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PREFACE

When Skew Field Constructions appeared in 1977 in the London
Mathematical Society Lecture Note Series, it was very much intended as a
provisional text, to be replaced by a more definitive version. In the
intervening years there have been some new developments, but most of
the progress has been made in the simplification of the proofs of the main
results. This has made it possible to include complete proofs in the
present version, rather than to have to refer to the author’s Free Rings
and their Relations. An attempt has also been made to be more
comprehensive, but we are without a doubt only at the beginning of the
theory of skew fields, and one would hope that this book will offer help
and encouragement to the prospective builders of such a theory. The
genesis of the theory was described in the original preface (see the extract
following this preface); below we briefly outline the subjects covered in
the present book.

The first four chapters are to a large extent independent of each other
and can be read in any order, referring back as necessary. Ch. 1 gives the
general definitions and treats the Ore case as well as various necessary
conditions for the embedding of rings in skew fields. From results in
universal algebra it follows that necessary and sufficient conditions for
such an embedding take the form of quasi-identities. Later, in Ch.4, we
shall find the explicit form of these quasi-identities, and in Ch. 6 we shall
see that this set must be infinite. The rest of Ch. 1 gives the definition and
basic properties of free algebras and free ideal rings, which play a major
role later. It also includes some technical results on the association of
matrices and it introduces an important technical tool: the matrix
reduction functor.

Ch. 2 studies skew polynomial rings and the fields formed from them,
as well as power series rings and generalizations such as the Malcev—
Neumann construction, and the author’s results on fields of fractions for a

xi



xii Preface

class of filtered rings. Ch. 3 is devoted to the Galois theory of skew fields,
now almost classical, with applications to (left or) right polynomial
equations over skew fields, and special cases of extensions, such as
pseudo-linear extensions and cyclic Galois extensions.

Ch. 4 is in many ways the central chapter. The process of forming fields
of fractions or more generally epic R-fields for a ring R is described in
terms of the singular kernel, i.e. the set of matrices that become singular
over the field. It is shown how any epic R-field can be constructed from
its singular kernel, while the latter has a simple description as prime
matrix ideal. This leads to explicit conditions for the existence of a field of
fractions. In particular, the rings with a fully inverting homomorphism to
a field are characterized as Sylvester domains and it is shown that every
semifir has a universal field of fractions. Of the earlier sections only 1.6 is
needed here.

Ch. 5 describes the coproduct construction and the results proved here
are basic for much that follows. It is also the most technical chapter and
the reader may wish to postpone the details of the proofs in 5.1-3 to a
second reading, but he should familiarize himself with the results. They
are applied in the rest of the chapter to give the HNN-construction for
fields and for rings, to study the effect of adjoining generators and
relations, particularly matrix relations, and to construct field extensions
with different left and right degrees (Artin’s problem). Ch. 6 deals with
some general questions. There is a study of free fields; here the
specialization lemma is an essential tool. Other topics include the word
problem and existentially closed fields.

Ch. 7 on rational identities is mainly devoted to Bergman’s theory of
specializations between rational meets of X-fields; it is independent of
most of the rest and can be read at any stage.

In Ch. 8 the rather fragmentary state of knowledge of singularities
(which in the general theory take the place of equations in the
commutative theory) is surveyed, with an account of the problems to be
overcome to launch a form of non-commutative algebraic geometry.
Ch. 9 deals with valuations and orderings on skew fields from the point of
view of the general construction of Ch. 4 and it shows for example how to
construct valuations and orderings on the free field.

The exercises are intended for practice but serve also to present
additional developments in brief form, as well as some open problems.
Some historical background is given in the Notes and comments.

The theory of division algebras (finite-dimensional over a field) is very
much further advanced than the general theory of skew fields, and a
comprehensive account including a full treatment of division algebras
would have thrown the whole out of balance and resulted in a very bulky



From the preface to Skew Field Constructions xiii

tome. For this reason that topic has largely been left aside; this was all the
more reasonable as the subject matter is much more accessible, and no
doubt will be even more so with the forthcoming publication of the
treatise by Jacobson and Saltman.

Nearly all the material in this volume has been presented to the Ring
Theory Study Group at University College London and I am grateful to
the members of this group for their patience and help. I would like to
thank Mark L. Roberts for his comments on early chapters and George
M. Bergman for his criticism of Skew Field Constructions, which has
proved most useful. My thanks also go to the staff of the Cambridge
University Press for their help in transforming the manuscript into a
book, with a particular word of thanks to their copy editor Mr Peter
Jackson, who corrected not merely grammatical but also mathematical
slips. As always, I shall be glad to receive any constructive criticism from
readers, best of all, news of progress on the many open problems.
London, February 1995 P. M. Cohn

From the preface to Skew Field Constructions

The history of skew fields begins with quaternions, whose discovery (in
1843) W. R. Hamilton regarded as the climax of his far from ordinary
career. But for a coherent theory one has to wait for the development of
linear associative algebras; in fact it was not until the 1930’s that a really
comprehensive treatment of skew fields (by Hasse, Brauer, E. Noether
and Albert) appeared. It is an essential limitation of this theory that only
skew fields finite-dimensional over their centres are considered.

Although general skew fields have made an occasional appearance in
the literature, especially in connexion with the foundations of geometry,
very little of their properties was known until recently, and even
particular examples were not easy to come by. The first well known case
is the field of skew power series used by Hilbert in 1899 to illustrate the
fact that a non-archimedean ordered field need not be commutative.
There are isolated papers in the 1930’s, 1940’s and 1960’s (Moufang,
Malcev, B. H. Neumann, Amitsur and the author) showing that the free
algebra can be embedded in a skew field, but the development of the
subject is hampered by the fact that one has no operation that can be
performed on skew fields (over a given ground field) and again produces
a skew field containing the original ones. In the commutative case one has
the tensor product, which leads to a ring from which fields can then be
obtained as homomorphic images. The corresponding object in the
general case is the free product and in the late 50’s the author tried to
prove that this could be embedded in a skew field. This led to the
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development of firs (= free ideal rings); it could be shown (1963) that any
free product of skew fields is a fir, but it was not until 1971 that the
original aim was achieved, by proving that every fir is embeddable in a
skew field, and in fact has a universal field of fractions. Combining these
results, one finds that any free product or ‘coproduct’ of fields has a
universal field of fractions, or a field coproduct, as we shall call it. It is
this result which forms the starting point for these lectures.

As the name indicates, these really are lecture notes, though not for a
single set of lectures. For this reason they may lack the polish of a book,
but it is hoped that they have not entirely lost the directness of a lecture.
The material comes from courses I have given in Manchester and
London; some parts follow rather closely lectures given at Tulane
University (1971), the University of Alberta (1972), Carleton University
(1973), Tiibingen (1974), Mons (1974), Haifa Technion (1975), Utrecht
(1975) and Ghent (1976). It is a pleasure to acknowledge the hospitality
of these institutions, and the stimulating effect of such critical audiences.



NOTE TO THE READER

The reader of this book is expected to have a fair background in algebra,
particularly ring theory and commutative field theory. Any standard
results needed are usually quoted from the author’s Algebra (referred to
as A.1, 2, 3, see the Bibliography).

All theorems, propositions, lemmas and corollaries are numbered
consecutively in a single series in each section; thus Th. 2.2 is followed by
Prop. 2.3 in Section 1.2, and outside Ch. 1 they are referred to as
Th. 1.2.2, Prop. 1.2.3 respectively. Occasional results needed but not
proved are usually given letters, e.g. Th. 6.A. The end (or absence) of a
proof is indicated by M. Most sections have exercises; open-ended (or
open) problems are marked °. Unexplained notations can be found in the
list of standard notations on p. 473.

References to the bibliography are by the author’s name and the last
two digits of the year of publication if after 1900, e.g. Ore [31], Cramer
[1750], with primes to distinguish publications by the same author in the
same year.






PROLOGUE

O gliicklich, wer noch hoffen kann,

Aus diesem Meer des Irrtums aufzutauchen!

Was man nicht weiss, das eben brauchte man,

Und was man weiss, kann man nicht brauchen.
Goethe, Faust I

One of the principal aims of this book is to describe some methods of
constructing skew fields. The case most studied so far is that of skew
fields finite-dimensional over their centres. But a finite-dimensional
k-algebra, where k is a commutative field, is a field whenever it has no
zero-divisors. On the one hand this enormously simplifies their study,
while on the other hand it puts many constructions out of bounds
(because they produce infinite-dimensional algebras). The study of fields
that are not necessarily finite-dimensional over their centres is still in its
early stages, and the methods needed here are not very closely related to
those used on finite-dimensional algebras — the relation between these
subjects is rather like the relation between finite and infinite groups.

There are some ways of obtaining a field directly, for example Schur’s
lemma tells us that the endomorphism ring of a simple module is a field,
and the coordinatization theorem shows that when we coordinatize a
Desarguesian plane, the coordinates lie in a field. But these methods are
not very explicit, and we shall have no more to say about them. For us
the usual way to construct a field is to take a suitable ring and embed it in
a field. What is to be understood by ‘suitable’ will transpire later.

There are five methods of interest to us; they are

(1) Ore’s method (Ch. 1),

(2) The method of power series (Ch. 2},

(3) Inverse limits of Ore domains (Ch. 2),



2 Prologue

(4) A general criterion (Ch. 4),

(5) An application of the specialization lemma (Ch. 6).

As a test ring we shall use the free algebra on a set X over a commutative
field k, written k(X ). All five methods can be used on k(X ), and each
has its pros and cons. (1) is particularly simple, but not in any way
canonical, (2) and (3) provide a convenient normal form, while (4) gives,
at least in principle, a complete survey over all possible embeddings,
indeed over all homomorphisms of our ring into fields. Finally (5) applies
only to free algebras, where it gives an easy existence proof of the
universal field of fractions.

The main applications are to the construction of the field coproduct,
which shows that the class of skew fields possesses the amalgamation
property and allows a form of HNN-construction. The consequences are
described here, but it is clear that the existing range of constructions is
still rather limited, mainly because a good specialization theory is still
lacking (see 8.8 below). One would hope that the present work will offer
encouragemsnt to others working towards that goal.



1

Rings and their fields of fractions

Fields, especially skew fields, are generally constructed as the field of
fractions of some ring, but of course not every ring has a field of fractions
and for a given ring it may be quite difficult to decide if a field of fractions
exists. While a full discussion of this question is left to Ch. 4, for the
moment we shall bring some general observations on the kind of
conditions to expect (mainly quasi-identities) in 1.2 and give some
necessary conditions relating to the rank of free modules in 1.4, as well as
some sufficient conditions. On the one hand there is the Ore condition in
1.3, generalizing the commutative case; on the other hand and perhaps
less familiar, we have the trivializability of relations, leading to semifirs in
1.6, which include free algebras and coproducts of fields, as we shall see
in Ch. 5. Some general relations between matrices over rings, and the
applications to the factorization of elements over principal ideal domains
(needed later) are described in 1.5.

Although readers will have met fields before, a formal definition is
given in 1.1 and is contrasted there with the definition of near fields,
which however will not occupy us further. The final section 1.7 deals with
the matrix functor and its left adjoint, the matrix reduction functor, which
will be of use later in constructing counter-examples.

1.1 Fields, skew fields and near fields

By a field we understand a set K with two binary operations, addition,
denoted by a plus sign: +, and multiplication, denoted by a cross, X, a
dot, -, or simply by juxtaposition, with two distinguished elements, zero:
0 and one: 1, such that

(i) K is a group under addition, with 0 as neutral element,
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(ii)) 1# 0 and K> = K\{0} is a group under multiplication, with 1 as
neutral element,
(iii) the two operations are related by the distributive laws:

x(y+z)=xy+xz,(x +y)z=xz+ yzforallx,y,z € K.

The groups K in (i) and K™ in (ii) are the additive group and the
multiplicative group of K respectively.

Our first observation is that the additive group is always abelian. For,
using first the left and then the right distributive law, we have

xx+Dy+D=Cx+Dy+x+D-1=xy+y+x+1,
while an expansion on the other side gives
+Dy+D)=x(y+D)+1-(y+)=xy+x+y+1

Equating the results and cancelling xy on the left and 1 on the right, we
find that y + x = x + y, as claimed.

If the multiplicative group of K is abelian, K is a commutative field;
when commutativity is not assumed, K is called a skew field or also a
division ring. Since skew fields form the topic of this book, we shall use
the term ‘field’ to mean ‘not necessarily commutative field’ and only
occasionally add ‘skew’, when emphasis is needed.

Let K be a field. Any subfield of K (i.e. a subset of K admitting all the
operations of K) contains 1 and hence the subfield generated by 1. This
least subfield, often denoted by I, is called the prime subfield of K. It is
either the rational field Q or Z/p, the integers mod p, for some prime p.
Accordingly K is said to have characteristic 0 or p; this characteristic is
also written char K.

Given a field K and a subset X of K, the centralizer of X in K is
defined as the set

6x(X)={y e Klxy = yx forall x € X}.

This set is easily seen to be a subfield of K. In the special case X = K we
obtain the centre C of K:

C={yeK|xy=yxforalxe K}.

Clearly the centre is a commutative subfield containing the prime subfield
II.

Just as rings arise naturally as the endomorphism sets of abelian
groups, or more generally, of modules, i.e. groups with operators, so
fields arise as endomorphism sets of simple modules. Their importance
stems from the fact that linear algebra, first developed over the real
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numbers, can be carried out over any field. This applies even to skew
fields, as long as we do not try to form determinants. In fact there is a
form of determinant over skew fields, the Dieudonné determinant, but
this will play only a limited role here. The main difference is that whereas
the structure of commutative fields is fairly well known since the
fundamental paper of Steinitz [10], information on skew fields is much
more fragmentary. The theory is best developed for fields finite-dimen-
sional over their centres (division algebras), but we shall mainly be
concerned with fields infinite-dimensional over their centres, where a full
classification is not to be expected.

It is a natural question to ask what can be said about endomorphism
sets of non-abelian groups. Let G be a group written multiplicatively and
consider the set M(G) of all mappings preserving 1 of G into itself. On
M(G) we have two operations, the multiplication arising by composition
of mappings and addition arising from the group operation:

x(af) = (xa)B, x(a+ B) = xa-xBforalx € G, a, B € M(G).
It follows that the left distributive law holds,
af+y)=af+ay, a, B, yeMG),

but the right distributive law fails to hold in general. In fact we have

(¢ + B)y=ay+ By

for all &, B € M(G) only when y is an endomorphism of G. However, if
we restrict ourselves to endomorphisms we no longer have an addition,
because the sum of two endomorphisms need not be an endomorphism.
Thus M(G) fails to be a ring only in that it lacks the right distributive law
(except for the vestige O = 0) and the commutativity of addition. It
forms an example of a near ring; a subring whose non-zero elements all
have inverses is a near field. Near fields have been used in the study of
permutation groups, in geometry, as the rings coordinatizing certain
translation planes and in the classification of finite subgroups of skew
fields (see Amitsur [55] and for the results, 3.9 below), but they will not
occupy us further in this volume. For a detailed account of near fields see
Wihling {87].

In any field K the addition can be expressed in terms of the
multiplication xy and the operation x + 1. For we clearly have

_Jy T+ 1y ify#0,
x+y—{x if y = 0.

This observation leads to a definition of fields which emphasizes the
multiplicative structure. Let G be any group, written multiplicatively; by
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the group with 0 on G we understand the set Gy, = G U {0} with
multiplication xy as in G for x, y # 0, while x0 = Ox = 0 for all x € G,,.

Lemma 1.1.1. Let G be a group and G, the group with 0 on G.
Suppose that o: Gy— G is a map such that ec =0 for some e € G and
further,
(i) 0o = 1, where 1 is the neutral element of G,
(i) (y"xy)o=yl-xo-y forall x, y € G,
(iii) [(xy Do ylo=(x0o-y o)y forall x € G, y € G.
Then G, is a field with respect to its multiplication and the addition

_1 . B .
x+y={ixy Yoy ;ijg’} §))]

Proof. By (1), x +0=x,0+x=(0x"Yo:x =1:x =x for x # 0. Now
with the help of (1), (iii) may be written as

(x+y)o=x0+y.
Further, (1) shows that xo = x + 1, hence

+y)+l=x+1+y. 2)
Now the definition (1) shows that for yz # 0,
xz + yz = [(xz(yz)Holyz = (xy 7' - 0)yz = (x + y)z,

hence

(x +y)z=1xz+yz. 3

This has been shown to hold for y, z # 0. If z = 0, both sides reduce to 0,
while for y = 0, both become xz, so (3) holds identically in G,.
Next we have to prove

Zx +y)=zx + zy. 4)
If one of x, y, z is 0, this is clear; otherwise we have by (ii),
zx +zy = (2x-y 'z o zy = z(xy~lo)z T - 2y
= z(xy~lo)y

=z(x +y)

and (4) follows.
Next we have, by (2),

(xzl+yz H+1=(xzt+1)+yz7h

multiplying on the right by z and using (3) twice, we find
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x+y)+z=@x+2)+y, &)

at least when z # 0, but for z = 0 it holds trivially. Taking x = 0, we find
that y + z = z + y, hence addition is commutative and so (5) can be
rewritten to give the associative law:

x+y)+z=x+(y +2).
Finally, for x # 0, we have
ex +x=(ex-xNo-x=0-x=0.

Thus x has the additive inverse ex, and this is true even when x = 0 and
€0 = 0. This shows G, to be a group under addition, with neutral element
0. In particular, e is the additive inverse of 1 and writing —1 for e, we
obtain the usual notation for a field. &

Exercises

1. Show that every near field with fewer than nine elements is a field (for a near
field on nine elements, see Ex. 4).

2. Show that if in Lemma 1.1, (ii) is omitted, we obtain a near field.

3. Let K be any field with a subgroup P of index 2 in K* and with an
automorphism of order 2, x+~> x', mapping P into itself. Define a new
multiplication on K by the rule

oy =4 ifx eP,
y= xy' ifx ¢ P.

Verify that K with this multiplication is a near field which is not a field.

4. (Dickson [05]) Apply Ex. 3 to construct a near field on any field of p?
elements, where p is an odd prime.

5. (Ferrero [68]) Let I' be an additive group with a group G acting on it by
fix-point-free automorphisms (i.e. ag=« for ael', ge G implies ¢ =0 or
g=1). Let A; (i € I) be a family of orbits # {0} in ', with representatives §; and
on I' define a multiplication by putting oo 8 = g, if & € A, and g, is the unique
element of G satisfying 6;g, = a; otherwise, i.e. if & ¢ A; for all i, put ao f=0.
Verify that except for lacking a one, I is a near ring. (This shows that every group
I is the additive group of some near ring, possibly lacking a one.)

6. Show that in any ordered field (see 9.6) the set of all non-negative elements,
with the operation xo = x + 1, satisfies the conditions (i)—(iii) of Lemma 1.1 (this
shows that the condition ec = 0 cannot be omitted).
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7. Show that any element of a ring having both a left inverse and a right inverse
has a unique two-sided inverse.

8. (Kohn and Newman [71]) Show that in any field K of characteristic # 2 the
following identity holds:

(x+y=-'—@+y+) ' - [x-y-D ' -(x—-y+2)7] =

3(xy + yx).

Why cannot xy be expressed in this way unless K is commutative?

9. In any ring show that if 1 —xy is a unit, then so is 1 — yx. (Hint. Use
elementary transformations to transform diag (1, 1 ~ xy) to diag (1 — yx, 1).)

10. Show that the centralizer of any subset of a field is a subfield.

1.2 The general embedding problem

A basic difference between groups and rings on the one hand and fields
on the other is that the former, but not the latter, form a variety, i.e. a
class defined by identical relations (see A.3, 1.3). In particular, a group
may be described by generators and defining relations and any set of
generators and relations yields a group; similarly for rings, whereas a
given set of (ring) generators and defining relations cannot always be
realized in a field. The usual method of obtaining a field, especially a
skew field, is as field of fractions of a ring. This makes it important to
study methods of embedding rings in fields. In this section we shall make
some general observations on the embedding problem, and we begin by
introducing some terminology.

Let R be a ring; by a field of fractions of R we understand a field K
together with an embedding R — K such that K is the field generated by
the image of R. Our task then is to find when a ring has a field of
fractions. For commutative rings the answer is easy (and well known). It
falls into three parts:

(i) Existence. A field of fractions exists for a ring R if and only if R is
an integral domain, i.e. the set R* = R\{0} is non-empty and closed
under multiplication.

(ii)) Uniqueness. When a field of fractions exists, it is unique up to a
unique isomorphism, thus given two fields of fractions of R, 4;: R — K;
(i=1,2), there exists a unique isomorphism ¢: K; — K, such that
M=k,

(iii) Normal form. Each element of the field of fractions can be written
in the form a/b, where a,be R, b #0, and a/b = a'/b’ if and only if
ab’ = ba’.
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Of course this is not really a ‘normal form’; only in certain cases such as
Z or k[x] is there a canonical representative for each fraction (see also
Ex. 1).

Let us now pass to the non-commutative case. The absence of
zero-divisors is still necessary for a field of fractions to exist, but not
sufficient. The first counter-example was found by Malcev [37], who
writes down a semigroup whose semigroup ring over Z is an integral
domain but cannot be embedded in a field (see Ex. 3 below). Malcev
expressed his example as a cancellation semigroup not embeddable in a
group, and it prompted him to ask for a ring R whose set R* of non-zero
elements can be embedded in a group, but which cannot itself be
embedded in a field. This question was answered affirmatively nearly 30
years later, in 1966, and will be dealt with in 5.7 below.

After giving his example, Malcev went on in a remarkable pair of
papers (Malcev [39]) to provide a set of necessary and sufficient
conditions for a semigroup to be embeddable in a group. This is an
infinite set of conditions, and Malcev showed that no finite subset could
be sufficient. The first two conditions express cancellability:

Xy=xz=y=2, YX=zXx=y =7, (1)
next came the condition (using A to mean ‘and’):
ax =by Acx =dy A au = bv = cu = dv. 2)

The other conditions were similar, but more complicated (Malcev [39], or
UA, VII. 3), and they were all of the form

AiAA A ...ANA,= B, 3)

where A}, ..., A,, B are certain equations, with the universal quantifier
V for all the variables prefixed. Such a condition (3) is called a
quasi-identity or a universal Horn sentence; when the As are missing, we
have an identity.

As a matter of fact it follows from general principles of universal
algebra that the class of semigroups embeddable in groups is a quasi-
variety, i.e. definable by quasi-identities. For it can be shown to be a
universal class (definable by sentences with universal quantifiers over all
variables, i.e. universal sentences), and one has the following theorem
(seee.g. UA, VI. 4):

A class of algebras is a quasi-variety if and only if it is universal and
admits direct products, or equivalently, if and only if it admits direct
products and subalgebras.
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We remark that such a class always contains the one-element subalge-
bra, as the product of the empty family. With the help of this result it is
not hard to check that the class of semigroups embeddable in groups is a
quasi-variety. At the same time we see that integral domains do not form
a quasi-variety, since they do not admit direct products, and neither do
rings embeddable in fields. Nevertheless they come very close to being a
quasi-variety. To be precise, if & denotes the class of integral domains, ¥
the class of fields and s% the class of subrings of fields, then there is a
quasi-variety 2 such that

sSF=DN. (4)

To find 2, we recall some definitions. A ring R is called regular (in the
sense of von Neumann) if for any a € R there exists x € R such that
axa = a. If for each a € R there exists x € R such that a’x = a, R is said
to be strongly regular. Despite its appearance, the condition of strong
regularity is left-right symmetric, as the next lemma shows. We recall
that a ring is said to be reduced, if it contains no nilpotent elements # 0,
i.e. x2 =0 implies x = 0.

LEMMA 1.2.1. A ring is strongly regular if and only if it is regular and
reduced.

Proof. Assume that R is strongly regular. If a®> =0, take x to satisfy
a*x = a; then 0 = a’x = a, so R is reduced. Moreover, for any a € R and
for x € R such that a’x = a, we have

(axa — a)’ = axa*xa — axa® — a’xa + a*
= axa® — axa* — a* + a* = 0,

hence axa — a = 0 and this shows R to be regular.
Conversely, if R is regular and reduced, let 4 € R and take x € R such
that axa = a. Then

(a*x — a)* = a’xa’x — a*xa — a’x + @*

=®x—a*-a’x+a*=0,

hence a’x — a = 0 and so R is strongly regular. B

Now any regular ring R is semiprimitive, i.e. its Jacobson radical J is
zero. For if a € § and axa = a, then a(xa — 1) = 0 and xa — 1 is a unit, by
the definition of J, so a = 0. It follows that R is a subdirect product of
primitive rings, which as homomorphic images of R are again regular (see
A.3, Th. 10.4.1, p. 405). Now any primitive ring is clearly prime (A.3,
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Prop. 10.6.1, p. 413), and there is little more that can be said about a
regular prime ring. But a prime ring which is strongly regular is a field.
To see this we first show that R has no idempotents apart from 0 and 1.
For if e is an idempotent and x € R, then (ex(1 — ¢))*> = 0; since R is
reduced, we have ex(1 —¢e) =0 for all x € R, and by primeness, either
e =0 or e = 1. Now given a, x € R satisfying axa = a, it follows that ax is
idempotent, hence ax =0 or 1, and ax = 0 only if a = axa = 0. Hence R
is a field and we have proved

THEOREM 1.2.2. A strongly regular primitive ring is a field. Any
strongly regular ring is a subdirect product of fields. 1

It is clear that the class of rings embeddable in strongly regular rings is
a quasi-variety. We shall show that this can be taken to be the class 2, but
for the proof we shall need a result which is best proved by using
ultraproducts. We briefly recall the background, referring to A.3, 1.6 for
details.

Let I be a non-empty set. A filter on I is a set ¥ of subsets of I which
is non-empty, admits intersections and contains with any subset X of 7 all
subsets D X. Since ¥ is non-empty, it follows that / € ¥ and we shall
exclude the family of all subsets by requiring that & ¢ %. If the set P(I)
of all subsets of / is regarded as a Boolean algebra, a filter on I may be
regarded as the dual of a proper ideal in P(I). As for ideals one can show
that any filter is contained in a maximal one; such a maximal filter is
called an wultrafilter and may also be characterized by the fact that for any
subset X of I, either X or its complement (but not both) belongs to the
ultrafilter. For example, given c € I, the set of all subsets containing ¢
forms an ultrafilter, the principal filter generated by c. When [ is finite,
every ultrafilter has this form, as is easily seen, but on infinite sets there
are non-principal ultrafilters, as we shall see in a moment.

Let {X,} be a family of subsets of I with the following ‘finite
intersection property’:

(FIP) Any finite subfamily of the X, has a non-empty intersection.

Then the set F of all subsets containing some finite intersection Nx 2 18
a filter, as is easily checked; it is the filter generated by the family {X,}.
To give an example, let I be an infinite set; then the cofinite sets, i.e. the
subsets with a finite complement, have the finite intersection property
and so generate a filter ¥,. Take an ultrafilter containing %;; this is an
example of a non-principal ultrafilter on I.

Filters are used in the construction of certain homomorphic images of
direct products. Let R; (i € I) be a family of rings and let P =[][R; be
their direct product, with the natural projections 7;: P — R;. For any filter
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% on the index set I we define the reduced product P/F as a
homomorphic image of P by the rule:

Forany x € P, x =0 ifand only if {i € I|xm; =0} € F.

If the subsets of I belonging to ¥ are called %-large, then P/% may be
described as the homomorphic image of P by the ideal of all elements
vanishing on an ¥-large index set. When & is an ultrafilter, the reduced
product P/% is called an wltraproduct. It is clear that the reduced product
is again a ring, though the reduced product of fields need not be a field.
But an ultraproduct of fields is again a field; more generally, any
elementary sentence of logic applying to rings holds in an ultraproduct
precisely if it holds in all the factors of an %-large set (see A.3, Th. 1.6.4,
p- 30).

The next proposition (whose statement does not mention ultra-
products) shows how these ideas may be applied:

ProrosiTioN 1.2.3. Let R be a ring and f;: R — K, (A € A) a family
of homomorphisms from R to fields, such that for any finite subset X of
R*, some f, maps no element of X to zero. Then R is embeddable in a
field.

Proof. For each x € R* define A(x) = {4 € Ajxf, # 0}; by hypothesis,
Alx) O L. 0 Ax,) # T,

for any finite family x,, . . ., x,, of non-zero elements of R. Hence the sets
A(x) generate a filter, and we can find an ultrafilter & containing all the
A(x). We can combine the f; to a homomorphism f: R — P =[[K;; let
g: P— P/% be the natural homomorphism to the reduced product. As an
ultraproduct of fields P/% is a field and for each x € R, xf; #0 on an
F-large set, namely A(x). Hence xfg#0 and so fg is the desired
embedding. W

Let us return to the equation (4). In order to identify 2 let us define %R
as the class of strongly regular rings. Clearly % admits direct products, for
if R, is a family of strongly regular rings and P =[[R, is their direct
product, take any a = (a;) € P. Then there exists x; € R; such that
aix, = a,; hence on putting x = (x,), we have a’x = a, showing that P is
again strongly regular. Thus R admits direct products; in the same way
we see that the class s of subrings of strongly regular rings admits direct
products; moreover it admits subrings and so it is a quasi-variety. We
assert that 2 may be taken to be sR, thus we have

sF =D N sR. &)
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For clearly any ring embeddable in a field is an integral domain and is
embeddable in a strongly regular ring. Conversely, if R is an integral
domain and embeddable in a strongly regular ring, then by Th. 2.2, R is
embeddable in a direct product of fields; hence for each x € R* we can
find a homomorphism to a field which is non-zero on x. It follows that
each finite family {x;,...,x,} can be mapped to non-zero elements,
since we can apply the argument to the product x;...x,. So the
condition of Prop. 2.3 is satisfied and R is embeddable in a field. Thus we
have proved (5); the result may be stated as

THEOREM 1.2.4. A subring of a strongly regular ring is embeddable in
a field if and only if it is an integral domain. B

As a consequence we have

CoRrROLLARY 1.2.5. A subring of a direct product of fields is embedd-
able in a field if and only if it is an integral domain. B

These results show that the class of integral domains embeddable in
fields can be defined by quasi-identities. Later, in 6.7, we shall find an
explicit set of such quasi-identities; this set is infinite and we shall see that
it cannot be replaced by a finite set of quasi-identities, or indeed by any
finite set of elementary sentences.

Exercises

1. Let R be a commutative Bezout domain, i.e. an integral domain in which every
finitely generated ideal is principal. Show that every element of its field of
fractions can be written in the form a/b, where a, b are coprime, and a, b are
unique up to multiplication by a unit.

2. Let R = k[x, y, z, t; xz = yt]. Show that there is no way of writing the fraction
x/y so that it is defined and either finite or % under every homomorphism of R to
a field.

3. Verify that (2) holds in every subsemigroup of a group, but not in every
cancellation semigroup. (Hint. Try writing the conditions in terms of 2 X 2
matrices; cf. also 1.4.)

Il
e

4. Show that every strongly regular ring is semiprime, i.e. xRx = 0 implies x

5. Let R be a ring with a unary operation x — x’ such that x?x’ = x, x'%x = x'.

Show that x' is uniquely determined by x.

1
=
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6. Let R be a non-trivial ring such that for all a, ¢ #0 in R, either xa = ¢ or
ax = ¢ has a solution in R. Show that R is a field.

7. Show that every identity can be expressed as a quasi-identity.

1.3 Ore’s method

We shall now look at the embedding problem in more detail and in
particular treat an important special case, first described by Ore [31]. But
we begin with some general remarks on the problem of constructing
inverses in rings.

Let R be a ring and S a subset of R. A homomorphism f: R — R’ to
another ring R’ is called S-inverting if for each s € S, sf is an invertible
element of R’, i.e. an element with a two-sided inverse; such an invertible
element is also called a unit. The following result, although trivial to
prove, is useful in considering S-inverting maps.

R A g, ProPOsiTION 1.3.1. Given a ring R

and a subset S of R, there exists a ring R

with an S-inverting homomorphism

A: R— Rg which is universal S-invert-

ing, in the sense that for each S-inverting

R homomorphism f:R— R’ there is a
unique homomorphism f': Rg— R’
such that f = Af'.

As with all universal constructions, the universal property determines
Rg up to isomorphism (see A.2, 1.3).

Proof. To construct Rs we take a presentation of R and for each s € S
adjoin an element s’ with defining relations ss’ = s’s = 1. The map 4 is
defined by assigning to each element in R the corresponding element in
the given presentation. Then sA is invertible, the inverse being s’. Thus
we have a ring Rg and an S-inverting homomorphism A: R — R;, and it
remains to verify the universal property of A. Given any S-inverting
homomorphism f: R — R’, we define f': Rg— R’ by mapping al (for
a€R) to af and s’ to (sf)~!, which exists in R’, by hypothesis. Any
relation in R; must be a consequence of the relations in R and the
relations expressing that s’ is the inverse of sA. All these relations still
hold in R’, so f’ is well-defined and it is clearly a homomorphism. It is
unique because its values on RA are prescribed, as well as on (SA)~!, by
the uniqueness of inverses. M
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The ring R constructed here is called the universal S-inverting ring or
the localization at S of R. We have in fact a functor from pairs (R, S)
consisting of a ring R and a subset § of R, with morphisms
f:(R,S)— (R', S’) which are homomorphisms from R to R’ mapping §
into §’, to the category Rg of rings and homomorphisms.

All this is easily checked, but it provides no information about the
structure of Rg. In particular we shall be interested in a normal form for
the elements of Rg and an indication of the size of the kernel of A, which
could be the whole of R (e.g. if 0 € S). This general question will be
treated in Ch. 4; for the moment we shall make some simplifying
assumptions, which will allow us to obtain a complete answer in an
important special case.

Let us look at the commutative case first. To get a convenient
expression for the elements of R we shall take S to be multiplicative, i.e.
leSandif a, b € S, then ab € §. In this case every element of Ry may be
written as a fraction a/s, where a € R, s € S, and a/s = a’/s’ if and only if
as’'t = a’st for some ¢ € S. This is not exactly what one understands by a
normal form, but it is sufficiently explicit to allow us to determine the
kernel of A, viz.

keri = {a € R|at = 0 for some ¢ € S}. (1)

Ore’s idea consists in asking under what circumstances the elements of
R have this form, when commutativity is not assumed. We must be able
to express s 'a, where ae R, s€ S, as ais;' (@€ R, 5, €8), and on
multiplying up, we find as; = sa;. More precisely, we have as;17! =
sa;17!, whence as;t = sa;t for some t € S. This is the well known Ore
condition and it leads to the following result:

THEOREM 1.3.2. Let R be a ring and S a subset, such that

(D.1) S is multiplicative,

(D.2) Foranyae R,s€ S, sRNaS #J,

(D.3) Forany a€ R, s € S, sa =0 implies at =0 for some t € S.

Then the universal S-inverting ring R may be constructed as follows. On
R x S define the relation

(a,s) ~ (a', s') whenever au = a'u’, su = s'u’ € S for some u, u' € R.
2

This is an equivalence on R X S and the quotient set R X S/~ is Rs. In
particular, the elements of Rs may be written as fractions a/s = as™! and
ker A is given by (1). B

The full proof is a lengthy but straightforward verification, which may
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be left to the reader (see A.3, Th. 9.1.3, p. 350). It can be simplified a
little by observing that the assertion may be treated as a result on
monoids; once the ‘universal S-inverting monoid’ Rg has been con-
structed, by the method of this theorem, it is easy to extend the ring
structure of R to Rs. A multiplicative subset S of R satisfying (D.2) is
called a right Ore set;if sa =0oras=0forae R,se Simpliesa=0, S
is said to be regular. More generally, if § satisfies (D.3), it is said to be
right reversible and if (D.1-3) hold, S is sometimes called a right
denominator set. Of course a corresponding construction can be carried
out on the left, leading to left fractions s 'a, when the left Ore condition
holds.

When § is contained in the centre of R, in particular, when R is
commutative, (D.2-3) are automatic and can be omitted. If R is an
integral domain, (D.3) can be omitted and if moreover S = R* then
(D.2) reads aR N bR #0 for a, b # 0. In that case Rz« is a field, for
when a, b € R*, then ab~! has the inverse ba~!. Thus we have

CoROLLARY 1.3.3. Let R be an integral domain such that

aRNbR+0 fora,be R™. ?3)

Then the localization of R at R* is a field K and the natural homomorph-
ism A: R — K is an embedding.

Only the last part remains to be proved, and this is clear because ab™!
for a, b #0 has the inverse ba™' and kerA =0, by (1) for an integral
domain. W

An integral domain R satisfying condition (3) is called a right Ore
domain, so the corollary tells us that every right Ore domain has a field of
fractions.

It is important to observe that the localization at a right Ore set is
essentially unique. Let us first note that the construction is functorial.
Thus, given a map between pairs f: (R, S) - (R’, §’), i.e. a homomorph-
ism f from R to R’ such that Sf C S’, we have the diagram shown, and

by universality there is a unique
i Rs homomorphism fi: Rs— R§.
such that the resulting square
commutes. In other words, Ais a
natural transformation. It fol-
’ lows in particular that if f is an
R A R's  isomorphism, then so is f;.
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So far R, R’ have been quite general; suppose now that R is a right
Ore domain and R’ = D is any field of fractions of R, thus we have an
embedding f: R— D. Putting §=R*, we have a homomorphism
fi: Rg— D, which is an embedding, because Ry is a field. The image of
R; under f is a field containing R and hence equal to D, because D was
a field of fractions. Thus f; is an isomorphism, and we have proved

ProrosiTioN 1.3.4. The field of fractions of a right Ore domain is
unique up to isomorphism. B

The result is of particular interest because it ceases to hold for general
rings. We shall soon (in 2.1) meet rings which have several non-isomor-
phic fields of fractions.

If in the above diagram we take R’ = R to be a right Ore domain and
S =S§'= R, then f is an endomorphism of R and the condition Sf C §
expresses the fact that f is injective. This sufficient condition for
extendability is clearly also necessary. Moreover, f; is uniquely deter-
mined by f, because we have

(ab™))fy - bf = of.

This provides a criterion for the extendability of endomorphisms:

CoroLLARY 1.3.5. Let R be a right Ore domain with field of fractions
K. Then an endomorphism of R can be extended to an endomorphism of K
if and only if it is injective, its extension is then unique. W

This result also fails to extend to general rings, as we shall see in 4.5.
We conclude this section with a sufficient condition for a ring to be an
Ore domain which is often useful.

ProrosiTioN 1.3.6. Let R be an integral domain; then either R is a
right Ore domain or it contains a right ideal which is free of infinite rank as
R-module. In particular, every right Noetherian domain is right Ore.

Proof. Suppose that R is an integral domain which is not right Ore. Then
there exist a, b € R* such that aR N bR = 0; we claim that the elements
b, ab, a’b, . .. are right linearly independent over R, so the right ideal
generated by them is free, of infinite rank.

If this were not so, then there would be a relation Zaibci = 0, where
the ¢; are not all 0. Let ¢, be the first non-zero coefficient; then we can
cancel a” and obtain the relation
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bc, + abc, .1+ ...+ a" "bc, = 0.

Hence
a(bc,s1 + ...+ a" "tbe,) = —bc, # 0,

and this contradicts the assumption on @ and b. Now the last sentence
follows because a free right ideal of infinite rank clearly cannot be finitely
generated. W

Since a principal right ideal domain is right Noetherian, we have

CoroLLARY 1.3.7. Every principal right ideal domain is a right Ore
domain and hence has a field of fractions. W

Exercises

1. Give a proof of Th. 3.2; in particular, verify the expression (1) for the kernel
of A.

2. Let R =1lim R, be the direct limit of a directed system of Ore domains. Show
that R is an Ore domain.

3. Show that the isomorphism in Prop. 3.4 is unique.

4. Let M be a monoid with a submonoid S, satisfying the following conditions: (i)
for al me M, se S, mSNsM# O, (i) if sm=sm’ for m,m' € § and s€ S,
then there exists ¢ € § such that mt = m’t. Show that the universal S-inverting
monoid Mg of M (defined as for rings) can be constructed as a set of fractions
mt~1 such that mt7! = m,t5' if and only if m ¢t = myt', 1,1 = t,¢' € S for some
t,t' € M. Find the conditions for the natural homomorphism from M to My to be
an embedding.

5. Let R be a right Ore domain with field of fractions K and let f: R— D be a
homomorphism to a field D such that D as a field is generated by im f (thus D is
an epic R-field in the sense of 4.2). Show that K contains a subring L with a
single maximal ideal m such that L/m = D.

6. Let R be a commutative ring, A an n X n matrix over R and §= R(x;;
AX = XA = 1), where X = (x;), thus S is the universal A-inverting ring. Show
that § is commutative. (Hint. Verify first that x;; centralizes R.)

7. Show that for a principal ideal domain R and a right Ore set S in R the
localization Ry is again principal.
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1.4 Necessary conditions for a field of fractions to exist

The most obvious condition for the embeddability of a ring in a field is
the absence of zero-divisors (where v stands for ‘or’):

xy=0=>x=0vy=0, 1#0. 1

As is well known, in the commutative case it is also sufficient, but for
general rings, (1) does not really go to the heart of the matter, for here
we need conditions involving addition as well as multiplication. In this
section we shall discuss a number of such conditions and their interrela-
tion; some of them will play a role in what follows. In any case, all are
easily stated and of some independent interest.

Let R be any ring and F a free left R-module on a basis B. If B is
infinite, then any two bases of F have the same cardinal (see A.2, Prop.
4.4.4, p. 142), but for finite B this need not be the case. We shall say that
F has unique rank if any two bases of F have the same number of
elements, and the number of these elements will be called the rank of F,
written rk(F). Over a field, every module is free, of unique rank, as is
well known; even for subrings of fields the rank shows good behaviour
that we shall now consider in more detail.

DEeFINITION 1. A ring R is said to have invariant basis number (IBN)
if every free R-module has unique rank.

By the earlier remark this condition is automatic for free modules that
are not finitely generated, and the duality "R = Hompg (R”, R) shows that
it is enough to assume unique rank for finitely generated free Ileft
R-modules. Most rings arising naturally have IBN; in particular, any field
or more generally, any ring with a homomorphism to a field has IBN.
Examples lacking IBN will occur later when we come to construct integral
domains not embeddable in fields.

Next we have a strengthening of IBN:

DEFINITION 2. A ring R is said to have unbounded generating number
(UGN) if for every n=1, 2, ... there is a finitely generated left
R-module which cannot be generated by fewer than n elements.

It is equivalent to require that for all n, R" cannot be generated by
fewer than n elements. For if this holds, R satisfies the condition;
conversely, when it is false, suppose that R™ can be generated by m — 1
elements. Since every m-generator left R-module is a homomorphic
image of R™, it follows that any module on m generators can be
generated by m — 1 elements, and by induction it follows that every
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finitely generated module can be generated by m — 1 elements, so UGN
fails to hold.

If IBN fails for R, say R” = R" for m > n, then R™ has a basis of
n < m elements, so UGN fails to hold; thus UGN implies IBN,

Next we come to an even stronger condition.

DEeFINITION 3. A ring R is said to be weakly n-finite if any generating
set of n elements of R" is free. If R is weakly n-finite for all r, it is called
weakly finite.

Weakly 1-finite rings are sometimes called ‘von Neumann finite’,
‘inverse symmetric’ or ‘directly finite’.

Let R be a non-trivial ring. If R” can be generated by fewer than n
elements, we can find n-element generating sets for R” that are not free,
so any weakly finite (non-trivial) ring has UGN. Thus for any non-trivial
ring we have the implications

WF = UGN = IBN, 2

where WF stands for ‘weakly finite’. The trivial ring 0 is weakly finite but
does not have UGN or IBN. Moreover, neither of the implications in (2)
can be reversed (see Cohn [66]).

To restate the conditions, let us suppose that R" has a generating set of
m elements. Then we have an exact sequence

0-K—->R"->R'->0,
which splits, because R” is free. So we obtain the relation
R"=R'"® K. 3)
This isomorphism allows us to restate the three conditions in the
following form:
(IBN) Forallm, n, R" = R" implies m = n,
(UGN) Forallm, n, R" = R" ® K implies m = n,
(WF) Foralln, R*= R" @ K implies K = 0.
By taking bases for our modules, we obtain a restatement in terms of
matrices:
(IBN) For A€e"R", Be "R", if AB = 1,, BA = I, then m = n,
(UGN) For A€"R™, Be "R", if AB=1,, thenm = n,
(WF) For A, Be R,,if AB =1, then BA = I.
These conditions again make it clear that (2) holds for any non-trivial
ring. Further, it can be shown that a ring R has UGN if and only if some
non-zero homomorphic image of R is weakly finite (see FR, Prop. 0.2.2,
p- 8 or Th. 4.6.8 below). Any field (even skew) has all three properties;
more generally all three hold for any subring of a field, for any Artinian
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or Noetherian ring (A.2, 4.4, p. 144) and for any commutative ring
(always excluding the trivial ring). In fact, a ring lacking any of these
properties is usually regarded as pathological.

Let R be a non-trivial ring without IBN. Then for some m # n,

R™ = R". (4)

We take (r, r + d) to be the first such pair of distinct integers (m, n) in
the lexicographic ordering. Then it is not hard to verify that (4) holds
precisely when m = n or m, n = r and d|m — n. In this case R is said to
have free module type (r, r + d). For example, if V is an infinite-dimen-
sional vector space over a field k, then V =V @ V, and it follows easily
that End, (V) is a ring of free module type (1, 2).

Next take a non-trivial ring R without UGN. Then for some »n, R” can
be generated by n — 1 elements. If the least such n is m, then every
finitely generated R-module can be generated by m — 1 elements. Let us
call such a ring non-UGN of type m. From the matrix form of the
conditions we see that there is a universal non-UGN ring of type m,
namely the k-algebra generated by the entries of an m X (m — 1) matrix
A and an (m — 1) X m matrix B subject to the defining relations (in
matrix form) AB = I. We shall denote it by U,,. Similarly we can form a
universal non-IBN ring of free module type (r,r + d) by taking the
entries of an r X (r + d) matrix A and an (r + d) X r matrix B with
defining relations (in matrix form) AB = I, BA = I. This ring will be
denoted by V, ,. ;. Every non-UGN ring is a homomorphic image of an
appropriate universal non-UGN ring, and similarly for non-IBN rings.

We can also form a non-WF ring by taking the k-algebra W, on the
entries of two n X n matrices A, B with defining relations AB = I, but
now it is no longer the case that all homomorphic images are non-WF: we
obtain a weakly finite ring by imposing the relations BA = I.

Let us record the effect of homomorphisms on these conditions.

ProrosiTioN 1.4.1. Let R— R be a homomorphism between rings.
(i) If R is non-IBN of free module type (r, r + d), then R is non-IBN of
free module type (r', r' + d'), where r’ <r, d'|d. (ii) If R is non-UGN of
type m, then R is non-UGN of type m', where m' < m.

Proof. (i) By hypothesis, R"= R"*%; on tensoring with R we obtain
R"=R"*?, from which the result follows. Similarly, (i) follows on
tensoring the isomorphism R"'=R"® K. &

It follows that the conditions IBN and UGN are reflected by iso-
morphisms:
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CoRrOLLARY 1.4.2. Given a homomorphism R — R, if R has IBN or
UGN, then so doesR. R

There is another way to express UGN, which requires a definition that
is much used later. Let A be a square matrix, say n X n, over a ring R,
and consider the different ways of writing A as a product:

A = PQ,where Pisn X rand Qisr X n, 5)

for varying r. If in every representation (5) of A we have r = n, A is said
to be full. The matrix formulation of UGN above shows that it hoids if
and only if every unit matrix is full. More generally we have the following
criterion for UGN:

ProrosiTioN 1.4.3. A ring R has unbounded generating number if
and only if every invertible matrix is full. In particular, over a (non-trivial)
weakly finite ring every invertible matrix is full.

Proof. If every invertible matrix is full, then I, is full for all » and so
UGN holds. Conversely, suppose that A is invertible, but not full, say (5)
holds with » <n. Then I = P- QA™!, so I is not full and hence UGN
fails to hold for R. The last part follows because every non-trivial weakly
finite ring has UGN. &

We now turn to a condition of a different kind. We recall that for any
square matrix A over a field K (even skew) the following four conditions
are equivalent:

(S.1) A has no left inverse,
(S.1°) A has no right inverse,

(S.2) A is a left zero-divisor,
(S.2°) A is a right zero-divisor.
A square matrix over a field with these properties is called singular, any
other square matrix is called non-singular; the latter holds (by (S.2, 2°))
precisely when the matrix is regular, or equivalently, when A is full, as is
easily verified.

When A is singular, there is a non-zero column « such that Au = 0. If
U is an invertible matrix with u as its first column, then we have

0 ¢
-1 =
U AU (0 Al)’ 6)
for some row ¢ and (n — 1) X (n — 1) matrix A;. In particular, if A is
nilpotent, say A" = 0, then A is singular and the matrix A, in (6) is again
nilpotent. An induction shows that when A is nilpotent, then there is an
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invertible matrix T such that T™'AT is upper triangular, with zeros on
the main diagonal. It follows that an n X n nilpotent matrix A over a
field satisfies A” = 0, so we have proved

ProrosiTioN 1.4.4. An n X n nilpotent matrix A over a field satisfies
A"=0. 1

Clearly this condition must also hold for any matrix over a subring of a
field. The condition of Prop. 4.4 is known as Klein’s nilpotence condition,
since Klein [69] showed, by an ingenious use of Malcev’s conditions:

If R is an integral domain such that every nilpotent n X n matrix C over
R satisfies C" = 0, then R* is embeddable in a group.

Klein showed also that his condition is not necessary for R* to be
embeddable in a group. As we have seen, it is necessary for embeddabil-
ity in a field, but not sufficient, as counter-examples of Bergman [74']
show (see 5.7, Ex. 4). Klein shows further that his condition implies weak
finiteness:

ProrosiTion 1.4.5. Any ring satisfying Klein’s nilpotence condition is
weakly finite.

Proof. Let A, B € R, satisty AB=1. Then A’B"= [ for all r =1, by an
easy induction. Moreover, A(I — B'A")=(I — B"'A" ") A, hence the
matrix C = A(I — B'A’) satisfies C'=(I — B'A""")A’; in particular,
C" = 0. Choosing r = n + 1, i = n, we find that

I - BA=(I - BA)A"B" = C"B" = 0,

because C” =0, by Klein’s condition. Hence BA = I, as we had to
show. B

The converse does not hold, as an example by Klein [70’] shows.

Exercises

1. Show that a matrix (not necessarily square) over a ring, which has a right
inverse, is left regular; verify that the converse holds over any Artinian ring.
Deduce that over an Artinian ring the four conditions (S.1-2°) are equivalent for
any square matrix.

2. Verify that a ring satisfying Klein’s nilpotence condition is reduced, and deduce
that a prime ring satisfying Klein’s nilpotence condition is an integral domain.
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3. Show that in a weakly finite ring, if A is full, thensois A @ I.

A C
2 )
for some block C is invertible, show that A and B are both invertible. Show that
weak finiteness is necessary as well as sufficient.

4. Let R be a weakly finite ring and A, B square matrices over R. If (

5. Show, by taking a suitable homomorphic image, that the universal non-WF
ring satisfies UGN.

6. (Jacobson [50]) Let R be a ring with elements a, b such that ab =1 # ba.

Show that the elements e; = b*~'(1 — ba)a’~! form an infinite set of matrix units

and the ¢; form an infinite family of pairwise orthogonal idempotents.

7. (Kirezci [82]). Let V,, ,, be the universal non-IBN k-algebra of free module
type (n, m). Show that V, ,, for m > 1 is simple.

8. (After Kirezci [82]) If the defining matrices for V,, ,, are A, B and those for
Vi .m are A’, B', show by mapping A’ to A(A® I) and B' to (B @ I)B that
there is a homomorphism from V,, ;.. to V,, ;. Deduce that for all m>n=1
there is a homomorphism V,, ,, - V,, ..

9. Show that if R has free module type (r, r + d) and n = r, then M, (R) has free
module type (1, 1 + d/(d, n)).

1.5 Stable association and similarity

This somewhat technical section provides some necessary background for
the factorization of elements and matrices. It is convenient to have these
results in one place, but the reader may well decide to skip this section
and refer back to it later when necessary.

Let R be any ring. Two matrices A, A’ over R are said to be associated
if there exist invertible matrices P, Q over R such that

A' = PAQ.

If R is a ring with IBN, then every invertible matrix is square, so if A is
m X n, the same then holds for A’.

Sometimes a weaker condition is needed. We shall say that A and A’
are stably associated if A @ I is associated to A’ @ I for some unit
matrices (not necessarily of the same size). Thus if A is m X n, then A’
will be (m + r) X (n + r) for some r € Z. If we define the index of an
m X n matrix as n — m, we see that over a ring with IBN, stably
associated matrices have the same index.

Any finitely presented left R-module M is given by a resolution
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R" S R"—> M -0,

where the map o is given by an m X n matrix A. It is clear that stably
associated matrices give rise to isomorphic modules. Moreover, if A is
left regular, so that « is injective, then any left regular matrix A’
presenting an isomorphic module must be stably associated to A. This
result will not be needed here, so the proof is omitted (see FR, 0.6).

There is a related notion which is sometimes needed. Two matrices A,
B with the same number of rows are called right comaximal if the matrix
(A B) has a right inverse. Similarly two matrices A’, B’ with the same
number of columns are left comaximal if (A’ B’)T has a left inverse. An
equation

AB' = BA’ (1)

is called comaximal if A, B are right comaximal and A’, B’ are left
comaximal. The relation between these concepts is given by

THEOREM 1.5.1. Let R be a ring and A €'R™, A’ €*R". Then the
following conditions are equivalent:
(@) A, A’ satisfy a comaximal relation (1),

(b) thereisan (r + n) X (s + m) matrix (1: f) with a right inverse

* _B/
of the form (* A

In particular, (a) and (b) hold whenever
(¢) A and A’ are stably associated,
and in a weakly finite ring (a)-(c) are equivalent for two matrices A, A’ of
the same index .

Proof. If (a) holds, say A, A’ satisfy (1), then by comaximality, there
exist matrices C, D, C’, D’ such that

AD' - BC'=1, DA’ -CB =1, )

A B D’ —-B’
P=(c D), Q=(_C, A,), 3)

) for some S, hence P has the right inverse

and on writing

we have PQ = (;

D' -B\(I 0\_(* -B
~c A )\-s 1) \x a)

~ o
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and (b) follows. Conversely, if Q in (3) is a right inverse of P, then (1)
and (2) hold, and this shows (1) to be a comaximal relation. Thus (a) and
(b) are equivalent.

If (c) holds, say we have

O A R A D
o 1\r, R)T\o; Qo a)

then we have the relation
AP, = QA" ()

Now

@ o 7)-wn o=@ 0.

by (4), and (Q; ;) has a right inverse, therefore A and Q, are right
comaximal. By symmetry (5) shows that P, and A’ are left comaximal;
thus (¢) = (a).

Now if R is weakly finite and A, A’ have the same index, then
m—r=n-s, hence r + n =s + m and the matrices in (b) are square;
by weak finiteness, the right inverse is a two-sided inverse and we have
the equation

1 0\I 03\A BY _ (I B\A O
-c' I)j\0 Aa’)\c D) \0o IO I
which shows A and A’ to be stably associated. W

We now turn to factorizations of elements and begin by introducing a
notion weaker than comaximality. The definition could be framed for
matrices, but only the case of elements will be needed.

A relation ab’ = ba’ is called coprime if a, b are left coprime, i.e. they
have no non-unit common left factor, and a’, b’ are right coprime.
Clearly any two right comaximal elements are left coprime; in a principal
ideal domain the converse holds, for here aR + bR = dR and if a, b are
left coprime, then d is a unit and so a, b are then right comaximal.

Let R be an integral domain and a,a’ € R*. Consider a module
homomorphism

f: R/Ra— R/Ra’. (6)
If 1— b’, then x — xb’ and a — 0, hence ab’ € Ra’, say
ab’ = ba’. N

Thus a homomorphism (6) is given by a relation (7), and conversely,
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every relation (7) leads to a homomorphism (6). Here b’ is determined by
f up to an element of Ra'; thus if by = b’ + za’, then by (7), ab] =
a(b’ + za') = ba’ + aza’ = (b + az)a’'. So b is determined by f up to an
element of aR and f defines a unique R-homomorphism

f*R/a’R — R/aR, x> bx. 8)

Let us call a module of the form R/Ra or R/aR, where a # 0, strictly
cyclic. What the above argument shows is that the categories of left and
right strictly cyclic modules over an integral domain are dual to each
other; this is also called the factorial duality .

We note that the map (6) is injective if xb’ € Ra’ implies x € Ra, i.e. if
(7) is a least common left multiple (LCLM) of 4’ and b'; when this is so,
(7) is left coprime. For the surjectivity of (6) we require ¢ € R such that
c—1,i.e.cb’' — 1€ Ra’, so for some d € R we have

da' + ¢cb' = 1.

This expresses the fact that (7) is left comaximal, hence right coprime. In
particular, over a PID we have an isomorphism (6) if and only if there is a
comaximal relation (7). With Th. 5.1 this yields conditions for an
isomorphism of strictly cyclic modules over a PID:

ProrosiTioN 1.5.2. Let R be a principal ideal domain. Then for any
a, a’ € R* the following conditions are equivalent:
(a) there is a coprime relation

ab’ = ba'; 7)

(b) there is a comaximal relation (7);
(c¢) R/Ra = R/Ra’;
(¢°) R/aR=R/a’R. W

Two elements a, a’ satisfying condition (b) are said to be similar. Thus in
a PID the isomorphism between strictly cyclic modules is described by
similarity. It is clear from Th. 5.1 that in a weakly finite ring two elements
are similar if and only if they are stably associated, while in the
commutative case similar elements are just associated.

An element of a ring will be called an atom, or irreducible, if it is a
non-unit which cannot be written as a product of two non-units. Let R be
a PID and a € R*; any factorization a = p, ... p, into non-unit factors
corresponds to a chain of right ideals

ROp ROpip;,RD...Dp,... p,R=aR, 9)

where the inclusions are proper, because the p; are non-units. If all the p,
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are atoms, then (9) is a composition series, and by applying the Jordan-
Holder theorem (A.1, 9.3) to two composition series, a = p;...p,
=p;...ps;, we find that r =s and for some permutation i~ i’ of
{1,...,r}, p; is similar to pj. This is expressed by saying that R is a
unique factorization domain (UFD); in the commutative case it reduces
to the usual meaning of this term, because then similar elements are
associated. The main point of distinction for general UFDs is that
corresponding factors are merely similar and not necessarily associated,
and the factors cannot always be rearranged at will. The composition
length of (9) is also called the length of a.

Let us return to a general integral domain R and specialize (6) by
taking a’ = a. We see that the endomorphisms of R/Ra are given by
elements b’ such that

ab’' = ba,

for some b € R. Let us define the idealizer of the left ideal Ra as the
largest subring of R containing Ra as an ideal:

$(Ra) = {b’ € R|ab’ € Ra}.

Clearly this is a subring and from what has been said, there is a surjective
homomorphism from $(Ra) to Endg (R/Ra) obtained by mapping
b’ € $(Ra) to the endomorphism x — xb'. The kernel is easily seen to be
Ra, hence we have

Endg (R/Ra) = $(Ra)/Ra.

The quotient $(Ra)/Ra will be denoted by ¥(Ra) and called the
eigenring of Ra.

An element ¢ of a ring R is said to be right invariant if c is right regular
and Rc C cR; this means that for each x € R there exists x’ € R such that
xc =cx', and here x' is uniquely determined by x, because ¢ is right
regular. Left invariant elements are defined similarly and a left and right
invariant element is said to be invariant. Thus an invariant element in a
ring R is a regular element ¢ such that Rc = cR.

An element a of R is said to be bounded if it is a left factor of an
invariant element: ¢ = ab, where c is invariant. It is then also a right
factor, for ¢cb = b’c = b’ab, hence ¢ = b'a; this shows the notion defined
here to be symmetric. Any invariant element with a as factor is called a
bound for a; in general there may be no least bound, but in a PID we can
form the largest ideal contained in Ra. It will have the form Ra*, where
a* is invariant with a as factor, and clearly a* is a factor of any bound of
a. Thus a* is the least bound of a, unique up to unit factors. This least
bound a* can also be characterized as the generator of the annihilating
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ideal of R/Ra; it follows that any element similar to a is again bounded,
with the same bounds. An element with no bounded factors other than
units is said to be fotally unbounded.

For bounded elements in a PID we have the following commutation
formula. Two elements a, b are said to be totally coprime, if no non-unit
factor of a is similar to a factor of b.

LeMMA 1.5.3. In a principal ideal domain R, if a is bounded and totally
coprime to u, then there is a comaximal relation

au = uay, (10)

and hence

R/Rau = R/Ra ® R/Ru. (11)

Proof. If we can find a relation (10), where a, is totally coprime to u and
u; totally coprime to a, then it must be coprime and hence comaximal, so
it only remains to find the relation.

Let a* = a'a be the least bound of a, and a’au = a*u = usa*. If the
LCRM of a' and u, is a'u; = uyb, then for some a;, a* = ba; and
au = uja,. Here u, is similar to a right factor of uy and so is totally
coprime to a, while a; is a factor of a* and so totally coprime to u. Hence
this is the required relation; now (11) follows by comaximality. W

An invariant element ¢ in a ring is called an I-atom if it is a non-unit
and the only factors of ¢ which are again invariant are units or associates
of ¢. One would expect the least bound of a bounded atom to be an
I-atom; this is in fact the case, as we shall now show.

THEOREM 1.5.4. Let R be a principal ideal domain.

(i) Every non-zero ideal of R has the form Rc = cR, where c is an
invariant element, and R/Rc is a simple ring if and only if c is an I-atom;,

(ii) every I-atom is a product of similar bounded atoms;

(iii) if p is a bounded atom, then its least bound p* is an I-atom whose
atomic factors are precisely all the atoms similar to p; moreover, the
eigenring K of Rp is a field and we have

R/Rp* = M,(K), where n is the length of p*. (12)
Proof. (i) Let a be a non-zero ideal of R. By definition, a = Ra = a’R,

hence a = Rc with an invariant generator c. Now R/a is simple if and only
if a is maximal, but any ideal containing Rc has the form Rb, where b is a
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factor of ¢ and is again invariant. So Rc is maximal precisely when ¢ has
no non-trivial invariant factors, i.e. it is an I-atom.

(ii) Let p* be an I-atom and take any atom p dividing p*; clearly p* is
the least bound of p. Since p is bounded, any similar atom p’ is again
bounded. If the least bound of p’ is ¢, then ¢(R/Rp) = 0, hence Rc C Rp
and so Rc C Rp*. By symmetry, Rp* C Rc, so c is associated to p*. Thus
any atom similar to p is a factor of p*, and it follows that

Rp* c N{Rp’|p’ similar to p}. (13)

If we can show that the right-hand side is a two-sided ideal, then equality
must hold, since p* is an I-atom. Take a in the right-hand side of (13);
given b € R and p’ similar to p, either b € Rp’, and then ab € Rp’, or
Rb + Rp' = R, and so

Rb + Rp’ = Re,

where ¢ = p;b = b, p’, and this is a coprime relation. It follows that p, is
similar to p and so a € Rp;, and ab € Rp;b = Rb,;p’ C Rp’. This shows
the right-hand side of (13) to be an ideal, and so equality holds in (13). It
follows that R/Rp* is a sum of terms R/Rp, hence there is a chain from
Rp* to R whose quotients are all isomorphic to R/Rp, and so p* is a
product of elements similar to p.

(iii) Let p be a bounded atom; its least bound p* is an I-atom, for if
p* = cd, where ¢, d are invariant non-units, then p is a factor of ¢ or of
d, contradicting the fact that p* was the least bound of p. By (ii) p* is a
product of atoms similar to p and the atoms dividing p* are precisely the
atoms similar to p. The eigenring K of R/Rp, as endomorphism ring of
the simple module R/Rp is a field, by Schur’s lemma and R/Rp* is a sum
of copies of R/Rp, hence a direct sum of finitely many copies. If p* has
length n, then

R/Rp* = (R/Rp)".

Taking endomorphism rings and bearing in mind that the endomorphism
ring of any ring A as left A-module is A, we have the desired conclusion
(12). =

Over a PID R every cyclic module is either free of rank 1 or of the
form R/Ra for some a € R*. By a torsion module we understand a
module M in which every element is annihilated by a non-zero element of
R. If no element of M other than zero is annihilated by a non-zero
element of R, then M is said to be torsion-free. As for abelian groups one
easily verifies that any module M (over a PID) has a uniquely determined
maximal torsion submodule tM and that M/tM is torsion-free. When M
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is finitely generated, then so is M/tM, and being torsion-free, it is free, so
that we can write M = tM @ F, where F is a free submodule, unique up
to isomorphism. The following structure theorem can be stated for
finitely generated modules, but we limit ourselves to cyclic modules, as
that is all we shall need:

THEOREM 1.5.5. Let R be a principal ideal domain. Any cyclic left
R-module is either free of rank 1 or of the form

R/Ra=R/Rq; ® ... ® R/Rq; ® R/Ru, (14)

where each q; is a product of bounded similar atoms, while atoms in
different q’s are dissimilar, and u is totally unbounded. Moreover, u and
the q; are uniquely determined up to order and similarity .

Proof. 1t is clear that over a PID any submodule of a cyclic module is
again cyclic; thus a submodule of R/Ra has the form Rb/Ra, where
a=cb, and Rb/Rcb = R/Rc. Consider the bounded atoms that are
factors of a; suppose that p;, ..., p, are pairwise dissimilar bounded
atoms such that each bounded atomic factor of a is similar to exactly one
of the p;. If p} denotes the bound of p;, then the submodule of R/Ra
annihilated by p} is again cyclic, of the form R/Rgq;, where g; is a product
of atoms similar to p;. Clearly the sum >, R/Rg; is direct and is equal to
the submodule of R/Ra annihilated by p¥ ... pf. By Lemma 5.3 we
obtain a decomposition (14), where R/Ru has no non-zero submodule
with non-zero annihilator. It follows that u is totally unbounded, for if
u = u'pu” with a bounded atom p, where (by induction) u’ is totally
unbounded, then by Lemma 5.3, there is a comaximal relation u’'p =
Doltg, hence u = pyuou” and R/Ru has the submodule Rugu"/Rpouou” =
R/Rp,, which is annihilated by p§. This contradiction shows u to be
totally unbounded, and it establishes the decomposition (14). Here R/Rg;
is unique as the submodule annihilated by p; while R/Ru is unique up to
isomorphism, hence g; and u are unique up to similarity. W

We shall also need a result on direct decompositions. A non-zero
element a of a PID R is said to be indecomposable if R/Ra is
indecomposable as left R-module; by the factorial duality this notion is
actually left-right symmetric. Now an indecomposable bounded element
may be described as follows:

ProrosiTioN 1.5.6. Let R be a principal ideal domain. Then a
bounded indecomposable element is a product of similar atoms and has a
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bound of the form p", where p is an I-atom. Two bounded indecomposable
elements have the same bound if and only if they are similar.

Proof. Let q be bounded indecomposable and consider the direct
decomposition (14) for R/Rq. The term R/Ru is absent because g is
bounded and since ¢ is indecomposable there is only one term. Thus g is
a product of similar atoms, say ¢ = p; . . . p,; each p; has the same bound
p, an I-atom, hence g has the bound p” and it follows that the least
bound g* of g also has this form. Here Rq* is determined by the
similarity class of ¢ as the annihilator of R/Rgq, while R/Rq is determined
by Rq* as an indecomposable part of R/Rg*. R

If R is an Ore domain with centre Z, then the field of fractions of R
has a centre containing Z, but not necessarily generated by it. By how
much it fails is described in the next result:

ProrosiTtionN 1.5.7. Let R be a right Ore domain and K its field of
fractions, and let C be the centre of K.
(i) Then any element of C has the form ab™", where

axb = bxa forall x € R. (15)

Conversely, if a, b € R* and (15) holds, then ab™ € C.

(ii) If R is a principal right ideal domain, then any u € C can be written
as u=ab~!, where a and b are left and right coprime, and for any
representation of u as a quotient of coprime elements, there is an injective
endomorphism « of R such that

xa = ax® xb = bx® forall x € R. (16)

(iii) If R is a principal ideal domain, then « in (ii) is an automorphism
of R.

Proof. (i) Suppose that a,b € R* satisfy (15). Then ab = ba and on
dividing (15) by b on the left and right, we obtain

b~lax = xab-! forall x € R, 17

hence b~la=ab!e C. Conversely, if ab™' € C, then a=ab™! b=
bab™', hence ab = ba, so (17) holds and on multiplying up we find (15).
(ii) Now assume that R is a PRID and take u € C. Write u = ab™!,
a=da,, b=db,, where d is a HCLF of a, b. Then ab™' = b~la = b7 a,
and a; = b - bila, = bflal - by, hence bya; = a,b,. Thus we may assume
in (i) that a, b are left coprime. We may also take them to be right
coprime, for if a = a;d, b = b,d, then ab™! = a,b7' and now the same
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argument applies. We claim that
aR N bR = abR.

For we know that the LCRM of a and b has the form ab’ = ba’. We also
have ab = ba, hence a = a’c, b = b'c and since a, b are right coprime, ¢
must be a unit, so ab = ba is the LCRM. Now bxa = axb is a right
multiple of ab = ba, hence for some fe R, bxa = baf, axb = abf.
Clearly f depends on x and is uniquely determined by it. Denoting it by
x%, we have

xa = ax%, xb = bx*.

Each of these equations determines x* uniquely and it is easily checked
that the map x — x* is an injective endomorphism of R. If R is left as
well as right principal, we have, by symmetry an injective endomorphism
B of R such that ax = xfa, bx = xPb. Hence xa = ax® = x*?a, so af =1
and similarly, Ba = 1, hence « is an automorphism. W

Exercises

1. Show that any two associated elements in a ring are similar, and that the
converse also holds if one of the elements is invariant.

2. Use Th. 5.1 to show that if A € "R™ and A’ € *R" are stably associated over a
weakly finite ring R, then A @ I, is associated to 1, ® A’.

3. Let R be a PRID and I the set of all its right invariant elements. Show that [ is
a regular right Ore set in R and that the localization R; is a simple PID. If R is a
(left and right) PID, verify that R, is a field if and only if R is not primitive.

4. An integral domain R is said to be rigid, if for any c € R*, ¢ = ab’ = ba’
implies aR C bR or bR C aR. Show that any Noetherian rigid domain is a
valuation ring (see 9.1). Show that in any atomic rigid domain every element not
zero or a unit can be written as a product of atoms: ¢ = p; . .. p, where the factor
p; is unique up to associates.

5. Show that for a # 0 in a PID R, R/Ra and R/aR have the same annihilator,
viz. Ra* = a*R, where a* is the least bound of a.

6. Prove the extension of Th. 5.5 to finitely generated modules.
7. A ring will be called fully right inversive if every left regular matrix (not

necessarily square) has a right inverse. Show that a ring R is fully right inversive if
and only if the only finitely presented bound right R-module is 0. (A module M is
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bound if Hom (M, R) = 0. It can be shown that every ring R can be embedded in
a fully right inversive ring in which all left regular matrices over R remain left
regular (and so acquire right inverses), see Cohn [93}).

1.6 Free algebras, firs and semifirs

In this section we shall meet conditions that are sufficient for embeddabil-
ity in a field, although their sufficiency will only be proved in Ch. 4. They
are not necessary, but they hold in a wide class of cases, particularly in
free algebras and in the coproduct of fields, as we shall see in Ch. 5.

Let R be any ring. A relation of r terms

ab=abi+...+ab, =0 1)

is said to be trivial if foreach i=1, ..., r either ¢; =0 or b, = 0. In the
zero ring every relation is trivial, but excluding this case, there are always
non-trivial relations. Nevertheless there are rings in which all such
relations can be trivialized. If there is an invertible 7 X r matrix P over R
such that aP™!-Pb=0 is a trivial relation, then (1) is said to be
trivialized by P or also trivializable. More generally, a matrix product

AB =0, 2

where A is m X r and B is r X n is trivializable if there is an invertible
r X r matrix P which rrivializes (2), i.e. such that foreach i=1, ..., r
either the ith column of AP~! or the ith row of PB is zero.

For any non-negative integer n we define an n-fir as a non-zero ring in
which every relation (1) of at most # terms is trivializable. If R is an n-fir
for all n, it is called a semifir. Let us denote the class of all n-firs by F,
and the class of all semifirs by ¥; then it is clear that

F 2% 2%2....NF, =% (3)

It is easily checked that %; is the class of all non-zero rings, %, is the class
of all integral domains and %, the class of all integral domains in which
any two elements with a non-zero common left multiple generate a
principal left ideal. In particular, a commutative domain is a 2-fir
precisely if every 2-generator ideal is principal; by induction we see that
every finitely generated ideal is principal, thus a commutative 2-fir is
nothing other than a Bezout domain. As the next theorem will show,
every commutative 2-fir is in fact a semifir, thus the chain (3) collapses to
two terms. By contrast, in the general case all terms of the chain (3) are
distinct (see 5.7).

We now give an alternative description of n-firs and semifirs. First we
remark that if we have a relation (1) in an n-fir, where r < n, then
we can transform (1) to a relation a’-b' =0, where a' = (a;
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a, 0 ... 0),b’=0 ... 0 bjyy ... b)) andai, ..., a} are
right linearly independent. This follows easily by an induction on r — k.
The transformation from a-b to a’-b’ =aP™'- Pb is often called an
internal modification.

THEOREM 1.6.1. Let R be a non-zero ring. Then for every integer
n = 0, the following conditions are equivalent:
(a) R is an n-fir,
(b) any left ideal of R generated by r < n left linearly dependent elements
has a family of fewer than r generators,
(c) any submodule on at most n generators of a free left R-module is
again free, of unique rank,
(a°)—(c°) the left—right duals of (a)—(c).
Further, R is a semifir if and only if every finitely generated left (or
equivalently, right) ideal is free, of unique rank.

Proof. (a) = (b). Suppose that a is a left ideal generated by u,, ..., u,
(r =< n) which are left linearly dependent, say a-u =0, where u=
(u; ... w)', a=(ay,...,a)#0. Then by (a) there is a matrix P

trivializing this relation, say u’ = Pu, a’ = aP™, a' - u’ = 0. Further, a is
generated by the components of u’; since a #0, we have a’ # 0, so by
triviality some component of ' is 0 and hence a is generated by fewer
than r elements. Thus (b) holds, and by taking a generating set of a of
least cardinal we see that q is free as left R-module.

