
SYMMETRIC GENERATION OF GROUPS

Some of the most beautiful mathematical objects found in the last forty
years are the sporadic simple groups, but gaining familiarity with these
groups presents problems for two reasons. Firstly, they were discovered
in many different ways, so to understand their constructions in depth one
needs to study lots of different techniques. Secondly, since each of them
is, in a sense, recording some exceptional symmetry in space of certain
dimensions, they are by their nature highly complicated objects with a rich
underlying combinatorial structure.

Motivated by initial results on the Mathieu groups which showed that these
groups can be generated by highly symmetrical sets of elements, the author
develops the notion of symmetric generation from scratch and exploits this
technique by applying it to many of the sporadic simple groups, including
the Janko groups and the Higman–Sims group.
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Preface

The book is aimed at postgraduate students and researchers into finite
groups, although most of the material covered will be comprehensible to
fourth year undergraduates who have taken two modules of group theory.
It is based on the author’s technique of symmetric generation, which seems
able to present many difficult group-theoretic constructions in a more ele-
mentary manner. It is thus the aim of the book to make these beautiful,
but combinatorially complicated, objects accessible to a wider audience.

The stimulus for the investigations which led to the contents of the book
was a question from a colleague of mine, Tony Gardiner, who asked me if
the Mathieu group M24 could contain two copies of the linear group L3�2�
which intersect in a subgroup isomorphic to the symmetric group S4. He
needed such a configuration in order to construct a graph with certain
desirable properties. I assured him that the answer was almost certainly
yes, but that I would work out the details. I decided to use copies of L3�2�
which are maximal in M24 and found that the required intersection occurred
in the nicest possible way, in that one could find subgroups H �K � L3�2�,
with H ∩K � S4, and an involution t such that CM24

�H ∩K� = �t� and
Ht = K. This means that t has seven images under conjugation by H , and
the maximality of H together with the simplicity of M24 mean that these
seven involutions must generate M24. The symmetry of the whole set-up
enables one to write down seven corresponding involutory permutations on
24 letters directly from a consideration of the action of L3�2� on 24 points.

Applying the same ideas with L3�2� replaced by the alternating group
A5, or more revealingly the projective special linear group PSL2�7� replaced
by PSL2�5�, I found that in an analogous manner the smaller Mathieu group
M12 is generated by five elements of order 3 which can be permuted under
conjugation within the large group by a subgroup isomorphic to A5.

From here the generalization to other groups became clear and many
of the sporadic simple groups revealed themselves in a pleasing manner.
This book concentrates on groups of moderate size, and it is satisfying to
see how the symmetry of the generating sets enables one to verify by hand
claims that would appear to be beyond one’s scope. With groups such as the
smallest Janko group J1, the Higman–Sims group HS and the second Janko
group HJ, I have included the full manual verification, so that the reader
can appreciate what can be achieved. However, in writing the book I have

ix
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come more and more to make use of the double coset enumerator which
was produced by John Bray and myself specifically for groups defined by
what we now call a symmetric presentation. The program implementing
this algorithm is written in Magma, which has the advantage that it is
very easy to read what the code is asking the machine to do. Thus, even
when a hand calculation is possible, and indeed has been completed, I have
often preferred to spare the reader the gory details and simply include the
Magma output. Of course, some of the groups which are dealt with in this
manner are out of range for all but the doughtiest reckoner!

As is made clear in the text, every finite simple group possesses definitions
of the type used in this book. However, I have not seen fit to include those
groups which are plainly out of range of mechanical enumeration, or where
a description of the construction introduces additional complicated ideas.
Nonetheless, 19 of the 26 sporadic groups are mentioned explicitly and it is
hoped that the definitions given are quite easily understood. The book is in
three Parts.

Part I: Motivation

Part I, which assumes a rather stronger background than Part II and which
could, and perhaps should, be omitted at a first reading, explains where the
ideas behind symmetric generation of groups came from. In particular, it
explains how generators for the famous Mathieu groups M12 and M24 can
be obtained from easily described permutations of the faces of the dodec-
ahedron and Klein map, respectively. This not only ties the approach in
with classical mathematics, but demonstrates a hitherto unrecognized link
with early algebraic geometry. Although Part I is, in a sense, independent
of what follows, the way in which combinatorial, algebraic and geometric
constructions complement one another gives an accurate flavour of the rest
of the book.

Part I is essentially background and does not contain exercises.

Part II: Involutory symmetric generators

Part II begins by developing the basic ideas of symmetric generation of finite
groups in the most straightforward case: when the generators have order 2.
The preliminary topics of free products of cyclic groups and double cosets are
defined before the notions of symmetric generating sets, control subgroup,
progenitor, Cayley diagrams and coset stabilizing subgroups are introduced
and fully explained through elementary but important examples. It is shown
that every finite simple group can be obtained in the manner described, as
a quotient of a progenitor. Through these elementary examples the reader
becomes adept at handling groups defined in terms of highly symmetric
sets of elements of order 2.

At this stage we demonstrate how the algebraic structure can be used to
do the combinatorial work for us. The Fano plane emerges as a by-product
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of the method, and the famous isomorphisms A5 � PSL2�5� and PSL2�7��
PSL3�2� are proved. Further, PSL2�11� emerges in its exceptional Galois
action on 11 points, and the 11-point biplane is revealed. An easy example
produces the symmetric group S6 acting non-permutation identically on
two sets of six letters, and the outer automorphism of S6 reveals itself more
readily than in other constructions known to the author; the isomorphism
AutA6 � P�L2�9� follows. The method is also used to exhibit the exceptional
triple covers of A6 and A7.

There follows a systematic computerized investigation of groups gener-
ated by small, highly symmetrical sets of involutory generators, and it is
seen that classical and sporadic groups emerge alongside one another. The
results of this investigation are presented in convenient tabular form, as in
Curtis, Hammas and Bray [36].

Having familiarized the reader with the methods of symmetric gener-
ation, we now move on to more dramatic applications. Several sporadic
simple groups are defined, and in many cases constructed by hand, in terms
of generating sets of elements of order 2.

Part II concludes by describing how the methods of symmetric generation
afford a concise and amenable way of representing an element of a group as
a permutation followed by a short word in the symmetric generators. Thus
an element of the smallest Janko group J1 can be written as a permutation
of eleven letters, in fact an element of L2�11�, followed by a word of length
at most four in the eleven involutory symmetric generators. A manual
algorithm for multiplying elements represented in this manner, and for
reducing them to canonical form, has been computerized in Curtis and
Hasan [37].

Part III: Symmetric generators of higher order

In Part III we extend our investigations to symmetric generators of order
greater than 2. It soon becomes apparent that this leads us into a consid-
eration of monomial representations of our so-called control subgroup over
finite fields. The resulting progenitors are slightly more subtle objects than
those in Part II, and they reward our efforts by producing a fresh crop of
sporadic simple groups.

Nor is it necessary to restrict our attention to finite fields of prime
order. A monomial representation over, say, the field of order 4 may be
used to define a progenitor in which each ‘symmetric generator’ is a Klein
fourgroup. It turns out that this is a natural way to obtain the Conway
group Co1 and other sporadic groups.

The classification of finite simple groups is one of the most extraordinary
intellectual achievements in the twentieth century. It states that there are
just 26 finite simple groups which do not fit into one of the known infinite
families. These groups, which range in size from the smallest Mathieu group
of order 7920 to the Monster group of order around 1053, were discovered
in a number of unrelated ways and no systematic way of constructing
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them has as yet been discovered. Symmetric generation provides a uniform
concise definition which can be used to construct surprisingly large groups
in a revealing manner. Many of the smaller sporadic groups are constructed
by hand in Parts II and III of this book, and computerized methods for
constructing several of the larger sporadics are described. It is our aim in
the next few years to complete the task of providing an analogous definition
and construction of each of the sporadic finite simple groups.
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Introduction to Part I

In Part I we use the two smallest non-abelian finite simple groups, namely
the alternating group A5 and the general linear group L3�2� to define larger
permutation groups of degrees 12 and 24, respectively. Specifically, we
shall obtain highly symmetric sets of generators for each of the new groups
and use these generating sets to deduce the groups’ main properties. The
first group will turn out to be the Mathieu group M12 of order 12× 11×
10 × 9 × 8 = 95040 [70] and the second the Mathieu group M24 of order
24×23×22×21×20×16×3 = 244823040 [71]; they will be shown to be
quintuply transitive on 12 and 24 letters, respectively. These constructions
were first described in refs. [31] and [32].



1

The Mathieu group M12

1.1 The combinatorial approach

As is well known, the alternating group A5 contains 4! = 24 5-cycles; these
are all conjugate to one another in the symmetric group S5, but, since
24 does not divide 60, they fall into two conjugacy classes of A5 with 12
elements in each. Let A� A5 act naturally on the set Y = 
1	2	3	4	5�, and
let a = �1 2 3 4 5� ∈ A be one of these 5-cycles. Then the two classes may
be taken to be

� = 
ag � g ∈ A� and �̄ = 
�a2�g � g ∈ A�


We shall define permutations of the set �, and eventually extend them
to permutations of the set �∪ �̄. In Table 1.1 we write the elements of
� so that each begins with the number 1, and for convenience we label
them using the projective line P1�11�= 

	0	1	 � � � 	X�= 

�∪�11, where
X stands for ‘10’. The other conjugacy class �̄ is then labelled with the set


̄	 0̄	 1̄	 � � � 	 X̄�, with the convention that if � ∈� is labelled n, then �2 ∈ �̄
is labelled n̄. Clearly, for g ∈ A, conjugation of elements of � by g yields
a permutation of the 12 elements of �, and thus we obtain a transitive
embedding of A � A5 in the symmetric group S12. Indeed, since A5 is a
simple group, it must be an embedding in the alternating group A12.

We now define a new permutation of �, which we shall denote by s1.
It will be clear that permutations s2	 � � � 	 s5 can be defined similarly, by
starting each of the 5-cycles in the definition of si with the symbol i. For
�1 w x y z� ∈ � we define the following:

s1 � �1 w x y z� �→ �1 w x y z��x y z� = �1 w y z x�


We note that s1 is a function from � to �; after all, the image of a given
5-cycle is certainly another 5-cycle and, since the permutation �x y z� is
even, it is in � rather than �̄. Moreover, we see that s3

1 acts as the identity

3



4 The Mathieu group M12

Table 1.1. Labelling of the 24 5-cycles with elements of the 12-point projective line

� �̄


 (1 2 3 4 5) 0 (1 5 4 3 2) 
̄ (1 3 5 2 4) 0̄ (1 4 2 5 3)
1 (1 3 2 5 4) 2 (1 4 5 2 3) 1̄ (1 2 4 3 5) 2̄ (1 5 3 4 2)
9 (1 5 2 4 3) 7 (1 3 4 2 5) 9̄ (1 2 3 5 4) 7̄ (1 4 5 3 2)
4 (1 3 5 4 2) 8 (1 2 4 5 3) 4̄ (1 5 2 3 4) 8̄ (1 4 3 2 5)
3 (1 5 3 2 4) 6 (1 4 2 3 5) 3̄ (1 3 4 5 2) 6̄ (1 2 5 4 3)
5 (1 4 3 5 2) X (1 2 5 3 4) 5̄ (1 3 2 4 5) X̄ (1 5 4 2 3)

on �, and so s1 possesses an inverse (namely s2
1) and is a permutation. But

s1 does not fix any 5-cycle, and so it has cycle shape 34 on �. It turns out
that, if â denotes the image of a as a permutation of �, then â and s1
generate a subgroup of A12 of order 95 040. In fact, we have the following:

�â	 s1� = �s1	 s2	 s3	 s4	 s5� � M12	

the Mathieu group [70], which was discovered in 1861. Explicitly, we see
that

â = �1 9 4 3 5��2 7 8 6 X� and s1 = �
 8 X��0 3 9��1 4 7��2 6 5�


It turns out that M12 is remarkable in that it can act non-permutation
identically on two sets of 12 letters, and so acts intransitively on 24 letters
with two orbits of length 12; it possesses an outer automorphism which can
act on this set of 24 letters interchanging the two orbits. Not surprisingly,
for us the two sets of size 12 will be � and �̄. The element â, by a slight
abuse of notation, can be interpreted as an element of the alternating group
A24 acting by conjugation on each of the two sets, with cycle shape 34 on
each of them. Our new element s1, however, requires a slight adjustment,
and we define

s1 � �1 w x y z� �→ �1 w x y z��x y z� = �1 w y z x� if �1 w x y z� ∈ �

�→ �1 w x y z��z y x� = �1 w z x y� if �1 w x y z� ∈ �̄


This yields

s1 = �
 8 X��0 3 9��1 4 7��2 6 5��
̄ 3̄ 5̄��0̄ 8̄ 7̄��1̄ 6̄ 9̄��2̄ 4̄ X̄�	

and in a similar way we obtain all five generators given in Table 1.2.
If we now define S � S5 to be the set of all permutations of Y , then the

odd permutations of S interchange the two sets � and �̄ by conjugation.
From the definition of the five elements 
si � i= 1	 � � � 	5�, it is not surprising
that conjugation by even elements of Ŝ simply permutes their subscripts
in the natural way; however, odd elements of Ŝ permute and invert. These
statements could be verified directly by conjugating the permutations given
in Table 1.2, by generators for Â and Ŝ; however, we prefer to prove them
formally. Thus we have Lemma 1.1.
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Table 1.2. Action of the five symmetric generators of M12 on
�∪ �̄

s1 = �
 8 X��0 3 9��1 4 7��2 6 5��
̄ 3̄ 5̄��0̄ 8̄ 7̄��1̄ 6̄ 9̄��2̄ 4̄ X̄�
s2 = �
 6 2��0 5 4��9 3 8��7 X 1��
̄ 5̄ 1̄��0̄ 6̄ 8̄��9̄ X̄ 4̄��7̄ 3̄ 2̄�
s3 = �
 X 7��0 1 3��4 5 6��8 2 9��
̄ 1̄ 9̄��0̄ X̄ 6̄��4̄ 2̄ 3̄��8̄ 5̄ 7̄�
s4 = �
 2 8��0 9 5��3 1 X��6 7 4��
̄ 9̄ 4̄��0̄ 2̄ X̄��3̄ 7̄ 5̄��6̄ 1̄ 8̄�
s5 = �
 7 6��0 4 1��5 9 2��X 8 3��
̄ 4̄ 3̄��0̄ 7̄ 2̄��5̄ 8̄ 1̄��X̄ 9̄ 6̄�

Lemma 1.1 For si a permutation of �∪ �̄ defined as above and � ∈ S, we
have the following:

s�̂i = si� if � ∈ A� s�̂i = s−1
i� if � ∈ S \A


Proof Let � = �a0 a1 a2 a3 a4� ∈ � and let � ∈ A. Then we have

��̂−1sj �̂ = �a�
−1

0 a�
−1

1 a�
−1

2 a�
−1

3 a�
−1

4 �sj �̂

= �a�
−1

i a�
−1

i+1 a�
−1

i+2 a�
−1

i+3 a�
−1

i+4 �
sj �̂ �where j = a�

−1

i �

= �a�
−1

i a�
−1

i+1 a�
−1

i+3 a�
−1

i+4 a�
−1

i+2 �
�̂ �where j� = ai�

= �ai ai+1 ai+3 ai+4 ai+2� �where j� = ai�

= �ai ai+1 ai+2 ai+3 ai+4�
�ai+2 ai+3 ai+4� �where j� = ai�

= �sai = �sj� 


A similar calculation holds for � ∈ �̄, and so we have s�̂j = sj� .
Further suppose that �= �a0 a1 a2 a3 a4� ∈� and let � ∈ S \A. Then we

have

��̂−1sj �̂ = �a�
−1

0 a�
−1

1 a�
−1

2 a�
−1

3 a�
−1

4 �sj �̂

= �a�
−1

i a�
−1

i+1 a�
−1

i+2 a�
−1

i+3 a�
−1

i+4 �
sj �̂ �where j = a�

−1

i �

= �a�
−1

i a�
−1

i+1 a�
−1

i+4 a�
−1

i+2 a�
−1

i+3 �
�̂ �where j� = ai�

= �ai ai+1 ai+4 ai+2 ai+3� �where j� = ai�

= �ai ai+1 ai+2 ai+3 ai+4�
�ai+4 ai+3 ai+2� �where j� = ai�

= �s2ai = ��sj� �
−1
	

where the third line follows because ��−1 ∈ �̄. As above, a similar calculation
follows for � ∈ �̄, and so we have s�̂j = �sj� �

−1
 �

The reader would be right to wonder why we chose to conjugate our 5-cycles
� = �1 w x y z� by the 3-cycle �x y z� rather than by one of the other
possibilities. In fact, we could have chosen any one of �x y z�	 �y z w�	 �z w x�
or �w x y� and conjugated every element of � by it and every element
of �̄ by its inverse. In this way, we obtain four copies of the group M12
acting on �∪ �̄, each of which contains the original group Â. A calculation
involving normalizers, which is given explicitly in Section 1.3, shows that
these are the only ways in which a copy of the alternating group A5 acting
transitively on 12 points can be extended to a copy of M12.
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In order better to understand the relationship between these four copies
of M12, it is useful to consider the normalizers of our groups Ŝ and Â in the
symmetric group � acting on the 12+ 12 = 24 letters which Ŝ permutes.
Now, the normalizer of Ŝ in �, factored by the centralizer of Ŝ in �, must
be isomorphic to a subgroup of the automorphism group of S5, which is just
S5 (since all automorphisms of S5 are inner and its centre is trivial). Thus,

�N��Ŝ�� ≤ �C��Ŝ��×120�

so we wish to find all permutations of � which commute with Ŝ. Before
proceeding we recall the following elementary result.

Lemma 1.2 A permutation which commutes with a transitive group must
be regular (i.e. has all its disjoint cycles of the same length), and a permu-
tation which commutes with a doubly transitive group of degree greater
than 2 must be trivial.

Proof Let � �= 1 commute with a transitive group H . If � has cycles
of differing length, then some non-trivial power of � possesses fixed points
and, of course, commutes with H . But conjugation by H would then imply
that every point must be fixed by this power of �, which is thus the identity.
So we conclude that � could not have had cycles of differing lengths.

Suppose now that � commutes with the doubly transitive H and that
� � a1 �→ a2 with a1 �= a2. Choose a3 �∈ 
a1	 a2�. Then there exists a �∈H with
a
�
1 = a1 and a

�
2 = a3, and so � = �� � a1 �→ a3. Thus we have a contradiction

unless the degree is less than 3. �

Now, Ŝ acts transitively on �∪�̄, and so any permutation which commutes
with it must be regular. Moreover, Ŝ has blocks of imprimitivity of size 4,
namely the sets 
�	�2	�3	�4�, and it acts doubly transitively on these six
blocks (as the projective general linear group PGL2�5�). Thus a permutation
centralizing Ŝ must fix each block, and there can be at most four such
permutations. We now define

� � � �→ �2 for � ∈ �∪ �̄


Clearly � has order 4 and fixes each block. Moreover, we have

��̂� = ����� = ����2 = ��2�� = ����� = ����̂�	

and so � commutes with Ŝ. We conclude that C��Ŝ� = ���. We can now
readily observe the following.

Lemma 1.3 Conjugation by the element � cycles the four copies of M12
which extend Ŝ within �.

Proof For � = �1 w x y z� ∈ �, we have

�1 w x y z��
−1s1� = ��1 w x y z�3�s1� = �1 y w z x�s1�

= �1 y x w z�� = �1 x z y w� = �1 w x y z��w x z�	
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and similarly for � ∈ �̄. (Note that ��−1 ∈ �̄.) Of course, this argument can
be repeated for all four possible definitions of the generators si. �

For convenience, we give � as a permutation of the 24 points of �∪ �̄ as
labelled in Table 1.1; thus

� = �
 
̄ 0 0̄��1 1̄ 2 2̄��9 9̄ 7 7̄�
�4 4̄ 8 8̄��3 3̄ 6 6̄��5 5̄ X X̄�


1.2 The regular dodecahedron

If we consider the group of rotational symmetries of the regular dodecahe-
dron acting on its 12 faces, then the Orbit-Stabilizer Theorem soon tells
us that the group has 12× 5 = 60 elements. As we shall see later in this
section, the 20 vertices of the dodecahedron fall (in two different ways) into
five sets of four, each of which forms the vertices of a regular tetrahedron.
These five tetrahedra are permuted by the group of rotational symmetries
and all even permutations of them are realized; so the group is isomorphic
to the alternating group A5. Thus the transitive (but imprimitive) 12-point
action of A5 can be seen as rotational symmetries of the 12 faces. Before
describing how our generators of order 3 appear acting on the faces, we
show how a dodecahedron may be constructed from our group A.

For the sake of visual impact, we choose to replace the members of the
set Y = 
1	2	3	4	5� by colours; thus, for example, we replace

1 by black,
2 by yellow,
3 by red,
4 by blue,
5 by green.

Now, for each of the 5-cycles � ∈ � we take a regular pentagon with its
vertices coloured clockwise in the order in which the colours appear in �. We
now have a child’s puzzle: can you piece these pentagons together, three at
each vertex, so that the colours all match up? If we start with 
 = �1 2 3 4 5�,
in the notation of Table 1.1, we have to ask which pentagon should be placed
on its ‘23’ edge. This must be 0 = �3 2 1 5 4�	1 = �3 2 5 4 1� or 5 = �3 2 4 1 5�,
but the first of these is clearly impossible as it would require a pentagon
with two black vertices. Thus there are just two possibilities, and once that
choice has been made the rest of the solution is forced. We thus obtain
two dodecahedra with their 20 vertices labelled with five colours. Had we
started with the 5-cycles of �̄ rather than �, we should have obtained two
more. In order to obtain generators for the usual version of M12 with the
above labelling of the faces, we choose to place 1 = �3 2 5 4 1� on edge ‘23’,
and we obtain the solution shown in Figure 1.1.

Note that inverse elements � and �−1 correspond to opposite faces and
that any two vertices having the same colour are the same distance apart.
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Figure 1.1. Two dodecahedra, each with its 20 vertices labelled using five colours.

In fact, if you move from any vertex along an edge, take the right fork at
the first junction and the left fork at the second, then you will arrive at
a vertex of the same colour. Thus the four vertices labelled with the same
colour form the vertices of a regular tetrahedron, and we have partitioned
the 20 vertices of the dodecahedron into five disjoint tetrahedra. There are
in fact two such partitions and, had we chosen the option 5 = �3 2 4 1 5�
instead, we should have obtained the other one. The two possible colourings
furnished by �̄ also correspond one each to these two partitions. Of course,
A, the group of rotational symmetries of the dodecahedron, permutes these
five tetrahedra in its natural action.

We are now in a position to read off the action of our ‘black’ gener-
ator s1 on the dodecahedron shown in Figure 1.1. Recall that s1 acts as
�
 8 X��0 3 9��1 4 7��2 6 5� on the faces. So we see that the rule is as
follows.

Note that the three edges from a vertex lead to three faces; for each
black vertex rotate these three faces clockwise.

In order to see the outer automorphism of M12 and to appreciate the four
possible sets of five symmetric generators of order 3, it is necessary to
consider both the dodecahedra shown in Figure 1.1. Our canonical generator
s1 acts on both dodecahedra in the manner described in italics above, except
that it ‘twists’ the latter in an anticlockwise sense. Note that the element
�, which cycles the four extensions, conjugates s1 into

s�1 = �
 4 9��0 6 X��1 8 5��2 3 7�
�
̄ 8̄ X̄��0̄ 3̄ 9̄��1̄ 4̄ 7̄��2̄ 6̄ 5̄�	

which twists not the three faces joined by an edge to a vertex, but the three
faces incident with a vertex. If we call the first type of twist a deep twist
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and the second type a shallow twist, then the four possible extensions of A
to a copy of M12 are characterized as follows.

Choose one of the two partitions of the 20 vertices into five regular
tetrahedra; then choose either deep twists or shallow twists.

Thus one can see from Figure 1.1 that the conjugate generator s�1 corre-
sponds to the other partition into disjoint tetrahedra and a shallow twist.

1.3 The algebraic approach

In this section we shall assume certain knowledge of the Mathieu group
M12 as given in the Atlas (see ref. [25], p. 33) and use this to show that
the permutations produced in the preceding ways do indeed generate the
group; in Section 1.4 we shall prove that our permutations generate a group
with the familiar properties of M12 without assuming the existence of such
a group.

Firstly note that M � M12 contains a class of transitive subgroups iso-
morphic to the projective special linear group L2�11�, and recall that this
group contains (two classes) of transitive subgroups isomorphic to the alter-
nating group A5. Let A be such a subgroup and note that the stabilizer of
a point in A is cyclic of order 5 and so subgroups of A isomorphic to A4
act transitively, and so regularly, on the 12 points. Now, the normalizer
in M12 of such an H � A4 is a maximal subgroup of shape A4 × S3, and
so there is an element s1 (of class 3B and cycle shape 34) commuting with
H . Thus, under conjugation by A, s1 will have five images which we may
label 
s1	 s2	 � � � 	 s5�. If a ∈ A is chosen to have order 5, then we may choose
our labels so that sai = si+1, where i = 1	 � � � 	4 and sa5 = s1. The subgroup
�s1	 � � � 	 s5� is normalized by A and, since the only proper subgroups prop-
erly containing A are isomorphic to L2�11� (as can be seen from the table of
maximal subgroups in the Atlas [25]) in which A4 subgroups have trivial
centralizer, we must have �s1	 s2	 � � � 	 s5� � M.

Suppose now we start with a group A� A5 acting transitively on 12 let-
ters, and thus embedded in the symmetric group �� S12. In order to obtain
the configuration which we know exists in M12, we must produce elements
of order 3 which commute with subgroups of A isomorphic to A4. Now, as
above a subgroup H � A4 of A must act regularly on the 12 points, since
the point stabilizer in A is cyclic of order 5. We must seek the centralizer in
� of H . But, as proved in Lemma 1.2, any permutation commuting with a
transitive group must itself be regular, and so C��H� has order at most 12.
Moreover if H is realizing, say, the left regular representation of A4, then it
certainly commutes with the right regular representation. This is simply a
consequence of the associativity of multiplication, for if Lx and Ry denote
left multiplication by x and right multiplication by y, respectively, then

g�LxRy� = �gLx�Ry = �xg�Ry = �xg�y

= x�gy� = �gy�Lx = �gRy�Lx = g�RyLx�	
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where g is any element of the group. Thus C��H� is another copy of A4
which contains precisely four cyclic subgroups of order 3. Conjugating these
by the group A we obtain four sets of five generators. Certainly at least
one of these sets must generate M12, since we know that this configuration
exists inside it. In order to see that each set generates a copy of M12, we
note that the normalizer in � of A has the following shape:

�2×A5�
·2	

a slightly subtle group which contains no copy of S5: every element in the
outer half squares to the central involution times an element of A. The
argument used in Section 1.1 applies, and we see that the normalizer of A
in � factored by the centralizer must be isomorphic to a subgroup of S5.
But A acts imprimitively on the 12 letters with blocks of size 2, and acts
doubly transitively (as L2�5�) on the six blocks. Thus the only non-trivial
element of � centralizing A is an element of order 2 interchanging each of
the pairs which constitute the blocks. This, of course, corresponds to the
central reflection of the dodecahedron which interchanges opposite faces.
This shows that the normalizer has maximal order �2×5!�. We can obtain it
by adjoining � times an odd permutation of Ŝ to our group Â of Section 1.1.
Thus,

��4 5� = �
 7 0 9��1 X 2 5��3 4 6 8�

can be readily checked to normalize our Â, which acts as rotational sym-
metries of the dodecahedron and is generated by

Â = ��1 9 4 3 5��2 7 8 6 X�	 �
 1��7 X��0 2��9 5��3 6��4 8��

The four sets of five generators are conjugate under the action of the above
element of order 4 and, since one set at least had to generate a copy of M12,
they all do. We note that, if the four copies of M12 containing our initial A5
are placed at the vertices of a square so that conjugation by the element
��4 5� above rotates the square through 90�, then adjacent copies intersect in
subgroups isomorphic to L2�11�, while diagonally opposite copies intersect
in just the initial A5.

1.4 Independent proofs

In this section we define M = �s1	 s2	 � � � 	 s5� to be the subgroup of �, the
symmetric group on 12 letters, generated by the si as defined in the unbarred
part of Table 1.2, and deduce the well known properties of M12. Thus the
si are as displayed in Table 1.3 and

â = �1 9 4 3 5��2 7 8 6 X�


Firstly we show the following lemma.
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Table 1.3. Action
of the five sym-
metric generators on � only

s1 = �
 8 X��0 3 9��1 4 7��2 6 5�
s2 = �
 6 2��0 5 4��9 3 8��7 X 1�
s3 = �
 X 7��0 1 3��4 5 6��8 2 9�
s4 = �
 2 8��0 9 5��3 1 X��6 7 4�
s5 = �
 7 6��0 4 1��5 9 2��X 8 3�

Lemma 1.4 M = �s1	 � � � 	 s5� = �â	 s1�


Proof Since â cycles the si by conjugation, it is clear that �s1	 � � � 	 s5� ≤
�â	 s1�
 However, we see that âs1 = �
 8 5 4 9 7 X 6��0 3 2 1�, of order 8.
Thus,

1 = �âs1�
8 = â8sâ

7

1 sâ
6

1 sâ
5

1 sâ
4

1 sâ
3

1 sâ
2

1 sâ1 s1 = â3s3s2s1s5s4s3s2s1	

and so â ∈ �s1	 s2	 � � � 	 s5�. �

Now let A � A5 denote the group of rotational symmetries of the dodeca-
hedron of Figure 1.1 on which our generators si are defined to act. Then we
may readily see that the following lemma holds.

Lemma 1.5 M = �s1	 s2	 � � � 	 s5� ≥ A.

Proof This follows easily from Lemma 1.4, but it is also useful to
observe that the permutation

�s1s
−1
2 �2 = �
 X 8��0 5 4��1 9 6��2 7 3�

corresponds to a rotation through 120� about an axis through the vertex
incident with faces 1, 6 and 9 and the vertex incident with faces 2, 3 and 7.
Similarly, the elements of form �sis

−1
j �2 give all the elements of order 3 in

A. Clearly, since A is a simple group, these generate A. �

In order to prove that the group M has the desired properties, we intro-
duce �, a collection of subsets of the faces of the regular dodecahedron as
labelled in Figure 1.1. These sets, each of which contains six faces, will
be known as special hexads or simply hexads.1 We start with the hexad
h whose faces are labelled 

	2	7	8	6	X�; it consists of the ring of faces
around the face 0 (but not 0) together with the face opposite 0, namely 
.
There are clearly 12 such hexads, permuted transitively by A; we refer to
them as parasols.

1 Ashworth [5] has investigated all ways in which the hexads of the Steiner system
S (5, 6, 12) can appear on the faces of the dodecahedron.
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Figure 1.2. The 132 special hexads on the dodecahedron. (a) A lugworm and its
complement. (b) A molar and its complement.

If we let our generator s1 and its square act on h, we obtain the hexads
shown in Figure 1.2; note that in each case the hexad and its complement
are congruent configurations. Since no rotational symmetry fixes either
shape, or by simply counting, we see that there are 60 hexads of each type
and that the group A permutes each set transitively. We refer to the first
type as lugworms and to the second as molars (note that they are more
properly right lugworms and right molars). We now define � to be the union
of the 12 parasols, the 60 lugworms and the 60 molars; thus ��� = 132 and
the group A has three orbits on the members of �.

Lemma 1.6 The collection of hexads � is invariant under the action of M
and M acts transitively upon it.

Proof Since the set of generators 
s1	 � � � 	 s5� is preserved by A � A5,
the group of rotational symmetries of the dodecahedron, it suffices to show
that h	hs1 and hs

2
1 (representatives for the three orbits of A acting on �) are

taken to members of � by each of the si. For instance, hs3 = 
X	9	
	2	4	7�
is clearly a molar with ‘root’ at face 7. The remaining 11 checks can be
carried out in a few moments. That the group M fuses the three orbits of A
on � into one orbit follows immediately from the facts that hs1 is a lugworm
and hs

−1
1 is a molar. �

We are now in a position to prove Theorem 1.1.
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Theorem 1.1 The group M = �s1	 � � � 	 s5� has order 95 040.

Proof From the way in which � was defined, it is clear that M acts
transitively on the 132 hexads. We must work out the order of the stabilizer
of a hexad in order to obtain �M�. Now, the element â fixes h and has cycle
shape 1
5 on its six faces. Moreover, the element

�âs1�
4 = �
 9��8 7��5 X��4 6��0��3��2��1�

acts with cycle shape 14
2 on the lugworm 
1	9	
	3	2	0� and with cycle
shape 23 on the complementary lugworm 
5	7	8	6	X	4�. Thus the stabilizer
of a hexad is at least doubly transitive and contains a transposition. So it
contains all transpositions and acts as the symmetric group S6 on the faces
of the hexad. Suppose now that �∈M fixes every face of some hexad, which,
without loss of generality, may be taken to be h, but has non-trivial action
on its complement hc. But the action of the stabilizer of hc on the six faces of
hc must also be S6, since it is itself a hexad, and so the conjugates of � under
this stabilizer must generate a normal subgroup of S6. But the only non-
trivial normal subgroups of S6 are A6 and S6 itself, and so we may assume
that M contains all elements fixing every face of a hexad h and acting with
cycle shape 13
3 on its complement hc; such an element is �3 4 5�. But the
parasol 

	5	7	2	4	6� acted on by �3 4 5� is 

	3	7	2	5	6�, which does
not belong to �. We conclude that the stabilizer of a hexad acts faithfully
on the six faces of that hexad, and so �M� = 132×6! = 95040. �

Note It is clear from the above proof that the stabilizer of a hexad is acting
non-permutation identically on a hexad and its complement, realizing both
actions of the group S6 on six letters.

The collection of 132 hexads, labelled � above, is an important and
much-studied combinatorial structure which deserves more discussion.

Definition 1.1 A Steiner system S�l	m	n� is a collection of m-element
subsets of an n-element set � such that every l elements of � appear
together in precisely one of them.

When a Steiner system S�l	m	n� exists, it is clear that it must contain
precisely

(
n

l

)
/
(
m

l

)
special m-element subsets; in particular, this number

must be an integer.

Lemma 1.7 The set � is a Steiner system S�5	6	12�.

Proof Suppose that some 5-element subset of � is contained in two
members of �; by the transitivity of M, we may assume one of these to be h,
and the 5-element subset may be assumed to be the ring of faces adjacent
to 0. But it is clear that this set of faces is contained in no lugworm, no
molar and no other parasol. Thus no two hexads intersect in five faces or,
equivalently, no 5-element subset is contained in more than one hexad. So
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132× 6 distinct 5-element subsets of � are contained in hexads of �. But
132× 6 = 792 = ( 12

5

)
, and so every 5-element subset of � is contained in

precisely one hexad of �. �

We are now in a position to deduce Theorem 1.2.

Theorem 1.2 The group M acts sharply quintuply transitively on the
elements of �.

Proof Let 
x1	 x2	 � � � 	 x5� and 
y1	 y2	 � � � 	 y5� be two ordered subsets
of five elements in �. We shall show that there exists an element � ∈ M
such that x�i = yi for i = 1	 � � � 	5. Let the hexads containing these two
5-subsets be k and l, respectively. Then, by the transitivity of M on hexads,
there exists an element � ∈ M such that k� = l. But the stabilizer of l
acts as S6 on its six elements, and so there exists an element � in this
stabilizer such that x��i = yi for i = 1	 � � � 	5, as required. Finally, note that
12×11×10×9×8 = 95040; so there is no element other than the identity
fixing five points, and M acts sharply quintuply transitively on the 12 points
of �. �



2

The Mathieu group M24

Our approach to obtaining generators for the large Mathieu group M24 will
be remarkably analogous to that for M12. In fact, we found this method
of obtaining generators for M24 first and adapted the approach to produce
M12, but it seems more natural in this book to deal with the smaller group
before the larger one.

2.1 The combinatorial approach

In place of the group A considered in Chapter 1, we take L � L3�2�, the
general linear group in three dimensions over the field of order 2 acting
as a permutation group on seven letters; L can be defined to be the set of
permutations of the set � = 
0	1	2	3	4	5	6� which preserve �, the seven
lines of the Fano plane given in Figure 2.1. These lines are labelled in the
standard way by the set of quadratic residues modulo 7, i.e. 
1	2	4�, and
its translates.

Now L possesses two conjugacy classes of elements of order 7, which in
this permutation representation are just 7-cycles. These classes contain 24
elements each and, if we let a= �0 1 2 3 4 5 6� ∈ L, then the class containing
a is given by

� = aL = {
�a0 a1 a2 a3 a4 a5 a6� � 
ai	 ai+1	 ai+3� ∈ � for i = 0	1	 � � � 	6

}
	

where the subscripts are to be read modulo 7. Of course, the other conjugacy
class consists of the inverses of the elements of �.

The elements of � are displayed in Table 2.1; they are written so that
each 7-cycle starts with 0 and are labelled with the points of the projective
plane P1�23�. As in Chapter 1, we now define a permutation t0 of �:

t0 � �0 u v w x y z� �→ �0 u v w x y z��v z��x y� = �0 u z w y x v�	

for �0 u v w x y z� ∈ �.

15
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Figure 2.1. The Fano plane.

Table 2.1. Labelling of the 24 7-cycles with the elements of the projective
line P1�23�


 (0 1 2 3 4 5 6) 17 (0 2 4 6 1 3 5) 22 (0 4 1 5 2 6 3)
0 (0 6 4 2 3 1 5) 11 (0 3 6 1 4 5 2) 6 (0 4 3 5 6 2 1)

18 (0 5 3 4 2 6 1) 10 (0 2 5 6 3 1 4) 12 (0 3 2 1 5 4 6)
3 (0 2 1 6 4 5 3) 4 (0 4 2 5 1 3 6) 5 (0 1 4 3 2 6 5)

20 (0 5 6 4 1 3 2) 2 (0 1 5 3 6 2 4) 9 (0 6 1 2 5 4 3)
8 (0 5 2 4 3 1 6) 16 (0 3 5 1 2 6 4) 19 (0 2 3 6 5 4 1)

14 (0 1 6 3 5 4 2) 7 (0 5 1 4 6 2 3) 21 (0 6 5 2 1 3 4)
15 (0 4 6 5 3 1 2) 13 (0 3 4 1 6 2 5) 1 (0 6 3 2 4 5 1)

Note that for � = �0 u v w x y z� ∈ �, the permutation �v z��x y� is an
element of L, and so t0 is a function from � into �. Since t20 = 1, we see
that t0 is an onto function and thus a permutation of �. We may work out
the action of t0 on these 7-cycles, and using the notation of Table 2.1 we
find that

t0 = �1 9��2 5��3 19��4 15��6 22��7 18��8 20��10 17��11 12��13 16��14 
��21 0�


In this manner, we obtain the seven permutations � = 
t0	 t1	 � � � 	 t6�
shown in Table 2.2, one for each point of the plane. Of course the group
L permutes the set � transitively by conjugation and, as before, we let L̂
denote the image of L as a transitive subgroup of the symmetric group S24.
Conjugation by elements of L̂ permutes the elements of � by permuting
their subscripts in the natural way; thus,

t�̂i = ti� for � ∈ L	
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Table 2.2. The seven involutions seen on the Klein map �

t0 = �1 9��2 5��3 19��4 15��6 22��7 18��8 20��10 17��11 12��13 16��14 
��21 0�
t1 = �1 18��2 0��3 13��4 17��5 10��6 19��7 11��8 14��9 16��12 22��15 
��20 21�
t2 = �1 8��2 17��3 6��4 9��5 22��7 19��10 13��11 20��12 21��14 15��16 18��0 
�
t3 = �1 5��2 19��3 7��4 11��6 14��8 10��9 22��12 20��13 21��15 0��16 17��18 
�
t4 = �1 11��2 10��3 
��4 14��5 8��6 9��7 17��12 15��13 20��16 21��18 0��19 22�
t5 = �1 7��2 15��3 18��4 16��5 0��6 10��8 11��9 14��12 19��13 17��20 
��21 22�
t6 = �1 22��2 7��3 20��4 12��5 21��6 13��8 
��9 18��10 14��11 17��15 19��16 0�

the proof of this statement being directly analogous to that of Lemma 1.1.
It turns out that if â denotes the image of a in L̂, then â and t0 generate a
subgroup of the alternating group A24 of order 244 823 040. In fact, we have
the following:

�â	 t0� = �t0	 t1	 � � � 	 t6� � M24	

the large Mathieu group [71], which was discovered in 1873.
As in the M12 case, we have a number of choices as to what we should

conjugate the 7-cycles by. Indeed, if � = �0 u v w x y z� ∈ �, then the
three lines of the projective plane containing 0 are 0uw	0vz and 0xy. The
Klein fourgroup of L fixing every line through 0 consists of the identity
together with the three permutations 
�v z��x y�	 �x y��u w�	 �u w��v z��.
By conjugating elements of � by each of these in turn, we obtain three
sets of generators 
�1	�2	�3�, say, and these generate three copies of M24.
Moreover, we may obtain a further three sets of generators which correspond
not to the points �, but to �, the lines of the projective plane. Explicitly,
we fix a line, say 0 = 
1	2	4�, and write the elements of � so that 1, 2 and
4 appear in the first, second and fourth positions. Then we may define

t0 � ��	�	w	�	x	 y	 z� �→ ��	�	w	�	x	 y	 z��w x��y z�

for each � = ��	�	w	�	x	 y	 z� ∈ �, where 
�	�	�� = 
1	2	4�. As was
the case for the point-type generators, we can conjugate by any one of
�w x��y z�	 �w y��x z� or �w z��x y�, these being the three involutions in the
Klein fourgroup fixing every point on the line 0.

In this way, we obtain six copies of M24 containing a given copy of L3�2�
acting transitively on 24 points. As before, we prove in Section 2.3 that
these are the only ways in which such a copy of L3�2� may be extended to
M24. Now the normalizer of our L̂ in S24 will permute these six copies of
M24 by conjugation. In order to identify this normalizer we first note that
L̂ acts transitively, but imprimitively with blocks of size 3, on the points
of �. Its action on the eight blocks is that of L2�7� on the projective line
P1�7� and is thus doubly transitive. So the lemmas proved in Chapter 1
show that any permutation of S24 commuting with L̂ must be regular (that
is to say, must have all disjoint cycles of the same length) and have trivial
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action on the blocks; so a non-trivial such element would have cycle shape
38. But the element

� � � �→ �2 for � ∈ �

clearly commutes with L̂ and has the required cycle shape. It is easily seen
that conjugation by � cycles the three sets of generators of point-type and
the three sets of line-type. Moreover, the outer automorphism of L3�2� is
realized within S24 – although it does not, of course, preserve � – and
we obtain a copy of L3�2� � 2 which interchanges points and lines and so
interchanges sets of generators of the two types. The latter group commutes
with our element �, and so we have

N��L̂� � PGL2�7�×C3	

and the action on the six copies of M24 is cyclic.

2.2 The Klein map

2.2.1 A geometric interpretation of the seven
generators

We now wish to construct a geometric object on whose faces our generators
for M24 act in an analogous manner to the way in which our generators
for M12 act on the faces of a regular dodecahedron. As before we let the
elements of the set � = 
0	1	 � � � 	6� being permuted by the group L� L2�7�
be replaced by colours; thus, for instance, we let

0 ∼ black,
1 ∼ blue,
2 ∼ yellow,
3 ∼ pink,
4 ∼ brown,
5 ∼ green,
6 ∼ red.

Now, for each 7-cycle in the conjugacy class �, take a heptagon with its
edges coloured clockwise in the order defined by the cycle, so we have 24
heptagons, each of which has an edge of each colour. We now attempt to
assemble these faces with edges of the same colour abutting and three faces
at each vertex, in such a way that the resulting object is preserved by the
permutations of the group L with which we started. Of course, we cannot
expect to obtain a 3-dimensional regular solid as in the previous case, as
there is no platonic solid with heptagonal faces. So we shall have to allow
our heptagons to be rather flexible!

Imagine then that we start with the face corresponding to the element
a= �0 1 2 3 4 5 6� and ask what colour the third edge at the vertex between
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x

Figure 2.2. The heptagon puzzle.

this heptagon’s red (6) and black (0) edges can be. This is equivalent to
asking what colour the edge marked x in Figure 2.2 can be. Of course, if
the object we are building is to be preserved by the group L, then once
we have coloured this edge the colour of the seven corresponding edges is
determined by the 7-fold rotational symmetry about our initial face.

Clearly this edge cannot itself be red or black as this would give rise to
a heptagon with two edges of the same colour. Nor can it be coloured green
(5), as the 7-fold symmetry realized by a would then require the third edge
at the black/blue (0/1) vertex of face a to be coloured red (6). This would
lead to consecutive faces of a heptagon being coloured red, blue, green
(6,1,5), which is a line of the plane and thus not possible in a 7-cycle. It is
slightly more difficult to dismiss the possibility of colouring this edge brown
(4) or pink (3), but it is left to the reader to verify that both of these would
lead to the two edges incident with the other end of this brown or pink edge
requiring the same colour. This leaves just two possibilities, namely yellow
(2) and blue (1). Both these lead to perfectly consistent coloured figures
involving all the faces, and once this first colour has been chosen the whole
structure and colouring is uniquely defined. In Figure 2.3 we have coloured
this edge blue.

The remarkable figure which we have constructed in this manner is the
celebrated Klein map, which we shall denote by �; it has 24 faces, and must
have �24 × 7�/3 = 56 vertices and �24 × 7�/2 = 84 edges. The generalized
Euler formula tells us that if V is the number of vertices, E the number of
edges, and F the number of faces, then

V −E+F = 2�1−g�	

where g is the lowest genus of a surface on which the map can be drawn. So
in this case we see that �56−84+24� = −4 = 2�1−3�, and the genus is 3.
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Figure 2.3. The Klein map �.

Figure 2.3 shows a 14-gon with its edges labelled in pairs by the letters
A, B, C, D, E, F, G. It is drawn to show the 7-fold symmetry of the sit-
uation, but each edge of the enfolding heptagon corresponds to two edges
of this defining 14-gon. As in the familiar diagrammatic representation
of the torus as a rectangle with its opposite edges identified, it is under-
stood here that if one leaves this figure across face X then one reappears
through the other edge labelled X. Thus, for example, if we leave the face
labelled 13 across edge F on the extreme left of Figure 2.3, then we rejoin
the figure through the other edge F (to be found bottom right) still on
face 13.

It is a consequence of our construction that the Klein map is obtained
with its 84 edges coloured with seven colours in such a way that every face
has an edge of each colour. Both colourings are preserved by the group L2�7�
acting as rotational symmetries of the map, with the colours corresponding
to blocks of imprimitivity, but the two colourings are visibly different from
one another. In the case shown in Figure 2.3 the three edges at the vertex
first considered are coloured red (6), black (0) and blue (1), which is not
a line; but in the other case (see Figure 2.4) the three edges are coloured
red (6), black (0) and yellow (2), which is a line of the 7-point projective
plane.

Just as it was easy to read off generators for M12 from the vertex-colouring
of the dodecahedron, we may now read off generators for M24 from the
edge-colouring of the Klein map. Corresponding to each colour we define a
permutation as follows.

Choose a colour and interchange every pair of faces which are sepa-
rated by an edge of that colour.
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Figure 2.4. Alternative colouring of the Klein map.

Thus, if we choose the colour black in Figure 2.3, then we obtain the
following permutation:

t0 = �1 9��2 5��3 19��4 15��6 22��7 18��8 20��10 17��11 12��13 16��14 
��21 0�	

as in the combinatorial approach. Corresponding to the seven colours, we
again obtain the set of generators listed in Table 2.4. Indeed, we can use
the colouring to define a different set of permutations as follows.

Choose a colour and interchange every pair of faces which are joined
by an edge of that colour.

So, if the colour is black again, we obtain the following permutation:

s0 = �
 11��0 10��1 3��2 13��4 20��5 16��6 7��8 15��9 19��12 14��17 21��18 22�


This element and its images generate a second copy of M24, which inter-
sects the first copy in the group L with which we started. Finally, we note
that t0 and s0 commute with one another and so the product t0s0 is also an
involution. If we take the seven images of this as our generators, we obtain
a third copy of M24. Now, as has been remarked, our group L2�7� acts as
rotations on the Klein map. But, just as the dodecahedron possesses reflec-
tive symmetries, so does �. Indeed, a reflection in a vertical line through
the centre of Figure 2.3 certainly preserves incidence of faces and acts on
them as

d = �8 14��20 15��3 0��5 6��1 9��4 11��7 16��19 21��2 13�


This element extends the group L to PGL2�7�. Now, if we conjugate each of
t0, s0 and t0s0 by d and take all images under the group L, we obtain three
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more sets of generators for M24, making six copies of M24 in total. As is
shown later, these are the only ways in which a group isomorphic to L2�7�
acting transitively on 24 letters can be extended to a copy of M24. They are
cycled by the element of order 6:

zd = �1 2 15 9 13 20��3 6 4 0 5 11��7 8 21 16 14 19��10 18 12��17 22 
�	

where z is an element of order 3 commuting with L.
But what about our other construction of the Klein map which led to

a colouring with a line of colours at each vertex? In fact, the permutation
defined by the rule which gave us t0 above now has the following form:

r0 = �
 3��0 15��1 11��2 7��4 17��5 22��6 13��8 10��9 14��12 19��16 18��20 21�	

which preserves the blocks of imprimitivity of size 3 defined by L. This
element r0, together with L, generates a subgroup of S24 of shape

�r0	L� � 37 � �2×23 � L2�7��


As the reader will deduce, the elementary abelian subgroup of shape 37

preserves the eight blocks and is normalized by an element of order 2
which inverts each of its elements. The action on the blocks is given by the
homomorphic image of shape 23 � L3�2�.

2.2.2 More about the Klein map

When we coloured the vertices of the dodecahedron so that the faces cor-
responded to a conjugacy class of 5-cycles, we found that diametrically
opposite faces corresponded to inverses of one another. In this case there are
triangles of faces at maximal distance from one another in the map; they
correspond to a 7-cycle, its square and its fourth power. Thus, for instance,
we have



	17	22� ↔ 
�0 1 2 3 4 5 6�	 �0 2 4 6 1 3 5�	 �0 4 1 5 2 6 3��


Now, any 3-cycle on three non-collinear points of a plane of order 2 extends
uniquely to an element of the group L3�2� acting with cycle shape 1
32 on
both points and lines, and so fixes a unique point (and a unique line). Thus,
the rotation of order 3 about a vertex of the Klein map fixes a unique point
of the plane; so we can label the vertices with the seven points. Now there
are 56 vertices, and so eight of them correspond to each point of the plane.
Such a set of eight vertices of the Klein map is preserved by a subgroup of
L2�7� isomorphic to S4, acting on them as the rotational symmetries of a
cube. Thus, just as the 20 vertices of the dodecahedron fall into five disjoint
regular tetrahedra, the 56 vertices of the Klein map may be thought of as
falling into seven disjoint cubes.

It is of course impossible to make a 3-dimensional model of � so as to
reveal all its symmetries. However, Shulte and Wills [78] have produced a
beautiful computer-assisted model of the dual map, which is denoted 
3	7�8
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in the notation of Coxeter. This model, which has 56 triangular faces and 24
vertices, has the 12 rotational symmetries of a regular tetrahedron. Indeed,
it is based on a tetrahedron with a hole in each of its faces and a hollow
centre, an object which is clearly topologically equivalent to a doughnut
with three holes.

2.2.3 The connection with the Klein quartic

The Klein map, exhibited in Figure 2.3 on a surface of genus 3, was discov-
ered in 1878 by Felix Klein in connection with his celebrated quartic curve
[64]. The equation of the curve is given by

F�x	 y	 z� = xy3 +yz3 + zx3 = 0�

thus we are considering the set of all non-trivial triples of complex num-
bers �x	 y	 z� which satisfy the above equation, so points of the curve are
1-dimensional subspaces. The obvious symmetry of the equation shows us
that cycling the coordinates x	 y and z preserves the curve, which is to say
the linear tranformation of the space �3 defined by the matrix given by

� =
⎛

⎜
⎝

0 1 0
0 0 1
1 0 0

⎞

⎟
⎠

maps points of the curve to points of the curve. If we let �= e2�i/7, a complex
seventh root of unity, then we see that the matrix given by

� =
⎛

⎜
⎝
� 0 0
0 �2 0
0 0 �4

⎞

⎟
⎠

also preserves the curve. Now it is easily seen that �� =�4, and so ��	�� is a
Frobenius group of order 21. But it turns out that the curve F = 0 possesses
far more symmetries than these rather obvious monomial transformations.
In fact, following Baker [8], we let a=�+�−1	 b=�2 +�−2 and c=�4 +�−4,
and find that these complex numbers are the roots of the cubic x3 + x2 −
2x−1 = 0. It is readily checked that they satisfy the following relations:

a2 = b+2	 b2 = c+2	 c2 = a+2	
bc+ c+1 = 0	 ca+a+1 = 0	 ab+b+1 = 0	
a−1 = a+b	 b−1 = b+ c	 c−1 = c+a	

and using these we may verify that the curve F = 0 is preserved by the
following matrix:

� = d−1

⎛

⎜
⎝

1 a−1 b

a−1 b 1
b 1 a−1

⎞

⎟
⎠ 	

where d−1 = −�1+a−1 +b�.



24 The Mathieu group M24

The famous Hurwitz bound asserts that a group preserving a surface of
genus g cannot have order exceeding 84�g−1�. In our case, we have g = 3,
and so the maximal order of the group of linear transformations preserving
the curve is 168. But we may readily verify that the elements � and � above
satisfy the following relations:

�7 = �2 = ����3 = ��	��4 = 1	

which is a well known presentation for the simple group L2�7� of order 168.
Since the group is simple and the generating matrices non-trivial, we must
have ��	�� � L2�7� and, since this group attains the Hurwitz bound, we
must have

��	�	�� = ��	�� � L2�7�


So, by seeking the group preserving the quartic F = 0, Klein, and then
Baker, had constructed a 3-dimensional, irreducible, complex representa-
tion of the group L2�7�. Turning the process around, they had shown that
the group L2�7� possesses an invariant of degree 4, namely F = 0.

Associated with a curve F = 0 is its Hessian, defined as follows:

� �x	 y	 z� =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�2F

�x2

�2F

�x�y

�2F

�x�z

�2F

�y�x

�2F

�y2

�2F

�y�z

�2F

�z�x

�2F

�z�y

�2F

�z2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0


It may be shown, as in, for example, ref. [49], p. 100, that a curve meets its
Hessian at points of inflexion and multiple points. Since our curve possesses
no multiple points, all points of intersection of F = 0 and � = 0 are points
of inflexion. Now, each entry in the determinant defining � has degree 2,
and so the degree of � is 6. Thus the Klein quartic possesses 4× 6 = 24
points of inflexion, and these correspond to the faces of the Klein map �.

The group L2�7� possesses two further invariants of degrees 14 and 21,
giving rise, respectively, to 4×14 = 56 and 4×21 = 84 special points of the
curve. The first type are points of contact of bitangents, that is tangents
which touch the curve at two distinct points. The quartic possesses 28
bitangents; indeed, the group of the 28 bitangents, which is isomorphic to
the symplectic group Sp6�2�, is one of the most important and most studied
classical groups. We shall discuss it in some detail in Chapter 5. These
points correspond to the vertices of the Klein map.

The second type are known as sextactic points. Recall that five points
in the plane determine a unique conic, and so, given a higher degree dif-
ferentiable curve such as our quartic, for any point on the curve there is
a conic making 5-point contact with the curve at that point. Consider the
analogy with tangents: any two distinct points in the plane determine a
straight line, and so at any point on a differentiable curve there is a unique
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line making 2-point contact at that point. Of course, some of those lines
will make 3-point contact with the curve; these are the points of inflexion.
Analogously, at some points the associated conic will make 6-point contact
with the curve; these are the sextactic points. They correspond to the edges
of the Klein map.

It is of interest to ask for a geometric description of the triples of points of
inflexion, which correspond to triples of faces at maximal distance from one
another in the Klein map. To furnish such a description, first note that �
can only fix three points in �3, namely �1	0	0�	 �0	1	0� and �0	0	1�, and so
these are three points of inflexion. Now, the tangent at a point of inflexion,
as mentioned above, makes 3-point contact at that point. But a line should
intersect a quartic curve four times, and so this tangent must cut F = 0
once more. A transformation which preserves the curve and fixes the given
point of inflexion must fix the tangent at that point of inflexion. It must,
therefore, fix the fourth point of contact which the tangent makes with the
curve. This says that the tangent at �1	0	0� must cut the curve again at
a point which is fixed by �, namely at �0	1	0� or �0	0	1�. Whichever of
these two it is, we can repeat the process, arriving back where we started
after three moves. Thus we obtain triangles of inflexion, which, in the
correspondence with 7-cycles, are the sets 
�	�2	�4�.

2.3 The algebraic approach

We see from the Atlas [25], p. 96, thatM � M24 contains a class of maximal
subgroups isomorphic to L2�7� and acting transitively on the 24 points. Let
L be such a subgroup. Then the stabilizer of a point in L must be cyclic
of order 7, and so a subgroup of L isomorphic to S4 must act regularly.
Now, L contains two classes of such subgroups, corresponding to the points
and lines of the projective plane of order 2. In one case these subgroups
are self-centralizing within M24; however, if H � S4 is in the other class,
we find that H centralizes an involution in M24. By the transitivity of H ,
such an involution must have cycle shape 212. Under conjugation by L,
such an element will have seven images, which we may label 
t0	 t1	 � � � 	 t6�,
corresponding, without loss of generality, to the points of the plane in which

1	2	4� and its translates modulo 7 are the lines. Now, the normalizer of the
subgroup �t0	 t1	 � � � 	 t6� properly contains the maximal subgroup L; thus,

�t0	 t1	 � � � 	 t6� = M


Suppose now we start with a group L � L3�2� acting transitively on 24
letters and thus embedded in the symmetric group � � S24. In order to
produce the configuration which we know exists within M24, we must pro-
duce involutions in � which commute with subgroups of L isomorphic to
S4. As above, such a subgroup H � S4 must act regularly on the 24 points,
and thus (as in Section 1.3) we have K = C��H� � S4. From the previous
paragraph we realize that at least one of the involutions of K together with
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L will generate a copy of M24, and, of course, K contains six transpositions
and a further three involutions in its Klein fourgroup. As mentioned above,
the normalizer in � of L has the following form:

3×PGL2�7�	

for, as in Section 1.1, an element centralizing L must be regular and preserve
the eight blocks of imprimitivity of size 3; so the centralizer has order at
most 3. But PGL2�7� certainly does have a transitive action on 24 letters,
since it contains dihedral subgroups of order 14; and its derived subgroup
remains transitive. Moreover, the blocks of imprimitivity of length 3 have a
sense attached to them, as the unique (maximal) subgroup containing such
a D14 is Frobenius of order 42. Thus, there is a unique cyclic subgroup of
order 3, generated by a regular element �, commuting with this PGL2�7�.
Now, the outer elements of our PGL2�7� interchange the two classes of
subgroups isomorphic to S4, which we can choose as H . Having fixed H , the
centralizing element � permutes the nine involutions of K by conjugation
into three orbits of length 3. In fact, it is the elements which lie in the Klein
fourgroup which generate copies of M24. One set of transpositions gives rise
to copies of the alternating group A24, whilst the other gives groups of shape

37 � �2×23 � L3�2��


Thus, a copy of L3�2� acting transitively on 24 letters can be extended to a
copy of M24 on those letters in just 2×3 = 6 ways. To verify this without
assuming the above statement about the three types of involution in K, we
count in two ways the following set:


�L	M� � L � L3�2�	M � M24	L ≤ M ≤ �	L transitive� 	

where � denotes the symmetric group S24 acting on a given set of 24 letters.
Thus,

� � � N��L� � ×d =� � � N��M� � × � M � NM�L� �	
and so

d = 24!
�M� × �M�

�L� × 6�L�
24! = 6	

where d is the number of copies of M24 containing a given L.

2.4 Independent proofs

We now let � = 
t0	 t1	 � � � 	 t6� and define M = �� � to be the subgroup of
�24, the symmetric group on 24 letters, generated by the ti as defined in
Table 2.2. From here we deduce the well known properties of M24. The
element â = �0 18 3 20 8 14 15��6 12 5 9 19 21 1��11 10 4 2 16 7 13� cycles
the seven generators by conjugation as in the M12 case. Thus tâi = ti+1 for
i= 0	 � � � 	6 and the subscripts are read modulo 7. We first show Lemma 2.1.
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Lemma 2.1 The group M = �t0	 t1	 � � � 	 t6� contains L, the group of all
rotational symmetries of the Klein map as labelled in Figure 2.3.

Proof We simply show that 1 �= �titj�
3 ∈ L for all i �= j. Then, since L

acts doubly transitively on the set � by conjugation, these elements must
form a complete conjugacy class of L. Since L is simple, we see that these
elements must generate L. In fact, we have

�t3t5�
3 = �
 0��1 12��2 3��4 9��5 20��6 17�

�7 19��8 21��10 13��11 22��14 16��15 18�	

the involutory symmetry of � about the edge separating faces 
 and 0. �

In order to prove our assertions about the group M generated by � , it
will prove useful to know the cycle-shapes of some of its elements.

Lemma 2.2 The group M = �t0	 t1	 � � � 	 t6� possesses elements of cycle-
shapes 38	12
112	1
23 and 18
28.

Proof It is readily checked that the element titj for i �= j has cycle-shape
64, and that titjtk, for i	 j	 k distinct, has cycle-shape 24
44 if 
i	 j	 k� is a line,
and 12
112 if not. Moreover, the element ât0 has cycle-shape 1
3
5
15. Now,
Lemma 2.1 states that L ⊂ M and, since L acts transitively on �, so does
M. The point-stabilizer in M contains elements of cycle-shapes 1
112 and
3
5
15 and, since any orbit of this point-stabilizer must have length a sum
of cycle lengths in each case, we see that M must act doubly transitively.
But this implies that M contains elements of cycle-shape 1.23. Elements of
cycle-shape 38 and 18
28 follow by squaring elements of shape 64 and 24
44,
respectively. �

The desired properties of our group M are best deduced by introducing a
new structure. Recall that P���, the power set of a set �, can be regarded
as a vector space over the field of order 2 of dimension the cardinality of
�. In this space the sum of two vectors – which are, of course, subsets of
� – is their symmetric difference. Thus,

X+Y = �X \Y�∪ �Y \X� for X	Y ∈ P���


The set of 1-element subsets of � forms a natural basis for the space P���.
Such a space has a bilinear form defined on it by

�X	Y� =
{
0 if �X∩Y � ∈ 2�
1 if �X∩Y � ∈ 2�+1


Thus, two subsets of � are orthogonal if, and only if, they intersect in an
even number of points. For us � will be the set of faces of the Klein map �,
labelled with the points of the projective line P1�23� as in Figure 2.3, and so
the space P���will have dimension 24; see ref. [5]. We shall define a subspace
of P��� of dimension 12. Firstly, note that the 24 faces fall into eight blocks
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 0 1 2 3 4 5 6


 0 18 3 20 8 14 15

22 6 12 5 9 19 21 1

17 11 10 4 2 16 7 13

Figure 2.5. The eight terns.

of imprimitivity under the action of the group of rotational symmetries of
the Klein map. These are the sets of faces at maximal distance from one
another in the map �; and an element, its square and its fourth power when
the faces are regarded as 7-cycles. For convenience, these triples, which we
refer to as terns, are displayed as the columns in Figure 2.5, where they are
arranged so that the 7-fold symmetry â which fixes the face 
 preserves the
rows. The group L permutes the eight terns as the projective special linear
group L2�7� acting on the points of the projective line P1�7�, and so we label
the terns accordingly in Figure 2.5. Note that a subset of � consisting of a
face and the heptagon of neighbours around it contains one face from each
tern (this is certainly true when the central face is 
 and so is true for the
24 images of 
 under the rotations of L), and so its complement contains
two points from each tern; let ui denote this complement in the case when
the heptagon is centred on i, so that u
 consists of the bottom two rows of
Figure 2.5. We shall consider

	 = �ui � i ∈ �� 	
the subspace of P��� spanned by these 24 generating 16-ads. Thus every
member of 	 will intersect each tern evenly. We shall denote the vector
consisting of the 1-element subset 
i� by vi, and for X ⊂� we let vX denote

∑

i∈X
vi


In order to write the vectors of 	 (which are simply subsets of �) more
concisely, we make use of GF�4�, the field of order 4, and let entries in the
terns be denoted by

0 = 	 1 = ×
×

	 � =
×

×
	 �̄ =

×
× 


Note that 1+�+ �̄ = 0, and that vectors of 	 may be written as 8-tuples
of elements from GF�4�. Thus, for example,

u0 =

 0 1 2 3 4 5 6

× × × ×
× × × × × ×
× × × × × ×

= �1	1	1	�	 �̄	 �̄	�	1�
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A word of warning is necessary: the space 	 is not a subspace over the
field GF�4�; nor can it be made into a subspace by a judicious relabelling
of the 24 points. Were this possible, then, corresponding to multiplication
by �, there would be a permutation of cycle shape 38 fixing all the terns
and commuting with the group L. Our element � and its inverse are the
only elements to have these properties, and they cannot fix 	 as they would
then fix the whole Golay code, defined below, and so lie in M24. But the
subgroup L has trivial centralizer in M24. Of course, 	 is a subgroup of the
vector space of 8-tuples over GF�4�.

Lemma 2.3 The space 	 has dimension 8.

Proof Firstly, note that, for any pair of faces of �, the number of faces
joined to both of them is even. Thus, any two of our generating 16-ads
are orthogonal to one another with respect to the bilinear form defined
above. So, the subspace 	 is contained in its own orthogonal complement.
Moreover, the subspace 
, spanned by the eight terns (the blocks of imprim-
itivity), clearly has dimension 8 and, since the vectors of 	 intersect the
terns evenly, it is orthogonal to and disjoint from 	. So, the space 	 +

has dimension dim 	 + 8 and is contained in the orthogonal complement
of 	; i.e.

dim 	+ �dim 	+8� ≤ 24	

and so 	 has dimension less than or equal to 8. In order to see that 	 has
dimension at least 8, we consider the linear transformation which projects
vectors of 	 onto the 8-element subset u
 +�, the top row of the tern array.
Clearly, the kernel of this transformation has dimension at least 1 since it
contains the vector u
. Moreover, it is readily checked that

u16 +u18 = ��	0	0	�	0	0	1	1�	

a vector of 	 which projects onto the 2-element subset of the top row 

	3�.
This subset has seven images under the action of the cyclic group of order
7 generated by â which fixes 
 and cycles the rows of the tern array. These
are clearly linearly independent (and generate the space of all even subsets
of the top row), and so the image of 	 has dimension at least 7. We conclude
that 	 has dimension at least (1+7) = 8, and so dim 	 = 8, as required. �

Now that we know the dimension of 	, we can readily use the above
argument to prove Lemma 2.4.

Lemma 2.4 The set B = 
u0	 u18	 u3	 u20	 u8	 u14	 u15	 u22� is a basis for 	.

Proof Firstly, we give some relations which hold between the ui. Since
every face is joined to just one face of each tern, the sum

∑

i∈T
ui	
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for T a tern, is the zero vector. Secondly, note that the sum of the seven uj
for j joined to a fixed face, i say, is just ui, for every face other than these
eight faces is joined to none or two of them. In particular, we have

u
 = u0 +u18 +u3 +u20 +u8 +u14 +u15 ∈ �B�

As above, we now project onto the top row of the tern array. That is to
say, we define

� � X �→ X∩ ��+u
�


Certainly, u
 = �1	1	1	1	1	1	1	1� ∈ Ker���; we need to show that Im���
consists of the 7-dimensional space of all even subspaces of the top row.
But it is readily checked that

� � u0 +u18 +u8 +u14 = 
3	20�	

an adjacent pair in the top row. It follows, taking images of this under the
action of the element â, that any even subset of the top line which does not
contain 
 is in �B�. But u22 maps onto the whole of the top line, and so we
obtain every even subset of the top line and dim �B� = 1+7 = 8.

We now investigate the 256 vectors of 	 in further detail, and begin by
producing a more subtle relation. Consider the following:

u
 +u0 = �1	1	1	1	1	1	1	1�+ �1	1	1	�	 �̄	 �̄	�	1� = �0	0	0	 �̄	�	�	 �̄	0��

in other words, the sum of two generating 16-ads whose ‘centres’ are adja-
cent. This sum is illustrated in Figure 2.6(a), where the vertices represent
faces of the Klein map � and two vertices are joined if the corresponding
faces are adjacent.

It is visible from the figure, and may readily be checked, however, that
this vector is also obtained by taking

u10 +u13 = ��̄	�	 �̄	�	 �̄	1	1	 �̄�+ ��̄	�	 �̄	1	1	 �̄	�	 �̄� = u
 +u0	

and so we have the following relation:

u
 +u0 +u10 +u13 = 0


Now observe that our set B of eight generating 16-ads is preserved by â, a
symmetry of order 7 fixing face 
. The new relation shows that

u3 +u18 = u22 +u21	

and so u21 ∈ �B� as do all the ui with face i adjacent to face 22. But we also
have

u
 +u22 +u17 = 0 and u1 +u9 +u17 +u10 = 0	

and so u10 ∈ �B�, as do all the ui for face i adjacent to face 17. Thus, �B�
contains all the ui, and

�B� = 	


�
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Figure 2.6. The vectors of 	.

Since we wish to understand 	 in some detail, we choose to exhibit a
representative of each of the orbits of L acting on the vectors of 	. Note
that all elements of L act regularly on the faces of �, except elements of
order 7 (and the identity element), and so it is straightforward to read off
the order of the stabilizer of a given vector. Representatives of the orbits
are given in Figure 2.6, and Table 2.3 gives the length of each orbit; thus
we see that 	 has orbits of lengths �1+ 24+ 42+ 84+ 28+ 56+ 21� = 256
under the action of L. Note that Figure 2.6(e) is the complement of the four
parallel lines shown.

Note that, since the 24 generating vectors of 	 are 16-ads intersecting
one another evenly, every vector in 	 will be a subset containing a multiple
of four faces. In Table 2.3 we list the cardinality of subsets correspond-
ing to vectors in the various orbits, and term 8-element subsets octads,
12-element subsets dodecads, and 16-element subsets 16-ads. In the column
headed ‘Terns’ we record the manner in which vectors of each orbit inter-
sect the eight terns. There is one further piece of information about these
vectors which we need to record before we are able to proceed. Observe
that the octad u
 + u0 intersects each of the terns labelled 2, 3, 4 and
5 in two points and is disjoint from the others. Now, when L2�7� acts
on the 8-point projective line, it preserves two Steiner systems S�3	4	8�,
each of which contains 14 subsets of size 4. The remaining

( 8
4

)− 28 = 42
4-element subsets, of which 
2	3	4	5� is an example, fall in a single orbit.
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Table 2.3. Vectors of 	 and their intersection with the terns

Number Type Terns Example Stabilizer in L

1 � 08 0 L

24 16-ads 28 u
 ��� � C7

42 octads 04
24 �a� u
 +u0 = u10 +u13 ��� � C4

84 dodecads 02
26 �b� u12 +u1 ��2� � C2

28 dodecads 02
26 �c� u6 +u17 = u19 +u4 = u7 +u9 ��	�2� � S3

56 dodecads 02
26 (d)

u19 +u7 +u17 =
u9 +u6 +u19 =
u17 +u4 +u9

��� � C3

21 16-ads 28 �e�
u
 + u0 + u4 + u9 =
u13 +u10 +u19 +u7

��	 � � D8

� = �0 18 3 20 8 14 15��6 12 5 9 19 21 1��11 10 4 2 16 7 13�
� = �
 13 0 10��1 11 12 22��2 14 3 16��4 19 9 7��5 8 20 21��6 18 17 15�
� = �
 20 8��0 21 5��10 18 12��1 15 13��2 16 22��3 11 14��9 19 17��4 6 7�
 = �
 4��0 9��10 19��7 13��14 15��16 18��8 12��1 21��11 20��3 17��5 22��2 6�

Thus the 42 octads in 	 correspond one-to-one with these non-special
tetrads.

The two Steiner systems referred to above consist of one of 

	1	2	4�
or 

	3	6	5� and its images under L2�7�. We choose the first of these
and, for convenience, list its tetrads in Table 2.4. We now use this Steiner
system to define �, a 4-dimensional subspace of P��� which intersects
	 trivially. For each of the 14 tetrads of the Steiner system, � contains
the dodecad consisting of the union of the four associated terns. These
14 vectors, together with the whole set � and the empty set �, form a
4-dimensional subspace of 
. Of course, 	∩� = 0, since every vector of 	
intersects each tern evenly, whilst every non-trivial vector of � intersects
at least four of the terns oddly. Moreover, for similar reasons, every vector
of � intersects every vector of 	 evenly, and vectors of � intersect one
another evenly. We now define the following:

� = 	+�


Certainly, � will have dimension 12 and, as above, every vector of � will
correspond to a subset of � of cardinality congruent to 0 modulo 4. Now
adding a non-trivial vector of � to a vector of 	 consists of complementing
it on four (or all eight) of the terns. Clearly the only way we could obtain
a subset of cardinality 4 in this way would be by adding a dodecad of � to
an octad of 	 lying in the same four terns. But octads of the 42-orbit lie in
non-special tetrads, whilst dodecads of � are unions of special tetrads. So �
contains no 4-element subsets, and its smallest subsets have eight elements
in them. Since all vectors of � corrrespond to subsets of � of cardinality
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Table 2.4. The tetrads of
the Steiner system S�3	4	8�


124 0365

235 1406

346 2510

450 3621

561 4032

602 5143

013 6254

congruent to 0 modulo 4, since cardinality 4 is impossible, and since the
whole set � is an element of � , we can immediately conclude the following:

(a) � consists of the empty set, the whole set �, octads, dodecads and
16-ads; and

(b) the number of octads in � is equal to the number of 16-ads.

We now count the number of octads in � .

Lemma 2.5 The vector space � contains 759 octads; it thus consists of the
empty set, the whole set �, 759 octads, 759 16-ads and 2576 dodecads.

Proof Every element of � can be written uniquely as e + d, with e ∈ 	
and d ∈ �. If e is the empty set, we clearly cannot obtain an octad for any
d ∈�, and, if e is a 16-ad, we can only obtain an octad by adding the whole
set � to it. If e is an octad, lying as it does in a non-special tetrad of terns,
we can obtain an octad by adding the empty set or a dodecad of � whose
special tetrad has three terns in common with this non-special tetrad. In
a Steiner system S(3,4,8), every subset of three points is contained in a
unique special tetrad, so there are four dodecads of � which can be added
to a given octad of 	 to give a further octad. Finally, if e is a dodecad
in 	, then we obtain an octad by adding a dodecad of � whose special
tetrad of terns is contained in the set of six terns in which e lies. But, since
the complement of a special tetrad is itself a special tetrad, the number of
special tetrads contained in a fixed set of size 6 is equal to the number of
special tetrads containing a given pair of points, namely three. Thus, the
number of octads is 24+42× �1+4�+ �84+28+56�×3+21 = 759. By the
remark before this Lemma, the number of 16-ads in � is also 759, and so
the number of dodecads is �212 −2−2×759� = 2576, as required. �

The space � is the celebrated binary Golay code. Since the subsets corre-
sponding to any two vectors of � intersect evenly, and since the dimension
of � is half the dimension of P���, we see that, with respect to this bilinear
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form, � is its own orthogonal complement; such a code is said to be self-
dual. Note that, in these circumstances, a subset of � is in � if, and only
if, it intersects every member of � evenly. Indeed, a subset of � is in � if,
and only if, it intersects each member of a basis for � evenly. We shall use
this fact to prove the following theorem.

Theorem 2.1 The Golay code � as defined above is preserved by the
group M.

Proof The code � is certainly preserved by the group L and, since
the seven generators in � are conjugate to one another under the action
of L, it will suffice to show that � is preserved by t0. From the preced-
ing remarks, we need only show that the image under t0 of each mem-
ber of a basis of � intersects each member of that basis evenly. As basis
we take v�, the eight octads ui + v� for ui ∈ B of Lemma 2.4, and the
three dodecads corresponding to the special tetrads of terns 

	1	2	4�,


	2	3	5� and 

	3	4	6�. For now only, we shall denote the dodecad
corresponding to the four terns 
i	 j	k	 l� by d(i, j, k, l). Then, for
example,

t0 � �v� +u0� �→ 
21	14	4	5	2	0	13	7�


As stated, all that is required is to check that this 8-element subset of �
intersects each of our basis vectors evenly, which is readily done. However,
since our decomposition of the space � lends itself to writing vectors as a
sum of uis and d(i, j, k, l), and for the sake of completeness on the printed
page, we choose to write each of these images as linear combinations of our
generating vectors. For instance, this image appears as


 0 1 2 3 4 5 6

× ×
× ×
× × × ×

	

which intersects terns 0, 3, 5 and 6 oddly. Adding the dodecad d(0, 3, 5, 6)
to it results in the 8-element set:


 0 1 2 3 4 5 6

× ×
× × × ×
× ×

= �0	1	0	1	 �̄	0	0	 �̄� = u8 +u14 ∈ 		
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as the member of the orbit of length 42; see Figure 2.6(a). Similarly, we
have

t0 � �v� +u18� �→ u5 +u21 +d�1	3	4	5�	
�v� +u3� �→ u8 +u11 +d�
	1	2	4�	
�v� +u20� �→ u1 +u5 +d�1	3	4	5�	
�v� +u8� �→ u0 +u2 +d�1	3	4	5�	
�v� +u14� �→ u0 +u18 +d�
	2	3	5�	
�v� +u15� �→ u5 +u10 +d�
	0	2	6�	
�v� +u22� �→ u8 +u14 +d�0	3	5	6�	

d�
	1	2	4� �→ u0 +u21 +u10 +u17 +d�
	1	2	4�	
d�
	2	3	5� �→ u
 +u14 +u11 +u12 +d�
	2	3	5�	
d�
	3	4	6� �→ u18 +u20 +d�0	1	2	5�


But permutations of � must map P��� onto itself, and so t0 maps
� onto � . �

We have shown that the permutation t0 preserves the Golay code � by
showing that the image of each vector in a basis of � intersects every
vector of that basis evenly, and so lies in � . To make life slightly easier
for ourselves, we chose one of our basis vectors to be the whole set �,
which is certainly preserved by any permutation. In fact, in ref. [30], the
author showed that it is possible to produce a set of eight octads with the
property that a permutation of � preserves � if, and only if, it maps these
eight octads to vectors in � . We can extend this set of vectors to a basis
by adjoining the whole set � and three further octads, so a permutation
preserves � if, and only if, the image of each of the eight octads intersects
each of the eleven octads evenly. The reason that this holds is that the
subspace spanned by the eight octads extends to a copy of the Golay code
in precisely one way. The test is minimal in the sense that any set of seven
octads is contained in no copy of the Golay code, or in more than one. The
set of eight octads is spatially unique in that the subspace it spans has to
belong to a uniquely defined type under the action of M24. We are now in
a position to observe the following.

Theorem 2.2 The 759 octads of � form a Steiner system S�5	8	24�.

Proof No two distinct octads of � can intersect in more than four
points, as their sum would then contain fewer than eight points. Thus, no
subset of five points of � can be contained in more than one octad. So the
total number of 5-element subsets of � contained in an octad is 759× ( 8

5

)
.

Since this number is precisely
( 24

5

)
, we deduce that every 5-element subset

of � is contained in precisely one octad. �

So we see that the group M preserves the Golay code � , and in so doing
preserves a Steiner system S�5	8	24�. We conclude with some results about
the manner in which M acts on these two combinatorial structures.
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Lemma 2.6 M acts transitively on the 759 octads of � .

Proof We have already seen in Lemma 2.2 that the group M contains
elements of cycle-shapes 1
23, 12
112 and 38, none of which could fix an
octad. So any orbit of M on octads must have length divisible by 3×11×
23 = 759, which is the total number of octads in � . Thus M acts transitively
on the octads of the Steiner system. �

We now need a lemma which tells us that a permutation fixing a Steiner
system S�5	8	24� cannot fix too many points.

Lemma 2.7 A permutation of � which preserves a Steiner system
S�5	8	24� fixes every point of an octad, and a point not in this octad must
be the identity.

Proof Let � be the permutation, let U = 
a1	 a2	 � � � 	 a8� be the octad
which is fixed pointwise by �, and let b be the fixed point not in U .
Let x �= b be any other point not in U . We shall show that x must be
fixed by � and so � is the identity. Consider firstly the octad containing

a1	 a2	 a3	 b	 x�. It must contain a further point of U as all octads intersect
evenly, so, without loss of generality, let this be a4. It can contain no further
members of U , and so V = 
a1	 a2	 a3	 a4	 b	 x	 y	 z� is an octad, where y
and z are not in U . Now, the octad containing 
a1	 a2	 a5	 b	 x� must also
contain a further member of U which cannot be a3 or a4 and so may be
taken to be a6. Thus, W = 
a1	 a2	 a5	 a6	 b	 x	 v	w� is an octad, where v and
w are distinct from y and z and are not in U . But � fixes five members
of each of V and W , and so fixes them both. Thus, 
x	 y	 z�� = 
x	 y	 z�;

x	 v	w�� = 
x	 v	w�; and x� ∈ 
x	 y	 z�∩ 
x	 v	w� = 
x�. Thus, x� = x, and
� is the identity permutation. �

Corollary 2.1 No element which preserves a Steiner system S�5	8	24�
can act as a transposition on an octad and fix an element outside that
octad.

Proof Let the element � interchange a1 and a2 in the proof of
Lemma 2.7, and fix b and all other points of U . Then the same argument
shows that � must fix every other point outside U , and so must be a trans-
position of S24. But there are octads which contain a1 but not a2, and such
an octad would be taken by � to an octad having seven points in common
with itself: a clear contradiction. �

What then is the action of the stabilizer in M of an octad on the points
of that octad?

