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Preface to the Second Edition

In the Preface to the first edition, originally published in 1980, we mentioned
that this book was based on the author’s lectures in the Department of
Mechanics and Mathematics of the Lomonosov University in Moscow,
which were issued, in part, in mimeographed form under the title “Probabil-
ity, Statistics, and Stochastic Processors, I, II” and published by that Univer-
sity. Our original intention in writing the first edition of this book was to
divide the contents into three parts: probability, mathematical statistics, and
theory of stochastic processes, which corresponds to an outline of a three-
semester course of lectures for university students of mathematics. However,
in the course of preparing the book, it turned out to be impossible to realize
this intention completely, since a full exposition would have required too
much space. In this connection, we stated in the Preface to the first edition
that only probability theory and the theory of random processes with discrete
time were really adequately presented.

Essentially all of the first edition is reproduced in this second edition.
Changes and corrections are, as a rule, editorial, taking into account com-
ments made by both Russian and foreign readers of the Russian original and
of the English and German translations [S11]. The author is grateful to all of
these readers for their attention, advice, and helpful criticisms.

In this second English edition, new material also has been added, as
follows: in Chapter III, §5, §§7—12; in Chapter IV, §5; in Chapter VII, §§8-10.
The most important addition is the third chapter. There the reader will
find expositions of a number of problems connected with a deeper study of
themes such as the distance between probability measures, metrization of
weak convergence, and contiguity of probability measures. In the same chap-
ter, we have added proofs of a number of important results on the rapidity of
convergence in the central limit theorem and in Poisson’s theorem on the
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approximation of the binomial by the Poisson distribution. These were
merely stated in the first edition.

We also call attention to the new material on the probability of large
deviations (Chapter 1V, §5), on the central limit theorem for sums of depen-
dent random variables (Chapter VII, §8), and on §§9 and 10 of Chapter VII.

During the last few years, the literature on probability published in Russia
by Nauka has been extended by Sevastyanov [S10], 1982; Rozanov [R6],
1985; Borovkov [B4], 1986; and Gnedenko [G4], 1988. It appears that these
publications, together with the present volume, being quite different and
complementing each other, cover an extensive amount of material that is
essentially broad enough to satisfy contemporary demands by students in
various branches of mathematics and physics for instruction in topics in
probability theory.

Gnedenko’s textbook [G4] contains many well-chosen examples, includ-
ing applications, together with pedagogical material and extensive surveys of
the history of probability theory. Borovkov’s textbook [B4] is perhaps the
most like the present book in the style of exposition. Chapters 9 (Elements of
Renewal Theory), 11 (Factorization of the Identity) and 17 (Functional Limit
Theorems), which distinguish [B4] from this book and from [G4] and [R6],
deserve special mention. Rozanov’s textbook contains a great deal of mate-
rial on a variety of mathematical models which the theory of probability and
mathematical statistics provides for describing random phenomena and their
evolution. The textbook by Sevastyanov is based on his two-semester course
at the Moscow State University. The material in its last four chapters covers
the minimum amount of probability and mathematical statistics required in
a one-year university program. In our text, perhaps to a greater extent than
in those mentioned above, a significant amount of space is given to set-
theoretic aspects and mathematical foundations of probability theory.

Exercises and problems are given in the books by Gnedenko and
Sevastyanov at the ends of chapters, and in the present textbook at the end
of each section. These, together with, for example, the problem sets by A. V.
Prokhorov and V. G. and N. G. Ushakov (Problems in Probability Theory,
Nauka, Moscow, 1986) and by Zubkov, Sevastyanov, and Chistyakov (Col-
lected Problems in Probability Theory, Nauka, Moscow, 1988) can be used by
readers for independent study, and by teachers as a basis for seminars for
students.

Special thanks to Harold Boas, who kindly translated the revisions from
Russian to English for this new edition.

Moscow A. Shiryaev



Preface to the First Edition

This textbook is based on a three-semester course of lectures given by the
author in recent years in the Mechanics—Mathematics Faculty of Moscow
State University and issued, in part, in mimeographed form under the title
Probability, Statistics, Stochastic Processes, I, II by the Moscow State
University Press.

We follow tradition by devoting the first part of the course (roughly one
semester) to the elementary theory of probability (Chapter I). This begins
with the construction of probabilistic models with finitely many outcomes
and introduces such fundamental probabilistic concepts as sample spaces,
events, probability, independence, random variables, expectation, corre-
lation, conditional probabilities, and so on.

Many probabilistic and statistical regularities are effectively illustrated
even by the simplest random walk generated by Bernoulli trials. In this
connection we study both classical results (law of large numbers, local and
integral De Moivre and Laplace theorems) and more modern results (for
example, the arc sine law).

The first chapter concludes with a discussion of dependent random vari-
ables generated by martingales and by Markov chains.

Chapters II-IV form an expanded version of the second part of the course
(second semester). Here we present (Chapter II) Kolmogorov’s generally
accepted axiomatization of probability theory and the mathematical methods
that constitute the tools of modern probability theory (-algebras, measures
and their representations, the Lebesgue integral, random variables and
random elements, characteristic functions, conditional expectation with
respect to a g-algebra, Gaussian systems, and so on). Note that two measure-
theoretical results—Carathéodory’s theorem on the extension of measures
and the Radon-Nikodym theorem—are quoted without proof.
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The third chapter is devoted to problems about weak convergence of
probability distributions and the method of characteristic functions for
proving limit theorems. We introduce the concepts of relative compactness
and tightness of families of probability distributions, and prove (for the
real line) Prohorov’s theorem on the equivalence of these concepts.

The same part of the course discusses properties ““with probability 1
for sequences and sums of independent random variables (Chapter 1V). We
give proofs of the “zero or one laws” of Kolmogorov and of Hewitt and
Savage, tests for the convergence of series, and conditions for the strong law
of large numbers. The law of the iterated logarithm is stated for arbitrary
sequences of independent identically distributed random variables with
finite second moments, and proved under the assumption that the variables
have Gaussian distributions.

Finally, the third part of the book (Chapters V-VIII) is devoted to random
processes with discrete parameters (random sequences). Chapters V and VI
are devoted to the theory of stationary random sequences, where ““station-
ary” is interpreted either in the strict or the wide sense. The theory of random
sequences that are stationary in the strict sense is based on the ideas of
ergodic theory: measure preserving transformations, ergodicity, mixing, etc.
We reproduce a simple proof (by A. Garsia) of the maximal ergodic theorem;
this also lets us give a simple proof of the Birkhoff-K hinchin ergodic theorem.

The discussion of sequences of random variables that are stationary in
the wide sense begins with a proof of the spectral representation of the
covariance fuction. Then we introduce orthogonal stochastic measures, and
integrals with respect to these, and establish the spectral representation of
the sequences themselves. We also discuss a number of statistical problems:
estimating the covariance function and the spectral density, extrapolation,
interpolation and filtering. The chapter includes material on the Kalman-—
Bucy filter and its generalizations.

The seventh chapter discusses the basic results of the theory of martingales
and related ideas. This material has only rarely been included in traditional
courses in probability theory. In the last chapter, which is devoted to Markov
chains, the greatest attention is given to problems on the asymptotic behavior
of Markov chains with countably many states.

Each section ends with problems of various kinds: some of them ask for
proofs of statements made but not proved in the text, some consist of
propositions that will be used later, some are intended to give additional
information about the circle of ideas that is under discussion, and finally,
some are simple exercises.

In designing the course and preparing this text, the author has used a
variety of sources on probability theory. The Historical and Bibliographical
Notes indicate both the historial sources of the results and supplementary
references for the material under consideration.

The numbering system and form of references is the following. Each
section has its own enumeration of theorems, lemmas and formulas (with
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no indication of chapter or section). For a reference to a result from a
different section of the same chapter, we use double numbering, with the
first number indicating the number of the section (thus, (2.10) means formula
(10) of §2). For references to a different chapter we use triple numbering
(thus, formula (I1.4.3) means formula (3) of §4 of Chapter II). Works listed
in the References at the end of the book have the form [L n], where L is a
letter and » is a numeral.

The author takes this opportunity to thank his teacher A. N. Kolmogorov,
and B. V. Gnedenko and Yu. V. Prokhorov, from whom he learned probability
theory and under whose direction he had the opportunity of using it. For
discussions and advice, the author also thanks his colleagues in the Depart-
ments of Probability Theory and Mathematical Statistics at the Moscow
State University, and his colleagues in the Section on probability theory of the
Steklov Mathematical Institute of the Academy of Sciences of the U.S.S.R.

Moscow A. N. SHIRYAEV
Steklov Mathematical Institute

Translator’s acknowledgement. 1 am grateful both to the author and to
my colleague, C. T. Ionescu Tulcea, for advice about terminology.
R.P.B.
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Introduction

The subject matter of probability theory is the mathematical analysis of
random events, ie., of those empirical phenomena which—under certain
circumstance—can be described by saying that:

They do not have deterministic regularity (observations of them do not
yield the same outcome);

whereas at the same time

They possess some statistical regularity (indicated by the statistical
stability of their frequency).

We illustrate with the classical example of a “fair” toss of an “unbiased”
coin. It is clearly impossible to predict with certainty the outcome of each
toss. The results of successive experiments are very irregular (now “head,”
now “tail”) and we seem to have no possibility of discovering any regularity
in such experiments. However, if we carry out a large number of “indepen-
dent” experiments with an “unbiased” coin we can observe a very definite
statistical regularity, namely that “head” appears with a frequency that is
“close” to 1.

Statistical stability of a frequency is very likely to suggest a hypothesis
about a possible quantitative estimate of the “randomness” of some event 4
connected with the results of the experiments. With this starting point,
probability theory postulates that corresponding to an event A there is a
definite number P(A), called the probability of the event, whose intrinsic
property is that as the number of “independent” trials (experiments) in-
creases the frequency of event A is approximated by P(A).

Applied to our example, this means that it is natural to assign the proba-
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bility § to the event A4 that consists of obtaining “head” in a toss of an
“unbiased” coin.

There is no difficulty in multiplying examples in which it is very easy to
obtain numerical values intuitively for the probabilities of one or another
event. However, these examples are all of a similar nature and involve (so far)
undefined concepts such as “fair” toss, “unbiased” coin, “independence,”
etc.

Having been invented to investigate the quantitative aspects of “random-
ness,” probability theory, like every exact science, became such a science
only at the point when the concept of a probabilistic model had been clearly
formulated and axiomatized. In this connection it is natural for us to discuss,
although only briefly, the fundamental steps in the development of proba-
bility theory.

Probability theory, as a science, originated in the middle of the seventeenth
century with Pascal (1623-1662), Fermat (1601-1655) and Huygens
(1629-1695). Although special calculations of probabilities in games of chance
had been made earlier, in the fifteenth and sixteenth centuries, by Italian
mathematicians (Cardano, Pacioli, Tartaglia, etc.), the first general methods
for solving such problems were apparently given in the famous correspon-
dence between Pascal and Fermat, begun in 1654, and in the first book on
probability theory, De Ratiociniis in Aleae Ludo (On Calculations in Games of
Chance), published by Huygens in 1657. It was at this time that the funda-
mental concept of “mathematical expectation” was developed and theorems
on the addition and multiplication of probabilities were established.

The real history of probability theory begins with the work of James
Bernoulli (1654-1705), Ars Conjectandi (The Art of Guessing) published in
1713, in which he proved (quite rigorously) the first limit theorem of prob-
ability theory, the law of large numbers; and of De Moivre (1667-1754),
Miscellanea Analytica Supplementum (a rough translation might be The
Analytic Method or Analytic Miscellany, 1730), in which the central limit
theorem was stated and proved for the first time (for symmetric Bernoulli
trials).

Bernoulli deserves the credit for introducing the “classical” definition of
the concept of the probability of an event as the ratio of the number of
possible outcomes of an experiment, that are favorable to the event, to the
number of possible outcomes. ‘

Bernoulli was probably the first to realize the importance of considering
infinite sequences of random trials and to make a clear distinction between
the probability of an event and the frequency of its realization.

De Moivre deserves the credit for defining such concepts as independence,
mathematical expectation, and conditional probability.

In 1812 there appeared Laplace’s (1749-1827) great treatise Théorie
Analytique des Probabilitiés (Analytic Theory of Probability) in which he
presented his own results in probability theory as well as those of his pre-
decessors. In particular, he generalized De Moivre’s theorem to the general
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(unsymmetric) case of Bernoulli trials, and at the same time presented De
Moivre’s results in a more complete form.

Laplace’s most important contribution was the application of proba-
bilistic methods to errors of observation. He formulated the idea of consider-
ing errors of observation as the cumulative results of adding a large number
of independent elementary errors. From this it followed that under rather
general conditions the distribution of errors of observation must be at least
approximately normal.

The work of Poisson (1781-1840) and Gauss (1777-1855) belongs to the
same epoch in the development of probability theory, when the center of the
stage was held by limit theorems. In contemporary probability theory we
think of Poisson in connection with the distribution and the process that
bear his name. Gauss is credited with originating the theory of errors and, in
particular, with creating the fundamental method of least squares.

The next important period in the development of probability theory is
connected with the names of P. L. Chebyshev (1821-1894), A. A. Markov
(1856-1922), and A. M. Lyapunov (1857-1918), who developed effective
methods for proving limit theorems for sums of independent but arbitrarily
distributed random variables.

The number of Chebyshev’s publications in probability theory is not
large —four in all—but it would be hard to overestimate their role in proba-
bility theory and in the development of the classical Russian school of that
subject.

“On the methodological side, the revolution brought about by Chebyshev
was not only his insistence for the first time on complete rigor in the proofs of
limit theorems, . .. but also, and principally, that Chebyshev always tried to
obtain precise estimates for the deviations from the limiting regularities that are
available for large but finite numbers of trials, in the form of inequalities that are
valid unconditionally for any number of trials.”

(A. N. KoLMoGORoV [30])

Before Chebyshev the main interest in probability theory had been in the
calculation of the probabilities of random events. He, however, was the
first to realize clearly and exploit the full strength of the concepts of random
variables and their mathematical expectations.

The leading exponent of Chebyshev’s ideas was his devoted student
Markov, to whom there belongs the indisputable credit of presenting his
teacher’s results with complete clarity. Among Markov’s own significant
contributions to probability theory were his pioneering investigations of
limit theorems for sums of independent random variables and the creation
of a new branch of probability theory, the theory of dependent random
variables that form what we now call a Markov chain.

“Markov’s classical course in the calculus of probability and his original
papers, which are models of precision and clarity, contributed to the greatest
extent to the transformation of probability theory into one of the most significant
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branches of mathematics and to a wide extension of the ideas and methods of
Chebyshev.”
(S. N. BERNSTEIN [3])

To prove the central limit theorem of probability theory (the theorem
on convergence to the normal distribution), Chebyshev and Markov used
what is known as the method of moments. With more general hypotheses
and a simpler method, the method of characteristic functions, the theorem
was obtained by Lyapunov. The subsequent development of the theory has
shown that the method of characteristic functions is a powerful analytic
tool for establishing the most diverse limit theorems.

The modern period in the development of probability theory begins with
its axiomatization. The first work in this direction was done by S. N. Berns-
tein (1880-1968), R. von Mises (1883-1953), and E. Borel (1871-1956).
A. N. Kolmogorov’s book Foundations of the Theory of Probability appeared
in 1933. Here he presented the axiomatic theory that has become generally
accepted and is not only applicable to all the classical branches of probability
theory, but also provides a firm foundation for the development of new
branches that have arisen from questions in the sciences and involve infinite—
dimensional distributions.

The treatment in the present book is based on Kolmogorov’s axiomatic
approach. However, to prevent formalities and logical subtleties from obscur-
ing the intuitive ideas, our exposition begins with the elementary theory of
probability, whose elementariness is merely that in the corresponding
probabilistic models we consider only experiments with finitely many out-
comes. Thereafter we present the foundations of probability theory in their
most general form.

The 1920s and *30s saw a rapid development of one of the new branches of
probability theory, the theory of stochastic processes, which studies families
of random variables that evolve with time. We have seen the creation of
theories of Markov processes, stationary processes, martingales, and limit
theorems for stochastic processes. Information theory is a recent addition.

The present book is principally concerned with stochastic processes with
discrete parameters: random sequences. However, the material presented
in the second chapter provides a solid foundation (particularly of a logical
nature) for the study of the general theory of stochastic processes.

It was also in the 1920s and *30s that mathematical statistics became a
separate mathematical discipline. In a certain sense mathematical statistics
deals with inverses of the problems of probability: If the basic aim of proba-
bility theory is to calculate the probabilities of complicated events under a
given probabilistic model, mathematical statistics sets itself the inverse
problem: to clarify the structure of probabilistic-statistical models by
means of observations of various complicated events.

Some of the problems and methods of mathematical statistics are also
discussed in this book. However, all that is presented in detail here is proba-
bility theory and the theory of stochastic processes with discrete parameters.



CHAPTER 1
Elementary Probability Theory

§1. Probabilistic Model of an Experiment with a
Finite Number of Outcomes

1. Let us consider an experiment of which all possible results are included
in a finite number of outcomes w,, ..., wy. We do not need to know the
nature of these outcomes, only that there are a finite number N of them.

We call w,, ..., wy elementary events, or sample points, and the finite set
Q = {wl,...,wN},
the space of elementary events or the sample space.

The choice of the space of elementary events is the first step in formulating
a probabilistic model for an experiment. Let us consider some examples of
sample spaces.

ExampLE 1. For a single toss of a coin the sample space Q consists of two
points:

Q={HT}
where H = “head” and T = “tail”. (We exclude possibilities like *“the coin
stands on edge,” “the coin disappears,” etc.)
ExaMPLE 2. For n tosses of a coin the sample space is
Q={ww=_(ay,...,a,),a,=HorT}

and the general number N(Q) of outcomes is 2".
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ExAMPLE 3. First toss a coin. If it falls “head” then toss a die (with six faces
numbered 1, 2, 3, 4, 5, 6); if it falls “tail”, toss the coin again. The sample
space for this experiment is

Q = {H1, H2, H3, H4, HS, H6, TH, TT}.

We now consider some more complicated examples involving the selec-
tion of n balls from an urn containing M distinguishable balls.

2. ExampLE 4 (Sampling with replacement). This is an experiment in which
after each step the selected ball is returned again. In this case each sample of
n balls can be presented in the form (a,, ..., a,), where q; is the label of the
ball selected at the ith step. It is clear that in sampling with replacement
each a; can have any of the M values 1, 2,..., M. The description of the
sample space depends in an essential way on whether we consider samples
like, for example, (4, 1, 2, 1) and (1, 4, 2, 1) as different or the same. It is
customary to distinguish two cases: ordered samples and unordered samples.
In the first case samples containing the same elements, but arranged
differently, are considered to be different. In the second case the order of
the elements is disregarded and the two samples are considered to be the
same. To emphasize which kind of sample we are considering, we use the
notation (ay,...,a,) for ordered samples and [a,, ..., a,] for unordered
samples.
Thus for ordered samples the sample space has the form

Q={wv:w=(0,...,a),a=1,..., M}
and the number of (different) outcomes is
N(Q) = M. (1)
If, however, we consider unordered samples, then
Q={w:w=I[a,...,a,],a,=1,..., M}.

Clearly the number N(Q) of (different) unordered samples is smaller than
the number of ordered samples. Let us show that in the present case

N@Q) = CnM+n—1’ (2)

where C! = k!/[1'(k — ])!] is the number of combinations of | elements,
taken k at a time.

We prove this by induction. Let N(M, n) be the number of outcomes of
interest. It is clear that when k < M we have

N(k, 1) = k = CL.
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Now suppose that N(k, n) = C¥,,_, for k < M; we show that this formula
continues to hold when # is replaced by n + 1. For the unordered samples
[ay, ..., a,, ] that we are considering, we may suppose that the elements
are arranged in nondecreasing order: a; < a, < --- < a,,. It is clear that the
number of unordered samples with a, = 1 is N(M, n), the number with
a; = 2is N(M — 1, n), etc. Consequently
NM,n+ 1)=NM,n)+ N(M — 1,n) +---+ N(1,n)
=Chin-1 + Cr—t4n-y +---C,
= ( 'Il\/l++1n - C'Ilw++1n—1) + (C'I:;—ll +n Cr)(l+—11+n—1
+o (G = C) = G
here we have used the easily verified property
G+ G = Gy

of the binomial coefficients.

ExaMpLE 5 (Sampling without replacement). Suppose that n < M and that
the selected balls are not returned. In this case we again consider two pos-
sibilities, namely ordered and unordered samples.

For ordered samples without replacement the sample space is

Q={ww=(@ay,....,a,),a#a,k#la=1,..., M},

and the number of elements of this set (called permutations) is M(M — 1) - -
(M — n + 1). We denote this by (M), or A3 and call it “the number of

permutations of M things, n at a time”).
For unordered samples (called combinations) the sample space

Q={wv:w=1[ay,....,a)a#a,k#La;,=1,..., M}
consists of
NQ) = Cy (€))
elements. In fact, from each unordered sample [a,, ..., a,] consisting of
distinct elements we can obtain n! ordered samples. Consequently
N(Q)-n! = (M),
and therefore

M
N@Q) = (n!)" =C.

The results on the numbers of samples of n from an urn with M balls are
presented in Table 1.
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Table 1
With
M" Chsn-1 replacement

Without

M), Cly replacement

Sample
Ordered Unordered T

ype

For the case M = 3 and n = 2, the corresponding sample spaces are
displayed in Table 2.

ExaMPLE 6 (Distribution of objects in cells). We consider the structure of
the sample space in the problem of placing n objects (balls, etc.) in M cells
(boxes, etc.). For example, such problems arise in statistical physics in study-
ing the distribution of n particles (which might be protons, electrons, . ..)
among M states (which might be energy levels).

Let the cells be numbered 1, 2, ..., M, and suppose first that the objects
are distinguishable (numbered 1, 2,..., n). Then a distribution of the n
objects among the M cells is completely described by an ordered set
(ay,...,a,), where a; is the index of the cell containing object i. However,
if the objects are indistinguishable their distribution among the M cells
is completely determined by the unordered set lay, ..., a,], where q; is the
index of the cell into which an object is put at the ith step.

Comparing this situation with Examples 4 and 5, we have the following
correspondences:
(ordered samples) «> (distinguishable objects),

(unordered samples) «<» (indistinguishable objects),

Table 2

1B,y (1,2 (1,3 [1,1] [2,2] [3,3] With
2,10 2,2 2,3 [1,2] [1,3] replacement
3D 32 33 [2,3]

1,2 (1,3) [1,2] [1,3] Without

2,1 2,3 [2, 3] replacement

G, 1) (3,2

Sample
Ordered Unordered
Type
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by which we mean that to an instance of an ordered (unordered) sample of
n balls from an urn containing M balls there corresponds (one and only one)
instance of distributing n distinguishable (indistinguishable) objects among
M cells.

In a similar sense we have the following correspondences:

a cell may receive any number)
b

(sampling with replacement) < <of objects

a cell may receive at most)

(sampling without replacement) «» ( one object

These correspondences generate others of the same kind:

an unordered sample in indistinguishable objects in the

sampling without problem of distribution among cells
«>

replacement when each cell may receive at

most one object

etc.; so that we can use Examples 4 and 5 to describe the sample space for
the problem of distributing distinguishable or indistinguishable objects
among cells either with exclusion (a cell may receive at most one object) or
without exclusion (a cell may receive any number of objects).

Table 3 displays the distributions of two objects among three cells. For
distinguishable objects, we denote them by W (white) and B (black). For
indistinguishable objects, the presence of an object in a cell is indicated
bya +.

Table 3

Ele GO 6 | A I (A |

I3 7 2 s 2 e i

(B Iw] [ Te[W] [ T"TWI5] B :
W[E[_] T3] E3E3 il S )
B W8] B E3ES g2
B W oW i

istinguishable ndistinguishable Dislr'ibu-
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Table 4
N(Q) in the problem of placing n objects in M cells
Kl:l(:i;::fts Distinguishable | Indistinguishable

Distribution objects objects

Without exclusion M" Man—1 With
(Maxwell- (Bose— replacement
Boltzmann Einstein
statistics) statistics)

With exclusion (M), Cy Without
(Fermi-Dirac replacement
statistics)

Ordered Unordered Sample
samples samples Type
N(Q) in the problem of choosing n balls from an urn
containing M balls

The duality that we have observed between the two problems gives us
an obvious way of finding the number of outcomes in the problem of placing
objects in cells. The results, which include the results in Table 1, are given in
Table 4.

In statistical physics one says that distinguishable (or indistinguishable,
respectively) particles that are not subject to the Pauli exclusion principlef
obey Maxwell-Boltzmann statistics (or, respectively, Bose-Einstein statis-
tics). If, however, the particles are indistinguishable and are subject to the
exclusion principle, they obey Fermi-Dirac statistics (see Table 4). For
example, electrons, protons and neutrons obey Fermi-Dirac statistics.
Photons and pions obey Bose-Einstein statistics. Distinguishable particles
that are subject to the exclusion principle do not occur in physics.

3. In addition to the concept of sample space we now need the fundamental
concept of event.

Experimenters are ordinarily interested, not in what particular outcome
occurs as the result of a trial, but in whether the outcome belongs to some
subset of the set of all possible outcomes. We shall describe as events all
subsets A = Qfor which, under the conditions of the experiment, it is possible
to say either “the outcome w € A” or “the outcome w ¢ A.”

1 At most one particle in each cell. (Translator)
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For example, let a coin be tossed three times. The sample space Q consists
of the eight points

Q = {HHH, HHT, ..., TTT}

and if we are able to observe (determine, measure, etc.) the results of all three
tosses, we say that the set

A = {HHH, HHT, HTH, THH}

is the event consisting of the appearance of at least two heads. If, however,
we can determine only the result of the first toss, this set A cannot be consid-
ered to be an event, since there is no way to give either a positive or negative
answer to the question of whether a specific outcome w belongs to A.

Starting from a given collection of sets that are events, we can form new
events by means of statements containing the logical connectives “or,”
“and,” and “not,” which correspond in the language of set theory to the
operations “union,” “intersection,” and “complement.”

