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PREFACE

This book presents a comprehensive study of the theory of variable length codes. It is
a complete reworking of the book Theory of Codes published by the first two authors
more than twenty years ago. The present text includes many new results and also
contains several additional chapters. Its focus is also broader, in the sense that more
emphasis is given to algorithmic questions and to relations with other fields.

The theory of codes takes its origin in the theory of information devised by Shannon
in the 1950s. As presented here, it makes use more of combinatorial and algebraic
methods rather than of information theory. Due to the nature of the questions that are
raised and solved, this theory has now become clearly a part of theoretical computer
science and is strongly related to combinatorics on words, automata theory, formal
languages, and the theory of semigroups.

The object of the theory of codes is, from an elementary point of view, the study
of the properties concerning factorizations of words into sequences of words taken
from a given set. One of the basic techniques used in this book is constructing special
automata that perform this kind of parsing. We will show how properties of codes are
reflected in combinatorial or algebraic properties of the associated devices.

It is quite remarkable that the problem of encoding as treated here admits a rather
simple mathematical formulation: it is the study of embeddings of a free monoid into
another. This may be considered to be a basic problem of algebra. There are related
problems in other algebraic structures. For instance, if we replace free monoids by
free groups, the study of codes reduces to that of subgroups of a free group. However,
the situation is quite different at the very beginning since, according to the Nielsen-
Schreier theorem, any subgroup of a free group is itself free, whereas the correspond-
ing statement is false for free monoids. Nevertheless the relationship between codes
and groups is more than an analogy, and we shall see in this book how the study of
a group associated with a code can reveal some of its properties. It was M.-P. Schiit-
zenberger’s discovery that coding theory is closely related to classical algebra. He has
been the main architect of this theory. The main basic results are due to him and most
further developments were stimulated by his conjectures.

The aim of the theory of codes is to give a structural description of codes in a way
that allows ?gaei{ercé)nstruction. This is easily accomplished for prefix codes, as shown
in Chapter [ The case of bifix codes is already much more difficult, and the complete
structural description given in ChapteraﬁgﬁponW)f the highlights of the theory. How-
ever, the structure of general codes (neither prefix nor suffix) still remains unknown to
a large extent. For example, no systerpatic method is known for constructing all finite
codes. The result given in Chaptere%gbo—uf the factorization of the polynomial of a
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viii Preface

code must be considered (despite the difficulty of its proof) as an intermediate step
toward the understanding of codes.

Many of the results given in this book are concerned with extremal properties, the
interest in which comes from the interconnection that appears between different con-
cepts. Butit also goes back to the initial investigations on codes considered as commu-
nication tools. Indeed, these extremal properties in general reflect some optimization
in the encoding process. Thus a maximal code uses, in this sense, the whole capacity
of the transmission channel.

Primarily, two types of methods are used in this book: direct methods on words on
one hand and automata and semigroups on the other hand. Direct methods consist of

amore or less refined analysis of the sequencing of letters and factors within a word E%a tera

it gceurs in combinatorics on words. Automata and semigroups as used in Chapters ff-
il% include the study of special automata associated with codes, called unambiguous
automata and of the corresponding monoids of relations (unambiguous monoids of
relations).

There are also many connections between the field of codes and automata and the
tield of symbolic dynamics. This aspect was not covered in Theory of Codes, and it is
one of the new features of this volume. Symbolic dynamics focuses on the study of
symbolic dynamical systems and, in particular of those defined by finite automata.
The main point of intersection with codes is the notion of unambiguous automaton
which coincides with the notion of finite-to-one map between symbolic systems. This
relation is spread over several chapters, Eor example, the solution of the road coloring

;E] and th

problem is presented in Chapter| enotion of topological entropy is introduced
in Chapter IE T'he connections are explained in each chapter in the Notes section.

Codes and automata are related to algorithms on words and graphs. The computa-
tional complexity of algorithms related to codes is one of the topics of the book and is
considered at various places in the text. We consider in particular algorithms related
to tests for codes and to the construction of optimal prefix codes for several criteria.

The degree of generality of the exposition was influenced by the observation that
many facts which hold for finite codes remain true for recognizable codes and even
for the larger class of thin codes. In general, the transition from finite to recognizable
codes does not imply major changes in the proof. However, changing to thin codes
may imply some rather delicate computations. This is clearly demonstrated in Chap-
ters EEI%Q%LWM the summations to be made become infinite when the codes are no
longer recognizable. But this approach leads to a greater generality and, as we believe,
to a better understanding by focusing attention on the main argument. Moregver, the
characterization of the monoids associated with thin codes given in Chaptereﬁ_%b?
considered to be a justification of our choice.

hapterO
The organization of the book is as follows: A preliminary chapter (Chapter m)als <

intended mainly to fix notatlon and should be consulted only when necessary. The
book is composed of tw ) parts: part one consisting of Chapters E%%Wﬁ
two formed

Chapters PH constitute an elementary introduction to the tk’enorx Gf codes in the
sense that they primarily make use of direct methods. Chapter [ contains the defini-
tion, the relationship with submonoids, the first results on Bernoulli distributions, and
the introduction of the notions of complete, maximal, and thin codes.

J. Berstel, D. Perrin and C. Reutenauer Version 14 janvier 2009
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210 Chapter E%ted to a systematic study of prefix codes, developed at an elemen-
220 tary level. Indeed, this is the most intuitive and easy part of the theory of codes and
221 certainly deserves considerable discussion. We believe that its interest largely goes be-
222 yond the theory of codes. We consider optimal prefix codes under various constraints.
223 In particul e give a full proof of the Garsia-Wachs algorithm.

224 Chapteraﬁ%%sﬁﬂies the automata used for representing codes, and for encoding
225 and decoding words. The flower automaton is the basic tool for a syntactic study of
226 codes. It is also helpful in an efficient algorithm for testing whether a rational set of
227 'words is a code. Encoders and decoders are transducers. We show how to construct
228 determinist'catﬁ%%qlsucers whenever it is possible.

220  Chapter Elmgtmm the deciphering delay, the family of weakly prefix codes and
230 their relation with weakly deterministic automata. The chapter contains the well-
231 known thegrem on maximal codes with finite deciphering delay.

222 Chapter ff also 15 elementary, although it is more dense. Its aims are to describe the
233 structure of maximal bifix codes and to give methods for constructing the finite ones.
23 The use of f gr{l&%power series is here of great help.

235 Chapter Bgﬁpco—mﬁinatorial in nature. It contains a description of length distributions
23 of circular codes which is related to classical enumerative combinatorics. It contains
237 also a systematic theory that leads to the study of the well-known comma-free codes.
238 Chapter E Mtroduices the factorizations of a free monoid and more importantly of
230 the characterization of the codes that may appear as factors. We present complete
20 descriptions of finite factorizations for up to five factors.

211 The next five chapters contain what is known about codes but can be proved only

22 by syntacti gn%trlzods.

243 ChapterE%lngmed to these techniques, using a more systematic treatment. Instead
24 of the frequently encountered monoids of functions we study unambiguous monoids
a5 of relations which do not favor left or right. Chapter Efgﬁtﬁls an important result,
a6 already mentioned above: the characterization of thin maximal codes by a finiteness
27 condition on the transition monoid of an unambiguous automaton.

248 Chapter%@fm@everal results linked to the notion of synchronized codes. The
229 notion of locally parsable code is related to that of local automaton. It contains alsp
250 a proof of the road coloring problem, which has been recently solved. Chapter %L
251 deals with the groups of codes. It contains in particular the proof of the theorem of

252 synchronization of semaphore codes announced in Chapter %l results on the

253 groups of fipite maximal bifix codes are proved.
s« Chapter [ presents elements of the theory of factorizations of cyclic groups. Several

25 particular classes of these factorizations are described, such as those due to Hajos and
256 Redei. The egattg%q with codes is developed.

57 Chapter [[3 starts with a presentation of basics on probability spaces, and contains a
258 proof of Kolmogorov’s extension theorem. Next, it shows how to compute the density
250 of the submonoid generated by a code by transferring the computation into the associ-
260 ated unambiguous monoid of relations. The formula of densities, linking together the
261 density of the submonoids, the degree of the code, and the densities of the contexts, is

22 the most strjking result.
263 Chapter il% contains the proof and discussion of the theorem of the factorization of
264 the polynomial of a finite maximal code. Many of the results of the preceding chap-
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X Preface

ters are used in the proof of this theorem which contains the most current detailed
information about the structure of general codes. The book ends with the connection
between maximal bifix codes and semisimple algebras.

In an appendix, we gather, for the convenience of the reader, the conjectures men-
tioned in the book and present some additional open problems.

The book is written at an elementary level. In particular, the knowledge required is
covered by a basic mathematical culture. Complete proofs are given and the necessary
results of automata theory or theory of semigroups are presented in Chapter ET]@IW
examples are given which stand from practical applications and illustrate the notions.

Each chapter is followed by a section of exercises. These contain frequently comple-
ments to the material covered in the text. Solutions for this set of some 200 exercises are
proposed at the end of the book. Each chapter ends with notes containing references,
bibliographic discussions, complementary material, and references for the exercises.

It seems impossible to cover the whole text in a one-year course. However, the book
contains enough material for several courses, at various levels, in undergraduate or
graduate curricula.

A one-sem ster course at eraduate level in discrete mathematics may be composed
of Chapters apter §§, Chapter |g, an ter ne-semester course at under-
al apter .
graduate level may be composed of Chapter E, C %Eapfer E without the last section, and
Chapter E

Several chapters are largely independent and can be lectured on separately. As an

example, a course based solely on Chapter ﬁ has been tauﬁatab}é qne of us. A course

based on razlgorithn‘i §may contain the beginning of Chapters |, the last section of Chap-

ter§, an apter

. . . hapter2
Because of the extensive use of trees and of the algorithms described there, Chapter@

by itself might constitute an interesting complement to a programming course.
Chapters% and |l iI which rely on the structure of unambiguous mono'gs of relations,

are an excellent illustration for a course in algebra. Similarly, Chapter [[3 can be used
as an adjunct to a course on probability theory.

The present volume is a new version of Theory of Codes, for which we have received
help and collaboration from many people. It is a pleasure for us to renew our thanks
for people who helped us during the preparation of the ancestor book: Aldo De Luca,
Georges Hansel, Maurice Nivat, Jean-Eric Pin, Antonio Restivo, Stuart W. Margolis
and Paul E. Schupp. The authors are greatly indebted to M.-P. Schiitzenberger (1920-
1996). The project of writing the book stems from him and he has encouraged us
constantly in many discussions.

The authors wish to thank, for help and comments on the present text, Marie-Pierre
Béal, Jean-Marie Boé, Véronique Bruyere, Arturo Carpi, Christian Choffrut, Clelia De
Felice, Sylvain Lavallée, Aaron Lauve, Yun Liu, Roberto Mantaci, Brian H. Marcus,
Wojciek Plandowski, Jacques Sakarovitch, Alessandra Savelli, Paul H. Siegel, Sandor
Szab¢, Stephanie van Willigenburg and Ken Zeger. Special thanks are due to Jean
Néraud who has carefully read all exercises and solutions.
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Chapter 1

PRELIMINARIES

In this preliminary chapter, we give an account of some basic notions which will be
used throughout the book. This chapter is not designed for a systematic reading but
rather as a reference.

The first three sections contain notation and basic vocabulary. Each of the subse-
quent sections is an introduction to a topic which is not completely treated in this book.
These sections are concerned mainly with the theory of automata. Kleene’s theorem is
given and we show how to construct a minimal automaton from a given automaton.
Syntactic monoids are defined. These concepts and results will be discussed in another
context in Chapteraﬁ.—igvmroduce formal power series and weighted automata. We
give some basic properties and prove parts of Perron-Frobenius theorem.

1.1 Notation

As usual, N,Z,Q, R, and C denote the sets of nonnegative integers, integers, and ra-
tional, real, and complex numbers, respectively. By convention, 0 € N. We set

Ry ={zeR|xz>0}.

()=

denotes the binomial coefficient of n and p.

For real numbers = < y, we denote by [z, y) the set of real numbers z such that z < z
and z < y. In particular, if z = y this set is empty.

Given two subsets X, Y of a set Z, we define

Next,

X\Y={z€Z|zeX,2¢Y}.

Frequently, X will be used to denote the complement of a subset X of some set Z. An
element 2 and the singleton set {x} will usually not be distinguished. The set of all
subsets of a set X is denoted by P(X).

The function symbols are usually written on the left of their arguments but with
some exceptions: When we consider the composition of actions on a set, the action is
written on the right. In particular, permutations are written on the right.

1
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2 1. PRELIMINARIES

A partition of a set X is a family (X;);cr of nonempty subsets of X such that
(i) X = Uz‘eI Xi,
(i) X;NX; =0, #j).

We usually define a partition as follows: “Let X = (J
denote the cardinality of a set X by Card(X).

icr Xi be a partition of X”. We

1.2 Monoids

A semigroup is a set equipped with an associative binary operation. The operation is
usually written multiplicatively.
A monoid is a semigroup which, in addition, has a neutral element. The neutral
element of a monoid M is unique and is denoted by 1, or simply by 1.
For any monoid M, the set (M) is given a monoid structure by defining, for X, Y C
M,
XY ={zy|zeX,yeY}.

The neutral element is {1}.
A submonoid of M is a subset N which is stable under the operation and which
contains the neutral element of M, thatis 1;; € N and

NNCN. (1.1)

Note that a subset IV of M satisfying (ﬁ)%%?s not always satisfy 1), = 1y and there-
fore may be a monoid without being a submonoid of M.

A morphism from a monoid M into a monoid N is a function ¢ : M — N which
satisfies, for all m,m’ € M,

and furthermore
e(ly) = 1n.

The notions of subsemigroup and semigroup morphism are then defined in the
same way as the corresponding notions for monoids.

A congruence on a monoid M is an equivalence relation § on M such that, for all
m,m' € M,u,ve M

m=m' mod 0 = wmv=um'vmod 6.

Let ¢ be a morphism from M onto N. The equivalence ¢ defined by m = m’ mod 6 if
and only if p(m) = ¢(m’) is a congruence. It is called the nuclear congruence induced
by ¢. Conversely, if 6 is a congruence on the monoid M, the set M /6 of the equivalence
classes of § is equipped with a monoid structure, and the canonical function from M
onto M /6 is a monoid morphism.

An idempotent of a monoid M is an element e of M such that

6262.
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1.2. MONOIDS

For each idempotent e of a monoid M, the set eMe is a monoid contained in M. It is
easily seen that it is the largest monoid contained in M having e as a neutral element.

It is called the monoid localized at e.

An element 0 of a monoid M is a zero if 0 # 1 and for all m € M

If M contains a zero it is unique.

0m=m0=0.

Let M be a monoid. The set of (left and right) invertible elements of M is a group

called the group of units of M.

A cyclic monoid is a monoid with just one generator, that is,

M = {a" | n € N}

with a® = 1. If M is infinite, it is isomorphic to the additive monoid N of nonnegative
integers. If M is finite, the index of M is the smallest integer 7 > 0 such that there exists

an integer r > 1 with

a

i+

=a'. (1.2)

.2.3
The smallest integer r such that (ﬁ)—mds is called the period of M. The pair composed
of index ¢ and period p determines a monoid having i + p elements,

_ 2 i1 i itp—1
M;,={1,a,a%,...,a" ",a",...,a"" P }.

ig0 01
Its multiplication is conveniently represented in Figure ii E "

Figure 1.1 The monoid M ,,.

The monoid M; , contains two idempotents (provided 7 > 1). Indeed, assume that
a’ = a®. Then either j = 0 or j > i and j and 2j have the same residue mod p, hence

j = 0 mod p. Conversely, if j > i and j = 0 mod p, thena’ = a

2j

Consequently, the unique idempotent e # 1 in M; ,, is e = a’, where j is the unique
integerin {i,i + 1,...,7 4 p — 1} which is a multiple of p.

Let M be a monoid. For z,y € M, we define

v ly={zeM|zz=y}

and

zy t={ze M|z =2y}

For subsets X,Y of M, this notation is extended to

Xy = U U x_ly

rzeX yeYy

Version 14 janvier 2009

and

Xy-l= U U zy L.

rzeX yeY
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4 1. PRELIMINARIES

The set X 1Y is called a left residual of Y. The following identities hold for subsets
XY, Z of M:

XY lz=v1(x"'2) and X Yyzh=(x"y)z 1.

The notation X 'Y should not be confused with the product of the inverse of an el-
ement with anather in some group. There is a case where the confusion could arise,
in Chapter [[4, where a due “caveat” will be found.

Given a subset X of a monoid M, we define

F(X)=M1xM1
to be the set of factors of elements in X. We have
FX)={meM|JuveM:umveX}.
We sometimes use the notation F(X) to denote the complement of F(X) in M,
F(X)=M\F(X).

A relation m over a set () is a subset of ) x Q. The product of two relations m and n
over () is the relation mn defined by

(p,r) €mn <= Jq€Q: (p,q) € mand (q,r) €En.

The set P(Q x Q) of relations over a set () is a monoid for this product. Two remarkable
relations are the identity relation idg and the null relation, which is the empty subset of
@ x Q. The identity relation idg is the neutral element of B(Q x Q). The null relation
is a zero of this monoid.

A monoid of relations over some nonempty set () is a submonoid of the monoid PB(Q x
Q). A monoid M of relations over @ is said to be transitive if for all p, ¢ € @, there exists
m € M such that (p, q) € m.

1.3 Words

Let A be a set, which we call an alphabet. A word w on the alphabet A is a finite sequence
of elements of A
w=(ay,as,...,ay), a; €A.

The set of all words on the alphabet A is denoted by A* and is equipped with the
associative operation defined by the concatenation of two sequences

(al,ag, ce ,an)(bl,bg, . .,bm) = (al,ag, ce ,an,bl,bg,. .. ,bm) .
This operation is associative. This allows us to write
w = a1ag - an

instead of w = (a1, as,...,a,), by identifying each element a € A with the sequence
(a). An element a € A is called a letter. The empty sequence is called the empty word

J. Berstel, D. Perrin and C. Reutenauer Version 14 janvier 2009
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1.3. WORDS 5

and is denoted by 1 or €. It is the neutral element for concatenation. Thus the set A*
of words is equipped with the structure of a monoid. The monoid A* is called the free
monoid on A. The set of nonempty words on A is denoted by A™. We therefore have
AT = A*\ 1.

The length |w| of the word w = ajas...a, with a; € A is the number n of letters in
w. Clearly, [1| = 0. The function w — |w| is a morphism from A* onto the additive
monoid N. For n > 0, we use the notation

A = {we A | |w| <n -1}

and also
Al = {w e A" | |w| < n}.

In particular, A) = () and A% = {1}.
For a subset B of A, we denote by |w|p the number of letters of w which are in B.

Thus
w| = |w]q.

acA
For a word w € A*, the set

alph(w) = {a € A | |w|, > 0}

is the set of all letters occurring at least once in w. For a subset X of A*, we set

alph(X) = | J alph(x).

reX

A word w € A* is a factor of a word x € A* if there exist u,v € A* such that x = wwv.
The relation is a factor of is a partial order on A*. A factor w of z is proper if w # x.

A word w € A* is a prefix of a word x € A* if there is a word v € A* such that
x = wu. The factor w is called proper if w # x. The relation is a prefix of is again a
partial order on A* called the prefix order. We write w < x when w is a prefix of =
and w < x whenever w < z and w # z. This order has the following fundamental
property. If, for some z,

w < x, w <z,

then w and w' are comparable, thatis, w < w’ or w’ < w. In other words, if wu = w'v/,
then either there exists s € A* such that w = w’s (and also su = u') or there exists
t € A* such that w’ = wt (and then u = tu’).

In an entirely symmetric manner, we define a suffix w of a word xz by x = vw for
some v € A*. Aset P C A" is called prefix-closed if it contains the prefixes of its
elements: uv € P = u € P. A suffix-closed set is defined symmetrically.

Consider a totally ordered alphabet A. The lexicographic or alphabetic order on A* is
defined by setting u < v if u is a proper prefix of v, or if u = ras, v = rbt, a < b for
a,b € Aandr,s,t € A*. The lexicographic order has the property

U<V wu < wu.

for any w,v,w € A*. Similarly, the radix order on A* is defined by setting u < v if
lu] < |v| orif |u| = |v] and u < v in the lexicographic order.
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6 1. PRELIMINARIES

The reversal w of a word w = ajas - - - a,, with a; € A, is the word
W= Ay - A2a7 .
The notations w and w~are equivalent. Note that for all u,v € A%,
(uv)™ =04

The reversal X of aset X C A*istheset X = {i | = € X}.
A factorization of a word w € A* is a sequence {uy, us, ..., u,} of n > 0 words in A*
such that
w=Uuyug...Un .

For a subset X of A*, we denote by X* the submonoid generated by X,
X" ={x1z9--xp|n>0,2;, € X}.
Similarly, we denote by X the subsemigroup generated by X,

Xt ={z120-- 2 | n>1,2, € X}.

We have
x+ = X*\1 if1¢ X,
X otherwise.
By definition, each word w in X* admits at least one factorization (z1,x2,...,zy)

whose elements are all in X. Such a factorization is called an X —factorizatz'onﬁ. &82

frequently use the pictorial representation of an X-factorization given in Figure [[2-

Lo x2 Tn

w

Figure 1.2 An X-factorization of w.

A word z € A* is called primitive if it is not a power of another word. Thus z is
primitive if and only if x = y" with n > 0 implies x = y. Observe that the empty word
is not primitive.

Two worcE g, ypre called conjugate if there exists words u, v such that z = wv,y = vu.
(See Figure [[.3) We frequently say that y is a conjugate of . Two conjugate words are
obtained from each other by a cyclic permutation. More precisely, let y be the function
from A* into itself defined by

7(1) =1 and vy(av) = va (1.3)

fora € A, v € A*. Itis clearly a bijection from A* onto itself. Two words x and y are
conjugate if and only if there exists an integer n > 0 such that

r=7"(y).
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Y

Figure 1.3 Two conjugate words = and y. fig0_03

3

©

s This easily implies that the conjugacy relation is an equivalence relation. A conjugacy
7 class is a class of this equivalence relation. A conjugacy class is also called a necklace.
s The length of a necklace is the length of the words in the conjugacy class. A necklace
o is primitive if each word in the conjugacy class is primitive.

3

©

3

©

3

©

st0.3.1400| PROPOSITION 1.3.1 Each nonempty word is a power of a unique primitive word.

w1 Proof. Let z € AT and § be the restriction of the function ~ defined by (ﬁ)%%fhe
w2 conjugacy class of z. Then 6¥ = 1 if and only if = is a power of a word of length
a3 dividing k.

404 Let p be the order of 6, that is, the gcd of the integers & such that o = 1. Since 67 =1,
a5 there exists a word 7 of length p such that x = r© with e > 1. The word 7 is primitive,
a6 otherwise there would be a word s of length ¢ dividing p such that » € s*, which in
a7 turn implies that x € s*, contrary to the definition of p. This proves the existence of
a8 the primitive word. To show uniqueness, consider a word ¢t € A* such that x € t* and
o let k = |t|. Since 6 = 1, the integer k is a multiple of p. Consequently ¢ € 7*. Thus, if ¢
o is primitive, we have ¢t = r. ]

4

o

4

g

s Letx € AT. The unique primitive word r such that z = r™ for some integer n is

sz called the root of x. The integer n is the exponent of x.

g

PROPOSITION 1.3.2 Two nonempty conjugate words have the same exponent and their roots

a4 are conjugate.

sy

Proof. Let z,y € AT be two conjugate words, and let i be an integer such that y = v(z).
Set r and s be the roots of x and y respectively and let n be the exponent of z. Then

4

g

s This shows that 7'(r) € s*. Interchanging the roles of x and y, we have 7/ (s) € r*. It
s follows that v'(r) = s and 77(s) = 7. Thus r and s are conjugate and consequently x
and y have the same exponent. n

4

s

4

g
3

st0.3.3 PROPOSITION 1.3.3 All words in a conjugacy class have the same exponent. If C is a conju-
jugacy p ]
gacy class of words of length n with exponent e, then

Card(C) =n/e.
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8 1. PRELIMINARIES

n 1 2 3 4 5 6 7 8 9 10 11 12
2 2 1 2 3 6 9 18 30 56 99 186 335
6,(3) 3 3 8 18 48 116 312 810

L(4) 4 6 20 60 204 670

6,(5) 5 10 40 150 624

Table 1.1 The number ¢, (k) of primitive conjugacy classes over a k-letter al-
phabet.

Proof. Let x € A™ and C be its conjugacy class. Let  be the restriction of v to C and p
be the order of . The root of z is the word r of length p such that = r¢. Thus n = pe.
Now C = {z,6(x)...,0P"1(x)}. These elements are distinct since p is the order of 4.
Thus Card(C) = p. .

We now compute the number of conjugacy classes of words of given length over
a finite alphabet. Let A be an alphabet with k letters. For all n > 1, the number
of conjugacy classes of primitive words in A* of length n is denoted by ¢, (k). The
notation is justified by the fact that this number depends only on & % not on A.

The first values of this function, for £ = 2, 3, 4, are given in Table %lﬁearly lh(1) =
lifn =1, and ¢,(1) = 0 otherwise. Now forn > 1

KM= dilg(k), (1.4)
d

where d runs over the divisors of n. Indeed, every word of length n belongs to exactly
one conjugacy class of words of length n. Each class has d = n/e elements, where e is
the exponent of its words. Since there are as many classes whose words have exponent
n/e as there are classes of primitive words of length d = n/e, the formula follows.

We can obtain an explicit expression for the numbers ¢, (k) by using the classical
technique of Mobius inversion which we now recall.

The Mobius function is the function 4 : N\ 0 — N defined by p(1) = 1 and

(n) {(—1)i if n is the product of ¢ distinct prime numbers,
p(n) =

0 otherwise.

PROPOSITION 1.3.4 (Mobius inversion formula) Let o, 3 be two functions from N\ 0 into
N. Then

a()=3"Bd)  (n>1) (15)

if and only if
B(n) = _u(daln/d)  (n>1). (1.6)
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Proof. Let set S be the set of functions from N \ 0 into N. Define a product on S by
setting, for f,g € S
frgn)=>Y" f(d

n=de

a2 Itis easily verified that S is a commutative monoid for this product. Its neutral element
a3 is the function I taking the value 1 for n = 1 and 0 elsewhere.
Let . € S be the constant function with value 1. Let us verify that

v =1. (1.7)

Indeed ¢ * u(1) = 1; for n > 2, let n = pf'ph2 ... pkm be the prime decomposition of 7.
If d divides n, then p(d) # 0 if and only if

d= p1 p2 . .pﬁ?
with all 4; = 0 or 1. Then pu(d) = (1) with ¢ = Y7, ¢;. It follows that

== (s) o

din

132 Now let a, 3 € S. Then For%§ % ii lgi 1s equivalent to o = ¢ * 3 and Formula (ii (éi

a5 equivalent to 8 = p * a. By (| ese two formulas are equlvalent

PROPOSITION 1.3.5 The number of conjugacy classes of primitive words of length n over an

alphabet with k letters is
1 d
= 5 uln/d)h

din
. . 32 .
a6 Proof. This is immediate from Formula ( y Mobius inversion. "

A word w € At is called unbordered if no proper nonempty prefix of w is a suffix of
w. In other words, w is unbordered if and only if w € uA™ N ATu implies u = 1. If w
is unbordered, then

wA* N A*w = wA*wUw.

a7 The following property holds.

PROPOSITION 1.3.6 Let A be an alphabet with at least two letters. For each word u € AT,
a0 there exists v € A* such that wv is unbordered.

mo Proof. Let a be the first letter of u, and let b € A\ a. Let us verify that the word
w1 w = uab"l is unbordered. A nonempty prefix ¢ of w starts with the letter a. It cannot
w2 be a suffix of w unless |t| > |u|. But then we have t = sab"l for some s € A*, and also
ws t=uabl®. Thus |s| = |u|, hence t = w. .

Let A be an alphabet. The free group A® on A is defined as follows: Let A be an
alphabet in bijection with A and disjoint from A. Denote by a — a the bijection from
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10 1. PRELIMINARIES

A onto A. This notation is extended by setting, foralla € AU A, @ = a. Let § be the
symmetric relation defined for u,v € (AU A)* and a € AU A by

uaav = uv mod 6 .

Let p be the reflexive and transitive closure of ¢. Then p is a congruence. The quotient
monoid A® = (AU A)*/pis a group. Indeed, foralla € AU 4,

aa =1mod p.

Thus the images of the generators are invertible in A®. This shows that all elements in
A© are invertible.

Let A be an alphabet. The free commutative monoid A® on A is the quotient of A* by
the congruence generated by the pairs (ab, ba) for a,b € A, a # b. If A = {a1,...,a},
then the monoid A® can be identified with the additive monoid N* through the map
artay? - apt — (ng,na, ... ng).

We denote by a(w) the commutative image of a word w € A*. It is the element of

A® defined by
a(w) = H alvla

acA

Observe that « is a monoid morphism from A* onto A%.

1.4 Automata

Let A be an alphabet. An automaton over A is composed of a set ) (the set of states), a
subset I of () (the initial states), a subset 1" of () (the terminal or final states), and a set

ECc@QxAxQ
called the set of edges. The automaton is denoted by
A=(Q,1,T).

The automaton is finite when the set () is finite.
A path in the automaton A is a sequence ¢ = (fi, fa, ..., fn) of consecutive edges

fi = (G as, Giv1), 1<i<mn.

The integer n is called the length of the path c. The word w = ajasz - - a, is the label
of the path c. The state ¢; is the origin of ¢, and the state g, the end of c. A useful
notation is

w
C:q1 — qni+1-
By convention, there is, for each state ¢ € (), a path of length 0 from ¢ to ¢. Its label is
the empty word.

A path c: i — tissuccessful if i € I and t € T. The set recognized by A, denoted by
L(A), is defined as the set of labels of successful paths.

J. Berstel, D. Perrin and C. Reutenauer Version 14 janvier 2009
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1.4. AUTOMATA 11

A state ¢ € Q is accessible (resp. coaccessible) if there exists a path ¢ : i — ¢ with
i € I (resp. apathc: ¢ — t witht € T). An automaton is trim if each state is both
accessible and coaccessible. Let P be the set of accessible and coaccessible states, and
let A° = (P,IN P, TNP). Then it is easy to see that A" is trim and L(A) = L(A°). The
automaton A is the trim part of A.

An automaton can be viewed as a labeled multigraph equipped with two distin-
guished subset of vertices, the initial and the terminal states. The multigraph having
@ as set of vertices, and E as set of edges, is called the underlying graph of the au-
tomaton. An automaton is called strongly connected if its underlying graph is strongly
connected, that is if for any pair (p, ¢) of states (vertices), there is a path from p to q.

Let A = (Q,I,T) be an automaton over A. For each word w, we denote by ¢ 4(w)
the relation over () defined by

(p.q) € pa(w) = p—q.

It follows from the definition that ¢ 4 is a morphism from A* into the monoid of re-
lations over (). The submonoid ¢ 4(A*) is called the transition monoid of the automa-
ton A.

Clearly, an automaton is strongly connected if and only if its transition monoid is
transitive.

An automaton A = (Q, I, T) is deterministic if Card(/) = 1 and if

(p,a,q),(pa,r) EE=q=r.

Thus for each p € Q and a € A, there is at most one state ¢ in @ such that p % ¢. For
p € Q,and a € A, define

q if (p,a,q) € E,
pra= )
() otherwise.

The partial function from @ x A into ) defined in this way is extended to words by
settingp-1 =pforallp € Q,and, forw € A*and a € A,

p-wa=(p-w)-a.
It follows easily that for words u, v,
DUV =P -U-V. (1.8)

This function is called the transition function or next-state function of A. With this no-
tation, we have with I = {i},

LA) ={we A" |i-weT}.
An automaton is complete if for all p € @), a € A, there exists at least one ¢ € @) such

that p — gq.

PROPOSITION 1.4.1 For each automaton A, there exists a complete deterministic automaton
B such that
L(A) = L(B).

If Ais finite, then BB can be chosen to be finite.
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12 1. PRELIMINARIES

Figure 1.4 (a) A nondeterministic automaton recognizing the set of words X =
{a,b}*aba, and (b) a deterministic automaton recognizing this set.
Proof. Set A = (Q,I,T). Define B = (R, u, V') by setting R = PB(Q), u =1,
V={ScQ|SNT #0}.
Define the transition function of B, for S € R, a € Aby
S-a={qgeQ|IscS:s5s - q}.

The automaton B is complete and deterministic. It is easily seen that L(.A) = L(B).

. ig0 3bis I .
EXAMPLE 1.4.2 Figure ﬁmon the left, a nondeterministic automaton recogniz-
ing all words over A = {a, b} having the suffix aba. The deterministic automgtop,on
the right is obtained by the construction given in the proof of Proposition [[41]
happens that both automata have the same number of states.

Let A = (Q,4,T) be a deterministic automaton. For each ¢q € @), let
Ly={weA"|q-weT}.

Two states p, ¢ € Q are called inseparable if L, = L,, and separable otherwise. A deter-
ministic automaton is reduced if two distinct states are always separable.

Let X be a subset of A*. We define a special automaton A(X) in the following
way. The states of A(X) are the nonempty sets =1 X for u € A*. The initial state is
X = 171X, and the final states are those containing the empty word. The transition
function is defined for a state Y = u~1 X and a letter a € A by

Y-a=a"'Y.
Observe that this defines a partial function. We have
LAX))=X.
An easy induction shows that X - w = w1 X for w € A*. Consequently
weLAX)eleX welcw ' XesweX.
The automaton A(X) is reduced. Indeed, for Y = u~1X,

Ly ={ve A" |Y - veT}={ve A" |we X}.
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1.4. AUTOMATA 13

Thus Ly =Y.
The automaton A(X) is called the minimal automaton of X. This terminology is jus-
tified by the following proposition.

PROPOSITION 1.4.3 Let A = (Q,4,T) be a trim deterministic automaton and let X =
L(A). Let A(X) = (P,j,S) be the minimal automaton of X. The function ¢ from @ into P
defined by p(q) = L is surjective and satisfies p(i) = j, (T') = S and ¢(q - a) = ¢(q) - a.

Proof. Let ¢ € Q and let u € A* be such that i - © = ¢q. Then
Liy={weA |qgweT=u"'X.

Since A is trim, L, # (. This shows that L, € P. Thus ¢ is a function from @ into
P. Next, let us show that ¢ is surjective. Let u !X € P. Then u !X # (. Therefore
i-u # () and setting ¢ = i-u, we have L, = v~ X = ¢(g). Consequently ¢ is surjective.

Finally, for ¢ =i - u,onehas ¢(q¢- a) = Lyq = (ua) ' X = (v 1X)-a =L, - a. n

Assume furthermore that the automaton A in the proposition is reduced. Then the
function ¢ is a bijection, which identifies .4 with the minimal automaton. In this sense,
there exists just one reduced automaton recognizing a given set.

Let A = (Q,i,T) be a deterministic automaton. An equivalence relation p on the set
Q is a congruence if for all states p, ¢ and for all letters q, if p = ¢ mod p and p - a and
q - a are defined, then p - a = ¢ - a mod p.

The quotient automaton of A by the congruence p, denoted A/p, has as states the
classes of p, its initial state is the class of the initial state of 4, its final states are the
classes of final states of 4. The transition function is defined as follows. If ¢ is a state
of A/p and a is a letter, then ¢ - a is defined if there is a state p in the class ¢ such that
p-ais defined, and in this case ¢ - a is the class of the state p - a. The definition is sound
because p is a congruence.

For example, the equivalence on the states of a deterministic automaton A defined
by p = ¢ if p and ¢ are inseparable is a congruence. If the automaton is trim, the
quotient is the minimal automaton of L(.A).

Let A = (Q,4,T) be a deterministic automaton. Consider the set F of partial func-
tions from @ into ). These functions are written on the right: if ¢ € Q@ and m € F,
then the image of ¢ by m is denoted by ¢gm. Composition is defined by

q(mn) = (gm)n.

Thus F has a monoid structure.
Let ¢ be the function which to a word w € A* associates the partial function from
into ) defined by

qp(w) =q-w.
The function ¢ is a morphism from A* into the monoid F. The submonoid ¢(A*)
of F is called the transition monoid of the automaton A. This is consistent with the

terminology for general automata since partial functions are a particular case of binary
relations.
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14 1. PRELIMINARIES

Observe that, setting X = L(.A), we have
pp(X) =X . (1.9)

Indeed w € ¢ 1p(X) if and only if p(w) € ¢(X) which is equivalent to ip(w) € T,
thatis tow € X.
A morphism ¢ from a monoid M onto a monoid N is said to recognize a subset X of

M if
pIp(X) = X
A subset X of M is recognizable if it is recognized by a morphism onto a finite monoid.

Let X be a subset of A*. For w € A*, a pair (u,v) of words such that uwv € X is a
context of w in X. We denote by I'(w) the set of contexts of w, defined by

INw) = {(u,v) € A" x A" |uwwv € X}.
The syntactic congruence of X is the equivalence relation ~x on A* defined by
w~xw = T'(w)=TW).

It is easily verified that ~ x is a congruence. The quotient of A* by ~ x is, by definition,
the syntactic monoid of X. We denote it by M(X), and we denote by ¢ x the canonical
morphism from A* onto M(X). Note that ¢ x recognizes X.

PROPOSITION 1.4.4 Let X be a subset of A*, and let ¢ : A* — M be a surjective morphism.
If p recognizes X, then there exists a morphism 1 from M onto the syntactic monoid M(X)
such that

px =top.
Proof. It suffices to show that

p(w) = p(u) = ex(w) = px(u'). (1.10)

Indeed, if (%lds, then for an element m € M, ¢(m) is defined as the unique
element in px (o~ (m)). To show (| , we consider (u,v) € I'(w). Then uwv € X.
Thus p(u)p(w)p(v) € (X). From p(w) = p(w'), it follows that p(u)p(w')p(v) €
©(X). Since ¢ recognizes X, this implies that uw’v € X, showing that (u,v) € T'(w’).

PROPOSITION 1.4.5 Let X be a subset of A*. The syntactic monoid of X is isomorphic to the
transition monoid of the minimal automaton A(X).

Proof. Let M be the transition monoid of th maton A(X) = (Q,i,T) and let
p: A* — e,the canonical morphism. By ( @;—F@ morphlsm ¢ recognizes X. By
Proposition , there exists a morphism 1 from M onto the syntactic monoid M (X)

such that px =1 0 ¢.
It suffices to show that ¢ is injective. For this, consider m, m’ € M such that ¢(m) =
P(m'). Let w,w’ € A* such that p(w) = m,p(w’) = m'. Then px(w) = px(w'). To
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1.4. AUTOMATA 15

prove that p(w) = ¢(w’), we consider a state p € @, and let u € A* be such that
p=u"'X. Then

po(w) =p-w= (vw) X = {ve A" | (u,v) e I'(w)}.

Since I'(w) = I'(w’), we have pp(w) = pp(w’). Thus p(w) = p(w'), thatis m = m/.

We now give a summary of properties which are specific to finite automata.

THEOREM 1.4.6 Let X C A*. The following conditions are equivalent.

(i) The set X is recognized by a finite automaton.
(i) The minimal automaton A(X) is finite.
(iii) The family of sets u=1 X, for u € A*, is finite.
(iv) The syntactic monoid M(X) is finite.

(v) The set X is recognizable.

1
Proof. (i) = (ii). Let A be a finite automaton reco%ﬁX . By Proposition %e

can assume that A is deterministic. By Proposition e minimal automaton A(X)
also is finite.

(ii) < (iii) is clear. 4

(ii) = (iv) holds by Proposition %ﬁd by the fact that the transition monoid of a
finite automaton is always finite.

(iv) = (v) is clear.

(v) = (i). Let ¢ : A* — M be a morphism onto a finite monoid M, and suppose that
¢ recognizes X. Let A = (M, 1, (X)) be the deterministic automaton with transition
function defined by m -a = my(a). Then1-w € ¢(X) if and only if p(w) € ¢(X), thus
if and only if w € X. Consequently L(A) = X. n

PROPOSITION 1.4.7 The family of recognizable subsets of A* is closed under all Boolean
operations: union, intersection, complement.

Proof. Let X,Y C A* be two recognizable subsets of A*. Let A = (P,7,5) and B =
(@, 4, T) be complete deterministic automata such that X = L(A),Y = L(B). Let

C=(PxQij)R)
be the complete deterministic automaton defined by
(pq)-a=(p-aq-a).

For R = (SxQ)U(PxT),wehave L(C) = XUY. For R = SxT,wehave L(C) = XNY.
Finally, for R= 5 x (Q\T),wehave L(C) = X \ Y. n

PROPOSITION 1.4.8 Let o : A* — B* be a morphism. If Y is a recognizable subset of B*,
then X = a~Y(Y) is a recognizable subset of A*.
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Proof. Since Y is recognizable, one has Y = ¢~ !(p(Y)), where ¢ is a morphism from
B* onto a finite monoid M. Defining the function ¢ from A* into M by ¢ = ¢ o« it
follows that X = v~ (y(X)). .

PROPOSITION 1.4.9 If X C A* is recognizable, then Y ~1 X is recognizable for any subset Y
of A*.
Proof. One has u™1 (Y 71X) = Uyey(yu)*lX . Since X is recognizable, there are finitely

many sets of the form (yu)~1X, and thus of the form «~}(Y~1X). This shows that
Y ~1X is recognizable. .

Consider now a slight generalization of the notion of automaton. An asynchronous
automaton on A is an automaton A = (Q, I, T'), the edges of which may be labeled by
either a letter or the empty word. Therefore the set of its edges satisfies

FCc@Qx(AUl) xQ.

The notions of a path or a successful path extend in a natural way so that the notion
of the set recognized by the automaton is clear.

PROPOSITION 1.4.10 For any finite asynchronous automaton A, there exists a finite au-
tomaton B such that L(A) = L(B).

Proof. Let A = (Q,I,T) be an asynchronous automaton. Let B be the automaton
obtained from A by replacing its edges by the triples (p, a,q) such that there exists a
path p -, ¢in A. We have

LA N AT = L(B) N AT

If INT # 0, both sets L(A) and L(B) contain the empty word and are therefore

equal. Othe g, the sets are equal up to the empty word and the result follows from
Proposition%?ﬁce the set {1} is recognizable. ]

The notion of an asynchronous automaton is useful to prove the following result.

PROPOSITION 1.4.11 If X C A* is recognizable, then X* is recognizable. If X, Y C A* are
recognizable, then XY is recognizable.

Proof. Let A = (Q,I,T) be a finite automaton recognizing X. Let E be the set of its
edges. Let B be the asynchronous automaton obtained from A by adding to E the
triples (¢,1,4), fort € T, i € I. Then L(B) = X . In fact, the inclusion X+ C L(B) is
clear. Conversely, let ¢ : i — j be a nonempty successful path in B. By the definition
of B, this path has the form

.owy 1 . ws 1 . wp
c:11 —t] — 19—ty — 1, — T,
with ¢ = 41,5 = t, and where no path ¢, : i %, 5 contains an edge labeled by the

empty word. Then wy,ws, ..., w, € X and therefore w € X . This proves that X is
recognizable and thus also X* = Xt U {1}.
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Now let A = (P,1,S5) and B = (Q, J,T) be two finite automata with sets of edges E
and F, respectively. Let X = L(A) and letY = L(B). One may assume that PNQ = 0.
LetC = (PUQ,1,T) be the asynchronous automaton with edges

EUFU(S x{1} xJ).
Then L(C) = XY as we may easily check. n

We shall now give another characterization of recognizable subsets of A*. Let M be
a monoid. The family of rational subsets of M is the smallest family R of subsets of M
such that

(i) any finite subset of M isin R,
(i) if X, Y e R,then X UY € R,and XY € R,
(ili) if X € R, then X* € R.
The third of these operations, namely X — X*, is called the star operation. Union,
product and star are called the rational operations.

PROPOSITION 1.4.12 Let o : A* — B* be a morphism. If X is a rational subset of A*, then
a(X) is a rational subset of B*.

Proof. The conclusion clearly holds if X is finite, and if it holds for two subsets X;
and X5 of A%, it holds for their union, their product, and the star. So it holds for every
rational subset of A*. n

THEOREM 1.4.13 (Kleene) Let A be a finite alphabet. A subset of A* is recognizable if and
only if it is rational.

Proof. Denote by Rec(A*) the family of recognizable subsets of A* and by Rat(A*) that
of rational subsets of A*. Let us first prove the inclusion Rat(A*) C Rec(A* dact,
inite subset X of A* is clearly recognizable. Moreover, Proposmons il %% and

%_how that the family Rec(A*) satisfies conditions (ii) and (iii) of the definition of
Rat(A*). This proves the inclusion.

To show that Rec(A*) C Rat(A*), let us consider a recognizable subset X of A*.
Let A = (Q,I,T) be a finite automaton recognizing X. Set @ = {1,2,...,n} and for
1<4,5<n,

XZ7]:{ZU€A*|’LL>]}

We have
x=JU X
i€l jeT
It is therefore enough to prove that each X ; is rational. For k£ € {0,1,...,n}, denote

by X;’ (k) the set of those w € A* such that there exists a path ¢ : i — j passing only

through states ¢ < k except perhaps for 4, j. In other words we have w € X Z(l;) if and
only if w = ajas - - - ap, with

.oal . az . . am -
Cil—1 —>12 — " lm—-1—]
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18 1. PRELIMINARIES

andi; <k,...,ip—1 < k. We have the formulas

X% caut, 1.11)
X" =X, (1.12)
k+1 k k k * k

X = xBoxB L x® 0<k<n). (113)

4.3 4.5
Since A is finite, X i(,(])') € Rat(A*) by (%’)._Then (i! . @4? Tjows by induction on & > 0

that Xi(’l;) € Rat(A*). Therefore X; ; € Rat(A4*) by (T

In the case of an infinite alphabet, recognizable sets need not to be rational: for
instance the alphabet itself is recognizable but not rational. However, any recognizable
set is the inverse image, by a length preserving morphism, of a recognizable set X over
a finite alphabet. Indeed, this morphism identifies letters with the same image in the
syntactic monoid of X. The common usage is to call regular a recognizable subset of
A*. The previous theorem states that regular sets and rational sets are the same for
finite alphabets.

COROLLARY 1.4.14 The family of reqular sets over finite alphabets is closed under Boolean
operations, rational operations, morphisms and inverse morphisms, and left and right quotient
by arbitrary sets. n

A description of a rational set by union, product and star is called a rational expression
or a regular expression. For instance, the set X of all words over {a,b} that contain
an even number of oecpirrences of the letter a has the rational expression X = bu
ab*a)*. Equations (%ﬁovide an effective procedure to compute a rational
expression for the set recognized by some finite automaton.

1
EXAMPLE %—(ﬁmtinued) The set X of words with suffix g 4, qye tébg alphabet A =
{a,b} has the regular expression 4*abg,. The equations ( = , applied to the
iE {5, lead T

automaton on the right of Figure or the same set of words to the regular
expression b*a(a U b(ab)*a U b(ab)*aa)*b(ab)*a.

1.5 Transducers

A transducer T = (Q,I,T) over an input alphabet A and an output alphabet B is
composed of a set () of states, together with two distinguished subsets I and T of
@ called the sets of initial and terminal states, and a set E of edges which are tuples
(p,u,v,q) where p and q are states, u is a word over A and v is a word over B. An edge

is also denoted by p uly q. A transducer is finite if its set of states is finite.
As in automata, a path in a transducer 7 is a sequence ¢ = (f1, fo, ..., fn) of consec-

utive edges
fi = (gis wi, vi, git1), I<i<mn.

The integer n is called the length of the path c. The word w = ujus - - - uy, is the input
label of the path c and z = vjvs - - - vy, is its output label. The state p = ¢ is the origin of
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1.6. SEMIRINGS AND MATRICES 19

¢, and the state ¢ = ¢,,11 the end of c. A useful notationis c: p iz q. A path ¢ 2ty tis

successful if i is an initial state and ¢ is a terminal state.

A transducer 7 defines a binary relation between words on the two alphabets as
follows. A pair (z,y) is in the relation if it is the label of a successful path. This is
called the relation realized by 7. It can be viewed as a multi-valued mapping from
the input words into the output words, and also as a multi-valued mapping from the
output words into the input words.

In the sequel, we consider transducers called literal, which by definition means that
each input label is a single letter.

A transducer is input-simple if for any pair of edges (p,u, v, q), (p,v’, v, q) with the
same origin and the same end, u = «’ implies v = v'. This guarantees that when the
output labels are erased, there are no multiple edges.

A literal transducer which is input-simple defines naturally an automaton over its
input alphabet, called its input automaton, obtained by forgetting the output labels.

1/0 0[0

g 8 e

11
Figure 1.5 A transducer that adds 1 to a number, given by its binary expansion,
with bit of highest weight on the right.

EXAMPLE 1.5.1 The transducer given in Figure %‘%two final states 1 and 2. The
only successful paths from 0 to 2 have the labels (1”,0"1), and the successful paths
from 0 to 1 have the labels (1"0w, 0"1w) for some integer n > 0 and some word w.
Thus the transducer transforms the binary representation of a positive integer N into
the binary representation of N + 1. This transducer is literal and input-simple.

1.6 Semirings and matrices

A semiring K is a set equipped with two operations denoted + and - satisfying the
following axioms:
(i) The set K is a commutative monoid for + with a neutral element denoted by 0.
(ii) The set K is a monoid for multiplication with a neutral element denoted by 1.

(iii) Multiplication is distributive on addition.

(iv) Forallz € K,0-x=2-0=0.

Clearly, any ring with unit is a semiring. Other examples of semirings are as follows.
The set N of natural integers is a semiring and so is the set R, of nonnegative real
numbers.

The Boolean semiring B is composed of two elements 0 and 1. The axioms imply

0+0=0,0+1=1+0=1,
0:-1=1-0=0-0=0.
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The semiring B is specified by
1+1=1.

1. PRELIMINARIES

The other possibility for addition is 1 4+ 1 = 0, and it defines the field Z/27Z.
More generally, for any integer d > 0, consider the set B(d) = {0,1,...,d + 1}. It

becomes a semiring for integer addition and multiplication

defined, for i,j € B(d),

respectively by min(i + j,d + 1) and min(ij, d + 1). In particular, B(0) = B.
For any monoid M, the set B(M) is a semiring for the operations of union and set

product.

A semiring K is called ordered if it is given with a partial order < satisfying the

following properties:

(i) 0is the smallest element of K;
(ii) the following implications hold:

r<y=c+z2<y+z,
r<y=2z2<yz, zrl2z2y.

The semirings B, N, R, are ordered by the usual ordering

Ly &< rx=y+=z.

An ordered semiring is said to be complete if any subset X of K admits a least upper

bound in K. It is the unique element k£ of K such that
() re X =x<k,
(i) ifx < K forallz € X, then k < k.
We write k = sup(X) or k = sup{z | € X} or k = sup,,

x(x). The semiring B is

complete. The semirings N, R are not complete, and may be completed as follows.

For K =Nor K =R, we set
K=KUoo,

where oo ¢ K. The operations of K are extended to K by setting for x € K,

(i) z+oc0o=00+2x =00,

(ii)) if x #£ 0, thenz 00 = 0z = 0,
iii) ccoo =00, 0o =000=0.
(iii)

Extending the order of K to K by z < oo for all z € K, the set K becomes a totally
ordered semiring. It is a complete semiring because any subset has an upper bound

and therefore also a least upper bound. We define
N:NUOO, RJr:RJrUOO

to be the complete semirings obtained by applying this cons

truction to N and R re-

spectively. If K is a complete semiring, the sum of an infinite family (z;);cs, of elements

of K is defined by

ZZL‘Z' = sup{ij | J C I,innite}

il jeJ
In the case of the semiring R, this gives the usual notipn o
family (z;);cs of elements in R is summable if the sum (

J. Berstel, D. Perrin and C. Reutenauer
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1.7. FORMAL SERIES 21

In particular, for a sequence (z,),>0 of elements of a complete semiring, we have

an = sup{z J:Z} , (1.15)

n>0 n20 iy

since any finite subset of N is contained in some interval {0, 1,...,n}. Moreover, if
I = Ujej I; is a partition of I, then

S = Z(Z x) . (1.16)

il jeJ iel;

Let P, @ be two sets and let K be a semiring. A P x Q-matrix with coefficients in K
is a mapping
m:PxQ— K.

We denote indistinctly by
(p,m, q) or Mp.q

the value of m on (p, ¢) € P x Q. We also say that m is a K-relation between P and Q.
If P = @, we say that it is a K-relation over (). The set of all K-relations between P
and @ is denoted by K@,

Let m € KP*? be a K-relation between P and Q). For p € P, the row of index p of m
is denoted by m,,,. It is the element of K% defined by

(Mps)g = Mypg -

Similarly, the column of index g of m is denoted by m.,. It is an element of K*. Let
P,Q, R be three sets and let K be a complete semiring. For m € K PxQandn € KO*E
the product mn is defined as the following element of K©*%. Its value on (p,7) € PxR

is
(mn)p,r = E :mp,q”qﬂ“-
q€Q

When P = Q = R, we thus obtain an associative multiplication which turns K@%
into a monoid. Its identity is denoted idg or 1.

A monoid of K-relations over Q is a submonoid of K@*%. It contains in particular the
identity idg.

1.7 Formal series

Let A be an alphabet and let K be a semiring. A formal series (or just series) over A with
coefficients in K is a mapping

c: A" = K.
The value of o on w € A* is denoted (o, w). We indifferently denote by K4" or K ((A))
the set of formal series over A. We denote by K (A) the set of formal series o € K ((A))
such that (o, w) = 0 for all but a finite number of w € A*. An element of K (A) is called

a polynomial. The degree of a polynomial p # 0, denoted deg(p), is the maximal length
of a word w such that (p,w) # 0. The degree of the null polynomial is —oc.
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A series 0 € K((A)) can be extended to a linear function from K (A) into K by setting,
forp € K(A),
(0,p) = Y _ (oyw)(p,w).
weA*

This definition makes sense because p is a polynomial. Let 0,7 € K((A)) and k € K.
We define the formal series 0 + 7, o7, and ko by

(c+7,w) = (o,w) + (1,w), (1.17)
(o, w) = Y (o,u)(1,v), (1.18)
(ko,w) = k(o,w) . (1.19)

7.2
In (%,_Eﬁe sum runs over the 1 + |w| pairs (u,v) such that w = wv. It is therefore a
finite sum. The set K ((A)) contains two special elements denoted 0 and 1 defined by
1 ifw=1,
0 otherwise.
sual, e =o0- (n times) and o° = 1. With the operations defined

%ﬁd ( e set K((A)) is a semiring. It may be verified that when K is

complete K ((A)) is also Complete
The support of a series 0 € K ((A)) is the set

supp(0) = {w € A° | (0, w) #0}.

The mapping o — supp(o) is an isomorphism from B((A)) onto P(A*).
A family (o;)ies of series is said to be locally finite if for all w € A*, the set {i € I |
(04, w) # 0} is finite. In this case, a series o denoted

U—g ;

(0,w) =0, (L,w) = {

can be defined by
(o,w) =) (03, w). (1.20)

i€l 74 N
This notation makes sense because in the sum (%_aﬂ but a finite number of terms
are different from 0. We easily check that for a locally finite family (o;);cr of elements
of K((A)) and any 7 in K((A)), we have

(; o) = ;m

Let 0 € K((A)) be a series. The constant term of o is the element (o, 1) of K. If ¢ has
zero constant term, then the family (¢"),,>¢ is locally finite, because the support of o™
does not contain words of length less than n. We denote by o* and by o the series

0*220”, 0+:ZJ”.

n>0 n>1

The series o* is called star of o. Note that 6* =1+ o+ and 6*0 = o0* = o ™.
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PROPOSITION 1.7.1 Let K be a ring with unit and let o € K{(A)) be a series such that
(0,1) = 0. Then 1 — o is invertible and

ocf=(1—-0)"". (1.21)

Proof. We have

l=0"~0t=0"~0*c=0"(1-0).

Symmetrically, 1 = (1 — 0)c*, hence the result. ]

For X C A*, we denote by X the characteristic series of X defined by

1 if X
(X.2) = ifx e %
0 otherwise.

We consider the characteristic series X of X as an element of N((A)). When X = {x}
we usually write = instead of z. In particular, since the family (x),¢x is locally finite,
we have X =) _ x. More generally, we have for any series 0 € K {(A)),

o= Z (o, w)w .
wEA*

PROPOSITION 1.7.2 Let X, Y C A*. Then

0 fwgXUY,
(X+Y,w)=<1 ifwe(X\Y)U(Y\X),
2 fweXnY.

In particular, with Z = X UY,

X+Y =72 ifandonlyif XNY =0. .

Given two sets X,Y C A*, the product XY is said to be unambiguous if any word
w € XY has only one factorization w = zy withz € X,y € Y.
PROPOSITION 1.7.3 Let X,Y C A*. Then
(XY, w) =Card{(z,y) € X XY |w=2ay}.

In particular, with Z = XY,
Z=XY

if and only if the product XY is unambiguous. n

The following proposition approaches very closely the main subject of this book. It
describes the coefficients of the star of a characteristic series.
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PROPOSITION 1.7.4 For X C A, we have
(X)",w) = Card{(z1,...,zp) | n >0,2; € X,w =219 Tp}. (1.22)

Proof. By the definition of (X)* we have

3
Applying Proposition %e obtain
(X)*, w) = Card{(x1,z2,...,2k) | 7 € X,w = 2y ... T} .

(.6
700 whence Formula @)7 n

EXAMPLE 1.7.5 The series A* and A*A* satisfy

A=1-A'=> w, (LA w) =1+
weA*

We now define the Hadamard product of two series 0,7 € K((A)) as the series 0 © 7
given by
(c ©T,w) = (o,w)(T,W).

This product is distributive over addition, thatisoc © (7 +7') = c © 7+ 0 © 7. If the
semiring K satisfies vy = 0=z =0 or y = 0, then

supp(o ® 7) = supp(o) N supp(7) .
In particular, for X, Y C A*and Z = X NY,
Z=X0Y.

701 Given two series o, 7 € Z({(A)) we write 0 < 7 when (o, w) < (7,w) for all w € A*.
72 Let A be an alphabet and let K be a semiring. We denote by K[[A]] the set of formal
703 power series in commutative variables in A with coefficients in K. It is the set of
704 mappings from the free commutative monoid A® into K.
The canonical morphism « from A* onto A% extends by linearity to a morphism
from K ((A)) onto K[[A]]. The image by « of a series 0 € K ((A)) is defined, for w € A%,
by
(a(0),w) = (a7 @) = 3 (0.0).

a(v)=w

705 The set of commutative polynomials is denoted by K[A].
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1.8 Power series

The power series in the variable ¢ associated to a sequence a,, of real numbers is the

formal sum
F) =" ant™.

n>0

Given a real number r, the series is said to converge for the value r of ¢ if the sum
Y om0 anr™ is well-defined and finite. Otherwise, f(t) is said to diverge for t = r.
The radius of convergence of f(t) is infinite if f(¢) converges for all real numbers 7.
Otherwise, it is the nonnegative real number p such that f(¢) converges for 0 < r < p
and diverges for r > p. It can be shown that p = liminf |a,|'/". The series may
converge or diverge for ¢ = p.

For 0 < r < p, the series converges. This defines a function from the interval [0, p)
into the nonnegative reals. For example, > . ,t" defines on the interval [0,1) the
rational function t — 1/(1 — t). -

EXAMPLE 1.8.1 The series ) t"/n® has radius of convergence 1 for any positive real
a. It is known to diverge for t = 1 when a < 2 and to converge when a > 2.

Power series,as considered here, are a special case of formal series considered in
Section il :j, wZen the alphabet is a singleton. In particular, the usual operations of
sum, product and star hold also in this case.
Given a set X of words over an alphabet A, the generating series of X is the power
series
fx(t) =) Card(X nA™)t".

n>0

Since for all n > 0, one has Card(X N A™) < k", with k& = Card(A), it follows that
the radius of convergence of fx is at least 1/k. The sequence (uy),>0 where u, =
Card(X N A"™) is called the length distribution of the set X.

PROPOSITION 1.8.2 Let f(t) = > ant™ be a power series with nonnegative real coefficients,
and with finite radius of convergence p, and let g(t) : [0, p) — Ry be the function defined for
r € [0,p) by g(r) = > anr™. Then f(p) = lim,_,r<,g(r). In particular, both quantities
are simultaneously finite or infinite.

Proof. Suppose first that f(¢) converges for ¢ = p, and set s = f(p). Given ¢, there
exists an integer N such that sy = ag + a1p + -+ + anp" satisfies the inequality
s> sy >s5—¢/2. Setp(t) = ag+ait+ - -+ a,t". There exists a real r with r < p such
that sy > p(r) > sy — €/2. Forr < x < p,one has f(p) > f(z) = g(z) > g(r) > p(r) >
sy —€/2 > f(p) — e. This shows that g(x) tends to f(p) when z tends to p.

Next, if f(p) is infinite, for each M > 0 there exists an integer N such that sy = ag +
aip+---+anp” satisfies the inequality sy > 2M. Setagain p(t) = ag+ait+---+a,t".
There exists a real » with » < p such that p(r) > sy/2. For r < x < p, one has
f(x) = g(x) > g(r) > p(r) > sy/2 > M. This shows that g(x) tends to infinity when «
tends to p. "

Version 14 janvier 2009 J. Berstel, D. Perrin and C. Reutenauer



stO.star.3

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

).nonnegative

766

767

768

769

770

771
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Thus, for a power series f(t) = >, a,t" with nonegative coefficients and radius of
convergence p, we can denote, by the expression f(r), for 0 < r < p, indifferently the
sum ) a,r" and the value of the function defined by f for ¢t = r, with the property
that both values are simultaneously finite or infinite.

Note that this statement only holds because the a,, are nonnegative. Indeed, con-
sider for example f(t) = > (—1)"t". Here the radius of convergence is 1, and g(t) =
1/(1+t). We have g(1) = 1/2, although f(¢) diverges for ¢t = 1.

A power series f(t) = >, <, ant™ with real coefficients can be derivated formally.
The result is the series Y, ., na,t", denoted by f’(t). Let p be the radius of conver-
gence of f. Forr < p, f’ (r) is equal to the value at r of the derivative of the function
defined by f.

PROPOSITION 1.8.3 Let f(t) be a power series with nonnegative real coefficients. Let p be
the radius of convergence of f. Then f'(p) = >, 5o nanp™

ar.l
Proof. This results directly from Proposition il %2 n

The next proposition gives a method for computing the radius of convergence of the
star of a power series.

PROPOSITION 1.8.4 Let f(t) = >, ~qant" be a power series with nonnegative real coeffi-
cients and with constant term zero. Consider the power series

o10) = Ty = 10

which is the star of f(t), and denote by ps and p, the radius of convergence of f and g respec-
tively. Then py < py, and if p, < py, then py is the unique positive real number such that

f(pg) = 1.

Proof. The coefficients of g(t) are greater than or equal to those of f(t), so p, < py.
Assume now that p; < py. Then the series f(t) converges for r = p,. We use the fact
that f(t) defines a continuous function inside its interval of convergence.

Suppose first that f(r) < 1. Then there exists a real number s with < s < py such
that f(s) < 1. This implies that g(s) < oo, contradicting the fact that s > p,.

Suppose next that f(r) > 1. There exists a real number s with 0 < s < r such that
f(s) > 1. This implies that g(s) = oo, contradicting the fact that s < p,.

Thus f(r) = 1. .

1.9 Nonnegative matrices

We now consider properties of nonnegative matrices. Let ) be a set of indices. For
two Q-vectors v, w with real coordinates, one writes v < w if v, < w, for all ¢ € ) and
v < wifvy < w,forall g € Q. A vector v is said to be nonnegative (resp. positive) if v > 0
(resp. v > 0). Here and below, we denote by 0 the null vector or the null matrix of
appropriate size. In the same way, for two ) x Q-matrices M, N with real coefficients,
one writes M < N when M,,, < N, , forall p,q € Q and M < N when M, , < N,
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1.9. NONNEGATIVE MATRICES 27

forall p,q € Q. The Q x Q-matrix M is said to be nonnegative (resp. positive) it M > 0
(resp. M > 0). We shall use often the elementary fact that if A/ > 0 and v > 0 with
v # 0, then Mv > 0.

A complex number ) is an eigenvalue of M if the matrix A\l — M is not invertible. In
this case there exist vectors v, w # 0 such that Mv = \v and wM = Aw. The vectors
w, r are left and right eigenvectors corresponding to the eigenvalue \. The spectral radius
of a matrix is the maximal modulus of its eigenvalues.

A nonnegative matrix M is said to be stochastic if the sum of its elements on each
row is 1. Equivalently M is stochastic if the vector v with all components equal to 1 is
a (right) eigenvector for the eigenvalue 1.

PROPOSITION 1.9.1 The spectral radius of a stochastic matrix is equal to 1.

Proof. Let A be an eigenvalue of the n x n stochastic matrix M. Let v be a corresponding
right eigenvector. Dividing all components of v by the maximum of their modulus, we
may assume that |v;| < 1for1 < j <nand |v;| = 1 for somei. Then Av; = > | M;;v

implies [A| < 377y Mijloj| < X250, Mij = 1. -

The adjacency matrix of a finite deterministic automaton A over the alphabet A with
set of states () is the () x Q-matrix M with coefficients

My,=Card{ac A|p-a=q}.

Let £ = Card A. The matrix M /k is stochastic. A corresponding right eigenvector
is the vector with all components equal to 1. It is also an eigenvector of M for the
eigenvalue k. By Propositionn%,—mectral radius of M /k is 1, and therefore the
spectral radius of M is k.

If M is the adjacency matrix of a graph G, a useful way to think about an eigenvector
vof M is that it assigns a weight v, to each vertex ¢q. The equality Mv = Av corresponds
to the condition that for each vertex p, if we add up the weights of the ends of all edges
starting at p, the sum is A times the weight of p.

A nonnegative matrix M is said to be irreducible if for all indices p, ¢, there is an
integer k such that M k‘ > 0, where M* denotes the k-th power of M. Otherwise, it
is called reducible. 1t i 1s easy to verify that M is irreducible if and only if ( + M )™ > 0
where n is the dimension of M. It is also easy to prove that M is reducible if there is a
reordering of the indices such that M is block triangular, that is of the form

0w (1.23)

M= [U V}
with U, W of dimension > 0.
The following result is part of a theorem known as the Perron-Frobenius theorem.

It says in particular that the spectral radius of a nonnegative matrix is an eigenvalue.

THEOREM 1.9.2 (Perron-Frobenius) Any nonnegative matrix M has a real eigenvalue pyy
such that |\| < pas for any eigenvalue X\ of M, and there corresponds to pyr a nonnegative
eigenvector v. If M is irreducible, there corresponds to pys a positive eigenvector v.
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Observe that the same result holds both for right and for left eigenvectors.

Before the proof, we state a result of independent interest which will be used in
the proof. A sequence (M,,),>o of real m x m-matrices is said to converge if, setting
M, = (az(fq) ), each of the real sequences (az(fq) Jn>0 converges. A series ) M, of matrices
converges if the sequence (Sy,)m>0 defined by S,,, = >, -, M,, converges.
PROPOSITION 1.9.3 Let M be an m x m-matrix with real coefficients. If the spectral radius
p of M satisfies p < 1, then ), M" converges.

Proof. Set N(z) = I — Mz, where I is the identity matrix and z is a variable. The
polynomial N (z) can be considered both as a polynomial with coefficients in the ring
of m x m-matrices or as an m x m-matrix with coefficients in the ring of real polyno-
mials in the variable z. The polynomial N(z) is invertible in both structures, and its
inverse N(z)~! = (I — Mz)™! can in turn be viewed as a power series with coefficients
in the ring of m x m-matrices or as a matrix whose coefficients are rational fractions
in the variable 2. The radius of convergence of N(z)~!, viewed as a power series in z
with matrix coefficients, is equal to the minimum of the radius of convergence of the
elements of N(z)~!, viewed as a matrix of power series expansions of rational frac-
tions. All these rational fractions have denominator det(I — Mz). Thus the radius of
convergence of the expansion of each rational fraction is at least 1/p. Consequently
the radius of convergence of N(z)~! is at least 1/p. .

-PerronFrobenius .
Proof of Theorem || l§§ Let us first show that one may reduce to the case where M is
irreducible. ]ndecadét}élM is reducible, we may consider a triangular decomposition as

in Equation f@_a%ov—ee.gpplymg by induction the theorem to U and W, we obtain
nonnegative eigenvectors u and v for the eigenvalues prr and py of U and V. We prove
that max(py, py) is an eigenvalue of M with some nonnegative eigenvector.

If p > pv, then py is an eigenvalue of M with the corresponding eigenvector [f]. If

pu < pv, then we show that py is an eigenvalue of M for the eigenvector [Zﬂ , where

u = (Z U”p(,")v =T -U/py) tw.

n>0

1
Since py < py, the series ), o U"p;"" converges in view of Proposition %ﬁd it
converges to a matrix with nonnegative coefficients because each U™ has nonnegative
coefficients. If follows that «’ has nonnegative coefficients. Moreover

Vv =pyv=py(I -U/py)u' = pyu - Uu',

showing that M [lﬂ = pv [ﬂ This shows that py; > max(py, pv). Conversely, if A is
an eigenvalue of M with corresponding eigenvector [], then A is an eigenvalue of W
if v # 0, and is an eigenvalue of U if v = 0. This proves that py; = max(py, py ).
We suppose from now on that M is irreducible. For any nonnegative (Q-vector v # 0,
let
ra(v) = min{(Mv);/v; | 1 <i<mn, v; #0}.
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1.9. NONNEGATIVE MATRICES 29

Thus )/ (v) is the largest real number  such that Mv > rv. One has 73 (Av) = rar(v)
for any real number A # 0. Moreover, the mapping v — 7/(v) is continuous on the
set of nonnegative nonzero vectors.

The set X of nonnegative vectors v such that |[v|| = 1 is compact. Define pys by
pym = max{ry(w) | w € X}. Since a continuous function on a compact set reaches its
maximum on this set, there is an = € X such that ry/(z) = par. Since ras(v) = rar(Av)
for \ # 0, we have py;y = max{ry(w) | w > 0,w # 0}.

We show that Mz = pjrz. By the definition of the function 77, we have Mx > pysa.
Sety = Mz — pprx. Theny > 0. Assume Mx # pyrx. Then y # 0. Since (I + M)™ > 0,
this implies that the vector (I + M )"y is positive. But

I+M)"y=UT+M)"(Mx—pyx)=M{I+M)"x—pp(I+M)"zv=Mz—pyz,

with z = (I + M)"x. This shows that M z > pysz, which implies that ra(z) > py, @
contradiction with the definition of p);. This shows that pj is an eigenvalue with a
nonnegative eigenvector.

Let us show that pys > |A| for each real or complex eigenvalue A of M. Indeed, let
v be an eigenvector corresponding to A. Then Mv = Av. Let |v| be the nonnegative
vector with coordinates |v;|. Then M|v| > |A||v| by the triangular inequality. By the
definition of the function r,, this implies ra/(|v|) > |A| and consequently pas > |A|.

We have already seen that there corresponds to pjs a nonnegative eigenvector x. Let
us now verify that z > 0. But this is easy since (I + M )"z = (1+ pys )"z, which implies
that (1 4 pas)"z > 0 and thus x > 0. .

S

EXAMPLE 1.9.4 Let M = E (1)} The eigenvalues of M are ¢ = 1+—2‘/5 and ¢’ = 1_2

which are the root of 22 — z — 1 = 0. There corresponds to ¢ the nonnegative left
eigenvector [p 1].

. -PerronFrgobenjus .
As an example of application of Theorem , we obtain the following result.

PROPOSITION 1.9.5 Each stochastic matrix has a nonnegative left eigenvector for the eigen-
value 1.

. . . astic S
Proof. Le] {% be a stpchastic matrix. By Proposition il t% I' its spectral radius is 1. By

Theorem ere exists a corresponding nonnegative left eigenvector. .

Recall that the adjacency matrix of a deterministic automaton over a k-letter alpha-
bet has radius of convergence k and, hgs a corresponding right eigenvector with all
-BarfonFrobenius ) )
components equal to 1. By Theorem [[.9.7], it has also a Ieft eigenvector with nonnega-
tive components corresponding to the eigenvalue k.
Let k£ be an integer. A k-approximate eigenvector of a nonnegative matrix M is, by

definition, a vector v # 0 with integer nonnegative components such that

Mv <kv.