Theorem 2.3 The stabilizer in M of an octad of the Steiner system
S�5	8	24� acts as the alternating group A8 on the points of the octad, and
has shape 24 � A8. Thus, M has order 24 ×8!/2×759 = 244 823 040.
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Proof Since 759 is not congruent to 0 modulo seven, we know that
elements of order 7 in L must fix octads and act with cycle-shape 1
7 on
the points of the octad (indeed, we know that our element â fixes the
octad u
 +�). Moreover, we have seen that the element ât0 has cycle-shape
1
3
5
15. The five points in the 5-cycle of this element determine an octad
which must be fixed by this element. Transitivity on octads ensures that
any octad thus has permutations of cycle-shapes 1
7 and 3
5 acting on its
eight points. But the subgroup of the symmetric group S8 generated by
any two permutations of these shapes must be doubly transitive and so
primitive, and, since it contains 3-cycles (the fifth power of ât0), it must be
the alternating group A8. But we know that elements which fix every point
of an octad must act regularly on the remaining 16 points, since the only
element which fixes a further point is the identity; so the maximal order of
the subgroup of M fixing every point of an octad is 16. But we know that
M contains elements of cycle shape 18
28; indeed, the element

�t0t1t3�
2 = �
 11��0 3��2 13��5 16��7 15��8 22��9 10��12 14�

is one such. The fixed point set of this element is given by


1	4	6	17	18	19	20	21� = ��̄	�	1	 �̄	1	�	�	��c = u1 +u4 +u17 +u18 +�	

an octad of � (the superscript ‘c’ denotes complementation). Now, an ele-
ment of cycle shape 1
3
5
15 fixing this octad must conjugate the involution
into 15 distinct involutions, all with the same fixed point set. But, together
with the identity, this is the maximum number of elements which can fix
every point of an octad, and so they form an elementary abelian group of
order 24. Suppose the stabilizer of an octad acts as S8 on the points of that
octad. An element � of M which acts 16
2 on the points of an octad must
square to the identity or an element of shape 18
28. But, in the first case,
in order for � to be even it would have to fix points outside the octad,
which is impossible by the Corollary to Lemma 2.7. The second case would
imply that � has cycle shape 16
2
44, which is odd. Thus, the stabilizer of
an octad has shape 24 �A8, and the result follows by the transitivity of M on
octads. �

We conclude this section by describing the orbits of the group L on
the 759 octads of � = 	 +�. The 24 octads of the form ui + v� certainly
form an orbit, as do the 42 octads of form ui + uj, where i is joined to
j, such as u
 + u0. Now, as was remarked above, octads of 	 have two
points in each of four terns which form a non-special tetrad. In order to
obtain a further octad by adding a vector of � to such an octad, that
vector must contain three of those four terns. There are thus four possible
vectors to add, and the stabilizer of our original vector, which is isomor-
phic to C4, acts transitively on them. We thus get an orbit of 42×4 = 168
octads. The dodecads of 	 lie in six terns, and so to obtain an octad we
must add one of the three dodecads of � which lie entirely in those terns.
Now, L has three orbits on the dodecads of 	, as shown in Figure 2.6,
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of lengths 84, 28 and 56, respectively. In the latter two cases, the sub-
group of L fixing such a dodecad acts transitively on the three possible
vectors of �. However, the stabilizer of a dodecad in the 84-orbit is cyclic
of order 2; in fact, if the dodecad is u12 + u1, this group is generated by
�2, which acts on the eight terns as �
 0��1 6��2 3��4 5�, and so the three
possible vectors of � fall into two orbits consisting of 
d�1	2	3	6�� and

d�2	4	5	6�	d�1	3	4	5��. Lastly, the complements of the 16-ads in the 21-
orbit of 	 are clearly in one orbit. There are thus eight orbits of lengths
24+42+42×4+84×1+84×2+28×3+56×3+21 = 759. In Figure 2.7,
we display a representative of each of these orbits as follows: u
 + v� �24��
u
 + u0 �42�� u
 + u0 + d�
	2	3	5� �168�� u1 + u12 + d�1	2	3	6� �84��
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Figure 2.7. The orbits of L on the octads.
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u1 + u12 + d�2	4	5	6� �168�� u
 + u2 + d�
	0	4	5� �84�� u0 + u3 + u18 +
d�
	0	4	5� �168�� u
 +u0 +u4 +u9 + v� �21�, and we show how the eight
orbits of the subgroup L on octads correspond to faces of the Klein
map �. The vertices in the graphs of the figure correspond to faces of
the map as labelled, and they are joined by an edge if those faces are
adjacent.

This decomposition of the Golay code � was described in the author’s
Ph.D. thesis [28], where the action of the maximal subgroup L on the
various combinatorial objects associated with the code was analysed in some
detail. Although it gives a convenient notation for the vectors of the code,
it does not compare with the so-called Miracle Octad Generator (MOG)
and Hexacode (see Conway and Sloane [26] and Curtis [29]) for actually
working with the code and thus with the group M24 and related groups.
Our aim here has been to derive the group and many of its main properties
directly from L2�7�, the second smallest non-abelian simple group, and the
Klein map on which it acts.

This link between the Klein map � and the Mathieu group M24 is a
source of great delight to the author. Both objects were found in the 1870s,
but no connection between them was known. Indeed, the class of maximal
subgroups of M24 isomorphic to the simple group of order 168 (often known,
especially to geometers, as the Klein group; see Baker [8]) remained undis-
covered until the 1960s. That generators for the group can be read off so
easily from the map is immensely pleasing.
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In Chapters 1 and 2 we have used the two smallest non-abelian simple
groups, namely the projective special linear groups L2�5� and L2�7�, to
produce generators for the Mathieu groups M12 and M24, probably the most
remarkable finite simple groups of all. In each case, it was the high degree
of symmetry possessed by the set of generators which enabled us to write
them down so easily, either combinatorially, geometrically or in a more
abstract algebraic manner. The number of generators in the two cases, five
for M12 and seven for M24, exploits the following exceptional isomorphisms:

L2�5� � A5 and L2�7� � L3�2�


Indeed, it was shown by Galois that the projective special linear group
L2�p�	p ≥ 5	 cannot act non-trivially on fewer than p+1 letters except in
the cases p = 5	7 and 11. The above isomorphisms explain how the first
two actions are possible; L2�11� acts on 11 letters since members of the
generic maximal class of subgroups isomorphic to A5 have index 11. So, in
a sense, it is the exceptional actions of L2�5� and L2�7� which have given
rise to the Mathieu groups. In Chapter 5, we shall see how the exceptional
action of L2�11� may be exploited to produce the smallest Janko group J1,
the first sporadic simple group to be discovered after the Mathieu groups.

It is natural to ask how we might generalize these observations and
constructions so as to obtain other simple groups. Firstly, we ask ourselves
what it means to say that a group G can be generated by a set of seven
involutions – as happens here in the M24 case. This is simply stating that
G is a homomorphic image of F , a free product of seven copies of the cyclic
group of order 2. Thus, if we have

F = ��1	 �2	 � � � 	 �7 � �2
i = 1� and G = �t1	 t2	 � � � 	 t7�	

then the map � � F �→ G, where � � �i �→ ti for i ∈ 
1	2	 � � � 	7�, defines
such a homomorphism. The kernel of � will be the normal closure
�w1��1	 � � � 	 �7�	w2��1	 � � � 	 �7�	 � � � �F , where 
w1	w2	 � � � � is a set of defining
relations for the group G. We should then have

G � ��1	 �2	 � � � 	 �7 � �2
1 = · · · = �2

7 = 1	w1 = w2 = · · · = 1�	
as a presentation for G.
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In our case, however, we are saying much more than that G � M24 is
generated by some set of seven involutions, which would be a very weak
requirement. We are asserting that M24 is generated by a set of seven
involutions which possesses all the symmetries of L3�2� acting on the points
of the 7-point projective plane, in the sense that these symmetries are
realized by conjugation within G. That is to say that there exists a set of
involutions � = 
t0	 t1	 � � � 	 t6� in G, such that �� � = G, and there exists a
surjective homomorphism

! � NG�� � = 
� ∈ G � � � = � � �→ L � L3�2�


So, if �= �0 1 2 3 4 5 6� and � = �2 6��4 5� are permutations of 
0	1	 � � � 	6�
such that ��	�� � L3�2�, then, after suitable relabelling of the ti if necessary,
there exists an element a ∈G such that tai = t��i� = ti+1 and an element c ∈G
such that tci = t��i� for i ∈ 
0	1	 � � � 	6�, where subscripts are read modulo 7.
Note that, since �� � = G, it must be possible to find words wa and wc in
the ti such that

a = wa�t0	 t1	 � � � 	 t6� and c = wc�t0	 t1	 � � � 	 t6�


Let us, for convenience, denote F , the free product of seven copies of the
cyclic group of order 2, by 2�7. Thus,

F = ��1	 �2	 � � � 	 �7 � �2
i = 1� � C2 �C2 � � � � �C2︸ ︷︷ ︸

seven times

� 2�7


Certainly, permutations of 
�1	 �2	 � � � 	 �7�, the set of involutory generators
of F , induce automorphisms of F , and so given a subgroup N � S7 we can
form a semi-direct product of shape

2�7 � N	

where the automorphisms act by conjugation. In other words,

��i = �−1�i� = ���i� for � ∈ N


Since all the relations we have used implicitly to define this semi-direct
product plainly hold in G, and since �� � = G, we can assert that G is a
homomorphic image of

P = 2�7 � L3�2�


Moreover, since every element of the semi-direct product P can be written as
�w, where � ∈ N � L3�2� and w is a word in the generators 
�1	 �2	 � � � 	 �7�,
any homomorphic image of P can be defined by setting certain such expres-
sions equal to the identity. Thus,

2�7 � L3�2�
�1w1	�2w2	 � � �

� M24

for a suitable choice of elements �iwi.
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It turns out that this approach is particularly revealing and that many
simple groups, both sporadic and classical, have surprisingly simple defi-
nitions of this type. Indeed, in the smaller cases, the identification can be
readily proved by hand, furnishing as a by-product a concise representation
for the elements of the group.



Part II

Involutory symmetric
generators





3

The (involutory)
progenitor

In this chapter, we introduce a family of infinite groups, the members of
which include among their homomorphic images all the non-abelian simple
groups. A member of this family will be called a progenitor, its progeny
being the set of finite images it possesses. It will turn out that the elements of
these groups take a particularly simple form and are very easy to work with.

3.1 Free products of cyclic groups of
order 2

We shall start by considering a group generated by two elements of order
2, with no further relation holding between them. Thus,

G = �a	b � a2 = b2 = 1�

Note that the element x = ab has infinite order and, since �ab	a� = �a	b�,
we have

G = �x	a � a2 = 1	 xa = x−1�

For this reason, we often refer to G as an infinite dihedral group; we may
write its elements as follows:

G = 
1	 a	 b	ab	ba	aba	 � � � �	

where elements of odd length in a and b are involutions, whilst elements of
even length have infinite order. Multiplication of elements of G is achieved
by juxtaposition followed by cancellation of any adjacent repetitions, and
inversion by reversing the word in a and b. It is intuitively clear from the
symmetrical manner in which the group G was defined that interchanging a
and b gives rise to an automorphism of G, and we shall verify this assertion

45
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in a more general context. We call G, which is generated by two cyclic
subgroups of order 2 with no relation between them, a free product of these
groups, and write

G � �a�� �b� � C2 �C2


For convenience, we denote this free product by 2�2.
We can readily extend these ideas to n generators and define a free

product of n copies of the cyclic group of order 2 as follows:

E � 2�n = ��1	 �2	 � � � 	 �n � �2
1 = �2

2 = · · · = �2
n = 1�

= ��1�� ��2�� · · ·� ��n� � C2 �C2 � · · ·�C2︸ ︷︷ ︸
n times




So, E consists of all finite products of the elements �i without adjacent
repetitions, i.e.

E = {
�k1

�k2
· · · �kr � r ∈ 
	 ki �= ki+1	 for i = 1	2	 � � � 	 r−1

}
	

where 
 denotes the natural numbers, together with zero, and the empty
word with r = 0 is interpreted as the identity 1. We shall call such finite
products reduced words in the �i.

Suppose now that � ∈ Sn, the symmetric group on n letters. Then �
induces an automorphism of the group E given by

�̂ � �i �→ ��i��


Now, �̂ certainly maps E onto E and, if u = �k1
�k2

� � � �kr and v =
�m1

�m2
� � � �ms

, then

�uv��̂ = ��k1
�k2

· · · �kr · �m1
�m2

· · · �ms
��̂

= ��k1
�k2

· · · �kr−d+1
· �md

�md+1
· · · �ms

��̂

= ��k1��
��k2��

· · · ��kr−d+1��
· ��md��

��md+1��
· · · ��ms��

= ��k1��
��k2��

· · · ��kr �� · ��m1��
��m2��

· · · ��ms��

= u�̂v�̂	

where kr = m1	 � � � 	 kr−d+2 = md−1 and kr−d+1 �= md. So, if N is a subgroup
of the symmetric group Sn, then the map � �→ �̂ is an injection of N into
the group of automorphisms of E.

3.2 Semi-direct products and the
progenitor P

We are now in a position to form the infinite semi-direct product, which
we call the progenitor; we use the following standard construction.

Lemma 3.1 Let K be a group, and let A ≤ AutK, be a subgroup of the
automorphism group of K. Then the Cartesian product A×K becomes a
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group under the binary operation � defined by �a	 x�� �b	 y�= �ab	xby�, for
a	b ∈ A and x	 y ∈ K.

Firstly, a note of warning: I have used the notation A×K because the set on
which the product is defined is the Cartesian product of A and K. However,
the group �A×K	��, which is not, in general, the direct product of A and
K, is often denoted by A�K. Here we shall adhere to the notation used in
the Atlas [25], namely K�A. From the definition, it is clear that what is
really needed is an action of A on K or, in other words, a homomorphism
� � A �→ AutK when the definition of � takes the following more general
form:

�a	 x�� �b	 y� = �ab	x��b�y�


The resulting group is then more properly denoted by A�� K. This will
clearly reduce to the direct product if � maps every element of A to the
trivial automorphism of K. In the case when the homomorphism � is an
injection from A into the automorphism group of K, we may identify A
with its image in AutK, as we have done here.

Proof of Lemma 3.1 Certainly A×K is closed under �. Moreover, we
see that

��a	 x�� �b	 y��� �c	 z� = �ab	xby�� �c	 z� = �abc	 xbcycz�

and

�a	 x�� ��b	 y�� �c	 z�� = �a	 x�� �bc	 ycz� = �abc	 xbcycz�	

for all a	b	 c ∈ A and for all x	 y	 z ∈ K. So �A×K	�� is associative. Now, if
" is the identity automorphism of K and e is the identity element of K, it is
readily checked that �"	 e� is the identity of A×K and that

�a	 x�−1 = �a−1	 �x−1�a
−1
�


�
A group constructed from the Cartesian product of two groups A and K
in this manner is called a semi-direct product and, following the notation
used in the Atlas [25], we denote such a semi-direct product of the groups
K and A by

K�A


Such a semi-direct product is also referred to as a split extension of the
group K by the group A.

Note that K�A possesses two subgroups of particular interest:

Â = 
�a	 e� � a ∈ A� and K̂ = 
�"	 x� � x ∈ K�


It is easy to see that Â and K̂ are isomorphic copies of A and K, respectively,
with K̂ ∩ Â = �IK�A�, where IK�A denotes the identity of the group K �A.
Moreover, �a	 e���"	 x�= �a	 x� and so K�A= ÂK̂. In a moment, we shall see
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that the subgroup K is normal, and so, although the colon notation reverses
the order of the semi-direct product in a slightly unfortunate manner, we
have ÂK̂ = K̂Â. Indeed, note that

�a	 x�−1 � �"	 y�� �a	 x� = �a−1	 �x−1�a
−1
�� �a	 yax� = �"	 x−1yax� ∈ K̂	

and so K̂ � �K�A�. So, K�A is a product of a normal subgroup isomorphic to
K and a subgroup isomorphic to A which intersect trivially. In practice, we
shall identify K̂ with K and Â with A, and write the element �a	 x� simply
as ax. So the product formula becomes

�a	 e�� �"	 x�� �b	 e�� �"	 y� = �ab	 e�� �"	 xby� = �a	 e�� �b	 e�� �"	 xb�� �"	 y�	
which may be written as follows:

â x̂ · b̂ ŷ = â b̂ · x̂b ŷ	
and dropping the ‘hats’, or equivalently identifying A with Â and K with
K̂ , we obtain the simple form of the product formula:

ax ·by = ab ·xby

Putting a = b−1 and y = e, we see that we can interpret

xb as b−1xb	 the conjugate of x by b


In this way, we have essentially passed from the external semi-direct product
(in which A and K are only related by the fact that there is an action of A
on K) to the internal semi-direct product (in which A and K are subgroups
of some larger group, A is contained in the normalizer of K and A and K
intersect trivially).

Now take K � 2�n = �t1	 t2	 � � � 	 tn � t21 = t22 = · · · = t2n = 1�, and let N ≤ Sn

be a transitive subgroup of the symmetric group Sn acting on the set � =

1	2	 � � � 	 n�. Then we have the following definition.

Definition 3.1 A progenitor is a semi-direct product of the following form:

P � 2�n � N = 
�w � � ∈ N	w a reduced word in the ti�	

where 2�n denotes a free product of n copies of the cyclic group of order 2
generated by involutions ti for i = 1	 � � � 	 n; and N is a transitive permu-
tation group of degree n which acts on the free product by permuting the
involutory generators.

We refer to the subgroup N as the control subgroup and to the involutory
generators of the free product as the symmetric generators. Note that this
definition should more precisely be of an involutory progenitor in that the
symmetric generators are of order 2. A more general definition, in which the
cyclic subgroups have other orders, is given in Chapter 4, but it is probably
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advisable to become familiar with this simpler version first. Of course, we
have

�u ·�v = ��u�v (3.1)

and

�−1ti� = t�i = t�i�� 
 (3.2)

The ease with which we can work in such a group P, and in its homomorphic
images, is illustrated in Example 3.1 and Exercise 3.2(4).

Exercise 3.1

(1) Let K be an abelian group. Show that � � K �→ K defined by

x� = x−1 for all x ∈ K

is an automorphism of K, which has order 2 unless K is an elementary
abelian group of order 2n, in which case it is trivial. In the non-trivial
case, construct a semi-direct product of K by the cyclic group of order
2. Such a group of shape K�2 is referred to as a generalized dihedral
group. If K is itself cyclic of order n > 2, then K � 2 � D2n, the dihedral
group of order 2n.

(2) Show that there are four non-isomorphic semi-direct products con-
sisting of a cyclic group of order 7 extended by a cyclic group of
order 6. (In Atlas notation, the symbol 7 � 6 is generally reserved
for the semi-direct product of a cyclic group of order 7 by a cyclic
group of order 6 in which all the elements of order 7 are conju-
gate, that is to say a Frobenius group of order 42.) How would
the other three semi-direct products be denoted in an unambiguous
manner?

(3) Let K = 
e	 �0 1��2 3�	 �0 2��3 1�	 �0 3��1 2�� ≤ G � S4 be the Klein
fourgroup and let S3 � A = ��1 2 3�	 �2 3�� ≤ G. Show that K�A � G,
where xa for x ∈ K	a ∈ A denotes the conjugate of x by a.

(4) Let K be a finite group and let A= Aut K be the automorphism group
of K. The semi-direct product K�A is called the holomorph of K. Let
K � 2n, an elementary abelian group of order 2n, then A = Aut K �
Ln�2�, the general linear group in n dimensions over the field of order
2. Show that

AFn = K�A = 2n � Ln�2� �
{(

1 u

0 X

) ∣
∣
∣
∣
X ∈ Ln�2�
u ∈ Fn

}

≤ Ln+1�2�	

where F denotes the field of order 2. Exhibit AF3 as permutations on
eight letters.
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3.3 The Cayley graph of P over N

For H and K subgroups of the group G, we define a relation on G as follows:

x ∼ y ⇐⇒ ∃ h ∈ H and k ∈ K such that y = hxk


Then it is readily checked that ∼ is an equivalence relation and that the
equivalence classes are sets of the following form:

HxK = 
hxk � h ∈ H	k ∈ K� = ⋃

k∈K
Hxk = ⋃

h∈H
hxK


Such a subset of G, which from the above is clearly both a union of right
cosets of H and a union of left cosets of K, is called a double coset. Indeed, if
we consider the group G acting by right multiplication on the right cosets
of H in G, then the double cosets of form HxK correspond to the orbits of
K in this action. In particular, if H = K then the number of double cosets
of form HxH gives the rank of this action, where the rank of a transitive
permutation group is defined as the number of orbits of the point-stabilizer.
So a rank 2 permutation group is doubly transitive and has double coset
decomposition of form G = H ∪HxH , where H is the stabilizer of a point.
Unlike single cosets, however, double cosets of two finite subgroups H and
K do not, in general, all contain the same number of elements. In fact, we
have the following lemma.

Lemma 3.2 If H and K are finite subgroups of the group G and x is an
element of G, then �HxK� = �H�
�K�/�Hx ∩K�


Proof We shall count the number of (single) right cosets of H in HxK.
We have

Hxk1 �= Hxk2 ⇐⇒ Hxk1k
−1
2 x−1 �= H

⇐⇒ k1k
−1
2 �∈ x−1Hx∩K = Hx ∩K

⇐⇒ �Hx ∩K�k1 �= �Hx ∩K�k2


So, the number of single cosets of H in HxK is equal to the number of single
cosets of Hx ∩K in K, and we have

�HxK� = �H�
�K � Hx ∩K� = �H�
�K�/�Hx ∩K�

�

Let us now consider the double cosets of form NxN in the progenitor
P � 2�n � N . We first note that we can write x = �w for some � ∈ N and
w a reduced word in the ti. So NxN = N�wN = NwN = �w�	 say
 If we let
� = 
t1	 t2	 � � � 	 tn� and u	 v ∈ �� �, then �u� = �v� if, and only if, Nu = Nv�
for some � ∈ N . But

Nv� = N�−1v� = Nv� = Nu	

if, and only if, v�u−1 ∈ �� �∩N = �1�, which happens if, and only if, v� = u,
since there is no non-trivial relation between the ti. In other words, the
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double cosets are in one-to-one correspondence with the orbits of N on finite
sequences of integers from � = 
1	2	 � � � 	 n� without adjacent repetitions.
An example will make this clear.

Example 3.1 Let P � 2�3 � S3.

Thus P is a semi-direct product of a free product of three copies of the
cyclic group of order 2, and the symmetric group on three letters which
permutes the three symmetric generators by conjugation. Multiplication in
P is straightforward; for example,

�1 2 3�t2t3
�1 3�t1t2t1 = �1 2 3��1 3�t�1 3�
2 t

�1 3�
3 t1t2t1

= �1 2�t2�1 3� t3�1 3� t1t2t1 = �1 2�t2t1t1t2t1 = �1 2�t1


Inversion of elements is also immediate for

��1 2 3�t2t3�
−1 = t3t2�3 2 1� = �3 2 1�t2t1


The decomposition into double cosets takes the following form:

P = N ∪Nt1N ∪Nt1t2N ∪Nt1t2t1N ∪Nt1t2t3N ∪· · · 	
which corresponds in the order given to the sequences without adjacent
repetition:

� �	 �1�	 �1	2�	 �1	2	1�	 �1	2	3�	 � � �

Moreover, it is easy to see which single cosets a given double coset contains;
for example,

Nt1t2N = ⋃

�∈N
Nt1t2� = ⋃

�∈N
Nt�1��t�2�� =⋃

i �=j

Ntitj

is the union of six distinct single cosets of N since, as above, Ntitj = Ntktl if,
and only if, i = k and j = l.

In general, we have

NwN = ⋃

�∈N
Nw�


Let us now define

N�w� = 
� ∈ N � Nw� = Nw�	 (3.3)

as the coset stabilizing subgroup of the coset Nw. Then, as in the proof of
Lemma 3.2, we see that

N�w� = 
� ∈ N � Nw� = Nw� = 
� ∈ N � Nw�w−1 = N�

= 
� ∈ N � w�w−1 ∈ N� = 
� ∈ N � � ∈ Nw�

= N ∩Nw


and so the number of single cosets in NwN is given by �N � N �w��. It is worth
noting that the double coset Nw−1N consists precisely of all the inverses of
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elements in NwN , and so the two double cosets contain the same number
of single cosets.

In Example 3.1, N � S3, and so if w= t1 we have N�w� =N1, the stabilizer
in S3 of 1 which, of course, has order 2. Thus the double coset Nt1N contains
6/2 = 3 distinct single cosets, which are clearly Nt1	Nt2 and Nt3. However, if
w = t1t2, as in the example, we have N�w� = N12, the stabilizer in S3 of 1 and
2, which is the trivial group. So, Nt1t2N contains six distinct single cosets as
calculated. Indeed, all other double cosets contain six single cosets, except
for the trivial double coset N = NeN , which visibly contains just one.

Returning to the general case, we now draw a graph �C, the Cayley graph
of P � 2∗n � N over N , whose vertices are the (single) cosets of N in P. As we
have seen, every coset can be written as Nw, for w a reduced word in the
ti. We now join the vertex Nw to the n vertices Nwti, for n ∈ 
1	2	 � � � 	 n�.
Clearly every vertex of this graph will have valence n. Moreover, the graph
will be a tree since a circuit would correspond to a word in the ti lying
in the subgroup N , which can only happen if that word reduces to the
identity element. Suppose that u is the reduced word corresponding to a
circuit in the graph �C. Then we have Nwu = Nw for some vertex Nw, and
so wuw−1 ∈ N ∩ �� � = �1P�. Thus, we conclude that u = 1, which would
contradict the hypothesis that there is no non-trivial relation between the
ti unless u is the trivial word.

In Figure 3.1 we illustrate part of the Cayley graph for the above example
of P � 2∗3 � S3. Note that in the Cayley graph �C of the progenitor, each
vertex is joined to n distinct other vertices, and so possesses neither loops
nor multiple edges, since either Nwti = Nw or Nwti = Nwtj, for i �= j, would
imply a non-trivial relation between the ti. However, when we move to
homomorphic images of the progenitor (as we shall be doing shortly), the
situation will change dramatically. For instance, if we factor out a relator
�t1t2t1t2t1, say, then we not only introduce circuits into the Cayley graph, in
this case of length 5, but also we see that t1t2t1t2t1 is in N ; thus, Nt1t2t1t2t1 =
N , and so, multiplying both sides by t1t2, we see that the cosets Nt1t2t1 and
Nt1t2 are equal. That is to say the coset Nt1t2 is joined to itself by the edge
corresponding to the generator t1, and so the Cayley graph contains loops.
This will become clear when we investigate some particular examples in the
following sections.

N

Nt1

Nt2

Nt3

Nt1t2

Nt 1t 3

Nt2t1

Nt2t3
Nt3t1

Nt3t2

Figure 3.1. The Cayley graph of P � 2�3 � S3.
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Exercise 3.2

(1) Let G � S6 acting naturally on � = 
1	2	 � � � 	6�, and let H	K1 ≤ G
with H = G1, the stabilizer in G of 1, and K1 = G
1	2� � 2 × S4, the
stabilizer in G of the unordered pair 
1	2�. Work out �H ∩K1� and
�H ∩K

�1 3�
1 �, and hence work out the double coset decomposition of G

over H and K1.
Now let h = 12
34
56 be a partition of � into three pairs, and let

K2 = Gh denote the stabilizer in G of h. Show that K2 � K1 � 2×S4.
Obtain the double coset decomposition of G over H and K2.

What do these two double coset decompositions tell you about the
various permutation actions described? How many double cosets would
there be of the form K1xK2?

(2) Define L3�2�, the general linear group of dimension 3 over the field of
order 2, to be the group of all non-singular 3×3 matrices over the field
�2. Work out the order of G � L3�2�. Let

H =
{(

1 0
vt A

) ∣
∣
∣
∣
∣
A ∈ L2�2�	 v ∈ �2

2

}

	

K =
{(

1 u

0 B

) ∣
∣
∣
∣
∣
B ∈ L2�2�	 u ∈ �2

2

}




Show that H is the stabilizer of a 1-dimensional subspace when G acts
by right multiplication on row vectors, and that K is the stabilizer of
a 2-dimensional subspace. How many double cosets of the form HxK
would you expect there to be? Justify your answer. Work out �H ∩Kx�
for each double coset HxK.

(3) Let G = �a	b � a4 = b3 = �ab�2 = 1�
 Show that G � S4 as follows.
Firstly, show that S4 is an image of G by exhibiting permutations on
four letters which satisfy the presentation. Secondly, let H = �a� � C4
and draw the Cayley diagram whose vertices are the right cosets of H
in G and in which Hw is joined to Hwa by a directed edge with a single
arrowhead, whilst Hw is joined to Hwb by a directed edge with a double
arrowhead. Once your diagram has closed you should have six vertices
and you will be able to read off the way in which a and b permute these
six cosets, thus obtaining a permutation represention of S4 of degree
6. [Hint: You should make sure that each of the relations holds at
every vertex.]

(4) (a) Let P = 2∗n � N be a progenitor with symmetric generators � =

t1	 t2	 � � � 	 tn�. For each of (i), (ii) and (iii) below, find conditions
on the permutation � ∈N for the given element to be an involution:
(i) �ti, (ii) �titj, and (iii) �titjtk. Note that you have effectively
found all involutions in NwN for w a word in the ti of length less
than or equal to 3.
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(b) Let P = 2∗5 � N , where N � A5 and the symmetric generators are
� = 
t1	 t2	 � � � 	 t5�. Put each of the following into canonical form
�w: (i) ��1 2��3 4�t1�4; (ii) ��2 3 4�t2�4; (iii) �1 2 3 4 5�t3�1 3��4 5�t1t4.

3.4 The regular graph preserved by P

It is important to note that the Cayley graph is not preserved by the group
P in the sense that N is joined to Nt1 in �C but Nt2 is not joined to Nt1t2
when n≥ 2. However, we may define different edges on the same vertex set
to form the transitive graph �T by joining Nw to Ntiw for i ∈ 
1	2	 � � � 	 n�.
The progenitor certainly does preserve this graph, almost by definition,
as, if u is any word in the ti, then Nwu is joined to N�tiw�u = Nti�wu�. Of
course, P acts transitively on the vertices of �T, which are simply cosets
of a subgroup, and the property of preserving incidence is carried over to
homomorphic images.

In Figure 3.2, we illustrate part of the transitive graph for the same
example of P � 2�3 � S3.

3.5 Homomorphic images of P

In order to obtain a homomorphic image of the infinite group P, we must
factor out a normal subgroup K, say. Now, every element of P can be
written uniquely as �w, where � ∈ N and w is a reduced word in the ti.
We choose a set of elements 
�1w1	�2w2	 � � � � such that K is the smallest
normal subgroup of P containing them. That is to say,

K = ��1w1	�2w2	 � � � �P	
the normal closure of 
�1w1	�2w2	 � � � �. In other words, we factor out the
relators 
�1w1	�2w2	 � � � � to obtain

G � 2�n � N
�1w1	�2w2	 � � �




An example will make this process clear.

N

Nt1

Nt2

Nt3

Nt2t1

Nt3t1
Nt1t2

Nt3t2
Nt1t3

Nt2t3

Figure 3.2. The transitive graph of P � 2�3 � S3.
.
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Example 3.2 Let

G � 2�4 � S4

�3 4�t1t2t1t2



The element of �3 4�t1t2t1t2 and all its conjugates have been set equal to
the identity, or, equivalently, the word �t1t2�

2 in �� � is set equal to the
permutation �3 4� in the control subgroup N . So, if 
i	 j	 k	 l� = 
1	2	3	4�,
then the identity

�i j� = �tktl�
2

holds in G. In particular, this means that

Nt1t2t1t2 = N	 and so Nt1t2 = Nt2t1 and Nt1t2t1 = Nt2
 (3.4)

If we now investigate the double cosets of form NwN , we find we have
the trivial double coset N and Nt1N , which appears to contain the four
distinct cosets Nti as in the infinite progenitor. But the double coset Nt1t2N
contains at most six single cosets now, since Ntitj = Ntjti, as in equation
(3.4). Furthermore, we have Nt1t2t1N =Nt1N by equation (3.4), so the next
double coset to consider is Nt1t2t3N . At this stage we make more subtle use
of our relation, for

Nt1t2t3 = Nt1 · t2t3t2t3 · t3t2
= Nt1�1 4�t3t2
= Nt

�1 4�
1 t3t2

= Nt4t3t2
= Nt1t2t3�1 4��2 3�	

where we have forced in the word t2t3t2t3 and replaced it by the permutation
�1 4�. But we also have Nt1t2 = Nt2t1 = Nt1t2�1 2�. Thus, if w = t1t2t3, then
we have N�w� ≥ ��1 2�	 �1 4��2 3�� � D8, the dihedral group of order 8. So,
the maximum number of single cosets contained in Nt1t2t3N is given by

�N � N �w�� = 24/8 = 3


If there are three cosets in this double coset, they can be labelled by the
three ways in which the set 
1	2	3	4� can be partitioned into two pairs,
with the coset Nt1t2t3 corresponding to 12
34. The coset corresponding to
the partition ij
kl would have eight ‘names’ as follows:

Ntitjtk = Ntitjtl = Ntjtitk = Ntjtitl
= Ntktlti = Ntktltj = Ntltkti = Ntltktj 


Observe that, since the coset stabilizing subgroup N�w� acts transitively
on the set of four symmetric generators, all cosets joined to this coset in
the Cayley graph lie in the double coset Nt1t2N . Indeed, unless there is
further collapsing of which we are not yet aware, the Cayley graph is now
complete and may be repesented diagramatically by the collapsed Cayley
graph shown in Figure 3.3.

The reader will observe that this is a regular bipartite graph of valence
4 on �7 + 7� vertices. The associated transitive graph will be shown in
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1

N

4
4

Nt1N

3
6

Nt1t2N

2
3

Nt1t2t3N

421

Figure 3.3. Collapsed Cayley graph of PGL2�7� over S4.

Chapter 4 to be that of the points and lines of the projective plane of order
2, with points joined to the lines which do not pass through them. Once we
have verified that there is no further collapse, we see that �G� = 24×14 =
2 × 168, and we have constructed the group L3�2� � 2. The isomorphism
L3�2��2 � PGL2�7� follows easily from this construction, and will be verified
in Chapter 4.

Examples of this nature inspire the following definition and are the subject
matter of this book.

Definition 3.2 A symmetric presentation of a group G is a definition of
G of the form

G � 2�n � N
�1w1	�2w2	 � � �

	

where 2�n denotes a free product of n copies of the cyclic group of order
2, N is a transitive permutation group of degree n which permutes the n
generators of the cyclic groups by conjugation, thus defining a semi-direct
product, and the relators �1w1	�2w2	 � � � have been factored out.

Now, the progenitor 2�n � N is clearly an infinite group (if n ≥ 2), and we
are primarily interested in finite images G, so we certainly do not wish to
restrict ourselves to faithful images. However, we do want images which
contain an isomorphic copy of the control subgroup N and which have a
set of n distinct involutions which are permuted under conjugation by this
copy of N in the prescribed manner. This leads us to Definition 3.3.

Definition 3.3 A true image of a progenitor P = 2�n � N is a homomorphic
image G in which the image of N is an isomorphic copy of N and in which
the image of the set of symmetric generators � = 
t1	 t2	 � � � 	 tn� consists of
n distinct elements of order 2.

Exercise 3.3

(1) Let G � Sn+1 and let ti = �i n+ 1� ∈ G for i = 1	2	 � � � 	 n. Show, by
induction or otherwise, that �t1	 t2	 � � � 	 tn� = G. Let Gn+1 denote the
subgroup of G stabilizing n+1. Then if � ∈ Gn+1 observe that t�i = ti�
and so G is a homomorphic image of the progenitor 2�n � N , where
N � Sn.
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Show, moreover, that titjti = �i j� ∈ N and so G is an image of

S = 2�n � Sn

�1 2�t1t2t1

for n ≥ 2. Count the elements in Nt1N and hence show that S � G.

(2) Show that ��1 4��2 5�	 �2 4��3 5�	 �3 4��1 5�� � A5. Let

N = ��1 2 3�	 �2 3��4 5�� ≤ G � A5

and show that N permutes the three involutory generators of G as
the symmetric group S3. Deduce that A5 is an image of the progenitor
2�3 � S3.

(3) The 1-dimensional subspaces of a 3-dimensional vector space over �2
may be labelled by the elements of �7, the integers modulo 7, when the
2-dimensional subspaces correspond to the triple 
1	2	4� and its trans-
lates modulo 7. These are the points and lines of the 7-point projective
plane. The group L3�2� may be shown to be the group of all permu-
tations of the seven points which preserve the lines. Write down t0, a
permutation of the symmetric group S7 of cycle shape 1
23 which fixes
all three lines passing through the point 0. Hence show that the sym-
metric group S7 is a homomorphic image of the progenitor 2�7 � L3�2�,
and verify that in S7 the additional relation ��0 1 2 3 4 5 6�t0�7 = 1 holds.
[Note: In fact,

2�7 � L3�2�
��0 1 2 3 4 5 6�t0�7

� 3·S7	

the triple cover of the symmetric group S7.]

(4) Show that the elements � � x �→ 3x≡ �
��0��1 3 9 5 4��2 6 7 10 8� and  �
x �→ �2x−2�/�x−2�≡ �
 2��0 1��3 4��9 7��5 10��6 8� of the projective
general linear group G � PGL2�11� satisfy the following presentation:

�b	d � b5 = d2 = �bd�3 = 1�
and thus generate a subgroup isomorphic to A5. Show that the element
t
 � x �→ −x≡ �
��0��1 10��2 9��3 8��4 7��5 6� has just six images under
conjugation by N = ��	 �, that �tN
� = G, and deduce that G is an
image of

2�6 � L2�5�


Show further that if we let t0 = t 
 then �2t0 has order 4, so that G is
an image of

2�6 � L2�5�
��0 1 2 3 4�t0�4




Show∗ that this is in fact an isomorphism. (An asterisk, here and
elsewhere, denotes a more difficult exercise.)
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3.6 The lemma

Now, every element of the progenitor P has the form �w, where � is a
permutation in N and w is a word in the symmetric generators. Thus, every
relation by which we might factor P in order to get an interesting homo-
morphic image has the form �w= 1. Of course, such a relation is essentially
telling us how to write certain permutations of N in terms of the symmet-
ric generators, thus converting outer automorphisms of the free product
of cyclic groups into inner automorphisms of its homomorphic image. It
is natural to ask what form these relations should take. In particular, we
might ask whether it is possible to write any permutations of N in terms of
just two symmetric generators. There is a simple but very revealing answer
to this question.

Lemma 3.3

N ∩�ti	 tj� ≤ CN�Nij�	

where Nij denotes the stabilizer in N of the two points i and j.

Proof If � ∈ N and � = w�ti	 tj�, a word in the two symmetric genera-
tors ti and tj, and if � ∈ Nij, then

�� = w�ti	 tj�
� = w�t�i 	 t

�
j � = w�ti� 	 tj� � = w�ti	 tj� = �	

and so � commutes with every element of Nij, as required. �

Of course, the reader will observe that this lemma and its proof extend
immediately to any number of generators, and if a permutation of N can
be written in terms of a set of r symmetric generators, then it must lie in
the centralizer of the stabilizer of the corresponding r letters, i.e.

N ∩�ti1 	 ti2 	 � � � 	 tir � ≤ CN�Ni1i2···ir �


This easy lemma will prove remarkably powerful in what follows and, even
at this stage, shows us why the relation in Example 3.2 is a sensible thing
to factor by. We had N � S4 and so N12 = ��3 4�� � C2, and so CN�N12� =
��1 2�	 �3 4��. Since �t1	 t2� � D2k, a dihedral group of order 2k, if �t1t2�2 is an
involution then k = 4 and �t1t2�

2 commutes with t1 and t2. So, if �t1t2�2 ∈ N
it can only be �3 4� or the identity, which points us towards the relation
�3 4� = t1t2t1t2.

Note that this lemma gives us a straightforward ‘recipe’ for constructing
groups: take a transitive permutation group N of degree n and form the
progenitor P = 2�n � N . For each 2-point stabilizer Nij, find its centralizer in
N and attempt to write elements of this centralizer as words in ti and tj.

Naturally we should like to choose the relators by which we factor the
progenitor to be as short and as easily understood as possible. The following
lemmas show that in many circumstances relators of form �w with l�w�≤ 3,
except for the form �titjti, are of little interest.
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Lemma 3.4 Let G = �� �, where � = 
t0	 t1	 � � � 	 tn−1� ⊆ G is a set of invo-
lutions in G with N =NG�� � acting primitively on � by conjugation. (Thus
G is a homomorphic image of the progenitor 2�n � N .) Suppose t0ti ∈N	 t0 �N
for some i �= 0; then �G� = 2�N �.

Proof Firstly, note that N 0 is maximal in N , and so �N 0	N i� =N unless
N 0 = Ni. If the latter, then subsets of � = 
0	1	2	 � � � 	 n−1� consisting of
members with the same stabilizer clearly form blocks of imprimitivity, and
so for N primitive there must be just one block, the point-stabilizer is the
identity and N acts regularly. A regular action can only be primitive if the
group has no proper subgroup, which can only happen if N � Cp = �x�, say,
with p prime. But in this case, without loss of generality, t0ti = x, and so
G = �N	 t0� = �x	 t0� � D2n. Otherwise,

Nt0ti = N ⇒ 0i ∼ �

⇒ 0 ∼ i

⇒ N�0� ≥ �N 0	N i� = N

⇒ 0 ∼ j for all j
⇒ G = N ∪Nt0
 �

Lemma 3.5 Suppose, for G as above, we have titjtk ∈ N for some i �= j �= k;
then either G = N or (i) Nij ≤ Nk and (ii) Nkj ≤ Ni.

Proof We have

titjtk ∈ N ⇔ ijk ∼ �

⇔ ij ∼ k and kj ∼ i


If ij ∼ k and Nij �≤ Nk, then ∃� ∈ N such that i� = i	 j� = j but k� = k′ �= k,
so

Ntitj� = Ntitj = Ntk = Ntk� = Nt′k	

i.e. k′ ∼ k. But then, by Lemma 3.4, k∼ l for all l. In particular, k∼ j ∼ ij,
and so i ∼ �. That is to say, ti ∈ N and G = N . Similarly if Nkj �≤ Ni. �

Note The case titjti ∈ N frequently does occur and gives rise to many
interesting groups, such as those in the Suzuki chain.

3.7 Further properties of the progenitor

Example 3.2 shows that interesting groups do emerge as images of pro-
genitors. The extent to which this is true is made clear by the following
lemma.

Lemma 3.6 Any finite non-abelian simple group is an image of a progenitor
of form P = 2�n �N , where N is a transitive subgroup of the symmetric
group Sn.
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Proof Let G be a finite non-abelian simple group; let M be a maximal
subgroup of G; and let x be an involution of G which is not in M. (Certainly,
G has even order, and if all the involutions of G lay in M then M would
contain a non-trivial normal subgroup of G.) Now, �M	x� = G, since M is
maximal and x does not lie in M. But the subgroup �xM� is normalized by
M and by x, which lies in it, and so is normal in G. The simplicity of G
forces �xM� =G, and so if �xM � = n then G is an image of 2�n �M. It remains
to show that M acts faithfully on the n elements of xM by conjugation. But
any element of M which commutes with every element of the generating
set xM is central in the non-abelian simple group G, and is thus trivial. �

Note Of course, G is trivially an image of 2�n �G, where n= �xG� and the set
of symmetric generators is a complete conjugacy class of G, but our proof
provides a much richer source of pre-images than this.

Although we are mainly interested in the homomorphic images of a par-
ticular progenitor P, it is worth noting that P itself is likely to have very
interesting properties which are inherited by all its images. Firstly, recall
the following definition.

Definition 3.4 The commutator or derived subgroup G′ of the group G is
the subgroup of G generated by all commutators of elements of G. Thus

G′ = ��x	 y� = x−1y−1xy � x	 y ∈ G�


If G is a group, then G/G′ is obtained by factoring out the smallest sub-
group containing all the commutators. (Note that this subgroup is certainly
normal since the set of commutators is normal.) If G is given by generators
and relations, which is to say

G �= �X � R�	
where X is a set of generators and R is a set of words in those generators
which are to be set equal to the identity, then this factoring is accomplished
by supplementing the set of relations R by the set of commutators of
generators, i.e. by R′ = 
�xi	 xj� � xi	 xj ∈ X�.

Definition 3.5 A group is said to be perfect if it is equal to its derived,
or commutator, subgroup.

Exercise 3.4 Note that an asterisk on the Exercise number denotes a
harder example.

(1) Show that the commutator subgroup of a group G is the smallest
normal subgroup K such that G/K is abelian.

(2) Show that if G is perfect and K is a maximal normal subgroup of G,
then G/K is simple. Deduce that if the perfect group G has a non-
trivial finite homomorphic image, then it has a finite non-abelian simple
image.
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(3) Show that the alternating group A5 is generated by an element x of
order 5 and an element y of order 3, whose product xy has order 2.
Show that any group that is generated by such elements is perfect by
taking the presentation

�x	 y � x5 = y3 = �xy�2 = 1�	 (3.5)

adding the relation �x	 y� = 1, and showing that the resulting group is
trivial. (In fact, equation (3.5) is a presentation of A5; you might like
to show this by constructing a Cayley diagram on the cosets of the
subgroup H = �x� and showing that it has just 12 vertices.)

(4∗) Show that the general linear group G � L3�2� satisfies the following
presentation:

�x	 y � x7 = y3 = �xy�2 = �x	 y�4 = 1�
 (3.6)

[Hint: It may help to write the elements of G as permutations of the
seven non-trivial vectors in the 3-dimensional vector space on which G
naturally acts.] As in the above example, adjoin the relator �x	 y� and
show that the resulting quotient group is trivial. (In fact, equation (3.6)
is a presentation for L3�2�, as we shall show later.)

Theorem 3.1 A group G which is generated by a perfect subgroup of itself
together with an involution is either perfect or contains a perfect subgroup
to index 2.

Proof Let N ≤G with N ′ =N , and let t ∈G be an involution of G such
that G = �N	 t�. Let � = tN be the set of conjugates of t under conjugation
by N . Then, every element of G has the following form:

�1t�2t · · · t�r = �1�2 · · ·�rt
�2···�r · · · t�r = �w	

where �1	 � � � �r	� ∈ N , and w is a word in the elements of � . Now, the
subset

K = 
�w � � ∈ N	w a word of even length in the elements of � �

is easily seen to be a subgroup, and, since G = K ∪Kt, it has index 1 or
2 in G. If ti and tj are two elements of � then, since N acts transitively
on � , there exists a � ∈ N such that ti� = tj. Thus �ti	 �� = titi

� = titj and
K ≤ G′. Moreover, N = N ′′ ≤ G′′ �G, so �ti	 �� = titj = ��−1�ti� ∈ G′′ and
G′ = G′′ = K. �

Note that in this case G = G′ if, and only if, some product of oddly many
elements of � is inN . Of course, if the control subgroupN is perfect, then the
progenitor P = 2�n � N satisfies the conditions of the theorem; so P contains
a perfect subgroup to index 2, since no non-trivial product of the symmetric
generators lies in the control subgroup. The property of possessing a perfect
subgroup to index 1 or 2 is inherited by any homomorphic image of P. If
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P/L is any image of P, then �P/L�′ = P ′L/L and �P/L�′′ = P ′′L/L. So, we
have

�P/L � �P/L�′� = �P/L � P ′L/L� = �P � P ′L� ≤ �P � P ′� = 2

and �P/L�′′ = P ′′L/L= P ′L/L= �P/L�′. In particular, if N is perfect and the
word w has odd length, then the group

G = 2�n � N
�w

is perfect. We have thus proved the following corollary.

Corollary 3.1 Let P = 2�n � N be a progenitor in which the control sub-
group N is perfect. Then any homomorphic image of P is either perfect or
possesses a perfect subgroup to index 2. If w is a word in the symmetric
generators of odd length, then the image

G = 2�n � N
�w

is perfect.

3.8 Coxeter diagrams and Y-diagrams

A convenient way of exhibiting diagrammatically presentations of groups
generated by involutions, which by the Odd Order Theorem includes all
finite simple groups, is afforded by the so-called Coxeter diagrams. These
are simple connected graphs in which the vertices represent involutions and
the edges are labelled with the order of the product of the two involutions
at its endpoints. Commuting vertices are not joined, and by convention an
edge is left unlabelled if its endpoints have product of order 3. Of course,
a presentation displayed in this manner may be supplemented by various
additional relations, and Soicher [81] and others have obtained Coxeter
presentations for many interesting groups.

We say that a Coxeter diagram possesses a tail if it has a vertex of valence
1 joined to a vertex of valence 2, as in Figure 3.4. Such a presentation
corresponds to an image of a progenitor in a natural manner. Let the
symmetric generator t correspond to the vertex labelled ar and let N =
��0	 ar−1�; then, if the index of ��0� in N is n, the progenitor 2�n � N maps onto
G = ��0	 ar−1	 ar�
 This holds because t = ar commutes with ��0� and thus
has (at most) n images under conjugation by N ; the group G is certainly

Γ0
ar –1 ar

Figure 3.4. A Coxeter diagram with a tail.
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generated by N and t. The element t will have strictly fewer images than n
under conjugation by N only if the centralizer of t in N strictly contains ��0�.
In this case, the n symmetric generators will fall into blocks of imprimitivity
under the action of N , and generators in the same block will be set equal
to one another.

An easy but important example of a Coxeter presentation (with a tail)
is as follows.

Theorem 3.2

� � � �

a1 a2 ar−1 ar

� 2�r � Sr

�1 2� = t1t2t1
� Sr+1.

Proof Firstly, note that the transpositions ai = �i i+1� for i= 1	 � � � 	 r
defined as permutations on the set � = 
1	2	 � � � 	 r	 r +1� satisfy the rela-
tions of the Coxeter diagram in the statement of the theorem, and generate
the symmetric group Sr+1. Thus Sr+1 is certainly a homomorphic image of
the group defined by this presentation, and so G = �a1	 � � � 	 ar� has order
greater than or equal to �r + 1�! We proceed by induction on r; noting
that �a1� = C2 � S2, we assume that �a1	 � � � 	 ak� � Sk+1 for all k < r. Put
t = ar and N = �a1	 � � � 	 ar−1�, which by induction is isomorphic to Sr . Note
that the extension by an additional generator cannot cause any collapse as
�a1	 � � � 	 ar� maps onto Sr+1. But then the centralizer in N of t = ar is pre-
cisely �a1	 � � � 	 ar−2� � Sr−1, since t commutes with this maximal subgroup
of N and does not commute with the whole of N . So, under conjugation by
N , t has r images which we may label t1	 t2	 � � � 	 tr = t. Now, ar−1 acts as
a transposition in N , since it commutes with �a1	 a2	 � � � 	 ar−3� � Sr−2, and
so, without loss of generality, ar−1 conjugates tr and tr−1 into one another
and fixes the other ti, i.e. ar−1 ∼ �r−1 r�. Moreover,

1 = �ar−1ar�
3 = �ar−1tr �

3 = a3
r−1t

a2
r−1

r tar−1
r tr = �r−1 r�tr tr−1tr 


Conjugating this relation by permutations in N , we see that �i j�= titjti for
all i �= j, and the group G is an image of

2�r � Sr

�1 2� = t1t2t1



But, since titjti ∈ N for all i �= j, we have Ntitj = Nti for all i �= j, and so
G = N ∪Nt1N is a double coset decomposition of G. Since

Nt1N =
i=r⋃

i=1

Nti	

we see that �G� = �N ��1 + r�. Thus �G� = �r + 1�! and G � Sr+1, as
required. �
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3.9 Introduction to MAGMA and GAP

Perhaps the most appealing feature of this approach is the ease with which
we are able to construct by hand surprisingly large groups. However, it is
often useful, and sometimes (dare one say) reassuring, to use the amazingly
effective coset enumeration programmes which now exist. The basic Todd–
Coxeter coset enumeration algorithm has been implemented and refined
by many different computational algebraists, but the contributions made
by teams working on the Cayley package (now Magma) in Sydney and
the GAP package in Aachen and now St Andrews deserve special men-
tion. Researchers in algebra and many other branches of mathematics have
benefited enormously from their efforts.

In order to produce a presentation for the progenitor 2�n � N , we first
need a presentation for the control subgroup N . Thus,

� X � R � � N	 where X = 
x	 y	 � � � �


We now need a set of words 
c1�x	 y	 � � � �	 c2�x	 y	 � � � �	 � � � � in the genera-
tors X such that �c1	 c2	 � � � � � N1, the point-stabilizer in the permutation
group N . A further generator t will correspond to the symmetric genera-
tor t1 and so have order 2. By requiring that t commutes with c1, c2	 � � � ,
we ensure that t commutes with the point-stabilizer N1 and thus has just
�N � N1� = n images under conjugation by N . So, tN = 
t1	 t2	 � � � 	 tn� and N
permutes the elements of tN in the required manner. Thus we have

� X	 t � R	 �c1	 t� = �c2	 t� = · · · = 1 = t2 � � 2�n � N


In our previous example, we have P � 2�4 � S4, so we start with the classical
presentation for N � S4 given by

�x	 y � x2 = y3 = �xy�4 = 1� � S4	

where we have, for instance, x = �1 2�	 y = �2 3 4� and xy = �1 3 4 2�. We
readily see that xyx = �2 3�, and so �y	 xyx� = N1	 the stabilizer in N of 1.
Thus we have

� x	 y	 t � x2 = y3 = �xy�4 = t2 = �y	 t� = �xyx	 t� = 1� � 2�4 � S4


Of course, here we have t1 = t	 t2 = tx	 t3 = txy	 t4 = txy
2 . In the language of

Magma, we write

P<x,y,t> :=
Group<x,y,t | xˆ2=yˆ3=(x*y)ˆ4=tˆ2=(y,t)=(xˆ(y*x),t)=1>;

Note that commutators are defined by round brackets rather than square
brackets. We can then define N to be the subgroup of P defined by x and
y by writing

N:=sub<P|x,y>;
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where P is, of course, an infinite group, and so N has infinite index in P.
However, if we factor P by the relator used in Example 3.2 we should get
finite index. The additional relator is given as �3 4��t1t2�2, and, since �t	 x�=
t tx = t1t2, this may be written xyxy�t	 x�2. Thus we obtain the following
Magma code:

> G<x,y,t>:=Group<x,y,t|xˆ2=yˆ3=(x*y)ˆ4=tˆ2=(y,t)
> =(xˆ(y*x),t)=xˆ(y*x*y)*(t,x)ˆ2=1>;
> N:=sub<G|x,y>;
> Index(G,N);
14
> f,gp,k:=CosetAction(G,N);
> f;
Mapping from: GrpFP: G to GrpPerm: gp
> gp;
Permutation group gp acting on a set of cardinality 14

(2, 3)(7, 9)(8, 10)(12, 13)
(3, 4, 6)(5, 7, 8)(9, 11, 10)(12, 14, 13)
(1, 2)(3, 5)(4, 7)(6, 8)(9, 12)(10, 13)(11, 14)

> Order(gp);
336

The instruction CosetAction(G,N) returns the action of the group
G on the 14 cosets of the subgroup N , f maps a word in the gen-
erators of G onto a permutation of the numbers 
1	2	 � � � 	14�, gp is
the image of G under this homomorphism, and k is the kernel of the
mapping. There are many functions available in the Magma package
and the reader is referred to the Handbook of Magma Functions [19];
however, as a taste of what can be done, we include the following which is
self-explanatory:

> oo:=Orbits(DerivedGroup(gp));
> oo;
[

GSet{ 1, 5, 7, 8, 9, 10, 11 },
GSet{ 2, 3, 4, 6, 12, 13, 14 }

]
> IsSimple(DerivedGroup(gp));
true
> Order(DerivedGroup(gp));
168

So we see that the group G defined by our presentation and constructed as
permutations on 14 letters contains a simple subgroup to index 2 which acts
with two orbits of length 7. Thus Magma confirms the hand calculations
in Section 3.5.
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Exercise 3.5

(1) Using the presentation A5 � �x	 y � x5 = y3 = �xy�2 = 1� mentioned in
previous exercises, obtain words in x and y which generate a point-
stabilizer in A5 and hence write down a presentation for the progenitor
P = 2�5 � A5.

(2) As we shall prove later, the alternating group A5 is isomorphic to the
projective special linear group L2�5� and thus has an action on six
letters. Using the presentation in the previous exercise, obtain words
in x and y which generate a subgroup of L2�5� of index 6 and hence
write down a presentation for the progenitor P = 2�6 � L2�5�.

(3) Another important isomorphism that we shall prove later is as follows:

L3�2� � L2�7�	

which are naturally permutation groups of degrees 7 and 8, respectively.
We have seen the presentation

L3�2� � L2�7� � �x	 y � x7 = y3 = �xy�2 = �x	 y�4 = 1��
use this to obtain presentations for the progenitors 2�7 � L3�2� and 2�8 �
L2�7�.

(4) Each of the four control subgroups in Examples 3.1, 3.2 and 3.3 acts
doubly transitively on the symmetric generators. Apply Lemma 3.3 in
each case to see which elements of N could be written as words in two
of the symmetric generators without causing collapse.

3.10 Algorithm for double coset enumeration

In order to find the index of N in G in the above example, Magma has used
a version of the famous Todd–Coxeter [84] coset enumeration algorithm,
which has proved immensely successful at finding the index of a subgroup
of a finitely presented group, given a presentation of that group and words
generating the subgroup. It has been implemented, along with many refine-
ments and modifications (see Havas [43]), on both GAP [41] and Magma

[19], and can handle very large indices with impressive ease.
When we performed the calculation by hand, however, we enumerated

the double cosets of form NxN , and the way in which the group was defined
seemed to lend itself to this approach. After all, even performing the above
single coset enumeration to find just 14 cosets would be quite laborious
by hand, whereas the double coset enumeration takes just a few minutes.
Moreover, as we have pointed out, most finite groups, including all finite
simple groups, can be defined in this way. In order to handle larger exam-
ples, it was decided to design a computer algorithm for performing double
coset enumerations on symmetrically presented groups.
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Double coset enumeration has both advantages and disadvantages when
compared with single coset enumeration. On the plus side, there will in
general be far fewer double cosets than single cosets. Moreover, a double
coset decomposition of a group with respect to two subgroups H and K,
say, contains a great deal of information about how each of these subgroups
acts on the cosets of the other; for instance, the number of double cosets
equals the number of orbits of each subgroup on the cosets of the other. In
our case we choose H =K = N , and so the number of cosets gives the rank
of G acting on the cosets of N . On the negative side, the fact that double
cosets have different sizes requires additional algebraic information to be
stored, probably in the form of coset stabilizing subgroups, in a way that
was not needed in the case of single coset enumeration.

In 1984, Conway [6] suggested an algorithm for double coset enumer-
ation, but this has proved difficult to implement. Linton [67] successfully
computerized an algorithm before 1989, but required that one of the two
subgroups used had to be quite small. His GAP share package [68] has now
relaxed the restrictions on the small subgroup.

A first computer program implementing the above process for symmet-
rically presented groups was written in 1998 by Sayed [73]; it worked well
for relatively small groups, but could not be made to cope with large index
or rank. Since then, the author has made the process more algorithmic
and closer to Todd–Coxeter enumeration. John Bray has refined this ver-
sion and implemented it very effectively within the Magma package [15].
Indeed, as will be described below when we deal with the largest Janko
group J4, our most modern version of the program has proved able to find
the index of a subgroup for which, with the amount of space available to
us, we were unable to make single coset enumeration complete.

3.10.1 Input and stored data

In order to define our group as follows:

G = 2�n �N
�1v1	�2v2	 � � �

	

we need a permutation group N of degree n and a sequence of relators
which tell us how elements of N can be written in terms of the n symmetric
generators. In practice, the relators are fed in as a sequence:

rr �= �<u1	�1>	<u2	�2>	 � � � 	<us	�s>�	

where the �i are elements of N and the ui are sequences of integers from
� = 
1	 � � � 	 n� without adjacent repetitions. The sequence ui gives the
reverse of the sequence of subscripts of the tj in the ith relator; therefore,
the elements <ui	�i> of rr really correspond to the relations �i = v−1

i .
Thus in Example 3.2 we would have

rr �= �<�1	2	1	2�	 �3 4�>�
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For each double coset we must store a canonical representative which could
be the lexicographically earliest as in the example or, more usefully in our
implementation, the first member of that double coset the machine finds. As
in rr, these canonical double coset representatives (CDCRs) are stored as
sequences of integers from �; for each CDCR w we need its coset stabilizing
subgroup N�w�, so we set up

ss �= �w1	w2	 � � � � and gg �= �N �w1�	N �w2�	 � � � �


In order to store enough information to recover �C, we need to find and save
all n Cayley joins from each of our canonical representatives. The other
edges could then be obtained by the action of the control subgroup N . In
practice we do not have to apply all n of the symmetric generators to the
CDCR w, just one from each orbit under the action of the coset stabilizing
subgroup N�w�. When we apply the generator tk on the right to the CDCR
wi, we must end up in some double coset with CDCR wj, say; that is to say,

witk ∈ NwjN


So, there exists a permutation �ik in N such that

Nwitk = Nwj�
−1
ik and so Nwitk�ik = Nwj


We store this information as a triple <k	 j	�ik> in the ith entry of the
joins sequence

jo �= � �<1	2	 e>�	 �<	 	>	<	 	>	 � � � 	<	 	>�	 � � � � 	

where the number of triples in the sequence jo�i� is the number of orbits
of N�wi� on �, and e stands for the identity of N . For Example 3.2, the
completed sequences are thus given by

ss= � � �	 �1�	 �1	2�	 �1	2	3� � �

gg= �N	 ��2 3 4�	 �3 4��	 ��1 2�	 �3 4��	 ��1 2�	 �1 3��2 4��� �
jo= � �<1	2	 e>�	 �<1	1	 e>	<2	3	 e>�	 �<1	2	 �1 2�>	<3	4	 e>�	

�<1	3	 �1 3��2 4�>� �


So, jo�3� contains two triples, since the coset stabilizing subgroup gg�3�
which is isomorphic to V4 has two orbits 
1	2� and 
3	4� on �= 
1	2	3	4�.
Now, Nt1t2t1 =Nt2 =Nt1�1 2� and so �31 = �1 2�, whilst Nt1t2t3 is our CDCR
for the double coset Nt1t2t3N , and so �33 = e, the identity of N .

Of course, as we proceed we shall discover identifications between cosets
which were hitherto considered different, and so the coset stabilizing sub-
groups will tend to increase in size; this will lead in turn to fewer orbits
on the symmetric generators and to fewer triples in terms of the sequence
jo�i�. At a stage when we do not yet know to which double coset Nwitk
belongs, we store the triple <k	0	 e> in jo�i�. We shall consider the process
to have terminated when no zeros remain; at this point we shall say that
the table has closed and we shall know to which double (and indeed single)
coset each symmetric generator maps each CDCR.
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3.10.2 The process

Our objective, then, is to construct the sequences ss, gg and jo. In order
to do this we form a table for each additional relation �i = ui, rather as
we do for Todd–Coxeter single coset enumeration. If the length of ui is r,
say ui = �k1	 k2	 � � � 	 kr�, then our table will have r + 1 columns and the
spaces between the columns will correspond to tk1

	 tk2
	 � � � 	 tkr , respectively.

We place a right N -coset representative w in the first column, stored in the
usual way as a sequence; then wtk1

in the second; wtk1
tk2

in the third; and
so on. In the �r + 1�th column we store the sequence w�i . When this results
in the identification of certain cosets, we record corresponding information
in our sequences gg and jo.

To see this in action in an easy case, consider the relation of Example 3.2,
which takes the form �1 = �3 4� = �1	2	1	2� = u1. Our table will begin as
shown in Table 3.1, in which the symbol � is used to denote the coset N .
From this we deduce that coset �1	2	1� is the same as coset �2�, and, working
from right to left, this implies that cosets �2	1� and �1	2� are the same.
Note that �1� and so on are actually words in the symmetric generators; our
convention of allowing w to stand for the coset Nw as well is a mild abuse
of notation. The first coset other than � to appear is �1�, which of course
also stands for Nt1, and so this is a CDCR. Since �1	2� is the first coset
representative of length 2 to occur, it becomes a CDCR. Multiplication of
it by t1 yields �1	2	1�, which equals �2�, and needs to be multiplied by �1 2�
to yield the CDCR �1�; thus we obtain the triple <1	2	 �1 2�> in the term
of jo corresponding to �1	2�. The fact that �1	2� and �2	1� give the same
coset means that the corresponding coset stabilizing subgroup contains the
element �1 2� as well as the more obvious �3 4�. So, at this stage, we have
the double cosets

N ∼ � �	 Nt1N ∼ �1� and Nt1t2N ∼ �1	2�	

which are shown here with their CDCRs; so w1 = 1, the empty word, w2 = t1
and w3 = t1t2. The sequence jo now appears as follows:

jo�1� = �<1	2	 e>�	

jo�2� = �<1	1	 e>	<2	3	 e>�	

jo�3� = �<1	2	 �1 2�>	<3	0	 e>�	

where the triple <3	0	 e> tells us that we do not yet know where the
generator t3 takes the CDCR �1	2�. Having gleaned as much information
as we can from this line of the table, and recorded the information, we
continue as in Table 3.2.

The fourth line of Table 3.2 ends in ‘4’ because the word of symmetric
generators corresponding to our relation, namely �1	2	1	2�, equals the per-
mutation �3 4� in our control subgroup. So, we have a new double coset
with CDCR �3	1	2�; we see that it is the same as �4	2	1�, and so the
coset stabilizing subgroup for this CDCR not only contains �3 1�, but also
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Table 3.1. First relation table for
Example 3.2

�3 4�
︷ ︸︸ ︷

1 2 1 2

� 1 12 121 �

= 21 = 2

Table 3.2. Second relation table for
Example 3.2

�3 4�
︷ ︸︸ ︷

1 2 1 2

� 1 12 2 �

1 � 2 21 1

2 21 1 � 2

3 31 312 3121 4
= 421 = 42

�3 4��1 2�. So N�w� ≥ ��3 4��1 2�	 �3 1�� � D8, when w is the CDCR �3	1	2�.
The joins sequence then terminates with

jo�3� = �<1	2	 �1 2�>	<3	4	 �1 3 2�>�	

jo�4� = �<1	3	 �1 4�>�


The sequence of CDCRs is given by

ss= � � �	 �1�	 �1	2�	 �3	1	2� �	

which is different from what we had earlier, and the coset stabilizing
sequence is given by

gg= �N � S4	 ��2 3 4�	 �3 4�� � S3	 ��1 2�	 �3 4��
� V4	 ��1 3�	 �1 2��3 4�� � D8�


Thus the total number of cosets of N in G is (at most) given by
24
�S4�

+ 24
�S3�

+ 24
�V4�

+ 24
�D8�

= 1+4+6+3 = 14


3.10.3 A more ambitious example

We now illustrate the process with an example which has two additional
relations. Our input consists of the permutation group N � S4 acting on
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� = 
1	2	3	4� as before, together with the relations

rr �= �<�1	2	1	2	1�	 �1 2��3 4�>	<�1	2	3	4	1	3	4	2�	 �4 3 2�>�


This in fact is equivalent to the following.

Example 3.3 Consider

G = 2�4 �S4

��1 2��3 4�t1�5	 ��2 3 4�t1t2�5
	

in which the second relation has been shortened by substituting the first into
it. Before attempting the enumeration, we may note that we are only told
how to write even permutations of N in terms of the symmetric generators,
and so G cannot be generated by the ti and must have a subgroup of index
2 which, by Theorem 3.1, is perfect.

In Tables 3.3 and 3.4, which correspond to the relations �1 2��3 4� =
t1t2t1t2t1 and �4 3 2� = t1t2t3t4t1t3t4t2, respectively, the roman numerical
superscripts indicate the point at which a new CDCR is defined; thus, the
CDCR ss�4� is defined where the superscript �iv� appears. Superscript let-
ters indicate where a new mapping from one coset to another first appears,
or where a hitherto unknown identification of cosets is revealed. Of course,
these discoveries must then be conjugated by permutations of N so that
they refer to the CDCR.

Thus we find that

<1	3	 e> ∈ jo�3��a�	

<1	4	 �3 4�> ∈ jo�4��b�	

<1	6	 �3 4�> ∈ jo�6��d�


Using the information gleaned from the tables, we are able to complete the
data sequences as follows:

ss= [
� ��i�	 �1��ii�	 �1	2��iii�	 �3	1	2��iv�	 �1	3	2	1��v�	 �3	4	1	2��vi�

]
	

gg= �N � S4	 ��2 3 4�	 �3 4�� � S3	 ��3 4�� � C2	 �e� � 1	

��1 2��3 4��c�	 �2 3 1 4��f�� � C4	 ��2 3 4��e�� � C3�

and

jo= � �<1	2	 e>�	

�<1	1	 e>	<2	3	 e>�	

�<1	3	 e>	<2	2	 e>	<3	4	 �1 3 2�>�	

�<1	4	 �3 4�>	<2	3	 �1 2 3�>	<3	5	 �1 3�>	<4	6	 �1 4 2�>�

�<1	4	 �1 3�>�	

�<1	6	 �3 4�>	<2	4	 �4 1 2�>� �
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Table 3.3. First relation table for Example 3.3

�1 2��3 4�
︷ ︸︸ ︷
1 2 1 2 1

��i� 1�ii� 12�iii� 121�a� 1 �
= 12

1 � 2 21 21 2

2 21 21 2 � 1

3 31 312�iv� 3121 41 4
= 412�b�

12 12 1 � 2 21

13 13 132 1321�v� 241 24
= 2412�c�

23 231 2312 142 14 14
= 1421

34 341 3412�vi� 34121 431 43
= 4312�d�

Table 3.4. Second relation table for Example 3.3

�4 3 2�
︷ ︸︸ ︷
1 2 3 4 1 3 4 2

� 1 12 123 1234 243 24 2 �
= 2431�e�

1 � 2 23 234 2341 124 12 1
= 1243

2 21 21 213 2134 423 42 42 4
= 4231

3 31 312 3123 431 43 4 � 2
= 4314�f�

Thus we see that the maximum possible index of N in G is given by

24
�S4�

+ 24
�S3�

+ 24
�C2�

+ 24
1

+ 24
�C4�

+ 24
�C3�

= 1+4+12+24+6+8 = 55


The collapsed Cayley graph follows from the information contained in these
data sequences and has the form given in Figure 3.5. It follows that the
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Figure 3.5. Collapsed Cayley graph for PGL2�11�.

maximal order of the image group G is 24×55 = 2×660. That this is indeed
the order of G can be confirmed by regarding G as a permutation group
on the 55 symbols we have produced. Certainly the actions of the control
group N and the symmetric generator t1 are well defined, so it remains to
show that (i) t1 has just four images under conjugation by N and (ii) that
the additional relations hold within the symmetric group S55.

In a case like this, however, we can guess that the image is in fact the
projective general linear group PGL2�11�. To verify that this is indeed the
case we define the following:

x � � �→ 2�+1
−�+2

≡ �
 9 2��0 6 5��1 3 4��X 7 8�≡ �t1��t2 t3 t4�	

y � � �→ −2
�

≡ �
 0��3��8��1 9��2 X��4 5��6 7�≡ �t1 t2��t3��t4�	

t1 � � �→ −1
�

≡ �
 0��1 X��2 5��3 7��4 8��6 9�	

as linear fractional permutations of the projective line PG1�11�. It is readily
checked that xy has order 4, and so N = �x	 y� � S4. The permutation t1
has just four images under conjugation by N , namely

t1 = �
 0��1 X��2 5��3 7��4 8��6 9�	
t2 = �
 0��9 2��X 4��3 6��5 8��7 1�	
t3 = �9 6��2 
��7 1��4 5��0 X��8 3�	
t4 = �2 5��
 9��8 3��1 0��6 7��X 4�	

and the action of x and y on these symmetric generators which is shown
above in the final column of their definitions. It is now a simple matter
to check that �xy�2t1 and xt2t1 both have order 5. Now, N is maximal in
PGL2�11� and t1 � N , and so PGL2�11� is an image of G. Thus,

�G� ≤ 2×660 = �PGL2�11�� ≤ �G�	
and isomorphism follows.

These two examples are sufficiently small for us to exhibit Tables 3.2, 3.3
and 3.4 in detail, together with explanations as to how the entries are used
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in the enumeration. This is clearly not practical for larger cases. However,
when we come to more demanding examples in later chapters we shall on
occasions append the computer input and output, both as a confirmation
of our hand calculations and as a demonstration of the ease with which the
program handles them.

3.11 Systematic approach

We conclude this chapter by exhibiting in a systematic manner the wealth
of groups which occur as homomorphic images of progenitors with rather
small and familiar control subgroups. The results given here are taken
directly from Curtis, Hammas and Bray [36], which builds on Hammas [42].
Our symmetric generators will be involutions, so we seek homomorphic
images of the progenitor:

P = 2�n �N	

where N is a transitive permutation group on n letters. We shall limit
ourselves to the six cases N � (i) S3, (ii) A4, (iii) S4, (iv) A5, (v) L2�5� and
(vi) L3�2� acting on 3, 4, 4, 5, 6 and 7 points, respectively. Here An and Sn

denote, respectively, the alternating and symmetric groups on n letters, and
Ln�q� denotes the projective special linear group in n dimensions over the
field of order q in its permutation action on the 1-dimensional subspaces.
Our presentations for these progenitors will, in practice, take the standard
form described above, namely

�x	 y	 t � �x	 y� � N	 �t	N 0� = 1 = t2� � 2�n �N	

where the set of relations includes a standard presentation for N in terms
of the generators x and y [27] and N 0 denotes the point-stabilizer in N in
its action on n letters–generators for which are given as words in x and y.
In Table 3.5 we give an explicit presentation for each of our progenitors,
together with the action of the generators of N on the symmetric generators.

Now, as stated above, every element of the progenitor is uniquely express-
ible as a permutation of N followed by a word in the symmetric generators
(provided cancellation of adjacent repetitions is carried out). Double cosets
�w� = NwN are then in one-to-one correspondence with the orbits of N on
ordered k-tuples without adjacent repetitions. The Cayley graph for the
progenitor over N is a tree, since any circuit would imply a non-trivial
relation between the symmetric generators. For example, the part of the
(infinite) Cayley graph of the progenitor in (vi) of Table 3.5 over N � L3�2�,
for l�w� ≤ 3, is shown in Figure 3.6.

3.11.1 Additional relations

We now seek finite homomorphic images of such a progenitor, and must
consider what additional relation or relations to factor by. As stated above,
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Table 3.5. Presentations of the progenitors

(i) �x	 y	 t � x3 = y2 = �xy�2 = 1 = t2 = �t	 y�� � 2�3 �S3
x ∼ �0	1	2�	 y ∼ �1	2�

(ii) �x	 y	 t � x3 = y3 = �xy�2 = 1 = t2 = �t	 x�� � 2�4 �A4
x ∼ �1	2	3�	 y ∼ �0	1	2�

(iii) �x	 y	 t � x4 = y2 = �xy�3 = 1 = t2 = �t	 y� = �tx	 y�� � 2�4 �S4
x ∼ �0	1	2	3�	 y ∼ �2	3�

(iv) �x	 y	 t � x5 = y3 = �xy�2 = 1 = �t	 y� = �t	 yx
2
�� � 2�5 �A5

x ∼ �0	1	2	3	4�	 y ∼ �4	2	1�

(v) �x	 y	 t � x5 = y3 = �xy�2 = 1 = t2 = �t	 x� = �tyx
2
	 xy�� � 2�6 �L2�5�

x ∼ �0	1	2	3	4�	 y ∼ �
	0	1��2	4	3�

(vi) �x	 y	 t � x7 = y2 = �xy�3 = �x	 y�4 = 1 = t2 = �xy	 tx
4
� = �y	 tx

3
�� � 2�7 �L3�2�

x ∼ �0	1	2	3	4	5	6�	 y ∼ �2	6��4	5�
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Figure 3.6. Part of the collapsed Cayley diagram for P = 2�7 � L3�2�.

this is equivalent to asking how to write permutations of N in terms of the
symmetric generators � , and Lemma 3.3 tells us that

�ti	 tj�∩N ≤ CN �N
ij�	

where Nij stands for the stabilizer in N of the points i and j.

Example 3.4 As an example let us consider the progenitor (iv) of
Table 3.5, namely 2�4 �S4, when N 01 = ��2	3�� and so

�t0	 t1�∩N ≤ CN �N
01� = ��0	1�	 �2	3��


So, the only non-trivial elements of the control subgroup S4 which we
can write in terms of the symmetric generators t0 and t1 (without causing
collapse) are �0	1�	 �2	3� and �0	1��2	3�.
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For involutory symmetric generators, we have �t0	 t1� � D2k, a dihedral
group of order 2k. If k is even, this group has centre of order 2 generated by
�t0t1�

k/2; if k is odd, then the element t0t1 · · · t0 of length k interchanges t0 and
t1 by conjugation. Thus, in the first case, we have the following possibility:

�t0t1�
k/2 = �2	3��

and in the second:

��0	1�t0�
k = 1 or ��0	1��2	3�t0�

k = 1


Consider first the group defined by

2�4 �S4

�0	1� = t0t1t0
	 (3.7)

the smallest possibility in the odd case. Since 010 ∼ �, we have �010� = ���
and so �01� = �0�. Thus there are just two double cosets: ��� = N and �0� =
Nt0N , which contains the four single cosets Nti for i = 1	 � � � 	4. We have
the double coset diagram shown in Figure 3.7.

The symmetric generator t0 acts on these five single cosets by right
multiplication as the transposition interchanging coset � with coset 0, since
Nt0
t0 = N , but Nti · t0 = Ntit0ti · ti = Nti for i �= 0. Since ��	0���	1���	0� =
�0	1�, we see that our additional relation is satisfied by these transpositions,
and we have a symmetric presentation of S5.

The smallest possibility in the even case is given by

2�4 �S4

�2	3� = �t0t1�
2

 (3.8)

We now have 0101 ∼ � ⇒ 01 ∼ 10, and so the coset stabilizing subgroup
N�01� ≥ ��0	1�	 �2	3��. Thus the double coset �01� contains at most 24/4 = 6
single cosets. Moreover, we see that

012 ∼ 0
1212
21 ∼ 0
�0	3�
21 ∼ 321	

and so N�012� ≥ ��0	3��1	2�	 �0	1�� � D8, a transitive subgroup of N . This
indicates the double coset diagram shown in Figure 3.8.

As above, this gives the action of our symmetric generators as per-
mutations on �1+ 4+ 6+ 3� = 14 points, and we readily verify that they
satisfy the additional relation required. Alternatively, we may recognize the
group we have constructed, in this case the projective general linear group
PGL2�7�, and seek elements in it satisfying the symmetric presentation. If

1 4

3

41

Figure 3.7. Collapsed Cayley diagram for the symmetric presentation (3.7).
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1

[  ] [0] [01] [012]

4 21 4
4 6 3

3 2

Figure 3.8. Collapsed Cayley diagram for the symmetric presentation (3.8).

we let � = 
0	1	2	3�, the points of the Fano plane are represented by �
together with the six unordered pairs of members of �, and its lines by the
four members of � together with the three partitions of � into two pairs.
If � = 
i	 j	 k	 l�, then ij
kl, one of the three partitions of the four letters
into two pairs, represents the coset ijk ∼ ijl ∼ kli ∼ klj. The three points
on each line are given by

i = 
kl	 lj	 jk� and ij
kl = 
�	 ij	 kl�


Again, it may be verified mechanically (see ref. [57], p. 64), that

2�4 �S4

��0	1��2	3�t0�5
� �3×L2�11���2
 (3.9)

Indeed, using the double coset enumerator we would input the following:

> N:=SymmetricGroup(4);
> RR:=[<[1,2,1,2,1],N!(1,2)(3,4)>];
> HH:=[N];
> CT:=DCEnum(N,RR,HH:Print:=5,Grain:=100);
Index: 165 === Rank: 12 === Edges: 32 === Status: Early closed

More detailed information about the double cosets is stored in CT, and in
particular we have the following:

> CT[7];
[ 1, 4, 12, 24, 24, 24, 12, 24, 24, 6, 8, 2 ]
> CT[4];
[

[],
[ 1 ],
[ 1, 2 ],
[ 1, 2, 3 ],
[ 1, 2, 3, 4 ],
[ 1, 2, 3, 4, 2 ],
[ 1, 2, 3, 4, 2, 4 ],
[ 1, 2, 3, 4, 2, 3 ],
[ 1, 2, 3, 4, 2, 3, 2 ],
[ 1, 2, 3, 4, 2, 3, 2, 4 ],
[ 1, 2, 3, 4, 2, 3, 1 ],
[ 1, 2, 3, 4, 2, 3, 1, 4 ]

]
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where CT[7] tells us that there are 12 double cosets, each of which contains
the number of single cosets given, and CT[4] gives us the CDCR for
each of them. Thus, for example, the last double coset Nt1t2t3t4t2t3t1t4N
contains just two single cosets. In addition, all joins in the Cayley graph are
available.

Now, in each of the six progenitors listed at the beginning of Section 3.11,
the control subgroup acts doubly transitively on the symmetric generators.
Applying Lemma 3.3, we see that

(i) N ∩�t0	 t1� is unrestricted,

(ii) N ∩�t0	 t1� is unrestricted,

(iii) N ∩�t0	 t1� ≤ ��0	1�	 �2	3��,
(iv) N ∩�t0	 t1� ≤ ��2	3	4��,
(v) N ∩�t
	 t0� ≤ ��
	0��1	4�	 �1	4��2	3��,
(vi) N ∩�t0	 t1� ≤ ��2	6��4	5�	 �2	4��5	6��,
where the roman numerals refer to the labelling in Table 3.5 throughout.
In our case, the symmetric generators are involutions, and so �t0	 t1� is
dihedral; we thus obtain further restrictions as follows.

(i) N ∩�t0	 t1� is a subgroup of N normalized by �0	1� and so is trivial,
is ��0	1��, or is N itself. But if �t0	 t1� ≥ N , then we have �t0	 t1� =
�t0	N� = G, and so G is dihedral. Thus for ‘interesting’ G we must
have N ∩ �t0	 t1� ≤ ��0	1��. The case �0	1� ∈ �t0	 t1� is equivalent to
�0	1�t0 having odd order.

(ii) N ∩ �t0	 t1� is a subgroup of N normalized by �0	1��2	3� and so is
contained in ��0	1��2	3�	 �0	2��1	3�� or equals N . But �0	2��1	3� ∈
�t0	 t1� ⇒ �t0	 t1� = �t0	 t1	 t2	 t3� = G, and so G is dihedral. Thus, for
‘interesting’ G, we may assume that N ∩ �t0	 t1� is trivial, or that
�0	1��2	3�t0 has odd order.

(iii) As above, �0	1� or �0	1��2	3� ∈ �t0	 t1� is equivalent to �0	1�t0 or
�0	1��2	3�t0, respectively, having odd order. In this case, the dihe-
dral group �t0	 t1� has trivial centre, and so does not contain �2	3�. If
�2	3� ∈ �t0	 t1�, then �2	3� = �t0t1�

s for some s. Otherwise, N ∩�t0	 t1�
is trivial.

(iv) A dihedral group cannot have an element of order 3 in its centre and
so N ∩�t0	 t1� is trivial.