If A and B are sets, their union, denoted by 4 U B, is the set of points that
belong either to A or to B:

AuB={weQ:we Aor weB}.

In the language of probability theory, A U B is the event consisting of the
realization either of A or of B.

The intersection of A and B, denoted by 4 n B, or by 4B, is the set of
points that belong to both A and B:

ANnB={weQ:weAand we B}.

The event A N B consists of the simultaneous realization of both 4 and B.
For example, if A = {HH, HT, TH} and B = {TT, TH, HT} then

AU B = {HH, HT, TH, TT} (=Q),
A B = {TH, HT}.

If A is a subset of Q, its complement, denoted by A, is the set of points of
Q that do not belong to A.

If B\ 4 denotes the difference of B and A (i.e. the set of points that belong
to B but not to 4) then 4 = Q\ 4. In the language of probability, 4 is
the event consisting of the nonrealization of 4. For example, if 4 =
{HH, HT, TH} then A = {TT}, the event in which two successive tails occur.

The sets A4 and A4 have no points in common and consequently 4 N A4 is
empty. We denote the empty set by &F. In probability theory, & is called an
impossible event. The set Q is naturally called the certain event.

When A and B are disjoint (AB = ), the union A v B is called the
sum of A and B and written 4 + B.

If we consider a collection 7, of sets A = Q we may use the set-theoretic
operators U, N and \ to form a new collection of sets from the elements of
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&, ; these sets are again events. If we adjoin the certain and impossible
events Q and ¢ we obtain a collection & of sets which is an algebra, i.e. a
collection of subsets of Q for which

(1) Qe o,
2) f Ae o, Be o, the sets A U B, A n B, A\ B also belong to /.

It follows from what we have said that it will be advisable to consider
collections of events that form algebras. In the future we shall consider only
such collections.

Here are some examples of algebras of events:

(a) {Q, &}, the collection consisting of Q and the empty set (we call this the
trivial algebra);

(b) {4, 4, Q, ¥}, the collection generated by A4;

(c) o = {A: A = Q}, the collection consisting of all the subsets of Q
(including the empty set ).

It is easy to check that all these algebras of events can be obtained from the
following principle.
We say that a collection

2=1{D,,...,D,)

of sets is a decomposition of Q, and call the D, the atoms of the decomposition,
if the D, are not empty, are pairwise disjoint, and their sum is Q:

D,+---+D,=Q

For example, if Q consists of three points, Q = {1, 2, 3}, there are five
different decompositions:

2, = (D) with D, = {1,2, 3};

2, = {D,, D,} with D, = {1,2}, D, = {3};
@, = {D,, D,} with D, = {1,3}, D, = {2};
9, = {D,, D,} with D, = {2,3}, D, = {1};

9s = {Dy, D,, D3} with D, = {1}, D, = {2}, D; = {3}.

(For the general number of decompositions of a finite set see Problem 2.)

If we consider all unions of the sets in 2, the resulting collection of sets,
together with the empty set, forms an algebra, called the algebra induced by
9, and denoted by a(2). Thus the elements of a(2) consist of the empty set
together with the sums of sets which are atoms of 2.

Thus if 2 is a decomposition, there is associated with it a specific algebra
B = (D).

The converse is also true. Let 4 be an algebra of subsets of a finite space
Q. Then there is a unique decomposition £ whose atoms are the elements of
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B, with # = «(2). In fact, let D e # and let D have the property that for
every Be % the set D n B either coincides with D or is empty. Then this
collection of sets D forms a decomposition & with the required property
o(P) = #. In Example (a), 2 is the trivial decomposition consisting of the
single set D, = Q;in (b), 2 = {4, A}. The most fine-grained decomposition
2, which consists of the singletons {w;}, w;e€Q, induces the algebra in
Example (c), i.e. the algebra of all subsets of Q.

Let 2, and 2, be two decompositions. We say that 9, is finer than 2,
and write 9, X 2,, if a(2,) € «(D,).

Let us show that if Q consists, as we assumed above, of a finite number of
points wy, ..., wy, then the number N(f) of sets in the collection .o is
equal to 2". In fact, every nonempty set 4 € .o/ can be represented as A =
{w,, ..., .}, where w; €Q, 1 < k < N. With this set we associate the se-
quence of zeros and ones

©,...,0,1,0,...,0,1,...),

where there are ones in the positions iy, ..., i, and zeros elsewhere. Then
for a given k the number of different sets A4 of the form {w,, ..., w,} is the
same as the number of ways in which k ones (k indistinguishable objects)
can be placed in N positions (N cells). According to Table 4 (see the lower
right-hand square) we see that this number is Cy. Hence (counting the empty
set) we find that

N#)=14+Cy+ -+ C¥=(1+ D" =2~

4. We have now taken the first two steps in defining a probabilistic model
of an experiment with a finite number of outcomes: we have selected a sample
space and a collection o/ of subsets, which form an algebra and are called
events. We now take the next step, to assign to each sample point (outcome)
w; €€y, i=1,..., N, a weight. This is denoted by p(w;) and called the
probability of the outcome w; ; we assume that it has the following properties:

(a) 0 < p(w;) < 1 (nonnegativity),
(b) p(w,) + -+ + p(wy) = 1 (normalization).

Starting from the given probabilities p(w;) of the outcomes w;, we define
the probability P(A4) of any event 4 € &/ by

PA) =} plw). @

{i: wje A}
Finally, we say that a triple
(Q7 d! P)’

where Q = {w,, ..., wy}, & is an algebra of subsets of Q and

P = {P(4); Ae &}
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defines (or assigns) a probabilistic model, or a probability space, of experiments
with a (finite) space Q of outcomes and algebra &/ of events.
The following properties of probability follow from (4):

P(@) =0, &)
P =1, (6)
P(4 U B) = P(4) + P(B) — P(4 N B). M

In particular, if A n B = J, then

P(4 + B) = P(A) + P(B) ®)
and

P(4) = 1 — P(A). )

5. In constructing a probabilistic model for a specific situation, the con-
struction of the sample space Q and the algebra &7 of events are ordinarily
not difficult. In elementary probability theory one usually takes the algebra
&/ to be the algebra of all subsets of Q. Any difficulty that may arise is in
assigning probabilities to the sample points. In principle, the solution to this
problem lies outside the domain of probability theory, and we shall not
consider it in detail. We consider that our fundamental problem is not the
question of how to assign probabilities, but how to calculate the proba-
bilities of complicated events (elements of &) from the probabilities of the
sample points.

It is clear from a mathematical point of view that for finite sample spaces
we can obtain all conceivable (finite) probability spaces by assigning non-
negative numbers p,, ..., py, satisfying the condition p; + --- + py = 1, to
the outcomes wy, ..., Wy.

The validity of the assignments of the numbers py, ..., py can, in specific
cases, be checked to a certain extent by using the law of large numbers
(which will be discussed later on). It states that in a long series of “inde-
pendent ” experiments, carried out under identical conditions, the frequencies
with which the elementary events appear are “close” to their probabilities.

In connection with the difficulty of assigning probabilities to outcomes,
we note that there are many actual situations in which for reasons of sym-
metry it seems reasonable to consider all conceivable outcomes as equally
probable. In such cases, if the sample space consists of points w, . ., wy,
with N < oo, we put

p(w,) = --- = p(wy) = 1/N,
and consequently
P(4) = N(4)/N (10
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for every event A € .o/, where N(A) is the number of sample points in A.
This is called the classical method of assigning probabilities. It is clear that
in this case the calculation of P(A4) reduces to calculating the number of
outcomes belonging to 4. This is usually done by combinatorial methods,
so that combinatorics, applied to finite sets, plays a significant role in the
calculus of probabilities.

ExampLE 7 (Coincidence problem). Let an urn contain M balls numbered
1, 2,..., M. We draw an ordered sample of size n with replacement. It is
clear that then

Q={w:w=(@a,...,a,),a=1.., M}

and N(Q) = M". Using the classical assignment of probabilities, we consider
the M" outcomes equally probable and ask for the probability of the event

A={w:w=/(ay...,a,),a #a;i#j}

i.e., the event in which there is no repetition. Clearly N(4) = M(M — 1)---
(M — n + 1), and therefore

Ppoz(%}z(y-$>o-5é)~(1—"&}). a1

This problem has the following striking interpretation. Suppose that
there are n students in a class. Let us suppose that each student’s birthday
is on one of 365 days and that all days are equally probable. The question
is, what is the probability P, that there are at least two students in the class
whose birthdays coincide? If we interpret selection of birthdays as selection
of balls from an urn containing 365 balls, then by (11)

(365),
365"

The following table lists the values of P, for some values of n:

P,=1-

n 4 16 22 23 40 64

P, 0.016 0.284 0.476 0.507 0.891 0.997

It is interesting to note that (unexpectedly!) the size of class in which there
is probability 1 of finding at least two students with the same birthday is not
very large: only 23.

ExAMPLE 8 (Prizes in a lottery). Consider a lottery that is run in the following
way. There are M tickets numbered 1, 2,..., M, of which »n, numbered
1,..., n, win prizes (M > 2n). You buy n tickets, and ask for the probability
(P, say) of winning at least one prize.
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Since the order in which the tickets are drawn plays no role in the presence
or absence of winners in your purchase, we may suppose that the sample space
has the form

Q={w:o=[a,....,ala #a,k#La=1..., M}
By Table 1, N(Q) = C};. Now let
Ao ={w:o=[ay,....,a)aq #a,k#La=n+1,..., M}

be the event that there is no winner in the set of tickets you bought. Again
by Table 1, N(4,) = Cj;_,. Therefore

Chy-n (M —n),
Cu (M),

(2w et

and consequently

n n n

If M = n? and n — oo, then P(4,) - ¢! and
P->1-e!x0632

p(Ao) =

The convergence is quite fast: for n = 10 the probability is already P = 0.670.

6. PROBLEMS

1. Establish the following properties of the operators N and U:
AUuB=BuUA, AB = BA (commutativity),
AuBuC)=A4uByuUC, A(BC) = (AB)C (associativity),
A(Bu C) = AB U AC, A U (BC) = (A U B)A v C) (distributivity),
AU A=A, AA = A (idempotency).

Show also that
AUB=A4AnB, AB=AUB.
2. Let Qcontain N elements. Show that the number d(N) of different decompositions of

Q is given by the formula
N

>~

d(N) = ¢!
k

x (12)

M8
=

0
(Hint: Show that

N-1
d(Ny= Y Ck_,d(k),  where d(0)=1,
k=0

and then verify that the series in (12) satisfies the same recurrence relation.)
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3. For any finite collection of sets A4, ..., 4,,
P(A; u---uU A4,) < P(4;) + --- + P(4,).

4. Let A and B be events. Show that AB U BA is the event in which exactly one of 4
and B occurs. Moreover,

P(AB U BA) = P(A) + P(B) — 2P(4B).
5. Let A,,..., A, be events, and define S,, S, , ..., S, as follows: Sp = 1,
S,=YPA,n---n4) 1<r<n,
Jr

where the sum is over the unordered subsets J, = [k,, ...,k Jof {1,...,n}.

Let B,, be the event in which each of the events 4, ..., 4, occurs exactly m times.
Show that

P(B,) = ) (=1y~"CyS,.
In particular, for m = 0
PBy)=1-8;,+8,—---%8,.

Show also that the probability that at least m of the events A,,..., A4, occur
simultaneously is

P(By) + - + P(B) = ¥ (~1y~"Crois,.

In particular, the probability that at least one of the events 4, ..., 4, occurs is

P(B)) + -+ P(B) =5, = S, + - £ 5.

§2. Some Classical Models and Distributions

1. Binomial distribution. Let a coin be tossed n times and record the results
as an ordered set (a,, .. ., a,), where a; = 1 for a head (“success”) and a; = 0
for a tail (“failure”). The sample space is

Q={ww=(@a,...,a,),a,=0,1}.
To each sample point w = (a,, . . ., a,) We assign the probability
p(w) = p~q" =,

where the nonnegative numbers p and g satisfy p + g = 1. In the first place,
we verify that this assignment of the weights p(w) is consistent. It is enough
to show that ) .o p(w) = 1.

We consider all outcomes w = (ay, ..., a,) for which ) ; a; = k, where
k=0, 1,...,n According to Table 4 (distribution of k indistinguishable
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ones in n places) the number of these outcomes is C%. Therefore

Y=Y Gt =@ +qr=1
we k=0

Thus the space Q together with the collection & of all its subsets and the
probabilities P(4) = ) ,. 4 p(w), A € o, defines a probabilistic model. It is
natural to call this the probabilistic model for n tosses of a coin.

In the case n = 1, when the sample space contains just the two points
w =1 (“success”) and w = 0 (“failure”), it is natural to call p(1) = p the
probability of success. We shall see later that this model for n tosses of a
coin can be thought of as the result of n “independent” experiments with
probability p of success at each trial.

Let us consider the events

A, ={w:o=(ay,...,a,),a, +---+ a, =k}, k=01,...,n
consisting of exactly k successes. It follows from what we said above that
P(4) = Cop'q" ™, 1)

and Y 5_o P(4,) = 1.

The set of probabilities (P(Ay), .. ., P(A4,)) is called the binomial distribu-
tion (the number of successes in a sample of size n). This distribution plays an
extremely important role in probability theory since it arises in the most
diverse probabilistic models. We write P, (k) =P(4,), k=0, 1,...,n
Figure 1 shows the binomial distribution in the case p = 1 (symmetric coin)
for n = 5, 10, 20.

We now present a different model (in essence, equivalent to the preceding
one) which describes the random walk of a “particle.”

Let the particle start at the origin, and after unit time let it take a unit

step upward or downward (Figure 2).
Consequently after n steps the particle can have moved at most n units

up or n units down. It is clear that each path w of the particle is completely
specified by a set (a,, . . ., a,), where a; = +1 if the particle moves up at the
ith step, and a; = —1 if it moves down. Let us assign to each path w the
weight p(w) = p*“q" "), where v(w) is the number of + 1’s in the sequence
w=1{(ay,...,a,), ie. ww) = [(a; + -+ + a,) + n]/2, and the nonnegative
numbers p and q satisfy p + q = 1.

Since Zwen p(w) = 1, the set of probabilities p(w) together with the space
Q of paths w = (ay, .. ., a,) and its subsets define an acceptable probabilistic
model of the motion of the particle for n steps.

Let us ask the following question: What is the probability of the event A,
that after n steps the particle is at a point with ordinate k? This condition
is satisfied by those paths w for which w(w) — (n — v(w)) = k, i.e.

n+k
2

v(w) =
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Figure 1. Graph of the binomial probabilities P, (k) for n = 5, 10, 20.

The number of such paths (see Table 4) is CI"**/2 and therefore

P(Ak) - C£"+k]/2p["+k]/2q["—k]/2.

Consequently the binomial distribution (P(A_,), ..., P(4p), ..., P(4,))
can be said to describe the probability distribution for the position of the

particle after n steps.

Note that in the symmetric case (p = q = 1) when the probabilities of

the individual paths are equal to 27",
P(4,) = Cn+kiz. . p=n

Let us investigate the asymptotic behavior of these probabilities for large n.
If the number of steps is 2n, it follows from the properties of the binomial

coeflicients that the largest of the probabilities P(A4,), |k| < 2n, is
P(45) = Cy-27 "

Figure 2
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Figure 3. Beginning of the binomial distribution.

From Stirling’s formula (see formula (6) in Section 4)

n!' ~./2nne "n".t
Consequently
(2n)! a1
=~ 2

(nh) Jnn

and therefore for large n

1
Jn

Figure 3 represents the beginning of the binomial distribution for 2n
steps of a random walk (in contrast to Figure 2, the time axis is now directed
upward).

p(Ao) ~

2. Multinomial distribution. Generalizing the preceding model, we now
suppose that the sample space is

Q={ww=(a,...,a,),a =by..., b},
where by, ..., b, are given numbers. Let v(w) be the number of elements of
w = (a,,...,a, that are equal to b;,i = 1, ..., r, and define the probability
of w by
p(w) = py@ - pyr,
where p; > O and p, + --- + p, = 1. Note that
Ypwy= Y Cuny, ..., mJpY -~ by,

we {n1_>_ ..... n-20,
np+ e +n.=n

where C,(n,,...,n,) is the number of (ordered) sequences (ay,...,q,) in
which b, occurs n; times, ..., b, occurs n, times. Since n, elements b, can

+ The notation f (n) ~ g(n) means that f (n)/g(n) - 1 as n - .
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be distributed into n positions in C,' ways; n, elements b, into n — n,
positions in Cj2 , ways, etc., we have

n—ny

n,
Cuny, ..oy n) = Cg'- CZZ—M e Cn—(n1+ e oy)

_ n! (n — ny)! )
n!(m—ny)! ny!(n—n; —n,)!
n!
T ongleeen
Therefore
n! ny n, n
2 plw) = > ———— it =P+ p) =1
we n20,...,n.20, LORARRN ("
{n,+--<+nr=n

and consequently we have defined an acceptable method of assigning
probabilities.
Let

Anl,“..n, = {(U: Vl((J)) = nla AR ] vr(w) = nr}'

Then
P(Anl,,..,n,) = Cn(nla ceey nr)p;ll e p:‘r (2)

The set of probabilities
{P(A,,, ..n)}

is called the multinomial (or polynomial) distribution.
We emphasize that both this distribution and its special case, the binomial
distribution, originate from problems about sampling with replacement.

3. The multidimensional hypergeometric distribution occurs in problems that
involve sampling without replacement.

Consider, for example, an urn containing M balls numbered 1, 2,..., M,
where M, balls have the color b,,..., M, balls have the color b,, and
M, + --- + M, = M. Suppose that we draw a sample of size n < M without
replacement. The sample space is

Q={w:o=(@,....a)aq#*a.k#lLa=1..., M}

and N(Q) = (M),. Let us suppose that the sample points are equiprobable,
and find the probability of the event B,  , in which n; balls have
color by, ..., n, balls have color b,, where n; + --- + n, = n. It is easy to
show that

N(Bnl,.“,n,) = Cn(nb FRKX} nr)(Ml)nl T (Mr)nra
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and therefore

PBuy ) = ) GGl G
" N(Q) Cu
The set of probabilities {P(B,, . ,)} is called the multidimensional
hypergeometric distribution. When r = 2 it is simply called the hypergeometric
distribution because its “generating function” is a hypergeometric function.
The structure of the multidimensional hypergeometric distribution is
rather complicated. For example, the probability

ny C"z
PBy) =42 mitmy=n M +M; =M, @)
M
contains nine factorials. However, it is easily established that if M — oo
and M, — oo in such a way that M;/M — p (and therefore M,/M — 1 — p)
then

P(Bnl,nz) - C::+n2pnl(1 - P)"Z- (5)

In other words, under the present hypotheses the hypergeometric dis-
tribution is approximated by the binomial; this is intuitively clear since
when M and M, are large (but finite), sampling without replacement ought
to give almost the same result as sampling with replacement.

ExaMpLE. Let us use (4) to find the probability of picking six “lucky” num-
bers in a lottery of the following kind (this is an abstract formulation of the
“sportloto,” which is well known in Russia):

There are 49 balls numbered from 1 to 49; six of them are lucky (colored
red, say, whereas the rest are white). We draw a sample of six balls, without
replacement. The question is, What is the probability that all six of these
balls are lucky? Taking M = 49, M, = 6, n;, = 6, n, = 0, we see that the
event of interest, namely

Bg o = {6 balls, all lucky}
has, by (4), probability
1
P(BG,O) = Eg— ~ 72 x 10_8.

49

4. The numbers n! increase extremely rapidly with n. For example,
10! = 3,628,800,
15! = 1,307,674,368,000,

and 100! has 158 digits. Hence from either the theoretical or the computa-
tional point of view, it is important to know Stirling’s formula,

n\" 0
1=/ = n
n! 2nn (e) exp(lzn) , 0<6, <1, 6)
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whose proof can be found in most textbooks on mathematical analysis
(see also [69]).

5. PROBLEMS
1. Prove formula (5).

2. Show that for the multinomial distribution {P(4,,,...,A4,)} the maximum prob-
ability is attained at a point (k,....,k,) that satisfies the inequalities np; — 1 <
ki<n+r—Dp,i=1,...,r

3. One-dimensional Ising model. Consider n particles located at the points 1, 2,...,n.
Suppose that each particle is of one of two types, and that there are n; particles of the
first type and n, of the second (n, + n, = n). We suppose that all n! arrangements of
the particles are equally probable.

Construct a corresponding probabilistic model and find the probability of the
event A, (my, myy, myy, my;) = {vi; = my,..., vy, = my,}, where v;;is the number
of particles of type i following particles of type j (i, j = 1, 2).

4. Prove the following inequalities by probabilistic reasoning:
Y ck= 2"
k=0
2 (C) = (s,
k=0
Y (=1 =Gy, m>n+ 1,
k=0

Y k(k — 1)Ck = m(m — 1)2""2, m> 2.

k=0

§3. Conditional Probability. Independence

1. The concept of probabilities of events lets us answer questions of the fol-
lowing kind: If there are M balls in an urn, M; white and M, black, what is
the probability P(A4) of the event A that a selected ball is white? With the
classical approach, P(4) = M /M.

The concept of conditional probability, which will be introduced below,
lets us answer questions of the following kind: What is the probability that
the second ball is white (event B) under the condition that the first ball was
also white (event A)? (We are thinking of sampling without replacement.)

It is natural to reason as follows: if the first ball is white, then at the
second step we have an urn containing M — 1 balls, of which M, — 1 are
white and M, black; hence it seems reasonable to suppose that the (condi-
tional) probability in question is (M, — 1)/(M — 1).
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We now give a definition of conditional probability that is consistent
with our intuitive ideas.
Let (2, &, P) be a (finite) probability space and A4 an event (i.e. 4 € ).

Definition 1. The conditional probability of event B assuming event A with
P(A) > 0 (denoted by P(B|A4)) is

P(AB)
PA) 4y

In the classical approach we have P(4) = N(A)/N(Q), P(AB) =
N(AB)/N(Q), and therefore

N(AB)

P(B|A) = NCD

2

From Definition 1 we immediately get the following properties of con-
ditional probability:
P(4]4) =1,
P(14) =0,
P(B|4) = 1, B2A4,
P(B, + B,|A4) = P(B,|A) + P(B,|A).
It follows from these properties that for a given set A the conditional
probability P(-| A) has the same properties on the space (Q N 4, o N A),
where &/ N A = {B n A: B € &/}, that the original probability P(-) has on

(Q, ).
Note that

P(B|A4) + P(B|4) = 1;
however in general

P(B|A) + P(B|4) # 1,

P(B|A) + P(B|A) # 1.

ExaMPLE 1. Consider a family with two children. We ask for the probability
that both children are boys, assuming

(a) that the older child is a boy;
(b) that at least one of the children is a boy.
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The sample space is
Q = {BB, BG, GB, GG},

where BG means that the older child is a boy and the younger is a girl, etc.
Let us suppose that all sample points are equally probable:

P(BB) = P(BG) = P(GB) = P(GG) = ;.

Let A be the event that the older child is a boy, and B, that the younger
child is a boy. Then 4 U B is the event that at least one child is a boy, and
AB is the event that both children are boys. In question (a) we want the
conditional probability P(AB|A), and in (b), the conditional probability
P(AB|A U B).

It is easy to see that

P(4B) i 1
P(AB|A)=F((-Z)—)=§=5,
2
P(AB i1
P(ABlAuB)zp(—le—%S=§=§.

2. The simple but important formula (3), below, is called the formula for
total probability. It provides the basic means for calculating the probabili-
ties of complicated events by using conditional probabilities.

Consider a decomposition 2 = {4,,..., A,} withP(4) > 0,i=1,...,n
(such a decomposition is often called a complete set of disjoint events). It
is clear that

B=BA, + --- + BA,

and therefore
P(B) = Z P(BA)).
i=1

But
P(BA;) = P(B|4)P(4)).

Hence we have the formula for total probability:
P(B) = ) P(B|4)P(4). €))
i=1

In particular, if 0 < P(4) < 1, then

P(B) = P(B|A)P(A4) + P(B|A)P(A). 4
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EXAMPLE 2. An urn contains M balls, m of which are “lucky.” We ask for the
probability that the second ball drawn is lucky (assuming that the result of
the first draw is unknown, that a sample of size 2 is drawn without replace-
ment, and that all outcomes are equally probable). Let A be the event that
the first ball is lucky, B the event that the second is lucky. Then

m(m — 1)
_PBA) MM-1) m-1
PBl4) = P(4) m  M-1
M
m(M — m)
P(BIT) = PBA _MM-1) _ m

PA) M-m M-—1
M

and
P(B) = P(B|A)P(A) + P(B|A)P(A4)

m-—1 m m M—-—m

TM-1M

m
M-1 M M’

It is interesting to observe that P(A) is precisely m/M. Hence, when the
nature of the first ball is unknown, it does not affect the probability that the
second ball is lucky.

By the definition of conditional probability (with P(4) > 0),

P(AB) = P(B|A)P(A). 5)

This formula, the multiplication formula for probabilities, can be generalized
(by induction) as follows:IfA,, ..., A, areevents withP(4, --- A4,_,) > 0,
then

P(4;---A4,) = P(4,)P(4;|A4,) - P(4,| Ay - A, _y) 6
(here A,---A, = A,nA,n---NA,).

3. Suppose that 4 and B are events with P(4) > 0 and P(B) > 0. Then
along with (5) we have the parallel formula

P(AB) = P(A|B)P(B). @)
From (5) and (7) we obtain Bayes’s formula

P(4)P(B|A
P(4(B) = %—)- ®)
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If the events A4, ..., A, form a decomposition of Q, (3) and (8) imply
Bayes’s theorem:

P(4)P(B| 4,
Y5-1P(4)P(B|A)’

In statistical applications, A,,..., 4, (4, + --- + 4, = Q) are often
called hypotheses, and P(A;) is called the a priorit probability of A;. The
conditional probability P(A;|B) is considered as the a posteriori probability
of A; after the occurrence of event B.