(b) = (c). Let F be a free left R-module and G a submodule on a
generating set u,, ..., u,, where r < n. If G is not free on uy, ..., u,
suppose that > a,u; = 0, where the g; are not all zero. By transforming to
aj, u; we may suppose that aj, . .., a; are right linearly independent and
a,.,=...=a,=0, where k = 1. By projecting from F to R we see that
all the coordinates of uj, ..., u; must vanish, hence u;=...=u;, =0
and so G has a generating set of fewer than r elements. Taking a
generating set of least cardinal, we see that G is free. If G has a basis of
r < n elements and another basis, of s < r elements, then R" = R*, so G
has a surjective endomorphism with kernel isomorphic to R"™°, Hence a
generating set of s elements maps to a set of s non-free generators under
this epimorphism, which as before yields a generating set of fewer than s
elements. This is a contradiction and it shows that the rank of G is
unique.

(c) = (a). Given a relation (1), the vector b =(b; ... b,)T defines a
linear map f: R"— R by right multiplication and we obtain an exact
sequence

0—->kerf—-> R —-imf—0. 4
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As r-generator submodule of R, im f is free, so this sequence splits and
we can change the basis in R” to one adapted to the decomposition
R =kerf @ im f, where dimim f = ¢ say. If this change of basis is
described by P € GL,(R), and a’ = aP~!, b’ = Pb, then since a’ - b’ =0,
the components of a’ lie in ker f. Thus the components of a’ after the
first ¢ are zero, while the first ¢+ components of b’ are 0, so (1) has been
trivialized. Now (a°)—(c°) follow by the symmetry of (a).

If R is a semifir, (a) holds for all n, hence by (c), any finitely generated
left ideal is free of unique rank. Conversely, when this holds, and R
contains free left ideals of arbitrary finite rank, then (c) holds and hence
(a), for all n. When this is not the case, R is a left Ore domain, by Prop.
3.6, and hence it has IBN; thus (c) holds and hence (a). W

Suppose that over an n-fir R we have a matrix relation AB = 0, where
Ais m X r and B is r X 5. Then right multiplication by B defines a linear
map f: R"— R*, leading to an exact sequence (4). Here imf is an
r-generator submodule of R’, so if r < n, im f is free and as in the proof
of the theorem we can find P € GL,(R) to trivialize the relation AB = 0.
Thus we have

CoROLLARY 1.6.2. Over an n-fir any matrix relation AB = 0, where A
has at most n columns, can be trivialized by an invertible matrix. #

This result can still be generalized. Suppose that AB merely has a block
of zeros, say

c o0\ r
AB = (C Cn) . (5)
s’ s”

If A’ denotes the block consisting of the first " rows of A and B” is the
block consisting of the last s” columns of B, then A’'B” =0, hence this
product can be trivialized and we obtain

LemmMma 1.6.3 (Partition lemma). Ler R be an n-fir and let A € 'R",
B € "R* be such that the product AB has an r' X s" block of zeros as in
(5), where r', r", s', s" indicate the numbers of rows and columns
respectively. Then there exists P e GL,(R) and a decomposition
n=n'+ n"such that AP~ has an r' X n" block of zeros and PB has an
n' X s" block of zeros. R

A (non-zero) ring in which every right ideal is free, of unique rank is
called a right fir. Left firs are defined similarly and a left and right fir is
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called a free ideal ring, or fir for short. In the commutative case firs
reduce to PIDs, more generally we have

ProrosiTioN 1.6.4. A ring is a principal right ideal domain if and
only if it is a right fir and satisfies the right Ore condition.

Proof. In a right fir R every right ideal is free and if R is also right Ore,
then any two elements of R are right linearly dependent, hence no right
ideal needs more than one generator and so R is right principal.
Conversely, a PRID is right Noetherian and hence right Ore, thus all
right ideals are free and we have a right fir. B

As an example of a fir we have the free k-algebra (for any commutative
field k) on a set X. It is written k(X ) and consists of all k-linear
combinations of words on the set X. If X = {x}, this algebra is just the
polynomial ring k[x], but as soon as X has more than one element, the
algebra is non-commutative. That k(X ) is a fir will be shown in 5.4; for
the moment we note that a commutative fir is just a PID (by Prop. 1.6.4),
and k[x] is a PID, as is well known and easily proved with the help of the
Euclidean algorithm. In fact a generalization of the latter, the weak
algorithm, can be used to show that k(X) is a fir, but we shall use a
different method of proof in Ch. 5.

The homomorphic image of a semifir need not be a semifir; this is clear
since the free algebra is a semifir, while most of its homomorphic images
are not. However, a retract of a semifir is again a semifir. We recall that a
ring S is called a retract of a ring R if there is a homomorphism f: R — S
with a left inverse (composing from left to right). The left inverse must
then be injective and if we identify S with its image in R, we can describe
a retract of R as a subring S of R with a homomorphism from R to §
whose restriction to § is the identity map.

ProrosiTiON 1.6.5. Any retract of an n-fir is an n-fir; likewise for
semifirs.

Proof. Let f: R— S be a retract, where R is an n-fir, and consider an
r-term relation in S, where r < n:

ab= Eaibi =0. (1)

Over R we can trivialize it: a’+ b’ = 0 holds trivially, where a’ = aP™!,
b’ = Pb for an invertible matrix P over R. Applying f to P we obtain a
matrix over § which trivializes (1) in S. This proves the result for n-firs;
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the conclusion for semifirs follows because a semifir is just an n-fir for all
n. 1

Often a generalization of free algebras is needed. Let K be any field
and E a subfield of the centre of K. Then the tensor K-ring on a set X
over E, Kg(X), is defined as the K-ring generated by X over K with
the defining relations

ax =xa forallx e X,aeE.

As we shall see in 5.4, this ring is also a fir. In fact, E could be taken to
be any subfield of K, not necessarily central, but we have imposed this
condition to ensure that substitution can be carried out: any map X — K
extends to a homomorphism Kz(X) — K.

Tensor rings can be defined more generally for any bimodules and this
construction will also be needed later. Let K and E be as before and let
M be a K-bimodule centralizing E, i.e. am = ma for any me M,
o€ E. Define M"=M® ... ® M (n factors), where the tensor pro-
duct is taken over K. Then the direct sum

KoM OM®... (6)

becomes a ring by using the natural homomorphism M’ ® M*— M'**
together with linearity to define the multiplication. This ring is often
written Kz( M), where the context usually indicates whether it is taken
over a set or a bimodule. The tensor ring on a set X may in fact be
regarded as a special case, by taking M to be the direct sum of copies of
K° ® 5 K indexed by X.

The tensor K-ring Kz(M) on a bimodule M can be shown to be a fir
by using the weak algorithm (see FR, 2.6), but here we shall merely
prove (in 5.4) that it is a semifir, which is enough for our purposes. In
particular this will apply to the free K-ring Kz(X) on a set X.

Besides the free algebra and the free K-ring we shall also need to
consider free power series rings. Let X and E C K be as before; then we
can consider the set Kz{( X)) of formal series in X as a K-ring in a
natural fashion. Formally this ring may be defined as the completion of
the free K-ring Kz( X ) in the topology defined by the powers of the ideal
generated by X. This power series ring is again a semifir (see 5.4), but
unlike the free K-ring, it is not a fir when X # & (see FR, 3.4).

When X is infinite, it is sometimes convenient to assign degrees to the
members of X. The case just described is that where each x € X has
degree 1, but if we assign degrees in such a way that for any integer N
only finitely many members of X are of degree less than N, then the
resulting ring will include terms such as >,,.yx. Thus Kg(X)) will
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depend on the degree function that is used for X. In the uses we make of
power series, X will be finite and then Kz{( X)) is independent of the
degree function used, so this problem does not arise.

At first sight free algebras seem far removed from the kind of rings that
are usually considered, but in fact they can be found in any non-Ore
domain.

ProPosITION 1.6.6. Let R be an integral domain with centre F. Then
either R is left and right Ore or it contains a free algebra of countable rank.

Proof. Suppose that R is not left Ore and take x,y € R* such that
Rx N Ry =0, i.e. x and y are left linearly independent over R. We claim
that the F-algebra generated by x and y is free. For if not, then there is a
polynomial in x and y which vanishes; we choose such a polynomial f of
least degree and write it as

f=a+fix+ hy,

where o€ F and f;, f, have lower degree than f. If a =0, then
fix + f,y =0, which contradicts the hypothesis, so ¢ #0 and f,, f,
cannot both vanish, say f; # 0. Hence

0=yf=ay + yfix + yfoy
= yfix + (@ + yfr)y,

which is again a contradiction. This shows the F-algebra on x and y to be
free. Now the subalgebra generated by z, = xy" (n =0, 1, 2, .. .) is easily
seen to be free on the z, and so it satisfies all the conditions. W

To obtain a homological description of firs, we recall that a ring is said
to be left hereditary if every left ideal is projective, left semihereditary if
every finitely generated left ideal is projective. It is well known that for a
left (semi)hereditary ring, every (finitely generated) submodule of a
projective left R-module is again projective (A.3, Th. 3.4.4, p. 97),s0 a
left hereditary ring is just a ring of left global dimension at most 1. Similar
definitions apply on the right and give distinct classes of rings (see Ex. 3).

The homological dimension of a module measures how far the module
is from being projective. In this sense one can also ask how far a
projective module is from being free. We shall not introduce a measure
here, but define a ring R to be projective-free if every finitely generated
projective left R-module is free, of unique rank. The duality
P— Homg (P, R) shows this notion to be left—right symmetric. For
example, any local ring is projective-free (FR, Cor. 0.5.5, p. 22). It is
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easily verified that a ring is a left (semi)fir if and only if it is
projective-free and left (semi)hereditary.

In Ch. 4 we shall show that every semifir can be embedded in a field.
For the moment we shall merely note that semifirs satisfy Klein’s
nilpotence condition.

ProrosiTiON 1.6.7. Let R be an n-fir and C a nilpotent n X n matrix
over R. Then there is a conjugate P~'CP which is upper triangular, with
zeros on the main diagonal; in particular, C" = 0.

Proof. Since C is nilpotent, we have C™*! =0 for some m = 0. Choose
the least such m and write B = C™; then B # 0 and CB = 0, hence by
Cor. 6.2, there is an invertible n X n matrix U such that CU has its first
column equal to 0, and the same holds for U ! CU. Omitting the first row
and column from U 'CU, we obtain an (n — 1) X (n — 1) matrix which is
again nilpotent; by induction it is conjugate to an upper triangular matrix
with zeros on the main diagonal, hence the same holds for C. B

With the help of Klein’s theorem (Klein [69]) this shows that for every
semifir R, the monoid R™ can be embedded in a group. In fact this
already holds for 2-firs, by the Gerasimov-Malcolmson localization
theorem (FR, Th. 7.11.22, p. 484).

Exercises

1. Give a direct proof that a semifir is weakly finite.

2. Let A be a commutative integral domain. Show that the polynomial ring A[x]
is a fir if and only if A is a field.

3. Show that Q as Z-module is not projective. Deduce that the triangular matrix

ring (g 8) is right but not left hereditary.

4. Prove that a ring is a left (semi)fir if and only if it is left (semi)hereditary and
projective-free.

5. Show that a retract of a PID is again a PID.
6°. Is every retract of a fir again a fir?

7. Let R be any ring and a a right ideal which is free as right R-module and
satisfies a> = a. Show that either a = R or a = 0.
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8. (G. M. Bergman) Show that if an inverse of xy is adjoined to k{x, y), the
resulting ring has an idempotent # 0, 1.

9. Show that a ring R is a semifir and a local ring if and only if R # 0 and for any
aij, ..., a, € R satisfying a relation Y a;b; = 0, where the b; are not all zero, there
is such a relation with one of the b; a unit (Cohn [92']).

10. Show that in a semifir R every finitely generated left or right ideal a satisfies
2

a®pa=a”.
11. Let R be a semifir and ¢ € R. Show that any right ideal a in R satisfies
rk(a N cR) < rka, with equality if and only if a + ¢R is principal.

1.7 The matrix reduction functor

We shall now take a closer look at Rg, the category of rings and
homomorphisms, and some related categories. Here the unit element 1 is
understood to be a constant operator. The category Rg has as its final
object 0, the zero ring consisting of 0 alone, for every ring has a unique
homomorphism to 0. There is also an initial object, the ring of integers Z,
for there is always a unique homomorphism Z — R, because Z is
generated by the constant operator 1, whose image in R is determined.
This amounts to treating rings as Z-algebras.

More generally, if A is any commutative ring, by an A-algebra we
understand a ring R which is an A-module such that

aoxy)=ax-y=x-ay forallx,ye R, ae A. (1)

It is easily verified that an A-algebra is simply a ring R with a
homomorphism from A to the centre of R, viz. o+ « - 1. The expression
‘A-algebra’ will be taken to imply that A is a commutative ring.

Often a more general notion is needed. Let A be any ring, not
necessarily commutative. By an A-ring we understand a ring R which is
an A-bimodule such that

a(xy) = (ax)y, (xa@)y = x(ay), x(y@) = (xy)«,
forallx,ye R,ae A. (2)

Again it is easy to see that an A-ring is nothing other than a ring R with a
homomorphism A — R, viz. a > « - 1. If this homomorphism is injective,
the A-ring is called faithful. We shall write Rg, for the category of
A-rings and homomorphisms, where the homomorphisms are understood
to be compatible with A; this will be so if they are ring-homomorphisms
and A-bimodule homomorphisms. Clearly Rg, is a category with initial
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object A; it is essentially the comma category (Rg, A) (see 5.1 below;
A.3,p. 69).

In the category Rg, we can, for any pair of objects R, S, form the
pushout:

A R
| | @
5 P

Here P may be obtained by taking a presentation of R as A-ring:
R=A(X;R), where X is a generating set with defining relations R,
and S = A(Y;S), and take the joint presentation (assuming the sets X,
Y to be disjoint):

P=R:S=A(XUY;R,S). 4)

This is usually called the coproduct of R and S over A (or sometimes the
free product of R and S, amalgamating A). Its existence is clear by
abstract nonsense, but in practice we shall often want to have further
information on the structure of the coproduct, e.g. whether the coproduct
(4) is faithful, i.e. the natural homomorphisms from R, S to P in (3) are
injective. These questions will form the subject of Ch. 5.

Another category of interest to us is the category Rg,, of #n X n matrix
rings. Its objects are rings with n® constant operators e; (in addition to 1),
traditionally called the matrix units, although they are not units except in
the trivial case n = 1. They satisfy the conditions familiar from matrix
theory:

€€ = Ojé€y, zeii =1, &)

where 6, = 1if j = k and 0 otherwise (Kronecker delta). The morphisms
in Rg, are ring homomorphisms preserving the matrix units. For any
n =1 this category is equivalent to the category of rings. To prove this
fact we introduce the matrix functor M,, a covariant functor from Rg to
Rg,. With any ring R it associates the » X n matrix ring M, (R) = R,
whose elements are n X n matrices over R, with the matrix units e; being
given by the matrix with (i, j)-entry 1 and all other entries 0. Clearly any
ring homomorphism f: R — S uniquely determines a homomorphism
from M,(R) to M,(S) in Rg,, by applying f to the separate matrix
entries. Conversely, any homomorphism M, (R) — M,(S) arises in this
way from a homomorphism R — S, because R can be characterized
within M,(R) as the centralizer of all the e; and it is mapped to the
centralizer of the e; within M,(S), which is §. Thus the functor M, is
faithful and full; moreover, every object T in Rg, is of the form M, (C),
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where C is the centralizer of the e; in T. This shows M, to be a category
equivalence (see A.2, Prop. 1.3.1, p. 19). Thus we have proved

TueEOREM 1.7.1. The matrix functor M, establishes an equivalence
between Rg and Rg,, forany n=1. B

The inverse of the matrix functor is a functor from Rg, to Rg which
associates to any n X n matrix ring with a specified set of matrix units e;
the centralizer of the e;. There is another functor from Rg, to Rg, namely
the forgetful functor, which forgets the e;. It is important to distinguish
these two functors; we shall not use a special notation for the inverse of
IM,,, but denote the forgetful functor applied to a matrix ring M,(R) by
M, (R).

We now come to another functor, perhaps less familiar than the others.
By the n-matrix reduction functor 8, we shall understand the left adjoint
of the n X n matrix functor. Thus we have

Rg(R, M,(S)) = Rg(W,(R), ). (6
Our first task is to show that such a functor exists. Taking R to be the

initial object Z in (6), we see that ®,(Z) is again an initial object in Rg,
hence by uniqueness,

B(Z)=1Z.
Next, by the equivalence of Rg and Rg, we obtain from (6),
Rg (R, M,(S)) = Rg, (M,(B,(R)), M,(S))- 9

Let us put §,(R) = M,(W,(R)); (7) shows §,(R) to have the following

universal property: There is a homo-

R B §,(® morphism w: R—§,(R) such that

every homomorphism from R to a

matrix ring M,(S) can be factored

uniquely by a homomorphism

$.(R)— M, (S). Here u is obtained

TS by choosing M,(S) =F,(R) in (7)

and taking the map on the left corresponding to the identity map on the

right.

This description makes it clear how to construct §,(R): we take the

ring R and adjoin n? elements e; satisfying the equations (5). If R is an
A-algebra, we shall also want the relations

ae; =e;o forallaoe Aandi,j=1,...,n,

to ensure that §,(R) is again an A-algebra. When R = A, this construc-
tion just gives M, (A), while in general we have a coproduct over A:
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Fu(R) = R x M, (A).

This is an n X n matrix ring; the underlying ring, viz. the centralizer of
the e;, is W,(R), or more explicitly, W,(R; A). This mode of formation
leads to the following rule-of-thumb for forming ®,(R):

Take the elements of R and interpret them as n X n matrices, with the
elements of A as scalars.

More generally, given an A-algebra R with a presentation R =
A(X; ®), we can form another A-algebra by interpreting each element
x of X as an m, X n, matrix, where n, = m, if a product xy occurs in @,
m, = m, if a sum of terms begins with x and y respectively and n, = n, if
a sum of terms ending in x, y respectively occurs in ®.

We give some examples to illustrate these rules, where k is a
commutative field:

1. Let R = k[x], the polynomial ring in x. Then W®,(R) is the free
k-algebra on n? generators x;.

2. R=k{t,t7'], the ring of Laurent polynomials (see 2.1). Here
W, (R) is the k-algebra on 2n® generators x;, y; (i,j=1, ..., n) with
defining relations in matrix form, writing X = (x;), Y =(y;), XY =
YX = I. More generally, we can interpret ¢ as m X (m + d) matrix and
t™! as (m + d) X m matrix, and so obtain the universal non-IBN ring of
free module type (m, m + d).

3. R = k[x; x” = 0]. Here ®,(R) is the k-algebra with n* generators x;
and defining relations in matrix form, writing X = (x;), X" =0.

Later, in 5.7 we shall see that for n > 1, ®,(R) is an integral domain
whenever R # 0. Applied to the example 3, with » > n > 1, this provides
an example of an integral domain not embeddable in a field, by Prop. 4.4.

Exercises

1. Show that for a non-commutative ring A, the category of A-algebras (as
defined by (1)) is equivalent to the category of A-algebras, where A = Af, ¢
being the commutator ideal of A (thus A is the largest commutative homomorphic
image of A).

2. An A-ring R is said to be augmented if there is an A-ring homomorphism
R— A. Show that an augmented A-ring R can be expressed as R=A @Da,
where a is the kernel of the above homomorphism R— A (a is called the
augmentation ideal). Show that the coproduct of augmented A-rings is faithful. If
A = k[x], give an example of two A-rings whose coproduct is not faithful.
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3. What is the appropriate n-matrix reduction functor for the category of A-rings,
where A is a non-commutative ring?

4. Show that the correspondence R — e Rey; is a functor from Rg, to Rg which
is inverse to M,,.

5. Show that the matrix functor M,, does not have a right adjoint.

6. For any A-rings B, C, show that B * M,(C) = M,.(R), where R = B,(B %G
0).

Notes and comments

The first non-commutative field was the ring of quaternions, constructed
by Sir William Hamilton in 1843, with the aim of representing vectors in
space (in the way vectors in the plane could be represented by complex
numbers). Hamilton and his followers built up an elaborate geometrical
calculus on this foundation, which eventually led to vector analysis, but
which is not relevant to our theme. Skew fields finite-dimensional over
their centres (division algebras) were studied intensively in the 1920s and
1930s and there has been a revival of interest since 1970. For an
up-to-date account see Jacobson and Saltman [a].

The first skew field infinite-dimensional over its centre was constructed
in 1903 by Hilbert in his study of the foundations of geometry (Hilbert
[03]). This was the field of skew Laurent series F((x; a)), where F is the
rational function field R(¢) and « is the automorphism f(¢) — f(2¢) of F
(see 2.3), to illustrate the fact that an ordered field need not be
commutative, when the ordering is non-Archimedean. In principle this
example already occurs in the first edition, Hilbert {1899], but there (in a
rare mistake) he takes the automorphism « to be f(t) — f(—1); this is not
order-preserving and so the ordering cannot be extended (in fact the
resulting field is 4-dimensional over its centre). For a brief history see
Cohn [92].

Near fields were introduced by Dickson [05] in studying the axiomatics
of field theory; a thorough treatment can be found in Wihling [87]. The
definition of fields in terms of their multiplicative group given in Lemma
1.1 is taken from Cohn [61’], with some simplifications suggested by
N. G. Greenwood. Similar sets of axioms were used by Dicker [68] and
Leissner [71]. A remarkable set of axioms for fields, dispensing with the
distributive laws, was found by Pickert [59], who proves that a set K with
two binary operations x + y, xy is a field provided that (i) K is an
abelian group under the operation x + y with neutral element 0, (ii)
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K\{0} is a group under the operation xy, with neutral element 1, (iii)
K\{1} is a group under the operation xoy = x + y — xy, with neutral 0
(where — denotes the inverse of +, as usual).

Quasi-identities have been studied in universal algebra, see UA, Ch.
VI, where they occur as particular Horn sentences, and Malcev [73]; see
also Cohn [71']. Ultraproducts were introduced by Los [55] and today
constitute a basic tool in model theory, see Chang and Keisler [73], UA,
V. 5.

O. Ore [31] studied the construction that bears his name and proved
Cor. 3.3. In Ore [33] he applied these results to skew polynomial rings, in
particular the ring of differential polynomials k(7)[x; 1, d/d¢] (see 2.1).
The concept of invariant basis number was first defined and studied by
Leavitt [57]; see also Everett [42]. A comparative study of IBN, UGN
and weak finiteness was made by Cohn [66]. That Noetherian domains
are Ore was first proved by Goldie [58].

The notion of similarity goes back to Fitting [36], who examines this
concept for matrices over any ring. In the form given here it is taken from
Cohn [63], see also FR, 0.6 and 3.2. Invariant and bounded elements
were studied in the context of pseudo-linear transformations by Jacobson
[37], see also the account in Ch. 3 of Jacobson [43]. Our treatment is
based on that of Ch. 3 of FR, where Prop. 5.2 and Th. 5.4 are established
for semifirs.

Firs and semifirs (then called ‘local firs’) were introduced in Cohn [64].
Here we have included only a few basic results needed later; for a
detailed account see FR Ch. 1, 4 and 5.

The matrix reduction functor arose in conversation between G. M.
Bergman and the author in 1969 and is described in Cohn [69]; see also
Bergman [74'], Cohn [79] and FR, 2.11. It was also defined in Procesi
[73], Ch. IV, but used only in commutative rings, where it leads
essentially to the generic matrix ring.
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Skew polynomial rings and
power series rings

The true analogue of a polynomial ring in the non-commutative case is
the free algebra, or more generally, the tensor ring. But there is a
half-way house, rather like the Ore domain (of which it is an instance),
namely the skew polynomial ring, which was introduced by Ore [33]. We
examine its elementary properties in 2.1 and make a further study of its
ideal theory in 2.2. By forming a completion we obtain in 2.3 from a skew
polynomial ring a skew power series ring, whose properties in some
senses are simpler than for polynomials. This leads in 2.4 to the
Malcev—-Neumann construction, a far-reaching generalization allowing
the group algebra of any totally ordered group to be embedded in a field.
With its help we can iterate the skew polynomial ring construction in 2.5
to form the rings first studied by Jategaonkar, which provide a rich source
of counter-examples.

The final section 2.6 applies Ore’s method to filtered rings whose
associated graded ring is an Ore domain. It is shown that the filtered ring
can be embedded in a field, constructed as an inverse limit, and this
construction is then used to embed the universal associative envelope of
any Lie algebra in a field.

2.1 Skew polynomial rings

Commutative field extensions are usually constructed as residue-class
rings of polynomial rings over a field. For skew fields the polynomial
construction is not the most general means of forming an extension, but it
is an important special case because it allows Ore’s construction from 1.3
to be used; in fact Ore [33] was one of the first to consider skew
polynomial rings formally.

Let K be a field with a central subfield C. Then the K-ring generated

47
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by an indeterminate x over C is the tensor K-ring K.(x) already
encountered in 1.6. Its elements do not look like polynomials at all,

a+ Xbixc;+ Xdxexf,+ ..., a,b,c,de,fiek,

and they are no easier to handle than expressions in several variables. We
shall make the simplifying assumption that all coefficients can be written
on the right, but we shall allow the coefficient ring to be arbitrary, to
begin with.

Thus let A be any ring, ¢ a new symbol to represent the indeterminate
and consider a ring R whose elements can all be uniquely expressed in the
form

f=ay+ta;+ ...+ t"a,, wherea, e A. (1)

We shall call such an expression f a polynomial in ¢t and define its degree,
deg f, as n if g, # 00; the zero polynomial 0 is said to have degree —. If
in (1), a, =1, f is said to be monic. The additive group of R is just the
direct sum of countably many copies of A, by the uniqueness of (1). To
multiply two elements, say f = > t'a; given by (1) and g= Etfb,- we
have, by distributivity, fg = > #'(a;#/)b; and so it will only be necessary to
prescribe a;t/. We shall also assume that

deg fg < degf + degg. 2)
Then in particular, at for any a € A has degree at most 1, so
at = ta® + a°, 3)

where a+— a®, a—> a® are mappings of A into itself. This is already

enough to fix the multiplication in R, for now we can work out at” by
induction on r:

at’ = (ta® + a®)t’ " = [2a® + t(@a® + a®) + ) 2= .. ..
We derive some consequences from (3):
(@a+b)t=tla+b)*+(a+b)’, at+bt=1ta*+a°+ th®+ b’
hence
(a +b)*=a*+b*, (a+b)°=a’+b°, 4)
and
(ab)t = t(ab)® + (ab)®, a(bt) = a(th® + b®) = ta®*b® + a’b* + ab?,
O

(ab)* = a®b®, (ab)’ = a®bh* + ab®. 5)
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Further, 1t = ¢1 = ¢, therefore
=1, 1°=0. (6)

From (4)-(6) we see that « is an endomorphism of A and & is an
a-derivation of A, i.e. a mapping such that

(a+ b)Y =a’+b% (ab)°=a’b*+ ab® foralla,be A. (7)

We note that (7) entails 1°=0, by putting a=5b =1 in the second
equation (7). Conversely, if A is any ring with an endomorphism « and
an a-derivation 6, then the set of all expressions (1) can be made into a
ring by defining addition componentwise and multiplication by the
commutation rule (3). The verifications are straightforward, and they
show that in the resulting ring the form (1) for the elements is unique.
This proves part (i) of

ProrosiTioON 2.1.1. Let A be a ring, « an endomorphism and & an
a-derivation of A andput R = A(t;at =ta* + a’,ae A). Then
(i) each f € R can be uniquely written as >, t'a; (a; € A),
(ii) R is an integral domain, provided that A is an integral domain and «
is injective,
(iii) if A is a field, then R is a principal right ideal domain, which is also
a principal left ideal domain whenever « is an automorphism.

To prove (ii), we note that when A is an integral domain and o is
injective, then we have equality in (2), and hence R is then an integral
domain. Next, let A be a field and let a be a right ideal in R. For a =0
there is nothing to prove; otherwise let p =ay+ ta; + ... + t" be the
monic polynomial of least non-negative degree in a. Given f € a, we can
by the usual division algorithm write f= pg + r, where ¢g,r € R and
degr < degp. But then r = f — pg € a, and if r # 0, we obtain a monic
polynomial of lower degree than p in a, which contradicts the minimality
of p,sor=0and f e pR. Hence a = pR and R has been shown to be
right principal. If « is an automorphism, with inverse f5, then, writing
a®*=b, we have a=b? and we can re-write (3) in the form bPr=
th + b# or

th = bPt — bP,
which shows by symmetry that R is left principal. B
The ring R formed here is called the skew polynomial ring in t over A

associated with a, 6 and is denoted by A[t; &, 6]. When 6 = 0, we also
write A[t; o] instead of A[t; @, 0]. If moreover o =1, we obtain the
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polynomial ring in a central indeterminate ¢ over A, written A[t]. For a
field K the principal right ideal domain K[¢; a, 6] has a field of fractions,
by Cor. 1.3.7, which will be denoted by K(¢; «, 6).

In matrix notation the commutation rule (3) may be written

al )=( t)(g ZZ)

and the conditions (4)-(6) may be summed up by saying that the mapping
of A into the matrix ring A, defined by

a a°
is a ring homomorphism. More precisely, it is a homomorphism into the
ring T,(A) of upper 2 X 2 triangular matrices over A, which in a

suggestive notation may also be written (‘g ﬁ) More generally, any

homomorphism from A to T,(A) has the form
2 a® a°
0 af)

and it is easily verified that a, B are endomorphisms of A, while &
satisfies

(a + b)>=a®+ b%, (ab)® = a®b® + a®b®. 9

Such a mapping is called an («, B)-derivation of A; as before, a
(1, B)-derivation is also called a fS-derivation. As an example of an
(«, B)-derivation we have the mapping

aw ca® — a%c, wherece A. (10)

This is called the inner («, B)-derivation induced by c; any derivation not
of this form is said to be outer.

Let A be a right Ore domain with field of fractions K. In Cor. 1.3.5 we
saw that any injective endomorphism of A extends to K; in fact this also
applies to derivations. Thus let « be an injective endomorphism of A; its
unique extension to K is again written as a. Any a-derivation 6 defines a
homomorphism (8) from A to T,(A) which by functoriality extends to a
homomorphism from K to T,(K), say

w__)u u'
0 u*/)

Clearly the map u +~ u' is an a-derivation on K extending 6 and we shall
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write u?® instead of u’ for u € K. Thus we have shown that the derivation
associated with an injective endomorphism extends to K:

ProrosiTioN 2.1.2. Let A be a right Ore domain with field of
fractions K, and let o be an injective endomorphism of A and 6 an
a-derivation. Then « extends to a unique endomorphism of K and o
extends to a unique «-derivation of K. B

In a skew polynomial ring R = A[¢; a, 8] over any ring A we can
change the variable by writing

t'=ta+ b,

where a, be A and a is a unit in A. Clearly this leaves the ring R
unchanged, but it will in general change a and 8 and by a judicious choice
of variable it may be possible to reduce o to 1 or é to 0. Suppose that « is
an inner automorphism:

¢® = ucu™! for some u € U(A).
Writing ¢’ = tu, we find that ct’ = ctu = (t¢® + c®)u = tuc + c®u, hence
ct' =t'c+ cluforallc e A;

thus « has been reduced to 1 by a change of variable.
Secondly, assume that § is an inner a-derivation:

¢®=cd — dc*forsome d € A.

On writing t' =t —d, we have ct' = c(t — d) = tc* + ¢d — dc® — cd =
t'c% so

ct’' =t'c”
Thus if either a or d is inner, it can be reduced to 1 or 0 respectively by a
change of variable. In fact, when neither & nor 8 is inner, R is quite
restricted, as the next result shows:

THEOREM 2.1.3. Let K be a skew field with centre C and let R =
K[t; a, 8] be a skew polynomial ring with endomorphism « and o-deriva-
tion 6. Then
(i) if a does not leave C fixed, then O is inner and by a suitable choice
of variable may be taken to be zero,
(ii) if « leaves C fixed but 8 does not map it to 0, then « is inner and by
a suitable choice of variable may be taken to be 1,
(iii) if a leaves C fixed and 8 maps it to zero, then C is contained in the
centre of R.
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Proof. Assume that o does not leave C fixed, say y* # y for some y € C.
Then on writing t' = yt — tv we have, for any c € K,

ct’ = c(yt — ty) = ytc® + yc® — tc®*y — %y = t'c®,

hence we have R = K[t'; a], so 6 has been reduced to zero. Next assume
that « leaves C fixed but there exists y € C such that y° # 0. Then y* = y
and for any c € K we have cy = yc, hence cy® + ¢y = yc?® + y%¢?, i.e.
cy® = y%c® and writing t' = £(y°)™!, we have

ct’ = te*(Y) T+ Ay =t (Y) e + A0 = e + Y,

where &' is a 1-derivation, i.e. an ordinary derivation of K. This shows &
to be inner. In the remaining case « reduces to 1 and é reduces to O on C,
hence ¢ centralizes C as well as K and so C is contained in the centre
of R. B

In the special case where [ K:C] is finite, all linear endomorphisms and all
linear derivations are inner, by the Skolem—Noether theorem:

ProrosITION 2.1.4. Let K be a field finite-dimensional over its centre
C. Then any C-linear endomorphism of K is an inner automorphism and
any C-linear derivation is inner.

Proof. Any endomorphism « of K must be injective, since the kernel is a
proper ideal; hence it is an automorphism by finite dimensionality. Now
« is inner, by the Skolem—Noether theorem (A.3, 7.1 or Cor. 3.3.6
below).

To prove the result for derivations we shall need the Skolem-Noether
theorem for simple rings: any two homomorphisms from a finite-dimen-
sional simple algebra into a central simple finite-dimensional algebra A
have images that are conjugate in A (see A.3, Th. 7.1.6, p. 262). We
could take a = 1, by what has been shown, but this is not necessary. We
have the following two homomorphisms from K to T,(K):

a0 Lo (e a®
0 af 0 a*f
By Skolem-Noether the images are conjugate, thus there is a non-singu-

lar matrix (l: 3) over K such that

E A R
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Hence
— — 8 a
ap = pa, aq = pa° + qga”,
ar =ra, as = ra®+ sa”.

It follows that p, r € C; they cannot both vanish, say p # 0; then on
dividing by p we may assume that p =1 and so aq = a’ + ga®, which
shows d to be inner. B

For any skew field K we obtain a rational function field K(¢) by
forming the polynomial ring K[¢] in a central indeterminate and taking its
field of fractions. Its centre is described by the next result:

ProPoOsITION 2.1.5. Let K be a field with centre C. Then the function
field K(t) formed with a central indeterminate t has the centre C(t).

Proof. Every element of K(¢) has the form ¢ = fg~!, where f, g € K[¢].
We shall use induction on d(¢) = deg f + deg g to prove that if @ is in the
centre of K(¢), then @ € C(t), the converse being evident. For d(¢) =0
we have an element of K and the result holds by definition. If d(¢) >0,
we may assume that deg f = deg g, replacing @ by ¢! if necessary. By
the division algorithm, f = qg + r, where degr <degg, with uniquely
determined ¢, r € K{t]. Let us write u°=c 'uc for u e K(t), ce K*;
then

p=fgt=q+rgt, ¢ =q"+r@E)"

Since @ is in the centre of K(¢), we have ¢° = ¢, i.e.

g—q-=r(g)" -rg" (11)

Now v(p) = deg g — deg f is a valuation on K(¢) and the left-hand side of
(11) has a value < 0, unless g = ¢°, while the right-hand side has a strictly
positive value, which gives a contradiction. Without using valuations we
can say: put t =s!; then K(¢) = K(s) and for s =0 the right- but not
the left-hand side of (11) vanishes. This shows that both sides must
vanish, ¢° = q and rg™! is in the centre, but d(rg™!) < d(fg™!), so the
result follows by induction. B

Later, in 2.2, we shall meet another proof of this fact.

Let us examine more carefully the conditions under which a skew
polynomial ring over a field is left principal.

ProrosiTIiON 2.1.6. Let K be a field with an endomorphism « and an
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a-derivation 8, and let R = K[t; «, 8]. Then the following conditions are
equivalent:

(a) « is an automorphism,

(b) R is left principal,

(c) R is left Ore.

Proof. (a)=(b) by Prop. 1.1 and (b)=>(c) is clear. To show that
(c) = (a), assume (c); it will be enough to show that « is surjective. Let
¢ € K; by hypothesis there exist f, g € R such that

ft = gtc # 0.

A comparison of degrees shows that degf =degg = n, say. Let f=
t"a+...,g=1t"b+...,then by comparing highest terms we find a® =
b%c and so ¢ = (b7'a)®. This shows a to be surjective and hence an
automorphism. W

This result together with Prop. 1.6.6 leads to an embedding of a free
algebra in a field, as was observed by Jategaonkar [69’] and independ-
ently, Koshevoi [70]: Let K be a field with a non-surjective endomorph-
ism «, e.g. the rational function field k(z) with endomorphism o:
f(t)~ f(*), and form the skew polynomial ring R = K[x; «]. This is a
principal right ideal domain, by Prop. 1.1, and so has a field of fractions
D, say. By Prop. 1.6 it is not left Ore, so it contains a free algebra of
infinite rank. This then provides an embedding of the free algebra in a
field.

In spite (or perhaps because) of its simplicity this construction is of
limited use, because not every automorphism of the free algebra can be
extended to an automorphism of the field of fractions, constructed here.
One application of this construction due to J. L. Fisher [71] is to show
that the free algebra has many different fields of fractions, in contrast to
the situation in the commutative case, where the field of fractions is
unique up to isomorphism, when it exists (Prop. 1.3.4). Let A = k[¢] be
the polynomial ring in a central indeterminate ¢ over a commutative field
k; for n=2, 3, ... it has the endomorphism «,: f(¢) — f(¢"), which is
clearly not surjective because ¢ does not lie in the image (for n > 1). Now
form R = A[x; «,] and consider the subring S of R generated by x and
y =xt over k. By Prop. 1.6 it follows that Sx NSy =0, hence the
subalgebra on x and y is free, and for different n we get distinct, i.e.
non-isomorphic, embeddings, because

xlyx =0 =" = x(x7ly)" = (yx7H)"x,

hence
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xly = (yx7h"
The skew polynomial ring admits the following natural generalization.
Let A be any ring and M a monoid. Then the monoid ring on M over A

consists of all formal sums Y,sa,, where s € M, a, € A and almost all the
a, vanish, with addition and multiplication:

Ssa, + D.sb, = D.s(a, + b,), (12)
>sa, > th, = D stab,. (13)

When A is commutative and M is a group, this is just the well known
group algebra on M over A. The homomorphism > sa,— >.a, is called
the augmentation mapping.

The construction can still be generalized in two ways. Firstly, if we are
given an action of M on A by endomorphisms, i.e. 2a homomorphism f of
M into the monoid of endomorphisms of A, indicated by f:a—a’
(a e A, s € M), this allows us to define a skew monoid ring, in which (13)
is replaced by the formula

Zsasz tbt = ESta;bn

which arises by using the commutation rule

as = sa’.

Secondly, the multiplication of elements of M in the monoid ring may be
modified by a factor set:

set=stmg,,

where {m;,} satisfies the usual factor set conditions. We shall not enter
into further details at this stage, since only special cases will be needed
where the necessary formalism can be derived ad hoc. There is just one
case of more frequent occurrence, namely the case of an infinite cyclic
group. The group ring of the free group on a single generator ¢ over A is
called the ring of Laurent polynomials, written A[t, t7']. Its elements are
finite sums ,t‘a; (a; € A), where the exponent i may also be negative.
This ring can also be described as the localization of the polynomial ring
A[t] at t; similarly we obtain a ring of skew Laurent polynomials by
localizing the skew polynomial ring A[¢; «, 6] at ¢.

Exercises

1. Let K be a field with centre C. Show that for any f € K[¢] the highest common
left factor of all the afa™! (a € K*) is either a constant or a polynomial with
coefficients in C.
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2. Let k be a commutative field and let  be the endomorphism f(t)— f(¢?)
of the rational function field E = k(¢). Verify that D = E(¢; o) is a field with
centre k.

3. Let k be a commutative field with an endomorphism «a # 1. Show that every
a-derivation is inner. (Hint. Verify that for all a, b € k we have a®(b® — b) =
b%(a® — a); note that this is a special case of Prop. 1.4.)

4. Let K be a field finite-dimensional over its centre and let « be an
endomorphism of K. Show that any a-derivation of K is inner unless « itself is an
inner automorphism.

5. Let g = p’, where p is a prime number and r = 1, write F, for the field of ¢
elements and denote by T the endomorphism f— f? of F [x]. Verify that each
polynomial ¥ T’c; defines an endomorphism of F,[x], where ¢; acts by right
multiplication, and that aT = Ta?. Deduce that the endomorphisms form a skew
polynomial ring F [T «], where a: a — a? (O. Ore [33']).

6. Let D be a field finite-dimensional over its centre C. Given f € D[x], show
that there exists g € D[x]* such that fg = gf € C[x].

7. The real quaternions H may be defined as an R-algebra with basis 1, i, j, k and
multiplication i = j> = —1, ij = — ji = k. Writing a for complex conjugation in C,
show that there is a homomorphism C[¢; o] — H defined by ¢ — j and deduce that
H =C[t; a]/(£? + 1).

8. An involution of a field K is defined as an antiautomorphism x — x* whose
square is the identity. In a field with involution * an element u is unitary if
u*u =1. Show that for u# 1, u*u =1 holds if and only if v + v* =1, where
v=>1-wL

9. An involution * is unitary-trivial if u*u =1=>u = 1. Show that a field with a
unitary-trivial involution, not the identity, is of characteristic 2 and any element
commuting with its image is fixed under *.

10. Let K be a field with an automorphism & and an involution *. Show that for
any ce K there exists an involution (necessarily unique) of L = K(t; a)
extending * and mapping x to xc if and only if (*a)? = I(c), the conjugation by c,
and ¢'® = ¢!, Further, if * is unitary-trivial on K, then so is its extension to L.

By iterating this process construct a field of infinite degree over its centre with a
unitary-trivial involution not the identity (see Cohn [79']).

2.2 The ideal structure of skew polynomial rings

Many division algebras arise as residue-class rings of skew polynomial
rings over skew fields, which as we saw in 2.1, are (left or right) principal
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ideal domains; this makes it of interest to determine the elements
generating two-sided ideals. We recall from 1.5 that an invariant element
in a ring R is a regular element ¢ such that Rc = cR. Clearly every unit
and every regular element in the centre is invariant. Our first concern is
to note that every ideal of an integral domain which is principal as left
and as right ideal has an invariant generator.

ProrosiTiON 2.2.1. Let R be an integral domain and o a non-zero
ideal which is principal as left and as right ideal. Then a has an invariant
generator, i.e. there exists ¢ € R* such that

a=cR = Rc. (1)

Proof. By hypothesis a = cR = Rc’, hence ¢ = uc’, ¢’ = cv and so ¢ =
uc' = ucv. Now uc € cR, say uc = cw, hence cwv = ucv =c, which
shows that wo = 1. Thus v is a unit, by symmetry sois u and cR = Rc. @

Next we observe that in a polynomial ring over a field every ideal has a
polynomial with central coefficients as generator. Since every non-zero
polynomial is associated to a monic polynomial, it is enough to prove the
result for the latter.

ProrosiTiON 2.2.2. Let K be any field with centre C and let K[t] be
the polynomial ring over K in a central indeterminate t. Then a monic
polynomial in K([t] is left or right invariant if and only if all its coefficients
liein C.

Proof. Clearly any polynomial with coefficients in C is (left and right)
invariant. Conversely, assume that f=t"+ t""!a; + ...+ a, is right
invariant in K[¢]. Then for any ¢ € K we have ¢f = fc’ for some ¢’, which
must lie in K, by comparing degrees, thus

t"c+ t"lea; + ... +ca,=t"c’ + t"laic’ + ...+ a,c.

Equating coefficients we find that ¢’ = ¢, ca; = a,c’, hence ca; = a,c for
i=1,...,n,50a € C,asclaimed. B

Let K be a skew field, & an endomorphism and 6 an a-derivation of
K. As we saw in 2.1, the skew polynomial ring R = K[¢; «, 0] is then a
PRID, so every non-zero ideal of R has the form fR, where f # 0 and
Rf C fR, so f is right invariant. This makes it of interest to find a
criterion for right invariance. Let us call f right K-invariant if f # 0 and
Kf C fK, thus f is right invariant if and only if f is right K-invariant and
tf € fR; explicit criteria for right invariance are derived in Prop. 2.3 and
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Th. 2.5 below. We remark that in considering the right ideal fR we may
assume f to be monic in ¢, by dividing by the leading coefficient; then f
has the form

f=t"+t"la,+...+a, wherea eK. ¥))

However, we need not restrict ourselves to fields; in what follows, K may
be any integral domain and « an injective endomorphism. The conditions
for f € R = K[t; a, 8] to be right invariant are

¢f=fc' forallce K,
tf = f(tb + a),
where ¢’, b, a € K, by a comparison of degrees. Taking f as in (2), we
find
of=ct"+...=t"c¢"+...,
fc'=t"c¢"+ ...,

where the dots indicate lower terms in ¢; hence ¢’ = ¢*". Similarly we
have

tf=t""+ t"a + ...,
f(tb + a)=1t""'"b + t"a + t"layth + .. .,
=t"b + t"(a+afb) +...;

for right invariance we must have b = 1, a + a{ = a; and so we obtain the
following description of right invariant elements:

ProrosiTiON 2.2.3. Let K be an integral domain with an injective
endomorphism « and an a-derivation 0 and put R = K[t; o, 6]. Then a
monic polynomial f in R of degree n is right K-invariant if and only if

cf = fc* forall c € K; 3)
f is right invariant if and only if (3) holds, as well as
tf = f(t + a), where a = a; — af, 4)
a, being the coefficient of t" ' in f. R
If o is an automorphism of K with inverse B, then (3), (4) can be

written as fc = ¢ f, ft = (t — a®)f, hence f is then also left invariant,
and so we have
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CoROLLARY 2.2.4. Ifin Prop. 2.3, « is an automorphism of K, then
any monic right (K-) invariant element of R is (K-) invariant.

For any monic polynomial f in K[¢; a, 8], given by (2), let us define its
divergence as

A(f) =tf — f(t + a), wherea = a; — ay. 5)

We note that A(f) has a lower degree than f. For on writing degf =n
and ignoring terms of degree less than n, we have

A(f) ="+ t"ay —t"(t+a)— t"a(t+a)+ ...
=t"a;—a—a)+ ...,

and the coefficient of ¢" vanishes by the definition of a.
This leads to the following criterion for invariance:

THEOREM 2.2.5. Let K be a field with endomorphism « and a-deriva-
tion 8 and put R=K[t;ea,8]. If f is a monic right K-
invariant polynomial of degree n, then its divergence A(f) is again right
K-invariant of degree less than n and da™ — a6 is an inner (a", a"*)-
derivation. Morever, f is right invariant if and only if A(f) = 0.

Further, if u=2gt""a; (ag=1) is the monic right K-invariant
polynomial of least positive degree m, then

)

A(u) = —a,, — a,a, wherea =a, — aj, (6)

and u is right invariant, unless a™*! is an inner automorphism of K .
The element u will be called the minimal right K-invariant element

of R.

Proof. The right invariance of f is characterized by the vanishing of
A(f), by Prop. 2.3. To verify the right K-invariance of A(f), we have, for
any ¢ € K, on writing A = o",

cA(f) = ctf — cf(t + a)
(tc® + f — fcM(t + a)
= tfc® + fcO — ftc* — fcP — fcta

=[tf — f(t + a)]c** + flac** + ¢ — * - c*a].

Hence we find

cA(f) = A(f)c* = flac** + ¢ — * — cta). @)
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The left-hand side is of degree less than n, while the right-hand side has
the factor f of degree n, so both sides must vanish and we obtain

cA(f) = A(f)e™™, (8
= M =cta — ac*. )
Now (8) shows A(f) to be right K-invariant, and (9) shows 64 — A6 to be
an inner (&, a"*!)-derivation.
Suppose now that u= >,¢'t" 'q; is the monic right K-invariant
polynomial of least positive degree; then since A(u) is right K-invariant
of lower degree, it must be of degree zero. Now

A(u) = Eti+1am—i - Ztiam—it - Ztiam—ia’

and the constant term is easily seen to be —a’, — a,,a. Hence (6) follows,
and (8), applied to u, shows that either A(u) = 0 and u is right invariant,
or A(u) # 0 and a™*! is an inner automorphism. W

From this result it is easy to obtain a criterion for the simplicity of skew
polynomial rings, using the following observation on the occurrence of
invariant elements:

LemMMA 2.2.6. Let K be a field with an endomorphism « and an
a-derivation 6 and put R = K[t; &, 6]. If R contains a right K-invariant
element of positive degree, then it contains a right invariant element of
positive degree.

Proof. We observe that the divergence satisfies the rule:
A(fg) = A(f)g + fA(8); (10)

for any monic polynomials f, g such that g is right K-invariant. Of course
A is not a derivation, since it is not K-linear. To prove (10), let us write
f=t"+t"la+...,g=t"+t"by+...,a=a;—af,b=>b, - by,
and u = o. Then ag = ga”, hence

A(f)g + fA(g) = [tf — f(t + a)lg + fltg — g(t + b)]
=tfg — f(t + a)g + f1g — fg(¢t + b)
= tfg — feg(t + b + a").

Since fg=t"*"+ ™" Yb; +af)+ ..., this is just A(fg), and (10)
follows.

Let u be the minimal right K-invariant element, of degree m, say. As
we saw in Th. 2.5, A(u) € K, hence for any n = (0 we have by a repeated
application of (10),
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A@u™h) = Ju"" AW’ = u (AW ).

It follows that tu"*! € u"R for all n = 1, hence t*u" € u"*R, and this lies
in uR provided that s < n. Now any polynomial f can be written as

f=uq+r, wheredegr <m.
Therefore fu™ = ugu™ + ru™ € uR, and it follows that
Ru™ C uR.

Thus uR contains a two-sided ideal Ru™R # 0, which has a right invariant
element of positive degree as generator. Wl

We now have the following simplicity criterion:

THEOREM 2.2.7. Let K be a field with endomorphism « and an
a-derivation & and let R=K[t;a,d]. If the (a", a"*')-derivation
da" — a"disouter forall n=1,2, ..., then R is a simple ring.

Proof. If R is not simple, it has a non-unit right invariant element f. If
deg f = n, then by Th. 2.5, 8a” — o is inner. Moreover in the contrary
case, R does not even have non-constant right K-invariant elements, by
Lemma2.6. B

In the special case when 6 = 0 we can get a more explicit result. An
automorphism o of a field K is said to have inner order r if o/ is the least
positive power which is inner, of the form I(e): a > eae™!. If a is outer
for all r > 0 or « is not an automorphism, « is said to have infinite inner
order.

ProrosiTioN 2.2.8. Let K be a field with an endomorphism « and
consider the skew polynomial ring R = K[t; a]. () If o has infinite inner
order, then every right K-invariant element is right invariant and the right
invariant elements are all of the form tc (ce K*). (ii) If a is an
automorphism of inner order r, say o = I(e), then u = e centralizes K
and the invariant elements are of the form t™g, where g is a polynomial in
u with coefficients in the centre of K.

Proof. Let f=t"+t"'a;+...4+a, be right invariant. Then
tf = f(t + a), where a = a; — a7; comparing lowest terms, we find that
a =0, so ff = ft and on writing this out and equating coefficients, we find

al=a, i=1,...,n. (11)

Next we have ¢f = fc*” for any ¢ € K, hence
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¢ a; = a;c™.
Now « is injective; cancelling o/, we find that
ca; = a,'c"’i, i=1,...,n. (12)

If « has infinite inner order, it follows that a; = 0 and f reduces to ¢”, so
in this case the only right invariant elements are ¢"c.

If @ is an inner automorphism, say «” = I(e), let us write u = t'e.
Thenforce K,

cu=cte=1tc"e=tece ' e=uc,
so u centralizes K. Now any right invariant element is invariant, and if f
given as before is invariant, then (12) above shows that g; = 0 unless 7
divides i; hence we have f=1t"g, where g is a polynomial in u.
Moreover, g is invariant, so cg = gc* for some automorphism u.
Comparing highest powers of u we see that u=1, so cg = gc and if
g = >u*"'b;, then

0=cg— gc=Du"(cb; — bc).

Hence b; lies in the centre C of K, thus f equals a power of ¢ times an
element of C[u], as claimed. H

Next we allow a derivation but restrict & to be an automorphism. An
element of the skew polynomial ring over K will be called K-central if it
centralizes K.

THEOREM 2.2.9. Let K be a field with an automorphism o« and an
a-derivation & and put R = K[t; o, 8]. If R is not simple, then there are
non-unit K-invariant elements; let u be a monic one, of least positive
degree m, say. Either (i) « has infinite inner order, in which case every
K-invariant element has the form u'c, r e N, c € K*, or (ii) « has finite
inner order, so an element of the form u‘c is K-central. If v =u is a
K-central element of least positive degree, then every K-invariant element
has the form f = u'fic, where f, is a polynomial in v with coefficients in
the centre of K and c induces the automorphism «"~™, n=degf,
m =degu.

Proof. We have seen that R is not simple precisely when there are
non-unit K-invariant elements (Lemma 2.6), thus let # be the minimal
(monic) K-invariant element, of degree m, say. Any K-invariant element
f, taken monic for convenience, may be written in the form

f=uq+r, whereq,r e R, degr <m.
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By Prop. 2.3, cu = uc”, where u= a™; if f has degree n and we put
v=a", then fc* = ¢f = cuq + cr = uc*q + cr, hence

u(gc® — c*q) = cr — rc”. (13)
On the left there is a factor of degree m, while the right-hand side has

degree less than m; hence both sides vanish and so

cr = rc'.

Thus r is K-invariant, of degree less than m, hence r € K. Moreover, by
(13) and the fact that a is an automorphism, we have

cq = qc*".

Applying the same argument to g, we find, by induction on the degree
of f,

f=uw+ub, +...+b, whereb,eKk, (14)

hence n = sm. The highest coefficient in (14) is 1, because both u and f
are monic. Now for any ¢ € K we have

fo' = uct + ulbycY + ...+ by,
of =u'c® +ue* b+ ... + ch,
Equating powers of u, we see again that v= ', i.e. n = sm and
ch;=bc¥,i=1,...,s. (15)

Suppose first that o has infinite inner order. Then b; =0 and by (14),
every K-invariant polynomial is of the form u’c, where c € K. The
alternative is that a power of « is inner, say a“ is the least such power.
Then i = '™ is inner if and only if z|im, so by (15) b; = 0 unless z|im.
Hence either f = u° or f is equal to u’ times a polynomial in u¢, where
d = z/(z, m). By hypothesis,

d d_am

cu? = u*" = uece ! forsome e € K* andall c € K.

Hence v = u’ is K-central and u~"f can be written as a polynomial in v,
say f = u’(vacj). Now g = u~"f is K-invariant of degree n — rm, so if
A= a" ™, then ag = ga* and

0 = ag — ga* = Y v/(ac; — cja).

Hence ac; = cja‘ and it follows that all the cs can be obtained from a
single one by multiplying by an element of the centre of K. Thus
f = u'fic, where f, centralizes K and ¢ induces the automorphism o™,
which is what we had to show. B
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We shall apply this result to determine the centre of the corresponding
field of fractions.

THEOREM 2.2.10. Let K be a skew field with centre C. Given an
automorphism « and an «-derivation 8 of K, consider U = K(t; «, 0),
the field of fractions of the skew polynomial ring R = K[t; «, 9].

(i) If R is simple or o has infinite inner order, then the centre of U is the
set

Co = {a € Cla* = a, a® = 0}. (16)

(ii) If R is not simple and « has finite inner order, so that there exist
non-unit invariant elements in R, let v be the monic invariant element of
least positive degree inducing an inner automorphism I(c): a> cac™';

then the centre of U is Cy(vc), the field of rational functions in vc over C,.

Proof. By Prop. 1.1, R is a PID and it is clear that in any case the centre
of U contains Cy. By Prop. 1.5.7, every element of the centre of U,
@(U), has the form fg~! = g~ f, where for some automorphism A of R,

pof = fo*, pg=gp'forallpeR. 17)

If R is simple, then there are no non-unit invariant elements in R, so in
that case €(U) C K. An element a of K centralizes K precisely when
aeC, and if at=ta, then ta = ta®+ a®, hence a*=a, a®=0, so
KU) = C,.

We may now take R to be not simple and hence to possess non-unit
invariant elements. Assume that « has infinite inner order and let u be
the minimal K-invariant element, inducing the automorphism S, say, of
K. If fg7' € @(U), we can write f =u'c™!, g =u'd™!, where ¢, d € K.
For any a € K we have af = au'c™! = wa” ¢! = fea? ¢!, so f induces
the automorphism B"I(c), and similarly g induces B°I(d). By (17) we
have

A= B I(c) = FId). (18)

Now B = «™, where m = degu. Since « has infinite inner order, then so
does B, and by (18), r=s and fg!=g 'f=dc!e K. Since this
element must centralize K, we find as before that it lies in C,.

There remains the case when « has finite inner order. By hypothesis
there are non-unit K-invariant and hence non-unit invariant elements.
Let z be the minimal invariant element, say pz = zp* for p € R. By (17)
f is invariant and we have

f=zqg+r, wheredegr <degz.
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For any a € K, we have fa* = af = azq + ar = za*q + ar, hence

z2(ga* — a*q) = ar — ra*.
Here the right-hand side has lower degree than the factor z on the left, so
both sides must vanish. By the minimality of z we have r € K and q is

again invariant, so f is a polynomial in z over K, by induction on deg f.
Thus we have f = > z'a;, g = D.z'b;, where a;, b; € K. By (17) we have
0= pf - fp* = 2z'(p¥a; - ap),

hence all the coefficients vanish and so ¢#/A™! is an inner automorphism
whenever a; # 0 and similarly for g. Now we may assume f and g to be
without a common factor, hence ag, by are not both 0, say ¢, # 0 and
dividing f, g by a common factor, we may assume that a; = 1. Since
pay = p = ayp”, it follows that A =1 and the powers of z occurring in f
or g induce inner automorphisms. Let v = z” be the least such power,

inducing I(c) say; then vc is central and f, g can be expressed as
polynomials in vc with coefficients in C,. B

In the special case a =1, 6 =0 we again reach the conclusion of
Prop. 1.5.

Exercises

1. Let K be a field with endomorphisms «, B. Show that the (&, f§)-derivations on
K form an additive group, and for any («, f)-derivation é and any endomorph-
isms A, u, Adu is a (Aau, ABu)-derivation.

2. Let E be a finite extension of the Galois field F, with automorphism a: a — a?
and put R = E[¢; «]. Find an E-invariant element of positive degree which is not
invariant.

3. Let K be a field with an endomorphism & and an a-derivation § such that
ad = da. Show that o extends to U = K(¢; a, 6) and that § is induced by an inner
a-derivation of U.

4. Let K be a field with a non-surjective endomorphism «. Show that in K(¢; a)
the union Ut‘” Kt" has an automorphism extending « and is the least subfield
containing K with this property.

5. Show that in a skew polynomial ring K[¢; @, 8] over a field K, a polynomial f
(not necessarily monic) is invariant if and only if f is K-invariant and

tf = f(tb + ¢). Determine b and ¢ in terms of the coefficients of f.

6. Let E be a commutative field with an automorphism « of order n and fixed
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field F. Show that for any irreducible polynomial f over F, f(¢") is an invariant
element of R = E[t; a] and the residue-class ring is simple, with one exception.
What is its centre? When is it a field? What is the exception?

7. Let E be a field with centre k. Given a polynomial f over k show that over E,
f splits into a number of factors all of the same degree. Deduce that an irreducible
polynomial of prime degree over k either stays irreducible over E or splits into
linear factors. (Hint. Use Th. 1.5.4.)

8. Let R = K[t; «, 8] be a skew polynomial ring over a field K with endomorph-
ism « and w-derivation & such that ad= da. Given f as in (2), verify (by
comparing coefficients of ¢! in (3)) that

a;c* — c*a; = nc’®,  where A = o1,

Deduce that for char K =0, dis inner on im A.

9. (after J.-P. Van Deuren) Show that the field of fractions of the complex-skew
polynomial ring C[¢; ~] contains a central element x = ¢ such that for any odd
m, x™ — 1 is a square. Hence obtain a subfield of given genus g. (Observe that
the function field of the curve y? = x26~1 ~ 1 is of genus g, see Cohn [91], 4.6.)

10. Let k be a commutative field containing a primitive nth root of 1, { say.
Define an automorphism o on F = k(y) over k by the rule o: y ~> {y and form

the skew function field F(x; o). Find its centre and show that its dimension over

the centre is n2.

2.3 Power series rings

In the commutative case the familiar power series ring K[¢] may be
regarded as the completion of the polynomial ring K[r] with respect to
the ‘r-adic topology’, i.e. the topology obtained by taking the powers of
the ideal generated by ¢ as a neighbourhood base at zero. No problems
arise in extending this concept to the ring K[¢; «] for any endomorphism
« of K. In this way we obtain the ring K[¢; o] of all skew power series.
Suppose now that « is an automorphism and consider the ring K((t; o))
of skew Laurent series; they are series of the form > - t'a; with
componentwise addition and multiplication by the commutation rule:

at" = t"a"". (1)

Since » may now be negative, we have had to restrict o to be an
automorphism. We remark that K((¢; «)) is again a field, for any
non-zero series can be written ¢~"c(1 — >,y t'a;) and this has the inverse
[>.(Cit'a)"]c " ¢". This field of skew Laurent series can be formed even
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when « is not an automorphism, say by localizing at the powers of ¢, but
now its elements can no longer all be written in the form >, t'a;.

Suppose now that we have a field K with an endomorphism « and an
a-derivation 8. Here we face a difficulty; the above topology on K[¢; «]
may be described in terms of the order-function:

olf)y=riff=ta, +t*a, ., +...+t"a, (a, #0).

It turns out that when 6 # 0, the multiplication is not continuous in the
t-adic topology, as the formula

a-t=ta®+ a° 2)

shows, and any attempt to construct the completion directly will fail. A
way out of this difficulty is to introduce z =¢~! and rewrite (2) as a
commutation formula for z. We then get

za = a%z + za’z. (3

Owing to the inversion we now have to shift coefficients to the left, and as
(3) shows, we cannot usually do this completely in the polynomial ring,
but we can do it to any desired degree of accuracy by applying (3)
repeatedly:

za=a%z+a%7* + %% = . ..
=a%z + a2 +a% 2 + ..+ a7 + a2 4)

If 6 is locally nilpotent, i.e. each element of K is annihilated by some
power of 9, then (4) can be used as a commutation formula in the skew
polynomial ring. But in any case, in the power series ring we can pass to
the limit and obtain the formula

za=a%z+a*7* + a2+ .. .. )

The ring obtained in this way is clearly an integral domain, and the set
consisting of all powers of z is a left Ore set, by (5), so we can form the
ring of fractions, which is in effect the ring of skew Laurent series in z.
We shall not use a special notation for this ring but remark that it is
actually a field:

THEOREM 2.3.1. Let K be a skew field with an endomorphism « and
an wa-derivation 8, and consider the following ring:

R = K(z;za = a°z + za®z foralla € K). (6)

This ring has a completion R, consisting of all power series >az' and
Z={1,z, 22, .. .} is a left Ore set whose inversion yields a field,
consisting of all power series of the form



68 Skew polynomial rings and power series rings

E 277a;z L (7)
i=0
When « is an automorphism, the series can be written > b;z' or also >, 7'c;.

Proof. Consider the completion R consisting of all series >.ga;z’. It is
clear that these series form a ring with the commutation rule (5). The
order function satisfies the relation o(fg) = o(f) + o(g), because « is
injective, and this shows R to be an integral domain. Moreover, (5) shows
that for any a € K there exists f € R such that za = fz, thus z is left
invariant, hence zg = gz for any g € R and so z'g = g”'z". This shows Z
to be a left Ore set, hence the elements z~"f (r =0, f € R) form again a
ring. To show that this ring is in fact a field, we first note that every
element of order 0 in R is a unit. For if f = >.a;z, where a, # 0, we have

ay'f=1-Shz', whereb, = —ajla; (i > 0).

Hence
f=Q1-3bz) "a;' = S(biz)aq’.
0

By expanding and rearranging this series we obtain an expression of the
form > c;z'; this follows because for any m, the terms from (3, b;z°)" with
n > m do not contribute to the coefficient of z”. This shows f to be a
unit.

Now any non-zero power series of the form (7) can be written as
z7"g7’, where r, s 20 and g is of order 0 and hence a unit. It has the
inverse z *g~!z", and this shows the localization to be a field.

When « is an automorphism, we can clearly pull the coefficients
through to one side or the other and so obtain the given form for the
series. l

For power series the centre is not hard to determine, at least when «
has infinite inner order. If K is a field with centre C, and an
endomorphism « and a-derivation 8 are given, then the («, 8)-reduced
centre of K is defined as the subfield

Co={aeC;a*=a,a® =0} €))

ProrosIiTiON 2.3.2. Let K be a skew field with an automorphism « of
infinite inner order and an o-derivation 8. Let R be the completion of the
ring (6) and U its field of fractions. Then the centre of U is the
(«, 8)-reduced centre Cy of K.
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Proof. Clearly Cy C €(U); to prove equality, we take any fe U and
write it as a Laurent series: f = D.a,z'. If ¢f = fc, then

Z(Cai - aicai)zi =0,
hence ca; = a;,c® and so a;=0 unless i =0, and a, € C. Further, a,

centralizes z precisely when az !=zla=z"'a"+a% ie. a*=a,
a® =0, so a, lies in C,, which is therefore the centre. W

From this result we obtain another proof of part of Th. 2.10(i) by
applying the following criterion, well known in the case of complex power
series:

ProrposiTioN 2.3.3 (Rationality criterion). Let K be a field with an
automorphism «. Then a formal series >.t'a; in K((t; &)) is a rational
function of t if and only if there exist integers r, ny and elements c, . . .,
¢, € K such that

a, = a,_ic; + af,'z_zcz +...+ai,c, forall n> n,. C)]

For this is just the condition that (D t‘a)(1— X it’c;)) should be a
polynomial, except for a factor t ™. W

We conclude this section with two constructions. The first is a result of
Kothe [31], allowing us to construct outer automorphisms of skew fields:

ProrosiTiON 2.3.4. Let K be a commutative field with an automorph-
ism « and put E = k((t; a)). Given any automorphism 3 of k such that
aBf=Ba, extend B to E by the rule t*=1t. Then B is an inner
automorphism of E if and only if B = o forsome r e Z.

Proof. If Bisinner on E, then there exists a € E* such that
u? =a'uaforallu e E,
hence ua = au?. Let a = >, t'a; and first take u = ¢. Then t# = ¢, so
2ta = Sttae = Xt af,
hence af = a;. Next take u = b € k*; then b(D.t'a;)) = >.t'a;p? by hypo-
thesis and so >.#(b* — bf)a; = 0, hence b” = b* whenever a; # 0. This

holds for some i, so 8= & for some r € Z. Conversely, if § = a’, then $
is inner, induced by ¢t". B

For example, if k = F(s), where F is any field of characteristic 0, and
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a:s—>s+1, then B:s—>s+1/2 is an outer automorphism of
E = k((t; o).

Secondly we shall sometimes need a field with a prescribed field as
centre. This is accomplished by the next result:

ProrosITION 2.3.5. Let k be a commutative field. Then there exists a
field D whose centre is k and which is infinite-dimensional over k.

Proof. Take the rational function field k(#) and adjoin roots of the
equations x?" = ¢ for n = 1,2, . . . . The resulting field may be denoted by
E = k(t, t'2,¢¥*, .. .) and may also be obtained as the field of fractions
of the group algebra over k of the additive group of all dyadic fractions
m/2". On E we have the automorphism a: f(t) — f(¢?); we claim that
the fixed field of « is precisely k. Any element f of E may be written as a
rational function of t¥ for some r € Z. If f ¢ k, then the possible values
of r are bounded above. Let us choose r as large as possible, so that f is
not a rational function of #*". Since f* is such a function, it follows that
f*# f, and this shows the fixed field to be k.
We now form the field of skew Laurent series

D = E((x; ®)),

and claim that D has centre k. Any element of D has the form
f=>x'a;, where a;€ E. If f centralizes D, then > x*la;=xf = fx =
S xi*laf, hence af=a; and so a;€ k, by the first part. Further,
Sxiait = ft = tf = D tx'a; = D x't*a;, hence a;(t — t*) =0 and so a;=0
unless i = 0. Therefore f = a, € k as claimed. Clearly D is infinite-dimen-
sional over k, sincee.g. 1, ¢, 2, ... are linearly independent. B

We remark that the field D used here can be formed more simply as
follows. Let F = k(t) be the rational function field with endomorphism
a: f(t) = f(t?). The skew polynomial ring F[x; «] has a field of fractions
F(x; o) which is clearly a subfield of the field D of skew Laurent series
constructed in the proof of Prop. 3.5, and that proof shows that F(x; a)
has all the required properties.

Exercises

1. Find an automorphism « of K = R(¢) and an automorphism B of K(x; a),
both of infinite inner order, such that aff = fa and «, B are not commensurate,
i.e. there is no relation &’ = B°, r, s e N.

2. Let K be a skew field with automorphisms «, § such that «f = fa. Put
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D = K((x; )) and extend B to D by x? = x. Show that g is inner on D if and
onlyif 8= a"I(c)forsome r e Z, c € K*.

3. Let D be the field generated over a commutative field k of characteristic 0 by
x, y with the relation xy — yx = 1. Show that the centre of D is k.

4. Let K be a field with a surjective derivation & and consider the field of Laurent
series in x with commutation formula cx = xc + xc®s. Verify that Sxi~l¢; —
Sxicx~l=Sxic? and deduce that the field of skew Laurent series has a
surjective inner derivation.

5. (Lazerson [61]) Let k be a commutative field of finite characteristic p and
adjoin commuting indeterminates to form K = k(xy, x,, .. .). Verify that K has a
derivation & such that x?=x;_; (i >1), x{=1. On L = K(¢; 1, 8) show that for
g = p", 87 is the inner derivation induced by t? and for any a € L there exists
q = p" such that [ax,, t7] = a; thus J is surjective on L.

6. By forming ultraproducts of the fields in Ex. 5 for different p obtain a field of
characteristic 0 with a surjective inner derivation.

7. Let K be a field with an automorphism « and consider the skew power series
field L = K((t; «)). Show that no element of L\K can be right algebraic over K,
in the sense that all its powers are right linearly independent over K (see 3.4).
(Hint. If u = Stic; € L is right algebraic over K but u # 0, show that the order
must be zero and then repeat the argument with u — ¢g.)

2.4 Group rings and the Malcev—-Neumann construction

Let M be a monoid and consider the monoid ring KM over a field K
(possibly skew). As defined in 2.1, this is the vector space over K with M
as basis, made into a ring by means of the multiplication in M. We ask:
for which groups G is KG embeddable in a field? Clearly it is necessary
for KG to be an integral domain, and for this to hold, G must be
torsion-free. For if u € G is of finite order n, then

A-w@+u+u?+...+u"H)=0. (1)
When G is abelian, this condition is also sufficient:
THEOREM 2.4.1. Let G be an abelian group and k any commutative

field. Then the group algebra kG is embeddable in a field if and only if G
is torsion-free.

Proof. The necessity follows by (1), so assume that G is torsion-free.
Writing G additively for the moment, we can regard it as a Z-module and
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because G is torsion-free, we can embed it in a Q-module, i.e. a vector
space over Q. By taking an ordered basis of this space and using a
lexicographic ordering of the coefficients, we obtain a total ordering of
G, which makes it into an ordered group. Going back to multiplicative
notation, we thus have a total ordering on G such that s <s’, ¢ < ¢’ imply
st < s't'. Now it is easy to see that the group algebra of an ordered group
is an integral domain. Let

a=a;s;+ ...+ a,s,, whereq; € k¥, 5, <s,<...<s,,
b=bit;+ ...+ by, whereb;e k*, t; < t, <...<t,

Hence ab = a,b;st, + ..., where the dots represent terms > s,¢;, and
this shows that ab # 0. Thus kG is a commutative integral domain and so
it can be embedded in a field. B

For non-abelian groups it is still not known whether kG can have
zero-divisors when G is torsion-free, though this has been established in
many special cases. When G is totally ordered, kG is an integral domain,
as the proof of Th. 4.1 shows, but in that case kG can actually be
embedded in a field. This will be proved in Th. 4.5, but some preparation
is necessary.

An ordered set is said to be well-ordered if every non-empty subset has
a least element. This is the familiar definition for totally ordered sets; if a
partially ordered set is well-ordered, it must be totally ordered, as we see
by applying the definition to pairs of elements. For this reason the
definition in the general case has to be modified; it will be convenient to
have several equivalent forms of the definition. By an antichain we
understand a set of pairwise incomparable elements.

LeMMA 2.4.2. Let S be a partially ordered set. Then the following three
conditions are equivalent:
(a) every infinite sequence contains an infinite ascending sequence —
given (a;) in S, there exists a sequence (n’) of integers such that m’ <
n' = a, <a;
(b) every non-ascending sequence (a;), a; % a; for i < j, is finite;
(c) every strictly descending sequence a; > a, > . .. is finite and every
antichain is finite.

Proof. (a) = (b) is clear, and likewise (b)=>(c), since both strictly
descending chains and antichains are non-ascending. It remains to show
that (c) = (a). Assume that (c) holds and let (a;) be an infinite sequence
in S. By (c) this sequence contains minimal elements and these elements
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form an antichain and so are finite in number; hence we can choose one
of them, say b, such that

b, < a, for infinitely many n. (2)

Omitting all terms a, not satisfying (2), we obtain an infinite sequence
(b;) say, such that b; < b, for all n. Repeating the argument, we obtain
by induction on n an infinite ascending sub-sequence of (a;), so (a) is
satisfied. H

A partially ordered set satisfying the conditions (a)-(c) of this lemma is
said to be partly well-ordered (PWO); clearly for totally ordered sets this
agrees with the definition of a well-ordered set.

It is clear from the definition that any subset of a PWO set is again
PWO, likewise for the image of a PWO set under an order-preserving
map. Further, the union of two PWO sets is PWO, and for any two PWO
sets S, T their Cartesian product S X T, ordered by the rule

(s,t)s(s’,t")ifandonlyifs <s'and t < ¢’,

is again PWO. For any infinite sequence in the product contains an
infinite sub-sequence in which the first components are in ascending
order, and this contains an infinite sub-sequence in which the second
components are in ascending order, so that (a) is satisfied. We shall also
need conditions for a monoid with a PWO generating set to be PWO. By
a divisibility ordering on a monoid M we understand a partial ordering
‘<’ on M such that

ON) sss',t<t' =>st=<s't foralls,t,s',t' e M,

(O2) 1ssforallse M.

When (0.1-2) hold, then M is conical, i.e. st = 1 implies s = ¢t = 1. For
ifst=1,then 1<t , hence s<st=1,s0s=1, and ¢t = st = 1. We shall
show now that a monoid with a divisibility ordering is PWO, provided it
has a PWO generating set.