(v) As in (iii), the four mutually exclusive possibilities are that either
�
	0��1	4�t
 or �
	0��2	3�t
 has odd order, that �1	4��2	3�= �t
t0�s

for some s, or that N ∩�t
	 t0� is trivial.
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(vi) We have N ∩ �t0	 t1� ≤ Z��t0	 t1��, which has order 1 or 2. Since N ∩
�t0	 t1� is normalized by the element �0	1��2	5�, the only possibilities
are that �2	5��4	6� = �t0t1�

s or that N ∩�t0	 t1� is trivial.

Other useful relations by which to factor the progenitor are those of the
form ��u�s, where � ∈ N and u is a word in the symmetric generators. In
this context, we define the orders of elements of the form �ti to be the
first order parameters of the symmetric presentation; similarly the orders
of elements of the form �titj are the second order parameters. In Table 3.6
we give, for each progenitor, a list of elements whose orders form a complete
set of first order parameters, together with other useful parameters. Note
that �ti has the same order as �t��i�	 ti� and �−1ti.

3.11.2 Some generic images of 2�3 �S3 and other
progenitors

In ref. [27], Coxeter and Moser define the following:

Gp	q	r ≡ �u	 v	w � u2 = v2 = �uv�2 = 1 = w2 = �uw�p = �vw�q = �uvw�r�


Thus, if we set p = 3, v = t0, vwu = t1, vw = t2, then, by conjugation, u and
w have actions u∼ �1	2�, w ∼ �0	2� on � = 
t0	 t1	 t2�. Consideration of the
presentation shows that

G3	q	r � 2�3 �S3

��0	1�t0�q	 ��0	1	2�t0�r
� G3	r	q	 (3.10)

i.e. that the parameters q and r may be interchanged. This may alterna-
tively be observed by writing s0 = t0�1	2�	 s1 = t1�2	0� and s2 = t2�0	1�, when
we see that � = 
s0	 s1	 s2� is a second symmetric generating set permuted by
the original control subgroup N = �u	w� � S3. But �0	1	2�s0 = �0	2�t0 and
�0	1�s0 = �0	2	1�t0, and �0	1�s0s2 = �0	1��1	2�t0�0	1�t2 = �0	2�t1t2. Simi-
larly, �0	1	2�s0s1s0 has the same order as �1	2�t2t0t2, and �0	1�s0s2s0 has the
same order as �0	1	2�t1t2t1. Thus, referring to Table 3.6, the automorphism
of the progenitor mapping ti to si while fixing N interchanges the roles of
parameters a and b, and parameters d and e, while fixing parameter c. For
example, the homomorphic image of 2�3 �S3 defined by parameters (7 8 6 4 8)
is isomorphic to that defined by (8 7 6 8 4); although, as in this case, the
subgroups generated by corresponding subsets of the symmetric generators
need not be isomorphic. These groups have been extensively studied and
various results are given in ref. [27], p. 96, but the adjunction of our second
and third order parameters enables us to obtain more factor groups.
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Table 3.6. Parameters used for each of our progenitors

(i) 2�3 �S3 (ii) 2�4 �A4 (iii) 2�4 �S4
��0	1	2�t0�a ��0	1	2�t0�a ��0	1	2	3�t0�a
��0	1�t0�b ��0	1��2	3�t0�b ��0	1	2�t0�b
��0	1�t0t2�c ��0	1	2�t0t3�c ��0	1��2	3�t0�c
��0	1	2�t0t1t0�d ��0	1��2	3�t0t2�d ��0	1�t0�d
��0	1�t0t2t0�e ��0	1�t0t2�e

�2	3� = �t0t1�
s

(iv) 2�5 �A5 (v) 2�6 �L2�5� (vi) 2�7 �L3�2�
��0	1	2	3	4�t0�a ��0	1	2	3	4�t0�a ��0	1	2	3	4	5	6�t0�a
��0	2	4	1	3�t0�b ��0	2	4	1	3�t0�b ��1	2	4��3	6	5�t1�b
��0	1	2�t0�c ��
	0	1��2	4	3�t
�c ��1	2	4��3	6	5�t3�c
��0	1��2	3�t0�d ��
	0	1��2	4	3�t2�d ��2	6��4	5�t2�d

��
	0��1	4�t
�e ��1	3��2	4	6	5�t1�e
��
	0��1	4�t1�f ��1	3��2	4	6	5�t2�f
�
	0��1	4� = �t2t3�

s ��2	6��4	5�t0t2�g
��2	6��4	5�t1t2�h
�2	6��4	5� = �t1t3�

s

It is natural to ask which linear fractional groups are images of this
progenitor. Indeed, if we write

�0	1	2� ≡ � �→ 1
1−�

� �
	0	1�� � � 	

�1	2� ≡ � �→ 1
�

� �
	0��1��−1�� � � 	

t0 ≡ � �→ −1
�

� �
	0��1	−1�� � � 	

t1 ≡ � �→ �−1
2�−1 	

t2 ≡ � �→ �−2
�−1 	

where � is in the projective line with p+ 1 points, we see that all these
elements lie in PSL2�p� for p ≡ 1 mod 4. But

�0	1	2�t0 ≡ � �→ �−1

was shown in ref. [40] to generate PSL2�p� together with t0 above. Thus
PSL2�p� is an image of 2�3 �S3 for all p ≡ 1 mod 4, and � = 
t0	 t1	 t2� gives
a canonical set of symmetric generators; � is still a symmetric generating
set in the case p≡ 3 mod 4, but it may not possess full S3 symmetry within
the simple group.

Theorem 3.3 The projective special linear group PSL2�p�, for p a prime,
is a homomorphic image of 2�3 �S3, except for p = 3, 7 and 11.

Sketch of proof Let G� L2�p�, where p≥ 7. We first note that a copy
of S3 in G must be contained in a (usually) maximal subgroup of shape



3.11 Systematic approach 81

Dp+1 or Dp−1, and that there is just one conjugacy class of such subgroups,
or two classes interchanged by an outer automorphism. Let S3 �N ≤G and
let y ∈ N have order 2. Then CG�y� � Dp+1 or Dp−1, and so if

# = 
t ∈ G � t2 = 1	 �t	 y� = 1	 t �∈ �y��	
then �#� = �p+1�/2 or �p−1�/2. We are supposing that y acts on the three
symmetric generators 
t0	 t1	 t2� as the permutation �0��1 2�, and so we seek
t0 ∈# and consider what the possibilities are for H = �N	 t� with t ∈#. But
the maximal subgroups of PSL2�p� are given in ref. [40], and we see that the
only possibilities for proper subgroups H are as follows: D12, when p ≡ ±1
mod 12; S4, when p ≡ ±1 mod 8; A5, when p ≡ ±1 mod 10. When any of
these occurs, N is in just one copy of H � D12 and in two copies of H � S4
or A5. Thus there are possibly two elements of # extending N to a copy
of D12, 2×2 = 4 elements of # extending N to a copy of S4, and 2×2 = 4
elements of # extending N to a copy of A5. So, if �#� > 10, then some
element of # together with N generates G; i.e., if p ≥ 23, then PSL2�p� is
a homomorphic image of 2�3 �S3. Consideration of the modularity condition
on p for subgroups of the three types to exist in G shows that for p = 19,
17, 13 there are 6, 4, 4 elements of #, respectively, which, together with N ,
generate G. However, for p = 11 we have �#� = 6, two elements of which
generate, together with N , a copy of D12 and four of which, together with
N , generate a copy of A5; and for p = 7 we have �#� = 4, each element
of which, together with N , generates a copy of S4. Of course, p = 5 works
with the canonical generators given above, and the cases p = 2 and 3
are easy.

A more complete version of this theorem and its proof is provided by John
Bray in his thesis [14]. The reader is referred to this work for further details.

Theorem 3.4 (Bray) Each of the groups L2�q� and PGL2�q� is a homo-
morphic image of the progenitor 2�3 � S3 except the following:

L2�3
2m+1�	L2�7�	L2�9� � A6	L2�11� and PGL2�5� � S5


Similar, though easier, arguments show that PSL2�p� is a homomorphic
image of 2�4 �S4 if, and only if, p≡ ±1 mod 24; and an image of 2�6 �L2�5� if,
and only if, p ≡ ±1 mod 20.

3.11.3 Tabulated results

The information given in the following tables is, for the most part, self-
explanatory. Table 3.6 describes the particular parameters used for each of
our progenitors, and Table 3.5 allows the reader to write down an explicit
presentation for each of the groups given. Note that, in spite of our require-
ment that � be a generating set for G, we have allowed some interesting
cases where this is not quite true. The notation [n] is used for a soluble
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group of order n, whereas pm denotes an elementary abelian p-group of
rank m. Most importantly, the parameters given in bold-face type are those
required to define the group; parameters given as small numerals are the
values assumed in the resulting group G. Thus a particular group may
occur several times, being defined by different subsets of the parameters.

As a general rule, we have attempted to identify for the reader the
subgroup of G generated by subsets of the symmetric generators, although
space restrictions in the tables have, on occasions, prevented our doing so.
For this reason, we would mention that, in the case of the homomorphic
image of 2�6 �L2�5� of shape 6·L3�4��23, we have �t
	 t0	 t1� � PGL2�7� and
�t
	 t0	 t2� � 3·PGL2�9�. In the same progenitor, when the homomorphic
image is L2�19�, it is interesting to note that �t
	 t0	 t1� � A5, whereas
�t
	 t0	 t2� is the whole of G.

Verification of the results given in Tables 3.7–3.12 is carried out as
follows. For the smaller groups we use coset enumeration over N to find
the order of G and then construct a faithful permutation representation
of lower degree to find its structure in detail. Many of the smaller cases
have been constructed by hand [14] using the double coset enumeration
procedure described in ref. [34]. Several interesting Cayley diagrams are
given in ref. [14].

For larger groups, we exploit the nesting property of the progenitors;
thus, for example,

2�4 �S4 ≤ 2�7 �L3�2�


Parameters are chosen so that a subgroup generated by a subset of the
symmetric generators may be identified. For example, the subgroup gener-
ated by an ‘oval’ �t0	 t3	 t6	 t5� in an image of 2�7 �L3�2� is itself essentially
an image of 2�4 �S4. The fact that

�t0	 t3	 t6	 t5� � L2�23�

is used in the identification of M24. It is worth mentioning that the subgroup
�x	 yxtxy� of ref. [33] has index 24 in the group, even without factoring by
the relator ��1	3��2	4	6	5�t2�11, i.e. not setting the parameter f = 11. This
relator is needed for a presentation, however, as is shown by the parameters
of 26 �S7 in the same table. In obtaining the Tits group 2F4�2�′ as an image of
2�4 �S4, we introduced the parameter e= 12 to identify L3�3� as the subgroup
generated by three symmetric generators. It may well not be needed in the
presentation.

The low index subgroups facility on Magma is used to identify
groups with a complicated multiplier and outer automorphism group,
such as the image 6·L3�4��23 in the progenitor 2�6 �L2�5�. In this case,
having found the order of the group by coset enumeration over N
and established a homomorphic image isomorphic to L3�4��23, we quote
Theorem 3.1 to show that the derived subgroup has index 2 and is
perfect.
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Table 3.7. Some finite images of the progenitor 2�3 �S3

Parameters Order of G Shape of
�t0	 t1�

Shape of
�� �

Shape of G

a b c d e

5 5 3 3 3 60 D10 G A5
7 8 6 4 8 336 D8 L2�7� PGL2�7�
8 7 6 8 4 336 D14 G PGL2�7�
7 9 9 9 7 504 D18 G L2�8�
8 10 5 10 8 720 D10 G PGL2�9�
7 13 7 13 6 1092 D26 G L2�13�

10 11 12 4 5 1320 D22 G PGL2�11�
8 10 15 10 8 2160 D10 G 3·PGL2�9�

12 7 14 14 6 2184 D14 G PGL2�13�
9 9 10 10 10 3420 D18 G L2�19�

17 17 5 17 17 4080 D34 G L2�16�
18 9 16 16 4 4896 D18 G PGL2�17�
10 12 7 6 10 5040 D12 G S7
18 20 5 6 20 6840 D20 G PGL2�19�
13 13 5 12 12 7800 D26 G L2�25�
8 13 12 12 8 11232 D26 G L3�3��2
8 11 24 24 23 12144 D22 G PGL2�23�
7 15 29 15 15 12180 D30 G L2�29�

28 13 26 4 13 19656 D26 G PGL2�27�
28 7 10 30 14 24360 D14 G PGL2�29�
32 8 32 32 5 29760 D8 G PGL2�31�
7 22 11 11 21 39732 D22 G L2�43�

44 11 6 14 21 79464 D22 G PGL2�43�
15 29 5 29 29 102660 D58 G L2�59�
52 52 9 4 54 148824 D52 G PGL2�53�
10 19 7 10 11 175560 D38 G J1
35 36 5 9 36 178920 D36 G L2�71�
8 74 9 74 74 388944 D74 G PGL2�73�
8 15 10 8 21 483840 D30 G 22 ·L3�4��S3

12 15 7 5 15 604800 D30 G HJ = J2
115 19 5 115 115 6004380 D38 G L2�229�

Perhaps the most delightful entry in these tables is the fact that if we
factor a progenitor of shape 2�5 � A5 by a single relation which requires a
5-cycle of A5 times one of the symmetric generators to have order 7, we
obtain J1, the smallest of the sporadic simple groups discovered by Janko
[58].

Exercise 3.6

(1) Show that the alternating group A5 is an image of the progenitor
P = 2�3 � S3, but that the symmetric group S5 is not.

(2) Show that the alternating group A6 is not an image of the progenitor
P = 2�3 � S3.
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Table 3.8. Some finite images of the progenitor 2�4 �A4

Parameters Index of
N in G

Order
of G

Shape of
�t0	 t1	 t2�

Shape
of �� �

Shape of G

a b c d

4 6 5 5 10 120 S4 G S5
7 7 6 7 91 1092 G G L2�13�
8 6 20 10 640 7680 42 �D6 G 4·24 ·S5
8 6 10 5 320 3840 42 �D6 G 21+4 �S5
8 6 5 5 160 1920 42 �D6 G 24 �S5
8 6 5 5 160 1920 42 �D6 G 24 �S5
8 8 7 3 28 336 G G PGL2�7�
9 9 6 7 63504 762048 L2�8�

2 L2�8�
2 �L2�8�×L2�8���3

10 6 12 13 1300 15600 52 �S3 G P�L2�25�
10 8 7 5 6720 80640 PGL2�9� G 2·L3�4��23
10 12 5 6 420 5040 G G S7
10 12 5 6 420 5040 G G S7
11 5 5 6 55 660 G G L2�11�
11 5 5 6 55 660 G G L2�11�
18 16 4 9 408 4896 G G PGL2�17�
24 8 21 3 84 1008 PGL2�7� PGL2�7� 3×PGL2�7�
33 5 15 6 165 1980 L2�11� L2�11� 3×L2�11�

110 60 5 6 277 200 3326400 G G L2�11�×S7

The reader who is not familiar with the action of L2�q� on the projective
line P1�q� is referred to Section 4.1 before tackling the following exercises
(3) and (4).

(3) Verify explicitly as follows the statement in Theorem 3.3 that L2�7���
L3�2�� is not an image of the progenitor 2�3 � S3. By Sylow’s theorem,
any two subgroups of order 3 in L2�7� are conjugate, so, without loss
of generality, we may take N = �x	 y� to be the normalizer of �x�,
where

x ≡ � �→ 2��y ≡ � �→ − 1
�



Obtain the centralizer of y, which is isomorphic to D8, and show that
each of the four involutions in this subgroup (other than y) generates
with x a copy of S4 as claimed. [Hint: It may be helpful to show that
the element � �→ ��−1�/��+1� squares to y.] Note: it is perhaps easier
to work in L3�2� acting on the seven points of the projective plane of
order 2 (see Chapter 4). Then the element x fixes a point and a line,
and one can readily see that each of the four eligible involutions fixes
either this point or this line and so cannot generate the whole group
together with x.
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Table 3.9. Some finite images of the progenitor 2�4 �S4

Parameters Order
of G

Shape of
�t0	 t1	 t2�

Shape
of �� �

Shape of G

a b c d e s

10 8 6 6 8 — 7680 22 ·S4 21+4 �S5 21+4+1 �S5
10 4 6 6 4 — 240 S4 S5 2×S5
5 4 6 3 4 — 120 S4 G S5
5 4 6 3 4 — 120 S4 G S5
6 24 8 8 14 — 2016 PGL2�7� PGL2�7� S3 ×PGL2�7�

24 8 8 8 7 — 43008 PGL2�7� G 21+6
+ �PGL2�7�

6 8 8 8 7 2 336 G G PGL2�7�
8 12 12 12 13 3 11232 G G L3�3��2
8 12 12 12 13 3 11232 G G L3�3��2
8 12 20 20 31 5 744000 G G L3�5��2
8 12 28 28 48 711261376 G G SL3�7��2

11 11 12 12 11 3 6072 G G L2�23�
11 11 12 12 11 3 6072 G G L2�23�
12 10 12 12 21 3 15120 G G 3·S7
12 10 12 12 7 3 5040 G G S7
12 33 5 10 12 — 3960 L2�11� L2�11� �3×L2�11���2
12 11 5 10 12 — 1320 L2�11� L2�11� PGL2�11�
14 7 7 14 12 — 2184 L2�13� L2�13� PGL2�13�
30 10 10 5 6 — 14400 2×A5 G 2·�A5 ×A5��2
15 10 10 5 6 — 7200 2×A5 G �A5 ×A5��2
13 10 6 6 10 — 15600 52 �S3 G P�L2�25�
7 30 30 15 30 — 24360 G G PGL2�29�

25 8 14 7 6 — 117600 PGL2�7� G P�L2�49�
82 8 10 10 10 — 1062720 PGL2�9� L2�81��22 2×L2�81��22
10 10 8 8 30 — 483840 3·PGL2�9� 6·L3�4��23 6·L3�4��23 ×2
10 10 8 8 5 — 80640 PGL2�9� G 2·L3�4��23
20 10 8 8 5 — 161280 PGL2�9� G 22 ·L3�4��23
9 12 10 10 14 — 362880 S7 G 2×A9
9 12 10 10 7 — 181440 S7 G A9

10 11 10 10 12 — 190080 L2�11� M12 M12 �2
10 13 8 8 12 —35942400 L3�3� 2F4�2�′ 2× 2F4�2�′

(4) Verify the counting argument in Theorem 3.3 that L2�11� is not an
image of the progenitor 2�3 � S3. A little care is needed here as the
maximal D12 � 2×S3 contains two non-conjugate copies of S3; however,
they are conjugate to one another in PGL2�11�. You may assume the
information given in the Atlas that any maximal subgroup of L2�11�
is isomorphic to one of D12 � 2×S3	11 � 5 or A5 (two classes). [Hint:
Count the number of subgroups isomorphic to S3 and the number of
subgroups isomorphic to A5 and deduce how many copies of A5 a given
copy of S3 is contained in.]
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Table 3.10. Some finite images of the progenitor 2�5 �A5

Parameters Index of
N in G

Order of G Shape of
�t0	 t1	 t2�

Shape of
�t0	 t1	 t2	 t3�

Shape of G

a b c d

6 6 4 6 12 720 S4 S5 S6
6 6 4 6 12 720 S4 S5 S6
7 19 15 10 2926 175 560 G G J1
8 8 14 8 1960 117 600 2×L2�7� G P�L2�49�
8 8 14 8 1960 117 600 2×L2�7� G P�L2�49�

12 12 8 8 333 312 19 998 720 PGL2�7� 21+6
+ �PGL2�7� L5�2��2

13 13 10 6 78 000 4 680 000 52 �S3 P�L2�25� S4�5�

Table 3.11. Some finite images of the progenitor 2�6 �L2�5�

Parameters Order of G Shape of
�t
	 t0	 t1	 t2�

Shape of
�� \ 
t4��

Shape of G

a b c d e f s

4 10 10 12 12 12 3 1320 G G PGL2�11�
8 8 10 10 8 8 2 2160 G G 3·PGL2�9�
9 9 5 9 10 5 — 3420 G G L2�19�
9 9 5 9 10 5 — 3420 G G L2�19�
6 6 12 12 6 6 — 15120 �3×A5��2 3·S6 3·S7
7 21 7 41 20 20 5 34440 G G L2�41�
8 8 8 8 6 6 — 190080 G G 2×M12
6 10 8 10 8 8 — 241920 G G 6·L3�4��23

Table 3.12. Some finite images of the progenitor 2�7 �L3�2�

Parameters Order of G Shape of
�t0	 t1	 t3�

Shape of
�t0	 t3	 t6	 t5�

Shape of G

a b c d e f g h s

12 6 8 8 8 6 8 7 2 12 096 �25� PGL2�7� U3�3��2
12 6 8 8 8 6 8 7 2 12 096 �25� PGL2�7� U3�3��2
6 6 10 12 6 12 12 21 3 15 120 62 �2 G 3·S7
6 6 10 12 6 12 4 7 3 5040 D12 ×2 G S7
8 12 12 6 12 10 4 4 — 40 320 S4 S5 S8

12 12 10 12 6 12 4 7 3 322 560 S4 ×22 S7 26 �S7
12 12 10 12 6 12 4 7 3 322 560 S4 ×22 S7 26 �S7
10 12 8 6 12 10 12 8 — 5 322 240 3 �S4 21+4 �S5 6·M22 �2
10 12 8 6 12 10 4 8 — 1 774 080 S4 21+4 �S5 2·M22 �2
10 12 8 6 12 10 4 8 — 1 774 080 S4 21+4 �S5 2·M22 �2
15 12 11 12 6 11 4 11 3 244 823 040 S4 ×22 L2�23� M24
15 12 11 12 6 11 4 11 3 244 823 040 S4 ×22 L2�23� M24
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(5) The projective special linear group L2�q� for q odd will always have
subgroups isomorphic to Dq±1, which will, in general, be maximal.
If q � ±1�mod 24�, then L2�q� will have subgroups isomorphic to S4.
Assuming these facts, prove that for such a q the group L2�q� is a
homomorphic image of 2�4 � S4.

Let q = 23 and let

x ≡ � �→ 10�−1
�+10

� y ≡ � �→ 6�+9
�−6

� t0 ≡ � �→ − 1
�

be three elements of L2�23�. Write these elements out explicitly as
permutations of 24 letters and verify thatN = �x	 y� � S4. Verify further
that � = �tN0 � = 4 and that N acts on � by conjugation as S4 with
x ∼ �0��1 2 3� and y ∼ �0 1�. Finally, verify that �0 1 2 3�t0 has order
11 and �2 3� = �t0t1�

3, and thus L2�23� is a homomorphic image of

2�4 � S4

��0 1 2 3�t0�11	 �2 3� = �t0t1�
3



(Note: in fact this is an isomorphism, as stated in Table 3.9.)

(6) Similarly to the previous question, if q ≡ ±1�modulo 20�, then L2�q�
contains maximal subgroups isomorphic to A5. Prove that in this case
L2�q� is a homomorphic image of 2�6 � L2�5�.

Let q = 19 and let

x ≡ � �→ 4�−1
�+4

� y ≡ � �→ �−8
�−1

� t
 ≡ � �→ − 1
�

be three elements of L2�19�. Write these elements out explicitly as
permutations of 20 letters and verify that N = �x	 y� � A5. Verify
further that � = �tN0 � = 6 and that N acts on � by conjugation as
L2�5� with x ∼ �
��0 1 2 3 4� and y ∼ �
 0��1 4�. Finally, verify that
xy ∼ �
 0 4��1 2 3� and that xyt
 has order 5, and so L2�19� is a
homomorphic image of

2�6 � L2�5�
��
 0 1��2 4 3�t
�5




(Note: as above, Table 3.11 states that this is, in fact, an isomorphism.)





4

Classical examples

In Chapter 3 we introduced the notion of a symmetrically generated group
and showed how we could enumerate double cosets so as to identify certain
homomorphic images of the progenitor. In this chapter we exploit this
technique to explore some familiar classical groups. In particular, we use
the above techniques to construct some important combinatorial objects
in a rather effortless manner and to verify a number of the exceptional
isomorphisms of simple groups.

4.1 The group PGL2�7�

It was shown in Chapter 3 that the group G defined by

G � 2�4 � S4

�2 3�t0t1t0t1

appears to contain the subgroup N � S4 to index �1+4+6+3�= 14, where
the four symmetric generators are labelled 
0	1	2	3� here rather than

1	2	3	4� as previously. The Cayley graph of G over N appears to have
the form illustrated in Figure 4.1.

This shows that �G� ≤ 24×14 = 336. In order to see that G does indeed
have this order we consider its action on the 14 symbols representing
cosets of N in G in Figure 4.1; in other words we embed G in the sym-
metric group on 14 letters. The 14 letters being permuted are labelled as
follows:

� one
i four such
ij six such – unordered pairs
ij
kl three such – the partitions of 
0	1	2	3� into two pairs,

89
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1
4 1 3 2 2 4

4

[0]

6

[01]

3

[012][  ]

Figure 4.1. The 14-point action of G.

where 
i	 j	 k	 l� = 
0	1	2	3�. Permutations of N � S4 act on these 14 sym-
bols in the natural way. Moreover, the symmetric generator t0 acts by right
multiplication on the cosets to yield

t0 = �� 0��1 01��2 02��3 03��23 01
23��31 02
31��12 03
12�	

which is preserved by permutations of 1, 2 and 3, and thus commutes
with the subgroup of N fixing 0. So we see that t0 has just four images
under conjugation by N , and the permutation group we have constructed
as a subgroup of S14 is an image of 2�4 � S4. But we may readily write
down

t0t1 = �� 01��0 1��2 02
13 3 03
12��02 12 03 13��23��01
23�	

and so

�t0t1�
2 = ����0��1��2 3��01��23��02 03��12 13��01
23��02
13 03
12�


Since this element fixes the coset �= N , it is a permutation in N . A glance
at its action shows us that it is the transposition �2 3� of N . Thus the
subgroup, H say, of S14 generated by these images of N and the ti is certainly
a homomorphic image of G. But the action of t0 on the 14 symbols shows
that it fuses the four orbits of N � S4, and so H acts transitively on the 14
letters. Furthermore, the group N fixes �, and so �G� ≥ �H� ≥ 14×24 = 336.
This shows that G does indeed have order 336, and that the Cayley graph
over N is as indicated in Figure 4.1, which is a bipartite graph, as shown
in Figure 4.2.

We have chosen to show that the group G has the desired order without
attempting to identify it, and this will prove a powerful technique when we
wish to use this approach to construct and prove the existence of a sporadic
group. It is, however, clear that the associated transitive graph is bipartite
between two sets of cardinality 7 with valence 4. It is, of course, the graph
of the 7-point projective plane P2�2� in which a point is joined to the four
lines which do not pass through it.

7

points

4 4
7

lines

Figure 4.2. Bipartite 14-point graph.



4.1 The group PGL2(7) 91

To complete the identification explicitly, we take

� = 
�	 ij � i	 j ∈ 
0	1	2	3�	 i �= j�

and

� = 
i	 ij
kl � 
i	 j	 k	 l� = 
0	1	2	3��

as points and lines, respectively, when we see that � joins i, and ij joins

i	 j	 ik
jl	 il
jk�, where i	 j	 k and l are distinct. So the three lines which pass
through � are


01
23	02
31	03
12�	

and the three lines through ij are 
k	 l	 ij
kl�; see Figure 4.3. In the
classical construction of this plane, we take a 3-dimensional vector
space V over �2, the field of order 2. The points then correspond
to the 1-dimensional subspaces, which in this case can be represented
by the unique non-zero (row) vector each contains. The lines are the
2-dimensional subspaces, which may be denoted by homogeneous lin-
ear expressions, such as x + y + z = 0, or more conveniently as (col-
umn) vectors. A point u = �x	 y	 z� lies on a line vt = �a	 b	 c�t if, and
only if,

uvt = �x	 y	 z�

⎛

⎜
⎝
a

b

c

⎞

⎟
⎠= ax+by+ cz = 0	

that is to say if the corresponding vectors are orthogonal. The group L3�2�
of all non-singular 3 × 3 matrices over �2 has order equal to the num-
ber of ordered bases of V and is thus �23 − 1�× �23 − 2�× �23 − 22� = 168.

20

10 /23

12

30

31

10

23

2

3

  1

030/12 20/31

Figure 4.3. The Fano plane.
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A particular matrix A permutes the points by right multiplication, and the
lines by left multiplication by A−1, and the equation

uvt = uA
A−1vt

shows that such a transformation preserves incidence between points and
lines. The duality between points and lines may be achieved by the polarity
which simply transposes row vectors, representing points, into column vec-
tors, representing lines, and vice versa. The effect of this polarity on the
matrices is to map a matrix to the inverse of its transpose. This map, �
say, is clearly a bijection, and we have

�AB�� = ��AB�−1�t = �B−1A−1�t = �A−1�t�B−1�t = A�B��

thus � defines an automorphism of the group L3�2�. The fact that A� has the
required effect on the transposed lines is shown by the following equation:

uAA−1vt = �uAA−1vt�t = v�A−1�tAtut = vA��A��−1ut


In Table 4.1 we show the correspondence between the points and lines of
P2�2� and the 14 cosets in our enumeration. They are arranged to display
the action of the symmetric generator t0, which visibly corresponds to
the polarity �. The control subgroup N � S4 corresponds to the 4× 3× 2
matrices whose columns are distinct and drawn from the top four lines of
Table 4.1. In particular, the permutation �2 3� of N is represented by the
following matrix:

�2 3� ∼
⎛

⎜
⎝

1 0 0
0 0 1
0 1 0

⎞

⎟
⎠= A23	 say, and �0 1� ∼

⎛

⎜
⎝

1 0 0
1 1 0
1 0 1

⎞

⎟
⎠= A01


We can now check that the additional relation, namely �t0t1�
2 = �2 3�, holds

in AutL3�2�:

�t0t1�
2 = �t0t

�0 1�
0 �2 = ��A01�A01�

2

= ��A−1
01 �

tA01�
2 = �At

01A01�
2

=
⎡

⎢
⎣

⎛

⎜
⎝

1 1 1
0 1 0
0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

1 0 0
1 1 0
1 0 1

⎞

⎟
⎠

⎤

⎥
⎦

2

=
⎛

⎜
⎝

1 1 1
1 1 0
1 0 1

⎞

⎟
⎠

2

=
⎛

⎜
⎝

1 0 0
0 0 1
0 1 0

⎞

⎟
⎠

= A23 = �2 3�	

as required.
Now, PGL2�7�, the projective general linear group of degree 2 over the

field �7, also has order �72 −1��72 −7�/�7−1�= 8×7×6 = 336, and is well
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Table 4.1. Correspondence with P2�2�

� �

(1 1 1) � �1 1 1�t 0
(1 0 0) 01 �1 0 0�t 1
(0 1 0) 02 �0 1 0�t 2
(0 0 1) 03 �0 0 1�t 3
(0 1 1) 23 �0 1 1�t 01/23
(1 0 1) 31 �1 0 1�t 02/31
(1 1 0) 12 �1 1 0�t 03/12

←→

known to be isomorphic to the group G � AutL3�2� � L3�2� � 2. Indeed, it
is clear how the above definition of G can be used to prove this important
fact. Before doing so, we introduce some notation and terminology.

Let � denote a finite field of order q = pm, where p is a prime number –
the characteristic of the field – and let V � �2 be a 2-dimensional vec-
tor space over F . Then V possesses q2 − 1 non-zero vectors, and therefore
q2 −1/q−1 = q+1 1-dimensional subspaces. These subspaces are per-
muted by any non-singular linear transformation acting on V . If such a
1-dimensional subspace contains the non-zero vector �x0	 y0�, then we have

��x0	 y0�� = 
�$x0	$y0� � $ ∈ �� 	

and so the subspace is determined by the ratio of the x-coordinate to the
y-coordinate of its non-zero vectors. If y0 �= 0, this is an element � ∈ � , and
so this 1-dimensional subspace may conveniently be labelled ��� or simply
�. If y0 = 0, we label the subspace 
.

Definition 4.1 The projective line P1�q� is defined to be the set 

�∪�q,
denoting the set of 1-dimensional subspaces of a 2-dimensional vector space
over the field of order q.

The action of the matrix

A =
(
a c

b d

)

on these symbols representing 1-dimensional subspaces (see Exercises 4.1)
is to map

(
a c

b d

)

� 
 �→ a

c
�−d

c
�→ 
�� �→ a�+b

c�+d

if c �= 0. If c = 0, then it fixes 
. With the (natural) conventions that
a
 = 
 for a �= 0, 
+a= 
, 1/
 = 0 and a
/b
 = a/b, we see the action
on the projective line is described completely by the linear fractional map:

� �→ a�+b

c�+d
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Exercise 4.1

(1) The function which maps the matrix
(
a c

b d

)

to the linear fractional map

� �→ a�+b

c�+d

is a homomorphism from the general linear group GL2�q� into the
symmetric group Sq+1. Show that the kernel of this function consists
of the (non-singular) scalar matrices and so has order q−1. The image
group is thus isomorphic to

GL2�q�/Z�GL2�q�� � PGL2�q�	

the projective general linear group.

(2) Let G � PGL2�q� and let G
 denote the stabilizer in G of 
. Show
that

G
 = 
� �→ a�+b � a	b ∈ �	 a �= 0� 	

of order q�q− 1�. If G
0 denotes the stabilizer of both 
 and 0, then
show that

G
0 = 
� �→ a� � a �= 0� 	

of order q. Show thatG
0 acts transitively on � \
0�, and thatG
01 = 1,
the trivial subgroup. Deduce that G� PGL2�q� is a sharply 3-transitive
subgroup of Sq+1; that is to say G is 3-transitive and the only element
fixing three points is the identity. So, �G� = �q+1�q�q−1�.

(3) Let k be a primitive element in the field � , of order q; that is to say, k
is a generator for the multiplicative group of � which is cyclic of order
q−1. Thus �k� � Cq−1. Use this to show that if q is odd then PGL2�q�
possesses odd permutations and so has a normal subgroup of index 2.
Show that the element � � � �→ −1/� is an even permutation if q > 2, no
matter the parity of q, and hence, or otherwise, show that PGL2�2m�≤
Aq+1 for m ≥ 2. [Hint: Consider the number of points fixed by �; you
will need to decide when −1 is a square and when a non-square.] (The
normal subgroup of index 2 in the case q odd is the projective special
linear group PSL2�q�, which consists of all linear fractional maps which
have ad−bc = 1 (or equivalently, modulo the scalar matrices, ad−bc
a square in �). If q is even we have PSL2�2m�= PGL2�2m� since in this
case every element of � is a square. The group PSL2�q� is always simple
for q ≥ 4.)
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(4) Define elements �	� and � of PGL2�q� as follows:

� �= � �→ �+1�� �= � �→ k��� �= � �→ −1/�	

where k is a primitive element of multiplicative group of � as above.
Show that ��	�	�� = PGL2�q�. Work out these elements explicitly in
the cases q = 4	5 and 7.

Show that, for all values of q, G
 possesses a normal subgroup of
order q. �

Now consider L � PGL2�7� as the set of all linear fractional maps acting
on the 8-point projective line P1�7� = 

	0	1	 � � � 	6�. That is,

L =
{
� �→ a�+b

c�+d
� a	b ∈ �7	 ad−bc �= 0

}



Now let � �= 
365/0124 be a partition of P1�7� into two sets of size 4, and
let L� denote the stabilizer of � in L. Certainly � is preserved by

� � � �→ −1
�

≡ �
 0��1 6��2 3��4 5�

and

 � � �→ 3�+2
�+2

≡ �
 3 5��6��0 1 4��2�	

and we readily check that � has order 4 and so ��	 � is an image of
�x	 y � x2 = y3 = �xy�4 = 1� containing elements of order 4; thus N = ��	 � �
S4. It is well known and readily proved in this case (see ref. [40]) that such
a subgroup is maximal in L, and so L� = N . Now, the element

t0 � � �→ −� ≡ �1 6��2 5��3 4�

commutes with � and � � � �→ 2� ≡ �1 2 4��3 6 5�, which together generate
S3, and so t0 has just four images under conjugation by N , Indeed, we have

t0 ≡ �1 6��2 5��3 4��
t 0 = t1 ≡ �4 6��2 
��5 0��
t 1 = t2 ≡ �0 6��2 3��
 1��
t
�
1 = t3 ≡ �5 1��3 0��4 
�


Now, �t0t1�2 = �
 0��1 3��2 5��4 6� clearly lies in L� and, by conjugation,
acts �t0��t1��t2 t3� on the ti. That is to say, it is the transposition �2 3� of N .
Similarly all the transpositions of N � S4 can be written as �titj�2, and so

�t0	 t1	 t2	 t3� = �t0	 t1	 t2	 t3	N� = L	



96 Classical examples

since t0 �N and N is maximal. Since G and L have the same order, we have
that

G � 2�4 � S4

�2 3�t0t1t0t1
� L3�2� � 2 � PGL2�7�


Exercise 4.2
(1) Work out the elements �0 1 2�t0 and ��0 1 2�	 t0� as permutations on

the 14 cosets of N , and show that they have orders 8 and 4, respec-
tively. Hence show that elements of G satisfy the following well known
presentation:

�x	 y � x2 = y3 = �xy�8 = �x	 y�4 = 1�
for PGL2�7�. Show that ��0 1 2�	 t0� =G and deduce that G is a homo-
morphic image of PGL2�7�.

(2) Every element in the above group G of order 336 can be written
as �w, where � ∈ S4 and l�w� ≤ 3. In the case when l�w� ≤ 2, find
a necessary and sufficient condition on � and w for �w to be an
involution. From the Cayley diagram we see that the element t0t1t2 has
eight names of the form �titjtk. Find them, and hence find all invo-
lutions in G under conjugation by N � S4. Finally, show that these
involutions fall into two conjugacy classes in G and find their class
lengths.

(3) Confirm the classical presentation

�x	 y � x2 = y3 = �xy�7 = �x	 y�4 = 1�

for L2�7� as follows:

Step 1 Verify that x = �0 1��2 5� and y = �1 2 4��3 6 5� satisfy the presen-
tation.

Step 2 Denote x	xy and xy
2 by s0	 s1 and s2, respectively, y by �0 1 2�, and

confirm that �x	 y� = �s0	 s1	 s2�.
Step 3 Deduce from �xy�7 = 1 that �0 1 2�= s0s1s2s0s1s2s0 and deduce from

�x	 y�4 = 1 that sisj has order 4 for i �= j. Hence observe that s1s2s0s1s2
has order 3 and that, since s1s2s0s1 = �s2s0�

s1 has order 4, we have
the product of an element of order 4 and an element of order 2
whose product has order 3. (Note that all orders are as asserted by
Step 1.) Thus H = �s1s2s0s1	 s2� � S4.

Step 4 Construct by hand the Cayley diagram of G = �s0	 s1	 s2� over H ,
using the relations �sisj�

4 = 1 and sisjsksisjsksi = sjsksisjsksisj, to
obtain the diagram shown in Figure 4.4.
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s0 °
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Figure 4.4. Cayley diagram of L3�2� over S4 with respect to three symmetric
generators.

4.2 Exceptional behaviour of Sn

4.2.1 An exceptional outer automorphism

The first family of finite groups a student meets is invariably, and for
very good reasons, the family of symmetric groups. Not only are the
basic group theoretic operations of multiplication and inversion carried
out with immense ease within the symmetric group Sn, but conjuga-
tion of one element by another is almost as straightforward. The order
of an element can be read off from its cycle lengths, and one can tell
at a glance whether or not two elements are conjugate. Nonetheless,
these groups in which we feel so comfortable working increase in size
very rapidly, with even the unintimidating S12 having order over 400
million.

So familiar do we feel with the full symmetric group that it comes
as something of a shock when particular members of the family exhibit
exceptional behaviour. Moreover, Sn appears so complete in itself that the
idea that it could possess an outer automorphism seems counter-intuitive.
Thus the unease we feel at learning that the group S6 possesses an outer
automorphism seems somehow vindicated by the further knowledge that
this automorphism can be used to construct the amazing Mathieu group
M12, whose own outer automorphism can in turn be used to construct
M24. These constructions were presented in the 1960s by G. Higman and
J. A. Todd in postgraduate lecture courses at Oxford and Cambridge,
respectively. In this section we show how symmetric generation can be
used to construct the full automorphism group of A6 in a rather revealing
manner.
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Background
Group theoretically, the outer automorphism of S6 owes its existence to the
fact that the projective general linear group PGL2�5� is isomorphic to S5.
Now, PGL2�5� consists of the following set of linear fractional maps:

PGL2�5� =
{
x �→ ax+b

cx+d
� a	b	 c	d ∈ �5	 ad−bc �= 0

}
	

which acts triply transitively on the six points of the projective line P1�5�=


	0	 � � � 	4�. Thus S6 possesses two sets of isomorphic but non-conjugate
subgroups of index 6: one consists of the stabilizers of the six letters on which
our S6 acts naturally, and the other consists of six copies of PGL2�5� acting
triply transitively on those letters. The outer automorphism interchanges
these two sets.

Combinatorially, an outer automorphism can exist because the number
of unordered pairs of six letters is equal to the number of ways in which
six letters can be partitioned into three pairs; which is to say that the
two conjugacy classes of odd permutations of order 2 in S6 contain the
same number of elements, namely 15. Sylvester [62] refers to the unordered
pairs as duads and the partitions as synthemes. Certain collections of five
synthemes, which will reveal themselves spontaneously below, he refers to
as synthematic totals or simply totals; each total is stabilized within S6 by a
subgroup acting triply transitively on the six letters as PGL2�5� acts on the
projective line; see Definition 4.1. If we draw a bipartite graph on �15+15�
vertices by joining each syntheme to the three duads it contains, we obtain
the famous 8-cage (a graph of valence 3 with minimal cycles of length
8); see Figure 4.5. For the interested reader we remark that this graph
may be extended by adjoining six vertices corresponding to the original
letters, which in Sylvester’s nomenclature are monads, and six vertices
corresponding to the as yet undefined totals. If we then join each duad
to the two monads it contains, and each total to the five synthemes it
contains, we obtain the bipartite graph on �21+ 21� vertices indicated in
Figure 4.6. This, in fact, consists of the points and lines of the projective
plane of order 4, and its group of symmetries is isomorphic to the full
automorphism group of the projective special linear group L3�4� with shape
L3�4� � �S3 ×2�.

15 15
3 3

duads synthemes

1 3 6 12 8
3 1 2 1 2 1 2 3

Figure 4.5. The 8-cage on duads and synthemes.
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6 15 15 65

5 5

2 3 3 2 5

monads duads synthemes totals

21 21

points lines

Figure 4.6. The projective plane of order 4.

Now, the above remarks can be sharpened to prove the existence of an
outer automorphism of S6, and can, with considerably more work, be used to
construct it. Perhaps the best place to see the full group S6 � 2, however, is in
the Mathieu group M12. Recall that M12 is a permutation group on 12 letters
which preserves a Steiner system S�5	6	12�. That is to say a collection of
6-element subsets of the 12 letters, known as special hexads, which have
the property that any five of the 12 letters lie together in precisely one of
them. It turns out that up to relabelling there is only one such system, and
that in it the complement of a special hexad is another special hexad. The
stabilizer of such a pair of complementary hexads is isomorphic to S6 � 2, and
S6 can be viewed acting simultaneously on the two hexads in non-identical
fashion. This, however, requires familiarity with a much more complicated
configuration than the one we are attempting to describe. In what follows we
shall describe an elementary, new, direct construction which is easy to work
with and facilitates the identification S6 � 2 � P�L2�9�, the projective general
linear group in 2 dimensions over the field of order 9 extended by the field
automorphism.

Automorphisms of Sn

Let G be a group, let x ∈ G and let xG = 
g−1xg � g ∈ G� be the conjugacy
class of G containing x. Then if � ∈ AutG, the automorphism group of
G, we have �xG�� = �x��G, the conjugacy class of G containing x�. Now,
any automorphism of Sn must preserve the parity of a permutation and
so must fix the class of transpositions or take it to another class of odd
involutions. If we draw a graph �n with vertices corresponding to the � n2 �
transpositions, joined if they do not commute, we soon verify that the full
group of symmetries of this graph is realized by Sn. (By induction on n:
if (1,2) and (1,3) are fixed by � then so is �1	2��1	3� = �2	3�. The sub-
graph of vertices joined to none of these three is then �n−3 with group of
automorphisms isomorphic to Sn−3. From here one may readily argue that
� Aut �n �= � n2 �×2�n−2�×�n−3�! = n!) But the transpositions generate Sn,
and so the only automorphism which fixes every transposition is the iden-
tity. Thus, all automorphisms of Sn are realized by inner automorphisms
unless Sn contains a second class of odd involutions with � n2 � members.
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Now, the number of elements of cycle shape 2m
1n−2m is n!/2mm!�n− 2m�!
and, on simplifying, the condition that this should equal � n2 � reduces
to the following:

2m−1

�m−2�! =
(
n−2
m−2

)(n−m

m

)
∈ �	

with m ≥ 3 odd. Clearly this forces m = 3 when it follows that n = 6. Thus
the only symmetric group which could possess an outer automorphism is S6.

The progenitor for Aut A6 � S6 � 2

In this section we are interested in a particular image of the progenitor
P = 2�6 � PGL2�5�. Thus the symmetric generators are labelled ti for i in
P1�5�, the projective line 
∪�5.

We immediately have, as a slight extension of the proof of Theorem 3.1,
the following lemma.

Lemma 4.1 If P = 2�6 � PGL2�5�, then P/P ′ � V4, the Klein fourgroup, and
P ′′ = P ′.

Proof We have N � PGL2�5�, and so

P ′ ≥ �N ′ � PSL2�5�	 ��
 0��1 4�	 t
� = t0t
�
=�N ′	 titj � i	 j ∈ 

	0	 � � � 	4��
= 
�w � � even	 l�w� ∈ 2�� = K	

say, since N ′ is doubly transitive. But P/K = �Kt
	K�
 0��1 2��3 4�� � V4.
Thus, P ′ ≤ K ≤ P ′, and so P ′ = K and P/P ′ � V4.

Similarly,

P ′′ ≥ �N ′ � PSL2�5�	 ��1 4��2 3�	 t
t1� = t4t
t
t1 = t4t1� = P ′
 �

It follows that any image of P contains a perfect subgroup to index less
than or equal to 4. The group we wish to study is defined to be

G = 2�6 � PGL2�5�
��
 0 1 4 2 3�t
�4

	 (4.1)

and we may immediately note that, since the relator lies in P ′, we have
G/G′ � V4 and G′′ = G′. If we let � = �
 0 1 4 2 3�, we may rewrite our
additional relation:

��t
�4 = �4t�
3


 t�
2


 t�
t

= �
 2 1 ��0 3 4�t4t1t0t
 = 1


In order to see that G is, in fact, finite and to find its order, we perform a
manual double coset enumeration of G over N in the usual manner. Now,
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the number of single cosets Nx in the double coset NwN is given by the
index �N � N �w��, where we define

N�w� = 
� ∈ N � Nw� = Nw� = 
� ∈ N � w�w−1 ∈ N�

= 
� ∈ N � � ∈ w−1Nw� = N ∩w−1Nw


In particular, this means that

�N�w�� = �N ∩w−1Nw� = �wNw−1 ∩N � = �N�w−1��	 (4.2)

a fact which we shall use later. Besides the trivial double coset N , which
we label ���, we have

�
� = Nt
N = ⋃

i∈

	0	 � � � 	4�

Nti	

in which the six single cosets appear to be distinct, and

�
0� = Nt
t0N = ⋃

i	j∈

	0	 � � � 	4�
i �=j

Ntitj 


Since t4t1t0t
 ∈ N , from our additional relation, we see that Nt4t1t0t
 = N
and so Nt4t1 = Nt
t0 = Nt
t0�
 4 0 1�. Thus,

N�
0� = 
� ∈ N � Nt
t0� = Nt
t0� ≥ ��1 2 4 3�	 �
 4 0 1�� � S4	

acting transitively on the six letters. This says that

Nt
t0 = Nt4t1 = Nt3t2 = Nt0t
 = Nt1t4 = Nt3t2	

and so the coset Nt
t0 can be labelled by the syntheme 
0
14
23, and the
double coset �
0� contains at most �N �/24 = 5 single cosets, which may be
labelled by the special synthemes of Table 4.2. The transitivity of N�
0�

ensures that for any i	 j	 k we have Ntitjtk = Ntltktk = Ntl for some l, and so
���	 �
� and �
0� are the only three double cosets. If we draw a graph with
vertices the 12 cosets obtained, and coset Nw joined to the six cosets Nwti,
we obtain the Cayley graph indicated in Figure 4.7 provided there is no
further collapsing. It visibly takes the form of a complete bipartite graph
K6	6. Note that each coset in the 5-orbit has six ‘names’, one of which has
the form 
i for i ∈ 
0	1	 � � � 	4�; the alternative names can be read from
Table 4.2. Right multiplication by t
 induces a permutation on these 12
cosets, which can easily be written down using Table 4.2:

t
 � �� 
��0 
0��1 
1��2 
2��3 
3��4 
4�
 (4.3)

We know how N � PGL2�5� acts on these 12 cosets, however, and it is
obvious that t
 above commutes with the stabilizer of 
 in N . Thus the
permutation group on 12 letters which we have constructed is certainly a
homomorphic image of the progenitor. To see that it is in fact G, it remains
to check that the additional relation holds. But

�
 0 1 4 2 3�t
 � �� 
 
0 3��
1 2 
3 0��
2 4��
4 1�	
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Table 4.2. The synthematic
total preserved by PGL2�5�


0.14.23

1.20.34

2.31.40

3.42.01

4.03.12

1 6 5
6 1 5 6

[  ] [∞] [∞0]

Figure 4.7. The Cayley diagram of G over the cosets of N .

which clearly has order 4. Note that it is repeated use of Table 4.2 that
enables us to write this down so easily; for example,

�
 0 1 4 2 3�t
 � 
0 �→ 01
 �→ 3

 = 3


Thus we have constructed a group G of order 120 × 12 = 2 × 6!, which
acts transitively on 12 letters, but imprimitively with two blocks of size 6,
namely



	0	 � � � 	4�∪ 
�	
0	 � � � 	
4�
 (4.4)

The subgroup of index 2 fixing these two blocks has order 6! and consists
of the following elements:


�	�tit
 � � ∈ N	 i ∈ 
0	1	 � � � 	4��


Since the permutation actions on these two sets of size 6 are clearly faithful,
the block stabilizer is a permutation group on six letters of order 6! and
is thus isomorphic to S6. We observe, furthermore, that the permutation
�
 0��1 2��3 4� of N has action ����
0��
1��
2 
3��
4� on the other
block. So permutations of cycle shape 23 on one side act as transpositions
on the other. Similarly, the permutation �
 0 1��2 4 3� of N has action
����
0 
3 
1��
2��
4� on the other side; thus, elements of order 3
have cycle shape 32 on one side and 3
13 on the other. From these two
observations it follows that 6-cycles on one side must have cycle shape 1
2
3
on the other, and the reader may like to use Table 4.2 to confirm this
for the permutation �
 0 1 4 2 3� of N . Thus the permutation of the 12
cosets achieved by right multiplication by the symmetric generator t
, say,
interchanges the two blocks and so swaps the two classes of odd involutions,
the two classes of elements of order 3, and the two classes of elements of
order 6.

The notation for the �6+6� letters permuted by Aut S6 given in Equa-
tion (4.4) is much shorter than the somewhat cumbersome synthematic
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Table 4.3. Correspondence between our notation
and the synthematic totals

Label Total Abbreviation

�

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩


0
14
23

1
20
34

2
31
40

3
42
01

4
03
12

�
 � 01234�


0 ∼ 
0
14
23

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩


0
14
32

1
30
24

3
21
40

2
43
01

4
02
13

�
 � 01324�

totals. However, it is of interest to see how the two notations correspond
to one another. Now the coset which we label � clearly corresponds to the
synthematic total in Table 4.2 and, since this is preserved by our sub-
group N � PGL2�5�, it possesses just six images under the action of S6. In
Figure 4.6 we see that each syntheme is contained in just two totals. Our
notation 
i for points in the second block is really an abbreviation for a
syntheme, as in Table 4.2. Thus 
0 is an abbreviation for 
0
14
23, which
gives its six possible names. The synthematic total corresponding to each
of the synthemes in Table 4.2 is thus the unique other synthematic total
containing it.

In Table 4.3 the other correspondences are obtained by conjugation by
the permutation �0 1 2 3 4�. The abbreviations given in the third column
are simply a mnemonic for the synthematic totals.

Exercise 4.3

(1) Confirm that the permutation �
 0 1 4 2 3� ∈ N � PGL2�5� acts as a
permutation of cycle shape 1.2.3 on the other six points.

(2) Confirm that �
 0��1 2��3 4�t
t0 = �
 0��1 2��3 4�t0 acts as
a transposition on 

	0	1	2	3	4� and has cycle shape 23 on

�	
0	
1	
2	
3	
4�.

(3) Work out the action of the element �1 3 4 2�t
t0 on the 12 points and
show that it is a transposition on one side and has cycle shape 23 on
the other. (Note that this implies that the relation �1 4��2 3� = �t
t0�2

holds in G.) Hence write down all (15+15) transpositions in canonical
form as � or �t
ti.

(4∗) Perform a double coset enumeration for the group

G = 2�6 � PGL2�5�
�t
t0�2 = �1 4��2 3�
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The isomorphism S6 � 2 = P�L2�9�

The group PGL2�9� acts triply transitively on the ten points of the pro-
jective line P1�9�= 

	0	±1	±i	 ±1±i � i2 = −1	 1+1+1 = 0� with order
10×9×8. Thus the group P�L2�9�, obtained by extending this group by the
field automorphism which interchanges i and −i, has order 2×6! = �AutA6�.

We now prove the following theorem.

Theorem 4.1 S6 �2 � P�L2�9�.

Proof Note that all non-trivial normal subgroups of the group G �
A6
22 defined in Equation (4.1) contain A6, and so any homomorphic image
of G containing elements of order 5 must be an isomorphic copy. Thus, if
we construct such a homomorphic image of G in P�L2�9�, the fact that the
two groups AutA6 and P�L2�9� have the same order will suffice to prove
that they are isomorphic. To achieve this we take

� ≡ x �→ �1− i�x+1+ i
x+1− i

� �
	 1− i	 −1	 1	 −1+ i��0	 i	 −1− i	 1+ i	 −i�

and let � denote the field automorphism, which acts by ‘complex con-
jugation’. Then it is easily checked that � and � satisfy the following
presentation:

��	� � �5 = �2 = ����4 = ��	��3 = 1�	
which is a classical presentation for S5 � PGL2�5�; see ref. [27]. The element

t
 ≡ x �→ 1+ i
x

commutes with a subgroup of N = ��	�� of order 20, which is generated
by � and

% = ������� ≡ �

(
x �→ i

x

)
� �
	 0��1	 i	 −1	 −i��1+ i	 1− i	 −1− i	 −1+ i�


Thus t
 has just 120/20 = 6 images under conjugation by N . For
convenience, we display these symmetric generators:

t
 �
	 0��1	 1+ i��−1	 −1− i��i	 1− i��−i	 −1+ i��
t0 �
	 0��1	 1− i��−1	 −1+ i��−i	 1+ i��i	 −1− i��
t1 �
	 1��0	 −i��−1	 −1+ i��i	 1− i��1+ i	 −1− i��
t2 �
	 1��0	 i��−1	 −1− i��−i	 1+ i��1−vi	 −1+ i��
t3 �
	 −1��0	 −i��1	 1+ i��i	 −1− i��1− i	 −1+ i��
t4 �
	 −1��0	 i��1	 1− i��−i	 −1+ i��1+ i	 −1− i�


It is readily checked that �	% and � permute these elements as
�
��0 1 2 3 4�	 �1 2 4 3� and �
 0��1 2��3 4�, respectively. It remains
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to check the additional relation of Equation (4.1). But ��2 acts as
�
 2 3 1 4 0�, and so we must simply observe that

��2t
 � �
	 −1− i	 i	 1− i��0	 −1	 −i	 1��1+ i��−1+ i�

has order 4. �

Now, the ten objects permuted by the group S6 may be thought of as
the partitions of the letters � = 

	0	 � � � 	4� into two threes, thus there
exists a correspondence between these partitions and the ten points of the
projective line P1�9�. For completeness this correspondence is indicated in
Figure 4.8. Moreover, this set of ten points is well known to have a Steiner
system S�3	4	10� defined on it. That is to say, there is a set of special
subsets of size 4 such that any three of the points belong to just one of
them. In the case of the projective line these special tetrads correspond to
the 30 images of the subset 

	0	1	−1� under the action of P�L2�9�. In
fact, these are precisely the quadruples of points whose cross-ratio1 is −1.

In the case of the ten partitions of six letters into two threes, the special
tetrads correspond to the 15 duads and the 15 synthemes; the special tetrad
corresponding to the duad xy corresponds to the four partitions in which
x and y appear ‘on the same side’, and the special tetrad corresponding to
the syntheme uv
wx
yz corresponds to the four partitions in which each of
the duads uv	wx and yz has a point on either side. That is to say,


0 ∼
{
01

234
	

02
134

	

03
124

	

04
123

}
�


0
14
23 ∼
{
12

034
	

13
024

	

42
013

	

43
012

}



We end this section with some remarks. Firstly, note that implicit within
our construction is a family of presentations which have been proved by
hand to define AutA6. Suppose x and y generate N � PGL2�5� and t, a
symmetric generator, is made to commute with a subgroup of N = �x	 y� of
index 6; suppose furthermore that u = u�x	 y� is a word in x and y which

1 Recall that the cross-ratio �ab	 cd� of four numbers a	b	 c	d is defined as follows:

� = �a− c��b−d�

�a−d��b− c�
�

permutations of the four numbers map � into one of
{
�	

1
1−�

	1− 1
�
	

1
�
	1−�	

�

�−1

}



If � = −1 we say that �ab	 cd� is a harmonic ratio, and in this case permutation of the four
numbers results in just the three cross-ratios 
−1	1/2	2�. Thus, if the numbers lie in a field
of characteristic 3, these three cross-ratios coincide and the property of being in harmonic
ratio is independent of the order in which the numbers are taken. It is readily verified that
cross-ratio is preserved by linear fractional maps.



106 Classical examples

has order 6 in N . Factoring by the relator �ut�4 must define AutA6. Thus
we have proved, for example, that

�x	 y	 t � x5 = y2 = �xy�4 = �x	 y�3 = t2 = �t	 x� = �t	 �yx��xy�� = �yx2t�4 = 1�
is a presentation for AutA6, as may be confirmed computationally using for
instance the coset enumerator in the Magma package [19]. Secondly, note
that every element of AutA6 can be written in the form �w with � ∈ N
and w a word in the ti of length less than, or equal to, 2. We have


�tit
 � � ∈ PSL2�5�	 i ∈ 

	0	 � � � 	4�� � PSL2�9� � A6�


�tit
 � � ∈ PGL2�5�	 i ∈ 

	0	 � � � 	4�� � P�L2�9� � S6�


�ti	�tit
 � � ∈ PSL2�5�	 i ∈ 

	0	 � � � 	4�� � PGL2�9��

{
�tit
	 �tj �� ∈ PSL2�5�	 i ∈ 

	0	 � � � 	4�

� ∈ PGL2�5�\PSL2�5��

}
� M10


Embedding Aut A6 in the Mathieu groups
As was mentioned above, perhaps the best place to see the outer automor-
phism of S6 is in the Mathieu group M12, and ultimately in the Mathieu
group M24. Now we have seen G = Aut A6 acting on 12 letters, with two
blocks of imprimitivity of size 6, and on ten letters as P�L2�9�; plainly G
can also act on two letters. For the convenience of the reader who is famil-
iar with the Mathieu groups we show in Figure 4.9 how these orbits may
be displayed in the Miracle Octad Generator. Each of the three diagrams
represents the same 4×6 array. The first diagram shows the 24 points per-
muted by M24 labelled by the projective line P1�23�; see Definition 4.1. The
quadratic residues modulo 23 together with 0, which lie in the symmetric
difference of the even columns and the top row, form a dodecad whose sta-
bilizer is M12; its complement, which consists of the non-residues together
with 
, is also a dodecad. When the 24 points are partitioned into two
complementary dodecads in this way, a pair in one dodecad completes to an
octad of the Steiner system ��5	8	24�, whose remaining six points lie in the
complementary dodecad in precisely two ways, and the resulting two hexads
in the complementary dodecad are disjoint from one another. Accordingly,
in the second diagram we show how fixing two points of the first dodecad,
namely the two �’s, has the effect of partitioning the other dodecad into two
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Figure 4.8. Correspondence with the projective line P1�9�.
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Figure 4.9. The embedding Aut A6 ≤ M12 ≤ M24.

sixes, the •’s and the �’s. The stabilizer of this pair of points in M12 is our
group Aut A6 � P�L2�9� � M10 � 2. The final diagram shows the fixed pair
of points labelled A and B, the remaining ten points labelled P1�9�, and the
two sixes labelled P1�5� and with 
�	
0	
1	
2	
3	
4�, respectively. In
order to avoid confusion between the two occurences of the symbols 
	0
and 1, the points of P1�9� are shown in a smaller font size than the two
6-orbits.

As we have seen, our control subgroup isomorphic to PGL2�5� can be
generated by an element of order 5, which may be taken to be t �→ t+1 in
PGL2�5�, and to be

� ≡ x �→ �1− i�x+1+ i
x+1− i

in P�L2�9�, together with an element � of order 2 which acts as t �→ 2/t in
PGL2�5� and as the field automorphism in P�L2�9�. Thus

� � �
��0 1 2 3 4�����
0 
1 
2 
3 
4�
�A��B��
 1−i −1 1 −1+i��0 i −1−i 1+i − i��

� � �
 0��1 2��3 4�����
0��
1��
2 
3��
4�
�A B��
��0��1��−1��i −i��1+i 1−i��−1+i −1−i��

t
 � �
 ���0 
0��1 
1��2 
2��3 
3��4 
4�
�A B��
 0��1 1+i��−1 −1−i��i 1−i��−i −1+i�


4.2.2 The exceptional Schur multipliers of Sn

A central extension of a group G is defined to be a group H such that there
exists a homomorphism � from H onto G with Ker � ≤ Z�H�, the centre
of H . In other words, H is such that if you factor out a subgroup of its
centre the resulting quotient is isomorphic to G. A central extension H is
said to be universal if, for any other central extension K, there exists a
homomorphism from H onto K. It turns out that G possesses a universal
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central extension if, and only if, G is perfect, and in this case the universal
central extension G̃ is called the universal covering group; the kernel of the
homomorphism from G̃ onto G is called the Schur multiplier of G. Finite
perfect groups have finite universal covering groups and finite multipliers.

The Schur multiplier of the alternating group An	 n ≥ 5, has order 2
except for n= 6 and n= 7 when it has order 6. For a non-homological proof
of this fact, the reader is referred to Aschbacher (ref. [3], p. 170). The double
cover of the alternating group An, which we write as 2·An, extends to a group
2·Sn in two different ways depending on whether the transpositions of Sn

‘lift’ to elements of order 2 or 4 in the pre-image. These are usually denoted
by 2·S+

n and 2·S−
n , respectively. Even here S6 is exceptional as 2·S+

6 � 2·S−
6 ,

which holds for no other n. These similar but non-isomorphic groups are
an example of isoclinism (see ref. [25], p. xxiii), and a complex faithful
representation of one is obtained from a complex faithful representation of
the other by multiplying the matrices representing elements in the outer half
by i. Note that this will transform outer elements of order 2 into elements
of order 4 which square to the central involution. It should be stressed
that these covering groups can exhibit subtle behaviour. For instance, the
group Aut A6 � A6
22, which, as we have seen, is isomorphic to the group
P�L2�9�, the projective general linear group PGL2�9� extended by the field
automorphism of the field of order 9, possesses three subgroups of index 2,
namely S6, PGL2�9� and M10, the point-stabilizer in the Mathieu group M11.
The covering group 2·A6 extends to either 2·S6 or 2·PGL2�9�; however, it
cannot be extended to 2·M10. A brief description of the groups 2·S±

n is given
in the Atlas (ref. [25], p. 236).

It is not surprising that the highly exceptional triple covers 3·A6 and
3·A7 frequently reveal themselves in the sporadic simple groups, and 3·A7
can be used to define a progenitor whose smallest ‘true’ image is the Held
group; see Part III.

Construction of 3·Aut A6

We constructed the group G defined in Equation (4.1) as permutations on
12 letters and, using Equation (4.3), we see that

t
t0 = �
 0��1 2 4 3� �� 
0��
1 
3 
4 
2�


Thus, the relation �t
t0�2 = �1 4��2 3� holds in G. In other words, our G,
which we now know to be isomorphic to Aut A6, is a homomorphic image of

Ĝ � 2�6 � PGL2�5�
�t
t0�2 = �1 4��2 3�


 (4.5)

Moreover, as with G, Lemma 4.1 implies that Ĝ/Ĝ′ � V4 and that Ĝ′′ = Ĝ′.
As before, to obtain the order of Ĝ we must now find all double cosets of
the form NwN and calculate how many single cosets each of them contains.
Certainly, ��� = N contains just one single coset, and we can now assert
that �
� = Nt
N contains six single cosets. Our relation in Equation (4.5)
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tells us that Nt
t0t
t0 = N , and so Nt
t0 = Nt0t
. Thus, every single coset
in �
0� = Nt
t0N has at least two names, and so the double coset �
0�
contains at most 15 single cosets. The triple transitivity of PGL2�5� means
that the only new double coset NwN with w of length 3 in the symmetric
generators is �
01� = Nt
t0t1N . Denoting the permutation �1 4��2 3� by
�
0, conjugation by elements of N allows us to write down �ij for all
i	 j ∈ 

	0	 � � � 	4�	 i �= j
 Thus,

Nt
t0t1 = Nt
�01t1t0 = Nt
�
 3��2 4�t1t0 = Nt3t1t0 = Nt
t0t1�
 3��0 1�	

and we see that N�
01� ≥ ��
 0��2 3�	 �
 3��0 1�� �D10, the dihedral group of
order 10. Thus, �
01� contains at most 120/10 = 12 single cosets. Moreover,
the groupN�
01� has orbits of length 5 and 1 on the six symmetric generators,
and multiplication by any generator in the 5-orbit takes us back to the
double coset �
0�. So the only double coset NwN to consider with w of
length 4 is �
014�. As above, we have

Nt
t0t1t4 = Nt
t0�14t4t1 = Nt
t0�
 0��2 3�t4t1
= Nt0t
t4t1 = Nt
t0t1t4�
 0��1 4�	

and so N�
014� ≥ �N�
01�	 �
 0��1 4�� � PSL2�5�. Thus �
014� contains at
most 120/60 = 2 single cosets. Since N�
014� acts transitively on the six
symmetric generators, multiplication by any of them takes us back to the
double coset �
01�, and we appear to have constructed the Cayley dia-
gram shown in Figure 4.10. We know that Ĝ is a pre-image of Aut A6, and
our Cayley diagram appears to be showing that this pre-image possesses
a normal subgroup of order 3 which, when factored out, yields Aut A6. It
remains for us to exhibit a group satisfying the presentation of Equation
(4.5) in which this subgroup of order 3 survives. The most natural way
to proceed is to exhibit Ĝ as a subgroup of S36 acting on the right cosets
of N . Firstly, note that the action of N � PGL2�5� on each of the sub-
orbits of lengths 1, 6, 15, 12 and 2 is well defined. We must check that
multiplication by t
 is well defined, commutes with the stabilizer in N of

, and satisfies the additional relation �t
 t0�

2 = �1 4��2 3�. This may be
achieved by exhibiting our symmetric generators as permutations on the
�1+6+15+12+2 = 36� letters which we claim represent cosets of our con-
trol subgroup in the image group. In order to do this we need a more concise
notation since, for instance, cosets in the 12-orbit have 5×2 = 10 labels as
ordered triples of � = 

	0	 � � � 	4�. It turns out that all the information
can be read directly from the synthematic total displayed in Table 4.2, in
which the five synthemes must be regarded as possessing a cyclic ordering.

1
6 1 5 2 4 5 1 6

6 15 12 2

[  ] [∞] [∞0] [∞01] [∞014]

Figure 4.10. Cayley diagram of 3· AutA6 over PGL2�9�.
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Table 4.4. Verification of the additional relation

�� 
0� (
1 01 
 4 04) (
 0) (1 2+ 4 3+)
t
t0: (�+ 23) (34 42 21 13) (
− 0−) (1− 2 4− 3)

(�− 14) (02 
3 03 
2) (
+ 0+) (1+ 2− 4+ 3−)

Thus, straightforwardly the 1-orbit consists of 
��; the 6-orbit consists of
�; and the 15-orbit consists of the unordered pairs of elements of �. More
subtly, the 12-orbit can be labelled by i+ and i− for i ∈�, where, if ij
kl
mn
is a syntheme in Table 4.2, then i+ ∼ mnj ∼ nmj and i− ∼ klj ∼ lkj; thus,


+ ∼ 230	320	341	431	402	042	013	103	124	214

and


− ∼ 140	410	201	021	312	132	423	243	034	304


The 2-orbit can be labelled 
�+	 �−�, where a representative for �+ is 
014
and that for �− is 
023. Using this we may write down the following action:

t
 � �� 
��0 
0��1 
1��2 
2��3 
3��4 
4�
��+ 
+��0+ 23��1+ 34��2+ 40��3+ 01��4+ 12�
��− 
−��0− 14��1− 20��2− 31��3− 42��4− 03�	

which visibly commutes with the subgroup ��0 1 2 3 4�	 �1 2 4 3��+ −��.
The notation here is supposed to convey that odd elements of N � PGL2�5�
interchange + and −. This enables us to write down the action of t
t0 in
Table 4.4, which confirms that �t
t0�2 = �1 4��2 3�; the columns of Table 4.4
demonstrate how these 36 symbols fall into the 12 blocks of imprimitivity
permuted by our group AutA6. A ‘central’ element of order 3 cycles these
columns downwards and is realized by, for example, t
t0t1t4�
 1 2��0 4 3�.
We have proved that the derived group of Ĝ is perfect, has order 3×�A6�,
and has A6 as a homomorphic image. Thus we have constructed the group
3· AutA6 acting as permutations on 36 letters as required. Note that odd
permutations of PGL2�5� invert the central elements of order 3, as does ti.

An alternative to the above would be to exhibit Ĝ as a matrix group
(extended by various automorphisms), which satisfies the symmetric pre-
sentation in Equation (4.5) and has a centre of order 3. Consider the group
SL3�4�, which acts on the 21 points and 21 lines of the projective plane of
order 4 (see ref. [25], p. 23).

Definition 4.2 An oval in a projective plane is a maximal set of points,
no three of which lie on a line.

Clearly an oval can contain at most q+2 points, where q is the order, as the
lines from a given point of the oval to the other points must all be distinct.
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Ovals in the plane of order 4 contain six points; an example2 would be as
follows:

� �=
{
�1 1 1�	 �0 0 1�	 �0 � 1�	 �1 � 1�	 �� 1 1�	 �� 0 1�
�p
� �p0� �p1� �p2� �p3� �p4�

}

	

where in each case we give a vector pi generating the 1-dimensional subspace
Pi which is the point. Now there are

( 6
2

)= 15 lines cutting this oval in two
points, and so all five lines through a point of the oval are among them.
This leaves six lines which do not intersect the oval; they are as follows:

� �=
{
�1 1 1�t	 �0 0 1�t	 �0 � 1�t	 �1 � 1�t	 �� 1 1�t	 �� 0 1�t

�l
� �l0� �l1� �l2� �l3� �l4�

}

	

where in each case we give a vector li defining the hyperspace which is the
line Li as described in Section 4.1. Note that �, the outer automorphism of
SL3�4� which simply transposes the vectors representing points and lines,
interchanges these two sets, and if A ∈ SL3�4� then

� � A �→ �A−1�t


As stated in the Atlas [25], an oval is stabilized by a subgroup of L3�4�
isomorphic to A6, but we do not need to assume that here. Instead, observe
that if we label the points of the oval � with the symbols 

	0	1	2	3	4�,
respectively, as displayed, then the following matrices:

A =
⎛

⎜
⎝

0 � �̄

1 0 0
0 �̄ �

⎞

⎟
⎠ �B =

⎛

⎜
⎝
�̄ � 0
� �̄ 0
1 1 1

⎞

⎟
⎠ 	

act on �∪� as follows:

A � �p
��p0 �p1 �̄p2 �̄p3 �p4��l
��l0 �l1 �̄l2 �̄l3 �l4��
B � �p
 p0��p1 p4��p2��p3��l
��l0��l1 �̄l2��l3 �l4��

and satisfy A5 = B2 = �AB�3 = 1; so �A	B� � A5 � L2�5� acting transitively
on the six points of � and intransitively on the six lines of �. (Of course,
the 36 letters in the permutation action above are the scalar multiples of
the vectors in �∪�.) Moreover, the matrix given by

C =
⎛

⎜
⎝

0 1 0
1 0 0
0 0 1

⎞

⎟
⎠= BA2BA−1

fixes P
 and AtA=CtC = 1; so both A and C are fixed by �. We thus choose
our symmetric generator t
 = � and may label our symmetric generators

2 We have chosen this oval so that � � A �→ �At�−1 interchanges it with the six lines which
do not intersect it. Other ovals are fixed by the field automorphism �, but do not have this
property.
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so that their labels correspond to the labels of the points Pi. We then have
the following:

t
t0 = t
tB
 = �B�B = B�B =
⎛

⎜
⎝
�̄ � 1
� �̄ 1
0 0 1

⎞

⎟
⎠

⎛

⎜
⎝
�̄ � 0
� �̄ 0
1 1 1

⎞

⎟
⎠

=
⎛

⎜
⎝

0 1 1
1 0 1
1 1 1

⎞

⎟
⎠∼ �
 0��1 2 4 3�


Thus �t
t0�2 = �1 4��2 3� as required. So far we have constructed an image
of the group

2�6 � L2�5�
�1 4��2 3��t
t0�2

	

so we need to extend the control subgroup to PGL2�5�. This we do by
adjoining the element

D = �

⎛

⎜
⎝
�̄ � 0
� �̄ 0
0 0 1

⎞

⎟
⎠∼ �1 2 4 3�	

where � represents the field automorphism which interchanges � and �̄.
Then we have AD = A2 and BD = BC; so �A	B	D� � PGL2�5� as required.
Moreover, � = t
 commutes with � and with the matrix in the definition
of D, which is symmetric of order 2. So � commutes with �A	D� � 5 � 4,
a Frobenius group of order 20. Thus t
 = � has just six images under
conjugation by the extended control subgroup, and we have constructed an
image of

G = 2�6 � PGL2�5�
�1 4��2 3��t
t0�2




We know that G′ has index 4 in G and is perfect; it is an image of a group
of shape A6
22 or 3·A6
22 which contains elements of order 5, and so is
isomorphic to one or other of these two groups. It remains to show that the
normal subgroup of order 3 survives and so the latter case holds. But

��
 0��1 4�t
t1�
4 = �B��BA�4 = �B�A−1B−1�BA�4

= �BAtBtBA�4 = �̄I3	

which commutes with all the matrices in G and is inverted by � and D.
Thus

G � 3·A6
2
2

as asserted.

Construction of 3·S7

We first prove the following theorem.



4.2 Exceptional behaviour of Sn 113

Theorem 4.2

H = 2�7 � L3�2�
��0��1 3��2 4 6 5�t0t1�2

� S7


Proof To see that S7 is an image of H , we take N � L3�2� to be the
set of all permutations of � = 
0	1	 � � � 	6� which preserve the seven lines

013	124	235	346	450	561	602� in the standard way. We further define
the symmetric generator ti to be the unique involution of cycle shape 1
23

which fixes the three lines through i; thus, t0 = �0��1 3��2 6��4 5�. It is
an easy matter to see that �N	 t0� � S7 (for instance, �2 6��4 5� ∈ N and
so �1 3� ∈ �N	 t0�), and N clearly permutes the seven ti in the prescribed
manner. But

�0��1 3��2 4 6 5�t0t1 = �0��1 3��2 4 6 5�
�0��1 3��2 6��4 5�
�1��2 4��3 0��5 6�
= �0 3��2 6�	

which has order 2 as required. Thus S7 is an image of H . If we can show
that �H� ≤ 7!, then we are done. As before, we find all double cosets of
form �w� = NwN . Now, �0� = Nt0N contains at most the seven single cosets
Nti. Since our relator can be rewritten as �2 6��4 5�t0t3t0t1, we see that
Nt0t3 = Nt1t0, and so �0 1 3 ��4 5 6� ∈ N�01�. Thus,

N�01� ≥ ��2 4��5 6�	 �2 5��4 6�	 �0 1 3 ��4 5 6�� � A4	

and �01� contains at most 168/12 = 14 single cosets. Under the action of
N�01�, we see that the only double coset �w� with w of length 3 is �012�. But

Nt0t1t2 = Nt0 · t1t2t4t2 · t2t4 = Nt0�3 5��0 6�t2t4
= Nt6t2t4 = Nt0t1t2�1 2 4��0 6 3�	

and so �1 2 4��0 6 3� ∈ N�012� and

N�012� ≥ ��0 1 3 ��4 5 6�	 �1 2 4��0 6 3�� � 7 � 3	

a Frobenius group of order 21 acting transitively on �. Thus, �012� contains
at most 168/21 = 8 single cosets. This tells us that

�H� ≤ 168× �1+7+14+8� = 7!	
and so �H� = 7! and H � S7. In particular, we have confirmed that the
Cayley diagram in Figure 4.11 does not collapse. �

We can now prove Theorem 4.3.

1
7 1 6 3 4 77 14 8

[  ] [0] [01] [012]

Figure 4.11. Cayley diagram of S7 over L3�2�.
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Theorem 4.3

K = 2�7 � L3�2�
��0 1 2 3 4 5 6�t0�6

� 3·S7	

a group of order 3× 7! which possesses a homomorphic image isomorphic
to S7, and whose derived group is a perfect central extension of A7 of shape
3·A7. Outer elements invert the ‘central’ elements of order 3.

Proof We first show that S7 is a homomorphic image of K. Take
the same copy of N � L3�2� as in Theorem 4.2, and again define
t0 = �1 3��2 6��4 5�. It remains to check the additional relation. But
�0 1 2 3 4 5 6�t0 = �0 1 2 3 4 5 6�
�1 3��2 6��4 5� = �0 3 5 2 1 6� has order 6
as required.

Next note that by Theorem 3.1 we have �K � K′� = 2 and K′ is perfect.
We now proceed in the familiar manner to find all double cosets of form

�w�=NwN . Let � = �0 1 2 3 4 5 6�. Then a permutation �∈ L3�2� is conjugate
to � if, and only if, �= �a0 a1 a2 a3 a4 a5 a6�, where 
ai	 ai+1	 ai+3� is a line for
i = 0	1	 � � � 	6, all subscripts being read modulo 7. Our additional relation
then becomes ��t0�6 and, expanding, we have the following:

��t0�
6 = 1 ⇔ �6t�

5

0 · · · t�0 t0 = 1

⇔ � = t5t4t3t2t1t0 (4.6)

⇒ Nt0t1t2 = Nt5t4t3 (4.7)

⇒ �0 5 1 4 6 2 3� ∈ N�012�
 (4.8)

Thus we conclude that the double coset �012� contains at most 168/7 = 24
single cosets, but the 42 single cosets of form Ntitj contained in �01� appear
to be distinct. We must now examine the double cosets �010� and �013�,
but we will find it easier to look first at �0103�. Using Equation (4.8), we
see that

Nt0t1t0t3 = Nt0t1t2 · t2t0t3
= Nt4t2t5 · t2t0t3
= Nt4t2 · t5t2t0t3t6t1 · t1t6
= Nt4t2 · �1 6 3 0 2 5 4� · t1t6
= Nt1t5t1t6	 (4.9)

in which calculation we have used a conjugate of Equation (4.6). But this
shows us that �0 1 5 3 6 2 4� ∈ N�0103�, and so

N�0103� ≥ ��0 1 5 3 6 2 4�	 �2 4��6 5�	 �2 5��4 6�� � L3�2�


This shows that �0103� contains just one single coset, which we denote by
�+; using the result proved in Equation (4.2), that ��w�� = ��w−1��, we deduce
that �0131� also contains just one single coset, which we denote by �−. But
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since the cosets Nt0t1t0t3 and Nt0t1t3t1 are fixed by the whole of N � L3�2�,
we see that:

(1) right multiplication of either of these cosets by a symmetric generator
ti leads to a coset of form Ntjtktj or Ntjtitk, where 
i	 j	 k� is a line;

(2) the coset stabilizing subgroups N�010� and N�013� contain the stabilizers
in N of 3 and 1, respectively, both of which are isomorphic to S4;

(3) thus, the double cosets �010� and �013� contain at most 168/24 = 7
single cosets.

Together these remarks lead to the Cayley diagram shown in Figure 4.12.
Note that, provided there is no further collapse, it is sensible to label the
coset Ntitjti by k− and the coset Ntitktj by k+, where as above 
i	 j	 k� is
a line (since they are both fixed by the stabilizer of k). To prove that no
collapsing of the Cayley diagram in Figure 4.12 occurs, we can exhibit t0 as
a permutation of the 3× �15+15� = 90 symbols:

{
�	 �±	 i	 i±	 ij	 ijk � i	 j	 k ∈ 
0	1	 � � � 	6�	 
i	 j	 k� distinct and not a line

}
	

where it is understood that each coset ijk has seven such names which
can be obtained using conjugates of Equations (4.7) and (4.8). This is
straightforward, if slightly tedious. Finally, note from Theorem 4.2 that
Z�K′�, the centre of K′, must be generated by z = ��1 3��2 4 6 5�t0t1�2 =
�2 6��4 5�t0t3t0t1, since factoring out this relator results in the symmetric
group S7. Of course, z may be exhibited cycling each of the 30 blocks of size
3 which K permutes; however, we prefer to show directly that z is inverted
by conjugation by t0. We have

Nzt0z = Nt3t0t1t0 · t0t3t0t1 = Nt1t0t3t0 · t0t3t0t1 = N	

1 7 42 24

6

6

4

1

1

7

[0103] [010] [01] [012]

7 1

7 1

7 1

6 1

7

[  ] [0]

1

[0131] [013]

1 7

Figure 4.12. Cayley diagram of 3·S7 over L3�2�.
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where we have used the fact that Nt3t0t1t0 is fixed by the whole of N � L3�2�.
Thus zt0z = �t3t0t1�

2 belongs to N and, moreover,

zt0z ∈ CN���2 6��4 5�	 �2 4��6 5��� = ���2 6��4 5�	 �2 4��6 5��

In particular, zt0z commutes with t3. Then

zt0z = �zt0z�t3 = t3 · t3t0t1t3t0t1 · t3
= t0t1t3t0t1t3 = �t3t0t1t3t0t1�

�3 0 1��6 4 5�	

and so zt0z ∈ CN��3 0 1��6 4 5�� = ��3 0 1��6 4 5��. Thus zt0z = 1 and so
zt0 = z−1. �

Rather than exhibit our group as permutations on 90 letters in order
to show that the derived group has a non-trivial centre, it is easier
and more revealing to give an alternative representation of the group
defined in Theorem 4.3. We shall, in fact, produce a monomial semi-linear
21-dimensional representation of the group 3·S7. Let V be a complex vector
space with basis 
 = 
vij � i	 j ∈ �7	 i �= j	 vij = vji�. In other words, the basis
elements correspond to the 21 unordered pairs of integers modulo 7. Let
our control subgroup N � L2�7� permute 
 in the natural way; that is to
say, v�ij = v��i���j� for � ∈ N . Our seven symmetric generators, which will of
course be closely related to the elements of S7 described in Theorem 4.2, are
in fact semi-linear monomial permutations of the 1-dimensional subspaces
spanned by the basic vectors. Thus we define the following:

ti � �vjk���vjk �̄vjk��vij �vik���̄vij �̄vik��vjl �̄vkm���vjl �vkm�	

where ijk and ilm are distinct lines in the projective plane and � is a primi-
tive complex cube root of unity. This element clearly only has seven images
under conjugation by N and so it remains to verify that �0 1 2 3 4 5 6�t0
has order 6 and, finally, that the derived group of �N	 t0� does indeed have
a centre of order 3. The first of these tasks is left as an exercise for the
interested reader. In order to achieve the other, we simply show that the ele-
ment �1 3��2 4 6 5�t0t1 squares to the element which maps vij �→ �vij for all
unordered pairs ij.