®

P(4;|B) =

ExAMPLE 3. Let an urn contain two coins: 4,, a fair coin with probability
1 of falling H; and A,, a biased coin with probability $ of falling H. A coin is
drawn at random and tossed. Suppose that it falls head. We ask for the
probability that the fair coin was selected.

Let us construct the corresponding probabilistic model. Here it is natural
to take the sample space to be the set Q@ = {4, H, A,T, A, H, 4, T}, which
describes all possible outcomes of a selection and a toss (4;H means that
coin A, was selected and fell heads, etc.) The probabilities p(w) of the various
outcomes have to be assigned so that, according to the statement of the
problem,

P(4,) = P(4,;) = 3
and

PH|4) =3  PH[4y) =3

With these assignments, the probabilities of the sample points are uniquely
determined:

PAH) =4 PAT =4 PUH=% PAT=%
Then by Bayes’s formula the probability in question is

~ P(4,)P(H|4,) =2
P(4,|H) = P(4,)P(H|A,) + P(A,)P(H|4,) 5’

and therefore

P(4;|H) = %
4. In certain sense, the concept of independence, which we are now going to
introduce, plays a central role in probability theory: it is precisely this concept

that distinguishes probability theory from the general theory of measure
spaces.

+ A priori: before the experiment; a posteriori: after the experiment.
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If A and B are two events, it is natural to say that B is independent of 4
if knowing that A has occurred has no effect on the probability of B. In other
words, “B is independent of 4™ if

P(B|A4) = P(B) (10)
(we are supposing that P(4) > 0).
Since
_ P(AB)
P(B|4) = PA)
it follows from (10) that
P(AB) = P(A)P(B). (11)

In exactly the same way, if P(B) > 0it is natural to say that “ A is independent
of B” if

P(A|B) = P(A).

Hence we again obtain (11), which is symmetric in 4 and B and still makes
sense when the probabilities of these events are zero.
After these preliminaries, we introduce the following definition.

Definition 2. Events 4 and B are called independent or statistically independent
(with respect to the probability P) if

P(4B) = P(A)P(B).

In probability theory it is often convenient to consider not only independ-
ence of events (or sets) but also independence of collections of events (or
sets).

Accordingly, we introduce the following definition.

Definition 3. Two algebras &/, and &/, of events (or sets) are called independ-
ent or statistically independent (with respect to the probability P) if all pairs
of sets A; and A4,, belonging respectively to &/, and «/,, are independent.

For example, let us consider the two algebras
‘dl = {Al’ le g’ Q} and MZ = {AZ, ‘229 g: Q}’

where A, and A, are subsets of Q. It is easy to verify that &/, and &/, are
independent if and only if 4, and A, are independent. In fact, the independ-
ence of &/, and &/, means the independence of the 16 events 4, and 4,,
A, and 4,,...,Q and Q. Consequently A; and A4, are independent. Con-
versely, if A, and A4, are independent, we have to show that the other 15
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pairs of events are independent. Let us verify, for example, the independence
of A, and 4,. We have

P(Apzz) = P(4,) — P(4,4,) = P(4,) — P(4,)P(4,)
= P(4,)- (1 = P(4,)) = P(4)P(4,).
The independence of the other pairs is verified similarly.
5. The concept of independence of two sets or two algebras of sets can be
extended to any finite number of sets or algebras of sets.
Thus we say that the sets A,,..., A, are collectively independent or

statistically independent (with respect to the probability P)iffork = 1,...,n
and1 <i; <i, << <nh
P(Ai1 te Aik) = P(Ail) Tt P(Aik)' (12)
The algebras &/, ..., &, of sets are called independent or statistically
independent (with respect to the probability P) if all sets 4, ..., 4, belonging
respectively to &, ..., &, are independent.
Note that pairwise independence of events does not imply their indepen-

dence. In fact if, for example, Q = {w,, w,, w3, w,} and all outcomes are
equiprobabile, it is easily verified that the events

A = {w,, ®,}, B = {w,, w3}, C = {wy, w4}
are pairwise independent, whereas
P(4BC) =  # (3)° = P(A)P(B)P(C).
Also note that if
P(ABC) = P(A)P(B)P(C)

for events A4, B and C, it by no means follows that these events are pairwise
independent. In fact, let Q consist of the 36 ordered pairs (i, j), where i, j =
1,2,..., 6and all the pairs are equiprobable. Thenif A = {(i,j):j = 1,2 0r 5},
B = {(i,j):j=4,50r6},C={(@j:i+j=9} wehave

P(4B) = } # } = P(4)P(B),
P(AC) =35 #15 = P(AP(C),
P(BC) =75 #15 = P(BIP(C),

(R

I

0o

but also
P(ABC) = 5 = P(A)P(B)P(C).
6. Let us consider in more detail, from the point of view of independence,

the classical model (Q, &, P) that was introduced in §2 and used as a basis
for the binomial distribution.
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In this model
Q={w:w=_(~@,...,a,),a,=0,1}, o ={A: A< Q}
and
p(w) = prq" X (13)

Consider an event A = Q. We say that this event depends on a trial at
time k if it is determined by the value g, alone. Examples of such events are

A, = {w:a, = 1}, A, = {w: a, = 0}.

Let us consider the sequence of algebras &/, o/,, ..., &,, where &/, =
{A, Ay, &, Q) and show that under (13) these algebras are independent.
It is clear that

PA) = 3 p@)= ¥ prugEe

{w:ax=1} {w:ax=1}
=p Z pa1+“~+ak‘1+ak+|+~--+a"
(@1,...,8k~ 1,8k + 1, ..., @n)
n—1
X q(n—1)—(a1+---+ak_1+ak+1+---+a,,) =p Z Cl_lplq(n—l)—l = p,

i=0
and a similar calculation shows that P(4,) = q and that, for k # 1,
P(4,4) = p?, P(Ax4) = py, P(A4,A4) = ¢*.

It is easy to deduce from this that 7, and «, are independent for k # .

It can be shown in the same way that &/,, &7,, ..., &, are independent.
This is the basis for saying that our model (€, &/, P) corresponds to “n
independent trials with two outcomes and probability p of success.” James
Bernoulli was the first to study this model systematically, and established
the law of large numbers (§5) for it. Accordingly, this model is also called
the Bernoulli scheme with two outcomes (success and failure) and probability
p of success.

A detailed study of the probability space for the Bernoulli scheme shows
that it has the structure of a direct product of probability spaces, defined
as follows.

Suppose that we are given a collection (Q,, %,, P,), ..., (Q,, &,, P,) of
finite probability spaces. Form the space Q = Q; x Q, x --- x Q, of points
o =(ay,...,a,), where a;€Q;. Let & = B, ® --- ® %, be the algebra of
the subsets of Q that consists of sums of sets of the form

A=B, x B, x --- x B,

with B; e 4,. Finally, for v = (a4, ..., a,) take p(w) = p,(a;) - - - p,(a,) and
define P(A) for theset A = B; x B, x --- x B, by

P(4) = Z pi(ay) - - - pulay).

{a1€By,...,ane By}
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It is easy to verify that P(Q) = 1 and therefore the triple (Q, &7, P) defines
a probability space. This space is called the direct product of the probability
spaces (Q,, %1, P1), ..., (Q,, 8, P,).

We note an easily verified property of the direct product of probability
spaces: with respect to P, the events

A, = {w:a,eB,},..., A, = {w:a,€B,},
where B; € 4;, are independent. In the same way, the algebras of subsets of Q,

oA, ={A,: A, = {w:a,eB,},B,e%,},

ejj" = {A": An = {w: aﬂeBﬂ}’ Bne‘@n}

are independent.
It is clear from our construction that the Bernoulli scheme

Q, 4, P) with Q= {w:w=_(~,,...,a,),a =0or1}
oA ={A:A<Q} and p(w)=prog" L«

can be thought of as the direct product of the probability spaces (Q;, %;, P;),
i=1,2,...,n where

Qi = {0’ 1}7 '%i = {{0}’ {1}’ Q’ Qi}5
P{1h=p PO} =gq

7. PROBLEMS

1. Give examples to show that in general the equations
P(B|A4) + P(B|4) = 1,
P(B|A4) + P(B|A) = 1

are false.

2. An urn contains M balls, of which M, are white. Consider a sample of size n. Let B;

be the event that the ball selected at the jth step is white, and A4, the event that a sample
of size n contains exactly k white balls. Show that

P(Bj|Ak) = k/n
both for sampling with replacement and for sampling without replacement.

3. Let A,,..., A, be independent events. Then
P(UA,») =1- []P().
i=1 i=1

4. Let A,,..., A, be independent events with P(4;) = p;,. Then the probability P,
that neither event occurs is

n

Py = [1(1 - p).

i=1
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5. Let 4 and B be independent events. In terms of P(A4) and P(B), find the probabilities
of the events that exactly k, at least k, and at most k of 4 and B occur (k = 0, 1, 2).

6. Let event A be independent of itself, i.e. let 4 and A be independent. Show that
P(A) is either O or 1.

7. Let event 4 have P(4) = 0 or 1. Show that 4 and an arbitrary event B are inde-
pendent.

8. Consider the electric circuit shown in Figure 4:

Figure 4

Each of the switches A, B, C, D, and E is independently open or closed with
probabilities p and g, respectively. Find the probability that a signal fed in at “input”
will be received at “output™. If the signal is received, what is the conditional prob-
ability that E is open?

§4. Random Variables and Their Properties

1. Let (Q, &/, P) be a probabilistic model of an experiment with a finite
number of outcomes, N(Q2) < oo, where . is the algebra of all subsets of
Q. We observe that in the examples above, where we calculated the probabil-
ities of various events A4 € &/, the specific nature of the sample space Q was
of no interest. We were interested only in numerical properties depending
on the sample points. For example, we were interested in the probability of
some number of successes in a series of n trials, in the probability distribution
for the number of objects in cells, etc.

The concept “random variable,” which we now introduce (later it will
be given a more general form) serves to define quantities that are subject to
“measurement” in random experiments.

Definition 1. Any numerical function ¢ = &(w) defined on a (finite) sample
space Qis called a (simple) random variable. (The reason for the term “simple”
random variable will become clear after the introduction of the general
concept of random variable in §4 of Chapter I1.)
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ExaMPLE 1. In the model of two tosses of a coin with sample space Q =
{HH, HT, TH, TT}, define a random variable { = {(w) by the table

w HH HT TH TT

Ew) 2 1 1 0

Here, from its very definition, &(w) is nothing but the number of heads in the
outcome w.

Another extremely simple example of a random variable is the indicator
(or characteristic function) of aset Ae o/

¢ =1 (w),
wheret

1, weA,

Luw) = {0, wgA.

When experimenters are concerned with random variables that describe
observations, their main interest is in the probabilities with which the
random variables take various values. From this point of view they are
interested, not in the distribution of the probability P over (Q, &), but in
its distribution over the range of a random variable. Since we are considering
the case when Q contains only a finite number of points, the range X of
the random variable ¢ is also finite. Let X = {x,, ..., X,,}, where the (differ-
ent) numbers Xx,, ..., X,, exhaust the values of &.

Let & be the collection of all subsets of X, and let Be &. We can also
interpret B as an event if the sample space is taken to be X, the set of values
of &.

On (X, ), consider the probability P,(-) induced by ¢ according to the
formula

P(B) = P{w: &w)e B}, Bed.

It is clear that the values of this probability are completely determined by
the probabilities

Pyx;) = P{w: {(w) = x;}, x;€X.

The set of numbers {P(x,), ..., P{x,)} is called the probability distri-
bution of the random variable ¢.

t The notation I(A) is also used. For frequently used properties of indicators see Problem 1.
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ExaMpLE 2. A random variable ¢ that takes the two values 1 and 0 with
probabilities p (“success™) and g (“failure”), is called a Bernoullif random
variable. Clearly

Pyx) = pq* %, x=0,1. (1)

A binomial (or binomially distributed) random variable & is a random
variable that takes the n + 1 values 0, 1, ..., n with probabilities

PdAx) = C;p*q" ™7, x=0,1,...,n 2)

Note that here and in many subsequent examples we do not specify the
sample spaces (Q, «, P), but are interested only in the values of the random
variables and their probability distributions.

The probabilistic structure of the random variables ¢ is completely
specified by the probability distributions {P(x;), i = 1, ..., m}. The concept
of distribution function, which we now introduce, yields an equivalent
description of the probabilistic structure of the random variables.

Definition 2. Let x € R'. The function
Fyx) = P{w: {(w) < x}

is called the distribution function of the random variable £.

Clearly
F) = T Pdx)
and
Pdx) = Fdx) — Fdx; —),

where F(x—) = lim,1, F(y)-
If we suppose that x; < x, < --- < X, and put F«(x,) = 0, then

P{(xl) = Fé(xl) - F:(X,-_l), i = 1, P ( (8

The following diagrams (Figure 5) exhibit P(x) and F(x) for a binomial

random variable.
It follows immediately from Definition 2 that the distribution F, = F(x)

has the following properties:

(1) F(—=00) =0, F(+0) =1;
(2) Fyx)is continuous on the right (F¢(x+) = F(x))and piecewise constant.

+ We use the terms ** Bernoulli, binomial, Poisson, Gaussian, . . . , random variables” for what
are more usually called random variables with Bernoulli, binomial, Poisson, Gaussian, . . ., dis-
tributions.
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Along with random variables it is often necessary to consider random
vectors & = (£,,...,¢&,) whose components are random variables. For
example, when we considered the multinomial distribution we were dealing
with a random vector v = (v, ..., v,), where v, = v{w) is the number of
elements equal to b;, i = 1, ..., r, in the sequence w = (qy, ..., a,).

The set of probabilities

P{(xl’ ] xr) = P{Cl) 61((0) = xl: s ér(w) = xr}s

where x; e X;, the range of ¢, is called the probability distribution of the
random vector £, and the function

Foxy, ..., %) = Plo:{i(w) < x,,..., &) < x,},

where x;e R, is called the distribution function of the random vector & =

(él, RS ér)
For example, for the random vector v = (v,, ..., v,) mentioned above,
Pv(nla ey nr) = Cn(nla ey nr)p'i1 e p:'r
(see (2.2)).

2. Let &4, ..., ¢, be a set of random variables with values in a (finite) set
X < R'. Let Z be the algebra of subsets of X.
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Definition 3. The random variables &,, ..., £, are said to be independent
(collectively independent) if

P& =xy,..., & =x} =P{ =x1} - P{E, = x,}
for all x4, ..., x, € X; or, equivalently, if
P{éIEBb"'a éreBr} = P{éleBl} "'P{éreBr}
forall By,...,B,e%.

We can get a very simple example of independent random variables
from the Bernoulli scheme. Let
Q={w:w="(ay,...,a,)a=01}, pw)=pig I
and ¢(w) = a;for w = (ay, ..., a,), i = 1,..., n. Then the random variables
&, &,, ..., & areindependent, as follows from the independence of the events
A, ={w:a, =1},..., 4, = {w:a, =1},

which was established in §3.

3. We shall frequently encounter the problem of finding the probability
distributions of random variables that are functions (&, ..., ) of random
variables &,,..., &,. For the present we consider only the determination
of the distribution of a sum { = & + 5 of random variables.

If £ and 5 take values in the respective sets X = {x,,...,x,} and Y =
{yy, ..., 3}, the random variable { =  + n takes values in the set Z =
{ziz=x+y,i=1...,k;j= 1,...,1}. Then it is clear that

P()=P{{=z2}=P{{+n=12z}= Y P{&=x;,n =y}
{(i, ) xi+y;=2z}
The case of independent random variables & and 7 is particularly import-
ant. In this case
P{¢ = x;,n =y} = P{{=x}P{n =y

and therefore

k
P (2) = Y PPy = ; Px)P,(z — x;) ©))

{, ) xityj=z}

for all z € Z, where in the last sum P,(z — x;) is taken to be zero if z — x; ¢ Y.
For example, if ¢ and n are independent Bernoulli random variables,
taking the values 1 and O with respective probabilities p and g, then Z =
{0, 1,2} and
P,(0) = P(0)P,(0) = ¢°,
P,(1) = PLO)P,(1) + PL1)P,(0) = 2pq,
P,(2) = P{1)P,(1) = p*.
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It is easy to show by induction that if &, &,,..., &, are independent
Bernoulli random variables with P{{; = 1} = p, P{&, = 0} = g, then the
random variable { = &, + --- + £, has the binomial distribution

P(k) = Cp*q"™%,  k=0,1,....n @)

4. We now turn to the important concept of the expectation, or mean value,
of a random variable.

Let (€, o/, P) be a (finite) probability space and & = &(w) a random
variable with values in the set X = {x,..., x,}. f we put 4; = {w: ¢ = x;},
i=1,...,k then £ can evidently be represented as

k
S(w) = .Zl x;1(4)), (%)
where the sets A, ..., 4, form a decomposition of Q (i.e.,, they are pairwise
disjoint and their sum is Q; see Subsection 3 of §1).

Let p; = P{¢& = x;}. It is intuitively plausible that if we observe the values
of the random variable ¢ in “n repetitions of identical experiments”, the
value x; ought to be encountered about p;n times, i = 1,..., k. Hence the
mean value calculated from the results of n experiments is roughly

1 k
Yy b mnxd = 3 b
=1

i

This discussion provides the motivation for the following definition.

Definition 4. The expectationt or mean value of the random variable & =
*_.x;1(A,) is the number
k

E¢ =) x;P(4). (6)
i=1
Since 4; = {w: &w) = x;} and P«(x;) = P(4,), we have
k

E¢ = Z xipg(xi)- @)

i=1

Recalling the definition of F, = F«(x) and writing
AF(x) = Fgx) — Ffx =),

we obtain P.(x;) = AF(x;) and consequently
k

E¢ = Y x;,AF(x). ®)

i=1

+ Also known as mathematical expectation, or expected value, or (especially in physics) expec-
tation value. (Translator)
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Before discussing the properties of the expectation, we remark that it is
often convenient to use another representation of the random variable ¢,
namely

l
&w)= ) x;I(B)),
j=1
where B, + --- + B, = Q, but some of the x; may be repeated. In this case
E¢ can be calculated from the formula ) ’_, x;P(B;), which differs formally
from (5) because in (5) the x; are all different. In fact,
Y xiPB)=x; Y P(B)=x,P(4)
Ui x5=xi} 4 x5 = x3)
and therefore
1 k

Y. X;P(B) = Y x;P(A).

i=1 i=1

5. We list the basic properties of the expectation:

(1) If£ =0thenEE = 0.

(2) E(aé + bn) = aE& + bEn, where a and b are constants.
(3) If ¢ = nthenE¢ > En.

(4) |[ES| < E[E].

(5) If ¢ and n are independent, then EEn = EL - En.

(6) (E|&n|)* < EE?-En? (Cauchy-Bunyakovskii inequality).t
(1) If & = I(A) then EE = P(A).

Properties (1) and (7) are evident. To prove (2), let

= inI(Ai)a n= ZY,’I(B,‘)'

Then
at + bn = ay, x,I(A;~ B)) + b y;1(4;n B))
ij iJj
i,J
and

E(a + bn) = Z(axi + by;)P(4; N By)
= Zax,-P(A,-) + ZbyjP(Bj)

= aY x;P(4) + b} y;P(B) = aE¢ + bEn.

t Also known as the Cauchy-Schwarz or Schwarz inequality. (Translator)
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Property (3) follows from (1) and (2). Property (4) is evident, since

|EE| = inP(Ai)' < 2 Ix|P(4) = E[¢].

To prove (5) we note that

Eln = E(Z in(A,.)) (Z yjI(Bj))
=E inyjI(Ai N Bj) = inyjP(Ai N Bj)

= Z XiYj P(Ai)P(Bj)

= (Z xiP(Ai)) . (Zj y,-P(B,)) =E¢-En,

where we have used the property that for independent random variables the
events
A= {0:8w) = x} and B = {win() = y}
are independent: P(4; N B;) = P(A4,)P(B)).
To prove property (6) we observe that
¢ =) xI(4), n* =Y yiIB)
i j

and
EE =Y x}P(4), En* =) y?P(B).
i Jj

Let E¢2 > 0,En? > 0. Put

~=_f~ s n
é Efz, n E’,IZ

Since 2|&j| < & + 7%, we have 2E|&j| < EE? + Efj* = 2. Therefore
E|&7| < 1and (E|&n|)* < EE*-En

However, if, say, E¢* = 0, this means that Y, x?P(4;) = 0 and conse-
quently the mean value of ¢ is 0, and P{w: &(w) = 0} = 1. Therefore if at
least one of EZ? or En? is zero, it is evident that E || = 0 and consequently
the Cauchy-Bunyakovskii inequality still holds.

Remark. Property (5) generalizes in an obvious way to any finite number of
random variables: if £, ..., ¢, are independent, then

EélérzEélEir

The proof can be given in the same way as for the case r = 2, or by induction.
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ExaMPLE 3. Let £ be a Bernoulli random variable, taking the values 1 and 0
with probabilities p and g. Then

EE=1-P{{=1} +0-P{¢{ =0} =p.

ExamMpLE 4. Let &,, ..., &, be n Bernoulli random variables with P{¢, = 1}
=p,P{{;=0}=q,p+q=1Thenif
Sn=€1+"'+£n
we find that
ES, = np.
This result can be obtained in a different way. It is easy to see that ES,

is not changed if we assume that the Bernoulli random variables &, ..., &,
are independent. With this assumption, we have according to (4)

P(S, = k) = Ckp*q %, k=01...,n

Therefore

= Y kP(S, = k) = ZkC"“" k

k=0

n n' &
R T L
(n— 1! P
S T Ry T
! -1
— np Z 1,(('5’1 )! l)'plq(n D=l = pp,

However, the first method is more direct.

6. Let & = Zi x;1(A;), where A4; = {w: &w) = x;}, and ¢ = p(é(w)) is a
function of ¢{(w). If B; = {w: ¢({(w)) = y;}, then

¢(&(w)) = ;yjl (B,
and consequently
Ep = gy,-P(B,-) = ‘J;y,-F’,,(yj)- ©®
But it is also clear that

P(6(@)) = 3. p(x)I(4)).
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Hence, as in (9), the expectation of the random variable ¢ = ¢(£) can be
calculated as

E() = Y. o(x)Pyx)).

1

7. The important notion of the variance of a random variable ¢ indicates
the amount of scatter of the values of ¢ around EE.

Definition 5. The variance (also called the dispersion) of the random variable
£ (denoted by V&) is
V¢ =E( - EO~

The number ¢ = + ./ V¢ is called the standard deviation.
Since

E(C — E&)? = E(&® — 2¢-E¢ + (EY)?) = EE® — (EQ)Y,
we have
V¢ =ES? - (EQ).
Clearly V¢ > 0. It follows from the definition that
V(a + b&) = b*V¢, where a and b are constants.

In particular, Va = 0, V(b¢) = b*VE.
Let £ and 5 be random variables. Then
V(E + 1) =E(¢ —E&) + (n — En)’
= V& + Vn + 2E(S — EO(n — En).
Write
cov(¢, n) = E(C — E&)(n — En).

This number is called the covariance of £ and 5. If V& > 0 and Vi > 0, then

cov(¢, i)
JVE-Vp

is called the correlation coefficient of £ and n. It is easy to show (see Problem
7 below) that if p(&, n) = %1, then ¢ and # are linearly dependent:

n=aé+b,

witha > 0if p(é,n) = landa < 0if p({, ) = —1.
We observe immediately that if £ and n are independent, so are £ — E&
and n — E#n. Consequently by Property (5) of expectations,

cov(¢, n) = E(€ — E&)-E(n — En) = 0.
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Using the notation that we introduced for covariance, we have
V(& +n) = V¢ + Vi + 2cov(S, n); (10)

if ¢ and 7 are independent, the variance of the sum £ + 7 is equal to the sum

of the variances,
V(€ +1n)=VE+ Vn (11)

It follows from (10) that (11) is still valid under weaker hypotheses than
the independence of ¢ and #. In fact, it is enough to suppose that ¢ and n are
uncorrelated, i.e. cov(¢, n) = 0.

Remark. If ¢ and # are uncorrelated, it does not follow in general that they
are independent. Here is a simple example. Let the random variable « take
the values 0, 7/2 and 7 with probability 4. Then ¢ = sin a and # = cos « are
uncorrelated ; however, they are not only stochastically dependent (i.e., not
independent with respect to the probability P):

Pl=1Ln=1=0#5=P{{=1P{n=1}

but even functionally dependent: & + n? = 1.
Properties (10) and (11) can be extended in the obvious way to any num-
ber of random variables:

V(Z 5,-) = Y V& +2 Y covés, &) (12)
i=1 i=1 i>j
In particular, if ¢,, ..., £, are pairwise independent (pairwise uncorrelated

is sufficient), then
V(Zé) = Y V& (13)
i=1 i=1

ExaMpLE 5. If £ is a Bernoulli random variable, taking the values 1 and 0
with probabilities p and g, then

VE=EC-E)’ = -p’=(10-p’p+pqa=pa
It follows that if &, , ..., &, are independent identically distributed Bernoulli

random variables, and S, = &, + --- + &,, then

VS, = npg. (14)

8. Consider two random variables ¢ and 7. Suppose that only ¢ can be ob-
served. If & and # are correlated, we may expect that knowing the value of ¢
allows us to make some inference about the values of the unobserved vari-
able #.

Any function f = f(&) of £ is called an estimator for n. We say that an esti-
mator f* = f*(¢) is best in the mean-square sense if

E(n — f*©)* = i;lf E(n — f(O).
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Let us show how to find a best estimator in the class of linear estimators
A&) = a + bé. We consider the function g(a, b) = E(y — (a + b¢&))2. Difler-
entiating g(a, b) with respect to a and b, we obtain

dg9@.b) _ _ 2E[n — (a + b&)],
da

dg(a, b

ia“b_.) = — 2E[(n — (a + b&))E],

whence, setting the derivatives equal to zero, we find that the best mean-
square linear estimator is A*(¢) = a* + b*¢&, where

a* =En — b*EE,  b* = ‘%@’7) (15)
In other words,
1@ = En + 252 -y, (16)

The number E(y — A*(¢))? is called the mean-square error of observation.
An easy calculation shows that it is equal to

_covi(é, )

ve = Vil — P& )] (17)

A* =E(n — A%(&)* = Vn

Consequently, the larger (in absolute value) the correlation coefficient
p(&, 1) between ¢ and 7, the smaller the mean-square error of observation
A*. In particular, if | p(€, n)| = 1 then A* = 0 (cf. Problem 7). On the other
hand, if ¢ and # are uncorrelated (p(&, ) = 0), then A*(¢) = En, ie. in the
absence of correlation between ¢ and # the best estimate of # in terms of £ is
simply En (cf. Problem 4).