LeEMMA 2.4.3. Let M be a monoid with a divisibility ordering. If M is
generated by a partly well-ordered set X, then M itself is partly well-
ordered.

Proof. Let X* be the free monoid on X, with the partial ordering
induced by that of X; this means that x; . .. x,, < y; ...y, holds precisely
when integers 1, 2', ..., m' existsuch that 1=1'<2' <... <m'=n
and x; < y,. The natural homomorphism from X* to M is order-preserv-
ing, so it will be enough to show that X* is PWO. If this were not so, we
would have a non-ascending sequence (a,) in X*, thus
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ai%ajfori<j.

Choose a non-ascending sequence (a,) with a, of minimal length. Among
all non-ascending sequences beginning with a; choose one with a, of
minimal length, and so on: a,, a,, . . . . For each i, either g; € X or

a; = xibi, X; € X, bi € X*\{l}. (3)

There can only be finitely many a; in X, because this is PWO, so the a; in
(3) still form an infinite non-ascending sequence. We claim that the set
B = {b;} of b; occurring in (3) is PWO. Otherwise we could find an
infinite non-ascending sub-sequence (u;), where u; = b;,. Let iy be least

among 1’, 2’, ...; by omitting finitely many bs we may assume that
ip = 1’. Now consider the sequence
Ay, Ary o o« 5y Qyq, bli, b21, e (4)

If a; < b; for some i <1’ and some j, then g; < a;, which contradicts the
fact that (a;) is non-ascending. This and the fact that (b;) is non-ascend-
ing shows that (4) is non-ascending. But this contradicts the choice of a;;
so B = {b;} is PWO. Now it follows from (3) that (4;) as product of two
PWO sets is PWO. This shows that X* and with it M is PWO, as
claimed. B

Let M be a monoid and k£ a commutative field, as before. We can form
the function space k™ consisting of all functions from M to k. For any
a = (a,) € kM we define its support as

%(a) = {s € M|a, # 0}.

The functions of finite support form a subspace k(M) of the k-space k;
on k(M) we can define a multiplication by the rule

If a = (a,), b = (b,), then ab = ¢, where ¢ = (¢,), ¢, = D, ab,. (5)

st=u

Since a, b have finite support, the sum on the right of (5) is finite, and it
is easily verified that k(M) is isomorphic to the monoid ring kM, and so
may be identified with it.

We can think of the elements of k¥ as formal series > sa,, but there is
usually no multiplication, because the number of solutions (s, ¢) of st = u
for a given u may be infinite. Suppose now that M has a divisibility
ordering. Then we can consider the subset k((M)) of k™ consisting of all
functions with partly well-ordered support. It turns out that this is in fact
a ring:
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THEOREM 2.4.4. Let M be a monoid with a divisibility ordering, k a
commutative field and k((M)) the set of all series with partly well-ordered
support. Then k((M)) is a k-algebra with the monoid algebra kM
as subalgebra. The units in this algebra are the series whose support
includes 1.

Proof. Let a = >.sa;, b = >, th, be elements of k((M)). By definition
their supports @(a), D(b) are PWO; their sum a + b has as support a
subset of D(a) U D(b) and so it is again PWO. Taking next the product
ab, consider for a given u € M, the set of all pairs (s, t) € D(a) X D(b)
such that

st =u. ©6)

If this set is infinite, then since @(a) is PWO, there is an infinite
sub-sequence (s;, ;) such that s; <s,<...; hence t; > > ..., and so
%(b) contains an infinite non-ascending sub-sequence, which is a contra-
diction. Thus (6) has only finitely many solutions and so the product ab is
defined; moreover @(ab) as image of D(a) X B(b) under the map
(a, b) — ab, is PWO, therefore ab lies in k((M)). The associative and
distributive laws are easily checked, hence k((M)) is a k-algebra, whose
subalgebra consisting of all elements of finite support is the monoid
algebra.

If @ = X sa, has an inverse, then for some s € @(a) there exists ¢ such
that st =1, and so s = 1. Conversely, let a be a series whose support
contains 1; on dividing by its coefficient, we can take a in the form
a=1-b, where b= >.sb, (s >1). We claim that 1 + b + b> + . .. lies
in k((M)); once that is established, it is easily verified that >, b" is the
inverse of a. Now the monoid generated by %(b) with the divisibility
ordering is PWO by Lemma 4.3, hence U@(b") is PWO and no element
of M can belong to infinitely many of the @(b"), because the solutions of
§1...8, = u, for a fixed n, form an anti-chain in a PWO set. Thus > b" is
well-defined with PWO support, and it is the inverse of a. W

Let G be an ordered group, i.e. a group with a total ordering satisfying
(0.1). With the help of Th. 4.4 we can show that the group algebra kG
can be embedded in a field.

THEOREM 2.4.5. Let G be an ordered group and k a commutative field.
Then the set k((G)) of series over k with well-ordered support in G is a
field.

We remark that the proof goes through even if the field k is skew.
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Proof. The subset M of G defined by
M={ueGlu=1)

is a monoid with a divisibility ordering, almost by definition; hence
R = k((M)) is a k-algebra by Th. 4.4. It is an integral domain, for we
clearly have 1 # 0 and if for f € R* we define its order o(f) as the least
element in the support of f, then o(fg) = o(f)o(g) and it follows that the
product of non-zero elements is non-zero. We claim that M is a (left and
right) Ore set in R. Let u € M, f € R; every element p in %(f) satisfies
p=1l,hence u'pu=utu=1,s0 f; =u"'fu e R and

ufy = fu.

This shows M to be a right Ore set; by symmetry it is also left Ore. If L is
the localization of R at M, then it is clear that L C k((M)), and here we
have equality, for if f € K((G)), f #0, say o(f) = v, then v™!f € R and
o(v™'f) =1, hence v™'f is a unit in R and so f =v-v~!f is a unit in L.
This shows that L is a field and coincides with £((G)). R

The construction of the field of power series in this theorem is called
the Malcev—Neumann construction. It applies in particular to free groups,
since the latter can be ordered. To verify this fact, let F be the free group
on a set X and define the lower central series of F recursively as

YI(F) = Fa )/r+1(F) = (F’ Yr(F))a

where for subgroups G, H, (G, H) is the subgroup generated by all
commutators (g, h) = g 'h~'gh, for g € G, h € H. It can be shown that
¥,(F)/y,+1(F) is abelian torsion-free, so we can totally order each
¥,/Y,+1. Moreover, ny, =1, so for any a # 1 there is a unique r such
that a € v,(F)\y,+.(F) (see M. Hall [59], p. 166f. and A.3, 4.6). Now
write a > 1 if the residue class ay,.((F) is > 1, and a < 1 otherwise.

Another more direct way of ordering F (due to G. M. Bergman [90]) is
to take any set X' in bijection with X and define a map from F to the
power series ring R(( X)) by the rule:

1

-]
x=1-—x', x> Y (x')", if x corresponds to x'.
0

This provides an embedding; now R{X')) can be totally ordered by
taking any ordering on X', extending it to the lexicographic ordering on
the free monoid on X’ and ordering R{X')) by the sign of its lowest
term.
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Since the free group F on any set X can be ordered, we see by Th. 4.5
that the power series ring k((F)) is a field. It contains the group ring kF
and we thus obtain

COROLLARY 2.4.6. The group algebra of any free group can be
embedded in a field. B

This provides another embedding of the free algebra k(X ), since the
latter is a subalgebra of kF, where F is the free group on X.

Exercises
1. Let G be any group and K any field. Show that the group ring KG has UGN.

2. If G is a torsion-free abelian group and K a skew field, show that the group
ring KG is embeddable in a field, without using Th. 4.5. (Hint. Write G as union
of free abelian groups and use Ex. 1.3.2)

3. Prove Th. 4.4 for the monoid ring KM over a skew field K.

4. Let G be an ordered group, acting on a field K by automorphisms, a ~ af
(g € G). Show that the formal series in G over K with skew multiplication:
ag = ga® again form a field.

S. (R. Moufang [37]) Let G be the free metabelian group on a, b and write
u = (a, b) = a~'blab. Verify that every element of the group algebra kG can be
written as a finite sum >,a"b*u%A, (@), where r, s are integers, A,,(¢) € k and @ is
an element of the free abelian group on «, B, with the commutation rules
u%a = au®*, u®b = bu%8. Verify that this expression is unique, if each ¢ is a
polynomial in «, B. Show further that the formal series > a'(b%;;), where the f,
are rational functions in the ¥®# form a field containing kG.

6. Show that in Ex. 5 the subalgebra generated by a, b is free and hence deduce
an embedding of the free algebra of rank 2 in a field. Verify that the least field so
obtained is not isomorphic to the field of fractions constructed in Cor. 4.6.

7. Let K be a field and G an ordered group, and let A be the skew group ring of
G over K with basis u, (@ € G) and multiplication u,ug= u,gm, g, where the
myge K * satisfy the factor set conditions. Verify that the formal series in G over
K with well-ordered support and with the above multiplication rule again form a
field, which contains A as a subring.

8. Let G be an ordered group and kG the group algebra over a field k. Show that
every unit in kG is #rivial, i.e. of the form au, v € k™, u e G.
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9. Show that a field K can be embedded in a field L such that all automorphisms
of K are induced by inner automorphisms of L. (For a generalization see 5.5.)

10°. Find conditions for the Laurent polynomial ring R[z, ¢t 1] over a semifir R to
be a semifir. Find extensions to the skew case. Is the resulting ring a fir when R is
a fir? (Hint. See the proof of the inertia lemma 6.2.1.)

2.5 Iterated skew polynomial rings

We have seen that a polynomial ring over a field is a principal ideal
domain, and it is clear that this condition is necessary, i.e. if a polynomial
ring is principal, the coefficient ring must be a field. This is true even for
skew polynomial rings relative to an automorphism (see Th. 5.1 below),
but for a general endomorphism it need not hold. The precise conditions
were determined by Jategaonkar [69]:

THEOREM 2.5.1. Let A be a ring with an endomorphism o« and put
R = A[t; a]. Then R is a principal right ideal domain if and only if A is a
principal right ideal domain and o maps A> into U(A), the group of units
of A. In particular, if o is an automorphism, then R is right principal if
and only if A is a field.

Proof. If R is right principal, then so is A because it is a retract of R
(obtained by putting ¢=0). Further, for any ae A* we have
aR + R = cR, where ¢ is the highest common left factor of a and ¢. It
follows that ¢ has degree 0, as factor of a, so ¢t = ¢f, where f has degree
1,say f = td + e. Now t = ctd + ce = tc*d + ce, which shows that ce =0,
c*d =1, so ¢ is a unit (A is an integral domain, so every element with a
right inverse is a unit). Now we have au + tv = ¢ and putting ¢ = 0, we
see that a is associated to ¢, hence a® is associated to ¢%, a unit, so a® is a
unit, as claimed.

Conversely, if the given conditions hold, R is clearly an integral
domain. Let a be a right ideal in R; when a = 0, there is nothing to prove;
otherwise let n be the least degree of polynomials occurring in a. The
leading coefficients of polynomials of degree n in a form with 0 a right
ideal in A, which is principal, generated by a say. If f=t"a+ ... €q,
then a®* € U(A) and hence ft=t"*'g*+ ... has a unit as highest
coefficient. It follows that a contains a monic polynomial of degree n + 1
and so also of all higher degrees. Now it is clear that a = fR, hence R is a
principal right ideal domain. The last sentence follows because for an
automorphism «, the condition only holds when A* =U(A), i.e. Aisa
field. H
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This result shows that under favourable circumstances one may iterate
the polynomial ring construction and still get a PRID, and it suggests the
following definition.

By a J-skew polynomial ring we understand a skew polynomial ring
A[t; a] such that « is injective and satisfies Jategaonkar’s condition:

J.0) A*CU(A) U {0}.
For example, this condition holds whenever A is a field; what is of
interest is that there are other cases. It is easily verified that a J-skew
polynomial ring over A is an integral domain if A is. We shall be
interested in direct limits of iterated J-skew polynomial rings, which may
be defined as follows. Let 7 be an ordinal number. A ring R is called a
J-ring of type 7, if R has a chain of subrings R, (4 < 1), such that
(J.1) Ry =U(R) U {0} (hence R, is a field),
(J.2) R;.. is a J-skew polynomial ring over R;, forall A< 1,
(J3) R, = UR,, for any limit ordinal A < 1,

u<i
(J.4) R,=R.
Explicitly we have R;,; = R;[¢;; o;] and it follows from the definition
that each element c of R can be uniquely written as

c= 21‘1, oot (Caa €Ry, A= ... =A,). @

It is easily verified that U(R;) = U(R,) for all A, hence we have

CoOROLLARY 2.5.2. Any J-ring (of any type 1) is a principal right ideal
domain. &

It turns out that J-rings can be characterized as integral domains with a
Euclidean algorithm (usually transfinite) and unique remainder (see
Lenstra [74]; FR, 8.8). We shall not carry out this verification but we
shall show how to construct J-rings of prescribed type. Skew polynomial
rings over fields are just the J-rings of type 1; J-rings of type 2 can be
obtained by an ad hoc construction (Cohn [67], see also Ex. 3), but
beyond this the general case is no harder than the finite case. Moreover,
one cannot use induction directly, since the coefficient ring depends
essentially on the order type. Jategaonkar uses an ingenious argument
involving ordinals; below is a direct proof based on the Malcev—-Neumann
construction (Th. 4.4).

We observe that to achieve the form (1) we need a commutation rule of
the form

Lt = L (W<A),

where u,,; has to be a unit in R,. More generally, this must be true for
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products of ts, which we may as well take in normal form, as in (1). Thus
we shall need a formula of the form

tutll"'tl,=tll"'t/l,u,u).;...)», (112...2/1,,Al>y,r21). (2)

It turns out that this is enough to give the required construction. Thus let
T ={1;} (A<7) be a family of indeterminates, denote by Fr the free
group on T and put E = k((Fy)). Let K be the subfield of E generated
by the elements

MMIN.A’ = (t/h PPN t,lr)_lt“t)q PN t/l, (A'l =,,,= A’ra ).1 > U, r = 1), (3)

as suggested by (2); then no element of K other than those of k can
centralize any ¢;:

LEMMA 2.5.3. The centralizer of any t, in the field K just constructed
is k.

Proof. Let G be the subgroup of F = Fr generated by the right-hand
sides of (3). Each generator has odd length, so that we can speak of a
middle factor. When we form a group element of G, the middle factor of
any generator cannot be affected by cancellation, hence any element of G
begins with a letter ;' and ends with a letter ¢ « €ven after cancellation; it
follows that ¢, ¢ G for all n #0. Now any a € K can be written as a
series of the form @ = Y, ua,, where u runs over G, and conjugation by ¢,
maps K into itself:

-1 - -1
Ly Uy by = Upy oo o Upalpp iy o - Upys

where A;,_; = v> A,. Now ¢, commutes only with ¢, in F, so conjugation
by t, fixes 1 and moves all other elements of G in infinite orbits. Each of
these orbits is generated from a single element of G by conjugation by a
positive power of t,. Hence ¢, 'at, = a can hold only if @(a) = {1}, thus
a=a, € k, as claimed. B

We have seen that conjugation by ¢, induces an endomorphism of G
which we shall denote by «,. For any ordering of F or G conjugation is
order-preserving, therefore «, extends to an endomorphism of K, again
denoted by «,. Thus for any a € K we have

at, = t,a™. 4)

Let R be the subring of E = k((F)) generated by K and all ¢, (v< 7). By
(4) each element of R can be written in the form of a finite sum

Etll S t,‘,ahmlr, where a..a € K. (5)

If the A; are not already in descénding order, then forsome i =1,2, ...,
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r —1 we have ;<A =...=4A,. Now we can pull ¢, through to the
right, using (2). By repeating this process, if necessary, we ensure that
A =...= 4, in each term of (5). We claim that with this proviso, the
expression (5) is unique. To establish this claim, suppose that we have a
relation

Zt/h N TN 0, where Q.2 € K, A’l =,,., = A’r- (6)

If the highest subscript occurring in (6) is A, then we can write (6) as
2tic; =0, where each  is a polynomial in the ¢, (u < A). Conjugating

by t; we obtain coefficients c¢;* which lie in K; thus ¢, satisfies an
equation over K. We write down the minimal equation:

4+t + ... +b,=0, whereb, e K. @)

If we conjugate by ¢, we obtain another monic equation of degree n for ¢,
and by the uniqueness of the minimal equation it must coincide with (7).
Thus b/*=b;fori=1,..., n, and by the lemma b, € k, so ¢, is algebraic
over k. But this is clearly false, and this contradiction shows that all the
coefficients in (6) must vanish. Hence (5) is unique; this means that by
adjoining the ts one by one to K we obtain a J-skew polynomial ring at
each stage, hence R itself is a J-ring of type 7 and we have proved

THEOREM 2.5.4. For any commutative field k and any ordinal t there
exists a J-ring of type t which is a k-algebra. 8

J-rings of type at least 2 have various unusual properties. In the first
place there are elements with arbitrarily long factorizations, as the
equation

L=tltbu, n=12,...

shows: from ¢, we can split off arbitrarily many factors on the left, though
not on the right. In fact a J-ring of type 7 is right Noetherian, but it
has descending chains of length 7, such as {¢;R}; we note that NerR =
t,+1R. The ideal structure of R is further illuminated by

LeMMA 2.5.5. In the J-ring of type t constructed in Th. 5.4, t,R is a
two-sided ideal for any A <1, and for any fe R*, fRD t;R for some
A> u for all t, occurring in f.

Proof. That t;R is a two-sided ideal follows because

tluM if u < ).,
tty =115 if =4,
Btat,  ifu> A
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Further, if A> u for all ¢, occurring in f, we have ft, = t,u for a unit u,
hence t, = ft,u'andso ,RC fR. B

From this lemma it follows in particular that when 7 is a limit ordinal,
then in a J-ring of type t any non-zero right ideal contains an ideal of the
form 1, R. It follows that R cannot be right primitive, for if a is any
non-zero right ideal, then R/a is not faithful. However, R is left
primitive; to show this we need to exhibit a faithful simple left R-module,
or equivalently, a maximal left ideal containing no non-zero ideal. From
the normal form (5) it is clear that the elements ¢, are left linearly
independent over R, hence the same is true of the elements 1 + ¢,. Hence
the left ideal a = X, R(1 + ¢,) is proper and so is contained in a maximal
left ideal ay. If a4 contained a non-zero ideal, it would contain some ¢,
and so also 1=(1+1¢,) —¢;, which is absurd. So q is the required
maximal left ideal, and this shows R to be left but not right primitive.
Whether such rings exist was a question first raised by Jacobson in 1956
(and first answered by Bergman [64]).

Another question of Jacobson asks whether in a right Noetherian ring
the powers of the Jacobson radical always meet in 0. To answer it we take
a J-ring of type 7 and localize at the set of all polynomials with non-zero
constant term. The result is a ring P whose Jacobson radical is J = ¢, P. If
we define the transfinite powers of 3 by the rule L = gAY, = ﬂ,K 3
at a limit ordinal A, then §* D ¢, P and it follows that * # 0 for all A < 7.

Exercises

1. Let Rbea J-ririg of infinite order type t. Show that the complement of #; R is a
right Ore set 2. Further, show that the localization of R at =, Ry = L, is a local
ring in which {z, L} forms a well-ordered descending chain of right ideals.

2. By applying the factorial duality to Ex. 1, show that L/Lt, is a cyclic left
L-module which is Artinian but not Noetherian, with a well-ordered ascending
chain of submodules of order type t.

3. Let k be a commutative field with an endomorphism a and containing an
element ¢ such that ¢ is transcendental over k. Form the function field k(y) and
let K be the subring of all rational functions of the form f/g, where g is not
divisible by y. Extend « to K by the rule y® = ¢ and form the skew power series
ring R = K[x; a]. Show that R is a J-ring of type 2.

4. (H. H. Brungs) Show that a ring in which the set of all principal right ideals is
(descending) well-ordered by inclusion is a principal right ideal ring in which every
left regular element is right invariant.
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5. Show that the ring constructed at the end of this section satisfies the conditions
of Ex. 4.

2.6 Fields of fractions for a class of filtered rings

Our aim in this section is to prove that a filtered ring has a field of
fractions whenever the associated graded ring is an Ore domain. We
begin by briefly recalling the definitions of filtered and graded rings.

By a filtered ring we understand a ring R with a series of submodules
indexed by Z,

2R, 2R 2R 2..., (1)
such that
(F.1) RR,C Ry,
(F.2) NR, =0,
(F.3) UR, = R.
Ifin (1) Ry= R and R_;, R_,, ... are absent, we speak of a positive or
descending filtration. Similarly, when R, = R, =...=0, we have a

negative or ascending filtration (in this case it is often convenient to
change the sign of the suffix).
On a filtered ring we can define a Z-valued function by putting

v(x) = sup {n|x € R,}. )

It is easily checked that v satisfies
(V.1) v(x)eZ if x #0, v(0) = oo,
(V.2) v(x = y) = min {v(x), v(y)},
(V.3) v(xy) = v(x) + v(y).
Such a function is called a subvaluation, pseudo-valuation or also
filtration on R. If equality holds in (V.3), v is called a valuation, more
familiar in field theory (see Ch. 9). For any subvaluation v we have by
(V.2), v(—y) = v(y), hence v(—y) = v(y). Further, if v(x) > v(y), then
v(x —y)=v(y). If this inequality were strict, we would have
v(y) = v(x — (x — y)) = min {v(x), v(x — y)}, which is a contradiction.
Hence we have (as for valuations)
(V.4) If v(x) # v(y), then v(x — y) = min {v(x), v(y)}.

Suppose now that conversely, R is a ring with a Z-valued subvaluation;
then R may be filtered by the submodules

R, = {x € Rlv(x) = n},

and it is easily checked that (F.1-3) hold.
A ring R is said to be graded if it is a direct sum of submodules indexed
by Z: R = > A, such that AA;C A, Any element of A, is said to be



84 Skew polynomial rings and power series rings

homogeneous of degree i. Such a ring can always be filtered by setting
R,= >, A;. But more significantly, we can with every filtered ring R
associate a graded ring G(R), which may be thought of as the ring of
‘leading terms’. Its additive group is the direct sum > (R,/R,+1), With
multiplication defined as follows: Given a € R/R;.;, B € R/R;,,, take
representatives a € R; for & and b € R; for § and put

a/ﬁ =ab (mod R,'+]'+1).

The product lies in R;, ,-/R,»+ j+1 and depends only on «, 8, not on a, b, as
can be verified without difficulty. We have a natural mapping from R to
G(R) which assigns to a € R its ‘leading term’ @ defined by the rule: if
a=0,thena =0;if a # 0 and v(a) = n, then @ = a (mod R,,,;). We have
ab = ab, but this is not generally a homomorphism, because if @ = b but
a#b,thena—b+#a—->b.

We note the following criterion for the associated filtration v to be a
valuation:

ProPosiTIiON 2.6.1. Let R be a filtered ring with associated filtration v
and graded ring G(R). Then G(R) is an integral domain precisely when v
is a valuation; when this is so, R itself is an integral domain.

Proof. Assume that G(R) is an integral domain and take a, b € R*; if
v(a)=r, v(b)=s, we have v(ab)=r +s and we must show that
equality holds here. We have @,b+#0, hence ab=ab+#0 and so
ab ¢ R,,,.1, but this means that v(ab)<r+s+1 and the desired
equality follows. The converse is clear; moreover, when v is a valuation,
then for any a, b #0, v(a), v(b) < «, hence v(ab) < » and so ab # 0,
which shows R to be an integral domain. B

As an example of a positively filtered ring consider a ring R with an
ideal a such that

Na® = 0. )

We can filter R by the powers of a, writing Ry = R, R, =a" (n = 1), and
so obtain the a-adic filtration of R. If a is generated by a single central
element ¢, the condition (3) becomes

Nt"R = 0. 4

The associated filtration is then a valuation provided that ¢ is not
nilpotent and R/tR is an integral domain. For this condition is clearly
necessary by Prop. 6.1, because R/tR = Gy(R). Conversely, when it
holds, take any a,b € R* and let v(a)=r, v(b)=s. Then a=t"u,
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b = t°v, where u,v ¢ tR, hence uv ¢ tR and ab = t"**uv, so v(ab) =
r + s. We shall refer to v as the t-adic valuation on R.

With an additional hypothesis we can show that R has a field of
fractions. For any central element ¢ of R we shall write (c) for the ideal
generated by ¢ when the ring is clear from the context.

THEOREM 2.6.2. Let R be a ring and t a regular central element of R
satisfying (4) and such that R/(t) is a right Ore domain. Then R can be
embedded in a field D and if the t-adic valuation of R is extended to D in
the natural way, then R(R*)™! is dense in D. Moreover, if S is the ring of
valuation integers in D, then S/(t) is isomorphic to the field of fractions of

R/(1).

For the proof we shall need a couple of lemmas. Let us fix n =1 and

write ¥ for the image of x e R in R/(t"), and for X CR put
X = {%|x € X}. Further, we shall put U = R\(¥).

LeEMMA 2.6.3. Given n =1, with the above notation, U is a regular
right Ore set in R.

Proof. We shall use induction on n; for n = 1 the conclusion is true by
hypothesis. Let n>1 and take u € U, x € R. If X& = 0, this means that
v(xu)=n, but v(u)=0, so v{(x)=n and hence ¥ =0. The same
argument applies if &% = 0, so U is regular.

To check the Ore condition, we have by the induction hypothesis y € R
and v € U such that

uy —xv=z¢e ("),

If v(z) = n, the result follows, so assume that v(z) < n, say z = z4t"*,
where z, € U and

uy — xv — zot" 1 =0. )

Likewise there exist y, € R, v; € U such that uy, — zov, € (t), hence
uyltn_1 - Zovlt"_l € (tn)a and bY (5)7

uyv, — xvvy — zot" o, =0,
hence
u(yvy — y1t"!) — xvvy € (1),

and vv; € U. This shows T to be a right Ore set. B

We shall write R, = R/(t") and denote its localization at U by S,. Then
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1S, is a nilpotent ideal, (¢5,)" = 0, and writing A for the field of fractions
of R/(t), we have S,/(t") = A. Moreover, we have

"5, N R, =t""'R,, (6)

because the intersection just represents the elements of R, with value at
least n—1. It follows that the natural homomorphism from R, to
R,/(t" )= R,_, extends to a homomorphism from S, to S,/(r" ') =
S,-1. We thus have two inverse systems of rings (R,) and (§,) with
R, C S, such that the diagram

I)an-i-l I[n 1'in
Sn+l Sn sn-l

commutes. We put R= 1i3_n R, S = liin S,, so that R C R C S, and write
@n: Spi1—> S, ¥Yu: S = S, for the natural homomorphisms.

LeMMA 2.6.4. With the above notations S is a local ring and an integral
domain, with maximal ideal (t) and residue-class ring S/(t) isomorphic to
A. Moreover, tS N R = tR and Ners = 0, and S is complete in the t-adic
topology.

Proof. The homomorphism ¢,: S,,; — S, maps S,,; to S, and induces
an isomorphism of residue-class rings, S,,./(¢)=S,/(t)=A, by (6).
Hence S contains an ideal tS with residue-class ring S/tS=A. Any
element of S\tS is invertible in S, because its image under the map v,:
S — S, is invertible, for all n. Thus S is a local ring with maximal ideal S
and residue-class ring S/tS = A. We have n(t"S) = 0, because S maps to
tS, and (ty,)" = 0, but (ty,)""! # 0, so t is not nilpotent in S. Since v is a
valuation on S, it follows that S is an integral domain.

It remains to show that the f-adic valuation on S reduces to v on R.
Given x € t"S\t"*1S, there exists n, such that for all n = n,,

Xyn € t'SA\tTY1LS,.

Since S, is the localization of R, at U and xy, € R,, we see that xy, €
t'R,\t"*'R, for all n = n, therefore x € t’'R\t"*!R,i.e. v(x)=r. B

To complete the proof of Th. 6.2, let D be the localization of S at the
multiplicative set generated by ¢. Every element of D* has the form
x = t'u, where u € S\tS, hence u is a unit and x ! = t~"u~!. This shows
D to be a field. Finally, choose a set X of representatives for A* in S;
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then given x € D*, say v(x) = r, we have xt™" € S\1S, so there exists
a, € X such that v(xt™" —a,) >0, or equivalently, v(x — t'a,) > r. An
induction shows that

x = > t'a;, wherev(x)=r,a,€ XU {0} @)

Clearly each g; is uniquely determined; thus each non-zero element of D
has the unique form (7); this also shows R(R*)™! to be dense in D.

This proof is due to A. I. Lichtman [a], who has also used the following
trick to extend the result.

Let A be any filtered ring whose associated graded ring is an integral
domain, and denote the corresponding valuation by v. Let B = A[t, 7]
be the ring of Laurent polynomials in a central indeterminate ¢ over A
and extend v to B by the formula

v(ﬁt"ai) = min {v(a)) + i}.
k 1

It is clear that this defines a filtration on B which extends v. To check
that it is in fact a valuation, take a, b € B, and write a = >, t'a;, b = Zt‘bi
where a;, b; € A. If r is the least suffix for which v(a) = v(a,) + r and s is
the least suffix for which v(b) = v(b,) + s, and n = r + s, then we have

v(ab) = mkin {v(zaibk_i) + k}.

For k = n the sum on the right-hand side has a term
v(a,b,) + n = v(a,) + r + v(b,) + 5.
For any other term in the sum we have
v@)+i=v(a)+r, vlb,.)+n—i=v(b)+s,
and at least one of these inequalities is strict, therefore
v(ab,,_;)) + n > v(a,b,) + n,

and it follows that v(ab) < v(a,b,) + n = v(a) + v(b). This proves equal-
ity in (V.3), so we have a valuation. Now the ring of valuation integers in
B is defined as

C = {x € Blv(x) = 0}.
We claim that
C/tC = G(A). 8



88 Skew polynomial rings and power series rings

For a proof consider the map f: G(A) — C/tC defined as follows. Given
ae€ A,/A,,,, take x € A, mapping to « and put af =xt~". If x' is
another element mapping to «, then x —x' € A,,,, hence (x —x")t7" €
tC, so as map into C/tC, f is well-defined; moreover xt~” € «C if and only
if xe A,,;, so it is injective. Thus we have an injective mapping
A,/A, . — C/tC, which is easily seen to be additive. Since this holds for
all r, we have an additive group homomorphism

f: G(A) — C/tC, 9)

and it only remains to verify the multiplicative property. But if v(x) = r,
v(y) =s,then v(xy) =r + sand xt™" -yt~ = xyt~""°, while 1 clearly acts
as unit-element. The distributive laws are easily checked, so we have an
injective ring homomorphism (9). It is an isomorphism since C is spanned
by the elements xt™" (x € A,, r € Z).

Given a € C, if v(a)=n, then a ¢ t"*'C; thus N¢"C =0 and of
course ¢ lies in the centre of C. Thus all the hypotheses of Th. 6.2 are
satisfied and we obtain

THEOREM 2.6.5. Let R be a filtered ring whose associated graded ring
is a right Ore domain. Then R can be embedded in a field D, which is
complete in the topology defined by the valuation induced from the
filtration on R, and R(R*)™! is dense in D. A

As an application we show how to embed the universal associative
envelope of any Lie algebra in a field. Let us recall the necessary
definitions.

A Lie algebra L (over a commutative field k) is a k-space with a
bilinear map from L X L to L, usually called Lie multiplication or simply
‘multiplication’, denoted by [x, y] and satisfying the identities:

[x,x] =0, (10)
[([x, ], 2] + [[¥, z], x] + [[z, x], yY] =0 (Jacobi-identity). (11)
As a consequence of (10), [x, y] = —[y, x], i.e. the multiplication is

anticommutative, but it is not generally associative.

An important example of a Lie algebra is derived from an associative
algebra. Let A be a ring which is also a k-algebra and on A define a
multiplication by the rule

[x, y] = xy — yx. (12)

The k-space A with the multiplication (12) is easily seen to be a Lie
algebra, denoted by A~ and called the Lie algebra derived from A. More
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generally, if V is any subspace of A closed under the multiplication (12)
then we can form V ~ as a subalgebra of A~

If L is any Lie algebra and A an associative algebra, then by a
representation of L in A one understands a homomorphism of L into 4™
It is a basic result that every Lie algebra has a faithful representation in a
suitable associative algebra. This follows from the more precise Birkhoff—
Witt theorem (also called Poincaré—Birkhoff—Witt theorem) stated here
without proof:

THEOREM 2.A. For any Lie algebra L there exists an associative
algebra U(L) with a representation L — U(L)~™ which is universal for
representations of L in associative algebras. This representation is faithful;
more precisely, if (u,) is a totally ordered basis of L, then a basis of U(L)
may be taken in the form of ascending monomials:

Wy, ... Uy, Mshs...sA,r=01,.... (13)

The proof of the first sentence follows easily by abstract nonsense. For
the proof of the rest (the real content of the theorem) see e.g. Jacobson
[62], p. 159 or UA, p. 294.

Let L be a Lie algebra with basis uy, u,, ... (taken countable for
simplicity) and let U(L) be its universal associative envelope. Since U(L)
has a basis of elements (13), we can embed L in U(L) by identifying its
basis with the elements (13) of degree 1. If the multiplication table for L
is given by [u;, uj] = ny}uk, then the defining relations of U(L) may be
written as

W — wu; = zyf;uk. (14)

In particular, if U(L) is filtered by the powers of L, we see that L’/L""!
has a basis consisting of the ascending monomials (13) of degree r; thus
U(L) has a negative filtration. Moreover, in the associated graded ring
G(U(L)) the us commute by (14), hence G(U(L)) is a commutative
integral domain, in fact it is isomorphic to the polynomial ring
k[uy, uy,...], as is easily verified. Invoking Th. 6.5, we obtain the
following embedding:

THEOREM 2.6.6. The universal associative envelope of any Lie algebra
can be embedded in a skew field. B

This result can be used to provide another way of embedding the free
algebra k(X ) in a field. For let L, be the free Lie algebra on X and
U(L,) its universal associative envelope. Then U(L,) is generated by X
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and so is a homorphic image of k(X), while the Lie subalgebra of
k{X )~ generated by X, L, say, is a homomorphic image of L,. Thus we
have the commutative diagram shown, where the map Lo— U(L) is
injective, by Th. 2.A. Hence the homo-
morphism Ly,— L, is injective, and so
L, is free on X, while U(L,) = k(X).
Thus the free algebra, as the universal
Ly ULy  associative envelope of the free Lie alge-
bra, has a field of fractions.

L k(X

Exercises

1. Let R be a filtered ring and G(R) the associated graded ring. Determine when
the ‘leading term’ map a ~> @ is a homomorphism.

2. Define a filtered ring R to be a BW-algebra (BW = Birkhoff-Witt) if G(R) is
a polynomial ring over k in a number of indeterminates. For any Lie algebra L
over k with an alternating bilinear form b defined on it, show that the associative
algebra A(L; b) generated by L as vector space and 1, with the defining relations

xy —yx =[x, y]+ b(x,y)l forallx,yelL,

is a BW-algebra and that every BW-algebra arises in this way.

3. Give an example of a filtered ring R which is an integral domain such that
G(R) is not an integral domain.

4. Define a partial ordering on the set N” of r-tuples of positive integers by the

rule: (my,...,m)<(ny,...,n)ifand only if m;<n;fori=1, ..., r. Show
that any infinite subset of N contains an infinite ascending sub-sequence. Deduce
that the polynomial ring k[xy, . . . , x,,] is Noetherian (Hilbert basis theorem).

5. Show that a filtered ring R is right Noetherian whenever its associated graded
ring G(R) is right Noetherian. By applying Prop. 1.3.6 and Ex. 4, deduce that the
universal associative envelope of a finite-dimensional Lie algebra is an Ore
domain and hence has a field of fractions.

6. Let F = k{X) be the free algebra on X and L the Lie algebra generated by X
as subalgebra of F~. Show that any non-zero element of L is an atom in F. (Hint.
If u e L and a is the ideal of F generated by u, verify that F/a is the universal
associative envelope of L/(u).)

7. Let L be a Lie algebra with an injective endomorphism «. Show that « extends
to a unique endomorphism of U(L), and this extends to an endomorphism of its
field of fractions, constructed as in the proof of Th. 6.6.
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8. Let k be a commutative field of characteristic 0 and on k{(X), where
X = {x;li, j € N}, define a, 6 by

xf; = Xitlj» x$ = Xij+1-
Show that « extends to an endomorphism of the field of fractions K of k(X),
formed as in Th. 6.6. Verify that « is not an automorphism and that § is not inner

on im &" for any n. Deduce that K[¢; a, 8] is a simple principal right ideal domain
(see Cozzens and Faith [75], Cohn [77]).

Notes and comments

Skew polynomial rings first arose in the study of linear differential
equations. If f' =df/dx, then the ring of linear differential operators
may be written as k(x)[D;1,’]. In this form it appears in Schlesinger
[1897], who proves that it is an integral domain (see also the references in
FR, p. 191). The first abstract study was undertaken by Ore [32]; there
have been many papers since then and most of 2.1 is folklore (Th. 1.3 is
taken from Cohn [61"]). Much of 2.2 follows Lam and Leroy [88], see
also Cohn [77]. The observation that power series over K[¢; o, 6] need to
be formed in ¢~ rather than ¢ goes back to Schur [04]. If ¢ is interpreted
as differentiation and ¢! as integration, it is just an expression of the
familiar fact that convergence is improved by integration, but not by
differentiation.

As was noted in 2.4, it is still not known whether the group algebra kG
is always an integral domain whenever the obvious necessary condition
that G be torsion-free is satisfied. Farkas and Snider [76] have shown this
to be the case when G is also polycyclic (i.e. soluble with maximum
condition on subgroups); since kG is Noetherian in this case it is then
embeddable in a field. More generally this has now been established for
all torsion-free soluble groups by Kropholler, Linnell and Moody [88]. In
another direction, J. Lewin and T. Lewin [78] have shown (using methods
of Magnus and some results from Ch. 4 below) that for any torsion-free
group given by a presentation with a single defining relation the group
algebra can be embedded in a field. Dicks [83] gives another relatively
brief proof of this resuit, based on his theory of HNN-constructions.

The power series ring over an ordered group, R((G)) was introduced
(for abelian G) by Hahn [07], who used it to show that every abelian
ordered group can be embedded in an ordinal power of R, lexicographic-
ally ordered. Th. 4.5 was proved independently by Malcev [48] and
Neumann [49]; our proof follows Higman [52] who establishes a version
of Lemma 4.3 for general algebras. The fact that the free group can be
ordered was proved by Shimbireva [47] and independently by Neumann
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[49']. Power series over a free metabelian group were considered by R.
Moufang [37] who used them to show that group algebras of free
metabelian groups, and hence free algebras, could be embedded in
ordered fields (see Ex. 5, 6 of 2.4).

The construction of 2.4 can also be carried out for ordered monoids,
and for an ordered cancellation monoid M and an ordered field k, the
power series ring k((M)) is totally ordered (see 9.6). Dauns [70’] shows
that when M is an ordered cancellation monoid not embeddable in a
group (see Chehata [53]), then k((M)) is an integral domain not
embeddable in a field.

The J-rings studied in 2.5 were constructed by Jategaonkar [69], by a
method using transfinite induction. The more direct proof given here first
appeared in the first edition of FR. Jategaonkar used his construction to
give (i) an example of a right but not left primitive ring, (ii) an example of
a left Noetherian ring having elements with infinite factorizations, (iii) an
example of a left Noetherian ring whose Jacobson radical 3 satisfies
N3~ #0, (iv) a ring in which the left and right global dimensions differ by
a prescribed number (in previous examples this difference had been 1,
Kaplansky [58] or 2, Small [66]). This is proved by showing that for a
J-skew polynomial ring R[¢; @] the left global dimension equals
l.gl.dim.R + 1 (see Jategaonkar [69] or Rowen [88], 5.1). Points (i)—(iii)
are sketched in the text ((ii) was first answered in Cohn [67] by an
example using a J-ring of type 2).

Th. 6.5 and its application, Th. 6.6 were proved by Cohn [61'] by
constructing the multiplicative group of the field as an inverse limit of
monoids and then defining addition with the help of Lemma 1.1.1. The
simpler proof given here is due to Lichtman [a]; another proof by
valuations is due to Dauns [70]. For a fourth proof, using inverse limits of
quotient groups of p-jets, see Wehrfritz [92]. A fifth proof was recently
given by A. I. Valitskas [a], using the matrix ideals of Ch. 4. The
construction has also been used more recently in micro-localization (see
e.g. v.d. Essen [86]).



3

Finite skew field extensions and
applications

The beginnings of commutative field theory are to be found in the theory
of equations. The analysis of algebraic equations with the help of groups
led to Galois theory, but in a modern treatment Galois theory is
developed abstractly and equations enter at a relatively late stage. In the
non-commutative case it turns out that a Galois theory can be developed
which closely parallels the commutative theory, and this is done in 3.3,
using the Jacobson-Bourbaki correspondence (3.2) and some basic facts
on dimensions in 3.1. By contrast, equations over skew fields are much
harder to handle and what little is known is presented in 3.4. In any case,
the appropriate tool to use is a matrix; our knowledge of matrix
singularities is even more sparse, and an account will have to wait until
Ch. 8.

The rest of the chapter deals with various special cases, in which more
can be said: quadratic extensions (3.6) and the slightly more general case
of extensions generated by a single element with a skew commutation
rule, the pseudo-linear extensions (3.5). For outer cyclic Galois exten-
sions 3.7 gives a fairly complete description, due to Amitsur, while the
infinite case is briefly dealt with in 3.8.

The last section, 3.9, dealing with the multiplicative structure of fields,
forms a separate subject not directly related to the rest. Its location here
is determined by the fact that it uses some results from 3.4 but none from
later chapters.

3.1 The degree of a field extension

It is a familiar observation that if k is a commutative field and « is
algebraic over k, then the field k(«) generated by o over k has finite
degree and coincides with the k-algebra generated by «. Moreover, any

93
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finite set of algebraic elements over k generates an extension of finite
degree. For skew fields there is no corresponding statement; here the
extensions of finite degree are much more complicated and there is no
simple way of producing them all, as in the commutative case. In fact
there could be ambiguity about what is meant by an extension of finite
degree.

Let K be a field and E a K-ring. Then E may be regarded as left or
right vector space over K and their dimensions provide two numbers
(possibly infinite), which will be denoted by

[E:K]. and [E:K]g.

When E is itself a field, these numbers are usually called the lefr and
right degree, and we shall use this terminology generally for K-rings.(*)
For many fields these two numbers coincide, but not always, as we shall
see in Ch. 5. We shall often call [E:K]g simply the degree of E over K
and call the extension E/K finite when its degree is finite. As in the
commutative case we have the product formula for the degrees (see A.2,
pp- 63f.), which follows from the next result:

ProrositioNn 3.1.1. If KCE are any fields and V is a right
E-module, then the dimensions of V over E and K are related by the
formula

[V:K]=[V:E|[E:K]g, )

whenever either side is finite.

The proof is as in the commutative case, by showing that if {u;} is a
right E-basis for V and {v,} a right K-basis for E, then {u,v;} is a right
K-basisfor V. &

At least one of our difficulties disappears for extensions of finite
degree, the difference between zero-divisors and non-units:

ProrosiTioN 3.1.2. Let K be a field and A a K-ring of finite right
degree over K. Then every right regular element of A is a unit; hence if A is
an integral domain, then it is a field.

Proof. Let a € A and suppose that a is right regular. Then the mapping

(*) Care is needed to avoid confusion with the ‘degree’ of a central simple algebra, which is
usually defined as the square root of the dimension. We shall not have occasion to use
the term in that sense, but shall avoid confusion by speaking of the ‘dimension’ in cases
of doubt.
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A,: x — ax is injective, and it is clearly right K-linear on a finite-dimen-
sional K-space, hence it is surjective, and so ab = 1 for some b € A. Now
b is again right regular: if bx = 0, then x = abx = 0. Hence there exists
c € A such that bc =1, but now ¢ = abc = a, which shows that ab =
ba =1, so a is a unit. The rest is clear. B

There is one important case where the left and right degrees are the
same:

THEOREM 3.1.3. Let E be a field of finite dimension over its centre.
Then for any subfield K of E the left and right degrees of E over K
coincide.

Proof. Let K be a subfield of E and denote the centre of E by C. By
hypothesis E is a C-algebra of finite degree, and it is clear that A =
KC = {>xylx; € K, y; € C} is a subalgebra. If we regard A as a K-ring,
we can choose a basis of A as left K-space consisting of elements of C;
this will also be a right K-basis of A, hence

[A: K] = [A:K]g. 2

Now A is a C-algebra of finite degree, and an integral domain, as
subalgebra of E, hence A is a field. By (1) we have

[E:C] =[E:Al[A:C]) = [E:Alg[A:C].
Since [E: (] is finite, so is [A:C]. If we divide by [A:C] and then multiply
by (2), we get, on using (1) again,
[E:K], = [E:K]g,

as we had to show. W

As a consequence the left and right degrees also coincide when the
subfield is commutative:

ProrosiTioN 3.1.4. Let E be a field and K a commutative subfield for

which [E:K]g is finite. Then E is of finite degree over its centre and so
[E:K]. =[E:K]g.

Proof. Denote the centre of E by C and by F the subfield of E
generated by C and K. Then F is a commutative subfield containing C
and [E:F]g is again finite. Consider the tensor product E @ F; it is a
simple algebra with centre F, by Cor. 7.1.3, p. 260 of A.3, and we have a
homomorphism
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E ®¢ F — Endg (Ejp), 3)

which maps >u;® «; (u;€ E, o;€ F) to the endomorphism x —
Suxa;. By the simplicity of E® F it is an embedding, and if
[E:F]g = n, then the right-hand side of (3) is M,(F). Hence

[E:C] = [E ®¢ F:F] < [M,(F):F] = n?.

Thus E is of finite degree over C and now the conclusion follows by
Th.13. B

Exercises

1. Let k be a commutative field and K = k(¢) the rational function field, with
endomorphism a: f(¢) —> f(¢?). Show that the truncated polynomial ring K[x; o/
(x?) has left degree 3 and right degree 2 over K. (Hint. Show that 1, x, xt is a left
K-basis.) Find K-algebras of arbitrary left and right degrees.

2. Let K be a field, E a subfield and F its centralizer in K. Verify that
C=ENF is the centre of E and give a direct proof that the natural
homomorphism of E® F into K given by x ® y— xy is injective (this is
expressed by saying that E and F are linearly disjoint in K over C, see 6.4
below).

3. Give a direct proof that a field cannot be of prime dimension over its centre.

4. (Schofield [85]) Let A, D be k-algebras which are skew fields, A of finite
degree over k and D with centre F such that E &, F is an integral domain for all
commutative field extensions E/k (such an extension F/k is called regular). Show
that A° ®; D is a simple Artinian ring with a unique simple module S of finite
dimension over D; verify that A can be embedded in M,(D) if and only if
[S:D]|n.

3.2 The Jacobson—-Bourbaki correspondence

Let A be any ring and M, N two A-bimodules. We shall write
Hom (M, N), Hom,_(M, N), Hom_, (M, N), Hom, 4 (M, N) for the
set of all additive, left-A, right-A and A-bimodule homomorphisms from
M to N respectively, and we shall use a corresponding notion for
End (M) = Hom (M, M). Of course End (M) also has a multiplication
which together with the addition gives it a ring structure. In particular, for
M = A we have in End (A) the subring p(A) of right multiplications p,:
x = xa; this ring is isomorphic to A, as is well known (see Th. 2.1 below).
Similarly the subring A(A) of left multiplications 4,: x+ ax is anti-
isomorphic to A, because (writing maps on the right) we have 4,4, = 4,,:
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x — bax. These two subrings can be identified with each other’s
centralizers in End (A4); we recall that the set of module endomorphisms
of 4A is just the centralizer of End,_(A) in End(A) and the set of
module endomorphisms of A, is the centralizer of End_, (A) in End (A).
Further we denote by A° the opposite ring of A, i.e. the ring on A* as
additive group with the multiplication

Xoy = yx.

THEOREM 3.2.1. Let A be a ring and p(A), MA) the rings of all right
and left multiplications respectively. Then p(A) = A, M(A) = A° and

p(A) = End,_(A), MA) = End_, (4). 6

Proof. Any right multiplication is a left-A homomorphism, by the
associative law: (bx)a = b(xa). Hence the map a+ p, is a ring homo-
morphism from A to End4_(A). It is injective, because p, = 0 means that
a=1-p,=0; to show that it is surjective, take 8 € End,_(A) and let
16 =b. Then for any x € A, x0 = x(16) = xb = xp,, hence 8 = p,, as
claimed. This proves the first equation (1) and the fact that p(A) = A.
The proof for the other side is similar, bearing in mind that the left
multiplications define a left A-module structure on A, corresponding to a
right A°-module structure. B

We shall also need a lemma on centralizers of subrings of End (A):
LEMMA 3.2.2. Let A be a ring and F a subring of End (A) containing
p(A). Define a subset of A by the condition

C = {x € A|A, centralizes F}
={x e A|l(xy)f=x-yfforally € A, f € F}.

Then the centralizer of F in End(A) is A(C), hence C is a subring of A
and we have

p(A) C F C Endc_(A). @
Moreover, C may be defined by the equation
C={xeAlxf=x-1fforall f € F}. 3)
Proof. Since F contains p(A), the centralizer of A(A), it follows that the
centralizer of F is contained in A(A); now the definition of C states that

Af = fA, for x € C, so the centralizer is just A(C) and it follows that C is
a subring of A. Now (2) follows because the elements of F centralize C.
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To prove (3), denote the right-hand side by C’; then it is clear that
CC C’ and we must show that equality holds. Let x € C’, so that
xf =x-1ffor all f e F. It follows that for any y € A,

() = xpf = 5 1pyf),  because p,f € F,
=xyf,

and so x € C, as claimed. W

For the moment let A be any abelian group. In End(A) there is a
natural topology which is induced by regarding it as a subset of A%,
endowed with the product topology (taking A as a discrete space). This is
known as the finite topology or the topology of simple convergence. If
f € End (A), a typical neighbourhood of f, specified by a finite subset X
of A, consists of all ¢ € End(A) such that xf =x¢ for all x e X. It
follows that all centralizers are closed:

ProrosiTioN 3.2.3. Let A be an abelian group and F C End(A).
Then the centralizer of F is closed in the finite toplogy on End (A).

Proof. Let feEnd(A) and C = {ge End(A)|gf = fg}. Given h ¢ C,
we have Af # fh, so there exists x € A such that xhf # xfh. Consider the
neighbourhood of h determined by x, xf. It consists of all ¢ € End(A)
such that xk = x@, xfh = xf@. Hence

x@f = xhf # xfh = xfo,

and so @ ¢ C. Thus a neighbourhood of 4 is disjoint from C, hence C is
closed. Now for any subset F of End (A), the centralizer of F is closed, as
the intersection of the centralizers of all fe F. W

Let us now consider any ring A and a simple right A-module M. By
Schur’s lemma the endomorphism ring of M,, i.e. the centralizer of A in
End (M), is a field D, say, and the action of A on M is dense in the
centralizer of D in End (M). This is just the density theorem for simple
modules (see e.g. A.3, Cor. 10.2.6, p. 401), which will be applied in the
next result.

Let K be a field and consider the ring E = End (K) of all endomorph-
isms of K*. For any subfield D of K define D’ = End,_(K), the
centralizer of A(D) in E; this is a subring containing p(K), i.e. a
p(K)-subring of E. If F is any p(K)-subring of E, we define
F'={x e K|(xy)f =x-yf for all y € K, fe F}, the centralizer of F,
which is a subring of K by Lemma 2.2, in fact a subfield. The mappings
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Dw— D', F— F' satisfy the usual rules for a Galois connexion (see A.2,
p. 85f.):

(G1) D"2D,F"DF,

(G2) D,CD,=Di2D;,FFCF,=F| D F;,

(G3) D"=D', F"=F'.

Our problem will be to find the sets which correspond under this Galois
connexion, i.e. the subfields of K of the form F' and the subrings of E of
the form D’'. This question is answered by the Jacobson-Bourbaki
correspondence, which tells us that the correspondence is between all
subfields of K and all closed p(K)-subrings of E:

THEOREM 3.2.4 (Jacobson-Bourbaki correspondence). Let K be a
field and End (K) the endomorphism ring of K* with the finite topology.
There is an order-reversing bijection between the subfields D of K and the
closed p(K)-subrings F of End (K), given by the rules

D~ F=End, (K), F— D= {xeK|xy)f=x:yf
forally e K, fe F}. (4)

Moreover, if D and F correspond in this way, then

[K:D]. = [F:K]g, %)
whenever either side is finite.
Proof. Given a closed p(K)-subring F of End (K), define D as in (4). By
Lemma 2.2, A(D) is the centralizer of F in End (K). Now K is a simple
right K-module, hence it is simple as right F-module, so the centralizer

D of F is a field, by Schur’s lemma, and F is dense in the bicentralizer
(by the density theorem). But F is closed, so we have equality:

F = Endp_(K). (6)
Conversely, given D, put F = End,_( K) and define D, as
D,={x € K|xf =x-1fforall f € F}.

Then D; D D and by the first part, F=End,_(K), so D;=D by
Lemma 2.2. Thus we have the correspondence (4), which is clearly
order-reversing.

To establish (5), let us take a finite subset X of K which is left
D-independent, and for each y € X choose 6, € Endp_(K) such that

(ZWXx)(Sy —a,

This is clearly possible, e.g. by completing X to a left D-basis of K and
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defining 8, as 0 on the complement of X. The &, are right linearly
K-independent, for if Zéyay =0 (a, € K), we can apply this relation to
x € X and get 0= x(Eéyay) = a,, so all the a, vanish and the relation
was trivial. This shows that

[K:D]y = [F:K]g, @)

and it proves (5) when the left-hand side is infinite. If the left-hand side is
finite, we can take X to be a left D-basis of K. Thus every element of K
has the form >, a,x, and for any f € F we have

(Seux)(S6,-31) = Sear = (Sae)r

hence f = Z(Sy - yf and this shows that the 6, span F as right K-space.
Therefore equality holds in (7) and (5) follows. B

Exercises

1. Verify that the finite topology on End(A), for any abelian group A, is
Hausdorff.

2. Let K be a field. What is the condition for the finite topology on K* to be
discrete?

3°. Show that for any abelian group A, a topology on End (A) may be defined by
taking as the closed sets all finite unions of centralizers. Find conditions for this
topology to be equal to the finite topology.

4. Show that any p(K)-subring F of End (K) satisfying [F:K}g < = is closed in
the finite topology.

3.3 Galois theory

Let K be a field and G the group of all its automorphisms. For a subfield
E of K define E* = {0 € G|x° = x for all x € E} and for any subgroup
H of G put H*={x € K|x° =x for all 0 € H}. It is clear that E* is a
subgroup of G, H* is a subfield of K and we again have a Galois
connexion:

(G.1) E**DE, H**DOH,

(G2) E\CE,=E{DE}, H CH,=H2DH;},

(G.3) E*** = E* = H*** = H*

Given a subgroup H of G, we call H* the fixed field of H. Given a
subfield E of K, we call E* the group of K/E; if E** = E, we call E* a
Galois group, also denoted by Gal (K/E), and we say that K/E is a
Galois extension.



3.3 Galois theory 101

Our problem will be to find which fields and groups correspond in this
Galois connexion, i.e. which subfields of K are of the form H* and which
subgroups are of the form E*. We recall that in the case of commutative
fields the finite Galois extensions are just the separable normal exten-
sions, while every subgroup of Gal(K/E) has the form F* for a suitable
field F between K and E. The account which follows is based on
Jacobson [56], Ch. VII.

The commutative theory rests on two basic results (see e.g. A.2,
Lemma 3.5.1, p. 81, Th. 3.5.5, p. 84):

Dedekind’s lemma. Distinct homomorphisms of a field E into a field F
are linearly independent over F.

Artin’s theorem. If G is a group of automorphisms of a field E and F is
the fixed field, then [E:F] = |G| whenever either side is finite.

Our object is to find analogues in the general case. We begin with
Dedekind’s lemma; here we have to define what we mean by the linear
dependence of homomorphisms over a skew field. Given any fields K, L,
we write H = Hom (K, L) for the set of all field homomorphisms from
K to L; H is a subset of the space LX of all maps from K to L, and we
can form HL, the right L-submodule of LX generated by H. We shall
write the elements of H as exponents and also write of = @B for
o, f e K. We have

x® =(xa) =xa =x* forallx,ave K,se H;
hence we can define HL as left K-module by the rule
as=sa’foraoe K,s e H=Hom(K, L). )

It is easily checked that with this definition HL is a (K, L)-bimodule.
Each p e L™ defines an inner automorphism of L,

I(p): A php™t,

and it is clear that for s € H we have sI(u) € H. Two homomorphisms
s, t from K to L are called equivalent, s ~ t, if they differ by an inner
automorphism: ¢ =sI(u). We note that for each se H, sL is a
(K, L)-submodule of HL which is simple as (K, L)-module, since it is
already simple as L-module. The next result shows how HL is made up
of these parts.

LEmmMmA 3.3.1. Let K, L be fields and H = Hom (K, L). Then HL is a
semi-simple (K, L)-bimodule, as sum of the simple modules sL. Two
sub-modules sL, tL are isomorphic if and only if s and t are equivalent.
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Proof. We have seen that sL is simple; HL is a sum of these simple
modules, and so is semisimple. If sL = tL, let ¢ correspond to su, where
ue L*. Then a-su=su- o for all « € K, and since as = sa*, we find
that a’u= ua’, so s = tI(u). Conversely, if s ~ ¢, then o’u= ua' for
some pe€ L™ and retracing our steps, we find that sL = (L with ¢
corresponding to su in the isomorphism. W

We now consider the action of the (K, L)-bimodule HL. Each element
of HL defines a mapping K — L as follows:

Nsihi: o> >a'd;, whereae K,s;€ H, A € L. ¥))

By (1) the left K-module structure of HL acts on K in the expected way,
namely by right multiplication. Let N be the kernel of the mapping (2)
from HL to LX; thus N consists of all sums Esili such that

>afid;, =0forall @ € K. 3)

The quotient M = HL/N is a (K, L)-bimodule whose elements have the
form D's;A; (s; € H, A; € L), with D.s;A; = 0 if and only if (3) holds. By
Lemma 3.1, HL is semisimple, hence so is the quotient M; we recall also
that a semisimple module is a direct sum of its homogeneous components
or type components, where each component is a direct sum of simple
modules of a given type (A.2, 4.2). Now we have the following
generalization of Dedekind’s lemma:

TueoreM 3.3.2. Let K, L be any fields, put H=Hom (K, L) and
consider M = HL/N, the homomorphic image of HL in L¥ as (K, L)-
bimodule, as defined above.
(i) Givens, sy, ..., s, € H, if s = .s;A; in M, then s = 5,1 (1) for some i
and some pe L*.
(ii) Given se H, w,, ..., u, € L™, if the elements sI(y;) are linearly
dependent over L, then the y; are linearly dependent over €,;(K"),
the centralizer of K* in L.

Proof. (i) If s = D.s;A;, then the simple module sL lies in the sum of the
s;L and so it lies in the same type component as some s;L, hence s and s;
generate isomorphic modules and so are equivalent: s = s5,/() for some
uwe'L™.

(ii) If the sI(w;) are linearly dependent in M, take a relation of shortest
length:

p
SsI(u)r; =0, where i, € L.
1
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Multiplying on the right by a suitable factor, we may assume that A, = ;.
By applying the relation to 1 € K, we find that >, 4; = 0, so

Eﬂi : ﬂ:lli =0, “4)

and the result will follow if we can show that u;'A, € €,(K*). Let us
apply the relation to a product o8 in K:

0= 2(aByI(u)h; = ZHi“Sﬁs.ui_llr (5)
Next apply the relation to o and multiply by ° on the right:

0= I(w)hp = Eﬂia's.ui_l)viﬁs-

Taking the difference, we get
p
Zﬂias#i_l()-iﬁs - .uiﬂs.ui_lfli) = 0.
1

The first coefficient is 4,° — A, = 0, hence by the minimality the other
coefficients also vanish, so u;'A,8° = B u; 'A; and hence y;'A; centralizes
K¢, as we had to show. B

Suppose that s is an isomorphism between K and L. Then K* = L and
so the centralizer of K* in L is just the centre of L. This yields

CoroLLARY 3.3.3. Letsy, ..., s, be pairwise inequivalent isomorph-
isms between two fields K and L and let A, ..., A, € L be linearly
independent over C, the centre of L. Then the isomorphisms s,1(A;) are
linearly independent over L and any isomorphism which is a linear
combination (over L) of these isomorphisms has the form s = s, I(1),

where A = ijﬁj (B;€C).

Proof. If the s;1(A;) were linearly dependent, then by (i), for some s =s;
the sI(A;) would be linearly dependent, so by (ii) the A; would then be
linearly dependent over C, but this contradicts the hypothesis.

Now assume that the isomorphism s satisfies

s = 2sd(A)a;, wherea; € L. (6)
Then by (i), s = s;J(4) for some i, say i =1 and A € L. Hence we have
siI(A) =D (A)a;, and by equating terms of the same type we may
omit all terms s, with k # 1. Now by what has been shown, A, 4,, ..., 4,

are linearly dependent over C, but A,, ..., 4, are linearly independent,
hence 4 depends linearly on the 4, so A = 2/1, B;forsome ;e C. W

Next we have to translate Artin’s theorem. Without using Dedekind’s
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lemma we can state the result as [K:D] =[G:K], where G, or rather
GK, is regarded as right K-space. We shall replace G, a group of
D-linear automorphisms of K, by D-linear transformations of K. Every
such s € End,_(K) satisfies the rule

(ax)’ = ax’ forallx e K,a e D,

which generalizes the rules (xy)* = x°y’, &' = « satisfied for s € G. For
any field K we shall consider the ring End (K) again as a topological ring,
as in 3.2. It contains p(K) as a subring and by the Jacobson-Bourbaki
correspondence (Th. 2.4) there is an order-reversing bijection between
the subfields D of K and the closed p(K)-subrings F of End (K) such
that

[K:D]. = [F:K]r

whenever either side is finite.

Given a group G of automorphisms of K, we have a right K-space
GK, and we have only to show that this is a ring in order to be able to
apply the preceding resuit. Thus we need

LeMMA 3.3.4. Let K be a field and G a group of automorphisms of K.
Then GK is a p(K)-subring of End(K) and its closure GK in the finite
topology is Endp_(K), where D is the subset of K fixed by G.

Proof. In GK we have the rule ag = ga® (o € K, g € G); using this rule
we have

(g121)(822) = g1g208 ;.

Since every element of GK is a sum of terms ga, it follows that GK is
closed under products and GK 2 p(K), so GK is a p(K)-ring. By Th.
2.4, GK =End,_(K), where D ={x e K|x=x-1/ for all fe GK}.
Thus if & € K, then

aoeD<wal =a -Vforal f € GK,
s aff=a-1%¥forallge G, Be K,
< atf = ap;
hence w e Difandonlyif a® = aforallge G. B
By combining this result with Th. 3.2, we obtain a result on extending
homomorphisms. By an automorphism of K over a subfield D or an

automorphism of K/D we shall understand an automorphism of K
leaving D elementwise fixed.
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ProrosiTioN 3.3.5. Let K be a field, G a group of automorphisms of
K and D the fixed field of G. Further, assume that G contains all inner
automorphisms of K over D. If E is a D-subring of K of finite left degree
over D, then every D-ring homomorphism of E into K is induced by an
element of G.

Proof. Let s: E— K be a D-ring homomorphism. Regarding E and K
as left D-spaces, we see that E is a subspace of K, therefore s can be
extended to a D-linear endomorphism of K, i.e. an element of
End,_(K). By Lemma 3.4, End,,_(K) = GK and so on any finite-dimen-
sional subspace s can be written as . g;4; (g € G, 4, € K). In particular,
since [E:D]; < , we have s = >, g;4; on E. Now E is a D-subring of K
of finite left degree, hence a field (Prop. 1.2) and by Th. 3.2(i), s = g,I()
for some i and some u € K*. Applying this expression to o € D we find

o=ao = a®l(u) = pau .

Hence the inner automorphism I(u) leaves D fixed, so I(u) € G by
hypothesis and so g;/(u) € G is an automorphism which induces s. W

This yields the Skolem—Noether theorem for the special case of fields:

CoroLLARY 3.3.6. Let K be a field with centre C and let D be a
C-subalgebra of K finite-dimensional over C. Then any C-algebra homo-
morphism from D to K can be extended to an inner automorphism of K.
In particular, if [K:C] < o, every automorphism of K over C is inner.

Proof. In Prop. 3.5 take G to be the group of all inner automorphisms of
K. Then C is the fixed field and every inner automorphism belongs to G;
now the conclusion follows. B

We now return to our initial task of finding which automorphism
groups and subfields correspond to each other in the Galois connexion.
We first deal with a condition which is obviously satisfied by all Galois
groups. Let K be a field with centre C and let D be any subfield of K;
then the centralizer of D in K is a subfield D’ containing C. Any
non-zero element of D’ defines an inner automorphism of K over D and
so belongs to the group D*; conversely, an inner automorphism of K
belongs to D* only if it is induced by an element of D’. Thus we see that
the o € K for which I(&) € D* together with O form a subfield containing
C. This then is a necessary condition for an automorphism group to be
Galois and it suggests the following
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Definition. A group G of automorphisms of a field K is called an
N-group (after E. Noether) if the set

A={aeK|la=0or I(@) e G}

is an algebra over the centre C of K; A will be called the C-algebra
associated with G. Clearly the associated C-algebra is necessarily a field.

We note that the property of G being an N-group is not just a group
property, but refers to its action on the field. It is also clear that every
Galois group is an N-group: if G = E* and E = G*, then I(c) € G if and
only if ¢ € €p(E), so the associated algebra is just the centralizer of E
in K.

If G is any N-group with associated algebra A, and G is the subgroup
of all inner automorphisms /(@) (o € A*), then G, is normal in G, for if
xeK,ae A*, s € G, then

" Ha) = (ax* a™) = o’x(a’)™ = xI(a’);
hence
s7H(a)s = I(o),

and this shows G, to be normal in G. We define the reduced order of G
as

|Glrea = (G:Go)[A:C]. M

With this notation we have the following replacement for Artin’s
theorem:

THEOREM 3.3.7. Let K be any field, G an N-group of automorphisms
of K and put D = G*, the fixed field of G. Then

[K:D]L = lGlred’ (8)

whenever either side is finite, and when this is so, G is a Galois group, i.e.
G = D* = G**.

Proof. Suppose first that [K:D] = m < «; then by the Jacobson-Bour-
baki correspondence (Th. 2.4), [Endp_(K):K]Jg=m. Lets;, ...,s5,€ G
be pairwise incongruent (mod G;) and A, ..., A, any elements of the
associated C-algebra A that are linearly independent over C. Then the
maps s;/(A;) are in Endp_(K) and by Cor. 3.3 they are linearly
independent over K. Hence rt < m and it follows that |G|,eq < m < .
We may now assume that G has finite reduced order. Let s, . . ., s, be
a transversal for G, in G and A, ..., A, a C-basis for A; then we know
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that the s;/(A;) are linearly independent over K. We shall show that they
form a right K-basis for Endp_(K).

Given se G, let s=s5I(A), say, where Ae A and so A=>Ap;
(B; € C). For any c € K we have

¢t = cI(A) = AcA!

= leﬁjcsll_l

= Elicsllj_l M A']ﬁ]}.—l

= EC“I(A;’)Y;',
where y; = A,,A"! € K. This shows that the 5,(4;) span G, hence also
GK. Now GK has finite dimension over K, and so GK = GK =
End,_(K), by Lemma 3.4. It follows that |G|.q = [Endp_(K):K]g =
[K:D]L.

Next it is clear that D* = G** D G. Conversely, if s € D*, then

s € Endp_(K), hence s = X s,/(4;)a;;, where a;; € K. By Th. 3.2, since s
is an automorphism of K, we have s = s,/(1) for some i, where A = ZAj B;

(Bj€ C), but then I(A) e Gy and s;€ G, hence s e G, as we had to
show. B

Here is a simple example (noted by G. M. Bergman) to illustrate the
need for introducing the reduced order. Let w be a primitive nth root of 1
(for any odd n = 3) or a primitive 2nth root of 1 (for any even n = 4),
and in the real quaternions H consider /(). This automorphism has
order n, though its fixed field is C and [H:C] = 2.

We note some consequences of Th. 3.7. In the first place (8) allows us
to assert the equality of left and right degrees in some cases:

CoRrROLLARY 3.3.8. Let K be a field, G an N-group of automorphisms
of Kand D = G*. Then

[K:D]. = [K:D]g,

whenever either side is finite.
This follows from (8) by symmetry. W

Secondly we have a result first obtained by Brauer [32] in the theory of
algebras.

CoROLLARY 3.3.9. Let K be a field with centre C and let A be any
C-subalgebra of K. Then the centralizer A’ of A in K is again a C-algebra
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and the bicentralizer A" contains A. Moreover,
[K:A'l, =[A:C], )

whenever either side is finite, and when this is so, then A" = A.

Proof. Suppose first that [K:A']; is finite. Clearly A’ is a subfield of K
let G be the group of all inner automorphisms of K over A’ and let A, be
the associated algebra. Then A; D A and by Th. 3.7, |Gl.q =[A1:C] =
[K:A']L, hence A is then of finite degree. Thus we may assume that
[A:C] is finite, and hence A is a field. Let G be the group of all inner
automorphisms induced by A; then G* = A’ and (9) follows from (8).
Moreover, (A')* = G, which means that A" = A. &

We still need a lemma to identify the precise form taken by subrings of
GK.

LemMma 3.3.10. If K/D is a Galois extension with group G and
[K:D]L < «, then any p(K)-subring B of GK has the form HK, where
H = G N B is an N-subgroup of G.

Proof. Put H = G N B; then clearly HK C B. To prove equality we
note that HK and B are both K-bimodules contained in
GK = Endp_(KX), by Lemma 3.4. Now GK is semisimple and hence so is
B; moreover, every simple submodule of B is isomorphic to a simple
submodule of GK and so is of the form uK, where au = ua’ for all
o« € K and some s € G. Replacing u by uy (y € K) if necessary, we may
suppose that

l-u=u andstill ou = ua® forsomes e G.

Hence a-u=1-ua’ =o', i.e. u is an automorphism of X, viz. s, and
since u € Endp_(K), s fixes D,i.e. s € G,s0s € GN B = H. This shows
that B = HK.

That H is a group follows because B is a centralizer (being of finite
degree over K, by Jacobson—Bourbaki). To show that H is an N-group,
let I(a)), I(y) e H and a = a6, + o, #0; we must show that
I(a) € H, and clearly it will be enough to show that I(«) € B. We have
I(a) = Ma)p(a™) and B D p(K), hence I(a) € B < A«) € B. By hypo-
thesis, A(a;), May) € B and Ma) = A(ay) B + Ma,)B,, hence M) € B,
and it follows that H is an N-group. W :

Finally we come to the fundamental theorem. In order to describe
extensions, we need an analogue of normal subgroups, bearing in mind
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that we admit only N-groups. We therefore define: a subgroup H of an
N-group G is said to be N-invariant in G if the N-subgroup generated by
the normalizer of H in G is G itself.

THeoreM 3.3.11 (Fundamental theorem of Galois theory for
skew fields). Let K/E be a Galois extension with group G and assume
that [K:E]y < .

(i) There is a bijection between N-subgroups of G and intermediate fields
D, ECDCK:

Hw— H*={x e K|x°=xforallo € H},
D~ D* = {0 € G|x° = x forall x € D}.

If H < D, then K/D is Galois with group H and [K:D], = |H|,eq.

(ii) If H < D, then the group of automorphisms of D/E is isomorphic to
Ny/H, where Ny is the normalizer of H in G. Moreover, D/E is Galois if
and only if H is N-invariant in G.

Proof. (i) By Th. 3.7, |G|,eq < ® and so any N-subgroup of G has finite
reduced order: H/Hy,= H/(H N Gy) = HG,/G, C G/G,, where G, is
the subgroup of G consisting of inner automorphisms, and similarly for
H, and H,; thus the C-algebra associated with H is contained in that of
G. It follows by Th. 3.7 that, given H, we have H** = H. Conversely,
given D, we put H = G N Endp_(K); then End,_(K) = HK, by Lemma
3.10. Now H consists of all D-linear transformations in G, i.e. the
elements of G fixing D, thus H = D*. Since End,_(K) = HK, we have
D = H* by Lemma 3.4. Thus D** = D and now [K:D}. = |H|,.q by
Th. 3.7.

(ii) If D & H, then for any s € G, D* < s~ Hs, therefore the members
of Ny and only these are automorphisms of D/E. Every automorphism of
D/E is induced by one of K/E (Prop. 3.5), hence its Galois group, G,
say, is a homomorphic image of Ny. The kernel consists of those
automorphisms of K which fix D, i.e. H, so that G, = Ny/H. So far D
was any field between K and E. Now D/E is Galois if and only if E is
the fixed field of G,, i.e. E is the set of elements fixed by Ny. By (i) this
holds if and only if the N-subgroup of G generated by Ny corresponds to
E, which happens precisely when this group is G. But this just means that
H is N-invariantin G. B

We note the special case where the Galois group is inner, i.e. consists
entirely of inner automorphisms. Let K/E be a Galois extension with
inner Galois group G and let E’ be the centralizer of E in K; then C, the
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centre of K, is contained in E’ and G = E'*/C*. Such extensions are
described in Cor. 3.9.

Let us return to the case of a general Galois extension K/E with group
G. As we have seen, the subgroup G, of inner automorphisms is normal
in G; moreover, G/G, consists entirely of outer automorphisms (apart
from 1). For if the fixed field of G, is K, and & € G/G,, suppose that
& = I(c) and take 0 € G mapping to . Then o~'I(c) fixes K, and so lies
in Gy, i.e. 0 € Gy and hence & = 1, as claimed.

A Galois group will be called outer if the only inner automorphism it
contains is 1. E.g. in the commutative theory all Galois groups are outer.
It follows from Th. 3.11 that every Galois extension is an outer extension
followed by an inner extension:

CoroLLARY 3.3.12. Given any Galois extension K/E, there is a field
Ko, E C Ko C K, such that K,/E is Galois with outer Galois group and
K/K, has inner Galois group. Here K, is uniquely determined as the
bicentralizer of E in K.

Proof. Let G be the Galois group of K/E and G, the subgroup of inner
automorphisms. The automorphisms in G, fix E and so are induced by
elements of the centralizer E’ of E. If K, denotes the centralizer of E’,
i.e. the bicentralizer of E, then K, D E and K, is the fixed field of G,.
Thus K/K, is Galois with inner Galois group G,, while K,/E has Galois
group G/G, and this is outer, as we have seen. B

The ‘theorem of the primitive element’ has an analogue in the skew
case.