4.3 The 11-point biplane and PGL2�11�

The Fano plane, which occurred in our construction of the Mathieu group
M24 in Chapter 1 and as our first example of symmetric generation of a
group, consists of seven points and seven lines with the properties that any
pair of points lie together on just one line, and any pair of lines intersect in
a unique point. We took a 3-dimensional vector space over the field of order
2 and let its 1-dimensional subspaces be the points and its 2-dimensional
subspaces be the lines. A point is said to lie on a line if the corresponding
subspaces are contained in one another. Clearly two distinct 1-dimensional
subspaces are contained in a unique 2-dimensional subspace, and a con-
sideration of dimension soon reveals that any two distinct 2-dimensional
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Table 4.5. The 7-point
biplane

0365
1406
2510
3621
4032
5143
6254

subspaces of a 3-dimensional space must intersect in a 1-dimensional sub-
space. Thus this construction produces a projective plane no matter what
field we work over. If the field has order q = pm, for p a prime number, then
the corresponding classical projective plane contains q2 +q+1 points, and
the same number of lines. These beautiful structures are visibly preserved
by the projective general linear group PGL3�q�, by any automorphisms
possessed by the underlying field, and by the inverse-transpose duality (see
Section 4.4.1) which interchanges points and lines.

Biplanes are a fascinating variation of projective planes. Again we have
a finite set of points and a collection of subsets of the points which we
call lines; and we require that the structure shares a further property with
projective planes, namely that the number of points equals the number of
lines. However, instead of requiring that each pair of points has a unique
line passing through it, we require that there are precisely two lines passing
through every pair of points.

As it happens, we have already come close to seeing an example of a
biplane. Recall that the 7-points of the Fano plane were labelled by �7,
the integers modulo 7, and the lines were taken to be the set of quadratic
residues 
1	2	4� and its translates. To obtain a biplane we take as lines the
complements of the lines of the Fano plane, so lines contain four points.
Clearly, given any two points there is a unique line passing through both of
them and 2×2 = 4 lines passing through one but not both. Thus 7−5 = 2
lines of the Fano plane contain neither point, which is to say each pair of
points is contained in two lines. We display the lines of the 7-point biplane
in Table 4.5.

Just as this biplane was essentially obtained, complete with its group of
automorphisms, directly from a symmetrically generated group, we obtain
a further example by consideration of the following.

Example 4.1

Let G = 2�6 � L2�5�
��0 1 2 3 4�t0�4




Using the fact that ��t�m = �mt�
m−1

t�
m−2 · · · t�t, we see that our additional

relator is equivalent to the following relation:

�4 3 2 1 0�t3t2t1t0 = 1
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1
6 1 5 3 3

6

[∞]

(a)

10

[∞0][ ]

1

[  ]

6 1 5 3 3 6
6

[∞]

10

[∞0]

5

[∞0∞]

∞0:12:43 ∞0.14.23

(b)

Figure 4.13. Cayley diagram for Example 4.1: (a) in part; (b) in full.

Table 4.6. The 10-orbit in Example 4.1


0 : 12 : 43 0
 : 42 : 13

1 : 23 : 04 1
 : 03 : 24

2 : 34 : 10 2
 : 14 : 30

3 : 40 : 21 3
 : 20 : 41

4 : 01 : 32 4
 : 31 : 02

This shows us that

Nt3t2t1t0 = N	 and so Nt0t1 = Nt3t2�

thus any permutation in N which maps 0 to 3 and 1 to 2 lies in the coset
stabilizing subgroup N�w�. In particular, we see that when w = t0t1

N�w� ≥ �x �→ 3−x ≡ �0 3��1 2�	 x �→ 3x
x+2

≡ �
 3��2 4�� � S3	

and so Nt0t1 = Nt3t2 = Nt
t4, which we write in abbreviated form as 01 ∼
32 ∼ 
4. This enables us to deduce that the double coset Nt0t1N contains
at most 60/6 = 10 single cosets. At this stage we appear to have constructed
part of a collapsed Cayley diagram of form indicated in Figure 4.13, in
which the ten cosets in Nt0t1N may be labelled as shown in Table 4.6.

We must now investigate the double coset Nt
t0t
N , which at the
moment seems only to be stabilized by the group ��1 4��2 3�� � C2. How-
ever, in abbreviated notation our additional relation takes the following
form:

0123 = �4 3 2 1 0�	

and of course all conjugates of this under permutations in N also hold. We
can now observe that


0
 = 

0
24
42 = 

�4 2 
 0 3�
42 ∼ 042 ∼ 232	
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where the substitution corresponds to a conjugate of the additional relation
and the permutation used is x �→ −1/�x+3�. The last step of the calculation
comes from the second row of Table 4.6. Thus,

N�
0
� ≥ �x �→ −x ≡ �1 4��2 3�	 x �→ 2x+2
x−1

≡ �
 2 1��0 3 4�� � A4	

and we see that


0
 ∼ 0
0 ∼ 141 ∼ 414 ∼ 232 ∼ 323


So this coset can conveniently be labelled by the syntheme 
0
14
23. We
note in particular that this coset stabilizing subgroup is transitive, and
so multiplication by any of the symmetric generators returns us to the
‘10-orbit’. This shows that N has at most index �1+6+10+5� = 22 in G,
and the Cayley graph appears to have the form shown in Figure 4.13(b),
although we have not yet proved that further collapsing does not occur.

Since �G� ≤ 22×�N � = 22×60 = 2×660, the reader will not be surprised
to learn that, in fact, G≡ PGL2�11�. To prove this we need only show that
PGL2�11� is an image of G, as we should then have that 2× 660 ≥ �G� ≥
2× 660, and so equality will hold. In order to see this, we define certain
elements of PGL2�11�; thus,

� ≡ x �→ 3x ≡ �1 3 9 5 4��2 6 7 X 8�	

� ≡ x �→ −1
x

≡ �
 0��1 X��2 5��3 7��4 8��6 9�	

 ≡ x �→ x+5
x−1

≡ �
 1��3 4��2 7��5 8��0 6��9 X�	

where elements are displayed as permutations of the projective line P1�11�
and the symbol X stands for ‘10’; see Definition 4.1. We readily check
that � has order 3, and so �5 =  2 = �� �3 = 1 and ��	 � is a non-trivial
homomorphic image of the simple group A5. Thus ��	 � � A5. Now, �
visibly inverts �, and so ��	�� � D10. Perhaps the easiest way to see that
� ∈ ��	 � is to note that each of the three permutations given is even
and preserves the pairing 
0
16
37
9X
58
42. But this pairing must have
at least 11 images under the action of PSL2�11�, and since it is preserved
by a subgroup isomorphic to A5 it has exactly 11 images. Its stabilizing
subgroup is thus ��	 �, and so � ∈ ��	 �.

Now let

t
 ≡ x �→ −x ≡ �1 X��2 9��3 8��4 7��5 6�	

and observe that t
 commutes with both � and � and so has just six images
under conjugation by ��	 �, namely.

t
 ≡ �1 X��2 9��3 8��4 7��5 6�	
t0 ≡ �
 9��7 X��4 5��3 2��8 0�	
t1 ≡ �
 4��8 2��3 1��5 7��6 0�	
t2 ≡ �
 3��6 7��5 9��1 8��X 0�	
t3 ≡ �
 5��X 8��1 4��9 6��2 0�	
t4 ≡ �
 1��2 6��9 3��4 X��7 0�
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Table 4.7. Labelling of the points and lines of
the 11-point biplane

Points Lines

In graph �11 As subsets �11 In graph

� 0 267X8 0 

2
�14�30 1 37809 x 
4
03
12

0�43�12 2 4891X 9 3
0
�42�13 3 59X20 8 
2
31
40
4
�31�02 4 6X031 7 
1
34
20
1
�03�24 5 70142 6 
3
42
01

3�21�40 6 81253 5 1

1�04�23 7 92364 4 4

2�10�34 8 X3475 3 0
3
�20�41 9 04586 2 
0
14
23

4�32�01 X 15697 1 2

The L2�5�-action of N = ��	 � on these six generators is given by � ≡
�t0 t3 t1 t4 t2�	  ≡ �t
 t0��t2 t3�. Since N is maximal in PGL2�11� and t
 �N ,
we see that PGL2�11� is an image of the progenitor 2�6 � L2�5�. That the
element �0 1 2 3 4�t0 = �2t0 has order 4 is readily checked, and so PGL2�11�
is indeed an image of G and isomorphism is proved.

Now recall that in the transitive graph �T we join the coset Nw to
the cosets Ntiw, so in this case �T is bipartite of valence 6 between two
subsets of 11 vertices, the points and the lines, say. Moreover, the group
of automorphisms plainly acts doubly transitively on the points (and on
the lines) as the stabilizer of a point has an orbit of length 10 on the
remaining points. So if we take our two points to be � and 
0 � 12 � 43,
we see that � is joined to 

	0	1	2	3	4� and 
0 � 12 � 43 is joined to

0	2	3	
0
14
23	
4
03
12	
1
20
34�. So three lines are joined to both
points, and six lines are joined to one but not the other. Thus precisely two
lines are joined to neither, and this must hold for every pair of points. If we
define a point to lie on a line if they are not joined in �T, then we see that
we have constructed an 11-point biplane which is preserved by the whole
of PGL2�11�.

In order to describe the joins in our bipartite graph more fully, we
introduce some notation. Let the syntheme ij
kl
mn be denoted by any one
of �ij�	 �kl� or �mn�. The ten vertices labelled ij�kl�mn correspond to three
disjoint ordered pairs and, of course, every ordered pair occurs in just one
of them; let ij � kl � mn be denoted by any one of ij	 kl or mn. Then

� joins 

	0	1	2	3	4�
ij�kl�mn joins 
j	 l	 n	 �ij�	 �kl�	 �mn��

i joins 
�	 ji for j �= i�

ij
kl
mn joins 
ij	 ji	 kl	 lk	mn	nm�
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The 11 points and 11 lines can best be labelled with the elements of �11,
the integers modulo 11, and we exhibit in Table 4.7 the correspondence
with the notation produced by our construction. Here points are denoted
by the larger integers modulo 11, lines by the smaller integers, and we
take as lines the set of quadratic non-residues, namely 
2	6	7	X	8� and its
translates. Right multiplication by a single symmetric generator gives rise
to a duality interchanging points and lines, and the notation is chosen so
that t
 corresponds to

�0 0��1 1��2 2��3 3��4 4��5 5��6 6��7 7��8 8��9 9��X X�


4.4 The group of the 28 bitangents

A tangent which touches a curve twice is referred to as a double tangent
or a bitangent. As was mentioned in Chapter 2, the maximum number of
bitangents a quartic curve can possess is 28; indeed, it is possible to realize
28 distinct real bitangents as follows. Let S = 0 and T = 0 be two ellipses
centred on the origin, one with its major axis horizontal and the other with it
vertical, chosen so that they intersect in four real points; see Figure 4.14(a).
Then the curve ST = 0 is a degenerate quartic. Now perturb this quartic
slightly by increasing the right hand side to obtain ST = a, where a is small.
This can be done in such a way that the curve separates into four disjoint
components taking the form of ‘kidney beans’; see Figure 4.14(b). It is clear
that each component has a unique bitangent touching it twice, and that
for any pair of components there are four bitangents touching each of them
once. This gives a total of 4+ � 4

2 �×4 = 28 bitangents.
It turns out that certain sets of four bitangents are special in the sense

that their eight points of contact with the quartic curve lie on a conic;

(a) (b)

Figure 4.14. Quartic curve with 28 bitangents. (a) ST = a; ST = 0.
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call these special tetrads. Cayley (see ref. [49], p. 334)3 denoted these 28
bitangents by the set of unordered pairs of eight letters 
a	 b	 c	d	 e	 f	 g	h�,
say; in other words, to the edges of a complete graph on eight letters. In
this notation, the special tetrads correspond either to the four edges of a
quadrilateral such as 
ab	bc	 cd	da�, of which there are � 8

4 �× 3 = 210, or
to four non-intersecting lines such as 
ab	 cd	 ef	 gh�, of which there are
7 × 5 × 3 = 105. The famous group of the 28 bitangents may be thought
of combinatorially as the set of all permutations of the 28 objects which
preserve the set of 210+105 = 315 special tetrads. Clearly, permutations of
the original eight letters preserve this set, with the two orbits just described.
Moreover, it is readily checked that Hesse’s so-called bifid maps, which
correspond to the 35 ways in which we can partition the eight letters into
two fours, also preserve it. A bifid map is defined to fix an unordered pair
which has a letter on each side of the partition, and to complement an
unordered pair which lies on one side. Thus,

abcd

efgh
≡ �ab cd��ac bd��ad bc��ef gh��eg fh��eh fg�	

fixing the other 16 pairs. Note, though, that

abcd

efgh
� 
ab	be	 ef	 fa� �→ 
cd	af	 be	 gh�	

which is shown diagrammatically in Figure 4.15, and so the bifid maps fuse
the two orbits of S8 acting on the 315 tetrads.

As we shall see shortly, the bifid maps, together with the identity ele-
ment, form a set of coset representatives for the symmetric group S8 in the
group we want, which thus has order �36×8!�.

The set of bifid maps furnishes us with a ready made set of symmetric
generators and, since they are defined as permutations, we are able to
calculate relations which hold between them. This leads naturally to the
following definition in which the symmetric generator corresponding to the
partition abcd/efgh is, for ease of notation, labelled abcd/efgh, rather than
tabcd/efgh.

e f g h

a b c d

e f g h

a b c d

→

Figure 4.15. Fusion of the two orbits of special tetrads.

3 Hilton states here that any two of the 28 bitangents lie in precisely five of these special
tetrads, which thus form a 2-design of type 2-(28,4,5).
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Example 4.2 Let

G = 2�35 � S8

��a b��c e g d f h��abcd/efgh��3	 ��a e��abcd/efgh��3



We first expand the two additional relators to obtain
abgh

cdef

abef

ghcd

abcd

efgh
= �a b��c d��e f��g h��

abcd

efgh

ebcd

afgh

abcd

efgh
= �a e�
 (4.10)

We must now investigate all double cosets of the form NwN , where N � S8
and w is a word in the 35 symmetric generators which correspond to the bifid
maps. But the above relations which we have deduced from the defining
relators show that

N
abgh

cdef

abef

ghcd
= N

abcd

efgh

and

N
abcd

efgh

ebcd

afgh
= N

abcd

efgh



Thus the only double cosets of form NwN are the trivial double coset N and

N
abcd

efgh
N = ⋃

B a bifid map
NB	

which consists of the union of 35 apparently distinct single cosets. So the
maximal order of G is 36×�S8�. In fact, we can see that these 35 cosets are
distinct by embedding the group G in the symmetric group S28 by way of
the action on the unordered pairs of eight letters defined above. We readily
check that the two additional relators hold:

�a b��c e g d f h�
abcd

efgh
≡ �ab cd gh��ef��ac be ag��ad bf ah�

�ae bg bc��af bh bd��ce fh ch�

�cf fg dh��cg de eh��df eg dg��

�a e�
abcd

efgh
≡ �ab be cd��ac ce bd��ad de bc��ae�

�af gh ef��ag fh eg��ah fg eh�

�bf��bg��bh��cf��cg��ch��df��dg��dh��

both have order 3, as required. But the two relations in Equation (4.10)
show that when considered as permutations of 28 letters no product of two
bifid maps is in N , and so the double coset

N
abcd

efgh
N

really does contain 35 distinct single cosets. We thus have that �G� = 36×8!.
Of course, we have also constructed the action of the group G on 36

letters, namely the 36 cosets of N inG, where the action is given by Equation
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Table 4.8. Some primitive actions of S6�2�

Degree 28 36 63

Notation for
the points

unordered
pairs of eight
letters


bifid maps�
∪ 
��


transpositions
of S8� ∪

{bifid maps�

Action of
abcd

efgh

ab ↔ cd � ↔ abcd

efgh
�ae� ↔ ebcd

afgh

abef

cdgh
↔abgh

cdef

Cycle shape of
transpositions

116
26 116
210 131
216

(4.10). For convenience, we denote these 36 letters by �, which stands for
the coset N and the 35 bifid maps. Thus, permutations of N � S8 fix � and
act on the bifid maps in the natural way, whilst

abcd

efgh
� � ↔ abcd

efgh
	

abef

cdgh
↔ abgh

cdef
	

ebcd

afgh
↔ ebcd

afgh



Thus, as a permutation of 36 letters, a bifid map has cycle shape 116
210,
as does a transposition of N . In fact, the second of the two relations in
Equation (4.10) shows that bifid maps and tranpositions are conjugate
and, since any element of G can be written canonically (and uniquely) as
a permutation of S8 or as a permutation of S8 times a bifid map, we see
that conjugating a bifid map by any element of G gives a bifid map or a
transposition. So G possesses a conjugacy class of 28+35 = 63 involutions.
We may multiply canonically represented elements to obtain

�B×�C = ��B�C	

where � and � are permutations of S8, and B and C are bifid maps, and
we may then use Equation (4.10) if necessary to put the result in canonical
form. Thus we can work with elements of G without writing them as
permutations on 28, 36 or 63 letters, or indeed as matrices. However, for
the convenience of the reader we include in Table 4.8 the conversion from
canonically represented elements to the aforementioned three primitive
permutation actions.

4.4.1 Identification with S6�2�

The group G that we have constructed has order 36×8! = 1451520; it is,
in fact, isomorphic to the symplectic group S6�2�, and the 63 involutions
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forming a conjugacy class are the Steiner transpositions, an example of
symplectic transvections. In order to see this, we take a vector space of
dimension 8 over the field of order 2, fix a basis so that the vectors are
8-tuples of 0s and 1s, and restrict to the subspace consisting of all vec-
tors with an even number of non-zero entries. Now factor out the ‘all
1s’ vector to obtain a 6-dimensional space V6. The vectors of V6 corre-
spond to the various partitions of eight letters into two even subsets:

0/8 �1 such�	2/6 �28 such�	4/4 �35 such��. The transvection corresponding
to the vector u is defined by

tu � v �→ v+B�u	 v�u	

where B is the non-degenerate alternate bilinear form inherited from the
standard inner product of vectors in the original 8-dimensional space. Of
course, the transpositions of S8 correspond to u being a partition of type
2/6, and the bifid maps correspond to 4/4-type partitions. Since there is a
bijection between transvections and vectors, we can if we wish think of the
63 involutions in this conjugacy class as the non-zero vectors of V6 when
addition is given by

�a b�+ �b c�+ �c a� = �a b�+ �c d�+ abcd

efgh

= �a e�+ abcd

efgh
+ afgh

ebcd
= abcd

efgh
+ abef

ghcd
+ abgh

cdef
= 0


The group, of course, acts on this space by conjugation, and so any element
of the group will commute with 2m − 1 of these transvection/vectors for
some m. For instance, the involutions �a b�	 �a b��c d�	 �a b��c d��e f� and
�a b��c d��e f��g h� of S8 are soon seen to commute with 31, 15, 7 and 15
transvections, respectively.

Exercise 4.4

(1) Express the following elements of S6�2� in canonical form (as � or � B
for � ∈ S8 and B a bifid map):

(a) �a b e�
abcd

efgh

�b c g h�

afgh

ebcd
;

(b)
(
�a e�

abcd

efgh

)3

;

(c) ��B�−1.

(2) Find all the elements in G � S6�2� which are conjugate to the 3-cycle
�a b c�, and show that this conjugacy class, T say, contains 336 ele-
ments.

(3) Show that in the 28-point action ofG on unordered pairs of eight letters,
elements of T above fix precisely ten points. Regarding these unordered
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pairs as edges of a graph on eight vertices, say what subgraphs of the
complete graph on eight vertices the elements of T fix. Why might we
refer to T as the Kuratowski class?

(4) Show that the fixed-point-free involution �a b��c d��e f��g h� of S8
has 315 conjugates in G � S6�2�. Identify their fixed subgraphs as in
question (3), and verify that these subgraphs are precisely Cayley’s
special tetrads of bitangents whose eight points of contact with the
quartic curve lie on a conic.
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Sporadic simple groups

Having flexed our muscles on a number of rather small and familiar classical
groups, we now turn our attention to the exceptional structures. As the
reader will be aware, the classification of finite simple groups or CFSG
states that any finite simple group is isomorphic to a member of one of
the known infinite families or to one of the 26 so-called sporadic simple
groups. Five of these are the Mathieu groups M12	M11	M24	M23 and M22,
which were discovered in the second half of the nineteenth century by
Emil Mathieu [70,71]; the subscript in each case indicates the degree of
the group’s natural permutation action. No sporadic simple group was then
found until Z. Janko discovered his smallest simple group J1 in 1965 [58,59].
This discovery triggered one of the most exciting periods in mathematics,
as a further 20 sporadic groups were unearthed in the following decade.

As was explained in Part I, it was the behaviour of the largest Mathieu
group M24 which motivated this approach to defining and constructing
groups, but it turns out that it is perhaps M22 which lends itself most readily
to hand construction via symmetric generation.

5.1 The Mathieu group M22

As control subgroup, we take the alternating group A7 in its action on 15
letters, and so we form the progenitor

2�15 � A7


As is always the case, in order to proceed we need to understand in detail
the permutation action of the control subgroup. The well known fact that
A7 acts doubly transitively on 15 letters in two different (non-permutation
identical) ways, with the two actions being interchanged by outer ele-
ments of S7, was demonstrated in the proof of Theorem 4.3. The point-
stabilizer is isomorphic to L2�7�, and the 2-point stabilizer is isomorphic

127
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to A4, fixes a further point and acts regularly on the remaining 12 letters.
(In the notation in the proof, the triple fixed by N�01� � A4 is 
�	01	10�.)
The implied Steiner triple system S�2	3	15� is, of course, inherited from
the isomorphism L4�2� � A8, and the triples correspond to the non-zero
vectors in the 35 2-dimensional subspaces of a 4-dimensional vector space
over �2.

5.1.1 The action of A7 on 15 points

The reader who is familiar with the Mathieu group M24 can see the actions
of A7 on 7 and 15 letters occurring simultaneously as follows. The stabilizer
of an octad in the Steiner system S�5	8	24� is isomorphic to 24 �A8. Fixing
a point in the octad and a point outside the octad is a subgroup A7 with
orbits �1+7�+ �1+15�. The triples of the Steiner triple system referred to
above are those subsets of the 15-orbit which can be completed to an octad
by adjoining the two fixed points of the A7 and three points of the 7-orbit;
see Figure 5.1(a), where the triple of black points in the 7-orbit together
with the two fixed points (denoted by asterisks) is completed to an octad
of the Steiner system by the special triple of white points in the 15-orbit.
Thus the triples correspond to the 35 subsets of size 3 in the 7-orbit, and
the A4 fixing each point of a special triple has orbits of size �3+4� on the
7-orbit. This shows us that the A4 in question centralizes an element of
order 3 in A7.

Let N � A7 be transitive of degree 15, then N has two orbits on unordered
triples: the special triples of the Steiner system and the non-special triples.
The group acts regularly on the non-special triples or, to put it another
way, given two ordered non-special triples �a1	 a2	 a3� and �b1	 b2	 b3�, there
is a unique element of the group mapping ai �→ bi for i = 1	2	3. In the
calculations that follow, we need to be able to work out this element.

5.1.2 The additional relation

Recall that by Lemma 3.3 the only elements of N which can be written
as words in just two of the symmetric generators, ti and tj say, without
causing collapse are those that lie in the centralizer in N of the 2-point

(a) (b) (c)

Figure 5.1. A7 acting on 7 and 15 letters simultaneously.
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stabilizer Nij. In our case, Nij = Nijk � A4 for 
i	 j	 k� a special triple, and
CN�Nijk� = ��ijk� � C3, generated by the element shown in Figure 5.1(b)
for the special triple indicated by white dots in Figure 5.1(a), and so the
only non-trivial elements of N which can be written as a word w in ti	 tj
and tk are �ijk and its inverse. Accordingly, we shall factor P = 2�15 � A7
by a relation of the form �ijk = w�ti	 tj	 tk�, where w is chosen to have as
short a length as possible. It is readily shown, and is left as an exercise for
the reader, that l�w�≤ 3 causes collapse, and that the only possibility with
l�w� = 4 is effectively given by

�ijk = titjtkti = �tjtk�
ti 	

which is equivalent to requiring that �ijkti should have order 4. It also shows
that tjtk is conjugate to �ijk, and so the product of any two symmetric
generators has order 3. Since ti has order 2 and �ijk has order 3, this tells
us that �ti	�ijk� = �ti	 tj	 tk� satisfies the following presentation:

�x	 y � x2 = y3 = �xy�4 = 1� � S4


This implies that �ti	 tj	 tk� is a homomorphic image of S4. But any proper
image is readily seen to lead to collapse, and so we assume isomorphism.
We shall now prove the following theorem.

Theorem 5.1

G = 2�15 � A7

��ijkti�
4
	

is isomorphic to 2·M22 � 2, the double cover of the automorphism group of
M22.

Proof that G maps onto a transitive subgroup of S22. We first note
that, by Theorem 3.1, �G � G′� = 2 and G′ = G′′; so G contains a perfect
subgroup to index 2, but at this stage we cannot say whether G′ is trivial
or indeed infinite.

The first possibility is easily eliminated by attempting to embed the
progenitor in the symmetric group S22. As noted above, A7 acts on 15
letters in two non-permutation identical ways and, in fact, the stabilizer
of a point in one action has orbits of lengths 7 and 8 on the other. If we
take A7 acting on 7 + 15 letters, restrict to a subgroup L3�2� of index 15,
having orbits 7+ �7+8� on this set of 22 points, then we find that the two
actions of L3�2� on seven points are permutation identical. Thus there is
an involution of cycle shape 27
18 interchanging these two 7-orbits, fixing
each point in the 8-orbit, and commuting with this copy of L3�2�. The
adjunction of this element will generate M22 � 2 together with our original
A7, although without further work all we can observe is that we have
obtained a transitive subgroup of S22. Note, though, that this has been
achieved without consideration of the additional relation obtained above.
In order to show that this relation holds, we must carry out the process
explicitly.



130 Sporadic simple groups

Now, the subgroup of M24 isomorphic to A7 which fixes an octad, a
point in that octad and a point outside it, also acts on the 15 octads dis-
joint from the fixed octad and not containing the fixed point outside it.
Three such octads will form a special triple if they sum to the empty set
(that is to say, if the symmetric difference of two of them is the third).
The symmetric generators are odd permutations of S22 and so must inter-
change the two points we have fixed. In Figure 5.1(c) we exhibit a suitable
symmetric generator ti, and in Figure 5.1(b) we show a corresponding
permutation �ijk in A7. It is readily checked that �ijkti has order 4 as
required, and so this transitive subgroup of S22 satisfies our symmetric
presentation.

5.1.3 Mechanical enumeration of double cosets

We label the 15 points 
1	2	 � � � 	15� and the 7 letters 
a	 b	 � � � 	 g� as shown
in the MOG diagram in Figure 5.2. As generators for A7 we take

x = �1 2 3 4 5 6 7��8 9 10 11 12 13 14��a b c d e f g�

and

y = �1 11 8 12��2 6 13 9��3 4 10 5��7 15��a g b d��f e�	

which are chosen so that �x	 y2� = L3�2�. Note that the action on letters is
irrelevant for our purposes but is included to assist those familiar with the
MOG arrangement to check that these elements do indeed lie in M24 and
so generate A7. Now 
1	2	4� is a special triple (reverting now to the action
on the 15 points rather than the 15 octads), and we have

�124 = �1 2 4��3 13 11��5 10 9��6 12 8��7 14 15��a d b�	

which of course generates the centralizer in N of the stabilizer of 1	2 and
4. Note that these elements �ijk act fixed-point-free on the 15 points, but
as 3-cycles on the seven letters. We are now in a position to use the double
coset enumerator, thus we input the following to Magma:

> s15:=Sym(15);
> x:=s15!(1,2,3,4,5,6,7)(8,9,10,11,12,13,14);

o g 0 7 15 14

a c 1 3 8 10

b f 2 6 9 13

d e 4 5 11 12

Figure 5.2. The alternating group A7 acting simultaneously on 7 and 15 letters as
it appears in the Miracle Octad Generator (MOG).
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> y:=s15!(1,11,8,12)(2,6,13,9)(3,4,10,5)(7,15);
> N:=sub<s15|x,y>;
> RR:=[<[1,2,4,1],s15!(1,2,4)(3,13,11)(5,10,9)(6,12,8)(7,14,15)>];
> HH:=[N];
> CT:=DCEnum(N,RR,HH:Print:=5,Grain:=100);

We obtain the following output:

Index: 704 === Rank: 10 === Edges: 22 === Status: Early
closed

> CT[4];
[

[],
[ 1 ],
[ 1, 2 ],
[ 1, 2, 1 ],
[ 1, 2, 3 ],
[ 1, 2, 1, 3 ],
[ 1, 2, 3, 1 ],
[ 1, 2, 1, 3, 1 ],
[ 1, 2, 3, 1, 11 ],
[ 1, 2, 3, 1, 11, 3 ]

]
> CT[7];
[ 1, 15, 105, 35, 252, 140, 105, 35, 15, 1 ]

where CT[4] gives the canonical double coset representatives and CT[7]
gives the corresponding orbit lengths. Thus the fifth entry tells us that
the double coset Nt1t2t3N contains 252 single cosets of N . In addition, the
enumerator gives all the joins in the Cayley graph of G over N and so we
are able to draw the collapsed Cayley diagram given in Figure 5.3. This
enumeration shows that the double coset Nt1t2t3t1t11t3N contains just one
single coset, Nz say, and so the stabilizer of a coset fixes another coset at
maximal distance from the first; thus the 704 cosets fall into 352 blocks
of imprimitivity of size 2. A central element of G interchanges the cosets
in each of these blocks. In fact, this group is the double cover of the auto-
morphism group of the Mathieu group M22, which we denote by 2·M22 � 2.

5.1.4 Factoring out the centre

From the enumeration and the shape of the Cayley graph we see that if we
fix a coset of N in G a second coset at maximal distance from the first coset
is also fixed; and so the group contains a central element which interchanges
the two cosets in each of these pairs. Such a central element must have
form z=�t1t2t3t1t11t3 =�w	 say, for some � ∈N . In order to factor out this
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Figure 5.3. Cayley diagram of M22 � 2 over A7.

centre we must set the word w equal to �−1 = �, say, and by consideration
of the action of w on the cosets we can work out what � must be. For1

2 1� ∼ 2� 1� ∼ 2 1 1 2 3 1 11 3 ∼ 3 1 11 3 ∼ 3 1 11 3 14 11
11 14 ∼ 11 14	

where the element �2	1	3	11	14	6	12��4	7	13	5	9	8	10� ∈ N shows that
�3	1	11	3	14	11� is a conjugate of �1	2	3	1	11	3�. Thus we may choose
1� = 14 and 2� = 11. Furthermore,

3 2 1 � = 3 2 1 1 2 3 1 11 3 = 1 11 3 ∼ 3� 11 14 ∼ 6 11 14	

the triple �6	11	14� being an alternative name for the coset Nt1t11t3. So
3� = 6 and, since 
1	2	3� is a non-special triple, � is uniquely defined; we
have

� = �1 14 2 11 12 3 6��4 5 10 13 8 7 9� = �1	2	3	1	11	3�


At this stage, it is natural to ask whether this relation implies our initial
relation. Pleasingly, if we conjugate by the element

�1 3��2 11 4 13��5 9 6 12��8 15 10 14� ∈ N

we obtain

�3 8 11 4 5 1 12��13 9 14 2 15 7 6� = �3	11	1	3	4	1�	

and, multiplying, we have

�1 2 4��3 13 11��5 10 9��6 12 8��7 14 15� = �124

= �1	2	3	1	11	3	3	11	1	3	4	1� = �1	2	4	1�	

which is our original relation. The element � of order 7 obtained here sim-
ply emerged from the construction of the Cayley diagram. Before using the
double coset enumerator to verify what we have now proved by hand, we
replace � by our original element x and note that it is x−1 which is conjugate

1 We are using the abbreviated notation for cosets here, so ‘2 1’ stands for the coset Nt2t1.
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to � and that the cycle of x which contains the relevant symmetric gen-
erators is �8	9	10	11	12	13	14�. The required additional relator now has
the delightfully simple form �t13t14x�

3, which when multiplied out becomes
x3 = �12	11	13	12	14	13�.

Note Since 13x = 14, this relator takes the form ��t	 x�x�3, where t is any
symmetric generator in the relevant 7-cycle. Explicitly, a 7-element in A7
acting on 15 points has cycle shape 1
72. The 7-cycle we want is the one
whose stabilizer (as a set) preserves the fixed point, so it does not consist
of the non-zero vectors of a 3-dimensional subspace of the 4-dimensional
space on which A7 ≤ L4�2� acts.

> s15:=Sym(15);
> x:=s15!(1,2,3,4,5,6,7)(8,9,10,11,12,13,14);
> y:=s15!(1,11,8,12)(2,6,13,9)(3,4,10,5)(7,15);
> N:=sub<s15|x,y>;
> RR:=[<[12,11,13,12,14,13],xˆ3>];
> CT:=DCEnum(N,RR,[N]:Print:=5,Grain:=100);
Index: 352 === Rank: 6 === Edges: 12 === Time: 0.07
> CT[4];
[

[],
[ 1 ],
[ 1, 2 ],
[ 1, 2, 3 ],
[ 1, 2, 3, 2 ],
[ 1, 2, 1 ]

]
> CT[7];
[ 1, 15, 105, 126, 70, 35 ]

5.1.5 Enumeration of double cosets by hand

It is perhaps surprising given the somewhat complicated appearance of
Figure 5.3 that we are able to carry out these same calculations quite quickly
by hand. This of course is due to the extent to which we are exploiting
the symmetry of the definition: although in each case we have factored the
progenitor by a single additional relator, all conjugates of that relator by
elements of the control subgroup also hold and can be readily written down.
We shall spare the reader the hand calculation for the double cover 2·M22 � 2,
although there is little extra work involved, but we shall demonstrate the
process by enumerating the double cosets NwN for

2�15 � A7

�1 14 2 11 12 3 6��4 5 10 13 8 7 9� = �1	2	3	1	11	3�
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Table 5.1. Conjugates of the additional defining relation

Label Word Permutation in N

a0 [1,2,4,1] (1 2 4)(3 13 11)(5 10 9)(6 12 8)(7 14 15)(a d b)
b0 [1,12,13,1] (1 12 13)(2 15 9)(3 14 8)(4 5 7)(6 11 10)(b c f)
c0 [1,8,15,1] (1 8 15)(2 5 3)(4 13 10)(6 14 9)(7 11 12)(d g f)
d0 [1,9,11,1] (1 9 11)(2 6 7)(3 15 10)(4 14 12)(5 13 8)(c e d)
e0 [1,10,14,1] (1 10 14)(2 11 8)(3 4 6)(5 15 12)(7 13 9)(b g e)

We have already proved that the relations of the form titjtkti = �ijk are a
consequence of this relation, for 
i	 j	 k� a special triple; we shall assume,
moreover, that, given two non-special triples A = �a1	 a2	 a3� and B =
�b1	 b2	 b3�, we are able to find the unique element referred to in Section 5.1.1
which maps A to B. This last operation can be performed manually using
Figure 5.2 (which is why we have appended the action on the seven letters)
or, of course, mechanically. For each double coset NwN , where w is a word
in the 15 symmetric generators, we must obtain the coset stabilizing sub-
group N�w� defined as usual by N�w� = 
� ∈ N � Nw� = Nw�. Recall that the
index of N�w� in N gives the number of single cosets in NwN . Suppose that
N�w� has r orbits on the 15 points and that i1	 i2	 � � � 	 ir are representatives
of those orbits. In order to prove closure, we must identify to which double
coset Nwtik belongs for k = 1	2	 � � � 	 r.

In Table 5.1 we display a dictionary of the elements �ijk = titjtkti for the
various special triples 
i	 j	 k�, but, instead of writing out all 35 of them, we
shall simply give a representative for each orbit under conjugation by the
element x = �1 2 3 4 5 6 7��8 9 10 11 12 13 14��a b c d e f g� of order 7.
We label these five orbit representatives a0	 � � � 	 e0, and denote x−iu0x

i by
ui for u ∈ 
a	 b	 c	d	 e�.

Conjugation by �ijk and inversion show that

�ijk = �jki = �kij = �−1
ikj = �−1

kji = �−1
jik 


Proceeding, we note that the double coset Nt1N , whose canonical double
coset representative (CDCR) t1 is denoted by �1�, appears to contain just
the 15 single cosets Nti. Since N acts doubly transitively on the 15 symmetric
generators, the double coset Nt1t2N consists of the union of all single cosets
of the form Ntitj. But, since t1t2t4t1 ∈ N , 
1	2	4� being a special triple, we
have that Nt1t2 = Nt1t4, and so there are at most �15× 14�/2 = 105 such
single cosets. The previous sentence also shows us that Nt1t2t4N = Nt1N ,
and so the only double cosets NwN with l�w� = 3 we need consider are
Nt1t2t1N and Nt1t2t3N , 
1	2	3� being a non-special triple. The CDCRs for
these two double cosets are thus �1	2	1� and �1	2	3�, respectively.

We must now do some calculations using the additional relation. Using
the abbreviated notation whereby Ntitj is denoted by ij, for instance, we
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see that 1 2 ∼ 1 4 and so 1 2 1 ∼ 1 4 1. Moreover,

1 2 1 ∼ 1
2 1 4 2
2 4 ∼ 1�214 2 4 ∼ 4 2 4	

and so

1 2 1 ∼ 1 4 1 ∼ 2 4 2 ∼ 2 1 2 ∼ 4 1 4 ∼ 4 2 4


Thus there are at most 105/3 = 35 distinct single cosets in the double coset
Nt1t2t1N , corresponding to the 35 special triples. Again, since 
2	3	5� is a
special triple,

1 2 3 ∼ 1
2 3 5 2
2 5 ∼ 1�2352 5 = 8 2 5	

where �235 = a1. Of course, we also have that 1 2 3 ∼ 1 4 3 and, from our
additional relation, 1 2 3 ∼ 3 11 1. In order to obtain generators for the coset
stabilizing subgroup N�w� for w = t1t2t3, we need elements of N � A7 which
map the ordered triple �1	2	3� in turn to �1	4	3�	 �8	2	5� and �3 11 1�. This
is achieved as follows:

�1 = �2 4��6 5��9 12��11 13��15 14��8 10��b d��f e�	

�2 = �1 8��3 5��4 11��6 14��7 13��10 12��b c��d f�

and

�3 = �1 3��2 11 4 13��5 9 6 12��8 15 10 14��a g��b e d f�	

respectively. We soon see that when w = t1t2t3,

N�w� ≥ ��1	 �2	 �3� � F20	

a Frobenius group of order 20 with two orbits: 
2	11	7	13	4� and the
remaining ten points. So, the double coset Nt1t2t3N contains at most
2520/20 = 126 single cosets. So ten of the symmetric generators return us to
the double coset Nt1t2N , and we must consider the double coset Nt1t2t3t2N .
Now, the coset Nt1t2t3t2 is certainly fixed by

�4 = �
��2�1�

2

3 = �9 15��1 6 8 14��3 10 5 12��4 7 11 13� ∈ F20	

since it fixes the coset Nt1t2t3 and the symmetric generator t2. Moreover,

1 2 3 2 ∼ 1 2
3 2 5 3
3 5 ∼ 1 2�3253 5 ∼ 15 5 3 5	

since we may write down �325 = a−1
1 from Table 5.1. We thus seek the

element which maps �1	2	3� to �15	5	3�, and we obtain

�5 = �1 15��2 5��4 12��6 9��7 10��11 13��b c��f g�

when ��4	 �5� � �S3 "C2�
e, the even permutations fixing e and preserving the

partition abc/dfg. This group has order 6×6×2/2 = 36, and so the double
coset Nt1t2t3t2N contains at most 2520/36 = 70 single cosets. Moreover, it
has (at most) two orbits of lengths 6 and 9 on the 15 points: 
1	6	8	9	14	15�
and the remainder. We are close to verifying that the Cayley diagram shown
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in Figure 5.3 has the maximum possible number of cosets of N in G. It
remains to show that the double cosets Nt1t2t1N and Nt1t2t3t2N are joined
in the Cayley diagram. Note that if they are joined then there must be six
joins from each coset of the latter double coset to the former, as indicated
in Figure 5.3 Now,

1 2 1 3 ∼ 1 2
1 3 7 1
1 7 ∼ 3 12 1 7	

since
�137 = a6 = �1 3 7��2 12 10��4 9 8��5 11 14��6 13 15��a g c�


The element
�6 = �1 3��2 12��4 9��5 13��6 11��14 15��a g��e f�

maps �1	2	3� �→ �3	12	1�, and so the 5-orbit of the stabilizer of the coset
Nt3t12t1 is 
2	11	7	13	4��6 = 
12	6	7	5	9�. So 12 and 7 are in the same
orbit, and we have

3 12 1 7 ∼ u 7 v 7

for some u and v. This implies Nt1t2t1t3N = Nt1t2t3t2N , as required.

5.1.6 Group presentations which describe our
symmetric presentations

Our permutations x and y of degree 15 which generate A7, see Section 5.1.3,
satisfy the following presentation:

�x	 y � x7 = y4 = �xy2�3 = �x3y�3 = �xyx2y−1�2 = 1� � A7	

in which we have �x	 y2� � L3�2�. Thus, if we adjoin an involution t, cor-
responding of course to t15, which commutes with x and y2, we obtain a
presentation for the progenitor,

P = 2�15 � A7	

in which x and y act by conjugation on the 15 symmetric generators in the
manner given above. The element x2yx4y is a 3-cycle of A7 in its 7-point
action which has 15 in its ‘special’ 3-cycle when it acts fixed-point-free on
15 letters. So, our additional relator may be taken to be �x2yx4yt�4, and we
have proved that

�x	 y	 t � x7 = y4 = �xy2�3 = �x3y�3 = �xyx2y−1�2

= t2 = �t	 x� = �t	 y2� = �x2yx4yt�4 = 1� � 2·M22 � 2


A diagram of the Cayley graph of 2·M22 � 2 acting on the cosets of A7,
together with the labelling of the double cosets, is shown in Figure 5.4. Now,
t
yxy
15 = t11, and so an equivalent relation to that found above which factors
out the centre (and implies the final relation in the preceding presentation)
is ��tyxy	 x�x�3, so we have also shown that

�x	 y	 t � x7 = y4 = �xy2�3 = �x3y�3 = �xyx2y−1�2

= t2 = �t	 x� = �t	 y2� = ��tyxy	 x�x�3 = 1� � M22 � 2
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Figure 5.4. The Cayley graph of 2·M22: 2 over A7.

The Mathieu group M22 is unique among the sporadic simple groups in that
it has a Frobenius–Schur multiplier of order 12. By replacing the control
subgroup A7 by its triple cover 3·A7 in the above presentation and making
the appropriate modifications, we obtain the following:

�x	 y	 t � x7 = y4 = �xy2�3 = �x3y�3 = �yx�5�xyx2y−1�2

= t2 = �t	 x� = �t	 y2� = �t�yx�5�2 = �x2yx4yt�4 = 1�
� 6·M22 � 2


5.2 The Janko group J1

Our definition and construction of the smallest Janko group J1 takes as
control subgroup the simple group L2�11� of order 660 acting on 11 letters.
In fact, we shall study the progenitor

P �= 2�11 � L2�11�	

and so we need a good understanding of the way in which the group N �
L2�11� acts on the 11 letters � = 
0	1	2	 � � � 	X�, where X stands for 10.
We recall a few well known facts about this action.

5.2.1 The group L2�11� acting on 11 letters

The following hold.

(i) N acts doubly transitively with point-stabilizer N 0 � A5, the alter-
nating group of order 60, and 2-point stabilizer N 01 � S3, the symmetric
group of order 6.

(ii) N has two orbits on triples, one of which consists of the fixed point
sets of the 55 involutions. We call these the 55 special triples.

(iii) N has an orbit of 11 special pentads, the lines of the famous 11-point
biplane, such that every pair of points belongs to precisely two special
pentads. For the copy of L2�11� that we use below, these special
pentads are the set of quadratic non-residues modulo 11, namely
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2	6	7	X	8� and its translates. Indeed, L2�11� consists precisely of
those permutations of the 11 letters which preserve this set of 11
pentads.

(iv) This copy of the group is generated by the permutations

�0	1	2	3	4	5	6	7	8	9	X� and �3	4��2	X��5	9��6	7�	

and its elements of order 6 have cycle shape 2.3.6. An example of
such an element in this group is (3,4)(0,1,8)(2,5,6,X,9,7). Since the
point-stabilizer of a special triple has order 2, there is precisely one
element of order 6 containing a given 3-cycle. We thus denote the
above element by �810, where �ijk = �jki = �kij = �−1

kji for any special
triple 
i	 j	 k�.

5.2.2 An image of the progenitor 2�11 � L2�11�

We factor this progenitor by a relation which says that an element of order
6 in N times a symmetric generator in its 3-cycle has order 5, and we obtain
Theorem 5.2,2 which we shall prove both mechanically and manually in the
following two sections.

Theorem 5.2

G = 2�11 � L2�11�
��018t0�

5
� J1	

the smallest Janko group.

Proof that the index of L2�11� in G is less than or equal to 266. Writing
� for �018, we see that

��t0�
5 = �t0�t0�t0�t0�t0 = �5t�

4

0 t�
3

0 t�
2

0 t�0 t0 = �−1t8t0t1t8t0 = e	

where e is the identity. Thus, �018 = t8t0t1t8t0, and, analogously,

�ijk = titjtktitj for any special triple 
i	 j	 k�


As usual, we denote the symmetric generator ti by i when this relation
becomes

�ijk = ijkij for any special triple 
i	 j	 k�


We also let i stand for the coset Nti when there is no fear of ambiguity;
for words u and v in the symmetric generators, we write u ∼ v to mean
Nu=Nv. Thus ij ∼ k would mean Ntitj =Ntk. The single coset N is denoted
by �, and so ijk ∼ � means that titjtk ∈ N .

2 It is shown in Curtis [34] that a consideration of the progenitor leads directly to this
additional relation.
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Table 5.2. Involutions and 6-elements of N = L2�11�
written as words in the symmetric generators

01801 = �0	8	1��2	7	9	X	6	5��3	4� = �018
03203 = �0	2	3��6	X	5	8	7	4��9	1� = �032
09609 = �0	6	9��7	8	4	2	X	1��5	3� = �096
05705 = �0	7	5��X	2	1	6	8	3��4	9� = �057
04X04 = �0	X	4��8	6	3	7	2	9��1	5� = �04X

01010 = �0	1��2	6��7	X��3	4��8��5��9� = �01
03030 = �0	3��6	7��X	8��9	1��2��4��5� = �03
09090 = �0	9��7	X��8	2��5	3��6��1��4� = �09
05050 = �0	5��X	8��2	6��4	9��7��3��1� = �05
04040 = �0	4��8	2��6	7��1	5��X��9��3� = �04

Following ref. [34], we now deduce another family of relations:

85858 = 10
01801
10510
01801
10510
01801
10
= 10
�018
�105�018�105�018
10
= 10
�5	8��0	1��2	4��3	6�
10
= 1001
�5	8��0	1��2	4��3	6�
= �5	8��0	1��2	4��3	6� = �58	

say.
Of course, this calculation was possible because both 
0	1	5� and 
0	1	8�

are both special triples. The involution �ij is determined by i and j since
CN�N

ij� = ��ij�, where Nij denotes the stabilizer in N of i and j. Thus we
have the generic relation

�ij = ijiji


Representatives for the orbits of elements �ijk and �ij under the action
of � = �0	1	2	3	4	5	6	7	8	9	X� are given in ref. [34], Table 1, and are
reproduced here in Table 5.2.

As usual, we now seek the index of N � L2�11� in G by manually enumer-
ating double cosets of the form NwN = �w�, where w is a word in the symmet-
ric generators. We immediately have the double cosets N , Nt0N and Nt0t1N ,
which appear to contain 1, 11 and 110 single cosets, respectively. Moreover,

Nt0t1t0t1t0 = N ⇒ Nt0t1t0 = Nt0t1 ⇒ �010� = �01��
Nt0t1t8t0t1 = N ⇒ Nt0t1t8 = Nt1t0 ⇒ �018� = �10� = �01��

and so the next double coset to investigate is Nt0t1t2N = �012�, since

0	1	2� is a non-special triple. Now,

0120 ∼ 018
820 ∼ 10�82028 ∼ 32
28 ∼ 38 ⇒ 012 ∼ 380	

where �820 has been obtained by adding 2 to the third row of Table 5.2.
This says that the coset Nt0t1t2 is fixed by any permutation which maps 0,
1 and 2 to 3, 8 and 0, respectively. Since N acts transitively and regularly
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on the ordered non-special triples, there is a unique such permutation. In
this case, we have

�1 = �0	3	5	6	2��1	8	4	9	X��7� ∈ N�012�	

and so

012 ∼ 380 ∼ 543 ∼ 695 ∼ 2X6


Thus there are at most 11×10×6/5 = 132 single cosets in �012�. We must
now investigate double cosets of the form �012i�; under the action of �1
above, we may assume that i = 0	1 or 7. But 012
0 ∼ 380
0 ∼ 38, and so
�0120� = �01�; also 012
1 ∼ 0
12121
12 ∼ 0�1212 ∼ 812, a non-special triple,
and so �0121�= �012�. This leaves the double coset �0127�. The single coset
0127 is fixed by �1, and

0127 ∼ 019
927 ∼ 10
�927
29 ∼ 4629


So �2 = �0	4	3	8	X��1	6	5	7	9� also fixes coset 0127. But ��1	 �2� � 11 � 5,
a Frobenius group of order 55 acting transitively on the 11 letters. Thus
the double coset �0127� contains at most 132/11 = 12 single cosets, and we
appear to have constructed a group of order

660× �1+11+110+132+12� = 660×266 = 175 560	

whose Cayley graph3 over N with respect to the 11 generators has the form
given in Figure 5.5.

5.2.3 Mechanical enumeration

Considering what is being attempted, this hand enumeration is quite con-
cise. However, it is of interest to record just how rapidly the double coset
enumerator deals with this example. We must, of course, feed in our two
generators for the control subgroup L2�11� acting on 11 letters. The single
additional relation then takes a particularly simple form as the permutation
� has order 6; thus 1 = ��t0�

5 reduces to � = t1t0t8t1t0 or, in the sequence-
permutation form in which we input it: < �1	11	8	1	11�	 sig > (note that
0 has been replaced by 11):

1

[ ]

11 1
11

[0]

10 1
110

[01]

1+3

6
132

[012]

5

1 11
12

[0127]

5

Figure 5.5. Cayley diagram of J1 over L2�11�.

3 The corresponding transitive graph in which Nw is joined to Ntiw is called the Livingstone
graph.
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%
> l11:=sub<Sym(11)|(1,2,3,4,5,6,7,8,9,10,11),(3,4)(2,10)(6,7)(5,9)>;
> #l11;
660
> sig:=l11!(3,4)(11,1,8)(2,5,6,10,9,7);
> RR:=[<[1,11,8,1,11],sig>];
> CT:=DCEnum(l11,RR,[l11]:Print:=5,Grain:=100);
Dealing with subgroup.
Pushing relations at subgroup.
Main part of enumeration.
PK 5 5 5 266 782 914 0 11 0.000 0
Index: 266 === Rank: 5 === Edges: 11 === Time: 0.015
> ˆC
> CT[4];
[

[],
[ 1 ],
[ 1, 2 ],
[ 1, 2, 3 ],
[ 1, 2, 3, 8 ]

]
> CT[7];
[ 1, 11, 110, 132, 12 ]

5.2.4 Existence of J1

The smallest Janko group, J1, is well known to be a simple permutation
group of degree 266, and can easily be shown to satisfy the assumptions of
our construction. In order to prove the existence of such a group from our
construction, however, we need a little more.

Theorem 5.3 The presentation of Theorem 5.2 either defines a simple
group of order 175 560 acting as a permutation group on 266 letters in the
manner described, or it defines the trivial group.

Proof Any relation which holds in the group defined by Theorem 5.2
has the form �w = 1, where � ∈ N and w is a word in the 11 symmetric
generators. Using the reduction process of the construction, we may assume
that w has length at most 4. In particular, we may assume that w is trivial,
or that one of t0, t0t1, t0t1t2 and t0t1t2t7 is in N . In the first case, the relation
reduces to � = 1, so either the relation is trivial or some non-trivial element
of N is set equal to the identity. This causes the simple group N to collapse
to the trivial group and, since ��018t0�

5 = 1 = t20, t0 also collapses to the
identity and G = 1.

Now, t0 ∈ N implies that t0 ∈ CN�N
0�, which is trivial. Thus all the

symmetric generators are trivial, and so �01 = t0t1t0t1t0 = 1 as well, and we
have G = 1.
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Again, t0t1 ∈ N implies that t0 = �01�t0t1�
2 ∈ N and so G = 1, as above.

Now, changing to the abbreviated notation, we have that if 012 ∼ �, then
01 ∼ 2 ∼ 2�34 = X, since the element �34 = �3 4��2 X��6 7��5 9� fixes 0 and
1. But then 2X ∼ �, and so 01 ∼ �, by the double transitivity of N . This
takes us back to the previous case, and so G = 1 as above.

Finally, if 0127 ∼ �, then 01 ∼ 72 ∼ �72�� ∼ 24, where � =
�5 8 9��3 X 6��4 7 2� is chosen to fix 0 and 1. Thus 2427 ∼ 247 ∼ �, and so
012 ∼ �, by the transitivity of N on ordered non-special triples. Again we
have reduced our calculation to a previous case, and we may conclude that
G = 1.

Thus, if any relation of which we are not aware holds in G, or if we factor
G by any new relator, we get total collapse to the trivial group. Thus either
G is simple with the degree and order given, or it is trivial. �

In order to complete the existence proof, we must exhibit a non-trivial
representation of the progenitor in which the additional relation holds.
There are two approaches, which we present in Sections 5.2.5 and 5.2.6.

5.2.5 The permutation representation of G of
degree 266

Each of the 266 nodes, which we claim correspond to cosets of L2�11� in
a larger group, is labelled using the 11 points � = 
0	1	 
 
 
 	X� on which
L2�11� acts doubly transitively. The fixed node is labelled �, and the nodes
in the 11-orbit and those in the 110-orbit are labelled uniquely by points and
ordered pairs of points of �, respectively. Nodes in the 132-orbit correspond
to elements of order 5 in a complete conjugacy class and are labelled by
ordered non-special triples of points of �, each in five different ways which
can be read off from the corresponding 5-element. For the convenience of
the reader, representatives of the orbits on these triples under the action of
the element �= �0 1 2 3 4 5 6 7 8 9 10� are displayed in Table 5.3, which is
taken from ref. [34]. As we have seen, an element of order 5 of cycle shape
1
52 permutes the five possible names of a letter in this orbit, and the second
and third points in a name fall in different 5-cycles. Thus, 120 of the letters
in this orbit have unique names of the form ij0 or i0k. In the remaining
132/11 = 12 cases, 0 is the fixed point of the aforementioned permutation of
order 5, and so if ijk is any name of such a node then ijk0 is in the 12-orbit.
For convenience, we choose the top name in each of the 12 blocks of Table
5.2 for these 12 points, and this name followed by 0 for the points of the
12-orbit. Of course, each node in the 12-orbit, which corresponds to the set
of Sylow 11-subgroups, has 55 names of which five end in 0. The action of
L2�11� on the 266 nodes is well defined, and the symmetric generator 0 is
claimed to act on the nodes by right multiplication. Indeed we see that

t0 � �� 0��i i0��0i��ij ji��kl kl0��k0l k�0l0l��klm klm0�	



5.2 The Janko group J1 143

Table 5.3. The 132-orbit showing the correspondence with pairs of points of the
projective line

(X)361 (X)136 (8)397 (2)95X (6)548 (7)412
(8)973 (7)241 (X)613 (8)739 (2)X95 (6)854
(2)5X9 0
 (5)9X2 X9 (4)586 85 (1)427 24 (3)16X 61 (9)378 73
(6)485 (3)879 (9)2X5 (5)684 (4)721 (1)X63
(7)124 (4)658 (1)742 (3)X16 (9)837 (5)29X

(6)1X3 (3)6X1 (9)783 (5)X29 (4)865 (1)274
(2)471 (5)846 (4)217 (1)63X (3)798 (9)X52
(8)564 
0 (7)938 9X (X)592 58 (8)456 42 (2)147 16 (6)31X 37
(X)925 (X)259 (8)645 (2)714 (6)X31 (7)893
(7)389 (4)172 (1)3X6 (3)987 (9)52X (5)468

The corresponding 5-elements are read vertically.

where 
0	 i	 j� is special, 
0	 k	 l� is non-special and 0 is fixed by the 5-element
corresponding to the ordered non-special triple 
k	 l	m�. The brackets in
the expression for t0 above indicate the action on 2, 20, 10, 30, 120, 60 and
24 letters, respectively, and we observe that t0 fixes just ten letters. This is
a well defined permutation on 266 letters; we must show that it commutes
with N 0, the subgroup of L2�11� isomorphic to A5 fixing 0. Let % ∈N 0. Then
% clearly preserves the fixed points of t0 and the transpositions of each of
the six types, except possibly �k0l k�0l0l�. We must verify that

�k0l k�0l0l�% = �k%0l% k%�0l% 0l%�	

i.e. that k�0l% = k%�0l% . But this is plainly true, because ��0l�
% = �0l% and so

%�0l% = �0l%. This shows that the permutation group �N	 t0� on 266 letters
is an image of 2�11 � L2�11�. It remains to check that the additional relation
holds, namely that �3 4��0 1 8��2 5 6 X 9 7�t0 does indeed have order 5.
This we may do long-hand. Thus, �081t0 �

�� 0 10 18 8��34��309��20X� �7830 1X3 907 X05 709��2740 397 90X 102 406�
�1 80 01 81 08��43��405��X02��95X0 361 506 209 605��4120 X29 502 10X 307�

�2 50 610 603 78� �25 560 6X10 783 804��X6 9X0 903 X290 136�
�X 90 710 704 68��X9 970 5480 95X 803��27 520 504 3970 865�

�3 40 310 806 48��03 140 X2 950 84��32 450 3610 6X1 74��3X 94 730 1360 274�
�4 30 410 807 38��04 130 2X 590 83��4X 390 1X30 548 63��42 53 640 8650 412�

�5 60 X10 17 28��6 X0 19 870 58��31 480 401 106 408��21 580 201 604 708�
�9 70 210 16 X8��7 20 15 860 98��41 380 301 107 308��X1 980 X01 703 608�

�13 840 85 06 1X0��12 850 59 76 2X0��37 420 X06 72 250��39 470 9X 790 306�
�14 830 89 07 120��1X 890 95 67 X20��46 3X0 207 6X X90��45 360 52 650 407�

�02 51 680 701 87��05 160 908 71 82��35 460 204 205 24��36 X4 930 60X 103�
�0X 91 780 601 86��09 170 508 61 8X��49 370 X03 X09 X3��47 23 540 702 104�
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�29 75 62 X50 509��92 57 26 5X0 30X��73 240 805 79 270��93 740 97 720 50X�
�X5 69 7X 290 905��5X 96 X7 920 402��64 X30 809 65 X60��54 630 56 6X0 902�,

which does indeed have order 5 as required. Note that this element must
commute with �3

081 = �3 4��2 X��5 9��6 7�. Using the fact that ��t0�
−1 =

t0�
−1 = �−1t�−1�0� = �−1t8, we may also see that this element is inverted by

�0 8��5 7��6 9��3 4�. The calculation is straightforward, if somewhat tedious,
and is facilitated by the lists of corresponding names as given in ref. [34]
and reproduced in Table 5.3.

5.2.6 The matrix representation of G of degree 7

In the remainder of this section we describe an alternative representation
of the group G defined by Theorem 5.2 and, at the same time, prove by
hand some important results about J1 that have previously been proved
by machine. We shall, in fact, build a matrix representation of G of degree
7 over the field �11 (as was exhibited in Janko’s original papers [58,59]).
Explicitly, we take the irreducible 7-dimensional representation of L2�11�
over �11 and restrict to a subgroup isomorphic to the alternating group A5.
The underlying module then decomposes as the direct sum of submodules
of degrees 3 and 4. If we take a basis for the module consisting of the union
of bases of the submodules, the only involution in SL2�11� commuting with
this A5 is clearly of the form diag�13	−14�. This constructs a representa-
tion of the progenitor, and it remains to show that the additional relation
holds. The Coxeter diagram (see Section 3.8) in Figure 5.6 represents a pre-
sentation for J1 obtained computationally by Soicher [81] and reproduced
in the Atlas [25]. Note that the order of de is placed in square brack-
ets to indicate that it is redundant, in the sense that it is implied by the
other relations. In what follows we shall show that that this presentation
defines our progenitor factored by the additional relation. We shall then
exhibit elements of SL2�11�, not all trivial, which satisfy the presentation
and which therefore, by Theorem 5.3, generate a simple group of order
175 560.

a e

5 [5]

(abc)5 (acde)5

b c d

Figure 5.6. Coxeter diagram for G � J1.
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|
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=
°°

°
° °=

0

1

8

7

X

5

6

2

9

4

3

| ≡ a = (3 4)(2 X)(5 9)(6 7)

≡ b = (7 X)(2 3)(6 4)(5 8)

≡ c = (3 4)(2 9)(5 X)(1 8)

≡ d = (0 1)(2 6)(7 X)(3 4)

||

|||

°

Figure 5.7. Cayley diagram of G2 = �a	b	 c	d� over G1 = �a	b	 c�, showing the
action on 11 points.

In Figure 5.6, G1 = �ab	 c� is a (2,3,5)-group, and thus is an image of
the alternating group A5. But �bc�5 = 1 = b
c
cb
c
cb
c and cb = cab, since
�a	 c� = 1. Thus b = �c
cab�2
c ∈ G1, and hence G1 = �ab	 c� = �a	b	 c�.

In order to identify the subgroup G2 = �a	b	 c	d�, we construct a Cayley
graph of the action of G2 on the cosets of its subgroup G1, to obtain the
graph shown in Figure 5.7.

This is probably best achieved by extending a Cayley graph for �a	b	 c�
over �a	b�, the details being left to the reader. Indeed, since d commutes
with �a	b� � S3, we see that

G2 � 2�10 � A5

��0 3��1 2�t01�
3
	

where the ten symmetric generators correspond to the unordered
pairs of � = 
0	1	2	3	4�. The techniques of symmetric generation can
then be used to give the same result. By one or other of these
methods, we see that G2 is a homomorphic image of a group of
permutations of 11 letters of order 11 × 60 = 660. Since the permu-
ations a	b	 c	d given above preserve the special pentads described
Section 5.2.1(iii) the group defined by the subgraph on 
a	 b	 c	d� is plainly
L2�11�.

Now, e commutes with �a	b	 c� � A5, and so G3 = �a	b	 c	d	 e� is an
image of 2�11 � L2�11�, in which e corresponds to the symmetric generator t0.
But acd = �3 4��0 1 8��2 5 6 X 9 7 � = �−1

018, and so

G3 � 2�11 � L2�11�
��018t0�

5
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where we are ignoring the ‘redundant’ relation �de�5. But we have
shown that this group is trivial, or simple of order 175 560.4 It
remains to produce non-trivial elements of SL7�11� which satisfy the
presentation of Figure 5.6. As explained at the beginning of this
section, we represent our element e by the matrix diag�13	−14�.
That the matrices in Section 5.2.7 satisfy the presentation can read-
ily be checked by hand. They thus generate a simple group of order
175 560, isomorphic to the permutation group on 266 letters obtained
earlier.

5.2.7 The matrices

It is readily checked that the following matrices satisfy the presentation
given by the Coxeter diagram of Figure 5.5 and thus that they generate
a simple group of order 175 560 isomorphic to the permutation group of
degree 266 defined above.

a =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

−1 
 
 
 
 
 



 
 1 
 
 
 



 1 
 
 
 
 



 
 
 1 
 
 



 
 
 
 −1 
 



 
 
 
 
 
 1

 
 
 
 
 1 


⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

	 b =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

−1 
 
 
 
 
 



 −1 −1 
 
 
 



 
 1 
 
 
 



 
 
 1 
 
 



 
 
 
 −1 
 



 
 
 
 
 −1 −1

 
 
 
 
 
 1

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

	

c =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−5 1 −1 
 
 
 


−1 2 −3 
 
 
 


1 −3 2 
 
 
 



 
 
 3 
 −2 −2

 
 
 
 
 −4 4

 
 
 2 4 4 4

 
 
 2 −4 4 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

	d =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 
 
 
 1 
 



 −4 
 
 
 4 



 
 −4 
 
 
 4

 
 
 −1 
 
 


−3 
 
 
 2 
 



 −1 
 
 
 4 



 
 −1 
 
 
 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

	

e =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

1 
 
 
 
 
 



 1 
 
 
 
 



 
 1 
 
 
 



 
 
 −1 
 
 



 
 
 
 −1 
 



 
 
 
 
 −1 



 
 
 
 
 
 −1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎟⎟
⎠




4 Note that our relation �acde�5 = 1 is equivalent to the relation �cde�5 = a given in the
Atlas [23] (since a commutes with �c	d	 e�).
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5.3 The Higman–Sims group

5.3.1 Introduction

The Higman–Sims group, HS, was discovered [47] at the height of the most
exciting period in modern group theory. Following the announcement of
the Hall–Janko group J2 as a rank 3 permutation group on 100 letters
with subdegrees {1, 36, 63}, D. G. Higman and C. C. Sims considered
the possibility of subdegrees {1, 22, 77}, with point-stabilizer the Mathieu
group M22. The investigation proved succcessful and, thus, two new rank
3 permutation groups on 100 letters were discovered within months of one
another! Soon after, G. Higman [48] constructed a geometry, consisting
of 176 points and 176 quadrics, whose automorphism group had the same
order as HS. Various people showed the two groups to be isomorphic [79,80],
and when HS appeared as a subgroup of the Conway group [20] stabilizing
a 2-dimensional sublattice of the Leech lattice, the identification became
delightfully clear. The automorphism group HS�2 could be seen, simultane-
ously permuting sets of 100 and �176+176� lattice points in the prescribed
manner.

With its rich geometric pedigree, it is not surprising that HS lends itself
to the techniques of symmetric generation developed in refs. [33] and [34].
Generally, construction of a new group takes the following form: start with
a well known group H , and use this to build some combinatorial structure
� which possesses additional symmetries to those we have built in. Thus,

H −→ � −→ G

Here � may be, for example, a lattice, a geometry, a graph, a code or a block
design. In what follows we attempt to pass directly from H to G, but, since
groups are invariably best studied through their action on some structure,
we aim to produce the most important possible �s as a by-product.

We shall in fact obtain HS �2 as an image of the progenitor

P �= 2�50 � �U3�5� � 2�	

and so a detailed knowledge of the action of this unitary group on the
50 vertices of the Hoffman–Singleton graph [50] will be needed to facili-
tate a manual construction of HS �2. This approach will yield generating
permutations on both 100 and �176+176� letters.

5.3.2 The Hoffman–Singleton graph

Following Sylvester [62], we call the 15 partitions of six points into three
pairs synthemes. Certain sets of five synthemes, termed synthematic totals
or simply totals, are preserved by a subgroup of the symmetric group S6
acting as PGL2�5� on the six points; see Section 4.2. Thus, such a total,
see the following, has just 6!/120 = 6 images under S6; these six totals and
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the six points are interchanged by the outer automorphism of S6. Thus, we
have the following:

ab
cf
de

ac
db
ef

ad
ec
fb

ae
fd
bc

af
be
cd

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

≡ a/bcdef


This synthematic total, which may conveniently be denoted by a/bcdef ,
is fixed by the group ��b	 c	d	 e	 f�	 �a	 c	 b	 f�� � PGL2�5�. The six totals
are obtained from this one by permuting 
d	 e	 f�, say. We may now define
a graph � on 50 vertices as in ref. [50]: the vertex set consists of a single
vertex labelled 
, 7 vertices labelled from J
 = 
0	1	 � � � 	6�, and 42 ver-
tices labelled �i	 T�, where i ∈ J
 and T is a total on J
 \ 
i�. The joins are
as follows: 
 joins i for all i ∈ J
 , i joins �i	 T� and �i	 T� joins �j	T �i	j�� for
i �= j. The resulting graph, which visibly has diagram given by Figure 5.8
possesses a transitive automorphism group isomorphic to U3�5� � 2 with
point-stabilizer S7. One can easily make the following observations
about � .

(i) � has diameter 2.

(ii) � possesses no triangles or quadrangles.

(iii) An edge and a disjoint vertex of � complete to a unique pentagon.

(iv) The edge stabilizer has orbits as shown in Figure 5.9.

(v) The pentagon stabilizer has orbits as shown in Figure 5.10.

(vi) Figure 5.10 defines a partition of the 50 vertices into (5+5) disjoint
pentagons (see Figure 5.11).
These form the cycles of an element of conjugacy class 5A, and the
stabilizer of such a configuration is a maximal subgroup of U3�5� � 2 of
shape 51+2 � 8 � 2; see ref. [25], p. 34. An example of such a partition is
given by

�

	1	 �1	0/23456�	 �0	1/23456�	0�	

2	 �2	0/13456�	 �0	2/13456�	 �1	2/03456�	 �2	1/03456��	


�2	0/13465�	 �3	0/14526�	 �4	0/15632�	 �5	0/16243�	 �6	0/12354���	

together with images under the subgroup ��2	3	4	5	6�	 �3	4	6	5��.

��

	


1




7 1

��

	


7

i

6 1

��

	


42

(i	 T )

��

��

6

Figure 5.8. Diagram of the Hoffman–Singleton graph.
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2

1

6 12 6 36

5

1 2

Figure 5.9. Orbits of an edge stabilizer in the Hoffman–Singleton graph.

5

2

5 25

2

4 20

2

1 5

Figure 5.10. Orbits of a pentagon stabilizer in the Hoffman–Singleton graph.

25

2

5 5 25

2

Figure 5.11. Partition of the Hoffman–Singleton graph into ten disjoint pentagons.

(vii) The stabilizer of a point in � acts faithfully on the seven points joined
to it, and, thus, a permutation which fixes a point is uniquely defined
by its action on the joins of that point. In particular, if � is joined to
� is joined to �, the involution ��	�� which interchanges � and � and
fixes the other five points joined to � is well defined.

Note that � may also be defined as follows. The stabilizer of an octad
in the Mathieu group M24 is isomorphic to 24 � A8; see, for example, Todd
[83] or Curtis [29]. If we fix a point in the octad and a point outside it, we
are left with a group A7 acting simultaneously on 7 letters and 15 points.
Now define a graph whose vertices are the 35 unordered triples of the 7
letters and the 15 points. Join 2 triples if they are disjoint, and join a triple
to the 3 points which complete it, together with the 2 fixed points, to an
octad. The 3 points joined to a particular triple can easily be read off using
the Miracle Octad Generator [29] (see Figure 5.12(a)). The resulting graph,

� . � . . .
a . 1 . . .
a . 2 . . .
a . 3 . . .

(a)
35

4

  7 15 (b) 3

Figure 5.12. The alternating group A7 acting on the Hoffman–Singleton graph.
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which visibly has a diagram as shown in Figure 5.12(b) can be shown to be
isomorphic to our � as defined above.

5.3.3 The progenitor and relation

As stated above, we intend to take as our control subgroup N � U3�5� � 2
and our progenitor of shape 2�50 � �U3�5� � 2�; thus our 50 symmetric gen-
erators will form the vertices of a Hoffman–Singleton graph. We now seek
finite homomorphic images of such a progenitor, and must consider what
additional relation or relations to factor by. As stated above, this is equiv-
alent to asking how to write permutations of N in terms of the symmetric
generators � . Now, Lemma 3.3 tells us that in order to identify which
permutations of N can be written in terms of two symmetric generators
without causing collapse, we must consider the centralizers in N of its
2-point stabilizers. In our case there are two 2-point stabilizers, depending
on whether i and j are joined or not joined. If i is joined to j, then Nij � S6,
which has a trivial centralizer in N , and so the only element of N which
could be written as a word in ti and tj for i joined to j is the identity.
However, if i is distance 2 from k, with j the unique point joined to both,
then Nik = Nijk � S5. This subgroup is centralized by just the involution we
labelled �i	 k� in the previous section, which interchanges i and k and fixes
the other five points joined to j.

Lemma 5.1 The involution �i	 k� has action �j��i	 k��l	m� on any pentagon
�ijklm�.

Proof Without loss of generality, we may take i = 0	 j = 
	 k = 1, in
which case l	m are �1	 T �0	1��	 �0	 T�, respectively, where T is any total on

1	2	3	4	5	6�. Clearly our involution is the transposition �0 1� which has
the effect claimed. �

The extension to Lemma 3.3 states that �i	 k� is the only permutation
of N which can be written in terms of ti	 tj and tk. We now make the
assumption that

�i	 k� = w�ti	 tj	 tk�	

a word in the three symmetric generators ti	 tj	 tk, and ask what is the
shortest length, l�w�, which does not lead to collapse. Now, Lemmas 3.4
and 3.5 show that l�w� < 4 leads to nothing interesting except possibly
the case �i	 k� = titkti, which is left as an exercise. So suppose l�w� = 4.
All three generators ti	 tj	 tk must be involved in w since �ti	 tj�∩N = �1�,
and �i	 k� = ikik would imply that �ti	 tk� � D8 with �i	 k� in its centre –
a contradiction. Thus, without loss of generality, one of ti and tj must be
repeated. The possibilities (allowing reversals in ordering and conjugation
by �i	 k�) are as follows:

�i	 k� = ijik	 ijki	 ikij	 jikj or jijk
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Now,

�i	 k� = ijik ⇒ i�i	 k� = jik ⇒ �i	 k�k = jik

⇒ �i	 k� = ji	which is a contradiction to Lemma 3
4�
�i	 k� = jikj ⇒ j�i	 k�j = ik ⇒ �i	 k� = ik	which is a contradiction to Lemma 3
4�

�i	 k� = jijk ⇒ �i	 k�k = jij ⇒ i�i	 k� = jij

⇒ �i	 k� = ijij	which is a contradiction to Lemma 3
3�
�i	 k� = ijki ⇒ �i	 k� = jkik = kikj = ikij


Thus the only non-collapsing possibility with l�w� ≤ 4 is given by

�i	 k� = ikij


5.3.4 Manual double coset enumeration

We now claim that the following theorem results.

Theorem 5.4

G = 2∗50 � �U3�5� � 2�
�i	 k� = ikij

� HS � 2	

the automorphism group of the Higman–Sims group, where j is joined to
i and k in the Hoffman-Singleton graph � and �i	 k� denotes the unique
element of U3�5� � 2 which interchanges i and k and fixes the other five
points joined to j.

Proof Firstly note that

�i	 k� = ikij = kikj = jkik

and
i�i	 k� = kij = �i	 k�k ⇒ �i	 k� = kijk

⇒ kjik = jkik

⇒ kj = jk


So any two symmetric generators which are joined in � commute. Moreover,

ikij
kikj = 1 = �ik�3


Thus any two symmetric generators which are not joined in � have product
of order 3, and so � forms a Fischer system for HS in the sense of ref. [39].
Note further that

jk ∼ kir ∼ kj ∼ jls for r	 s ∈ 
1	2	 � � � 	6�	

where j is joined to k, 
i1	 i2	 � � � 	 i6� are the six points joined to j but not
k and 
l1	 l2	 � � � 	 l6� are the six points joined to k but not j. Thus the
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Table 5.4. Double coset enumeration of G over U3 (5) : 2

Label [w] Coset stabilizing subgroup N�w� Cosets

��� N 1
�0� N �0� = N 0 � S7, with orbits 50

1+7+42 on the 50 points.
�01� N 01 � S6	N

�01� � S6 � 2, with orbits 175
2+12+36 on the 50 points

�02� ≡ �01� Since 0201 ∼ �
�012� ≡ �0� Since 012 = 102 = 1020
0 ∼ 0
�013� Such a triple defines the pentagon (0,1,2,3,4).a 126

a Now, 013 ∼ 0
1312
21 ∼ 0�1	3�21 ∼ 421 ∼ 4243
341 ∼ 341. Thus this coset may
be named by any edge of the pentagon, followed by the opposite vertex. As in
Section 5.3.2(v), there are 25 points joined to just one point of this pentagon and
20 joined to none of its points. Suppose that 5 is a new vertex joined to 1 only and
that (5,1,2,3,6) is a pentagon. Then we have 013 ∼ 053 ∼ 0
5356
65 ∼ 0�3	5�65 ∼ 865,
say, ∼ 8687
785 ∼ 785, where 8 is a new vertex joined to 2 and (5,6,7,8,9) is the
pentagon defined by {5,6,8}. Note that any coincidence among these vertices would
lead to triangles or quadrangles. Similarly, our coset may be named by any edge of
this last pentagon, followed by the opposite vertex. This can be any one of the five
pentagons in a 25-orbit of Section 5.3.2(v). Applying the process again, the coset
may be labelled by an edge and an opposite vertex of a pentagon from either five.
Thus our coset has 10 × 5 × 2 such names and is fixed by the transitive, maximal
subgroup of shape 51+2 � 8 � 2. Thus, this double coset contains 126 cosets.

coset jk ≡ Ntjtk has (2+12) ‘names’ as words of length 2 in the symmetric
generators.

We are now in a position to perform a manual double coset enumeration
of G over N . That is to say, we shall find all double cosets of the form NwN
and say how many single cosets of N each contains. Firstly let �0	1	2	3	4�,
in that order, be the vertices of a pentagon in � . We have the double cosets
and coset stabilizing subgroups as given in Table 5.4.

The double coset enumeration yields the Cayley diagram of G over N
(Figure 5.13). It should be stressed, as in ref. [34], that Figure 5.13 is a
diagram of the Cayley graph of G acting on the cosets of N . Here a coset
labelled w is joined to the 50 cosets labelled wi, possibly reduced. The
regular bipartite graph whose automorphism group is G is obtained from
the above by joining w to the 50 cosets iw. Note that the action of the
symmetric generators on these (176+176) letters can be read off from our
coset enumeration, and so the relation can be verified. Moreover, G visibly
has order

252000×176×2 = 44352000×2	

and it has a subgroup of index 2 which acts doubly transitively on the 176
points. It is, of course, the group found by D. G. Higman and C. C. Sims
acting on the geometry of G. Higman. �
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1

[ ]

50 1
50

[0]

7+ 42 2+12
175

[01]

36 50
126

[013]

Figure 5.13. Cayley diagram of HS : 2 acting on the cosets of U3�5� � 2.

5.3.5 Mechanical enumeration

As in the 2·M22 � 2 and J1 cases, we supplement our hand calculations with a
mechanical enumeration. This time we need our control subgroup U3�5� � 2
acting on 50 letters, and so we feed in the three permutations a	b and c.
We can now appeal directly to Lemma 3.3 and ask which of the 50 letters
are fixed by the stabilizer of letters 1 and 2. We obtain the answer 
1	2	50�,
which incidentally guarantees that 1 and 2 are not joined in the Hoffman–
Singleton graph as the stabilizer of an edge would fix no further point. We
conclude that the unique point joined to both 1 and 2 is 50. The required
additional relation is thus � = t1t2t1t50, where � generates the centralizer
of the stabilizer in N of points 1 and 2. The Magma code then takes the
following form:

s50:=SymmetricGroup(50);

a:=s50!(1, 2, 4, 8, 14, 22, 34, 49)(3, 6, 10, 5, 9, 16, 26, 40)
(7, 12)(11, 18, 30,21)(13, 20, 33, 48, 50, 25, 38, 29)
(15, 24, 36, 44, 39, 41, 31, 45)
(17,28, 43, 27, 42, 19, 32, 46)(23, 35, 37, 47);

b:=s50!(1, 3, 7, 13, 21)(2, 5, 6, 11, 10)(4, 9, 17, 29, 40)
(8, 15, 25, 39, 28)(12,19, 18, 31, 20)(14, 23, 22, 35, 48)
(16, 27, 33, 32, 47)(24, 37, 43, 34,50)
(26, 41, 38, 42, 46)(30, 44, 45, 49, 36);

c:=s50!(1, 2)(3, 37)(4, 42)(6, 17)(7, 35)(8, 34)(9, 25)
(10, 40)(11, 20)(13, 47)(14,18)(16, 31)(19, 26)(21, 29)
(22, 30)(23, 44)(24, 39)(27, 49)(33, 38)(36,46)(41, 43)(45, 48);

> u35a:=sub<s50|a,b,c>;
> #u35a;
252000
> Fix(Stabilizer(u35a,[1,2]));
1, 2, 50

> RR:=[<[1,2,1,50],Centralizer(u35a,Stabilizer(u35a,[1,2])).1>];
> CT:=DCEnum(u35a,RR,[u35a]:Print:=5,Grain:=100);
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Index: 352 === Rank: 4 === Edges: 8 === Time: 0.015
> CT[4];
[

[],
[ 1 ],
[ 1, 2 ],
[ 1, 2, 3 ]

]
> CT[7];
[ 1, 50, 175, 126 ]

5.3.6 The centralizer in G of a symmetric
generator

Let the point 
 be joined in � to the points {0,1,2,3,4,5,6}, and so t

commutes with the subgroup �t0	 t1	 t2	 � � � 	 t7�. Thus t
 commutes with
�s0	 s1	 � � � 	 s6�, where si = tit
. But

sisjsi = tit
tjt
tit
 = titjtit
 = �i	 j�


Thus �s0	 s1	 � � � 	 s6� is a homomorphic image of

2∗7 � S7

�0	1� = s0s1s0
= K	 (5.1)

say. But double coset enumeration of K over L � S7, as above, immediately
gives the Cayley diagram in Figure 5.14, and, as shown in ref. [33], K � S8.
Thus, CG�t0� contains a subgroup isomorphic to C2 × S8, which in fact, is
the complete centralizer [25]. In particular, from their action on the eight
cosets in Figure 5.14, we see that t1t2 has order 3, t1t2t3 has order 4, and
so on.