9. PROBLEMS
1. Verify the following properties of indicators I, = I ,(w):
Iy =0, I =1, I.+17=1,
Iyg=1, 1,
Taog=14+Ig— I4p.

The indicator of (Ji-, 4; is 1 — [[i-; (1 — 1), the indicator of (Ji., 4; is
[T+ (1 = 1), and the indicator of Y 'y A;is Y7 I,..

Iing= (IA - 13)2,

where A A B is the symmetric difference of A and B, i.e. the set (4\B) U (B\A).
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2. Let&,,..., &, be independent random variables and

imin = min(éh R én)’ émax = max(él’ ety 6’1)

Show that
P{émin = x} = np{él = x},
i=1
p{émax < x} = l—IP{ét < X}.
i=1
3. Let &y,..., &, be independent Bernoulli random variables such that
P{&i=0} =1-4A,
P{ = 1} = AA,

where A is a small number, A > 0, 4, > 0.
Show that

P&, + -+ & =1} = (Z Ai)A + O(AY),

P{& + -+ + &, > 1} = O(A?).

4. Show that inf_ _ ., E(¢ — a)? is attained for a = E£ and consequently

inf E(& — a)? = V&

—o<a<o

5. Let & be a random variable with distribution function F(x) and let m, be a median
of F«(x), i.e. a point such that

Fm,—) <% < Fym,).
Show that
inf E|{—al=E|{—m,

—w<a<owo

6. Let P{(x) = P{£ = x} and F¢(x) = P(¢ < x}. Show that

x—b
Pn§+b(x) = Pg( P ),

x—b
F =F
a<§+b(x) g( a )
fora>0and —o0 < b < c0.If y > 0, then

Fa(y) = Fd+/9) = Fd—/») + PLd=/).
Let ¢* = max(&, 0). Then

0, x <0,
Fer(x) =1 F£0), x=0,
Fqx), x>0
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7. Let £ and 5 be random variables with V& > 0, Vi > 0, and let p = p(¢, ) be their
correlation coefficient. Show that |p| < 1. If [p| = 1, find constants a and b such
that n = a + b. Moreover, if p = 1, then

n—En ¢~ EC
vV \'24
(and therefore a > 0), whereas if p = — 1, then

n— Ep {—EC

NTRNIT:

(and therefore a < 0).

8. Let £ and 5 be random variables with E¢ = En = 0, V& = Vi = 1 and correlation
coeflicient p = p(&, n). Show that

Emax(¢%,n?) <1 + /1 — p2
9. Use the equation

(Indicator of UA,) = 1A = 1,),
i=1 i=1

to deduce the formula P(Byg) =1 — S, + S, + .-+ + S, fron1 Problem 4 of §1.

10. Let &,,...,¢, be independent random variables, ¢, = ¢,({,,...,&) and @, =
@&+ 1. .. &), functions respectively of &,,..., &, and &, |,..., &,. Show that the
random variables ¢, and ¢, are independent.

11. Show that the random variables &, ..., &, are independent if and only if
Fﬁn.m,:,.(xlw s X)) = Fé;(xl) Tt F:,,(xn)
forall x,,...,x,, where Fs . (xy,...,%,) = P{& < x;,...,& < x,}.

12. Show that the random variable ¢ is independent of itself (i.e., ¢ and & are inde-
pendent) if and only if & = const.

13. Under what hypotheses on ¢ are the random variables & and sin ¢ independent?

14. Let ¢ and n be independent random variables and # # 0. Express the probabilities
of the events P{¢n < z} and P{{/n < z} in terms of the probabilities P.(x) and P, (y).

§5. The Bernoulli Scheme. 1. The Law of
Large Numbers

1. In accordance with the definitions given above, a triple
Q,,P) with Q={w:w={(@a,...,a,),a =01},
& ={A:A<=Q}, plw)=p*4g" %

is called a probabilistic model of n independent experiments with two out-
comes, or a Bernoulli scheme.
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In this and the next section we study some limiting properties (in a sense
described below) for Bernoulli schemes. These are best expressed in terms of
random variables and of the probabilities of events connected with them.

We introduce random variables &,,..., ¢, by taking {{w) =a;, i =
1,...,n where w = (ay,...,a,). As we saw above, the Bernoulli variables
¢{(w) are independent and identically distributed:

P{(i=1}=p, P{{ =0} =g, i=1,...,n

It is natural to think of &; as describing the result of an experiment at the
ith stage (or at time i).
Let us put Sg(w) = 0 and

Sk=€1+"'+ék’ k=1,...,n

As we found above, ES, = np and consequently

S,

In other words, the mean value of the frequency of “success”, i.€. S,/n,
coincides with the probability p of success. Hence we are led to ask how much
the frequency S,/n of success differs from its probability p.

We first note that we cannot expect that, for a sufficiently small ¢ > 0
and for sufficiently large n, the deviation of S,/n from p is less than & for all
w, i.e. that

ﬁi—w—)—p‘SE, weQ. 2)

In fact, when 0 < p < 1,

S
P{—nﬂ= 1}=P{£,= L...,. 6, =1} =p",

N

whence it follows that (2) is not satisfied for sufficiently small ¢ > 0.

We observe, however, that when n is large the probabilities of the events
{S,/n = 1} and {S,/n = 0} are small. It is therefore natural to expect that the
total probability of the events for which |[S,(w)/n] — p| > & will also be
small when n is sufficiently large.

We shall accordingly try to estimate the probability of the event
{w:|[S,(w)/n] — p| > &}. For this purpose we need the following inequality,
which was discovered by Chebyshev.
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Chebyshev’s inequality. Let (QQ, o#, P) be a probability space and & = E(w) a
nonnegative random variable. Then

P{¢ = ¢} <El/e 3)
for all € > 0.
ProoOF. We notice that
=l ze)+ Ll <e)=2Cl(E=¢) = el = e),

where I(A) is the indicator of 4.
Then, by the properties of the expectation,

EE > cEI(E = ¢) = ¢ P(E = ¢),
which establishes (3).

Corollary. If & is any random variable, we have for ¢ > 0,

P{Cl = e} <E[{]/e
P{¢l = e} = P{&? > &2} < EE%/e?, @)
P{¢ — E¢| = &} < VE/er

In the last of these inequalities, take & = S,/n. Then using (4.14), we obtain

g

|

Si_, l S 8} <Y/ _ VS, _npg _ pg

- & n2e?  n2?  ne?’
Therefore
Sn pq 1
P{]——-prlzer < — < —, 5
{ n P l 8} = ne? T 4ne? ©)

from which we see that for large n there is rather small probability that the
frequency S,/n of success deviates from the probability p by more than e.
Forn > 1and 0 < k < n, write

P, (k) = Cip*q"*.
Then

—"—p’ks}= DI A(9)

S
P{
n tk:|(k/n)— p|> ¢}

and we have actually shown that

L ©)

Pq
Pky<=—=<
X "()_n82—4n8

{k:|(k/n) — p| 2 &}
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Tl Ly

np—ns np+ns

|,

Figure 6

i.e. we have proved an inequality that could also have been obtained analytic-
ally, without using the probabilistic interpretation.
It is clear from (6) that

P,(k) - 0, n— . @)

{k:{(k/n)— p| 2 &)

We can clarify this graphically in the following way. Let us represent the
binomial distribution {P,(k), 0 < k < n} as in Figure 6.

Then as n increases the graph spreads out and becomes flatter. At the same
time the sum of P,(k), over k for which np — ne < k < np + ne, tends to 1.

Let us think of the sequence of random variables S, S,, ..., S, as the
path of a wandering particle. Then (7) has the following interpretation.

Let us draw lines from the origin of slopes kp, k(p + ¢), and k(p — ¢). Then
on the average the path follows the kp line, and for every ¢ > 0 we can say that
when n is sufficiently large there is a large probability that the point S,
specifying the position of the particle at time n lies in the 1nterval
[n(p — €), n(p + £)]; see Figure 7.

We would like to write (7) in the following form:

p{ S
n

— =P

23}—»0, n— oo, ®
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However, we must keep in mind that there is a delicate point involved
here. Indeed, the form (8) is really justified only if P is a probability on a
space (€, &/) on which infinitely many sequences of independent Bernoulli
random variables &,, &,,...,are defined. Such spaces can actually be
constructed and (8) can be justified in a completely rigorous probabilistic
sense (see Corollary 1 below, the end of §4, Chapter II, and Theorem 1, §9,
Chapter II). For the time being, if we want to attach a meaning to the analytic
statement (7), using the language of probability theory, we have proved only
the following.

Let (Q©, o™, P™), n > 1, be a sequence of Bernoulli schemes such that

Q" = {o™: 0™ = (@}, ...,a™),a" =0, 1},
A = {A: A < QM},
p("’(a)(")) = pZa:'. qn—):a‘{"
and
SP@) = EP) + - + B,
where, for n < 1, &P, ..., & are sequences of independent identically

distributed Bernoulli random variables.
Then

SP@")

P‘"’{w"‘): p|=> 8} = Y P(k)—-0, n-o0. (9)
{k:|(k/n)— pl =&}

Statements like (7)-(9) go by the name of James Bernoulli’s law of large
numbers. We may remark that to be precise, Bernoulli’s proof consisted in
establishing (7), which he did quite rigorously by using estimates for the
“tails” of the binomial probabilities P,(k) (for the values of k for which
[(k/n) — p| = €). A direct calculation of the sum of the tail probabilities of
the binomial distribution Z(k:,(k,,,)_,,,ae, P, (k) is rather difficult problem for
large n, and the resulting formulas are ill adapted for actual estimates of the
probability with which the frequencies S,/n differ from p by less than e.
Important progress resulted from the discovery by De Moivre (for p = 1)
and then by Laplace (for 0 < p < 1) of simple asymptotic formulas for P,(k),
which led not only to new proofs of the law of large numbers but also to
more precise statements of both local and integral limit theorems, the essence
of which is that for large n and at least for k ~ np,

1

e~ (k—np)?/(2npqg)
b
~/2nnpq

P,(k) ~

and

Y Pyk) ! f W s
k) ~ —— e < dx.
{k:|(k/m)— pl <&} \/Z —&J/n/pg
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2. The next section will be devoted to precise statements and proofs of these
results. For the present we consider the question of the real meaning of the
law of large numbers, and of its empirical interpretation.

Let us carry out a large number, say N, of series of experiments, each of
which consists of “n independent trials with probability p of the event C of
interest.” Let Si/n be the frequency of event C in the ith series and N, the
number of series in which the frequency deviates from p by less than &:

N, is the number of i’s for which |(Si/n) — p| < &. Then

N/N ~ P, (10)

where P, = P{|(S}/n) — p| < &}.

It isimportant to emphasize that an attempt to make (10) precise inevitably
involves the introduction of some probability measure, just as an estimate for
the deviation of S,/n from p becomes possible only after the introduction of a
probability measure P.

3. Let us consider the estimate obtained above,

P{:g—"~p
n

2£}= S PR (1)

— 2 k)
{k:[(k/n) = p| = &) 4ne

as an answer to the following question that is typical of mathematical
statistics: what is the least number n of observations that is guaranteed to
have (for arbitrary 0 < p < 1)

p{s
n

——p

Ss}zl—a, (12)

where « is a given number (usually small)?
It follows from (11) that this number is the smallest integer n for which

nz= .
4%

(13)

For example, if & = 0.05 and ¢ = 0.02, then 12 500 observations guarantee
that (12) will hold independently of the value of the unknown parameter p.
Later (Subsection 5, §6) we shall see that this number is much overstated;
this came about because Chebyshev’s inequality provides only a very crude

upper bound for P{|(S,/n) — p| > &}.
Pl < 5}.

From the law of large numbers that we proved, it follows that for every
¢ > 0 and for sufficiently large n, the probability of the set C(n, ¢) is close to
1. In this sense it is natural to call paths (realizations) w that are in C(n, €)
typical (or (n, &)-typical).

4. Let us write
Siw)
n

Cn,e) = {w:
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We ask the following question: How many typical realizations are there,
and what is the weight p(w) of a typical realization?

For this purpose we first notice that the total number N() of points is 2",
and that if p = 0 or 1, the set of typical paths C(n, €) contains only the single
path (0,0,...,0)or (1, 1,..., 1). However,ifp = 1 it is intuitively clear that
“almost all” paths (all except those of the form (0,0,...,0)or (1, 1,..., 1))
are typical and that consequently there should be about 2" of them.

It turns out that we can give a definitive answer to the question whenever
0 < p < 1; it will then appear that both the number of typical realizations
and the weights p(w) are determined by a function of p called the entropy.

In order to present the corresponding results in more depth, it will be
helpful to consider the somewhat more general scheme of Subsection 2 of
§2 instead of the Bernoulli scheme itself.

Let(p,, ps, ..., p,) be a finite probability distribution, i.e. a set of nonnega-
tive numbers satisfying p; + --- + p, = 1. The entropy of this distribution is

H= - plnp, (14)
i=1

with 0-In 0 = 0. It is clear that H > 0, and H = 0 if and only if every p;,
with one exception, is zero. The function f(x) = —xInx, 0 < x <1, is
convex upward, so that, as know from the theory of convex functions,

)+ -+ [x) <f<x1 +o 4 x,)‘

r r

Consequently
r e . + .. ,
H=—Zp,-lnp,-s—r-p1+ +p-ln<p1 +p>=1nr.
i=1 r r
In other words, the entropy attains its largest valueforp, = -+- = p, = 1/r

(see Figure 8 for H = H(p) in the case r = 2).

If we consider the probability distribution (p,, p,, ..., p,) as giving the
probabilities for the occurrence of events Ay, 4,, ..., A,, say, then it is quite
clear that the “degree of indeterminancy” of an event will be different for

Hp)y

Inz4——-— ——*—]

|
|
|
|
!
|
|
|
1

[T

0

Figure 8. The function H(p) = —pInp — (1 — p)in(1 — p).
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different distributions. If, for example, p; = 1, p, = --- = p, = 0, it is clear
that this distribution does not admit any indeterminacy: we can say with
complete certainty that the result of the experiment will be 4,. On the other
hand, if p; = --- = p, = 1/r, the distribution has maximal indeterminacy,
in the sense that it is impossible to discover any preference for the occurrence
of one event rather than another.

Consequently it is important to have a quantitative measure of the in-
determinacy of different probability distributions, so that we may compare
them in this respect. The entropy successfully provides such a measure of
indeterminacy; it plays an important role in statistical mechanics and in many
significant problems of coding and communication theory.

Suppose now that the sample space is

Q={w:ow=_(=,....,a)a=1...,r}

and that p(w) = p - - - p'r®), where v(w) is the number of occurrences of i
in the sequence w, and (p,, ..., p,) is a probability distribution.
Fore>0andn=1,2,...,Ilet us put

vi(w)

C(n,s)={w: —n—v—pi <gi= 1,...,r}.

It is clear that

i=1 n

P(C(n,e)) =1 — i P{@—pi‘z.s},

and for sufficiently large n the probabilities P{|(v(w)/n) — p;| = ¢} are
arbitrarily small when » is sufficiently large, by the law of large numbers
applied to the random variables

l, a, = i,

k=1,...,n
0, a#i’ Looon

S(w) = {
Hence for large n the probability of the event C(n, &) is close to 1. Thus, as in

the case n = 2, a path in C(n, ¢) can be said to be typical.
If all p; > 0, then for every w e Q
In p,‘)} .

p(@) = exp{—n Z (_ vi(w)
8 n
Inp, < —¢ ) Inp,.
k=1

=1

Consequently if w is a typical path, we have

i (— vk(nw) lnpk> - H

k=1
It follows that for typical paths the probability p(w) is close to e " and —
since, by the law of large numbers, the typical paths “almost” exhaust Q
when n is large —the number of such paths must be of order e"H. These con-
siderations lead up to the following proposition.

r

<- ¥

k=1

vi(w)
n

— Dk
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Theorem (Macmillan). Let p; > 0,i = 1,...,rand 0 < ¢ < 1. Then there is
an ng = ny(€; py, - .., p,) such that for alln > n,
@ €179 < N(Cn, 2,)) < &H*9;
(b) e™"H* < p(w) < e™"H79, wel(n, &);
(¢) P(C(n, &) = CZ pw)—1, n- oo,
wel(n,en)
where

g, is the smaller of ¢ and 8/{—2 Y In pk}.
k=1

Proor. Conclusion (c) follows from the law of large numbers. To establish
the other conclusions, we notice that if w € C(n, ¢) then

np, — &0 < vi{w) < npy, + &n, k=1,...,r,
and therefore

p(@) = exp{=Y v In p} <exp{—n}Y pInp, — &;n} Inp}
< exp{—n(H — 3¢)}.

Similarly

p(w) > exp{— n(H + }¢)}.

Consequently (b) is now established.
Furthermore, since

P(C(n, &) = N(C(n, &;))- min p(w),

weC(n,&q)
we have
P(C(n, &) 1 n(H + (1/2)¢)
N(C(n, &) < min p(w) = e MHF12)8 ~ en BT
weC(n, &)
and similarly
P(C(n,
N 00) 2~ > POl )~ 20.
meC(n, &)

Since P(C(n, ¢,)) = 1, n - oo, there is an n, such that P(C(n,¢,)) > 1 — ¢
for n > n,, and therefore

N(C(n, £,)) = (1 — e)exp{n(H — )}
= exp{n(H — &) + (3ne + In(1 — ¢&))}.
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Let n, be such that
Ine +In(1 — &) > 0.

for n > n,. Then when n > n, = max(n,, n,) we have
N(C(n, g))) = e"H 9,

This completes the proof of the theorem.

5. The law of large numbers for Bernoulli schemes lets us give a simple and
elegant proof of Weierstrass’s theorem on the approximation of continuous
functions by polynomials.

Letf = f(p) be a continuous function on the interval [0, 1]. We introduce
the polynomials

no(k
B,(p) = k;)f (5) Cio'q"

which are called Bernstein polynomials after the inventor of this proof of
Weierstrass’s theorem.

If &,,...,¢&, is a sequence of independent Bernoulli random variables
with P{&; =1} = p,P{{, =0} = gand S, = &, + --- + ¢,, then

e/ () = B

Since the function f = f(p), being continuous on [0, 1], is uniformly con-
tinuous, for every ¢ > 0 we can find é > 0 such that | f(x) — f(y)| < ¢
whenever |x — y| < 0. It is also clear that the function is bounded: | f(x)| <
M < 0.

Using this and (5), we obtain

n ) k _
| f(p) — BD)l = | ). [f(p) - f(;)] Chpiq"™*
k=0
k k k n—k
< Y If@-f5)|Cire
tk:l(k/n) = p| < 8} n
! g k k .k n~k
+ S = fl=]ICip*q
{k:f(k/m)— p| > 5} n
2M M
<e¢+2M Ckp'q" " <e+ =¢+ .
<k:|<k/n)2 PED) 4nd* 2nd?
Hence

lim max |f(p) — B,(p)l = O,

n->wo 0<p<l1

which is the conclusion of Weierstrass’s theorem.
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6. PROBLEMS

1. Let £ and 5 be random variables with correlation coefficient p. Establish the following
two-dimensional analog of Chebyshev’s inequality:

PUIE = E¢1 > o/VE or I = Enl = oV} <5 (1 + /T 7).

(Hint: Use the result of Problem 8 of §4.)

2. Let f = f(x) be a nonnegative even function that is nondecreasing for positive x.
Then for a random variable ¢ with | &(w)| < C,

Ef (O —f(ﬂ)s P — B > ¢} < Ef ¢~ Eé)_
1O @)
In particular, if f(x) = x?,
EE? - ¢ v
—‘féz—s—sp{lé— EélZs}sg—f.
3. Let &,,..., &, be a sequence of independent random variables with V&; < C. Then
P{ 51+--.+§n_E(§1+-..+én) 28}5%. (15)
n n ng

(With the same reservations as in (8), inequality (15) implies the validity of the law of
large numbers in more general contexts than Bernoulli schemes.)

4, Let &,,..., ¢, be independent Bernoulli random variables with P{£; = 1} = p > 0,
P{¢; = —1} = 1 — p. Derive the following inequality of Bernstein: there is a number
a > 0 such that
S
|

——-Q@p-1
n

> s} < 2em

where S, =&, +--- + {,and ¢ > 0.

§6. The Bernoulli Scheme. II. Limit Theorems
(Local, De Moivre-Laplace, Poisson)

1. As in the preceding section, let

S,=& + -+ &,
Then

Sy

and by (4.14)
E(i—p)lﬂ. ®
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It follows from (1) that S,/n ~ p, where the equivalence symbol ~ has been
given a precise meaning in the law of large numbers as the assertion
P{|(S,/n) — p| = €} — 0. It is natural to suppose that, in a similar way, the
relation

3)

which follows from (2), can also be given a precise probabilistic meaning
involving, for example, probabilities of the form

P{l—S—f—p'sx /ﬂ}, xeR!,
n n
P{ Sx}

(since ES, = np and VS, = npq).
If, as before, we write

or equivalently
S, — ES,
A

n

Pk)y=Cip*q"*, O<k<n,

for n > 1, then

p{ 5n B o x} - Y P @
Vv VS, {k:|(k — np)/vpa} < x}

We set the problem of finding convenient asymptotic formulas, as n — oo,
for P,(k) and for their sum over the values of k that satisfy the condition on
the right-hand side of (4).

The following result provides an answer not only for these values of k
(that is, for those satisfying [k — np| = O(,/npq)) but also for those satisfying

|k — np| = o(npg)*”.
Local Limit Theorem. Let 0 < p < 1; then
1 k= npy?
P,(k) ~ — e k—np) /(anq), o)
2nnpq
uniformly for k such that |k — np| = o(npq)*", i.e. as n - oo

sup P (k)

{k:|k —np| < p(n)} 1

\ 2nnpgq

- 1}-0,

- —_ 2
e k—np) /(2npq)

where ¢(n) = o(npq)*>.



§6. The Bernoulli Scheme. II. Limit Theorems (Local, De Moivre-Laplace, Poisson) 57

The proof depends on Stirling’s formula (2.6)

n! = /2ane "n"(1 + R(n)),
where R(n) —» Oasn — oo.
Then if n — o0, k = 00, n — k — oo, we have

kK n!
C=n (n — k)!

2rne "n" 1 + R(n)
2k 2n(n — k) e Mk e~ R — ky—k (1 + RN + R(n — k)

1 1+ &(n, k,n—k)
k k k k _.E n—k>
2mn " (1 — ;) (n) (1 n)

where ¢ = &(n, k, n — k) is defined in an evident way and ¢ —» 0 as n — o0,
k—oo,n—k— oo.
Therefore

1 k 1 — n—k
P,(k) = Ciphq~* = B AUl ) SRR

k\* k
2nn5(1 - 5) (—) (1 - —)
n n/ \n n
Write p = k/n. Then

1 p\*/1 — p\" ¥
Pk)y=— — __ __|Z}[—— €
A0 2nnp(l — p) (ﬁ) (1 —ﬁ) (t+2)

1 p I—p
=——expskIns + (n — k)In “L.(1 +¢)
J2nnp(1 — p) p 1—-p

I kinP 4 (1 - %)mlz2

= T exp{n[n lnﬁ + (1 n) ln1 — ﬁ]} (1+¢
1

= mexp{— nH(p)}(1 + ¢),

where

1~
Hx) = xInZX 4+ (1 = x)ln —>
p 1—-p

We are considering values of k such that |k — np| = o(npg)*/3, and con-
sequently p — p - 0, n - co.
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Since, for 0 < x < 1,

1 —
H(x) =% - In—>,
p l—p
11
H'(x) =~ +
x 1-x
" — 1 1
= —ata—r

if we write H(p) in the form H(p + (p — p)) and use Taylor’s formula, we
find that for sufficiently large n

Hp) = H(p) + H@)(p — p) + $H' )P — p)* + 0(p — pI*)

1/1 1\ . o
=§<;+5)(p—p)2+0(lp—l’|3)'

Consequently

— 50 (b = p)* + nO(p — pP)}(l +8)
Pq

1
P k) = ——— exp{
V 2mnp(l — p)
Notice that
n n [k 2 (k — np)?

L (N .3

2pq ¢-r ACE 2npq
Therefore

1 2
Py(k) = e~ TP+ ¢'(n, k, n — k)),
2nnpq

where

p(l — p)
p( - p)

L+ ¢&mkn—k) =1+ enkn— k)exp{nO(p — p|*)}
and, as is casily seen,
sup|e'(n, k,n — k)| = 0, n — oo,
if the sup is taken over the values of k for which
|k —np| < @(n),  @n) = o(npg)*”.

This completes the proof.
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Corollary. The conclusion of the local limit theorem can be put in the followin
equivalent form: For all x € R! such that x = o(npq)*'®, and for np + x./npq
an integer from the set {0, 1, ..., n},

1 2
P,(np + x\/npq) ~ e, 7
/2mnpq ™

i.e.asn— o0,

P
sup |PARE XD ®)
{x:]x] <y(m)} 1 e—x2/2

 27npq

where Y(n) = o(npq)/®.
With the reservations made in connection with formula (5.8), we can

reformulate these results in probabilistic language in the following way:

1

</ 2nnpq
Sn — np 1

P{ = x} ~ e 2 x = o(npg)'S. (10)
/ 1"pq  2nnpq

(In the last formula np + x./npq is assumed to have one of the values
0,1,...,n)

If we put t, = (k — np)/</npq and Aty = t,,, — t, = 1//npq, the pre-
ceding formula assumes the form

e (TP |k — np| = o(npg)*?, (9)

P{S, = k} ~

S, — At 2
P{ e = tk} ~ Cl it = o(mpg)S. (1)

Vg 2

It is clear that At, = 1/./npgq — 0 and the set of points {,} as it were
“fills” the real line. It is natural to expect that (11) can be used to obtain the
integral formula

S, — 1 b 2
P{a< u npsb}~__ e”*% dx, —w<a<b< oo
/ hpq 27 Ja

Let us now give a precise statement.

