 
k= 1 k= 1 

Butiby::assumption;limn P(ß .. ) = {J > 0, and therefore limn P(C .. ) ;;::: b/2 > 0. 
Let us·shew .thaUhis.aontradicts the.condition Cn !0. 

Let ..!..- < < " <t "(n) _ ( (n) < (n) ) • A Th ( (n) (n)) C 
.us~ a;p<om x - x 1 , x2 , ••• 1n L<n· en x 1 , •• • ,Xn E n 

for n~ 1. 
Let (n11»!be.a subse.quence of (n) suchthat x~n 1 )--+ xY, where 4 is a point 

in C11• r(Such:-a::BBguence exists since .ii"1 e ·C 1 ;and C 1 is compact.) Then select 
a subseqtmnaei~~~·of(n1) suchthat (x~21, x~"21)--+ (xY, xg) e C2 • Similarly Iet 
( <n~cl <·!~~~eh <(< 0 0 ) • C F' 11 " h d' I x 1 , ... , Xk "-+ x 1, ... , xk e k· ma y 1orm t e tagona sequence 
(mk),wheremk.is the kth.term of (nk). Then x!m")-+ x? as mk-+ oo far i = 1, 2, ... ; 
and{.i~,-4, ..... ~) E Cn<forn = 1, 2, ..... ,Whichevidentlycontradictstheassump­
tion·l:hat·C.,!0, n-+ oo. This:co~ the proofofthe theorem. 



§30 Methods of lntroducing Probability Measures on Measurable Sp!lCes·> 165 

Remark. In the present case, the:space R 00 is-a.countaöle:prmj:liGtwflines, 
R 00 = R x R x 0 0 • • It is natural to ask, whether11ieorenr3: r.emafus.-true if 
(R 00 , 31(R 00)) is replaced by a direct prodiwt·of,measurabi&spm:m:.I{O;, F;), 
i = 1, 2, .... 

We may notice that in the preceding proof the only!!'opo~lproperty 
of the realline that was used was that every set'in rJI(R") contains-:acompact 
subset whose probability measure is arbitrarily.o close: to tbe:. protJability 
measure ofthe whole set. It is known~however,.thatthiSis;apro~ttonly 
of spaces (R", rJI(R"), but also of arbitrary comptete sepamble.:IDBtlliücspaces 
with 0'-a}gebras generated by the Open Sets. 

Consequently Theorem 3 remains validif:we suppose.:töat:LRI, Pz; ... is a 
sequence of consistent probability measures om(011 Ft~;, 

where (0;, ~) are complete separable metric spaces- with cr..aipcas §'; 
generated by open sets, and (R 00 , 31(R00)) ~s replaced.by.' 

(01 X 02 X • • ·; -~ <8) '§;i:® '· · ·)r. 

In §9 (Theorem 2) it will be shown that tlteresulttof'TIHeoremJ·remains 
valid for arbitrary measurable spaces (0;, §';) if:the measures:.:p;,',are con­
centrated in a particular way. However, Theorem:3 ma~,fail;:imtHaeg_eneral 
case (without any hypotheses on the.·topol@giCal !nature: ofl't~nmmrurable 
spaces or on the structure of the family ofmeasures { r,;n)lo'ffiiiiis-shown by 
the following example. 

Let us consider the space 0 = (O;J], which is evidentlynot;aomplete; and 
construct a sequence 9'1 s 9'2 s · · · of a~lgebras in.tlm;f'oilbwin&;W8J.i For 
n = 1, 2, ... , Iet 

{1, 0 < w <-.1/n, 
({J,.(w) = 0,' 1/n ::;; w:::::;;:-;1, 

Cß,. = {A e-G! A!=,{w: qJ,.(w) e B}; lß:crJI(R)} 

and Iet §,; = a{Cß ~> ... , Cß,.} be the smallest" u"al&lfbra cont~the sets 
Cß1, ... , Cß,.. ClearlyF1 s §'2 s ..... Uet1 ~ =O'(LL~)' be the,; smallest 
a-algebra containing all the §,;: 0 Consider· the measura.b.kt. space<:. (0, §,;) 
and define a probability measure P,. on it as follows;o 

where B" = (JI(R"). · It is easy to see that the:family {P,.},. is··comri8tent: if 
A e §,; then P,.+ 1 (A) = P"(A). However; we.claimtbat<therejiuurJ!mbability 
measure P on (0, §') such that its restrit:tion PI~ (i.ß;;. th~measure P 
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considered only on sets in~) coincides with Pn for n = 1, 2, .... In fact, let 
us suppose that such a probability measure P exists. Then 

P{ro:w:1{c.i>) = · · · = cpn(ro) = 1} = Pn{ro: cp1(ro) = · · · = cpn(ro) = 1} = 1 

(19) 
for n =: 1;2, .... But 

{ro: cp1(ro) = · · · = cpn(ro) = 1} = (0, 1/n)! 0, 
which contradicts (19) and the hypothesis of countable additivity (and there­
fore continuity at the "zero" 0) ofthe set function P. 

We now give an example of a probability measure on (R 00, Pi(R 00)). Let 
F 1 (x), F 2(x), ... be a sequence of one-dimensional distribution functions. 
Define the functions G(x) = F 1(x), G2(x1, x 2 ) = F 1(.x1)F ix 2 ), ••• , and denote 
the corresponding probability measures on (R, Pi(R)), (R2 , Pi(R2)), ••• by 
P 1, P 2 , •••• Then it follows from Theorem 3 that there is a measure P on 
(R 00 , Pi(R 00)) suchthat 

P{x E R 00 : (x1, ... , Xn) E B} = Pn(B), BE Pi(R") 

and, in particular, 

P{xER00 :X1 ::;; ah···•Xn::;; an}= F 1(a1)···Fn(aJ. 

Let us take Fi(x) to be a Bernoulli distribution, 

{
0, X< 0, 

F 1(x) = q, 0 ::;; x < 1, 
1, X~ 1. 

Then we can say that there is a probability measure P on the space n of 
sequencesofnumbersx = (xto x 2 , ••• ),xi = Oor1,togetherwiththea-algebra 
of its Borel subsets, such that 

P{x . X _ a X _ a } _ ..I:atqn-I:at 
• 1 - 1• ••• ' n - n - r . 

This is precisely the result that was not available in the first chapter for 
stating the law of large numbers in the form (1.5.8). 

5. The measurable space (RT, Pi(RT)). Let T be a set ofindices t e T and R, a 
realline corresponding to the index t. We consider a finite unordered set 
-r = [t 1o ••• ,tnJ of distinct indices th ti e T, n ~ 1, and let P. be a probability 
measure on (R•, Pi(R•)), where R• = R, 1 x · · · x R,". 

We say that the family {P.} ofprobability measures, where -r runs through 
all finite unordered sets, is consistent if, for all sets r = [t1, ... , tnJ and 
a = [sto ... , sk] suchthat a s;;: r we have 

P.,{(x. 1 , ••• , x.k):(x.1 , ••• , x.k) e B} = P.{(x11 , ••• , x,J:(x.1, ••• , x.,.) e B} 

(20) 

for every B e Pi(R"). 
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Theorem 4 (Kolmogorov's Theorem on the Extension of Measures in 
(Rr, PA(Rr))). Let {P,} be a consistent family of probability measures on 
(R', PA(R')). Then there is a unique probability measure P on (Rr, PA(Rr)) such 
that 

P(J.(B)) = P.(B) (21) 

for all unordered sets -r = [t 1, ••• , tn] of different indices t; E T, BE PA(R') and 
J.(B) = {xERT:(x11 , ••• ,x1JEB}. 

PROOF. Let the set BE PA(Rr). By the theorem of §2 there is an at most count­
ableset S = {s1,s2 , .•. } s T suchthat B = {x:(x 51 ,X52 , ••• )EB}, where 
B E P4(R5), R5 = Rs, x R52 x · · · . In other words, B = J 5(B) is a cylinder 
set with base BE P4(R5 ). 

We can define a set function P on such cylinder sets by putting 

P(Js(B)) = P5(B), (22) 

where Ps is the probability measure whose existence is guaranteed by 
Theorem 3. We claim that Pis in fact the measure whose existence is asserted 
in the theorem. To establish this we first verify that the definition (22) is 
consistent, i.e. that it Ieads to a unique value of P(B) for all possible repre­
sentations of B; and second, that this set function is countably additive. 

Let B = J 5 ,(B1) and B = J 5 ,(B2). It is clear that then B = ..Fs,us,(B3) 

with some B 3 E P4(R5 • us,); therefore it is enough to show that if S s S' 
and B E P4(R5), then P s·(B') = P 5(B), where 

B' = {(X5•1 ,Xs2•···):(X51 ,X52 , ••• )EB} 

with S' = {s'1, s~, .. . }, S = {st. s2 , ... }. But by the assumed consistency of 
(20) this equation follows immediately from Theorem 3. This establishes that 
the value of P(B) is independent of the representation of B. 

To verify the countable additivity ofP, Iet us suppose that {Bn} is a sequence 
of pairwise disjoint sets in PA(Rr). Then there is an at most countable set 
S S T such that Bn = J 5(Bn) for all n ~ 1, where Bn E P4(R5 ). Since Ps 
is a probability measure, we have 

P(L Bn) = P(L ..Fs(Bn)) = Ps(L Bn) = L Ps(Bn) 
= L P(/ s(Bn)) = L P(Bn). 

Finally, property (21) follows immediately from the way in which P was 
constructed. 

This completes the proof. 

Remark 1. We emphasize that T is any set of indices. Hence, by the remark 
after Theorem 3, the present theorem remains valid if we replace the real 
lines R, by arbitrary complete separable metric spaces Q, (with u-algebras 
generated by open sets). 
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Remark 2. The original probability measures {P,} were assumed defined 
on unordered sets -r = [th ... , tn] of different indices. It is also possible to 
start from a family of probability measures {P,} where -r runs through all 
ordered sets -r = (t1, ... , tn) of different indices. In this case, in order to have 
Theorem 4 hold we have to adjoin to (20) a further consistency condition: 

(23) 

where (i, ... , in) is an arbitrary permutation of (1, ... , n) and A,, e BI(R,,). As 
a necessary condition for the existence of P this follows from (21) (with 
P1,1, ••• , 1iB) replaced by P(rt, ... ,tnl(B)). 

From now on we shall assume that the sets -r under consideration are 
unordered. lf T is a subset of the realline (or some completely ordered set), 
we may assume without loss of generality that the set -r = [t 1, ... , tn] 
satisfies t 1 < t2 < · · · < tn. Consequently it is enough to define "finite­
dimensional" probabilities only for sets -r = [t 1, ... , tnJ for which t 1 < 
t2 < • • • < tn. 

Now consider the case T = [0, oo ). Then RT is the space of all real func­
tions x = (x,),~o· A fundamental example of a probability measure on 
(RIO, oo>, 91(RI0 • oo>)) is Wiener measure, constructed as follows. 

Consider the family {qJ1(ylx)},<?: 0 of Gaussian densities (as functions of y 
for fixed x): 

1 qJ,(ylx) = -- e-<y-x)>f2r, 

fot 
yeR, 

and for each -r = [t1, ... , tnJ, t 1 < t2 < · · · < tn, and each set 

B = I1 X • • • X In, 

construct the measure P,(B) according to the formula 

P,(/1 X "·X In) 

= f "' r (/J, 1(atl0)qJiz-lt(a21 a1)"' (/Jtn-ln-l(anl Qn-1) da1 '" dan (24) J11 Jln 
(integration in the Riemann sense). Now we define the set function P for each 
cylinder set .1'11 ... 1"(/ 1 x .. · x In) = {x E RT: X 11 EI 1, ... , x," EIn} by taking 

P(.J',t ... tn(/1 X ... X In))= p[tt .. ·ln)(/1 X ... X In). 

The intuitive meaning of this method of assigning a measure to the cylinder 
set .1'11 ... 1"(/ 1 x · · · x In) is as follows. 

The set .1'11 ... 1JI 1 x · · · x In) is the set of functions that at times t h ... , tn 
pass through the"windows" I 1 , ... , In(seeFigure 24in§2). Weshallinterpret 
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<p1k- 1k_ 1(adak_ 1 ) as the probability that a particle, starting at ak- 1 at time 
tk - tk_ 1, arrives in a neighborhood of ak. Then the product of densities that 
appears in (24) describes a certain independence of the increments of the 
displacements of the moving "particle" in the time intervals 

The family of measures {P,} constructed in this way is easily seen to be 
consistent, and therefore can be extended to a measure on (RIO, ool, f!l(RI0 • ool)). 
The measure so obtained plays an important roJe in probability theory. lt 
was introduced by N. Wiener and is known as Wiener measure. 

6. PROBLEMS 

1. Let F(x) = P(- oo, x]. Verify the following forroulas: 

P(a, b] = F(b) - F(a), 

P[a, b] = F(b)- F(a- ), 

P(a, b) = F(b-)- F(a), 

P[a, b) = F(b-)- F(a- ), 

P{x} = F(x)- F(x- ), 

where F(x-) = liro1 1 x F(y). 

2. Verify (7). 

3. Prove Theorem 2. 

4. Show that a distribution function F = F(x) on R has at roost a countable set of 
points of discontinuity. Does a corresponding result hold for distribution functions 
on R"'! 

5. Show that each of the functions 

G(x, y) = {
1, 

0, 
x+y~O, 

x+y<O, 

G(x, y) = [x + y], the integral part of x + y, 

is continuous on the right, and continuous in each arguroent, but is not a (generalized) 
distribution function on R 2 • 

6. Let 11 be the Lebesgue-Stieltjes roeasure generated by a continuous distribution 
function. Show that ifthe set Ais at roost countable, then JJ.(A) = 0. 

7. Let c be the cardinal nurober of the continuuro. Show that the cardinal nurober ofthe 
collection of Bore! sets in R" is c, whereas that of the collection of Lebesgue roeasur­
able sets is 2<. 

8. Let (Q, ~ P) be a probability space and d an algebra of subsets of n such that 
a(d) = :F. Using the principle of appropriate sets, prove that for every e > 0 and 
B e § there is a set A e d such that 

P(A b.B)::;; e. 
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9. Let P be a probability measure on (R", &ii(R")). Using Problem 8, show that, for 
every e > 0 and B e &ii(R"), there is a compact subset A of &ii(R") such that A s;;; B 
and 

P(B\A) ~ e. 

(This was used in the proof ofTheorem 1.) 

10. Verify the consistency ofthe measure defined by (21). 

§4. Random Variables. I 

1. Let (0, §) be a measurable space and let (R, PA(R)) be the realline with 
the system PA(R) of Bore! sets. 

Definition 1. Areal function ~ = ~(w) defined on (0, F) is an §"-measurable 
function, or a random variable, if 

{w:~(w)eB}e§ 

for every B e PA(R); or, equivalently, if the inverse image 

~- 1 (B) = {w: ~(w) E B} 

is a measurable set in 0. 

(1) 

When (0, §) = (R", PA(R")), the PA(R")-measurable functions are called 
Bore[ functions. 

The simplest example of a random variable is the indicator IA(w) of an 
arbitrary (measurable) set A e §. 

A random variable ~ that has a representation 

00 

~(w) = L x;IA,(w), (2) 
i= 1 

where L Ai = 0, Ai e §, is called discrete. If the sum in (2) is finite, the 
random variable is called simple. 

With the same interpretation as in §4 of Chapter I, we may say that a 
random variable is a numerical property of an experiment, with a value 
depending on "chance." Here the requirement (1) of measurability is funda­
mental, for the following reason. If a probability measure P is defined on 
(0, §), it then makes sense to speak ofthe probability ofthe event {~(w) e B} 
that the value of the random variable belongs to a Bore! set B. 

We introduce the following definitions. 

Definition 2. A probability measure P ~ on (R, PA(R)) with 

P~(B) = P{w: ~(w) e B}, BE PA(R), 

is called the probability distribution of ~ on (R, PA(R)). 
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Definition 3. The function 

F~(x) = P(w: ~(w) ~ x}, 

is called the distribution function of ~. 

171 

XER, 

Fora discrete random variable the measure P~ is concentrated on an at 
mostcountableset and can be represented in the form 

P~(B) = I p(xk), (3) 
{k:XkEB) 

wherep(xk) = P{~ = xk} = M~(xk). 
The converse is evidently true: If P ~ is represented in the form (3) then ~ 

is a discrete random variable. 
A random variable ~ is called continuous if its distribution function F ~(x) 

is continuous for x E R. 
A random variable~ is called absolutely continuous ifthere isanonnegative 

function f = Nx), called its density, suchthat 

F~(x) = f!~(y) dy, XER, (4) 

(the integral can be taken in the Riemann sense, or more generally in that of 
Lebesgue; see §6 below). 

2. To establish that a function ~ = ~(w) is a random variable, we have to 
verify property (1) for all sets BE !F. The following Iemma shows that the 
class of such "test" sets can be considerably narrowed. 

Lemma 1. Let 8 be a system of setssuch that u(G) = 91(R). A necessary and 
sufficient condition that a function ~ = ~(w) is !F-measurable isthat 

{w: ~(w) E E} E!F (5) 

for allE E 8. 

PRooF. The necessity is evident. To prove the sufficiency we again use the 
principle of appropriate sets. 

Let~ be the system of those Bore! sets D in f!I(R) for which ~- 1(D) E !F. 
The operation "form the inverse image" is easily shown to preserve the set­
theoretic operations of union, intersection and complement: 

~-~(y Ba)= y C 1(Ba), 

C 1 ( 0 Ba)= 0 C 1(Ba), 

~ 1(Ba) = C 1(Ba). 

(6) 
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It follows that ~ is a u-algebra. Therefore 

and 

a(S) ~ u(~) = ~ ~ PJ(R). 

But a(E) = PJ(R) and consequently ~ = PJ(R). 

CoroUary. A necessary and sufficient condition for e = e(w) to be a random 
variable is that 

{w: e(w) < x} E ff 

for every x E R, or that 

{ro: e(w) ::5; X} E ff 

for every x ER. 

The proof is immediate, since each of the systems 

S 1 = {x: x < c, c ER}, 

S 2 = {x:x ::5; c,ceR} 

generates the u-algebra !Jl(R): a(E 1 ) = a(E2 ) = !Jl(R) (see §2). 
The following Iemma makes it possible to construct random variables as 

functions of other random variables. 

Lemma 2. Let q> = q>(x) be a Borelfunction and e = e(w) a random variable. 
Then the composition '1 = q> o e, i.e. the function '1(w) = q>(e(w)), is also a 
random variable. 

The proof follows from the equations 

{w: '1(W) E B} = {w: q>(e(w)) E B} = {w: e(w) E q>- 1(B)} E ff (7) 

for BE PJ(R), since q>- 1(B) E PJ(R). 
Therefore if e is arandom variable, so are,forexamples, e", e+ = max(e, 0), 

C = -min(e, 0), and 1e1. since the functions x", x+, x- and lxl are Borel 
functions (Problem 4). 

3. Starting from a given collection of random variables { e"}, we can construct 
new functions, for example, Lk'= 1 I ek I, Um en, lim en, etc. Notice that in 
general such functions take values on the extended realline R = [- oo, oo]. 
Hence it is advisable to extend the class of .'1l-measurable functions somewhat 
by allowing them to take the values ± oo. 
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Definition 4. A function e = e(w) defined on (!l, Ji') with values in R = 
[- oo, oo] will be called an extended random variable if condition (1) is 
satisfied for every Bore! set Be fJI(R). 

The following theorem, despite its simplicity, is the key to the construction 
of the Lebesgue integral (§6). 

Theorem 1. 

(a) For every random variable e = e(w) (extended ones included) there is a 
sequence of simple random variables e 1, e 2 , ••• , such that 1 en 1 s; 1 e 1 and 
en(w)-+ e(w), n-+ oo,jor all W E fl. 

(b) lf also e(w) ~ 0, there is a sequence ofsimple random variables eh e2, ... ' 
suchthat en<w) j e(w), n -+ 00, for all W E fl. 

PR.ooF. Webegin by proving the second statement. For n = 1, 2, ... , put 

n2h k- 1 
en(w) = k'i;1 ~Ik,n(w) + nlWwJ;"n)(w). 

where lk,n is the indicator of the set {(k - 1)/2n s; e(w) < k/2n}. lt is easy 
to verify that the sequence en(w) so constructed is such that en(w) i e(w) 
for all w E n. The first Statement follows from this if we merely observe that 
e can be represented in the form e = e + - e-. This completes the proof of 
the theorem. 

We next show that the dass of extended random variables is closed under 
pointwise convergence. Forthis purpose, we note first that if e 1, e2 , ••• is a 
sequence of extended random variables, then sup ~", inf ~", lim ~" and Iim ~" 
arealso random variables (possibly extended). This follows immediately from 

{w: SUpen > x} = U {w: en > x} E Ji', 
n 

{ro: inf en <X} = u {w: en <X} E Ji', 
n 

and 

Iim en = inf sup em, Iim en = sup inf em· 
n m:2:n n m~n 

Theorem 2. Let e ~> e 2 , .•• be a sequence of extended random variables and 
e(w) = lim en(w). Then e(w) is also an extended random variable. 

The prooffollows immediately from the remark above and the fact that 

{w: e(w) < x} = {w: lim en(w) < x} 

= {w: Iim en(w) = lim en(w)} n {ITiii en(w) < x} 

= Q n {Um en(W) <X} = {Um en(ro) <X} E Ji'. 
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4. We mention a few more properties of the simplest functions of random 
variables considered on the measurable space (0, ~) and possibly taking 
values on the extended realline R = [- oo, oo].t 

If ~ and YJ are random variables, ~ + YJ, ~ - YJ, ~YJ, and ~/'1 are also random 
variables (assuming that they are defined, i.e. that no indeterminate forms like 
oo - oo, oojoo, ajO occur. 

In fact, Iet {~n} and {YJn} be sequences ofrandom variables converging to 
~ and 'I (see Theorem 1). Then 

~n ± 'ln __. ~ ± 'fl, 
~n 'ln __. ~'f/, 

~n ~ ---------------. -· 
1 'I 

'ln + -J(~n=O}(w) n 

The functions on the left-hand sides of these relations are simple random 
variables. Therefore, by Theorem 2, the Iimit functions ~ ± 'fl, ~'I and ~/YJ 
are also random variables. 

5. Let ~ be a random variable. Let us consider sets from ~ of the form 
{w: ~(w) E B}, BE BI(R). lt is easily verified that they form a a-algebra, 

called the a-algebra generated by ~' and denoted by ~· 
If cp is a Bore) function, it follows from Lemma 2 that the function YJ = cp o ~ 

is also a random variable, and in fact ~-measurable, i.e. such that 

{w: 'l(w) E B} E ~, BE BI(R) 

(see (7)). lt turns out that the converse is also true. 

Theorem 3. Let 'I be a ~cmeasurable random variable. Then there is a Bore/ 
function cp suchthat 'I = cp o ~. i.e. 'f/(W) = cp(~(w)) for every w E 0. 

PR.ooF. Let <I>~ be the dass of ~-measurable functions YJ = YJ(w) and <i)~ 
the dass of ~-measurable functions representable in the form cp o ~' where 
cp is a Bore! function. It is dear that <i)~ s <1>~. The condusion of the theorem 

is that in fact <l> ~ = <I>~. 
Let A E ~ and 'l(w) = IA(w). Let us show that YJ E <I>~. In fact, if A E ~ 

there is aB E PA(R) suchthat A = {w: ~(w) E B}. Let 

( ) _ {1, XE B, 
XB X - 0, X 1{: ß. 

Then/A(w) = x8(~(w)) E <1l~.Henceitfollowsthateverysimple~-measurable 
function L?= 1 c;IA,(w), Ai E ~'also belongs to <l>~. 

t We shall assume the usual conventions about arithmetic Operations in R: if a e R then 

a ± oo = ± oo, aj ± oo = 0; a · oo = oo if a > 0, and a · oo = - oo if a < 0; 0 · ( ± oo) = 0, 

OC! + OC! = OC!, - OC! - OC! = - OC!. 
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Now Iet '1 be an arbitrary ~-measurable function. By Theorem 1 there 
is a sequence ofsimple ~-measurable functions {'1n} suchthat '1n(w)-+ 11(w), 
n -+ oo, w e n. As we just showed, there are Borel functions lfJn = lfJn(x) such 
that '1n(w) = lfJn(e(w)). Then lfJn(e(w))-+ '1(W), n -+ 00, (1) E n. 

Let B denote the set { x e R: Iimn lfJn(x) exists}. This is a Bore I set. Therefore 

{
lim lfJn(x), x E B, 

cp(x) = n 

0, X fl B 

is also a Borel function (see Problem 7). 
But then it is evident that '1(W) = limn lfJn(e(w)) = cp(e(w)) for all (1) E n. 

Consequently 4'>~ = ~~-

6. Consider a measurable space (Cl, F) and a finite or countably infinite 
decomposition !1J = {D1, D2 , ••• } of the space Cl: namely, Die F and 
LiDi = n. We form the algebra d containing the empty set 0 and the sets 
of the form I .. D.,, where the sum is taken in the finite or countably infinite 
sense. It is evident that the system d is a monotonic class, and therefore, 
according to Lemma 2, §2, chap. II, the algebra d is at the same time a 
u-algebra, denoted u(!lJ) and called the u-algebra generated by the decompo­
sition (!). Clearly u(!lJ) ~ F. 

Lemma 3. Let e = e(w) be a u(f!))-measurable random variable. Then e is 
representable in the form 

00 

e(w) = L X~clnk(w), 
lc=l 

(8) 

where xk ER, k;;;;: 1, i.e., e(w) is constant on the elements Dk of the decomposi­
tion, k;;;;: 1. 

PRooF. Let us choose a set D" and show that the u(!lJ)-measurable function e 
has a constant value on that set. 

Forthis purpose, we write 

x" = sup[c: D" n {w: e(w) < c} = 0]. 

Since {w: e(w) < x"} = Ur<x/< {w: e(w) < r}, we have D" n {w: e(w) < 
xk} = 0- rratJonal 

Now Iet c>x". Then D~cn{w:e(w)<c}#0, and since the set 
{w: e(w) < c} has the form I .. D.,, where the sum isover a finite or countable 
collection of indices, we have 

D" n {w: e(w) < c} = D". 

Hence, it follows that, for all c > x", 

D" n {w: e(w) ~ c} = 0, 
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and since {w: e<w) > x"} = U.>x" {w: e<w) ~ r}, we have 
rrat10nal 

D,. n {w: e(w) > x"} = 0. 

Consequently, D" n {w: e(w) =I= x"} = 0, and therefore 

D,. s {w: e(w) = x,.} 

as required. 

7. PROBLEMS 

1. Show that the random variable e is continuous if and only if P(e = x) = 0 for all 
xeR. 

2. lf 1 e 1 is § -measurable, is it true that e is also § -measurable? 

3. Show that e = e(w) is an extended random variableifand only if {w: e(w) E B} E § 
for all B e Lf(R). 

4. Prove that xn, x+ = max(x, 0), x- = -min(x, 0), and lxl = x+ + x- are Borel 
functions. 

5. If e and 11 are §-measurab)e, then {w: e(w) = 11(w)} E §. 

6. Let e and 11 be random variables on ((}, §), and A E §. Then the function 

is also a random variable. 

7. Let e" ... ' en be random variables and cp(x 1' ... ' Xn) a Borel function. Show that 
cp(el(w), ... ' en(w)) is also a random variable. 

8. Let e and 11 be random variables, both taking the values 1, 2, ... , N. Suppose that 
~=§.Show that there is a permutation {i1, i2, ... , iN) of (1, 2, ... , N) suchthat 
{w: e = j} = {w:11 = ii} forj = 1, 2, . .. ,N. 

§5. Random Elements 

1. In addition to random variables, probability theory and its applications 
involve random objects of more generat kinds, for example random points, 
vectors, functions, processes, fields, sets, measures, etc. In this connection it is 
desirable to have the concept of a random object of any kind. 

Definition 1. Let (0, §) and (E, 8) be measurable spaces. We say that a 
function X= X(w), defined on n and taking values in E, is §jtl-measurable, 
or is a random element (with values in E), if 

{w: X(w) e B} e § (1) 
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for every BE C. Random elements (with values in E) are sometimes called 
E-valued random variables. 

Let us consider some special cases. 
If (E, C) = (R, tJI(R)), the definition of a random element is the same as the 

definition of a random variable (§4). 
Let (E, C) = (R", tJI(R")). Then a random element X(w) is a "random 

point" in R". lf nk is the projection of R" on the kth coordinate axis, X(w) can 
be represented in the form 

X(w) = (~ 1 (w), ... , ~.(w)), (2) 

where ~k = nk o X. 
lt follows from (1) that ~k is an ordinary random variable. In fact, for 

BE tJI(R) we have 

{w: ~k(w) E B} = {w: ~ 1 (w) ER, ... , ~k- 1 ER, ~k E B, ~k+ 1 ER, ... } 

= {w: X(w) E (R x .. · x R x B x R x .. · x R)} E ~ 

since R x · · · x R x B x R x · · · x R E tJI(R"). 

Definition 2. An ordered set (111(w), ... , 'l.(w)) of random variables is called 
an n-dimensional random vector. 

According to this definition, every random element X(w) with values in 
R" is an n-dimensional random vector. The converse is also true: every 
random vector X(w) = (~ 1 (w), ... , ~.(w)) is a random element in R". In fact, 
if Bk E tJI(R), k = 1, ... , n, then 

n 

{w: X(w) E (BI X .•• X B.)} = n {w: ~k(w) E Bk} E !#'. 
k= 1 

But tJI(R") is the smallest a-algebra containing the sets B1 x · · · x B •. 
Consequently we find immediately, by an evident generalization of Lemma 1 
of§4, that whenever BE tJI(R"), the set {w: X(w) E B} belongs toff. 

Let (E, C) = (Z, B(Z)), where Z is the set of complex numbers x + iy, 
x, y ER, and B(Z) is the smallest a-algebra containing the sets {z: z = x + iy, 
a 1 < x s; b1, a2 < y s; b2 }. 1t follows from the discussion above that a 
complex-valued random variable Z(w) can be represented as Z(w) = 
X(w) + iY(w), where X(w) and Y(w) are random variables. Hence we may 
also call Z(w) a complex random variable. 

Let (E, C) = (Rr, tJI(RT)), where T is a subset ofthe realline. In this case 
every random element X = X(w) can evidently be represented as X= (~1)reT 
with ~~ = n, o X, and is called a random function with time domain T. 

Definition 3. Let T be a subset of the real line. A set of random variables 
X = ( ~1)1 e T is called a random processt with time domain T. 

t Or stochastic process (Translator). 
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If T = {1, 2, ... } we call X = (~ 1 , ~ 2 , •.• ) a random process with discrete 
time, or a random sequence. 

If T = [0, 1], (- oo, oo), [0, oo), ... , we call X= (~ 1)reT a random 
process with continuous time. 

1t is easy to show, by using the structure of the cr-algebra ~(RT) (§2) that 
every random process X = (~1)reT (in the sense of Definition 3) is also a 
random function on the space (Rr, ~(RT)). 

Definition 4. Let X= (~r)teT be a random process. Foreach given wEn 
the function (~1(w))reT is said tobe a realization or a trajectory ofthe process, 
corresponding to the outcome w. 

The following definition is a natural generalization of Definition 2 of §4. 

Definition 5. Let X= (~1)reT be a random process. The probability measure 
Px on (RT, ~(RT)) defined by 

Px(B) = P{w: X(w) E B}, BE ~(RT), 

is called the probability distribution of X. The probabilities 

Pr,, ... ,t"(B) = P{w: (~1 ,, ••• , ~~JE B} 

with t 1 < t 2 < · · · < tn, t; E T, are called finite-dimensional probabilities 
(or probability distributions). The functions 

Fr,, ... ,t"(xl, ... 'xn) = P{w: ~~. ::;:;; XI, ... '~~"::;:;; xn} 

with t 1 < t 2 < · · · < tn, t; E T, are called finite-dimensional distribution 
functions. 

Let (E, @") = (C, ~0(C)), where C is the space of continuous functions 
x = (x1) 1er on T = [0, 1] and ~0(C) is the cr-algebra generated by the open 
sets (§2). We show that every random element X on (C, ~0(C)) is also a 
random process with continuous trajectories in the sense of Definition 3. 

In fact, according to §2 the set A = {x E C: x1 < a} is open in ~0(C). 
Therefore 

{w: ~r(w) < a} = {w: X(w) E A} E !F. 

On the other band, Iet X = (~1(w))1 er be a random process (in the sense 
of Definition 3) whose trajectories are continuous functions for every 
wEn. According to (2.14), 

{x E C: XE Sp(x0 )} = n {x E C: ixtk- x~ki < p}, 
!k 

where tk are the rational points of [0, 1]. Therefore 

{w: X(w) E Sp(X0w))} = n {w: l~rk(w)- ~~k(w)i < p} E ~ 
!k 

and therefore we also have {w: X(w) E B} E !F for every BE ~0(C). 
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Similar reasoning will show that every random element of the space 
(D, rJI0(D) can be considered as a random process with trajectories in the 
space offunctions with no discontinuities ofthe second kind; and conversely. 

2. Let (Q, /F, P) be a probability space and (E11 , 8 11) measurable spaces, 
where cx belongs to an (arbitrary) set m:. 

Definition 6. We say that the :F/811-measurable functions (Xa.(w)), cx e m:, 
are independent ( or collectively independent) if, for every finite set of 
indices cxl> •.. , cxn the random elements X11,, ••• , Xa.. are independent, i.e. 

P(X111 EB111 , ••• ,X11.EB11J = P(X11,EB11 ,)···P(X11.EB11.), (3) 

where Ba. eS11 • 

Let m: = {1, 2, ... , n}, Iet ea. be random variables, Iet cx e m: and Iet 

F~(xl> ... , xn) = P(e1 ~ x1, ... , en ~ xn) 

be the n-dimensional distribution function of the random vector 
e = ( e 1o ... , en)· Let F ~lx;) be the distribution functions of the random 
variables e;, i = 1, ... , n. 

Theorem. A necessary and sufficient condition for the random variables 
e1, ••• , en tobe independentisthat 

F~(x1, ... , Xn) = F~,(x1) · · · F~.(xn) 

for all (x1, .•• , Xn) ERn. 

(4) 

PROOF. The necessity is evident. To prove the sufficiency we put 
a = (a1, ... 'an), b = (b1, ... ' bn), 

Then 

P~(a, b] = P{w: a1 < e1 ~ b1, ... , an < en ~ bn}, 
P~;(a;, b;] = P{a; < e; ~ b;}. 

n n 

P~(a, b] = fl [F~;(b;)- F~;(a;)] = fl Pda;, b;] 
i= 1 i= 1 

by (4) and (3.7), and therefore 

n 

P{e1 ei1, ... ,enei"} = flP{e;ei;}, 
i= 1 

where I; = (a;, b;]. 
We fix I 2 , ••• , In and show that 

n 

(5) 

P{e1 E Br, e2 E /2, ... , en EIn}= P{e1 E Br} fl P{e; e I;} (6) 
i=2 

for all B1 e rJI(R). Let .ß be the collection of sets in rJI(R) for which (6) 
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holds. Then .ß evidently contains the algebra d of sets consisting of sums of 
disjoint intervals of the form I 1 = (at> btJ. Hence d !:; .ß !:; PI(R). From 
the countable additivity (and therefore continuity) of probability measures it 
also follows that .ß is a monotonic class. Therefore (see Subsection 1 of §2) 

JJ.(d) !:; .ß !:; PI(R). 

But JJ.(d) = a(d) = PI(R) by Theorem 1 of §2. Therefore .ß = PI(R). 
Thus (6) is established. Now fix B1, I 3 , ••• , I.; by the same method we 

can establish (6) with I 2 replaced by the Borel set B2 • Continuing in this 
way, we can evidently arrive at the required equation, 

P(~ 1 e Bt> ... , ~. e B.) = P(~ 1 e B1) · • · P(~. e B.), 

where B; e PI(R). This completes the proof of the theorem. 

3. PROBLEMS 

1. Let e1, ••• , e. be discrete random variables. Show that they are independent if and 
only if 

• 
P(e1 = X1, ••• , e. = x.) = [J P(e; = x;) 

i=l 

for all real x 1, ••• , x •. 

2. Carry out the proofthat every random function (in the sense of Definition 1) is a 
random process (in the sense of Definition 3) and conversely. 

3. Let X 1, ••• , X. be random elements with values in (E ~> 8 1), ••• , (E., 8 .), respectively. 
In addition Iet (E}, 8'1), ••• , (E~. 8~) be measurable spaces and Iet g~> ... , g. be 
8 1/8'1 , ••• ,8J8~-measurable functions, respectively. Show that if X~>····X• are 
independent, the random elements g1 ·X 1, ••• , g. · x. arealso independent. 

§6. Lebesgue Integral. Expectation 

1. When (0, :F, P) is a finite probability space and ~ = ~(w) is a simple 
random variable, 

n 

~(w) = L xkiAk(w), (1) 
k=l 

the expectation E ~ was defined in §4 of Chapter I. The same definition of the 
expectation E~ of a simple random variable~ can be used for any probability 
space (0, :F, P). That is, we define 

n 

E~ = L xkP(Ak). (2) 
k=l 
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This definition is consistent (in the sense that Ee is independent of the 
particular representation of e in the form (1)), as can be shown just as for 
finite probability spaces. The simplest properties of the expectation can be 
established similarly (see Subsection 5 of §4 of Chapter 1). 

In the present section we shall define and study the properties of the 
expectation Ee of an arbitrary random variable. In the language of analysis, 
Ee is merely the Lebesgue integral of the ~-measurable function e = e(w) 
with respect to the measure P. In addition to Ee we shall use the notation 
Sn e(w)P(dw) or Sn e dP. 

Let e = e(w) be a nonnegative random variable. We construct a sequence 
of simple nonnegative random variables gn}n;;,: 1 such that en(w) i e(w), 
n--> oo, for each w E Q (see Theorem 1 in §4}. 

Since Een ~ Een+ 1 (cf. Property 3) of Subsection 5, §4, Chapter I), the 
Iimit limn Een exists, possibly with the value + oo. 

Definition 1. The Lebesgue integral of the nonnegative random variable 
e = e(w}, or its expectation, is 

Ee = Iim Een· (3) 
n 

To see that this definition is consistent, we need to show that the Iimit is 
independent of the choice of the approximating sequence {en}. In other 
words, we need to show that if en i e and 1Jm i e, where {1Jm} is a sequence of 
simple functions, then 

lim Een = lim E1Jm· (4) 
n m 

Lemma 1. Let 1J and en be simple random variables, n ~ 1, and 

Then 

(5) 
n 

PROOF. Let e > 0 and 

It is clear that An i Q and 

~n = ~n/An + ~n/Än ~ ~n/An ~ (1}- t:}/An· 

Hence by the properties of the expectations of simple random variables we 
find that 

E~n ~ E(1J- e)/An = E1JlAn- eP(An) 

= E1J - E1Jl An - eP(An) ~ E1J - CP(An) - e, 
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where C = max"' 17(w). Since e is arbitrary, the required inequality (5) follows. 
lt follows from this Iemma that limn E~n ~ limm E'1m and by symmetry 
Iimm E'1m ~ limn E~n• which proves (4). 

The following remark is often useful. 

Remark 1. The expectation E ~ of the nonnegative random variable ~ satisfies 

E~ = sup Es, (6) 
{seS:s:5~} 

where S = {s} is a set of simple random variables (Problem 1). 

Thus the expectation is weil defined for nonnegative random variables. 
We now consider the general case. 

Let~ be a random variable and ~+ = max(~, 0), C = -min(~, 0). 

Definition 2. We say that the expectation E~ of the random variable ~ 
exists, or is de.fined, if at least one of E ~ + and E ~- is finite: 

min(E~+, E~-) < oo. 

In this case we de.fine 

The expectation E~ is also called the Lebesgue integral (ofthe function ~ with 
respect to the probability measure P). 

Definition 3. We say that the expectation of ~ is finite if E~+ < oo and 
EC < oo. 

Since 1~1 = ~+ - C, the finiteness of E~, or IE~I < oo, is equivalent to 
EI~ I < oo. (In this sense one says that the Lebesgue integral is absolutely 
convergent.) 

Remark 2. In addition to the expectation E ~. significant numerical character­
istics of a random variable~ are the number E~' (if defined) and EI~ J', r > 0, 
which are known as the moment of order r (or rth moment) and the absolute 
moment of order r ( or absolute rth moment) of ~-

Remark 3. In the definition of the Lebesgue integral fn ~(w)P(dw) given 
above, we suppose that P was a probability measure (P(Q) = 1) and that 
the .ff'-measurable functions (random variables) ~ had values in 
R = (- oo, oo ). Suppose now that Jl is any measure defined on a measurable 
space (Q, $') and possibly taking the value + oo, and that ~ = ~(w) is an 
.ff'-measurable function with values in R = [- oo, oo] (an extended random 
variable). In this case the Lebesgue integral fn ~(w)JL(dw) is defined in the 
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same way: first, for nonnegative simple ~ (by (2) with P replaced by f.l), 
then for arbitrary nonnegative ~. and in general by the formula 

provided that no indeterminacy of the form oo - oo arises. 
A case that is particularly important for mathematical analysis is that in 

which (Q, F) = (R, PJ(R)) and f.1 is Lebesgue measure. In this case the 
integral SR ~(X)f.l(dx) is written SR ~(x) dx, or s~ 00 ~(x) dx, or (L) s~ 00 ~(x) dx 
to emphasize its difference from the Riemann integral (R) J~ oo ~(x) dx. Ifthe 
measure f.1 (Lebesgue-Stieltjes) corresponds to a generalized distribution 
function G = G(x), the integral JR ~(x)f.l(dx) is also called a Lebesgue­
Stieltjes integral and is denoted by (L-S) JR ~(x)G(dx), a notation that 
distinguishes it from the corresponding Riemann-Stieltjes integral 

(R-S) L ~(x)G(dx) 

(see Subsection 10 below). 
It will be clear from what follows (Property D) that if Ef, is defined then 

so is the expectation E(O A) for every A E $'. The notations E(~; A) or JA~ dP 
are often used for E(OA) or its equivalent, J0 OA dP. The integral JA~ dP is 
called the Lebesgue integral of ~ with respect to P over the set A. 

Similarly, we write JA~ df.l instead of J0 ~·JA df.l for an arbitrary measure 
f.l. In particular, if f.1 is an n-dimensional Lebesgue-Stieltjes measure, and 
A = (a 1 , b1] x · · · x (an, bn], we use the notation 

instead of L ~ df.l. 

If f.1 is Lebesgue measure, we write simply dx 1 · · · dxn instead of f.l(dx 1> ••• , dxn). 

2. Properties of the expectation E~ of the random variable~. 

A. Let c be a constant and Iet E~ exist. Then E(c~) exists and 

E(c~) = cE~. 

B. Let ~ .$; 11; then 

with the understanding that 

if - oo < E~ then - oo < E17 and E~ .$; E17 

or 

if E17 < oo then E~ < oo and E~ .$; E17. 
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C. lfE~ exists then 

IE~I::;EI~I. 

D. lfE~ exists then E(eJA) exists for each A E!F; if E~ is.finite, E(eJA) is 
finite. 

E. lf ~ and 17 are nonnegative random variables, or such that EI~ I < oo and 
E1'71 < oo,then 

(See Problem 2 for a generalization.) 

Let us establish A-E. 

A. This is obvious for simple random variables. Let ~ ~ 0, ~n i ~. where ~n 
are simple random variables and c ~ 0. Then c~n j c~ and therefore 

In the general case we need to use the representation ~ = ~ + - C 
and notice that (c~)+ = c~+, (c~)- = c~- when c ~ 0, whereas when 
c < o, (ce)+ = -cC, (ce)- = -ce+. 

B. If 0 ::; e ::; 17, then E~ and E17 are defined and the inequality Ee ::; E17 
follows directly from (6). Now Iet E~ > - oo; then E~- < oo. If e ::; '7, 
we have e+ ::; '7+ and C ~ '7-. Therefore E17- ::; EC < oo; conse­
quently E17 is defined and E~ = E~+ - E~- ::; E17+ - E17- = E17. The 
case when E17 < oo can be discussed similarly. 

c. Since - I e I ::; e ::; I~ I' Properties A and B imply 

i.e. I E ~ I ::; E I el. 
D. This follows from B and 

E. Let e ~ 0, '7 ~ 0, and Iet { en} and }'7n} be sequences of simple functions 
suchthat en i e and '7n i '1· Then E(en + '7n) = Een + E17n and 

E(en + '7n) i E(e + 17), Een i Ee, E'7n i E17 

and therefore E(e + 17) = Ee + E17. The case when E 1~1 < oo and 
E I '71 < oo reduces to this if we use the facts that 

and 
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The following group of statements about expectations involve the notion 
of" P-almost surely." We say that a property holds "P-almost surely" ifthere 
is a set .At E $' with P(%) = 0 such that the property holds for every point 
w ofO.\.Ai'. Instead of" P-almost surely" we often say "P-almost everywhere" 
or simply "almost surely" (a.s.) or "almost everywhere" (a.e.). 

F. If ~ = 0 (a.s.) then E~ = 0. 

In fact, if ~ is a simple random variable, ~ = L xk/Ak(w) and xk # 0, 
we ha ve P(Ak) = 0 by hypothesis and therefore E ~ = 0. If ~ ~ 0 and 0 ~ s ~ ~. 
where s is a simple random variable, then s = 0 (a.s.) and consequently 
Es = 0 and E~ = sup1sES:s:s:~l Es = 0. The general case follows from this by 
means of the representation ~ = ~+ - ~- and the facts that ~+ ~ 1~1, 
C ~ 1~1. and 1~1 = 0 (a.s.). 

G. If ~ = 17 (a.s.) and El~l < oo, then El11l < oo and E~ = E17 (see also 
Problem 3). 

In fact, Iet .At= {w: ~ # 17}. Then P(%) = 0 and ~ = O..v + 0,;;, 
11 = 11/.,v + 17l..v = 111.~· + ~l"v. By properties E and F, we have E~ = E~l..v + 
EO..v = E17l,;;. But E17I..v = 0, and therefore E~ = E17/y + E17I..v = E17, by 
Property E. 

H. Let~ ~ 0 and E~ = 0. Then ~ = 0 (a.s). 

For the proof, Iet A = {w: ~(w) > 0}, An= {w: ~(w) ~ 1/n}. It is clear 
that An jA and 0:::;:; ~·/An ~ ~·JA. Hence, by Property B, 

0 :::;:; E 0 An :::;:; E ~ = 0. 
Consequently 

and therefore P(A") = 0 for all n ~ 1. But P(A) = lim P(A") and therefore 
P(A) = 0. 

I. Let~ and 17 besuchthat El~l < oo, Elt71 < oo and E(~/A) ~ E(17/A) for 
all A E $'. Then ~ ~ 17 (a.s.). 

In fact, Iet B = {w: c;(w} > 17(w)}. Then E(17/8 } ~ E(08 } ~ E(17/JJ) and 
therefore E(08 ) = E(17/8 }. By Property E, we have E((~ - 17}/8 } = 0 and by 
Property H we have (~ - 17}/8 = 0 (a.s.), whence P(B) = 0. 

J. Let ~ be an extended random variable and E I~ I < oo. Then I~ I < oo 
(a. s). In fact, Iet A = {wl~(w)l = oo} and P(A) > 0. Then El~l ~ 
E( I~ I I A) = oo · P(A) = oo, which contradicts the hypothesis EI~ I < oo. 
(See also Problem 4.) 

3. Here we consider the fundamental theorems on taking Iimits under the 
expectation sign (or the Lebesgue integral sign). 
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Theorem 1 (On Monotone Convergence). Let fl, ~' ~ 1 , ~ 2 , .•• be random 
variables. 

(a) lf ~n ~ 1J for alt n ~ 1, EI] > - oo, and ~n i ~, then 

E~n j E~. 

(b) lf ~n ~ 1J for alt n ~ 1, EI] < oo, and ~n! ~. then 

E~n ! E~. 

PROOF. (a) First suppose that '7 ~ 0. Foreach k ~ 1let { ~kn)}n> 1 be a sequence 
of simple functions such that ~Ln> i ~k> n --+ oo. Put ~<n> = max 1 ,;k,; N ~Ln>. 

Then 

(<n-1) ~ (<n> = max ~Ln> ~ max ~k = ~n· 
l,;k,;n l,;k,;n 

~Ln) ~ ((n) ~ ~n 

for 1 ~ k ~ n, we find by taking Iimits as n --+ oo that 

for every k ~ 1 and therefore ~ = (. 
The random variables (<n> are simple and (<n> j (. Therefore 

E~ = E( =!im E(<">.:::; !im E~n· 

On the other band, it is obvious, since ~n ~ ~n+ 1 ~ ~. that 

Consequently !im E~n = E~. 
Now Iet '1 be any random variable with E17 > - oo. 
If E17 = oo then E~n = E~ = oo by Property B, and our proposition is 

proved. Let E17 < oo. Then instead of E17 > - oo we find EI 111 < oo. It is 
clear that 0 ~ ~n - 17 i ~ - 17 for all w E n. Therefore by what has been 
established, E(~n - 17) jE(~ - 17)and therefore (by Property E and Problem 2) 

E~n - E~ jE~ - E17. 

But E 1171 < oo, and therefore E~n i E~, n--+ oo. 
The proof of (b) follows from (a) if we replace the original variables by 

their negatives. 

Corollary. Let {17n}n> 1 be a sequence of nonnegative random variables. Then 

00 00 

EL17n= IE17n· 
n;l n;l 
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The proof follows from Property E (see also Problem 2), the monotone 
convergence theorem, and the remark that 

k 00 

I t/n j I tln• k --+ 00. 
n=1 n=1 

Theorem 2 (Fatou's Lemma). Let t], ~ 1, ~ 2 , ... be random variables. 

(a) lf ~n 2: t7 for all n 2: 1 and Et~ > - oo, then 

E lim ~n ~ lim E~n· 

(b) lf ~n ~ t7 for all n 2: 1 and Ery < oo, then 

lim E~n ~ E lim ~n. 

(c) lf I ~n I ~ ry for all n 2: 1 and Ery < oo, then 

E lim ~n ~ lim E~n ~ lim E~n ~ E lim ~n· 

PROOF. (a) Let (n = infm;o,n ~m; then 

!im ~n = !im inf ~m = !im (n. 
n m~n 

It is clear that (n j !im ~n and (" 2: t7 for all n 2: 1. Then by Theorem 1 

n n n 

(7) 

which establishes (a). The second conclusion follows from the first. The third 
is a corollary of the first two. 

Theorem 3 (Lebesgue's Theorem on Dominated Convergence). Let ry, ~. 

~ 1 , ~ 2 , ... be random variables suchthat l~nl ~ ry, Ery < oo and ~n--+ ~ (a.s.). 
ThenEI~I < oo, 

(8) 

and 

(9) 

as n--+ oo. 

PRooF. Formula (7) is valid by Fatou's Iemma. By hypothesis, !im ~n = 

llm ~" = ~ (a.s.). Therefore by Property G, 

E !im ~n = !im E~n = !im E~n = E !im ~n = E~, 

which establishes (8). It is also clear that I~ I ~ ry. Hence EI~ I < oo. 
Conclusion (9) can be proved in the same way if we observe that 

~~n-~1~2t]. 
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Corollary. Let rJ, ~. ~ 1 , ... be random variables suchthat l~nl ~ rJ, ~n-+ ~ 
(a.s.) and E11P < oo for some p > 0. Then EI~ IP < oo and EI~ - ~n IP -+ 0, 
n-+ oo. 

For the proof, it is sufficient to observe that 

~~~ ~ rJ, ~~- ~nlp ~ (1~1 + l~ni)P :=:; (2rJ)P. 

The condition "I ~n I :::; rJ, E11 < oo" that appears in Fatou's Iemma and 
the dominated convergence theorem, and ensures the validity of formulas 
(7)-(9), can be somewhat weakened. In order to be able to state the cor­
responding result (Theorem 4), we introduce the following definition. 

Definition 4. A family gn}n;,: 1 of random variables is said to be uniformly 
integrable if 

sup f I~" I P(dw) -+ 0, 
n J{l~nl >c} 

c-+ 00, (10) 

or, in a different notation, 

c-+ 00. (11) 
n 

It is clear that if ~"' n;;?: 1, satisfy l~nl:::; rJ, E11 < oo, then the family 
gn}n;,: 1 is uniformly integrable. 

Theorem 4. Let {~n}n;,: 1 be a uniformly integrablefamily ofrandom variables. 
Then 

(a) E lim ~n :::; lim E~n :::; Um E~n :::; E Um ~n. 
(b) If in addition ~n -+ ~ (a.s.) then ~ is integrable and 

E~n-+ E~, n-+ oo, 

EI ~n - ~I -+ 0, n-+ oo. 

PR.ooF. (a) For every c > 0 

(12) 

By uniform integrability, for every e > 0 we can take c solarge that 

(13) 
n 

By Fatou's Iemma, 

lim E[~nJ{~n<: -ca ;;?: E[lim ~nJ{~n<= -c}J. 

But ~nl1~"<= -cl ;;?: ~n and therefore 

(14) 
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From (12)-(14) we obtain 

Since e > 0 is arbitrary, it follows that !im E~n ~ E !im ~n· The inequality 
with upper Iimits, !im E~n :::;; E flrri ~"' is proved similarly. 

Conclusion (b) can be deduced from (a) as in Theorem 3. 

The deeper significance of the concept of uniform integrability is revealed 
by the following theorem, which gives a necessary and sufficient condition 
for taking Iimits under the expectation sign. 

Theorem 5. Let 0:::;; ~n-.. ~ and Een < oo. Then Een-.. Ee < oo ifand only if 
the jami/y { en}n~ 1 is uniform/y integrab/e. 

PROOF. The sufficiency follows from conclusion (b) of Theorem 4. For the 
proof of the necessity we consider the (at most countable) set 

A = {a: P(e = a) > 0}. 

Then we have ~n/1~"<aJ-.. 0 1~<al for each a t/: A, and the family 

{enJ{~n<aJ}n~l 

is uniformly integrable. Hence, by the sufficiency part ofthe theorem, we have 

Eeni1~"<a) __.. E01~"<aJ' a t/: A, and therefore 

a tf: A, n-.. oo. (15) 

Take an e > 0 and choose a0 rf= A solarge that EO g~ao} < e/2; then choose 
N 0 so !arge that 

Eenign~ao) :::;; EO~~~ao} + e/2 

for all n ~ N 0 , and consequently EenJ{~"~aoJ:::;; e. Then choose a 1 ~ a0 so 
large that Ee{~"~ad :::;; e for all n :::;; N 0 . Then we have 

supEenJ{~"~aJ} :::;; e, 
n 

which establishes the uniform integrability of the family { en} n ~ 1 of random 
variables. 

4. Let us notice some tests for uniform integrability. 
We first observe that if {en} is a family of uniformly integrable random 

variables, then 

supE/enl < oo. (16) 
n 
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In fact, for a given t: > 0 and sufficiently !arge c > 0 

supEI~nl = sup[E(I~n IIu~"l~cl) + E(l~" IIu~nl<cl)] 
n n 

s supE( I~" I Iu~" 1 ~cl} + supE( I e" I I <I~"' <c>) s t: + c, 
n n 

which establishes (16). 
lt turns out that (16) together with a condition of uniform continuity is 

necessary and sufficient for uniform integrability. 

Lemma 2. A necessary and sufficient condition for a family { ~"}"~ 1 of random 
variablestobe uniformly integrable isthat EI~" I, n ;:::.: 1, are uniformly bounded 
(i.e., (16) holds) and that E{ I~" I I A},n ;:::.: 1, are uniformly absolutely continuous 
(i.e. supE {I~" I I A} --+ 0 when P(A) --+ 0). 

PROOF. Necessity. Condition (16) was verified above. Moreover, 

E{l~niiA} = E{l~niiAn{i~nl~c}} + E{l~niiAnmnl<c}} 
S E{l~niiu~nl~c}} + cP(A). (17) 

Take c so !arge that sup" E {I~ IIu~nl ~cl} s t:/2. Then if P(A) s t:/2c, we have 

sup E{l~n IIA} s t: 
n 

by (17). This establishes the uniform absolute continuity. 
Sufficiency. Let t: > 0 and lJ > 0 be chosen so that P(A) < () implies that 

E (I ~"I I A) s e, uniformly in n. Since 

El~nl;:::.: El~niirl~nl~cl;:::.: cP{I~nl;:::.: c} 

for every c > 0 (cf. Chebyshev's inequality), we have 

1 
sup P{l~nl;:::.: c} s- supE l~nl-+ 0, 

c n 
c--+ 00, 

and therefore, when c is sufficiently !arge, any set { 1 e" 1 ;:::.: c }, n ;:::.: 1, can be 
taken as A. Therefore supE( I~" I Iu~nl ~c)) s t:, which establishes the uniform 
integrability. This completes the proof of the Iemma. 

The following proposition provides a simple sufficient condition for 
uniform integrability. 

Lemma 3. Let ~ 1 , ~ 2 , ... be a sequence of integrable random variables and 
G = G(t) a nonnegative increasing function, defined fort ;:::.: 0, suchthat 

lim G(t) = oo. 
r-oo t 

(18) 

supE[G(Ieni)J < oo. (19) 
n 

Then the family { ~"}"~ 1 is uniformly integrable. 
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PROOF. Let e > 0, M = sup. E [ G( I~. I)], a = M /e. Take c so !arge that 
G(t)/t 2 a fort 2 c. Then 

1 M 
E[l~.lln~"l~cj] s ;E[G(I~.I) · In~"l~cJJ s--;; = e 

uniformly for n 2 1. 

5. If ~ and 11 are independent simple random variables, we can show, as in 
Subsection 5 of §4 of Chapter I, that E~17 = E~ · E17. Let us now establish a 
similar proposition in the general case (see also Problem 5). 

Theorem 6. Let ~ and 11 be independent random variables with EI~ I < oo, 
El11l < oo. ThenE1~'11 < ooand 

E~17 = E~ · E17. (20) 

PROOF. First Iet ~ 2 0, '1 2 0. Put 

00 k 
~n = I - /(k/n:S:~(ro)<(k+l)/n}• 

k=o n 

00 k 
'1n = I - /(k/n:S:~(ro)<(k+ 1)/n)· 

k=o n 

Then ~" s ~. l~n- ~I s 1/n and '1n s '7, 1'1n- 111 s 1/n. Since E~ < oo and 
E17 < oo, it follows from Lebesgue's dominated convergence theorem that 

!im E~. = E~, 

Moreover, since ~ and 11 are independent, 

Now notice that 

1 1 ( 1) +E[1'1.1·1~-~.I]s-E~+-E 11+- --+0, 
n n n 

n--+ oo. 

Therefore E~17 = !im. E~n'1n =!im E~. ·!im E11n = E~ · EIJ, and E~17 < oo. 
The general case reduces to this one if we use the representations 

e = C - C, '1 = '1 + - '1-, ~'1 = e + '1 + - C '1 + - e + '1- + C '1-. This com­
pletes the proof. 

6. The inequalities for expectations that we develop in this subsection are 
regularly used both in probability theory and in analysis. 
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Chebyshev's Inequality. Let e be a nonnegative random variable. Then for 
every 6 > 0 

Ee 
P(e ~ 6) ::::; -. 

6 

The proof follows immediately from 

Ee ~ E[e · /<~~·>] ~ 6El<~~·> = 6P(e ~ 6). 

(21) 

From (21) we can obtain the following variant of Chebyshev's inequality: 
If e is any random variable then 

(22) 

and 

(23) 

where ve = E(e - Ee)2 is the variance of e. 
The Cauchy-Bunyakovskii lnequality. Let e andrJSatisfyEe 2 < oo, E17 2 < oo. 
T hen E I e111 < oo and 

<E 1 e111 )2 ::::; E e2 • E11 2 . (24) 

PRooF. Suppose that E~2 > 0, E17 2 > 0. Then, with ~ = e/JEf!, fj = 
11/ JE'r, we find, since 21 ~fj I ::::; ~2 + fj 2 , that 

2E I ~fj I ::::; E~2 + Ef/2 = 2, 

i.e. EI ~fj I ::::; 1, which establishes (24). 

On the other band if, say, Eez = 0, then e = 0 (a.s.) by Property I, and 
then Ee17 = 0 by Property F, i.e. (24) is still satisfied. 

Jensen's Inequality. Let the Borel function g = g(x) be convex downward and 
El~l<oo.Then 

g(E~) ::::; Eg(e). (25) 

PRooF. lf g = g(x) is convex downward, for each x0 ER there is a number 
A.(x0 ) such that 

g(x) ~ g(x0 ) + (x - x0 ) • A.(x0 ) 

for all x ER. Putting x = ~ and x 0 = E~, we find from (26) that 

g(~) ~ g(E~) + (~ - E~) · A.(E~), 

and consequently Eg( ~) ~ g(E ~). 

(26) 
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A whole series of useful inequalities can be derived from Jensen's inequality. 
We obtain the following one as an example. 

Lyapunov's Inequality. IfO < s < t, 

(27) 

To prove this, Iet r = t/s. Then, putting 11 = I e 1• and applying Jensen's 
inequality to g(x) = lxl', we obtain IE11I'::::;; E 1111', i.e. 

(E I e ls)r;s ::::;; E I a, 
which establishes (27). 

The following chain of inequalities among absolute moments in a conse­
quence of Lyapunov's inequality: 

(28) 

Hölder's Inequality. Let 1 < p < oo, 1 < q < oo, and (1/p) + (1/q) = 1. lf 
E 1e1p < oo and E 1111q < oo, then E 1e111 < oo and 

(29) 

If E I e lp = 0 or E l11lq = 0, (29) follows immediately as for the Cauchy­
Bunyakovskii inequality (which is the special case p = q = 2 of Hölder's 
inequality). 

Now Iet E I e lp > 0, E l11lq > 0 and 

- e 
e = <Eielp)l/p' 

We apply the inequality 

(30) 

which holds for positive x, y, a, b and a + b = 1, and follows immediately 
from the concavity of the logarithm: 

ln[ax + by] 2: a In x +bIn y =In xayh. 

Then, putting x = I~IP, y = lfflq, a = 1/p, b = ljq, we find that 

- 1 - 1 
1e111::::;; -lW + -lfflq, 

p q 

whence 

This establishes (29). 
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Minkowski's Inequality. lf EI~ IP < oo, EI 'liP < oo, 1 ~ p < oo, then we have 
E I ~ + 'liP < oo and 

(EI~ + '11P) 11P ~ (EI~ IP) 11P + (EI '11P) 11P. (31) 

Webegin by establishing the following inequality: if a, b > 0 and p;;::: 1, 
then 

(32) 

In fact, consider the function F(x) = (a + x)P - 2p- 1(aP + xP). Then 

F'(x) = p(a + x)P- 1 - 2P- 1pxp- 1, 

and since p ;;::: 1, we have F'(a) = 0, F'(x) > 0 for x < a and F'(x) < 0 for 
x > a. Therefore 

F(b) ~ max F(x) = F(a) = 0, 

from which (32) follows. 
According to this inequality, 

(33) 

and therefore if EI~ IP < oo and EI 'liP < oo it follows that EI~ + 1J IP < oo. 
lf p = 1, inequality (31) follows from (33). 

Now suppose that p > 1. Take q > 1 so that (1/p) + (1/q) = 1. Then 

I~+ 11lp =I~+ '71·1~ + 11lp- 1 ~ 1~1·1~ + 11lp- 1 + 1'711~ + 1'/lp- 1· (34) 

Notice that (p - 1)q = p. Consequently 

E(l~ + '11p- 1 )q =EI~+ 'llp < oo, 

and therefore by Hölder's inequality 

E(l~ll~ + 1'/lp- 1) ~ (E I~IP) 11P(E I~+ '71(p- 1)q) 11q 
= (EI~ IP)11P(E I~ + '1 IP) 11q < 00. 

In the same way, 

E(l'711~ + 1'/lp- 1) ~ (E11JIP) 11P(EI~ + 1JIP) 11q. 

Consequently, by (34), 

EI~ + '1 lp ~ (EI~ + '1 IP)11q((E I~ IP) 11P + (E 1'7 IP) 11P). (35) 

IfE I~+ 1JIP = 0, thedesired inequality(31) is evident. Nowlet EI~+ 1JIP > 0. 
Then we obtain 

(EI~ + '1 IP) 1 -(1 /q) ~ (EI~ IP) 11P + (E 1'7 IP) 11p 

from (35), and (31) follows since 1 - (1/q) = 1/p. 
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7. Let~ be a random variable for which E~ is defined. Then, by Property D, 
the set function 

O(A) = { ~ dP, (36) 

is weil defined. Let us show that this function is countably additive. 
First suppose that ~ is nonnegative. If A1, A 2 , ••• are pairwise disjoint sets 

from :!' and A = L An, the corollary to Theorem 1 implies that 

0(A) = E(~ ·JA)= E(~ · lrAJ = E(L ~ · lA) 

= L E(~ 'JA)= L O(An). 

If ~ is an arbitrary random variable for which E~ is defined, the countable 
additivity of O(A) follows from the representation 

(37) 

where 

tagether with the countable additivity for nonnegative random variables and 
the fact that min(O+(n), o-(Q)) < 00. 

Thus if E~ is defined, the set function 0 = O(A) is a signed measure­
a countably additive set function representable as 0 = 0 1 - 0 2 , where at 
least one ofthe measures 0 1 and 0 2 is finite. 

We now show that 0 = O(A) has the following important property of 
absolute continuity with respect to P: 

if P(A) = 0 then O(A) = 0 (A E :!') 

(this property is denoted by the abbreviation 0 ~ P). 
To prove the sufficiency we consider nonnegative random variables. If 

~ = L;;: = 1 xk I Ak is a simple nonnegative random variable and P(A) = 0, 
then 

n 

O(A) = E(~ ·JA)= L xkP(Ak n A) = 0. 
k=l 

If { ~"}" <!: 1 is a sequence of nonnegative simple functions such that ~" j ~ ~ 0, 
then the theorem on monotone convergence shows that 

O(A) = E(~ ·JA)= lim E(~n ·JA)= 0, 

since E(~" ·JA)= 0 for all n ~ 1 and A with P(A) = 0. 
Thus the Lebesgue integral O(A) =JA~ dP, considered as a function of 

sets A E :!', is a signed measure that is absolutely continuous with respect to 
P (0 ~ P). It is quite remarkable that the converse is also valid. 
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Radon-Nikodym Theorem. Let (Q, ff) be a measurable space, p. a a-finite 
measure, and A a signed measure (i.e., A = A1 - A2 , where at least one of the 
measures A1 and A2 is finite) which is absolutely continuous with respect top.. 
Then there is an ff -measurable.fimction f = f(w) with values in R = [- oo, oo] 
suchthat 

A(A) = Lf(w)p.(dw), (38) 

The fimction f(w) is unique up to sets of p.-measure zero: if h = h(w) is 

another ff-measurable function suchthat A(A) =JA h(w)p.(dw), A E ff, then 
p.{w:f(w) =f. h(w)} = 0. 

If Ais a measure, then f = f(w) has its values in R+ = [0, oo]. 

Remark. The function f = f(w) in the representation (38) is called the 
Radon-Nikodym derivative or the density of the measure A with respect top., 
and denoted by dAjdp. or (dAjdp.)(w). 

The Radon-Nikodym theorem, which we quote without proof, will play 
a key role in the construction of conditional expectations (§7). 

8. If ~ = Li= 1 xJ A, is a simple random variable, 

Eg( ~) = L g(x)P(A) = L g(x;)AF ~(x;). (39) 

In other words, in order to calculate the expectation of a function of the 
(simple) random variable~ it is unnecessary to know the probability measure 
P completely; it is enough to know the probability distribution P~ or, equiv­
alently, the distribution function F ~ of ~-

The following important theorem generalizes this property. 

Theorem 7 (Change of Variables in a Lebesgue Integral). Let (Q, ff) and 
(E, $) be measurable spaces and X = X(w) an ffj$-measurable function with 
values in E. Let P be a probability measure on (Q, ff) and Px the probability 
measure on (E, $) induced by X = X(w): 

Px(A) = P{w: X(w) E A}, A E$. (40) 

Then 

f g(x)Px(dx) = f g(X(w))P(dw), 
A x-t(A) 

(41) 

for every $-measurable fimction g = g(x), x E E (in the sense that if one 
integral exists, the other is weil defined, and the two are equal). 

PRooF. Let A E $ and g(x) = la(x), where BE$. Then (41) becomes 

(42) 
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which follows from (40) and the Observation that x- 1(A) n x- 1(B) = 
x- 1(A n B). 

It follows from ( 42) that ( 41) is valid for nonnegative simple functions 
g = g(x). and therefore, by the monotone convergence theorem, also for all 
nonnegative @"-measurable functions. 

In the general case we need only represent g as g + - g-. Then, since ( 41) 
is valid for g+ and g-, if(for example) SAg+(x)Px(dx) < CXJ, we have 

J g+(X(w))P(dw) < oo 
x-'<Al 

also, and therefore the existence of SA g(x)P x(dx) implies the existence of 
fx-'<Al g(X(w))P(dw). 

Corollary. Let (E, @") = (R, PJ(R)) and Iet ~ = ~(w) be a random variable with 
probability distribution P~. Then ifg = g(x) is a Bore/ fimction and either ofthe 
integra/s SA g(x)P~(dx) or s~-1(A) g(~(w))P(dw) exists, we haue 

J g(x)P~(dx) = J g(~(w))P(dw). 
A ~- 1 (A) 

In particular, for A = R we obtain 

Eg(~(w)) = Lg(~(w))P(dw) = Lg(x)P~(dx). (43) 

The measure P ~ can be uniquely reconstructed from the distribution 
function F~ (Theorem 1 of §3). Hence the Lebesgue integral SR g(x)P~(dx) is 
often denoted by SR g(x)F~(dx) and called a Lebesgue-Stieltjes integral 
(with respect to the measure corresponding to the distribution function 
F~(x)). 

Let us consider the case when F~(x) has a density j~(x), i.e.let 

F~(x) = F,/~(y)dy, (44) 

where f~ = j~(x) isanonnegative Bore! function and the integral is a Lebesgue 
integral with respect to Lebesgue measure on the set (- oo, x] (see Remark 2 
in Subsection 1). With the assumption of (44), forrnula (43) takes the form 

Eg(~(w)) = J~}(x)j~(x) dx, (45) 

where the integral is the Lebesgue integral of the function g(x)f~(x) with 
respect to Lebesgue measure. In fact, if g(x) = I ix ), B E PJ(R), the formula 
becomes 

P~(B) = J/~(x) dx, BE Pl(R); (46) 
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its correctness follows from Theorem 1 of §3 and the formula 

F~(b)- F~(a) = f f~(x) dx. 

In the general case, the proof is the same as for Theorem 7. 

9. Let us consider the special case of measurable spaces (Q, .?F) with a 
measure Jl., where Q = Q1 x 0 2, .?F = .?i'1 ® .?F2, and Jl. = Jl.t x JJ.2 is the 
direct product of measures Jl.t and J1. 2 (i.e., the measure on .?F suchthat 

the existence of this measure follows from the proof of Theorem 8). 
The following theorem plays the same role as the theorem on the reduction 

of a double Riemann integral to an iterated integral. 

Theorem 8 (Fubini's Theorem). Let ~ = ~(w 1 , w2) be an .?F 1 ® .?F 2-measur­
able jimction, integrable with respect to the measure Jl.t x JJ.2: 

Then the integrals Jo, ~(w 1 , w2)JJ.1(dw1) and Jo2 ~(w 1 , w2)Jl.idw2) 

(1) are de.fined for all w 1 and w2; 
(2) are respectively .?F 2- and .?F 1-measurable functions with 

and (3) 

Jl.2{w2: t.l~(w~> w2)IJJ.1(dw1) = oo} = 0, 

Jl.1{w1: fo2 1~(wt,w2)1Jl.2(dw2) = oo} = 0 

i ~(wt, w2) d(Jl.t x Jl.2) = i [i ~(rot, w2)Jl.idw2)]Jl.t(dwt) 
o, xo2 o, 02 

= LJL.~(wt, w2)Jl.t(dwt)]Jl.2(dw2). 

(47) 

(48) 

(49) 

PR.ooF. We first show that ~"',(w2) = ~(w 1 , w2 ) is .?F rmeasurable with 
respect to w2 , for each w 1 E 0 1• 

Let Fe.?i'1 ® .?i'2 and ~(w 1 , w2 ) = /F(w1, w2 ). Let 
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be the cross-section of F at w 1, and Iet "6'w, = {FE ff: F w, E F 2}. We must 
show that "6''", = ff for every w 1 • 

lf F = A x B, A E ff ~> B E §' 2, then 

{
B if w 1 E A, 

(A X B)w, = 0 ifw 1 !fA. 

Hence rectangles with measurable sides belong to "6' ro,. In addition, if 
FE ff, then (F)w, = F w,, and if {F"}n;o, 1 are sets in ff, then <U F")w, = 
U F':",. It follows that "6'w, = :F. 

Now Iet ~(w 1 , w2) ~ 0. Then, since thefunction ~(w 1 , w2) isff2-measurable 
for each w 1, the integral J02 ~(w 1 , w2)J12(dw2) is defined. Let us show that this 
integral is an ff1-measurable function and 

Let us suppose that ~(w 1 , w2) = JA x 8(w 1, w2), A E ff1, BE ff2. Then since 
JA xB(wl, w2) = JA(wl)JB(w2), we have 

and consequently the integral on the left of (51) is an ff1-measurable function. 
Now Iet ~(w 1 , w2) = JF(w 1, w2), FE ff = ff1 @ ff2. Let us show that the 

integralf(w1) = Jo 2 JF(w 1, w2)J12(dw2) is ff-measurable. Forthis purpose we 
put "6' = {FE ff:j(w 1) is ff1-measurable}. According to what has been 
proved, the set A x B belongs to '6' (A E %1, BE %2) and therefore the algebra 
d consisting of finite sums of disjoint sets of this form also belongs to "6'. It 
follows from the monotone convergence theorem that "6' is a monotonic 
dass, "6' = J1("6'). Therefore, because of the inclusions d <;; "6' .:; ff and 
Theorem 1 of §2, we have %" = a'(d) = Jl(d) .:; J1("6') = "6' .:; ff, i.e. "6' = ff. 

Finally, if ~(w 1 , w 2 ) is an arbitrary nonnegative ff-measurable function, 
the ff1-measurability of the integral J02 ~(w 1 , w2)J12(dw) follows from the 
monotone convergence theorem and Theorem 2 of §4. 

Let us now show that the measure J1 = flt x 11 2 defined on ff = ff2 @ ff2, 
with the property (!1 1 x J1 2 )(A x B) = flt (A) · J1 2(B), A E ff1, BE ff2, actually 
exists and is unique. 

For FE ff we put 

Jl(F) = {,[{/Fw,(w2)flidw2)}1(dw1). 

As we have shown, the inner integral is an ff1-measurable function, and 
consequently the set function Jl(F) is actually defined for F E :F. It is clear 
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that if F = A x B, then Jl(A x B) = J1 1(A)J12(B). Now Iet {P} be disjoint 
sets from ff. Then 

11CI F") = LJL/(LF")roJwz)J1z(dw2)}1(dw1) 

= r I [ r JFiJ, (wz)J1z{dwz)]J1I(dwd Jn, n Jn2 

= I r [ r I FiJ, (wz)J1z(dw2)]J11 (dwl) = I Jl(P), 
n Jn, Jn2 n 

i.e. J1 is a (a-finite) measure on ff. 
lt follows from Caratheodory's theorem that this measure J1 is the unique 

measure with the property that Jl(A x B) = J1 1(A)J1 2(B). 
We can now establish (50). If ~(w 1 , w2 ) = 1AxB(w1, w2), A E ff1 , BE ff2 , 

then 

r IAxB(wl, Wz)d(J11 X Jlz) = (Jlt X J12)(A X B), (52) 
Jn, x{l2 

LJL/AxB(wl, Wz)Jlz(dwz)]Jlt(dw!) 

= LJIA(wd L/B(wt, Wz)J12(dw2)JJ11(dw1) = J1 1(A)J12(B). (53) 

But, by the definition of J1 1 x Jlz, 

(J1 1 x J12)(A x B) = J1 1 (A)J12(B). 

Hence it follows from (52) and (53) that (50) is valid for ~(w 1 , w 2) = 

IAxB(w!, Wz). 

Now Iet ~(w 1 , w2) = IF(w~> w2), FE ff. The set function 

is evidently a a-finite measure. lt is also easily verified that the set function 

v(F) = LJL/F(w1, Wz)J1 2 (dw 2 )]J11(dw 1 ) 

is a a-finite measure. lt will be shown below that A. and v coincide on sets of 
the form F = A x B, and therefore on the algebra ff. Hence it follows by 
Caratheodory's theorem that A. and v coincide for all F E ff. 
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We turn now to the proof of the full conclusion of Fubini's theorem. 
By (47), 

( ~+(w 1 , w2) d(l11 x 112) < oo, ( C(w1, w2)d(l11 x 112) < oo. 
Jn, xn2 Jn, xn2 
By what has already been proved, the integral Jn2 ~+(w 1 , w2)11z(dw2) is an 
g;-1-measurable function of w 1 and 

( [ ( ~+(w~> w2)11zCdw2)]111(dw1) = ( ~+(w 1 , w2)d(l11 x 112) < oo. 
Jn, Jn2 Jn, x n2 

Consequently by Problem 4 (see also Property J in Subsection 2) 

( ~+(w~> w2)112(dw2) < oo (11 1-a.s.). 
Jn2 

In the same way 

and therefore 

( C(wl, w2)111(dwt) < oo (11 1-a.s.), 
Jn2 

( l~(wt, w2)l11idw2) < oo (11 1-a.s.). 
Jn2 

I t is clear that, except on a set % of 11 1-measure zero, 

( ~(w1, w2)112(dw2) = ( ~+(wt, W2)112(dw2)- ( C(w1, w2)112(dw2). 
Jn2 Jn2 Jn2 

(54) 

Taking the integrals to be zero for w 1 E%, we may suppose that (54) holds 
for all w E 0 1 • Then, integrating (54) with respect to 11 1 and using (50), we 
obtain 

LJL2~(wt, w2)11z(dw2)]11t(dw1) = LJL2~+(w 1 , w2)11zCdw2)}1(dw1) 

-LJL
2
C(w1,w2)11zCdw2)}1(dw1) 

= ( ~+(wt, w2)d(111 x 112) 
Jn, xn2 
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Similarly we can establish the first equation in ( 48) and the equation 

r ~(Wl, W2) d(Jlt X Jl2) = r [ r ~(Wl, W2)Jlt(dwl)]Jlidw2). 
Jnl xn2 Jn2 Jnl 

This completes the proof of the theorem. 

Corollary. If Jn1 Un2 I ~(wto w 2) I Jl2(dw2)]Jl1 (dw1) < oo, the conclusion of 
Fubini's theorem is still valid. 

In fact, under this hypothesis (47) follows from (50), and consequently 
the conclusions of Fubini's theorem hold. 

EXAMPLE. Let(~. '1) be a pair of random variables whose distribution has a 
two-dimensional density ~~~(x, y), i.e. 

P((~, '1) E B) = L~~~(x, y) dx dy, 

where ~~~(x, y) isanonnegative ~{R2)-measurable function, and the integral 
is a Lebesgue integral with respect to two-dimensional Lebesgue measure. 

Let us show that the one-dimensional distributions for ~ and '1 have 
densities f~(x) and f~(y), and furthermore 

Nx) = J:,./~~<x. y) dy 

and (55) 

f"(y) = f_0000j~~(x, y) dx. 

In fact, if A E ~(R), then by Fubini's theorem 

P(~ EA) = P((~, '1) E A x R) = Lx Rf~~(x, y) dx dy = L[fR!~~(x, y) dy ]dx. 

This establishes both the existence of a density for the probability distribution 
of ~ and the first formula in (55). The second formula is established similarly. 

According to the theorem in §5, a necessary and sufficient condition that 
~ and '1 are independent is that 

F~~(x, y) = F~(x)F~(y), 

Let us show that when there is a two-dimensional density h~(x, y), the 
variables ~ and '1 are independent if and only if 

~~~(x, y) = j~(x)j"(y) (56) 

(where the equation is to be understood in the sense of holding almost 
surely with respect totwo-dimensional Lebesgue measure). 



§6. Lebesgue Integral. Expectation 203 

In fact, in (56) holds, then by Fubini's theorem 

F~~(x, y) = I ~~~(u, v) du dv = I f~(u)f"(v) du dv 
(-oo,x] x (-oo,y] (-oo,x] x (-oo,y] 

= J f~(u) du (f f~(v) dv) = F~(x)F~(y) 
(-oo,x] (-oo,y] 

and consequently ~ and 1J are independent. 
Conversely, ifthey are independent and have a density ~~~(x, y), then again 

by Fubini's theorem 

f ~~~(u, v) du dv = (J f~(u) du) (f f~(v) dv) 
(-oo,x] x (-oo,y] (-oo,x] (-oo,y] 

= f f~(u)f~(v) du dv. 
(-oo,x] x (-oo,y] 

It follows that 

for every BE f!4 (R2), and it is easily deduced from Property I that (56) holds. 

10. In this subsection we discuss the relation between the Lebesgue and 
Riemann integrals. 

We first observe that the construction of the Lebesgue integral is inde­
pendent of the measurable space (0, $') on which the integrands are given. 
On the other hand, the Riemann integral is not defined on abstract spaces in 
general, and for n = R" it is defined sequentially: first for R 1 , and then 
extended, with corresponding changes, to the case n > 1. 

We emphasize that the constructions of the Riemann and Lebesgue 
integrals are based on different ideas. The first step in the construction of the 
Riemann integral is to group the points x E R 1 according to their distances 
along the x axis. On the other hand, in Lebesgue's construction (for n = R 1) 

the points x E R 1 are grouped according to a different principle: by the 
distances between the values of the integrand. It is a consequence of these 
different approaches that the Riemann approximating sums have Iimits only 
for "mildly" discontinuous functions, whereas the Lebesgue sums converge 
to Iimits for a much wider dass of functions. 

Let us recall the definition ofthe Riemann-Stieltjes integral. Let G = G(x) 
be a generalized distribution function on R (see subsection 2 of §3) and J.t its 
corresponding Lebesgue-Stieltjes measure, and Iet g = g(x) be a bounded 
function that vanishes outside [a, b]. 
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Consider a decomposition ~ = {x0 , •.• , x"}, 

a = x0 < x 1 < · · · < x" = b, 

of [a, b], and form the upper and lower sums 

where 

g; = sup g(y), 

II 

L = L g;[G(x;) - G(x;_1)] 
7 i=l-

f!_; = inf g(y). 
Xi-1 <y::S:Xi 

Define simple functions gB'(x) and f/B'(x) by taking 

on X;- 1 < x ~ X;, and define gB'(a) = f/B'(a) = g(a). It is clear that then 

L = (L-S) ib gB'(x)G(dx) 
9' a 

and 

Now Iet {&'t} be a sequence of decompositions suchthat &'t s; &'k+ 1• Then 

and if jg(x)l ~ C we have, by the dominated convergence theorem, 

lim L = (L-S) ib g(x)G(dx), 
k-+ oo B'k a 

lim ~ = (L-S) ib f!.(x)G(dx), 
k-+ oo B'k a 

where g(x) = limt gB'k(x), fl(X) = limt f/B'k(x). 

(57) 

If the Iimits limt LB'k and limt LB'k arefinite and equal, and their common 
value is independent of the sequence of decompositions {~d, we say that g = g(x) 
is Riemann-Stieltjes integrable, and the common value ofthe Iimits is denoted 
by 

(R-S) f g(x)G(dx). (58) 

When G(x) = x, the integral is called aRiemannintegral and denoted by 

(R) S:g(x) dx. 
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Now Iet (L-S) J! g(x)G(dx) be the corresponding Lebesgue-Stieltjes 
integral (see Remark 2 in Subsection 2). 

Theorem 9. lf g = g(x) is continuous on [a, b], it is Riemann-Stieltjes inte­
grable and 

(R-S) f g(x)G(dx) = (L-S) f g(x)G(dx). (59) 

PRooF. Since g(x) is continuous, we have g(x) = g(x) = g(x). Hence by (57) 
limk__,co L9'k = limk__,co L9'k· Consequently g = g(x) is -Riemann-Stieltjes 
integral (again by (57)):-

Let us consider in more detail the question of the correspondence between 
the Riemann and Lebesgue integrals for the case of Lebesgue measure on the 
line R. 

Theorem 10. Let g(x) be a bounded function on [a, b]. 

(a) The function g = g(x) is Riemann integrable on [a, b] if and only if it is 
continuous almost everywhere (with respect to Lebesgue measure 1 on 
~([a, b])). 

(b) lf g = g(x) is Riemann integrable, it is Lebesgue integrable and 

(R) f g(x) dx = (L) f g(x)1(dx). 

PRooF. (a) Let g = g(x) be Riemann integrable. Then, by (57), 

(L) r g(x)I(dx) = (L) r ft(x)I(dx). 

But fl(x) :::;; g(x) :::;; g(x), and hence by Property H 

fl(X) = g(x) = g(x) (1-a.s.), 

(60) 

(61) 

from which it is easy to see that g(x) is continuous almost everywhere (with 
respect to 1). 

Conversely, Iet g = g(x) be continuous almost everywhere (with respect 
to 1). Then (61) is satisfied and consequently g(x) differs from the (Borel) 
measurable function g(x) only on a set .;V with 1(%) = 0. But then 

{x: g(x):::;; c} = {x: g(x):::;; c} n .;V+ {x: g(x) :::;; c} n .;V 

= {x: g(x):::;; c} n .;V+ {x: g(x) :::;; c} n .;V 

1t is clear that the set {x: g(x) :::;; c} n .;V e &il([a, b ]), and that 

{x: g(x) :::;; c} n .;V 
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is a subset of .Ai having Lebesgue measure X equal to zero and therefore also 
belonging to :1l([a, b)]. Therefore g(x) is :1l([a, b])-measurable and, as a 
bounded function, is Lebesgue integrable. Therefore by Property G, 

(L) fg(x)X(dx) = (L) fg(x)X(dx) = (L) fg(x)X(dx), 

which completes the proof of (a). 
(b) If g = g(x) is Riemann integrable, then according to (a) it is continuous 

(X-a.s.). lt was shown above than then g(x) is Lebesgue integrable and its 
Riemann and Lebesgue integrals are equal. 

This completes the proof of the theorem. 

Remark. Let J.1 be a Lebesgue-Stieltjes measure on 86([a, b]). Let gji[a, b]) 
be the system consisting of those subsets A ~ [a, b] for which there are sets 
A and B in 86([a, b]) such that A ~ A ~ B and J.l(B\A) = 0. Let J.1 be an 

extension of J.1 to :1l"([a, b]) (jl(A) = J.l(A) for A such that A ~ A ~ B and 
J.l(B\A) = 0). Then the conclusion of the theorem remains valid if we 
consider j1 instead of Lebesgue measure X, and the Riemann-Stieltjes and 
Lebesgue-Stieltjes measures with respect to j1 instead of the Riemann and 
Lebesgue integrals. 

11. In this part we present a useful theorem on integration by parts for the 
Lebesgue-Stieltjes integral. 

Let two generalized distribution functions F = F(x) and G = G(x) be 
given on (R, 86(R)). 

Theorem 11. Thefollowingformulasarevalidforallrealaandb,a < b: 

F(b)G(b)- F(a)G(a) = fF(s- )dG(s) + f G(s) dF(s), (62) 

or equivalently 

F(b)G(b)- F(a)G(a) = fF(s-)dG(s) + fc(s-)dF(s) 

+ L ilF(s) · ilG(s), 
a<s5b 

where F(s-) = limtfs F(t), LlF(s) = F(s)- F(s- ). 

(63) 

Remark 1. Formula (62) can be written symbolically in "differential" form 

d(FG) = F _ dG + GdF. (64) 
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Remark 2. The conclusion of the theorem remains valid for functions Fand G 
of bounded variation on [a, b]. (Every such function that is continuous on 
the right and has Iimits on the left can be represented as the difference of two 
monotone nondecreasing functions.) 

PROOF. We first recall that in accordance with Subsection 1 an integral 
J~ ( ·) means J(a, bJ ( • ). Then (see formula (2) in §3) 

(F(b)- F(a))(G(b)- G(a)) = f dF(s) · fdG(t). 

Let F x G denote the direct product ofthe measures corresponding to Fand 
G. Then by Fubini's theorem 

(F(b) - F(a))(G(b) - G(a)) = J d(F x G)(s, t) 
(a, b] x (a. b] 

= f I{s?.t)(s, t) d(F x G)(s, t) + f I {s<r)(s, t) d(F X G)(s, t) 
(a, b] x (a, b] (a, b] x (a, b] 

= f (G(s) - G(a)) dF(s) + f (F(t-) - F(a)) dG(t) 
(a, bf (a, b] 

= f G(s)dF(s) + f F(s- )dG(s)- G(a)(F(b)- F(a)) - F(a)(G(b)- G(a)), 

(65) 

where I A is the indicator of the set A. 
Formula (62) follows immediately from (65). In turn, (63) follows from 

(62) if we observe that 

f(G(s) - G(s- )) dF(s) = a<~,;b~G(s) · ~F(s). (66) 

Corollary 1. If F(x) and G(x) are distribution fimctions, then 

F(x)G(x) = f
00
F(s-) dG(s) + foo G(s) dF(s). (67) 

If also 

F(x) = f
00

/(s) ds, 

then 

F(x)G(x) = f oo F(s) dG(s) + f oo G(s)f(s) ds. (68) 
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Corollary 2. Let ( be a random variable with distribution function F(x) and 
E 1(1" < oo. Then 

100 
x" dF(x) = n 100 

xn- 1[1 - F(x)] dx, (69) 

fo ixi"dF(x) =- (ooxndF(-x) = n [xn- 1F(-x)dx (70) 
-oo Jo o 

and 

El(l" = J_00

00
1xlndF(x) = n 100

Xn- 1[1- F(x) + F(-x)] dx. (71) 

To prove (69) we observe that 

I: x" dF(x) = -I: x" d(1 - F(x)) 

= - bn(1 - F(b)) + n S: x"- 1(1 - F(x)) dx. (72) 

Let us show that since EI ( ln < oo, 

(73) 

In fact, 

and therefore 

L rk lxln dF(x)-+ 0, 
k;;,:b+ 1 Jk-1 

n-+ oo. 

But 

L rk lxl" dF(x) ~ bnP(I~I ~ b), 
k;;,:b+ 1 Jk-1 

which establishes (73). 

Taking the Iimit as b-+ oo in (72), we obtain (69). 
Formula (70) is proved similarly, and (71) follows from (69) and (70). 

12. Let A(t), t ~ 0, be a function oflocally bounded variation (i.e., ofbounded 
variation on each finite interval [a, b]), which is continuous on the right and 
has Iimits on the left. Consider the equation 

z, = 1 + J~z._ dA(s), (74) 
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which can be written in differential form as 

dZ = Z_ dA, Zo = 1. (75) 

The formula that we have proved for integration by parts Iets us solve (74) 
explicitly in the dass of functions of bounded variation. 

We introduce the function 

Sr(A) = eA(t)-A(O) n (1 + ~A(s))e-&A(s), (76) 
Ü:5S:5l 

where ~A(s) = A(s) - A(s-) for s > 0, and ~A(O) = 0. 
The function A(s), 0 ~ s ~ t, has bounded variation and therefore has at 

most a countable number of discontinuities, and so the series Lo,;;s,;;r I ~A(s) I 
converges. It follows that 

n (1 + ~A(s))e-&A(s) 
0:5s:5t 

is a function of locally bounded variation. 
If Ac(t) = A(t) - Lo,;;s,;;r ~A(s) is the continuous component of A(t), 

we can rewrite (76) in the form 

St(A) = eAC(t)-AC(Q) n (1 + ~A(s)). 
O,;;s,;;t 

Let us write 

G(t) = 0 (1 + ~A(s)). 
O<s<t 

Then by (62) 

S 1(A) = F(t)G(t) = 1 + LF(s) dG(s) + J~G(s-) dF(s) 

= 1 + 
0
};"

1
F(s)G(s- )~A(s) + LG(s- )F(s) dAc(s) 

= 1 + {s._(A) dA(s). 

(77) 

Therefore S,(A), t ~ 0, is a (locally bounded) solution of(74). Let us show that 
this is the only locally bounded solution. 

Suppose that there are two such solutions and Iet Y = Y(t), t ~ 0, be their 
difference. Then 

Y(t) = f~ Y(s-) dA(s). 

Put 

T = inf{t ~ 0: Y(t) =I 0}, 

where we take T = oo if Y(t) = 0 for t ~ 0. 
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Since A(t) is a function of locally bounded variation, there are two 
generalized distribution functions A1(t) and Ait) suchthat A(t) = A1(t)­
A2(t). Ifwe suppose that T < oo, we can find a finite T' suchthat 

Then it follows from the equation 

Y(t) = LY(s-) dA(s), t ~ T, 

that 

supl Y(t)l::;; !supl Y(t)l 
toSt' toST' 

and since sup I Y(t) I < oo, we have Y(t) = 0 for T < t ::;; T', contradicting 
the assumption that T < oo. 

Thus we have proved the following theorem. 

Theorem 12. There is a unique locally bounded solution of(74), and it is given 
by (76). 

13. PROBLEMS 

1. Establish the representation (6). 

2. Prove the following extension of Property E. Let e and '1 be random variables for 
which ee and E17 are defined and the sum Ee + E17 is meaningful (does not have the 
form oo - oo or - oo + oo ). Then 

3. Generalize PropertyG by showing that if e = '1 (a.s.) andEe exists, then E17 exists and 
ee = e"'. 

4. Let e be an extended random variable, p. a u-finite measure, and Jn 1e1 dp. < oo. 
Show that I e I < oo (p.-a.s.) ( cf. Property J). 

5. Let p. be a u-finite measure, e and '1 extended random variables for which ee and E17 
are defined. If JA e dP ~ JA '1 dP for all A e :F, then e ~ '1 (p.-a.s.). (Cf. Property 1.) 

6. Let e and '1 be independentnonnegative random variables. Show that Eel'f = ee · E17. 

7. Using Fatou's Iemma, show that 

P(lim A.) ~ lim P(A.), P(lim A.) ~ lim P(A.). 

8. Find an example to show that in general it is impossible to weaken the hypothesis 
"I e. I ~ l'f, El'f < 00 .. in the dominated convergence theorem. 
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9. Find an example to show that in general the hypothesis "e. ~ tf, Etf > - oo" in 
Fatou's Iemma cannot be omitted. 

10. Prove the following variants of Fatou's Iemma. Let the family g: }.;;,, 1 of random 
variables be uniformly integrable and Iet E !im e. exist. Then 

lim ee. ~ e lim e •. 

Let e. ~ "·· n ~ 1, where the family {en.,., is uniformly integrable and 'ln 
converges a.s. (or only in probability-see §10 below) to a random variable 'I· Then 
lim ee. ~ e lim e •. 

11. Dirichlet's function 

d(x) = {1, x irr~tional, 
0, x rational, 

is defined on [0, 1], Lebesgue integrable, but not Riemann integrable. Why? 

12. Find an example of a sequence of Riemann integrable functions {f.} .,. 1, defined on 
[0, 1], suchthat 1!.1 ~ 1, f.--+ f almost everywhere (with Lebesgue measure), but 
f is not Riemann integrable. 

13. Let (a;,j; i,j ~ 1) be a sequence ofreal numbers suchthat Li.i Ia;) < oo. Deduce 
from Fubini's theorem that 

(78) 

14. Findanexampleofasequence(aii; i,j ~ 1)forwhichL;.ila;il = ooandtheequation 
in (78) does not hold. 

15. Starting from simple functions and using the theorem on taking Iimits under the 
Lebesgue integral sign, prove the following result on integration by substitution. 

Let h = h(y) be a nondecreasing continuously differentiable function on [a, b], 
and Iet f(x) be (Lebesgue) integrable on [h(a), h(b)]. Then the function f(h(y))h'(y) 
is integrable on [a, b] and 

Jh(b) fb 
f(x) dx = f(h(y))h'(y) dy. 

h(a) a 

16. Prove formula (70). 

17. Let e, e 1, e2 , ••• be nonnegative integrable random variables suchthat ee.--+ Ee and 
P(e - e. > e)--+ 0 for every e > 0. Show that then E 1e.- el--+ 0, n--+ oo. 

18. Let e, tf, 'and e., tf., '·· n ~ 1, be random variables suchthat 

p 

"·--> ", 
E,.--+ E,, 

"· ~ e. ~ '·· n ~ 1, 

and the expectations Ee, Etf, E' are finite. Show that then ee.--+ Ee (Pratt's Iemma). 
If also '~• ~ o ~ '· then E I e. - e I --+ 0, 
Deduce that if e • .f. e, E I e.l --+ E I e I and E I e I < oo, then E I e. - e I --+ o. 
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§7. Conditional Probabilities and Conditional 
Expectations with Respect to a u-Algebra 

1. Let (Q, !F, P) be a probability space, and Iet A E 1F be an event such that 
P(A) > 0. As for finite probability spaces, the conditional probability of B with 
respect to A (denoted by P(BIA)) means P(BA)/P(A), and the conditional 
probability of B with respect to the finite or countable decomposition f!) = 
{D 1, D2 .. • } with P(D;) > 0, i ~ 1 (denoted by P(Bif!)))is the random variable 
equal to P(BID;) for w E D;, i ~ 1: 

P(Bif!)) = L P(BID;)I0 ;(w). 
i;;, 1 

In a similar way, if ~ is a random variable for which E~ is defined, the 
conditional expectation of ~ with respect to the event A with P(A) > 0 (denoted 
by E(~IA)) is E(OA)/P(A) (cf. (1.8.10). 

The random variable P(B I f!)) is evidently measurable with respect to the 
11-algebra t'§ = 11(f!)), and is consequently also denoted by P(B I t'§) (see §8 of 
Chapter I). 

However, in probability theory we may have to consider conditional 
probabilities with respect to events whose probabilities are zero. 

Consider, for example, the following experiment. Let ~ be a random 
variable that is uniformly distributed on [0, 1]. If ~ = x, toss a coin for which 
the probability of head is x, and the probability of tail is 1 - x. Let v be the 
number ofheads in n independent tosses oftbis coin. What is the "conditional 
probability P(v = kl~ = x)"? Since P(e = x) = 0, the conditional prob­
ability P( v = k I ~ = x) is undefined, although it is intuitively plausible that 
"it ought tobe C~xk(1 - x)"-k." 

Let us now give a general definition of conditional expectation (and, in 
particular, of conditional probability) with respect to a 11-algebra t'§, t'§ s;;; !F, 
and compare it with the definition given in §8 ofChapter I for finite probability 
spaces. 

2. Let (Q, !F, P) be a probability space, t'§ a 11-algebra, t'§ s;;; 1F (t'§ is a 11-

subalgebra of fF), and ~ = ~(w) a random variable. Recall that, according to 
§6, the expectation E ~was defined in two stages: first foranonnegative random 
variable ~. then in the general case by 

and only under the assumption that 

A similar two-stage construction is also used to define conditional expecta­
tions E ( ~ I t'§). 
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Definition l. 

(1) The conditional expectation of a nonnegative random variable ~ with 
respect to the a-algebra f§ is a nonnegative extended random variable, 
denoted by E(~ I'§) or E(~ I '§)(w), suchthat 

(a) E(~l'§) is '§-measurable; 
(b) for every A E f§ 

{ ~ dP = { E(~l'§) dP. (1) 

(2) The conditional expectation E(~l'§), or E(~l'§)(w), of any random 
variable ~ with respect to the a-algebra f§, is considered to be defined if 

min(E(~+ I'§), E(C I'§))< oo, 

P-a.s., and it is given by the formula 

E(~l'§) = E(~+ I'§)- E(C I'§), 

where, on the set (ofprobability zero) ofsample points for which E(~+ 1 '§) 
= E(CI'§) = oo,thedifferenceE(~+I'§)- E(CI'§)isgivenanarbitrary 
value, for example zero. 

We begin by showing that, for nonnegative random variables, E(~l'§) 
actually exists. By (6.36) the set function 

Q(A) = { ~ dP, A Ef§, (2) 

is a measure on (Q, '§), and is absolutely continuous with respect to P 
(considered on (Q, '§), f§ ,;; ff). Therefore (by the Radon-Nikodym theorem) 
there isanonnegative '§-measurable extended random variable E(~ I'§) such 
that 

Q(A)= {E(~I'§)dP. (3) 

Then (1) follows from (2) and (3). 

Remark l. In accordance with the Radon-Nikodym theorem, the con­
ditional expectation E(el '§) is defined only up to sets of P-measure zero. 
In other words, E(~ I'§) can be taken to be any '§-measurable function f(w) 
for which Q(A) = JAf(w) dP, A E f§ (a "variant" of the conditional ex­
pectation). 

Let us observe that, in accordance with the remark on the Radon­
Nikodym theorem, 

dQ 
E(~l'§) = dP (w), (4) 



214 II. Mathematical Foundations of Probability Theory 

i.e. the conditional expectation is just the derivative of the Radon-Nikodym 
measure 0 with respect to P (considered on (!1, ~)). 

Remark 2. In connection with (1), we observe tha{ we cannot in general put 
E(~ I~) = ~, since ~ is not necessarily ~-measurable. 

Remark 3. Suppose that ~ is a random variable for which E~ does not exist. 
Then E(~ I~) may be definable as a ~-measurable function for which (1) holds. 
This is usually just what happens. Our definition E(~l~) = E(~+ I~)­
E(C I~) has the advantage that for the trivial 0'-algebra ~ = {0, !1} it 
reduces to the definition of E~ but does not presuppose the existence of E~. 
(Forexample,if~isarandomvariablewithE~+ = oo.EC = oo,and~ =.?., 
then E~ is not defined, but in terms ofDefinition 1, E(~ l~f) exists and is simply 
~ = ~+- c. 
Remark 4. Let the random variable~ have a conditional expectation E(~ I~) 
with respect to the 0'-algebra ~. The conditional variance (denoted by V(~ 1-:§) 
or VW~)(a)) of ~ is the random variable 

(Cf. the definition of the conditional variance V(~ I~) of ~ with respect to a 
decomposition ~' as given in Problem 2, §8, Chapter 1.) 

Definition 2. Let B E :F. The conditional expectation E (I BI'§) is denoted by 
P(B 1-:§), or P(B 1-:§)(w), and is called the conditional probability of the event B 
with respect to the 0'-algebra -:§, ~ <;; :F. 

lt follows from Definitions 1 and 2 that, for a given B E .?., P(B I~) is a 
random variable such that 

(a) P(B I~) is ~-measurable, 

(b) P(A n B) = {P(BI~)dP (5) 

for every A E ~. 

Definition 3. Let ~ be a random variable and ~~ the a-algebra generated by 
a random element YJ. Then E(~l~n), if defined, means EWYJ or E(~IYJ)(w), 
and is called the conditional expectation of ~ with respect to YJ. 

The conditional probability P(BI~~) is denoted by P(BIYJ) or P(BIYJ)(w), 
and is called the conditional probability of B with respect to YJ. 

3. Let us show that the definition ofE(~ I~) given here agrees with the defini­
tion of conditional expectation in §8 of Chapter I. 
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Let~= {D 1, D2 , •• • } be a finite or countable decomposition with atoms 
D; with respect to the probability P (i.e. P(D;) > 0, and if A s;;; D;. then 
either P(A) = 0 or P(D;\A) = 0). 

Theorem 1. If '"§ = u(~) and ~ is a random variable for which E~ is de.fined, 
then 

E(~J'"S) = E(~ID;) (P-a.s. on D;) (6) 

or equivalently 

E("J'"S)=E(On.) (P D) ., P(D;) -a.s. on ; . 

(The notation "~ = 17 (P-a.s. on A)," or 

"~ = 17(A; P-a.s.)" means that P(A n g =f. 17}) = 0.) 