Again, if one assumes that )M is the adjacency matrix of a graph G, then an approxi-
mate eigenvector of M assigns a nonnegative integer weight v, to each vertex ¢ and
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30 1. PRELIMINARIES

the vector inequality Mv < kv corresponds to the condition that for each vertex p, the
sum of the weights of the ends of all edges starting at p is at most k times the weight
of p. We will use the following result.

PROPOSITION 1.9.6 An irreducible nonnegative and integral matrix M with spectral radius
A admits a positive k-approximate eigenvector if and only if k > .

Proof. Suppose first that £ > X. Consider the matrix N = kI — M. Since k > )\, we have
det(N) > 0 and therefore N is invertible. Moreover, since N~! = (I + M /k+ M?/k? +
...)/k, and since M is irreducible, the matrix N~! is positive. Let v be a column of
N~1. We have Nv > 0 and thus Mv < kv. Any column of N~! is then a positive

k-approximate el.genvector of M. rronErobenius ‘ ‘
If k = ), there is by Theorem a positive vector v such that Mv = kv. Since A is

an integer, the coefficients of v can be chosen to be integers.
Let us finally prove that conversely, if M/ admits a positive k-approximate eigenvec-
. . 1 rronFrobeniu )
tor v, then £ > A. Consider the matrix N = { M. By Theorem , there is a positive
vector w such that Nw = w. We have Nv < (k/\)v, implying that N"v < (k/\)"v for
alln > 1. If A > k, the right-hand side tends to 0 as n — oo, thus N" tends to the zero

matrix, a contradiction with the fact that N"w = w with w > 0. n

EXAMPLE 1.9.7 Let M = [1 1} . The spectral radius of M is strictly less than 2 and a

10
2-approximate eigenvector is [ﬂ .

1.10 Weighted automata

Let A be an alphabet. With each automaton A = (Q, I, T) over A with set of edges F
is associated a function denoted by p 4

g A— NOXQ

defined by
1 if (p,a,q) € E,
0 otherwise.

(p, pala),q) = {

This function extends into a morphism, stil[llocr%g%oted 4, from A* into the monoid

N@*Q of N-relations over @ (see Section il :a) In particular, we have
pa(l) = Ig,

where I is the identity relation over @, and for u,v € A*

(p, pra(uv), @) = > (p, pa(w),r)(r, pa(v), q) -
req

The morphism 1.4 is called the representation associated with A. The correspondence
between 14 and the morphism ¢ 4 defined in Section |I zﬁ 1s given by:

(p,q) € pa(w) <= (p, pa(w),q) #0.
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PROPOSITION 1.10.1 Let A = (Q,1,T) be an automaton over A. For all p,q € Q and
s w € A", (p, pa(w),q) is the (possibly infinite) number of paths from p to q with label w. "

A path ¢ : i — tis called successful if i € I and t € T'. The behavior of the automaton
A= (Q,1,T) is the formal power series denoted |.A| and defined by

([ALw) = > (i pa(w).t). (1.24)

i€l teT

ss1  The set recognized by A is the support of | 4] Itisjust the set of all labels of successful
sz paths. Itis denoted by L(A), as in Section .4,

PROPOSITION 1.10.2 Let A = (Q,I,T) be an automaton over A. For all w € A*, (| A|, w)
sea 15 the (possibly infinite) number of successful paths labeled by w. n

A1
A more compact writing of Formula (%nsists in

(1AL w) = Ina(w)T. (1.25

sss Here, the element I € N¥ is considered as a row vector and 7' € M€ as a column
sss vector, both with coefficients 0 and 1.

a

Figure 1.6 The Fibonacci automaton.

ig4 01
EXAMPLE 1.10.3 Let A be the automaton given by Figure ﬁ,—vﬁfh I=T={1}. Its

behavior is the series
|A| = Z fnJrlan )

n>0

where f,, is the n-th Fibonacci number. These numbers are defined by fo = 0, fi = 1,
and

fn+1:fn+fnfla (nzl)

Forn > 1, we have

- £

PROPOSITION 1.10.4 Let A = (Q,I,T) be a finite automaton over A. For each integer d,
ses the set {w € A* | (JA|,w) = d} is reqular.

sso  Proof. Let M be the monoid of () x )-matrices over the semiring B(d). For each word
g0 w, let a(w) be the @ x Q-matrix over 5(d) obtained from p 4(w) by replacing each entry
sor  f14(W)pq by min(d+1, pa(w)p,q). Since such a replacement is a morphism from A onto
sz BB(d), the mapping « is a morphism from A* into M. The set {w € A* | (JA|,w) = d} is
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32 1. PRELIMINARIES

recognized by «; it is indeed the set of words w such that /a(w)T" (computed in B(d))
equals d. .

To each automaton A = (Q, I, T'), we associate an automaton denoted .A* and called
the star of the automaton .4 by a canonical construction consisting of the two following
steps. Let w ¢ @ be a new state, and let

B=(QUuw,ww) (1.26)
be the automaton with edges
F=EUIUTuUO,

where E is the set of edges of A, and

I'={(w,a,q)|Jiel:(iaq) cE}, (1.27)
T={(ga,w) |3t €T: (g0t € E}, (1.28)
O={(w,a,w)|Fiel,teT: (iat) € E}. (1.29)

By definition, the automaton A* is the trim part of .
The following terminology is convenient for automata of the form A = (Q,1,1)
having just one initial state which is also the unique final state.
A path
w
c:p—4¢q
is called simple if it is not the null path (that is w € A™) and if for any factorization

u v
C:pD—T7" —4(q

of the path c into two nonnull paths, we have r # 1.
Any path c from p to g either is the null path or is simple or decomposes in a unique
manner as

cip—1251 211551 g,
where each of these n + 2 paths is simple.
PROPOSITION 1.10.5 Let X C A*, and let A be an automaton such that |A| = X. Then
4| = (X)". (1.30)
.3
Proof. Since A* is the trim part of the automaton B defined by Formula (i%%ﬁf suffices
to show that |B| = | A|*.

Let S be the power series defined as follows: for all w € A%, (S, w) is the number of
simple paths from w to w labeled with w. By the preceding remarks, we have

B| = S

Thus it remains to prove that
S=X.
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Letw € A*. If w = 1, then
(‘971) :(le)zov

since a simple path is not null. If w = a € A, then (S,a) = 1lif and only if a € X,
according to Formula (il’éﬁi Assume now |w| > 2. Set w = aub with a,b € A and
u € A*. Bach simple path ¢ : w — w factorizes uniquely into

a u b
Ciw—p—q—w
for some p, g € Q). There exists at least one successful path
. a u b
,—p—q—1

in A. This path is unique because the behavior of A is a characteristic series. If there
is another simple path ¢ : w — w in B, then there is also another successful path
labeled w in .A4; this is impossible. Thus there is at most one simple path ¢ : w — w in
B and such a path exists if and only if w € X. Consequently, S = X, which was to be
proved. n

Figure 1.7 An automaton with behavior X, for X = {a, aa}.

EXAMPIE1.10.6 Let X = {a,a’}. Then X = |A| for the automaton given J'E ;igi
EEE th up

ure [[.7, with I = {1}, T = {3}. The automaton A* is the automaton of Figure
to a renaming of w. Consequently, for n > 0

Figure 1.8 An automaton with behavior X, for X = {aa, ba, baa, bb, bba}.

EXAMPLE 1.10,7 Let X = {aa, ba, baa,bb,bba}. We have X = |A]| for the automaton

908

909

A of Figure 4, with I = {1}, T = {4}. The corresponding automaton A* is given in
Figure ii EE‘
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34 1. PRELIMINARIES

Figure 1.9 An automaton recognizing X*, for X = {aa, ba, baa, bb, bba}.

We now extend the previous definitions to the more general case where the labels
of the edges of an automaton may be weighted. Let A be an alphabet and let K be
a semiring. A finite weighted automaton A = (Q,1,T) over the alphabet A and with
weights in K is given by a finite set () with two mappings I,7 : Q — K and by a
mapping

E:QxAxQ— K.

If E(p,a,q) = k # 0, then we say that (p, a, ¢) is an edge with label a« and weight k and
we write p ka, q. If c is the path

kia1 knan
p——mq — " —4pn-1 —(
then its label is * = a; - - - a,, and its weight is the product |c¢| = ki - - k. We write

¢ : p 5 g for denoting such a path. The behavior of A is the series denoted |.A| and
defined by

(A2) = > 1(p)lelT(q).
ep=q
Since for each z € A*, there are only finitely many paths with label z, the sum is well
defined. The behavior is also called the series recognized by the weighted automaton. A
series u is called K-rational if it is the behavior of a weighted automaton with weights
in the semiring K. We will be particularly interested in N-rational series.
There is an alternative form of the series recognized by a weighted automaton A =

(Q,1,T). Define a morphism p from A* into the multiplicative monoid of @ x Q-
matrices with coefficients in K by setting, for a € A,

a)pg = E(p;a,q) -
Then, for any x € A*, we have
(Al ) = Ip(@)T,

with I considered as a row vector and 7" considered as a column vector. The morphism
( is called the matrix representation of A.
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Figure 1.10 A weighted automaton over a single letter alphabet.

EXAMPLE 1.10.8 Any automaton can be considered as a weighted automaton with
weights in the Boolean semiring B, or in the semiring N. In the latter case, the behavior
is the number of successful paths.

EXAMPLE 1.10.9 The weighted automaton of Figure %Tas integer weights and a
one letter alphabet. For simplicity, the letter is not specified, and the weight of an
edge is not indicated if it is 1. The value of the behavior on the word of length n is n?.

Indeed, denote by w,, v, w, the sum of the weights of the paths of length n ending
in 3 and starting in 1, 2, 3 respectively. We have w,, = 1 for all n > 0. Next, the
form of the automaton shows that v, 1 = v, + wy, for n > 0, whence v,, = n. Finally

Upt1 = Uy + 20, + wy,, and thus u,, = n? for n > 0.

Let A = (Q,1,T) be a weighted automaton. When [ is a singleton, that is /(i) = 1
for some i € @, and I(q) = 0 for ¢ # i, we write i instead of /. The same convention
holds for T'.

A weighted automaton A = (Q, 4, t) is said to be trim if for each vertex ¢, there is a
path from ¢ to ¢ and a path from g to ¢. It is said to be normalized if no edge enters ¢, no
edge leaves ¢, and i # t.

PROPOSITION 1.10.10 Any N-rational series with zero constant term can be recognized by
a normalized weighted automaton.

Proof. Let A = (Q,I,T) be a weighted automaton recognizing a series with zero con-
stant term, with edge mapping E : @ x A x xQ — K. Leti and ¢ be two states not
in @, and define a weighted automaton B = (Q’,,t) with Q" = Q U {i,t} and edge
mapping F: Q' x A x Q' — K by

F(p,a,q) = E(p,a,q) forp,qe @,
F(i,a,q) =Y  I(p)E(p,a,q) forqgeQ,

peEQ

F(p,a,t) =Y E(p,a,q)T(q) forpeQ,
q€Q

F(i,a,t) = Y I(p)E(p,a,q)T(q).
P,q€Q
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The matrix representation v of B is related to the matrix representation 1 of A by

0 Ip(a) In(a)T
v(a) =10 pla) w@)T
0 0 0

where i and ¢ are reported as the first and the last index respectively. It is easily
checked that the same form holds for any word w € A%, and thus v(w);; = Tu(w)T.
This holds also for w = 1 because i # t and I;(w)T = 0 by assumption. This proves
that A and B recognize the same series. n

We now consider power series, that is series in one variable.

PROPOSITION 1.10.11 For any rational subset X of A*, the generating series fx(z) is N-
rational.

Proof. Let A be a deterministic finite automaton recognizing X, and let B be the
weighted automaton obtained by replacing all labels in .4 by the symbol z. Clearly
B recognizes the series ), -, Card(X N A")2". .

Given a series u(z) = >~ un2" with integer coefficients and with zero constant

term up = 0, we recall that u*(z) denotes the series defined by u*(z) = 1/(1 — u(z)).

PROPOSITION 1.10.12 Let u(z) = >_,,~ounz" be an N-rational series with zero constant
term. Let A = (Q,i,t) be a normalized weighted automaton recognizing u(z). Let Q = Q \ t
and let A = (Q,i,1) be the weighted automaton obtained by merging i and t. The behavior of
A is the series u*(z).

Proof. Recall that a path from i to i is simple if it does not go through ¢ inbetween. For
each n > 0, u, is the sum of the weights of the simple paths of length n from i to i
in A. Indeed, since A is normalized, to each simple path ¢ : i — ¢ in A corresponds a
unique path from i to ¢ in A, and conversely.

Next, for r > 1, let ul!” be the sum of the weights of the paths from i to i that go
exactly (r — 1) times through i inbetween. Set u((2) = 3°, -, w2 and u©(z) = 1.
The series u*)(z) = 3", -, u(2) is the behavior of A. -

Next, u("(z) = u(z)" for r > 0. Since u*(z) = 3,50 u(2)", we obtain u*(2) = u*)(2).

Observe that this proposition is related to Proposition %hieh can be used to
give an alternative proof. Indeed, if A = (Q, 7,t) is a normalized automaton, then, in
the automaton A%, state 7 is no longer accessible and state ¢ is no longer coaccessible.
Thus the trimmed automaton is identical with A.

EXAMPLE 1.1]&..1_36}& u(z) = z + 2%. The weighted automaton A with A given on the

left of Figure recognizes u with i = 1 and ¢ = 3. The weighted automaton A is
represented on the right.
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Figure 1.11 Weighted automata recognizing z + 2* and 1/(1 — 2 — 22).

The following statement relates weighted automata with weights in N with nonneg-
ative matrices. We extend the definition of adjacency matrix to weighted automata. For
a weighted automaton A = (Q, I, T), it is the @ x @ matrix M defined by

Mp7q = Z E(pa a, Q) )
acA

ss where E(p, a, q) is the weight of the edge (p, a, q).

RadiusSpectral 967‘ PROPOSITION 1.10.14 Let u(z) = >_, 5o un2" be an N-rational series recognized by a trim
ses weighted automaton and let M be the adjacency matrix of A. The radius of convergence of the
se0  series u(z) is the inverse of the maximal eigenvalue of M.

o0 Proof. Let A be the maxim igenvalue .of M, which exists and is positive by the
o711 Perron-Frobenius Theorem [[.9.2. Let p be the radius of convergence of the series u(z)
o2 and, for each p,q € Q, let p,, be the radius of convergence of the series u, ,(z) =
oy, Mp,z". Then 1/\ = minp,, since > -, M"z" converges for [2| < 1/A. Next,
4+ since A is trim, the series u) 4(2) converges whenever u(z) converges; thus p, , > p for
s allp,q € Q. On the other hand p > min p, 4 since u is a nonnegative linear combination

s of the series s, ;. This implies that p = min p,, 4, which concludes the proof. .

9

N

9

~

9

N

EXAMPLE 1.10.15 The weighted automaton A of Figure %Tecognizes the series

I
C1—222

=1+4+22+2:4 +30 + 428+

The radius of convergence of u(z) is v/2/2. The adjacency matrix of A is
010
1 01
010

or7 The eigenvalues are 0 and +/2.

Figure 1.12 A weighted automaton recognizing (1 — z2)/(1 — 22?).
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1.11 Probability distributions

Given an alphabet A, a function 7 : A* — [0, 1] such that (1) = 1 and

> w(wa) = m(w) (1.31)

acA
for a .4y s called a probability distribution or distribution for short on A*. Condi-
tion is called the coherence condition. It implies that, for each n > 0
Z m(x) =1.
TEA™

Indeed, this holds for n = 0, and for n > 0, one has

Y= Y Yrwa)= 3w =1,

TEAN yeAn—1 a€A yeAn—1

where the next-to-last equality holds by the coherence condition and the last equality
holds by induction. A distribution is positive if w(w) > 0 for all words w.

T%%sﬁ% Dotions are related to usual probabili eory. This will be described in Chap-
ter [[3. In particular, the coherence condition (ii ‘% Iii allows to interpret a distribution as
a probability corresponding to a sequence of random choices of the letters of a word
from left to right.

As a particular case, a Bernoulli distribution is a morphism from A* into [0, 1] such
that ) ., m(a) = 1. Clearly, a Bernoulli distribution is a probability distribution. It is
positive if and only if 7(a) > 0 for all letters a. A Bernoulli distribution corresponds to
a sequence of independent trials all with the same probability. The uniform Bernoulli
distribution is defined by 7(a) = 1/ Card(A) for all a € A.

Given a probability distribution 7 on A*, we set for any subset X of A*,

zeX

This may be finite or infinite. The probability generating series of a set X C A* is the
series

Fx(t) =) m(X NA"t".

n>0

In particular, Fx(1) = 7(X). In the case of a uniform Bernoulli distribution, the prob-
ability generating series is linked with the (ordinary) generating series by

Fx(t) = Fx(kt), (1.32)

where k = Card(A). Indeed, in this case Card(X N A™) = k"7 (X N A™).

A weighted automaton can be used to define a probability distribution on A*. Recall
that the adjacency matrix of a weighted automaton A = (@, I, T) is the Q x Q-matrix P
defined by

Pp,q: ZE(p>a)Q)-

acA
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991 Consider a weighted automaton A = (Q, I,T) with nonnegative real weights. It is
902 called a stochastic automaton if 3 o I(p) = 1and T'(q) = 1 forall ¢ € Q and if its
93 adjacency matrix P is stochastic.

For a stochastic automaton A, the mapping = defined by =« (x) = (].A|,z) is a prob-
ability distribution, called the probability distribution defined by A. Indeed m(1) =
> peq 1(p) = 1. Next, let yu be the matrix representation of A. The adjacency matrix of
Ais P =3 4 p(a). Then PT' =T and

S wea) = 3 Tu(ea)T = u(a)(Y pl@)T) = Tn(@)PT = Tp(a)T = n(x),

acA acA a€A

s0s which shows that 7 satisfies the coherence condition. A probability distribution de-
s fined by a stochastic automaton is often called a hidden Markov chain.

A particular case of a stochastic automata occurs when the end state of an edge

is in bijection with its label. In other terms, this holds if, for edges E(p,a,q) # 0,

E(p',d',q") #0
a=d <= q=¢.

o6 In this case, the set of end states of edges can be identified with the alphabet. The prob-
o07 ability distribution defined by such a stochastic automaton is called a Markov chain.

EXAMPLE 1.11.1 Let A = {a, b}. The probability distribution on A* defined by 7(ax)
=271l hg). = Oforall z € A" is defined by the stochastic automaton represented in
Figure [.T3, with I = [1 0]. The matrix representation is given by

wla) = [8 1}2}’ ulb) = [8 192]‘

s It is not a Markov chain because state 2 is the end of edges labeled a and b.

Figure 1.13 A stochastic automaton.

w 1.12 Ideals in a monoid

Let M be a monoid. A right ideal of M is a nonempty subset R of M such that
RM CR

or equivalently such that for all » € R and all m € M, we have rm € R. Since M is a
monoid, we then have RM = R because M contains a neutral element. A left ideal of
M is a nonempty subset L of M such that ML C L. A two-sided ideal (also called an
ideal) is a nonempty subset I of M such that

MIM C1I.
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A two-sided ideal is therefore both a left and a right ideal. In particular, M itself is an
ideal of M.
If M contains a zero, the set {0} is a two-sided ideal which is contained in any ideal
of M.
An ideal I (resp. a left, right ideal) is called minimal if for any ideal J (resp. left,
right ideal)
JCcIl=J=1I.

If M contains a minimal two-sided ideal, it is unique because any nonempty intersec-
tion of ideals is again an ideal. If M contains a 0, the set {0} is the minimal two-sided
ideal of M. Anideal I # 0O (resp. a left, right ideal) is then called 0-minimal if for any
ideal J (resp. left, right ideal)

JCI=J=0orJ=1.

For any m € M, the set
R=mM

is a right ideal. It is the smallest right ideal containing m. In the same way, the set
L = Mm is the smallest left ideal containing m and the set I = M'mM is the smallest
two-sided ideal containing m.

We now define in a monoid M four equivalence relations £, R, J and H as

mRm' <<= mM=m'M,

mLm' < Mm=Mn/',

mJIm’ = MmM = Mm'M,

mHm' = mM=m'M and Mm = Mm/'.

Therefore, we have for instance, mRm’ if and only if there exist u, v’ € M such that
y

/ ! !
m =mu, m=mu .

Wehave R C J,LC J,and H=RNL.

u

Figure 1.14 The relation RL = LR.
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PROPOSITION 1.12.1 The two equivalences R and L commute: RL = LR.

Proof. Le My € M be such that mRLn. There exists p € M such that mRp, pLn (see
Figure . There exist by the definitions, u, v, v,v" € M such that p = mu, m = pu/,
n = vp, p = v'n. Set ¢ = vm. We then have

q=vm =v(pu) = (vp)u' =nu' ,n =vp =v(mu) = (vm)u = qu.
This shows that gRn. Furthermore, we have
m =pu' = (Vn)u' = (nu) ='q.

Since ¢ = vm by the definition of ¢, we obtain m£Lq. Therefore mLqRn and con-
sequently mLRn. This proves the inclusion RL C LR. The proof of the converse
inclusion is symmetrical. n

Since R and £ commute, the relation D defined by
D=RL=LR
is an equivalence relation. We have the inclusions
HCR,LCDCJ.

The classes of the relation D, alled D-classes, can be represented by a schema called
an “egg-box” as in Figure w

Ly Ly

Ry
Ry
Rs

Figure 1.15 A D-class.

The R-classes are represented by rows and the £-classes by columns. The squares
at the intersection of an R-class and an L-class are the H-classes.

We denote by L(m), R(m), D(m), H(m), respectively, the £, R, D, and H-class of an
element m € M. We have

H(m) = R(m) N L(m) and R(m), L(m) C D(m).

PROPOSITION 1.12.2 Let M be a monoid. Let m,m’ € M be R-equivalent. Let u,u’ € M
be such that

The mappings
puiq = qu, puwiqd —qu

w16 are bijections from L(m) onto L(m’) inverse to each other which map an R-class onto itself.
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42 1. PRELIMINARIES

Proof. We first verify that p, maps L(m) into L(m'). If ¢ € L(m), then M ¢ = Mm and
therefore Mqu = Mmu = Mm/'. Hence qu = p,(q) is in L(m’). Analogously, p,, maps
L(m') into L(m).

Let ¢ € L(m) and compuyte pwpu(q). Since gLm, there exist v,v' € M such that
q = vm, m = v'q (see Figure ‘%)._Since muu’ = m'v’ = m, we have

pupu(q) = quu’ = vmuu’ = vm = q.

This proves that p, p, is the identity on L(m). One shows in the same way that p,p,
is the identity on L(m/).

Finally, since quu’ = ¢ for all ¢ € L(m), the elements ¢ and p,(q) are in the same
R-class. -

Propositi (%'Kas the following consequence which justifies the regular shape
of Figure I: [ EE

ul

Figure 1.16 The reciprocal bijections.

PROPOSITION 1.12.3 Any two H-classes contained in the same D-class have the same car-
dinality. n

We now address the problem of locating the idempotents in an ideal. The first result
describes the H-class of an idempotent.

PROPOSITION 1.12.4 Let M be a monoid and let e € M be an idempotent. The H-class of e
is the group of units of the monoid eMe.

Proof. Let m € H (e). Then, we have for some u, v, v,v" € M
e=mu, m=eu, e=vm, m=7ve.

Therefore em = e(eu') = eu' = m and in the same way me = m. This shows that
m € eMe. Since
m(eue) = mue =e, (eve)m =evm =e,

the element m is both right and left invertible in M. Hence, m belongs to the group of
units of eMe. Conversely, if m € eMe is right and left invertible, we have mu = vm =
e for some u, v € eMe. Since m = em = me, we obtain mHe. n
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PROPOSITION 1.12.5 An H-class of a monoid M is a group if and only if it contains an
idempotent.

Proof. Let H be an H-class of M. If H contains an idempotent e, then H = H(e) is a
group by Proposition [ The converse is obvious. n

PROPOSITION 1.12.6 Let M be a monoid and m,n € M. Then mn is in R(m) N L(n) if
and only if R(n) N L(m) contains an idempotent.

Proof. If R(n) N L(m) contains an idempotent e, then

for some u,u’,v,v" € M. Hence
mnu = m(nu) = me = (ve)e =v'e =m,

so that mnRm. We show in the same way that mnLn. Thus mn € R( (n).
Conversely, if mn € R(m) N L(n), then mnRm and nLmn. By Proposition %—fﬁe
multiplication on the right by n is a bijection from L(m) onto L(mn). Since n € L(mn),
this implies the existence of e € L(m) such that en = n. Since the multiplication by n
preserves R-classes, we have additionally e € R(n). Hence there exists u € M such
that e = nu. Consequently

nunu = enu = nu

and e = nu is an idempotent in R(n) N L(m). n

PROPOSITION 1.12.7 Let M be a monoid and let D be a D-class of M. The following condi-
tions are equivalent.

(i) D contains an idempotent.
(ii) Each R-class of D contains an idempotent.
(iii) Each L-class of D contains an idempotent.

Proof. Obviously, only (i) implies (ii) requires a proof. Let e € D be an idempotent. Let
R be an R-clagg of ). The H-class H = L(e) N R is nonempty. Let n be an element of
H (See Figure | ) ihi Since nLe, there exist v,v’ € M such that

Let m = ev’. Then mn = e because
mn = (ev')n =e(v'n) =ee =c.

Moreover, we have mRe since mn_= ¢ and m = ev’. Therefore, e = mn is in R(m) N
L(n). This implies, by Proposition %ﬂﬂat R = R(n) contains an idempotent. =

A D-class satisfying one of the conditions of Proposition % called regular.

PROPOSITION 1.12.8 Let M be a monoid and let H be an H-class of M. The two following
conditions are equivalent.
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R n

Figure 1.17 Finding an idempotent in R.

1052 (i) There exist h,h' € H such that hh/ € H.
1053 (ii) H is a group.

wss  Proof. (i) =_(ii). If hh/ € H, then by Proposition % contains an idempotent. By
1055 Proposition , it is a group. The implication (ii) = (i) is obvious. .

wss  We now study the minimal and 0-minimal ideals in a monoid. Recall that if M
1057 contains a minimal ideal, it is unique. However, it may contain several 0-minimal
1058 ideals.

wse  Let M be a monoid containing a zero. We say that M is prime if for any m,n € M\ 0,
1060 there exists u € M such that mun # 0.

>ropmonqEterbi€ios: | PROPOSITION 1.12.9 Let M be a prime monoid.
p

1062 1. If M contains a O-minimal ideal, it is unique.

1063 2. If M contains a 0-minimal right (resp. left) ideal, then M contains a O-minimal ideal;
1064 this ideal is the union of all 0-minimal right (resp. left) ideals of M.

1065 3. If M both contains a 0-minimal right ideal and a 0-minimal left ideal, its O-minimal
1066 ideal is composed of a reqular D-class and zero.

w67 Proof. 1. Let I, J be two 0-minimal ideals of M. Letm € I \ 0 and letn € J \ 0. Since
wes M is prime, there exist u € M such that mun # 0. Then mun € J implies I N J # {0}.
1060 Since I NJisanideal, weobtainINJ =1=J.
1070 2. Let R be a 0O-minimal right ideal. We first show that for all m € M, either mR =
w71 {0} or the set mR is a 0-minimal right ideal. In fact, mR is clearly a right ideal. Suppose
w2 mR # {0} and let R’ # {0} be a right ideal contained in mR. Set S = {r € R | mr €
ws R'}. Then R’ = mS and S # {0} since R’ # {0}. Moreover, S is a right ideal because
w74 R'is a right ideal. Since S C R, the fact that R is a 0-minimal right ideal implies the
wrs  equality S = R. This shows that mR = R’ and consequently that mR is a 0-minimal
1076 I‘ight ideal.
Let I be the union of all the 0-minimal right ideals. It is a right ideal, and by the
preceding discussion, it is also a left ideal. Let J # {0} be an ideal of M. Then for any
0-minimal right ideal R of M,

RICRNJCR.

w077 We have RJ # {0} since for any r € R\ 0 and m € J \ 0, there exists u € M such
w7s  that rum # 0 whence rum € RJ \ 0. Since R is a 0-minimal right ideal and RN J is a
w7e right ideal distinct from {0}, we have RN J = R. Thus R C J. This shows that I C J.
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Hence I is contained in any nonzero ideal of M and therefore is the 0-minimal ideal
of M.

3. Let I be the 0-minimal ideal of M. Let m,n € I\ 0. By 2, the right ideal mA/
and the left ideal Mn are 0-minimal. Since M is prime, there exists v € M such that
mun # 0. The right ideal mM being 0-minimal, we have mM = munM and therefore
mRmun. In the same way, munCLn. It follows that mDn. This shows that I \ 0 is
contained in a D-class. Conversely, if m € I\ 0, n € M and mDn, there exists a k € M
such that mM = kM and Mk = Mn. Consequently I = MmM = MkM = MnM
and this implies n € I \ 0. This shows that I \ 0 is a D-class,

Let us show that I'\ 0 is a regular D-class. By Proposition%ﬁt is enough to prove
that 7 \ 0 contains an idempotent. Let m,n € I'\ 0.

Since M is prime, there exists u € M such that mun # 0. Since the right ideal m M
is 0-minimal and since mun # 0, we have mM = muM = munM. Thus mun € R(m).
Symmetrically, since Mn is a 0-minimal left ideal, we have Mn = Mun = un,
whence mun € L(n). Therefore mun € R(m) N L(n) and by Proposition %his
implies that R(n) N L(m) contains an idempotent. This idempotent belongs to the D
class of n and therefore to I \ 0. n

COROLLARY 1.12.10 Let M be a prime monoid. If M contains a 0-minimal right ideal and
a 0-minimal left ideal, then M contains a unique O-minimal ideal I which is the union of all
the O-minimal right (resp. left) ideals. This ideal is composed with a regular D class and 0.
Moreover, we have the following computational rules.

1. Form € I\ 0 and n € M such that mn # 0, we have mRmn.
2. Form € I\ Oand n € M such that nm # 0, we have mLnm.
3. Forany H class H C I\ 0 we have H*> = H or H* = {0}.

Proof. The first group of statements is an easy consequence of Proposition %.—Let
us prove 1. We have mnM C mM. Since mM is a 0-minimal right ideal and mn # 0,
this forces the equality mnM = mM. The proof of 2 is symmetrical. Finally, to prove
3, let us suppose H? # {0}. Let h,h' € H be such that hh/ # 0. Then, by 1 and 2,
hRhh' and h'Lhh'. Since hLh and W Lhh', we have hLhh'. Therefore hh' € H and H
is a group by Proposition %f

%_%% a’zow give the statements that correspond to Proposition %ﬂd Corollary

or minimal ideals instead of 0-minimal ideals. This is of course of interest
only in the case where the monoid does not have a zero.

PROPOSITION 1.12.11 Let M be a monoid.
1. If M contains a minimal right (resp. left) ideal, then M contains a minimal ideal which
is the union of all the minimal right (resp. left) ideals.
2. If M contains a minimal right ideal and a minimal left ideal, its minimal ideal I is a
D-class. All the H-classes in I are groups.

Proof. Let 0 be an element that does not belong to M and let M, = M U0 be the monoid
whose law extends that of M in such a way that 0 is a zero. The monoid M is prime.

An ideal I (resp. a right ideal R, a left ideal L) of M is minimal if and only if 7/ U0
(resp. RUO, L U0) is a 0-minimal ideal (resp. right ideal, left ideal) of M. Moreover
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u22 the restriction to M of the relations R, £, D, H in M coincide with the correspondi:
1123 relations in M fore statements 1 and 2 can be deduced from Proposition
uze and Corollary | .

COROLLARY 1.12.12 Let M be a monoid containing a minimal right ideal and a minimal
uzs left ideal. Then M contains a minimal ideal which is the union of all the minimal right (resp.
uzr  left) ideals. This ideal is a D-class and all its H-classes are groups. n

s 1.13  Permutation groups

1120 In this section we give some elementary results and definitions concerning permuta-
1z tion groups. Let G be a group and let H be a subgroup of G. The right cosets of H in
ua G are the sets Hg for g € G. The equality Hg = Hg' holds if and only if g¢ ! € H.
us2  Hence the right cosets of H in (7 are a partition of G.
uss  When G is finite, [G : H] denotes the index of H in G. This number is both equal to
uu  Card(G)/ Card(H) and to the number of right cosets of H in G.
uss  Let Q be a set. The symmetric group over ) composed of all the permutations of Q) is
us denotedby &¢. For @ = {1,2,...,n} wewrite &, instead of &1, 5 . ). A permutation
us7  is written to the right of its argument. Thus for g € G¢g and ¢ € @ the image of ¢ by g
uss  is denoted by qg.
use A permutation group over (Q is any subgroup of S¢. For instance, the alternating
w40 group over {1,2,...,n}, denoted by 2, is the permutation group composed of all even
us1  permutations, that is permutations which are products of an even number of transpo-
142 sitions.

Let G be a permutation group over Q. The stabilizer of ¢ € @ is the subgroup of G

composed of all permutations of G fixing g,

H={heG|qgh=q}.

uas A permutation group over () is called transitive if for all p, ¢ € @, there exists g € G such
142 that pg = q.

presentcostots.1 | PROPOSITION 1.13.1 Let G be a group and let H be a subgroup of G. Let Q be the set of
right cosets of H in G. Let ¢ be the mapping from G into S defined for g € G and Hk € Q

by

(HE)¢(g) = H(kg) -
ws  The mapping ¢ is a morphism from G into S¢ and the permutation group ¢(Q) is transitive.
w4s  Moreover, the subgroup p(H ) is the stabilizer of the point H € Q.
Conwversely, let G be a transitive permutation group over @, let ¢ € Q and let H be the
stabilizer of q. The mapping ~ from G into () defined by

Y9 a9
induces a bijection o from the set of right cosets of H onto QQ and forall k € G, g € G,
a(Hk)g = a(Hkg) .
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Proof. We first prove the direct part. The mapping ¢ is well defined because Hk = Hk'
implies Hkg = Hk'g. It is a morphism since ¢(1) = 1 and

(Hk)p(9)p(9') = (Hkg)p(g') = Hkgg' = (HE)@(99") -
The permutation group ¢(G) is transitive since for k, k¥’ € G, we have
(Hk)p(k™'K') = HE' .

Finally, for all h € H, ¢(h) fixes the coset H and conversely, if ¢(g), with g € G, fixes
H,then Hg = H,thus g € H.

We now prove the converse. Assume that Hg = Hg'. Then g¢'~! € H, and therefore
q9g "' = ¢, showing that qg = qg’, whence v(g) = ~(¢’). This shows that we can
define a function « by setting a(Hg) = ~(g). Since G is transitive, v is surjective and
therefore also « is surjective. To show that « is injective, assume that a(Hg) = o(H¢').
Then qg = q¢/, whence qgg~! = ¢. Thus gg~! fixes g. Consequently g¢'~! € H, whence
Hg=Hyg'.

The last formula is a direct consequence of the fact that both sides are equal to gkg.

Let G be a transitive permutation group over a finite set Q. By definition, the degree
of G is the number Card(Q).

PROPOSITION 1.13.2 Let G be a transitive permutation group over a finite set Q. Let g € @
and let H be the stabilizer of q. The degree of G is equal to the index of H in G.

Proof. The function o : Hg — qg of Proposition %{2} is a bijection from the set of
right cosets of H onto (). Consequently Card(Q) = [G : H]. n

Two permutation groups G over () and G’ over @' are called equivalent if there exists
a bijection « from @ onto @’ and an isomorphism ¢ from G onto G’ such that for all
g€ Qand g € G,
a(qg) = a(qa)¢(9)

or equivalently, for ¢’ € Q" and g € G,

7o) = a((e(q))g) -

As an example, consider a permutation grou, over ( and let H be the stabilizer
of some ¢ in ). According to Proposition %{2‘) this group is equivalent to the
permutation group over the set of right cosets of H obtained by the action of G' on the
cosets of H.

Another example concerns any two stabilizers H and H' of two points ¢ and ¢’ in a
transitive permutation group G over Q). Then H and H’ are equivalent. Indeed, since
G is transitive, there exists g € G such that gg = ¢’. Then ¢ defines a bijection « from
Q onto itself by a(p) = pg. The function ¢ : H — H' given by ¢(h) = g 'hg is an
isomorphism and forallp € Q, h € H,

a(ph) = a(p)p(h) .
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Let G be a transitive permutation group over (). An imprimitivity equivalence of G is
an equivalence relation 0 over @ that is stable for the action of G. Equivalently, for all
geQG,

p=qgmod 6 = pg = qg mod 6.

The partition associated with an imprimitivity equivalence is called an imprimitivity
partition.

Let 6 be an imprimitivity equivalence of G. The action of GG on the classes of 6 defines
a transitive permutation group denoted by Gy called the imprimitivity quotient of G for
6.

For any element ¢ in @), denote by [g| the equivalence class of ¢ mod ¢, and let K|,
be the transitive permutation group over [¢] formed by the restrictions to [¢] of the
permutations g that globally fix [¢], that is verifying [¢]g = [q].

The group K, is the group induced by G on the class [q].

We prove that the groups K,, ¢ € Q all are equivalent. Indeed let ¢,¢' € @ and
g € G be such that gg = ¢’. The restriction « of g to [g] is a bijection from [¢] onto
[¢']. Clearly, « is injective. It is surjective since if p = ¢ mod 6, then pg~! = ¢ mod 6
and a(pg!) = p. Let ¢ be the isomorphism from K, onto K, defined for k € K,
by p'o(k) = a(a~t(p')k). This shows that the groups K, and K, are equivalent. In
particular, all equivalence classes mod ¢ have the same number of elements.

Any of the equivalent transitive permutation groups K, is called the induced group
of G on the classes of § and is denoted by GY.

Let d = Card(Q) be the degree of G, e the degree of Gy, and f the degree of G’. Then

d=ef.

Indeed, e is the number of classes of § and f is the common cardinality of each of the
classes mod 6.

Let G be a transitive permutation group over Q. Then G is called primitive if the only
imprimitivity equivalences of G are the equality relation and the universal relation
over Q.

PROPOSITION 1.13.3 Let G be a transitive permutation group over Q. Let ¢ € Q and H be
the stabilizer of q. Then G is primitive if and only if H is a maximal subgroup of G.

Proof. Assume first that G is primitive. Let K be a subgroup of G such that H C
K C G. Consider the family of subsets of () having the form ¢Kg for g € G. Any
two of these subsets are either disjoint or identical. Suppose indeed that for some
kK € K and g,¢/ € G, we have ¢gkf = ¢k'g’. Then qkgg~'k'~! = ¢, showing
that kgg'~'k'~' € H C K. Thus g9~ € K, whence Kg = K¢ and consequently
qKg = qKg'. Consequently the sets ¢/ g form a partition of ) which is clearly an im-
primitivity partition. Since G is primitive this implies that either ¢ K = {¢q} or ¢K = Q.
The first case means that K = H. In the second case, K = G since for any g € G there
is some k € K with gk = qg showing that gk~! € H C K which implies g € K. This
proves that H is a maximal subgroup.

Conversely, let H be a maximal subgroup of G and let # be an imprimitivity equiv-
alence of G. Let K be the subgroup

K ={keG|qgk=qgmod6}.
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Then H C K C G, which implies that K = H or K = G. If K = H, then the class of ¢
is reduced to ¢ and 6 is therefore reduced to the equality relation. If K = G, then the
class of g is equal to @ and 6 is the universal equivalence. Thus G is primitive. .

Let G be a transitive permutation group on Q. Then G is said to be regular if all
elements of G \ 1 have no fixed point. It is easily verified that in this case Card(G) =
Card(Q).

PROPOSITION 1.13.4 Let G be a transitive permutation group over @ and let ¢ € Q. The
group G is reqular if and only if the stabilizer of q is a singleton.

Let £ > 1 be an integer. A permutation group G over Q) is called k-transitive if for all
k-tuples (p1,p2,-..,pr) € QF and (g1, 42, ..., qr) € QF composed of distinct elements,
thereisa g € G such that p1g = q1,p29 = q2, - - -, Pkg = qk.

The 1-transitive groups are just the transitive groups. Any k-transitive group for
k > 2is clearly also (k — 1) transitive. The group &,, is n-transitive.

PROPOSITION 1.13.5 Let k > 2 be an integer. A permutation group over (@ is k-transitive
if and only ii is transitive and if the restriction to the set Q) \ q of the stabilizer of ¢ € Q is
(k — 1)-transitive.

Proof. The condition is clearly necessary. Conversely assume that the condition is
satisfied by a permutation group G and let (p1,p2,...,pr) € QF and (g1, 2, - - -, qx) €
Q" be k-tuples composed of distinct elements. Since G is transitive, there existsa g € G
such that p1g = ¢1. Let H be the stabilizer of ¢;. Since the restriction of H to the set
Q \ q1 is (k — 1)-transitive, there is an h € H such that pogh = q9, ..., prgh = q. Since
p1gh = q1, the permutation ¢’ = gh satisfies p1¢’ = q1,p29’ = q2,...,pk9 = qi. This
shows that G is k-transitive. "

A 2-transitive group is also called doubly transitive.

PROPOSITION 1.13.6 A doubly transitive permutation group is primitive.

Proof. Let G be a doubly transitive permutation group over ) and consider an im-
primitivity equivalence 6 of G. If 6 is not the equality on @, then there are two distinct
elements ¢,¢' € @ such that ¢ = ¢’ mod 0. Let ¢” € @ be distinct from ¢. Since G is
2-transitive, there exist g € G such that gg = g and ¢'g = ¢”. Since 6 is an imprimitivity
equivalence we have ¢ = ¢” mod 0. Thus 0 is the universal relation on Q. This shows
that G is primitive. .

The converse of Proposition % false. Indeed, for any prime number p, the
cyclic group generated by the permutation (12 - - - p) is primitiye byt is not doubly tran-
sitive. An interesting case where the cony of Proposition %1‘5 true is degeribed
in a famous theorem of Schur (Theorem at will be stated in Chapter &L
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1.14 Notes

Each of the subjects treated in this chapter is part of a theory that we have considered

only very superficially. A more complete exposition about words can be found in
1997), For automata (Section%mow the notation of [Eilenberg] (1974).
Theorem I_ii'ﬁ is due to S. Kleene.

Our definition of a complete semiring is less general than that of [Eilenberd ([1974)
but it will be enoughfor our purposes. The full statement of the Perron-Frobenius
theorem (Theorem includes additional statements, including the description of
the eigenvalues with maximal modulus (see [Gantmache] ([959)). The function rj is
sometimes known as the Wielandt function. .

Our presentation of ideals in monoids (Section ﬁ)%ﬁeloped with more details
in [Clifford and Preston] ([[961)) or Callemen{ ([979). The notion of a prime monoid is
not classical but it is well fitted to the situation that we shall find in Chapter E.—‘IQIWCF
minimal ideals of prime monoids are usually called completely 0-simple semigroups.
For semirings and formal series see Eilenberg] ([1974) or Berstel and Reutenauer (L98§).

A classical textbook on permutation groups is [Nieland{ (T964).
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Chapter 2

CODES

The first two sections contain several equivalent definitions of codes and free sub-
monoids. In Section%ﬁglve a method for verifying that a given set of words is a
code.

In Section ﬁ% ulli distributions to give a necessary condition for a set
to be a code (Theorem he questions about probabilities rajsed in this and in
the followin i(s)gftéon will be developed in more depth in Chapter ﬁéL

Section %ces the concept of a complete set. This is in some sense a notion
dual to that of a code. The main result of this chapter (Theorem escribes
complete codes by using results on Bernoulli distributions developed previously. In
Section E:a the operation of composition of codes is introduced and several properties
of this operation are established. The last section introduces the prefix graph of a code
as a tool for the description of an efficient algorithm testing whether a finite set is a
code.

2.1 Definitions

This section contains the definitions of the notions of code, prefix (suffix, bifix) code,
maximal code, and coding morphism and gives examples.
Let A be an alphabet. A subset X of the free monoid A* is a code over A if for all

n,m > 0and z1,...,2,,2),...,2,, € X, the condition
xlan PEEEEY a;'n f— x?lxé ... x/'n/L (2-1)
implies
n=m and x;=a, for i=1,...,n. (2.2)

In other words, a set X is a code if any word in X* can be written uniquely as a product

of words in X, that is, has a unique factorization in words in X. In particular, a code

never contains the empty word 1. It is clear that any subset of a code is a code. In

particular, the empty setis a code. An element of a code is sometimes called a codeword.
The definition of a code can be rephrased as follows:
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PROPOSITION 2.1.1 If a subset X of A* is a code, then any bijection from some alphabet
B onto X extends to an injective morphism from B* into A*. Conversely, if there exists an
injective morphism (3 : B* — A* such that X = (3(B), then X is a code.

Proof. Let 3 : B* — A* be a morphism such that 3 is a bijection of B onto X. Let
u,v € B* be words such that 3(u) = B(v). Setu = by -+ - by, v = b} --- b, withn,m >0,
bi, ..., by, by, .., b, € B.Since (3 is a morphism, we have

Bb1) -+ B(bn) = BOL) -+ Bbp,) -

But X is a code and 3(b;), 8(b)) € X. Thusn = m and B(b;) = B(b;) fori = 1,...,n.
Now [ is injective on B. Thus b; = b} fori = 1,...,n, and u = v. This shows that 3 is
injective.

Conversely, if 3 : B* — A* is an injective morphism, and if

1wy =), (2.3)
for some n,m > 1and z1,...,xy,,2},...,2,, € X = 5(B), then we consider the letters
bi,b;- in B such that bi)3: x4, ﬂ(b;-) = a;;-, it =1,...,n,j = 1,...,m. Since 3 is
injective, Equation  implies that by -+ b, = by---b,,. Thusn = m and b; = b,
whence z; = 2} fori =1,...,n. "

A morphism 3 : B* — A* which is injective and such that X = §(B), is called a
coding morphism for X. For any code X C A*, the existence of a coding morphism for
X is straightforward: it suffices to take any bijection of a set B onto X and to extend
it to a morphism from B* into A*. In this context, the alphabet B is called the source
alphabet, and tlE%%Hhabet A is the channel alphabet.

Proposition is the origin for the terminology since the words in X encode the
letters of the set B. The coding procedure consists of associating to a word b1bs - - - b,
(b; € B) which is the source text an encoded message (b1) - - - B(b,,) over the channel
alphabet by the use of the coding morphism (3. The fact that 3 is injective ensures that
the coded text is uniquely decipherable, in order to get the original text back.

EXAMPLE 2.1.2 For any alphabet A, the set X = Ais a code. More generally, if p > 1is
an integer, then X = A" is a code called, the uniform code of words of length p. Indeed,
if elements of X satisfy Equation (£.1), then the constant length of words in X implies
the conclusion (2.3).

EXAMPLE 2.1.3 Over an alphabet consisting of a single letter a, a nonempty subset of
a* is a code if and only if it is a singleton distinct from 1.

EXAMPLE 2.1.4 The set X = {aa, baa,ba} over A = {a,b} is a code. Indeed, suppose
the contrary. Then there exists a word w in X, of minimal length, that has two distinct

factorizations,
/

A,
W =TT+ Ty = T1Tg " Ty,

(n,m > 1,3:2-,3:;- € X). Since w is of minimal length, we have z; # ). Thus 14
is a proper prefix of x| or vice versa. Assume that z; is a proper prefix of z (see
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. igl 01 . . .. . ..
1303 Figure ﬁj_By inspection of X, this implies that 1 = ba, 2} = baa. This in turn
104 implies that x9 = aa, 2y = aa. Thus 2} = z1a, 2i2h = 1220, and if we assume that
1805 T(TYH - T, = T1T2- - Tpa, it necessarily follows that z;,,; = aa and z},,; = aa. Thus
1306 TNThH--Tpp1 = T1T2 - - - Tpy1a. But this contradicts the existence of two factorizations.

x X2

! !
Ty )

Figure 2.1 A double factorization starting.

ex1.1.4 | EXAMPLE 2.1.5 The set X = {a,ab,ba} is not a code since the word w = aba has two
distinct factorizations
w = (ab)a = a(ba) .

1
1oz The following corollary to Proposition &Fuseful.

COROLLARY 2.1.6 Let a : A* — C* be an injective morphism. If X is a code over A, then
1300 (X)) is a code over C. If Y is a code over C, then a~1(Y) is a code over A.

110 Proof. Let 5 : B* — A* be a coding morphism for X. ¢(8(B)) = a(X) and since
11 «of: B* — C*is an injective morphism, Proposition shows that «(X) is a code.
Conversely, let X = a™1(Y),letn,m > 1, z1,...,2,,2,...,2,, € X be such that

/ /
1*1...1*”:1*1...1*

Then
ary) - olen) = alzh) - olay,) .
12 Now Y is a code; therefore n = m and a(z;) = o(x}) fori = 1, ..., n. The injectivity of
13 o implies that z; = 2} for i = 1,...,n, showing that X is a code. .

COROLLARY 2.1.7 If X C A* is a code, then X™ is a code for all integers n > 0.

1215 Proof. Let 3 : B* — A* be a coding morphism for & ., Then X™ = 5(B"). But B" is a
116 code. Thus the conclusion follows from Corollary : ]

Examplel.1.5 ‘ EXAMPLE 2.1.8 We show that the product of two codes is not a code in general. Con-

sider the sets X = {a,ba} and Y = {a, ab} which are easily seen to be codes over the
alphabet A = {a,b}. Set Z = XY. Then

7 = {aa,aab,baa,baab} .
The word w = aabaab has two distinct factorizations,
w = (aa)(baadb) = (aab)(aad) .

1317 Thus Z is not a code.
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An important class of codes is the class of prefix codes to be introduced now. A
subset X of A* is prefix if no element of X is a proper prefix of another element in X.
In an equivalent manner, X is prefix if for all z,2’ in X,

r<a=zx=2a". (2.4)

This may be rephrased as: two distinct elements in X are incomparable in the prefix
ordering. 14

It follows immediately from (ﬁj‘ﬂﬁt a prefix set X containing the empty word just
consists of the empty word. Suffix sets are defined in a symmetric way. A subset X of
A* is suffix if no word in X is a proper suffix of another word in X. A set is bifix if it is
both prefix and suffix. Clearly, a set of words X is suffix if and only if its reversal X is
prefix.

PROPOSITION 2.1.9 Any prefix (suffix, bifix) set of words X # {1} is a code.

Proof. Since X # {1}, it does not contain the empty word. If X is not a code, then there
is a word w of minimal length having two factorizations

A / /
W =TTy Ty = T T Ty, (w5, 75 € X).

Both 1, 2| are nonempty, and since w has minimal length, z; # 2. But then z; < 2
or z) < x; contradicting the fact that X is prefix. Thus X is a code. The same argument
holds for suffix sets. L]

A prefix code (suffix code, bifix code) is a prefix set (suffix, bifix set) which is a code, that
is distinct from {1}.

lel.1.5
EXAMPLE 2.1.10 Uniform codes are bifix. The sets X and Y of Example E I '5 area

prefix and a suffix code.

EXAMPLE 2.1.11 Thesets X =a*band Y = {a"b" | n > 1} over A = {a, b} are prefix,
thus prefix codes. The set Y is suffix, thus bifix, but X is not. This example shows the
existence of infinite codes over a finite alphabet.

EXAMPLE 2.1.12 The Morse code associates to each alphanumeric character a sequence
of dots and dashes. For instance, A is encoded by “.- ” and J is encoded by “.--- ”
Provided each codeword is terminated with an additional symbol (usually a space,
called a “pause”), the Morse code becomes a prefix code.

A code X is maximal over A if X is not properly contained in any other code over 4,
that is, if
X c X, X' code = X = X'.

The maximality of a code depends on the alphabet over which it is given. Indeed, if
X C A*and A & B, then X C B* and X is certainly not maximal over B, even if it
is a maximal code over A. The definition of a maximal code gives no algorithm that
allows us to verify that it is sat'sfi%(c)lﬁ 1%Iowever, maximality is decidable, at least for
recognizable codes (see Section Eé)
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EXAMPLE 2.1.13 Uniform codes A™ are maximal over A. Suppose the contrary. Then
there is a word u € A" \ A" such that Y = A" U {u} is a code. The word w = u"
belongs to Y*, and it is also in (A™)* because its length is a multiple of n. Thus w =
u" = 129 - - - 7)) fOr SOME 21, ..., 7| € A". Now u ¢ A™. Thus the two factorizations
are distinct, Y is not a code and A" is maximal.

PROPOSITION 2.1.14 Any code X over A is contained in some maximal code over A.

Proof. Let F be the set of codes over A containing X, ordered by set inclusion. To
show that F contains a maximal element, it suffices to demonstrate, in view of Zorn’s
lemma, that any chain C (that is, any totally ordered subset) in F admits a least upper
bound in F.

Consider a chain C of codes containing X. Then

is the least upper bound of C. It remains to show that Y is a code. For this, letn,m > 1,
and Y1, ..., Yn,Yl,---» Y, €Y be such that

Each of the y;, y; belongs to a code of the chain C and this determines n + m ele-
ments (not necessarily distinct) of C. One of them, say Z, contains all the others.Thus
Ylyeo s Yns Yy -5 Y € Z, and since Z is a code, we have n = m and y; = v/ for
i=1,...,n. This shows that Y is a code. "

Proposition %no longer true if we restrict ourselves to finite codes. There exist
finite codes which are not contained jn.any finjte maximal code. An example of such
a code will be given in Section ﬁ’(‘mele %}i

The fact that a set X C A" is a code admits a very simple expression in the terminol-
ogy of formal power series.

PROPOSITION 2.1.15 Let X be a subset of A*, and let M = X* be the submonoid generated
by X. Then X is a code if and only if M = (X)* or equivalently M = (1 — X)~!

Proof. According to Proposition ﬁ,i‘fﬁe coefficient ((X)*,w) of a word w in (X)* is
equal to the number of distinct factorizations of w in words in X. By definition, X is
a code if and only if this coefficient takes only the values 0 and 1 for any word in A*.
But this is equivalent to saying that (X)* is the characteristic series of its support, that
iS, (X )* = M . n

2.2 Codes and free submonoids
The submonoid X* generated by a code X is sometimes easier to handle than the code
itself. The fact that X is a code (prefix code, bifix code) is equivalent to the property

that X* is a free monoid (a right unitary, biunitary monoid). These properties may be
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verified directly on the submonoid without any explicit description of its base. Thus
we can prove that sets are codes by knowing only the submonoid they generate.
We start with a general property. Let A be an alphabet.

PROPOSITION 2.2.1 Any submonoid M of A* has a unique minimal set of generators X =
(MA\T)\ (M\ 1)

Proof. Set Q = M \ 1. First, we verify that X generates M, that is, that X* = M.
Since X C M, we have X* C M. We prove the opposite inclusion by induction on the
length of words. Of course, 1 € X*. Letm € Q. If m ¢ Q?, then m € X. Otherwise
m = mimg With my, my € @ both strictly shorter than m. Therefore m;, m2 belong to
X* by the induction hypothesis and m € X*.

Now let Y be a set of generators of M. We may suppose that 1 ¢ Y. Then each
z € X isin Y* and therefore can be written as © = y1ys - - -y, with y; € Y and n > 0.
The facts that  # 1 and = ¢ Q? force n = 1 and x € Y. This shows that X C Y. Thus
X is a minimal set of generators and such a set is unique. n

EXAMPLE 2.2.2 Let A = {a,b} and let M = {w € A" | |w|, = 0 mod 2}. Then we
compute X = (M \ 1)\ (M \ 1)? =bU ab*a.

We now turn to the study of the submonoid generated by a code. By definition, a
submonoid M of A* is free if there exists an isomorphism

a:B*— M
of a free monoid B* onto M.

PROPOSITION 2.2.3 If M is a free submonoid of A*, then its minimal set generators is a code.
Conversely, if X C A* is a code, then the submonoid X* of A* is free and X is its minimal set
of generators.

Proof. Let o : B* — M be an isomorphism., Then «, considered as morphism from
B* into A*, is injective. By Proposition , the set X = a(B) is a code. Next M =
a(B*) = (a(B))* = X*. Thus X generates M. Furthermore B = B* \ B*B* and
a(BT) = M\ 1. Consequently X = (M \ 1)\ (M \ 1)?, showing that X is the minimal
set of generators of M.

Conversely, assume that X C A* is a code and consider a coding morphism « :
B* — A* for X. Then «a is injective and « is a bijection from B onto X. Thus o is a
bijection from B* onto a(B*) = X*. Consequently X* is free. Now « is a, bjjection,
thus B = BT\ Bt B* implies X = X\ X* X, showing by Proposition %Th?\t X
is the minimal set of generators of M. ]

The code X which generates a free submonoid M of A* is called the base of M.

COROLLARY 2.2.4 Let X and Y be codes over A. If X* =Y*, then X =Y.

EXAMPLE %—(Fontznued) The set X is a (bifix) code, thus M is a free submonoid of
A*.
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According to Proposition %e can distinguish two cases where a set X is not
a code. First, when X is not the minimal set of generators of M = X*, that is, there
exists an equality
T =T1X9" " Tp

with z,z; € X and n > 2. Note that despite this fact, M might be free. The other case
holds whe 4is the minimal set of generators, but M is not free (this is the case of
Example

We now give a characterization of free submonoids of A* which is intrinsic in the
sense that it does no% tely on the bases. Another slightly different characterization is
given in Exercise .

Let M be a monoid. A submonoid N of M is stable (in M) if for all u,v,w € M,

u, v, uw, wv € N =w € N . (2.5)
The hypotheses of (ﬁ)% be written as
weN'NANN,
thus the condition for stability becomes

N INNNN-lcN

or simply
N INANNl=N (2.6)
since 1 € NV and therefore N C N"'N N NN~ 01
Figure P.7 gives a pictorial representation of condition  when the elements u,

v, w are words. The membership in NV is represented by an arch.

Figure 2.2 Representation of stability.

Stable submono'gg égpear in almost all of the chapters in this book. A reason for
this is Proposition which gives a remarkable characterization of free submonoids
of a free monoid. As a practical application, the proposition is used to prove that some
submonoids are free and consequently that their bases are codes.

PROPOSITION 2.2.5 A submonoid N of A* is stable if and only if it is free.

Proof. Assume first that NV is stable. Set X = (N \ 1) \ (IV \ 1)2. To prove that X is a
code, suppose the contrary. Then there is a word z € N of minimal length having two
distinct factorizations in words of X,

Z=T1T2 Ty = Y1Y2 " Ym
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with z1,...,2n,y1,...,ym € X. We may suppose |z1| < |y1|. Then y; = zjw for some
nonempty word w. It follows that

Ty, Y2---Ym, T1W=Y1, WY2: ' Ym = T2 " Tp

are all in V. Since N is stable, w is in V. Consequently y; = z1w ¢ X, which gives the
contradiction. Thus X is a code.

Conversely, assume that NN is free and let X be its base. Let u, v, w € A* and suppose
that u, v, uw,wv € N. Set

U=Ty Tk, WUO=Tg41 T, UW=Y1-"-Ye, V=Yi+1"""Ys,
with z;, y; in X. The equality u(wv) = (uw)v implies
L1 TTg+1 " Ty = Y1 YeYe+1- " Ys -

Thusr = sand x; = y; (i = 1,...,s) since X is a code. Moreover, ¢ > k because
|luw| > |ul, showing that

uu)::xl...xkxk+l...aw ::uxk+1"'xf)
hence w = z;41---x¢ € N. Thus N is stable. "

Submonoids which are generated by prefix codes can also be characterized by a con-
dition which is independent of the base. Let M/ be a monoid and let N be a submonoid
of M. Then N is right unitary in M if for all u,v € M,

u,uv € N =>v &€ N.
In a symmetric way, N is left unitary if for all u,v € M,
u,vu € N =>v € N.

The conditions may be rewritten as follows: N is right unitary if and only if N7 N =
N, and N is left unitary if and only if NN~ = N.

The submonoid N of M is biunitary if it is both left and right unitary.

The four properties stable, left unitary, right unitary, and biunitary are of the same
nature. Their relationships can be summarized as

stable: N INNNN-l1=N

= _x
left unitary : NV -1=N N-IN =N: right unitary
X =

biunitary : NN 1l=N-IN=N

A
EXAMPLE %—(Fontinued) The submonoid M is biunitary. Indeed, if u,uv € M then
lulq and |uv|q, = |ulq + |v|, are even numbers; consequently |v|, is even and v € M.
Thus M is right unitary.
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EXAMPLE 2.2.6 In group theory, the concepts stable, unitary and biunitary collapse
and coincide with the notion of subgroup. Indeed, let H be a stable submonoid of a
group G. For all h € H, both hh ! and h='h are in H. Stability implies that h~! is in
H. Thus H is a subgroup. If H is a subgroup, then conversely HH! = H™'H = H,
showing that H is biunitary.

The following proposition shows the relationship between the submonoids we de-
fined and codes.

PROPOSITION 2.2.7 A submonoid M of A* is right unitary (resp. left unitary, biunitary) if
and only if its minimal set of generators is a prefix code (suffix code, bifix code). In particular,
a right unitary (left unitary, biunitary) submonoid of A* is free.

Proof. Let M C A* be a submonoid, Q@ = M \ 1and let X = Q \ Q? be its minimal set
of generators. Suppose M is right unitary.

To show that X is prefix, let «, zu be in X for some u € A*. Then z,zu € M and thus
u € M. Ifu +# 1, then u € Q; but then zu € Q? contrary to the assumption. Thus u = 1
and X is prefix.

Conversely, suppose that X is prefix. Let u,v € A* be such that u,uv € M = X*.
Then

U=T1" " Tp, UU=Y1"""Ym

for some z1,...,%n,y1,...,ym € X. Consequently

L1 TpU =Y1" " Ym -

Since X is prefix, neither x; nor y; is a proper prefix of the other. Thus x; = y;, and
for the same reason xs = ¥ys,...,T, = Y. Thisshowsthatm > nand v = yp11-* Ym
belongs to M. Thus M is right unitary. ]

Let M be a free submonoid of A*. Then M is maximal if M # A* and M is not
properly contained in any other free submonoid excepted A*.

PROPOSITION 2.2.8 If M is a maximal free submonoid of A*, then its base X is a maximal
code.

Proof. Let Y be a code with X ¢ Y. Then X* C Y* and X* # Y™ since otherwise

X =Y by Corollary . Now X* is maximal. Thus Y* = A* and Y = A. Thus
X G A Letbe A\ X. Theset Z = X Ub?isacodeand M ¢ Z* & A*. Both inclusions
are strict since b2 ¢ M and b ¢ Z*. This contradicts the maximality of M. "

Note that the converse of the proposition is false since uniform codes A™ (n > 1) are
maximal. Butif k,n > 2, we have (4*")* ¢ (A™)* ¢ A*, showing that (A"¥)* is not
maximal.

We now introduce a family of bifix codes called group codes which have interesting
properties. Before we give the definition, let us consider the following situation.

Let G be a group, H be a subgroup of G, and

p: A" =G (2.7)
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be a morphism. The submonoid

M= 29

w70 is biunitary. Indeed, if, for instance, p,pq € M, then ¢(p),p(pq) € H, therefore
unn o(p)~te(pg) = ¢(g¢) € H and ¢ € M. The same proof shows that M is left unitary.
w2 Thus the base, say X, of M is a bifix code. 24 . o

13 The definition of the submonoid M in (%Tequwalent to a description as the
s intersection of A* with a subgroup of the free group A® on A. Indeed, the morphism
urs @ in ( actorizes in a unique way in

A Ld e
SN A
A@

with ¢ the canonical injection. Setting Q = 1~ 1(H), we have

1476

M=QnA".
Conversely if Q is a subgroup of A® and M = @ N A*, then

M=1Q).

w77 A grouprade is the base X of a submonoid M = ¢~ 1(H), where ¢ is a morphism given
us by (£.7) which, moreover, is supposed to be surjective. Then X is a bifix code and X is a
179 maximal code. Indeed, if M = A*, then X = A is maximal. Otherwise take w € A*\ M
uso and setting Y = X U w, let us verify that Y is not a code. Set m = ¢(w). Since ¢ is
ug1  surjective, there is a word w € A* such that ¢(w) = m~!. The words u = ww, v = wWw
1482 both are in M, and www = uw = wv € Y*. This word has two distinct factorizations
ugs  in words in Y, namely, uw formed of words in X followed by a word in Y, and wv
ugs  which is composed the other way round. Thus Y is not a code and X is maximal.

uss  We give now three examples of group codes.

EXAMPLE 2.2.9 Let A = {a,b} and consider the set
M ={w e A" | |w|, = 0 mod 2}
of Example %%We have M = ¢~1(0), where
p: A = 7Z/27

uss is the morphism given by (a) = 1,¢(b) = 0. Thus the base of M, namely the code
usr X = bUab*a, is a group code, hence maximal.

EXAMPLE 2.2.10 The uniform code A™ over A is a group code. The monoid (A™)* is
ugo indeed the kernel of the morphism of A* onto Z/mZ mapping all letters on the number

1490 1 .
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EXAMPLE 2.2.11 Let A = {a, b}, and consider now the submonoid
fwe A* | Jwl, = [y} 2.9)
composed of the words on A having as many a’s as b’s. Let
§: A" - Z
be the morphism defined by 6(a) = 1,6(b) = —1. Clearly
5(w) = |wla — wl;

.2.5
for all w € A*. Thus the set (Eﬁ) is equal to §~1(0). The base of 1(0) is denoted by D
or Dy, the submonoid itself by D* or Dj. Words in D are called Dyck-primes, D is the
Dyck code over A. The set D* is the Dyck set over A.

EXAMPLE 2.2.12 More generally, let A = BU B (BN B = ) be an alphabet with 2n
letters, and let § : A* — B® be the morphism of A* onto the free group B® defined by
5(b) =b,8(b) = b~ for b € B,b € B. The base of the submonoid §~*(1) is denoted by
D,, and is called the Dyck code over A or over n letters.

We now turn to a slightly different topic and consider the free submonoids of A*
containing a given submonpid, We start with the following observation which easily
follows from Proposition :

PROPOSITION 2.2.13 The intersection of an arbitrary family of free submonoids of A* is a
free submonoid.

Proof. Let (M;)icr be a family of free submonoids of A*, and set M = N;c;M;. Clearly
M is a submonoid, and it suffices to show that M is stable. If

u, vw, uv, w € M

then these four words belong to each of the M;. Each M; being stable, w is in M; for
eachi e I. Thusw € M. "

Proposition %’Eads to the following considerations. Let X be a subset of A*. As
we have just seen, the intersection of all free submonoids of A* containing X is again
a free submonoid. It is the smallest free submonoid of A* containing X. We call it the
free hull of X. If X* is a free submonoid, then it coincides of course with its free hull.

Let X be a subset of A*, let N be its free hull and let Y be the base of N. If X is
not a code, then X # Y. The following result, known as the defect theorem gives an
interesting relationship between X and Y.

THEOREM 2.2.14 Let X be a subset of A*, and let Y be the base of the free hull of X. If X is
not a code, then
Card(Y) < Card(X) — 1.

The following result is a consequence of the theorem. It can be proved directly as
well (Exercise %}7
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COROLLARY 2.2.15 Let X = {x1,22}. Then X is a code if and only if x1 and x5 are not
powers of the same word. n

Note that this corollary entirely describes the codes with two elements. The Casg 6.2

of sets with three words is already much more complicated. See also Exercises
E%gerencourt

and .
For the proof of Theorem 2.8, we first show the following result.

PROPOSITION 2.2.16 Let X C A* and let Y be the base of the free hull of X. Then
Yc XY niyH)lx,

that is each word in'Y appears as the first (resp. last) factor in the factorization of some word
x € X in words belonging to Y.

Proof. Suppose that a word y € Y isnotin (Y*)™1X. Then X C 1UY*(Y \ y). Setting

Z=y"(Y\y)

we have ZT = Y*(Y \ y), thus X C Z*. Now Z* is free. Indeed, any word z € Z* has
a unique factorization

Z2=1Y1Y2" " Yn, Y1, Yn €Y, Yn Y

and therefore can be written uniquely as
z =y z1yPzy - yPr 2, 21y, 2r €Y \y, pi > 0.

Now X C Z* ¢ Y*, showing that Y* is not the free hull of X. This gives the contra-
diction. .

Proof of Theorem %ﬁf X contains the empty word, then X and X’ = X \ 1 have
same free hull Y*. If the result holds for X', it also holds for X, since if X’ is a code,
then Y = X’ and Card(Y) = Card(X) — 1, and otherwise Card(Y") < Card(X’) — 1 <
Card(X)—2. Thus we may assume that 1 ¢ X. Let o : X — Y be the mapping defined
by
alz)=y if zeyY".

This mapping is uniquely defingd since Y is a code; it is everywhere defined since
X C Y*. In view of Proposition f%gfﬁe function « is surjective. If X is not a code,
then there exists a relation

T1To - Ty = Ty TY - "xin, xi,:c;- eX (2.10)

.6
with z; # 2. However, Y is a code, and by (%%Tve have
a(z1) = a(z)) .

Thus «a is not injective. This proves the inequality. .
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2.3 A test for codes

63

It is not always easy to verify that a given set of words is a code. The test described
in this section is not based on any new property of codes but consists merely in a
systematic organization of the computations required to verify that a set of words

satisfies the definition of a code.

In the case where X is finite, or more generally if X is recognizable, the amount of
computation is finite. In other words, it is effectively decidable whether a finite or

recognizable set is a code.

Before starting the description of the algorithm, let us consider an example.

EXAMPLE 2.3.1 Let A = {a,b}, and X = {b, abb, abbba, bbba, baabb}. This set is not a

1535

1536

1537

1538

1539

code. For instance (abb)(baabb) =

= (abbba)(bbba)(abb) = (abb)(b)(abb)(baabb) .

w = abbbabbbaabb
igl 03
which has the two factorizations (see Figure Ecéi

(abbba)(abb). We consider the word

These two factorizations define a sequence of prefixes of w, each one corresponding
to an attempt at a double factorization. We give this list, together with the attempt at

a double factorization:

(abbba) = (abb)ba
(abbba) = (abb)(b)a
(abbba)bb = (abb)(b)(abb)
(abbba)(bbba) = (abb)(b)(abb)ba
(abbba)(bbba)abb = (abb)(b)(abb)(baabd)
(abbba)(bbba)(abb) = (abb)(b)(abb)(baabd)

Each but the last one of these attempts fails because of the underlined suffix, which

remains after the factorization.

a|b|b

bab|b

b|a

a|b|b

N

Figure 2.3 Two factorizations of the word abbbabbbaabb.

U/

The algorithm presented here computes all the remainders in all attempts at a double
factorization. It discovers a double factorization by the fact that the empty word is one

of the remainders.

Formally, the computations are organized as follows. Let X be a subset of A, and

let
Ur

UnJrl
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1520 Then we have the following result:

THEOREM 2.3.2 The set X C A" is a code if and only if none of the sets U,, defined above
142 contains the empty word.

s If X C AT is prefix (thus a code), then U; = X1 X \ 1 = (). Thus the algorithm ends
.24 immediately for such codes.

1
1545 EXAMPLE ﬁ—(@ntinued) The word ba is in Uy, next a € Us, then bb € Us and b 4
146 finally abb € Us and since 1 € Us, the set X is not a code, according to Theorem

1
1547 The proof of Theorem ﬁﬁbased on the following lemma.