THEOREM 3.3.13. Let K be a field with an infinite subfield E. If there
are only finitely many subfields between K and E, then K can be generated
by a single element over E, i.e. K/E is a simple extension.

Proof. Among the simple extension fields of E in K take a maximal one,
E(a) say. If E(a)# K, take b ¢ E(a) in K and consider the fields
L,=E(a+Ab) (A€ E). Two of these must coincide, because E is
infinite. If L, contains a + yb and a + y'b, where y # y', then it also
contains (y — y')b, hence b and a, so L, is a simple extension strictly
larger than E(a), which is a contradiction. W

The conclusion holds for any Galois extension with finite Galois group.
However, a Galois group of finite reduced order may well have infinitely
many N-subgroups (see Ex. 3).
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Exercises

1. (S. A. Amitsur) Let F = Q(u), where u is a primitive cube root of 1, with
automorphism «: u— u2. Put R = F[v; ] and verify that v> — 2 is central and
irreducible. If K = R/(v> —2), show that K/F is inner Galois, with group
generated by I(u), of order 3 but reduced order 2.

2. Show that any field of finite degree over its centre is an inner Galois extension.

3. Let K be a field with centre C# K and suppose that K/C is a Galois
extension. Show that there are infinitely many fields between K and C, and
deduce that the Galois group must be infinite. Give an example where the Galois
group has finite reduced order.

4. Show that the set of all automorphisms and antiautomorphisms (reversing
multiplication) of a field K forms a group in which the set of automorphisms
forms a subgroup of index at most 2. Give an example of an antiautomorphism of
a field whose fixed set is not a subfield. (Hint. Try a field of fractions of the free
algebra.)

3.4 Equations over skew fields and Wedderburn’s theorem

The solution of equations over a commutative field & is closely bound up
with the problem of constructing algebraic extensions of k. For skew
fields, matrices are needed to treat the general problem, and we shall
present what little is known so far in Ch. 8. In this section we shall
describe a special situation that allows the use of ordinary polynomials in
K[1].

Let K be a field and L an extension of K. An element « of L is said to
be right algebraic over K if its powers are right linearly dependent over
K, i.e. «is a left root of an equation

f(H)=ay+ta,+...+1t"a, =0, a € K,notallO. 1)

We shall also say that « is a left zero of the polynomial f(t) = > t'a;.
There is a corresponding definition of left algebraic, right root.

To find the relation between the left zeros of a polynomial and those
of its factors, let g = Etfbj be another polynomial. We shall put fg =
Et”’h,b,, so formally polynomials may be regarded as members of the
polynomial ring K[¢]; further we write f(c) or f. for the element obtained
by replacing ¢ by c, keeping the coefficients on the right. Then we have,
assuming that f, # 0,

(fe)e = chjaibj = Eciﬁ:bj = ch(fc_lcifc)bj,
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and so

(f8). = £8(f<'ch), )

whenever f, # 0. If we apply this formula to the usual division algorithm,
f=(t—c)g + r, putting ¢t = ¢, we find that r = f, and so

f=(—-c)g+f foranyfe K[t]andc € K. 3)

The conclusions (3) and (2) may be stated as follows:

ProrosiTION 3.4.1. Let K be any field, c € K and f € K[t]. Then
f. =0 if and only if t — c is a left factor of f. Further, for any f, g € K[t]

andc € K,
foif=0,
(e). = {ﬁg(fZICfc) iFf 0. @

Hence the left zeros of fg are either left zeros of f or conjugates of left zeros
ofg. B

We shall also need a criterion for the similarity of linear factors in K[¢],
but this is no harder to prove for the skew polynomial ring, and is
sometimes useful in that form.

LeMMA 3.4.2. Let K be a field with an endomorphism «, an a-deriva-
tion § and put R = K|[t; @, O]. Thent — a is similar to t — a’ if and only if

a' =clac* + c'c®  forsome c € K*. %)

In particular, in K|[t), t — a is similar to t — a’ if and only if a’ is conjugate
toa.

Proof. From Prop. 1.5.2 we know that ¢ — a is similar to ¢ — a4’ if and
only if there is a comaximal relation

p(t—a') = (1 - a)y, (6)

where p,q € R. By the division algorithm we can replace p by
p — (t — a)f, which for suitably chosen f is of degree 0. Thus we may
take p = c € K* and then a comparison of degrees shows that g € K*.
Now (6) can be written as

tc* +c®~ca' =tq - aq,

and on comparing coefficients we find that g = c*, ¢® — ca’ = —agq; hence

ca’ = ac® + c¢®, which yields (5). Conversely, when this holds, then we
obtain (6) with p = ¢, g = ¢” by reversing the steps of the argument. W
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Going back to (4), we see that if a is a left zero of f, then it is also a
left zero of fg, for any polynomial g, and if a is a left zero of f and g,
then it is a left zero of f — g. Thus the polynomials having a as left zero
form a right ideal in K[¢], viz. the kernel of the substitution map
f(t)— f(a). When a € K, this is of course the right ideal generated by
t — a, while for a right algebraic over K it will be a non-zero principal
right ideal. The monic polynomial generating this right ideal is called the
minimal polynomial of a over K it is the unique monic polynomial of
least degree with a as left zero. In Galois extensions such minimal
polynomials have a complete factorization:

THEOREM 3.4.3. Let L/K be any Galois extension, with group G. If
a € L is right algebraic over K, with minimal polynomial p(t), then

p()=(—-a)...(t~ ay), 9

where a,, ..., a, are conjugates of G-transforms of a, and every
G-transform of a is conjugate to (at least) one of the a;.

Proof. The minimal polynomial of a over L is ¢t — a, hence we have
p(t) = (¢t — a)f(¢) for some f € L[t].

If o€ G, then p(t) = (t — a”)f°(¢), hence all the ¢t — a° have a LCRM
q(t) which is a left factor of p(¢). But ¢q is invariant under G and so has
coefficients in K, therefore g = p. Let us write

py=(—a)t—a)...(t —a)p"=p'p",

where a; = a, each a; is a conjugate of a G-transform of a and r is as
large as possible. We claim that p”=1; if not, then there exists a
G-transform a’ of a such that ¢ — a’ is not a left factor of p’. However, a’
is a left zero of p, so t — a' is a left factor of p, while the LCRM of ¢ — a’
and p’ has the form

(t—a)p,=Dp'p,. 8)

This is a right coprime relation, so p, is similar to a right factor of ¢ — a’,
but it is not a unit, so it must have degree 1 and hence can be taken in the
form p, = t — a,,,, where a,,, is similar to a’, by Lemma 4.2. Now p is a
common right multiple of (+ — a’) and p’, and hence a right multiple of
the LCRM, i.e.

p=p'(t-a.)q;

but this contradicts the choice of r. This proves (7); now any ¢ — a° is
a left factor of p and by the same argument a? is conjugate to one of
the ;. A
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In particular, since any left zero of p is conjugate to one of a4, . . ., a,,
we obtain the following generalization of the well known theorem that an
equation of degree n cannot have more than n roots:

CoroLLARY 3.4.4. The left zeros of a polynomial of degree n fall into
at most n conjugacy classes. B

Another special case is obtained by taking G to consist of inner
automorphisms:

CorROLLARY 3.4.5. Let K be a field with centre C and let f be an
irreducible polynomial over C. Then all left zeros (if any) of f in K are
conjugate.

Proof. If G is the group of all inner automorphisms of K, then the fixed
field is just C. Now if o is a left root of f =0 1in K, then ¢t — « is a left
factor of f, and by irreducibility f is the minimal polynomial for & over
C, so we can apply Th. 4.3 to reach the conclusion. l

This result has another useful consequence:

CoOROLLARY 3.4.6. Let K be a field with centre C and let a € K\C be
such that a’ = 1. Then there exists b € K* such that b™lab = a™ # a.

Proof. Since a’ =1, a is algebraic over C; moreover if K has finite
characteristic p, we may assume that p { r, for otherwise r = pr’ and
(¢ —1)» =a"— 1=0, hence @’ = 1. Let f be the minimal polynomial of
a over C; all its zeros are distinct, because they are zeros of t" — 1 and
they may be taken as powers of a. Since a ¢ C, f has degree > 1, so there
is a zero a” # a of f, and by Cor. 4.5, b™'ab =a™ forsome b e K*. &

It is possible to construct polynomials with prescribed left zeros:

ProrosiTioN 3.4.7. Let K be any field and let a,, ..., a,€ K be
pairwise inconjugate. Then there is a unique monic polynomial of degree n
with ay, . . ., a, as left zeros.

Proof. If f, g are two monic polynomials of degree n with the as as left
zeros, then f — g is a polynomial of degree less than n with the as as left
zeros, and so must vanish, by Cor. 4.4; so there can be at most one such
polynomial. To find it we may, by induction on n, assume that g is monic
of degree n — 1 with left zeros ay, ..., a,_;. Then g(a,) # 0, again by
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Cor. 4.4, and hence, by Prop. 4.1, g(¢)(¢t — g(a,) 'a,g(a,)) is a monic
polynomial of degree n with a4, . . ., a, as left zeros. W

It is also possible to construct polynomials with conjugate zeros, but
then we no longer have uniqueness (see Ex. 3). This still leaves the
question whether an equation over a field always has a left root in a
suitable extension field; the answer is ‘yes’, but we shall have to wait until
Ch. 8 for the proof.

As a natural consequence of the above results we have Wedderburn’s
theorem, that every finite field is commutative. For the proof we shall
need some facts about finite fields (see A.2, 3.7-8) and finite groups.

In any finite abelian group A of exponent r the equation x” = 1 has at
least r solutions, with equality precisely when A is cyclic, as we see from
the basis theorem for abelian groups. If A is a subgroup of a field, there
are at most r solutions, so A must then be cyclic. Thus every finite
abelian subgroup of the multiplicative group of a field is cyclic.

We recall that a finite field F has finite characteristic p; as vector space
over F,, the field of p elements, F has finite degree n, say. Then F has
g = p" elements, and it may be described as the splitting field of the
equation x? — x = 0 over F,; hence the field of p” elements exists and is
unique up to isomorphism. Moreover, F* is cyclic.

We shall also need the fact that a finite group cannot be written as a
union of a proper subgroup and all its conjugates. This fact is easily
proved directly (see Ex. 1); it is also used in some other proofs of
Wedderburn’s theorem (see e.g. A.3, Th. 7.1.13, p. 265).

With a view to later applications we shall establish the following slightly
more general result:

THEOREM 3.4.8. Every non-commutative field is infinite. More gener-
ally, in a non-commutative field, every element is contained in an infinite
commutative subfield.

Proof. Let K be a field with centre C, where C# K and |C| =g < .
Given a € K\C, let f be the minimal polynomial of a over C, of degree
r, say. The map x — x? is an automorphism of C(a) over C of order r.
Hence 4 is conjugate to a, by Cor. 4.5, so there exists b € K™ such that

bab~! = af. )

It follows that b*ab™* = a? and a? = a, so a commutes with b", but of
course not with b, by (9). Put E = C(a, b"); this is a commutative field
and the right E-module spanned by 1, b, .. ., b1 is a non-commutative
field extension of E of degree at most r. In fact the degree is exactly r,
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for let the minimal equation of b over E be
P+b4+...+4A =0, wherel e Eands <r. (10)

Multiplying on the left by a? and subtracting the same equation
multiplied on the right by a, we obtain

b a? —a)h + ...+ (a% — a)A, = 0.

Since this equation has lower degree, all coefficients vanish. If s < r, this
means that A, = ... = A, = 0 and (10) reduces to »° = 0, which is a contra-
diction. Hence s = r and (10) becomes b" — A, =0, s0 [E(b):E] =r.

If there are finite skew fields, let K be a smallest one, and again denote
its centre by C. Every element of K generates a commutative subfield
over C and so is contained in a maximal subfield E of K. By the
minimality of K, E is commutative and so has the form E = C(a) for
some a € K. If [E:C] = r and b is as before, then " € E by maximality,
but b ¢ E and so E(b) = K, by the maximality of E. It follows that
[K:E]=[E:C]=r, hence [K:C] = r? and this shows that r is independ-
ent of the choice of E. Thus all maximal subfields of K have the same
number of elements, so all are isomorphic and each can be written as
C(a), where the minimal equation for a over C is the same in each case.
By Cor. 4.5 these maximal subfields are all conjugate in K, so K™ can be
written as the union of all the conjugates of a proper subgroup of K*.
But this contradicts the fact about groups mentioned earlier, so we
conclude that any genuinely skew field must be infinite (Wedderburn’s
theorem).

To complete the proof, we may assume that C is finite and a is
algebraic over C, since otherwise the result holds trivially. Let a be
algebraic of degree r over C and find b € K to satisfy (9). Then
[C(a, b):C(a, b")] = r and C(a, b") is commutative, but C(a, b) is not; if
C(a, b") were finite, this would mean that C(a, b) is also finite,
contradicting the first part. Hence C(a, b") must be infinite and the
conclusion follows. H

We can now make a more precise statement about the occurrence of
conjugate zeros.

TueorREM 3.4.9. Let K be a field. If a polynomial over K has two
distinct left zeros in a conjugacy class of K, then it has infinitely many left
zeros in that class.

Proof. Let f =D fc; and suppose that f has a and b™'ab as left zeros.
Then D d'c; = 0 and b~' D, a'bc; = D.(b~'ab)ic; = 0, hence
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>a(1+ Ab)c;=0

for all A in €g(a), the centralizer of a in K. It follows that
(1+ Ab) 'a(1 + Ab) is a left zero of f for all A€ €x(a), and these
elements are all distinct, for if (1 + Ab) la(1+ Ab)=(1+ A'b) la(1 +
A'b), then (1+Ab)1+Ab) '=pey(a). If u#1, then 1+ ib=
i+ uA’b, and since u#1, it follows that uA’ # A and so b = (ur’' —
A)~1(1 — ), which contradicts the fact that b ¢ €x(a). Hence u=1 and
so A’ = A. Now € (a) is infinite, by Th. 4.8, and this gives infinitely many
left zeros conjugate to a. W

By combining this result with Cor. 4.4, we obtain

CoroLLARY 3.4.10. Let K be a field and f a polynomial of degree n
over K. Then the number of left zeros of f in K is either at most n or
infinite. A

Exercises

1. Let G be a finite group, H a proper subgroup of h elements and write
(G:H) = n. Verify that there are at most n conjugates of H in G; deduce that the
union of all the conjugates has at most n(k — 1) + 1 elements. Hence show that G
cannot be covered by all the conjugates of H.

2. Let K be any field. Given a € K and a non-zero polynomial f over K, show
that there exists an integer r =0 such that f= (¢t —a)’f;, where fi(a)+#0.
Deduce that f(¢)(¢ — fi(a)"lafi(a)) has as left zeros all the left zeros of f as well
as a.

3. Given a field K and ay, ..., a, € K, not necessarily inconjugate or even
distinct, show that there exists a monic polynomial f of degree n with aq, ..., a,
as left zeros. Is f unique?

4. Show that if a is a left zero of a polynomial f, then f(t) = (¢ — a)g(t), and the
left zeros of g are conjugates of the left zeros of f. Hence obtain another proof of
Cor. 4.4.

5. Let K be a skew field with finite centre C # K. Show that the centralizer of
any element of X cannot be algebraic over C.

6. (I. N. Herstein) Show that any finite subgroup of a skew field of prime
characteristic is cyclic. (Hint. Recall that a finite subgroup of the multiplicative

group of a commutative field is cyclic. See also Prop. 9.4 below.)

7. Show that any finite subring of a skew field is a commutative field.
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8. Let X be any field. Show that any element of K not in the centre has infinitely
many conjugates.

9. Let D be a finite field with centre C. Put |C| = g, [D:C] = n and write down
the class equation for the finite group D*. Deduce that the cyclotomic polynomial
®,(q) divides g — 1. By taking a complete factorization of ® over C and
comparing absolute values, obtain a contradiction. (This is essentially the
Wedderburn-Witt proof of Wedderburn’s theorem.)

10. Assuming Wedderburn’s theorem (Ex. 9), give a direct proof of Th. 4.8, using
Cor. 4.6 and Prop. 9.4.

11. Let D be a field which is a k-algebra and let E = k(&) be a simple algebraic
extension of k, generated by an element « with minimal polynomial f over k.
Show that D @, E is an Artinian ring, simple if and only if f is irreducible over
the centre C of D. Moreover, if f = p, ... p, is a complete factorization over D,
then D ®, E is an r X r matrix ring over a field, in particular, D ® FE is itself a
field precisely when f is irreducible over D.

12. Let E be a field of degree 4 over its centre k& and assume char k # 2. Show
that E may be generated by u, v such that u® = «, v? = 8, where a, B € k and
uv = —pu. (Such an algebra is called a quaternion algebra.)

13. Let K be an infinite field with finite centre C. Use Cor. 4.6 to show that each
element of K commutes with an element transcendental over C.

14. Let D be a field with an involution * whose fix-point set is a commutative
subfield. Show that every element of D\k is quadratic over k.

15. Show that a commutative field k£ has an extension with an involution having k&
as fixed field if and only if k either has a separable quadratic extension or is a
separable quadratic extension.

16. (Amitsur [56]) Let E be a field which is a k-algebra. Show that if s € E is
transcendental over k, then the elements (s — a)‘l, where o ranges over k, are
linearly independent over k. Deduce that if E is finitely generated as k-algebra
and k is uncountable, then E is algebraic over k.

3.5 Pseudo-linear extensions

It seems hopeless at present to try to describe all skew field extensions of
finite degree. We shall therefore single out some special classes that are
more manageable.

We begin by looking at quadratic extensions, i.e. extensions L/K such
that [L:K]g = 2. Then for any u € L\K, the pair 1, u is a right K-basis
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of L. Since every element of L has a unique expression of the form
ux + y, where x, y € K, we have in particular,

au = ua® + a®° forallae K, )]
and
u>+ul+u=0, forcertaini, ue K. (2)

Here a®, a® are uniquely determined by a and a calculation as in 2.1
shows that a is an endomorphism and 6 an a-derivation of K. Moreover,
the structure of L is completely determined by K and (1), (2).

Conversely, let K be any field with endomorphism « and a-derivation
6. In R = K[t; a, 8] consider a quadratic polynomial f = t? + tA + u. Itis
easy to write down conditions on A, u for f to be right invariant, so that
fR is a two-sided ideal, and when these conditions hold, then L = R/fR
is a K-ring of right degree 2. It will be a field precisely if the equation (2)
has no solution for u in K. We shall carry out the details in 3.6, but for
the moment treat a more general case where we keep (1) but modify (2),
so as to allow extensions of higher degree.

Thus we shall define a pseudo-linear extension of right degree n, with
generator u, as an extension field L of K with right K-basis 1, u, .. .,
u"~! such that (1) holds and (in place of (2)):

w+uAN + ...+ ur,_  + 4, =0, wherel e K. 3)

The remarks made earlier show that every quadratic extension is
pseudo-linear, but this does not remain true for extensions of higher
degree. Our first concern is to obtain a formula for the left degree of a
pseudo-linear extension:

ProrosiTioN 3.5.1. Let L/K be a pseudo-linear extension of right
degree n. Then the left degree is given by

[L:K]p =1+ [K:K*|, + [K: K} + ...+ [K: K]}, 4)
where « is the associated endomorphism. In particular, we have
[L:K]. = [L:K]g, &)
with equality if and only if « is an automorphism of K .
Proof. Let us write Lo= K, L,=ulL,  + K (i =1); then by an easy

induction, L; = K + uK + ...+ t’'K, hence we have a chain of right
K-modules

K=LOCL1C...CLn_1=L,



120 Finite skew field extensions and applications

and (4) will follow if we can show that each L, is a left K-module and
(LiLio) = [K:K"‘]i. (6)

That L; is a left K-module is clear by induction, using pseudo-linearity.
Now let {v,} be a left K*-basis for K; we claim that the elements

wol ... vl @)

where Ay, 4y, ..., A,_; range independently over the index set used for
{v,}, form a basis of L; (mod L;_,). This will prove (6) and hence (4). For
any ¢ € K we have

_ @ — a?  « _ _ o a1
c= Eclovﬁo = EC%MUMUM =... = EC)_OWA,__IUM_I e e Dy,
Therefore
. . i i—1
Uc = Eu’czn_li_lvf_l ce Uy,
- jp !
= > cia Uon ... v, (modLy),

and this shows that the elements (7) span L; (mod L;_,) over K. To prove
their independence, suppose that

S Wor v =0 (modL;_,),
Then on retracing our steps we find that all coefficients
Ciodiy = 0,

hence the elements (7) are linearly independent and so form a basis of L;
(mod L;_;), so (4) is established. Now the remaining assertion is clear
from (4). A

As in the case of quadratic extensions, it is clear that every pseudo-
linear extension is of the form R/fR, where R = K[t; &, 8] and f is a
right invariant polynomial, which is irreducible over K.

When KX is of finite degree over its centre, the pseudo-linear extensions
of K can still be simplified by Prop. 2.1.4, which tells us that « and 6 are
now inner. If we assume that ¢® = ece ™ and ¢® = c¢d — dc® for all c € K,
then the formula cu = uc® + ¢® becomes

cu = uece™! + ¢d — dece™!;

hence on writing ' = ue — de, we have

r r

cu' =u'c,

so that for fields of finite degree over the centre, no generality is lost by
taking &« = 1, 6 = 0. However, it is still possible to have an endomorph-
ism or a derivation which is not C-linear (but not both, by Th. 2.1.3).
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We recall that an extension L/K is called central if L =K @, E,
where C is the centre of K and E is a commutative field extension of C.
It is clear that a pseudo-linear extension is central precisely if the
associated endomorphism is 1, the derivation is 0 and there is a generator
satisfying a monic equation with central coefficients.

Secondly we define a binomial or pure extension as a pseudo-linear
extension in which the generator satisfies a binomial equation,

uwr—-1=0,

and whose associated endomorphism o« is such that «” is the inner
automorphism induced by A. In the case of zero derivations it turns out
that every pseudo-linear extension can be built up from these two types:

THEOREM 3.5.2. Let K be a field with an endomorphism «. Then every
pseudo-linear extension of K with endomorphism « and zero «-derivation
is obtained by taking a central extension, followed by a binomial extension.

Proof. As we have seen, every pseudo-linear extension with zero
derivation has the form R/fR, where R = K[t; @] and f is a right
invariant polynomial in R which is irreducible over K. If & has infinite
inner order, then the only such polynomial is ¢ and there are no proper
extensions, by Prop. 2.2.8. If « has inner order r, say o’ = I(e), then
u = t’e centralizes K and again by Prop. 2.2.8, any invariant irreducible
polynomial is a polynomial in u with central coefficients. Let g be such a
polynomial and F = C[u]/(g) the commutative field extension of the
centre C of K defined by g. It is indeed a field, since g is a fortiori
irreducible over C. Then L = K ® F is a central extension of K and the
given extension is a binomial extension of L (to which « has been
extended by the rule u®=ue 'e*), with the defining equation x" —
ue'=0. W

If we are looking among pseudo-linear extensions for examples with
different left and right degrees, we can concentrate on binomial exten-
sions, by this result. Although as a matter of fact, we shall need to have
non-zero derivations too, this suggests that we begin by looking at
binomial extensions and our next aim is a result which provides a supply
of them. First a commutation rule, which we shall find useful:

LeMMA 3.5.3. Let n be a positive integer and w a primitive n-th root of
1. If u, v are indeterminates over Z[w] such that

vu = wuv, 8)
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then
(u+v)y!=u"+v". )

This formula holds also in characteristic dividing n with suitable w.

Proof. Over Z, when we expand the left-hand side of (9), we obtain a
sum of terms which are products of us and vs. The terms of degree i in u
include with any product f, all the terms obtained by cyclic permutation
of the factors. By moving the last factor u or v to first place we obtain
w'f, whether that factor is u or v. Hence the sum s; of all cyclic
permutations of f satisfies sy = wisf; it follows that s,=0 for 0 <i <n.
Since (u + v)" can be written as a sum of such terms s;, we see that the
only terms to survive are ¥” and v” and (9) follows. If the characteristic is
p, write n = p'm where p 4 m and take o to be a primitive mth root of
1. Then (u + v)™ = u™ + v™ follows as before, and u™v™ = v™u™, hence
we obtain again (9). W

We can now describe a particular class of binomial extensions.

THEOREM 3.5.4. Let n be a positive integer and E a field with an
endomorphism « and a primitive n-th root of 1, @ say, in the centre C of E
and fixed by « (if the characteristic p divides n, say n = p'm, p 4 m, then
w is understood to be a primitive m-th root of 1). Let 6 be an «-derivation
of E such that

da = wad, (10)

and write L = E(t; «, 8). Then o may be extended to an endomorphism
of L, again written «, by putting

¢ = wt, (11)
and O can be extended to an «-derivation of L by writing
t’=(01- w)t’ (12)
With these definitions we have

ct=1tc*+ c® forallce L. (13)

Further, B = a" is an endomorphism of L, € = 0" is a B-derivation, and if
K is the subfield of L generated by u = t" over E, then we have

K = E(u; B, o),

and L/K is a binomial extension of degree n.
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Proof. We first observe that w lies in the centre of L. For we have
" =1, hence 0= (w")’=nw"'0® and so w®=0, with a similar
argument, using @™ = 1, in characteristic p. By hypothesis, «® = w, so
tw = wt and the conclusion follows. Now a straightforward computation,
using (13), shows that (11) determines an endomorphism of E[¢; «, 8]
and this clearly extends to L, since « is injective. We now define & on ¢
by (12); it extends to a unique a-derivation on E[f; &, 8] and hence it
extends to L. Now da and wad agree on E by hypothesis; an easy
calculation shows that they agree on ¢, thus we have two («, a?)-deriva-
tions agreeing on a generating set of L, hence they are equal.

Let us write a, and §, for « and § acting on E[¢; «, 8] by action on the
coefficients only. We can write (13) in operator form as

o(1) = Mr)ay + b,

where p(t), A(t) indicate right and left multiplication by ¢. We have
Mt)ay = apA(t) and & - A(t) oy = wA(t)ay - &), hence by Lemma 5.3,

p(t™) = Mt ag + 8. (14)
But by (11), o fixes t, so a5 = " = . If we define € on L by
ct” = t"cP + ct, (15)

then & will be a B-derivation and will agree with 8; on E[t; a, 8], by (14),
in particular it will equal 6" on E. Hence the E-subring of L generated
by t" is of the form E[u; B, €], where u = t", and so the subfield of L
generated by t” over E has the form K = E(u; 8, €). We claim that 1, ¢,
..., t""! are right linearly independent over K; for if we had a relation

o~1tig; = 0 (a; € K), then on multiplying by a common denominator we
could take the a; to be polynomials in # and now a comparison of degrees
shows that ;=0 for i=0,1,...,n — 1. To show that L/K is pseudo-li-
near we shall verify that K is mapped into itself by 8 and ¢. Clearly E
admits B and &, while u? = u by (11), with u = ¢", and so u® = 0, by (15).
Finally L/K is binomial because t" = u. B

Later, in Ch. 5, we shall use this result to construct extensions of finite
right and infinite left degrees. The problem will be to choose E, o and 6
so that [K:K%]p = .

Pseudo-linear extensions may be described as simple extensions with a
commutation rule defined by an automorphism. A more general class of
finite extensions with a commutation rule defined by a group of
automorphisms is formed by the crossed product construction. This can
be defined for general skew fields and is sometimes useful; to describe it
we first recall the usual crossed product construction.
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Given a finite Galois extension of commutative fields F/k, put
I" = Gal (F/k); then each element c¢ of the cohomology group H%(T, F*)
defines a crossed product as follows. Let {u,} be a family of symbols
indexed by I' and let A be the right F-space on the u, as basis; A may be
defined as an F-bimodule by the equations

aus=uza’° (ae F,oel). (16)
Now a ring structure may be defined on A by the equations
uau‘( = uatco,r, (17)

where ¢, , is the cocycle (factor set) representing ¢ € H*(I', F*). Then A
is a central simple k-algebra, and this is what one usually understands by
a crossed product. Conversely, whenever a central simple k-algebra A
has a maximal commutative subfield F which is a splitting field of 4 and
is Galois over k, then A is a crossed product (see e.g. A.3, 7.5). It turns
out that it is not necessary to assume F maximal. If we drop this
assumption (but restrict to the case of central division algebras for
simplicity), we obtain

THEOREM 3.5.5. Let D be a field with centre k and let F be a
commutative subfield containing k, such that F/k is a finite Galois
extension, then D is a crossed product over F’, the centralizer of F in D,
with group Gal (F/k).

Proof. We observe that F’ is a field and by Cor. 3.9, F" = F, hence F is
the centre of F’'. Let U be the normalizer of F* in D*. Any element u of
U induces an automorphism of F/k, hence we have a mapping o:
U — T = Gal (F/k), which is clearly a homomorphism. By the Skolem-
Noether theorem it is surjective and its kernel is the centralizer of F* in
D>, i.e. F'*. Thus we have a short exact sequence

1 F*SsU->TI->1.

Choose a transversal {u,} of ' in U and let D; be the right F’'-space
spanned by the u,. It is easily checked that ¢, , = u;,luc,u, € F', hence D,
is a crossed product over F’ with group I'. The linear independence of the
u, over F’ follows by the familiar argument: if

>u,a,=0, wherea,e€ F',
is a shortest non-trivial relation, then a; # 0 and for any b € F,
0=>b Dusa, — Dusa,b = Du, (b’ — b)a,

is a shorter relation and for suitable b is non-trivial, a contradiction.
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Now [D:F'|g =[F:K] by Cor. 3.9, hence [D:F'] =[D;:F’] and so
D, = D; thus D has been expressed as a crossed product over F' with
group I’ = Gal (F/k). B

Exercises

1. Let E be a field with an endomorphism «. Show that a can be extended to
K = E(t; o) by defining r* = A for any A in the centre of E such that A = 1# 0
and that K¢ = K.

2. Let F/k be any commutative field extension and let D be a field with & as
central subfield. Show that D @, F is an Ore domain whenever it is an integral
domain, and that its field of fractions is then a central extension of D.

3. Let L be a central extension of K with centre F. Show that L is the field of
fractions of the Ore domain K ®, F, where C is the centre of K.

4. Let D be a field with central subfield k. Show that the following conditions are
equivalent: (a) every irreducible polynomial over k remains irreducible over D,
(b) for every simple algebraic extension F/k, D ®; F is a field, (¢) every monic
left factor in D[¢] of an element of k[¢] lies in k[¢]. (When (a)—(c) hold, k is said
to be ftotally algebraically closed in D, see Cohn and Dicks [80]).

5. Let K be a field and G a finite group of outer automorphisms of K. Use the
construction of the text to define for any factor set of G in K a crossed product
field. What goes wrong if G contains non-trivial inner automorphisms?

6. Let K be a field and G a group of outer automorphisms with a finite normal
subgroup N such that G/N is torsion-free abelian. Define the crossed product
algebra of G over K, for a given factor set and verify that it is an Ore domain.

7. (Ikeda [63]) Let K be a field and G a group which is the union of a
well-ordered ascending chain of groups G, (« < 1) of outer automorphisms of K,
such that Gy = 1, G, for each non-limit ordinal a < 7 is an extension of G,_; by
a torsion-free abelian group, while at a limit ordinal a, G, = U{Gﬁ| B<a}.
Define a crossed product field D for any factor set of G in K as the limit of an
ascending chain {D,}, where D, is the field of fractions of the crossed product
algebra of G, over K. Verify that the centralizer of K in D is the subfield of the
centre of K left fixed by G.

8. Let A be a central simple algebra over a field F. If k is a subfield of F such
that F/k is a finite Galois extension with group T, show that for any factor set
{cs,+} Tepresenting c € H 2T, FX) there is a central simple algebra B over k
which is a crossed product (in the sense of 5.5) over A with factor set {c, ;}.
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3.6 Quadratic extensions

Let us now consider quadratic field extensions more closely. As we saw in
3.5, a quadratic extension L/K has a basis 1, u for any u € L\K, and the
defining equations are

au = ua® + a® foralla e K, 1)
W+ ub+u=0, 2)

where A, u € K, « is an endomorphism and é an a-derivation of K.

To construct such an extension, let the field K be given, with an
endomorphism a and an a-derivation 8, and form the skew polynomial
ring R = K|¢; a, 8]. Given A, u € K, the quadratic polynomial

f=t+tA+up 3)

defines a quadratic extension of K if and only if (i) the right ideal fR of R
is two-sided, and (ii) the residue-class ring R/fR has no zero-divisors.
Condition (i) holds precisely when f is right invariant; thus af € fR for all
a € K and #f € fR. Conditions for this to hold were given in Prop. 2.2.3,
but in this case it is just as quick to work out the result directly, using the
fact that every polynomial in ¢ is congruent (mod fR) to a unique linear
polynomial. Thus we have

af = at’> + atA + au

= (ta® + a%)(t + A) + ap

2a® + ta*® + 1a® + a% + ta®A + a®A + au
= t(a®*® + a® + a®A — Aa®) + a% + a®A + ap — pa® (mod fR).
If af € fR, the coefficients on the right must vanish and we obtain
a®® + a% = Aa® — a®A, “)
a® + a®A = pa® - ap. 5)

We note that (4) may be expressed by saying that od + da, regarded as
operator, is the inner (a, a?)-derivation induced by A similarly (5)
expresses the fact that & + A is the inner a?-derivation induced by u.
Next we consider #f = t*> + t?A + tu. We have

ft =10+ 2% + t(u® + 2% + o
hence
f=0rA-2)+t(u—-p -2 -p’ (modfR),
=t(u—u = A - AA~-21") -y’ - w(A—-2*) (modfR),
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and this lies in fR if both coefficients on the right vanish:
A= p—p* = M- 2, 6
W= p(h =A%), ™

Thus f is invariant precisely when (4)-(7) hold.

We now assume that these equations are satisfied and ask when R/fR is
an integral domain (and hence a field). The ring R/fR has zero-divisors if
and only if there exist a, b, ¢, d € K such that neither a, b nor ¢, d are
both zero and

(ta+ b)(tc + d) =0 (mod fR).

Such a congruence is possible only if the left-hand side is of degree 2 in ¢,
i.e. a, ¢ are both non-zero. We may therefore replace b by —ba and d by
—dc. Dividing by ¢ on the right, we thus obtain

(t — b)a(t —d)=0 (modfR).
Now (mod fR) we have
(t — b)a(t — d) = tat — bat — tad + bad
= t?a® + ta® — t(ba)® — (ba)® — tad + bad
= t(a® — (ba)* — ad — Aa®) + bad — (ba)® — pa®.
Equating coefficients, we find
ad = a® — (ba)* — Aa®, 8
bad = (ba)® + ua®. C)]
Here we can substitute for ad from (8) and obtain
b(a® — (ba)* — Aa®) = (ba)® + ua®.
Recalling that (ba)® = b%a® + ba®, we can simplify this to
b%a® + pa® + bb*a® + bra® = 0.
Since a # 0, we have a® # 0, and dividing by a® we find
bb* + bA+ b° + u=0. (10)

Thus if R/fR has zero-divisors, then (10) has a solution in K. Conversely,
if (10) has a solution b in K, we can put a = 1 and define d by (8). Then
(10) ensures that (9) also holds and by retracing our steps we obtain
zero-divisors in R/fR. Hence the solubility of (10) in K is necessary and
sufficient for the existence of zero-divisors.

If L/K is generated by u satisfying (1) and (2), then it is also generated
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by v = ua + b, where a, b € K and a # 0. The commutation rule for v is
obtained by substituting in (1):

cv = c(ua + b) = uc®a + c®a + cb
= (v — b)a~'c%a + c®a + cb
= va~'c%a + c®a — ba~'c%a + cb.

Thus « is changed by an inner automorphism. If « is kept fixed, then we
may take @ = 1 and in place of ¢® we now have c® + cb — bc®, so & is
modified by an inner a-derivation. The results may be summed up as

THEOREM 3.6.1. (i) Let L/K be a quadratic extension. Then for any
ue L\K, 1, u form a right K-basis of L and there is an endomorphism «
of K with an o-derivation 8 of K such that

au = ua® + a° foralla € K, 1
and there exist A, u € K such that
wr+ud+u=0. )

Here the endomorphism « is determined up to an inner automorphism of
K, and for fixed «, 8 is determined up to an inner a-derivation of K .

(ii) Given a field K with an endomorphism « and an «-derivation 6,
there is a quadratic extension of K with right K-basis 1, u and defining
equations (1), (2) if and only if ad+ O« is the inner (a. a?)-derivation
induced by A, & + OA is the inner o’-derivation induced by u, A° and u°
are given by (6), (7) respectively and K contains no element b satisfying
(10). 1

As in the case of the polynomial ring the derivation becomes inner in
the extension:

CoRrRoOLLARY 3.6.2. If L/K is a quadratic extension defined by (1), (2),
then the endomorphism « of K may be extended to an endomorphism & of
L by putting

u®=—-A-u,
and 6 is then the inner &-derivation induced by u. Further, the
endomorphism & is an automorphism of L if and only if « is an
automorphism.

Proof. For the first point we need only verify that & preserves the
defining relations (1), (2) of L, i.e. we have to show that
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a*(=A — u) = (=1 — wa* + a*,
(FA—ul +(-A—wA*+u*=0.

The first equation follows by (1) and (4), while the second is a
consequence of (2) and (6). Now (1) shows 4 to be inner and finally, if a
is an automorphism with inverse B, then B, defined by uf = ~A% — u, is
an endomorphism extending B and is inverse to @. Conversely, if & is an
automorphism of L with inverse B, then for any a € K, a® € L, say

af = ua, + a,, wherea;, a,€ K.
Hence
a=—(A+ waf + a3;
comparing coefficients of u, we find that ay = 0, hence a; =0 and a = a3,

which shows « to be an automorphism of K. W

In the commutative case a quadratic equation can be simplified by
completing the square, at least in characteristic not 2. A similar reduction
applies in general and there is now no restriction on the characteristic.

ProrosiTiON 3.6.3. Let L/K be a quadratic extension defined by (1)
and (2). If the equation

x+x¥=A 11)

has a solution in K, then L/K may be defined by an element v of L
satisfying the equation

v+ v=0. (12)
In particular this holds if A* = A and char K # 2.

Proof. Let x = ¢ be a solution of (11) in K. Replacing u by u + ¢, we
have (u + c)* =u? +uc + cu + ¢ = —uh — p + uc + uc® + ¢® + ¢,
hence

uw+cP=ct+c® -

Thus we obtain (12) on puttingv=u+c,v=u—c*—c’>. i

We now ask for conditions for a quadratic extension to be Galois. Let
L/K again be a quadratic extension generated by u € L subject to (1) and
(2) and assume that it is a Galois extension. This means that there is an
automorphism of L over K other than the identity. Suppose that in this
automorphism
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uv— uc + d,wherec,d € K,c #0. (13)
Then by (1), forany a € K,
a(uc + d) = (uc + d)a® + a°.

Since a(uc + d) = ua®c + a’c + ad, we obtain on equating the coeffi-
cients of u and of 1,

ca® = a%c, (14)
a’(c = 1) =da® — ad. (15)

If ¢ # 1, then on putting e = d(c — 1)™! and using (14), we can reduce
(15) to the form

a’ = ea® — ae;

thus & is then inner. If ¢ = 1, then (15) states
da® = ad. (16)

Now by hypothesis the automorphism defined by (13) is not the identity,
so d#0 and by (16) « is then inner. Thus for a quadratic Galois
extension either & or  must be inner; hence by a suitable choice of
generator we may assume that either « =1 or d=0. The precise
conditions for L/K to be Galois can now be stated as follows.

THEOREM 3.6.4. Let L/K be a quadratic field extension with endo-
morphism « and a-derivation 8, and denote the centre of K by C.
(i) If char K # 2, then L/K is Galois if and only if § is inner;
(ii) if char K = 2, then L/K is Galois if and only if
(ii.a) « but not 8 is inner, say « = 1, and either the coefficient A in (1) is
not zero or there exists ¢ € C* such that ¢® = ¢%, or
(ii.b) & but not « is inner, say 8 =0, and either A+ 0 or there exists
c € C, ¢ #1suchthat cc® =1, or
(ii.c) both « and 6 are inner, say o =1, 6 =0and A+ 0.

Proof. (i) If L/K is Galois and char K # 2, then by the earlier remark, «
or 4 is inner. But if « is inner, we may take « = 1; then by (4), 2J is the
inner derivation induced by A, so J is inner in any case. Now when § is
inner, then taking 6 = 0, we see from (6), (7), that A* = A, y* = u and (5),
(4) reduce to

pa® = ap, Aa® = a®A. a7

If we change the generator of the extension to v = 2u + A, then
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v =4u’ + dud + A2 = A2 -4

Now v+ —v defines an automorphism of L/K of order 2.

(ii) Suppose now that L/K is Galois and char K = 2. We already know
that & or & must be inner and so we may assume that a =1 or 6=0. In
case 0 =0 we see from (17) that « is an automorphism; thus « is an
automorphism in any case and by (14), c lies in the centre of K. If we
assume further that A = 0, then «? + u = 0 and hence

0= (uc + d)* + u = ucuc + ucd + duc + d* + u
= u%c*c + uc’c + ucd + ud®*c + d°c + d* + u
= u(c®c + cd + d®c) + u(1 + c%c) + d°c + d°.

Equating coefficients (and remembering that ¢ is a non-zero element of
the centre of K), we find

S+d+d* =0, (18)
w1 + cc®) + d°c + d* = 0. 19)

We now consider the cases & = 1 and 8 = 0 separately.
(ii.a) =1 but 6 is outer. By (15), ¢ =1 and now (18) holds
identically, while (19) becomes

d® = d. (20)

Thus there must be a non-zero element d satisfying this equation and by
(16) d € C. Conversely, if A=0 and there exists d € C* such that (20)
holds, then the map u+— u + d defines an automorphism of order 2 of
L/K, because (14), (15), (18), (19) then hold. On the other hand, if
A+# 0, then u — u + A defines the required automorphism, since A° = 0 by
(6), bearing in mind that o = 1.

(ii.b) 6 = 0 but « is outer. By (15), d =0, hence ¢ # 1. Again (18) is
satisfied, while (19) becomes

cc® = 1. 21

Therefore this equation must be satisfied by an element of C other than
1. Conversely, when (21) holds for an element ¢ #1 in C, then u— uc
defines an automorphism of order 2 of L/K, while for A # 0 we can again
take u + u + A as our automorphism.

(ii.c) =1 and 6 = 0. Now ¢ and d lie in C, (18) holds identically and
(19) becomes

w1+ c)® + d*=0.
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Since either ¢ # 1 or d # 0, this means that y must be the square of an
element of C, which contradicts the fact that ¥ ¢ K. Thus we must have
A # 0 in this case. When this is so, we can again take u — u + A to obtain
an automorphism of order 2of L/K. B

As a consequence we obtain a result of Jacobson [55] on quadratic
Galois extensions:

CoOROLLARY 3.6.5. If K is a field of finite degree over its centre and of
characteristic not 2, then any quadratic extension of K is Galois.

For in this case « is inner and now the argument under (i) of Th. 6.4
shows & to be inner, hence the extension is then Galois. W

Exercises

1. Let L/K be a quadratic extension defined by (1), (2). Show that A and u are
fixed under « if and only if they are constant under §, and when this is so, then
A= pA. In this case show further that when char K #2, then L/K may be
generated by v € L such that v2 + v= 0, where v* = v, v° = 0; the same holds in
characteristic 2 if A # 0, while for char K =2 and A = 0, L/K may be generated by
v € L such that v2 + v + v= 0, where v* = v, v* = 0.

2. Let L/K be a quadratic extension defined by (1), (2). Show that when « is an
inner automorphism, then é is inner and the conclusion of Ex. 1 holds.

3. Show that a quadratic extension defined by (1), (2) is central if and only if o
and 6 are inner.

4, Let L/K be a quadratic Galois extension. Verify that the generator v can be
chosen so that the automorphism is v — —v in characteristic #2, and v—> v + 1
or v — vc, where cc® = 1 in characteristic 2.

5. Let chark =0 and put F= k(x) with automorphism a: f(x)+— f(2x); if
L = F(t; @) and K is the subfield generated by 2 over F, show that L/K is
Galois with outer Galois group.

6. Let chark=2 and put F=k(x) with derivation &: f(x)—df/dx. If
L = F(¢; 1, 8) and K is the subfield generated over F by 2 + ¢, show that L/K is
Galois with outer Galois group.

7. Let E be a commutative field. Find all quadratic extensions F/E such that F is
non-commutative and has an anti-automorphism fixing E.
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3.7 Outer cyclic Galois extensions

To illustrate some of the results of this chapter, we shall now determine
outer Galois extensions with cyclic Galois group, briefly outer cyclic
extensions, following Amitsur [48, 54].

Let K be a field with an endomorphism « and an «-derivation §. We
shall often write a’ for a® and a™ for a®". The set of constants

C={aeKl|a =0} (1)
forms a subfield of K. We consider the ‘differential equation’

p(2)=2zMag+ z" Va; + ...+ za,=0, wherea;e K,ay#0, (2)

and show that the set of elements of K satisfying (2) form a finite-dimen-
sional C-subspace of K.

THEOREM 3.7.1. In a field K with endomorphism «, a-derivation &
and with field of constants C defined by (1), the solutions of (2) in K form
a left C-space of dimension at most n.

Proof. The linearity of the solution set is clear from the relation
p(cz) = cp(z) for c € C. We shall put p = > &a,_;, so that (2) can be
written zp = 0. The proof proceeds by induction on n, the case n =0
being trivial. Let n > 0 and suppose first that a, = 0; then p = dq, where
g has degree n—1 in 8, and by induction, U = kerg has dimension
=n-—1. Letu,,...,u beleft C-independent solutions of (2), where we
may take u; = 1 without loss of generality, because a, = 0. Then u;, .. .,
u! satisfy zq = 0 and they are left C-independent, for if >, ;c;u! = 0, then
v = > cu; € C. By the independence of u, =1, u,, ..., u, we conclude
thatv=c¢,=...=c¢,=0. Hence r — 1< n —1and so r < n, as claimed.

In the general case, when a, # 0, let u be a solution of (2). If the only
solution is 0, then there is nothing to prove, so take u # 0, and consider
the equation zup = 0. The coefficient of z is up = 0, so its solution space
U, has dimension < n. Now ker p = {zu|z € Uy} = Uyu, and this has the
same dimension as U,, so the solution space of (2) has dimension at
most n. A

If L/K is a cyclic extension of degree n, then

n=[L:K]. = [L:K]g < |Gal(L/K)|,

by Th. 3.7, with equality when the Galois group is outer. We shall here
confine ourselves to outer cyclic extensions. Let o be a generator of the
Galois group and write 6 = ¢ — 1; then J is a o-derivation, for we have
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(ab)? = (ab)’ — ab = a°b° — ab = (a° — a)b°’ + a(b’ — b)
= a%b° + ab®.

We also note that the field of é-constants is just the fixed field under o.
By hypothesis 6" = 1, hence

h(8) = é(:)av =@+1)"-1=0. %))

We first construct a basis relative to which o is represented by a
diagonal matrix:

ProPoOSITION 3.7.2. Let L/K be an outer cyclic extension of degree n
and assume that K contains a primitive n-th root of 1, @ say. For any
generator o of the Galois group, L has a right K-basis a,, . .., a, such
that

a;=wa,, v=1,...,n. “4)

Proof. Let k be a commutative subfield of K containing w and consider
L as left k-space. Then L is a direct sum of eigenspaces L, on which o
acts by multiplication by w*, and K = L, by definition. For any non-zero
elements a, b € L, we have ab™' € L,= K, hence L, = a,K, for some
a, € L,. Thus each L, is at most 1-dimensional over K, and it is non-zero
because [L:K]g =n. B

The hypothesis on @ can be satisfied whenever n is prime to the
characteristic of K. In constructing outer cyclic extensions we shall for
simplicity assume that w is central, but this is not essential.

THEOREM 3.7.3. Let K be a skew field with a central primitive n-th
root of 1, w say. Then there is an outer cyclic extension L/K of degree n
and containing  in its centre if and only if there exists an automorphism «
of K and a € K such that (i) o" = I(a), a® = a, ®* = w and no lower
power of « is inner, (ii) t"a — 1 is irreducible in R = K[t; o]. When this is
so, then t"a — 1 is invariant in R and L = R/(t"a — 1)R, with generating
automorphism

a: 2 t¥c, = > (wt)'e,.

Proof. (i), (i) just amount to saying that #"a —1 is central and
irreducible (observe that every right invariant element of R is associated
to a central element, by Prop. 2.2.2). So if (i), (ii) hold, we have an outer
cyclic extension. Conversely, given an outer cyclic extension L/K, we can
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by Prop. 7.2 find u € L such that u° = wu # 0. Then any c € K satisfies
(ulew)’ = ulw lcwu = ulcu,

hence u~!cu € K, so a: ¢~ u~'cu is an automorphism of K, * = w and
we have a homomorphism

K[t; o] > L, givenbyt— u,

and the generator of the kernel has the form #”a — 1, where a is such that
(i), (ii) hold. W

If we drop the condition that w* = w, then w* = " for some integer r
and it is not hard to write down conditions on r for an extension to exist
(see Ex. 2). One can also give conditions for an outer cyclic extension of
degree n if K merely contains a primitive dth root of 1, where d is a
proper factor of n.

As a consequence we have a form of Hilbert’s theorem 90; we shall
define the norm of ¢ € L in our cyclic extension L/K by

N@©) =cc®...c%. )

CoroLLARY 3.7.4. If L/K is an outer cyclic extension of degree n with
generating automorphism o, then for any ¢ € L, the equation

x’=x (6)
has a non-zero solution in L if and only if

N(c) = 1. )

Proof. It is clear that ¢ = a(a’)™! satisfies (7) for any a € L*. Con-
versely, if (7) holds, we have (oA(c))" =1, where A(c) denotes left
multiplication by c, for the left-hand side maps x successively to x, cx?,
cx”, ..., cc’...c” 'x%" = x. Thus we have

x[(oA(c)" = 1] = 0.

This has the form xp(o)[oA(c) —1] =0 for some polynomial p(o) of
degree n — 1. Now xp(0) = 0 can be considered as a differential equation
(for 6=0—1) of order n—1, so its solution space has dimension
<n -1, hence there exists ae L such that ap(o)=b+#0, and
b(oMc)—1)=0,i.e. cb’=b,s0(6) holdsforx =bH. B

In a similar way one can show that the equation x’c = x has a non-zero
solution if and only if ¢ ... c%c =1,
We also note the following criterion for reducibility:
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ProposiTION 3.7.5. Let K be a field with an automorphism o of order
n and let w be a primitive n-th root of 1 in its centre. Then for any a € K,
either t" — a is irreducible in K{t; o] or it splits into factors of the same
degree. In particular, if n is prime, then t” — a is a product of linear factors
or irreducible according as

Nx)=xx°...x" " ' =a

has a solution or not.

Proof. Let p = p(t) be an irreducible left factor of ¢" — a; then so is
p(w't), forv=1,..., n —1, therefore we can write

t"—a=p,...pq,

where p, = p(¢) and each p; is similar to p(w"¢) for some v,. If r is
chosen as large as possible, then each p(w't) is a factor of p, ... p,, in
fact this is their least common right multiple and so is unchanged by the
substitution ¢~ wt. This means that it is a polynomial in ", of positive
degree, and a factor of t" — a. Hence it must be ¢t” — g, so g = 1 and we
have proved the first part.

Now if p has degree d, then d|n, hence when n is prime, d =1 or n
and now the last part follows from the identity

t"—a=(=-b)(t" + 1" + .+ b T
+bb°...b"" —a. 1

We now turn to the case where n is a power of the field characteristic,
n = p°, p = char K. We note that in this case (3) reduces to §" = 0.

ProrosiTtioN 3.7.6. Let L/K be an outer cyclic extension of degree
n = p°, where p = char K, with automorphism 0 =30+ 1 and write L, =
ker 8" = {c € L|c" = 0}. Then each L, is a right K-space of dimension v
and

K=L,CLC...CL,=L L,=L,,(v=1,...,n-1).

Proof. By Th. 7.1, [L,: K]z < v and for v= n we have equality. We shall
use induction on n — v, thus we assume that L., has a right K-basis

a =1, a,, ..., a, and we claim that a3, ..., a;, forms a right K-basis
for L,. If Y,alc; =0, then X a,c; = c € K and by the linear independence
ofay, ..., a,wehave ¢; = ... = ¢, =0, hence ay, ..., a, are linearly

independent; they belong to L,, so this shows that L,= L., and
[LV:K ]R =v. B
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Since L’ = L,_,, we have the following solubility criterion:

CoroLLARY 3.7.7. In the situation of Prop. 7.6, the equation x' = a
(a € L) has a solution in L if and only if "™V =0. R

When v is a power of p, L, can also be described as the fixed set of an
automorphism:

CoroLLARY 3.7.8. In Prop. 7.6, for v=p' (i=0,1,...,e) the
subspace L, is the subfield of L fixed by o".

This follows because 8" = (0 ~1)"=0"— 1, whenv=p'. B
In our outer cyclic extension L/K let us define the trace of a € L as
n-1
tra= >a’.
0
Since
n—1

6n—1=o_1n—1=(0_1)n=0n_1= O'V,
( ) (c—-1 o-—1 %

it follows that
tra=a"""? foranyace L. (8)

This formula enables us to prove a normal basis theorem. We recall that a
basis of a Galois extension L/K is said to be normal if it consists of the
conjugates of a suitably chosen element; such an element is said to be
primitive.

THEOREM 3.7.9 (Normal basis theorem). Any outer cyclic extension
L/K of degree n = p°, where p = char K, has a normal basis, and a € L is
primitive if and only if tra # 0.

For by (8), tra# 0 if and only if a ¢ L,_;. Thus for any a ¢ L,_; we
have a® Ve L\L,_;andsoa,a’,...,a" Vformabasisof L,=L. B

Let us now determine the extensions of degree p (the case p®, e > 1,
follows by repetition, see Amitsur [54] and Ex. 5). We shall write
x* = xP — x, and we also recall the Jacobson-Zassenhaus formula (Jacob-
son [62], p. 187, (63)) in characteristic p:

(x + )P =x" 4+ yF + A(x, y), ©
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where A is a sum of commutators in x and y. It follows that the
expression V(x) defined by

V)= +x)—t*=((+x)P —t* —x, (10)

when evaluated in K[¢; 1, 8] is a polynomial in x, x’, ..., x?™V, since
e.g. [x,t] =xt — tx = x'. We first prove an analogue of the reducibility
criterion of Prop. 7.5:

ProrosiTioN 3.7.10. Let K be a field of characteristic p with a
derivation 6 such that 6 = 0. For any a € K, the polynomial t* — a is
either a product of commuting linear factors in K|[t; 1, 8] or irreducible
according as the equation

Vix)+a=0,

where V is as in (10), has a solution in K or not.

Proof. Let h be a monic irreducible factor of ¢* — a, of degree d say;
then the polynomials A(t + v) (v=0,1, ..., p — 1) are similar to factors
of t* — a. Their least common right multiple is invariant under the map
t—t + 1, and hence is a polynomial in #*, so it has degree at least p, but
it is a factor of * — a, hence it must be equal to t* — a. All the h(z + v)
are irreducible of the same degree d, hence d|p and so either d = p or
d=1.1If V(b)+a=0,then (¢t + b)* — t* = V(b) = —a, hence

tr—a=(@+byF=>u+b)((t+b)P'1-1),

and so * — a splits into linear factors t+ b+ v (v=0,1, ..., p—1),
which clearly commute with each other. Conversely, if #* — a has a linear
factor t + b, then

(t+ by —V(b)—a=1"—a=(t+ b)),

hence V(b)+a has t+ b as a factor, but it is of degree 0 in ¢, so
V(b)+a=0. 0

We can now prove an analogue of Th. 7.3, giving outer cyclic
extensions in characteristic p:

THEOREM 3.7.11. A field K of characteristic p has an outer cyclic
extension of degree p if and only if there is a derivation 6 in K such that (i)
8* is inner, induced by a € K with a® =0, but & itself is outer, and (ii)
V(x) + a =0 has no solution in K .

When this holds, t* — a is invariant irreducible in R = K[t;1, 8] and
L = R/(t* — a)R, with generating automorphism
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o: 2 tc,— 2 (t + 1),

Proof. Again (i), (ii) ensure that 1* — a is central and irreducible, so
when these conditions are satisfied, we have an extension.

Conversely, let L/K be an outer cyclic extension of degree p with
generating automorphism o. Then by Prop. 7.6, L has an element y such
that y° = y + 1, hence the map ¢ — ¢® = cy — yc induces a derivation on
K and we have a homomorphism

K[t;1,8] > L witht—y.

Here y*=ae K, so & is inner, induced by a, and a® =0, while
V(x) + a = 0 has no solution in K, by the irreducibility of y* — a over
K. n

Exercises

1. Let L/K be an outer cyclic extension with generating automorphism o. Show
that a, b € L satisfy ¢~ lac = b for some ¢ € L if and only if N(b) = ¢~ N(a)c.

2. Let K be a field with an automorphism « and let w be a primitive nth root of 1
in K such that w® = »?. Show that d is a primitive root of 1 (mod n) and find the
conditions for an outer cyclic extension of K of degree n to exist.

3. Let H be the field of real quaternions and w a complex primitive nth root of 1
(n >2). Show that the inner automorphism ¢ = [(w) satisfies 0" = 1, but there
are only two non-zero eigenspaces C and jC (Bergman).

4. Let K be a field of characteristic p with a derivation. Show that if c € K
commutes with all its derivatives, then V(c) = ¢* + ¢V,

5. (Amitsur [54]) Let K/E be an outer cyclic extension of degree n = p*>1,
with generating automorphism o. Show that K/E can be embedded in an outer
cyclic extension L/K of degree p®*! if and only if there is a derivation 8 in K and
elements a, b € K such that tra # 0 and 0”160 — & is the inner derivation induced
by a, b°=0 and & is the inner derivation induced by b, b° —~ b = V(a) and
V(x) + b = 0 has no solution in K.

When these conditions hold, verify that ¢# — g is an invariant irreducible
element in R = K[t;1, 6] and L = R/(+* — a)R, with generating automorphism
over K givenby t— ¢ +a.

6. Show that all cyclic extensions of degree p° of a perfect commutative field of
characteristic p are commutative. (Hint. Use the fact that a commutative perfect
field has no non-zero derivation.)
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3.8 Infinite outer Galois extensions

For commutative fields there is a theory of infinite algebraic extensions
and profinite Galois groups, first developed by Krull [28]; a non-commu-
tative analogue was given by Jacobson [56], whose exposition we follow
here.

We shall consider algebraic field extensions L/K, i.e. extensions where
every element of L is right algebraic over K. Further we shall confine our
attention to outer automorphism groups. Clearly every outer automorph-
ism group is an N-group and the associated algebra reduces to the centre.
Thus a Galois extension L/K is outer precisely when the centralizer of K
in L is just the centre of L. In particular, every commutative Galois
extension is outer.

For infinite Galois extensions the Galois group carries a natural
topology, which plays an important role. We recall that a topological
group G is called profinite if it is an inverse limit of finite groups (see
A.3,3.2, p. 84). As a closed subgroup of a direct product of finite groups
it is a compact group in the finite topology and it is totally disconnected,
i.e. the connected components are single points. Conversely, it can be
shown that every compact totally disconnected group is profinite (see e.g.
Gruenberg [67]), but we shall not need these details in what follows.

We begin by establishing some basic properties of outer Galois
extensions.

ProrosiTiON 3.8.1. Let L/K be an algebraic field extension which is
Galois, with Galois group G which is outer. Then G is profinite; further,
for any intermediate field E, K C E C L, the following hold:

(i) Distinct homomorphisms of E into L over K are right linearly
independent over L and if [E:K]. = m is finite, then there are precisely m
such homomorphisms.

(ii) Any finite subset of L is contained in a subfield E which is Galois
over K, admits G and is of finite degree

[E:K]L = [E:K]g. 1

In particular, (1) holds for any subfield E of L whenever either side is
finite.

Proof. We begin by proving (i) and (ii). (i) By Lemma 3.1, if the
homomorphisms sy, . .., s, are linearly dependent over L, then two are
equivalent, say s; = s,1(c) for some ¢ € L*. Hence I(c) € G and since G
is outer, I(c¢) =1 and s, = 5,. This shows that distinct homomorphisms
are right linearly independent over L. Now let [E:K], = m; then
[Homy (E, L): L]z = m by Th. 2.4. Further, every homomorphism from
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E to L over K is induced by the restriction to E of an element of G, by
Prop. 3.5, so there are at least m distinct such homomorphisms, s, . . .,
s, say. Since they are linearly independent, they form a basis over L and
so every homomorphism s is a linear combination: s = >5;4; (A; € L). By
Lemma 3.1 and because G is outer, s must be equal to some s;, so there
are exactly m such homomorphisms and (i) is proved.

(ii) For any c € L, K(c) has finite right degree over K, so there are
only finitely many homomorphisms K(c)— L and only finitely many
conjugates ¢*. Hence for any finite family c;, . . ., ¢, the set {c;}, where s
ranges over G, is finite. Let E be the field generated over K by the cj;
then every s € G maps E into itself and is an automorphism, because
571 € G. The set of induced automorphisms of E forms a group H, which
like G is outer. It is a finite group, since it is defined by its effect on the
c;. Hence E/K is Galois and (1) follows by Cor. 3.8. Now if E is any
field between K and L for which one side of (1) is finite, then E is
finitely generated over K and we can embed it in a finite Galois extension
D such that [D:K]; = [D:K]g. We also have [D:E]. =[D:E]g, hence
(1) follows by division.

It remains to show that G is profinite. For any finite subset X of L
there is a finite Galois extension Ey of K containing X, and its group Gy
is a finite homomorphic image of G. For Y D X we have a homomorph-
ism Gy— Gy, so the Gy form an inverse system. Its inverse limit is G,
because the action of any element of G on a finite set X is represented by
an element of Gy. B

Later we shall need the fact that homomorphisms from any intermedi-
ate field can be extended to automorphisms:

ProrosiTION 3.8.2. Let L/K be an algebraic Galois extension, with
group G which is outer. If E is an intermediate field, K C E C L, then any
homomorphism from E to L over K can be extended to an automorphism,
i.e. an element of G.

Proof. Let s: E— L be a homomorphism over K and denote by @ the
set of all fields F between E and K such that [F:K], < «. For any F € ®
write sy for the restriction of s to F; by Prop. 3.5 there exists t € G such
that ¢z = sr. We now define a subset of G by the equation

GF= {t € Gitp= SF}'

Each Gr is a non-empty closed subset of G; moreover, if F;,..., F, e ®,
then there exists F € ® such that F;,C Ffori=1, ..., r, and clearly
GrN...NGg DG #+D.
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Thus the family {Gr} has the finite intersection property, hence by the
compactness of G, we have nGF # (J. This means that there exists t € G
such that sp=t; for each Fe ®; but every element of E can be
embedded in a finite Galois extension, by Prop. 8.1, hence s = ¢, as we
wished to show.

To establish the Galois connexion we need to prove a special case first:

LeMmMA 3.8.3. Let L/K be an algebraic Galois extension with group G
which is outer. If H is a subgroup of G with K as fixed field, then H is
dense in G. In particular, if H is closed, then H = G.

Proof. Let E be an intermediate field of finite degree admitting G and
let Gy be the finite group of automorphisms induced by G in E, and
write Hj for the group induced by H. Since Gg, Hg are N-groups, we
have H% = G% by the finite theory, and this holds for all E, hence
H* = G*. Now any finite set can be embedded in such a field E, hence
H=G=G,i.e. Hisdensein G, and when H is closed, it must equal
G.

Now the main result, giving the Galois connexion, can be stated:

THEOREM 3.8.4. Let L/K be an algebraic Galois extension with group
G which is outer. Then there is a bijection between the closed subgroups H
of G and intermediate fields E, K C E C L:

Hw— H*={x e L|x*=xforalls € H},
E— E*={se G|x*=xforallx € E}.

If H < E in this correspondence, then L/E is Galois with group H; E/K is
Galois if and only if H is normal in G and in that case the group of E/K
is G/H.

Proof. The proof is similar to the finite case. Clearly we have E C E**;
if this inclusion is proper, take ¢ € E*\E and let F be a finite Galois
extension of K containing c. Since ¢ ¢ F N E and F/K is Galois, there is
an automorphism s of F fixing F N E such that ¢’ # ¢, but the number of
conjugates ¢’ of c is finite, say ¢ = ¢, ¢, . . ., ¢,. We define

G ={seGlx*=xforalxe ENF,=¢},i=1,...,r.

Since every automorphism of F/F N E arises by restriction from an
element of G, it follows that G; is not empty, and neither is Gp= G N
... N G,; moreover, this set is again closed. For each finite Galois
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extension F/K such that ¢ € F we obtain such a closed set Gy and as
before we see that the family { G¢} has the finite intersection property. By
compactness we have NGr+# @ and any element s of NG fixes any
x € EN F for any F, while ¢’ # c. Since every element of E is contained
in some finite Galois extension F, it follows that s fixes E, thus s € E*
and so s fixes E**, but this is a contradiction, because ¢ € E**, and it
follows that E** = E.

Next take a closed subgroup H of G and put E = H*. Then L/E is
Galois and its group E* is clearly outer. Since L/K is algebraic, the same
holds of L/E and by Lemma 8.3, H = E* = H**, Thus H** = H and
L/E is Galois with group H.

For any s € G, s ! Hs fixes E°, hence s™'Hs = H if and only if E* = E,
so E admits all elements of G precisely when H is normal in G. If sg
denotes the restriction of s to E, then the map s+ s is a homomorphism
from G to Gal (E/K), which is surjective by Prop. 8.1. This homomorph-
ism is easily verified to be open and continuous and its kernel is H, hence
Gal(E/K)=G/H. &

Exercises

1. Show that an open subgroup of a profinite group G has finite index and that
the intersection of all open subgroups is 1. Deduce that the topology on G is
Hausdorff.

2. Show that any profinite group G can be expressed as G = lim (G/N), where N
runs over all open normal subgroups of G.

3°, Examine the problems encountered in extending the theory of this section to
mixed (not purely outer) Galois groups.

3.9 The multiplicative group of a skew field

So far very little is known about the general structure of skew fields, but
there are some results about their multiplicative groups, mainly asserting
that quite weak commutativity conditions imply commutativity. The
proofs are usually direct calculations with conjugates or commutators,
independent of the general theory.

We adopt the usual notation for group commutators:

(x, y)=x""y " lxy.
Let K be any field, let a, b € K* and suppose also that a # 1. We have
b Y a—-1)b=>b"tab - 1.
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Since b~'ab = a(a, b), we can rewrite this relation as

(a — 1)(a—1,b)=a(a, b) -1,
or also

a((a,b) —(@a—1,b)) =1 (a - 1, b). (1)

Moreover, the two sides of (1) do not vanish when ab # ba. This formula
shows that any element not in the centre lies in the subfield generated by
all the commutators. More precisely, suppose that K is not commutative
and let b be a non-central element, say ab # ba. Then by (1), b cannot
commute with both (a, b) and (a — 1, b), for if it did, it would also
commute with a. So the derived group cannot be contained in the centre
and we obtain

THEOREM 3.9.1. Let K be a field such that the derived group (K>, K*)
is contained in the centre of K. Then K is commutative. B

Another property of fields which holds quite generally was discovered
surprisingly late:

THEOREM 3.9.2 (Cartan-Brauer—Hua theorem). Let D be a field
with centre C. If K is a subfield of D admitting all inner automorphisms of
D, then either K C Cor K = D.

Proof. Suppose that K is a subfield of D admitting all inner automorph-
isms but K ¢ C, say b e K\C. Take a € D such that ab # ba; then
(a,b)=a'b'a-b e K and (a, b) # 1, and similarly, (a — 1, b) #1, so
both sides of (1) are non-zero and we can solve (1) for a, hence a € K.
This shows that any element not commuting with b lies in K. If ¢
commutes with b but a does not, then a,a + ¢ € K and so ¢ € K. Hence
K = D, as we had to show. B

We next show that the multiplicative group of a skew field cannot be
nilpotent. We recall that a group G is said to be nilpotent if for some n,
G..((xg,x1), x3), ..., x,)=1for all xg, ..., x, € G; the least n is the
nilpotence class of G. A group G is nilpotent of class at most n if and
only if there is a chain of normal subgroups

G=G;2G;,D...0G,;; =1,
such that (x, y) € G, forallx €e G;, y € G (see e.g. A.1,9.8).

THEOREM 3.9.3 (Hua). Let K be a field with centre C. Then K*/C*
has trivial centre, hence K™ is not nilpotent unless K is commutative.
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Proof. Let b e K and suppose that b corresponds to a non-trivial
element in the centre of K*/C*; thus b ¢ C but (a, b) € Cforalla e K*.
So for any a #0,1 in K, (a, b), (a —1,b) € C and hence by (1), a € C.
It follows that K = C, so if K is not commutative, then K*/C* has trivial
centre; in particular, if K* is nilpotent, K*/C* has a non-trivial centre,
so K must then be commutative. I

We next generalize Wedderburn’s theorem by showing that a field K is
commutative if every element is of finite multiplicative order. We recall
that a group is called periodic if all its elements have finite orders. We
also recall the following generalization of the well known fact that every
finite subgroup of a commutative field is cyclic (see 3.4 above):

ProrosiTioN 3.9.4. Any finite subgroup of a field K of finite
characteristic is cyclic.

Proof. Let G be a finite subgroup and let P be the prime subfield of K.
Then the P-algebra generated by G is finite-dimensional and hence is a
finite subfield F. By Wedderburn’s theorem (see Th. 4.8) F is commutat-
ive, and as subgroup of a commutative field, G is cyclic. B

THEOREM 3.9.5 (Jacobson). Let K be a field such that K* is
periodic. Then K is commutative.

Proof. Since 2" =2 for some r > 1, K is of finite characteristic p. Let C
be the centre of K and assume that C # K. Given a € K\C, since a has
finite order, by Cor. 4.6, there exists b € K* such that b~lab = o™ # a,
hence ab # ba. The subgroup H generated by a, b contains (a) as a
normal subgroup and so is an extension of {(a) by (b), hence it is finite
and so is cyclic, contradicting the fact that ab # ba. This contradiction
shows that K = C, so K is commutative. Hl

The problem of characterizing the multiplicative group of a field has
not yet been solved even in the commutative case, but there are some
results on the subgroups of fields. We begin by looking at the commuta-
tive case and first recall some properties of abelian groups.

Since our groups occur as subgroups of fields, we shall write them
multiplicatively. Every abelian group G has a unique subgroup T(G)
consisting of all elements of finite order, the torsion subgroup of G. If
T(G) =G, G is a torsion group; such a group can be expressed in just
one way as a direct product G = [[G,, where p runs over all primes and
G,, the p-primary component of G, consists of all elements of p-power



146 Finite skew field extensions and applications

order. If the torsion group G is locally cyclic, i.e. all its finitely generated
subgroups are cyclic, then its p-primary component G, is either cyclic of
order p", where r is a non-negative integer, or of type Z,. (the group of
all p"th roots of 1 in C, for all r). Both cases can be described by saying
that G, has order p®, where a = r or a = ®. Since G = []G,, it follows
that any locally cyclic torsion group is completely described by the formal
product of the orders of its components:

N =[Ipf(a;=0,1,...,0r w). )

Such a product is called a supernatural number or Steinitz number.
Conversely, to every supernatural number there corresponds exactly one
locally cyclic group up to isomorphism. We shall denote the group
corresponding to N by Zy and also say that Z is of type N. If

M=szi

is a second supernatural number, we say that M divides N and write
M|N if B; < a; for all i. Clearly Z,, can be embedded in Z, if and only if
M|N. We also note that every supernatural number is completely
determined by its natural divisors, so symbolically we have

N =limn.
n|N

The torsion group of a commutative field can be described as follows:

THEOREM 3.9.6. Let k be an arbitrary commutative field. Then T(k™),
the torsion subgroup of the multiplicative group of k, is locally cyclic of
type N, where (i) 2|N if char k =0, (ii) N = lim {p™ — 1|m|M} for some
supernatural number M if char k = p.

Proof. Since every finite subgroup of k* is cyclic (see 3.4), T(k™) is
locally cyclic. Now (i) follows because —1 has order 2. To prove (ii), let &
be of prime characteristic p. Then the roots of 1 in k together with 0 form
a subfield, namely the relative algebraic closure in k of its prime subfield
I, so we may without loss of generality take k to be algebraic over II.
Let us denote by I, the extension of degree n of IT; then IT,, is contained
in I, if and only if m|n. We now put

M = lim {m|I1,, is embedded in k},

and note that k is completely determined by the supernatural number M.
Conversely, every supernatural number M defines an algebraic extension
of I1, unique up to isomorphism. Clearly k™ is then a torsion group and
its type N is determined by its finite subgroups, hence
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N =1lim {p™ — 1|m|M},

as we had to show. B

The necessary conditions in this theorem are actually also sufficient.
For if F, is the algebraic closure of the field F, of p elements, then
T(F}) is of type [[{p{|p; # p}, because F, contains a primitive /"th root
of 1 for all n and all primes ! # p. In characteristic 0 the type of T(C*) is
clearly [[p{. Thus we have

CoroLLARY 3.9.7. An abelian torsion group G can be embedded in
the multiplicative group of a commutative field if and only if it is locally
cyclic. More precisely, every locally cyclic group can be embedded in a
commutative field of characteristic 0, while G can be embedded in a field
of prime characteristic p if and only if G is locally cyclic of type prime
top. 1

We now turn to groups that are not necessarily torsion-free and show
how to extend an embedding of their torsion subgroup to one of the
whole group.

ProrosiTiOoN 3.9.8. Let G be an abelian group whose torsion
subgroup is contained as a subgroup in F*, where F is a commutative
field. Then there is a commutative extension field E of F whose
multiplicative group contains G as a subgroup and such that F is relatively
algebraically closed in E; in particular, E*/F* is torsion-free.