PROOF. According to Lemma 3 of §4, E(~J'"S) = K; on D;, where K; are 
constants. But 

whence 

1 ( E(~In.) 
K; = P(D;) Jn,~ dP = P(D;) = E(e~D;). 

This completes the proof of the theorem. 

Consequently the concept of the conditional expectation E( ~ 1 ~) with 
respect to a finite decomposition ~ = {D1, ••• , Dn}, as introduced in 
Chapter I, is a special case of the concept of conditional expectation with 
respect to the u-algebra '"§ = u(D). 

4. Properties of conditional expectations. (We shall suppose that the expecta­
tions are defined for all the random variables that we consider and that 
'"§ s;;; :#'.) 

A*. IfC is a constant and ~ = C (a.s.), then E(~J'"S) = C (a.s.). 
8*. If ~:::;; '7 (a.s.) then E(~J'"S):::;; E(17l'"S) (a.s.). 
C*. JE(~J'"S)J:::;; E(J~IJ'"S) (a.s.). 
D*. If a, bare constants and aE~ + bE17 is de.fined, then 

E(a~ + b17l'"S) = aE(~J'"S) + bE(17l'"S) (a.s.). 

E*. Let !F* = {qJ, Q} be the trivial u-algebra. Then 

E(~J!F*) = E~ (a.s.). 
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F*. E(e[§") = e(a.s.). 
G*. E(E(el~» = ee. 
H*. lf~t ~ ~2 then 

1*. lf~1 2 ~2 then 

J*. Let a random variable e for which E e is de.fined be independent of the 
a-algebra ~ (i.e., independent of IB, BE~). Then 

E(el~) = Ee (a.s.). 

K*. Let '1 be a ~-measurable random variable, Elel < oo and Ele'71 < oo. 
Then 

E(e'71~) = "e(el~) (a.s.). 

Let us establish these properties. 

A*. A constant function is measurable with respect to ~- Therefore we need 
only verify that 

{eaP = {caP, Ae~. 

But, by the hypothesis ~ = C (a.s.) and Property G of §6, this equation 
is obviously satisfied. 

B*. If e :::; '1 (a.s.), then by Property B of §6 

f} dP:::; f} dP, A e~. 
and therefore 

L E(el ~) dP :::; L E('71 ~) dP, A E ~-

The required inequality now follows from Property I (§6). 
C*. This follows from the preceding property if we observe that - I e I 

:::; ~:::; 1~1-
D*. If A e ~ then by Problem 2 of §6, 

{ (ae + b'1) dP = { ae dP + f}" dP = L aE(el~) dP 

+ LbE('11~)dP = {[aE(~I~) + bE('71~)] dP, 

which establishes D*. 
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E*. This property follows from the remark that E~ is an g-*-measurable 
function and the evident fact that if A = n or A = 0 then 

F*. Since ~ if g--measurable and 

L~dP = L~ dP, 

we have E(~lg-) = ~ (a.s.). 
G*. This follows from E* and H* by taking '9'1 = {0, Q} and '9'2 = '9'. 
H*. Let A E '9'1; then 

Since '9' 1 c;; '9' 2 , we have A E '9' 2 and therefore 

Consequently, when A E '9' 1, 

L E(~l'9'1) dP = L E[E(~I'9'2 )I'9' 1 ] dP 

and by Property I (§6) and Problem 5 (§6) 

E(~l'9' 1 ) = E[EW'9'2)1'9'1] (a.s.). 

I*. If A E '9' 1, then by the definition of E [E ( ~ I '9' 2) I '9' 1] 

The function E( ~I '9' 2 ) is '9' 2-measurable and, since '9' 2 c;; '9' 1, also 
'9'1-measurable. lt follows that E(~l'9'2 ) isavariant of the expectation 
E[E(~I'9'2 )I'9' 1 ], which proves Property 1*. 

J*. Since E~ is a '9'-measurable function, we have only to verify that 

i.e. that E [ ~ · I B] = E ~ · EI B. If E I ~ I < oo, this follows immediately from 
Theorem 6 of §6. The generat case can be reduced to this by applying 
Problem 6 of §6. 

The proof of Property K* will be given a little later; it depends on con­
clusion (a) of the following theorem. 
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Theorem 2 (On Taking Limits Under the Expectation Sign). Let {~n}n> 1 

be a sequence of extended random variables. -

(a) If l~nl:::;; 1], E17 < oo and ~n--+ ~ (a.s.), then 

E(~nl~)--+ E(~l~) (a.s.) 
and 

E( I ~n - ~ II ~) --+ 0 (a.s.). 

(b) If ~n 2:: 1], E1J > - oo and ~n i ~ (a.s.), then 

E(~nl~)i EW~) (a.s.). 

(c) If ~n :::;; 1], E17 < oo, and ~n! ~ (a.s.), then 

E(~nl~)! EW~) (a.s.). 

(d) If ~n 2:: 1], E1J > - oo, then 

E(lim ~nl~):::;; !im E(~nl~) (a.s.). 

(e) If ~n :::;; 1], E1] < oo, then 

!im E(~nl~):::;; E(lim U~) (a.s.). 

(f) If ~n 2:: 0 then 

E(L ~nl~) = L E(~nl~) (a.s.). 

PR.ooF. (a) Let (n = supm~n I ~m - n Since ~n--+ ~ (a.s.), we have (n! 0 
(a.s.). The expectations E~n and E~ are finite; therefore by Properties D* 
and C* (a.s.) 

IE(~nl~)- EW~)I = IE(~n- ~~~)I:::;; E(l~n- ~~~~):::;; E((nl~). 

Since E((n+ll~):::;; E((nl~)(a.s.), the Iimit h = limn E((nl~) exists (a.s.). Then 

0:::;; LhdP:::;; LE((nl~)dP = L(ndP--+0, n-+ 00, 

where the last statement follows from the dominated convergence theorem, 
since 0 :::;; (n :::;; 21], E17 < oo. Consequently J0 h dP = 0 and then h = 0 
(a.s.) by Property H. 

(b) First Iet 1J = 0. Since E(~nl~):::;; E(~n+ll~) (a.s.) the Iimit ((w) = 

limn E(~nl~) exists (a.s.). Then by the equation 

L ~n dP = L E(~nl~) dP, A E ~' 

and the theorem on monotone convergence, 

L~dP = L(dP, AE~. 

Consequently ~ = ( (a.s.) by Property I and Problem 5 of §6. 
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For the proof in the general case, we observe that 0 ~ e;; je+, and by 
what has been proved, 

E(e;; I~) i E(e+ I~) (a.s.). 

But 0 ~ e;; ~ C, Ee- < oo, and therefore by (a) 

E(e;; I~)-+ E(C 1~), 

which, with (7), proves (b ). 
Conclusion ( c) follows from (b ). 

(7) 

(d) Let Cn = infm~n em; then Cn j (, where ( = lim en· According to (b), 
E(Cnl~) i E((l~) (a.s.). Therefore (a.s.) E(lim enl~) = E((l~) = lim" E(Cnl~) 
= lim E((J~) ~ lim E(enl~). 

Conclusion (e) follows from (d). 
(f) If en ~ 0, by Property D* we have 

E(t ekl~) = kt1 E(ekl~) (a.s.) 

which, with (b), establishes the required result. 
This completes the proof of the theorem. 

We can now establish Property K*. Let '7 = IB, BE~- Then, for every 
AE~, 

f ~'7 dP = f ~ dP = f E(el~) dP = f IBEW~) dP = f '7EW~) dP. 
A AnB AnB A A 

By the additivity of the Lebesgue integral, the equation 

Ae~, (8) 

remains valid for the simple random variables '7 = Li:= 1 Ykl Bk' Bk E ~­
Therefore, by Property I (§6), we have 

E(~'71~) = 17E(el~) (a.s.) (9) 

for these random variables. 
Now let '7 be any ~-measurable random variable with E I '71 < oo, and 

Iet { '7n} "~ 1 be a sequence of simple ~-measurable random variables suchthat 
I '7n I ~ '7 and '7n -+ '1· Then by (9) 

E(e'7nl~ = '7nEW~) (a.s.). 

It is clear that 1~'7nl ~ 1~'71, where El~.,l < oo. Therefore E(~'7nl~)-+ 
E(~'71~) (a.s.) by Property (a). In addition, since E 1e1 < oo, we have E(el~) 
finite (a.s.) (see Property C* and Property J of §6). Therefore '7nE(el~)-+ 
17E(~ I~) (a.s.). (The hypothesis that E(~ I~) is finite, almost surely, is essential, 
since, according to the footnote on p. 172, 0 · oo = 0, but if '7n = 1/n, '7 = 0, 
we have 1/n · oo + 0 · oo = 0.) 
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5. Here we consider the more detailed structure of conditional expectations 
E ( ~ I ~ ~), which we also denote, as usual, by E ( ~ I 11 ). 

Since E(~ 1'1) is a ~~-measurable function, then by Theorem 3 of §4 (more 
precisely, by its obvious modification for extended random variables) there 
is a Bore I function m = m(y) from R to R such that 

(10) 

for all wen. We denote this function m(y) by E(~l'l = y) and call it the 
conditional expectation of ~ with respect to the event {17 = y}, or the conditional 
expectation of ~ under the condition that 11 = y. 

Correspondingly we define 

Ae~~- (11) 

Therefore by Theorem 7 of §6 ( on change of variable under the Lebesgue 
integral sign) 

f m(17) dP = ( m(y)P~(dy), 
{ro: ~eB} J B 

Be&I(R), (12) 

where P~ is the probability distribution of '1· Consequently m = m(y) is a 
Borel function such that 

f ~ dP = ( m(y) dP ~. 
{ro: ~eB} J B 

(13) 

for every Be BI(R). 
This remark shows that we can give a different definition of the conditional 

expectation E<e!11 = y). 

Definition 4. Let ~ and 11 be random variables (possible, extended) and Iet 
E~ be defined. The conditional expectation of the random variable~ under 
the condition that 11 = y is any PA(R)-measurable function m = m(y) for 
which 

f ~ dP = ( m(y)P~(dy), 
{ro:~eB} JB 

Be&I(R). (14) 

That such a function exists follows again from the Radon-Nikodym theorem 
if we observe that the set function 

Q(B) = f ~ dP 
{ro: ~eB} 

is a signed measure absolutely continuous with respect to the measure P~. 
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Now suppose that m(y) is a conditional expectation in the sense of Defini­

tion 4. Then if we again apply the theorem on change of variable under the 

Lebesgue integral sign, we obtain 

f ~ = f m(y)Pq(dy) = f m(r/), 
{ro:qeB} B {ro:qeB} 

BE BI(R). 

The function m(rJ) is ~q-measurable, and the sets {w:17EB}, BEBI(R), 

exhaust the subsets of ~q. 
Hence it follows that m(17) is the expectation E(~ 11J). Consequently if we 

know E(~l'7 = y) we can reconstruct EW17), and conversely from E(~l'7) we 

can find E(~l'7 = y). 
From an intuitive point of view, the conditional expectation E(~l'7 = y) 

is simpler and morenatural than EW1J). However, EW1J), considered as a 

~q-measurable random variable, is more convenient to work with. 

Observe that Properties A*-K* above and the conclusions ofTheorem 2 

can easily be transferred to EW17 = y) (replacing "almost surely" by 

"P q-almost surely "). Thus, for example, Property K* transforms as follows: 

if EIe I < 00 and E llf('7) I < oo, where f = f(y) is a BI(R) measurable func­
tion, then 

E(lf('7)11J = y) = f(y)E(el'7 = y) (Pq-a.s.). 

In addition (cf. Property J*), if e and 17 are independent, then 

EW11 = y) = Ee (Pq-a.s.). 

We also observe that if BE BI(R 2 ) and ~ and 17 are independent, then 

E[Jie. '7)1'7 = y] = Eiie. y) (Pq-a.s.), 

(15) 

(16) 

and if cp = cp(x, y) is a Bl(R2)-measurable function suchthat E 1 cp(e, 17) 1 < oo, 

then 

E[cp(e, '7)1'7 =.yJ = E[cp(e, y)J (Pq-a.s.). 

To prove (16) we make the following Observation. If B = B1 x B2 , the 

validity of (16) will follow from 

r IB,xB,(e, 1])P(dw) = f EIB,xB2(e, y)Pq(dy). 
J{ro:qeA) (ye:4) 

But the left-hand side is P{ ~ E B1, 1J E Ar\ B2 }, and the right-hand side is 

P(e E B 1)P(17 E An B2 ); their equality follows from the independence of e 
and '7· In the general case the proof depends on an application ofTheorem 1, 

§2, on monotone classes (cf. the corresponding part of the proof of Fubini's 

theorem). 

Definition 5. The conditional probability of the event A E ~ under the con­

dition that 1J = y (notation: P(A 1'7 = y)) is E{I A 111 = y). 
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lt is clear that P(A I YJ = y) can be defined as the ,qß(R)-measurable function 
suchthat 

P(A n {YJ E B}) = ft(A IYJ = y)Pq(dy), BE ,qß(R). (17) 

6. Let us calculate some examples of conditional probabilities and con­
ditional expectations. 

ExAMPLE 1. Let YJ be a discrete random variable with P(YJ = Yk) > 0, 
Lk= 1 P(YJ = Yk) = 1. Then 

P(A I = ) = P(A n {YJ = yd) 
'1 Yk P( _ ) , '1 - Yk 

k?..l. 

For y f/;. {y 1, Yz, .. . } the conditional probability P(A I IJ = y) can be defined 
in any way, for example as zero. 

If ~ is a random variable for which E~ exists, then 

When yf/:. {y 1, y2 , .• • } the conditional expectation E(~IYJ = y) can be defined 
in any way (for example, as zero ). 

EXAMPLE 2. Let ( ~, 11) be a pair of random variables whose distribution has a 
density f~/x, y): 

P{(~, YJ) E B} = J;~~(x, y) dx dy, 

Let f~(x) and f~(y) be the densities of the probability distribution of ~ and 1J 
(see (6.46), (6.55) and (6.56). 

Let us put 

(18) 

taking J~ 1 ~(x I y) = 0 if f~(y) = 0. 
Then 

P(~ E CIYJ = y) = i.J~ 1 ~(xly) dx, CE ,qß(R), (19) 

i.e. f~ 1 ~(x I y) is the density of a conditional probability distribution. 
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In fact, in order to prove (19) it is enough to verify (17) for Be ßi(R), 
A = {~ e C}. By (6.43), (6.45) and Fubini's theorem, 

1 [J/~~~(xJy) dx ]P~(dy) = 1 [J/~ 1 ~(xJy) dx ]f~(y) dy 

= r ~~~~(xJy)üy) dx dy 
JcxB 

= r ~~~(x, y) dx dy 
JcxB 

= P{(~. tl) e C x B} = P{(~ e C) n (tt e B)}, 

which proves (17). 
In a similar way we can show that if E~ exists, then 

(20) 

EXAMPLE 3. Let the length of time that a piece of apparatus will continue to 
operate be described by a nonnegative random variable t1 = tt(w) whose 
distribution F~(y) has a density j~(y)(naturally, F~(y) = J~(y) = 0 for y < 0). 
Find the conditional expectation E(tt- al11 ~ a), i.e. the averagetime for 
which the apparatus will continue to operate on the hypothesis that it has 
already been operating for time a. 

Let P(tt ~ a) > 0. Then according to the definition (see Subsection 1) and 
(6.45), 

It is interesting to observe that if t1 is exponentially distributed, i.e. 

J,(y) = e ' y - , {
A. -;.y > 0 

~ 0 y < 0, 
(21) 

then Ett = E(171t1 ~ 0) = 1/A. and E(tt -a111 ~ a) = 1/A. for every a > 0. In 
other words, in this case the average time for which the apparatus continues 
to operate, assuming that it has already operated for time a, is independent 
of a and simply equals the average time Ett. 

Under the assumption (21) we can find the conditional distribution 
P(tt- a =:;; xltt ~ a). 
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Wehave 

P( _ < I > ) = P(a =:;; 11 =:;; a +/x) 
11 a _ x 11 _ a P(rJ ~ a) 

F"(a + x)- F"(a) + P(11 = a) 
- 1 - F"(a) + P(11 = a) 

[1 - e-A(a+x>] - [1 - e-;.1 
1- [1- e ;.1 

e-).a[1 - e-).x] 
= = 1 - e-Ax e ).a • 

Therefore the conditional distribution P(11 - a =:;; x I 11 ~ a) is the same 
as the unconditional distribution P(11 =:;; x). This remarkable property 
is unique to the exponential distribution: there are no other distributions 
thathavedensitiesandpossesstheproperty P(11- a =:;; x111 ~ a) = P(rJ =:;; x), 
a ~ 0, 0 =:;; x < oo. 

EXAMPLE 4 (Buffon's needle). Suppose that we toss a needle of unit length 
"at random" onto a pair of parallel straight lines, a unit distance apart, in 
a plane. What is the probability that the needle will intersectat least one ofthe 
lines? 

To solve this problern we must first define what it means to toss the 
needle "at random." Let e be the distance from the midpoint ofthe needle to 
the left-hand line. Weshall suppose that ~ is uniformly distributed on [0, 1], 
and (see Figure 29) that the angle () is uniformly distributed on [ -n/2, n/2]. 
In addition, we shall assume that e and () are independent. 

Let A be the event that the needle intersects one of the lines. lt is easy to 
see that if 

'TC 
B = {(a, x): Iai =:;; 2, x E [0, !cos a] u [1 - !cos a, 1]}, 

then A = {w: ((), e) E B}, and therefore the probability in question is 

P(A) = EIA'w) = EliO(w), e(w)). 

Figure 29 
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By Property G* and formula (16), 

Ela(O(w), ~(w)) = E(E[Ja(O(w), ~(w))IO(w)]) 

= {E[IB(O(w), ~(w))iO(w)]P(dw) 

f1t/2 

= _"12E[IB(8(w), ~(w))IO(w) = 1X]P6(da) 

1 J"12 1 J"12 2 =- EIB(a, ~(w)) da =- cos a da = -, 
TC _"12 TC -"/2 TC 

where we have used the fact that 

Ela(a, ~(w)) = P{~ E [0, t cos a] u [1 - t cos a]} = cos a. 

Thus the probability that a "random" toss of the needle intersects one of 
the lines is 2/TC. This result could be used as the basis for an experimental 
evaluation of TC. In fact, Iet the needle be tossed N times independently. 
Define ~;tobe 1 if the needle intersects a line on the ith toss, and 0 otherwise. 
Then by the law of !arge numbers (see, for example, (1.5.6)) 

P{l~ 1 + -~ + ~N- P(A)I > e}-+ 0, N-+ oo. 
for every e > 0. 

In this sense the frequency satisfies 

~1 + ... + ~N ~ P(A) = ~ 
N TC 

and therefore 

2N 
-"------------"---- ~ TC. 
~1 + .. • + ~N 

This formula has actually been used for a statistical evaluation of TC. In 
1850, R. Wolf (an astronomer in Zurich) threw a needle 5000 times and 
obtained the value 3.1596 for TC. Apparently this problern was one of the first 
applications (now known as Monte Carlo methods) of probabilistic­
statistical regularities to numerical analysis. 

7. If gn}n~ 1 is a sequence of nonnegative random variables, then according 
to conclusion (f) of Theorem 2, 

In particular, if B1, B2 , ••• is a sequence of pairwise disjoint sets, 

(22) 
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lt must be emphasized that this equation is satisfied only almost surely 
and that consequently the conditional probability P(B I<§)( w) cannot be 
considered as a measure on B for given w. One might suppose that, except 
for a set .;V of measure zero, P( ·I<§) ( w) would still be a measure for w E %. 
However, in general this is not the case, for the following reason. Let 
%(B1, B2 , ••• ) be the set ofsample points w suchthat the countable additivity 
property (22) fails for these B 1 , B2 , •••• Then the excluded set% is 

(23) 

where the union is taken over all B 1 , B2 , ••• in ff. Although the P-measure 
of each set %(B1, B2 , ••• ) is zero, the P-measure of .;V can be different from 
zero (because of an uncountable union in (23)). (Recall that the Lebesgue 
measure of a single point is zero, but the measure of the set .;V = [0, 1], 
which is an uncountable sum of the individual points {x}, is 1). 

However, it would be convenient if the conditional probability P(·l <§)(w) 
were a measure for each w E n, since then, for example, the calculation of 
conditional probabilities E(~ I<§) could be carried out (see Theorem 3 below) 
in a simple way by averaging with respect to the measure P(·l<§)(w): 

E(~l<§) = L~(w)P(dwl<§) (a.s.) 

(cf. (1.8.10)). 

We introduce the following definition. 

Definition 6. A function P( w; B), defined for all w E Q and BE fi', is a regular 
conditional probability with respect to <§ if 

(a) P(w; ·) is a probability measure on Jll for every w E Q; 
(b) Foreach BE Jll the function P(w; B), as a function of w, isavariant ofthe 

conditional probability P(B I <§)(w), i.e. P(w: B) = P(B I <§)(w) (a.s.). 

Theorem3. Let P(w; B) be a regular conditional probability with respect to 
<§ and Iet ~ be an integrable random variable. Then 

EW0')(w) = t ~(w)P(w; dw) (a.s.). (24) 

PROOF. lf ~ = IB, BE fi', the required formula (24) becomes 

P(BI<§)(w) = P(w; B) (a.s.), 

which holds by Definition 6(b). Consequently (24) holds for simple functions. 
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Now Iet ~;;::: 0 and ~n j ~. where ~n aresimple functions. Then·by (b) of 
Theorem 2 we have E(~l'§)(w) = limn E(~nl'§)(w) (a.s.). But since P(w; ·) 
is a measure for every wEn, we have 

lim E(~nl'§)(w) =!im f ~n(w)P(w; dw) = f ~(w)P(w; dw) 
n n Jn Jn 

by the monotone convergence theorem. 
The general case reduces to this one if we use the representation ~ = 

~+- c. 
This completes the proof. 

Corollary. Let '§ = '§~, where '1 is a random variable, and Iet the pair(~, 1'/) 
have a probability distribution with density J~~(x, y). Let E lg(~)l < oo. Then 

where J~ 1 ~(x I y) is the density of the conditional distribution (see (18)). 

In order to be able to state the basic result on the existence oL regular 
conditional probabilities, we need the following definitions. 

Definition 7. Let (E, C) be a measurable space, X = X(w) a random element 
with values in E, and '§ a a-subalgebra of !F. A function Q(w; B), defined 
for w E n and B E C is a regular conditional distribution of X with respect to 
'§ if 

(a) for each wEn the function Q(w; B) is a probability measure on (E, C); 
(b) for each B E C the function Q( w; B), as a function of w, is a variant of the 

conditional probability P(X E B l'§)(w), i.e. 

Q(w; B) = P(X E Bl'§)(w) (a.s.). 

Definition 8. Let ~ be a random variable. A function F = F(w; x), wEn, 
x E R, is a regular distribution function for ~ with respect to '§ if : 

(a) F(w; x) is, for each wEn, a distribution function on R; 
(b) F(w;x) = P(~:::;; xl'§)(w)(a.s.),foreachxeR. 

Theorem 4. A regular distribution function and a regular conditional distribu­
tionfunction always existfor the random variable~ with respect to <§, 
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PRooF. For each rational number rER, define F,(w) = P(~::::;; rl~)(w), 

where P(~::::;; rl~)(w) = E(J1~:srll~)(w) is any variant of the conditional 
probability, with respect to ~. of the event { ~ ::::;; r}. Let {r;} be the set of 
rational numbers in R. If r; < ri, Property B* implies that P(~ ::::;; r;l ~)::::;; 
P(~::::;; ril~) (a.s.), and therefore if Aii = {w: F,/w) < F,,(w)}, A = lJAii, 
we have P(A) = 0. In other words, the set of points w at which the distribu­
tion function F,(w), r E {r;}, fails to be monotonic has measure zero. 

Now Iet 

B; = {w: lim Fr,+Oiniw) # F,,(w)l, 
n-+oo J 

00 

B= lJ B;. 
i= 1 

lt is clear that J 1~9,+< 1 ;nn! J1~9d, n-+ oo. Therefore, by (a) of Theorem 2, 
F,,+Ofn>(w)-+ F,,(w) (a.s.), and therefore the set Bon which continuity on the 
right fails (with respect to the rational numbers) also has measure zero, 
P(B) = 0. 

In addition, Iet 

C = {w: lim Fn(w) # 1} u {w: lim Fiw) > o}. 
n-+oo n-+-oo 

Then, since {~::::;; n} j n, n-+ oo, and {~::::;; n}! 0, n-+ - oo, we have 
P(C) = 0. 

Now put 

F( . ) = {lim F,(w), w~A u B u C, 
W, X r!x 

G(x), wEA u B u C, 

where G(x) is any distribution function on R; we show that F(w; x) satisfies 
the conditions of Definition 8. 

Let w ~ A u B u C. Then it is clear that F(w; x) is a nondecreasing func­
tion ofx. Ifx < x' ::::;; r, then F(w; x) ::::;; F(w; x') ::::;; F(w; r) = F,(w)! F(w, x) 
when r! x. Consequently F(w; x) is continuous on the right. Similarly 
limx-+oo F(w; x) = 1, limx_. _ 00 F(w; x) = 0. Since F(w; x) = G(x) when 
w E Au B u C, it follows that F(w; x) is a distribution function on R for 
every w E Q, i.e. condition (a) of Definition 8 is satisfied. 

By construction, P(~::::; r)l~)(w) = F,(w) = F(w; r). If r! x, we have 
F(w; r)! F(w; x) for all w E Q by the continuity on the right that we just 
established. But by conclusion (a) ofTheorem 2, we have P(~::::;; rl~)(w)-+ 
P(~::::; .xl~)(w) (a.s.). Therefore F(w; x) = P(~::::;; xiG)(w) (a.s.), which 
establishes condition (b) of Definition 8. 

We now turn to the proof of the existence of a regular conditional distri­
bution of ~ with respect to ~. 

Let F(w; x) be the function constructed above. Put 

Q(w; B) = {F(w; dx), 
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where the integral is a Lebesgue-Stieltjes integral. From the properties of 
the integral (see §6, Subsection 7), it follows that Q(w; B) is a.measure on B 
for each given w e Q. To establish that Q(w; B) isavariant ofthe conditional 
probability P(e e B i'§)(w), we use the principle of appropriate sets. 

Let CfJ be the collection of sets B in PA(R) for which Q(w; B) = 
P(eeBI'§)(w) (a.s.). Since F(w;·x) = P(e :s; xj'§)(w) (a.s.), the system C(f 

contains the sets B of the form B = (- oo, x], x eR. Therefore C(f also 
contains the intervals of the form (a, b ], and the algebra d consisting of finite 
sums of disjoint sets of the form (a, b]. Then it follows from the continuity 
properties of Q(w; B) (w fixed) and from conclusion (b) ofTheorem 2 that C(f 

is a monotone class, and since d s;; C(f s;; PJ(R), we have, from Theorem 1 
of§2, 

PJ(R) = o{d) s;; a(lC) = /-l(C(f) = C(f s;; PJ(R),. 

whence C(f = PJ(R). 
This completes the proof of the theorem. 

By using topological considerations we can extend the conclusion of 
Theorem 4 on the existence of a regular conditional distribution to random 
elements with values in what are known as Borel spaces. We need the follow­
ing definition. 

Definition 9. A measurable space (E, t!) is a Borel space if it is Borel equivalent 
to a Borel subset ofthe realline, i.e. there is a one-to-one mapping cp = cp(e): 
(E, t!) --+ (R, PJ(R)) such that 

(1) cp(E) = { cp(e): e e E} is a set in PJ(R); 
(2) qJ is ..9'-measurable (qJ- 1(A) E ..9', A E qJ(E) n PJ(R)), 
(3) cp- 1 is PJ(R)/..9' -measurable ( cp(B) e cp(E) n PJ(R), Be 8). 

Theorem 5. Let X = X(w) be a random element with values in the Borel space 
(E, ß). Then there is a regular conditional distribution of X with respect to '§. 

PRooF. Let cp = cp(e) be the function in Definition 9. By (2), cp(X(w)) is a 
random variable. Hence, by Theorem 4, we can define the conditional 
distribution Q(w; A) of cp(X(w)) with respect to rtf, A e cp(E) n PJ(R). 

We introduce the function Q(w; B) = Q(w; cp(B)), Be tf. By (3) of 
Definition 9, qJ(B) e ({J(E) n PJ(R) and consequently Q(w; B) is defined. 
Evidently Q(w; B) is a measure on Be t! for every w. Nowfix Be tf. By the 
one-to-one character of the mapping cp = cp(e), 

Q(w;B) = Q(w;cp(B)) = P{cp(X)ecp(B)I'§} = P{XeBI'§} (a.s.). 

Therefore Q(w; B) is a regular conditional distribution of X with respect 
to '§. 

This completes the proof of the theorem. 
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Corollary. Let X = X(w)bea randomelement with values inacompletesepara­
ble metric space (E, tff). Then there is a regular conditional distribution of X 
with respect to <§. In particu/ar, such a distribution exists .for the spaces 
(R", ffß(R")) and (R"', ffß(R"')). 

The proof follows from Theorem 5 and the weil known topological result 
that such spaces are Bore! spaces. 

8. The theory of conditional expectations developed above makes it possible 
to give a generalization ofBayes's theorem; this has applications in statistics. 

Recall that if ~ = {A 1 , •.. , An} is a partition of the space Q with 
P(A;) > 0, Bayes's theorem (1.3.9) states that 

P(A;IB) = "P(A;)P(BIA;) . 
Li= 1 P(A)P(BIA) 

(25) 

for every B with P(B) > 0. Therefore if e = Li= 1 aJ A, is a discrete random 
variable then, according to (1.8.10), 

or 

E[g(e)IBJ =Li=: g(a;)P(A;)P(BIA;), 
Li=l P(A)P(BIA) 

(26) 

(27) 

On the basis of the definition of E [g(e) I B] given at the beginning of this 
section, it is easy to establish that (27) holds for all events B with P(B) > 0, 
random variables e and functions g = g(a) with E lg(e)l < oo. 

We now consider an analog of (27) for conditional expectations 
E[g(e)l<§] with respect to a cr-algebra <§, <§ s; ff'. 

Let 

Then by (4) 

Q(B) = {g(e)P(dw), BE<§. 

dQ 
E[g(e)I<§J = dP (w). 

We also consider the cr-algebra <§9 • Then, by (5), 

P(B) = 1t<BI<§9)dP 

or, by the formula for change of variable in Lebesgue integrals, 

P(B) = J: P(Bie = a)P9(da). 

(28) 

(29) 

(30) 

(31) 
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Since 

we have 

Q(B) = f_oo}(a)P(BIO = a)Pida). (32) 

Now suppose that the conditional probability P(B I (.1 = a) is regular and 
admits the representation 

P(BI(.J = a) = Lp(w; a)A(dw), (33) 

where p = p(w; a) is nonnegative and measurable in the two variables 
jointly, and A is a 0'-finite measure on (Q, ~). 

Let E lg(O)I < oo. Let us show that (P-a.s.) 

E[ (O)I~J = J':'oo g(a)p(w; a)Po(da) (34) 
g J':' 00 p(w; a)P6(da) 

(generalized Bayes theorem). 
In proving (34) weshall need the following Iemma. 

Lemma. Let (Q, ff) be a measurable space. 

(a) Let J1 and A be 0'-jinite measures, and f = f(w) an ff-measurablefunction. 
Then 

(35) 

(in thesensethat ifeither integral exists, the other exists and they are equal). 
(b) If v is a signed measure and Jl, A are 0'-.finite measures v ~ Jl, J1 ~ A, then 

dv dv dJ1 
dA = dJ1 . dA (A-a.s.) (36) 

and 

dd11v = dd~~dd~ 1\. 1\. (Jl-a.s.) (37) 

PROOF. (a) Since 

Jl(A) = L (~~)dA, 
(35) is evidently satisfied for simple functions f = L}; I A,. The general case 
follows from the representation f = f+ - f- and the monotone conver­
gence theorem. 
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(b) From (a) with f = dv/dJl we obtain 

v(A) = L (::) dJl = L (::).(~).dA.. 
Then v ~ A. and therefore 

I dv 
v(A) = A dA. dA., 

whent::e (36) follows since A is arbitrary, by Property I (§6). 
Property (37) follows from (36) and the remark that 

Jl{m: dll = ol = r dJl dA. = 0 
dA. J J{ro:dpfd}.=O) dA. 

(on the set {m: dJl/dA. = 0} the right-hand side of (37) can be defined arbi­
trarily, for example as zero ). This completes the proof of the Iemma. 

To prove (34) we observe that by Fubini's theorem and (33), 

Q(B) = 1 [J:
00

g(a)p(m; a)P6(da)JA(dm), 

P(B) = 1 [J:
00

p(m; a)P6(da)}(dm). 

Then by the Iemma 

dQ dQjdA. 
dP = dP/dA. (P-a.s.). 

Taking account of (38), (39) and (29), we have (34). 

(38) 

(39) 

Remark. Formula (34) remains valid if we replace 0 by a random element 
with values in some measurable space (E, G) (and replace integration over 
R by integration over E). 

Let us consider some special cases of (34). 
Let the a-algebra t§ be generated by the random variable~' t§ = t§~. 
Suppose that 

P(~eAIO = a) = Lq(x;a)A.(dx), Ae~(R), (40) 

where q = q(x; a) isanonnegative function, measurable with respect to both 
variables jointly, and A. is a a-finite measure on (R, ~(R)). Then we obtain 

E[g(O)I~ = x] = J~oo g(a)q(x; a)Pe(da) 
J~oo q(x; a)P6(da) 

(41) 
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In particular, Iet (0, ~) be a pair of discrete random variables, 0 = L aJ A,, 
~ = L xi B1• Then, taking A. tobe the counting measure (A.( {xi}) = 1, i = 1, 2, ... ) 
we find from (40) that 

(Compare (26).) 
Now Iet (0, ~) be a pair of absolutely continuous measures with density 

fo.~(a, x). Then by (19) the representation (40) applies with q(x; a) = 
f~ 18(x I a) and Lebesgue measure A.. Therefore 

(43) 

9. PROBLEMS 

1. Let~ and '1 be independent identically distributed random variables with E~ defined. 
Show that 

~+'1 
E(~l~ + 11) = E(IJI~ + 11) = - 2- (a.s.). 

2. Let ~h ~2 , ••• be independent identically distributed random variables with 
E I ~i I < oo. Show that 

where s. = ~ 1 + · · · + ~ •. 

3. Suppose that the random elements (X, Y) aresuch that there is a regular distribution 
Px(B) = P(Y eBIX = x). Show that ifE ig(X, Y)l < oo then 

E[g(X, Y)IX = x] = f g(x, y)Px(dy) (Px-a.s.). 

4. Let~ be a random variable with distribution function F~(x). Show that 

J! x dF~(x) 
E(~IIX < ~:;;; b) = F~(b)- F~(a) 

(assuming that F~(b)- F~(a) > 0). 

5. Let g = g(x) be a convex Bore! function with E lg(~)l < oo. Show that Jensen's 
inequality 

holds for the conditional expectations. 
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6. Show that a necessary and sufficient condition for the random variable ~ and the 
a-algebra <§tobe independent (i.e., the random variables ( and l 8 (w) are indepen­
dent for every Be<§) isthat E(g(~)l<§) = Eg(~) for every Bore! function g(x) with 
E lg(~)l < oo. 

7. Let ~ be a nonnegative random variable and '§ a a-algebra, '§ ~ :F. Show that 
E(el'§) < oo (a.s.) if and only if the measure Q, defined on sets A E '§ by Q(A) = 
JA ~ dP, is a-finite. 

§8. Random Variables. II 

1. In the first chapter we introduced characteristics of simple random 
variables, such as the variance, covariance, and correlation coefficient. These 
extend similarly to the general case. Let (0, !F, P) be a probability space and 
~ = ~(w) a random variable for which E~ is defined. 

The variance of ~ is 

The number a = + fo is the standard deviation. 
If ~ is a random variable with a Gaussian (normal) density 

J;( ) = _1_ -[(x-m)2]/2a2 

~ x j2Tr.a e ' a > 0, - oo < m < oo, (1) 

the parameters m and a in (1) are very simple: 

m = E~, 

Hence the probability distributionoftbis random variable~. which we call 
Gaussian, or normally distributed, is completely determined by its mean 
value m and variance a2 • (It is often convenient to write ~ - Al' (m, a 2).) 

Now Iet (~. rt) be a pair of random variables. Their covariance is 

cov(~. rt) = E(~ - E~}{rt - Ert) 

(assuming that the expectations are defined). 
Ifcov(~, rt) = 0 we say that ~ and rt are uncorrelated. 
If V~ > 0 and Vrt > 0, the number 

(~ ) = cov(~, rt) 
P ',., - Jv~·Vrt 

is the correlation coefficient of ~ and rt· 

(2) 

(3) 

The properties of variance, covariance, and correlation coefficient were 
investigated in §4 of Chapter I for simple random variables. In the general 
case these properties can be stated in a completely analogaus way. 
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Let e = (e1 .... ' e") be a random vector whose components have finite 
second moments. The covariance matrix of e is the n X n matrix ~ = IIR;jll. 
where Rii = cov(e;, e). 1t is clear that ~ is symmetric. Moreover, it is non­
negative definite, i.e. 

II 

L R;)-i).j ~ 0 
i,j= 1 

for all A; ER, i = 1, ... , n, since 

The following Iemma shows that the converse is also true. 

Lemma. A necessary and sufficient condition that an n x n matrix ~ is the 
covariance matrix of a vector e = <e1 .... ' e") isthat the matrix is symmetric 
and nonnegative definite, or, equivalently, that there is an n x k matrix A 
(1 ::;; k ~ n) such that 

where T denotes the transpose. 

PRooF. We showed above that every covariance matrix is symmetric and 
nonnegative definite. 

Conversely, Iet ~ be a matrix with these properties. We know from matrix 
theory that corresponding to every symmetric nonnegative definite matrix ~ 
there is an orthogonal matrix (!) (i.e., (!J(!JT = E, the unit matrix) such that 

(!JT~(!J = D, 

where 

D = (~1 
· •. ~J 

is a diagonal matrix with nonnegative elements d;, i = 1, ... , n. 
lt follows that 

~ = (!)D(!JT = ((!)B)(BT(!)T), 

where B is the diagonal matrix with elements b; = + Jd;, i = 1, ... , n. 
Consequently if we put A = (!)B we have the required representation 
~ = AATfor R 

It is clear that every matrix AAT is symmetric and nonnegative definite. 
Consequently we have only to show that ~ is the covariance matrix of some 
random vector. 

Let Yf 1, Yf 2 , ••• , Yf" be a sequence of independent normally distributed 
random variables, .K(O, 1 ). (The existence of such a sequence follows, for 
example, from Corollary 1 of Theorem 1, §9, and in principle could easily 
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be derived from Theorem 2 of §3.) Then the random vector ~ = A11 (vectors 
are thought of as column vectors) has the required properties. In fact, 

E~~T = E(A1'/)(A'1)T = A. E'1'1 T. AT= AEAT = AAT. 

(If ( = I!Ciill is a matrix whose elements are random variables, E( means the 
matrix IIE~iill). 

This completes the proof of the Iemma. 

We now turn our attention to the two-dimensional Gaussian (normal) 
density 

(4) 

characterized by the five parameters mb m2, a 1, a 2 and p (cf. (3.14)), where 
I m1 1 < oo, I m2 1 < oo, a 1 > 0, a 2 > 0, I p I < 1. An easy calculation identifies 
these parameters : 

m1 = E~, af = V~, 
m2 = E11, a~ = V1J, 

p = p(~, IJ). 

In§4 ofChapter I weexplained that if ~ and 11 are uncorrelated (p(~, 11) = 0), 
it does not follow that they are independent. However, if the pair (~, '1) is 
Gaussian, it does follow that if ~ and 11 are uncorrelated then they are 
independent. 

In fact, if p = 0 in (4), then 

;; (x, y) = __ 1_ e-[(x-mt)2]/2af. e-[(y-mt)2]j2a~. 
~~ 2na 1 a 2 

But by (6.55) and (4), 

f~(x) = Joo ~~~(x, y) dy = 1 e-[(x-mt)2]j2af, 

- 00 .J27c lT 1 

Consequently 

~~~(x, y) = f~(x) · f~(y), 

from which it follows that ~ and '7 are independent (see the end ofSubsection 
9 of §6). 
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2. A striking example of the utility of the concept of conditional expectation 
(introduced in §7) is its application to the solution of the following problern 
which is connected with estimation theory (cf. Subsection 8 of §4 of Chapter 
1). 

Let((, 17) be a pair of random variables suchthat ( is observable but 11 is 
not. We ask how the unobservable component 11 can be "estimated" from 
the knowledge of observations of (. 

To state the problern more precisely, we need to define the concept of an 
estimator. Let qJ = qJ(x) be a Bore! function. We call the random variable 
qJ(() an estimator of 11 in terms of (, and E[17 - qJ(()] 2 the (mean square) error 
of this estimator. An estimator qJ*(() is called optimal (in the mean-square 
sense) if 

(5) 

where inf is taken over all Bore! functions qJ = qJ(x). 

Theorem I. Let E17 2 < oo. Then there is an optimal estimator qJ* = qJ*(() 
and qJ*(x) can be taken to be the jimction 

qJ*(x) = E(17l ( = x). (6) 

PROOF. Without loss of generality we may consider only estimators <p(() 
for which EqJ 2(() < oo. Then if qJ(() is such an estimator, and qJ*(() = E(17l (), 
we have 

E[l1- ({J(()]z = E[(l1- qJ*(()) + (qJ*(()- ({J(())]z 

= E[l1- qJ*(()]z + E[qJ*(()- ({J(()]z 

+ 2E[(I1- qJ*(())(qJ*(()- qJ(())] ~ E[17- qJ*(()] 2 , 

since E[qJ*(()- qJ(()] 2 ~ 0 and, by the properties of conditional expecta­
tions, 

E[(17- qJ*(())(qJ*(()- ({J(())] = E{E[(17- qJ*(())(qJ*(()- ({J(())I(]} 

= E{(qJ*(()- qJ(())E(17- qJ*(()I()} = 0. 

This completes the proof of the theorem. 

Remark. lt is clear from the proof that the conclusion of the theorem is still 
valid when ( is not merely a random variable but any random element 
with values in a measurable space (E, 8'). We would then assume that 
qJ = qJ(x) is an tffjgQ(R)-measurable function. 

Let us consider the form of qJ*(x) on the hypothesis that ((, 17) is a Gaussian 
pair with density given by (4). 
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From (1), (4) and (7.10) we find that the density J., 1 ~(ylx) ofthe conditional 
probability distribution is given by 

J"l~(ylx) = 1 e[(y-m(x))2]j[2a~(l-p2))' (7) 
J2n(1 - p2 )u2 

where 

Then by the Corollary of Theorem 3, §7, 

and 

V('lle = x) = E[('7- E('lle = x))2 le = x] 

= f_00

00 
(y - m(x))2f.,l~(y I x) dy 

= u~(1 - p 2 ). 

(8) 

(9) 

(10) 

Notice that the conditional variance V('71 e = x) is independent of x and 
therefore 

(11) 

Formulas (9) and (11) were obtained under the assumption that ve > 0 
and V17 > 0. However, if V e > 0 and V17 = 0 they are still evidently valid. 

Hence we have the following result (cf. (1.4.16) and (1.4.17)). 

Theorem 2. Let (e, 17) be a Gaussian vector with ve > 0. Then the optimal 
estimator of '7 in terms of e is 

(12) 

and its error is 

(13) 

Remark. The curve y(x) = E('71 e = x) is the curve of regression of '7 on e 
or of '7 with respect to e. In the Gaussian case E('71 e = x) = a + bx and 
consequently the regression of '7 and e is linear. Hence it is not surprising 
that the right-hand sides of (12) and (13) agree with the corresponding parts 
of (1.4.6) and (1.4.17) for the optimallinear estimator and its error. 
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Corollary. Let t: 1 and t: 2 be independent Gaussian random variables with mean 
zero and unit variance, and 

Then E~ =EI]= 0, V~= ai + aL VI]= bi + b~,cov{~, I])= a1b1 + a2 b2 , 

and if ai + a~ > 0, then 

E( I~)= a 1b1 + a2 b2 ~ 
IJ ai + a~ ' 

d = (a 1b2 - a2 b1 ) 2 

ai + a~ 

(14) 

(15) 

3. Let us consider the problern of deterrnining the distribution functions of 
randorn variables that are functions of other randorn variables. 

Let~ be a random variable with distribution function F~(x) (and density 
j~(x), if it exists), Iet qJ = qJ(x) be a Borel function and IJ = ((J(~). Letting 
I Y = (- oo, y), we obtain 

F~(y) = P(IJ s y) = P(((J(~)Eiy) = P(~E((J- 1 (/y)) = f F~(dx), (16) 
J<p-1(/y) 

which expresses the distribution function F~(y) in terrns of F/x) and ((J. 

For exarnple, if IJ = a~ + b, a > 0, we have 

( y- b) (y- b) F ~(y) = P ~ s -a- = F ~ -a- . (17) 

Ifl] = ~ 2 , it is evident that Fly) = 0 for y < 0, while for y ~ 0 

F~(y) = P(~ 2 s y) = P( -JY s ~ s j.Y) 

= F~(JY)- F~( -j.Y) + P(~ = -j.Y). (18) 

We now turn to the problern of deterrnining f~(y). 
Let us suppose that the range of ~ is a (finite or infinite) open interval 

I = (a, b), and that the function qJ = qJ(x), with dornain (a, b), is continuously 
differentiable and either strictly increasing or strictly decreasing. We also 
suppose that ((J'(x) =1 0, x EI. Let us write h(y) = qJ- 1(y) a~d suppose for 
definitenessthat ((J(x) is strictly increasing. Then when y E ((J(/), 

Jh(y) 

= P(~ s h(y)) = _ ,/~(x) dx. (19) 
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By Problem 15 of §6, 

Jh(y) fy 
- OONx) dx = - oof~(h(z))h'(z) dz (20) 

and therefore 

f"(y) = f~(h(y))h'(y). (21) 

Similarly, if cp(x) is strictly decreasing, 

fq(y) = f~(h(y))(( -h'(y)). 

Hence in either case 

j~(y) = f~(h(y))lh'(y)i. (22) 

For example, if '1 = a~ + b, a # 0, we have 

y- b 1 (y- b) h(y) = -a- and fq(y) = ~ f~ -a- · 

lf ~ "' ,.~V (m, cr2) and '1 = e~, we find from (22) that 

{ 
1 [ In(y/M)2] 

rc exp - 2 2 ' y > 0, 
fq(y) = v ""JLCTY er 

0 y:::;; 0, 

(23) 

with M = em. 
A probability distribution with the density (23) is said to be lognormal 

(logarithmically normal). 
If cp = cp(x) is neither strictly increasing nor strictly decreasing, formula 

(22) is inapplicable. However, the following generalization suffices for many 
applications. 

Let cp = cp(x) be defined on the set L~= 1 [ab bk], continuously dif­
ferentiahte and either strictly increasing or strictly decreasing on each open 
interval Ik = (ak, bk), and with cp'(x) # 0 for x E Ik. Let hk = hk(y) be the 
inverse of cp(x) for x E Ik. Then we have the following generalization of(22): 

II 

ÜY) = L f~(hk(y))lhk(y)l· IDk(y), (24) 
k=1 

where Dk is the domain of hk(y). 
For example, if '1 = ~2 we can take I 1 = (- oo, 0), I 2 = (0, oo ), and 

find that h1(y) = -JY, h2(y) = JY, and therefore 

ÜY) = {2Jy [j~(jY) + f~( -JY)], 
0, 

y > 0, 
(25) 

y:::;; 0. 
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Wecanobservethatthisresultalsofollowsfrom(18),sinceP(~ = -JY) = 0. 
In particular, if ~ ~ % {0, 1), 

{ 
~e-yf2, y > o, 

!~2(y) = v 2ny 

0, y s 0. 

(26) 

A Straightforward calculation shows that 

fj~,{y) = {f~(y) + /~(- y), y > 0, 
0, y s 0. 

(27) 

f ( ) - {2y(f~(y2) + /~(- y2)), y > 0, 
+v'l~l y - 0 < 0 ' y- . 

(28) 

4. We now consider functions of several random variables. 
If ~ and '1 are random variables with joint distribution F ~~(x, y), and 

cp = cp(x, y) is a Borel function, then ifwe put ( = cp(~. '1) we see at once that 

F((z) = J dF~~(x, y). 
{x, y: q>(x, y),;; z} 

(29) 

For example, if cp(x, y) = x + y, and ~ and '1 are independent (and there­
fore F~~(x, y) = Flx) · F~(y)) then Fubini's theorem shows that 

F((z) = L.y:x+y,;;z} dF~(x) · dF~(y) 

=I. l{x+y:>z}(x, y) dF~(x)dF~(y) 
R2 

= f_00

00 
dFlx){f_

00

00
ltx+y,;;z}(x, y) dF~(y)} = J:ooF~(z- x) dF~(x) 

(30) 
and similarly 

F((z) = J:ooF~(z- y) dF~{y). (31) 

If F and G are distribution functions, the function 

H(z) = f_00

00
F(z - x) dG(x) 

is denoted by F * G and called the convolution of Fand G. 
Thus the distribution function F { of the sum of two independent random 

variables~ and '1 is the convolution oftheir distributionfunctions F~ and F.,: 

F( = F~ * F~. 
lt is clear that F~ * F~ = F~ * F~. 
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Now suppose that the independent random variables ~ and '1 have 
densities f~ and f~. Then we find from (31 ), with another application ofFubini's 
theorem, that 

F,(z) = J:oo [f~Yf~(u) du ]t~(y) dy 

= s:oo [f 00/~(u - Y) du J f~(y) dy = f 
00 

[f:oof~(u - y)f~(y) dy J du, 

whence 

j((z) = s:oof~(z - y)f~(y) dy, (32) 

and similarly 

J{(z) = s:oof~(z - x)f~(x) dx. (33) 

Let us see some examples of the use of these formulas. 
Let e1, e2 , ••• , en be a sequence of independent identically distributed 

random variables with the uniform density on [ -1, 1]: 

f(x) = {!' lxl ~ 1, 
0, lxl > 1. 

Then by (32) we have 

{
2 -lxl I I 2 --'----'-, X ~ ' 

f~, +~2(x) = 4 

0, lxl > 2, 

(3- lxl)2 

16 ' 1 ~ I X I ~ 3, 

/~, +~2+~ix) = 3 - x 2 

8 
0 ~ lxl ~ 1, 

0, lxl > 3, 

and by induction 

f 
1 [(n+x)/21 

_ 2"(n _ 1) 1 L (-1)kC~(n + x- 2k)"- 1, lxl ~ n, 
/~, + ... +~"(x) - · k=o 

0, lxl > n. 

Now Iet e,.., .;V (ml, uD and '1 ,.., .;V (m2, u~). Ifwe write 

qJ(x) = _1_ e-x2f2, 

J2ic 
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then 

and the formula 

1 (x-(m 1 +mz)) 
f~+~(x) = J 2 2 ({J J 2 2 

C11 + CTz C11 + CTz 

follows easily from (32). 
Therefore the sum of two independent Gaussian random variables is again a 

Gaussian random variable with mean m 1 + m2 and variance af + er~. 
Let ~ 1 , •• ,, ~n be independent random variables each ofwhich is normally 

distributed with mean 0 and variance 1. Then it follows easily from (26) (by 

induction) th;,:+ ... +<~(x) ~ {-=-2n"'Jz-=r=-1(:-n-::/2:-:-) x<nf2l-1e-xf2, x > 0, 

0, X~ 0. 

(34) 

The variable ~i + · · · + ~; is usually denoted by x;, and its distribution 
(with density (30)) is the x2-distribution ("chi-square distribution") with n 
degrees of freedom ( cf. Table 2 in §3). 

If we write Xn = +}X:, it follows from (28) and (34) that 

{2 n-1 -x2j2 x e 0 x> 
J~ .. (x) = 2"12r(n/2) ' - ' 

0, X< 0. 

(35) 

The probability distribution with this density is the x-distribution (chi­
distribution) with n degrees of freedom. 

Again Iet ~ and '1 be independent random variables with densities f~ and 
kThen 

F~~(z) = JJ f~(x)f~(y) dx dy, 

{x, y: xy:Sz) 

Jf f~(x)f~(y) dx dy. 

{x, y: xjy :S z} 

Hence we easily obtain 

(36) 

and 

(37) 
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Putting e = eo and '1 = j(ef + 0 0 0 + e~)!n, in (37), where eo. e1 , 0 •• , e. 
are independent Gaussian random variables with mean 0 and variance 
u2 > 0, and using (35), we find that 

r(~) 
f~o/1../0/n)(~f+ 000 +~~)](x) = ~ (

2) '(--x""'2)""'(,-n+.,...l""li""2 
-ynn r ~ 1 +-

2 n 

(38) 

The variable eo/[j(l/n)(ef + ... + e~)] is denoted by t, and its distribution 
is the t-distribution, or Student's distribution, with n degrees of freedom (cf. 
Table 2 in §3). Observe that this distribution is independent of u. 

5. PROBLEMS 

1. Verify formulas (9), (10), (24), (27), (28), and (34)-(38). 

2. Let ~ 1 , ••• , ~ •• n ~ 2, be independent identically distributed random variables with 
distribution function F(x) (and density f(x), if it exists}, and Iet ~ = max(~ 1, ••• , ~.), 
~ = min(~to ... , ~.), p = ~- ~-Show that 

F _ (y x) = {(F(y))" - (F(y) - F(x))", y > x, 
q ' (F(y)}", y ::o;; x, 

{n(n- 1)[F(y)- F(x)]"- 2f(x)f(y), 
h_~(y, x) = 0, 

y >X, 
y <X, 

- {n s~ 00 [F(y) - F(y - x)]"- 1/(y) dy, X ~ 0, 
FP(x) - 0, x < 0, 

{n(n- 1) J~oo [F(y)- F(y- x)]"- 2f(y- x)f(y) dy, 
JP(x) = 0 

' 

X> 0, 

X< 0. 

3. Let ~ 1 and ~2 be independent Poisson random variables with respective parameters 
Ä.1 and Ä.2 • Show that ~ 1 + ~2 has a Poisson distribution with parameter Ä.1 + Ä.2 • 

4. Let m1 = m2 = 0 in (4). Show that 

(11(12~ 
h.tq(Z) = -11:(-a-=-~ Z--=---=2....:.p_a_1 U-2-'-z-+-a2::-1 )' 

5. The maximal correlation coefficient of ~ and '1 is p*(~, 1'/) = sup.,v p(u<e), v<e)), 
where the supremum is taken over the Borel functions u = u(x) and v = v(x) for 
which the correlation coefficient p(uW, v(e>) is defined. Show that ~ and '1 are inde­
pendent ifand only if p*(~, 1'/) = 0. 

6. Let r 1, r 2 , ••• , r. be independent nonnegative identically distributed random vari­
ables with the exponential density 

f(t) = Ä.e-lt, t ~ 0. 
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Show that the distribution of r 1 + · · · + rk has the density 

;_ktk-1e-l• 

(k-1)!' 
t;;::O, 15,k5,n, 

and that 

k-1 (A.t)i 
P(r 1 + ··· + rk > t) = L e- 1'-.-1 • 

i=O I. 

7. Let e - %(0, u2). Show that, for every p ;;:;: 1, 

where 

E leiP = CPuP, 

- 2Pi2 (p + 1) 
cp- nY2 r 2 
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and r(s) = Jt e-xxs- 1 dx is the gammafunction. In particular, foreachinteger n ;;:;: 1, 

Ee2" = (2n- 1)!! u2". 

§9. Construction of a Process with Given 
Finite-Dimensional Distribution 

1. Let e = ~(w) be a random variable defined on the probability space 
(Q, §, P), and let 

F~(x) = P{w: ~(w) ~ x} 

be its distribution function. It is clear that F~(x) is a distribution function 
on the real line in the sense of Definition 1 of §3. 

We now ask the following question. Let F = F(x) be a distribution func­
tion on R. Does there exist a random variable whose distribution function is 
F(x)? 

One reason for asking this question is as follows. Many Statements in 
probability theory begin, "Let~ be a random variable with the distribution 
function F(x); then ... ". Consequently if a statement of this kind is tobe 
meaningful we need to be certain that the object under consideration actually 
exists. Since to know a random variable we first have to know its domain 
(0, ~),andin order to speak of its distribution we need to have a probability 
measure P on (0, ~), a correct way of phrasing the question of the existence 
of a random variable with a given distribution function F(x) is this: 

Do there exist a probability space (0, §, P) and a random variable~ = ~(w) 
on it, such that 

P{w: ~(w) ~ x} = F(x)? 
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Let us show that the answer is positive, and essentially contained in 
Theorem 1 of §1. 

In fact, Iet us put 

O=R, :F = PJ(R). 

lt follows from Theorem 1 of §1 that there is a probability measure P (and 
only one) on (R, PJ(R)) for which P(a, b)] = F(b)- F(a), a < b. 

Put ~(w) = w. Then 

P{w: ~(w) ~ x} = P{w: w ~ x} = P(- oo, x] = F(x). 

Consequently we have constructed the required probability space and the 
random variable on it. 

2. Let us now ask a similar question for random processes. 
Let X= (~1)1 er be a random process (in the sense of Definition 3, §5) 

defined on the probability space (0, fF, P), with t E T s R. 
From a physical point of view, the most fundamental characteristic of a 

random process is the set {F1,, ... , 1"(x 1 , ••• , xn)} of its finite-dimensional 
distribution functions 

defined for all sets t 1 , ... , tn with t 1 < t 2 < · · · < tn. 
We see from (1) that, for each set t1o ... , tn with t 1 < t2 < ··· < tn the 

functions F1,, ... , 1"(x 1 , ••• , xn) are n-dimensional distribution functions (in 
the sense of Definition 2, §3) and that the collection {F,,, ... ,1Jx1, •.• , xn)} 
has the following consistency property: 

lim F,,, ... ,t.(xl, ... ' Xn) = F,,, ... ,fk.····'"(xl, ... ' xk> ... ' Xn) (2) 
xk r oo 

where ~ indicates an omitted coordinate. 
Now it is natural to ask the following question: under what conditions 

can a given family {F1,, ..• , 1"(x 1 , ••• , xn)} of distribution functions 
F1,, ... , 1"(x1 , ••• , xn) (in the sense of Definition 2, §3) be the family of finite­
dimensional distribution functions of a random process? lt is quite remark­
able that all such conditions are covered by the consistency condition (2). 

Theorem 1 (Kolmogorov's Theorem on the Existence of a Process). Let 
{F,,, ... ,1"(x 1, ••• , xn)}, with t; E T SR, t 1 < t2 < · · · < tn, n ~ 1, be a given 
family of finite-dimensional distribution functions, satisfying the consistency 
condition (2). Then there are a probability space (0, fF, P) and a random 
process X = (~1)1 er suchthat 

(3) 
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PRooF. Put 

i.e. take Q tobe the space of real functions w = (wr)reT with the u-algebra 
generated by the cylindrical sets. 

Let -r = [t1, .•. , tn], t1 < t2 <·· · · < tn. Then by Theorem 2 of §3 we can 
construct on the space (R", ~(R")) a unique probability measure P, suchthat 

lt follows from the consistency condition (2) that the family {P,} is also 
consistent (see (3.20)). According to Theorem 4 of §3 there is a probability 
measure P on (RT, ~(RT)) suchthat 

P{w: (wr,, ... , WrJ E B} = P,(B) 

for every set -r = [t 1, •• , tnJ, t 1 < · · · < tn. 
From this, it also follows that (4) is satisfied. Therefore the required 

random process X = (er(w))reT can be taken tobe the process defined by 

er(W) = Wn tE T. (5) 

This completes the proof of the theorem. 

Remark 1. The probability space (RT, ~(RT), P) that we have constructed 
is called canonical, and the construction given by (5) is called the coordinate 
method of constructing the process. 

Remark 2. Let (Ea, Ba) be complete separable metric spaces, where oc belongs 
to some set m: of indices. Let {P,} be a set of consistent finite-dimensional 
distribution functions P., -r = [oc 1, ••• , ocnJ on 

(Ea 1 X • · • X Elln' Ba, ® · · · ® ßaJ• 

Then there are a probability space (Q, fF, P) and a family of fF jß a-measurable 
functions (Xa(w))aeu suchthat 

P{(Xa,, ... ,XaJEB} = P,(B) 

for all -r = [oc 1, ••• , cxnJ and BE&. ®···®Ba"· 

This result, which generalizes Theorem 1, follows from Theorem 4 of §3 
ifweputQ = n. E.,fF = H. ßllandX.(w) = w.foreachw = w(wll),ocE~. 

Corollary 1. Let F 1 (x ), F 2(x ), ... be a sequence of one-dimensional distribution 
ji.mctions. Then there exist a probability space (Q, fF, P) and a sequence of 
independent random variables el, e2, ... suchthat 

(6) 
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In particular, there is a probability space (Q, ff, P) on which an infinite 
sequence of Bernoulli random variables is defined (in this connection see 
Subsection 2 of §5 of Chapter l)o Notice that Q can be taken tobe the space 

Q = {w: w = (a 1, a2 , 0 0 o), a; = 0, 1} 

(cf. also Theorem 2)0 
To establish the corollary it is enough to put F 1, o •• ,n(x1, 0 0 0, x") = 

F 1(x 1) 0 0 ° Fn(x") and apply Theorem 1. 

CoroUary 2. Let T = [0, oo) and let {p(s, x; t, B} be a family of nonnegative 
jimctions defined for s, t E T, t > s, x ER, BE Pl(R), and satisfying the following 
conditions: 

(a) p(s, x; t, B) is a probability measure on B for given s, x and t; 
(b) for given s, t and B, thefunction p(s, x; t, B) is a Bore) function of x; 
(c) for 0 :::;; s < t < r and BE PJ(R), the Kolmogorov-Chapman equation 

p(s, x; r, B) = {p(s, x; t, dy)p(t, y; r, B) (7) 

is satisfiedo 

Also Iet n = n(B) be a probability measure on (R, PJ(R))o Then there are 
a probability space (Q, ff, P) and a random process X = (e,),;;,o defined on 
it, such that 

(8) 

for 0 = t0 < t 1 < .. 0 < tno 
The process X so constructed is a M arkov process with initial distribution 

n and transition probabilities {p(s, x; t, B}o 

Corollary 3. Let T = {0, 1, 2, 0 o o} and let {Pk(x; B)} be a family of non­
negative ji.mctions defined for k ~ 1, x ER, BE PJ(R), and such that Pk(x; B) 
is a probability measure on B (for given k and x) and measurable in x (for 
given k and B)oln addition, let n = n(B) be a probability measure on (R, Pl(R))o 

Then there is a probability space (Q, ff, P) with a family of random vari­
ables X= {e0 • et> o 0 o} defined on it, suchthat 
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3. In the situation of Corollary 1, there is a sequence of independent random 
variables ~ 1, ~ 2, . . . whose one-dimensional distribution functions are 
F 1, F 2, ... , respectively. 

Now Iet (E 1, 8 1), (E2 , 8 2), ... be complete separable metric spaces and 
Iet P 1, P 2, ... be probability measures on them. Then it follows from Remark 
2 that there are a probability space (!l, ~ P) and a sequence of independent 
elements X 1, X 2, ... such that Xn is F/8n-measurable and P(XneB) = 
Pn(B), BE 8n. 

lt turns out that this result remains valid when the spaces (En, 4n) are 
arbitrary measurable spaces. 

Theorem 2 (lonescu Tulcea's Theorem on Extending a Measure and the 
Existence of a Random Sequence). Let (Qn, !F"), n = 1, 2, ... , be arbitrary 
measurable spaces and n = n nn, F =PI !F". Suppose that a probability 
measure P 1 is given on (!l1, F 1) and that,for every set (roh ... , ron)Efl1 x 
••• X nn, n;;;::; I, probabi/itymeasures P(ro1, ... , ron;· )aregivenon (Qn+ I• §,;+ 1). 
Suppose that for every BE !F"+ 1 the jimctions P(roh ... , ron; B) are Bore[ 
functions on (roh ... , ron) and Iet 

n;;;::; 1. (9) 

Then there is a unique probability measure P on (!l, F) such that 

for every n ;;;::; 1, and there is a random sequence X = (X 1(ro), X 2(ro), ... ) 
suchthat 

where A; E 8;. 

PROOF. The first step is to establish that for each n > 1 the set function P n 

defined by (9) on the reetangle A 1 x · · · x An can be extended to the 
a-algebra F 1 ® · · · ® !F,.. 

Foreach n;;;::; 2 and BeF1 ® · · · ® !F,. we put 

Pn(B) = i P 1(dro1) i P(rol; dro2) i P(rol, ... , ron-2; dron-1) 
n, nz n,._, 

X In.. I J...roh ... , ron)P(roh ... , ron-l; droJ. (12) 

lt is easily seen that when B = A 1 x · · · x An the right-hand side of (12) 
is the same as the right-hand side of (9). Moreover, when n = 2 it can be 
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shown, just as in Theorem 8 of §6, that P 2 is a measure. Consequently it is 
easily established by induction that P" is a measure for all n ~ 2. 

The next step is the same as in Kolmogorov's theorem on the extension of 
a measure in (R 00 , 91(R 00 )) {Theorem 3, §3). Thus for every cylindrical set 
J"(B)= {weQ:(wt>···,wn)eB}, Be$'1 ®···®$',., we define the set 
function P by 

(13) 

If we use (12) and the fact that P{w1, ••• , wk; ·) are measures, it is easy to 
establish that the definition (13) is consistent, in the sensethat the value of 
P(J"(B)) is independent of the representation of the cylindrical set. 

lt follows that the set function P defined in (13) for cylindrical sets, andin 
an obvious way on the algebra that contains all the cylindrical sets, is a 
finitely additive measure on this algebra. lt remains to verify its countable 
additivity and apply Caratheodory's theorem. 

In Theorem 3 of §3 the corresponding verification was based on the 
property of (R", 91(R")) that for every Borel set B there is a compact set 
A s;; B whose probability measure is arbitrarily close to the measure of B. 
In the present case this part of the proof needs to be modified in the following 
way. 

As in Theorem 3 of §3, Iet {B"}"~ 1 be a sequence of cylindrical sets 

Bn = {w: (w 1, ... , wn) E Bn}, 

that decrease to the empty set 0. but have 

lim P(Bn) > 0. (14) 
n-+ oo 

For n > 1, we have from (12) 

where 

J~ll(w1) = i P(wl; dw2) ... i ]Bn(wl> ,· .. ' wn)P(w2, ... ' Wn-1; dwn). 
ni n" 

Since Bn+ 1 s;; Bn, we have Bn+ 1 s;; Bn x Qn+ 1 and therefore 

]Bn+l(W1, · · ·' Wn+1):::; JB"(W,, · · · • Wn)/nn+I(Wn+1). 

Hence the sequence {f~1 l(w 1 )}n~ 1 decreases. Let J<ll(w1) = lim" /~1 l(w1 ). 
By the dominated convergence theorem 

lim P(Bn) = lim i f~1l(wt)P 1(dw 1 ) = i JUl(w1)P1(dw1). 
n n n, n, 

By hypothesis, lim" P(Bn) > 0. lt follows that there is an w~ e B such that 
jUl(w~) > 0, since if w1 1/ B1 then f~1l(w 1 ) = 0 for n ~ 1. 
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Moreover, for n > 2, 

where 

f~l)(w?) = ( f~2)(wz)P(w?; dwz), Jn, 

f~2)(w2) = L P(w?, w2 ; dw 3 ) 

· · · i IB.(w?, Wz, ... , Wn)P(w?, w2 , ••• , wn_ 1, dwn). 
On 
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(15) 

We can establish, as for {f~l)(w 1 )}, that {f~2)(w2)} is decreasing. Let 
j<2)(w2) = limn-oo f~2 )(w2 ). Then it follows from (15) that 

0 < J<l)(w?) = ( j<2 )(Wz)P(w?; dwz), Jn, 
and there is a point w~ E Q2 such that J<2)(w~) > 0. Then (w?, w~) E B2 • 

Continuing this process, we find a point (w?, ... , w~) E Bn for each n. 
0 0 n~ . n~ Consequently (wl, ... ' wn, .. . ) E Bn, but by hypothesiS we have Bn = 0. 

This contradiction shows that limn P(Bn) = 0. 
Thus we have proved the part of the theorem about the existence of the 

probability measure P. The other part follows from this by putting Xn(w) 

= Wn, n ~ 1. 

Corollary 1. Let (En, Gn)n;" 1 be any measurable spaces and (Pn)n;" 1, measures 
on them. Then there are a probability space (Q, §', P) and afamily ofindepen­
dent random elements X 1, X 2 , ... with values in (E 1, G 1), (E 2 , G 2), •.• , 

respectively, such that 

Corollary 2. Let E = {1, 2, ... }, and Iet {pk(x, y)} be afamily ofnonnegative 
functions, k ~ 1, x, y E E, such that LyeE Pk(x; y) = 1, x E E, k ~ 1. Also 
Iet n = n(x) be a probabilitydistribution on E (that is, n(x) ~ 0, LxeE n(x) = 1). 

Then there are aprobability space(Q, ff, P)and afamily X= {~0 , ~ 1 , ... } 

of random variables on it, such that 

P{~o = Xo, ~~ = X1,. · ·, ~n = Xn} = n(xo)Pl(xo, X1) · · · Pn(Xn-1• Xn) (16) 

(cf. (1.12.4)) for all xi E E and n ~ 1. We may take Q tobe tte space 

Q = {w: w = (x0, x 1, ... ), xi E E}. 

A sequence X= {~0 , ~ 1 , ... } of random variables satisfying (16) is a 
Markov chain with a countable set E of states, transition matrix {pk(x, y)} 
and initial probability distribution n. (Cf. the definition in §12 of Chapter 1.) 
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4. PROBLEMS 

1. Let Q = [0, 1], Iet !F be the dass of Bore! subsets of [0, 1], and Iet P be Lebesgue 
measure on [0, 1]. Show that the space (!l, !F, P) is universal in the following sense. 
For every distribution function F(x) on (0, !F, P) there is a random variable~ = ~(w) 
such that its distribution function F ~x) = P(~ ::;; x) coincides with F(x). (Hint. 
~(w) = F- 1(w), 0 < w < 1, where F- 1(w) = sup{x: F(x) < w}, when 0 < w < 1, 
and ~(0), ~(1) can be chosen arbitrarily.) 

2. Verify the consistency of the families of distributions in the corollaries to Theorems 
1 and 2. 

3. Deduce Corollary 2, Theorem 2, from Theorem 1. 

§10. Various Kinds of Convergence of Sequences 
of Random Variables 

1. Just as in analysis, in probability theory we need to use various kinds of 
convergence of random variables. Four of these are particularly important: 
in probability, with probability one, in mean of order p, in distribution. 

First some definitions. Let e, e1, e2 , ..• be random variables defined on a 
probability space (Q, :F, P). 

Definition 1. The sequence ~ 1 , ~ 2 , •.. of random variables converges in 
probability to the random variable e (notation: en -f. e) iffor every c > 0 

P{len- e1 > c}-+ 0, n-+ oo. (1) 

We have already encountered this convergence in connection with the 
Iaw of !arge numbers for a Bernoulli scheme, which stated that 

n-+ oo 

(see §5 of Chapter 1). In analysis this is known as convergence in measure. 

Definition 2. The sequence e1, e2 , ••• of random variables converges with 
probability one (almost surely, almost everywhere) to the random variable 
e ir 

P{w: en + e} = 0, (2) 

i.e. if the set of sample points w for which en(w) does not converge to e has 
probability zero. 

This convergence is denoted by en-+ e (P-a.s.), or e" ~ e or e" ~· e. 
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Definition 3. The sequence ~ 1 , ~ 2 , ••• of random variables converges in 
mean oforder p, 0 < p < oo, to the random variable ~ if 

n-+ oo. (3) 

In analysis this is known as convergence in U, and denoted by ~n ~ ~. 
In the special case p = 2 it is called mean square convergence and denoted by 
~ = l.i.m. ~" (for "Iimit in the mean "). 

Definition 4. The sequence ~ 1 , ~ 2 , .•. of random variables converges in 
distribution to the random variable ~ (notation: ~n ~ ~) if 

n-+ oo, (4) 

for every bounded continuous function f = f(x). The reason for the 
terminology is that, according to what will be proved in Chapter III, §1, 
condition (4) is equivalent to the convergence of the distribution Fdx) to 
F~(x) at each point x of continuity of F~(x). This convergence is denoted by 

F~" => F~. 

We emphasize that the convergence of random variables in distribution 
is defined only in terms of the convergence of their distribution functions. 
Therefore it makes sense to discuss this mode of convergence even when the 
random variables are defined on different probability spaces. This con­
vergence will be studied in detail in Chapter III, where, in particular, we 
shall explain why in the definition of F ~" => F ~ we require only convergence 
at points of continuity of F~(x) and not at all x. 

2. In solving problems of analysis on the convergence (in one sense or 
another) of a given sequence offunctions, it is useful to have the concept of a 
fundamental sequence (or Cauchy sequence). We can introduce a similar 
concept for each of the first three kinds of convergence of a sequence of 
random variables. 

Let us say that a sequence {~n}n~ 1 ofnindom variables isfundamental in 
probability, or with probability 1, or in mean of order, p, 0 < p < oo, if the 
corresponding one of the following properties is satisfied: P{l~n- ~ml > e} 
--+ 0, as m, n-+ oo for every e > 0; the sequence gn(w)}n>1 is fundamental 
for almost all w E Q; the sequence { ~"( w)} n > 1 is fundamental in U, i.e. 
El~n- ~miP-+Oasn,m-+ 00. 

3. Theorem 1. 

(a) A necessary and sufficient condition that ~n -+ ~ (P-a.s.) is that 

Pü~~~~k-~l~e}-+0, n-+oo. (5) 

for every e > 0. 
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(b) The sequence { en}n~ 1 isfundamental with probability 1 if and only if 

for every t: > 0; or equivalently 

P{suplen+k- enl ~ t:} __.. 0, 
k~O 

n __.. oo, 

n __.. oo. 

(6) 

(7) 

PROOF. (a) Let A~ = {w: len- e1 ~ t:}, A' = limA~ = n:'= 1 Uk~n Ak. Then 

00 

{w: en + e} = U A' = U A 11m. 
e~O m=1 

But 

P(A') = !im P( U Ak)• 
n k';2:.n 

Hence (a) follows from the following chain of implications: 

(b) Let 

~ P(A 11m) = 0, m ;::.: 1 ~ P(A') = 0, t: > 0, 

~ P ( U Ak) __.. 0, 
k~n 

00 

B' = n U Bk, 1• 
n= 1 k~n 

l~n 

n __.. oo. 

Then {w: {en(w)}n~ 1 is not fundamental}= U,~ 0 B', and it can be shown 
as in (a) that P{w: { en(w)}n~ 1 is not fundamental} = 0 ~ (6). The equiva­
lence of (6) and (7) follows from the obvious inequalities 

supl~n+k- ~nl:::;; supl~n+k- ~n+zl:::;; 2 supl~n+k- ~nl· 
k~O k~O k~O 

l~O 

This completes the proof of the theorem. 

Corollary. Since 
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a sufficient condition for ~n ~ ~ is that 
00 

I P{ I ~k - ~I ~ a} < oo (8) 
k=l 

is satisfiedfor every B > 0. 

lt is appropriate to observe at this point that the reasoning used in 
obtaining (8) Iets us establish the following simple but important result which 
is essential in studying properties that are satisfied with probability 1. 

Let A 1, A 2 , ••• be a sequence of events in F. Let (see the table in §1) 
{An i.o.} denote the event !im An that consists in the realization of infinitely 
many of A 1, A 2 , •••• 

Borei-Cantelli Lemma. 

(a) lfL P(An) < 00 then P{An i.o.} = 0. 
(b) IJL: P(An) = oo and Ab A 2 , ••• are independent, then P{An i.o.} = 1. 

PROOF. (a) By definition 

{An i.o.} =!im An= rl U Ak. 
n= 1 k;,:n 

Consequently 

P{An i.o.} = PLC\ kyn Ak} = !im P(yn Ak) :::; !im k~n P(Ak), 

and (a) follows. 
(b) lf A 1, A 2 , • •• are independent, so are Ä. 1, Ä. 2 , •••• Hence for N ~ n 

we have 

and it is then easy to deduce that 

PCQ Ak) = )J P(Ak). (9) 

Since log(l - x) :::; -x, 0 :::; x < 1, 

00 00 00 

log n [1 - P(Ak)] = L log[1 - P(Ak)] :::; - L P(Ak) = -00. 
k=n k=n k=n 

Consequently 

for all n, and therefore P(A" i.o.) = 1. 
This completes the proof of the Iemma. 
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Corollary 1. lf A~ = {w: len- e1 ~ e} then (8) shows that L:'= 1 P(An) < oo, 
e > 0, and then by the Borel-Cantelli Iemma we have P(A") = 0, e > 0, where 
A" =11m A~. Therefore 

L P{lek- e1 ~ e} < oo, e > 0 ~ P(A") = o, e > 0 
~ P{w: en-/+ e)} = 0, 

as we already observed above. 

Corollary 2. Let (eJn~ 1 be a sequence of positive numbers such that en l 0, 
n--... oo. lf 

Cl() 

L P{len- '' ~ en} < 00, (10) 
n=l 

In fact, Iet An= {len- e1 ~ en}. Then P(An i.o.) = 0 by the Borei­
Cantelli Iemma. This means that, for almost every w e Q, there is an N = 
N(w) suchthat len(w)- e(w)l ~ en for n ~ N(w). Buten l 0, and therefore 
en(W) _... e(w) for almost every W E Q. 

4. Theorem 2. Wehave thefollowing implications: 

en ~ e ~ en ~ e. 
en ~ e ~ en ~ '· 
'" ~ ' ~ en -4 e. 

p > 0, 

(11) 

(12) 

(13) 

PRooF. Statement (11) follows from comparing the definition of convergence 
in probability with (5), and (12) follows from Chebyshev's inequality. 

To prove (13),1etf(x) be a continuous function,let lf(x)l ~ c,let e > 0, 
and Iet N besuchthat P(lel > N) ~ ef4c. Take J so that lf(x)- f(y)l ~ 
ef2c for lxl < N and lx- Yl ~ J. Then (cf. the proof of Weierstrass's 
theorem in Subsection 5, §5, Chapter I) 

Elf{en>- J(e)l = E(IJ(e")- f{e)l; len- ei ~ J, Iei ~ N) 

+ E(IJ(eJ- J(e)l; len- ei ~ J, Iei > N) 

+ E(lf{e")- J(e)l; len- ei > J) 
~ e/2 + e/2 + 2cP{Ien- ei > J} 
= e + 2cP{Ien- ei > b}. 

But P{len- ei > J}--... 0, and hence EIJ(en)- J(e)l ~ 2e for sufficiently 
large n; since e > 0 is arbitrary, this establishes (13). 

This completes the proof of the theorem. 

We now present a number of examples which show, in particular, that the 
converses of (11) and (12) are false in general. 
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EXAMPLE 1 (~n _f. ~ p ~n ~ ~; ~n!!; ~ p ~n ~- ~). Let Q = [0, 1], fF = 
~([0, 1]), P = Lebesgue measure. Put 

i = 1, 2, ... , n; n ~ 1. 

Then the sequence 

{ ;:1. ;:1 ;:2. ;:1 ;:2 ;:3. } 
'o1• 'o2• 'o2• 'o3• 'o3• 'o3• ••• 

of random variables converges both in probability and in mean of order 
p > 0, but does not converge at any point w e [0, 1]. 

EXAMPLE 2 (~n ~ ~ => ~n!. ~ =/> ~n ~ ~, p > 0). Again Iet Q = [0, 1], !F = 
~[0, 1], P = Lebesgue measure, and Iet 

~n(w) = {e", 0 :::;; w :::;; 1/n, 
0, w > 1/n. 

Then { ~"} converges with probability 1 (and therefore in probability) to 
zero, but 

n-+ oo, 

for every p > 0. 

EXAMPLE 3 ( ~n ~ ~ =/> ~n ~ ~). Let { ~"} be a sequence of independent random 
variables with 

Then it is easy to show that 

n-+ oo, 

n-+ oo, 
CO 

~n~O=> LPn < 00. 
n=1 

LP a.s. 
In particular, if Pn = 1/n then ~n -+ 0 for every p > 0, but ~n + 0. 

(14) 

(15) 

(16) 

The following theorem singles out an interesting case when almost sure 
convergence implies convergence in L 1. 

Theorem 3. Let(~") be a sequence of nonnegative random variables suchthat 
~n ~ ~ and E~n-+ E~ < 00. Then 

n-+ oo. (17) 
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PROOF. We have E~" < oo for sufficiently !argen, and therefore for such n 
we have 

EI~- ~nl = E(~- ~n)J{~~~nl + E(~n- ~)J{~n>~} 

= 2E(~- ~n)J{~~~n} + E(~n- ~). 

But 0::::; (~ - ~n)I1~~~"l ::::; ~. Therefore, by the dominated convergence 
theorem, limn E(~ - ~n)J 1~~~nl = 0, which together with E~n-+ E~ proves 
(17). 

Remark. The dominated convergence theorem also holds when almost sure 
convergence is replaced by convergence in probability (see Problem 1). 
Hence in Theorem 3 we may replace "~n ~ ~" by "~n -f. ~." 

5. It is shown in analysis that every fundamental sequence (x"), x" E R, is 
convergent (Cauchy criterion). Let us give a similar result for the convergence 
of a sequence of random variables. 

Theorem 4 (Cauchy Criterion for Almost Sure Convergence). A necessary and 
sufficient condition for the sequence (~n)n> 1 of random variables to converge 
with probability 1 (to a random variable~) isthat it isfundamental with proba­
bility 1. 

PROOF. lf ~n ~ ~ then 

whence the necessity follows. 
Now Iet (~n)n> 1 be fundamental with probability 1. Let.% = {w: (~n(w)) 

is not fimdamental}. Then whenever wEn\ ,Al' the sequence of numbers 
(~n(w))"~ 1 is fundamental and, by Cauchy's criterion for sequences of 
numbers, !im ~.(w) exists. Let 

~(w) ={!im ~n(w), wE!l\%, 
0, W E JV: 

(18) 

The function so defined is a random variable, and evidently ~n ~ ~. 
This completes the proof. 

Before considering the case of convergence in probability, Iet us establish 
the following useful result. 

Theorem 5. If the sequence (~") is fundamental (or convergent) in probability, 
it contains a subsequence (~"k) that isfundamental (or convergent) with proba­
bility 1. 
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PROOF. Let (~n) be fundamental in probability. By Theorem 4, it is enough 
to show that it contains a subsequence that converges almost surely. 

Take n 1 = 1 and define nk inductively as the smallest n > nk_ 1 for which 

P{l~r- ~.1 > rk} < 2-k. 

for all s ~ n, t ~ n. Then 

L P{l~nk+l- ~nkl > 2-k} < L2-k < 00 
k 

and by the Borei-Cantelli Iemma 

P{l~nk+I- ~nkl > 2-k i.o.} = 0. 

Hence 

with probability 1. 

CO 

L ~~nk+l- ~nkl < 00 
k=1 

Let JV = {w: L l~nk+l- ~nkl = oo}. Then ifwe put 

~(w) = {(nJw) + k~1 (~~~~~ - ~nk(w)), W E 0\%, 

0, W E JV, 

we obtain ~nk '='\: ~-
Ifthe original sequence converges in probability, then it is fundamental in 

probability (see also (19)), and consequently this case reduces to the one 
already considered. 

This completes the proof of the theorem. 

Theorem 6 (Cauchy Criterion for Convergence in Probability). A necessary 
and sufficient conditionjor a sequence (~n)n;;, 1 ofrandom variables to converge in 
probability isthat it is.fundamental in probability. 

PROOF. If ~n ~ ~ then 

P{l~n- ~ml ~ e} s; P{l~n- ~~ ~ e/2} + P{l~m- ~~ ~ e/2} (19) 

and consequently (~n) is fundamental in probability. 
Conversely, if (~n) is fundamental in probability, by Theorem 5 there are 

a subsequence (~nJ and a random variable~ suchthat ~nk ~ ~- But then 

P{l~n- ~~ ~ e} s; P{l~n- ~nkl ~ e/2} + P{l~nk- ~~ ~ e/2}, 

from which it is clear that ~n ~ ~- This completes the proof. 

Before discussing convergence in mean of order p, we make some Observa­
tions about LP spaces. 
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We denote by U = U(Q, ff, P) the space of random variables~= ~(w) 
with EI~ IP = Jn I~ IP dP < oo. Suppose that p ~ 1 and put 

Wlp = (EI~ IP) 11P. 
lt is clear that 

Wlp~o. 

llc~IIP = Iei WIP' c constant, 

and by Minkowski's inequality (6.31) 

II~ + 11llp ~ Wlp + 11'7llp· 

(20) 

(21) 

(22) 

Hence, in accordance with the usual terminology of functional analysis, the 
function II-IIP' defined on U and satisfying (20)-(22), is (for p ~ 1) a semi­
norm. 

For it tobe a norm, it must also satisfy 

Wlp = o = ~ = o. (23) 

This property is, of course, not satisfied, since according to Property H 
(§6) we can only say that ~ = 0 almost surely. 

This fact Ieads to a somewhat different view of the space U. That is, we 
connect with every random vaqable ~ E LP the dass[~] ofrandom variables 
in U that are equivalent to it (' and '7 are equivalent if ~ = '1 almost surely). 
lt is easily verified that the property of equivalence is reflexive, symmetric, 
and transitive, and consequently the linear space LP can be divided into 
disjoint equivalence classes of random variables. If we now think of [LP] as 
the collection of the classes [~] of equivalent random variables ~ E LP, and 
define 

[~] + ['7] = [~ + '1]. 

a[~] = [a~], 

II[~JIIp = II~IIP' 

where a is a constant, 

then [LP] becomes a normed linear space. 
In functional analysis, we ordinarily describe elements of a space [U], not 

as equivalence classes of functions, but simply as functions. In the same way 
we do not actually use the notation [LP]. From now on, we no Ionger think 
about sets of equivalence classes of functions, but simply about elements, 
functions, random variables, and so on. 

lt is a basic result of functional analysis that the spaces U, p ~ 1, are 
complete, i.e. that every fundamental sequence has a Iimit. Let us state and 
prove this in probabilistic Ianguage. 

Theorem 7 (Cauchy Test for Convergence in Mean pth Power). A necessary 
and sufficient condition that a sequence (~n)n~ 1 of random variables in LP 
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convergences in mean of order p to a random variable in LP is that the sequence 
is jimdamental in mean of order p. 

PRooF. The necessity follows from Minkowski's inequality. Let (~n) be 
fundamental ( II ~" - ~m II P --+ 0, n, m --+ co ). As in the proof of Theorem 5, we 
select a subsequence (~nJ suchthat ~nk ~ ~. where ~ is a random variable with 
Wlp <CO. 

Let n1 = 1 and define nk inductively as the smallest n > nk-t for which 

~~~~- ~sllp < 2-Zk 

for all s ;;:::.: n, t ;;:::.: n. Let 

Ak = {w: l~nk+t- ~nkl;;:::.: 2-k}. 

Then by Chebyshev's inequality 

E I ): ): I' 2- 2kr 
P(A) < Snk+l- Snk < __ = 2-kr < 2-k. 

k - 2 kr - 2- kr -

As in Theorem 5, we deduce that there is a random variable ~ such that 
~nk ~ ~-

We now deduce that ll~n - ~IIP--+ 0 as n--+ co. To do this, we fixe> 0 
and choose N = N(e) so that ll~n- ~mll~ < e for all n ;;:::.: N, m ;;:::.: N. Then for 
any fixed n ;;:::.: N, by Fatou's Iemma, 

E l~n- ~~P = E{ lim l~n- ~nklp} = E{ lim l~n- ~nklp} 
~-oo ~-oo 

Consequently EI~" - ~ IP--+ 0, n--+ co. lt is also clear that since ~ = (~ - ~n) 
+ ~n we have EI~ IP < co by Minkowski's inequality. 

This completes the proof of the theorem. 

Remark 1. In the terminology of functional analysis a complete normed 
linear space is called a Banach space. Thus LP, p ;;:::.: 1, is a Banach space. 

Remark 2. If 0 < p < 1, the function Wl P = (EI~ IPYIP does not satisfy the 
triangle inequality (22) and consequently is not a norm. Nevertheless the 
space (of equivalence classes) LP, 0 < p < 1, is complete in the metric 
d(~. r,) = EI~ - f/ IP. 

Remark 3. Let L oo = L 00(Q, fi', P) be the space (of equivalence classes of) 
random variables~= ~(w) for which ll~lloo < co, where 11~11 00 , the essential 
supremum of ~' is defined by 

Wloo = ess supl~l = inf{O:::;; c:::;; co: P(l~l > c) = 0}. 

The function 11·11 oo is a norm, and L oo is complete in this norm. 
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6. PROBLEMS 

1. Use Theorem 5 to show that almost sure convergence can be replaced by conver-
gence in probability in Theorems 3 and 4 of §6. 

2. Prove that L oo is complete. 

3. Show that if ~. f. ~ and also~. f. 11 then ~ and '1 are equivalent (P(~ i= 17) = 0). 

4. Let ~. f. ~. fln f. fl, and Iet ~ and t7 be equivalent. Show that 

P{l~.- '1nl;::: s}--> 0, n ~ oo, 

for every e > 0. 

5. Let ~. f. ~. 11. f. '1· Show that a~. + b11. f. a~ + bt~ (a, b constants), I~. I f. In 
~.'1 • .P. ~fl· 

6. Let(~. - ~) 2 --> 0. Show that ~~--> e. 
7. Show that if ~ • .!!.. C, where C is a constant, then this sequence converges in proba­

bility: 
~ • .!!.. c => ~. f. c. 

8. Let (~.) • ., 1 have the property that I:= 1 EI~. IP < oo for some p > 0. Show that 
~. --> 0 (P-a.s.). 

9. Let(~.) • ., 1 be a sequence of independent identically distributed random variables. 
Show that 

00 

El~ 1 1 < oo= I P{l~ 1 1 > s·n} < oo 
n=l 

10. Let(~.) • ., 1 beasequenceofrandom variables. Suppose that there are a random varia­
ble~ and a sequence {nk} suchthat ~ •• --> ~ (P-a.s.) and max •• _, <loS•• I~~ - ~ •• _,I-> 0 
(P-a.s.) as k --> oo. Show that then ~. -+ ~ (P-a.s.). 

11. Let the d-metric on the set of random variables be defined by 

d(~' ) - E I~- t~l 
.,, t~ - 1 + I~ - t~ I 

and identify random variables that coincide almost surely. Show that convergence 
in probability is equivalent to convergence in the d-metric. 

12. Show that there is no metric on the set of random variables such that convergence 
in that metric is equivalent to almost sure convergence. 

§11. The Hilbert Space of Random Variables with 
Finite Second Moment 

1. An important roJe among the Banach spaces U, p ~ 1, is played by the 
space L 2 = L 2(0., !F, P), the space of ( equivalence classes of) random varia­
bles with finite second moments. 
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If e and 17 E L 2, we put 

<e. 11) = ee1]. 

lt is clear that if e, 1], ( E L 2 then 

and 

(ae + b1], 0 = a(e, 0 + b(1], o. 
<e. e> ~ o 

<e.e)=o~e=o. 

a, beR, 
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(1) 

Consequently (e, 17) is a scalar product. The space L 2 is complete with 
respect to the norm 

(2) 

induced by this scalar product (as was shown in §10). In accordance with the 
terminology of functional analysis, a space with the scalar product (1) is a 
Hilbert space. 

Hilbert space methods are extensively used in probability theory to study 
properties that depend only on the first two moments of random variables 
(" L 2-theory "). Here we shall introduce the basic concepts and facts that will 
be needed for an exposition of L 2-theory (Chapter VI). 

2. Two random variables e and 17 in L 2 are said to be orthogonal (e _l17) 
if(e, 17) = ee11 = 0. According to §8, e and 17 are uncorrelated ifcov(e, 17) = 0, 
i.e. if 

It follows that the properties ofbeing orthogonal and ofbeing uncorrelated 
coincide for random variables with zero mean values. 

A set M s;;; L 2 is a system of orthogonal random variables if e _l_17 for 
every e, 11 E M (e =1- 1]). 

If also II e II = 1 for every e E M, then M is an orthonormal system. 

3. Let M = {171, ... , '7n} be an orthonormal system and e any random varia­
ble in L 2 • Let us find, in the dass of linear estimators .D = 1 a; 17 i, the best mean­
square estimator for e (cf. Subsection 2, §8). 

A simple computation shows that 

eJe- J1 ~;1];1 2 = Jie- it1 ai1Jr = (e- Jl aj1];.e- it1 aj1]) 

= Wl2- 2 it1 a;(e, '7i) + (t aj1Jj, it a;1Jj) 

n n 

= 11e11 2 - 2 L a;Ce. 1];) + L ar 
i= 1 i= 1 
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n n 

= 11~11 2 - L 1(~, '7iW + L Ia;- <~. '7iW 
i=1 i=1 

n 

~ ll~f- L 1<~. '7;W. (3) 
i=1 

where we used the equation 

af - 2a;(~. '7;) = Ia;- (~. '7iW - 1(~. '7iW· 

It is now clear that the infimum of EI~ - Li'= 1 a;'7; 12 over all real 
al> ... , an is attained for a; = (~. '7;), i = 1, ... , n. 

Consequently the best (in the mean-square sense) estimator for ~in terms 
of '7 1, ••. , '7n is 

n 

~ = L <~. '7;)'7;· 
i= 1 

Here 

A = infE ~~- J1 a;'7;1
2 =EI~- ~1 2 = 11~11 2 - ;t1 1(~. '7;)12 

(compare (1.4.17) and (8.13)). 

(4) 

(5) 

Inequality (3) also implies Bessefs inequality: if M = {'7~> '72 , ••• } is 
an orthonormal system and ~ e L 2 , then 

00 

I 1<~. '7;W:::;; 11~11 2 ; (6) 
i=1 

and equality is attained if and only if 

n 

~ = l.i.m. L (~. '7;)'1f;· (7) 
n i= 1 

The bestlinear estimator of ~ is often denoted by E(~ I '7 1, ••• , '7n) and called 
the conditional expectation (of ~ with respect to '11> ••• , '7n) in the wide sense. 

The reason for the terminology is as follows. If we consider all estimators 
cp = cp(17 1, ••• , '7n) of ~ in terms of '11> ••• , '7n (where cp is a Borel function), 
the best estimatorwill be cp* = E(~l'7 1 , ••. , '7n), i.e. theconditionalexpectation 
of ~ with respect to '11> ••• , '7n (cf. Theorem 1, §8). Hence the best linear 
estimator is, by analogy, denoted by E(~l'7 1 , ••• , '7n) and called the con­
ditional expectation in the wide sense. We note that if 17 1, ••• , '7n form a 
Gaussian system (see §13 below), then E(~l'7t>···•'7n) and E(~l'7 1 , ••• ,'7n) 
are the same. 

Let us discuss the geometric meaning of ~ = E(~ I '11> ••• , '7n). 
Let !l' = !l'{171, ••• , '7n} denote the linear manifold spanned by the ortho­

normal system of random variables '7 1, .•• , '7n (i.e., the set of random varia­
bles of the form Li= 1 a;'7;, a; ER). 
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Then it follows from the preceding discussion that e admits the "orthog­
onal decomposition" 

(8) 

where e E .!l' and e - e .l .!l' in the sense that e - e .l A for every A E .!l'. 
It is natural to call e the projection of e on .!l' (the element of .!l' "closest" 
to e), and to say that e - e is perpendicular to .!l'. 

4. The concept of orthonormality of the random variables '1 1, ••• , '1n makes it 
easy to find the best linear estimator (the projection) ~ of e in terms of 
'7 1, ••. , 'ln· The situation becomes complicated ifwe give up the hypothesis of 
orthonormality. However, the case of arbitrary '7 1 , •.• , 'ln can in a certain 
sense be reduced to the case of orthonormal random variables, as will be 
shown below. We shall suppose for the sake of simplicity that all our random 
variables have zero mean values. 

Weshall say that the random variables '7 1, ••• , 'ln are linearly independent 
if the equation 

n 

L a;'l; = 0 (P-a.s.) 
i= 1 

is satisfied only when all a; are zero. 
Consider the covariance matrix 

IR = E'1'1T 

of the vector '1 = ('1 1, ••• , '1n). It is symmetric and nonnegative definite, 
and as noticed in §8, can be diagonalized by an orthogonal matrix (!): 

(!)TIR(!) = D, 

where 

D = (~··.~) 
has nonnegative elements d;, the eigenvalues of IR, i.e. the zeros A. of the 
characteristic equation det(IR - A.E) = 0. 

If '7 1, ..• , 'ln are linearly independent, the Gram determinant (det IR) is 
not zero and therefore d; > 0. Let 

and 
B = (.jd;·. 0 ) 

0 . .jd,. 

ß = B-1(!)T". (9) 

Then the covariance matrix of ß is 

EßßT = B-1 (9 TE""T(!)B-1 = B-l(!)TIR(9B-l = E, 

and therefore ß = (ß1, ••• , ßn) consists of uncorrelated random variables. 
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It is also clear that 

rf = (C9B)ß. (10) 

Consequently if r, 1, ... , rfn are linearly independent there is an orthonormal 
system such that (9) and (10) hold. Here 

5l'{r,1, · · ·' rfn} = 5l'{ß1, · · ·' ßn}. 

This method of constructing an orthonormal system ß1, ... , ßn is fre­
quently inconvenient. The reason isthat if we think of rf; as the value of the 
random sequence (r, 1 , ••• , rfn) at the instant i, the value ß; constructed above 
depends not only on the "past," (r, 1, ... , r,;), but also on the "future," 
(rf;+ 1o ••• , rfn). The Gram~Schmidt orthogonalization process, described 
below, does not have this defect, and moreover has the advantage that it can 
be applied to an infinite sequence of linearly independent random variables 
(i.e. to a sequence in which every finite set of the variables are linearly 
independent). 

Let r, 1, r, 2 , ••• be a sequence of linearly independent random variables in 
e. We construct a sequence 1:1, ez, ... as follows. Let 1:1 = r,dllrf111- If 
~: 1 , ... , ~:"_ 1 have been selected so that they are orthonormal, then 

(11) 

where ~" is the projection of rfn on the linear manifold 5l'(et> ... , ~:"_ 1 ) 
generated by 

n-1 
~n = L (rfn, ek)ek · (12) 

k=1 

Since r, 1 , ••• ,rfn are linearly independent and 5l'{r,1, ... ,rfn-d = 

5l'{~: 1 , ... , ~:"_ d, we have llrfn - ~nll > 0 and consequently 1:" is weil defined. 
By construction, ll~:nll = 1 for n ~ 1, and it is clear that (~:", ~:k) = 0 for 

k < n. Hence the sequence ~: 1 , ~:2 , ... is orthonormal. Moreover, by (11), 

where bn = llrfn - ~nll and ~n is defined by (12). 
Now let rft> ... , rfn be any set ofrandom variables (not necessarily linearly 

independent). Let det IR = 0, where IR = llr;)l is the covariance matrix of 
(r, 1, ... , rfn), and Iet 

rank IR = r < n. 

Then, from linear algebra, the quadratic form 
n 

Q(a) = L riiaiai, 
i,j= 1 

has the property that there are n - r linearly independent vectors a0 ', ... , 

a<n-r) suchthat Q(dil) = 0, i = 1, ... , n - r. 
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But 

Consequently 
n 

I ar>'1k = o, i = 1, ... , n- r, 
k=l 

with probability 1. 
In other words, there are n - r linear relations among the variables 

11 1, .•. , '1n. Therefore if, for example, 11 b ... , '1r are linearly independent, the 
other variables '1r+ 1, •.. , '1n can be expressed linearly in terms of them, and 
consequently .P { 11 b ... , '1n} = .P { ~: 1 , ... , s,}. Hence it is clear that we can 
find r orthonormal random variables sb ... , s, suchthat 11 1, ... , '1n can be 
expressed linearly in terms of them and .P { 11 1, ... , 11 n} = .P { ~: 1 , •.. , s,}. 

5. Let 11 1, 11 2 , ••• be a sequence of random variables in L 2 • Let !l = 
!l { 11 1, 11 2 , ••• } be the linear manifold spanned by 11 1, 11 2 , ••. , i.e. the set of 
random variables of the form L7= 1 a;l'/;, n 2: 1, a; ER. Then !l = 
!l{11 1, 11 2 , •. • } denotes the c/osed linear manifold spanned by 11 1,112 , ... , 

i.e. the set of random variables in .P tagether with their mean-square Iimits. 
We say that a set 11 1 , 11 2 , .•• is a countable orthonormal basis (or a comp/ete 

orthonormal system) if: 

( a) 11 1, 11 2 , ••• is an orthonormal system, 
(b) !l{l'/ 1, '12, .. . } = L 2. 

A Hilbert space with a countable orthonormal basis is said tobe separab/e. 
By (b), for every ~ E L 2 and a given e > 0 there are numbers a 1, ... , an 

suchthat 

Then by (3) 

Consequently every element of a separable Hilbert space L 2 can be repre­
sented as 

00 

~ = I c~, '1;). 1'/;, (13) 
i= I 

or more precisely as 
n 

~ = l.i.m. L (~, '1;)'1;· 
n i= I 
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We infer from this and (3) that Parseval's equation holds: 

00 

11e11 2 = L: l<e. 'liW, (14) 
i= 1 

lt is easy to show that the converse is also valid: if1] 1, '72 , ••• is an ortho­
normal system and either (13) or (14) is satisfied, then the system is a basis. 

We now give some examples of separable Hilbert spaces and their bases. 

ExAMPLE 1. Let Q = R, $' = Bi(R), and Iet P be the Gaussian measure, 

P(- oo, a] = f 
00 

cp(x) dx, 

Let D = d/dx and 

H ( ) = ( -1tD"cp(x) 
n X cp(x) , n ~ 0. 

We find easily that 

Dcp(x) = -xcp(x), 

D 2cp(x) = {x2 - 1)cp{x), 

D 3 cp(x) = (3x - x 3)cp(x), 

(15) 

(16) 

lt follows that H"(x) are polynomials (the Hermite polynomials). From (15) 
and (16) we find that 

H 0 (x) = 1, 

H 1(x)=x, 

H 2(x) = x 2 - 1, 

H 3(x) = x 3 - 3x, 

A simple calculation shows that 

(Hm, Hn) = s:oo Hm(x)Hn(x) dP 

= s:oo Hm(x)Hn(x)cp(x) dx = n! bmn• 

where bmn is the Kroneckerdelta (0, if m =F n, and 1 if m = n). Hence if we 
put 
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the system of normalized Hermite polynomials {h"(x)}n~o will be an ortho­
normal system. We know from functional analysis that if 

lim Joo eclxl P(dx) < oo, 
c!O - oo 

(17) 

the system { 1, X, x 2' ••• } is complete in L 2' i.e. every function e = e(x) in L 2 

can be represented either as Li= 1 a;17i(x), where 1'/;(x) = xi, or as a limit of 
these functions (in the mean-square sense). lf we apply the Gram-Schmidt 
orthogonalization process to the sequence 'lt(x), 112(x), ... , with '1;(x) = xi, 
the resulting orthonormal system will be precisely the system of normalized 
Hermite polynomials. In the present case, (17) is satisfied. Hence {h"(x)}n~o 
is a basis and therefore every random variable e = e(x) on this probability 
space can be represented in the form 

" 
e<x> = ti.m. L: <e. h;)h;(x). (18) 

n i=O 

EXAMPLE 2. Let Q = {0, 1, 2, ... } and Iet P = {Pto P2 , •• • } be the Poisson 
distribution 

X = 0, 1, ... ; A > 0. 