LEMMA 2.3.3 Let X C A" and let (Uy)n>1 be defined as above. For all n > 1, one

has w € U, if and only if there exist integers p,q > 1 with p + q¢ = n + 1 and words
Tl Tpy YL, - - - Yq i1 X with x1 # y1 and w suffix of y, such that

L1 TpW = Y1 Yq - (2.12)

148 Proof. We show that for w € U,,, words satisfying (@%é—%b—by induction on n. First,
a0 if w € Uy, then by definition of Uj, one has xw = y for some z,y € X with z # y, and
1550w is a suffix of y, so the assertion holds for n = 1.
Letw € U,,, withn > 1. Then either xw = v or vw = z forsomez € X andv € U,,_;.
By induction,

xl...qu):yl...yq7

for integers p,q > 1 withp+ ¢ =nand z1,...,25,91,...,y, in X with zq # y; and v
suffix of y4. If zw = v, then
xlxpxw:ylyq’

showing that the condition is satisfied by z1,...,2p, Zptr1,91,. ..,y With 2,41 = 2z,
since w is a suffix of y,. On the other side, if vw = x then

xl...xpx:yl...qu7

1551 showing that the condition is satisfied by y1,...,vyq, T1,...,7p, Tpy1 With 2,11 = =z,
1552 since w is a suffix of z.
Conversely, we prove by induction on n > 1 that if, for p,¢ > 1 withp +¢=n+1,
there are words z1,...,xp, y1,...,y, in X with x; # y; and w suffix of y,, such that

xlxpw:ylyq’

153 thenw € U,.
The property is clearly true for n = 1. Assume n > 1. Since w is a suffix of y,, we
have y, = vw for some word v, and the equation becomes

:Cl...ajp:’yl...yq_lv'

1554 Setv = v'xy 41 - - - xp with o suffix of z, for some r suchthat1 <r < p. Thenz; -- -z, =
1555 Y1 - - - Yq—10' and thus v’ is in U, 49 by induction hypothesis.
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Since y, = v'xy41 - - 2pw, one has ;41 - - xpw € UrjrlqﬁX C Uy4¢—1. Then we show
by induction on i that for 1 <7 <p —r, wehave z,4; - - xpw € Upfgqi—o.

This holds for i = 1, and since z,4; isin X, 4 - - - xpw € Upqqqi—2 implies x, iy - -
zpw € Upigyi—1. Thus, we obtain z,w € U,y4—2 and finally w € Upyq—1. This con-
cludes the proof. .

1
Proof of Theorem %X is not a code, then there is a relation

T1T - Tp = Y192 Y z;,yj € X, T1# Y1 (2.13)

By the | a, the empty word is in Up4-1. Conversely, if 1 € Uy, there is a factor-
ization ( “with p + ¢ — 1 = n, showing that X is not a code. This establishes the
theorem. "

1
EXAMPLE %—(@ntinued) For X = {b, abb, abbba, bbba, baabb}, we obtain

Uy = {ba, bba, aabb} , XUy = {a,ba}, Ut X = {abb},
Uy = {a,ba, abb}, XUy = {a,1}, Uy, ' X = {bb, bbba, abb, 1,ba} .

Thus 1 € Uz and X is not a code.

EXAMPLE 2.3.4 Let X = {a,ab,ba} and A = {a,b}. We have
Ul:{b}7 U2:{a}> U3:{1vb}> Us=X, Us =Us.

The set Us contains the empty word. Thus X is not a code.

EXAMPLE 2.3.5 Let X = {aa,ba,bb,baa,bba} and A = {a,b}. We obtain U; = {a},
Uy = U;. Thus U, = {a} foralln > 1 and X is a code.

1
The next proposition shows that Theorem @ﬁovides an algorithm for testing
whether a recognizable set is a code.

PROPOSITION 2.3.6 If X C A™ is a recognizable set, then the set of all U, (n > 1) is finite.

This statement is straightforward when the set X is finite, since each U,, is composed
of suffixes of words in X.

Proof. Recal that ~x denotes the syntactic congruence of X.

Let p be the congruence of A* with the two classes {1} and A*. Let . =~x Nu. We
use the following general fact.

If L C A*is a union of equivalence classes of a congruence 6, then for any subset
Y of A*, Y7L is a union of congruence classes mod 6. (Indeed, let = € Y~'L and
2/ = zmod . Then yz € L for some y € Y, whence yz’ € L. Thus 2/ € Y~'L).

We prove that each U, is a union of equivalence classes of ¢ by induction on n > 1.
Forn = 1, X is a union of classes of ~x, thus X 1 X also is a union of classes for ~x,
and finally X ~1X \ 1is a union of classes of «. Next, if U, is a union of classes of ¢,
then by the previous fact both U, ' X and X ~'U,, are unions of classes of . Thus U1
is a union of classes of «. The fact that X is recognizable implies that ; has finite index.
The result follows. u

EXAMPLE 2.3.7 Let A = {a,b} and X = ba*. Then X is a recognizable suffix code.
Indeed, U; = a* and U; = (). Thus the sequence (U,,) has two distinct elements.
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2.4 Codes and Bernoulli distributions

In this section, we consider Bernoulli distributions. Recall that for a Bernoulli distri-
bution m on A* and a set X C A*, we set

zeX

The value 7(X) is a nonnegative number or +oo. For any family (X;);>o, of subsets of
A*, one has

W(U XZ-) <Y w(xy), (2.14)

i>0 i>0
with equality if the sets X; are pairwise disjoint.
EXAMPLE 2.4.1 Let A = {a,b} and X = {a,ba,bb}. Let m be a Bernoulli distribution

on A*. Setting p = 7(a), ¢ = m(b), we get m(X) = p+pqg+q¢*> = p+pg+ (1 — p)g
=p+qg=1

For a Bernoulli distribution 7, and a set X, recall that the probability generating
series of X is

Fx(t)=> m(X nA™)t".

n>0

Since m(XNA") < 1, the radius of convergence of Fx (t) is atleast 1 and 7(X) = Fx(1).
LEMMA 2.4.2 Let w be a Bernoulli distribution on A*. For subsets X,Y C A*, one has
Fxuy(t) = Fx(t)+ Fy(t)  ifXNY =0,
and
Fxy(t) = Fx(t)Fy (t) if the product XY is unambiguous .
Proof. The first equality is clear. For the second, observe that for all n,
XYy nA"= ] (XnA) Yy n4a).
i+j=n

The above union is disjoint when the product XY is unambiguous. Thus, from the
tirst equality, it follows that

TXY NA") = > w((XNA)Y NA)),
i+j=n

and since clearly 7((X N AY)(Y NA%)) = (X NAY)7(Y N A7), the formula follows. =

We observe that

Fxyoxp (t) = Fx, (1) -+ Fx,,, (1)
provided every word in X - - - X, has a unique factorization as a product of words in
X1, X,
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PROPOSITION 2.4.3 Let X C A™T bea code and let 7 be a Bernoulli distribution on A*. Then

1
Fx-(0) = Ty

1506 Proof. Since Fx(0) = 0, we have #x(t) = > >0 Fx(t)". Since X is a code, the
157 products X™ are unambiguous, that is every word in X™ has a unique factorization
1508 as a product of n words in X. By Lemmma %—Fﬁis implies that Fixn(t) = Fx(t)".
1509 Since moreover the sets X" are pairwise disjoint, we have Fix«(t) = F{; _ x=(t) =
1600 ano Fxn(t). Finally we obtain #X(t) = ano Fx(t)" = ano Fxn(t) = Fx~«(t).

1601 n

102 In the case of the uniform Bernoulli distribution, we get the following corollary re-
1603 lating the ordinary generating functions fx (¢) and fx-(¢) of X and X* respectively.

COROLLARY 2.4.4 Let X be a code over a finite alphabet A. Then

1
W(t) = ——F—=.
tar.2
1604 Proof Indeed by Equation ('I qu; We have, for the uniform Bernoulli distribution,
w05 fx(t) nd fx- = Fx- (kt), where k = Card(A). So the corollary follows from
1606 Propos1t10n "

THEOREM 2.4.5 If X is a code over A, then w(X) < 1 for all Bernoulli distributions m on
1608 A*

10s  Proof. Suppose first that X is finite. Then 7(X) is finite. Assume by contradiction
1610 that 7(X) > 1. Then Fx(1) > 1, and therefore there is a number r < 1 suc b
111 F'x(r) = 1. Since X is a code, one has Fx-(t) = 1/(1 — Fx(t)) by Proposition E%%
1612 Then Fy-(t) diverges for ¢ = r and thus the radius of convergence of F'x-(t) is strictly
113 smaller than 1, a contradiction for probability generating series.

114 Since m(X) is the upper bound of the values for its finite subsets, the result follows.

1615 n

116 In the case where the alphabet A is finite and where the distribution 7 is uniform,
1617 We obtain

st1.4.3 COROLLARY 2.4.6 Let X be a code over an alphabet with k letters. Then
p

Zk"’”'gl. n

zeX

EXAMPLE 2.4.7 Let A = {a,b}, and X = {b,ab,ba}. Define 7 by m(a) = 1/3, m(b) =
2/3. Then
2 10
XY=+ 4+ - = —
m(X) + -+ 9=
1618 thus X is not a code. Note that for m(a) = 7(b) = 1/2, we get 7(X) = 1. Thus it is

1610 impossible to conclude that X is not a code from the second distribution.
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2
The following example shows that the converse of Theorem %ﬁalse.
EXAMPLE 2.4.8 Let A = {a, b}, and X = {ab, aba, aab}. The set X is not a code since
(aba)(ab) = (ab)(aab) .

However, any Bernoulli distribution 7 gives 7(X) < 1. Indeed, set p = 7(a), ¢ = 7(b).
Then
m(X) = pg + 2p’q.

It is easily seen that we always have pg < 1 and also p?q < 2%, since p + ¢ = 1.

1
Consequently

(X)) <-4+ = <1.

1
4" 27
This example gives a good illustration of the limits of Theore Ej: 21r1 its use for
testing whether a set is a code. Indeed, the set X of Example ' where the test
fails, is obtained from the set of Example , where the test is successful, simply by
replacing b by ab. This shows that the counting argument represented by a Bernoulli
distribution takeg intg account the lengths as well as the number of words. In other
terms, Theorem allows us to conclude that X is not a code only if there are “too

many too short words”.

PROPOSITION 2.4.9 Let X be a code over A. If there exists a positive Bernoulli distribution
mon A* such that w(X) = 1, then the code X is maximal.

Proof. Suppose that X is not maximal. Then there is some word y ¢ X such that
Y = X Uy is a code. By Theorem , we have 7(Y) < 1. On the other hand,

m(Y) =m(X) +7(y) =1+7(y).
Thus 7(y) = 0, which is impossible since 7 is positive. ]

Proposition %Very useful for proving that a code is maximal. The direct
method for proving maximality, based on the definition, indeed is usually much more
complicated than the verification of the conditions of the proposition. A more precise
statement, holding for a large class of codes, will be given in the next section (Theo-
rem E% i %).

2
EXAMPLE %—(ﬁmtinued) Since 7(X) = 1 and X is prefix, X is a maximal code.

EXAMPLE 2 We consider again the Dyck code D over A = {a,b} described in
Example . Let m be a positive Bernoulli distribution on A*, and set p = 7(a),
q = m(b).

Let D, = DNaA* and D, = D N bA*. Note that D, is formed of the words = on
A such that |u|, — |u|, > 0 for each nonempty proper prefix u of z or equivalently
[u]a — |v] < 0 for each nonempty proper suffix v of z. In particular D, = Dj, since the
same holds for D, with b and a interchanged. Let us show that

D, = aD’b, D, =bDja. (2.15)
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Let indeed z be a word of D,. Clearly # = ayb for some y € A*. Since |z|, = |zls,
we have |y|, = |y|p and thus y € D*. Set y = y1y2- - -y, with y; € D. Then each y;
isin D,. Indeed, if y; is in Dy, then ay; - - - y;—1b is a prefix of x which belongs to D,,
a contradiction with the fact that D is a prefix code. Conversely, any word in aD};b
is clearly in D,. This shows that D, = aD}b. The second equality is proved in an
analogous way. .
. . maireDyck | .

Since all products in (%Imr%nbguous, we obtain Fp, (t) = Fy(t)Fp: (t)Fy(t).
Since D, is a code, we have Fp:(t) = 1/(1 — Fp,(t)). Thus Fp,(t) is one of the two
solutions of the quadratic equation

Y () =Y (t) +pgt* = 0.

This equation has two solutions (1 + /1 — 4pqt?)/2. For the series Fp,(t), the correct
sign is the minus sign because Fp, (0) = 0. Thus

1—+/1— 4pqt?

Fp,(t) = 5

Since D, = Dy, we have Fp, (t) = Fp,(t). Thus Fp(t) = 2Fp, (t) which gives finally

Fp(t) =1—+/1—4pqt?.

Thus (D) = 1 — /T — 4pq or equivalently (D) = 1 — |p — ¢| since (p — ¢)®> = (p +
q)* — 4pq =1 — 4pq.

For 7t(a) = w(b) = e have 7(D) = 1. This gives another proof that D is a max-
imal code (Example . Note that 7(D) < 1 for any other Bernoulli distribution.

EXAMPLE 2.4.11 The set X = |J,-,a"bA" is prefix, and therefore is a code over A =
{a,b}. It is a maximal code. Let indeed 7 be a positive Bernoulli distribution, and set
p = m(a). Then

m(a"bA") = p"(1 - p)

hence

T(X) =) p"(1-p)=(1/1-p)1-p) =1.

n>0

3
We now give a statement which proves that the inequality of Corollary %ﬁctu—
ally tight.

THEOREM 2.4.12 (Kraft-McMillan) Given a sequence (uy)n>1 of integers, there exists a
code X over an alphabet A of k symbols such that w,, = Card(X N A") if and only if

> upk <1 (2.16)

n>1

Moreover, the code X can be chosen to be prefix.
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-Kraft
Inequality (E[ I érials called the Kraft inequality. 3
Proof. The necessity of the condition follows from Corollary %Tonversely, observe

first that by the inequality, one has also Y~ ., u;k~* < 1 or equivalently, multiplying
both sides by k™, >, ., u;k™* < k" for all n > 1. Let us prove by induction on
n > 1 that there exists a prefix code X,, on an alphabet A of k symbols such that
Card(X,, N A") = u; for 1 < i < n.

This is true for n = 1 since u; < k. Next, suppose that the property holds for
n. The set of words of length n + 1 with a prefix in X, is U;<;«,, (X, N A A1
Consequently, the number of words of length n + 1 with a prefix in X, is

5= Z u k"

1<i<n

Since s + un11 < k"1 we can choose a set Y of up+1 words of length n + 1 without a
prefixin X,,. In this way, the set X, ;; = X,,UY is a prefix code with length distribution

(ui)1<i<nt1- .

2.5 Complete sets

Any subset of a code is itself a code. Consequently, it is important to know the struc-
ture of maximal codes. Many of the results contained in this book are about maximal
codes.

The notion of complete sets introduced in this section is in some sense dual to that
of a code. For instance, any set containing a complete set is itself complete. Even if
the duality is not perfectly balanced, it allows us to formulate maximality in terms of
completeness, thus replacing an extremal property by a combinatorial one.

Let M be a monoid and let P be a subset of M. An element m € M is completable in
P if there exist u, v in M such that umv € P. Itis equivalent to say that P meets the
two-sided ideal MmM,

MmMNP#0)

or, in other words, that
me F(P)=M'PM™!.

A word which is not completable in P is incompletable. The set of words completable
in P is of course F(P); the set F'(P) = M\ F(P) of incompletable words is a two-sided
ideal of M which is disjoint from P.

A subset P of M is dense in M if all elements of M are completable in P, thus if
F(P) = M or, in an equivalent way, if P meets all (two-sided) ideals in M. Clearly,
each superset of a dense set is dense.

The use of the adjective dense is justified by the fact that dense su sefs of M are
exactly the dense sets relative to some topology on M (see Exercise E%%)

EXAMPLE 2.5.1 Let A = {a}. The dense subsets of A* are the infinite subsets.

EXAMPLE 2.5.2 In a group G, any nonempty subset is dense, since GmG = G for m
in G.
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EXAMPLE 2.5.3 The Dyck code D over A = {a,b} is dense in A*. Indeed, if w € A%,
then v = a?®lbwdl*! is easily seen to be in D*. Furthermore, no proper nonempty
prefix of v is in D*. Thus v is in D, showing that w is completable in D.

It is useful to have a special term for codes X such that the submonoid X* is dense.
A subset P of M is called complete in M if the submonoid generated by P is dense.
Every dense set is also complete. Next, a subset X of A* is complete if and only if
F(X*) = A"

EXAMPLE 2.5.4 Any nonempty subset of a™ is complete, since it generates an infinite
submonoid.

THEOREM 2.5.5 Any maximal code is complete.

The theorem is a direct consequence of the following proposition.
PROPOSITION 2.5.6 Let X C A% be a maximal code. For any word w € A*, one has

X wA* N X*#£0.

Proof. The rggyltds clear if Card(A) = 1 or if w is the empty word. Otherwise, by
Proposition I%% there is a word w’ € A% such that y = ww' is unbordered. Set
Y = X Uy. It suffices to prove that X*yA* N X* # (). Since Y is not a code, we have
Ti Ty = Y1 Ym Withn,m > 1, z;,y; € Y and 21 # y;. Since X is a code, at least
one of the z;,y; is equal to y. Consider the leftmost occurrence of y among the z;, y;.

We may assume that it occurs among the x;, say at index k. Thus z1,...,z,1 € X,
zr = y. Let £ be the least index such that z1 -z i 3e1%¥r?aﬁx of y1---yp. Set z =
x1--xpu = y1 - Y. Clearly z € X*yA* (see Figure EEE) We prove that z € X* by

Trk—1 T =Y
u

é//\/\

D

Yp Ye

Figure 2.4 Showing that z € X*yA* N X*.

showing that y;,...,y, € X. Let p be the least index such that x; - - - x;_; is a prefix
of yi---yp. Setxy---xp_1v = Y1 ---yp, with v not empty because X is a code. Thus
T = VYpt1 - Ye- Onehas yy,...,y, € X by the minimality of k. Next, ypi1,...,yr—1
are proper factors of x;, = y and therefore are also in X. Finally, y, # y since y is
unbordered. So iy, € X and z € X*. "

tionl.1
EXAMPLE 2.5.7 We are able now to verify one of the claims made in Section E:“,

namely that there do exist finite codes which are not contained in a maximal finite
code.
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Let X = {a® ba? ab,b}. Itis a code over A = {a,b}. Any maximal code containing
X is infinite. Indeed, let Y be a maximal code over A containing X, and assume Y’
finite. Set m = max{|y| | y € Y} and let

u = bt
Since Y is maximal, it is complete. Thus u is a factor of a word in Y*. Neither b"* nor
a**t5™ can be proper factors of a word in Y. Thus there exist y, 3’ € Y U 1 and integers

p,q,r > 0 such that
u = bPyaly'b"

. . ig1_05 . . .
with a? € Y* (see Figure %)._The word a® is the only word in Y which does not
contain b; thus ¢ is a multiple of 5; this implies that |y|, + |y'|o = 4 mod 5.

pm CL4+5m pm™m

Y y'

Figure 2.5 The factorization of b a%™5™p™ in words in Y.

Lety = b"a®* and ¢/ = a/T7'b* with 0 < 4,5 < 4. We have i + j = 4 mod 5 whence
i+ j = 4. We will show that any choice of 4, j leads to the conclusion that Y is not a
code. This yields the contradiction.

Ifi =0, j = 4, then k > 1 and we have ba? - a® 4% = b- a®t+1) . qb . pF—1,

Ifi =1, j = 3, then b"a®*! . b= b" - a5 - ab.

Ifi =2,j =2, thenb- a®>T%b* = ba? - a° - b*.

Ifi=3,j=1,thenh > 1and v"a®**3 - b =b""1 ba® - a® - ab.

Finally, if i = 4, j = 0, then b"a®* . ab = b" - a®G+) L,

2
This example is a particula%ﬁie of a general constr chignl (see Proposition %)ﬁ

The converse of Theorem | is false (see Example . However, it is true under
an additional assumption that relies on the following definition.

A subset P of a monoid M which is not dense is called thin. If P is thin, there is at
least one element m in M which is incompletable in P, that is such that MmMNP = (),
or equivalently F'(P) # M. 3 "

The use of the adjective thin is justified by results like Proposition [2.5. or .5.12-

PROPOSITION 2.5.8 Let M be a monoid and P, QQ, R C M. Then the set PUQ is thin if and
only if P and Q are thin. If R is dense and P is thin, then R \ P is dense.

Proof. If P and @ are thin, then there exist m,n € M such that
MmMNP =0, MnMNQ=10.

Then mn is incompletable in P U @ and therefore P U Q) is thin. Conversely if P U Q) is
thin, there exists m € M which is incompletable in P U @) and therefore incompletable
in P and also in (). Hence P and @ are thin. If R is dense in M and P is thin, then
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170 R\ P cannot be thin since otherwise R = (R \ P) U P would also be thin by the above
1731 statement. u

17s2  Thin subsets of a free monoid have additional properties. In particular, any finite
1733 subset of A* is clearly thin. Furthermore, if X,Y are thin subsets of A* then the set
173 XY is thin. In fact, if u ¢ FI(X), v &€ F(Y), thenuv ¢ F(XY).

3
ex1.5.77ss| EXAMPLE 2.5.9 The Dyck code D over A = {a,b} is d (See Example ﬁ)_ﬁ isa
y E%EE p

1736 maximal code since it is a group code (see Example For each x € D, the code
1737 D\ x remains dense, in view of Proposition %’iﬁ\d thus remains complete. But of
138 course D ) .15 no more a maximal code. This example shows that the converse of
1730 Theorem oes not hold in general.

1
o Theorem %ﬁmﬁs a converse in the case of codes which are both thin and com-
a1 plete. Before going on to prove this, we give some useful properties of these sets.

PROPOSITION 2.5.10 Let X C A* be a thin and complete set. Let w be a word incompletable

in X. Then
A= ) da'xg ' =D'XxG, (2.17)

deD,geG

w42 where D and G are the sets of suffixes (resp. prefixes) of w.

Proof. Let z € A*. Since X* is dense, the word wzw is completable in X*, thus for some
u,v € A*
uwzwv € X*.

Now w is not a factor of a word in X. Thus there exist two factorizations w = g1d = gd;
such that
ugy,dzg,div € X*.

1743 This shows that z € d~1 X*¢g~ 1. "
PROPOSITION 2.5.11 Let X be a thin and complete subset of A*. For any positive Bernoulli

distribution ™ on A*, we have
m(X)>1.

3
Proof. We have 7(A*) = oo. Since the union in Equation ( 1s finite, there exists a
pair (d,g) € D x G such that 7(d"1 X*g™!) = co. Now

dd1Xx*g Vg c X*.

This implies
(d)n(d~' X"g™)m(g) < m(X").

The positivity of 7 shows that w(dg) # 0. Thus 7(X*) = co. Now

(7)< Y w(x") < S (w(X)".

n>0 n>0

1744 Assuming 7(X) < 1, we get 7(X*) < oo. Thus 7(X) > 1. .
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Note the following property showing, as already claimed before, that a thin set has
only few words.

PROPOSITION 2.5.12 Let X C A* be a thin set. For any positive Bernoulli distribution on
A*, we have
m(X) < 0.

Proof. Let w be a word which is not a factor of a word in X: w ¢ F(X). Setn = |w|.
Wehaven > 1. For0 < i <n — 1, consider

Xi={zxe€ X ||z|] =imodn}.
It suffices to show that 7(X;) is finite fori = 0,...,n — 1. Now
X; C AYA™\ w)*.
Since A™ \ w is a code, we have

(A" \w)'] =) (m(A" \w))" =Y (1 —m(w))*.

k>0 k>0

The positivity of © implies 7(w) > 0 and consequently
A[(A™ \ w)] = —— .
Thus 7(X;) < 1/7(w). .
We are now ready to prove

THEOREM 2.5.13 Any thin and complete code is maximal.

Proof. Let X be a, thin, complete code and let 7 be sjtive Bernoulli distribution.
By Proposition m(X) > !] %Ip by Theorem %ﬁe have 7(X) < 1. Thus

7(X) = 1. But then Proposition shows that X is maximal. .

1
Theorems 2.5.5and E% ié can be grouped together to give

THEOREM 2.5.14 Let X be a code over A. Then X is complete if and only if X is dense or
maximal.

Proof. Assume X is complete. If X is not dense, then it is thin, and consequently X is
maximal by the previous theo r@& flonversely, a dense set is complete, and a maximal

code is complete by Theorem | n

Before giving other consequences of these statements, let us present a first applica-
tion of the combinatorial characterization of maximality.

PROPOSITION 2.5.15 Let X C A* be a finite maximal code. For any nonempty subset B of
A, the code X N B* is a maximal code over B. In particular, for each letter a € A, there is an
integer n such that a™ € X.
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Proof. The second claim results from the first one by taking B = {a}. Let n = max{|z]| |
x € X} be the maximal length of words in X, and let § # B C A. To show_that
Y = X N B*is a maximal code over B, it suffices to show, in view of Theorem %,7
that Y is complete (in B*). Let w € B* and b € B. Consider the word

w = bt
The completeness of X gives words u,v € A* such that
uw"u = X1x9 Tk

for some z1,x2,...,2; € X. But by the definition of n, there exist two integers 4, j
(1 <i < j < k)such that
TiTig1 - x5 = b wb®

1764 for some r,s € {1,...,n} (see Fig. %‘)‘ﬁt then z;, zi1,...,2; € XN B* =Y. This
1765 shows that w is completable inY™. .

166 Let X C AT be a finite maximal code, and let a € A be a letter. The (unique) integer
w7 n such that ™ € X is called the order of a relative to X.

ya m RVAVAYAE

U bn+1 bn+1 v

Figure 2.6 The factorization of ub™ 1 wb™*1v.

THEOREM 2.5.16 Let X be a thin code. The following conditions are equivalent:

1769 (i) X is a maximal code.
1770 (ii) There exists a positive Bernoulli distribution 7 with m(X) =
w711 (iii) For any positive Bernoulli distribution m, we have m(X) = 1
1772 (iv) X is complete.
1 2
1773 Proof. (i) = (iv)is Theorem . (iv) = (iii) is a consequence of Theore and
1774 Proposition - (iii) = (ii) is not very hard, and (ii) = (i) is Proposition P.4.9. "
0
1775 Theorem gives a surprisingly simple method to test whether a thin code X is
1776 maximal. It suffices to take any positive Bernoulli distribution 7 and to check whether

o w(X) =1

EXAMPLE 2.5.17 The Dyck code D over A = {a,b} is maximal and Ec%[};plete, but

1770 satisfies 7(D) = 1 only for one Bernoulli distribution (see Example . Thus the
w7s0  conditions (i) + (ii) + (iv) do not imply (iii) for dense codes.

EXAMPLE 2.5.18 The prefix code X = |J,»oa"bA™ over A = {a,b} is dense since for
w2 all w € A*, al®lbw € X. Tt satisfies (iii), as we have seen in Example . Thus X
w7es  satisfies the four conditions of the theorem without being thin.
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THEOREM 2.5.19 Let X be a thin subset of A*, and let 7 be a positive Bernoulli distribution.
wss  Any two among the three following conditions imply the third

1786 (i) X isa code,
1787 (i) 7(X) =1,
1788 (iii) X is complete.

w7se  Proof. (i) + (il), = 4(iii). The condition ) = 1 implies that X is a maximal code, by
1790 Proposition - Thus by Lheoyem E%(é, X is complete.
171 (i) + (iii) = (ii) Theorem and copdition (i) imply that 7(X) < 1. Now X is thin
192 and complete; in view of Proposition | we have 7(X) > 1.
wes (i) + (iii) = (i) Let n > 1 be an integer. First, we verify that X" is thin and complete.
1704 To see completeness, let v € A*, and let v,w € A* be such that vuw € X*. Then
wes vuw € X for some k > 0. Thus (vuw)® € (X™)* C (X™)*. This shows that u is
1706 completable in (X™)*. Further, since X is thin and because the product of two thin
1707 sets is again thin, the set X is thin.
Thus, X" is thin and complete. Consequently, 7(X") > 1 by Proposition ﬁ*
On the other hand, we have 7(X") < 7(X)" and thus 7(X") < 1. Consequently
m(X™) = 1. Thusforalln > 1

T(X") =m(X)".
1
1798 Proposition %_SHOWS that X is a code. .

1799 Thin codes constitute a very important class of codes. They will be characterized
100 by some finiteness condition in Chapter |I I| We anticipate these results by proving a
101 particular case which shows that the class of thin codes is quite a large one.

st1.5.121802) PROPOSITION 2.5.20 Any recognizable code is thin.

Proof. Let X C A* be a recognizable code, and let A = (Q,%,T") be a deterministic
complete automaton recognizing X. Associate to a word w, the number

p(w) = Card(Q - w) = Card{q-w | ¢ € Q}.

1803 We have p(w) < Card(Q) and p(uwv) < p(w) for all words u, v.

14 Let J be the set of words w in A* with minimal p(w). The previous inequality shows
105 that J is a two-sided ideal of A*.

1806 Letw € J,andlet P = Q- w. Then P-w = P. Indeed P-w C Q -w = P, and
1807 on the other hand, P - w = Q - w?. Thus Card(P - w) = p(w?). Since p(w) is minimal,
wos  p(w?) = p(w), whence the equality. This shows that the mapping p — p - w from P
100 onto P is a bijection. It follows that there is some integer n such that the mapping
1810 p — p-w" is the identity mapping on P.

1811 Since P = Q - w, we have ¢ - w = ¢ - w"t! for all ¢ € Q. To show that X is thin, it
1812 suffices to show that X does not meet the two-sided ideal J. Assume that J N X # ()
113 andletz € X NJ. Theni-x =t € T. Next z € J and, by the previous discussion,
1814 there is some integer n > 1 such that i - 2! = ¢. This implies that z"*! € X. But this
1815 is impossible, since X is a code. .

2
1816 The converse of Proposition %ﬁalse, as shown by the following example.
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EXAMPLE 2.5.21 The code X = {a"b" | n > 1} is thin (for example, ba is not a factor
of X), but X is not recognizable.

EXAMPLE 2.5.22 In one interesting case, the converse of Proposition %dss Any
thin group code is recognizable. Indeed let X C A* be a group code. Let ¢ : A* — G
be a surjective morphism onto a group G, and let H be a subgroup of G such that
X* = p~1(H). By assumption, X is thin. Let m be a word that is incompletable in X.
We show that H has finite index in G, and more precisely that

G=J Help)™",

p<m

(where p runs over the prefixes of m). Indeed let g € G and w € ¢~ !(g). Letu € A*
be such that ¢(u) is the group inverse of gp(m). Then p(wmu) = gp(m)p(u) = 1,
whence wmu € X*. Now m is incompletable in X. Thus m is not factor of a word in
X and consequently there is a factorization m = pq such that wp, qu € X*. But then
h = p(wp) € H. Since h = gy(p), we have g € Hp(p) L. This proves the formula.

The formula shows that there are finitely many right cosets of H in G. Thus the
representation of G by permutations on the right cosets of H is also finite. Denote it
by K. Let & nb.g; — K be the canonical morphism defined by Hra(g) = Hrg (see
Section |I:i§i Then, setting N = {0 € K | Ho = H}, we have H = a™!(N) =
al(a(H)). Thus X* = ¢~ 14(X*), where ) = a - ¢. Since K is fin'teE 51315 shows that

X* is recognizable. Consequently, X is also recognizable (Exercise [.2.

REMARK 2.5.23 We have used in the preceding paragraphs arguments which rely ba-
sically on two technj : probabilities on the one hand which allowed us to prove
especially Theorem %ﬁ irect combinatorial arguments on words on the other
(as in the proof of Theorem ﬁ%%)

It is interesting to note that some of the proofs can be completed by using just one of
the two techniques. A careful analysis shows that all the preceding statements with the
exception of those involving maximality can be established by using only ar, nts
on probabilities. As an example, the implication (i) = (iv) in Theorem | can
be proved as follows without using aximality of X. If X is not complete, then

X* is thin. $, by Proposition 7(X*) < oo which implies 7(X) < 1 by
Proposition %ﬁ

Conversely, there exist, for some of the results given here, com rial proofs
which do not rely on probabilities. This is the case for Theorem | , where the
proof given relies heavily on arguments a probabilities. Another proof of this re-
sult will be given in Chapter E’%ﬂary . This proof is based on the fact that if
X C At is a thin complete code, then all words w € A* satisfy

(X*wX T NX*#£0.

This implies Theorem %ecause according to this formula, X U w is not a code
for w ¢ X and thus X is a maximal code.

.6
Example ﬁ—sﬁows that a finite code is not always contained in a finite maximal
code. The inclusion problem, for a finite code X, is the existence of a finite maximal code
containing X. The inclusion conjecture claims that the inclusion problem is decidable.
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We prove the following remarkable property.

THEOREM 2.5.24 (Ehrenfeucht-Rozenberg) Every rational code is contained in a maximal
rational code.

The proof relies on the following result.

PROPOSITION 2.5.25 Let X C A™ bea code. Let y € A* be an unbordered word such that
A*yA* N X* = (). Let
U=A"\ (XT"UA"yA"). (2.18)

Then the set
Y = X Uy(Uy)* (2.19)

is a complete code.

Proof. Set V.= A* \ A*yA*. Then by assumption X* C V and U =V \ X*. Let us first
observe that the set Z = Vy is a prefix code.

Assume indeed that vy < v’y for two words v and v’ in V. Since y is unbordered, vy
must be a prefix of v'. But then v is in A*yA*, a contradiction. Thus Z is prefix.

Now we show that Y is a code. Assume the contrary and consider a relation

YiY2 Y = YiYh Y

with y1,...,y;, € Y and y; # y}. The set X being a code, one of these words must be
inY '\ X. Assume that one of y1, ..., y, isin Y \ X, and let p be the smallest index such
that y, € y(Uy)*. From y ¢ F(X™) it also follows that y, ¢ F(X*). Consequently one
of y1,...,yp, isin y(Uy)*. Let ¢ be the smallest index that y;, € y(Uy)*. Then

Y1 Yp1Y, Yi¥o - Yg 1Y €Z

whence y1 -+ - yp—1 =y - - - y,_; since Z is prefix. The set X is a code, thus from y; # v}
it follows that p = g = 1. Set

Y1 =yuy o yuRy, Y = yuly - yuy,

with uy, ..., ug,ul, ..., u; € U. Assume y; < y. Since Z is prefix, the set Z* is right
unitary. From U C V, it follows that each w;y, v}y is in Z. Consequently

!/ !/
UL = Up, ..., U = Uy

Lett = uj_ ,y---yuy. We have

/

Yo Yn =Yg Yy -

The word y is a factor of ¢, and thus occurs also in ys - - - y,. This shows that one of
Y2, ..., Yn, SAY Yr, is in y(Uy)*. Suppose r is chosen minimal. Then y5---y,_1y € Z
and u_,y € Z are prefixes of the same word. With the set Z being prefix, we have

!
Uy = Y2 Yr—1-
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Thus uj, € X*, in contradiction with the hypothesis u; ; € U. This shows that Y is
a code.
Finally, let us show that Y is complete. Let w € A* and set

W = 01Yyv2y - - YUn—-1YUn

withn > 1 and v; € A* \ A*yA*. Then ywy € Y*. Indeed let v;,, v;,, ..., v;, be those
v;’s which are in X*. Then

ywy = (Yo1y - - YUi 1Y) Vi (YVi 419+ YVig—1Y) = = - Vip, (YVi 119 - - YY) -

Each of the parenthesized words is in Y. Thus the whole word is in Y*. .

t A1
Proof of Theorem %e X is rational, the set U d%;g Equation (%Ts

also rationgl,. Thus Y is a rational code. By Proposition , the set Y is thin. By
Theorem | , it follows that Y is a maximal code. n

Figure 2.7 An automaton recognizing U.

EXAMPLE 2.5.26 Let A = {a,b} and X = {a,ab}. The word y = bba is unbordered and
is incompletable in, ™~ A deterministic automaton recognizing U = A™\ (X*U A"y A¥)
is given in Figure .7 Accordingly, we obtain, after some rewriting the expression

U=b"UX*abbt UbX*ab*.

Consider a Bernoulli distribution 7 on A* and set p = 7(a), ¢ = w(b). The p easy
computation shows that 7(U) = 1/pg and thus 7(Y) = 1 for Y defined by , which

implies that Y is maximal.

EXAMPLE 2.5.27 Let A = {a,b} and X = {bb, bbab, babb}. The word y = aba is incom-
pletable in X*. However, X U y is not a code, since

(bb)(aba)(babb) = (bbab)(aba)(bb) .
This example shows that Proposition %Ts false without the assumption that y is
unbordered.

The following proposition shows how the property of being a complete code is re-
flected in an automaton.

Version 14 janvier 2009 J. Berstel, D. Perrin and C. Reutenauer

figl.7bis



1869

1870

1871
1872
1873
1874
1875

1876

1877
1878
1879
1880

1881

st8.4.1modss2

1883

1884

1885

1886
1887
1888
1889
1890
1891
1892
1893

1894

1895

1897

1898

1899

80 2. CODES

PROPOSITION 2.5.28 Let X C A*, and let A = (Q, 1, 1) be a trim automaton recognizing
X*. Then X is complete if and only if the transition monoid of A does not contain the null
relation.

Proof. 1f X is complete, then there exist, for each w € A*, two words u,v € A* such
that uwv € X*. Then there exists a path 1 - p - ¢ — 1. This implies that (p, q) is
in p(w) and consequently ¢ 4(w) is not null.

Conversely, if ¢ 4(A*) does not contain the null relation, then for each w € A*, there
exists at least one path p — ¢. Since A is trim, there exist two paths 1 — p and
q — 1. Then uwv € X*. Thus X is complete. n

For a (commutative) polynomial p € Q[A], and a Bernoulli distribution 7 on the
alphabet A we denote by 7(p) the number obtained by substituting 7(a) to the letter
a, for all a € A. More precisely, setting A = {a1,...,a,} and p = p(ay,...,ay), the
number 7(p) is 7(p) = p(7(a1), ..., w(ay)).

The following result will be used several times in the sequel.

PROPOSITION 2.5.29 Let p € Q[A] be a polynomial and let a € A be a letter. The following
conditions are equivalent:

(i) p is divisible by the polynomial 1 — %" 4 a,
(i) 7(p) = 0 for each positive Bernoulli distribution.

Proof. The implication (i) = (ii) is clear.

To prove (ii) = (i), fix a letter « € A, and set B = A\ a. Consider p as a polynomial
in the variable a with coefficients in Q[B]. Similarly, consider > ,.ja —1=a+uasa
linear polynomial in a with constant term v where v = ;.5 b — 1.

The Euclidean division of p by a + u gives p = ¢(a + u) + r where ¢ € Q[A] and
r € Q[B]. Since 7(p) = 0 and 7(a + u) = 0 for each positive Bernoulli distribution ,
the polynomial r vanishes at all points z = (21 ...,2,-1) € Q" ! such that z; > 0 and
21+ ...+ z,—1 < 1. It follows that r vanishes and consequently 1 — > _ , a divides
p. ]

Recall that o denotes the canonical morphism from Q((A4)) onto Q[[A]].

THEOREM 2.5.30 Let X be a finite maximal code on the alphabet A. Then a(X) — 1 is
divisible by a(A) — 1.

0
Proof. Let 7 be a positive ?grgg}%}}l distribution on A*. By Theorem %e have

m(X) = 1. By Proposition , this implies the conclusion. n

bis.1
EXAMPLE 2.5.31 For the code X = {aa, ba, bb, baa, bba} of Example Eli, gne has

aX)—1=0b+D(a+b—-1)(a+1).
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2.6 Composition

We now introduce a partial binary operation on codes called composition. This op-
eration associates to two codes Y and Z satisfying a certain compatibility condition a
third code denoted by Y o Z.

There is a twofold interest in this operation. First, it gives a useful method for con-
structing more complicated codes from simple ones. For example, we will see that the
composition of a prefix and a suffix code can result in a code that is neither prefix nor
suffix.

Second, and this constitutes the main interest for composition, the converse notion
of decomposition allows us to study the structure of codes. If a code X decomposes
into two codes Y and Z, then these codes are generally simpler.

Let Z C A* and Y C B* be two codes with B = alph(Y’). Then the codes Y and Z
are composable if there is a bijection from B onto Z. If /3 is such a bijection, then Y and
Z are called composable through (3. Then fines a morphism from B* into A* which
is injective since Z is a code (Proposition Et I ( ). The set

X=p8Y)CcZz*CcA" (2.20)
is obtained by composition of Y and Z (by means of 3). We denote it by
X=YosZ,
or by X =Y o Z when the context permits it. Since 3 is injective, X and Y are related
by bijection, and in particular Card(X) = Card(Y"). The words in X are obtained just

by replacing, in the words of ¥/, each letter b by the word 3(b) € Z. The injectivity of
3, the Corollary and ( ‘give the following result.

PROPOSITION 2.6.1 IfY and Z are two composable codes, then X =Y o Z is a code. n

EXAMPLE 2.6.2 Let A = {a,b}, B ={c,d,e} and
Z ={a,ba,bb} C A*, Y ={cc,d,dc,e,ec} C B*.

The code Z is prefix, and Y is suffix. Further Card(B) = Card(Z). Thus Y and Z are
composable, in particular by means of the morphism 3 : B* — A* defined by

B(c)=a,  Bd)=ba,  Ble)=bb.

Then X =Y o Z = {aa, ba, baa, bb,bba}. The code X is neither prefix nor suffix. Now
define 5’ : B* — A* by

B'(c)=ba, B(d)=a,  [(e)=0b.

Then X' =Y og Z = {baba, a,aba,bb,bbba}. This example shows that the composed
code Y og Z depends essentially on the mapping (3.
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The two expressions X = X o Aand X = B o X are exactly the particular cases
obtained by replacing one of the two codes by the alphabet in the expression

X=YoZ.

118 Indeed,if Y = B, then Z = 3(B) = X if now Z = A, then B can be identified with A4,
110 and Y can be identified with X. These examples show that every code is obtained in
1020 at least two ways as a composition of codes.

Notice also the formula

3
Indeed, Y is a code (Corollary %ﬁd
Y'oZ=pY") =X".
PROPOSITION 2.6.3 Let X € C*, Y C B*, and Z C A* be three codes, and assume that X
and Y are composable through ~v and that Y and Z are composable through (3. Then
(X 0y Y)osZ =X op, (Yo 2).
Proof. We may suppose that C' = alph(X), B = alph(Y’). By hypothesis the injective
morphisms v : C* — B*and 3 : B* — A” satisfy
WC) =Y, BB)=Z.
Let ¢ : D* — C* be a coding morphism for X; thus (D) = X. Then
Do LA,

w21 and By6(D) = By(X) = Xog, B3v(C) = Xog, (Y ogZ),and also 3vd(D) = B(vd(D)) =
w22 Y0(D)ogB(B)=(Xoy,Y)oZ. L]

123 Some of the properties of codes are preserved under composition.

PROPOSITION 2.6.4 Let Y and Z be composable codes, and let X =Y o Z.

1025 1. If Y and Z are prefix (suffix) codes, then X is a prefix (suffix) code.
1026 2. If Y and Z are complete, then X is complete.
1027 3. If Y and Z are thin, then X is thin.

4 hapter4
w28 The pro%f%()]f 3. uses Lemma %Which cannot be established before Chapterﬁ S

1929 (Lemma , Where more powerful tools will be available.

LEMMA 2.6.5 Let Z be a thin complete code over A. For eachword u € Z* there exists a word
war w € Z*uZ* having the following property. If mwn € Z*, then there exists a factorization
1932w = sut with ms,tn € Z*.
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Proof of Proposition %;Eet Y C B*, Z C A%, and let 3 : B* — A” be an injective
morphism with 3(B) = Z. Thus X = 5(Y) =Y o3 Z.

1. Assume Y and Z are prefix codes. Consider z,zu € X with u € A*. Since
X C Z*,wehave z,zu € Z* and since Z* is right unitary, this implies v € Z*. Let
y = B (zx),v = B Yu) € B*. Then y,yv € Y and Y is prefix; thus v = 1 and
consequently v = 1. This shows that X is prefix. The case of suffix codes is handled in
the same way.

2. Let w € A*. The code Z is complete, thus uwv € Z* for some u,v € A*. Let
h = 3~ Y(uwv) € B*. There exist, by the completeness of Y, two words 4, € B* with
uhv € Y*. But then g(u)uwvf(v) € X*. This proves the completeness of X.

3. If Z is not complete, then F/(X) C F(Z*) # A* and X is thin. Assume now that
Z is complete. The code Y is thin. Consequently F'(Y) 4 Letu € B\ F(Y), and
u = [(u). Let w be the word associated to u in Lemma E%g Then w ¢ F(X). Indeed,
assuming the contrary, there exist words m,n € A* such that

r=muwnc€ X C Z".

4
In view of Lemma %,*

x = msutn, withms,tn € Z* = 3(B").

Setting p = 37 1(ms),q = 87 (tn), we have piig € Y. Thus u € F(Y), contrary to the
assumption. This shows that w is not in X, and thus X is thin. n

We now consider the second aspect of the composition operation, namely the de-
composition of a code into simpler ones. For this, it is convenient to extend the nota-
tion alph in the following way: let Z C A* be a code, and X C A*. Then

alphy(X) ={z€ Z|Ju,ve Z" :uzv € X}.

In other words, alphy(X) is the set of words in Z which appear at least once in a
factorization of a word in X as a product of words in Z. Of course, alph 4 = alph. The
following proposition describes the condition for the existence of a decomposition.

PROPOSITION 2.6.6 Let X, Z C A* be codes. There exists a code Y such that X =Y o Z if
and only if
X cCcZ* and alphy(X)=2Z. (2.21)

2
The second condition in (@?Tneans that all words in Z appear in at least one factor-
ization of a word in X as product of words in Z.

Proof. Let X = Y og Z, where 3 : B* — A* is an injective morphism, Y C B* and
B = alph(Y). Then X = 3(Y) C B(B*) = Z* and further 3(B) = alphgg)(3(Y)), that
is, Z = alphz(X).

Conversely, let 5 : B* — A* be a coding morphism for Z, and set Y = B7H(X). Then
X C B(B*) = Z* and B(Y) = X. By Corollary , Y is a code. Next alph(Y) = B
since Z = alph,(X). Thus Y and Z are composable and X =Y o3 Z. n
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We have already seen that there are two distinguished decompositions of a code
X CA"as X =YoZ namely X = Bg X and X = X o A. They are obtained by
taking Z = X and Z = A in Proposition and assuming A = alph(X). These de-
compositions are not interesting. We will call indecomposable a code which has no other
decompositions. Formally, a code X C A* with A = alph(X) is called indecomposable
if X =Y oZand B = alph(Y) imply Y = Bor Z = A. If X is decomposable, and if
Zisacodesuchthat X =Y o Z,and Z # X, Z # A, then we say that X decomposes
over Z.

EXAMPLE %ntinued) The code X decomposes over Z. On the contrary, the code
Z = {a,ba,bb} is indecomposable. Indeed, let T' be a code such that Z C 7%, and
suppose ' # A. Necessarily, a € T. Thys,b ¢ T'. But then ba,bb € T, whence Z C T
Now Z is a maximal code (Example us Z =1T.

PROPOSITION 2.6.7 For any finite code X, there exist indecomposable codes Z, . . . , Zy, such
that
X=Zio0o---0Z,.

To prove this proposition, we introduce a notation. Let X be a finite code, and let
U(X)=> (lz] 1) = |z — Card(X).
zeX zeX

For each z € X, we have |z| > 1. Thus /(X)) > 0, and moreover ¢(X) = 0 if and only
if X is a subset of the alphabet.

PROPOSITION 2.6.8 If X,Z C A* and Y C B* are finite codes such that X =Y o Z, then
UX)>UY)+2).

Proof. Let 5 : B* — A* be the injective morphism such that X = Y o3 Z. From
Card(X) = Card(Y) it follows that

UX)—eY) = fal =D lyl =D (8w~ lyl)-

zeX yey yey

Now [B(y)| = > pep 1B(0)|ylo- Thus

(x) = vy =S (3080l — b)) = S (3 080) = Dlyls)

yeY beB yeY beB
= >80 =1 (X wh)-
beB yey

By assumption B = alph(Y'), whence 3 . |y|, > 1 for all b in B. Further |3(b)| > 1
for b € B by the injectivity of 3. Thus

UX) = LY) =) (1B0) —1) = (12l 1) = £(2). .

beB z€Z
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Proof of Proposition @.ﬁl‘he proof is by induction on ¢(X). If £(X) = 0, then X is
composed of letters, and thus is indecomposable. If ¢/(X) > 0 and X is decomposable,
then X = Y o Z for some codes Y, Z. Further Y a Z are not formed of letters
only, and thus ¢(Y) > 0, £(Z) > 0. By Proposition ﬁ%é, we have /(Y) < ¢(X) and
(Z) < ¢(X). Thus Y and Z are compositions of indecomposable codes. Thus X also
is such a composition. n

6
Proposition %ows the existence of a decomposition of codes. This decomposi-
tion need not be unique. This is shown in the following example.

EXAMPLE 2.6.9 Consider the codes
X = {aa,ba,baa,bb,bba}, Y ={cc,d,dc,e,ec}, Z ={a,ba,bb}
of Example %f_lﬁs we have seen, X =Y o Z. There is also a decomposition
X=Yo,7
with
Y' = {cc,d,cd,e,ce}, Z' ={aa,b,ba}
and vy : B* — A* defined by

The code Z is indecomposable, the code Z’ is obtained from Z by interchanging a and
b, and by taking then the reverse. These operations do not change indecomposability.

EXAMPLE 2.6.10 This example shows that in decompositions of a code in indecom-
posable codes, even the number of components need not be unique. For X = {ab},
we have

X = {cd} o {a?, ab} = {cd} o {u? v} o {a,ab}

and also
X = {cd} o {a®,b}.

This gives two decompositions of length 3 and 2, respectively.

2
The code X in Example %neither prefix nor suffix, but is composed of such
codes. We may ask whether any (finite) code can be obtained by composition of prefix
and suffi X CQ des. This is not the case, as shown in the following example, see also

. gherencourt
Exercise P.6.3.

EXAMPLE 2.6.11 The code X = {b, ba, a?b, a*ba*} does not decompose over a prefix
or a suffix code.

Assume the contrary. Then X C Z* for some prefix (or suffix) code Z # A. Thus
Z* is right unitary (resp. left unitary). From b, ba € Z*, it follows that a € Z*, whence
A ={a,b} C Z* and A = Z. Assuming Z* left unitary, b,a’b € Z* implies a® € Z*. It
follows that a®b € Z*, whence a® € Z* and finally a € Z*. Thus again Z = A.
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We now give a list of pro ies of codes which are inherited by t gtors of a
decomposition. Proposition %1‘5 in some sense dual to Proposition ;
PROPOSITION 2.6.12 Let X, Y, Z be codes with X =Y o Z

1. If X is prefix (suffix), then Y is prefix (suffix).
2. If X is maximal, then Y and Z are maximal.

3. If X is complete, then Z is complete.
4. If X is thin, then Z is thin.

Proof. We assume that X,Z C A*, Y C B*, : B* — A* an injective morphism with
B8(B) = Z, B(Y) = X.

1. Lety,yu € Y. Then 5(y), 5(y)5(u) € X, and since X is prefix, f(u) = 1. Now [ is
injective, whence u = 1.

2. If Y is not maximal, let Y/ = Y Uy be a code for some y ¢ Y. Then 5(Y’) =
B(Y) U B(y) is a code which is distinct from X by the injectivity of 5. Thus X is not
maximal.

Assume now that Z is not maximal. Set Z’ = Z U 2 for some z ¢ Z such that 7’ is
a code. Extend B to B’ = Wb (b ¢ B) and define 3 over B by B(b) = z. Then (3 is
injective by Proposition ecause Z' is a code. Further Y’ = Y U b is a code, and
consequently 5(Y') = X U z is a code, showing that X is not maximal.

3. is clear from X* C Z*.

4. Any word in Z is a factor of a word in X. Thus F'(Z) C F(X). By assumption,
F(X) # A*. Thus F(Z) # A* and Z is thin. n

PROPOSITION 2.6.13 Let X,Y, Z be three codes such that X =Y o Z. Then X is thin and
complete if and only if Y and Z are thin and complete.

3
Proof. By Proposition %ﬂﬁe code X is thin and complete vided Y and Z are.
Assume conversely that X is thina plete. Proposition i%?hows that Z i; gt%]§

and complete. In view of Theorem , X is a maximal code. By Proposition
Y is maximal, and thus Y is complete (Theorem %Lremains to show that Y is
thin. With the notations of the proof of Proposition | , consider a word u ¢ F(X).
Since Z* is dense, sut € Z* for some words s,t € A*. Thus sut = ((w) for some

w € B*. But now w is not completable in Y, since otherwise hwk € Y for some
h,k € B*, giving B(h)sut((k) € X, whence u € F(X). Thus Y is thin. n

By Proposition %ﬁ‘or thin codes Y, Z, the code Y o Z is maximal if and only if Y’
and Z are maximal. We have no example showing that this becomes false without the
assumption that Y and Z are thin.

PROPOSITION 2.6.14 Let X be a maximal code over A. For any code Z C A*, the code X
decomposes over Z if and only if X* C Z*. In particular, X is indecomposable if and only if
X* is a maximal free submonoid of A*.

Proof. 1f X decomposes over Z, then X* C Z*. Conversely, if X* C Z%, 1% gs =

alphy(X). Then X C Z*, and of course Z_= alphz(X). By Proposition £.6.6,
decomposes over Z. In view of Proposition , the code Z is maximal. By Z C Z,
we have Z = Z. .

J. Berstel, D. Perrin and C. Reutenauer Version 14 janvier 2009



2035
2036
2037
2038
2039
2040
2041
2042
2043
2044

2045

2046

2047
2048
2049
2050
2051
2052

2053

2054
2055
2056
2057
2058
2059
2060
2061
2062
2063

2064

2065
2066

2067

2068
2069

2070

2.7. PREFIX GRAPH OF A CODE 87

EXAMPLE 2.6.15 Let A be an alphabet. We show that the uniform code A" decom-
poses over Z if and only if Z = A™ and m divides n. In particular, A" is indecompos-
able for n prime and for n = 1.

Indeed, let A" = X = Y og Z, where Y C B* and 3 : B* € A*. The code X is
maximal and bifix, and thus Y also is maximal and bifix and Z is maximal. Lety € Y
be a word of maximal length, and set y = ub with b € B. Then Y U uB is prefix.
Let indeed y' = ub/, b’ € B. Any proper prefix of v/ is also a proper prefix of y, and
therefore is not in Y U uB. Next if 3’ is a prefix of some y” in Y U uB, then by the
maximality of the length of y, we have |y'| = |¢"| and ¥/ = ¥”. Thus Y U uB is a code.
Hence Y UuB =Y, because Y is maximal. It follows that f(uB) = f(u)Z C X. Now
X is a uniform code, thus all words in Z have the same length, say m. Since Z is
maximal, Z = A™. It follows that n = m|y|.

2.7 Prefix graph of a code

The prefix graph is used to give an efficient test whether a set X is a code. The graph
can also answer some other questions on the set X, by applying standayd fechnigue

for graph traversal. This will be detailed in later chapters (Exercises p.I.1[and p.1.3).
Let X be a finite set of words over some alphabet A. We define a graph G'x for X,
called the prefix graph of X as follows. The vertices of G'x are the nonempty prefixes

of words in X, and there is an edge from s to ¢ if and only if one of the two following
. . . . -crossingextendifig
situations occurs: either st € X or sz = ¢ for some x € X, see Figure 2§
s ‘ t s ‘ x
x t

Figure 2.8 The two types of edges in a prefix graph.

Edges of the first type are called crossing, those of the second type extending. A
crossing edge (s,t) is labeled with the word ¢, an extending edge (s, t) with sz = t is
labeled with . As usual, the label of a path is the product of the label of its edges. In
the case where sz = t and x, ¢ are in X, then (s, t) is an extending edge labeled with z,
and (s, ) is a crossing edge, also labeled with x.

A vertex s is intended to represent a prefix that has been constructed in the process
of trying to build a double factorization, say ys = z, for y,z € X*. A crossing edge
(s,t), with st = € X, gives the factorization yz = zt, and the prefix ¢t swapped to
the other side of the equation, whereas an extending edge (s,t) with sz = t merely

re.plaCTE the factorization by yt = zx, extending the current prefix from s to ¢. See

Figure 9.

EXAMPLE 2.7.1 Let X = {a, bb, abbba, babab} over the alphabet A = {a,b}. The non-
empty prefixes, in addition to the words in X, are the words b, ab, ba, abb, b b,

‘ fig-crossingextending

-Qg[r)gi’nasPatterson

and baba, so the graph has 11 vertices. The prefix graph G'x is given in Figure .10

We will prove that the set X is a code if and only if there is no path in the prefix
graph Gx from a vertex in X to a vertex in X. In our example, there is a path from a
to itself, or to abbba, so the set is not a code.
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Figure 2.9 The two ways of continuing a double factorization ys = z. On the
left, it is extended to yx = zt, and on the right to yt = zz.

b
by _wabb b sy Oy
i bab b
. bab —;— baba
P ;ab
g abbb ~———ab

babab

Figure 2.10 The prefix graph G'x for the set X = {a, bb, abbba, babab}. A cross-
ing edge is drawn dashed, an extending edge is drawn filled. The label of a
crossing edge is the name of its endpoint. The label of an extending edge (s, t)
is the word z in X for which sz = t.

We start with a lemma describing paths in the prefix graph G'x. First, we need a
definition. Two factorizations (z1,...,z,) and (y1,...,ym) of a word are disjoint if
x1-xp Fyr---yjforl <i < n,1 < j <m. We say simply that

L1 Tn = Y1 Ym

is a disjoint double factorization when the two factorizations (z1,...
.., Ym) of the same word are disjoint.

72671) 6111(1 (3/17

LEMMA 2.7.2 There is a path of length n > 1 from s to t in the prefix graph of X if and only
if there exist x1,..., Tk, Y1,-..,Ye in X such that

SYr Yt =z T O SYp-c-Yp =T Tgl

are disjoint factorizations with k + ¢ = n, and moreover s is a prefix of x1 (resp. a prefix of
tif k = 0). The label of the path is y - - - y,t in the first case and y, - - - yg in the second case.
The first (second) case occurs if and only if the path contains an odd (even) number of crossing
edges.

EXAMPLE 2.7.3 Consider as an example the path

bab

abb 2% ba 2% bab 2 ab 22 abbb

J. Berstel, D. Perrin and C. Reutenauer Version 14 janvier 2009
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in the previous graph. It is represented in the following picture.

b a b a b

a b b b alb a b a bbb b

This path has length 4, the first 3 edges are crossing edges, the last one is an extend-
ing edge. It corresponds to the disjoint factorizations abb|babablabbb = abbba|babab|bb.
Here ¢ = 1, k = 3, and the product of labels is babababbb. The path

a 22 abb 2% ba 2% bab 2% ab 22 abbbb - o

has two more edges.

alb b/b a b a bla b b b a

a bbb alb a b a bbb bla

It corresponds to the disjoint factorizations a|bb|babab|abbba = abbba|babab|bb|a which
shows that X is not a code.

Proof of Lemma %%sume first that there is a path of length n > 1 from s to ¢. If
n = 1, then either st = z, or sz = t with x € X. Thus there is a double factorization of
the desired form for n = 1.

Assume now n > 1, and that there is edge from ¢ to u. By induction, sy; --- y;t =
Xy TR Or SYyy---yp = x71 - - - xt, and either tu = x € X or tx = u for some x € X, u ¢
X. So there are four cases to check.

If syp---ypt = x1-- -z and tu = = € X, then sy;---ypx = x1---xRu, and these
factorizations are again disjoint because u is a proper suffix of x.

If sy1---yet = x1-- - x and tx = u for some z € X, then sy - - - ypu = x1 - - - 1z and
again the factorizations are disjoint because u is a proper suffix of ¢, so of z.

Ifsy;---yp=z1---x)tand tu = x € X, then sy - - - ypu = x1 - - - & and the factor-
izations are disjoint because u is a proper suffix of z. Moreover, if £ = 0 then s is a
prefix of x because s is a prefix of t and ¢ is a prefix of x.

Finally, if sy;---ys = x1---2xt and tx = u for some z € X, then sy;---yx =
x1 - - - zxu. The factorizations are again disjoint. If k = 0, then s is a prefix of ¢ and ¢ is
a prefix of u, so the word s is a prefix of .

Conversely, assume that there are a double factorization sy; - - - ypt = x1---x or a
double factorization sy; ---yp = x1---xpt, withk+ ¢ =n. If n =1, thenk =1,/ =0
in the first case, and k = 0,/ = 1 in the second case. Indeed, the value £k = 1,/ = 0 in
the second case is ruled out by the condition that s is a prefix of z;. Thus, there is a
crossing edge (s, t) in the first case, and an extending edge (s, t) in the second case.

Assumen > 1and sy - - -yt = 21 - - - . Since t # x}, one of these words is a proper
suffix of the other. Suppose first that ¢ is a proper suffix of xj, and set z;, = ut. Then
there is an edge from u to t in Gx and moreover sy; - - -y = o1 - - xp—u. If k = 1, then
s is a proper prefix of u, otherwise s remains a proper prefix of ;. Thus the induction
applies and there is a path from s to u of length n — 1, whence a path of length n from
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s to t. Assume next that x, is a suffix of ¢t and set t = ux;,. This defines an extending
edge (u,t). Thus sy; - - - yyu = x1 - - - x_1. Since the left-hand side is not empty, s is a
prefix of z1. The conclusion again follows by induction.

If the double factorization is sy; - - - y¢ = x1 - - - x1t, then since s is a proper prefix of
the right-hand side, one has ¢ > 0.

If y, is a proper suffix of ¢, then t = uy, for some u and there is an extending edge
(u,t). Replacing t by uyy gives sy; ---ys—1 = 1 --- zxu. Either s is a prefix of x;, or
k = 0, and then s is a proper prefix of wif £ > 1 or s = w if £ = 1. In the first case, there
is a path from s to u, in the second case there is just the edge (s, t).

Finally, suppose that ¢ is a proper suffix of y,. Then y, = ut and thus there is a
crossing edge (u,t). Next, sy;---u = x1---x}, 50 k > 1 and s remains a prefix of z;.
There is again a path from s to u of length n — 1 by induction. This completes the
proof. n

THEOREM 2.7.4 A set X of nonempty words is a code if and only if there is no path in its
prefix graph from a vertex in X to a vertex in X.

Proof. Assume there is a path from s € X to ¢ € X in the prefix graph G'x. Then there,
exists a disjoint double factorization of one of the forms described in Lemma %—HT
both cases, this gives a double factorization of a word as a product of words in X.

Conversely, assume that X is not a code, and consider a shortest word w in X that
has two distinct factorizations

w:l‘l...l‘n:yl...ym

with z1,...,2,,y1,. .., ym in X. We may assume that z; is a proper prefix of y;. Then
there exists a path from z; to y,, of lengthm +n — 2in Gx. "

Given a finite graph GG, many properties of G' can be checked in linear time with
respect to the size of GG, where the size is the total number of vertices and edges of
G. Among these properties are the existence of cycles, the existence of paths between
distinguished sets of nodes, and so on. All properties described in the previous section
are of these kind. This requires to estimate the size of the graph G'x of X.

PROPOSITION 2.7.5 Let X be a finite set of words with n elements, and let N = Y |z
be the sum of the lengths of the words in X. The prefix graph Gx has at most N vertices and
at most nIN edges.

Proof. The vertices of G'x are the nonempty prefixes of words in X; there are at most
N — 1 of them. Next, consider a vertex ¢ and an edge (s, ) entering ¢. If (s,t) is a
crossing edge, then st € X is longer that ¢, and if ¢ = sz for some x € X, then z is
shorter than ¢t. So a word z in X either contributes at most one crossing edge, or it
contributes at most one extending edge. So the total number of edges entering ¢ is at
most n, and the total number of edges in G x is at most n.N. .

COROLLARY 2.7.6 Given the prefix graph G x of a set X of n words of total length N, it can
be checked in time O(nN) whether X is a code.
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Proof. This is a direct consequence of the previous discussion. .

It remains to show how to construct the prefix graph G'x of a finite set X in linear
time with respect to its size, that is with respect to n/V, where n is the number of words
in X, and N is the sum of the lengths of the words in X.

The construction is in three steps. First, a simple automaton recognizing X is con-
structed. This automaton is deterministic but not complete, and has the shape of a
tree. Such an automaton is usually called a trie. The vertices of G'x are among the
states of this automaton. Next, the automaton is converted into what is called a pat-
tern matching machine. This is done in equipping the trie with a failure function. The
role of this function is to provide, in the case a transition does not exist for some letter
in some state, another state where one can look for a possible transition. As a result,
the pattern matching machine recognizes, with the aid of the failure function, the set
A*X of words ending in a word in X.

These two preliminary steps are used, in the final step, to compute efficiently the
edges of the graph Gx.

Given a finite set X of words over the alphabet A, the trie of X is the automaton
whose set of states is the set P of prefixes of words in X. The initial state is the empty
word, the end states are the words in X. The next state function is defined for p € P
and a € A if and only if pa is in P, and then p - a = pa.

The trie of X can be constructed very simply by inserting the words of X into a tree
that is initially reduced to the empty word.

TRIE(X)
1 T «— NEW AUTOMATON()
2 forz e X do

3 p—¢€
4 fori — 1to |z| do
5 a «— x[i]
6 if p - a exists then
7 p—p-a
8 else ¢ < NEW STATE()
9 p-a<+—q
10 p—q
11 SETTERMINAL (p)
12 return T

This algorithm clearly computes the trie in time O(/N), where N is the sum of the
lengths of the words in X.

EXAMPLE 2.7.7 The trie of X — {a, b, abbbba, babab} is given in Figure i

Given a finite set X of words over the alphabet A, the failure function is intended to
be used when the next-state function p - a is undefined in the trie of X. It gives a state
g where a new trial for the computation of the next state should be started.

The failure function f of X is defined on the set of nonempty prefixes of X. For
p € P,p # ¢, f(p) is the longest proper suffix of p which is in P. For the empty word,
fle) =«

Version 14 janvier 2009 J. Berstel, D. Perrin and C. Reutenauer



2176

2177

2178

2179

2180

2181

2182

92 2. CODES

Figure 2.11 The trie of X = {a, bb, abbbba, babab}. Viewed as an automaton, it
accepts words in X.

The pattern matching machine of X is the automaton derived from the trie of X by
extending the next-state function on P by

pa if pa € P,
a =
P f(p)-a otherwise.

Moreover, the state p is terminal if f(p) is terminal. The function COMPUTEFAIL-
URE(T') computes the failure function for the trie T'.

COMPUTEFAILURE(T)
1 f(e) e
2 F «— NEW QUEUE()
3 fora € Asuch thate - ais defined do
4 fle-a)—e
5 ADD(F,¢ - a)
6 while F' # () do
7 p — GET(F)
8 if ISTERMINAL(f(p)) then
9 SETTERMINAL (p)
10 for a € A such that p - a is defined do
11 q+ f(p)
12 while ¢ - a is undefined do
13 q < f(q)
14 fp-a)—q-a
15 ADD(F,p - a)

The pattern matching machine is obtained by constructing first the trie, and then the
failure function.

EXAMPLE2.7.8 The pattern matching machine of X = {a, bb, abbbba, babab} is given
in FigureEﬁ.ﬂi

A state p is terminal for the pattern matching machine if it is a word in A*X. It
appears useful to know the longest suffix of the state p that is in X. Call this o(p). The
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Figure 2.12 The pattern matching machine of X = {a,bb, abbbba,babab}.
Viewed as an automaton, it accepts words in A*X. Its accepting states are
in gray. The failure function is represented by dotted edges.

function o is undefined on non terminal states, and for terminal states, is is given by

o(p) = flp)  if f(p)isin X,
P o(f(p)) otherwise.

This shows that, provided we remember those states that are in X, is is quite easy,
and linear with respect to the number of states, to compute the function o.

We are now ready to compute the edges of the graph Gx. Each word z in X may
produce several crossing edges (s,t). This is a crossing edge provided the suffix ¢ is
also a prefix of a word in X. All these suffixes are enumerated by the failure function.
Thus one gets the following function for computing the crossing edges:

CROSSINGEDGES(X)
1 forxz e X do
2 t— f(x)
3 while ¢ # ¢ do
4 5 xt 1
5 ADDCROSSINGEDGE (s, t)
6 t— f(t)

The only tricky line is the computation of the vertex corresponding to the word zt 1.
This may be done by maintaining, for each x in X, an array of pointers to the vertices
of its prefixes, indexed by their length. So, from the length of z and the length of ¢ one
obtains the length of s, thus s in constant time.

The computation of extending edges is quite similar. Given a suffix ¢, we look for
all suffixes = of ¢t. Each of these suffixes gives an extending edge (s,t), with sz = t.
To loop through the suffixes of ¢ which are in X, one iterates the function o. Thus the
function is

EXTENDINGEDGES(X)
1 for tterminal states do
2 x —o(t)
3 while = # ¢ do
4 stz !
5 ADDEXTENDINGEDGE (s, t)
6 x — o(x)
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Again, the tricky point is the computation of s = tz~!. Do do this, one maintains for
each vertex p a pointer to the longest word in X for which p is a prefix. In the present
case, s is a prefix of ¢, so they share the same longest word in X, and the trick of the
array used previously applies again to give the vertex of s in constant time.

Altogether, the following function computes the prefix graph of the set X.

PREFIXGRAPH(X)
1 T « TRIE(X)
2 COMPUTEFAILURE(T)
3 CROSSINGEDGES(X)
4 EXTENDINGEDGES(X)

We can finally state the following result as a consequence of the preceding construc-
tions.

PROPOSITION 2.7.9 Given a set X of n words over some alphabet A, of total length N =
> zex ||, the prefix graph Gx can be constructed in time and space O(nN). ]

2.8 Exercises

. tionl.1
Section EI@

2.1.1 Letn > 1 be aninteger. Let I, J be two sets of nonnegative integers such that for
i,/ €eITand 5,5 € J,

i+j=4+ 35 modn
impliesi = i',j = j'. Let Y = {a'ba’ | i € I,j € J} and X =Y U a". Show that X is a
code.

. tionl1.2
Section Eﬁ

2.2.1 Show directly (that is without using Theorem %ﬁhat aset X = {z,y}isa
code if and only if  and y are not powers of a single word. (Hint: Use induction on

|z + [yl.)

2.2.2 Let K be a field and A an alphabet. Let X C AT be a code and let K (X) be the
subsemiring of K (A) generated by the elements of X. Show that K (X) is free in the
following sense: Let 3 : B* — A* be a coding morphism for X. Extend 3 by linearity
to a morphism from the semiring K (B) into K(A). Show that § is an isomorphism
between K (B) and K (X).

2.2.3 Show that a submonoid NNV of a monoid M is stable if and only if for all m,n € M
we have
nm,n,mn € N =m & N.

2.2.4 Let M be a commutative monoid. Show that a submonoid of M is stable if and
only if it is biunitary.
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2.2.5 For X C A" letY be the base of the smallest right unitary submonoid containing
X.

(a) Show that Y C (Y*)~1X.

(b) Deduce that Card(Y) < Card(X), and give an example showing that equality
might hold.

2.2.6 Let X be a subset of A*. Define a sequence (S,,),>0 of subsets of A* by setting
So=X* Spp1=(S.18,Nn8,5.1H)*.

Set S(X) = U,>0Sn- Show that S(X) is the free hull of X. Show that when X is
recognizable, the free hull of X is recognizable.

2.2.7 Let M be a submonoid of A* and let X = (M \ 1)\ (M \ 1)? be its minimal set of
generators. Show that X is recognizable if and only if M is recognizable.

2.2.8 Let M be a monoid. Show that M is free if and only if it satisfies the following
conditions:
(i) there is a morphism A : M — N into the additive monoid N such that A71(0) = 1,
(ii) for all z,y, 2,t € M, the equation zy = zt holds if and only if there exists v € M
such that xu = z,y = ut or x = zu, uy = t.

. tion1.3
Section

2.3.1 Let X be a subset of A" such that X N X X+ = (). Define a relation p C A* x A*
by (u,v) € pif and only if there exists z € X* such that

urv € X, ux #1, wv#l1, v #£ 1.

Show that X is a code if and only if (1,1) & p*, where p* denotes the transitive closure
of p.

. tionl.4
Section Ea

2.4.1 Letn > 1be an integer and /, J be two subsets of {0, 1,...,n — 1} such that for
each integer p in {0, 1,...,n — 1} there exist a unique pair (¢, j) € I x J such that

p=1i+jmodn.