2. For—w<a<b< oolet

Pa,bl= ) P,np+ x\/npg),

a<x<b

where the summation is over those x for which np + x./npq is an integer.
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It follows from the local theorem (see also (11)) that for all ¢, defined by
k = np + t,./npq and satisfying |t,| < T < oo,

A
Po(np + tin/npg) = 2= e F2[1 + s(ty, )], (12)
N 2m
where
sup |&(t,, n)l = 0, n— oo. (13)
ltl =T

Consequently, if a and b are given so that ~ T < a < b < T, then

Atk — Atk 42
P,(np + t/npqg) = ko2 4 &(ty, n) e 2
a<zzk:5b " , a<§sb \/27t a<§5b , ./272:

1 b 2
= f e dx + RM(a, b) + RP(a, b), (14)
Jam e
where
Bt i _ 1 be"‘z/2 dx,

At 2
RP(a,b)= ) &ty,n) K 2
2

a<t<b

RM(a,b) = ).
a<t<b

From the standard properties of Riemann sums,

sup  |Ra,b)| >0, n-—> oo 15)

—T<a<bsT

It also clear that

sup |R{?(a, b)|

—T<a<b<sT
At .2
< sup let, )l Y —=e W2
Il <T il <T A/ 2T

< sup |e(t, m)
ltel<T

“*2dx +  sup |RMN(a, b)l]—»O, (16)

1 T
x [_j e
J2rd-T -T<a<h<T

where the convergence of the right-hand side to zero follows from (15) and
from

X2 dx < T2 gx =1, (17

1 T 1 @
ﬁﬁf ﬁf.w"

the value of the last integral being well known.
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We write
O(x) = f f e "2 dt.
Then it follows from (14)-(16) that
sup  |P,(a,b] — (®(b) — ®(a))| >0, n-— . (18)

-T<a<b<T
We now show that this result holds for T = oo as well as for finite T. By
(17), corresponding to a given ¢ > 0 we can find a finite T = T'(¢) such that

T
e ¥ dx >1 -1 & (19)

\/—%EJ‘—T

According to (18), we can find an N such that for alln > N and T = T(¢)
we have

sup |Py(a, b] — (®(b) — ®(@))| < 1 = (20)

—T<as<b<sT
It follows from this and (19) that
P(~T.T]1>1-}s
and consequently
P,(= 0, T] + P(T, ) < 3¢,
where P,(— oo, T] = limg, _ ,, P,(S, T]and P,(T, o) = limg,, P(T; S].

Therefore for —o0 <a< —T< T< b < 0,

b
—_x2
e *1? dx

1
Pn(a9b]—~_f
\/271' a
1
<IP(-TT]- —=

J2mJd-T1

P,,(a,——T —%I_Te_"z/zdx =+

T Ja

e”*2 dx

1 b 2
P(T.b] — -_—f e~ %12 dx
S22t

—

-~T
<t er Pl —TI+ L f %2 dx + P(T. )
4 27[ — o

f e X dx < 8+18+18+18 €.
2778 T8
By using (18) it is now easy to see that P,(a, b] tends uniformly to ®(b) —
®(a)for — 0 <a<b < .
Thus we have proved the following theorem.



62 I. Elementary Probability Theory

De Moivre-Laplace Integral Theorem. Let 0 < p < 1,
P(k)=Cip'q"™",  PJfa,bl= Y P.np+ x/npg),
a<x<b

Then

sup -0, n— oo. 21

—w<a<b<wo

1 b
Pa, b ——f e 1% dx
( ] \/Zﬂ a

With the same reservations as in (5.8), (21) can be stated in probabilistic
language in the following way:

1 b
S,—ES, <bp — — -*2 g
pla< e -l

It follows at once from this formula that

B —np A —np
P{A<S,,SB}~[<D( )—@( )]—»0, 22
v npq v/ npq @)

as n — oo, whenever —o0 < A < B < 0.

- 0, n— oo.

sup

—w<a<b<

ExAMPLE. A true die is tossed 12 000 times. We ask for the probability P that
the number of 6’s lies in the interval (1800, 2100].

The required probability is

1\k/5\ 12000~k
P = Z Clizooo (g) <€)
1800<k<2100

An exact calculation of this sum would obviously be rather difficult.

However, if we use the integral theorem we find that the probability P in
question is (n = 12000, p = L, a = 1800, b = 2100)

2100 — 2000 1800 — 2000
q>< ) - q>( ) = 0(,/6) — &(-2,/6)
J12000-%-% 1200012
~ ©(2.449) — O(— 4.898) ~ 0.992,

where the values of ®(2.449) and ®(—4.898) were taken from tables of ®(x)
(this is the normal distribution function; see Subsection 6 below).

3. We have plotted a graph of P,(np + x,/npq) (with x assumed such that

np + x./npq is an integer) in Figure 9.
Then the local theorem says that when x = o(npq)'/®, the curve

(1/</2nnpg)e >’ provides a close fit to P,(np + x\/ EZ]). On the other hand
the integral theorem says that P,(a, b] = P{a/npq < S, — np < b\/npq} =
P{np + a/npq < S, < np + b,/npq} is closely approximated by the integral

(1//2m)f5 ™12 dx.
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Pnp + x/npa) g
e I Lo
. ~. g
// \\
7 ~
// \\
'|/1l ! 1 1 |I ‘T‘]‘:
0 X
Figure 9
We write

S, —np
F,(x) = P,(—o0, x] <= P{ < })
v/ hpq )

Then it follows from (21) that
sup |F,(x) — ®(x)| =0, n — 0. (23)

It is natural to ask how rapid the approach to zero is in (21) and (23),
as n —» co. We quote a result in this direction (a special case of the Berry-
Esseen theorem: see §6 in Chapter III):

p2+2

[~

sup  |Fy(x) — ()| <

—©0<x<w npq

(24

It is important to recognize that the order of the estimate (1//npq)
cannot be improved; this means that the approximation of F,(x) by ®(x)
can be poor for values of p that are close to 0 or 1, even when n is large. This
suggests the question of whether there is a better method of approximation
for the probabilities of interest when p or g is small, something better than
the normal approximation given by the local and integral theorems. In this
connection we note that for p = 1, say, the binomial distribution {P,(k)} is
symmetric (Figure 10). However, for small p the binomial distribution is
asymmetric (Figure 10), and hence it is not reasonable to expect that the
normal approximation will be satisfactory.

Figure 10
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4. It turns out that for small values of p the distribution known as the Poisson
distribution provides a good approximation to {P,(k)}.
Let
Cpq" %, k=0,1,...,n,
P(k) = nD'q n
0, k=n+1n+2,..,

and suppose that p is a function p(n) of n.

Poisson’s Theorem. Let p(n) » 0, n — oo, in such a way that np(n) > 4,
where A > 0. Then fork = 1,2, ...,

P(k)—>m, n- o, (25)
where
).k -2
7, = ;' . k=0,1,.... (26)

The proof is extremely simple. Since p(n) = (4/n) + o(1/n) by hypothesis,
for a given k = 0, 1, ... and sufficiently large n,

P,(k) = Cyp*q"™"

_nn—1)--(n—k+ 1DJA 1\ A 1\ *
= k! [z”(z)]‘[“z“’(z)] '

But
k
nn—1)---(n—k + I)I:E + 0(1)]
n n
—1D---n—k+1
- nf‘n i )[1 +o()]*-> 2,  n- oo,
and
n—k
[1 —é+o(l)] et  n-o oo,
n n
which establishes (25).

The set of numbers {m,, k =0, 1,...} defines the Poisson probability
distribution (m, > 0, ) o m, = 1). Notice that all the (discrete) distributions
considered previously were concentrated at only a finite number of points.
The Poisson distribution is the first example that we have encountered of a
(discrete) distribution concentrated at a countable number of points.

The following result of Prokhorov exhibits the rapidity with which P,(k)
converges to m, as n — co: if np(n) = A > 0, then

5 1PK) - ml < 22 min(2, ). @
k=0 n

(A proof of a somewhat weaker result is given in §12, Chapter III.)



§6. The Bernoullt Scheme. II. Limit Theorems (Local, De Moivre-Laplace, Poisson) 65

Sn — np
npq

in connection with (5.8)). Since
Jiu
_<_ & (>
rq
&/n/pq
p{ S
whence
_n_ pl<

5. Let us return to the De Moivre-Laplace limit theorem, and show how it
implies the law of large numbers (with the same reservation that was made
o]
n
it is clear from (21) that when ¢ > 0
S, Ss} f e dx 50, now, (28)
n l A/ 27'5 3 n/p
p{ S
n

8}—*1, n— oo,

which is the conclusion of the law of large numbers.
From (28)

P{ . P'“} v e ©, (9
—_ — < ~ X, n— 00,

n 2n J-¢ /n/pq

whereas Chebyshev’s inequality yielded only

Sn Pq
P|—= — >21-—=
Pa-r|sefzr- 22
It was shown at the end of §5 that Chebyshev’s inequality yielded the estimate

n> !
= 4e%q

for the number of observations needed for the validity of the inequality

S
P2 — < >1—oa
{n pi_s}_l a

Thus with ¢ = 0.02 and o = 0.05, 12 500 observations were needed. We can
now solve the same problem by using the approximation (29).
We define the number k(a) by

k(o)

\/27! f k(@)

Since ¢ \/(n/pq) = 2¢e./n, if we define n as the smallest integer satisfying
2e./n > k() (30)

e ¥ dx =1-—a

we find that

Ss}zl—a. (1)
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We find from (30) that the smallest integer n satisfying
)
T 4g?

guarantees that (31) is satisfied, and the accuracy of the approximation can
easily be established by using (24).

Taking ¢ = 0.02, « = 0.05, we find that in fact 2500 observations suffice,
rather than the 12 500 found by using Chebyshev’s inequality. The values
of k(o) have been tabulated. We quote a number of values of k(a) for various
values of a:

o k(a)
0.50 0.675
0.3173 1.000
0.10 1.645
0.05 1.960
0.0454 2.000
0.01 2.576
0.0027 3.000

6. The function
1 X
D(x) = f e~ 2 dr, (32)
~/ 27[ -

which was introduced above and occurs in the De Moivre-Laplace integral
theorem, plays an exceptionally important role in probability theory. It is
known as the normal or Gaussian distribution on the real line, with the
(normal or Gaussian) density

1 2
o(x) = ——e 72, xeR.L
27

0.67 1.962.58

Figure 11. Graph of the normal probability density ¢(x).



§6. The Bernoulli Scheme. II. Limit Theorems (Local, De Moivre-Laplace, Poisson) 67

Figure 12. Graph of the normal distribution ®(x).

We have already encountered (discrete) distributions concentrated on a
finite or countable set of points. The normal distribution belongs to another
important class of distributions that arise in probability theory. We have
mentioned its exceptional role; this comes about, first of all, because under
rather general hypotheses, sums of a large number of independent random
variables (not necessarily Bernoulli variables) are closely approximated by
the normal distribution (§4 of Chapter III). For the present we mention only
some of the simplest properties of ¢(x) and ®(x), whose graphs are shown in
Figures 11 and 12.

The function ¢(x) is a symmetric bell-shaped curve, decreasing very
rapidly with increasing |x|: thus ¢@(1) = 0.24197, @(2) = 0.053991, ¢(3) =
0.004432, ¢(4) = 0.000134, ¢(5) = 0.000016. Its maximum is attained at
x = 0 and is equal to (2n) ™!/ ~ 0.399.

The curve ®(x) = (1/\/271) [~ e **/*dt approximates 1 very rapidly
as x increases: ®(1) = 0.841345, ®(2) = 0.977250, ®(3) = 0.998650, B(4) =
0.999968, ®(4, 5) = 0.999997.

For tables of ¢(x) and ®(x), as well as of other important functions that
are used in probability theory and mathematical statistics, see [A1].

7. At the end of subsection 3, §5, we noticed that the upper bound for the
probability of the event {w: |(S,/n) — p| = ¢}, given by Chebyshev’s inequal-
ity, was rather crude. That estimate was obtained from Chebyshev’s inequal-
ity P{X > ¢} < EX?/¢* for nonnegative random variables X > 0. We may,
however, use Chebyshev’s inequality in the form

EXZk
P{X ¢} =P{X%*>¢e%*} < o (33)

However, we can go further by using the “exponential form” of Chebyshev’s
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inequality: if X > 0 and A > O, this states that

P{X > &} = P{e™ > e*} < Ee**™9, (34
Since the positive number A is arbitrary, it is clear that
P{X > &} < inf Ee**™9. (35)
>0

Let us see what the consequences of this approach are in the case when
X=8/m8=+ "+, PE=)=pP(=0=qgix>1
Let us set @(4) = Ee**:. Then

@A) =1—p+ pe’
and, under the hypothesis of the independence of &,, &,, ..., &,

Ee*s» = [p(W)]".
Therefore, (0 < a < 1)

P13 5 ol < inf EeASimo _ jnf g-nttam-nowm
n A>0 A>0

s>0

= inf e Mos~Ine()] — pnsups>olas—Ing(s)] (36)
Similarly,

S,

The function f(s) = as —log[1 — p + pe’] attains its maximum for
p < a < 1 at the point sqo(f'(sq) = 0) determined by the equation

o 41 —p)
p(1 —a)
Consequently,
sup f(s) = H(a),
where
1—
H@=aln2+(1-ah-—2
4 1—p

is the function that was previously used in the proof of the local theorem
(subsection 1).
Thus,forp<a<l1

P {% > a} < e M@ (38)

and therefore, since H(p + x) > 2x? and 0 < p + x < 1, we have, for ¢ > 0
and0<p<l,
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P {% —-p= s} < e 2 (39)
We can establish similarly thatfora<p <1
S, —nH
P;ga < e "H@, (40)
and consequently, forevery e >0and0<p <1,
S, —2ne?
P;—ps—s <e . 41)
Therefore,
P {’SZ —-p|> e} < 2e2me, 42)
Hence, it follows that the number n;(a) of observations of the inequality
S
P P <egpr>21-—aq, 43)

that are guaranteed to be satisfied for every p, 0 < p < 1, is determined by the

formula
nafa) = [‘“(2/ “)], @)

2¢?
where [x] is the integral part of x. If we neglect “integral parts” and compare
ns(x) with n, () = [(40e?)™], we find that
n(@ 1

n3(®) B 20 lng
o

1 oo, alO.

It is clear from this that when a | 0, an estimate of the smallest number of
observations needed that can be obtained from the exponential Chebyshev
inequality is more precise than the estimate obtained from the ordinary
Chebyshev inequality, especially for small .
There is no difficulty in applying the formula
1

—y2/2 —-x2/2
YRdy ~ ——e ™, x> o0,

1 0
—| e
2n I x /27X
to show that k*(ax) ~ 2 log(2/a) when a | 0. Therefore,

n, (o)
n3(e)

-1, al0.

Inequalities like (38)—(42) are known as inequalities for the probability of
large deviations. This terminology can be explained in the following way.
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The De Moivre—Laplace integral theorem makes it possible to estimate in
a simple way the probabilities of the events {|S, — np| < x\/;} characteriz-

ing the “standard” deviation (up to order \/ﬁ) of S, from np. Even the
inequalities (39), (41), and (42) provide an estimate of the probabilities of the
events {w: |S, — np| < xn}, describing deviations of order greater than ﬁ,
in fact of order n.

We shall continue the discussion of probabilities of large deviations, in
more general situations, in §5, chap. IV.

8. PROBLEMS

1. Let n = 100, p = 15, 15> 15> 15> 15- Using tables (for example, those in [A1]) of the
binomial and Poisson distributions, compare the values of the probabilities

P{10 < S,40 < 12}, P{20 < S,40 < 22},
P{33 < S,00 < 35}, P{40 < S,40 < 42},
P{50 < Sy90 < 52}
with the corresponding values given by the normal and Poisson approximations.

2. Letp = +and Z, = 2S, — n(the excess of 1’s over 0’s in » trials). Show that

sup|/nnP{Z,, =j} — e *"| 50, n- 0.
j

3. Show that the rate of convergence in Poisson’s theorem is given by
222

n

Ake—l

Pik) =

sup
k

§7. Estimating the Probability of Success
in the Bernoulli Scheme

1. In the Bernoulli scheme (Q, &7, P) with Q = {w:0 = (x4,..., X,), X; =
0, 1)}, = A: A< Q},

p(w) = pFrig"

we supposed that p (the probability of success) was known.

Let us now suppose that p is not known in advance and that we want to
determine it by observing the outcomes of experiments; or, what amounts
to the same thing, by observations of the random variables ¢4, .. ., &,, where
¢(w) = x;. This is a typical problem of mathematical statistics, and can be
formulated in various ways. We shall consider two of the possible formula-
tions: the problem of estimation and the problem of constructing confidence
intervals.

In the notation used in mathematical statistics, the unknown parameter
is denoted by 0, assuming a priori that 6 belongs to the set @ = [0, 1]. We
say that the set (Q, o, Py; 0 € ©) with pg(w) = 6> *(1 — §)" X is a probabil-
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istic-statistical model (corresponding to “ nindependent trials ” with probabil-
ity of “success” 6 € @), and any function 7, = T,(w) with values in © is
called an estimator.

IfS,=¢ +---+ ¢, and TF = §,/n, it follows from the law of large
numbers that T} is consistent, in the sense that (¢ > 0)

P{IT¥ — 0| = ¢} -0, n— . 1)
Moreover, this estimator is unbiased: for every 6
E, T} =0, )

where E, is the expectation corresponding to the probability P,.

The property of being unbiased is quite natural: it expresses the fact that
any reasonable estimate ought, at least “on the average,” to lead to the
desired result. However, it is easy to see that T¥ is not the only unbiased
estimator. For example, the same property is possessed by every estimator

byxy + -+ b,x,

T, = n g

where b, + --- + b, = n. Moreover, the law of large numbers (1) is also
satisfied by such estimators (at least if || < K < c0; see Problem 2, §3,
Chapter III) and so these estimators T, are just as “good” as T¥.

In this connection there arises the question of how to compare different
unbiased estimators, and which of them to describe as best, or optimal.

With the same meaning of “estimator,” it is natural to suppose that an
estimator is better, the smaller its deviation from the parameter that is being
estimated. On this basis, we call an estimator T, efficient (in the class of un-
biased estimators T,) if,

V,T, = inf V, T,, fe0®, 3)
T,

where V, T, is the dispersion of T,, i.e. Eo(T, — 6)>.

Let us show that the estimator T, considered above, is efficient. We have

S, VoS, né(1 -6 61 -0
* — | = = = .
vtz = i) = e . @
Hence to establish that T} is efficient, we have only to show that
infv, T, > 0= 9 )
T, n

This is obvious for § = 0 or 1. Let 8 € (0, 1) and
polx) = 0%(1 — 6)! ™.

It is clear that

po(®) = ljl Ppe(x:).
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Let us write

Ly(w) = In po(e).

Then
Liw)=1n6-Y x; + In(1 — 0)) (1 — x)
and
OLy(@w)  Y(x; — 0)
00 61 —6)
Since

1=Epl =} polo),

and since T, is unbiased,

0 =E,T, = 3, Ty(@)po().

After differentiating with respect to 6, we find that

(61),,((1)))
0= Zapo(w) Z po(@) = E [aLo(w):l ,

o P 0( ) 60
(apa(w))
a0 oL (a))]
1=>T, ) = E| T, ——| -
%: (@) Po(w) 9[ 20
Therefore
e[ _ g 2@
1= Ee[(T.. 0) 20 ]
and by the Cauchy-Bunyakovskii inequality,
OL(w)|?
1 <E[T, - 9]2-50[ 59 ] ,
whence
1
E,[T, — 0)? ,
[T, = 0P = - ©)
where

2
1,(0) = [ang“’)]

is known as Fisher’s information.
From (6) we can obtain a special case of the Rao-Cramér inequality
for unbiased estimators 7,,:

mf VoT, > ——= @)

(9)
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In the present case

2 o 2 _
In(0)=Eo[aLgéw)] =Eo[%((f'_ 0(;)] _nb1-6  n

[ - 01 a1 -6y’
which also establishes (5), from which, as we already noticed, there follows
the efficiency of the unbiased estimator T} = S,/n for the unknown param-
eter 6.

2. Itisevident that, in considering T} as a pointwise estimator for 0, we have
introduced a certain amount of inaccuracy. It can even happen that the
numerical value of T} calculated from observations of x,,..., x, differs
rather severely from the true value 6. Hence it would be advisable to deter-
mine the size of the error.

It would be too much to hope that T*(w) differs little from the true value
0 for all sample points w. However, we know from the law of large numbers
that for every 6 > 0 and for sufficiently large n, the probability of the event
{|8 — T¥w)| > 4} will be arbitrarily small.

By Chebyshev’s inequality

V,T* 61 — 6)
6 né?

Po{l0 — T3l > 6} <

and therefore, for every 4 > 0,

b — 0 1
Pg{}B—T,TIS/'L /—(—n—-l} -

If we take, for example, A = 3, then with Py-probability greater than 0.888
(1 — (1/3%) = § ~ 0.8889) the event

[0 —TX <3

01 — 6)
n

will be realized, and a fortiori the event

10— TH <——,

2/n

since (1 — 6) < &.
Therefore

3
Pe{W TH < = Py T <0< T*+ > 0.8888.
2/n } { f \/5}

In other words, we can say with probability greater than 0.8888 that the exact
value of 6 is in the interval [T} — (3/2./n), T* + (3/2\/_ )]. This statement
is sometimes written in the symbolic form
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0~ T:‘ i (2 880/0)’

3
2ﬁ
where “ >88 9% ” means “in more than 88 9/ of all cases.”

The interval [T} — (3/2f ), T¥ + (3/2\[ )] is an example of what are
called confidence intervals for the unknown parameter.

Definition. An interval of the form

[V 1(@), Y5(w)]

where /;(w) and i/ ,(w) are functions of sample points, is called a confidence
interval of reliability 1 — 6 (or of significance level J) if

Pyl () < 0 < Yp(w)} =16
for all 0 e ©.

The preceding discussion shows that the interval

A
T* _ T*
[ \/ﬁ 2f ]
has reliability 1 — (1/4%). In point of fact, the reliability of this confidence
interval is considerably higher, since Chebyshev’s inequality gives only

crude estimates of the probabilities of events.
To obtain more precise results we notice that

{w: 0-Ta= A [0 9)} = {01y (TH 1) < 0 < Yo (TH m)},

where Y, = ,(T¥ n) and y, = Y,(T¥, n) are the roots of the quadratic
equation

2
@737 =200 - 0)

which describes an ellipse situated as shown in Figure 13.

Figure 13
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Now let
S, — nb
Fy(x) = Pg{—"—— < x}.
v ho(1 — 0)
Then by (6.24)
1

Jnb(1 —6)

sup | Fg(x) — O(x)| <

Therefore if we know a priori that
0<A<f=<l-A<],

where A is a constant, then
1
sup {Fg(x) — O(x)| < ——=
xp | F(x) A

and consequently

PyYs(TS n) < < Y(TH m} = P,,{w —rysa [0 9)}

= {M<,{}
Lm0 —0)
2

ASn

> Q2P - 1) —
Let A* be the smallest A for which
2 > 1 — 0%,

20(4) — 1) —
Qo) - 1) AT

where 4* is a given significance level. Putting § = * — (2/A\/r—z), we find
that A* satisfies the equation

1
P =1-— 55.
For large n we may neglect the term 2/A\/;z and assume that A* satisfies
1
*) — 1 — _§*
(1) =1 3 o*.

In particular, if A* =3 then 1 — 6* = 0.9973 .... Then with probability
approximately 0.9973

<O<T:+3 o1 = 9)
n n

®

or, after iterating and then suppressing terms of order O(n~%4), we obtain
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/* _ T* [T*(1 — T*
'1"']*_3 M]_I'_zseg'];*_i_:; Ln'[;'_) (9)

Hence it follows that the confidence interval

[T:—L,T:‘+i] (10)
2\/; 2/n
has (for large n) reliability 0.9973 (whereas Chebyshev’s inequality only
provided reliability approximately 0.8889).

Thus we can make the following practical application. Let us carry out
a large number N of series of experiments, in each of which we estimate the
parameter 0 after n observations. Then in about 99.73 9 of the N cases, in
each series the estimate will differ from the true value of the parameter by
at most 3/2\/;. (On this topic see also the end of §5.)

3. PROBLEMS

1. Letitbeknown a priorithat @has a valuein the set ®, < [0, 1]. Construct an unbiased
estimator for 6, taking values only in @,.

2. Under the hypotheses of the preceding problem, find an analog of the Rao-Cramér
inequality and discuss the problem of efficient estimators.

3. Under the hypotheses of the first problem, discuss the construction of confidence
intervals for 6.

§8. Conditional Probabilities and Mathematical
Expectations with Respect to Decompositions

1. Let (Q, &/, P) be a finite probability space and
9 = {Dl!"'aDk}

a decomposition of Q(D;e o/, P(D;) > 0,i=1,...,k,andD; + --- + D, =
Q). Also let 4 be an event from ./ and P(A|D;) the conditional probability of
A with respect to D;.

With a set of conditional probabilities {P(4|D;), i = 1, ..., k} we may
associate the random variable

n(w) = ) P(4|D)Ip(w) )

i=1

(cf. (4.5)), that takes the values P(4|D;) on the atoms of D,. To emphasize
that this random variable is associated specifically with the decomposition
9, we denote it by

P(A|2) or P(A|2)w)
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and call it the conditional probability of the event A with respect to the de-
composition 9.

This concept, as well as the more general concept of conditional probabili-
ties with respect to a g-algebra, which will be introduced later, plays an im-
portant role in probability theory, a role that will be developed progressively
as we proceed.