Proof. Put T = T(G) and take a transversal {g,}, where « € G/T, of T
in G, with g; = 1 and with factor set {m, g} in F*, so that

gdgﬂ = gaﬂma,ﬂ' (3)

Let A be the F-algebra with basis g, (o« € G/T) and multiplication table
(3). Since G is abelian, A is associative and commutative, and G/T may
be ordered because it is torsion-free. Now consider the ring B of formal
series over G/T with coefficients in F, with well-ordered support, using
the multiplication (3). This is a field, by Th. 2.4.5, adapted to take
account of the multiplication rule (see Ex. 7 of 2.4). Clearly B contains A
as a subring; we claim that the subfield E of B generated by A satisfies
the conditions of the proposition. By construction E* contains G as a
subgroup, so it only remains to prove that F is relatively algebraically
closed in E. Let u € E be algebraic over F, with minimal equation



148 Finite skew field extensions and applications

w+cul+...+¢c,=0 (c;€F). 4)
We can write u as a power series:
u=gh,+... (A€ F™),

where dots denote terms in gg with > . Suppose that o < 1; then the
lowest term in (4) is g,. and this is not cancelled by any other term, a
contradiction. Hence a = 1; if a > 1, we again reach a contradiction, by
applying the same argument to u™', therefore & = 1. Now u — A, is again
algebraic over F, with lowest term > 1, and this is possible only if
u — A =0, hence u € F, as we wished to show. H

If we combine this result with Cor. 9.7, we obtain

CoRrROLLARY 3.9.9. An abelian group can be embedded in the multipli-
cative group of a commutative field precisely when its torsion subgroup is
locally cyclic. B

In a general skew field the possible finite subgroups have been
determined by Amitsur [55]; we shall describe the result without giving a
proof. By Prop. 9.4 we can limit ourselves to the case of characteristic
zero. We recall that a finite group is called metacyclic if it consists of an
extension of one cyclic group by another. Further, if P is a class of
groups, then a binary P-group is a central extension of the two-element
group by a P-group.

THEOREM 3.A (Amitsur [55]). A finite group G can be embedded as
a subgroup in the multiplicative group of a field if and only if G is
(i) a cyclic group, or
(ii) a certain form of metacyclic group, or
(iii) a certain form of soluble group with a quaternion subgroup, or
(iv) the binary icosahedral group SL,(Fs) of order 120.

Here the soluble groups under (iii) include the binary octahedral group
(of order 48), extensions of a cyclic group of odd order by a generalized
quaternion group and the direct product of a quaternion group (order 8)
by a metacyclic group occurring in (ii), of odd order m, where 2 has odd
order (mod m). The metacyclic groups in (ii) have the property that all
their Sylow subgroups are cyclic. A precise description is somewhat
complicated, and can be found in the reference quoted or also in Shirvani
and Wehrfritz [86].



3.9 The multiplicative group of a skew field 149

Exercises

1. By expressing x(xy — yx) as an additive commutator show that any skew field
is generated by its additive commutators.

2. Show that Th. 9.1 can be restated as follows: If in a field K, ((a, b), ¢) =1 for
all @, b, ¢ € K such that the commutator is defined, then K is commutative.

3. Verify that a metacyclic extension of C,, by C, has the presentation
(a,b;a™"=1,b"=d, ab = ba*),

where s" =1 (mod m), r(s — 1) =0 (mod n), and show that for any m, n, r, s
satisfying these conditions a metacyclic group of order mn with this presentation
exists.

If the resulting group is G, show that G can be embedded in a field if and only
if, writing w for a primitive mth root of 1 over Q and a for the automorphism
w— o of F = Q(w), the polynomial " — " is irreducible in F[¢; a].

4. Show that a finite ring which is reduced is a direct product of fields. (Hint. Use
induction and the fact that every central idempotent # 0,1 leads to a direct
product decomposition.)

5. Let D be a field with an involution * whose fix-point set is a commutative
subfield k. Show that D™ normalizes k and so k is central in D.

6. Let K C L be any pair of fields and define N as the normalizer of K in L:
N ={xe L*|x"'Kx = K}. Show that the elements of N/K*, i.e. the auto-
morphisms of K induced by N modulo inner automorphisms, are linearly
independent over K.

7. A field is said to be critically skew if it is infinite-dimensional over its centre
and every proper subfield is commutative. Show that in a critically skew field the
centre is relatively algebraically closed. (Hint. Use the fact that a subfield of finite
degree is its own bicentralizer.)

8. Show that for a critically skew field D with centre C the commutation relation
is transitive on D\C. (Hint. Show that the complements of C in centralizers form
a partition of D\C.)

9. Show that in a critically skew field D with centre C there exists a pair of
conjugate elements generating D over C. (Hint. Observe that any two non-
commuting elements generate D and apply Kaplansky’s PI-theorem.)

10°. Give an example of a critically skew field.

11°. Let K be a field which is algebraic over its centre C; is K commutative?
Show, using Th. 9.5, that this is so when C is finite.
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Notes and comments

The Jacobson-Bourbaki correspondence, as a basis for Galois theory in
the non-commutative case, was developed by Jacobson [40,47] and
N. Bourbaki (cf. H. Cartan [47]), but a form of Galois theory for simple
Artinian rings already occurred in Noether [33], where the notion (but
not the name) of N-group is introduced. The theory was further
generalized to prime rings by Kharchenko [91].

There are many papers on algebraic equations over skew fields, usually
with a substitution rule keeping all the coefficients on one side (as in the
text). Cor. 4.4 was first proved by Richardson [27], while Herstein [56]
proved Cor. 4.10 and Gordon and Motzkin [65] proved Th. 4.9 (using Th.
4.8 as in the text). The commutativity of finite fields was established by
Wedderburn [05]; here it forms part of Th. 4.8, whose proof is modelled
on that of Artin [28]. Cor. 4.5 was first obtained by Wedderburn [21], and
Prop. 4.7 appears in Bray and Whaples [83]. For a general survey of
equations over skew fields see Lawrence and Simons [89].

Pseudo-linear extensions were introduced in Cohn [61”] and Prop. 5.1
was established in Cohn [66’], where Th. 5.4 is also proved. 3.6
essentially follows Cohn [61"]; the actual description of quadratic Galois
extensions already occurs in Dieudonné [52], while Cor. 6.5 was proved
by Jacobson [55]. 3.7 is based on Amitsur [48, 54], while 3.8 essentially
follows Jacobson [56], VII. 6, generalizing the work of Krull {28].

H. Cartan [47] proved Th. 9.2 for finite-dimensional division algebras
as an application of the non-commutative Galois theory. A little later
Brauer [49] and Hua [49] independently gave a direct proof of the general
case. Th. 9.1 and 9.3 are due to Hua [50], who actually showed that the
multiplicative group of a skew field cannot be soluble (see 6.4, Ex. 6).
Prop. 9.4 is due to Herstein [53] and Th. 9.5 is a special case of the
theorem of Jacobson [45], that a ring satisfying x" =x where
n = n(x)>1 is commutative. More generally, Kaplansky [51] showed
that for a field K with centre C, if K*/C* is a torsion group, then
K=C.

Th. 9.6 is taken from Cohn [62], where Prop. 9.8 is also proved, though
in a slightly weaker form (E*/F* is torsion-free); the strengthened form
was obtained by Schenkman [64]. For further properties of multiplicative
groups of commutative fields see W. May [72].

Amitsur’s theorem 3. A is proved using results on groups with fix-point-
free action and the determination of groups with cyclic Sylow subgroups
by Zassenhaus [36]. A proof of Th. 3.A along similar lines was obtained
independently at about the same time by J. A. Green (unpublished).

Many individual results on subgroups of skew fields have been
established. Thus W. R. Scott [57] has generalized Th. 9.3 by showing
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that K*/C* has no non-trivial abelian normal subgroups and M. S.
Huzurbazar [60] has shown that K*/C* has no non-trivial locally
nilpotent subgroup. G. R. Greenfield [81] has conjectured: In any field K
a non-central subnormal subgroup of K™ contains a non-central normal
subgroup. He proves this conjecture when K is finite-dimensional over a
commutative local field with finite residue-class field of characteristic # 2.

At the other extreme J. Tits [72] proved that a full matrix group over a
field either is soluble-by-locally-finite or contains a non-cyclic free
subgroup, while A. I. Lichtman [78] has shown that if K has a normal
subgroup H containing a non-abelian nilpotent subgroup, then H also
contains a non-cyclic free subgroup.

Zalesskii [67] has conjectured that a finite group of s X s matrices over
a skew field K of characteristic zero has a metabelian subgroup of index
bounded in terms of s alone (generalizing the classical theorem of Jordan
and Schur which asserts this for commutative fields and an abelian
subgroup, see e.g. Wehrfritz [73]), and he has proved it when G is
soluble. The general case has now been proved by Hartley and Shahabi
Shojaei [82].



4

Localization

This chapter deals with the formation of fractions in general rings. In the
commutative case a necessary and sufficient condition for the existence of
a field of fractions is the absence of zero-divisors (and the condition
1+ 0), and the construction as fractions ab~! is well known. As we saw in
1.3, the same method of construction still applies in Ore domains, though
the verification is a little more involved. In the general case the
difficulties are both theoretical — the criterion for embeddability is quite
complicated and cannot be stated as an elementary sentence — and
practical — a sum of fractions cannot generally be brought to a common
denominator. The practical problem is overcome by inverting matrices
rather than elements. After some general remarks on epimorphisms and
localizations in 4.1, we go on to show in 4.2 that all elements of the field
of fractions (if one exists) can be found by solving matrix equations, and
something like a normal form (in the case of firs) is presented in 4.7. On
the theoretical side we shall meet a criterion for a ring to possess a field of
fractions in Th. 4.5, but what turns out to be more useful is a sufficient
condition for a ring to have a universal field of fractions (Th. 5.3); the
latter, when it exists, is unique up to isomorphism, unlike a field of
fractions, of which there may be many, e.g. for a free algebra.

The main step is the construction of a field from a ring by inverting
certain matrices, and this occupies 4.3, while 4.4 examines the sets of
matrices inverted in forming such fields. The result, giving a correspond-
ence of epic R-fields and prime matrix ideals (Th. 4.1), is remarkably
similar in appearance to the theorem in the commutative case describing
R-fields in terms of the prime spectrum of R. In 4.5 we examine
conditions ensuring the existence of a universal field of fractions. Here
the main result, which will be much used in later chapters, is that every
semifir has a universal field of fractions (Cor. 5.9).
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In the construction of localizations the inner rank of a matrix plays a
crucial role, and 4.6 is devoted to a general study of rank functions on
rings, and the connexion with fields of fractions.

4.1 The category of epic R-fields and specializations

Let R be any ring and consider the category of R-rings. We recall that in
any category an epimorphism is a map f such that fg = fg’' implies
g = g’'. Whereas in the category of groups the epimorphisms are just the
surjective homomorphisms, for rings this is no longer so, for example the
embedding Z C Q is easily seen to be an epimorphism. The following
equivalent ways of expressing the condition are often useful (cf. Knight

[70]).

ProrositioN 4.1.1. Ler f: R— S be any homomorphism of rings.
Then the following conditions are equivalent:
(a) f: R— S is an epimorphism,
(b) in the S-bimodule S ® g S wehavex @1 =1 x forall x € S,
(c) the multiplication map x ® y = xy in S ®g S — S is an isomorph-
ism,
d S % S = S under a natural isomorphism.

Proof. (a)=>(b). We form the split null extension S D (§ ®z §) with
the multiplication

(x, u)(y, v) = (xy, xv + uy),
and consider the maps from S to S @ (S ® S) given by
1= x,10x),x—>(x,x®1), xe€S.

They are easily verified to be ring homomorphisms and their restrictions
to R agree, hence they are equal, andsox ® 1 =1 ® x.

(b) = (c). The multiplication homomorphism maps >.x; ® y; to >, x,y;,
but when (b) holds, we have >x,®y=>xy®1=18 Dxy,
hence (¢).

(c)=(d). §*S has a filtration (S,), where S; =S, S,,: =395, Rz S;
when (c) holds, we see by induction on #n that S, = §, whence § * § = §.

(d) = (a). By definition, S % S is the pushout of the map f: R — § with
itself. If g;: S— T (i = 1, 2) are two homomorphisms such that fg, = fg,,
then by the definition of the pushout there is a homomorphism
h:S % S — T such that g; = a;h, where «; is the pushout map S— S+ §
mapping S on the ith factor. Since S*S=S, we have a; = o, = 1,
hence g, = g, and (a) follows. B
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We shall be interested in R-rings that are fields, R-fields for short. If K
is an R-field which is generated, as a field, by the image of R, we call R
an epic R-field. This terminology is justified by the fact that the canonical
map is then an epimorphism, and only then:

ProrosiTioN 4.1.2. A homomorphism f from a ring R to a field K is
an epimorphism if and only if K is the field generated by im f.

Proof. Let K be the field generated by imf. Then K' = {a e K|a® 1=
1® a} clearly contains im f and if ae K’ and a #0, then a™ ! ®@ 1=
a'®aa'=a"'a®a'=1®a"', so K' =K, (b) holds and hence f
is an epimorphism. Conversely, if the subfield generated by imf is a
proper subfield E say, and u; =1, u; is a right E-basis of K, then
K@ K=2u® K=K® >, ,u;® K and this is not isomorphic to
K, so fis not an epimorphism. W

Our object is to make the epic R-fields, for a given ring R, into a
category, and we must find the morphisms. To take R-ring homomorph-
isms would be too restrictive, as all maps would then be isomorphisms.
For if f: K — L is such a map between epic R-fields, then f is injective,
because its kernel is a proper ideal in a field, and im f is a subfield of L
containing the image of R, hence im f = L, because L was epic, so f is
an isomorphism.

To obtain a workable notion of morphism let us define a local
homomorphism between any rings A, B as a homomorphism f: A;— B,
whose domain A is a subring of A, which maps non-units to non-units. If
B is a field, this means that the non-units in A, form an ideal, viz. ker f,
so that Ay is then a local ring. We recall that a local ring is a ring A, in
which the non-units form an ideal m; the quotient ring Ay/m is then a
field, called the residue-class field of A,. Of course when we are dealing
with R-rings, a local homomorphism is understood to have a domain
which includes the image of R.

Let f be a local homomorphism between R-fields K, L. If its domain is
K,, then by what has been said, K, is a local ring with residue-class field
K/ker f; this is isomorphic to a subfield of L containing the image of R,
so if L is an epic R-field, we have

Ko/ker f = L. (1)

Two local homomorphisms between A and B are said to be equivalent
if there is a subring of A on which both are defined, and on which they
agree and again define a local homomorphism. This is easily seen to be an
equivalence; an equivalence class of local homomorphisms between epic
R-fields is called a specialization. It can easily be checked that the
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composition of two specializations is again a specialization, i.e. the
composition of mappings, when defined, is compatible with the equival-
ence defined earlier. In this way we obtain for each ring R, a category ¥z
of epic R-fields and specializations. It is clear that the number of epic
R-fields is bounded by max {|R|, 8}, so Fx is a small category, and as
we shall see later, there is at most one specialization between two epic
R-fields, so that ¥4 can be represented as a partially ordered set.

At first sight it seems as if there may be several specializations between
a given pair of epic R-fields. Thus let R = k[x, y] be the commutative
polynomial ring in x and y over a field, take F = k(x, y), its field of
fractions with the natural embedding and E = k, with the homomorphism
R — E leaving k fixed and mapping x, y to 0. We obtain a specialization
from F to E by defining a homomorphism «a: k[x, y]— E in which
xa=ya=0. Let Fy be the localization of k[x, y] at the maximal ideal
(x, y); then « can be extended in a natural way to F,. Now there are
local homomorphisms from F to E that are defined on larger subrings
than F,, for we can ‘specialize’ rational functions ¢(x,y) so that x/y
takes on a specified value in k. In this way we obtain many different local
homomorphisms from F to E; however, they all agree on Fy, so that
there is just one specialization from F to E.

Of course for some rings R there will be no R-fields at all. For
example, when R =0, or for a less trivial example, take R to be any
simple ring with zero-divisors, say a matrix ring over a field. For then any
homomorphism R — K must be injective and this is impossible when K is
a field. Even integral domains R without R-fields exist, e.g. if R is a ring
without invariant basis number (see 1.4) and an integral domain. Then
any R-ring is again without IBN and so cannot be a field.

What can we say about R-fields in the commutative case? Let R be a
commutative ring and K an epic R-field; then K is of course also
commutative, being generated by a homomorphic image of R. The kernel
p of the natural mapping R—> K is a prime ideal and K can be
reconstructed in two ways from R and p. Firstly, we can form R/p, an
integral domain, because p is prime, and now K is obtained as the field of
fractions of R/p. Secondly, instead of putting the elements in p equal to 0,
we can make the elements outside p invertible, by forming the localization
R,. This is a local ring and its residue-class field is isomorphic to K. The
situation can be illustrated by the accompanying commutative diagram.
The two triangles correspond to

" T the two methods of constructing
K. The route via the lower
triangle is perhaps more famil-

Rip iar, but unfortunately it does not

seem to generalize to the non-
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commutative case. We therefore turn to the upper triangle. Even this
cannot be used as it stands, for as we have seen in 2.1, the field of
fractions need not be unique, which means that in general an epic R-field
will not be determined by its kernel alone.

To describe an epic R-field we need more than the elements which map
to zero, we need the matrices which become singular; over a field that
term has an unambiguous meaning (see 1.4). Given any R-field K, with
natural map A: R — K, by the singular kernel of K (or of 1), written
Ker A, we understand the collection of all square matrices over R, of all
orders, which map to singular matrices over K. If P is the set of all such
matrices, then we can define a localization Ry, analogous to R, in the
commutative case, as follows. In 1.3 we met the notion of a universal
S-inverting ring; we shall need the corresponding construction when § is
replaced by a set of matrices over R.

Let R be a ring and X a set of matrices over R. A homomorphism
f:R— R’ is called Z-inverting if for each A = (a,;,) € Z, the image
Af = (a,,f) is an invertible matrix over R’. Here we need not limit
ourselves to square matrices; A can be of arbitrary shape, although for
homomorphisms to fields only square matrices will play a role. Now we
have the following analogue of Prop. 1.3.1:

THEOREM 4.1.3. Given a ring R and a set T of matrices over R, there
exists a ring Ry and a homomorphism M. R — Rs which is universal
S-inverting, in the sense that the images under A of the members of = are
invertible over R' and every Z-inverting homomorphism from R to another
ring can be factored uniquely by .

Proof. For every m X n matrix A = (a;,) in = we choose mn symbols a;
which we adjoin to R, with defining relations, in matrix form, writing
A’ =(ay):

AA'=1, AA=I, )

The resulting ring is denoted by Ry and is called the universal =-inverting
ring or the localization at Z of R. Clearly the natural homomorphism
A: R — Ry is Z-inverting and as in Prop. 1.3.1 we can show that for every
Z-inverting homomorphism f: R — R’ there is a unique homomorphism
f'*Rs— R'suchthat f=Af". A

We can now describe the construction of an epic R-field in terms of its
singular kernel. Let K be an epic R-field, % its singular kernel and Z the
complement of % in the set of all square matrices over R. Thus X consists
of all square matrices over R which become invertible over K. Then the
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localization Ry is a local ring, with residue-class field K. We shall soon
see a proof of this fact (Th. 3.5), but we note that it does not solve our
problem yet. For we would like to know when a collection of matrices is a
singular kernel, just as we can tell when a collection of elements of R is a
prime ideal. In fact we shall be able to characterize singular kernels in
much the same way in which kernels of R-fields in the commutative case
are characterized as prime ideals.

Exercises

1. Carry out the details of the proof that for any ring R the epic R-fields and
specializations form a category.

2. Show that if R is a commutative ring and R — § is an epimorphism, then § is
also commutative.

3. Let f: R— S be a local homomorphism between two rings. Show that the
domain of f is a local ring if and only if S is a local ring.

4. Let R be a ring with R-fields K, L and M, and let f, g be specializations from
K to L and from L to M, with domains K, and L, respectively, and define
Ky = Lof ' N Kg, fi = f|K;. Verify that f,g is a local homomorphism from K,
to M and so defines a specialization from X to M.

5. Let A=[]A; be a direct product of a family of rings. Show that each
specialization f to an A-field K is a product of specializations f;: 4; —» K.

6. Let f: A— B be a ring homomorphism. If A is a local ring, show that f is local
if and only if the induced homomorphism of matrix rings M,(A) — D ,(B) (for
any n) is local.

4.2 The matrix representation of fractions

To obtain a description of the elements of the localization Ry in the
commutative case it is usual to assume S to be multiplicative. In the same
way we need to restrict Z to find a convenient means of describing the
elements of Ry. A set X of matrices over R is called upper multiplicative
if 1eX and with A, B € 2 the matrix (g g) is in Z, for any C of
appropriate size. Lower multiplicative sets are defined similarly, using
(g g) Given a Z-inverting homomorphism f: R — R’, we define the
=-rational closure of f as the set of all entries of all matrices (Af)™! for
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A € Z. With these definitions we have the following description of the
Z-rational closure:

THEOREM 4.2.1. Let R be any ring, = an upper multiplicative set of
matrices over R and f: R— R' a Z-inverting homomorphism. Then for
any x € R’ the following conditions are equivalent:

(a) x lies in the Z-rational closure of R in R’,

(b) xis a component of the solution u of an equation

Au — ¢ =0, Ael, Q)
(c) x is a component of the solution u of
Au—-a=0 AeX ()

where a is a column over im f,
(d) x = bA~'c, where A € =/, b is a row and c a column over im f.
Moreover, the Z-rational closure of R in R’ is a subring of R' containing
im f.

Proof. If (a) holds, say x is the (i, j)-entry of A™!, then x is the ith
component of the solution of (1), hence (b) holds. Now (c) is a special
case of (b), and if (c) holds, then u; = e; A~'a, which establishes (d).
Finally, when (d) holds, then

1 b 0\' /1 -—-bA' bAlc
0 A ¢ =10 Al —-A7lc |,
0 0 1 0 0 1

where the matrix whose inverse is taken is again in X, because X is upper
multiplicative. This shows (a)—(d) to be equivalent.

Let Rz(R’) be the Z-rational closure of R in R’; it contains im f,
because any ¢ € im f satisfies the equation 1-u — ¢ =0, which is of the
form (2). To prove the ring property, suppose that u; is the ith
component of the solution of (2) and v; is the jth component of the
solution of Bv — b =0, then u; — v; is the ith component of the solu-

tion of
A C a
I HED

where C has for its jth column the ith column of A and the rest 0. Next
u;v; is the ith component of the solution of

(o ()=
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where C has as its jth column —a and the rest 0. This shows that Rz(R’)
is a ring containing im f, as claimed. W

Let R be any ring and K an epic R-field. As we saw in Th. 2.1, any
element p € K can be expressed in the form

p=c—uA"'v,wherece R,ue R",ve "R, A € R, 3)

and A is not in the singular kernel of K. Thus p is completely determined

by the block
u c
o= ( “ v). @)

Such a block will be called admissible for K or K-admissible. Thus the
elements of K may be described either in block form, as in (4), or in
equational form, as in (2).

Sometimes a different notation is convenient for the system (2), where
we now take (—a, A) as our basic matrix. Omitting the reference to f, for
simplicity, we shall write our system with a matrix A of index 1 in the
form

Au=0, Ae™R™1 5)
The columns of A are indicated by subscripts:
A=(4, A, ... A,
and we also write A, for A, and A, =(A; ... A,_;). We shall call

(5) an admissible system and A an admissible matrix of order m for the
element p of R’ if (5) has a unique solution u € ™*! R’ normalized by the
condition uy =1, and u, = p. The m X m matrix formed by the last m
columns of A, (A, A.), is called the denominator, the matrix of the
first m columns, (Aq A,) the numerator and A, the core of p in the
representation (5) and we write . = (1 u, p)T. These matrices depend
not merely on p but on the representation (5). Thus a system (5) is
admissible precisely when its denominator is invertible over R’.

For reference we note that if A, B are admissible matrices for p, ¢
respectively, then we have as admissible matrices for p — g, pq

B, B, B. 0 0} . (B B, B. 0 0
A, 0 A, A, A. 0 0 A, A, A.

©)

respectively. As (6) shows, we need to assume 2 lower multiplicative with
the present convention.
We note that a result similar to Th. 2.1 holds for matrices:



160 Localization

ProrosiTiON 4.2.2. Let R be a ring, = a lower multiplicative set of
matrices over R and f: R— R' a Z-inverting homomorphism. Then for
any m X n matrix P over Rs(R’) there exist r =0 and an (r + m) X
(n+r+m)matrix A=(A, A, A.)overimf,u=({ U P)T over
R’ such that

Au=0, (A, A.)eZ. @)
Here Ay, A,, A, all have r + m rows and n, r, m columns respectively.
Proof. Consider an m X n matrix P with a single non-zero entry, say

P=p®0. If Cu=0is an admissible system for p, then we have as an
admissible system for the matrix P

1 0
G 0 ¢ ¢ o\f? I"O‘l -0
0 0 0 0 I,,% =5

)4 0
0 0

We complete the proof by showing that the set of matrices determined by
a system (7) is closed under addition. If P’, P” are determined by the
matrices A’, A" respectively, then P = P’ + P" is determined by the
system

1

(A6 A, AL 0 o) POl

a0 —anoay afl )70
P

hence every matrix over Rz(R’) is so determined, by induction. W

In the commutative theory we have Cramer’s rule, giving an explicit
formula for the solution of the matrix equation (2). If we write A® for
the matrix obtained from A in (2) by replacing its ith column by a, then
Cramer’s rule states that the ith component y; of u is given by the formula

det A®
u; = .
det A

In the general case we no longer have determinants, but there still is a
form of Cramer’s rule, using now the form (5):

ProrosiTioN 4.2.3 (Cramer’s rule). Given an admissible system

Au =0, ¥
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for an element p = u.,, p is stably associated to its numerator; hence p is
(left/right) (regular/invertible) if and only if the corresponding property
holds for its numerator.

Proof. The equation (8) can be written Ay + A, u, + A.p = 0, hence

(e —a=(a, a0(y o)(0 %) ©)

Now the denominator (A, A.) is invertible, hence p is stably associ-
ated to (A, —Ag), which, except for a column permutation, is the
numerator. Wl

The following form of this rule is often useful:

ProrosiTiON 4.2.4. Let R be a ring, = a lower multiplicative system
of matrices and Ry the universal localization. If Ry has unbounded
generating number, then every invertible matrix P over Ry is stably
associated to a full matrix over R.

Proof: By Cramer’s rule in matrix form, P is stably associated to
(A, —-Ay= A% say. Since P is invertible over Ry, so is A°, hence it is
full over Ry, by UGN (see Prop. 1.4.3), and a fortiori it is full over R. &

Exercises

1 1

1. Find admissible matrices for xy !, x~ty, xy =1z, x"lyz71, xy~1 + 2t~ over

the free algebra k{(x, y, z, ).

2. Show that over a left Ore domain every element of the field of fractions is
given by an admissible system of order 1.

3. Given a ring homomorphism R — R’, let A € "R"*! be an admissible matrix
for p € R’'. Show that for any n X n matrix P over R which is right regular over
R’, PA is again admissible for p. Similarly for AQ*, where Q*=1® Q & 1 and
Q is left regular over R’.

4. (N. G. Greenwood) Show that for any Z-localization R — Ry and any sub-
set I of R the set of solutions of admissible equations with matrices A =
(Ay A, A.), where the entries of A are in I form a left ideal of Rs.

5. Let R be a semifir with a ®-inverting homomorphism to a field U, where @ is
the set of all full matrices (see 4.5). Given p, g € U with matrices A, B which are
left prime, with cores that are right prime, if A - B is the matrix for pq (as in (6)),
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show that A - B is left prime unless the denominator of A and the numerator of B
have non-unit left factors that are similar (an m X n matrix is left prime if it has
no non-unit left m X m factor; similarly for right prime).

4.3 The construction of the localization

The localization of a ring R at a set 2 of matrices was defined in 4.1 in
terms of a presentation, but we shall want to have a more concrete
construction that is easier to handle. The main problems that arise are the
following:

(i) Find the kernel of the natural map R — Ry, or at least find conditions

for this map to be injective,

(ii) find the singular kernel of the natural map R — Ry and its relation
to Z.

Since our main interest is in R-fields, there is a third problem:

(iii) Find conditions for Rs to be a local ring, and when they hold, find
conditions for the natural map from R to the residue-class field of Ry
to be injective.

We shall construct the elements of Ry in the form p — bA~!c, where p
is an element, b a row, ¢ a column and A a matrix in 2. Since A is
invertible over Rz, we can regard p — bA !¢ as an element of Ry, but we
shall use a stably associated form to avoid inversion:

p—bAlc 0 p—bAlc b p b b p
( 0 I 0 A7 e a/T\a )
Each term is associated to the next over Ry and the last expression has

the advantage of being defined as a matrix over R itself. Thus we
consider, for any set = of square matrices over R, the set M(Z) of all

matrix blocks
a a
a= (aO ! )’ (1)

where 3€ R, a’ € R", 'a€™R, a°€ Z,, an n X n matrix in . Here n
may be any positive integer, or it may be 0, in which case a = (3@). A
matrix block (1) is said to be pure if @ = 0; it is possible to operate with
pure blocks only, but we shall use the general form (1), which is no
harder to handle; &° will be called its denominator.

Our aim will be to construct Ry as a set of equivalence classes of
elements of M(Z), for any ring R and upper multiplicative set X of square
matrices over R. If A: R— Ry is the natural homomorphism, then the
matrix block given by (1) is to represent the element

Ma@) = Ma")M(a")"'A('a). )
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On each matrix (1) we can perform certain elementary operations
which do not change the element represented.
(E.1) To a given row (column) add a left multiple of a later row (a
right multiple of an earlier column).
This amounts to left (right) multiplication by an upper unitriangular
matrix; thus if a is changed to

1 p\fla a a+pa a+ p(Ca)
0 P/\a® 'a Pa° P(Ca) [

then the corresponding element of Ry is
Ma + p('a)) — Ma' + pa®)Ma’)'A(P)'M(P('a)),

and this simplifies to A(@) — A(a’)A(a®)~'A('a), if we bear in mind that A is
a homomorphism. Similarly for right multiplication by an upper unitri-
angular matrix.

To describe the second type of operation, let us call a square block T
on the main diagonal of a° in (1) superfluous if either the row block or
the column block of T is zero apart from T itself, and any entry below
and to the left of T is zero. Now we have a second elementary
transformation:

(E.2) To insert or remove a superfluous block, and the row and
column block containing it.

We shall write a — b to indicate that b is obtained from a by an
elementary transformation (E.1) or (E.2), and a ~ b means that we can
pass from a to b by a series of elementary transformations. This is clearly
an equivalence relation; we shall call a and b equivalent if a ~b. For
example, any block is equivalent to a pure block:

where dots stand for zeros. The equivalence class containing a € M(Z) is
written [a] and the set of all such classes is denoted by Ry. Our object will
be to define a ring structure on Ry, but first we shall need to define an
operation on matrices, the determinantal sum. Let A, B be two n X n
matrices which differ only in the first column, say A = (A, A,, ..., 4,),
B =(By, A,,...,A,). Then the determinantal sum of A and B with
respect to the first column is defined as the matrix

C=(A1+B1,A2,...,An).

The determinantal sum with respect to other columns (for suitable
matrices) is defined similarly. We shall usually denote the determinantal
sum of A and B by A V B, without specifying the column to be added,
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since this is usually clear from the context. For matrices over a
commutative ring it is clear that

det(A V B) = det A + det B.

In general we have no such relation, because determinants are then not
defined, but over a skew field it is easily verified that if A and B are
singular, then so is A V B, whenever the latter is defined. We also note
the distributive law:

(AVB)® P=(A®P)V(BD P), (3)

whenever AV B is defined. There is a corresponding definition of
determinantal sum with respect to rows, but this will not be needed.

We now define the following operations on M(Z), where dots indicate
blocks of zeros:

a b a+b a b a a b b
a®b=|a - ‘a |={a® - a|V|[a® - -], @
R bO rb . bO . . bO /b
a’ ab' &b a a -\/1 - -
a®b=|a® 'ab’ 'ab|=|a® 'a |- b B)|. )
. b° 'b . . 1 - b B

Our object will be to show that Ry is a ring relative to these operations.
In the first place we observe that @, © are well-defined on the classes;
we have a1~a2,b1~b2$a1®b1~a2®b2, a1®b1~a2®b2, be-
cause any elementary operation carried out on a, b can also be carried
out on a D b, a® b. The associative laws follow because the sum of a, b
and c in M(Z) with either bracketing has the matrix
a b s
a - 'a
»° . b
. & e
where s = @ + b + &; the matrix for the product of @, b and c is

a a . . 1 . . . 1 -
QL 'a - . - b b . -1 .
. . 1 . . b® b . . . c’

T . . . 1 . - e

o .

Next we note the formulae for the sum and product of an element
r € R by a block matrix a:
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a ada+r
s =mea=(s 1)

13

ra’ rd a ar
(r)®a—<a0 Ia)’ a@(r)_(aﬂ /ar)'
Taking r =0, 1 in turn, we find that (0) ® a ~ a @ (0) ~ a,
. . al .
©0a~(n . )~0 s0O~(5 ]~

by using (E.2), and (1) ® a ~a © (1) ~ a. Writing (—)a = (-1) © a, we
have (=) ((—)a) = a, and

a®(-a=|a . ‘al->{a® @ 'a|->|a

_’<Z° :)_>(0).

Hence a @ (—)a ~ (0) and similarly ((—)a) @ a ~ (0). There remain the
distributive laws. Consider first

@Q)®BO)~@®b)Oec. ©)

We write down the matrix block for the left-hand side of (6), putting
t = ac¢ + b¢ for short, and apply elementary transformations:

a dac’ b bc t a dc’ b bc t
a@ ‘ac’ - . 'a¢ a ’ac’ 'aé
c® c |-=1 - c® —c°
b®  'be’  'bE p®  'be’  'bE

& ‘c c° ‘c

a ac’ 'ac’ 'ac
S . .
b° 'be’ 'b&
o ‘c
a b (@+b) t
a® - ‘ac’ 'a¢
I I Y T T &
c ‘¢

where we have used (E.2) to remove c° at the last step; the result is the
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matrix block for the right-hand side of (6). Now the other distributive law
follows by symmetry. By the observation in 1.1 the addition is commutat-
ive and so we have a ring Ry and it is clear that the mapping

Ar—=[(r)] (reR)

is a ring homomorphism from R to Ryz. We claim that A is universal
2-inverting. To establish this fact, we first prove the rule

a’ . a’ . a .
(ao b)eB(ao c)~<a° b+c)' )

Writing down the matrix block for the left-hand side and applying
elementary transformations, we have

a a a . a
a@ -+ b|lo|a® -4 b|>|a® - b+c
a@ ¢ a@ ¢ a® c
a’ .
e d .
@ b+c

Thus (7) is proved. Now if ¢; denotes the jth column of the unit matrix
and e the i-th row, then the (ij)-entry of A(A)™! is represented by the

matrix block
_ —e; 0
“im\ A e/
for on denoting the k-th column of A by A;, we have
T T T
—er - Y . —e] .
2( A ei) © (@)= 2( A eiaik) ” ( A Zefafk)

J
T T
_ [ T€; : —€; Oix
_( A Ak)_)( A . )“’(611()

where we first use (7) with » summands, then (E.1) and finally (E.2).
Similarly we have Z(a,-j) © uy ~ (6y), therefore [u;] is the (ij)-entry of
MA)™, and so A(A) is invertible, as claimed. To prove the universal
property, let f: R— R’ be a Z-inverting homomorphism and for any
element [a] of Ry define

fillaD) = f@) — f@@)f(a")"'f(a). ®

As for A, we can verify that the right-hand side is unaffected by
elementary transformations (E.1,2). Hence f; is well-defined on Ry by
(8), and is uniquely determined by f. Moreover, for any r € R, we have
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f(r) = AN = fiMr),

so f has been factored by f; and this shows A to be universal Z-inverting.
Summing up, we have the following explicit description of Ry:

THEOREM 4.3.1. Let R be any ring and T an upper multiplicative set of
square matrices over R. Then the set M(Z) of all matrix blocks

a= (ZO f;), a’ € =, a' row, 'a column over R, @ € R, C)]
taken modulo the equivalence ~ defined by the elementary operations
(E.1, 2) and with the operations ®, (© defined by (4) and (5) forms a ring
Rs which is the localization of R at Z, with the natural homomorphism
A R-> Rs givenbyr—[(r)]. B

To apply the result we need to be able to recognize when a matrix
block represents zero in Ry (problem (i)). This is accomplished by
Malcolmson’s criterion:

ProrosiTiON 4.3.2. LetR, X, Ry be as in Th. 3.1 and let a be a matrix
block as in (9). Then [a] =0 in Ry if and only if there exist F, G, P,
Q €3, a matrix H over R, rows f, u and columns g, v over R such that

f a a

H - 4 'a u

Foo. . . =(P)(Q v). (10
. G . g

Proof. Let us write a ~ 0 if a satisfies (10). We remark that the left-hand
side of (10) can be factorized as

1 - f - ad a - - A |
1 H @ 'a - - 1
F . 1 - 1 - (1)
1 R - G - g

This makes it clear that if a o 0, then a ~ b, where b is the left-hand side
of (10), and we then have

[a] = [b] = Muv) — AuQ)A(PQ)™'A(Pv) = Muv) — Muv) =0,

so [a] = 0. Conversely, if a ~ b and a ~ 0, then we have b ~ 0, for any
elementary operation (E.1) carried out on (10) will change P, Q into
other members of Z, while the effect of (E.2) is just to insert or remove
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further terms F - G. Thusife.g.

then

a' u
- a =P - ( .
G g S | G - ¢

a
‘a

If the superfluous terms in (10) appear in the opposite order, we can
reduce them to the form (10) by the following steps:

al

aO

Y

- R
Es)

. 0y
Cm R W
|
Q

c o R W
aO
<

e Bl
QO
&

In particular it follows that if a ~ 0, then a v 0. .

The criterion of Prop. 3.2 is quite general, but not easy to apply directly;
in particular it may be quite difficult even to decide when Ry is trivial.
We shall therefore derive some consequences that are easier to use. We
recall from 1.4 that a matrix A is called full if it is square, say n X n, and
cannot be written in the form A = PQ, where Q has fewer than n rows.
With the help of this notion we have the following sufficient condition for
the natural map A to be injective:

CoROLLARY 4.3.3. Let R be any ring and £ an upper multiplicative set
of full matrices, which is closed under permutations of rows or of columns.
Then in Ry, [a] # 0 for any a € 2.
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Proof. Suppose that a € £ and [a] = 0. Then (10) holds; further,

a f G 0 g O
B = H|]|eX and C= €z,
0o F 0 B

and by a permutation of rows and of columns we find that the left-hand
side of (10) lies in = and so is full. But this contradicts (10), so we
conclude that [a] #0. &

We next derive conditions for the localization to be a local ring. For
this purpose we remark that a ring R is local if and only if 1 # 0 and for
every x € R either x has a left inverse or 1 — x has a right inverse. For a
local ring these conditions are clearly satisfied. Conversely, suppose that
they hold in R. An idempotent e % 1 has no left or right inverse, for if
eu =1, say, then e = e - eu = eu = 1. Hence, for any idempotent e in R,
eithere=1o0or1—e=1, so 0, 1 are the only idempotents in R. Now if
xy =1, then yx is an idempotent # 0, hence yx = 1, so every inverse in
R is two-sided, in other words, R is weakly 1-finite (see 1.4). Thus for
any x € R, either x or 1 — x has an inverse, hence the non-invertible
elements of R form a set closed under addition and so form an ideal; this
shows R to be a local ring.

We shall now see that the conditions of Cor. 3.3, together with one
other condition, are enough to ensure that Ry is a local ring.

TueEOREM 4.3.4. Let R be a ring and = a set of full matrices such that
is upper multiplicative, closed under permutations of rows or of columns,
while the complement of £ admits determinantal sums of columns. Then
Rs is a local ring.

Proof. Ry is non-trivial, because (1) € Z, so [(1)] # 0, by Cor. 3.3. Given
x € Rz, let x = u; be the first component of the solution of

Au—e; =0, (12)

and suppose that x has no left inverse in Ry. By Cramer’s rule the
numerator of u; has no left inverse in Rs. Let us write A =(A4; A'),
where A; is the first column of A; then this numerator is (e; A’). We
assert that (4, ~e; A')eZ, for if not, then (¢e; A’') and (A, — ¢,
A’) both lie in the complement of Z, hence so does A = (A, —¢; A')V
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(e; A'). But this is a contradiction; hence (A, —e; A') € X, and we
can form the system

(Aj—e; A —e =0. (13)
It may be rewritten as
Av — el(l + Ul) = 0. (14)

By (12) and (14), Av = e;(1 + vy) = Au(l + vy), so v = u(1 + v,). Equa-
ting the first components, we find that v; = u;(1 + v;), and so

(1= u)@+0v) =1

This shows that 1 — x has a right inverse, and now the remark made
earlier shows that Ry is a local ring. W

As an application let us show that any epic R-field is determined by its
singular kernel. Let K be an epic R-field, u: R — K the canonical map
and & = Ker p its singular kernel. If ?’' is its complement in M(R), then
the localization at ?’, i.e. Ry is usually written Ry (just as we write R, in
the commutative case). From the definition of & it follows that u can be
factored uniquely by A: R— Ry to give a map a: Ry — K such that
u = Aa. Now it is clear that  admits determinantal sums of columns and
contains all non-full matrices, while %’ contains only full matrices, is
upper multiplicative and is closed under permutations of rows or of
columns. Hence by Th. 3.4, Rj is a local ring and K, as homomorphic
image of Ry is just its residue-class field. This establishes

THEOREM 4.3.5. Let R be any ring and K an epic R-field with singular
kernel P. Then the localization Ry is a local ring with residue-class field
K. B

Exercises

1. If a is a matrix block as in (1), find a matrix block for [a] 1.

2. Given a ring R and a set 2 of square matrices, consider blocks (1) where & is
rxr,a’eZissXs,a isrXxsand'aissxr. Show that in Ry, [a] represents
the r X r matrix (2) and obtain conditions for [a] to be non-full. What are the
conditions for [a] to be zero?

3. Let R be any ring and let 2 be the set of all upper triangular matrices over R
with non-zero elements along the main diagonal. Show that R has an embedding
in an R*-inverting ring if and only if any matrix equation
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fo+ a
Fo- =(;)(Q v)
. G g

where F,G,P,Q €2, f,u are rows, g,v columns over R and a € R, implies
a=0.

4. (Malicolmson [93]) Let R be any ring and X a multiplicatively closed set of
square matrices. Show that a matrix A over R has a right inverse over Ry if and
only if there exist P, Q € X, a matrix § over R and invertible square matrices,
E, F over R such that Q = EPF(I & A)S.

5. (Malcolmson [93]) Let R be a ring and £ a multiplicative set of square
matrices. Show that Ry has UGN if and only if Z contains only full matrices; Ry is
weakly finite if and only if AB € Z for square matrices A, B implies that A, B are
invertible over Rs.

4.4 Matrix ideals

In the last section we saw in Th. 3.5 how to construct an epic R-field from
its kernel. What we need now is a simple way of recognizing singular
kernels — just as in the commutative case the kernels of epic R-fields are
precisely the prime ideals of R. For this purpose we need to develop a
form of ideal theory in which the place of ideals is taken by certain sets of
matrices. Instead of addition and multiplication we have determinantal
addition and diagonal sums, while the non-full matrices play the role of
zero. The use of these notions can be motivated by observing that in the
commutative case they reduce to the corresponding operations on
determinants, thus diagonal sums correspond to taking the product of
determinants, while any non-full matrix A over a commutative ring has
zero determinant, for we can write A = PQ, where P, O are square
matrices with a zero column and row, respectively. However, this analogy
should not be pushed too far: it is quite possible for a full matrix to have
zero determinant, for example in the polynomial ring k[x, y, z] the
matrix

0 z -y
T=|-z 0 x 1)
y —-x 0

can be shown to be full (see Cohn [89] or Ex. 2 below), though its
determinant is zero.
We shall need analogues of ideals and prime ideals. In any ring R a
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matrix ideal is a collection & of square matrices satisfying the following

four conditions:

(MI1.1) oA contains all non-full matrices,

MI1.2) IfAed, then A D B e A forall Be M(R),

M1.3) If A,Bed and C= AV B is defined with respect to some
column, then C € A,

MI4) IfADP1ledd, then A e d.

If, moreover,

(ML.5) o is proper, i.e. 4 # M(R),

MI16) A, B¢A=>ADBe¢dA,

then o is called a prime matrix ideal. The analogy with prime ideals is

clear, at least at the formal level. It is easily verified that for any epic

R-field, its singular kernel is a prime matrix ideal, and conversely, from

Th. 3.4-5 it is clear that for any prime matrix ideal ¥ the ring Ry is a

local ring, whose residue-class field is an epic R-field with singular kernel

%. This field will be denoted by R/P. Moreover, a specialization between

epic R-fields can be characterized in terms of the corresponding singular

kernels:

THEOREM 4.4.1. Let R be a ring and K, K, epic R-fields with singular
kernels P, P, and corresponding localizations R,, R,. Then the following
conditions are equivalent:

(a) there is a specialization o: K| — K,

(b) . C Py,

(¢) there is an R-ring homomorphism R, — R;.
Thus the category of epic R-fields ¥g, as a partially ordered set, is
order-isomorphic to the set of prime matrix ideals over R, partially ordered
by inclusion.

Further, if there are specializations K, — K, and K, — K|, then K, and

K, are isomorphic as R-fields.

We note the reversal of direction in (c) compared with (a).

Proof. Write Z; for the complement of %; and y;: R— K; for the
canonical homomorphism. To prove (a) = (b), assume a specialization
a: K; — K, and take A € 3,; then Ay, has an inverse which is the image
of a matrix B over K;: (Aw,)(Ba) =1, hence (Au,)B = I + C, where
Ca = 0. It foliows that I + C has an inverse over R; and so does Ay,
therefore A € Z,. This shows that #, C P,, i.e. (b) holds.

Now (b)=(c) is clear, for when (b) holds, then A;: R— R, is
3,-inverting and so may be factored by A, to give a homomorphism
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R R, — R,. Finally, to show that (c) = (a),
\ given a homomorphism from R, to R;,

R, let § be the image of R, in R; and write

R, m; for the maximal ideal of R,. The
\ natural homomorphism R, — K; maps S

s to S’ = S/(S N'my). Now S is a local ring

(as homomorphic image of R,) and
S Nm; is a proper ideal, so the natural
K,  homomorphism R, — K, can be taken

K, via ', giving a homomorphism from S’
\ to K, and this is the required specializa-
s tion.
Now the last remark follows by using (b). B

As an immediate consequence we have

CoRrROLLARY 4.4.2. Let R, K, K, be as in Th. 4.1, with a specializa-
tion «: K;— K,. Then any K,-admissible block C is also K,-admissible,
and if C defines p in K|, then p lies in the domain of « and the element of
K, defined by Cispa.

Proof. Let P; be the singular kernel of K; and let A be the denominator
in C. Since K is a specialization of K; we have #; C %, by Th. 4.1, and
by hypothesis, A ¢ P,, hence A ¢ P, and so C is K;-admissible. If

u a T
C=(A v),thenplsglveanlby

p=a-—uAlv,

hence p lies in the domain of &, and p« is given by the same formula
over K,. B

The partially ordered set of prime matrix ideals of R is sometimes
called the field spectrum and is denoted by Spec(R). When R is
commutative it reduces to the familiar prime spectrum of R.

There still remains the problem of constructing prime matrix ideals.
Guided by the analogy of the commutative case, we first consider matrix
ideals. It will be convenient to begin with sets satisfying only the axioms
(MI.1-3); such a set will be called a matrix preideal. From a preideal o
we get a matrix ideal f as the set of all matrices A such that A ® I € o,
for a unit matrix of suitable size. Given any set X of square matrices over
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a ring R, we can form (X), the matrix ideal generated by X, as follows.
Let (X), be the set of all determinantal sums

Z,VZ,V...VZ, )

where Z; is either non-full or of the form Z,=U® C, Ue X,
C € M(R). Here some care has to be exercised with sums of the form (2),
because determinantal addition is non-associative and not everywhere
defined, but we have omitted the brackets in (2), for simplicity. It is clear
that (X), is the least matrix preideal containing X, and the associated
matrix ideal (X), is the least matrix ideal containing X; thus it is the
matrix ideal generated by X.

We can now form prime matrix ideals with the help of Zorn’s lemma,
as in the commutative case.

THEOREM 4.4.3. Let R be any ring, A a matrix ideal and = a set of
square matrices, including 1 and closed under diagonal sums and disjoint
from A. Then (i) there exist maximal matrix ideals containing 4 and
disjoint from =, and (ii) every such matrix ideal is prime.

Proof. 1t is easily checked that the collection of matrix ideals containing
A and disjoint from X is inductive, hence by Zorn’s lemma there are
maximal matrix ideals satisfying these conditions. Let % be such a matrix
ideal; since 1 € 3, P is proper. Now suppose that there exist A;, A, ¢ P
such that A, ® A, € P. If A, denotes the matrix ideal generated by %
and A;, then &; D P, hence A; N X # I, by the maximality of P, say
B, e 4;NZ. Now B; P B, is a determinantal sum of terms in % and
terms of the form A; @ A, @ C, and hence it lies in . But B; @ B, is
also in =, which contradicts the fact that % N X = J. This contradiction
shows that A; ® A, ¢ P, so P is indeed prime. H

For any matrix ideal s we can define its radical as
Vd = {A|A D ... ® A (r terms) e o, for some r};

it is easily verified that Vs is a matrix ideal containing . With the help
of Th. 4.3 one can now prove the following analogue of the commutative
case:

Vel = (1{P|2 prime D s} €)

To illustrate how these results may be used to answer questions about
R-fields, consider the following general situation. We have a ring R and
want to find an epic R-field making a given set X of square matrices
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invertible and a second set Y singular. Let Z be the set of all diagonal
sums of 1 and matrices from X, and take (Y'), the matrix ideal generated
by Y. Our problem has a solution precisely when

TN(Y)=2. (4)

For when such an epic R-field exists, then its singular kernel % must
contain (Y) and be disjoint from X, so (4) holds. Conversely, when (4)
holds, then we can by Th. 4.3 find a prime matrix ideal containing Y and
disjoint from X. An equivalent conditionis Z NV (Y) = .

To find if R has any epic R-field at all, we form the least matrix ideal
N, which is the set of all matrices A such that 4 @ I is a determinantal
sum of non-full matrices, for some unit matrix /. If N contains no unit
matrix, then N can be enlarged to a prime matrix ideal, by Th. 4.3, and
hence we can find an epic R-field. This sufficient condition is clearly also
necessary, so we obtain

THEOREM 4.4.4. A ring R has a homomorphism into a field if and only
if no unit matrix I (of any size) can be written as a determinantal sum of
non-full matrices.

More explicitly, if R has no R-field, then there must be an equation
I=CV(CGV...VC, )

where the C; are non-full and the right-hand side is bracketed in some
way so as to make sense. This is a very explicit condition, but if we are
given a ring R with no R-fields, it may be far from easy to construct an
equation (5). Likewise, if there is no equation (5), the construction of an
R-field may be difficult. The proof will be of no help since it was
non-constructive (Zorn’s lemma was used).

The situation may be illustrated by a corresponding problem for
commutative rings. If R is a commutative integral domain, then any
n X n matrix A, which is nilpotent satisfies the equation A” =0, as we
see by transforming A to triangular form over the field of fractions of R.
It follows that for any commutative ring R, if A is a nilpotent n X n
matrix, then the entries of A” must lie in every prime ideal of R and
hence be nilpotent. In particular, let A be a 2 X2 matrix over a
commutative ring R and denote by J the ideal generated by the entries of
A?; then the entries of A? lie in \/_f‘)- The explicit verification shows that
such a problem is not always trivial (see Ex. 5).

Returning to Th. 4.4, to give an example, consider a ring R without
UGN. Such a ring has an n X r matrix A and an r X n matrix B, where
r < n, such that AB = I, thus [ is not full. It is clear that such a ring has
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no R-fields; what Th. 4.4 shows is that a slightly more general condition
of this type is sufficient as well as necessary for the existence of R-fields.

We next ask when there is a field of fractions. For this to exist we need
an injective homomorphism to a field, thus the singular kernel must not
contain any non-zero elements of R. Let A be the set of all diagonal
matrices with non-zero entries on the main diagonal. We need a prime
matrix ideal disjoint from A and by Th. 4.3 this can be found precisely
when the least matrix ideal does not meet A. Thus we have

TuEOREM 4.4.5. A ring R has a field of fractions if and only if R #0
and no diagonal matrix with non-zero diagonal elements can be expressed
as a determinantal sum of non-full matrices. B

Although this solves our problem, we now see that we would like to
know more: Is there more than one field of fractions, and if so, is there
one that is universal in some sense? Here a universal R-field is
understood to be an epic R-field, which has every other epic R-field as
specialization. Using the correspondence in Th. 4.1, we see that there is a
universal R-field precisely if there is a least prime matrix ideal. Evidently
(bearing (3) in mind) this is the case if and only if VN is prime, where N
is the least matrix ideal.

Exercises

1. Prove the relation (3) for any matrix ideal o.

2. Verify that T, given by (1), is full over k[x, y, z], but that (x © 1 & 1)T is not
full. Deduce that T becomes non-full if x ~! is adjoined. Do the same for y, z.

3. Writing T(x, y, z) for the matrix (1), show that T(x,y,z2) ® T(x —1,y, —z)
is not full.

4°. Find a commutative ring in which a determinantal sum of non-full matrices is
full.

5. Let A be a 2 X 2 matrix over a commutative ring R and denote by J the ideal
generated by the entries of A3. Find powers of the entries of A% which lie in J.
Do the same with J replaced by a matrix ideal.

6. Let R be a ring with a universal field of fractions U. Show that every
automorphism of R extends to U. Give an example of a field of fractions for
which this fails.
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7. Show that every ring R which has an epic R-field also has one that is epi-final,
i.e. one without specializations to other epic R-ficlds. Show also that R has
epi-initial R-fields, i.e. epic R-fields to which there are no specializations.

8. Let R be a commutative ring. Show that for any A € M(R), det A = 0 if and
only if A becomes singular in every R-field. Deduce that det A = 0 if and only if
D7 A can be written as a determinantal sum of non-full matrices, for some r = 1.

9. Verify that a ring can be embedded in a field if and only if AN VN = o,
where A is the set of all diagonal matrices with non-zero diagonal elements and N
is the least matrix ideal. Deduce another proof of Cor. 1.2.5 by applying (3) to N.

10. Given square matrices A, B of the same size, show that A € B is associated
to AB @ I. Deduce that the complement of a prime matrix ideal is closed under
products.

4.5 Universal fields of fractions

In 4.4 we met precise conditions for the existence of a universal field of
fractions, but we are also interested in having more manageable sufficient
conditions for the existence. In any R-field the only matrices over R that
can be inverted are the full matrices; a ring homomorphism is said to be
fully inverting if every full matrix has an image which is invertible. In
particular, if the canonical map from a ring R to an epic R-field KX is fully
inverting, then the singular kernel is the set of all non-full matrices over
R, and K must then be the universal field of fractions of R. It is indeed a
field of fractions, since every non-zero element is full as 1 X 1 matrix and
so is inverted over K. Our aim in this section will be a characterization of
rings R with a fully inverting homomorphism to an R-field. The
corresponding localization is called a universal localization.

A ring homomorphism f: R — S is said to be honest if it maps full
matrices to full matrices; for example, a homomorphism to an R-field is
honest if and only if it is fully inverting. Every honest homomorphism is
injective; we also have the following useful condition for honesty:

ProrosIiTION 4.5.1. Let R be any ring and S a retract of R; then the
inclusion homomorphism S — R is honest.

Proof. Let A be a full matrix over S and denote the retraction R — S by
p. If A is not full over R, say A = PQ, where Q has fewer rows than A,
then we have A = Pp - Qp over S and this contradicts the fact that A was
fullover S. &
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To describe fully inverting maps we first give conditions for an epic
R-field to coincide with its localization.

LeEMMA 4.5.2. Let R be any ring and P a prime matrix ideal of R with
universal localization Ry and residue-class field K. Suppose that either (i)
the map R— K is fully inverting (and so % consists of all non-full
matrices), or (ii) every matrix over R which is full over Ry is invertible
over K. Then Ry = K and P is a minimal prime matrix ideal.

Proof. By Th. 3.4, Ry is a local ring; we have to show that under the
given conditions every non-unit of Ry is 0, for then it will coincide with
the residue-class field. So let p € Ry and take an admissible system for p:

Au =0. ey

Since p is a non-unit, its numerator (4, A,) is not invertible over Ry
hence it is not invertible over K. In case (i) (49 A,) is non-full over R,
while in case (ii) it is not full over Ryp; thus in either case we can over Ry
write (4, A,)= PQ, where Pis nX(n—1) and Q is (n—1) X n.
Hence

A=(4 Ax A)=(PQ A)=(P A,»(fg ‘1))

so (P A,)is a factor of the denominator (A, A,) over Ry; the latter is
a unit and the local ring Ry is weakly finite, therefore (P A,) is also
invertible over Ry. Cancelling this factor in (1), we obtain

9 Yees

and this has the solution p = 0. Hence Ry is a field, so Ry = K.

Now & is minimal, for if #' C P, then by Th. 4.1 there is a
homomorphism f: Ry — Ry which must be injective, because Ry is a
field. Thus f is an isomorphism and ' = P, as claimed. W

We now have the following characterization of fully inverting maps to
R-fields:

THEOREM 4.5.3. Let R be any ring. Then there is an epic R-field K with
a fully inverting map to K if and only if the following two conditions are
satisfied:
(i) 1+ 0 and the diagonal sum of full matrices over R is full,
(ii) the determinantal sum of non-full matrices over R, where defined, is
non-full.



4.5 Universal fields of fractions 179

Moreover, K is then the universal localization Ry, where ® is the set of all
full matrices over R.

Proof. Suppose that K as described exists. Then its singular kernel
consists of all non-full matrices, so then the complement of ® in M(R) is
the least matrix ideal N'; thus N is a prime matrix ideal and (i), (ii) hold.
Conversely, assume (i), (ii); then the set N of all non-full matrices is a
matrix ideal by (ii), necessarily the least, and it is prime, by (i). Thus we
have an honest map to an epic R-field K, which is fully inverting, so
K =Ry, byLemmas5.2. B

We next try to find a class of rings to which this result can be applied.
Over any ring R we define the inner rank of a matrix A as follows. If A is
m X n, consider all factorizations

A = PQ,where Pism X rand Qisr X n. )

When r has the least possible value, (2) is called a rank factorization of A
and r is called the inner rank or simply the rank of A, written rA. We
note that an element of R, as 1 X 1 matrix, has rank 1 precisely when it is
non-zero, while 0 has rank 0. It is clear that for an m X n matrix A,
rA <min(m, n) and a full matrix, as defined in 1.4, is just a square
matrix of rank equal to its number of rows. More specifically, an m X n
matrix A is called left full if rA = m and right full if rA = n; it is clear
that if A is left full, then m < n, and if it is right full, then m = n. The
following necessary condition for a matrix to be full is often useful.

ProrosiTiON 4.5.4. An m X n matrix over any ring with an r X s
block of zeros cannot be left full unless r + s < n. In particular, an n X n
matrix with an r X s block of zeros, where r + s > n, cannot be full.

A matrix of the sort described in the last sentence is sometimes called
hollow.

Proof. Let A be m X n, with an r X s block of zeros, in the top-right-
hand corner, say. We have the factorization

A= P 0\ (P 0\(I 0}

“\R S§)\0 IJ\R S§)
here Pis r X (n—s) and Sis (m — r) X 5. So A has been expressed as a
product of an m X (m + n—r —s) by an (m + n — r — s) X n matrix,

and if A is left full, we must have m+n—r—s=m, i.e. r+s<n.
Now the second part is also clear. B
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In n-firs the inner rank has the following important property:

ProrosiTioN 4.5.5. IfRis an n-firand P € 'R", Q € "R° are such that
PQ =0, 3)

then
rP + rQ < n. 4

Proof. By Cor. 1.6.2 we can trivialize the relation (3). Let PU =
(P 0), U'Q=(0 Q"T, where P'is r X n;, Q' is n, X s and n; +
n, = n. Clearly we have rP < n;, rQ < n,, therefore (4) holds. B

A ring R is called a Sylvester domain if R is non-trivial and for any
matrices A, B such that the number of columns of A equals the number
of rows of B, equal to n, say, the following nullity condition holds:

AB=0=>rA+rB=<n. 5)

By Prop. 5.5, every semifir is a Sylvester domain. By applying (5) to
elements of R, we see that a Sylvester domain is indeed an integral
domain. More generally we see that every left full matrix is left regular,
and similarly on the right. The reason for the name is that these rings
satisfy Sylvester’s law of nullity for the inner rank:

CoROLLARY 4.5.6. Let R be a Sylvester domain and A €'R",
B e "R°. Then

tA +rB<n+r(AB).

Proof. Write r(AB) = r and take a rank factorization AB = PQ, so that
Q has r rows. Then we have

B
A P =0,
@ (%)
hence by Prop. 5.5, n+r=1(A P)+1(B -Q)'=rA+rB. R
We shall need some further consequences of the nullity condition:
LeMmMma 4.5.7. Let R be a Sylvester domain. Then
(i) for any matrices A, B over R, 1(A ® B) =1rA + 1B,
(ii) if A, B, C are matrices over R with the same number of rows, and if

(A B)=1(A C)=rA,thent(A B ()=rA.

Proof. (i) We take rank factorizations A = PQ, B = P'Q’; then
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A 0\ (P 0)\(Q O

o B/ \o pPJ/lo Q)
and hence r(A @ B)<rA +rB. We note that no hypothesis was
necessary so far. In the other direction, let

A 0 P ,
be a rank factorization of A @ B, where the right-hand side is partitioned
so that P and Q are square. Since PQ’ = 0, we have

r(A® B)=rP+1Q' =1(PQ) +1r(P'Q')=r1A + 1B.

(ii) Let us take suitably partitioned rank factorizations (A B) =
D(E, E'), (A C)=F(G G'). By hypothesis, A= DE = FG are
also rank factorizations of A, therefore

rA=<sr1D,rG. (6)
It follows that the number of columns of (D F) is 2rA and

@ n(%)-o

hence by the nullity condition,
2tA=1(D F)+1(E —-G)'=1D +1G =r(DE) + 1(FG) = 2rA.

Hence equality holds throughout, and bearing in mind (6), we find that
rA =rD =rG. Further, we have r4A =r(D F), so there is a rank
factorization (D F)= H(J K), where the number of columns of H is
rA=r(D F).Now

(A B C)=(DE DE' FG')=(HJE HIJE' HKG")
= H(JE JE' KG');
thereforer(A B C)<srH <rA and (ii) follows. H

We can now show that any Sylvester domain has a universal field of
fractions; in fact we have a somewhat more precise result:

TueEOREM 4.5.8. In any Sylvester domain R the following equivalent
conditions are satisfied:

(a) the localization Ry at the set ® of all full matrices is a field,

(b) the set of all non-full matrices over R is a prime matrix ideal.
Moreover, Ry, is then the universal field of fractions of R.

Proof. Let & be the set of all non-full matrices over R. If % is a prime
matrix ideal, then the conditions of Th. 5.3 are fulfilled, so R4 is then a
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field, and this shows that (b) => (a). Conversely, if (a) holds, then the
singular kernel of the map R — Ry is just P, so (b) holds. Next we show
that (a) holds in any Sylvester domain, by verifying (i), (i) of Th. 5.3.
Condition (i) follows from Lemma 5.7 (i); to prove (ii), let A = (a, ),
B =(b,C) be non-full, where a,be"R, Ce"R"" and put F=
(a+b,C). If C is right full, then rC=n—1=r1A =1B, hence by
Lemma 5.7 (ii), rF = rC and so F is non-full. If C is not right full, then
rC<n—1 and again rF <n, so F is non-full in any case. Thus the
conditions of Th. 5.2 are satisfied and (a) follows. When this holds, P is
the least prime matrix ideal and so Ry is the universal field of fractions of
R, again by Th. 5.3. B

We remark that the condition of being a Sylvester domain is necessary
as well as sufficient for the conditions (a), (b) to hold (see FR, Th. 7.5.10,
p. 417, or Ex. 5 below). As we have seen, any semifir is a Sylvester
domain, hence we obtain

CoRrROLLARY 4.5.9. For any semifir (and in particular, any fir) R, the
localization Ry at the set ® of all full matrices is a universal field of
fractions for R, with a fully inverting homomorphism R — Ry. B

One useful consequence of this result is the following simple criterion
for the extendibility of homomorphisms to the field of fractions:

THEOREM 4.5.10. Let R, S be semifirs, or more generally, Sylvester
domains, and WU(R), U(S) their universal fields of fractions. Given a
homomorphism f: R— S, f extends to a homomorphism f': UW(R)—
AU(S), necessarily unique, if and only if f is honest. In particular, every
isomorphism between R and S extends to a unique isomorphism between
AU(R) and U(S).

Proof. Denote by ®, W the set of all full matrices over R, S respectively.
If f is honest, then ®fC W, and so the mapping R— S— Sy is
®d-inverting. Hence there is a unique homomorphism f’: Ry — Sy such
that the diagram shown commutes, which means that f can be extended
R R, i just one way. Conversely, if an exten-
sion exists, then any full matrix A over
R is inverted over Ry and so is mapped
to an invertible matrix over Sy. But this
is the image of Af, which must therefore
S¢  be full; hence f is honest, as claimed.
The rest follows since an isomorphism is always honest. B

f f




4.5 Universal fields of fractions 183

For Sylvester domains Malcolmson’s criterion can still be simplified. If
R is a Sylvester domain, then any product of full matrices is full, and
likewise for diagonal sums of full matrices, by Th. 5.8. Suppose now that
a is a matrix block representing zero, [a] = 0. Then the product in (11) on
p. 167 is non-full, but the left and right factors are full, hence the middle
factor a @ I is non-full, and hence so is a itself. Conversely, when a is
non-full, then so is the product. Thus we obtain

THEOREM 4.5.11. Let R be a Sylvester domain. Then any matrix block
a over R represents zero if and only if a is not full. ®

In the next section we shall see that like semifirs, Sylvester domains are
projective-free. It can also be shown that a Sylvester domain has weak
global dimension at most two but we shall not do so here (see FR, Cor.
5.5.5, p. 256). An example of a Sylvester domain of global dimension
exactly 2 is the polynomial ring in two variables over a commutative field:
k[x,y] (see FR, Th. 5.5.12, p. 260). Thus we have found fields of
fractions for a class of rings that are (i) projective-free and (ii) of weak
global dimension at most 2. When we drop the first condition, some
restriction has to be placed on the projective modules, for a field of
fractions to exist. In the next section we shall examine the consequences
of having a rank function defined on projectives, to generalize the rank of
free modules.

Exercises

1. Show that an Ore domain is a Sylvester domain if and only if every full matrix
is regular.

2. Show that R = k[x]/(x?) (where k is a commutative field), has a universal
R-field, but no field of fractions. What are the conditions for a commutative ring
R to have (i) a universal R-field, (ii) a universal field of fractions?

3. Show that the homomorphism of k{ zg, z;, ...) into k{(x,y) defined by
z, > y"x is injective but not honest. Show also that the homomorphism f defined
by zof = ¥, 2p+1f = (2.)x — x(2,,f) is honest (see Cohn [90]).

4. Let A be a full matrix such that when the first column is omitted, the result is
not left full. Find a factorization A = B(1 & C), where B and C are both full. Use
this result to show that when the set of all full matrices is closed under diagonal
sums and products, where defined, then the inner rank of a matrix is the
maximum of the orders of its full submatrices.
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5. Verify that the conditions of the last exercise are satisfied whenever R has an
honest homomorphism to a field. Deduce that such a homomorphism preserves
the inner rank. Hence show that any ring satisfying (a) or (b) of Th. 5.8 is a
Sylvester domain.

6°. Let R be a semifir and S a subset of R* which contains with any element c all
elements similar to ¢ and all factors of c. Is the ring (R; ¢ =0 for all ce §)
embeddable in a field?

7°. Let R be a fir and @ a prime matrix ideal. Show that 2 = [®" is again prime
(where P” is the matrix ideal generated by A, ® ... D A,, 4; € P). Is 2 always
the least prime matrix ideal of R? (Note that a proper ideal a in any fir satisfies
Ma" = 0, see FR, Cor. 5.11.4, p. 296, also 9.5 below.)

4.6 Projective rank functions and hereditary rings

In this section we shall examine conditions under which hereditary rings
have fields of fractions; the results will not be used elsewhere in the book,
so this section can be omitted on a first reading.

Given any ring R, let M be an R-module and take a presentation
of M:

GSF—>M—0,

where F, G are free R-modules. If M is finitely presented, F and G may
be taken free of finite rank and the map « is then represented by a
matrix. If M is finitely generated projective, then F splits over im « and it
follows that G may then also be taken to be finitely generated; thus any
finitely generated projective module is actually finitely presented. We
also recall that M is projective if and only if a: G — F can be chosen so
that o’: F — G exists satisfying aa’ o = o (see A.3, Prop. 6.6.1, p. 240).
We shall mainly be interested in finitely generated projective modules,
where this description takes the following simple form:

PropPosiTiION 4.6.1. Let R be any ring and P a projective right
R-module with an n-element generating set. Then there is an idempotent
nXxXn matrix E such that P is isomorphic to the cokernel of the
endomorphism of "R defined by I — E. Conversely, the cokernel of the
map defined by any idempotent matrix is finitely generated projective.

Proof. We have P = coker o, where o: G — F satisfies oo’ = « for
some a': F— G. Since P is generated by n elements, F can be taken as
"R and «'« is an idempotent endomorphism of "R, represented by an
idempotent matrix; since im o = im &', it follows that P = coker o' «v.
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Conversely, an idempotent n X n matrix corresponds to an idempotent
endomorphism « of F, hence F =im o ©® ker «, so P =Kker « is project-
ive. B

If P is associated with the idempotent matrix E, then P is the cokernel
definedby E'=1— E. Now "R=ker E' ®imE’, so coker E’' =ker E’,
i.e. P consists of all u € "R such that (I — E)u =0, in other words,
u = Eu. Hence P = E -"R. We shall also want to describe the isomorph-
isms of projective modules in terms of the idempotent matrices represent-
ing them.

ProrosiTiON 4.6.2. Let R be any ring and P, Q finitely generated
projective R-modules represented by idempotent matrices E € R,,, F € R,
respectively. Then P = Q if and only if there exist A € "R", B € "R™ such
that AB=E, BA=F.

Proof. By definition, P is generated by the columns of E and Q is
generated by the columns of F. Let 6: P— Q be an ismorphism and
suppose that 6 maps Eu to Bu, while 67! maps Fv to Av. Applying 6 to
the columns of E and then 67!, we obtain E = AB; similarly, applying
07! to the columns of F and then 8, we find that F = BA. Conversely, if
E=AB, F=BA, then Euw Bu, Fvw— Av are mutually inverse
homomorphisms between Pand Q. W

Two idempotent matrices E € R,,, F € R, are said to be isomorphic if
there exist A € "R", B € "R™ such that AB = E, BA = F. We note that
on replacing A, B by EAF, FBE we may assume that in addition,
EA= A= AF, FB= B = BE.

As an application of these ideas we show that Sylvester domains are
projective-free:

THEOREM 4.6.3. Every Sylvester domain is projective-free.

Proof. Let R be a Sylvester domain; as subring of a field, R is weakly
finite, in particular R has IBN, so to show that R is projective-free, it
only remains to verify by Prop. 6.2, that every idempotent matrix is
isomorphic to a unit matrix. Let E be an n X n idempotent matrix and
put rE=r, r(I-—E)=s. Since E(I-E)=0, we have r+s=<n.
Taking rank factorizations £ = PQ, I — E = P'Q’, we have

(P P) (g) =PQ+PQ =1
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Hence r + s = n and by weak finiteness,

Qe e
thus QP = I, and this shows E to be isomorphic to I,, hence the
projective module defined by E is free. B

For any ring R consider the category P, of all finitely generated
projective right R-modules and their homomorphisms. The set P(R) of
isomorphism classes can be defined as a commutative monoid by denoting
the class of P by [P] and writing

[P]+[Q] =[P & Q] )

The universal group of P(R) is just the Grothendieck group of project-
ives, Ko(R). Of course we obtain the same monoid by using finitely
generated projective left R-modules, by the duality P+~ P*=
Homg (P, R). The image of ?(R) in Ky(R) is the monoid P(R) of stable
isomorphism classes, where P, P' € Py are called stably isomorphic, in
symbols P ~ P’, if

P®"R=P ®"R

for some n=0. For any two stably isomorphic modules are clearly
identified in P#(R) and the monoid of such classes admits cancellation,
and so has K(R) as group of fractions. The stable isomorphism class of P
will be denoted by [P].

The correspondence R — P(R) is a functor from rings to monoids, for,
given a homomorphism f: R — S and a projective R-module P, we have
an S-module P ®p S, which is again projective: if P @ P’ ="R, then
POSOP ®S="R®S="S. Thus f induces a map

P(R) — P(S), @)

which is easily seen to be a monoid homomorphism. Moreover, stably
isomorphic modules have stably isomorphic images, so that we also have
a homomorphism from $(R) to #(S). A projective S-module is said to be
induced from R if it occurs in the image of the map (2).

For any set $ of objects in Py an object P of Py is called subordinate
to $ if it is a direct summand of a direct sum of members of $; e.g. every
projective is subordinate to {R}.

The monoid P(R) can be used to define a preordering of Ky(R). Given
@, B € Ko(R), we write o< to mean: B — a € P(R). This defines a
preordering preserved by addition, because $(R) is a monoid; the next
result gives conditions for the preordering to be a partial ordering:
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ProrosiTiON 4.6.4. For any ring R, the preordering defined on Ky(R)
is a partial ordering, provided that R is weakly finite.

Proof. The condition for a partial ordering is antisymmetry:
[PI=<[ollQl<[Pl =[PI=[Ql 3)

The hypothesis in (3) states [P @D S]=[Q], [Q ® T]=[P], hence
[POSOT]=[P]; adding P’', where P@® P'="R, we have
[S® T]=0, hence S® T & "R ="R; by weak finiteness, S b T =0,
hence S=T=0and P=Q. &

We now turn to the question of generalizing the notion of rank. In the
simplest case, that of a field, the dimension of a vector space is an
important invariant, in fact the only one, since two spaces of the same
dimension are isomorphic. For general modules there may be no
numerical invariant, but for many rings there is a rank function on
projective modules. Generally, for any ring R, by a rank function on
projectives we shall understand a function p on the finitely generated
projective right R-modules with non-negative real values, such that
(R.1) P=P =pP=pP,

(R2) p(P® Q) = pP + pQ,

(R.3) pR=1.

If pP#0 for P+ 0, p is said to be faithful. We note that the relation
P®HS=Q DS implies pP = pQ, by (R.1-2). Hence p is constant on
stable isomorphism classes and so may be regarded as a function on
P(R), and it extends to a homomorphism from K,y(R) to R which is 1 on
R. Conversely, every homomorphism from Ky(R) to R which is
order-preserving and takes the value 1 on R defines a rank function on
P(R).