LetV={i+j—n|i€l, jeJ i+j>n} ForasetK of integers, set a® = {a* | k €
K}. Let X C {a,b}* be the set defined by

X =al(baV)*ba’ Ua™.
Show that X is a maximal code.
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ex01.4.3 2.4.2 The Motzkin code is the prefix code M on the alphabet A = {a, b, ¢} formed of the
p p
words w € A* such that |w|, — |w], = 0 but |u|, — |ulp > 0 for any proper nonempty
prefix of w. Show that the generating series of M and M* are

1+¢—+1-—2t—3t? 1—t—+1-2t—3t?
fM(t) = 2 ) fM*(t) = 242

2243 (Hint: Use the fact that M = c¢U P where P = M NaA* and P = aM*b.)
243 Let A = {a1,a1,...,an,ay}. Let D be the Dyck code on A. Show that for the
uniform Bernoulli distribution on A*, one has

1
on—1"

m(D) =

224 (Hint: Set D, = D NaA* for a € A. Show that D, = a(D — Dg)*a.)

a|lb blalb b|Db b|b b|b b a
b b|b blae| b b|b blaljal|lb b

Figure 2.13 This pair of words in U is the product of three words of Y which

are (a,b)(b%,b%)(a,b), (b,a)(b?,b%)2(b,a) and (ba)(b,b)(a,b).

2.4.4 Let A = {a,b,c}, B= AxAand X = {a,b*}. Weidentify the set of pairs of words

(x,y) of A* x A* of equal length with their representation as words over B, that is we
identify ((11(12 st Ay, blbg cee bn) with ((11, bl)(ag, bg) cee (an, bn) Here Aly...,Qn, bl, ..
b, € A. Show that the set

*

U={(z,y) € X* x X* | [z] = [y}

is a free submonoid of B* generated by a bifix code Y. See Figure E; igafoliroan example.
Use this to prove the identity

— 1—t
D rat" = (1+1t)(1 —3t+t2)

n>0

2245 where f;, is the n-th Fibonacci number defined by fo =0, fi = 1and f,+1 = fn + fu-1
2246 forn > 1. (Hint: Show that U is generated by Y = (a, a) U (b?,b?) U (a, b)(b?, b?)*(a, b) U
247 (a,b) (0%, b7)*(b%, ba) U (b, a) (0%, b*)*(b, a) U (b, a) (0%, b*)*(ba, b?).)

. Efationl.s
248 Section

2.5.1 Show that the set X = {a?, b, ab, ba?, aba?} is complete and that no proper subset
2250 of X is complete. Show that X is not a code.
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2.5.2 Let M be a monoid. Let F be the family of subsets of M which are two-sided
2252 ideals of M or empty.
2253 (a) Show that there is a topology on M for which F is the family of open sets.
2254 (b) Show that a subset P of M is dense in M with respect to this topology if and only,
225 if F'(P) = M, that is if P is dense in the sense of the definition given in Section%.i

2.5.3 With the notations of Proposition %ﬂd V = A"\ A*yA*, show successively

that

2256 (Use the identity (0 + 7)* = 7%(o7*)* = (¢"7)*c™ for two power series o, 7 having no
2257 constant term). Derive directly from these equations the fact that Y is a code and that
2258 Y is complete.

2.5.4 Show that each thin code is contained in a maximal thin code.

. tion1.6
260 Section

2.6.1 Let vy : A* — G be a morphism from A* onto a group G. Let H be a subgroup of
262 G and let X the group code defined by X* = ¢~!(H). Show that X is indecomposable
2263 if and only if H is a maximal subgroup of G.

2.6.2 Show that any code X = {z,y} with two elements is composed of prefix and
2265 suffix codes.

| exoDerencourt | 2.6.3 Show that the code X = {a, aba, babaab} is not obtained by composition of prefix
and suffix codes. Show that it is contained in the finite maximal code Y given by

Y-1=(1+b+0baba(l+a+0b))(a+b—1)(1+ba).

bis.4
2266 Show that Y belongs to the family of finite maximal codes defined in Exercise 'I % i ﬂ =

21 2.9 Notes

2268 Codes are frequently called uniquely decipherable codes or UD-codes. The notion of
2260 a code originated in the theory of communication initiated by C. Shannon in the late
2270 1940s. The work of Shannon introduced a new scientific domain with many branches
22n and domains of applications. These include data compression, error-correction and
2272 cryptography. A comprehensive account of these topics can be found in (Pless et all,
2273 [[99§). The development of coding theory lead to a detailed study of constant length
2274 codes in connection with problems of error detection and correction. An exposition of
2215 this research can be found in MacWilliams and Sloand ([977) or an Lin{ ([987). The
2216 special class of convolution codes, which have close relation with finite automata as
22r7 presented here, is treated in some detail in P004). An early standard book
2278 on information and communication theory is (1990).
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2270 Variable-length codes were investigated in depth for the first time by Schiitzenber-
2280 ger—(- and also by [Gilbert and Moore| ([1959). The direction followed by Schiitzen-
2281 berger consists in linking the theory of codes with classical noncommutative algebra.
2282 The results presented in this book represent this point of view. An early account of
2263 it can be found in [966). Since codes are bases of free submonoids of a free
228¢. monoid, codes are also related with bases of free algebras or of free groups since the
2285 free semigroup may be embedded in both structures. For an exposition of free alge-
2286 bras, see [Cohn| ([983). For an introduction to the theory of free groups, see Magnus

287 etal. )

2288 Connections between variable-length codes and automata, and several of the appli-

2289 cations mentioned above are presented in (Béal, [[993) or (Béal et al], P009).

2200  Thenotion of a stable sub igl appears for the first time in Echutzenbergeg 1955)
201 which contains Proposfaonn%_The sa ult is also given in Bhevrin ([960),

2202 ([962) and Bl ([L96]). Proposition appears in [[ilsor| (- The defect
2202 theorem (Theorem P.Z.14) has been proved in several formulations in ([972),
220« Makanif ([976), and Ehrenfeucht and Rozenberg ([978). Some generalizations are
2205 discussed in Berstel et al] ([979), see also (R002). For related questions see
2206 also ([9789). fion1.3

2297 The test for codes given in Section ﬁgoTlﬁCk to Bardinas and Patterson] ([953)
2208 and is in fact usually known as the Sardinas and Patterson algorithm. The proof of
2200 correctness is surprisingl mvolved and has motivated a number of papers Bandy-
230 opadhyay (|19 : ). The design
201 of an efficient algorithm is descr1bed in (-) See also [Rodeh (1982) and
2302 [Apostolico and Giancarld ([984). The problem of testing whether a recognizable set is
2303 a code is a special case of a well-known problem in automata theory, namely testing
2304 whether a given rational expression is unambiguous. Standard decision procedures
2305 exist for this question, s ilenberg (1974) and [Aho et al] ([974). These techniques
230 will be used in Chapter i The connection between codes and rational expressions
2307 has been pointed out in Brzozowsk] ([967). Further, a characterization of those codes
2308 whose coding morphism preserves the star height of rational expressions is given in
2300 [Hashiguchi and Hond{ (] )1 4 3
230 The results of Section are we QMR information theory. Corollary %
211 with its converse stated in Theorem 4.1 are Known as the Kraft-McMillan theorem

2312 (McMillan (1954)). fion15
2313 The main results of Section .5 arg Jr; chiitzenberge, ). Our presentation is
2214 slightly more general. Proposition .5.25 and Theorem P.5.24 are due to Ehrenfe 1

235 and Rozenberg) They answer estion of Restivg ([[977). Theorem

231 appears in (mple %ﬁa special case of a copstruction due to
217 Restivd (1977), Exercise P.2.§ is Tom, W ([979), Exercise %ﬂnown as
2318 Levi's lemma (Cevi ([944)), Exercise |z_1| is from Bpehney Spehneq ([979).

a9 We follow (Aho and CorasicK, [979) for the construction of a trie equipped with a
2;20 failure function. The resulting structure is called the pattern matching machine. The pre-

221 sentation of the algorithm follows closely the description given in Hoffmann] ([989),
2322 see also (Capocelli and Hoffmann, [1985). These papers contain the transcription to

223 prefixes of the implementation of (Apostolico and Giancarld, [984). Similar imple-
2:2¢  mentation to (Hoffmanr], [984) are given in (Head and Webet], [[993, [1995). The imple-
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mentation proposed in (Rodeh|, [982) gives the same bounds but is more involved. It
is based on the suffix tree, that is a compact tree representing all suffixes of a finite set
of words.

The exact complexity of testing unique decipherability is still unknown, see (Galil,
[[985; Hoffmanrl, [[984) for discussion and partial results.

Dyck codes are named after the German mathematician EI\_ZAaéther von Dyck (see also
(Berstel and Perrirl, P007)). Motzkin codes of Exercise are named after Motzkin
paths (see for instance (Goulden and Jackson, P009)).

The combinatorial proof for the expresTon ff the generating series of the squares of

the Fibonacci numbers given in Exercise 1s from Fhapird ([981)), see also 5

([997), Example 4.7.14, and [Foata and Han| (1994).
- erencourt .
Exercise is from PDerencourf ([994). It is a counterexample to a conjecture
in Restivo et al] ([989) asserting that every three-word code is composed of prefix

and suffix codes. It is not known whether any three-word code is contained in a finite
maximal code.
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Chapter 3

PREFIX CODES

Undoubtedly the prefix codes are the easiest to construct. The verification that a given
set of words is a prefix code is straightforward. However, most of the interesting
problems on codes can be raised for prefix codes. In this sense, these codes form a
family of models of codes : frequently, it is easier to gain intuition about prefix codes
rather than general codes. However, we can observe that the reasoning behind prefix
codes is often valid in the general case.

For this reason we now present a chapter on prefix codes. In the first section, we
comment on their definition and give some elementary properties. We also show how
to draw the p1ct1f%ﬁ££ a prefix code as a tree (the literal representation of prefix codes).

In Section ﬁmmcﬁon of the automata associated to prefix codes is given.
These automata are deterministic, and we will see in Chapter %@ extend their
construction to general codes.

The third section deals with maximal prefix codes. Characterizations in terms of
completeness are given. Section %ms the usual operations on prefix codes.
Most of them have an easy interpretation as operations on trees. Hon2.5

An important family of prefix codes is introduced in Section %.—The—yhave many
combinatorial properties which illustrate the notigns.presented previously. The syn-
chronization of prefix codes is defined in Sectjon B.6. In'fact, this notion will be gen-
eralized to arbitrary codes in Chapter E_wpheTethe relationship with groups will be
established. The relation between codes and Bernoulli distribution can be extended to
probability distributions in the case of prefix codes. This is done in Section ﬁ,_ww
the notion of reccurrent event is introduced. The generating series of a rationgl prefix
code is N-rational and satisfies the Kraft inequality. We show in Section %m

3.1 Prefix codes

This introductory section contains equivalent formulations of the definition of a prefix
code together with the description of the tree associated to a prefix code. We then
show how any prefix code induces in a natural way a factorization of the free monoid.
Of course, all results in this chapter transpose to suffix codes by using the reverse
operation.

Recall that for words z, y, we denote by x < y (resp. x < y) the fact that x is a prefix
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102 3. PREFIX CODES

(resp. a proper prefix) of y. The order defined by < is the prefix order. We write x > y
(resp. x > y) whenever y < z (resp. y < z). Two words z,y are incomparable for the
prefix order, and we write z x y, if neither x is a prefix of y nor y is a prefix of z.

A subset X of A* is prefix if any two distinct words in X are incomparable for the
prefix order. If a prefix subset X contai 5 the empty word 1, then X = {1}. In the
other cases, X is a code (Proposition QE E E)

EXAMPLE 3.1.1 The usual binary representation of positive integers is exponentially
more succinct than the unary representation, and thus is preferable for efficiency.
However, it is not adapted to representation of sequences of integers, since it is not
uniquely decipherable: for instance, 11010 may represent the number 26, or the se-
quence 6,2, or the sequence 1,2,2. The Elias code of a positive integer is composed
of its binary representation preceded by a number of zeros equal to the length of this
representation minus one. For instance, the Elias code of 26 is 000011010. It is easily
seen that the set of Elias encodi f positive integers is a prefix code. In fact, it is the
same as the code of Example , with a replaced by 0 and b replaced by 1.

It is convenient to have a shorthand for the proper prefixes (resp. proper suffixes) of
the words of a set X. For this we use

XA"=X(A")Tand A X = (4")"1X.

Thus u € XA~ if and only if u < x for some z € X. Symmetrically, u € XA™ if and
only if u > z for some z € X.

There is a series of equivalent definitions for a set to be prefix, all of which will be
useful. The set X is prefix if and only if one of the following properties hold.

() XNXAt =0,
i) XNXA™ =0,
(iii) XA, X, XA™ are pairwise disjoint,
(iv) ifz,zu € X, thenu =1,
(v) ifzu = 2'v/ withz,2’ € X, thenz = 2’ and v = v/.
The following proposition can be considered as describing a way to construct prefix
codes. It also shows a useful relationship between prefix codes and right ideals.

PROPOSITION 3.1.2 For any subset Y of A*, the set X = Y \ Y AT is prefix. Moreover
XA* =Y A*, that is X and Y are both empty or generate the same right ideal, and X is the
minimal set with this property.

Proof. Let X = Y\Y AT. From X C Y, itfollows that X AT C Y AT, whence XNX A" C
X NY A" = 0. This proves that X is a prefix set. Next X A* C Y A*. For the converse,
let w € Y and let v be its shortest prefix in Y. Then v € X, whence u € XA*. Thus
Y C XA*and YA* = XA*.

Let Z be a minimal set of generators of Y A*, that is ZA* = Y A*. We show that
X C Z. Letindeed x be a word in X. Then x = zu for some u € A* and z € Z. Since
X also generates Y A*, z = 2/u/ for some 2’ € X, v/ € A*. Thus z = zu = 2'v’u, and
since X is prefix, uu’ = 1. This shows that X C Z. Thus X = Z. ]
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The set X = Y \ YA" is called the initial part of Y or also the base of the right
ideal Y A*.

The next statements describe natural bijections between the following families of
subsets of A*:

1. the family X’ of prefix subsets,
2. the family Z composed of the right ideals of A* together with the empty set,
3. the family R of prefix-closed subsets.

We describe here these three bijections.

R— (1URA)\R I— I\IAT

R A"\R

Figure 3.1 The bijections between the three families X', R and Z.

PROPOSITION 3.1.3 The following bijection hold.

(i) The map X — X A* is a bijection from X onto I, and the map I — I\ TA" is its
inverse bijection from T onto X.
(i) Set complementation maps bijectively R onto T.
(iii) The map X — A*\ X A* is a bijection from X onto R, and the map R — (1URA)\ R
is its inverse bijection from R onto X.

Proof. (i) For any nonempty subset X of A*, the set X A* is a right ideal. Conversely,
for any subset I of A*, the set X = I\ IA™ is prefix. Indeed, a proper prefix of an
element of X is not in I and therefore not in X. Thus the two maps are well defined.
Let us show that they are inverse to each other.

Let X be a prefix subset of A* and let I = XA*. Then X = I\ IA". Indeed
T\TAT = XA*\ XAT = (X UXAT)\ XAT = X\ XA" = X because X l%%{ﬁ = .

Finally, let I be a right ideal of A* and let X = I \ TA". By Proposition , XA =
IA* =1.

(ii) If w is not in the right ideal I, then none of its prefixes is in I. Thus R = A*\ I
is prefix-closed. Conversely, the complement of a prefix-closed set is a right ideal or is
empty.

(iii) The map sends () to A*. For a nonempty prefix code X, the bijection of (i) sends
it to the right ideal I = X A* # A*. Taking the complement sends it bijectively to
the nonempty prefix-closed set R = A* \ I = A* \ XA* by (ii). This shows the first
assertion.
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By (i) and (ii), the inverse maps Rto X = I \ AT withI = A*\ R = X A*. Let
Y = RA\ R. Aword z of X isnotin R. Set z = ua with u € A* and a € A. Since u is
notin I, it is in R. Thus z is in Y. Conversely, let y be a word in Y. Then y is notin R
and thus y is in 1. Since y € RA, any proper prefix of y is in R. Thus y has no proper
prefix in I, thatis y & IA™". This proves that y € X. .

Note that these bijections, with almost the same proofs, hold in any ordered set.

EXAMPLE 3.1.4 Let A = {a,b} and let Y = A*aA* be the set of words containing at
least one occurrence of the letter a. Then

X =Y \YAt =b*a.

EXAMPLE 3.1.5 Let A = {a,b}. The set I = A*abA* is the set of words containing a
factor ab. It is a right ideal. The complement of I is the prefix-closed set R = b*a*. The
prefix code X = I'\ TA" is X = b*a*ab. This code, as the previous one, belongs to the

family of semaphore codes studied in Section Eﬁ '

The preceding bijections have the following counterpart as relations between formal
series.

PROPOSITION 3.1.6 Let X be a prefix code over A and let R = A* \ X A*. Then

X—1=RA-1), and A" =X"R. (3.1)

Proof. We show first that the two equatlons are equivalent. By Proposfaon%l_§5k =
(1—X)~!. From this and from (1—A4)~! = A* we get, by multiplying 1 - X = R(1—A)
on the left by X* and on the right by A* the equation A* = X*R. The converse
operations, that is multiplying on the left by 1 — X and on the right by 1 — A4, give the
tirst equation back.

The product of X and A* is unambiguous by the property (v) of prefix codes listed
above. Thus, X A* = X A*, and

— ji*} ;eri* — {1* o 2&’{1* — (1 . ;5:){1*

Multiplying both sides by 1 — A on the right, we get R(1 — A) = 1 — X. This prove the
formula. n

.1.6
Note the following combinatorial interpretations of Formulas (ﬁ)._ﬂ?e first can be
rewritten as R A + 1 = X + R and says that a word in R followed by a letter is either
in R or in X and that each word in X is composed of a word in R followed by a letter.

The second formula says that each word w € A* admits a unique factorization

W= X1Tg - Tpl, Ti,...,Tp € X, u€R.

J. Berstel, D. Perrin and C. Reutenauer Version 14 janvier 2009



2457

2458

2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470

2471

2472
2473
2474
2475

2476

2477
2478

2479

3.1. PREFIX CODES 105

A
EXAMPLE 31% Let A = {a,b} and X = a"b as in Example %._Then R = a”.

Proposition B.1.§ gives

X-1=R(A-1)=a"(a+b—-1)=a"b—1.

o . . . 1
We single out the following corollary, which is also contained in Proposition ﬁ,ﬁ

for ease of reference.
COROLLARY 3.1.8 Let X andY be prefix subsets of A*. If XA* =Y A*, then X =Y. ]

Observe that there is a straightforward proof by series, since XA* = Y A* implies
XA* =Y A*, from which the equality follows by simplifying by A*.

We now give a useful graphical representation of prefix codes. It consists of associ-
ating a tree with each prefix code in such a way that the leaves of the tree represent
the words in the code.

First, we associate an infinite tree with the set A* of words over an alphabet A as
follows. The alphabet is totally ordered, and words of equal length are ordered lexico-
graphically. Each node of the tree represents a word in A*. Words of small length are
to the left of words of greater length, and words of equal length are disposed vertically
according to lexical ordering. There is an edge from u to v if and only if v = ua for
some letter a € A. The tree obtained in this way is the literal representation of A* also
called the Cayley graph of A* (see Figure B.7).

aaq
aaaq
aa a ab
a ac
ab ba
b bb

b be

ca

bb

¢ b

bbb cc

Figure 3.2 The literal representations of {a, b}* and of {a,b,c}*.

To a given subset X of A* we associate a subtree of the literal representation of A*
as follows. We keep just the nodes corresponding to the words in X and all the nodes
on the paths from the root to these nodes. Nodes corresponding to words in X are
marked if DRESS5RTY- The tree obtained in this way is the literal representation of X.

. flg2 i3
Figures 3.33.4 give several examples.

An alternative graphical representation draws tree from top to bottom instead of
from left to right. In this case, words of equal length are disposed horizontally from
left to right according to their lexicographic order. See Figure f%ﬁﬁ for an example.
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a baa
<)Jg/@ <)O/

Figure 3.3 Literal representations of X = {a,ba,baa} with explicit labeling

and with implicit labeling.

<&

Figure 3.4 Literal representation of X = a*b. On the left, the left-to-right
representation, and on the right the top-down drawing. fig2_06

280 It is easily seen that a code X is prefix if and only if in the literal representation of
a8 X, the nodes corresponding to words in X are all leaves of the tree.

.0 i02-01
EXAMPLE %—(@ntinued) Figure %ﬁﬂq’e graphical representation of the Elias code.

Figure 3.5 The Elias code.
2482

283 The advantage of the literal representation, compared to simple enumeration, lies
2s4 in the easy readability. Contrary to what might seem to happen, it allows a compact
285 representation of rather big codes (see Figure B.4).

EXAMPLE 3.1.9 Let X = {a, baa, bab,bb} be the code over A = {a,b} represented in
2487 Figure%ﬁa‘)._ﬂere R={1,bba} = XA ,and X —1 = (1+b+ba)(A—1). The equali‘ciiﬁon2 3

a8 between R and X A~ characterizes maximal prefix codes, as we will see in Section B.3.
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Figure 3.6 A code with 26 elements.

(a) ®

Figure 3.7 Two prefix codes: (a) the code {a,baa,bab,bb} and (b) the code
(b%)*{a?b, ba}.

ig2 09
EXAMPLE 3.1.10 Let X = (b*)*{a?b, ba}, as given in Figure %(‘B)._Here R =Ry URy,
where R; = XA~ = (1?)*(1Ua UbUa?) is the set of proper prefixes of X and Ry =
XAT — X — XA~ = (v*)*(abA* U a®A*). Thus Equation (B.I)) now gives

X—1=0)"1+a+b+a®+abA* +a®A*)(A-1).

3.2 Automata

The literal representation gives an easy method for verifying whether a word w is in
X* for some fixed prefix code X. It suffices to follow the path starting at the root
through the successive letters of w. Whenever a leaf is reached, the corresponding
factor of w is split away and the procedure is restarted.

We will consider several automata derived from the literal representation and relate
them to the minimal automaton. The particular case of prefix codes is interesting in
itself because it is the origin of most of the general results of Chapter E_L

Recall (Chapter Ill) that for any subset X C A*, we denote by A(X) the minimal
deterministic automaton recognizing X.

PROPOSITION 3.2.1 Let X be a subset of A*. The following conditions are equivalent:
(i) X is prefix.
(ii) The minimal automaton A(X) is empty or has a single final state t and ¢ - A = ().
(iii) There exist a deterministic automaton A = (Q,1,T') recognizing X with T - A = .
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Proof. (i) = (ii). Suppose that X is nonempty. Set A(X) = (Q,¢,T). First, we claim
that for g € T, we have {w € A* | ¢-w € T} = {1}. Indeed letz € X and w € A* be
words such that i - ¢ = ¢ (remember that ¢ € T) and ¢ - w € T. Then zw € X, whence
w = 1. This shows the claim.

Thus, two final states are not separable and from the minimality of A(X), it follows
that A(X) has just one final state, say ¢. Assume thatt- A # (), and that¢-a = p for
some letter ¢ € A and some state p. Since p is coaccessible, we have p - v = t for some
v € A*. Thust - av = t, whence av = 1, a contradiction.

(i) = (iii) is clear.

(iii) = (i). From T - A = (), it follows that T - AT = (). Thus,if z € X,and w € A"
theni-zw = and zw ¢ X. Thus X N X AT = (). .

It is easy to construct an automaton for a prefix code by starting with the literal
representation. This automaton, call it the literal automaton of a prefix code X, is the
deterministic automaton

A=(XA"UX, 1,X)
defined by
ua ifua € XA-UX,
u-a= ]
0 otherwise.

Since X A~ U X is prefix-closed, we immediately see that 1 -« € X ifand only if u € X,
thatis L(A) = X. The pictorial representation of a literal automaton corresponds, of
course, to the literal representation of the code.

EXAMPLE 3.2.2 Thecade X = {ab, bab,bb} over A = {a,b} has the ljt 3l representa-
tion given in Figure Esg(a) and the literal automaton given in Figure .

(@)

Figure 3.8 (a) Literal representation of X, (b) Literal automaton of X.

The literal automaton A of a prefix code X is trim but is not minimal in general. For
infinite codes, it is always infinite. Let us consider two states of A. It is equivalent to
consider the two prefixes of words of X, say u and v, leading to these states. These
two states are inseparable if and only if

X =0vlX.

Note that this equality means on the literal representation of X that the two subtrees
with roots u and v, respectively, are the same. This provides an easy procedure for
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221 the computation of the minimal automaton: first, all final states are labeled, say with
222 label 0. If labels up to i are defined we consider subtrees such that all nodes except
2523 theroots are labeled. Then roots are labeled identically if the (labeled) subtrees are iso-
2524 morphic. Taking the labels as states, we obtain the minimal automaton. The procedure
225 is described in Examples B.2Z.2H3.2.4]

Figure 3.9 The minimal automaton of X = {ab, bab, bb}.

1 1
2526 EXAMPLE %—(Eontinued) In view of Proposition %fﬁe three terminal states are
2527 inseparable. The states a and ba are inseparable because a ' X = (ba)_! 1 b No
228 other relation exists. Thus the minimal automaton is as given in Figure B9

g2 12
EXAMPLE 3.2.3 The literal automaton of X = (b?)*(a?b U ba) is given in Figure 'EC I(]

30 Clearly the final states are equivalent, and also the predecessors of final states and
2531 their predecessors. On the main diagonal, however, the states are only equivalent
32 with a step 2. This gives the minimal automaton of Figure EE i I

Figure 3.10 The literal automaton of the prefix code X = (b?)*{a?b, ba}.

ig2 12
Figure 3.11 Minimal automaton corresponding to Figure EC l(]
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Figure 3.12 The computation of a minimal automaton.
. ig2_14 . .
EXAMPLE 3.2.4 In Figur € labeling procedure has been carried out for the 26
2534 ele(EeEtlgode of Figure B.6- is gives the subsequent minimal automaton of Fig-
2535 Ure 8

Figure 3.13 A minimal automaton. fig2_15

255 We now consider automata recognizing the submongid X* generated by 3 prefix
2537 code X. Recall that X* i ght unitary (Proposition . Proposition j%ﬁthe
238 analogue of Proposition %7

PROPOSITION 3.2.5 Let P be a subset of A*. The following conditions are equivalent:

2540 (i) P isaright unitary submonoid.
2501 (ii) The minimal automaton A(P) has a unique final state, namely the initial state.
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(iii) There exists a deterministic automaton recognizing P having the initial state as unique
final state.

Proof. (i) = (ii). The states in A(P) are the nonempty sets u~1 P, for u € A*. Now if
u € P, then u™!P = P because uv € P if and only if v € P.

Thus, there is only one final state in .A(P), namely P which is also the initial state.

(i) = (iii) is clear.

(iii) = (i). Let A = (Q, 1, 1) be the automaton recognizing P. The set P thenis a
submonoid since the final state and the initial state are the same. Further let u, uv € P.
Theni-u =i and i - wv = 7. This implies that i - v = i because A is deterministic. Thus,
v € P, showing that P is right unitary. ]

If A= (Q,i,T) is any deterministic automaton over A, the stabilizer of a state ¢ is
the submonoid
Stab(q) ={w e A" |¢-w=4q}.

PROPOSITION 3.2.6 The stabilizer of a state of a deterministic automaton is a right unitary
submonoid. Every right unitary submonoid is the stabilizer of a state of some deterministic
automaton.

. . . . 2
Proof. It is an immediate consequence of the proof of Proposition % n

This proposition shows the importa § right unitary submonoids and of prefix
codes in automata theory. Proposition%ﬁsents a method for deriving the mini-
mal automaton A(X*) of X* from the minimal automata A(X) of the prefix code X.

PROPOSITION 3.2.7 Let X be a nonempty prefix code over A, and let A(X) = (Q,1,t) be
the minimal automaton of X. Then the minimal automaton of X™* is

A(X") = (@Q,t,1) if Stab(i) # 1, (8q2)2.1
1@\ i t,t) if Stab(i) = 1. (8q2)2.2
and the action of A(X™), denoted by o, is given by
goa=gq-a forq #t (3.4)
toa=i-a (35) [eqz24 |

Proof, Let B =), ¢, t) be the automaton obtained from A(X), defining the action o by
(%’:Wj “The

n clearly
LB)={w|tow=1t}=X".

Let us verify that the automaton B is reduced. For this, consider two distinct states p
and ¢. Since A(X) is reduced, there is a word u in A* separating p and ¢, that is such
that, say

pu=t q-u#t. (3.6)
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2559 It follows that p o u = ¢, and furthermore po v # t forall v < w. If gou # ¢, then u
260 separates p and ¢ in the automaton B also. Otherwise, there i %allest prefix v of u
2561 such that g o v = t. For this v, we have ¢ - v = t. In view of (B.§), v # u. Thus v < w.
62 Butthen g ou =t and p o v # ¢, showing that p and ¢ are separated by v.

2563 Each state in B is coaccessible because this is the case in .A(X). From 1 # X, we have
264 1 # t. The state ¢ is accessible in B if and only if the set {w | tow = i} is nonempty, thus
2ses  if and only if Stab(i) # 1. If this holds, B is the minimal automaton of X*. Otherwise,
2566 the accessible part of B is its restriction to @ \ i. .

2.2
267 The automaton A(X™) always has the form given by (%)TFT is finite. In this case, it
2568 is obtained by idelnti%grég the initial and the final state. For a description of the general

2569 case, see Exercise .
1 . .. . - ig2-16
2570 EXAMPLE %—@mtznued) The minimal a tpmaton of X* is given in Figure %._Tﬁe

11 code X is finite and A(X™) is given by (B-3).

Figure 3.14 The minimal automaton of X* with X = {ab, bab, bb}.

2
2572 EXAMPLE %—(Fontinued) The automafton A(X™) is pbtained without removing the
I(%.

2573 initial state of A(X), and is given by - See Figure B.15.

EXAMPLE 3.2.8 C@gi?gr the code X = ba*b over A = {a,b}. Its minimal automaton

2575 is given in Figure | a).” The stabilizer of the initial state is just the empty word, 1, ,
2576 The minimal automaton A(X™) given in Figure %‘Cﬁ)‘ '

is derived from Formula (B.3).

4
A construction which is analogous to that of Proposition @Eﬁows us to define
the literal automaton of X* for a prefix code X. It is the automaton

A=(XA",1,1)

Figure 3.15 The minimal automaton of X*, with X = (b?)*(a?b U ba).
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(a) (b)

Figure 3.16 (a) The minimal automaton of X = ba*b, and (b) the minimal

automaton of X*. fig2_18

whose states are the proper prefixes of words in X, and with the action given by

ua ifua € XA™,

u-a=+<1 ifuacX, (3.7)

() otherwise.

2577 This automaton is obtained from the literal automaton for X by identifying all final
2578 states of the latter with the initial state 1. It is immediate that this automaton recog-
2579 nizes X*. . :

. . . . . tion3.5bis
80 The following property of rational prefix codes will be useful later (Section Bléi

PROPOSITION 3.2.9 For any rational prefix code X over A, there exists an integer N such
2,2 that the length of any strictly increasing sequence of suffixes of words of X for the prefix order
2583 15 bounded by N.

8 Proof. Let A = (Q, 4, T) be a finite automaton with IV states recognizing X, and assume
ssss  there is a sequence of N + 1 suffixes sg, ..., sy of words of X such that each s; is a
asss  proper prefix of s;,1. Each s; is the label of a path from some state ¢; into a final
27 state t; in A. Moreover there is, for each j, a word p; that is the label of a path from
ssss 1 to ¢j. Note that p;s; is in X for each j. By the definition of NV, there exist j, k with
80 0 < j < k < N such that ¢; = g;. Thus both p;s; and p;s; are in X, and p;s; is a
as00  proper prefix of p;sy, contradicting the fact that X is prefix. "

EXAMPLE 3.2.10 Consider the prefix code X = A*aba \ A*aba over A = {a,b}. The
92 sequences of maximal length of strictly increasing sequences of suffixes, for the prefix
2503 order, are €, a, a"aba with n > 1. Another sequence is ¢, ba.

»u 3.3 Maximal prefix codes

2595 A prefix subset X of A* is maximal if it is not properly contained in any other prefix
06 subset of A, thatis, if X CY C A*and Y prefix imply X =Y.

2507 As for maximal codes, a reference to the underlying alphabet is necessary for the
208 definition to make sense.

200 The set {1} is a maximal prefix set. Every other maximal prefix set is a code. A
2600 maximal code which is prefix is always maximal prefix. The converse does not hold:
2601 there exist maximal prefix codes which are not maximal as codes. However, under
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2602 mild assumptions, namely for thin codes, we will show that maximal prefix codes are
2603 maximal codes.

204 The study of maximal prefix codes uses a left-to-right oriented version of dense and
2605 complete codes.

2606 Let M be a monoid, and let NV be a subset of M. An element m € M is right com-
2607 pletable in N if mw € N for some w in M. It is equivalent to say that N meets the right
2608 ideal mM. A subset N is right dense if every m € M is right completable in IV, that
2600 is if N meets all right ideals. The set N is right complete if the submonoid generated
2610 by N is right dense. The set IV is right thin if it is not right dense. Of course, all these
2611 definitions make sense if right is replaced by left.

The following implications hold for a subset N of a monoid M:

N rightdense — N dense
N right complete = N complete
N thin = N right thin.

In the case of a free monoid A*, a subset N of A* is right dense if and only if every
word in A* is a prefix of some word in N. Thus every (nonempty) left ideal is right
dense. Similarly, IV is right complete if every word w in A* can be written as

w:m1m2mrp

2612 for somer >0, mq,...,m, € N,and p a prefix of some word in V.

PROPOSITION 3.3.1 For any subset X C A* the following conditions are equivalent:
2614 (i) X A*is right dense,
2615 (i) A*=XA"UXUXAT,
2616 (iii) forall w € A*, there exist u,v € A*, v € X with wu = xv.

2617 Proof. (i) = (iii). Let w € A*. Since X A* is right dense, it meets the right ideal wA*.
2618 Thus wu = xv for some u,v € A*,and z € X.

2619 (i) = (ii). If wu = zv, thenw € XA~, w € X or w € XA" according to w < z,
2620 W =X,0rw > x.

2621 (il) = (i). The set of prefixes of X A*is XA~ U X U XA™T. .

PROPOSITION 3.3.2 Let X C A" be a subset that does not contain the empty word. Then
2623 X A* is right dense if and only if X is right complete.

2624 Proof. Suppose first that X A* is right dense and consider a word w € A*. If
225 XA~ UX then wu € X for some u € A*. Otherwise w € X AT by Proposition %
2626 Thus, w = zw' for some 2 € X, w’' € A*. Since z # 1, we have |w'| < |w|. Arguing by
2627 induction, w'u € X* for some u in A*. Thus, w is a prefix of some word in X*.

2628 Conversely, let w € A%, and assume that wu € X* for some v € A*. Multiplying if
2620 necessary by some word in X, we may assume that wu # 1. Then wu € Xt C X A*.

2630 ]

2631 Note that Proposition @%ﬁes not hold for X = {1}. In this case, XA* = A* is
2632 right dense, but X* = {1} is, of course, not.

2633 The next statement describes natural bijections between the following families of
2634 subsets of A*:
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2635 1. the family M of maximal prefix sets,
2636 2. the family D of right ideals which are right dense,
2637 3. the family P of prefix-closed subsets which do not contain a right % Sil.

2638 These bijections are actually restrictions of the bijections of Proposition :

PROPOSITION 3.3.3 The following bijections hold.
2640 (i) The map X — X A* is a bijection from M onto D, and the map I — I\ IA™ is its

2641 inverse.

2642 (ii) Set complementation maps bijectively P onto D.

aeas (iil) The map X — X A~ is a bijection from M onto P and the map P — PA\ P is its
2644 inverse.

26s5  Proof. (i) Let X be a maximal prefix set. Any word u € A* is comparable with a word
26s6  Oof X since otherwise X U u would be a prefix, a contradiction with the hypothesis.
2647 Thus X A* is right dense. The converse holds for the same reason.

268 (ii) is a translation of the fact that a set is right dense if and only if its complement
2649 does not contain a right ideal.

2650 (iii) If X is a maxim rffix subset of A*, then X A* is right dense. Thus A* \ X A* =
2651 XA~ by Proposition §EI§F Ii]

2652 The following corollary appears to be useful.

COROLLARY 3.3.4 Let L C A" andlet X = L\ LA". Then L is right complete if and only
2654 1f X is a maximal prefix code.

2
2655 Proof. L is right complete_j I}d only if LA* is right g (Proposition %’)._From
2656 X A* = LA* (Proposition and from Proposition e statement follows.

2657 ]

2658 A special case of the corollary is the following important statement.

THEOREM 3.3.5 Let X C A™ be a prefix code. Then X is right complete if and only if X is

2660 @ maximal prefix code.

2661 Proof. This results from the previous corollary by taking for L a prefix code X. ]

. 4 . .
262 We now give the statement corresponding to Proposition ﬁ’@ maximal prefix
2663 codes.

st2.3.5 THEOREM 3.3.6 Let X be a prefix code over A, and let P = XA~ be the set of proper
p prop
prefixes of words in X. Then X is maximal prefix if and only if one of the following equivalent

conditions hold:
X-1=PA-1), and A" =X"P. (38)

Proof. Set R = A* 14* If X is maximal prefix, then X A* is right dense and =1
P by Proposition - The conclusion then follows diyectly from Proposition .
Conversely, if X — 1 = P(A — 1), then by Equation B-1f)
P(A-1)=R(A-1).
2664 Since A — 1is invertible we get P = R, showing that X A* is right dense. n
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COROLLARY 3.3.7 Let X be a finite maximal prefix code with n elements over a k letter
alphabet A, let p = Card(XA™) be the number of proper prefixes of words in X. Then
n—1=plk-1). .

In the case of a finite maximal prefix code, the equations of Theorem @S_gfve a
factorization,of X — 1 into two polynomials. Again, there is a formula derived from
Formula ,namely 1 + PA = P + X, which has an interpretation on the literal
representation of a code X which makes the verification of maximality very easy: if
p is a node which is not in X, then for each a € A, there must exist a node pa in the
literal representation of X.

We now show that for thin sets, a maximal prefix code is also a maximal code.

THEOREM 3.3.8 Let X be a thin subset of A™. The following conditions are equivalent.
(i) X is maximal prefix code,
(i) X is prefix and a maximal code,
(iii) X is right complete and a code.

Proof, }}e implication (ii) 5 (i) is clear. (i) == (iii) follows from Proposi-
tion | i)an position Tt remains to prove (iii) = (ii). LetY = X \ X A*.
By Proposition , Y A* = XA*. Thus Y is right complete. Consequently Y i -
plete. The setY is also thin, since Y C X. Thus Y is a maximal code by Theorem .
From the inclusion Y C X, we have X =Y. n

;
The following example shows that Theorem @—dﬁes not hold without the assump-
tion that the code is thin.

EXAMPLE 3.3.9 Let X = {yba"l | u € A*}, with A = {a,b}. This is the reversal of the
code given in Example %’?ﬂ is a maximal code w%’ % is right dense, whence right
complete. However, X is not prefix. From Corollary | Jitfollows that Y = X\ X A"
is a maximal prefix code. Of course, Y # X, and thus, Y is not maximal.

PROPOSITION 3.3.10 Let X be a thin subset of A*. The following conditions are equivalent.

(i) X is a maximal prefix code.
(ii) X is prefix, and there exists a positive Bernoulli distribution 7 with m(X) = 1.
(i) X is prefix, and w(X) = 1 for all positive Bernoulli distributions .

7 0
Proof. It is an immediate consequence of Theorem %ﬁd of Theorem ﬁ* "

In the previous section, we gave a description of prefix codes by means of the bases
of the stabilizers in a deterministic automaton. Now we consider maximal prefix
codes. Let us introduce the following definition. A state ¢ of a deterministic automa-
ton A = (Q,i,T) over A is recurrent if for all u € A*, there is a word v € A* such that
q - uwv = q. This implies in particular that ¢ - u # ) for all w in A*.

PROPOSITION 3.3.11 Let X be a prefix code over A. The following conditions are equivalent.
(i) X is maximal prefix.
(ii) The minimal automaton of X* is complete.
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(iii) All states of the minimal automaton of X* are recurrent.
(iv) The initial state of the minimal automaton of X* is recurrent.
(V) X* is the stabilizer of a recurrent state in some deterministic automaton.

Proof. (i) = (ii). Let A(X*) = (@, ,%) be the minimal automaton of X*. Let¢ € Q,
a € A. There is some word u € A* such thati-u = g. The code X being right complete,
uav € X* for some word v. Thus ¢ = i - uav = (q - a) - v, showing that ¢ - a # (. Thus
A(X*) is complete.

(i) = (ii). Letg € Q, u € A*; then¢ = ¢ - u # (0 since A(X*) is complete. A(X*)
being minimal, ¢’ is coaccessible, and ¢ is accessible. Thus ¢’ - v = ¢, for some v € A%,
showing that g is recurrent.

The implications (iii) = (iv) = (v) are clear.

(v) = (i). Let A = (Q,4,T) be a deterministic automaton and ¢ € @ be a recurrent
state such that X* = Stab(q). For all u € A* there is a word v € A* with ¢ - uv = ¢,
thus uwv € X*. This sh that X is right complete. The set X being prefix, the result
follows from Theorem . "

3.4 Operations on prefix codes

Prefix codes are closed under some simple operations. We start with a general result
which will be used several times.

PROPOSITION 3.4.1 Let X and (Y;)icr be nonempty subsets of A*, and let (X;);cr be a
partition of X. Set
Z=Jxvi.
iel

1. If X and the Y;’s are prefix (maximal prefix), then Z is prefix (maximal prefix).
2. If Z is prefix, then all Y; are prefix.
3. If X is prefix and Z is maximal prefix, then X and the Y;'s are maximal prefix.

Proof. 1. Assume that z,zu € Z. Then z = xy, zu = 2’y for some i,j € I, z € X;,
y €Y, 2 € X;,y €Y. From the relation zyu = 2’y it follows that # = 2’ because
X is prefix, whence i = j and y = ¢/. Thus, u = 1 and Z is prefix. Assume now that
X A* and the Y;A* are right dense. Let w € A*. Then ww' = zv for some w',v € A*,
xz € X. Let z belong to X;. Since Y;A* is right dense, vv' € Y;A* for some v/ € A*.
Thus ww'v' € X;Y; A*, whence ww'v' € ZA*. Thus Z is maximal prefix.

2. Lety,yu € Y; and z € X;. Then zy, xyu € Z, implying that u = 1.

3. From ZA* C X A* we get that X A" is right dense. Consequently X is maximal
prefix. To show that Y;A* is right dense, let w € A*. For any z € X;, 2w is right-
completable in ZA*. Thus, 2w = zw’ for some z € Z. Setting z = 2’y with 2’ € X},

"€ Y] gives zw = z'y'w’. The code X being prefix, we get = 2/, whence w = y'uv/,
showing that w is in Y; A*. n

For Card(I) = 1, we obtain, in particular,
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st2.4.277| COROLLARY 3.4.2 If X and Y are prefix codes (maximal prefix), then XY is a prefix code
p p p
2138 (maximal prefix). n

St2 4 2
29 The converse of Corollary Jiolds only under rather restrictive conditions and

2120 - will be given in Proposition 3.4.13.

EXAMPLE 3.4.3 The Golomb code of order m > 1 over the alphabet {0, 1} is the maxi-
mal infinite prefix code

Gm =1"0R,,,

21 where R; = {e¢} and, for m > 2, R,, is the finite maximal prefix code defined below.
212 Thus, each G, is the product of the maximal prefix codes 1*0 and R,,,.
If m = 2* for some integer k, then R, is the set of all binary words of length k.
Otherwise, the rule is more involved. Set m = 2% + ¢, with 0 < ¢ < 2F. Setting
n = 21@—1’
OR;U1lRy, ifé>n,
Rm = .
OR,U1R,, otherwise.

) i02-02
2143 The set Ry and the codes R,,, for m = 2,...,7 are represented on Figure %._N‘ote
2144 that, in particular, the lengths of the codewords differ at most by one.

RNV

Figure 3.17 The sets R; to Ry. |gZ 02

i02-03
a5 The Golomb codes of order 1,2, 3 are represented on Figure %.—Nrote that, except
a6 possibly for the first level, there are exactly m words of% Jength. The Golomb codes

2147 are used to represent integers as indicated on Figure g he shown that they
2143 are optimal for some probability distributions, see Exercise E%L ii

Figure 3.18 The Golomb codes of orders 1,2, 3.
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EXAMPLE 3.4.4 The Golomb—Rice code of order k is the particular case of the Golomb
20 code for m = 2F. Its structure is especially simple and allows an easy explicit descrip-
251 tion of the encoding of an integer: The encoding assigns to an integer n > 0 two binary
22 words, the base and the offset. The base is the unary expansion of [n/2*| followed by a
253 0. The offset is the rest of the division written in binary on £ bits. Thus, for & = 2, the
2154 integer n = 9 is coded by 110|01. The bingry trees representing the Golomb-Rice code
2155 of orders 0, 1,2 are represented in Figure % ;g

8 9 10 11
Figure 3.19 The Golomb-Rice codes of orders 0, 1 and 2.

Another expression of the Golomb-Rice code of order k is given by the regular ex-

pression
GRy, = 170(0 + 1), (3.9)

ars6 It expresses the fact that the binary words forming the code are composed of a base
s of the form 1°0 for some i > 0 and an offset which is an arbitrary binary sequence of
arss length .

EXAMPLE 3.4.5 The exponential Golomb codes form a family depending on an integer
a0k with a length distribution better suited for some probability distributions than the
2761 Golomb-Rice codes, JThe case k = 0 is closely related to the Elias code already men-
2762 tioned in Example B.1.1].

23 The base of the codeword for an integer n is obtained as follows. Let = be the binary
2zea  representation of 1 + |n/2%| and let i be its length. The base is made of the unary
2765 representation of 7 — 1 followed by z with its initial 1 replaced by a 0. The offset is,
2166 as before, the binary representation of the rest of the divisioE %F o by 2k, written on k
267 bits. Thus, for k = 1, the codeword for 9 is 11001|1. Figure represents the binary
2768 trees of the exponential Golomb codes of orders 0, 1 and 2.

An expression describing the exponential Golomb code is

EG, = J10(0+1)"**,
i>0

and we have the simple relation

EG), = EGo(0 + 1.

COROLLARY 3.4.6 Let X C A", and n > 1. Then X is (maximal) prefix if and only if X"
210 1s (maximal) prefix.

Version 14 janvier 2009 J. Berstel, D. Perrin and C. Reutenauer



2771
2772
2773

2774

2775

2777

2778

2779

2780

2781

2782

2783

2784

2785

120 3. PREFIX CODES

2 3 4 5

4 5 6 7 8 9 10 11
Figure 3.20 The exponential Golomb codes of orders 0, 1, 2.

Proof. By Corollary %” is maximal prefix for a maxim gfix code X. Con-
versely, setting Z = X" = X" 1 X, it follows Proposition hat X is prefix.
Writing Z = XX"~!, we see by Proposition %&Tthat X (and X™1) are maximal
prefix if Z is. .

3
Corollary %ﬁa special case of Proposition %—Fo be proved later.

COROLLARY 3.4.7 Let X and Y be prefix codes, and let X = X1 U X be a partition. Then
Z = X1 U XYY isa prefix code and Z is maximal prefix if and only if X and Y are maximal

prefix.

L With Y’ = {1}, we have Z = X;Y’ U XY The result follows from Proposition
ecause Y’ is maximal prefix. n

There is a special case of this corollary which deserves attention. It constitutes an
interesting operation on codes viewed as trees.

COROLLARY 3.4.8 Let X and Y be prefix codes, and x € X. Then
Z=(X\z)UzY
is prefix and Z is maximal prefix if and only if X and Y are. n

ig2 19
The operation performed on X and Y is sketched in Figure %.—% now turn to the
converse operation.

<37 <7

Figure 3.21 Combining codes X and Y.
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PROPOSITION 3.4.9 Let Z be a prefix code, and let p € ZA~. Then

Y,=p 'Zand X = Z \ pY, U {p} (3.10)

216 are prefix sets. Further if Z is maximal prefix, then Y, and X are maximal prefix also.

4.1 20
2187 %I Eg operation described in (%)ﬁn be drawn as shown in Figure %.—Pr’oposition

2788 is a special case of the following result.

z X =(Z\pY,)Up

Figure 3.22 Separating Z and Y.

PROPOSITION 3.4.10 Let Z be a prefix code, and let ) be a prefix subset of ZA~. For each
p € ZA™, thesetY, = p~'Z is a prefix code; further

x=qQu(z\Jw)
PeEQ
210 is a prefix set. If Z is maximal prefix, then X and the Y, (p € Q) are maximal prefix.
Proof. Set Xo = Z \ Upeq PYp, Yo = {1}, X = {p}. Then
Z=XoYoU | XY,
peq

1
2790 Thus, to derive the result from Proposition %,_fsufﬁces to show that X is prefix.
2791 Letx,zu € X with u € AT. These words cannot both be in the prefix set Z nor can
2192 they both be in the prefix set Q). Since Q C ZA~, wehavez € Q,zu € Z. Thusu €Y},

2703 and xu is notin X. n
. 1 E%—Alﬁ . .
Propositions B.4.1 and 3.4.10 can be used to enumerate maximal prefix sets. Let us
illustrate the computation in the case of A = {a,b}. If Z is maximal prefixand Z # 1,
then both

X=a'z Y=b1z

are maximal prefix and

Z=aXUDbY . (3.11)

4.2
Conversely, if X and Y are maximal prefix, then so is Z. Thus, Equation (%)_déﬁnes
a bijection from maximal prefix codes onto pairs of maximal prefix sets. Further

Card(Z) = Card(X) + Card(Y).
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4.2
Let v, be the number of maximal prefix sets with n elements. Then by Equation ,

forn > 2,

= Y e 612)

k+l=n
4.2bi
Let a(t) = 3,5 ant™. Then by (EKI,ZF =

alt)? —at) +t=0.

The equation has the solutions (1 £ /1 — 4t)/2. Since a(0) = 0, one has a(t) = (1 —
V1 —4t)/2. Using the binomial formula, we get for n > 1

1, . (1/2
=)
1, ., 1/21/2-1)---(1/2—=n+1)

B _5(_4) n!
:_%(_4)n2in1(1_2)"'75!1_27”2)
= _%(—1)"2"(—1)n71 1- 3751271 -3)

nl(n —1)12n=1  n

1 2n
O] = —— .
+ n+1l\n

4.1bis
These numbers are called the Catalan numbers. See Exercise Eé i| for another proof
and for the case of more than two letters Ng such closed expression is known for the
number of finite maximal codes. Table B.1] gives the first Catalan numbers.

g (@n=20 1 <2n'_ 2> |

- n—1

Thus

n|l 2345 6 7 8
125

o | 1 14 42 132 429

Table 3.1 The first Catalan numbers.

PROPOSITION 3.4.11 Let Y, Z be composable codes and X =Y o Z. Then X is a maximal
prefix and thin code if and only if Y and Z are maximal prefix and thin codes.

Proof. As first that X is thin and maximal prefix. Then_X is right complete by
Theorem . Thus X is thin and complete. By Propositj ,both Y and Z are
thin and complete. Further Y is prefix by Proposition . Thus Y, being thin,

prefix, and complete, is a maximal prefix code. Next X is right dense and X C Z*.
Lhus, Z is right dense. Consequently Z is a right complete, thin code. By Theorem
Et%% Z is maximal prefix. f 3

Conversely, Y and Z being prefix, X is prefix by Proposition £.6.4, apd Y, Z being
both thin and complete, X is also thin and complete by Proposition £.6.13. Thus X is
a maximal prefix code. .
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PROPOSITION 3.4.12 Let Z be a prefix code over A, and let Z = X UY be a partition. Then
T = X*Y is a prefix code, and further T' is maximal prefix if and only if Z is a maximal prefix
code.

Proof. Let B be an alphabet bijectively associated to Z, and let B = C U D be the
partition of B induced by the partition Z = X UY. Then

T=C*DoZ.

3
The code C*D clearly is prefix. Thus, 7" is prefix by Proposition %._Next, T =
1 U Z*Y showing that 7T is right complete if and only if Z i 3right complete. The
second part of the statement thus results from Proposition : .

2
We conclude this section by the proof of a converse to Corollary %

PROPOSITION 3.4.13 Let X and Y be finite nonempty subsets of A* such that the product
XY is unambiguous. If XY is a maximal prefix code, then X and Y are maximal prefix codes.

The following example shows that the conclusion fails for infinite codes.

EXAMPLE 3.4.14 Consider X = {1,a} and Y = (a?)*b over A = {a,b}. Here X is not
prefix, and Y is not maximal prefix. However, XY = a*b is maximal prefix and the
product is unambiguous.

0
Proof of Proposition %.—Eet Z = XY and n = max{|y| | y € Y}. The proof is by
induction on n. For n = 0, we have Y = {1} and Z = X. Thus, the conclusion clearly
holds. Assume n > 1 and set

T={yeY|lyl=n}, Q={qcYA [¢ANT #0}.

By construction, ' C QA. In fact 7" = QA. Indeed,letqg € Q,a € Aandletx € X
be a word of maximal length. Then zq is a prefix of a word in Z, and zqa is right-
completable in ZA*. The code Z being prefix, no proper prefix of zga is in Z. Conse-
quently

rqav = 'y’

forsomez’ € X,y € Y,and v € A*.
Now n = |gal > |¢/|, and |z| > |z
ga € Yand T = QA. Now let

'I. Thus x = 2/, ¥ = ga, v = 1. Consequently

Y = (Y\T)uQ, Z =XY'.
We verify that Z’ is prefix. Assume the contrary. Then
$ylu — x/y//

forsome z, 2’ € X, 9,y € Y, u # 1. Let a be the first letter of u. Then either 3’ or 3'a
isin Y. Similarly either y” or y”b (for any bin A)isin Y. Assumey’ € Y. Thenzy' € Z

is a proper prefix of z'y" or 2'y"b, one of them being in Z. This contradicts the fact that
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Z is prefix. Thus y'a € Y. As before, zy'a is not a proper prefix of z'y” or 'y"b. Thus

necessarily u = a and y” € Y, and we have
;Uz/,(l — JCIZIH

with y'a,y” € Y. The unambiguity of the product XY shows that z = 2/, y'a = y.
But then y” ¢ Y. This gives the contradiction.

To see that Z’ is maximal prefix, rye that Z c Z/ UZ'A. Thus ZA* C Z'A* and
the result follows from Proposition ét"?% Finally, it is easily seen that the product XY’
is unambiguous: if zy’ = 2'y” with 2,2’ € X, ¢/, y" € Y/, then eithery/,y” € Y \ T or
y',y" € Q, the third case being ruled out by the prefix character of Z.

Of course, max{|y| | y € Y’} = n — 1. By the induction hypothesis, X and Y are
maximal prefix. Since

Y =Y'\Q)UQA,
4
the set Y is maximal prefix by Corollary @* n

0
It is also possible to give a completely different proof of Proposition %Tsmg

the fact that, under the hypotheses of lthi prpposition, we have m(X)m(Y) =1 forall
Bernoulli distributions 7, see Exercise Sia '

3.5 Semaphore codes

This section contains a detailed study of semaphore codes which constitute an inter-
esting subclass of the prefix codes. This investigation also illustrates the techniques
introduced in the preceding sections.

PROPOSITION 3.5.1 For any nonempty subset S of A™, the set
X =A*S\ A*SAT (3.13)
is a maximal prefix code.

Proof. The set L = A*S'is a left i fal, and thus, is right dense. Consequently, L is right
complete, and by Corollary B34, the set X = L\ LA™ is maximal prefix. n

A code X of the form given in Equation (%%%caﬂed a semaphore code, the set S be-
ing a set of semaphores for X. The terminology stems from the following observation:
a word is in X if and only if it ends with a semaphore, but none of its proper prefixes
end with a semaphore. Thus, reading a word from left to right, the first appearance of
a semaphore gives a “signal” indicating that what has been read up to now is in the
code X.

EXAMPLE 3.5.2 Let A = {a,b} and S = {a}. Then X = A*a\ A*a A" whence X = b*a.

EXAMPLE 3.5.3 For A = {a,b} and S = {aa,ab}, we have A*S = A*aA. Thus A*S\
A*SAT = b*aA.

The following proposition characterizes semaphore codes among prefix codes.
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PROPOSITION 3.5.4 Let X C A". Then X is a semaphore code if and only if X is prefix and

A*X C XA*. (3.14)

Proof. Tet X = A*S'\ A*S AT be a semaphore code. Then X is prefix and it remains to

show ( " Letw € A*X. Since w € A*S, w has a factor in S. Let v’ be the shortest
prefix of w which is in A*S. Then v’ is in X. Consequen y e XA"
Conversely, me that a prefix code X satisfies ( - Set M = XA*. In view

of Pr itjon and by the fact that X is prefix, we have X = M \ M A". Equa-
tion (%gmplies that
A'M=A"XA"C XA*" =M,

thus, M = A*M and X = A*M \ A*MA™. .
EXAMPLE 3.5.5 The code Y = {a?, aba, ab?, b} is a maximal prefix code over A. How-
ever, Y is not a semaphore code, since ab € A*Y but ab ¢ Y A*.

A semaphore code is maximal prefix, thus right complete. The following proposi-
tion describes those right complete sets which are semaphore codes.

PROPOSITION 3.5.6 Let X C A™. Then X is a semaphore code if and only if X is right
complete and

XNA*XAT =0. (3.15)
Progf. /A semaphore code is maximal prefix, thus also right complete. Further, in view
of (B.19),

A*XAY C XAT,
thus

XNA*XATCc XNXAT =0,

5.3
showing Equation @)ﬁ 3
Conversely, if a set isfies (%%,_Fﬁen X is prefix. To show that X is a semaphore
code, we verify that ( olds. Let w = ux € A*X with u € A*, x € X. The code
X being rzé% )g_gmplete, we have uzv = 2’y for some 2/ € X,y € X*, v € A*. Now
Equation ‘shows that uz is not a proper prefix of z’. Thus uz € z' A*. n

COROLLARY 3.5.7 Let X C A" be a semaphore code and let P = XA~. Then PX C
XPuU X2

ig2 21 2
Proof. (See Figure %’)_ﬁet p € P, x € X. By Equation (%@‘ = yu for some

y € X,u s A" The code X is prefix, thus Ip| < |y|. Consequently, u is suffix of z, and
by ,u ¢ XAT. The code X is maximal prefix, therefore u € XA~ U X. n

Formula (%%presses a property of semaphore codes which is stronger than the
prefix condition: for a semaphore code X, and two elements z,2’ € X, the only pos-
sible way for z to occur as a factor in 2’ is to be a suffix of 2’. We now use this fact to
characterize semaphore codes among maximal prefix codes.
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4
Figure 3.23 Proof of Corollary %ﬁ

PROPOSITION 3.5.8 Let X C A, and let P = X A~ be the set of proper prefixes of words in
X. Then X is a semaphore code if and only if X is a maximal prefix code and P is suffix-closed.

Of course, P is always prefix-closed. Thus P is suffix-closed if and only if it contains
the factors of its elements.

1
Proof. Let X be a semaphore code. Then X is a maximal prefix code (Proposition %)*

Next, let p = uqg € P with u,q € A*. Letv € A" be a word such that pv 3 Then
q ¢ X A*, since otherwise pv = ugv € X N A*X A™, violating Proposition %._Thus
qge XA~ =P.

Conversely assume that X is maximal prefix and that P is suffix-closed. Suppose
that X N A*X AT £ (. Letz € X N A*XA™. Then z = uz'v for some u € A*, 2’ € X,
v € AT. It follows that uz’ € P, and since P is suffix-¢ , also ' € P which is
impossible. Thus X is a semaphore code by Proposition %i n

3
Another consequence of Proposition @Fﬁhe following result.

PROPOSITION 3.5.9 Any semaphore code is thin.

5.3
Proof. By Formula (%W word in X A™ is a factor of a word in X. .

COROLLARY 3.5.10 Any semaphore code is a maximal code.

1
Proof, semaphore code i aximal prefix code and thin by Propositions %ﬁ

and B.5.9 Thus by Theorem such a code is maximal code. ]
Now we determine the sets of semaphores giving the same semaphore code.

PROPOSITION 3.5.11 Two nonempty subsets S and T of A" define the same semaphore code
if and only if A*SA* = A*T A*. For each semaphore code X, there exists a unique minimal
set of semaphores, namely T = X \ AT X.

Proof. Let X = A*S\ A*SA",Y = A*T\ AXT AZ. By Proposition%e have X A* =
A*SA*, Y A* = A*T A*, and by Corollary , X =Y if and only if A*SA* = A*T A*.

Next, let X = A*S \ A*SAT be a semaphore co y the definition of 7' = X \
ATX, we may apply to T the dual of Proposition%._Thus, A*T = A*X. Since
A*TA* = A*XA* = A*SA*, the sets S and T define the same semaphore code. Thus
X =A*T \ A*TA*.

Finally, let us verify that 7" C S. Lett € T'. Since A*T' A* = A*SA*, one has t = usv
for someu,v € A*, s € S,and s = vt/ of some u', v € A*,t' € T. Thus, t = wu't'v'v.
Note that 7" C X. Thus, Formula (| “applies, showing that v'v = 1. Since T is a
suffix code, we have uu’ = 1. Thus,t =sand t € S. n
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2003 We now study some operations on semaphore codes.

PROPOSITION 3.5.12 If X and Y are semaphore codes, then XY is a semaphore code. Con-
2005 versely, if XY is a semaphore code and if X is a prefix code, then X is a semaphore code.

' z’

xT
Figure 3.24 Proof of Proposition %7
2
Proof. If X, Y are segg%}}ore codes, then by Corollary %ﬁﬂ/ is a prefix code. Fur-

ther by Proposition ,
A*XY C XA*Y C XY A*,

2006 thus XY is a semaphore code.
Assume now that XY is a semaphore code, and that X is a prefix code. We show
that A*X C X A*. For this, let w = ux € A*X, withu € A*, x € X, and let y be a word
in Y of minimal length. Then

wy = uxy = z'y'u’

g2 22
2007 for some 2/ € X,y € Y, v € A* (see Figure %._By the choice of y, we have
208 |y| <[] < |yv|, thus Juz| > |2/|, showing that uz € X A*. .

2000 The following example shows that if XY is a semaphore code, then Y need not be
2010 semaphore, even if it is maximal prefix.

EXAMPLE 3.5.13 Over A = {a,b}, let X = a*b, and Y = {a? aba,ab® b}. Then X
is a semaphore gode, and Y is a maximal prefix code. However, Y is not semaphore
(Example %}'.—On the other hand the code Z = XY is semaphore. Indeed, 7 is
maximal prefix, and the set

P=Z7ZA" =a"{1,b,ba,bab}

) ig2_23
2011 is suffix-closed. The conclusion follows from Proposition @T@e Figure %’)ﬁ

COROLLARY 3.5.14 Forany X C A" and n > 1, the set X is a semaphore code if and only
2013 1if X™ is a semaphore code.

3
2014 Proof. If X" is a semaphore codg, then X is a prefix by Corollary and X is a
2015 semaphote,code by Proposition B.5.14 The converse is a direct consequence of Propo-
2016 sition B.5.12 "
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Figure 3.25 The code a*b{a?, aba, ab?, b}.

ig2_ 24
EXAMPLE 3.5.15 The code X = {a, baa, baba, bab*,b*} represented in Figure EEEE isa
maximal prefix code but not semaphqre. Indeed, the word a has an inner occurrence
in bab?, contradicting Formula (B.15). However, X decomposes into two semaphores
codes

X=YoZ,
with Y = {c,dc,d?,de, e} and Z = {a, ba, b*}.

Figure 3.26 The code X = {a, baa, baba, bab?, v*}.

Given a semaphore code
X = A*S\ A*SAT,

it is natural to consider
Y = SA*\ ATSA*.

The code Y is a maximal suffix code. Its reversal Y = A*S\ A*SA™ is a semaphore
code with semaphores S. The following result shows a strong relation between X
and Y.

PROPOSITION 3.5.16 Let S C A*. There exists a bijection 3 from X = A*S\ A*SA™ onto
Y = SA*\ ATSA* such that, for each x € X, 3(z) is a conjugate of x.

Proof. First, consider the two-sided ideal J = A*SA*. One has
X =J\JAT, Y=J\A"J.

Indeed, A*JA* = A*SA* and by Proposition ﬁﬁ( = A*J\ JAT. The formula for
X follows because A*J = J. A symmetric argument holds for Y.
Now we define, for each z € X,

D(z) = {d € A" | there is some g € A* with z = gd and dg € J}.
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Thus, D(x) is composed of nonempty suffixes of x. Further D(z) is nonempty since
x is in D(z). Thus, each D(z) contains some shortest element. This will be used to
define 3 as follows. For z € X,

B(x) = dg, (3.16)

where d is the shortest word in D(z) and g is such that
x=gd. (3.17)
Thus, 8(x) is a conjugate of x, and G(z) € J. We show that
Blx)e J\NATT =Y.

Assume the contrary. Then
B(z) = dg = uj (3.18)

forsomeu € AT, j € J.

Next g is a proper prefix of . Consequently, g ¢ J. Indeed, if g € J, then g would
have a prefix in X, contradicting the fact that X is prefix. This shows that |g| < [j],
since otherwise g would belong tg ‘g%g ideal generated by j, thus g € J.

It follows from this and from @B.1§) that |d| > |ul, thus, d = ud’ for some d' € A™.
Moreover d' € D(z), since d'(gu) = ju € J and (gu)d’ = gd = = € X. This gives a
contradiction by the fact that d' is strictly shorter than d. Thus, 5(z) € Y.

Consider the converse mapping « from Y into X defined by considering, for y inY,
the set

G(y) ={e€ A" |y=ehand he € J},

and by setting 7(y) = he, with ¢ € C/{y) of mipimal length.
If y = B(x) = dg is given by (B.18) and (B.17) and if v(y) = he with e € G(y), eh =y,
then

dg = B(x) = eh. (3.19)
Note that gd € J. Thus, d € G(y). Consequently, |d| > Jel. Now the word e is not a
proper prefix of d. Otherwise, setting d = eu, ug = h in withu € AT, we get

geu=gd=x, wuge=heé€J,

showing that v € D(z) and contradicting the minimality of |d|. Thusd = e, g = h, and
v(B(z)) = . An analogous proof shows that 5(y(y)) = y for y in Y. Thus, § and ~ are
reciprocal bijections from X onto Y. n

1
EXAMPLE 3.5.17 Let us illustrate the construction of Proposition %‘bfy consider-
ing, over A = {a, b}, the set of semaphores S = {a?, ba, b*}. Then

X = A*S\ A*SAT = {d®, ba,b?, aba, ab?},
Y = SA*\ ATSA* = {da®, a*b, ba, bab, b*} .

1
Table %‘lﬁs on each row an element € X, the corresponding set D(z) and the
element f(z) € Y.
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X D Y
aa a,aaqa aa
aba a, ba, aba aab
abb b, bb, abb bab
ba ba ba
bb b, bb bb
Table 3.2 The correspondence between X and Y.
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1
Proposition ﬁ—sl%ws that any semaphore code can be transformed into a suffix
code by a bijection which exchanges conjugate words. This property does not hold for
arbitrary prefix codes, as shown by the following example.

EXAMPLE 3.5.18 Let X = {ab,ba,c,ac,bca}. Assume that there exists a conjugacy
preserving bijection 8 which maps X onto a suffix code Y. Then Y necessarily contains
¢, and ab, ba. Further Y contains ca (with ¢ and ac, Y would not be suffix!). All the
words conjugate to bca now have a suffix equal to one of ¢, ab, ba, ca. Thus, Y is not
suffix.

In fact, X cannot be completed into a semaphore code, since c is a factor of bca.
We end this section with the following result which shows that bifix codes are not
usually semaphore codes.

PROPOSITION 3.5.19 Let X be a bifix semaphore code. Then X = A" for some n > 1.

Proof. It is sufficient to show that X C A" for some n. Letz,y € X. Foreach suﬁg %gf
x, we have qy € A*X C X A*. Thus there is, in view of Propositions %ﬁd a
prefix p of y such that ¢gp € X.

In this way we define a mapping from the set of suffixes of X into the set of prefixes
of y. The set X being suffix, the mapping is injective. Indeed, if ¢p and ¢p are in X for

two suffixes ¢, ¢’ of z, then ¢ = ¢'. It follows that |z| < |y|. Interchanging « and y, we
get |y| < |z|. Thus, all words in X have the same length. .

3.6 Synchronized codes

Let X be a prefix code over A. A word w € A* is said to be synchronizing for X if for
any u,v € A%, we have
uwv € X* = ww,wv € X*.

Observe that if this holds, then v also is in X* since X* is right unitary. If w is synchro-
nizing, then zwy is synchronizing for any z,y € X*.

The definition takes a simpler form for a synchronizing word which is in X*. This is
the case in which we will in general be interested in. A word w of X* is synchronizing
if and only if for any u,v € A*, we have

wwv € X* = wwe X*.
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A prefix code X is synchronizeg, if there exists a word in X* which is synchronizing for
pterabis

X. We will see later (Chapter [[0) a definition of synchronized codes for general codes.

EXAMPLE 3.6.1 The prefix code X = {ab,ba} is synchronized. Indeed, abba is a syn-
chronizing word for X, since uabbav € X* implies uab, bav € X* and thus uabba € X*.

If X is a maximal prefix code, then w is synchronizing for X if and only if
Afw C X*. (3.20)

Indeed, let w be a synchronizing word. For any u in A*, since X* is right dense, there
exists a word v such that uwv € X*. Then uw € X*. This shows that ( olds.
Conversely, if (| ) holds, then uw € X* forall u € A* thus w is synchronizing.

Observe that if X is a maximal prefix code, then by ( ‘every synchronizing word
isin X*.

EXAMPLE 3.6.2 The code X = b*a is synchronized. Indeed, a is a synchronizing
word, since A*a C X*.

EXAMPLE 3.6.3 A maximal bifix code X over A is never synchronized unless X = A.
Assume indeed that w € A* is synchronizing. For any u € A* we have uw € X*. The
monoid X* being left unitary, it follows that u € X*. Thus A* = X*.

The terminology is derived from the following observation: let w be a word which
has to be factored into words of some prefix code X. The appearance, in the middle of
the word w, of some synchronizing word x in X, that is the existence of a factorization

w = uxrv

implies that ux is in X*. Thus we may start the decoding at the beginning of the
word v. Since X* is right unitary we have indeed w € X* if and only if v € X*. This
means that the whole word is in X* if and gnly.if the final part can be decoded.

Note that any code X over A satisfying ( is maximal prefix. Indeed, let y, yu €
X. Then uw € X*, and y(wu), (yu)w are two X-factorizations which are distinct if
u # 1. Thus u = 1. Next, ( shows that X is right complete.

Any synchronized prefix code is thin. Indeed, if = is a nonempty synchronizing
word for a prefix code X, then z? is not a factor of a word in X, since otherwise
uzzv € X for some u,v € A*. From ux € X, it would follow that X is not prefix.

The fact that a prefix code X is synchronized is well reflected by the automata rec-
ognizing X*. Let us give a definition. Let A = (Q,¢,T) be a deterministic automaton
on A. The rank of a word x € A* in A, denoted by rank 4(x), is defined by

rank 4(z) = Card(Q - ).
It is an integer or +oo. Clearly
rank 4 (uxv) < rank4(x).
A word w € A* is a synchronizing in A if rank 4(w) = 1. The automaton A is synchro-

nized if there exists a word which is synchronizing in A.
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PROPOSITION 3.6.4 Let X be a prefix code over A. The following conditions are equivalent:
(i) X is synchronized.
(ii) The literal automaton of X* is synchronized.
(iii) The minimal automaton A(X™*) is synchronized.
(iv) There exists a trim synchronized deterministic automaton recognizing X*.

Proof. (i) = (ii). Let P be the set of prefixes of X and let A = (P, 1, 1) be the literal
automaton of X*. Let x € X* be a synchronizing word for X. Then 1 is in the set P - z,
so z has positive rank. Next, let p € P. If p - z exists, there is a word s such p - zs = 1.
Then pxs € X* and pr € X* since z is synchronizing, showing that p - = = 1. This
shows that x has rank 1 in A.

(i) = (iii). A synchronizing word in the literal automaton of X* is also synchro-
nizing in A(X™). In fact, any quotient of a synchronized automaton is synchronized.

The implication (iii) = (iv) is clear.

(iv) = (). Let A = (Q,i,T) be trim, let w € A* be such that rank 4(w) = 1. There
exists a path p % ¢in A, and since A is trim, p is accessible and ¢ is coaccessible. Thus
there are words z,y such that z = 2wy € X*. We show that z is a synchronizing word
for X.