Put N(x) = f(x) - f(x - 1) (f(x) = 0, x < 0), and by analogy with (15) 
define the Poisson-Charlier polynomials 

n ~ 1, ll0 = 1. (19) 

Since 
C() 

(llm, nn) = L nm(x)lln(x)Px = Cnc5mn• 
x=O 

where c" are positive constants, the system of normalized Poisson-Charlier 
polynomials {nn(x)}n~O· nn(x) = llix)/Jc:, is an orthonormal system, which 
is a basis since it satisfies (17). 

ExAMPLE 3. In this example we describe the Rademacher and Haar systems, 
which are of interest in function theory as weil as in probability theory. 

Let Q = [0, 1], ff = 81([0, 1]), and Iet P be Lebesgue measure. As we 
mentioned in §1, every x E [0, 1] has a unique binary expansion 

where xi = 0 or 1. To ensure uniqueness of the expansion, we agree to 
consider only expansions containing an infinite nurober of zeros. Thus we 
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~2(x) 

1-, !-+; !-+; 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 

t 
X 1 t i 

X 
0 4 0 

Figure 30 

choose the first of the two expansions 

110 0 011 
-=-+-+-+···=-+-+-+···. 
2 2 22 23 2 22 23 

We define random variables ~ 1 (x), ~ix), ... by putting 

~n(x) = Xn. 

Then for any numbers ai, equal to 0 or 1, 

lt follows immediately that ~ 1, ~ 2 , ... form a sequence of independent Bernoulli 
random variables (Figure 30 shows the construction of ~ 1 = ~ 1 (x) and 

~2 = ~2(x)). 

R 1(x) R 2(x) 

,.., 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 
11 X 11 11 11 X 

0 '2 0 4 2 4 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I I I I 

-I '--+1 -I ......... ........... 

Figure 31. Rademacher functions. 
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If we now set Rn(x) = 1 - 2~n(x), n ~ 1, it is easily verified that {Rn} 
(the Rademacher functions, Figure 31) are orthonormal: 

ERnRm = fRn(x)Rm(x) dx = bnm· 

Notice that (1, Rn) = ERn = 0. lt follows that this system is not complete. 
However, the Rademacher system can be used to construct the Haar 

system, which also has a simple structure and is both orthonormal and 
complete. 

Again Iet n = [0, 1) and ff = ~([0, 1)). Put 

H 1(x) = 1, 

H 2(x) = R1(x), 

k- 1 k 
if 21::;; x < 2i, n = 2i + k, 1 ::;; k::;; 2i,j ~ 1, 

otherwise. 

It is easy to see that H.(x) can also be written in the form 

{
2mi2, 0::;; X < 2-(m+ 1)' 

H2'"+1(x) = -2m12 , 2-(m+l)::;; X< 2-m, m = 1, 2, ... ' 
0, otherwise, 

Figure 32 shows graphs of the first eight functions, to give an idea of the 
structure of the Haar functions. 

It is easy to see that the Haar system is orthonormal. Moreover, it is 
complete bothin L 1 andin L 2, i.e. if f = f(x) EI! for p = 1 or 2, then 

n-+ oo. 

The system also has the property that 

n 

L (f, Hk)Hk(x)-+ f(x), n-> oo, 
k=l 

with probability 1 (with respect to Lebesgue measure). 
In §4, Chapter VII, we shall prove these facts by deriving them from general 

theorems on the convergence of martingales. This will, in particular, provide 
a good illustration of the application of martingale methods to the theory of 
functions. 
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H1 (x) 
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I I 
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I I 
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.' 

Figure 32. The Haar functions H 1(x), ... , H 8(x). 

6. If 17 1, ••• , IJn isafinite orthonormal system then, as was shown above, for 
every random variable ~ E L 2 there is a random variable ~ in the linear mani­
fold ft' = ft'{IJ1, ... , IJn}, namely the projection of e On ft', SUChthat 

Here ~ = Li= 1 (e, IJ;}IJi· This result has a natural generalization to the case 
when 17 1, 17 2 , ..• is a countable orthonormal system (not necessarily a basis). 
In fact, we have the following result. 

Theorem. Let 17 1, 17 2 , .•. be an orthonormal system of random variables, and 
L = L{17 1, 17 2 , •• • } the closed linear manifold spanned by the system. Then 
there is a unique element ~ E L such that 

(20) 

Moreover, 
n 

~ = I.i.m. L: <e. '7i)'7i (21) 
n i= 1 

and e - ~ j_ (, ( E [" 
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PROOF. Let d = inf{ll~- (II: ( E 2} and choose a sequence ( 1, ( 2 , ... such 
that II ~ - (n II ...... d. Let us show that this sequence is fundamental. A simple 
calculation shows that 

li(n- (mll 2 = 211(n- ~11 2 + 211(m- ~11 2 - 4JJ'n; 'm- ~r 
lt is clear that ( (n + (m)/2 E 2; consequently II [( (n + (m)/2] - ~ 11 2 ~ d2 and 
therefore ll(n - (m 11 2 --+ 0, n, m --+ oo. 

The space L 2 is complete (Theorem 7, §10). Hence there is an element ~ 
suchthat li(n - ~II --+ 0. But 2 is closed, so~ E 2. Moreover, ll(n- ~II --+ d, 
and consequently II ~ - ~ II = d, which establishes the existence of the re­
quired element. 

Let us show that ~ is the only element of 2 with the required property. 
Let ~ E 2 and Iet 

II~- ~II = II~- ~II = d. 

Then (by Problem 3) 

II~ + ~- 2~11 2 + II~- ~11 2 = 211~- ~11 2 + 211~- ~11 2 = 4d 2• 

But 

II~ + ~- 2~11 2 = 411t<~ + ~)- ~11 2 ~ 4d2 • 

Consequently II ~ - ~11 2 = 0. This establishes the uniqueness of the element 
of 2 that is closest to ~. 

Now Iet us show that ~ - ~ l. (, ( E 2. By (20), 

II ~ - ~ - c(ll ~ II ~ - ~ II 
for every c ER. But 

II~- ~- c(ll 2 = II~- ~11 2 + c2 li(ll 2 - 2(~- ~. cO. 

Therefore 
c2 li(ll 2 ~ 2(~- ~. cO. 

Take c = A.(~ - ~. 0, A. ER. Then we find from (22) that 

(~- ~. 0 2 [A2 II(II 2 - 2..1.] ~ 0. 

(22) 

Wehave ..1.2 11(11 2 - 2..1. < 0 if A. is a sufficiently small positive number. Con­
sequently (~ - ~. 0 = 0, ( E L. 

lt remains only to prove (21). 
The set 2 = 2{1] 1, IJz, .. . } is a closed subspace of L 2 and therefore a 

Hilbert space (with the same scalar product). Now the system 171, IJz, ... 
is a basis for ll (Problem 5), and consequently 

n 

~ = l.i.m. L ( ~. IJk)IJk. (23) 
n k= I 

But ~ - ~ l. IJk, k ~ 1, and therefore (~, 'lk) = (~, 'lk), k ~ 0. This, with (23) 
establishes (21). 

This completes the proof of the theorem. 
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Remark. As in the finite-dimensional case, we say that ~ is the projection of 
~ on L = L{q 1, q2 , ••• }, that ~- ~ is perpendicular to L, and that the 
representation 

~ = ~ + (~- ~) 
is the orthogonal decomposition of ~. 

We also denote ~ by E(~lq 1 , q2 , ••• ) and call it the conditional expectation 
in the wide sense (of ~ with respect to q1, q2 , .•. ). From the point ofview of 
estimating ~ in terms of q1, q2 , •.• , the variable ~ is the optimal linear esti­
mator, with error 

<X> 

~=EI~- ~12 = II~- ~11 2 = 11~11 2 - I 1(~. '7;)1 2• 
i= 1 

which follows from (5) and (23). 

7. PROBLEMS 

1. Show that if e = l.i.m. e. then 11e.11 -+ 11e11. 

2. Show that if e = l.i.m. e. and 17 = l.i.m. 11. then (e., '1.)-+ (e, 17). 

3. Show that the norm 11·11 has the parallelogram property 

11e + 11ll 2 + 11e- 11ll 2 = z<11e11 2 + 11'111 2). 

4. Let <e~> ... , e.) be a family of orthogonal random variables. Show that they have the 
Pythagorean property, 

5. Let '11> 172 , ••• be an orthonormal system and !l = !!{171, 172 , ••• } the closed linear 
manifold spanned by 17 ~> 172 , • .. • Show that the system is a basis for the (Hilbert) 
space !l. 

6. Let e I' e2' 0 0 0 be a sequence of orthogonal random variables and s. = e I + ... + e •. 
Show that if L:'= 1 Ee; < oo there is a random variable S with ES2 < oo suchthat 
l.i.m. s. = S, i.e. IIS.- Sll 2 =EIS.- Sl2 -+ 0, n-+ oo. 

7. Show that in the space L2 = L2([ -n, n], ~([ -n, n]) with Lebesgue measure Jl. 

the system {(1/.j2n)eu", n = 0, ± 1, ... } is an orthonormal basis. 

§ 12. Characteristic Functions 

1. The method of characteristic functions is one of the main tools of the 
analytic theory of probability. This will appear very clearly in Chapter III 
in the proofs of Iimit theorems and, in particular, in the proof of the central 
Iimit theorem, which generalizes the De Moivre-Laplace theorem. In the 
present section we merely define characteristic functions and present their 
basic properties. 

First we make some general remarks. 
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Besides random variables which take real values, the theory of character­
istic functions requires random variables that take complex values (see 
Subsection 1 of §5). 

Many definitions and properties involving random variables can easily 
be carried over to the complex case. For example, the expectation E( of a 
complex random variable ( = ~ + irt will exist if the expectations E~ and 
Ert exist. In this case we define E( = E~ + iErt. It is easy to deduce from the 
definition of the independence of random elements (Definition 6, §5) that 
the complex random variables ( 1 = ~ 1 + irt 1 and ( 2 = ~2 + irt2 are inde­
pendent if and only if the pairs (~ 1 , rt 1) and (~2 , rt 2 ) are independent; or, 
equivalently, the cr-algebras !l' ~" ~· and !l' ~2 • ~2 are independent. 

Besides the space L 2 of real random variables with finite second moment, 
we shall consider the Hilbert space of complex random variables ( = ~ + irt 
with EI( 12 < oo, where I (1 2 = ~2 + rt 2 and the scalar product (( 1, ( 2) is 
defined by E(1C2 , where C2 is the complex conjugate of (. The term "random 
variable" will now be used for both real and complex random variables, 
with a comment (when necessary) on which is intended. 

Let us introduce some notation. 
We consider a vector a ER" tobe a column vector, 

and aT tobe a row vector, aT = (a1, ••• , a"). If a and b eR" their scalar product 
(a, b) is Li'= 1 aibi. Clearly (a, b) = aTb. 

If a ER" and ~ = llriill is an n by n matrix, 
n 

(~a,a) = aT~a = L riiaiai. (1) 
i,j= 1 

2. Definition 1. Let F = F(x~o ... , x") be an n-dimensional distribution 
function in (R", ~(R")). Its characteristic function is 

cp(t) = f ei(t,x) dF(x), 
JR" 

tER". (2) 

Definition 2. If ~ = (~ 1 , •.• , ~") is a random vector defined on the probability 
space (0, §, P) with values in R", its characteristic function is 

cp~(t) = f ei(t,x) dF~(x), 
JR" 

teR", (3) 

where F~ = F~(x 1 , ••• , x") is the distribution function of the vector ~ = 

(~1• ... ' ~"). 

If F(x) has a density f = f(x) then 

cp(t) = f ei(t,xlf(x) dx. 
JR" 
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In other words, in this case the characteristic function is just the Fourier 
transform of f(x). 

It follows from (3) and Theorem 6. 7 ( on change of variable in a Lebesgue 
integral) that the characteristic function cp~(t) of a random vector can also 
be defined by 

(4) 

We now present some basic properties of characteristic functions, stated 
and proved for n = 1. Further important results for the general case will be 
given as problems. 

Let ~ = ~( w) be a random variable, F ~ = F ~(x) its distribution function, 
and 

its characteristic function. 
We see at once that if '1 = a~ + b then 

cp~(t) = Eeir~ = Eeir<a~+b> = eitbEeiar~. 

Therefore 

(5) 

Moreover, if ~~> ~2 , ••• , ~" are independent random variables and 
S" = ~ 1 + ··· + ~",then 

" 
([Jsn(t) = n cp~lt). (6) 

i= 1 

In fact, 

" = Eeic~, ... Eeir~" = fl cp, (t) 
j= 1 ~j ' 

where we have used the property that the expectation of a product of inde­
pendent (bounded) random variables (either real or complex; see Theorem 6 
of §6, and Problem 1) is equal to the product of their expectations. 

Property (6) is the key to the proofs of Iimit theorems for sums of inde­
pendent random variables by the method of characteristic functions (see §3, 
Chapter III). In this connection we note that the distribution function F s" 
is expressed in terms of the distribution functions of the individual terms in a 
rather complicated way, namely Fs" = F~, * · · · * F~" where * denotes 
convolution (see §8, Subsection 4). 

Here are some examples of characteristic functions. 

EXAMPLE 1. Let ~ be a Bernoulli random variable with P(~ = 1) = p, 
P(~ = 0) = q, p + q = 1, 1 > p > 0; then 

cp~(t) = peir + q. 
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If ~ 1, ..• , ~n are independent identically distributed random variables like 
~' then, writing T" = (Sn - np)/Jniq, we have 

<fJrn(t) = EeiTnt = e-itJiijjfq[peitj.jiijiq + q]n 

= [peitJqT(iip) + qe- itJP7(nii)]n. 

Notice that it follows that as n --> oo 

T =Sn-np 
n Jniq" 

EXAMPLE2. Let~~ JV(m, u2), Im I < oo, u2 > 0. Let us show that 

<p~(t) = eitm-t2a2j2 

Let IJ = (~ - m)ju. Then IJ ~ JV(O, 1) and, since 

<p~(t) = eitm<p~(ut) 

by (5), it is enough to show that 

<p~(t) = e-r2J2. 

Wehave 

. 1 Joo . 2j2 
<p~(t) = Ee'1~ = -- e'1xe-x dx 

J2ir -oo 

(7) 

(8) 

(9) 

(10) 

_ 1 Joo ~ (itx)n -x2;2 d _ ~ (it)" 1 Joo n -x2j2 d --- L....--e x-L....--- xe x fo -oo n=O n! n=O n! fo -oo 

= I (it)2n (2 - 1)11 = f (it)2n (2n)! 
n=O (2n)! n ·· n=O (2n)! 2nn! 

=I (- t2)n -~ = e-t2f2, 
n=O 2 n. 

where we have used the formula (see Problem 7 in §8) 

ExAMPLE 3. Let ~ be a Poisson random variable, 

e-;. A_k 
P(~ = k) = k!' k = 0, 1, .... 

Then 

oo e- ;. A. k oo (A_eit)k 
Ee;r~ = L eitk -,- = e-;. L -,- = exp{A.(e;r- 1)}. (11) 

k=O k. k=O k. 
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3. As we observed in §9, Subsection 1, with every distribution function in 
(R, 84(R)) we can associate a random variable of which it is the distribution 
function. Hence in discussing the properties of characteristic functions (in 
the sense either of Definition 1 or Definition 2), we may consider only 
characteristic functions cp(t) = cp~(t) of random variables ~ = ~(w). 

Theorem 1. Let~ be a random variable with distribution fi.mction F = F(x) and 

cp(t) = Eei1~ 

its characteristic function. Then cp has the following properties: 

(1) lcp(t)l s cp(O) = 1; 
(2) cp(t) is uniformly continuousfor t ER; 

(3) cp(t) = cp(- t); 
(4) cp(t) is real-valued if and only if F is symmetric <h dF(x) = J _8 dF(x)), 

BE8l(R), -B = {-x:xEB}; 
(5) if EI~ ln < oo for some n ~ 1, then cp<'>(t) exists for every r s n, and 

cp<'>(t) = { (ix)'eitx dF(x), 

r - ({J(r)(O) 
E~- -.,-, 

I 

n (it)' (it)" 
cp(t) = L - 1 E~' + - 1 ~>n(t), 

r=O r. n. 

where lt:it)l s 3E 1~1" and ~>n(t)--+ 0, t -~ 0; 
(6) ifcp<2n>(O) exists and isfmite then Ee" < oo; 
(7) !f E I~ ln < oo for all n ~ 1 and 

-. (EI~I")ltn 1 
hm =-< oo, 

n n e·R 

then 

cp(t) = f (itr E~". 
n=O n. 

for alll t I < R. 

(12) 

(13) 

(14) 

(15) 

PRooF. Properties (1) and (3) are evident. Property (2) follows from the 
inequality 

lcp(t + h)- cp(t)l = IEeir~(eih~- 1)1 s E leih~- 11 

and the dominated convergence theorem, according to which E I eih~ - 11 --+ 0, 
h--+ 0. 

Property (4). Let F be symmetric. Then if g(x) is a bounded odd Borel 
function, we have JR g(x) dF(x) = 0 (observe that for simple odd functions 
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this follows directly from the definition of the symmetry of F). Consequently 
JR sin tx dF(x) = 0 and therefore 

cp(t) = E cos t~. 

Conversely, let cp~(t) be a real function. Then by (3) 

cp -~(t) = cp~(- t) = cp~(t) = cp~(t), t ER. 

Hence (as will be shown below in Theorem 2) the distribution functions 
F _; and F; of the random variables - ~ and ~ are the same, and therefore (by 
Theorem 3.1) 

for every BE &ß(R). 
Property (5). If EI~ r < oo, we have EI~ I' < oo for r ~ n, by Lyapunov's 

inequality (6.28). 
Consider the difference quotient 

cp(t + h) - cp(t) = E it~(eih~ - 1) 
h e h · 

Since 

l
eihx _ 11 

h ~ lxl, 

and E 1 ~ 1 < oo, it follows from the dominated convergence theorem that the 
limit 

exists and equals 

Ee'1; lim = iE(~e11~) = i xe11x dF(x). . (eih; _ 1) . Joo . 
h~o h -oo 

(16) 

Hence cp'(t) exists and 

cp'(t) = i(E~ei1~) = i f_00

00 
xeitx dF(x). 

The existence of the derivatives cp<'>(t), 1 < r ~ n, and the validity of (12), 
follow by induction. 

Formula (13) follows immediately from (12). Let us now establish (14). 
Since 

. n-1 (iy)k (iyt 
e'Y = cos y + i sin y =I -k, + - 1 [cos (} 1y + i sin (} 2y] 

k=O • n. 
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for real y, with I 01 1 ::;; 1 and I 02 1 ::;; 1, we have 

. n- 1 (ite)k (ite)" . 
e"~ = k~o k! + --;;y- [cos Ol(w)te + i sm 02(w)teJ (17) 

and 

(18) 

where 

en(t) = E[e"(cos 01(w)te + i sin 02(w)te- 1)]. 

It is clear that len(t)l ::;; 3Eie"l. The theorem on dominated convergence 
shows that en(t) -+ 0, t -+ 0. 

Property (6). We give a proof by induction. Suppose first that q>"(O) 
exists and is finite. Let us show that in that case Ee2 < oo. By L'Höpital's 
rule and Fatou's Iemma, 

"(O) = 1. ! [q>'(2h)- q>'(O) q>'(O) - q>'( -2h)] 
q> h~ 2 2h + 2h 

=I' 2q>'(2h)- 2q>'( -2h) =I' _1 [ (2h)- 2 (0) (-2h)] 
liD 8h liD 4h2 q> q> + q> 

h-+0 h-+0 

foo (eihx _ e-ihx)2 
= lim 2h dF(x) 

h-+0 - 00 

= -lim foo (sin hx)\2 dF(x) ::;; - foo lim(sin hx)\2 dF(x) 
h-+O - oo hx - oo h-+O hx 

= - f_00

00 
x2 dF(x). 

Therefore, 

J:oo x2 dF(x) ::;; - q>"(O) < oo. 

Now Iet q>12H 2>(0) exist, finite, and Iet J~: x2k dF(x) < oo. If J~oo x2kdF(x) 
= 0, then f~oo x2k+ 2 dF(x) = 0 also. Hence we may suppose that 
f~ oo x2k dF(x) > 0. Then, by Property (5), 

q>(2k>(t) = f_oooo (ix)2keitx dF(x) 

and therefore, 

( -1)kq>(2k>(t) = J:oo eitx dG(x), 

where G(x) = J:. 00 u2k dF(u). 
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Consequently the function ( -1)kcp<2k>(t)G( oo )-1 is the characteristic 

function of the probability distribution G(x) · G- 1( oo) and by what we have 
proved, 

G- 1(oo) f_'xo
00

X 2 dG(x) < 00. 

But G- 1( oo) > 0, and therefore 

Property (7). Let 0 < t 0 < R. Then, by Stirling's formula we find that 

hm < -=>hm < -=>hm --0 < 1. -. (E1~1") 11" 1 -. (EI~I"tö) 11" 1 . (EI~I"t") 11" 
n e · t0 n e n! 

Consequently the series I [E 1 ~ l"t~/n !] converges by Cauchy's test, and 

therefore the series I.:"=o [(it)'/r!]E~' converges for ltl:::;;; t0 . But by (14), 
for n ~ 1, 

n (it)' 
cp(t) = L - 1 E~' + Rn(t), 

r=O r · 

where I R"(t) I :::;;; 3( I t 1"/n !)EI~ 1". Therefore 

cp(t) = I (it)' EC 
r=O r! 

for all I t I < R. This completes the proof of the· theorem. 

Remark 1. By a method similar tothat used for (14), we can establish that if 
E 1~1" < oo for some n ~ 1, then 

n ik(t - s)k Joo k isx i"(t - s)" 
cp(t)=k~O k! -ooxe dF(x)+ n! en(t-s), (19) 

where ~en(t- s)l :::;;; 3E Wl, and Bn(t- s)-+ 0 as t- s-+ 0. 

Remark 2. With reference to the condition that appears in Property (7), 
see also Subsection 9, below, on the "uniqueness of the solution of the 
moment problem." 

4. The following theorem shows that the characteristic function is uniquely 

determined by the distribution function. 
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G. 
b b-e 

Figure 33 

Theorem 2 (Uniqueness). LetFand G be distributionfunctions with the same 
characteristic function, i.e. 

(20) 

for all t ER. Then F(x) = G(x). 

PROOF. Choose a and b ER, and t: > 0, and consider the function f' = f'(x) 
shown in Figure 33. We show that 

(21) 

Let n ~ 0 belarge enough so that [a- e, b + e] ~ [ -n, n], and Iet the 
sequence { ()n} besuchthat 1 ~ (jn ! 0, n -+ oo. Like every continuous function 
on [ -n, n] that hasequal values at the endpoints,f' = f'(x)can be uniformly 
approximated by trigonometric polynomials (Weierstrass's theorem), i.e. 
there isafinite sum 

(22) 

suchthat 

sup lf'(x)- n<x)l:::; (jn· (23) 
-n:s:xsn 

Let us extend the periodic functionf,.(x) to all of R, and observe that 

sup lf!(x)l :::; 2. 
X 

Then, since by (20) 



§12. Characteristic Functions 283 

we have 

u:oof"(x) dF(x)- f_00

oof"(x) dG(x)l = I f/' dF- f/· dGI 

~ lf/: dF- f/: dGj + 2"" 

~ IJ:oof:dF- s:oof~dGI + 2bn 

+ 2F([ -n, n]) + 2G([ -n, n]), 

(24) 

where F(A) = JA dF(x), G(A) = JA dG(x). As n --+ oo, the right-hand side 
of (24) tends to zero, and this establishes (21). 

Ase--+ 0, we have f"(x)--+ /(a,bJ(x).lt follows from (21) by the theorem on 
distribution functions' being the same. 

s:
00

l(a,bJ(x) dF(x) = s:ool(a,bJ(x) dG(x), 

i.e. F(b) - F(a) = G(b) - G(a). Since a and b are arbitrary, it follows that 
F(x) = G(x) for all x eR. 

This completes the proof of the theorem. 

5. The preceding theorem says that a distribution function F = F(x) is 
uniquely determined by its characteristic function cp = cp( t ). The next theorem 
gives an explicit representation of F in terms of cp. 

Theorem 3 (Inversion Formula). Let F = F(x) be a distributionfunction and 

cp(t) = s:oo eirx dF(x) 

its characteristic function. 

(a) For pairs ofpoints a and b (a < b) at which F = F(x) is continuous, 

1 Je e-ita - e-itb 
F(b) - F(a) = lim -2 . cp(t) dt; 

c .... oo 1t -c lt 
(25) 

(b) lf J~oo lcp(t)l dt < oo, the distributionfunction F(x) has a density f(x), 

F(x) = f 
00
/(y) dy (26) 

and 

1 Joo f(x) = -2 e-itxcp(t) dt. 
1t -oo 

(27) 
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PRooF. We first observe that if F(x) has density f(x) then 

({J(t) = s:oo eitxf(x) dx, (28) 

and (27) is just the Fourier transform of the (integrable) function qJ(t). 
Integrating both sides of (27) and applying Fubini's theorem, we obtain 

F(b)- F(a) = ff(x) dx = 2~ f [f_00

00
e-itxqJ(t) dt] dx 

= 21n f_oooo qJ(t) [fe-itx dx J dt 

= 21 Joo ({J(t) e-ita ~ e-itb dt. 
n _ 00 zt 

After these remarks, which to some extent clarify (25), we turn to the proof. 
(a) Wehave 

1 Je e-ita- e-itb 
<l>e = - . qJ(t) dt 

2n -e zt 

=- . eitx dF(x) dt 
1 Je e-ita _ e-itb [Joo J 

2n -e zt - 00 

=- eitx dt dF(x) 1 Joo [Je e-ita _ e-itb J 
2n -oo -e it 

(29) 

where we have put 

1 Je e-ita - e-itb . 
'l'c(x) = - . eux dt 

2n -e zt 

and applied Fubini's theorem, which is applicable in this case because 

l
_e-i_ra -_e -_irb . eitx I = I e- ita - e- itb I = I ib e- itx dx I < b - a 

it it a -

and 

re L: (b - a) dF(x) :::;; 2c(b - a) < 00. 
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In addition, 

'l'c(x) =_.!._Je sin t(x - a) - sin t(x - b) dt 
2n -c t 

The function 

1 fc(x-a) sin V 1 fc(x-b) sin U 
=- --dv-- --du. 

2n -c(x-a) V 2n -c(x-b) U 

f' sin v 
g(s, t) = -dv 

s V 

is uniformly continuous in s and t, and 

g(s, t)-+ n 

285 

(30) 

(31) 

as s ! - oo and t i oo. Hence there is a constant C such that I 'I' c(x) I < C < oo 
for all c and x. Moreover, it follows from (30) and (31) that 

where 

c-+ oo, 

{
0, X < a, X > b, 

'l'(x) = t, x = a, x = b, 
1, a < x < b. 

Let J1. be a measure on (R, ßi(R)) suchthat p.(a, b] = F(b)- F(a). Then 
if we apply the dominated convergence theorem and use the formulas of 
Problem 1 of §3, we find that, as c-+ oo, 

<l>c = f_oooo 'l'c(x) dF(x)-+ s:oo 'l'(x) dF(x) 

= Jl(a, b) + !Jl{a} + !Jl{b} 

= F(b-)- F(a) + t[F(a)- F(a-) + F(b)- F(b- )] 

= F(b) +2F(b-) _ F(a) \F(a-) = F(b) _ F(a), 

where the last equation holds for all points a and b of continuity of F(x). 
Hence (25) is established. 
(b) Let J~oo IIP(t)l dt < oo. Write 

1 JCX) . f(x) = -2 e-•rxqJ(t) dt. 
n -oo 
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lt follows from the dominated convergence theorem that this is a continuous 
function of x and therefore is integrable on [a, b]. Consequently we find, 
applying Fubini's theorem again, that 

S:f(x)dx= f 2~(J:00e-i1xcp(t)dt)dx 

= _!_ Joo cp(t)[ibe-itx dx] dt = lim 21 Je cp(t)[ibe-itx dx] dt 
2n -oo a c-+oo 1t -c a 

1 Je e-ita- e-ilb 
= lim -2 . cp(t) dt = F(b) - F(a) 

c-oo 1t -c lt 

for all points a and b of continuity of F(x). 
Hence it follows that 

F(x) = f 
00
/(y) dy, XER, 

and since f(x) is continuous and F(x) is nondecreasing, f(x) is the density 
of F(x). 

This completes the proof of the theorem. 

Corollary. The inversion formula (25) provides a second proof of Theorem 2. 

Theorem 4. A necessary and sufficient condition for the components of the 
random vector ~ = (~ 1 , ••• , ~") to be independent is that its characteristic 
function is the product of the characteristic functions of the components: 

n 

Eeilt•~• + ··· +t"~"> = n Eei'k~k, 
k=1 

PRooF. The necessity follows from Problem 1. To prove the sufficiency we 
Iet F(x 1, ••• , x") be the distribution function of the vector ~ = (~ 1 , .•• , ~") 
andFk(x), thedistributionfunctions ofthe ~k• 1 ::5; k ::5; n. Put G = G(x~> ... , x") 
= F 1(x 1) • • • F"(x"). Then, by Fubini's theorem, for all {t1, •.• , tn) ER", 

n 

= n Eei'k~k = Eeilt•~• + ··· +tk~kl 

k=1 

= r ei(t,x,+···+tnxn) dF(x 1 ••• Xn). 
JR" 

Therefore by Theorem 2 (or rather, by its multidimensional analog; see 
Problem 3) we have F = G, and consequently, by the theorem of §5, the 
random variables eh ... , en are independent. 
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6. Theorem 1 gives us necessary conditions for a function tobe a characteristic 
function. Hence if cp = cp(t) fails to satisfy, for example, one of the first three 
conclusions of the theorem, that function cannot be a characteristic function. 
We quote without proof some results in the same direction. 

Bochner-Khinchin Theorem. Let cp(t) be continuous, t E R, with cp(O) = 1. A 
necessary and sufficient condition that cp(t) is a characteristic junction isthat it 
is positive semi-de.finite, i.e. thatfor allreal t 1, •.. , t" and all complex Ä.1, ••• , Ä.", 
n = 1, 2, ... , 

n 

I cp(t; - t)A.;A:j ~ o. 
i,j= 1 

The necessity of (32) is evident since if cp(t) = f~ oo eitx dF(x) then 

i.t1cp(t;- t)A.J.j = J:JJ/keilkXI2 dF(x) ~ o. 

The proof of the sufficiency of (32) is more difficult. 

(32) 

Polya's Theorem. Let a continuous even function cp(t) satisfy cp(t) ~ 0, 
cp(O) = 1, cp(t) -+ 0 as t -+ oo and Iet cp(t) be convex on 0 :::;; t < oo. Then 
cp(t) is a characteristic function. 

This theorem provides a very convenient method of constructing character­
istic functions. Examples are 

cpt(t) = e-lrl, 

() -{1-ltl, cp2t-
0, 

I t I :::;; 1, 
ltl > 1. 

Another is the function cp3(t) drawn in Figure 34. On [- a, a], the function 
cp3(t) :::oincides with cp2(t). However, the corresponding distribution func­
tions F 2 and F 3 are evidently different. This example shows that in general 
two characteristic functions can be the same on a finite interval without their 
distribution functions' being the same. 

-1 -a a 
Figure 34 
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Marcinkiewicz's Theorem. lf a characteristic function ({)(t) is of the form 
exp f/J(t), where f/J(t) is a polynomial, then this polynomial is of degree at 
most 2. 

lt follows, for example, that e- 14 is not a characteristic function. 

7. The following theorem shows that a property of the characteristic 
function of a random variable can Iead to a nontrivial conclusion about the 
nature of the random variable. 

TheoremS. Let ({)~(t) be the characteristic function of the random variable e. 
{a) If 1 (/)~(t0) 1 = 1 Jor some t0 =F o, then e is concentrated at the points 

a + nh, h = 2n/t0 , for some a, that is, 
00 

L P{e = a + nh} = 1, (33) 
n=- ao 

where a is a constant. 
(b) lf l({)~(t)l = I({J~(cxt)l = 1 for two different points t and cxt, where cx is 

irrational, then e is degenerate: 

P{e = a} = 1, 

where a is some number. 
(c) If I (/)~(t) I = 1, then e is degenerate. 

PRooF. (a) If I ({)~(t0) I = 1, t 0 =F 0, there is a nurober a such that (/)(t0 ) = eitoa. 

Then 

I = J:oo cos t0(x - a) dF(x) => J:oo [1 - cos t0(x - a)] dF(x) = 0. 

Since 1 - cos t0(x- a) ~ 0, it follows from property H (Subsection 2 of 
§6) that 

1 = cos t0(e - a) (P-a.s.), 

which is equivalent to (33). 
(b) It follows from I({J~(t)l = I({J~(cxt)l = 1 and from (33) that 

I P{e = a + 2n n} = I P{e = b + 2n m} = 1. 
n=- 00 t m=- 00 cxt 

If e is not degenerate, there must be at least two pairs of common points: 

2n 2n 
a +- n1 = b + -ml> 

t cxt 

2n 2n 
a + -n2 = b + -m2 , 

y cxt 
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in the sets 

{ a + 2; n, n = 0, ± 1, ... } and { b + !; m, m = 0, ± l, .. } 

whence 

and this contradicts the assumption that a is irrational. Conclusion (c) 
follows from (b). 

This completes the proof of the theorem. 

8. Let~= (~to ... , ~k) be a random vector, 

cplt) = Eei(t· ~>, 

its characteristic function. Let us suppose that EI~; I" < oo for some n ;?: 1, 
i = 1, ... , k. From the inequalities of Hölder (6.29) and Lyapunov (6.27) 
it follows that the (mixed) moments E(~~~ · · · ~;;·) exist for all nonnegative 
v 1, ... , vk such that v 1 + · · · + vk ~ n. 

As in Theorem 1, this implies the existence and continuity of the partial 
derivatives 

(JVt + ... +vk 

i3 v, i3 •• q>~(t 1• .•• ' tk) 
t1 .. . tk 

for v1 + · · · + vk ~ n. Then if we expand q>~(t 1 , ... , tk) in a Taylor series, 
we see that 

iv' + ··· +v• 
q>~(t1, ... , tk) = L 1 1 m<~•·····••>ti' · · · t;;• + o(iti"), (34) 

v, + ··· +v•:5n V1. " .. Vk. 

m~v,, ....•• > = E~~~ ... ~;;· 

is the mixed moment of order v = ( v 1, ••• , vk). 
Now cplt1, ... , tk) is continuous, q>~(O, ... , 0) = 1, and consequently this 

function is different from zero in some neighborhood I t I < ~ of zero~. In 
this neighborhood the partial derivative 

0v, + ··· +v• 

i3 ., i3 •• In q>~(t 1• ••• ' tk) 
t1 .. . tk 

exists and is continuous, where In z denotes the principal value of the 
logarithm (if z = rei8, we take In z to be In r + iO). Hence we can expand 
In q>~(t 1, •. , , tk) by Taylor's formula, 

iv' + ... + •• 
In q>~(t 1 · · · tk) = I s~v,, ···· ••>t~' · · · t;;• + o( I t 1"), (35) 

Vt + ... +Vk:5n VI! • • • v.! 
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where the coefficients s~·" ···· •kl are the (mixed) semi-invariants or cumulants 
of order v = v(v1, •.. , vk) of ~ = ~1• .. , ~k· 

Observe that if ~ and J7 are independent, then 

In cp~+~(t) = In cp~(t) + In cp~(t), (36) 

and therefore 

(37) 

(lt is this property that gives rise to the term "semi-invariant" for s~·······•kl.) 
To simpiy the formuias and make (34) and (35) Iook "one-dimensional," 

we introduce the following notation. 
If v = ( v ~> ... , vk) is a vector whose components are nonnegative integers, 

we put 

We also put s~·l = s~·······•kl, m~•l = m~·······•kl. 
Then (34) and (35) can be written 

il•l 
cp~(t) = L: 1 m~•>t• + o(ltl"), 

l•l:o>nV. 

il•l 
In cp~(t) = L: 1 s~•lt• + o( I t 1"). 

1•1 :o>n V· 

(38) 

(39) 

The following theorem and its corollaries give formulas that connect 
moments and semi-invariants. 

Theorem6. Let ~ = (~ 1 , ..• , ~k) be a random vector with E 1~;1" < oo, 
i = 1, ... , k, n;;::: 1. Thenfor v = (v~> ... , vk) suchthat lvl ~ n 

(40) 

s~•l- L (41) 
.<Cil+ ... +.l.<4l=v 

where L.<<•>+···+.<<4>=v indicates summation over all ordered sets ofnonnegative 
integral vectors .,t<Pl, IA.<Pll > 0, whose sum is v. 

PRooF. Since 

cp~(t) = exp(ln cp~(t)), 
\ \ 

if we expand the function exp by Taylor's formuia and use (39), we obtain 

n 1 ( il.l.l )q 
cp~(t) = 1 + L I L: ...,...- s~">t" + o(ltl"). (42) 

q=1 q. 1:o>l.l.l:o>n 11.. 
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Comparing terms in e· on the right-hand sides of (38) and (42), and using 
IA.Oll + · · · + IA.<qll = IA.0 l + · · · + A.<q>l, we obtain (40). 

Moreover, 

In cp~(t) = ln[1 + L ~._11 m~.l.lt.l. + o(ltl")]. 
1 sl.l.lsn · 

For small z we have the expansion 

II ( 1)q-1 
ln(1 + z) = L - zq + o(z~. 

q= 1 q 

(43) 

Using this in (43) and then comparing the coefficients oft._ with the cor­
responding coefficients on the right-hand side of (38), we obtain (41). 

Corollary 1. The following formulas connect moments and semi-invariants: 

1 I X (v) - L V. n [ (,l.CJ))J'j ( 44) 
m~ - frl.ii.Cll+···+rx.l.Cxl=v} r1! • • • rx! (A_(l)!)'• • • • (A_(X)!)'J=1 S~ ' 

s~v> - L ( -1)q-1(q - 1)! v! Il [ <J.<i'>r 
r1! ... rx! (A_(1l!)'• ... (A.<xl!)'x}._-1 m.: J, {ri).CII+··· +rx.l.(x)=v} 

(45) 

where Llr1.J.<•I+···+rxJ.<xl=vJ denotes summation over all unordered sets of 
different nonnegative integral vectors A_W, I A_W I > 0, and over all ordered sets of 
positive integral numbers ri suchthat r1A.<1l + · · · + rxA.<-"l = v. 

To establish (44) we suppose that among all the vectors A.< 1>, ... , A.<ql 
that occur in (40), there are r 1 equal to A_(i•l, ... , rx equal to .A_(i.,l (ri > 0, 
r 1 + · · · + r x = q), where all the A. <i.l are different. There are q !/(r 1 ! ... r x !) dif­
ferent sets of vectors, corresponding (except for order) with the set {A.0 >, ... 
A_<q>}). But iftwo sets, say, {A.<1>, ... , A.<ql} and {:XHl, ... , I<ql} differ only in order, 
then n~= 1 s~,l.(P)) = n~= 1 s~).(Pl). Hence if we identify sets that differ only in 
order, we obtain (44) from (40). 

Formula (45) can be deduced from (41) in a similar way. 

Corollary 2. Let us consider the special case when v = (1, ... , 1). In this case 
the moments m~vl = Ee 1 • • • ek, and the corresponding semi-invariants, are 
called simple. 

Formulas connecting simple moments and simple semi-invariants can 
be read offfrom the formulas given above. However, it is useful to have them 
written in a different way. 

For this purpose, we introduce the following notation. 
Let e = (eto ... , ek) be a vector, and I~= {1, 2, ... , k} its set of indices. 

If I !;;;; I~, Iet e1 denote the vector consisting of the components of ' whose 
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indices belong to I. Let x(J) be the vector {Xt. ... , Xn} for which Xi = 1 if 
i EI, and Xi = 0 ifi Ii I. These vectors are in one-to-one correspondence with 
the sets I~ I~.Hence we can write 

In other words, mp) and sp) aresimple moments and semi-invariants 
of the subvector ~~ of ~. 

In accordance with the definition given on p. 12, a decomposition of 
a set I is an unordered collection of disjoint nonempty sets I P such that 
LP Ip =I. 

In terms of these definitions, we have the formulas 

(46) 

q 

sp) = 'I ( -l)q-l(q- 1)! n mpp). (47) 
:E~=tlp=I p=l 

where 'Ir~=' Ip=I denotes summation over all decompositions of I, 
1 ~ q ·~ N(l), where N(I) is the number of elements of the set I. 

Weshall derive (46) from (44). If v = x(l) and A_<I> + · · · + A_<q> = v, then 
A_<P> = x(l p), JP ~ I, where the A_<P> are all different, A_<P>! = v! = 1, and every 
unoräered set {x(/ 1), .•• , x(l q)} is in one-to-one correspondence with the 
decomposition I = L~= 1 I p· Consequently (46) follows from (44). 

In a similar way, (47) follows from (35). 

EXAMPLE 1. Let ~ be a random variable (k = 1) and mn = m~n> = E~n, 
sn = s~n>. Then (40) and (41) imply the following formulas: 

rn2 = s2 + si, 

rn3 = s3 + 3s1s2 + sf, 

rn4 = s4 + 3s~ + 4s 1s3 + 6sis2 + st, (48) 

and 

s1 = rn 1 = E~, 

s2 = rn2 - mi = V~, 

s3 = rn3 - 3rn1rn2 + 2mf, 

s4 = rn4 - 3m~ - 4rn 1rn3 + 12rnirn2 - 6mt, (49) 
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EXAMPLE 2. Let~ "" Jf/(m, cr2). Since, by (9), 

t2cr2 
In cp~(t) = itm - - 2-, 

293 

we have s 1 = m, s2 = cr2 by (39), and all the semi-invariants, from the third 
on, are zero: sn = 0, n ~ 3. 

We may observe that by Marcinkiewicz's theorem a function exp &>(t), 
where &> is a polynomial, can be a characteristic function only when the 
degree of that polynomial is at most 2. lt follows, in particular, that the 
Gaussian distribution is the only distribution with the property that all its 
semi-invariants Sn are zero from a certain index onward. 

ExAMPLE 3. If ~ is a Poisson random variable with parameter A. > 0, then 
by (11) 

In cp~(t) = A.(e;1 - 1). 

lt follows that 

for all n ~ 1. 

EXAMPLE 4. Let~= (~ 1 , ... , ~n) be a random vector. Then 

ml1) = s~(l), 

m~(1, 2) = s~(l, 2) + s~(1)s~(2), 
m~(1, 2, 3) = s~(l, 2, 3) + s~(l, 2)s~(3) + 

+ s~(l, 3)s~(2) + 
+ s~(2, 3)sl1) + s~(l)s;(2)sp) 

(50) 

(51) 

These formulas show that the simple moments can be expressed in terms 
of the simple semi-invariants in a very symmetric way. If we put ~ 1 = ~2 = 
· · · = ~k• we then, of course, obtain (48). 

The group-theoretical origin of the coefficients in (48) becomes clear 
from (51). lt also follows from (51) that 

s;(1, 2) = m~(1, 2)- ml1)ml2) = E~ 1 ~2 - E~ 1 E~2 , (52) 

i.e., sp, 2) is just the covariance of ~ 1 and ~ 2 . 

9. Let ~ be a random variable with distribution function F = F(x) and 
characteristic function cp(t). Let us suppose that all the moments mn = E~n, 
n ~ 1, exist. 

It follows from Theorem 2 that a characteristic function uniquely deter­
mines a probability distribution. Let us now ask the following question 
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(uniqueness for the moment problem): Do the moments {mn}n~ 1 determine 
the probability distribution? 

More precisely, let F and G be distribution functions with the same 
moments, i.e. 

s:oo x" dF(x) = s:oo x" dG(x) (53) 

for all integers n ;;::: 0. The question is whether F and G must be the same. 
In general, the answer is "no." To see this, consider the distribution F 

with density 

f(x) = {ke-u'\ X > 0, 
0, X ;5; 0, 

where cx > 0, 0 < A. < }, and k is determined by the condition J0 f(x) dx = 1. 
Write ß = cx tan A.n and let g(x) = 0 for x :::;; 0 and 

g(x) = ke-"x;.[1 + B sin(ßx4)], Iei < 1, x > 0. 

lt is evident that g(x) ;;::: 0. Let us show that 

for all integers n ;;::: 0. 
For p > 0 and complex q with Re q > 0, we have 

rCXl tp-1e-ql dt = r~). 
Jo q 

Take p = (n + 1)/A., q = cx + iß, t = x•. Then 

But 

- r(~) 
- cx<n+ 1"'{1 + i tan A.n)<n+ 111;. · 

(1 + i tan A.n)<"+ t)/A = (cos A.n + i sin A.n)<"+ 1liA(cos A.n)-<n+ 1l/A 

= ehr(n+ 1l(cos A.n)-<n+ 1)/A 

= cos n(n + 1) · cos(A.n)-<n+ 111;., 

since sin n(n + 1) = 0. 

(54) 

(55) 
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Hence right-hand side of (55) is real and therefore (54) is valid for all 
integral n ;;:: 0. Now Iet G(x) be the distribution function with density g(x). 
lt follows from (54) that the distribution functions F and G have equal 
moments, i.e. (53) holds for all integers n ;;:: 0. 

We now give some conditions that guarantee the uniqueness of the solu­
tion of the moment problem. 

Theorem 7. Let F = F(x) be a distribution function and I-ln = s~ 00 I X ln dF(x). 
lf 

/).1/n 
lim _n_ < 00, (56) 
n-+ 00 n 

the moments {mn}n;o: 1, where mn = J~ oo xn dF(x), determine the distribution 
F = F(x) uniquely. 

PROOF. lt follows from (56) and conclusion (7) of Theorem 1 that there is a 
t0 > 0 such that, for all I t I :$; t0 , the characteristic function 

<p(t) = f_oooo eitx dF(x) 

can be represented in the form 

and consequently the moments {mn}n;o: 1 uniquely determine the character­
istic function <p(t) for ltl :$; t0 • 

Take a point s with lsl :$; t0 j2. Then, as in the proof of (15), we deduce 
from (56) that 

00 ·k( )k 
( ) = " I t - S (k)( ) 

<pt k~O k! (/J S 

for lt- sl :$; t0 , where 

<p<kl(s) = ik f_oooo xkei•x dF(x) 

is uniquely determined by the moments {mn}n;o: 1• Consequently the moments 
determine <p(t) uniquely for I t I :$; ~t0 . Continuing this process, we see that 
{mn}n;o: 1 determines <p(t) uniquely for all t, and therefore also determines 
F(x). 

This completes the proof of the theorem. 

CoroUary 1. The moments completely determine the probability distribution 
if it is concentrated on a finite interval. 
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Corollary 2. A sufficient condition for the moment problern to have a unique 
solution is that 

(57) 

For the proof it is enough to observe that the odd moments can be 
estimated in terms of the even ones, and then use (56). 

ExAMPLE. Let F(x) be the normal distribution function, 

F(x) = _1_ fx e-r2Jza2 dt. 
~ -oo 

Then m2n+ 1 = 0, m2 n = [(2n) !/2nn !]a2n, and it follows from (57) that these 
are the moments only of the normal distribution. 

Finally we state, without proof: 
Carleman's test for the uniqueness of the moment problem. 

(a) Let {mn}n2: 1 be the moments of a probability distribution, and Iet 

00 1 
I ( )1/2n = 00 · 

n=O m2n 

Then they determine the probability distribution uniquely. 
(b) lf {mn}n2: 1 are the moments of a distribution that is concentrated an 

[0, oo ), then the solution will be unique if we require only that 

00 1 
I (m )1/2n = 00 · 

n=O n 

10. Let F = F(x) and G = G(x) be distribution functions with character­
istic functions f = f(t) and g = g(t), respectively. The following theorem, 
which we give without proof, makes it possible to estimate how close F 
and Gare to each other (in the uniform metric) in terms of the closeness of 
fand g. 

Theorem (Esseen's Inequality). Let G(x) have derivative G'(x) with 
supiG'(x)l ~ C. Thenfor every T > 0 

sup IF(x)- G(x)l ~ ~ ( !f(t)- g(t)' dt + 24T sup IG'(x)l. (58) 
x TC Jo t TC x 

(This will be used in §6 of Chapter III to prove a theorem on the rapidity 
of convergence in the centrallimit theorem.) 
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11. PROBLEMS 

1. Let ~ and 11 be independent random variables, f(x) = j~(x) + i[2(x), g(x) = g1(x) 
+ ig 2(x), where .Mx) and {}k(x) are Bore! functions, k =I, 2. Show that ifE I f(~) I< oo 
and E lg(l'/)1 < oo, then 

E IJ(~)g(l'/)1 < oo 

and 

Ef(~)g(l'f) = EJW · Eg(l'f). 

2. Let~ = (~ 1 , •.. , ~.) and E Wl" < oo, where Wl = +Jre. Show that 

n ik 
q>~(t) = I 1 E(t, ~)' + s.(t)lltll", 

k=O k · 

where t = (t 1, ... , t.) and s.(t)-> 0, t-> 0. 

3. Prove Theorem 2 for n-dimensional distribution functions F = F.(x 1, ... , x.) and 
G.(x 1, ••• , x.). 

4. Let F = F(x 1, ... , x.) be an n-dimensional distribution function and q> = q>(t 1, ... , t.) 
its characteristic function. Using the notation of(3.12), establish the inversion formula 

(We are to suppose that (a, b] is an interval of continuity of P(a, b], i.e. for k = 1, 
... , n the points ak, bk are points of continuity of the marginal distribution functions 
Fk(xk) which are obtained from F(x 1, ••• , x.) by taking all the variables except 
xk equal to + oo.) 

5. Let q>k(t), k ~ 1, be a characteristic function, and Iet the nonnegative numbers A.k, 
k ~ 1, satisfy I A.k = 1. Show that I A.kq>k(t) is a characteristic function. 

6. If q>(t) is a characteristic function, are Re q>(t) and Im q>(t) characteristic functions? 

7. Let q> 1, q> 2 and q>3 be characteristic functions, and q> 1 q> 2 = q> 1 q>3• Does it follow that 
q>z = q>3? 

8. Construct thc characteristic functions of the distributions given in Tables 1 and 2 
of~3. 

9. Let ~ be an integral-valued random variable and q>~ (t) its characteristic function. 
Show that 

k = 0, ± l, ± 2 .... 

§13. Gaussian Systems 

1. Gaussian, or normal, distributions, random variables, processes, and 
systems play an extremely important role in probability theory and in 
mathematical statistics. This is explained in the first instance by the central 
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Iimit theorem (§4 of Chapter 111 and §8 of Chapter VII), of which the De 
Moivre-Laplace limit theorem is a special case (§6, Chapter I). According 
to this theorem, the normal distribution is universal in the sense that the 
distribution of the sum of a large number of random variables or random 
vectors, subject to some not very restrictive conditions, is closely approxi­
mated by this distribution. 

This is what provides a theoretical explanation of the "law of errors" of 
applied statistics, which says that errors of measurement that result from 
large numbers of independent "elementary" errors obey the normal distri­
bution. 

A multidimensional Gaussian distribution is specified by a small number 
of parameters; this isadefinite advantage in using it in the construction of 
simple probabilistic models. Gaussian random variables have finite second 
moments, and consequently they can be studied by Hilbert space methods. 
Here it is important that in the Gaussian case "uncorrelated" is equivalent 
to "independent," so that the results of L 2-theory can be significantly 
strengthened. 

2. Let us recall that (see §8) a random variable ' = '(w) is Gaussian, or 
normally distributed, with parameters m and a2 (' "' .AI"(m, a2)), Im I < oo, 
a2 > 0, if its density f~(x) has the form 

fi( ) - 1 -(x-m)2/2a2 
~ x - foa e ' (1) 

wherea = +P. 
As a! 0, the density f~(x) "converges to the <5-function 8Upported at 

x = m." It is natural to say that ' is normally distributed with mean m 
and a2 = 0 (' "' .AI"(m, 0)) if' has the property that P(' = m) = 1. 

We can, however, give a definition that applies both to the nondegenerate 
(a2 > 0) and the degenerate (a2 = 0) cases. Let us consider the characteristic 
function q>~(t) = Ee;'~, t ER. 

If P(' = m) = 1, then evidently 

q>~(t) = eitm, 

whereas if' ,..., .AI"(m, a2 ), a2 > 0, 

(2) 

(3) 

It is obvious that when a2 = 0 the right-hand sides of (2) and (3) are the 
same. It follows, by Theorem 2 of §12, that the Gaussian random variable 
with parameters m and a2 (Im I < oo, a2 ~ 0) must be the same as the random 
variable whose characteristic function is given by (3). This is an illustration 
of the "attraction of characteristic functions," a very useful technique in the 
multidimensional case. 
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Let e = <el, ... ' e") be a random vector and 

cp~(t) = Eei(r, ~>, (4) 

its characteristic function (see Definition 2, §12). 

Definition 1. A random vector e = (e1, ... , e") is Gaussian, or normally 
distributed, if its characteristic function has the form 

cp~(t) = ei(l,m)-(1/2)(1Rr,r\ (5) 

where m = (m1, •.• , m")' lmkl < oo and IR= llrk1ll is a symmetric nonnega­
tive definiten X n matrix; we use the abbreviation e - JV(m, IR). 

This definition immediately makes us ask whether (5) is in fact a character­
istic function. Let us show that it is. 

First suppose that IR is nonsingular. Then we can define the inverse 
A = IR- 1 and the function 

IAI 112 
f(x) = (2n)"12 exp{- t(A(x - m), (x - m))}, (6) 

where x = (x 1, ••• , xn) and I A I = det A. This function is nonnegative. Let 
us show that 

or equivalently that 

r ei(t,x)f(x) dx = ei(t,m)-(1/2)(1Rt,r), 

JR" 

I = r ei(t,x-m) IAI 112 
e-(1/2)(A(x-m),(x-m)) dx = e-(lj2)(1Rr,r) (7) 

n JR" (2n)"f2 . 

Let us make the change of variable 

x- m = (!)u, t = (!)v, 

where (!) is an orthogonal matrix such that 

and 

D = (d1 • • 0) 
0 · dn 

is a diagonal matrix with di ~ 0 (see the proof of the Iemma in §8). Since 
IIR I = det IR =F 0, we have di > 0, i = 1, ... , n. Therefore 

(8) 
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Moreover (for notation, see Subsection 1, §12) 

i(t, x - m) - !(A(x - m), x - m)) = i({Dv, {Du) - !(A{Du, {Du) 

= i({Dv)T(Du - !({Du)T A({Du) 

= ivTu - !uT{DT A{Du 

= ivTu - !uTD- 1u. 

Together with (8) and (12.9), this yields 

In= (2n)-"12(dl ···dn)- 112 r exp(ivTu- tuTD- 1u)du 
JR" 

= 0 (2ndk)- 112 Joo exp(ivkuk - 2ud~) duk = 0 exp(- !v~ dk) 
k=l -oo k k=l 

= exp(-!vTDv) = exp(-!vT{DT~{Dv) = exp(-!tT~t) = exp(-!(~t, t)). 

lt also follows from (6) that 

r f(x) dx = 1. 
JR" 

(9) 

Therefore (5) is the characteristic function of a nondegenerate n-di­
mensional Gaussian distribution (see Subsection 3, §3). 

Now Iet ~ be singular. Take e > 0 and consider the positive definite 
symmetric matrix ~· = ~ + eE. Then by what has been proved, 

qJ"(t) = exp{i(t, m) - t<~"t, t)} 

is a characteristic function: 

qJ"(t) = ( ei(r,x1dF.(x), 
JR" 

where F.(x) = F.(x 1 , ••• , xn) is an n-dimensional distribution function. 
Ase--+ 0, 

qJ"(t)--+ qJ(t) = exp{i(t, m) - !<~"t, t)}. 

The Iimit function qJ{t) is continuous at (0, ... , 0). Hence, by Theorem 1 
and Problem 1 of §3 of Chapter 111, it is a characteristic function. 

Wehave therefore established Theorem 1. 

3. Let us now discuss the significance of the vector m and the matrix 
~ = llrk1ll that appear in (5). 

Since 

n 1 n 

In <p~(t) = i(t, m)- t(~t, t) = i I tkmk- 2 I rk,tkt,, (10) 
k=l k,l=l 
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we find from (12.35) and the formulas that connect the moments and the 
semi-invariants that 

Similarly 

r _ 5(z,o ..... OJ _ v;; 
II - ~ - '>1• 

and generally 

Consequently m is the mean-value vector of ~ and IR is its covariance 
matrix. 

lf IR is nonsingular, we can obtain this result in a different way. In fact, 
in this case ~ has a density f(x) given by (6). 

A direct calculation shows that 

E~k = J xkf'(x) dx = mk, (11) 

cov(~k> ~1) = J(xk- mk)(x1 - mz)j'(x) dx = rkl· 

4. Let us discuss some properlies of Gaussian vectors. 

Theorem 1 

(a) The components of a Gaussian vector are uncorrelated if and only if they 
are independent. 

(b) A vector ~ = ( ~ 1, ... , ~n) is Gaussian if and only if, for every vector 
II. = (1!. 1 , ... , lln), llk ER, the random variable(~, II.) = 1!. 1 ~ 1 + · · · + lln~n 
has a Gaussian distribution. 

PROOF. (a) lfthe components of ~ = (~ 1 , ... , ~n) are uncorrelated, it follows 
from the form of the characteristic function cp~(t) that it is a product of 
characteristic functions. Therefore, by Theorem 4 of §12, the components 
areindependent. 

The converse is evident, since independence always implies Iack of cor­
relation. 

(b) If ~ is a Gaussian vector, it follows from (5) that 

E exp{it(~ 1 1l 1 + · · · + ~nl!.n)} = exp{itQ= llkmk)- ~ (L rkll!.kl!.l+ tER, 

and consequently 
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Conversely, to say that the random variable (~, A) = ~ 1 A 1 + · · · + ~nAn 
is Gaussian means, in particular, that 

Since A1, ••• , An are arbitrary it follows from Definition 1 that the vector 
~ = (~1~ ... , ~n) is Gaussian. 

This completes the proof of the theorem. 

Remark. Let {0, ~) be a Gaussian vector with 0 = (01> ... , Ok) and ~ = 
{~ 1 , ••• , ~k). If 0 and ~ are uncorrelated, i.e. cov(Oi, ~) = 0, i = 1, ... , k; 
j = 1, ... , I, they are independent. 

The proof is the same as for conclusion (a) of the theorem. 

Let~= (~ 1 , ..• , ~n) be a Gaussian vector; Iet us suppose, for simplicity, 
that its mean-value vector is zero. If rank IR = r < n, then (as was shown in 
§11), there are n - r linear relations connecting ~t> ... , ~n· We may then 
suppose that, say, ~ 1, ••• , ~. are linearly independent, and the others can 
be expressed linearly in terms of them. Hence all the basic properties of the 
vector ~ = ~ 1 , ••• , ~n are determined by the first r components (~ 1 , .•• , ~,) 
for which the corresponding covariance matrix is already known to be 
nonsingular. 

Thus we may suppose that the original vector ~ = (~ 1 , ••• , ~n) bad linearly 
independent components and therefore that IIR I > 0. 

Let (!) be an orthogonal matrix that diagonalizes IR, 

(!)TIR(!) = D. 

The diagonal elements of D are positive and therefore determine the inverse 
matrix. Put B2 = D and 

Then it is easily verified that 

i.e. the vector ß = (ßt> ... , ßn) is a Gaussian vector with components that are 
uncorrelated and therefore {Theorem 1) independent. Then if we write 
A = (!)B we find that the original Gaussian vector ~ = (~t> ... , ~n) can be 
represented as 

~=Aß, (12) 

where ß = (ß 1, ••• , ßn) is a Gaussian vector with independent <:omponents, 
ßk"' %(0, 1). Hence we have the following result. Let~ = (~t> ... , ~n) be a 
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vector with linearly independent components such that E~k = 0, k = 1, 
... , n. This vector is Gaussian if and only if there are independent Gaussian 
variables ß1, ... , ßn, ßk "' %(0, 1), and a nonsingular matrix A of order n 
such that ~ = Aß. Here IR = AAT is the covariance matrix of ~-

If IIR I -:f. 0, then by the Gram-Schmidt method (see §11) 

k = 1, ... , n, 

where since e = (~-: 1 , ... , t:k) "' %(0, E) is a Gaussian vector, 
k-1 

~k = L (~k> t:t)t:t, 
1-1 

and 

2{~ 1 , ... , ~k} = Y{e~> ... , t:d. 

We see immediately from the orthogonal decomposition (13) that 

~k = E(~k~~k-1, ... ,~1). 

(13) 

(14) 

(15) 

(16) 

(17) 

From this, with (16) and (14), it follows that in the Gaussian case the con­
ditional expectation E(~k I ~k- 1 , •.• , ~ 1 ) isalinear function of (~~> ... , ~k- 1 ): 

k= 1 

E(~kl~k-1, ... ,~1)= Iai~i· (18) 
i= 1 

(This was proved in §8 for the case k = 2.) 
Since, according to a remark made in Theorem 1 of §8, E( ~k I ~k _ 1, ••• , ~ 1) 

is an optimal estimator (in the mean-square sense) for ~k in terms of 
~ 1 , ..• , ~k _ 1 , it follows from ( 18) that in the Gaussian case the optimal 
estimator is linear. 

Weshall use thcse results in looking for optimal estimators of fJ = ( () 1, ••• , fJk) 
in terms of ~ = (~ 1 , .•. , ~~) under the hypothesis that ((), ~) is Gaussian. Let 

m6 = E(J, m~ = E~ 

be the column-vector mean values and 

V 66 =cov((J, ()) = llcov((J;, ())II, 

V 6~ = cov((J, ~) = llcov((J;, ~) II, 

V~~= cov(~, ~) = llcov(~;, 0 II, 

1 ::; i,j ::; k, 

1 ::; i ::; k, 1 ::; j ::; l' 

1 ::; i, j ::; l 

the covariance matrices. Let us suppose that V~~ has an inverse. Then we have 
the following theorem. 

Theorem 2 (Theorem on Normal Correlation). Fora Gaussian vector (0, ~), 
the optimal estimator E(O I~) of {} in terms of ~, and its error matrix 

Ll = E[O - E(O I~)] [0 - E(O(~)]T 
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are given by theformulas 

E(OI ~) = m8 + V 9~ V "i/(~ - m~), 

A = V99 - V9~ Vi/(V 9~)T. 

PRooF. Form the vector 

'7 = (0- m8)- V9~ V~/(~- m~). 

(19) 

(20) 

(21) 

We can verify at once that E'7(~ - m~)T = 0, i.e. '1 is not correlated with 
( ~ - m~). But since (0, ~) is Gaussian, the vector ('7, ~) is also Gaussian. Hence 
by the remark on Theorem 1, '1 and ~ - m~ are independent. Therefore '1 and 
~ are independent, and consequently E('71 ~) = E'7 = 0. Therefore 

E[O- m8 1~] - V9~ Vi/(~- m~) = 0. 

which establishes (19). 
To establish (20) we consider the conditional covariance 

cov(O, 01~) = E[(O- E(OI~))(O- E(OI~Wiel (22) 

Since (}- E(Oj~) = Yf, and '7 and ~ are independent, we find that 

cov(O, 01~) = E('7'7TI~) = E'7'7T 

= Voe + Vi/V~~Vz/V~~- 2Vo~Vz/V~~Vz/V~~ 
= V66 - V6~Vz/V~~· 

Since cov(O, (}I~) does not depend on "chance," we have 

A = Ecov(O,Oj~) =cov(O,Oj~), 

and this establishes (20). 

Corollary. Let((}, ~ 1 , ••• , ~n) be an (n + !)-dimensional Gaussian vector, with 
~ 1 , ••• , ~n independent. Then 

(cf. (8.12) and (8.13)). 

S. Let ~ 1 , ~ 2 , ••• be a sequence of Gaussian random vectors that converge 
in probability to ~. Let us show that ~ is also Gaussian. 

In accordance with (b) of Theorem 1, it is enough to establish this only for 
random variables. 
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Let mn = E~n• O"; = V~n· Then by Lebesgue's dominated convergence 
theorem 

1t follows from the existence ofthe Iimit on the Ieft-hand side that there are 
numbers m and 0" 2 such that 

m = lim mn, 
n~ oo 

Consequently 

i.e. ~ ~ .JV(m, 0" 2 ). 

lt follows, in particular, that the closed linear manifold 2(~ 1 , ~ 2 , ••. } 

generated by the Gaussian variables~ 1, ~ 2 , ... (see §11, Subsection 5) consists 
of Gaussian variables. 

6. W e now turn to the concept of Gaussian systems in general. 

Definition 2. A collection of random variables ~ = (~~), where (X belongs to 
some index set ~. is a Gaussian system if the random vector (~~~· ... , ~~J is 
Gaussian for every n ~ 1 and all indices (X 1, ... , (Xn chosen from ~-

Let us notice some properties of Gaussian systems. 

(a) If ~ = (~~),(XE~. is a Gaussian system, then every subsystem ~~ = (~~.). 
(X' E ~~ ~ ~. is also Gaussian. 

(b) If ~~· (XE~. are independent Gaussian variables, then the system 
~ = (~~),(XE~. is Gaussian. 

(c) If ~ = (~~),(XE~. is a Gaussian system, the closed linear manifold 2(~). 
consisting of all variables of the form L?= 1 c~.~~.· together with their 
mean-square Iimits, forms a Gaussian system. 

Let us observe that the converse of (a) is false in general. For example, 
Iet ~ 1 and 17 1 be independent and ~ 1 ~ .JV(O, 1 ), 17 1 ~ .k'(O, 1 ). Define the 
system 

( ~, 11) = {( ~ 1, I '11 D ~f ~ 1 ~ o, 
(~1• -1'1tl) tf ~1 < 0. 

(23) 

Then it is easily verified that ~ and '1 are both Gaussian, but (~, 17) is not. 
Let ~ = (~~)~e<n be a Gaussian system with mean-value vector m = (m~), 

(XE~. and covariance matrix IR = (r~p)~.ße'll• where m~ = E~~- Then IR is 
evidently symmetric (r~p = rp~) and nonnegative definite in the sense that 
for every vector c = (c~)~e<n with values in R<n, and only a finite number of 
nonzero coordinates c~, 

(IRe, c) = L r~pc~cp ~ 0. 
~.ß 

(24) 



306 II. Mathematical Foundations of Probability Theory 

We now ask the converse question. Suppose that we are given a parameter 
set ~ = {()(}, a vector m = (ma)ae\!1 and a symmetric nonnegative definite 
matrix IR= (r"'p)a,Pe\!1· Do there exist a probability space (Q, f7, P) and a 
Gaussian system ofrandom variables~ = (~a)ae\!1 on it, suchthat 

E~"' = m"', 

()(,ße~? 

If we take a finite set ()(~> ••• , ()("' then for the vector m = (m,.,, ... , m"'J 
and the matrix ~ = (rap), ()(, ß = ()( 1, ••• , ()("' we can construct in R" the 
Gaussian distribution F,.,, ... ,a"(x 1, ... , xn) with characteristic function 

cp(t} = exp{i(t, m) - !(IRt, t)}, 

It is easily verified that the family 

{Fa1 , ... ,aJX1, · · ·' Xn}; ()(iE~} 

is consistent. Consequently by Kolmogorov's theorem (Theorem 1, §9, 
and Remark 2 on this) the answer to our question is positive. 

7. If ~ = {1, 2, ... }, then in accordance with the terminology of §5 the 
system ofrandom variables~= (~a)ae!ll is a random sequence and is denoted 
by ~ = (~ 1 , ~ 2 , ... ). A Gaussian sequence is completely described by its 
mean-value vector m = (m1 , m2 , •• • ) and covariance matrix IR= llriill, 
rii = cov(~i• ~). In particular, if rii = af~ii• then ~ = (~ 1 , ~2 , .•. ) is a 
Gaussian sequence of independent random variables with ~i "' JV(mi, af), 
j ~ 1. 

When ~ = [0, 1], [0, oo ), (- oo, oo }, ... , the system ~ = (~1), t E ~. is a 
random process with continuous time. 

Let us mention some examples of Gaussian random processes. If we take 
their mean values to be zero, their probabilistic properties are completely 
described by the covariance matrices II r ,1 II- We write r(s, t) instead of r 51 

and call it the covariance function. 

EXAMPLE 1. If T = [0, 00) and 

r(s, t) = min(s, t), (25) 

the Gaussian process ~ = (~ 1)1 ~ 0 with this covariance function (see Problem 
2) and ~0 = 0 is a Brownian motion or Wiener process. 

Observe that this process has independent increments; that is, for arbitrary 
t 1 < t2 < · · · < tn the random variables 

~12 - ~II' • • •' ~tn - ~tn-1 
are independent. In fact, because the process is Gaussian it is enough to 
verify only that the increments are uncorrelated. But if s < t < u < v then 

E[~1 - ~.] [~v - ~u] = [r(t, v)- r(t, u)] - [r(s, v)- r(s, u)] 
= (t - t) - (s - s) = 0. 
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EXAMPLE 2. The process ~ = (~1), 0 :::; t :::; 1, with ~0 = 0 and 

r(s, t) = min(s, t) - st 
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(26) 

is a conditional Wiener process (observe that since r(1, 1) = 0 we have 
P(~ 1 = 0) = 1). 

ExAMPLE 3. The process ~ = (~ 1), - oo < t < oo, with 

r(s, t) = e-11-sl (27) 

is a Gauss-M arkov process. 

8. PROBLEMS 

1. Let ~ 1 , ~2 , ~ 3 be independent Gaussian random variables, ~i ~ %(0, 1). Show that 

~I + ~2~3 ~ %(0, 1). 
v 1 + ~~ 

(In this case we encounter the interesting problern of describing the nonlinear 
transformations of independent Gaussian variables ~ 1, .•• , ~. whose distributions 
are still Gaussian.) 

2. Show that (25), (26) and (27) arenonnegative definite (and consequently are actually 
covariance functions). 

3. Let A be an m x n matrix. An n x m matrix A Eil is a pseudoinverse of A if there are 
matrices U and V such that 

Show that A Eil exists and is unique. 

4. Show that (19) and (20) in the theorem on normal correlation remains valid when 
V{{ is singular provided that V~ 1 is rep1aced by V~. 

5. Let (0, ~) = (0" ... , Ok; ~ 1 , .•• , ~1) be a Gaussian vector with nonsingular matrix 
A = V88 - v~v:{. Show that the distribution function 

P(O s; ai~) = P(01 s; a 1, ..• , Ok S: aki~) 

has (P-a.s.) the density p(a 1, ... , aki ~) defined by 

IA-1121 
(lnf12 exp{-t(a- E(Oi~WA-'(a- E(OI~))}. 

6. (S. N. Bernstein). Let ~ and '1 be independent identically distributed random variables 
with finite variances. Show that if ~ + '1 and ~ - '1 are independent, then ~ and '1 
are Gaussian. 



CHAPTER 111 

Convergence of Probability Measures. 
Central Limit Theorem 

§1. Weak Convergence of Probability Measures and 
Distributions 

1. Many of the fundamental results in probability theory are formulated as 
Iimit theorems. Bernoulli's law of large numbers was formulated as a Iimit 
theorem; so was the De Moivre-Laplace theorem, which can fairly be called 
the origin of a genuine theory of probability and, in particular, which led the 
way to numerous investigations that clarified the conditions for the validity 
of the centrallimit theorem. Poisson's theorem on the approximation of the 
binomial distribution by the "Poisson" distribution in the case of rare events 
was formulated as a Iimit theorem. After the example of these propositions, 
and of results on the rapidity of convergence in the De Moivre-Laplace and 
Poisson theorems, it became clear that in probability it is necessary to deal 
with various kinds of convergence of distributions, and to establish the rapid­
ity of convergence connected with the introduction of various "natnral" 
measures of the distance between distributions. In the present chapter we 
shall discuss some general features ofthe convergence ofprobability distribu­
tions and of the distance between them. In this section we take up questions 
in the general theory of weak convergence of probability measures in metric 
spaces. The De Moivre-Laplace theorem, the progenitor of the centrallimit 
theorem, finds a natural place in this theory. From §3, it is clear that the 
method of characteristic functions is one of the most powerful means for 
proving Iimit theorems on the weak convergence of probability distributions 
in Rn. In §6, we consider questions of metrizability of weak convergence. 
Then, in §8, we turn our attention to a different kind of convergence of 
distributions (stronger than weak convergence), namely convergence in vari-
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ation. Proofs of the simplest results on the rapidity of convergence in the 
centrallimit theorem and Poisson's theoremwill be given in §§10 and 11. 

2. Webegin by recalling the statement of the law of large numbers (Chapter 
I, §5) for the Bernoulli scheme. 

Let ~b ~ 2 , .•. be a sequence of independent identically distributed 
random variables with P(~; = 1) = p, P(~; = 0) = q, p + q = 1. In terms 
of the concept of convergence in probability (Chapter II, §10), Bernoulli's 
law of large numbers can be stated as follows: 

n ---+ oo, (1) 

where S" = ~ 1 + · · · + ~n· (It will be shown in Chapter IV that in fact we 
have convergence with probability 1.) 

Weput 

Fn(x) = P{~"::;; x}, 

F(x) = {1, X 2': p, 
0, X< p, 

(2) 

where F(x) is the distribution function of the degenerate random variable 
~ = p. Also Iet P n and P be the probability measures on (R, f]I(R)) correspond­
ing to the distributions F" and F. 

In accordance with Theorem 2 of §1 0, Chapter II, convergence in probabil­
ity, Snfn l'. p, implies convergence in distribution, Snfn ~ p, which means that 

Ef(~) ---+ Ef(p), n---+ oo, (3) 

for every functionf = f(x) belanging to the dass IC(R) ofbounded continu­
ous functions on R. 

Since 

E~~") = { f(x)Pn(dx), Ef(p) = { f(x)P(dx), 

(3) can be written in the form 

{ f(x)Pn(dx)---+ { f(x)P(dx), fE IC(R), (4) 

or (in accordance with §6 of Chapter II) in the form 

{ f(x) dFn(x)---+ { f(x) dF(x), f E IC(R). (5) 

In analysis, ( 4) is called weak convergence ( of P n to P, n ---+ oo) and written 
P" ~ P. lt is also natural to call ( 5) weak convergence of F n to F and denote 
itbyF"~F. 
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Thus we may say that in a Bernoulli scheme 

Sn p w 
---+ p => Fn--+ F. 
n 

(6) 

It is also easy to see from (1) that, for the distribution functions defined 
in (2), 

n--+ oo, 

for all points x ER except for the single point x = p, where F(x) has a dis­
continuity. 

This shows that weak convergence Fn--+ F does not imply pointwise 
convergence of Fn(x) to F(x), n--+ oo, for all points x ER. However, it turns 
out that, both for Bernoulli schemes and for arbitrary distribution functions, 
weak convergence is equivalent (see Theorem 2 below) to "convergence 
in general" in the sense of the following definition. 

Definidon 1. A sequence of distribution functions {Fn}, defined on the real 
line, converges in general to the distribution function F (notation: Fn => F) 
if as n--+ oo 

XE Pc(F), 
where P c(F) is the set of points of continuity of F = F(x ). 

For Bernoulli schemes, F = F(x) is degenerate, and it is easy to see 
(see Problem 7 of §10, Chapter II) that 

(Fn => F) => (~ ~ p). 
Therefore, taking account of Theorem 2 below, 

(:" ~ p) => (Fn .!!+ F) ~ (Fn => F) => (~ ~ p) (7) 

and consequently the law of large numbers can be considered as a theorem 
on the weak convergence of the distribution functions defined in (2). 

Let us write 

1 IX F(x) = Fe e-"212 du. 
v 2n - oo 

(8) 

The De Moivre-Laplace theorem (§6, Chapter I) states that Fn(x)--+ F(x) 
for all x ER, and consequently Fn => F. Since, as we have observed, weak 
convergence Fn ~ F and convergence in general, Fn => F, are equivalent, 
we may therefore say that the De Moivre-Laplace theorem is also a theorem 
on the weak convergence of the distribution functions defined by (8). 
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These examples justify the concept of weak convergence of probability 
measures that will be introduced below in Definition 2. Although, on the 
real line, weak convergence is equivalent to convergence in general of the 
corresponding distribution functions, it is preferable to use weak convergence 
from the beginning. This is because in the first place it is easier to work with, 
and in the second place it remains useful in more general spaces than the 
realline, and in particular for metric spaces, including the especially impor­
tant spaces R", R 00 , C, and D (see §3 of Chapter II). 

3. Let (E, ß, p) be a metric space with metric p = p(x, y) and a-algebra ~ 
of Bore! subsets generated by the open sets, and Iet P, P 1, P 2 , ••• be proba­
bility measures on (E, ~. p). 

Definition 2. A sequence of probability measures {P "} converges weakly to the 
probability measure P (notation: P" ~ ,P) if 

L f(x)P n(dx)-+ L f(x)P(dx) (9) 

for every function f = f(x) in the class IC(E) of continuous bounded func­
tions on E. 

Definition 3. A sequence of probability measures {P "} converges in general 
to the probability measure P (notation: P" = P) if 

for every set A of ~ for which 

P(oA) = 0. 

(Here oA denotes the boundary of A: 

oA = [A] n [A], 

where [A] is the closure of A.) 

(10) 

(11) 

The following fundamental theorem shows the eqmvalence of the con­
cepts of weak convergence and convergence in general for probability 
measures, and contains still another equivalent Statement. 

Theorem 1. The following statements are equivalent. 

(I)P"~P. 
(II) lim P"(A) ~ P(A), A closed. 

(III) lim P"(A) 2:::: P(A), A open. 
(IV) P" = P. 
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PRooF. (I)= (II). Let A be closed, f(x) = IA(x) and 

fix)= gGp(x, A)), 6 > 0, 

where 
p(x, A) = inf{p(x, y): y E A}, 

{ 
1, t ~ 0, 

g(t) = 1 - t, 0 ~ t ~ 1, 

0, t ~ 1. 

Let us also put 

A, = {x: p(x, A) < 6} 

and observe that A, ! A as 6 ! 0. 
Since fix) is bounded, continuous, and satisfies 

P.(A) = L JA(x)P.(dx) ~ Lfix)P.(dx), 

we have 

lim P .(A) ~ lim ( fix)P .(dx) = ( fix)P(dx) ~ P(A,)! P(A), 6! 0, 
n n JE JE 

which establishes the required implication. 
The implications (II) = (III) and (111) = (II) become obvious if we take 

the complements of the sets concerned. 
(111) =(IV). Let A 0 = A\oA be the interior, and [A] the closure, of A. 

Then from (II), (III), and the hypothesis P(oA) = 0, we have 

lim P.(A) ~ lim P.([A]) ~ P([A]) = P(A), 
n n 

n n 

and therefore P .(A) --+ P(A) for every A such that P(oA) = 0. 
(IV)--+ (1). Letf = f(x) be a bounded continuous function with I f(x)l ~ 

M. Weput 

D = {tER: P{x:f(x) = t} =f. 0} 

and consider a decomposition 7;, = (t0, t 1, ... , tk) of [- M, M]: 

-M = t0 < t 1 < · · · < tk = M, k ~ 1, 

with t; r$ D, i = 0, 1, ... , k. (Observe that D is at most countable since the 
sets f- 1 { t} are disjoint and P is finite.) 

Let B; = {x: t; ~ f(x) < t;+ tJ. Since f(x) is continuous and therefore 
the set f - 1(t;, t;+ 1) is open, we have oB; s;: f- 1{t;} u f- 1 {t;+ 1}. The points 
t;, t;+ 1 ri D; therefore P(oB;) = 0 and, by (IV), 
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But 

k-1 k-1 

L tiP.(Bi)-+ L tiP(BJ 
i=O t=O 

I Lf(x)P.(dx)- Lf(x)P(dx) I~ I Lf(x)P.(dx)- :t~ tiP.(BJ I 
+ I :t~ ti p .(Bi) - :t~ ti P(BJ I 

+ I :t~ ti P(BJ - L f(x)P(dx) I 
~2 max (ti+1-tJ 

O:>i:>k-1 

whence, by (12), since the 7k (k ;;:: 1) are arbitrary, 

lim f f(x)P.(dx) = f f(x)P(dx). 
n JE JE 

This completes the proof of the theorem. 
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(12) 

Remark 1. The functions f(x) = IA(x) and J.(x) that appear in the proof 
that (I) => (II) are respectively upper semicontinuous and uniformly continuous. 
Hence it is easy to show that each of the conditions of the theorem is equiv­
alent to one of the following: 

(V) JEf(x)P.(x)dx-+ JEf(x)P(dx) for all bounded uniformly continuous 
f(x); 

(VI) lim JEf'(x)P.(dx) :S: JEf(x)P(dx) for all bounded f(x) that are upper 
semicontinuous (limf(x.) ~ f(x), x.-+ x); 

(VII) lim JEf(x)P.(dx);;:: kf(x)P(dx) for all bounded f(x) that are lower 
semicontinuous (lim f(x.) ;;:: f(x), x.-+ x). 

n 

Remark 2. Theorem 1 admits a natural generalization to the case when the 
probability measures P and P. defined on (E, ß, p) are replaced by arbitrary 
(not necessarily probability) finite measures 11 and 11n· For such measures 
we can introduce weak convergence l1n ~11 and convergence in general 
l1n => 11 and, just as in Theorem 1, we can establish the equivalence of the 
following conditions: 

(I*) l1n ~ 11; 
(II*) lim 11.(A) ~ 11(A), where A is closed and 11.(E) -+ 11(E); 

(III*) lim 11.(A) ;;:: 11(A), where A is open and 11.(E) -+ 11(E); 
(IV*) l1n => 11· 
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Each of these is equivalent to any of (V*), (VI*), and (VII*), which are 
(V), (VI), and (VII) with P n and P replaced by Jl.n and Jl.. 

4. Let (R, .1#(R)) be the realline with the system .1#(R) of sets generated by 
the Euclidean metric p(x, y) = /x- y/ (compare Remark 2 of subsection 2 
of§2 ofChapter II). Let P and P "' n ;?: 1, be probability measures on (R, .1#(R)) 
and let F and F n, n ;?: 1, be the corresponding distribution functions. 

Theorem 2. The following conditions are equivalent: 

(1) P.~P, 
(2) Pn => P, 
(3) F. ~ F, 
(4) F.=>F. 

PRooF. Since (2) ~ (1) ~ (3), it is enough to show that (2) ~ (4). 
If P. => P, then in particular 

Pn( -oo, x] ~ P( -00, x] 

for all x ER such that P{ x} = 0. But this means that F n => F. 
Now Iet F. => F. To prove that Pn => P it is enough (by Theorem 1) to 

show that limn P .(A) ;?: P(A) for every open set A. 
If A is open, there is a countable collection of disjoint open intervals 

I 1, I 2 , •.. (of the form (a, b)) such that A = 'LX'= 1 Ik. Choose e > 0 and in 
each interval h = (ak, bk) select a subinterval I~ = (a~, b~] such that a~, 
b~ E Pc(F) and P{lk):::;: P{l~) + E · rk. (Since F(x) has at most countably 
many discontinuities, such intervals I~, k ;?: 1, certainly exist.) By Fatou's 
Iemma, 

GQ 00 

lim P.(A) = lim L P.(h);?: L lim P.(h) 
n n k=1 k=1 n 

00 

;?: L lim P.(JIJ 
k= 1 " 

But 

Therefore 
GQ GQ 

lim P.(A);?: L P(J~);?: L (P(Jk)- e · 2-k) = P(A)- e. 
-.- k=1 k=1 

Since e > 0 is arbitrary, this shows that lim. Pn(A) ;?: P(A) if A is open. 
This completes the proof of the theorem. 

5. Let (E, $) be a measurable space. A collection .x'"0 (E) s;; $ of subsets is 
a determining class whenever two probability measures P and Q on (E, $) 
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satisfy 

P(A) = Q(A) for all A E %0(E) 

it follows that the measures are identical, i.e., 

P(A) = Q(A) for all A E $. 

If (E, $, p) is a metric space, a collection %1 (E) s; $ is a convergence­
determining class whenever probability measures P, P1 , P2 , ••• satisfy 

P n(A) --+ P(A) 

it follows that 

for all A E% 1(E) with P(oA) = 0 

for all A E E with P(oA) = 0. 

When (E, $) = (R, PJ(R)), we can take a determining class % 0(R) to be 
the class of "elementary" sets % = {(- oo, x], x ER} (Theorem 1, §3, 
Chapter II). It follows from the equivalence of (2) and (4) of Theorem 2 
that this class % is also a convergence-determining class. 

It is natural to ask about such determining classes in more general spaces. 
For R", n ~ 2, the class% of "elementary" sets of the form (- oo, x] = 

(- 00, Xt] X · · · X (- 00, Xn], where X = (Xl, ... , Xn) ER", is both a deter­
mining class (Theorem 2, §3, Chapter II) and a convergence-determining 
class (Problem 2). 

For R"' the cylindrical sets %0 (R"') are the "elementary" sets whose 
probabilities uniquely determine the probabilities ofthe Borel sets (Theorem 
3, §3, Chapter II). It turns out that in this case the class of cylindrical sets is 
also the class of convergence- determining sets (Problem 3). Therefore 
ff 1(R"') = ff 0(R"'). 

We might expect that the cylindrical sets would still constitute deter­
mining classes in more general spaces. However, this is, in general, not the 
case. 

I/n 2/n 

Figure 35 
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For example, consider the space (C, f!i0(C), p) with the uniform metric 
p (see subsection 6, §2, Chapter II). Let P be the probability measure concen­
trated on the element x = x(t) = 0, 0:::;; t:::;; 1, and Iet Pn, n ~ 1, be the 
probability measures each ofwhich is concentrated on the element x = xn(t) 
shown in Figure 35. lt is easy to see that P n(A) --+ P(A) for all cylindrical 
sets A with P(oA) = 0. But if we consider, for example, the set 

A = { cx E C: I cx(t) I :::;; ! , 0 :::;; t :::;; 1} E f!i0 ( C), 

then P(oA) = 0, Pn(A) = 0, P(A) = 1 and consequently Pn + P. 
Therefore f 0(C) = f!i0(C) but f 0(C) c f 1(C)(with strict inclusion). 

6. PROBLEMS 

1. Let us say that a function F = F(x), defined on R", is continuous at x eR" provided 
that, for every e > 0, there is a o > 0 suchthat IF(x)- F(y)l < e for all y eR" that 
satisfy 

x - oe < y < x + oe, 
where e = (1, ... , 1) eR". Let us say that a sequence of distribution functions {Fn} 
converges in general to the distribution function F (Fn => F) if Fn(x)-+ F(x), for all 
points x eR" where F = F(x) is continuous. 

Show that the conclusion ofTheorem 2 remains valid for R", n > 1. (See the remark 
on Theorem 2.) 

2. Show that the class :f( of "elementary" sets in R" is a convergence-determining class. 

3. Let E be one ofthe spaces R"', C, or D. Let us say that a sequence {Pn} ofproblem 
measures (defined on the u-algebra 8 of Bore! sets generated by the open sets) con­
verges in general in the sense of finite-dimensional distributions to the probability 
measure P (notation: Pn b P) if Pn(A)-+ P(A), n-+ oo, for all cylindrical sets A with 
P(oA) = 0. 

For R"', show that 

(Pn b P)-=(Pn => P). 

4. Let F and G be distribution functions on the realline and Iet 

L(F, G) = inf{h > 0: F(x- h)- h ~ G(x) ~ F(x + h) + h} 

be the Levy distance (between F and G). Show that convergence in general is equiva­
lent to convergence in the Levy metric: 

(Fn => F)-= L(Fn, F)-+ 0. 

5. Let F n =>Fand Iet F be continuous. Show that in this case F n(x) converges uniformly 
to F(x): 

sup IFn(x)- F(x)l-+ 0, n-+ oo. 
·' 

6. Prove the statement in Remark 1 on Theorem 1. 
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7. Establish the equivalence of (1*)-(IV*) as stated in Remark 2 on Theorem 1. 

8. Show that P. ~ P if and only if every subsequence {P •. } of {P.} contains a sub­
sequence {P ... } suchthat P ... ~ P. 

§2. Relative Compactness and Tightness ofFamilies 
of Probability Distributions 

l. If we are given a sequence of probability measures, then before we can 
consider the question of its (weak) convergence to some probability measure, 
we have of course to establish whether the sequence converges in general 
to some measure, or has at least one convergent subsequence. 

For example, the sequence {P.}, where P2• = P, P2n+ 1 = Q, and P and Q 
aredifferent probability measures, is evidently not convergent, but has the 
two convergent subsequences {P2.} and {P2n+d· 

lt is easy to construct a sequence {P .} of probability measures P., n ~ 1, 
that not only fails to converge, but contains no convergent subsequences at 
all. All that we have to do is to take P., n ~ 1, tobe concentrated at {n} (that 
is, P.{n} = 1). In fact, since lim. P.(a, b] = Owhenever a < b, a Iimit measure 
would have tobe identically zero, contradicting the fact that 1 = P.(R) + 0, 
n--+ oo. lt is interesting to observe that in this example the corresponding 
sequence {F.} of distribution functions, 

x ~ n, 
x < n, 

is evidently convergent: for every x E R, 

F.(x)--+ G(x) = 0. 

However, the Iimit function G = G(x) is not a distribution function (in the 
sense of Definition 1 of §3, Chapter II). 

This instructive example shows that the space of distribution functions is 
not compact. lt also shows that if a sequence of distribution functions is to 
converge to a Iimit that is also a distribution function, we must have some 
hypothesis that will prevent mass from "escaping to infinity." 

After these introductory remarks, which illustrate the kinds of difficulty 
that can arise, we turn to the basic definitions. 

2. Let us suppose that all measures are defined on the metric space (E, t!, p). 

Definition 1. A family of probability measures 9 = {P,.; a E ~} is relati~ely 
compact if every sequence of measures from 9 contains a subsequence which 
converges weakly to a probability measure. 
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We emphasize that in this definition the Iimit measure is tobe a probability 
measure, although it need not belong to the original dass f!IJ. (This is why the 
word "relatively" appears in the definition.) 

It is often far from simple to verify that a given family of probability 
measures is relatively compact. Consequently it is desirable to have simple 
and useable tests for this property. We need the following definitions. 

Definition 2. A family of probability measures f!IJ = {P .. ; cx E m:} is tight if, 
for every e > 0, there is a compact set K s; E such that 

supPa{E\K) :5 e. (1) 
<XE '!I 

Definition 3. A family of distribution functions F = {F .. ; cx E m:} defined on 
R", n ~ 1, is relatively compact (or tight) if the same property is possessed by 
the family f!IJ = {P .. ; cx E m:} of probability measures, where Pa is the measure 
constructed from Fa. 

3. The following result is fundamental for the study of weak convergence of 
probability measures. 

Theorem 1 (Prokhorov's Theorem). Let f!IJ = {Pa; cx E m:} be a family of 
probability measures de.fined on a complete separable metric space (E, S, p). 
Then f!IJ is relatively compact if and only if it is tight. 

We shall give the proof only when the space is the realline. (The proof can 
be carried over, almost unchanged, to arbitrary Euclidean spaces R", n 2 2. 
Then the theorem can be extended successively to R oo, to a-compact spaces; 
and finally to generat complete separable metric spaces, by reducing each 
case to the preceding one.) 

N ecessity. Let the family f!IJ = {Pa: cx E m:} of probability measures defined 
on (R, &I(R)) be relatively compact but not tight. Then there is an e > 0 such 
that for every compact K s; R 

sup Pa(R\K) > e, 

and therefore, for each interval I = (a, b), 

sup Pa(R\I) > e. 

lt follows that for every interval I"= ( -n, n), n ~ 1, there is a measure Pa" 
suchthat 

Since the original family f!IJ is relatively compact, we can select from {PaJn" 1 

a subsequence {Pa") such that P <Xnk ~ Q, where Q is a probability measure. 
Then, by the equivalence of conditions (I) and (II) in Theorem 1 of §1, we 
have 

(2) 
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for every n ~ 1. But Q(R\1.) l 0, n-> oo, and the left side of (2) exceeds 
s > 0. This contradiction shows that relatively compact sets are tight. 

To prove the sufficiency we need a general result (Helly's theorem) on the 
sequential compactness of families of generalized distribution functions 
(Subsection 2 of §3 of Chapter II). 

Let f = { G} be the collection of generalized distribution functions 
G = G(x) that satisfy: 

(1) G(x) is nondecreasing; 
(2) 0 :::;; G(- oo ), G( + oo) :::;; 1; 
(3) G(x) is continuous on the right. 

Then f clearly contains the class of distribution functions $' = {F} 
for which F(- oo) = 0 and F( + oo) = 1. 

Theorem 2 (Helly's Theorem). The class f = { G} of generalized distribution 
functions is sequentially compact, i.e., for every sequence { Gn} of functions 
jrom f we can.find afimction GE fand a sequence {nd c:;::: {n} suchthat 

k-> 00, 

for every point x ofthe set P c(G) ofpoints of continuity ofG = G(x). 

PROOF. Let T = { x 1, x 2 , •.• } be a countable dense subset of R. Since the 
sequence of numbers {G.(x 1)} is bounded, there is a subsequence N 1 = 
{n\1), nil), .. . } such that G.lq(x 1) approaches a limit g1 as i-> oo. Then we 
extract from N 1 a subsequence N 2 = {n\2 >, ni2 >, .. . } such that G.P>(x2 ) 

approaches a limit g2 as i-> oo; and so on. ' 
On the set T c:;::: R we can define a function GT(x) by 

and consider the "Cantor" diagonal sequence N = {n\1), ni2 >, •• • }. Then, for 
each X; E T, as m-> oo, we have 

G.!.;;'>(x;)--> GT(x;). 

Finally, let us define G = G(x) for all x ER by putting 

G(x) = inf{GT(y):yET,y > x}. (3) 

We claim that G = G(x) is the required function and G.~.,m>(x)--> G(x) at all 
points x of continuity of G. 

Since all the functions G. under consideration are nondecreasing, we have 
G.~:rlx) :::;; G.~:r>(Y) for all x and y that belong to T and satisfy the inequality 
x :::;; y. Hence for such x and y, 

GT(x) :::;; GT(y). 

It follows from this and (3) that G = G(x) is nondecreasing. 
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Now Iet us show that it is continuous on the right. Let xk ! x and d = 
limk G(xk). Clearly G(x) ~ d, and we have to show that actually G(x) = d. 
Suppose the contrary, that is, Iet G(x) < d. lt follows from (3) that there is 
a y E T, x < y, such that Gr(Y) < d. But x < xk < y for sufficiently !arge k, 
and therefore G(xk) ~ Gr(Y) < d and lim G(xk) < d, which contradicts 
d = limk G(xk). Thus we have constructed a function G that belongs to ß. 

We now establish that Gn<m)(x0 )---+ G(x0 ) for every x0 E P c(G). 
If x0 < y E T, then m 

lim Gni.TJ(x0 ) ~ !im Gni,Tl(y) = Gr(y), 
m m 

whence 

m 

On the other hand, Iet x 1 < y < x0 , y E T. Then 

G(x 1) ~ Gr(Y) = !im Gn~,Tl(y) = !im Gni,Tl(y) ~!im Gni,Tl(x0). 
m m m 

Hence if we Iet x 1 i x 0 we find that 

G(xo _) ~ Ii~ Gni,Tl(x0 ). (5) 

But if G(x0 -) = G(x0 ) we can infer from (4) and (5) that Gn~,Tl(x0)---+ G(x0 ), 

m--+ oo. 
This completes the proof of the theorem. 

We can now complete the proof of Theorem 1. 

Sufficiency. Let the family f!J> be tight and Iet {P "} be a sequence of prob­
ability measures from f!J>. Let {F"} be the corresponding sequence of distri­
bution functions. 

By Helly's theorem, thereare asubsequence {FnJ s;; {F n} and ageneralized 
distribution function G E J such that F "k(x) ---+ G(x) for x E P c( G). Let us 
show that because f!J> was assumed tight, the function G = G(x) is in fact a 
genuine distribution function ( G(- oo) = 0, G( + oo) = 1 ). 

Take t: > 0, and Iet I = (a, b] be the interval for which 

sup Pn(R\1) < t:, 
n 

or, equivalently, 

n;;::l. 

Choose points a', b' E Pc(G) suchthat a' < a, b' > b. Then 1 - t: ~ Pnk(a, b] 
~ P nk(a', b'] = F nk(b') - F nk(a') ---+ G(b') - G(a'). lt follows that G( + oo) -
G(- oo) = 1, and since 0 ~ G(- oo) ~ G( + oo) ~ 1, we ha ve G(- oo) = 0 
and G( + oo) = 1. 
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Therefore the Iimit function G = G(x) is a distribution function and 
Fnk => G. Tagether with Theorem 2 of §1 this shows that Pnk ~ Q, where Q 
is the probability measure corresponding to the distribution function G. 
This completes the proof of Theorem 1. 

4. PROBLEMS 

1. Carry out the proofs of Theorems 1 and 2 for W, n ~ 2. 

2. Let Pa be a Gaussian measure on the real line, with parameters ma and a;, IX E 21. 
Show that the family 9 = {Pa; IX E 21} is tight if and only if 

lmal:::; a, a; :::; b, IX E 21. 

3. Construct examples of tight and nontight families 9 = {Pa; IX E 21} of probability 
measures defined on (R"', ~(R"')). 

§3. Proofs of Limit Theorems by the Method of 
Characteristic Functions 

1. The proofs of the first Iimit theorems of probability theory-the Iaw of 
!arge numbers, and the De Moivre-Laplace and Poisson theorems for 
Bernoulli schemes-were based on direct analysis ofthe Iimit functions ofthe 
distributions F n, which are expressed rather simply in terms of binomial 
probabilities. (In the Bernoulli scheme, we are adding random variables that 
take only two values, so that in principle we can find Fn explicitly.) However, 
it is practically impossible to apply a similar direct method to the study of 
more complicated random variables. 

The first step in proving Iimit theorems for sums of arbitrarily distributed 
random va,·iables was taken by Chebyshev. The inequality that he discovered, 
and which is now known as Chebyshev's inequality, not only makes it 
possible to give an elementary proof of James Bernoulli's law oflarge numbers, 
but also Iets us establish very general conditions for this law to hold, when 
stated in the form 

n -> oo, every f. > 0, (1) 

for sums Sn = ~ 1 + · · · + ~n, n ::2: 1, of independent random variables. (See 
Problem 2.) 

Furthermore, Chebyshev created (and Markov perfected) the "method of 
moments" which made it possible to show that the conclusion of the De 
Moivre-Laplace theorem, written in the form 

P .::; X -> -- e-u du, { Sn - ESn } 1 fx 112 

flSn Jbr -oo 

(2) 
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is "universal," in the sense that it is valid under very generat hypotheses 
concerning the nature ofthe random variables. Forthis reason it is known as 
the centrallimit theorem of probability theory. 

Somewhat later Lyapunov proposed a different method for proving the 
centrallimit theorem, based on the idea (which goes back to Laplace) of the 
characteristic function of a probability distribution. Subsequent develop­
ments have shown that Lyapunov's method of characteristic functions is 
extremely effective for proving the mostdiverse Iimit theorems. Consequently 
it has been extensively developed and widely applied. 

In essence, the method is as follows. 

2. We already know (Chapter II, §12) that there is a one-to-one correspond­
ence between distribution functions and characteristic functions. Hence we 
can study the properties of distribution functions by using the corresponding 
characteristic functions. lt is a fortunate circumstance that weak convergence 
Fn ~ F of distributions is equivalent to pointwise convergence CfJn -+ cp of 
the corresponding characteristic functions. Moreover, we have the following 
result, which provides the basic method of proving theorems on weak con­
vergence for distributions on the realline. 

Theorem 1 (Continuity Theorem). Let {Fn} be a sequence of distribution 
fimctions Fn = Fn(x), x ER, and Iet {cpn} be the corresponding sequence of 
characteristic jimctions, 

CfJn(t) = s:oo eirx dFn(x), t ER. 

(1) If Fn ~ F, where F = F(x) is a distribution jimction, then CfJn(t)-+ cp(t), 
t ER, where cp(t) is the characteristic jimction of F = F(x). 

(2) If limn CfJn(t) exists for each t ER and cp(t) = limn CfJn(t) is continuous at 
t = 0, then cp(t) is the characteristic jimction of a probability distribution 
F = F(x), and 

The proof of conclusion (1) is an immediate consequence of the definition 
of weak convergence, applied to the functions Re eirx and Im eirx. 

The proof of (2) requires some preliminary propositions. 

Lemma 1. Let {P n} be a tight family of probability measures. Suppose that 
every weakly convergent subsequence {Pn·} of {Pn} converges to the same 
probability measure P. Then the whole sequence {P n} converges to P. 

PROOF. Suppose that Pn + P. Then there is a bounded continuous function 
f = f(x) such that 
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It follows that there exist s > 0 and an infinite sequence {n'} s; {n} such 
that 

I {t(x)Pn-(dx)- {f(x)P(dx) I z s > 0. (3) 

By Prokhorov's theorem (§2) we can select a subsequence { Pn"} of { Pn'} such 
that P n" ~ Q, where Q is a probability measure. 

By the hypotheses of the Iemma, Q = P, and therefore 

{f(x)Pn .. (dx)--+ {f(x)P(dx), 

which Ieads to a contradiction with (3). This completes the proof of the 
Iemma. 

Lemma 2. Let {P n} be a tight family of probability measures on (R, PA(R)). 
A necessary and sufticient conditionfor the sequence {Pn} to converge weakly 
to a probability measure is that for each t ER the Iimit limn cpn(t) exists, where 
cpn(t) is the characteristic function of p n: 

({Jn(t) = f/txpn(dx). 

PROOF. If {Pn} is tight, by Prohorov's theorem there is a subsequence 
{ Pn'} and a probability measure P suchthat Pn' ~ P. Suppose that the whole 
sequence {Pn} does not converge toP (Pn ~ P). Then, by Lemma 1, there is a 
subsequence {Pn .. } and a probability measure 0 such that Pn" ~ Q, and 
p # Q. 

Now we use the existence of limn cpn(t) for each t E R. Then 

lim { eitxpn.(dx) =!im { eitxpn .. (dx) 
n' J R n"' J R 

and therefore 

But the characteristic function determines the distribution uniquely 
(Theorem 2, §12, Chapter II). Hence P = Q, which contradicts the assumption 
that Pn ~ P. 

The converse part of the Iemma follows immediately from the definition 
of weak convergence. 

The following Iemma estimates the "tails" of a distribution function in 
terms of the behavior of its characteristic function in a neighborhood of 
zero. 

Lemma 3. Let F = F(x) be a distribution jimction on the real line and Iet 
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qJ = qJ(t) be its characteristic function. Then there is a constant K > 0 such 
that for every a > 0 

( dF(x) 5 K Ja [1 - Re <p(t)] dt. 
Jlxl~1/a a 0 

(4) 

PROOF. Since Re cp(t) = s~ CO cos tx dF(x), we find by Fubini's theorem that 

! Ja [1 - Re qJ(t)] dt = ! Ja[foo (1 - COS tx) dF(x)] dt 
a o a o -co 

= s:co[~ I:(l - cos tx) dt] dF(x) 

= foo (1 - sin ax) dF(x) 
_ 00 ax 

. ( sin y) i ~ mf 1 - -- · dF(x) 
IYI~1 Y laxl~1 

1 i =- dF(x), 
K lxl~ 1/a 

where 

1 . f (1 sin y) . 1 - = In --- = 1- sm 1 ~ 7 , 
K IYI~1 y 

so that (4) holds with K = 7. This establishes the lemma. 

Proof of conclusion (2) of Theorem 1. Let qJn(t) __. qJ(t), n __. oo, where 
qJ(t) is continuous at 0. Let us show that it follows that the family of prob­
ability measures {Pn} is tight, where Pn is the measure corresponding to F". 

By (4) and the dominated convergence theorem, 

Pn{R\(-!, !)} = ( dF"(x) 5 K Ja [1 - Re ({Jn(t)] dt 
a a Jlxl~1/a a 0 

K Ja ..... - [1 - Re cp(t)] dt 
a o 

as n ..... oo. 
Since, by hypothesis, cp(t) is continuous at 0 and qJ(O) = 1, for every e > 0 

there is an a > 0 such that 

for all n ~ 1. Consequently {P n} is tight, and by Lemma 2 there is a prob-
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ability measure P such that 

Hence 

but also <Pn(t)--+ <p(t). Therefore <p(t) is the characteristic function of P. 
This completes the proof of the theorem. 