Our first aim will be to determine when a ring has a rank function, but
some preparation is necessary. We begin by observing that every rank
function on R also defines a rank function on certain homomorphic
images of R. For the proof we shall need the notion of a trace ideal. For
any right R-module M we define its trace ideal T(M) as the set

(M) = {Z(f, x)|x e M, f € M* = Homg (M, R)}. 4)

Bearing in mind that M is a right and M* a left R-module, we can easily
verify that t(M) is an ideal in R; e.g. for a non-zero free module F,
17(F) = R. More generally, for a projective right ideal a, we can take f in
(4) as the inclusion map, and this shows that 7(a) D a. For a projective
R-module P we can, by the dual basis lemma (see e.g. A.2, Prop. 4.5.5,
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p. 149), write every x € P as x = > u(a;, x), where the u; form a
generating set of P and «; € P*. Hence we have, for x € P,

(fa x) = Z(f’ ui(a/i’ X)) = E(f’ ui)(ais x)-

This shows that 7(P)? = ©(P), thus the trace ideal of a projective module
is idempotent.

More generally we can, for any set $ of finitely generated projective
right R-modules define ©($) as the union of all the ©(P), where P ranges
over all projectives subordinate to $. Our next result describes the effect
of dividing by a trace ideal.

ProroOsSITION 4.6.5. Given a ring R and a set $ of finitely generated
projective right R-modules, put t=1($). Then for any Q € P,
Q ®% (R/t) =0 if and only if Q is subordinate to $. Further, the monoid
of induced projectives over R/t is the quotient of P(R) by the relation
P~ P ifand only if P® Q=P @® Q’', where Q, Q' are subordinate
to 9.

Proof. If Q ® (R/t) =0, then every element of Q lies in the image of a
map from a sum of members of $ to Q. Since Q is finitely generated,
there is a surjection from a sum of members of $ to Q, hence Q is
subordinate to $. The converse is clear.

Now let a: P— P’ be a map inducing an isomorphism between
P®(R/t) and P’ ® (R/t). Then there is a surjection o @ B:
P@® Q— P, where Q is subordinate to $, and this map splits over
ker (o @ B):

P® Q=P &ker(a D f).

Moreover, ker (o © B) becomes zero over R/t and so is subordinate to $.
Conversely, if P® Q= P’ & Q’, with Q, Q' subordinate to $, then
clearly P, P’ become isomorphic over R/t. B

We next prove a lemma on extending homomorphisms of preordered
groups, analogous to the Hahn—-Banach theorem; this will enable us to
extend rank functions.

Consider the category whose objects are preordered groups G with an
order-unit, (G, u), i.e. a distinguished element # such that G is the
convex hull of the subgroup generated by u: for any x € G there exists
n=0 such that —nu <x < nu. The morphisms are homomorphisms
preserving the preorder and the order-unit. For example, the additive
group of real numbers with the usual order and the order-unit 1 is an
object (R, 1) in this category. Any morphism A: (G, u)— (R, 1), ie. a
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homomorphism A from G to R such that uA =1, is called a state. Given
(G, u), we write G, = {x € G|x = 0} for the positive cone of G and note
that G is generated as a group, by G, forif x € G and —nu < x < nu,
then x + nu =0and so x = (x + nu) — nu, where x + nu, nu € G,..

LEMMA 4.6.6. Let G be a preordered abelian group with order-unit u
and let (H,u) be a subobject of (G, u), i.e. H is a subgroup of G,
containing u, with the preorder induced from G. Then every state on
(H, u) extends to a state on (G, u).

Proof. Let ¢ be a state on (H, u) and let & be the family of all subgroups
containing H with states extending ¢. % has a natural partial order:
(K,)<(K',A) if KC K’ and A’ extends A. It is clear that ¥ is
inductive, and so by Zorn’s lemma it has a maximal element (K, 1). We
shall complete the proof by showing that K = G.

If G. C K, then GC K, so when K C G, we can find t € G,\K. We
define two real numbers «, B as follows:

« = sup {A(x)/n|x € K and nt = x for some n = 0},
B = inf {A(x)/n|x € K and nt < x for some n = 0}.
We claim that
Osasf<mo, )

Since t =0¢€ K, we have 0= A(0)/1 < a. Next ¢ < ru for some r >0,
hence B < A(ru)/1 = r < ». Now take p, g € K and positive integers m,
n such that p < mt and nt < q. Then np < mnt < mq and so nA(p) <
mMq), hence A(p)/m < A(q)/n. Now sup (A(p)/m) = «, inf(Mq)/n) =
B, hence o < B and (5) follows.

We now take any y € R such that o < y < f§ and show that

If x = nt forsome x € K, n € Z, then A(x) = nvy. 6)

If n=0, then x=0 and so Ax)=0. If n>0, then x = nt, so
Mx)/n=B=v and therefore A(x)=ny. If n <0, then —x <(—n)t,
hence AM(—x)/(—n)<a <y and again A(x)= ny; so (6) holds for all
nel.

Suppose now that x + nt = 0. Then by (6), A(x) + ny =0, but also
(=x)+(=n)t =0, hence M(—x)+(—n)y=0, and so Ax)+ny=0.
This shows that the map u: K + Z¢ — R given by

wx + nt)=AMx)+ny,forxe K,neZ,

is well-defined. Moreover, (6) shows that (K + Z¢) N G, is mapped to
R., so u preserves the preorder; further, u(u) = A(x) = 1, and this shows
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that u is a state on (K + Zt,u) extending A. This contradicts the
maximality of (K, A), so K = G and A is the required extension of ¢. B

For example, let p be a rank function on R and let $ be the set of all
projectives on which p is zero. Then p is defined on the monoid of
induced projectives over R/7($), by Prop. 6.5, and by Lemma 6.6 it can
be extended to a rank function p’ on R/1($). If every projective
(R/*($))-module is induced from one of R, then it follows that p’ is
faithful. E.g. this is so when R is v. Neumann regular (see Goodearl [79],
16.7) or when R is weakly semihereditary (see Prop. 6.9 below), but it
does not hold in general. However, for any ring R with a rank function p
we can define t; as the trace ideal of all the projectives on which p
vanishes, and on R/t; there is an induced rank function p;; moreover,
since pR =1, t; is a proper ideal. If p, is not faithful, we can take the
trace ideal of all the projectives on which p; vanishes; it corresponds to an
ideal t, Dt; in R. Continuing in this way, we obtain an ascending
sequence (t,) of proper ideals, and rank functions p, on R/t,, which all
correspond to each other. Since all the t, are proper, so is their union t,,
and there is a rank function p, defined on R/t,. If p, is not faithful, we
can continue this process transfinitely. For some ordinal « of cardinal at
most |R| the chain becomes stationary. If t is the corresponding ideal,
then R/t is a non-zero ring with a faithful rank function. Thus we have
proved

PROPOSITION 4.6.7. Let R be any ring with a rank function p. Then
there is a proper ideal t of R such that R}t has a faithful rank function
which on projective modules induced from R agrees with p. 1

We can now achieve our aim of describing the rings which have a rank
function; the necessary and sufficient condition turns out to be UGN
(see 1.4).

THEOREM 4.6.8. For any ring R the following conditions are equiva-
lent:

(2) R has a rank function on projectives,

(b) R has a non-zero homomorphic image which is weakly finite,

(¢) R has unbounded generating number.

Proof. (a)=>(b). If R has a rank function p, then by Prop. 6.7, a
non-zero homomorphic image R’ of R has a faithful rank function p’. We
claim that R’ is weakly finite; for if "R’ = "R’ @ K, then p'(K) + n=n,
hence p'(K) =0 and so K =0, because p’ is faithful, and this shows R’
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to be weakly finite. To show (b) = (c), let R satisfy (b) and suppose that
R is a non-zero weakly finite image of R. Then R has UGN, hence so
does R, i.e. (¢) holds. Finally, assume that R satisfies (c); this means that
"R="R @ K implies n = m. In terms of the order-unit u of K;(R) this
states that

mu < nu=m=n. (7)

It follows that the subgroup (u) generated by u is infinite cyclic, so we
have a homomorphism f: (u) — R defined by f(nu) = n. To show that f
is a state we must verify that nu = 0 = f(nu) = 0; but this holds by (7)
with m = 0. Now f can be extended to a state on Ky(R) and hence a rank
function on R by Lemma 6.6, and this shows that R satisfies (a). l

This result shows that most rings normally encountered have a rank
function. For example, every projective-free ring clearly has a unique
rank function. We shall find that there are other rings with a unique rank
function, but the rank functions themselves will have better properties for
rings that are hereditary. A weaker condition that is left-right symmetric
is often useful. A ring R is said to be weakly semihereditary if for any two
maps between finitely generated projective R-modules

a: P> P, B P - P (8)

such that «ff =0, we can write P’ = P{@® P; such that ima C P; C
ker 8. In terms of matrices this condition can be restated as follows: For
any A € 'R", B € "R’ such that AB = 0, there exists an idempotent n X n
matrix E such that AE = A, EB =0. By applying the duality * (or
replacing E by I — E in the matrix condition) we see that this condition
is left—right symmetric. In a right semihereditary ring R, if «, 8 are as in
(8), then im B is a finitely generated submodule of P", hence projective
and so P’ splits over ker f: P’ =im 8 @ ker B. Since af =0, we have
im & C ker 8, and this shows R to be weakly semihereditary. Thus every
right semihereditary ring is weakly semihereditary and by symmetry the
same holds for left semihereditary rings.

For a weakly semihereditary ring it has been shown (by G. M.
Bergman [72], see e.g. FR, Th. 0.3.7, p. 14), that every projective
module is a direct sum of finitely generated modules. This generalization
of Kaplansky’s theorem uses the latter’s decomposition theorem of a
projective into countably generated modules.

In a weakly semihereditary ring we can pass from a rank function to a
faithful rank function on a homomorphic image in a single step. This
follows from the next result, which shows every projective module of the
image to be induced.
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ProroOSITION 4.6.9. Let R be a weakly semihereditary ring and t the
trace ideal of a set $ of finitely generated projective R-modules. Then R/t is
again weakly semihereditary and every finitely generated projective (R/t)-
module is induced from R.

Proof. We shall use a bar to indicate the map R — R/t, thus R = R/t and
P=PQ®R for PePg. Let @ P— P', B: P'— P” be maps between
finitely generated projective R-modules such that &8 = 0. Then aff = 0,
hence «f can be factored by a map to a projective subordinate to $, say
aff = yd, where y: P— Q, 8: Q — P". Over R we have

(a y)(_ﬁé)=0, y=0=0.

Since R is weakly semihereditary, we have P'® Q = P, ® P,, where
im(ae y)C P Cker(8 —-96)'. Hence PP=P, @ P, and imaC P, C
ker B, and this shows that the weakly semihereditary condition holds
between induced projectives.

Now any finitely generated projective R-module may be defined by an
idempotent matrix over R, and this corresponds to a map e: "R — "R
such that &2 = ¢, i.e. &(1 — &) = 0. By the previous argument, applied to
the maps &, 1 — &, we have "R = P, ® P,, where imé C P, C ker (1 — é).
But imé = ker (1 — &), hence imé = P, and this shows that all finitely
generated projective R-modules are induced. By the first part R is weakly
semihereditary, as we had to show. B

COROLLARY 4.6.10. Let R be a weakly semihereditary ring with a rank
function p and denote by t the trace ideal of all the projectives on which p
vanishes. Then there is a unique rank function p induced on R/t by p and
p is faithful.

Proof. It is clear that p defines a unique rank function § on the induced
projective (R/t)-modules, but by Prop. 6.9 this includes all finitely
generated projectives, so p is uniquely defined. Moreover, if 5P = 0, then
pP =0, hence P = 0 by the definition of t. It follows that p is faithful. B

For each rank function p on projectives there is an inner rank on
matrices, defined as before: Given a map a: P — O between projectives,
the inner p-rank of o, p(a), is the infimum of p(P’) for all projectives P’
such that « can be taken via P’:

p(a) = inf {p(P")|a = By for B: P— P', y: P' - Q}.

If 1, is factored by maps via P’, then P is a direct summand of P’, hence
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p(1p) = p(P). Further it is clear that p(a) < min{pP, pQ}. The map
a: P— Q is called left full if p(a) = pP, right full if p(a) = pQ and full
if it is left and right full. If more than one rank function is involved, we
shall speak of p-full maps etc., to avoid confusion. In particular, for an
m X n matrix A with m < n say, we have pA < m, with equality if and
only if A is left p-full.

For an idempotent matrix E the inner p-rank clearly equals the p-rank
of the projective module defined by E, hence for any matrix A the inner
p-rank may also be defined as

pA = inf {pE|E idempotent and A = BEC}. 9

We have seen that for the existence of universal fields of fractions the
nullity condition played an important role. Such a condition can be
considered more generally; if the nullity condition holds for p,

Given a: P— P’, : P’ - P",if aff = 0, then p(a) + p(B) < pP’,

then p is said to be a Sylvester rank function. As before, the law of nullity
can be recovered from this special case: if a: P— P’, B: P'— P”, then
for any y: P— Q, §: Q — P" we have

ple v)+p(B -0 <pP + pQ,

hence p(a) + p(B) < pP’ + pQ, and taking the infimum as Q varies, we
obtain

pla) + p(B) < pP' + p(ap).

It is of interest that this condition holds in all weakly semihereditary
rings:

ProprosiTioN 4.6.11. In a weakly semihereditary ring every rank
function is Sylvester.

Proof. Let a: P— P’, B: P' — P” satisfy «f8=0. Then there exists a
decomposition P'= P, ® P, such that imaC P, Cker. Hence

p(a) < pPy, p(B) < pP, and so p(a) + p(B) < pP, + pP, = pP'. A

Homomorphisms to a field form an important source of rank functions.
Thus let R be any ring with an R-field K, and for P e P, put
P=P® K. Every projective K-module T is free of uniquely deter-
mined rank r7T and we can use it to define a rank function on Py by the
rule

pP =r1P.
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Clearly P = P’ implies pP = pP’ and pR =1, and since P=P, P P,
implies P= P, @ P,, we see that p(P, ® P,) = pP; + pP,. Thus p is
indeed a rank function; moreover, it is Z-valued. If K is actually a field of
fractions, then the sequence 0 — R — K is exact and tensoring with P we
obtain the exact sequence 0— P — P; hence p is then faithful. Con-
versely, if p is faithful, then pE > 0 for every non-zero idempotent matrix
E, and so for a € R, a # 0, we have

pa = inf {pE|a = bEc, E idempotent} # 0,

because p is discrete-valued; so R is embedded in K. This proves

THEOREM 4.6.12. Let R be any ring with an epic R-field K. Then the
function on projectives defined by pullback from the dimension over K is a
Z-valued rank function on projectives, which is faithful if and only if K is a
field of fractions of R. B

For the proof of the next result we note that the properties of the inner
rank established in Lemma 5.7 for Sylvester domains hold for general
Z-valued Sylvester rank functions, with the same proof:

For any matrices A, B, p(A ® B) = pA + pB. (10)

If A, B, C are any matrices with the same number of rows and
p(A B)y=p(A C)=pA, then

p(A B C)=pA. (11)

ProprosiTiON 4.6.13. Let R be a ring with a Z-valued Sylvester rank
function p. Then the set P of all matrices that are not p-full is a prime
matrix ideal, Ry is a field and the natural homomorphism A from R to Ry
is rank-preserving in the sense that 1(AA) = pA. The kernel of A is the
ideal generated by the entries of idempotent matrices E satisfying pE = 0.

Proof. We have to verify (MI.1-6) for . (MI.1) is clear and (MI.3)
follows by (11), (MI.2) and (ML.6) follow by (10) and (MI.4-5) follow
from (10) and the fact that pI, = n. Thus % is a prime matrix ideal. Let
K = R/® be the corresponding epic R-field; we claim that the natural
map R — K preserves the rank p. Given A € "R", let r be the greatest
integer for which A has a p-full r X r submatrix. Then every
(r +1) X (r + 1) submatrix of A has p rank at most r; by induction,
using (11), we can add columns and find that every (r + 1) X n submatrix
has p-rank at most r. By symmetry we can add rows and so find that
pA = r. Thus if pA = r, then there is a p-full r X r submatrix, but no
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(r +1) X (r + 1) submatrix can be p-full. Hence over K some r X r
submatrix of A is non-singular, but every (r + 1) X (r + 1) submatrix is
singular; this shows the natural map R — K to be rank-preserving. The
kernel consists of all 1 X 1 matrices of p-rank 0, and by (9) this is the
ideal generated by the entries of idempotent matrices of zero p-rank.

Now Rjg is a local ring, hence projective-free, so the residue-class map
Ry — K preserves the unique rank function. If A € M(R) is full over Ry,
it is full over K and so is inverted; it follows that the map R — Ry also
preserves the p-rank, so any member of P, being non-p-full, maps to a
non-p-full matrix over Ry, so by Lemma 5.2 (ii), Ry is a field and P is a
minimal prime matrix ideal. W

If we apply this result to weakly semihereditary rings, we obtain a
classification of certain epic R-fields defined by rank functions:

THEOREM 4.6.14. Let R be a weakly semihereditary ring. Then there
are natural bijections between the following sets:

(a) Z-valued rank functions on R,

(b) minimal prime matrix ideals over R,

(c) universal localizations that are fields.
Further, for any rank function p, the corresponding epic R-field will be a
field of fractions if and only if p is faithful.

Proof. By Prop. 6.11 any rank function on R is Sylvester, so for a
Z-valued rank function p we can apply Prop. 6.13 to deduce that the set
of all non-p-full matrices is a minimal prime matrix ideal. By following
the proof of Prop. 6.13 we see that any minimal prime matrix ideal is the
singular kernel of an epic R-field which is of the form Ry. Finally, any
epic R-field K gives rise to a Z-valued rank function; if the singular
kernel is P, then the minimal prime matrix ideal corresponding to this
rank function is just the minimal prime matrix ideal contained in P. The
last part is clear. W

This proof shows incidentally that over a weakly semihereditary ring
every prime matrix ideal contains a unique minimal one.

Exercises

1. Show that every finitely related projective module (over any ring) can be
written as a direct sum of a finitely presented projective module and a free
module.
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2. Show that the trace ideal of a non-zero projective module is a non-zero. Let M
be a finitely presented module, presented as cokernel of a map defined by a
regular matrix. Verify that M is bound, and hence has zero trace ideal.

3. In the proof of Lemma 6.6, show that o = .

4°. Show that a (left or) right semihereditary local ring is a semifir. Is the same
true for a weakly semihereditary local ring?

5. Show that a ring R has free module type (1,2) (see 1.4) if and only if R
contains an idempotent e such that e is isomorphic to 1 and to 1 — e. Deduce that
the localization of R at the set of all right invertible elements is zero.

6°. The proof of Th. 6.8 shows that a ring with a faithful rank function is weakly
finite. Does every weakly finite ring have a faithful rank function?

4.7 Normal forms for matrix blocks over firs

In the field of fractions K of a commutative integral domain R the
elements have the simple form ab™!, but there is generally no convenient
normal form; the best we can say is that

ab™! =qa'b'"! 6))

if and only if ab’ = ba’. When R is a Bezout domain we can take a, b to
be coprime and then (1) holds if and only if (a’, b') = u(a, b) for a unit u
in R.

In the case of a general ring R with an epic R-field K, we can compare
the blocks (or systems of equations) determining a given element of XK.
The result is rather more complicated than in the commutative case (see
FR, 7.6), but again there are simplifications when R is a fir and K the
universal field of fractions, which will be presented below.

Thus let R be a fir and U its universal field of fractions. We shall now
write a typical element of U as f=c — uA"'v, so the corresponding

block has the form
u <
o= ( A v) 2)

where A is a full matrix over R, n X nsayandu e R*,ve"R,ce R; nis
called the order of the block. Since the matrices inverted in U are all the
full matrices, the block (2) is admissible (for f) whenever A is full. The
least order of any block representing f is sometimes called the depth of f.

We note the following changes which can be made to this block without
affecting f:
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(i) We can replace (A, v) by P(A, v) = (PA, Pv), where P is any full
matrix. For we have ¢ — u(PA)™*Pv = ¢ — uA™'v. Similarly we can

replace (Z) by (j;%), where Q is a full matrix.

(ii) If we replace A by A @ I, then for any p, q € R,

u p c+pg v e
A 0 v and ( ) represent the same element.
0o 1 q A v

In fact the matrix on the left can be reduced to the form

u 0 ¢
A 0 v
0O 1 0

by means of operations of the form (i), and the latter is equivalent to the
form (2) by the operation (E.2) introduced in 4.3.

Likewise the operations inverse to (i), (ii), where possible, can be
applied without affecting f. This shows that in (2) A may be replaced by
any matrix stably associated to A. But in (i), P, O need not be invertible
over R, as long as they are full. This suggests the following definition. We
recall that a matrix A over any ring is called left prime if any square left
factor of A necessarily has a right inverse; right prime matrices are
defined similarly. Now a block (2) and the corresponding representation
u
A
By the chain condition in firs we can by applying the inverse of (i) reduce
any block (2) to one which is reduced. For such a block we have the
following uniqueness theorem.

of f is said to be reduced if (A v) is left prime and ) is right prime.

THEOREM 4.7.1. Let R be a semifir and U its universal field of
fractions. Given f € U, if

u c u
4 o) wa (40 ®
are two reduced admissible blocks representing f € U, then A and A’ are

stably associated. Further, when R is a fir, then any element of U can be
represented by a reduced admissible block.

Proof. The last part is clear, since any block can be replaced by a
reduced block, by the chain condition in R (see FR, Th. 1.2.3, p. 72 and
Lemma 7.6.5, p. 425). Suppose now that the two blocks in (3)
representing f are both reduced, of orders m and n say. Then the block
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’

u u e
A 0 v
0o A =

where e = ¢ — ¢’, represents zero, as we saw in 4.3. Since R is a semifir,
it follows by Th. 5.11 that we have a factorization

u u' e 1 /d
A 0 v |=m|E|(G H kym+n, ()
0o A v n\F/ m n 1

m+n

where the appended letters indicate the block sizes. By (4), EH =0,
hence by suitable internal modification we find

E=(E" 0), H=<Ig,,),

where E’ is m X s and H” is (m + n — s) X n. Further, A = EG, and
since A is full, we have s = m. Similarly, A’ = FH, and so m + n —
s = n, therefore s = m. We now partition (and rename) (4) as

u u’ e 1 ' m n 1
A 0 v |=m 11371 I()) (Q} 0, q,) " 4)
0 Ql Q2 q n

A -v] n\pP, P
m n

Thus (A v)= Pi(Q; q);since (A v) is left prime, P, is invertible and
by another internal modification may be taken to be I. Similarly
(A’ u")Tis right prime and so we can take Qj = I. Now (5) becomes

’ '

u u e P u
A 0 v |={1 o0 ( ‘Q“, (; v ) 6)
O Ar - UI P2 A ' 1 q
It follows that
P,A =-A'Q;. )

Since u = pA + u'Q1, any common right factor of A and Qj is also a
common right factor of A and u and so must be invertible. Similarly on
the left, so (7) is coprime, hence comaximal and it follows by Th. 1.5.1
that A and A’ are stably associated. W

When just one of the blocks is reduced, we can still obtain some
information:

COROLLARY 4.7.2. Let R be a semifir with universal field of fractions
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U and consider two admissible blocks (2) for the same element of U. If the
first block is reduced, then A is stably associated to a factor of A'.

Proof. We again have a factorization (5), where now P; can be taken to
be I; thus we have

’

u u e p D
A 0 o |=(1 o0 (g 3, ",),
0 A& -v) \p p\r =2 1

where the dimensions are as before, because both A and A’ are full.
Hence we have

P,A=-P0;, A= P0;. ®)

Here the first relation is right prime, because u = pA + p’Q;. It follows
that A is stably associated to a right factor of P; and hence to a factor of
A’, by the second equation (8). W

If a ring R has a universal field of fractions U, its singular kernel is the
unique least prime matrix ideal of R and so is contained in the singular
kernel of any other R-field. This is so in particular when R is a fir; in that
case we can always find a universal denominator.

THEOREM 4.7.3. (Universal denominators). Let R be a semifir and
U its universal field of fractions. If an element f of U can be defined by a
reduced block o and there is a block for f which is admissible over an epic
R-field K, then the block « is also K-admissible. In particular this holds
for all elements of U when R is a fir.

Proof. Let fe U and let o be a reduced admissible block for f, and
suppose that o' is any K-admissible block for f. Then o' is also
U-admissible, by Cor. 4.2, and if the denominators in «, o' are A, A’
respectively, then A is stably associated to a factor of A’, by Cor. 7.2.
Since A’ ¢ Ker K, we have A ¢ Ker K, so « is K-admissible, as claimed.
By Th. 7.1, a reduced block for f always exists, when R is a fir. H

The denominator of a reduced admissible block for f is called a
universal denominator for f.

Exercises

1. Let R be a semifir and U its universal field of fractions. Show that for p € U,
the depth d(p) satisfies the relation d(p + q) <d(p) + d(q), with equality
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whenever p, ¢ have denominators (in some block representation) that are totally
coprime, i.e. have no similarity class of factors in common.

2. Let R be a ring with an epic R-field K, and let = be the complement of the
singular kernel. Show that the solution u, of a system Au = 0 of order n (with
ug = 1) is unaffected if A is multiplied on the left by a matrix in =, or on the right
by a matrix of the form 1 ® Q @ 1, where Q € Z, or by adding a right multiple of
columns 1 to n — 1 to the first or last columns.

3. Let R be a semifir and U its universal field of fractions. A system Au =0 is
said to be reduced if A is left prime and its core is right prime. Show that two
reduced systems determine the same element of U if and only if we can pass from
one to the other by the operations listed in Ex. 2 and their inverses.

4. Let R be a semifir which is a local ring but not principal, with universal field of
fractions U. By considering elements of the form Sa;! show that there are
elements of any prescribed depth in U.

Notes and comments

Until about 1970 the only methods of embedding rings in skew fields,
apart from Ore’s method, were topological (see 2.4, 2.6). In Cohn [71] it
was proved that any fir could be embedded in a field by inverting all full
matrices, and this was shown to be a universal field of fractions in Cohn
[72]. Matrix ideals were developed in the 1971 Tulane Lecture Notes
(Cohn [72']), and the key result, that every prime matrix ideal over a ring
R occurs as singular kernel of an epic R-field, was proved later that year
(Cohn [71"]), a connected account being given in the first edition of FR.
This proof constructed the field as a group and then used Lemma 1.1.1. A
more direct method was found by Malcolmson [78] and independently by
Gerasimov [79]; this (in a slightly simplified form) is also the method used
here in 4.3.

The field spectrum of a general ring was defined as a topological space
by Cohn [72'], in analogy to the commutative case, where it reduces to
the familiar prime spectrum of a ring. The prime spectrum of a
‘commutative ring was characterized as a topological space by a set of
axioms by Hochster [69]; in Cohn [79] it was shown that Spec (R) for any
ring R satisfies Hochster’s axioms and that an affine scheme on R can be
constructed. The theorem on universal denominators (Th. 7.3) can then
be used to show that for a fir every global section of this scheme is
rational (see FR, p. 488); whether every rational section is integral is not
known, even for the case of free algebras. This question is related to the
existence of fully algebraically closed fields (see 8.1).
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The route to the universal field of fractions followed in 4.5 aims to
bring out clearly at which points the various hypotheses are needed. It
leads naturally to Sylvester domains, which were introduced by Dicks and
Sontag [78]. The law of nullity for matrices over a commutative field was
established by Sylvester [1884]. The properties of the rank function in 4.6
are taken from Schofield [85], while the construction of rank functions
(Lemma 6.6) is taken from Cohn [90’]. The equivalence (b)<>(c) in
Th. 6.8 was first proved generally by Malcolmson [80]; for regular rings it
goes back to Goodearl [79], Th. 18.3. A direct proof is given in FR,
Prop. 0.2.2.

A study of numerators and denominators is made in Cohn [82], where
the theorem on universal denominators (Th. 7.3) is also proved, using
systems of matrix equations. It has been replaced here by the slightly
simpler proof in terms of matrix blocks, using the normal form theorem
(Th. 7.1), which was obtained in discussions with M. L. Roberts.
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Coproducts of fields

One of the main results of Ch. 4 stated that every semifir has a universal
field of fractions. This is now applied to show that every family of fields
all having a common subfield can be embedded in a universal fashion in a
field, their field coproduct. We begin in 5.1 by explaining the coproduct
construction for groups (where it is relatively simple) and for rings, and
derive some of the simpler consequences when the common subring is a
field. When the factors themselves are fields, an elaboration of these
results will show the ring coproduct of fields to be a fir (by an analogue of
the weak algorithm, see Cohn [60, 61]), but we shall not follow this route,
since it will appear as a consequence of more general later results.

The study of coproducts requires a good deal of notation; some of this
is introduced in 5.2 and is used there to define the module induced by a
family of modules over the factor rings and compute its homological
dimension. In 5.3 we prove the important coproduct theorems of
Bergman [74]: If R is the ring coproduct of a family (R;) of rings, taken
over a field K, then (i) the global dimension of R is the supremum of the
global dimensions of the factors (or possibly 1 if all the factors have global
dimension 0) (Th. 3.5), (ii) the monoid of projectives P(R) is the
coproduct of the P(R;) over P(K) (Th. 3.8). As an immediate
consequence we have the theorem that a coproduct of firs over a field is a
fir (Th. 3.9), which tells us in particular that a coproduct of fields is a fir.

The coproduct may be regarded as a special kind of tree product. We
shall not take up this topic in general, but confine our attention to one
important case, the HNN-extension. This construction, first carried out
for groups by Higman, Neumann and Neumann [49], is described for
fields in 5.5 and for rings in 5.6. It allows us to embed any ring in a simple
ring and any field in a homogeneous field.

In 5.7 we return to the Bergman coproduct theorems and show how

202
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they can be used to determine the effect of adjoining elements or of
localizing on the global dimension and the monoid of projectives. This
leads to a simple method of constructing rings to given specifications, for
example it provides a source of integral domains not embeddable in
fields. Next we turn to derivations and in 5.8 we define the universal
derivation bimodule of a ring and examine its relation to the correspond-
ing bimodule formed from a homomorphic image. As an application we
show that the number of generators of a free field is an invariant.

The results of 5.3 and 5.7 are used in 5.9 to construct field extensions of
different left and right degrees, taking first the case where one degree is
finite and the other infinite and then the (rather harder) case where both
are finite.

The final section 5.10 examines the special case in which the coproduct
of fields is a principal ideal domain. This is so precisely when there are
just two factors, both of degree 2. It may be viewed as an analogue of the
situation in groups, where a free product of two cyclic groups of order 2 is
the infinite dihedral group.

5.1 The coproduct construction for groups and rings

Let A be any category; we recall the definition of a coproduct. Given a
family (A;) of objects in A, suppose that an
“r object S exists with maps u;: A; — S such
that for any family of maps ¢;: A; > X to
the same object X there is a unique map f:

Ay LT
) |
S I/ §— X satisfying @, = u,f. Then S with the
|
v
X

maps u; is called the coproduct of the family

(A;) and is denoted by L4,, or by

Aju...1A, in the case of a finite family.
Thus we have a bijection

w(]_[Al, X) = []s4(A;, X).

ExaMpPLEs. The coproduct of sets is the disjoint union; for abelian
groups we obtain the direct sum (also called the restricted direct product),
for general groups we have the free product, but this case will be taken up
in more detail in a moment.

Often we need an elaboration of this idea. Let K be a fixed object in
and consider the comma category (K, o): its objects are arrows K — A
(A € Ob &) and its morphisms are commutative triangles:
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A
K/
\ A
This category has the initial object K LK ; it reduces to s when K is an

initial object of #f. Now the coproduct in (K, ${) is called the coproduct
over K. E.g. for two objects in (K, o) the coproduct is just the pushout:

K A

]

B—m————>p

Let us consider coproducts over a fixed group K in the category of
groups. This means that we have a family of groups (G,) and homo-
morphisms i;: K — G; and the coproduct C with maps u;: G;— C is a
sort of ‘general pushout’. Its existence is clear: we take presentations for
all the groups G, (on disjoint generating sets) and then obtain a
presentation for C by taking the union of the presentations of the G,
together with all relations of the form xi, = xi, (x € K), which identify
the images of K. Clearly any element of K mapped to 1 by any i; must be
mapped to 1 by every u;, so by modifying K and the G; we may as well
assume that each i, is injective; this means that K is embedded in G, via
i;. If in this situation all the u, are injective, the coproduct is called
faithful . If moreover, G,u, N G,u, = Ki, for all A+ u, the coproduct is
called separating. These definitions apply quite generally for concrete
categories (i.e. categories where the objects have an underlying set
structure). A faithful and separating coproduct of groups is usually called
a free product, and a basic result, due to Schreier [27], asserts the
existence of free products of groups. Although this result will not be
directly needed here, we shall outline the proof, since it is very similar to
the corresponding proof for the coproduct of fields, which we shall soon
meet.

THEOREM 5.1.1 (Schreier). The coproduct of groups (over a fixed
group) is faithful and separating.

Proof (outline). Let (G;; A € A) be the family of groups, where G, has a
subgroup K; which is isomorphic to the base group K. We can write
down a normal form for the elements of the coproduct C as follows.
Choose a left transversal for K, in G, of the form S, U {1}, thus
G, = K; U §;K,;. Then every element of C can be written in just one way
as
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5182 ...8,¢c, wheren=0,s5,€ 8,4 #A,ceK, )

where the different K; are identified with K for convenience. It is clear
how to write any element of C in this form. The uniqueness can then be
proved by defining a multiplication of the expressions (1), which consists
in a set of rules reducing the formal product of two such expressions to
normal form and verifying that one obtains a group in this way. A quicker
way (v.d. Waerden [48]) is to define for each A € A a group action of G,
on the set of expressions (1):

S1... 8,85’ if A, # Aand cg = s5,¢" in G,,

S1...8,° 8= . .
! "8 {sl...sn_lspc'lfﬂtn=)Lands,,cg=spc’1nG,1,

with the understanding that s;, is to be omitted if cg € K, or in the second
case, if s,cg € K;. Now it can be verified that these group actions agree
on K, and hence combine to give a C-action on the set of elements (1).
For n =0 and ¢ = 1, (1) reduces to 1 and by considering the effect of the
group action on 1 we see that the coproduct is faithful and separating. B

Our aim in this chapter is to study the coproduct of rings. Let K be a
fixed ring and consider K -rings; we shall usually want our K-ring R to be
faithful,, i.e. the natural map K — R should be injective. For example, if
K is a field, any non-zero K-ring is faithful; this is the case we shall
mainly be concerned with, but at first we place no restriction on K. As in
the case of groups, we can establish the existence of the coproduct of a
family of K-rings (R;) by taking a presentation for each K-ring R, in our
family and writing all these presentations together, as well as the relations
identifying the images of K; but the coproduct need not be faithful or
separating. Before finding conditions ensuring this we look at some
examples; we shall use * to denote the coproduct of rings.

1. Let k be a commutative field, K = k[x], where x is a central
indeterminate, R = k(x) the rational function field, § = k[x, y; xy = 0].
In R * S we have y=1-y=x"1-xy =0, so S is not faithfully repre-
sented in the coproduct.

2. The inclusion Z C Q is an epimorphism of rings, and by Prop. 4.1.1,
we have Q * Q = Q. Hence the coproduct is faithful, but not separating.
More generally this applies for any ring epimorphism.

When the coproduct is faithful and separating, we shall sometimes call
it the free product (as for groups). Thus the question is;: When does the
free product of rings exist? We begin by giving a necessary condition; for
simplicity we limit ourselves to two factors:

Let R;, R, be faithful K-rings. If their free product is to exist, we must
have

ca,ac, € K=ca-c,=c,-ac,inK, forallc;e R,,a € K.
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Clearly this also holds with R, and R, interchanged, and more generally,
for matrix equations. If we take all implications of a suitable form we can
obtain necessary and sufficient conditions for the free product to exist,
but they will not be in a very explicit form. Syntactic criteria of a rather
different form have been obtained by P. D. Bacsich and D. R. Hughes
[74]; see also W. A. Hodges [93], 8.6.

We now come to a simple sufficient condition for the existence of free
products of rings, which will be enough for all the applications we have in
mind. In essence it states that the free product of a family (R,) of faithful
K -rings exists provided that each quotient module R;/K is free as right
K-module.

We shall first consider the case of two factors, where the coproduct
takes a particularly simple form. Thus we have R = R, % Ry; we shall use
the following convention. For any positive integer v, R, is to mean R, if v
is odd and R, if v is even. Further we abbreviate the quotient module
R,/K as R,. By assumption, R, is free as right K-module and we shall
take a right K-basis of R, and lift it to R,; in this way we get a right
K-basis of R, including 1, which we shall write as T, U {1} (v= 1, 2).

Next we define a filtration on R. By definition every element of R may
be written as a finite sum of products

aa, . .. a, (2)

where a, is the image of an element of R, under the natural homomorph-
ism R,— R. We put A; = K and let A, be the set of all sums of such
products (2) with n factors, for n =1, 2, .... It is clear that 4, is a
K-bimodule and provided that R, # K for v= 1, 2, we have

AocAICAzc...,AiAngH,j, UA"=R. (3)

Thus (A,) is a filtration of R. Since R, is free as right K-module, we
have R, = K © T,K and A, is a free right K-module with basis ¢, ... t,,
where t; e T, U {1}, e T;fori>1and v=1, 2, ..., n. The fact that ¢
and ¢,; do not lie in the same factor R, ensures that there is no
cancellation between them. Thus A,/A,_; has a basis consisting of all
products ¢; ... t,, where t;, e T\ U {1}, t,eT, i=2, ..., n, and it
follows that

AJA 1 =RIOROR®...®R, @)

This shows in particular that R;, R, are embedded in R, and identifying
them with their images, we see that R; N R, = K. Thus we have

THEOREM 5.1.2. Let K be any ring and R,, R, faithful K-rings such
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that R,/K is free as right K-module (v =1, 2). Then the coproduct R, * R,
. X K
is faithful and separating. B

It will be convenient to have a second filtration (H,) on R. We put
Hy=K,H_;=0andforn=1,2,...define H, as the set of all sums of
products (2) with n factors, where a;€ R UR,. The H, are again
K-bimodules and the conditions for a filtration are easily checked:

O=H_1CH0CH1C..., I-I,H,gfll+]a UH,,=R.

With each a € R* we associate a non-negative integer h(a), its height, by
the rule

h(a) = nifandonlyifa € H\H,_;.

We also assign a height to 0 by putting A(0) = —. It is clear that we
have the inclusions

H,C A, CH CA,C...CH,_,CA,CH,C...,

and from the relations between H, and A, we obtain the natural
isomorphisms

AJH,_i =R, ®R,®... ®R,, )
HJ/A,=R,®R,; ®...®R,.,, (6)

and
H,/H, = A,/H,_ ® H,/A,. (7

Suppose that 7 is even; then the last factor on the right of (5) is R, and
we shall denote the submodule of H, corresponding to the first term on
the right of (7) by H ) and the submodule corresponding to the second
term by H 3,1; when n =0, H (1,2 =H %l = H, by convention. When # is
odd, we can form H.' and H? in the same way; thus H"" is the sum of
products of at most n factors, the first one in R, and the last in R,. It is
clear that if H%" is defined, then 4+ v=n + 1 (mod2), so for given n,
each of u, v determines the other and we shall often write simply H' or
H, for H' . The elements of H'’  which are of height n (i.e. those
corresponding to a non-zero element on the right of (7)) are called left
y-pure or right v-pure or more precisely, pure of type (u, v), where we
may also write (4, -) or (-, v) instead of (4, v). As an example, if ¢ is any
element of R of positive height n, then we have a decomposition

1 2-
c=c"+c¢", ¢eH,, c¢"eH,. 8)

Here ¢’, ¢” are not unique, but either is determined up to an element of
Hn—l’ by (7)
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By a monomial unit in R we understand a unit which can be expressed
as a monomial (2). Soon we shall see that in a coproduct of integral
domains over a field every unit is a monomial unit. An element ¢ of R is
said to be right reduced if h(cu) = h(c) for every monomial unit u; left
reduced is defined similarly.

Our next result provides information on the height of a product:

THEOREM 5.1.3. Let K be a field and R = R, % R, the coproduct of
two integral domains R,, R, over K. Then for any two elements a, b of
positive height in R we have

h(ab) < h(a) + h(b) with equality unless a is right v-pure and
b is left v-pure (v=1, 2). ()]
Further, if a is right v-pure and b is left v-pure (v=1, 2), then
h(ab) < h{a) + h(b) — 1, (10)

with equality if either a is right reduced or b is left reduced.

Proof. Write h(a) =r, h(b) =s; it is clear that A(ab) <r + s. If this
inequality is strict, then

ab =0 (mod H,,,_,).

Let us write a =a’ + a”, where a’ € H,'l, a"e€ H> and b=b" + b",
where b’ € H!', b” € H? . Then

ab=a'b"+ a"b' =0(mod H,,,_;).

Since the two summands are (zero or) pure of different types, we may
equate them to zero separately:

a’b" = a"b’ =0 (mod H,,,_,).

Suppose that o' ¢ H,_; and write a' = > aA + a*, where A €K,
a* € H,_; and the g; are right linearly independent (mod H,_,) over K.
We then have YaAb"=0 (modH,,,_;), hence Ab" e H,_;. Since
a' ¢ H,_;, not all the A; vanish, say A, #0. Then b" = A]'-4,b" € H,_,
and so either a’' € H,_; or b"e H,_;; similarly, either a"€ H,_; or
b'’eH,_,. If a'e H,_,, then a"¢ H,_, (because h(a)=r), and so
b’ € H,_;; this means that a is right 2-pure and b is left 2-pure. Similarly,
if b"e H;_;, then b is left 1-pure and a is right 1-pure, so (9) is
established.

Suppose now that a is right 1-pure and b is left 1-pure; then (10) clearly
holds. Assume further that b is left reduced. We can write a as a finite
sum
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2
a= Yax], wherea/e H,”, x| €R,.

For a is congruent (mod H,_;) to such an expression, but any element of
H,_, may also be written in this form. Now if h(ab) < r + s — 1, then

ab = Sab =0 (mod H,,,_,).

Let us write a/= > a,uy + af, where u,; € K, afe H,_, and the a, are
right linearly independent (mod H,_,) over K. This implies that each g, is
right 2-pure and

> unxib =0 (mod H,_,) for all h. (11)
We have
a = 2axi=Yauyx; + 2arx].
Let us put x, = > u,:x!, a* = >afxl;thenx, € R, a* € H,!, and
a=Dayx, + a*. (12)
The congruences (11) now take the form
x,b = 0 (mod H,_,) for all h. (13)
By symmetry b may be expressed as
b = X yiby + b*,

where y, € Ry, by is left 2-pure of height s — 1 and b* € H' . Further,
the argument that led to (13) now shows that

xyi = 0 (mod H,) for all 4, k. 14)

Since h(a) =r, (12) shows that the x, are not all zero, say x; #0.
Similarly we may suppose that y; # 0; then u = x;y; € K by (14), hence
x;y;4” =1 and x, is a unit in Ry; similarly y, is a unit, so by (13), b is
not left reduced, which contradicts the hypothesis. The same argument
gives a contradiction if a is right reduced, and the conclusion follows. H

CoROLLARY 5.1.4. Let K, R, R, and R =R, * R, be as in Th. 1.3.
Given a right reduced element a in R, we have

h(ab) = h(a) forall b € R*. (15)
Moreover, R is an integral domain and every unit in R is a monomial unit.
Proof. If b € K*, then h(ab) = h(a) and (15) holds. Otherwise h(b) >0

and (15) is a consequence of (10). In particular, since every non-zero
element is right associated to a right reduced element, R cannot have
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zero-divisors. Finally, if a is a unit of positive height and right reduced,
then h(a) > h(a-a™!), which contradicts (15), hence such an a has zero
height. This shows that every unit in R is a monomial unit. B

Exercises

1. Show that any category with coproducts has an initial object.

2. Let A, B be monoids containing submonoids isomorphic to a group C. Show
that the coproduct of A and B over C is faithful and separating (for an
appropriate definition of the latter).

3. Show that in a free product of groups any element of finite order has a
conjugate lying in one of the factors.

4, Let k be a commutative field and R; = k(x;, x5, y1, y,) be a free algebra.
Show that the subalgebra S; generated by the elements ¢; = xy; (i, j = 1, 2) is free
on these four generators. Let R, be the k-algebra generated by six elements a, b,
t; (i, j =1, 2) with the defining relations #;; — aty; — t1b + atpb = 0. Show that
the subalgebra S, generated by the #; is again free on these generators. Verify that
R, is an integral domain (like R;) and that their coproduct R; * R, over the
subalgebra generated by the ¢; is faithful and separating, but has zero-divisors.

5. Let A be the skew group ring of the infinite cyclic group with generator ¢ over
C with commutation rule it = t~!i. Express A as coproduct of two copies of C
over R.

6. Let K be a field, R; a family of integral domains which are K-rings and
R= x R, their coproduct. Show that any (left or) right algebraic element over K
is conjugate to an element in one of the factors. Give an example of an element
conjugate to an algebraic element in R; which is not itself algebraic.

7. (After B. H. Neumann [54]) Let k be a commutative field and put K; =
kix,y;xyx =y), Ky = k(y,z; yzy = 2), K3 = k{z, x; zxz = x). Show that the
ring coproduct R of K;, K,, K3 amalgamating k(x) in K; and K3, k(y) in K,
and K, and k(z) in K, and K is faithful and separating, but is not an integral
domain. (Hint. Form k(&,n,{) as a field in three central indeterminates and
successively adjoin x with I(x): {— {7, x2 =&, then y with I(y): x —>x"L,
y? = n, then z with I(z): x = x{™}, y = y71, 22 = £; now verify that (xyz)? = 1.)

5.2 Modules over coproducts

We now begin a more detailed study of coproducts of arbitrary families
and first introduce a systematic notation. We write R, instead of K and
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take a family (R;) of Ry-rings, where A runs over a set A. We shall write
Ag = A U {0} (assuming of course that 0 ¢ A), and write A, A’ etc. for a
general element of A and u, u' etc. for a general element of A,. We
abbreviate % ®p, as *y, ®, and call R, the base ring and R, the factor
rings of the coproduct R = %, R;. Further, we shall often write M for
M, ®, R, where M, is an R,-module.

By an induced module over the coproduct R we understand an
R-module of the form M = @ M ®, where M, is an R,-module. An
induced R-module of the form M ¢ Or an R,l-module of the form
M, ®y R, is called a basic module. Thus for example, every free
R;-module is basic, R} = Rj ®, R, and every free R-module is induced,
as well as basic: R" = R?>".

It is easily seen that an induced module M = @M ® has the following
universal property:

Given an R-module N and a family of R,-homomorphisms f,: M, — N
(n € Ay), there is a unique R-homomorphism f: M — N such that the
triangle shown commutes for all y € A,.

For the map fuM,— N extends to a
map from M to N by the universal

fu f property of the tensor product and these
maps combine to give a map of the direct
N sum M =@®MP into N.

We remark that for this property to hold, R may be any ring with
homomorphisms R; — R which all induce the same map on Ry, in other
words, R may be any homomorphic image of the coproduct. However,
when R is the coproduct (and the R, satisfy the conditions of Th. 1.2), we
shall prove that the maps M,— M are injective; this will also provide
another proof of Th. 1.2.

Thus we shall assume that each R; is a faithful Ry-ring, and identifying
R, with its image in R, we assume that R,/R, is free as right Ry-module.
We take again an Rj-basis of R)/R, and lift it to R, to get an Ry-basis of
R, of the form T, U {1}. The union of the T will be written 7. Next let
M, be a right R,-module, free as Ry-module, and write M = DdM f. For
each M, we have an Ro-basis S, and we write S for the union of the S,,.
We observe that when R, is a field, all assumptions are satisfied, provided
that the factors R; are all non-zero. The members of T, or S, are said to
be associated with the index A; elements of S, are not associated with any
index.

We claim that the induced module M = @M is a free Ry-module
with a basis consisting of all products of the form

M, M

sti...t,, s€8, teT, n=0, )
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where no two successive factors are associated with the same index. These
products (1) are called monomials and the set of all such monomials is
denoted by U.

Let F be the free Ry-module on U as basis. To prove our claim it will
be enough to verify that F has the universal property of induced modules,
but we first have to define the R-module structure on F. For this it is
enough, by the definition of R as a coproduct, to define for each A an
R;-module structure on F which extends the given Ry-module structure.
A monomial u € U is said to be associated with A if its last factor (an
element of S or T) is associated with A. The set of all elements of U not
associated with A is denoted by U*; these are the monomials which when
multiplied by an element of T; on the right, give again a monomial. For
any fixed u € Ay we may write F as

here the first term on the right may be identified with M, and so may be
given an R,-module structure. For u = 0 the second term on the right of
(2) is a free Ry-module. We claim that for A # 0, (U\S;)R, has a natural
structure as free R;-module. To see this we observe that U\S, is the
disjoint union of U* and U*T,, hence

(U\S)Ry = U*Ry ® U’T,R,,

and since T, U {1} is an Ry-basis of R;, we find that (U\S;) R, becomes a
free R;-module with basis U” in this way. Thus F has an R;-module
structure for each A, extending the given Rj-module structure, and hence
F is an R-module.

It remains to verify the universal property of the induced module
@ M3 for F. Let f,: M,— N (u € A,) be any family of Ry-linear maps of
M, into N and define f: F— N as an Rj-linear map on the basis U by
the rule

Gty .. t)f=(f)t.. . t,, ifseS,.

It is clear that f is R,-linear for all u and hence R-linear. Thus we have
proved

LemMMA 5.2.1. Let R=%R, be the coproduct of a family (R,) of
faithful Ry-rings, where R,/R, is free as right Ry-module with the image of
T, as basis, and let M = DM f =DM u ®# R be an induced R-module,
where each M, is free as right Ry-module with basis S,. Then M is a free
right Ry-module on the set U of monomials as basis, where U is defined as
above in terms of the bases T = U T, and S = US,,. Moreover, for each
Ae A, M, is embedded in M by the canonical map and there is a direct
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sum decomposition M = M, @ M}, where M} is a free R;-module on U*
as basis. B

For basic R-modules we shall need a slight variant of this result.

LEMMA 5.2.2. Let R;, R, T be as in Lemma 2.1 and let M, be a free
right Ry-module with basis Q. Suppose further that for each Ae A,
another Ry-basis Qo of M, is given. Then M(;® =M,®R is a free
Ry-module with a basis consisting of all products

qti ... t, ,eT,n=0,

where no two successive t; are associated with the same index and if t, is
associated with A, then q € Qq,, while forn =0, g € Q,.

This follows in the same way as Lemma 2.1; we just have to use the
basis Qg in defining the R;-module structure on M ? . B

If we apply Lemma 2.1 with M; = R; we see that the coproduct is faith-
ful. To verify that it is separating, we take My = Ry, M; = 0 (1 € A); then
we find that M = R has an Rj-basis consisting of all monomials #,¢, . . . ¢,,
where ;€ T and no two neighbouring factors are associated with the
same A. Thusif 1, 2 € A, 1 # 2, then the Ry-module R, D R, has as basis
T,U T, U {1}, hence R; N R, = R, and this shows the coproduct to be
separating. Thus we have proved

THEOREM 5.2.3. Let Ry be any ring, {R;|A € A} a family of faithful
Ry-rings and R = = R, their coproduct. If the quotient modules R;/R, are
free as right Ry-modules, then the coproduct is faithful and separating and
for each pe Ay = AU {0}, the quotient R/R, (hence also R itself) is free
as right R,-module. B

When R, is a field, the case of main importance to us, all the conditions
are clearly satisfied, because every module over a field is free, so we
obtain

CoROLLARY 5.2.4. The free product of any family (R)) of non-zero
rings over a field Ry exists and is left and right free over each R;. R

Th. 2.3 provides a means of finding the homological dimension hdy of
induced R-modules, for a coproduct R:

ProrosITION 5.2.5. LetR = * R, be a coproduct of non-zero Ry-rings
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R;, where Ry is a field, and let M = DM T = ®M, ®, R be an induced
R-module. Then

hdRM = Sup# {hdRuM/»‘}’

Proof. Clearly it suffices to show that hdz(M ®) = hdg, M,. Now R is left
free, hence left flat, over R,, therefore — ®, R converts a projective
R, -resolutlon of M, to a projective R- resolutlon of M, ® and so
hdR(M )<hdg M, To show that equality holds, we observe that since
R is right R,-projective, any R-proyectlve resolution of M is also

R, -projective, hence hdg(M 2 ) = hdg, (M ), but the latter equals
hdg M,, because M, and M, differ only by an R,-free summand, by
Lemma2.1. W

Exercises

1. Verify that the coproduct R = % R, over a field R, is flat as (left or) right
R;-module; deduce the analogue of Prop. 2.5 for the weak dimension.

2. Let L =E ¢ F be any field coproduct If an element A € K has a square root
in E and in Fbutnoth say A= a* = b* (a € E, b € F), show that b = ¢ Lac,
where ¢ = a + b. Suppose that K contains a primitive fourth root of 1; show that
any root of x* — A =0 in L is conjugate to an element in either E or F.

3. Let k be a commutative field with a primitive cube root of 1 and put E = k(x),
F = k(y), K = k(¢) for 1ndeterm1nates x,y,t,andput L =FE ¢ F where K is
embedded in E by mapping ¢+ x? and in F by mapping ¢ — y Show that L
contains an element of degree 6 over K. (Hint. Use Ex. 7 of 2.2. Explicitly put
z=xy"', g=2*—y, v=q 'zq — z and verify that v® = ¢. Note that this result
is in contrast with the situation in groups, where a theorem of Kurosh [34] states
that any subgroup of a free product of groups is a free product of a free group and
of groups that are conjugate to subgroups of the factors.)

5.3 Submodules of induced modules over a coproduct

From now on we shall assume that the base ring Ry is a field. In that case
the hypotheses of Th. 2.3 all hold, and for any family (R,) of non-zero
Ry-rings the coproduct R = % R; is faithful and separating. We shall
continue to use the notation of 5.2; thus T = UT,, where T, U {1} is an
Ry-basis of R,, R,=Ry® TRy, and if M =@M is an induced
module, we have an Ry-basis S, of M, and § = US Further M itself
has the Ry-basis U of monomlals, thus M=M,® UR, for any A€ A,
hence for any u € U* we have a projection map p,(u): M — R,, which
maps x € M to the coordinate in R; of the monomial u in x. Similarly,
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M = UR, and we have a projection map py(u): M — R,. We shall write
U? for U, so that there is a projection map p, for each element in U*.
For any subset X of M we define its u-support as

D,(X) = {u € U¥|xp,(u) # 0 for some x € X}.

In particular this defines the u-support of an element of M. The O-support
is also called the support: Do(X) = D(X). We note that any finitely
generated R,-submodule of M has finite u-support. From the definition it
is also clear that the A-support of an element x of M is empty precisely
when x € M,, while its 0-support is empty precisely when x = 0.

The degree of a monomial st . .. t, is defined to be n. We choose a
well-ordering of A and of S, T and then well-order U by degree, with
monomials of the same degree ordered lexicographically, reading from
left to right. Given x € M, if x #0, we can write it as an Ry-linear
combination of the monomials in its support. The greatest such term, in
the well-ordering of U, is called its leading term, its degree the degree of
x, written degx. If degx = n and all terms of degree n are associated
with A, x is called A-pure; thus if x is not A-pure, there are terms of
degree n whose monomial is in U”. The greatest such term is called the
leading co-A term. If x is A-pure for some A, it is called pure; otherwise it
is called impure or also O-pure and its leading term is then called the
leading co-0 term. We note that a A-pure element of degree n has a
A-support consisting of monomials of degree < n, while a 0-pure element
has a 0-support consisting of monomials of degree < n.

We shall need to know the effect of acting on M with the basis T'; it
will be enough to look at the case when there is no interaction:

LemmMmA 5.3.1. Given an induced R-module M = GBM,;® over a co-
product R = % R,, let y € M be not A-pure, with leading co-A; term u
which occurs in y with coefficient 1, thus ypM(u) = 1. If , € T, fori =1,
2, ..., n and successive A; are distinct, then yt| ... t, is A,-pure and has
leading term ut, . . . t,, again with coefficient 1.

Proof. By induction it is enough to prove the result for n = 1. We shall
write ¢ for ¢; and A for A;; thus we have to show that yr is A-pure with
leading term ut, with coefficient 1. If y = u, this is clear; if y # u, then y
contains a term vc, where v is a monomial # u and c € R,, thus
vet € vRy. If v (unlike u) is associated with A, then vcr has degree
<degu + 1 =degut, so ut comes after vct. Otherwise v € U * and then
v < u because u is the leading co-A term of y. The product vct will be an
Ry-linear combination of terms vt’, t' € T, U {1}; by the ordering of U
these terms are < ut, so ut, which occurs with coefficient 1, is the leading
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term of y¢. Further, the terms ut’ with ¢’ # 1 are like ut associated with A,
therefore yt is A-pure. B

In studying the submodules of an induced module we shall be
particularly interested in those that are themselves induced. The next
result gives a sufficient condition:

ProrosiTiON 5.3.2. Given an induced R-module M = @M? over a

coproduct R = iy R;, let L, be an R,-submodule of M with the following

properties. For each y € Ay,

(A,) All members of L, are u-pure,

and for any u, W' € Ay,

(Byyw) The w'-support of L, contains no monomial u which is also
leading co-y' term of a (non-y'-pure) element xa, where x € L,
a € R, and if ' = u, then also degxa > degx.

Then the natural map D L,;@ —->L «R C M is an isomorphism.

A family of modules (L,) in M satisfying A, and B, is said to be
well-positioned.

Proof. Given u € Ay, for each monomial u that occurs as leading term of
some element of L, we choose an element g € L, having u with
coefficient 1 as leading term and write Q, for the set of all such q. By the
well-ordering of U and by A, it follows that Q, is an R,-basis of L.

The leading term of g € Q, will also be called its ‘key term’. When
u # 0, this is also the leading co-y’ term of g for all ¢’ # u. An element of
L,, being O-pure, has likewise a leading co-4 term for all A € A, but for
some A this will not equal its leading term (if the latter is A-pure), and we
shall need to modify Qj in this case. For any A and any monomial u which
is leading co-A term of a member of L, we choose g € L, having u as
leading co-A term, with coefficient 1, and denote the set of all such ¢ by
Qo;:- Each such @y, is again an Ry-basis of L,. By the ‘key term’ of a
member of Qy; we shall mean its leading co-A term. Now let V be the set
of all products

qty...t,, wheren=0,t € T, and A; # A, and either

(i) n=0and g € Q, for some y, or (1)
(ii) n=1,qge Qg and A=A  or
(iii) n=1,qg€ Q,and A # A,.
If gt, ... t,is as in (1) and the key term of ¢q is u, then the leading term
ofgt; ...t isut;...t, by Lemma 3.1. We claim that the members of V
have distinct leading terms and so are Ry-linearly independent. If two
distinct elements of V have the same leading term, then we have an
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equation of the form
uty ... t,=u't;... t,in U.
Here we may take m = n, say m = n + r. Then this equation reduces to
ut ... t,=u'.

Let ge L,, q' € L, correspond to u, u' respectively and consider the
following cases:

Case 1. r>0. If 4’ #0, then t,€ T,, so the u'-support of q' € T,
contains ut; ... t._; which is also the leading co-y’ term of the
non-y'-pure element gt; . .. t,_; and this contradicts B,,. If ¢’ =0, then
since the support of q’ € Ly contains ut; ... f, which is also the leading
term of the pure element gt . . . t,, we again have a contradiction to B .

Case 2. r=0. Then u=u' is associated with A, say, and ¢,q’ €
03 U Qy,, where u is the index associated with ¢, = ¢1 if m > 0, while for
m =0, Qy, = Qy. By the construction of the Qs, if g # q’, they cannot
belong to the same set, say q € Q;, ¢’ € Q,,. Then the support of ¢’ € L,
contains a monomial u which is also the leading term of a pure element
g1, where g € L,;, and this contradicts Bj.

This shows that the elements of V' have distinct leading terms and so V
is an Ry-basis of >, LR, as we wished to show. B

With the help of this result we can show that every submodule of an
induced module is itself induced:

THEOREM 5.3.3. Let R =% R, be the coproduct of a family (R;) of
non-zero rings over a field Ry. Then every submodule of an induced

module has an induced module structure. More precisely, if M = O M f =
S70.74 « ®, R, where M, is an R,-module, then for any R-submodule L of

M there is an R,-submodule L, of L (for all u) such that the natural map
DL > L @

is an isomorphism.

Proof. Let M be as stated and let L be any R-submodule of M. For each
A€ A let V* be the set of monomials occurring as leading co-A terms of
non-A-pure elements of L, and denote by L, the set of all elements whose
A-support does not contain any element of V. Clearly L, is an
R;-submodule of L whose members are all A-pure. Let V° be the set of
monomials occurring as leading terms of pure elements of L and let L, be
the set of all elements of L whose support contains no element of V°.
Again it is clear that L, is an Ry-module, whose elements are 0-pure (i.e.
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impure). Thus A, holds, and B,, also follows from the definition of the
L,, hence this family is well-positioned, and by Prop. 3.2 the map (2) is
injective. We put L’ = L,R and complete the proof by showing that
L'=L.If L'CL, choose y € L\L' so as to minimize the leading term
in U2,(»). If, for some 4, y is A-pure, then since y ¢ L;, the A-support of
y contains a monomial u € V*, where u is the leading co-A term of some
x € L, so x has a term uw, a € Ry. Let u be chosen to be the greatest;
the monomials in D;(y) have degree less than degy, hence degx =
degu < degy and so x € L’. Further, there exists ¢ € R; such that u ¢ D,
(y — xc), and y — xc is either A-pure with all monomials in its A-support
< u, or of lower degree than y. Hence y — xc € L', by the choice of y,
and so y = (y —xc) + xc e L'. If y is impure, then since y ¢ Ly, some
monomial in D(y) occurs in the leading term of some pure element x of
L. Let u be the greatest such monomial; then x € L' and for some
¢ € Ly, y — xc has a leading term < u, so again y — xc € L’ and hence
y € L'. Therefore no such y can exist and L'= L, so (2) is an
isomorphism. W

Sometimes the following more precise statement is useful:

CoROLLARY 5.3.4. Let R and M be as in Th. 3.3 and suppose that
(L,) is a well-positioned system of R,-submodules of the induced
R-module M, and L =Y,L,R. Then L\ M, C L, for all y; further, if
YL,R=M,then L,=M,.

Proof. Let x € L be of degree 1 as member of M; writing x = D vx,
(x, € Ry), we see that each v occurring in x must also be of degree 1, i.e.
lie in > M . and so be of length 1 as member of V, i.e. lie in some L,. If
further, x € M, for some y', then x cannot involve terms from L,. for
p" # ', because the leading co-u’ term of the L,.-part of x cannot be
cancelled by any other terms; therefore x € L,. This shows that
LN M,C L, Suppose now that ZL#R = M, then our conclusion states
that M, C L, and if this inclusion were proper, we would have a proper
inclusion of induced modules M C L, which is impossible, therefore
L,= M,asclaimed. B

Th. 3.3 leads to a formula for the global dimension of a coproduct:

THEOREM 5.3.5. Let (R}) be a family of non-zero Ry-rings, where R,
is a field, and let R = x R;. Then the global dimension of R is given by

r.gl.dim.R = sup, {r.gl.dim.R;}, 3)
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whenever the right-hand side is positive. When the right-hand side is 0,
then r.gl.dim.R = 1 unless there is only one factor + R,.

Proof. By Prop. 2.5, r.gl.dim.R = sup, {r.gl.dim.R;}. To prove that
equality holds, it will be enough to show that for any submodule M of a
free R-module F,

hdg(M) < sup, (r.gl.dim.R,} — 1, “)

or 0, if the right-hand side is negative. Now F is induced, hence by Th.
3.3,s0is M,say M = @M;@, where M, is an R, -submodule of M. But
F is free as R,-module, hence

hdg (M) < max {(r.gl.dim.R,) — 1, 0},

and now (4) follows by Prop. 2.5. This proves (3) when the right-hand
side is positive; now the rest is clear.

CoROLLARY 5.3.6. With the notation of Th. 3.5, every projective
R-module is induced by projective R,-modules.

For if P is a projective R-module, then P is a submodule of a free
R-module, so by Th. 3.3, P=@P? and each P, is projective as
R,-module, by Prop. 2.5, because P is R,-projective. I

The main theorems, 2.3 and 3.3, can also be proved when R, is a
matrix ring over a field or more generally for any semisimple ring (see
Bergman [74]) with only minor modifications, but we shall not need these
cases (see Ex. 1).

Given a homomorphism f: M — N of induced R-modules, if M =
SM f is finitely generated and the system of R,-submodules
M,f € N is not well-positioned, then we can modify f so as to obtain a
well-positioned system, by means of certain types of automorphisms of
induced modules, which we now define.

Consider a homomorphism

fr®M2 > ONE. 5)

If f arises from a family of R,-linear maps f,: M,— N,, we shall call it
induced. Under the injectivity conditions of Th. 3.3 this is the case
precisely when f maps M, into N, for each u.

Among the isomorphisms between induced modules there is a type
arising from the fact that a free R-module can be written as an induced
module in more than one way. For any u, u' € A; we have Rf’ =
R= R?, hence
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(M, ®R)®D®ME =M, *® (M, ®R,)®. (6)

An isomorphism (5) arising by a transfer of terms as in (6) is called a free
transfer isomorphism.

Secondly there is the transvection automorphism, familiar from the
study of linear groups. Let e: M, — R, be an R,-linear functional,
extended to M so as to annihilate M, for u+# y’. Next, for any u” and
x € M, there is a map a(x): R— M defined by 1—x e Mfig M.
Clearly a(x)e: R — R vanishes if y’ # p" and this will hold even if ¢/ = "
if we add the condition x € ker e. Now for any a € R let A(@): R— R be
left multiplication by a; then the map eA(a)a(x): u — xa(ue) is nilpotent
and so 8 =1, — eAM(a)a(x) is an automorphism of M. Such an auto-
morphism will be called a transvection, u-based in case p' = u" = u.

With the help of these isomorphisms we can transform any homo-
morphism of induced modules so as to obtain a well-positioned family in
the image module.

ProrosiTiON 5.3.7. LetR = * R, be the coproduct of a family (R)) of
non-zero Ry-rings, where Ry is a field, and let f: M — N be a homomorph-
ism of induced R-modules, where M is finitely generated. Then there exists
an induced R-module M’ and an isomorphism o: M' — M which is a
finite product of free transfer isomorphisms and transvections such that the
system (M ,«f) of submodules of N is well-positioned, and «f is then an
induced homomorphism.

Proof. Let M =€@M? and suppose that the family (M,f) is not
well-positioned in N. To remedy this defect, we shall modify f and M;
we assign to every map as in (5) an index in a certain well-ordered set and
show that each adjustment of f lowers this index. By induction, a finite
sequence of these adjustments will reduce f to a map f': M’ — N such
that (M, f') is well-positioned; since f’ is determined by its effect on the
M,, f' is then induced.

To define the index, consider Ay X U, where U is well-ordered as
before and Ay has a well-ordering with 0 as first element. We well-order
Ay X U first by the degree of the second factor and for a given degree
lexicographically from left to right. Next let H be the set of almost
everywhere zero functions from Ay X U to N, well-ordered lexicographic-
ally reading from highest to lowest in Ay X U.

For any map f as in (5) we define its index h; € H by the rule

1if u € 9,(M,f)(and hence u € U"),
0 otherwise.

(.u’ u)hf = {
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We now show how to diminish A, if (M, f) is not well-positioned. Suppose
first that (A,) fails for some p, so M, f contains an element xf of degree n
say, which is not p-pure. Let u € U* be the p-leading term of xf and
consider the restriction p,(u) = p,(u)|L,, where p,(u) is the projection
defined at the beginning of this section. It follows that xfp,(u) is non-zero
and lies in R,; this is clear when y = 0, while for u # 0 a coefficient from
R,\R, applied to u would give a term of degree n + 1. Since R is a field,
this coefficient is invertible and so the map fp,(u): M, — R, splits over its
kernel M, and we get a decomposition M, = M, © xR,. Now x must be
w'-pure for some u' # u; we shall transfer the free summand xR, from M,
to M,. In detail, we define a free transfer isomorphism «: M'— M,
where M, is as above and M, = M, ® xR, while M,, = M, for u" +
u, 4'. We now put f' =1f: M’ — N and note that the u-support of M, f’
no longer contains u. So the first place where Ay differs from A, is either
(u, u) or (u',u’), where u e u'R,,. If ' #0, we have (u, u) > (u', u') by
looking at degrees and for u’ = 0 this inequality still holds by the ordering
of the first component. Hence (u, u)hy = 1>0 = (u, u)hs, so f' has
lower index than f.

If B, fails, let the u'-support of M, f contain a monomial « which is
also the leading co-y’ term with coefficient 1 of a (non-u'-pure) element
xfa = xaf, where x € M, a € R and if u’ = u, then degxa > degx. For
each y € M, there is a unique element yp = y — xa(yfp,(u)) such that
u ¢ D,(yp). Indeed, the map fp,(u): M, — R, is R,-linear. We extend
the map ¢: M, —> M to M by defining it as the identity on M. for
w" # i’ and claim that it is a transvection. This will follow if we show that
xfp, (1) =0; for u’ # p this is clear, while for u’ = u we have degxa >
degx, so u ¢ D,(xf). Now the first place where h, differs from h; is
(#', u) and it is clear that h, < h;, so we have again lowered the index.
By induction we find that after a finite number of such adjustments of f
the family (M f) is well-positioned. B

This result allows us to give a precise description of the finitely
generated projective modules over a coproduct. We recall the functor &
from rings to monoids which was introduced in 4.6. Our aim will be to
show that P preserves coproducts over a field as base ring. We remark
that over any coproduct R = * R, of rings we have, for any R-module M
induced by a family (M,) of projectives, >[M,] = X [M,] if (M]) is
obtained from (M) by a free transfer isomorphism or a transvection.

THEOREM 5.3.8. Let R = * R, be the coproduct of a family (R;) of
non-zero Ry-rings over a field Ry. Then the induced map
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I 2R, - ?(R) (7)

P(Ro)

is an isomorphism.

Proof. We have homomorphisms P(R;) — P(R) which agree on the
distinguished element [R;] and hence give a homomorphism (7). We first
show that (7) is injective.

Suppose that two elements >,[L,], > [M 4 of the left-hand side of (7)
have the same image, so that there is an isomorphism

fi®OLE - DM, (8)

By Prop. 3.7 there is an induced R-module L’ with an isomorphism «:
L’ — L such that the system (L, af) is well-positioned. Now by Cor. 3.4,
L,af=M,andso X[L,] = X[L;] = >[M,] by the above remark, and
this shows (7) to be injective.

To establish surjectivity, let P be a finitely generated projective
R-module, say P ® Q ="R. By Cor. 3.6, P= @P;@, Q= @Q,?, and it
remains to show that the P, are finitely generated. There is an
isomorphism f: (B R;)® — D(P, ® Q,)® such that X,n, = n. By Prop.
3.7 we can apply free transfer isomorphisms and transvections to the
family (R,") so as to obtain a family (L,) whose image is well-positioned.
Clearly L, is again finitely generated and its image is P, ® Q, by Cor.
3.4. Hence P, is finitely generated; thus (7) is surjective and hence an
isomorphism. W

This result enables us to derive several consequences without difficulty:

THEOREM 5.3.9. The coproduct of a family of firs over a field is a fir.
In particular, the coproduct of fields (over a field) is a fir.

Proof. By Th. 3.5, the right ideals of the coproduct are projective, and by
Th. 3.8, all projectives are free of unique rank, hence all right ideals are
free of unique rank. Similarly for left ideals, so the coproduct is a fir. B

A similar result holds for n-firs:
ProrosiTiON 5.3.10. Let R, be a field and n a positive integer. Then
the coproduct of any family of n-firs over R, is an n-fir. Moreover, the

coproduct of any family of semifirs over Ry is a semifir.

Proof. Let R = * R,, where each R, is an n-fir. For any map "R — R the
image can by Th 3.3 be written as @M , so there is an induced
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surjection o @(R,:'")e’—) @Mf, where Zn#= n. By free transfer
isomorphisms and transvections we obtain a family (R,;*) with >, m, = n,
such that M, is the image of R,; hence M, can be generated by m,
elements, and as submodule of the projective R -module R, M, is free of
rank at most m,, so @M is free of rank at most n. By repeatmg this
argument with an 1somorphlsm we see that the rank must be unique.
Hence R is an n-fir. If each factor is a semifir, it is an n-fir for all n, so R
is then an n-fir for all n, and so R is then a semifir. B

For n =1 this tells us that the coproduct of integral domains is an
integral domain. This was already proved in Cor. 1.4; the rest of that
corollary can also be proved in this way:

CoroLLARY 5.3.11. Let Ry be a field and (R;) a family of integral
domains which are Ry-rings. Then the coproduct R = * R; is an integral
domain and any unit in R is a monomial unit.

Proof. We have seen in Prop. 3.10 that R is an integral domain. Now
each unit # € R defines an automorphism x — ux of R = RE. Here R is
free on one generator; any free transfer isomorphism just amounts to
renaming the generator, while a surjection is a unit in some R,. The only
transvection is the identity map, since it must be pu-based for some u, but
R, is an integral domain. Hence the result follows by Prop. 3.7. B

In 4.5 we saw that any semifir (and in particular, any fir) has a
universal field of fractions in which all full matrices are inverted, so it
follows that the coproduct of fields E, over a field K has a universal field
of fractions. This field will be called the field coproduct or simply
coproduct of the E,, written gE , or in the case of two factors E, F,
E o F.

K

Exercises

1. Let k be a commutative field and A = k(a, b, ¢, d, d’) a free algebra. Show
that there is a faithful A-ring R in which the equations xa = ¢, xb = d have a
solution x = u and a faithful A-ring S in which the equations ax = b, cx = d’ have
a solution x = v. Show that the homomorphism A * A=A->R * S induced by
the inclusions A — R, A — § is not injective.

2. (Schofield) Let E, F be fields containing a common subfield K and suppose
that E is not finitely generated over K. Show that the centre of the field
coproduct E 4 F is the centre of K. (Hint. Given c in the centre, verify that
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c € E’ o F for a proper subfield E’ of E; now write E o F E 2 (E' o F) and
show successively that ¢ liesin E', K.)

3. (J. W. Kerr [82]) Let Dy be a field with centre k and define for n=1, D, as
the field coproduct over k of D,_; and k(x,, y,, z,). Take any subalgebra A of
Dy and define A, as the subring of D, generated over A,_; by x,, y,, a” 'z, for
all @ € AY_;. Show that the union A = UA, is a right Ore domain, but the power
series ring A[[¢]] is not right Ore. (Hint. Examine > x,¢* and >, y,".)

5.4 The tensor ring on a bimodule

For any commutative field k the free k-algebra on a set X, k(X ), may
be defined by the following universal mapping property: k(X) is
generated by X as k-algebra and any mapping of X into a k-algebra A
can be extended to a unique k-algebra homomorphism of k(X ) into A.
The elements of k(X ) can be uniquely written as

>a, X, ...x, wherex,eX,a;, ; €k.