Let indeed u, v be words such that uxv € X*. Then i - ux is defined and since x has
rank 1,7 -ux =7-x. Thusi-ux € T and ur € X*. n

Two states p, ¢ are said to be synchronizable if there exists a word w such that Card{p-
w,q-w} = 1. The next resultis the basis of an algorithm for computing a synchronizing
word (see Exercisee%)'i

PROPOSITION 3.6.5 Let A be a strongly connected deterministic automaton for which there
is a word of finite nonnull rank. Then A is synchronized if and only if any two states of A are
synchronizable.

Proof. Let @ be the set of states of A. Assume first that A is synchronized. Let
be a word of rank 1, and let r, s be two states in @) such that » - x = s. Let p,q be
a pair of states in (). Since A is strongly connected, there exists a word y such that
p-y = r, whence p - yr = s. If ¢ - yx is defined, then it is equal to s, thus p and ¢ are
synchronizable.

Conversely, let x be a word of minimal nonzero rank in A. By assumption, this rank
is finite. We prove that Card @) - = 1. Assume that there exist p,q € Q - x with p # q.
Since p and ¢ are synchronizable, there is a word y such that Card{p-y,¢-y} = 1. Then
0 < rank 4(zy) because p - y or ¢ - y is nonempty. Next, rank 4(zy) < rank 4(x) because
p # ¢, a contradiction with the minimality of the rank of the word z. This shows that
Card @ - = 1 and thus that A is synchronized. n

PROPOSITION 3.6.6 Let X be a thin maximal prefix code over A, and let P = X A~. Then
X is synchronized if and only if for all p € P, there exists x € X* such that px € X*.

Proof. The condition is necessa%. %%qeed, let x € X* be a synchronizing word for X.
Then it follows from Equation at Pr C X*.

The condition is also sufficient. Let A = (P, 1, 1) be the literal automaton of X*. The
automaton is complete because X is maximal. Since X is thin and maximal, the set
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F(X)N X*is nonempty. Let w € F(X) N X*. We show that w has finite positive rank.
Clearly, 1 € P - w, so this set is nonempty. Next, P - w is composed of suffixes of w.

Thus it is finite and w has finite Lbis
In view of using Proposition et p, g be two states in P. There exists a word

u such that pu € X. Let r = ¢ - u. By hypothesis, there is a word x in X* such that
re € X*. Thus p-ux = 1and ¢-ux = r-x = 1, showing that p and ¢ are synchronizable.

PROPOSITION 3.6.7 Let X,Y, Z be maximal prefix codes with X =Y o Z. Then X is
synchronized if and only if Y and Z are synchronized.

Proof. LetY C B*, X,Z C A*,and 3 : B* — A* be such that
X:YOQZ

First, assume that Y and Z are synchronized, and let y € Y*, z € Z* be synchronizing
words. Then B*y C Y* and A*z C Z*, whence

A*2B(y) C Z*By) = B(B*y) C BY*) = X*,

showing that z3(y) is a synchronizing word for X. Conversely, assume that A*z C X*
for some x € X*. Thenz € Z* and X* C Z*; thus, x is also synchronizing for Z. Next,
lety = 37 !(z) € Y*. Then

B(B*y) = Z*z C Az C X* = B(Y™).

The mapping 3 being injective, it follows that B*y C Y*. Consequently Y is synchro-
nized. n

EXAMPLE 3.6.8 The code X = (A%\b?)Ub”A? is not synchrgnized, since it decomposes
over the code A? which is not synchronized (Example 35“5 ). It is also directly clear
that a word x € X* can never synchronize words of odd length.

EXAMPLE 3.6.9 For any maximal prefix code Z and n > 2, the code X = Z" is not
synchronized. Indeed, such a code has the form X, = B" o Z for some alphabet B, and
B" is synchronized only for n = 1 (Example )

We now give a result on prefix ¢odes which will be generalized when other tech-
niques will be gvailable (Theorem . The present proof is elementary. Recall from
Chapter E ﬂ%af for a finite code X, the order of a letter a is the integer n such that a™ is
in X.

The existence of the order of a results from Proposition %.—Note that for a finite
maximal prefix code, it is an immediate consequence of the inclusion a™ C X* P, with
P=XA".

THEOREM 3.6.10 Let X C A" be a finite maximal prefix code. If the orders of the letters
a € A are relatively prime, then X is synchronized.
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Proof. Let P = XA~ and let A = (P, 1, 1) be the literal automaton of X*. This automa-
ton is complete since X is maximal prefix. Recall that its action is given by

_Jpa ifpaeP,
pra= 1 ifpa € X.

Forall w € A*, set Q(w) = P - w. Then for w,w’ € A*,

Q(w'w) C Q(w), CardQ(w'w) < CardQ(w'). (3.21)

ssa  Observe that for all w € A*, Card(Q(w)) = rank 4(w).
Let u € A* be a word such that Card(Q(u)) is minimal. The ¢ e, X being right
complete, there exists v € A* such that w = wv € X*. By , Card(Q(w)) is
minimal. Further w € Xt implies

1€Qw). (3.22)

w0ss - We yiJl.show that Card(Q(w)) = 1. This proves the theorem in view of Proposi-
3056 tion .
Let a € A be a fixed letter, and let n be the positive integer such that a" € X. We
define two sets of integers I and K by

I={ieN|Qw)a'NX # 0},
K={ke{0,...,n—1} | d"w e X*}.

First, we show that
Card I = Card Q(w). (3.23)

Indeed, consider a word p € Q(w) C P. There is an integer i such that pa’ € X, since
X is finite and maximal. This integer is unique since otherwise X would not be prefix.
Thus there is a mapping which associates to each p in Q(w) the integer i such that
pa’ € X. This is clearly a surjective mapping onto I. We verify that it is also injective.
Assume the contrary. Then pa’ € X and p'a’ € X for p,p’ € Q(w), p # p'. This implies
Card(Q(wa’)) < Card(Q(w)), contr icting the minimality of Card(Q(w)). Thus the
mapping is bijective. This proves ( . Next set

m=max{i+k|iecl ke K}.
Clearly m = max ] + max K <max/ +n — 1. Let
R={mm+1,....m+n—1}.

We shall find a bijection from I x K onto R. For this, let » € R and for each p € Q(w),
let

v(p) =p-a'w.
Then
vip)=(p-a") weP w=Qw).
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Thus v(Q(w)) C Q(w) and v(Q(w)) = (P -w) -a"w = P - wa"w = Q(wa"w), thus
v(Q(w)) = Q(w) by tg%.winimality of Q(w). Thus v is a bijection from @Q(w) onto
itself. It follows by at there exists a unique p, € Q(w) such that p,a"w € X*.
Let i, be the unique integer such that p,a’ € X. Such an integer exists because X is a
finite maximal prefix code. Then i, € I whence i, < m < r. Set

r=1t,+n+ k., (3.24)
with A € Nand 0 < &, < n. This uniquely defines k, and we have
pra’w = (pra’)(a™)Na" w) .

Since p,a’ € X and X* is right unitary, we have (a")*(a*"w) € X* and also a* w €
X*. Thus, k, € K. The preceding construction defines a mapping

R—IxK, 1 (i k) (3.25)

6.6
first by determining i,, then by computing k, by means of (%)_T Is, mapping is
injective. Indeed, if r # 1/, then either i, # i,,, or it follows from “and from
r Z v’ mod n that k, # k. . 6.7 o
We now show that the mapping (%)Tsur]ectwe. Let (i,k) € I x K,and let A € N
be such that

r=i+in+keR.

By definition of I, there is a unique ¢ € Q(w) such that ga’ € X, and by the definition
of K, we have
ga"w € X*.
Thus, ¢ = p,, i = iy, k = k;, showing the surjectivity.
It follows from the bijection that

n = Card(R) = Card(/) Card(K) .

6.5
This in turn implies, by (%’),_Fﬁat Card Q(w) divides the integer n. Thus Card Q(w)
divides the order of each letter in the alphabet. Since these orders are relatively prime,
necessarily Card(Q(w)) = 1. The proof is complete. .

EXAMPLE 3.6.11 Let A = {a,b} and let X = (A2 \ v?) U 424, The order of A is 2 and
the order of b is 3. Thus X is synchronized by Theorem | and indeed the word
abba is synchronizing.

on4.7
We will prove later (Section @‘i the following important theorem.

THEOREM 3.6.12 (Schiitzenberger) Let X be a semaphore code. Then there exists a syn-
chronized semaphore code Z and an integer d such that

X =27,
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so68  This result admits Proposition %a special cag nsider indeed a bifix sema-
369 phore code X C AT. Then according to Theorem , we hav = 7 4 with Z
sor0  synchronized. The code X being bifix, Z is also bifix (Proposition%ﬁbut a bifix
so71  synchronize e is trivial by Example%:—rhus, Z=Aand X = A%,

sz Theorem escribes in a simple manner the structure of semaphore codes
s073  which are not synchronized.

s74  We may ask whether such a description exists for general maximal prefix codes: is
sor5 it true that an indecomposable maximal prefix code X is either bifix or synchronized?
a7 Unfortunately, it is not the case, even when X is finite, as shown by the following
so77  example.

Q 1 2 3 4 5 6 7 8 09
a 3 1 1 3 38 31
b 4 6 7 5 1 4 5 1

Table 3.3 The transitions of A(X™).

EXAMPLE 3.6.13 Let A = {a,b}, and let X be fhe prefix code with automaton A(X) =
a9 (Q,1,1) whose transitions are given in Table B.3. The automaton A *)Zlg complete,
sos0 thus X is maximal prefix. In fact, X is finite and it is given in Figure .

/\
\

o

N
./

—

N
/N
7N\

/\
\ A\
/X/\{k A
\ /)

/\
/

Figure 3.27 An indecomposable code which is not synchronized.

To show that X is not synchronized, observe that the action of the letters a and b
preserves globally the sets of states

{1,2,3}, {1,4,5}, {4,6,7}, {1,8,9}

ig2 26
s81  as shown in Figure %.‘Tﬁis implies that X is not synchronized. Assume indeed that
a2 = € X" is a synchronizing word. Then by definition A*x C X*, whence ¢ - = = 1 for
a3 all states ¢ € Q. Thus for each three element subset I, we would have I - z = {1}.
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Figure 3.28 The action of the letters a and b.

ig2 25
8¢ Purther X is not bifix since b3, ab* € X. Finally, the inspection of Figure %ﬂﬁws
a5 that X is indecomposable.

6 We define a canonical decompositign of a prefix code called its maximal decomposi-
sos7  tion. This is used to show in Chapter i ii that only maximal prefix codes may produce
s088 nontrivial groups by composition.

st2.6.6 PROPOSITION 3.6.14 Let X C A™1 be a prefix code. Let D = X*(A*)~1 be the set of prefixes
p p
of X*. The set
U={ucA*|u'D=D}

is a right unitary submonoid of A*. Let Z be the prefix code generating U. The code X

decomposes as
X=YoZ (3.26)

80 where Y is a maximal prefix code.

a0 Proof. Note first that U C D: Letu € U. Since 1 € D, we have 1 € u~'D, whence
301 U € D.
w2 The set U is a submonoid. Let indeed u,v € U. Then (wv) !D = v~lu™'D =
2003 v 1D = D showing that uv € U. Assume next that u,uv € U. Thenu~!D = D, and
2004 v 1D =v"lu"D = (wv)"!D = D. Thus U is right unitary.
We have X* C Z* = U. Indeed, X* is right unitary. Thus for all z € X*, 27! X* =
X*. It follows that

JJ_ID — JJ_I(X*(A*)_I) — (.T_IX*)(A*)_I
= X*(A" "' =D.

a0 We verify that for u € U, there exists v € U such that uv € X*. Indeed, let uw € U. Then
3006 u € D, and therefore uv € X* for some v € A*. Since X* C U, we have u,uv € U, and
s097 consequently v € U (U is right unitary). The claim shows that X_ mposes over Z.
a8 LetY be suchthat X =Y o Z. Then Y is prefix by Proposition %‘l‘he claim also
a99  shows that Y is right complete, hence Y is prefix maximal. "

6.2
swo It can be shown (Exercise %ﬂﬁt for any other decomposition X = Y’ o Z’' with
s Z' prefix and Y’ maximal prefix, we have Z™ C Z*. This justifieg the name of maximal
a2 decomposition of the prefix code X given to the decomposition ( :
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In the case where X is p maximal prefix code, the set D defined above is A*. Thus
U=A*and Z = Ain (%‘):_Thus the maximal decomposition, in this case, is trivial.

EXAMPLE 3.6.15 Let A = {a,b} and X = {aa,aba,ba}. The maximal decomposition
of Xis X =Y o Z, with Y = {uu,uv,v} C B*, B={u,v} and Z = {a, ba}.

3.7 Recurrent Events

apterl

The results of Chapter ﬁ%gncﬁﬁng Bernoulli distributions apply of course to prefix
codes. However, for these codes, rellsi[ceirelrable extensions exist in two directions. First,
the properties proved in Chapterc@ﬁ%ﬁ’—fﬁr probability distributions which are much
more general than Bernoulli distributions. Second, there exists a remarkable combina-
torial interpretation of the average length of a Hr%% ﬁcode by means of the sum of the
probabilities of its proper prefixes (Proposition . 9

The following result shows that for prefix codes, Theorem %‘hﬁlds for arbitrary
probability distributions.

PROPOSITION 3.7.1 Let 7 be a probability distribution on A*. For any prefix code X, we
have m(X) < 1.

Proof. Recall that A" denotes the set of words of length at most n. For z € X n Al",
one has 7(z) = w(xA"*l) by the coherence condition. Next, the sets zA"I* for
x € X N Al"l are pairwise disjoint because X is prefix. Consequently

> w@Aay == |

zeXNAln] zeXNAIn]

gAYy < w(A”) = 1.

It follows that for n > 0, we have

Z m(x)

zeXNAl"]

m(X N Al > (@A) <m(Am) =1.

zeXNAln]

Thus 7(X N A[”}) <1 for all n > 0. Taking the limit for n — oo, we obtain 7 (X) < 1.

PROPOSITION 3.7.2 Let 7 be a probability distribution on A*. For any finite maximal prefix
code X, we have w(X) = 1.

Proof. Let n be greater than the maximal length of the words in X. Since X is maximal,
it is right complete, and thus any word of length n has a unique prefix in X. It follows

that
D wa) = w(A™ ) = w(A™)

zeX reX

m(X) = = =1. n

The following computation rule appears to be useful.

LEMMA 3.7.3 Let X C A" be a prefix code. For any probability distribution m on A* such
that )" x m(x) = 1, and for any prefix p of a word of X, one has (p) = w(pA* N X).
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Proof. Suppose first that 7(p) = 0. Then, using the coherence condition, we obtain
that 7(z) = 0 for each x € pA* N X. Thus the conclusion holds. Otherwise, set
Y =p'Xand Z = X \ pY. Itis easy to verify that the function p defined on A* by
p(u) = m(pu)/m(p) is a probability distribution. Sinc nd Z U p are prefix codes, we
have p(Y) < 1and 7(p) + 7(Z) < 1, by Proposition iétg ;i Since X = pY U Z, we have
1=7Y)+n(Z) <n(p)+7n(Z) <1 Thus n(pY) = w(p). n

A recurrent event on the alphabet A is a pair composed of a prefix code X on the
alphabet A and a probability distribution 7 on A* which is multiplicative on X*, that
is such that 7(zy) = w(x)7n(y) for all x,y € X*. For example, the pair of a prefix code
and a Bernoulli distribution is a recurrent event.

The terminology comes from probability theory. The event considered is the mem-
bership in X* of the prefixes of a word obtained by a succession of trials defining its
letters from left to right according to the probability 7. A more precise formulation
will be given in Chapter 'l %

A recurrent event (X, 7) is called persistent if 7(X) = 1 and transient otherwise. In
terms of pmbab?%%y1 éche event is persistent if it occurs at least once with probability 1.

Proposition shows that (X, ) is persistent whenever X is a finite maximal
prefix code.

EXAMPLE 3.7.4 Let m be a positive Bernoulli distribution g 47 jand let X be a thin
maximal prefix code. Then (X, 7) is persistent by Theorem .

EXAMPLE 3.7.5 Let D be the Dyck code of Example %ﬂd let m be a Bernoulli
distribution on {a, b}*. Setp = w(a) and ¢ = w(b). Then 7(X) = 1—|p—gq|. Thus (D, )
is transient when p # ¢ and is persistent for p = q.

Let 3 : B — X be a coding morphism for a prefix code X, that is a bijection between
a source alphabet B and the code X extended to a injective morphism from B* into A*.
A persistent recurrent event (X, 7) defines a Bernoulli distribution x on B* by setting
p(b) = w(B(b)) for any b € B. Since 7 is multiplicative on X*, we then have p(w) =
m(B(w)) for any w € B*. The following result shows that conversely, a Bernoulli
distribution on the source alphabet defines in a unique way a recurrent event.

PROPOSITION 3.7.6 Let X be a prefix code and let o : X — [0,1] be a mapping such
that ) . x o(x) = 1. Then there exists a unique probability distribution © on A* which
coincides with o on X and such that the pair (X, ) is a recurrent event. Moreover, we have
m(zw) = 7(z)m(w) for any x € X* and w € A*.

Proof. Let P = A* \ X A*. We first prove the existence of 7. For z1,...,z, in X and
p € P,weset m(xy---xpp) = o(x1)---0(zn)o(pA* N X). Since A* = X*P and the
factorization is unambiguous, this defines a function 7 on A*. The two last formulas
are a direct consequence of the definition, since for w = yp withy € X*and p € P,
one has m(zw) = 7(zyp) = w(x)w(y)7(p) = 7(x)mw(w).

Then 7 is by definition multiplicative on X* and coincides with o on X. We prove
now that 7 satisfies the coherence condition. For any p in P, we have pA* N X =
pAA* N X = J,capaA* N X because p is not in X, and thus 7(p) = o(pA* N X) =
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Yoaca0(paA* N X) =% . 4m(pa). This shows that 7(w) = > . 4 m(wa) for any w €
A*. This proves that 7 is a probability distribution.

To prove uniqueness, let ' be a probability distribution such that 7'(z) = o(z) for
all € X and which is multiplicative on X*. Observe first that 7 and 7’ coincide on
X* since both are multiplicative on X* and coincide on X.

Consider a word w € A* and let w = zp wij Bois X*andp € P. Letn > 0
be such that x € X™. Then, applying Lemma Ekga to the prefix code X" ! and the
probability distribution 7/, we obtain 7’ (wA*NX""1) = 7/(w). Since ' (wA*NX"T1) =
m(wA* N X" = 7(w), we conclude that 7(w) = 7/(w). .

EXAMPLE 3.7.7 Let A = {a,b} and X = {a,ba}. Letp,q > 0be such that p+¢ = 1 and
let o be defined by o(a) = p and o(ba) = ¢. The unique probability distribution which
is multiplicative on X* and coincides with o on X satisfies 7(aw) = pr(w), m(baw) =
qr(w) and 7(b*w) = 0 for all w € A*. Note that 7(b) = ¢ since 7(bA* N X) = 7(ba).

PROPOSITION 3.7.8 For any persistent recurrent event (X, m) over A such that w(x) > 0

for x € X, there exists a stochastic automaton whose set of states is the set of prefixes of X
which defines .

Proof. Let @ be the set of proper prefixes of X, and let A = (Q, 1, 1) be the literal au-
tomaton of X*. We convert it into a weighted automaton (Q, I, T’) by setting /(1) =1
and I(q) = 0forq # land T'(¢) = 1 forall ¢ € Q. The associated matrix representation
is defined by

M(a) — ﬂ-(pa’)/ﬂ-(p) lfp ta=dq
P 0 otherwise.

One has ), 4 p(a)pq = %p) > aca T(pa) = 1 by the coherence condition. Thus the

automaton is stochastic. We prove that

P 0 otherwise,

by induction on the length of w. The case of |w| = 0 is clear. Next, let a € A and
w € A*. For p € @ such that p - aw is defined, setr = p-a and ¢ = r - w. Then

plaw)p.q = p(a)p,r(w),q. Consequently

aw),. g =
( )pq r(p) =(r)
If r # 1, one has r = pa and p(aw),, = W%?)U). If r =1, thenpa € X and p(aw), 4 =

0
%. Since 7(pa)m(w) = m(paw) by Proposition %ﬂﬁe formula holds also in

this case. It follows that

(JA[, w) = Tn(w)T =~ plw)1g = pw)1,10 = 7(w) . .
q€Q
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-3
EXAMPLE %ﬁmtinued) The probability distribution 7 is defined by the matrices

N A EOR
terQ

ais  Let (X, 7) be arecurrent event on the alphabet A. Recall from Chapter Ha X () =

asa ) 5o (X NA" and Fx«(t) = 32,50 m(X™ N A")t" are the probability generating,
aiss  series of X ang og X" The next result has been proved for arbitrary codes in Chapteré

3182

aiss  (Proposition in the case of Bernoulli distributions.
PROPOSITION 3.7.9 For any recurrent event (X, ), one has
1
Fx-(t)= ——.
X ( ) 1— FX (t)

agr Proof. Since the sets X* for k > 0 are pairwise disjoint, Fi«(t) = D onso T(XTNAME =
3188 ano Zkzo W(Xk N An)tn. It follows that F'x« (t) = Zkzo ano 7T(Xk N An)tn =

a8 ) g5 Fxr(t). Since m is multiplicative on X*, one has 7(X") = «(X)", and it fo X
a0 lows that Fixn(t) = Fx(t)", by the same argument as in the proof of Proposition .
a1 Thus Fx«(t) = 3,50 Fx(t)". This implies the formula. n

Given a set K of words and a probability distribution 7 such that 7(K) = 1, the
average length of K with respect to 7 is defined by

ANE) =) |z|m().
zeK

si02 It is a nonnegative real number or infinite. The context always indicates which is
a3 the underlying probability distribution. We therefore omit the reference to it in the
s194 notation.

a5 The quantity A\(K) is in fact the mean of the random variable assigning to each x € K
a6  its length |x|.

a7 Since A(K) = ), -, nm (K NA") we have the following useful formula for persistent
3108 events.

PROPOSITION 3.7.10 Let (X, 1) be a persistent recurrent event. Then

A(X) = Fi(1). .

PROPOSITION 3.7.11 Let (X, 7) be a persistent recurrent event and let P = X A~ be the set
a200 Of proper prefixes of elements of X. Then \(X) = w(P).

0
Proof. By Proposition %r each p € P we have 7(pA* N X) = n(p). Then we have

n(P) =) w(pA nX)=3 % w(z)=) (),

peEP zeX p<z zeX

2201 the last equality resulting from the fact that each term 7 (z) appears exactly |z| times
3202 in the sum. .
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COROLLARY 3.7.12 Let X be a finite maximal prefix code and P = X A~. For any proba-
bility distribution m on A*, one has A\(X) = w(P).

1
Proof. This follows from the preceding proposition and Proposition %.L .

For a Bernoulli distribution, the finiteness condition can be replaced by the condition
to be thin.

COROLLARY 3.7.13 Let X be a thin maximal prefix code, and P = X A~. For any positive
Bernoulli distribution ™ on A*, the recurrent event (X, ) is persistent and one has \(X) =
7(P). Further, the average length \(X) is finite.

0
Proof. The code X being maximal, Theorem %ows that 7(X) :EI% %hus, (X,m)

is persistent and the equality A(X) = 7(P) follows from Proposition | . Moreover,
P is thin since each factor of a word in P is also a factor of a word in X. By Proposi-
tion 7(P) is finite. .

teré
We shall see in Chapter at the average length is still finite in the more general

case of thin maximal codes.

EXAMPLE 3.7.14 Let A = {a,b} and X = a*b. Let 7 be a positive Bernoulli distribu-
tion. Then A\(X) = 7(a*) = 1/7(b).

EXAMPLE 3.7.15 Let D be the Dyck code over A = {a,b} (see Example %We
have seen that for a uniform Bernoulli distribution, one has

FD(t):l—\/l—t2.

We have
2t

Fht) = ——.
o)==
Thus, for a uniform Bernoulli distribution, the Dyck code defines a persistent recurrent
event but the average length is infinite.

A
EXAMPLE 3.7.16 Recall from Example %‘ﬂﬁt the Golomb-Rice code of order £ is
given by the regular expression

GRy, = 170(0 + 1), (3.27)

For the Bernoulli distribution = with 7(0) = p and 7(1) = ¢, the corresponding prob-
tk—kl
ability generating series is Fgg, (t) = anof——qt' Thus 7(GRy) = Fgr,(1) = 1.

The average length can be computed directly as I (1) = &k + 1/p. One may also
obtain this value by computing 7(P), where P is the set of proper prefixes of GR,.

One has P = 1" U 1"‘0(U0§i<k{07 1}2) Since 7(1*) = 1/p and 7(1*0) = 1, one has
m(P)=1/p+ ZO§i<k m(170)7 ({0, 1}2) =1/p+k.

We now consider the computation of the average length of semaphore codes. We
start with an interesting identity.
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PROPOSITION 3.7.17 Let X C A™ bea semaphore code, P = X A~ and let S be the minimal
set for which X = A*S \ A*SA™. For s,t € S, let

Xs=XNA%s, Rey={we A" | swe A'tand |w| < [t|}.

Then, forall t € S,

Pt=> X.Ry;. (3.28)
sES

Proof. First, we observe that each product X, R, ; is unambiguous, since X is prefix.
Further any two terms of the sum are disjoint, since X = |J X, is prefix. Thus, it
suffices to show that
Pt=|J X.R,,;.
ses

Figure 3.29 Factorizations of pt.

Firstlet p € P, and let x be the shortest prefix of pt which is in A*S. Then z € X and
pt = 2w

for some w € A*. Next x € X, for some s € é %;ng = us. The word p being in P

we have |p| < |z|, whence |w| < |t| (see Figure . Now p cannot be a proper %7

of u, since otherwise s would be a proper factor of ¢, contradicting Proposition |
and the minimality of S. Thus, u is a prefix of p and sw € A*t, showing that w € R, ;.

Conversely, let € X and w € R,; for some s,t € S. Then z = us and sw = (¢
for a proper prefix ¢ of s. Then u/ is a proper prefix of us = z; thus, u/ € P and
rw = ult € Pt. n

COROLLARY 3.7.18 With the notation of Proposition %e have for any Bernoulli dis-
tribution =, the following system of equations:

AX)m(t) =) w(X)m(Rsy), (t€S), (3.29)
seS

> (X)) =1. (3.30)

seS

/.8 7.7
Proof. Equation (%)_F(_)llows from Equation (%—Fy applying 7 to both sides and
observing that A\(X) = 7(P). The second equations comes the fact that X is a disjoint

union of the codes X and is itself a thin maximal code. "
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(.8 7.8bi
;23 In the case of a finite set .S, the system (%}ﬁd (Eqﬁ]) isasetof 1 + Card(S) linear
a0 equations in the 1+ Card(S) unknown variables 7(X,) and A\(X). This gives a method

s241  to compute A\(X). In the special case where S is a singleton, we get

COROLLARY 3.7.19 Let s € At, let X = A*s\ A*sAt and R = {w € A* | sw €

A*sand |w| < |s|}. Then for any positive Bernoulli distribution 7, we have

AX) = 7(R) /7(s) . .

EXAMPLE 3.7.20 Let A = {a,b} and consider s = aba. The corresponding set R is

R = {1,ba}. Setting p = 7(a) and ¢ = w(b) = 1 — p, we get for X = A*aba \ A*aba A"

1+ pq
AMX) = .
(X) o
Now, choose s' = baa. The corresponding R’ is the set R = {1}. Thus, for X' =
A*baa \ A*baaAt, we have
1
AMX) = —.
(X) e

s42 For p = g = 1/2, this gives \(X) = 10, A\(X’) = 8. This is an interesting paradox: we
2243 have to wait longer for the first appearance of aba than for the first appearance of baa!

2« 3.8 Length distributions

section2.7bis

22¢s Let X be a prefix code on the alphabet A with k letters. Let fx(2) = >_, - un2" with
a6 Uy = Card(X N A™). Recall that the sequence (u,,) is the length distribution of X and fx

a7 is the generating series of X
s24s By Theorem E%ii one has fx(1/k) = >_,5ounk™ < 1. Conversely, ili W deiiemillan

a0 Y~ Up2" is a series with nonnegative coefficients then, in view of Theorem 2412, it
wso  u(1/k) < 1, there exists a prefix code X on k letters sugc u(z) = fx(2).

as1  If X is a thin maximal prefix code, then by Theorem% (1/k) = 1. Conversely,
as2 if w(z) = >, 50unz" is a series with nonnegative coefficients, and u(1/k) = 1, then
253 there exists a prefix code X on k letters such that fx(z) = u(z). This code is clearly a
a2s4  maximal code, hence a maximal prefix code.

:GR . .
EXAMPLE 3.8.1 It follows from Formula (@_Fhat the generating series of the Go-

lomb—Rice code of order £ is

2kzk’+1

far,(2) = = Z 2kt

ass  Let X bea rational prefix code. The generating series fx(z) is N-rational by Propo-
s256  sition . The following statement proves the converse.

THEOREM 3.8.2 A series u(z) = Y, un2" is the generating series of a rational prefix code

a8 on k letters if and only if it is N-rational, ug = 0 and it satisfies the inequality u(1/k) < 1.
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s2s0  The conditions are obviously necessary. To prove that they are sufficient, we prove
s260  several intermediary results. We assume from now on that u is an N-rational series and
a1 thatu(l/k) < 1. S o = 0, there is a normalized weighted automaton recognizing
262 u by Proposition%%fe assume that u is not the null series.

s263  The following lemma is the first step of the proof.

lemma-eigemss| LEMMA 3.8.3 If A = (Q,i,t) is a normalized weighted automaton recognizing u, the adja-
a5 cency matrix of A has a k-approximate eigenvector w which is positive and such that w; = w;.

Proof. Let A = (Q,i,t) be a normalized weighted automaton recognizing u. Let A be
the weighted automaton on the set of states Q = @ \ t obtained by merging ¢ and ¢. Let
M be the adjacency matrix of A and let J‘%RS %}e adjacency matrix of A. Since A is trim,

2Yald=ls

M is irreducible. By Proposition [[L10.12, (Q,z z) recognizes u*(z) = 1/(1—u(z)). Singe

D RadiusSpectral

u(1/k) < 1, the radius of convergence p of u* satisfies p > 1/k. By ProEosm%n I

the spectral radius A of M is 1/p. Thus A < k and by Proposition ere is a
positive k-approximate eigenvector @ of M. Let w be the Q-vector defined by w, = W,
for every ¢ # t and w; = w;. By definition w; = w; = w;. Let us show that w is a
positive k-approximate eigenvector of //. We have to prove that 3 .o Mywg < kwy
for all p € Q. Since A is normalized, M,,; = 0 for all p € Q. Next, for p € Q, we have

Z Mpqwq = Z Mpqwq + Mptwt = Z Mpq’lf)q + Mpi’lf)i

q€Q a€Q\{i,t} qeQ\i
- Z Mgy < ki, = kw,.
q€Q
s266  Moreover, since M;, = 0 for all ¢ € @, the inequality holds trivially for p = t because
s267  wy > 0. m

268 We will use the following two combinagorial lemmas of some independent interest.
a0 These will be used in the proof of Lemma ié‘%ﬁ For a Q-vector z = (z4)4cq, we denote
270 by d(z) the sum of its coefficients d(z) = 3 . 74 and for two Q-vectors x = (2¢)qeq
221 and y = (yq)qeq, We denote by z - y their scalar product defined by z -y = >° - 7qyq.
a2z The first combinatorial lemma is a variant of the pigeon-hole principle.

[LemmeComb&itd LEMMA 3.8.4 For any integer m > 1 and any Q-vectors z,w € N such that d(z) = m,
274 there is a Q-vector 2’ such that 0 < 2/ < zand 2’ - w = 0 mod m.

azrs Proof. Since d(z) = m, there exists a sequence 2 2@ 2 of Q-vectors such that
2w 0 <z < 23 < ... < 20M = 5 Indeed, this is clear if m = 1. Assume m > 1.
s2r7 There exists an index k such that z; > 0. Define a Q-vector u by u; = z; for i # k
a8 and uy = 2z, — 1. Then d(u) = m — 1 > 1, and by induction there exists a sequence

e M) 2@ 2(m=D) of Q-vectors such that 0 < z(1) < 22 < ... < 2(m=1) = 4, Setting
2s0 2™ = 2, we obtain the desired sequence because u < z.
ws  Consider the sequence (), () ... 2™ If all residues =(*) - w modulo m are dis-

w2 tinct, then there is an index i with 1 < i < m such that 29 - w = 0 mod m. In this
w2z case, we set 2/ = z(!). Otherwise, there exist indices i, j with 1 < i < j < m such
wss that 2 - w = 2U) . w mod m. In this case, we set 2/ = z() — z(). Observe that
wes 0< 2 <2l <2 Consequently, in both cases, z > 2’ > 0 and 2’ - w = 0 mod m. "
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LEMMA 3.8.5 For any integer m > 1 and y,w € N@, there exist n > 0 and n + 1 vectors
2er v 0, 0™ € N9 such that y = Y7 v\, with

3288 (1) d(v(j)) <mfor0<j<n,and
3289 (i) v\ - w =0 mod mforl <j<n.

a200 Proof. We proceed by induction on d(y). If d(y) < m, then the properties hold with
201 n = 0and v(® = y. Indeed condition (ii ise Yacuaus for n = 0. Otherwise, we write
a2y = z +y with d(z) = m. By Lemm;%j—ﬂm a Q-vector 2’ such that 0 < 2/ < z
3203 and 2z’ - w = 0 mod m. We write 2 = 2/ + s. Theny = 2/ + ¢y’ with ¢/ = s + ¢/. Since
20 2’ >0, wehave d(y”) < d(y) and we can apply the induction hypothesis to y”. The set
a5 of vectors for y” together with 2’ gives the desired result for y since d(z’) < d(z) < m.

3296 n

LEMMA 3.8.6 There exists a normalized weighted automaton A = (Q,i,t) recognizing u
a208  such that the adjacency matrix of A has a positive k-approximate eigenvector w satisfying
3200 w; = wy = 1.

w00 Proof. We start with a normalized weighted aufomaton A = (Q, i,t) recognizing u. Let
a1 M be the adjacency matrix of A. By Lemma , there is a positive k-approximate

a2 eigenvector w of M such that w; = wy. Set m = w; = wy. Let I be the characteristic
s303  (Q-vector of ¢ defined by I; = 1 and I; = 0 for ¢ # i and let T" be the characteristic
s Q- vector T of t, defined similarly. Let K = {r € N? | d(r) < m,r; = 0}, and let
a5 R =K U{T}. Since i # t,and d(I) = 1, the vector [ is in K.
s We define a weighted automaton B = (R, I,T) by defining its adjacency matrix N
307 as follows.
Consider rin Rand set z = rM and y = 2z — /7. Thus y; = 0. We apply Lemma %Mb
to the pair of vectors y, w, where w and m = w; = w; are as defined above. The lemma
gives a decomposition y = Z?:o v, where each vU) is in K because y; = 0. We set

N — Card{j |0 <j<mnand v =s} ifs#T,
ne Zt otherwise.

Since rM = y + T, we have

rM =) N.s. (3.31)

sER

s308  Note that whenever IV, ; # 0 in the right-hand side, then s - w = 0 mod m except
ss00  possibly for one value of s for which N, ; = 1, corres oe%%mg to the vector v(¥). Indeed,
ss10  this is true for s # T by condition (ii) of Lemma%‘m‘it holds also for s = T since
sy 1w = wy =m.

a3 We will verify that B recognizes v and that its adjacency matrix IV has a positive
sz k-eigenvector w' satisfying w) = w/, = 1.

s3s Let U be the R x QQ-matrix defined by U,., = r, for ¢ € Q). Thus the row of index
sais 1 of U is the Q-vector r itself. It follows that for each Q-vector z, one has (Uz), =
26 ) coUrqzqg = 1 - 2. Observe also that by construction UM = NU, since the row, of,
ssi7 indexrin UM isrM,and (NU),p = > ;cp NrsUsp = > scp NrsSp = (rM), by %),7
a8 showing that the row of index r in NU is rM.
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Let I’ (resp. T') be the characteristic R-vector of the state I (resp. of the state 7).
We obtain, considering I, I’ as row vectors and 7, 7" as column vectors the equalities
I'U =Tand UT = T'. Indeed, (I'U), = >, cp 1, Urp = I1Ur, = Uy = I, and for
re R, (UT), = ZpEQ U, pTp = Uyt = 14. This shows that UT = T” since r; = 0 for all
r € Rexceptforr="1T.

Since UM™ = N™U for all n > 1, we have

Up = IM"T = T'UM"T = I'N"UT = I'N"T".

This shows that u is recognized by B. We also have NUw = UMw < kUw and thus
w' = Uw is a k-approximate eigenvector of N. Note that w} = w/, = m. Indeed,

wip=T"w=1I"Uw=TU-w=1 w=uw;,
and, since the row of index T of U is the Q-vector T,
wh = Uw)r =T - w = w;.

For each r € R, we have
Z N, swl, < kw. .
SER

Since w), = (Uw)s = s - w, we have w, = 0 mod m for all s except possibly for one
index sg for which N, ;, = 1. We rewrite the inequality as

Z Nr,sw; + anOw;O < kw,/n .
SF#So
Dividing both sides by m gives
Z Ny swy/m + Ny sowl, /m < kw,/m.
SF#S0
Taking the ceiling of both sides gives
[ Nogwl/m+ Ny gyl fm| < Tl fm].
SF#So
Since on the left-hand side, all terms are integers except possibly the last one, and since
N, s, = 1, this implies
> Negwl/m+ Nig, [wly /m] < [kwy /m] < k[w]/m].
SF#£S0

This shows that the vector w” defined by w]| = [w;./m] is a positive k-approximate
eigenvector such that w}, = wj, = 1. n

SIAM. . : .
Proof of Theorem @.—We first show that there exists a normalized weighted automa-
ton recognizing u such tgat each state has at most k outgoing edges.

According to Lemma , we start with a normalized weighted automaton A =
(@, 1i,t) recognizing u with state set ) such that the adjacency matrix M of A has a
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positive k-approximate eigenvector w with w; = w; = 1. We are going to define a
weighted automaton A’ = (R, ', t') by its adjacency matrix N. This matrix will have
the property that there exists a nonnegative matrix U such that

MU =UN.

By construction, the sum of each row of the matrix NV will be at most k.

The set R contains w, copies of each state g in ). Since w; = 1, the set R contains
only one copy of the initial state ;. Formally, R is the set of pairs (g, j) for ¢ € @ and
1 < j < w,. For given p,q € @, we define Nw.i)(a.9) forl1 <i<wpand 1 < j <wgin
the following way.

Forp € Q, let X(p) = {(¢,j,m) | ¢ € Q,1 < j < wg,1 < m < M,,}. Thus
X(p) contains M, , copies of each state (¢, j) € R. The set X(p) has by definition
>geq Mpqwq elements. Since > o M, qwy < kw,, we may partition the set X(p)
into w,, sets X, 1,..., Xy, having each at most £ elements. We denote by X, ;
the subset of the set X, ;, composed of the elements of the form (g, j,m) for some m.
We then define N, ¢ (4;) = Card(X, ;). Since N is the adjacency matrix of the
automaton under construction, N, ) (4.5 is the weight of the edge from (p, £) to (g, j).
The sum of the weights of the edges going out of each state (p, ¢) is the cardinality of
Xp,e,and thus at most k. Note also that 31, Nip,0),(4,) = Mp,q since the sum is the
number of elements of the set X (p) of the form (g, j, m) for some m, that is precisely

M, 4.

Define the @ x R-matrix U by U, (, ;) = 1 for 1 < j < w,, the other components being
0. Then we have MU = UN. Indeed, MU, (;.j) = >_scq Mp,sUs (0.5) = Mp,aUq,(4.5)Mp.q
and UNy, (q.) = 2orer Upr Vi (g.5) = Zlgégwp Up,0.0)Np,0),(0.5) = Mp.g-

Let A" = (R,i,t') be the weighted automaton with adjacency matrix N and with
i’ = (i,1) and t' = (¢,1). By construction, this automaton is normalized. Then A’
recognizes u. Indeed, let I (resp. T') be the characteristic Q-vector of i (resp. of ?).
Since the automaton A recognizes u, we have for n > 0, u,, = IM"T. Let similarly I’
(resp T") be the characteristic R-vector of i’ (resp. of ). By definition of 7' and ¢/, we
have IU = I'"and T'= UT". Since MU = UN, we have also M"U = UN" foralln > 0
and thus I'N"T" = IUN™T' = IM"UT' = IM"T = uy,.

By construction, the sum on each row of N is at most k£ and thus A’ satisfies the
required property.

We now label the edges going out of each state with different letters. Since there
is only one initial state and no edge going out of the terminal state, the automaton
obtained recognizes a prefix code with generating series w. .

EXAMPLE 3.8.7 Let u(z) = 32°/(1 — 2?). We have u(1/2) = 1. The serieg u is rec-
ognized by the trim normalized weighted automaton of t?e left of Figure %._W
esuper

result of the transformation realized in the proof of Lemma is represented on the
right. The coordinates of the 2-approximate eigenvector in both cases is indicated in a
square.

We compute only the accessible part of the automaton 5. T%ggmes the four vectors
shown in the states of the automaton on the right of Figure B.30. The matrices M, N
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Figure 3.30 A trim normalized weighted automaton of v and the first trans-

formation. fig-Kraft
eSuper
and U of the proof of Lemma E%ﬁ are

SO O O
o = O W
o O = O
S O O O
S = O =
o O = O
o O O =
S O W o
S W o O
_ o O O

The second transformation (proof of the theorem) gives the weighted automaton of
Figure on the left. Note that the state with weight 2 is a split in two states (2,1)

and (2,2) and that its output is distributed amongst them. The matrices M, N and U

Figure 3.31 The second transformation and the final result.

of the proof are

0100 0 1100 1000 0
00 1 3 00002 01100
MZOloo’Nzgg(l)éé’U:0001o
0000 000 0 0 0000 1

a4 A deterministic labeling gives the automaton represented on the right. It recognizes
wes  the regular prefix code on X = (b?)*{aa, ab,ba}. A final minimization would merge 1
a6 and 4. The code X is maximal, which is not surprising because u(1/2) = 1.
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3.9 Optimal prefix codes

Let X be a code over some alphabet A, and assume that each letter a € A has a cost
c(a) associated with it. The cost of a word w is by definition the sum of the costs of its
letters.

Assume next that each codeword =z € X has a weight p(z) associated with it. The
weighted cost of X is

Cx = Y pla)e(w).
zeX
The prefix coding problem is to find a prefix code X with minimal weighted cost, for
given weights. In the sequel, weights and costs are positive numbers.

As usual, the code X can be viewed through a coding morphism, that is a bijection
B : B — X for some alphabet B which extends into an injective morphism from B*
into A*. With this in mind, the weight of a word = € C'is in fact the weight of the letter
b € B such that x = 3(b). So the weighted cost of X is also

Cx = 3 pB)e(B0)) -

In the case where all letters a € A have equal cost, the cost of a word over A is merely
its length. In this case, the prefix coding problem reduces to the construction of a
prefix code which minimizes
Cx = 3 p@)le].
zeX

In the case ), p(x) = 1, the number CY is just the average length of the words of X.

An encoding  which solves the optimal prefix problem for equal letter costs is
called a Huffman encoding. The following greedy algorithm computes a solution in
the binary case in time O(nlogn), and in time O(n) if the weights are available in
increasing order. Let A = {0, 1}, and let p : B — R be the weight function.

If B has just one element ¢, set 5(c) = 1; otherwise, select two elements ¢; ¢ in B of
minimal weight, that is such that p(c;1), p(c2) < p(c) forall ¢ € B\ {c1,c2}. Let

B = (B\ {61?02}) U {d}v

where d is a new symbol not in B, and define p' : B’ — R by p/(c) = p(c) forall ¢ # d

and p'(d) = p(c1) + p(cz).
Let 4’ be a Huffman encoding of (B’, p’) and define 3 : B — A* by

B(c) = B'(c) force B\ {c1,co}, PB(c1) =3(d)0, Blcz)=p(d)l.

Let us verify that 3 is a Huffman encoding of (B, p). For this, we show that there
is an optimal encoding 3 such that 3(c;), 5(c2) are words of maximal length differing
only by the last letter. This will prove the claim.

Consider a prefix code X = ((B) such that Cx is minimal. Let ¢;,c2 € B be letters
with lowest weights p(c1), p(c2). Let z,y € X be two words of maximal length which
differ only by their last letter. Let ¢,d € B be such that 3(c) = z, 8(d) = y. Define the
encoding /' derived from [ by exchanging the values of ¢, ¢o with the values of ¢, d,
and set X' = #/(B). One gets Cx» < Cx and thus Cxs = C¥x.
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EXAMPLE 3.9.1 Consider the alphabets B = {a,b,c,d,e, f} and A = {0,1}, and the
weights given in the table

a b ¢
pl2 2 3 3 3 5
din

i02-06
The steps of the algorithm are presented in the sequence of trees given in Figure E”ﬁj

Figure 3.32 Computing an optimal Huffman encoding by combining trees.

In the case where the letters used for the encoding have unequal costs, less is known
on the prefix coding problem. The problem is motivated by coding morphisms where
different characters may have different transmission times. One example is the tele-
graph channel, in which the dash “- ” has twice the cost of a dot “-”. Another example
is the family of binary run-length limited codes, where two consecutive symbols 1 must
be separated by at least a and at most b adjacent 0’s. In this model, each word 0¥1 with
a < k < bmay be replaced by a single symbol in a new alphabet, and the cost of this
symbolis k + 1.

The prefix coding problem with unequal letter costs has been considered mainly
in the case where the costs are integers. A special case is known as the Varn coding
problem. This is the prefix coding problem when all the weights of the codewords are
equal. This problem has an amazingly simple O(n logn) time solution.

Assume that all n codewords have weight equal to 1. An optimal code minimizes

the cost
Cx = Z c(x),
zeX

where the cost ¢(z) is the sum of the costs of its letters, that is

c(x) =) cla)lzla-

acA

We construct an optimal code over a k-letter alphabet A, assuming thatn = ¢(k—1)+1
for some integer ¢. So the prefix code obtained is complete and its tree is complete with
q internal nodes and n leaves. The algorithm starts with a tree composed solely of its
root, and iteratively replaces the leaf of minimal cost by an internal node which has &
leaves, one for each letter. The number of leaves increases by k£ — 1, so in ¢ steps one
gets a tree with n leaves.

EXAMPLE 3.9.2 Assume we are looking for a code with seven words over the ternary
alphabet {a, b, c}, and that the cost for letter a is 2, for letter b is 4, and for letter c is 5.
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Figure 3.33 Varn’s algorithm for 7 words and a 3-letter channel alphabet. At
each step, a leaf of minimal cost is replaced by a node with 3 leaves. There are
two choices for the last step. Both give an optimal tree.

We start with a tree composed of a single leaf, and then build the tree by applying
the algorithm. There are two solutions, both of cost 45, given in Figure %.—ﬂie left
tree defines the prefix code {aa, ab, ac, ba,bb, bc, c}, and the right tree gives the code
{aaa, aab, aac, ab, ac, b, c}.

In order to get complexity O(nlogn) for the construction, the leaves of the tree are
managed through a priority queue: then insertion of a leaf is done in O(logn) oper-
ations, and the same time complexity Eol%% for retrieval of a leaf with minimal cost.
For a proof of correctness, see Exercise .

VARNCODING()
1 T « root
2 > By definition, the cost of the root is 0

3 @ < PRIORITYQUEUE()

4 ADD(Q, root)

5 while the number of leaves is # n do
6 f < EXTRACTMIN(Q)

7 foreacha € Ado

8 ¢ «+ MAKECHILD(f)

9 cost(c) < cost(f) + cost(a)
0 ADD(Q,¢)

1 returnT

A special case of prefix coding is a coding which is compatible with a given ordering
of the input alphabet. Consider a coding morphism 3 : B* — A*, where A and B are
alphabets equipped with an order. Then 3 is an ordered coding or alphabetic coding if

b<lt = B(b) <),

where the order in A* is the lexicographic order induced by the order on A. If 3 is
a prefix coding, and if the prefix code X = (3(B) is viewed as a tree, this means that
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the leaves of the tree, read from left to right, correspond to the encoding of the input
letters in B, read in alphabetic order. Such a tree is called ordered or alphabetic. The
ordered prefix code problem is to find an ordered coding that with minimal weighted cost

Cx = S p)IA0).

beB

where p(b) is the weight of b.

EXAMPLE 3.9.3 Consjder the alphabet B = {a,b, c}, with weights p(a) = p(c) = 1
and p(b) = 4. Figure B.34 shows on the left an optimal tree for these weights, and on
the right an optimal ordered tree. This example shows that Huffman’s algorithm does
not give the optimal ordered tree.

a Cc

Figure 3.34 Two trees for the given weights. The left tree has weighted cost 8, it
is optimal but not ordered. The right tree is ordered and has weighted cost 11.

EXAMPLE3 .9 4 Consider the sequence of weights (4, 3,3,4). An optimal tree is given
in Figure . It shows that in an optimal ordered tree, leaves with minimal weight
need not to be adjacent.

Figure 3.35 The optimal ordered tree for weights (4, 3, 3,4).

Let B = {b,...,b,} be an ordered alphabet with n letters, and let p; be the weight
of letter b;. We present an algorithm for computing an optimal ordered tree due to
Garsia and Wachs (see Notes). The idea is to use a variant of Huffman’s algorithm by
grouping together pairs of elements with minimal weights which are consecutive in
the ordering. The algorithm can be implemented to run in time O(nlogn).

The algorithm is composed of three parts. In the first part, called the combination
part, one starts with the sequence of weights p = (p1,...,p,) and constructs an opti-
mal binary tree 7" for a permutation by(y), - - - ; bs(n) Of the alphabet. The leaves, from
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s34 left to right, have weights p, (1), . - - ; Po(n)s 101 %qgal, this permutation is not the iden-
ass  tity, so the tree is not ordered, see Figure %\éﬁ'é%efﬁe number in a node is its weight,

that is the sum of the weights of the leaves of its subtree. In the second part, called,

Figure 3.36 The two steps of the algorithm: On the left the unordered tree
obtained in the combination phase, and on the right the ordered tree, obtained

by recombination. fig:example

3436
usr  the level assignment, one computes the levels of the leaves. In the last part, called the

ass  recombination part, one constructs a tree T which has the weights p, ..., p, associated
sz to its leaves from left to right, and where each leaf with weight p; appearsat the same
a0 level as in the tree 7”. This tree is ordered by construction (see Figure ‘%
aar  the leaves have the same level in 7" and in 77, the corresponding codewords have the
ausz  same length, and therefore the trees T and 7" have the same cost. Thus T is an optimal
sz ordered tree.
aas We now give the details of the algorithm. For ease of description, we introduce the
ass  following terminology. A sequence (p1, ..., pi) of numbers is 2-descending if p; > pj o
ase for 1 < i < k — 2. Clearly a sequence is 2-descending if and only if the sequence of
aar “two-sums” (p1 + p2, ..., prk—1 + pi) is strictly decreasing.
Let p = (p1,...,pn) be a sequence of (positive) weights. We extend it by setting
Po = pn1 = oo. The left minimal pair or simply minimal pair of p is the pair (px_1,px),
where (p1, ..., px) is the longest 2-descending chain that is a prefix of p. The index k is
the position of the pair. In other words, k is the integer such that

pi-1>pit1 (1<i<k) and pgr-1 < pri1-
Observe that the left minimal pair can be defined equivalently by the conditions
pi-1+pi >pitpiqn (1<i<k) and pr—1+pr < P+ Dit1-
The target is the index j with 1 < j < k such that
Pj-1 2 Pk—1+ Dk > Pjy- -+, Pk -
asss  EXAMPLE 3.9.5 For (14,15,10,11, 12,6, 8,4), the left minimal pair is (10,11) and the

ase  target is 1, whereas for the sequence (28, 8, 15,20, 7, 5), the left minimal pair is (15, 20)
uso  and the target is 2.
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The pair (j, k) composed of the position of the left minimal pair and of its target is
called the scope of the sequence p. Observe that the sequence (pj—1,pr—1 + Pk, Pj, - - -,
Pr—2) is 2-descending since p;_1 > pr_1 + Dk > Dj, Pj+1-

The three phases of the algorithm work as follows.

Combination Associate a singleton tree to each weight. Repeat the following steps
as long as the sequence of weights has more than one element.
(i) compute the left minimal pair (pr—1, pk)-

(ii) compute the target j.

(iii) remove the weights p;,_; and py,

(iv) insert py_1 + pi between p;_; and p;.

(v) associate to pr_1 + pi a new tree with weight p;_; + pi, and which has, as left

and right subtrees, the tree for p,_; and for p, respectively.

Level assignment Compute, for each letter b in B, the level of its leaf in the tree 7".

Recombination Construct an ordered tree T in which the leaves of the letters have
the levels computed by the level assignement.

a b ¢ d e

Figure 3.37 The initial sequence of trees.

EXAMPLE 3.9.6 Consider the following weights for an alphabet of five letters.

a b ¢ d e
p|25 20 12 10 14

The initial sequence of trees is given in Figure %The left minimal pair is 12, 10, its
target is 2, so the leaves for c and d are combined into a tree which is inserted just to
the right of the first tree. Now the minimal pair is (20, 14) (there is an infinite weight
at the right end), so the leaves for letters b and e are combined, and inserted at the
beginning. This gives the two sequences of Figure .

) o )
a b e a
c d b e c d

Figure 3.38 The next two steps.
Next the two El%%_’cctrees are combined and inserted at the beginning as shown on the

left of Figure .34, and finally, the two remaining trees are combined, as shown on the
right.

Version 14 janvier 2009 J. Berstel, D. Perrin and C. Reutenauer

fig2-a

fig2-b



3474

3475

3476
3477
3478
3479
3480
3481

3482

3483

3484

3485

3486

3487

3489

3490

3491

156 3. PREFIX CODES

Figure 3.39 The two last steps of the combination part.

The tree 7" obtained at the end of the first phase is not ordered. The prescribed levels
for the letters of the example are:

a b c de
level |2 2 3 3 2

The optimal ordered tree with these levels is given by recombination. It is the tree
given on the right of Figure Ig"?ﬁ e weighted cost of this tree is 184.

We now give a proof of the algorithm. Let 7" be some binary tree with n leaves la-
belled by the letters b1, ..., b, of the alphabet B, with weights py,...,p,. We denote
by ¢I' (or simply ¢;) the level of the leaf of b; in T, that is the length of the codeword
coding the letter b;. Each of the partial trees constructed in the algorithm will be iden-
tified with its root, considered as a leaf. The leaf corresponding to the letter b; will be
denoted by \;.

We first state two simple lemmas.

LEMMA 3.9.7 Let T be some binary tree. If {; > {; 11, then \; is a right leaf. Symmetrically,
if €; < U1, then \; is a left leaf.

Proof. Assume indeed that ), is a left leaf. Then its right sibling is a tree containing the
leaf Ai+1. Thus fz < €i+1. n

The following statement is a first step to the proof of the correctness of the algorithm.

LEMMA 3.9.8 If pi—1 > pit1, then £; < l;11 in every optimal ordered tree. If p;_1 = piy1,
then £; < {;1 1 in some optimal ordered tree.

Proof. Suppose p;—1 > pit+1, and CQR ider a tree T with ¢; > /¢; ;. In this tree, the
leaf A; is a right child by ma BI8 and its left sibling is a tree L with weight
p(L) > pi—1, see Figure B.40 . Build a new tree T” as follows: replace the parent of L by
L itself, replace the leaf of \;;; by a node having as childs the leaves \; and \;;1. The

difference of the costs is

Crr —Cr = —p(L) + pix1 —pi(li — liz1 — 1) < pig1 — pi1

because ¢; > {; 11 + 1. If pi—1 > pi+1, then this expression is < 0 and 7 is not optimal.
If p;_1 = pi+1 and if T is optimal, then 7" is also optimal, and EZT' = EZ-T. "
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Figure 3.40 Reorganizing leaves in Lemma %

Observe that the symmetric statement also holds.

COROLLARY 3.9.9 If p;—1 < pit1, then ;1 > {; in every optimal ordered tree. If p;_1 =
Di+1, then €;_1 > {; in some optimal ordered tree.

We use Lemma % in the following form.

COROLLARY 3.9.10 If the subsequence (p;_1,...,px) is 2-descending, then £; < --- < {j,
in every optimal ordered tree. n

We now show that we always may assume that the minimal tree for a sequence p
has some special form. Such a tree will be called flat.

PROPOSITION 3.9.11 Let (34, k) be the scope of the sequence p = (p1, ..., py). There exists a
minimal tree for p satisfying {1 = {}, and one of the two conditions

(a) by =1{;+1or

(b) €, = {; and \j is a left leaf.

Proof Since the sequence (pi,...,px) is 2-descending gand po = +00), one has /1 <
ly < .- < { in every minimal tree by Corollary B.9.I0. Next pr—1 < prt1. f pr—1 <
Dk+1 then li_1 > !} in every minimal tree, and if py_1 = pi41 then £;_; >/}, in some
minimal tree. Thus ¢;_1 = ¢} in some minimal tree.

,,,,,,,,,, —11 - - ‘l’ I

Figure 3.41 Proof of Proposition % On the left before the shift, on the right
after the shift.

Consider this tree. We prove that /; = ¢}, or {; = {;, — 1. Assume the contrary. Then
l; <l — 2. Let s be the greatest index such that ¢, < ¢;, — 2. Then s < k — 1 because
l._1 = {;.. Let t be the smallest index such that ¢; = /.. Then

< <ty <Ulsp1 < <l <ly=-=l

Version 14 janvier 2009 J. Berstel, D. Perrin and C. Reutenauer

fig:AlphEncodingLem




3508
3509
3510
3511
3512
3513
3514
3515
3516

3517

3518
3519
3520
3521
3522
3523
3524
3525

3526

3527
3528
3529

3530

3531

3532

3533
3534
3535
3536

3537

158 3. PREFIX CODES

It is quite possible that s + 1 = ¢. Observe that A\, is left leaf by Lemma % because
ls < ls1q. Similarly, ); is a left leaf, anc %\ 1and At+1 are siblings. We now make the
following transformation, see Figure ig%j I| ileaf As is replaced by a node with the two
siblings A\s and Asy1. Each of the leaves Agy9,..., A\;—1 is shift to the left. The leaf \;
replaces \;_1, and the parent of \;y; is replaced by A1 itself. The extra cost of this
transformation is at most p; — p; — pi+1 because the level of A, increases by 1, the level
of A1 does not increase, the levels of \; and \;1; decrease by 1. Now ps — pr — pry1 <
Ps — Pk—1 — Pi because p; + pry1 > pr—1 + pr (equality is possible because one might
have t = k — 1, and the extra cost is < 0 because j > s and therefore p; < pp_1 + pr)-
This gives a contradiction and shows that ¢; > 7, — 1.

Figure 3.42 Second transformation in Proposition % Before the transfor-
mation on the left, and after the transformation on the right

It remains to consider the case where /; = /.. Arguing by contradiction, assume that
Ajis aright leaf. Then, since /;_; < /;, theleaf \;_; is[ a. gt ]faf and is the sibling of \;.
Then make the following transformation, see Figure %gg Eeplace the common parent
of A\j_jand \; by A\;_y, shift \;,..., \;_2 one position to the right, and replace the leaf
Ak by a node with children A;,_; and )j. Since the leaves A\;_,..., \; have the same
level before the transformation, the extra costis —p;_1 +pr—1 +pk. This value is < 0 by
the definition of the target. Since the tree was minimal before the transformation, the
tree after transformation has the same cost. In this new tree, one has indeed ¢, = 14-¢;.

A tree T for p is k-minimal if it is minimal among all trees where the leaves for p,_
and pj, are siblings.

A level preserving permutation o of tree T is a tree T that has the same leaves than T
at the same levels. By definition, the cost of T is equal to the cost of T'.

LEMMA 3.9.12 Let p = (p1,...,pn) be a sequence of weights with scope (j, k) and let T be
an optimal flat tree for p. Let

p/ = (p17 ey j*lﬂpk—hpkhpjapjﬁ*h vy Pk—2yPk+15- - - 7pn)

There exists level preserving permutation that transforms T into a tree T" for p’ such that the
leaves for py_1 and py, are siblings.

Proof. Since T is flat, {; = ¢}, or {; = {}, — 1. If {; = /{},, one makes a circular shift of the
leaves )\j, ..., \; two positions to the right. Since \; was a | “ftQ Wld before the shift,
the leaves \;_; and Ay are siblings after the shift, see Figure B.43.
If {; = £y — 1, let s be such that {; = £}, {511 = {;. Then one first makes a -H-SWE shift

of the leaves As11, ..., A\, two positions to the right, as before, see Figure B4
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——————————————————————
o

Figure 3.43 The case /; = {},. Before and after the circular shift.

Figure 3.44 The case {; = (), — 1: A circular shift. Before and after the first
shift.

Then one applies a circular shift, one position to the right. o sequence \j, ..., A\—
s,x, where z is the parent node of \;_; and A, see Figure . Thisis a transformation

that preseves levels of leaves and therefore the resulting tree has the same cost as the
tree T we started with. n

SEI RN N o S

Figure 3.45 The case {; = ¢}, — 1: Before and after the second shift.

THEOREM 3.9.13 Let p = (p1,...,pn) be a sequence of weights with scope (j,k) and let

P= (D1, Pj—1,Pk—1 + PksDjs Dj+1s- - - s Dk—2s Dkt1, - - - , Pn). Let T be a minimal tree for
p, and let T' be the tree obtained by substituting a tree with two leaves \,_1 and \j, to the leaf

corresponding to py_1 + pi in T. There exists a minimal tree T for p of cost ¢(T') = c(T")
which is obtained by a level preserving permutation of T'.

Proof. Let T be an optimal tree for p. Since ¢(T") = ¢(T) + pr—_1 + pi, the tree T' is
k-minimal for

p/::(plu"'7pj*17pk—17pk7pj7pj+l7'"7pk—27pk+l7"'7pn)'

If j — 1 =Fk— 2, then p’ = p and there is nothing to prove. Otherwise, observe that
sequence

Dj—1,Pk—1 T Pk>Pj>Pj+1s- -+ Pk—2
is a 2-descending factor of the sequence p because p;_1 > pr_1 + pr > pj and py_1 +
Pk > pj+1. Therefore, denoting by x the leaf in T with weight pi_1 + pi, one has E? <
KJTA <... < E;@Q by Corollary %._The node z is also the parent node of the leaves

for pi_1 and py in T”, and since KT = ¢T" for all nodes of f, onehas/(, </; <.-- </l o
inT.
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Figure 3.46 The case ¢, = {}_» in Theorem %z Before and after the shift.

3552 We distinguish two cases. If /,, = /;,_5 then one makes the following transformation:
w53 the nodes x, \j, ..., Ao are cyclically permuted one position to the left, givin .thnj G
ssa nodes Aj, ..., A\p_2, 2 and therefore the leaves A;,..., A\p_2, \y—1, A, see Figure B.46

355 The resulting tree S verifies ¢(T') = ¢(7”) and the permutation is level preserving.

—————

Figure 3.47 The case ¢, < {j_o: first transformation. Before the first shift on

the left, after this shift on the right.

3556 If E% §(C£§_g, let s such that ¢, = ¢; < {,11. Then a first transformation (see Fig-

357 Ure similar to the previous one but on z,...,\; gives a tree where the leave
a8 sequenceis Aj ..., Ag—1, Ap—1, Aoy Ast1, - -+, Ak—2. Onehas £, = €, < Lol < l_o.
sse A circular permutation by two positions to the left of the

leaxes Ak—1, Ak Ast1, - -
w60 \p—2 gives the sequence A\gi1, ..., A\y—2, \p—1, Ag, see Figure qu_ﬁ

Figure 3.48 The case /,, < {;_»: second transformation. Before the first shift

on the left, after this shift on the right. fig:stYG3

61 By Lemma % below, the cost of the resulting tree S is less than the cost of 7’
ss62  unless £ _o = {;.. But in view of Lemma %, ¢(S) cannot be strictly less than ¢(T”).

3563 ]

LEMMA 3.9.14 Let m > 3, let {1 = l3 < --- < {,, be integers and let (p1,p2,...,pm) bea
2-descending chain. Set

¢ =pm-101 +pmla +prls + -+ pm—2lm ,
d =pily +palo+ -+ il -

sea  Then ¢ < ¢, and equality holds only if £,, = (.

sses  Proof. If m = 3, then ¢ — ¢ = (p1 — p3)(1 — ¢3) < 0 and indeed ¢’ = c only if ¢; = /3.
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If m > 4, then

d—c=pi(ty —l3) +pa(lo — Lg) + - + Pr—2(lm—2 — lim)
+ Pm-1(lm—1 — 1) + P (b — £2) .
Since (p1,p2, - - -, Pm) is 2-descending, the m — 2 first terms of this sum may be grouped
and bounded. If m is even
 —c<pm3(ly = Llm-1) + Pm—2(lz = b)) + Pm-1(lm—1 — £1) + pm (b — £2)
= (Pm-3 = Pm—1)Um—1 — €1) + (Pm—2 — pm)(m — £2) <0
and equality holds only if ¢,,,_1 = ¢; and ¢,,, = {5, so only if /; = - - - = {,,. Similarly, if
m is odd, and because ¢; = /3, one gets
d —c<pm-2(ly —ln) + Pm—3(la — lm—1) + Pm—1(lm-1 — L1) + prm (b — £2)
= (Pm—3 = Pm-1)(l1 = m-1) + (Pm—2 — pm)(l1 =€) <0
Again, equality holds only if /1 = --- = /,,,. .

3.10 Exercises

. tion2.1
Section Ei]

3.1.1 Let A be a finite alphabet, and let P be a prefix-closed subset of A*. Show that P
is infinite if and only if there exists an infinite sequence (p,),>1 of elements in P such
that

p1<p2<p3<---

3.1.2 Let Abe a finite alphabet of k letters and let X C A™ be a prefix code. Forn > 1,
let a,, = Card(X N A™). Show that Card(XA* N A") = >0 | k"% and

Zank_” <1.

n>1

3
(Thii %%eis an elementary proof of Corollary %’fﬁ' prefix codes. See also Proposi-

tion

. tion2.2
Section

3.2.1 Let X C A" be a prefix code. Let P = XA~ and let A = (P, 1,1) be the literal
automaton of X*. Consider an automaton B = (Q,4,7) which is deterministic, trim,
and such that X* = Stab(i). Show that there is a surjective function p : P — @ with
p(1) =iand such that fora € A, p(p - a) = p(p) - a.

3.2.2 A prefix code X is a chain if there exist disjoint nonempty sets Y, Z such that
Y U Zisprefixand X = Y*Z.
Let X be a nonempty prefix code over A, and let A(X) = (Q,i,t) be the minimal
automaton of X. Show that the following conditions are equivalent:
(i) Stab(i) # 1,
(ii) X is a chain,
(iii) there exists a word u € A" such that u=!X = X.
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. tion2.3
Section Eﬁ

3.3.1 Let A be an alphabet, and let /M (A) be the monoid of prefix subsets of A* equip-
ped with the induced product. Show that M (A) is a free monoid and that the set of
maximal (resp, 1. S%gnizable) prefix sets is a right unitary submonoid of M (A). (Hint:
Use Exercise P.2§and set A(X) = mingex |z|.)

. tion2.4
Section Ea

3.4.1 Show that the number of prefix-closed sets with n elements on a k-letter alphabet

is
1 (kn+1) 1 kn
kn +1 n C(k=Dn+1\n /"

For this, let L be the unique set of words on {a, b} such that L = aL* U b. Set ||w|| =
(k —1)|w|q — |wlp. Prove that

(i) L is the set of words w such that ||w|| = —1 and ||u|| > 0 for any proper prefix u
of w.
(ii) any word w on {a, b} such that ||w|| = —1 has exactly one conjugate in the set
L,
(iii) there exists a bijection between prefix-closed sets on a k-letter alphabet and
words of L.

3.4.2 Let X and Y be finite nonempty subsets of A* such that the product XY is unam-
biguous. Show that if XY is a maximal prefix code, then X and Y are maximal prefix

codes. (Hint: Use the facﬁ %%t 1751(0)5 )m(Y') = 1 for any positive Bernoulli distribution

on A and use Proposition

3.4.3 Let X and Y be two prefix codes over A, and
P=A"\XA" Q=A"\YA".
Set R = P N Q. Show that there exists a unique prefix code Z such that
7 =RA\R.

Show that
Z=(XNQU(XNY)u(PNY).

Show that if X and Y are maximal prefix sets, then so is Z.

3.4.4 Let A Dbe a finite alphabet. Show that the family of recognizable maximal prefix
codes is the least family F of subset of A* such that

(i) AeF,

(i) if X,Y € Fandif X = X; U Xj is a partition in recognizable sets X, X5, then

Z=X1UXoY € F.
(iii) if X € F and if X = X; U X3 is a partition in recognizable sets, then
Z=X{X,€F.

(Hint: Use an induction on the number of edges of the minimal deterministic automa-
ton of an element of F.)
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. tion2.5
Section Eﬁ

3.5.1 Let X C A* be a prefix code. Show that the following conditions are equivalent.
() A*X = X+
(ii) X is a semaphore code, and the minimal set of semaphores S = X \ ATX
satisfies SA* N A*S = SA*SUS.

Note that for a code X = A*w \ A*wAT™, the conditions are satisfied provided w is
unbordered.

3.5.2 Let J C A" be a two-sided ideal. For each = € J, denote by ||z| the greatest
integer n such that x € J", and set ||z|| = 0 for = ¢ J. Show that, for all z,y € A*,

[l + 1yl < llzyll <l + llyll + 1.

. tion2.6
Section Eﬁ

3.6.1 Let X C A" be a finite maximal prefix code. Show that if X contains a letter
a € A, then there is an integer n > 1 such that a” is synchronizing.

3.6.2 Let A be a complete deterministic automaton with n states. Show that if A is
synchronized, there exists a synchronizing word of length at most n? in A.

3.6.3 Let n > 1 be an integer and let M be the monoid of mappings from Q = Z/nZ
into itself generated by the two maps a, b defined for i € Q by ia =i + 1 and

,_Jizitl 0<i<n-y),
0 =
i+ 1 (n—t<i<mn)

for some integer ¢t with 1 < ¢ < n. The aim of this exercise is to show that the minimal

rank d of the elements of M divides n, and that ib = i + 1 mod d for all i € Q.
Foreache, fwithO <e< f<n,letl, ;={e,e+1,...,f—1}andlet M, s = {m €

M|Qm=1I.5andim =iforalli e I f}.

(a) show that for each j € @

Ie 0! = Ievjpvjand a™/ M o) = Meijpij -

(b) show that My is not empty. (Hint: Show that ba~! has a power in M,,_;,,.)

(c) let d be the least integer such that M 4 is not empty. Show that M 4 is formed of
one element m such that im = i mod d for all i € Q. (Hint: Arguing by contradiction,
let j be the least integer such that jm # j mod d. Use o’ ~4m to show that one may
reduce to the case j = d. Then show that some power of ma fixes an interval of less
than d elements.)

(d) show that d divides n. (Hint: Let n = dq + r with ¢ > 1 and 0 < r < d. Show that
some power of "~ "m is in M,.)

(e) show thatib =i+ 1 mod d for eachi € Q.
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3.6.4 Let X be a maximal prefix code on the alphabet A = {a,b}. Let a” € X and let
Y = X Na*ba*. Set Y = {yo,y1, -, Yn—1} with y; = a’ba’. Suppose that

(i) thereis an integer m > 1 such that " is not a factor of a word in X.
(ii) for each i, we have |y;| < n with equality if and only if n —t <i <n — 1.
(iii) the lengths of the words of Y~ are relatively prime

-synchro
Show that the code X is synchronized. (Hint: Use Exercise Ezéii

3.6.5 Let X C A* be a prefix code and let X = Y o Z be its maximal decomposition.
Show that if X =Y’ o Z' with Z’ prefix and Y’ maximal prefix, then Z"™* C Z*.

. tion2.7
Section Ej

3.7.1 Let X C A" be a thin maximal code and let 7 : X —]0, 1] be a function such that

Zﬂ'(az)zl.

zeX

Define the entropy of X (relatively to ) by

H(X) =~ m(x)logm(x),

zeX

where k = Card(A). Set \(X) = > . x |z|7(z).

Show that H(X) < A(X) and that the equality holds if and only if 7(z) = k=1l for
r e X.