Corollary. Let {Fn} be a sequence of distribution functions and {<pn} the 
corresponding sequence of characteristic functions. Also Iet F be a distribution 
function and <p its characteristic function. Then F" ~ F if and only if <pn(t)--+ 
({J(t) for all t E R. 

Remark. Let 1], 17 1,172 , ... be random variables and Fq" ~ Fq. In accordance 
with the definition of§10 ofChapter II, we then say that the random variables 
1]1 , 1]2 , ••• converge to 11 in distribution, and write 1'/n 4 11· 

Since this notation is self-explanatory, we shall frequently use it instead 
of Fq" ~ Fq when stating Iimit theorems. 

3. In the next section, Theorem 1 will be applied to prove the centrallimit 
theorem for independent but not identically distributed random variables. 
In the present section we shall merely apply the method of characteristic 
functions to prove some simple Iimit theorems. 

Theorem 2 (Law ofLarge Numbers ). Let e 1, e 2 , ••• be a sequence ofindependent 
identically distributed random variables with E I~ 1 I < oo, Sn = ~ 1 + · · · + ~n 
and E ~ 1 = m. Then S..Jn f. m, that is, for every e > 0 

n --+ oo. 

PROOF. Let <p(t) = Eei'~' and (/)s"1"(t) = EeirSnfn. Since the random variables 
are independent, we have 

by (11.12.6). But according to (11.12.14) 

<p(t) = 1 + itm + o(t), t --+ 0. 
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Therefore for each given t E R 

n-+ oo, 

and therefore 

The function cp(t) = eitm is continuous at 0 and is the characteristic function 
of the degenerate probability distribution that is concentrated at m. Therefore 

Sn d --+m, 
n 

and consequently (see Problem 7, §10, Chapter II) 

This completes the proof of the theorem. 

Theorem 3 (Central Limit Theorem for Independent Identically Distributed 
Random Variables). Let ~ 1 , ~ 2 , ... be a sequence ofindependent identically 
distributed (nondegenerate) random variables with E~i < oo and Sn = 

~1 + · · · + ~n· Then as n-+ oo 

XER, (5) 

where 

~(x) = -- e-"212 du. 1 Jx 
J2n -oo 

PRooF. Let E~ 1 = m, V~ 1 = (J2 and 

q>(t) = Eeir<~·-m>. 

Then if we put 

we find that 
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But by (11.12.14) 

t-+ 0. 

Therefore 

~n(t) = [ 1- ;;!: + oG) J-+ e-1212, 

as n -+ oo for fixed t. 
The function e-'2' 2 is the characteristic function of a random variable 

(denoted by %(0, 1)) with mean zero and unit variance. This, by Theorem 1, 
also establishes (5). In accordance with the remark in Theorem 1, this can 
also be written in the form 

S~n .!4 JV(O, 1). 
V Sn 

(6) 

This completes the proof of the theorem. 
The preceding two theorems have dealt with the behavior of the prob­

abilities of(normalized and symmetrized) sums of independent and identically 
distributed random variables. However, in order to state Poisson's theorem 
(§6, Chapter I) we have to use a more general model. 

Let us suppose that for each n ;;::: 1 we are given a sequence of independent 
random variables ent• ... , e,.,.. In other words, Iet there be given a triangular 
array 

(ell ) e21· e22 
~31• ~32• ~33 

of random variables, those in each row being independent. Put 
Sn= en1 + · · · + enn· 

Theorem 4 (Poisson's Theorem). Foreach n ;;::: 1 Iet the independent random 
variables en1• ... ' enn besuchthat 

P(enk = 1) = Pnk> 

Pnk + qnk = 1. Suppose that 

max Pnk-+ 0, 
1 SkSll 

n-+ oo, 

and L~= 1 Pnk -+ A. > 0, n -+ oo. Then,Jor each m = 0, 1, ... , 

e-J.A_m 
P(Sn = m)-+ --1-, n-+ 00. 

m. 
PRooF. Since 

(7) 
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for 1 ::::;; k ::::;; n, by our assumptions we have 
n 

(/Js.(t) = EeitSn = n (p.keil + q.k) 
k=l 

n 

= n (1 + Pnk(eit - 1))--+ exp{A.(eir - 1)}, n --+ oo. 
k=l 

The function ({J(t) = exp{A.(e;' - 1)} is the characteristic function of the 
Poisson distribution (11.12.11 ), so that (7) is established. 

If n(A.) denotes a Poisson random variable with parameter A., then (7) can 
be written like (6), in the form 

s • ..4 n(A.). 

This completes the proof of the theorem. 

4. PROBLEMS 

1. Prove Theorem 1 for R", n ~ 2. 

2. Let ~ 1, ~ 2 , ••• be a sequence of independent random variables with finite means 
EI~.! and variances V~. suchthat V~. s K < oo, where K is a constant. Use 
Chebyshev's inequality to prove the law oflarge numbers (1). 

3. Show, as a corollary to Theorem 1, that the family {cp.} is uniformly continuous and 
that cp. --+ cp uniformly on every finite interval. 

4. Let.;., n ~ 1, be random variables with characteristic functions <fJ~.(t), n ~ 1. Show 

that ~. -4 0 if and only if cp~"(t)-+ 1, n -+ oo, in some neighborhood oft = 0. 

5. Let X 1, X 2 , .•. be a sequence of independent random vectors (with values in Rk) with 
mean zero and (finite) covariance matrix r. Show that 

XI+ .. ·+X"-4.K(Or) _;;; , . 

(Compare Theorem 3.) 

§4. Central Limit Theorem for Sums of Independent 
Random Variables. 

I. The Lindeberg Condition 

1. In this section, the centrallimit theorem for (normalized and centralized) 
sums of independent random variables ~ 1 , ~2 , ... will be proved under the 
traditional hypothesis that the classical Lindeberg condition is satisfied. In the 
next section, we shall consider a more general situation. First, the central 
Iimit theorem will be stated in the "series form" and, second, we shall prove 
it under the so-called nonclassical hypotheses. 
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Theorem 1. Let ~ 1 , ~2 , ••• be a sequence of independent random variables with 
finite second moments. Let mk = E~k• uf = V ~k > 0, Sn = ~ 1 + · · · + ~"' 
v; = L'k=1 uf, and let Fk = Fk(x) be the distribution function of the random 
variable ~k· 

Let us suppose that the Lindeberg condition is satis.fied: for every e > 0 

Then 

s~n ~ %(0, 1). 
vsn 

n--+ oo. (1) 

(2) 

PROOF. Without loss of generality we assume that mk = 0 for k ~ 1. We set 

qJk(t) = Eeit~k, T" = Sn/JVS,. = Sn/Dn, (/JsJt) = EeitS", qJTJt) = EeitT". 
Then 

and for the proof of (2) it is sufficient (by Theorem 1 of §3) to establish that, 
for every t E R, 

qJTJt)--+ e-t2f2, n--+ oo. (4) 

We choose a t ER and suppose that it is fixed throughout the proof. By 
the representations 

. 01y2 
e'Y = 1 + iy + --

2 ' 

2 o I 13 
iy- 1 +. y + 2 y e - zy- 2 3!' 

which arevalid for allreal y, with 01 = 01 (y) and 02 = 02 (y), suchthat 101 1 ~ 
1, 1021 ~ 1, we obtain 

({Jk(t) = Eeir~k = foo eitx dFk(x) = f (1 + itx + 01 ~x)2)dFk(x) 
-oo Jlxi~•Dn 

(here we have also used the fact that, by hypothesis, mk = J~oo x dFk(x) = 0). 



330 111. Convergence of Probability Measures. Central Limit Theorem 

Since 

we have 

1i 2 - i 2 2 llt X dFk(x) = llt X dFk(x), 
lxi;;>:•Dn lxl;;,eDn 

where 01 = 01 (t, k, n) and I 011 ~ 1/2. 
In the same way, 

and therefore, 

1i 3 - i 2 6 02lxl dFk(x) = 02 eD,.x dFk(x), 
lxl<tDn lxl<eDn 

where 02 = 02 (t, k, n) and 102 1 ~ 1/6. 
We now set 

Then, by (5)-(7), 

(t) t2At,. 2 - 3 -
(/Jt D,. = 1- - 2- + t 01Bt,. + ltl e02 Atrt = 1 + Ctn· 

We note that 

and by (1) 
II 

L Bk,.-+0, 
k=l 

Consequently, for sufficiently large n, 

n-+ oo. 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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and 

max ICknl:::;; t2e2 + eltl 3 

1:Sk:Sn 

n 

L ICknl:::;; t2 + eltl 3 • 
k=1 

331 

(11) 

(12) 

We now appeal to the fact that, for any complex numbers z with lzl :::;; 1/2, 

ln(1 + z) = z + 91zl 2, 

where () = O(z) with 101 :::;; 1 and ln denotes the principal value of the loga­
rithm.* Then, for sufliciently large n, it follows from (8) and (11) that, for 
sufficiently small E > 0, 

ln <Pk(~) = ln(1 + Ck") = Ckn + OkniCk"l 2, 

where IOknl :::;; 1. Consequently, by (3), 

t2 t2 n ( t ) t2 " " 
2 + ln <Pdt) = 2 + kf:1 ln <Pir. D" = 2 + kf:1 Ck" + kf:1 Ok"ICk"l2. 

But 

t2 n t2 ( n ) n n 
2 + kf:1 Ckn = 2 1 - kf:1 Akn + t2 kf:1 01 (t, k, n)Bk" + eltl3 kf:1 02(t, k, n)Ak", 

and by (9) and (10), for any {) > 0 we can find numbers n0 and e > 0, with n0 

so large that for all n ~ n0 

~~ + kt1 cknl:::;; ~· 
In addition, by (11) and (12), we can find a positive number e suchthat 

I k~ oknl Ctnl2 1 :::;; 1~::" I ck"l k~ I ck"l :::;; (t2e2 + eltl3 )(t2 + eltl3 ). 

Therefore, for sufficiently large n, we can choose e > 0 so that 

lkt1 Ok"ICk"l 2 1:::;; ~ 
and consequently, 

* The principal value In z of the complex number z is defined by ln z = lnlzl + i arg z, 
-n < argz::;;; n. 
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Therefore, for any real t, 

cpTJt)er>t2 --.. 1, n--.. oo 

and hence, 

n--.. oo. 

This completes the proof of the theorem. 

2. We turn our attention to some special cases in which the Lindeberg 
condition (1) is satisfied and consequently, the centrallimit theorem is valid. 

a) Let the "Lyapunov condition" be satisfied: for some (j > 0 

1 ~ 2+6 
D2+6 L... Elet - mtl --.. 0, 

n k=l 
n--.. oo. (13) 

Let 8 > 0; then 

Elet- mkl2+" = J: lx- mtl2+" dFk(x) 

2:: J lx - mti 2H dFk(x) 
{x: xlx-mki<!:•Dn} 

2:: 8"D! J (x - mt)2 dFk(x) 
{x: jx-mki<!:•Dn} 

and therefore, 

Consequently, the Lyapunov condition implies the Lindeberg condition. 
b) Let e1 , e2 , ••• be independent identically distributed random variables 

with m = Ee 1 and variance 0 < a2 = Ve1 < oo. Then 

=--; J lx- ml 2 dF1(x)--.. 0, 
nq {x: lx-ml<!:•a2Jn} 

since {x: lx- ml;;:: 8a2 j;;} ~ 0, n--.. oo, and a 2 = Ele1 - ml2 < oo. 
Therefore, the Lindeberg condition is satisfied and consequently, Theorem 

3 of §3 follows from the proof of Theorem 1. 
c) Let e1 , e2 , ••• be independent random variables suchthat for all n;;:: 1 

1et1:::;;; K < oo, 

where K is a constant and Dn--.. oo, n--.. oo. 
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Then by Chebyshev's inequality 

f lx- mkl 2 dFk(x) = E[(ek- mk)2I(Iek- mkl ~ eDn)] 
{x: lx-mki:2:•Dn} 

and therefore, 

1 n f 2 (2K)2 
2 L lx - mkl dFk(x) :::;; ---r2-+ 0, 
Dn k=l {x: lx-mki:2:•Dn} 8 Dn 

n-+ oo. 

Consequently, the Lindeberg condition is satisfied again and therefore, the 
centrallimit theorem is verified. 

3. Remark 1. Let T" = (Sn - ESn)/Dn and FTJx) = P(T" :::;; x). Then proposi­
tion (2) shows that for all x e R 

FT (x) -+ ~(x), 
n 

n-+ oo. 

Since ~(x) is continuous, the convergence here is actually uniform (problem 
5, §1): 

sup IFTJx)- ~(x)l-+ 0, n-+ oo. (14) 
xeR 

In particular, it follows that 

P{Sn:::;; x}- ~(x ~nESn)-+ 0, n-+ oo. 

This proposition is often expressed by the statement that for sufficiently large 
n the value Sn is approximately normally distributed with mean ESn and vari­
ance v; = vsn. 

Remark 2. Since, according to the preceding remarks, FT (x)-+ ~(x) as 
n -+ oo, uniformly in x, it is natural to raise the question ~f the rate of 
convergence in (14). In the case when the numbers e1 , e2 , .•• are independent 
and uniformly distributed with Ele1 13 < oo, this question is answered by the 
Berry-Esseen inequality: 

where the absolute constant C satisfies the inequality 

1/J(2n):::;; C < 0.8. 

The proof of(15) will be given in §11. 

(15) 

Remark 3. We can state the Lindeberg condition in a somewhat different 
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(and more compact) version which is especially convenient in the "series 
form." 

Let ~ 1 , ~ 2 , ••• be a sequence of independent random variables, with 

mk = E~k• Uf = v~k > 0, D; = Lk=l Uf, and ~nk = (~k- mk)/Dn. In this nota­
tion, condition (1) assumes the following form: 

n 
(L) L E[~;ki(I~nkl :2: e)]--+ 0, n--+ oo. (16) 

k=1 

If Sn= ~n 1 + · · · + ~nn• we have V Sn= 1 and Theorem 1 can be given the 
following form: if (16) is satis.fied, we have 

d Sn --+ %(0, 1 ). 

In this form the centrallimit theorem is valid without the assumption that ~nk 
has the specialform (~nk- mk)/Dn. In fact, we have the following result whose 
proof is word for word the same as that of Theorem 1. 

Theorem 2. F or each n ;;:: 1 Iet 

~n1' ~n2• • • •' ~nn 

be a sequence of independent random variables for which E~nk = 0 and V Sn = 1, 

where Sn = ~n1 + · · · + ~nn· 
Then the Lindeberg condition (16) is a sufficient condition for the conver­

d gence Sn--+ %(0, 1). 

4. Since 
n 

max E~;k ~ e2 + L E[~;ki(I~nkl :2: e)], 
1 :s;k:s;n k=1 

it is clear that the Lindeberg condition (16) implies that 

max E~;k --+ 0, n--+ oo. (17) 
1 :s;k:s;n 

It is noteworthy that when this condition is satisfied, it follows automatically 
from the validity of the centrallimit theorem that the Lindeberg condition is 
satisfied (Lindberg-Feiler theorem). 

Theorem 3. F or each n ;;:: 1 Iet 

~nl' ~n2• · · •' ~nn 

be a sequence of independent random variables for which E~nk = 0 and V Sn = 1, 
where Sn = ~nl + · · · + ~nn· Let (17) be satis.fied. Then the Lindeberg condi­
tion is necessary and sufficient for the validity of the central Iimit theorem, 
Sn --+ %(0, 1 ). 

The suffi.ciency follows from Theorem 2. To establish the necessity we need 
the following Iemma (compare Lemma 3, §3, Chapter 111). 
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Lemma. Let ~ be a random variable with distribution function F = F(x), 
E~ = 0, V~= y > 0. Thenfor every a > 0 

I x 2 dF(x) ~ ~[Re J(j6a) - 1 + 3ya2 ], 

J lxl;;.1/a a 

where f(t) = Eeit~ is the characteristic function of ~­

PRooF. We have 

Re f(t) - 1 + ht2 = ht2 - J: [1 - cos tx] dF(x) 

= ht2 - I [1 - cos tx] dF(x) - I [1 - cos tx] dF(x) 
Jlxl< 1/a Jlxl;:o: 1/a 

;;::: ht2 - tt2 I x 2 dF(x) - 2a2 I x 2 dF(x) 
J lxl < 1/a J lxl;:o: 1/a 

= (tt2 - 2a2 ) · I x 2 dF(x). 
J lxl;:o: 1/a 

lf we set t = j6a, we obtain (18), as required. 
We now turn to the proof of the necessity in Theorem 3. 
Let 

E~nk = 0, 
n 

L Ynk = 1, 
k=1 

V~nk = Ynk > 0, 

max Ynk-+ 0, 
1 <:;k<:;n 

n-+ oo. 

(18) 

(19) 

Let In z denote the principal value ofthe Iogarithm ofthe compiex number z. 
Then 

n n 

In n fnk(t) = L In fnk(t) + 2nim, 
k=1 k=1 

where m = m(n, t) is an integer. Consequently, 

n n 

Re In n f,.k(t) = Re L In f,.k(t). (20) 
k=1 k=1 

Since 

n n fnk(t)-+ e-(1/2)1', 
k=1 

we have 
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Therefore, 

For lzl < 1 

and for lzl ::;; 1/2 

z2 z3 
ln(1 + z) = z - - + - - · .. 

2 3 

lln(1 + z)- zl ::;; lzl 2• 

(21) 

(22) 

(23) 

By (19), for each fixed t, all sufficiently large n and all k = 1, 2, ... , n, we have 

lfnk(t) - 11 ::;; hnkt2 ::;; t. (24) 

Hence, we obtain from (23) and (24) 

lkt1 {ln[1 + Unk(t) -1)]- Unk(t) -1)}1::;; kt1 lfnk(t) -112 

t4 n t4 
::;; -4 max Ynk L Ynk = -4 max Ynk -+ 0, 

1 ";k";n k=1 1 ";k";n 

and consequently, 

I Re kt1 In !,.k(t) - Re kt1 (!,.k(t) - 1) I-+ 0, 

It follows from (20), (21), and (25) that 

n n 

n-+ oo, 

n-+ oo. 

Re L (f,.k(t)- 1) + !t2 = L [Re fnk(t)- 1 + !t2YnkJ-+ 0, 
k=1 k=1 

Setting t = J6a, we find that for each a > 0 

Finally, from (18) with a = 1/e and (26), we obtain 

kt1 E[enk/(lenkl ~ e] = J1 LI<:• x2 dFnk(x) 

n-+ oo. 

n 

::;; e2 L [Re fnk(j6a)- 1 + 3a2YnkJ-+ 0, 
k=1 

which shows that the Lindeberg condition is satisfied. 

5. PROBLEMS 

(25) 

n-+ oo. 

(26) 

n-+ oo, 

1. Let ~ 1 , ~ 2 , ••• be a sequence of independent identically distributed random vari­
ables with E~ 1 = 0 and E~i = 1. Show that 
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( lell lenl) 4 
max Jn'ooo, Jn -o, n- ooo 

20 Show that in the Bernoulli scheme the quantity supxiFrJx) - «<l(x)l is of order 
1/Jn, n- OOo 

§5. Central Limit Theorem for Sums of Independent 
Random Variables 

II. Nonclassical Conditions 

1. It was shown in §4 that the Lindeberg condition (4.16) implies that the 
condition 

max E~;k -+ 0, 
1 :s;k:s;n 

is satisfiedo In turn, this implies the so-called condition of being negligible in 
the Iimit (asymptotically infinitesimal), that is, for every e > 0, 

max P{l~nkl ~ e}-+ 0, n-+ OOo 
l:s;k:s;n 

Consequently, we may say that Theorems 1 and 2 of §4 provide a condi­
tion of realization of the central Iimit theorem for sums of independent 
random variables under the hypothesis of negligibility in the Iimit. Limit 
theorems in which conditions of negligibility in the Iimit are imposed on 
individual terms are usually called theorems with a classical formulationo 
It is easy, however, to give examples of nondegenerate random variables 
for which neither the Lindeberg condition nor negligibility in the Iimit is 
satisfied, but nevertheless the central Iimit theorem is satisfiedo Here is the 
simplest exampleo 

Let ~ 1 , ~2 , 0 0 0 be a sequence ofindependent normally distributed random 
variables with E~n = 0, V~ 1 = 1, V~k = 2k- 2, k ~ 20 Let Sn= ~nt + 0 0 0 + ~nn 
with 

~nk = ~k!J f. V~;o 
k=l 

It is easily verified that here neither the Lindeberg condition nor the condi­
tion of negligibility in the Iimit is satisfied, although the validity of the central 
Iimit theorem is evident, since Sn is normally distributed with ESn = 0 and 
vsn = 1. 

Theorem 1 (below) provides a sufficient (and necessary) condition for the 
centrallimit theorem without assuming the "classical" condition of negligi­
bility in the Iimit. In this sense, condition (A), presented below, is an example 
of "nonclassical" conditions which reftect the title of this sectiono 
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2. We shall suppose that for each n ~ 1 there is a given sequence ("series 
form") of independent random variables 

Theorem 1. To have 
d s,. --+ %(0, 1 ), (1) 

it is sufficient (and necessary) that for every e > 0 the condition 

(A) n--+ oo (2) 

is satis.fied. 

The following theorem clarifies the connection between condition (A) and 
the classical Lindeberg condition 

(L) n--+ oo. (3) 

Theorem 2. 1. The Lindeberg condition implies that condition (A) is satis.fied: 

(L) => (A). 

2. If max1 s:ks:n Ee;k --+ 0 as n--+ oo, the condition (A) implies the Lindeberg 
condition (L): 

(A)=>(L). 

PRooF OF THEOREM 1. The proof of the necessity of condition (A) is rather 
complicated. Here we only prove the suffi.ciency. 

Let 

f,.k(t) = Eeit~nk, f,.(t) = EeitS", 

IPnk(t) = J: eitx d<l>nk(x), qJ(t) = J:oo eitx d<l>(x). 

It follows from §12, Chapter II, that 

IP"k(t) = e-<t2a~kll2, IP(t) = e-t2f2. 

By the corollary of Theorem 1 of §3, we have S,. ~ %(0, 1) if and only if 
f,.(t) --+ qJ(t) as n --+ oo, for every real t. 
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Wehave 
n n 

fn(t) - cp(t) = n fnk(t) - n CfJnk(t). 
k=l k=l 

Since lfnk(t)l ~ 1 and ICfJnk(t)i ~ 1, we have 

lfn(t) - cp(t)l = 1 tl f"k(t) - n CfJnk(t) 1 

~ ktl 1/"k(t)- CfJnk(t)l = ktl II:oo eitxd(Fnk- <l>nk)l 

= ktl li: (eitx- itx + t2;2)d(Fnk- <l>nk)l, (4) 

where we have used the fact that 

I: Xk dFnk = I: Xk d<l>nk for k = 1, 2. 

If we apply the formula for integration by parts (Theorem 11, §6, Chapter 
II) to the integral 

f ( eitx - itx + t 2
;

2
) d(Fnk - <l>nk), 

we obtain (taking account of the Iimits x2 [1- Fnk(x) + Fnk( -x)]--+ 0), and 
x2 [1 - <l>nk(x) + <l>nk(- x)] --+ 0, X--+ 00) 

I: (eitx- itx + t2; 2
)d(Fnk- <l>nk) 

= it I: (eitx - 1 - itx)(Fnk(x) - <l>nk(x)) dx. (5) 

From (4) and (5), we obtain 

lfn(t) - cp(t)j ~ ktl I t I:oo (eitx - 1 - itx)(Fnk(x) - <l>nk(x)) I 
itl3 n r 

~ 26 k~l Jlxl;;,•lxiiFnk(x)- <l>nk(x)l dx 

+ 2t2 ktl LI>• lxiiFnk(x)- <l>nk(x)l dx 

~ t:ltl 3 ktl u;k + 2t2 ktl LI>• lxiiFnk(x)- <l>nk(x)l dx, (6) 

where we have used the inequality 
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r lxiiFnlc(x) - <llnlc(x)l dx ::5; 2u;k> 
J lxiS:• 

(7) 

which is easily established by using (71), §6, Chapter II. 
It follows from (6) that f,.(t)-+ cp(t) as n -+ oo, because 6 is an arbitrary 

positive number and condition (A) is satisfied. 
This completes the proof of the theorem. 

PROOF OF THEOREM 2. 1. By §4 of the Lindeberg condition (L), it follows that 
max1 s;lcs:n u;" -+ 0. Hence, if we use the fact that L~=l u;" = 1, we obtain 

n-+ oo. (8) 

Together with Condition (L), this shows that, for every 6 > 0, 

I f x2d[Fn~c(x) + <lln~c(x)] -+ 0, 
k=l Jlxl>• 

n-+ oo. (9) 

Let us fix 6 > 0. Then there is a continuous differentiable even function 
h = h(x) for which lh(x)l ::5; x2 , lh'(x)l ::5; 4x, and 

{x2 
h(x) = O, 

For h(x), we have by (9) 

lxl > 26, 
lxl ::5; 6. 

± f h(x)d[Fn~c(x) + <lln~c(x)] -+ 0, 
k=l J lxl>• 

By integrating by parts in (10), we obtain 

ktl t~. h'(x)[(l- Fn~c(x)) + (1- <lln~c(x))] dx 

= ktl t~. h(x)d[Fnk + <llnkJ -+ 0, 

n-+ oo. (10) 

ktl ts:-• h'(x)[Fnk(x) + <llnk(x)] dx = kt ts:-• h(x)d[Fnk + <llnkJ-+ 0. 

Since h'(x) = 2x for lxl ~ 26, we obtain 

f r lxiiFnlc(x) - <llnlc(x)l dx-+ 0, 
k=l Jlxl~2• 

n-+ oo. 

Therefore, since 6 is an arbitrary positive number, we find that (L) => (A). 
2. For the function h = h(x) introduced above, we find by (8) and the 

condition max1 s:ks:n u;k -+ 0 that 

n-+ oo. (11) 
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If we integrate by parts, we obtain 

I ktl LI~• h(x)d[Fnk - <f)nkJ I ::;; I ktl L~. h(x)d[(1 - Fnk) - (1 - <f)nk)] I 

+ I J1 L~ -• h(x)d[Fnk - <f)nk] I 

::;; ktl L>.lh'(x)ll[(1- Fnk)- (1 - <f)nk)JI dx 

+ ktl L~-·lh'(x)IIFnk- <f)nkl dx 

::;; 4 t r lxiiFnk(x) - <f)nk(x)l dx. (12) 
k=l Jlxl~• 

lt follows frorn (11) and (12) that 

I [ x 2 dFnk(x) ::;; I [ h(x) dFnk(x) -+ 0, 
k=l Jlxl~2• k=l Jlxl~• 

n-+ oo, 

i.e., the Lindeberg condition (L) is satisfied. 
This cornpletes the proof of the theorern. 

3. PROBLEMS 

1. Establish formula (5). 

2. Verify relations (10) and (12). 

§6. Infinitely Divisible and Stahle Distributions 

1. In stating Poisson's theorern in §3 we found it necessary to use a triangular 
array, supposing that for each n ~ 1 there was a sequence of independent 
randorn variables {~n,k}, 1 ::;; k::;; n. 

Put 

T,. = ~n,l + ·· · + ~n,n• n ~ 1. (1) 

The idea of an infinitely divisible distribution arises in the following prob­
lern: how can we deterrnine all the distributions that can be expressed as 
lirnits of sequences of distributions of randorn variables T", n ~ 1? 

Generally speaking, the problern of lirnit distributions is indeterrninate 
in such great generality. Indeed, if e is a randorn variable and en, 1 = e. en, k = 0, 
1 < k ::;; n, then T,. = ~ and consequently the lirnit distribution is the 
distribution of ~. which can be arbitrary. 

In order to have a rnore rneaningful problern, we shall suppose in the 
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present section that the variables ~n. I> ••• , ~n.n are, for each n ~ 1, not only 
independent, but also identically distributed. 

Recall that this was the situation in Poisson's theorem (Theorem 4 of §3). 
The same framework also includes the central Iimit theorem (Theorem 3 
of §3) for sums Sk = ~ 1 + · · · + ~n• n ~ 1, of independent identically distri­
buted random variables ~I> ~2 , •••• In fact, ifwe put 

;; _ ~k- E~k 
O."n,k- V ' 

n 

then 

T. = ~ ;; = Sn - ESn 
n L.. O."n,k V. · 

k= 1 n 

Consequently both the normal and the Poisson distributions can be 
presented as Iimits in a triangular array. If Tn --+ T, it is intuitively clear that 
since T,. is a sum of independent identically distributed random variables, the 
Iimit variable T must also be a sum of independent identically distributed 
random variables. With this in mind, we introduce the following definition. 

Definition 1. A random variable T, its distribution F T• and its character­
istic function ({Jr are said to be infinitely divisible if, for each n ~ 1, there are 
independent identically distributed random variables '11> ... , I'Jn such thatt 
T 4 17 1 + · · · + I'Jn (or, equivalently, F T = F~, * · · · * F~"' or (/Jr = (({J~ 1 t). 

Theorem 1. A random variable T can be a Iimit of sums T,. = I~= 1 ~n. k if and 
only if T is ilifinitely divisible. 

PROOF. lf T is infinitely divisible, for each n ~ 1 there are independent 
identically distributed random variables ~n. 1, ... , ~n. k such that T 4 
~n. 1 + · · · + ~n.k• and this means that T 4 T", n ~ 1. 

Conversely, Iet T,. ~ T. Let us show that T is infinitely divisible, i.e., for 
each k there are independent identically distributed random variables 
17 1, ... , I'Jk suchthat T 4 17 1 + · · · + I'Jk· 

Choose a k ~ 1 and represent T,.k in the form (~1 > + · · · + (~k>, where 

y(l) - ;; + ... + ;; y(k) - ;; + ... + ;; 
O."n - O."nk,1 O."nk,n•···•':>n - O."nk,n(k-1)+1 O."nk,nk· 

Since T,.k ~ T, n --+ oo, the sequence of distribution functions corresponding 
to the random variables T"b n ~ 1, is relatively compact and therefore, by 
Prohorov's theorem, is tight. Moreover, 

[P((~1 J > z)]k = P((~1 J > z, ... , (~kl > z) :s; P(T,.k > kz) 

and 

[P((~lJ < - z)r = P((~ll < - z, .. . , (~kl < - z) :s; P(T,.k < - kz). 

t The notation ~ ~ 'I means that the random variables ~ and Tf agree in distribution, i.e., 
F~(x) = F.(x), x E R. 
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The family of distributions for (~I), n ;;::: 1, is tight because of the preceding 
two inequalities and because the family of distributions for T"b n ;;::: 1, is 
tight. Therefore there is a subsequence { nJ s; { n} and a random variable 
'7 1 suchthat (~!) .!!.. '7 1 as n; --+ oo. Since the variables (~1 l, ... , (~klare identically 
distributed, we have (~7l.i!..IJ 2 , .•. ,(~~l.!f..'7b where '7 1 4 1]2 4. ··· = 'lk· 
Since (~1l, ... , (~k) are independent, it follows from the corollary to Theorem 1 
of §3 that 1] 1, ... , 'lk are independent and 

T",k = (~!) + ... + (~~) .<4 '71 + ... + 'lk· 
d 

But T",k--+ T, therefore (Problem 1) 

T 4. '11 + · · · + 'lk· 

This completes the proof of the theorem. 

Remark. The conclusion of the theorem remains valid if we replace the 
hypothesis that ~n. 1 , •.• , ~n.n are identically distributed for each n ;;::: 1 by the 
hypothesis that they are uniformly asymptotically infinitesimal (4.2). 

2. To test whethe; a given random variable T is infinitely divisible, it is 
simplest to begin with its characteristic function cp(t).lfwe can find character­
istic functions cpn(t) such that cp(t) = [cpn(t)]" for every n ;;::: 1, then T is 
infinitely divisible. 

In the Gaussian case, 

and ifwe put 

we see at once that cp(t) = [cpn(t)]". 
In the Poisson case, 

cp(t) = exp{A.(e;1 - 1)}, 

and if we put cpn(t) = exp{(A./n)(eit - 1)} then cp(t) = [cpn(t)]". 
lf a random variable T has a r -distribution with density 

X;;::: 0, 

X< 0, 

it is easy to show that its characteristic function is 

1 
cp(t) = (1 - ißt)a. 

Consequently cp(t) = [cpn(t)]" where 

1 
cpn(t) = (1 - ißt)a.fn' 

and therefore T is infinitely divisible. 
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We quote without proof the following result on the generat form of the 
characteristic functions of infinitely divisible distributions. 

Theorem 2 (Levy-Khinchin Theorem). A random variable T is in.finitely 
divisible if and only if qJ(t) = exp 1/J(t) and 

1/J(t) = itß - - + e'"" - 1 - -- -- d).(x), t2u2 foo ( . itx ) 1 + x 2 

2 - 00 1 + x 2 x 2 
(2) 

where ß eR, u2 2::: 0 and). is a.finite measure on (R, BI(R)) with ).{0} = 0. 

3. Let e1, e2 , ••• be a sequence of independent identically distributed 
random variables and Sn = e 1 + · · · + en. Suppose that there are constants 
bn and an > 0, and a random variable T, such that 

Sn- bn d T __:::__....:.: ..... . (3) 

We ask for a description of the distributions (random variables T) that can be 
obtained as Iimit distributions in (3). 

If the independent identically distributed random variables e1, e2, ... 
satisfy 0 < u2 = V e 1 < oo, then if we put bn = nEe 1 and an = uJn, we 
find by §4 that T is the normal distribution %(0, 1). 

If f(x) = O/n(x2 + 02) is the Cauchy density (with parameter () > 0) 
and el, e2, ... are independent random variables with density f(x), the 
characteristic functions qJ~1 (t) are equal to e-Birl and therefore (/Jsnfn(t) = 
(e-Birlfn)n = e-Birl, i.e., Sn/n also has a Cauchy distribution (with the same 
parameter 0). 

Consequently there are other limit distributions besides the normal, for 
example the Cauchy distribution. 

Ifwe put enk = <eJan) - (bnfnan), 1 ::::;; k ::::;; n, we find that 

Sn - bn = i en, k ( = T"). 
an k= 1 

Therefore all conceivable distributions for T that can conceivably appear as 
Iimits in (3) are necessarily (in agreement with Theorem 1) infinitely divisible. 
However, the specific characteristics of the variable T" = (Sn - bn)/an may 
make it possible to obtain further information on the structure of the Iimit 
distributions that arise. 

Forthis reason we introduce the following definition. 

Definition 2. A random variable T, its distribution function F(x), and its 
characteristic function qJ(t) are stable if, for every n 2::: 1, there are constants 
an > 0, bn, and independent random variables e1, ••. , en. distributed like T, 
suchthat 

(4) 
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or, equivalently, F[(x - bn)/anJ = F * · · · * F(x), or 
'-..-' 

ntimes 

345 

(5) 

Theorem 3. A necessary and sufficient condition for the random variable T 
tobe a Iimit in distribution ofrandom variables (Sn - bn)/an, an > 0, isthat T is 
stable. 

PR.OOF. If T is stable, then by (4) 

T 4 Sn- bn 
' an 

where Sn= ~ 1 + · · · + ~n• and consequently (Sn- bn)/an.!!... T. 
Conversely, Iet ~ 1, ~2 , ••• be a sequence of independent identically distri­

buted random variables, Sn= ~ 1 + · · · + ~n and (Sn - bn)/an-+ T, an> 0. 
Let us show that T is a stable random variable. 

If T is degenerate, it is evidently stable. Let us suppose that T is non­
degenerate. 

Choose k ~ 1 and write 

s~l) = ~1 + ... + ~n''"' s~k) = ~(k-1)n+1 + ... + ~kn• 
S<1 > b s<k> b 

T~1) = n - n, •.• , T~k) = n - n 
an an 

lt is clear that all the variables T~l)' •.. , T~k> have the same distribution and 

n -+ oo, i = 1, ... , k. 

Write 

Then 

U~k>..!!. T0 ' + · · · + T<k>, 

where T0 ' 4 ... 4 T<k> 4 T. 
On the other band, 

u<k) = ~ 1 + ... + ~kn - kbn 
n 

an 

= oc<k> ~ + ß<k> 
n kn n ' 

where 

(6) 
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and 

lt is clear from (6) that 

u<k>- ß<k> 
V, n n 

kn = (k) ' 
(J(n 

where Vkn ~ T, U~k>.!!... yo> + · · · + y<k>, n--+ oo. 
lt follows from the Iemma established below that there are constants 

cx<k> > 0 and ß<k> suchthat cx~k> --+ cx<k> and ß~k> --+ ß<k> as n --+ x. Therefore 

d y<O + ... + y<k> _ ß<k> 
T = <k> ' 

()( 

which shows that T is a stable random variable. 
This completes the proof of the theorem. 

We now state and prove the Iemma that we used above. 

Lemma. Let ~n ~ ~ and Iet there be constants an > 0 and bn such that 

an~n + bn.!!... ~. 

where the random variables ~ and ~ are not degenerate. Then there are con­
stants a > 0 and b such that !im an = a, !im bn = b, and 

~ = a~ + b. 

PRooF. Let lfJn, ({J and iP be the characteristic functions of ~n• ~ and ~, re­

spectively. Then lfJa"~"+b"(t), the characteristic function of an~n + bn, is equal 
to eitb"lfJn(an t) and, by Theorem 1 and Problem 3 of §3, 

uniformly on every finite interval of length t. 

(7) 

(8) 

Let {n;} be a subsequence of {n} suchthat an,--+ a. Let us first show that 

a < oo. Suppose that a = oo. By (7), 

sup II lfJn(an t) I - I iP(t) II __.. o, n--+ oo 
I t I :SC 

for every c > 0. W e replace t by t ol an,. Then, since an, --+ oo, we ha ve 

and therefore 

I lfJn,(to) I --+ I iP(O) I = 1. 
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But I IPn;(t0 ) I --+ I cp(t0 ) 1- Therefore I cp(t0 ) I = 1 for every t0 ER, and conse­
quently, by Theorem 5, §12, Chapter II, the random variable ~ must be 
degenerate, which contradicts the hypotheses of the Iemma. 

Thus a < oo. Now suppose that there are two subsequences {n;} and {n;} 
such that an; --+ a, an; --+ a', where a =I= a'; suppose for definiteness that 
0 :S a' < a. Then by (7) and (8), 

I IPnlanJ) I --+ I cp(at) I, I IPn;(anJ) I --+ I<P(t) I 
and 

Consequently 

I cp(at) I = I cp(a't) I, 
and therefore, for all t E R, 

n --+ oo. 

Therefore I cp( t) I = 1 and, by Theorem 5 of § 12, Chapter II, it follows that ~ 
is a degenerate random variable. This contradiction shows that a = a' 
and therefore that there isafinite Iimit lim an = a, with a ~ 0. 

Let us now show that there is a Iimit lim bn = b, and that a > 0. Since (8) 
is satisfied uniformly on each finite interval, we have 

IPn(an t) --+ cp(at), 

and therefore, by (7), the Iimit limn~ oo ei1b" exists for all t suchthat cp(at) -=1- 0. 
Let c5 > 0 be such that cp(at) -=1- 0 for all I t I < b. For such t, !im ei1b" exists. 
Hence we can deduce (Problem 9) that !im Ibn I < oo. 

Let there be two sequences {n;} and {n;} such that !im bn; = b and 
lim bn; = b'. Then 

for I t I < b, and consequently b = b'. Thus there is a finite Iimit b = !im bn 
and, by (7), 

<P(t) = eitbcp(at), 

which means that ~ ,1,; a~ + b. Since ~ is not degenerate, we have a > 0. 
This completes the proof of the Iemma. 

4. We quote without proof a theorem on the generalform of the character­
istic functions of stable distributions. 

Theorem 4 (Levy-Khinchin Representation). A random variable T is stable 
if and only if its characteristic function cp(t) has the form cp(t) = exp 1/J(t), 
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1/J(t) = itß- dlt111 (1 + i(} l:l G(t, a)). 
where 0 < cx < 2, ß E R, d ;;:: 0, I e I ~ 1, t/ I t I = 0 for t = 0, and 

G(t cx) = {tan !ncx if cx #- 1, 
' (2/n) log ltl ifcx = 1. 

(9) 

(10) 

Observe that it is easy to exhibit characteristic functions of symmetric 
stable distributions: 

(11) 

where 0 < cx ~ 2, d ;;:: 0. 

5. PROBLEMS 

1. Show that e !b 11 if e • .!!.. e and e • .!!.. '1· 

2. Show that if cp1 and cp2 are infinitely divisible characteristic functions, so is cp 1 • cp2 • 

3. Let cp. be infinitely divisible characteristic functions and Iet cp.(t) --+ cp(t) for every 
t eR, where cp(t) is a characteristic function. Show that cp(t) is infinitely divisible. 

4. Show that the characteristic function of an infinitely divisible distribution cannot take 
the value 0. 

5. Give an example of a random variable that is infinitely divisible but not stable. 

6. Show that a stable random variable e always satisfies the inequality E I e Ir < 00 for all 
r e {0, cx). 

7. Show that if e is a stable random variable with parameter 0 < cx ~ 1, then cp(t) is not 
differentiable at t = 0. 

8. Prove that e-dlrl" is a characteristic function provided that d;;::: 0, 0 < cx ~ 2. 

9. Let (b.) • .., 1 be a sequence of numbers suchthat !im. eirb. exists for alll t 1 < {), (j > 0. 
Show that !im I b. I < oo. 

§7. Metrizability of Weak Convergence 

1. Let (E, 8, p) be a metric space and f!l(E) = {P}, a family of probability 
measures on (E, 8). lt is natural to raise the question of whether it is possible 
to "metrize" the weak convergence Pn ~ P that was introduced in §1, that 
is, whether it is possible to introduce a distance J,t(P, P) between any two 
measures P and P in f!l(E) in such a way that the Iimit J,t(Pn, P) --+ 0 is 
equivalent to the Iimit Pn ~ P. 

In connection with this formulation of the problem, it is useful to recall 
that convergence of random variables in probability, en .!. e, can be metrized 
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by using, for example, the distance dp(~, 17) = inf{B > 0: P(l~ -171 ~ B) ~ e} 
or the distances d(~, 17) = E(l ~ - 11 1/(1 + I~ - 171)), d(~, 17) = E min(1, I~ - 171). 
(More generally, we can set d(~, 17) = Eg(l~- 171), where the function g = g(x), 
x ~ 0, can be chosen as any nonnegative increasing Borel function that is 
continuous at zero and has the properties g(x + y) ~ g(x) + g(y) for x ~ 0, 
y ~ 0, g(O) = 0, and g(x) > 0 for x > 0.) However, at the same time there is, 
in the space ofrandom variables over (Q, JF, P), no distance d(~, 17) suchthat 
d(~n• ~)--+ 0 if and only if ~n converges to ~ with probability one. (In this 
connection, it is easy to find a sequence of random variables ~n• n ~ 1, that 
converges to ~in probability but does not converge with probability one.) In 
other words, convergence with probability one is not metrizable. (See the state­
ments of problems 11 and 12 in §10, Chapter II.) 

The aim of this section is to obtain concrete instances of two metrics, 
L(P, P) and IIP- PII~L in the space &>(E) of measures, that metrize weak 
convergence: 

2. The Levy-Prokhorov metric L(P, P). Let 

p(x, A) = inf{p(x, y): y E A}, 

A"={xEE:p(x,A)<B}, AE!&". 

For any two measures P and PE &>(E), we set 

a(P, P) = inf { B > 0: P(F) ~ P(F") + B for all closed sets F E !&"} (2) 

and 

L(P, P) = max[a(P, P), a(P, P)]. (3) 

The following lemma shows that the function L(P, P) E [!P(E), which is 
defined in this way, and is called the Levy-Prokhorov metric, actually defines 
a metric. 

Lemma 1. The function L(P, P) has the following properties: 

(a) L(P, P) = L(P, P)( = a(P, P) = a(P, P)), 
(b) L(P, P) ~ L(P, P) + L(P, P), 
(c) L(P, P) = 0 if and only if P = P. 

PROOF. a) lt is sufficient to show that (with r:1. > 0 and ß > 0) 

for all closed sets F E @"" 

if and only if 

"P(F) ~ P(P) + ß for all closed sets F E @"". 

(4) 

(5) 

Let T be a closed subset of @". Then the set ya. is open and it is easy to verify 
that T s; E\(E\ Ta.)a.. If (4) is satisfied, then, in particular, 
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P(E\ T") ~ P((E\ T")") + ß 
and therefore, 

P(T) ~ P(E\(E\ T")") ~ P(T") + ß, 
which establishes the equivalence of (4) and (5). Hence, it follows that 

cr(P, P) = cr(P, P) 

and therefore, 

L(P, P) = cr(P, P) = cr(P, P) = L(P, P). 

b) Let L(P, P) <<51 and L(P, P) <<52. Then for each closed set Fe ß 

P(F) ~ P(Fd 2 ) + <52 ~ P((Fd2 )d 1 ) + <51 + <52 ~ P(Fd, +d2 ) + <51 + <52 

and therefore, L(P, P) ~ <51 + <52. Hence, it follows that 

L(P, P) ~ L(P, P) + L(P, P). 
c) If L(P, P) = 0, then for every closed set Fe ß and every a > 0 

P(F) ~ P(F") + rx. 

(6) 

(7) 

(8) 

Since F" ~ F, rx ~ 0, we find, by taking the Iimit in (8) as a ~ 0, that P(F) ~ 
P(F) and by symmetry P(F) ~ P(F). Hence, P(F) = P(F) for all closed sets 
F e ß. F or each Borel set A e ß and every e > 0, there is an open set G, 2 A 
and a closed set F, s; A such that P(G. \F,) ~ e. Hence, it follows that every 
probability measure P on a metric space (E, ß, p) is completely determined 
by its values on closed sets. Consequently, it follows from the condition 
P(F) = P(F) for all closed sets F e ß that P(A) = P(A) for all Borel sets A e ß. 

Theorem 1. The Levy-Prokhorov metric L(P, P) metrizes weak convergence: 

(9) 

PROOF. ( =) Let L(Pn, P) --+ 0, n --+ oo. Then for every specified closed set F e ß 
and every e > 0, we have, by (2) and equation a) of Lemma 1, 

lim Pn(F) ~ P(F') + e. 
n 

If we then Iet e ~ 0, we find that 

lim Pn(F) ~ P(F). 
n 

According to Theorem 1 of §1, it follows that 

Pn~P. 

(10) 

(11) 

The proof of the implication ( <=) will be based on a series of deep and 
powerful facts that illuminate the content of the concept of weak convergence 
and the method of establishing it, as weil as methods of studying rates of 
convergence. 
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Thus, let Pn ~ P. This means that for every bounded continuous function 
f = f(x). 

L f(x)Pn(dx) --+ L f(x)P(dx). (12) 

Now suppose that '!f is a dass of equicontinuous functions g = g(x) (for 
every e > 0 there is a {) > 0 such that lg(y) - g(x)l < e if p(x, y) < {) for all 
g E '!f) and lg(x)l ~ C for the same constant C > 0 (for all x E E and g E '!f). 
By Theorem 3, §8, the following condition, stronger than (12), is valid for '!f: 

Pn ~ P => sup I f g(x)Pn(dx) - f g(x)P(dx) I-+ 0. (13) 
ge'Y E E 

Foreach A E 8 and e > 0, we set (as in Theorem 1, §1) 

J.t(x) = [ 1 - p(x~ A)T (14) 

It is dear that 

(15) 

and 

lf1(x)- f1(y)l ~ e-1 lp(x, A)- p(y, A)l ~ e-1p(x, y). 

Therefore, we have (13) for the dass '!f' = {!1(x), A E 8}, i.e., 

An= sup lf fJ(x)Pn(dx)- f JA(x)P(dx)l--+ 0, n--+ oo. (16) 
Ae8 E E 

From this and (15) we condude that, for every dosed set A E 8 and e > 0, 

P(A') ~ L JJ(x) dP ~ L JA(x) dPn - An ~ Pn(A) - An. (17) 

w~ choose n(e) so that An~ e for n ~ n(e). Then, by (17), for n ~ n(e) 

(18) 

Hence, it follows from definitions (2) and (3) that L(Pn, P) ~ e as soon as 
n ~ n(e). Consequently, 

Pn ~ P =>An --+ 0 => L(Pn, P)--+ 0. 

The theorem is now proved (up to (13)). 

3. The metric IIP- PII~L· We denote by BL the set of bounded continuous 
functions f = f(x), x E E (with 11/ILXl = supx lf(x)l < oo) that also satisfy the 
Lipschitz condition 

11 / 11 _ lf(x) - f(y)l < 
L- sup oo. 

x#y p(x, y) 
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We set llfllBL = 11/lloo + 11/IIL· The space BL with the norm II·IIBL is a 
Banach space. 

We define the metric IIP- Pll~L by setting 

(We can verify that IIP- PII~L actually satisfies the conditions for a matric; 
Problem 2.) 

Theorem 2. The metric IIP- PII~L metrizes weak convergence: 

IIPn- Pll~L--+ o-Pn ~ P. 

PROOF. The implication (<=) follows directly from (13). To prove (=>), it is 
enough to show that in the definition of weak convergence Pn ~ P as given 
by (12) for every continuous bounded function f = f(x), it is enough to 
restriet consideration to the class of bounded functions that satisfy a Lipschitz 
condition. In other words, the implication ( =>) will be proved if we establish 
the following result. 

Lemma 2. Weak convergence Pn ~ P occurs if and only if property (12) is 
satis.fied for every function f = f(x) of class BL. 

PROOF. The proof is obvious in one direction. Let us now consider the 
functions D = fl(x) defined in (14). As was established above in the proof of 
Theorem 1, for each e > 0 the class '§' = {!J(x), A E '§} ~ BL. If we now 
analyze the proof of the implication (I)=> (II) in Theorem 1 of §1, we can 
observe that it actually establishes property (12) not for all bounded continu­
ous functions but only for functions of class '§', e > 0. Since '§' ~ BL, e > 0, 
it is evidently true that the satisfaction of (12) for functions of class BL implies 
proposition II ofTheorem 1, §1, which is equivalent (by the same Theorem 1, 
§1) to the weak convergence Pn ~ P. 

Remark. The conclusion of Theorem 2 can be derived from Theorem 1 (the 
same as before) if we use the following inequalities between the metrics 
L(P, P) and IIP- Pll~v which are valid for the separable metric spaces 
(E,tff,p): 

where cp(x) = 2x2 /(2 + x). 

IIP - PII~L ::;; 2L(P, P), 

cp(L(P, P))::;; IIP- PII~L• 

(20) 

(21) 

We notice that, for x ;;::: 0, we have 0::;; cp ::;; 2/3 if and only if x ::;; 1; and 
(2/3)x2 ::;; cp(x) for 0 ::;; x ::;; 1; we deduce from (20) and (21) that if L(P, P) ::;; 1 
or IIP- PII~L::;; 2/3, we have 

iL2 (P, P)::;; IIP- PII~L::;; 2L(P, P). (22) 
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4. PROBLEMS 

1. Show that in case E = R the Levy-Prokhorov metric between the probability 
distributions P and P becomes the Levy distance L(F, F) between the distributions 
Fand F that correspond toP and P (see Problem 4 in §1). 

2. Show that formula (19) defines a metric on the space BL. 

3. Establish the inequalities (20), (21), and (22). 

§8. On the Connection of Weak Convergence of 
Measures with Almost Sure Convergence of 
Random Elements ("Method of a Single 
Probability Space") 

1. Let us suppose that on the probability space (Q, !#', P) there are given 
random elements X= X(w), Xn = Xn(w), n ~ 1, taking values in the metric 
space (E, C, p); see §5, Chapter II. We denote by P and Pn the probability 
distributions of X and Xn, i.e., Iet 

P(A) = P{w: X(w) E A}, AEC. 

Generalizing the concept of convergence in distribution of random vari­
ables (see §10, chapter II), we introduce the following definition. 

Definition 1. A sequence of random elements Xn, n ~ 1, is said to converge in 
distribution, or in law (notation: Xn.! X, or Xn ~X), if Pn ~ P. 

By analogy with the definitions of convergence of random variables in 
probability or with probability one (§10, Chapter II), it is natural to introduce 
the following definitions. 

Definition 2. A sequence of random elements Xn, n ~ 1, is said to converge in 
probability to X if 

P{w: p(Xn(w), X(w)) ~ e}-+ 0, n-+ oo. (1) 

Definition 3. A sequence ofrandom elements Xn, n ~ 1, is said to converge to 
X with probability one (almost surely, almost everywhere) if p(Xn(w), X(w)) ~ 
0, n-+ oo. 

Remark 1. Both of the preceding definitions make sense, of course, provided 
that p(Xn(w), X(w)) are, as functions of wEn, random variables, i.e., !#'­
measurable functions. This will certainly be the case if the space (E, C, p) is 
separable (Problem 1). 
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Remark 2. In connection with Definition 2, we note that our convergence 
in probability is metrized by the following metric that connects random 
elements X and Y (defined on (0, !F, P) with values in E): 

dp(X, Y) = inf{e > 0: P{p(X(w), Y(w));;::::: e} ~ e}. (2) 

Remark 3. If the definitions of convergence in probability and with probabil­
ity one are defined for random elements on the same probability space, the 
definition Xn !! X of convergence in distribution is connected only with the 
convergence of distributions, and consequently, we may suppose that X(w), 
X 1(w), X 2(w), . .. have values in the same space E, but may be defined on 
"their own" probability spaces (0, !F, P), (01 , ff1 , P1 ), (02 , !F2 , P2 ), .... How­
ever, without loss of generality we may always suppose that they are defined 
on the same probability space, taken as the direct product of the preceding 
spaces and with the definitions X(w, w1 , w 2 , ••• ) = X(w), X 1 (w, w1 , w 2 , .•• ) 

= X1(w1), •••• 

2. By Definition 1 and the theorem on change of variables under the Lebesgue 
integral sign (Theorem 7, §6, Chapter II) 

Xn !! X~ Ef(Xn) -+ Ef(X) (3) 

for every bounded continuous function f = f(x), x E E. 
From (3) it is clear that, by Lebesgue's theorem on dominated convergence 

(Theorem 3, §6, Chapter 11), the limit Xn ~X immediately implies the limit 
Xn !! X, which is hardly surprising if we think of the situation when X and 
Xn are random variables (Theorem 2, §10, Chapter II). More unexpectedly, in 
a certain sense there is a converse result, the precise formulation and applica­
tion we now turn to. 

Preliminarily, we introduce a definition. 

Definition 4. Random elements X= X(w') and Y = Y(w"), defined on proba­
bility spaces (0', !F', P') and (0", !F", P") and with values in the same space 
E, are said to be equivalent in distribution (notation: X~ Y), if they have 
congruent probability distributions. 

Theorem 1. Let (E, S, p) be a separable metric space. 
1. Let random elements X, Xn, n ;;::::: 1, defined on a probability space 

(0, !F, P), and with values in E, have the property that Xn !! X. Then we can 
find a probability space (0*, !F*, P*) and random elements X*, x:, n;;::::: 1, 
defined on it, with values in E, such that 

x:a~X* 

and 

X*~X, X*~X 
n - "' 

n;;::::: 1. 
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2. Let P, Pn, n ~ 1, be probability measures on (E, $, p). Then there is a 
probability space (Q*, ff*, P*) and random elements X*, x:, n ~ 1, de.fined on 
it, with values in E, such that 

x:~x* 

and 

P* =P, n ~ 1, 

where P* and Pn* are the probability distributions of X* and x:. 
Before turning to the proof, we first notice that it is enough to prove only 

the second conclusion, since the first follows from it if we take P and Pn to be 
the distributions of X and Xn. Similarly, the second conclusion follows from 
the first. Second, we notice that a proof of the theorem in full generality is 
technically rather complicated. Forthis reason, here we give a proof only of 
the case E = R. This proof is rather transparent and moreover, provides a 
simple, clear construction of the required objectives. (Unfortunately, this 
construction does not work in the general case, even for E = R2 .) 

PROOF OF THE THEOREM IN THE CASE E = R. Let F = F(x) and Fn = Fn(x) be 
distribution functions corresponding to the measures P and Pn on (R, &l(R)). 
We associate with a function F = F(x) its corresponding quantile function 
Q = Q(u), uniquely defined by the formula 

Q(u) = inf{x: F(x) ~ u}, 

It is easily verified that 

O<u<l. 

F(x) ~ u <=> Q(u) :::;; x. 

(4) 

(5) 

We now take Q* = (0, 1), ff* = 81(0, 1), P* tobe Lebesgue measure, and 
P*(dx) = dx. We also take X*(w*) = Q(w*) and w* E Q*. Then 

P*{w*: X*(w*):::;; x} = P*{w*: Q(w*):::;; x} = P*{w*: w*:::;; F(x)} = F(x), 

i.e., the distribution of the random variable X*(w*) = Q(w*) coincides 
exactly with P. Similarly, the distribution of x:(w*) = Qn(w*) coincides 
with Pn. 

In addition, it is not difficult to show that the convergence of Fn(x) to F(x) 
at each point of continuity of the limit function F = F(x) (equivalent, if 
E = R, to the limit Pn ~ P; see Theorem 1 in §1) implies that the sequence of 
quantiles Qn(u), n ~ 1, also converges to Q(u) at every point of continuity 
of the limit Q = Q(u). Since the set of points of discontinuity of Q = Q(u), 
u E (0, 1), is at most countable, its Lebesgue measure P* is zero and therefore, 

The theorem is established in the case of E = R. 
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This construction in Theorem 1 of a passage from given random elements 
X and Xn to new elements X* and x:, defined on the same probability space, 
explains the announeerneut in the heading of this section of the method of a 
single probability space. 

W e now turn to a nurober of propositions that are established very simply 
by using this method. 

3. Let us assume that the random elements X and Xn, n ~ 1, are defined, for 
example, on a probability space (Q, !#', P) with values in a separable metric 

!!) 

space (E, $, p), so that Xn ..__.X. Also Iet h = h(x), x E E, be a measurable 
mapping of (E, C, p) into another separable metric space (E', C', p'). In proba­
bility and mathematical statistics it is often necessary to deal with the search 
for conditions under which we can say of h = h(x) that the Iimit Xn ~X 
implies the Iimit h(Xn) ~ h(X). 

For example, Iet ~ 1 , ~ 2 , ... be independent identically distributed random 
variables with E~ 1 = m, V~ 1 = u2 > 0. Let Xn = (~ 1 + · · · + ~n)/n. The cen­
trallimit theorem shows that 

y'n(Xn- m) ~ .K(O, 1). 
(J 

Let us ask, for what functions h = h(x) can we guarantee that 

h( y'n(~- m)) ~ h(%(0, 1))? 

(The Mann- Wald theorem, which is applicable to the present case, since it 
is satisfied for continuous functions h = h(x), says that n(X- m)2/u2 ~ xi. 
where xi is a random variable with a chi-squared distribution with one 
degree of freedom; see Table 2 in §3, Chapter I.) 

A second example. If X = X(t, w), Xn = Xn(t, w), t E T, are random processes 
(see §5, Chapter II) and h(X) = sup,e T IX(t, w)l, h(Xn) = sup,e T IXn(t, w)l, our 
problern amounts to asking under what conditions on the convergence in 
distribution of the processes Xn ~ X will there follow the convergence in 
distribution of their suprema, h(Xn) ~ h(X). 

A simple condition that guarantees the validity of the implication 
!!) !!) 

Xn ..__. X=> h(Xn) ..__. h(X), 

is that the mapping h = h(x) is continuous. In fact, if f = f(x') is a bounded 
continuous function on E', the function f(h(x)) will also be a bounded contin­
uous function on E. Consequently, 

!!) 
Xn ..__.X=> Ef(h(Xn)) ..__. Ef(h(X)). 

The theorem given below shows that in fact the requirement of continuity 
of the function h = h(x) can be somewhat weakened by using the Iimit prop­
erties of the random element X. 
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We denote by Llh the set {x E E: h(x) is not p-continuous at x}; i.e., Iet Llh 
be the set of points of discontinuity of the function h = h(x). We note that 
Llh E C (problem 4). 

Theorem 2.1. Let (E, C, p) and (E', C', p') be separable metric spaces, and 
Xn ~ X. Let the mapping h = h(x), x E E, have the property that 

(6) 
!!J 

Then h(Xn) -+ h(X). 
2. Let P, Pn, n ;;::: 1, be probability distributions on the separable metric 

space (E, C, p) and h = h(x) a measurable mapping of (E, C, p) on a separable 
metric space (E', C', p'). Let 

P{x: XE Llh} = 0. 

Then P: ~ ph, where P:(A) = Pn{h(x) E A}, Ph(A) = P{h(x) E A}, A E C'. 

PROOF. As in Theorem 1, it is enough to prove the validity of, for example, the 
first proposition. 

Let X* and x:, n;;::: 1, be random elements constructed by the "method of 
a single probability space," so that X* ~ X, x: ~ Xn, n ;;::: 1, and x: ~X*. 
LetA* = {w*;p(X:,x*)+O},B* = {w*:X*(w*)ELln}· Then P*(A*uB*) 
= 0, and for w* f/: A * u B* 

h(X:(w*))-+ h(X*(w*)), 

which implies that h(X:) a~ h(X*). As we noticed in subsection 1, it follows 
!!J !!J !!J !!J that h(X:) -+ h(X*). But h(X:) = h(Xn) and h(X*) = h(X). Therefore, h(X:) -+ 

h(X). 
This completes the proof of the theorem. 

4. In §6, in the proof of the implication (<=)in Theorem 1, we used (13). We 
now give a proof that again relies on the "method of a single probability 
space." 

Let (E, C, p) be a separable metric space, and '§ a dass of equicontinuous 
functions g = g(x) for which also lg(x)l ~ C for all x E E and g E '§. 

Theorem 3. Let P and Pn, n;;::: 1, be probability measures on (E, C, p) for which 
Pn ~P. Then 

sup I I g(x)Pn(dx) - I g(x)P(dx) 1-+ 0, 
ge'§ E E 

n-+ oo. (7) 

PROOF. Let (7) not occur. Then there are an a > 0 and functions g1, g2 •.• 

from '§such that 

(8) 
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for infinitely.many values of n. Turning by the "method of a single probability 
space" to random.elements X* and x: (see Theorem 1), we transform (8) to 
the form 

(9) 

for infinitely many values of n. But, by the properties of t§, for every 6 > 0 
there is a (> > 0 for which lg(y) - g(x)l < 6 for all g E '§, if p(x, y) < b. In 
addition, lg(x)l ~ C for all x E E and g E t§. Therefore, 

IE*g"(x:)- E*g"(X*)I ~ E*{lgn(x:)- g"(X*)I; p(X:, X*)> b} 

+ E*{lgn(X:)- g"(X*)I; p(X:, X*)~ b} 

~ 2CP{p(X:, X*)> b} + 6. 

Since x: ~X*, we have P* {p(X:, X*)> b} ~ 0 as n ~ oo. Consequently, 
since 6 > 0 is arbitrary, 

lim I E*g"(x:)- E*g"(X*)I = 0, 
n 

which contradicts (9). 
This completes the proof of the theorem. 

5. In this section the idea of the "method of a single probability space" used 
in Theorem 1 will be applied to estimating upper bounds of the Levy­
Prokhorov metric L(P, P) between two probability distributions on a separa­
ble space (E, C, p). 

Theorem 4. For .each pair P, P of measures we can find a probability space 
(Q*, :#'*" P*) and random elements X and X on it with values in E such that 
their distributions coincide respectively with P and P and 

L(P, P) ~ dp.(X, X)= inf{6 > 0: P*(p(X, x');::::: 6) ~ 6}. (10) 

PROOF. By Theorem 1, we can actually find a probability space (Q*, :#'*, P*) 
and random elements X and X suchthat P*(X E A) = P(A) and P*(X E A) = 
P(A), A E G. 

Let 6 > 0 have the property that 

P*(p(X, X') ;::::: 6) ~ 6. 

Then for every A E tS 

P(A) = P*(X E A) = P*(X E A, XE A") + P*(X E A, X~ A") 

~ P*(X E A") + P*(p(X, X) ;::::: 6) ~ P(A") + 6. 

(11) 

Hence, by the definition of the Levy-Prokhorov metric (subsection 2, §6) 

L(P, P) ~ 6. (12) 

From (11) and (12), if we take the infimum for 6 > 0 we obtain the required 
assertion (10). 
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Corollary. Let X and X be random elements defined on a probability space 
(Q, ff, P) with values in E. Let Px and Px be their probability distributions. 
Then 

Remark 1. The preceding proof shows that in fact (10) is valid whenever we 
can exhibit on any probability space (Q*, ff*, P*) random elements X and X 
with values in E whose distributions coincide with P and P and for which 
the set { w*: p(X(w*), X(w*)) ~ e} e ff*, e > 0. Hence, the property of (10) 
depends in an essential way on how well, with respect to the measures P and 
P, the objects (Q*, ff*, P*) and X, X are constructed. (The procedure for 
constructing Q*, ff*, P* and X, X as well as the measure P*, is called 
coupling (joining, linking).) We could, for example, choose P* equal to the 
direct product of the measures P and P, but this choice would, as a rule, not 
lead to a good estimate (10). 

Remark 2. It is natural to raise the question of when there is equality in (10). 
In this connection we state the following result without proof: Let P and P be 
two probability measures on a separable metric space (E, C, p); then there are 
(Q*, ff*, P*) and X, X, suchthat 

L(P, P) = dp.(X, X)= inf{e > 0: P*(p(X, X)~ e):::;; e}. 

5. PROBLEMS 

1. Prove that in the case of separable metric spaces the real function p(X(w), Y(w)) is 
a random variable for all random elements X(w) and Y(w) defined on a probability 
space (Q, f/', P). 

2. Prove that the function dp(X, Y) defined in (2) is a metric in the space of random 
elements with values in E. 

3. Establish (5). 

4. Prove that the set L\h = {x E E: h(x) is not p-continuous at x} E tf. 

§9. The Distance in Variation between Probability 
Measures. Kakutani-Hellinger Distance and 
Hellinger Integrals. Application to Absolute 
Continuity and Singularity of Measures 

1. Let (Q, ff) be a measurable space and &> = { P} a family of probability 
measures on it. 

Definition 1. The distance in variation between measures P and P in &> (nota­
tion: IIP- Pli) is the total (signed) variation of P-P, i.e., 
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(1) 

where the sup is over the class of all :F -measurable functions that satisfy the 
condition that I cp(w)l ::::;; 1. 

Lemma 1. The distance in variation is given by 

IIP- Pli = 2 sup IP(A)- P(A)I. 
AeF 

PROOF. Since, for all A E :#', 

P(A) - P(A) = P(4) - P(A), 

we have 

21P(A)- P(A)I = IP(A)- P(A)I + IP(A)- P(A)I ::::;; IIP- Pli, 

where the last inequality follows from (1). 

(2) 

For the proof of the converse inequality we turn to the Hahn decomposi­
tion (see, for example, [K9] or [H1], p. 121) of a signed measure J1 =P-P. 
In this decomposition the measure J1 is represented in the form J1 = Jl+ - Jl-, 
where the nonnegative measures Jl+ and Jl- (the upper and lower variations 
of /1) are of the form 

Jl+(A) = f dJ1, J1-(A) = -f _ dJ1, 
AnM AnM 

where M is a subset of :F. Here 

Var J1 = Var Jl+ + Var /1- = Jl+(Q) + /1-(Q). 

Since 

Jl+(Q) = P(M) - P(M), Jl_(Q) = P(M) - P(M), 

we have 

IIP- Pli = (P(M)- P(M)) + (P(M)- P(M))::::;; 2 sup IP(A)- P(A)I. 
AeF 

This completes the proof of the lemma. 

Definition 2. A sequence of probability measures Pn, n ~ 1, is said to be 
convergent in variation to the measure P if 

IIPn- Pli~ 0, n~ oo. (3) 

From this definition and Theorem 1, §1, Chapter III, it is easily seen that 
convergence in variation of probability measures defined on a metric space 
(Q, :#', p) implies their weak convergence. 

The proximity in variation of distributions is, perhaps, the strongest form of 
closeness of probability distributions, since if two distributions are close in 
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variation, then in practice, in specific situations, they can be considered 
indistinguishable. In this connection, the impression may be created that the 
study of distance in variation is not of much probabilistic interest. However, 
for example, in Poisson's theorem (§6, Chapter I) the convergence of the 
binomial to the Poisson distribution takes place in the sense of convergence 
in variation to the zero distribution. (Later, in §11, weshall obtain an upper 
bound for this distance.) 

We also provide an example from the field of mathematical statistics, 
where the necessity of determining the distance in variation between mea­
sures P and P arises in a natural way in connection with the problern of 
discrimination between the results of observations of two statistical hypothe­
ses H (the true distribution is P) and fi (the true distribution is P) in connec­
tion with the question of whether the measure P or P, defined on (0, ff), is 
more plausible. If w E n is treated as the result of an observation, by a test 
(for different hypotheses H and H) we understand any ff -measurable func­
tion cp = cp(w) with values in [0, 1], the statistical meaning of which is that 
cp(w) is "the probability with which hypothesis fi is accepted if the result of 
the observation is w." 

Weshall characterize the quality of different hypotheses Hand fi by the 
probabilities of errors of the jirst and second kind: 

cx(cp) = Ecp(w) ( = Prob (accepting HIH is true)), 

ß(cp) = E(l - cp(w)) ( = Prob (accepting HIH is true)). 

In the case when hypotheses H and fi are equivalent, the optimum is naturally 
to consider a test cp* = cp*(w) (if there is such a test) that minimizes the sum 
cx(cp) + ß(cp) of the errors. 

We set 

Cr(P, P) = inf [cx(cp) + ß(cp)]. 

Let Q = (P + P)/2 and z = dPjdQ, z = dPjdQ. Then 

Cr(P, P) = inf [Ecp + E(1 - cp)] 

"' 
= inf EQ[zcp + z(1 - cp)] = 1 + inf EQ[cp(z- z)Jn 

"' "' 
where EQ is the expectation of the measure Q. 

lt is easy to see that the inf is attained by the function 

cp*(w) = I{z < z} 

and, since EQ(z - Z) = 0, that 

Cr(P, P) = 1 - tEQiz- zl = 1 -HP- Pli, 

(4) 

(5) 

where the last equation will follow from Lemma 2, below. Therefore, it is 
clear from (5) that the quality of various hypotheses that characterize the 
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function Sr(P, P) really depends on the degree of proximity of the measures 
P and P in the sense of distance in variation. 

Lemma 2. Let Q be a u-.finite measure suchthat P « Q, P « Q and z = dP/dQ, 
z = dP/dQ are Radon-Nikodßm measures of P and P with respect to Q. Then 

IIP- Pli = EQiz- zl (6) 

and if Q = (P + P)/2, we have 

IIP- Pli = EQiz- zl = 2EQI1 - zl = 2EQ11 - zl. (7) 

PROOF. For all §"-measurable functions t/1 = t/J(w) with lt/J(w)l ~ 1, we see 
from the definitions of z and z that 

I Et/1- Et/11 =I EQt/J(z- Z)l ~ EQit/JIIz- zl ~ EQiz- zl. (8) 

Therefore, 

However, for the function 

{ 1, 
t/J = sgn(z - z) = _ 1, 

we have 

z ;?: z, 
z<z, 

(9) 

(10) 

We obtain the required equation (6) from (9) and (10). Then (7) follows 
from (6) because z + z = 2 (Q-a.s.). 

Corollary 1. Let P and P be two probability distributions on (R, .si(R)) with 
probability densities (with respect to Lebesgue measure dx) p(x) and p(x), x ER. 
Then 

IIP- Pli = J:oo lp(x)- p(x)l dx. (11) 

(As the measure Q, we are to take Lebesgue measure on (R, .si(R)).) 

Corollary 2. Let P and P be two discrete measures, P = (p1 , p2 , •• • ), P = 
(p, p2 , .. . ), concentrated on a countableset ofpoints x1 , x2 , •••• Then 

- 00 

IIP- Pli = L IPi- p;l. (12) 
i=l 

(As the measure Q, we are to take the counting measure, i.e., that with 
Q({x;}) = 1, i = 1, 2, .... ) 

2. We now turn to still another measure of the proximity of two probability 
measures, from among many (as will follow later) related proximities of 
measures in variation. 
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Let P and P be probability measures on (n, §') and Q, the third probabil­
ity measure, dominating P and P, i.e., with the probabilities P « Q and P « Q. 
We again use the notation 

dP 
z= dQ' 

_ dP 
z= dQ' 

Definition 3. The Kakutani-Hellinger distance between the measures P and P 
is the nonnegative number p(P, P) such that 

p2(P, P) = tEQ[Jz- ji] 2• (13) 

Since 

EQ[Jz- JiJ2 = t [;:-~r dQ. (14) 

it is natural to write p1(P, P) symbolically in the form 

p 2 (P, P) = t t [jdP- MY (15) 

lfwe set 

H(P, P) = EQfo, (16) 

then, by analogy with (15), we may write symbolically 

H(P, P) = t j';iidft, (17) 

From (13) and (16), as weil as from (15) and (17), it is clear that 

p2 (P, P) = 1 - H(P, P). (18) 

The number H(P, P) is called the Hellinger integral ofthe measures P and 
P.lt turnsouttobe convenient, for many purposes, to consider the Hellinger 
integrals H(IX; P, P) of order IX e (0, 1), defined by the formula 

H(IX' p P) = E zlllzl-lll 
' ' Q ' 

(19) 

or, symbolically, 

(20) 

lt is clear that H(1/2; P, P) = H(P, P). 
For Definition 3 to be reasonable, we need to show that the number 

p2(P, P) is independent of the choice of the dominating measure and that in 
fact p(P, P) satisfies the requirements of the concept of "distance." 

Lemma 3.1. The Hellinger integral of order IX e (0, 1) (and consequently also 
p(P, P)) is independent of the choice of the dominating measure Q. 
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2. The function p defined in (13) is a metric on the set of probability 
measures. 

PROOF. 1. If the measure Q' dominates P and P, Q' also dominates Q = 
(P + P)/2. Hence, it is enough to show that if Q « Q', we have 

EQ(z~z-1 -~) = EQ.(z')~(z') 1 -~, 

where z' = dP/dQ' and z' = dP/dQ'. 
Let us set V= dQjdQ'. Then z' = zv, z' = zv, and 

EQ(z~z1 -~) = EQ.(vz~z1 -~) = EQ.(z')~(z') 1 -~, 

which establishes the first assertion. 
2. If p(P, P) = 0 we have z = z (Q-a.e.) and hence, P = P. By symmetry, 

we evidently have p(P, P) = p(P, P). Finally, Iet P, P', and P" be three 
measures, P « Q, P' « Q, and P" « Q, with z = dP/dQ, z' = dP'jdQ, and 
z" = dP"jdQ. By using the validity of the triangle inequality for the norm in 
L 2 {Q, ff, Q), we obtain 

[EQ(Jz _ ft>2r12 ~ [EQ(Jz _ j?)2]112 + [EQ(Jz'- Jz")2]112, 

i.e., 

p(P, P") ~ p(P, P') + p(P', P"). 

This completes the proof of the Iemma. 

By Definition (19) and Fubini's theorem (§6, Chapter II), it follows imme­
diately that in the case when the measures P and P are direct products of 
measures, P = P1 x · · · x Pn, P = P1 x · · · x Pn (see subsection 9, §6, Chapter 
II), the Hellinger integral between the measures P and P is equal to the 
product of the corresponding Hellinger integrals: 

- n -H(r:t.; P, P) = n H(r:t.; P;, P;). 
i=1 

The following theorem shows the connection between distance in varia­
tion and Kakutani-Hellinger distance (or, equivalently, the Hellinger inte­
gral). In particular, it shows that these distances define the same topology in 
the space of probability measures on (Q, ff). 

Theorem 1. Wehave the following inequalities: 

2[1- H(P, P)] ~ IIP- Pli ~ J~s[-1---H-(P-,--=P,--)], (21) 

IIP- Pli ~ 2J 1 - H2(P, P). (22) 

In particular, 

(23) 

PROOF. Since H(P, P) ~ 1 and 1 - x 2 ~ 2(1 - x) for 0 ~ x ~ 1, the right-
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band inequality in (21) follows from (22), the proof of which is provided by 
the following chain of inequalities (where Q = (1/2)(P + P)): 

HP- Pli= EQ11- zl ~ JEQ11- zl 2 = J1- EQz(2- z) 

= J1- EQzz = J1- EQ(jri)2 ~ J1- (EQjri)2 

= J1- H 2 (P, P). 

Finally, the first inequality in (21) follows from the fact that by the in­
equality 

Z E [0, 2], 

and we have (again, Q = (1/2)(P + P)) 

1- H(P, P) = p2 (P, P) = tEQ[Jz-~]2 ~ tEQiz- 11 = tiiP- Pli. 

Remark. It can be shown in a similar way that, for every oc E (0, 1), 

2[1- H(oc; P, P)] ~ IIP- Pli ~ Jca(1- H(oc; P, P)), (24) 

where ca is a constant. 

Corollary 1. Let P and pn, n ;;:::: 1, be probability measures on (Q, ff). Then (as 
n_.oo) 

IIPn -Pli _.. o~ H(Pn, P) _.. 1 ~ p(Pn, P) _.. 0, 

IIPn- Pli_.. 2~H(Pn, P) _.. o~p(Pn, P) _.1. 

Corollary 2. Since by (5) 

ttr(P, P) = 1 -HP- Pli, 

we have, by (21) and (22), 

tH2 (P, P) ~ 1 - J 1 - H 2(P, P) ~ ttr(P, P) ~ H(P, P). (25) 

In particular, let 

pn = P X··· X P, 
'----y----J 

n 

pn=Px···xP 
'----y----J 

n 

be direct products of measures. Then, since H(Pn, pn) = [H(P, P)]n = e-;.n 
with A. = -In H(P, P) ;;:::: p2 (P, P), we obtain from (25) the inequalities 

(26) 

In connection with the problem, considered above, of distinguishing two 
statistical hypotheses from these inequalities, we have the following result. 

Let ( 1 , ( 2 , .•. be independent identically distributed random elements, 
that have either the probability distribution P (Hypothesis H) or P (Hypothe-
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sis ii), with P =1= P, and therefore, p2 (P, P) > 0. Therefore, when n -+ oo, 
the function Gr(P", P"), which describes the quality of optimality of the 
hypotheses Hand H as Observations of el, ez, ... ' decreases exponentially to 
zero. 

4. In using Hellinger integrals of order IX (described above), it will be conve­
nient to introduce the notions of absolute continuity and singularity of prob­
ability measures. 

Let P and P be two probability measures defined on a measurable space 
(Q, 9"). We say that Pis absolutely continuous with respect to P (notation: 
P « P) if P(A) = 0 whenever P(A) = 0 for A E ~- If P « P and P « P, we say 
that P and P are equivalent (P - P). The measures P and P are called singular 
or orthogonal (P .L P), if there is an A E ~ for which P(A) = 1 and P(A) = 1 
(i.e., P and P "sit" on different sets). 

Let Q be a probability measure, with P « Q, P « Q, z = dP/dQ, z = dP/dQ. 

Theorem 2. The following conditions are equivalent: 

(a) P « P, 
(b) P(z > 0) = 1, 
(c) H(IX; P, P)-+ 1, IX! 0. 

Theorem 3. The following conditions are equivalent: 

(a) P .L P, 
(b) P(z > 0) = 0, 
(c) H(IX; P, P)-+ 0, IX! 0, 
(d) H(IX; P, P) = 0 for all IX E (0, 1), 
(e) H(IX; P, P) = 0 for some IX E (0, 1). 

The proofs of these theorems will be given simultaneously. By the defini­
tions of z and z, 

P(z = 0) = Ea[zl(z = 0)] = 0, 

P(A n {z > 0}) = Ea[ZI(A n {z > 0})] 

= Ea[z~J(An{z>O})J= E[~J(An{z>O})J 

= EDJ(A)l 

Consequently, we have the Lebesgue decomposition 

P(A) = E DJ(A)J + P(A n {z = 0} ), Ae~, 

(27) 

(28) 

(29) 

in which Z = z/z is called the Lebesgue derivative of P with respect toP and 
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denoted by dPjdP (compare the remark on the Radon-Nikodym theorem, 
§6, Chapter III). 

Hence, we immediately obtain the equivalence of (a) and (b) in both 
theorems. 

Moreover, since 

z"z1-"-+ ZI(z > 0), a! 0, 

and for a E (0, 1) 

0 ~ z"z1-" ~ az + (1 - a)z ~ z + z 

with EQ(z + Z) = 2, we have, by Lebesgue's dominated convergence theorem, 

lim H(a; P, P) = EQZI(z > 0) = P(z > 0) 
a-1-o 

and therefore, (b)<=>(c) in both theorems. 
Finally, Iet us show that in the second theorem (c)<=>(d)<=>(e). For this, 

we need only note that H(a; P, P) = E(z/Z)"I(z > 0) and P(z > 0) = 1. Hence, 
for each a E (0, 1) we have P(z > 0) = O<=>H(a; P, P) = 0, from which there 
follows the implication (c)<=>(d)<=>(e). 

EXAMPLE 1. Let P = P1 x P2 x ... , P = P1 x P2 ••• , where Pk and Pk are 
Gaussian measures on (R, .?l(R)) with densities 

Since 

- ( ) _ 1 -(x-iik)2 /2 Pk x - r-c:.e . 
v 2n 

- 00 -
H(a; P, P) = TI H(a; Pk, Pk), 

k=l 

where a simple calculation shows that 

H(a; Pk, Pk) =I: p:(x)ßl-"(x) dx = e-<a(l-a)f2)(ak-iikl2 , 

we have 

From Theorems 2 and 3, we find that 

- - - 00 
p « P<=>P « P<=>P"' P<=> L (ak- akf < 00, 

k=l 

- 00 

p _l_ P<=> L (ak- ak)2 = 00. 
k=l 

EXAMPLE 2. Again Iet P = P1 x P2 x ... , P = P1 x P2 x ... , where Pk and Pk 
are Poisson distributions with respective parameters A.k > 0 and lk > 0. Then 
it is easily shown that 
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"P « p~p « "P~"P ~ p~ f. (A- J1:)z < oo, 
k=l 

5. PROBLEMS 

1. In the notation of Lemma 2, set 

P A P = EQ(z A Z), 

where z A z = min(z, Z). Show that 

IIP- Pli = 2(1 - P " P) 

(and consequently, tffr(P, P) = P A P). 

(30) 

2. Let P, Pn, n ~ 1, be probability measures on (R, ,qß(R)) with densities (with respect 
to Lebesgue measure) p(x), Pn(x), n ~ 1. Let Pn(x)--+ p(x) for almost all x (with 
respect to Lebesgue measure). Show that then 

IIP- Pnll = J: lp(x)- Pn(x)l dx--+ 0, 

(compare Problem 17 in §6, Chapter II). 

n--+ oo 

3. Let P and P be two probability measures. We define Kulibackinformation K(P, P) 
as information by using P against P, by the equation 

Show that 

K(P, P) = {E ln(dP/dP) 
00 

if P « P, 
otherwise. 

K(P, P) ~ -2ln(1- p2 (P, P)) ~ 2p2 (P, P). 

4. Establish formulas (11) and (12). 

5. Prove inequalities (24). 

6. Let P, P, and Q be probability measures on (R, ,qß(R)); P * Q and P * Q, their 
convolutions (see subsection 4, §8, Chapter II). Then 

IIP• Q- P•QII::;; IIP- Pli-

7. Prove (30). 

§10. Contiguity and Entire Asymptotic 
Separation of Probability Measures 

1. These concepts play a fundamental role in the asymptotic theory of math­
ematical statistics, being natural extensions of the concepts of absolute conti-
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nuity and singularity of two measures in the case of sequences of pairs of 
measures. 

Let us begin with definitions. 
Let (!l", §'")">1 be a sequence ofmeasurable spaces; let (P")":!:1 and (i'")"> 1 

be sequences ofprobability measures with P" and P" defined on (!l", §'"), 
n ~ 1. 

Definition 1. We say that a sequence (P") of measures is contiguous to the 
sequence (P") (notation: (P")<J (P")) if, for all A" e §'"such that P"(A")-+ 0 
as n-+ oo, we have P"(A")-+ 0, n-+ oo. 

Definition 2. We say that sequences (P") and (P") of measures are entirely 
(asymptotically) separated (or for short: (P") ~ (P")), if there is a subsequence 
nk i oo, k -+ oo, and sets A"k e §'"k such that 

and k-+ 00. 

We notice immediately that entire separation is a symmetric concept: (Fn) ~ 
(P") <=> (P") ~ (P"). Contiguity does not have this property. If (P") <J (P") and 
(P")<J (P"), we write (P")<J ~>(P") and say that the sequences (P") and (P") of 
measures are mutually contiguous. 

We notice that in the case when (!l", §'") = (!l, ~). P' = P, P" = P for all 
n ~ 1, we have 

(P")<J (P")<=>P « P, 

(P") <J 1> (P") <=> P "' P, 

(P") ~ (P") <=> P l_ P. 

(1) 

(2) 

(3) 

These properties and the definitions given above explain why contiguity 
and entire asymptotic separation are often thought of as "asymptotic 
absolute continuity" and "asymptotic singularity" for sequences (P") and 
(P"). 

2. Theorems 1 and 2 presented below are natural extensions of Theorems 2 
and 3 of §8 to sequences of measures. 

Let (!l", ~")";" 1 be a sequence of measurable spaces; Q", a probability 
measure on (!l", ~"); and ~", a random variable (generally speaking, ex­
tended; see §4, Chapter II) on (!l", §'"), n ~ 1. 

Definition 3. A sequence (~") of random variables is tight with respect to a 
sequence ofmeasures (Q") (notation: (~"IQ") is tight) if 

lim lim Q"(l~"l > N) = 0. 
Ntoo n 

(4) 

(Compare the corresponding definition of tightness of a family of probability 
measures in §2.) 
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Weshall always set 

P" +P" 
Q" = 2 ' 

dP" dP" 
z" = dQ"' z" = dQ"" 

Weshall also use the notation 

Z" = z"/z" (5) 

for the Lebesgue derivative of P" with respect to P" (see (29) in §9), taking 
2/0 = oo. We note that if .Pn « P", Z" is precisely one of the versions 
of the density dP"/dP" of the measure P" with respect to P" (see §6, 
Chapter II). 

For later use it is convenient to note that since 

P"(z" ~ ~) = Ean(z"J(z" ~ ~)) ~ ~ 
and Z" ~ 2/z", we have 

((1/z")IP") tight, (Z"IP") 

Theorem 1. The following statements are equivalent: 

(a) (P")<J (P"), 
(b) (z-"IP") is tight, 
(b') (Z"IP") is tight, 
(c) lim .. +o lim,. H(cx; P", P") = 1. 

Theorem 2. The following Statements are equivalent: 

(a) (P") ~;:,. (P"), 
(b) lim,.P"(z" ~ 8) = 0 for every 8 > 0, 

(b') lim,. P"(Z" ~ N) = 0 for every N > 0, 
(c) lim .. +o lim,. H(cx; P", P") =r 0, 
(d) lim,. H(cx; P", P") = 0 for all cx E (0, 1), 
(e) lim,. H(cx; P", P") = 0 for some cx E (0, 1). 

PROOF OF THEOREM 1. 

tight. 

(6) 

(7) 

(a) => (b). If (b) is not satisfied, there are an 8 > 0 and a sequence n j oo 
suchthat P"k(z"k < 1/nk) ~ 8. But by (6), P"k(z"k < 1/nk) ~ 1/nk, k-+ oo, which 
contradicts the assumption that (P")<J (P"). 

(b)<=>(b'). Wehave only to note that Z" = 2z-k- 1. 
(b) => (a). Let A" E F" and P"(A")-+ 0, n-+ oo. Wehave 

P"(A") ~ P"(z" ~ 8) + Ean(z"l(A" n {z" > 8})) 

- 2 - 2 
~ P"(z" ~ 8) + -Ean(z"J(A")) = P"(z" ~ 8) + -P"(A"). 

8 8 
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Therefore, 

n n 

Proposition (b) is equivalent to saying that lim,.j.o lim,. P"(z" :$; e) = 0. There­
fore, P"(A")--+ 0, i.e., (b) = (a). 

(b) = (c). Let e > 0. Then 

H(rx; P", P") = EQn[(z")"(z")1-"J 

~ EQ{ (;:)" I(z" ~ e)I(z" > O)z" J 
= Ep{ (;:)" J(z" ~ e)] ~ (~)" P"(z" ~ e), (8) 

since z" + z" = 2. Therefore, for e > 0, 

lim lim H(rx; P", P") ~ lim (~)" lim P11(z" ~ e) = lim P11 (Z 11 ~ e). (9) 
a-l-0 11 a-1-o 2 11 11 

By (b), lim,-1-0 lim,. P"(z" ~ e) = 1. Hence, (c) follows from (9) and the fact that 

H(rx; P", P") :$; 1. 
(c) = (b). Let~ e (0, 1). Then 

H(rx; P", P") = EQn[(z")"(z")1-"J(z" < e)] 

+ EQn[(z")"(z")1-"/(z" ~ e, z" :$; ~)] 

+ EQn[(z")"(z")1 -"/(z" ~ e, z" > ~)] 

:$; 2e'" + 2o1 -'" + EQ{z"(;:)" I(z" ~ e, z" > o)J 

:$; 2e" + 2~ 1 -" +GY P"(z" ~ e). (10) 

Consequently, 

lim lim P"(z" ~ e)·~ (-2~)" lim H(rx; P", P")- 2"~ 
e-1-o n n 2 

for all rx e (0, 1), ~ e (0, 1). If we first Iet rx! 0, use (c), and then Iet ~! 0, we 
obtain 

from which (b) follows. 

PROOF OF THEOREM 2. 

lim lim P"(z" ~ e) ~ 1, 
e-l-0 n 

(a) = (b). Let (P") l:,. (P"), nk j oo, and let A"k e ff'"k have the property that 
P"k(A"k)--+ 1 and P"k(A"k)--+ 0. Then, since z" + z" = 2, we have 
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P"k(z"k ~ 8) ~ fink(A"k) + EQ"k {z"k · ::>(A"k)/(z"k ~ 8)} 

= P"k(A"k) + Epnk {::>(A"k)J(z"k ~ 8)} 

- 2 -
~ P"k(A"k) + -P"k(A"k). 

8 

Consequently, P"k(z"k ~ 8)-+ 0 and therefore, (b) is satisfied. 
(b) => (a). If (b) is satisfied, there is a sequence nk j oo suchthat 

P"k z"k > - < - -+ 0 - ( 1) 1 
- k - k ' k-+ 00. 

Hence, having observed (see (6)) that P"k(z"k ~ 1/k) ~ 1 - (1/k), we obtain (a). 

(b) => (b'). Wehave only to observe that Z" = (2/z")- 1. 
(b) => (d). By (10) and (b), 

lim H(rx; P", P") ~ 28'" + 215 1 -'" 

" 
for arbitrary 8 and 15 on the interval (0, 1). Therefore, (d) is satisfied. 

(d) => (c) and (d) => (e) are evident. 
Finally, from (8) we have 

- (2)'" -lim P"(z" ~ 8) ~ - lim H(rx; P", P"). 
" 8 " 

Therefore, (c) => (b) and (e) => (b), since (2/8)'"-+ 1, rx! 0. 

3. We now consider a special case corresponding to the method of indepen­
dent observations, where the calculation of the integrals H(rx; P", P") and 
application of Theorems 1 and 2 do not present much difficulty. 

Let us suppose that the measures P" and P" are direct products of 
measures: 

P" = p1 X ••• X Pli, P"=P x···xP. 
1 "' 

n ~ 1, 

where Pk and Pk are given on (Ok, ~), k ~ 1. 
Since in this case 

" . H(rx. P" P") = n H(rx. p, P. ) = eD-,ln[l - (1 - H(IX; P., P.))] 
' ' ' k' k ' k=1 

we obtain the following result from Theorems 1 and 2: 

- -- " -(P")<J (P") <=> lim lim L [1 - H(rx; Pk, Pk)] = 0, (11) 
a-1-o " k=1 

" (P")b.(P")<=>lim L [1- H(rx; Pk, Pk)] = oo. (12) 
" k=1 



§11. Rapidity ofConvergence in the Central Limit Theorem 373 

EXAMPLE. Let (Qk, JF,.) = (R, ~(R)), ak E [0, 1), 

- 1 
Pk(dx) = !10, lJ(x) dx, Pk(dx) = 1 _ ak I1.k, 11(x) dx. 

Since here H(a.; Pk, iü = (1 - ak)", a. E (0, 1), from (11) and the fact that 
H(a.; Pk> Pd= H(1 - a.; Pk, Pk), we obtain 

- - (1) (P") <J (P") <=> li~ na. = 0, i.e., a. = o n , 
(P")6(P")<=>lim na. = oo. 

n 

4. PROBLEMS 

1. Let P" = Pf x · · · x P:, 15• = Pr x · · · x 15:, n ~ 1, where Pk" and 15: are Gaussian 
measures with parameters (a:, 1) and (a:, 1). Find conditions on (ak) and (ak) under 
which (15") <J (P") and (15")!:::. (P"). 

2. Let P" = Pf x · · · x P: and 15• = 15r x · · · x 15:, where P;t and 15: are probability 
measures on (R, i!J(R)) for whicp P:(dx) = / 10, 11(x) dx and 15:(dx) = 11 ••• 1 +.jdx), 
0 s a. s 1. Show that H(rx; P:, Pk) = 1 - a. and 

(15") <l (P")-= (P") <l (15")-= lim na. = 0, 
n 

§11. Rapidity of Convergence in the 
Central Limit Theorem 

1. Let ~. 1 , ... , ~ •• be a sequence of independent random variables, s. = 
~. 1 + · · · + ~""' F.(x) = P(S. s; x). If s.--+ .%(0, 1), then F.(x)--+ <ll(x) for 
every x ER. Since <ll(x) is continuous, the convergence here is actually uni­
form (Problem 5 in §1): 

supjF.(x)- <ll(x)l--+ 0, n --+ oo. (1) 
X 

It is natural to ask how rapid the convergence in (1) is. Weshall establish 
a result for the case when 

~1 + ... + ~. s. = c ' 
a.yn 

n ~ 1, 

where ~t. ~2 , ••• is a sequence ofindependent identically distributed random 
variables with E~k = 0, V ~k = a2 and EI ~ 1 1 3 < oo. 
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Theorem (Berry and Esseen). Wehave the bound 

sup I Fix)- <l>(x)l ~ CE'.fi 3
, 

x a 3 n 
(2) 

where Cis an absolute constant ((2n)- 1i 2 ~ C < 0.8). 

PRooF. For simplicity, Iet a 2 = 1 and ß3 = E l~tl 3 • By Esseen's inequality 
(Subsection 10, §12, Chapter II) 

sup IF.(x)- <l>(x)l ~ ~ JT I J.(t)- cp(t) I dt + 24T ~ (3) 
x 1t o t n v 2n 

where cp(t) = e-'212 and 

fn(t) = [J(t/Jn)]", 

with f(t) = Ee;'~'. 
In (3) we may take T arbitrarily. Let us choose 

T = Jn/(5ß3). 

We are going to show that for this T, 

lf.(t)- cp(t)l ~ ~ Jn ltl 3e-'214, ltl ~ T. (4) 

The required estimate (2), with C an absolute constant, will follow im­
mediately from (3) by means of (4). (A more detailed analysis shows that 
c < 0.8.) 

We now turn to the proof of (4). 
By formula (18) from §2, Chapter II (n = 3, E~ 1 = 0, E~i = 1, El~ 1 1 3 < oo) 

we obtain 

. t2 (it)3 

f(t) = Ee''~• = 1- 2 + 6[E~~(cos 01 t~ 1 + i sin 01 t~ 1 )], (5) 

where 101 1 ~ 1, 102 1 ~ 1. Consequently, 

1(~) = 1- ~: + ~:!;2 [ E~~(cos 01 ~~1 + i sin 01 ~~1) J. 
If ltl ~ T = Jn/5ß3 , we find, by using the inequality ß3 ~ a 3 = 1 (see (28), 

§6, Chapter II), that 

1 - k(~)l ~ 11 - ~(~)I~~:+~~~:;~ 215. 

Consequently, for ltl ~ T it is possible to have the representation 

(6) 
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where ln z means the principal value of the logarithm of the complex number 
z (ln z = lnlzl + i arg z, -n <arg z ~ n). 

Since ß3 < oo, we obtain from Taylor's theorem with the Lagrange re­
mainder (compare (35) in §12, Chapter II) 

l f(_t_) =..!!..... u> (it)2 
<2> (it)3 0 f)"' (o-t-) 

n Jn Jn s~, + 2n s~, + 6n3/2 n Jn 

= -~ (it)3 0 f)"' (o-t ) 2n + 6n312 n Jn ' 101 ~ 1, (7) 

since the semi-invariants are s~~> = E~ 1 = 0, s~~> = u2 = 1. 
In addition, 

", f"'(s) · jl(s) - 3f"(s)f'(s)f(s) + 2(f'(s))3 

(ln f(s)) = jl(s) 

E[(i~ 1 )3e 1~'•]j2(s)- 3E[(i~d2e 1~'·] E[(i~ 1 )e 1~'•]f(s) + 2E[(i~ 1 )e 1~'•] 3 

jl(s) 

From this, taking into account that IJ(t!.jn,)l ~ 24/25 for ltl ~ T and 
lf(s)l ~ 1, we obtain 

l(ln /)"' (o-t )I< ß3 + 3ßt · ß2 + 2ßf < 7ß (8) Jn - (~~)3 - 3 

(ßk = El~tl1, k = 1, 2, 3; ß1 ~ ßl'2 ~ ß~13 ; see (28), §6, Chapter 11). 
From (6)-(8), using the inequality lez- 11 ~ lzlelzl, we find for ltl ~ T = 

Jn!5ß3 that 

l[t(Jn) J _ e'2/21 = lenlnf(t/Jnl _ e-t2 /21 

( 7)ß31tl3 { t2 (7)l l3 ß3} 7 ß3ltl3 -r,/4 
~ 6 Jn exp -2 + 6 t Jn ~ 6 Jn e . 

This completes the proof of the theorem. 

Remark. We observe that unless we make some supplementary hypothesis 
about the behavior of the random variables that are added, (2) cannot be 
improved. In fact, let ~ 1 , ~2 , ••• be independent identically distributed 
Bernoulli random variables with 

It is evident by symmetry that 
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and hence, by Stirling's formula ((6), §2, chap. I) 

- .!.cn 2-2n 1 - 1 -2 2n" "'--- · 2fo j(2n) · (2n) 

ltfollows, in particular, that the constant C in (2) cannot be less than (2n)- 1' 2. 

2. PROBLEMS 

1. Prove (8). 

2. Let ~to ~2 , ••• be independent identically distributed random variables with E~k = 0, 
V~t = u2 and E 1~ 1 1 3 < oo. 

It is known that the following nonuniform inequality holds: for all x e R, 

CEI~tl 3 1 
IFn(x)-~x)l:s; u3Jn .(l+lxl)3" 

Prove this, at least for Bemoulli random variables. 

§12. Rapidity of Convergence in Poisson's Theorem 

1. Let e 1o e2, ... , en be independent Bemoulli random variables that take the 
values 1 and 0 with probabilities 

1~k~n. 

We set S = e1 + ··· + en; Iet B = (B0 , B~o ... , Bn) be the binomial distri­
bution of probabilities of the sum S, where B1 = P(S = k). Also Iet II = 
(II0 , II 1 , •.• ) be the Poisson distribution with parameter A., where 

e-AA_k 
IIk = ----,zt, k ~ 0. 

We noticed in §6, Chapter I, that if 

P1 = ··· = Pn• A. = np, (1) 

there is the following estimate (Prokhorov) for the distance in variation be­
tween the measures Band II (Bn+l = Bn+l = · · · = 0): 

Cl() A. 
IIB- IIII = L IBk- Ilkl ~ Cl(A.)p = Cl(A.)·-, 

k=o n 
(2) 

where 

C1 (A.) = 2 min(2, A.). (3) 
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For the case when Pk are not necessarily equal, but satisfy Lt=l Pk = A., 
LeCam showed that 

00 

IIB- 1111 = L IBk- Tikl ::; C2(A.) max Pk, 
k=O l,;k,;n 

where 

C2(A.) = 2 min(9, A.). 

A theorem to be presented below will imply the estimate 

IIB- 1111 ::; C3 (A.) max Pb 

in which 

(4) 

(5) 

(6) 

(7) 

Although C2(A.) < C3 (A.) for A. > 9, i.e., (6) is worse than (4), we nevertheless 
have preferred to give a proof of(6), since this proofis essentially elementary, 
whereas an emphasis on obtaining a "good" constant C2(A.) in (4) greatly 
complicates the proof. 

2. Theorem. Let A. = Lk=l Pk· Then 
oo n 

IIB- TIII = L IBk- Tikl::; 2 L pf. (8) 
k=O k=l 

PROOF. We use the fact that each ofthe distributionsBand TI is a convolution 
of distributions: 

B = B(pl) * B(p2) * · · · * B(pn), 

TI = TI(pl) * TI(p2) * · · · * TI(pn), 
(9) 

understood as a convolution of the corresponding distribution functions (see 
subsection 4, §8, Chapter II), where B(p~) = (1 - Pb Pk) is a Bernoulli distri­
bution on the points 0 and 1, and TI(pk) is a Poisson distribution supported 
on the points 0, 1, ... with the parameters Pk· 

lt is easy to show that the difference B - TI can be represented in the form 

B - TI = R1 + · · · + Rn, 

where 

with 

Fk = B(pl) * · · · * B(Pk-1) * TI(pk+d * · · · * TI(pn), 

Fn = B(pt) * · · · * B(Pn-l)TI. 

(10) 

(11) 

2 ::; k ::; n - 1, 
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By problern 6 in §9, we have IIRkll ~ IIB(pk)- Il(pk)ll. Consequently, we 
see immediately from (10) that 

n 

IIB- 1111 ~ L IIB(pk)- IT(pdll. (12) 
k=l 

By formula (12) in §9, we see that there is no diffi.culty in calculating the 
variation IIB(pk)- Il(pk)ll: 

IIB(pk) - II(pk)ll 

= 1(1 - Pk) - e-Pkl + iPk - Pke-Pkl + 1 - e-Pk - Pte-Pk 

= 2pk(1 - e-Pk) ~ 2pr 

From this, together with (12), we obtain the required inequality (8). 
This completes the proof of the theorem. 

Corollary. Since L~=l pf :S A. max1sksnPk• we obtain (6). 

3. PROBLEMS 

1. Show that, if ).k = -ln(1 - Pt), 

IIB(pk)- Il().k)ll = 2(1 - e-;.k- ).ke-Ak) =:;;; ).2 
and consequently, IIB - n II =:;;; D=t ;.~. 

2. Establish the representations (9) and (10). 



CHAPTER IV 

Sequences and Sums of Independent 
Random Variables 

§1. Zero-or-One Laws 

1. Theseries I::"= 1 (1/n) diverges and the series I::"= 1 ( -1t(1/n) converges. 
We ask the following question. What can we say about the convergence or 
divergenceofaseries I~ 1 (~./n), where ~ 1, ~2 , ... isasequenceofindependent 
identically distributed Bernoulli random variables with P(~ 1 = + 1) = 
P(~ 1 = -1) =!?In other words, what can be said about the convergence 
of a series whose general term is ± 1/n, where the signs are chosen in a random 
manner, according to the sequence ~ 1 , ~ 2 , ••• ? 

Let 

A 1 = {w: I ~. converges} 
n= 1 n 

be the set of sample points for which I::"= 1 (~n/n) converges (to a finite 
number) and consider the probability P(A 1) of this set. It is far from clear, 
to begin with, what values this probability might have. However, it is a 
remarkable fact that we are able to say that the probability can have only two 
values, 0 or 1. This is a corollary of Kolmogorov's "zero-one law," whose 
statement and proof form the main content of the present section. 