5.3.7 The 100-point action

Recall our alternative definition of � (see Section 5.3.2), in which the
alternating group A7 acts with orbits 15 and 35 on the vertices. It is natural
to ask what subgroup of HS �2 is generated by such a set of 15 symmetric
generators. It is certainly a homomorphic image of the progenitor 2�15 � A7.

1

[ ]

7

6

7

[0]

1

Figure 5.14. Cayley diagram of S8 over S7.
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Now let i	 j	 k be three generators in such a set which are joined to the same
point, l say, in the 35-orbit. Then we have

ijil = �i	 j� and ikil = �i	 k� ⇒ ijki = �i	 j	 k�

⇒ ��i	 j	 k�i�4 = 1	

where the order of the last element follows from Section 5.3.6. Now, applying
Lemma 3.3 to the progenitor 2�15 � A7, we see that

�ti	 tj	 tk�∩M ≤ CM�M
ijk� = ��i	 j	 k� · · · � � C3	

where the control subgroup M � A7. If we denote this element of order 3,
centralizing the A4 and fixing i	 j	 and k by

�i	 j	 k��· · · � · · · �· · · � = ��ijk�	

then we see that the subgroup we wish to identify is a quotient of

2∗15 � A7

���ijk�i�
4

 (5.2)

This group is precisely the group that was investigated in Section 5.1
and found to be isomorphic to 2·M22 � 2, the double cover of the auto-
morphism group of the Mathieu group M22. A subgroup of this shape
would have index 50 in G, which would contradict the maximality of
U3�5� � 2 in S50. The only other possibility is that such a set of 15 sym-
metric generators generates a subgroup of G isomorphic to M22 � 2 with
index 100.

5.3.8 The symmetric generators as permutations
of 100 letters

In Part I, which was based on refs. [33] and [34], we were able to describe
in a simple manner our symmetric generators for the Mathieu groups M12
and M24 acting on the 12 faces of a dodecahedron and the 24 faces of the
Klein map, respectively. In order to perform a similar task for HS�2, let us
first observe (from ref. [25], p. 34) that U3�5� � 2 has two conjugacy classes
of subgroups isomorphic to A7: the 50 of type I extend to copies of S7, while
the 100 of type II are self-normalizing. Consider N � U3�5� � 2 acting on
the 100 cosets of an A7 of type II. Then N ′, the derived group of N , has
two orbits of length 50 and, if K � A7 is of type I, K acts on these two
50s with orbits (15+35)+(15+35). Now, A7 has two distinct permutation
actions on 15 letters, both of which are realized here, but only one action
on 35 letters (see ref. [25], p. 10) Thus there is a correspondence, preserved
by K, between the points of the two 35-orbits. Our generator, which has
cycle shape 130
235, fixes the 15-orbits and interchanges the pairs. Of course
there are 50 such involutions corresponding to the 50 choices of K.
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5.3.9 A presentation for HS�2 in terms of the
symmetric generators

In order to give a presentation for G which (implicitly) involves the sym-
metric generating set � , we must first produce a presentation for the control
subgroup N � U3�5� � 2. In the spirit of the current work, we choose to
give a symmetric presentation which, although less efficient than could be
achieved, reveals the subgroup structure of N in an informative manner.
The presentation hinges on the fact that U3�5� is generated by six elements
of order 5 whose associated cyclic subgroups are normalized by 2·L2�5� �
SL2�5�, the special linear group of 2×2 matrices over the field of order 5.
In order to achieve the full symmetry of the situation, and to include the
outer automorphism, we extend this control subgroup to 2·L2�5� � 2, acting
on two sets of six cyclic subgroups of order 5, and then adjoin an element
of order 4 which squares to the centre of this group, commutes with its
derived group and is inverted by its outer elements. Thus we take

M � �x	 y	a�x5 = y4 = �xy2�3 = a2	 �x3y�2 = 1 = �a	 x� = ay−1ay�

If � = 
r
	 r0	 · · · 	 r4�∪
s
	 s0	 · · · 	 s4�, then a conjugates ri into its cube and
si into its square for i ∈ 

	0	1	2	3	4�, while

x2 � �r
��r0	 r1	 r2	 r3	 r4��s
��s0	 s1	 s2	 s3	 s4�	

y � �r
	 s2	 r4	 s
−1
1 	 � � � ��r0	 s

2
0	 r

3
0 	 s0	 � � � ��r1	 s

−2

 	 r2	 s

3
4	 � � � ��r3	 s3	 r

2
3 	 s

2
3	 � � � �


Of course, y4 = a2 inverts all the symmetric generators. This action of
the control subgroup M on the symmetric generators corresponds to a
faithful 5-modular monomial representation, obtained by inducing up a
linear representation of a subgoup of index 12. We must now build this
action into a presentation of our progenitor:

�x	 y	a	 r� x5 = y4 = �xy2�3 = a2	 �x3y�2 = 1 = �a	 x� = ay−1ay = r5

= rxr = rar2	 ry
2x2y2 = �ry

2x2
�3� � 5��6+6� � ��2·L2�5� � 2� � 2�


Finally we must factor the progenitor by �x3yr�3 to obtain the 3·U3�5� � 2, and
a further �y3r�7 to obtain U3�5� � 2. In this presentation r is mapped onto the
symmetric generator r
; thus, other symmetric generators can be written in
termsofx2	 y and r usingthemonomial representationgivenabove.Explicitly,

r
 = r	 ri = ry
2x2�i+1�

	 s
 = ryx
4y−2

	 si = ryx
2�i−2�

	 for i = 0	1	 · · · 	4

From here we may identify the following subgroups:

�ri	 si� � 51+2	 �r0	 y� � 51+2 � 8	 �r0	 y	a� � 51+2 � 8 � 2�

�r
	 r4� = �r
	 r4	 s0	 s3� � A6	 �r
	 y2� � M10	 �r
	 y2	 a� � AutA6�

�r
	 r0	 r2� = �r
	 r0	 r2	 s1	 s3	 s4� � A7	 �r
	 r0	 r2	 a� � S7�

�x	 y� � 2·S5	 �x	 y	a� = N � 2·S5
·2
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The automorphism of U3�5� of order 3 may be taken to commute with x
and y, be inverted by a, and conjugate r
 to s
r
s
. The three sets of
symmetric generators then become


ri	 si�	 
sirisi	 ris
−2
i ri�	 
sir

−1
i si	 ris

2
i ri�


We may thus obtain representatives of the other classes of maximal sub-
groups:

�r
s−2

 r
	 xy

2� � �r
s2

r
	 xy

2� � A7�

�r
s−2

 r
	 y

2� � �r
s2

r
	 y

2� � M10


To obtain a presentation for G � HS �2, we must adjoin a further gen-
erator which commutes with a subgroup isomorphic to S7 and satisfies the
additional relation. Thus,

�x	 y	 r	 a	 t � x5 = y4 = �xy2�3 = a2	 r5 = �x3y�2 = 1 = rxr = �y3r�7

= �a	 x� = ay−1ay = rar2	 ry
2x2y2 = �ry

2x2
�3	 �x3yr�3	 t2 = 1 = �r	 t�

= �t	 ryxy� = �t	 ryxyx� = �t	 a�	 ay2 = �ty
2xtx�t

xy2 � � HS �2


5.3.10 Other maximal subgroups of HS

A list of maximal subgroups of HS, obtained by Magliveras [69], is given in
the Atlas (ref. [25], p. 80).

The two classes of subgroups isomorphic to U3�5� � 2 are, of course,
represented by N and Nt0 .

Representatives for the classes of subgroups isomorphic to M22 and S8
are described in Sections 5.3.6 and 5.3.7.

Now, any element of our control subgroup N � U3�5� � 2 must commute
with the subgroup of HS �2 generated by the symmetric generators which
it fixes. The involution y4 in the centre of our control subgroup fixes ten
symmetric generators which, together with its centralizer in N , generate its
full centralizer in HS �2; i.e.

�x	 y	a	 t� � 4·24 � S5


An involution � such as ay2 of N , which belongs to class 2B of HS, fixes six
symmetric generators which form a 5-hook in � , and is of the class we have
labelled �i	 k� in our symmetric presentation. In addition to interchanging
i and k, this element interchanges 6 pairs of � which commute with one
another and 15 pairs which do not. Then

�Fix���	 tr ts� � �2×A6
·22�
2	

where � interchanges r and s, and r is joined to s in � .
Let A7 � L ≤ N be of type II (see Section 5.3.8) and A5 � K ≤ L with

NL�K� � S5. Then K has orbits (5+10+10+10+15) on the elements of � .
The 5-orbit generates a subgroup of G of shape 24 � S6, which completes



158 Sporadic simple groups

to the maximal subgroup of HS �2 of shape 25
S6 if we adjoin NL�K�. Two
of the 10-orbits generate subgroups isomorphic to M22 � 2, while the third
generates the whole group; see below. The 15-orbit generates a subgroup
isomorphic to M22 � 2 as described in Section 5.3.7.

Again, let L2�7��M ≤ LwithNN�M�� L2�7� � 2 (see ref. [25], p. 34). Such
anormalizer ismaximal inN , althoughM isnotmaximal inN ′, andwastermed
a novelty in ref. [87]. Such a subgroup has orbits (7+7+8+28) on � , and the
8-orbit generates a subgroup of G isomorphic to M21 � 2, which completes to
the maximal subgroup of HS �2 of shape M21 � 22 if we adjoinNN�M�.

Now recall from Section 5.3.2 that the 50 vertices of � may be labelled

, 7 vertices labelled from J
 = {0,1, � � � ,6}, and 42 vertices labelled �i	 T�
where i ∈ J
 and T is a total on J
 \ 
i�. Any permutation which fixes 
 is
uniquely specified by its action on J
 and, similarly, any permutation which
fixes a point is uniquely specified by its action on the seven joins of that
point. Now, our double coset enumeration shows that any element of HS�2
may be written, not necessarily uniquely, as the product of a permutation
on 50 letters belonging to N � U3�5� � 2 followed by a word of length at
most 3 in the symmetric generators. Then the following form the non-trivial
elements of an elementary abelian group of order 8:

�1	3��2	6��4	5�t
t0,
�2	4��3	0��5	6�t
t1,
�3	5��4	1��6	0�t
t2,
�4	6��5	2��0	1�t
t3,
�5	0��6	3��1	2�t
t4,
�6	1��0	4��2	3�t
t5,
�0	2��1	5��3	4�t
t6.

To see this, let �i = �1	3��2	6��4	5��0	1	2	3	4	5	6�i and wi = t
ti for i ∈

0	1	2	 � � � 	6�. Then

��iwi�
2 = �2

i w
�i
i wi = t
tit
ti = 1	

since t
 commutes with ti. Again,

�0w0 ×�1w1 = �1	3��2	6��4	5�
�2	4��3	0��5	6�t
t3t
t1

= �0	3	1��2	5��4	6�t3t1 = �0	3	1��2	5��4	6�t3t1t3t

t
t3

= �0	3	1��2	5��4	6�
�1	3�
t
t3 = �0	1��2	5��4	6�t
t3 = �3w3


This elementary abelian 23 is visibly normalized by

��0	1	2	3	4	5	6�	 �1	2	4��3	6	5�	 �2	4��6	5�� � L2�7�	

and commutes with t
 to give a subgroup isomorphic to 2 × �23 � L2�7��.
The above seven involutions belong to class 2A in HS �2 and so have cyclic
subgroups of order 4 associated with them, whose normalizers are the cen-
tralizers of the involutions. We must identify these elements of order 4
which square to our elements �iwi. The seven joins of 0 are 
 and �0	 T�,
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where T is a synthematic total on {1,2, � � � ,6 }. Just two of these six totals
contain the syntheme 13
26
45, namely 1/23645 and 1/23654. If we let
� = �0	1/23645� and � = �0	1/23654�, then we claim that the required
elements are �
	�	��t0t� and �
	�	��t0t�, because

�
	�	��t0t� × �
	�	��t0t� = �
	�	��t0t
t0t�

= �
	�	��t
t�

= �
	�	�� · t
t�t
t0 · t0t

= �
	�	�� · �
	�� · t
t0
= ��	��t
t0 = �1	3��2	6��4	5�t
t0


Also note that

��
	�	��t0t��
t
 = t
�
	�	��t0t�t


= �
	�	��t�t0t�t


= �
	�	��t�t�t�t0 · t�t
t�t0 · t0t�
= �
	�	�� · ��	�� · �
	�� · t0t�
= �
	�	��t0t�


Adjoining these ‘square roots’, we obtain the following:

��
	�	��t0t�	 t
	 �0	1	2	3	4	5	6�	 �2	4��6	5�� � 43 � �L2�7�×2�


An element of class 5B in N (see ref. [25], p. 35) fixes five symmetric
generators and thus commutes with the subgroup of G which they generate.
These, in fact, correspond to a pentagon in � and generate a copy of S5.
An element of order 5 in a copy of A7 clearly belongs to this class and is
normalized within the A7 by a subgroup of order 20. Together these give a
maximal subgroup of shape 5 � 4×S5.

We have now seen a representative of each of the classes of maximal
subgroups of HS�2 except those isomorphic to M11. Perhaps the easiest way
to obtain one of these is to take NL�K� � S5 with orbits (5+10+20+15) on
� . Such a group has orbit lengths (1+2+5+5+10+12+15+20+30) on the
100 points. The stabilizer of the union of the two orbits with lengths 2 and
10 is isomorphic to M11 with orbit lengths (12+22+66). The other class is,
of course, obtained by conjugating by a symmetric generator.

The presentation given above has been chosen to reveal the subgroup
structure of HS�2, and is inevitably rather cumbersome. However, using the
ten symmetric generators mentioned above which generate G and are per-
muted by a subgroup isomorphic to S5, we obtain a far simpler presentation.
Indeed, it can be shown mechanically that

2∗10 � S5

��0	1	2	3	4�t01�
10	 �1	2��3	4� = t

t02
01 
t

t04
03 	 ��0	1�t02t03�

5
� HS �2	 (5.3)
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which is realized by the following presentation:

�x	 y	 t� x5 = y2 = �xy�4 = �x2	 y�2 = 1 = t2 = �t	 y� = �t	 yx
2
� = �t	 yx

−2
�

= �xt�10 = �ytxtxyx
−1
�5 = �xyt�xy�

2t�2�

Here x ∼ �0	1	2	3	4�, y ∼ �0	1� and t = t01. The subgroup generated by a
pentagon in the associated Petersen graph is isomorphic to M22 � 2, as is the
subgroup generated by the six symmetric generators which do not involve
0, say. Thus,

�x	 t� = �t01	 t12	 t23	 t34	 t40� � M22 � 2

and

�xy	 yx	 tx� = �t12	 t13	 t14	 t23	 t24	 t34� � M22 � 2	

and so coset enumeration over either of these gives the required action on
100 letters.

Alternatively, we may use the double coset enumerator. We write the
control subgroup S5 as permutations on ten letters, the unordered pairs of
five objects; and similarly write the three relations in the above presentation
as a sequence of integers from 1 to 10, representing the symmetric generators
followed by a permutation on ten letters. The coset enumeration is to
be performed over a subgroup M, say, isomorphic to M22 � 2, and so the
enumerator finds all double cosets of form MwN . Note that the group M,
which is labelled HH in the input, is generated by the first generator a
together with t1:

> N:=PermutationGroup<10|(1,2,3,4,5)(6,7,8,9,10),
> (2,6)(5,10)(7,9)>;
> RR:=[<[1,2,3,4,5,1,2,3,4,5], Id(N)>,
> <[10,5,10,4,8,4], N!(2,9)(4,8)(5,10)(6,7)>,
> <[10,8,1,6,10,8,1,6,10,8], N!(1,10)(4,9)(6,8)>];
> HH:=[*N.1,[1]*];
> CT:=DCEnum(N,RR,HH:Print:=5,Grain:=300);

This produces the following output, which tells us that the index of M in
G is 100, the rank of the action of N on the cosets of M is 9, and the
number of orbits on edges in the Cayley graph is 22. Coset representa-
tives for each of the double cosets are given, as are generators of coset
stabilizing subgroups for each of them. Finally, the 22 types of join are
recorded but not reproduced here, so that we can tell to which double coset
each symmetric generator takes each canonical double coset representative
(CDCR).

Index: 100 === Rank: 9 === Edges: 22 === Time: 0.859

> CT[4]
[
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[],
[ 6 ],
[ 6, 1 ],
[ 6, 9, 2, 7 ],
[ 6, 9, 2, 7, 6, 9 ],
[ 6, 7, 1 ],
[ 6, 7, 1, 5, 8, 3, 7, 8 ],
[ 6, 9, 2, 7, 4, 1, 5, 7 ],
[ 6, 7, 4, 2, 8, 7 ]

],

> CT[7]
[ 12, 15, 30, 20, 10, 5, 5, 1, 2 ]
>

So, for instance, the double coset Mt6N contains 15 single cosets of M; but,
as usual, the CDCRs are not necessarily the shortest possible. Indeed, in
this case, we see there are CDCRs of length 8 but none of length 7, so they
cannot possibly be the shortest possible.

5.4 The Hall–Janko group and the Suzuki
chain

Section 5.3 on the Higman–Sims group demonstrates the effectiveness of
Lemma 3.3, but perhaps an even more dramatic application is the manner
in which it yields J2, the Hall–Janko group, and the other groups in the
Suzuki chain. It was mentioned in Section 3.6 that relations of the form
titjti =� ∈N are often very powerful. We shall concentrate on such relations
here and so we shall study a group defined by

2�n � N
� = titjti

	

where, as usual, N is a transitive permutation group of degree n acting on
the n involutory symmetric generators by conjugation. Lemma 3.3 tells us
that � must lie in the centralizer in N of the 2-point stabilizer Nij.

We first recall some elementary permutation group theory. If N is a
permutation group acting on the set �, so here � = 
1	2	 � � � 	 n�, then N
also acts on the Cartesian product �×� in the natural manner:

�a	 b�� = �a�	 b�� for a	b ∈ �


The orbits of N in this induced action are called orbitals, and the number
of orbitals is called the rank of N . If N acts transitively on �, the rank of
the permutation action on � is equal to the number of orbits on � of the
stabilizer in N of a point of �. Thus a doubly transitive group has rank
2. It is readily shown using elementary character theory that the norm of
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the corresponding permutation character is equal to the rank and that the
multiplicity of the trivial character is equal to the number of orbits. So,
for instance, the permutation character of a doubly transitive action is the
trivial character plus an irreducible.

Now, if X is an orbital of N then the orbit paired with X is defined by

X� = 
�b	a� � �a	 b� ∈ X�


If X =X�, we say that X is self-paired. In this case, if we draw a graph with
edges the points of � and (directed) edges the pairs �a	 b� ∈ X, then this
orbital graph is undirected. All the graphs we consider in this section are of
this type; indeed, we shall usually be concerned with rank 3 groups in which
the two non-trivial orbits of the point-stabilizer have distinct lengths.

So, let us assume that �i	 j� ∈ X, a self-paired orbital. Then if titjti = � ∈
N , tjtitj ∈ N as well, and

Nti� = Nti� = Nti · titjti = Ntjti = Ntjtitj · tj = Ntj


Thus i� = j and, since � = titjti = t
ti
j is clearly an involution, we also have

j� = i. In particular, we have the following:

� = titjti = �� = tjtitj and so �titj�
3 = 1	

and � is an involution interchanging i and j. We shall label it �ij.
In Section 4.1 we found that

2�4 � S4

�3 4�t1t2t1t2
� L3�2� � 2 � PGL2�7�	

and we obtained the group as permutations of the seven points and seven
lines of the Fano plane. We now take this group as our control subgroup
acting on �7+7� symmetric generators and so consider the progenitor

P = 2��7+7� � PGL2�7�


We display the standard notation for the points and lines in Figure 5.15;
thus both points and lines are labelled �7, the integers modulo 7, with the
points being denoted by large numerals and the lines by small numerals.
The lines are chosen to be 
1	2	4�, the quadratic residues modulo 7, and
its translates; the labelling of the lines is then given by 124 - 0, 013 - 1, 602
- 2, 561 - 3, 450 - 4, 346 - 5, 235 - 6. Note that this labelling means that the
element � = (0 1 2 3 4 5 6)(6 5 4 3 2 1 0) preserves the lines, and it is readily
checked that

�=(0 0)(1 1)(2 2)(3 3)(4 4)(5 5)(6 6)

interchanges points and lines and preserves incidence. We shall need to be
able to write down conjugates of this element �, which is more properly
denoted by �00, and so if O is a point and l = PQR is a line not passing
through O, we demonstrate in Figure 5.16 how to read off the element
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Figure 5.15. The Fano plane.
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Figure 5.16. Duality in the Fano plane.

�Ol . Let us denote the line through the points X and Y by XY . Then the
permutation which we denote by �Ol is given by

�Ol = �O l��P OP��Q OQ��R OR��U VW��V WU��W UV�


We may now apply Lemma 3.3. The stabilizer of a point, 0 say, is isomorphic
to S4, and the stabilizer of a point and a line not passing through this point,
0 say, is isomorphic to S3. In this case, we have

N00 = ��1 2 4��3 6 5��1 2 4��3 6 5�	 �2 4��6 5��2 4��6 5�� � S3


The centralizer in N of this subgroup is cyclic of order 2 (in fact
PGL2�p� has maximal subgroups isomorphic to D2p±2) and, in this
case, is clearly generated by our element � = �00, so Lemma 3.3
says that this is the only non-trivial element that can be written in
terms of t0 and t0 without causing collapse. We choose the short-
est possible length for the word and so we are led to considering the
following:

G = 2��7+7� � �L3�2� � 2�
(0 0)(1 1)(2 2)(3 3)(4 4)(5 5)(6 6) = t0t0t0
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Using our abbreviated notation in which i stands for the symmetric gener-
ator ti, we deduce, using conjugates of the additional relation, that

1 2 = 1 4 4 2 ∼ 1 4 2 4 4 ∼ 5 4 and 1 2 = 1 5 5 2 ∼ 1 5 2 5 5 ∼ 4 5 ∼ 2 1,

where the ∼ stands for ‘represents the same coset’ and 14 ∼ 1. So we have
shown that

Nt1t2 = Nt2t1 = Nt4t5 = Nt5t4


It can be shown by the usual manual double coset enumeration (with double
cosets of lengths 1+14+21+42+14+14+2) that

G � �3×U3�3�� � 2	

but, since we are not particulary interested in this group, we shall give the
Magma printout for the mechanical enumeration and immediately adjoin
a further relation which factors out the normal subgroup of order 3. The
points and lines have been labelled with the numbers 1–14, with the point
i being labelled i (except that 0 is labelled 7) and the line i is labelled i+7
(except that 0 is labelled 14). Thus:

> s14:=Sym(14);
> a:=s14!(1,2)(3,6)(8,9)(10,13);
> b:=s14!(2,4)(5,6)(9,11)(12,13);
> c:=s14!(1,6)(2,3)(14,12)(8,9);
> d:=s14!(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14);
> nn:=sub<s14|a,b,c,d>;
> #nn;
336

> RR:=[<[7,14,7],d>];

> CT:=DCEnum(nn,RR,[nn]:Print:=5,Grain:=100);

Index: 108 === Rank: 7 === Edges: 24 === Time: 0.032
> CT[4];
[

[],
[ 1 ],
[ 1, 2 ],
[ 1, 8 ],
[ 1, 2, 4 ],
[ 1, 8, 1 ],
[ 1, 2, 4, 14 ]

]
> CT[7];
[ 1, 14, 21, 42, 14, 14, 2 ]
>
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In order to find a suitable second relation, we note that the image we
seek has just three double cosets of lengths 1+14+21, so the double cosets
of lengths 21 and 42 in G above must fuse. That is to say, Nt1t2 = NtPtl for
some point P and line l with P ∈ l. But the only flag fixed by the stabilizer
in N of 1 and 2 is { 4, 0 }, so our relation will have form

t1t2t4t0 = � ∈ N	

or, using our abbreviated notation, 1 2 4 0 = �. In order to find �, we note
that the pointwise stabilizer in N of 
1	2	4	 0� is given by

N124 0 = ��0 3��6 5�(2 6)(4 5)	 �0 6��5 3�(4 5)(1 3)� � V4	

which is self-centralizing. It must thus contain the element � that we seek.
A further calculation shows that

0� ∼ 0� ∼ 01240 ∼ 6 5240 ∼ 6 
525
540 ∼ 3540 ∼ 6440 ∼ 60 ∼ 6


So, the only non-trivial possibility is 124 0 = �0 6��5 3�(4 5)(1 3). Accordingly,
we now examine

G = 2��7+7� � �L3�2� � 2�
(0 0)(1 1)(2 2)(3 3)(4 4)(5 5)(6 6) = t0t0t0

(0 6)(5 3)(4 5)(1 3) = t1t2t4t0


Given these two relations, it is an easy matter to show that there are just
two non-trivial double cosets; after all,

0 0 ∼ 0 and 1 2 ∼ 2 1 ∼ 5 6 ∼ 6 5 ∼ 40	

thus

Nt1t2N = Nt5t6N = Nt4t0N


We claim that G = N ∪Nt0N ∪Nt1t1N , which appears to consist of the
coset N , 14 cosets corresponding to the points and lines, and 21 cosets
corresponding to the flags �P	 l�, where l is a line and P is a point on l. To
show that there are no further double cosets, we need simply show that
Nt0t3ti is in this set of cosets for all choices of i. But if N�t0t3� denotes the
coset stabilizing subgroup of Nt0t3, then

N�t0t3� ≥ ��	 �0 3��5 6�(2 6)(4 5)	 �2 6��4 5�(0 3)(5 6)�	

with orbits {1, 1}, { 0, 3, 0, 3} and {2, 6, 5, 4, 2, 6, 5, 4}. We have

Nt0t3t1 = Nt1t1t1 = Nt1	

Nt0t3t0 = Nt3t0t0 = Nt3
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and finally

Nt0t3t2 = Nt0
t3t2t3
t3 = Nt1t3	

since t3t2t3 ∈ N maps 0 to 1. This yields the Cayley diagram shown in
Figure 5.17. Recall that in the Cayley graph �C of G on the cosets of N we
join Nw to Nwti, but that in the transitive graph �T which is preserved by
G we join Nw to Ntiw. We can thus readily work out that in �T the joins
are as follows:

(i) the vertex � joins the seven points and the seven lines;

(ii) a line joins the four points not on it;

(iii) a flag �P	 l� joins all points on l and all lines through P;

(iv) two flags �P	 l� and �Q	m� are joined if, and only if, PQ = l or m.

Of course, the elements of our control subgroup N � L3�2� � 2 act on points,
lines and flags in the standard manner, and preserve incidence. Moreover,
using our two additional relations and their conjugates we can readily write
down the action of right multiplication by a symmetric generator, t0 say,
on the 36 right cosets; thus

t0 = �� 0��1 31��2 62��4 54��3 11��6 22��5 44��0��3��6��5�

36 7 1 31 2 27 4 19 3 15 6 30 5 25 14 10 12 13

�1 01��2 02��4 04��10 13��20 26��40 45��35 36��63 65��56 53�

8 28 9 21 11 35 22 29 16 23 32 18 24 17 20 34 33 26	

where we also display a convenient labelling of the points, lines, flags and
the symbol � with the integers from 1 to 36. We can observe that this
permutation commutes with

N0 = ��1 2 4��3 6 5�(1 2 4)(3 6 5)	 �1 5��3 4�(1 4)(0 6)� � S4	

the stabilizer in N of 0. Thus t0 has just 14 images under conjugation by
N . Conjugating this element by � above, we see that

t0 = �� 0��1 13��2 26��4 45��3 11��6 22��5 44��0��3��6��5��1 10�

�2 20��4 40��01 31��02 62��04 54��53 63��36 56��65 35�	

1 14 1 14

points/lines

3+6 2+4 21

flags

84

Figure 5.17. Cayley diagram of G acting on the cosets of L3�2�: 2.
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and we can readily check that t0t0t0 = �0 0��1 1��2 2��3 3��4 4��5 5��6 6�,
as required. We leave it as an exercise for the reader to verify that the
second relation also holds within S36. Thus, there is no collapse and �G� =
36×�PGL2�7�� = 2×6048. We know that the derived group of G is perfect,
and so it is not surprising that G � U3�3� � 2, the automorphism group of
the special unitary group in 3-dimensions over the field of order 9. The fact
that our relation � = titjti was insufficient to define the group we desired is
due to the fact that the control subgroup was not primitive, but acted with
two blocks of size 7. Other groups in this chain are better behaved and the
single relation is sufficient. Nonetheless, for the sake of completion, we give
without proof a single relation which suffices in this case:

2��7+7� � �L3�2� � 2�
t0t1t2t4t6 = �0 0 6 6��1 3 5 4 4 5 3 1��2 2�

� U3�3� � 2


Theorem 5.5 makes explicit the ‘better behaviour’ of the larger groups in
the chain.

Theorem 5.5 Suppose the control subgroup N has degree n and that its
derived subgroup N ′ has index 2 in N , is perfect, and acts transitively on
the n letters. Then, if G is defined by

G = 2�n � N
� = t1t2t1

	

where � ∈ N \N ′, then �G � G′� = 2 and G′ is perfect.

Proof Let K = 
�w � � ∈ N ′	 l�w� even� ≤ G; then

G = K∪K� ∪Kt1 ∪K�t1	

where � ∈ N \N ′. Now, for i	 j ∈ 
1	2	 � � � 	 n�, since N ′ is transitive there
exists a � ∈N ′ with i� = j. Then G′ ≥ �N ′	 �ti	��= titj ∀i	 j� =K
 Moreover,
N ′′ = N ′ ≤ G′′ � G, and so �ti	�� = titj = ��−1�ti� ∈ G′′, for � ∈ N ′. Thus
K′ = K, and K is perfect. But the additional relation implies that K�t1 =
Kt2t1 = K, and so G = K∪Kt1 as required. �

This chain of subgroups of ·O lends itself to the Y-diagram presentations
described in Section 3.8; see ref. [25], pp. 42, 97 and 131. Indeed, if we take

a = �1 2��3 6�(1 2)(3 6)	

b = �2 4��5 6�(2 4)(5 6)	

c = �1 6��2 3�(0 5)(1 2)	

d = �0 0��1 1��2 2��3 3��4 4��5 5��6 6�	

then we see that the elements satisfy the following Coxeter diagram:

� � � � �

a b c

8

d e

a = �cd�4.
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Now, �a	b	 c	d� � L3�2� � 2, and so with e = t0 we see that this is a presen-
tation for

2��7+7� � �L3�2� � 2�
t0t0t0 = d

	

which was stated above to define �3×U3�3�� � 2.

Exercise 5.1

Proceed as follows to show that the Coxeter diagram

� � � �

a b c

8

d

a = �cd�4

defines the group L3�2� � 2. Note that N = �a	b	 c� � S4 (or a homomorphic
image thereof); taking t1 = d, note that �tN1 � = 4 (or a divisor of 4). Now
show that this diagram is equivalent to the symmetric presentation

2�4 � S4

�1 2� = t1t2t1	 �3 4� = �t1t2�
2
	

which was shown in Section 4.1 to define L3�2� � 2. (In fact, we have shown
that the first of these relations is redundant and we should check that it
does indeed hold.)

We now proceed precisely as before, but this time we take as control
subgroup N � U3�3� � 2 with its action on 36 points, which we have just
constructed. Thus we consider the progenitor

P = 2�36 � �U3�3� � 2�	

and we may label the 36 symmetric generators s� and si for i a point, a line
or a flag. Since this action has rank 3, we have two 2-point stabilizers to
consider: fixing � and the point 0, we have a N�0 � S4, whose centralizer in
N is �t0� � C2; and fixing � and the flag 11, we have a subgroup isomorphic
to D16, the dihedral group of order 16, whose centralizer is its centre. Clearly
it is the first case which is relevant here as t0 = ��0 interchanges � and 0;
thus we consider

G = 2�36 � �U3�3� � 2�
t0 = s�s0s�


 (5.4)

We now introduce a lemma which is useful in this situation. Let the per-
mutation group N act transitively on the set �, where ��� = n, and let
a ∈ �. Suppose that &�a� is an orbit of Na, the stabilizer in N of a, whose
corresponding orbital is self-paired. Draw a graph � with � as vertices and
edges 
�a	 b� � b ∈&�a��. By remarks earlier in this section, � is undirected.
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Table 5.5. The edges of the 36-point graph in Figure 5.17 and their
correspondence with conjugates of t0

Conjugate of t0 Simplified form Involution Number

t0 t0 �� 0 14
t0
t0 �0 0��1 1��2 2��3 3��4 4��5 5��6 6� �0 0 28

t
t1
0 �2 5��4 6�(0 3)(2 4)t0 �1 31 14×6

t
t1
0 �2 6��4 5�(0 3)(5 6)t0 �1 01 14×3

t
t0t1
0 �0 0��1 1��2 2��3 3��4 4��5 5��6 6�t1t1 �31 10 21×4

Lemma 5.2 Suppose in the above situation that for a and b joined in �

CN �Nab� = ��ab� � C2	

where �ab interchanges a and b. Form the progenitor 2�n � N as usual
and factor by the additional relation �ab = tatbta, where the symmetric
generators are 
ti � i ∈ �� and b is joined to both a and c but a is not
joined to c. Then the coset Ntatc is fixed by �bc; i.e., �bc ∈ N�tatc�, the coset
stabilizing subgroup of Ntatc.

Proof We have

Ntatc = Ntatbtbtc = Ntatbta
ta
tbtctb
tb = Nta�bctb = Ntatc�bc	

since tatbta = �ab ∈ N and �bc interchanges b and c. �

In order to use Lemma 5.2 to investigate the group defined by Equation
(5.4), we need to be able to write down the element �ab for a given edge
�a	 b� in the 36-point graph. There are clearly 36× 14/2 such elements as
they are in one-to-one correspondence with the edges of � . Starting with
t0 = ��0, we may conjugate to obtain the involution corresponding to any
edge of � . We display in Table 5.5 a representative of each orbit under the
action of the vertex stabilizer N�.

It is now our aim to show that the group G defined by Equation (5.4)
decomposes into just three double cosets of the form NwN , where N �
U3�3� � 2, namely

G = N ∪Ns�N ∪Ns�siN	

where i is not joined to � in the graph � . Building the Cayley graph of G
over N , in which Nw is joined to Nwsi, we see that so far we have the partial
diagram shown in Figure 5.18.

Now � is not joined to the 21 flags and so we consider the double coset
Ns�s11N , and use Lemma 5.2 to obtain the coset stabilizing subgroup N�s�s11�.
Certainly the subgroup of L3�2� which fixes the flag 11, namely a copy of
D16 generated by our element � and (0 3)(2 4)(2 5)(4 6), is contained in this
group. But by Lemma 5.2 we see that also contained are

�1 11 = �2 4��6 5�(2 4)(5 6)t1 and �0 11 = �2 4��6 5�(2 4)(5 6)t3	
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Figure 5.18. Partial Cayley diagram of G acting on the cosets of U3�3� : 2.
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Figure 5.19. Cayley diagram of G acting on the cosets of U3�3�: 2.

since 1 and 0 are joined to both � and 11. These permutations were obtained
by conjugating �1 01 from Table 5.5 by (0 1)(4 6)(0 2)(4 3), and �1 31 by
(3 1 0)(6 5 4)(0 2 6)(3 4 5). Since the permutation part visibly fixes 11 in each
case, we conclude that t1 and t3 lie in our coset stabilizing subgroup. Thus

N�s�s11� ≥ ��	 �0 3��2 4�(2 5)(4 6)	 t1	 t3�

We work out the orbits of this subgroup on the 36 points and find that
there are just two:


�	11	1	 1	0	3	 0	 3	01	31	10	13�

and the remainder. Each of the 12 symmetric generators in this orbit returns
our coset Ns�s11 to the double coset Ns�N , so the double coset Ns�s11N
appears to contain 21× 21/12 = 63 single cosets. It remains to show that
Ns�s11s2 ∈ Ns�s11N . But

Ns�s11s2 = Ns1s1s2 = Ns1s1s2s1s1 = Ns1�12s1 = Ns0s1	

as required, where we have used the facts that Ns�s11 = Ns�s11t1 = Ns1s1 and
that �12 = �0 2��1 0��2 1��3 6��4 3��5 5��6 4�. Thus the Cayley graph of G over
N closes and appears to take the (collapsed) form shown in Figure 5.19.

This manual enumeration enables us to write down explicitly permuta-
tions on 100 letters and to verify that they do satisfy the additional relation;
they will of course preserve the associated transitive graph �T. The group
they generate is the automorphism group of the the Hall–Janko group, thus
we have the following theorem.

Theorem 5.6

G = 2�36 � �U3�3� � 2�
� = titjti

� HJ � 2
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This process continues for two further steps and can be verified manually in
the same manner; however, since the working is very similar to the above,
and since the permutations are now more cumbersome, we prefer to give
the significant steps of a mechanical enumeration.

Firstly, we need our control subgroup HJ � 2 acting on 100 letters; that is
to say acting on the cosets of �a	b	 c	d	 e� � U3�3� � 2. If the homomorphism
from the Coxeter presentation (see ref. [25], p. 42)

� � � � � �

a b c

8

d e f

a = �cd�4	 �bcde�8

to this action is given by f1, then we obtain

> nn:=sub<Sym(100)|f1(a*b*c*d*e),f1(f)>;
> #nn;
1209600
> 1ˆf1(f);
2
> RR:=[<[1,2,1],f1(f)>];
> CT:=DCEnum(nn,RR,[nn]:Print:=5,Grain:=100);

Index: 416 === Rank: 3 === Edges: 6 === Time: 0.031
> CT[4];
[

[],
[ 1 ],
[ 1, 14 ]

]
> CT[7];
[ 1, 100, 315 ]

giving a rank 3 permutation group on 416 letters. This is, in fact, the auto-
morphism group of the Chevalley group G2�4�, and we have the following
theorem.

Theorem 5.7

G = 2�100 � �HJ � 2�
� = titjti

� G2�4� � 2

with Cayley diagram as in Figure 5.20.

This in turn enables us to obtain G2�4� � 2 as a permutation group
on 416 letters and to use this as our control subgroup. Let f2 be the
homomorphism from the following Coxeter diagram onto the action on the
cosets of �a	b	 c	d	 e	 f� � HJ � 2 (see ref. [25], p. 97):

� � � � � � �

a b c

8

d e f g

a = �cd�4	 �bcde�8
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��

	


1

N

100 1

��

	


100

Nt1N

63 20

��

	


315

Nt1t3N

��

��

��

��

8036

Figure 5.20. Cayley diagram of G2�4� � 2 over HJ : 2.

Then once again Lemma 3.3 allows an additional relation of the same form,
and we obtain

> nn:=sub<g2|f2(a*b*c*d*e*f),f2(g)>;
> #nn;
503193600
> 1ˆf2(g);
2
> RR:=[<[1,2,1],f2(g)>];
> CT:=DCEnum(nn,RR,[nn]:Print:=5,Grain:=100);

Index: 5346 === Rank: 5 === Edges: 11 === Time: 0.328
> CT[4];
[

[],
[ 1 ],
[ 1, 21 ],
[ 1, 21, 249 ],
[ 1, 21, 249, 274 ]

]
> CT[7];
[ 1, 416, 4095, 832, 2 ]

This time we see that there are blocks of imprimitivity of size 3. Theorem 3.5
will ensure that the group we have obtained contains a perfect subgroup
to index 2, and so we have obtained the automorphism group of the triple
cover of the Suzuki group.

Theorem 5.8

G = 2�416 � �G2�4� � 2�
� = titjti

� 3·Suz � 2


This is in many ways the group we want as it will enable us to obtain
the Conway group using a slightly different approach (see Section 7.5).
However, in order to identify the centre of (the derived subgroup of) this
group, we observe from the Magma output that w = t1t21t249t274 must lie in
it. By Lemma 3.3, w must be set equal to an element in the centralizer of
the stabilizer in N of the sequence [1,21,249,274]. This centralizer is, in fact,
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1
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416 1
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416

Nt1N

315 96

��

	


1365

Nt1t3N

��

��

��

��

320100

Figure 5.21. Cayley diagram of G acting on the cosets of G2�4� � 2.

a copy of A5 of order 60. Factoring by the correct such additional relation,
we obtain the Cayley diagram shown in Figure 5.21.

Finally note that to obtain Suz � 2 from the Coxeter presentation

� � � � � � � �

a b c

8

d e f g h

a = �cd�4	 �bcde�8

for the triple cover, Soicher factors out the relator �bcdcdefgh�13; see ref.
[25], p. 131.

5.5 The Mathieu groups M12 and M24

At this stage, having seen how a number of sporadic groups can be defined
by symmetric presentions, we return briefly to the two groups which moti-
vated our investigations. Recall that M12 is generated by a set of five
elements of order 3 whose set normalizer within M12 is the alternating
group A5. It is readily verified that the permutations given in Table 1.2
satisfy the relation �s−1

2 s1�
2 = �3 4 5�, a 3-cycle in this copy of A5. That is to

say the permutation �s−1
2 s1�

2 commutes with s1 and s2 and cycles the other
three symmetric generators by conjugation. It turns out that this is almost
enough to define M12, and we have the following theorem.

Theorem 5.9
3�5 � A5

�3 4 5� = �t−1
2 t1�

2
� 3×M12


The corresponding definition of the large Mathieu group proved remarkably
useful in writing down generators for the group simply from a knowledge
of the linear group L3�2� (or, indeed, the Klein map). However, it turns
out that we need rather more relations to define it in a relatively elegant
manner, and we find that Theorem 5.10 holds.

Theorem 5.10
2�7 � L3�2�

�t
t1
0 	 t3�	 �2 4��5 6� = �t0t3�

3	 ��1 2 4��3 6 5�t3�11
� M24
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The last relation, which asserts that a certain element has order 11, is
sufficient to ensure that a set of four of the seven symmetric generators
which does not contain a line generates a copy of L2�23�. We may then
perform a coset enumeration over that group to verify the presentation.

5.6 The Janko group J3

The third Janko group J3 is surprisingly difficult to work with on account of
the fact that, although it has a relatively modest order of around 50 million,
its lowest permutation degree is over 6000. In comparison, the Higman–
Sims group has order 44 million and lowest degree 100, and the McLaughlin
group has order 900 million and lowest degree 275, not to mention the
extraordinary Mathieu group M24 with order 200 million and degree 24.
The group J3 was predicted by Janko in 1968 [60], who considered simple
groups whose single class of involutions had a centralizer of shape 21+4 �A5.
Thompson showed that this group would contain subgroups isomorphic to
L2�16� � 2, and Higman and McKay [46] constructed it on a computer. Weiss
[86] constructed it theoretically as automorphisms of a graph on 17 442
vertices. Its embedding in E6�4� was shown computationally by Kleidman
and Wilson [63] and was confirmed theoretically by Aschbacher [4].

Although J3 has neither a low degree permutation representation nor a
low dimensional complex matrix representation (as can be seen from the
character table in the Atlas (ref. [25], p. 83), its lowest degree irreducible
representation is in 85 dimensions, and J3 � 2 is twice this), it possesses a
triple cover with a remarkable 9-dimensional matrix representation over
�4 – found by Richard Parker when he was demonstrating his MeatAxe
to Robert Wilson. This triple cover is constructed by Baumeister in ref.
[9], and was used by John Bradley and the author [13] to verify that the
following symmetric presentation is valid.

Our approach is based on the fact that if Q<L< J , where Q� C17	L�
Aut�L2�16�� and J � J3 �2, then NL�Q� has shape 17 �8, whereas NJ �Q� �
17 �8×2. Thus the involution t centralizing NL�Q� has �Aut�L2�16���/17×
8 = 120 images under conjugation by L. Let this set of 120 involutions
be denoted by � , then �� � = J since, as usual, �� � is certainly normal
in �L	 t� = J , by the maximality of L. But t is not contained in J ′ � J3
and the only normal subgroup of J containing involutions outside J ′ is J
itself.

This means that the group J3 � 2 is a homomorphic image of the pro-
genitor 2�120 � N , where N � Aut�L2�16��, a transitive permutation group
of degree 120 acting on the Sylow 17-subgroups of N . It turns out that
factoring this progenitor by a single additional relator will yield our group,
but before describing this relator we need to say a little more about this
120-point permutation action. The point-stabilizer is, of course, 17 �8, and
such a subgroup has orbits of lengths 1+ 17 + 34+ 68 on the 120 points;
we say that points in the 17-, 34- and 68-orbits are �-, �- and �-joined to
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the fixed point, respectively. In particular, two points i and j are �-joined
if, and only if, their stabilizer Nij has order 8. Now, the field automor-
phism � of order 4, which squares every element in the field, has cycle
shape 430 on the 120 Sylow 17-subgroups (since the only elements in the
outer half of the Frobenius group of shape 17 �8 have order 8), and � com-
mutes with a subgroup of L2�16� isomorphic to L2�2� � S3. Elements of
order 3 clearly normalize no Sylow 17-subgroup, and so � times an ele-
ment of order 3 in this copy of S3 has order5 12 and cycle shape 1210. It
turns out that there is a unique cycle in such an element with the prop-
erty that adjacent terms are �-joined whilst terms two apart are �-joined.
Bray found that if we factor by a relation which says that such an ele-
ment of order 12 times a symmetric generator in this 12-cycle has order
5, then we obtain J3 � 2. Bradley confirmed this computation by hand in
his Ph.D. thesis [12], and further details of the argument may be found in
Bradley and Curtis [13]. In this section we content ourselves by demon-
strating how the double coset enumerator may be used to confirm this
claim.

So we are asserting the following.

Theorem 5.11

G = 2�120 � �L2�16� � 4�
��t1�

5
� J3 � 2	

where the permutation action of N � L2�16� � 4 is on its Sylow 17-subgroups,
� is an element of order 12 in N and t1 is such that 1 is �-joined to 1� and
�-joined to 1�2 .

Verification We must first obtain the 120-point action of N . Thus,

> s17:=Sym(17);
> a:=s17!(1,10,11,15,17,14,5,12,9,6,13,4,16,3,7,8,2);
> b:=s17!(1,2,4,8)(3,6,12,9)(5,10)(7,14,13,11);
> autl216:=sub<s17|a,b>;
> #autl216;
16320

> na:=Normalizer(autl216,sub<autl216|a>);
> f,nn,k:=CosetAction(autl216,na);
> Degree(nn);
120

We have input two generators of the group Aut�L2�16� � L2�16� � 4 as
permutations on 17 letters: a of order 17 and b of order 4 (giving
rise to the outer automorphism of order 4). To obtain our control

5 A little caution is needed here as there are two classes of elements of order 12, but it
does not matter which we choose.
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subgroup as permutations on 120 letters, we take the action on the
cosets of the normalizer of a Sylow 17-subgroup, which has shape 17 � 8.
We must now find an element of order 12 and identify the particular
cycle we require. There is a single class of cyclic subgroups of order
12 in Aut�L2�16��, a representative of which is generated by the field
automorphism � � � �→ �2 times an element of order 3 in the simple
group. Now,

C = CN ��� � ���×L2�2� � 4×S3	

and so the derived group of C is isomorphic to C3. We thus readily obtain
the desired element of order 12 as the product of � and a generator for this
derived group:

> cb:=Centralizer(nn,f(b));
> #cb;
24
> e12:=f(b)*DerivedGroup(cb).1;
> Order(e12);
12

The element � = e12 has cycle shape 1210; we must identify its (unique)
cycle whose neighbouring terms are �-joined and terms two apart are �-
joined. So, if i and i' are �-joined and i and i'

2 are �-joined, then we
define rr �= i. The additional relation is then �'trr�

5, which we may input
as ��rr�	 e12	5�:

> for i in [1..120] do
for> if Order(Stabilizer(nn,[i,iˆe12])) eq 8
for| if> and Order(Stabilizer(nn,[i,iˆ(e12ˆ2)])) eq 2 then
for| if> rr := i;
for| if> break;
for| if> end if;
for> end for;
> RR:=[*<[rr],e12,5>*];
> CT:=DCEnum(nn,RR,[nn]:Print:=5,Grain:=100);
Index: 6156 === Rank: 7 === Edges: 62 === Time: 0.235
> CT[4]
[

[],
[ 1 ],
[ 1, 18 ],
[ 1, 4 ],
[ 1, 4, 15 ],
[ 1, 2 ],
[ 1, 2, 65 ]

]
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> CT[7];
[ 1, 120, 510, 2040, 680, 2720, 85 ]

The canonical double coset representatives (CDCRs) given by this out-
put are indeed the shortest possible, and the Cayley graph of G over
N does have diameter 3 as shown. But I repeat the warning that the
enumerator does not necessarily produce the shortest possible CDCRs as
this would slow things up considerably. In fact, I performed this enu-
meration several times before obtaining an output with minimal length
CDCRs. �

5.7 The Mathieu group M24 as control
subgroup

In order to make this chapter as self-contained as possible, we include here,
albeit in a concise form, the information about the Mathieu groups that is
required in order to follow the constructions. For more detailed information
about these remarkable groups, the reader is referred, for example, to refs.
[29] or [24].

The Mathieu group M24 and its primitive action of
degree 3795
A Steiner system S�5	8	24� is a collection of 759 8-element subsets known
as octads of a 24-element set, � say, such that any 5-element subset of � is
contained in precisely one octad. It turns out that such a system is unique
up to relabelling, and the group of permutations of � which preserves such
a system is a copy of the Mathieu group M24 which acts 5-transitively on
the points of �. We let �= P1�23�, the 24-point projective line, and choose
the Steiner system so that it is preserved by the projective special linear
group L2�23�= �� � s �→ s+1	 � � s �→ −1/s�
 Let P��� denote the power set
of � regarded as a 24-dimensional vector space over the field GF2, then
the 759 octads span a 12-dimensional subspace, the binary Golay code � ,
which contains the empty set �, 759 octads, 2576 12-element subsets called
dodecads, 759 16-ads, which are the complements of octads, and the whole
set �. The stabilizer in M24 of an octad (and its complementary 16-ad) is a
subgroup of shape 24 �A8, in which the elementary abelian normal subgroup
of order 16 fixes every point of the octad. The stabilizer of a dodecad is the
smaller Mathieu group M12. From the above, the complement of a dodecad
must be another dodedad; the stabilizer of such a pair of complementary
dodecads, known collectively as a duum (as in two umbral dodecads), has
shape M12 � 2, the automorphism group of M12.

Now, a 16-ad can be partitioned into two disjoint octads in 15 ways,
and so � can be partitioned into three mutually disjoint octads in 759×



178 Sporadic simple groups

15/3 = 3795 ways; such a partition is known as a trio of octads and is
denoted by U ·V ·W , where U , V and W are the octads. The group M24 acts
transitively on such partitions, and the stabilizer in M24 of such a trio is a
maximal subgroup of shape 26 ��L3�2�×S3�, which of course has index 3795
in M24. From the above assertions about � , it is clear that the symmetric
difference of two octads which intersect in four points must be another
octad, and so we see that the 24 points of � can be partitioned into six
complementary tetrads (4-element subsets) such that the union of any two
of them is an octad. Such a partition is called a sextet and, since a sextet
is determined by any one of its six tetrads, 5-transitivity on � ensures
that M24 acts transitively on the

( 24
4

)
/6 = 1771 sextets. The stabilizer of

one such is a maximal subgroup of shape 26 � 3·S6. A sextet with tetrads
a, b, c, d, e, f is denoted abcdef ; the visible 26 �3 of the sextet group
stabilizes all the tetrads in the sextet and the quotient S6 acts naturally upon
them.

If the vector space P��� is factored by the subspace � , we obtain the
12-dimensional cocode ��, whose elements (modulo �) are the empty set �,
24 monads (1-element subsets), 276 duads (2-element subsets), 2024 triads
(3-element subsets) and the 1771 sextets. Since the symmetric difference
of two even subsets necessarily has even cardinality itself, the duads and
sextets, together with the empty set, form an 11-dimensional subspace
which is clearly an irreducible 2-modular module for M24. A duad 
a	 b� is
usually denoted ab.

A sextet abcdef is said to refine a trio A · B · C if (after suitable
reordering) we have A = a ∪̇ b, B = c ∪̇d and C = e ∪̇ f . A trio is said to
coarsen a sextet if the sextet refines the trio. A given sextet refines just
15 trios; conversely, a trio has just seven refinements to a sextet. These
seven sextets, together with the empty set, form a 3-dimensional subspace
of ��.

Now fix a trio T = A ·B ·C. Up to ordering the octads in the trios, the
intersection array a trio makes with T is one of the following:

8 0 0
0 8 0
0 0 8

	

8 0 0
0 4 4
0 4 4

	

0 4 4
4 0 4
4 4 0

	

0 4 4
4 2 2
4 2 2

and
4 2 2
2 4 2
2 2 4

	

where these account for 1, 42, 56, 1008 and 2688 trios, respectively.
The stabilizer of T acts transitively on the trios that have a partic-
ular intersection array with T . We label these intersection arrays I0,
I1, I2, I3 and I4, respectively. The collapsed coset graph of valence
42 corresponding to this permutation action is given in Figure 5.22.
For further information about such graphs, the reader is referred to
ref. [1].
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1 42 1008 2688

56

42 24 8+161 3+6

1+12 1+2+4+8

3

3+6+24
4 2

3 36

1

Figure 5.22. The trio graph.

The intersection arrays which give the number of points in which the
tetrads of one sextet intersect the tetrads of another, up to re-ordering the
tetrads in the two sextets, are given as follows:

4 0 0 0 0 0
0 4 0 0 0 0
0 0 4 0 0 0
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4

	

2 2 0 0 0 0
2 2 0 0 0 0
0 0 2 2 0 0
0 0 2 2 0 0
0 0 0 0 2 2
0 0 0 0 2 2

	

3 1 0 0 0 0
1 3 0 0 0 0
0 0 1 1 1 1
0 0 1 1 1 1
0 0 1 1 1 1
0 0 1 1 1 1

	

2 0 0 0 1 1
0 2 0 0 1 1
0 0 2 0 1 1
0 0 0 2 1 1
1 1 1 1 0 0
1 1 1 1 0 0




For a given fixed sextet S, the numbers of sextets having intersection array
with S as shown above are 1, 90, 240 and 1440, respectively. The stabilizer
of S acts transitively on sextets having a given intersection array with
S; we shall label the above arrays J0	 J1	 J2 and J3 in the order in which
they appear. The collapsed coset graph in which sextets are joined if their
intersection arrays are of type J1 is given in Figure 5.23.

1 90 1440

240

90 48 31

1+16 3+12+12+48

9

24 12

9 72

Figure 5.23. The sextet graph.
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The Miracle Octad Generator and the hexacode
The Miracle Octad Generator (MOG) [29] is an arrangement of the 24
points of � into a 4× 6 array in which the octads assume a particularly
recognizable form, so it is easy to read them off. Naturally, the six columns
of the MOG will form a sextet and the pairing of columns 12 · 34 · 56 will
form a trio. The three octads in this trio are known as the bricks of the
MOG. The hexacode � [24] is a 3-dimensional quaternary code of length
6 introduced by John Conway whose codewords give an algebraic notation
for the binary codewords of � as given in the MOG; see Figure 5.24. The
reader should be warned that the MOG used in ref. [24] is the mirror image
of the original, which was first published in ref. [29]. Equivalently, the
two versions are obtained from one another by interchanging the last two
columns.

Explicitly, if 
0	1	�	 �̄� = K � �4, then

� =��1	1	1	1	0	0	 �	 �0	0	1	1	1	1�	 ��̄	�	 �̄	�	 �̄	���
= 
�0	0	0	0	0	0�	 �0	0	1	1	1	1��9 such�	 ���̄	�	 �̄	�	 �̄	���12 such�	
��̄	�	0	1	0	1��36 such�	 �1	1	�	�	 �̄	 �̄��6 such�� 	

where multiplication by powers of � are of course allowed, and an S4 of
permutations of the columns corresponding to

S4 � ��1 3 5��2 4 6�	 �1 2��3 4�	 �1 3��2 4��
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(a) odd interpretation
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(b) even interpretation

Figure 5.24. Correspondence between hexacodewords and subsets of �: (a) odd
interpretation; (b) even interpretation.
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�0	1	 �̄	�	0	1� ∼
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(a)


 0 11 1 22 2
3 19 4 20 18 10
6 15 16 14 8 17
9 5 13 21 12 7 (b)

Figure 5.25. (a) Interpreting hexacodewords and (b) the MOG numbering.

preserves the code. Each hexacodeword has an odd and an even interpre-
tation, as shown in Figure 5.25, where the positions in which 1 appears are
marked with an X symbol. Each interpretation corresponds to 25 binary
codewords in � , giving the 26 × 2 × 25 = 212 binary codewords of � . The
rows of the MOG are labelled in descending order, with the elements
of K as shown in Figure 5.24; thus the top row is labelled 0. Let h =
�h1	 h2	 � � � 	 h6� ∈ � . Then in the odd interpretation, if hi = � ∈K we place
1 in the � position in the ith column and zeros in the other three positions,
or we may complement this and place 0 in the �th position and 1s in the
other three positions. We do this for each of the six values of i and may
complement freely so long as the number of 1s in the top row is odd. So
there are 25 choices.

In the even interpretation, if hi = � �= 0 we place 1 in the 0th and �th
positions and zeros in the other two, or, as before, we may complement. If
hi = 0, then we place 0 in all four positions or 1 in all four positions. This
time we may complement freely so long as the number of 1s in the top row
is even.

Examples of the odd and even interpretations, together with the MOG
numbering, are shown in Figure 5.25. Figure 5.25(b) shows the standard
labelling of the 24 points of � with the projective line P1�23� such that all
permutations of L2�23� are in M24.

The hexacode also provides a very useful notation for the elements
of the elementary abelian normal subgroup of order 26 in the sextet
group, consisting of those elements which fix every tetrad (in this case
the columns of the MOG). An entry hi = � means that the affine element
x �→ x+� should be placed in the ith column. Thus 0 means all points in
that column are fixed; 1 means ‘interchange first and second, third and
fourth entries in that column’; � means ‘interchange first and third, and
second and fourth entries’; and �̄ means ‘interchange first and fourth, and
second and third entries’. Note that this implies that 45 of the non-trivial
elements are of shape 18
28, whilst 18 are fixed-point-free involutions.
These 18 form the involutions of six disjoint Klein fourgroups, such as
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��̄	�	 �̄	�	 �̄	��	 �1	 �̄	1	 �̄	1	 �̄�	 ��	1	�	1	�	1��, which are of course
permuted by the factor group S6 of the sextet group. The actions on the
six fourgroups and the six tetrads are non-permutation identical.

Finding elements of M24

During the sequel we shall on occasions need to produce elements of M24
which stabilize certain configurations. The following question arises: what
is the minimal test one can apply to guarantee that a permutation of the
points of � does in fact preserve the Steiner system and so lie in M24. This
question was answered by Curtis [30], where a set of eight octads together
with a further set of three octads were given with the properties that: (i)
all 11 together with the whole set � give a basis for � and (ii) provided a
permutation takes each of the eight octads to an octad, then it is in M24. But
� is self-dual, i.e. � = �⊥, and so an 8-element subset of � is an octad if, and
only if, it is orthogonal to a basis of � . Thus a permutation is in M24 if, and
only if, the image of each octad in our set of 8 intersects all 11 octads evenly.
It is further shown in ref. [30] that this test is the best possible of its type.

Elements of certain cycle-shapes can, however, be readily written down
using the MOG. In particular, given any octad F and any two points of �,
i and j say, not in F , then there is a unique involution Fij ∈ M24 of cycle
shape 18
28 fixing F pointwise and interchanging i and j. The transpositions
of a fixed-point-free involution of M24 may be paired in a unique manner
to form the tetrads of a sextet; thus the centralizer of such an element lies
in a copy of the sextet group. An element in this class also fixes a number
of dodecads (25 to be precise) which have two points in each tetrad of that
sextet; it is thus determined by such a dodecad. If S is a sextet and D is a
dodecad with two points in each of its tetrads, then we denote this element
of shape 212 by SD.

Furthermore, the group M24 has two orbits on subsets of size 6: special
hexads S6 which are contained in an octad, and umbral hexads U6 which
are not. Given an umbral hexad U , we may omit its points one by one and
complete the resulting pentad to an octad. This process yields six triples
which must partition the 18 remaining points. We may give one of these
triples an arbitrary sense, and then there exists a unique element of M24
of cycle shape 16
36 which fixes U pointwise and rotates this triple in the
sense we have chosen.

When in the following we need to produce elements of M24 with partic-
ular properties, we shall restrict ourselves wherever possible to these three
classes, which can be readily checked by hand.

5.7.1 The Janko group J4

This section is based on unpublished work by J. Bolt, J. N. Bray and
R. T. Curtis.

Janko discovered his fourth and largest group in 1976; it was thus the last
of the sporadic simple groups to appear. It arose through his determination
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of finite simple groups having centralizer of an involution of a particular
shape, in this case 21+12 � 3·M22, which is to say an extra special group of
order 213 extended by the triple cover of the Mathieu group M22. As the
title of his famous paper [61] makes clear, the group contains the largest
Mathieu group M24 and what was, at the time, considered to be the full
covering group of M22, i.e. 6·M22. In fact, since that time M22 has been
found to possess a Schur multiplier of order 12 (see ref. [72]) and to be the
only sporadic simple group with a quadruple cover.

The group J4 has been investigated in detail by a number of authors,
including Benson [10] and Lempken [66], the second of whom constructed
its lowest dimensional complex representation of degree 1333. However,
the group is best studied computationally by way of its remarkable 112-
dimensional representation over the field �2, discovered by Norton [74].
More recently, Ivanov and Meierfrankenfeld [54] have used the amalgam
method to produce a geometric construction of J4 in 1333-dimensional
complex space. A description of the methods employed can be found in ref.
[52]. A wealth of information about this remarkable group can be found in
ref. [53].

In what follows, we define J4 as an image of the progenitor

2�3795 �M24	

where the 3795 symmetric generators correspond to the trios. This approach
builds on Bolt’s Ph.D. thesis [11], and eventually makes use of the double
coset enumeration program of Bray and the author [17]. Norton’s remark-
able 112-dimensional representation is used to verify that the relations we
use do, in fact, hold in J4, thus giving a lower bound for the order of
the group we have defined; the double coset enumeration gives an upper
bound. All intermediate results which underlie the enumeration are, how-
ever, proved by hand. For those familiar with J4, we would point out at this
early stage that, in fact, it has two classes of subgroups isomorphic to M24,
both of which are contained in the maximal 211 �M24, where the elementary
abelian normal subgroup is the irreducible 11-dimensional submodule of
��, the cocode of the binary Golay code. Our copy of M24 belongs to the
class that contains both 2A and 2B involutions of J4; a representative of
the other class of M24 contains no involutions of J4-class 2B. The names for
particular conjugacy classes of elements in the various groups follow the
Atlas [25].

Verifying relations holding in J4

In what follows, we shall use Lemma 3.3 to identify relations by which it
might be sensible to factor our chosen progenitor. We shall then need to
verify that these relations do in fact hold in J4. To do this we work in the
112-dimensional representation over �2.

Firstly, we start with the 112×112 matrices over �2 generating J4 that
are given in the www-Atlas [75]. (These are derived from the original ones
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produced by Norton and colleagues) The generators a and b satisfy: a is
in class 2A (of J4), b is in class 4A, o�ab� = 37 and o�abab2� = 10. These
conditions determine the pair �a	 b� up to AutJ4-conjugacy; as such, the
pair �a	 b� is considered to be a pair of standard generators for J4. We then
define the following:

x:=((a*b*a*bˆ2)ˆ5)ˆ((a*b)ˆ4);
y:=((a*bˆ2)ˆ4)ˆ((a*b)ˆ2*(b*a)ˆ18);
z:=(x*y)ˆ2*(x*yˆ2)ˆ2*(x*y)ˆ3;

N:=sub<G|x,y>;
// Control subgroup isomorphic to M24.
N1:=sub<G|x,z>;
// Standard trio subgroup.

c:=aˆ(a*b*a*bˆ3*(a*b*a*bˆ2)ˆ3);
t:=(c*z)ˆ15;
// t is the symmetric generator t1.

g1:=(x*y*x*y*x*y*x*yˆ2*x*y*x*yˆ2)ˆ((x*y)ˆ6);
g2:=x*y;
g3:=(x,y*x*y*x*y)ˆ((x*y)ˆ6*(x*yˆ2)ˆ6*(x*y)ˆ3*(x*yˆ2)
ˆ6);
gg1:=[g1ˆi:i in [0..14]];
gg2:=[g2ˆi:i in [0..22]];
gg3:=[g3ˆi:i in [0..10]];

T:=[tˆ(gg1[i]*gg2[j]*gg3[k]):k in [1..11],j in [1..23],i
in [1..15]];
// All symmetric generators.
E:=Eigenspace(x,1) meet Eigenspace(y,1);
v:=E.1;
V:=[vˆu:u in T];

So we have found generators x and y of a copy N of M24 within J4 in
terms of standard generators; we have obtained words in x and y for a
copy of the trio group in M24, and we have found an element t in J4 which
commutes with this trio group. Thus t has (at most) 3795 images under
conjugation by N .

The progenitor and additional relations
As our control subgroup we shall take the Mathieu group M24 acting on the
3795 trios; thus we shall take as progenitor

P = 2�3795 � M24
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We must now consider by what additional relations we should factor
this infinite group. Since we are aiming to construct the Janko group J4,
we can use its 112-dimensional representation to confirm that it is indeed
an image of this progenitor, and to verify that the relations we produce do
hold. However, it is of interest to observe how naturally the two relations
we need emerge simply by considering M24.

Given two trios with intersection array I1, the (trio-wise) stabilizer of
them both fixes a unique further trio. Namely, if A ·B ·C and A ·D ·E are
the two trios, the further fixed trio is A · �B&D� · �C&E�. Thus if the six
tetrads of a sextet are denoted by 
1	2	 � � � 	6�, then these three trios are
12 · 34 · 56	12 · 35 · 46 and 12 · 36 · 45, which are stabilized within M24 by a
subgroup 26 � �S3 ×V4�. This last subgroup has trivial centralizer in M24 �N ,
and so by Lemma 3.3 the only element of N that can be written in terms of
these three trios is the identity. Accordingly, we set the product of the three
of them equal to the identity, and the first relation by which we quotient
out is given by

tA·B·CtA·D·EtA·�B&D�·�C&E� = 1


An immediate consequence of this is that tA·B·CtA·D·E is an involution and so
tA·B·C and tA·D·E commute.

Notation If T = A ·B ·C and U = A ·D ·E are trios with intersection
array I1, we define T +U to be the trio A ·B&D ·C&E. Note that T +U =
U + T , T + �T +U� = U and U + �T +U� = T , and also that T +U has
intersection array I1 with both T and U . We might as well also define
T +T = 0, where 0 is a symbol satisfying 0+T = T +0 = T for all trios T .
(Of course, we have not defined trio ‘addition’ for all pairs of trios T and
U .) We justify this notation by noting that when we make P��� into an
�2-vector space the addition is the symmetric difference and that two of the
octads of T +U are formed by taking symmetric differences of octads of T
and U .

For the second relation, we consider two trios whose intersection array
is I3. These may be taken to be the top two trios in Figure 5.26. The
(trio-wise) stabilizer of them both has order 26 and fixes a further three
trios, which are also shown in the diagram. We have joined two trios
if their intersection array is I3; two unjoined trios have intersection
array I1.

The centralizer of the group of order 26 stabilizing these five trios is, in
fact, its centre, which is a Klein fourgroup. So Lemma 3.3 tells us that there
are just three non-trivial elements of N which could be written as words in
these five symmetric generators. Now the set stabilizer of these five trios
has order 29; it acts on them as the obvious dihedral group D8 of symmetries
and fixes just one element of the aforementioned Klein fourgroup (namely
%2 below, which fixes all five trios) whilst interchanging the other two.
So, if any non-trivial element of N can be written in terms of these five
trios, %2 can. If we label the trios round the edge A, B, C and D in order
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Figure 5.26. The five trios fixed by the stabilizer of two trios having intersection
array I3.

(either clockwise or anticlockwise), with the central one labelled E, then
the shortest relation which does not lead to collapse is tAtBtAtD = %2, where

%2 =
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�




Naturally, we use our 112-dimensional representation to check that this
relation holds in J4. Note, however, that the two relations we have described
have arisen quite spontaneously from a consideration of the action of M24 on
trios. The full D8 of symmetries of the diagram is realized within NN �NAB��
NAB
D8, a group of order 512 = 29, and so the eight (potentially distinct)
possibilities for the relation tAtBtAtD = %2 are, in fact, equivalent. Inverting
(both sides of) this relation yields tDtAtBtA = %2 (this is also achieved by
conjugating by tD). We also note that NAB = NBA = NBC = NCD = NDA, and
that %2 is the central involution in NN �NAB�.

Note also that A+C = B+D = E, so tC	 tD ∈ �tA	 tB	 tE� and also %2 =
tAtBtAtD ∈ �tA	 tB	 tE�. Also tAtBtAtB = tAtBtAtDtE = %2tE = tE%2, an involution;
so tAtB has order 4. So we have shown Lemma 5.3.

Lemma 5.3 If the trios T and U have intersection arrays I0, I1 or I3,
then tT tU has order 1, 2 or 4, respectively. Moreover �tA	 tB	 tC	 tD	 tE	 %2� =
�tA	 tB	 tE� � D8 ×2.

The symmetric presentation
The aim of the rest of this chapter is to demonstrate the following theorem.
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Theorem 5.12 We have

G = 2�3795 �M24

tT tU tT+U = 1� tAtBtAtD = %2
� J4	

where T and U have intersection array I1, and A, B, D and %2 (and also C
and E) are as in Figure 5.26.

At this stage, we should, of course, like to use our double coset enumer-
ator to find all double cosets of the form NwN in the usual manner, where
N � M24. Unfortunately this is well out of range as M24 has index of order
1011 in J4. However, John Bray has modified the enumerator so that it can
handle double cosets of the form HwN for H �= N and is particularly profi-
cient if N ≤ H . In order to exploit this we shall deduce from our relations
that the group we have defined contains an elementary abelian subgroup of
order 211 which is normalized by N � M24; we shall then use H = 211 � M24
in our enumeration.

Note It will turn out that the symmetric generators are in J4-class 2A,
with the products tT tU residing in J4-classes 1A	2A	2B	4B and 5A, respec-
tively, where T and U have intersection arrays in the order given above.
Of course, we shall not use this information when deriving consequences of
our relations.

A maximal subgroup containing N

Our next step is to construct from our 3795 symmetric generators 1771 new
involutions which will correspond to sextets. We first need to investigate
further the relationship between sextets and trios.

The 15 trios coarsening a sextet
The 15 trios coarsening the sextet D = abcdef take the form ab · cd ·
ef and thus correspond to the synthemes of 
a	 b	 c	d	 e	 f�. Denote the
set of these 15 trios by coa�D�. We shall now study the group �tT �
T ∈ coa�D��. Only a quotient S6 of the sextet stabilizer ND � 26 �3·S6
acts non-trivially on 
tT � T ∈ coa�D��. Applying the outer automor-
phism of S6, which interchanges synthemes and duads, allows us (for
now only) to label these 15 symmetric generators as uij using unordered
pairs of 
1	2	3	4	5	6�. The extra relation tab·cd·ef tab·ce·df tab·cf ·de = 1 then
becomes u12u34u56 = 1 (and its conjugates under S6). We aim to show the
following:

2�15 �S6

u12u34u56 = 1
� 25 �S6 � 21+4 �S6	

where the notation 21+4 indicates that the elementary abelian group of order
25 possesses an invariant subgroup of order 2, which is thus central in the
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whole group. Let � = 
uij � 1 � i < j � 6�. It is obvious that u12 and u34
commute. Now,

u
u13
12 = u13u12u13 = u13u45u36u13 = u26u36u25u46

= u26u14u46 = u35u46 = u12	

and so u12 and u13 commute. Thus ��� is abelian, indeed an elementary
abelian 2-group. Let zabc be the involution uabubcuac, where the commuta-
tivity of ��� ensures that this is independent of the ordering of a, b and c.
We have

z123z124 = u12u23u13u12u24u14 = u23u14u13u24 = u56u56 = 1	

and so zabc = zabd = zade = zdef , i.e. z= zabc is independent of 
a	 b	 c�, and so
the involution z is centralized by the whole of S6. We now claim that ��� =
�u12	 u13	 u14	 u15	 z�, for (using also the symmetry under Sym
2	3	4	5�) we can
easily calculate that u23 = u12u13z, u26 = u13u14u15z and u16 = u12u13u14u15. To
determine the submodule structure, we look at the action of S6 on non-zero
vectors of ��� (they have sizes 1+ 15+ 15), and we easily determine that
the orbits of size 15 (they have representatives u12 and u12z) generate the
whole of ��� and that the orbit of size 1 generates �z�.

Converting back to our trio notation, we find that the following:

tab·cd·ef tad·cf ·ebtaf ·cb·ed = sD	

where sD (the element z above) is an involution centralized by the whole
of the sextet group ND � 26 �3·S6. We refer to the sD as sextet elements (or
involutions). Note that sD is independent of the three trio elements (where
the trios are all coarsenings of D) used to define it. We have also shown the
following.

Lemma 5.4 The group �tT � T ∈ coa�S�� is elementary abelian of order 25

and has a unique involution (which we call sD) that commutes with the
whole of ND � 26 �3·S6. (There is no reason a priori why sD should be non-
trivial, but in our matrix group it is actually an involution.)

In the course of proving the above result, we have also demonstrated the
following lemma.

Lemma 5.5 If the trios T and U have intersection array I2, then tT and tU
commute.

The seven sextets refining a trio
For a trio T , define ref�T� to be the set of seven sextets refining a trio. Now
that we have defined the sextet elements sD, we wish to investigate the
group �sX � X ∈ ref�T�� for a particular (fixed) trio T . If T is the MOG trio,
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then the seven refinements have identical tetrads in each of the three bricks.
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A useful mnemonic might be: Adjacent, Broken, Central, Descending, Ech-
elon, Flagged, Gibbous.

Note that sD thus denotes the sextet element corresponding to the
columns of the MOG. In ��, the cocode of the Golay code � , these seven
sextets certainly comprise the non-zero vectors of a 3-dimensional subspace,
and it will be our first objective to show that our two relations imply that
the subgroup of G generated by the seven sextet elements corresponding to
these seven sextets is also elementary abelian of order 23. It is sufficient to
show Lemma 5.6.

Lemma 5.6 If A	B and C are the three sextets defined above, then we have
sAsB sC = 1.

Proof The subgroup of M24 fixing the three sextets A	B and C is
a subgroup L of index 7 in the trio group of shape 26 � �S3 × S4�. We
shall now identify an orbit of this group on trios and thus obtain a sub-
progenitor, which we shall investigate. In fact, there are 36 octads of the
form �0	X or X′	X or X′�, where X is one of the three tetrads A	B	C shown
above as tetrads of sextets refining the MOG trio, and X′ denotes the com-
plement of X. The notation indicates the intersection of the octad with each
brick of the MOG. There are then 18 trios which contain one of the three
octads of the MOG trio, and two of the above 36 octads. We denote, for
instance,

A+
1 = 
�0′ 0 0�	 �0 A A�	 �0 A′ A′�� =

× × � � � �
× × � � � �
× × · · · ·
× × · · · ·

	

A−
1 = 
�0′ 0 0�	 �0 A A′�	 �0 A′ A�� =

× × � � · ·
× × � � · ·
× × · · � �
× × · · � �
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Thus in a symbol X±
i the X denotes one of A	B or C, the subscript denotes

which brick of the MOG trio is to be present, and the sign indicates that
the pattern in the other two MOG octads is repeated (+) or complemented
(−). There are thus 3×3×2 = 18 such trios, and they clearly form an orbit
under the action of the group L; we thus have a subprogenitor

PL = 2�18 � �26 � �S3 ×S4��	

which inherits a number of relations from Theorem 5.12:

(i) A+
1 A

−
1 = tE;

(ii) A+
1 B

+
1 C

+
1 = 1;

(iii) A+
1 A

+
2 = A+

2 A
+
1 (derived from A+

1 A
+
2 A

−
3 = sA);

(iv) A+
1 B

+
3 A

+
1 B

−
3 = %2, of Theorem 5.12.

Of course, all conjugates of these relations under L also hold. We shall work
in HL = �X±

i � X ∈ 
A	B	C�	 i ∈ 
1	2	3��, the group generated by the 18
symmetric generators, and in our calculations we use the fact that

K =
〈
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�
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�

�

� 〉

� 23

lies in its centre. Note that relation (iv) and conjugation by elements of L
imply that �X±

i Y
±
j �

2 = %ktE, for X	Y ∈ 
A	B	C�	 X �= Y	 i	 j	 k distinct. Using
these relations, we have the following:

sAsB =A+
1 A+

2 A−
3 B−

3 B−
2 B−

1 = A+
1 A+

2 C+
3 B−

2 B−
1

=A+
1 A+

2 B+
2 C+

3 B−
1 %1 = A+

1 C+
2 C+

3 B−
1 %1

=A+
1 C+

2 B+
1 C+

3 %2%1 = A+
1 B−

1 C+
2 C+

3 %3%2%1

=C−
1 C+

2 C+
3 = sC	

as required. �

The subgroup 211 � M24

Now that we have shown that the product of two sextet elements whose
associated sextets have intersection array J1 is indeed the sextet element
corresponding to the sextet which is the sum in �� of those two sextets, we
are in a position to prove that

2�1771 �M24

sAsBsC = 1
� 211 �M24


We may proceed using our double coset enumerator [17] to enumerate the
�N	N�-double cosets where N � M24. We find that there are three double
cosets, containing 1, 1771 and 276 single cosets, respectively, and thus that
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there are 2048 = 211 single cosets. But the above progenitor certainly does
map onto a group of shape 211 � M24, in which the 211 when considered
as an M24-module is the even part of the Golay cocode, and in which the
additional relation does hold. Coset enumeration shows that the image has
the right order, and so this surjection is an isomorphism. Taking the group
M24 as permutations on 24 letters, appropriate computer input and output
in Magma [19] is as follows:

> sext:=sub<m24|Stabilizer(m24,{24,3,6,9}),
> Stabilizer(m24,{23,19,15,5})>;
> f,N,k:=CosetAction(m24,sext);
> oo:=Orbits(Stabilizer(N,1));
> [#oo[i]:i in [1..#oo]];
[ 1, 90, 240, 1440 ]
> Fix(Stabilizer(N,[1,Random(oo[2])]));
{ 1, 135, 315 }

The sextet stabilizer has been obtained as the subgroup generated by the
stabilizers of each of two tetrads whose union is an octad, in this case

24	3	6	9	23	19	15	5�. For computational purposes, we have replaced 0
of the 24-point projective line by 23, and 
 by 24. The next few commands
identify an even line of sextets, so the three sextets labelled 1, 135 and 315
here correspond to an image of A	B and C:

> RR:=[<[1,135,315],Id(N)>];
> HH:=[N];
> CT:=DCEnum(N,RR,HH:Print:=5,Grain:=100);

Index: 2048 === Rank: 3 === Edges: 7
> CT[4];
[

[],
[ 1 ],
[ 1, 5 ]

]
> CT[7];
[ 1, 1771, 276 ]
>

The single relation by which we have factored the progenitor corresponds
to

s1 s135 s315 = 1


The output tells us in CT[4] that there are just three double cosets of form
NwN , namely N	Ns1N and Ns1s5N , and in CT[7] that these three contain
1, 1771 and 276 single cosets of N , respectively.

The above progenitor is what is called a universal representation group
for the point-line incidence system � = �P	L�, where P is a set of points
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and L a set of lines with three points per line (see, for example ref. [2]).
Explicitly, we define the following:

R��� = �ti	 i ∈ P � t2i = 1	 titjtk = 1 for 
i	 j	 k� ∈ L�	
so we require that the three points on a line correspond to the three non-
trivial elements of a Klein fourgroup. It is shown in ref. [2] that the universal
representation group in our example, where the points are the sextets and
the lines are sets such as 
A	B	C�, is abelian, and Ronan and Smith [76]
show that as a vector space over �2 it has dimension 11.

Since the identification of this group is crucial to the enumeration which
follows, and to make the present argument self-contained, we demonstrate
how this result can be proved by hand using the techniques of symmetric
generation. We start by showing the following.

Lemma 5.7
2�35 � A8

abcd

efgh


abef

cdgh


abgh

cdef
= 1

� 26 � A8	

an elementary abelian group of order 64 extended by the alternating group
on eight letters. Here A8 is viewed as a permutation group acting on the
35 partitions of eight letters into two fours, and there are 35 symmetric
generators corresponding to these partitions.

Proof Our additional relation implies that any two symmetric gener-
ators whose tetrads intersect evenly commute; we must investigate a pair
of symmetric generators whose tetrads intersect oddly. But we have

x = abcd

efgh


ebcd

afgh
= abcd

efgh


abef

cdgh


abef

cdgh


ebcd

afgh
= abgh

cdef


afcd

begh
	

which is centralized by

��b c d�	 �c d��gh�	 �fgh�	 �ae��bf��cg��dh�	 �bgh�� � S6

with orbits 
a	 e� and 
b	 c	d	 f	 g	h�. In particular, x corresponds to the
unordered pair 
a	 e� of the eight letters and so there are at most 28 such
elements. Multiplication of x by any symmetric generator corresponding
to a partition with a and e on opposite sides results in a single symmetric
generator and, since �b f��c g d h� centralizes x, we have

abcd

efgh


ebcd

afgh
=
(
abcd

efgh


ebcd

afgh

)�b f ��c g d h�
= afgh

ebcd


abcd

efgh



Thus the generators all commute with one another, and the group they
generate has order 1+35+28 = 26. �

We are now in a position to prove Theorem 5.13 by hand.
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Theorem 5.13

G = 2�1771 � M24

sAsBsC = 1
� 211 � M24	

an elementary abelian group of order 2048 extended by M24.