We mention some of the simplest properties of conditional probabilities:

P(A + B|2) = P(A4|2) + P(B|2); )
if 9 is the trivial decomposition consisting of the single set Q then

P(41Q) = P(4). ©)

The definition of P(4]2) as a random variable lets us speak of its expec-
tation; by using this, we can write the formula (3.3) for total probability
in the following compact form:

EP(A|2) = P(A). )]
In fact, since
k
P(4]12) = ), P(4|D)Ip(w),
i=1

then by the definition of expectation (see (4.5) and (4.6))

k k
EP(412) = ). P(A|D)P(D;) = ), P(4AD)) = P(A4).
i=1 i=1

i

Now let n = n(w) be a random variable that takes the values y,, ..., y;
with positive probabilities:

n(w) = .Zl yjIDj(w)5

where D; = {w:n(w) = y;}. The decomposition &, = {D;, ..., D} is called
the decomposition induced by 5. The conditional probability P(4]2,) will
be denoted by P(4|n) or P(4|n)w), and called the conditional probability
of A with respect to the random variable n. We also denote by P(4|n =y))
the conditional probability P(4|D;), where D; = {w:n(w) = y;}.

Similarly, if 5y, ,,...,n,, are random variables and 2
decomposition induced by #,, #,, ..., #,, with atoms

NisN2seees m 18 the

Dyl,yz,...,ym = {w’h(w) il STRERR r’m(w) = ym}a

then P(A|D,, ,,...,.) will be denoted by P(A4 |7y, 5, ..., n,) and called the
conditional probability of 4 with respect to n,, 15, ..., #,,.

ExaMPLE 1. Let £ and 75 be independent identically distributed random var-
iables, each taking the values 1 and 0 with probabilities p and q. For k =
0, 1, 2, let us find the conditional probability P(¢ + 5 = k|#) of the event
A = {w: ¢ + n = k} with respect to 7.
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To do this, we first notice the following useful general fact: if ¢ and 5 are
independent random variables with respective values x and y, then

PE+n=zIln=y)=PE +y=2). (5
In fact,
PE+n=2zn=y)

PE+n=fln=y =

P(n =y)
=P@+y=zn=w=P@+y=ZWU=m
P(n =y) P(n = y)
=P +y=2).

Using this formula for the case at hand, we find that
P&+ n=kin) =P +n=kin=0),_qw)
+ P + 1 =kln = DI y(w)
=P¢ = kﬂm:m(“’) +P{{=k~— 1}1(,,=1)(w).

Thus
ql{']=0)(w)s k=0,
P +n =kin) =1 ply-o(®) + gly=1y(w), k=1, (6)
pl {q=1)(w)’ k=2,
or equivalently
q(1 — n), k =0,
PE+n=kin)=1pl —n) +qny k=1, (7
1, k=2,
2. Let¢ = &(w)bearandom variable with valuesin theset X = {x,, ..., x,}:

&= ijIAj(w), Aj ={w:é= Xj}
i=1

and let 2 = {D,,..., D,} be a decomposition. Just as we defined the ex-
pectation of £ with respect to the probabilities P(4)),j =1, ..., L

1
E€ = Z ij(Aj), (8)
=1

it is now natural to define the conditional expectation of & with respect to 9
by using the conditional probabilities P(4;] 2), j=1,...,1 We denote
this expectation by E(¢]| 2) or E(¢| D) (w), and define it by the formula

1

ECI2) = } x;P(4;] D). ®

i=1

According to this definition the conditional expectation E(¢| 2) (w) is a
random variable which, at all sample points w belonging to the same atom
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P() _® E¢
J(3.1)
P(1D) — 2 E¢|D)
1(1) J(ll)
Pe|2) —2— E¢|2)
Figure 14

D;, takes the same value Y |_; x;P(4;|D;). This observation shows that the
definition of E(£|2) could have been expressed differently. In fact, we could
first define E(¢|D;), the conditional expectation of & with respect to D;, by

’ E[El,,
€(e10) = ¥ %Pty ( = heed). (10)
and then define
k
ECI2X0) = LECEID)() (an

(see the diagram in Figure 14).

It is also useful to notice that E(¢|D) and E(¢| 2) are independent of the
representation of &.

The following properties of conditional expectations follow immediately
from the definitions:

E(al + bn| D) = akE(¢| D) + bE(n| D), a and b constants; (12)

E(SIQ) =EC; (13)
E(C|2) = C, C constant; (14)

if £ = I ,(w) then
E(C| 2) = P(4]| 2). 15)

The last equation shows, in particular, that properties of conditional prob-
abilities can be deduced directly from properties of conditional expectations.
The following important property generalizes the formula for total

probability (5):
EE(¢] 9) = EL. (16)

For the proof, it is enough to notice that by (5)
) 1 1
EE¢|2)=E ) x;P(4;12)= ) x;EP(4;| 2) = Y x;P(4) = EL
i=1 j=1 i=1
Let 2 = {D,,...,D,} be a decomposition and n = n(w) a random
variable. We say that 5 is measurable with respect to this decomposition,
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or Y-measurable, if 2, <X 2, i.e. n = n(w) can be represented in the form

k
n(w) = ;1 yilp, (w),

where some y; might be equal. In other words, a random variable is 2-
measurable if and only if it takes constant values on the atoms of 2.

ExaMpLE 2. If 9 is the trivial decomposition, 2 = {Q}, then 5 s Z-measur-
able if and only if n = C, where C is a constant. Every random variable
1 is measurable with respect to 2,.

Suppose that the random variable 7 is £-measurable. Then

E(¢n| 2) = nE(C| 2) an
and in particular
Eml2)=n  (Eml2,) =n). (18)
To establish (17) we observe that if £ = Z;"=1 x;1 4, then

SRR

Vil ap,

lIMa—

and therefore
k

E(n| 2) = Zl Z x;y;P(A4;D;19)

J

= Z Z X;¥i Z P(A4;D;| D) p, ()

ji=1i=1

1 k

j=1i=1
1k
=.Zl Z,l jyiP(Alei)ID;(w)~ (19)

On the other hand, since I}, = I, and I, - I, = 0, i # m, we obtain

k !
nEE 9) = [Z y.-ID..(w)] | T %Pyl @)]

k

k 1
= [; vl D.-(“’)]' 2 ; ij(AjIDm)] I p,(w)

m=1
k i
= 'Zl Zl yliP(A le) ID(w)

which, with (19), establishes (17).
We shall establish another important property of conditional expectations.
Let 2, and 2, be two decompositions, with 2, < 2, (2, is “finer”
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than 2,). Then
E[E¢| 2,)| 2,1 = EC| 2)). (20)
For the proof, suppose that
P, ={Dyy,---, Dim} Dy ={Dy15...s Dan}.
Thenif & = Y [, x;I,,, we have

EE 25) = Z x;P(4;] 9),
and it is sufficient to establish that
E[P(4;| 2,)| 2.1 = P(4;1 2,). (21)
Since .
P(4,| 22) = 3, PP,

we have

E[P(4;| 22)| 2.] i P(A4;1D,,)P(D2,| 21)

q

S P(4,|Ds,) [ ) P(Dz‘,wlp)fpl,,]
1 p=

q=

= Y Ip,- Y P(4;|D3)P(D4|Dy,)
=1

p=1 q

= Z IDlp‘ Z P(AleZq)P(D2q|D1p)
p=1 {g: D2g S D1p}

= i 1 . P(AJ'DZq) P(DZq)
L. 'Dip @Dt Diy P(D,,) P(Dy,)

= Z IDIP'P(Alelp) = P(Ajl 2,),

which establishes (21).

When 2 is induced by the random variables 1y, ..., 0 (2 = Z,,,...u)
the conditional expectation E(¢| 2, ,) is denoted by E(C|ny, ..., M),
or E(¢|n,,...,m)w), and is called the conditional expectation of & with

respect to Ny, ..., fy.
It follows immediately from the definition of E(£|#) that if £ and # are

independent, then

E(¢In) = EC. (22)
From (18) it also follows that

E(min) =n. (23)
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Property (22) admits the following generalization. Let ¢ be independent
of 92 (i.e. for each D;e 2 the random variables ¢ and I, are independent).
Then

E(C| 2) = EC. (24)
As a special case of (20) we obtain the following useful formula:
ELE(¢In1, m2)In1] = E(CIny)- (25)

ExaMpLE 3. Let us find E(¢ + #n|#) for the random variables ¢ and 5 consid-
ered in Example 1. By (22) and (23),

E€+nin)=ES+n=p+n.

This result can also be obtained by starting from (8):

2
E(€+n|n)=kZ kP(¢ +n=kin)=p(l —n)+4qn+2pn=p+n.
=0

ExampLE 4. Let ¢ and 5 be independent and identically distributed random
variables. Then

+
EEIE +m) = EGrIE +m) =30, 26)
In fact, if we assume for simplicity that £ and # take the values 1,2, ..., m,

wefind(l <k <m2<!<2m)

PE=ke+nq=p=rC=ketn=D _PC=kn=1-k

PE+n=1D PE+n=1
_PE=kP=1-k _Po=kP¢=1-k
PE+n=1 PE+n=1D

=P =k|E+n=1.

This establishes the first equation in (26). To prove the second, it is enough
to notice that

KEIE+n)=EQIE+n)+EMIE+n) =EC+n|E+n=¢+n.

3. We have already noticed in §1 that to each decomposition & =
{Dy, ..., D} of the finite set Q there corresponds an algebra a( 2) of subsets
of Q. The converse is also true: every algebra % of subsets of the finite space
Q generates a decomposition 2 (# = a( 2)). Consequently there is a one-
to-one correspondence between algebras and decompositions of a finite
space Q. This should be kept in mind in connection with the concept, which
will be introduced later, of conditional expectation with respect to the special
systems of sets called g-algebras.

For finite spaces, the concepts of algebra and g-algebra coincide. It will
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turn out that if & is an algebra, the conditional expectation E(¢|%) of a
random variable ¢ with respect to 4 (to be introduced in §7 of Chapter II)
simply coincides with E(£|9), the expectation of ¢ with respect to the de-
composition 2 such that # = «( 2). In this sense we can, in dealing with
finite spaces in the future, not distinguish between E(¢|#) and E(¢| 2),
understanding in each case that E(£]| %) is simply defined to be E(¢| 2).

4. PROBLEMS

1. Give an example of random variables ¢ and n which are not independent but for
which

ECln) = ES.
(Cf. (22).)
2. The conditional variance of ¢ with respect to 2 is the random variable
V(|92) = E[(¢ - E¢12)*|12).
Show that

V& = EV(¢|2) + VE(|2).

3. Starting from (17), show that for every function f = f(n) the conditional expectation
E(|n) has the property

ELA(MEEIM] = E[cf ().

4. Let £ and n be random variables. Show that inf, E(n — f (9))? is attained for f*(§) =
E(n|&). (Consequently, the best estimator for # in terms of &, in the mean-square sense,
is the conditional expectation E(n|%)).

5. Let &4,...,¢&,, T be independent random variables, where &, ..., &, are identically
distributed and  takes the values 1, 2,...,n. Show that if S, = &, + --- + & is the
sum of a random number of the random variables,

ES.|7) = 1By, V(S |1) = V¢,
and
ES, = Et-E&,, VS, =Et- V¢ + Vi-(EE)>
6. Establish equation (24).

§9. Random Walk. 1. Probabilities of Ruin and
Mean Duration in Coin Tossing

1. The value of the limit theorems of §6 for Bernoulli schemes is not just
that they provide convenient formulas for calculating probabilities P(S, = k)
and P(A < S, < B). They have the additional significance of being of a
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universal nature, i.e. they remain useful not only for independent Bernoulli
random variables that have only two values, but also for variables of much
more general character. In this sense the Bernoulli scheme appears as the
simplest model, on the basis of which we can recognize many probabilistic
regularities which are inherent also in much more general models.

In this and the next section we shall discuss a number of new probabilistic
regularities, some of which are quite surprising. The ones that we discuss are
again based on the Bernoulli scheme, although many results on the nature

of random oscillations remain valid for random walks of a more general
kind.

2. Consider the Bernoulli scheme (Q, &7, P), where Q = {w: @ = (x4, ..., X,),
x; = 1}, & consists of all subsets of Q, and p(w) = p*“g" "), wW(w) =
(3 x; + n)/2. Let {(w) = x;, i = 1,...,n. Then, as we know, the sequence
¢4, ..., &, is a sequence of independent Bernoulli random variables,

P¢&i=1)=p, Pli=-1)=¢q, p+gqg=1

Let us put So =0, S, =¢;, + -+ &, 1 <k <n The sequence S,
S;, ..., S, can be considered as the path of the random motion of a particle
starting at zero. Here S,,, = S, + &, ie. if the particle has reached the
point S, at time k, then at time k + 1 it is displaced either one unit up (with
probability p) or one unit down (with probability g).

Let A and B be integers, A < 0 < B. An interesting problem about this
random walk is to find the probability that after n steps the moving particle
has left the interval (4, B). It is also of interest to ask with what probability
the particle leaves (A4, B) at A or at B.

That these are natural questions to ask becomes particularly clear if we
interpret them in terms of a gambling game. Consider two players (first
and second) who start with respective bankrolls (—A) and B. If £, = +1,
we suppose that the second player pays one unit to the first; if £, = — 1, the
first pays the second. Then S; = &, + --- + &, can be interpreted as the
amount won by the first player from the second (if S, < 0, this is actually
the amount lost by the first player to the second) after k turns.

At the instant k < n at which for the first time S, = B (S, = A4) the bank-
roll of the second (first) player is reduced to zero; in other words, that player
is ruined. (If k < n, we suppose that the game ends at time k, although the
random walk itself is well defined up to time n, inclusive.)

Before we turn to a precise formulation, let us introduce some notation.

Let x be an integer in the interval [4, Bland for0 < k < nlet S§ = x + S,

75 =min{0 <[ < k: Sf = A or B}, (1)

where we agree to take 1§ = kif A < §f < Bforall0 <[l < k.

For each kin 0 < k < n and x € [4, B, the instant 13, called a stopping
time (see §11), is an integer-valued random variable defined on the sample
space Q (the dependence of 7§ on € is not explicitly indicated).



§9. Random Walk. I. Probabilities of Ruin and Mean Duration in Coin Tossing 85

It is clear that for all | < k the set {w: 1§ = I} is the event that the random
walk {S7,0 < i < k}, starting at time zero at the point x, leaves the interval
(A, B) at time L It is also clear that when [ < k the sets {w: 1} = [, ST = A}
and {w: i = I, S§f = B} represent the events that the wandering particle
leaves the interval (A4, B) at time / through A or B respectively.

For 0 < k < n, we write

A= {1 =1, 8 = A},
k

0<li<

IA

()]
By = {w:tf =1, = B},
k

O<i<

IA

and let
u(x) = P(5),  Bulx) = P(%5)

be the probabilities that the particle leaves (A4, B), through A or B respectively,
during the time interval [0, k]. For these probabilities we can find recurrent
relations from which we can successively determine o,(x),..., a,(x) and

,Bl(x)’ ] ﬂn(x)'
Let, then, A < x < B. It is clear that ay(x) = Bo(x) = 0. Now suppose

1 < k < n. Then by (8.5),
Bux) = P(%;) = P(%;|ST = x + DP(¢, = 1)
+ P(%1ST = x — DP(, = —-1)
=pP(#IST=x+ 1) +qP&I|Si=x-1). (3)
We now show that
P(#5ST = x + 1) = P(#E), P(#;|S5 = x — 1) = P(#;Z)).
To do this, we notice that %5 can be represented in the form
B ={w:(x,x+&,....,x+ & + -+ &E)eBY,
where B is the set of paths of the form
(X, X+ Xp5.0es X+ X +-00X)

with x; = + 1, which during the time [0, k] first leave (4, B) at B (Figure 15).
We represent Bj in the form Bi**! + By*~!, where Bf**! and By*~!
are the paths in Bj for which x; = +1 or x, = — 1, respectively.
Notice that the paths (x,x + L, x + 1 + x3,...,x + L + x5 + --- 4+ x)
in B{>**! are in one-to-one correspondence with the paths

+Lx+1+x,. 0, x+ 14X 0, x+14+x4 -+ x)

in BfT1. The same is true for the paths in B{*~!. Using these facts, together
with independence, the identical distribution of &, ..., &, and (8.6), we
obtain
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\

Figure 15. Example of a path from the set By

P(%i|Si=x+1)
= P(%lé =1)
=Pllex+&,..ox+ 8+ + 8)eBRE = 1}
=P{x+Lx+1+&,..,x+1+&+--+ E)eBit])
=P{x+Lx+14+¢,...,x+1+¢& +---+&_DeBitY)
= P(#it)).

In the same way,

P(%;|ST = x — 1) = P(#:- ).
Consequently, by (3) with xe(4, B)and k < n,

Bu(x) = pBi—1(x + 1) + gBi—1(x — 1), C))
where
B(B) =1 B(4) =0, 0<l<n (5)
Similarly
a(x) = poy—1(x + 1) + qa—y(x — 1) (6)
with

o,(4) =1, o(B) = 0, 0<li<n

Since ay(x) = Bo(x) = 0, x € (4, B), these recurrent relations can (at least
in principle) be solved for the probabilities

o (x), ..., a,(x) and By(x),..., B.(x).

Putting aside any explicit calculation of the probabilities, we ask for their
values for large n.

For this purpose we notice that since #;_, = %%, k < n, we have
Bi-1(x) < Bi(x) < 1. It is therefore natural to expect (and this is actually
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the case; see Subsection 3) that for sufficiently large n the probability B,(x)
will be close to the solution B(x) of the equation

B(x) = pB(x + 1) + gB(x — 1) M
with the boundary conditions
BB) =1,  p4) =0, @®

that result from a formal approach to the limit in (4) and (5).

To solve the problem in (7) and (8), we first suppose that p # g. We see
easily that the equation has the two particular solutions a and b(q/p)*, where
a and b are constants. Hence we look for a solution of the form

B(x) = a + b(g/p)". ®
Taking account of (8), we find that for 4 < x < B
(a/p)* — (a/p)*
(a/p)® — @/p*

Let us show that this is the only solution of our problem. It is enough to
show that all solutions of the problem in (7) and (8) admit the representa-
tion (9).

Let B(x) be a solution with f(4) =0, B(B) = 1. We can always find
constants d@ and b such that

a+bp) =B, a+bgpy*tt = BA+ 1)
Then it follows from (7) that

B4 +2) = a+ bg/p)**?

B(x) = (10

and generally
B(x) = a + b(a/p)~

Consequently the solution (10) is the only solution of our problem.
A similar discussion shows that the only solution of

a(x) = pa(x + 1) + qa(x — 1), x€ (A, B) (11)
with the boundary conditions
a(A) =1, oB)=0 (12)

is given by the formula

_ (p/9)® — @a/p)
oax) = ——w—_—(p/q)" ~ A<x<B. (13)

If p = q = 4, the only solutions B(x) and a(x) of (7), (8) and (11), (12) are
respectively
x— A

B4 (14)

B(x) =

and
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a(x) = g :;‘1 (15)
We note that
alx) + B(x) =1 (16)

for0<p<l1.

We call a(x) and f(x) the probabilities of ruin for the first and second
players, respectively (when the first player’s bankroll is x — A, and the second
player’s is B — x) under the assumption of infinitely many turns, which of
course presupposes an infinite sequence of independent Bernoulli random
variables &;, £,, ..., where & = +1 is treated as a gain for the first player,
and & = —1 as a loss. The probability space (Q, .o/, P) considered at the
beginning of this section turns out to be too small to allow such an infinite
sequence of independent variables. We shall see later that such a sequence
can actually be constructed and that f(x) and a(x) are in fact the probabilities
of ruin in an unbounded number of steps.

We now take up some corollaries of the preceding formulas.

If we take A = 0, 0 < x < B, then the definition of f(x) implies that this
is the probability that a particle starting at x arrives at B before it reaches 0.
It follows from (10) and (14) (Figure 16) that

x/B, p=gq=73,
= x 1
WL

Now let g > p, which means that the game is unfavorable for the first
player, whose limiting probability of being ruined, namely a = «(0), is given
by

__(py -1
(a/p)® — (a/p)*”

Next suppose that the rules of the game are changed : the original bankrolls
of the players are still (— 4) and B, but the payoff for each player is now 3,

B(X)‘

14— — =

[
o

Wt ——

Figure 16. Graph of fi(x), the probability that a particle starting from x reaches B
before reaching 0.
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rather than 1 as before. In other words, now let P(§; = 4) = p,P(¢; = —3) =
g. In this case let us denote the limiting probability of ruin for the first player
by ,,,. Then

v~ @p* -1
Y27 (a/p)*® - (a/p**

and therefore

(g +1
“2 = S+ @t

if g >,p.

Hence we can draw the following conclusion: if the game is unfavorable
to the first player (i.e., q > p) then doubling the stake decreases the probability
of ruin.

3. We now turn to the question of how fast «,(x) and B,(x) approach their
limiting values a(x) and f(x).
Let us suppose for simplicity that x = 0 and put

% = 0,0,  B.=PBu0), v.=1— (0 + B
It is clear that
v, =P{4 <S,<B0<k<n),
where {4 < S, < B, 0 < k < n} denotes the event

() {4 <S8, <B}.

0<k<n

Let n = rm, where r and m are integers and

C1=€1+"'+€m’

Then if C = |A| + B, it is easy to see that
{A<S,<B1<k<rm}c {|{,|<C,....|{|<C}
and therefore, since {, ..., {, are independent and identically distributed,

W< P{UGLI<C, 1L < Ch = l:[1 P{GI < C} = (P{LI < CY. (18)

We notice that V{, = m[1 — (p — ¢)*]. Hence, for 0 < p < 1 and suffi-
ciently large m,

P{I¢,| < C} <, (19)

where ¢, < 1,since V{, < C2if P{|{,| < C} =1



90 I. Elementary Probability Theory

If p=0or p=1, then P{|{,| < C} = 0 for sufficiently large m, and
consequently (19) is satisfied for 0 < p < 1.
It follows from (18) and (19) that for sufficiently large n

Vn < €, (20)

where ¢ = ¢}/™ < 1.

According to (16), o + B = 1. Therefore
(¢~ o) + (B = B) =,
and since o0 > a,, § > f,, we have
O<a—a,<9y, <6,
0<B-B,<y.<¢, e <l

There are similar inequalities for the differences a(x) — «,(x) and B(x) — B,(x).

4. We now consider the question of the mean duration of the random walk.

Let m,(x) = Et; be the expectation of the stopping time },k < n. Pro-
ceeding as in the derivation of the recurrent relations for f,(x), we find that,
for x € (4, B),

m(x)=Etf= Y IP(t} =)

1<l<k

Y L[PG = 11E, = 1) + qP(zf = 1]¢, = —1)]

1<i<k

= X LIpPEH = 1= 1)+ qP@Gl =1 - 1]
1<i<k

= Y U+ DIpPEI =D+ qP@z{ = D]
0<i<k—-1

=pm_(x + 1) + gm_,(x — 1)
+ Y [PPEIi =D+ qP(riZi = D]

O<l<k-1
=pm_(x+ 1)+ gm_,(x—-1)+ L

Thus, for x € (4, B)and 0 < k < n, the functions m,(x) satisfy the recurrent
relations

m(x) =1+ pmy_y(x + 1) + gm_(x — 1), (21)
with my(x) = 0. From these equations together with the boundary conditions
my(A) = my(B) = 0, (22)

we can successively find m,(x), ..., m,(x).
Since my(x) < my . (x), the limit

m(x) = lim m,(x)

n- oo



§9. Random Walk. I. Probabilities of Ruin and Mean Duration in Coin Tossing 91

exists, and by (21) it satisfies the equation
m(x) =1+ pm(x + 1) + gm(x — 1) (23)
with the boundary conditions
m(A) = m(B) = 0. 24)
To solve this equation, we first suppose that
m(x) < oo, x € (A, B). (25)
Then if p # q there is a particular solution of the form x/(g — p) and the
general solution (see (9)) can be written in the form
m(x) = X _ta+ b(g)x.
q9—p p
Then by using the boundary conditions m(A) = m(B) = 0 we find that

m(x) = p—iq (BB(x) + Au(x) — x], 26)

where B(x) and a(x) are defined by (10) and (13). If p = q = 4, the general
solution of (23) has the form

m(x) = a + bx — x?,
and since m(A4) = m(B) = 0 we have
m(x) = (B — x)(x — A). 27N

It follows, in particular, that if the players start with equal bankrolls

(B = — A), then
m(0) = B2,

If we take B = 10, and suppose that each turn takes a second, then the
(limiting) time to the ruin of one player is rather long: 100 seconds.

We obtained (26) and (27) under the assumption that m(x) < oo, x € (4, B).
Let us now show that in fact m(x) is finite for all x € (4, B). We consider only
the case x = 0; the general case can be analyzed similarly.

Let p = g = 3. We introduce the random variable S, defined in terms of
the sequence S,, Sy, ..., S, and the stopping time 7, = 12 by the equation

Sep = 2 Sile,=iy(@). (28)
k=0
The descriptive meaning of S, is clear: it is the position reached by the

random walk at the stopping time t,. Thus, if 7, < n, then S, = A4 or B;
ift,=nthen4 < S, <B.
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Let us show that when p = q = 4,
ES, =0, (29)
ES? = Ez,. (30)

To establish the first equation we notice that

ES:,. = Z E[Skl(t,.=k)(w)]
k=0

S E[S, L, (@)] + PLCETHNE)
k=0 =

ESn + Z E[(Sk - Sn)I(t,.=k)(w)], (31)

k=0

where we evidently have ES,, = 0. Let us show that

kZoE [(Sk — Sn)I(t,‘:k)(w)] = 0.

To do this, we notice that {r, >k} = {4 <SS, <B,...,4 < S, < B}
when 0 < k < n. The event {4 < §; < B,..., 4 <8, < B} can evidently
be written in the form

{w: (€1, -, &) € Ayl (32)
where A, is a subset of {—1, +1}*. In other words, this set is determined by
just the values of £, ..., &, and does not depend on &, ,,..., &,. Since

{Tn = k} = {Tn >k — l}\{Tn > k}’

this is also a set of the form (32). It then follows from the independence of
¢y, ..., &, and from Problem 10 of §4 that the random variables S, — S, and
I, -, are independent, and therefore

E[(Sn - Sk)I{r"=k)] = E[Sn - Sk] : EI(:,.:k) =0.