Show that if X is finite and has n elements, then H(X) < log, n.

. tion2.7bis
Section Eé —

3.8.1 Show that u(z) = ), u,2" is the generating series of a thin maximal prefix code
on k letters if and only if

i) > upk ™ =1,

n>1
(ii) there is an integer p > 1 such that the series v(z) = ), v,,2" defined by u(z) —
1 = v(z)(kz — 1) satisfies v, < v, (kP — 1) foralln > 1.

(Hint: Show that if condition (ii) is satisfied, then u is the length distribution of a
maximal prefix code X such that a? is not a factor of the words of X.)

3.8.2 Let X be a thin maximal prefix code such that the gcd of the length of the words

in X is 1. Show that there exists a code with the same lengoih c%istribution which is
. . . . . Ba.w.me yNChro

thin, maximal, and synchronized. (Hint: Use Exercise 3.6.4])
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. tion2.9
Section Eﬁ

.0
3.9.1 The aim of this exercise is to show that Golomb codes of Example %Tm opti-
mal prefix codes for a source of integers with the geometric distribution given by

m(n) =p"q (3.32)

for positive real numbers p, g with p + ¢ = 1.
Show that there is a unique integer m such that

19771 + 197714*1 f; 1< 19771471 + Z)nl ) (23.2323)

Show that the application of Huffman algorithm to a geometric distribution given
etric

by produces a code with the same length distribution as the Golomb code of
order m where m is defined by (%shows the optimality of the Golomb code.

(Hint: Operate on a truncated, but growing source since Huffman’s algorithm works
only on finite alphabets.)

3.9.2 Prove that the code produced by Varn’s algorithm is indeed optimal. (Hint: Con-
sider a complete prefix code X; built by the algorithm and assume it is not optimal,
and consider a complete prefix code X, which is optimal. Show that there is a word
1 in X7 which is in X9A~, and there is a word 25 in X5 which is in X7 A~. Consider
a word p in Xy which has z; as a prefix and such that pA C X, are leaves, and build
X3 = X2\ (pAUx2) UpUx2A. Show that X3 has cost less or equal to the cost of X5
and is closer to X in the sense that Card(X; U X; A7) N (X3 U X3A7) is greater that
Card(X1 U XlAi) N (X2 U XgAi))

3.11 Notes

The results of the first four sections belong to folklore, and they are known fq readers
familiar with automata theory or with trees. The Elias code (Example E’ : l II) is intro-
duced in ({975).

Some particular codes are used for compression purposes to encode numerical data
subject to known probability distribution. They appear in particular in the context of
digital audio and videg ¢qding. The data encoded are integers and thus these codes
are infinite. Example%ﬁesents the Golomb codes introduced in [Golomb ([1966).
Golomb-Rice codes were introduced in [Ricd ([[979). Exponential Golomb-Rice codes
are introduced in ([979), see also falomor] (2007). Exponential Golomb codes
are used in practice in digital transmissions. In particular, they are a part of the video
compression standard technically known as H.264/MPEG-4 Advanced Video Coding

(AVCQ), see for instance Richardsor (2003). 0
The hypothesis of unambiguity is necessary in Proposition ﬁ%,?s shown by Bru-
yére)-
Semaphore codes were introduced in pchiitzer
codes. All the res presented in Section 3.3
contains Theorem B.6.17and Proposition B.7.17-
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The notion of synchronized prefix code has been extensively studied in the context
of automata theory. Let us mention Cerny’s problem: given a complete determin-
istic automaton with n states which is synchronized, what is the least upper bound
to the length of a synchronizing word as a function of n? Cerny’s conjecture asserts
that any synchronized strongly connected deterministic aytomaton has a synchroniz-
ing word of length at most )2. See Exercise% (1958), [Cerny] ([964),
and {928 biSample . 1348 obtained by a construction of [@9774) (see

Exercise [[4.1.9). Exetcise 3.6.41s due to pchjifzenbergey (1967). The maximal decom-

position of prefix codes and Prppositions B.6.14, 5 due to ([972).
- ion2. ) . ;
The resulfs of Section é:j are given in another terminology in ([[969).
Theorem S rorghBhagsmo et al] (P000). The method of state splitting used in the

proof of Lemma B.3: :eis_fﬁTpired from symbolic dynamics (see Marcud (1979) or Adler
et al. (1983)). The transformations between the various weighted automata recogniz-
ing a given series used in the proof of the theorem have been systematically studied
in Béal et al] (R003).

Huffman'’s algorithm (Huffman)], [[952) is presented in most textbooks on algorithms.
It has numerous applications in data compression, and variations such as the adapta-
tive Huffman algorithm have been developed, see ([989).

Run-length limited codes have applications in practical coding, see[Lind and Marcug
([999).

The case of codewords with equal weights and unequal letter cost has been solved
by (1971). Another algorithm is (Perl et al}, [1975).
~Karp ([[961) gave the first algorithm providing a solution of the general problem
with integer costs. His algorithm reduces to a problem in integer programming.

Another approach by [Golin and Rotd ([998) uses dynamic programming. Their al-
gorithm produces the solution in time O(n""2), where n is the number of codewords
and « is the greatest of the costs of the letters of A. This algorithm has been improved
to O(n") in the case of a binary alphabet in (Bradford et al], 002).

Ordered prefix codes are usually called alphabetic trees. The use of dynamic pro-
gramming technique for the construction of optimal alphabetic trees goes back to
Gilbert and Moord ([959). Their algorithm is O(n?3) in time and O(n?) in space.
([971) reduces time to O(n?).

We follow ([L999) for the exposition and the proof of the Garsia-Wachs algo-
rithm (see also [Garsia_and Wachq ([977); Kingstor] ([988)). The Garsia-Wachs algo-
rithm is simpler than a previous algorithm given in [Hu and Tuckeq ([971)) which was
also described in the first edition of Knuth’s book. For a proof and a detailed descrip-
tion of the Hu-Tucker algorithm, and complements see [Hu and Shing (P007); Hu and
Tucker ([1998).

There is no known polynomial time algorithm for the general problem, nor is the
problem known to be NP-hard. A polynomial time approximation scheme, that is an
algorithm that produces a solution which is optimal up to 1 + € in time O(n log n exp(
O(Z log %))) is given by [Golin et al] (2002).

An algorithm in cubic time for solving the optimal alphabetic prefix problem with
unequal letter cost has beeny given in It b

The results of Problems B.8.1and

/ .ISThere is a
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3.2
The monoid of prefix efs defined in Exercise %been further studied by
([[973). Exercise BZ Tis a wellkngwn result in combinatorics, see Lothaird,
([997). Exercises P.5.3 i

9.5.4 and P.5.5 are from [PBruyere et al] ([998). Exercise B9.0
follows [Gallager and van Voorhid ([975). The geometric distribution of this exercise
arises from run-length encoding where a sequence of 01 is encoded by n. If the source
produces 0 and 1’s independently with probability p and ¢, the probability of 0”1 is
precisely 7(n). This is of practical interest if p is large since then long runs of 0 are
expected and the run-length encoding realizes a logarithmic compression.
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. Chapter 4

.~ AUTOMATA

s In the present chapter, we study unambiguous automata. The main idea is to replace
ara4  computations on words by computations on paths labeled by words. This is a tech-
sas  nique which is well known in formal language theory. It will be used here in a special
arse  form related to the characteristic property of codes.

sraz Within this frame, the main fact is the equivalence between codes and unambigu-
a3 ous automata. The uniqueness of paths in unambiguous automata corresponds to the
a9 uniqueness of factorizations for a code. Unambiguous automata appear to be a gener-
arso  alization of deterministic automata in the same manner as the notion of a code extends
srs1 - the notion of a prefix code.

sz We present devices for encoding and decoding, using transducers. A special class of, .
s transducers, called sequential transducers, is introduced. It will be shown in ChapterE
arss to be related to the deciphering delay.

arss  The chapter is organized as follows.

ase  In the first section, we study unambiguous automata in relation with codes. In the
3757 hext section, the flower automaton is defined. We show that it is a universal automa-
arss ton in the sense that any unambiguous automaton associated with a code can be ob-
arso  tained by a reduction of the flower automaton of this code. We also show how to
a0 decompose the flower automaton of the composition of two codes.

3761 In the last section, we use transducers. We introduce an algorithm to transform a
a2 transducer realizing a function into a sequential (possibly infinite) transducer.

ss 4.1 Unambiguous automata

section1.3bis |

aes Anautomaton A = (Q, I, T) over A is unambiguous if for all p,q € Q and w € A*, there
ares  is at most one path from to g 1wi‘ch label w in A.

aree Recall from Section %—Eh_at—vu denotes the behavior of A. For each word u, the
arer  coefficient (|.A|, u) is the number of successful paths labeled by u in A.

st4.1.376s| PROPOSITION 4.1.1 Let A = (Q,1i,t) be a trim automaton with a unique initial and a
a0 unique final state. Then A is unambiguous if and only if | A| is a characteristic series.

Proof. If A is unambiguous, then clearly |.A| is a characteristic series. Conversely, if
there are two distinct paths from p to ¢ labeled with w for some p,q € Q and w € A%,
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then choosing paths ¢ — pand ¢ — t, we have

(|A], vwv) > 2. .

PROPOSITION 4.1.2 Let X C A™ and let A be an automaton such that |A| = X. Then X is
a code if and only if the star A* of A is an unambiguous automaton.

jon4.1
Recall from Section ﬁ'ﬂq_at_ﬂ?e star A* associated with an automaton A is such that
|A*] = [A]".
Proof. oyding to Proposition %ﬁve have |A*| = (X)*. Since A* is trim, Propo-

sition shows that A* is unambiguous if and only if |.A*| is a characteristic series.
Since L(A*) = X*, this means that A* is ypambiguous if and only if X* = (X)*. Thus
we get the proposition from Proposition : .

In view of Proposition ﬁ?*we can determine whether a set X given by an unam-
biguous automaton A is a code, by computing A* and testing whether A* is unam-
biguous. For doing this, we may use the following method.

Let A = (Q,I,T) be an automaton over A. The square S of A is the automaton

SA)=(QxQ,IxI,TxT)

constructed by defining
(p1,p2) — (q1,42)
to be an edge of S(A) if and only if

a a
p1— @ and py; — ¢
are edges of A.

PROPOSITION 4.1.3 An automaton A = (Q, I,T) is unambiguous if and only if there is no
path in S(A) of the form
(p:p) = (r5) = (¢,9) (4.1)
with r # s.
.1.8
Proof. The existence of a path of the form (E( Iii in S(A) is equivalent to the existence of
the pair of paths

u v u v
p—1r—¢q and p—s—gq
with the same label wv in A. n

To decide whether a recognizable set X given by an unambiguous finite automaton
A is a code, it suffices to compute A" and to test whether A" is unamhbiguous by
inspecting the finite automaton S(.A*), looking for paths of the form (Z.T)).

EXAMPLE 4.1.4 Consider again the agtomaton A* of Example %peated here for
convenience on the left of Figure .1 The automaton S(.A*) is given on the right of this
figure, where only the part accessible from the states (g, ¢) is drawn. It shows that A*
is unambiguous.
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Figure 4.1 An unambiguous automaton, and part of the square of this automa-

. e o S
sr1 The following proposition is a complement to Proposition %

st4.1.7s792| PROPOSITION 4.1.5 Let A = (Q, 1,1) be an unambiguous automaton over A with a single
a3 initial and final state. Then its behavior |A| is the characteristic series of some free submonoid
3794 Of A*.

Proof. Let M C A* be such that | A| = M. Clearly the set M is a submonoid of A*. We
shall prove that M is a stable submonoid. For this, suppose that

w, W, uw,v € M .

Then there exist in A paths

wv uw (2

151, 121, 1251, 1-51.
The two middle paths factorize as
1i>pl>1, 1L>qi>1

for some p, g € Q). Thus there exist two paths
151 % p-51
1-%¢-%1-51.

sres  Since A is unambiguous, these paths coinci vhence 1 = p = ¢. Consequently
ae w € M. Thus M is stable, and by Proposition , M is free. n

3797 The next result concerns the determinant of a matrix which is associated in a natural
ar98  way witlE %ntgrt}tomaton. It is of independent interest, and it will be useful later, in

a9 Chapter [ Recall that we denote by a(w) the commutative image of a word w £ A*
a0 and by a(o) the commutative image of the formal series 0. Formula (Egi gives an

a1 expression of the polynomial 1 — a(X) for a finite code X.

PROPOSITION 4.1.6 Let X C A* be a finite code and let A = (Q,1,1) be a unambiguous
trim finite automaton recognizing X*. Let M be the QQ x Q-matrix with elements in Q[A]

such that M, 4 is the sum of the elements of the set

Apg={a€A|p=>q}.

1 —a(X)=det(I — M). (4.2)
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Proof. Any path ¢ % gwith ¢ # 1 and w € A* passes through state 1. Otherwise
ww*v C X for words u, v such that 1 — ¢ — 1, contradicting the finiteness of X.
Thuswe canset Q = {1,2,...,n} in such a way that whenever i s jforac A, j#1,
then i < j. Define for i, j € ), an element of Q(A) by

rij = 0ij — Aij (4.3)
where §;; is the Kronecker symbol. Let A be the polynomial

A= Z (_1)6(0)T1,10T2,20 o
(TEEGSn

where €(0) = £1 denotes the signature of the permutation o. By definition, e(o) = 1
if 0 is an even permutation, and ¢(0) = —1 otherwise. According to the well-known
formula for determinants we have

det(I — M) = a(A).

Thus it suffices to show that

A=1-X. (4.4

For this, let
A, = T1,1672,20 " * " T'n,no,
so that
A= (-1)A,.

€6y
Consider a permutation o € &, such that A, # 0, If 0.5 1, then it has at least one cycle
(i1,i2,...,1%) of length k > 2. Since A, # 0, by ([£3) the sets Aj,i,, Aigis, - - - , Aipiy are
nonempty. This implies that the cycle (i1,. .., i) contains state 1. Consequently each

permutation o with A, # 0 is composed of fixed points and of one cycle containing 1.
If this cycle is (i1, %2, ..., i) withi; =1, then

1 <ig <o <

by the choice of the ordering of states in A. Set X, = Ay, Aiyiy -+ - Ai, 1. Then A, =
(-1)kX, and also (—1)<(?) = (—1)**! since a cycle of length k has the same parity as
k+ 1.

The set X, is composed of words ajas - - - ar with a; € A and such that

1 ay . asz . . ag
— g — 13 —> - —> 4 — 1.

These words are in X. Denote by S the set of permutations o € & \ 1 having just one
nontrivial cycle, namely, the cycle containing 1. Then X = " 4 X, since each word
in X is the label of a unique path (1,142, ...,i;, 1) with 1 < is < --- < 4. It follows that

A=1+4) (-, =1-> X, =1-X. .

og€eS og€eS
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3
EXAMPLE 4.1.7 Let X = {aa,ba, bb, baa,bba}. This J'E t’i%gode of Example %._The

unambiguous automaton given on the left of Figure g-]tecognizes X *. The matrix M
is here

0 a b
M = a 0 0
a+b a+b 0

and one easily checks that indeed det(I — M) =1 — a(X).

The unambiguous rational operations on sets of words are
(i) disjoint union,
(ii) unambiguous product,

(iii) star operation of a code.

Recall that the product XY is unambiguous if zy = 2’y with z,2' € X, y,y/ € Y
implies © = 2’ and y = y’. The star of a code is of course a free submonoid.

The family of unambiguous rational subsets of A* is the smallest family of subsets of
A* containing the finite sets and closed under unambiguous rational operations. A de-
scription of a rational set by unambiguous rational operations is called an unambiguous
rational expression or an unambiguous regular expression.

PROPOSITION 4.1.8 Every rational set is unambiguous rational.

1
Proof. By Proposition %ery ration 35’541% recognized by a finite deterministic

automaton. In this case, Formulas (CIM)—([.13) provide an unambiguous rational ex-
pression for this set. .

EXAMPLE 4.1.9 Let A = {a, b}. Anunambiguous rational expression for the set A*bA*
is a*bA* (or A*ba*).

4.2 Flower automaton

We describe in this section the construction of a “universal” automaton recognizing a
submonoid of A*.
Let X be an arbitrary subset of A™. We define an automaton

AD(X) = (QajvT)

by
Q={(u,v) e A" x A" |weX}, I=1xX, T=Xx1,

with edges (u,v) — (u/,v') if and only if ua = v/ and v = av’. In other words, the
edges of Ap are
(u, av) - (ua,v), uav € X.

It is equivalent to say that the set of edges of the automaton Ap is the disjoint union
of the sets of edges given by Figure Ecz for each = = ajas...a, in X. The automaton
Ap(X) is unambiguous and recognizes X, that is,

[Ap(X)| = X.
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Figure 4.2 The edges of Ap(X) for z = ajaz - - - ay.

The flower automaton of X is by definition the star of fhe automaton Ap(X), as ob-
tained by the construction described in Section ﬁmenoted by A7}, (X) rather
than (Ap(X))*. We denot by 40 the associated representation. Thus, following the
construction of Section I%tomaton A} (X) is obtained in two steps as follows.
Starting with Ap(X), we add a new state w, and the edges

w % (a,v) for av € X,
(u,a) = w for ua € X,
w2 w fora € X.

This automaton is now trimmed. The states in 1 x X and X x 1 are no longer accessible
or coaccessible and consequently disappear. Usually, the state w is denoted by (1, 1).
Then A7, (X) takes the form

Ap(X) = (P, (1,1),(1,1)),

with
P={(u,v) € AT x AT |uv € X}U{(1,1)},

and there are four types of edges

(u,av) - (ua,v) for wav € X, (u,v) # (1,1),
(1,1) % (a,v) for ave X, v#1,
(u,a) = (1,1) for ua € X, u#1,
(1,1) % (1,1) for a € X.

The terminology is inspired by the graphical representation of this automaton. Indeed
each word = € X defines a simple path

(1,1) = (1,1)
in A} (X). If v = a € A4, itis the edge

(1,1) % (1,1).
If x = ajaz - - - a, with n > 2, it is the path

(1, 1) S (a1, ag- - ap) L2, (arag,a3---ap) — -+ — (a1az -~ ap_1, an) N (1,1).

ex4.2.3s27| EX 4.2.1 Let X = {aa,ba,bb, baa,bba}. The flower automaton is given in Fig-
Aﬁ%[& g g

3828

ure

J. Berstel, D. Perrin and C. Reutenauer Version 14 janvier 2009



4.2. FLOWER AUTOMATON 175

Figure 4.3 The flower automaton of X = {aa, ba, bb, baa, bba}. fig4 07
THEOREM 4.2.2 Let X be a subset of A*. The following conditions are equivalent:
3830 (i) X isa code.
3831 (ii) For any unambiguous automaton A recognizing X, the automaton A* is unambigu-
3832 ous.

ssss  (iii) The flower automaton A%, (X) is unambiguous.
ssss  (iv) There exists an unambiguous automaton A = (Q, 1, 1) recognizing X* and X is the
3835 minimal set of generators of X*.

asse  Proof. (i) = (ii) is Proposition %.S—The implication (ii) = (iii) is clear. To prove
sss7  (iil) = (iv), it suffices to show that X is the minimal generating set of X*. Assume
ssss the contrary, and let z € X,y,2z € X be words such that x = yz. Then there exists
s in A% (X) a simple path (1,1) - (1,1) and a path (1,1) -2 (1,1) = (1,1) which
s40 is also labeled by x. These paths are disfinct, so A7, (X) is ambiguous. Finally, for
a1 (iv) = (i), observe that by Proposition g.1.5, X ™ is free. Thus X is a code. n

sz We shall now describe explicitly the paths in the flower automaton of a code.

PROPOSITION 4.2.3 Let X C AT be a code. The following conditions are equivalent for all
ssaa words w € A* and all states (u,v), (u',v") in the automaton A},(X):

3845 (i) There exists in A% (X) a path ¢ : (u,v) — («,v").
3846 (i) w e vX*u or (uvw = v and v = wv').
sga7  (iil) ww € X*u and wv' € vX*,

Proof. (i) = (ii). If EI% gogimple path, then it is a path in Ap. Consequently, uw = v’

and v = wv' (Figure f4(a)). Otherwise ¢ decomposes into
¢ (u,0) = (1,1) == (1,1) = (v, 0")
ig4 08
s with w = vz’ and x € X* (Figure ﬁ(ﬁfﬁ
s (i) = (iii). If w € vX*u/, then uw € wwX*u' C X*u and w € vX*u'v' C vX*, since

asso uv,uw'v’ € X UL If uw =« and v = wv/, then the formulas are clear.
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(iii) = (i). By hypothesis, there exist z,y € X* such that uw = zv/, wv' = vy. Let
2z = uwv'. Then
2z =vwv' = xu'v = wvy € X*.

ig4 08
Each of these three factorizations determines a path in A}, (X) (see Figure Ecﬁ)

c:(1,1) % (3,9) = (u,0) LN (1,1),

Cl ) ) — ( ) B (uluv,) — 7]- )
d (1, = (u,v) 5 (1,1) < 1,1),

(The paths (1,1) % (u,v) — (1,1) and (1,1) - ( V') — =, (1,1) may have length
0.) Since X is a code, the automaton A}, (X) is unamb1guous and consequently ¢ =
¢ = . We obtain that (u,v) = (@,9) and (v/,v") = (¢, ?"). Thus

(u,v) = (u',0"). -

(a) v’
Figure 4.4 Paths in the flower automaton.

The flower automaton of a code has “many” states. In particular, the flower automa-
ton of an infinite code is infinite, even though there exist finite unambiguous automata
recognizing X* when the code X is recognizable. We show that A7,(X) is universal
among the automata recognizing X*, in the following sense.

Consider two unambiguous automata

A= (P,1,1) and B=(Q,1,1),

and their associated representations ¢ 4 and ¢p5. A function p : P — @ is a reduction of
A onto B if it is surjective, p(1) = 1 and if, for all w € A*,

(¢, ¢8(w),q') =1
if and only if there exist p, p’ € P with
(p,pa(w),p) =1, pp)=q, p()=4q".

The definition means that if p — p’ is a path in A, then p(p) —— p(p) is a path in B.

Conversely, a path ¢ — ¢’ can be “lifted” in some path p — p/ withp € p~1(q),p’ €
—1¢./

p~(d).
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Another way to see the definition is the following. The matrix ¢5(w) can be obtained
from p4(w) by partitioning the latter into blocks indexed by a pair of classes of the
equivalence defined by p, and then by replacing null blocks by 0, and nonnull blocks
by 1.

Observe that if p is a reduction of .4 onto B, then for all w,w’ € A*, the following
implication holds:

pa(w) = palw) = ep(w) = ().

Thus there exists a unique surjective morphism
PipalA") = pu(A")

such that o = p o p4. The morphism p is called the morphism associated with the
reduction p.

PROPOSITION 4.2.4 Let A = (P,1,1) and B = (Q,1,1) be two unambiguous trim au-
tomata. Then there exists at most one reduction of A onto B. If p : P — @ is a reduction,
then

1. |A| C |B],
2. |A| = |B| ifand only if p~1(1) = 1.

Proof. Let p,p’ : P — @ be two reductions of A onto B. Let p € P, and let ¢ = p(p),
¢ = p'(p). Let u,v € A* be words such that 1 — p — 1 in the automaton .A. Then
we have, in the automaton B, the paths

1% ¢-51, 1% ¢ 5.

Since B is unambiguous, ¢ = ¢’. Thus p = p'.

1. If w € |A|, there exists a path 1 — 1 in 4; thus there is a path 1 - 1 in B.
Consequently w € |B].

2. Let w € |B|. Then there is a path p — p’ in A with p(p) = p(p') = 1. If 1 = p~1(1),
then this is a successful path in A and w € | A|. Conversely, letp # 1. Let 1 — p — 1
be a simple path in A. Then uv € X, where X is the base of |4|. Now in B, we have
1 -5 p(p) == 1. Since |A| = |B|, we have p(p) # 1. Thus p~'(1) = 1. .

PROPOSITION 4.2.5 Let X C AT be a code, and let A%,(X) be its flower automaton. For

each unambiguous trim automaton A = (Q, 1,1) recognizing X*, there exists a reduction of
A} (X) onto A.

Proof. Let A}, (X) = (P,(1,1),(1,1)). Define a function p : P — @ as follows. Let
p = (u,v) € P. If p=(1,1), then set p(p) = 1. Otherwise uv € X, and there exists a
unique path ¢ : 1 — ¢ — 1in A. Then set p(p) = q.

The function p is surjective. Let indeed ¢ € @), ¢ # 1. Let

Cliqu, 02:qi>1
be two simple paths in A. Then uv € X, and p = (u,v) € P satisfies p(p) = q.
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We now verify that p is a reduction. For this, assume first that for a word w € A¥,
and ¢, ¢’ € Q, there is a path in A from ¢ to ¢’ labeled by w. Consider two simple paths

inAde:1—gqc¢e:q 1. Then in A, there is a path
1% g g

Consequently uvwv’ € X*. Thus for some z; € X, uwv’ = x122 - - - x,,. Since e is simple,
u is a prefix of z1, and similarly v’ is a suffix of z,,. Setting z; = uv, x,, = u/v/, we have

/ /!
UWYV = UV Ty =1 Tp_1UV ,

2
whence uvw € X*u/, wv' € uX*. In view of Proposition %Tu, v),op(w), (u',v")) =
1.
Suppose now conversely that

(p,ep(w),p') =1 (4.5)

for some p = (u,v), p’ = (v,v"),and w € A*. Let ¢ = p(p), ¢ = p(p'). By construction,
there are in A paths

1% g1 and 15451, (4.6)

2 4.2.1
In view of Proposition %ﬁ)rmula (Efgi is equivalent to

{vw = v and v = wv'} or {w = v for some r € X*}.

2.2
In the first case, uv = uwv’ = u'v’. Thus the two paths (Eféi coincide, giving the path
in A,

1 g g
In the second case, there is in .A a path
g1 -1y

Thus, (¢, p4(w),¢") = 1 in both cases. n

EXAMPLE 4, & For the code X = {aa, ba, bb, baa, bba}, the flower automaton is given
in Figure .5,

igd 10
Consider the automaton given in Figure ﬁfﬂ?e function p : P — {1,2,3} is given
by

J. Berstel, D. Perrin and C. Reutenauer Version 14 janvier 2009



3888

3889

3891

3892

3893

3894

4.2. FLOWER AUTOMATON 179

Figure 4.5 The flower automaton of X with its states renumbered.

The matrices of the assqciated representations (with the states numbered as indicated
Eié and Elgj are

in Figures.

170 10000 0 0]
2110000000
310000000
4010000000 0 10

#pl@) =511 00000 0 of “’(“):1?8’
6100000000
7100100000
810000000 0
10000111 17
210 0000000
3100000000

opy= 100000000 ¢(b):08(1)
500000000 0| L1 o
6(1 0000000
710 0000000
slooo1000 0

The concept of a reduction makes it possible to indicate a relation between the flower
automata of a composed code and those of its components.

PROPOSITION 4.2.7 LetY C BT, Z C AT be two composable codes and let X =Y og Z.
If Y is complete, then there exists a reduction of A},(X) onto A},(Z). Moreover, A}, (Y') can
be identified, through [3 with the restriction of A},(X) to the states in Z* x Z*.

Proof. Let P and S be the sets of states of A},(X) and A},(Z) respectively, and let ¢ x
and ¢z be the representations associated to A}, (X) and A}, (7).

We define the function p : P — S as follows. First, let p((1,1)) = (1,1). Next,
consider (u,v) € P\ (1,1). Then uv € Z*. Consequently, there exist unique z,z € Z*,
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Figure 4.6 Another automaton recognizing X *.

and (r,s) € S such that

g4 11
ases  (see Figure %._Tﬁen let p(u,v) = (r,s). The function p is surjective. Indeed, each
s word in Z appears in at least one word in X; thus each state in S is reached in a

307 refinement of a state in P.
n

v

Figure 4.7 Decomposing a petal.

To show that p is a reduction, suppose that

((u7 2}), 1204 (w)7 (u/7 UI)) =1.
Let (r,s) = p((u,v)), (', 8") = p((v/,v")), and let z, Z, 2/, 2 € Z* be such that
= / !/ /

=/
u = 2r, v = §Z, u = z'r, v =5Z.

2
By Proposition%ﬂu € X*u/, wv' € vX*. Thus zrw € Z*r', ws'z € sZ*, implying
that zrws’ € Z* and rws'z € Z*. This in turn shows, in view of the stability of Z*, that
rws’ € Z*. Set zrw = zr', with Z € Z*. Then

Z(r's") = 2(rws’) ,

and each of the four factors in this equation is in Z*. Thus Z being a code, either 2 = z¢
or z = zt for some t € Z*. In the first case, we get tr's’ = rws’, whence rw € Z*r'. The
second case implies r's’ = trws’. Since r’s’ € 1 U Z, this forces t = 1 or rws’ = 3
both cases, rw € Z*r'. Thus rw € Z*r’, and similarly ws’ € sZ*. By Proposition E%é,

((’I”, 8)7 (,Oz(w), (T/, 3/)) =1.
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Assume conversely that

2 ((’I”, 8)790Z(w)?(r/¢8/)) =1.
Then by Proposition

rw = zr', ws' = s7/
for some z, 2’ € Z*. Then rws’ € Z*, and Y being complete, there exist t,t' € Z* such
that m = trws’'t’ € X*. Let

m = trws't’ =trs2't' =tzr’'s't =x1 -z,

withn > 1, z1,...,2, € X. We may assume that ¢t and ¢’ have been chosen of minimal
length, so that t is a proper prefix of z; and t' is a proper suffix of z,,. But then, singe, ,
m € Z* and also trs € Z*, trs is a prefix of z; and r’s't’ is a suffix of z,, (Figure EEE)

Define
r1 = uv withu =tr, v € sZ*

Tp = u' with o' =t'r", v € s'Z*

Then (u,v) and (v, v") are states of A},(X), and moreover

U v u/ ,U/

? Q ? @ ? Q
] ol v ]
AN N -~
I, N2 w A N N
(a)

.231 xn

u v
o Q@ Q
u v |
I

? ? | ?

I t rls ey t |

! RN N s TN PN

I/ \/I\ w /I\/ \I

m : & VAR N L\ Vv )

(b)

Figure 4.8 The cases of (a) n > 1 and (b) n = 1.
p((u, 2})) = (T7 8)7 p((u', UI)) = (Tlv 5,) )

and
/ /7
M= UWV = UVTg -+ Ty = L1 Tp_1UV .

Thus
uw € X*u/ and wv' € vX*.

Finally, consider the set R of states of A},(Y"). Then R can be identified with
R ={(u,v) € P|u,ve€ Z*}.

sse  The edges of A}, (Y') correspond to those paths (u,v) — (v/,v) of A}, (X) with end-
0 points in R, and with label in Z. "
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Figure 4.9 The flower automaton of Z.

terl
ex4.2.3 EXAMPLE 4.2.8 Recall from Chapter i aer e code X = {aa, ba, bb, baa, bba} is a com-
p
position of Y =.{ccd. e, dc,ect and Z = {a, ba,bb}. The flower autgmatpn A7,(X) is
given in Figure f.3 The flower automaton .A},(Z) is given in Figure EE% [t is obtained

from A7, (X) by the reduction

p(1) = p(2) = p(3) = p(4) =1,
p(6) = p(8) =6,
p(5) =p(7) =T

)

igd 15
w0 The flower automaton A% (Y') is given in Figure %

Figure 4.10 The flower automaton of Y.

w0 4.3 Decoders

section4.2bis |

Let X C AT be a code and let § : B* — A* be a coding morphism for X. Since (3 is
injective, there exists a partial function,

~v: A" — B*

a2 with domain X* and such that y(5(u)) = u for all u € B*. We say that ~ is a decoding
s0s  function for X.
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s004 A coding morphism 3 : B* — A* can be realized by a one-state literal transducer,
as  with the set of labels of edges being simply the pairs (b, 3(b)) for b in B.
al00

b1

clo1

Figure 4.11 A simple encoder.

EXAMPLE 4.3.1 Consider the encoding defined by v(a) = 00, (b} = 1, and (c) = 01.
q1

s007  The corresponding encoding transducer is given in Figure |

s Transducers for decoding are more interesting. For the purpose of coding and de-
s00 coding, we are concerned with transducers which define single-valued mappings in
s010 both directions. We need two additional notions.
s A literal transducer is called deterministic (resp. unambiguous) if its associated input
s12  automaton is deterministic (resp. unambiguous).

Clearly, the relation realized by a deterministic transducer is a function. Whenever
ulw

there is a path p — ¢ starting in p with input label u and output label 1y ye write p-u
for g and p * u for w. Observe that p - uv = p - u - v. This is Equation ([L8). Also,

pruv = (pxu)(p-ux*v). 4.7)

s013 Indeed, if there is a path starting in p with input label uv, then it is of the form p bt

3914 qKrforstateSq:p-uandr:q-vandoutputlabelsw:p*uandz:q*v. It

a1s  follows that wz = (p * u)(p - u * v) as claimed.
Let 3 : B* — A" be a coding morphism with finite alphabets A and B, and let
X = ((B). The prefix transducer T over B and A associated to (3 has as states the set

of proper prefixes of words in X. The state corresponding to the empty word 1 is the

initial and terminal state. There is an edge p o, pa, where the dash (—) represents

the empty word, for each prefix p and letter a such that pa is a prefix, and an edge
alb aly

p — 1 for each p and letter a with pa = 5(b) € X. Note that for each edge p — ¢ of
the prefix transducer, one has

pa = B(v)q. (4.8)

eqgPrefixTransducer

s016  Note also that the prefix transducer is finite when B is finite, and thus when the code
3017 X is finite.

PROPOSITION 4.3.2 For any coding morphism 3 : B* — A*, the prefix transducer T asso-

3010 ciated to (3 is unambiguous and realizes the decoding function. When the code 3(B) is prefix,
so20  then the transducer T is deterministic.
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Proof. Let A be the input automaton of 7. Then A = B, where_J3 is the automaton
whose states are the prefixes of the words in X. By Proposition EE i 5 the automaton
A is unambiguous. Moreover, each simple path 1 — 1 is labeled by construction with
(B(b),b) for some letter b € B. Thus 7 realizes the associated decoding function. When
the code is prefix, the decoder is deterministic. .

EXAMPLE 4.3.3 TlEe %Fggfler corresponding to the prefix code X = {1,00,01} is rep-

resented in Figure :
0[—
(0

Ola,1lc

Figure 4.12 A deterministic decoder for X = {1,00,01}. A dash means no
output. Here ¢ denotes the empty word.

EXAMPLE 4.3.4 Consider the co

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

3942

Noisoi0,10,100}. The decoder given by the con-
struction is represented in Figure o

Figure 4.13 A unambiguous decoder for the code X = {00, 10,100} which is
not prefix. Again ¢ denotes the empty word.

Observe that the transducer constructed in the proof is finite (that is has a finite
number of states) whenever the code is finite.

Assume now that the code X is finite. As a consequence of the proposition, de-
coding can always be realized in linear time with respect to the length of the encoded
string (considering the number of states of the transducer as a constant). Indeed, given
aword w = ay - - - ay, of length n to be decoded, one computes the sequence of sets S;
of states accessible from the initial state for each prefix a; - - - a; of length i of w, with
the convention Sy = {e¢}. Of course the terminal state ¢ is in .S,,. Working backwards,
we set g, = € and we identify in each set .S; the unique state ¢; such that there is an
edge ¢; — ¢;;1 in the input automaton. The uniqueness comes from the unambiguity
of the transducer. The corresponding sequence of output labels gives the decoding.

EXAMPLE 4.3.5 Consider again the code C' &= {00. 10. 1(Q}. The decoding of the se-
. - cadingAlgo ;
quence 10001010000 is represented in Figure §-T4. Working from left to right produces
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el 0 0 g0 1 0 1.0 0,00

\(‘) 0 0 \9 \9 0 0 0

10 —e—0 10 100—e—0—¢

Figure 4.14 The decoding of 10001010000. Here also ¢ denotes the empty
word.

irr-dbis. 2bi
the tree of possible paths in the decoder of Figure EC |§ ISVVolrlelng backwards from the
state ¢ in the last column produces the successful path indicated in boldface.

The notion of deterministic transducer is too constrained for the purpose of coding
and decoding because it does not allow a lookahead on the input or equivalently a
delay on the output. The notion of sequential transducer to be introduced now fills
this gap.

Figure 4.15 A sequential transducer realizing a cyclic shift on words starting
with the letter a.

A sequential transducer over the input alphabet A and the output alphabet B is com-
posed of a deterministic transducer over A and B and of an output function. This
function maps the terminal states of the transducer into words on the output alpha-
bet B. The function f : A* — B* realized by a sequential transducer is obtained
by appending, to the value of the deterministic transducer, the image of the output
function on the arrival state. Formally, the value on the input word z € A* is

f(x) = g(x)o(i-x),

where g(z) € B* is the value of the deterministic transducer on the input word z, i - x
is the state reached from the input state ¢ by the word z, and ¢ is the output function.
This is defined only if the state i - z is a terminal state.

Deterministic transducers are a special case of sequential transducers. They are ob-
tained when the output function takes always the value 1.

. . - ig-4bis.3 .
EXAMPLE 4.3.6 The automaton given in Figure E[ la computes, for each input word

3955

3956

3957

3958

of the form aw, the output word wa. It is undefined on input words that do not start
with the letter a. The initial state is 0 and the state 1 is terminal. The output function o
satisfies 0(1) = a (the value of ¢ is indicated on the figure as the label of the outgoing
edge).
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Contrary to automata, it is not always true that a finite transducer is equivalent to
a finite sequential transducer. Nonetheless, there is a procedure to compute a (possi-
bly infinite) sequential transducer & that is equivalent to a given literal transducer 7
realizing a function.

Let 7 = (Q, I, T) be a literal transducer realizing a function A* — B*. We define a
sequential transducer S as follows. The states of S are sets of pairs (u,p). Each pair
(u, p) is composed of an output word u € B* and a state p € Q of 7.

The edges of S are the following. For a state s of S and an input letter a € A4,

one first computes the set s of pairs (uv, ¢) such that there is a pair (u,p) in s and an

edge p 1A g in 7. In a second step, one chooses the longest common prefix z of all

words uv, and one defines a set t by t = {(w,q) | (2w, q) € 5}. The set ¢ is a state of
S. This defines an edge from state s to state ¢ labeled with (a, z). The initial state is
{(1,%) | i € I}. The terminal states are the sets ¢ containing a pair (u,q) with ¢ € T
terminal in 7. Since 7 realizes a function, two pairs (u,¢) and (v/,¢’) in the same
terminal state ¢t with ¢, ¢’ € T satisfy u = .

The output function o of S is defined on the state ¢t of S by o(t) = u, where u is
the unique word such that (u, ¢) is in ¢ for some ¢ € T'. The states of S are the sets of
pairs which are accessible from the initial state of S. The words u appearing as first
components in the pairs (u, p) will be called remainders.

The process of building new states of S will not halt if the lengths of the remainders
is not bounded. There exist a priori bounds for the maximal length of the remainders
whenever the determinization is possible. This makes the procedure effective in this

case.
alb
ala ‘@.@‘ b|b

bla

Figure 4.16 Another transducer realizing a cyclic shift on words starting with
the letter a.

i 4bis.4
EXAMPLE 4.3.7 Consider the transducer given in Figure E[ ia.lsl heresult of the deter-
Eclg State 0

minization algorithm is the transducer of Figure is composed of the pair
(1,p), and state 1 is formed of the pairs (a,p) and (b, q).

LetS = (P, 1, S) be a literal transducer over the alphabets A, Band let 7 = (Q, J,T)
be a literal transducer over the alphabets B, C. We denote by S o 7 the literal trans-
ducer U over the alphabets A, C givenby U = (P x Q,I x J, S x T') with edges

alw

(P, q) — (rs)

alv

for all edges p — r in S and paths ¢ " s in T. The transducer U = S o T is the
transducer composed of S and 7.
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PROPOSITION 4.3.8 The relation realized by the composed transducer S o T is the composi-
tion of the relations realized by S and T .

Proof. There is a path (p, q)

ulw ulv

— (r,s)inU = S o T if and only if there is a pathp — r

in S and a path ¢ “% s in T. Thus (u,w) € A* x C* is an element of the relation
realized by U if and only if there exist v € B* such that (u,v) is an element if the
relation realized by S and (v, w) belongs to the relation realized by 7. n

PROPOSITION 4.3.9 If S and T are unambiguous, then S o T is unambiguous.

Proof. Let u = ajas---a, be a word with a; € A and n > 0. Suppose that there are
two paths in i/ = S o 7 with the same input label u and the same starting and ending
states. More precisely, assume that in U/, there are paths

a1|wi

an|wn

(p0>q0) — (plan)"'(pn—DQR—l) — (pn7Qn)7

arlw]

an|w!,

(P0,20) — PL @) Pp_1,4n-1) — Ph: )

with (po, qo) = (py, ¢) and (pn, gn) = (P}, ¢,,)- Then there exist in the transducer S two

ailv an|v a1|v] an|v) .
paths pg — p1---pn_1 — pypand pj — p}---pl,_; —F pl, for appropriate words
o U1 |w1 Un |W
Vly.v,Un, 0], ..., v, and, in the transducer 7, two paths qq L g1 Q-1 g In

v |w]
and ¢ — ¢} q,_,

vy,

=" ¢/,. Since S is unambiguous, the two paths coincide and

thus p; = p! and v; = v.. Since 7 is unambiguous and the two paths have the same
i i g p

input label, they coincide.
coincide.

Therefore ¢; = ¢} and w; = w]. Thus the two paths in ¢/

COROLLARY 4.3.10 Let X =Y o Z be a code over A composed of the code Y over B and the

code Z over A, and let v : B*
If S and T are unambiguous
function yo ¢ : A* — C*.

EXAMPLE 4.3.11 Let X =

— C*and 6 : A* — B* be the decoding functions for Y and Z.
transducers realizing ~y and §, then T o S realizes the decoding

{aa,ba, baa,bb,bba}, Y = {aa,b,ba,¢,ca}, and Z = {a,

ba,bb}. Then X =Y oz Z with B = {a,b,¢} and (@) = a, 3(b) = ba and B(¢) = bb.

The prefix transducer S of
shown in Figure , with

ala

()
cWliBo

alb,ble

Z, the suffix transducer 7 of Y and their composition are
C = {c7d7€7f7g}'

Figure 4.17 The transducers 7, Sand So 7.
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PROPOSITION 4.3.12 If S and T are deterministic, then S o T is deterministic.

Proof. Let (p, q) LA (r,s) and (p,q) i (r',s") be two edges of i = S o 7. Then there
exist edges p A and D A, in S and paths ¢ 2% ¢ and q M in T Since S
is deterministic, v = v/ and r = r/. Since 7 is deterministic, this in turn implies that

w=w'and s = s'. Thus the two edges in ¢/ coincide. .

4.4 Exercises

. tion1.3bis
Section ﬁi] —

4.1.1 Show that a submonoid M of A* is recognizable and free if and only if there
exists an unambiguous trim finite automaton A = (Q, 1, 1) that recognizes M.

. section4.2
Section

4.2.1 Let X be a subset of AT and let A}, (X) = (P, (1,1), (1,1)) be the flower automa-
ton of X. Let ¢ be the associated representation. Show that for all (p, q), (r,s) € P and
w € A* we have

(P, q), p(w), (r,8) = (¢(X)*r,w) + (pw,r)(q, ws) .

422 Let A = (P,i,T) and B = (Q,7,S5) be two automata, and let p : P — @ be a
reduction from A on B such that i = p~!(j). Show that if A is deterministic, then so
is B.

4.5 Notes

Unambiguous automata and their relation to codes appear in Schiitzenberger ([1961d,

[[965H). They appear also under the name of information lossless machines in
(1959), see also (Kohavi, [978).

Unambiguous automata are closely related to the notion of finite-to-one maps used
in symbolic dynamics (see Lind and Marcug ([1995)). The connection is the fact that
in a finite unambiguous automaton, any word is the label of a bounded number of
paths depending only of the automaton. Indeed, for any pair p, g of states of A and

. w
any worq e.u, t §S§1t most.one pathp — q. 3bis.1 .
Proposition appears in (Bchiitzenberge, [965H). Formula (Eﬂ) can be written
in noncommutative variables using the notion of quasideterminant (see Gel'fand and

Retakh ([[991)).

For a comprehensive presentation of transducers, one may consult [Eilenberg (1974)
or ([979). For a recent exposition, see fakarovitcH (R008).

For the determinization algorithm of transducers, see (P003). The decoding
in linear time with the help of an unambiguous transducer is based on the Schiitzen-
berger covering of an unambiguous automaton, see fakarovitcH (00§).
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« Chapter 5

« DECIPHERING DELAY

chapter2bis

a1 This chapter is devoted to codes with finite deciphering delay. Intuitively, codes with
s0s2  finite deciphering delay can be decoded, from left to right, with a finite lookahead.
s043  There is an obvious practical interest in this condition. Codes with finite deciphering
s0as  delay form a family intermediate between prefix codes and general codes. There are
s0s5  two ways to define the deciphering delay, counting either codewords or letters. The
s0s6  first one is called verbal delay, or simply delay for short, and the second one literal
a0a7  delay.

sss  The first section is devoted to codes with finite verbal deciphering delay. We present
a0s9  first some preliminary material. In particular we prove a characterization of the deci-
ss0  phering delay in terms of simplifying words. 4

w51 In the second section, we prove Schiitzenberger’s theorem (Theorem %yimg
w52 that a finite maximal code with finite deciphering delay is prefix. We prove that any
ass  rational code with finite deciphering delay ds contained in a maximal rational code
a0ss  with the same delay (Theorem EE?)

w55 The next section considers the literal deciphering delay, that is the deciphering de-
ass lay counted in terms of letters instead of words of the code. A code with finite lit-
aos7 - eral deciphering delay is called weakly prefix. We introduce the notion of automata
swss with finite delay, also called weakly deterministic. We prove the equivalence between
aso  weakly prefix codes and weakly deterministic automata (Proposition %)._W
sos0  this characterization to give yet another proof of Schiitzenberger’s theorem. Next, we
a61  show %?atza rational completion with the same literal deciphering delay exists (Theo-

4062 Iem

wes 5.1 Deciphering delay

ipbectigbisyl

A subset X of AT is said to have finite verbal deciphering delay if there exists an integer
d > 0 such that the following condition holds: For z,2' € X,y € X d e X*,

ry < 2’y implies x = 2’ (5.1)

s064  (Recall that we write u < ' to express that u is a prefix of «’. ) If this condition holds
aes for an integer d, we say that X has verbal deciphering delay d. We omit the term
wes  verbal when possible.

189
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190 5. DECIPHERING DELAY

The definition can be rephrased as follows. Let w € A* be a word having two
prefixes in X, and such that the shorter one is in X!™¢. Then the two prefixes start
with the same word in X.

If X has deciphering delay d, it also has deciphering delay d’ for d’ > d. The smallest
integer d satisfying is called the minimal deciphering delay of X. If no such integer
exists, the set X has infinite deciphering delay.

This notion of deciphering delay is clearly oriented from left to right. It is straight-
forward to define a dual notion (working from right to left). The terminology is jus-
tified by the following consideration: During a left-to-right parsing of an input word,
the delay between the moment when a possible factor of an X-factorization is dis-
covered, and the moment when these factors are definitively valid, is bounded by the
deciphering delay.

If the deciphering delay of X is infinite, then there exist z,2’ € X with z # 2’ and
Y1,Y2, - Yy, Yhy ... € X such that forall n > 1, zy1ya - - - yy, is a prefix of 2y vh - - - v,

or vice versa.
x Yy

/

z’ Yy
Figure 5.1 Forbidden configuration for finite deciphering delay.

It follows from the definition that the sets with delay d = 0 are the prefix codes. This
is the reason why prefix codes are also called instantaneous codes. In this sense, codes
with finite delay are a natural generalization of prefix codes.

PROPOSITION 5.1.1 A subset X of A™ which has finite deciphering delay is a code.

Proof. Let X have deciphering delay d. We may suppose X # (). Assume there is an
equality
W= T1x2 " Tn = Y1Y2° " Ym
8.1
withn,m > 1, 1,...,Zn,y1,...,Ym € X. Let z € X. Then wz¢ € y; X*. By 1E[i|i, we
have x1 = 1, 2 = y» and so on. Thus, X is a code. n

EXAMPLE 5.1.2 The suffix code X = {aa, ba, b} has infinite deciphering delay. Indeed,
for all d > 0, the word b(aa)? € X'*4 is a prefix of y(aa)? with y = ba # b.

tionl.3
For aset X C AT, define, as in Section Eié, a sequence (Up,)n>0 of subsets of A* by
setting

Uy =X"1'x\1 Ups1 = XU, 00U X, n>1.

PROPOSITION 5.1.3 The set X has finite deciphering delay if and only if the set U, is empty
for some n.

1bis
Proof. By Lemma E“za, forn > 1 one has u € U, if and only if there are z1,...,z;,
yi,...y; € X withxy # y1, 7+ j = n+ 1 and u suffix of y; such that z; --- z;u =
y1y2 - - - yj. We first verify that if X has deciphering delay d then Us;+1 = 0. Suppose

J. Berstel, D. Perrin and C. Reutenauer Version 14 janvier 2009
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wos the contrary. Let xq,...,%;,y1,...y; € X be such that z1---2z;u = y1y2---y; with
a0 1+ j = 2d + 2, u suffix of y; and z1 # y1. Theni — 1 < d — 1 since otherwise z1 = y;.
a7 Similarly, j —2 < d—1 since otherwise, with y; = vu, wehave y1y2 - - - y;_1v =21 -+ 25
a9 and thus x; = y; again. Thus i + j < 2d + 1, a contradiction.

as  Conversely we show that if U,, = (), then X has deciphering delay n — 1. Let indeed
mo z,2' € X,y € X",y € XV forj > 0and u € A* be such that zyu = z'y/. If x # 2/,
so1  then u € U, for some m > n, a contradiction. This forces x = z’ proving that X has
s102  deciphering delay n — 1. n

a3 EXAMPLE 5.1.4 The set X = {a,ab,bc,cd,de} has deciphering delay 2. We obtain
s Uy ={b}, Uy ={c}, Us = {d}, Uy = {e}, Us = 0.

We reformulate the definition of deciphering delay as follows. Let X be a code. A
word s € A* is said to be simplifying for X if forall x € X* and v € A%,

zsv € X* = sve X*.

op-simplifying 4105‘ PROPOSITION 5.1.5 A code X has deciphering delay d if and only if all words of X? are
a06  simplifying.
Proof. Let us first suppose that X has delay d. Let z € X4, x1,...,7, € X and u € A*
be such that z - - - zpzv € X*. Thus

:Clxva:ylyq

a7 for some yq,...,y, € X. Since X has delay d, it follows that z1 = y1,...,2, = ¥,
a8 whence ¢ > p and xv = y,11 - - - yg. Thus xzv € X*. This shows that z is simplifying.

nos  Conversely, suppose y € X% Let x,2’ € X and u € A* be such that zyu € 2/ X*.
s0 Thenyu € X*. Since X is a code, this implies = 2’. Thus X has deciphering delay d.

4111 ]

a2 The following statement characterizes the decoders of codes with fipite deciphering
sz delay in terms of sequential transducers introduced in Section Eé '

PROPOSITION 5.1.6 Let X C A™ be a finite code, and let 3 : B* — A* be a coding mor-
sus  phism for X. The corresponding decoding function A* — B* is realizable by a finite sequential

aus  transducer if and only if X has finite verbal deciphering delay.

a7 Proof. Suppose first that X has verbal deciphering delay d. By Proposition ﬁ?ﬁfﬁeﬁ
sus  prefix transducer 7 associated with 3 realizes the corresponding decoding function ~y
ane from A* to B*. Let S be the sequential transducer o%%mcllsfrom 7 = (Q,1,1) by the
s20 determinization procedure described in Sectioneﬁ._mhe set of remainders,
a121 that is of words u € B* such that (u, p) belongs to a state of S for some state p of 7.
sa22 We show that any u € U has length at most d. This will prove that S is finite, and thus
s23  that the decoding function is realizable by a finite sequential transducer.

s2a  For this, we observe that if two pairs (w, q), (v’,¢") € B* x @ belong to the same
a5 state of S, then 3(w)q = B(w')¢’. This is true for the initial state (1,1) € B* x Q
szs  (here the second 1 is the initial state of 7). Next, if (w,q), (v',¢’) € t are two pairs

Version 14 janvier 2009 J. Berstel, D. Perrin and C. Reutenauer
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192 5. DECIPHERING DELAY

belonging to some state ¢ # (1,1) of S, then there is, by definition of S, and edge
s 23 tin S for some a € A, z € B*. Thus there are two pairs (u,p), (uv/,p') in s

alv alv’

and two edges p — ¢ and p’ — ¢’ in 7 such that uv = zw and v'v' = zw'. We
argue by induction on the length of the path from the initial state to ¢ in S. Thus we

may ass%rg}ﬂ%rg@d)&er: B(u")p'. Since p ate, q and p’ v ¢’ are edges in 7, we
have by @8), pa = 5(v)q and p'a = §(v')¢’. This implies in turn S(uv)q = B(u'v')q'.
Simplifying both sides by 3(z) gives 3(w)q = S(w')q .

Consider now a pair (u,p) € Bt x @ which belongs to a state of S. Since the word
u is nonempty, by definition of S, there is another pair (v, p) in the same state of S
such that u, v’ have no nonempty common prefix. By the above observation, we have
B(u)p = B(u)p'. Since p’ is a prefix of some codewords, the word (3(u) is a prefix of
a word ((u'b) for some b € B. Now set f(u) = zy, f(u'b) = 'y with z,2’ € X,
v,y € X*. Since v and v’ start with distinct letters, one has = # 2. By the definition
of the deciphering delay, this implies that |u| < d, completing the proof of the first
implication.

Conversely, suppose that S = (Q, 4, 0) is a sequential transducer with output func-
tion o realizing v. Let d be the imal length of the words o(p) for p € Q. In view
of applying again Equation , letz,2’ € X and y,y’ € X* be such that zy < z'y/
with 2 # 2/. We show that y € X% with d’ < d. Let p be the state reached from the
initial state 7 by reading . There is no output along this reading because xy is a prefix
of 2'y" and, since = # 12/, it cannot be decided whether to output y(x) or y(z). Thus

we have i 25 p. Moreover, if u is defined by 3(u) = zy, then o(p) = w. Since |u| < d
and f(u) € X 4+d" onehas 1+ d' < d, and thus d’ < d. Thus X has verbal deciphering
delay d. n

EXAMPLE 5.1.7 Consider the code X = {a, b, abc} on the alphabet A = {a, b, c}, with
B = {a, b, ¢} and coding morphism given by @ — a, b — b, ¢ — abe. It has deciphering
delay 2. The prefix transducer 7 and the sequential transducer S obtained by deter-
minization are shown in Figure E.—ﬁ\e—stﬁt?s of § are renumbered 1,2, 3, and the

correspondence with the states obtajned by the determinization procedure, and the
output function o are given in Table El ;I

state 1 2 3

: (@,1) (ab,1)
pairs | (LD (170) (1,ab)
output | 1 a ab

Table 5.1 States and output function for the sequential transducer S.

5.2 Maximal codes

We now study maxi les. with finite deciphering delay. The following result is
similar to Proposition P[Z.5.
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bl—

Figure 5.2 The transducers 7 and S.

PROPOSITION 5.2.1 Let X be a subset of A™ which has finite deciphering delay. If y € AT

4160

4161

4162

4163

4164

4165

is an unbordered word such that
X*yA*NX* =10,
then Y = X Uy has finite deciphering delay.

Proof. Consider the set V' = X*y. It is a prefix code. Indeed, assume that v = zy and
v =2’y with 2,2’ € X*, and v < v'. Then necessarily v < 2’ since y is unbordered.
But then 2’ € X*yA*, a contradiction. Note also that

VA N X* =0

since VT A* Cc VA"
Let X have deciphering delay d and let e = d + |y|. We show that Y has deciphering
delay e. For this, let us consider a relation

w:ylyg---yeﬂu:yiyémy;

with y1,...,Yet1,Y1,--- ¥, € Y, u € A* and, arguing by contradiction, assume that
Y1 # Y1
First, let us verify that one of y1, ..., 711 is equal to y. Assum e gontrary. Then

Y1+ Yar1 € XL Let g be the smallest integer such that (Figure

YioYarr <YLYy
The delay of X being d, and y; # ¥}, one among yj, ..., ¥, must be equal to y. We
cannot have y, = y for an index i < g, since otherwise y; - - - yg41 € VT A* N X*. Thus
Yy = yand y; -y, € V. Note that ) -y, | < y1---Yar1- Next, [yay2 - Yer1| >
e —d = |y|. It follows that

/

Vi Yy S YL Yerd -

But then y; - - - ye41 € X* N X*yA*, which is impossible. This shows the claim, namely,
that one of y1,...,ycy1 is equal to y.

It follows that w has a prefix y1y2 - -y, in V with yy,...,y,-1 € X and y, = y. By
the hypothesis, one of 41, . . . , y,, must be equal to y. Thus w has also a prefix | v5 - - - 4,
inV withy},...,y;_; € X and y, = y. The code V' being prefix, we have

yiyz - Yp—1 = yiyé T 21/1/171 .
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194 5. DECIPHERING DELAY
Y1 Yd+1 Ye+1

N

Y1 sz; Yn

Figure 5.3 Two factorizations of the word w. fig2_29

ses  Since X is a code, this and the assumption y; # v} imply that p = ¢ = 1. But then
a7 yp =y = ¥y, This gives the final contradiction. "

2
snee  Proposition %‘lﬁs the following interesting consequence.

THEOREM 5.2.2 Let X be a thin subset of AT. If X has finite deciphering delay, then the
mro  following conditions are equivalent:
a7 (i) X is a maximal code,
a2 (ii) X is maximal in the family of codes with finite deciphering delay.

ars - Proof. The case where A has just one letter is clear. Thus, we suppose that Card(A) > 2.
ars It suffices to prove (ii) = (i). For this, it is enough to show that X is complete.
s Assume the contrary and gonsider a word u which is not a factor of a word in X*.
mre  According to Proposition [If. ere exists u & 4" such that y = v is unbordered.
s77 - But then A*yA* N X* = () and by Proposition%,_xu y has finite deciphering delay.
nrs  This gives the contradiction. .

sre A word p is strongly right completable (for X) if, for all u € A*, there exists v € A*
a0 such that puv € X*. Clearly, a strongly right completable word is right completable.
sz The set of strongly right completable words is denoted by

mnsz  The following statement is the counterpart of Theorem or codes with finite
sz deciphering delay since it shows that maximal codes finite deciphering delay satisfy a
ssa  condition which is stronger than being complete.

PROPOSITION 5.2.3 Let X C A" be a maximal code with deciphering delay d. Then for
nss any x € X% and u € A* there exists a word v € A* such that xuv € X*. In other words
ner X4CE (X )

Proof. The case of a one letter alph.
z € X4 and u € A*. By Proposition [[|
unbordered. This implies that

et is clear. Thus, assume that Card(A) > 2. Let
[.3.6, there is a word v € A* such that y = zuv is

X*yA* N X* #£0.

2 1
nss  Indeed, otherwise X U y would be a code by Proposition %d Proposition %,*
mse contradicting the maximality of X.

-simplifyin
4190 Consequently, there exist = € X*, w € A* such that zyw € X*. By Proposition B[ i EH,
no1  x is simplifying. Thus, zyw = zaxuvw € X* implies zuvw € X*. This shows that z is

s192  strongly right completable. .

s We now state and prove an important result.
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THEOREM 5.2.4 (Schiitzenberger) A finite maximal code with finite deciphering delay is
4195 preﬁx.
4196 In an equivalent manner, a maximal finite code is either prefix or has infinite deci-
s07  phering delay.

Proof. We argue by contradiction and suppose that X is nof a prefix code. Denote by
P the set of prefixes of the words in X*. Define (see Figure Ecai

T={teP|3r,ye X, z#yand ztA* NyX™* # 0}.

s08  We first observe that 7' contains the empty word. Indeed, since X is not a prefix code,
nee there exist z,y € X with y = zu for some u € AT. Thus zA* N {y} is nonempty. This
s200 shows that 1 € T'. Thus 7' is not empty.

xT

Y

Figure 5.4 An element ¢ of T'. fig-defT

200 We next show that T is finite. Let L be the maximum length of the words in X.
a202  Suppose that there exists t € T of length |t| > dL, where X has deciphering delay
a3 d. Sincet € T, one hast = x1--- x4t for some codewords z1,...,z4 € X and some
a0a t' € P.

w05 Letz,y € X, x # y be words such that ztA* Ny X* is nonempty. We have ztu = yw
s206 for some word w € X*. Consequently zz - - - z4t'u = yw, and since X has delay d, we
4207 obtain x = y, a contradiction. Therefore ¢t cannot be in 7. This shows that all words in
s208 T have length < dL, and thus T is finite.

4209 We consider now some t in 7" of maximal length. We have, for some z,y € X,z # y,
w210 that 2t A*NyX™ is nonempty. Hence ztu € yX* for some word u, and we may suppose
2 thatu € A*. Indeed, if u = 1, we replace u by any word of X. Set u = aw/, where
a212  a is the first letter of u. We are going to show that ta € P, which implies ta € T, a
4213 contradiction.

4214 ]E: l:% 7ja, where z is a word of maximal length in the (finite) code X. By Propo-

Set
4215 sition wA* N X*is noneggtm%erefore there are x1,...,Zpn, Y1,-- -, Ym IN X

s216 and v in A* such that (see Figure Tl Ty 2LV = Y1 Y-

1 Tn z t

Y1 Ym

Figure 5.5 A completion of w = zta. fig-thMPS2

4217 Take n minimal. If n > 1, wehave z1(z2 - - - xp2t)av = y1 - ypmand t/ = xg -+ - 2t €
ans P, sincet € P. Thus x1t’ A* intersects y; X*, and since t’ ¢ T, we must have z1 = y;.

a9 Thus 2o+ zpztav = yo - ym aLEd_tihlﬁlsbggntradicts the minimality of n. Hence n = 0

s220 and ztav = yi - - - Yy, (see Figure .
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t
Y1 ! Ym

Figure 5.6 A consequence y; # z is that 2zt = y1t;.

Note that, since z is of maximal length, y; is a prefix of z. Suppose by contradiction
that y; # 2. Then for some prefix t; of y2 - - - y,n, we have y;t; = zt. Since t € P, the set
y1t1 A* intersects zX* and we conclude that t; € T, a contradiction since |y1| < |z| =
ta] > ).

Thus y; = z and tav = ys---y,. Hence ta € P, as claimed. This concludes the
proof. n

. 4 . . o
The following examples show that Theorem %ﬁoptlmal in several directions.

EXAMPLE 5.2.5 The suffix code X = {aa, ba, b} is a finite maximal code and has infi-
nite deciphering delay.

EXAMPLE 5.2.6 The code {ab, abb, baab} has minimal deciphering delay 1. It is neither
prefix nor maximal : indeed, the word bbab, for instance, can be added to it.

EXAMPLE 5.2.7 The code X = ba* is maximal and suffix. It has minimal deciphering
delay 1. It is not prefix, but it is infinite.

fig-thMPS3

ter
The rest of this section is devoted to the proof of an analogue of Theorem %

codes with finite deciphering del e following example shows that the construc-
tion used in the proof of Theorem oes not apply in this context.

4b
EXAMPLE 5.2.8 Let X = {a,ab}, A = {a,b} and y = bba as in Example . For
Y = XUy(Uy)* withU = A*\ (X*UA*yA*) constructed in the proof of Theorem [2.5.22

is a maximal code but it has infinite deciphering delay. Indeed, the word y’ = ya'bby
isin Y for any d > 0, and has the proper prefix ya? in Y4+1.

THEOREM 5.2.9 Each rational code having deciphering delay d may be embedded into a max-
imal one with the same delay d.

Let X be nonempty code with deciphering delay d. If d = 0, X is prefix and the
result is easy: let L be the set of proper prefixes of words in X, and let L = A* \ L be
its complement. Let X’ = L\ LAT. Then Y = X U X' is easily seen to be a maximal
prefix code containing X. If X is rational, then Y is rational.

We assume in the sequel that d > 1. Let ) be the set of words having no prefix in
X and which are not a factor of any word in X. Now, let P be the set of words in @
which are minimal for the prefix order: P = @Q \ QA™. Note that P is a prefix code.
Moreover, words in P and X are incomparable for the prefix order.

We say that a pair (w,p) € X* x Pis good if w is the longest prefix in X* of wp. Note
that if (w, p) is good, then this pair is completely determined by the word wp. Note
also that any pair (1, p) for p € P is good.
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5.2. MAXIMAL CODES 197

We say that the pair (w,p) € X* x P is very good if (uw, p) is good for any u € X*.
Note that if (w, p) is very good, then so is (uw, p) for any v € X*.

We let S’ be the set of words v of the form v = wp with (w, p) good but not very
good. Then we define S = P U S’. Note that P N S’ may be nonempty, and that any
element in " \ P is of the form wp, with (w, p) good but not very good and w € X*.
Moreover, let R be the set of words v of the form v = zwp withz € X, w € X*, (zw, p)
very good and wp € S with (w, p) good. Then we define

Y = X URS". (5.2)

PROPOSITION 5.2.10 Y is a code with deciphering delay d.

The proof relies on a series of lemmas.

LEMMA 5.2.11 If (m,p) is good but not very good, there exists x' # x" in X, a factorization
p = p1p2 with py # €, and w,v € X* such that x'wmp = x"vp,.

Proof. Since (m,p) is not very good, we may find w’,v" € X* and a factorization
p = p1p2 with p; # e such that w'mp = v'py. Choose such a relation of shortest length.

Then v’ is rlgr}egggty, since (m, p) is good, and v’ is nonempty because |p| > |p2|. Thus

(see Figure w = z'w, v = 2"vwithw,v € X*,2/,2" € X. Necessarily, 2’ # 2" by
minimality. "
x! w m
b
O
P2
x// v

Figure 5.7 A good pair which is not a very good pair.

LEMMA 5.2.12 The set S N X4 A* is empty.

Proof. Suppose that s = ut with s € S, u € X% and t € A*. Note that s is not in P
since it has prefix in X. Hence s = mp, with (m, p) good but not very good. We have
mp = ut and u cannot be longer than my, since, (m, p) is good. Thus m = wm’ with
m’ € A*. Next, we can find, by Lemma%:,_ﬁvo words 2/, 2" in X with 2’ # 2", a
factorization p = pyps with p; # € and w, v € X* such that z’wmp = 2" vps.

Thus 2"vps = x'wum’p1ps and it follows that 2”v = x’wum’p;, which contradicts
the fact that X has deciphering delay d, since v € X* and u € X¢. n

LEMMA 5.2.13 Let u,v € X*, r = mp € R with (m, p) very good.

(i) ur cannot be a prefix of v. In other words, X*RA* N X* is empty.
(ii) If v is a prefix of ur, not shorter than um, then v = um.
(iii) If wm is a prefix of v and if wr and v are comparable for the prefix order, then um = v.
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Proof. (i) Suppose that urt = v for some t € A*. Then umpt = v. Since p is not a factor
of any word in X, we find, by decoding v € X*, that p = p1ps with py,p2 # € and
umpy € X*, a contradiction with the fact that (m, p) is very good.

(ii) We have ump = ur = vt with ¢t € A*. Since |um| < |v|, v ends in p: there is a
factorization p = p;ips such that ump; = v. Since (m, p) is very good, we must have
p1 = eand v = um.

(iii) Since ur and v are comparable, one of them is a prefix of the other. By (i), v is a
prefix of ur. Since um is a prefix of v, (ii) applies, and we find v = um. .

LEMMA 5.2.14 Let v € X* and let s = mp € S with (m, p) good.
0.

(i) s cannot be a prefix of v. In other words, SA* N X* =
(ii) If v is a prefix of s, not shorter than m, then v = m.
(iii) If m is a prefix of v and s, v are comparable for the prefix order, then m = v.

Proof. (i) Suppose that v = st for some t € A*. Then v = mpt. Since p is not a factor of
any word in X, we have p = pips with p1,p2 # € and v = mp,. This contradicts the
fact that (m, p) is good.

(ii) Suppose that mp = s = vt for some ¢t € A*. Since |m| < |v|, we obtain p = pips
with v = mp;. Since (m, p) is good, we must have p; = 1 and v = m.

(iii) One of s and v is a prefix of the other. By (i), it must be v which is a prefix of s.
Since m is a prefix of v, (ii) applies and we find m = v. n

LEMMA 5.2.15 The sets X* R and S are prefix codes.

Proof. We first consider X*R. Suppose that u,u’ € X*, r,7" € R and ur is a prefix of
u'r’. We write r = mp, ' = m’p/, where (m,p), (m’,p') are very good. Then ump is
a prefix of u'm/p’. Hence um is a prefix of u'm’ or conversely. Moreover, ur and v'm’
are comparable, and so are 1’ and um (since all these four words are prefixes u'r’).
Hence, we find by Lemma p.Z.13 (iii) that um = «'m’. Thus p is a prefix of p’. Hence
p = 7/, since P is a prefix code. This shows that ur = /7’ and thus X*R is a prefix
code.

We have S = S’ U P. Since the words in P and X are incomparable for the prefix
order, since S” \ P is contained in X P, and since P is itself prefix, we are reduced to
show that S’ is prefix. Let u, v’ be in S’, and set u = wp, v’ = w'p’, where (w, p), (w', p)
are good pairs. Suppose that wp < w'p'. If w = ', then p = p’ and the pairs are equal.
We assume w # w'.

One has w < w’ because otherwise w’ < w and since w is a prefix of w’p’, the pair
(w', p") would not be good. In fact, wp < w’ because otherwise w < w’ < wp and (w, p)
would not be a good pair.

Thus, wp is a prefix of w’. Since p is not a factor of a word in X, there is a factorization
p = p1p2, with p1, ps # 1, such that wp; is in X*, which contradicts the fact that (w, p)
is a good pair. n

LEMMA 5.2.16 We have
(i) SA*N X*RA* = .
(ii) SA*NY™ = 0.
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Proof. Let s € S, r € Rand v € X* be such that s and vr are comparable for the prefix
order. We cannot have s € P since vr € X A*. Write s = mp, r = m/p’ where (m, p) is
good but not very good and (m/, p’) is very good. Then m and vy are cgmparable.

If vm/ is a prefix of m, since vr and m are Comparable Lemma%’(‘lﬁ) shows that
om/ = If, o} the contrary, m is a preflx of vm/, since s and vm’ are comparable,
Lemma%‘(ﬁ) shows that m = vm/. So, we obtain that m = vm’ in both cases.
Since s = mp, vr = vm/p’, we fmd that p,p’ are comparable. Thus p = p/,since Pis a
prefix code. We conclude that s = vr.

Since (vm/, p) = (m, p) is not very good, we reach a contradiction with the fact that

(m/,p) = (m/,p) is Veti}agood
(ii) By Lemma , SA* N X* = (. Since Y = X U RS*, we see that Y* C

X*UX*RA*, so that (1) shows that SA*NY* =10 .

-p1
Proof of Proposition %._We only have to sho%%t}l’lat Y has deciphering delay d,

since it is then necessarily a code by Proposition y contradiction, suppose that
Y does not have deciphering delay d. We may find words y1, ..., 9441, 21,-..,2,In Y,
w € A* such that

Y1yz2 - Yd+1W = 21 - " Zn (5-3)

with y; # z;. Without loss of generality, we may assume that |w| < |2, | (otherwise, z,
is a suffix of w and we may shorten the relation by simplifying by z,).

Since X has deciphering delay d, not all of y1,...,v4+1, 21, .., 25 are in X. Thus, if
the z; are all in X, then some y; isin Y\ X, h prrlncr%F'_rEﬁA*. Then y; - - - ygr1w € X*RA*
and z; - - z, € X*. This contradicts Lemma p.2Z.13({1). We conclude that some z; is in
Y\ X.

Suppose now that all y; are in X. By the length assumption on w, the word 1 - - - Y441
isin zy -+ z,_1A*. If one OF zi ; [ 3on—1 isinY \ X, theny; ---yqr1 € X*N X*RA*,
which contradicts Lemma p.2. 1). Thus z1,...,2,-1 € X and 2z, € Y \ X. Since
zn € RS*, we may write z, = zupm, withz € X, u € X*, m € S§*, (zu,p) a very good
pair and up € S, (u, p) good.