Proof Firstly, note that, for a fixed octad O, the 35 sextets that have a
tetrad in O satisfy the relation of Lemma 5.7 and so generate an elementary
abelian group of order 26. We call such a subspace the octad space of the
octad O and denote it by UO. Now any two sextets which intersect as J1 or
J2, as in the labelled arrays on p. 179, lie together in some octad space and
so commute. The product of two J2-related sextet elements is a ‘duad-type’
element in that octad space. We see that

δ =
×
×
×
×

×
×
×

×
=

×
×
×
×

×
×

×
×

2

×
×
×

×

=

×
×

×

× ×

×

×
×

×
×

=

°
°
°

°
°
° ,

where in each case four ×s indicate the sextet element defined by that
tetrad; when necessary below we shall complete all six tetrads of a sextet
element. In the final line we indicate the ‘duad-type’ element and, with
the �s, the octad space to which it belongs. We wish to show that this
duad-type element is independent of the octad space used to define it.
Certainly it commutes with the subgroup of the relevant octad stabilizer
fixing the duad, which is to say a group of shape 24 � S6. Moreover, we have
the following:

δ =

× ×

°
°
°

°
°
° =

×
×
×
×

×
×
×

×
2

×
×
×

×

=

=

×
×

×
×

×
×

×
×

2

×
×

×
×

=

×
° °

°

×
° °

°

° °
°

,

×

°
°
°

×

°
°
°

× ×

°
°
°

°

×× °

° °

° °
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which shows that

$ =
�
�
�

�
�
�

× ×

�
�

�
�

� �
× ×

=
�
�
�

� � �× ×
�

�
�

�
� �

× ×



It is of course our objective to show that this element $ is in reality the
identity element. We see that $ is fixed by

H =

a1 b1

d1

c1

a3

a2
b2

b3

e1

f1

c3

c2

f2

e3

d2

d3

e2

f3

, , ,

Note that each of these elements is of one of the types described at
the beginning of this section and so may be readily shown to lie in our
copy of M24. We now argue that H = N � M24. We note that H is visibly
transitive on the 24 points, and so must be contained in one of the transitive
maximal subgroups of M24 or be the whole group. The possibilities are H ≤
L2�7�	L2�23�, the trio stabilizer, the sextet stabilizer or the duum stabilizer
M12 � 2. But the first three of these generators of H generate a subgroup
with suborbits of lengths 1+1+22, so it contains elements of order 11; this
group cannot fix a duum (it would have to have blocks of imprimitivity of
size 12), and so H can only be a copy of L2�23� or M24. However, involutions
in L2�23� are fixed-point-free, and H contains involutions of cycle shape
18
28. So the only possibility is that H = N .

This is a powerful fact, which can now be used to complete our proof
that $ = 1. For instance, let

� = ·
·

·
·

·
·

·
· ∈ H = N � M24


Applying this element to $ and cancelling, we obtain the following:

$ =
�
�
�

�
�
�

× ×

�
�

�
�

� �
× ×

�
�

�
�

�
�

=
�

� � � �
�× ×

�
�

�
�

� �
× ×

�
�

�
�

�
�
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and so

 1 =
�
�
�

�
�
�

× ×

is fixed by � as well as a subgroup of shape 24 � S6 fixing a duad and an octad
containing it, which we saw previously. The maximality of this subgroup in
M22 � 2 shows that  is fixed by the whole of M22 � 2 and is thus independent
of the octad space used to define it; it thus depends only on the duad and
has just

( 24
2

) = 276 images under the action of M24. Now, any two duads
lie together in some octad space and so they commute. Moreover, any
sextet is the product of two duads in some octad space, and so the group
generated by the duads equals the group generated by the sextets, and this
group is abelian. But any duad and any sextet lie together in some octad
space, and their product is either a duad or another sextet. So the set of
duads and sextets (together with the identity) is closed under mulitplication
and forms an elementary abelian group of order 1 + 1771 + 276 = 211 as
required. �

So let H = �N	 tS�, where S is a sextet. The above shows that H � 211 �M24.
We now use our double coset enumerator [17] to enumerate the �H	N�-
double cosets within our symmetric presentation. We must first obtain M24
as permutations on 3795 letters:

> m24<a,b>:=PermutationGroup<24|(1, 2, 3, 4, 5, 6, 7, 8, 9,
10,11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23),(1, 11)
(3, 19) (4, 20)(5, 9)(6, 15)(13, 21)(14, 16)(23, 24)>;

> #m24;
244823040

> oct:=Stabilizer(m24,{ 3, 5, 6, 9, 15, 19, 23, 24 });
> triopw:=Stabilizer(oct,{ 1, 4, 11, 13, 14, 16, 20, 21 });
> trio:=sub<m24|triopw,m24!(1, 2, 23)(3, 4, 18)(5, 21, 7)
(6, 16,8)(9, 13, 12)(10, 19, 20)(11, 22, 24)(14,17, 15),
m24!(1, 23)(3, 4)(5, 21)(6, 16)(9, 13)(11, 24)(14, 15)
(19, 20)>;

> Index(m24,trio);
3795

The group M24 is entered as permutations on 24 letters. The subgroup oct
is the stabilizer of an octad, and triopw is the stabilizer of each of three
octads comprising a trio. We then adjoin permutations permuting those
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three octads to obtain the full trio stabilizer trio and verify that it has
index 3795 in M24:

> f,N,k:=CosetAction(m24,trio);

> st1:=f(trio);
> for i in [1..3795] do
for> orb:=iˆst1;
for> if #orb eq 1008 then
for|if> ss:=i;
for|if> break;
for|if> end if;
for> end for;
> xx:=Fix(Stabilizer(st1,ss));
> xx;
{ 1, 5, 823, 1240, 3115 }
> nxx:=Stabilizer(N,xx);
> znxx:=Centre(nxx);
> #znxx;
2
> 1ˆnxx;
GSet{ 1, 5, 823, 3115 }

We take the action of M24 on the trios and obtain a trio ss in the 1008-orbit
of the stabilizer of the original trio, which is labelled 1. The set of five trios
xx corresponds to Figure 5.9; the set stabilizer of xx acts as D8 on xx, and
so we can identify that trio 1240 is the ‘central’ trio corresponding to E. Now
the element %2 of Theorem 5.12 is central in this stabilizer, and so we are
almost ready to write down our relations. We finally require the following:

> Fix(Stabilizer(st1,1240));
{ 1, 823, 1240 }

We find that the vertex opposite A = 1 in Figure 5.9 is labelled 823, and
so, without loss of generality, we have the correspondence �A	B	C	D	E�=
�t1	 t5	 t823	 t3115	 t1240�. Thus our two defining relations are (i) t1t1240t823 = 1
and (ii) t1t5t1t3115 = %2, the non-trivial element in the centre of the stabilizer
of xx:

> for j in [1..3795] do
for> orb:=jˆst1;
for> if #orb eq 56 then
for|if> tt:=j;
for|if> break;
for|if> end if;
for> end for;
> Fix(Stabilizer(st1,tt));
{ 1, 110, 2165 }
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It remains to extend the subgroup N to H , where H � 211 � M24. All we
need is three trios whose product is a sextet-type element; i.e. a trio tt in
the 56-orbit of the stabilizer of trio 1, and the unique third trio which is
fixed by the stabilizer of 1 and tt. The previous calculation shows us that

1	110	2165� is such a set of trios. We now have the following:

> RR:=[<[1,5,1,3115],cnxx.1>,<[1,1240,823],Id(N)>];
> HH:=[*N,<[1,110,2165],Id(N)>*];
> CT:=DCEnum(N,RR,HH:Print:=5,Grain:=100)

The two relations are fed into RR and the subgroup H is entered as HH;
an enumeration of the double cosets of form HwN is then carried out. As
before, we store representatives for w in CT[4], thus, for example, the fifth
double coset here denotes Ht1t5t3N , and the number of single cosets each
contains is recorded in CT[7]. The enumeration took just over two minutes
on a 3.2 GHz Pentium 4 PC with 1 GB of memory. A word of warning:
the coset representatives in CT[4] are not necessarily the shortest possible
words in the ti, but are essentially the first representatives found by the
program. This yields the following output:

Index: 173067389 === Rank: 20 === Edges: 3121 ===
Status: Early closed === Time:131.062

> CT[4];
[

[],
[ 1 ],
[ 1, 5 ],
[ 1, 2 ],
[ 1, 5, 3 ],
[ 1, 5, 23 ],
[ 1, 5, 23, 38 ],
[ 1, 2, 33 ],
[ 1, 2, 40 ],
[ 1, 2, 32 ],
[ 1, 2, 70 ],
[ 1, 5, 3, 2077 ],
[ 1, 5, 6, 380 ],
[ 1, 5, 63, 6 ],
[ 1, 5, 23, 38, 1034 ],
[ 1, 5, 23, 38, 276 ],
[ 1, 2, 219 ],
[ 1, 2, 32, 2949 ],
[ 1, 2, 70, 302 ],
[ 1, 5, 23, 38, 634 ]

]
> CT[7];
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[ 1, 3795, 318780, 5100480, 81607680, 1275120, 15301440,
40803840, 1912680,2550240, 7650720, 12241152, 2550240,
967680, 53130, 478170, 212520, 1771, 26565, 11385 ]

We find that there are (at most) 20 double cosets and 173 067 389 =
112 ×29×31×37×43 single cosets, which gives an upper bound on the order
of the group generated by our 112-dimensional matrices (and the group
defined by our symmetric presentation) of 173 067 389 ·211 · �M24�. But a
random search in our 112-dimensional matrix group easily locates elements
of orders 29, 31, 37 and 43. In order to show that 112 divides the index of H
in G, we seek a subgroup of order 113 in our matrix group by using random
searches to locate U3�11� (or U3�11��2) and working inside this to locate
some subgroup lying in between 111+2

+ and 111+2
+ ��5×8 �32�, from which we

easily get the desired subgroup. Since H has order 221 ×33 ×5×7×11×23,
we see that the index 173067 389 is exactly the index of H in G, and so G
has the same order as J4 (since we know that elements of order 2 that are
meant to be in the normal 211 of H still have order 2 in our matrix group,
and so H does not collapse to a proper image).

We now check primitivity of the above action by showing that H is
maximal in G. But we know a set of �H	N�-double coset representatives,
and since N ≤ H , the �H	H�-double coset representatives can be chosen
from among these. We need only check that �H	g� = G whenever g is an
�H	H�-double coset representative (other than the case when g is obviously
in H). This is easily done with the enumerator (one adds these double coset
representatives to the generators for H and sets the enumerator running
again). We now show the following.

Theorem 5.14 G is simple.

Proof Let K be a non-trivial proper normal subgroup of G. Then
in the already mentioned 173067 389-point action, G is primitive and so
K is transitive. The point-stabilizer can be taken to be H , and we must
have �K ∩H� � H , and so K ∩H � 1, 211 or K ∩H = H . If K ∩H = H ,
then K = G, contradicting the fact that K is proper. If K ∩H = 1, then
�K� = 173067 389, the minimum possible order of a non-trivial normal sub-
group of G, so K is characteristically simple and hence simple as its order
is not a proper power. But this is impossible as K has odd order. Lastly
we consider the case when K ∩H � 211. Since we have now dealt with
the case K ∩H = 1, K is now minimal normal and therefore (characteris-
tically) simple. Now let P � 211 be a Sylow 2-subgroup of K (we can take
P = K∩H). Now, H ≤ NG�P� and P is not normal in G (since 173067 389 �

�P� = 2048), so, by the maximality of H , we get H = NG�P�. So NK�P� =
K∩NG�P� = K∩H = P, and the Burnside normal p-complement theorem
with p = 2 shows that K is not simple, a contradiction. Thus the theorem
is proved. �
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An ordinary presentation of J4

An ordinary presentation of J4 deduced from our symmetric presentation
will take the following form:

�x	 y	 t � R�x	 y�	 t2 = 1 = �t	w1�x	 y�� = �t	w2�x	 y��

= u1�x	 y	 t� = u2�x	 y	 t��	
where R�x	 y� are relations in x and y which ensure that �x	 y� � M24, w1
and w2 are words in x and y such that �w1	w2� � 26 � �S3 ×L3�2��, and u1
and u2 are relations in x	 y and t which correspond to our two additional
relations. Explicitly we have the following:

�x	 y	 t � x2 = y3 = �xy�23 = �x	 y�12 = �x	 yxy�5 = �xy�xyxy−1�3�4

= �xyxyxy−1�3�xyxy−1xy−1�3 = t2 = �t	 yxy�xy−1�2�xy�3�

= �t	 x� = �ytyxy
−1xyxy−1x�3 = ��yxyxyxy�3tt�xy�

3y�xy�6y�2 = 1 �

The restriction of this presentation to �x	 y� (by removing the relations
involving t) yields a presentation of M24. This has been demonstrated
by enumerating the 10644480 cosets of �xy�, which in Magma with
Hard:=true set can be done in the space required to store 11×106 cosets
defining fewer than 12
5×106 cosets in total. We note that

�x	 y	 �yt�yx�4y−1x�3� � 211 �M24


It is not possible to enumerate the 173067 389 cosets of this subgroup on
machines with 32-bit addressing architecture. (The minimum table size
needed is 4×4×173067 389 = 2769078224 bytes, i.e. about 2
58GB, and
we do not even know if a coset enumerator can successfully perform such
an enumeration in a manner that defines few redundant cosets.)

The symmetric generators lie in class 2A, and we conclude this section
by giving words in x	 y and t which generate CG�t� � 21+12 � 3·M22
2. Thus,

CG�t�=�t	 x	 yxy�xy−1�2�xy�3	 txyxy
−1xy	 txyxy

−1�
=�yxy�xy−1�2�xy�3	 xtxyxy

−1�


Single relator symmetric presentation
We conclude by mentioning that Bray has shown that our first addi-
tional relation, namely tT tU tT+U = 1, is essentially redundant. In fact,
Theorem 5.15 follows.

Theorem 5.15

G = 2�3795 �M24

tAtBtAtD = %2
� J4 ×2	

where A, B, D and %2 are as in Figure 5.9.
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Proof Note that G has a subgroup of index 2, namely the set of ele-
ments �w, where � ∈N and w is a word in the symmetric generators of even
length, and so cannot be simple. We shall show that the element tT tU tT+U ,
which has order 1 in J4, is an involution in the centre of G. For convenience
of notation, we shall denote the symmetric generator tF , for F a trio, simply
by F . Thus we have the following relations:

ABAD = BCBA = CDCB = DADC

= ADAB = BABC = CBCD = DCDA = %2

and, inverting,

DABA = ABCB = BCDC = CDAD

= BADA = CBAB = DCBC = ADCD = %2


So C = BAB%2, and D = ABA%2, and we have C	D ∈ �A	B	%2�. Moreover,

%2 = DADC = ABAAABABAB%3
2 = �AB�4%2	

and so �AB�4 = 1. Moreover, AC = %2ABAB and so CA= %2BABA=AC; thus
A and C commute. Similarly B and D commute, and E (having an octad in
common with each of the trios A	B	C and D) commutes with all of them.
In particular, ACE is an involution, independent of the ordering of A	C
and E. But ACE = ABABE%2 and BDE = BABAE%2 = ACE; so the element
ACE = z, say, is fixed by any permutation of M24 which fixes 
A	C	E� and
by any permutation of M24 which fixes 
B	D	E�. One readily verifies that

�StabM24
�
A	C	E��	StabM24

�
B	D	E��� = N � M24


Thus z is centralized by N and by tE, and so by the whole ofG. Factoring out
the subgroup �z� gives the group J4, as in Theorem 5.12, and so G� 2×J4
as required. �

5.7.2 The Conway group ·O
The Leech lattice � was discovered by Leech [65] in 1965 in connection
with the packing of non-overlapping identical spheres into 24-dimensional
space �24 so that their centres lie at the lattice points; see ref. [26]. Its
construction relies heavily on the rich combinatorial structure underlying
the Mathieu group M24. The full group of symmetries of � is, of course,
infinite as it contains all translations by a lattice vector. Leech himself
considered the subgroup consisting of all symmetries fixing the origin O; he
had enough geometric evidence to predict the order of this group to within
a factor of 2, but could not prove the existence of all the symmetries he
anticipated. It was John McKay who told John Conway about � – and the
rest, as they say, is history. In two elegant papers (see refs. [20] and [22])
Conway produced a beautifully simple additional symmetry of � and found
the order of the group it generates together with the monomial group of
permutations and sign changes used in the construction of �. He proved
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that this is the full group of symmetries of � (fixing O), showed that it is
perfect with centre of order 2, and that the quotient by its centre is simple.
He called the group ·O to signify that it was the stabilizer of O in the full
group of symmetries of �, and he extended the notation to ·2 and ·3, the
stabilizers of vectors of type 2 and type 3, respectively. The symbol ·1 was
then used to denote the quotient ·O/�±1�.

In this section we use the methods of symmetric generation to define ·O
directly from M24 by considering a homomorphic image of an infinite group,
which we denote by

P = 2��
24
4 � � M24


Here 2��
24
4 � denotes a free product of

( 24
4

)
cyclic groups of order 2, corre-

sponding to the tetrads of the 24-point set on which M24 acts. This free
product is extended by M24 itself to form a semi-direct product in which M24
acts in the natural manner on tetrads. Lemma 3.3, which first appeared in
ref. [33], is then used to yield a relation, first shown to be sufficient to define
·O by Bray, by which we can factor P without leading to total collapse.
Since P is a semi-direct product, every element of it can be written as �w,
where � is an element of M24 and w is a word in the

( 24
4

)
involutory genera-

tors of the free product. The relator by which we factor takes a particularly
simple form, with the length of w being just 3; thus, the corresponding
relation has the form % = tT tU tV , where % ∈ M24 and T	U , and V are tetrads.

Having defined this quotient G, we use the double coset enumerator
of Bray and Curtis [17] to demonstrate that it is indeed a group of the
required order. We then seek a faithful representation of minimal degree
and, unsurprisingly, come up with dimension 24. Embedding G in O24���
is readily accomplished, and it turns out that the involutory generators
corresponding to the tetrads are simply the negatives of Conway’s original
elements. The Leech lattice follows, of course, by letting this orthogonal
group act on the vectors in the standard basis of �24.

The progenitor for ·O and the additional relation
As has been mentioned above, the Mathieu group M24 acts quintuply tran-
sitively on 24 letters and so permutes the

( 24
4

)
tetrads transitively. This

action is not, however, primitive as the six tetrads which together comprise
a sextet form a block of imprimitivity. We shall consider the progenitor

P = 2��
24
4 � � M24


Thus, a typical symmetric generator will be denoted by tT , where T is a
tetrad of the 24 points of �. Whereas the rank of the symmetric group S24
acting on tetrads is just 5, depending only on the number of points in which
a tetrad intersects the fixed tetrad T , the tetrad stabilizer in M24, which
has shape 26 � �3×A5� � 2, has 14 orbits on tetrads. We shall be concerned
with pairs of tetrads which lie together in a common octad of the system
and which intersect one another in two points. Having fixed the tetrad T ,
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there are clearly
( 4

2

) · 5 · ( 4
2

) = 180 possibilities for a tetrad U to intersect
it in this manner. The stabilizer in M24 of both T and U thus has order
26 ·3 ·120/180 = 27 and shape 24 � 23. Indeed, the stabilizer of an octad has
shape 24 �A8, where the elementary abelian 24 fixes every point of the octad,
and we have simply fixed a partition of the eight points of the octad into
pairs (and fixed each of those pairs). To be explicit, we let T be the tetrad
consisting of the top two points in each of the first two columns of the
MOG, and we let U be the first and third points in each of the first two
columns. In what follows, we shall often denote the element tT by ×s in the
four positions of T as displayed in the MOG diagram. Thus,

tT =
× × 
 
 
 


× × 
 
 
 



 
 
 
 
 



 
 
 
 
 


	 tU =
× × 
 
 
 



 
 
 
 
 


× × 
 
 
 



 
 
 
 
 


	

a a

b b

c c

d d




Now, the tetrads T and U determine a pairing of of the first brick into duads
a	b	 c and d. The stabilizer of T and U , StabM24

�TU�, must fix each of these
duads and so commute with the symmetric generators � = 
tab = tT 	 tac =
tU 	 tad	 tbc	 tbd	 tcd�. Lemma 3.3 says that the only elements of N � M24 which
can be written in terms of the elements in � without causing collapse must
lie in the centralizer in M24 of StabM24

�TU�, and we have

CM24
�StabM24

�TU�� = Z�StabM24
�TU�� =

〈

% =
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� 〉

� C2


We now seek to write % = w�tT 	 tU 	 � � � �, a word in the elements of � of
shortest possible length without causing collapse. But l�w�= 1 would mean
that % = tT commutes with the stabilizer of T , which it does not; l�w� = 2
would mean that % = tT tU , but this means that % = tabtac = tactad = tadtab,
and on multiplying these three relations together we obtain % = 1. So the
minimum length for w is 3, and we have a relation % = xyz. Firstly, note
that each of x	 y and z commutes with % and so xy = z% is of order 2; thus x
and y commute with one another, and similarly all three elements x	 y and
z commute with one another. In particular, the three elements x	 y and z
must be distinct if we are to avoid collapse. Suppose now that two of the
tetrads are complementary within the octad 
a	 b	 c	d�, so that, without
loss of generality, we have tabtcdtac = %. But an element such as

� = �� ∈ M24
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commutes with % and acts as �a��b��c d� on the pairs; conjugating our rela-
tion by this element, we have tabtcdtac = tabtcdtad, and so tac = tad, leading to a
contradiction. There are thus just two possibilities for a relation of length 3:

(i) tabtactbc = %;

(ii) tabtactad = %.

In order to see that case (i) fails, we proceed as follows. The orbits of M24
on the subsets of � were calculated by Todd and displayed in a convenient
diagram by Conway [23]. The 8-element subsets fall into three orbits, which
are denoted by S8	 T8 and U8 and referred to as special (the octads them-
selves), transverse and umbral. Umbral 8-element subsets fall uniquely into
four duads in such a way that the removal of any one of the duads leaves
a special hexad (i.e. a hexad which is contained in an octad). An explicit
example is given by the pairs 
a	 b	 c	 e�:

× × × ×
× ×
× × 	

a a e e

b b

c c



We work in the elementary abelian group of order 8 generated by

tab	 tac	 tae�. Then

1 = t2abt
2
act

2
ae = tabtac
tactae
taetab

= tbc tce �
��
� tbe

��

= tbe �� tbe ��

= ,

which is a contradiction. In the following section, we shall explore the
consequences of the relation in case (ii), namely that tabtactad = %.

Investigation of the image of our progenitor
The rest of this section will be devoted to showing Theorem 5.16 holds.
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Theorem 5.16

G = 2�
24
4 � � M24

tabtactad = %
� ·O	

where the duads a	b	 c	d partition an octad, and CM24
�StabM24

�a	 b	 c	d��
= �%�


From Corollary 3.1, we see that G is perfect. In order to proceed, it will
be useful to introduce names for certain frequently used tetrads. If T is a
tetrad, then the associated symmetric generator will, of course, be denoted
by tT . Thus the subsets of the first brick (first two columns) of the MOG
shown on p. 189 give us the elements 
tA	 tB	 � � � 	 tG�.

In fact, the seven sextets defined by these seven tetrads are precisely
the set of sextets which refine the MOG trio, the six tetrads in each case
being the same pattern (and its complement) repeated in each brick of the
MOG. If T is one such tetrad, then we denote by T ′ its complement in the
octad shown, which we shall denote by O. Thus we should have tA = tcd
and tA′ = tab in the notation of this section. Our relation then becomes
tA′ tB′ tC′ = %. We have already seen that, if T and U are two tetrads which
intersect in two points and which lie together in the same octad, then tT
and tU commute; thus, since tA commutes with tB′ 	 tC′ and %, tA commutes
with tA′ . So two symmetric generators whose tetrads are disjoint and whose
union is an octad also commute. In fact, Lemma 5.8 follows.

Lemma 5.8 The involution tAtA′ = tA′ tA = tXtX′ for X any tetrad in the octad
O; and so tAtA′ = (O, say, an involution which commutes with the octad
stabilizer of shape 24 � A8.

Proof The element tAtA′ certainly commutes with the subgroup H of
the octad stabilizer which fixes a partition of the eight points into two
tetrads, namely a subgroup of M24 of shape 24 � �A4 × A4� � 2, which is
maximal in the octad stabilizer 24 �A8. But, using the relation twice, we have

tAtA′ = tAt
2
BtA′ = tC′ % tC % = tC′ tC	

which is fixed by

� =
. . . .

. . . .

�� .

But � does not preserve the partition of O into two tetrads, and so
�H	�� � 24 � A8. �

In this manner, we obtain just 759 octad-type involutions of the form (O for
O ∈ �8, the set of octads in the Golay code. We shall show that E = �(O � O ∈
�8� � 212, an elementary abelian group of order 212. Before proceeding, let
us suppose that O and O′ are octads which intersect in four points; then
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O \O′ = T1	O
′ \O = T2 and O∩O′ = T3 are three tetrads of a sextet. By the

above, we have

(O(O′ = tT1
tT3

tT2
tT3

= tT1
tT2

= (O+O′ 	

where O+O′ denotes the symmetric difference of the octads O and O′; in
this respect, (O and (O′ behave like octads in the Golay code. When we
have occasion to display a particular symmetric generator tT in the MOG,
we shall place × in the positions of the tetrad T ; when we wish to display
an element (O, we shall insert � in the positions of the octad O.

Elementary abelian subgroup of order 212

We may readily convert this problem into the language of progenitors, as
we have 759 involutory generators corresponding to the octads, subject to
the above relation and permuted by M24. We are attempting to show the
following lemma.

Lemma 5.9
2�759 � M24

(O(U(O+U = 1
= 212 � M24	

where O and U are two octads which intersect in four points, and O+U
denotes their symmetric difference.

This is an ideal opportunity to illustrate the double coset enumerator of
Bray and the author [17]. We need the action of M24 on 759 points, and
may obtain this using Magma as follows:

> g:=Sym(24);
> m24:=sub<g|g!(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23),
> g!(1, 11)(3, 19)(4, 20)(5, 9)(6, 15)(13, 21)(14, 16)
(23, 24)>;
> #m24;
244823040
> oct:=Stabilizer(m24,{24,23,3,6,9,19,15,5});
> f,nn,k:=CosetAction(m24,oct);
> Degree(nn);
759

We have input two permutations of degree 24 which generate M24 and
then asked for the action of this group on the cosets of the stabilizer of an
octad. We must now feed in our additional relation, and to do this we need
an octad which intersects the first one in four points. This means it must
lie in the 280-orbit of the stabilizer of the first octad:

> oo:=Orbits(Stabilizer(nn,1));
> [#oo[i]:i in [1..#oo]];
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[ 1, 30, 280, 448 ]
> r:=Random(oo[3]);
> r;
52
> Fix(Stabilizer(nn,[1,52]));
{ 1, 52, 367 }

The octad labelled 52 is a random member of the 280-orbit. The only other
octad fixed by the stabilizer of octads 1 and 52 is the one labelled 367,
and so the relation must be that the product of these three octads is the
identity:

> RR:=[<[1,52,367],Id(nn)>];
> HH:=[nn];
> CT:=DCEnum(nn,RR,HH:Print:=5, Grain:=100);

Index: 4096 === Rank: 5 === Edges: 13 === Time: 2.169

> CT[4];
[

[],
[ 1 ],
[ 1, 2 ],
[ 1, 32 ],
[ 1, 32, 752 ]

]
> CT[7];
[ 1, 759, 2576, 759, 1 ]
>

This relation is fed into RR, and the double coset enumerator tells us
that there are five double cosets with the expected sizes. With the current
labelling of octads, they are N , N(1N , N(1(2N , N(1(32N and N(1(32(752N .
The subgroup clearly maps onto the binary Golay code � , and, since it has
order 212, it is isomorphic to � .

The subgroup generated by the 759 involutory generators in the above
progenitor is a universal representation group, as on p. 191. It is shown in ref.
[2] that the universal representation group in our example, where the points
are the octads and the lines are sets such as 
O	U	O+U�, where O and
U are octads which intersect in four points, is elementary abelian of order
212. This fact has been proved above by our double coset enumeration, but,
since it is of the utmost importance, we choose to prove it again by hand.

Proof by hand We are aiming to show that

E = �(O � O ∈ �8� � 212

is an elementary abelian group of order 212. We shall show that any two of
the generators commute with one another, and that the number of elements
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in the group they generate is at most 212. Since the octad-type vectors in the
Golay code certainly satisfy our additional relation, we shall have proved
the result. The relation tells us that if two octads O and U intersect in four
points, then (O and (U commute and have product (O+U , another generator.

Suppose now that O	U ∈ �8 with O∩U = �. Then, if T1	 T2	 T3	 T4 are
tetrads of any one of the seven sextets refining the trio O � U � O+U +�
chosen so that O = T1 +T2	U = T3 +T4, we have

(O(U = tT1
tT2

tT3
tT4

= tT1
tT3

tT2
tT4

= (T1+T3
(T2+T4




There are 7×2×2 = 28 choices for the octad T1 +T3, which, together with
O and U , yield all 30 octads in the 16-ad O+U . So,

(O(U = (V (W

for any V	W ∈ �8 with O+U = V +W , and we may write (O(U = (O+U , an
element which is only dependent on the 16-ad O+U . If U � V � W is a trio,
then (U(V (W commutes with the whole of the trio stabilizer, since the three
elements commute with one another. But if T1	 T2	 T3	 T4	 T5	 T6 is any one
of the seven refinements of this trio, then

(U(V (W = tT1
tT2

tT3
tT4

tT5
tT6

	

which commutes with the whole of the sextet stabilizer, since these six
symmetric generators commute with one another. Together these two sub-
groups generate the whole of M24, and so

(U(V (W = (U ′(V ′(W ′ = (�	

say, for any trio U ′ � V ′ � W ′. Clearly, (�(O = (�+O for any O ∈ �8.
We must now consider the case O	U ∈ �8 with �O∩U � = 2 �

2

The element (O(U clearly commutes with a subgroup of M24 isomorphic to
the symmetric group S6 preserving the partition of the 24 points into subsets
of sizes 6+6+2+10 determined by O\U	U \O	O∩U	�−�O∪U�. But the
foregoing calculation shows that it also commutes with the corresponding
copy of S6 preserving V −W	W −V	V ∩W	�−�V ∪W�. Together, these two
copies of S6 generate a subgroup of M24 isomorphic to the Mathieu group
M12 acting on O+U = V +W . So (O(U depends only on the dodecad O+U ,
and we may write (O(U = (O+U . In particular, we see that (O(U = (U(O. We
obtain just 2576 new elements of E in this manner. If O ∈ �8 and C ∈ �16,
then if O∩C =� we have (O(C = (� as above. Otherwise we have �O∩C� = 4
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or 6, and in either case we can find octads V and W so that C = V ∪W
and �O ∩V � = 4. Then (O(C = (O(V (W = (O+V (W , a case we have already
considered. It remains to show that if O ∈ �8	C ∈ �12, then (O(C is in the
set of elements already produced. Now �O∩C� = 6	4 or 2. In the first case,
(O(C = (C+O, as we have already seen. In the second case, we may choose V
to be any octad containing the intersection O∩C and two further points of
C; then, (O(C = (O(V (W = (O+C(W , which again we have already considered.
To deal with the final case, when �O∩C� = 2, recall that any pair of points
outside a dodecad determines a partition of the dodecad into two hexads
such that either hexad together with the pair is an octad. Choose the pair
to lie in O \C; since octads must intersect one another evenly, one of the
hexads contains O ∩C and the other is disjoint from O. We may write
(C = (V (W , where V and W are octads intersecting in our chosen pair, such
that �O ∩V � = 4. Then (O(C = (O(V (W = (O+V (W , which we have already
considered. Thus our set consisting of the identity, 759 octad-type elements,
759 16-ad type elements, the element (� and 2576 dodecad-type elements
is closed under multiplication, and so forms an elementary abelian group of
order 4096 = 212. �

Note that the element (� defined above commutes with M24 and with
the symmetric generators tT . It is thus central in the image group G, and
in any faithful irreducible representation of G it will be represented by −I,
a scalar matrix with −1 down the diagonal.

Mechanical enumeration of the cosets of H in G

The subgroup N � M24 is too small for us to enumerate all double cosets
of the form NwN . However, we have now constructed, by machine and by
hand, a subgroup H � 212 � M24, and Bray has modified our double coset
enumerator to cope with enumeration of double cosets of the form HwN .
Indeed, it is particularly adept at performing this kind of enumeration if
N ≤H , as is the case here. We must first obtain M24 as a permutation group
of degree

( 24
4

)= 10626 acting on the cosets of the stabilizer of a tetrad, in
this case 
24�= 
�	3	6	9�. We now seek a second tetrad which intersects
the first tetrad in two points and whose union with the first tetrad lies in an
octad. Since there are just

( 4
2

)×5×( 4
2

)= 180 such tetrads, we immediately
see that we require the fifth orbit of the stabilizer of the first tetrad. We
choose a random tetrad in this orbit and are given the tetrad labelled
8696:

> s24:=Sym(24);
> m24:=sub<s24|
s24!(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
21,22,23),
s24!(24,23)(3,19)(6,15)(9,5)(11,1)(4,20)(16,14)(13,21)>;
> #m24;
244823040
> xx:={24,3,6,9};
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> sxx:=Stabilizer(m24,xx);
> f,nn,k:=CosetAction(m24,sxx);
> st1:=Stabilizer(nn,1);
> oo:=Orbits(st1);
> [#oo[i]:i in [1..#oo]];
[ 1, 5, 80, 80, 180, 320, 320, 360, 640, 960, 960, 1920,
1920, 2880 ]
> r:=Random(oo[5]);r;
8696

The stabilizer of two such tetrads is a subgroup of the octad stabilizer 24 �A8
of shape 24 � 23 with orbits on the 24 points of lengths 2+2+2+2+16. This
clearly fixes six tetrads, and we must find out which of the four possibilities
completes the word of our relation. Consideration of the orders of the
stabilizers of pairs of these six tetrads soon reduces the possibilities to two,
one of which leads to collapse, as on p. 201. It turns out that �1	8696	4203�
is the word in the symmetric generators we require, and so we set it equal
to the unique non-trivial element in the centralizer of the stabilizer of these
three tetrads. The union of the tetrads labelled 1 and 325 is an octad, and
so the subgroup N , together with the element t1t325 (which is written here
as < �1	325�	 Id�N� >), generate 212 � M24:

> Fix(Stabilizer(nn,[1,8696]));
{ 1, 325, 887, 4203, 5193, 8696 }
> cAB:=Centralizer(nn,Stabilizer(nn,[1,8696]));
> #cAB;
2
> RR:=[<[1,8696,4203],cAB.1>];
> HH:=[*nn,<[1,325],Id(nn)>*];
> CT1:=DCEnum(nn,RR,HH:Print:=5,Grain:=100);
Dealing with subgroup.
Pushing relations at subgroup.
Main part of enumeration.
Index: 8292375 === Rank: 19 === Edges: 1043 === Time:
505.07
> CT1[4];
[

[],
[ 1 ],
[ 1, 2 ],
[ 1, 2, 24 ],
[ 1, 4 ],
[ 1, 17 ],
[ 1, 7 ],
[ 1, 2, 61 ],
[ 1, 2, 8 ],
[ 1, 2, 17 ],
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[ 1, 2, 59 ],
[ 1, 2, 14 ],
[ 1, 2, 117 ],
[ 1, 2, 204 ],
[ 1, 2, 7 ],
[ 1, 2, 1 ],
[ 1, 2, 259 ],
[ 1, 2, 1212 ],
[ 1, 2, 17, 1642 ]

]
> CT1[7];
[ 1, 1771, 637560, 2040192, 26565, 637560, 21252, 2266880,
370944, 728640, 91080, 566720, 91080, 425040, 42504, 759,
340032, 1771, 2024 ]

The output shows us that there are 19 double cosets of the form HwN ,
where H � 212 � M24 and N � M24; the index of H in G is 8 292 375 (note
the misprint in the first edition of the Atlas). Canonical double coset
representatives are given, and we see that the graph obtained by joining
a coset of H to those cosets obtained by multiplication by a symmetric
generator has diameter 4.

Alternatively, we may enumerate double cosets of the form KwN , where
K � Co2, the stabilizer of a type 2 vector in the Leech lattice. Explicitly,

K = �StabN �
�	 tT � 
 ∈ T�

Note that this is, in a sense, preferable as the index is much smaller;
however, there is more work entailed as we have not yet identified Co2.
Thus we have the following:

> m23:=Stabilizer(m24,24);
> #m23;
10200960
> HH:=[*f(m23),<[1],Id(nn)>*];
> CT:=DCEnum(nn,RR,HH:Print:=5,Grain:=100);
Dealing with subgroup.
Pushing relations at subgroup.
Main part of enumeration.
Index: 196560 === Rank: 16 === Edges: 178 === Time: 282.661

> CT[4];
[

[],
[ 3 ],
[ 3, 2 ],
[ 3, 2, 1197 ],
[ 3, 26 ],
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[ 3, 5 ],
[ 3, 2, 4 ],
[ 3, 2, 1 ],
[ 3, 53 ],
[ 3, 2, 14 ],
[ 3, 2, 90 ],
[ 3, 2, 9188 ],
[ 3, 2, 417 ],
[ 3, 2, 2554 ],
[ 3, 2, 540 ],
[ 3, 2, 90, 340 ]

]
>CT[7];
[ 24, 6072, 53130, 30912, 21252, 12144, 30912, 21252,
759, 12144,6072,759,276, 276, 552, 24 ]

In this case, the index is 196 560 (note that K does not contain (�, which
negates a 2-vector), and the number of double cosets is 16.

A representation of the group G

The lowest dimension in which M24 can be represented faithfully as matrices
over the complex numbers � is 23, and since G is perfect and the element
(� is to be represented by −In (which has determinant �−1�n), any faithful
representation of G must have even degree. So the lowest dimension in
which we could represent G faithfully is 24. Certainly E = 212 � M24 acts
monomially in this dimension, with M24 acting as permutations and the
elements (C for C ∈ � acting as sign changes on the �-set C. Let � denote
such a representation of G. We are led to seeking elements ��tT �, for T a
tetrad of the 24 points, which

(i) commute with the tetrad stabilizer of M24;

(ii) commute with elements (O, where O is an octad which is the union of
two tetrads in the sextet defined by T ;

(iii) have order 2; and

(iv) satisfy the additional relation.

Condition (i) requires the matrix representing ��tT � to have the following
form:

��tT � =

⎛

⎜⎜⎜
⎜⎜⎜
⎜
⎝

aI +bJ eJ eJ eJ eJ eJ

fJ cI +dJ gJ gJ gJ gJ

fJ gJ cI +dJ gJ gJ gJ

fJ gJ gJ cI +dJ gJ gJ

fJ gJ gJ gJ cI +dJ gJ

fJ gJ gJ gJ gJ cI +dJ

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠
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where the 24× 24 matrix has been partitioned into blocks corresponding
to the sextet defined by the tetrad (which itself corresponds to the block
in the first row and the first column); I denotes the 4× 4 identity matrix
and J denotes the 4× 4 all-1s matrix. But this must commute with sign
changes on the first two tetrads; so negating the first two columns must
have the same effect as negating the first two rows. Thus e = f = g = 0,
and the matrix takes the following form:

��tT � = diag�aI +bJ	 �cI +dJ�5�


Condition (iii) requires

�aI +bJ�2 = �cI +dJ�2 = I4 = a2I + �2ab+4b2�J = c2I + �2cd+4d2�J


So we have a = ±1 and either b = 0 or a = −2b, and similarly c = ±1 and
d = 0 or c = −2d. But if T1	 T2 are two tetrads of the same sextet, then
tT1
tT2

= (T1+T2
, and so

�aI +bJ��cI +dJ� = acI + �ad+bc+4bd�J = −I


So ac = −1 and, if either of b or d is zero, then so is the other. Both being
zero would mean that ��tT � is a diagonal matrix, and so the additional
relation of condition (iv) could not possibly hold. So neither is zero, and
a = ±1	 c = −a	b = −a/2	d = a/2, and it remains to determine the sign.
In order to do this, we first restrict our attention to the action on the
octad which is the union of the three tetrads in the additional relation,
and we order the rows and columns to correspond to the pairings a	b	 c	d.
We let

L =
(
−1 1
1 −1

)

	 J =
(

1 1
1 1

)

	

so that L2 = −2L	J 2 = 2J	LJ = JL= 0. Our relation requires the following:

± 1
8

⎛

⎜⎜⎜
⎝

L J

J L

−L −J

−J −L

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

L J

−L −J

J L

−J −L

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

L J

−L −J

−J −L

J L

⎞

⎟⎟⎟
⎠

± 1
8

⎛

⎜
⎜⎜
⎝

L J

J L

−L −J

−J −L

⎞

⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

−2L −2J
−2J −2L

2L 2J
2J 2L

⎞

⎟⎟
⎟
⎠

= ±1
8

⎛

⎜
⎜⎜
⎝

−8I
−8I

−8I
−8I

⎞

⎟⎟
⎟
⎠

= I8	

and so we require the negative sign. To complete the verification that the
additional relation holds, and that this product does indeed produce the
required permutation of M24, we restrict our attention to the second brick
of the MOG when we obtain
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1
8

⎛

⎜⎜⎜
⎝

L J

J L

L J

J L

⎞

⎟
⎟⎟
⎠

⎛

⎜
⎜⎜
⎝

L J

L J

J L

J L

⎞

⎟
⎟⎟
⎠

⎛

⎜
⎜⎜
⎝

L J

L J

J L

J L

⎞

⎟
⎟⎟
⎠

= 1
8

⎛

⎜⎜
⎜
⎝

L J

J L

L J

J L

⎞

⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

−2L 2J
2J −2L

−2L 2J
2J −2L

⎞

⎟⎟
⎟
⎠

= 1
2

⎛

⎜
⎜⎜
⎝

L+ J

L+ J

L+ J

L+ J

⎞

⎟
⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1
1

1
1

1
1

1
1

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

	

as required. Note that the element tT is in fact −)T , where )T is the element
produced in Conway (ref. [23], p. 237) to show that the Leech lattice is
preserved by more than the monomial group H = 212 � M24. Observe more-
over that ��tT � is an orthogonal matrix, and so the group ��G� preserves
lengths of vectors and angles between them. In the notation of ref. [23], we
let 
vi � i ∈ �� be an orthonormal basis for a 24-dimensional space over �,
and for X ⊂ � we let vX denote

vX =∑

i∈X
vi


For T a tetrad of points in �, we let 
T = T0	 T1	 � � � 	 T5� be the sextet
defined by T . Then the element tT acts as follows:

tT = −)T � vi �→
{

vi − 1
2vT for i ∈ T = T0

1
2vTi −vi for i ∈ Ti	 i �= 0	

so, as described in ref. [23], tT is best applied to a vector in �24:

for each tetrad Ti work out one half the sum of the entries in Ti and
subtract it from each of the four entries; then negate on every entry
except those in T = T0.

The Leech lattice �

In order to obtain the Leech lattice �, we simply apply the group we
have constructed to the standard basis vectors and consider the �-lattice
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Table 5.6. The shortest vectors in the Leech
lattice

Shape Calculation Number

�42
022�
( 24

2

)

22 1104

�28
016� 759
27 97 152
�−3
123� 24
212 98 304

Total 196 560

spanned by the set of images. More specifically, in order to avoid fractions,
we normalize by applying the group to the vectors 8vi. Let � denote this
lattice. If T denotes the first column of the MOG, we have

tT =
× 
 
 
 
 


× 
 
 
 
 


× 
 
 
 
 


× 
 
 
 
 


�

8 
 
 
 
 



 
 
 
 
 



 
 
 
 
 



 
 
 
 
 


�→
4 
 
 
 
 


−4 
 
 
 
 


−4 
 
 
 
 


−4 
 
 
 
 





So, under the permutations of the quintuply transitive M24 and the sign
changes of E, every vector of the shape �±4�4
020 is in �. In particular, we
have �4	4	4	4	0	019�+ �0	−4	−4	−4	−4	019� = �4	03	−4	019� ∈ �, and
so every vector of the form ��±4�2
022� is in �. Moreover, we see that

tT �

4 4 
 
 
 



 
 
 
 
 



 
 
 
 
 



 
 
 
 
 


�→
2 −2 
 
 
 


−2 2 
 
 
 


−2 2 
 
 
 


−2 2 
 
 
 


�

0 2 2 2 2 2
2 
 
 
 
 


2 
 
 
 
 


2 
 
 
 
 


�→
−3−1 −1−1 −1−1
−1 1 1 1 1 1
−1 1 1 1 1 1
−1 1 1 1 1 1




The first image shows that � contains every vector of the form ��±2�8
016�,
where the non-zero entries are in the positions of an octad of the Steiner
system preserved by our copy of M24 and the number of minus signs is even
(since �-sets intersect one another evenly). The second shows that every
vector of the form �−3	123� followed by a sign change on a �–set is also in
�. We may readily check that this set of vectors, which have normalized
length 2×16, is closed under the action of tT and hence of G; it is normally
denoted by �2 (see Table 5.6).

Clearly G acts as a permutation group on the 196 560/2 = 98 280 pairs
consisting of a type 2 vector and its negative; the stabilizer of such a pair
has just three non-trivial orbits on the other pairs where the orbit in which
a particular pair lies depends only on the angles its vectors make with the
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fixed vectors. The permutation character of this action is *1 +*3 +*6 +*10,
of degrees 1, 299, 17 250, 80 730 respectively, as listed in the Atlas [25].

In ref. [21], Theorem 5, Conway gives a beautifully simple characteriza-
tion of the vectors of �, normalized as above.

Theorem 5.17 [Conway] The integral vector x = �x1	 x2	 � � � 	 x24� is in �
if, and only if,

(i) the xi all have the same parity;

(ii) the set of i, where xi takes any given value (modulo 4), is a �-set; and

(iii)
∑
xi ≡ 0 or 4 (modulo 8) according as xi ≡ 0 or 1 (modulo 2).

It is readily checked that the above list of 2-vectors contains all vectors of
(normalized) length 32 having these properties, and it is clear that these
properties are enjoyed by all integral combinations of them.

Exercise 5.2

(1) Using Conway’s description of the (normalized) vectors of the Leech
lattice (see Theorem 5.17), write down the shapes of all vectors in �3,
that is to say all vectors with norm equal to 3×16. Verify that these
are the orbits under the action of the monomial group N � 212 � M24
consisting of permutations of the basis vectors and sign changes on
codewords of the Golay code. Calculate the number of vectors of each
type, and use tetrad-type elements )T to show that these fuse into one
orbit in ·O; hence work out the index of ·3 or Co3, the stabilizer of a
3-vector in ·O.

(2) Let u1 = �5
123� ∈ �3. Show that u can be expressed as the sum of
two vectors in �2 in precisely 276 ways, which fall into two orbits of
lengths 23 and 253 under the action of permutations fixing u. Now
take u2 = ��−3�3
121� ∈ �3 and identify the 276 ways in which it can
be decomposed into the sum of two 2-vectors. Show that the orbits
under the action of the group isomorphic to M21 � S3 fixing u2 cannot
fuse to an orbit of size 23, and so Co3 must act transitively on this
set of 276 objects. Finally, let u3 = �212
012� ∈�3. Write u3 = w31 +w32,
where w31	w32 ∈ �, in such a way that you can produce an element
of ·O which fixes u3 and interchanges w31 and w32. Deduce that the
subgroups of index 276 in ·3 themselves have subgroups of index 2.
(This subgroup of index 2 is in fact the McLaughlin simple group; see
Section 5.7.3).

(3) We have seen that ·3 acts transitively on 276 letters; proceed as follows
to show that this action is in fact doubly transitive. Let u1 = �5
1
122� ∈
�3 and v1 = �42
022� ∈ �2. Note that these vectors are preserved by
a subgroup isomorphic to M22. Now write down all 2-vectors which
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have inner product 24 with u1 and 16 with v1 and record the orbit
lengths when your copy of M22 acts on these 275 vectors. Now let u2 =
��−3�3
121� ∈�3 and v2 = �420
021� ∈�2 and record the orbit lengths of
the subgroup of shape M21 � 2, fixing u2 and v2 on the similarly defined
275 2-vectors. Conclude that the stabilizer of a 3-vector and a 2-vector
having inner product 24 with one another acts transitively on the 275
2-vectors defined as above.

(4) Use the methods of the above examples to show that ·O acts transi-
tively on triangles of type 233. The stabilizer of such a triangle is the
automorphism group of the Higman – Sims group, G � HS �2, where
the outer automorphism interchanges the two edges of type 3. Give an
example of such a 233-triangle in which the two 3-vectors are inter-
changed by either a permutation of M24 or a sign change on a codeword
of the Golay code. Taking u1 = �5
1
122� ∈�3 and v1 = �4
−4
022� ∈�2,
together with some other choice of 233-triangle, show that G acts as a
rank 3 permutation group on the 100 2-vectors having inner product
24 with u1 and 16 with v1. What are the suborbit lengths?

Show, moreover, that there are 176 pairs of 2-vectors having inner
product 24 with u and 8 with v (the two vectors in a pair summing to
u), and a further 176 pairs of 2-vectors having inner product 24 with
u−v and eight with v (the two vectors in a pair summing to u−v). So
the outer automorphism of HS�2 interchanges the two sets of 176 pairs
(the two halves). Show further that the set of inner products between
two pairs in the same half is constant, and that for a fixed pair in one
half the inner products with a pair from the other half is 
0	0	16	16� in
50 cases and 
8	8	8	8� in the remaining 126 cases.6 Show that G′ � HS
acts doubly transitively on each of the halves.

A presentation of the Conway group · O

It is of interest to deduce an ordinary presentation of ·O from our symmetric
presentation. We first need a presentation for the control subgroup M24,
and we choose one based on that given in ref. [33], p. 390, which defines
M24 as an image of the progenitor

2�7 � L3�2�


Consider first

�x	 y	 t � x7 = t2 = y2 = �xy�3 = �x	 y�4 = �yx	 t� = 1	 y = �t	 x2�3�

We see that L= �x	 y� � L3�2� or the trivial group. If it is the former, which
must be the case since we can find permutations of 24 letters satisfying all
these relations, then, without loss of generality, we may calculate within L

6 This is a realization of Graham Higman’s geometry with 176 points and 176 quadrics;
each quadric contains 50 points and each point belongs to 50 quadrics. See Section 5.3.
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by letting x ∼ �0 1 2 3 4 5 6�	 y ∼ �3 4��5 1�. Moreover �t	 tx2� � D12 or an
image thereof, and centralizes y. Thus t commutes with

�y	 yx−2
	 yx� = ��3 4��5 1�	 �1 2��3 6�	 �4 5��6 2�� � S4	

and so �tL� = 7. Labelling tx
i = ti for i = 0	1	 � � � 	6, we see that elements

of L must permute the ti by conjugation just as the above permutations
representing x and y permute their subscripts. Thus �x	 y	 t� = �x	 t� is a
homomorphic image of the progenitor 2�7 �L3�2�. Following Curtis, Hammas
and Bray (ref. [36], Table 8, p. 33), we factor this by the following additional
relators:

�ytx
−1
tx�4 ∼ ��3 4��5 1�t6t1�

4

�yxt�11 ∼ ��0 1 6��2 3 5�t0�
11 


To verify the claim made in ref. [36] that this is a presentation for M24, we
observe that restricting the given relations to the four symmetric generators

t0	 t3	 t6	 t5� yields �0 3� = �t5t6�

3 and ��0 3 6�t0�11 = 1. Thus we have the
symmetric presentation given by

J = 2�4 � S4

�3 4� = �s1s2�
3	 ��1 2 3�s1�11

	

which is equivalent to the following presentation:

�u	 v	 s � u4 = v2 = �uv�3 = s2 = �uvs�11 = 1	 v = �s	 u�3�


Either the symmetric or the ordinary presentation is readily shown to define
the projective special linear group L2�23�.

We have now identified a sufficiently large subgroup, and we can perform
a coset enumeration of

M = �x	 t � x7 = t2 = y2 = �xy�3 = �x	 y�4 = �yx	 t� = 1	 y = �t	 x2�3	

�ytx
−1
tx�4 = �yxt�11 = 1�

over the subgroup �t	 tx3
	 tx

6
	 tx

5� � L2�23� to obtain index 40320 and so
�M� = 244823040. In fact, the subgroup �x	 ytxy� � M23, and so the group
M can be obtained acting on 24 letters.

In order to extend this to a presentation of ·O, we must adjoin a generator
s, say, which commutes with the stabilizer in M of a tetrad of the 24 points,
and we must then factor out the additional relation. The clue is to consider
an element of M24 of order 12 and cycle shape 2
6
4
12. Let � be such an
element; then �3 has shape 2
23
4
43, written so as to reveal the cycles of
�. Now the 2-orbit of �, together with each of the other 2-orbits of �3 in
turn, may be taken to be the three tetrads in our additional relation, when
the element % is simply �6. So our additional relation may be taken to be
��2s�3 = 1, where s is the symmetric generator corresponding to any one
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of these three tetrads. The above will be clarified by exhibiting such an
element in the MOG-diagram. Thus,

� =

. . . . . .

� � � � � �

×
a1

b1

c1

d1

a3

b3

c3

d3

a2

b2

c2

d2

a4

b4

c4

d4

is an element of the required shape; it is expressed as the product of an element
of order 3 which fixes the columns and the top row whilst rotating the other
three rows downwards, and an element of order 4 which fixes the rows and
acts on the six columns as the permutation �1 2��3 5 4 6�. The three tetrads are
those labelledA′	B′ andC ′ on p. 204, and the element�6 = % as on p. 202. We
find that the element � = xytx is in this conjugacy class.

We must now seek elements in M24 which generate the stabilizer of a
tetrad which contains the 2-cycle of � and is fixed by �3. Noting that any
element of M24 can be written in the form �w, where � ∈ L3�2� and w is a
word in the seven symmetric generators, we find computationally that

u1 = �1 6 5��2 4 3�t5t1t2t0t6t5 = x3yx3tx
−2
txtx

2
ttx

−1
tx

−2
	

u2 = �2 6��4 5�t4t1t0t1t5 = �yxt�t
xtx

−2
	

will suffice, so we adjoin s such that s2 = �s	 u1� = �s	 u2� = 1 and have now
defined the progenitor 7

2��
24
4 � � M24


It remains to factor this by the additional relation which now takes the
simple form ��2s�3 = 1. Our double coset enumeration has proved that

·O = �x	 y	 t	 s'x7 = t2 = y2 = �xy�3 = �x	 y�4 = �yx	 t� = 1	 y = �t	 x2�3	

�ytx
−1
tx�4 = �yxt�11 = s2 = �s	 x3yx3tx

−2
txtx

2
ttx

−1
tx

−2
�

= �s	 �yxt�t
xtx

−2
� = ��xytx�2s�3 = 1�


5.7.3 Some related groups: ·2� ·3 and McL

As was mentioned in Section 5.7.2, the Conway group ·O acts transitively
on �2, the set of 196 560 vectors of type 2. One such vector is given by

u =
−3 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

	

7 It turns out that the element x3yx maps the tetrad corresponding to s to another tetrad
in the same sextet; so ssx

3yx lies in the copy of the Golay code normalized by our copy of M24.
Thus, �x	 y	 t	 �s	 x3yx�� � 212 � M24.
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which is visibly fixed by a subgroup isomorphic to M23. Moreover, this
vector is fixed by our tetradic elements tT , for T a tetrad of the 24 points
permuted by M24, so long as T contains the coordinate on which u has
coefficient −3. For recall that tT is simply −)T , the negative of the original
Conway element. This element acts on a vector as follows: for each tetrad
of the sextet defined by T take the average of the entries of that tetrad and
subtract this from each of the entries in that tetrad. Finally negate on each
tetrad except T itself. So if

)T =
×
×
×
×

	

then the columns are the tetrads; on the first column the average is zero,
so we subtract nothing and do not change the sign; on the other columns
we subtract 2 from every entry and then negate, thus fixing vector u. From
these remarks we see that the single relation which is used to define ·O is
inherited by ·2, the subgroup of ·O fixing a type 2 vector, and, since the
subgroup M23 is maximal in ·O, we see that ·2 is a homomorphic image of
the analogous presentation and, in fact, we have the following.

Theorem 5.18

2��
23
3 � � M23

tabtactad = %
� ·2	

where a	b	 c and d are the pairs as in Section 5.7.2 and % is the permutation
of M24 shown in that section and below:

a a

b b

c c

d d

and

% =
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

.

To use the double coset enumerator to verify that this does in fact define
·2, we must first obtain M23 acting on the 1771 unordered triples of the 23
points. Accordingly, we input two permutations of 23 points which generate
M23 and ask for the action of this group on the cosets of the stabilizer of a
triple of points:

> s23:=Sym(23);
> a:=s23!(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,

18,19,20,21,22,23);
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> b:=s23!(11,1)(4,20)(16,14)(13,21)(22,2)(18,10)
(8,17)(12,7);
> m23:=sub<s23|a,b>;
> #m23;
10200960
> xx:={3,6,9};
> sxx:=Stabilizer(m23,xx);
> f,nn,k:=CosetAction(m23,sxx);
> Degree(nn);
1771

Our second triple yy must have a point in common with this fixed triple
xx, and must be such that its union with xx lies in a heptad (seven points
making an octad with the point fixed by our copy of M23). There are thus
3×5× ( 4

2

)= 90 possible triples, so we look for the 90-orbit of the stabilizer
of xx. Now the stabilizer of both xx and yy fixes just one other triple, zz say,
namely the point of intersection of xx and yy together with the remaining
two points of the heptad. Moreover,

CM23
�StabM23

�xx	 yy	 zz�� � C2	

and so a generator, % say, for this cyclic group is the only non-trivial element
of M23 which could be written in terms xx	 yy and zz without causing
collapse. Lemma 3.3 thus leads us directly to factoring by the relation
xx
yy
zz = %, where we have taken 
xx	 yy	 zz� to be the triples labelled

1	874	1389�:

> oo:=orbits(Stabilizer(nn,1));
> [#Set(oo[i]):i in [1..#oo]];
[ 1, 20, 60, 90, 160, 480, 480, 480 ]
> rr:=Random(Set(oo[4]));
> Fix(Stabilizer(nn,[1,rr]));
{ 1, 874, 1389 }
> RR:=[<[1,874,1389],Centralizer(nn,Stabilizer
(nn,[1,rr])).1>];
> CT:=DCEnum(nn,RR,[nn]:Grain:=100);
> CT[1];
4147200
> CT[4];
[

[],
[ 1 ],
[ 1, 3 ],
[ 1, 3, 206 ],
[ 1, 10 ],
[ 1, 7 ],
[ 1, 3, 36 ],
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[ 1, 3, 9 ],
[ 1, 3, 10 ],
[ 1, 3, 7 ],
[ 1, 3, 122 ],
[ 1, 3, 4 ],
[ 1, 3, 148 ],
[ 1, 10, 74, 5 ],
[ 1, 5 ],
[ 1, 7, 38 ],
[ 1, 104 ],
[ 1, 3, 170 ],
[ 1, 3, 9, 11, 727 ],
[ 1, 3, 163 ],
[ 1, 3, 104 ],
[ 1, 3, 1 ],
[ 1, 3, 148, 79 ],
[ 1, 10, 5 ],
[ 1, 7, 213 ],
[ 1, 3, 7, 276 ],
[ 1, 7, 242 ]

]
> CT[7];
[ 1, 1771, 17710, 212520, 212520, 212520, 53130, 28336,
510048,425040, 30360, 425040, 212520, 70840, 5313, 850080,
1771,85008,170016, 141680, 7590, 506, 283360, 60720, 85008,
15456,28336 ]
>

As in previous examples, CT[1] tells us the index of N =� M23 in the group
we have defined, namely 4 147 200, as required; CT[4] gives CDCRs for
the 27 double cosets; and CT[7] gives the number of single cosets each
of them contains. The usual word of warning is required: the CDCRs are
not necessarily the shortest words possible for that double coset; they are
simply the first the program discovered.

Exercise 5.3

(1) Prove as follows that the group Co2 (or ·2, to use Conway’s terminol-
ogy) acts transitively on the set of 2-vectors having inner product 8
with the fixed vector, and that ·O thus acts transitively on triangles
of type 223 (having two edges in �2 and the third edge in �3).8 Let
the fixed vector be �42
022�, which is visibly preserved by a subgroup

8 The stabilizer of such a triangle (or 2-dimensional sublattice) is isomorphic to the
McLaughlin group McL; its outer automorphism has the effect of fixing the edge in �3 and
interchanging the two 2-vectors. Note that this exercise can be used to show that ·O acts
transitively on �3.
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H � 210 �M22, and work out the orbits of H on suitable 2-vectors. (You
should find orbits of lengths 22528+2048+22528.) Now take the fixed
vector to be �−3	123�, which is preserved by K � M23, and in particular
is fixed by a permutation � of order 23. Such a permutation can fix no
further 2-vectors and so every orbit of K on permissible 2-vectors has
length divisible by 23. Deduce that the three orbits of H above must
fuse into a single orbit under the action of ·2.

(2) Use a similar approach to show that ·O acts transitively on triangles of
type 222 and of type 224. Work out the order of the stabilizer of each
such triangle.

The next related group we should like to deal with is the McLaughlin
group McL, which was investigated by Bradley in ref. [12]. This time we
take the Mathieu group M22 as control subgroup and let the symmetric
generators correspond to the 672 dodecads which contain a given one of
the two fixed points but not the other. Now the subgroup of M22 fixing
such a dodecad is isomorphic to L2�11� (take M12 fixing a pair of disjoint
dodecads and fix a point in each dodecad), and it has an orbit of 165 such
dodecads which intersect the fixed dodecad in eight points. As usual, we
invoke Lemma 3.3 and note that the stabilizer of two such dodecads has
order 660/165 = 4; it is thus a Sylow 2-subgroup of L2�11�, which is a self-
centralizing Klein fourgroup. So the only non-trivial elements of M22 which
could be written in terms of the two symmetric generators corresponding
to these two dodecads lie in this copy of V4. Since they commute with the
two symmetric generators in question, a possible relation would have to
have form �titj�

k = %. Consistent with our practice of always choosing the
shortest possible word in the symmetric generators which does not lead to
collapse, we choose k = 2 and factor by

⎛

⎜⎜⎜
⎝

x x x

x x x

x x x

x x x

x x x x x

x

x x x x

x x

⎞

⎟⎟⎟
⎠

2

= %	

where the copy of M22 we are using fixes the two leftmost points in the top
row (corresponding to 
 and 0), and % bodily interchanges the last two
bricks of the MOG while fixing the eight points in the first brick. This is
essentially the same relation as that given in Bradley [12] (p. 86). With this
interpretation we have the following.

Theorem 5.19
2�672 � M22

�t1t2�
2 = %

� McL � 2


To verify this using the double coset enumerator, we first obtain M22 by
fixing 
 = 24 and 0 = 23 in M24. We then choose xx to be a dodecad
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containing 
 but not 0 and take the action of M22 on the cosets of its
stabilizer to obtain the permutation action of degree 672:

> s24:=Sym(24);
> a:=s24!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23);

> b:=s24!(1, 11)(3, 19)(4, 20)(5, 9)(6, 15)(13, 21)
(14, 16) (23, 24);

> m24:=sub<s24|a,b>;
> m22:=Stabilizer(m24,[23,24]);

> xx := { 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22 };
> stxx:=Stabilizer(m22,xx);
> f,nn,k:=CosetAction(m22,stxx);
> Degree(nn);
672

We must now locate a point, ss say, in the 165-orbit of this stabilizer and
factor by a relation which puts the word �1	 ss	1	 ss� equal to one of the
three involutions in the Klein fourgroup. A word of warning is required
here: two of the three involutions work (and are interchanged by an outer
automorphism), but the third does not:

> oo:=orbits(Stabilizer(nn,1));
> [#oo[i]:i in [1..#oo]];
[ 1, 55, 55, 66, 165, 330 ]
> ss:=Random(Set(oo[5]));

> RR:=[<[1,ss,1,ss],Stabilizer(nn,[1,ss]).2>];
> CT:=DCEnum(nn,RR,[nn]:Print:=1,Grain:=100);

Index: 4050 === Rank: 8 === Edges: 38 === Time: 2.484
> CT[4];
[

[],
[ 1 ],
[ 1, 2 ],
[ 1, 4 ],
[ 1, 4, 268 ],
[ 1, 2, 44 ],
[ 1, 2, 289 ],
[ 1, 28 ]

]
> CT[7];
[ 1, 672, 462, 1232, 22, 1155, 176, 330 ]

These orbits can be seen in the Leech lattice as follows. As mentioned
above, the McLaughlin group stabilizes a triangle of type 223 in �; the
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Table 5.7. The orbits of M22 on (2025+2025)
2-vectors

Shape Calculation Number

�5
1
122�
�4
4
022�
�1
−3
122�

�4
−4
022� 1 1
�2
−2
−2
25
016� 77.6 462
�0
0
28
014� 330 330
�1
−1
3
−16
115� 176.7 1232
�4
0−4
021� 22 22

�2
2
−22
24
016� 77

( 6

2

)
1155

�3
1
−111
111� 672 672
�1
3
−17
115� 176 176

2-dimensional sublattice spanned by the edges of this triangle can be
extended to a 3-dimensional sublattice whose additional ‘short’9 vectors
have types 2, 2, 3 and 4. As 223-triangle we may take u = �5	1	122�	 v =
�4	4	022�	w = �1	−3	122�, each of which is fixed by M22; to extend it to a
3-dimensional sublattice of the required type, we must seek vectors in �2
which have inner product 16 with u, inner product 16 with one of v and w
and 0 with the other. Thus, as orbits under M22, we obtain Table 5.7.

The calculations make use of the fact that there are 77 octads through
a given two points, 176 octads through one of the two points but not the
other, and 330 octads disjoint from the two points. Moreover, there are 672
dodecads through one of the two points but not the other.

These vectors fall into two sets of size 2025 interchanged by the outer
automorphism of McL, which also interchanges v and w whilst fixing u. Of
course, our symmetric generators lie in McL � 2\McL and so have this effect.

The most natural action of McL�2, however, is on the 275 2-vectors which
have inner product 16 with each of v and −w. Explicitly, see Table 5.8.

From the point of view of M22, these are simply the 22 points, the 77
hexads (octads through the two fixed points) and the 176 heptads (octads
through one of the two fixed points but not the other). We can define a
graph of valence 112 on these 275 vertices, where two vertices are joined if
the inner product of the corresponding vectors is 8. So, if P is a point, h is
a hexad and k is a heptad: P joins h if, and only if, P �∈ h; P joins k if, and
only if, P ∈ k; h1 joins h2 if, and only if, h1 ∩h2 = �; k1 joins k2 if, and only
if, �k1 ∩k2� = 1; and h joins k if, and only if, �h∩k� = 3. A diagram of this
graph appears in Figure 5.27.

9 Every vector in the Leech lattice is congruent modulo 2� to a unique vector in �2,
a unique vector in �3 or a set of 24 mutually orthogonal vectors of �4 together with their
negatives. Modulo 2�, these 212 vectors form a vector space of dimension 12 over �2.



5.7 The Mathieu group M24 as control subgroup 225

Table 5.8. The orbits of M22 on
275 2-vectors

Shape Number

�4
 4
 022�
�−1
 3
 −122

�0
 4
 −4
 021� 22
�2
 2
 −2
6 016� 77
�1
 3
 17
 −115 176

Our double coset enumerator has shown that the group defined in
Theorem 5.19 has maximal order 4050×�M22�; and that if the stabilizer of
a 223-triangle satisfies the additional relation, then this really is its order.
We can do this by realizing our progenitor as symmetries of the 275 vertices
of the graph in Figure 5.27, and showing that the additional relation is
satisfied. This could be done by hand, but in the following exercises we
indicate how it can be done using Magma.

Exercise 5.4

(1) First input M22 as permutations on 22 letters and, using the labelling
shown in Section 5.7, fix a hexad and a heptad. Obtain the 77 and 176
point actions of M22 by letting it act on the cosets of the stabilizers of
this hexad and heptad, respectively:

> m22:=sub<Sym(22)|(1,2,4,8,16,9,18,13,3,6,12)
(5,10,20,17,11,22,21,19,15,7,14),

> (11,1)(4,20)(16,14)(13,21)(22,2)(18,10)(8,17)(12,7)>;
> #m22;
443520
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��

��
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Figure 5.27. The rank 3 graph preserved by McL:2.
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> hex:={3,6,9,19,15,5};
> sthex:=Stabilizer(m22,hex);
> f77,g77,k77:=CosetAction(m22,sthex);
> Degree(g77);
77
> hept:={3,6,9,11,4,16,13};
> sthept:=Stabilizer(m22,hept);
> f176,g176,k176:=CosetAction(m22,sthept);
> Degree(g176);
176

We now embed M22 as m22p275 in the symmetric group on 275 letters,
with orbits of lengths 22, 77 and 176. The following function f converts
a permutation of M22 acting on 22 letters into a permutation on 275
letters:

> s275:=Sym(275);
> f:=func<uu|s275!([iˆuu:i in [1..22]]
> cat [jˆf77(uu)+22:j in [1..77]]
> cat [kˆf176(uu)+99:k in [1..176]])>;
> Order(sub<s275|f(m22.1),f(m22.2)>);
443520
> m22p275:=sub<s275|f(m22.1),f(m22.2)>;

We must now find a subgroup of M22 isomorphic to L2�11� and find an
involution in S275 which commutes with it. It turns out that the centralizer
in S275 of this copy of L2�11� has order 48, but if we pick out the involutions
which fix 11 points we find there are just three possibilities: two of these
generate the alternating group A275, and the third, t1 say, gives us the
McLaughlin group. Under conjugation by m22p275, t1 will have 672 images.
Complete your verification by showing that if t2 is in the 165 orbit of our
L2�11� then �t1
t2�

2 is an element of order 2 in m22p275:

> l11:=Stabilizer(m22,{1,2,4,8,16,9,18,13,3,6,12});
> l11p275:=sub<s275|f(l11.1),f(l11.2),f(l11.3),
f(l11.4)>;
> #l11p275;
660
> cl11p275:=Centralizer(s275,l11p275);
> #cl11p275l;
48

5.8 The Fischer groups

Not surprisingly, given their definition in terms of a special conjugacy class of
involutions known as 3-transpositions (see below), the three Fischer groups
may be defined in a concise and attractive manner by way of symmetric
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presentations. In this section we shall give such a symmetric presentation for
two of these groups, but refer the reader who requires a fuller explanation to
refs. [55] and [56], where many other related results may be found. Although
we shall not give full proofs of the assertions made, we shall introduce,
with explanations, a different approach to verifying their validity.

The clue lies in Example 4.2 in Section 4.4 on the group of the 28
bitangents. We took as control subgroup the symmetric group S8 in its
degree 35 action on the partitions of the eight letters into two tetrads. Thus
our progenitor took the form P = 2�35 � S8, and the symmetric generators
could be denoted by symbols such as

[
1234
5678

]



We factored this by two relations:

�1 2��3 4��5 6��7 8� =
[

1234
5678

][
1256
3478

][
1278
3456

]

and
(
�1 5�

[
1234
5678

])3

= 1	

and obtained the symplectic group S6�2�.
This prompts us to take as control subgroup S12 in its action on the

partitions of the 12 letters into three tetrads. Since the number of such
partitions is given by 1

6

(12
4

)(8
4

) = 5775, we are considering the progenitor
2�5775 � S12. We now factorize by the analogous relations to those used for
S6�2� and find the result given in Theorem 5.20.

Theorem 5.20
2�5775 � S12⎡

⎢
⎣

1234
5678
90xy

⎤

⎥
⎦

⎡

⎢
⎣

1256
3478
90xy

⎤

⎥
⎦

⎡

⎢
⎣

1278
3456
90xy

⎤

⎥
⎦= �1 2��3 4��5 6��7 8�

⎛

⎜
⎝�1 5�

⎡

⎢
⎣

1234
5678
90xy

⎤

⎥
⎦

⎞

⎟
⎠

3

= 1	

� Fi23	

the second largest Fischer group.

Naturally we refer to these symmetric generators as trifid maps. At the
end of this section we record what happens if one or other of these two
relations is removed,10 but in the meantime we indicate how the double
coset enumerator may be used to verify this claim. We first require the

10 Recall that in the S6�2� case removal of either of the two additional relations resulted
in 2×S6�2�.



228 Sporadic simple groups

stabilizer in S12 of a partition into three tetrads, namely a subgroup of
shape S4 "S3. This enables us to obtain S12 in its action on 5775 points:

> s12:=Sym(12);
> hh:=Stabilizer(s12,[{1,2,3,4},{5,6,7,8},{9,10,11,
12}]);
> hhb:=sub<s12|hh,s12!(1,5)(2,6)(3,7)(4,8),
> s12!(1,5,9)(2,6,10)(3,7,11)(4,8,12)>;
> Index(s12,hhb);
5775
> f,nn,kk:=CosetAction(s12,hhb);

We must now input the two additional relations, and to do this identify
the three partitions mentioned in the first relation as being those labelled

1	471	1114�. Finally, in order to put the second relation in canonical form,
we need the labels of two partitions interchanged by the transposition �1 5�:

> Fix(sub<nn|f(s12!(1,2)),f(s12!(3,4)),f(s12!(5,6)),
f(s12!(7,8)),
> f(s12!(9,10)),f(s12!(10,11,12))>);
{ 1, 471, 1114 }
> 1ˆf(s12!(1,5));
23
> RR:=[<[1,471,1114],f(s12!(1,2)(3,4)(5,6)(7,8))>,
> <[1,23,1],f(s12!(1,5))>];
> CT:=DCEnum(nn,RR,
>[*f(s12!(1,2,3,4,5,6,7,8,9,10)),f(s12!(1,2)),<[1],
Id(nn)>*]:
> Print:=5,Grain:=300);

Index: 31671 === Rank: 4 === Edges: 22 === Time: 10.625

>
> CT[4];
[

[],
[ 5 ],
[ 5, 25 ],
[ 5, 25, 76 ]

]
> CT[7];
[ 66, 5775, 20790, 5040 ]

The enumeration is carried out over a subgroup which centralizes the trans-
position �11 12�, and we obtain index 31 671. So the image group possesses
a conjugacy class of involutions of length dividing 31 671. Indeed, we are
suggesting that in the image our control subgroup S12 acts on this class of
involutions with three orbits of lengths 66 (its own transpositions), 5775
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(the symmetric generators), 20 790 and 5040. Arguments which allow us to
make this claim, given that we know that Fi23 is a homomorphic image, are
outlined later in this section.

Proceeding in the manner suggested by this result, we consider the sym-
metric group S16 as control group acting on the partitions of the 16 letters
into four tetrads (the quadrifid maps), factored by the same analogous
relations. Rather disappointingly, though not surprisingly since the largest
symmetric group to appear in a sporadic group is S12, we find that, with
n = 16!/4!�4!�4 = 2627 625, Theorem 5.21 results.

Theorem 5.21

G = 2�n � S16⎡

⎢
⎢⎢
⎣

1234
5678
90uv
wxyz

⎤

⎥⎥
⎥
⎦

⎡

⎢⎢
⎢
⎣

1256
3478
90uv
wxyz

⎤

⎥⎥
⎥
⎦

⎡

⎢⎢
⎢
⎣

1278
3456
90uv
wxyz

⎤

⎥⎥
⎥
⎦

= �1 2��3 4��5 6��7 8�

⎛

⎜⎜
⎜
⎝
�1 5�

⎡

⎢
⎢⎢
⎣

1234
5678
90uv
wxyz

⎤

⎥
⎥⎥
⎦

⎞

⎟
⎟⎟
⎠

3

= 1	

� �1�	

the trivial group.

This last fact is a relatively straightforward consequence of the following
lemma.

Lemma 5.10

G = 2�36 � S6�2�
�Bt��3 = 1

� �1�	

where B denotes one of the bifid maps, say 1234/5678, and t� denotes the
symmetric generator fixed by the copy of S8 which served as the control
subgroup in Section 4.4.

Proof Recall that the 36 objects being permuted by S6�2� may be taken
to be the symbol � and the 35 bifid maps, so our set of symmetric generators
is given by

� = 
t��∪ 
tB � B a bifid map�


Careful though: the bifid maps do not act on one another by conjugation
(as in the 63-point action) but by right multiplication of cosets. Thus the
action � ×N �→ � is given by

(
1256
1278

	
1234
5678

)
�→ 1278

3456
�

(
5234
1678

	
1234
5678

)
�→ 5234

1678



Now let

c = tC	d = tD	 e = tE	



230 Sporadic simple groups

where

C = 1234
5678

	D = 1256
3478

and E = 1278
3456

�

note that cde = �1 2��3 4��5 6��7 8�. Then �t�c�
3 = 1, and so

t� c = �t� c�
4 = �t�	 t

c
�� = �t�	 t

de
� � = �te�	 t

d
� �

e = �et� 	 dt� �e = �e	d�t�e = 1


We have used the fact that c	d and e commute with one another, and that,
if u and v are involutions in a group such that �uv�3 = 1, then uv = vu.

But this says that t� = c = tC , where C was any bifid map; thus, in
particular, c = d and the simple group N = S6�2� collapses to the identity.
But then the additional relation becomes t3� = 1, and so t� = 1 and G= 1. �

This lemma is proved in much more generality in ref. [56], but this will
suffice for our purposes.

Proof of Theorem 5.17 We consider the subgroup of G generated
by all the quadrifid maps which have 90uv and wxyz as two of their rows.
There are of course 35 of these and they must generate a homomorphic
image of S6�2�. But the transposition �9 w� of our S16 clearly commutes with
a maximal subgroup of this group isomorphic to S8 acting on 
1	2	 � � � 	8�,
but does not commute with the whole S6�2�. We thus have a subprogenitor
2�36 � S6�2�, where the 36 symmetric generators are �9 w� and its images
under conjugation by this copy of S6�2�, factored by a relation equivalent
to that in Lemma 5.10. But this yields the trivial group, and so some of our
quadrifid maps are mapped to the identity. Thus all the quadrifid maps are
mapped to the identity and so is the transposition �1 5�. Thus the control
subgroup also maps to the identity and G = �1�. �

In an unpublished manuscript, Bray shows the following.

Theorem 5.22

G = 2�462 � S12[
123456
7890xy

][
123789
4560xy

][
123456
7890xy

][
1230xy
456789

]

= 1

(

�1 7�

[
123456
7890xy

])3

= 1	

� O−
10�2� � 2	

where the symmetric generators now correspond to partitions of the 12
letters into two sixes.

Call these bihex maps and note that the 66 transpositions in the S12 are
conjugate in G to the 462 bihex maps, forming a conjugacy class of 66+
462 = 528 involutions in the outer half of O−

10�2�, in a directly analogous
manner to the S6�2� case.

This suggests a different approach to working out the order of a symmet-
rically presented group G: instead of trying to find the index of the control
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subgroup N (or some other subgroup) in G, we count the involutions in a
conjugacy class of G. Firstly, note the following elementary result.

Lemma 5.11 Suppose that G = �X�, where X is a conjugacy class of ele-
ments in G. Let ! � G → H be a homomorphism of G onto a group H and
assume that ! restricted to X is a bijection. Then ker�!� ≤ Z�G�.

Proof Let k ∈ ker�!� and let x ∈ X. Then

!�xk� = !�x�!�k� = !�x�	

and so x = xk as ! is a bijection on the conjugacy class X. Hence k ∈ CG�x�,
and, since this holds for all x ∈ X and X generates G, we have k ∈ Z�G�, as
required. �

Since the progenitors under consideration are (essentially) perfect and we
know that they map onto specific target groups, we may then appeal to
our knowledge of possible perfect central extensions of these target groups
(their Schur multipliers).

In counting involutions we make use of a result of Virotte-Ducharme
[85], which we have translated into the language of progenitors and slightly
generalized. Before stating this result, we clarify some definitions: a set of
involutions � in a group G is said to be a G-closed set of 3-transpositions
provided that � is a union of conjugacy classes of G and that products xy
for x	 y ∈ � have order at most 3. If, in addition, � generates G, then we
say that G is a 3-transposition group with respect to �. Note that here �
need not be a single conjugacy class.

Theorem 5.23 Let P = 2�n � N and let t = t0 ∈ � , the set of symmetric
generators of the progenitor P. Furthermore, let N0 = StabN �t�, with �N �
N0� = �� � = n, and suppose that N is a 3-transposition group with respect
to � such that

N = N0 ∪N0� ∪N0�� 
 (5.5)

Let � = 
�tc�3 � c ∈ � \N0� and set G = P/�. Let � denote the image of
the set � ∪� . Then G is a 3-transposition group with respect to � \ 
1�.
Moreover,

(i) if G is a faithful image of P, then ��� = �� �+ �� �;
(ii) if N acts faithfully on the cosets of N0, or equivalently on � , then � is

a conjugacy class of G.

Before proving this theorem, it is worth noting that both our examples
2�35 � S8 �→ S6�2� and 2�462 � S12 �→ O−

10�2� � 2 satisfy its conclusions. Thus
in the first case ��� = �� � + �� � = (8

2

)+ 35 = 63; and in the second ��� =
�� �+ �� � = (12

2

)+ 462 = 528. In the first case, Equation (5.5) is equivalent
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to requiring that a given bifid map can be conjugated to any other by a
product of at most two transpositions of S8. This is clearly the case, so
Theorem 5.23 can be applied as it stands. However, in the second case we
would require that a given bihex map can be conjugated into any other by
a product of at most two transpositions. But two bihex maps whose hexads
intersect one another in three letters require at least three transpositions to
conjugate one into the other, so the theorem cannot be applied as it stands.
On the other hand, if we let

h =
[

123456
7890xy

]

then h�6 y� = �6 y�h, and so conjugation of a transposition of S12 by a
non-commuting bihex map results in a bihex map. Moreover,

h h�5 x��6 y� = �h�6 y�h�5 x���6 y� = ��6 y�h�5 x�h��6 y� = ��6 y��5 x��h�6 y�	

of order 2. So if the hexads of two such elements intersect evenly (i.e. two
in one and four in the other) then the elements commute. Finally note that
Bray’s first relation shows that a bihex map conjugated by another bihex
map whose hexads cut it 3.3 results in a third bihex map. So the union of
the set of transpositions and the set of bihex maps is a conjugacy class in
the image group as claimed above.