As is easily seen, k(X ) may also be represented as a coproduct:
k(X) = * k[x],

where x runs over X. Since each k[x] is a principal ideal domain (and
hence a fir), it follows from Th. 3.9 that k(X ) is a fir. More generally,
we can show in the same way that for any field D the tensor D-ring on
any set is a fir:

THEOREM 5.4.1. Let D be a field and k a central subfield. Then for any
set X the tensor D-ring on X over k, Di{ X ), is a fir.

Proof. We have just seen that k(X ) as a coproduct of PIDs is a fir, so
the result follows because D, (X ) = D * k(X). 1

Since every fir has a universal field of fractions (Cor. 4.5.9), we have
universal fields of fractions for k(X ) and D,{(X ), which will be denoted
by k€XY¥ and D€ X> and called free fields. To elucidate the relation
between them we need a lemma:

LEMMA 5.4.2. Let R, S be semifirs over a field K. Then
(i) the inclusion R — R * S is honest, and
(i) if U(R) denotes the liniversal field of fractions of R, then the natural
map R * S—U(R) * S is honest.
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Proof. (i) Consider the natural homomorphisms
R— R*S—UR)=*S.

Any full matrix A over R is invertible over U(R), hence also over
U(R) * S and so A is full over R * S, as we had to show.

(ii)) By (i) any full matrix over R is full over R * §, hence we have a
homomorphism U(R) — U(R = §) (Th. 4.5.10), and it follows that we
have a homomorphism U(R) * S — U(R * §). Thus we have mappings

R*S—>U(R)*S—> UR*S).

Now any full matrix over R *.S is invertible over U(R * S) and hence is
full over U(R) = S. A

We can now describe the relation between different free fields:

ProrosiTiON 5.4.3. Let D C E be any fields and let k be a central
subfield of E that is also contained in D. Then

Ek€X} =F B Dk{X} (1)
Hence there is a natural embedding
D{XYy — E£X>. @)

In particular, taking D = k, we find that k€ X > is embedded in E,€X>
and

E£XX>=E ° k€X>. 3
Proof. We have the natural isomorphisms
E;Dk(X) sE;D:k(X) = Etk(X) = E(X).

Now the natural homomorphism E,(X)— E * D,€X?> is honest, by
Lemma 4.2 (ii), hence we have an embedding

E£X¥ - E s D€XY. @

But the right-hand side is a field generated by E and X, hence it is
generated as a field by the image of E;(X), so (4) is surjective and we
have the natural isomorphism (1). Now (2) and (3) are immediate
consequences. W

Under suitable conditions this result continues to hold when there is a
change of ground field (see 6.4 below). For the moment we shall merely
deal with the case of a simple transcendental extension.
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ProOPOSITION 5.4.4. Let E be a field with a central subfield k and form
E(t) with a central indeterminate t. Then there is a natural embedding

E€Xy — E()iy€X>. %)

Proof. The assertion will follow if we can show that the natural
homomorphism

Ei{X) > E(t)i{X) (6)

is honest. Let us write F = E,€ X; there is a natural inclusion E — F,
hence a mapping E(¢) — F(t) and so an E(¢)-ring homomorphism

E(t)i»{X) - F(1). )

Now let A be a full matrix over E,(X). Then A is invertible over F,
hence also over F(¢) and by (7) it is full over E(t)y{X ). This shows (6)
to be honest and now the embedding (5) follows. W

The fact that the free algebra is a fir also follows from the existence of
the weak algorithm, as explained in Ch. 2 of FR. The weak algorithm can
actually be applied to a wider class of rings, to which we now turn. We
begin with a general definition.

Let R be aring and M an R-bimodule. We put

M=M@MQSS...9 M, nfactors, taken over R;

thus M! = M and by convention, M° = R. It is clear that M ® M* =
M**; hence we have a multiplication on the direct sum

T(M) = DM, (®)

which is associative and so turns it into an R-ring. This ring is called the
tensor R-ring on M usually we shall single out a central subfield k of R
and assume that the left and right actions of k on M agree. Then T(M)
will be a k-algebra, which will be denoted by R, (M ); it will usually be
clear from the context whether the tensor ring on a set or a bimodule is
intended. From (8) we see that R,(M) is a graded ring, with M" as
component of degree n, and there is a natural bimodule homomorphism
M — R,(M), mapping M to M', with the usual universal property for
maps of M to R-rings. When R = D is a field, the tensor ring D (M)
can be shown to possess a weak algorithm relative to the grading;
consequently it is a fir, for any D-bimodule M. We shall not give the
proof here, which uses the weak algorithm, as the result will not be
needed (see FR, 2.4), but confine ourselves to showing that the tensor
ring D, (M) is a semifir. Somewhat more generally we shall establish the
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result when k is replaced by a (possibly skew) subfield. Thus we shall
prove

THEOREM 5.4.5. Let D be a field with a subfield F and let M be a
D-bimodule with an F-centralizing generating set. Then the tensor ring
Dg{(M) is a semifir.

Proof. Put R = Dg{(M), let {u,} be a right F-basis of D and {v;} an
F-centralizing generating set of M, which we may take to be left and
right linearly independent over D, without loss of generality, by omitting
superfluous terms. Any element of M has the form m = > u,v,a,;, with
uniquely determined coefficients a,;, in D. Since R = D M", it follows
that every element of R can be uniquely written as

f=c+ 2uwf, whereceD,f, €R.

Now assume that we have a relation in R:
n
Zaib,’ = 0.
1

To show that this relation can be trivialized it is enough to do this in a
given degree; thus we may assume that the a;, b; are homogeneous and
that deg a; + deg b; = r > 0. We shall use double induction, on » and r. If
each a; has positive degree, we can write a; = Euvv 14, equating
cofactors of u,v;, we find

Daubi =0,

and now the result follows by induction on r. There remains the case
where some g;, say a,, has degree 0. Thus a; € D and either a; = 0 and
we can use induction on 7, or a; # 0, in which case we can replace a, by
ay — a,-ai'a; =0and b, by b = b, + a;'a, - b,; thus we obtain

zaib,- = albi + a3b3 + ...+ a,,b,, = 0,

so we have again diminished » and can apply induction to complete the
proof. W

In particular, this result shows the tensor ring on a set X, Dy(X), to
be a semifir, since it can be expressed as tensor ring on the D-bimodule
generated by the F-centralizing set X. The same proof shows D{( X)) to
be a semifir.

Sometimes a slight variant of the above construction is needed, leading
to a filtered ring. By a pointed R-bimodule we shall understand an
R-bimodule M with a subbimodule isomorphic to R, which is comple-
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mented as right R-module, thus M=R®N. A map M- M’
between pointed bimodules is then a homomorphism which forms a
commutative triangle with the canonical maps from R. Given any pointed
R-bimodule M = R® N, we put M = M/R; thus M is an R-bimodule
which is isomorphic to N as right R-module. We now define a sequence
of R-bimodules in terms of M recursively as follows: M°=R, M'= M
and if M""! has been defined, we put

M'=R® (N ® M. 9)

The right R-module structure is clear, since R and M"~! are bimodules;
the left R-module structure is defined as follows: If u € N, v € M"*~! and
a € R, then au = a; + uy, say, where a; € R, u; € N. Then we put

au®v)=av+u Qo.

It is easily verified that with this definition M" is a pointed R-bimodule
with M"~! as subbimodule. In this way we obtain a direct system of
R-bimodules

R=M’> M- M?*—> ...,

whose direct limit is a ring in a natural way, since we have a map
M’" ® M*— M’*. This ring is denoted by R,(M; R) and is called the
filtered tensor ring on the pointed R-bimodule M. Like all universal
constructions this tensor ring has a universal property:

THEOREM 5.4.6. Let R be a ring and a k-algebra. Then (i) for any
R-bimodule M, the natural homomorphism M — R,( M) is universal for
bimodule homomorphisms from M to R-rings, (ii) for any pointed
R-bimodule M the natural homomorphism M — R,(M; R) is universal
for pointed bimodule maps from M to R-rings.

The proof is a straightforward verification, which may be left to the
reader. M

Our aim will be to find conditions for the natural homomorphism to be
injective. The main condition is that M should be (left and right) flat. We
shall not treat this problem in its most general form, but confine our
attention to the case used later, where R is an integral domain. To allow
induction arguments to be used, we must then show that the tensor ring
is again an integral domain. We begin by examining the tensor product
of flat modules. Let us recall that a right R-module M is called flat if
M ® - preserves exactness, i.e.

0->U —-Uexact = 0->MQ®U' - M® Uexact. (10)
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It follows immediately that if M is a flat right R-module and N an
R-bimodule which is right flat, then M @ N is again right flat. We also
recall the following standard criterion for flatness (see A.3, 6.6): My is
flat if and only if, for any relation >, ua; =0 (u; € M, a; € R), there exist
v; € M, b; € R such that u; = 2v;b;, >,b;a; = 0. Further we recall that a
right R-module M is called torsion-free if ur = 0 for u e M, r € R implies
u=0orr=0.

LeMmmMma 5.4.7. Let R be an integral domain. Then any flat R-module is
torsion-free. Further, if Ug is flat and gV is left torsion-free, then in
UV, u®uv=0impliesu=00rv=0.

Proof. Let Uy be flat and suppose that ur = 0. By flatness there exist u,
.., u, €U, xy,...,x, € R such that u=yux;, xr=0.If r #0, then
x; = 0 for all i and so u = 0; thus U is torsion-free. Suppose now that Ug
is flat and RV torsion-free and that « @ v =0in U ® V. If v #0, then
Ru is a free submodule of V and U ® Rv is embedded in U ® V, hence
u®v=0inU®Rvandsou=0. B

When R is a PID, then conversely, every torsion-free R-module is flat,
but for general integral domains this need not hold.

With the help of this lemma we can show that the tensor ring on a flat
bimodule over an integral domain is again an integral domain.

THEOREM 5.4.8. Let R be a k-algebra which is an integral domain, and
let M be an R-bimodule which is left and right flat. Then the tensor R-ring
R.{ M) is again an integral domain.

Proof. Tt is clear that each homogeneous component M" of R, (M) is left
and right flat and so torsion-free. Let a,b € R, (M), suppose that
a,b#0 and write each as a sum of homogeneous components:
a=a,+a,_; + ..., b=b,+b,_; + ..., where a;, b; lie in M’ and
a,, b, #0. By Lemma 4.7, a,b; # 0 and this is the component of degree
r+sofab,henceab#0. B

For filtered rings on a pointed bimodule there is a corresponding result.
We recall that with a filtered ring (R,), where R,C R,.;, there is
associated a graded ring D(R,/R,_;), and the filtered ring is an integral
domain, provided that the associated graded ring is one (Prop. 2.6.1).

COROLLARY 5.4.9. Let R be a k-algebra which is an integral domain
and let M be a pointed R-bimodule such that M = M/R is left and right
flat. Then the filtered tensor ring R,{ M; K ) is again an integral domain.
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Proof. Letus write M"=M ® ... ® M (n factors); then
M'/M" = M". (11)

To prove the result we shall use induction on n. For » =1 it holds by
definition, so take n > 1. By the induction hypothesis we have the exact
sequence

0> M2 MYl M1 0.

If we tensor on the left with M = N, then since N is right flat, we have
the exact sequence

0O NOM' 2 5NOM 15 M 0.
By the definition (9), M" = N ® M"~! and so
MM Y= M"/M"T=M"

which proves (11).

Thus we have a filtered ring whose associated graded ring is the tensor
ring R,( M ); the latter is an integral domain, by Th. 4.8, hence so is the
filtered ring, as we wished to show. B

Let us return to the tensor ring on a bimodule. An important example
is the D-bimodule M = D &, D for the field D with central subfield k.
The tensor D-ring D, (M) has the following universal property: Given
any D-ring R and any element c e R, there is a unique D-ring
homomorphism from D, { M) to R such that

1®1-c. 12)

For the map (12) can be extended to a bimodule homomorphism M — R
and hence to a D-ring homomorphism from D,(M) to R. This shows
that we have an isomorphism

Dk<D ®k D)EDk(x), 181~ x.

If we examine the proof, we see that it is not necessary to assume k to be
central, or even commutative. Thus if K denotes an arbitrary subfield of
D, we have Dx(D ®x D) = Dg{x). More generally, for any set X we
have Dy(X) = Dg(*(D ®x D)), where *M denotes the direct sum of
copies of M indexed by X. By applying Th. 4.1 (which clearly holds for
general subfields of D) we derive the following consequence:

ProrosiTiON 5.4.10. Let D be a field and K a subfield. Then for any
set X, the tensor ring Dx{*(D ®x D)) isafir. &
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Exercises

1. Let H be a semifir with universal field of fractions D and let K be a subfield of
H . Show that the mapping Hyx{X) — Dg(X ) induced by the inclusion H C D is
honest.

2. Show that over a commutative field every idempotent 2 X 2 matrix # 0, I has
trace 1. Over the free field k{x, y) construct an idempotent 2 X 2 matrix # 0, /
with trace 1 + x — x’, where x’ is a conjugate of x.

3. Let k be any commutative field and D = k(x) e k(y) a field coproduct. Show
that D has an involution * such that x*=x, y*=y~!(x — x?). Construct a
self-adjoint idempotent 2 X 2 matrix # 0, I over D with trace 1 + x — x', where
x' is a conjugate of x.

4. Give an example of a module over the polynomial ring k[x, y] which is
torsion-free but not flat.

5.5 HNN-extension of fields

Although Schreier had discussed free products of groups in 1927, it was
not until 20 years later that significant applications were made, notably in
the classic paper by Higman, Neumann and Neumann [49]. Their main
result was the following

HNN THEOREM. Let G be any group with two subgroups A, B which
are isomorphic, say f. A— B is an isomorphism. Then G can be
embedded in a group H containing also an element t such that

t7lat = afforallaec A. B

The group H is usually denoted by (G, t; t lat =af, ae A) and is
called an HNN-extension. We shall omit the proof (but see Ex. 1).

We observe that the above theorem would be trivial if f were an
automorphism of the whole of G: then H would be the split extension of
G by an infinite cycle inducing f. But for proper subgroups A, B the
result is non-trivial and (at first) surprising. It has many interesting and
important consequences for groups and it is natural to try and prove an
analogue for fields. What is needed is a coproduct in the category of
fields. However, we shall not adopt a categorical point of view: as we
saw, the morphisms in the category of fields are all monomorphisms and
this is somewhat restrictive. Over a fixed ring, it is true, we have defined
specializations, but it would be more cumbersome to define them without
a ground ring, and not really helpful.
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In this section we shall prove an analogue of the HNN theorem using
the field coproduct introduced in 5.4. But we shall also need some
auxiliary results on subfields of coproducts. It will be convenient to regard
all our fields as algebras over a given commutative field k; this just
amounts to requiring k to be contained in the centre of each field
occurring.

THEOREM 5.5.1. Let K be a field and A, B subfields of K, isomorphic
under a mapping f: A — B, where K, A, B are k-algebras and f is k-linear.
Then K can be embedded in a field L, again a k-algebra, in which A and B
are conjugate by an inner automorphism inducing f, thus L contains t # 0
such that

t7lat = af foralla € A. 1)

The field L is again called an HNN-extension and is denoted by
K€ttt lat=af ,ae A>.

Proof. We shall give two proofs, one using the weak algorithm and so
depending on results of FR, and a second one using only results proved
here.

Define K as right A-module by the usual multiplication and as left
A-module by

a‘u=(af)u, aeA,uek. 2)

We now form the K-bimodule K ®, K with the usual multiplication by
elements of K. If we abbreviate 1 ® 1 as ¢, this consists of all sums
S uitv; (u;, v; € K) with the defining relations

at =t-af, aeA. 3

Now the tensor ring on this bimodule K &, K satisfies the weak
algorithm (see FR, Th. 2.6.2). Hence it is a fir and so it has a universal
field of fractions L. Thus K has been embedded in a field L in which (3)
holds. We remark that Prop. 4.10 cannot be used as it stands since
K ® K does not have the standard bimodule structure. However we can
prove the result without the weak algorithm as follows.

We take a family (K;) of copies of K indexed by Z and form their field
coproduct amalgamating B in K; with A in K;,, along the isomorphism f.
This can be done stepwise and taking the direct limit, we obtain a field F,
say. In F we have the shift automorphism « which consists in replacing
any element of K; by the corresponding element of K;,;,. We now form
L = F(t; @) and embed K in L by identifying it with K,. Then for any
ae AC Kywehave at = t-a* = t- af, so (2) again holds. W
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Any field D which is a k-algebra is said to be n-homogeneous over k if

for any elements a,, ..., a,, by, ..., b, € D such that the map a,— b;
defines an isomorphism between the k-fields they generate, there exists
t € D* such that t gt =b,(i=1, ..., n); D is called homogeneous if it

is n-homogeneous for all n. The construction of homogeneous fields is an
easy consequence of Th. 5.1:

CoRrROLLARY 5.5.2. Every field D (over a central subfield k) can be
embedded in a field (again over k) of the same cardinal or at least
countable, which is homogeneous.

Proof. Given finitely many as and bs such that g, b; defines an
isomorphism, we can by Th. 5.1 extend D to include an element ¢ # 0
such that 1 'a;t = b;, and the least such extension has the same cardinal as
D or is countable. If we do this for all pairs of finite sets in D which
define isomorphisms, we get a field D, still of the same cardinal as D or
countable, such that any two finitely generated isomorphic subfields of D
are conjugate in D;. We now repeat this process, obtaining D,, and if we
continue thus, we get a tower of fields

DCD,CD,C....

Their union is a field L with the required properties, for if a, ..., a,,
by, ..., b,€ L and a;— b; defines an isomorphism, we can find D, to
contain all the as and bs, hence they become conjugate in D, and so are
conjugate in L. l

A homogeneous field has the property that any two elements with the
same (or no) minimal equation over k are conjugate. Hence we obtain

CoRrROLLARY 5.5.3. Every field K (over a central subfield k) can be
embedded in a field L over k in which any two elements with the same
minimal equation over k or both transcendental over k are conjugate. B

Later we shall need an analogue of this result for matrices. We first
establish a matrix version of Th. 5.1.

LeMmMA 5.5.4. Given a field K (over k) and n = 1, let E be a subfield of
M,(K). If F,, F, are subfields of E which are isomorphic under a map ¢:
F, — F,, then there is an extension L of K and a matrix T € GL (L) such
that

x@ =T 'xTforallx € F,.
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Proof. By Th. 5.1, E has an extension field E’ with an element T
inducing ¢. Consider the coproduct R = M, (K) * E’; this is of the form
M,(G), where G is a ring containing K. By Th. 3.5, R and hence G is
hereditary; by Th. 3.8 G is projective-free and so it is a fir. If L is its
universal field of fractions, then L contains K and M,(L) contains the
matrix T inducing ¢. H

The scope of this lemma can still be extended as follows: Let Fy, F, be
subfields of M,(K) as before, and suppose that there is a subfield F
isomorphic to F, by an isomorphism g: F, — F, such that F and F; are
contained in a common subfield E; of M, (K), for i = 1, 2. By the lemma
we can enlarge K to a field L containing an invertible matrix 7 which
induces the isomorphism fg: F; — F and then enlarge L to a field M
containing an invertible matrix T, inducing the isomorphism g: F, — F.
Now T, 7" induces the isomorphism f: F, — F,.

We can now prove an analogue of Th. 5.1 for matrices, at least for the
transcendental case. A square matrix A over a field K is said to be totally
transcendental over the central subfield k if for every non-zero poly-
nomial f € k[t], the matrix f(A) is non-singular. Clearly if A is totally
transcendental over k, then the field generated by A over k is a simple
transcendental extension of k. The field K is said to be matrix-homo-
geneous over k if any two totally transcendental matrices of the same size
over k are conjugate.

THEOREM 5.5.5. Every field K with a central subfield k has an
extension field L which is matrix-homogeneous over k.

Proof. Let A, B be two n X n matrices over K, both totally transcen-
dental over k. Then k(A) is a purely transcendental extension of k, thus
if u is a central indeterminate over K, we have k(A) = k(u) and likewise
k(B) = k(u). We shall take F;, = k(A), F, = k(B), F = k(u). Consider
the field K((«)) of formal Laurent series in u over K. We have

MA(K () = M, (K)()), 4)

and F, F, are contained in the subfield k(A)((u)) of (4), while F, F, are
contained in k(B)((«)). We can therefore apply Lemma 5.4 and the
remark following it and obtain an extension field L of K((u)) with an
invertible n X n matrix inducing the k-isomorphism k(A)— k(B) de-
fined by A — B.

We can repeat this process for other pairs of totally transcendental
matrices until we obtain a field K; D K in which any two totally
transcendental matrices over K of the same order are conjugate. If we
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repeat the construction for K, we obtain a tower of fields over &,
KCK,CK,C...,

whose union is a field L with the property that any two totally
transcendental matrices of the same order are conjugate, so L is the
required matrix-homogeneous field. W

This means, for example, that over L any totally transcendental matrix
n X n A can be transformed to scalar (not merely diagonal) form. We
need only choose a transcendental element o over k in L; then «l, is
totally transcendental, therefore T™'AT = «I for some T € GL,(L). We
shall return to this topic in Ch. 8.

Our next objective is to show that every countable field can be
embedded in a two-generator field. This corresponds to a theorem of
B. H. Neumann [54] for groups. We shall need some lemmas on field
coproducts; first we examine a situation in which a subfield of a given
field is a field coproduct. If D is a field with subfield E, we shall write
Dg{(X) for the tensor D-ring on X with E centralizing X. By Prop. 4.10
this is a fir; its universal field of fractions will be denoted by Dz€ X > and
will also be called a free field.

LemMMA 5.5.6. Let D be a field with subfield E and let x be an
indeterminate. Then the free field Dy€x¥ can be written in the form

Dg€xy = F(x; a), (5)

where F is the field coproduct of countably many copies D; of D (i € Z)
over E, and « is the shift automorphism D;— D, ;.

Proof. Let R be the ring coproduct of the countable family D; over E; it
is a fir, with universal field of fractions F, say. The subfields x 'Dx’ of
Dg<€x>¥ generate a subfield G which is an epimorphic image of R, hence
G is an R-specialization of F. Now x induces an automorphism of G by
conjugation and we can extend the specialization from F to G by forming
the skew polynomial ring F[x; «] with the shift automorphism «. We thus
have a specialization from F(x; &) to Dz€x) which by the universal
property of Dy€x¥ must be an isomorphism. W

We shall also need a result on free sets in field coproducts. Given a
field over k as central subfield, by a free set over k we understand a
subset Y such that the subfield generated by Y is free, i.e. isomorphic to
the free field k€Y.
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LeEMMA 5.5.7. Let E be a field, generated over the central subfield k by
a family {e,} of elements, and let U be a field containing a free family {u,}
over k. Then the elements u, + e, form a free set in the field coproduct
U-E.

k

Proof. We may assume that U = k€u;>; for by hypothesis U contains
k€u,» = F, say, and we have E- U = (EZF) ;U. So if the family
{u;} is free in E-F, it is free m E o U. Now the field coproduct
D=E ° U has the {ollowing universal property: Given any E-field F and
any family {f,} of elements of F (indexed by the same set), there is a
unique specialization from D to F over E, with domain generated by E
and the u;, which maps u; to f;. In particular, there are specializations
from D to itself which map u, to u; + e;, or to u; — e, respectively. On
composing these mappings we obtain the identity mapping, u;— u; +
e,— u, — e; + e; = u;, and similarly in the opposite order. Hence they
are inverse to each other and so are automorphisms. It follows that the
u, + e, like the u, form a free set. W

We can now achieve our objective, the embedding theorem mentioned
earlier; the proof runs parallel to the group case.

THEOREM 5.5.8. Let E be a field, countably generated over a central
subfield k. Then E can be embedded in a two-generator field over k.

In essence the proof runs as follows: Suppose that E is generated by
ee=0, e, e, ...; we construct an extension field L generated by
elements x, y, z over E satisfying

yixyi=z"%z'+e¢ (i=0,1,...).

Then L is in fact generated by x, y, z alone. If we now adjoin ¢ such that
y = txt™1, z = t~!xt, the resulting field is generated by x and ¢.

To give a formal proof, let F be the free field on x, y over k; it has a
subfield U generated by u; = y “xy’ (i =0, 1, . . .) freely, by Lemma 5.6,
and similarly, let G be the free field on x, z over k, with subfield V
freely generated by v; =z 7xz' (=0, 1, ...). Now form K = E ° F and
take the subfield W generated by w;=u, +¢; (i =0, 1, ...), freely by
Lemma 5.7. We note that wg = uy + eg = 4y = x, so K is generated over
k by x, y and the w; (i = 1).

Let L be the field coproduct of K and G, amalgamating W and V
along the isomorphism w; < v;. We note that wy = x = vy and that L is
generated by x, y, z and the w; or also by x, y, z and the v;, or simply by
x, ¥, z. Now L contains the isomorphic subfields generated by x, y and
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by z, x respectively, hence we can adjoin ¢ to L to satisfy ¢t™'xt = z,
t7 'yt =x, by Th. 5.1. It follows that we have an extension of L
generated by x, t over k and it contains £. W

The following special case is already a consequence of Lemma 5.6,
obtained by taking K = k(y):

COROLLARY 5.5.9. Any free field of countable rank, D;€x,, x5, . .. ¥,
can be embedded in Dy€x,y> by mapping x, to y~'xy" (r=1, 2,
). n

From Th. 5.8 we also obtain the usual general form:

CoroLLARY 5.5.10. Every field over k can be embedded in a field L
such that every countably generated subfield of L is contained in a
two-generator subfield of L.

Proof. Let E be the given field and E; a typical countably generated
subfield (always over k). Then there is a two-generator field L,
containing E,, by the theorem. Let M, be the field coproduct of E and
L, over E,;; if we do this for each countably generated subfield of E we
get a family {M;} of fields, all containing E. We form their field
coproduct E’ over E; in E’ every countably generated subfield of E is
contained in a two-generator subfield of E’, namely E; is contained in
L,. Now we repeat the process which led from E to E':

ECE CE"C...CE?CE“'C...CE",

where E* = J{Ef|B < a} at a limit ordinal &, and where v is the first
uncountable ordinal. Then E" is a field in which every countably
generated subfield is contained in some E® (o < v) and hence in some
two-generator subfield of E*! C E. W

At this point it is natural to ask whether there is a countable field, or
one countably generated over k, containing a copy of every countable
field of a given characteristic. As in the case of groups, the answer is ‘no’.
This is shown by the following argument (for which I am indebted to
A.J. Macintyre).

For any field K, denote by F(K) the set of isomorphism types of
finitely generated subgroups of K*. Clearly if K is countable, then so is
#(K). Now D. B. Smith [70] has shown that there are ¢ = 2™ isomorph-
ism types of finitely generated orderable groups, i.e. there are ¢ groups
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which can be ordered and are distinct as groups. Further, every ordered
group can be embedded in a field of prescribed characteristic, by the
methods of 2.4, hence every countable ordered group can be embedded
in a countable field. It follows that there are ¢ distinct sets $(K) as K
runs over all countable fields of any given characteristic. Therefore these
fields cannot all be embedded in a two-generator field, so no countable
field can contain a copy of every countable field.

The methods of this section can also be used to determine the precise
centre of a free field.

THEOREM 5.5.11. Let D be a field with a central subfield k. Then for
any set X the centre of the free field D, € XY is k, unless either (i) D =k
and | X| = 1 or (ii) the centre of D is larger than k and X = &.

Proof. Suppose first that D D k and |X| =1, say X = {x}. By Lemma
5.6 the field E = D;€x>y can be written in the form E = F(x; a), where
F is the field coproduct of copies of D over k and «, the shift
automorphism has infinite order. Thus F is a k-algebra and £ is the fixed
field of «, hence by Th. 2.2.10, E has the precise centre k. This proves
the result when DDk and |X|=1. If |X|>1, write X = X'U {x},
where X' # J; now D€ X is the universal field of fractions of D,(X)
= Di(X’) * k[x], and this is D, € X'¥,€x); this reduces the problem to
the case already treated. There still remains the case X = (J, but then the
exceptions reduce trivially to the case (ii). W

Exercises
1. Prove the HNN theorem for groups along the lines of the proof of Th. 5.1.

2. Let K be a field and E a subfield with an isomorphism f: K — E. Using the
skew function field, find an extension of K with an element inducing f.

3. Show that there is an infinite field in which any two elements #0,1 are
conjugate. Show further that any two countable fields with this property are
isomorphic. (Hint. Embed F,(x) in a homogeneous field without adding alge-
braic elements.) Deduce that in such a field every element is a multiplicative
commutator.

4. For any field K show that the group PGL,(K) of fractional linear transforma-

a

tions x — (ax + b)(cx + d)71, (c non-singular, is triply transitive on the

b
d
projective line K, = K U {®}. By using for K the field constructed in Ex. 3
obtain a field L for which PGL,( L) is four-fold transitive on L, (P. J. Cameron).
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5°. Let D be a field with a central subfield k and in P = D, €x} consider the
subfields K, = (1 + ax)"1K(1 + ax), for « € k. Is the subfield of P generated by
the K, their field coproduct? (G. M. Bergman) If true, this would provide an
analogue to Cor. 5.10 for subfields generated over k by at most | k| elements.

5.6 HNN-extensions of rings

In this section we shall prove analogues of the HNN theorem for rings.
Instead of the embedding techniques of Ch. 4 we here need the results
from 5.4 on filtered tensor rings. As before, all our rings will be algebras
over a given commutative field k.

THEOREM 5.6.1. Let R be an integral domain and A, B subrings of R,
isomorphic under a mapping f: A — B, where R, A, B are k-algebras and
fis k-linear. Then R can be embedded in a ring S, again a k-algebra and an
integral domain, containing an element t + 0 such that

at =t-af forallac A, (1)
provided that R is flat as right A-module and as left B-module.

Proof. Define R as right A-module by the usual multiplication and as left
A-module by the rule

a-u=(afju forallae A,ueR. @

We now form the R-bimodule M = R ® 4, R with the usual multiplication
by elements of R as module action. If we abbreviate 1 ® 1 as ¢, this
bimodule consists of all sums > utv; (u;, v; € R) with the defining
relations (1). For any left R-module U we have

M®RU=R®AR®RU=R®AU,

since R is right A-flat, it follows that M is right R-flat. Similarly we find
that M is left R-flat, because R is left B-flat. By Th. 4.8, the tensor ring
R,(M) is an integral domain and the component of degree 0 is
isomorphic to R. Thus R is embedded in an integral domain with an
element ¢ # 0 satisfying (1). B

To give an illustration, let R be a k-algebra which is an integral domain
and let a, b € R be such that a, b are not algebraic over k. Then k[a] and
k[b] are isomorphic subrings of R, with an isomorphism mapping a to b,
and R is torsion-free as (left or right) k[a]- or k[b]-module, because R is
an integral domain. But over a PID, torsion-free modules are flat, so all
the hypotheses of Th. 6.1 are satisfied and we obtain
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CoOROLLARY 5.6.2. Let R be a k-algebra which is an integral domain
and let a, b be elements of R not algebraic over k. Then R can be
embedded in a k-algebra S containing an element t # 0 such that

at = tb,

and S is again an integral domain. 1

Using filtered tensor rings, we can prove the following slight generaliza-
tion, which will be used later.

THEOREM 5.6.3. Let R be a k-algebra which is an integral domain with
k> as precise group of units. Given a, b € R\k and any c € R, there exists
a k-algebra S containing R as well as an element t #0 satisfying the
equation

at —th = c. 3)

Moreover, S is again an integral domain with k™ as precise group of units.

Proof. Consider the direct sum R @ R = (R, R) as right k[a]-module by
right multiplication in R, and as left k[a]-module by the rule

a(xy, x3) = (ax; + cxy, bx,).

On the submodule (R,0) this is just the structure induced by left
multiplication in R and we shall regard (R,0) as R-bimodule in the
obvious way. We now form the tensor product of R with (R, R):

M = R®iR ® R®,,R. C))

The first term on the right is just R; denoting the second term by N, we
have M = R® N and if we write ¢t for 1 ® 1 in N, we see that N is
generated by ¢ as right R-module and M = R @© N has a left R-module
structure with at = tb + ¢. In this way M becomes a pointed R-bimodule.
Further, M = M/R is generated by ¢ as R-bimodule subject to at = tb;
thus M is essentially the module used in the proof of Th. 6.1. To verify
that it is flat we need to show that it is torsion-free as k[a]-module. We
first show that a is not algebraic over k. Suppose that a satisfies an
equation over k; since a ¥ 0, we may divide by a if necessary, so as to
obtain an equation with non-zero constant term:

a"+ Aa"t+ .+ A, a+1=0.

Hence a(Aa" ! + ... + A,_;) = —1; this shows a to be a unit, so it must
lie in k, against the hypothesis.
Thus k[a] is a PID and since R is an integral domain, it is torsion-free
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as right k[a]-module. Now over a PID any finitely generated torsion-free
module is free (see e.g. A.1, 10.6), hence any row vector (uq, ...,
u,) € R" is equivalent over GL,(k[a]) to a vector (u3, ..., u;,0,...,0),
where uy, ..., u, are right linearly independent over k[a]. Hence any
element of M can be written as >, u;tv;, where we may assume the u; to
be right linearly independent over k[a]. It follows that > u;tv; = 0 if and
only if v; = 0 for all i. Thus if >,u;tv;p = 0, where p € k[a] and the u, are
as before, then v;p =0 for all i, hence either p =0 or v; =0 for all i,
which shows M to be torsion-free and hence flat.

We now form the filtered tensor ring on M: S = R,(M; R). This ring
is an integral domain by Cor. 4.9, and it contains R as subring. Let u € S
be a unit and write S, for the filtration defined by M. If u € S,\S,_; and
u'leS\S,_;, then 1=uu"'te S, \S,,,-;, which is a contradiction,
unless r =s =0; but then S, = R and this has k™ as group of units.
Hence the group of units of § is precisely k™, as we had to show. B

By a repetition of this argument we obtain the following embedding
theorem:

THEOREM 5.6.4. Let R be a k-algebra which is an integral domain with
k> as precise group of units. Then R can be embedded in a k-algebra T
which is an integral domain with k> as precise group of units, such that the
equation

ax —xb =c¢ 5)
has a solution for any a, b, c € T such thata, b ¢ k.
Proof. By Th. 6.3, R can be embedded in a k-algebra with the same
properties as R, in which a given equation (5) (with a, b ¢ k) can be
solved, and by induction we obtain a k-algebra T, containing R with the

same properties as R, in which all equations (5) over R with a, b ¢ k can
be solved. If we repeat the process, we obtain a chain

RCT,CT,C...,

whose union is a k-algebra with the required properties. B

The algebra T constructed here is plainly a simple ring. But we can say
a little more. Consider the following formula:

(P(@)) T X1,y Xy Y1y v v s Yo Do XY = 1. (6)
1

A simple ring may be defined as a non-trivial ring in which every
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non-zero element a satisfies (P,(a)) for some n. If we can choose a fixed
n for all a € R (this is the case if e.g. R is a full matrix ring over a field),
then R will be called n-simple. It is easily seen that an ultrapower of a
simple ring R is again simple precisely when R is n-simple, for some n.
Now the equation (5) shows that the ring T’ of Th. 6.4 is 2-simple.

Exercises

1. Show that a 1-simple ring without idempotents other than 0 or 1 is a field.

2. Let R be a k-algebra in which every equation ax — ya = ¢ with a ¢ k has a
solution. By writing this equation as aR + Ra = R show that R is reduced (i.e.
a? = 0 implies a = 0). Deduce that R is an integral domain.

3. Let R be a k-algebra which is an integral domain, with elements a, b that are
not algebraic over k. Find an integral domain containing R as well as ¢, t~! such
that at = ¢b.

4. Show that a Lie ring can be embedded in a Lie division ring (defined as Lie
ring in which [a, x] = b has a solution for all a # 0), by embedding its universal
associative envelope in a ring in which ax — xa = b has a solution for all a #0
(see Cohn [59']).

5.7 Adjoining generators and relations

Throughout this section all rings will be k-algebras, where k is a
commutative field, and all mappings will be k-linear.

If R is any ring, we can adjoin an indeterminate x by forming the
coproduct

R’ = R * k[x]. ey

Since k[x] is a PID, the new ring R’ has the same global dimension as R,
or global dimension 1 if R was semisimple, by Th. 3.5, while
P(R')=P(R), by Th. 3.8.

Secondly, let R be any ring and f € R; then we can adjoin the relation
f =0 to R by forming its quotient by the ideal generated by f. This ring
may be denoted by R(f = 0). About this ring much less can be said; this
is in the nature of things, since every ring can be obtained by imposing
suitable relations on a free ring.

A third process consists in forming localizations, i.e. adjoining inverses.
This again does not raise the homological dimension, though it may
change the monoid of projectives, as we see by forming the field of
fractions of a commutative integral domain which is not projective-free.
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Our aim is to generalize these processes. We can think of x in (1) as
providing a homomorphism between free right R-modules of rank 1 (by
left multiplication). More generally, let P, Q be finitely generated
projective right R-modules. To obtain the R-ring with a universal
homomorphism from P to @, let E, F be the idempotent matrices
defining P, Q respectively. If E is n X n and F is m X m, we may think
of P as the submodule of "R spanned by the columns of E and similarly
for Q and F. Any homomorphism o: P— O maps E to A € "R", and
A=FEa=(Ea)E = AE, while A =FA' for some A’ e™R", hence
FA = A. Thus we have

AE = A = FA. 2

Conversely, if A satisfies (2), then the map E — A defines a homo-
morphism from P to Q. This makes it clear how to adjoin a universal
homomorphism a: P— Q to R: we adjoin mn indeterminates a; to R,
whose matrix A is subject to the defining relations (2). Similarly, to
adjoin a universal isomorphism P — Q we adjoin first the homomorphism
« as before and then localize at «, by adjoining mn indeterminates b to
R, forming an n X m matrix B, subject to the defining relations

AB=F, BA=E. €))
As we saw in 4.6, we may always assume the additional relations
EB = B = BF.

The rings so formed will be denoted by R,(a: P— Q) and R, (@, a !
P = Q) respectively. Consider first T = R,(a: P— Q). Writing P® =
P ®r T, we can describe T as the R-ring with universal homomorphism
P® - Q% If ¢: R— R’ is any ring homomorphism, then it is clear that
the T-ring with universal homomorphism P® R' > Q® R'is R" ® T.
To obtain a manageable form for T we shall replace R by a matrix ring
S = My(R), where N is a natural number chosen so large that P & Q is
a direct summand of YR. Then the matrices E, F are replaced by
orthogonal idempotents e, f in S. We now have P = &S, Q = fS and we
need to find an S-ring with a universal map eS— fS. Put g=1—-e¢—f
and consider the map from k X k X k to S given by

(a,b,c)—> ea+ fb+ gec.
The projective module induced by the first factor k is eS, by the second it
is fS, and the (k X k)-ring with a universal map from 0 X k to k X0

is the upper triangular matrix ring T,(k) = (l(; Z), where k X k embeds
in the diagonal and e, induces the universal map. It follows that the

universal ring is T, defined by
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My(T) = My(R) # (T,(k) X k), where K = k X k x k. (4)

Our main interest lies in relating the global dimension and monoid of
projectives of T to those of R. The answer is provided by

THEOREM 5.7.1. Let R be a k-algebra, P, Q finitely generated
projective right R-modules and let T = R,(a: P— Q) be the R-ring with
universal homomorphism from P® to Q®. Then

r.gl.dim.7 = max {r.gl.dim.R, 1}; )

similarly for the left global dimension, and the ring homomorphism R — T
induces an isomorphism

P(R) = ¥(T), (6)

so all finitely generated projective T-modules are induced from R.

Proof. We have seen that T is given by (4) above. The first assertion
follows from Th. 3.5, because gl.dim.(T,(k) X k) =1, and the second
follows by Th. 3.8, because P(T,(k) X k) = P(k X k X k). The same
result holds for the left global dimension, because we clearly have R, {a:
P— Q) = R{B: Q* - P*), where B is the dual of «. B

In a similar way we can deal with the adjunction of an isomorphism
between projectives P and Q, yielding R,(a, o”': P= Q). To obtain
this ring we note that the (k X k)-ring with a universal isomorphism
between 0 X k and k X 0 is M,(k), where k X k embeds in the ring of
diagonal matrices. Here e}, and e;; are the universal map and its inverse.
Thus we use the same construction as before, but with M,( k) in place of
Ty (k).

THEOREM 5.7.2. Let R be a k-algebra and P, Q finitely generated
projective right R-modules and let T = R{«, a™!: P= Q) be the R-ring
with a universal isomorphism P® = Q®. Then

r.gl.dim.T = r.gl.dim.R, @)

unless the right-hand side is 0, when the left-hand side is either 0 or 1, and
similarly for the left global dimension. Further, the ring homomorphism
R — T induces a surjective homomorphism

P(R) — X(T),
with kernel generated by the relation [ P] = [Q].
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Proof. In the earlier notation we have
MA(T) = My(R) : (M,(k) x k), where K=k X kx k. (8

Now (7) follows as before, when r.gl.dim.R = 1. When r.gl.dim.R =0,
the left-hand side is at most 1; it can be either 1 or 0, as is shown by the
cases (i) R = k[t, t71], (ii) R = k X M,(k), where we adjoin a universal
isomorphism between k X 0 and 0 X M;,(k)ey; to obtain the ring M;(k).

To prove the second part, we note that P(M,(k) X k) is the quotient of
P(k X k x k) by the relation [k x0x0]=[0x k x 0], and the co-
product on the right of (8) has as monoid of projectives the commutative
coproduct of the corresponding monoids. Since P(My(T)) = P(T) by
Morita equivalence, the assertion follows. l

As a further application of 5.3 we consider the adjunction of an
idempotent map on a finitely generated projective P. If we adjoin a
universal idempotent map on the free module of rank 1 to the field £ we
obtain the ring k X k, so the R-ring with universal idempotent e € M, (R)
satisfying e("R) = P, denoted by R,(e* = e: P— P), is the centralizer of
the matrix units in M, (R) * (k X k x k), where K = k X k maps to
M,.(R) by (a,b)—ea+ (1 —e)b and to k X k X k by (a, b)— (a, a, b).
Thus we have

M (T) =M, (R) x (k x kx k), where K=kx k.

From this equation it is clear that the analogue of (7) holds unless the
right-hand side is 0 or 1. To find #(T) we observe that we now have

[P1=[Q'1+[Q", ®

so P(T) is obtained by adding two generators [Q'], [Q"] to P(R) with the
defining relation (9). This yields

THEOREM 5.7.3. Let R be a k-algebra, P a finitely generated projective
right R-module and let T = R,(e’*=e: P— P) be the R-ring with
universal idempotent endomorphism e of P. Then

r.gl.dim.T = max {r.gl.dim.R, 1},

and similarly for the left global dimension, and P(T) is obtained from
P(R) by adjoining two generators [Q'], [Q"] with defining relation (9). B

A slightly different situation arises when we adjoin inverses of existing
maps. This is essentially localization and we can show that a hereditary
ring remains so on localization:
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THEOREM 5.7.4. Let R be a right hereditary ring and = a set of maps
between finitely generated projective modules. Then the localization Ry is
again right hereditary .

Proof. We begin by proving
Ext z (M, N) = Ext z. (M, N), (10)

for any pair of Ry-modules M, N. The natural homomorphism R — Ry
allows us to consider any Rz-module as an R-module; further it is clear
that a left Ry-module M is characterized in z/tl by the property that for
any map «: P— Q in Z, the induced map a @ : PRz M - Q R M is
bijective. It follows that if an R-module is an extension, in the category
rM, of a pair of Ry-modules, then M is itself an Ry-module, and this is
just expressed by (10).

Now R is right hereditary, hence Ext x (M, -) is right exact; by (10), so
is Ext }ez (M, -) and this shows Rj to be right hereditary, as claimed. W

These methods also allow us to find out more about the matrix
reduction functor introduced in 1.7. We shall need a lemma on maps with
zero product:

LeEmMMA 5.7.5. Let R = *R; bea coproduct of K-rings, where K is a
field. Given finitely generated projective R-modules P, P’, P" and
homomorphisms «. P'— P, f§: P— P" such that af3=0, there exist
finitely generated projective R,-modules P,, P, P} almost all zero, a
decomposition of P into induced projectives

P=®p?

and maps «,: Py— P,, B;: P,— P} such that o;$, =0, and there is a
commutative diagram

- a p B po

(11)

n

® o® DB

@ pie P;® D p;®
Proof. By Th. 3.3, im § is an induced module, the map P—imf is a
surjection of induced modules and by Prop. 3.7 we have a commutative

diagram
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P a P ﬂ PII
o = 5
D ker 8,2 @D P2 @ im B,®

and it remains to show how to replace im f, and ker S, by finitely
generated projective R;-modules. The image of «' is a finitely generated
submodule of € ker ﬁ? and so lies in an R-submodule generated by a
finite subset of U ker ﬁ,{@. Hence we can find finitely generated free
R;,-modules P; for each A, but almost all 0, with an induced map from
@D P;® to D ker ﬂ? whose image contains im «'. Since P’ is projective,
we can lift o’ from D L to D P;® and so obtain a commutative diagram

24
P’ P B P"

@ py® D p,®

If we dualize this diagram, use the same argument to fill in the bottom
right-hand corner and dualize once more, we obtain (11). B

We can now deal with the matrix reduction ring:
THEOREM 5.7.6. Let R be any k-algebra and n = 1. Then the matrix
reduction T = B, (R; k) satisfies
r.gl.dim.T = r.gl.dim.R,

unless the right-hand side is 0. Moreover, T is an (n — 1)-fir and its group
of units is k™.

Proof. We have
M(T) =M, (k) % R = §, say.

The assertion on global dimensions follows from Th. 3.5, as before. Now
let m < n and take a € T™, b € "T such that ab = 0. We may regard a, b
as homomorphisms to and from P®, where P is induced from "k and ®
refers to the natural map M,(k)—> S. By Lemma 7.5 we have a
commutative diagram
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® a

b P
B® i a®
P

®

where «, B are defined over M, (k) and compose to 0 (reading from right
to left, exceptionally). The middle term in the bottom row must be pP®,
because this is the only form an induced module can take; moreover,
aff =0, so by a linear transformation this relation can be trivialized, and
hence the same holds for ab = 0.

Finally, suppose that « is a unit in 7'; it defines an automorphism of
P®, where P = k, but all free transfer automorphisms and transvections
must be the identity on P®, hence by Prop. 3.7, the group of
automorphisms of P® over R must be the group of automorphisms of P
over M, (k),i.e. k. A

We remark that in Th. 7.6, T need not be an n-fir — in fact it will not
be one unless R is a 1-fir, i.e. an integral domain. Forifae T", b € T,
then P® may be induced from R (instead of M,(k)) and we can then no
longer be sure that the relation af=0 can be trivialized (see the
examples below and Ex. 9).
However, when R is a fir, then so is T

CoROLLARY 5.7.7. Let R be a k-algebra which is a fir, and let n = 1.
Then the matrix reduction T = B, (R; k) is again a fir.

For by Th. 7.6, T is hereditary and the monoid of projectives of
§=M(T) = M(k) * R is free on (1/n)[S], hence P(T) is free on [T],
i.e. T is projective-free, and so it is a fir. W

The above results may be applied in various ways. For example,
consider the ring obtained by adjoining a map with a one-sided inverse:

T=R{(a:P->Q,B: Q- P;af=1,).

This ring may be obtained by forming first S = R,(e* = &: P— Q) and
then T = S;(a,a : P=ime). It follows that T has the same global
dimension as R, except that gl.dim.T may be 1 when R is semisimple.
Further, #(T) is obtained by adjoining one generator [Q"] and one
defining relation: [P] + [Q"] = [Q].

As an illustration we shall consider the universal non-IBN and
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non-UGN rings. Let us denote by I the element of P(R) corresponding
to [R].
(i) IBN. For n > m = 1 the universal non-IBN ring of type (m, n) is

Vipn = k{a, o™l k™ = k).

By Th. 7.2 this ring is hereditary and %(V,,,) is generated by I with
defining relation mlI = nl. Since m < n, the ring is an (m — 1)-fir, by an
argument as in the proof of Th. 7.6; of course it is not an m-fir. When
m = n, we can use the same results and find that P(V, ) is free on [;
thus V, , is hereditary and projective-free, and so is a fir.

(i) UGN. For n > m = 1 the universal non-UGN ring of type (m, n) is

Upn = k{a: k" — k™, B: k™ — k" aff = 1),

(composing left to right). The above example shows U, , to be hereditary
with P(U,, ,) generated by I and [ P] subject to the defining relation

ml = nl + [P].

Thus U, , is an (m — 1)-fir, when m <n. When n<m, the same
definition can be used, but the resulting ring then has UGN.
(iii) W. The universal weakly n-infinite ring is

W, = k(& =¢e k" - k").

By Th. 7.3, W, is hereditary and #(W,) is generated by I and [P] with
the defining relation nl = nl + [P].

Exercises

1. Let R be a right hereditary ring and £ a set of maps between finitely generated
projective R-modules. Show that the right localization Rz (which consists in
adjoining right inverses of all maps in Z) is again right hereditary.

2. Show that any finitely generated abelian monoid is finitely related. (Hint.
Consider the monoid algebra.)

3. Let A be a finitely generated abelian monoid with distinguished element I # 0
such that (i) I is a fundamental unit, i.e. for each x € A there exist y € A and
neN such that x +y=nl, and (ii) A is conical (i.e. x +y =0 implies
x =y =0). Show that there is a hereditary ring R (and k-algebra) such that
P(R) = A as monoids with distinguished element /, such that for any k-algebra S
and any homomorphism ¢ from A to P(S) (preserving fundamental units), there
exists a k-algebra homomorphism f: R — S which induces ¢ (Bergman [74']).

4, Show that R = W,(M3(k)) is a hereditary ring with P(R) isomorphic to the
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monoid generated by 1 and 1% in %N. Deduce that R is an integral domain
satisfying Klein’s nilpotence condition, but that R has no R-field (Bergman [74']).

5. Show that (for m < n) V, , and U, , are not m-firs. (Hint. Verify that in an
m-fir R, R™ has unique rank and cannot be generated by fewer than m elements.)

6. Give an example of a simple non-Ore integral domain. (Hint. Apply Th. 6.4 to
Viun» Wwhere n > m > 1.)

7. (Schofield) Let K be a field, M a K-bimodule and N a subbimodule. Show
that the natural inclusion K (N ) — K{M) is honest.

8. (Dicks and Sontag [78]) Let A = (a;1) be an m X r matrix and B = (b;;) an
r X n matrix and let R be the k-algebra on the (m + n)r generators a;3, b;; with
defining relations AB = 0. Verify that R is an (r — 1)-fir. For m, n, r = 1 show
that every full matrix is left regular if m, n < r, but R is a Sylvester domain if and
onlyifm+n=r.

9. (Bergman [74’]) Show that if R is an (r — 1)-fir but not an r-fir, then W,(R) is
an (nr — 1)-fir but not an nr-fir.

5.8 Derivations

We now return to make a more detailed study of derivations. This will be
useful in calculating invariants of free algebras and free fields. We shall
now assume that all our rings are K-rings, where K is a k-algebra (and &
a commutative field, as usual).

On tensor rings any derivation can be described by its effect on the
bimodule, as our first result shows:

ProrosiTioN 5.8.1. Let R, A, B be K-rings, U an R-bimodule and
T =T(U) the tensor ring on U. Further let o: T— A, B: T— B be
homomorphisms. Then for any (A, B)-bimodule M, any K-linear homo-
morphism f. U — M extends to a unique («, f)-derivation of Tin M.

Proof. We recall from 2.1 that an (a, B)-derivation é of T in M may be
described as a homomorphism from T to a triangular matrix ring:

A M x*  x°
T— (0 B)’ ~ (0 xﬂ)' (@)
For x in U, with xf in the (1,2)-entry instead of x°, this defines a

K-linear map from U to the triangular matrix ring in (1), which extends
to a unique homomorphism from T, by universality. The images are
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again triangular matrices and the (1, 2)-entry has the form x°, where & is
an («, B)-derivation extending f. B

For simplicity we shall confine ourselves in what follows to the special
case where A = B= R and o = = 1; the (1, 1)-derivations will just be
derivations, with images in an R-bimodule. The general case is usually no
harder but requires more notation.

For any R-bimodule M the derivations (over K) form a module
Derg (R, M) and it is clear that Derg (R, -) is a functor, which is actually
representable, i.e. there is an R-bimodule Qg(R), called the universal
derivation bimodule, with a derivation é of R in Qg (R) such that there is
a natural isomorphism

Homg (Qk(R), M) = Derg (R, M),

given by the correspondence o+~ da. It is not difficult to construct
Q(R) directly in terms of generators a’® (a € R) and defining relations
expressing that d is a derivation, but there is a more concrete realization,
as the kernel of the multiplication map on R. We recall that the
multiplication on R may be expressed as a K-bilinear map

m Ry R—>R, x®ywr—xy.

In terms of it the universal derivation bimodule may be described as
follows:

TuaeoreM 5.8.2. For any K-ring R (where K is arbitrary) there is an
exact sequence

0> Q(R)» R®xR3 R—0, ()

where m is the multiplication map and Qg (R) is generated as left (or right)
R-module by the elements

¥=x®1-1®x (xeR). 3)

Proof. The map m: x ® y > xy is clearly an R-bimodule homomorphism
which is surjective and if its kernel is denoted by Q(R), we obtain the
exact sequence (2). The elements (3) all lie in this kernel and conversely,
if > x; ® y; € Qx(R), then D x,y; = 0 and so

2x,~®y,~= 2(xi® 1-1®x)y; = E'xi(l Qy-y®1),

which shows Qg(R) to be generated as left or right R-module by the
elements (3).

It remains to identify Q4 (R) as the universal derivation bimodule. The
map x — x°, where x% is given by (3), is easily seen to be a derivation of
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R in Qg(R), and it is universal, for given any derivation d of R in an
R-bimodule M, we can define a homomorphism f from Qx(R) to M as
follows: If >x; ® y; € Qx(R), then > x,y; =0, hence Dx’y, + xy¢ =0
and we may define f by the equations

(in ® Yi)f = ZX?' Yi = _E'xi ’ yz“i~

The first equation shows f to be right R-linear, the second shows it to be
left R-linear; moreover, (xA)% = x%Ay for Ae K, so the expression
> x?y, is balanced and is uniquely determined by >.x; ® y,. Now &f maps
xto (x®1-1@x)f=x% hence d=5f and f is unique, since it is
given on the generatingset {x ® 1 -1 ® x}. &

By combining this result with Prop. 4.1.1 (¢), we find

CorROLLARY 5.8.3. A ring homomorphism K — R is an epimorphism
if and only if the only derivation on R over K is 0.

For the criterion for an epimorphism reduces to Q(R) = 0, and this is
clearly so if and only if the only derivation is zero. W

In the sequel we frequently have to deal with a family of ring
homomorphisms R; — S and S-modules that are induced from R;-
modules: M @y, S. It will be convenient to denote this induced module
by M?, leaving the ring homomorphism to be inferred from the context
(or indicated separately, in cases of doubt). Similarly for bimodules the
induced module S ® M ® S will be written ®M®.

Our next object will be to relate the universal derivation bimodule to
that of a residue-class ring. Here we shall need some basic properties of
the Tor functor, assumed to be known to the reader (see e.g. A.3, Ch. 3).
We begin with a lemma needed in the next proof.

LeEMMA 5.8.4. Let Tbearing, a anidealin T and R = T/a. Then
Tor{(R, R)=a ®; R = a/a’. 4)

Proof. Consider the exact sequence
0-a—-T—>R-—0. 5)

Applying ®; R and noting that Tor{(T,R)=0, R®; R=T®; R
= R, we obtain

0— Tor;(R,R)>a®;R—R— R—0.
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Here the last map is just the identity; this proves the first isomorphism in
(4). To establish the second, we operate on the exact sequence (5) with
a @ and find an exact sequence

at®a—-a—->a@ R-0.

Clearly the image of the first map is a, and hence (4) follows. B

THEOREM 5.8.5. Let T be a K-ring, where K is a field, let a be an ideal
of T and write R = T/a. Then there is an exact sequence

0— a/a25®Q,(T)® 3 Qu(R)— 0,

where & is based on and p is induced by the natural homomorphism
T — R.

Proof. By Th. 8.2 we have the exact sequence
0-Q(T) > TRy T—->T—0,

which is split exact as sequence of left T-modules. Tensoring on the left
with R = T/a over T, we obtain the exact sequence

O—)®QK(T)—>R®KT—>R—>O.

If we now operate with ®; R and bear in mind that R ® ;R = R, we
obtain the exact sequence

Tor (R ®x T, R) > Tor{ (R, R) — ®Qx(T)® > R®xR—> R—0.
6
Now R ® T is projective as right T-module, since for any T-module M,
Hom; (R ®x T, M) = Homg (R, Hom (T, M)) = Homg (R, M)

and this functor is exact in M because K is a field. It follows that
Tor {(R®x T, R) =0, so the first term in (6) may be replaced by 0. The
term Tor | (R, R) may be replaced by a/a, by Lemma 8.4, and the last
map in (6) is the multiplication map m whose kernel we know to be
Qy(R), so (6) may be replaced by the exact sequence

0— a/a’? > ®Qx(T)® - Qx(R) - 0,
and this is the sequence we had to find. H
This result just expresses the fact that Qg (R) is obtained from Qg (T)
by tensoring with T and dividing out by a. The kernel is a/a?, because the

derivation bimodule is a linearized form. Explicitly, if R is given by a
presentation
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R = K(X; ®),

then Q(R) is the R-bimodule on generators x° (x € X) and defining
relations ¢° =0 (@ € ®), where ¢° is the formal derivative of ¢. If a
denotes the ideal of k(X) generated by ®, then any element of a? has
the form > a;b;, where a;, b; € a; now (3a;:6,)° = Da’b; + Ja;b? and this
vanishes as element of the bimodule Q¢ (R), in illustration of the fact that
the kernel is a/a”.

We also note the special case of an idempotent ideal:

COROLLARY 5.8.6. Let T be a K-ring, where K is a field, let a be an
idempotent ideal of T and put R = T/a. Then Qi(R) = ®Q(T)®.

This follows from Th. 8.5, since now a/a’ = 0, by hypothesis. W

The results obtained so far allow us to calculate the universal derivation
bimodule of a tensor ring:

ProrosiTtioN 5.8.7. Let K be a field, U a K-bimodule and
T = K,(U) the tensor K-ring on U. Then the universal derivation
bimodule for T is the T-bimodule induced from U:

Qu(T)=°®U?,

where Q is taken relative to K — T and the derivation extends the identity
map on U.

Proof. The K-ring T is generated by U with no relations except those
holding in U. Hence Q(T) is generated by u° (u € U) with linearity and
(au)® = au®, (ua)° =ulaforue U,ac K. B

We can also express the universal derivation bimodule of a coproduct
in terms of those of its factors:

THEOREM 5.8.8. Let {R;} be a family of K-rings, where K is a field.
Then the universal derivation bimodule of the coproduct is the direct sum
of those of its factors:

QK(; R) = ®(®QK(RA)®);

where & refers to the homomorphism from R; to the coproduct.

Proof. A presentation of R, is obtained by taking presentations of all the
R; and identifying K in all of them. Hence Q K(; R,) is generated as
bimodule by the images induced by the bimodules Qx(R;) and there
are no further relations. B
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We shall also want to know the universal derivation bimodule for a
localization:

THEOREM 5.8.9. Let R be a K-ring, where K is a field, and let £ be any
collection of matrices over R. Then the universal derivation bimodule for
the localization Ry is given by

Qx(Ry) = ®Qx(R)®,

where & refers to R — Rs.

Proof. Let us write N = ®Q;(R)®; we shall prove the theorem by
extending the universal derivation &: R — Qx(R) to a universal deriva-
tion of Ry in N. Since each derivation defines a homomorphism to a
triangular matrix ring, we have a diagram

R Q@R
R .
0 R
v 4
Ry N
R
z 0 R

where v, v' are the canonical maps and the horizontal map is induced by
6. Now every matrix in £ maps to an invertible matrix over the triangular
matrix ring in the bottom right-hand corner, because it is invertible mod
the nilpotent ideal (g 1(\;) Hence there is a unique map completing
the diagram to a commutative square; clearly this map defines a
derivation 8s: Ry — N and it remains to show that this is a universal
derivation.

Given a derivation of Ry over K to an Ry-bimodule M, d: Ry - M,
this defines a derivation of R in M which factors through Q(R), by the
universal property of the latter:

é
R O (B
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By the universal property of N = ®Qx(R)®, & can be factored by v' to
give a homomorphism a’': N — M, and we have to show that d = éza’.
By construction we have vd = da = 8v'a’ = vésa’, and since v is an
epimorphism we conclude that d = dsa'. This shows s to be the desired
universal derivation. Wl

Under suitable assumptions we can strengthen this result to a criterion
for localization in terms of the universal derivation bimodule:

THEOREM 5.8.10. Let R be a right hereditary K-ring, where K is a
field. Then a ring homomorphism @: R — F to a field F is a localization if
and only if @ induces an isomorphism

O@: ®Q(R)® = Qi (F).

Proof. If F is a localization of R, the result follows by Th. 8.9. For the
converse assume 0@ to be an isomorphism. Then every derivation of F
over K is uniquely determined by its restriction to the image of R, i.e.
Qr(F) =0, so @ is an epimorphism, by Cor. 8.3. Its singular kernel is a
prime matrix ideal and if its complement in

R Ry M(R)is Z, then Ry is a local ring and we have
a commutative diagram as shown. As localiza-

f tion of a right hereditary ring Ry is again right

hereditary, by Th. 7.4, so all ideals of Ry are
free, as right ideals in a right hereditary local

F

ring.

Now the above diagram yields the commutative diagram shown, where
the top row is an isomorphism by
Th. 8.9 and the slanting arrow is an
isomorphism by hypothesis. Hence
the vertical arrow is an isomorph-
ism, and so the kernel of the homo-

QuF) morphism f: Rz — F is idempo-

tent, by Th. 8.5; it is a proper ideal

of Ry and is free as right ideal. But it is easily verified that a free ideal

cannot be idempotent unless it is improper or 0 (see Ex. 7, 1.6). Hence
ker f = 0 and so f is an isomorphism. W

BQUR)® BQu(R5)®

We shall now use derivations to prove that the number of free
generators is an invariant both in free algebras and in free fields. Let
T = K, (X ) be the tensor K-ring on a set X; if K is a field, then it is
determined by T as the set of all units, together with 0. The free
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generating set X is of course not unique, e.g. x € X may be replaced by
x + a, where a € K, but as we shall now show, its cardinal is unique.

THEOREM 5.8.11. Let K be a field which is a k-algebra and let X, Y be
any sets. If K,{(X) = K,(Y), then | X| = |Y]|.

Proof. Let a be any retraction from T = K, (X ) to K; such a map is
obtained for example by mapping X to 0. Now consider the K-bimodule
D of all («, a)-derivations of T in K. Such a derivation is a K-linear map
determined by the images of X, which may be any prescribed elements of
K; hence we have D = K™ similarly D = KY), and by the invariance
of the dimension of a vector space it follows that | X| = |Y|, as we wished
to show. B

In order to study free fields, we first establish a property of subfields of
free fields. We shall take D{X ) to mean Dp{(X ), thus X centralizes D,
but D need not be commutative.

ProrosiTioN 5.8.12. Let EC D be fields and X a set. Then the
subfield of D€ X generated by X over E is naturally isomorphic to

E€XY.

Proof. Since D€ X is a localization of D{X ), we have by Th. 8.9,
Qp(D€XYy) =%Qp(D(X))®.

Now by Prop. 8.7, Qp(D(X)) is generated by the elements x° (x € X)
subject to

x%a =ax%forallx e X,a e D.

Hence Qp(D<€ X)) is the free D€ X >-bimodule on the generators x°,
centralizing D. Denote by L the subfield generated by X over E and
consider the L-bimodule generated by the x° in Qp(D€XY). It is the
image of Qz(L) in Q,( D€ X>) under the homomorphism L — D€ X,
and so is the free L-bimodule on the E-centralizing generators x°. Since
Q(E€X?Y) is the free bimodule on the E-centralizing generators x°, we
see that the natural homomorphism E(X) — L induces an isomorphism
Qp(L)= ®QL(E(X))®. Now E(X), being a fir, is hereditary, so we
can apply Th. 8.9 to conclude that L=E<€X>. B

Our aim is to show that for any set X, the cardinal | X| is an invariant
of the free field k€ X Y. For infinite sets X this follows from a result in
universal algebra which we quote without proof (Prop. 1.4.4 of A.3). In
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the finite case we shall actually find a slightly more general result,
analogous to weak finiteness, or the Hopf property for groups. Namely
we shall show that if |X| = n, then any set of n elements generating
k€ X is a free generating set. It is no harder to prove this result for the
more general case of universal fields of fractions of tensor rings, although
we need an extra hypothesis at this stage. For any k-algebra R we define
its multiplication algebra as R° @, R, where R° denotes the opposite
(anti-isomorphism) of R. We note that R may be considered as an
R-bimodule in a natural way, using the left and right multiplications,
hence it is an R° &, R-module.

THEOREM 5.8.13. Let D be a skew field which is a k-algebra and
consider F = D, € XY, where X = {x{, . .., x,}. Further, assume that its
multiplication algebra F° ®, F is weakly finite. Then any D-ring epi-
morphism

f: Di{X) = F= DXy (7)

extends to an automorphism of F.

Proof. The universal derivation bimodule Qp(D,{(X)) is the free
D,{X)-bimodule on the generators x’, hence the universal derivation
bimodule Q,,(F) is the free F-bimodule on the x?, by Th. 8.9. Since (7) is
an epimorphism, by hypothesis, the elements x;f generate F as D-field
and it follows that the elements (x;f)°-generate Q,(F) as F-bimodule,
i.e. as right (F° ® F)-module, but this is a free right (F° ® F)-module of
rank n, hence by weak finiteness, these elements form a free generating
set. Thus the map (7) induces an isomorphism ®Q (D, (X ))® — Q,(F).
By Th. 8.10, (7) is a localization, so f can be extended to the universal
field of fractions of D,{( X ) to yield an automorphism of F. B

Taking D = k, we obtain

CoroLLARY 5.8.14. For any commutative field k, any generating set
of n elements of k€x,, . .., x,7 is a free generating set; in particular, any
two free generating sets of a free field have the same number of elements.

Proof. The first part follows from Th. 8.13, because the multiplication
algebra of k€ X is weakly finite: writing k€ X3° as E, we can express
k€X>°  ®k€X)> as E®, k€X> and this can be embedded in
E€XY>. Now assume that k€ Xy = k€Y >; if one of X, Y is infinite,
then so is the other and both have the same cardinal, by Prop. 1.4.4 of
A.3. So we may assume that X, Y are both finite. Applying the first part
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to the map k(Y ) — k€ X giving rise to the isomorphism, we find that
|Y|=|X|. By symmetry we also have |X|=|Y|, hence |Y|=|X|, as
claimed. W

Exercises

1. Let R, A, B be K-rings and a: R— A, : R — B be homomorphisms. Show
that the universal («, §)-derivation bimodule for Ris A ® g Qx(R) ® B.

2. Given ring monomorphisms A — R, R— S, obtain the exact sequence
0— Derg (S, M) — Der4 (S, M) — Der, (R, M) for any S-module M. Deduce
the exact sequence Q4 (R) — Q4(S) = Qz(S)—0.

3. Let T=Rg(U)=R % K{U) be the tensor ring on a K-bimodule U. Show
that Qx(T) = ®Q(R)® ® ®U’'®, where U’ = R ® U ® R and the exponent ®
referstothemap R— T.

4°. (A. H. Schofield) Let F be a field with a central subfield k. Is the
multiplication algebra of F, F° ®; F, weakly finite?

5. (A. H. Schofield) Let Eq, ..., E, be finite-dimensional division algebras over
k and denote the least common multiple of the degrees [ E;: k] by m; further write
% E; = F. (i) Show that E; can be embedded in M,,(k), and deduce that F can be
embedded in an appropriate localization of * M, (k) with n factors M, (k). (ii)
Show that F can be embedded in a localization of M,,(k) % k(y) by embedding E,
in y=" M, (k)y" (r=1, ..., n). (iii) Show that F,€X> can be embedded in
M, (k€ ZY), where Z = {zli,j=1,...,n,xe X U{y}}.

6. (A. H. Schofield) Let E be a division algebra with [E:k] <~ and write
F = E, €X>. Using Ex. 5, show that F° ®, F is weakly finite.

7. (W. Dicks) Let D be a field which is a k-algebra and write F = D;€x % for the
free field on an indeterminate x. Verify that Q,(F) is the free F-bimodule on x as
k-centralizing set: Q4 (F) = ®(D ®, D)®. Show that there can be no equation
x = Da;, b;] (a;, b; € F) in F. (Hint. Apply first 8: x — 1 ® 1 and then reverse
multiplication, p ® g — gp, to obtain a contradiction. Makar-Limanov [89] has
constructed a field where every element can be written as a sum of at most two
commutators, and for some elements two are really needed.)

5.9 Field extensions with different left and right degrees

To construct a field extension with different left and right degrees we
shall first examine a type of binomial extension introduced in 3.5. Given a
positive integer n > 1 and a primitive nth root of 1, w say, in our ground
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field k, let us take a field E with an endomorphism « and an «-derivation
d such that

Sa = wad, ¢Y)

and construct fields K and L as in Th. 3.5.4. We then have an extension
of right degree n and its left degree will be greater than n provided that
K* # K. More generally, if [K: K], = », then [L:K]; = «, but some
care is needed here: it is not enough to take [E:E®], = «, for whatever
o« is, we shall have K*= K if 6=0, because « is then an inner
automorphism of L, with inverse ¢ —> tct ™. Likewise we have [L:K], =
[L:K]gr whenever K is commutative, by Prop. 3.1.4, or when L/K is
Galois, by Cor. 3.3.8. Further, we cannot take E to be commutative (say,
generated over k by commuting indeterminates), or even of finite degree
over k, because then é would be inner, by Th. 2.1.3 and Prop. 2.1.4, and
so could be reduced to zero.

To construct our example, we take any commutative field & with a
primitive nth root of 1, w say, and let A be any set. When the
characteristic p of k divides n, this is taken to mean that w is a primitive
mth root of 1, where n=mp", p + m. We form the free algebra
R = k(x,;) on a family of indeterminates indexed by A x N* and write
E = k<€x,;> for its universal field of fractions. On R we have an
endomorphism « defined by

xZ‘j = wixuj+1~
If S is the endomorphism of R defined by

/3” - a)_ix,lij_l lf] > 1,
i {0 ifj=1,

then «ff = 1 (read from left to right), hence « is a retraction, and so an
honest map, by Prop. 4.5.1. It follows that o extends to an endomorph-
ism of E, again denoted by «.

Next we define an a-derivation on R by

x:lsij = Xpi+1j-
This extends to an a-derivation of E, still denoted by 8. Consider the
(a0, a?)-derivation a — wad on E; this is easily seen to vanish on each
generator x,;, hence it is zero on R and so it is zero on E. Thus we have
Sa = wad on E. We now form L = E(t; a, 8) and K = E(¢"; a", ") as
in Th. 3.5.4; by that result, L/K is a binomial extension of right degree
n. To show that the left degree is > n it is enough to prove that K* # K.

This can be done quite easily whatever A, e.g. we could take A to consist
of one element. But we are then left with the task of finding whether
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[K:K*]. is finite or infinite. It is almost certainly infinite, but this
does not seem easy to show when |A| = 1, whereas it becomes easy for
infinite A.

For any u € A denote by E, the subfield of E generated over k by all
x;; such that j>1, or j=1 and A# y; thus we take all xs except x,;
(i eN). It follows that E,D E® for all u, and E,(1)2 L*D K*. We
claim that x,;; € E,(¢) if and only if A # u. Assuming this for the moment,
we see that the x,; are left linearly independent over K¢, for if
>a;x;;; =0, where a;, € K* and some a, # 0, then we could express x,,
in terms of the x;;;, A # u, and so x,; € E,(t), which contradicts our
assumption.

That x,y; € E,(t) for A+ p is clear from the definition. To show that
xa1 ¢ E (1), let us write A = E,[¢] (for a fixed u) and observe that for
any a € E, at = ta® + a®, hence

at=a° (modA),
so by induction on r, at’ = a® (mod A).

If x, € Etf), we would have x,, = fg~', where f,ge A; thus
x,18 = f=0(mod A), and if g = X t'b;, where b; € E,,, then

0= quut"b,» = Exgilb,- (mod A)
= Exui+11bi (mod A4).

Here we have multiplied a congruence mod A by elements of A, which is
permissible. Thus we have

2x,+nbi+b =0, wherebe A, b € E,. )

Now we have E[t] = E @ tE[t], as a direct sum of E-spaces, so we may
in (2) equate terms of degree 0 in 7 and so obtain an equation

Zx”,»ﬂlbi + by =0, whereb;, b€ E,

and not all b; vanish. But this is impossible, because the x,; are clearly
linearly independent over E,. This proves that x,;; ¢ E,(¢) and it follows
that [L: K], = |A|. Thus we have proved most of

THEOREM 5.9.1. Given any two cardinal numbers A, u of which at least
one is infinite, both greater than 1, there is a field extension L/K of left
degree A and right degree u, and of prescribed characteristic.

Proof. For finite u this has just been proved. When both A, u are infinite
and A = u say, we take any extension of left and right degree u and follow
it by an extension of left degree A and right degree 2. The resulting
extension has left degree Ay = A and right degree 2u=u. @
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There remains the case where the degrees on both sides are finite but
different. We shall present Schofield’s example, by proving

THEOREM 5.9.2. Let FC E be an extension of fields and r, s any
integers greater than 1. Then there exists an extension field E of E with a
subfield F such that F N E = F and

[E:Flg =1, [E:F]. = 5. 3)

E The proof will be in a number of stages. Suppose
first that E’ is any extension field of E with a subfield
F' such that F' N E = F. Then EF' = {>.xy|x; € E,
F y; € F'} is an (E, F')-bimodule and the natural homo-
morphism E @ F' — EF’ shows that
|EF":F'|<[E® F'":F'] =|E:Flg.

F
Here and in the rest of this section generally, tensor

products of two fields are taken over their intersection. Our aim will be to
construct, for the given extension E/F, an extension E'/F’ such that
[EF’:F'] has a preassigned value, while F' ® E = F’'E. We state the
precise result needed as

PROPOSITION 5.9.3. Let E/F be a field extension and r an integer such
that 1 <r <|[E:F]g. Then there exist a field E' containing E and a
subfield F' of E' such that
(i) FFNE = Fand F'E = F' ® E by the natural homomorphism,
(ii) [EF':F'] = r and any r right F-independent elements of E form a
basis of EF’ as right F'-space.
We remark that since EF’ is a subspace of E’ as right F’-space, it
follows that [E":F']g = r.