2. Let (Q, ff, P) be a probability space, and Iet ~ 1 , ~ 2 , ••• be a sequence of 
random variables. Let g-;;o = u(~., ~n+ 1 ••.• ) be the u-algebra generated by 
~"' ~n+ 1, ... , and write 
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Since an intersection of u-algebras is again a u-algebra, !!!' is a u-algebra. 1t is 

called a tail algebra (or terminal or asymptotic algebra), because every 

event A E !!!' is independent ofthe values of ~ 1, ..• , ~. for every finite number n, 
and is determined, so to speak, only by the behavior of the infinitely remote 

values of ~ 1, ~ 2 , .... 

Since, for every k ~ 1, 

A 1 = { I ~. converges} = { I ~. converges} E fllk, 
n;l n n;k n 

we have AlE nk fjlk =!!!'.In the same way, if ~1• ~2• 0 0 0 is any sequence, 

A 2 = {~~.converges}E!!l'. 
The following events are also tail events: 

A3 = { ~. E In for infinitely many n }, 

where I. E ei(R), n ~ 1; 

A 4 = { ~ ~. < oo}; 

A {l ~ 1 + 0 0 0 + ~. } 
5 = 1m <oo; 

n n 

{ 
~l +, .. + ~n } 

A 6 = ilm < c ; 
n n 

A 7 = {~" converges }; 

A 8 = hm = 1 . {~ s. } 
n j2n log n 

On the other band, 

B 1 = {~.=Oforalln~ 1}, 

B2 = {li~(~ 1 + .. · + ~.) exists and is less than c} 

are examples of events that do not belang to !!!'. 
Let us now suppose that our random variables are independent. Then by 

the Borel-Cantelli lemma it follows that 

P(A 3) = o~ L P(~. EI.)< oo, 

P(A3) = 1 ~ L P(~. EI.) = 00. 

Therefore the probability of A3 can take only the values 0 or 1 according to 

the convergence or divergence of L P( ~. E I.). This is Borel's zero-one law. 
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Theorem 1 (Kolmogorov's Zero-One Law). Let ~ 1 , ~ 2 , ••• be a sequence of 
independent random variables and Iet A E !!l". The P(A) can only have one ofthe 
values zero or one. 

PROOF. The idea ofthe proofis to show that every tail event Aisindependent 
of itself and therefore P(A n A) = P(A) · P(A), i.e., P(A) = P2(A), so that 
P(A) = 0 or 1. 

If A E !!f then A E ~!" = a{~ 1 , ~ 2 , ... } = a(Un ~1), where ~~ = 
a{ ~ 1, ..• , ~n}, and we can find (Problem 8, §3, Chapter II) sets An E ~~, 
m ~ l, suchthat P(A!:::,. An)-+ 0, n-+ oo. Hence 

P(An) -+ P(A), P(An n A) -+ P(A). (l) 

But if A E !!l", the events An and A are independent for every n ~ 1. Hence it 
follows from (1) that P(A) = P2(A) and therefore P(A) = 0 or 1. 

This completes the proof of the theorem. 

Corollary. Let '7 be a random variable that is measurable with respect to the tail 
a-algebra !!f, i.e., { '1 E B} E !!l", B E f!I(R). Then '1 is degenerate, i.e., there is a 
constant c such that P('1 = c) = 1. 

3. Theorem 2 below provides an example of a nontrivial application of 
Kolmogorov's zero-one law. 

Let ~ 1, ~ 2 , ••• be a sequence of independent Bernoulli random variables 
with P(~n = l) = p, P(~n = -1) = q, p + q = 1, n ~ 1, and Iet Sn = 
~ 1 + · · · + ~n. lt seems intuitively clear that in the symmetric case (p = f) 
a "typical" path ofthe random walk Sn, n ~ 1, will cross zero infinitely often, 
whereas when p # t it will go offto infinity. Let us give a precise formulation. 

Theorem 2. (a) Jf p = ! then P(Sn = 0 i.o.) = 1. 
(b) lfp # f, then P(Sn = 0 i.o.) = 0. 

PROOF. We first observe that the event B =(Sn= 0 i.o.) is not a tail event, i.e., 
B rt !!f = n ~:. ~: = a{~n• ~n+ I• •.. }. Consequently it is, in principle, 
not clear that B should have only the values 0 or 1. 

Statement (b) is easily proved by applying (the first part of) the Borel­
Cantelli Iemma. In fact, if B2 n = {S2n = 0}, then by Stirling's formula 

P(B ) = C" n n "' (4pq)" 
2n 2nP q C::. 

v rcn 

and therefore L P(B2n) < oo. Consequently P(Sn = 0 i.o.) = 0. 
To prove (a), it is enough to prove that the event 

{~Sn 1. Sn } 
A = hm Jn = oo, 1m Jn = - oo 

has probability 1 (since A ~ B). 
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Let 

Ac={Um }n>c}n{lim }n< -c}(=A~nA~). 
Then Ac l A, c--> oo, and all the evcnts A, A" A~, A~ arc tail evcnts. Let us 
show that P(A~) = P(A~) = 1 for each c > 0. Since A~ E !!{ and A~ E :!l, it is 
sufficient to show only that P(A~) > 0, P(A~) > 0. But by Problem 5 

P(lim }n < -c) = P(Ilm }n > c) ~!im P(}n > c) > 0, 

where the last inequality follows from the Oe Moivre-Laplace theorem. 
Thus P(Ac) = 1 for all c > 0 and therefore P(A) = limc~cxo P(AJ = 1. 
This completes the proof of the theorem. 

4. Let us observe again that B = {Sn = 0 i.o.} is not a tail event. Nevertheless, 
it follows from Theorem 2 that, for a Bernoulli scheme, the probability oftbis 
event, just as for tail events, takes only the values 0 and 1. This phenomenon 
is not accidental: it is a corollary of the Hewitt-Savage zero-one law, which 
for independent identically distributed random variables extends the result 
ofTheorem 1 to the dass of"symmetric" events (which indudes the dass of 
tail events). 

Let us give the essential definitions. A one-to-one mapping n = 

(n 1, n2 , ... ) of the set (1, 2, ... ) on itself is said tobe a finite permutation if 
nn = n for every n with a finite number of exceptions. 

If ~ = ~ 1, ~ 2 , ... is a sequence of random variables, n(~) denotes the 
sequence (~",,~"2 , ••• ). If Ais the event {~EB}, BEßH(R"'), then n(A) 
denotes the event {n(~) E B}, BE PJ(R 00 ). 

We call an event A = { ~ E B}, BE PJ(R 00 ), symmetric if n(A) coincides with 
A for every finite permutation n. 

An example of a symmetric event is A = {Sn = 0 i.o.}, where Sn = 
~ 1 + · · · + ~n· Moreover, we may suppose (Problem 4) that every event in 
the tail a-algebra !!C(S) = n ~:'(S) = a{w: Sn, Sn+ 1, ... } generated by 
s1 = ~1• s2 = ~1 + ~2• •.. is symmetric. 

Theorem 3 (Hewitt-Savage Zero-One Law). Let ~ 1 , ~ 2 , ••. be a sequence of 
independent identically distributed random variables, and 

a symmetric event. Then P(A) = 0 or 1. 

PROOF. Let A = { ~ E B} be a symmetric event. Choose sets Bn E ßH(Rn) such 
that, for An= {w: (~1• ... , ~n) E Bn}, 

n--> oo. (2) 
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Since the random variables ~ 1 , ~ 2 , ••• are independent and identically 
distributed, the probability distributions P~(B) = P(~ e B) and Pn.w(B) = 

P(n.(O E B) coincide. Therefore 

P(A !::::.. A.) = P ~(B !::::.. B.) = P "·<~,(B !::::.. B.). (3) 

Since Ais symmetric, we have 

Therefore 

Pn.<~,(B!::::.. B.) = P{n.(Ü E B)!::::.. (n.(~) E B.)} 
= P{(~ E B)!::::.. (n.(~) E B.)} = P{A !::::.. n.(A.)}. (4) 

Hence, by (3) and (4), 

P(A !::::.. A.) = P(A !::::.. n.(A.)). 

lt then follows from (2) that 

P(A !::::.. (A. 11 n.(A.))) --+ 0, n --+ oo. 

Hence, by (2), (5), and (6), we obtain 

P(A.) --+ P(A), P(n.(A)) --+ P(A), 

P(A. 11 n.(A.)) --+ P(A). 

Moreover, since ~ 1 and ~2 are independent, 

P(A. 11 n.(A.)) = P{(~ 1 , ... , ~.) E B., (~.+ 1, ... , ~2.) E B.} 

whence by (7) 

= P{(~ 1 , ••• , ~.) E B.} · P{(~n+ 1, ••• , ~2.) E B.} 
= P(A.)P(n.(A.)), 

P(A) = P2{A) 

and therefore P(A) = 0 or 1. 
This completes the proof of the theorem. 

5. PROBLEMS 

1. Prove the corollary to Theorem 1. 

(5) 

(6) 

(7) 

2. Show that if(~.) is a sequence ofindependent random variables, the random variables 
Iiiii ~. and !im ~. are degenerate. 

3. Let ( ~.) be a sequence of independent random variables, s. = ~ 1 + · · · + ~., and Jet 
the constants b. satisfy 0 < b. j oo. Show that the random variables Iiiii(S.Jb.) and 
lim(S.Jb.) are degenerate. 

4. LetS.= ~ 1 + · · · + ~ •. n ~ 1, and ?l'(S) = n ~;:'(S), ~;:'(S) = u{ro: S., S.n .. . }. 
Show that every event in ?l'(S) is symmetric. 

5. Let(~.) be a sequence of random variables. Show that {Iiiii ~. > c} 2Iiiii{e. > c} 
for each c > 0. 
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§2. Convergence of Series 

1. Let us suppose that ~ 1, ~ 2 , •.• is a sequence of independent random 
variables, Sn = ~ 1 + · · · + ~"' and Iet A be the set of sample points ro for 
which L ~n(ro) converges to a finite Iimit. lt follows from Kolmogorov's 
zero-one law that P(A) = 0 or 1, i.e., the series L ~" converges or diverges 
with probability 1. The object ofthe present section is to give criteria that will 
determine whether a sum of independent random variables converges or 
diverges. 

Theorem l (Kolmogorov and Khinchin). 
(a) Let E~n = 0, n ;;::: 1. Then if 

the series L ~n converges with probability 1. 

(1) 

(b) !l the random variables ~n, n ;;::: 1, are un!{ormly bounded (i.e., P( I ~n I ~ c) 
= 1, c < oo ), the converse is true: the convergence of L ~n with probability 
1 implies (1 ). 

The proof depends on 

Kolmogorov's lnequality 

(a) Let~ 1 .~ 2 , ... ,~nbeindependentrandomvariableswithE~; = O,E~f < oo, 
i ~ n. Thenfor every 1: > 0 

(2) 

(b) lf also P(l~d ~ c) = 1, i ~ n, then 

(3) 

PROOF. (a) Put 

A = {maxjSkl;;::: ~:}, 

Ak = {IS;I < ~:, i = 1, ... ,k- 1, !Ski;;:::~:}, 1 ~ k ~ n. 

Then A = LAk and 
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But 

ES;IA• = E(Sk + (~k+t + · · · + ~n)) 21A• 
= ESUA. + 2ESk(~k+l + ··· + ~n)/Ak + E(~k+l + · · · + ~n)2/Ak 
~ ESUA., 

since 

ESk(~k+t + ··· + ~n)JA• = ESkiA. · E(~k+t + ·· · + ~n) = 0 

because ofindependence and the conditions E~; = 0, i :::;; n. Hence 

Es; ~ L, ESfiA. ~ E2 L, P(Ak) = c2 P(A), 

which proves the first inequality. 
(b) To prove (3), we observe that 

Es; JA= Es; - Es;Ix ~Es; - c2 P(Ä) =Es; - c2 + c2 P(A). (4) 

On the other band, on the set Ak 

ISk-tl:::;; E, iSki:::;; ISk-tl + l~kl:::;; G + c 

and therefore 

Es;IA = L, ESUA. + L, E(JA.(Sn- Sk) 2 ) 
k k 

n n 

:::;; (E + c)2 L, P(Ak) + L, P(Ak) L E~J 
k k=l j=k+l 

:::;; P(A{(E + c)2 + J
1 
E~J J = P(A)[(c + c)2 + ES;]. (5) 

From (4) and (5) we obtain 

P(A) > Es; - Ez = 1 - (E + c)z > 1 - (E + c)z 
- (E + c)2 + Es; - E2 (E + c)2 + Es; - E2 - Es; . 

This completes the proof of (3). 

PRooF OF THEOREM 1. (a) By Theorem 4 of §10, Chapter II, the sequence 
(Sn), n ~ 1, converges with probability 1, if and only if it is fundamental with 
probability 1. By Theorem 1 of §10, Chapter II, the sequence (Sn), n ~ 1, is 
fundamental (P-a.s.) if and only if 

P{supiSn+k- Snl ~ E} ~ 0, n ~ 00. (6) 
k;o,l 

By (2), 

Therefore (6) is satisfied if I,:'= 1 E~f < oo, and consequently I, ~k converges 
with probability 1. 
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(b) LetLek converge. Then, by (6), for sufficiently large n, 

P{sup ISn+k- Sn I~ e} < t. 
k~1 

By (3), 

Therefore if we suppose that Lk'= 1 Eef = oo, we obtain 

P{sup ISn+k - Snl ~ e} = 1, 
k~1 

which contradicts (7). 
This completes the proof of the theorem. 

(7) 

EXAMPLE. lf e1, ,2, ... is a sequence of independent ßernoulli random 
variables with P('" = + 1) = P('" = -1) = t, then the series L '"a", with 
I an I ~ c, converges with probability 1, if and only if La; < oo. 

2. Theorem 2 (Two-Series Theorem). A sufficient condition for the convergence 
of the series I e" of independent random variables, with probability 1, is that 
both series L een and L V en converge. lf P( I en I ~ c) = 1, the condition is also 
necessary. 

PROOF. Ifi ven < 00, then by Theorem 1 the series L <en- Een) converges 
(P-a.s.). But by hypothesis the series L een converges; hence L en converges 
(P-a.s.). 

To prove the necessity we use the following symmetrization method. In 
addition to the sequence e 1' e 2' . . . we consider a different sequence ~ 1' 
~2 , ••• of independent random variables suchthat ~" has the same distribu­
tion as e", n ~ 1. (When the original sample space is sufficiently rieb, the 
existence of such a sequence follows from Theorem 1 of §9, Chapter II. We 
can also show that this assumption involves no loss of generality.) 

Then if L en converges (P-a.s.), the series L ~n also converges, and hence 
so does L <en- ~"). But E(en- ~") = 0 and P(len- ~nl ~ 2c) = 1. There­
fore L V(e" - ~") < oo by Theorem 1. In addition, 

L ven = t L V(en- ~n) < 00. 

Consequently, by Theorem 1, L <en - een) converges with probability 1, 
and therefore L Een converges. 

Thus if L en converges (P-a.s.) (and P( I en I ~ c) = 1, n ~ 1) it follows that 
both L Een and L ven converge. 

This completes the proof of the theorem. 

3. The following theorem provides a necessary and sufficient condition for 
the convergence of L e" without any boundedness condition on the random 
variables. 
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Let c be a constant and 

~c = {~' ~~~:SC, 
0, 1~1 > c. 
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Theorem 3 (Kolmogorov's Three-Series Theorem). Let ~ 1 , ~ 2 , ••• be a 
sequence of independent random variables. A necessary condition for the con­
vergence ofL ~" with probability 1 isthat the series 

L E~~. LV~~. L P(l~nl ~ c) 

converge for every c > 0; a sufficient condition is that these series converge 
for some c > 0. 

PRooF. Sufficiency. By the two-series theorem, L ~~ converges with probability 
1. But if L P( I~" I ~ c) < oo, then by the Borei-Cantelli Iemma we have 
LI( I ~n I ~ c) < oo with probability 1. Therefore ~" = ~~ for all n with at 
most finitely many exceptions. Therefore L ~" also converges (P-a.s.). 

Necessity. If L ~" converges (P-a.s.) then ~"-+ 0 (P-a.s.), and therefore, 
for every c > 0, at most a finite number of the events {I~" I ~ c} can occur 
(P-a.s.). Therefore L /(l~nl ~ c) < oo (P-a.s.), and, by the second part ofthe 
Borei-Cantelli Iemma, L P( I~" I > c) < oo. Moreover, the convergence of 
L ~" implies the convergence of L ~~· Therefore, by the two-series theorem, 
both ofthe series L E~~ and LV~~ converge. 

This completes the proof of the theorem. 

CoroUary. Let~ 1, ~2 , ••• be independentvariables with E~n = 0. Then if 

" E ----"~_:_:__; -L.... < oo, 
1 + l~nl 

the series L ~n converges with probability 1. 

For the proof we observe that 

L E ~;;: I< 00- L E[~;J(I~nl :S 1) + l~nl/(l~nl > 1)] < 00. 
1 + l':.n 

Therefore if ~~ = ~n/(l~nl :S 1), we have 

L E(~~)2 < 00. 

Since E~n = 0, we have 

L IE~~ I= L IE~n/(l~nl :S 1)1 = L IE~n/(l~nl > 1)1 

:S L E l~nl/(l~nl > 1) < 00. 

Therefore both L E~~ and LV~~ converge. Moreover, by Chebyshev's 
inequality, 

P{l~nl > 1} = P{l~nl/(l~nl > 1) > 1} :S E(l~nl/(l~nl > 1). 

Therefore L P(l~nl > 1) < oo. Hence the convergence ofi ~n follows from 
the three-series theorem. 
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4. PROBLEMS 

1. Let ~ 1, ~ 2 , ••. be a sequence of independent random variables, S" = ~ 1, .•• , ~". 
Show, using the three-series theorem, that 
(a) if I~; < oo (P-a.s.) then I~" converges with probability 1, if and only if 

I E U(l~d ~ 1) converges; 
(b) if I~" converges (P-a.s.) then I~; < oo (P-a.s.) if and only if 

I (E ~~nl/(l~nl ~ 1))2 < 00. 

2. Let ~ 1 , ~ 2 , ••• be a sequence of independent random variables. Show that I~; < oo 
(P-a.s.) if and only if 

~; IE --2 < 00. 
1 + ~n 

3. Let ~ 1 , ~ 2 , .•• be a sequence of independent random variables. Show that I~" 
converges (P-a.s.) if and only if it converges in probability. 

§3. Strong Law of Large Numbers 

1. Let ~ 1, ~ 2 , ... be a sequence of independent random variables with finite 
second moments; Sn = ~ 1 + · · · + ~n· By Problem 2, §3, Chapter III, if the 
numbers V~i are uniformly bounded, we have the law oflarge numbers: 

Sn - ESn f. 0, n ~ oo. (1) 
n 

A strong law of Zarge numbers is a proposition in which convergence in 
probability is replaced by convergence with probability 1. 

One of the earliest results in this direction is the following theorem. 

Theorem 1 (Cantelli). Let ~ 1, ~ 2 , ••• be independent random variables with 
finite fourth moments and Iet 

El~n- E~nl4 ~ C, n ~ l, 

for some constant C. Then as n ~ oo 

Sn- ESn 
--"---- ~ 0 (P-a.s.). 

n (2) 

PROOF. Without loss of generality, we may assume that E~n = 0 for n ~ 1. 
By the corollary to Theorem 1, §10, Chapter II, we will have Sn/n ~ 0 (P-a.s.) 
provided that 

for every e > 0. In turn, by Chebyshev's inequality, this will follow from 

L E I :n 14 < 00. 
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Let us show that this condition is actually satisfied under our hypotheses. 
Wehave 

4 4 n 4 4! 2 2 s. = (~1 + ... + ~.) = J1~i- h 2!2! ~i~j 
i<j 

'\' 4! 3 
+ .L -3111 ~i~j· 

'*J . . 

Remernhering that E~k = 0, k :::;; n, we then obtain 

n n 

ES~= IE~i + 6 L EaE~J:::;; nC + 6 L JE~i. E~J 
i=1 i,j=1 i,j=1 

i<j 

6n(n - 1) 
:::;; nC + 2 C = (3n 2 - 2n)C < 3n 2C. 

Consequently 

(s )4 1 L E nn :::;; 3C L n2 < oo. 

This completes the proof of the theorem. 

2. The hypotheses ofTheorem 1 can be considerably weakened by the use of 
more precise methods. In this way we obtain a stronger law oflarge numbers. 

Theorem 2 (Kolmogorov). Let ~ 1 , ~ 2 , •.• be a sequence of independent random 
variables with finite second moments, and Iet there be positive numbers b. such 
that b. i oo and 

Then 

In particular, !{ 

then 

'\' V~. 
L....f? < 00. 

n 

s.- ES. 
--"---::---""" -+ 0 (P-a .s. ). 

b. 

Sn- ESn 
----+ 0 (P-a.s.). 

n 

F or the proof of this, and of Theorem 2 below, we need two Iemmas. 

(3) 

(4) 

(5) 

(6) 
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Lemma 1 (Toeplitz). Let {an} be a sequence of nonnegative numbers, bn = 
L7= 1 a;, bn > 0 for n ~ 1, and bn j oo, n --+ oo. Let {xn} be a sequence of 
numbers converging to x. Then 

In particular, ifan = 1 then 

XI+ ... + Xn 
------+X. 

n 

(7) 

(8) 

PROOF. Let t: > 0 and Iet n0 = n0 ( t:) be such that I xn - x I :s; t:/2 for all n ~ n0 . 

Choose n 1 > n0 so that 

Then, for n > n1, 

This completes the proof of the Iemma. 

Lemma 2 (Kronecker). Let {bn} be a sequence of positive increasing numbers, 
bn j oo, n --+ oo, and Iet {xn} be a sequence of numbers suchthat L xn converges. 
Then 

1 n 

- L: bixi--+ 0, 
bn j= I 

n --+ oo. (9) 

In particular, ifbn = n, Xn = Ynfn and L (Ynfn) convergp, then 

Y1 + · · · + Yn c_::_ ____ --+ 0, n --+ oo. (10) 
n 

PROOF. Let b0 = 0, S0 = 0, Sn = LJ= 1 xi. Then (by Summation by parts) 
n n n 

L: bjxj = L b/Sj- sj-1) = bnsn - boSo - L sj-l(bj- bi-1) 
j=l j=l j=l 
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and therefore 

since, if Sn--+ x, then by Toeplitz's Iemma, 

This establishes the Iemma. 

PROOF OF THEOREM 1. Since 
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a sufficient condition for ( 4) is, by Kronecker's Iemma, that the series 
L [(~k - E~k)/bk] converges (P-a.s.). Butthisseries does converge by (3) of 
Theorem 1, §2. 

This completes the proof of the theorem. 

EXAMPLE 1. Let ~ 1, ~ 2 , ••• be a sequence of independent Bernoulli random 
variables with P(~n=1)=P(~n=-1)=t. Then, since 2:[1/(nlog2 n)]<oo, 
we have 

Jn Sn -+ 0 (P-a.s.). 
n log n 

(11) 

3. In the case when the variables ~ 1, ~ 2 , ••• are not only independent but 
also identically distributed, we can obtain a strong law of !arge numbers 
without requiring (as in Theorem 2) the existence of the second moment, 
provided that the first absolute moment exists. 

Theorem 3 (Kolmogorov). Let ~ 1 , ~2 , ••• be a sequence of independent 
identically distributed random variables with E 1.;' 1 I < oo. Then 

where m = E~ 1 . 

Sn 
- --+ m (P-a.s.) 
n 

We need the following Iemma. 

Lemma 3. Let~ be a nonnegative random variable. Then 
00 00 

L P(.;' ~ n):::;; E~ :::;; 1 + L P(~ ~ n). 
n;1 n; 1 

(12) 

(13) 
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The proof consists of the following chain of inequalities: 

00 00 

I P(~ :::: n) = I I P(k s ~ < k + 1) 
n=1 n= 1 k;>:n 

00 00 

= I kP(k s ~ < k + 1) = I E[kl(k s ~ < k + 1)] 
k=1 k=O 

00 

s I E[O(k s ~ < k + 1)] 
k=O 

00 

= E~ s I E[(k + l)I(k s ~ < k + 1)] 
k=O 

00 

= I (k + l)P(k s ~ < k + 1) 
k=O 

00 00 00 

= I P(~ ;::; n) + I P(k s ~ < k + 1) = I P(~ ;::; n) + 1. 
n=1 k=O n=1 

PROOF OF THEOREM 3. By Lemma 3 and the Borei-Cantelli Iemma, 

El~1l < oo<o>IP{I~ 1 1:::: n} < oo 

<o> I P{l~nl;::; n} < 00 <o> P{l~nl;::; n i.o.} = 0. 

Hence I~" I < n, except for a finite number of n, with probability I. 
Let us put 

~ _ {~"' l~nl < n, 
n - 0, I ~n I ;::; n, 

and suppose that E~n = 0, n ;::; 1. Then (~ 1 + · · · + ~n)/n -+ 0 (P-a.s.), if 
and only if (~ 1 + · · · + ~" )/n -+ 0 (P-a.s.). Note that in general E~" =F 0 but 

E~n = E~n l(l~nl < n) = E~1/(l~1l < n)-+ E~l = 0. 

Hence by Toeplitz's Iemma 

n-+ oo, 

and consequently (~ 1 + · · · + ~n)/n -+ 0 (P-a.s.), if and only if 

(~1 - E~1) + · · · + (~n- E~n) 0 
-+, n-+ oo (P-a.s.), n-+ oo. (14) 

n 

Write ~" = ~"- E~n· By Kronecker's Iemma, (14) will be established if 
L: (~n/n) converges (P-a.s.). In turn, by Theorem 1 of §2, this will follow if we 

show that, when EI~ 1 I < oo, the series I (V ~n/n 2 ) converges. 
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Wehave 

00 00 1 
= I E[eii<k- 1 ~ 1e11 < k)J · I 2 

k;1 n;kn 

00 

~ 2 I E[le11I(k- 1 ~ 1e11 < k)J = 2E1e11 < oo. 
k;1 

This completes the proof of the theorem. 

Remark 1. The theorem admits a converse in the following sense. Let 
e1, e2, ... be a sequence of independent identically distributed random 
variables such that 

e1 + ... + en 
--"------+ C, 

n 

with probability 1, where Cis a(finite)constant. Then EI e11 < oo and C = Ee 1. 
In fact, if Sn/n-+ C (P-a.s.) then 

en = Sn - (n - 1) Sn-1 -+ 0 (P-a.s.) 
n n n n-1 

and therefore P( I en I > n i.o.) = 0. By the Borei-Cantelli Iemma, 

L P(le11 > n) < 00, 

and by Lemma 3 we have E 1e1 I < oo. Then it follows from the theorem that 
c = Eel. 

Consequently for independent identically distributed random variables 
the condition EIe 1 1 < oo is necessary and sufficient for the convergence (with 
probability 1) of the ratio Sn/n to a finite Iimit. 

Remark 2. If the expectation m = E e 1 exists but is not necessarily finite, the 
conclusion (10) ofthe theorem remains valid. 

In fact, Iet, for example, Ee! < oo and Eei = oo. With C > 0, put 

n 

s; = I eJ<ei ~ c). 
i= I 
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Then (P-a.s.). 

But as C -+ oo, 

therefore Sn/n-+ +oo (P-a.s.). 

4. Let us give some applications ofthe strong law oflarge numbers. 

EXAMPLE 1 (Application to number theory). Let Q = [0, 1), Iet 11 be the 
algebra of Borel subsets of n and Iet P be Lebesgue measure on [0, 1 ). Con­
sider the binary expansions w = 0. w 1 w 2 ••. of numbers wEn (with infinitely 
manyO's)and definerandom variables~ 1 (w), ~iw), ... byputting~"(w) = w". 
Since, for all no ~ 1 and all x 1, ... , x" taking the values 0 or 1, 

the P-measure of this set is 1/2". lt follows that ~ 1, ~", ••. is a sequence of 
independent identically distributed random variables with 

P( ~I = 0) = P( ~I = I) = t. 
Hence, by the strong law of large numbers, we have the following result of 
Borel: almost every number in [0, 1) is normal, in thesensethat with probability 
1 the proportion of zeros and ones in its binary expansion tends tot, i.e., 

1 n 

- L l(~k = 1)-+ t (P-a.s.). 
n k= 1 

ExAMPLE 2 (The Monte Carlo method). Let f(x) be a continuous function 
defined on [0, 1], with values on [0, 1]. The following idea is the foundation 
of the statistical method of calculating n f(x) dx (the "Monte Carlo 
method "). 

Let ~ 1 , 1] 1, ~2 , rJ 2 , ••• be a sequence of independent random variables, 
uniformly distributed on [0, 1]. Put 

lt is clear that 

{ 1 if f(~i) > rJi, 
Pi = 0 if f(~i) < 1'/i· 
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By the strong law of large numbers (Theorem 3) 

1 n J1 ;:; J/i--+ 
0 

f(x) dx (P-a.s.). 

Consequently we can approximate an integral nf(x)dx by taking a 
simulation consisting of a pair of random variables (~i, rJi), i 2 1, and then 
calculating Pi and (1/n) D= 1 Pi· 

5. PROBLEMS 

I. Show that E~2 < oo if and only if I:'= 1 nP( I~ I > n) < oo. 

2. Supposing that ~ 1, ~ 2 , ... are independent and identically distributed, show that if 
EI~ 1 1" < oo for some !Y., 0 < !Y. < I, then Sn/n 11"--+ 0 (P-a.s.), and if EI~ 1 IP < oo for 
some ß, I ~ ß < 2, then (Sn - nE~ 1)/n11P--+ 0 (P-a.s.). 

3. Let ~ 1, ~ 2 , ••. be a sequence of independent identically distributed random variables 
and Iet E I~ 1 I = oo. Show that 

-~sn I li:n -; - an = oo (P-a.s.) 

for every sequence of constants {an}. 

4. Show that a rational number on [0, I) is never normal (in the sense of Example I, 
Subsection 4). 

§4. Law of the Iterated Logarithm 

1. Let ~ 1, ~ 2 , ••• be a sequence of independent Bernoulli random variables 
with P(~n = 1) = P(~n = -1) = !; Iet Sn= ~ 1 + · · · + ~n· 1t follows from 
the proof of Theorem 2, §1, that 

1-:-- Sn 
1m Jn = +oo, 1. Sn 

1m Jn = -oo, 

with probability 1. On the other hand, by (3.11), 

Jnsn --+ 0 (P-a.s.). 
n log n 

Let us compare these results. 

(1) 

(2) 

lt follows from (1) that with probability 1 the paths of (Sn)n> 1 intersect 

the "curves" ±eJn infinitely often for any given e; but at the s;me time (2) 
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shows that they only finitely often leave the region bounded by the curves 

± <-Jn log n. These two results yield useful information on the amplitude 

of the oscillations of the symmetric random walk (S11 ) 11 ;o, 1. The law of the 
iterated logarithm, which we present below, improves this picture of the 
amplitude of the oscillations of (S.). ;o, 1 . 

Let us introduce the following definition. We call a function cp* = cp*(n), 
n ;;::: 1, upper (for (S11 ) 11 ;o, 1) if, with probability 1, s. ~ cp*(n) for all n from 
n = n0(w) on. 

Wecallafunctioncp* = cp*(n),n;;::: 1,/ower(for(S11 ) 11 ;o, 1)if,withprobability 
1, s. > cp*(n) for infinitely many n. 

Using these definitions, and appealing to (1) and (2), we can say that every 

function cp* = <-Jn log n, <- > 0, is upper, whereas cp* = <-Jn is lower, <- > 0. 
Let cp = cp(n) be a function and cpi = (1 + <-)cp, cp*' = (1 - <-)cp, where 

<- > 0. Then it is easily seen that 

{ -. Sn } { . [ Sm J } hm -(n)~ 1 = hm sup -- ~ 1 
cp n m?." cp(m) 

<o>{ sup Sm)~ 1 + cforevery<- > O,fromsome n 1(<-)on} 
m ;o,n 1(e) cp(m 

<o> {S"' ~ (1 + <-)cp(m) for every <- > 0, from some n1(<-) on}. 

(3) 

In the same way, 

<o>{ sup S(m) ~ 1 + <-forevery<- > O,fromsomen 1(<-)on} 
m<e:n2(e) C{J /11 

{Sm ;;::: (1 - <-)cp(m) for every <- > 0 and for infinitely <o> 
many m !arger than some n3(<-) ;;::: n2(<-)}. (4) 

lt follows from (3) and (4) that in order to verify that each function cpi = 
(1 + <-)cp, <- > 0, is upper, we have to show that 

{~ s. } 
P hm cp(n) ~ 1 = 1. (5) 

But to show that cp*' = (1 - <-)cp, <- > 0, is lower, we have to show that 

(6) 



§4. Law of the Iterated Logarithm 397 

2. Theorem 1 (Law ofthe lterated Logarithm). Let~ 1 , ~ 2 , ••• be a sequence of 
independent identically distributed random variables with E~; = 0 and E~? = 

a 2 > 0. Then 

{- s. } 
P !im t/J(n) = 1 = 1, (7) 

where 

t/J(n) = J2a 2n log log n. (8) 

For uniformly bounded random variables, the law ofthe iterated logarithm 
was established by Khinchin (1924 ). In 1929 Kolmogorov generalized this 
result to a wide dass of independent variables. Under the conditions of 
Theorem 1, the law of the iterated logarithm was established by Hartman 
and Wintner (1941 ). 

Since the proof of Theorem 1 is rather complicated, we shall confine 
ourselves to the special case when the random variables ~. are normal, 
~. "' JV(O, 1), n ;?: 1. 

Webegin by proving two auxiliary results. 

Lemma 1. Let~ 1, ... , ~. be independent random variables that are symmetrically 
distributed (P(~k E B) = P(- ~k E B) for every BE f14 (R), k ::;; n). Then for 
every real number a 

P( max Sk > a) ::;; 2P(S. > a). 
l,;;k,;;n 

(9) 

PROOF. Let A = {max1,;;k,;;n sk > a}, Ak = {S;::;; a, i::;; k- 1; sk > a} and 
B = {S. > a}. Since s. > a Oll Ak (because sk::;; s.), we have 

P(B n Ak) ;?: P(Ak n {S. ;?: Sd) = P(Ak)P(S. ;?: Sk) 

= P(Ak)P(~k+ 1 + · · · + ~. ;?: 0). 

By the symmetry of the distributions of the random variables ~ 1, ... , ~., 

we have 

P(~k+ I + ... + ~. > 0) = P(~k+ 1 + ... + ~. < 0). 

Hence P(~k+ 1 + · · · + ~. > 0);?: !, and therefore 

n 1 n 1 
P(B) ;?: k~1 P(Ak n B) ;?: 2: k~1 P(Ak) = l P(A), 

which establishes (9). 

Lemma 2. Let s. "' JV (0, a 2(n)), a 2(n) i oo, and Iet a(n), n ;?: 1, satisfy 
a(n)/a(n)--+ oo, n --+ oo. Then 

P(S. > a(n))- ;.n) exp{ -ia2(n)/a 2(n)}. 
2na(n) 

(10) 
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The proof follows from the asymptotic formula 

1 Joo -yz/2 d 1 -xz/2 -- e y---e 
fo x fox ' 

X-+ 00, 

since Snfa(n) "' %(0, 1). 

PROOF OF THEOREM 1 (for ~i "' %(0, 1)). 
Let us first establish (5). Let 6 > 0, A. = 1 + 6, nk = A.\ where k ;;::: k0, and 

k0 is chosen so that In In k0 is defined. W e also define 

(11) 

and put 

A = {Ak i.o.} = {Sn> A.tjl(n) for infinitely many n}. 

In accordance with (3), we can establish (5) by showing that P(A) = 0. 
Let us show that L P(Ak) < oo. Then P(A) = 0 by the Borel-Cantelli 

Iemma. 
From (11), (9), and (10) we find that 

P(Ak) ::; P{Sn > A.tjl(nk) for some n E (nb nk+ 1)} 

::; P{Sn > A.tjl(nk) for some n ::; nk+ d 

::; 2P{Snk+1 > A.t/J(nk)} "'~t<nk) exp{ -tA.2[t/J(nk)/A]2} 

::; C1 exp( -A.ln ln A_k)::; Ce-).lnk = C2 k-;., 

where C 1 and C 2 are constants. But L::;" 1 k-;. < oo, and therefore 

L P(Ak) < 00. 

Consequently (5) is established. 
We turn now to the proof of ( 6). In accordance with ( 4) we must show that, 

with A. = 1 - 6, 6 > 0, we have with probability 1 that Sn ;;::: A.tjl(n) for in­
finitely many n. 

Let us apply (5), which we just proved, to the sequence (- Sn)n;" 1. Then we 
find that for all n, with finitely many exceptions, -Sn::; 2tjl(n) (P-a.s.). 
Consequently if nk = Nk, N > 1, then for sufficiently large k, either 

Snk- 1 ;;::: - 2t/J(nk- I) 

or 

(12) 

where Y,. = snk - snk-1. 
Hence if we show that for infinitely many k 

Y,. > A.tjl(nk) + 2tjl(nk- 1), (13) 
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this and (12) show that (P-a.s.) Snk > ).lj;(nk) for infinitely many k. Take some 
XE()., 1). Then there is an N > 1 suchthat for all k 

).'[2(Nk - Nk-t) In In NkJI 12 > ).(2Nk In In Nk) 112 

+ 2(2Nk-t In In Nk- 1 ) 112 = ).lj;(Nk) + 21/J(Nk-t). 

lt is now enough to show that 

(14) 

for infinitely many k. Evidently Y" - JV(O, Nk - Nk- 1 ). Therefore, by 
Lemma2, 

P{Y. > ).'[2(Nk _ Nk-t) In In Nk]t/2} _ 1 e-O.'J2tntnNk 

k foX(2 In In Nk) 112 

> Ct k-<i-'>2 > ~ 
- (In k) 112 - k In k · 

Since L (1/k In k) = oo, it follows from the second part ofthe Borel-Cantelli 
Iemma that, with probability 1, inequality (14) is satisfied for infinitely many 
k, so that (6) is established. 

This completes the proof of the theorem. 

Remark 1. Applying (7) to the random variables (- S")" ~ 1, we find that 

1. s. 
1m <p(n) = -1. (15) 

It follows from (7) and (15) that the law of the iterated logarithm can be put 
in the form 

(16) 

Remark 2. The law of the iterated logarithm says that for every e > 0 each 
function I/li = (1 + e)rf; is upper, and rf;., = (1 - e)rf; is lower. 

The conclusion (7) is also equivalent to the statement that, for each e > 0, 

3. PROBLEMS 

P{IS.I ~ (1- e)rf;(n) i.o.} = 1, 

P{ISnl ~ (1 + e)rf;(n) i.o.} = 0. 

1. Let ~ 1, ~ 2 , ••. be a sequence of independent random variables with ~" - JV(O, 1 ). 
Show that 

P{lim ~ = 1} = 1. 
v' 21n n 
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2. Let~~> ~ 2 , ••• be a sequence of independent random variables, distributed according 
to Poisson's Iaw with parameter A. > 0. Show that (independently of A.) 

P hm = 1 = 1. {~~"In In n } 
In n 

3. Let ~ 1 , ~ 2 , ... be a sequence of independent identically distributed random variables 

with 

0 < Ct. < 2. 

Show that 

p Um -" = eil• = 1. { I S 11/(lnlnn) } 

nll• 

4. Establish the following generalization of (9). Let ~ 1, ••• , ~" be independent random 
variables. Levy's inequality 

PL~::. [Sk + Jl(S. - Sk)] > a} :5: 2P(S. > a), S0 = 0, 

holds for every real a, where Jl(~) is the median of ~. i.e. a constant suchthat 

§5. Rapidity of Convergence in the Strong Law 
of Large Nurobersand in the Probabilities 
of Large Deviations 

1. By the results of §6, Chapter I, we have the following estimate for the 
Bernoulli scheme: 

p {I; _ p I ~ 6} ~ 2e-2n•2 (1) 

(see (42), subsection 7, §6, Chapter 1). From this, of course, there follows the 
ineq uali ties 

P{sup 'Sm- PI~ 6} ~ L P{ISm- PI~ 6} ~ 2- 2e-2n•2, (2) 
m;"n m m;"n m 1 - e 2• 

which provide an approximation of the rate of convergence to p by the 
quantity Snfn with probability 1. 

We now consider the question of the validity of formulas of the types (1) 
and (2) in some more general Situations, when Sn = ~ 1 + · · · + ~n is a sum of 
independent identically distributed random variables. 

2. Let~. ~ 1 , ~ 2 , ••• be a sequence ofindependent random variables. We say 
that a random variable satisfies Cramer's condition if there is a A. > 0 for 
which 
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cp(A.} = Ee'- 1 ~ 1 < oo (3) 

(it can be shown that this condition is equivalent to an exponential decrease 
of P(l~l > x}, x-+ oo). 

Let 

A = {A. ER: q>(A.) < oo }, (4) 

where we suppose that A contains a neighborhood of the point A. = 0, i.e., 
Cramer's condition (3) is satisfied for some A. > 0. 

On the set A the function 

1/J(A.) = ln cp(A.) (5) 

is convex (from below), and strictly convex if the random variable ~ is not 
degenerate. We also notice that 

t/1(0) = 0, t/1'(0) = m( = E~), 1/J"(A.);::: 0. 

We extend 1/J(A.) to all A. ER by setting 1/J(A.) = oo for A. ~ A. 
W e define the function 

H(a) = sup [aA. - 1/J(A.)], aeR, (6) 
A. 

called the Cramer transform (of the distribution function F = F(x) of the 
random variable ~). The function H(a) is also convex (from below) and its 
minimum is zero, attained at A. = m. 

lf a > m, we have 

H(a) = sup [aA. - 1/J(A.)]. 
A.>O 

Then 

Pg;::: a} ::5: inf Ee'-<~-a) = inf e-laA.-t/J(A.)] = e-H<a>. (7) 
A.>O A.>O 

Similarly, for a < m we have H(a) = sup._<o [aA.- 1/J(A.)] and 

Pg ::5: a} ::5: e-H<a>. (8) 

Consequently (compare (42}, §6, Chapter 1), 

P{l~- ml;::: 6} ::5: e-min{H(m-e),H(m+•>l. (9) 

lf ~. ~ 1 , ... ~n are independent identically distributed random variables 
that satisfy Cramer's condition (3), Sn= ~ 1 + · · · + ~"' 1/!n(A.) = ln E exp(A.Sn/n), 
1/J(A.) = ln Ee'"~. and 

Hn(a) = sup [aA. - 1/!n(A.)], (10) 
A. 

then 

Hn(a) = nH(a)( = n s~p [aA.- 1/J(A.)]) 

and the inequalities (7), {8), and (9) assume the following forms: 
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a>m, (11) 

P{; ~ a} ~ e-nH(al, a < m, (12) 

p{l; _ ml ~ e} ~ 2e-min{H(m-s),H(m+s)}·n. (13) 

Remark. Results of the type 

p{l;- ml ~ e} ~ ae-b", (14) 

where a > 0 and b > 0, indicate exponential convergence "adjusted" by the 
constants a and b. In the theory of large deviations, results are often presented 
in a somewhat different, "cruder," form: 

li~~ln P{l;- ml ~ e} < 0, (15) 

that clearly arises from (14) and refers to the "exponential" rapidity of con­
vergence, but without specifying the values of the constants a and b. 

Now we turn to the question of upper bounds for the probabilities 

which can provide definite bounds on the rapidity of convergence in the strong 
law of large numbers. 

Let us suppose that the independent identically distributed nondegenerate 
random variables e, e1o e2 , ••• satisfy Cramer's condition, i.e., q>(Ä.) = Ee'-1~1 < 
oo for some Ä. > 0. 

We fix n ~ 1 and set 

K = inf{k ~ n:; > a}, 
tak:ing K = oo if Sk/k < a for k ~ n. 

In addition, let a and Ä. > 0 satisfy 

Ä.a - In q>(Ä.) ~ 0. 

Then 

P Ü~~ ; > a} = P LV" {; > a}} 
= P{; > a, K < oo} = P{e'-5• > e-.a"', K < oo} 

(16) 
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= P{eA.S.-rclnq>(Ä) > e"(Aa-lnq>(A))," < 00} 

~ P{eA.S.-rclnq>(Ä) > en(Aa-lnq>(A))," < oo} 

~ p {sup eASk-klnq>(A) ~ en(Aa-lnq>(Ä)}· 

k;;,n 

To take the final step, we notice that the sequence of random variables 

k ~ 1, 

403 

(17) 

with respect to the ftow of 0'-algebras ~ = a{el, ... , ek}, k ~ 1, forms a 
martingale. (For more details, see Chapter VII and, in particular, Example 1 
in §1). Then it follows from inequality (8) in §3, Chapter VII, that 

p {sup eASk-klnq>(A) ~ en(Aa-lnq>(Ä))} ~ e-n(Aa-lnq>(A)), 

k;;,n 

and consequently, (by (16)) we obtain the inequality 

p {sup sk > a} ~ e-n(Aa-lnq>(Ä)). 

k;;,n k 
(18) 

Let a > m. Since the function f(.A) = a.A - In q>(.A) has the properties f(O) = 0, 
f'(O) > 0, there is a .A > 0 for which (16) is satisfied, and consequently, we 
obtain from (18) that if a > m we have 

Similarly, if a < m, we have 

p {sup sk < a} ~ e-nsup><o[Aa-lnq>(Ä)] = e-nH(a). 

k;;,n k 

From (19) and (20), we obtain 

ph~~ I;-ml > e} ~ 2e-min[H(m-•),H(m+e)]·n. 

(19) 

(20) 

(21) 

Remark. Combining the right-hand sides of the inequalities (11) and (19) 
leads us to suspect that this situation is not random. In fact, this expectation 
is concealed in the fact that the sequences (Skfk)ns.ks.N form, for every n ~ N, 
reversed martingales (see Problem 6 in §1, Chapter VII, and Example 4 in §11, 
Chapter 1). 

2. PROBLEMS 

1. Carry out the proof of inequalities (8) and (20). 

2. Investigate the properties of H(a). 



CHAPTER V 

Stationary (Strict Sense) Random 
Sequences and Ergodie Theory 

§ 1. Stationary (Strict Sense) Random Sequences. 
Measure-Preserving Transformations 

1. Let (0, fF, P) be a probability space and ~ = (~ 1 , ~ 2 , .•• ) a sequence of 
random variables or, as we say, a random sequence. Let Ok ~ denote the sequence 
(~k+l> ~k+2• ••• ). 

Definition 1. A random sequence ~ is stationary (in the strict sense) if the 
probability distributions of Ok ~ and ~ are the same for every k ~ 1: 

Be34(R 00 ). 

The simplest example is a sequence ~ = (~t> ~2 , ••• ) of independent 
identically distributed random variables. Starting from such a sequence, we 
can construct a broad class ofstationary sequences '1 = {17 1, 172 , ••• ) bychoos­
ing any Bore] function g(x1, ... , x") and setting '1k = g(~k• ~k+ 1• ... , ~k+ 1). 

If ~ = (~t> ~2 , ••• ) is a sequence of independent identically distributed 
random variables with EI~ t1 < oo and E ~ 1 = m, the law of ]arge numbers 
teils us that, with probability 1, 

~1 + ·"" + ~n 
~m, n~ oo. 

n 

In 1931 Birkhoff obtained a remarkable generalization oftbis fact for the case 
of stationary sequences. The present chapter consists mainly of a proof of 
Birkhoff's theorem. 

The following presentation is based on the idea of measure-preserving 
transformations, something that brings us in contact with an interesting 
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branch of analysis (ergodic theory), and at the same time shows the con­
nection between this theory and stationary random proceesses. 

Let (Q, ~. P) be a probability space. 

Definition 2. A transformation T of Q into Q is measurable if, for every A E ~. 

y- 1A = {w: TweA} E~. 

Definition 3. A measurable transformation T is a measure-preserving trans­
jormation (or morphism) if, for every A E F, 

P(T- 1 A) = P(A). 

Let T be a measure-preserving transformation, T" its nth iterate, and e 1 = 
e1(w) a random variable. Put ek(w) = e1(T"- 1w), n ~ 2, and consider the 
sequence e = (e 1, e2 , .•• ). We claim that this sequence is stationary. 

In fact, Iet A = {w:eeB} and A1 = {w:01eeB}, where Be91(R 00 ). 

Since A = {w: (e 1 (w), e 1 (Tw), ... ) E B}, and A 1 = {w: (e 1(Tw), et (T 2w), .. . ) 
E B}, we have w E At ifand only ifeither Tw E A or At = y-t A. But P(T-t A) 
= P(A), and therefore P(At) = P(A). Similarly P(Ak) = P(A) for every 
Ak = {w: oke e B}, k ~ 2. 

Thus we can use measure-preserving transformations to construct 
stationary (strict sense) random variables. 

In a certain sense, there is a converse result: for every stationary sequence e considered on (Q, ~. P) we can construct a new probability space (fi, §, P), 
a random variable ~ 1 (w) and a measure-preserving transformation f, 
such that the distribution of ~ = {~t(w), ~t(fw), ... } coincides with the 
distribution of e. 

In fact, take n to be the coordinate space R CO and put ff = BI(R 00 ), 

P = P~, where P~(B) = P{w: eeB}, BeBI(Rao). The action of f on Ö is 
given by 

If w = (xt, x2 , ••• ), put 

~t(ro) = xt, ~"(w) = ~t(f"- 1 w), n ~ 2. 

Now Iet A = {w: (x 1, .•. , xk) E B}, BE BI(Rk), and 

f- 1A = {w:(x2 , ••• ,xk+t)EB}. 

Then the property of being stationary means that 

P(A) = P{w:<e~ •... ,ek)eB} = P{w:<ez, ... ,ek+l)eB} = P(f- 1A), 

i.e. T is a measure-preserving transformation. Since P { w: ( ~ 1 , ••• , ~k) e B} = 
P { w: ( e 1> ••• , ek) E B} for every k, it follows that e and ~ have the same 
distribu tion. 

Here are some examples of measure-preserving transformations. 
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EXAMPLE 1. Let Q = {w1, ••. , wn} consist ofn points (a finite number), n ~ 2, 
Iet .fF be the collection ofits subsets, and Iet Tw; = w;+ 1, 1 ::;; i::;; n - 1, and 
Tw" = w 1. If P (w;) = 1/n, the transformation T is measure-preserving. 

EXAMPLE 2. If Q = [0, 1), .fF = ß61([0, 1)), P is Lebesgue measure, A. E [0, 1), 
then Tx = (x + A.) mod 1 and T = 2x mod 1 are both measure-preserving 
transformations. 

2. Let us pause to consider the physical hypotheses that led to the considera­
tion of measure-preserving transformations. 

Let us suppose that Q is the phase space of a system that evolves (in discrete 
time) according to a given law ofmotion. If w is the state at instant n = 1, then 
Tnw, where T is the translation operator induced by the given law of motion, 
is the state attained by the system after n steps. Moreover, if A is some set of 
states w then T- 1 A = { w: T w E A} is, by definition, the set of states w that 
Iead to A in one step. Therefore ifwe interpret Q as an incompressible fluid, the 
condition P(T- 1 A) = P(A) can be thought of as the rather natural condition 
of conservation of volume. (For the classical conservative Hamiltonian sys­
tems, Liouville's theorem asserts that the corresponding transformation T 
preserves Lebesgue measure.) 

3. One of the earliest results on measure-preserving transformations was 
Poincare's recurrence theorem (1912). 

Theorem 1. Let (Q, .fi', P) be a probability space, Iet T be a measure-preserving 
transjormation, and Iet A E F. Then, for almost every point w E A, we have 
Tnw E Afor in.finitely many n ~ 1. 

PROOF. Let C = {w E A: rnw ~ A, for all n ~ 1}. Since C n y-nc = 0 for 
all n ~ 1, we have y-mc n y-<m+n)c = y-m(C n y-nc) = 0. Therefore 
the sequence {T-nC} consists of disjoint sets of equal measure. Therefore 
L:'=o P(C) = L:'=o P(T-nC)::;; P(Q) = 1 and consequently P(C) = 0. 
Therefore, for almost every point w E A, for at least one n ~ 1, we have 
Tnw E A. 1t follows that Tnw E A for infinitely many n. 

Let us apply the preceding result to Tk, k ~ 1. Then for every w E A\N, 
where N is a set of probability zero, the union of the corresponding sets cor­
responding to the various values of k, there is an nk such that (Tktkw E A. 
lt is then clear that rnw E A for infinitely many n. This completes the proof of 
the theorem. 

Corollary. Let ~( w) ~ 0. Then 

00 

L ~(Tkw) = oo (P-a.s.) 
k=O 

on the set {w: ~(w) > 0}. 
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In fact, Iet An = {w: e(w);;::: 1/n}. Then, according to the theorem, 
Lk=o e(Tkw) = 00 (P-a.s.) on An, and the required result follows by letting 
n --+ oo. 

Remark. The theorem remains valid if we replace the probability measure P 
by any finite measure 11 with !1(0.) < oo. 

4. PROBLEMS 

1. Let T be a measure-preserving transformation and ~ = ~( w) a random variable whose 
expectation E~(w) exists. Show that E~(w) = E~(Tw). 

2. Show that the transformations in Examples 1 and 2 are measure-preserving. 

3. Let n = [0, 1), F = .'?4([0, 1)) and Iet P be a measure whose distribution function is 
continuous. Show that the transformations Tx = A.x, 0 < A. < 1, and Tx = x 2 arenot 
measure-preserving. 

§2. Ergodicity and Mixing 

1. In the present section T denotes a measure-preserving transformation on 
the probability space (0., !/', P). 

Definition 1. A set A E §' is invariant if T- 1 A = A. A set A E !/' is almost 
invariant if A and T- 1 A differ only by a set of measure zero, i.e. P(A /::,. T- 1 A) 

= 0. 

lt is easily verified that the classes J and J* of invariant or almost in­
variant sets, respectively, are a-algebras. 

Definition 2. A measure-preserving transformation T is ergodie (or metrically 
transitive) if every invariant set A has measure either zero or one. 

Definition 3. A random variable e = e(w) is invariant (or almost invariant) if 
e(w) = ~(Tw) for all w E 0. (or for almost all w E 0.). 

The following Iemma establishes a connection between invariant and 
almost invariant sets. 

Lemma 1. If A is almost invariant, there is an invariant set B such that 
P(A /::,. B) = 0. 

PROOF. Let B = lim y-nA. Then T- 1B = lim y-<n+ 1>A = B, i.e. BEJ. It is 
easily seen that A /:::, B s Uk'=o (T-kA /:::, y-<k+ 1>A). But 

P(T-k A /:::, y-<k+ 1>A) = P(A /:::, T- 1 A) = 0. 

Hence P(A /::,. B) = 0. 
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Lemma 2. A transformation T is ergodie if and only if every almost invariant set 
has measure zero or one. 

PROOF. Let A E J*; then according to Lemma 1 there is an invariant set B 
such that P(A !:::. B) = 0. But T is ergodie and therefore P(B) = 0 or 1. 
Therefore P(A) = 0 or 1. The converse is evident, since J s;; J*. This com­
pletes the proof of the Iemma. 

Theorem 1. Let T be a measure-preserving transformation. Then the following 
conditions are · equivalent: 

(1) T is ergodic; 
(2) every almost invariant random variable is (P-a.s.) constant; 
(3) every invariant random variable is (P-a.s.) constant. 

PRooF. (1) ~ (2). Let T be ergodie and ~ almost invariant, i.e. (P-a.s.) ~(w) = 
~(Tw). Then for every ceR we have Ac= {w: ~(w):::;; c} eJ*, and then 
P(A.) = 0 or 1 by Lemma 2. Let C = sup{c: P(Ac) = 0}. Since Ac j Q as 
c j oo and Ac ! 0 as c ! - oo, we have I CI < oo. Then 

P{w: ~(w) < C} = Pt9
1 

{~(w):::;; C- ~}} = 0 

and similarly P{w: ~(w) > C} = 0. Consequently P{w: ~(w) = C} = 1. 
(2) = (3). Evident. 
(3) = (1). Let A E J; then JA is an invariant random variableand therefore, 

(P-a.s.), JA = 0 or JA = 1, whence P(A) = 0 or 1, 

Remark. The conclusion of the theorem remains valid in the case when 
"random variable" is replaced by "bounded-random variable". 

Weillustrate the theorem with the following example. 

EXAMPLE. Let Q = [0, 1), ff = 81([0, 1)), Iet P be Lebesgue measure and Iet 
Tw = (w + A.) mod 1. Let us show that T is ergodie if and only if A. is ir­
rational. 

Let~ = ~(w) be a random variable with E~2(w) < oo. Then we know 1hat 
the Fourier series L:'= _ 00 c"e2"inro of ~(w) converges in the mean square sense, 
L I cn 12 < oo, and, because T is a measure-preserving transformation 
(Example 2, §1), we have (Problem 1, §1) that for the random variable~ 

cnE~(w)e2xin~(W) = E~(Tw)e2xinTw = e2xin.I.E~(Tw)e2xinro 

= e2xin.I.E~(w)e2"inw = c"e2xin.l.. 

So c"(l - e2"in.l.) = 0. By hypothesis, A. is irrational and therefore e2"in.l. =I= 1 
for all n =I= 0. Therefore c" = 0, n =1= 0, ~(w) = c0 (P-a.s.), and T is ergodie by 
Theorem 1. 
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On the other band, Iet A. be rational, i.e. A. = k/m, where k and m are 
integers. Consider the set 

2m-2 { k k + 1} 
A = U w:-2 :::; w < -2-. 

k=o m m 

1t isclearthat thisset is invariant; but P(A) = t. Consequently Tisnotergodic. 

2. Definition 4. A measure-preserving transformation is mixing (or has the 
mixing property) if, for all A and BE F, 

!im P(A n T-"B) = P(A)P(B). (1) 

The following theorem establishes a connection between ergodicity and 
mixing. 

Theorem 2. Every mixing transformation T is ergodic. 

PRooF. Let A E ~. BE f Then B = T-"B, n ~ 1, and therefore 

P(A n y-nB) = P(A n B) 

for all n ~ 1. Because of (1), P(A n B) = P(A)P(B). Hence we find, when 
A = B, that P(B) = P 2(B), and consequently P(B) = 0 or 1. This completes 
the proof. 

3. PROBLEMS 

1. Show that a random variable ~ is invariant if and only if it is J -measurable. 

2. Show that a set A is almost invariant if and only if either 

or 

3. Show that the transformation considered in the example of Subsection I of the 
present section is not mixing. 

4. Show that a transformation is mixing if and only if, for all random variables ~ and '1 
with ee < oo and Ef'/ 2 < oo, 

n-> oo. 

§3. Ergodie Theorems 

1. Theorem 1 (Birkhoff and Khinchin). Let T be a measure-preserving trans­
formation and ~ = ~(w) a random variable with EI~ I < oo. Then (P-a.s.) 

1 n-1 

!im- L ~(Tkw) = E(~lß"). 
n n k=O 

(1) 
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lf also T is ergodie then (P-a.s.) 

1 n-1 

lim- L ~(Tkw) = E~. 
n n k=O 

(2) 

The proof given below is based on the following proposition, whose simple 
proof was given by A. Garsia (1965). 

Lemma (Maximal Ergodie Theorem). Let T be a measure-preserving trans­
formation, let ~ be a random variable with E I~ I < oo, and let 

Sk(w) = ~(w) + ~(Tw) + · · · + ~(Tk- 1 w), 

Mk(w) = max{O, S1(w), ... , Sk(w)}. 

Then 

for every n ~ 1. 

PRooF.Ifn ~ k,wehaveM"(Tw) ~ Sk(Tw)andtherefore~(w) + Mn(Tw) ~ 
~(w) + Sk(Tw) = Sk+ 1(w). Since it is evident that ~(w) ~ S1(w)- M"(Tw), 
we have 

Therefore 

E[~(w)/1Mn>Ol(w)] ~ E(max(S1(w), ... , Sn(w))- Mn(Tw)), 

But max(S1, ••• , Sn) =Mn on the set {Mn> 0}. Consequently, 

E[~(w)/{Mn>O}(w)] ~ E{(Mn(w) - Mn(Tw))/{Mn(ro)>O}} 
~ E{Mn(w)- Mn(Tw)} = 0, 

since if T is a measure-preserving transformation we have EM"(w) = 
EMn(Tw) (Problem 1, §1). 

This completes the proof of the Iemma. 

PRooF OF THE THEOREM. Let us suppose that E(~l..f) = O(otherwise replace 
~ by ~- E(~IJ)). 

Let ;; = Ilm(S,jn) and '1 = lim(S,jn). lt will be enough to establish that 
(P-a.s.) -

o~!l~if~O. 

Considerthe random variable i7 = jf(w). Since jf(w) = if(Tw), the variable i7 is 
invariant and consequently, for every e > 0, the set A. = {jf(w) > e} is also 
invariant. Let us introduce the new random variable 

~*(w) = (~(w) - e)IA (w), 

and put 

s:(w) = ~*(w) + · · · + ~*(Tk- 1w), M:(w) = max(O, St, ... , S:). 
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Then, by the Iemma, 

E[~*J(M~>O}] ~ 0 

for every n ~ 1. But as n--+ oo, 

{M: > 0} = { max St > o} i {supSt> o} = {sup Sf > o} 
l:Sk:Sn k;<:l k;<:l 

= {sup ~k > e} n A, = A,, 
k;<: 1 

411 

where the last equation follows because supk;<: 1(S:/k) ~ ij, and A, = 
{w: ij > e}. 

Moreover, EI~* I ::; EI~ I + e. Hence, by the dominated convergence 
theorem, 

Thus 

0::; E[~*IAJ = E[(~- e)IAJ = E[OAJ - eP(A,) 

= E [EW ß')J AJ - eP(A,) = - eP(A,), 

so that P(A,) = 0 and therefore P(ij ::; 0) = 1. 
Similarly, ifwe consider -~(w) instead of ~(w), we find that 

-. ( s.) 1. s. hm - - = - 1m - = - '1 
n n -

and P(- '1 ::; 0) = 1, i.e. P(IJ ~ 0) = 1. Therefore 0 ::; '1 ::; ij ::; 0 (P-a.s.) and 
the first part of the theorem is established. -

To prove the second part, we observe that ~ince E( ~I ß') is an invariant 
random variable, we have EWJ) = E~ (P-a.s.) in the ergodie case. 

This completes the proof of the theorem. 

Corollary. A measure-preserving transformation T is ergodie if and only if,for 
all A and BE fi', 

lim! "i1 P(A n y-kB) = P(A)P(B). 
n n k=O 

(3) 

ToprovetheergodicityofTweuseA = BEß'in(3).ThenA n y-kB = B 
and therefore P(B) = P 2(B), i.e. P(B) = 0 or 1. Conversely, Iet T be ergodic. 
Then ifwe apply (2) to the random variable~ = Iiw), where BE fi', we find 
that (P-a.s.) 

1 n-1 

lim- L Ir-k8(w) = P(B). 
n n k=O 
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lfwe now integrate both sides over A E !Fand use the dominated convergence 
theorem, we obtain (3) as required. 

2. We now show that, under the hypotheses of Theorem 1, there is not only 
almost sure convergence in (1) and (2), but also convergence in mean. (This 
result will be used below in the proof of Theorem 3.) 

Theorem 2. Let T be a measure-preserving transjormation and Iet ~ = ~( w) be a 
random variable with EI~ I < oo. Then 

n-+ oo. (4) 

lf also T is ergodic, then 

n-+ oo. (5) 

PRooF. F or every 1: > 0 there is a bounded random variable 17( I 17( w) I ~ M) 
suchthat EI~- '71 ~ 1:. Then 

EI~ :t: ~(Tkw)- E(~ I.F) I ~EI~ :t: (~(Tkw)- 17(Tkw)) I 
(6) 

Since 1 '71 ~ M, then by the dominated convergence theorem and by using (1) 
we find that the second term on the right of (6) tends to zero as n -+ oo. The 
first and third terms are each at most 1:. Hence for sufficiently large n the left­
hand side of ( 6) is less than 2~:, so that ( 4) is proved. Finally, if T is ergodic, then 
(5) follows from (4) and the remark that E(~l/) = E~ (P-a.s.). 

This completes the proof of the theorem. 

3. We now turn to the question of the validity of the ergodie theorem for 
stationary (strict sense) random sequences ~ = (~ 1 , ~2 , ... )defined on a prob­
ability space (Q, !F, P). In general, (Q, !F, P) need not carry any measure­
preserving transformations, so that it is not possible to apply Theorem 1 
directly. However, as we observed in §1, we can construct a coordinate prob­
ability space (fi, §;, P), random variables ~ = (~1 , ~2 , ••• ), and a measure­
preserving transformation T such that ~n(w) = ~1 ('T"- 1w) and the distri­
butions of ~ and ~ are the same. Since such properties as almost sure 
convergence and convergence in the mean are defined only for proba­
bility distributions, from the convergence of (1/n) D=t ~ 1 (Tk- 1w) (P-a.s. 
andin mean) to a random variable ij it follows that (1/n) D=t ~k(w) also 
converges (P-a.s. and in mean) to a random variable '1 such that '1 ~ ij. It 
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follows from Theorem 1 that if E 1 e 1 1 < oo then = E( e 1 I.J), where .J is a 
collection of invariant sets (E is the a verage with respect to the measure P). We 
now describe the structure of 11· 

Definition 1. A set A E !Fis invariant with respect to the sequence e ifthere is a 
set BE BI(Roo) suchthat for n ~ 1 

A = {co: (en, en+ 1• •.• ) E B}. 

The collection of allsuch invariant sets is a u-algebra, denoted by .F~. 

Definition 2. A stationary sequence e is ergodie if the measure of every in­
variant set is either 0 or 1. 

Let us now show that the random variable 11 can be taken equal to E( e 1 I.F ~). 
In fact, let A e J ~. Then since 

1
1 n-1 I 

E - I ek - 11 ..... o, 
n k=1 

we have 

(7) 

Let B e91(R 00 ) be such that A = {w: (ek, ek+ 1, .•. ) E B} for all k ~ 1. Then 
since e is stationary, 

iek dP = f ek dP = f e1 dP = J e1 dP. 
A {w;(~k.~k+l····)eB} {w:(~I.~2····)eB} A 

Hence it followsfrom (7)that for all A E .F~, which implies (see §7, Chapter II) 
that 11 = E(e 1 I.F~). Here E(e 1 I.F~) = Ee1 if e is ergodic. 

Therefore we have proved the following theorem. 

Theorem 3 (Ergodic Theorem). Let e = (e~> e2 , ••• ) be a stationary (strict 
sense) random sequence with E I e 1 I < 00. Then (P-a.s., and in the mean) 

1 n 

lim- L ek(w) = E(e11.F~). 
n k=1 

If e is also an ergqdic sequence, then (P-a.s., and in the mean) 

1 n 

lim- L ek(w) = Ee1. 
n k= 1 

4. PROBLEMS 

1. Let~ = (~ 1 , ~2 , •.. ) be a Gaussian stationary sequence with E~. = 0 and covariance 
function R(n) = E~k+.~k· Show that R(n)-+ 0 is a sufficient condition for ~ to be 
ergodic. 
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2. Show that every sequence ~ = (~ 1 , ~ 2 , ••. ) of independent identically distributed 
random variables is ergodic. 

3. Show that a stationary sequence ~ is ergodie if and only if 

for every BE gjl(R), k = 1 ,2, .... 



CHAPTER VI 

Stationary (Wide Sense) Random 
Sequences. L 2- Theory 

§ 1. Spectral Representation of the 
Covariance Function 

1. According to the definition given in the preceding chapter, a random 
sequence ~ = (~t. ~2 , ... ) is stationary in the strict sense if, for every set 
BE ~(R 00)and every n ~ 1, 

P{(~1•~2, ... )EB} = P{(~n+t.~n+2, ... )EB}. (1) 

It follows, in particular, that if E~f < oo then E~n is independent of n: 

Ee" = Eel, (2) 

and the covariance cov(~n+m~n) = E(~n+m - E~n+m)(~" - E~n) depends only 
onm: 

(3) 

In the present chapter we study sequences that are stationary in the wide 
sense (and have finite second moments), namely those for which (1) is 
replaced by the (weaker) conditions (2) and (3). 

The random variables ~" are understood to be defined for n E 7L = 
{0, ± 1, ... } and tobe complex-valued. The latter assumption not only does 
not complicate the theory, but makes it more elegant. It is also clear that 
results for real random variables can easily be obtained as special cases ofthe 
corresponding results for complex random variables. 

Let H2 = H2(0., §', P) be the space of (complex) random variables 
~ = IX + iß, IX, ß ER, with E I~ 12 < oo, where I~ 12 = IX2 + ß2 • If ~ and 
rt E H2 , we put 

(~, '7) = E~i;, (4) 
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where r; = cx - iß is the complex conjugate of '1 = cx + iß and 

11~11 = (~. ~)112. (5) 

As for real random variables, the space H 2 (more precisely, the space of 
equivalence classes of random variables; compare §§ 10 and 11 of Chapter II) 
is complete under the scalar product (~, '1) and norm 11~11. In accordance with 
the terminology of functional analysis, H 2 is called the complex ( or unitary) 
Hilbert space (of random variables considered on the probability space 
(0, !F, P)). 

lf ~. '1 E H 2 their covariance is 

cov(~, '1) = E(~ - E~)('l - E"). 

lt follows from (4) and (6) that ifE~ = E" = 0 then 

cov(~, '1) = (~, Yf). 

(6) 

(7) 

Definition. A sequence of complex random variables ~ = (~n)nez with 
EI ~n 12 < oo, n E Z, is stationary (in the wide sense) if, for all n E Z, 

E~n = E~o• 
cov(~k+n• ~k) = cov(~n• ~0), keZ. (8) 

As a matter of convenience, weshall always suppose that E~0 = 0. This 
involves no loss of generality, but does make it possible (by (7)) to identify the 
covariance with the scalar product and hence to apply the methods and results 
of the theory of Hilbert spaces. 

Let us write 

R(n) = cov(~"' ~0), 

and (assuming R(O) = EI ~0 12 =F 0) 

R(n) 
p(n) = R(O)' 

nEZ, (9) 

nEZ. (10) 

We call R(n) the covariancefunction, and p(n), the correlationfunction, ofthe 
sequence ~ (assumed stationary in the wide sense). 

lt follows immediately from (9) that R(n) is nonnegative-definite, i.e. for all 
complex numbers a 1, ••• , am and t 1, ••• , tm E Z, m ~ 1, we have 

m 

L aiaiR(ti - t) ~ 0. 
i,j= 1 

(11) 

lt is then easy to deduce (either from (11) or directly from (9)) the following 
properties of the covariance function ( see Problem 1): 

R(O) ~ 0, R(- n) = R(n), IR(n)l ~ R(O), 

IR(n)- R(mW $ 2R(O)[R(O)- Re R(n- m)]. (12) 
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2. Let us give some examples of stationary sequences ~ = (~n)nez· (From 
now on, the words "in the wide sense" and the statement n E 71. will both be 
omitted.) 

EXAMPLE 1. Let ~n = ~0 · g(n), where E~0 = 0, E~6 = 1 and g = g(n) is a 
function. The sequence ~ = (~n) will be stationary if and only if g(k + n)g(k) 
depends only on n. Hence it is easy to see that there is a A. such that 

g(n) = g(O)ei.<n. 

Consequently the sequence of random variables 

~n = ~0 . g(O)ei.<n 

is stationary with 

In particular, the random "constant" ~ = ~ 0 is a stationary sequence. 

ExAMPLE 2. An almost periodic sequence. Let 

N 

j; = " ,. ei.<kn 
Sn L_, -k ' 

k;l 

(13) 

where z1, ... , zN areorthogonal (Ezizj = 0, i =1- j) random variables with zero 
means and E lzkl2 = ai > 0; -n ~ A.k < n, k = 1, ... , N; A.i =1- A.j, i =1- j. 
The sequence ~ = (~") is stationary with 

N 

R(n) = L afeihn. 
k;l 

As a generalization of (13) we now suppose that 
00 

~" = I zkeuk", 
k;- 00 

(14) 

(15) 

where zk, k E 71., have the same properties as in (13). If we suppose that 
Lk"'; _ oo af < oo, the series on the right of (15) converges in mean-square and 

00 

R(n) = L afei.l.kn. (16) 
k;- 00 

Let us introduce the function 

F(A.) = L af. (17) 
{k: Ak:5.1.} 

Then the covariance function (16) can be written as a Lebesgue-Stieltjes 
integral, 

R(n) = ff.<n dF(A.). (18) 
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The stationary sequence (15) is represented as a sum of "harmonics" ei'-kn 

with "frequencies" A.k and random "amplitudes" zk of "intensities" af = 

E 1 zk 12 • Consequently the values of F(A.) provide complete information on the 
"spectrum" of the sequence ~. i.e. on the intensity with which each frequency 
appears in (15). By (18), the values of F(A.) also completely determine the 
structure of the covariance function R(n). 

Up to a constant multiple, a (nondegenerate) F(A.) is evidently a distribu­
tion function, which in the examples considered so far has been piecewise 
constant.lt is quite remarkable that the covariancefunction of every stationary 
(wide sense) random sequence can be represented (see the theorem in Sub­
section 3) in the form (18), where F(A.) is a distribution function (up to nor­
malization), whose support is concentrated on [ -n, n), i.e. F(A.) = 0 for 
A. < -n and F(A.) = F(n) for A. > n. 

The result on the integral representation of the covariance function, if 
compared with (15) and (16), suggests that every stationary sequence also 
admits an" integral" representation. This is in fact the case, as will be shown in 
§3 by using what we shall learn to call stochastic integrals with respect to 
orthogonal stochastic measures (§2). 

EXAMPLE 3 (White noise). Let e = (en) be an orthonormal sequence ofrandom 
variables, Een = 0, Ee;Si = b;i, where bii is the Kronecker delta. Such a 
sequence is evidently stationary, and 

{ 1 n = 0, 
R(n) = O, n # 0. 

Observe that R(n) can be represented in the form 

where 

R(n) = f/'-n dF(A.), 

F(A.) = f/(v) dv; 
1 

f(A.) = 2n' 

(19) 

- n ::::; A. < n. (20) 

Comparison ofthe spectral functions (17) and (20) shows that whereas the 
spectrum in Example 2 is discrete, in the present example it is absolutely 
continuous with constant "spectral density" f(A.) = fn· In this sense we can 
say that the sequence e = (en) "consists of harmonics of equal intensities." lt 
is just this property that has led to calling such a sequence e = (en) "white 
noise" by analogy with white light, which consists of different frequencies with 
the same intensities. 

ExAMPLE 4 (Moving averages) Starting from the white noise e = (en) intro­
duced in Example 3, Iet us form the new sequence 

CO 

~n = :L aken-k• 
k=- 00 

(21) 
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where ak are complex numbers such that Lk'= _ oo I ak 12 < oo. By Parseval's 
equation, 

00 

cov(~n+m• ~m) = cov(~n• ~o) = L an+kak, 
k=- 00 

so that ~ = (~k) is a stationary sequence, which we call the sequence obtained 
from e = (ek) by a (two-sided) moving average. 

In the special case when the ak of negative index are zero, i.e. 

00 

~" = L aken-k• 
k=O 

the sequence ~ = (~n) is a one-sided moving average. If, in addition, ak = 0 for 
k > p, i.e. if 

(22) 

then ~ = ( ~n) is a moving average o.f order p. 
We can show (Problem 5) that (22) has a covariance function ofthe form 

R(n) = J':." e;;.j(A.) dA., where the spectral density is 

with 

.f(A.) = _!__ IP(e-i .. W 
2:n: 

P(z) = a0 + a1z + · · · + aPzP. 

(23) 

EXAMPLE 5 (Autoregression). Again Iet e = (en) be white noise. We say that a 
random sequence ~ = ( ~n) is described by an autoregressive model of order q if 

~~~ + b1~n-1 + · · · + bq~n-q = Bn· (24) 

Under what conditions on b1, ... , bn can we say that (24) has a stationary 
solution? To find an answer, Iet us begin with the case q = 1: 

(25) 

where oc = -b1 • If locl < 1, it is easy to verify that the stationary sequence 
~ = (~n) with 

00 

e" = L ocie"_ j (26) 
j=O 

is a solution of (25). (The series on the right of (26) converges in mean-square.) 
Let us now show that, in the class of stationary sequences ~ = (~") (with 
finite second moments) this is the only solution. In fact, we find from (25), 
by successive iteration, that 

k-1: 

~n = OC~n-1 + Bn = oc[oc~ .. - 2 + e"-1] + e" = ... = ock~n-k + L ocie"_ j· 
j=O 
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Hence it follows that 

k-+ 00. 

Therefore when I cx I < 1 a stationary solution of (25) exists and is represent­
able as the one-sided moving average (26). 

There is a similar .result for every q > 1: if all the zeros of the polynomial 

(27) 

lie outside the·unit:disk, then the autoregression equation (24) has a unique 
stationary solution, which is representable as a one-sided moving average 
(Problem 2). Here the covariance function R(n) can be represented (Problem 
5) in the form 

R(n) = f/An dF().), F().) = f/(v) dv, 

where 

In the special case q = 1, we find easily from (25) that Eeo = 0, 

and 

2 1 
Ec;o = 1 -lcxl2 ' 

ri' 
R(n) = 1 - lcxl 2 ' 

(when n < 0 we have R(n) = R( -n)), Here 

n~O 

1 1 
f().) = 2n . 11 - cxe ;;.12 • 

(28) 

(29) 

EXAMPLE 6. This example illustrates how autoregression arises in the con­
struction of probabilistic models in hydrology. Consider a body of water; 
we try to construct a probabilistic model of the deviations of the Ievel of the 
water from its average value because of variations in the inflow and evapora­
tion frorn the surface. 

If we take a year as the unit of time and let H" denote the water Ievel in 
year n, we obtain the following balance equation: 

(30) 

where l:"+ 1 is the inflow in year (n + 1), S(H) is the area of the surface of the 
waterat Ievel H, and K is the coefficient of evaporation. 
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Let~" = Hn- H be the deviation from the mean Ievel (which is obtained 
from observations over many years) and suppose that S(H) = S(H) + 
c(H - H). Then it follows from the balance equation that ~" satisfies 

(31) 

with tX = 1 - cK, "" = Ln - KS(H). lt is natural to assume that the random 
variables en have zero means and are identically distributed. Then, as we 
showed in Example 5, equation (31) has (for I tX I < 1) a unique stationary 
solution, which we think of as the steady-state solution (with respect to time 
in years) of the oscillations of the Ievel in the bod y of water. 

As an example of practical conclusions that can be drawn from a 
(theoretical) model (31), we call attention to the possibility of predicting the 
Ievel for the following year from the results ofthe observations ofthe present 
and preceding years. lt turnsout (see also Example 2 in §6) that (in the mean­
square sense) the optimallinear estimator of ~n+ 1 in terms of the values of 
••• '~n-1• ~n is simply (X~n· 

ExAMPLE 7 (Autoregression and moving average (mixed model)). lf we 
suppose that the right-hand side of (24) contains tXoen + tX 1en- 1 + · · · + 
tXpen- P instead of ""' we obtain a mixed model with autoregression and 
moving average of order (p, q): 

~n + b1~n-1 + ... + bq~n-q = aoen + a1en-1 + ... + apen-p· (32) 

Under the same hypotheses as in Example 5 on the zeros it will be shown later 
(Corollary 2 to Theorem 3 of§3) that (32) has the stationary solution ~ = (~") 
for which the covariance function is R(n) = J>:" ei).n dF().) with F().) = 
s~" f(v) dv, where 

1 IP(e-;;.)12 
f().) = 2n · Q(e ;;.) · 

3. Theorem (Herglotz). Let R(n) be the covariance function of a stationary 
(wide sense) random sequence with zero mean. Then there is, on 

([ -n, n), ß#([ -n, n))), 

a finite measure F = F(B), BE ß#([ -n, n)), such that for every n E 7L 

R(n) = ff;." F(d).). (33) 

PRooF. For N ~ 1 and AE [ -n, n], put 

(34) 
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Since R(n) is nonnegative definite, .fN(A.) is nonnegativeo Since there are 
N - Im I pairs (k, I) for which k - I = m, we have 

.fN(A.) = _!___ L (1 - ~)R(m)e-im).o (35) 
2n lmf<N N 

Let 

Then 

BE ,qß([ -n, n:))o 

lnl < N,} (36) 

lnl :?: No 

The measures F N• N:?: 1, are supported on the interval [ -n, n] and 
F N([ -n, n ]) = R(O) < oo for all N :?: 1. Consequently thefamily of measures 
{ FN }, N :?: 1, is tight, and by Prokhorov's theorem (Theorem 1 of §2 of 
Chapter 111) there are a sequence {Nk} ~ {N} and a measure F such that 
FNk ~ Fo (The concepts of tightness, relative compactness, and weak 
convergence, tagether with Prokhorov's theorem, can be extended in an 
obvious way from probability measures to any finite measureso) 

lt then follows from (36) that 

f/;,"F(dA.) = }!~oo f"ei).nFNk(dA.) = R(n)o 

The measure F so constructed is supported on [ -n, n]. Without changing 
the integral J':' oo e;;," F(dA.), we can redefine F by transferring the "mass" 
F( { n} ), which is concentrated at n:, to -no The resulting new measure (which 
we again denote by F) will be supported on [ -n, n:)o 

This completes the proof of the theoremo 

Remark 1. The measure F = F(B) involved in (33) is known as the spectral 
measure, and F(A.) = F([ -n, A.]) as the spectral function, of the stationary 
sequence with covariance function R(n)o 

In Example 2 above the spectral measure was discrete (concentrated at 
Ab k = 0, ± 1, 0 0 o)o In Examples 3-6 the spectral measures were absolutely 
continuouso 

Remark 2. The spectral measure F is uniquely defined by the covariance 
functiono In fact, Iet F 1 and F 2 be two spectral measures and Iet 

f/;,"F1(d.A.) = f/;,"F 2 (d.A.), nEZo 
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Since every bounded continuous function g(A.) can be uniformly approxi­
mated on [ -n, n) by trigonometric polynomials, we have 

r"g(A.)F,(dA.) = r"g(A.)Fz(dA.). 

lt follows (compare the proof in Theorem 2, §12, Chapter II) that F 1 (B) 
= F 2(B) for all BE~([ -n, n)). 

Remark 3. lf ~ = (~.) is a stationary sequence of real random variables ~., 
then 

R(n) = r" cos A.n F(dA.). 

4. PROBLEMS 

1. Derive (12) from (11). 

2. Show that the autoregression equation (24) has a stationary solution if all the zeros 
of the polynomial Q(z) defined by (27) lie outside the unit disk. 

3. Prove that the covariance function (28) admits the representation (29) with spectral 
density given by (30). 

4. Show that the sequence ~ = (~.) of random variables, where 
00 

~. = I (cxk sin A.kn + ßk cos A.kn) 
k=l 

and cxk and ßk are real random variables, can be represented in the form 

k=- 00 

with zk = t(ßk - icxk) for k :?: 0 and zk = z_k, A.k = - A._k for k < 0. 

5. Show that the spectral functions of the sequences (22) and (24) have densities given 
respectively by (23) and (29). 

6. Show that if I I R(n) I < oo, the spectral function F(A.) has density f(A.) given by 
1 00 

f(A.) = ~ I e-iAnR(n). 
2n n=- 00 

§2. Orthogonal Stochastic Measures and 
Stochastic Integrals 

1. As we observed in §1, the integral representation of the covariance 
function and the example of a stationary sequence 

00 

~. = L zkei'-•" 
k=- 00 

(1) 
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with pairwise orthogonal random variables zk, k E 7l., suggest the possibility 
of representing an arbitrary stationary sequence as a corresponding integral 
generalization of ( 1 ). 

Ifwe put 

Z(A.) = L zk> (2) 
{k: ).k:s;l) 

we can rewrite (1) in the form 
CO 

~n = L ei'-kn L\Z(A.k), (3) 
k=- CO 

where L\Z(A.k) = Z(A.k) - Z(A.k -) = zk. 
The right-hand side of (3) reminds us of an approximating sum for an 

integral f':.." ei'-• dZ(A.) of Riemann-Stieltjes type. However, in the present 
case Z(A.) is a random function (it also depends on w). Hence it is clear that 
for an integral representation of a general stationary sequence we need to use 
functions Z(A.) that do not have bounded variation for each w. Consequently 
the simple interpretation of J':.." e;;." dZ(A.) as a Riemann-Stieltjes integral 
for each w is inapplicable. 

2. By analogy with the general ideas of the Lebesgue, Lebesgue-Stieltjes 
and Riemann-Stieltjes integrals (§6, Chapter II), we begin by defining 
stochastic measure. 

Let (Q, $', P) be a probability space, and Iet E be a subset, with an algebra 
~ 0 of subsets and the a-algebra ~ generated by ~ 0 • 

Definition 1. A complex-valued function Z(ß) = Z(w; L\), defined for w E Q 
and Ll E tff 0 , is a jinitely additive stochastic measure if 

(1) E IZ(Ll)l2 < oo for every Ll E ß'0 ; 

(2) for every pair L\1 and L\2 of disjoint sets in ß' 0, 

Z(Ll 1 + Ll2) = Z(Ll 1) + Z(Ll2 ) (P-a.s.) (4) 

Definition 2. A finitely additive stochastic measure Z(ß) is an elementary 
stochastic measure if, for all disjoint sets L\1, L\2, ... of ~ 0 such that L\ = 

Lk'=t L\kE~o. 

n-+ oo. (5) 

Remark l. In this definition of an elementary stochastic measure on subsets 
of ß' 0 , it is assumed that its values are in the Hilbert space H 2 = H 2(Q, $', P), 
and that countable additivity is understood in the mean-square sense (5). 
There are other definitions of stochastic measures, without the requirement 
of the existence of second moments, where countable additivity is defined 
(for example) in terms of convergence in probability or with probability 
one. 
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Remark 2. In analogy with nonstochastic measures, one can show that for 
finitely additive stochastic measures the condition (5) of countable additivity 
(in the mean-square sense) is equivalent to continuity (in the mean-square 
sense) at "zero": 

(6) 

A particularly important class of elementary stochastic measures consists 
of those that are orthogonal according to the following definition. 

Definition 3. An elementary stochastic measure Z(-1), .1 E 8 0 , is orthogonal 
(or a measure with orthogonal values) if 

EZ(.11)Z(.12) = 0 

for every pair of disjoint sets .11 and .12 in 8 0 ; or, equivalently, if 

EZ(.11).Z(L12 ) = E IZ(-11 n L12W 

for all .11 and .12 in 8 0 • 

We write 

(7) 

(8) 

(9) 

For elementary orthogonal stochastic measures, the set function m = m(-1), 
.1 E 8 0 , is, as is easily verified, a finite measure, and consequently by 
Caratheodory's theorem (§3, Chapter II) it can be extended to (E, 8). 
The resulting measure will again be denoted by m = m(-1) and called the 
structure function ( of the elementary orthogonal stochastic measure Z = 
Z(-1), .1 E 8 0). 

The following question now arises naturally: since the set function 
m = m(-1) defined on (E, 8 0 ) admits an extension to (E, eS'), where 8 = u(8 0 ), 

cannot an elementary orthogonal stochastic measure Z = Z(-1), ll E eS' 0 , be 
extended to sets .1 in E in such a way that EI Z(-1) 12 = m(-1), .1 E 8? 

The answer is affirmative, as follows from the construction given below. 
This construction, at the same time, Ieads to the stochastic integral which we 
need for the integral representation of stationary sequences. 

3. Let Z = Z(-1) be an elementary orthogonal stochastic measure, .1 E 8 0 , 

with structure function m = m(ß), .1 ES. For every function 

(10) 

with only a finite number of different ( complex) values, we define the random 
variable 
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Let L 2 = L 2(E, C, m) be the Hilbert space of complex-valued functions 
with the scalar product 

(f, g) = L f(A.)g(A.)m(dA.) 

and the norm 11!11 = (f,f) 112, and let H 2 = H 2(Q, ~ P) be the Hilbert 
space of complex-valued random variables with the scalar product 

and the norm Wl = (~, ~) 1 1 2 . 
Then it is clear that, for every pair of functions fand g of the form (10), 

(J(f), J(g)) = (f, g) 

and 

IIJ(f)ll 2 = 11!11 2 = Llf(A.Wm(dA.). 

Now Ietf E L 2 and Iet {J,.} be functions oftype (10) suchthat llf- J,.ll -+ 0, 
n -+ oo (the existence of such functions follows from Problem 2). Consequently 

n, m-+ oo. 

Therefore the sequence {J(fn)} is fundamental in the mean-square sense 
and by Theorem 7, §10, Chapter II, there is a random variable (denoted by 
J(f)) suchthat J(f) E H 2 and Jlf(fn) - J(f)ll -+ 0, n-+ oo. 

The random variable J(f) constructed in this way is uniquely defined 
(up to stochastic equivalence) and is independent of the choice of the ap­
proximating sequence Un}. We call it the stochastic integral of f E L 2 with 
respect to the elementary orthogonal stochastic measure Z and denote it by 

J( f) = Lf(A.)Z(dA.). 

We note the following basic properties of the stochastic integral J(f); 
these are direct consequences of its construction (Problem 1). Let g, f, and 
fn E L 2 • Then 

(J(f), J(g)) = (f, g); 

IIJ(f)ll = 11!11; 

J(cif + bg) = aJ(f) + bJ(g) (P-a.s.) 

where a and bare constants; 

IIJ<fn)- J(f)ll-.. o, 
if llfn- fll -+ 0, n-+ 00. 

(11) 

(12) 

(13) 

(14) 
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4. Let us use the preceding definition of the stochastic integral to extend 
the elementary stochastic measure Z(~), ~ E C 0 , to sets in C = (J(C 0 ). 

Since m is assumed to be finite, we have I tJ. = I tJ.(A.) E L 2 for all ~ E C. 
Write Z(d) = ß(l tJ.). lt is clear that Z(~) = Z(~) for ~ E C 0 . It follows from 
(13) that if ~ 1 n ~2 = 0 for ~ 1 and ~2 E C, then 

Z(~~ + ~2) = 2(~ 1 ) + Z(~2 ) (P-a.s.) 

and it follows from (12) that 

Let us show that the random set function Z(d), ~ E C, is countably additive 
in the mean-square sense. In fact, Iet ~k E C and ~ = Lk'= 1 ~k· Then 

n 

Z(~) - L Z(~k) = ß(gn), 
k=1 

where 

n 

gn(A) = I!J.(A)- L I!J.k(A) = IIJA.), 
k=l 

But 

n --+ oo, 

i.e. 
n 

EI Z(d) - L Z(~k) 12 --+ 0, n --+ oo. 
k=1 

lt also follows from (11) that 

when ~1 n ~2 = 0, ~1 , ~2 E C. 
Thus our function Z(~), defined on ~ E C, is countably additive in the 

mean-square sense and coincides with Z(~) on the sets ~ E C 0 . Weshall call 
Z(~), ~ E C, an orthogonal stochastic measure (since it is an extension of 
the elementary orthogonal stochastic measure Z(d)) with respect to the 
structure function m(d), ~ E C; and we call the integral ß(f) =JE f(A.)Z(dA.), 
defined above, a stochastic integral with respect to this measure. 

5. We now consider the case (E, C) = (R, f!I(R)), which is the most im­
portant for our purposes. As we know (§3, Chapter II), there is a one-to-one 
correspondence between finite measures m = m(~) on (R, I?I(R)) and certain 
(generalized) distribution functions G = G(x), with m(a, b] = G(b) - G(a). 

It turns out that there is something similar for orthogonal stochastic 
measures. We introduce the following definition. 
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Definition 4. A set of (complex-valued) random variables {Z,t}, A ER, 
defined on (Q, ff, P), is a random process with orthogonal increments if 

(1) EIZ.tl 2 < oo,AER; 
(2) for every A ER 

E I z Ä - z .tY -+ 0, 

(3) whenever A1 < A2 < A3 < A4 , 

Condition (3) is the condition of orthogonal increments. Condition (1) 
means that Z.t E H2. Finally, condition (2) is included for technical reasons; 
it is a requirement of continuity on the right (in the mean-square sense) at 
each A ER. 

Let Z = Z(L\) be an orthogonal stochastic measure with respect to the 
structure function m = m(L\), of finite measure, with the (generalized) 
distribution function G(A). Let us put 

Z.t = Z(- oo, A]. 

Then 

E IZ;.I 2 = m(- XJ, A] = G(A) < oo, E IZ .. - z ... y = m(An, A]! 0, An! A, 

and (evidently) 3) is satisfied also. Then this process {Z ,t} is called a process 
with orthogonal increments. 

On the other hand, if {Z,t} is such a process with E IZ.tl 2 = G(A), G(- oo) 
= 0, G( + oo) < XJ, we put 

Z(L\) = Zb - Za 

when L\ = (a, b]. Let tff 0 be the algebra of sets 
n n 

L\ = L (ak, bk] and Z(L\) = L Z(ak, bk]. 
k;l k;l 

It is clear that 

EI Z(L\) 12 = m(L\), 

where m(L\) = Li:; 1 [G(bk) - G(ak)] and 

EZ(L\ 1)Z(L\2 ) = 0 

for disjoint intervals L\ 1 = (a 1, b 1 ] and L\2 = (a 2 , b2]. 

Therefore Z = Z(L\), L\ E tff 0 , is an elementary stochastic measure with 
orthogonal values. The set function m = m(L\), L\ E tff 0 , has a unique extension 
to a measure on tff = BI(R), and it follows from the preceding constructions 
that Z = Z(L\), L\ E tff 0 , can also be extended to the set L\ E tff, where tff = BI(R), 
and EI Z(L\) 12 = m(L\), L\ E B(~). 
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Therefore there is a one-to-one correspondence between processes 
{Z .. }, A.ER, with orthogonal increments and EIZ .. I2 = G(A.), G(-oo) = 0, 
G( + oo) < oo, and orthogonal stochastic measures Z = Z(Ll), Ll E ßi(R), 
with structure functions m = m(Ll). The correspondence is given by 

z .. = Z(- oo, A.], G(A.) = m(- oo, A.] 

and 

m(a, b] = G(b)- G(a). 

By analogy with the usual notation of the theory of Riemann-Stieltjes 
integration, the stochastic integral JR f(A.) dZ", where {Z..} is a process with 
orthogonal increments, means the stochastic integral JR f(A.)Z(dA.) with 
respect to the corresponding process with an orthogonal stochastic measure. 

6. PROBLEMS 

1. Prove the equivalence of (5) and (6). 

2. Let f E L 2. Using the results of Chapter II (Theorem 1 of §4, the Corollary to Theorem 
3 of §6, and Problem 9 of §3), prove that there is a sequence of functions .f. of the 
form ( 10) such that II f - !.II --+ 0, n --+ oo. 

3. Establish the following properties of an orthogonal stochastic measure Z(M with 
structure function m(8): 

E IZ(81)- Z(82 )1 2 = m(81 6 8 2 ), 

Z(8 1 \82 ) = Z(8 1 ) - Z(81 n 8 2 ) (P-a.s.), 

Z(81 6 8 2 ) = Z(81) + Z(8 2 ) - 2Z(81 n 8 2 ) (P-a.s.). 

§3. Spectral Representation of Stationary 
(Wide Sense) Sequences 

1. If ~ = (~.) is a stationary sequence with E~. = 0, n E 7!.., then by the 
theorem of §1, there isafinite measure F = F(Ll) on ([ -n, n), ßl([ -n, n))) 
such that its covariance function R(n) = cov(~k+n• ~k) admits the spectral 
representation 

(1) 

The following result provides the corresponding spectral representation 
of the sequence ~ = (~.), n E 7!.., itself. 
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Theorem 1. There is an orthogonal stochastic measure Z = Z(-1), 
.1 E ~([ -n, n)), such that jor every n E Z (P-a.s.) 

~n = ff'-"Z(dA.). (2) 

Moreover, E IZ(ß)l 2 = F(-1). 

The simplest proof is based on properties of Hilbert spaces. 
Let L 2(F) = L 2(E, S, F) be a Hilbert space of complex functions, 

E = [ -n, n), S = ~([ -n, n)), with the scalar product 

(f, g) = {,/(A.)g(J.)F(dJ.), (3) 

and Iet L~(F) be the linear manifold (LÖ(F) ~ L 2(F)) spanned by en = en(A.), 
n E Z, where en().) = ei'-n. 

Observe that since E = [ -n, n) and F is finite, the closure of LÖ(F) 
coincides (Problem 1) with L 2(F): 

LÖ(F) = L 2(F). 

Also Iet LÖ( ~) be the linear manifold spanned by the random variables ~", 
n E Z, and Iet L 2(~) be its closure in the mean-square sense (with respect 
toP). 

We establish a one-to-one correspondence between the elements of 
LÖ(F) and LÖ( ~), denoted by "+-+ ", by setting 

nEZ, (4) 

and defining it for elements in general (more precisely, for equivalence 
classes of elements) by linearity: 

(5) 

(here we suppose that only finitely many of the complex numbers IX" are 
different from zero ). 

Observe that (5) is a consistent definition, in the sense that :E 1Xnen = 0 
almost everywhere with respect to F if and only if L 1Xn~n = 0 (P-a.s.). 

The correspondence "+-+" is an isometry, i.e. it preserves scalar products. 
In fact, by (3), 

(en, em) = {"e"(A.)em().)F(dA.) = {/l(n-mlF(d).) = R(n - m) 

= E~n~m = (~"' ~m) 

and similarly 

(6) 
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Now Iet '7 E L 2(e). Since L 2(e) = LÖ(e), there is a sequence {17"} suchthat 
'ln E LÖ(e) and ll'ln - '711 -+ 0, n-+ oo. Consequently {1'/n} is a fundamental 
sequence and therefore so is the sequence {!"}, where J" E LÖ(F) and J"- 'ln· 
The space L 2(F) is complete and consequently there is an f E L 2(F) such 
that ll.fn - f II -+ o. 

There is an evident converse: if jEL2(F) and II!- f"/1-+ 0, f"ELMF), 
there is an element '7 of L 2(e) suchthat 11'7 - 'lnll -+ 0, 'ln E LÖ(e} and 'ln- f". 

Up to now the isometry "-" has been defined only as between elements 
of LÖ(e) and LÖ(F). We extend it by continuity, takingf- '7 whenf and '7 are 
the elements considered above. lt is easily verified that the correspondence 
obtained in this way is one-to-one (between classes of equivalent random 
variables and of functions), is linear, and preserves scalar products. 

Consider the function f(A.) = / 4(A.), where L\ E Jl([ -n, n)), and Iet 
Z(ß) be the element of L 2(e) such that I &(A.)- Z(A.). lt is clear that II/&(A.)II 2 

= F(L\) and therefore EI Z(ß) 12 = F(L\). Moreover, if L\ 1 n L\2 = 0, we 
have EZ(ß 1)Z(ß2 ) = 0 and E /Z(ß)- L~= 1 Z(ßkW-+ 0, n-+ oo, where 
L1 = Ir= 1 L\k. 

Hence the family of elements Z(ß}, L\ E Jl([ -n, n)), form an orthogonal 
stochastic measure, with respect to which (according to §2) we can define 
the stochastic integral 

J(.f} = fJ<A.)Z(dA.), f E U(F). 

Let f E L 2(F) and '7 - f. Denote the element '7 by Cl>(.f) (more precisely, 
select single representatives from the corresponding equivalence classes of 
random variables or functions). Let us show that (P-a.s.) 

J(f) = Cl>(f). (7) 

In fact, if 

(8) 

isafinite linear combination of functions / 4 k(A.), L\k = (ak, bk], then, by the 
very definition of the stochastic integral, J(f) = L akZ(L\k), which is 
evidently equal to Cl>(f). Therefore (7) is valid for functions of the form (8). 
But if f E L 2(F) and II fn - !II -+ 0, where J" are functions of the form (8), 
then IICl>(J") - Cl>(f)ll -+ 0 and ll.f(f") - J(f)ll -+ 0 (by (2.14)). Therefore 
Cl>(f) = J(f) (P-a.s.). 

Consider the function f(A.) = eiAn. Then Cl>(eiAn) = en by (4), but on the 
other band J(eiAn) = .f~" eiAnz(dA.). Therefore 

n E Z (P-a.s.) 

by (7). This completes the proof of the theorem. 



432 VI. Stationary (Wide Sense) Random Sequences. L2-Theory 

Corollary 1. Let e = (e") be a stationary sequence qfreal random variables en, 
n E 7L. Then the stochastic measure Z = Z(ß) involved in the spectral repre­
sentation (2) has the property that 

Z(ß) = Z(-ß) (9) 

for every ß = BiJ([ -n, n)), where -ß = {A.: -A. E ß}. 

In fact, Iet f(A.) = L a.kei'-k and '1 = L a.kek (finite sums). Tben f +-+ '1 and 
tberefore 

- '\' - ;: '\' - i.l.k f( l) '1 = L... a.k 'ok +-+ L.., a.ke = -11. • (10) 

Since ..1 ~(A.) +-+ Z(ß), it follows from (10) tbat eitber ..1 ~<- A.) +-+ Z(ß) or 
..f_iA.) +-+ Z(ß). On tbe otber band, ..f_iA.) +-+ Z(- ß). Tberefore Z(ß) 
= Z(-ß) (P-a.s.). 

Corollary 2. Again Iet ~ = (~") be a stationary sequence ofreal random vari­
ables~" and Z(ß) = Z 1(ß) + iZiß). Then 

EZ 1(ß1)Z2(ß2) = 0 

for every ß 1 and ß 2 ; and if ß 1 n ß 2 = 0 then 

In fact, since Z(ß) = Z( -ß), we bave 

Z 1( -ß) = Z 1(ß), Zi -ß) = -Z2(ß). 

(11) 

(12) 

(13) 

Moreover, since EZ(ß1)Z(ß2) = E IZ(ß1 n ß2W, we bave Im EZ(ß1)Z(ß2) 
= 0, i.e. 

If we take the interval - ß 1 instead of ß 1 we therefore obtain 

wbicb, by (13), can be transformed into 

EZ1(ß1)Ziß2)- EZ2(ß1)Zl(ß2) = 0. 

Tben (11) follows from (14) and (15). 

(14) 

(15) 

On tbe otber band, if ß 1 n ß2 = 0 tben EZ(ß1)Z(ß2) = 0, wbence 
Re EZ(ß1)Z(ß2) = 0 and Re EZ(-ß 1)Z(ß2) = 0, wbicb, witb (13), provides 
an evident proof of (12). 

Corollary 3. Let ~ = (~") be a Gaussian sequence. Then, for every family 
ß 1, ••• , ßk, the vector (Z1(ß1), ••. , Z 1(ßk), Z 2(ß1), ... , Zz(ßk)) is normally 
distributed. 
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In fact, the linear manifold LMe> consists of (complex-valued) Gaussian 
random variables '1· i.e. the vector (Re 17, Im 17) has a Gaussian distribution. 
Then, according to Subsection 5, §13, Chapter II, the closure of L~(e) also 
consists of Gaussian variables. It follows from Corollary 2 that, when 
e = (en) is a Gaussian sequence, the real and imaginary parts of Z 1 and Z 2 

are independent in thesensethat the families of random variables (Z1(L\1), 

... , Z 1(L\")) and (Zit\ 1), ..• , Z 2(L\")) are independent. It also follows 
from (12) that when the sets L\1, •.• , L\,. are disjoint, the random variables 
Z;(L\1), •.• , Z;(L\") are collectively independent, i = 1, 2. 

Corollary 4. If e = (e") is a stationary sequence of real random variables, 
then (P-a.s.) 

(16) 

Remark. lf { Z ;.} , A. E [- n, n ), is a process with orthogonal increments, 
corresponding to an orthogonal stochastic measure Z = Z(L\), then in 
accordance with §2 the spectral representation (2) can also be written in the 
following form: 

" = J" e;;."dZ ~n A' 
-x 

nell... (17) 

2. Let e = (e") be a stationary sequence with the spectral representation (2) 
and Iet '1 E L 2( e). The following theorem describes the structure of such 
random variables. 

Theorem 2. lf '1 E L 2(~), there is afunction <p E L 2(F) such that (P-a.s.) 

'1 = f" <p(A.)Z(dA.). 

PROOF.If 

then by (2) 

i.e. (18) is satisfied with 

'1n = J" ( L cx"eilk)z(dA.), 
-x lkiSn 

<pnC~.) = L 1Xneilk. 
lklsn 

(18) 

(19) 

(20) 

(21) 

In the generat case, when '1 E L 2(e), there are variables '7n of type (19) such 
that 11'1 - '1nll -+ 0, n -+ 00. But then II ({Jn - ({Jmll = 11'1n - '1m II -+ 0, n, m -+ oo. 
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Consequently { cp"} is fundamental in L 2 (F) and therefore there is a function 
cp E L 2(F) suchthat llcp - cpnli -+ 0, n-+ oo. 

By property (2.14) we have II.F(q>")- .F(q>)li-+ 0, and since '1n =.F(cp") 
we also have '1 = .F(cp) (P-a.s.). 

This completes the proof of the theorem. 

Remark. Let H 0(e) and H 0(F) be the respective closed linear manifolds 
spanned by the variables en and by the functions e" when n :::;;; 0. Then if 
'1 e H 0(e) there is a function q> E H 0(F) suchthat (P-a.s.) '1 = J':,. cp(A.)Z(dA.). 

3. Formula (18) describes the structure of the random variables that are 
obtained from en, n E 7L, by linear transformations, i.e. in the form of finite 
sums (19) and their mean-square Iimits. 

A special but important class of such linear transformations are defined 
by means ofwhat are known as (linear).filters. Let us suppose that, at instant 
m, a system (filter) receives as input a signal xm, and that the output of the 
system is, at instant n, the signal h(n - m)xm, where h = h(s), s E 7L, is a 
complex valued function called the impulse response ( of the filter ). 

Therefore the total signal obtained from the input can be represented in 
the form 

CO 

Yn = L h(n - m)xm. (22) 
m= -oo 

For physically realizable systems, the values of the input at instant n 
are determined only by the "past" values of the signal, i.e. the values xm for 
m :::;;; n. lt is therefore natural to call a filter with the impulse response h(s) 
physically realizable if h(s) = 0 for all s < o, in other words if 

n co 

Yn = L h(n- m)xm = L h(m)Xn-m· (23) 
m=-oo m=O 

An important spectral characteristic of a filter with the im pulse response h 
is its Fourier transform 

CO 

cp(A.) = L e-iAmh(m), (24) 
m=-oo 

known as the frequency characteristic or transfer function of the filter. 
Let us now take up conditions, about which nothing has been said so far, 

for the convergence ofthe series in (22) and (24). Let us suppose that the input 
is a stationary random sequence e = (en), n E 7L, with covariance function 
R(n) and spectral decomposition (2). Then if 

CO 

L h(k)R(k - l)1i(l) < 00, (25) 
k,l=- CO 
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the series L;:;= _ oo h(n - m)~m converges in mean-square and therefore there 
is a stationary sequence '1 = ('1n) with 

00 00 

'1n = L h(n - m)~m = L h(m)~n-m· (26) 
m=-oo m=-oo 

In terms of the spectral measure, (25) is evidently equivalent to saying that 
cp(A.) E L 2(F), i.e. 

{"lcp(A.WF(dA.) < oo. (27) 

Under (25) or (27), we obtain the spectral representation 

'1n = f"eiJ.ncp(A.)Z(dA.). (28) 

of '1 from (26) and (2). Consequently the covariance function R~(n) of '1 
is given by the formula 

R~(n) = f/;.nicp(A.WF(dA.). (29) 

In particular, if the input to a filter with frequency characteristic cp = cp(A.) 
is taken to be white noise a = (an), the output will be a stationary sequence 
(moving average) 

00 

'1n = L h(m)an-m (30) 
m=-oo 

with spectral density 

The following theorem shows that there isasense in which every stationary 
sequence with a spectral density is obtainable by means of a moving average. 

Theorem 3. Let '1 = ('1n) be a stationary sequence with spectral density f~(A.). 
Then (possibly at the expense of enlarging the original probability space) we 
canfind a sequence a = (an) representing white noise, and afilter, suchthat the 
representation (30) holds. 

PROOF. Fora given (nonnegative) function f~(A.) we can find a function cp(A.) 
suchthat f~(A.) = (1/2n) I cp(A.W. Since s~" fiA.) dA. < 00, we have cp(A.) E L 2(/l), 
where ll is Lebesgue measure on [ -n, n). Hence cp can be represented as a 
Fourier series (24) with h(m) = (lj2n) .f~" eimJ.cp(A.) dA., where convergence is 
understood in the sense that 

f" I cp(A.) - L e-iJ.mh(m) 12 dA.~ 0, 
-" lml:5n 

n ~ oo. 
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Let 

'1n = f .. e;;."Z(d.A.), n e Z. 

Besides the measure Z = Z(L\) we introduce another independent orthog­
onal stochastic measure :l = Z(L\) with E I Z(a, b] 12 = (b - a)/2n. (The 
possibility of constructing such a measure depends, in general, on having a 
sufficiently "rieb" original probability space.) Let us put 

Z(L\) = L q>EB(A.)Z(d.A.) + L [1 - q>EB(A.)q>(A.)]Z(d.A.), 

where 

aEB = {a- 1, ~f a :;l: 0, 
0, tf a = 0. 

The stochastic measure Z = Z(L\) is a measure with orthogonal values, and 
for every L\ = (a, b] we have 

E I Z(L\) 12 = 2~1 I q>EB(A,) 12 1 q>(A.) 12 dA. + 2~ L 11 - q>EB(A.)q>(A.) 12 dA. = 1!1' 

where I L\ I = b - a. Therefore the stationary sequence e = (en), n e Z, with 

lln = f/;."Z(d.A.), 

is a white noise. 
We now observe that 

and, on the other band, by property (2.14) (P-a.s.) 

f/";.q>(A.)Z(dA.) = f/;."C=~oo e-umh(m))Z(dA.) 

= m=~oo h(m) f/A(n-m)Z(d.A.) = m=~oo h(m)en-m• 

which, together with (31 ), establishes the representation (30). 
This completes the proof of the theorem. 

(31) 

Remark. If J"(A.) > 0 (almost everywhere with respect to Lebesgue measure), 
the introduction of the auxiliary measure :l = Z(L\) becomes unnecessary 
(since then 1 - q>EB(A.)q>(A.) = 0 almost everywhere with respect to Lebesgue 
measure), and the reservation concerning the necessity of extending the 
original probability space can be omitted. 
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CoroUary 1. Let the spectral density J,,() .. ) > 0 (almost everywhere with 
respect to Lebesgue measure) and 

1 
!.,()..) = 2n I q>(l) 12, 

where 
<Xl <Xl 

q>(A) = L e-iAkh(k), I lh<kW < oo. 
k=O k=O 

Then the sequence '1 admits a representation as a one-sided moving average, 
<Xl 

'7" = L h(m)6,.-m· 
m=O 

In particular, Iet P(z) = a0 + a1z + · · · + aPzP be a polynomial that has 
no zeros on {z: lzl = 1}. Then the sequence '1 = ('1") with spectral density 

J,(l) = _.!._ IP(e-j).W 
" 2n 

can be represented in the form 

Corollary 2. Let~ = (~") be a sequence with rational spectral density 

1 ,P(e-;;,)12 
Nl) = 2n Q(e-;;,) ' (32) 

Let us show that if P(z) and Q(z) have no zeros on {z: lzl = 1}, there is a 
white noise 6 = 6(n) suchthat (P-a.s.) 

~ .. + b1e"_ 1 + .. · + bqen-q = a0 6" + a16"_ 1 + .. · + ap6n-p· (33) 

Conversely, every stationary sequence ~ = (e") that satisfies this equation 
with some white noise 6 = (6") and some polynomial Q(z) with no zeros on 
{z: lzl = 1} has a spectral density (32). 

In fact, Iet "'n = e" + b1e"_ 1 + .. · + bqen-q· Then f"(l) = (1/2n)IP(e-;;,)l 2 

and the required representation follows from Corollary 1. 
On the other band, if (33) holds and F ~A) and F"(l) are the spectral 

functions of e and '1· then 

Since I Q(e- i•) 12 > 0, it follows that F ~;(A) has a density defined by (32). 
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4. The following mean-square ergodie theorem can be thought of as an 
analog of the law of large numbers for stationary (wide sense) random 
sequences. 

Theorem 4. Let ~ = ( ~n), n E Z, be a stationary sequence with E ~n = 0, 
covariance fimction ( 1 ), and spectral resolution (2). Then 

1 n- 1 2 

- L ~k .s Z({O}) 
n k=o 

and 

1 n-1 - L R(k) -4 F({O}). 
n k=o 

PROOF. By (2), 

where 

It is clear that 

/,2(F) 
Moreover, q>n(A.) ---+ /{0 J(A.) and therefore by (2.14) 

which establishes (34). 
Relation (35) can be proved in a similar way. 
This completes the proof of the theorem. 

(34) 

(35) 

(36) 

Corollary. lf the spectral function is continuous at zero, i.e. F( {0}) = 0, then 
Z( {0}) = 0 (P-a.s.) and by (34) and (35), 

Since 

l ]n-1 12 I (Jn-1) 12 11n-1 12 
-;:; k~O R(k) = E -;:; k~o ~k ~o ~ E l~o12E -;:; k~O ~k ' 
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the converse imp/ication also holds: 

1 n- 1 L2 1 n-1 

- L ~k--+ 0 =>- L R(k)--+ 0. 
nk=O nk=O 

Therefore the condition (ljn) .D::ö R(k)--+ 0 is necessary and sufficient 
for the convergence (in the mean-square sense) of the arithmetic means 
(1/n) D:ö ~k to zero. lt follows that if the original sequences ~ = (~") has 
expectation m (that is, E~0 = m), then 

1"-1 1n-1 2 - L R(k)--+ O<o>- L ~k ~ m, (37) 
nk=O nk=O 

where R(n) = E(~n - E~n)(~0 - E~o). 
Let us also observe that if Z({O}) i= 0 (P-a.s.) and m = 0, then ~" "contains 

a random constant IX": 

~n = IX + 1'/n• 

where IX= Z({O}); and in the spectral representation 1'/n = s~" ei'-nz,,(dA) 
the measure Z~ = Z~(~) is suchthat Z~({O}) = 0 (P-a.s.). Conclusion (34) 
means that the arithmetic mean converges in mean-square to precisely this 
random constant IX. 

5. PROBLEMS 

1. Show that L5(F) = L 2(F) (for the notation see the proof of Theorem 1). 

2. Let ~ = (~.) be a stationary sequence with the property that ~n+N = ~" for some N 
and all n. Show that the spectral representation of such a sequence reduces to (1.13). 

3. Let~ = (~.) be a stationary sequence suchthat E~. = 0 and 

2 I I R(k - I)=- I R(k) 1 -- 5. cN-· 
1 N N 1 [ lkl] 

N k=O 1=0 N iki,;N-1 N 

for some C > 0, Ct. > 0. Use the Borel-Cantelli Iemma to show that then 

1 N 
- I ~k -> 0 (P-a.s.) 
N k=O 

4. Let the spectral density Ji)..) of the sequence ~ = (~.) be rational, 

)._ = _.!.._ IPn-l(e-;')1 
Ii ) 2n IQ.(e ;;.)1 ' 

(38) 

where P._ 1(z) = a0 + a1z + · · · + a._ 1z"- 1 and Q.(z) = 1 + b1z + · · · + b.z", and 
all the zeros of these polynomials lie outside the unit disk. 

Show that there is a white noise e = (em), m E Z, such that the sequence (~m) is a 
component of an n-dimensional sequence (~~. ~;, ... , ~;:.), ~~ = ~m' that satisfies 
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the system of equations 

i = 1, ... , n- 1, 

n-1 

e::.+ I = - L b._ je~+ I + ß.em+ I• (39) 
j=O 

where ß1 = a0 , ß; = a;-1 - 1;~-:,~ ßtbi-k· 

§4. Statistical Estimation of the Covariance Function 
and the Spectral Density 

1. Problems of the statistical estimation of various characteristics of the 
probability distributions of random sequences arise in the most diverse 
branches of science (geophysics, medicine, economics, etc.) The material 
presented in this section will give the reader an idea of the concepts and 
methods of estimation, and of the difficulties that are encountered. 

To begin with, Iet ~ = (~.), n E ?l., be a sequence, stationary in the wide 
sense (for simplicity, real) with expectation E~. = m and covariance R(n) = 
J~ .. e;;."F(dA.). 

Let x 0 , Xt, ... , xN-I be the results of observing the random variables 
eo. el, ... ,eN-1· How are we then to construct a "good" estimator ofthe 
(unknown) mean value m? 

Let us put 

1 N-1 
m~x) =- L xk. 

N k=O 
(1) 

Then it follows from the elementary properties of the expectation that this is 
a "good" estimator of m in the sense that it is unbiased "in the mean over all 
kinds of data x0 , •.• , xN-I ", i.e. 

(2) 

In addition, it follows from Theorem 4 of §3 that when (1/N) Lf=o R(k)--+ 0, 
N--+ oo, our estimator is consistent (in mean-square), i.e. 

N--+ oo. (3) 

Next we take up the problern of estimating the covariance function R(n), 
the spectral function F(A.) = F([ -n, A.]), and the spectral density f(A.), all 
under the assumption that m = 0. 
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Since R(n) = E~n+k~k• it is natural to estimate this function on the basis 
of N observations x0 , x~> ... , xN-I (when 0 ~ n < N) by 

lt is clear that this estimator is unbiased in the sense that 

0 ~ n < N. 

Let us now consider the question of its consistency. If we replace ~k in 
(3.37) by ~n+k~k and suppose that the sequence ~ = (~n) under consideration 
has a fourth moment (E ~6 < oo ), we find that the condition 

1 N-1 

N k~o E[~n+k~k- R(n)] [~n~o - R(n)]-+ 0, N-+ oo, (4) 

is necessary and sufficient for 

N-+ oo. (5) 

Let us suppose that the original sequence ~ = (~n) is Gaussian (with zero 
mean and covariance R(n)). Then by (II.l2.51) 

E[~n+k~k - R(n)] [~n~O - R(n)] = E~n+k~k~n~O - R 2(n) 

= E~n+k~k·E~n~o + E~n+k~n·E~k~o 
+ E~n+k~o · E~k~n- R 2(n) 

= R 2(k) + R(n + k)R(n - k). 

Therefore in the Gaussian case condition (4) is equivalent to 

1 N-1 

N k~o [R 2(k) + R(n + k)R(n - k)] -+ 0, N-+ oo. 

Since IR(n + k)R(n- k)l ~ IR(n + kW + IR(n- kW, the condition 

N-+ oo, 

implies (6). Conversely, if (6) holds for n = 0, then (7) is satisfied. 
Wehave now established the following theorem. 

(6) 

(7) 

Theorem. Let ~ = (~n) be a Gaussian stationary sequence with E~n = 0 and 
covariance function R(n). Then (7) is a necessary and sufficient condition that, 
for every n ;;::: 0, the estimator RN(n; x) is mean-square consistent, (i.e. that 
( 5) is satis.fied). 
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Remark. If we use the spectral representation of the covariance function, 
we obtain 

where (compare (3.35)) 

But as N--+ oo 

Therefore 

A =V, 

A # V. 

t ( 1 1 {1, A = V, 
JN ~~., v)--+ f(~~., v) = 0, A. =F v. 

~ :t:R 2(k)--+ {" f/(A., v)F(dA.)F(dv) 

= f/({A.})F(dA.) = ~ F 2({A.}), 

where the sum over A. contains at most a countable number of terms since 
the measure F is finite. 

Hence (7) is equivalent to 

(8) 

which means that the spectral function F(A.) = F([ -n, A.]) is continuous. 

2. We now turn to the problern of finding estimators for the spectral function 
F(A.) and the spectral density f(A.) (under the assumption that they exist). 

A method that naturally suggests itself for estimating the spectral density 
follows from the proof of Herglotz' theorem that we gave earlier. Recall that 
the function 

fN(A.) = _!__ L (1 - ~)R(n)e-i'-n 
2n lni<N N 

(9) 

introduced in §1 has the property that the function 

F N(A.) = f/N(v) dv 
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converges on the whole (Chapter III, §1) to the spectral function F(A.)o 
Therefore if F(A.) has a density f(A.), we have 

f/N(v) dv--+ f/(v) dv (10) 

for each A. E [- n, n)o 
Starting from these facts and recalling that an estimator for R(n) (on 

the basis of the observations x 0 , x 1, 0 0 0, xN_ 1) is RN(n; x), we take as an 
estimator for f(A.) the function 

A 0 l " ( In') ~ 0 - iA.n fN(A., x) = -2 1.... 1 - -N RN(n, x)e , 
1t jnj<N 

putting RN(n; x) = RN(Inl; x) for lnl <No 

(11) 

The function JN(A.; x) is known as a periodogramo lt is easily verified that 
it can also be represented in the following more convenient form: 

JN(A.; x) = _21 JNI!xne-i'-nl20 
nN n;o 

Since ERN(n; ~) = R(n), lnl < N, we have 

E]N(A.; ~) = fN(A.)o 

(12) 

If the spectral function F(A.) has density f(A.), then, since fN(A.) can also be 
written in the form (1.34), we find that 

1 N-1 N-1 f" 
fN(A.) = - L L ei•(k-llei'-<1-k>J(v) dv 

2nN k;O 1; 0 _" 

f" 1 ,N-1 12 = - L ei<v-Ä)k f(v) dvo 
_" 2nN k;O 

The function 

A. 2 

I

N- 1 12 sin -2 N 1 m_1 __ 
<I>N(A.) = 2nN k~o e - 2nN sin A./2 

is the Fejer kernel. 1t is known, from the properties of this function, that for 
almost every A. (with respect to Lebesgue measure) 

f"<I>N(A.- v)f(v) dv--+ f(A.)o 

Therefore for almost every A. E [- n, n) 

E]N(A.; ~)--+ f(A.); 

(13) 

(14) 

in other words, the estimator JN(A.; x) of f(A.) on the basis of x 0 , x 1, 0 0 0, xN-l 
is asymptotically unbiasedo 
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In this sense the estimator JN().; x) can be considered tobe "good." How­
ever, at the individual observed values x0 , ... , xN-t the values of the 
periodogram ]N().; x) usually turn outtobe far from the actual values f(A). 
In fact, Iet ~ = ( ~") be a stationary sequence of independent Gaussian random 
variables,~"~ %(0, 1). Then f().) = 1j2n and 

Then at the point A = 0 we have ]N(O, ~) coinciding in distribution with the 
square of the Gaussian random variable 11 ~ %(0, 1). Hence, for every N, 

E I]N(O; ~)- f(OW = 4~2 E 1172 - 112 > 0. 

Moreover, an easy calculation shows that if f(A) is the spectral density of a 
stationary sequence ~ = (~") that is constructed as a moving average: 

ro 

~" = I aken-k 
k=O 

(15) 

with b00=o lakl < oo, Lk'=o lakl2 < oo, where e = (en) is white noise with 
Ee6 < oo, then 

limEI]N().; ~)- f().W = {2!22(0), ;. = 0, ±n, (16) 
N->ro f (A), A # 0, ±n. 

Hence it is clear that the periodogram cannot be a satisfactory estimator of 
the spectral density. To improve the situation, one often uses an estimator for 
f().) of the form 

f ~().; x) = f" WN(A - v)]N(v; x) dv, (17) 

which is obtained from the periodogram fN().; x) and a smoothing function 
WN(A), and which we call a spectral window. Natural requirements on 
WN(A) are: 

(a) WN(A) has a sharp maximum at A = 0; 
(b) f':" WN(A) dA = l; 
(c) PI]~·().;~)- f(AW __. 0, N __. oo, A E [ -n, n). 

By (14) and (b) the estimators ]';().; ~) are asymptotically unbiased. Con­
dition (c) is the condition of asymptotic consistency in mean-square, which, 
as we showed above, is violated for the periodogram. Finally, condition (a) 
ensures that the required frequency). is "picked out" from the periodogram. 

Let us give some examples of estimators of the form ( 17). 
Bartlett's estimator is based on the spectral window 

WN(A) = aNB(aNA), 
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where aN j oo, aNfN--+ 0, N--+ oo, and 

(il) = _!_ I sin(il/2) 12 

B 2n il/2 · 

Parzen's estimator takes the spectral window to be 

where aN are the same as before and 

(il) = 2_ I sin(il/4) 14 

p 8n il/4 

Zhurbenko's estimator is constructed from a spectral window of the form 

with 

{

- il( + 1 lilla + il( + 1' lill ~ 1, 
Z(il) = 20( 20( 

0, lill > 1, 

where 0 < ll( ~ 2 and the aN are selected in a particular way. 
We shall not spend any more time on problems of estimating spectral 

densities; we merely note that there is an extensive statistical Iiterature 
dealing with the construction of spectral windows and the comparison of 
the corresponding estimators J':(il; x). 

3. We now consider the problern of estimating the spectral function F(il) = 
F([ -n, il]). Webegin by defining 

F N(il) = f/N(v) dv, P N(il; x) = f/N(v; x) dv, 

where ]N(v; x) is the periodogram constructed with (x0, x 1, ... , xN_ 1). 
lt follows from the proof of Herglotz' theorem (§1) that 

f/;." dFN(il)--+ f/;." dF(il) 

for every n E Z. Hence it follows (compare the corollary to Theorem 1, §3, 
Chapter III) that F N = F, i.e. F N(il) converges to F(il) at each point of con­
tinuity of F(il). 

Observe that 



446 VI. Stationary (Wide Sense) Random Sequences. L2-Theory 

for all In I < N. Therefore if we suppose that RN(n; e) converges to R(n) 
with probability one as N --+ oo, we have 

f/.l.n dF N(A.; e)--+ f/.l.n dF(A.) (P-a.s.) 

and therefore p N(A.; e) => F(A.) (P-a.s.). 
lt is then easy to deduce (if necessary, passing from a sequence to a 

subsequence) that if RN(n; e)--+ R(n) in probability, then FN(A.; e) => F(A.) in 
probability. 

4. PROBLEMS 

1. In (15) Iet e. - JV(O, 1). Show that 

(N- n)VRN(n, ~)-+ 2n fy + e2;";.)f2 (A.) dA. 

for every n, as N -+ oo. 
2. Establish (16) and the following generalization: 

!im cov(]N(A.; ~),]N(v; m = f 2 (A.), A =V =1- 0, ±n, {
2f 2(0), A. = v = 0, ±n, 

N~oo 0, A =f. ±V. 

§5. Wold's Expansion 

1. In contrast to the representation (3.2) which gives an expansion of a 
stationary sequence in the frequency domain, Wold's expansion operates 
in the time domain. The main point of this expansion is that a stationary 
sequence e = (e.), n E Z, can be represented as the sum of two stationary 
sequences, one of which is completely predictable (in the sense that its 
values are completely determined by its "past"), whereas the second does 
not have this property. 

We begin with some definitions. Let H.(e) = P(e") and H(~) = P(e) 
be closed linear manifolds, spanned respectively by ~· = ( ... , ~.- 1 , ~.) and 
~ = (· · · ~.- 1 , ~"' ... ). Let 

For every '1 EH(~), denote by 

ft.(IJ) = E(IJIH.I~)) 
the projection of '1 on the subspace H.(~) (see §11, Chapter II). We also 
write 
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Every element 11 EH(~) can be represented as 

where 11 - ft_ a:ll'/) l_ n_ 00 (17). Therefore H(~) is represented as the orthogonal 
sum 

H(~) = S(~) EB R(~). 

where S( ~) consists of the elements ir _ 00 (1'/) with 11 EH(~). and R( ~) consists 
of the elements of the form 11 - 7L 00 (1'/). 

WeshallnowassumethatE~n = Oand V~n > 0. ThenH(~)isautomatically 
nontrivial (contains elementsdifferent from zero). 

Definition 1. A stationary sequence ~ = (~n) is regular if 

and singular if 

Remark. Singular sequences are also called deterministic and regular 
sequences are called purely or completely nondeterministic. lf S(~) isaproper 
subspace of H(~) we just say that ~ is nondeterministic. 

Theorem 1. Every stationary (wide sense) random sequence ~ has a unique 
decomposition 

(1) 

where ~r = (~~) is regular and ~· = (~~) is singular. Here ~r amd ~· are orthog­
onal(~~ l_ ~;" for all n and m). 

PRooF. We define 

~~ = E(~JS(~)), 

Since ~~ l_ S(~). for every n, we have S(~') l_ S(~). On the other hand, S(~') 
~ S(~) and therefore S(~') is trivial (contains only random sequences that 
coincide almost surely with zero ). Consequently ~' is regular. 

Moreover, Hn(~) ~ Hn(~•) EB Hn(~') and HnW) ~ Hn(~), HnW) ~ Hn(~). 
Therefore Hn(~) = Hn(~•) EB Hn(~') and hence 

for every n. Since ~~ l_ S(~) it follows from (2) that 

S(~) ~ Hn(~"), 

(2) 
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and therefore S(e) ~ S(e") ~ H(e"). But e: ~ S(e); hence H(e") ~ S(e) and 
consequently 

which means that e· is singular. 
The orthogonality of e• and e• follows in an obvious way from e: E S(e) 

and e~ ..L S( e). 
Let us now show that (1) is unique. Let e" = 11~ + 11:, where 17' and 17" are 

regular and singular orthogonal sequences. Then since H"(17") = H(17"), we 
have 

H"(e) = H"(17') ffi H"(17") = H"(17') ffi H(17"), 

and therefore S(e) = S(17') ffi H(17"). But S(17') is trivial, and therefore 
S(e) = H(17"). 

Since 11: e H(17") = S(e) and '7~ ..L H(17") = S(e), we have E(~ .. IS(~)) = 
E(17~ + 11:1 S(~)) = 11:, i.e. 11: coincides with ~:; this establishes the uniqueness 
of (1). 

This completes the proof of the theorem. 

2. Definition 2. Let ~ = (~") be a nondegenerate stationary sequence. A 
random sequence e = (e") is an innovation sequence (for ~) if 

(a) e = (e") consists of pairwise orthogonal random variables with Ee" = 0, 
Ele"l 2 =1; 

(b) H"(e) = H"(e) for all n e Z. 

Remark. The reason for the term "innovation" isthat e"+ 1 provides, so to 
speak, new "information" not contained in H "(~)(in other words, "innovates" 
in H"(~) the information that is needed for forming H"+ 1 {~)). 

The following fundamental theorem establishes a connection between 
one-sided moving averages (Example 4, §1) and regular sequences. 

Theorem 2. A necessary and sufficient condition for a nondegenerate sequence 
~tobe regularisthat there are an innovation sequence e = (e") and a sequence 
(a") of complex numbers, n ~ 0, with L:'=o la"l 2 < oo, suchthat 

00 