Proof of Theorem 5.5 We shall work throughout in the image group
G, and so expressions for elements are to be interpreted as their images
after quotienting by ��P�. The definition implies that �t	 x�= 1 if x ∈ �∩N0,
and that �tx�3 = 1 if x ∈ � \N0. If t �= s ∈ � then s = tg for some g ∈ G.
Now, Equation (5.5) implies that we may write g = mc or g = mcd, where
m ∈ N0 and c	d ∈ � . If d ∈ N0 then mcd = mdcd = m′e, where m′ ∈ N0 and
e = cd ∈ � ; so we may assume that neither c nor d lies in N0. So to show
that G is a 3-transposition group with respect to � ∪� , it remains to show
that all products of the form ts = ttc or ttcd have order 1, 2 or 3. But ttc = ct
of order dividing 3, and

ttcd = �tdtc�d = �dtct�d = �dc�td	

which has the same order as dc, namely 2 or 3 by hypothesis. Thus tx has
order less than or equal to 3 for all x ∈ �, and the transitivity of N on �
shows that this is true with t replaced by any element of � . Finally we must
show that � is a conjugacy class of G. It will suffice to show that �t = �
as G = �N	 t� and � is certainly preserved by N . But ct = c or ct = tc ∈ �
for all c ∈ � ; so it remains to show that rt ∈ � for all r ∈ � . But, as above,
r = tc or r = tcd for some c	d ∈ � \N0. Then �tc�t = c and

�tcd�t = �tc�dt = ctdt = cdtd = �cd�td = etd = �et�d = ed ∈ � or ted ∈ � 	

where e = cd ∈ � . �



5.9 Transitive extensions and the O’Nan group 233

At this stage we use the group O−
10�2� � 2, for which a symmetric presen-

tation was given in Theorem 5.18, as control subgroup acting on the cosets
of our previous control subgroup S12 with degree 104 448.

Theorem 5.24

G = 2�104448 � �O−
10�2� � 2�([

123456
7890xy

]
t
)3 � 3·Fi24


The proof of this result involves diagram geometries and relies on the
results of Ronan [77] and Ivanov [51], which together imply that the only
geometries with a particular diagram (known as �24) and which satisfy a
certain transitivity condition are those attached to the groups 3·Fi24 and
Fi24. We do not have space to describe this theory here, but refer the reader
to ref. [56], where there is a brief summary.

We conclude this section by stating as promised what happens if one or
other of the additional relations in Theorem 5.16 is removed. If the second
relation is removed, then the result is reminiscent of the S6�2� case and we
obtain the following theorem.

Theorem 5.25
2�5775 � S12⎡

⎢
⎣

1234
5678
90xy

⎤

⎥
⎦

⎡

⎢
⎣

1256
3478
90xy

⎤

⎥
⎦

⎡

⎢
⎣

1278
3456
90xy

⎤

⎥
⎦= �1 2��3 4��5 6��7 8�

� 2×Fi23	

However, if instead the first relation is removed, then John Bray has proved
the following remarkable result.

Theorem 5.26 [Bray]

2�5775 � S12
⎛

⎜
⎝�1 5�

⎡

⎢
⎣

1234
5678
90xy

⎤

⎥
⎦

⎞

⎟
⎠

3 � Fi23 ×O+
10�3� � 2


5.9 Transitive extensions and the O’Nan
group

In all the groups investigated so far in Part II, our procedure has been
to start with an interesting transitive permutation group N of degree n,
usually but not necessarily primitive, and form the progenitor 2�n � N . We
then employ various methods, in particular applying Lemma 3.3, to pro-
duce suitable additional relations by which to factor this progenitor. The
structure of the control subgroup N will of course be critical, and many
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of our most pleasing results have been obtained when the centralizer of a
2-point stabilizer is cyclic of order 2 with a generator interchanging the two
fixed points.

It is natural to ask what happens if N possesses a transitive extension of
degree n+1. To be precise, suppose we have obtained an interesting finite
group G as follows:

2�n � N
�1w1	 � � � 	�rwr

� G	

with symmetric generators � = 
t1	 � � � 	 tn�	� ∈ N and wi = wi�t1	 � � � 	 tn�,
a word in the ti. Then, supposing that M is a doubly transitive permutation
group of degree n+1 with point stabilizer M0 � N , what will happen if we
form

2�n+1 � M

�1w1	 � � � 	�rwr

	

with symmetric generators �̂ = 
t0	 t1	 � � � 	 tn�? The simple answer is that
this straightforward approach to extension is invariably doomed to fail-
ure for the simple reason that these additional relations often fail to sat-
isfy Lemma 3.3 applied to the extended progenitor. The image group will
collapse dramatically.

Perhaps the best way of seeing what goes wrong is by way of a familiar
example. So, consider the progenitor P = 2�11 � L2�11�, when N � L2�11�, the
point stabilizer N1 � A5, and the 2-point stabilizer11 is N12 � S3. Lemma 3.3
says that any permutation in N which can be written in terms of t1 and t2
without causing collapse must lie in CN �N12�, and in this case we have that
C2 � CN �N12� = ��12�, say. Accordingly, in the investigation which led to
a symmetric presentation for the Janko group J1 we factored by a relation
�12 = t1t2t1t2t1.

Now, L2�11� in its action on 11 letters possesses a transitive extension,
namely the Mathieu group M11 acting triply transitively on 12 letters. So we
have M � M11	M0 � L2�11� and M01 � A5. But A5 centralizes no non-trivial
element, and so the previous relation would infringe Lemma 3.3.

All is not lost, however! It turns out that the way to proceed makes
use of the fact that any pair of non-commuting involutions, a and b, say,
generate a dihedral group of order 2kwhich has trivial centre, if k is odd, and
centre of order 2, namely ��ab�k/2�, if k is even. So we form the progenitor
P̂ = 2��n+1� � M with symmetric generating set � = 
s0	 s1	 � � � 	 sn�, where
we are supposing that �si	 sj� � D8 for i �= j.12 We now set ti = �s0si�

2 for
i = 1	 � � � 	 n, and note that P̂ contains a sub-progenitor P = 2�n � N whose
symmetric generators are the ti. We may now factor P̂ by the relations
�iwi used to define G above (written as words in the ti) to ensure that

11 Note that we have continued to take the set of letters acted on by N to be 
1	 � � � 	11�,
so as to be consistent with the previous paragraph; however, we should normally take L2�11�
acting on �11, the integers modulo 11.

12 Note that we could replace D8 by D4k for any k ≥ 2.
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the resulting group Ĝ contains copies of some homomorphic image of G,
which we aim to make isomorphic copies of G itself. Note further that, since
ti ∈ Z��s0	 si��, s0 commutes with �t1	 � � � 	 tn�.

Applying this process to the J1 case mentioned above, we start with our
copy of

L2�11� � N = ��0 1 2 3 4 5 6 7 8 9 X�	 �3 4��2 X��5 9��6 7��	
where X stands for ‘10’; we then let � = �3 4��0 1 8��2 5 6 X 9 7� ∈ N and
recall that

2�11 � L2�11�
��t0�

5
� J1	

the smallest Janko group. The process of transitive extension leads us to
form the following group:

2�12 � M11

���s
s0�2�5	 �s
s0�4
	

where the 12 symmetric generators are 
s
	 s0	 � � � 	 sX�. Then

��s
s0�2	 � � � 	 �s
sX�2� = J1 or �1�	
the trivial group.13 Moreover, s
 commutes with this subgroup and so, if the
former case holds, we have a subgroup of shape 2×J1. As readers familiar
with the sporadic groups will know, there is indeed a group with a class of
involutions whose centralizers have this shape, namely the O’Nan group. It
turns out that the above is insufficient to define it, but that Theorem 5.27
holds.

Theorem 5.27
2�12 � M11

���s
s0�2�5	 �s
s0�4	 ��3s
s3�5
� O′N � 2


Note that all relators involve words of even length in the si, and so the image
must contain a subgroup of index 2 and the (images of) the symmetric
generators must lie outside this subgroup.

Motivated by this example, Bolt [11] together with Bray investigated
such transitive extensions of progenitors and found that the family of groups
of form L5�p� � 2 arise in this manner.

5.10 Symmetric representation of groups

It is the purpose of this section to demonstrate how construction of a group
by way of a symmetric presentation gives rise to an alternative, concise
but informative, method of representing its elements, which will prove par-
ticularly useful for some of the sporadic simple groups. In general, if we

13 Since J1 is simple.
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wish to multiply and invert elements in a straightforward manner, we must
represent them as either permutations or as matrices. These two operations
are readily performed on permutations; moreover, the cycle shape of an ele-
ment immediately yields its order and often its conjugacy class. However,
for the larger sporadic groups the lowest degree of a permutation represen-
tation is unmanageable (the Monster group is at best a permutation group
on 1020 letters). Operations on matrices are much more difficult and time-
consuming, and basic information about an element is not readily recovered
from its matrix representation; even so, Parker’s MeatAxe [7] effectively
handles very large matrices over finite fields, and much recent progress
in computing with matrix groups has been made by Leedham-Green and
colleagues. Moreover, some impressively low degree representations of spo-
radic groups over finite fields have been found by, for instance, Norton,
Parker and Wilson (see references in ref. [38]). Group elements can, of
course, be expressed as words in any generating set, but even recognizing
the identity element can be a formidable task. Again, given a short sequence
of letters whose stabilizer is trivial, a permutation is uniquely defined by its
image. This gives a remarkably concise notation for elements of the group,
but does not readily admit the basic operations.

The approach illustrated here, which exploits the Cayley diagram of
G over the control subgroup N , combines conciseness with acceptable ease
of manipulation. Inversion is as straightforward as for permutations, and
multiplication can be performed manually or mechanically by means of a
short recursive algorithm.

The desirability of such a concise representation of group elements is
convincingly illustrated by consideration of the Janko group J1, whose
order is only twice that of the Mathieu group M12, a permutation group
on 12 letters, but whose lowest permutation degree is 266. Whilst it is true
that Magma [19] and other group theoretic packages handle permutations
of this size with immense ease, recording and transmitting particular ele-
ments (other than electronically) is rather inconvenient. So, as in Cur-
tis and Hasan [37], we shall illustrate the method by applying it to
J1.

Since the diameter of the graph in Figure 5.5 is 4 and the edges cor-
respond to symmetric generators, it is clear that every element of G can
be represented by an element of L2�11�, that is to say a permutation on
11 letters followed by a word in the symmetric generators of length at
most 4. Indeed, the absence of cycles of length less than 5 in the Cayley
graph shows that this representation is unique when the length of the word
is 2 or less. Clearly such a symmetric representation is far more conve-
nient to work with than permutations on 266 letters, provided we are able
to multiply and invert elements easily. In fact, it is our main purpose to
present computer programs which do precisely this. The usefulness of this
approach is demonstrated in the following, where we list all involutions of
J1 up to conjugation by permutations in N , in symmetrically represented
form. Symmetrically represented generators for a representative of each
conjugacy class of maximal subgroups of J1 are given in Curtis [34].
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Table 5.9. The involutions of J1 under conjugation by L2�11�

Representative involution Corresponding edge Number

0 �∗	0� 11
01 = 101 = �01
10

= �0	1��2	6��7	X��3	4�
10 �1	01� 110

010 = �01= �0	1��2	6��7	X��3	4� �10	01� 55

018 = �2X
1= �2	X��0	8��5	6��7	9�
1 �18	10� 165

012 = �57
326
= �5	7��1	X��3	6��4	9�
326 �12	012� 660

0124 = �5X
39
= �5	X��0	7��2	4��3	9�
39 �5X9	X59� 330

01240 = �5X
7390
= �5	X��0	7��2	4��3	9�
7390 �05X2	5X2� 132

The involutions of J1

Let � be the unique conjugacy class of involutions in J1 and let x ∈ � . Then
CJ1

�x�� 2×A5, which is the stabilizer of an edge in the Livingstone graph.
This stabilizer is the centralizer of an involution, so we see that there is
a one-to-one correspondence between the involutions and the edges of the
graph. In Table 5.9 we give a representative for each of the seven orbits
of involutions under conjugation by the control subgroup N , together with
the corresponding edge and the number of involutions in each orbit. Recall
that �ij stands for the element of N given by titjtitjti.

The algorithms and programs
As explained above, any element of G can be written, not necessarily
uniquely, as the product of a permutation of N � L2�11� followed by a word
of length at most 4 in the symmetric generators. In Section 1
5 of Curtis
[34], I outlined a procedure for multiplying elements represented in this
fashion. It may be useful to see this process being carried out manually.

Example

�5X07
�0110 =�5X�010
�017�0110

=�5X�011X10

=�5X�01�1X1X0

= �5	X��0	7��2	4��3	9�
�0	1��2	6��7	X��3	4�


�1	X��8	0��9	3��6	4�1X0

=�0	1	8��2	9	6��5	7	X�1X0	

which is in its canonically shortest form.
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In this chapter we have computerized such a procedure in two independent
ways. The first, see Section 5.11.1, makes full use of the ease with which
Magma handles permutations of such low degree. Elements represented
as above are transformed into permutations on 266 letters, and any group
theoretic function can then be applied before transformation back into the
symmetric representation. Thus, for example, the procedure cenelt returns
generators for the centralizer of a given element symmetrically represented.
One can readily write procedures to perform whatever task one chooses in
Magma, and keep a record of the results in this short form.

The programs given in Section 5.11.2 are rather more interesting, both
mathematically and computationally. To multiply two elements we first
use unify to express

�u ·�v = �� ·u�v	
where �	� ∈N and u	 v are words in the elements of � , as a single sequence
ss of length 11 + length�u�+ length�v� ≤ 19. The first 11 entries give the
permutation �� and the remainder represents a word of length ≤ 8 in the
elements of � . The procedure canon now puts ss into its canonically shortest
form. No other representations of group elements are used; words in the
symmetric generators are simply shortened by application of the relations
(and their conjugates under N ). Working interactively, the response is
immediate.

The first type of procedure is heavily Magma-dependent, but can be
readily modified for other packages such as GAP. On the other hand, the
second type of procedure, although written in Magma here, could have
been written in any high-level language.14

5.11 Appendix to Chapter 5

5.11.1 Program 1
We start with a presentation of J1, based on the symmetric presentation
of Theorem 5.2, in which the three generators x, y and t correspond to the
two permutations in Section 5.2.1 (iv) (p. 138) and the symmetric generator
t0, respectively. Thus the Magma command CosetAction �J	 sub�J �x	 y��
gives J1 in its action on 266 letters. We now form the symmetric generators
� = 
ti� i = 0	1	 � � � 	X� as permutations on 266 letters and store them as
ts, a sequence of length 11. Next we build cst, a sequence of length 266
whose terms are sequences of integers, representing words in the symmetric
generators. These words form a complete set of coset representatives for
L2�11� in J1 and correspond to the ordering determined by the Magma

function CosetAction. Given two elements of J1 symmetrically repre-
sented as �xx	uu� and �yy	 vv�, the procedure mult uses ts and cst to return
the product �zz	ww�. As described in Section 5.10, the procedure cenelt

14 I am indebted to John Cannon for improving the Magma code in Program 2
(Section 5.11.2).
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is used to return generators for the centralizer of a given element �xx	uu�,
themselves symmetrically represented:

J1fmt := recformat<
/*
Data structure for the symmetric representation of J1.
*/

J1: GrpPerm,
L11: GrpPerm,
cst: SeqEnum, // of integer sequences
ts: SeqEnum, // of elements of J1
tra1: SetIndx, // of elements of L11
tra2: SetIndx // of elements of L11

>;

//------------------------------------------------------------------
----------
prodim := function(pt, Q, I)
/*
Return the image of pt under permutations Q[I] applied sequentially.
*/
v := pt;
for i in I do

v := vˆ(Q[i]);
end for;
return v;

end function;

//-------------------------------------------------------------------
----------
symrep := function()
/*
Initialize the data structures for the symmetric representation of
J1.
*/
J<x, y, t> := Group< x, y, t | xˆ11 = yˆ2 = (x*y)ˆ3 =

(xˆ4*y*xˆ6*y)ˆ2 = 1,
tˆ2 = (t, y) = (tˆx, y) = (tˆ(xˆ8), y) = (y*(tˆ(xˆ3)))ˆ5 =

(x*t)ˆ6 = 1>;

// Construct the sequence of 11 symmetric generators ts as
permutations
// on 266 letters.

f, J1, k := CosetAction(J, sub< J | x, y>);
ts := [ (tˆ(xˆi)) @ f : i in [1 .. 11] ];

// Construct representatives cst for the control subgroup N = L(2,
11)
// as words in the symmetric generators consisting of the empty
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word,
// 11 words of length one, 110 words of length two, 132 words of

length three,
// and 12 words of length four.

S11 := SymmetricGroup(11);
aa := S11 ! (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); bb := S11 ! (3,

4)(2, 10)(5, 9)(6, 7);
cc := S11 ! (1, 3, 9, 5, 4)(2, 6, 7, 10, 8); L11 := sub< S11 | aa,

bb, cc >;

cst := [null : i in [1 .. 266]] where null is [Integers() | ];
for i := 1 to 11 do
cst[prodim(1, ts, [i])] := [i];

end for;
for i := 1 to 11 do
for j in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} diff {i} do

cst[prodim(1, ts, [i, j])] := [i, j];
end for;

end for;

tra1 := Transversal(L11, sub<L11 | cc>);
for i := 1 to 132 do
ss := [3, 6, 1]ˆtra1[i];
cst[prodim(1, ts, ss)] := ss;

end for;

tra2 := Transversal(L11, sub<L11 | aa, cc>);
for i := 1 to 12 do
ss := [1, 10, 3, 11]ˆtra2[i];
cst[prodim(1, ts, ss)] := ss;

end for;

return rec<J1fmt |
J1 := J1, L11 := L11, cst := cst, ts := ts, tra1 := tra1, tra2

:= tra2
>;

end function;

//-------------------------------------------------------------------
----------
mult := function(J1Des, x, y)
/*
Return in its symmetric representation the product of elements x and
y of J1
themselves symmetrically represented.
*/

J1 := J1Des‘J1; cst := J1Des‘cst; ts := J1Des‘ts; L11 :=
J1Des‘L11;

rrr:= J1Des‘L11 ! x[1]; sss:= J1Des‘L11 ! y[1];
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uu := x[2]ˆsss; vv := y[2];
tt := &*[J1|ts[uu[i]]: i in [1 .. #uu]] * &*[J1|ts[vv[i]]: i in

[1 .. #vv]];
ww := cst[1ˆtt];
tt := tt * &*[J1|ts[ww[#ww - k + 1]]: k in [1 .. #ww]];
zz := L11![rep{j: j in [1..11] | (1ˆts[i])ˆtt eq 1ˆts[j]}: i in

[1..11]];
return <rrr*sss * zz, ww>;

end function;

//-------------------------------------------------------------------
----------
sym2per := function(J1Des, x)
/*
Convert an element x of J1 in the symmetric repesentation into a
permutation
acting on 266 letters. The image of an element of N is determined by
its action
on the eleven cosets whose representatives have length one.
*/
J1 := J1Des‘J1; cst := J1Des‘cst; ts := J1Des‘ts; L11 :=

J1Des‘L11;
tra1 := J1Des‘tra1; tra2 := J1Des‘tra2;

xx := J1Des‘L11 ! x[1]; uu := x[2];
p := [1 : i in [1 .. 266]];
for i := 1 to 11 do

p[prodim(1, ts, [i])] := prodim(1, ts, [i]ˆxx);
end for;
for i := 1 to 11 do

for j in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} diff {i} do
p[prodim(1, ts, [i, j])] := prodim(1, ts, [i, j]ˆxx);

end for;
end for;
for i := 1 to 132 do
t := [3, 6, 1]ˆtra1[i];
p[prodim(1, ts, t)] := prodim(1, ts, tˆxx);

end for;
for i := 1 to 12 do
t := [1, 10, 3, 11]ˆtra2[i];
p[prodim(1, ts, t)] := prodim(1, ts, tˆxx);

end for;

return (J1 ! p) * &*[J1|ts[uu[j]]: j in [1 .. #uu]];
end function;

//-------------------------------------------------------------------
----------
per2sym := function(J1Des, p)
/*
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Convert permutation p of J1 on 266 letters into its symmetric
representation.
The image of 1 under p gives the coset representative for Np as a
word ww in
the symmetric generators. Multiplication of p by the symmetric
generators of ww
in reverse order yields a permutation which can be identified with an
element
of N by its action on the 11 cosets of length one.
*/

J1 := J1Des‘J1; cst := J1Des‘cst; ts := J1Des‘ts; L11 :=
J1Des‘L11;

ww := cst[1ˆp];
tt := p * &*[J1|ts[ww[#ww - l + 1]]: l in [1 .. #ww]];
zz := L11![rep{j: j in [1..11] | (1ˆts[i])ˆtt eq 1ˆts[j]}: i in

[1..11]];
return <zz, ww>;

end function;

//-------------------------------------------------------------------
----------
cenelt := function(J1Des, x)
/*
Construct the centraliser of element x of J1 given in its
symmetric
representation. An example of how all the standard procedures of {\sc
Magma}
can be utilized by: transformation to permutations, application of
the procedure,
transformation back to symmetric representation.
*/

cent := Centralizer(J1Des‘J1, sym2per(J1Des, x));
return <Order(cent), [per2sym(J1Des, c): c in Generators(cent)]>;

end function;

5.11.2 Program 2

In this program we assume detailed knowledge of the control subroup
N � L2�11�, but use no representation of elements of J1 other than their sym-
metric representation. Firstly, the procedure unify uses the identity �u
�v=
��
u�v to combine two symmetrically represented elements �xx	uu� and
�yy	 vv� into a single sequence ss of length �11+ length�uu�+ length�vv��,
which represents a permutation of N followed by a word of length ≤ 8 in
the elements of � . The procedure canon then takes such a sequence and
reduces it to its shortest form using the following recursive algorithm. We
make use of the relations titjtitjti = �ij and titjtktitj = �ijk, for 
i	 j	 k� a
special triple, i.e. a triple fixed pointwise by an involution of N .
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The algorithm
Step (I) If two adjacent symmetric generators are equal, delete them.

Step (II) If a string titjti appears, replace it by �ijtitj and move the
permutation �ij over the preceding symmetric generators in
the standard manner.

Step (III) If a string titjtk appears with 
i	 j	 k� a special triple, replace it
by �ijktjti and move the permutation to the left as above.

Having completed the above, if length�ss� ≤ 11+3 = 14, finish. Otherwise
we may assume all strings titjtk have 
i	 j	 k� non-special.

Step (IV) For each string titjtktl construct a permutation � and a 5-cycle
� such that �titjtk commutes with �. (In fact, � = �pqr , where
p = i�jk 	 q = k�ij 	 r = j�ki .) If l is not fixed by �, we replace titjtk
by �−1��titjtk�

�m , where m is such that l ∈ 
i	 j	 k��
m . If

length�ss� ≤ 15, finish. Otherwise take step (V).

Step (V) We may now assume that any string of length 5 is one of the
11 special pentads preserved by L2�11�. We use the identity
267X8 = �X64X26 from ref. [34], p. 304, i.e. for [i	 j	 k	 l	m] an
even permutation of a special pentad

titjtktltm = �ljntltitj	

where n = l�ij .

After each Step, recall canon.

/*-------------------------------------------
Define the projective special linear group PSL(2,11) as permutations
of degree
11 and sequences of pairs, special triples and permutations equal to
ijkij.
*/
L11 := PermutationGroup< 11 |(1,2,3,4,5,6,7,8,9,10,11),
(2,10)(3,4)(6,7)(5,9) >;
sg := L11!(1, 11, 8)(2, 7, 9, 10, 6, 5)(3, 4);
trans := Transversal(L11, Stabilizer(L11,{3,4}));
prs := {@ {3,4}ˆx : x in trans @};
trips := {@ {11,1,8}ˆx : x in trans @};
sgs := [ sgˆx : x in trans ];

/*-------------------------------------------------------------
---------
Given two symmetrically represented elements of J1, where x and y are
permutations of N and u and v are words in the symmetric generators,
return
a single sequence of length 11 + l(u) + l(v) using the above
identity.
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*/
Unify := func< x, u, y, v | [ q[p[i]] : i in [1..#p] ] cat v

where p is Eltseq(x) cat u
where q is Eltseq(y) >;

/*-------------------------------------------------------------------
---------
Return permutation of N given by the word ijiji in the symmetric
generators.
*/
Pi := func< i, j | sgs[Index(prs, {i, j})]ˆ3 >;

/*-------------------------------------------------------------------
---------
For {i,j,k} a special triple, return permutation of N given by word
ijkij.
*/
Sg := func< i, j, k | iˆsgs[rr] eq k select sgs[rr] else sgs[rr]ˆ-1

where rr is Index(trips, {i,j,k}) >;

/*-------------------------------------------------------------------
---------
For {i,j,k} a non-special triple, return permutations p and s such
that s.ijk
commutes with the 5-cycle p.
*/
Ntrip := function(i,j,k)

s := Sg(iˆPi(j,k),kˆPi(i,j),jˆPi(k,i));
l := Rep(Fix(Pi(i,j)) diff {jˆPi(i,k),iˆPi(j,k)});
p := L11

!(i,k,kˆPi(i,j),l,iˆs)(jˆPi(i,k),iˆ(s*Pi(i,j)),iˆPi(j,k),j,kˆs);
return p, s;

end function;

/*-------------------------------------------------------------------
---------
For ss a sequence representing a permutation of N followed by a word
in the
symmetric generators, return an equivalent sequence of canonically
shortest length.
*/
Canon := function(ss)

s := ss;

// Step I.
if exists(i){ i : i in [12..#s-1] | s[i] eq s[i+1] } then
s := $$( s[1..i-1] cat s[i+2..#s] );
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end if;

// Step II.
if exists(i){ i : i in [12..#s-2] | s[i] eq s[i+2] } then

s := $$( [ p[s[k]] : k in [1..i-1] ] cat s[i..i+1] cat
s[i+3..#s]

where p is Eltseq(Pi(s[i], s[i+1])) );
end if;

// Step III.
if exists(i){ i : i in [12..#s-2] | Index(trips,

{s[i],s[i+1],s[i+2]}) ne 0 } then
s := $$([ q[s[k]] : k in [1..i-1] ] cat [s[i+1],s[i]] cat

s[i+3..#s])
where q is Eltseq(Sg(s[i], s[i+1], s[i+2]));

end if;

// Step IV.
if #s ge 15 and exists(m,i,p,q){<m,i,p,q> : m in [1..5], i in

[12..#s-3] |
s[i+3] in { s[i+1]ˆ(qˆm), s[i+2]ˆ(qˆm) }
where q, p is Ntrip(s[i], s[i+1], s[i+2]) } then

s := $$( [ t[s[k]] : k in [1..11] ] cat [ s[k]ˆr : k in
[12..i-1] ]

cat [ s[i-1+k]ˆ(qˆm) : k in [1..3]] cat s[i+3..#s]
)

where t is Eltseq(r) where r is pˆ(-1)*pˆ(qˆm);
end if;

// Step V.
if #s ge 16 then
s := $$([s[l[i]] : i in [1..11]] cat [s[15],s[12],s[13]] cat

s[17..#s])
where l is

Eltseq(Sg(s[15],s[13],s[15]ˆPi(s[12],s[13])));
end if;

return s;

end function;

/*-------------------------------------------------------------
-----------
Return the product of two symmetrically represented elements of
J1
*/
Prod := function( x, u, y, v)

t := Canon(Unify(x, u, y, v));
return L11!t[1..11], t[12..#t];
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end function;

/*--------------------------------------------------------
-----------
Return the inverse of a symmetrically represented element of J1
*/
Invert := func< x, u | xˆ-1, [u[#u-i+1]ˆ(xˆ-1) : i in [1..#u]] >;
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The (non-involutory)
progenitor

6.1 Monomial automorphisms

Up until now, our progenitors have all been split extensions of groups in
which the normal subgroup is a free product of cyclic groups of order 2.
The complement acts on this free product by permuting a set of involutory
generators of the cyclic subgroups. However, if the cyclic subgroups had
order greater than 2, the normal subgroups would have additional auto-
morphisms which, say, fix all but one of the symmetric generators and raise
the remaining generator to a power of itself coprime to its order. If the
symmetric generators have order m, so that the normal subgroup has shape
m�n, then there are ��m� such automorphisms for each generator, where
��m� denotes the number of positive integers less than m and coprime to it.
Automorphisms which permute the symmetric generators and raise them
to such coprime powers are called monomial automorphisms; the reason for
this nomenclature will become apparent in the following sections. It is clear
that M, the group of all monomial automorphisms of the group m�n, has
order ��m�nn!, where ��m� denotes the number of positive integers less than
m and coprime to it. In practice, our generalized progenitors will have shape

m�n �m N	

where N ≤ M acts transitively on the n cyclic subgroups and the subscript
m on the colon indicates that the action is genuinely monomial and does
not simply permute a set of generators.

As an example, let us consider a set of seven 3-cycles defined on the set
� = 
0	1	 � � � 	6� given by

� = �124� �0 1 3� �6 0 2� �5 6 1� �4 5 0� �3 4 6� �2 3 5�
t0 t1 t2 t3 t4 t5 t6




249



250 The (non-involutory) progenitor

The seven cyclic groups of order 3 generated by these elements are clearly
in one-to-one correspondence with the lines of the Fano plane as labelled in
Figure 5.15 (p. 163), and so the group L3�2� permutes them by conjugation.
Indeed we see that the action is given by

a �= �0 1 2 3 4 5 6� � �t6 t5 t4 t3 t2 t1 t0�

and

b �= �2 6��4 5� � �t0 t
−1
3 ��t1��t2 t

−1
2 ��t4 t

−1
4 ��t5 t6�


We may conveniently display these automorphisms as matrices in which
the columns correspond to the symmetric generators (with t0 in the seventh
position). We place a 1 in the ijth position if the automorphism maps ti to
tj and a −1 in the ijth position if it maps ti to t−1

j . Clearly there will be just
one non-zero entry in each row and one in each column. Thus,

a ∼

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

· · · · · · 1
1 · · · · · ·
· 1 · · · · ·
· · 1 · · · ·
· · · 1 · · ·
· · · · 1 · ·
· · · · · 1 ·

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

	 b ∼

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

1 · · · · · ·
·−1 · · · · ·
· · · · · ·−1
· · ·−1 · · ·
· · · · · 1 ·
· · · · 1 · ·
· ·−1 · · · ·

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦




A matrix in which there is precisely one non-zero term in each row and
one in each column is said to be monomial. Thus a monomial matrix is a
product of a permutation matrix and a non-singular diagonal matrix. Of
course these seven 3-cycles do not generate a free product of cyclic groups
but are readily seen to generate the alternating group A7. Even so, the
action defined by the above matrices may be interpreted as automorphisms
of the free product 3�7, and so we see that there is a homomorphism

3�7 �m L3�2� → A7


We obtained this monomial action of the control subgroup L3�2� by con-
sidering what happens in a homomorphic image of the progenitor. In
Section 6.2 we shall see how to go directly from the control subgroup to its
possible monomial actions.

6.2 Monomial representations

A monomial representation of a group G is a homomorphism from G into
GLn�F�, the group of non-singular n×n matrices over the field F , in which
the image of every element of G is a monomial matrix over F . Thus the
action of the image of a monomial representation on the underlying vec-
tor space is to permute the vectors of a basis while multiplying them by
scalars. Every monomial representation of G in which G acts transitively on
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the 1-dimensional subspaces generated by the basis vectors is obtained by
inducing a linear representation of a subgroup H up to G. If this linear rep-
resentation is trivial, we obtain the permutation representation of G acting
on the cosets of H . Otherwise we obtain a proper monomial representation.
Now, an ordinary linear representation of H is a homomorphism of H onto
Cm, say, a cyclic multiplicative subgroup of the complex numbers �, and
the resulting monomial matrices will involve complex mth roots of unity.
But we can similarly define a linear representation into any finite field F
which possesses mth roots of unity.

Example 6.1 A 3-modular monomial representation of 2·S+
4 , one of the

double covers of the symmetric group S4.
Consider the double cover of S4, the symmetric group on four letters,

in which the transpositions lift to involutions. This group G, which is
isomorphic to the general linear group GL2�3� and whose ordinary character
table is displayed in Table 6.1, is often denoted by 2·S+

4 . The isoclinic group,
see the Atlas [25], p. xxiii, in which transpositions lift to elements of order
4, is denoted by 2·S−

4 . Now, a subgroup H of index 4 in G is isomorphic
to 2×S3. One of the three non-trivial linear representations of H maps the
involution in its centre to 1, and so the resulting monomial representation
is not faithful. The other two map this involution to −1 and give rise to
equivalent monomial representations of degree 4, whose character is given
by the bottom line of Table 6.1.1

1 The character tables given in Tables 6.1 and 6.2 are displayed in Atlas format. If a
group G possesses an involution, z say, in its centre, then we may factor out the subgroup �z�
to obtain G/�z� �H . We write this as G� 2
H , where the lower ‘dot’ indicates that we are not
specifying whether this is a split or non-split extension. Any element of H has two pre-images
in G, with x and xz mapping to the same element of H for x any element of G. The elements
x and xz may or may not be conjugate in G; or, to put it another way, a conjugacy class of H
may be the image of one conjugacy class of G or of two. Of course, if one of x and xz has odd
order, then the other has even order and they cannot be conjugate. Otherwise x and xz have
the same (even) order, but they may still be non-conjugate. Table 6.1 displays the character
table of H and indicates in the central double row whether the class corresponding to a column
has one or two pre-images. The integers displayed give the orders of pre-images of elements
in that class of H and, if a single integer is displayed in a particular column, then it means
that all pre-images of elements in that class of H are conjugate. Thus the character tables
of 2·S+

4 and 2·S−
4 (Table 6.1) both exhibit the 5× 5 character table of S4, and both groups

have eight conjugacy classes. Moreover, in both cases the pre-images of elements in class 2A
have order 4 and form one class in the double cover. However, in the first case pre-images of
elements in class 2B have order 2 and in the second case they have order 4; in both cases they
are all conjugate to one another. In both groups, if x is a pre-image of an element of S4 of
order 4, then x has order 8 and is not conjugate to xz. The faithful characters are given below
the central double row. The character value given for each of these is the value on the upper
class in the case when there are two classes of pre-images, with the value on the other class
being the negative of the value indicated. Thus the first faithful character of degree 2 of 2·S+

4
written in full has the following form:

48 48 8 6 6 4 8 8
1X 2X 4X 3X 6X 2Y 8X 8Y
2 −2 0 −1 1 0 i

√
2 −i

√
2
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Table 6.1. Character tables of 2·S+
4 and 2·S−

4

2·S+
4 2·S−

4

24 8 3 4 4 24 8 3 4 4
1A 2A 3A 2B 4A 1A 2A 3A 2B 4A

+ 1 1 1 1 1 + 1 1 1 1 1
+ 1 1 1 −1 −1 + 1 1 1 −1 −1
+ 2 2 −1 0 0 + 2 2 −1 0 0
+ 3 −1 0 1 −1 + 3 −1 0 1 −1
+ 3 −1 0 −1 1 + 3 −1 0 −1 1

1 4 3 2 8 1 4 3 4 8
2 6 8 2 6 8

o 2 0 −1 0 i
√

2 − 2 0 −1 0 −√
2

o 2 0 −1 0 −i
√

2 − 2 0 −1 0 −√
2

+ 4 0 1 0 0 − 4 0 1 0 0

Now, G may be shown to have the following presentation:

�x	 y � y3 = �xy�4	 x2 = 1�	

and the aforementioned representation is generated by

x =

⎡

⎢
⎢⎢
⎣

· 1 · ·
1 · · ·
· · 1 ·
· · ·−1

⎤

⎥
⎥⎥
⎦
	 y =

⎡

⎢⎢
⎢
⎣

−1 · · ·
· ·−1 ·
· · ·−1
·−1 · ·

⎤

⎥⎥
⎥
⎦



Clearly these matrices will give a faithful representation over any field of
characteristic other than 2; and so, in particular, they give a 3-modular
monomial representation of the group.

Example 6.2 A 5-modular monomial representation of 2·S−
4 .

The unique subgroup of index 4 in 2·S−
4 has shape 2·S3 � 3 � 4; so it is

generated by an element of order 3 and an element of order 4 inverting it.
This group factored by its derived group is thus isomorphic to C4 and so has
a linear representation onto the subgroup of � generated by i, the square
root of −1. Inducing up this linear representation produces an irreducible
4-dimensional monomial representation of 2·S−

4 whose character is given in
the bottom row of the right hand side of Table 6.1. Now, a presentation of
2·S−

4 is given by

�x	 y � x4 = y3 = �xy�2�	
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and generating matrices over � are given by

x �=

⎡

⎢⎢
⎢
⎣

· 1 · ·
· · 1 ·
· · · 1

−1 · · ·

⎤

⎥⎥⎥
⎦
	 y �=

⎡

⎢⎢⎢
⎣

· ·−1 ·
i · · ·
·−i · ·
· · ·−1

⎤

⎥⎥⎥
⎦



But, of course, this representation may be written over any field which
possesses fourth roots of unity, such as �5, the field of integers modulo
5. So we replace i and −i in the above matrices by 2 and 3, respectively
(or, indeed, by 3 and 2, respectively2), to obtain a 5-modular monomial
representation of 2·S−

4 .

Example 6.3 A 5-modular monomial representation of SL2�5�.
Consider now G � 2·A5 � SL2�5�, the double cover of the alternating

group on five letters whose character table is displayed in Table 6.2.3 A
subgroup of index 5 has shape 2·A4 and its derived group contains its centre.
Thus any linear representation would have the centre in its kernel, and the
resulting monomial representation of G would not be faithful. A subgroup
H of index 6, however, has H/H ′ � C4 and H ′ � C5. To obtain a faithful
monomial representation, we must induce up a linear representation of H
which maps a generator of this cyclic group of order 4 onto a primitive
fourth root of unity in our field. A presentation for this group is given by

�x	 y � x5 = y4 = �xy�3 = 1 = [x	 y2]�	

and over � the representation is given by

x =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

1 · · · · ·
· · 1 · · ·
· · · 1 · ·
· · · · 1 ·
· · · · · 1
· 1 · · · ·

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

	 y =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

· 1 · · · ·
−1 · · · · ·
· · · · ·−1
· · · i · ·
· · · ·−i ·
· · 1 · · ·

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦




This complex representation is irreducible, and its character is given by
the bottom line of Table 6.2. Now, the smallest finite field which con-
tains primitive fourth roots of unity is GF5 � �5, the integers modulo 5.

2 As will become apparent in the rest of this chapter, these two possibilities can lead to
very different results.

3 The irrationality in Table 6.2 is given in Atlas notation, where b5 denotes �−1+√
5�/2

and b5� denotes �−1−√
5�/2.
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Table 6.2. Character table of SL2�5�

SL2�5�

60 4 3 5 5
1A 2A 3A 5A B�

+ 1 1 1 1 1
+ 3 −1 0 −b5 �
+ 3 −1 0 � −b5
+ 4 0 1 −1 −1
+ 5 1 −1 0 0

1 4 3 5 5
2 6 10 10

− 2 0 −1 b5 �
− 2 0 −1 � b5
− 4 0 1 −1 −1
− 6 0 0 1 1

Thus, a faithful 5-modular representation of G is obtained by replacing i
by 2 and −i by 3 in the matrix representing y. (Or, indeed, i by 3 and
−i by 2.)

Example 6.4 A 7-modular monomial representation of the triple cover of
the alternating group A7.

As in our last example of a monomial representation, we take G� 3·A7,
the triple cover of the alternating group on seven letters whose character
table is displayed in Table 6.3. We seek a faithful monomial representa-
tion of this group. Now, a subgoup of index 7 in G is isomorphic to 3·A6,
which, being perfect, has the centre of G in the kernel of its unique linear
representation; thus G has a unique 7-dimensional monomial representa-
tion, which is the permutation representation lifted from A7. However, G
possesses two classes of subgroups of index 15 which are isomorphic to
3 × L2�7� and which are fused by the outer automorphism. Such a sub-
group H possesses linear representations onto C3, the group of complex
cube roots of unity. Inducing such representations up to G, we obtain
two faithful monomial representations of G of degree 15, whose charac-
ters are the second pair of faithful irreducible characters of degree 15 in
Table 6.3.

In order to construct this representation explicitly, we take the following
presentation of G:

�x	 y � x7 = y4 = �xy2�3 = �x3y�3 = �yx�5�xyx2y−1�2 = 1� � 3·A7


Coset enumeration over �x� verifies the order, the group is visibly per-
fect (abelianizing reduces it to the trivial group), and the homomorphism
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Table 6.3. Character table of 3·A7

3·A7

2520 24 36 9 4 5 12 7 7
1A 2A 3A 3B 4A 5A 6A 7A B��

+ 1 1 1 1 1 1 1 1 1
+ 6 2 3 0 0 1 −1 −1 −1
o 10 −2 1 1 0 0 1 b7 ��
o 10 −2 1 1 0 0 1 �� b7
+ 14 2 2 −1 0 −1 2 0 0
+ 14 2 −1 2 0 −1 −1 0 0
+ 15 −1 3 0 −1 0 −1 1 1
+ 21 1 −3 0 −1 1 1 0 0
+ 35 −1 −1 −1 1 0 −1 0 0

1 2 3 3 4 5 6 7 7
3 6 12 15 6 21 21
3 6 12 15 6 21 21

o2 6 2 0 0 0 1 2 −1 −1
o2 15 −1 0 0 −1 0 2 1 1
o2 15 3 0 0 1 0 0 1 1
o2 21 1 0 0 −1 1 −2 0 0
o2 21 −3 0 0 1 1 0 0 0
o2 24 0 0 0 0 −1 0 b7 ��
o2 24 0 0 0 0 −1 0 �� b7

The format for the character table of a triple cover follows the same principle as for
a double cover, only now each element of the image (in this case A7) has three pre-
images and a conjugacy class has either one or three pre-images. When a class has
three pre-images, a faithful character takes the value given on the class corresponding
to the topmost of the three classes indicated in the central triple row. If this value is
�, then our faithful character takes the value �� on the middle class and ��̄ on the
bottom class, where � is a complex cube root of unity. Finally note that the symbol
o2 indicates that each row below the central triple row stands for two characters,
the one just described and the one obtained by interchanging � and �̄. Thus our
table for 3·A7 has 2+ 3× 7 = 23 classes and 9+ 2× 7 = 23 characters. Note that b7
denotes �−1+√

7i�/2 and b7�� denotes its complex conjugate. (In general, bp denotes
�−1+√±p�/2 depending on whether p ≡ ±1 modulo 4.)

x �→ �1 2 3 4 5 6 7�	 y �→ �1 7 2 4��5 6� demonstrates that it has A7 as an
image. It is particularly suitable for our purposes as �x	 y2� � L2�7�, the sub-
group in which we are interested. Our elements x and y may be represented
by the following 15×15 complex matrices:

Of course, such a matrix may, as mentioned previously, be written as a
non-singular diagonal matrix followed by a permutation matrix:

x = �I15	 �1	2	3	4	5	6	7��8	9	10	11	12	13	14��15��	

y = �diag��	�	1	 �̄	 �̄	1	 �̄	 �̄	�	 �̄	1	1	�	1	��	

�1	11	8	12��2	6	13	9��4	10	5	3��7	15��14��
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For our purposes, we require a finite field with cube roots of unity. If we
insist on a prime field then we may take �7, the integers modulo 7, and
replace � and �̄ by 2 and 4, respectively (or by 4 and 2); or we may simply
interpret � and �̄ as elements in the Galois field of order 4 in the usual way.

x =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣


 1 
 
 
 
 
 
 
 
 
 
 
 
 


 
 1 
 
 
 
 
 
 
 
 
 
 
 


 
 
 1 
 
 
 
 
 
 
 
 
 
 


 
 
 
 1 
 
 
 
 
 
 
 
 
 


 
 
 
 
 1 
 
 
 
 
 
 
 
 


 
 
 
 
 
 1 
 
 
 
 
 
 
 

1 
 
 
 
 
 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 1 
 
 
 
 
 


 
 
 
 
 
 
 
 
 1 
 
 
 
 


 
 
 
 
 
 
 
 
 
 1 
 
 
 


 
 
 
 
 
 
 
 
 
 
 1 
 
 


 
 
 
 
 
 
 
 
 
 
 
 1 
 


 
 
 
 
 
 
 
 
 
 
 
 
 1 


 
 
 
 
 
 
 1 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 
 
 
 1

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

�

y =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣


 
 
 
 
 
 
 
 
 
 � 
 
 
 


 
 
 
 
 � 
 
 
 
 
 
 
 
 


 
 
 1 
 
 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 �̄ 
 
 
 
 


 
 �̄ 
 
 
 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 
 1 
 


 
 
 
 
 
 
 
 
 
 
 
 
 
 �̄

 
 
 
 
 
 
 
 
 
 
 �̄ 
 
 


 � 
 
 
 
 
 
 
 
 
 
 
 
 


 
 
 
 �̄ 
 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 1 
 
 
 
 
 
 

1 
 
 
 
 
 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 � 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 
 
 1 


 
 
 
 
 
 � 
 
 
 
 
 
 
 


⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦




6.3 Monomial action of a control subgroup

We have seen that monomial automorphisms of a free product of cyclic
groups can be exhibited as monomial matrices. Equally, though, a mono-
mial matrix of degree n over a prime field �p, say, defines a monomial
automorphism of the free product p�n. For, if the unique non-zero entry in
the ith row is aij, then we interpret this as saying that the corresponding
automorphism maps ti to t

aij
j , where

p�n = �t1�� �t2� · · · �tn�

So an n-dimensional p-modular monomial representation of the group N
tells us how N can act as control subgroup in a progenitor of shape

p�n �m N




6.3 Monomial action of a control subgroup 257

Example 6.5 A progenitor with symmetric generators of order 3.
Our monomial representation over �3 in Example 6.1 shows how the

group 2·S+
4 can act faithfully as control subgroup in the progenitor

P � 3�4 �m 2·S+
4 


To obtain a presentation for this group we must adjoin an element of order
3, t1 say, to the control subgroup N � 2·S+

4 such that T1 = �t1� has just four
images under its action. Specifically we require

x ∼ �t1 t2��t3��t4 t
−1
4 �	 y ∼ �t1 t

−1
1 ��t2 t

−1
3 t4 t

−1
2 t3 t

−1
4 �	

under conjugation, or, more concisely,

x ∼ �1 2��3��4 4̄�	 y ∼ �1 1̄��2 3̄ 4 2̄ 3 4̄�	

where in this abbreviated notation i is standing for ti and ī is standing for
t−1
i . This is easily seen to be achieved by

�x	 y	 t � y3 = �xy�4	 x2 = 1 = t3 = tyt = [txy	 x]� � 3�4 �m 2·S+
4 	

since NN��t0�� = �y	 xy−1x� � 2×S3


Example 6.6 The group 2·S−
4 and a progenitor with symmetric generators

of order 5.
The 5-modular representation of 2·S−

4 , obtained from the matrices in
Example 6.2 by replacing i by 2 and −i by 3, defines the progenitor

P � 5�4 �m 2·S−
4 	

in which we denote the four symmetric generators by 
t1	 t2	 t3	 t4�. The
elements x and y act on them by conjugation according to

x ∼ �t1 t2 t3 t4 t
−1
1 t−1

2 t−1
3 t−1

4 �	

y ∼ �t1 t
−1
3 t22 t

−1
1 t3 t

−2
2 ��t4 t

−1
4 �	

which we often abbreviate as follows:

x ∼ �1 2 3 4 1−1 2−1 3−1 4−1�	 y ∼ �1 3−1 22 1−1 3 2−2��4 4−1�


Note that we have only given the action on half the powers of the symmetric
generators, as the rest follow. The subgroup of N � 2·S−

4 which normalizes
�t1� is given by

NN��t1�� = �xy ∼ �1 12 1−1 1−2��2 2−2 2−1 22��3 4−1 3−1 4�	

yx ∼ �1 1−1��2 4−1 32 2−1 4 3−2��
� 3 � 4	

and so a presentation for the progenitor is given by

P = �x	 y	 t � x4 = y3 = �xy�2	 t5 = txyt−2 = ty
x
t = 1�	

where t stands for the symmetric generator t1.
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Table 6.4. Character table of SL2�7�

SL2�7�

168 8 3 4 7 7
1A 2A 3A 4A 7A B��

+ 1 1 1 1 1 1
o 3 −1 0 1 b7 ��
o 3 −1 0 1 �� b7
+ 6 2 0 0 −1 −1
+ 7 −1 1 −1 0 0
+ 8 0 −1 0 1 1

1 4 3 8 7 7
2 6 8 14 14

o 4 0 1 0 −b7 ��
o 4 0 1 0 �� −b7
− 6 0 0 r2 −1 −1
− 6 0 0 −r2 −1 −1
− 8 0 −1 0 1 1

Example 6.7 SL2�7� and a progenitor with symmetric generators of
order 3.

The group N � SL2�7� contains a subgroup of shape 2 × 7 �3 to index
8. We could map this subgroup onto a cyclic group of order 6 and thus
obtain an 8-dimensional monomial representation of the group involving
sixth roots of unity. However, we prefer to map the subgroup onto the cyclic
group of order 2 and so obtain an 8-dimensional monomial representation of
N whose non-zero entries are ±1. This time we do not obtain an irreducible
representation, but the sum of the two simple characters of degree 4 in
Table 6.4.

Not surprisingly we choose to read this representation module 3, thus
allowing ourselves to define a progenitor of shape

P � 3�8 �m SL2�7�


Rather than constructing matrices generating this representation of N , we
prefer to go straight to the action of our control subgroup on the eight
symmetric generators. In order to do this we first recall that the simple
group L2�7� is generated by the two permutations x ∼ �
��0 1 2 3 4 5 6�
and y ∼ �
 0��1 6��2 3��4 5�, which satisfy the following presentation:

L2�7� = �x	 y � x7 = y2 = �xy�3 = �x	 y�4 = 1�

Involutions in L2�7� lift to elements of order 4 in SL2�7�, and so a pre-image
of y must square to the element of the control subgroup which inverts all
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the symmetric generators. Indeed, relaxing the above presentation so that
each of the words mentioned is equal to the same central element, we have

SL2�7� = �x	 y � x7 = y2 = �xy�3 = �x	 y�4�
 (6.1)

By replacing a symmetric generator by its inverse if necessary, we may
assume that a pre-image of x, x̂ say, acts on the symmetric generators by
conjugation as x̂ ∼ �t
��t0 t1 t2 t3 t4 t5 t6� and that a pre-image of y, ŷ say,
acts as

ŷ ∼ �t
 t−1
0 t−1


 t0��t1 t
a
6 t−1

1 t−a
6 ��t2 t

b
3 t−1

2 t−b
3 ��t4 t

c
5 t

−1
4 t−c

6 �	

where a	b	 c = ±1. But, replacing ŷ by its inverse if necessary, we may
assume that x̂ŷ has order 3; this condition determines that a= b = c = −1,
and the progenitor P is uniquely defined. In abbreviated notation, where i
stands for ti and ī stands for t−1

i , we thus have

x̂ ∼ �0 1 2 3 4 5 6��
�	 ŷ ∼ �
 0̄ 
̄ 0��1 6̄ 1̄ 6��2 3̄ 2̄ 3��4 5̄ 4̄ 5�


If the central element of order 2 which inverts all the symmetric generators is
denoted by ẑ, then it is readily checked that x̂ẑ and ŷ satisfy the presentation
in Equation (6.1).

Example 6.8 SL2�5� and a progenitor with symmetric generators of
order 5.

The 5-modular representation of SL2�5�, obtained from the matrices in
Example 6.3 by replacing i by 2 and −i by 3, defines the progenitor

P � 5�6 �m SL2�5�	

in which

x ∼�t
��t0 t1 t2 t3 t4�	

y ∼�t
 t0 t
−1

 t−1

0 ��t1 t
−1
4 t−1

1 t4�

�t2 t
2
2 t

4
2 t

3
2��t3 t

3
3 t

4
3 t

2
3�


We prefer to extend this to a progenitor:

P � 5��6+6� �m �SL2�5� � 2� � 5��6+6� �m 2·S5

by adjoining the outer automorphism of the control subgroup. The asso-
ciated monomial representation has degree �6 + 6� = 12, with the two 6-
dimensional subspaces invariant under 2·A5 being interchanged by the
outer automorphism. As presentation for the extended control subgroup,
we take

2·S5 � �x	 y � x5 = y4 = �xy2�3	 �x3y�2 = 1�
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To obtain the progenitor from this we must adjoin an element r of order 5
which is normalized by a subgroup of the control subgroup of order 20, as
described in Example 6.3:

P = 5�
6+6� �m 2·S5 � �x	 y	 r � x5 = y4 = �xy2�3	 �x3y�2 = 1 = r5 = rxr	

ry
2x2y2 = �ry

2x2
�3�


This follows from the fact that �x	 �y2x2�y2�y2x2�−1� is isomorphic to such
a subgroup of order 20. If we let the two sets of six symmetric generators
be � = 
r
	 r0	 � � � 	 r4� and � = 
s
	 s0	 � � � 	 s4�, then the action on these
satisfying the above presentation may be given by

x2 = �r
��r0 r1 · · · r4��s
��s0 s1 · · · s4�	

y = �r
 s2 r4 s
−1
1 · · · ��r0 s2

0 r
−2
0 s0 · · · �

�r1 s
−2

 r2 s

−2
4 · · · ��r3 s3 r2

3 s2
3 · · · �	

where x5 = y4 inverts all the symmetric generators, and r corresponds to
the symmetric generator r
. It is clear that x inverts r = r
; moreover,
ry

2x2


 = r0 and r
y2

0 = r3
0 , confirming that a subgroup of order 20 normalises

�r�. It should be noted that [r
	 x] = r−1

 r−1


 = r−2

 , and so the derived group

of the progenitor contains all the symmetric generators. It also contains the
derived group of the control subgroup and so has shape 5��6+6� �m SL2�5�.
By a similar argument this group itself is perfect, and so any homomorphic
image of P contains a perfect subgroup to index at most 2.

Example 6.9 A progenitor with symmetric generators of order 7.
The monomial modular representation obtained in Example 6.4 defines

the progenitor

P � 7�15 �m 3·A7

in the same way. As in Example 6.8, however, we prefer to extend the
control subgroup to 3·S7. Note that this group does not possess a subgroup
of index 15 as the two classes of subgroups isomorphic to L3�2� are fused by
the outer automorphism; see p. 3 of the Atlas [25]. Recall, moreover, that
the outer automorphism of 3·A7 inverts the central elements of order 3,
and so in the monomial representation obtained by inducing a non-trivial
linear representation of 3×L3�2� up to 3·S7 such a ‘central’ element will
be represented by diag��15	 �̄15� or its conjugate. Translating this into the
language of progenitors, in

7��15+15� �m �3·S7�

a ‘central’ element of order 3 will, by conjugation, square one set of 15
symmetric generators while fourth-powering the other. In keeping with the
theme of this book, we choose to take the symmetric presentation for the
control subgroup 3·S7, which was given in Theorem 4.3:

G � 2�7 � L3�2�
��0	1	2	3	4	5	6�t0�6

� 3·S7
 (6.2)
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421 7 24

7

7

[0103]

[0131]

1

1

7 1 6 1

1 7

1 7

4 7
1

6

1

6

[   ] [0] [01]

[010]

[013]

[012]

Figure 6.1. The Cayley diagram of 3·S7 over L3�2�.

From Figure 6.1 we see that every element of N can be expressed, not
necessarily uniquely, as a permutation of L3�2� acting on seven letters,
followed by a word of length less than or equal to 4 in the seven symmetric
generators. Now, when the normal subgroup of order 3 is factored out, the
three single point orbits in Figure 6.1 are fused to give suborbits of lengths
1+7+14+8, and so we can deduce that the ‘central’ elements of order 3 lie
in the double cosets �0103� �= Nt0t1t0t3N� and �0131�. The images of the ti
in S7 are given by t0 = �1 3��2 6��4 5�, as above, and ti = tx

i

0 , and so we find
that t0t1t0t3 ≡ �2 6��4 5� modulo Z�N ′�. Thus, with z= �2 6��4 5�t0t1t0t3, we
have

Z�N ′� = �z� = �x3yx−2txttx
3�


To obtain a presentation for the progenitor

7��15+15� �m �3·S7�	

we must adjoin an element s of order 7, which is centralized by our N � L3�2�
and mapped to its square under conjugation by a central element of N ′.
This is achieved by adjoining s with

s7 = �s	 x� = �s	 y� = stx
2txtx−1ts3 = 1	

where the monomial action of x	 y and t is given by

x = �I30	 �1 2 3 4 5 6 7��8 9 10 11 12 13 14��15�

�16 17 18 19 20 21 22��23 24 25 26 27 28 29��30���

y = �diag�1	1	1	1	1	1	1	4	2	2	4	1	1	1	1	2	4	4	1	4	2	4	4	2	2	1	2	4	2	1�	

�1 6 5��2 4 3��7��8��9 14 11��10��12 13 15�

�16 29 27��17 26 25��18 24 19��20 23 22��21��28��30���

t = �diag�1	4	1	2	4	2	1	1	4	2	2	2	2	4	1	1	2	4	4	4	4	2	1	1	2	4	2	1	4	1�	

�1 16��2 22��3 23��4 20��5 27��6 29��7 30��8 28�

�9 25��10 21��11 26��12 19��13 18��14 17��15 24��
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If, as above, we let the two sets of symmetric generators be denoted by
� = 
r1	 r2	 � � � 	 r15� and � = 
s1	 s2	 � � � 	 s15�, this becomes:

x � �r1 r2 r3 r4 r5 r6 r7��r8 r9 r10 r11 r12 r13 r14��r15�

�s1 s2 s3 s4 s5 s6 s7��s8 s9 s10 s11 s12 s13 s14��s15��

y � �r1 r6 r5��r2 r4 r3��r7��r8 r
4
8 r2

8 ��r9 r
2
14 r

2
11��r10 r

2
10 r

4
10��r12 r13 r15�

�s1 s
2
14 s

4
12��s2 s

4
11 s

4
10��s3 s

4
9 s4��s5 s

4
8 s

2
7��s6 s

2
6 s

4
6��s13 s

4
13 s

2
13��s15��

t � �r1 s1��r2 s
4
7��r3 s8��r4 s

2
5��r5 s

4
12��r6 s

2
14��r7 s15��r8 s13�

�r9 s
4
10��r10 s

2
6��r11 s

2
11��r12 s

2
4��r13 s

2
3��r14 s

4
2��r15 s9��

where the generator s used in the presentation corresponds to s15. It is worth
stressing that our progenitor P is a uniquely defined group whose structure
depends only on the control subgroup 3·S7. We may observe further that
since, for instance, �r8	 y� = r−1

8 r4
8 = r3

8 , the derived group of P contains the
symmetric generators. It also contains the derived group of the control
subgroup, and so is isomorphic to

7��15+15� �m 3·A7

of index 2 in P. By a similar argument, the derived group of P is perfect.
Moreover, the derived group of the control subgroup, which is isomorphic
to 3·A7, acts non-identically on �̄ = 
�ri� � 1 ≤ i ≤ 15� and �̄ = 
�si� � 1 ≤
i≤ 15�. Indeed, the subgroup �x	 y� � L2�7� mentioned above as commuting
with s = s15, has orbits of lengths �1+14�+ �7+8� on �̄∪ �̄, explicitly


r1	 r2	 � � � 	 r7�∪ 
r8	 r9	 � � � 	 r15�∪ 
s1	 s2	 � � � 	 s14�∪ 
s15�


In seeking interesting homomorphic images of P, therefore, we should con-
sider what the images of �r1	 s15�	 �r15	 s15� and �s1	 s15� might be.



7

Images of the progenitors
in Chapter 6

As in the case of involutory generators, there are now two ways to proceed
in order to find interesting homomorphic images of our progenitors. As
before, every element in a progenitor can be written, essentially uniquely, in
the form �w, where � is a monomial permutation and w is a reduced word
in the symmetric generators. We can simply factor out the normal subgroup
generated by a set of relators 
�1w1	�2w2	 � � � �, where Lemma 3.3 and other
considerations may help in providing suitable relators. Alternatively, we
can attempt to find a true transitive image of the progenitor in a symmetric
group of designated degree. (Recall that a true image is one which contains
an isomorphic copy of the control subgoup and in which the images of
the symmetric generators are distinct and have the same orders as the
original ti.) Thus we are attempting to find true transitive permutation
representations of the progenitor. Note that the word true has replaced
faithful since we are seeking finite images of an infinite group.

7.1 The Mathieu group M11

Let us first attempt the alternative approach of embedding the progenitor

3�4 �m 2·S+
4

in a symmetric group of low degree.

7.1.1 Preliminary images

In order to obtain a true image, we must include a faithful permutation
representation of our control subgroup N � 2·S+

4 . So we must consider the

263
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action of N on the cosets of a subgroup of itself which does not contain the
centre. But pre-images of non-trivial elements in the Klein fourgroup of S4
have order 4, squaring to the central involution (the pre-image of the Klein
fourgroup itself is a quaternion group), and so the subgroup we choose
can only contain elements of order 3 and pre-images of transpositions.
This leads us to subgroups isomorphic to S3, and the minimal degree of
a faithful permutation representation of N is 8. Care must be taken here,
however, as the subgroup 2 × S3 of N contains two classes of subgroups
isomorphic to S3 and they are not conjugate in N . The two permutation
representations of degree 8 are conjugate to one another in S8 and so there
is essentially only one such representation to consider. However, the action
on the symmetric generators will be slightly different in the two cases: we
can let y ∼ �1 1̄��2 3̄ 4 2̄ 3 4̄� in both cases; and we let x∼ �1 2��4 4̄� in Case
I and x∼ �1 2��3 3̄� in Case II. The normalizer of t1 in the control subgroup
N is given by �y	 xy−1x�, where of course y acts in the same manner in both
cases, but xy

−1x acts as �2 4̄��3 3̄� in Case I but as �1 1̄��2 4� in Case II.
So xy

−1x commutes with t1 in Case I, but inverts it in Case II. Recall that
when we write x ∼ �1 2��3 3̄� we mean that x acts by conjugation on the
four symmetric generators as �t1 t2��t3 t−1

3 �.
If we choose the eight letters to be 
a	 b	 c	d	A	B	C	D�, then we may

take the generators to be

x = �a b��A B��d D� and y = �a A��b C d B c D�	

so that the central element y3 is given by �a A��b B��c C��d D�. If S8
contains a true image of our progenitors, we must have an element of order
3 in S8 which is inverted by y and which commutes with

xy
−1x = �B d��b D��c C�

in Case I, and is inverted by it in Case II. Since �y	 xy−1x� � 2 × S3 has
orbits of lengths 2 and 6, such a 3-element must have cycle shape 12
32;
we soon see that Case II cannot occur and the only possibility in Case I is
t0 = �b c d��B D C� or its inverse. This yields

t0 = �b c d��B D C�	

t1 = �a c D��A d C�	

t2 = �A b D��a d B�	

t3 = �a b C��A c B�	

and we readily check that x and y conjugate these elements in the manner
prescribed by the monomial representation over �3. But t0y2 = �B C D� and
x is an odd permutation, so it is easily seen that the image of our progenitor
is the whole of S8. For the sake of completeness, we ask what additional
relation(s) are required to define the image, and we find that

3�4 �m 2·S+
4

�0 0̄��1 2̄ 3 1̄ 2 3̄� = t2t
−1
3 t0t3t2t1t

−1
0

� S8
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The control subgroup 2·S+
4 has (non-faithful) actions on one, two and

three letters, and so it makes sense to map the progenitor into S9	S10 or
S11. We shall consider briefly the case of degree 9 as it yields a rather
interesting group; we shall then concentrate on degree 11, in which the
control subgroup has orbits of lengths 8 and 3. Other low degrees are left
to the interested reader.

We adjoin a letter, � say, and seek a permutation t0 on the nine letters

�	a	 b	 c	d	A	B	C	D�, which has order 3, moves �, is inverted by y and
commutes with or is inverted by xy

−1x, where x and y act as before (and fix
�). Since t0 must move � and must be inverted by y, we see that, without loss
of generality, it must involve the 3-cycle �� a A�. Indeed, this 3-cycle itself
fulfils all the conditions, but rather obviously will lead to the symmetric
group S9. Otherwise there are just two possibilities:

t0 = �� a A��b c d��D C B� or �� a A��d c b��B C D�


The second of these can again be shown to generate the symmetric group
S9 (together with N ), but the first leads to

t0 = �� a A���b c d��B D C�	

t1 = �� b B��a c D��A d C�	

t2 = �� c C��A b D��a d B�	

t3 = �� d D��a b C��A c B�


We note that these elements commute with one another, that t0t1 = t2, and
that they generate an elementary abelian group of order 32, which must
be normalized by the control subgroup. This leads to a group of shape
32 � 2·S+

4 , the Hessian group1 consisting of all automorphisms of the unique
Steiner system S�2	3	9� (or affine plane of order 3) whose triples are the
rows, columns, diagonals and generalized diagonals of the ‘noughts and
crosses’ or ‘tic-tac-toe’ board. These triples may conveniently be thought
of as the subsets of GF9, the field of order 9, which contain three distinct
elements summing to zero. The correspondence with our nine symbols is
shown in Figure 7.1. The reader familiar with the Mathieu groups will
recognize this as the stabilizer of a triple in M12, which is often written
M9 � S3.

Not surprisingly, one short additional relation is enough to define the
Hessian group, and we have

3�4 �m 2·S+
4

��1 2 3�t1�3
� 32 � 2·S+

4 � M9 � S3


1 It was mentioned in Part I that the points of inflexion of a homogeneous curve in �3 are
those points where the curve intersects its Hessian, which is the determinant of second partial
derivatives. Now, a second partial derivative of a homogeneous cubic expression is linear, and
so the Hessian is itself a cubic in the case when the original curve is cubic. In the general
case, two cubics over � will intersect in nine distinct points, and it turns out that the line
joining any pair of these points of inflexion will pass through a third. In this way, the nine
points of inflexion form a Steiner system S�2	3	9�, which has the Hessian group as its group
of automorphisms.
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d b c

A � a

C B D

∼
–1 + i i 1 + i

–1 0 1

–1– i –i 1 – i

Figure 7.1. Affine plane of order 3.

With the generators x and y, and with t = t0, this is described by the
following presentation:

�x	 y	 t � y3 = �xy�4	 x2 = t3 = tyt = �t	 xy
−1x� = �y2tx�3 = 1� � M9 � S3


7.1.2 The Mathieu group M11

As our final attempt to embed this progenitor as a transitive subgroup of
a symmetric group, we choose degree 11 and suppose the control subgroup
acts with orbits 3+8. Thus,

x = �v w��a b��A B��d D�	

y = �u v w��a A��b C d B c D�	

xy
−1x = �u w��B d��b D��c C�


The subgroup �y	 xy−1x� now has orbits 3+ 2+ 6 and, since t0 must move
the 3-orbit, we see that it must have cycle shape 12
33. This time Case I is
impossible and both y and xy

−1x must invert t0. There is only one possibility,
and we obtain

t0 = �u b B���v c C��w d D�	

t1 = �u a A��v D d��w c C�	

t2 = �u d D��v a A��w B b�	

t3 = �u C c��v b B��w a A�


These four elements of order 3 generate a 4-transitive subgroup of S11 which
has order 7920 and preserves a Steiner system S�4	5	11� whose special
pentads are the 66 images of the subset 
u	 v	w	a	A�. It is, of course, the
smallest sporadic simple group, the Mathieu group M11. It can be verified
mechanically that the additional relation ��0 1��2 2̄�t0�5 is sufficient to define
the group, and so we have Theorem 7.1 as follows.

Theorem 7.1

G = 3�4 �m 2·S+
4

��0 1��2 2̄�t0�5
� M11


A corresponding presentation is given by

�x	 y	 t � y3 = �xy�4	 x2 = t3 = tyt = [txy	 x] = �xt�5 = 1� � M11
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Labelling the 11 letters with the integers modulo 11 in the more familiar
manner, we obtain the following:

x = �1 X��2 6��3 8��4 5� ∼ [0 1][2 2̄]	
y = �0 X 1��2 7 4 8 9 5��3 6� ∼ [0 0̄][1 2̄ 3 1̄ 2 3̄]	
t0 = �1 5 4��2 0 8��7 9 X�	
t1 = �X 4 5��6 0 3��7 9 1�	
t2 = �1 2 8 ��X 3 6��0 5 4�	
t3 = �7 0 9��3 6 1��8 2 X�	

where X stands for 10 and the action on the symmetric generators is written
in square brackets. Invariably these highly symmetric generating sets carry
a great deal of information about the structure of the group. In this case
we have

�ti	 tj� � A5	 �ti	 tj	 tk� � L2�11�	

for i	 j	 k distinct, and

�t0t1t0	 yx� � M10 � A6
·2


It is left as an exercise for the reader to obtain M11 acting transitively on
12 letters in an analogous manner by letting the control subgroup act with
orbits 4+8 on the set 
t	 u	 v	w�∪ 
a	 b	 c	d	A	B	C	D�; so we take

x = �t u��a b��A B��d D�	

y = �u v w��a A��b C d B c D�	

xy
−1x = �u w��B d��b D��c C�


7.2 The Mathieu group M23

We now turn our attention to the progenitor2 of shape

P � 5�4 �m 2·S−
4 	

as described in Example 6.2. So the action by conjugation on the four
symmetric generators of the elements x and y is given by the monomial
matrices to be

x ∼ �1 2 3 4 1−1 2−1 3−1 4−1�	 y ∼ �1 3−1 22 1−1 3 2−2��4 4−1�


Note that we have only given the action on half the powers of the symmetric
generators, as the rest follow. The subgroup of N � 2·S−

4 which normalizes
�t1� is given by

NN��t1�� = �xy ∼ �1 12 1−1 1−2��2 2−2 2−1 22��3 4−1 3−1 4�	
yx ∼ �1 1−1��2 4−1 32 2−1 4 3−2��

� 3 � 4	

2 This progenitor was investigated by Stephen Stanley in his Ph.D. thesis (ref. [82], p. 121),
along with many other monomial progenitors with a small number of symmetric generators.



268 Images of the progenitors in Chapter 6

This was, of course, obtained by writing the monomial matrices of Exam-
ple 6.2 over �5 by replacing i and −i by 2 and 3, respectively; recall that
we could equally well have let i be replaced by 3 and −i by 2. As usual, we
attempt to embed P as a transitive subgroup of a symmetric group of low
degree. Firstly we ask: what is the lowest degree of a faithful representation
of N � 2·S−

4 ? We seek the largest subgroup of N which does not contain the
centre; but every involution in S4 lifts to elements of order 4 in 2·S−

4 , and
so the largest subgroup of N which does not contain the centre has order
3. Thus the lowest degree of a faithful permutation representation of N is
16, and Sylow’s theorem ensures that this representation is unique. There
are one or two transitive images in Sn for 16< n< 23 which the reader may
like to investigate, but it is degree 23 which particularly interests us. It can
be shown that the Mathieu group M23 contains two non-conjugate copies
of 2·S−

4 , N1 and N2 say, and these have orbits of lengths �1+ 6+ 16� and
�3+4+16�, respectively. In Figure 7.2 we have N1 = �x1	 y� and N2 = �x2	 y�.
In each case there is just one contender for the cyclic subgroup �t1�, and
we may be led to believe that these give rise to the only two ways in which
M23 is an image of P. However, if we take the alternative monomial rep-
resentation over �5 in which i is replaced by 3 rather than 2, we obtain a
further possibility for the control subgroup N1. The three possibilities for t1
are given in Figure 7.3, and we have

�N1	 t
a
1� = �N1	 t

b
1� = �N2	 s1� � M23


These three sets of four symmetric generators of order 5 are completely
different from one another. Indeed, we have

�tai 	 taj � � A6	 �tai 	 taj 	 tak� � 24 � A8	 �ta1 	 ta2 	 ta3 	 ta4� � M23	

�tbi 	 tbj � � M22	 �tbi 	 tbj 	 tbk� � M23	 �tb1	 tb2	 tb3	 tb4� � M23	

�si	 sj� � L3�4�	 �si	 sj	 sk� � M22	 �s1	 s2	 s3	 s4� � M23	

18 10

8 17

12 7

∞ 22 2

4 20

16 14

13 21

3 19

0

6 15

9 5

11 1

d4 d2 d6

d1 d5 d3

c4 c1 c2

c1 c5 c3

b5 b4 a3 b2

b1 b8 a7 b6

a5 a8 b3 a6

a1 a4 b7 a2

b5 a6 a8 b7

b1 a2 a4 b3

a5 b8 a3 b6

a1 b4 a7 b2

x1 x2

MOG numbering y

Figure 7.2. Generators of 2·S−
4 of degree 23.
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d1 a1 d3 c5 d2 a4

c1 · d4 c2 d5 a3

b1 · b2 b4 c3 a5

· · b5 b3 c4 a2

s1

c1 d1 c2 b5 d2 a5

· · c5 b2 d5 a2

· b1 c3 a4 b3 d4

· a1 c4 a3 b4 d3

ta1

c1 d1 b5 d2 c4 a2

· · b2 d5 c1 a5

· b1 d3 a4 c2 b4

· a1 d4 a3 c3 b3

tb1

Figure 7.3. Symmetric generators for M23.

for i	 j	 k distinct. In the following Magma printout, generators x1	 x2 and
y for the control subgroup shown diagrammatically in Figure 7.2 are given
as permutations of the set 
1	2	 � � � 	23�, so the symbol 0 has been replaced
by 23. The three sequences of four symmetric generators are given by tsa
= 
ta1 	 t

a
2 	 t

a
3 	 t

a
4�, tsb = 
tb1	 t

b
2	 t

b
3	 t

b
4� and ss = 
s1	 s2	 s3	 s4�, where ta1 , t

b
1 and

s1 are displayed in figure 7.3. The procedure ‘subs’ returns the orders of the
subgroups generated by two generators, three generators and four genera-
tors, when applied to a sequence of generators, and confirms the orders of the
subgroups given above. The procedure ‘act4’ when applied asact4(tt,uu)
returns the way the permutation uu acts on the sequence tt. So the output
achieved by act4(tsa,x1) at the end of the following computer printout
tellsus thatx1 actsbyconjugationas �ta1 t

a
2 t

a
3 t

a
4 �t

a
1�

−1 · · · �, andact4(tsa,y)
tells us that y acts as �ta1 �t

a
3�

−1 �ta2�
2 �ta1�

−1 · · · ��ta4 �ta4�−1�, as required:

> s23:=Sym(23);
> x1:=s23!(1,8,22,16,20,12,18,13)(2,21,4,17,10,14,11,7)
> (3,19)(5,15,6,9);
> x2:=s23!(3,6)(5,15,19,23)(11,2,12,1,4,10,8,20)
> (16,7,18,21,13,17,22,14);
> y:=s23!(9,6,3)(19,15,5)(11,4)(16,13)(2,20,22,10,1,18)
> (14,12,17,21,8,7);
>
> nn1:=sub<s23|x1,y>;
> nn2:=sub<s23|x2,y>;
>
> t1a:=s23!(1,20,7,23,17)(2,10,8,5,12)(4,11,16,9,13)



270 Images of the progenitors in Chapter 6

(14,18,22,21,19);
> t1b:=s23!(1,20,17,23,7)(2,10,13,19,16)(4,11,14,5,21)
(8,18,22,12,9);

> s1:=s23!(5,2,17,7,10)(3,4,1,20,11)(6,14,18,22,21)
(9,12,13,16,8);

>
> m23:=sub<s23|x1,y,t1a>;
>
> tsa:=[t1a,t1aˆx1,t1aˆ(x1ˆ2),t1aˆ(x1ˆ3)];
> tsb:=[t1b,t1bˆx1,t1bˆ(x1ˆ2),t1bˆ(x1ˆ3)];
> ss:=[s1,s1ˆx2,s1ˆ(x2ˆ2),s1ˆ(x2ˆ3)];
>
> procedure subs(tt);
procedure> Order(sub<m23|tt[1],tt[2]>),
procedure> Order(sub<m23|tt[1],tt[2],tt[3]>),
procedure> Order(sub<m23|tt[1],tt[2],tt[3],tt[4]>);
procedure> end procedure;
>
> procedure act4(ts,uu);
procedure> for i,j,k in [1..4] do
procedure|for|for|for> if ts[i]ˆuu eq ts[j]ˆk then
procedure|for|for|for|if> print i,j,k;
procedure|for|for|for|if> end if;
procedure|for|for|for> end for;end for;end for;
procedure> end procedure;
>
> subs(tsa);
360 40320 10200960
> subs(tsb);
443520 10200960 10200960
> subs(ss);
20160 443520 10200960
>
> act4(tsa,x1);
1 2 1
2 3 1
3 4 1
4 1 4
> act4(tsa,y);
1 3 4
2 1 2
3 2 3
4 4 4

As is always the case, every element of the progenitor may be written �w,
where � is an element of the control subgroup and w is a word in the
symmetric generators. Thus, in order to find additional relations which
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will define the group M23 in the three cases, we seek short words in the
symmetric generators which lie in N . We obtain Theorem 7.2.

Theorem 7.2

(i) Symmetric presentation

5�4 �m 2·S−
4⎛

⎜
⎜⎜
⎝

· 2 · ·
· · 3 ·
1 · · ·
· · · 1

⎞

⎟
⎟⎟
⎠
t1t2t1t

−1
3 t−2

2 t−2
1 t23t

−1
2 	

⎡

⎢
⎢⎢
⎣

⎛

⎜
⎜⎜
⎝

2 · · ·
· 3 · ·
· · · 4
· · 1 ·

⎞

⎟⎟
⎟
⎠
t3

⎤

⎥
⎥⎥
⎦

5 � M23	

which is realized by the following presentation:

�x	 y	 t � x4 = y3 = �xy�2	 t5 = txyt−2 = ty
x
t

= �xytx
3
�5 = y2ttxt�tx

2
�−1�tx�−2t−2�tx

2
�2�tx�−1 = 1� � M23


(ii) Symmetric presentation

5�4 �m 2·S−
4⎛

⎜
⎜⎜
⎝

· · 2 ·
· 2 · ·
2 · · ·
· · · 3

⎞

⎟⎟
⎟
⎠
t1t2t

−2
4 t1t

−1
3 t2

� M23	

with presentation

�x	 y	 t � x4 = y3 = �xy�2	 t5 = txyt2 = ty
x
t = 1	

ttx�tx
−1
�2ttytx = �yx�xy� � M23


(iii) Symmetric presentation

5�4 �m 2·S−
4⎛

⎜⎜⎜
⎝

· · 4 ·
2 · · ·
· 3 · ·
· · · 4

⎞

⎟⎟⎟
⎠
t1t2t

2
1t

−1
3 t−1

1 t22t
2
1t

2
3	

⎡

⎢⎢⎢
⎣

⎛

⎜⎜⎜
⎝

· 1 · ·
· · 1 ·
· · · 1
4 · · ·

⎞

⎟⎟⎟
⎠
t1

⎤

⎥⎥⎥
⎦

11 � M23	

with presentation

�x	 y	 t � x4 = y3 = �xy�2	 t5 = txyt−2 = ty
x
t =	

yttxt2tyt−1ty
2
t2txy

−1 = �xt�11 = 1� � M23


7.3 The Mathieu group M24

Perhaps the main observation which led to our concept of symmetric gen-
eration of groups was the fact that the group M24 is a homomorphic image
of the progenitor

P = 2�7 � L2�7�
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Indeed, if one attempts to embed this progenitor in the symmetric group
S24 with the control subgroup L2�7� acting transitively on the 24 points,
then one immediately writes down generators for M24.

This chapter, however, is devoted to genuinely monomial control sub-
groups, and so we start with the progenitor

3�8 �m SL2�7�	

which was constructed in Example 6.7 and in which the control subgroup
is generated by

x ∼ �
��0 1 2 3 4 5 6� and y ∼ �
 0̄ 
̄ 0��1 6̄ 1̄ 6��2 3̄ 2̄ 3��4 5̄ 4̄ 5�	

in the usual abbreviated notation. This progenitor was investigated thor-
oughly by Stanley [82], and additional relators which define M24 were
obtained. We shall restrict ourselves to seeking low degree permutation rep-
resentations of the progenitor and, in this manner, will obtain generators
for M24. Firstly, note that a faithful transitive permutation representation
of the control subgroup SL2�7� must be over a subgroup which contains
no elements of even order (since the involutions of L2�7� lift in SL2�7� to
elements of order 4 squaring to the central involution). The largest sub-
group of odd order is the Frobenius group 7 �3, giving a permutation action
on 16 points in which the central involution acts fixed-point-free. Stanley
showed that the only true images of this progenitor of degree less than
24 are the alternating groups A17 and A23, so we concentrate on embed-
ding the progenitor in S24. The action of SL2�7� on 16 points is unique
up to relabelling, and so can be taken to be the action on the eight sym-
metric generators and their inverses. We then let SL2�7� act on seven
letters 
a0	 a1	 � � � 	 a6� (note that this can be done in two different ways),
and adjoin a fixed point �. So the control subgroup has orbits of lengths
1+7+16. We must now find an element of order 3 which commutes with a
Frobenius group of shape 7 �3 and is inverted by the central involution. In
addition, this symmetric generator must fuse the three orbits and so must
have cycle shape 38. For convenience we display the 24 points with these
labels in Figure 7.5.

In Figure 7.4 the permutations x and y generate SL2�7� and the final
element of order 3, which fixes the top row and rotates the three remaining
rows downwards, normalizes x to give a Frobenius group of shape 7 �3. The
central involution of our SL2�7� is of course y2, which bodily interchanges the
second and third bricks of the array. It turns out there are just two possible
symmetric generators satisfying the above requirements: the element t

shown in Figure 7.4 and an element derived from this one by multiplying
by �� 
 
̄�. Adjunction of the first gives the group M24 and the second
gives the alternating group A24.

The resulting set of symmetric generators 
t
	 t0	 � � � 	 t6� for M24 is of
further interest in that �t
	 t0	 t1	 t5� � M12, a fact that was exploited by
Stanley in obtaining defining relations for the larger Mathieu group.
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x y

t xy (
 x –2 yx –3 )

Figure 7.4. Generators for SL2�7� and a symmetric generator for M24.

� a0 
 0 
̄ 0̄
a1 a3 1 3 1̄ 3̄

a2 a6 2 6 2̄ 6̄
a4 a5 4 5 4̄ 5̄

Figure 7.5. Labelling of the 24 points showing the action of N � SL2�7�.