We have y; -+ ygr1w = 21 zp—1xupm. Therefore, z1 - - z,_1xup and y; - - - Ygs1
are com arablEsfor the prefix order. If z; - - - z,_12u is a prefix of y; - - - Y441, then by
Lemma iii), they are equal. But y; - - - yg+1 = 21 - - - zn—12u implies y; = 2; since
X is a code, a contradiction.

Thus y; - - - ya41 is a prefix of 21 - - - z,_1zu. Since y; # 21, and since X has decipher-
ing delay d, we musthaven = 1land y; = «. Thusy; ---yqy1 is a prﬂﬁx of 1y, hence
Y2 - - - Yd+1 i a prefix of u, hence of up € S, which contradlcts Lemma |

All this shows that some y; and some zj are not in X, hence are in RS* Take i
and j minimal. Then y; = ru, z; = r'v/ with r,7" € R. Moreover y; - - y; i1, and

0 -L5
21+ zj_1r’ are Comparable by Equation (%e deduce then from Lemma 3% Ig

that y; - -~ y;—17 = 21 --- zj_1r". We may write r = xmp, ' = 2'm/p’, where (zm,p),
(a:/m’,p/) are very good pairs and (m,p), (m’,p’) are good and mp, m’p’ € S. Then the
equation y; - - - y;_1xmp = z1 - - - zj_12'm/p’ forces by the definition of a very good pair
p = p' since yi,...,yi-1, 21,...,2j—1, ,&’,m,m" are all in X*. Thus y; - - - y;—12m =
21+ zjx'm! If i, j > 2, then y; = z; since X is a code, a contradiction.

It follows from this that we must have i = 1 or j = 1, thatis y; or z; is in RS™.
Suppose that i = 1 and j > 1. Then we obtain xm = z; --- z;_12'm/, which shows
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sss  thatx = z; and m = 23 - - - z;_12'm/. Note that m # 1. We know that the pair (z'm/, p)
asso is very good. Hence (23 - - zj_12'm/,p) is also very good. Now this pair is equal to
a0 (m,p), which is not very good, a contradiction.

4361 Thus, we cannot have i = 1 and j > 1. Similarly, we cannot have ¢ > 1 and j = 1.
a2 Thus, w hav_ei_é' = j = 1, thatis y;,21 € RS*. Since R and S are prefix codes by
4363 Lemma %e have either y; = rs1s9, 21 = rsj or y; =L 8tpd1 = I'S152 withr € R,
364 S1,S2 € S*, s9 # €. In the first case, we have by Equation 1%‘_] upon simplification
4365 Dy 21, 20+ 2 = S2Y2* Yd W wh_ic% contradicts Lemma pb.2.16 (ii). Thus the second
sse6  case holds. Again by Equation , we have ys - - - ygr1w = s921 - - - 2. To avoid the
s367  same contradjction, we must have that y; - - - ya;1 is a proper prefix of s,. We deduce
a6 from Lemma @ (i) that y2, ..., Y441 are all in X.

4369 We may write sy = ss3, where s € S, s3 € S*. Since y» is a prefix of sy (because
a0 d > 1),y is a prefix of s or vice-versa. Hence s ¢ P and thus s € S’. We deduce that we ,
311 may write s = mp for some good but not very good pair (m, p), and by Lemma p.2Z.T1],
a2 the existence of f,n € X*, z, 2’ € X with z # 2/ such that znmp = 2’ fq with |q| < |p|.
4373 We know that s - - - y4+1 is a proper _{g{fix of s3 = mpsz. Now, m is not a prefix of
w374 Y- - Yg+1 (otherwise, by Lemma%—(ﬁ

wg_gleduce m = ys---ygr1 and mp € S
375 has a prefix in X d contradicting Lemma - Thus y3 - - - yq+1 is a prefix of m. Let

2376 M = Y3+ Ygr1g- Then znys - - - ygr19p = ' fq and because |q| < |p| and n, f € X*, this
ss77 - contradicts the fact that X has deciphering delay d. n

PROPOSITION 5.2.17 The set Y is a complete code.

are If X is dense, then Y is dense and therefore js complete. So, we may assume that X
s30  is a thin code. The proof of Proposition 32 I Ei relies on the following lemma.

LEMMA 5.2.18 If X is a thin code, then the set P U (X \ X AT) is a maximal prefix code.

ass2  Proof. Let Z = PU(X \ X A™). The two terms of this union are prefix codes. Moreover,
a3 any word in P is incomparable (for the prefix order) with any word of X. Hence 7 is
s384  a prefix code (since 1 ¢ Z because X # () by assumption).

ss85  We show that Z is right complete. Let w € A*. Suppose that w is not comparable
4386 with X. Choose some word u which is factor of no word in X (such a word exists
a7 since X is thin). Then wu is not a factor of any word in X, and has no prefix in X.
ssss  Therefore, wu has a prefix in P and we conclude that wA* N ZA* is nonempty. n

-p2
Proof of Proposition %.—Choose some word v € X?. We show that for any word w,
vwA*NY™ is nonempty (this will imply that Y is complete). By contradiction, suppose

that
vwA* NY* = 0. (5.4)

s3s0  We may write vw = yi ---y,u with y; € Y and with u of minimal length among all

a3  such factorizations. Note that since v is in X 4 C Y*, the word v is necessarily a prefix

w1 of yp---y,. By Lemma%e find p in P U (X \ XA") such that p and u are

1392 comparable.

s303  We claim that if p; is a nonempty prefix of p, then y;---y,p1 ¢ Y*. Indeed, if

s394 Y1---ypp1 € Y, then since p and u are comparable, either p; is a prefix of u, on:,
a5 tradicting the minimality of , or u is a prefix of p1, and this contradicts Equation (b.4).
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Y1 p1

p

Figure 5.8 A factorization of y; - - - y,p with y;,...,y, € X and y; ---yup1 €
X*.

By the claim, p is not in X, hence p is in P. Choose now i € {1,...,n + 1} minimal
such that y;, yit1,...,yn are in X (i = n + 1 means y,, ¢ X). Then for any j with
i < j < n,the pair (y;y;+1- - Yn,p) is good: indeed, if not tr}(}eg,g = p1po with p; # 1
and y; - - - y,p1 € X, contradicting the claim (see Figure %_p;

Take n + 1 > j > ¢ minimum such that y;y;+1---ynp € S (j exists since p € ).
If j > i, then y;_1y;---ynp € R (indeed (y;j—1y; - - yn,p) is a very good pair). Since
R C Y, this contradicts the claim.

Hence j = i. Ifi > 1, then y;_1 isnotin X, henceisin RS*. Then y;_1y; - - - ynp € RS*
(since y; - - - ynp € S), and we find a contradiction with the claim.

Thus we are reduced to ¢ = 1 and y; - - - y,p € S. This implies that (yy - - Jmp) isa
good pair which is not very good because y; - - - y, # 1. Thus by Lemma%e find
z, 2’ in X distinct, such that  X*y; - - - y,pNa’ X*py is not empty, for some factorization
p = p1p2, 1 # €. Since v is a prefix of y; - - - y,, this contradicts the fact that X has delay
d. "

The above proof implies the following property: if a thin code X C A" with deci-
phering delay d is complete, then for any 2 € X¢ and u € A* there i A* such
that zuv € X*. Indeed, a thin complete code is maximal by Theore%ﬁnd thus
X =Y. Note that this property is also a consequence of Proposition .

PROPOSITION 5.2.19 If the code X is rational, then Y is a rational code.

Proof. Since X is rational, the set F'(X) of its factors is rational. Consequently, Q =
A*\ (F(X) U X A*) is rational. Since, P = Q \ QA™, the set P is also rational.

Let cbe a new letter notin A and let 7 : (AUc)* — A* be the projection that erases c.
For u,p € A*, we say that the word ucp is good (resp. very good ) if so is the pair (u, p).
We denote by Sy (resp S1) the sets of these words.

Let L = (77 1(X*) N A*cAT)A*. Thus L is the set of words starting with a word
z = ucw with w # ¢ and uw € X*. The set L is rational. We claim that Sy = X*cP \ L,
which implies that Sy is rational.

In order to prove the claim, let ucp € Sp. Then evidently v € X* and p € P.
Moreover, suppose ucp € L, then there is a factorization p = ww’ such that w # ¢ and
uw € X*, contradicting the fact that (u, p) is good. Conversely, if u € X*, p € P and
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a,b

Figure 5.9 An automaton recognizing Y*.

ucp ¢ L, there is no prefix of up in X* strictly longer than u. Thus (u,p) is good and
ucp € Sp.

Similarly ucp € S; if and only if u € X*, p € P and X*ucp N L = (). This implies that
Sp = X*cP\ (X*)71L is rational.

Let Ry be the set of words of the form zucp, with z € X, u € X*, which are very
good and such that v = 1 or ucp is good but not very good. In other words, Ry =
S1NX(PU(Sy\ S1)). This shows that Ry is rational. Clearly R = m(Ry). Recall that
S’ is the set of words of the form up with (u, p) good but not very good. Consequently
S, = 7T(So \ Sl)

This shows that S’ and R are rational. Thus S = PU S’ and Y = X U RS* are
rational. n

em-RCFDD
Proof of Theorem %_L_et_x_b a rational code with decipheri % gflay d. Then

the code ) 2defiﬁled by, Equation %‘has delay d by Proposition By Proposi-

| fig-automatonY”

*

tions ind. p.Z. 191t is a rational complete code. Since a rational code is thi
Proposition £.5.20, and since a thin and complete code is maximal by Theorem ,
the conclusion follows. .

Jast
Note that if X is thin, then Y also is thin (Exercise %)._ﬂ“ﬁs, any thin code with
deciphering delay d is contained in a maximal one with the same delay.

EXAMPLE 5.2.20 The finite code X = {a,ab} has delay 1. We have P = {ba, bb}.
The good pairs are those of the form (z,bb) and (z,ba) with z € X*ab U 1. They are
also very good except when z = 1. Thus S = P and R = {ab?,ab?a}. Finally Y =
{a,ab} U {ab® ab’a}{bb,ba}* is a complete code with deciphering delay. 1 containing
X. An automaton recognizing Y is represented on Figure ﬁ

Observe that there is a much simpler complete code with delay 1 containing X,
namely the code ab*. It would be interesting to have a completion procedure which

gives this code directly. We will see in the next section a procedure which gives this
code, but for a different definition of the delay (see Example E}?:éi

5.3 Weakly prefix codes

There is another definition, close to the previous one where one counts the delay in
letters instead of words of the code. A set X C AT is said to be weakly prefix if there
exists an integer d > 0 such that the following condition holds: If zu is a prefix of 'y’
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msr with z, 2’ € X, u a prefix of a word in X*, and ¢/ € X*, then |u| > d implies z = a'. If
asss  this holds, we also say that X has literal deciphering delay d.

x u
x Yy
Figure 5.10 A forbidden configuration for weakly prefix codes. fig-defL

asss  The least integer d such that the implication above holds is called the minimal literal
ase0  deciphering delay. If no such integer exists, the set has infinite literal deciphering delay.

PROPOSITION 5.3.1 Let X be a set with minimal verbal deciphering delay d and minimal
literal deciphering delay e. Then

d<e<dmax{|z||z € X}.

ms1  Proof. Indeed, assume that X has literal deciphering delay e, and consider z,2’ € X,
ms2 y € X¢ and ¢y’ € X* such that zy < z'y’. Since |y| > e, one has = = 2/, showing that X
ae3  has verbal deciphering delay e.

msa  Conversely, assume that X has verbal deciphering delay d. Let z,2’ € X and u a
mes  prefix of a word in X* and ¢/ € X* such that zu < 2’y with |u| > dmax{|z| | z € X }.
1es By the condition on the length, there is a word y € X9 which is a prefix of u. Thus
msr xy < zu < z'y’. Since X has verbal deciphering delay d, we obtain z = «’. "

aes  Thus a finite set has simultaneously finite delay for both notions, but the example
aeo Oof X = bU ba*cU a*d shows that the definitions differ when X is infinite. Indeed this
a0 set X has verbal deciphering delay 1, but has infinite literal deciphering delay since
wn for all n, the condition of the definition is not satisfied with z = b, © = a®, ' = ba"c,

warz Yy = 1.
aa73. PROPOSITION 5.3.2 A weakly prefix set is a code.

is.2.0
aara Proof. Let X have literal deciphelr%'%% glelay d. By Proposition %_1% verbal deci-

a5 phering delay d. By Proposition e set X is a code. .
An automaton A is said to have delay d > 0 if for any pair of paths
p——q——r, p——d =

if |z| = d then ¢ = ¢’. Thus a deterministic automaton has delay 0. An automaton with
finite delay is also called weakly deterministic. Observe that if A has delay d, then for
any word w, and for any pair of paths

w z w /! Z /
p—q—7r, Pp—q —7T,
s with |z| = d, the paths p = g and p —- ¢ are equal.
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PROPOSITION 5.3.3 A strongly connected weakly deterministic automaton is unambiguous.

Proof. Indeed, let ¢ : p Zgand ¢ : p 5 gbe two paths from p to ¢ with the same label
w. Since the automaton is strongly connected, there exists, for any d > 0, a path ¢ S
with |z| = d. It follows that ¢ = ¢/. .

The following result proves that a code X is weakly prefix if and only if X™* is rec-
ognized by some weakly deterministic automaton A = (@, 1,1).

PROPOSITION 5.3.4 Let X be a code and A = (Q,1,1) be an automaton with delay d rec-
ognizing X*. Then X has literal deciphering delay d. Conversely, if X has finite literal
deciphering delay, the automaton can be chosen to have the same delay as X.

Proof. Let us first suppose that X* is recognized by A = (@, 1,1) with delay d. We
show that X has delay d. Let 2,2’ € X, let u € A* be a prefix of a word in X* with
|lu] = dand ¢y € X* such that zu < 2'y’. Since A recognizes X*, there are paths
c:1 51 % pandd : 1 Z 1 % 1. Since zu is a prefix of z'y/, the path ¢ has a
decomposition ¢ : 1 % ¢ % p’ % 1 for some states g, p’ and some word w. Since
|u| = d, the two paths c and ¢ have the same prefix of length |z|, and therefore ¢ = 1.
Assume that z is a prefix of 2/. Then 2/ = zz for some z € A%, and the path 1 2
decomposes into 1 % 1 = 1. This shows that z € X* and thus z = 1. Thus = = 2’. The
other case is handled symmetrically.

Conversely, let X have literal delay d and let A = (Q,%,T") be a trim deterministic
automaton recognizing X and let A* = (Q U w,w,w) be the star of the automaton A.
We show that A* has delay d. Assume that

a z a ;) z /
p—qQ—7r DP—q —T

with |z| = d. Then, by construction of A* one of ¢, ¢’ is w. Let for example ¢ = w.
. % 1 . . w .
Since A* is trlrh, there is a path w — p and we rr:}ay suppose tha ﬁ:c}} tEa’dl‘l does not
pass by state w inbetween. We also have a path 7’ — w (see Figure| Lj) T hen wa € X
and wazv € X*. Let z = wa and let wazv = a:/y’ with 2/ € X and ¢ € X*. Since X
has literal dec1pher1hg delay d, we have r=u2x. Consequehtly y = zv. Thus there are

in A* the paths w- ¢ L wandw S —w Y, . Since A* is unambiguous, this
implies ¢’ = w. Thus A* has delay d. n

Figure 5.11 Two paths in the automaton A*.

We may observe that the automaton .4* above can be used to check whether a code
is weakly prefix, and to compute its minimal literal deciphering delay.
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We now turn to jmal weakly prefix codes. The following result is the counter-
part of Propositionr%.*

PROPOSITION 5.3.5 Let X be a maximal code with literal deciphering delay d. Then any
right completable word uw € A* of length d is strongly right completable.

6
Proof. Letv € A*. By Prop%% % I @Tﬁere exists a word w € A* such that uvw is

unbordered. By Proposition ereexistx € X*and t € A* such that zuvwt € X*.
Since X has literal deciphering delay d, and since the word w is right completable, this
word is simplifying. Thus uvwt € X*, showing that uv is right completable. n

An automaton A is said to be weakly complete or d-complete if for any path p —- ¢
with |w| = d, there is a path p — ¢/ for each letter a € A. Observe that this path is not
required to start with the path p — q.

If A is d-complete, then by induction for any path p — ¢ with |w| = d, and for any
word z, there is a path p =% ¢/.

PROPOSITION 5.3.6 Let X be a thin code with literal deciphering delay d and let A =
(Q,1,1) be a trim automaton with delay d recognizing X*. The code X is complete if and
only if A is d-complete.

Proof. Suppose first that X is complete. Let p — ¢ be a path in A with |w| = d and let

a € Abe aletter. Since A is trim, t isapath 1 - p. Singe X, is thin and complete,
it is a maximal code by Theorem . By Proposition :%,'—Fheiword uwa is right
completable. Thus there exists a path &o% Igt/ 2% ¢'. Since A has delay d and since
|w| = d, we have p = p’ (see Figure f%ows that A is d-complete.
Conversely, let z € X be of length at least d. Then, for any w € A*, since A is d-
complete, there is a path 1 % p. This implies that X is complete since A is trim. n

Figure 5.12 Showing that A is d-complete.

We can use the previous result to give another proof of Theorem %et X be a
finite maximal code. We argue by contradiction and suppose that its verbal delay is
strictly positive, Since X finite, its literal delay d is also finite and strictly positive.
By Proposition ‘@a—ﬂmm a finite d-complete automaton A = (Q,1,1) with
minimal delay d recognizing X*.

We first show that we may suppose the automaton unfolded in the sense that all
states in A except the initial state 1 have indegree 1. This property can be obtained
by applying the following state splitting method: Let ¢ # 1 be a state with indegree
r > 1. This state is split into r copies, each of which with indegree 1 and with the
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same outgoing edges. Since X is finite, all cycles in A contain state 1. Consequently,
the state splitting can be repeated only a finite number of times. Clearly, state splitting
preserves the delay and d-completeness.

Assume now that A is unfolded and has the minimal possible number of states.
Since A has minimal delay d, there is a state ¢ such that there are edges (¢, a,r) and
(q,a,7") with r # 7’ and paths labeled v € A?~! going out of 7,7’. Let us prove that
r,r’ # 1. Arguing by contradiction, suppose that v’ = 1. Let u be a word of maximal
length such that there is a path r % 1, decomposing as r — s — 1 with a simple
path s — 1. Observe that vu is nonempty since otherwise r = 1 = /. Let b be the
tirst letter of uv. Note that no path exists labeled vb and going out of 1, since A has

minimal delay d (otherwise, we would have two paths ¢ = 1 ® and q % r % labeled
avb starting from ¢ with different initial edges). Consider now the last letter c of vu and
the state ¢ such that (¢, ¢, 1) is the last edge of the path » *% 1. Since A is d-complete,
there exists a path labeled cvb going out of state t. Let (¢, ¢, t') be the first edge of this
path (see Figure ]%Wﬁich corresponds to the case u # 1 and where u = u'c). We

Figure 5.13 Showing that " # 1.

have ¢’ # 1 since there is no path labeled vb going out of 1. Let w # 1 be a word such
that there is a simple path # — 1. Then there is a simple path s = 1 This establishes
the contradiction since uw is strictly longer than .

Let A’ = (Q’',1,1) be the automaton obtained by merging r and /. Since r,7’ # 1
and since they both have indegree 1 and the same label on the incoming edge, the
automaton A’ also recognizes X* and is unfolded. Since it has strictly less states than
A, we obtain the final contradiction. m-RCFDD

We now prove the following result which is a yariant of r%ﬂp egrem %.e—ﬂmof
uses automata and it is illustrated in Example p.3.1

THEOREM 5.3.7 Each weakly prefix rational code can be embedded into a maximal one with
the same delay.

We shall use the following lemma. In the proof, we use the notation ¢ — to denote
some path starting in state ¢, and labeled with the word u.

LEMMA 5.3.8 Let A = (Q,1,1) be a trim automaton with delay d. One can obtain, by

adding finitely many states and edges to A, a trim automaton B = (Q’', 1, 1) which has still
delay d and which is d-complete.
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5.3. WEAKLY PREFIX CODES 207

Proof. In the case d = 0 we simply add in B an edge (g, a, 1) for all states g and letters
a € A, for which there is no edge leaving ¢ and labeled a in A. The proof for d > 1
consists in several steps.

1. We start with the definition of a new automaton By. We add the set @)’ of states
denoted ¢(w), for w € A*, with 1 < |w| < d, and set ¢(1) = 1. We add the edges:
q(w) % q(w'), forw = aw’, a € A.

Denote by By = (Q U Q',1,1) this new automaton. Clearly, By also has delay d.
Remark, for future use in the final step below, that each state of @’ is coaccessible,
since for each ¢(w), we have a path g(w) = 1.

It will be convenient to call future of a state ¢ the set of words w of length < d such
that there exists some path ¢ —— —. Note that in By, the future of a state ¢(w) with
|w| = d is the set of prefixes of w.

2. We construct now a sequence of automata 3;, B, ... which all have the same
states as By. It will be clear that this sequence is finite. We will show that all B; have
delay d. Let B, be its last element. This will be shown to be d-complete. If B; is
constructed and is not d-complete, then for some word u € A? some letter b and some

state ¢ of B;, a path ¢ -2, — exists, but no path ¢ NN Then, writing ub = aw,

gith ag A e aedd to B; the edge ¢ -5 g(w), and this gives the automaton B, (see
igure EC I%i

Figure 5.14 The new edge (¢, a, g(w)) is added in B;; (with ub = aw, because

there is no edge ¢ 8.

3. We now show a technical property: for each i > 0 and for each state p, the future
of p in B; is equal to the future of p in By. This implies that for any word m € Al the
future in every B; of ¢(m) is the set of prefixes of m.

It suffices to prove that if there is a path p — —in By, with |v| < d, then there
exists already a path p —— — in B;.

For this, we may suppose that the path p - in B; involves the new edge ¢ % ¢(w)
created in step 2, where v is such that ub = aw, and ¢ 2 in B;. Thus, we may suppose
that this path has the form p % ¢ % ¢(w) 3 p’ with v = v;ave, where the last segment
q(w) B p'is in B;. Now |vs| < d, thus the induction hypothesis on the future of q(w)
implies that vy is a proper prefix of w. Thus, by construction of the new edge, there
exists in 3; a path ¢ 2 since avg is a prefix of u. Hence, we getin B, a pathp 2 with
a smaller number of occurrences of the new edge. Consequently, a path p - exists in
Bi+1, with no occurrence of the new edge, and this path is therefore in B;, proving the
induction step.

4. Suppose that B; has delay d. We prove that B;; has the same delay. Suppose
that for some states p, p1, p2, some letter ¢ and some word v € A%, one has in B;,; the
two paths p 5 p1 = and p 5 py —. Because of 3, some paths p; 2 and py — exist
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03 in B;. If the edges p 5 p1and p > py are in B;, then p; = po because B; has delay d.
w04 Otherwise, p1 # ps, and exactly one of the two edges p S prorp = po, say p 5 p, is
w05 the new edge ¢ = ¢(w) and the other is in B;. Then p = ¢, ¢ = a, p1 = g(w), so that
w06 v = w by (ii) because v has length d. Thus, considering the other edge (which is in B;),
w07 we see that there exists a path ¢ “ in B;. This contradicts the assumption that led to
as0s  the construction in step 2.

oo 5. Let B = (QUQ",1,1) be the trim part of B = (Q U Q',1,1). It has still delay d
w10 and we show that it is still d-complete. Assume there is a path p - in B/, and let a
w11 be a letter. Since B is d-complete, there is a path p “% in B. Since p is accessible, each
ss12  state on this path is accessible. Since all states in )’ are coaccessible, all states on the
a1z path are both accessible and coaccessible. Thus this path is in B’. This completes the
a614  proof. .

a5 Proof of Theorem p.3.7 Tel X be a nonempty rational code with literal deciphering de-

a6 lay d. By Proposition p.3.4, there exists an unambiguous automaton A = (Q, 1, 1) with

. : . . a-automataComplete

w17 same delay d which recognizes X*. We may suppose that A is trim. By Lemma %,
18 we may embed A into a trim automaton B = (@', 1, 1) which has delay d and which is
619 d-complete.

4620 Since B is a strongly onqsv%taei(cli automaton with finite delay, it is unambiguous,
s21  as stated in Proposition %tbe set recognized by B’ is of the form Y™, for
a2 some rational code ¥ containing X. Moreover, V' has deciphering delay d, by Propo-
s23  sition p.3.4, and it 1s complete by Propositione%.‘ﬂﬁs Y is a maximal rational code
ss24  with deciphering delay d containing X. .

is.1.last prap-automaton

automataSimple 4625‘ EXAMPLE 5.3.9 Let X = {a,ab} as in Exam le %Wﬁoposition 3. € 54
s626  Obtain the automaton on the left of Figure ‘%ymg the methad of Theorem
ss27  to this automaton we obtain the automaton on the right of Figure . This gives the
s28  complete code Y = ab* containing X.

Figure 5.15 Completion of X = {a, ab}.

R ig-automataDelayl
omataComplete 4629‘ EXAMPLE 5.3.10 Let A be the automaton represented in Figure on the Ieft. Tt has

s delay 2 and recognizes {a, aab}” which is a codge with literal deciphering delay 2.

. . . ig-automatabelay
w31 The automaton By is represented in Figure p.If on the right (we denote the new
a2 states w inst adDofa%w) for simplicity). The final automaton B is represented on Fig-

omatonDe | )
433 ure b.I7]atter removal of the states which are not accessible.
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Figure 5.17 The automaton B

5.4 Exercises

. tion2bis.1
Section

5.1.1 Show that the deciphering delay of a code X is infinite and only if there is an
infinite path in the graph Gx defined in .7 starting in a vertex in X. If X is finite, this
happens if and only if there is a cycle in G x that is accessible from some vertex in X.

5.1.2 (a) Show that a code X has deciphering delay d if any disjoint factorizations
Ty TP = Y1 Ym, Where 1, ..., 2,,Y1,...Yn are words in X and p is a prefix of a
word in X, satisfy n < d.

(b) Let e - - - e, be the sequence of edges of a path e from s to ¢ in the prefix graph of
a code X. The occurrence e; is called even (odd) if the number of crossing edges among
e1,...,¢; is even (odd). Show that in the two factorizations

(i) syi---yt=a1---xp or () syr---ye =z gt

the number c of crossing edges is odd or even, according to (i) or (ii). Show next that
¢ is the number of even edges and k is the number of odd edges.

(c) Describe a linear time algorithm for computing the deciphering delay, assuming
that there is no cycle in the prefix graph.

5.1.3 Let Y and Z be composable codes with finite deciphering delay d(Y) and d(Z).

Show that X = Y o Z has finite delay d(X) < d(Y) + d(Z). (Hint: Show that for
ye X)), 2 e X442 the word yz is simplifying for X.)
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5.1.4 Let X = {x,y} be a two-element code. Show that X has finite decipheriE% %iilay.

sess  (Hint: Make use of an induction on |z| + |y|, and apply the result of Exercise

5.1.5 Let X C A* be a finite code.
4656 (a) Show that there exists a smallest submonoid M containing X* such that M is
57 generated by a code with finite deciphering delay.
(b) Let Y C A* be the base of the submonoi s existence is asserted in (a).
Show by a proof analogous to that of Proposition E%l i% that

Y Cc XY ' nyH)Tlx.
Deduce from this that if X does not have finite deciphering delay,
Card(Y) < Card(X) —

exo-ddss] 5.1.6 Show that a code X has verbal deciphering delay d if and only if the code X4
ssse  has verbal deciphering delay 1.

exo-Extendablesss| 5.1.7 Let X C AT be a code. Show that if both the sets F(X) of strongly right com-
s61  pletable words and S(X) of simplifying words are nonempty, then they are equal.

|ex02bis.1.2462| 5.1.8 Let X C A™ be a code. Let S(X) be the set of simplifying words and let E(X)
ss63  be the set of strongly right completable words. Let U = S(X) \ S(X)A™. A strict right
a6a  context of a word w € A* is a word v € A* such that there exist x1,...,x, € X with
4665 WU = T1T2 - - Ty and v is a proper suffix of x,,. The set of strict right contexts of w is
a6 denoted by Cy(w).
s67  Show that if S(X) = E(X) # () then, for all w € A*, we have

4668 1. The set C,.(w)U is prefix.
4669 2. The product C, (w)U is unambiguous.
4670 3. If w e S(X), then C,(w)U is maximal prefix.

- . Eﬁ_ﬁ%&‘l 4.1ter 4
|exo2bis.1.347:| 5.1.9 Use Exercises p.1.7, b.1.§ and B-4.2 to give a proof of Theorem%

|exo3.2.last ss72| 5.1.10 Show that if X is a thin code with delay d, then the code Y" defined by Equa-
4673 tion (@')‘15 thin. (Hint: Prove thatif p € P, a € A, then pa ¢ P. Then, prove succes-
se74  sively that S, R, S* are thin.)

. tion2bis.2
w75 Section

omataBoundary 4676‘ 5.2.1 In this exercise, we call right delay of an automaton what is called delay in the
a7 text, and we call left delay the delay of the reversal of the automaton, obtained by
a8 reversing the edges. Similarly, we say that an automaton is is right d-complete if it is
a9 d-complete, and left d-complete if its reversal is d-complete.
w0 We say that an automaton has bidelay (d, d') if it has left delay d and right delay d'.
ss1  In the same way, we say that an automaton is (d, d’)-complete if it is left d-complete
a2 and right d’-complete. We introduce a new notion to work with automata with finite
4683 bidelay.
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An extended automaton with delay (d, d') is an automaton on a set of states ) where
the set E of edges, in addition to ordinary edges, includes boundary edges. A forward
boundary edge has an origin ¢ € Q and alabel a € Abutno end. A backward boundary
edge has alabel o € A and an end ¢ € @ but no origin. We extend the notion of a path
by admitting that a path may possibly begin with a backward boundary edge and end
with a forward boundary edge. We denote by F'(p) the set of edges starting at p and
by P(p) the set of edges ending at p. We denote by A(e) the label of the edge e.

Each state ¢ of an extended automaton has attached to it a pair (U, V) where Uy is
a set of words of length d and Vj is a set of words of length d'. Similarly, each edge
e has such a pair (U,,V.) C A% x A?. These are subject to the following compatibility
conditions.

1. For each state p the family of sets A(e)V, for e € F(p) forms a partition of the
set V,A.

2. For each state p and each edge e € F(p), U, = U..

3. For each state ¢, the family of sets U, A(e) for e € P(q), forms a partition of the
set AU,.

4. For each state ¢ and each edge e € P(q), V, = V..

Show that the two following objects coincide:

(i) an extended automaton with delay (d, d’) without boundary edges.

(ii) a (d,d’)-complete automaton with bidelay (d,d’") with U, (resp. V,) equal for
each state p to the set of labels of paths of length d (resp. d’) ending at p (resp.
starting at p).

(Hint: Show by induction on k£ > 0 that, in an extended automaton with delay (d,d’)
without boundary edges, for 0 < k < d’ + 1, the set of labels of paths of length < &
starting at p is the set of prefixes of V},A of length < k.)

5.2.2 Define, for a state p of an extended automaton, the noncommutative polynomial
0(p) = UpVpA — AUV,
and for an edge e
d(e) =eUeA(e)Ve,

with € = 1if e is a forward boundary edge, ¢ = —1 if e is a backward boundary edge,
and ¢ = 0 otherwise. Show that

> o) =>0e).

PEQR e€EE

Derive that the sum of d(e) for all boundary edges, called the balance of the automaton,
belongs to the lattice £ generated by the polynomials f,, = wA — Aw for w € A%+,

5.2.3 Show that the following labeled graphs satisfy the definition of an extended au-
tomaton.
1. The automaton A with set of states Q = A%, with U,, = u and V,,, = v for
uw e A v e AY. The set of edges is AT H with Upgw = u, AM(uav) = a and
Viuaw = v. Moreover, F(uv) = uwvA and P(uv) = Auwv.
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2. The automaton A_;, obtained from A, by deleting the single state x. Show that

inA_,,
Z a(e) =—fz-

ecE

3. The automaton A, obtained from A by deleting all edges except those incident
to state . Show thatin A,,
> ) = fa.

eeE

5.2.4 An edge e of an extended automaton is said to be simple if U, and V, have just
an7 one element. Show that, by adding finitely many states and edges, any extended

ans  automaton can be transformed in such a way that all boundary edges are simple.

exo-noBoundarym‘ 5.2.5 Show that any extended automaton A can be embedded into an extended au-
a0 tomaton B having no boundary edge in the sense that every ordinary edge of A is an
4721 edge of B.
22 (Hint: First assume that all boundary edges are simple. Write > _,d(e) = > b, f,
a2 where the coefficients b, are integers. If b, > 0 add b, copies of A_,, and if b, < 0, add
a124 by copies of A,. The resulting extended automaton is such that ) d(e) = 0. Finally
a5 merge each forward boundary edge e with a backward boundary edge ¢’ such that
a6 O(e) + d(e’) =0.)

2layCompletion 4727‘ 5.2.6 The aim of this exercise is to show that any rational code with finite literal delay
ar2s  in both directions is included in a maximal one.
a0 Let A = (Q,1,1) be an automaton with bidelay (d,d’). We use a series of steps to
a0 transform A into an automaton with the same bidelay which is (d, d’)-complete. Show
sar21 that if A is an automaton with bidelay (d, d’), one may first define the pairs (U, V;)
w2 and then add boundary edges to abtain an extended automaton.
a3 Conclude, using Exercise %’F]ﬂ_ata—rl}l%ode with literal bidelay (d,d’) can be em-
s34 bedded into a maximal one with the same literal bidelay.

- . . . . leExtendedAutomaton
ex02bis2.973s| 5.2.7 Consider the automaton with bidelay (1, 1) of Figure b. 0, the deft. Show tha

ar3s  the (1, 1)—c9£1g p}gl’g;( teelnu(}gé]&ﬁttgn%la 0(?]nstructed as in Exercise p.2.q 1s the one represented

ar37in Figure p.I§ on the right.

Figure 5.18 Automata with bidelay (1,1) exampleExtendedAu
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w2 5.5 Notes

ae  The notion of deciphering delay appears at the very beginning of the theory of codes
4120 ([Gilbert and Moord ( ); Levenshtei )). Theorem p.2.41s due to Schiitzenber-
a1 ger ([1966). It was conjectured in |Gilbert and Moorg ([1959). An incomplete proo

s7142 pears in ([962). A proof of a result which is more general than Theorem
s23 has been given in Bchiitzenberged (1966). The proof of Theorem | presented here

araa s due to Véronique Bruyere (see Bruyerd ([[992) or Ch%\ )
1

a5 original proof of Schiitzenberger is given in Exercise 1’rop031t10n p.I.8 1s from

e (92 e m-rerFoD
a7 Theorem p.291s ¢ Z%Tt_ﬁruvere et al] ([990). We have followed their proof except
a3 for Proposition p.2.19.
aa9  The notion of automaton with finite delay is known in early automata theory as
a0 information lossless machines of finite order Kohavi ([[978). It is related with the notion of
ars1 a right closing map in symbolic dynamics eJLmd and Marcuq (1995)). The term was
a2 introduced by ()%orelp ﬁ s g.to Bruyerd [992).

a3 The construction of Lemma is from Ashley et al] ([993). We have fc;lﬂlll()lf‘f/)vl’ﬁqatéomplete

4

4754 presentatlo 7%Bmyere and Latteux ([[998), from where is also Example

arss Exercise | 1s from Be . 1t is Eroved in Salo-
arse  maa ([L981)). Exerc'_ Q1S fr Nivat . ise b from pchiitzenberger
a7 ([[966). Exercises 70 b.2.6 r ] [[©93), in which extended au-

arss tomata are introduced and called molecules. This name is used metaphorically and
arse  refers to the possibility to use the boundary edges as bindings.

a0 Let us mention the following result which has not been reported here: For a three-
aer  element code X = {z,y,z}, there exists at most one right infinite word with two

are2  distinct X -factorizations (Karhumaki (1984).
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. Chapter 6

~ BIFIX CODES

ares The object of this chapter is to describe the structure of maximal bifix codes. This
a6 family of codes has quite remarkable properties and can be described in a rather sat-
ae7  isfactory manner.

a7es As in the rest of this book, we will work here within the family of thin codes. As
aree - we will see, this family contains all the usual examples, and most of the fundamental
a0 properties extend to this family when they hold in the simple (that is, finite or recog-
4771 nizable) case.

a2 To each thin maximal bifix code, two basic parameters will be associated: its degrge . .
a3 and its kernel. The degree is a positive integer which is, as we will see in Chapter E,_L
ars the degree of a permutation group associated with the code. The kernel is the set of
arrs code words which are proper factors of some code word. We shall prove that these
a6 two parameters characterize a thin maximal bifix code.

a7 In the first section, we introduce the notion of a parse of a word with respect to a
arrs - bifix code. It allows us to define an integer-valued function called the indicator of a
arre bifix code. This function will be quite useful in the sequel.

a0 In the second section, we give a series of equivalent conditions for a thin code to be
aze1. maximal bifix. The fact that thin maximal bifix codes are extremal objects is reflected
a2 in the observation that a subset of their properties suffices to characterize them com-
a3 pletely. We also give a transformation (called internal transformation) which preserves
a4 the family of imal bifix codes.

4785 Sectionyﬁ%s the definition of the degree of a thin maximal bifix code. It is
ass  defined as the number of interpretations of a word which is not a factor of a code word.
arer - This number is independent of the word chosen. This fact will be used to prove most
arss  of the fundamental properties of bifix codes. We will prove that the degree is invariant
a8 under internal transformation.

4790 In the fourth section, a construction of the thin maximal bifix code having a given
a1 degree and kernel is described. We also describe the derived code of a thin maximal
w702 bifix code. It is a code whose degree is one less than the degree of the original code.
193 Both constructions are consequences of a fundamental result (Theorem %Which
are4 characterizes those sets of words which can be completed in a finite maximal bifix
a5 code withgut madification of the kernel.

a6 Section %ﬁﬁmed to the study of finite maximal bifix codes. It is shown that for
4797 a fixed degree and a fixed size of the alphabet, there exists only a finite number of
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216 6. BIFIX CODES

such codes. Further it is proved that, on this finite set, the internal transformation acts
transitively.

In the last section, we prov;?%a{g Any rational bifix code is contained in a maximal

rational bifix code (Theorem |

6.1 Basic properties

A bifix code is a subset X of AT which is both prefix and suffix. In other words, we
have

XATNX =9, ATXNX=90. (6.1)

EXAMPLE 6.1.1 Any code X composed of words of the same length is bifix.

EXAMPLE 6.1.2 Let A be an alphabet containing two distinct letters a, b. Any set X =
aUbYbwithY C (A\ b)* is bifix.

EXAMPLE 6.1.3 If X, Y are bifix codes, then XY is a bifix code.

EXAMPLE 6.1.4 Let A = {a,b}. By inspection, the set
X = {a®, a®ba, a*V?, ab, ba®, baba, bab*, b*a, b}
appears to be a bifix code. It will appear at several places later.

The use of bifix codes for transmissions is related to the possibility of limiting the
consequences of errors occurring in the transmission using a bidirectional decoding
scheme as follows. Assume that we use a binary bifix code to transmit data. Assume
also that for the transmission, messages are grouped into blocks of IV source symbols,
encoded as N codewords.

Suppose that in a block z; ---2x of N codewords, an error has occurred during
transmission that makes it impossible to decode z;. The block z; - - - z is first decoded
by using an ordinary left to right sequential decoding and the codewords z; up to ;1
are correctly decoded. However, it is impossible to decode z;. Then a new decoding
process is started, this time from right to left. If at most one error has occurred, then
again the codewords from zy down to z;;1 are decoded correctly. Thus, in a block of
N encoded source symbols, the incorrect Codewordex)/(\éirlr &f&i&g%}%ﬁ&é@ese codes are
used for the transmission of images, see Examples p.2.5and p.2.§.

r1 T2 Ti—1 T;  Ti41 IN—-1 TN
VATATETRTAN FAVIRVIAVAVEAN

Figure 6.1 The decoding of a block of N codewords: x; ---x;_; is correctly
decoded from left to right, the word ;1 - - - xy is correctly decoded from right
to left. The error is located at ;.

J. Berstel, D. Perrin and C. Reutenauer Version 14 janvier 2009



4821

4822

4823
4824

4825

4827

4828
4829
4830
4831

4832

4834

4835
4836

4837

4838
4839

4840

6.1. BASIC PROPERTIES 217

Let X be a subset Ao*i An X-parse (or simply a parse) of a word w € A* is a triple
(v, z,u) (see Figure such that w = vzru and

ve A"\ A X, r e X*, ue A"\ XA*.
An interpretation of w € A* is a triple (v, x,u) such that w = vzu and
veEA X, x e X", ue XA .

If X is a bifix code, then A=X C A"\ A*X,and XA~ C A"\ X A%, thus any interpre-
tation of w is also a parse of w.

w

v u

Figure 6.2 An X-parse (v, z, u) of w.

A point in a word w € A* is a pair (r,s) € A* x A* such that w = rs. A word w thus

has |w[+1 points. A parse (v, z,u) of wis said to pass through the pgint (r, s) provided
x = yz for some y, z € X* such that r = vy, s = zu (see Figure .

Figure 6.3 A parse of w passing through the point (r, s).

PROPOSITION 6.1.5 Let X C A" be a bifix code. For each point of a word w € A*, there is
one and only one parse passing through this point.

Proof. Let (r, s) be a point of w € A*. The code X being prefix, there is a unique z € X*,
and a unique v € A* \ XA* such that s = zu (Theorem . Since X is suffix, we
have r = vy for a unique v € A* \ A*X and a unique y € X*. Clearly (v,yz,u) is a
parse of w passing through (7, s). The uniqueness follows from the uniqueness of the
factorizations of s and r. n

PROPOSITION 6.1.6 Let X C A% be a bifix code. For any w € A*, there are bijections
between the following sets:

1. the set of parses of w,

2. the set of prefixes of w which have no suffix in X,

3. the set of suffixes of w which have no prefix in X.

Proof. Set V = A* \ A*X,U = A"\ XA*. For each parse (v, x,u) of w, the word v is
in V and is a prefix of w. Thus v is in the set described in 2. Conversely, if w = vw’
and v € V, set w' = zu with z € X* and u € U (this is possible since X is prefix).
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ses1 Then (v, z,u) is a parse. The uniqueness of the factorization w’ = zu shows that the
a2 mapping (v, x, u) — v is a bijection from the set of parses on the set described in 2.

4843 n

Let X be a subset of A™. The indicator of X is the formal power series Lx (or simply
L) which associates to any word w the number (L, w) of X-parses of w. Setting U =
A"\ XA,V =A%\ A*X, we have

L=

I<

X ©2
Let X be a bifix code. We have X A* = X A* since X is prefix, and A*X = A*X since
Xi {fbx ThusU = A* — X A" = (1 - X)A"and V = A*(1 — X). Substituting this

in (p.J), we obtain
L= XA 63)

Leva -4 4
. . . iy 2
ssas Note that this is aE ggael;)ralc formulation of Proposition %ﬁ

From Formula , We obtain a convenient expression for the number of parses of
aword w € A*:

This can also be written as

(L,w) = |w] +1— (A" XA", w). (6.5)

The term (A* X A*, w eﬂgals the number of occurrences of words in X as factors of w.
Thus we see from (b.5) that for any bifix codes X, Y the following implication holds:

YCX=Lx<Ly. (6.6) |eq3.1.6 |

sses  Recall that the notation Lx < Ly means that (Lx,w) < (Ly,w) for all w in A*.

PROPOSITION 6.1.7 Let X C A™ be a bifix code, let U = A* \ XA*, V = A*\ A*X, and
let L be the indicator of X. Then

V=L(l-4), U=(1-A4)L, (67)
1-X = (1-A)L(1-4). (6.8)

1.7 1.4 .1.8 1.3
sss6  Proof. Formula (%ows from (Eﬁ), and (E(éi is an immediate consequence of (qu)

4847 ]
PROPOSITION 6.1.8 Let X C A% be a bifix code and let L be its indicator. Then for all

w e A*
1< (Lyw) < |w|+1. (6.9)

In particular, (L, 1) = 1. Further, for all u,v,w € A%,

(L,v) < (L,uvw). (6.10)
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aess Proof. For a given word w, there are at most |w| + 1 and at_least one (namely, the
ags0  empty wori% §%e£ixes of w which have no suffix in X. Thus (E‘g; is a consequence of
asso  Proposition .

ass Nextany parse of u can be extended to a ¢ of uvw. This oaési'—,: Rf vow is uniquely

52 determined by the parse of v (Proposition - This shows (b. .

EXAMPLE 6.1.9 The indicator L of the bifix code X = {) satisfies (L, w) = |w| + 1 for
assa all w € A*.

EXAMPLE 6.1.10 For the bifix code X = A, the indicator has value (L, w) = 1 for all

a6 W € A*.

a7 The following proposition gives a characterization of formal power series which are
agss  indicators.

PROPOSITION 6.1.11 A formal power series L € Z((A)) is the indicator of a bifix code if and
aseo  only if it satisfies the following conditions.

(i) Foralla € A, w € A%,

0< (Loaw) - (L) < 1. 61)
0<(L,wa)— (L,w)<1. (6.12)

(ii)) Forall a,b € Aand w € A%,
(L,aw) + (L,wdb) > (L,w) + (L, awb). (6.13)
4861 (iii) (L,1)=1.

Pro A ﬁssume that L is the indicator of some bifix code X. It follows from Formula

(p.7) that the coefficients of the series L(1 — A) and (1 — A)L are 0 or 1. For a wo 12
w € A* and a letter a € q have (L(1 — A),wg) 5 L. wa) — (L,w). Thus, ( '
holds and similarly for (p.I1). Finally, Formula (b.8) gives for the empty word, the

equality (L,1) =1, and fora,b € A, w € A%,

— (X, awdb) = (L,awb) — (L,aw) — (L,wb) + (L,w),

.13
62 showing (E( i 53%

Conversely, assume that L satisfies the three conditions. Set S = (1 — A)L. Then
(S,1) = (L,1) = 1. Next fora € A, w € A*, we have

(S,aw) = (L,aw) — (L,w).

A1
By (%TTS (S,aw) < 1, showing that S is the characteristic series of some set U

containing the empty word 1. Next, if a,b € A, w € A*, then by ( '
(S,aw) = (L,aw) — (L,w) > (L, awb) — (L, wb) = (S, awb) .

a3 Thus, awb € U implies a {}, showing that U is prefix-closed.
ases  According to Theorem ,theset X = UA\U isaprefixcodeand 1-X = U(1-A).
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sses  Symmetrically, the series T' = L(1 — A) is the characteristic series of some nonempty
ase6  suffix-closed set V, theset Y = AV — Visasuffixcodeand 1 —Y = (1 — A)V.
Finally
1-X=U(1-A)=(1-AL1-A)=(1-AY=1-Y.

4867 Thus, X =Y and X is bifix with indicator L. n

ses  The following formulation is useful for the computation of the indicator.

PROPOSITION 6.1.12 Let X C A™ be a bifix code, and L be its indicator. For any word
u € A%, and any letter a € A,

(L,u) ifua € A*X,
L,ua) = 6.14) |eq3.1.14
( ) {(L,u) + 1 otherwise. (614
1.7
ssso  Proof. The formula results from Equation (EIZ) .

EXAMPLE 6.1.13 Let A = {a,b} and. X .= {a}. Then Lx(w) = |wl, + 1. In:ieéc},m

a1 this results directly from Equation Can also be obtained from Equation (
as72  scanning the prefixes of w from left to r1ght the indicator remains constant whenever
4873 One meets an a.

as7a  The following result shows how the condition to be a bifix code can be expressed on
ss75  a deterministic automaton recognizing X *.

PROPOSITION 6.1.14 Let X be a prefix code over A and let A = (Q,1,1) be a trim deter-
ss77 - ministic automaton recognizing X*. Then X is bifix if and only if for any q € Q and w € A*,
are q-w=1-wimplies g = 1.

asro  Proof. Assume first that the condition holds. We show that X* is left unitary. Let u, v
a0 be words such that u,vu € X*.Set¢g=1-v. Thenl-u=1land1-vu=(1-v) -u=1.
ar Setq = 1-v. Then ¢ - u = 1 and the condition implies ¢ = 1. This shows that1-v =1
sss2 and consequently v € X*.

ass3  Assume conversely that X* is left unitary and let w be such that 1 - w = ¢ - w for
43¢ some ¢ € (. Set p = ¢ - w and let u,v be words such that 1 - u = ¢, p- v = 1. Then
ses 1 -uwv = 1-wv = 1, showing that uwwv, wv € X*. Since X* is left unitary, we obtain
ssss u € X*. This in turn implies that ¢ = 1. .

sss7  The above condition is satisfied by an automaton which is bideterministic in the sense
asss  that for any edges (p, a, ¢) and (r,a, s) withp,¢,7,s € Qand a € A, onehasp = rifand
aso only if ¢ = s. However, it is not always poss1%§e_‘L tp recognize X* by a bideterministic
as90 automaton for a bifix code X (see Exercise
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s 6.2 Maximal bifix codes

se2 A bifix code X C AT is maximal if, fo an e}%iﬁx codeY C AT, the inclusion X C Y
ase3  implies that X = Y. As in Chapter E,_i‘t%)nvenient to note that the set {1} is a
as04 maximal bifix set without being a code. We start by giving a series of equivalent
ases  conditions for a thin code to be maximal bifix.

PROPOSITION 6.2.1 Let X be a thin subset of A™. The following conditions are equivalent.

4897 (i) X is a maximal code and bifix.

4898 (i) X is a maximal bifix code.

asoo  (iii) X is a maximal prefix code and a maximal suffix code.
a0 (iv) X is a left complete prefix code.

w01 (iv') X is a right complete suffix code.

4902 (V) X is aleft complete and right complete code.

a03  Proof. (i) = (ii) is clear. (ii) = (iii). If X is maximal prefix, then by Theorem %
a4 is a maximal code, therefore X is maximal suffix. Similarly, if X is maximal suffix, it
ao0s is maximal prefix. Thus, assume that X is neither maximal prefix nor maximal suffix.
a6 Lety,z ¢ X be such that X Uy is prefix and X U z is suffix. Since X U yt is prefix for
a7 any word t, it follows that X U yz is prefix, and so also bifix. Moreover, yz ¢ X (since
a0 otherwise X Uy would not be prefix). This confradjcts (ii).

s00  (iii) = (iv’) is a consequence of Proposition %%Fating that a maximal prefix code
s010 is right-complete (similarly for the implication (iii) = (iv)).

a1 (iv) = (v) The code X is complete and thin. Thus, it is maximal. This shows that it
s012  is maximal prefix, which in turn implies that it is right com

w13 (V) = (i) A complete, thin code is maximal. By Theorem a right-complete thin
s014  code is prefix. Similarly, X is suffix. n

4915 A code which is both maximal prefix and maximal suffix is always maximal bifix,
4016 and the converse holds, as we have seen, for thj godes. However, this may become
017 false for codes that are not thin (see Example )

tionl1.2
EXAMPLE 6.2.2 A group code, as defined in Section Elj 1s bifixand is a maximal code.
EXAMPLE 6.2.3 Let A = {a,b} and

X = {a®, a®ba, a®b?, ab, ba?, baba, bab*, b*a, b>} .

. . . . . 03 . .
s010 By inspection of the literal representation (Figure ﬁ),_x_is seen to be a maximal prefix
020 code. . . o 03 03 . .
w921 The reverse code X represented on the right in Figure %;g 1s also maximal prefix.
2022 Thus X is a maximal bifix code. Observe that X is equal to the set obtained from X
a23 by interchanging a and b (reflection with respect to th izontal axis). This is an
s024  exceptional fact, which will be explained later (Example )

EXA\/IP%§16.2.4 Let A = {a,b} and X = {wabl®! | w € A*} (see Examples %67

926 and ). It is a maximal, right-dense code which is suffix but not prefix. The set
w27 Y = X\ XAT is maximal prefix and suffix but not maximal suffix since Y # X. Thus,
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1
Y is also maximal bifix, satisfying condition (ii) in Proposition %ﬁthout satisfying
condition (iii).

Figure 6.4 The literal representations of X on the left and of its reversal X on
the right.

EXAMPLE 6 51 There is a reversible version of the Golomb-Rice codes described in
Example E}%‘% These are bifix codes having the same length distribution. The dif-
ference with the Golomb-Rice codes is that, in the base, the word 1?0 is replaced by
1011 for s > 1. Since the set of bases forms a bifix code, the set of all codewords is
also a bifix code. The reversible Golomb—Rice code of order k, denoted RG/, is defined by
the regular expression

RGj, = (0+10*1)(0 4+ 1)*.

vGolombRice
Figure Ea represents the codes RGy, for k = 0,1, 2.

Figure 6.5 The reversible Golomb—Rice codes of orders 0, 1, 2.

EXAMPLE 6,2.6, There is also a reversible version of the exponential Golomb codes
(Example ) which are bifix codes with the same length distribution. The code
REG is the bifix code

REGq = 0+ 1(00 + 10)*(0 + 1)1,

and the code of order & is
REG), = REG,(0 + 1)

Note that REG is equal to its reversal, that is ]?]_E\(To = REG,. This shows that REG

is bifix. The other codes are also bifix because they are products of two bifix codes.
The codes REG), for k = 0,1, 2 are represented on Figure %la
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Figure 6.6 The reversible exponential Golomb codes of orders 0 and 1. RevExpGolomb

4934 The following result gives a different characterization of maximal bifix codes within
s035  the family of thin codes.

PROPOSITION 6.2.7 A thin code X is maximal bifix if and only if for all w € A*, there exists

a037  an integer n > 1 such that w"™ € X*.

a8 Proof. Assume that for all w € A%, we have w" in X* for some n > 1. Then X ¢legrly is
s030  right-complete and left-complete. Thus, X is maximal bifix by Proposition :
Conversely, let X be a maximal bifix code, and let w € A*. Consider a word u €
F(X), that is, which is not a factor of a word in X. The code X being right-complete,
for all © > 1 there exists a word v; such that
wiuy; € X*.

s Since u € F(X), there exists a prefix s; of u such that w's; € X*.

ss  Let k,m with k < m be two integers such that s, = s,,. Then settingn = m — k,
w2 we have w¥s, € X*, w™s,, = w'wFs; € X*. Since X* is left-unitary, this implies that
443 w" € X*. n

a04s  We now describe an operation which makes it possible to construct maximal bifix
s045  codes by successive transformations.

PROPOSITION 6.2.8 Let X be a code which is maximal prefix and maximal suffix, and let
w € A*. Set

G:Xw_l, D:w_lX’

Go = (wD)w™',  Dy=w"1(Guw), (6.15)

Gi=G\Gy, Dy=D\Dy.
If Gy # 0 and Dy # 0, then the set

Y = (X UwUG(wDy)Dy) \ (Gw UwD) (6.16)

is a maximal prefix and maximal suffix code. Further,

Y =X+ (1- Gpu(l - Dy'Dy). 6.17)
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Proof. By definition, Gw is the set of words in X ending with w. Similarly for wD.
Next, Gow is the set of words in X that start and end with w. Thus G;w is the set of
words in X which end with w and do not start with w.

Since D1 # 0, the set D is nonempty. Further 1 ¢ D, since otherwise w € X,
and X being bifix, this implies G = D = {1}, and Dy = {1} and finally D, = éb, a
contradiction. Thus, w is a proper prefix of a word in X, and by Proposition f%,—ﬂie
sets D and

Y = (XUw)\wD

are maximal prefix codes.
Next, Gw = X NA*wand wD = X NwA*. Also Gow = wDNA*w = X NwA*N A*w.
Similarly wDy = Gw NwA* = X NwA* N A*w. Thus,

wA*NA'wNX =GuwNnNwD =wDy = Gow. (6.18)

4
Now note that G = Gy U 1. From this and (%e get
Gw UwD = Gow U Grw UwD = wDy U Grw UwD = Giuw UwD ,

since Dy C D. Similarly
GuwUwD = GwUwD; .

Thus
Y = (Yl @] leDSDl) \ Glw.

Note that Giw C Y] because Gw is the set of words in X which end with w and do
not start with w, and thus Gyw C X \wD. Since D = Dy U Dy is a paxial prefix code
and D; # 0, the set D§ D, is a maximal prefix code (Proposition 3.2.17). This and the
fact that Y7 is maximal prefix imply, according to Proposition B.4.7, that Y is maximal
prefix.

Symmetrically, it may be shown successively that Y =, (¥ Uw) \ wG and Y’ =
(Y2 \ wD1) U G1GywD; are maximal suffix codes. From , We obtain by induction
that Gow = whs..Thus, Y’ =Y and consequently Y is also maximal suffix.

To prove(| , set

o= X +(1-Gu(l - Dy"Dy).
Then
o=X+w—-Guw—wDy*Dy; + GwDy" D,
= X +w— Guw —wDy" Dy + GowDy" Dy + GrwDy" Dy .
Since Gow = wDy, we obtain

oc=X+w—-Guw—wDy* Dy +wDyDy* Dy + GrwDy* Dy

=X +w—-Gw—wD; +GwDy*D; .

The sets Giw, Dy, Dy are prefix, and Dy # 1 (since otherwise w € X). Thus, 4the

products in the above expression are unambiguous. Next it follows from (p.
Ghiw NwD = (. Consequently

GwUwD = Giw +wD.
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Thus
c=X+w+GuwDiD; —GuwUwD =Y,

since Gw UwD C X. -

The code Y is said to be obtained from X by internal transformation (with respect
to w).

EXAMPLE 6.2.9 Let A = {a,b}, and consider the uniform code X = A?%. Let w = a.
h g =D = Aand Gy = Dy = {a}. Consequently, the code Y defined by Formula
(%[ :ggls

Y =aUba"b.
Note that Y is a group code as is X.

2
From Formula (%ﬁfis clear that for a finite code X, the code Y is finite if and
only if Dy = (). This case deserves particular attention.

PROPOSITION 6.2.10 Let X be a finite maximal bifix code and let w € A*. Set
G=Xuw", D=wlX. (6.19)
IfG#0,D # 0and Gw NwD = (), then
Y =(XUwUGuwD)\ (GwUwD) (6.20)
is a finite maximal bifix code, and
Y = X+(G-DwD-1). (621)

Conversely, let Y be a finite maximal bifix code. Let w € Y be a word such that there exists a
maximal prefix code D, and a maximal suffix code G with GwD C Y. Then

X =\ (wUGuwD))U (GwUwD) (6.22)

el ?2.5e032.6 ,al3 2.7

is a finite maximal bifix code, and further Equations (b.19), (b.20), and (p.21]) fiold.

3

Proof. If Gw NwD = 0, then we haye, with the notatigns of Propositign, %—G’O =
Dy = 0 by Formula (b.18) _Thsn (b-1q) simplifies into (%%Formula (b-21)) 15 a direct

consequence of Formula (p.17).
Conversely, let us first show that X is a maximal prefix code. Set

Z =Y \w)UwD.

Since Y is maxm‘%@x by Proposition %ﬁd since D is maximal prefix and

w € Y, Corollary mmplies that the set Z is a maximal prefix code. Next observe
that
X =(Z\GuwD)UGuw.

The set Gw is contained in ZA~, since Gw C (Y \ w)A~. Next we show that Gw is
prefix. Assume indeed that gw = ¢'wt for some g,¢' € G, t € A*. Let d be a word
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in D of maximal length. The set D being maximal prefix, either ¢d is a proper prefix
of a word in D or td has a prefix in D. The first case is ruled out by the fact that d
has maximal length. Thus, td has a prefix, say d’ in D. The word g'wd’ is a prefix of
g'wtd = gwd. Since both are in the prefix set Y, they are equal. Thus d’ = ¢d and since
d has maximal length, we get ¢ = 1. This proves the claim.

Further, for all ¢ € G, we have D = (gw) !'Z. Indeed, the inclusion gwD C Z
implies D C (gw)~!Z, and_D being a maximal prefix code, the equality follows.

In view of Proposition %ﬂqe set X consequently is a maximal prefix code. Sym-
metrically, it may be shown that X is maximal suffix. Since X is finite, it is maximal
bifix.

It remains to show that Y is obtai %from X by internal transformation. First, the
inclusion Gw C X follows from f%%ﬁnplying G cC Xw™!,and G being a maximal
suffix code, this enforces the equality

G=Xuw'.

Symmetrically D = w™!X. Moreover, G # (), D # (), because they are maximal codes.
Let us show that

GuwnwD =10.

If gw = wd for some g € G, d € D, then ggw = gwd € GwD C Y. Thus w,gqw € Y;
this is impossible, since Y is suffix.

From w € Y we get the result that Gw NY = (); otherwise Y wquld not be suffix.
Similarly wDNY = (), becaus ois prefix. Then as a result of ( , X\ (GwUwD) =
Y \ (w U GwD), implying (b-20). .

EXAMPLE 6.2.11 Let A = {a,b} and X = A3. Consider the word w = ab. Then
G =D = Aand GwnwD = 0. Thusg%ﬁosition%ves a finite code Y. This
code is obtained by dropping in Figure e dotted lin d by adjoining the heavy
lines. The result is the maximal bifix code of Example %ai

Figure 6.7 An internal transformation.
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6.3 Degree

In this section, we study the indicator of thin maximal bifix codes. For these bifix
codes, some simplifications occur.

Let X C A" be a bifix code, set U = A*\ XA*, V = A*\ A*X and let L = VX*U be
the indicator of X. If X is a maximal prefix code, then U = P where P = X A~ is the
set of proper prefixes of words in X. In the same way, for a maximal suffix code, we
have V' = S where S = A~ X is the set of proper suffixes of words in X. It follows that
if X is maximal prefix and maximal suffix, each parse of a word is an interpretation.
Then we have

L=SX*'P=SA"=A"P. (6.23)

This basic formula will be used frequently. It means that the number of parses of a
word is equal to the number of its suffixes which are in P, or equivalently the number
of its prefixes which are in S. Let X be a subset of A™. Denote by

HX)=A"XA" ={wec A" | ATwAT N X # 0}
the set of internal factors of words in X. Let
H(X)=A"\H(X).

Clearly, each internal factor is a factor of a word in X. The converse may be false. The
set H(X) and the set

F(X)={we A" | A"wA* N X # 0}
of factors of words in X are related by
FX)=HX)UXA"UA XUX,
and for F(X) = A*\ F(X),
ATH(X)AT C F(X) Cc H(X).

These relations show that H(X) is nonempty if and only if F'(X) is nonempty; thus X
is thin if and only if H(X) # 0.

THEOREM 6.3.1 Let X C A* be a bifix code. Then X is a thin maximal code if and only if
its indicator L is bounded. In this case,

H(X) = {w € A*|(L,w) = d}, (6.24)
where d is defined as d = max{(L,w) | w € A*}.

Proof. Let X be g thjn maximal bifix code. Let w € H(X) and w' € A*. Accord-
ing to Formula 15%;, (L,ww') = (SA*, ww'). Thus the number of parses of ww' is
equal to the number of prefixes of ww’ which are in S = A~ X. Since w € H(X), it
follows that no such prefix in S is strictly longer than w. Thus all these prefixes are
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3.1
prefixes of ui. %ggin using Formula (@),_Eﬁis shows that (L, ww’) = (L, w). Now by

Proposition , we have (L,ww') > (L,w’). Thus we get
(L,w') < (L,w),

showing that L is bounded on A* by its value for a word in H(X). This shows also
that L is constant on H(X). Thus

H(X)Cc{we A" | (L,w) =d}.

To show the converse inclusion, consider an internal factor w € H(X). Then there
exist p, s € AT such that w’ = pws € X. This implies that

(L,w') > (L,w) + 1.

Indeed, each parse of w can be extended in a parse of w’, and w’ has an additional
parse, namely (1,w’,1). This shows that for an internal tor w, the number (L, w) is
strictly less than the maximal value d. Thus Formula (| 1s proved.
Assume now conversely that X is a bifix code with bounded indicator L, let d =
a, i(é, w) | w € A*} and let v € A* be a word such that (L, v) = d. We use Formula
E%Hid‘l can be rewritten as

XA = A"+ (A—1)L.
Let w € AT be any nonempty word, and set w = au, witha € A4, u € A*. Then
(XA*,wo) = (A" + (A — 1)L, auw) = 1+ (L, uv) — (L, auv).

By Proposition %,iﬁoth (L,uv) and (L, auv) are greater than or equal to (L,v). By
the choice of v, we have (L, uv) = (L, auv) = d.

Thus (X A*, wv) = 1. Thus we have proved that for all w € A", wv € XA*. This
shows that X A* is right dense. This shows also that X is thin. Indeed, we have
v € H(X) since for all g,d € AT we have gv € X A* and therefore gvd ¢ X. Thus X is
a thin maximal prefix code. Symmefrically, it can be shown that X is maximal suffix.
This gives the result by Proposition % n

Let X be a thin maximal bifix code, and let L be its indicator. The degree of X,
denoted d(X) or simply d, is the number

d(X) = max{(L,w) | w € A*}.

1
According to Theorem %,—fﬁe degree d is the number of parses of any word which
is not an internal factor of X. Before going on, let us illustrate the notion of degree
with several examples.

EXAMPLE 6.3.2 Let ¢ be a morphism from A* onto a group G, and let G’ be a sub-
group of G. Let X be the group code for which X* = ¢~1(G’). We have seen that
X is a maxi Pifix code, and that X is thin if and only if G’ has finite index in G
(Example E%E%)
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The degree of X is equal to the index of G’ in G. Indeed let w € H(X) be a word
which is not an internal factor of X, and consider the function 1 which associates,
to each word u € A*, the unique word p € P = XA~ such that wvw € X*p. Each p
obtained in such a way is a suffix of w. The set ¢(A*) is the set of suffixes of w which
are in P. Since w € H(X), we have Card ¢(A*) = d(X). Next, we have for u,v € A*,

P(u) =1(v) & Gou) = Go(v).

Indeed, if ¢(u) = ¥(v) = p, then uw,vw € X*p, and consequently ¢(u), p(v) €
G'o(p)p(w)~t. Conversely, if G'o(u) = G'p(v), let r € A* be a word such that
uwr € X*. Then p(vwr) € G'p(u)p(wr) C G', whence vwr € X*. Since 1 (u) and
1 (v) are suffixes of w, one of the words ¥ (u)r and ¢ (v)r is a suffix of the other. Since
X is a suffix code, it follows that 1 (u) = 1(v).

This shows that the index of G’ in G is d(X). By Proposition %(X ) is also
equal to the degree of the permutatign ergup corresponding to the action of & on the
cosets of G/, as defined in Section [[.13

EXAMPLE 6.3.3 The only maximal bifix code with degree 1 over Ais X = A.

EXAMPLE 6.3.4 Any maximal bifix code of degree 2 over an alphabet A has the form
X =CUBC"B, (6.25)

where A is the disjoint union of B and C, with B # .

Indeed, let C = AN X and B = A\ C. Each b € B has two parses, namely (1,1,b)
and (b, 1,1). Thus, a word which is an internal factor of a word x € X cannot contain
a letter in B, since otherwise x would have at least three parses. Thus, the set H of
internal factors of X satisfies H C C*. Next consider a word z in X. Either it is a letter,
and then it is in C, or otherwise it has the form x = aubwitha,b € Aandu € H C C*.
X being bifix, neither a nor b is in C. Thus X C C U BC*B. The maximality of X
implies the equality.

This show t any maximal bifix code of degree 2 is a group code. Indeed, the code
given by (%g)'?;sobtained by considering the morphism from A* onto Z /27 defined
by ¢(B) = {1}, ¢(C) = {0}. It shows also that any maximal bifix code of degree 2 is
rational. This is false for degree 3 (see Example %ﬁ

EXAMPLE 6.3.5 Consider the set
Y ={a"b" |n>1}.

It is a bifix code which is not maximal since Y U ba is bifix. Also Y is thin since ba €
F(Y). The code Y is not contained in a thin maximal bifix code. Suppose indeed that
X is a thin maximal bifix code of degree d containing Y. For any n > 0, the word a™
then has n 4 1 parses, since it has n + 1 suffixes which all are proper prefixes of a word
in Y, whence in X. Since d < is is impossible. In fact, Y is contained in the Dyck
code over {a, b} (see Example %

Version 14 janvier 2009 J. Berstel, D. Perrin and C. Reutenauer



5039
5040
5041
5042
5043
5044
5045
5046

5047

5048

5049

5050

230

6. BIFIX CODES

EXAMPLE 6.3.6 Let X,Y C AT be two thin maximal bifix codes. Then XY is maximal

bifix and thin and
dA(XY)=d(X)+d(Y).

The first part of the claim follows indeed from Corollary %exb letw € H(XY)
be a word which is not an internal factor of XY. Then, w € H(X) and w € H(Y).
The prefixes of w which are also proper suffixes of XY are of two kinds. First, there
are d(Y') prefixes of w which are proper suffixes of words in Y. Next, there are d(X)
prefixes of w which are proper suffixes of words in X. For each such prefix u, set
w = uv. The word v is not a proper prefix of a word in Y since otherwise w would be
an internal factor of XY. Thus v has a prefix y in Y and uy is a prefix of w which is a
proper suffix of a word in XY. These are the only prefixes of w which are in A~ (XY").
Since w has d(XY") parses with respect to XY, this gives the formula.

We now define a formal power series associated to a code X and which plays a fun-
damental role in the following. Let X be a thin maximal bifix code over A. The tower
over X is the formal power series T'x (also written 7" when no confusion is possible)

defined by
(Tx,w) =d— (Lx,w).

(6.26)

The following proposition give a simple way to compute the value of a tower.

PROPOSITION 6.3.7 Let X C A" be a thin maximal bifix code. For any word v € A* and

letter a € A, one has

(Tx,ua) = {

Proof. This results directly from Proposition %

(Tx,u) ifua € A*X,
(Tx,u) —1 otherwise.

(6.27)

The following proposition states some useful elementary facts about the series T'.

PROPOSITION 6.3.8 Let X be a thin maximal bifix code of degree d over A, set P = XA,

S = A~ X, and let T be the tower over X. Then
(T,w) =0 & we HX),

and for w € H(X),
1< (T,w)<d—1.

Further (T,1) =d — 1 and
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Proof. According to Theorem %}(’T, w) = 0 if and only if w € H(X). For all other
words, 1 < (T,w). Also (T,w) < d — 1 since all words have at least one parse, and
(T,1) = d — 1 since the empty word has exactly one parse.

Next, by definition of T\, we have T' + L = dA*, whence

T(L—A)+ L —4) = (1- AT+ (1 - A)L=d.

The code X is maxgpa%;sconsequently P=A"\XA"and S = A*\ A*X. Thus we can
apply Proposition b.I4 with.P = U, S = V. Together with the equation above, this
gives Formulas (p.30), (p.31), and also ( ‘since

X-1=P(A-1)=(A- DT +d)(A4-1). .

2
Proposition %@Wows that the support of the series 7" is contained in the set H(X).
Note that two thin maxjmal bifix codes X and X' having the same tower are equal.
Indeed, by Proposition ‘%ﬁﬁey have the same degree since

(T,1) =d(X) -1 =d(X') - 1.

.6
But then Equation (%plies that X = X',
Whenever a thin maximal bifix code of degree d = d(X) satisfies the equation

X-1=A-DTA-1)+dA-1),

for some T', then T' must be the tower on X. The next result gives a sufficient condition
to obtain the same conclusion without knowing that the integer d is equal to d(.X).

PROPOSITION 6.3.9 Let T,T" € Z{{A)) and let d,d' >1 be integers such that
A-DTA-D)+dA-1)=(A-DT(A-1)+d(A-1). (632
If there is a word w € A* such that (T, w) = (T',w), then T =T and d = d'.
e . . 9
Proof. After multiplication of both sides by A* = (1 — A)~!, Equation @%—Wcomes
T—dA* =T —d A*.

If (T,w) = (T, w), then (dA*, w) = (d'A*,w). Thus, d = d’, which implies T' = T".