~~~ = L aken-k (P-a.s.) (3) 
k=O 

PRooF. Necessity. We represent H"(~) in the form 

Since H"(~) is spanned by elements of H"_ 1 (~) and elements of the form 
ß · ~ .. , where ß is a complex number, the dimension (dim) of B" is either zero 
or one. But the space H "( ~) cannot coincide with H" _ 1 ( ~) for any value of n. 
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In fact, if Bn is trivial for some n, then by stationarity Bk is trivial for all k, 
and therefore H(~) = S(~). contradicting the assumption that ~ is regular. 
Thus Bn has the dimension dim Bn = 1. Let 'ln be a nonzero element of Bn. 
Put 

where 11'1nll 2 = E 1'1nl2 > 0. 
For given n and k ~ 0, consider the decomposition 

Then Bn-k• ... , e" is an orthogonal basis in Bn-k+ 1 ~ · · · ~ Bn and 
k-1 

where ai = E~nen- i· 

~" = I ajen- j + nn-k<~">' 
j=O 

By Bessel's inequality (11.11.16) 
00 

I laX ~ ll~nll 2 < 00. 
j=O 

(4) 

lt follows that I.i=o a;en-i converges in mean square, and then, by (4), 
equation (3) will be established as soon as we show that nn-k<~n) e 0, 
k-+ 00. 

lt is enough to consider the case n = 0. Since 

and the terms that appear in this sum are orthogonal, we have for every 
k~O 

JO llft-i- ft-i+111 2 = llitO (ft_i- ft-i+1)r 

= lin-k- noll 2 ~ 411~oll 2 < 00. 

Therefore the Iimit limk-oo n_k exists (in mean square). Now n_k EH -k(~) 
for each k, and therefore the Iimit in question must belong t<? nk<!:O Hk(~) = 
S(~). But, by assumption, S(~) is trivial, and therefore n_k ~ 0, k-+ oo. 

Sufficiency. Let the nondegenerate sequence ~ have a representation (3), 
where e = (en) is an orthonormal system (not necessarily satisfying the con­
dition Hn(~) = Hn(e), n E Z). Then Hi~) s; Hn(e) and therefore S(~) = 
nk Hk(~) s; Hn(e) for every n. But Bn+ 1 j_ Hn(e), and therefore Bn+ 1 j_ S(~) 
and at the sametime e = (en) is a basis in H(~). lt follows that S(~) is trivial, 
and consequently ~ is regular. 

This completes the proof of the theorem. 
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Remark. It follows from the proofthat a nondegenerate sequence ~ is regular 
if and only if it admits a representation as a one-sided moving average 

00 

~" = I aken-k• (5) 
k=O 

where e = en is an orthonormal system which (it is important to emphasize 
this !) does not necessarily satisfy the condition Hn(~) = Hn(e), n E Z. In this 
sense the conclusion of Theorem 2 says more, and specifically that for a 
regular sequence ~ there exist a = (an) and an orthonormal system e = (e.) 
suchthat not only (5), but also (3), is satisfied, with Hn(~) = Hn(e), n E Z. 

The following theorem is an immediate corollary of Theorems 1 and 2. 

Theorem 3 (Wold's Expansion). If ~ = (~") is a nondegenerate stationary 
sequence, then 

00 

~n = ~~ + I aken-k• (6) 
k=O 

where Ik"= 0 I ak 12 < oo and e = ( e") is an innovation sequence (for C). 

3. The significance of the concepts introduced here (regular and singular 
sequences) becomes particularly clear if we consider the following (linear) 
extrapolation problem, for whose solution the Wold expansion (6) is 
especially useful. 

Let H 0 ( ~) = P( ~0 ) be the closed linear manifold spanned by the variables 
~0 = ( ... , ~ _ 1, ~0). Consider the problern of constructing an optimal (Ieast­
squares) linear estimator en Of ~n in termS Of the "past" ~O = ( ... , ~_I, ~0 ). 
It follows from §11, Chapter II, that 

(7) 

(In the notation of Subsection 1, en = 7!0(~").) Since ~' and ~s areorthogonal 
and H0(~) = H 0{C) (f) H0W), we obtain, by using (6), 

~" = E(~~ + ~~IHo(~)) = E(~~IHo(~)) + E(~~IHo(~)) 

= E(e~IHo<C) EE> HoW)) + E(~~IHo(~') EE> HoW)) 

= E(~~IHo(~s)) + E(~~IHo<C)) 

= ~~ + E(J0aken-k1Ho(~')). 
In (6), the sequence e = (en) is an innovation sequence for ~' = (~~) and there­
fore H0(~') = H0 (e). Therefore 

en = ~~ + E(Joaken-kiHo(e)) = ~~ + k~naken-k (8) 
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and the mean-square error of predicting ~n by ~0 = ( ... , ~ _1, ~0) is 

(9) 

We can draw two important conclusions. 

(a) If ~ is singular, then for every n 2=: 1 the error (in the extrapolation) tr; 
is zero; in other words, we can predict ~n without error from its "past" 
~0 = (. · ·, ~- 1' ~o). 

(b) If ~ is regular, then tr; s tr; + 1 and 
CO 

lim tr; = I lakl 2 . (10) 
n-+oo k=O 

Since 
CO 

I lakl2 = E l~nl 2 , 
k=O 

it follows from (1 0) and (9) that 

n->oo; 

i.e. as n increases, the prediction of ~n in terms of ~0 = ( ... , ~ _ 1 , ~0) becomes 
trivial (reducing simply to E~n = 0). 

4. Let us suppose that ~ is a nondegenerate regular stationary sequence. 
According to Theorem 2, every such sequence admits a representation as a 
one-sided moving average 

00 

~n = I aken-k• 
k=O 

(11) 

where Lk'=o lakl 2 < oo and the orthonormal sequence e = (en) has the 
important property that 

n E lL. (12) 

The representation (11) means (see Subsection 3, §3) that ~n can be 
interpreted as the output signal of a physically realizable filter with impulse 
response a = (ak), k 2=: 0, when the input is e = (en). 

Like any sequence of two-sided moving averages, a regular sequence has 
a spectral density f(A.). But since a regular sequence admits a representation 
as a one-sided moving average it is possible to obtain additional information 
about properties of the spectral density. 

In the first place, it is clear that 
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where 
00 

cp(A.) = L e-iAkak> (13) 
k=O 

Put 
00 

<D(z) = L ak~· (14) 
k=O 

This function is analytic in the open domain I z I < 1 and since Lk'= 0 I ak 12 

< oo it belongs to the Hardy class H2 , the class offunctions g = g(z), analytic 
in lzl < 1, satisfying 

1 J" sup -2 ig(rei 11W dO < oo. 
O:Sr<l 1t -n 

(15) 

In fact, 

and 

sup L lakl 2r 2k ~ L lakl2 < oo. 
O:Sr<l 

It is shown in the theory of functions of a complex variable that the 
boundary function cl>( ei'-), -n ~ A. < n, of <I> E H2 , not identically zero, has 
the property that 

In our case 

where <I> E H 2 • Therefore 

lnf(A.) = -In 2n + 2ln I<D(e-;;.)1, 

and consequently the spectral density f(A.) of a regular process satisfies 

f .. In f(A.) dA. > - oo. 

(16) 

(17) 

On the other band, Iet the spectral density .f(A.) satisfy ( 17). It again follows 
from the theory of functions of a complex variable that there is then a 
function cl>(z) = Lk'=o a1 zk in the Hardy class H 2 such that (almost every­
where with respect to Lebesgue measure) 
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Therefore ifwe put «P(A.) = <l>(e-;;.) we obtain 

f(A.) = 21n I cp(A.) 12, 

where «P(A.) is given by (13). Then it follows from the corollary to Theorem 3, 
§3, that ~ admits a representation as a one-sided moving average (11), where 
e = (en) is an orthonormal sequence. From this and from the Remark on 
Theorem 2, it follows that ~ is regular. 

Thus we have the following theorem. 

Theorem 4 (Kolmogorov). Let ~ be a nondegenerate regular stationary 
sequence. Then there is a spectral density f(A.) such that 

f" In f(A.) dA. > - oo. (18) 

In particular, f(A.) > 0 (almost everywhere with respect to Lebesgue measure). 
Conversely, if ~ is a stationary sequence with a spectral density satisfying 

(18), the sequence is regular. 

5. PROBLEMS 

1. Show that a stationary sequence with discrete spectrum (piecewise-constant spectral 
function F(A.)) is singular. 

2. Let u; =Eie.- ~.1 2 , ~. = E(e.IH0(e>}. Show that if u; = 0 for some n ~ 1, the 
sequence is singular; if u; -+ R(O) as n -+ oo, the sequence is regular. 

3. Show that the stationary sequence e = (e.), e. = e;""', where cp isauniform random 
variable on [0, 21t], is regular. Find the estimator ~. and the number u;, and show 
that the nonlinear estimator 

~. = (~)" '-1 
provides a correct estimate of e. by the .. past" eo = ( ... ' e-h ~o). i.e. 

EI~. - ~.1 2 = 0, n ~ 1. 

§6. Extrapolation, Interpolation and Filtering 

1. Extrapolation. According to the preceding section, a singular sequence 
admits an error-free prediction (extrapolation) of ~"' n ~ 1, in terms of the 
"past," ~0 = ( ... , ~ _ 1, ~0). Consequently it is reasonable, when considering 
the problern of extrapolation for arbitrary stationary sequences, to begin 
with the case of regular sequences. 
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According to Theorem 2 of §5, every regular sequence e = (e,.) admits a 
representation as a one-sided moving average, 

00 

e,. = L akBn-k 
k=O 

(1) 

with Lk'=o lakl2 < oo and some innovation sequence e = (e,.). lt follows 
from §5 that the representation (1) solves the problern of finding the optimal 
(linear) estimator ~ = E(e,.IHo(e)) since, by (5.8), 

and 

00 

~" = :L aken-k 
k=n 

(2) 

(3) 

However, this can be considered only as a theoretical solution, for the 
following reasons. 

The sequences that we consider are ordinarily not given to us by means 
of their representations (1), but by their covariance functions R(n) or the 
spectral densities f(A.) (which exist for regular sequences). Hence a solution 
(2) can only be regarded as satisfactory if the coefficients ak are given in 
terms of R(n) or of f(A.), and Bk are given by their values ... ek-l• ek. 

Without discussing the problern in general, we consider only the special 
case (of interest in applications) when the spectral density has the form 

f(A.) = 2~ i<~>(e-i).W. (4) 

where <D(z) = b00=o bkzk has radius of convergence r > 1 and has no zeros 
in lzl ~ 1. 

Let 

e,. = f/;."z(dA.) 

be the Spectral representation of e = (e,.), n E Z. 

(5) 

Theorem 1. lf the spectral density of e has the density (4), then the optimal 
(linear) estimator ~n of e,. in terms of eo = (.;.' e -1• eo) is given by 

~n = f .. ~"(A.)Z(dA.), (6) 

where 

(7) 

and 
00 

<D,.(z) = L bkzk. 
k=n 
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PRooF. According to the remark on Theorem 2 of §3, every variable 
~n E H0 (e) admits a representation in the form 

(8) 

where H 0(F) is the closed linear manifold spanned by the functions en = eun 
for n :::;; 0 (F(A.) = J~" f(v) dv). 

Since 

EI en - ~n 12 = EI f" (ei).n - qin(A.))Z(dA.) r 
= f"ieiAn- qin(A.W f(A.) dA., 

the proofthat (6) is optimal reduces to proving that 

inf J" leiAn- qin(A.)i 2f(A.) dA.= J" leiAn- ~n(A.WJ(A.) dA.. (9) 
iP.eHo(F) -" _" 

1t follows from Hilbert-space theory (§11, Chapter II) that the optimal 
function ~n(A.) (in the sense of (9)) is determined by the two conditions 

(1) ~n(A.) EH o(F), (10) 
(2) eiAn - ~n(A.) ..L H o(F). 

Since 
eiAnci>n(e-iA) = eiAn[bne-iAn + bn+le-iA(n+t> + ···]EHo(F) 

andin a similar way 1/ci>(e-iA)eH0(F), the function ~n(A.) defined in (7) 
belongs to H 0(F). Therefore in proving that ~n(A.) is optimal it is sufficient 
to verify that, for every m ;;::: 0, 

ei.l.n - ~n(A.) ..L ei.l.m, 

i.e. 

m~O. 

The following chain of equations shows that this is actually the case: 

] = __!_ f" i.l.(n-m)[1- ci>n(e-_i.I.)Jici>( -i.l.)l2 dA. 
n,m 2n _"e ci>(e ... ) e 
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where the last equation follows because, form~ 0 and r > 1, 

This completes the proof of the theorem. 

Remark 1. Expanding <PiA.) in a Fourier series, we find that the predicted 
value ~n of ~n• n ~ 1, in terms of the past, ~0 = ( ... , ~ _1, ~0), is given by the 
formula 

Remark 2. A typical example of a spectral density represented in the form 
(4) is the rational function 

1 IP(e-i'-)12 
f(A.) = 2n Q(e ;;.) ' 

where the polynomials P(z) = a0 + a1z + · · · + aPzP and Q(z) = 1 + b1z 
+ · · · + bqzq have no zeros in {z: izl ~ 1}. 

In fact, in this case it is enough to put <l>(z) = P(z)/Q(z). Then <l>(z) 
= Loo=o Ckzk and the radius of convergence ofthis series is greater than one. 

Let us illustrate Theorem 1 with two examples. 

EXAMPLE 1. Let the spectral density be 

1 
f(A.) = 2n (5 + 4 cos A.). 

The corresponding covariance function R(n) has the shape of a triangle with 

R(O) = 5, R(± 1) = 2, R(n) = 0 for lnl ~ 2. 

Since this spectral density can be represented in the form 

f(A.) = 2
1n: 12 + e-;.<1 2, 

we may apply Theorem 1. We find easily that 

<PiA.) = 0 for n ~ 2. 

(11) 

(12) 

Therefore ~n = 0 for all n ~ 2, i.e. the (linear) prediction of ~n in terms of 
~0 = ( ... , ~ _1, ~0) is trivial, which is not at all surprising if we observe that, 
by (11), the correlation between ~n and any of ~0 , ~ _ 1, ... is zero for n ~ 2. 
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For n = 1 we find from (6) and (12) that 

f" -i.l. 
A i.l. e 
~1 = e -2 --i.l. Z(dA.) 

_" + e 

1 J" 1 00 
( -1t f" . = -2 ( _ _ i'-) Z(dA.) = L 2k+ 1 e -•uz(dA.) 

-n 1 +_e_ lt-=0 -n 

2 

EXAMPLE 2. Let the covariance function be 

Iai < 1. 

Then (see Example 5 in §1) 

1 1 - lal2 
f(A.) = 2n 11 - ae-i'-12' 

i.e. 

where 

<})(z) = (1 - lal2)1/2 = (1 - lal2)1/2 I (azt, 
1 - az k=o 

from which tPn(A.) = a" and therefore 

~n = f"a"Z(dA.) = a"~o· 

In other words, in order to predict the value of ~" from the observations 
~0 = ( ... , ~ _1, ~0) it is sufficient to know only the last Observation ~0 . 

Remark 3. lt follows from the W old expansion of the regular sequence 
~ = (~n) with 

00 

~" = I ak~n-k 
k=O 

that the spectral density f(A.) admits the representation 

f(A.) = 21n l<l>(e-i'-)12, 

where 
00 

<})(z) = L akzk. 
k=O 

(13) 

(14) 

(15) 
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It is evident that the converse also holds, that is, if f(A.) admits the representa­
tion (14) with a function <l>(z) ofthe form (15), then the Wold expansion of ~n 
has the form (13). Therefore the problern of representing the spectral density 
in the form (14) and the problern of determining the coefficients ak in the 
Wold expansion are equivalent. 

The assumptions that <l>(z) in Theorem 1 has no zeros for I zl ~ 1 and that 
r > 1 are in fact not essential. In other words, if the spectral density of a 
regular sequence is represented in the form (14), then the optimal estimator 
~n (in the mean square sense) for ~n in terms of ~0 = ( ... , ~ _1, ~0) is deter­
mined by formulas (6) and (7). 

Remark 4. Theorem 1 (with the preceding remark) solves the prediction 
problern for regular sequences. Let us show that in fact the same answer 
remains valid for arbitrary stationary sequences. More precisely, Iet 

~n = f/;."Z(dA.), F(L1) = E IZ(L1W, 

and let f'(A.) = (lj2n) 1 <l>(e- i).W be the spectral density of the regular 
sequence ~r = (~~). Then ~n is determined by (6) and (7). 

In fact, Iet (see Subsection 3, §5) 

~n = f "<Pn(A.)Z(dA.), ~~ = f" <P~(A.)Z'(dA.), 
where Z'(A) is the orthogonal stochastic measure in the representation ofthe 
regular sequence ~'. Then 

EI ~n - ~n 12 = f" I eiAn - <Pn<A.W F(dA.) 

;::: f" lei).n- <P.(A.)I 2f'(A.) dA.;::: f" lei).n- <P~(A.Wf'(A.) dA. 

=EI~~-~~1 2 • (16) 

But ~n- ~n = ~~- ~'. Hence El~n- ~nf =EI~~- ~~1 2 , and it follows 
from (16) that we may take <P.(A.) to be <P~(A.). 

2. Interpolation. Suppose that ~ = (~n) is a regular sequence with spectral 
density f(A.). The simplest interpolation problern is the problern of con­
structing the optimal (mean-square) linear estimator from the results of the 
measurements {~"' n = ± 1, ±2, ... } omitting ~0 . 

Let H0(~) be the closed linear manifold spanned by ~"' n =1= 0. Then 
according to the results of Theorem 2, §3, every random variable 11 E H0(~) 
can be represented in the form 

11 = f "q>(A.)Z(dA.), 
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where q> belongs to H 0(F), the closed linear manifold spanned by the func­
tions e;;'", n =1 0. The estimator 

~0 = f" <iJ(A)Z(dA) (17) 

will be optimal if and only if 

inf EI ~o - 1J 12 = inf J" 11 - cp(A) 12 F(dA) 
~eH0W cpeHO(F) -n 

= f"11- <IJ(AWF(dA) = El~o- ~0 1 2 . 

lt follows from the perpendicularity properties of the Hilbert space 
H 0 (F) that <IJ(A) is completely determined ( compare ( 1 0)) by the two conditions 

(1) <IJ(A) E H0(F), (18) 
(2) 1 - <IJ(A) j_ H 0 (F). 

Theorem 2 (Kolmogorov). Let~ = (~.) be a regular sequence suchthat 

f1t dA 
-n j(A) < OO. 

(19) 

Then 

<IJ(A) = 1 - f~A)' (20) 

where 

2n 
(21) 

r:t. = J" dA' 
_"j(A) 

and the interpolation error b2 = E I~ 0 - ~ 0 12 is given by <5 2 = 2n · r:t.. 

PROOF. Weshall give the proof only under very stringent hypotheses on the 
spectral density, specifically that 

0 < c ::;; j(A) ::;; c < 00. 

lt follows from (2) and (18) that 

r" [1 - <IJ(A)]e;""j(A) dA = 0 

(22) 

(23) 

for every n =1 0. By (22), the function [1 - <iJ(A)]j(A) belongs to the Hilbert 
space L 2([ -n, n], aJ[ -n, n], Jl.) with Lebesgue measure Jl.. In this space the 
functions {e;""/~, n = 0, ± 1, ... } form an orthonormal basis (Problem 7, 
§11, Chapter II). Hence it follows from (23) that [1 - <IJ(A)]j(A) is a constant, 
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which we denote by rx. Thus the second condition in (18) Ieads to the con­
clusion that 

CJ. 
<lJ(A.) = 1 - f(A.). (24) 

Starting from the first condition (18), we now determine rx. 
By (22), q, E L 2 and the condition q, E H0(F) is equivalent to the con­

dition that q, belongs to the closed (in the L 2 norm) linear manifold spanned 
by the functions eiJ.n, n =1= 0. Hence it is clear that the zeroth coeffi.cient in the 
expansion of <lJ(A.) must be zero. Therefore 

J" J" dA. 0 = _" <lJ(A.) dA. = 2rr - CJ. _" f(A.) 

and hence rx is determined by (21). 
Finally, 

b2 = El~o- eol 2 = r"ll- q,(A.Wf(A.)dA. 

2 J" f(l) 4rr2 

= itxi _"jZ(A_) dA.= J" dA. · 

-n f(A.) 

This completes the proof (under condition (22)). 

Corollary. lf 

<lJ(A.) = L ckem, 
O<iki,;N 

then 

ExAMPLE 3. Let f(A.) be the spectral density in Example 2 above. Then an 
easy calculation shows that 

and the interpolation error is 

3. Filtering. Let (0, 0 = ((On), (~n)), n E 7L, be a partially observed sequence, 
where 0 = (On) and ~ = (~n) are respectively the unobserved and the observed 
components. 
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Each of the sequences () and ~ will be supposed stationary (wide sense) 
with zero mean; Iet the spectral densities be 

()n = f/A"Ze(dA.), and ~n = f/.<nz~(dA.). 

We write 

and 

F9~(ll) = EZ9(ll)Zill). 

In addition, we suppose that () and ~ are connected in a stationary way, i.e. 
that their covariance functions cov((Jn, ~m) = E()n~m depend only on the 
differences n - m. Let R9~(n) = E(Jn~o; then 

R9~(n) = f/'""F9~(dA.). 
The filtering problern that we shall consider is the construction of the 

optimal (mean-square)linear estimator {)n of ()n in terms of some observation 
of the sequence ~-

The problern is easily solved under the assumption that ()n is to be con­
structed from all the values ~m• m E 7L. In fact, since {)n = E((JniH(~)) there is 
a function ~n(A.) such that 

(25) 

As in Subsections 1 and 2, the conditions to impose on the optimal ~n(A.) 
are that 

From the latter condition we find 

for every m E 7L. Therefore if we suppose that F 9~(A.) and F ~(A.) have densities 
fe~(A.) and f~(A.), we find from (26) that 

f/A(n-ml[fe~(A) _ e-iAn~n(A)j~(A)] dA= 0. 

If f~(A.) > 0 (almost everywhere with respect to Lebesgue measure) we 
find immediately that 

(27) 
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where 

«P{Ä.) = fe~(Ä.) · !T (Ä.) 

and f~e(Ä.) is the "pseudotransform" of f~(Ä.), i.e. 

!T (Ä.) = {! z l(Ä.), NÄ.> > o, 
o, NÄ.) = o. 

Then the filtering error is 

EIO"- Onl 2 = f,.Lfo(A.)- ~~~Ä.)ft(Ä.)] dÄ.. (28) 

As is easily verified, «P e H(F ~), and consequently the estimator (25), with 
the function (27), is optimal. 

EXAMPLE 4. Detection of a signal in the presence of noise. Let ~" = 0" + Yfn• 

where the signal () = (0") and the noise rt = (rt") are uncorrelated sequences 
with spectral densities .fe(Ä.) and .f,,(Ä.). Then 

On = f/;."«P(Ä.)Z~(dÄ.), 

where 

«P(Ä.) = fe(A.) Lfo(Ä.) + f"(Ä.)]e • 

and the fittering error is 

The solution (25) obtained above can now be used to construct an optimal 
estimator ön+m of en+m as a result of observing ~k• k :::; n, where m is a given 
element of Z. Let us suppose that ~ = (~") is regular, with spectral density 

f(Ä.) = 2
1n l$(e-uw. 

where $(z) = Lk'=o akzk. By the Wold expansion, 
00 

~" = L ak6n-k• 
k=O 

where 6 = (6k) is white noise with the spectral resolution 

6" = f/;."Z.(dÄ.). 

Since 
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and 

f" A iA(n+m) A -i). A ()n+m = e <p(A.)<I>(e )Z.(dA.) = L an+m-kek, 
-n k~n+m 

where 

(29) 

then 

But Hn(O = Hn(e) and therefore 

en+m = I an+m-kek = f" [I an+m-kei"k]z.<dA.) 
k$;n -n kS.n 

where <I>EB is the pseudotransform of <1>. 
Wehave therefore established the following theorem. 

Theorem 3. If the sequence ~ = (~n) under observation is regu/ar, then the 
optimal (mean-square) linear estimator {jn+m of On+m in terms of ~k• k ::; n, 
is given by 

(30) 

where 

00 

Hm(e-i") = L al+me-i).l<l>(j)(e-i).) (31) 
1=0 

and the coefficients ak are defined by (29). 

4. PROBLEMS 

1. Let~ be a nondegenerate regular sequence with spectral density (4). Show that Cl>(z) 
has no zeros for I z I .::;; 1. 

2. Show that the conclusion of Theorem 1 remains valid even without the hypotheses 
that Cl>(z) has radius of convergence r > I and that the zeros of Cl>(z) alllie in I z I > 1. 
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3. Show that, for a regular process. the function ll>(z) introduced in (4) can be repre­
sented in the form 

lzl < 1, 

where 

l J" ck = ~ eikA In f(A.) dA.. 
2n -n 

Deduce from this formula and (5.9) that the one-step prediction error af = E 1~ 1 - ~ 1 12 

is given by the Szegö-Kolmogorov formula 

af = 2nexp{2
1n f. lnf(1)d1}. 

4. Prove Theorem 2 without using (22). 

5. Let a signal 0 and a noise rJ, not corrclated with cach other, have spectral densities 

1 I I I 
fo(A.) = 2n .11 + b1e i"l 2 and ül) = 2n .11 + b2 e iAI 2 • 

Using Theorem 3, find an estimator On+m for fJn+m in terms of ~k• k :.,; n, where 
~k = I:Jk + tlk· Consider the sameproblern for the spectral densities 

1 .• 2 1 
/ 8(1) = 2n 12 + e-• I and fP) = 2n. 

§7. The Kalman-Bucy Filter and Its Generalizations 

l. From a computational point of view, the solution presented above for 
the problern of filtering out an unobservable component () by means of 
observations of ~ is not practical, since, because it is expressed in terms of the 
spectrum, it has tobe carried out by spectral methods. In the method proposed 
by Kaiman and Bucy, the synthesis of the optimal filter is carried out re­
cursively; this makes it possible to do it with a digital computer. There are 
also other reasons for the wide use ofthe Kalman-Bucy filter, one being that 
it still "works" even without the assumption that the sequence (0, ~) is 
stationary. 

We shall present not only the usual Kalman-Bucy method, but also 
a generalization in which the recurrent equations determined by (0, ~) 
have coefficients that depend on all the data observed in the past. 

Thus, Iet us suppose that (0, ~) = ((On), (~n)) is a partially observed 
sequence, and Iet 

On= (0 1(n), ... , Ok(n)) and ~n = (~ 1 (n), ... , ~1(n)) 

be governed by the recurrent equations 

()n+l = a0(n, ~) + a 1(n, ~)On+ b 1(n, ~)e 1 (n + 1) +bin, ~)ein+ 1), 

~n+ 1 = Ao(n, ~) + A 1(n, ~)On+ B 1(n, ~)e 1 (n + 1) + B2(n, Oe2(n + 1). 
(1) 
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Here 

s1(n) = (s 11 (n), ... , slk(n)) and s2 (n) = (s21 (n), ... , s2 ln)) 

are independent Gaussian vectors with independent components, each of 
which is normally distributed with parameters 0 and 1; a0(n, 0 = (a01 (n, 0, 
... , a0k(n, 0) and A0(n, ~) = (A 01 (n, ~), ... , A0 ln, ~)) are vector functions, 
where the dependence on ~ = { ~ 0 , ... , ~") is determined without looking 
ahead, i.e. for a given 11 the functions a0(n, 0, ... , A01 (11, 0 depend only on 
~0 , ... , ~n; the matrix functions 

b1(n, 0 = llb!Jl(n, ~)/I, 

B 1(11, ~) = 1/Bl]l(n, ~)I/, 

a1(n, ~) = /lal]l(n, ~)//, 

b2 (11, ~) = 1/b~Jl(n, ~)I/, 

Bz(n, ~) = II B!Jl(n, ~) II, 

A 1(11, ~) = 1/AlJl(n, ~)II 

have orders k x k, k x I, I x k, I x I, k x k, I x k, respectively, and also 
depend on ~ without looking ahead. We also suppose that the initial vector 
(80 , ~0 ) is independent of the sequences s1 = (s 1(n)) and s2 = (s2(n)). 

To simplify the presentation, we shall frequently not indicate the de­
pendence of the coefficients on ~-

So that the system (I) will have a solution with finite second moments, 
we assume that E(//80 /1 2 + 1/~ 0 // 2 ) < oo 

and if g(n, 0 is any of the functions a0 i> A0 .i, b\}l, biJl, BlJl or ßiJl then 
E lg(11, ~W < oo, 11 = 0, I,... . With these assumptions, (8, ~) has 
E(/18nl/ 2 + ll~n/1 2 ) < oo, n?: 0. 

Now Iet ff~ = a{w: ~ 0 , ... , ~n} be the smallest a-algebra generated by 
~O·····~nand 

Yn = E [(On - mn)(f}n - mn)* I ffn 

According to Theorem 1, §8, Chapter II, mn = (m 1 (11), ... , mk(n)) is an optimal 
estimator (in the mean square sense) for the vector en = (81(11), ... ' 8k(n)), 
and Eyn = E[(8n - mn)(8n - mn)*] is the matrix of errors of Observation. 
To determine these matrices for arbitrary sequences (8, ~) governed by 
equations (1) is a very difficult problem. However, there is a further sup­
plementary condition on (80 , ~0 ) that Ieads to a system ofrecurrent equations 
for mn and Y m that still contains the Kaiman-Bucy filter. This is the condition 
that the conditional distribution P(80 :::;; a I ~0 I) is Gaussian, 

1 Ja { (x - m0 ) 2 } P(80 :::;; al ~0) = ~ exp - 2 2 dx, (2) 
y 2ny0 -oo Yo 

with parameters m0 = m0(~o), Yo = Yo(~o). 
To begin with, Iet us establish an important auxiliary result. 
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Lemma 1. U nder the assumptions made above about the coefficients of (1 ), 
tagether with (2), the sequence (0, 0 is conditionally Gaussian, ioeo the con­
ditional distribution function 

P{(}0 :::::;; ao, 0 0 0 , 1'/n:::::;; anl~n 

is (P-aoso) the distribution.function of an n-dimensional Gaussian vector whose 
mean and covariance matrix depend on (~ 0 , 0 o o, ~n)o 

PROOFo We prove only the Gaussian character of P(On:::::;; al~~); this is 
enough to let us obtain equations for mn and Yno 

First we observe that (1) implies that the conditional distribution 

P(On+l :::::;; a1, ~n+l:::::;; xl~~,(}n = b) 

is Gaussian with mean-value vector 

A A b = ( a0 + a 1 b ) 
o + t Ao + Atb 

and covariance matrix 

( bob boß) 
IB = (b oB)* B oB ' 

where bob = b1b'f + b2 b!, b oB= b1B'f + b2 B!, BoB= B 1B'f + B2 B!o 
Let (n =(On, ~n) and t = (t1, 0 0 0, tk+l)o Then 

E[exp(it*(n+t)l~~, OnJ = exp{it*(A 0(n, ~) + A 1(n, ~)(}n)- tt*IB(n, Ot}o 
(3) 

Suppose now that the conclusion ofthe lemma holds for some n ~ 00 Then 

E[exp(it*A 1(n, ~)(}n)I~D = exp(it*A 1(n, ~)mn- tt*(A 1(n, ~)ynA'f(n, ~))to 
(4) 

Let us show that (4) is also valid when n is replaced by n + 1. 
From (3) and (4), we have 

E[exp(it*(n+ 1 )1~~] = exp{it*(A0(n, 0 + A 1(n, ~)mn) 

-tt*IB(n, ~)t- tt*(A 1(n, ~)ynA'f(n, ~))t}o 

Hence the conditional distribution 

P((}n+l:::::;; a, ~n+l:::::;; xl~~) (5) 

is Gaussiano 
As in the proof of the theorem on normal correlation (Theorem 2, § 13, 

Chapter II) we can verify that there is a matrix C such that the vector 

1J = [On+l- E(On+tl~m- C[~n+t- E(~n+tl~~)] 

has the property that (P-aoso) 

E[17(~n+t- E(~n+tl~m*l~~] = 0° 



§7. The Kalman-Bucy Filter and lts Generalizations 467 

It follows that the conditionally-Gaussian vectors '1 and en+ 1, considered 
under the condition ~~. are independent, i.e. 

P("fEA, en+1 EBI~~) = P("fEAI~~)· P(en+1 eBI~~) 

for all A e fdl(Rk), Be fdl(R 1). 

Therefore if s = (s1, ... , s") then 

E[exp(is*On+ 1 )1~~. en+1] 

= E{exp(is*[E(On+11~~) + '1 + C[en+1- E(en+tl~~)]])l~~. en+d 

= exp{is*[E(On+tl~~) + C[en+1- E(en+11~~)]} 
X E[exp(is*'7)1~~. en+1] 

= exp{is*[E(On+tl~~)] + C[en+1- E(en+tl~~)]} 
x E(exp(is*"f)l~n (6) 

By (5), the conditional distribution P('7 $; yl~~) is Gaussian. With (6), 
this shows that the conditional distribution P(On+ 1 $; al~~+ 1 ) is also 
Gaussian. 

This completes the proof of the Iemma. 

Theorem 1. Let (0, e) be a partial Observation of a sequence that satis.fies the 
system (1) and condition (2). Then (m", Yn) obey the following recursion 
relations: 

mn+ 1 = [a0 + a1mn] + [b oB+ a1ynATJ[B oB+ A 1ynATJe:l 
x [en+1- Ao- A1mn], (7) 

Yn+ 1 = [a 1ynaT + bob]- [boB + a1ynAf][BoB + A1ynATJ$ 
X [b oB+ a1ynA!J*. (8) 

PROOF. From (1), 

and 

On+ 1 - E((;ln+tl~~) = a1[0n- mnJ + b1e1(n + 1) + b2B2(n + 1), 

en+1- E(en+1~~~) = A1[0"- mnJ + B1e1(n + 1) + B2e2(n + 1). 

Let us write 

d11 = cov(On+ 1• On+ 1l ~~) 
= E{[(;ln+1- E(On+11~~)][0n+1- E(On+11~~)]*/~n. 

d12 = cov(On+ 1• ~n+ 1l~~) 
= E{[On+1- E[On+tl~~)][~n+1- E(~n+1~~~)]*/~~}, 

d22 = cov(~n+ I• ~n+ 1l ~~) 
= E{[en+1- E(en+11~~)J[en+1- E(~n+11~~)]*/~~}. 

(9) 

(10) 
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Then, by (10), 

d22 = Aty.Af +Boß. 

(11) 

By the theorem on normal correlation (see Theorem 2 and Problem 4, 
§ 13, Chapter II), 

mn+t = E(l1n+tlff~, ~n+t) = E(l1n+tlff~) + d12dfz<~n+t- E(~n+tlff~)) 

and 

Yn+t = cov(On-t• On+tlff~, ~n+t)= d11- d12df2di2· 

If we then use the expressions from (9) for E(O.+ 1 1 .?~) and E(~.+ 1 1 .?~) 

and those for d 11 , d12 , d22 from (11), we obtain the required recursion 
formulas (7) and (8). 

This completes the proof of the theorem. 

Corollary 1. lf the coefficients a0 (n, ~), ... , B2(n, ~) in (1) are independent of 
~ the corresponding method is known as the Kalman-Bucy method, and equa­
tions (7) and (8)for m. and 'l'n describe the Kalman-Bucy filter. It is important 
to observe that in this case the conditional and unconditional error matrices 

Yn agree, i.e. 

Corollary 2. Suppose that a partially observed sequence (0., ~.) has the 
property that e. satisfies thefirst equation (1), and that (. satisfies the equation 

~. = A0(n- 1, ~) + A1(n- 1, ~)0. 
+ B1(n- 1, ~)c 1 (n) + B2(n- 1, ~)c2(n). (12) 

Then evidently 

~n+l = Ao(n, ~) + A1(n, ~)[ao(n, ~) + a1(n, oo. 

+ b1(n, Oc 1(n + 1) + b2(n, ~)cz(n+ 1)] + B1(n, ~)c 1 (n + 1) 

+ B2(n, ~)cz(n + 1), 

and with the notation 

Ao = Ao + Atao, 

B1 = A1b1 + B1, 

At = Atat, 

B2 = A 1b2 + B2, 

we find that the case under consideration also depends on the model (1), and 

that mn and Yn satisfy (7) and (8). 

2. We now consider a linear model (compare (1)) 

on+l = ao + alon + a2~n + blcl(n + 1) + b2c2(n + 1), 

~n+l = A 0 + A 10n + A 2 ~. + B 1c1(n + 1) + B2c2(n + 1), 
(13) 
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where the coefficients a0 , ... , Bn may depend on n (but not on ~), and e;/n) 
are independent Gaussian random variables with Eeii(n) = 0 and EeG(n) = 1. 

Let (13) be solved for the initial values (80 , ~0) so that the conditional 
distribution P(80 :::;; al~o) is Gaussian with parameters m0 = E(80 , ~0) and 
y = cov(80 , 80 I ~0) = E y0 . Then, by the theorem on normal correlation and 
(7) and (8), the optimal estimator mn = E(8n I~~) is a linear function of 

~0• ~1• "·' ~n· 
This remark makes it possible to prove the following important Statement 

about the structure of the optimal linear filter without the assumption that 
it is Gaussian. 

Theorem 2. Let (8, ~) = (8n, ~n)n"o be a partially observed sequence that 
satisfies (13), where e;;{n) are uncorrelated random variables with Eeu(n) = 0, 
EeG{n) = 1, and the components ofthe initial vector (80 , ~0) havefinite second 
moments. Then the optimal linear estimator mn = E( en I ~0' ... ' ~n) satisfies 
(7) with a0(n, ~) = a0(n) + a2 (n)~n' A0(n, ~) = A0(n) + A2(n)~n• and the 
error matrix Yn = E [(8n - 8m)(8n - mn)*] satisfies (8) with initial values 

mo = cov(8o, ~o)coval(~o. ~o). ~0, 

Yo = cov(80 , 80 )- cov(80 , ~0)cov6l(~0 , ~0)cov*(80 , ~o). 
(14) 

For the proof of this Iemma, we need the following Iemma, which reveals 
the role of the Gaussian case in determining optimallinear estimators. 

Lemma 2. Let(r:x., ß) beatwo-dimensional random vector with E(r:x.2 + ß2 ) < oo, 
a(ti, ß) a two-dimensional Gaussian vector with the same first and second 
moments as (r:x., ß), i.e. 

i = 1, 2; Etiß = Er:x.ß. 

Let A.( b) be a linear function of b such that 

A.(b) = E(ti I ß = b). 

Then A.(ß) is the optimal (in the mean square sense) linear estimator of r:x. in 
terms of ß, i.e. 

E(r:x. I ß) = A.(ß). 

Here EA.(ß) = Er:x.. 

PROOF. We first observe that the existence of a linear function A.(b) coinciding 
with E(ti I ß = b) follows from the theorem on normal correlation. Moreover, 
Iet I(b) be any other linear estimator. Then 

E[ti- 1(ß)]2 ;;::: E[ti- A.(ß)] 2 
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and since I(b) and A.(b) are linear and the hypotheses of the lemma are 
satisfied, we have 

E[tX - l(ß)]2 = E[a - I(ß)]2 ~ E[fl - A.(ß)] 2 = E[tX- A.(ß)] 2, 

which shows that A.(ß) is optimal in the dass of linear estimators. Finally, 

EA.(ß) = EA.(ß) = E[E(iXIß)J = Efl = EtX. 

This completes the proof of the lemma. 

PROOF OF THEOREM 2. We consider, besides (13), the system 

iJn+t = ao + atiJn + azen + btett(n + 1) + b2 eu(n + 1), 

en+t = A0 + A 1iJ" + A2~n + B1e21 (n + 1) + B2 e22(n + 1), 
(15) 

where eij(n) are independent Gaussian random variables with Eß;in) = 0 
and Eefin) = 1. Let (iJ0 , eo) also be a Gaussian vector which has the same 
first moment and covariance as (8 0 , ~ 0) and is independent of eJn). Then 
since (15) is linear, the vector (00 , ... , iJ", eo, ... , e") is Gaussian and there­
fore the conclusion of the theorem follows from Lemma 2 (more precisely, 
from its multidimensional analog) and the theorem on normal covariance. 

This completes the proof of the theorem. 

3. Let us consider some illustrations of Theorems 1 and 2. 

EXAMPLE 1. Let 8 = (8") and 17 = (17") be two stationary (wide sense) un­
correlated random sequences with E8" = E17" = 0 and spectral densities 

1 1 1 
fe(A.) = 2rrl1 + b1e-i.l.l 2 and J~(A.) = 2n .11 + b2 e-i.<l 2 ' 

where lb 1 1 < 1, lh2l < 1. 
W e are going to interpret (} as a useful signal and 17 as noise, and suppose 

that Observationproduces a sequence ~ = (~") with 

~n = (}n + 17n· 

According to Corollary 2 to Theorem 3 of §3 there are (mutually uncor­
related) white noises e1 = (e 1(n)) and e2 = (ez(n)) suchthat 

Then 

~n+l = (}n+l + 17n+1 = -bl(}n- b211n + f:t(n + 1) + E:z(n + 1) 

= -b2(8n + 17n)- 8n(b1 - b2) + e1(n + 1) + e2(n + 1) 

= -b2~n- (bt - b2)8n + e1(n + 1) + ez(n + 1). 
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Hence () and ~ satisfy the recursion relations 

()n+1 = -b1()n + e1(n + 1), 
(16) 

~n+ 1 = -(b1 - b2)()n- b2 ~n + e1(n + 1) + e2(n + 1), 

and, according to Theorem 2, mn = E(8nl~0 , ... , ~n) and Yn = E(()n- mn)2 
satisfy the following system of recursion equations for optimallinear filtering: 

Let us find the initial conditions under which we should solve this system. 
Write d11 = Ee;, d12 = E()n~n, d22 = E~;. Then we find from (16) that 

d12 = b1(b1 - b2)dll + b1b2d12 + 1, 

d22 = (b1 - b2?dll + b~d22 + 2bib1 - b2)d12 + 2, 

from which 

2- bf- b~ 
d22 = (1 - bi)(1 - b~)' 

which, by (14), Ieads to the following initial values: 

d12 1 - b~ 
mo = d22 ~o = 2- bi - b~ ~o' 

- d - di 2 - _1_ - 1 - b~ - 1 
Yo- 11 d22 - 1 - bf (1 - bi)(2- bf - bD- 2- bf- bf (18) 

Thus the optimal (in the least squares sense) linear estimators mn for the 
signal ()n in terms of ~0 , ..• , ~n and the mean-square error are determined 
by the system of recurrent equations (17), solved und er the initial conditions 
(18). Observe that the equation for Yn does not contain any random com­
ponents, and consequently the number Yn, which is needed for finding mn, 
can be calculated in advance, before the filtering problern has been solved. 

ExAMPLE 2. This example is instructive because it shows that the result of 
Theorem 2 can be applied to find the optimal linear filter in a case where the 
sequence (8, ~) is described by a (nonlinear) system which is different from 
(13). 
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Let e1 = (e 1(n)) and e2 =(ein)) be two independent Gaussian sequences 
of independent random variables with Ee;(n) = 0 and Eef(n) = 1, n ;;:::: 1. 
Consider a pair of sequences (8, ~) = (On,~"), n 2:::: 0, with 

en+ 1 = aen + (1 + en)e1(n + 1), 

~n+1 = A(Jn + ez(n + 1). 
(19) 

Weshall suppose that 80 is independent of (e1, e2 ) and that 80 ~ JV(m0 , y0 ). 

The system (19) is nonlinear, and Theorem 2 is not immediately applicable. 
However, if we put 

1 + en 
~ 1 (n + 1) = e1(n + 1), 

jE(l + 8n)2 

we can observe that H 1(n) = 0, H1 (n)~ 1 (m) = 0, n # m, Et;f(n) = 1. Hence 
we have reduced (19) to a linear system 

en+1 = a1en + bl~1(n + 1), 
(20) 

~n+1 = A18n +ein+ 1), 

where b 1 = jE(l + 8")2 , and {~ 1 (n)} is a sequence of uncorrelated random 

variables. 
Now (20) is a linear system of the same type as (13), and consequently 

the optimallinear estimator m" = E(Onl~o •... , ~") and its error Yn can be 
determined from (7) and (8) via Theorem 2, applied in the following form in 

the present case: 

where b 1 = jE(l + 8")2 must be found from the first equation in (19). 

EXAMPLE 3. Estimators for parameters. Let e = (81, ... 'ek) be a Gaussian 

vector with EO = m and cov(O, 8) = y. Suppose that (with known m and v) 

we want the optimal estimator of 8 in terms of Observations on an /-dimen­

sional sequence ~ = (~"), n 2:::: 0, with 

~0 = 0, (21) 

where e1 is as in (1). 
Then from (7) and (8), with mn = E(OI$'~) and Yn• we find that 

mn+1 = mn + YnAj(n, ~)[(B 1 Bi)(n, ~) + A 1(n, e)ynAf(n, ~)]63 

X [~n+1 - Ao(n, ~)- A1(n, ~)mnJ, 

Yn+1 = Yn- YnAf(n, ~)[(B1Bi)(n, ~) + A1(n, ~)ynAf(n, ~)] 63 A1(n, ~)Yn 
(22) 
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If the matrices B 1 B! are nonsingular, the solution of (22) is given by 

mn+ I = [ E + y mtO Af(m, e)(BIB!)- 1(m, e)A!(m, e)J -I 

X [ m + y mtO Af(m, e)(BIB!)- 1(m, eHem+ I - Ao(m, enJ 
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Yn+l = [E + ymtoA!(m, eHBIB!)- 1(m, e)A1(m, e)r 1
y, (23) 

where E is a unit matrix. 

4. PROBLEMS 

1. Show that the vectors m. an<J e.- m. in (1) are uncorrelated: 

E[m:(e- m.)] = 0. 

2. In (1), Iet y and the coefficients other than a0(n, ~) and A 0(n, ~) be independent of 
"chance" (i.e. of ~). Show that then the conditional covariance y. is independent of 
"chance": Yn = Ey •. 

3. Show that the solution of (22) is given by (23). 

4. Let (fJ, ~) = (fJ., ~.) be a Gaussian sequence satisfying the following special caseof(1): 

Show that if A # 0, b # 0, B # 0, the limiting error of filtering, y = lim.- 00 y., 
exists and is determined as the positive root of the equation 

2 [Bz(l - az) 2] bz Bz 
y + A z - b y - ---:42 = 0. 



CHAPTER VII 

Sequences of Random Variables 
That Form Martingales 

§ 1. Definitions of Martingales and Related Concepts 
1. The study of the dependence of random variables arises in various ways 
in probability theory. In the theory of stationary (wide sense) random 
sequences, the basic indicator of dependence is the covariance function, 
and the inferences made in this theory are determined by the properties of 
that function. In the theory of Markov chains (§12 of Chapter I; Chapter 
VIII) the basic dependence is supplied by the transition function, which 
completely determines the development of the random variables involved 
in Markov dependence. 

In the present chapter (see also §11, Chapter 1), we singleout a rather wide 
class of sequences of random variables (martingales and their generaliza­
tions) for which dependence can be studied by methods based on a discussion 
of the properties of conditional expectations. 

2. Let (0, !F, P) be a given probability space, and Iet (~) be a family of 
u-algebras ~. n ;;::: 0, suchthat ~ s;; ~ s;; · · · s;; !F. 

Let X0 , X 1, .•. be a sequence ofrandom variables defined on (0, !F, P). 
If, for each n;;::: 0, the variable Xn is ~-measurable, we say that.the set X= 
(Xn, ~), n ;;::: 0, or simply X = (Xn, ~), is a stochastic sequence. 

If a stochastic sequence X= (Xn, ~) has the property that, for each 
n;;::: 1, the variable Xn is ~- 1 -measurable, we write X= (Xn, ~- 1 ), taking 
F _ 1 = F 0 , and call X a predictable sequence. We call such a sequence 
increasing if X0 = 0 and Xn ~ Xn+ 1 (P-a.s.). 

Definition 1. A stochastic sequence X = (Xn, !F n) is a martingale, or a Sub­
martingale, if, for all n ;;::: 0, 

(1) 
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and, respectively, 

E(Xn+tl~) = Xn (P-a.s.)(martingale) 
or (2) 

E(Xn+tl~);:::: Xn (P-a.s.)(submartingale). 

A stochastic sequence X = (X"~) is a Supermartingale if the sequence 
-X= (-X",~) is a submartingale. 

In the special case when ~ = ~:. where ~: = cr{w: X 0 , ... , Xn}, and 
the stochastic sequence X = (X",~) is a martingale (or submartingale), 
we say that the sequence (X")"~ 0 itself is a martingale ( or submartingale ). 

It is easy to deduce from the properlies of conditional expectations that 
(2) is equivalent to the property that, for every n ;:::: 0 and A E ~. 

L X n + 1 d P = L X n dP 

or (3) 

ExAMPLE 1. If (~n)n~o is a sequence of independent random variables with 
E~n = 0 and X" = ~0 + · · · + ~"' ~ = cr{w: ~0 , ••• , ~"}' the stochastic 
sequence X = {X"'~) is a martingale. 

ExAMPLE 2. If (~n)n~o is a sequence of independent random variables with 
E~n = 1, the stochastic sequence (Xn, ~) with Xn = n~=o ~b ~ = 
crf w: ~0 , .•. , ~"} is also a martingale. 

ExAMPLE 3. Let ~ be a random variable with E I~ I < oo and 

Then the sequence X= (X",~) with X"= E(~l~) is a martingale. 

ExAMPLE 4. If (~n)n~o is a sequence of nonnegative integrable random vari­
ables, the sequence (X") with X"= ~0 + · · · + ~" is a submartingale. 

ExAMPLE 5. If X= (Xn, ~) is a martingale and g(x) is convex downward 
with E lg(Xn)l < oo, n ~ 0, then the stochastic sequence {g(Xn), ~) is a 
Submartingale (as follows from Jensen's inequality). 

If X= (X",~) is a submartingale and g(x) is convex downward and 
nondecreasing, with E ig(Xn)l < oo for all n ~ 0, then {g(X")' ~ is also a 
su bmartingale. 

Assumption (1) in Definition 1 ensures the existence of the conditional 
expectations E(X n+ 1 1 ~), n ;:::: 0. However, these expectations can also exist 
without the assumption that EI X n+ 1 1 < oo. Recall that by §7 of Chapter 
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II, E(X:+tlg,;) and E(X;+tlg,;) are always defined. Let us write A = B 
(P-a.s.) when P(A 6. B) = 0. Then if 

{w:E(x:+tlg,;) < oo} u {w:E(X;Ig,;) < oo} = Q (P-a.s.) 

we say that E(Xn+ 1 lg,;) is also defined and is given by 

E(X n+ t I g,;) = E(X :+ tl g,;) - E(X;+ tl g,;). 

After this, the following definition is natural. 

Definition 2. A stochastic sequence X = (X n, g,;) is a generalized martingale 
(or submartingale) if the conditional expectations E(Xn+tlg,;) are defined 
for every n ~ 0 and (2) is satisfied. 

Notice that it follows from this definition that E(X;+ 1 1 g,;) < oofor a 
generalized submartingale, and the E( I X n+ 1 II ff,.) < oo (P-a.s.) for a gener­
alized martingale. 

3. In the following definition we introduce the concept of a Markov time, 
which plays a very important role in the subsequent theory. 

Definition 3. A random variable T = -r(w) with values in the set {0, 1, ... , + oo} 
is a Markov time (with respect to (g,;)) (or a random variable independent of 
the future) if, for each n ~ 0, 

{T = n} Eg,;. (4) 

When P(-r < oo) = 1, a Markov timeT is called a stopping time. 

Let X= (Xn, g,;) be a stochastic sequence and Iet T be a Markov time 
(with respect to (g,;)). We write 

00 

xt = L Xnl{t=n)(w) 
n=O 

(hence X r = 0 on the set { w: T = oo} ). 
Then for every BE &l(R), 

00 

{ W: X t E B} = L {X n E B, T = n} E ff, 
n=O 

and consequently X r is a random variable. 

EXAMPLE 6. Let X = (Xn, g,;) be a stochastic sequence and Iet BE &l(R). 
Then the time of first hitting the set B, that is, 

TB= inf{n ~ O:XnEB} 
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(with rB = + oo if { ·} = 0) is a Markov time, since 

{rB = n} = {X0 f/; B, ... , X._ 1 f/; B, X. E B} E ${, 

for every n ;;::: 0. 

EXAMPLE 7. Let X =(X.,${,) be a martingale (or submartingale) and r a 
Markov time (with respect to (${.)). Then the "stopped" process xr = 
(X""" ${,) is also a martingale ( or su bmartingale ). 

In fact, the equation 
n-1 

xnAr = L Xm/{t=m} + x.J{t~n} 
m=O 

implies that the variables X"" r are ${,-measurable, are integrable, and satisfy 

whence 

Every system (${,) and Markov time r corresponding to it generate a 
collection of sets 

~ = { A E ff: A n { r = n} E ${, for all n ;;::: 0}. 

It is dear that n E ~ and ~ is dosed under Countahle unions. Moreover, if 
AE~, then An{r=n}={r=n}\(An{r=n})Eff" and therefore AE~. 
Hence it follows that ~ is a o--algebra. 

Ifwe think of ${, as a collection of events observed up to timen (indusive), 
then ~ can be thought of as a collection of events observed at the "random" 
time r. 

It is easy to show (Problem 3) that the random variables r and Xr are 
~-measurable. 

4. Definition 4. A stochastic sequence X = (X.,${,) is a local martingale 
( or submartingale) if there is a (localizing) seq uence ( r kh ~ 1 of Markov tim es 
such that rk ~ rk+ 1 (P-a.s.), rk i oo (P-a.s.) as k-+ oo, and every "stopped" 
sequence xr• = (Xr•"" · /(r.>Ol• ${,) is a martingale (or submartingale). 

In Theorem 1 below, we show that in fact the dass of local martingales 
coincides with the dass of generalized martingales. Moreover, every local 
martingale can be obtained by a "martingale transformation" from a martin­
gale and a predictable sequence. 
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Definition 5. Let Y = (Y", ~) be a stochastic sequence and Iet V= (V", ~- 1 ) 
be a predictable sequence (ff_ 1 = ~). The stochastic sequence V· Y = 
((V· Y)n, ~) with 

n 

(V· Y)n = Vo Yo + L V;L\Y;, (5) 
i= 1 

where L\ Y; = Y; - li- ~> is called the transform of Y by V. If, in addition, Y is 
a martingale, we say that V· Y is a martingale transform. 

Theorem 1. Let X= (Xn, ~)n;;,o be a stochastic sequence and Iet X 0 = 0 
(P-a.s. ). T he following conditions are equivalent: 

(a) Xis a local martingale; 
(b) X is a generalized martingale; 
(c) X is a martingale transform, i.e., there are a predictable sequence V= 

(V", ~- 1 ) with V0 = 0 and a martingale Y = (Y", ~) with Y0 = 0 such 
that X= V· Y. 

PROOF. (a) => (b). Let X be a local martingale and Iet (rk) be a local sequence 
of Markov times for X. Then for every m 2 0 

(6) 

and therefore 

(7) 

The random variable Jtrk>nl is ~-measurable. Hence it follows from (7) that 

E[ I Xn+ 1l Jtrk>nl I~J = Jtrk>nJE[I Xn+ 1II~J < oo (P-a.s.). 

Here J{rk>nJ--+ 1 (P-a.s.), k--+ oo, and therefore 

E[1Xn+ 1 II~J <oo (P-a.s.). (8) 

Under this condition, E[Xn+ 1 I~J is defined, and it remains only to show 
that E[Xn+ 1 1~] = Xn (P-a.s.). 

To do this, we need to show that 

for A E ~. By Problem 7, §7, Chapter II, we have E[l X n+ 11 ~] < oo (P-a.s.) 
if and only if the measure JA IXn+11 dP, A E !F,., isa-finite. Let us show that 
the measure JA IXnl dP, A E !F,., is also a-finite. 

Since xrk is a martingale, IXrkl = (IXv,niJ{rk>o}• !F,.) is a submartingale, 
and therefore (since { rk > n} E !F,.) 
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:$; f IX(n+1)Atkl/{tk>O} dP = f IXn+11 dP. 
An{tk>n} An{tk>n} 

Letting k-+ oo, we have 

L IXnl dP :$; L IXn+11 dP, 

from which there follows the required u-finiteness ofthe measures JA IXnl dP, 
A e fF". 

Let A e fF" have the property JA IX"+ll dP < oo. Then, by Lebesgue's theo­
rem on dominated convergence, we may take Iimits in the relation 

which is valid since X is a local martingale. Therefore, 

L x" d p = L x .. +1 d p 

for all A e fF" suchthat JA IX"+ll dP < oo. It then follows that the preceding 
relationalso holds for every A e fF", and therefore, E(X"+1I!F") = X" (P-a.s.). 

b)=>c). Let !l.X" =X"- X"_1, X0 = 0, and V0 = 0, V..= E[l!l.X"II!F"-1], 
n ~ 1. We set 

w. = V.:Eil (= {v,.-1, 
II II 0, 

V.. ;i: 0) 
V,.=O' 

and Y" = Li'=1 W;!l.X;, n ~ 1. It is clear that 

E[!l.Y"I!F"-1] = 0, 

and consequently, Y = (Y", !F") is a martingale. 
Consequently, Y = (Y", !F") is a martingale. Moreover, X 0 = V0 • Y0 = 0 

and !l.(V · Y)" = !l.X". Therefore 

X= V· Y. 

(c) => (a). Let X= V· Ywhere Visa predictable sequence, Yis a martin­
gale and V0 = Y0 = 0. Put 

-rk = inf{n ~ 0: I V..+ 1 1 > k}, 

and suppose that 't'k = oo if the set { ·} = 0. Since V..+ 1 is ~-measurable, 
the variables -rk are Markov times for every k ~ 1. 

Consider a "stopped" sequence X'k = ((V· Y)"A,Jt•k>Ol• !F"). On the 
set {-rk > 0}, the inequality I V..Atkl :s;; k is in effect. Hence it follows that 
E I(V · Y)"A<JI•k>OII < oo for every n ~ 1. In addition, for n ~ 1, 
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E{[(V· Y)(n+l)Atk- (V· Y)""'Jl{tk>od~J 

= J{tk>O)" Jt!n+l)Atk·E{l(n+1)Atk- Y"Atkl~} = 0 

since (see Example 7) E{l(n+l)A<k- Y""'kl~} = 0. 
Thus for every k ~ 1 the stochastic sequences X'k are martingales, 

rk i oo (P-a.s.), and consequently X is a local martingale. 
This completes the proof of the theorem. 

5. ExAMPLE 8. Let (1'/n)n<?. 1 be a sequence of independent identically distri­
buted Bernoulli random variables and Iet P(1'/n = 1) = p, P(1'/n = -1) = q, 
p + q = 1. We interpret the event {1'/n = 1} as success (gain) and {1'/n = -1} 
as failure (loss) of a player at the nth turn. Let us suppose that the player's 
stake at the nth turn is V,.. Then the player's total gain through the nth turn is 

n 

Xn = L Jli1'/i = Xn-1 + V..1'/n, X 0 = 0. 
i= 1 

lt is quite natural to suppose that the amount V,. at the nth turn may depend 
on the results of the preceding turns, i.e., on V1, ... , V..-1 and on 111, ... , 1'/n-1. 
In other words, if we put F0 = {0, Q} and F" = CT{ro: 1'/1, ... , '1n}, then 
V,. is an ff..-1-measurable random variable, i.e., the sequence V = (V,., ff..-tl 
that determines the player's "strategy" is predictable. Putting Y" = 
'11 + · · · + 1'/n, we find that 

n 

Xn = L Jt;ßY;, 
i= 1 

i.e., the sequence X = (X", ff") with X 0 = 0 is the transform of Y by V. 
From the player's point of view, the game in question isfair (or favorable, 

or wifavorable) if, at every stage, the conditional expectation 

E(Xn+ 1 - Xnl~) = 0 (or ~ 0 or :5: 0). 

Moreover, it is clear that the game is 

Since X= (X",~) is a 

fair if p = q = ! , 
favorable if p > q, 

unfavorable, if p < q. 

martingale if p = q = ! , 
submartingale if p > q, 

Supermartingale if p < q, 

we can say that the assumption that the game is fair ( or favorable, or unfavor­
able) corresponds to the assumption that the sequence X is a martingale 
( or submartingale, or supermartingale ). 

Let us now consider the special dass of strategies V= (V", ~- 1 )n<?. 1 
with V1 = 1 and (for n > 1) 
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V.={2"- 1 if171=~1, ... ,'7n-r=-1, 
n 0 otherwise. 

(9) 

In such a strategy, a player, having started with a stake V1 = 1, doubles the 
stake after a loss and drops out of the game immediately after a win. 

If 171 = -1, ... , 'ln = -1, the totalloss to the player afternturnswill be 
n 

I 2i- 1 = 2" - t. 
i= 1 

Therefore if also 'ln+ 1 = 1, we have 

Xn+ 1 = Xn + V"+ 1 = -(2" - 1) + 2" = 1. 

Let r = inf{ n ~ 1: X" = 1 }. If p = q = t, i.e., the game in question is 
fair, then P(r = n) = (!)", P(r < oo) = 1, P(X, = 1) = 1, and EX,= 1. 
Therefore even for a fair game, by applying the strategy (9), a player can in a 
finite time (with probability unity) complete the game "successfully," in­
creasing his capital by one unit (EX, = 1 > X 0 = 0). 

In gambling practice, this system (doubling the stakes after a loss and 
dropping out ofthe game after a win) is called a martingale. This is the origin 
of the mathematical term "martingale." 

Remark. When p = q = t, the sequence X= (X",~) with X 0 = 0 is a 
martingale and therefore 

EX"= EXo = 0 for every n ~ 1. 

We may therefore expect that this equation is preserved if the instant n is 
replaced by a random instant t. lt will appear later (Theorem 1, §2) that 
EX,= EX0 in "typical" situations. Violationsofthis equation (as in the 
game discussed above) arise in what we may describe as physically unrealiz­
able situations, when either • or I X" I takes values that are much too large. 
(Note that the game discussed above would be physically unrealizable, since 
it supposes an unbounded time for playing and an unbounded initial capital 
for the player.) 

6. Definition 6. A stochastic sequence ~ = (~"' ~) is a martingale-difference 
if E I~ I < oo for all n ~ 0 and 

E(~n+11~) = 0 (P-a.s.). (10) 

The connection between martingales and martingale-differences is clear 
from Definitions 1 and 6. Thus if X= (X",~) is a martingale, then ~ = 
(~"' ~) with ~0 = X 0 and ~" = AX", n ~ 1, is a martingale-difference. In 
turn, if ~ = (~"' ~) is a martingale-difference, then X = (X"'~) with 
X"= ~0 + · · · + ~n is a martingale. 
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In agreement with this terminology, every sequence ~ = (~n)n;?;O of in­
dependent integrable random variables with E~n = 0 is a martingale­
difference (with ~ = a{w: ~0 , ~b ... , ~n}). 

7. The following theorem elucidates the structure of submartingales (or 
su permartingales ). 

Theorem 2 (Doob). Let X= (Xn, ff,.) be a submartingale. Then there is a 
martingale m = (m., ~) and a predictable increasing sequence A = (A., ~- 1 ) 
such that,for every n ;;:::: 0, Doob's decomposition 

X"= mn +An (P-a.s.) 

holds. A decomposition of this kind is unique. 

PROOF. Let us put m0 = X 0 , A 0 = 0 and 
n-1 

m. = m0 + L [Xi+ 1 - E(Xi+ 1 1~)], 
j=O 

n-1 

An= L [E(Xj+11~)- Xj]. 
j=O 

(11) 

(12) 

(13) 

It is evident that m and A, defined in this way, have the required properties. 
In addition, let Xn = m~ + A~, where m' = (m~, ff,.) is a martingale and A' = 
(A~, F.) is a predictable increasing sequence. Then 

A~+l- A~ = (An+l- A.) + (mn+ 1 - mn)- (m~+1- m~), 

and if we take conditional expectations on both sides, we find that (P-a.s.) 
A~+ 1 - A~ = An+ 1 - A •. But A 0 = A~ = 0, and therefore An= A~ and 
m. = m~ (P-a.s.) for all n ;;:::: 0. 

This completes the proof of the theorem. 

It follows from (11) that the sequence A =(An, Fn_ 1) compensates X= 
(X", F n) so that it becomes a martingale. This observation is justified by the 
following definition. 

Definition 7. A predictable increasing sequence A = (An, ~- 1) appearing 
in the Doob decomposition (11) is called a compensator ( of the Submartin­
gale X). 

The Doob decomposition plays a key role in the study of square integrable 
martingales M =(Mn, Fn) i.e., martingales for which EM; < oo, n;;:::: 0; this 
depends on the observation that the stochastic sequence M 2 = (M2, ~) is 
a submartingale. According to Theorem 2 there is a martingale m = (mn, ff,.) 
and a predictable increasing sequence (M) = ((M)., ~- 1 ) suchthat 

(14) 
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The sequence (M) is called the predictable quadratic variation or the 
quadratic characteristic of M and, in many respects, determines its structure 
and properties. 

It follows from (12) that 

n 

(M)n = L E[(L\MYI~-1] (15) 
j= 1 

and, for all I ~ k, 

E[(Mk- M 1) 2 lff1] = E[Mf- Mfi~J = E[(M)k- (M)1 I~J. (16) 

In particular, if M 0 = 0 (P-a.s.) then 

EMf = E(M)k. (17) 

It is useful to observe that if M 0 = 0 and Mn= ~ 1 + · · · + ~"' where 
(~") is a sequence ofindependent random variables with E~; = Oand E~f < oo, 
the quadratic variation 

(18) 

is not random, and indeed coincides with the variance. 
If X= (X",~) and Y = (Y", ~) are square integrable martingales, we 

put 

(19) 

It is easily verified that (X" Y" - (X, Y)n, ~) is a martingale and therefore, 
for l ~ k, 

E[(Xk- X 1)(lk- Yi)I~J = E[(X, Y)k- (X, Y)d~]. (20) 

In the case when X"= ~ 1 + · · · + ~"' Y" = 11 1 + · · · + IJn, where (~") 
and (1Jn) are sequences of independent random variables with E~; = EIJ; = 0 
and E~f < oo, E11t < oo, the variable (X, Y)n is given by 

n 

(X, Y)n = I cov(~;, IJ;). 

The sequence (X, Y) =(<X, Y)", ~-1 ) defined in (19) is often called the 
mutual characteristic of the (square integrable) martingales X and Y. 

It is easy to show (compare with (15)) that 

n 

(X, Y)N = L E[L\X;L\Y;I~-1]. 
i=1 

In the theory of martingales, an important role is also played by the 
quadratic covariation, 

n 
[X, Y]n = I L\X;L\Y;, 

i=1 

and the quadratic variation, 
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n 

[X].= L (~X,)2, 
i=l 

which can be defined for all random sequences X= (X.)"~ 1 and Y = (Y").~ 1 • 

8. PROBLEMS 

1. Show that (2) and (3) are equivalent. 

2. Let u and t be Markov times. Show that r + u, r A u, and r v u are also Markov 
times; and if P(u ~ r) = 1, then ~" s;; ~ •. 

3. Show that r and X, are ~.-measurable. 

4. Let Y = (Y", ~.) be a martingale (or submartingale), Iet V= (V", ~- 1 ) be a pre­
dictable sequence, and Iet (V· Y). be integrable random variables, n;;:;: 0. Show that 
V· Yis a martingale (or submartingale). 

5. Let ~1 s;; ~2 s;; · · · be a nondecreasing family of u-algebras and ~ an integrable 
random variable. Show that (X.). 2: 1 with X. = E( ~I~) is a martingale. 

6. Let '!}1 2 '!J2 2 · · · be a nonincreasing family of u-algebras and Iet ~ be an integrable 
random variable. Show that (X.).;,; 1 with x. = E(~I'!J.) is a reversed martingale, i.e., 

E(X.IXn+t• X•+2• ... ) = Xn+t (P-a.s.) 

for every n ;;:;: 1. 

7. Let ~ 1 , ~2 , ~3 , •.• be independent random variables, P(~; = 0) = P(~; = 2) =! and 
X. = il7=1 ~;- Show that there does not exist an integrable random variable e and a 
nondecreasing family (~) of u-algebras such that x. = E(el~). This example 
shows that not every martingale (X.).;,; 1 can be represented in the form (E(el~)).;,; 1 
(compare Example 3, §11, Chapter I.) 

§2. Preservation of the Martingale Property Under 
Time Change at a Random Time 

1. If X = (X., ~).~ 0 is a martingale, we have 

(1) 

for every n ~ 1. Is this property preserved if the time n is replaced by a 
Markov time r? Example 8 of the preceding section shows that, in general, 
the answer is "no ": there exist a martingale X and a Markov time r (finite 
with probability 1) suchthat 

(2) 

The following basic theorem describes the "typical" situation, in which, 
in particular, EX,= EX0 . 
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Theorem 1 (Doob). Let X= (Xn, ~) be a martingale (or submartingale), 
and r 1 and r 2 , stopping timesfor which 

i = 1, 2, (3) 

!im f IXnldP = 0, 
n-oo {ti>n} 

i = 1, 2. (4) 

Then 

(5) 

(6) 

(Here and in the formulas below, read the upper symbol for martingales 
and the lower symbol for submartingales.) 

PR.ooF. It is sufficient to show that, for every A E ~,, 

f xt2 dP = J xt,dP. 
(>) 

An{t2<!:td - An{t2<!:td 

(7) 

For this, in turn, it is sufficient to show that, for every n ~ 0, 

f xt2 dP = J xt,dP, 
An{t2<!:t!}n{t1=n} (<!:) An{t2<!:t!}n{t1=n} 

or, what amounts to the same thing, 

(8) 

whereB =An {r1 = n}E~. 
Wehave 

( X n dP = ( X n dP + ( X n dP = ( X" dP 
JBn{t2<!:n} JBn{t2=n} JBn{t2>n} (";) JBn{t2=n} 

= ( Xt2 dP + ( Xn+ 2 dP <~> 
(";) JBn{n";t2";n+l} JBn{t2<!:n+2} -

= ( Xt2 dP + ( Xm dP, 
(";) JBn{n";t2";m} JBn{t2>m} 

whence 
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and since Xm = 2X!.- IXml, we have, by (4), 

( X r2 dP = lim [ ( X n dP - ( X m dPJ 
JBn{t2~n) (~) m-oo JBn{n:$t2) JBn{m<t2l 

which establishes (8), and hence (5). Finally, (6) follows from (5). 
This completes the proof of the theorem. 

Corollary 1. lfthere is a constant N suchthat P( r 1 ~ N) = 1 and P( r 2 ~ N) = 
1, then (3) and (4) are satisfied. Hence if, in addition, P(r 1 ~ r 2 ) = 1 and Xis 
a martingale, then 

(9) 

Corollary 2. lfthe random variables {Xn} are uniformly integrable (in partic­
ular, ifiXni ~ C < oo, n;;::: 0), then (3) and (4) are satisfied. 

In fact, P(ri > n)--+ 0, n --+ oo, and hence (4) follows from Lemma 2, §6, 
Chapter II. In addition, since the family {X n} is uniformly integrable, we 
have (see 11.6.(16)) 

(10) 

If r is a stopping time and Xis a submartingale, then by Corollary 1, applied 
to the bounded time rN = r A N, 

EX0 ~ EX<N" 

Therefore 

E IXrNI = 2EX~- EX<N ~ 2EX~- EX0 . (11) 

The sequence x+ = cx:, ~) is a submartingale (Example 5, §1) and there­
fore 

+ f x; dP =Ex;~ EIXNI ~ supEIXNI· 
{t>N) N 

From this and (11) we have 

E I X <NI ~ 3 sup E I X NI, 
N 

and hence by Fatou's Iemma 

E IXrl ~ 3 supE IX NI· 
N 
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Therefore if we take r = ri, i = 1, 2, and use (1 0), we obtain EI X<; I < oo, 
i = 1, 2. 

Remark. In Example 8 of the preceding section, 

f IXnl dP = (2n- l)P{r > n} = (2n- 1). 2-n-+ 1, 
{t>n) 

n-+ oo, 

and consequently (4) is violated (for Tz = r). 

2. The following proposition, which we shall deduce from Theorem 1, is 
often useful in applications. 

Theorem 2. Let X = (Xn) be a martingale (or submartingale) and r a stopping 
time (with respect to (ff;), where ff; = O"{w: X 0 , ..• , Xn). Suppose that 

Er <oo, 

and that for some n :<::: 0 and some constant C 

E{IXn+l- Xnllff:} ~ C ({r :2::: n}; P-a.s.). 

Then 

EIX,I<oo 

and 

(12) 

We first verify that hypotheses (3) and (4) of Theorem 1 are satisfied with 
Tz= r. 
Let 

Yo = IXol, 

Then IX,I ~ L.f=o Y; and 

j :2::: 1. 

The set { r :2::: j} = 0\ { r < j} E ffJ_ t. j :<::: 1. Therefore 

J ljdP=J E[l)IX0 , ... ,Xj-t]dP~CP{r:?:j} 
{t~j} {t~j} 
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for j ?: 1 ; and 

EIX,I::; ECt YJ)::; EIXol + cJl P{r ?:j} = EIXol +CEr <oo. 

(13) 

Moreover, if r > n, then 
n t 

I YJ::; I YJ, 
j=O j=O 

and therefore 

Hence since (by (13)) E Ll= 0 Yj < oo and { r > n} ! 0, n -+ oo, the dominated 
convergence theorem yields 

lim f IXnl dP::; lim f (I YJ) dP = 0. 
n~oo {t>n) n~oo {t>n) j=O 

Hence the hypotheses of Theorem 1 are satisfied, and (12) follows as 
required. 

This completes the proof of the theorem. 

3. Here we present some applications of the preceding theorems. 

Theorem 3 (Wald's Identities). Let ~~> ~ 2 , ••• be independent identically 
distributed random variables with EI ~;I < oo and r a stopping time (with 
respect toff~), where ff~ = rr{w: ~ 1 , ... , ~"}, r?: 1), and Er< oo. Then 

(14) 

lf also E~f < oo then 

E{(~ 1 + · · · + ~.)- rE~Jl 2 = V~ 1 ·Er. (15) 

PROOF. It is clear that X= (Xn, ff~)n;:o,t with Xn = (~ 1 + · · · + ~")- nE~ 1 
is a martingale with 

E[IXn+1- XniiX1, ... , X"]= E[l~n+t- E~tll~t' ... , ~nJ 

= El~n+t- E~1l::; 2EI~tl <oo. 

Therefore EX,= EX0 = 0, by Theorem 2, and (14) is established. 
Similar considerations applied to the martingale Y = (Y", ff~) with 

Y" = x; - nV ~ 1 lead to a proof of (15). 

Corollary. Let ~ 1, ~ 2 , ... be independent identicall y distributed random variables 
with 
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and r = inf{n;;::: 1:Sn = 1}. Then P{r <oo} = 1 (see,for example, (1.9.20)) 
andthereforeP(St = 1) = 1,ES< = l.Henceitfollowsfrom(14)thatEr = oo. 

Theorem 4 (Wald's Fundamental Identity). Let e1, e2, ... , be a sequence of 
independent identically distributed random variables, Sn= e1 + · · · + en, 
and n ;;::: 1. Let cp(t) = Ee'~'. t ER, and for some t0 =F 0 Iet cp(t0 ) exist and 
cp(to) ;;::: 1. 

!fr is a stopping time (with respect to (§~). g:~ = a{w: e1 •... ' en}, r;;::: 1), 
suchthat!Snl ~ C({r;;::: n};P-a.s.)andEr <oo,then 

(16) 

PROOF. Take 

Y" = etoS"(cp(to))-n. 

Then Y = (Yn, g:~)n2: 1 is a martingale with E Y" = 1 and, on the set {r ;;::: n}, 

E{IY"+1- Y"IIY1····· Y"} = Y"e{je;;;;)' -1jje1, ...• en} 

= Y" · E{le'0~ 1 cp- 1 (t0)- 11} ~ B < oo, 

where Bis a constant. Therefore Theorem 2 is applicable, and (16) follows 
since E Y1 = 1. 

This completes the proof. 

ExAMPLE 1. This example will Iet us illustrate the use of the preceding 
examples to find the probabilities of ruin and of mean duration in games 
(see §9, Chapter 1). 

Let e 1, e2 , ••. be a sequence of independent Bernoulli random variables 
with P(e; = 1) = p, P(e; = -1) = q, p + q = 1, S = e1 + · · · + en, and 

r = inf{n ;;::: 1: Sn= BorA}, (17) 

where (- A) and Bare positive integers. 
lt follows from (1.9.20) that P(r <oo) = 1 and Er <oo. Then if a = 

P(Sr = A), ß = P(Sr = B), we have a + ß = 1. If p = q = !. we obtain 

0 = ES< = aA + ßB, from (14), 

whence 

B 

Applying (15), we obtain 

Er= Es;= aA2 + ßB2 =!ABI. 
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However, if p =1- q we find, by considering the martingale ((q/p)5")n?.l• that 

E- =E- =1 (q)s, (q)s, 
p p ' 

and therefore 

Together with the equation rx + ß = 1 this yields 

(~r- 1 1 - (~)lAI . ~ (~r _ (~r· ß ~ ~r _ (!)lAI (18) 

Finally, since ESr = (p- q)Er, we find 

Er = ~ = rxA + ßB 
p-q p-q ' 

where rx and ß are defined by (18). 