7.4 Factoring out a ‘classical’ relator

As a classical example, we let p be a prime and consider

� = �t1�� �t2� � Cp �Cp = p�2


Then if � is a generator of the cyclic group �×
p , the group of monomial

automorphisms of � is isomorphic to Cp−1 "2 and is generated by

� � t1 �→ t�1 	 t2 �→ t2	

and

� � t1 ↔ t2


We abbreviate these monomial actions as follows:

� ∼
(
� ·
· 1

)

and � ∼
(

· 1
1 ·

)

	

with the obvious meaning. It turns out that the projective general linear
group PGL2�p� is an image of

P � p�2 �m D2�p−1�	
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where

N = ���−�	�� =
〈(

� ·
· �−1

)

	

(
· 1
1 ·

)〉

� D2�p−1�


Indeed, the classical presentations of Coxeter and Moser [27], p. 95, (see
also Stanley [82], p. 130), in our language take the following form:

p�2 �m D2�p−1�
[(

· 1
1 ·

)

t1

]3 � PGL2�p�	 (7.1)

where the left-hand side denotes the progenitor p�2 �m D2�p−1� factored by
the relator

[(
· 1
1 ·

)

t1

]3

	

which may be rewritten as the relation
(

· 1
1 ·

)

= t1t2t1


We realize the image PGL2�p� regarded as the group of linear fractional
transformations of PG1�p� = �p ∪ 

� as follows:

��−� =
(
� ·
· �−1

)

∼ � �→ �� and � =
(

· 1
1 ·

)

∼ � �→ − 1
�
	

and

t1 ∼ � �→ �+1 and t2 ∼ � �→ �

1−�



For p odd, in order to obtain the simple group, we let

N = ����−��2	�� =
〈(

$ ·
· $−1

)

	

(
· 1
1 ·

)〉

� Dp−1	

where $ (which we take, without loss of generality, to be �2) is a generator
for the quadratic residues of �×

p . We then obtain the following:

p�2 �m Dp−1
[(

· 1
1 ·

)

t1

]3 �
{

L2�p�×2 if p ≡ 1�mod 4�	
L2�p� if p ≡ 3�mod 4�


(7.2)

To quotient out the central involution in the case when p ≡ 1�mod 4�, we
add the additional relator

[(
· �−2

�2 ·

)

t�1

]3




Note that in all of the above presentations, whether the group we have
presented is PGL2�p�, L2�p�×2 or L2�p�, we have �t1	 t2� � L2�p�. Thus, if
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the two symmetric generators of order p are denoted by t1 and t2, the control
subgroup is generated by automorphisms of p�2 = �t1���t2�. In Presentation
(7.1) the element ��−� conjugates t1 to t�1 and t2 to t�

−1

2 and so acts as

�t1	 t
�
1 	 t

�2

1 	 � � � 	 t�
−2

1 	 t�
−1

1 ��t2	 t
�−1

2 	 t�
−2

2 	 � � � 	 t�
2

2 	 t�2 �

on the non-trivial powers of t1 and t2; the involution � interchanges t1
and t2 by conjugation, so we write that it has action �t1	 t2�. Note that we
can determine the action of the given automorphisms on t

j
i for all i and j;

in particular, �t1	 t2� is an abbreviation for �t1	 t2��t21	 t
2
2� · · · �tp−1

1 	 t
p−1
2 �. The

subscript ‘m’ on the colons in the progenitors above conveys the fact that
the action is properly monomial.

Note that given an n×n monomial matrix A over �m, where the non-zero
entries of A are units, we can define the (group) action of A on F � m�n by
ti
A = t

aij
j , where aij is the unique non-zero entry in the ith row of A.

7.4.1 The unitary group U3�5�

It turns out that the progenitor of shape

P = 5��6+6� � 2·S5	

which was described fully in Example 6.8, has the unitary group U3�5� as
an image, a fact which was exploited in Curtis [35] to obtain a presentation
of the group HS � 2. In that paper, the control subgroup was extended by
an element a of order 4 which squares to the central involution, which
inverts all the symmetric generators, and is inverted by outer elements in
the group 2·S5, thus mapping onto U3�5� � 2 rather than U3�5�. It acts on
the symmetric generators by rai = r3	 sai = s2, for all i. A presentation for
this larger control subgroup is given by

M � �x	 y	a�x5 = y4 = �xy2�3 = a2	 �x3y�2 = 1 = �a	 x� = ay−1ay�	
but we shall consider only the smaller group �x	 y� � 2·S5 here. For conve-
nience, we reproduce the action of our generators as given in Example 6.8,
noting that x is an element of order 10 fifth-powering to the central invo-
lution:

x2 � �r
��r0	 r1	 r2	 r3	 r4��s
��s0	 s1	 s2	 s3	 s4�	

y � �r
	 s2	 r4	 s−1
1 	 � � � ��r0	 s

2
0	 r

3
0 	 s0	 � � � ��r1	 s

−2

 	 r2	 s

3
4	 � � � ��r3	 s3	 r

2
3 	 s

2
3	 � � � �


As stated in ref. [35], the relator �x3yr
� ensures that �ri	 sj� �
A5 for all i �= j, and maps the progenitor onto the triple cover
3·U3�5�. Factoring by the further relator �y3r
�7 yields the simple
group.

Since we have given presentations which correspond to our symmetric
presentation, we can confirm claims made above by conventional single
coset enumeration. However, it is of interest to see how the double coset
enumerator copes with symmetric generators of order greater than 2. In
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r 1 2 3 4 0 

1 1 2 3 4 5 6
2 7 8 9 10 11 12
3 13 14 15 16 17 18
4 19 20 21 22 23 24

s 1 2 3 4 0 

1 25 26 27 28 29 30
2 31 32 33 34 35 36
3 37 38 39 40 41 42
4 43 44 45 46 47 48

Figure 7.6. Labelling of the powers of r and s.

this case we have 12 symmetric generators of order 5, and so have a total of
12×4 = 48 elements of order 5 being permuted (imprimitively with blocks
of size 4) by the control subgroup. In Figure 7.6 we label the various powers
of our symmetric generators with the integers 1	 � � � 	48; thus, for example,
r2
3 is labelled 14 and s4


 is labelled 48. We now input x and y as permutations
in S48. The additional relations then take the following form:

�x3y�3 = r4

s2r

4

 ∼ �24	26	24�

and

y5 = r4

s1r4s

4
2r
s

4
1r

4
4 ∼ �24	25	4	44	6	43	22�


In addition we need to tell the program that the generators have order
5, so we input the relator ��6	6	6	6	6�	 Id�nn��, and we must input a
permutation which inverts every symmetric generator; this need not be an
element of our control subgroup, but here we have inv := y4:

>s48:=Sym(48)
>xx:=s48!(1, 22, 2, 23, 3, 19, 4, 20, 5, 21)(6, 24)

(7, 16, 8, 17, 9, 13, 10, 14, 11,15)(12, 18)
(25, 46, 26, 47, 27, 43, 28, 44, 29, 45)(30, 48)
(31, 40, 32, 41, 33, 37, 34, 38, 35, 39)(36, 42);

> yy:=s48!(1, 42, 2, 40, 19, 36, 20, 34)(3, 27, 9, 33, 21, 45,15, 39)
(4, 43, 24, 44, 22,25, 6, 26)(5, 35, 17, 29, 23, 41, 11, 47)
(7, 30, 8, 28, 13, 48, 14, 46)(10,37, 18, 38, 16, 31, 12, 32);

>nn:=sub<s48|xx,yy>;

> RRb:=[<[6,6,6,6,6],Id(nn)>, <[24,26,24],(xxˆ3*yy)ˆ3>,
> <[24,25,4,44,6,43,22],yyˆ5>];

> CTb:=DCEnum(nn,RRb,[nn]:Print:=5,Grain:=100,Inv:=yyˆ4);

Index: 525 === Rank: 7 === Edges: 75 === Time: 0.406

> CTb[4];
[

[],
[ 1 ],
[ 1, 3 ],
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[ 1, 3, 3 ],
[ 1, 29, 3, 38, 16 ],
[ 1, 1, 26, 26, 26 ],
[ 1, 28, 17, 32 ]

]
> CTb[7];
[ 1, 48, 120, 120, 96, 20, 120 ]
>

So we see that, for instance, the fourth double coset found Nr1r3r3N contains
120 single cosets.

7.4.2 The Held group

More ambitiously, we now aim to find a finite image of the progenitor

P = 7��15+15� � �3·S7�	

in which, of course, a ‘central’ element of order 3 will, by conjugation,
square one set of 15 symmetric generators while fourth-powering the other.
Prompted by the comment at the very end of Example 6.9, we consider what
the images of �r1	 s15�	 �r15	 s15� and �s1	 s15� might be. As usual, in order
to find a non-trivial finite homomorphic image of P we apply Lemma 3.3.
Now,

CN��s15	 r7�� = �y	 �xy�x2� � S4	

and the centralizer in N of this subgroup is just �z	 t� � S3, where �z� =
Z�N ′�; and so we seek a group generated by two elements of order 7,
normalized by an element of order 3 which squares one of them and fourth-
powers the other, and an involution which interchanges them. Lemma 3.3
asserts that both these automorphisms may be inner, i.e. that we can have
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�z	 t� ≤ �s15	 r7�. We seek a minimal example in which this holds. In the
language of progenitors we are thus seeking a homomorphic image of

7�2 � K	 where S3 � K =
〈(

2 



 4

)

	

(

 1
1 


)〉

	

which is generated by the images of the two symmetric generators of order
7. Such a group is clearly perfect,3 and, since we are looking for a minimal
example, we may assume it is simple. A presentation of this progenitor is
given by

�u	a	b � u7 = a3 = b2 = �ab�2 = uau−2 = 1�

Consideration of small perfect groups soon tells us that the smallest example
satisfying all these conditions is the linear group L2�7�, and, if we require
the element ub to have order 3, we obtain a presentation for the group. A
corresponding relator by which to factor our progenitor P is �ts�3, and we
obtain Theorem 7.3.

Theorem 7.3

G = 7��15+15� � 3·S7

�ts�3
� He	

where s = s15 and t is an involution with the required property.

As a presentation we have

He = �x	 y	 t	 s � x7 = y3 = �xy�2 = �x	 y�4 = t2

= �t	 y� = �t	 �xy�x
2
� = �xt�6 = s7

= �s	 x� = �s	 y� = stx
2txtx−1ts3 = �st�3 = 1�


Using the coset enumerator in the Magma package [19], we find that the
subgroup �x	 y	 t� � 3·S7 has index 266 560 and so He has order 4 030 387 200.
The group is easily seen to be the Held sporadic simple group (see refs.
[42], [43] and [25], p. 104). This presentation can be extended to the auto-
morphism group of He by adjoining a further involutory generator a which
commutes with x	 y and t and inverts s; thus a inverts all the symmetric
generators.

Verification using the double coset enumerator
As a second example of how the double coset enumerator can handle non-
involutory symmetric generators, we verify that this symmetric presenta-
tion does define the Held group. This time we have 30 symmetric generators
of order 7 and so we must input our control subgroup as permutations on
30 × �7 − 1� = 180 elements, with blocks of imprimitivity of size 6 corre-
sponding to the non-trivial powers of a particular element. Our monomial

3 Since its derived subgroup contains the two elements of order 7, which we are told
generate.
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representation was written over cube roots of unity (not sixth roots) and
so N has two orbits of length 90 on these 180 elements, consisting of a set
of symmetric generators, their squares and their fourth powers. We label
these 1	 � � � 	90	 and we let the inverse of i be denoted by i+90:

> n<x,y,t>:=Group<x,y,t|xˆ7=yˆ3=(x*y)ˆ2=(x,y)ˆ4=tˆ2=
(t,y)=

>(t,(x*y)ˆ(xˆ2))=(x*t)ˆ6=1>;
> h:=sub<n|x,y>;
> Index(n,h);
90
> f,np,k:=CosetAction(n,h);
> s180:=Sym(180);

> x180:=s180!([iˆf(x):i in [1..90]] cat [iˆf(x)+90:
i in [1..90]]);

> y180:=s180!([iˆf(y):i in [1..90]] cat [iˆf(y)+90:
i in [1..90]]);

> t180:=s180!([iˆf(t):i in [1..90]] cat [iˆf(t)+90:
i in [1..90]]);

> inv:=s180!([i+90:i in [1..90]] cat [i:i in [1..90]]);

> n180b:=sub<s180|x180,y180,t180,inv>;
> #n180b;
30240
> 1ˆx180;1ˆy180;1ˆt180;
1
1
2
> Fix(sub<n180|x180,y180>);
{ 1, 89, 90, 91, 179, 180 }
> 1ˆ(t180*x180ˆ2*t180*x180*t180*x180ˆ-1*t180);
89

The blocks of imprimitivity of size 6 corresponding to powers of a symmetric
generator are not now labelled consecutively, as was the case for U3�5�.
However, s15 is clearly labelled 1, and the above fixed point set shows us
that its powers are labelled 
1	89	90	179	180�. Of course, we do know that
s−1
15 is labelled 91, and the following command tells us (by comparison with

the presentation) that s4
15 is labelled 89. We can feed in this information as

s4
15s

4
15s

−1
15 ∼ �89	89	91�= Id�N�. We of course also include the relation which

says that s7
15 = Id�N�, and finally we need the additional relation which says

that s−1
15 r

−1
7 s−1

15 ∼ �91	92	91� = t180:

> RR:=[<[1,1,1,1,1,1,1],Id(n180b)>,<[89,89,91],
Id(n180b)>,

> <[91,92,91],t180>];
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> CT:=DCEnum(n180b,RR,[n180b]:Print:=0,Grain:=100,
Inv:=inv);

> CT[1];
266560

> CT[2];
41
> CT[7];
[ 1, 180, 7560, 3780, 630, 15120, 15120, 7560, 15120, 15120,
15120, 3780, 126,2160, 630, 30240, 15120, 15120, 7560, 3780,
3780, 315, 7560, 15120, 7560, 2520,7560, 7560, 2160, 15120,
1890, 3780, 7560, 2520, 1890, 105, 1260, 1260, 1890,
1260, 63 ]
>

The printout CT[1] shows us that there are 266 560 cosets of N in G;
CT[2] tells us that there are 41 double cosets; and CT[7] tells us how
many single cosets there are in each of the double cosets. Of course we are
also given representatives for each of these 41 double cosets, but we have
chosen not to reproduce them.

Subgroups of He generated by subsets of the
symmetric generators
As was mentioned in the previous examples, the symmetric generators often
contain a great deal of information about the subgroup structure of the
group they generate. In order to investigate the subgroups generated by
subsets of our 30 generators of order 7, we need to be conversant with the
action of S7 on 30 letters. Now,

A7 ≤ A8 � L4�2�	

and the 30 letters may be taken to be the 15 1-dimensional subspaces
(the points) and the 15 3-dimensional subspaces (the hyperplanes) of a
4-dimensional vector space over Z2. These actions are seen clearly in the
Mathieu group M24 (see Figure 5.2): the subgroup fixing an octad, a point
in it and a point outside it is isomorphic to A7, acting simultaneously on the
seven remaining points of the fixed octad and the 15 remaining points of the
complementary 16-ad. The hyperplanes then correspond to the 15 octads
disjoint from the fixed octad and containing the fixed point of the 16-ad;
thus points are contained in seven hyperplanes. The outer elements of S7
correspond to polarities which interchange points and hyperplanes. One
may readily read off the action of elements of A7 on points and hyperplanes
from the Miracle Octad Generator of ref. [29], and the correspondence with
our generators �∪� is given in Figure 7.7, together with the action of the
polarity t.
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r1 s1 r8 s13

r9 s10

r10 s6

r11 s11

r12 s4

r13 s3

r14 s2

r15 s9

r2 s7

r3 s8

r4 s5

r5 s12

r6 s14

r7 s15

Figure 7.7. The 30 letters permuted by S7 showing the polarity t.

As seen above, the stabilizer in S7 of the hyperplane s15, say, is isomorphic
to L3�2� with orbits of lengths 7 and 8 on the points. Fixing a point in the
7-orbit reduces this to a subgroup isomorphic to S4. In our construction,
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with s15 as the hyperplane and r7 as the point, we imposed a relation which
forced �r7	 s15� � L3�2�, and thus

�s	 t	 y	 �xy�x2� � L3�2�×S4	

a maximal subgroup of He. If instead we fix a point in the 8-orbit, we are
left with a Frobenius group of shape 7 �3, which normalizes the point but
does not centralize it. Thus

CN��r15	 s15�� = �x� � C7


In fact, �r15	 s15� � 71+2, an extra-special group, and

NHe��r15	 s15�� = �r15	 s15� � NN ��r15	 s15�� = �s	 yx2y−1
	 �xyx

−2
tx

3
�3�

= �s15	 �0	4	5��1	6	2�	 �0	3	2	6	4	1	5�t1t6t3�
� 71+2 � �S3 ×3�	

a further maximal subgroup. In addition, the control subgroup N itself is
maximal, as is the normalizer of a symmetric generator:

NG��s�� = �s	 x	 y	 z�
= �s15	 �0	1	2	3	4	5	6�	 �6	5	1��4	3	2�	 �6	2��4	5�t0t1t0t3�
� 7 � 3×L3�2�


This leaves us with possibly the most interesting case: the 4-dimensional
space containing the 15 points and 15 hyperplanes also contains 35 2-
dimensional subspaces, each of which contains three points and is contained
in three hyperplanes. A set of six such symmetric generators is thus nor-
malized by a subgroup of N of order �3×7!�/35 = 2433, of which a subgroup
isomorphic to V4 centralizes all six generators. We can see from Table 7.1
that � = 
r1	 r3	 r7	 s1	 s8	 s15� is such a set. So D= ��� is a group generated
by six elements of order 7 normalized by ND, a group of monomial automor-
phisms of order 432, of which a subgroup isomorphic to V4 acts trivially.
Indeed we can see that

t � �r1 s1��r3 s8��r7 s15�	

yx � �r1 r7��r3��s1 s
2
8��s15�	

yx
2
� �r1 r7 r3��s1 s

2
1 s

4
1��s8 s

4
8 s

2
8��s15�	

and a coset enumeration over �s	 t	 yx	 yx2� yields index 8330. We can, of
course, investigate the structure of this subgroup through the resulting
permutation action but, in the spirit of the present work, we note that it is
a homomorphic image of

7��3+3� � �22 ·31+2 � 22�	
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where the monomial automorphisms in ND are generated by
⎡

⎢
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�u� �v� �w�

This automorphism group is defined (modulo the central V4) by

�u	 v	w � u3 = v2 = w2 = �vw�2 = 1	 uvuw = �u	 v�� � 31+2 � 22


If we let q stand for the symmetric generator s2
8 in the above, we see

that qu = q2 and �q	w� = 1. The additional relator by which we factored P
becomes �vq�3, and we find

�u	 v	w	q � u3 = v2 = w2 = �vw�2 = q7 = quq−2

= �q	w� = �vq�3 = 1	 uvuw = �u	 v�� � L3�4� � S3	

which can be shown by explicitly exhibiting permutations of L3�4� � S3
which satisfy the presentation, together with a coset enumeration over, for
instance, �u	 v	w�. The full subgroup of index 8330 has shape 22 ·L3�4� � S3,
and the outer automorphism of He which commutes with N and inverts the
symmetric generators completes this to 22 ·L3�4� � �S3 ×2�.

From the Atlas (ref. [25], p. 104), we see that representatives of five of
the conjugacy classes of maximal subgroups of He can be described naturally
in terms of the control subgroup and symmetric generators. In Table 7.1 we
exhibit this information by giving, in the last four cases, a subgroup of N ,
its orbits on the symmetric generators, and the normalizer of the subgroup
generated by the symmetric generators it fixes. Each of these is maximal.

Other maximal subgroups of He

Although the permutation representation of He on 8330 letters emerges
naturally in this approach, the minimal action on 2058 letters with point-
stabilizer isomorphic to S4�4� � 2 (whose order is not divisible by seven)
seems less promising. In fact, we can obtain copies of this maximal subgroup
as follows. Firstly, note that the pre-image in 3·S7 of the centralizer of a
transposition in S7 is a group isomorphic to S3 ×S5. As an example of this
we take

NT = ��6	5	1��4	3	2�t2	 �2	6��4	5�	 t0� = �ytx2
	 �xy�x

−2
	 t� � S3 ×S5


It turns out that �NT	 r7s
−2
15 = sts−2� � S4�4� � 2, and so we may readily

obtain the permutation representation of minimal degree. Unfortunately
it is not quite as easy as usual to extend this to a maximal subgroup
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Table 7.1. Normalizers of subgroups generated by symmetric generators

Subgroup of N � 3·S7 Orbits on �15+15�
symmetric generators

Corresponding
maximal subgroup

3·S7 transitive 3·S7
L3�2� �1+14�+ �7+8� 7 � 3×L3�2�
C7 �1+7+7�+ �1+7+7� 71+2 � �S3 ×3�
S4 �1+6+8�+ �1+6+8� S4 ×L3�2�
V4 �13 +43�+ �13 +43� 22 ·L3�4� � S3

of Aut He � He � 2, as the outer half of S4�4� � 4 contains no involutions.
However, for completeness we mention that

��6	5	1��4	3	2�t2	 as15r
3
1 r

−1
3 � = �ytx2

	 as�stx�3�stx
3
�−1� � S4�4� � 4


Now, a subgroup of N isomorphic to 3·S6 is given by �y	 xtx4�. If we adjoin
the element s2

15r
2
7 s

−1
15 to this, we obtain the maximal subgroup

�y	 xtx4	 s2�st�2s−1� � 26 � 3·S6


Of course, the two conjugacy classes of subgroups of this shape are inter-
changed by our outer automorphism a.

Our element t is a representative of the conjugacy class of involutions
denoted by 2B in the Atlas. Its centralizer is given by

�y	 r2
1 s

−1
1 r4

1 	 r
2
1 s

3
1r

3
1 � � 21+6 � L3�2�	

where r1 = stx and s1 = stxt. This maximal subgroup is normalized by the
outer automorphism a. The maximal subgroups of He which were worked
out by Butler [18] are listed on p. 104 of the Atlas. We have given gen-
erators for a representative of each class except those of shape 72 � 2·L2�7�
and 52 � 4·A4. In fact the former of these is simply NHe��x	 s15t

−1
15 �� and the

latter is NHe�Syl5�He��, and so representatives can be readily obtained using
Magma. In addition, Aut He has two classes of maximal subgroups known
as novelties whose intersections with He are not maximal in the simple
group. These subgroups, which have shapes �S5 ×S5� � 2 and 24+4
�S3 ×S3�
2,
were found by Wilson [87].

7.4.3 The Harada–Norton group4

In Section 7.4.2 we took N � 3·S7 as our control subgroup and used a
�15+15�-dimensional faithful monomial representation of N to construct a
progenitor of shape

7��15+15� �3·S7


4 For further detailed information about this construction, the reader is referred to Bray and
Curtis [16].
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The subgroup of N fixing one of the symmetric generators, which is isomor-
phic to L2�7�, acts with orbits �1+14�+ �7+8� on the 30 cyclic subgroups
of order 7. Fixing a further symmetric generator in the 7-orbit is a subgroup
isomorphic to S4 which acts with orbits �1+6+8�+�1+6+8�. Normalizing
the subgroup generated by these two symmetric generators of order 7, r0
and s0 say, we have the ‘central’ element of order 3, which may be taken to
square the ri and fourth-power the si, and an involution, commuting with
the aforementioned S4, interchanging them (replacing s0 by a power if nec-
essary). The subgroup of N isomorphic to S4 mentioned above centralizes
r0 and s0. Thus, in our usual notation these two automorphisms of 7�2 are
denoted by

(
2 ·
· 4

)

and

(
· 1
1 ·

)




Therefore, factoring by the relator

[(
· 1
1 ·

)

r0

]3

ensures that �r0	 s0� � L2�7�, or an image thereof. Factoring one of the two
progenitors of shape 7��15+15� �m 3·S7 by a relator corresponding to this results
in the Held group He, a sporadic simple group of order 4 030 387 200; with
the other progenitor we obtain the trivial group. The outer automorphism
of He is obtained by adjoining an element of order 2 which commutes with
the control subgroup and inverts all the symmetric generators.

It turns out that the Harada–Norton group, HN, can be obtained in a
remarkably analogous manner, using a progenitor with symmetric gener-
ators of order 5. We take as our control subgroup the group N of shape
2·HS �2 in which the outer involutions lift to elements of order 2. (The
isoclinic variant of this group, namely 2·HS·2, has no outer involutions.)
This group contains a subgroup H � �2×U3�5��·2 � U3�5��4, which is gen-
erated by U3�5� together with an element of order 4 acting on it as an outer
automorphism and squaring to the central involution. Thus, H/H ′ � C4. In
the usual way, we map a generator of H/H ′ onto a primitive fourth root of
unity in an appropriate field. We induce the corresponding linear represen-
tation of H up to N to obtain a faithful monomial �176+176�-dimensional
representation of N . Over the complex numbers �, this gives an irreducible
representation whose restriction to 2·HS has character which is the sum
of the two 176-dimensional characters given in Table 7.2. Of course, the
field with fourth roots of unity which interests us is �5, which enables us
to define a progenitor of shape

P = 5��176+176� �m 2·HS �2




Table 7.2. Some characters of 2·HS (taken from the Atlas [25])

44 352 000 7680 2880 360 3840 256 64 500 300 25 36 24 7 16 16 16 20 20 11 11 12 15 20 20
p power A A A A A A A A A AB AA A B C C AA BB A A BA BA AA AA
p′ part A A A A A A A A A AB AA A A A A AA BB A A AA BA AA AA

ind 1A 2A 2B 3A 4A 4B 4C 5A 5B 5C 6A 6B 7A 8A 8B 8C 10A 10B 11A B∗∗ 12A 15A 20A B∗∗

+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+ 22 6 −2 4 −6 2 2 −3 2 2 −2 0 1 0 0 0 1 −2 0 0 0 −1 −1 −1
+ 77 13 1 5 5 5 1 2 −3 2 1 1 0 1 −1 −1 −2 1 0 0 −1 0 0 0
+ 154 10 10 1 −2 6 −2 4 4 −1 1 1 0 0 0 0 0 0 0 0 1 1 −2 −2
+ 154 10 −10 1 −10 −2 2 4 4 −1 −1 1 0 0 2 −2 0 0 0 0 −1 1 0 0
+ 154 10 −10 1 −10 −2 2 4 4 −1 −1 1 0 0 −2 2 0 0 0 0 −1 1 0 0
+ 175 15 11 4 15 −1 3 0 5 0 2 0 0 −1 1 1 0 1 −1 −1 0 −1 0 0
+ 231 7 −9 6 15 −1 −1 6 1 1 0 −2 0 −1 −1 −1 2 1 0 0 0 1 0 0

ind 1 2 4 3 4 4 4 5 5 5 12 6 7 8 8 8 10 20 11 11 12 15 20 20
2 2 6 4 10 10 10 12 6 14 8 10 22 22 12 30 20 20

+ 56 8 0 2 0 0 0 6 −4 1 0 2 0 0 0 0 −2 0 1 1 0 2 0 0
� 176 16 0 5 16i 0 0 1 6 1 3i 1 1 0 0 0 1 0 0 0 −i 0 i i
� 176 16 0 5 −16i 0 0 1 6 1 −3i 1 1 0 0 0 1 0 0 0 i 0 −i −i
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As in the Held case, there are two non-isomorphic progenitors of this shape,
depending on whether we choose 2 or 3 as our primitive fourth root of unity.

Let � = �∪� = 
r0	 r1	 � � � 	 r175	 s0	 s1	 � � � 	 s175� be our set of symmetric
generators, and let �̄ = 
�ri�	 �si� � i = 0	1	 � � � 	175� be the set of cyclic
subgroups they generate, arranged so that N ′ � 2·HS has orbits �̄ =

�r0�	 �r1�	 � � � 	 �r175�� and �̄ = 
�s0�	 �s1�	 � � � 	 �s175�� on �̄ . Then H may
be chosen to normalize �r0�, whence H ′ commutes with �r0�, and both H
and H ′ have orbits �1 + 175�+ �50 + 126� on �̄ = �̄∪ �̄. We now choose
�s0� to lie in the 50-orbit of H (which is in �̄). Then �r0	 s0� is central-
ized (in N ) by a subgroup K of H ′ isomorphic to A7, which has orbits
�1 + 7 + 42 + 126�+ �1 + 7 + 42 + 126� on �̄ . The subgroup �r0	 s0� is
normalized in N by an element of order 4, which squares the ri and cubes
the si, and an involution interchanging r0 and s0. Together, these two ele-
ments extend K to NN �K�� �22 ×A7��2. Thus, the subgroup �r0	 s0� � 5�2 �
�r0���s0� is normalized in N by a subgroup isomorphic to D8, which, in the
usual notation, acts as

(
2 ·
· 3

)

and

(
· 1
1 ·

)




Therefore, factoring by the relator
[(

· 1
1 ·

)

r0

]3

	

where the matrix is one of the non-central involutions of

NN �K� � �22 ×A7��2

that commutes with K � A7, ensures that �r0	 s0� � L2�5�, or an image
thereof. Factoring one of the two possible progenitors by such a relation
yields Theorem 7.4.

Theorem 7.4

G = 5��176+176� �m 2·HS �2
�ts�3

� HN	

a sporadic simple group of order 273 030 912 000 000.

As before, factoring the other progenitor 5��176+176� �m 2·HS �2 by the corre-
sponding relation gives rise to the trivial group. The outer automorphism
of HN is obtained by adjoining an element of order 4 which commutes with
N ′ and squares all the symmetric generators (and is thus inverted by the
elements in N \N ′�.5

5 For further details, the reader is referred to Bray and Curtis [16].
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7.5 The Suzuki chain and the Conway
group

In Section 5.4 we repeatedly applied Lemma 3.3 to progenitors with involu-
tory symmetric generators in which the centralizer in the control subgroup
N of a 2-point stabilizer Nij was cyclic of order 2, generated by an involution
�ij interchanging i and j. We factored by an additional relation �ij = titjti
and obtained in turn U3�3� �2	 J2 �2	 G2�4� �2 and finally 3·Suz �2. At this
point, the procedure appeared to terminate, but we mentioned that in this
section we would modify the method slightly and hence extend the chain.

We have seen that the complex monomial representations we make use
of to define our progenitors with non-involutory symmetric generators are
written over some particular roots of unity, mth roots say. We seek a finite
field �q which contains mth roots of unity and, if q is a prime, interpret our
monomial matrix as acting on a free product of n copies of the cyclic group
Cq, where n is the degree of the representation. Now, q need not, of course,
be prime, but we may have q = pr , where p is prime and r > 1. In this case,
our symmetric generators are elementary abelian subgroups rather than
cyclic groups; we refer to them as symmetrically generating subgroups or
simply sg-subgroups.

Till now when we have needed cube roots of unity we have chosen �7, the
integers modulo 7, but we could just as easily have chosen �4. For example,
if we took N � A5 as our control subgroup and restricted to a subgroup of
index 5 isomorphic to A4, then we could take the linear representation of A4
onto the complex cube roots of unity and induce this representtaion up to N
to obtain a 5-dimensional monomial representation of A5, all of whose non-
zero entries are cube roots of unity. We could then interpret these roots of
unity as lying either in �7 or in �4, and so obtain the following progenitors:

P1 = 7�5 � A5 and P2 = �22��5 � A5


In the second case, the notation 22 stands for an elementary abelian group
of order 4, in this case a Klein fourgroup V4, so that the control subgroup
is permuting five copies of V4 which are unrelated to one another (except
that they have the same identity).

It is our intention to take a somewhat grander control subgroup, namely
N � 3·Suz � 2. We restrict to a subgroup of index 1782, which, since the
group G2�4� possesses no triple cover and the elements in the outer half on N
invert generators of its normal subgroup of order 3, has shape �3×G2�4�� � 2.
We map this group onto the symmetric group S3 and interpret this group
as acting on a copy of V4 as its full group of automorphisms, generated
by multiplication by an element of order 3 and the field automorphism.
So if our copy of V4 has elements 
1	 v1	 v�	 v�̄� then multiplication by �
acts as �v1	 v�	 v�̄� and the field automorphism acts as �v1��v�	 v�̄�. This
further subtlety was necessary, of course, because we have included the
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Table 7.3. Labelling of the elements of two copies of V4 embedded in S5

First V4 Second V4

Generator Label Element in S5 Generator Label Element in S5

u1 1 (b c)(d e) v1 4 (a c)(d e)
u� 2 (b d)(e c) v� 5 (a d)(e c)
u�̄ 3 (b e)(c d) v�̄ 6 (a e)(c d)

outer automorphism of 3·Suz. Note that it will result in the image group G
possessing subgroups of shape �A4 ×G2�4�� � 2.

We are, in effect, inducing up a semi-linear representation of S3 (mul-
tiplication by �, together with complex conjugation). Since this is a novel
idea, we firstly consider the smallest possible case, in which we have just
two copies of V4. We shall embed these two copies of V4 in S5 acting on the
set � = 
a	 b	 c	d	 e�. We have labelled the six non-trivial elements of the
two fourgroups as integers 1	 � � � 	6 as we shall need to write the additional
relations in the standard sequence-permutation form (see Table 7.3).

Multiplication by � corresponds to the permutation �1 2 3��4 5 6� and
can be realized within S5 by conjugation by �c d e�. The field automorphism
� � � ↔ �̄ corresponds to the permutation �2 3��5 6� and is realized within
S5 by �d e�. Finally note that the two copies of V4 are interchanged by
�1 4��2 5��3 6�, which is realized in S5 by �a b�. Together these three
elements generate 2×S3 � D12. We can represent these actions on the free
product �22��2 in the usual matrix manner as

(
�

�

)

	

(
�

�

)

	

(
1

1

)

	

respectively. Observe further that �1 4��2 6��3 5�, which corresponds in S5
to �a b��d e�, would be represented by the matrix

(
�

�

)

	

and its product with u1 has order 3. So we see that a homomorphism exists:

�22��2 � D12
[(

�

�

)

u1

]3 �→ S5


In fact this is an isomorphism as we shall demonstrate using the double coset
enumerator, at the same time showing how the input must be modified to
cope with the slightly changed circumstances. If the progenitor is �22��n � N ,
then we input N as permutations on the 3n non-trivial elements in the
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sg-subgroups. We must now identify a triple whose product is the identity,
say 
i	 j	 k�, and factor by the relation < �i	 j	 k�	 Id�N� >. So we have:

> nnd12:=sub<Sym(6)|(1,5,3,4,2,6),(1,4)(2,6)(3,5)>;
> RRs5:=[<[1,2,3],Id(nnd12)>,<[1,4,1],nnd12.2>];
> ENs5:=DCEnum(nnd12,RRs5,[nnd12]:Print:=5,Grain:=100);

Index: 10 === Rank: 3 === Edges: 7 === Time: 0.016
> ENs5[4];
[

[],
[ 1 ],
[ 1, 5 ]

]
> ENs5[7];
[ 1, 6, 3 ]

So, the image group is a pre-image of S5 of order 12×10 = 120 = 5!, and so
the map is an isomorphism. This example, which could readily be proved
by hand to yield S5, gives us a clue as to how to proceed with the larger
progenitor

P = �22��1782 � �3·Suz � 2�


A non-trivial element z in the centre of N ′ may be taken to map z � �u1 u� u�̄�
for each of the 1782 fourgroups; it is inverted by any element in N \N ′.
Now the normalizer in N of one of the sg-subgroups, U say, is isomorphic
to �3×G2�4�� � 2, which contains a subgroup isomorphic to G2�4� � 2 fixing
an involution in U (but interchanging the other two). This group has orbits
of lengths 1+416+1365 on the sg-subgroups, and fixing a fourgroup V in
the 416 orbit is a subgroup isomorphic to J2 � 2, which must fix one of the
three involutions in each of the two fixed sg-subgroups and interchange
the other two as it must invert z. But this last subgroup can be seen
from the Atlas [25], p. 131, to commute with an involution in N \N ′

which interchanges the two fourgroups, and so, if U and V have non-trivial
elements 
u1	 u�	u�̄� and 
v1	 v�	 v�̄�, respectively, then this element, � say,
will have action �u1 v1��u� v�̄��u�̄ v��, where u1 and v1 are the two fixed
elements. In order to ensure that, as above, �U	V � � A5 (or the trivial
group), we must factor by the relator ��u1�

3. The situation is slightly more
complicated than has been described here because of the triple cover. There
are of course three pre-images of � in the triple cover, but only one of
them is fixed by the copy of J2 we are considering. We now claim the
following.

Theorem 7.5

G = �22��1782 � 3·Suz � 2
��u1�

3
� Co1	

Conway’s largest simple group.
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Verification In order to use the enumerator to verify this claim, we
first need to obtain the control subgroup as permutations on 3× 1782 =
5346 letters. We do this by taking Soicher’s Coxeter-style presentation
from the Atlas [25], p. 131, and note that the subgroup generated by

a	 b	 c	d	 e	 f	 g� is isomorphic to G2�4� � 2 with the required index.

> G<a,b,c,d,e,f,g,h>:=Group<a,b,c,d,e,f,g,h|aˆ2=bˆ2=
cˆ2=dˆ2=eˆ2=

> fˆ2=gˆ2=hˆ2=(a*b)ˆ3=(a*c)ˆ2=(a*d)ˆ2=(a*e)ˆ2=(a*f)ˆ2=
(a*g)ˆ2=

> (a*h)ˆ2=(b*c)ˆ3=(b*d)ˆ2=(b*e)ˆ2=(b*f)ˆ2=(b*g)ˆ2=
(b*h)ˆ2=

> (c*d)ˆ8=(c*e)ˆ2=(c*f)ˆ2=(c*g)ˆ2=(c*h)ˆ2=
> (d*e)ˆ3=(d*f)ˆ2=(d*g)ˆ2=(d*h)ˆ2=
> (e*f)ˆ3=(e*g)ˆ2=(e*h)ˆ2=(f*g)ˆ3=(f*h)ˆ2=(g*h)ˆ3=
> (c*d)ˆ4*a=(b*c*d*e)ˆ8=1>;
> H:=sub<G|a,b,c,d,e,f,g>;
> Index(G,H);
5346
> CT:=CosetTable(G,H);
> nn:=CosetTableToPermutationGroup(G,CT);

So nn is the required permutation group of degree 3 × 1782; we must now
identify the three involutions in one of the sg-subgroups, so that we can set
theirproduct equal to the identity.These triplesareof course simply theorbits
of the normal subgroup of order 3. The second relation is equally easy to find
in our notation, for we have �a	b	 c	d	 e	 f� � J2 � 2, whose centralizer is �h� –
the eighth generator of nn. We require the product of this element h and u1 to
have order 3, and record this as the relation < �1	1h	1�	 h >, noting that the
machine records the image of h as a permutation on 5346 letters as nn
8:

> znn:=Centre(DerivedGroup(nn));
> #znn;
3
> 1ˆznn;
GSet{ 1, 5345, 5346 }
> RR:=[<[1,5345,5346],Id(nn)>,<[1,1ˆnn.8,1],nn.8>];
> EN:=DCEnum(nn,RR,[nn]:Print:=5,Grain:=100);

Index: 1545600 === Rank: 5 === Edges: 19 === Time: 16.828
> EN[4];
[

[],
[ 1 ],
[ 1, 2291 ],
[ 1, 31 ],
[ 1, 2291, 8 ]
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]
> EN[7];
[ 1, 5346, 1111968, 405405, 22880 ]
>

Thus we confirm that the index is as required, and so if we verify that Co1
is an image of G, then the theorem is verified.

7.6 Systematic approach

7.6.1 The progenitors

In this section we perform a similar systematic search to that conducted in
Section 3.11, but in the case when the symmetric generators have order 3.
The results are taken from Bray and Curtis [15]. Thus we seek homomorphic
images of a progenitor of the form

3�n �N	

where N , a transitive permutation group on n letters, may act either
monomially or as permutations on the symmetric generators. We shall
limit ourselves to the permutation progenitors 3�3 �S3, 3�4 �S4, 3�5 �A5, 3�5 �S5,
3�6 �L2�5� and 3�7 �L3�2�, and the monomial progenitors 3�2 �m D8, 3�3 �m S3,
3�4 �m S4, 3�3 �m 22S3, 3�4 �m 2·S4

+, 3�5 �m S5, 3�6 �m L2�5� and 3�7 �m L3�2�.
Here, when regarded as permutation groups on the Ti = �ti�, An and Sn

denote (respectively) the alternating and symmetric groups in their nat-
ural actions on n points, and Ln�q� denotes the projective special lin-
ear group in n dimensions over �q acting on 1-dimensional subspaces
(i.e. points).

For all these monomial progenitors except 3�3 �m 22S3 and 3�4 �m 2·S4
+,

there is a unique subgroup of index 2 in N0, so these progenitors are uniquely
determined (up to isomorphism). For the case N � 2·S4

+, we saw in Exam-
ple 6.1 that N0 had three subgroups of index 2, but up to automorphisms
of N we obtained just one faithful monomial representation of N on 3�4,
thus 3�4 �m 2·S4

+ is uniquely determined. (Also, 2 "S4 � 24 �S4, the full mono-
mial automorphism group of 3�4, has just one conjugacy class of subgroups
isomorphic to 2·S4

+.) Now, the full monomial automorphism group of 3�3

is 2 "S3 � 23 �S3 � S4 × 2. This contains three subgroups of index 2, two of
which have shape 22 �S3 � S4. This gives rise to two isomorphism classes
for a progenitor of shape 3�3 �m 22S3. The line-stabilizer in 3�7 �m L3�2�, i.e.
NN ��t0	 t1	 t3�� in the notation of Table 7.4, is a progenitor of shape 3�3 �m
22S3. This progenitor, which we shall henceforth write as 3�3 �m S4, is the
one of shape 3�3 �m 22S3, which we shall study here.

Presentations for all the progenitors we shall study here are given in
Tables 7.5 and 7.4. Table 7.5 lists presentations for the permutation pro-
genitors and Table 7.4 deals with the proper monomial progenitors. Our
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Table 7.4. Presentations of the progenitors 3�n �m N that we are considering

(vii) �x	 y	 t � x4 = y2 = �yx�2 = 1 = t3 = �t	 y� = �x2t�2� � 3�2 �m D8
x ∼ �0	1	 0̄	 1̄�, y ∼ �1	 1̄�, t ∼ t0

(viii) �x	 y	 t � x3 = y2 = �yx�2 = 1 = t3 = �yt�2� � 3�3 �m S3
x ∼ �0	1	2�, y ∼ �0	 0̄��1	 2̄�, t ∼ t0

(ix) �x	 y	 t � x4 = y2 = �yx�3 = 1 = t3 = �yt�2 = �ytx�2� � 3�4 �m S4
x ∼ �0	 1̄	2	 3̄�, y ∼ �0	 0̄��1	 1̄��2	 3̄�, t ∼ t0

(x) �x	 y	 t � x4 = y2 = �yx�3 = 1 = t3 = �t	 y� = �x2t�2� � 3�3 �m S4
x ∼ �0	1	 0̄	 1̄��2	 2̄�, y ∼ �1	 2̄�, t ∼ t0

(xi) �x	 y	 t � x4 = �yx�3	 y2 = 1 = t3 = �t	 y� = �ytx�2� � 3�4 �m 2·S4
+

x ∼ �0	 1̄	 2̄	3	 0̄	1	2	 3̄�, y ∼ �1	 1̄��2	3�, t ∼ t0

(xii) �x	 y	 t � x5 = y3 = �xy�2 = 1 = t3 = �t	 x� = �tyx
2
xy�2� � 3�6 �m L2�5�

x ∼ �0	1	2	3	4�, y ∼ �
	0	1��2	4	 3̄�, t ∼ t


(xiii) �x	 y	 t � x5 = y2 = �yx�4 = �x	 y�3 = 1 = t3 = �yt�2 = �ytx�2 = �ytx
2
�2�

� 3�5 �m S5
x ∼ �0	1	2	3	4�, y ∼ �0	 0̄��1	 1̄��2	 2̄��3	4�, t ∼ t0

(xiv) �x	 y	 t � x7 = y2 = �xy�3 = �x	 y�4 = 1 = t3 = �tx
4
	 xy� = �tyx

4
�2�= �t	 y���

� 3�7 �m L3�2�
x ∼ �0	1	2	3	4	5	6�, y ∼ �1	 1̄��3	 3̄��2	 6̄��4	5�, t ∼ t0

presentations for the progenitors are readily obtained from classical presen-
tations of the control subgroups (see Coxeter and Moser [27]) extended by
a generator of order 3 which is centralized (or normalized) by a subgroup of
the required index. For instance, in Table 7.5(vi), our symmetric generator
t = t0 is centralized by �xy�x

3 and yx
4 , which together generate a subgroup

of �x	 y� � L3�2� isomorphic to S4. In fact, this subgroup contains y, so that
the relation �t	 y� = 1 also holds in our group.

7.6.2 Additional relations

Unfortunately, Lemma 3.3 is not as useful at determining which elements
can lie in �t0	 t1�∩N as it was in the permutation case. Indeed, for eight of our
progenitors, namely, 3�3 �S3, 3�2 �m D8, 3�3 �m S3, 3�4 �m S4, 3�3 �m S4, 3�4 �m 2·S4

+,
3�6 �m L2�5� and 3�7 �m L3�2�, this criterion places no restriction on �t0	 t1�∩N
whatsoever. In these cases, inspection of the following tables shows that we
can have �t0	 t1�∩N = N ; indeed, we can even have �t0	 t1� = G.
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Table 7.5. Presentations of the progenitors 3�n �N that we are considering

(i) �x	 y	 t � x3 = y2 = �yx�2 = 1 = t3 = �t	 y�� � 3�3 �S3
x ∼ �0	1	2�, y ∼ �1	2�, t ∼ t0

(ii) �x	 y	 t � x4 = y2 = �yx�3 = 1 = t3 = �t	 y� = �tx	 y�� � 3�4 �S4
x ∼ �0	1	2	3�, y ∼ �2	3�, t ∼ t0

(iii) �x	 y	 t � x5 = y3 = �xy�2 = 1 = t3 = �t	 y� = �t	 yx
2
�� � 3�5 �A5

x ∼ �0	1	2	3	4�, y ∼ �4	2	1�, t ∼ t0

(iv) �x	 y	 t � x5 = y2 = �yx�4 = �x	 y�3 = 1 = t3 = �t	 y� = �tx	 y� = �tx
2
	 y�� � 3�5 �S5

x ∼ �0	1	2	3	4�, y ∼ �3	4�, t ∼ t0

(v) �x	 y	 t � x5 = y3 = �xy�2 = 1 = t3 = �t	 x� = �tyx
2
	 xy�� � 3�6 �L2�5�

x ∼ �0	1	2	3	4�, y ∼ �
	0	1��2	4	3�, t ∼ t


(vi) �x	 y	 t � x7 = y2 = �xy�3 = �x	 y�4 = 1 = t3 = �tx
4
	 xy� = �t	 yx

4
�� � 3�7 �L3�2�

x ∼ �0	1	2	3	4	5	6�, y ∼ �2	6��4	5�, t ∼ t0

Other useful relations by which to factor the progenitors are those of
the form ��w�s = 1, where � ∈ N and w is a short word in the symmetric
generators. In this context we define the orders of elements of the form �tai
to be the first order parameters of the symmetric presentation; similarly,
the orders of elements of the form �tai t

b
j are second order parameters, and

so on. In Tables 7.6 and 7.7 we give, for each progenitor, a list of elements
whose orders form a complete set of first order parameters, together with
other useful parameters.

7.6.3 Low degree representations of progenitors

We shall often adopt the approach which by-passes a search for suit-
able additional relations and, instead of attempting to construct a Cayley
diagram, seeks a low degree permutation or matrix representation of the
progenitor. In Curtis [31] it is shown, in effect, that representing the pro-
genitors 3�5 �A5 and 2�7 �L3�2� on 12 and 24 letters, respectively, with the
control subgroup acting transitively in each case, results immediately in the
Mathieu groups M12 and M24. Indeed, curiously, the smallest true permuta-
tion representation of an ‘interesting’ progenitor often turns out to produce
a sporadic simple group.

We shall illustrate this approach here by considering permutation rep-
resentations of 3�4 �m 2·S4

+ of degree less than or equal to 11. Modulo
(outer) automorphisms, N � 2·S4

+ possesses just one faithful permuta-
tion representation of degree 8, and this is the only faithful (transitive)
representation of degree less than 12. The control subgroup N has a unique
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Table 7.6. Extra relations for the progenitors 3�n �N
(permutation action)

3�3 �S3 3�5 �A5

��0	1	2�t0�a = 1 ��0	1	2	3	4�t0�a = 1
��0	1�t0�b = 1 ��0	2	4	1	3�t0�b = 1
�t0t

−1
1 �c = 1 ��0	1	2�t0�c = 1

��0	1	2�t0t−1
1 �d = 1 �t0t1�

d/2 = 1
��0	1�t0t2�e = 1 �t−1

0 t1�
e = 1

��0	1�t0t−1
2 �f = 1 ��0	1	2�t−1

0 t1�
f = 1

�4	2	1� = �t0t3�
s1

�4	2	1� = �t−1
0 t3�

s2

3�4 �S4 3�5 �S5

��0	1	2	3�t0�a = 1 ��0	1	2��3	4�t0�a = 1
��0	1	2�t0�b = 1 ��0	1	2	3	4�t0�b = 1
��0	1��2	3�t0�c = 1 ��0	1	2	3�t0�c = 1
��0	1�t0�d = 1 ��0	1	2�t0�d = 1
�t−1

0 t1�
e = 1 ��0	1�t0�e = 1

��0	1	2�t0t−1
1 �f = 1 �t−1

0 t1�
f = 1

��0	1�t0t2�p = 1 ��0	1	2�t−1
0 t1�

p = 1
��0	1�t0t−1

2 �q = 1 ��0	1�t0t2�q = 1
�t0t1�

s1 = �2	3� ��0	1�t0t−1
2 �r = 1

�t−1
0 t1�

s2 = �2	3�

3�6 �L2�5� 3�7 �L3�2�

��0	1	2	3	4�t0�a = 1 ��0	1	2	3	4	5	6�t0�a = 1
��0	2	4	1	3�t0�b = 1 ��0	6	5	4	3	2	1�t0�b = 1
��
	0	1��2	4	3�t
�c = 1 �t0t1t3�

c/3 = 1
��
	0	1��2	4	3�t2�d = 1 ��0	1	6��2	3	5�t0�d = 1
��
	0��1	4�t
�e = 1 �t0t1�

e/2 = 1
��
	0��1	4�t1�f = 1 ��2	6��4	5�t1t3�f/2 = 1
�t−1


 t0�
p = 1 ��0	3��2	6	4	5�t2�p = 1

�t2t3�
s1 = �
	0��1	4� �t1t3�

s1 = �2	6��4	5�
�t2t

−1
3 �s2 = �
	0��1	4� �t1t

−1
3 �s2 = �2	6��4	5�

transitive representation for each of the degrees 1, 2 and 3. The imprim-
itive 8-point action N may be generated by a = �0��1	2	3��0̄��1̄	 2̄	 3̄� and
b = �0	1��0̄	 1̄��2	 2̄��3��3̄�, whose actions in the one-, two- and three-letter
representations are shown in Table 7.8. Our 3-element t0 must commute
with a and be inverted by the central element �ab�4 = �0	 0̄��1	 1̄��2	 2̄��3	 3̄�.
Furthermore, one of �2	3��2̄	 3̄��0	 0̄� and �2	 3̄��2̄	3��1	 1̄� must commute
with t0, and the other invert it. It is left to the reader to verify that
the five cases exhibited in Table 7.8 are the only possibilities. The group
32 �2·S4

+ � M9 �S3 of Table 7.8 is the famous Hessian group, which is the
full automorphism group of the Steiner system, S�2	3	9�.
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Table 7.7. Extra relations for the progenitors 3�n �m N (monomial action)

3�3 �m D8 3�3 �m S3 3�4 �m S4

��0	1	 0̄	 1̄�t0�a = 1 ��0	1	2�t0�a = 1 ��0	 1̄	2	 3̄�t0�a = 1
��0	1�t0�b = 1 ��0	1	2�t−1

0 �b = 1 ��0	 1̄	2	 3̄�t−1
0 �b = 1

��1	 1̄�t0t1�c = 1 ��0	 1̄��2	 2̄�t0�c = 1 ��0	 1̄��2	 2̄��3	 3̄�t0�c = 1
��0	1�t0t1t−1

0 �d = 1 ��0	1	2�t0t−1
1 �d = 1 ��0	1	2�t0�d = 1

��0	1	 0̄	 1̄�t0t1t0�e = 1 �t0t1�
e = 1 ��0	1	2�t−1

0 �e = 1
��0	 1̄��2	 2̄�t0t2�f = 1 ��0	1��2	3�t0�f = 1
��0	 1̄��2	 2̄�t2t0�p = 1 ��0	1	2�t0t−1

1 �p = 1
��0	1	2�t0t2t1�q = 1 ��0	 1̄��2	 2̄��3	 3̄�t0t2�q = 1

��0	 1̄��2	 2̄��3	 3̄�t2t0�r = 1

3�3 �m S4 3�4 �m 2·S4
+ 3�6 �m L2�5�

��0	1	 0̄	 1̄��2	 2̄�t0�a = 1 ��0	 1̄	 2̄	3	 0̄	1	2	 3̄�t0�a = 1 ��0	1	2	3	4�t0�a = 1
��0	1	2�t0�b = 1 ��0	 1̄	2	 0̄	1	 2̄��3	 3̄�t0�b = 1 ��0	1	2	3	4�t−1

0 �b = 1
��1	 2̄�t1�c = 1 ��0	 2̄	 0̄	2��1	 3̄	 1̄	3�t0�c = 1 ��0	2	4	1	3�t0�c = 1

��0	2	1�t0�d = 1 ��0	2	4	1	3�t−1
0 �d = 1

��1	 1̄��2	3�t2�e = 1 ��
	0	1��2	4	 3̄�t
�e = 1
��
	0	1��2	4	 3̄�t−1


 �f = 1
��
	0	1��2	4	 3̄�t2�p = 1
��
	0	1��2	4	 3̄�t−1

2 �q = 1
��
	0��1	4��2	 2̄��3	 3̄�t
�r = 1
��
	0��1	4��2	 2̄��3	 3̄�t1�s = 1

3�5 �m S5 3�7 �m L3�2�

��0	 1̄��2	 3̄	4	 2̄	3	 4̄�t0�a = 1 ��0	1	2	3	4	5	6�t0�a = 1
��0	 1̄��2	 3̄	4	 2̄	3	 4̄�t−1

0 �b = 1 ��0	6	5	4	3	2	1�t0�b = 1
��0	 1̄��2	 3̄	4	 2̄	3	 4̄�t2�c = 1 ��1	 1̄��3	 3̄��2	 6̄��4	5�t2�c = 1
��0	1	2	3	4�t0�d = 1 ��1	 1̄��0	3	 0̄	 3̄��2	6	4	 5̄�t0�d = 1
��0	 1̄	2	 3̄��4	 4̄�t0�e = 1 ��1	 1̄��0	3	 0̄	 3̄��2	6	4	 5̄�t2�e = 1
��0	 1̄	2	 3̄��4	 4̄�t−1

0 �f = 1 ��1	 1̄��0	3	 0̄	 3̄��2	6	4	 5̄�t−1
2 �f = 1

��0	1	2�t0�p = 1 ��0	 1̄	6��2	 3̄	 5̄�t0�p = 1
��0	1��2	3�t0�q = 1 ��0	 1̄	6��2	 3̄	 5̄�t−1

0 �q = 1
��0	 1̄��2	 2̄��3	 3̄��4	 4̄�t0�r = 1 ��0	 1̄	6��2	 3̄	 5̄�t2�r = 1

In order to demonstrate representing progenitors as matrices, we consider
a family of images of 3�6 �m L2�5�. As is well known [40], the projective
special linear group L2�q� contains subgroups isomorphic to A5 if, and only
if, q ≡ ±1 or 0 (mod 5), and modulo automorphisms of L2�q� there is just
one class of such subgroups. Furthermore, A5 contains a unique class of
subgroups isomorphic to D10. Now, an element of order 5 in such a D10
will commute with an element of order 3 in L2�q� just when q ≡ ±1 (mod
15), and moreover this element is unique up to inversion and is inverted by
the involutions in the D10. This shows that when q ≡ ±1 (mod 15), L2�q�
contains a (true) homomorphic image of the progenitor 3�6 �m L2�5�, and
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Table 7.8. Low degree permutation representations of 3�4 �m 2·S4
+

Name 8 letters 1 letter 2 letters 3 letters

a �0��1	2	3��0̄��1̄	 2̄	 3̄� �u� �v��w� �x	 y	 z�
b �0	1��0̄	 1̄��2	 2̄��3��3̄� �u� �v	w� �x��y	 z�
�ab�4 �0	 0̄��1	 1̄��2	 2̄��3	 3̄� �u� �v��w� �x��y��z�
– �2	3��2̄	 3̄��0	 0̄� �u� �v	w� �x��y	 z�
– �2	 3̄��2̄	3��1	 1̄� �u� �v	w� �x��y	 z�

Action on 8, 9 or 11 letters Group generated

t
�A�
0 �1	2	3��3̄	 2̄	 1̄� S8

t
�B�
0 �u	0	 0̄� S9

t
�C�
0 �u	0	 0̄��3	2	1��1̄	 2̄	 3̄� 32 �2·S4

+

t
�D�
0 �u	0	 0̄��1	2	3��3̄	 2̄	 1̄� S9

t
�E�
0 �x	1	 1̄��y	2	 2̄��z	3	 3̄� M11

in an essentially unique way. From the classification of subgroups of L2�q�
[40] and the fact that any image of 3�6 �m L2�5� is perfect (as can be seen
by abelianizing the presentation of Table 7.4(xii)), we see that this image
can only be a subfield subgroup L2�r�, where q is a power of r. This image
will be the whole group L2�q� for q = pm (p prime) if, and only if, q is the
minimal power of p for which the above congruences hold, namely pm ≡ ±1
(mod 15) and pk �≡ ±1 (mod 15) whenever 1 ≤ k < m. Thus, for example,
L2�312� is not an image of this progenitor but L2�112�, L2�16� and L2�31�
are.

In order to construct these embeddings in a generic fashion, we give
matrices over a finite extension of the rationals, which we can then reduce
modulo any prime we wish (except 5). We comment that this is essentially
the unique 3-dimensional representation of the progenitor 3�6 �m L2�5�. The
matrices x, y and t given below satisfy the presentation of Table 7.4(xii),
so N = �x	 y� � A5 and �t� has just six images under conjugation by N :

x ∼
⎡

⎢
⎣

0 0 1
−1 0 −�

0 −1 −�

⎤

⎥
⎦ 	 y ∼

⎡

⎢
⎣

0 1 0
0 0 1
1 0 0

⎤

⎥
⎦

and

t ∼ 1
5

⎡

⎢
⎣
�2�+1��−2�−1 ��+3��−5 ��+3��−3�+1
��−2��−2�−1 3�−1 �−�+2��−4�−2
�−�−3��+5 �−�−3��+3�−1 �−2�−1��−�+2

⎤

⎥
⎦ 	

where � = y15 = z15 +z−1
15 and �= b5 = �3 −3� = z5 +z−1

5 (zn = e2�i/n denotes
a primitive nth root of unity), as in the Atlas notation for irrationalities.
This representation can be reduced modulo any prime p �= 5 to give a
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3-dimensional representation of 3�6 �m L2�5� over �q = �p�y15�. (Since all
four algebraic conjugates of y15 are in ��y15�, this q is independent of the
p-modular analogue of y15 chosen.) If p = 3, then t = I3; in all other cases
the reduced t has order 3 and �t� has six conjugates under N = �x	 y�. Note
that since xty has trace 1

5 ��2�+1��−�−3�, this representation cannot be
realized over a proper subfield. (If F = �p or �, the only subfields of F�y15�
are F , F�b5� and F�y15�, these fields not necessarily being distinct.)

The group �x	 y	 t� preserves the quadratic form with matrix given by
⎡

⎢
⎣

2 −� −�

−� 2 −�

−� −� 2

⎤

⎥
⎦ 	

which has determinant 2� + 4, so the form is non-singular modulo all primes
but 2 (and 5, since the group is not defined for this prime). Now, x, y and t
have determinant 1, so we have �x	 y	 t� ≤ SO3�q�� PGL2�q�, and, since any
image of 3�6 �m L2�5� is perfect, we actually have �x	 y	 t� ≤ PSL2�q�= L2�q�.
Equality follows from a discussion earlier in this section. Note that the
2-modular reduction of the above representation does give L2�16�, even
though the above quadratic form is singular. In the characteristic 0 case, the
full outer automorphism group of the progenitor 3�6 �m L2�5� corresponds to
a cyclic group of order 4 generated by a conjugate of a field automorphism
(of order 4).

7.6.4 Automorphisms of the progenitors

Knowledge of the (outer) automorphism group of a progenitor is often useful
in cutting down the number of sets of parameters we have to consider. For
instance, the isomorphism class of the group

3�4 �m S4

��0	1	2	3�t0�a	 ��0	1	2	3�t−1
0 �b	 ��0	1�t0�c

is independent of the order of a, b and c. Any automorphism (of a progen-
itor) is a combination of the following four types:

(i) inner;

(ii) those that fix �̄ and lie in NrmM�n	T��N̄ � but not N̄ ;

(iii) those that commute with N but move �̄ ;

(iv) those that swap N and T0 �N0,

where M�n	T� � Aut�T� "Sn denotes the full group of monomial automor-
phisms of the free product T�n and N̄ =N/CN �� �. This follows from consid-
ering a progenitor T�n �N as a free product of N and T0 �N0 amalgamated over
their intersection, N0. Note that an assumption that N ≤ M�n	T� (which
holds in all the cases considered here) ensures that the progenitor has trivial
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Table 7.9. Outer automorphism groups of our progenitors

Progenitor, P Type (ii) Type (iii) Type (iv) Out�P�

3�3 �S3 2 1 1 2
3�4 �S4 2 1 1 2
3�5 �A5 22 1 1 22

3�5 �S5 2 1 1 2
3�6 �L2�5� 22 1 1 22

3�7 �L3�2� 2 1 1 2
3�3 �m S3 2 1 2 22

3�4 �m S4 2 3 1 D6
3�5 �m S5 2 1 1 2
3�2 �m D8 1 1 1 1
3�3 �m S4 2 1 1 2
3�4 �m 2·S4

+ 1 1 1 1
3�6 �m L2�5� 4 1 1 4
3�7 �m L3�2� 2 1 1 2

centre, and so the inner automorphisms of a progenitor may be identified
in a natural manner with elements of the progenitor itself.

The automorphisms of types (i) and (ii) are relatively straightforward.
As can be seen from Table 7.9, those of types (iii) and (iv) are rare. We
have already encountered an automorphism of type (iii) when dealing
with involutory generators in ref. [36] in relation to the progenitor 2�3 �S3.
Indeed, this progenitor possesses two sets of symmetric generators, namely

t0	 t1	 t2� and 
t0�1	2�	 t1�2	0�	 t2�0	1��, which are interchanged by an
outer automorphism commuting with N � S3. The only progenitor in the
present work with an automorphism of type (iii) is 3�4 �m S4, which possesses
three sets of symmetric generators. These are � = 
 ti � i = 0	1	2	3 �,
� = 
 ri = ti�j	 k	 l� � i = 0	1	2	3 � and � = 
 si = ti�j	 l	 k� � i = 0	1	2	3 �,
where i	 j	 k	 l is an even permutation of 0	1	2	3. This progenitor admits
an automorphism of order 3 which commutes with N � S4 and acts as
�ri	 si	 ti� on the sets of symmetric generators. Such additional sets of
symmetric generators are said to be auxiliary. The reader will observe
that both these examples are special cases of a family of progenitors
of shape p��p+1� �m PGL2�p� which possess a type (iii) automorphism of
order p.

A presentation for the progenitor 3�3 �m S3 is given in Table 7.4(viii), in
terms of generators x, y and t. This group has an outer automorphism � of
order 2 which interchanges x and t whilst fixing y. Thus, in the first case,
the symmetric generators are 
t	 tx	 tx

2
� with control subgroup N = �x	 y�,

and in the second case the symmetric generators are 
x	 xt	 xt2� with control
subgroup N� = �t	 y�.

We tabulate the outer automorphism groups of the progenitors under
consideration in Table 7.9. A fuller explanation of this classification of
automorphisms is to be found in Bray [14].
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7.6.5 Non-tabulated results

Certain of our progenitors possess too few known images to warrant separate
tables, although the images they do have are of great interest. Indeed, it was
the realization that the Mathieu group M12 could be readily constructed as
an image of 3�5 �A5 which motivated the programme of work that led to this
book. Thus we have

3�5 �A5

�2	3	4� = �t0t
−1
1 �2

� M12 ×3	

whose centre is generated by ��0	1	2	3	4�t0�8.
As described in the text, the progenitor 3�7 �m L3�2� maps onto the alter-

nating group A7, the image being realized by, for example, the single relator
��1	 1̄��0	3	 0̄	 3̄��2	6	4	 5̄�t2�3. The corresponding permutation progenitor
gives rise to

3�7 �L3�2�
�t0t1�

2 = 1
� A9 ×L3�2�

and

3�7 �L3�2�
�t0t1�

2 = ��0	1	2	3	4	5	6�t0�9 = 1
� A9


More interestingly, however, the Hall–Janko group J2 and its double cover
are both images of

3�7 �L3�2�
�2	6��4	5� = �t1t

−1
3 �2




Explicitly, factoring by any one of the relators ��0	1	2	3	4	5	6�t0�10,
��0	3��2	6	4	5�t2�7 or ��0	1	6��2	3	5�t0�8 yields 2·J2, while factoring by
�t0t1t3�

2 yields J2 × 3. The simple group J2 is obtained by factoring by
�t0t1t3�

2 and any one of the other three relators. It is worth noting
that the subgroup generated by an oval of symmetric generators such
as 
t0	 t3	 t5	 t6� is isomorphic to the unitary group U3�3� of (minimal)
index 100.

For the progenitor 3�6 �L2�5�, we have the remarkably simple result that

3�6 �L2�5�
�
	0��1	4� = �t2t

−1
3 �2

� 2·J2 ×3


In this group �
	0	1��2	4	3�t
 has order 60, and factoring by
��
	0	1��2	4	3�t
�30, ��
	0	1��2	4	3�t
�20 or ��
	0	1��2	4	3�t
�10 gives
J2 × 3, 2·J2 or J2, respectively. This progenitor also has an image A8 ×A5
obtained by factoring by �t
t0�2, the image A8 being obtained by factoring
by the further relator ��0	1	2	3	4�t0�7. We also found that
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3�6 �L2�5�
��0	1	2	3	4�t0�13 = �t
t−1

0 �2 = 1
� 3·O7�3�	

the triple cover of the simple group P�7�3�, as in the notation of the Atlas

(and Artin). A faithful permutation representation for this group of degree
2268 may be obtained over the subgroup �t0	 t1	 t2	 t3	 t4� � L4�3�.

7.7 Tabulated results

The information given in Tables 7.6–7.19 is, for the most part, self-
explanatory. Tables 7.6 and 7.7 describe the particular parameters used
for each of our progenitors, while Tables 7.5 and 7.4 allow the reader to
write down an explicit presentation for each of the groups given. Note that,
in spite of our requirement that � generates G, we have allowed some
interesting cases when this is not quite true!

The notation for group structures is essentially that of the Atlas [25],
the main difference being in the notation pm+n, which we are reserving for
an elementary abelian group of order pm+n, with an indication that when
it is regarded as an �p-module for the group acting on it there is just one
non-trivial submodule, and this has dimension m. (Note, however, that the
notation pn
K does not imply that the pn is an irreducible �p-module for
K.)

In the Atlas , the notation pm+n is used for a special group whose centre
has order pm; we shall use the notation pm�n instead, but we do keep the
notation p1+2n

± for extraspecial groups. The notation �23
32
A6� for a group
with composition factors C2 (three times), C3 (twice) and A6 (once) extends
the use of �n� denoting a soluble group of order n.

More importantly, the parameters given in boldface type (see
Tables 7.10–7.19) are those used to define the group; parameters given in
small numerals are the values assumed in the resulting group G.

Verification that the images have the shapes claimed is usually achieved
as follows. Firstly, we perform a coset enumeration over an identifiable
subgroup using the algebra package Magma [19] to obtain the order. We
then seek a faithful permutation action of small degree, and use it to provide
information about the group such as its composition factors, derived series,
and so on. This information is then used to determine the structure of the
group.

The interested reader is referred to Bray [14], where various generic
symmetric presentations for the alternating groups and a family of orthog-
onal groups are proved valid and others conjectured. Special cases of these
presentations appear in Tables 7.10–7.19.

We have omitted most soluble images from the tables, and many of
the images listed can be specified by alternative parameters. For a fuller
listing, the reader is referred to Bray [14] or to the World Wide Web at
http://www.mat.bham.ac.uk/spres/.
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Table 7.10. Some finite images of the progenitor 3�3 �S3

Parameters Order
of G

Shape of
�t0	 t1�

Shape of
�� �

Shape of G

a b c d e f

5 4 3 2 6 4 120 A4 A5 S5
4 8 7 4 8 6 336 L2�7� L2�7� PGL2�7�

15 12 3 2 6 4 360 A4 ×3 A5 ×3 S5 ×3
15 4 3 6 6 4 360 A4 A5 �A5 ×3��2
6 5 5 5 5 3 660 A5 G L2�11�
7 13 7 13 3 7 1092 G G L2�13�
5 8 3 4 6 8 1920 42 �3 24 �A5 24 �S5
7 5 5 6 7 7 2520 A5 G A7

21 39 7 13 3 7 3276 G G L2�13�×3
5 8 6 4 6 8 3840 �253� 21+4 ·A5 21+4 ·S5

15 7 4 4 5 7 20 160 L3�2� G A8 � L4�2�
15 7 4 4 5 14 40 320 L3�2� G 2·A8
15 8 4 7 4 6 40 320 L3�2� A8 S8
7 6 4 7 8 6 40 320 42 �3 L3�4� L3�4��23
7 6 12 7 8 6 120 960 3×42 �3 3·L3�4� 3·L3�4��23

15 8 4 21 4 6 120 960 L3�2� A8 �A8 ×3��2
5 10 15 5 10 10 124 800 U4�3� U4�3� U4�3��2

14 5 5 6 14 7 645 120 A5 G �241 ×242��A7

8 6 13 8 12 8 63 078 912 132 �3 L3�3�
2 �L3�3�

2��2

Table 7.11. Some finite images of the progenitor 3�4 �S4

Parameters Order
of G

Shape of
�t0	 t1�

Shape of
�t0	 t1	 t2�

Shape of G

a b c d e f p q s1 s2

6 5 4 4 3 2 6 4 − − 720 A4 A5 S6
6 15 12 12 3 2 6 4 − − 2160 A4 ×3 A5 ×3 S6 ×3

13 13 8 8 6 6 13 13 2 3 5616 SL2�3� G L3�3�
7 8 12 12 4 4 8 7 3 2 6048 SL2�3� G U3�3�

12 15 4 4 3 6 6 4 − − 8640 A4 A5 �A6 ×A4��21
12 5 8 8 3 4 6 8 − − 11 520 42 �3 24 �A5 24 ·S6
21 24 12 12 4 4 24 7 3 2 18 144 SL2�3� G U3�3�×3
9 7 10 5 5 6 7 7 − − 181 440 A5 A7 A9

12 10 5 10 5 11 12 12 − − 190 080 A5 M12 M12 �2
7 8 12 12 4 4 8 7 3 − 774 144 �243� G 21+6 �U3�3�
8 20 5 10 5 5 10 6 − − 777 600 A5 3·�A6 ×A6� 3·�A6 ×A6��2

18 6 7 14 9 9 18 14 − − 1 524 096 L2�8� L2�8�
2 L2�8�

2 �S3
8 60 5 10 5 15 10 6 − − 2 332 800 A5 3·�A6 ×A6� 3·�A6 ×A6��S3

21 15 14 7 4 4 5 7 − − 9 999 360 L3�2� A8 L5�2�
9 14 10 5 5 6 14 7 − − 46 448 640 A5 241⊕42 �A7 282 �A9
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Table 7.12. Some finite images of the progenitor 3�5 �S5

Parameters Order
of G

Shape of
�t0	 t1	 t2�

Shape of
�� \ 
t4��

Shape
of G

a b c d e f p q r

10 7 6 5 4 3 2 6 4 5040 A5 A6 S7
10 7 6 5 4 3 2 6 4 5040 A5 A6 S7
30 21 6 15 12 3 2 6 4 15 120 A5 ×3 A6 ×3 S7 ×3
30 21 6 15 12 3 2 6 4 15 120 A5 ×3 A6 ×3 S7 ×3
30 35 12 15 4 3 6 6 4 302 400 A5 A6 �A7 ×A5��2
6 15 12 6 6 4 6 6 8 368 640 �263� �283� 22�8 ��3×S5�

12 13 18 12 6 2 3 6 4 12 130 560 21+2 �A4 34 ��21+2 �A4� L4�3��22
14 11 9 7 5 5 6 7 7 19 958 400 A7 A9 A11
30 63 21 15 7 4 4 5 7 20 158 709 760 L4�2� L5�2� L6�2�

Table 7.13. Some finite images of the progenitor 3�2 �m D8

Parameters Order
of G

Shape of
�t0	 t1�

Shape
of G

a b c d e

6 5 4 3 4 120 A5 S5
6 5 4 3 4 120 A5 S5
6 10 4 6 4 240 A5 S5 ×2
7 8 8 6 3 336 L2�7� PGL2�7�
7 8 8 6 3 336 L2�7� PGL2�7�

12 10 4 6 4 480 A5 �A5 ×22��2
10 12 5 10 12 1320 L2�11� PGL2�11�
28 8 8 6 12 1344 L3�2� �L3�2�×4��2
10 12 10 10 12 2640 L2�11� PGL2�11�×2
9 16 18 16 9 4896 L2�17� PGL2�17�

11 11 12 12 6 6072 L2�23� L2�23�
20 9 20 10 18 6840 L2�19� PGL2�19�
12 10 8 6 8 7680 24
A5 24+1+1
S5
10 17 10 17 10 8160 L2�16� L2�16��2
24 60 24 12 4 8640 �2
32A5� �2432A5�
28 14 26 4 28 8736 L2�13� �L2�13�×22��2
13 12 8 12 8 11 232 L3�3� L3�3��2
10 13 10 12 6 15 600 L2�25� P�L2�25�
21 42 40 8 5 68 880 L2�41� PGL2�41�
15 10 10 10 10 124 800 U3�4� U3�4��2
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Table 7.14. Some finite images of the progenitor 3�3 �m S3

Parameters Order
of G

Shape of
�t0	 t1�

Shape of
�� �

Shape
of G

a b c d e f p q

2 3 4 3 3 2 4 3 24 A4 A4 S4
5 5 3 2 2 5 5 5 60 A4 G A5
3 6 4 3 3 4 2 3 72 A4 A4 3 �S4
6 12 8 6 6 2 8 3 144 SL2�3� SL2�3� 3 �GL2�3�
4 4 7 4 4 3 3 3 168 G G L2�7�
4 4 14 4 4 6 6 3 336 L2�7� L2�7� L2�7�×2
7 4 6 7 7 8 8 2 336 7 �3 L2�7� PGL2�7�

15 15 6 2 6 10 10 5 360 A4 ×3 A5 ×3 A5 ×D6
4 5 5 5 5 5 4 3 360 A5 G A6
7 9 9 7 7 7 7 2 504 G G L2�8�
6 6 5 5 5 11 11 5 660 A5 G L2�11�
4 21 6 21 21 8 8 3 1008 7 �3×3 L2�7�×3 �L2�7�×3��2

21 12 6 7 21 8 8 2 1008 7 �3×3 L2�7�×3 �L2�7�×3��2
7 13 7 7 7 6 7 2 1092 G G L2�13�
7 6 6 13 13 3 7 7 1092 13 �3 G L2�13�
4 5 30 5 5 10 12 3 2160 A5 ×3 3·A6 3·A6 ×2
5 12 10 15 15 4 10 12 2160 A5 ×3 A6 ×3 A6 ×D6
7 7 12 7 7 12 4 2 2184 L2�13� L2�13� PGL2�13�

17 9 8 8 8 3 9 9 2448 G G L2�17�
9 8 9 17 17 3 9 9 2448 G G L2�17�
6 5 7 4 4 5 7 4 2520 L2�7� G A7
9 10 5 5 5 9 19 5 3420 A5 G L2�19�
7 7 10 6 5 6 6 7 5040 A5 A7 S7

11 12 11 11 11 3 4 4 6072 G G L2�23�

Table 7.15. Some finite images of the progenitor 3�4 �m S4

Parameters Order
of G

Shape of
�t0	 t1�

Shape of
�t0	 t1	 t2�

Shape
of G

a b c d e f p

4 4 4 3 6 6 3 288 A4 A4 A4 �S4
3 5 5 5 4 5 5 360 A5 G A6
5 5 3 5 5 4 2 360 A4 A5 A6
6 10 10 5 4 5 5 720 A5 A6 A6 ×2

10 10 6 5 5 4 2 720 A4 A5 A6 ×2
10 10 6 15 15 12 2 2160 A4 ×3 A5 ×3 A6 ×D6
6 20 20 15 4 15 15 8640 A5 ×A4 A6 ×A4 A6 ×S4

20 20 6 15 15 4 6 8640 A4 A5 A6 ×S4
10 10 6 5 5 8 4 11 520 42 �3 24 �A5 24+1 �A6
6 10 10 5 8 5 5 11 520 A5 24 �A6 24+1 �A6

12 10 12 5 10 10 5 190 080 M12 M12 M12 �2
12 12 10 10 10 5 1 190 080 A5 M12 M12 �2
15 15 5 20 20 5 5 388 000 A5 G 3·�A6 ×A6�
5 15 15 20 5 20 10 388 000 A5 ×A4 3·A6 ×A5 3·�A6 ×A6�
6 6 8 14 14 8 4 3 753 792 L2�7� L3�7� L3�7�×2
7 13 6 13 8 6 13 4 245 696 31+2

+ L3�3� G2�3�
6 13 7 13 6 8 6 4 245 696 L2�7� G G2�3�
7 6 13 6 8 13 7 4 245 696 G G G2�3�
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Table 7.16. Some finite images of the progenitor 3�3 �m S4

Parameters Order
of G

Shape of
�t0	 t1�

Shape of
�� �

Shape
of G

a b c

6 7 5 2520 A5 G A7
6 7 10 5040 A5 A7 A7 ×2
6 21 5 7560 A5 G 3·A7
6 13 10 15 600 A5 L2�25� P�L2�25�

Table 7.17. Some finite images of the progenitor 3�4 �m 2·S4
+

Parameters Order
of G

Shape of
�t0	 t1�

Shape of
�t0	 t1	 t2�

Shape of
�� �

Shape
of G

a b c d e

6 24 13 39 12 33696 L3�3� L3�3� L3�3� �L3�3�×3��2
6 8 13 13 12 11232 L3�3� L3�3� L3�3� L3�3��2

22 5 6 6 10 15840 A5 L2�11� M11 M11 ×2
8 6 4 3 6 432 32 32 32 32 �2·S4

+

11 5 6 6 5 7920 A5 L2�11� G M11

Table 7.18. Some finite images of the progenitor 3�6 �m L2�5�

Parameters Order
of G

Shape of
�t
	 t0�

Shape of
�t
	 t0	 t1�

Shape of
�t
	 t0	 t2�

Shape
of G

a b c d e f p q r s

5 7 29 15 14 15 7 15 29 14 12 180 G G G L2�29�
4 16 16 16 8 15 16 5 8 15 14 880 G G G L2�31�

19 19 15 15 6 6 11 11 10 5 175 560 A5 L2�11� G J1
89 11 44 45 4 45 22 22 45 44 352 440 G G G L2�89�
9 9 12 12 12 12 15 15 6 4 1 451 520 A4 23 �A4 A5 S6�2�

45 45 60 60 12 12 15 15 6 4 87 091 200 A4 23 �A4 A5 S6�2�×A5



Table 7.19. Some finite images of the progenitor 3�5 �m S5

Parameters Order
of G

Shape of
�t0	 t1�

Shape of
�t0	 t1	 t2�

Shape of
�� \ 
t4��

Shape
of G

a b c d e f p q r

3 3 4 7 5 5 5 4 3 2520 A4 A5 A6 A7
3 3 4 7 5 5 5 4 3 2520 A4 A5 A6 A7
6 6 4 21 10 10 15 12 6 15 120 A4 ×3 A5 ×3 A6 ×3 A7 ×S3

12 12 6 15 8 8 6 6 4 92 160 A4 24 �3 26 �3 28 ��3 �S5�
4 12 10 8 12 10 11 6 12 190 080 A4 ×3 M12 M12 M12 �2
6 6 12 35 20 20 15 4 6 302 400 A4 A5 A6 A7 ×S5
4 12 10 24 12 10 33 6 12 570 240 A4 ×3 M12 ×3 M12 ×3 �M12 ×3��2

12 12 6 13 8 8 12 6 4 12 130 560 A4 21+2 �A4 34 ��21+2 �A4� L4�3�×2
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Table 7.20. Symmetric presentations for some sporadic simple groups or their
decorations

Group Symmetric presentation Page

M11
3�4 �m 2·S4

+

��0 1��2 2̄�t0�5
266

3×M12
3�5 � A5

�2 3 4� = �t−1
0 t1�

2
173

J1
2�11 � L2�11�
��018t0�

5
138

2·M22 � 2
2�15 � A7

��ijkti�
4

129

J2 � 2
2�36 � �U3�3� � 2�

�ij = titjti
170

M23
5�4 � 2·S4

−

relations
271

HS � 2
2�50 � �U3�5� � 2�
�ijk = titktitj

151

J3 � 2
2�120 � �L2�16� � 4�

��ti�
5

175

M24
2�7 � L3�2�

�t
t1
0 	 t3�	 �2 4��5 6� = �t0t3�

3	 ��1 2 4��3 6 5�t3�11
173

McL � 2
2�672 � M22

% = �t1t2�
2

222

He
7��15+15� � 3·S7

��t0�
3

278

3·Suz � 2
2�416 � �G2�4� � 2�

�ij = titjti
172

O′N � 2
2�12 � M11

�t
t0�4	 ��3t
t3�5	 ���t
t0�2�5
235

Co2
2��

23
3 � � M23

tabtactad = %
219

HN
5��176+176� � �2·HS � 2�

��t0�
3

287

2×Fi23
2�5775 � S12[

1234
5678
90xy

][
1256
3478
90xy

][
1278
3456
90xy

]

= �1 2��3 4��5 6��7 8�

233

·O 2��
24
4 � � M24

tabtactad = %
204

2×J4
2�3795 � M24

tAtBtAtD = %2
199

3·Fi24
2�

1
2 �

12
6 � � �O−

10�2� � 2�([
123456
7890xy

]
t
)3 233
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7.8 Some sporadic groups

We conclude by listing in Table 7.20 symmetric presentations for 19 spo-
radic groups dealt with in this book, together with a reference to the page
on which the presentation is described in more detail.
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