Hence we have established (29).
We can prove (30) by the same method:

ESzz,. = Z ESfI(:,.=k) = Z E([S, + (Sx — Sn)]zl{r,.=k))
k=0 k=0
= kzo[ESi?I(t”=k} + 2ES,(Sk — S (1, =1y

+E(S, — Sk)zl(t,.=k)] =ES] - Z E(S, — Sk)zl(r,.=k)
k=0

=n-— i(n — k)P(z, = k) = ikp(zn = k) = Ex,.
k=0

k=0
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Thus we have (29) and (30) when p = g = 3. For general p and ¢
(p + ¢ = 1) it can be shown similarly that

ES., =(p — 9 -E1, (33)
E[S., — 1. E£]? = V¢, Ex,, (34

where E¢, =p — ¢, V&, =1 - (p — 9%

With the aid of the results obtained so far we can now show that
lim, ., , m,(0) = m(0) < co.

If p = g = 4, then by (30)

Etr, < max(4?, B?). 335
If p # g, then by (33),
< max(|A4], B) (36)
Ip — ql

from which it is clear that m(0) < oo.
We also notice that when p = g = %

ET" = EStZ'l = A2 'an + B2 'ﬂ" + E[S,?I{A<s"<3)]
and therefore
A%.oa, + B*- B, <Et, < A?-a, + B*- B, + max(4?, B®)-y,.

It follows from this and (20) that as n — oo, E1,, converges with exponential
rapidity to

B A
0) =42 BB = A*- —— — B*.——— = |AB|.
m0) = A%a + B = A m—— — B = | 4B|

There is a similar result when p # g:

oA + BB

Ez, » m(0) = , exponentially fast.

5. PROBLEMS
1. Establish the following generalizations of (33) and (34):
| ESE, = x + (p — 9T,
E[S. — 1% -E&J* = V¢, -Etl.
2. Investigate the limits of a(x), f(x), and m(x) when the level 4 | — co.

3. Let p = q = {in the Bernoulli scheme. What is the order of E|S, | for large n?
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4. Two players edch toss their own symmetric coins, independently. Show that the
probability that each has the same number of heads after n tossesis 272" Y 7_, (C¥).
Hence deduce the equation Y& _, (C¥)? = C3,.

Let o, be the first time when the number of heads for the first player coincides with
the number of heads for the second player (if this happens within n tosses; o, = n + 1
if there is no such time). Find Emin(o,, n).

§10. Random Walk. II. Reflection Principle.
Arcsine Law

1. As in the preceding section, we suppose that £,, &,, ..., &,, is a sequence
of independent identically distributed Bernoulli random variables with

PE=1D)=p P&=-1)=gq
Si=& +---+ &, 1<k<2n;, §,=0.
We define
0y, = min{l < k < 2n: §, = 0},
putting g,, = w0 if §; # 0for1 <k < 2n.

The descriptive meaning of a,, is clear: it is the time of first return to

zero. Properties of this time are studied in the present section, where we

assume that the random walk is symmetric, i.c.p = ¢ = 4.

For 0 < k < n we write
Uy = P(S5 = 0), fax = P02, = 2K). ¢))
It is clear that u, = 1 and
Uy = Ch- 272K

Our immediate aim is to show that for 1 < k < n the probability f,, is
given by

1
Ju= ﬂuZ(k—l)' @)

It is clear that
{00a=2k} ={S; #0,85,#0,...,85-; # 0,8, =0}
for 1 < k < n, and by symmetry

S =P{S1 #0,..., 8% 1 #0,5, =0}
= 2P{Sl > O, ""SZk—l > O, S2k = 0}. (3)
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A sequence (Sy, ..., Sy) is called a path of length k; we denote by L,(A4)
the number of paths of length k having some specified property A. Then

Ju=2 Z Ly(S;>0,...,854-1>0,8 =0,

(@2 + 14 2202 an)
and Sy = Aok ts s Son = Gayr + -0+ Age) 277"
=2L,(S;>0,..., 851> 0,85 =0)-27% “)
where the summation is over all sets (a4 4, - - -, dz,) Withag; = + 1.

Consequently the determination of the probability f,, reduces to calcula-
ting the number of paths L, (S; > 0,..., Sy—1 > 0, S5, = 0).

Lemma 1. Let a and b be nonnegative integers, a — b > 0 and k = a + b.
Then

a—>b
k

Lk(S1>0,.--,Sk_1>0,Sk=a_b)= C:. (5)

Proor. In fact,

L($;>0,...,8_.,>0,S,=a—-b)
=L, =1,8,>0,...,85_-,>0,S,=a—->b)
=L, =1,8=a—-b)—L(S;,=1,5,=a—b;
and3i,2 <i <k — 1, such that S; < 0). (6)

In other words, the number of positive paths (S, S,, ..., S;) that originate
at (1, 1) and terminate at (k, a — b) is the same as the total number of paths
from (1, 1) to (k, a — b) after excluding the paths that touch or intersect the
time axis.*

We now notice that

LS, =1,S=a—-b;3i,2<i<k-1,suchthat§; <0)
=L(S;=—-1,8=a-0D), @)

i.e. the number of paths from a = (1, 1) to 8 = (k, a — b), neither touching
nor intersecting the time axis, is equal to the total number of paths that
connect o* = (1, —1) with B. The proof of this statement, known as the
reflection principle, follows from the easily established one-to-one corre-
spondence between the paths 4 = (Sy, ..., S,, Sa+1, ..., S) joining o and
B,and paths B = (—=S,,..., =S4, Sa+1, - - -» ) joining «* and B (Figure 17);
a is the first point where 4 and B reach zero.

* A path (S,, . .., S)) is called positive (or nonnegative) if all S; > 0 (S; = 0); a path is said to
touch the time axis if §; > O orelse §; < 0, for]1 <j < k,and thereisani, 1 <i <k, such
that S; = 0; and a path is said to intersect the time axis if there are two times i and j such that
§;>0and S; < 0.
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Figure 17. The reflection principle.

From (6) and (7) we find
L($;>0,...,85-,>0,S,=a—-0»b)
=L, =1,8S=a-b)—-L(S;=-1,S.=a-0»)
a—-b

— a—1 a —
—Ck—-l_ k—1 — k>

k

which establishes (5).
Turning to the calculation of f,,, we find that by (4) and (5) (with a = k,
b=k-1),
S =2L3(8; > 0,..., 851 >0,8,,=0)-27%*
= 2L2k_1(sl > 0, ceey S2k—l = 1) '2_2k

1, 1

= 2‘2—2k‘2k —1 2k—1 =§Eu2(k—1)'

Hence (2) is established.
We present an alternative proof of this formula, based on the following
observation. A straightforward verification shows that

1
% Upk-1) = Upk—1) — U2ps ®

At the same time, it is clear that
{02, = 2k} = {03, > 2(k — D}\{02, > 2k},
{63,b>21} ={8; #0,...,55 # 0}
and therefore
{02n =2k} ={S; #0,..., S4-1) #O\{S; #0, ..., S # 0}.
Hence

2k = P{Sl #0""’S2(k—1)¢0} - P{SI #0,...,52“#0},
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Figure 18

and consequently, because of (8), in order to show that f,, = (1/2Zk)uy
it is enough to show only that

Ly(S; #0,...,85 #0) = Ly(Sy = 0). &)
For this purpose we notice that evidently
LS, #0,...,8 #0)=2L,(S;, >0,...,Sy4 > 0).
Hence to verify (9) we need only establish that
20,8, >0,...,8,;4 >0)=L,(S; =0,...,85 =>0) 10)
and
LS, =0,...,85 = 0) = L (S5 = 0). (11)

Now (10) will be established if we show that we can establish a one-to-one
correspondence between the paths A = (S, ..., Sy) for which at least one
S; = 0, and the positive paths B = (S, ..., Sy).

LetA = (S;, ..., S,;) be a nonnegative path for which the first zero occurs
at the point a (i€, S, = 0). Let us construct the path, starting at (g, 2),
(S, + 2,841 +2,...,8; + 2) (indicated by the broken lines in Figure 18).
Then the path B = (S,,...,8,_1, S, + 2, ..., S, + 2) is positive..

Conversely, let B = (S,, ..., S,,) be a positive path and b the last instant
at which S, = 1 (Figure 19). Then the path

A=(Sl9'--»Sb7Sb+1 _2,---,Sk_2)

A

P
1 o~ A
IR VAR VAN

b
Figure 19
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y=( -m

Figure 20

is nonnegative. It follows from these constructions that there is a one-to-one
correspondence between the positive paths and the nonnegative paths with
at least one S; = 0. Therefore formula (10) is established.

We now establish (11). From symmetry and (10) it is enough to show that

Ly (Sy>0,...,8%>0)+ Ly (S; =0,...,8,, >0and 34,
1 < l < 2k, Such that Si = 0) = L2k(SZk = 0).

The set of paths (S,, = 0) can be represented as the sum of the two sets
€, and ¥,, where ¥, contains the paths (S, ..., S,) that have just one
minimum, and %, contains those for which the minimum is attained at at
least two points.

Let C, € €, (Figure 20) and let y be the minimum point. We put the path
C, =(So, Sy, - .-, S3) in correspondence with the path C¥ obtained in the
following way (Figure 21). We reflect (S,, Sy, ..., S;) around the vertical
line through the point I, and displace the resulting path to the right and
upward, thus releasing it from the point (2k, 0). Then we move the origin to
the point (I, —m). The resulting path C¥ will be positive.

In the same way, if C, € ¥, we can use the same device to put it into
correspondence with a nonnegative path C%.

(2k, 2m)

Figure 21
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Conversely, let Cf = (S, >0,...,S, > 0) be a positive: path with
S,k = 2m (see Figure 21). We make- it correspond to the path C, that is
obtained in the following way. Let p be the last point at: which: §, = m.
Reflect (S,, ..., S,,) with respect to the vertical line x = p and displace the
resulting path downward and to the left. until its right-hand end ceincides
with the point (0;.0). Then we move the origin to the left-hand end of the
resulting path (this is just the path drawn in Figure 20): The resulting path
Cy =(So,.-.,S85) has a minimum at S,, =0. A similar construction
applied to paths (S, >0, ...,S,, = 0and 3i,1 < i < 2k, with-S; =0} leads
to paths for which there are at least two minima and S,, = 0. Hence we have
established a one-to-one correspondence, which establishes (11).

Therefore we have established (9): and’ consequently also: the formula
Jax = g1y — us = (1/2k)uzge—y).

By Stirling’s formula

Uy = C% 272 ~ L, k— oo.

N

Therefore

s 1
2k 2\/Ek3/2’

Hence it follows that the expectation of the first time when zero is-reached,
namely
n

Emin(o,,,2n).= ) 2kP(o,, = 2k) + 2nu,,
1

k=
n
= Z Upg—1) + 2nuy,,
k=1

can be arbitrarily large..

In addition, ) %, uy4-4) = o0, and consequently the limiting value of
the mean time for the walk to reach zero (in an unbounded number of steps)
is 0.

This property accounts for many of the unexpected properties of the
symmetric random walk that we have been discussing. For example, it
would be natural to suppose that after time 2n the number of zero net scores
in a game between two equally matched players (p = g = 1), i.e. the number
of instants i at which S; = 0, would be proportional to 2n. However, in fact
the number of zeros has order \/ﬂ (see [F1] and (15) in §9, Chapter VII).
Hence it follows, in particular, that, contrary to intuition, the “typical” walk
(So, S5 - .-, S,) does not have a sinusoidal character (so that roughly half the
time the particle would be on the positive side and half the time on the negative
side), but instead must resemble a stretched-out wave. The precise formulation
of this statement is given by the arcsine law, which we proceed to investigate.
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2. Let P, ,, be the probability that during the interval [0, 2n] the particle
spends 2k units of time on the positive side.*

Lemma 2. Let ug = 1 and 0 < k < n. Then

Poy,on = gy Uzp 2k (12)

PROOF. It was shown above that f,, = u,4_;, — u3,. Let us show that

k
Uy = Zer'UZ(k—r)' (13)
r=1

Since {S,, = 0} < {0,, < 2k}, we have

1

{Sz =0} = {Ss = 0} N {o,, < 2k} = 1 k{SZk = 0} N {0, = 21}

A

Consequently

Uy = P(Sy = 0) Z P(Sy = 0,0,, = 2])

1<i<k

Y. P(Sa = 0oy, = 2)P(a2, = 2).

1<i<k

But

P(S,, =0l6,,=2)) =P(S;,=0|S; #0,...,8,,-, # 0,5, =0)
=P+ Cusi+--+&)=0|S;#0,...,85-1 #0,5,=0)
=Py + Casr + -+ 82) =05, =0)
= P41+ + S = 0) = P(Sy4-y = 0).

Therefore

Uk = P(SZ(k—l) = 0)P(a,, = 21),

1<i<k

IA

which establishesi(13).

- We turn now to the proof of (12). It is obviously true for k = O and k = n.
Now let 1 < k < n — 1. If the particle is on the positive side for exactly 2k
instants, it:must pass through zero. Let 2r be the time of first passage through
zero. There:are two possibilities: either S, > 0,k < 2r,or §, <0,k < 2r.

The number of paths of the first kind is easily seen to be

192 2(n— 1 92 g
(2«2 rf;r)‘z " r)PZ(k—r),Z(n—r) =2 2 "'fzr'PZ(k—r),Z(n—r)-

* We say that the particle:is on the positive side in the interval [m — 1, m] if one, at least, of the
values S,,_, and S,, is positive.
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The corresponding number of paths of the second kind is
%' 2% Jar- P2k,2(n—r)'

Consequently, for1 <k <n -1,

k 1 k )
Pyon = Z S Pa—r), 20-r) T 3 Z J2r  Pak,20n-ny- (14)
r=1

r=1

N —

Let us suppose that P, 5, = Uy - Usym—o holds form = 1,...,n — 1. Then
we find from (13) and (14) that

k k
=1 . . L, . .
Pk 2n = 2U2n— 2k Z Jar - Upk—2r + U Z Sor Uan—2r— 2k
r=1 r=1

— 1 1 . = .
= JUzp—2k " Uak + 3Uz " Uzp—2x = Uy~ Upp— 2

This completes the proof of the lemma.

Now let y(2n) be the number of time units that the particle spends on the
positive axis in the interval [0, 2n]. Then, when x < 1,

P{1 < 72n) <x

2 2n } tk, 1/2 <(2k/2n) < x}

PZk, 2n-

Since

as k — oo, we have

1

Py an = gk Uz R
N (n—k) )
n/k(n — k)

ask —»ocandn — k — ocC.
Therefore
1 |k k\ |2
Pyt 2n — _'I:“<1—— -0, n- oo,
{k: 1/2 <(2k/2n)< x} {k:12<(2kj2m<x} TR | N n ‘

whence

1~ dt
Pan—t[ L0 e

2 , e d
{k: 1/2<(Zk/2m) < x} Tliz J/t(l —1t) ’

But, by symmetry,

1
sz,zn -2
{k:k/n<1/2}
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and

f \/t(l—..t ; arcsin \/_

Conseguently we have proved the following theorem.

Theorem :(Arcsine Law). The probability that the fraction of the time spent
by the particle on the positive side is at most x tends to 2n~ ! arcsin

Y Py 2n— 2n” ! arcsin Jx (15)

{k:k/n<x}
We temark that the integrand p(t):in the integral
1 dt
represents'a. U-shaped curve that tends to.infinity as¢ — O or 1.
Hence it follows that, for large n,

LY@ ¥(2n)
P <3 A
{ 2n A} {2 m <t
i.e., it is:more likely that the fraction of the time spent by the particle on the
positive side is close to zero or.one, than to the intuitive value 3.
Using a table of arcsines and noting that the convergence in (15) is indeed

quite rapid, we find that
{V(Z") < 0024} ~ 0.1,
2n

y(2n)
P{ 2n

< 0.'1} =~ 0.2,

¥(2n)
P2 <02y 0.
{ o = 02} 0.3,
P{ygzn),s 0.'6"5} ~ 06,
2n
Henceif,ssay, n-= 1000, then in-about one.case in ten, the particle spends

only 24 units of time on the positive axis-and therefore spends the greatest
amountwofitime, 976 units, on the negative axis.

3. PrOBLBMS
1. How fast.does Emin(c,,, 2n)-— c0-as:n — o0 ?

2. Let 7, =min{l < k < n: S, =1}, wherewe take 7, = 0 if §; <1 for 1 <k <n.
Whatiistthe limit of Emin(z,, n) asn — oofor:symmetric (p = g = $) and for un-
symmetric (p # q) walks?



§11. Martingales. Some Applications to the Random Walk 103

§11. Martingales. Some Applications to the
Random Walk

1. The Bernoulli random walk discussed above was generated by a sequence
&y ..., &, of independent random variables. In this and the next section we
introduce two important classes of dependent random variables, those that
constitute martingales and Markov chains.

The theory of martingales will be developed in detail in Chapter VIL
Here we shall present only the essential definitions, prove a theorem on the
preservation of the martingale property for stopping times, and apply this
to deduce the “ballot theorem.” In turn, the latter theorem will be used for
another proof of proposition (10.5), which was obtained above by applying
the reflection principle.

2. Let (Q, o/, P) be a finite probability space and 2, <X 2, XX 9%, a
sequence of decompositions.

Definition 1. A sequence of random variables &,, ..., &, is called a martingale
(with respect to the decomposition 2 X 2, <X ---x 9,) if

(1) & is Z,-measurable,
@ E@i|Z) =& 1 <k<n—1

In order to emphasize the system of decompositions with respect to which
the random variables form a martingale, we shall use the notation

é = (ék’ @k)lsksm (1)

where for the sake of simplicity we often do not mention explicitly that
l<k<n
When 2, is induced by &, ..., &,, ie.

gk = 9{,,...,¢k,

instead of saying that £ = (&, 2,) is a martingale, we simply say that the
sequence ¢ = (£,) is a martingale.
Here are some examples of martingales.

ExampLE 1. Let 1, ..., 5, be independent Bernoulli random variables with
P =1) =P = —1) = 3,
Sc=n+--+mn and P, =9, ..
We observe that the decompositions &, have a simple structure:

91 = {D+’D_}9
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where
D ={w:n, = +1}, D™ = {w:n, = —1},
@,={D**,D*",D"*, D"},
where
Dt ={win, = +1L,n,=+1},....D7 " ={win = —-1n,= -1},
etc.

It is also easy to see that 2, , = D5, . s,
Let us show that (S,, 2,) forms a martingale. In fact, S, is 2,-measurable,
and by (8.12), (8.18) and (8.24),
E(Si+112:) = E(Si + M+ 11 D0)
= E(Shigk) + E(rlk+l|~@k) =5 + E’7k+1 = S
If we put S, = 0 and take D, = {Q}, the trivial decomposition, then the
sequence (S, Zi)o <k <n also forms a martingale.

ExaMPLE 2. Let n,, ..., 1, be independent Bernoulli random variables with
P(n;=1)=p, P(n;= —1) = q. If p # q, each of the sequences £ = ()
with

Sk
fl.-=<ﬂ) > & =Sk — k(p — 9), where S, =1n, + - +mn,

is a martingale.

ExAMPLE 3. Let  be a random variable, 2, < --- < 2,, and
& = EM 2. )}

Then the sequence ¢ = (&, Z,) is a martingale. In fact, it is evident that
E(n12,) is 2,-measurable, and by (8.20)

E(¢i+112:) = E[EMDis1)Di] = E|Di) = G

In this connection we notice that if & = (§,, 2,) is any martingale, then
by (8.20)

ék = E(fk+ 1|9k) = E[E(ék+2|@k+l)|@k]
= E(k+2121) = - = E(&.| D0 (3)

Consequently the set of martingales & = (&, 2,) is exhausted by the
martingales of the form (2). (We note that for infinite sequences ¢ =
(&, D11 this s, in general, no longer the case; see Problem 7 in §1 of
Chapter VIIL.)
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ExaMPLE 4.Let#,, ..., n,be asequence of independent identically distributed
random variables, S, =5, + -+, and @, = D, D, = Ds,.5,_1>+ >
D, = Ds, s, _,....s,- Let us show that the sequence ¢ = (&, Z,) with

n n—1 n+1-—k
_ 5 —__S,__, _——_5,..., =5
61 n’éz I’l—l’ ék n+1—k é !

is a martingale. In the first place, it is clear that 9, < 9,4, and ¢, is Z;-
measurable. Moreover, we have by symmetry, forj <n — k + 1,

E(n;12:) = Emil 20 4
(compare (8.26)). Therefore

n—k+1

(n—k + DEM2) = Y EM;12) = ESazis | D) = Spois 15

j=1
and consequently

_ Sn—k+1 _
&= n—k+1 E(n:12,),

and it follows from Example 3 that & = (£,, 2,) is a martingale.

Remark. From this martingale property of the sequence ¢ = (&, Zi)1 <k<n>
it is clear why we will sometimes say that the sequence (S;/k); <<, forms a
reversed martingale. (Compare problem 6 in §1 of Chapter VIL)

EXAMPLE 5. Let 5, .. ., 1, be independent Bernoulli random variables with
P;= +1)=P(p;= —1) =4

S, =1, + ---+ 1. Let 4 and B be integers, 4 < 0 < B. Then with0 < 1 <
n/2, the sequence & = (&, @) with 9, = D5, . s, and

&, = (cos )7k exp{il(Sk _B ; A)} 5)

is a complex martingale (ie., the real and imaginary parts of £, form
martingales).

3. It follows from the definition of a martingale that the expectation E¢, is
the same for every k:

Eék = Eéx-

It turns out that this property persists if time k is replaced by a random

time.
In order to formulate this property we introduce the following definition.

Definition 2. A random variable T = t(w) that takes the values 1,2,...,nis
called a stopping time (with respect to a decomposition (2,); <x<w» Z1 X
2,<---xX9,) if, for k =1,...,n, the random variable I,_;(®) is Z,-
measurable.
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If we consider &, as the decomposition induced by observations for k
steps (for example, 2, = 9,, . ,.. the decomposition induced by the
variables 7, ..., n,), then the 9,-measurability of I\, ,,(w) means that the
realization or nonrealization of the event {t = k} is determined only by
observations for k steps (and is independent of the “future”).

If 8, = «(2,), then the P,-measurability of I, ,(w) is equivalent to the
assumption that

{t = k} € B,. (6)

We have already introduced specific examples of stopping times: the times
T}, 0, introduced in §§9 and 10. Those times are special cases of stopping
times of the form

4 = min{0 < k < n: &, € A},

M

o = min{0 < k < n: & € A4},

which are the times (respectively the first time after zero and the first time)
for a sequence &, &4, ..., &, to attain a point of the set A.

4. Theorem 1. Let ¢ = (&, D)), <k<n be a martingale and t a stopping time
with respect to the decomposition (2,) <x<n- Then

E(.12,) = ¢y, (®)
where
&= Z &l p=iy(@) &)
k=1
and
E¢, = E¢,. (10)

PROOF (compare the proof of (9.29)). Let D € 2,. Using (3) and the properties
of conditional expectations, we find that

EGID) = el
P(ID) ,ZE('f' L=y~ Ip)
p(D) [ZE[E@,.!@.) ooy Ip)
p(D)‘ZE[E(é Ioey-1p|2)]
P(D) lZE[f Tuey- Ip]

- 505 EGal) = EG,ID)
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and consequently
E¢:12,) = E(.12)) = ¢4

The equation E&, = E£, then follows in an obvious way.
This completes the proof of the theorem.

Corollary. For the martingale (S,, 2;)1 <x<n 0f Example 1, and any stopping
time 1 (with respect to (2,)) we have the formulas

ES,=0, ES2=Er, (11)

known as Wald’s identities (cf. (9.29) and (9.30); see also Problem 1 and
Theorem 3 in §2 of Chapter VII).

5. Let us use Theorem 1 to establish the following proposition.

Theorem 2 (Ballot Theorem). Let n,, ..., ", be a sequence of independent
identically distributed random variables whose values are nonnegative integers,
Sk=i11+"-+r1k,ISkSn.Then

+
P{S, < k forallk,1 < k < n|S,} = (1 —S;) , (12)
where a* = max(a, 0).

PROOF. On the set {w: S, > n} the formula is evident. We therefore prove
(12) for the sample points at which S, < n.
Let us consider the martingale ¢ = (&, 2;), <k <, introduced in Example
45 with ék = Sn+l—k/(n +1- k) and gk = @Sné‘l-k,.“,s
We define

"t

t=min{l <k <n: ¢ >1},

taking t=n on the set {{, <1 for all k such that 1 <k <n} =
{max, .;(Sy/l) < 1}. It is clear that {, =&, =S, = 0 on this set, and
therefore

S S
{max—’<1}={max—'<1,S,,<n}§{é,=0}. (13)
1<l<n l 1<i<n l
Now let us consider those outcomes for which simultaneously
max; .;<.(S;/) > 1and S, < n. Write ¢ = n + 1 — 7. It is easy to see that
o =max{l <k <n:§, >k}

and therefore (since S, < n) we have 6 <n, S, >0, and S,,, <o + 1.
Consequently 7,,, = S;4+1 — S, < (6 + 1) —0=1,1ie 5,4, =0. There-
fores < S, =S,,, <o + 1, and consequently S, = ¢ and

é _ Sn+l—t _Sa=1

Thn+l-1 o
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Therefore

%mxﬁzL&<n}§Kﬁ=H (14)

1<i<n

From (13) and (14) we find that

{max ﬂzl,Sn<n}={ét=l}n{S"<n}.

1<l<n l

Therefore, on the set {S, < n}, we have

p{ max 51> 1|s"} — P&, = 1IS,} = EE.IS),

1<i<n

where the last equation follows because &, takes only the two values 0 and 1.
Let us notice now that E(&,|S,) = E(&,|2,), and (by Theorem 1)
E(¢.12,) = &, = S,/n. Consequently, on the set {S, < n} we have P{S, < k
for all k such that 1 < k < n|S,} =1 — (S,/n).
This completes the proof of the theorem.