ExAMPLE 2. In the example considered above, Iet p = q = ! . Let us show that 
for every ..1. in 0 < ..1. < n/(B + I AI) and every time r defined in ( 17), 

B+A 
COSA·--

2 
E(cos ..1.)-r = B + \A\. 

cos ..1.. 2 

Forthis purpose we consider the martingale X = (Xn, .?~)n?.O with 

Xn = (cos ..1.)-n cos ..1.(sn- B; A) 

and S0 = 0. lt is clear that 

B+A 
EXn = EX0 = cos ..1.-2-. 

(19) 

(20) 

(21) 

Let us show that the family {XnAr} is uniformly integrable. Forthis purpose 
we observe that, by Corollary 1 to Theorem 1 for 0 < Ä < n/(B + I A 1), 

Ex -EX - E ( 1)-(nArl 1(s - B + A) 0 - n" t - COS 1\. COS 1\. n" r 2 

B-A 
~ E (cos ..1.)-(nAr) cos Ä - 2-. 
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Therefore, by (21 ), 

B+A 
COSA-2-

E(cos A.)-<""'l < ----=----:--:-:-
- ,B+IAI' 

cos II. 2 

and consequently by Fatou's Iemma, 

Consequently, by (20), 

B+A 
cosA.-2-

E(cos A.)-r:::; B + lAI' 
cos A. 2 

IXn"rl:::; (cos A.)-r. 

(22) 

With (22), this establishes the uniform integrability of the family {X"",}. 
Then, by Corollary 2 to Theorem 1, 

B+A B-A 
cos A.-2- = EX0 = EXr = E(cos A.)-<cos A.-2-, 

from which the required inequality (19) follows. 

4. PROBLEMS 

l. Show that Theorem 1 remains valid for submartingales if (4) is replaced by 

lim J x: dP = 0, 
n-+oo {ti>n} 

i = 1, 2. 

2. Let X = (X., ~).", 0 be a square-integrable martingale, r a stopping time and 

!im { x;dP = 0, 
n-+oo J{t>n} 

!im { IX.I dP = 0. 
n-+oo J{t>n} 

Show that then 

where ßX0 = X 0 , ßXi = Xi- Xi_ 1,j;;:::: l. 

3. Show that 

for every martingale or nonnegative submartingaie X =(X., ~).", 0 and every 
stopping time r. 
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4. Let X= (X., §.) • ., 0 be a submartingale such that x. ~ E(~l§.) (P-a.s.), n ~ 0, 
where E 1~1 < oc. Show that ih1 and • 2 are stopping times with P('t 1 ~ •,) = 1, then 

X,.~ E(X,2 !~) (P-a.s.). 

5. Let ~ 1 , ~ 2 , •.• be a sequence of independent random variables with P(~; = 1) = 
P(~; = -1) = !, a and b positive numbers, b > a, 

n n 

x. = a I I<~k = + 1)- b I I<~k = -1) 
k=l k=l 

and 

't = inf{n ~ 1: x. ~ -r}, r > 0. 

Show that Ee;.' < oo for A. ~ oc0 and Ee;.' = oo for A. > oc0 , where 

b 2b a 2a 
oc0 =--ln--+--ln--. 

a+b a+b a+b a+b 

6. Let ~ 1 • ~ 2 , ••• be asequenceofindependent random variables with E~; = 0, V~;= uf, 
s. = ~ 1 + ··· + ~ •• ff~ = u{w:~ 1 , ... ,~.}. Prove the following generalizations of 
Wald's identities(l4)and (15): lfE LI= 1 E l~il < oo then ES,= 0; ifE LJ= 1 E~f < oo, 
then 

t t 

Es; = E I ~f = E I uf. 
j= I j= 1 

§3. Fundamental Inequalities 

1. Let X = (X,., ~) .. ~ 0 be a stochastic sequence, 

x: = max IXil, IIX,.IIP = (EIX,.IP)11P, 
O:s;js;n 

(23) 

p>O. 

In Theorems 1-3 below, we present Doob's fundamental "maximal inequal­
ities for probabilities" and "maximal inequalities in LP," for submartingales, 
Supermartingales and martingales. 

Theorem 1.1. Let X= (X", ~),.~ 0 be a submartingale. Then for all A. > 0 

A.P { ~:: X1 ~ A.} ~ E [ x,; I ( ~:: Xk ~ A.) J ~ EX,;, (1) 

A.P { ~~~ Xk ~ - A.} ~ E [X,./ ( ~~~ X1 > - A.) J - EX0 ~ EX,; - EX0 , (2) 

A.P{~:: IX1I ~ A.} ~ 3 ~:: EIX1I· (3) 
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Il. Let Y = (Y", ff..)n;o,o be a supermartingale. Then for all A. > 0 

A.P{~;; lk ~ A.}:::;; EY0 - E[ Y"J( ~;; lk < A.) J:::;; EY0 + EY"-, (4) 

A.P { ~1~ lk:::;; -A.}:::;; - E [ Y"I( ~1~ lk:::;; -A.) J:::;; EY"-, (5) 

A.P { ~;; llkl ~ A.} :::;; 3 ~;; EIJkl. (6) 

III. Let Y = (Y", ff..)n;o,o be a nonnegative supermartingale. Then for all 
A.>O 

A.P {max lk ~ A.}:::;; EY0 , 
k~n 

(7) 

A.P {sup lk ~ A.}:::;; EY". 
k;o,n 

(8) 

Theorem 2. Let X = (Xn, ff..)n;o,o be a nonnegative submartingale. Then for 
p ~ 1 we have the following inequalities: 

if p > 1, 

if p = 1, 

Theorem 3. Let X = (Xn, ff..)n;o,o be a martingale, A. > 0 and p ~ 1. Then 

and if p > 1 

In particular, if p = 2 

p { ~;; IXkl ~ A.}:::;; El~n12' 

E [max xf] :::;; 4EX,;. 
k,;;n 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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PROOF OF THEOREM 1. Since a submartingale with the opposite sign is a 
supermartingale, (1)-(3) follow from (4)-(6). Therefore, we consider the case 
of a Supermartingale Y = (Y", ~)n>o· 

Let us set -r = inf{k ~ n: lk ~ i} with -r = n if maxk,;;n lk < A.. Then, by 
(2.6), 

EY0 ~ EY" = E [Y"; max lk ~ A.J + E [Y"; max lk < A.J 
k,;;n kS:n 

~ A.P {max lk ~ A.} + E [Y"; max lk < A.], 
k,;;n k,;;n 

which proves (4). 
Now let us set u = inf{k ~ n: lk ~ -A.}, and take u = n ifmink,;;n lk > -A.. 

Again, by (2.6), 

EY" ~ EY" = E[Y"; min lk ~ -A.J + E[Y"; min lk > -A.J 
k,;;n k,;;n 

~ A.P {min lk ~ -A.} + E[Y"; min lk >- A.J. 
kS:n ksn 

Hence, 

A.P {min lk ~ -A.} ~ - E [Y"; min lk ~ -A.J ~ EY"-
ks:n k,;;n 

which proves (5). 
To prove (6), we notice that y- = (- Yt is a submartingale. Then, by (4) 

and (1), 

P {max llkl ~ A.} ~ P {max lk+ ~ A.} + P {max lk- ~ Ä.} 
kS:n k,;;n k,;;n 

= P {max lk ~ A.} + P {max lk- ~ A.} 
k,;;n k,;;n 

~ EY0 + 2EY"- ~ 3 max EIY,.I. 
kS:n 

Inequality (7) follows from (4). 
To prove (8), we set y = inf{k ~ n: lk ~ A.}, taking y = oo if lk < A. for all 

k ~ n. Now let n < N < oo. Then, by (2.6), 

EY" ~ Ey;,AN ~ E[YyANI(y ~ N)] ~ A.P{y ~ N}, 

from which, as N - oo, 

EY" ~ A.P{y < oo} = A.P{sup lk ~ A.}. 
k<!:n 
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PROOF OF THEOREM 2. 

The first inequalities in (9) and (10) are evident. 
To prove the second inequality in (9), we first suppose that 

IIX:IIp < 00, (15) 

and use the fact that, for every nonnegative random variable e and for r > 0, 

Ee' = r too t'-1 P(e ~ t) dt. (16) 

Then we obtain, by (1) and Fubini's theorem, that for p > 1 

E(X:)P=pf.oo tP-1 P{X:~t}dt::s;;pf. 00 tP- 2(f XndP)dt 
0 0 {X,';~t} 

= p too tP- 2 [L Xni{x: ~ t} dP J dt 

= p t Xn[tx:; tp-2 dt] dP = p ~ 1 E[XiX:)p-1]. (17) 

Hence, by Hölder's inequality, 

E(X:)P ::s;; qiiXniiP ·II(X:)P-1 IIq = qi1Xnllp[E(X:)P] 11q, (18) 

where q = p/(p - 1). 
If(15) is satisfied, we immediately obtain the second inequality in (9) from 

(18). 
However, if (15) is not satisfied, we proceed as follows. In (17), instead of x: we consider (X: A L), where L is a constant. Then we obtain 

E(X: A L)P ::s;; qE[Xn(x: A L)P-1] ::s;; qiiXnllp[E(X: A L)P] 11q, 

from which it follows, by the inequality E(x: A L)P ::s;; LP < oo, that 

E(X: A L)P ::s;; qPEX: = qPIIXnll~ 

and therefore, 

E(x:y = lim E(x: A L)P ::s;; qPIIXnii~-
L-+oo 

We now prove the second inequality in (10). 
Again applying (1), we obtain 

Ex:- 1 ::s;; E(x:- 1t = fooo P{x:- 1 ~ t} dt 

::s;; f.oo -1
1 [f X" dPJ dt = EXn 

0 + t {X,';~l+t 
f.

X,';-1 dt 
-1-= EXnlnx:. 

0 + t 
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Since, for arbitrary a ;;:::.: 0 and b > 0, 

(19) 

we have 

If Ex: < oo, we immediately obtain the second inequality (10). 
However, if EX* = oo, we proceed, as above, by replacing x: by x: 1\ L. 
This proves the theorem. 

The proof of Theorem 3 follows from the remark that IXIP, p;;:::.: 1, is a 
nonnegative Submartingale (if EIXniP < oo, n ;:::>: 0), and from inequalities (1) 
and (9). 

Corollary of Theorem 3. Let Xn = eo + · · · + en, n ;:::>: 0, where (ek)k>o is a 
sequence of independent random variables with Eek = 0 and Eef < 00. Then 
inequality (13) becomes Kolmogorov's inequality (§2, Chapter IV). 

2. Let X = (Xn, ff") be a nonnegative Submartingale and 

its Doob decomposition. Then, since EMn = 0, it follows from (1) that 

Theorem 4, below, shows that this inequality is valid, not only for Sub­
martingales, but also for the wider dass of sequences that have the property 
of domination in the following sense. 

Definition. Let X = (Xn, ff") be a nonnegative stochastic sequence, and 
A =(An, ff"_ 1 ) an increasing predictable sequence. We shall say that X is 
dominated by the sequence A if 

(20) 

for every stopping time r. 

Theorem 4. If X = (Xn, ff") is a nonnegative stochastic sequence dominated by 
an increasing predictable sequence A =(An, ff"_ 1), then for A > 0, a > 0, and 
any stopping time r, 

EA 
P{X* > A.} < _t 

t - - A. ' 

1 
P{Xi;;:::.: A.} ~ J: E(At A a) + P(At;;:::.: a), 

(21) 

(22) 
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O<p<l. 

PROOF. We set 

(J'n = min{j:::;; 't 1\ n: xj ~ .Ä.}, 

taking un = -r 1\ n, if { ·} = 0. Then 

EA, ~ EAan ~ EXan ~ f Xan dP ~ .Ä.P{X:""n > .Ä.}, 
{X:,_n>Ä} 

from which 

and we obtain (21) by Fatou's Iemma. 
For the proof of (22), we introduce the time 

y = inf{j: Ai+l ~ a}, 

setting y = oo if { ·} = 0. Then 

P {X;" ~ .Ä.} = P {X;" ~ .Ä., A, < a} + P {X;" ~ .Ä., A, ~ a} 

:::;; P{I{A,<a)X;" ~ .Ä.} + P{A, ~ a} 

:::;; P {X;"" r ~ .Ä.} + P { A, ~ a} :::;; l EA," r + PAr ~ a} 

1 :::;; I E(A, 1\ a) + P(A, ~ a), 

where we used (21) and the inequality I{A,<a)X;":::;; X;""Y" Finally, by (22), 

IIX;"II~ = E(X;")P = [' P{(X;")P ~ t} dt = [' P{X;" ~ t 1'P} dt 

:::;; ('" c 11PE[A, 1\ t11P] dt + [' P{A~ ~ t} dt 

AP f<Xl 2 = E f ' dt + E (A,t-liP) dt + EA~ = ~ EA~. 
0 A:' 1-p 

This completes the proof. 

497 

(23) 

Remark. Let us suppose that the hypotheses of Theorem 4 are satisfied, 
except that the sequence A =(An, ~)n~o is not necessarily predictable, but 
has the property that for some positive constant c 

P {sup I.&Akl :::;; c} = 1, 
k~l 
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where L\Ak = Ak- Ak-t· Then the following inequality is satisfied (compare 
(22)): 

1 
P{x: ~ -1.} ~I E[A, A (a + c)] + P{A, ~ a}. (24) 

The proof is analogaus to that of (22). We have only to replace the time 
y = inf{j: Ai+l ~ a} by y = inf{j: Ai~ a} and notice that A 1 ~ a + c. 

Corollary. Let the sequences Xk =(X!, §',.k) and Ak = (A:, §",.k), n ~ 0, k ~ 1 
satisfy the hypotheses of Theorem 4 or the remark. Also, Iet (rk)k;:,t be a 
sequence of stopping times (with respect to JFk = (§",.k)) and A~k-!. 0. Then 
(Xk):,.!. 0. 

3. In this subsection we present (without proofs, but with applications) a 
number of significant inequalities for martingales. These generalize the 
inequalities of Khinchin and of Marcinkiewicz and Zygmund for sums of 
independent random variables. 

Khinchin's lnequalities. Let ~ 1 , ~ 2 , •.. be independent identically distributed 
Bernoulli random variables with P(~; = 1) = P(~; = -1) =! and Iet (cn)n;:,t 
be a sequence of numbers. 

Then for every p, 0 < p < oo, there are universal constants AP and BP 
(independent of(cn)) suchthat 

(25) 

for every n ~ 1. 

The following result generalizes these inequalities (for p ~ 1). 

Marcinkiewicz and Zygmund's Inequalities. If ~ 1 , ~ 2 , ••• is a sequence of 
independent integrable random variables with E~; = 0, then for p ~ 1 there 
areuniversal constants AP and BP (independent of(~n)) suchthat 

for every n ~ 1. 

In (25) and (26) the sequences X = (Xn) with Xn = Li=t ci~i and Xn = 
Li= 1 ~i are martingales. lt is natural to ask whether the inequalities can be 
extended to arbitrary martingales. 

The first result in this direction was obtained by Burkholder. 
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Burkholder's lnequalities. If X = (Xn, ~) is a martingale, then for every 
p > 1 there are universal constants AP and BP (independent of X) such that 

(27) 

for every n ~ 1, where [X]n is the quadratic Variation of Xn, 
n 

[XJn = L (11XY, X 0 = 00 (28) 
j= 1 

The constants AP and BP can be taken to have the values 

It follows from (17), by using (2), that 

ApiiJ[X111p ~ IIX:IIp ~ B:ll}[niiP' (29) 

where 

Burkholder's inequalities (27) hold for p > 1, whereas the Marcinkiewicz­
Zygmund inequalities (26) also hold when p = 1. What can we say about the 
validity of (27) for p = 1? lt turns out that a direct generalization to p = 1 
is impossible, as the following example showso 

EXAMPLEo Let e1, e2, 0 0 0 be independent Bernoulli random variables with 
P(e; = 1) = P(e; = -1) = t and let 

ftl\t 

where 

-r = inf{n ~ 1: .i ej = l}o 
•= 1 

The sequence X= (Xn, §"~) is a martingale with 

n-... ooo 

But 

11J[X1111 = Ej[X],; = Ect: 1) 112 = Ej!Arl-... ooo 

Consequently the first inequality in (27) failso 
1t turns out that when p = 1 we must generalize not (27), but (29) (which 

is equivalent when p > 1 )o 

Davis's Inequality. lf X= (Xn, ffn) is a martingale, there are universal 
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constants A and B, 0 < A < B < oo, suchthat 

AIIJEX1II1 ~ IIX:II1 ~ BIIJEX1111, (30) 

i.e., 

Corollary 1. Let ~ 1, ~2 , ... be independent identically distributed random 
variables; Sn = ~ 1 + · · · + ~n· If EI~ tl < oo and E~ 1 = 0, then according to 
Wald's inequality (2.14) we have 

ES"= 0 (31) 

for every stopping time r (with respect to (ff~))for which Er < oo. 

lt turns out that (31) is still valid under a weaker hypothesis than Er < oo 
if we impose stronger conditions on the random variables. In fact, if 

EI ~1l' < oo, 

where 1 < r ~ 2, the condition Er 11' < oo is a sufficient condition for ES" = 0. 
For the proof, we put Ln = r 1\ n, y = SUPn I s<n I, and Iet m = [t'] (integral 

part of t') for t > 0. By Corollary 1 to Theorem 1, §2, we have ES"" = 0. 
Therefore a sufficient condition for ES" = 0 is (by the dominated convergence 
theorem) that E supn I S"J < oo. 

Using (1) and (27}, we obtain 

P(Y ~ t) = P(r ~ t', Y ~ t) + P(r < t', Y ~ t) 

~ P(r ~ t') + P{ m~x ISril ~ t} 
l$J:Sm 

~ P(r ~ t') + t-'E ISrJ 

<m 

~ P(r ~ t') + t-'B,E L I ~X 
j~ 1 

Notice that (with ff& = {0, Q}) 

<m 00 

E L I ~J = E L l(j ~ rm)l ~J 
j~ 1 j~ 1 

00 

= L EE[/(j ~ rm)l~jl'lff}-1] 
j~1 

00 <m 

= E L l(j ~ rm)E[I~I'Iff}-1] = E L El~jl' = }l,Erm, 
j~ 1 j~ 1 
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where flr = E I~ 1 1'. Consequently 

P(Y;:::: t) :::.:; P(r ;:::: t') + t-'B,J1,Erm 

= P(r ;:::: t') + B,Jl,t-'[mP(r ;:::: t') + f r dPJ 
J{r< rr) 

:::.:; (1 + B,Jl.,)P(r;:::: t') + B,Jl,t-r f r dP 
J{r<tr} 

and therefore 

E Y f"' P(Y;:::: t) dt :::.:; (1 + B,J1,)Er 11' + B,Jl, f"' t-'[ f r dPJ dt 
Jo Jo J{r<tr} 

= (1 + B,J1,)Er 11' + B,Jl, f r[ i"' t-' dt] dP Jn rlfr 

Corollary 2. Let M = (Mn) be a martingale with E IM n 12 ' < oo for some r ;:::: 1 
and such that ( with M 0 = 0) 

"' E IAMnl 2 ' L l+r <oo. 
n=l n 

(32) 

Then (compare Theorem 2 of§3, Chapter IV) we have the strong law oflarge 
numbers: 

Mn ) - --+ 0 (P-a.s. , 
n 

n --+ oo. (33) 

When r = 1 the proof follows the same lines as the proof of Theorem 2, 
§3, Chapter IV. In fact, let 

Then 

and, by Kronecker's lemma (§3, Chapter IV) a sufficient condition for the 
limit relation (P-a.s.) 

n --+ oo, 

isthat the limit lim"m" exists and is finite (P-a.s.) which in turn (Theorems 1 
and 4, §10, Chapter II) is true if and only if 

P{sup lmn+k- mnl 2:: s}--+ 0, 
k;<:l 

n --+ oo. (34) 
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By (1), 

Hence the required result follows from (32) and (34). 
Now Iet r > 1. Then the statement (33) is equivalent (Theorem 1, §10, 

Chapter II) to the statement that 

{ IM·I } e2'P s_up -.1 ~ e -+ 0, 
J""'n J 

n-+ oo 

for every e > 0. By inequality (53) of Problem 1, 

{ IM·I } { IM-12' } e2'P s_up -.-1 ~ ß = e2' lim p m~x --+,- ~ e2' 
;""'n J m-+oo n:S;J:S;m J 

S ~E 1Mnl2' + L .!, E(IMjl2'- IMj-112'). 
n j""'n+ll 

It follows from Kronecker's Iemma and (32) that 

lim ~r E 1Mnl2' = 0. 
n--+oo n 

Hence to prove (35) we need only prove that 

1 L "Tr E(l Mil 2 • - I Mj-1l2•) < oo. 
j""'2 J 

Wehave 

By Burkholder's inequality (27) and Hölder's inequality, 

[ 
j ]' j E 1Mil2' s E ;~1 (!lMY s E/- 1 ;~1 lllM;I2'. 

Hence 

J < "' - - ·r- 1 "' EI /lM 12r 
N-1 [ 1 1 J j 

N - .L.. ·2r ( · + 1)2r J .L.. i 
]=2 J J •=1 

N-1 1 j N E l/lM-12r 
s Cl L ·r+2 L El!lMd2' s c2 L ·r+; + c3 

j=21 i=l j=2 J 

(C; are constants). By (32), this establishes (36). 

(35) 

(36) 
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4. The sequence of random variables {Xn}n~t has a Iimit lim Xn (finite or 

infinite) with probability 1, if and only if the nurober of "oscillations between 

two arbitrary rational numbers a and b, a < b" is finite with probability 1. 

Theorem 5, below, provides an upper bound for the nurober of "oscillations" 

for submartingales. In the next section, this will be applied to prove the 

fundamental result on their convergence. 

Let us choose two numbers a and b, a < b, and define the following times 
in terms ofthe stochastic sequence X= (Xn, ~): 

t 0 = 0, 

r 1 = min{n > 0: Xn ~ a}, 

t 2 = min { n > r 1 : X n ~ b}, 

t 2m-t = min{n > t 2m_ 2 : Xn ~ a}, 

r 2m = min{n > t 2m-t: Xn ~ b}, 

taking rk = oo if the corresponding set { · } is empty. 

In addition, for each n ~ 1 we define the random variables 

{
0, if r 2 > n, 

ßn(a, b) = max{m: t 2m ~ n} ift2 ~ n. 

In words, ßn(a, b) is the number of upcrossings of [a, b] by the sequence 

X 1, ... ,Xn. 

Theorem 5 (Doob). Let X= (Xn, ~)n~t be a submartingale. Then, for 
every n ~ 1, 

Eß ( b) < E[Xn- a]+ 
n a, - b- a (37) 

PROOF. The nurober of intersections of X= (Xn, ~) with [a, b] is equal to 

the nurober of intersections of the nonnegative submartingale x+ = 

((Xn- a)+, ~) with [0, b - a]. Hence it is sufficient to suppose that X is 

nonnegative with a = 0, and show that 

b EXn 
Eßn(Ü, ) ~ b" 

Put X 0 = 0, $i, = {0, 0}, and for i = 1, 2, ... , Iet 

{
1 if rm < i ~ rm+ 1 for some odd m, 

({Jj = 0 if rm < i ~ rm+ 1 for some even m. 

lt is easily seen that 
n 

bßnCO, b) ~ I ({Jj[Xi - xj-1J 

and 
i= 1 

{({J; =I}= U [{tm < i}\{tm+1 < i}]E~-1· 
oddm 

(38) 
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Therefore 

bEßn(O, b) SE it1 (f);[X;- X;-1] = it1 L,= 1) (X;- X;-1)dP 

;t1 J"',= 1J E(X;- X;_ 1lg;;_ 1)dP 

;t1 Jrp,=
1 J [E(X;/g;-;_ 1)- X;- 1]dP 

S J1 L[E(X;I~;-1)- X;_ 1] dP = EXn, 

which establishes (38). 

5. In this subsection we discuss some of the simplest inequalities for the 
probability of large deviations for martingales of integrable square. 

Let M = (Mn, ff..)n;;,o be a martingale of integrable square with quadratic 
variation <M) = ( <M)n, ff"_ 1 ). lf we apply inequality (22) to Xn = Mn, 
An = <M)n, we find that for a > 0 and b > 0 

P {max IMkl ~ an} = P {max Mf ~ (anf} 
k~n k~n 

1 
s (an)2 E[ <M>n 1\ (bn)] + P{ <M>n ~an}. (39) 

In fact, at least in the case when lßMnl s C for all n and w E !l, this inequality 
can be substantially improved by using the ideas explained in §5, Chapter IV 
for estimating the probability of large deviations for sums of independent 
identically distributed random variables. 

Let us recall that in §5, Chapter IV, when we introduced the correspond­
ing inequalities, the essentialpointwas to use the property that the sequence 

(40) 

formed a nonnegative martingale, to which we could apply the inequality (8). 
If we now take Mn instead of Sn, by analogy with (40), the martingale 

(e'-Mnjßn(.A.), ff..)n>1' 

will be nonnegative, where 

n 

Sn(A.) = n E(e'-AMj,~j-1) 
j=1 

is called the stochastic exponential. 

(41) 

This expression is rather complicated. At the same time, in using (8) it 
is not necessary for the sequence to be a martingale. lt is enough for it to 
be a nonnegative supermartingale. Here we can arrange this by forming a 
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sequence (Zn(A.), ~) ((43), below), which sufficiently depends simply on Mn 
and (M)n, and to which we can apply the method used in §5, Chapter IV. 

Lemma 1. Let M =(Mn, ~)n<!O be a square-integrable martingale, M 0 = 0, 
AM0 = 0, and IAMn(m)l :::;; c for all n and m. Let A. > 0, 

{

e.<c_1-A.c 
2 ' c > 0, 

t/lc(A.) = ~2 -

2 , c-0, 
(42) 

and 

(43) 

Then for every c ~ 0 the sequence Z(A.) = (Zn(A.), ~)n<!O is a non-negative 
supermartingale. 

PROOF. For lxl :::;; c, 

e"x - 1 - A.x = (A.xf L (.A.x)~-2 :::;; (A.x)2 L (.A.c)~-2 :::;; x2t/lc(A.). 
m<!2 m. m<!2 m. 

Using this inequality and the following representation (Zn = Zn(A.)) 

AZn = zn_1 [(e.<.<1Mn _ 1)e-.<1(M)nt/lc(.<) + (e-.<1(M)nt/lc(A) _ 1)], 

we find that 

E(AZnl~-1) 

= zn_1 [E(e.<.<1Mn _ 11~-1 )e-.<1(M)nt/lc(A) + (e-.<1(M)nt/lc(.<) _ 1)] 

= Zn-1 [E(e.<.<1Mn- 1 - A.AMn1~-1)e-<1<M)nt/lc(.<J + (e-.<1(M)nt/lc(.<J- 1)] 

:::;; zn-1 [t/lc(A.) E((AMn)2 1~-1)e-.<1(M)nt/lc(A) + (e-.<1<M>nt/lc(A) - 1)] 

= zn-1[t/Jc(A.)A(M)ne-<1<M)nt/lc(.<J + (e-.<1(M)nt/lc(.<J- 1)]:::;; 0, (44) 

where we have also used the fact that, for x ~ 0, 

xe-x + (e-x - 1) :::;; 0. 

We see from (44) that 

E(Znl~-1):::;; Zn-1• 

i.e., Z(A.) = (Zn(A.), ~) is a supermartingale. 
This establishes the Iemma. 

Let the hypotheses of the Iemma be satisfied. Then we can always find 
A. > 0 for which, for given a > 0 and b > 0, we have a.A.- bt/lc(A.) > 0. From 
this, we obtain 
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~ p {maX e).Mk-1/lcO·l(M)k ~ e).an-1/lc(},.)(M)n} 
k:Sn 

= p {max e;.Mk-1/lc().)(M)k ~ e).an-1/lc(},.)(M)", <M)n ~ bn} 
k:Sn 

+ p {max e;.Mk-1/lc(},.)(M)k ~ e).an-1/lc().)(M)n, <M)n > bn} 
k:Sn 

~ p {max e;.Mk-1/lc(},.)(M)k ~ e).an-1/lc().)bn} 
k:Sn 

(45) 

where the last inequality follows from (7). 
Let us write 

Hc(a, b) = sup [a.A. - bt/lc(A.)]. 
).>0 

Then it follows from (45) that 

P {max Mk ~an}~ P{ <M)n > bn} + e-nHc(a,bl. (46) 
k:Sn 

Passing fromM to - M, we find that the right-hand side of (46) also provides 
an upper bound for the probability P{mink,;nMk ~ -an}. Consequently, 

P {max JMkJ ~an}~ 2P{ <M\ > bn} + 2e-nHc(a,bl. (47) 
k:Sn 

Thus, we have proved the following theorem. 

Theorem 6. Let M = (Mn, ff") be a martingale with uniformly bounded steps, 
i.e., IL\Mnl ~ c for some constant c > 0 and all n and w. Then for every a > 0 
and b > 0, we have the inequalities ( 46) and ( 4 7). 

Remark 2. 

(48) 

6. Under the hypotheses of Theorem 6, we now consider the question of 
estimates of probabilities of the type 

P {sup <Mk> > a}, 
k;;,n M k 

which characterize, in particular, the rapidity of convergence in the strong 
law of large numbers for martingales (also see Theorem 4 in §5). 
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Proceeding as in §5, Chapter IV, we find that for every a > 0 there is a 
A. > 0 for which aA. - if!c(A.) > 0. Then, for every b > 0, 

p {sup Mk > a} ~ p {sup eAMk-1/t.O.J<M>k > eliZA-1/t.(AlJ<M>.} 
k;"n (M)k k;,:n 

from which 

~ p {sup e).Mk-1/tcO·l(M)k > elaA-1/t.(A)]bn} 
k;"n 

+ P{ (M\ < bn} ~ e-bn(aA-1/t.(A)] + P{ (M)n < bn}, 
(49) 

P {sup Mk > a} ~ P{ (M\ < bn} + e-nH.(ab,b) (50) 
k;,:n (M)k 

P {sup I Mk I > a} ~ 2P{ (M)n < bn} + 2e-nH.(ab.bl. (51) 
k2:n (M)k 

Wehave therefore proved the following theorem. 

Theorem 7. Let the hypotheses of the preceding theorem be satis.fied. Then 
inequalities (50) and (51) are satis.fied for all a > 0 and b > 0. 

Remark 3. Comparison of(51) with the estimate (21) in §5, Chapter IV, for the 
case of a Bernoulli scheme, p = 1/2, Mn = Sn - (n/2), b = 1/4, c = 1/2, shows 
that for small e > 0 it Ieads to the same result 

7. PROBLEMS 

1. Let X = (X.,~) be a nonnegative submartingale and Iet V= (V,., ~-1 ) be a 
predictable sequence such that 0 s; V..+1 s; V,. s; C (P-a.s.), where C is a constant. 
Establish the following generalization of(l): 

eP{~:"x.~Xj ~ e} + L .. .,,,"v,x;<•l V"X.dP S: jtl E~L\Xj. (52) 

2. Establish Krickeberg's decomposition: every martingale X= (X.,~) with 
sup EIX.I < oo can be represented as the difference oftwo nonnegative martingales. 

3. Let ~ 1 , ~2 , ... be a sequence ofindependent random variables, s. = ~1 + .. · + ~. 
and sm,n = LJ=m+ I ~j· Establish Ottaviani's inequality: 

P{max /S·/ > 2e} < P{/S./ > e} 
1 ,;;j,;;n 1 - min 1 "is•P{/Sj,n/ s; e} 
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and deduce that 

foo P{max ISil > 2t}dt :s; 2EIS.I + 2Joo P{IS.I > t}dt. (53) 
0 I SjSn 2EISnl 

4. Let ~ 1 , ~2 •... be a sequence of independent random variables with E~; = Oo Use 
(53) to show that in this case we can strengthen inequality (10) to 

ES!' :s; 8EIS.I. 

5. Verify formula (16)o 

6. Establish inequality (19)0 

7. Let the u-algebra §'0 , o. o, §',. be such that §'0 5;; §'1 5;; o o o 5;; §',. and Iet the events 
Ak e §k, k = 1, .. o, no Use (22) to establish Dvoretzky's inequality: for each e > 0, 

P[ kv1 Aki§'o] :s; e + P[t P(Akl~- 1 ) > el§'o] (P-a.so)o 

§4. General Theorems on the Convergence of 
Submartingalesand Martingales 

1. The following result, which is fundamental for all problems about the 
convergence of submartingales, can be thought of as an analog of the fact 
that in real analysis a bounded monotonic sequence ofnumbers has a (finite) 
Iimit. 

Theorem 1 (Doob)o Let X= (X.,~) be a submartingale with 

supEIX.I <ooo 
n 

T hen with probability 1, the Iimit lim X. = X 00 exists and E I X oo I < oo o 

PRooFo Suppose that 

P(lim X.> lim X.)> 00 

Then since 

{llm X n > lim X.} = U {Um X n > b > a > lim X.} 
a<b 

(here a and bare rational numbers), there are values a and b suchthat 

(1) 

(2) 

P{lim X. > b > a > lim X.} > 00 (3) 

Let ß.(a, b) be the number of upcrossings of (a, b) by the sequence 
X 1, o o o, X., and let ßoo(a, b) = Iim.ß.(a, b)o By (3027), 
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ß ( b) < E [X" - a] + < _E x---o:-:_+----'--1 a-'1 
E "a, - b - b -a -a 

and therefore 

ß b . ß b sup"Ex; + Iai 
E 00(a, ) = hm E "(a, ) :::;; b _ a < oo, 

" 
which follows from (1) and the remark that 

supE IXnl < oo ~ sup EX; < oo 
n n 

for Submartingales (since EX"+ :::;; E IXnl = 2EX; -EX":::;; 2EX; - EX 1). 

But the condition Eß00(a, b) < oo contradicts assumption (3). Hence !im X" 
= X 00 exists with probability 1, and then by Fatou's Iemma 

EIXool:::;; supEIXnl <oo. 
" 

This completes the proof of the theorem. 

Corollary 1. lf X is a nonpositive submartingale, then with probability 1 the 
Iimit !im X" exists and is finite. 

Corollary 2. If X= (X", ~)n;;, 1 isanonpositive submartingale, the sequence 
X = (X",~) with 1 :::;; n :::;; oo, X 00 = !im Xn and :#'00 = O'{U~} is a (non­
positive) submartinga/e. 

In fact, by Fatou's Iemma 

EX oo = E !im X" ;:::: !im EX" ;:::: EX 1 > - oo 

and (P-a.s.) 

E(Xooi:Fm) = E(limX"I:Fm);:::: !im E(X"i:Fm);:::: Xm. 

Corollary 3. If X = (X"'~) isanonnegative martinga/e, then !im X" exists 
with probabi/ity 1. 

In fact, in that case 

supE IXnl = sup EX"= EX 1 < oo, 

and Theorem I is applicable. 

2. Let ~ 1 , ~ 2 , ... be a sequence of independent random variables with 
P(~; = 0) = P(~; = 2) = !. Then X = (X",:#'~), with Xn = 0?= 1 ~i and 
:F~ = O'{w: ~ 1 , ... , ~"} is a martingale with EX"= 1 and X" ....... X 00 = 0 
(P-a.s.). At the same time, it is clear that EI X" - X oo I = I and therefore 
X"~ X oo. Therefore condition (1) does not in general guarantee the con­
vergence of X" to X oo in the L 1 sense. 

Theorem 2 below shows that if hypothesis (1) is strengthened to uniform 
integrability of the family {X"} (from which (1) follows by Subsection 4, 
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§6, Chapter 11), then besides almost sure convergence we also have conver­
gence in L 1. 

Theorem 2. Let X = {X.,.?,;} be a uniformly integrable Submartingale (that 
is, the family {X.} is uniformly integrable). Then there is a random variable 
X 00 with EI X oo I < oo, such that as n -+ oo 

x.-+ X oo (P-a.s.), 
L' 

X.-+X 00 • 

(4) 

(5) 

Moreover, the sequence X= (X.,.?,;), 1 :::;;; n:::;;; oo, with ff'oo = a(U.?.;), is 
also a submartingale. 

PRooF. Statement (4) follows from Theorem 1, and (5) follows from (4) and 
Theorem 4, §6, Chapter II. 

Moreover, if A E.?,; and m ~ n, then 

m-+ oo, 

and therefore 

!im f X m dP = f X oo dP. 
m-+oo A A 

The sequence {JAXm dP}m;;,n is nondecreasing and therefore 

L x.dP:::;;; L XmdP:::;;; L Xoo dP, 

whence x. :::;;; E(X oo 1.?,;) (P-a.s.) for n ~ 1. 
This completes the proof of the theorem. 

Corollary. lf X = (X.,.?,;) is a submartingale and,for some p > 1, 

supEIX.IP<oo, (6) 
n 

then there is an integrable random variable X oo for which (4) and (5) are 
satisfied. 

For the proof, it is enough to observe that, by Lemma 3 of §6 of Chapter 
II, condition (6) guarantees the uniform integrability ofthe family{X.}. 

3. We now present a theorem on the continuity properties of conditional 
expectations. This was one of the very first results concerning the conver­
gence of martingales. 

Theorem 3 (P. Levy). Let (Q, ff, P) be a probability space, and Iet (.?.;).;;,; 1 

be a nondecreasing family of a-algebras, ff1 ~ ff2 ~ · • · ~ ff. Let ~ be a 
random variable with EI~ I < oo and ff oo = a(U. ~). Then, both P-a.s. and 
in the L 1 sense, 

n-+ oo. (7) 
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PRooF. Let Xn = E(el~), n;;:::: 1. Then, with a > 0 and b > 0, 

f IXd dP:::;; f E(I~IIF;)dP = f 1~1 dP 
IIX;I ~a) {IX;I~a} IIXtl ~a) 

:::;; f I~ I dP + f I~ I dP 
IIX;I ~a) 1"1{1~1 :s;b} {IX;I ~a) 1"1{1~1 >b} 

:::;; bP{IXd;;:::: a} + f l~ldP 
11~1 >b} 

:::;; ~E IXd + f 1~1 dP 
a ll~l>bJ 

::;~EI~I+f l~ldP. 
a ll~l>bl 

Letting a --+ oo and then b --+ oo, we obtain 

lim sup J IX; I dP = 0, 
a-+oo i {IX;I~a} 

i.e., the family {Xn} is uniformly integrable. 
Therefore, by Theorem 2, there is a random variable X"" such that 

Xn = E<e!Fn)--+ X00 ((P-a.s.) and in the L 1 sense). Hence we only have to 
show that 

Let m;;:::: n and A E~. Then 

{xmdP= {xndP= LE(~IFn)dP= L~dP. 
Since the family {Xn} is uniformly integrable and since, by Theorem 5, 
§6, Chapter II, we have E/ AI X m - X oo I --+ 0 as m --+ oo, it follows that 

(8) 

This equation is satisfied for all A E $'" and therefore for all A EU,;"'= 1 .9'". 
Since EI X oo I < oo and EI~ I < oo, the left-hand and right-hand sides of (8) 
are a-additive measures; possibly taking negative as weil as positive values, 
but finite and agreeing on the algebra u~ = I~. Because of the uniqueness of 
the extension of a a-additive measure to an algebra over the smallest a­
algebra containing it (Caratbeodory's theorem, §3, Chapter II, equation (8) 
remains valid for sets A E F 00 = a(U F n). Thus, 

L XoodP = L ~dP = L E(~l$i'00)dP, AE$i'00 • (9) 

Since X 00 and E(~ l$i'00 ) are $i'00 -measurable, it follows from Property I 
of Subsection 2, §6, Chapter II, and from (9), that Xoo = E(~l$i'00 ) (P-a.s.). 

This completes the proof of the theorem. 
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Corollary. A stochastic sequence X =(X",~) is a uniformly integrable 
martingale if and only if there is a random variable~ with Ei~l < oo suchthat 
X"= E(~IFn)for all n 2 l. Here x"~E(~IFocJ (both P-a.s. andin the e 
sense) as n ~ oo. 

In fact, if X = (X"'~) is a uniformly integrable martingale, then by 
Theorem 2 there is an integrable random variable X oo such that X n ~ X oo 

(P-a.s. andin the L 1 sense) and X"= E(X 00 1Fn). Astherandom variable~ 
we may take the ff 00 -measurable variable X oo. 

The converse follows from Theorem 3. 

4. We now turn to some applications of these theorems. 

ExAMPLE 1. T he "zero or one" law. Let ~ 1, ~ 2 , •.• be a sequence of independent 
random variables, ff~ = cr{w: ~ 1 , ... , ~"} and Iet X be the cr-algebra of the 
"tail" events. By Theorem 3, we have E(JAIF~) ~ E(IAIFi,) =JA (P-a.s.). 
But I A and (~ 1, ... , ~n) are independent. Since E(J AI F~) = E/ A and therefore 
JA = EIA (P-a.s.), we find that either P(A) = 0 or P(A) = 1. 

The next two examples illustrate possible applications of the preceding 
results to convergence theorems in analysis. 

EXAMPLE 2. If f = f(x) satisfies a Lipschitz condition on [0, 1), it is absolutely 
continuous and, as is shown in courses in analysis, there is a (Lebesgue) 
integrable function g = g(x) suchthat 

f(x) - f(O) = S: g(y) dy. (10) 

(In this sense, g(x) is a "derivative" of f(x).) 
Let us show how this result can be deduced from Theorem 1. 
Let n = [0, 1), ff = 86'([0, 1)), and Iet P denote Lebesgue measure. Put 

2 n k - 1 {k - 1 k } 
~n(x) = Jl -----y- I -----y- ~ X < 2" , 

ffn = cr{x: ~ 1 , ... , ~n} = cr{x: ~n}, and 

Xn =f(~n + 2-")- J(~.). 
2-n 

Since for a given ~" the random variable ~n+ 1 takes only the values ~. and 
~" + 2-(n+ 1l with conditional probabilities equal tot, we have 

E[Xn+1i~J = E[Xn+d~nJ = 2"+ 1 E[f(~n+1 + r<•+ 1>)- f<~n+1)i~nJ 

= 2"+ 1 HU<~" + 2-<•+ 1>)- !<~")] +Hf<~.+ r")- !<~" + r•+ 1>)J} 

= 2"{f(~n + r") - f(~.)} = Xn. 
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lt follows that X = (X n• ~) is a martingale, and it is uniformly integrable 
since I Xn I :::; L, where L is the Lipschitz constant: lf(x) - f(y) I :::; L lx - yl. 
Observe that ff = ßi([O, 1)) = a(U ff"). Therefore, by the corollary to 
Theorem 3, there is an ff-measurable function g = g(x) such that Xn-+ g 
(P-a.s.) and 

Xn = E[gl~]. ( 11) 

Consider the set B = [0, kj2n]. Then by (11) 

(k) fk/2" k/2" 
f 2n - f(O) = 

0 
Xndx = L g(x) dx, 

and since n and k are arbitrary, we obtain the required equation (10). 

EXAMPLE 3. Let Q = (0, 1), ff = ßi((O, 1)) and Iet P denote Lebesgue 

measure. Consider the Haar system { H nCx)} n > 1, as defined in Example 3 

of§11, Chapter li. Put ~ = a{x: H I• ... ' Hn} and observe that a(U~) = ff. 
From the properties of conditional expectations and the structure of the 

Haar functions, it is easy to deduce that 
n 

E[.f(x)lffnJ = L akHk(x) (P-a.s.), (12) 
k=l 

for every Borel functionf E L, where 

ak = (f, Hk) = f f(x)Hk(x) dx. 

In other words, the conditional expectation E(f(x)lff..J isapartial sum of 
the Fourier series of f(x) in the Haar system. Then if we apply Theorem 3 
to the martingalewefind that, as n-+ oo, 

n 

L (f, Hk)Hk(x)---> f(x) (P-a.s.) 
k=l 

and 

EXAMPLE 4. Let cen)n>1 be a sequence of random variables. By Theorem 2, 
§10, Chapter li, the P-a.e. convergence of the series L en implies its conver­
gence in probability and in distribution. lt turns out that if the random 

variables ~ 1 , ~ 2 , ••• are independent, the converse is also valid: the conver­

gence in distribution of the series L ~n of independent random variables 
implies its convergence in probability and with probability one. 

Let Sn= ~ 1 + · · · + ~n' n ~ 1 and Sn~ S. Then EeitS"-+ EeitS for every real 

number t. It is clear that there is a J > 0 suchthat IEeirsl > 0 for allltl < J. 
Choose t0 so that I t0 I < J. Then there is an n0 = n0 (t0 ) such that I Eeiros"l ~ 

c > 0 for all n ~ n0 , where c is a constant. 
For n ~ n0 , we form the sequence X = (Xn, ff") with 
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Since e1 , e2 , ••• were assumed tobe independent, the sequence X= (Xn, ~) 
is a martingale with 

Then it follows from Theorem 1 that with probability one the Iimit limn Xn 
exists and is finite. Therefore, the limitn-+ao eitos" also exists with probability 
one. Consequently, we can assert that there is a {) > 0 suchthat foreacht in 
the set T = {t: ltl < {)} the Iimit lim"e;1s" exists with probability one. 

Let T X n = {(t, w): t E T, wEn}, Iet ~(T) be the u-algebra of Lebesgue 
sets on T and Iet A. be Lebesgue measure on (T, ~(T)). Also, Iet 

c = {<t, w) E T X n: Ii~ eitSn(CO) exists}. 

It is clear that Ce ~(T) ® $'. 
It was shown above that P( C,) = 1 for every t e T, where C, = { w e n: 

(t, w) e C} is the section of C at the point t. By Fubini's theorem (Theorem 8, 
§6, Chapter II) 

Lxn lc(t, w)d(A. X P) = L (t Ic(t, w) dP) dA. 

= L P(C,) dA.= A.(T) = 2{) > 0. 

On the other band, again by Fubini's theorem, 

A.(T) = Lxn lc(t, w)d(A. X P) = L dP (L lc(t, w) dA.) = L A.(Cco) dP, 

where Cco = {t: (t, w) e C}. 
Hence, it follows that there is a set fi with P(Ö) = 1 such that A.(Cco) = 

A.(T) = 2{) > 0 for al1 w e fi. 
Consequently, we may say that for every w e fi the Iimit lim" e;1s" exists for 

all t e Cco. In addition, the measure of Cco is positive. From this and Problem 
8, it follows that the Iimit limn Sn(w) exists and is finite for w e fi. Since 
P(Ö) = 1, the Iimit limn Sn(w) exists and is finite with probability one. 

5. PROBLEMS 

1. Let { ~ .} be a nonincreasing family of a-algebras, ~I 2 ~ 2 2 00 0 ~ 00 = n ~~.' and 
Iet '7 be an integrable random variable. Establish the following analog ofTheorem 3: 
as n -oo, 

E('71G.)- E(17IGoo) (P-a.s. andin the L 1 sense). 

2. Let ~ ~> ~2 , ••• be a sequence of independent identically distributed random variables 
with El~ 1 1 <oo and E~ 1 = m; Iet s. = ~ 1 + 000 + ~".Having shown (see Problem 
2, §7, Chapter II) that 

E(~JIS., Sn+ I• 00 .) = E(~ 1 IS.) = s. (P-a.s.), 
n 
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deduce from Problem 1 a stronger form of the Iaw of large numbers: as n -+ oo, 

Sn I 
--+ m (P-a.s.and in the L sense). 
n 

515 

3. Establish the following result, which combines Lebesgue's dominated convergence 
theorem and P. Levy's theorem. Let { ~.}.." 1 be a scquence of random variables such 
that ~.-+ ~ (P-a.s.), I ~.I s IJ, EI}< oo and {ff m}m:e 1 is a nondecreasing family of a­
algebras, with :Foo = a(U .?;,;). Then 

lim E(~. I ffm) = E(~ 1.1'00 ) (P-a.s.). 

4. Establish formula (12). 

5. Let Q = [0, 1], :F = .?4([0, 1 )), Iet P denote Lebesgue measure, and Iet( = f(x) E L 1. 

Put 
(k+ 1)2 -n 

f.(x) = 2" L-n J(y)dy, 

Show that f.(x)-+ f(x) (P-a.s.). 

6. Let Q = [0, 1), :F = .?4([0, 1)), Iet P denote Lebesgue measure and Iet .f = f(x) E L 1. 

Continue this function periodically on [0, 2) and put 

i=l 

Show that _{,,(x)-+ f(x) (P-a.s.). 

7. Prove that Theorem 1 remains valid for generalized submartingales X = (X.,.?;,;), 
if infm SUPn:em E(X: !:Fm) < 00 (P-a.s.). 

8. Let a., n ~ 1, be a sequence of real numbers suchthat for allreal numbers t with 
1 t 1 < b, b > 0, the Iimit lim. e;'"" exists. Prove that then the Iimit Iim a. exists and is 
finite. 

§5. Sets of Convergence of Submartingales and 
Martingales 

1. Let X = (X., g,;) be a stochastic sequence. Let us denote by {X.-+}, or 
{- oo < I im X. < oo }, the set of sample points for which lim X n exists and 
isfinite. Let us also write A s B (P-a.s.) if P(JA::::;; 18 ) = 1. 

lf Xis a submartingale and sup EIX.I <oo (or, equivalently, if sup 
EX: < oo ), then according to Theorem 1 of §4 we ha ve 

{X.-+} = Q (P-a.s.). 

Let us consider the structure of sets {X n -+} of convergence for submartin­
gales when the hypothesissupE IX.I < oo is not satisfied. 

Let a > 0, and ra = inf{n ~ 1: X. > a} with ra = oo if { ·} = 0. 

Definition. A stochastic sequence X = (X., g,;) belongs to class c+ (XE c+) 
if 
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E(LlXr.)+J{ra < oo} <oo 

for every a > 0, where LlXn = Xn- Xn-t• X 0 = 0. 
lt is evident that XE c+ if 

or, all the more so, if 

I LlX n I :s; c < 00 (P-a.s.), 

for all n ~ 1. 

Theorem 1. Ifthe Submartingale XE c+ then 

{sup Xn < oo} = {X"--+} (P-a.s.). 

(1) 

(2) 

(3) 

(4) 
PRooF. The inclusion {X n--+} <;; {sup X n < oo} is evident. To establish the 
inclusion in the opposite direction, we consider the stopped submartingale 
xra = (XtaAn' ~). Then, by (1), 

sup EX:;,"'" :s; a + E[X:;, · l{ra < oo }] 

:s; 2a + E[(LlXrJ+ ·I {ra < 00 }] < 00, 

and therefore by Theorem 1 of §4, 

{ Ia = 00} <;; {X n --+} (P-a.s.). 

(5) 

But Ua>o{ra=oo}={sup Xn<oo}; hence {sup Xn<oo}~{Xn-+} 
(P-a.s.}. 

This completes the proof of the theorem. 

Corollary. Let X be a martingale with E sup I LlX n I < oo. Then (P-a.s.) 

{X n --+} u {lim X n = - oo, lim X n = + oo} = Q. ( 6) 

In fact, if we apply Theorem 1 to X and to -X, we find that (P-a.s.) 

{lim Xn < oo} = {sup Xn < oo} = {Xn--+ }, 

{lim X n > - 00} = { inf X n > - 00} = {X n --+}. 

Therefore (P-a.s.) 

{limXn <oo} U {limXn > -oo} = {Xn--+ }, 

which establishes (6). 
Statement (6) means that, provided that E sup I LlX n I < oo, either almost 

all trajectories of the martingale M have finite limits, or all behave very 
badly, in thesensethat lim Xn = + oo and lim Xn = - oo. 

2. If ~ ~> ~2 ,, 0 0. is a sequence of independent random variables with E~i = 0 
and I (I :s; c < oo, then by Theorem 1 of §2, Chapter IV, the series L~i 
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converges (P-a.s.) ifand only ifi E~f < oo. The sequence X= (Xn, g;;,) with 
Xn =~I + · · · + ~nandg;;, = a{w: ~I• ... , ~n}nisasquare-integrab}emartin­
ga}e with <X>n = L7= 1 E~f, and the proposition just stated can be inter­
preted as follows: 

{<X) 00 <oo} = {Xn -+} = Q (P-a.s.), 

where <X) 00 = limn <X>n· 
The following proposition generalizes this result to more general martin­

gales and submartingales. 

Theorem 2. Let X = (Xn, §,;) be a submartingale and 

Xn = mn +An 

its Doob decomposition. 

(a) lf X is a nonnegative submartingale, then (P-a.s.) 

{A 00 <oo} s;: {Xn -+} s;: {supXn <oo}. 

(b) lf XE c+ then (P-a.s.) 

{Xn-+} = {supXn <oo} s;: {A 00 <oo}. 

(c) lf Xis a nonnegative submartingale and XE c+, then (P-a.s.) 

{Xn-+} = {supXn <oo} = {A 00 <oo}. 

(7) 

(8) 

(9) 

PROOF. (a) The second inclusion in (7) is obvious. To establish the first 
inclusion we introduce the times 

aa = inf{n ?: 1: An+!> a}, a > 0, 

taking aa = + oo if { ·} = 0. Then Aua ~ a and by Corollary 1 to Theorem 
1 of §2, we have 

Let Y~ = XnAUa· Then ya = (Y~, §,;) is a Submartingale with supEY~:::;; 
a < oo. Since the martingale is nonnegative, it follows from Theorem 1, 
§4, that (P-a.s.) 

Therefore (P-a.s.) 

{Aoo < oo} = U {Aoo :::;; a} s;: {Xn-+ }. 
a>O 

(b) The first equation follows from Theorem 1. To prove the second, we 
notice that, in accordance with (5), 

EA,a"n = EX,aAn:::;; EX~"n:::;; 2a + E[(LlX,J+f{Ta <oo}] 

and therefore 

EA,a = E limAtaAn <OO. 
n 
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Hence {ra = oo} s {A 00 <oo} and we obtain the required conclusion since 
Ua>O {ra = oo} = {supX" <oo}. 

(c) This is an immediate consequence of (a) and (b). 
This completes the proof of the theorem. 

Remark. The hypothesis that X is nonnegative can be replaced by the hy­
pothesis sup" EX,;- < oo. 

Corollary 1. Let X"= e1 + · · · + e", where e; 2::: 0, Ee; < oo, e; are fl';­
measurable, and JF0 = {0, Q}. Then (P-a.s.) 

t~1 E(e"l~-1) < oo} s {X"-+}, (10) 

and if, in addition, E sup" e" < oo then (P-a.s.) 

t~1 E(e"l~-1) <oo} ={X"-+}. (11) 

Corollary 2 (Borel-Cantelli-Levy Lemma). ~f the events B" E JF", then if we 
put e" =IBn in (11), wejind that 

{..~1 P(B"I~-1) < oo} = {J1 JB" < oo}. (12) 

3. Theorem 3. Let M = (M", ~)"~ 1 be a square-integrable martingale. Then 
(P-a.s.) 

{(M) 00 <oo} S {M"-+}. 

lfalso E sup I~Mnl2 <oo, then (P-a.s.) 

{(M)oo < oo} = {M"-+ }, 

where 
00 

(M)00 = L E((~M")2 1~-1) 
n= 1 

with M0 = 0, !Fo = {0, Q}. 

(13) 

(14) 

(15) 

PROOF. Consider the two Submartingales M 2 = (M~, ~) and (M + 1)2 = 
((M + 1)2 , ~).Let their Doob decompositions be 

Then A~ and A: are the same, since 
II II 

A~ = L E(~M:19\-1) = L E((~Mki19\-1) 
k=1 k=1 
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and 
n n 

A~ = L E(L\(Mk + 1)21$i-1) = L E(L\M~I$i-1) 
k=l k=l 

n 

= L E((L\Mk)21$i-1). 
k=l 

Hence (7) implies that (P-a.s.) 

{(M)oo <oo} = {A:X, <oo} ~ {M; --+} n {(M,. + 1)2 --+} = {M,. --+}. 

Because of (9), equation (14) will be established if we show that the con­
dition E sup I L\M n 12 < 00 guarantees that M2 belongs to c +. 

Let 't'a = inf{n ~ 1: M; > a}, a > 0. Then, on the set {Ta< oo }, 

IL\M;al = IM;a- M;a-11 :<;; IMta- Mt4 -tl2 

+ 21Mra-t1·1Mra- Mr4 -tl::;; (L\MrY + 2a 112 IL\MrJ, 

whence 

EIL\M;JI{ra <oo}::;; E(L\MrYJ{ra <oo} + 2a 112 jE(L\MrYI{ra <oo} 

::;; E supli\M,.I2 + 2a 112JE sup IL\M,.I 2 < oo. 

This completes the proof of the theorem. 

As an illustration of this theorem, we present the following result, which 
can be considered as a distinctive version of the strong law of large numbers 
for square-integrable martingales (compare Theorem 2 of §3, Chapter IV 
and Corollary 2 of Subsection 3 of §3). 

Theorem 4. Let M = (M,., ~) be a square-integrable martingale and Iet 
A = (A,., ~- 1 ) be a predictable increasing sequence with A 1 ~ 1, A 00 = oo 
(P-a.s.). 

lf(P-a.s.) 

(16) 

then 

n -+oo, (17) 

with probability 1. 
In particular, if (M) = (M,., ff") is the quadratic characteristic of the square­

integrable martingale, M = (M,., ~,.) and (M) 00 = oo (P-a.s.), then with 
probability 1 

n -+oo. (18) 
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PROOF. Consider the square-integrable martingale m = (mn, ~) with 

_~~Mi 
mn- L.. . 

i=t Ai 
Then 

< > = ~ E[(~MYiff;-1] 
mn L.. 2 . 

i=1 Ai 
(19) 

Since 

Mn Lk= 1 Ak~mk 
An An 

we have, by Kronecker's Iemma (§3, Chapter IV), Mn/An--> 0 (P-a.s.) if the 
Iimit limnmn exists (finite) with probability l. By (13), 

(20) 

Therefore it follows from (19) that (16) is a sufficient condition for (17). 
If now An = (M)n, then (16) is automatically satisfied (see Problem 6) 

and consequently we have 

Mn 
(M)n --> 0 (P-a.s.). 

This completes the proof of the theorem. 

ExAMPLE. Consider a sequence ~ 1, ~ 2 , •.• of independent random variables 
with E~i'= 0, V~i = V;> 0, and Iet the sequence X= {Xn}n;o:o be defined 
recursively by 

(21) 

where X 0 is independent of ~ 1, ~ 2 , ... and () is an unknown parameter, 
-00 < () <OO. 

We interpret Xn as the result of an observation made at timen and ask 
for an estimator of the unknown parameter 8. As an estimator of () in terms 
of X 0 , X~> ... , X n, we take 

(22) 

taking this to be 0 if the denominator is 0. (The number ()n is the Ieast-squares 
estimator.) 

lt is clear from (21) and (22) that 

{) = () Mn 
+A' 

n 
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where 
n-1 X2 

A. = <M>. = L _k . 
k=OVk+1 

Therefore if the true value of the unknown parameter is fJ, then 

P(O.--. fJ) = 1, 

when (P-a.s.) 

M. __. 0 
A ' n 

n __. oo. 
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(23) 

(24) 

(An estimator fJ. with property (23) is said tobe strongly consistent; compare 
the notion of consistency in §7, Chapter I.) Let us show that the conditions 

V"+ 1 sup- <oo, 
V" 

00 (e ) LE___!!__A1 =oo 
n=1 V" 

are sufficient for (24), and therefore sufficient for (23). 
Wehave 

I (~; 1\ 1) ::; I ~; = I (X. - fJX.-1? 
n=1 V" n=1 V" n=l V" 

Therefore 

{ I(~; 1\ 1) = oo} I:; {<M) 00 = oo}. 
n=l V" 

(25) 

By the three-series theorem (Theorem 3 of §2, Chapter IV) the divergence 
ofL:'= 1 E((~;;v") 1\ 1) guarantees the divergence (P-a.s.) ofL:'= 1 ((~2 /V") 1\ 1). 
Therefore P{ <M) oo = oo} = 1. Moreover, if 

then 

n /1M. 
m. = .L <M>' .' 

t= 1 l 

<m>. = I 11<M;; 
i=1 <M); 

and (see Problem 6) P(m00 < oo) = 1. Hence (24) follows directly from 
Theorem 4. 

(In Subsection 5 of the next section we continue the discussion of this 
example for Gaussian variables ~ 1 , ~ 2 , ••.. ) 
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Theorem 5. Let X= (Xn, §,;) be a submartingale, and Iet 

X"= m" +An 

be its Doob decomposition. /fi~Xnl ~ C, then (P-aoso) 

or equivalently, 

PROOFo Since 
n 

An= L E(AXkl${-1), 
k= 1 

and 
n 

mn = L [~Xk- E(~Xkl$i- 1 )], 
k= 1 

(26) 

(28) 

(29) 

it follows from the assumption that I ~X k.l ~ C that the martingale m = 
(mn, §,;) is square-integrable with l~mnl ~ 2C. Then by (13) 

and according to (8) 

{Xn -+} s;;; {A 00 <oo}. 

Therefore, by (14) and (20), 

{Xn-+} = {Xn-+} n {Aoo < oo} = {Xn-+} n {Aoo < oo} n {mn-+} 

= {Xn -+} n {A 00 <oo} n {(m) 00 <oo} 

= {Xn-+} n {A 00 + (m) 00 < oo} = {A 00 + (m) 00 < oo }o 

Finally, the equivalence of (26) and (27) follows because, by (29), 

(m)n = L{E[(~Xkil$i-1]- [E(~Xkl$i-1)] 2 }, 

(30) 

and the convergence of the series boo= 1 E(~Xkl${_ 1 ) of nonnegative terms 
implies the convergence of b00= 1 [E(~X k I${_ 1)Y 0 This completes the proof. 

4. Kolmogorov's three-series theorem (Theorem 3 of §2, Chapter IV) 
gives a necessary and sufficient condition for the convergence, with proba­
bility 1, of a series L~n of independent random variables. The following 
theorems, whose proofs are based on Theorems 2 and 3, describe sets of 
convergence of L~n without the assumption that the random variables 
~t. ~2 , 0. 0 are independent. 
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Theorem 6. Let e = (e", §,;), n ;;:: 1, be a stochastic sequence, Iet .1F0 = 
{0. Q}, and Iet c be a positive constant. Then the series Ie .. converges on the 
set A of sample points for which the three series 

PR.OOF. Let X" = D = 1 ek. Since the series L P(l e .. I ;;:: c I§,;- 1) converges, 
by Corollary 2 of Theorem 2, and by the convergence of the series 
IE<e~l§.;- 1 ), we have 

An {X"-+}= An tt
1 

eki(Iekl :=::;; c)-+} 

=An {J1 [eki(Iekl :=::;; c)- E(eki(Iekl :=::;; c)l§,;-d] -+}. 

(31) 

Let '1k = eki(Iekl :=::;; c)- E(eki(Iekl :=::;; c)l§,;-1) and Iet Y" = D=1'1k· Then 
Y = ( Y", §,;) is a square-integrable martingale with I '7k I :=::;; 2c. By Theorem 
3, we have 

A s;;; {L V(e~IF"_1) < oo} = {(Y) 00 < oo} = {Y,. -+}. (32) 

Then it follows from (31) that 

An {X"-+} = A, 

and therefore A s;;; {X"-+}. This completes the proof. 

5. PROBLEMS 

1. Show that if a submartingale X = (X., ,F.) satisfies E sup.l X .I < oo, then it belongs 
to dass c+. 

2. Show that Theorems 1 and 2 remain valid for generalized submartingales. 

3. Show that generalized Submartingales satisfy (P-a.s.) the indusion 

{inf sup E(X: l§'m) < oo} s;; {X.-+}. 
m n~m 

4. Show that the corollary to Theorem 1 remains valid for generalized martingales. 

5. Show that every generalized Submartingale of dass c+ is a local submartingale. 

6. Let a" > 0, n ~ 1, and Iet b. = LZ=t ak. Show that 

"' a L b; <oo. 
•= 1 • 
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§6. Absolute Continuity and Singularity of 
Probability Distributions 

l. Let (Q, !#') be a measurable space on which there is defined a family 
(~) .. ;::, 1 of a-algebras such that !#'1 s;;; !#'2 s;;; · · • s;;; !#' and 

!#' = a( U ~) · 
n=1 

(1) 

Let us suppose that two probability measures P and P are given on (Q, !#'). 
Let us write 

for the restrictions of these measures to !F", i.e., Iet P,. and P,. be measures on 
(Q, ~) and for B E ~ Iet 

P,.(B) = P(B), P,.(B) = P(B). 

Definition l. The probability measure P is absolutely continuous with respect 
to P (notation, P « P) if P(A) = 0 whenever P(A) = 0, A E .'F, 

When P « P and P « P the measures P and P are equivalent (notation, 
p ""' P). 

The measures P and P are singular ( or orthogonal) if there is a set A e !#' 
such that P(A) = 1 and P(A) = 1 (notation, P l. P). 

Definition 2. We say that P is locally absolutely continuous with respect to 
P (notation, P ~< P) if 

P,. « P,. (2) 
for every n ~ 1. 

The fundamental question that we shall consider in this section is the 
determination of conditions under which local absolute continuity P ~ P 
implies one of the properties P « P, P ""' P, P l. P. lt will become clear that 
martingale theory is the mathematical apparatus that Iets us give definitive 
answers to these questions. 

Let us then suppose that P ~< P. We write 

dP,. 
z,. = dP 

II 

the Radon-Nikodym derivative of P,. with respect to P,.. lt is clear that 
z,. is ~-measurable; and if A E ~ then 

f f dPn+1 ~ ~ 
Zn+1 dP = -dP dP = t"n+1(A) = t"11(A) 

A A n+ 1 

= f ddP" dP = f z"dP. 
A P,. A 
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lt follows that, with respect toP, the stochastic sequence Z = (zn, ~)n2: 1 is a 
martingale. 

Write 

Since Ezn = 1, it follows from Theorem 1, §4, that lim zn exists P-a.s. and 

therefore P(zoo = lim zn) = 1. (In the Course of the proof of Theorem 1 it 
will be established that lim zn exists also for P, so that P(z 00 = lim zn) = 1.) 

The key to problems on absolute continuity and singularity is Lebesgue's 
decomposition. 

n loc Theorem 1. Let r- « P. Thenfor every A E :?, 

(3) 

and the measures fl(A) = P{A n (zoo = oo)} and P(A), A E :?, are singular. 

PROOF. Let us notice first that the classical Lebesgue decomposition shows 

that if P and P are two measures, there are unique measures A. and fl such 

that P = A. + fl, where A. « P and fl _l P. Conclusion (3) can be thought of 

as a specialization of this decomposition und er the assumption that P n « 
Pn, n;;::: 1. 

Let us introduce the probability measures 

0 = tcP + P), n ;;::: 1, 

and the notation 

dP dP _ dPn dPn 
3 = dO ' 3 = dO ' 3n = dOn ' 3n = dOn · 

Since PO = 0) = P(3 = 0) = 0, we have 0(3 = 0, 3 = 0) = 0. Consequently 
the product 3 · 3- 1 can be defined consistently on the set 0\ {3 = 0, 3 = 0}; 
we define it to be zero on the set {3 = 0, 3 = 0}. 

Since P. « P. « 0., we have (see (11.7.36)) 

dP. dP. dP. 
dO = dP. dO (0-a.s.) 

n n n 
(4) 

i.e., 

3n = Zn3n (0-a.s.) (5) 

whence 

z. = 3. · 3; 1 (0-a.s.) 

where, as before, we take 3n · 3; 1 = 0 on the set {3. = 0, 3n = 0}, which is of 
0-measure zero. 
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Each ofthe sequences (~n• ~) and (3n• ~) is (with respect to 0) a uniformly 
integrable martingale and consequently the Iimits lim 3n and lim 3n exist. 
Moreover (0-a.s.) 

lim 3n = 3, lim 3n = 3· (6) 

From this and the equations Zn= 3n3; 1 (0-a.s.) and 0(3 = 0, 3 = 0) = 0, 
it follows that (0-a.s.) the Iimit lim zn = z00 exists and is equal to 3 · 3 -t. 

lt is clear that P « 0 and P « 0. Therefore lim z" exists both with respect 
to P and with respect to P. 

Now Iet 

A.(A) = L Z 00 dP, J.t(A) = P{A II (z00 = oo)}. 

To establish (3), we must show that 

P(A) = A.(A) + j.t(A), A. « P, J.t .l P. 

Wehave 

P(A) = L 3 dO = L 33! dO + L 3[1 - 3tJ dO 

= L 3f dP + L [1 - 31J dP = {zoo dP + P{A II (3 = 0)}, (7) 

where the last equation follows from 

Furthermore, 

P{A II (3 = 0)} = P{A II (3 = 0) II (3 > 0)} 

= P{A 11(3-a- 1 = oo)}= P{A 11 (z00 = oo)}, 

which, together with (7), establishes (3). 
lt is clear from the construction of A. that A. « P and that P(z00 < oo) = 1. 

But we also have 

Consequently the theorem is proved. 

The Lebesgue decomposition (3) implies the following useful tests for 
absolute continuity or singularity for locally absolutely continuous proba­
bility measures. 
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- loc .... 
Theorem 2. Let P « P, i.e. P. « P., n ;?: 1. Then 

P « P~Ezoo = 1 ~P(z 00 <co) = 1, 

P ..l P ~ Ez oo = 0 ~ P(z oo = oo) = 1, 

where E denotes averaging with respect to P. 

PROOF. Putting A = Q in (3), we find that 

Ezoo = I~ P(zoo = oo) = 0, 

Ezoo = o~P(zoo = co) = 1. 

If P(.: oo = %) = 0, it again follows from (3) that P « P. 
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(8) 

(9) 

(10) 

(11) 

Conversely, Iet P « P. Then since P(z 00 = oo) = 0, we have P(zco = oo) 
= 0. 

In addition, if P ..l P there is a set BE ff' with P(B) = 1 and P(B) = 0. 
Then P(B n (z 00 = co)) = I by (3), and therefore P(z 00 = co) = 1. If, on the 
other hand, P(z oo = co) = I the property P ..l P is evident, since 
P(Z 00 = co) = 0. 

This completes the proof of the theorem. 

2. lt is clear from Theorem 2 that the tests for absolute continuity or singu­
larity can be expressed either in terms of P (verify the equation Ez 00 = 1 or 
Ez00 = 0), or in terms of P (verify that P(z00 < oo) = 1 orthat P(z00 = oo) = 1 ). 

By Theorem 5 of §6, Chapter II, the condition Ez 00 = 1 is equivalent to 
the uniform integrability (with respect to P) of the family {z.}.::.: 1. This 
allows us to give simple sufficient conditions for the absolute continuity 
P « P. For example, if 

(12) 

or if 

sup Ez~ +• < co, e > 0, (13) 
n 

then, by Lemma 3 of §6, Chapter II, the family of random variables {z.}.::.: 1 

is uniformly integrable and therefore P « P. 
In many cases it is preferable to verify the property of absolute continuity 

or of singularity by using a test in terms of P, since then the question is re­
duced to the investigation of the probability of the "tail" event {zoo < co }, 
where one can use propositions like the "zero-one" law. 

Let us show, by way of illustration, that the "Kakutani dichotomy" 
can be deduced from Theorem 2. 

Let (Q, ff', P) be a probability space, Iet (R 00 , /!J 00 ) be a measurable space 
of sequences x = (x 1, x 2 , ... ) of numbers with !!J00 = /!J(R 00 ), and Iet :!4. = 
O"{x: {x 1, ... , x.)}. Let ~ = (~ 1 , ~ 2 , ... ) and ~ = (~ 1 , ~ 2 , •.. ) be sequences 
of independent random variables. 
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Let P and P be the probability distributions on (R 00 , 8100 ) for ~ and ~. 
respectively, i.e. 

P(B) = P{~ E B}, 

Also Iet 

be the restrictions of P and P to 81. and Iet 

P~.(A) = P(~. E A), 

Theorem 3 (Kakutani Dichotomy). Let~= (~ 1 , ~ 2 , •.. ) and ~ = (~ 1 , ~2 , ••• ) 

be sequences of independent random variables for which 

p~n « p~n' n ~ 1. (14) 

Then either P « P or P _L P. 

PROOF. Condition (14) is evidently equivalent to P" « P "' n ~ 1, i.e. P ~~ P. 
lt is clear that 

where 

(15) 

Consequently 

{ x : zoo < oo} = { x : In zoo < oo } = {x : J
1 

In q ;( x J < oo} . 

The event { x: L~ 1 In q;(xJ < oo} is a tail event. Therefore, by the Kolmo­
gorov zero-one law (Theorem 1 of §1, Chapter IV) the probability 
P { x: zoo < oo} has only two values (0 or 1 ), and therefore by Theorem 2 
either P _L P or P « P. 

This completes the proof of the theorem. 

3. The following theorem provides, in" predictable" terms, a test for absolute 
continuity or singularity. 

p:, loc 
Theorem 4. Let r- « P and Iet 

n;::: 1, 

with z0 = 1. Then (with fli'0 = {0,Q}) 

P « P~ P{.~1 [1- E(j;,;lfli'._ 1)] < oo} = 1, (16) 

P _L P~PL~1 [1- E(j;,;l~- 1 )] = oo} = 1. (17) 
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PROOF. Since 

we have (P-a.s.) 

Zn = Il rxk = exp{ I In rxk}. 
k=! k=! 

(18) 

Putting A = {z 00 = 0} in (3), we find that P{z 00 = 0} = 0. Therefore, by 
(18), we have (P-a.s.) 

{zoo <oo} = {0 < Z 00 <oo} = {0 < Iimzn <oo} 

= {- oo < I im I In rxk < oo} . 
k=l 

Let us introduce the function 

u(x) = . {
X, 

Sign X, 

Then 

lxl ::;; 1, 

lxl > 1. 

(19) 

{- oo < Iim kt In rxk < oo} = {- oo < Iim kt u(ln rxk) < oo}. (20) 

Let E denote averaging with respect to P and Iet 11 be an ~-measurable 
integrable random variable. It follows from the properties of conditional 
expectations (Problem 4) that 

zn- 1E(1JI~- 1 ) = E(IJznl~- 1 ) (P- and P-a.s.), (21) 

E(IJI~-1) = z~- 1 E(1Jzn1~- 1 ) (P-a.s.). (22) 

Recalling that rxn = z~_ 1 zn, we obtain the following useful formula from 
(22): 

From this it follows, in particular, that 

E(rxnl~- 1 ) = 1 (P-a.s.). 

By (23), 

Since xu(ln x) ~ x - 1 for x ~ 0, we have, by (24), 

E[u(ln rxn)l ~- 1] ~ 0 (P-a.s.). 

(23) 

(24) 
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It follows that the stochastic sequence X= (Xn, ~) with 
n 

x" = I uon !Xk) 
k= I 

is a su bmartingale with respect to P; and I AX n I = I u(ln 1Xn)l ~ 1. 
Then, by Theorem 5 of §5, we have (P-a.s.) 

{- oo < lim ktl u(ln !Xk) < oo} = {J
1 

E[u(ln !Xk) + u2(ln !Xk)l ~k-l] < oo}. 
(25) 

Hence we find, by combining (19), (20), (22), and (25), that (P-a.s.) 

{zoo < oo} = t~1 E[u(ln !Xk) + u2(ln !Xk)l ~- 1 ] < oo} 

= {J1 E[!Xk u(ln !Xk) + IXk u2(ln !Xk) I~- 1J < XJ} 

and consequently, by Theorem 2, 

P « P<=>P{J
1 

E[!Xku(ln!Xk) + 1Xku 2(ln 1Xk)l~- 1 ]<oo} = 1, (26) 

P .l P <=> P{J
1 

E[!Xku(ln !Xk) + 1Xku 2(ln !Xk)l~- 1 ] = oo} = 1. (27) 

We now observe that by (24), 

and for x ~ 0 there are constants A and B (0 < A < B < oo) such that 

A(1 - Jx)2 ~ xu (in x) + xu2(ln x) + 1 - x ~ B(1 - Jx)2• (28) 

Hence (16) and (17) follow from (26), (27) and (24), (28). 
This completes the proof of the theorem. 

Corollary 1. lf, for all n ~ 1, the u-algebras u(1Xn) and ~-I are independent 
with respect to P(or P), and P ~~ P, then we have the dichotomy: either 
P « P or P .l P. Correspondingly, 

00 

p « p <=> L [1 - Ej;,;] < 00, 
n=l 

00 

p .l p <=> L [1 - Ej;,;] = 00. 
n=l 
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In particular, in the Kakutani situation (see Theorem 3) IX" = q" and 
<Xl 

p « p <=> L [1 - Ejq;;W] < 00, 
n=1 

<Xl 

p j_ p <=> L [1 - Ejq;;W] = 00. 
n=1 

Corollary 2. Let P ~< P. Then 

Pt~1 E(cxn ln cxnl ~- 1) < 00} = 1 = P « P. 

For the proof, it is enough to notice that 

xlnx + !O- x) ~ 1- x 112 , 

for all x ~ 0, and apply (16) and (24). 

531 

(29) 

Corollary 3. Since the series Ln""= 1 [1 - E(Fn I ~- 1 )], which has nonnegative 
(P-a.s.) terms, converges or diverges with the series L lln E(Fnl~n- 1 )1, 
conclusions (16) and (17) o.f Theorem 4 can be put in the form 

P « P<=>P{J1 1lnE(Fnl~- 1 )1 <oo} = 1, (30) 

P l_ P<=>P{J1 1lnE(Fnl~- 1 )1 =oo} = 1. (31) 

Corollary 4. Let there exist constants A and B suchthat 0 ~ A < 1, B ~ 0 and 

P{1 - A ~ cx" ~ 1 + B} = 1, n ~ 1. 

Then !fP !K P we have 

P « P<=>Pt~1 E[(1- cx")2 1~- 1 ] <oo} = 1, 

P l_ P<=>P{J
1 
E[(l- cxnfl~- 1 ] =oo} = 1. 

For the proof it is enough to notice that when x E [1 - A, 1 + B], where 
0 ~ A < 1, B ~ 0, there are constants c and C (0 < c < C < oo) such that 

c(l - x)2 ~ (1 - Jx)2 ~ C(1 - x) 2• (32) 

4. With the notation of Subsection 2, let us suppose that ~ = (~ 1 , ~ 2 , ••• ) 

and ~ = (~ 1 , ~2 , ••. ) are Gaussian sequences, Pn"' P", n ~ 1. Let us show 
that, for such sequences, the "Hajek-Feldman dichotomy," either P "' P 
or P l_ P, follows from the "predictable" test given above. 

By the theorem on normal correlation (Theorem 2 of §13, Chapter II) 
the conditional expectations M(xn I Bin-d and M(x" 19ßn_ 1), where M and M 
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are averages with respect to P and P, respectively, are linear functions of 
X 1' ... ' Xn- 1. We denote these linear functions by an- 1 (x) and an- 1 (x) and 
put 

bn-1 = (M[x"- an-1(x)]2)112, 

bn-1 = (M[xn- an-1(x)J2)1t2. 

Again by the theorem on normal correlation, there are sequences 
e = (e 1, e2, .. . ) and e = (e1, e2, .. . ) of independent Gaussian random 
variables with zero means and unit variances, such that 

Xn = an-1(x) + bn-1en, (P-a.s.), 

Xn = an-1(x) + bn-1en (P-a.s.). 
(33) 

Notice that if bn_ 1 = 0, or bn_ 1 = 0, it is generally necessary to extend 
the probability space in order to construct en or en. However, if bn_ 1 = 0 
the extended vector (x1, ... , xn) will be contained (P-a.s.) in the linear 
manifold Xn = an_ 1(x), and since by hypothesis Pn "' Pn, we have bn_ 1 = 0, 
an-1 = an-1(x), and cxn(x) = 1 (P- or P-a.s.). Hence we may suppose without 
loss of generality that b; > 0, 5; > 0 for all n ~ 1, since otherwise the 
contribution ofthe corresponding terms ofthe sum L:'= 1 [1 - Mj;,;1Bn_ 1] 
(see (16) and (17)) is zero. 

Using the Gaussian hypothesis, we find from (33) that, for n ~ 1, 

where dn = Ibn· 6;; 11 and 

From (34), 

a0 (x) = E~ 1 , 

b~ = v~1• 

iio(x) = Ee1, 
b~= ve1. 

(34) 

Since In [2dn_ 1j{1 + d;_ .)] :::;;; 0, statement (30) can be written in the form 

F«P<=>P{I [!In1+d;_1+ d;_~ ·(an-1(x)-an-1(x))2]<oo} 
n=1 2dn-1 1 + dn-1 bn-1 

= 1. (35) 

Theseries 

IInl+d;_ 1 and 
n=1 2dn-1 
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converge or diverge together; hence it follows from (35) that 

P « P-Pt~o [(~- 1 r + ~~~x)] <oo} = 1, (36) 

where ~n(x) = an(x) - an(x}. 
Since an(x) and an(x) are linear, the sequence of random variables 

{~n(x)/bn}n;;:o is a Gaussian system (with respect to both P and P). As follows 
from a Iemma that will be proved below, such sequences satisfy an analog 
of the zero-one Ia w: 

P{L(~h~x>y <oo}= t-LM(~h~x>y <oo. (37) 

Hence it follows from (36) that 

p « P- Jo [ M(~b~x)r + (!f- 1 rJ <oo 

andin a similar way 

"" [ (~ (x))2 (jj2 )2] p j_ p- Jo M -7;:- + bi - 1 = oo. 

Then it is clear that if P and P arenot singular measures, we have P « P. 
But by hypothesis, Pn - Pn, n ~ 1; hence by symmetry we have P « P. 
Therefore we have the following theorem. 

Theorem 5 (Hajek-Feldman Dichotomy). Let ~ = (~ 1 , ~ 2 •••• ) and ~ = 
( e 1, e 2 , ••• ) be Gaussian sequences whose finite-dimensional distributions are 
equivalent: Pn - Pn, n ~ 1. Then either P-P or P l_ P. Moreover, 

p - p- L M -- + -i - 1 < 00, oo [ (~(x))2 (52 )2] 
n=O bn bn 

p j_ p- f [M(~n(x))2 + (6; - 1)2] = oo. 
n=O bn bn 

(38) 

Let us now prove the zero-one law for Gaussian sequences that we need 
for the proof of Theorem 5. 

Lemma. Let ß = (ßn)n~t be a Gaussian sequence de.fined on (Q, ff; P). Then 

Pt~l ß~ < 00} = 1- n~l Eß~ < 00. (39) 

PRooF. The implication <= follows from Fubini's theorem. To establish the 
opposite proposition, we first suppose that Eßn = 0, n ~ 1. Here it is enough 
to show that 

(40) 
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since then the condition P{2)~ < oo} = 1 will imply that the right-hand 
side of (40) is finite. 

Select an n ~ 1. Then it follows from §§11 and 13, Chapter II, that there 
are independent Gaussian random variables ßk.n• k = 1, ... , r ~ n, with 
Eßk,n = 0, such that 

n r 

I ß~ = I ßr •. 
k=1 k=1 

If we write Eßf.n = A.k,n• we easily see that 
r r 

E L ß~.n = L Ak,n (41) 
k=1 k=1 

and 

E exp(- kt ß~ .• ) = lJY + 2A.k,n)-112. (42) 

Comparing the right-hand sides of (41) and (42), we obtain 

E ± ß~ = E I ß~ .• ~ [E exp(- I ß~.n)]- 2 
= [E exp(- ± ß~)J- 2 , 

k=1 k=1 k=1 k=1 

from which, by letting n ~ oo, we obtain the required inequality ( 40). 
Now suppose that Eß. "!- 0. 
Let us consider again the sequence ß = (ß.).> 1 with the same distribution 

as ß = (ß.)n> 1 but independent of it (if necessary, extending the original 
probability space). If P{L:'= 1 ß~ < oo} = 1, then P{L:'= 1 (ßn- ßn)2 < oo} = 1, 
and by what we have proved, 

00 00 

2 I E(ßn - Eß.)2 = I E(ßn - ßn)2 < 00. 
n=1 n=1 

Since 

00 00 00 

I Eß; = L (Eß.)2 + L E(ßn - Mß.)2 < 00. 
n=1 n=1 n=l 

This completes the proof of the Iemma. 

5. We continue the discussion ofthe example in Subsection 3 ofthe preceding 
section, assuming that ~0 , ~ 1, ... are independent Gaussian random variables 
with E~i = 0, V~i = VI> 0. 

Again we Iet 

Xn+1 = ex. + ~n+t 
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for n ~ 1, where X 0 = ~0 , and the unknown parameter (} that is to be esti­
mated has values in R. Let On be the Ieast-squares estimator (see (5.22)). 

Theorem 6. A necessary and sufficient conditionfor the estimator On, n ~ 1, to 
be strongly consistent is that 

~ ~ L... --= 00. 
n=O ~+I 

(43) 

PRooF. Sufficiency. Let P0 denote the probability distribution on (R 00 , BB00 ) 

corresponding to the sequence (X0 , X 1, •.. ) when the true value ofthe un­
known parameter is 0. Let E0 denote an average with respect to P0 • 

Wehave already seen that 

where 

n-1 Xf 
(M)n= L -. 

k=O J-k+ I 

According to the Iemma from the preceding subsection, 

Po((M) 00 = oo) = 1-<;> Eo(M) 00 = 00, 

i.e., (M)00 = oo {P0-a.s.) if and only if 

f E0 Xf = oo. 
k=O l-k+ I 

But 

and 

(44) 

(45) 

Hence (44) follows from (43) and therefore, by Theorem 4, the estimator 
On, n ~ 1, is strongly consistent for every 0. 

N ecessity. For all (}ER, Iet P0(0n -+ 0) = 1. It follows that if 01 =I= 02 , the 
measures P0 , and P02 are singular (P0 , ..L P0,). In fact, since the sequence 
(X 0 , X 1 , ... ) is Gaussian, by Theorem 5 of §5 the measures P0 , and P02 are 
either singular or equivalent. But they cannot be equivalent, since if P0 , "' P82 , 
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but f:0,(e. ~ 01) = 1, then also P0,(e. ~ 01 ) = l. However, by hypothesis, 
P0,(8. ~ 82) = land 82 =I= 81• Therefore P0 , l_ P0, for 81 =I= 82 • 

According to (5.38), 

oo [ x2 J P0 , l_ P0, <=> (8 1 - 82) 2 L E0 , ~ = oo 
k=O k+1 

for 81 =I= 82 • Taking 81 = 0 and 82 =I= 0, we obtain from (45) that 

oo V 
P0 l_ P02 <=> L ~ = 00, 

i=O i+ 1 

which establishes the necessity of (43). 
This completes the proof of the theorem. 

6. PROBLEMS 

1. Prove (6). 

2. Let P.- P., n ~ 1. Show that 

P- P=P{zoo <oo} = P{z 00 > 0} = 1, 

P .l P=P{zoc = oo} = 1 or P{z 00 = 0} = 1. 

3. LetP. ~ P.,n ~ 1,letrbeastoppingtime(withrespectto(3i;;)),andletP, = Plff. 
and P, = P I ff. be the restrictions of P and P to the u-algebra ff.. Show that P, ~ P, 
if and only if {r = oo} = {z00 < oo} (P-a.s.). (In particular, if P{r < oo} = 1 then 
P, ~ P,.) 

4. Prove (21) and (22). 

5. Verify (28), (29), and (32). 

6. Prove (34). 

7. In Subsection 2 Iet the sequences e = (e 1, e2 , ••• ) and ~ = (~ 1 , ~2 , .•• ) consist of 
independent identically distributed random variables. Show that if P,, ~ P,,, then 
P ~ P if and only if the measures P~, and P~;, coincide. If, however, P~, ~ P,, and 
P~, =F P~;, then P .l P. 

§7. Asymptotics of the Probability of the Outcome of 
a Random Walk with Curvilinear Boundary 

1. Let ~ 1 , ~ 2 , ... be a sequence ofindependent identically distributed random 
variables. Lets. = ~ 1 + · · · + ~ •. Iet g = g(n) be a "boundary," n ::2: 1, and 
Iet 

r = inf{n ::2: l: S.<g(n)} 
be the first time at which the random walk (S.) is found below the boundary 
g = g(n). (As usual, r = oo if { · } = 0.) 
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lt is difficult to discover the exact form of the distribution of the time r. 
In the present section we find the asymptotic form ofthe probability P(r > n) 
as n-+ oo, for a wide dass of boundaries g = g(n) and assuming that the ~; 
are normally distributed. The method of proof is based on the idea of an 
absolutely continuous change of measure together with a number of the 
propertiöS- of martingales and Markov times that were presented earlier. 

Theorem 1. Let ~ 1 , ~2 , ••• be independent identically distributed random 
variables, with ~; "'%(0, 1). Suppose that g = g(n) is suchthat g(1) < 0 and, 
for n 2::: 2, 

0 ~ .1-g(n + 1) ~ .1-g(n), 

where .1-g(n) = g(n) - g(n - 1) and 

In n = o(t [.1.g(k)] 2), n-+ oo. 

Then 

P(r > n) = exp{ -~ kt2 [.1.g(k)] 2(1 + o(1))}, 

(1) 

(2) 

n-+ oo. (3) 

Before starting the proof, Iet us observe that (1) and (2) are satisfied if, 
for example, 

g(n) = an• + b, ! < v ~ 1, a + b < 0, 

or (for sufficiently large n) 

g(n) = n"L(n), ! ~V~ 1, 

where L(n) is a slowly varying function (for example, L(n) = C(ln n)fl with 
arbitrary ß for! < v < 1 or with ß > 0 for v = !). 

2. We shall need the following two auxiliary propositions for the proof of 
Theorem 1. 

Let us suppose that ~ 1 , ~ 2 , ••• is a sequence of independent identically 
distributed random variables, ~; "'%(0, 1). Let !F0 = {0, Q}, ~ = 
a{w: ~ 1 , ••• , ~n}, and Iet IX= (an, ~- 1 ) be a predictable sequence with 
P(l 1Xn I ~ C) = 1, n 2::: 1, where C is a constant. Form the sequence z = 
(zn, ~) with 

n ;;:: 1. (4) 

It is easily verified that (with respect to P) the sequence z = (zn, ~) is a 
martingale with Ezn = 1, n 2::: 1. 

Choose a value n ;;:: 1 and introduce a probability measure P n on the 
measurable space (Q, ~) by putting 

AE~. (5) 



538 VII. Sequences of Random Variables That Form Martingales 

Lemma 1. With respect to Pn, the random variables ~k = ~k - rJ.k> 1 ::::;; k ::::;; n, 
are independent and normally distributed, ~k - %(0, 1). 

PROOF. LetEndenote averaging with respect toP n. Then for A.k ER, 1 ::::;; k ::::;; n, 

En expLt/k~k} = E expLt1 Ak~k}zn 
= E[exp{<t~ A.k~k}zn-1 ·E{exp(iA.i~n- rJ.n) + rl.n~n- ~;) ~~-1}] 

= E[exp{<t~ A.k~k}zn-1] exp{- !A.;} = ·· · = exp{- tt1 A.~}· 
Now the desired conclusion follows from Theorem 4 of §12, Chapter II. 

Lemma 2. Let X = (Xn, ~).;, 1 be a square-integrable martingale with mean 
zero and 

(J = inf{n ~ 1: xn::::;; -b}, 

where b is a constant, b > 0. Suppose that 

P(X 1 < -b) > 0. 

Then there is a constant C > 0 such that,for all n ~ 1, 

c 
P(u > n) z EX 2 . 

n 

PROOF. By Corollary 1 to Theorem VII.2.1 we have EXaAn = 0, whence 

- E/(a::::;; n)Xa = E/(a > n)X •. 

On the set { a ::::;; n} 

- xa ~ b > 0. 

Therefore, for n ~ 1, 

(6) 

(7) 

-E/(a::::;; n)Xa ~ bP(a::::;; n) ~ bP(a = 1) = bP(X 1 < - b) > 0. (8) 

On the other hand, by the Cauchy-Schwarz inequality, 

E/(a > n)Xn::::;; [P(a > n) · EX;J 1i 2, 

which, with (7) and (8), Ieads to the required inequality with 

C = (bP(X 1 < - b))2 • 

PROOF OF THEOREM 1. It is enough to show that 

!~0:, In P(r > n) I kt [~g(k)] 2 ~ -! 

(9) 

(10) 
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and 

.~~0:, In P(r > n) I kt [~g(k)] 2 ~ - t. (11) 

Forthis purpose we consider the (nonrandom) sequence (cx.).:2: I with 

cxi = 0, cx. = ~g(n), n ~ 2, 

and the probability measure (P.)n<!:I defined by (5). Then by Hölder's 
inequality 

P.(r > n) = E/(r > n) z. ~ (P(r > n))Ifq(Ez,f)IIP, (12) 

where p > 1 and q = pj(p - 1). 
The last factor is easily calculated explicitly: 

(Ezt)Ifp = exp{p - 1 I [~g(k)] 2 }. 
2 k=2 

(13) 

Now Iet us estimate the probability P.(r > n) that appears on the left­
hand side of (12). Wehave 

P.(r > n) = P.(Sk ~ g(k), 1 ~ k ~ n) = P.(sk ~ g(1), 1 ~ k ~ n), 

where sk = D= I ~i• ~i = ~i- cxi. By Lemma 1, the variables are independent 
and normally distributed, ~i - %(0, 1), with respect to the measure P •. 
Then by Lemma 2 (applied tob= -g(1), P = P., x. = s.) we find that 

where c is a constant. 

c 
P(r > n) ~ -, 

n 

Then it follows from (12)-(14) that, for every p > 1, 

{ p • p } P(r > n) ~ CPexp --2 L [~g(k)] 2 - --in n , 
k=2 p - 1 

(14) 

(15) 

where CP is a constant. Then (15) implies the lower bound (10) by the hypo­
theses of the theorem, since p > 1 is arbitrary. 

To obtain the upper bound (11), we first observe that since z. > 0 (P­
and P-a.s.), we have by (5) 

P(r > n) = E.I(r > n)z;; I, (16) 

where E. denotes an average with respect to P •. 
In the case under consideration, cxi = 0, cx. = ~g(n), n ~ 2, and therefore 

for n ~ 2 

{ • 1 • } 
z.-I = exp - k~2 ~g(k). ~k + 2 k~2 [~g(k)]2 . 



540 VII. Sequences of Random Variables That Form Martingales 

By the formula for summation by parts (see the proof of Lemma 2 of 
§3, Chapter IV) 

n n 

I ~g(k). ~k = ~g(n). Sn - I sk-1~(~g(k)). 
k=2 k=2 

Hence if we recall that by hypothesis ~g(k) ~ 0 and ~(~g(k)) ::::;; 0, we find 
that, on the set {r > n} = {Sk ~ g(k), 1 ::::;; k::::;; n}, 

n n 

I ~g(k) · ~k ~ ~g(n) · g(n) - L g(k - 1)~(~g(k)) - ~ 1 ~g(2) 
k=2 k=3 

n 

= L [~g(k)J 2 + g(1)~g(2) - ~1 ~g(2). 
k=2 

Thus, by (16), 

P(r > n)::::;; exp{- ~ kt [~g(k)] 2 - g(l)~g(2)} En/(r > n)e-,&g(l) 

::::;; exp{- tt [~g(k)] 2 } En/(r > n)e-~'&g(l>, 

where 

Therefore 

P(r > n)::::;; C exp{- tt [~g(k)] 2 }, 
where Cis a positive constant; this establishes the upper bound (11). 

This completes the proof of the theorem. 

3. The idea of an absolutely continuous change of measure can be used to 
study similar problems, including the case of a two-sided boundary. We 
present (without proof) a result in this direction. 

Theorem 2. Let ~ 1 , ~ 2 , .•• be independent identically distributed random 
variables with ~; ,...., .%(0, 1). Suppose that f = f(n) isapositive function such 
that 

f(n) -+00, n-+ oo, 

and 

n-+ oo. 

Then if 
a = inf{n ~ 1: /Sn/~ f(n)}, 
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we have 

n-+ oo. 

4. PROBLEMS 

1. Show that the sequence defined in (4) is a martingale. 

2. Establish (13). 

3. Prove (17). 

§8. Central Limit Theorem for Sums of Dependent 
Random Variables 

541 

(17) 

1. In §4, Chapter III, the centrallimit theorem for sums Sn = en1 + · · · + enn• 
n ~ 1, of random variables en1• ... ' enn was established under the assump­
tions of their independence, finiteness of second moments, and negligibility in 
the Iimit of their terms. In the present section, we give up both the assump­
tion of independence and even that of the finiteness of the absolute values of 
the first-order moments. However, the negligibility in the Iimit of the terms 
will be retained. 

Thus, we suppose that on the probability space (0, F, P) there are given 
stochastic sequences 

n ~ 1, 

with ~no = 0, fFö = {0, 0}, §j.n s; fF,.\1 s; fF. We set 

[nr] 

x: = L enk• 0:::;; t:::;; 1. 
k=O 

Theorem 1. F or a given t, 0 < t :::;; 1, Iet the following conditions be satis.fied: 
for each ee(O, 1), as n -+oo, 

[nr] 

(A) L P(lenkl>e1F~-1).f.O, 
k=l 

[nr] I 
(B) k~1 E[enkl(lenkl:::;; 1) F~_ 1] .f. 0, 

[nr] I 
(C) k~t V[enkl{l enk I :::;; e) fFI:-tJ .f. u~ ~ 0. 

Then 
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Remark 1. Hypotheses (A) and (B) guarantee that x: can be represented in 
the form x: = Y," + z: with z: .f. 0 and Y," = ~]"!10 '7nk• where the sequence 
rt" = ('711to §k") is a martingale-difference, and E(rtnkl§k~1 ) = 0 with lrtnkl ::s; c, 
uniformly for 1 ::s; k ::s; n and n ;;::: 1. Consequently, in the cases under con­
sideration, the proof reduces to proving the centrallimit theorem for martin­
gale-differences. 

In the case when the variables ~,. 1 , •.. , ~"" are independent, conditions 
(A), (B), and (C), with t = 1, and u2 = uf, become 

n 

(a) L P(l~nkl > e)--+ 0, 
k=1 

II 

(b) L E[~nkl(l~nkl ::s; 1)]--+ 0, 
k= 1 

II 

(c) L V[~nkl(l~nkl ::s; e)]--+ u2 • 
k=1 

These are weil known; see the book by Gnedenko and Kolmogorov [G5]. 
Hence we have the following corollary to Theorem 1. 

Corollary. If ~,. 1 , ... , ~"" are independent random variables, n 2:: 1, then 

(a), (b), (c) => X1 ~%(0, u2 ). 

Remark 2. In hypothesis (C), the case u12 = 0 is not excluded. Hence, in 
particular, Theorem 1 yields a convergence condition for degenerate distri­
butions (X~ .!4 0). 

Remark 3. The method used to prove Theorem 1 Iets us state and prove the 
following more general proposition. 

Let 0 < t 1 < t 2 < · · · < t i ::s; 1, u~ ::s; u~, ::s; · • · ::s; u~1 , u~ = 0, and Iet 
e1, ••. , ei be independent Gaus_sian random variables with zero means and 
Ee~ = u~k - uL ,. Form the (Gaussian) vectors CWr,, ... , Wr) with w;k = 
Bt + ... +Bk. 

Let conditions (A), (B), and (C) be satisfied for t = t 1 , ••• , ti. Then the 
joint distribution (P~ .. ... ,r) of the random variables (X~, •... , X~) con­
verges weakly to the Gaussian distribution P(t 1, ••• , t i) of the variables 
(Wr, •... ' w;): 

P" ~ p 
I l•···•lj lt, .•. ,IJ' 

2. The first assertion of the following theorem shows that condition (A) is 
equivalent to the condition of negligibility in the Iimit already introduced in 
§4, chapter 111: 

(A*) 
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Theorem 2. 
(1) Condition (A) is equivalent to (A *). 
(2) Assuming (A) or (A *), condition (C) is equivalent to 

Theorem 3. Foreach n 2 1 Iet the sequence 

~n = (~nb ffk), 

be a square-integrable martingale-difference: 

::;; k ::;; n, 

Suppose that the Lindeberg condition is satis.fied: for e > 0, 

Then (C) is equivalent to 

where (quadratic variation) 

and (C*) is equivalent to 

where (quadratic variation) 
[nt] 

[X"], = I ~;k. 
k=O 

The next theorem is a corollary of Theorems 1-3. 

543 

(1) 

(2) 

(3) 

(4) 

Theorem 4. Let the square-integrable martingale-differences ~· = (~"k' ffi:), 
n 2 1, satisfy (for a given t, 0 < t ::;; 1) the Lindeberg condition (L). Then 

[nt] 

I E(~;klffi:-1) ~ (J; =>X~ l!.%(0, (J;), (5) 
k=O 

[nt] 

I ~;k ~ (J; => X," ~ %(0, (J;) .. (6) 
k=O 

3. PROOF OF THEOREM 1. Let us represent X7 in the form 

[nt] [nt] 

X~= I ~nk/(l~nkl::;; 1) + I ~nk/(l~nkl > 1) 
k=O k=O 
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(7) 

We define 

[nt] I 
B~ = 1~0 E[e""J(Ien~~:l ~ 1) s;;~_ 1 ], 

Jli:(r) = I(e"" er), (8) 

v;:(r) = P(enk Er I s;;;:_1), 

where r is a set from the smallest cr-algebra cr(R\{0}) and P(enk E ns;;;:_1) 
is the regular conditional distribution of e"" with respect to s;;;:- 1• 

Then (7) can be rewritten in the following form: 

[nt] l [nt] l 
X~ = B~ + L X dJli: + L X d(Jli: - vj;), 

k = 0 lxl > 1 k = 0 lxl S 1 

(9) 

which is known as the canonical decomposition of (X~, s;;~). (The integrals 
are to be understood as Lebesgue-Stieltjes integrals, defined for every 
sample point.) 

According to (B) we have B~ E. 0. Let us show that (A) implies 

[nt] l L lxl dJli: .!'. 0. 
k=O lxl> 1 

(10) 

Wehave 

(11) 

F or every (j e (0, 1 ), 

(12) 

lt is clear that 
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By (A), 

[nl( l 
Vi,.,1 = L dv~ ~ 0, 

k=O lxl>l 
(13) 

and V~ is F~ _ 1 -measurable. 
Then by the corollary to Theorem 2 of §3, Chapter VII, 

(14) 

(By the same corollary and the inequality L\V[",1 ~ 1, we also have the con­
verse implication 

which will be needed in the proof of Theorem 2.) 
The required proposition (10) now follows from (11)-(14). 
Thus 

x~ = Y~ + z~. 
where 

[nl] l 
Y~ = L x d(Jl.~ - v~), 

k=O lxl:51 

and 

[nr] l 
z~ = B~ + L x dfl~ ~ o. 

k=O lxl>l 

It then follows by Problem 1 that to establish that 

X~ ..'!. %(0, a;) 

we need only show that 

Y~ ..'!. %(0, a;). 

Let us represent Y~ in the form 

Y~ = Y[nr] (e) + L\[nr] (e), eE(O, 1], 

where 
[nr] f 

Y[nrJ (e) = L X d(fl.~ - v~), 
k=O •<lxl:51 

[nl] l 
L\[",1 (e) = L x d(Jl.~ - v:;). 

k=O lxl:5• 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

As in the proof of (14), it is easily verified that, because of (A), we have 
Y[nrJ (e) ~ 0, n -+ 00. 
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The sequence ßn(e) = (ß~(e), ~i:), 1 ~ k ~ n, is a square-integrable 
martingale with quadratic variation 

(ßn(e))k = .± [ r X2 dv7 - ( r X dv7) 2
] 

1=0 Jlxl:5< Jlxl:5< 

Because of (C), 

Hence, for every e E (0, 1], 

max{y[nr](e), I (ßn(e))[ntl - o}l} ~ 0. 