3
We now observe the effect of an internal transformation (Proposition %}ﬁl the
tower over a thin maximal bifix code X. Recall that, provided w is a word such that
G1, D are both nonempty, where

G=Xw', D=w'X, Gy=@wDw ', Dyj=w'(Guw),
G1=G\Gy, Dy =D\Dy.

the code Y defined by
Y=X+(1-Gw(l—Do"Dy)
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6
is maximal bifix. By Proposition %,—me sets G = Xw™!and D = w™! X, are maximal
suffix and maximal prefix. Let U be the set of proper right factors of G, and let V' be
the set of proper prefixes of D. Then DgV is the set of proper prefixes of words in
DiDq, since D = Dy U Dy. Consequently

G-1=(A-1DU, Dy"Dy—1=Dg"V(A-1).
Going back to Y, we get
Y —1=X—1+(A— )UuwDy*V(A—1).
Let T be the tower over X. Then using Equation (%e get
Y-1=A-DT+UwDy'V)(A-1)+dA-1).

Observe that since X is thin, both G and D are thin. Consequently also U and V" are
thin. Since D; = D (0, Do is not a maximal code. As a subset of D, the set Dy
is thin. By Theorem , Dy is not complete. Thus Dy is thin. Thus UwDgV, as a
product of thin sets, is thin. Next supp(7T") C H(X) is thin. Thus supp(T) UUwD;V is
thin.

Let u be a word which is not a factor of a word in this set. Then

(T'+UwDy*V,u) =0.

On the other hand, Formula (%ows that since G (wDg)D; is thin, the set Y is
thin. Thus, the support of the tower Ty over Y is thin. Let v be such that (7y,v) =0,
then

(T'+UwDy*V,uv) = (Ty,uv) =0,

3
showing that Proposition %Hn be applied. Consequently,
dX)=d(Y) and Ty =T +UwDy"V .

Thus, the degree of a thin maximal bifix code remains invariant under internal trans-
formations.

EXAMPLE 6.3.10 The finite maximal bifix,code X = {a3,aba, a®b?, ab, ba?, baba, bab?,
b%a,b3} over A = {a,b} of Example %ﬁﬁs degree 3. This can be seen by observing
that no wor more than 3 parses, and the word a has 3 parses, or also by the fact
(Example%s_ﬂ-{at X is obtained from the uniform code A? by internal transforma-

tion with respect to the word w = ab. Thus d(X) = d(43) = 3.

In this example, D(= w™1A3) = G(= A3w™!) = A. Thus Tx = Tys + w. Clearly
Tys =2+ a+b. Consequently

Tx =24+a+b+ab.

We now give a characterization of the formal power series that are the tower over
some thin maximal bifix code.
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PROPOSITION 6.3.11 A formal power series T' € N{(A)) is the tower over some thin maximal
sors  bifix code if and only if it satisfies the following conditions.

(i) Foralla € A, v € A,

0< (T,0) - (Tan) < 1, 639
0<(T,v)—(T,va) <1. (6.34)

(ii) Foralla,b e A, v € A%,

(T, av) + (T,vb) < (T,v) + (T, avd) . (6.35)

(iii) There exists a word v € A* such that

(T,v)=0.

sore  Proof. Let X be a thin maximal bifix cqde of, degree 4, lef I be its indicator, and let
o7 T = dA* — I, Then Eguations 1(3_33), (b.34), and ( “are direct consequences of

sors Equations (b-11)), (.19), and (b.13). Further (iii) holds for all v € H(X), and this set is
so79  honempty.
Conversely, assume that 7' € N({(A)) satisfies the conditions of the proposition. De-
fine

d=(T,1)+1, L=dA*—T.

so0 Then by construction, L satisfies the conditions of Proposition ﬁﬁmd therefore L
so81 is the indicator of some bifix code X. Next by assumption, T" has nonnegative coeffi-
soez  cients. Thus for all . A*, we have (T, w) =d— (L,w) > 0. Thus, L is bounded. In

sz view of Theorem , the code X is maximal and thin. Since (7),v) = 0 for at least
sos« one word v, we have (L,v) = d and d = max{(L,w)|w € A*}. Thus, d is the degree of
sos X and T = dA* — L is the tower over X. n

soss  The preceding result makes it possible to disassemble the tower over a bifix code.

PROPOSITION 6.3.12 Let T be the tower over a thin maximal bifix code X of degree d > 2.
The series
T =T — H(X)

sos7 15 the tower over some thin maximal bifix code of degree d — 1.

soss  Proof. First observe that 7" has nonnegative coefficients. Indeed, by Proposition %,2*
soe0 (7, w) > 1if and only if w € H(X). Consequently (T”,w) > 0 for w € H(X), and
soo0  (T",w) = (T, w) = 0 otherwise.

s0  Next, we verify the three conditions of Proposition %

so02  (i)Letae A,ve A*. Ifav € H(X), thenv € lﬂf% %lilg)hus (T",av) = (T,av) — 1 and
soez  (1",v) = (T”,av) — 1. Therefore the inequality (| results from the corresponding
soos inequality for T. Next, if av ¢ H(X), then (T,av) = (T”,av) = 0. Consequently
soos  (T,v) < 1. If (T,v) = 1, then v € H(X) and thus (T",v) = 0. Otherwise, v € H(X)
soos and (T7,v) = 3¢ already observed above. In both cases, (T",v) = 0, and thus the
soe7  inequality ( ‘holds for T".
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(i) Leta,b € Aand v € A*. If avb € H(X), then (T",w) = (T,w) — 1 for each of the
four words w = avb, av, vb, and v. Thus, the inequality

(T',av) + (T, vb) < (T",v) + (T’ avb)

so08 results, in this case, from the corresponding inequality for 7. On the other hand,.i
so09  avb ¢ H(X), then as before (T, av), (T,vb) < 1and (1", av) = (T",vb) = 0. Thus (| '
swo holds for 7.

s:m  Condition (iii) of Proposition % satisfied clearly for 7" since (1", w) = 0 for
sz w € H(X). Thus T is the tower over some thin maximal bifix code. Its degree is
s 14 (77,1). Since 1 € H(X), we have (7,1) = d — 2. This completes the proof. n

12

Let X be a thin maximal bifix code of degree d > 2, and let 7" be the tower over
X. Let X’ be the thin maximal bifix code with tower 7" = T — H(X). Then X' has
degree d — 1. The code X' is called the code derived from X. Since for the indicators L
and L' of X and X/, we have L = dA* — T and L' = (d — 1)A* — T’, it follows that

L-L'=A*-T+T =A*—- H(X) = H(X), whence

L'=L-HX). (6.36)

s10 We denote by X (™ the code derived from X ™~ for d(X) > n + 1, with X(©) = X

PROPOSITION 6.3.13 The tower over a thin maximal bifix code X of degree d > 2 satisfies

T=HX)+HX)++ HXTY).

Proof. By induction, we have from Proposition %

T=HX)+HX )+ +HX*2)4+T,

s10s where 7T is the tower over a code of degree 1. This code is the alphabet, and conse-
s quently 7' = 0. This proves the result. ]

s0  Wenow describe the set of proper prefixes and the set of proper suffixes of words of
si8  the derived code of a thin maximal bifix code.

PROPOSITION 6.3.14 Let X C A™ be a thin maximal bifix code of degree d > 2. Let S =
sio AX,P=XA"and H = A*\ XA~, H=A*\ H.

5111 1. The set S N H is a thin maximal prefix code. The set H is the set of its proper prefixes,
5112 th&ltis,Sﬂf_I:HA\H.
5113 2. The set P N H is a thin maximal suffix code. The set H is the set of its proper suffixes,
5114 that is, P N H=AH \ H.

5115 3. The set S N H is the set of proper suffixes of the derived code X'.
5116 4. The set P N H is the set of proper prefixes of the derived code X'.
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Proof. We first prove 1. Let T'b ower over X, and let 7" be the to gver the
derived code X'. By Proposition =T’ + H, and by Proposition %ﬁ

S=T(A-1)+d.

Thus, S =T'(A—-1)+d—-1+HA-1)+ 1, %code X' has degree d — 1. Thus,
the series T7'(A — 1) + d — 1 is, by Formula (p-3T), the characteristic series of the set
S" = A*\ X' of proper suffixes of words of X'. Thus,

S=HA-1)+1+5 and S =T'A4A-1)+d-1

The set H is prefix-closed and nonempty. We show that H contains no right ideal.
Indeed, the set H is not empty because X is thin, and thus it i ideal. Thus, for each
h € H,and k € H, the word hk is not in H. By Proposition %ﬂﬁe setY = HA\ H
is a maximal prefix code, and H = Y A~. Thus

Y=HA-1)+1.

Further, H being also suffix-closed, the set Y is in fact a semaphore code by Proposi-
tion %._We now verify that Y = SN H.

Assume that y € Y. Then, from the equation S =Y + ¢, it follows that y € S. Since
H =YA ,wehavey ¢ H. Thusy € SN H. Conversely, assume thaty € SN H.
Then y # 1, since d > 2 implies that H # () and consequently 1 € H. Further, each
proper prefix of y is in SA™ = A* \ XA~ = H, thus is an internal factor of X. In
particular, considering just the longest proper prefix, we have y € HA. Consequently,
ye HA\H =Y.

The second claim is proved in a symmetric way. To show 3, observe that by what
we proved before, we have

S=Y+5. (6.37)

Next S = (SNH)U(SNH) =Y U(SNH),since Y = SN H. Moreover, the union
is disjoint, thus S = Y + SN H. Consequently S’ = SN H. In the same way, we get
point 4. n

THEOREM 6.3.15 Let X be a thin maximal bifix code of degree d. Then the set S of its proper
suffixes is a disjoint union of d maximal prefix sets.

Proof. If d = 1, then X = A and the set S = {1} is a maximal prefix set. If d > 2,
then the set Yg :f i? N H,where H = A=XA™ and H = A*\ H, is maximal prefix by

Proposition -~ Further, the set S’ = S N H is the set of proper suffixes of the code
derived from X. Arguing by induction, the set S’ is a disjoint union of d — 1 maximal
prefix sets. Thus S = Y U S’ is a disjoint union of d maximal prefix sets. n

It must be noted that the decomposition, in Theore %ﬁ)f the set S into dis-
joint maxij refix sets is not unique (see Exercise :%)._'The following corollary to
Theorem %ﬁxpresses the remarkable property that the average length of a thin
maximal bifix code, with respect to a Bernoulli distribution, is an integer.
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COROLLARY 6.3.16 Let X C A" be a thin maximal bifix code. For any positive Bernoulli
s distribution mon A*, the average length of X is equal to its degree.

Proof. Set d = d(X). Let 7 be a positive Bergou]li distribution on A*, and let A\(X)
be the average length of X. By Corollary%ﬁhe average length \(X) is finite
and \(X)_=, g(5), where S = A~ X is the set of proper suffixes of X. In view of
Theorem p.3.15, we have

where each Y; is a maximal prefix code. A t of factors of X, each Y; also is thin.
Thus 7(Y;) = 1fori =1,...,d by Theorem . Consequently,
d
AX) =) n(vi)=d -
i=1

4
su1 Note that Corollary %n also be proved directly by starting with Formula EKJS%]
sz However, the proof we have given here js the most natural one.
sus  Wenow prove a converse of Theorem |

PROPOSITION 6.3.17 Let X be a thin maximal suffix code. If the set of its proper suffixes is

sws  a disjoint union of d maximal prefix sets, then X is bifix, and has degree d.

Proof. Let S = A~ X. By assumption S = Y + - -- + Yy, where Y7, ..., Y, are maximal
prefix sets. Let U; be the set of proper prefixes of Y;. Then A* = Y;*U;, and thus
(1 -Y;)A* = U;, whence

A" =U; +V;A".

Summing up these equalities gives

d
dA* = Ui+ SA*.

i=1
Multiply on the left by A — 1. Then, since (A —1)S =X —1,

d
—d = Z(A DU + (X - 1A,
i=1

whence
d

XA =A"=) (A-1)U;—d.
i=1
From this formula, we derive the fact that X A* is right dense. Indeed, let w € A™, and
set w = au, with a € A. Each of the sets Y; is maximal prefix. Thus, each Y;A* is right
dense. We show that there exists a word v such that simultaneously auv € Y; A* for all
i€{l,...,d} and also uv € Y;A* forall i € {1,...,d}. Indeed, there exists a word v}
such that auv] € Y1 A*. There exists a word v} such that uvjv] € Y1 A*. Set v; = vjvf.
Then both uvy, auv; € Y1 A*. In the same way, there is a word v, such that both wv; vy
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and auvivs are in Y1 A* and in Y»A*. Continuing in this way, there is a word v such
that uv, auv € Y;A* fori =1,...,d. Thus for each i € {1,...,d}

(A - 1)U, wv) = (AU;, wv) — (Ui, wov)
= (Uj,uwv) — (Uj,wv) =0—-0=0.

Consequently
(XA" wu) = (A%, wv) = 1.

Thus, wv € XA*. Conseque { A" is right dense or equivalently X is right com-
plete. In view of Proposition EE%S i| this means that X is maximal bifix.

Let w € H(X) be a word which is not an internal factor of X. Then w ¢ U; for
1 < ¢ < d. The set Y; being maximal prefix, we have w € Y;A* for 1 < i < d.
Consequently, w has exactly d prefixes which are suffixes of words in X, one in each
Y;. Thus X has degree d. n

T over X is glven in Flgure . b.JdBy,its values on the set I (X)). The computation can
be done by using EqL 1&]&] e derived code X’ is the maximal bifix code of
degree 3 0 mples p.23 and p.3.10- The set ', or proper suffixes of X', is cated
in Figure . The set S of proper suffixes of X is indicated in F1gure %{ The
maximal prefix code Y = S N H is the sgt rds i ted in the figure by (©). It
may be verified by inspection of Figures % andr%that S'=SnNH.
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Figure 6.9 The tower T  over X. 3 07

Figure 6.10 The set S’ of proper suffixes of X'. 3_08

Figure 6.11 The set S of proper suffixes of X. 3.09

si0 0.4 Kernel

Let X C AT, and let H = A~ X A~ be the set of internal factors of X. The kernel of X,
denoted K (X), or K if no confusion is possible, is the set

K=XnNH.

s:.0 Thus a word is in the kernel if it is in X and is an internal factor of X. As we will see
s161  in this section, the kernel is one of the main characteristics of a maximal bifix code.
sz We start by showing how the kernel is related to the computation of the indicator.

st3.4.1 PROPOSITION 6.4.1 Let X C A7 be a thin maximal bifix code of degree d and let K be the
8
kernel of X. Let Y be a set such that K C'Y C X. Then forallw e H(X)UY,

(Ly,w) = (Lx,w). (6.38)
(Lx,w) =min{d, (Ly,w)}. (6.39)

Forall w € A*,
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1.3
Proof. By Formula 15[55, we have
Lx =A"(1-X)A" Ly =A"(1-Y)A".

Let w € A%, and let F'(w) be the set of its factors. For any word « € A*, the number
(A*zA*,w) is the number of occurrences of x as a factor of w. It is nonzero only if
x € F(w). Thus

(A XA w)= Y (AzA%w),

zeF(w)NX

showing that if F(w) N X = F(w) NY, then (Lx,w) = (Ly,w). Thus, it suffices to
show that F(w) N X = F(w)NY forall w € H(X)UY. From the inclusion Y C X,
we get F(w)NY C F(w)NX forallw € A*. If w € H(X), then F(w) C H(X) and
Fw)NnX C K(X). Thus F(w) N X C F(w) NY in this case.

If w € Y, then no proper prefix or suffix of w is in X, since X is bifix. Thus F'(w) N
X ={wpu{d wA™ n X} c{u} UK(X) C Y. Moreover F(w) N X C F(w)NY in
this case also. This shows ).

%olw let w € H(X) be an internal factor of X. %g L x,;w) < dby Theorem

. Consequently, (Lx,m? 6(Ly7 ) by Formula (| T 1§t415 € H(X). Then

(Lx,w) = d. By Formula x,w) < (Ly,w). This proves (

Given two power series o and 7, we denote by min{c, 7} the series defined by

(min{o, 7}, w) = min{ (o, w), (1, w)} .

THEOREM 6.4.2 Let X be a thin maximal bifix code with degree d, and let K be its kernel.
Then
Lx = min{dA*, Lk} .

In particular, a thin maximal bifix code is determined by its degree and its kernel.

Proof, zTake Y = K(X) in the preceding proposition. Then the formula follows from

( . Assume that there are two codes X and X’ of same degree d and same kernel.
Since K(X) = K(X'), one has [ﬁg(X = Lg(xn) whence Lx = Lx/ which in turn
implies X = X’ by Equation (| is completes the proof. n

Clearly, the kernel of a bifix code is itself a bifix code. We now give a characterization
of those bifix codes which conversely are the kernel of some thin maximal bifix code.
For this, it is convenient to introduce a notation: for a bifix code Y C AT, let

w(Y) =max{(Ly,y) |[ye Y}. (6.40)
It is a nonnegative integer or infinity. By convention, ;(()) = 0.

THEOREM 6.4.3 A bifix code Y is the kernel of some thin maximal bifix code of degree d if
and only if

(i) Y is not maximal bifix,
(i) p(Y)<d-L
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Proof. Let X be a thin maximal bifix code of degree d, and let Y = K (X) be its kernel.
Let us verify conditions (i) and (ii). To verify (i), consider a word z € X such that
(Lx,z) = pu(X); we claim that = ¢ H(X). Thus, 2 ¢ K(X), showing that Y ¢
X. Assume the claim is wrong. Then uzv € X for some u,v € A*. Consequently,
(Lx,uzv) > 1+ (Lx,z) since the word uzv has the interpretation (1, uzv, 1) which
passes through no point of 2. This contradicts the choice of z,gnd proves the claim.
Next, forall y € Y, we have (Lx,y) = (Ly,y) by Formula (%):_ﬁnce (Lx,y) <d—-1
because y € H(X), condition (ii) is also satisfied.

Conversely, let Y be a bifix code satisfying conditions (i) and (ii). Let L € N{(A)) be
the formal power series defined for w € A* by

(L,w) = min{d, (Ly,w)}.

Let us verify that %E?Ejfﬁes the three conditions of Proposition %.—First, leta € A

and w € A*. By (

0<(Ly,aw) — (Ly,w) < 1.

It follows that if (Ly,w) < d, then (L, w) = (Ly,w). Since (Ly,aw) < (Ly,w)+1 <d,
one has (Ly, aw) = (L, aw). On the other hand, if (Ly,w) > d, then (L, aw) = (L, w) =
d. Thus in both cases

0<(Lyaw)— (L,w) <1.

The symmetric inequality
0<(L,wa)— (L,w) <1

is shown in the same way. Thus the first of the conditions of Proposition ﬁ—ﬁ
satisfied.

Next, fora,b € A, w € A*, (Ly,aw)+ (Ly,wb) > (Ly,w)+ (Ly, awb). Consider first
the case where (Ly,w) > d. Then (L,aw) = (L,wb) = (L,w) = (L, awb) = d, and the
inequality

(L,aw) + (L,wb) > (L,w) + (L, awb)
is clear. Assume now that (Ly,w) < d. Then (Ly,aw) < d and (Ly,wb) < d. Conse-
quently

(L,aw) + (L,wdb) = (Ly,aw) + (Ly,wb) > (Ly,w) + (Ly, awb) > (L,w) + (L, awb)

since L < Ly. This shows the second condition. Finally, we have (Ly, 1) = 1, whence
(L,1)=1.

Thus, according to Proposition ﬁ,—ﬂwe series L is the indicator of some bifix
X. Further, L being bounded, the code X is thin and maximal bifix by Theorem .
By the same argument, since the code Y is not maximal, the series Ly is unbounded.
Consequently, max{(L,w) | w € A*} = d, showing that X has degree d.

We now prove that Y = X N H(X), thatis, Y is the kernel of X. First, we have the
inclusion Y € _H(X). Indeed, if y € Y, then (L,y) < (Ly,y) < u(Y) < d — 1. Thus,
by Theorem %,76 H(X). Next, observe that it suffices to show that X N H(X) =
Y N H(X); this is equivalent to showing that (X, w) = (Y, w) for all w € H(X). Let
us prove this by induction on |w|. Clearly, the equality holds for |w| = 0. Next, let
w e H(X)\ 1. Then (L,w) < d— 1. Thus, (L,w) = (Ly,w). This in turn implies

(A" XA" w) = (A"Y A" w).
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But F(w) C H(X). Thus, by the induction hypothesis, (X,s) = (Y, s) for all proper
factors of w. Thus the equation reduces to (X, w) = (Y, w). .

We now describe the relation between the kernel and the operation of derivation.

PROPOSITION 6.4.4 Let X be a thin maximal bifix code of degree d > 2, and let H =
AT XA™. Set
K=XnNH, Y=HA\H, Z=AH\H.

Then the code X' derived from X is
X' =Ku((Ynz). (6.41)
Further,
K=XnX'. (6.42)

Proof. Let S = A~ X and P = XA~ be the sets of proper right factors and of proper
ixes of words in X. Let S’ = SN H and P’ = P N H. According to Proposition
S’ is the set of proper suffixes of words in X’ and similarly for P’. Thus,

X' —1=(A-1)S'=AS -5

From S’ = SN H,we have AS' = AS mtié% 7and AS = AS® AH,where ® denotes
the Hadamard product (see Section [L.7). Thus,

X'—1=(AS®AH) -5

Now observe that, by Proposition %ﬁhe set Z is a maximal suffix code with proper
suffixes H. Thus, Z — 1 = (A —1)H and AH = Z — 1 + H. Similarly, from X — 1 =
(A—-1)S weget AS = X — 1+ S. Substitution gives

X' -1=(X-1+8)0Z-1+H) -5
=XNZ+SNZ+XNH+SNH+1-(10H) - (S®1)-5".

Indeed, the other terms have the valy ince neither X nor Z contains the empty
word. Now Z = P N H (Proposition ,whence XNZ =XNPnNH=0. Also
by definition S’ = SN H and K = X N H. Moreover 1 ®© H = S ® 1 = 1. Thus the
equation becomes

X -1=SNZ+K —1.

Finally, note that by Proposition %TY =SNH.Thus, SNZ=SNPNH=YNZ
and

4.3
showing (%Wext
XNnX' =(KnX)u(XNnYnZ).

Now XNYNZ=XNPNSNH=10,and K N X = K. Thus, as claimed

X' =Ku(Ynz),

XNX' =K. "
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PROPOSITION 6.4.5 Let X be a thin maximal bifix code of degree d > 2 and let X' be the
derived code. Then
K(X)CK(X)¢ X', (6.43)

Proof. First, we show that H(X') ¢ H(X). Indeed, let w € H(X’ en we have
(Tx/,w) > 1, where T is the tower over X'. By Proposition)%l(TX/,w) =
(Tx,w) — (X, w). Thus, (I'x,w) > 1. This in turn implies that w € H(X) by
Proposition b33, By definition, K (X') = X' N H(X'). Thus, K(X') C X' N H(X). By
Proposition h.44, X' = K(X)U (Y NZ), where Y and Z are disjoint from f1(X). Thus
X'NH(X) = K(X). This shows that K(X’) C K(X). Next, Formula (%)'_aﬁo shows
that K (X) C X'. Finally, we cannot have the equality K (X) = X’, since by Theorem

e set K(X) is not a maximal bifix code. .

5
The following theorem is a converse of Proposition %
THEOREM 6.4.6 Let X' be a thin maximal bifix code. For each set Y such that
KXhcygX, (6.44)

there exists a unique thin maximal bifix code X such that K(X) =Y and d(X) = 1+ d(X").
Moreover, the code X' is derived from X.

Proof. We first show that ) 5is the kernel of some bifix code. For this, we verify the
conditions of Theorem b.4.3. The, jrict inclusion Y C X’ shows that Y is not a maximal
code. Next, by Proposition |p.4.1 v,y) = (Lxr,y) for y € Y. Thus, setting d =
d(X') +1, we have (V) L d(X') =d - 1.

According to Theorem , therg s a, thin maximal bifix code X having degree d

such that K(X) = Y. By Theorem is code is unique. It remains to sho‘AE %@%

X' is the derived code of X. Let Z be the derived code oﬁ %% By Proposition ,
K(Z) c K(X) =Y & Z. Thus we may apply Proposition , showing that for all
w e A*,

(Lz,w) =min{d — 1, (Ly,w)}.

4.6 1
The inclusions of Formula %e, by Proposition %
(Lx/,w) =min{d — 1, (Ly,w)}
for all w € A*. Thus Lx» = Lz whence Z = X'. "

5
Proposition %—Sh’ows that the kernel g gode is located in some “interval” de-
termined by the derived code. Theorem shows that all of the “points” of this
interval can l.>e used effec‘.uyely. 5 6 . o
More precisely, Proposition %ﬁd Theorem show that there is a bijection

between the set of thin maximal bifix codes of degree d > 2, and the pairs (iﬁ ' !é )6

composed of a thin maximal bifix code X’ of degree d — 1 and a set Y satisfying
The bijection associates to a code X the pair (X', K (X)), where X’ is the derived code
of X.
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3
EXAMPLE 6.4.7 We have seen in Example %ﬂﬁt any maximal bifix code of degree
2 has the form

X=CUBC"B,
where the alphabet A is the disjoint unio Band C, and B # (). This observation
can also be established by using Theorem . Indeed, the derived code of a maximal

bifix code of degree 2 has degree 1 and therefore is A. Then for each proper subset C
of A there is a unique maximal bifix code of degree 2 whose kernel is C. This code is
clearly the code given by the above formula.

EXAMPLE 6.4.8 The number of maximal bifix codes of degree 3 over a finite alphabet
A having at least two letters is infinite. Indeed, consider an infinite thin maximal bifix
code X' of degree 2, Jts kernel K(X') is a subset of A and consequently is finite. In
view of Theorem , each set K containing K (X’) and strictly contained in X’ is
the kernel of some maximal bifix code of degree 3. Thus, there are infinitely many of
them. Also, choosing a set K (X, ! %131gh is not rational gives a bifix code X of degree 3
which is not rational (Exercise p.4.3).

6.5 Finite maximal bifix codes

Finite maximal bifix codes have quite remarkable properties which make them fasci-
nating objects.

PROPOSITION 6.5.1 Let X C A™ be a finite maximal bifix code of degree d. Then for each
letter a € A, a € X.

. . . . hapterl .
With the terminology introduced in Chapter E, this 15 equivalent to say that the order

of each letter is the degree of the code.

Proof. Let a € A. According to Proposition @,&Fﬁere is an integer n > 1 such that
a"™ € X. Since X is finite, there is an integer k such that a¥ is not an internal factor
of X. The number of parses of a* is equal to d. It is also the number of suffixes of a*
which are proper prefixes of words in X, that is n. Thus n = d. .

Note as a consequence of this result that it is, in general, impossible to complete
a finite bifix code into a maximal bifix code which is finite. Consider, for example,
A = {a,b} and X = {a?,b?}. A finite maximal bifix code containing X would have
simultaneously degree 2 and degree 3.

We now show the following result:

THEOREM 6.5.2 Let A be a finite set, and let d > 1. There are only a finite number of finite
maximal bifix codes over A with degree d.

Proof. The only maximal bifix code over A, having degree 1 is the alphabet A. Arguing
by induction on d, assume that there are only finitely many finite maximal bifix codes
of degree d. Each finite maximal bifix code of degree d + 1 is determined by its kernel
which is a subset of X’. Since X' is a finite maximal bifix code of degree d there are
only a finite number of kernels and we are finished. n
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Denote by [ (d) the number of finite maximal bifix codes of degree d over a k letter
alphabet A.
3
Clearly B;(1) = 1. Also 3(2) = 1; indeed X = A? is, in view of Example %e
only finite maximal bifix code of degree 2. It is also clear that ;(d) = 1 forall d > 1.

EXAMPLE 6.5.3 Let us verify that
B2(3) = 3. (6.45)

Letindeed A = {a,b}, and let X C A" be a finite maximal bifix code of degree 3. The
derived code X" is necessarily X’ = A?, since it is the only finite maximal bifix code of
degree2. Let K = X NX'Db kernel of X. Thus K C A%

According to Proposition%—%th a®,b> € X. Thus K cannot contain a? or b?.
Consequently, K C {ab,ba}. We next rule out the case K = {ab, ba}. Suppose indeed
that this equality holds. For each k > 1, the word (ab)* has exactly two X parses. But
X being finite, there is an integer k such that (ab)* € H(X), and (ab)* should have
three X parses. This is the contradiction.

Thus there remain three candidates for K: K = 1§h correspond to X = A3,
then K = {ab}, which gives the code X of B:lplef {ba} which gives
the reversal X of the code X of Example is shows ( ote also that this

explains why X is obtained from X by exchanglng the letters a and b: this property
holds whenever it holds for the kernel.

We now show how to construct all finite maximal bifix codes by a sequence of inter-
nal transformations, starting with a uniform code.

THEOREM 6.5.4 (Césari) Let A be a finite alphabet and d > 1. For each finite maximal bifix
code X C A" of degree d, there is a finite sequence of internal transformations which, starting
with the uniform code A%, gives X.

Proof. Let K be the kernel of X. If K = (), then X = A? and there is nothing to prove.
This holds also if Card(A) = 1. Thus we assume K # () and Card(A) > 2. Letz € K be
a word which is not a factor of another word in K. We show that there exist a maximal
suffix code G and a maximal prefix code D such that

GzD C X . (6.46)

Assume the contrary. Let P = X A~. Since € K, x is an internal factor. Thus the set
Pz~ is not empty. Then for all words g € Pz}, there exist two words d, d’ such that

grd, grd € X and X (zd)™' # X(zd)!

Suppose the contrary. Then for some g € Pz~ !, all the sets X (zd)~!, with d running
over the words such that gzd € X, are equal. Let D = {d | gxd € X} and let G =
X (zd)~!, where d is any element in D. Then GzD C X, contradicting our assumption.
This shows the existence of d, d'.

Among all triples (g, d,d') such that

grd, grd € X and X(xzd)"! # X(xd)™!
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let us choose one with |d| + |d'| minimal. For this fixed triple (g, d, d’), set
G=X(zd)™' and G = X(zd)'.

Then G and G’ are distinct maximal suffix codes. Take any word h € G\ G'. Then
either h is a proper right factor of a word in G’ or has a word in G’ as a proper suffix.
Thus, interchanging if necessary G and G’, there exist words u, ¢’ € A" such that

Jdeq, ugded.

Note that this implies
drd € X, wug'zd € X.

Now consider the word ug’xzd. Of course, ug'zd ¢ X. Next ug’xzd ¢ P, since otherwise
g'zd € K, and = would be a factor of another word in K, contrary to the assumption.
Since ug’zd ¢ P U X, it has a proper prefix in X. This prefix cannot be a prefix of ug'z,
since ug’zd’ € X. Thus it has ug'z as a proper prefix. Thus there is a factorization
d=d"vwithd”",v e A", and ug’'zd" € X.

Now we observe that the triple (ug’, d’, d”) has the same properties as (g,d,d’). In-
deed, both words ug’zd’" and ug'zd’ are in X. Also X(xd')~! # X(xd")~! since

grd € X, but gxd’ & X: this results from the fact that gzd” is a proper prefix of
gzd € X (Figure . Thus, (ug’,d’,d") satisfies the same constraint (g.d,d):
however, |d'| 4 |d”| < |d’'| + |d|. This gives the contradiction and proves (%Efﬁet

Y=(XUGzxUzxD)\ (xUGzD). (6.47)
In view of Proposition %fhe set Y is a finite maximal bifix code, an reover,
the internal transformation with respect to = transforms Y into X. Finally shows
that

Card(Y') = Card(X) + Card(G) + Card(D) — 1 — Card(G) Card(D)
= Card(X) — (Card(G) — 1)(Card(D) — 1).

The code G being maximal suffix and Card(A) > 2, we have Card(G) > 2. For the
same reason, Card(D) > 2. Thus

Card(Y) < Card(X) — 1. (6.48)

Arguing by induction on the number of elements, we can assume that Y is obtained
from A? by a finite number of internal transformations. This completes the proof.

4
Observe that by this theorem (and Formula @%ﬁaeh finite maximal bifix code
X C A" of degree d satisfies

Card(X) > Card(A%), (6.49)

with an equality if and, gnly if X = A4. This result can be proved directly as follows
(see also Exercisel%)'i
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Figure 6.12 From triple (g, d, d') to triple (ug’,d’,d"). 3.10

Let X be a finite maximal prefix code, and
A= falk
zeX

with & = Card(A). The number X is the average length of X with respect to the
uniform Bernoulli distribution on A*. Let us show the inequality

Card(X) > k*. (6.50)
EFo gnaximal bifix code 15( %legree d, weggb;é/e A = d (Corollary %Tand thus

( is a consequence of (p.50). To show (p.50), Tet n = Card(X). Then

A=Yk ogy ki,
zeX

log, n = Z k1 og, n.
reX

The last equality follows from 1 = > k~1*l, which holds by the fact that X is a
finite maximal prefix code. Thus,

A—login =Yk "log; (k! /n).
zeX

Since 3_, . x k~1*l = 1 and since the function log is concave, we have

>~ k1 hogy (K /n) <1og (> W@) ,

n
zeX zeX

and consequently

A —log,n < logk<z %) =0.
zeX

.6
s207  This shows (%%7
ex3.5.2 EXAMPLE 6.5.5 Let A = {a,b} and let X be the finite imal bifix code of degree
e s

4 with literal representation given on the left of Figure . The kernel of X is K =
{ab, a®b*}. There is no pair (G, D) composed of a maximal suffix code G and a maximal
prefix code D such that GabD C X. On the other hand

Ad’?Ac X.
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. . . . . ig3_ 112
s208 The code X is obtained from the code Y given on the right of Figure %‘metemal
s200 transformation relatively to a?b?. The code Y is obtained from A* by the sequence of
ss0 internal transformations relatively to the words aba, ab?, and ab.

Figure 6.13 The code X on the left and the code Y on the right. fig3_112
5301 We now describe the construction of a finite maximal bifix code from its derived

s302  code.

sss  LetY C AT be a bifix code. A word w € A* is called full (with respect to Y) if there
s34 is an interpretation passing through any point of w. It is equivalent to say that w is full
ss05 if any parse of w is an interpretation.

s The bifix code Y is insufficient if the set of full words with respect to Y is finite.

PROPOSITION 6.5.6 A thin maximal bifix code over a finite alphabet A is finite if and only if

sso8  its kernel is insufficient.

ss00  Proof. Suppose first that X is finite. Let d be its degree, and let K be its kernel. Consider
s30 a word w in H(X). Then w has exactly d X-interpretations. These are not all K-
ssu interpretations, because K is a subset of the derived code of X, which has degree
ssi2 d — 1. Thus, there is a point of w through which no K-interpretation passes. Thus, w is
ss13 not full (for K). This shows that the set of full words (with respect to K) is contained
ssie in H(X). Since H(X) is finite, the set K is insufficient.
Conversely, suppose that X is infinite. Since the alphabet A is finite, there is an
infinite sequence (ay)n>0 of letters such that, setting P = X A~, we have for all n > 0,

Pn =agai---a, € P.

We show there exists an integer k such that all words aiaj1 - - - a4, for £ > 1 are full
with respect to K. Note that there are at most d(X) integers n for which p,, is a proper
suffix of a word in X. Similarly, there exist at most d(.X) integers n such that for all
m > 1,

An+1Gn+2 " Apym € P
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Indeed, each such integer n defines an interpretation of each word aga; - - - a,, (r > n),
which is distinct from the interpretations associated to the other integers.

These observations show that there exists an integer k such that for all n > k, the
following hold: p,, has a suffix in X and ap4+1an+2 - - @pym is in X for some m > 1.
The first property implies by induction that for all n > k, there is an integer ¢ < k such
thata;---a, € X*.

Let wy = agagy1 - - - ag1e for £ > 1. We show that through each point of w, passes a
K-interpretation. Indeed, let

U= 0rO0k41 - An, UV =0any10n42 " A0,

for some k < n < k + 1. There exists an integer ¢ < k such that a; - - - ar_;u € X*, and
there is an integer m > k + 1 such that vag41 - - - a,, € X*. In fact, these two words are
in H(X) N X* and consequently they are in K*. This shows that K is a sufficient set
and completes the proof. .

The previous proposition gives the following result.

THEOREM 6.5.7 Let X' be a finite maximal bifix code of degree d — 1 and with kernel K'. For
each insufficient subset K of X' containing K', there exists a unique finite maximal bifix code
X of degree d, having kernel K. The derived code of X is X'.

Proof. Since K is i ficient, K is not a maximal bifix code. Thus K "CK ¢ X' In
view of Theorem ere is a unique thin maximal hifix code X of degree d and
kernel K. The derived code of X is X’. By Proposition e code X is finite. .

The following corollary gives a method for the construction of all finite maximal
bifix codes by increasing degrees.

COROLLARY 6.5.8 For any integer d > 2, the function

is a bijection of the set of finite maximal bifix codes of degree d onto the set of all insufficient
subsets K of finite maximal bifix codes X' of degree d — 1 such that

K(X)cK¢X'. .

EXAMPLE 6.5.9 Let A = {a,b}. For each integer n > 0, there exists a unique finite
maximal bifix code X,, C A of degree n + 2 with kernel

K, ={a'b'|1<i<n}.

For n = 0, we have Ky = () and X, = A?. Arguing by induction, assume X,, con-
structed. Then K,, C X,, and also a2, b"*2 € X,,, since d(X,,) = n + 2. We show that
a"yntl e X,,. Indeed, no proper prefix of a”*16" 1! is in X,, since each has a suffix
in X,, or is a proper suffix of a" 2. Consider now a word a" 16" * for a large enough
integer k. Since X, is finite, there is some prefix a" ot ¢ X, for some r > 1. If
r > 2, then "2 is a suffix of this word. Thus r = 1, and «" 1"+ € X,,.
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Clearly K,, C Ky4+1. The set K, is insufficient. In fact, @ has no K, interpreta-
tion passing through the point (a, 1) and b has no interpretation passing through the
point (1,b). Therefore, the set of full words is {1}. Finally

K, C Kn+1 & X, .

This proves the existence and uniqueness of X,, 1, by usllgﬁigworem .

The code X is the code of degree 3 given in Example p.2.3. The code X3 is the code
of degree 4 of Example :

We end this section with some remarks on the length distribution of bifix codes.
Contrary to the case of prefix codes, it is not true that any sequence (u,,),>1 of integers
such that ) ., u,k™ < 1is the length distribution of a bifix code on k letters. For
instance, there is no bifix code on the alphabet {a, b} which has the same distribution
as the prefix code {a, ba, bb}. Indeed, such a code must contain a letter, say a, and then
the only possible word of length 2 is bb. We show that the following holds.

PROPOSITION 6.5.10 For any sequence (uy,)n>1 of integers such that

D unk " < % (6.51) |DoubleKraft |

n>1

there exists a bifix code on an alphabet of k letters with length distribution (uy,),>1.

Proof. We show by induction on n > 1 that there exists a bifix code X,, of length

distribution (u;)1<i<, on an alphabet A of k£ symbols. Itis true for n = 1 sipnce Qféﬁr;nl‘t <
1/2 and thus u; < k. Assume that the property is true for n. We have by (E% il;

n+1

Z uikii S
1=1

or equivalently, multiplying both sides by 2k™ "1,

N =

2urk™ 4 ... + upk + uppq) < VT

whence

U1 < gy < KTV 2wk 4 . Fugnk). (6.52) |eg-intermediaire

Since X, is bifix by induction hypothesis, we have
Card(X,A* N A" = Card(A*X,, N A"M) = w k™ + ... +unk.
Thus, we have

Card((X,A* U A*X,,) N A1) < Card(X,A* N A™1) 4+ Card(A* X, N A"*)
<2(urk™ + ... 4 unk)

sintermediaire
It follows with Equation (E%ﬁi that

Upt1 < gt — 2(U1k‘n + ...+ unk)
< Card(A™) — Card((X,A* U A*X,,) N A"
= Card(A" — (X, A* U A*X,,))
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u(1/2)
1.0000
0.8750
0.7500

u(1/2)
1.0000
0.9375
0.8125
0.8125
0.7500
1.0000
0.8750
0.8125
0.8750
0.8125
0.7500
0.9375
1.0000
0.9375
0.8750
0.8125
0.8125
1.0000
0.9375
0.8750
0.8750
0.8750
0.8750
0.8750
0.9375
1.0000

up ug | uw(l/2) [up w
0 | 1.0000 | 2

1 1107500 | 1
1

)
I
w
e
o
e
)
I
w

O = O
N = O

0 4 |1.0000 | 0 1.0000
0 3 108750

e
(@)

0 2 2 0.7500

0 1 5 ]0.8750

0 0 &8 |1.0000

OO OO OO0 KRR RFRFEFEFFEFREFNNNWWRROODOHFHO

=Rl e e i e e S e B e Wi e B s B s B e Wi o Wi oo Wi s Wi Wi Wi Wi S S SR SR WP
ORI WE T TSR NWEAITO RN —~O O RN~ O
S D0 AN, OO N TR R W RO O R W = Off

Table 6.1 The list of maximal 2-realizable length distributions of length at most
N < 4.

This shows that we can choose a set Y of u,,41 words of length n + 1 on the alphabet
A which do not have a prefix or a suffix in X,,. Then X,,y; = Y U X,, is bifix, which
ends the proof. -

The bound 1/2 in the statement of Proposition %‘%not the best possible. It is
conjectured that the statement holds with 3/4 instead of 1/2. For convenience, we call
a sequence (u,) of integers k-realizable if there is a bifix code on k symbols with this
length distribution.

We fix N > 1 and we order sequences (uy,)i1<n<n Of integers by setting (u,,) < (vy,)
if a.nd only if Un < Un for 1ﬁbf'%D§trﬁ}’Biplf (up) < (v,?) and (fun) is k-realizable then
so is (up). We give in Table p.1] the values of the maximal 2-realizable sequences for
N < 4. We set u(z) = > u,2". For each value of N, we list in decreasing lexico-
graphic order the maximal realizable sequence with the corresponding value of the
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d|1l 2 3 4
2/1{0 4|11/0 0 8 110 0 0 16 1
0 01 12 4 6
002 8 8 6
002 9 4 4 8
003 5 8 4 6
003 6 4 8 4
003 6 5 4 4 4
004 3 5 8 4 4
01 4 4(2{0 1 0 5 12 4 2
010 6 8 8 2
010 6 9 4 4 4
010 7 5 8 4 4
010 7 6 5 4 4|2
010 8 2 9 4 4|2
011 3 9 8 4 4
011 4 6 8 8 4
011 4 6 9 4 4|14
011 5 3 9 8 4|4
012 2 4 9 12 4| 2
1 1 3 73

Table 6.2 The length distributions of binary finite maximal bifix codes of de-
gree at most 4.

sum u(1/2) = > u,27". The distributions with value 1 correspond to maximal bifix
codes. For ex Ele, the distribution (0, 1, 4,4) corresponds to the maximal bifix code
of Examplee%%

It can be checked on this table that the minimal value of the sums «(1/2) is 3/4.
Since the distributions listed are maximal for componentwise order, this shows that
for any sequence (uy,)1<n<n With N < 4 such that u(1/2) < 3/4, there exists a binary
b1f1?< code X such that U X = u. . 1

Since a thin maximal bifix code X is also maximal as a code (Proposition %’)ﬁfs
%8&%}%3;&85 satisfies fx(1/k) = 1, where k is the size of the alphabet. Table
b.2 Tists the Tength distributions of finite maximal bifix codes of degree d < 4 over
{a,b}. For each degree, the last column contains the number of bifix codes with this
distribution, with a total number of 73 of degree 4. There are 39 of them with {a, b}? as
derivative and 34 with one of the two other bifix codes of degree 3 (see the exercises).

6.6 Completion

For a finite bifix code X, a simple construction shows that it is contained in a maximal
rational bifix code. Indeed, either X is already maximal, or it is, for each large enongh
integer d, the kernel of a maximal rational bifix code of degree d (Theorem f%ﬁd
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) 4.1
Exercise .

For a rational bifix code X which is not maximal, it is not true in general that it is
the kernel of a maximal rational bifix code. Instead of acting from the outside, adding
words having the words of X as factors, one has to work from the inside, adding first
words which are factors of words of X (and therefore are in the kernel of the result).

THEOREM 6.6.1 Any rational bifix code is contained in a maximal rational bifix code.

Let Y C A* be a bifix code. Recall that its indicator is the formal series defined by
Ly = A*(1 - Y)A".

We shall need several properties of the indicator, grouped in the following lemma for
convenience.

LEMMA 6.6.2 LetY C A* be a bifix code and L its indicator. For any words u, v, w and any
letter a, the following hold.

(1) Foreach i with1 < i < (L,w), there is a prefix p of w such that (L,p) = i.

(2) If Y is a rational set and is not a maximal code, then for any word w, the set of values

{(L,uv) | v € A*} is unbounded.

(3) (L,w) = (L,wa) if and only if wa has a suffix in Y.

(4) If (L,v) = (L, uv), then uv has a prefix in Y.

(5) IfY C Z,then Ly > L.

Proof. Property (1) is an easy consequencg E%Pgrzoposition b.1.11] i@ . For (2), we note

that a rational code is t gProposmon if Y is rational and not maximal, L is
unbounded (Tl‘ ence, (L, v) is arbitrarily large, and so is (L, uv) > (L,v)

by Propgs on

By %7(75 ) is equal to |w| + 1— the numbers of factors of w which are in Y. This
number of factors is the same for wa, except if wa has a suffix in Y, in which case
wa has exactly one more (since Y 3 suffix code). This implies (3). For (4), assume
(L,v) = (L,uv). By Proposition %Te have (L,v) = (L,u'v) for each suffix v’ of u;
hence by the symmetric statement of (3), an easy induction on the length of «/, starting
with ul| = 1, shows that u/v has a prefix in Y. Thus uv has a prefix in Y. Property (5)
is ( u

The idea of the construction for the proof of Theorem %%Zg%?mowing. Starting
with a rational bifix code X = X; C A", we build an increasing sequence of sets
(Xn)n>1 which all are shown to be rational bifix codes. It will then be proved that
for some n, X,, is a maximal rational bifix code containing X, thereby proving the
theorem.

Forany setY, weset P(Y) =Y \ Y A™. Itis the set of words of Y which are minimal
for the prefix order. Thus, w € P(Y') if and only if w is in Y and has no proper prefix
in Y. The set P(Y) is prefix. Next, I(Y) denotes the set of words in A* which are
incomparable with Y for the prefix order. In other words, w € I(Y') if and only if
w is not a prefix of a word in Y and has no prefix in Y. Sometimes the algebraic
formulation I(Y) = A* \ (YA~ U Y A*) is useful. Finally, we denote by Y the set
P(I(Y)). Itis called the companion of Y. Thus w € Y if and only if w is incomparable
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with Y, and each proper prefix of w is a prefix of a word in Y. Indeed, a proper prefix
of w is a prefix of a word of Y or has a prefix in Y, but the second case is ruled out
because it would imply that w itself has a prefix in Y and so is comparable with Y.
The companion of a set should not be confused with its complement. Recall also
that A~Y (resp. Y A™) denotes the set of proper suffixes (resp. prefixes) of wordsin Y.

PROPOSITION 6.6.3 Let X = X be a bifix code. Define recursively, for n > 0:

Ln,=Lx, (6.53)
Vo ={we A" | (L,,w) =n+ 1}, (6.54)
Zn = 1(Xy) N P(Vy), (6.55)
Xn+1 =X, U (Z, \ A X). (6.56)

For each n > 1, the set X,, is a bifix code and (L,,,w) < n forall w € X, \ X.

Note that the union defining X,,1; is disjoint, since Z,, C I(X,) and I(X,) cannot
intersect X,,.

Proof. Assume that Xy, is a bifix code and satisfies the jnequality in the statement. We
show that the same hold for X,,;;. By Equation (| , Zy is a prefix node which is
incomparable with X, for the prefix order. In view of Equation ( , X1 is the
union of two prefix codes which are incomparable for the prefix order because the
second is contained in /(X,,). Thus X,,; itself is a prefix code.

We show that X, is a suffix code. By contradiction, suppose that for some z, 2z’ €
Xy41, ¢ is a proper suffix of 2’. By construction, we have two cases : either x € X, or
x € Z, \A™X.

In the first case, we have 2’/ ¢ X, since X,, is a suffix code by induction. Thus
¥ € Z,\ A~ X and 2/ € P(V,), hence 2’ is in V,,, and by definition of the latter,
(Lp,2") = n+ 1. Write 2’ = wa, a € A..Since 2’ has a suffix in X,, (namely z itself), we
have (L, w) = (Ly,, wa) by Lemma (3). Thus (L, w) = n+ 1, which implies that
w € V,,. This contradicts the fact that 2’ € P(V,,).

In the second case, = € Z,, hence z € V,, and (L,,z) = n + 1. Moreover, 2’ ¢ X
(otherwise © € A~ X). Suppose that 2’ € X,. Then z' € X, \ X and by the induction
hypothesis, (L, z’) < n. By Proposition ét i é, this gives a contradiction, since x is a
factor of ’. Thus we have 2/ € Z, \ A~X. This implies 2/ € V,, and consequently
(Lp,2’) = n+1= (L,,z). From Lemma % (4), we deduce that 2’ has a prefix in
Xy, a contradiction, since 2’ € Z,, ¢ I(X,). We conclude that X, is a bifix code.
Observe that L, 1 > L, by Lemma ‘ (5) because X, is a subset of X, ;1.

It remains to prove that (L,,11,2) <nt1lforz € X, 11\ X. Letindeed z € X, 11\ X.
Since X,, C X,, 11, we have by Lemma ), (Lp+1,z) < (Lp,x). If z € X,,, then
(Ln,z) < n by the induction hypothesis; if v ¢ X,,, thenz € Z, C V,,, and (L,,z) =
n + 1. In both case, we conclude that (L,,+1,2) < n+ 1. .

LEMMA 6.6.4 Let X = X be a rational bifix code. For each n > 1, the set X,, is a rational
set.
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sas2 - Proof. We prove the statement by induction on n. It is true for n = 0 by hypothesis.
sas3 Suppase next that X, is rational. Let U,, = A* \ X, A*. This set is rational. According
5454 tO %ﬁﬁany word z, (Ly, z) is the number of suffixes of z which are in U,.

5455 Let A = (Q, ¢, T) be a deterministic automaton recognizing U,,. Let B = (QUw,w,TU
sass w) with w ¢ @ be the automaton obtained as follows. The edges are those of A plus a
sas7 loop (w, a,w) for each letter a in A and an edge (w, a, ¢) for each edge (7, a, q) of A.

sass. Then, for any word z, the number of successful paths labeled by z starting in w is

sase  equal to the number (ﬁ %E%gfgs of z which are in U,,. In other words, (L, z) = (|B], 2).

ss0  Thus, by Proposition eset V, is rational. Since I(X,) = A*\ (X,, A~ U X, 4%),
sassr  the set I(X,,) is rational. Since P(V,,) = V,, \ V,, A", the set P(V},) is also rational. Thus
sa62 7y is a rational set and so is X, 1. n

sa63  From now on, we assume that X = X, is,a rational bifix code. In order to prove the
sse4 theorem it is enough, in vi f Lemma p.6.3, to s ghat X;, is a maximal bifix code
sae5  for some n. By Theorem and Proposition E%%E, it'is therefore enough to show
sas  that X, is a right complete prefix code. This is the purpose of the following lemmas.
sas7  Given a partially ordered set S, the height of an element s of S, denoted h(s), is
sass the maximal length of the strictly increasing chains ending in s. The height of S is
sse0  the maximal height of its elements, so it is simply the maximal length of a strictly
sa70  increasing chain of elements in S. The height is finite or infinite. We denote by S®) the
san - set of elements of height i of S.

saz It follows from Proposition %’fh’at for a rational prefix code Y, the height of the
sar3 - set of suffixes of Y, ordered by the prefix order, is finite. A symmetric property holds
sar4  for suffix codes. We denote by 7 the height of the set of prefixes of X for the suffix
sa75  order.

sare  Recall that X = P(I(X)) denotes the companion of X. Thus, a word is in X if it is
sa77  incomparable with the words of X for the prefix order and has no proper prefix with
sa7s  this property.

LEMMA 6.6.5 The height of X for the factor order is at most .

saso  Proof. Assume, arguing by contradiction, that there is a strictly increasing chain for
sas1  the factor order xg, z1, 22, ..., 2, of length m + 1 with z; € X. Since X is a prefix code,

sas2  x; is not a prefix of z; ;1. We may write z; = p;s;, in such a way that each. @qu% a proper
sas3  suffix of p;11, each s; is a nonempty proper prefix of s, (see Figure .

o

x1 | P1 | s1 |

o | P2 | 52 |

Figure 6.14 A chain for the factor order. | prefixChain

5484 Note that p; # pi+1, since x; is not a prefix of z;1. Hence py,...,p, is a strictly
sa85  increasing chain for the suffix order.
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We prove that each p; is a prefix of some word in X which gives a contradiction in
view of the definition of 7. Indeed, each p; is a proper prefix of ;. Since z; € P(I(X)),
each proper prefix of x; is a prefix of a word in X. Thus p; is a prefix of a word in
X. n

Consider X, the companion of X, ordered by the factor order. We set, for i > 1,
X0 ={weX|hw) <i},

where h(w) denotes the height of w in the set X for the factor order. In particular, X"
is the set of words in X which are minimal for the factor order. The previous lemma
shows that X (™) = X.

Let o be equal to 1+ the height of the set of suffixes of X for the prefix order.

LEMMA 6.6.6 Let T be a set of words such that every proper suffix of a word of T' is compa-
rable for the prefix order with some word in X,,. Then L,, is bounded on T

Proof. Let w € T. By Lemma %%(Im w) = 1+ ¢, where / is the number of proper
suffixes of w which belong to A* \ X, A*; now, since none of them is in 1(.X,,), they all
belong to X,,A™.

Therefore £ is bounded by the maximal length of increasing chains of prefixes of X,
for th fix order. This number is bounded, by the symmetric statement of Proposi-
tion %’P{Tmce Xy, is rational. n

LEMMA 6.6.7 There exists m such that L., is bounded on the companion X of X.

Proof. We prove by induction on 7 > 1 that there exists k such that L; is bounded
on X0,

For i = 1, we prove that Lo is bounded on X(). For this, we show that we may
apply Lemma withn = 0 and T = X(). Indeed, assume on the contrary that
some v € X has a proper suffix s which is in I(X). Then some prefix of s is in
P(I(X)) = X, and v has a proper factor in X, which contradicts the definition of X (1),

Suppose now that i > 1. By the induction hypothesis there are integers m and ¢ such
that L,,,(w) < £ for all w € X1, We may suppose that m < £. Let k = £ + o where ¢

3s defined above. Since m < ¢ + 0, we have X,,, C Xy, and L,, > Ly, by Lemma

(5). Thus Ly, is bounded on X1, It remains to show that L, is bounded on
X,

Letw € X® \ X(~1), We show that any proper suffix u of w is comparable with X,
for the prefix order.

Indeed, if u is comparable with X for the prefix order, then it is comparable with X},
(since X C Xj); if on the other hand, u € I(X), then u has a prefix v in X. Then v is a
proper factor of w, hence 4 € X1 and u € X1 A* is comparable with X}, for the
prefix order by Lemma below with 7' = X(~1), Thus Lemma applies with
T =X®\ X1 and n = k, and we deduce that L, is bounded on X . .

LEMMA 6.6.8 Let T C X and m, ¢ be two integers with 0 < m < L. If X, , is not maximal

and (L,,w) < { for any w € T, then every word in T A* is comparable for the prefix order
with a word in Xy, .
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ss2a Proof. Define W; = P(Vyy;) N TA* for i > 0. The main step consists in showing that
ss2s  each word in W, has some prefix in X,4,.

5526 For this, take a word v € W,. Since v € V4., we have (L;y,,¢) = { + o + 1. Let
ss27 1 € {0,...,0}. Then Xy, C X4, and thus we have by Lemma % ) (Lygisv) >
5528 (L”U, )—f—l—a—l— {+i+ 1.

ss20  Thus by Lemma % (1), there exists a prefix p; of v such that (L4, p;) = +i+1,
ss and therefore p; € Vi;;. We may even assume, by choosing a shortest prefix, that
ssat p; € P(Viy). Fori < o, p; is a proper prefix of p;1;. Indeed, if on the contrary p;; is
ssi2 a prefix of pgthen £+ i+ 1 = (Levi,pi) 2 (Letis piv1) 2 (Levitr,pit1) = £ +i+ 2 by
ss33  Proposition and Lemma (5), a contradiction.

ssa Now, v = tu forsomet € T'and v € A*. Wehave { + i+ 1 > ¢ > (L,,,t) by the
ss3s hypothesis in the Lemma and (L,,t) > (L¢4;,t) by Lemma (5) because Xgp £,
ss36  Xyyi. Since (Lytq,pi) = £ +1i+ 1, the word ¢ must be a prefix of p; by Proposition %ﬁ
sss7 - Thus p; € TA* and therefore p; € W.

ss  Suppose, arguing by contradiction, that v € 1(X,4,). We first show that this implies
sss9 that p; € I(Xyyy).

5540 Indeed, p; cannot have a prefix in Xy, ;, since this word would be prefix of v, con-
ssa1  tradicting the assumption that v is not comparable with X, , which contains X,;.
ss2 - Next, suppose that p; is a prefix of some x € Xy,;. Then the word ¢ which is a prefix
ssa3  Of p; is alsoa prefix of x. Since t is incomparable with X, the wo ig notin X. Thus
sss4 by Lemma %, (L¢4i, ) < €+ i, which implies by Proposition‘%’ﬂﬁt (Lgyiypi) <
ssa5 (Lyyi,x) < 0+ Butp; € W; C Viyy, and this implies that (Lyy;,pi) = +i+1,a
ss46 - contradiction.

ssa7 We assume now i < o. Since p; is in I(Xyy;), itis in Zy;. Now, p; € X141, since
ssas - otherwise v has a prefix in Xy1,11 C X/y,, which contradicts the assumption that
ssa9 U € I(Xp1o). Thus we must have p; € A~ X, since Zp; \ A X C Xyqiy1.

5550 Since each p; is a proper prefix of p; 1, we obtain a chain of ¢ suffixes of X, a con-
sss1 tradiction with the definition of o.

sss2 We conclude that v ¢ I(X,y,), and consequently there is some word z € X/,
ss53 - which is comparable with v. If vis a prefix of z, then z € X, oth ise, tis Comparable
ssss with X, contradicting the fact thatt € T C X. Hence by Lemma ( éﬁ g 0) < l+o.
sss5s Now, (Lyto,v) = £ 4+ o + 1, which is a contradiction by Proposition us zis a
sss6  prefix of v. Thus we have shown that each word in W, has a prefix in X g+g

5557 Let n = tu be any word in TA* with ¢t € T. Wi gve (Liyo,t) t) (by
ss58  Lemma @ (5)) < ¢ < {40+ 1. Thus, by Proposition and Lemma@ (2), since
sss9 X1, is not maximal, there is some word u/, comparable with u for the prefix order,
sseo  such that Lyy,(tu') = ¢ + o + 1. Thus v = tu’ € V4, and one may even assume that
sset v € P(Vpi,), hence v € W,. By what we have already shown, v has a prefix in X,
sse2 - and we conclude that w is comparable with a word in X, . "

Zh
sses  Proof of Theorem % ISB anl emma @ Ly, is bounded on X for e k. Thus we

ss64 may find £ such that £ < / and (L, w) < ¢ for any w in X. Lemma withT = X
sses now implies that every word in X A* is comparable for the prefix order with a word
sse6  in Xyy,. Letw € A*. If w is not comparable with a word in X, then it is in X A*, and
sse7 - therefore is comparable with a word in X, ,. Thus any word in A* is comparable for
sses  the prefix order, with some word in X,;,. This shows that X, , is a maximal bifix
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ss60  code containing X. It is rational by Lemma %Hence the theorem is proved. .

Figure 6.15 The prefix codes X = ba*bb and X = a U ba*ba.

We give now an example which may be illuminating. Let X = X, = ba*bb. The tree
representing X, viewed as prefix code, is in Figure p.I5 on the left where the values of
the indicator on the prefixes are indicated. It follows that

I(X) = aA* Ub%aA* UbabaA* Uba’baA* --- = aA* Uba*baA* .

sso  Thus X = a U ba*ba. The prefix code X is indicated in Figure %% the right with
ssr1 the values of L on its prefixes. Itis easy to see that, by definition of Ly, (Lo, a) = 2 d4
ss72 (Lo, baba) = n+4, since a and ba™ba have no factor in X. Hence, by Proposition p.1.3,
ss13 (Lo, w) > 2 for any w in I(X) = (a U ba*ba)A* and we deduce that Z, = (. Thus
ssa X = Xj and I(X) = I(X;). Now the only possible word in Z; = I(X;) ) PE %VL)bBS a;
sss thus 71 = {a} and Xy = X; U {a} = a U ba*bb, since a ¢ A~ X (see Figure .

sss Now, I(X2) = ba*baA*. We have (Lo, ba"ba) = n+ 4 — (n + 1) = 3, since the only
ss77 - factor of ba"ba in X, is a, with multiplicity n + 1. Moreover (L3, ba™b) = 3, hence
ssts ba"ba ¢ P(V3) and likewise, no w in I(X3) is in P(V3). This implies that Zy = () and
s579 X3 = Xo.

Figure 6.16 The bifix codes X2 = a U ba*bb and X4 = a U ba*ba*b.
sss0  Wenow have Z3 = P(V3) N I(X3) = ba*ba™tb. Indeed for n,m > 0 (L3, baba™) = 3

sssr. - and (Ls, ba™ba™b) = 4. Thus X4 = aUba*bbUba*ba™b = aUba*ba*b. 1t is easily checked
sse2  that I(X4) = () and thus X is right complete, hence maximal.

sz 0.7 Exercises

. E%jtions.l
sss4 Section

6.1.1 Let X C AT be a bifix code and L = L its indicator. Show that if for u,v € A*
ssss - we have (L, uvu) = (L,u), then for all m > 0, (L, (uv)™u) = (L, u).
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6.1.2 Let X C AT be a bifix code and let H be the subgroup of the free group on A
generated by X.
Show that the following conditions are equivalent:

(i) The minimal deterministic automaton of X* is bideterministic.
(ii) Forall t,u,v,w € A*, tu,vu,vw € X implies tw € X.
(iii)) HNA* = X*.

6.1.3 The aim of this exercise is to describe a method, which allows a decoding in
both directions for any finite binary prefix code. Let X be a finite prefix code on the
alphabet {0, 1} and let ¢ be the maximal length of the words of X. Consider a sequence
r1T9 ... x, of codewords. Let

w=x1Ts...2,0' ® 0T To... Tp (6.57)

where 7 is the reversal of the word x and where @ denotes the addition mod 2. Show
that w can be decoded in both directions with finite delay.

. tion3.2
Section Eﬁ

6.2.1 Let X C A" be a thin maximal prefix code. To each word w = ajas - - - a,, € F(X)

with a; € A, we will associate a function p,, from {1,2,...,n} into itself.
(a) Show that for each integer i in {1,2,...,n}, there exists a unique integer k €
{1,2,...,n} such that either a;a;;+1---ar or a;a;y1---apa; ---ai is in X. Set

pw(i) = k. This defines, for each w € F(X), a mapping p,, from {1,2,...,|w|}
into itself.

(b) Show that X is suffix if and only if the function p,, is injective for all w € F(X).

(c) Show that X is left complete if and only if the function p,, is a surjection for all
w € F(X).

(d) Derive from this that a thin maximal prefi 1code is suffix if and only if it is left
complete (see the proof of Proposition

6.2.2 Let P = {ww | w € A*} be the set of palindrome words of even length.

(a) Show that P* is biunitary. Let X be the bifix code for which X* = P*. Then X
is called the set of palindrome primes.
(b) Show that X is left complete and right complete.

6.2.3 Show that two maximal bifix codes which are obtained one from the other by
internal transformation are either both recognizable or both not recognizable.

6.2.4 Show that a maximal bifix code X C AT is a group code if and only if for any
u, v, w,r € A%,
wv,uw,rv € X* = rw e X*. (6.58)

1.2
(Hint: Use Exercise %
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. tion3.3
Section Eﬁ

6.3.1 Let X be a thin maximal bifix code of degree d. Let w € H(X) and let

1 =P1,DP2,---,Dd

be the sequence of the suffixes of w which are proper prefixes of X. Set Y7 = 1 and
Y, = p[lX for 2 < ¢ < d. Show that each Y; is a maximal prefix set, that the set S
of proper suffixes of X is the disjoint union of the Y;’s (see Theorem

6.3.2 Let X be a thin maximal bifix code of degree d and let S be the set of its proper
suffixes. Show that there exists a unique partition of S into a disjoint union of d prefix
sets Y] satisfying ¥; 1 C Y;A™ for 2 <i < d. (Hint: SetY; = SN H(X).)

. tion3.4
Section Ea

3
6.4.1 Let X be a finite bifix code. Show, using Theorem %ﬂw’at there exists a recog-
nizable maximal bifix code containing X.

6.4.2 Show that if X is a recognizable maximal bifix code of degree d > 2, then the
derived code is recognizable. (Hint: Use Proposition :

6.4.3 Let X be a thin maximal bifix code of degree d > 2. Let w € H(X), and let s be
the longest prefix of w which is a proper suffix of X. Further, let = be the prefix of w
which is in X. Show that the shorter one of s and z is in the derived code X'. (Hint:
Prove that if |x| > |s|, thens € (HA\ H)N(AH \ H),with H = A" XA"))

6.4.4 Let X; and X, be two thin maximal bifix codes having same kernel: K(X;) =
K(Xg) Set

PL= A"\ X A", Pp= A"\ XoA",
Z:(XlﬁPQ)U(XlﬁXQ)U(PlﬂXQ).

. 4.2 o . . . .
(see Exercise %)._Sﬁow that Z is thin, maximal and bifix. Use this to prove directly
that two thin maéqgﬂ finite bifix codes with same kernel and same degree are equal.

This is Theorem p.Z.2[Tor finite codes.

6.4.5 Show that there exists a maximal bifix code of degree 3 on {a, b} which is not
rational. (Hint: Choose a code with non rational kernel.)

. tion3.5
Section Eé

6.5.1 Let X be a finite maximal bifix code. Show that if a word w € AT satisfies
pwq = rws € X (6.59)

for some p,q,r,s € At,and p # r, then w € H(X'), where ’1is the derived code of
X. (Hint: Start with g word of maximal length satisfying (( , consider the word rwq
and use Proposition p.3.14!
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5.1
6.5.2 For a finite code X, let /(X) = max{|z| | z € X}. Show, using Exercise a

if X is a finite maximal bifix code over a k letter alphabet, then
0(X) < 0X") + KAXD-1

with X’ denoting the derived code of X. Denote by A(k,d) the maximum of the
lengths of the words of a finite maximal bifix code of degree d over a k letter alphabet.
Show that for d > 2

Ak, d) < A(k,d — 1) 4 kMEd=1D=1

2
Compare with the bound given by Theorem %ﬁ

6.5.3 Let X C AT be a finite maximal bifix code of degree d. Let a,b € A, and define
a function ¢ from {0, 1,...,d — 1} into itself by

albd=¢0 ¢ X .
Show that ¢ is a bijection.

6.5.4 Show that for each k£ > 2, the number [ (d) of finite maximal bifix codes of
degree d over a k letter alphabet is unbounded as a function of d.

6.5.5 A quasipower of order n is defined by induction as follows: a quasipower of order
0is an unbordered word. A quasipower of order n+1is a word of the form uvu, where
uis a quasipower of order n. Let k be an integer and let o, be the sequence inductively
defined by

ap=k+1, ant1 = an (k" +1) (n>1).

Show that any word over a k letter alphabet with length at least equal to o, has a
factor which is a quasipower of order n.

6.5.6 Let X be a finite maximal bifix code of degree d > 2 over a k letter alphabet.
Show that

max |z| < ag_1 + 2,
zeX

5.5 1.1
where (a,,) is the sequence defined in %xegc&s; %._(H‘mt: Use Exercise ﬁ.’)_ﬁom—

pare with the bound given by Exercise

6.5.7 Show that the number of finite maximal bifix codes of degree 4 over a two-letter
alphabet is 32(4) = 73.

6.5.8 Let X be a thin maximal bifix code of degree d on k letters. Let S be the set of its
suffixes and let (U;)1<;<q be disjoint maximal prefix codes such that S is their union.
Let R; be the set of prefixes of U;. Define ¢(z) = Z?Zl fr;(2). Show that the generating
series of X satisfies

fx(2) = 1= (kz—1)d + (kz — 1)*t(2).
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6.5.9 Let X be a thin maximal bifix code on k letters of degree d. We have 1 f4 (1/k) =
d, where the last expression can be viewed as the average length of the words of
X with respect to the uniform Bernoulli distribution. Recall that the variance of the
lengths of the words of X is the mean of the squares of the lengths minus the square
of the mean of the lengths. Show that the variance is given by

vy = 2t(1/k) +d — d?,

X : X X emTower
where t(z) is defined in Exercise Eg%
. tion3.5bis
Section Ea —

6.6.1 Show that if X is a prefix code, thenY = X U X is a maximal prefix code (where
X denotes the companion of X). Show that if X is rational, sois Y.

6.8 Notes

The idea to study bifix codes goes back to Schiitzenbergey ([1956) and Gilbert and
Moore ([1959). These papers already contain significant results. The first systematic
study is in Echi}\ttz‘en?erg ;ﬂ?(ll%ﬁlbb, Schiitzenberge ([19614).

Propositions p.2.1and p.2.7 are from pchiitzenberger| (1961d). The internal transfor-
mation appears in Bchiitzenberget ([961d). The fact that all finite maximal bifix
can be obtained from the uniform codes by internal transformation (Theorem
is from ([@972). The fact that the average length of a thin maximal bifix code
is an integer (Corollary b.3.16) is already in [Gilbert and Moord (1999, It-is proved ]
Bchiitzenbergeq (1961H) with %thods developed in Chapter [[3. eorem
and its converse (Proposition é% i%i appear in ([(977d). The notion of derived
code is due to (

97 ?
ion3.4
The resul % l% Section éig are a generalization to thin codes of results in ([979).

Theorem appears already in pchiitzenberger ([9618) with a different proof (see
Exercise . The rest of this section is due to ([979). The enumeration of
finite maximal bifix codes over a two-letter alphabet has been pursued by computer.
A first program was written in 1975 by C. Precetti using internal transformations. It
produced several thousands of them f = 5. In 1984, a program written by M.
Léonard using the method of Corollary gave the exact number of finite maximal
bifix codes of degree 5 over a two-letter alphabet. This number is 5,056 783.

Bifix codes and their length distributions have been studied with a practical moti-
vation, under the name of reversible variable-length codes (see Yasuhiro Takishi a
Murakami (1995); [Gillman and Rives{ (1995); Ve and Yeung| (EW)). Proposition b.5.
is from [AhIswede et al] (1996).

It is conjectured (this is the so-called 3/4-conjecture) that for any series f(t) = > u,t"
with integer nonnegative coefficients satisfying f(1/k) < 3/4 there exists a bifix code
X on k letters such that fx = f. Partial results are given in (Yekhanir, P004) and
(Deppe and Schnettle M).

Theorem p.6.T 1s due to Zhang and Sher ([995). For the proof of the theorem, we
have followed [Bruyére and Perrin ([999).
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| irod i
s Exercise Bl i is due to [Girod| %&
b.4. 4|/ b b

ses4  pears in [Lon ,(|i99a) Exercises

(er.xwre

sess Exercise p.4.515 from bchiitzenberger (19614).

J. Berstel, D. Perrin and C. Reutenauer Version 14 janvier 2009



« Chapter 7

« CIRCULAR CODES

ses8  In this chapter we study a particular family of codes called circular codes. The main
ses0  feature of these codes is that they define a unique factorization of words written on a
seo0  circle. The family of circular codes has numerous interesting properties. They appear
se01  in many problems of combinatorics on words, several of which will be mentioned
se02  here. .

sees  In Section ﬁ%'gl,lve the definition of circular codes and we characterize the sub-
se04 monoid generated by a circular code. We also describe some elementary properties of
seos  circular codes, Iﬁb H%Eticular we characterize maximal circular codes (Theorem

se06  In Sectioneﬁmoduce successive refinements of the notion of a circular code.
seo7 For this we define the notion of (p, ¢)-limitedness. We then proceed to a e de-
seos  tailed study of (1,0)-limited codes. In particular, we show (Proposition | hat
se90 (1, 0)-limited codes correspond to ordered automata. Comma-free codes are defined
s7o0  as circular codes satisfying the strongest possible condition.

5701 Sectionrﬁ—ancerned with length distributions of circular codes. Two important
sz theorems are proved. The first gives a characterization ences of integers which
s3  are the length distribution of a circular code (Theor