We now apply this theorem to obtain a different proof of Lemma 1 of
§10, and explain why it is called the ballot theorem.
Let &, ..., &, be independent Bernoulli random variables with

P =D)=P¢=-1)=1

Sy=¢& + -+ & and a, b nonnegative integers such that a — b > 0,
a + b = n. We are going to show that

— b
H&>Q“q&>m&=a—w=%:3 (15)

In fact, by symmetry,
P{$;>0,...,S5,>0|S,=a— b}
=P{S; <0,...,5,<0|S,= —(a — b)}
=P{§;+1<1,....,S,+n<n|S,+n=n—(a— b)}
=P{np <L ...omy+--+n,<nlnp +---+n,=n—(a—>b)}
_[l_n—(a—b)]+=a—b_a—b

B n n  a+b

where we have put 5, = £, + 1 and applied (12).
Now formula (10.5) follows from (15) in an evident way; the formula was
also established in Lemma 1 of §10 by using the reflection principle.
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Let us interpret &; = + 1 as a vote for candidate A and {; = —1 as a vote

for B. Then S, is the difference between the numbers of votes cast for A and
B at the time when k votes have been recorded, and

P{S;>0,...,S,>0[S,=a— b}

is the probability that 4 was always ahead of B, with the understanding that
A received a votes in all, B received b votes, and a — b >0, a + b =n.
According to (15) this probability is (a — b)/n.

6. PROBLEMS

1.

Let 2, <X 2, < -+ <X 2, be a sequence of decompositions with £, = {Q}, and let
nx be 2, -measurable variables, I < k < n. Show that the sequence ¢ = (§,, 2,) with

™M=

S = [n — E(m12,-1)]

=1

n

is a martingale.

. Let the random variables #,, ..., n, satisfy E(n|n;,....m-1) = 0. Show that the

sequence ¢ = (&) <x<n With &; = 1, and
k n
She1 = Z Niv 1 S5 5 1M0)s
i=1 :

where f; are given functions, is a martingale.

. Show that every martingale ¢ = (¢;, 2,) has uncorrelated increments: if a < b <

¢ < d then

Cov(éd - 6(" éb - éa) = 0

. Let & =(&,,...,&,) be a random sequence such that &, is 2,-measurable

(2<9,< <%, Show that a necessary and sufficient condition for this
sequence to be a martingale (with respect to the system (2,)) is that E¢, = EZ, for
every stopping time 7 (with respect to (2,)). (The phrase “for every stopping time”
can be replaced by “for every stopping time that assumes two values.”)

. Show that if & = (&, D,); <k <n is a martingale and 7 is a stopping time, then

E[fu’{z=k)] = E[Ck]{r=k)]

for every k.

. Let & = (&, 9,) and n = (1, 2,) be two martingales, £, = 5, = 0. Show that

Elunn = ZE(ék = - 1) — M=)
k=2
and in particular that

EC,? = Z E(G, — ék—l)z-
k=2
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7. Letn,,...,n, be a sequence of independent identically distributed random variables
with En; = 0. Show that the sequence & = (£,) with

k 2
&= (Z n.-) — kEng,
i=1

g, = FPAM + -+ 1)
* (E exp An, )"

is a martingale.

8. Letn,,...,n, be a sequence of independent identically distributed random variables
taking values in a finite set Y. Let fo(y) = P(7, = y), y € Y, and let f,(y) be a non-

negative function with Zyeyf,(y) = 1. Show that the sequence ¢ = (&, 2}) with
pn — D
k .
_ ﬁ("l) < f10m)
Jony) -+ folm)’

is a martingale. (The variables &,, known as likelihood ratios, are extremely important
in mathematical statistics.)

Sk

§12. Markov Chains. Ergodic Theorem.
Strong Markov Property

1. We have discussed the Bernoulli scheme with
Q={w:ow=(x,...,%,), x; =0, 1},
where the probability p(w) of each outcome is given by
p(@) = p(x,) - - - p(xy), )

with p(x) = p*q* ~*. With these hypotheses, the variables &, ..., £, with
E(w) = x; are independent and identically distributed with

Py =x)=--=P¢=x)=px) x=01
If we replace (1) by
p((U) = pl(xl) o pn(xn)’
where p(x) = pf(1 — p;), 0 < p; < 1, the random variables ¢,,..., ¢, are

still independent, but in general are differently distributed:
Py = x) = py(x), ..., P(&y = x) = pu(x).

Wenow consider a generalization that leads to dependent random variables
that form what is known as a Markov chain.
Let us suppose that

Q={w: o= _(xp, X155 X), X; € X},
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where X is a finite set. Let there be given nonnegative functions py(x),
P1(x, ¥), - .-, pu(X, y) such that

Zpo(x) = 17
xeX
(2)
Ypx, =1, k=1...,n yeX.
yeX
For each w = (x4, x4, ..., Xx,), put
p(w) = pO(XO)pl(x03 xl) e pn(xn—- 19 xn)‘ (3)

It is easily verified that ) ,,.q p(w) = 1, and consequently the set of numbers
p(w) together with the space Q and the collection of its subsets defines a
probabilistic model, which it is usual to call a model of experiments that form
a Markov chain.

Let us introduce the random variables &,, &, ..., &, with &é(w) = x;. A

simple calculation shows that
P(&o = a) = pola), @
P(€o = ao, .-+, & = a) = po(ao)p1(ao, ay) -+ + Pi(ai- 1, @)-

We now establish the validity of the following fundamental property of
conditional probabilities:

P{lis1 =ar1lsk =ar, ..., &0 = ao} = P{lks1 = arilé=ai}  (5)

(under the assumption that P(¢, = a;, ..., &, = ag) > 0).
By (4),

P{Cks1 = il = ay, ..., &o = ao}

_ P{lk+1 = axs1,--., & = ao}
P{fk=ak,~~-a50=ao}

_ Po(ao)pi(ao, ay) -+ - P+ 1(ax, ax+ 1)
po(ao) - - - pilax - 1, ar)

= P+ 1(ak, Qs 1)-

In a similar way we verify

P{lks1 = ks 1l = a} = Prv1(aks a4 1), (6)
which establishes (5).
Let 2} = 9, ., be the decomposition induced by &, ..., &, and
B = (D).
Then, in the notation introduced in §8, it follows from (5) that
P{lie1 = ak+l'gal¢<} = P{l+1 = a1l &} Q)
or

P{ i1 = axs1léos -, & = P{&hs1 = a4 11&}-
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If we use the evident equation
P(AB|C) = P(A|BC)P(B|C),
we find from (7) that

P{én = Ay - - -» ék+1 = ak+l}gg§} = P{én =dp---» €k+1 = ak+1|ék} (8)

or

Pl i=a,,.... 51 =aqs1los -, &3 =Pl =an, ..., &r 1 = @1 &)
&)

This equation admits the following intuitive interpretation. Let us think
of &, as the position of a particle “at present,” (&, - .., &_,) as the “past,”
and (&4 ¢, ..., &,)asthe “future.” Then (9) says that if the past and the present
are given, the future depends only on the present and is independent of how
the particle arrived at &,, i.e. is independent of the past (&, ..., & ).

LetF = (5 =ap, ..., &v1 = s ), N = {& = a},

B={& i =dak-1,..., & = ao}-
Then it follows from (9) that
P(F|NB) = P(F|N),
from which we easily find that
P(FB|N) = P(F|N)P(B|N). (10)

In other words, it follows from (7) that for a given present N, the future F
and the past B are independent. It is easily shown that the converse also
holds: if (10) holds for allk = 0, 1,...,n — 1, then (7) holds for every k = 0,
1,....,n—1.

The property of the independence of future and past, or, what is the same
thing, the lack of dependence of the future on the past when the present is
given, is called the Markov property, and the corresponding sequence of
random variables &, ..., &, is a Markov chain.

Consequently if the probabilities p(w) of the sample points are given by
(3), the sequence (&, . . ., &,) with £(w) = x; forms a Markov chain.

We give the following formal definition.

Definition. Let (Q, ¢, P) be a (finite) probability spaceand let £ = (&,,...,¢&,)
be a sequence of random variables with values in a (finite) set X. If (7) is
satisfied, the sequence ¢ = (&, ..., &,) is called a (finite) Markov chain.

The set X is called the phase space or state space of the chain. The set of
probabilities (p,(x)), x € X, with po(x) = P(£y = x) is the initial distribution,
and the matrix ||p(x, Y)|I, x, y € X, with p(x, y) = P{& = y|&-, = x} is
the matrix of transition probabilities (from state x to state y) at time
k=1,...,n
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When the transition probabilities p,(x, y) are independent of k, that is,
pi(x, y) = p(x, y), the sequence ¢ = (&, ..., ¢,) is called a homogeneous
Markov chain with transition matrix | p(x, y)|.

Notice that the matrix || p(x, y)|| is stochastic: its elements are nonnegative
and the sum of the elements in each row is 1: ), p(x, y) = 1, x € X.

We shall suppose that the phase space X is a finite set of integers
X={01,...,N}, X={0, +1,..., £ N}, etc.), and use the traditional
notation p; = po(i) and p;; = p(i, j).

It is clear that the properties of homogeneous Markov chains completely
determine the initial distributions p; and the transition probabilities p;;. In
specific cases we describe the evolution of the chain, not by writing out the
matrix ||p;|l explicitly, but by a (directed) graph whose vertices are the states
in X, and an arrow from state i to state j with the number p;; over it indicates
that it is possible to pass from point i to point j with probability p;;. When
pij = 0, the corresponding arrow is omitted.

ExaMpLE 1. Let X = {0, 1, 2} and

1 00
||Pij”= % 0 %
304

The following graph corresponds to this matrix:

[
.

@

Here state O is said to be absorbing: if the particle gets into this state it remains
there, since po, = 1. From state 1 the particle goes to the adjacent states 0
or 2 with equal probabilities; state 2 has the property that the particle remains
there with probability § and goes to state 0 with probability 3.

ExaMpLE 2. Let X = {0, £1,..., £N}, po = 1, pvy = p—ny-n = 1, and,
for |i] < N,

p, j=i+1,
Dij =149 j= i—1, (11)
0 otherwise.
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The transitions corresponding to this chain can be presented graphically in
the following way (N = 3):

‘Q‘/\'\‘_’\,WJ‘V\/‘QI

-2 5 -1

This chain corresponds to the two-player game discussed earlier, when each
player has a bankroll N and at each turn the first player wins + 1 from the
second with probability p, and loses (wins —1) with probability q. If we
think of state i as the amount won by the first player from the second, then
reaching state N or — N means the ruin of the second or first player, respec-
tively.

In fact, if n,, %,,. .., 1, are independent Bernoulli random variables with
Pni=+1)=p, Pni=—-1)=¢q, So=0 and S, =n, +---+n the
amounts won by the first player from the second, then the sequence S,,
Sy, ..., S, 1s a Markov chain with p, = 1 and transition matrix (11), since

P{Sk+1 =j|Sk = ik’Sk—l = ik—1,~--}
= P{Sx + Ms1 =JISk = ik, Skt = ix—py -0}
=P{Sk + M1 = ISk = i} = P{msr =Jj — it}

This Markov chain has a very simple structure:
Siv1 = Sk + M1 0<k<n-1,

where 114, 115, ..., 1, is a sequence of independent random variables.
The same considerations show that if &, #,,...,n, are independent
random variables then the sequence &, &, ..., &, with

€k+1 = jk(ik’ r’k+l)’ 0 < k <n-— 1’ (12)

is also a Markov chain.

It is worth noting in this connection that a Markov chain constructed in
this way can be considered as a natural probabilistic analog of a (deter-
ministic) sequence x = (x, - - ., X,) generated by the recurrent equations

Xer1 = Silxp)-

We now give another example of a Markov chain of the form (12); this
example arises in queueing theory.

ExAMPLE 3. At a taxi stand let taxis arrive at unit intervals of time (one at a
time). If no one is waiting at the stand, the taxi leaves immediately. Let #, be
the number of passengers who arrive at the stand at time k, and suppose that
W4 -, N, are independent random variables. Let &, be the length of the
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waiting line at time k, &, = 0. Then if &, = i, at the next time k + 1 the length
&, +, of the waiting line is equal to

LTS ifi =0,
TVt 4,y iz

In other words,

o1 =G = D" + mer o, 0<k<n-1,

where a* = max(a, 0), and therefore the sequence & = (&,,...,¢&,) is a
Markov chain.

ExaMPLE 4. This example comes from the theory of branching processes. A
branching process with discrete times is a sequence of random variables
o, Ers ..., E,, where & is interpreted as the number of particles in existence
at time k, and the process of creation and annihilation of particles is as
follows: each particle, independently of the other particles and of the “pre-
history” of the process, is transformed into j particles with probability p;,
j=0,1,..., M.

We suppose that at the initial time there is just one particle, £, = 1. If at
time k there are ¢, particles (numbered 1, 2, ..., &), then by assumption
&, 41 is given as a random sum of random variables,

Sher = ’l(lk) + -+ nf:’;’,

where 7 is the number of particles produced by particle number i. It is
clear that if &, = Othen ¢, , = 0.If we suppose that all the random variables
ng“’, k > 0, are independent of each other, we obtain

P{£k+l = ik+1|ék =iy, Eo1 = ik—l’-'-} = P{ék+l = ik+1|5k = ik}
= P{’?(lk) + oo+ 'l?,? = x4}

It is evident from this that the sequence &,, &, ..., &, is a Markov chain.

A particularly interesting case is that in which each particle either vanishes
with probability g or divides in two with probability p, p + g = 1. In this
case it is easy to calculate that

pij = Pllusr =Jl& =i}
is given by the formula
{C‘iilzpj/zqi—j/{ ] = 0’ LR 219
pij =

0 in all other cases.

2. Let & = (&, [T, P) be a homogeneous Markov chain with starting vectors
(rows) [T = (p;) and transition matrix [T = ||p;;|l. It is clear that

Dij = P{¢, =jléo =i} == P{¢, =jlé—1 = i}
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We shall use the notation
pif’ =P{&=Jjlé =i} (:p{_ék+l =jl& =1i})
for the probability of a transition from state i to state j in k steps, and
P = P{& = j}
for the probability of finding the particle at point j at time k. Also let
9= 1p®l PO = pl.

Let us show that the transition probabilities p{}’ satisfy the Kolmogorov-
Chapman equation

p = Z Py, (13)
or, in matrix form,
|p(k+l) — [p(k) . p(l) (14)

The proof is extremely simple: using the formula for total probability
and the Markov property, we obtain

PS(H) =P+ =Jléo=1) = Z Pksi = &= a|éo = 1)
=) Pivi = jlé = P& = al&o = i) = ) pl)p.

The following two cases of (13) are particularly important:

the backward equation

piitl = Z PiaPk) (15)
and the forward equation

phth = Z P¥Pa; (16)

(see Figures 22 and 23). The forward and backward equations can be written
in the following matrix forms

P+ — p®.p, (17)

Pk = p. p), (18)
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A

J—=

e

0 I+1
Figure 22. For the backward equation.

o)

Similarly, we find for the (unconditional) probabllmes p{ that

PO = s, (19)
or in matrix form
M&+d — . po.
In particular,
M&+D — e, p

(forward equation) and
M&+H — [, pe
(backward equation). Since P'"' = P,[1" = 1, it follows from these equations
that
P — Pk, e = ﬂ]k.
Consequently for homogeneous Markov chains the k-step transition
probabilities p{¥’ are the elements of the kth powers of the matrix P, so that

many properties of such chains can be investigated by the methods of matrix
analysis.

A
|
e j
|
id
j
} 1 [ -
0 k k+1

Figure 23. For the forward equation.
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ExaMPLE 5. Consider a homogeneous Markov chain with the two states 0 and

1 and the matrix
P= (Poo Pox).
Pio P11

P2 — (P(zlo + Po1Pio  Po1(Poo + pll))
P1o(Poo + P11) P31 + PoiPio

It is easy to calculate that

and (by induction)

P" = 1 (1 —pn 1= Poo)
2= poo— P11 \I =P11 1 —=poo
(Poo + P11 — 1)"( 1 = poo -1 - Poo))
2 = poo — P11 -1 = p1p) 1 —py,

+

(under the hypothesis that |pgo + p;; — 1] < 1).
Hence it is clear that if the elements of P satisfy |pgo + p;; — 1] < 1 (in
particular, if all the transition probabilities p;; are positive), then as n - oo

1 1 —py,y 1_I’oo)
P ———— - s 20
2_P00"P11<1—P11 1 — poo (20)

and therefore

1 —py, . 1 — poo
=, limpp = —— 220
2 — poo — P11 n ! 2 — poo — P11

Consequently if |poo + p1; — 1] < 1, such a Markov chain exhibits
regular behavior of the following kind: the influence of the initial state on
the probability of finding the particle in one state or another eventually
becomes negligible (p{? approach limits r;, independent of i and forming a
probability distribution: 7o > 0, my > 0, ny + @y = 1); if also all p; >0
then ny > O and n; > 0.

lim p{® =
n

io

3. The following theorem describes a wide class of Markov chains that have
the property called ergodicity: the limits n; = lim, p;; not only exist, are
independent of i, and form a probability distribution (r; > 0, Y ; n; = 1), but
also n; > 0 for all j (such a distribution 7; is said to be ergodic).

Theorem 1 (Ergodic Theorem). Let P = ||p;;|| be the transition matrix of a
chain with a finite state space X = {1,2,..., N}.
(a) If there is an ng such that

min p{}® > 0, (21)

iJ



§12. Markov Chains. Ergodic Theorem. Strong Markov Property 119

then there are numbers n,, ..., my such that
n; > 0, an= 1 22)
J

and
PP - n— (23)

for every i€ X.

(b) Conversely, if there are numbers my, . .., ny satisfying (22) and (23), there
is an nq such that (21) holds.

(¢c) The numbers (n,, ..., ny) satisfy the equations

”;=Znapa,-, j=1,...,N. (24)

PRrOOF. (a) Let

m® = min P, MP = max P

Since
iy = Z Pia DY} (25)

we have

m* D = min p* " = min Y’ p, p} > min Y p;, min p} = m{,

i i a i a a

whence m® < m{"*" and similarly M{” > M{"* ). Consequently, to establish
(23) it will be enough to prove that

M(fl)_m(,")_>(), n—->o, j=1,...,N.
Let ¢ = min; ; p{}* > 0. Then

pietm = Z pops) =3 [ — ep1ps) + ¢ Z pSps}
a
= Y [Pl — epl i) + epfi”.

But p{j® — &ply > 0; therefore
p‘"°+"’ > m‘"’ Z [p(no) 3p§f,',’] + gp(Zn) — m‘")(l e) + sP;JZn),

and consequently
m*m > m™(1 — €) + epi”.
In a similar way
Myt < MP(1 — €) + eplF™.
Combining these inequalities, we obtain
M}no+n) _ m§n0+n) S (Mg'n) . m;n)) . (1 — 8)
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and consequently
Mfrotm — plknotm < (MW — m)1 — e |0, k- oo.

Thus M{® — m{™ - 0 for some subsequence n;, n; — co. But the
difference M{" — m{” is monotonic in n, and therefore M — m® — 0,
n— oo.

If we put 7; = lim, m{", it follows from the preceding inequalities that

1P — 7] < MP — mP < (1 — g)fmol=1

for n > ny, that is, p} converges to its limit n; geometrically (i.e., as fast as a
geometric progression).
It is also clear that m{” > m{"” > ¢ > 0 for n > n,, and therefore x; > 0.
(b) Inequality (21) follows from (23) and (25).
(c) Equation (24) follows from (23) and (25).
This completes the proof of the theorem.

4. Equations (24) play a major role in the theory of Markov chains. A
nonnegative solution (n,, . .., my)satisfying ) , 7, = 1issaid to be a stationary
or invariant probability distribution for the Markov chain with transition
matrix | p;;l|. The reason for this terminology is as follows.

Let us select an initial distribution (ny, ..., ny) and take p; = n;. Then
(1) = Z napaj
and in general p{” = 7;. In other words, if we take (ny, ..., my) as the initial

distribution, this distribution is unchanged as time goes on, i.e. for any k
P& =))=P&o=Jj) Jj=1....,N.

Moreover, with this initial distribution the Markov chain ¢ = (&, 11, P) is
really stationary: the joint distribution of the vector (&, & yq,..., Ea)) 1S
independent of k for all I (assuming that k + | < n).

Property (21) guarantees both the existence of limits 7; = lim pﬁ;", which
are independent of i, and the existence of an ergodic distribution, i.e. one
with n; > 0. The distribution (n,, ..., ny) is also a stationary distribution.
Let us now show that the set (n,, ..., my) is the only stationary distribution.

In fact, let (%, ..., #iy) be another stationary distribution. Then
ﬁj = Z 7‘:tapaj == Z napg;)y
a a

and since p{) — m; we have

ﬁl = Z(ﬁanj) = Tfj.
a

These problems will be investigated in detail in Chapter VIII for Markov
chains with countably many states as well as with finitely many states.
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We note that a stationary probability distribution (even unique) may
exist for a nonergodic chain. In fact, if

01
P =
(v o)
0 1 1 0
[p;Zn —_ IPZn+1 —
(o) 7t=fo i)

and consequently the limits lim p{? do not exist. At the same time, the
system

then

n; = Z Ty Dajs i=12

reduces to
n, = 7y,
Ty, = Ty,
of which the unique solution satisfying 7, + n, = 1 is (3, 3).
We also notice that for this example the system (24) has the form
To = MoPoo + T1P10-
Ty = MoPo1r + M1l11>

from which, by the condition 7, = m, = 1, we find that the unique stationary

distribution (n,, m,) coincides with the one obtained above:
— 1 —pyy n. = 1 — poo

0o — s 1 = :

2 = poo — P11 2 — poo — P11

We now consider some corollaries of the ergodic theorem.
Let A be a set of states, 4 < X and

1,00 = 1, x€A,
A =00, x¢A
Consider

L) + o ¥ L&)
B n+1

v4(n)
which is the fraction of the time spent by the particle in the set A. Since

E[L&)IE0 = i1 = P Al = i) = X pi(=p{(A)),

jeA
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we have
1 n
Elvam)|&o = i]=—— Y p(4
[va(m)|&o = i] n+1k;0p (A)
and in particular

. 1 &
Elvi;Iéo = i1 = n+l kZO ng)-

It is known from analysis (see also Lemma 1 in §3 of Chapter IV) that if
a, — athen (ao + --- + a,)/(n + 1) > a,n > . Hence if p{y) - n;, k > oo,
then

Evjn) > n;, Evyn)->mn,,  where n,= ) m,.
jeA

For ergodic chains one can in fact prove more, namely that the following
result holds for I ,(&p), ..., 14(&,), ... .

Law of Large Numbers. If £, &,, ... form a finite ergodic Markov chain, then
P{lva(n) — n4| > €} -0, n- oo, (26)
for every ¢ > 0 and every initial distribution.

Before we undertake the proof, let us notice that we cannot apply the
results of §5 directly to I (&), ..., 14(&,), ..., since these variables are, in
general, dependent. However, the proof can be carried through along the
same lines as for independent variables if we again use Chebyshev’s in-
equality, and apply the fact that for an ergodic chain with finitely many
states there is a number p, 0 < p < 1, such that

|plf — ml < C-p". (27

Let us consider states i and j (which might be the same) and show that,
fore > 0,

P{lV“}(n)_n1'>8|£0=i}"’0, n — o0. (28)
By Chebyshev’s inequality,

E{|V(j)(") - nj|2|éo =i}
&2 '

P{lvn) — m;| > €]&o = i} <
Hence we have only to show that

E{lv(n) — 7Tj|2|§o =i} >0, n— .
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fo=i}

A simple calculation shows that

n 2
E{lvp(n) — m;1*1 &0 = i} = (n—-:WE{[ ; I (Co) — ”i)]

Y Z mij®,

(" + )2 k=0 I=
where
mis? = E{[15(E)]5(ED11&o = i}
— ;- E[1 38D &o = 1] — m; E[](,}(fz)lfo =1]+ Wf
=pl - pf) — m;-p — my- Y + i,
s=min(k,l) and t= |k —1|.
By (27),
PP =m+ &), &P < Cp"
Therefore

|mD| < Cilp* + o' + p* + p'],
where C, is a constant. Consequently

1 " " C n
mkgo lzzomﬁj‘uS(n +11)2 kZO IZ[p + '+ P+ P

4C,  2An+1) _ 8C,
T+ 1—p  (n+ (A -p)

-0, n->oo.

Then (28) follows from this, and we obtain (26) in an obvious way.

5. In §9 we gave, for a random walk S,, S;, ... generated by a Bernoulli
scheme, recurrent equations for the probability and the expectation of the
exit time at either boundary. We now derive similar equations for Markov
chains.

Let & = (&, ..., &,) be a Markov chain with transition matrix | p;;l| and
phase space X = {0, +1,..., +N}. Let A and B be two integers, —N <
A<0<B<N,and xe X. Let #,,, be the set of paths (xq, x1,..., Xp),
x; € X, that leave the interval (4, B) for the first time at the upper end, i.e.
leave (4, B) by going into the set (B, B + 1,..., N).

For A < x < B, put

Bi(x) = P{(&o, ..., &) € Bis1l&o = x}.

In order to find these probabilities (for the first exit of the Markov chain
from (A, B) through the upper boundary) we use the method that was
applied in the deduction of the backward equations.
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We have

Bi(x) = P{(&o, .- -, &) € By111&o = x}
= pry'p{(éoa'-'aék)egk+1|£0 = X, 51 = y},

where, as is easily seen by using the Markov property and the homogeneity
of the chain,

P{(o,-.., &) € Br+1l80 = x, &1 = y}
= P{(x, 9, &2, -5 &) € B 1lo = x, &1 =y}
=P{(», &2, ..., &) € BulEy = y}
=P{(», &1, -5 S-1) € BilSo = ¥} = Bi-1())-

Therefore

Bux) = Z nyﬂk—l()’)

for