By Problem 2 there is then a sequence of numbers Bn! 0 suchthat 

Therefore, again by Problem 1, it is enough to prove only that 

M[nrl ..'!. .%(0, (J?), 

where 

Mi: = ßi:(en) = .± ( X(Jl7 - v7). 
1=0 Jlxl :5<n 

For r E (J(R\ {0} ), let 

jii:(r) = l(ßM~ Er), 

(22) 

(23) 

be a regular conditional probability, ßM~ = MI,- Mj;_ 1, k ~ 1, Mö = 0. 
Then the square-integrable martingale Mn = (MI,, ~k), 1 ~ k ~ n, can 
evidently be written in the form 

k k i M~ = .I ßM7 = .L X djil,. 
1 = 1 1 = 1 lxl :5 2en 

(Notice that I AM71 ~ 2en by (23).) 
To establish (22) we have to show that, for every real A., 

E exp{iA.M[nrJ}-+ exp(- !A.2(J?). (24) 

Put 

and 
k 

ßi:(Gn) = 0 (1 + AGI,). 
j= 1 
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Observe that 

1 +AG~= 1 + f (e;;.x- 1)dv~ = f e;;.x dv~ 
Jlxl~2<n Jlxl~2<a 

and consequ$!ntly 

k 

!S'~(G") = 0 (1 + AGV. 
j= 1 

On the basis of a Iemma that will be proved in Subsection 4, (24) will 
follow if for every real Ä. 

I [ntl I I I$[",1(G")I = ja E[exp(iA.AMj) ~i-1J ;::: C(A.) > o 

and 

$[nriG") .!'. exp( -1A.2o}). 

To see this we represent Si:(G") in the form 

k 

&'i:(G") = exp(Gi:) · 0 (1 + AGj) exp(- AGj). 
j= 1 

(Compare the function E1(A) defined by (76) in §6, Chapter II.) 
Since 

f xdvj = E(AMjl~}- 1 ) = 0, 
Jlxl ~2<n 

we have 

Gi: = I f (eux - 1 - iA.x) dvj. 
j=1 Jlxl~2<n 

Therefore 

lAG~ I s; f lei).x- 1 - iA.xl dv;: s; 1A.2 f x 2 dv;: 
Jlxl~2<n Jlxl~2<n 

(25) 

(26) 

(27) 

s; 1 Ä. 2(2en)2 -+ 0 (28) 

and 

(29) 

By (C), 

(M")[nr) .!'. o}. (30) 
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Suppose first that (M")k ::::;; a (P-a.s.), k ::::;; [nt], where a ::2: rr~ + 1. Then by 
(28), (29), and Problem 3, 

[nt) 
0 (1 + ~Gi:) exp( -~Gi:) ~ 1, n-+ oo, 
k=l 

and therefore to establish (26) we only have to show that 

Gn I 12 2 [nt]-+ - zll. rr,' 

i.e., after (27), (29), and (30), that 

But 

and therefore 

(31) 

(32) 

[nt] f [nt] f 
L I ei.<x - 1 - iA.x + ! A. 2X 21 dvi: ::::;; il A.l 3 (2en) L x2 dv;: 

k =I lxl S 2en k = 1 lxl S 2en 

= ieniA.I 3 (Mn)1nr1:s; ien1A.I 3a-+ 0, n-+ oo. 

Therefore if (M")1nrJ ::::;; a (P-a.s.}, (31) is established and consequently 
(26) is established also. 

Let us now verify (25). Since I ei).x - 1 - iA.x I ::::;; t(h)2 , we find from (28) 
that, for sufficiently large n, 

k k 

lli:(G")I =I 0 (1 + ~Gf)l ::2: 0 (1 - !A.2~(M")) 
j=l j=l 

= exptt
1
ln(1 - !A.2~(M"))} 

But 

I 2 n tA2~(M")j 
ln(1 - 2 ..1. ~(M )) ;;::: - 1 _ !A.2~(M")i 

and ~(M")i::::;; (2en}2 ! 0, n-+ oo. Therefore there is an n0 = n0(A.) suchthat 
for all n ::2: n0 (A.), 

and therefore 

l&'[nr)(G")I ::2: exp{ -A.2 (M")[nr] ::2: e-'-2a. 

Henoe the theorem is proved under the assumption that (M")1nrJ ::::;; a 

(P-a.s.). To remove this assumption, we proceed as follows. 
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Let 
r" = min{k::;; [nt]: <M")k ~ (J~ + 1}, 

taking r" = oo if <M")1nrJ ::;; (J~ + 1. 
Then for M~ = M~" ,., we have 

<M")1nr1 = <M")1nr1" '" ::;; 1 + (J~ + 2s; ::;; 1 + (J~ + 2si ( = a), 

and by what has been proved, 

E exp{iA.M(.11 } ---. exp(- !A.2 (J~). 

But 

I im I E { exp( iA.M(nr1) - exp( iA.M[nr1)} I ::;; 2 I im P( r" < oo) = 0. 
n n 

Consequently 

lim E exp(iA.M(nrJ) = lim E { exp(iA.M[ntJ) - exp(iA.M[nr1)} 
n n 

+ lim E exp(iA.M[nr1) = exp(- !A.2 (J~). 
n 

This completes the proof of Theorem 1. 
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Remark. To prove the statement made in Remark 2 to Theorem 1, we need 
(using the Cramer-Wold method [B3]) to show that for all real numbers 
A.1, ... ' A.j 

j 

____. exp( -tA.io})- L tA.l((Jlk- (J;k_J 
k=2 

The proof of this is similar to the proof of (24), replacing (M~, $'~) by the 
square-integrable martingales (M~, $'~), 

k 

M~ = L V;dMj, 
i= 1 

4. In this subsection we prove a simple Iemma which Iets us reduce the 
verification of (24) to the verification of (25) and (26). 

Iet 

Let 11" = ('1nk• $'~), 1 ::;; k ::;; n, n ~ 1, be stochastic sequences, Iet 

n 

n 

yn = L '1nk• 
k=1 

C"(A.) = n E[exp(iA.IJnk)l$'~_ 1 ], 
k=1 

A. ER, 
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and Iet Y be a random variable with 

Lemma. IfUor a gil'en .A.)II"(A.)I ;;;:: c(A.) > 0, n ;;;:: 1, a sufficient conditionfor 
the Iimit relation 

isthat 

I"(A.) -f. I(A.). 

PROOF. Let 

ei.<.Y" 

m"(A.) = I"(A.) . 

Then lm"(A.)I ~ c- 1(A.) < oo, and it is easily verified that 

Em"(A.) = 1. 

Hence by (34) and the Lebesgue dominated convergence theorem, 

I Eei.I.Y" - Ee;ul = I E(eiu" - tC(A.))I 

= IE(mn(A.)[I"(A.)- tC(A.)])I ~ c- 1(A.)E IB"(Ä.)- 1(..1.)1-+ 0, 

(33) 

(34) 

n -+oo. 

Remark. lt follows, from (33) and the hypothesis that @""(Ä.) ;;;:: c(Ä.) > 0, that 
tC(Ä.) =1= 0. In fact, the conclusion of the Iemma remains valid without the 
assumption that 16'"(..1.)1 ;;;:: c(Ä.) > 0, if restated in the form: if I"(Ä.) -P. &(Ä.) 
and 8(..1.) =1= 0, then (33) holds (Problem 5). 

5. PROOF OF THEOREM 2. (1) Let 6 > 0, b E (0, 6), and for simplicity Iet t = 1. 
Since 

n 

max l~nkl ~ 6 + L l~nkll(l~nkl > 6) 
l~k~n k=l 

and 

we have 

If (A) is satisfied, i.e., 

p{ ± r dv~ > b} -+ 0 
k= I Jlxl>t 



§8. Central Limit Theorem for Sums of Dependent Random Variables 551 

then (compare (14)) we also have 

p{ ± r df-l~ > b} ~ o. 
k= I Jlxl>e 

Therefore (A) = (A *). 
Conversely, Iet 

an= min{k ~ n: l~nkl ~ 8/2}, 

supposing that an= oo ifmax 1 sksnl ~nkl < 8/2. By (A*), !im" P(a" < oo) = 0. 
Now observe that, for every b E (0, 1), the sets 

[~1" l(i~nkl ~ 8/2) > b} and t"~~~""" l~nkl ~ 18} 

coincide, and by (A *) 

"I"" l(l~nkl ~ 8/2) ="I"" r df-l~ ~ 0. 
k= I k= I Jlxl;:e:e/2 

Therefore by ( 15) 

""""" i """"" i L dv~ ~ L dv~ .!'. 0, 
k= I lxl;:e:e k= I lxl;:e:e/2 

which, tagether with the property !im" P( a" < oo) = 0, prove that (A *) 
=(A). 

(2) Again suppose that t = 1. Choose an 8 E (0, 1] and consider the square­
integrable martingales 

(I ~ k ~ n), 

with b E (0, t:]. For the given 8 E (0, 1], we have, according to (C), 

(!1"(8))" ~ af. 
lt is then easily deduced from (A) that for every b E (0, 8] 

(35) 

Let us show that it follows from (C*), (A), and (A*) that, for every b E (0, 8], 

(36) 

where 

[N(b)]n = ± [~nkl(i ~nkl ~ b) - r X dv~Y 
k=l Jlxlsli 

In fact, it is easily verified that by (A) 

[~"(b)Jn - [~"(l)Jn .!', 0. (37) 
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But 

II 

:s; 5 r I <I ellk 1 > 1)1 ellk 12 

k= 1 

:s; 5 max 1e11kl 2 ± f dJJ.:-+ o. 
l:!>k:S:II k=l Jlxl>l (38) 

Hence (36) follows from (37) and (38). 
Consequently to establish the equivalence of (C) and (C*) it is enough to 

establish that when (C) is satisfied (for a given e e (0, 1]), then (C*) is also 
satisfied for every a > 0: 

lim lim P{I[L\11(cr)] 11 - (L\11(<5))11 1 > a} = 0. (39) 
6-->0 II 

Let 

1 :s; k :s; n. 

The sequence m11(<5) = (m:(b), ~:) is a square-integrable martingale, and 
(m11(<5))2 is dominated (in the sense of the definition of §3 on p. 467) by the 
sequences [m11(<5)] and (m"(~)) ). 

lt is clear that 

II 

[m11(<5)]11 = L (L\m~(b))2 :s; max IL\mi:(b)I{[L\11(<5)]11 + (L\11(<5))11} 
k=l lSk:S:II 

(40) 

Since [L\11(<5)] and (L\11(<5)) dominate each other, it follows from (40) that 
(m11(<5))2 is domin.ated by the sequences 6<52 [L\11(<5)] and 6<5 2 (L\11(<5)). 

Hence if (C) is satisfied, then for sufficiently small <5 (for example, for 
<5 < ib(cr~ + 1)) 

II 

and hence, by the corollary to Theorem 2 of §3, we have (39). If (C*) is also 
satisfied, then for the same values of <5, 

(41) 
II 

Since IL\[L\11(b)]kl :s; (28)2, the validity of (39) follows from (41) and another 
appeal to Theorem 2 of §3. 

This completes the proof of Theorem 2. 
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6. PROOF OF THEOREM 3. On account of the Lindeberg condition (L), the 
equivalence of (C) and (1), and of (C*) and (3), can be established by direct 
calculation (Problem 6). 

7. PRooF OF THEOREM 4. Condition (A) follows from the Lindeberg con­
dition (L). As for condition (B), it is sufficient to observe that when C is a 
martingale-difference, the variables B~ that appear in the canonical decom­
position (9) can be represented in the form 

[nt] i 
B~ =- l: xdv!. 

k=O lxl> I 

Therefore B~ .f. 0 by the Lindeberg condition (L). 

8. The fundamental theorem of the present section, namely Theorem 1, was 
proved under the hypothesis that the terms that are summed are uni­
formly asymptotically infinitesimal. It is natural to ask for conditions for the 
central Iimit theorem without such a hypothesis. For independent random 
variables, examples of such theorems are given by Theorem 1 (assuming 
finite second moments) or Theorem 5 (assuming finite first moments) from 
§4, Chapter III. 

We quote (without proof) an analog ofthe first ofthese theorems, applic­
able only to sequences ~· = (~•k• ff~) that are square-integrable martingale 
differences. 

Let ff.k(x) = P(~.k ~ xlff~_ 1 ) be a regular distribution function of 
~.k with respect to ffi:_ 1, and Iet .1.k = E(~;klff~_ 1 ). 

Theorem 5. lf a square-integrable martingale-d!fference ~. = (~nk• ffi:), 
0 .::; k .::; n, n 2: 1, ~.o = 0, satisfies the condition 

[nr] 

L .1.k .f. a?' 0 ~ a? < oo, 
k=O 

andfor every E > 0 

[nt] i ( X ) I L lxll~k(x)- <I> ~ dx .f. 0, 
k=O lxl>t V 0 nk 

then 

X~ .!4 %(0, a?). 

9. PROBLEMS 

1. Let~. = '1. + ~., n ;::: 1, where '1. ~ '1 and ~. ~ 0. Prove that ~. ~ '1· 

2. Let(~.(~:)), n ;::: 1, 1: > 0, be a family of random variables suchthat ~.(~:) .!'. 0 for each 
& > 0 as n ->oo. Using, for example, Problem 11 of §10, Chapter II, prove that there 

is a sequence ~:.l 0 such that ~.(~:.) .!'. 0. 
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3. Let (IX~), 1 :::;; k :::;; n, n ;;:: 1, be a complex-valued random variable such that (P-a.s.) 

Show that then (P-a.s.) 
• 

Jim n (1 + IXt) exp( -IX;:) = 1. 
• k=l 

4. Prove the statement made in Remark 2 to Theorem 1. 

5. Prove the statement made in Remark 1 to the Iemma. 

6. Prove Theorem 3. 

7. Prove Theorem 5. 

§9. Discrete Version of Itö's Formula 

1. In the stochastic analysis of Brownian motion and other related processes 
(for example, martingales, local martingales, semi-martingales) with continu­
ous time Ito's change-of-variables formula plays a key role (see, for example, 
[Jl], [L12]). 

This section may be viewed as a prelude to ltö's formula for Brownian 
motion. In it, we present a discrete (in time) version ofltö's formula and show 
briefty how a corresponding formula for continuous time could be obtained 
using a limiting procedure. 

2. Let X = (X.)osnsN and Y = (Y")osnsN be two sequences of random vari­
ables on the probability space (0, ?F, P), X 0 = Y0 = 0 and 

[X, Y] = ([X, YJ.)osnsN• 

where 

n 

[X, Y]. = L .:1Xi.::U'; (1) 
i=l 

is the square covariance of(X0 , X 1 , .•• ,X.) and (Y0 , Y1 , ••• , Y") (see §1). Also, 
suppose that F = F(x) is an absolutely continuous function, 

F(x) = F(O) + J: f(y) dy, (2) 

where f = f(y), y e IR is a Borel function such that 

r lf<Y>I dy < oo, 
JIYISc 

c>O. 

The change-of-variables formula in which we are interested concems the 
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possibility of representing the sequence 

(3) 

in terms of 'natural' functional from the sequence X. Of course, this requires 
explanation and will be explained here. 

Given the function f = f(x), we form the square covariance [X, f(X)] as 
follows: 

n 

[X, f(X)Jn = L !lJ(Xk)/lXk 
k;l 

n 

= I (f(Xd- f(Xk-l))(Xk- xk-1). (4) 
k;l 

We introduce two 'discrete integrals' (cf. Definition 5 of §1): 

n 

Jn(X, f(X)) = L f(Xk-d/lXk, (5) 
k;l 

(6) 

Then 

(7) 

For fixed N, we introduce a new (reversed) sequence X= (Xn)o,;;nsN with 

Then clearly, 

and analogously, 

l,.(X, f(X)) = - {IN( X, f(X)) - JN-n(X, f(X))} 

(we set 10 = 10 = 0). 
Thus, 

[X,f(X)]N = - {IN(X, f(X)) + IN(X,f(X))} 

and for 0 < n < N we have: 

[X,f(X)Jn = - {JN(X,f(X))- JN-n(X,f(X))}- Jn(X,f(X)) 

(8) 

= - L;in+l f(Xk)/lXk + ktl f(Xk)/lXk}. (9) 

Remark 1. We note that the structures of the right-hand sides of (7) and (9) 
are different. Equation (7) contains two different forms of "discrete integral." 
The integral In(X, f(X)) is a "forward integral," while ÜX, f(X)) is a "back­
ward integral." In (9), both integrals are "forward integrals," over two di.ffer-
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ent sequences X and X. 

3. Since for any function g = g(x) 

g(Xk-d + t(g(Xk)- g(Xk-1)]- t[g(Xk) + g(Xk-1)] = 0, 

it is clear that 
n 

F(Xn) = F(Xo) + L g(Xk-1).:\Xk + t[X, g(X)Jn 
k=1 

+ J1 {(F(Xk)- F(Xk-1))- g(Xk_1)2+ g(Xk) axk}· (10) 

In particular, if g(x) = f(x), where f(x) is the function of (2), then 

F(Xn) = F(Xo) + IiX,J(X)) + t(X,f(X)]n + Rn(X,f(X)), (11) 

where 

From analysis, it is well known that if the function f"(x) is continuous, then 
the following formula ("trapezoidal rule") holds: 

fb [f(x) - f(a) + f(b)J dx = Jb (x - a)(x - b)f"(e~x)) dx 
a 2 a 2. 

(b- a)3 f 1 
= 2 0 

x(x - 1)f"(e(a + x(b - a))) dx 

(b-a)3 J1 
= 2 f"(e(a + x(b - a))) 

0 
x(x - 1) dx 

(b- a)3f"( ) 
12 '1' 

where e(x), x and '7 are "intermediate" points in the interval [a, b]. 
Thus, in (11) 

where xk-1 :::;; 'lk :::;; xk, whence 

where the supremum is taken over all '1 such that 

min(X0 , X1, ... , Xn):::;; '1:::;; max(X0 , X1, ... , Xn). 

We shall refer to formula (11) as the discrete analogue of Ito's formula. We 
note that the right-hand side of this formula contains the following three 
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'natural' ingredients: 'the discrete integral' I"(X, f(X)), the square covariance 
[X, f(X)], and the 'residual' term R"(X, f(X)). 

4. EXAMPLE 1. lf f(x) = a + bx, then R"(X, f(X)) = 0 and formula (11) takes 
the following form: 

EXAMPLE 2. Let 

{ 
1, 

f(x) = sign x = 0, 
x>O 
x=O 
X< 0. -1, 

Then F(x) = lxl. 
Let Xk = Sk, where 

sk = ~1 + ~2 + ... + ~k• 

(13) 

where ~ 1 , ~2 , ... are independent Bemoulli random variables taking values 
± 1 with probability 1/2. lf we also set S0 = 0, we obtain 

n 

IS"I = L sign sk-1~sk + N", (14) 
k=l 

where S0 = 0 and 

N" = {0 ~ k < n: Sk = 0}. 

We note that the sequence of discrete integrals (L~=1 sign sk-1~Sk)n:2:1 forms 
a martingale and therefore, 

It is not difficult to show that as n ---+ oo, 

EIS"I "'Jin. (15) 

thus, application of ltö's discrete formula gives the asymptotic behavior 
of the average nurober of changes of sign on the path of the random walk 

(Sk)k<n: EN""' !in· 
5. Remarks. Let B = (Bt)0 $;t$; 1 be a Brownian movement and Xk = Bkfn• 
k = 0, 1, ... , n. Then application of formula (11) Ieads to the following result: 

n 1 
F(Bt) = F(Bo) + kf:1 f(B<k-1Jtn)~Bkfn + 2 [f(B.,"), B.,"]" + R"(B.1", f(B.1")). 

(16) 

It is known from the stochastic calculus of Brownian motion that 

" 3 p L IBk/n- B(k-1)/nl ---+ 0 (17) 
k=1 



558 VII. Sequences ofRandom Variables that Form Martingales 

and if f = f(x) E L?.,. (i.e., f1xl5:kj2(x) dx < oo for any k > 0), then the limit 

(18) 

exists and is denoted by 

f f(B.)dB. 

and is called Itö's stochastic integral of f(B.) with respect to Brownian motion 
([Jl], [L12]). In addition, if the function f(x) has a second derivative and 
lf"(x)l ~ C, then from (9), we obtain that P-lim Rn(B.1n, f(B.1n)) = 0. Thus, 
from (8) and (10), it follows that the Iimit 

P-lim[f(B.,n), B.,nJn 

exists and is denoted by 

[f(B), B] 1 , 

and that the following formula holds (P-a.s.) 

F(Bd = F(B0 ) + f f(B.) dB. + ~[f(B), B] 1 • 

It can be shown that, for the given smoothness assumptions 

[f(B), B] 1 = f f'(B,) ds, 

which Ieads to the known formula of Ito for Brownian motion: 

r 1 1 rl 
F(Bd = F(B0 ) + Jo f(B.) dB. + :2 Jo f'(B.) ds. 

6. PROBLEMS 

1. Show that formula (14) is true. 

2. Establish that the property (16) is true. 

3. Prove formula (15). 

(19) 

(20) 

(21) 

§10. Applications to Calculations of the Probability 
of Ruin in Insurance 

1. The material studied in the present section is a good illustration of the fact 
that the theory of martingales provides a quick and simple way of calculating 
the risk of an insurance company. 
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Weshall assume that the evolution of the capital X = (X1) 1 ;;-:o of a certain 
insurance company takes place in a probability space (Q, JF, P) as follows. 

The initial capital is X 0 = u > 0. Insurance payments arrive continuously 
at a constant rate c > 0 (in time lit the amount arriving is eilt) and claims are 
received at random times T1 , T2 , ... (0 < T1 < T2 < .. ·) where the amounts 
to be paid out at these times are described by a nonnegative random vari­
ables ~ 1 , ~2 , .... 

Thus, taking into account receipts and claims, the capital X, at timet> 0 
is determined by the formula 

X, = u + ct - S,, (1) 

where 

s, = I ~J(Ti ~ t). (2) 
i;;>:l 

We denote 

T = inf{t ~ 0: X,~ 0} 

the first time at which the insurance company's capital becomes less than or 
equal to zero ('time of ruin'). Of course, if X, > 0 for all t ~ 0, then the time 
T is given tobe equal to +oo. 

One of the main questions relating to the operation of an insurance com­
pany is the calculation of the probability of ruin, P(T < oo ), and the probabil­
ity of ruin before time t, P(T ~ t) (inclusively). 

2. To calculate these probabilities we assume we are in the framework of 
the classical Cramer-Lundeberg model characterized by the following 
assumptions: 

A The times T1 , T2 , ... at which claims are received aresuchthat the vari­
ables (T0 = 0) 

(Ti= Ti- Ti-1• i ~ 1 

are independent, identically-distributed random variables having an expo­
nential distribution with density A.e-.a', t ;;::: 0 (see Table 2, §3, Chapter II). 

B The random variables ~ 1 , ~2 , ... are independent and identically dis­
tributed with distribution function F(x) = P(~ 1 ~ x) such that F(O) = 0, 
J.l = Joo x dF(x) < oo. 

C The sequences (T1 , T2 , .. • ) and (~ 1 , ~2 , ... ) are independent sequences (in 
the sense of Definition 6, §5, Chapter II). 

We denote the process of the number of claims by N = (N1)1;;, 0 , i.e., set 

N, = L J(T; ~ t). (3) 
i;;>:l 

It is clear that this process has a piecewise-constant trajectory with jumps 
by a unit value at times T1 , T2 , ••• and with value N0 = 0. 
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Since 

{11: > t} = {a1 + · · · + CTt > t} = {N, < k}, 

under the assumption A we find that, according to Problem 6, §2, Chapter II, 

Whence 

l:-1 (A.t)i 
P(N, < k) = P(a1 + · · · + CTt > t) = L e-4'-.-. 

i=O J! 

-u(A.tf 
P(N, = k) = e ----rf' k = 0, 1, ... , (4) 

i.e., the random variable N, has a Poisson distribution (see Table 1. §3, 
Chapter II) with parameter A.t. Here, EN, = A.t. 

The so-called Poisson process N = (N,),~ 0 constructed in this way is 
(together with the Brownian motion; §13, Chapter II) an example of another 
classical random (stochastic) process with continuous time. Like the Brownian 
motion, the Poisson process is a process with independent increments (see 
§13, Chapter II), where, for s < t, the increments N,- N. have a Poisson 
distribution with parameter A.(t - s) (these properties are not difficult to 
derive from assumption A and the explicit construction (3) of the process N). 

3. From assumption C we find that 

E(X, - X.) = ct - ES, = ct - E L ~1/(Tj ::;; t) 
i 

= ct- L E~1 EI(1j::;; t) = ct- Jl. L P(Tj::;; t) 
i i 

= ct - Jl. L P(N, ~ i) = ct - p.EN, = t(c - A.p.). 
i 

Thus, we see that, in the case under consideration, a natural requirement for 
an insurance company to operate with a clear profit (i.e. E(X, - X0 ) > 0, 
t > 0) isthat 

c > A.p.. 

In the following analysis, an important role is played by the function 

h(z) = {., (ezx- 1) dF(x), 

which is equal to F(- z) - 1, where 

F(s) = f' e-sx dF(x) 

z ~o. 

is the Laplace-Stieltjes transformation (s is a complex number). 
Denoting 

g(z) = A.h(z) - cz 

(5) 

(6) 
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we find that for r > 0 with h(r) < oo, 

Ee-r(X,-Xo) = Ee-r(X,-u) = e-rct. Ee'L~~.~. 

= e-rcr. eArh(r) = er[.th(r)-cr) = erg(r). 

Analogously, it can be shown that for any s < t 
Ee-r(X,-X.) = e<t-s)g(r). 

561 

(7) 

Let~ = u(X8 , s ::::;; t). Since the process X = (X1)1 ~ 0 is a process with indepen­
dent increments (Problem 2) (P-a.s.) 

E(e-r(X,-X.)I~s) = Ee-r(X,-X.) = e<t-s)g(r), 

then (P-a.s.) 
(8) 

Denoting 
z = e-rX,-tg(r), t~O (9) 

we see that property (8) rewritten in the form 

E(Z1 I~s) = Z8 , S ::::;; t (10) 

is a continuous analogue of the martingale property (2) of Definition 1 of §1. 
By analogy with Definition 3 of §1, we shall say that the random variable 

r = r(w) with values in [0, +oo] is a Markov time relative to the system of 
u-algebras (~1)1 ~ 0 iffor each t ~ 0 the set 

{r(w)::::;; t} e ~~-

The process Z = (Z1)1 ~ 0 is nonnegative with EZ1 = e-"' < oo. Thus, by anal­
ogy with Definition 1 of §1, the process Z = (Z1)1~ 0 with continuous time is a 
martingale. 

It turns out that for martingales with continuous time, Theorem 1 of §2 
remains valid (with self-evident changes to the notation). In particular, 

EZ11\r = EZ0 

for any Markov time r (see for example [LS], §2, Chapter 3). 
By virtue of(9) we find from (11) that for time r = T 

~ E[e-rX,,dtAT)g(r)l T::::;; t] P(T::::;; t) 

= E[e-rXT-Tg(r)l T::::;; t]P(T::::;; t) 

~ E[e-Tg(r)l T::::;; t]P(T::::;; t) ~ min e-sg(r) P(T::::;; t). 
Osssr 

(11) 
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Moreover, 
e-ru 

P(T < t) < = e-ru max e•g(rl 
- - • sg(r) • 

mtno:s;s:s;r e O:s;s:s;r 
(12) 

Let us consider the function 

g(r) = A.h(r) - er 

in more detail. Clearly, g(O) = 0, g'(O) = AJ1- c < 0 (by virtue of (5)) and 
g"(r) = A.h"(r) ~ 0. Thus, there exists a unique positive value r = R with 
g(R) = 0. 

Noting that for r > 0 

too e'x(l - F(x)) dx = too Loo e'X dF(y) dx 

= too (I: e'x dx) dF(y) 

1100 1 =- (e'Y- 1) dF(y) = -h(r), 
r 0 r 

R may be asserted tobe the (unique) root of the equation 

Aioo - e'x(l - F(x)) dx = 1. 
c 0 

Let us set r = R in (12). Then we obtain, for any t > 0, 

P(T::;; t) ::;; e-Ru 

whence 
P(T < oo)::;; e-Ru. 

Moreover, we prove the following 

(13) 

(14) 

(15) 

Theorem. Suppose that in the Cramer-Lundeberg model assumptions A, B, C 
and property (5) are satis.fied (i.e., AJ1 < c). Then the bound of (15) holdsfor the 
probability of ruin P(T < oo ), where R is the positive root of equation (13). 

4. Remark. The above discussion could be greatly simplified from a stochas­
tic point of view if we assumed a geometric distribution for the a; (P(a; = k) = 
qk-l p, k = 1, 2, ... ) instead of an exponential distribution. In this case, all the 
time variables (7;, T) would take discrete values, it would not be necessary to 
call upon the results of the theory of martingales for continuous time and the 
whole study could strictly be carried out based only on the 'discrete' (in time) 
methods from the theory of martingales studied in the present chapter. 

However, we have turned our attention to the "continuous" (in time) 
scheme to illustrate both the method and the usefulness of the general theory 
of martingales for the case of continuous time, based on the given example. 
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5. PROBLEMS 

1. Prove that the process N = (N,),., 0 (under assumption A) is a process with inde­
pendent increments, where N, - N. has a Poisson distribution with parameter 
A.(t- s). 

2. Prove that the process X= (X,),., 0 is a process with independent increments. 

3. Consider the problern of determining the probability of ruin P(T < oo) assum­
ing that the variables a; have a geometric (rather than exponential) distribution 
(P(a; = k) = qk-lp, k = 1, 2, ... ). 



CHAPTER VIII 

Sequences of Random Variables 
That Form Markov Chains 

§1. Definitionsand Basic Properties 

1. In Chapter I (§12), for finite probability spaces, we took the basic idea 
to be that of Markov dependence between random variables. We also 
presented a variety of examples and considered the simplest regularities that 
are possessed by random variables that are connected by a Markov chain. 

In the present chapter we give a generat definition of a stochastic sequence 
of random variables that are connected by Markov dependence, and devote 
our main attention to the asymptotic properties of Markov chains with 
countable state spaces. 

2. Let (Q, ff', P) be a probability space with a distinguished nondecreasing 
family (~) of u-algebras, ffo ~ ff'1 ~ · · · ~ ff. 

Definition. A stochastic sequence X = (Xn, ff'n) is called a Markov chain 
(with respect to the measure P) if 

for all n 2:: m 2:: 0 and all BE flJ(R). 

Property (1), the Markov property, can be stated in a number ofways. 
For example, it is equivalent to saying that 

E [g(X n) I ff'mJ = E [g(X n) I X mJ (P-a.s.) 

for every bounded Borel function g = g(x). 

(1) 

(2) 
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Property (1) is also equivalent to the statement that, for a given "present" 
Xm, the "future" Fand the "past" P are independent, i.e. 

(3) 

where FE cr{w: X;, i ~ m}, and BE JFn, n ::;;; m. 
In the special case when 

JFn = JF: = cr{w: X 0• •.• , Xn} 

and the stochastic sequence X = (Xn, JF:) is a Markov chain, we say that 
the sequence {X n} itse(f is a Markov chain. It is useful to notice that if X = 
{Xn, JFn} is a Markov chain, then (Xn) is also a Markov chain. 

Remark. It was assumed in the definition that the variables X m are real­
valued. In a similar way, we can also define Markov chains for the case when 
X n takes values in some measurable space (E. t!). In this case, if all singletons 
are measurable, the space is called a phase space, and we say that X = 
(Xn, JFn) is a Markov chain with values in the phase space (E, t!). When E 
is finite or countably infinite (and 8 is the cr-algebra of all its subsets) we 
say that the Markov chain is discrete. In turn, a discrete chain with a finite 
phase space is called a finite chain. 

The theory offinite Markov chains, as presented in §12, Chapter I, shows 
that a fundamental role is played by the one-step transition probabilities 
P(Xn+ 1 E BIXn). ByTheorem 3,§7,Chapter II, therearefunctionsPn+ 1(x; B), 
the regular conditional probabilities, which (for given x) are measures on 
(R, PJ(R)), and (for given B) are measurable functions of x, suchthat 

(4) 

The functions P n = P n(x, B), n ~ 0, are called transition functions, and 
in the case when they coincide (P 1 = P 2 = · · ·), the corresponding Markov 
chain is said tobe homogeneaus (in time). 

From now on we shall consider only homogeneous Markov chains, and 
the transition function P 1 = P 1 (x, B) will be denoted simply by P = P(x, B). 

Besides the transition function, an important probabilistic property of a 
Markov chain is the initial distribution n = n(B), that is, the probability 
distribution defined by n(B) = P(X 0 E B). 

The set of pairs ( n, P), where n is an initial distribution and Pis a transition 
function, completely determines the probabilistic properties of X, since every 
finite-dimensional distribution can be expressed (Problem 2) in terms of n 
and P: for every n ~ 0 and A E PJ(Rn+ 1) 

P{(Xo, ... , Xn) E A} 

= L n(dxo) L P(x0 ; dx 1) .. • f/ A.(x0 , ... , Xn)P(xn_ 1 ; dxn). (5) 
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We deduce, by a standard limiting process, that for any fJl(Rn+ 1)-measurable 
function g(x0 , ... , xn), either of constant sign or bounded, 

Eg(Xo, ... , Xn) 

= {n(dx0 ) {P(x0 ;dx1)··· {g(x0 , ••• ,xn)P(xn-t;dxn). (6) 

3. Let p<n) = p<n)(x; B) denote a regular variant of the n-step transition 
probabilit y: 

(7) 

1t follows at once from the Markov property that for all k and l, (k, l ~ 1), 

p<k+l)(X0 ; B) = {p<k)(X0 ; dy)P0)(y; B) (P-a.s.). (8) 

lt does not follow, of course, that for all x E R 

p<k+n(x; B) = {p<k)(x; dy)P<1)(y; B). (9) 

lt turns out, however, that regular variants of the transition probabilities 
can be chosen so that (9) will be satisfied for all x ER (see the discussion in the 
historical and bibliographical notes, p. 559). 

Equation (9) is the Kolmogorov-Chapman equation (compare (1.12.13)) 
and is the starting point for the study of the probabilistic properties ofMarkov 
chains. 

4. lt follows from our discussion that with every Markov chain X = (X n, ffn), 
defined on (Q, ff, P) there is associated a set (n, P). lt is natural to ask 
what properties a set (n, P) must have in order for n = n(B) to be a proba­
bility distribution on (R, fJl(R)) and for P = P(x; B) to be a function that is 
measurable in x for given B, and a probability measure on B for every x, so 
that n will be the initial distribution, and P the transition function, for some 
Markov chain. As weshall now show, no additional hypotheses are required. 

In fact, let us take (Q, ff) to be the measurable space (R 00 , &B(R 00 )). On 
the sets A E BB(W+ 1) we define a probability measure by the right-hand side 
of formula (5). It follows from §9, Chapter II, that a probability measure P 
exists on (R 00 , BB(R 00 ) for which 

P{w: (x0 , •.. , Xn) E A} 

= {n(dx0 ) LP(x0 ;dx1)··· f/A(x0 , ••• ,xn)P(xn-t;dxn). (10) 

Let us show that if we put Xiw) = xn for w = (x0 , x 1, •.. ), the sequence 
X = (Xn)n~o will constitute a Markov chain (with respect to the measure P 
just constructed). 
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In fact, if BE PA(R) and CE &l(R"+ 1), then 

P{Xn+l E B, (X0 , •.. , Xn) E C} 
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= Ln(dxo) LP(xo;dx 1)··· f/B(xn+l)Ic(x 0 , ••• ,xn)P(xn;dxn+l) 

= L n(dx0 ) LP(xo; dx 1) .. · LP(xn; B)lc(x0 , ... , xn)P(xn-l; dxn) 

= f P(X"; B) dP, 
{ro: (Xo, ... , Xn)EC} 

whence (P-a.s.) 

(11) 

Similarly we can verify that (P-a.s.) 

(12) 

Equation (1) now follows from (11) and (12).1t can be shown in the same 
way that for every k ;;::.: 1 and n ;;::.: 0, 

This implies the homogeneity of Markov chains. 
The Markov chain X = (Xn) that we have constructed is known as the 

Markov chain generated by (n, P). To emphasize that the measure P on 
(R 00 , &l(R 00 )) has precisely the initial distribution n, it is often denoted 
by P". 

If n is concentrated at the single point x, we write P x instead of P "' and 
the corresponding Markov chain is called the chain generated by the point x 
(since Px(X0 = x} = 1). 

Consequently, each transition function P = P(x, B) is in fact connected 
with the whole family of probability measures {P x• x ER}, and therefore with 
the whole family of Markov chains that arise when the sequence (Xn)n;;,o is 
considered with respect to the measures P x• x ER. From now on, we shall 
use the phrase "Markov chain with given transition function" to mean the 
family of Markov chains in the sense just described. 

We observe that the measures P" and P x constructed from the transition 
function P = P(x, B) are consistent in the sense that, when A E PA(R 00 ), 

and 
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5. Let us suppose that (Q, ff) = (R 00 , Bl(R 00 )) and that we are considering 
a sequence X = (X") that is defined coordinate-wise, that is, X"(w) = x" for 
w = (x0 , x 1, •.• ). Also Iet !F" = u{w: X0 , ••. , X"), n ~ 0. 

Let us define the shifting operators ()"' n ~ 0, on n by the equation 

()n(Xo, Xt, · · .) = (xn, Xn+l• · · .), 

and Iet us define, for every random variable 'I = fl(w), the random variables 
()n'l by putting 

(()nfi)(W) = 'l(()nw). 

In this notation, the Markov property of homogeneous chains can 
(Problem 1) be given the following form: For every ~measurable 'I = fl(w), 
every n ~ 0, and BE Bl(R), 

(15) 

This form of the Markov property allows us to give the following impor­
tant generalization: (15) remains valid ifwe replace n by stopping times -r. 

Theorem. Let X= (Xn) be a homogeneous Markov chain de.fined on 
(R 00 , Bl(R 00 ), P) and Iet -r be a stopping time. Then thefollowing strong Markov 
property is valid: 

P{O,"eBI~} = Px.{fiEB} (P-a.s.). (16) 

PROOF. If A E ~ then 
00 

P{0,'7 E B, A} = L P{0,'7 E B, A, r = n} 
n=O 

00 

= L P{(Jn'7 E B, A, t" = n}. (17) 
n=O 

The events An {-r = n} E ff", and therefore 

P{(Jn'l E B, An {• = n}} = f P{()n'1 E BI!F"} dP 
An{t=n} 

= f PxJ'I E B} dP = f Px.{'l E B} dP, 
An~=~ An~=~ 

which, with (17), establishes (16). 

CoroUary. lf u is a stopping time suchthat P(u ~ r) = 1 and u is ~-measurable, 
then 

P{X" E B, u < oo I~} = Px.(B) ({u < oo}; P-a.s.). (18) 

6. As we said above, we are going to consider only discrete Markov chains 
(with phase space E = { ... , i,j, k, .. . }). To simplify the notation, weshall 
now denote the transition functions P(i; U}) by Pii and call them transition 
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probabilities; an n-step transition probability from i to j will be denoted 
by pjj). 

Let E = { 1, 2, ... } . The principal questions that we study in §§2-4 are 
intended to clarify the conditions under which: 

(A) The Iimits ni = lim Pl~~ exist and are independent of i; 
(B) The Iimits (n 1, n 2 , ••• ) form a probability distribution, that is, n; ;;::: 0, 

n; = I; 
(C) The chain is ergodic, that is, the Iimits (n 1, n 2 , .. . ) have the properties 

1t; > 0, L~ I 1t; = 1; 
(D) There is one and only one stationary probability distribution I!) = 

(q 1, q2 , •• • ), that is, one suchthat q;;;::: 0, L~ 1 q; = 1, and qi = Li q;pu, 
jEE. 

In the course of answering these questions weshall develop a classification 
of the states of a Markov chain as they depend on the arithmetic and asymp­
totic properties of p\~) and p\~) 

'1 n · 

7. PROBLEMS 

I. Prove the equivalence of definitions (I), (2), (3) and (15) ofthe Markov property. 

2. Prove formula (5). 

3. Prove equation (18). 

4. Let (X.).,. 0 be a Markov chain. Show that the reversed sequence ( .. . ,X.,X n-l•· .. ,X 0 ) 

is also a Markov chain. 

§2. Classification of the States of a Markov Chain in 
Terms of Arithmetic Properties of the Transition 
Probabilities p~j) 

1. We say that a state i E E = {1, 2, ... } is inessential if, with positive proba­
bility, it is possible to escape from it after a finite number of steps, without 
ever returning to it; that is, there exist m andj suchthat plj) > 0, but pJ?) = 0 
for all n and j. 

Let us delete all the inessential states from E. Then the remaining set of 
essential states has the property that a wandering particle that encounters 
it can never leave it (Figure 36). As will become clear later, it is essential 
states that are the most interesting. 

Let us now consider the set of essential states. We say that state j is 
accessible from the point i (i-+ j) if there is an m ;;::: 0 such that plj) > 0 
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f~~ 
\ I QV 
( 

: 1 f f 1 
I 2 2 

I 1 

I 
I I ___________ _ 

Inessential state Essential state 

Figure 36 

(p!J' = 1 if i = j, and 0 if i #- j). States i and j communicate (i +-+ j) if j is acces­
sible from i and i is accessible from j. 

By the definition, the relation "+-+" is symmetric and reflexive. lt is easy 
to verify that it is also transitive (i +-+ j, j +-+ k => i +-+ k). Consequently the 
set of essential states separates into a finite or countable number of disjoint 
sets E 1, E2 , ••. , each of which consists of communicating sets but with the 
property that passage between different sets is impossible. 

By way of abbreviation, we call the sets E1, E2 , ••• classes or indecompos­
able classes (of essential communicating sets), and we call a Markov chain 
indecomposable if its states form a single indecomposable class. 

As an illustration we consider the chain with matrix 

I l:o 0 0 3 3 . I !:o 0 0 4 
............... 

=(~I ~J-ifl>= 0 o:o 0 
0 o:.! 0 I 

• 2 2 

0 o:o 1 0 

The graph of this chain, with set of states E = { 1, 2, 3, 4, 5} has the form 

I f 

C>.C>, 
f I 

It is clear that this chain has two indecomposable classes E 1 = {1, 2}, 
E2 = {3, 4, 5}, and the investigation of their properties reduces to the 
investigation ofthe two separate chains whose states are the sets E 1 and E2 , 

and whose transition matrices are if1> 1 and if1> 2 . 

Now Iet us consider any indecomposable class E, for example the one 
sketched in Figure 37. 
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2 

Figure 37. Example of a Markov chain with period d = 2. 

Observe that in this case a return to each state is possible only after an 
even number of steps; a transition to an adjacent state, after an odd number; 
the transition matrix has block structure, 

o o:! ! 
o o:! ! 

IP= 
l l:O 0 
2 2 : 

! L o o 
Therefore it is dear that the dass E = { 1, 2, 3, 4} separates into two 

subdasses C 0 = {1, 2} and C 1 = {3, 4} with the following cyc/ic property: 
after one step from C0 the partide necessarily enters C 1, and from C 1 it 
returns to C 0 . 

This example suggests a dassification of indecomposable dasses into 
cyclic subclasses. 

2. Let us say that state j has period d = d(j) if the following two conditions 
are satisfied: 

(1) pJ'p > 0 only for values of n of the form dm; 
(2) d is the largest number satisfying (l ). 

In other words, d is the greatest common divisor ofthe numbers n for which 
PYP > 0. (If PYP = 0 for all n ~ 1, we put d(j) = 0.) 

Let us show that all states of a single indecomposable dass E have the 
same period d, which is therefore naturally called the period of the dass, 
d = d(E). 

Let i and jE E. Then there are numbers k and I such that p!'> > 0 and 
P\1> > 0 Consequently p\k+ tJ > p\k>p\1> > 0 and therefore k + I is divisible Jl . u - l) Jl ' 

by d(i). Suppose that n > 0 and n is not divisible by d(i). Then n + k + I is 
also not divisible by d(i) and consequently Pl?+k+lJ = 0. But 

P\~+k+l) > p\~lp\~)p\l) 
ll - l} )) ll 
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/C.·~ 
c,,o~\ 1c, 

c3• •cz 
Figure 38. Motion among cyclic subclasses. 

and therefore PYY = 0. lt follows that if PYY > 0 we have n divisible by d(i), 
and therefore d(i) ~ d(j). By symmetry, d(j) ~ d(i). Consequently d(i) = d(j). 

If d(j) = 1 (d(E) = 1 ), the state j ( or dass E) is said tobe aperiodic. 
Let d = d(E) be the period of an indecomposable dass E. The transitions 

within such a dass may be quite freakish, but (as in the preceding example) 
there is a cydic character to the transitions from one group of states to 
another. To show this, Iet us select a state i 0 and introduce (for d ~ 1) the 
following subdasses: 

C0 = {jEE:p!~} > O=n = O(modd)}; 

C = {J"EE·p\"). > O=n = l(modd)}· 1 . lQJ - ' 

Cd-1 = {jE E: P!~j > 0 = n = d- 1(mod d)}. 

Clearly E = C0 + C1 + · · · + Cd-t· Let us show that the motion from 
subdass to subdass is as indicated in Figure 38. 

In fact, Iet state i E C P and Pii > 0. Let us show that necessarily 
j E C P + 1 (mod d). Let n be such that PI~/ > 0. Then n = ad + p and therefore 
n = p(mod d) and n + 1 = p + l(mod d). Hence Pl~/ l) > 0 and 
f E Cp+ l(modd)· 

Let us observe that it now follows that the transition matrix IP of an 
indecomposable chain has the following block structure: 
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Inessential 
states 

Set E ofall 

Essential 

Indecomposable classes 

Figure 39. Classification of states of a Markov chain in terms of arithmetic properties of 

the probabilities P'ii· 

Consider a subdass CP. Ifwe suppose that a particle is in the set C0 at the 
initial time, then at time s = p + dt, t = 0, 1, ... 'it will be in the subdass cp. 
Consequently, with each subdass C P we can connect a new Markov chain 
with transition matrix (pf)i,jeCp' which is indecomposable and aperiodic. 
Hence if we take account of the dassification that we have outlined (see the 
summary in Figure 39) we infer that in studying problems on Iimits of 

probabilities Pt? we can restriet our attention to aperiodic indecomposable 
chains. 

3. PROBLEMS 

I. Show that the relation "+->" is transitive. 

2. For Example I, §5, show that when 0 < p < I, all states belong to a singledass with 

period d = 2. 

3. Show that the Markov chains discussed in Examples 4 and 5 of §5 are aperiodic. 

§3. Classification of the States of a Markov Chain in 
Terms of Asymptotic Properties of the 
Probabilities PW> 

1. Let iP' = IIPiill be the transition matrix of a Markov chain, 

Jj~l = Pi{Xk = i, X 1 =f. i, 1 ~ l ~ k- 1} 

and for i =f. j 

(1) 

(2) 
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For X o = i, these are respectively the probability of first return to state i 
at time k, and the probability of first arrival at state j at time k. 

Using the strong Markov property (1.16), we can show as in (1.12.38) that 

n 

P\~) = "\' f\k)p\"- k) 
IJ ~. I) l) • 

k=l 

For each i E E we introduce 

00 

fii = L: !l'fl, 
n=l 

(3) 

(4) 

which is the probability that a particle that leaves state i will sooner or later 
return to that state. In other words, .J;; = P ;{ O"; < oo}, where O"; = inf{ n :?: 1: 
xn = i} with 0"; = 00 when {·} = 0. 

We say that a state i is recurrent if 

hi = 1, 

and nonrecurrent if 

hi < 1. 

Every recurrent state can, in turn, be classified according to whether the 
auerage time of return is finite or infinite. 

Let us say that a recurrent state i is positive if 

Jli- I '= ( ~ nft:>) - I > 0, 
n=l 

and null if 

Jli- I = ( f f!!W))- I = 0. 
n=l 

Thus we obtain the classification of the states of the chain, as displayed in 
Figure 40. 

Positive 
states 

Recurrent 

Set of an 

Nun 
states 

Nonrecurrent 
states 

Figure 40. Classification of the states of a Markov chain in terms of the asymptotic 
properties of the probabilities Pl7l. 
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2. Since the calculation of the functions fl?l can be quite complicated, it is 
useful to have the following tests for whether a state i is recurrent or not. 

Lemma 1 

(a) The state i is recurrent if and only if 
00 

I Pl?) = 00. 
n=l 

(b) If state j is recurrent and i <--+ j then state i is also recurrent. 

PROOF. (a) By (3), 
n 

P\n) = ' f\klp(n-k) 
u L- ll ll ' 

k=l 

and thercfore (with pj?> = 1) 

00 00 00 00 

I Pl?) =I I fl~)Pl?-k) =I fl~)I Pl?-k) 
n=l n=l k=l k=l n=k 

(5) 

Therefore if I;;xo= 1 Pl?l < IX:, we have ./;; < 1 and therefore state i is non­
recurrent. Furthermore, Iet I;;xo= 1 Pl?l = IX:. Then 

N Nn N N N N 

' p\n) = ' ' j'\k)p(n- k) = ' {\k) ' p\~- k) < ' j'\k) ' p\l) L,u L..,.L,.u11 f_;.uL-u -L,.uL,u' 
n=l n=l k=l k=l n=k k=l 1=0 

and therefore 

oo N 'N (n) 

1.. = ' j'\k) > ' j'\k) > L.,n= I Pii ~ 1 
.Jü L...., . u - L,. u - 'N (l) ' 

k=1 k=1 L..l=OPii 
N ~ oo . 

Thus if I;;xo= 1 Pl?l = IX: then fii = I, that is, the state i is recurrent. 

(b) Let p\sl > 0 and p\tl > 0 Then l) Jl . 

and ifi;;"'= 1 p)'jl = oo, then also I;;xo= 1 Pl?l = oo, that is, the state i is recurrent. 

3. From (5) it is easy to deduce a first result on the asymptotic behavior 
of Pl't 

Lemma 2. lf state j is nonrecurrent then 

00 

I Pt?< 00 (6) 
n=1 
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for every i, and therefore 

n--+ oo. (7) 

PROOF. By (3) and Lemma I, 

00 00 00 oc 

I P~'? = I I ~~~~P~i-k) = I !l~, I P)i1 

n=l n=l k=l k=l n=O 

CIO 00 

= !ij I P)i1 ~ I P)i1 < oo. 
n=O n=O 

Here we used the inequality fij = Ik'= 1 fl~ 1 ~ I, which holds because the 
series represents the probability that a particle starting at i eventually arrives 
atj. This establishes (6) and therefore (7). 

Let us now consider recurrent states. 

Lemma 3. Let j be a rect1rrent state with d(.i) = I. 

(a) lf i communicates with j, then 

I 
Pli1 --+ -, 

Jlj 

lf in additionj is a positive state then 

I 
p\n)--+- > 0 

I) J.1 j ' 

lf, however, j is a null state, then 

Pli1 --+ 0, 

n--+ oo. 

11 --+ 00. 

11 --+ 00. 

(b) If i and j belong to different classes of communicating states, then 

(n) fij pij --+ -, 
Jlj 

11 --+ 00. 

(8) 

(9) 

(10) 

( 11) 

The proof of the Iemma depends on the following theorem from analysis. 
Let f 1,f2 , .•• be a sequence of nonnegative numbers with Ir;" 1 ;; =I, 

such that the greatest common divisor of the indices j for which jj > 0 is 1. 
Let u 0 = 1, un = Ik=l fkun-k' n =I, 2, ... , and Iet J1 =I:'= I nfn· Then 
un--+ 1/Jl as n--+ oo. (Fora proof, see [Fl], §10 of Chapter XIII.) 

Taking account of (3), we apply this to un = p)i1, fk = J)JI. Then we 
immediately find that 

I 
P\n)--+-

)) ' 
/1j 

h _ 'oo zj(n) w ere J1 i - L.n = 1 n ii . 
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Taking p)jl = 0 for s < 0, we can rewrite (3) in the form 

00 

P\~) = " j\k)p\n-k) 
I} L., I} JJ • 

k=l 

(12) 

By what has been proved, we have p}j-kl ___. Jli- 1, n ___. oo, for each given k. 
Therefore if we suppose that 

00 00 

!im " j\~lp\~- kl = " j\~l !im p\~- kl L., I} }} L., I) )} ' (13) 
n k=l k=l n 

we immediately obtain 

(14) 

which establishes (11). 
Recall that fii is the probability that a particle starting from state i arrives, 

sooner or later, at state j. State j is recurrent, and if i communicates with j, 
it is natural to suppose that .fii = 1. Let us show that this is indeed the case. 

Let j;i be the probability that a particle, starting from state i, visits state j 
infinitely often. Clearly J;i ~ I;i. Therefore if we show that, for a recurrent 
state j and a state i that communicates with it, the probability .r;i = 1, we 
will have established that J;i = 1. 

According to part (b) of Lemma 1, the state i is also recurrent, and therefore 

(15) 

Let 

cri = inf{n ~ 1: Xn = i} 

be the first time (for times n ~ I) at which the particle reaches state i; take 
cri = oo if no such time exists. 

Then 

00 00 

I = fii = I fl'il = I Plrri = n) = Pi(cri < oo), (16) 
n=l n=l 

and consequently to say that state i is recurrent means that a particle starting 
at i will eventually return to the same state (at a random time crJ But after 
returning to this state the "life" of the particle starts over, so to speak (because 
of the strong Markov property). Hence it appears that if state i is recurrent 
the particle must return to it infinitely often: 

Pi{Xn = i for infinitely many n} = I. (17) 

Let us now give a formal proof. 
Let i be a state (recurrent or nonrecurrent). Let us show that the probability 

of return to that state at least r times is (J;Jr. 
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For r = 1 this follows from the definition of ,/;;. Suppose that the pro­
position has been proved for r = m - 1. Then by using the strong Markov 
property and (16), we have 

P; (number of returns to i is greater than or equal to m) 

_ ~ (a; = k, and the number of returns to i after time k) 
- L.. p i is at least m - 1 

k=l 

~ k) (at least m - 1 values I k) = L.. P{a· = p. a- = 
k=l ' ' ' of Xa,+l' Xa,+ 2 , ... equal i ' 

00 

= L P;(a; = k)P;(at least m- 1 values of X 1, X 2 , . •• equal i) 
k=l 

00 

= ' j'\kl(j' .. )m-1 = jl1l 
~ ll ll ll" 

k= I 

Hence it follows in particular that formula (17) holds for a recurrent 
state i. If the state is nonrecurrent, then 

P;{X" = i for infinitely many n} = 0. (18) 

We now turn to the proofthat J;i = 1. Since the state i is recurrent, we 
have by (17) and the strong Markov property 

00 

1 = L P;(aj = k) + P;(ai = XJ) 
k=l 

oo ( the number of returns to i) 
= L P; ai = k, aftertime k is infinite + P/ai = co) 

k= 1 

_ ~ ( _ k infinitely many values of) p ( _ ) 
- L.. P; ai - , . + ; ai - co 

k= I Xa,+ 1, x<Tj+ 2' ... equalt 

oo (infinitely many a. = k ) 
= L P;(aj = k). P; values of x<Tj+l' Xaj-2' ~ = . + P;(aj = co) 

k= I 1 · "i } ... , equa 1 

_ ~ <kl p (infinitely many values) (l _ r ) 
- L.. F· · · + )i' 

k=t ' 1 1 of X 1, X 2 , ... equal i '1 

00 =' f\klf~· + (1 - f..) = f~· r.. + (1 - f..). L.. ' lj lj J i] lj J i] J i] 
k=l 

Thus 

and therefore 
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Since i ~ j, we have fii > 0, and consequently [;i = 1 and fii = 1. 
Therefore if we assume (13), it follows from (14) and the equation hi = 1 

that, for communicating states i and j, 

1 
p}j)--> -, 

Jl.j 

As for ( 13), its validity follows from the theorem on dominated convergence 
together with the remark that 

00 

I I\~) = .t;j ~ t. 
k=l 

This completes the proof of the Iemma. 

Next we consider periodic states. 

Lemma 4. Let j be a recurrent state and Iet d(j) > 1. 

(a) Jf i and j belang to the same c/ass (of states), and if i belongs to the cyclic 
subc/ass C, and j to C.+a• then 

(b) With an arbitrary i, 

P(nd + a) __. !!_ 
I) 

Jl.j 

p}'Jd + a) __. [ I f}}d + a)J . !!._, 
r=O Jl.j 

a = 0, 1, ... , d - 1. 

(19) 

(20) 

PROOF. (a) First Iet a = 0. With respect to the transition matrix [p>d the state 
j is recurrent and aperiodic. Consequently, by (8), 

(nd) __. 1 
Pii "oo kf\kd) 

L.,k=l :!}} 

d 
"00 kdlf\kd) 
L....k= 1 JJ 

Suppose that ( 19) has been proved for a = r. Then 

d 

00 00 d d 
P(nd+r+ 1) _ "p p(nd+r) ~ "P·k ·- =-

ij - L.... ik kj ~ L.... I . 

k=l k=l ~ Jl.j 

(b) Clearly 
nd+a 

P\~d+a) = " j\k)p\nd+a+k) 
I} L.... I} JJ ' 

k=l 
a = 0, 1, ... , d - 1. 

State j has period d, and therefore pJ'Jd+a-k) = 0, except when k - a has the 
form r · d. Therefore 

n 

P(nd + a) = " j\~d+ a)p((n- r)d) 
IJ L., I} }} 

r=O 

and the required result (20) follows from (19). 
This completes the proof of the Iemma. 
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Lemmas 2-4 imply, in particular, the following result about Iimits 
of PtP. 
Theorem l. Let a Markov chain be indecomposable (that is, its states form a 
single class of essential communicating states) and aperiodic. 

Then: 

(a) /fall states are either null or nonrecurrent, then,for all i andj, 

P\~)--+ 0 
IJ ' 

n--+oo; (21) 

(b) if all states j are positive, then,for all i, 

1 
P\~)--+- > 0 

IJ ' 
llj 

n--+oo; (22) 

4. Let us discuss the conclusion of this theorem in the case of a Markov chain 
with a finite number of states, E = {1, 2, ... , r}. Let us suppose that the 
chain is indecomposable and aperiodic. It turns out that then it is auto­
matically increasing and positive: 

(
indecomposability) 

( indecomposability) = recu:~e~ce 
d = 1 positlVlty 

d=1 

(23) 

For the proof, we suppose that-all states are nonrecurrent. Then by (21) 
and the finiteness of the set of states of the chain, 

r r 

1 = lim ' p\~) = ' lim p\~) = 0 L., IJ L., IJ " (24) 
n j=l j=l n 

The resulting contradiction shows that not all states can be nonrecurrent. 
Let i0 be a recurrent state andj an arbitrary state. Since i0 +-+ j, Lemma 1 shows 
that j is also recurrent. 

Thus all states of an aperiodic indecomposable chain are recurrent. 
Let us now show that all recurrent states are positive. 
lf we suppose that they are all null states, we again obtain a contradiction 

with .(24). Consequently there is at least one positive state, say i0 . Let i be any 
other state. Since i +-+ i0 , there are s and t such that pf~~ > 0 and P!l~ > 0, and 
therefore 

1 
P\'.'+s+t) > p\~)p\"~ p\1).--+ p\~) _. p!'). > 0 

H - UQ IOIO lQl UQ lQI • 

llio 
(25) 

Hence there is a positive e such that p!~) ~ e > 0 for all sufficiently large n. 
But p\~)--+ 1/!1; and therefore /1; > 0. Consequently (23) is established. 

Let n i = 1/ lli. Then n i > 0 by (22) and since 
r r 

1 = lim L p\j) = L ni, 
n j=l j=l 
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the (aperiodic indecomposable) chain is ergodic. Clearly, for allergodie finite 
chains, 

there is an n0 such that min pj'jl > 0 for all n 2 n0 . (26) 
i, j 

It was shown in§ 12 of Chapter I that the converse is also valid: (26) implies 
ergodicity. 

Consequently we have the following implications: 

-=- = ergo ICity-=- . (
indecomposability) 

( indecomposability) recurrence d. · (26) 
d = 1 positivity 

d = 1 

However, we can prove more. 

Theorem 2. F or a finite M arkov chain 

(
indecomposability) 

( indecomposability) recurrence ( d. · ) (26) 
d 1 -=- . . . -=- ergo zczty -=- . = posztzvzty 

d=l 

PROOF. Wehave only to establish 

(
indecomposability) 

. . recurrence 
(ergodicity) = . . . . positivity 

d = 1 

Indecomposability follows from (26). As for aperiodicity, increasingness, and 
positivity, they arevalid in more general situations (the existence of a limiting 
distribution is sufficient), as will be shown in Theorem 2, §4. 

5. PROBLEMS 

I. Consider an indecomposable chain with states 0, 1, 2, .... A necessary and sufficient 
condition for it to be nonrecurrent is that the system of equations ui = L; U;Pii• 
j = 0, I, ... , has a bounded solutionsuchthat u; =/= c, i = 0, 1, .... 

2. A sufficient condition for an indecomposable chain with states 0, 1, ... tobe recurrent 
isthat there is a sequence (u0 , u1, ... ) with ui--> oo, i--> oo, suchthat ui:?: Li uipii for 
allj #- 0. 

3. A necessary and sufficient condition for an indecomposable chain with states 0, 1, .. . 
tobe recurrent and positiveisthat the system of equations u i = Li u;pii,j = 0, 1, ... , 
has a solution, not identically zero, suchthat Li I u;i < oo. 
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4. Consider a Markov chain with states 0, I, ... and transition probabilities 

Poo = ro, Po1 =Po> 0, 

Pii = !P; > 0, j = i + I, 

r; ~ 0, j = i, 

q; > 0, j = i - I, 

0 otherwise. 

Let Po = I, Pm = (q 1 ••• qm)J(p 1 ••• Pm). Prove the following propositions. 

Chain is recurrent-= I Pm = oo, 

Chain is nonrecurrent-= I Pm < oo, 

I 
Chain is positive-= I-- < oo, 

Pm Pm 

I 
Chain is null-= I Pm = oo, I-- = oo. 

Pm Pm 

00 

5. Show that hk ~ _t;J.ik and sup Pli) 5. h.i 5. I Plil· 
n=l 

6. Show that for every Markov chain with countably many states, the Iimit of Pli) always 
exists in the C esaro sense: 

I • r.. 
I. " (k) - Ji) Im- L- Pii --. 

• nk=l Jl.i 

7. Consider a Markov chain ~0 , ~ 1, ... with ~k+ 1 = (~;;-> + IJH 1, where 111, 17 2 , • •• is a 
sequence of independent identically distributed random variables with P(r~t = j) = p .i• 
j = 0, 1, .... Write the transition matrix and show that if p0 > 0, p0 + p1 < I, the 
chain is recurrent if and only if Ik kpk 5. 1. 

§4. On the Existence of Limits and of Stationary 
Distributions 

1. Webegin with some necessary conditions for the existence of stationary 
distributions. 

Theorem 1. Let a Markov chain with countably many states E = {1, 2, ... } and 
transition matrix IP = IIPiill besuch that the Iimits 

I. (n) 1m Pii = ni, 
n 

exist .for all i and i and do not depend on i. 
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Then 

(a) Li ni ~ 1, Li nipii = n;; 

(b) either a/lni = 0 or Li ni = 1; 
(c) !f all ni = 0, there is no stationary distribution; if Li ni = 1, then 

n = (nl, 7r2' ..• ) is the unique stationary distribution. 

PROOF. By Fatou's Iemma, 

Moreover, 

'\' '\' I" (n) I" '\' (n) 1 L. ni = L. Im Pii ~ Im L. Pii = . 
j j n n j 

'\' '\' (1· (n)) 1· '\' (n) 1· (n+ I) L. nipii = L. Im Pki Pii ~ Im'-:-- Pki Pii = Im Pki = ni, 
' ' n n ' n 

that is, for each j, 

Suppose that 

for some j 0 . Then 

This contradiction shows that 

for allj. 

It follows from (1) that 

Therefore 

I 1riPijo < njo 
i 

L: nipii = ni 
i 

I niplj) = ni. 
i 

I. '\' (n) '\' I" (n) ('\' ) ni = Im L. nipii = L. ni Im Pii = L. ni ni, 
n i i n i 

that is, for all j, 

from which (b) follows. 

(1) 
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Now Jet Q = (q 1 , q2 , •• • ) be a stationary distribution. Since Li qipjj1 = qi 
and therefore Li qi n i = qi, that is, ni = qi for allj, this stationary distribution 
must coincide with n = (n 1, n2 , •. • ). Therefore if all ni = 0, there is no 
stationary distribution. u, however, Li nj = t, then n = (n 1, n2 , •• • ) is the 
unique stationary distribution. 

This completes the proof of the theorem. 

Let us state and prove a fundamental result on the existence of a unique 
stationary distribution. 

Theorem 2. For Markov chains with countably many states, there is a unique 
stationary distribution if and only if the set of states contains precisely one 
positive recurrent class (of essential communicating states). 

PROOF. Let N be the number of positive recurrent classes. 
Suppose N = 0. Then all states are either nonrecurrent or are recurrent 

null states, and by (3.10) and (3.20), lim" p!j1 = 0 for all i andj. Consequently, 
by Theorem 1, there is no stationary distribution. 

Let N = 1 and Iet C be the unique positive recurrent class. lf d(C) = 1 we 
have, by (3.8), 

1 
P!j1 ~ - > 0, i, jE C. 

Jlj 

lf j rf. C, then j is nonrecurrent, and p!j1 ~ 0 for all i as n ~ oo, by (3. 7). 

Put 

{
_!_>0, jEC, 

qj = Jlj 

0, jrf. c. 
Then, by Theorem 1, the set Q = (q 1, q2 , •• • ) is the unique stationary 
distribution. 

Now Iet d = d(C) > 1. Let C0 , ... , Cd- I be the cyclic subclasses. With 
respect to !Pd, each subdass Ck is a recurrent aperiodic class. Then if i and 
jECk we have 

d 
P\'!d) ~- > 0 

l) 

Jli 

by (3.19). Therefore on each set Ck, the set d/pi, jECk, forms (with respect 
to !Pd) the unique stationary distribution. Hence it follows, in particular, 
that LieCk (d/p) = 1, that is, Li e ck (1/pi) = 1/d. 

Let us put 

{~' jEC = C0 +···+Cd- I• 

qj = Jl) 

0, jrf.C, 
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and show that, for the original chain, the set OJ = (q 1, q2 , •• . ) is the unique 

stationary distribution. 
In fact, for i E C, 

P\~d) = "' p\nd- 1 )p .. 
ll L..." lj jl. 

jeC 

Then by Fatou's Iemma, 

d · (nd-1) 1 
- = lim p~?d) ;:::: L hm Pii Pii = L ~ Pii 
)1; n jeC n jeC Jlj 

and therefore 

But 

1 d- 1 ( 1) d- 1 1 
I-=I I- =2:-=L 
ieC Jli k=O ieCk Jli k=O d 

As in Theorem 1, it can now be shown that in fact 

This shows that the set OJ = (q 1, q2 , •• • ) is a stationary distribution, which is 

unique by Theorem 1. 
Now let there be N ;:::: 2 positive recurrent classes. Denote them by 

C 1, ... , CN, and let OJ; = (qL q~, .. . ) be the stationary distribution corres­
ponding to the dass C; and constructed according to the formula 

{ 
1 . 

. ~ > 0, jEC', 
qj = Jlj 

0, jf/:Ci. 

Then, for allnonnegative numbers a 1, ... , aNsuchthat a 1 + · · · + aN = 1, 
the set a 1 0 1 + · · · + aNOJN will also form a stationary distribution, since 

(alo:Jil + ... + aNOJN)IP' = alo:JiliP' + ... + aNOJNIP' = alo:Jil + ... + aNQN. 

Hence it follows that when N ;:::: 2 there is a continuum of stationary distri­

butions. Therefore there is a unique stationary distribution only in the case 

N=l. 
This completes the proof of the theorem. 

2. The following theorem answers the question of when there is a limit 
distribution for a Markov chain with a countable set of states E. 
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Theorem 3. A necessary and sufficient condition for the existence of a Iimit 
distribution is that there is, in the set E of states of the chain, exactly one 
aperiodic positive recurrent class C such that k = 1 for all jE C and i E E. 

PROOF. N ecessity. Let qi = lim PI'? and Iet I!) = (q ~> q2 , .•• ) be a distribution 
(q; 2:: 0, L; q; = 1). Then by Theorem 1 this Iimit distribution is the unique 
stationary distribution, and therefore by Theorem 2 there is one and only one 
recurrent positive class C. Let us show that this class has period d = 1. 
Suppose the contrary, that is, Iet d > 1. Let C 0 , C 1, ... , Cd_ 1 be the cyclic 
subclasses. If i E C0 and jE C 1, then by (19), p~'jd+ 0 --> dj Jl; and p~'jdl = 0 for 
all n. But d/Jli > 0, and therefore p~j> does not have a limit as n --> oo; this 
contradicts the hypothesis that Iimn p~jl exists. Now let jE C and i E E. Then, 
by (3.11), p~'jl--> /;)Jli· Consequently rci = /;)Jli· But rci is independent of i. 
Therefore hi = jj; = 1. 

Sufficiency. By (3.11), (3.10) and (3.7), 

p~'? --> Jlj I
.f;i, jE C, i E E, 

0, jiC, iEE. 

Therefore if[;i = l for all jE C and i E E, then qi = Iimn pj'jl is independent of i. 
Class Cis positive and therefore qi > 0 for jE C. Then, by Theorem 1, we have 
Li qi = 1 and the set I!)= (q 1, q2 , .• • ) is a limit distribution. 

3. Let us summarize the results obtained above on the existence of a Iimit 
distribution, the uniqueness of a stationary distribution and ergodicity, for 
the case of finite chains. 

Theorem 4. We have the following implications for finite M arkov chains: 

( ergodicit y) 
{1} (chain indecomp~s.ab/e,) 
<o> recurrent, posltwe, 

with d = 1 

( 1. . d. .b . ) { (there exists exactly one) zmzt zstn utwn z) .. 
. <o> recurrent posztwe class 

exzsts . h d 1 wzt = 

(uniq~e ~tati?nary) ~ (there exists e~~ctly one) 
dzstnbutwn recurrent posztwe class 

PROOF. The "vertical" implications are evident. { 1} is established in Theorem 
2, §3; {2} in Theorem 3; {3} in Theorem 2. 
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4. PROBLEMS 

I. Show that, in Examplc I of ~5, neither stationary nor a Iimit distribution occurs. 

2. Discuss the question of stationarity and Iimit distribution for the Markov chain with 

transition matrix 

(
1 0 1 0) 
0 0 0 I 

[p> I I I . 
::r ~ 4 0 

0 ! ! 0 

3. Let IP' = IIPiJII be a finite doubly stochastic matrix, that is, Ir~ 1 Pu = 1,} = I, ... , m. 

Show that the stationary distribution ofthe corresponding Markov chain is the vector 

0 = (1/m, ... , 1/m). 

§5. Examples 

1. We present a number of examples to illustrate the concepts introduced 
above, and the results on the classification and Iimit behavior of transition 
probabilities. 

EXAMPLE 1. A simple random walk is a Markov chain such that a particle 
remains in each state with a certain probability, and goes to the next state with 
a certain probability. 

The simple random walk corresponding to the graph 

~ 
q q q 

describes the motion of a particle among the states E = {0, ± I, ... } with 
transitions one unit to the right with probability p and to the left with 
probability q. It is clear that the transition probabilities are 

{
p, j = i + 1, 

Pii = q, j = i- 1, p + q = 1, 
0 otherwise. 

If p = 0, the particle moves deterministically to the left; if p = I, to the 

right. These cases are of little interest since all states are inessential. We 
therefore assume that 0 < p < 1. 

With this assumption, the states ofthe chain form a single class (of essential 
communicating states). A particle can return to each state after 2, 4, 6, ... steps. 

Hence the chain has period d = 2. 
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Since, for each i E E, 

(2n)! 
P\2nl = C" (pq)" = ~ (pq)" 

" 2n (n!)2 ' 

then by Stirling's formula (which says n! ~ ~ n"e-") we have 

(211) ~ C4pq)" 
Pii r:::: · v nn 

Therefore L" p~f"l = oo if p = q, and L" p~f"l < oo if p -=1 q. In other words, 
the chain is recurrent if p = q, but if p -=1 q it is nonrecurrent. It was shown 

in §10, Chapter L that flf"l ""' 1/(2vfnn312 ), n --> oo, if p = q = t. Therefore 
fli = ,L" (2n).f::Z"l = oo, that is, all recurrent states arenull states. Hence by 
Theorem I of §3, pl'Jl --> 0 as n --> oo for all i and j. 

There are no stationary, Iimit, or ergodie distributions. 

EXAMPLE 2. Consider a simple random walk with E = {0, I, 2, ... }, where 0 is 
an absorbing barrier: 

State 0 forms a unique positive recurrent class with d = I. All other states 
are nonrecurrent. Therefore, by Theorem 2 of §4, there is a unique stationary 
distribution 

n = (no, n!, nz, 0 0 .) 

with n0 = I and ni = 0, i ;:::: I. 

Let us now consider the question of Iimit distributions. Clearly pf(;6 = I, 
pl'jl --> 0, j :?: I, i :?: 0. Let us now show that for i :?: I the numbers 
a(i) = !im" p~öl are given by the formulas 

a(i) = {(~r 
I, 

p > q, 

(I) 

p ~ q. 

We begin by observing that since state 0 is absorbing we have 
Plöl = Lk9 j;~l and consequently a(i) = };0 , that is, the probability a(i) is the 
probability that a particle starting from state i sooner or later reaches the null 



§5. Examples 589 

state. By the method of §12, Chapter I (see also §2 of Chapter VII) we can 
obtain the recursion relation 

cx(i) = pcx(i + l) + qcx(i - 1), 

with cx(O) = l. The general solutionoftbis equation has the form 

cx(i) = a + b(qjpy, 

and the condition cx(O) = l imposes the condition a + b = 1. 

(2) 

(3) 

If we suppose that q > p, then since cx(i) is bounded we see at once that 
b = 0, and therefore cx(i) = 1. This is quite natural, since when q > p the 
particle tends to move toward the null state. 

Jf, on the other hand, p > q the opposite is true: the particle tends to move 
to the right, and so it is natural to expect that 

cx(i) -+ 0, 

and consequently a = 0 and 

j-+ 00, (4) 

(5) 

To establish this equation, weshall not start from (4), but proceed differently. 
In addition to the absorbing barrier at 0 we introduce an absorbing barrier 

at the integral point N. Let us denote by cxN(i) the probability that a particle 
that starts at i reaches the zero state before reaching N. Then cxN(i) satisfies (2) 
with the boundary conditions 

and, as we have already shown in §9, Chapter I, 

(q)i (q)N 
( ") p p 

(XN I = (q)N ' 
l- -

p 

0 ::5; i ::5; N. 

Hence 

li~ cxN<o = (~Y 
and consequently to prove (5) we have only to show that 

cx(i) = lim cxN(i). 
N 

This is intuitively clear. A formal proof can be given as follows. 
Let us suppose that the particle starts from a given state i. Then 

cx(i) = P;(A), 

(6) 

(7) 

(8) 



590 VIII. Sequences of Random Variables that Form Markov Chains 

where A is the event in which there is an N such that a particle starting from i 
reaches the zero state before reaching state N. If 

AN = {particle reaches 0 before N}, 

then A = UN'=i+ 1 AN. lt is clear that AN<;; AN+ 1 and 

P;( lJ AN) = !im P;(AN)· 
N=i+ I N~oo 

But aN(i) = P;(AN), so that (7) follows directly from (8) and (9). 

(9) 

Thus if p > q the Iimit !im PW depends on i, and consequently there is no 
Iimit distribution in this case. If, however, p :::;; q, then in all cases !im Pl~ = 1 
and !im Pli) = 0, j 2 1. Therefore in this case the Iimit distribution has the 
form n = (1, 0, 0, ... ). 

ExAMPLE 3. Consider a simple random walk with absorbing barriers at 0 
and N: 

p p p p 

~Q~-----~so~ 
q q q q 

Here there are two positive recurrent classes {0} and {N}. All other states 
{1, ... , N - 1} are nonrecurrent. lt follows from Theorem 1, §3, that there 
are infiniteJy many stationary distributionS ll = (7ro, Jrb ... , JrN) With 
n0 = a, nN = b, n: 1 = · · · = n:N-I = 0, where a 2 0, b 2 0, a + b = 1. 
From Theorem 4, §4 it also follows that there is no Iimit distribution. This is 
also a consequence ofthe equations (Subsection 2, §9, Chapter I) 

(~Y- (~r 
p i= q, 

!im p(n)- 1- (~r . (10) iO-
n~ oo 

i 
1--

N' 
p = q, 

!im pl~ = 1 - !im Pl~) and lim Pli) = 0, 1 :::;; j :::;; N - 1. 

EXAMPLE 4. Consider a simple random walk with E = {0, 1, ... } and a 
reflecting barrier at 0: 

I p p 

~~~~ O<p<l 
0~~~...__ 

q q q 
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It is easy to see that the chain is periodic with period d = 20 Suppose that 
p > q (the moving particle tends to move to the right)o Let i > 1; to determine 
the probability fil we may use formula (1), from which it follows that 

( )
i-1 

fil = ~ < 1, i > 1. 

All states ofthis chain communicate with each othero Therefore ifstate i is 
recurrent, state 1 will also be recurrent. But (see the proof of Lemma 3 in §3) 
in that case fil must be 1. Consequently when p > q all the states of the chain 
are nonrecurrent. Therefore ptjl-+ 0, n -+ oo for i and j E E, and there is 
neither a Iimit distribution nor a stationary distributiono 

Now Iet p :s; qo Then, by (1), /;1 = 1 for i > 1 and ! 11 = q + pj21 = 1. 
Hence the chain is recurrent. 

Consider the system of equations determining the stationary distribution 
n = (no, "1• 0 0 0 ): 

that is, 

whence 

no = n1q, 

1!1 = "o + n2q, 

"2 = "1P + n3q, 

"1 = n1q + n2q, 

1!2 = n2q + n3q, 

ni = (~)"i-1• j = 2, 3,0 0 00 

If p = q we have n 1 = n2 = 0 0 0, and consequently 

"o = nl = n2 = 0 0 0 = Oo 

In other words, if p = q, there is no stationary distribution, and therefore no 
Iimit distributiono From this and Theorem 3, §4, it follows, in particular, that 
in this case all states of the chain are null stateso 

lt remains to consider the case p < qo From the condition L.i=o ni = 1 we 
find that 

that is 

q-p 
1!1 =--

2q 
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and 

1tj = q ~ p. (~y- I; j :?. 2. 

Therefore the distribution ll is the unique stationary distribution. Hence 
when p < q the chain is recurrent and positive (Theorem 2, §4). The distri­
bution ll is also a Iimit distribution and is ergodic. 

ExAMPLE 5. Again consider a simple random walk with reflecting barriers at 
0 and N: 

I p~ e_..P 
~----~ 

q q q q - I 

O<p<l 

All the states of the chain are periodic with period d = 2, recurrent, and 
positive. According to Theorem 4 of §4, the chain is ergodic. Solving the 
system ni = ~:f=o n;p;i subject to ~J=o n; = l, we obtain the ergodie 
distribution 

(~y-1 
1t; = ----"N,......,..l-(-;-p--.)'j----,-1 ' 

t + I -
j= 1 q 

2 =::;;j::::;; N- l, 

and 

2. ExAMPLE 6. lt follows from Example l that the simple random walk 
considered there on the integral points of the line is recurrent if p = q, but 
nonrecurrent if p -# q. Now Iet us consider simple random walks in the plane 
and in space, from the point of view of recurrence or nonrecurrence. 

For the plane, we suppose that a particle in any state (i, j) moves up, down, 
to the right or to the left with probability! (Figure 41). 

-I 0 ! 2 

Figure 41. A walk in the plane. 
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For definiteness, consider the state (0, O)o Then the probability 
Pk = Plt)o O)o(o, o) of going from (0, 0) to (0, 0) in k steps is given by 

p2n+l = 0, n = 0, 1, 2, .. o, 

" (2n)! 1 2n 
P2n = L.. TfT! (4) , 

{(i,j):i+j=n,05i5n) l.lo)o)• 
n = 1, 2, 0 ••• 

Multiplying numerators and denominators by (n !)2 , we obtain 

n 

p = (l)2n cn " c; cn-; = (l)2n(cn )2 
2n 4 2n L.. n n 4 2n ' 

i=O 

smce 
n "c cn-i = cn ~ n n 2n· 

i=O 

Applying Stirling's formula, we find that 

1 
P2n- -, 

nn 

and therefore L P2 n = ooo Consequently the state (0, 0) (likewise any other) 
is recurrento 

lt turns out, however, that in three or more dimensions the symmetric 
random walk is nonrecurrento Let us prove this for walks on the integral 
points (i,j, k) in spaceo 

Let us suppose that a particle moves from (i, j, k) by one unit along a 
coordinate direction, with probability i for eacho 
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Then if Pk is the probability of going from (0, 0, 0) to (0, 0, 0) in k steps, we 
have 

P2n+l = 0, n = 0, 1, ... , 

p _ " (2n)! 1 2n 

2n - L. ( · 1)2 ( · 1)2(( · ') 1)2 (6) 
{(i,j):O,;i+j,;n, O,;i,;n, O,;j,;n) I. ). n- I-} • 

- - cn I n . (1.)2n 1 [ I ]2 
- 2n 2n · 1 · 1 · . 1 3 

2 {(i,j):O,;i+j,;n,O,;i,;n,O,;j,;n} I.). (n- I- J). 

< c _1 cn _!_ " n! (1.)n 
- n22n 2n3n L. 'I 'I( . ')I 3 

{(i,j):O,;i+ j,;n, O,;i,;n, O,;j,;n) I.)· n - I -} . 

n = 1, 2, ... , (11) 

where 

cn = max . [ n! J 
{(i,j):O,;i+j,;n, O,;i,;n, O,;j,;n) i!j! (n- i- j)! 

(12) 

Let us show that when n is Iarge, the max in (12) is attained for i"' n/3, 
j "' n/3. Let i0 and j 0 be the values at which the max is attained. Then the 
following inequalities are evident: 

n! n! 
-----------------------<---------------
jo!(io- 1)!(n -j0 - io + 1)!- jo!io!(n -jo- io)!' 

n! n! 
-----------------------<-----------------------
jo!(io + 1)!(n -j0 - i0 - 1)!- (j0 -1)!i0 !(n -j0 - i0 + 1)! 

n! 
< -,---------,--------------------,-..,. 
- Uo + 1)! i0 ! (n - j0 - i0 - 1)!' 

whence 

n - i0 - 1 :s; 2j0 :s; n - i0 + 1, 

n - j0 - 1 :s; 2i0 :s; n - j 0 + 1, 

and therefore we have, for large n, i0 "' nj3,j0 "' n/3, and 

n! 

c "' n 

By Stirling's formula, 
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and since 

we have Ln P zn < oo. Consequently the state (0, 0, 0), and likewise any 
other state, is nonrecurrent. A similar result holds for dimensions greater 
than 3. 

Thus we have the following result (P6lya): 

Theorem. For R 1 and R2 , the symmetric random walk is recurrent; for R", 
n ~ 3, it is nonrecurrent. 

3. PROBLEMS 

I. Derive the recursion relation (1). 

2. Establish ( 4 ). 

3. Show that in Example 5 all states are aperiodic, recurrent, and positive. 

4. Classify the states of a Markov chain with transition matrix 

p ~(~ ~ ~ ~} 
where p + q = 1, p ~ 0, q ~ 0. 



Historical and Bibliographical N otes 

Introduction 

The history of probability theory up to the time of Laplace is described by 
Todhunter [Tl]. The period from Laplace to the end of the nineteenth 
century is covered by Gnedenko and Sheinin in [KlO]. Maistrov [Ml] 
discusses the history of probability theory from the beginning to the thirties 
of the present century. There is a brief survey in Gnedenko [G4]. For the 
origin of much of the terminology of the subject see Aleksandrova [A3]. 

For the basic concepts see Kolmogorov [K8], Gnedenko [G4], Borovkov 
[B4], Gnedenko and Khinchin [G6], A. M. and I.M. Yaglom [Yl], Prokhorov 
and Rozanov [P5], Feiler [Fl, F2], Neyman [N3], Loeve [L 7], and Doob 
[D3]. We also mention [M3] which contains a large number of problems 
on probability theory. 

In putting this text together, the author has consulted a wide range of 
sources. We mention particularly the books by Breiman [B5], Ash [A4, A5], 
and Ash and Gardner [A6], which (in the author's opinion) contain an ex­
cellent selection and presentation of material. 

For current work in the field see, for example, Annals of Probability 
(formerly Annals of Mathematical Statistics) and Theory of Probability 
and its Applications (translation of Teoriya Veroyatnostei i ee Primeneniya). 

M athematical Reviews and Zentralblatt für Mathematik contain abstracts 
of current papers on probability and mathematical statistics from all over the 
world. 

For tables for use in computations, see [Al]. 
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Chapter I 

§1. Concerning the construction ofprobabilistic models see Kolmogorov 
[K7] and Gnedenko [G4]. For further material on problems of distributing 
objects among boxes see, e.g., Kolchin, Sevastyanov and Chistyakov [K3]. 

§2. For other probabilistic models (in particular, the one-dimensional 
Ising model) that are used in statistical physics,. see l~jhara.[l2]. , 

§3. Bayes's formula and theorem form the basis for the "Bayesian 
approach" to mathematical statistics. See, for example, De Groot [D 1] and 
Zacks [Zl]. 

§4. A variety of problems about random variables and their probabilistic 
description can be found in Meshalkin [M3]. 

§5. A combinatorial proof of the law of large numbers (originating with 
James Bernoulli) is given in, for example, FeUer [Fl]. For the empirical 
meaning of the law oflarge numbers see Kolmogorov [K 7]. 

§6. F or sharper forms ofthe local and integrated theorems, and ofPoisson's 
theorem, see Borovkov [B4] and Prokhorov [P3]. 

§7. The examples of Bernoulli schemes illustrate some of the basic con­
cepts and methods of mathematical statistics. For more detailed discussions 
see, for example, Cramer [C5] and van der Waerden [Wl]. 

§8. Conditional probability and conditional expectation with respect to 
a partition will help the reader understand the concepts of conditional 
probability and conditional expectation with respect to a-algebras, which will 
be introduced later. 

§9. The ruin problern was considered in essentially the present form by 
Laplace. See Gnedenko and Sheinin [KlO]. Feller [Fl] contains extensive 
material from the same circle of ideas. 

§10. Our presentation essentially follows Feller [Fl]. The method for 
proving (10) and (11) is taken from Doherty [D2]. 

§11. Martingale theory is throughly covered in Doob [03]. A different 
proof of the ballot theorem is given, for instance, in Feller [Fl]. 

§12. There is extensive material on Markov chains in the books by FeUer 
[Fl], Dynkin [D4], Kemeny and Snell [K2], Sarymsakov [Sl], and 
Sirazhdinov [S8]. The theory of branching processes is discussed by 
Sevastyanov [S3]. 

Chapter II 

§1. Kolmogorov's axioms are presented in his book [K8]. 
§2. Further material on algebras and a-algebras can be found in, for 

example, Kolmogorov and Fomin [K8], Neveu [Nl], Breiman [B5], and 
Ash [A5]. 

§3. For a proof of Caratheodory's theorem see Loeve [17] or Halmos 
[Hl]. 
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§§4-5. More material on measurable functions is available in Halmos 
[H1]. 

§6. See also Kolmogorov and Fomin [K8], Halmos [H1], and Ash and 
Gardner [A6]. The Radon-Nikodym theorem is proved in these books. The 
inequality 

is sometimes called Chebyshev's inequality, and the inequality 

P(l~l ~ t:)::;; E l;l', 
t: 

r > 0, 

is called M arkov's inequality. 
For Pratt's Iemma see [P2]. 
§7. The definitions of conditional probability and conditional expectation 

with respect to a a-algebra were given by Kolmogorov [K8]. For additional 
material seeBreiman [B5] and Ash [A5]. The result quoted in the Corollary 
to Theorem 5 can be found in [M5]. 

§8. See also Borovkov [B4], Ash [A5], Cramer [C5], and Gnedenko 
[G4]. 

§9. Kolmogorov's theorem on the existence of a process with given finite­
dimensional distribution is in his book [K8]. For Ionescu-Tulcea's theorem 
seealso Neveu [N1] and Ash [A5]. The proofin the text follows [A5]. 

§§10-11. See also Kolmogorov and Fomin [K9], Ash [A5], Doob [D3], 
and Loeve [L 7]. 

§12. The theory of characteristic functions is presented in many books. 
See, for example, Gnedenko [G4], Gnedenko and Kolmogorov [G5], 
Ramachandran [R1], Lukacs [L8], and Lukacs and Laha [L9]. Our 
presentation of the connection between moments and semi-invariants 
follows Leonov and Shiryaev [L4]. 

§13. See also lbragimov and Rozanov [11], Breiman [B5], and Liptser 
and Shiryayev [L5]. 

Chapter 111 

§1. Detailed investigations of problems on weak convergence of prob­
ability measures are given in Gnedenko and Kolmogorov [G5] and Billings­
ley [B3]. 

§2. Prokhorov's theorem appears in bis paper [P4]. 
§3. The monograph [G5] by Gnedenko and Kolmogorov studies the 

Iimit theorems of probability theory by the method of characteristic functions. 
See also Billingsley [B3]. Problem 2 includes both Bernoulli's law of large 
numbers and Poisson's law oflarge numbers (which assumes that ~ 1, ~2 , ... 

are independent and take only two values (1 and 0), but in general are dif­
ferently distributed: P(~; = 1) = p;, P(~; = 0) = 1 - P;, i ~ 1). 
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§4. Here we give the standard proof of the centrallimit theorem for sums 
of independent random variables under the Lindeberg condition. Compare 
[G5] and [P6]. 

In the first edition, we gave the proof of Theorem 3 here. 
§5. Questions of the validity of the central Iimit theorem without the 

hypothesis of negligibility in the Iimit have already attracted the attention of 
P. Levy. A detailed account of the current state of the theory of Iimit theo­
rems in the nonclassical setting is contained in Zolotarev [Z4]. The statement 
and proof of Theorem 1 were given by Rotar [R5]. 

§6. The presentation uses material from Gnedenko and Kolmogorov 
[G5], Ash [A5], and Petrov [P1], [P6]. 

§7. The Levy-Prokhorov metric was introduced in a well-known work 
by Prokhorov [P4], to whom the results on metrizability of weak conver­
gence of measures given on metric spaces are also due. Concerning the metric 
IIP- PII;L, see Dudley [D6] and Pollard [P7]. 

§8. Theorem 1 is due to Skorokhod. Useful material on the method of a 
single probability space may be found in Borovkov [B4] andin Pollard [P7]. 

§§9-10. A number ofbooks contain a great deal ofmaterial touching on 
these questions: Jacod and Shiryaev [Jl], LeCam [LlO], Greenwood and 
Shiryaev [G7], and Liese and Vajda [Lll]. 

§11. Petrov [P6] contains a Iot of material on estimates of the rate of 
convergence in the centrallimit theorem. The proof given of the theorem of 
Berry and Esseen is contained in Gnedenko and Kolmogorov [G5]. 

§12. The prooffollows Presman [P8]. 

Chapter IV 

§1. Kolmogorov's zero-or-one law appears in his book [K8]. For the 
Hewitt-Savage zero-or-one law seealso Borovkov [B4], Breiman [B5], and 
Ash [A5]. 

§§2-4. Here the fundamental results were obtained by Kolmogorov and 
Khinchin (see [K8] and the references given there). See also Petrov [P1] and 
Stout [S9]. For probabilistic methods in number theory see Kubilius [K11]. 

§5. Regarding these questions, see Petrov [P6], Borovkov [B4], and 
Dacunha-Castelle and Dufto [05]. 

Chapter V 

§§1-3. Our exposition of the theory of (strict sense) stationary random 
processes is based on Breiman [B5], Sinai [S7], and Lamperti [12]. The 
simple proof of the maximal ergodie theoremwas given by Garsia [G 1]. 
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Chapter VI 

§1. The books by Rozanov [R4], and Gibman and Skorohod [G2, G3] 
are devoted to the theory of (wide sense) stationary random processes. 
Example 6 was frequently presented in Kolmogorov's lectures. 

§2. For orthogonal stochastic measures and stochastic integrals see also 
Ooob [03], Gibman and Skorohod [G3], Rozanov [R4], and Ash and 
Gardner [A6]. 

§3. The spectral representation (2) was obtained by Cramer and Loeve 
(see, for example, [17]). The same representation (in different language) is 
contained in Kolmogorov [K5]. Also see Ooob [03], Rozanov [R4], and 
Ash and Gardner [A6]. 

§4. There is a detailed exposition of problems of statistical estimation of 
the covariance function and spectral density in Hannan [H2, H3]. 

§§5-6. See also Rozanov [R4], Lamperti [L2], and Gibman and Skorohod 
[G2, G3]. 

§7. The presentation follows Lipster and Shiryaev [L5]. 

Chapter VII 

§1. Most of the fundamental results of the theory of martingales were 
obtained by Ooob [03]. Theorem 1 is taken from Meyer [M4]. Also see 
Meyer and Oellacherie [M5], Lipster and Shiryaev [15], and Gibman and 
Skorohod [G3]. 

§2. Theorem 1 is often called the theorem "'on transformation und er a 
system of optional stopping" (Doob [03]). For the identities (14) and (15) 
and Wald's fundamental identity see Wald [W2]. 

§3. Chow and Teicher [C3] contains an illuminating study of the results 
prcsented here, including proofs of the inequalities of Khinchin, Marcinkie­
wicz and Zygmund, Burkholder, and Davis. Theorem 2 was given by Lenglart 
[L3]. 

§4. See Ooob [03]. 
§5. Herewe follow Kabanov, Liptser and Shiryaev [K1], Engelbert and 

Shiryaev [E1], and Neveu [N2]. Theorem 4 and the example were given by 
Liptser. 

§6. This approach to problems of absolute continuity and singularity, and 
the results given here, can be found in Kabanov, Liptser and Shiryaev [K1]. 
Theorem 6 was obtained by Kabanov. 

§7. Theorems 1 and 2 were given by Novikov [N4]. Lemma 1 is a discrete 
analog of Girsanov's Iemma (see [K1]). 

§8. See also Liptser and Shiryaev [L12] and Jacod and Shiryaev [Jl], 
which discuss Iimit theorems for random processes of a rather generalnature 
(for example, martingales, semi-martingales). 
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Chapter VIII 

§1. For the basic definitions see Dynkin [D4], Ventzel [V2], Doob [D3], 
and Gibman and Skorohod [G3]. The existence of regular transition prob­
abilities such that the Kolmogorov-Chapman equation (9) is satisfied for all 
x ER is proved in [Nt] (corollary to Proposition V.2.1) andin [G3] (Volume 
I, Chapter II, §4). Kuznetsov (see Abstracts ofthe Twelfth European Meeting 
of Statisticians, Varna, 1979) has established the validity (which is far from 
trivial) of a similar result for Markov processes with continuous times and 
values in universal measurable spaces. 

§§2-5. Here the presentation follows Kolmogorov [K4], Borovkov 
[B4], and Ash [A4]. 
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distribution 155 
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distribution 156, 344 
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Cramer transform 401 
Cramer-Wold method 549 
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Doob 482 
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Lebesgue 525 
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Delta, Kronecker 268 
De Moivre, A. 2, 49 
De Moivre-Laplace Iimit theorem 62 
Density 

Gaussian 66, 156, 161, 238 
n-dimensional 161 
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Herglotz, G. 421 
Hermite polynomials 268 
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Parzen's estimator 445 
Pascal, B. 2 
Path 48, 85, 95 
Pauli exclusion principle 10 
Period of Markov chain 571 
Periodogram 443 
Permutation 7, 382 
Perpendicular 265 
Phase space 112, 565 
Physically realizable 434, 451 
1t 225 
Poincare recurrence principle 406 
Poisson, D. 3 

distribution 64, 155 
law oflarge numbers 599 
Iimit theorem 64, 327 

Poisson-Charlier polynomials 269 
P6lya's theorems 

characteristic functions 287 
random walk 595 

Polynomials 
Bernstein 54 
Hermite 268 
Poisson-Charlier 269 

Positive semi-definite 287 
Positive state 57 4 
Pratt's Iemma 211, 599 
Predictable sequence 446, 474 
Predictable quadratic variation characteristic 

483 
Preservation of martingale property 484 



Index 

Principle of appropriate sets 141 
Probabilistic model 5, 14, 131 

in the extended sense 133 
Probability 2, 134 

a posteriori, a priori 27 
classical 15 
conditional 23, 76, 214 
finitely additive 132 
measure 131, 151 
multiplication 26 
of first arrival or return 574 
of mean duration 90 
ofruin 83 
of success 70 
total 25, 77, 79 
transition 566 

Probability distribution 33, 170, 178 
discrete 15 5 
lognormal 240 
stationary 569 
table 155, 156 

Probability of ruin in insurance 558 
Probability measure 134, 154, 524 

absolutely continuous 524 
complete 154 

Probabilityspace 14, 138 
canonical 247 
complete 154 
universal 252 

Probability of error 361 
Problems on 

arrangements 8 
coincidence 15 
ruin 88 

Process 
branching 115 
Brownian motion 306 
construction of 245ff. 
Gaussian 306 
Gauss-Markov 307 
Markov 248 
stochastic 4, 177 
Wiener 306,307 
with independent increments 306 

Prohorov, Yu. V. vii, 64, 318 
Projection 265, 273 
Pseudoinverse 307 
Pseudotransform 462 
Purely nondeterministic 447 
Pythagorean property 274 

Quadratic characteristic 483 
Quadratic covariation 483 

Quadratic variation 483 
Queueing theory 114 

Rademacher system 271 
Radon-Nikodym 

derivative 196 
theorem 196, 599 

Random 
elements 176ff. 
function 177 
process 177, 306 

with orthogonal increments 428 
sequences 4, Chap. V, 404 

existence of 246, 249 
orthogonal 447 

Random variables 32ff., 166, 234ff. 
absolutely continuous 171 
almost invariant 407 
complex 177 
continuous 171 
degenerate 298 
discrete 171 
exponential 156, 244,245 
E-valued 177 
extended 173 
Gaussian 234, 243, 298 
invariant 407 
normally distributed 234 
simple 170 
uncorrelated 234 

Random vectors 35, 177 
Gaussian 299, 301 

Random walk 18, 83, 381 
in two and three dimensions 592 
simple 587 
symmetric 94, 381 
with curvilinear boundary 536 

Rao-Cramer inequality 72 
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Rapidity of convergence 373, 376, 400, 402 
Realization of a process 178 
Recurrent state 574, 593 
Reflecting barrier 592 
Reflection principle 94, 96 
Regression 238 
Regular 

conditional distribution 227 
conditional probability 226 
stationary sequence 447 

Relatively compact 317 
ReHability 74 
Restrietion of a measure 165 
Reversed martingale 105, 403, 484 
Reversed sequence 130 
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Riemann integral 204 
Riemann-Stieltjes integral 204 
Ruin 84, 87, 489 

Sampie points, space 5 
Sampling 

with replacement 6 
without replacement 7, 21, 23 

Savage, L. J. 389 
Scalar product 263 

Schwarz inequality 38. Also see 
Bunyakovskü,Cauchy 

Semicontinuous 313 
Semi-definite 287 
Semi-invariant 290 
Semi-norm 260 
Separable 267 
Sequences 

almost periodic 417 
moving average 418 
of independent random variables 379 
partially observed 460 
predictable 446,474 
random 176, 404 
regular 447 
singular 44 7 
stationary (strict sense) 404 
stationary (wide sense) 416 
stochastic 474,483 

Sequential compactness 318 
Series of random variables 384 
Sets of convergence 515 
Shifting operators 568 
u-additive 134 
Sigma algebra 133, 138 

asymptotic 380 
generated by ~ 174 
tail, terminal 380 

Signal, detection of 462 
Significance Ievel 74 
Simple 

moments 291 
random variable 32 
random walk 587 
semi-invariants 291 

Singular measure 158 
Singular sequence 447 
Singularity of distributions 524 
Skorohod, A. V. 150 
Slowly varying 537 
Spectral 

characteristic 434 
density 418 

rational 437, 456 
function 422 
measure 422 
representation of 

covariance function 415 
sequences 429 

window 444 
Spectrum 418 

Index 

Square-integrable martingale 482,493, 518, 
538 

Stahle 344 
Standarddeviation 41,234 
State space 112 
States, classification of 234, 569, 573 
Stationary 

distribution 120, 569, 580 
Markov chain 110 
sequence Chap. V, 404; Chap. VI, 415 

Statistical estimation 
regularity 440 

Statistically independent 28 
Statistics 4, 50 
Stieltjes, T. J. 183, 204 
Stirling's formula 20, 22 
Stochastic 

exponential 504 
integral 423, 426 
matrix 113, 587 
measure 403, 424 

extension of 427 
orthogonal 425 
with orthogonal values 425, 426 

process 4, 177 
sequence 474,564 

Stochastically independent 42 
Stopped process 477 
Stopping time 84, 105, 476 
Strong law of !arge numbers 388, 389, 501, 

515 
Strong Markov property 127 
Structure function 425 
Studentdistribution 156,244 
Submartingales 475 

convergence of 508 
generalized 476,515 
local 477 
nonnegative 509 
nonpositive 509 
sets of convergence of 515 
uniformly integrable 510 

Substitution, integration by 211 
Sumof 

dependent random variables 591 
events 11, 137 



Index 

exponential random variables 245 
Gaussian random variables 243 
independent random variables 328, Chap. 

IV, 379 
Poisson random variables 244 
sets 11, 136 

Summation by parts 390 
Supermartingale 475 
Symmetrie differenee /':;. 43, 136 
Symmetrie events 382 
Szegö-Kolmogorov formula 464 

Tables 
eontinuous densities 156 
diserete densities 155 
terms in set theory and probability 136, 

137 
Tail 49,323,335 

algebra 380 
Taxi stand 114 
t-distribution 156, 244 
Terminalalgebra 380 
Three-series theorem 387 
Tight 318 
Time 

ehange (in martingale) 484 
eontinuous 177 
diserete 1 77 
domain 177 

Toeplitz, 0. 390 
Totalprobability 25, 77, 79 
Trajeetory 178 
Transfer function 434 
Transform 478 
Transformation, measure-preserving 405 
Transition 

function 565 
matrix 112 
probabilities 112, 248, 566 

Trial 30 
Tri via I alge bra 12 
Tuleea. See Ioneseu Tulcea 
Two-dimensional Gaussian density 162 
Two-series theorem 386 
Typical 

path 50, 52 
realization 50 

Unbiased estimator 71,440 
Uneorrelated 42,234 

inerements 109 
Unfavorable game 86, 89, 480 
Uniformdistribution 155, 156 
Uniformly 

asymptotieally infinitesimal 337 
eontinuous 328 
integrable 188 

Union 11, 136, 137 
Uniqueness of 

distribution funetion 282 
solution of moment problern 295 

Universal probability space 252 
Unordered 

samples 6 
sets 166 

Upper funetion 396 

Varianee 41 
eonditional 83 
ofsum 42 

Variation quadratic 483 
Veetor 

Gaussian 238 
random 35,177,238,301 

Wald's identities 107, 488, 489 
Water Ievel 421 
Weak eonvergenee 309 
Weierstrass approximation theorem 

for polynomials 54 
for trigonometrie polynomials 282 

White noise 418, 435 
Wiener, N. 

measure 169 
proeess 306, 307 

Window, speetral 444 
Wintner, A. 397 
Wold's 

expansion 446, 450 
method 549 

Wolf, R. 225 

Zero-or-one laws 354ff., 379, 512 
Bore) 380 
for Gaussian sequenees 533 
Hewitt-Savage 382 
Kolmogorov 381 

Zhurbenko's estimator 445 
Zygmund, A. 498 
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