Before proving this proposition let us show how to deduce Th. 9.2 from
it. We write Fo=F and let E; be an extension of E such that
[Eo:Folr = 1, [Eo:FolL = 5, e.g. by taking Eq = E(t). We then define an
extension E,/F, recursively, using Prop. 9.3 at the odd stage and its
left-right dual at the even stage. In detail, given an extension F,_; C E,_;
with [E,_{:F,_1Jr =1, [E,_1:F,_1]L = s, there exists an extension F, C E,
such that E,_, C E,, F,N E,_, = F,_{, and further, (i) for odd n, F,E,_;
= F, ® E,_,, while any r right F,_;-independent elements of E,_; form a
basis of E, ,F, as right F,-space, (ii) for even n, E, F,=E, | ® F,,
while any s left F,_,;-independent elements of E,_; form a basis of F,E,_;
as left F,-space.
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Given an extension F C E asin Th. 9.2, we take F; C E, as above and
suppose that u;, ..., u, € E, are right Fy-independent and v,, ...,
v, € Eq are left Fy-independent. If F,_; C E,_, are already constructed,
with E,_; D E, such that u,, ..., u, are right F,_;-independent and v,,
..., U left F,_,-independent, we construct F, C E, as above. When n is
odd, we have F,NE, =F,_;and F,E, = F,® E,_;, hence vy, ...,
v, are left F,-independent; further, [E,:F,]r = [E,_,F,:F,}=r and u,,
..., u, form a basis of E,_, F, as right F,-space. When n is even, ui, .. .,
u, are right F,-independent and vy, ..., v, form a basis of F,E,_, as left
F,-space.

Now put E = UE,, F=UF,; then F C E is a field extension and the
set {uy, ..., u,} is a right F-basis for E, for it is linearly independent
over F and spans E,,, F,,,.; over F,,,,, for all m; hence it spans EF over
F. Similarly vy, . . ., v, is a left F-basis for E. Thus (3) holds; moreover,
FCF, ECE and any element of FN E lies in F, N E, for some n,
hence FN E = F, and Th. 9.2 is proved.

It remains to prove Prop. 9.3, by constructing F’' and E’. Suppose for a
moment that £’ and F' exist, satisfying the conditions of Prop. 9.3. Then
M = EF' is an (E, F')-bimodule generated by 1, which for clarity we
shall denote by u. Since E N F' = F, we will have

Foranyae E,be F',au =ubifandonlyifa=b € F. 4)
Given any element x of M, we define its left normalizer in E as

{a € E|ax € xF'}.

Then (4) shows that the left normalizer of u is precisely F; in fact (4)
asserts a little more: it also tells us that F is the precise centralizer of u (in
E and F’). Our task is firstly to construct a field extension F' of F and an
(E, F')-bimodule M with these properties, and then to find a field E’
containing E and F' to satisfy (i) and (ii) of Prop. 9.3.

If there is an (E, F')-bimodule M such that [M:F'] = r, then there is
an embedding of E in M, (F’) induced by the left action of E on M; so
we look for a suitable ring T such that E embeds in M, (7). Here T is
restricted to be an F-ring and we want our bimodule to have a single
F-centralizing generator, so we put

T =BV, (E; F),

where @ is the matrix reduction functor of 1.7. By Cor. 7.7, T is again a
fir. If its universal field of fractions is denoted by F’, we have

W,(F) 3 E = M(T) C M,(F), 5)
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and if {e;} is the set of matrix units centralizing F, then M,(F')e;; is an
(E, F’')-bimodule with F-centralizing generator e;;. Moreover, in M,(T)
we have EN F' = F, for from (5) we see that the elements of F’
centralize the e; and the only elements of E centralizing the e; are those
of F. We shall need to show that linear independence is preserved in
passing from F to F':

LeMmMma 5.9.4. Given a field extension F C E and elements uq, ...,
u, € E that are right F-independent, put T = W,(E; F) and let F' be the
universal field of fractions of the fir T. Then the elements ue,q, . . ., u.ey
form a right F'-basis of M,(F')ey;.

Proof. For simplicity we shall put P = M,(F) and
C=M(T)=P+E.

Since M,(F')e;; has dimension r as right F’-space, it will be enough to
show that the wue;; are right F’-independent. We may assume without
loss of generality that u; = 1 if 1 is in the F-span of the u;. If the u;e; are
right F’-dependent, then, bearing in mind that they are columns of
elements of F', we see that the matrix formed by these columns is
singular over F’ and hence non-full over 7. Thus we have

> uey; = yz, where y, z € C and ye,, = 0. 6)

We choose a right F-basis for P of the form {1, e;} for (i, j) # (r, r) and
label the e; as a; (A=1, ..., r>—1), and we extend uy, ..., u, to a
right F-basis of E which we label as 1, b, (u=1, . ..). We take the q; to
be well-ordered, as well as the b,, and then well-order the set {a,, b,} so
that a; < b, for all A, u. The words on this set {a;, b,} with as and bs
alternating (including the empty word 1) form a right F-basis for C,
which we shall take to be ordered by length and lexicographically, with 1
as first element.

For any c € C we denote by ¢ the leading term, i.e. the maximal
element in its support. We can also express ¢ as a right P-linear
combination of words whose last letter comes from {b,}; the words
occurring in this expression for ¢ will be called the P-support of ¢ and for
any such word g there is a right P-linear map c,: C — P which consists in
taking the right-hand coefficient of g in c.

Assume that y in (6) has been chosen so that its P-support is minimal
in the lexicographic ordering of finite descending sequences of words.
Now consider the P-module yP; we may choose a right F-basis {y,} of
yP such that the leading terms all have F-coefficients 1 and are distinct. If
an element of yP had a leading term ending in some b,,, it would generate
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a free right P-module, but this cannot be so, because ye,, = 0, hence yP
is a proper homomorphic image of P and so its dimension as right
F-space is < r°.

We note further that no leading term y; can be an initial segment of
another, ;. For suppose we have y, = y,p, where p is a non-empty word
with initial factor b,. Let y;=¢, c,(y) =1t and write y, = ya; then
ta = c,(y)a = c,(y2) = 0, because y, is shorter than y;. So we have

(y — yapt)(z + aptz) = yz;

hence we may in (6) replace y by y — yapt and z by z + aptz, which
removes g from the P-support of y and replaces it by lower terms. But
this contradicts the minimality of the P-support of y, and it proves our
claim.

Now any element of yC can be written as yc = > y.f;, where f, does
not begin with a term a;. Since the leading term of y;, has a coefficient 1
and this term ends in a factor a;, we have yif, = 7.f«. If two of these
terms were the same, say y,f; = y,f», then one of 7, 7, would be an
initial segment of the other, but we have seen that this cannot happen, so
all the y,f, are distinct.

By (6), we have

we; = Y uzepe; € yC, fori,j=1,...,r
h

hence we;; = y,q for some word g with initial factor not in P. Now u.e;;
is a word of length 2 with last factor in P. The only ways to split it into
two factors of which the second does not start with a factor in P are
1-ue,; and we ;- 1. If y, = 1, then 1 is the leading term of some member
of yP, hence yP contains an element of F, so yP= P and hence
[yP:F] = r?, in contradiction with the fact that ye, = 0. Hence 7, = ue;,
so yP contains r’ right F-independent elements, which leads to a
contradiction as before. Therefore the u;ey; are right F’-independent and
so they form a right F’-basis, as claimed. W

Let us write M for the (E, F’)-bimodule M,(F')e;; and u for its
generator e;;. Our next aim is to construct a field £’ containing F' and E
such that the conditions of Prop. 9.3 are satisfied. We remark that none
of these conditions limits the size of E’ in any way: if we have found a
field E' to satisfy all these conditions, then any field containing E’ will
also satisfy them.

Let D=F ° F’ be the field coproduct of E and F' over F, and with
M =M,(F')e;; form the D-bimodule

®M® =D ®; M Q D.
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The tensor ring R = Dx(®M®) is a fir (see FR. 2.6), and so it has a
universal field of fractions, which we shall denote by E’. In terms of the
natural grading on R, the generator u of M is of degree 1 and hence it is
an atom in R. Moreover, the left normalizer of u in R is F + uR, for by
expressing the elements of R in terms of a right D-basis of ®M®
including u, we see that this normalizer lies in D + uR and DuF’
= D & M; hence if ¢ € D satisfies cu = uc’, then ¢ € F' and since the
centralizer of u in F’ is F, we find that c € F.

Let us write E“=u"'Eu; then E“F’'=u"'EuF’, and this (E*, F')-
bimodule is isomorphic to M as (FE, F')-bimodule, as we see by
multiplying by u on the left. Our next task is to determine the structure of
F'E* as (F', E)-bimodule, and we shall do so in quite general circum-
stances.

LeEMMA 5.9.5. Let R be a fir with universal field of fractions U, and let
v be an atom in R with left normalizer N in R. Then the mapping given by
multiplication

R ®y(v'R)— Rv 'R (7)
is an isomorphism; likewise for the mapping induced by multiplication
(R/Rv) ® (v"'R/R) = Rv™'R/R, )]

where K = N/Rv.

Proof. We note that in R ® y v!R the two natural embeddings of R
coincide, since r@ 1=rQ@uv ! =rv @ v !=1Qrov'=1Qr.

It is clear that both mappings (7) and (8) are surjective. If (8) is not
injective, then there is a relation

pw g+ ...+ plg,=reR, 9)

which is not a consequence of the relations in R ® v™!R; a corresponding
statement holds for (7), with r replaced by 0 in (9), so it is enough to
consider (9). Let us take a relation (9) for which » is minimal. Writing
p=(p1 ... P> q=(q1 ... q,)", we can express (9) as p(v™'1,)q =r,
and by elementary row and column operations we have

I 0 I 0 I (v')gq
0 r—p'hDg) " \p r-pehg) " \p r

R (UI q).
P r
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Thus we obtain a linearized matrix which is singular over U and hence

non-full over R:
vl gq\ (B
1) (Fe o @

where B, C are n X n matrices over R, b is a row and ¢ a column. By the
partition lemma we can modify the right-hand side so that B, C are lower
triangular. Writing B = (b;), C = (c;;), we then have b;c; = v and since v
is an atom, one of b;, ¢; must be a unit; by a further adjustment we may
assume that one of b;, ¢; is 1 and the other is v. Now b;;¢; = g4, and if
by = v, then p;p~'q; = pic; and we can shorten (9) to D spv~lq; =
r — p;c;. Hence we may assume that b;; = 1. Let k be the first index for
which by, = v; then (b;); <« is an invertible matrix, so by a modification
we can reduce it to the unit matrix, while (c;); ;< becomes vl;_;, and
¢; = q; for i < k. Now consider the (k, j)-entry of the product BC, where
j < k; this is the kth row of B muitiplied by the jth column of C:

byv + ve,; = 0.

Comparing (k, n + 1)-entries in (10), we find

> bg; + ver = gs.
j<k

Hence
vlg = Zv_lbquj + o = _chj"—qu +

and when this is inserted into (9), that relation is again shortened. There
remains the case B=1, C =vl. Then c,, = v, so b,v = p, and we can
again shorten our relation. Hence every relation (9) is a consequence of
the relations in R @ v™!R; it follows that (8) is an isomorphism and
similarly for (7). B

Applied to our particular construction, this result shows that for
R = Dr(® M®) the submodule F’'E" is isomorphic as (F’, E*)-bimodule
to F' ® E¥, by a mapping which sends 1 to 1 ® 1, for as we saw, u is an
atom with left normalizer F + uR. Since E* embeds in u~'R/R by the
map y“—u"'y (mod R) and F’' embeds in R/Ru by mapping x to x
(mod R), the isomorphism (8) shows that the image of F'E* in Ru"'R/R
is isomorphic to F’' ® x E* in a natural way. In detail, denoting residue
classes by [ ], we find that the mapping

F' ®E*— (R/uR) ® (u'R/R) - U/R,
x @y > [x] @ [uly] - [xuly]
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is injective. Hence so is the map F' ®FE*— U given by x ® y*+—
xu~ly. Following this map by right multiplication by u, we see that the
map x ® y*+~> xy* is injective, as claimed. Together with Lemma 9.4 this
completes the proof of Prop. 9.3. W

Exercises
1. Verify thatin Th. 9.1, K* # K when |A| = 1.

2°. Show that in the conditions of Th. 9.1, [L: K], = = if |A] = 1.

3. (Schofield) Let L/K be any field extension such that [L:K]g = [L:K} < .
If uy, ..., u, € L are left and right linearly independent over K but do not form a
left or right K-basis, show that U = > u;K and V = > Ku; are proper subgroups
of L*; hence find u,,; € L not left or right linearly dependent on uy, ..., u,.
Deduce that there is a right K-basis for L which is also a left K-basis. More
generally, if [L:K]g <[L:K]g, show that there is a right K-basis which can be
enlarged to a left K-basis.

5.10 Coproducts of quadratic field extensions

We have seen in 5.3 that any coproduct of fields is a fir; it is natural to
ask when this fir is an Ore domain and hence principal. This turns out to
be the case precisely when there are two factors, each a quadratic
extension. We shall see that in this special case the coproduct has a form
resembling a skew polynomial ring, but we begin by establishing the
conditions for a coproduct to be Ore.

THeEOREM 5.10.1. Let (E;) be a family of fields that are K-rings, where
K is a field, and E, # K. If the coproduct R = * E, is a right Ore domain,
then there are at most two factors and [E;:K]g =2 (A=1,2).

Proof. Assume first that there are just two factors E;, E, and that
[E1:K]g >2. Then there exist x,y € E; such that 1, x, y are right
linearly independent over K. Take z € E,\K and put a = xz + zx,
b = yz + zy; then it follows by Cor. 1.4 that a, b are non-units in R. If
aR N bR # 0, then since R is a fir, aR + bR is principal; thus there exist
d, a,, b, p, g € R such that

d=ap + by, 1)
a= dal, b = dbl. (2)

Here d may be taken to be right reduced in R, i.e. not right associated to
an element of lower height. By (2) and Th. 1.3,
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h(d) + h(a;) — 1 < h(day) = h(a) = 2,

hence h(d) <3 — h(a,), so d has height at most 2. If h(d) =2, then
h(a,) <1, by Cor. 1.4. If h(a;) =1, then a; and d are left and right
A-pure for some A, so a;€ E; and d =aa;’, but then 2= h(d) =
h(aa;") =3, by Th. 1.3, a contradiction. Hence if h(d)=2, then
h(a;) =0, i.e. a; € K; similarly b; € K and writing y = bi'a,, we have
a=by,i.e.

Xz +2x = yzy + zyy.
Equating pure terms of type (2, 1), we find

zx — zyy =0 (mod H,).

Hence x — yy € Hy, which contradicts the right linear independence
(mod H,) of x and y. It follows that A(d) < 2. Now h(ap) = 2, so by (1),
h(ap) = h(bq) = N, say, where N =2 and A(p) = h(q) =N — 2. Re-
writing (2) as a congruence, we find
xzp + zxp + yzq + zyq = 0 (mod Hy_,),
or, taking pure components separately,
xzp + yzq = z(xp + yq) = 0 (mod Hy_y). 3)
Now p, q are of height N -2, so0 xp, yq € H)_,, and since z € E\K,
the second congruence (3) yields
xp + yq = 0 (mod Hy_,).
By the right linear independence of x, y (mod H,) we find
p=q=0(mod Hy_,).
Thus p, g are left 1-pure of height N — 2, hence zp, zq are left 2-pure of
height N — 1. Now we obtain from the first congruence (3),
zp = zq = 0 (mod Hy_,),

and this contradicts the relations A(zp) = h(zg) = N — 1. Thus a and b
can have no common right multiple other than zero and this shows R not
to be right Ore.

If there are more than two factors, let E; be the first factor and E, the
coproduct of all the others. Then R = E, * E, and [E,;:K]g > 2, so the
previous argument can be applied to complete the proof. B

It remains to investigate the case of two extensions of right degree 2.
We take our extensions to be E;, E, over K and again write R =
E; * E,. Each E,; is pseudo-linear and we may take it to be generated by
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u; with defining and commutation relations
au; = u;a® + a*% foralla e K, @
u+ wA + ;=0 forsomed;, u; € K. &)

We shall show that this coproduct is right Ore and obtain a normal form
for its elements.

TueorReEM 5.10.2. Let E/K (i =1, 2) be two quadratic extensions of a
field K, generated by u; subject to (4), (5), and write R = E, * E,. Then R
is a principal right ideal domain and if t = u; — u,, then every element of R
can be expressed uniquely in the form of a finite sum

>t'c,, wherec, € E;. 6)
Moreover, t satisfies the commutation relations

at = ta® + uw,a* + a' foralla € K, @)

where
a*=a* —a%, a =a*-a% €))
ut =12 — t(uy + A) — uh— u, 9

where
A=h—hy, p=p— (10)

Proof. We begin by deriving the commutation formulae (7), (9) for ¢.
For any a € K we have

at = a(uy — uy)

= ua® + a® — u,a*® — a*

ta® + u(a® — a®) + a® — a*
= ta® + w,a* + a’,
and this is (7). To prove (9), we have from (5),
(uy — ) + (u; — DAy + u, = 0.
We expand the square and use (5) to obtain
—Uhy — Py — Ut — tuy + 2+ why, — thy + w, = 0.

Taking u;t to the other side and using the abbreviations (10), we obtain
(9). Thus (7) and (9) are established. They show that the set of all
polynomials (6) form a subring R’ of R; clearly R’ contains E, and since
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every element of E, has the form
ua+b=—ta+ ua+b,

for some a, b € K, it follows that R' also contains E, and so R' = R,
because R is generated by E; and E,. Thus every element of R has the
form (6). To prove uniqueness, assume that

c+te;+...+t"c, =0, wherec,e E{,c, 0.
Multiplying by ¢, on the right, we obtain a relation
bo + tbl + ...+ tn-lbn_l + " = 0, where bi € El' (11)
Now ¢ is left and right reduced of height 1, so A(¢'b,)<r + 1, and
h(t" Y (b,_y + 1)) = n, but by (11),
n=h(t"Y b1+ t))=hbg+thy+...+1t"%b, ,)<n-—1,

and so we have reached a contradiction. Hence the powers of ¢ are right
linearly independent over E| and (6) is unique.

It remains to show that R is right Ore; in fact it is no harder to show
that R is right principal and this follows as in the polynomial case, but
extra care is necessary on account of the commutation formulae (7), (9).

Given any non-zero right ideal a of R, we take an element f in a of least
degree in ¢, chosen monic without loss of generality:

f=t"+t";+...+c, wherec e E;.

This polynomial f is unique, for if a contained another monic polynomial
g of degree n, the difference f — g would be a non-zero polynomial in a
of lower degree. Consider fR, the right ideal generated by f. Since
fR C a, f is also the unique monic polynomial of least degree in fR. We
claim that for any N > n, fR contains a monic polynomial of degree N.
Let P, be the set of all elements of R of degree at most r in ¢; clearly this
is a right E;-space. We have

ft =" Tl + 20t + L L+ cut
Hence by (7) and (9),
ft =1t"*' + " lc;t (mod P,). (12)
We write ¢; as ¢; = u;a + b, where a, b € K; then by (5), (7) and (9),
wat = uta® + ula* + ua’ = fa® + g,

where g is a linear polynomial in ¢. Similarly bt is a linear polynomial in
t, by (7). Inserting these expressions in (12), we find

ft = "1 + a*) (mod P,). (13)
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If 14+ a*=0 (i.e. a=—1), then ft is a polynomial of degree at most n
and since ft € fR, we must have ft = fb for some b € E,, but this would
mean that ¢ = b, a contradiction. Hence 1 + a* # 0 and now (13) shows
that fR contains a polynomial of degree n + 1; therefore it also contains a
monic polynomial of degree n + 1.

Now let N > n + 1 and assume that fR contains a monic polynomial of
degree m for each m satisfying n < m < N; we have to find a monic
polynomial of degree N in fR. Let g be in fR and monic of degree
N — 1. Since N —2 = n, we may reduce the coefficient of t¥ 2 in g to
zero by subtracting a suitable polynomial in fR. If g =tV"1 + N 3p +
...,then

gt=tN+ N3t + ...

=N+ N lp

by (9), so gt is a monic polynomial of degree N in fR. It follows by
induction that fR contains a monic polynomial of degree N for all N = n.
Now any element /& of R can by subtraction of suitable right E;-multiples
of the polynomials just found be brought to the form h = h; + h,, where
h, € fR and h, € P,_;. In particular, if h € a, then h,ea N P,_; =0 and
so h = h; € fR, and this shows that a = fR. Thus R is a principal right
ideal domain, and in particular it is right Ore. W

Whether the coproduct R is also left Ore will naturally depend on the
left degrees of the E; over K. Let us briefly consider the case of
commutative fields; we shall see that the field coproduct of two
commutative field extensions is a quaternion algebra, i.e. a 4-dimensional
algebra over its centre.

TueoreEM 5.10.3. Let F,, F, be two commutative quadratic field
extensions of k, given as F; = k(u;), where as before,

ur+ uwA +u; =0 forsome A, u; €k, )

and put t = u; — Uy, A=A — A,. Then their field coproduct E = F, ° F, is
a quaternion algebra with centre k(u), where

u=1t*+Ait. (14)

Proof. We have seen that every element of the coproduct P = F; x F,
can be written as a polynomial in ¢ = u; — u, with coefficients in F;:

>t'c,, wherec, € F. (6)
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The commutation formulae now read
ot = taforall o € k, 7
ugt = & — t(uy + A) — wA -y, )

where as before, A=A, — A,, u= yu; — w,. Multiplying (9) by ¢ on the
right and using (9) to simplify the result, we obtain

uit? = tMuy — A) + tQuy + M)A+ (uh + .
Hence
u (2 + At) = (12 + Au,. (15)

Let us put u = ¢? + At; by (15), u commutes with u; and it also commutes
with ¢, and hence with u, = u; — ¢. Thus u lies in the centre of P. If the
field of fractions of P is denoted by E, then E is a quadratic extension of
k(t), by (5) and (9), which in turn is a quadratic extension of k(u), so E
is 4-dimensional over k(u). Since u u, # u,u;, E is non-commutative and
$0 is a quaternion algebra with centre k(u). B

From the proof it is easy to deduce the form taken by specializations of
the field coproduct:

CoROLLARY 5.10.4. Let L be a field which is a k-algebra, generated
over k by two elements u,, u, both quadratic over k. Then L is either
commutative or a quaternion algebra.

Proof. Clearly L is a homomorphic image of P = k(u;) % k(u,) and since
L is a field, it is a proper homomorphic image. Now P is 4-dimensional
over the central subring k[u], where u = ¢2 + At as in the proof of Th.
10.3. Let vy, v,, v3, v4 be the image in L of a basis of P over k[u] and let
C be the image of k[u]. No finite-dimensional extension of k[u] is a field,
so C is a proper homomorphic image of k[u] and hence is a field.
Further, L is spanned by the v; over the central subfield C and hence is
either commutative or a quaternion algebra over C, because [L:C] is a
perfect square <4. B

Let us return to the skew case and examine more closely the coproduct
of two quadratic extensions that are isomorphic. We may take them to be
E,, E, where E, is generated over K by u; satisfying

au; = ua* + a®foralla € K, (16)

ul 4+ uh+ pu=0. (17)
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This coproduct P = E; * E, has an automorphism o of order 2 which
consists in interchanging u; and u, and leaving K fixed. The commutation
formulae for ¢t = u; — u, now reduce to

at = ta*foralla € K, (18)
and u,t = t* — t(u; + A), which can be written
wyt = —t(uy + A). (19)

Now we know from Cor. 3.6.2 that « may be extended to an
endomorphism «; of E; by putting

ul = —(u; + 2.

Hence (19) may be written in the form

uit = i’ = ™
Thus the map ay0= oa, agrees with the inner automorphism of P
induced by ¢. Since o?>=1, we have a, = oa;0 and ozf= o, 00,0 =
0,0, and this is just the inner automorphism induced by 2.

The field of fractions L of P may be constructed as follows. Form the
skew polynomial ring E[u; ozf], let L, be its field of fractions and extend
the endomorphism «; of E, to L, by putting #* = u. Then L is the
quadratic extension of L, generated by ¢ satisfying the equation #* = u.
Since every quadratic extension is pseudo-linear, we have a commutation
formula

ft=tff + fAforall f € L,

where f is an endomorphism and A a B-derivation of L. For the special
case where f € E,say f = uja+ b (a, b € K) we have

(ua + b)t = t(uya + b) + ua®,

as is easily verified, while of course ut = tu. It follows that = a and A is
defined by

(u;a + b)® = ua®, u®=0.

The result may be stated as

THEOREM 5.10.5. Let E/K be a quadratic extension with endomorph-
ism « and a-derivation 8, and denote the extension of « to E by «;. Then
the field coproduct of two copies of E over K is the quadratic extension of
the function field K (u; o3) generated by t subject to > = u. W
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Exercises

1. Let E/K be a quadratic extension and L = E 2 E the field coproduct of two
copies of E over K, with bases 1, u; (i = 1, 2). By expressing the elements of L as
Laurent series in ¢t = u; — u; determine the centre of L.

2. Using Th. 10.3, determine the quaternion algebras that can be expressed as
field coproducts of two quadratic extensions.

3. Let L/K be a finite extension generated by an element u such that I(u) maps
K into itself. Show that I(u) has finite inner order on K and that L/K can be
obtained as a central extension followed by a binomial extension.

4, Let E/K be a quadratic extension with endomorphism « and a-derivation 6,
and let L be a field which is a homomorphic image of E % E. Show that
[L:K]r = 2 unless « has finite inner order.

5. (Schofield [85]) Show that for any field E, My(E) _x . M E) = My(E[1, )|
for a central indeterminate ¢. (Hint. Take the matrix units of the first factor to be
e¢; and E X E embedded along the diagonal; now show that the matrix units of
the second factor may be taken to be ey, ey, fi2, fa1 and show that fi, = feq,,
f>1 = tley for some ¢ centralizing the first factor.)

6. Let D be a quaternion algebra over k with splitting field F. Use Ex. 1 to show
that (D, (k) + D) ®y E = My(E[t, t71]) for any commutative extension E of k
and by localization deduce that (WM (k) 2 D) ®; E=My(E(t)). Assuming
uniqueness of the minimal splitting field of D, deduce that the centre of
My (k) 3D is F. (Schofield [85] shows that every function field of genus 0 can
occur as centre of a coproduct in this way.)

Notes and comments

Coproducts of groups, usually called free products with amalgamated
subgroup, occur naturally in algebraic topology, where the Seifert—van
Kampen theorem (proved in 1933) expresses the fundamental group of a
union of two spaces as a free product of groups with an amalgamated
subgroup. Schreier [27] gave a topological proof that subgroups of free
groups are free, and an algebraic proof of the existence of free products
of groups (Th. 1.1), which was later simplified by van der Waerden [48].
It is also possible to define a notion of free product of groups with
different amalgamated subgroups, where we have a family of groups (G))
and subgroups (H;) of G, such that H; = H;. We can form the coproduct
of the G; amalgamating H;; and H;, but this coproduct will in general be
neither faithful nor separating, see B. H. Neumann [54] and the
references given there.
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The coproduct of rings was introduced (as ‘free product’) by Cohn [59],
where the coproduct of a family of K-rings was shown to be faithful and
separating whenever all the factors are faithfully flat as left and right
K-modules. This condition holds in particular when K is a field and all
the factors are faithful K-rings, a case treated in more detail in Cohn
[60], where a form of the weak algorithm was established when all the
factors are fields, and this was used to prove that the coproduct is then (in
today’s terminology) a semifir; Th. 1.3 and Cor. 1.4 were also proved
there. The method used was adapted and greatly generalized by Bergman
[74], to prove the results of 5.2 and 5.3, culminating in Theorems 3.5, 3.8,
3.9. These sections follow essentially Bergman’s paper, with some
simplifications.

The consequences 4.1-4 for tensor rings in 5.4 first appeared in Skew
Field Constructions, Lemma 4.7 is taken from Cohn [60]; the rest of 5.4 is
new. The HNN-extension for fields, Th. 5.1, and the matrix form Th. 5.5
are taken from Cohn [73]. Th. 5.8 and the results leading up to it first
appeared in Cohn [73’]. The embedding theorem 6.4 first appeared in
Cohn [58] with a direct proof; the present proof is new. A (not necessarily
associative) algebra over a field can always be embedded in a non-asso-
ciative division ring; this was shown by B. H. Neumann [51]. Bokut’ [81]
showed that every ring which is a k-algebra can be embedded in a
1-simple ring, again a k-algebra.

The results of 5.7 are largely taken from Bergman [74']. Part of Th. 7.6
(the (n — 1)-fir property) was proved in direct fashion by Cohn [69], as a
kind of analogue to ‘small cancellation theory’ in groups. The interpreta-
tion of the universal derivation bimodule as kernel of the multiplication
map (Th. 8.2) is due to Eilenberg, while much of the rest of 5.8 is folklore
(cf. also Bergman and Dicks [75,78], where Th. 8.9 is proved). The
invariance of the generating number of free fields (Th. 8.13) was proved
by Schofield [85]; the corresponding result for free algebras appears in
FR, 0.11.

The question whether left and right degrees of a field extension are
equal was first raised by E. Artin, though there seems to be no written
record and it was not listed among the problems in the preface to his
collected works (E. Artin [65]). The first example of a quadratic field
extension of infinite left degree (Cohn [61"]) was a construction based on
the embedding theorem of 2.6 (Th. 2.6.3, see Cohn [61']); pseudo-linear
extensions of right degree n = 2 and infinite left degree were constructed
in Cohn [66’]. Field extensions of different finite left and right degrees
(Th. 9.2) were first constructed by Schofield [85’], whose presentation we
follow here. In the text we referred to FR for the fact that the tensor ring
Dy(®M®) is a fir (p. 266). In fact this is a semifir by Th. 4.5; the
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fir-property is only needed in the proof of Lemma 9.5 to show that
elements have complete factorizations, but this follows easily by a direct
argument using the degree.

The results on coproducts that are right Ore in 5.10 are taken from
Cohn [60, 61”]. Using results from Cohn [85] (cf. alsp FR, Th. 7.8.4,
p. 441) it can be shown that the centre of the field coproduct E F lies in
K unless E, F are both at most quadratic over K. When E, F are both
commutative quadratic extensions of K, then the centre is a rational
function field K(r). In general the centre of the field coproduct can be
any function field of genus 0 (Schofield [85]; see also Ex. 6 of 5.10).



6

General skew fields

In any variety of algebras such as groups or rings the members can be
defined by presentations in terms of generators and defining relations.
Fields do not form a variety, as we saw in 1.2, and they do not have
presentations in this sense. In fact the usual mode of construction of
commutative fields is quite different: one takes a rational function field
over some ground field and then makes an algebraic extension. For skew
fields this method works only in very special cases, but there is an
analogue of a presentation, in terms of matrices that become singular.
Now it is necessary to verify in each case that the outcome is a field and
this forms the subject of 6.1. At this stage free fields form a natural topic,
but first we need to prepare some tools: In 6.2 we prove the specialization
lemma, which generalizes the density principle of the commutative
theory: A non-zero polynomial over an infinite (commutative) field
assumes non-zero values. The analogue for skew fields states that a
non-zero element of a free field (with infinite centre and of infinite degree
over it) can be specialized to a non-zero element in the field.

The elements of the free field are described in terms of matrices over
the tensor ring and it is therefore of interest to provide a normal form for
these matrices. This is done in 6.3 and a corresponding ‘normal form’ for
fractions is derived.

Section 6.4 is devoted to free fields. The relation between free fields
over different base fields is described and some surprising properties are
revealed, such as irreducible polynomials over a field D which become
reducible on adjoining an indeterminate to D.

One commutative concept which has (so far) no satisfactory analogue
in the general case is the algebraic closure of a commutative field. Some
properties of the algebraic closure are shared by existentially closed
fields, which form the topic of 6.5. These fields are less manageable, thus

278
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they are not axiomatizable (i.e. they cannot be defined by elementary
sentences), unlike the algebraically closed commutative fields, but they
also have properties not shared by the commutative fields, for example,
being member of a given subfield can in an existentially closed field be
expressed as an elementary sentence.

As in the case of groups one can formulate the word problem for
presentations of fields, and we shall find in 6.6 that free fields have a
solvable word problem (subject to a condition on the ground field), while
examples given here show that there are also fields with unsolvable word
problem.

The final section 6.7 uses the compactness theorem of logic to establish
the claim made in 1.2 that the class of integral domains cannot be defined
by a finite set of elementary sentences.

6.1 Presentations of skew fields

In the commutative case field extensions are very simple to describe. Any
finitely generated commutative field may be formed by taking a purely
transcendental extension of the ground field K = k(xy,...,x,) and
making a finite number of simple adjunctions; each of the latter consists
in adjoining a solution of an equation f = 0, where f is a polynomial in a
single variable over K. In particular this shows that any simple extension
of infinite degree is free. No such simple statement holds in the general
case, in fact we shall need to define what we mean by a free extension
(corresponding to a purely transcendental extension in the commutative
case).

To reach the appropriate definition, consider a finitely generated
extension E = D(«ay, ..., «,) of a skew field D. As before we shall take
all our fields to be k-algebras, where k is a commutative field. This
represents no loss of generality (in fact a gain): if k is not present, *ve can
take the prime subfield to play the role of the ground field. Given E as
above, we have a D-ring epimorphism:

D(X)->E,X={x,..., 5L, x—a(G=1,...,n). 1)
Here D, (X ) is the tensor D-ring on X introduced in 1.6. Let P be the
singular kernel of (1); since E is an epic D;(X )-field, being the field
generated by the «; over D, it is determined up to isomorphism by &. If

® is any set of matrices generating % as matrix ideal, then E is already
determined by @ and we shall write

E = Di€X; @Y, (2)

and call this a presentation of E. In particular, we call the «; free over D
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if the presentation can be chosen with ® = (J; this just means that (1) is
an honest map, i.e. P consists precisely of all non-full matrices over
D, (X). From Th. 5.4.5 we know that D,{(X) is a semifir (in fact,
D,{X) is even a fir, see FR, 2.4), so the set of all non-full matrices is a
prime matrix ideal and the corresponding universal field of fractions is the
free D-field on X, D€ X>.

Let E be any field with the presentation (2); we shall say that E is
finitely generated over D if X may be taken to be finite; E is finitely
related if ® may be chosen finite, and E is finitely presented when X and
@ can both be chosen finite. As for groups we have the following
decomposition for finitely related fields:

THEOREM 6.1.1. Any finitely related field can be expressed as the field
coproduct of a finitely presented and a free field.

Proof. Let E = D, €X; @, where ® is finite. Then the subset X' of
members of X occurring in matrices from @ is finite. If X" denotes the
complement of X' in X, we clearly have E = E’ ° E", where
E'=D€X';®¥ and E”" = D,€X"¥>. Here E’ is finitely presented and
E"is free. W

In the special case when E has finite (left or right) degree over D, the
above construction can be simplified a little. In that case (1) is surjective,
not merely epic. Moreover, instead of taking the free algebra, we can
incorporate the commutation relations as follows. Suppose that

[E:D]g =n and let u;, ..., u, be a right D-basis of E. Since E is a
D-bimodule, we have the equations
au; = Dup(a) forallae D, 3)

where the map a — (p;(®)) is a homomorphism from D to M,(D). Let
M be the right D-space on uy, ..., u, as basis; by the equations (3), M
becomes a pointed D-bimodule, as we see by changing our basis of E so
that u; =1. Let T be the filtered tensor ring on this bimodule,
constructed as in 5.4. Th. 5.4.5 can be adapted to show that this ring is a
semifir. Now E is obtained as a homomorphic image of T, so we need to
look for ideals in T which as right D-spaces have finite codimension, in
fact the kernel of (1) in this case is a complement of M in T. But it is not
at all clear how this would help in the classification of extensions of finite
degree.

Let us return to the general case. Given any set X and any set ® of
square matrices over D, (X ), we may ask: When does there exist a field
with the presentation
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D €X; ®¥? 4)
Writing (®) for the matrix ideal of D, (X ) generated by @, we have two
possibilities:
(i) (@) is improper. This means that there is an equation

I=CVGV...vC, (5)

where each C; is either non-full or a diagonal sum of a matrix in ® and
another matrix, and the sum on the right of (5) is suitably bracketed.
Then there is no field (4), in fact there is no field over which all the
matrices of ® become singular. Here there is no solution because we do
not allow the one-element set as a field.

(ii) (@) is proper. This means that no equation (5) is possible. Now
there is always a field over which the matrices of ® become singular,
possibly more than one. The different such fields correspond to the prime
matrix ideals containing (@), and there is a universal one among them
precisely when the radical V (®) is prime. In particular, this is so when
(@) itself is prime, and that will be the only case in which the notation (4)
will be used.

In practice most of the presentations we shall meet are given by
equations rather than singularities, but the latter are important in
theoretical considerations, e.g. when we want to prove that an extension
is free we must check that there are no matrix singularities. We shall
return to this question in Ch. 8.

A special case occurs when E (and hence also D) is of finite degree
over k. In that case the singularity of a matrix can be expressed by the
vanishing of a norm and hence it will be enough to consider equations.
Only in the case of infinite extensions are the matrix singularities really
necessary.

We conclude with some examples. Although the notation (4) is used, a
justification is needed in each case that the matrix ideal generated is
indeed prime.

1. The Hilbert field

H = K<€u, v; uv = vu*y. (6)

To construct this field we take a field K and form the rational function
field K(u) in a central indeterminate u; on K(u) we have an endomorph-
ism a: f(u)~ f(u*). Hence we can form the skew polynomial ring
K(u)[v; a] and its field of fractions H = K(u)(v; «), which is clearly
given by the presentation (6).

We remark that if the centre of K is C, then the Hilbert field H again
has centre C and [H:C] = ». For the proof we write u"? = v'uv™, so
that
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WY = v i)' = u.

If we put E = K(u, u'?,u'*,...), then on E « is an automorphism and
H = E(v; &) C E((v; ). It is clear that « has infinite inner order on E
and fixed field K, hence the centre of H is C (Th. 2.2.10). Moreover, 1,
u, u*, ... are linearly independent over C, so [H:C] = « (for another
proof see Prop. 2.3.5).

2. The Weyl field
W =K<€x,y;xy — yx =15, (7)

To form W we again take the rational function field K(y) and on it
define a derivation & by the rule y®=1. This extends to a unique
derivation 8 on K(y), which is just (formally) differentiation with respect
to y. The skew polynomial ring A(K) = K(y)[x; 1, 8] is called the Wey!
algebra and its field of fractions is the Weyl field W with the presenta-
tion (7).

When K has centre C and characteristic zero, we can again show that
W has centre C and is of infinite degree over it. For on writing z = x !,
we can embed W in the field of formal Laurent series in z (see 2.3); the
commutation rule now reads yz = z(y + z). We take an element f in the
centre of W and write it as a Laurent series in z:f= >.z'a;. By
conjugating with z we see that a,(y) = a,(y + z), hence q; is independent
of y, hence so is f. By symmetry f is independent of x and so f € K;
since f centralizes K, it must belong to C, hence C is the centre of K. It

is again clear that 1, x, x%, ... are linearly independent over C, so
[W:C] = .
3. Let X = {xg, Xy, . . ., x4} and consider the presentation
X X
D = k€X; A — xy>r, where A = ( ) 8)
X3 Xy

The fact that A — x, is singular may be expressed by the rational relation
x; — (% — xo)xgl(x4 — xp) = 0.

As this relation shows, D may be regarded as the free field on x, and any
three of x;, x;, x3, x;. In Ch. 8 we shall see that D may also be obtained
as an extension of the free field on x;, x,, x3, x4.

Exercises

1. Show that the Weyl algebra on x and y over a commutative field k of
characteristic p has centre k(x?, yP) and its degree over its centre is p?.

2. Show that for a commutative field k of characteristic 0 and an integer r > 1,
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the field k€u,v;vu = ruv} is infinite-dimensional over its centre k. What
happens in finite characteristic?

3. ShowthatE;(FI%G)EEIO(G.

6.2 The specialization lemma

In commutative field theory the density principle is of importance; it
states that any polynomial over an infinite field which is not identically
zero assumes a non-zero value for some value of the argument. In the
general theory there is an analogue, Amitsur’s theorem on generalized
polynomial identities, but for our purposes the result is more usefully
expressed in terms of matrices. As we shall need Amitsur’s theorem in
the proof, we shall state it in the form required here.

If A is a k-algebra, then by a generalized polynomial identity (GPI) in
a set X of variables over A one understands a non-zero element p of
A, (X)) which vanishes under all maps X — A. We shall only need the
special case of Amitsur’s theorem for skew fields, but strengthened by a
restriction on the set of values that may be substituted. The precise form
is as follows:

GPI-THEOREM. Let E be a field, £ a multiplicative subset of E and C
its centralizer in E. If for all a € E*, CaZ is infinite-dimensional as left
C-space, then any non-zero multilinear element p of E-(X) has a
non-zero value for some choice of values of X in Z.

For a proof, see A.3, Th. 9.8.3, p. 391 (see also FR, 5.9). The
restriction on p to be multilinear was necessary here, because X~ may not
be a subspace. However, if we take a subfield D for Z, the multilinearity
need not be assumed. In that case the condition [CaD:C] = » follows if
we assume (i) [E:C] = » and (ii) E = CD. For in that case each a € E*
has the form a = > cd;, where c;€ C, d;e€ D and c,d; #0 for some i.
hence CaD = CD = E, and so [CaD:C] =[E:C] = «. Thus we obtain
the following form of the GPI-theorem:

THEOREM 6.A. Let D C E be a field extension, denote the centralizer
of D in E by C and assume that (i) [E:C] = = and (ii) E = CD. Then any
non-zero element of Ec(X) has a non-zero value for some choice of
values of Xin D. B

We shall also need some auxiliary results. In the first place there is the
inertia lemma for semifirs, which is concerned with pulling down
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factorizations from Laurent series to power series. Given a ring 4 and a
subring B, we shall say that B is finitely inert in A, if for any matrix
M e " B°, such that over A we have M = PQ, where Pis r X n and Q is
n X s, there exists U € GL,(A) such that PU ™!, UQ have all their entries
in B.

LemMma 6.2.1 (Inertia lemma). Let R be a semifir. Then for a central
indeterminate t, the ring R[t] of formal power series is finitely inert in
R((t)), the ring of formal Laurent series.

Proof. We write A = R((t)), B = R[t] and indicate the natural homo-
morphism B — R, obtained by putting ¢t =0, by a bar. Given M € "B’,
suppose that over A we have

M = PQ,where Pisr X nand Qisn X s. €))

We may suppose P, Q # 0, since otherwise the conclusion holds trivially.
Over A every non-zero matrix T can be written uniquely as t'T’', where
veZ, T’ has entries in B and T' #0. Let P=t*P', Q = t*Q’, where
P’, Q' #0. Writing u+ v= —A, and dropping the dashes, we can now
rewrite (1) in the form

M =t7*PQ,where Pe "B",Q € "B*and P, Q0 # 0. )

If A <0, the conclusion follows; if A > 0, we have PQ = 0. Then, since R
is a semifir, we can find a matrix U € GL,(R) trivializing this relation,
and on replacing P, Q by PU™!, UQ we find that all the columns in P
after the first 4 are 0 and the first 4 rows of Q are 0. If we multiply P on
the right by V = t[, ® I,_, and Q on the left by V!, then P becomes
divisible by ¢, while Q has all its entries still in B. We can now cancel a
factor ¢ in (2) and so replace A by A — 1; after A steps we obtain the same
equation (2) for M but with A = 0, and this proves the finite inertia. W

There is a stronger form, total inertia, which will not be needed here
(see FR, 2.9), but we note the next result, which is proved by total inertia
in FR; below we give a direct proof.

We remark that any matrix over a tensor ring Dx(X) is stably
associated to a linear matrix, by the process of linearization by enlarge-
ment (also called Higman’s trick, see Higman [40]). We fix an entry of
our matrix in which a product occurs, say f + ab; for simplicity we take it
to be in the bottom right-hand corner. Now take a diagonal sum with 1
and apply elementary transformations. Writing only the last two entries in
the last two rows, we have
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f+ab O f+ab a f a
f+ab—>( 0 1)—)( 0 1)_)<—b 1).

In this way any matrix over Dg(X ) can be reduced to a matrix which is
linear in X.

ProPOSITION 6.2.2. Let D be a field and K a subfield of D. Then for
any finite set X, the natural homomorphism Dy(X)— Dg{(X)) is
honest.

Proof. We have to show that any full matrix over R = Dyx(X ) remains
full over R = Dg{(X)); by linearization it is stably associated to a matrix
of the form A = A, + > x;A;, where x; € X and A,, A, are matrices over
D. Enlarging X if necessary, we may suppose that it contains an element
Xo not occurring in A. Now consider xyA; this is linear homogeneous in
the variables x,, xox; (i > 0), which again form a free set, and it will be
enough to show that xoA remains full over R (which contains the power
series ring on Xy, X¢X;). Thus we may assume A to be homogeneous of
degree 1. Suppose that A is not full over R and take a rank factorization
over R:

A = BC, (3

where Bis n X rsay, Cis r X n and r < n. Write B= >, B;, C=>.C,,
where B;, C; are the homogeneous components of degree i. Then
ByCy, =0, and By, C, are matrices over D, hence on replacing B, by an
associate, we may assume
I 0
B 0~ (0 0)7

where [ is s X s, say. Since ByCy =0, the first s rows of C, are now 0,
and on replacing C; by an associate (which leaves B, unaffected), we find

that
0 o0
Co= (0 1)’

where [ is t X ¢t and since C, has r rows, s + ¢ < r. Equating homogen-
eous components in (3), we have A = B,C; + B,C, or on writing B, C;
in block form to conform with C,, B, respectively:

(¢ ), [0 B\ _[ci Bi+C
A‘(o 0)+(0 B))"\o B |
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Thus A has an (n - s) X (n — t) block of zeros. But
n—-s+n—t=2n—-s—t=2n—-r>n,

s0 A is hollow; by Prop. 4.5.4 it is not full, which is a contradiction. &

To avoid complications we have taken X to be finite, as that is the only
case needed, but with a little care the result can be proved generally.

Next we come to a property of inner ranks. As we saw in Prop. 1.4.3,
over a weakly finite ring every invertible matrix is full; we shall be
interested in matrices with an invertible submatrix:

LEMMA 6.2.3. Let R be a weakly finite ring and consider a partitioned
matrix over R:

(A A .
A= (A3 A4)’ where A isr X r.

If A, is invertible, then rA = r, with equality if and only if
AATTA, = A,

Proof. Since the inner rank is unchanged by elementary transformations,
we can make the following changes without affecting the inner rank:

Al AT'A, N AT'A, (1 0
A, A, 0 A,- AAT'A, 0 A, - A;AT'A,)
If rA = s, say, this last matrix can be written as
P, ! "
PQ - (P”)(Q Q ),

where P'is r X s and Q' is s X r. Thus I = P'Q’ and by weak finiteness
I is full, so r < s. Thus rA = r; when equality holds, we have Q' P' =1,
again by weak finiteness, but P'Q" =0, hence Q" =0 and similarly
P"=0. Hence A, — A3A;'A, =0 and the conclusion follows; now the
converse is clear. I

We shall also need a weak form of the specialization lemma, referring
to a central indeterminate.

LeEMMA 6.2.4. Let D be a field which is a k-algebra over an infinite
field k, and consider the polynomial ring D[t] in a central indeterminate,
with field of fractions D(t). If A = A(t) is a matrix over D[t], then the
rank of A over D(t) is the maximum of the ranks of A(«), o € k, and this
maximum is assumed for all but a finite number of values of «.
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Proof. By the diagonal reduction of matrices over the principal ideal
domain D[] (see 10.5 of A.1 or 8.1 of FR) we can find invertible
matrices P, Q over D[¢] such that

PAQ = diag(py, ..., p,, 0, ...,0), where p; € D[¢]. (€))

The product of the non-zero p; gives us a polynomial f whose zeros in k
are the only points of k at which A = A(¢) falls short of its maximum
rank, and by the density principle this cannot happen for more than deg f
values. @

We now come to the main result of this section:

THEOREM 6.2.5 (Specialization lemma). Let D be a field which is a
k-algebra over an infinite field k. Let E be an extension field of D, C the
centralizer of D in E and assume that E = CD and [E:C] = «. Then any
full matrix over E.(X) (for any set X) is invertible for some choice of
values of X in D.

Proof. Let A = A(x) be a full n X n matrix over E-(X) and denote by
r the maximum of the ranks of A(a) as a ranges over D*. We have to
show that r = n, so assume that r < n. Since only finitely many xs occur
in A, we may take X finite. By a translation x—>x +a (x € X,a € D)
we may assume that the maximum rank is attained for x = 0; further, by
interchanges of rows and of columns we may take the r X r principal
minor of A(0) to be invertible. Thus if

_[Bix)  By(x)
A"‘)“(Bl(x) Bi(x))’

where B; is r X r, then B;(0) is invertible. Given a € D* and any A € k,
we have rA(Aa) = r, hence by Lemma 2.4, the rank of A(ta) over E(?) is
at most r, and the same holds over E((¢)). Now B,(ta) is a polynomial in
t with matrix coefficients and constant term B,(0), a unit, hence B;(ta) is
invertible over the power series ring E[¢]. By Lemma 2.3, the equation

By(ta) = Bs(ta)B(ta)™' By(ta) (5)
holds over E[¢] for all a € DX. Therefore the matrix
By(1x) — Bs(1x)By(1x) ™' By(1x) (6)

vanishes when the elements of X are replaced by any values in D. Now
(6) may be regarded as a power series in ¢t whose coefficients are matrices
over Ec(X ), so the entries of these matrices are generalized polynomial
identities or identically 0; hence by the GPI-theorem 6.A the expression
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(6) vanishes as a matrix over E-( X )[¢]; putting ¢ = 1, we obtain a matrix
A(x) over Ec{(X)) of inner rank r, and since r < n, it is non-full. But
this contradicts the fact that A(x) is full over Ec(X ) and the inclusion in
E-{(X)) is honest. This shows that » = n and so A(a) is invertible for
some a € DX. B

Taking E = D, k = C, we obtain an important special case:

COROLLARY 6.2.6. Let D be a field with infinite centre C and suppose
that [D:C] = . Then every full matrix over Dc(X) is invertible for some
choice of values of X in D. B

For the specialization lemma to hold it is clearly necessary that C
should be the precise centralizer of D. For C must centralize D to make
the substitution possible, and if C were smaller, say there existed « in the
centralizer of D but not in C, then ax — xa would be non-zero and
hence full, as 1 X 1 matrix, even though it vanishes for all values of x in
D. Secondly, if [E:C] were finite, there would be non-trivial identities
over E, so again the lemma does not hold. On the other hand, it is not
known whether it is essential to assume an infinite ground field.

One way in which the specialization lemma can be used is to specialize
the variables in D, € X% so as to preserve certain elements. If E is a field
containing D (and still a k-algebra), then any map a: X — E can be
extended to a homomorphism, again written «, of D (X) into E; if
% =Kera is the singular kernel, then &« can be extended to the
localization of D,( X ) at ?. This yields the following result:

ProPOSITION 6.2.7. Let D C E be an extension of fields such that the
centre k of E is contained in D, and assume that k is infinite and
[E:k] = . Then for any finite set of elements p,, ..., p, of D;€X>
there is a map oa: X — E such that the induced homomorphism « of
D {X) into E is defined on p,, ..., p,. In particular, the intersection of
all the singular kernels of the homomorphisms of D, (X ) into E is the set
of all non-full matrices over D, (X).

Proof. By Prop. 5.4.3 we have a natural embedding D, €X» —
E,€ X, hence an honest homomorphism D, (X ) — E, (X ). Now let A;
be the denominator of p; in some representation (see 4.2); then A, is full
over D, (X ), hence also over E;(X),andsois A=A, @D ... D A,. By
the specialization lemma (Th. 2.5) we can find o: X — E such that A% is
invertible over E, hence each A} is invertible over E and it follows that
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« is defined on p; for i = 1, . . ., r. The last part follows because for each
full matrix A we can find a singular kernel of a map to E which excludes
A, so the intersection of these singular kernels is just the set of all
non-full matrices. W

As a further application we prove a form of the normal basis theorem
for Galois extensions. Let L/K be a finite Galois extension with Galois
group G, and denote by G, the subgroup of inner automorphisms. Write
(G:Gy) = r, denote the centre of L by C and recall that the algebra
associated with G (see 3.3) is defined as

A={aeLla=0orI(a) € G).

It is clear that A is a C-algebra and if [A:C]=s, then [L:K]=
|Glrea = s = n, say, by Th. 3.3.7. Choose a transversal g4, . . ., 0, of G,
in G and a C-basis vy, . . ., v, of A; the set of rs elements 0;1(v;) will be
called a reduced automorphism set of L/K. By Cor. 3.3.3, the rs
elements 0;1(v;) form a right A-basis for the right A-space spanned by all
the oI(a) (o€ G,a € A), for this corollary shows them to be linearly
independent, and if o € G, then o = 0,1(a), where a = Y A,v; (A € C);
hence forallx € L,

O _ ,0; _ oi—1 _ 0i,—1 _ N i, —1
x°=x%(a) = ax"a”' = JAvxa™t = Zox%;'h;,

where b, = Awa~' € A. It follows that any element o of G can be
expressed in the form

o= 0(a) = > 0;I(v)) whereb;e Aandidependsono. (7)
j

As in the commutative case we have the following criterion for a set to
be a K-basis of L:

LeEMMA 6.2.8. Let L/K be a Galois extension of degree n with reduced
automorphism set 6y, ..., 8,. Then a given set {uy,...,u,} of n
elements of L forms a left K-basis of L if and only if the matrix P = (py),
where p; = u,»o", is non-singular.

Proof. The n elements uy, ..., u, form a basis if and only if they are
linearly independent over K. If there is a dependence relation Y, au; = 0,
where the g, € K are not all 0, then Zaiuie =0 for all j, so P is then
singular. Conversely, assume that the u; form a basis. By Dedekind’s
lemma (Th. 3.3.2), the 6, are linearly independent, thus for any x € L,

2xfic=0 (eLly=c=...=¢,=0. (8)
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Now x = Y au; for suitable a; € K, hence (8) is equivalent to
Euio"cj=0=cj=0,j=1,...,n,

and this shows P to be non-singular. W

For our purpose we need to transform the specialization lemma as
follows:

LeMMA 6.2.9. Let L/K be a Galois extension of degree n with reduced
automorphism set 6y, . .., 8,, and denote the centralizer of K in L by H.
Further, assume that L, K are k-algebras, where the field k is infinite and
L=HK, [L:H]=wo. If A=A(x(,...,X,) is a full matrix over
Ly{xy,...,x,), then A@u®, ..., u%) is non-singular for some u € L.

Proof. Letu,, ..., u, be aleft K-basis of L and define a matrix B by

B(yis . sy = A(Zyiu,?*, . zy,»u;""). ©)

Suppose that A(u®, ..., u%) is singular for all u € L; the lemma will
follow if we show that A(xy, ..., x,) is non-full. Now by (9), under the
hypothesis stated, B(ay,...,a,) is singular for all ;€ K, so by the
specialization lemma (Th. 2.5), B(y,...,y,) is not full over
Ly{y1,...,yn); but the equations

X = Dyul (10)

can be solved for the y; because the matrix (") is non-singular, by
Lemma 2.8. Hence the matrix A(x,, ..., x,) = B(y;, ..., y,) is non-full,
as we wished to show. B

We now come to the normal basis theorem. We recall that a normal
basis of a Galois extension of commutative fields is a basis consisting of
the conjugates of a single element, and the existence of such a normal
basis is well known in that case (see e.g. A.3, Th. 5.7.5, p. 205).

THEOREM 6.2.10. Let L/K be a finite Galois extension and assume
that L, K are algebras over an infinite field k, and that L = HK,
[L:H) = «, where H is the centralizer of K in L. Then L/K has a normal
basis.

Proof. Let 6y, ..., 0, be a reduced automorphism set for L/K and let
A(G) be the associated algebra (G being the group of L/K). From
Lemma 2.8 we know that the elements u, . . ., u, € L form a basis if and
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only if the matrix (") is non-singular, so we have to find u € L such that

the matrix («%%) is non-singular. By (7) we have
6,6; = >,0,b,;, where by; € A(G). (11)
Let us consider the matrix A = (a;) over Ly{xy, ..., x,), where
a; = Exhbhij. (12)

We can partition A into blocks corresponding to the transversal oy, . . .,
o, of G, in G that was used for the set {6;}. Thus in block form we have
A=(A,;,), where A,u=1, ..., r. If 6,, 6; are represented by o;, g,
respectively and 0,0, = 0, (mod G,), then in (11), b,; =0 unless 6, is
represented by o,. Hence when A is written in block form, it is a
monomial matrix, i.e. each row has just one non-zero block A,, and
likewise each column. To determine when A is singular we can therefore
confine our attention to a single block.

We claim that A(1 0 ... 0) = (by;) is non-singular. For if it were
singular, then in some row every block would be singular, i.e. there
would exist a suffix i and elements c; € A(G), not all 0, such that

Eblijcj =0, (13)
and here all the 6; for which b,; # 0 belong to the same o0,. Hence
20ici=6=0,(v), whereve A(G).

Now the relation (ab)? = a®b®, where a, b € L, can be written as an
operator equation, b6 = 6b%, and by (11),

9,‘0 = EGIB]C] = Eehbh,’jCj.

This is independent of 8, by (13), so forany a; € L,

20,’(1,'0 = ZO,Ba? = 2 Ghbh,-a?, where bhi = Ebhijcj'
h=2

This means that € is a semilinear transformation of the right L-space
spanned by 6;, ..., 8,, whose image is a proper subspace. But 8 as an
automorphism of L is invertible, so we have a contradiction, and this
shows that (b,;) is non-singular. Similarly for the other blocks, hence
A=A(xy,...,x,) must be full over Ly(x;,...,x,). By Lemma 2.9
there exists u € L such that A(u®, ..., u%) is non-singular; this is the
matrix (p;), where

pi = Zu"”bhq-
But this is just %%, by (11), and it is what we had to show. W
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Exercises

1. Find the modifications needed to prove Prop. 2.2 in the case when X is infinite
(distinguish the case where the degrees of x € X are bounded).

2. Find a counter-example for Lemma 2.3 when R is not weakly finite.

3. The GPI-theorem may be stated more generally as follows: Let E be a field, H
a subring and K its centralizer. If for all a € E* the left K-space KaH is
infinite-dimensional over K, then any non-zero element of Ex( X ) has a non-zero
value for some choice of values of X in H (see Cohn [89"]). Use it to show that if
H is a semifir with universal field of fractions D such that the centre C of D is
infinite, and H contains C and is of infinite degree over C, then any full matrix
over Ho(X) is full for some choice of values of X in H.

4. Let k be any commutative field and U = k€ X > the free field on a set X over
k. Show that no element of U\k can be algebraic over k. (Hint. Put F = k(¢) and
let E be the Hilbert field on F; if u € U\k, fix A € k, take a specialization such
that u # A and use the fact that k is relatively algebraically closed in E, see Ex. 7
of2.3)

5. Let K be a skew field whose multiplicative group is simple; verify that its
centre is F,. Show that there exists such a field of any infinite cardinal. (Hint.
Form U = F,€ XY with a set X of the given cardinal, apply Cor. 5.5.2 to embed
it in a homogeneous field and use Ex. 4.)

6.3 Normal forms for matrices over a tensor ring

When we are given a specialization @ of a free field U, to determine
whether ¢ is defined at an element p of U we need to examine the image
under @ of a denominator for p, as is made clear by the proof of Prop.
2.7. This makes it of interest to reduce the denominator to the simplest
possible form; we shall accomplish this objective by finding a form for
matrices over the tensor ring which is unique up to stable association,
with a minimal representative in its class, unique up to association.

Let E be any field and D a subfield and consider the tensor E-ring
R = E,(X) on aset X, and its universal field of fractions U = E,€X>.
We are interested in full matrices over R, occurring as denominators of
elements of U, but to begin with we take any matrix over R, not
necessarily square. As a first simplification we shall reduce our matrix to
be linear in X. By linearization by enlargement, any m X n matrix over
Ep{X) can be reduced to the form

d
A= Ao+ D AxA]L (1)
1
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where the x; are distinct elements of X and Ay, A}, A} are matrices with
entries in E. In the first place such a reduction gives r, terms a,x, 4}, say,
where the a; are columns and the a4’ are rows; we combine the a;, to an
m X ry matrix A] and the 4/ to an r; X n matrix A7, and similarly for the
other variables. Thus in (1), Agis m X n, Al is m X r; and A} is r; X n.
We may further assume that the columns of A] are linearly independent
over D and likewise for the rows of A}, for when this is not so, we can
make a transformation which will reduce r;.

Any matrix A over Ep(X) is called linear if it has the form (1), where
Ay, A}, A} have entries in E; if the r; are minimal, A is said to be
reduced. From what has been said it follows that when A is reduced, the
columns of each A; are right linearly independent and the rows of each
A7 are left linearly independent over D. The matrix A of the form (1) is

called right monic if it is linear, reduced and Aj, ..., A} are right
comaximal, i.e. (A1, ..., A}) has a right inverse; A is left monic if it is
linear reduced and A, . .., A’ are left comaximal, and a monic matrix is

one which is left and right monic.
In a right monic matrix A the terms of highest degree are left regular.
For assume that A has the form (1) and suppose that

P(ZA;x,.A;') =0.

Since the rows of each Aj are left linearly independent, we can equate the
left cofactors of x; and obtain PA; = 0. Now by hypothesis there exists a
>, x m matrix T such that (A],...,A))T =1, hence P= P(A], ...,
AT = 0. It follows that A itself is left regular.

The following lemma represents the analogue of the weak algorithm for
matrices. For any matrix A we shall denote by A the terms of highest
degree in A, and write d(A) for the degree of A in the x;.

LeMMA 6.3.1. Let R= Ep{(X) be a tensor E-ring, and consider a
linear matrix A over R such that A is right regular, and a right monic
matrix B over R. If P, Q are matrices over R such that

PB = AQ, @
then there exists a matrix C over R such that
P=AC+P0,Q=CB+Q0 andPOB=AQ0, (3)

where Py, Qq are matrices over E.

Proof. Equating highest terms in (2), we obtain
PB=A40. )

hN|
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If d(Q) =0, then deg P = 0 by (4), because B is right monic and so B is
left regular; so the result follows in this case. We may now assume that
d(Q) = 1 and write O = >, Fx;Q;, where F, is over R and Q, over E. If B
in reduced form is B = >, B/x; BY, then (4) becomes

ZPBExiBi’ = ZA Fx,Q;. )

By taking the number of columns in F, to be minimal we may also assume
that these columns are right linearly independent over D. If we now
equate the terms with last factor x; in (5), we obtain

I_’B{xlB'{ = AF]XIQI.
Since B is reduced, the rows of By are left linearly independent over D;
hence we have Q, = V| Bf for some matrix V; over D and so
P B i = ZF 1 Vl'
Similarly, equating terms with x; as last factor we obtain a corresponding
equation for PB; and so find that
P(Bi, e ey Btli) = f_l(FlVl, cee s ded)'

Let T be a right inverse of (Bi,..., By) and put C=(FVy, ...,
F,V,)T. Then T is a matrix over E and we have

P=P(B],...,B)T = AC. ©6)
Now by (2)
(P—- AC)B = A(Q — CB);

this is an equation of the same form as (2), but P — AC has lower degree
than P, by (6), and since A is right regular, Q — CB has lower degree
than Q, so the result follows by induction on d(Q). B

We now have the following normal form theorem for matrices over a
tensor ring:

THEOREM 6.3.2. Let R = E,(X) be a tensor E-ring. Any matrix over
R is stably associated to a matrix A @ 0, where A is monic. Moreover, if
A DO, A’ D 0 are two matrices that are stably associated and such that A,
A’ are monic, then the numbers of rows of A, A’ agree, as do those of
ADO, A’ DO, and likewise for columns, and there exist invertible
matrices P, Q over E such that PA’ = AQ.

A linear matrix stably associated to a matrix T is also called a linear
companion of T.
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Proof. By the linearization process we reach a linear companion for our
matrix, of the form A @ 0, where A is an m X n matrix of the reduced
form (1). Suppose that m + n is minimal for the given matrix; we claim
that A is then monic. For if (A1, ..., Aj}) has no right inverse, then its
rank is less than m and so by elementary row operations its last row can
be reduced to zero. If now the last row of A, is also 0, we can reduce m
by 1, contradicting the minimality; this amounts to writing A as B® N,
where N is the 1 X 0 zero matrix. Hence the last row of A, is not 0, and
by further row operations over R and column operations over E we find
that A is associated to A’ © 1, where A’ is again linear. So A is stably
associated to A’, but this again contradicts the minimality of m + n.
Hence A is right monic; by symmetry it is also left monic, so the existence
of a monic form (1) is established. We remark that if A is invertible, it is
stably associated to the 0 X 0 matrix.

Suppose now that A, A’ are both monic and A © 0, A’ © 0 are stably
associated; then F@ 0 and F’ © 0 are associated, where F=A D [,
F' = A’ @ I, for suitable r and s. Thus there exist invertible matrices U,
V such that for appropriate partitioning,

(U1 Uz)(F 0) _ (F’ 0)(V1 Vz) ™
u, UJ\0 O 0 0)\Vy V)

Equating (2, 1)-blocks, we find that U, F = 0, while the (1, 2)-blocks show
that F'V, =0. Now A, A’ are regular, hence so are F, F' and therefore
U;=0=V,. Let FbemXxn, Fm'xn'and F®0, F' & 0both t X u.
Then U; is (t—m')X m, and since U is full, we must have
t—m'+m=<t, ie. ms=m' (by Prop. 4.54). Similarly V, is
n'X{u—n), so n'"+u—n<u, and hence n’ < n. By symmetry we
have m's m, n<n’, and so F and F' are both m X n. It follows that
Uy, Uy, Vy, V, are all square and are invertible, since this is true of U, V.
Moreover, U, F = F'V,, so F and F' are associated and A, A’ are stably

associated. By Th. 1.5.1 we thus have a comaximal relation AB' = BA’,
and there exist matrices C, D, C’, D’ over R such that

A B D' -PB .
( C D) and (_ C’ A ) are mutually inverse. 8

Further, by Lemma 3.1 there exists P such that
B= AP+ B,, B’ = PA’ + By,

where B,, B are over E. Hence on multiplying the matrices (8) by

0
obtain a pair of mutually inverse matrices

<I _IP) on the right and by (é f) on the left, respectively, we
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A By D -B;

(C D1) and (—C’ 4 )
We also have A’'C = C'A, so by another application of Lemma 3.1 we
obtain a pair of inverse matrices

A B, D} -B
(& mfmef% )

where C;, Cy are over E. Thus we have the equation
ADj — ByCy = 1.

Equating highest terms we find >, A/x;A7D} = 0. Taking right cofactors of
x; we have A!D}=0, and since (AY,..., AT is right regular, we
conclude that 175 =(); hence D; =0 and so —ByCj = 1. Thus B, has a
right inverse over E, and by symmetry B; has a left inverse. Hence,
denoting the index of a matrix A by i(A), we have i(B)=0=i(B’);
since A, A’ are stably associated, they have the same index, hence so do
B, B’ and therefore i(B)=i(B')=0. It follows that B,, B are
invertible over E, and we have AB;y = ByA’, as claimed. B

The proof shows that once we have reached a linear form for our
matrix, if the latter is right regular, we can achieve left monic form by
elementary row operations over E and column operations over R, and
similarly on the other side. Thus we obtain

CoroLLARY 6.3.3. If A is a right regular linear matrix over
R = Ep(X), then there exists an invertible matrix P over E and an
invertible matrix T over R such that PAT = B @ I, where B is left monic.
Moreover, the entries of P and the coefficients in the entries of T can be
chosen to lie in the subfield of E generated by the coefficients in the entries
of A. R

Next we derive a bound on the degrees of the factors in a matrix
factorization. For any matrix C = (c;) over R = Ep(X) we write again
d(C) = max {d(c;)}, where d denotes the degree. In the proof we shall
need the weak algorithm. We recall from Ch. 2 of FR that a family (a;) of
elements of R is called right d-dependent if some g; = 0 or there exist
b; € R, almost all 0, such that

d(Zaibi) < max {d(a;) + d(b))}.

An element a is said to be right d-dependent on (a;) if a =0 or if there
exist b; € R, almost all 0, such that



6.3 Normal forms for matrices over a tensor ring 297

d(a - Ea,.b,.) <d(a), d(a)+ d(b) < d(a).

Now the weak algorithm for the tensor ring R asserts that in any right
d-dependent family some element is right d-dependent on the elements of
lower degree in the family. As a consequence any right ideal of R has a
right d-independent basis (FR, Th. 2.2.4); here this result will only be
needed for finitely generated ideals.

LEMMA 6.3.4. Let R = E,(X) be the tensor E-ring over D on X and
let C e ™R". If

C=AB 9)

is a factorization of C, where A is m X r and right regular and Bis r X n
and left regular, then there is an invertible matrix U, over R such that
d(AUy) = d(CO).

Proof. Write C = (c;), A = (a;3), B = (b;;) and consider the tensor ring
S=Ep(Z), where Z=XU {y,..., Y, with new variables y,. The
embedding R — S is honest, since R is a retract of S. Consider the right
ideal a of S generated by p, = > ya; (A=1,...,r). Since A is right
regular, a is free on the p;. By the weak algorithm we can find a right
d-independent basis ¢, . . . , g, of a with

d(q) =< ...=<d(q).

Since (p,) and (g,) are two bases of a, we have

Pr= Eyia,-x, q, = Eyt‘ah,

where A and A’ = (qf) are right associated, and we have C=
AB = A'B', where B' = (b};) is left associated to B. We claim that
d(q,) <1+ d(C); for if d(q,) > 1 + d(C), suppose further that b;; # 0 for
some j. Since f; = > yic; can be written as f; = >q bj;, we have

d(qubij) = d(f) =1+ d(C) <d(q,) < d(q,) + d(by).

This shows that the g; are right d-dependent, a contradiction, unless
b;; =0 for all j, which in turn contradicts the fact that B’ like B is left
regular. This then shows that d(q,) <1+ d(C), and therefore
d(A')=<d(C). Now A’ = AU for an invertible matrix U over S. Setting
y; =0, we obtain a homomorphism from S to R which maps U to an
invertible matrix U, and does not raise the degree, hence d(AU,) <
d(C). i



298 General skew fields

We can now achieve our aim, of proving a factorization theorem for
linear matrices over tensor rings. A matrix factorization PQ is said to be
proper if P has no right inverse and Q has no left inverse. If a matrix
with a proper factorization PQ is left regular, it follows that P has no left
inverse, either. For if P'P = I, then

(PP’ - HPQ = P(P'P-1Q =0,
hence PP’ = I, but this contradicts the fact that P has no right inverse.
THEOREM 6.3.5. Let R = Ep{X) and consider a linear matrix C over
R which is left regular. If
C=FG (10)

is a proper factorization of C, where F is right and G is left regular, then
there exist invertible matrices U, W over E and V over R such that

A 0
P B

A 0
0 I

I 0

UFV=( P B

ot S|

Proof. Let (10) be the given factorization of C; here F is regular,
because it is right regular and C is left regular. Suppose that F is m X r
and G is r X n. By Lemma 3.4 we can make an internal modification
such that F has degree at most 1. Since a regular matrix over E is a unit,
F must have degree exactly 1. By Cor. 3.3 there exist U € GL,,(E),
V € GL,(R) such that

UFV = A® I, (11)

where A is left monic (m — s) X (r — 5s). Hence by suitably partitioning
VG, we can rewrite (10) as

A 0\/G
o= {5 )
Now UC is linear, hence G” is linear and G’ has degree 0, since
otherwise the leading term of G’ would be in the right annihilator of A4,
contradicting the fact that A is left monic (and so A is right regular). The
matrix G’ has t=r —s rows and is left regular (because G is left

regular), hence it has a right inverse over E, i.e. there exists
W e GL,(E) such that G'W = (I, 0). It follows that

e [G' Ny (I O (A o\(I o
VGW-(G,,W—P gl VW= Sl )

and this, together with (11) is the required form. W
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We shall mainly need the following consequence. We recall that an
n X n matrix is called hollow if it has an r X s block of zeros, where
r + s > n. As we saw in Prop. 4.5.4, such a matrix cannot be full.

COROLLARY 6.3.6. A linear square matrix over R = E{(X) which is
not full is associated over E to a linear hollow matrix.

Proof. Let Ce R,, C=FG,where FisnXr,Gisr X nand r < n. We
may assume C left regular since otherwise it is left associated to a matrix
with a zero row (and so hollow). By Th. 3.5 there exist U, W € GL,,(E)

such that
A 0
UCW—(P B),

where A is s X (r +s—n) and B is (n —s) X 2n — r — s). Hence the
zeroblockiss X 2n—r—s)and2n—r—s+s=2n—-r>n. A

These results allow us to express denominators for the free field in
monic form:

THEOREM 6.3.7. Let R= E,(X) be the tensor ring on X and
U = Ep€ X its universal field of fractions. Then every element of U can
be described by a reduced block with a universal denominator,

(;; z) (12)

with a monic matrix A, determined up to unit factors over E.

Proof. Let f € U and suppose f is represented by the block (12). Here A
may be replaced by any matrix stably associated to it. For if P, Q are
invertible matrices of the same order as A4, then the block

uQ c
PAQ Pv

defines the same element as (12), and so does

u 0 ¢
A 0 vy, (13)
o I 0

while for A = B @ I, we can partition u, v accordingly and reduce (12)
as follows:
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u  u < uw 0 c—-u"v u 0 c-u"v
B 0 o |->|B 0 v' —-|B 0 v’
0 1 v" 0 I v’ 0 I 0

u  c—u"v’
- )
where the last step is inverse to the step passing from (12) to (13). Thus
by appropriate operations we can transform a block for f € U to another
block of this form in which A is monic, using Th. 3.2, and hence reduced.
Since R is a semifir, we can use Th. 4.7.1 to conclude that A is

determined up to stable association and by Th. 3.2, if A, A’ are monic
matrices in two blocks representing f, then

PA' = AQ, (14)

for invertible matrices P, Q over E. By Th. 4.7.3 the denominator is
universal.

By using the specialization lemma we obtain a representation of
elements of U by power series:

THEOREM 6.3.8. Let K be a field with centre C such that C and [K:C]
are infinite. Then every element of Kc€x,...,x; ¥ can be represented as
a power series in x; — «; for suitable a; € K.

Proof. Let f € U, the universal field of fractions, and take a block (12)
representing A, with A in monic form, say
A=A+ D AxAL (15)

By the specialization lemma A is non-singular for some values «a; of x; in
K. Replacing x; by y; = x; — «;, we obtain a representation (15) where A
is non-singular for y; = 0 and by passing to an associate, we may take A
in the form I — B, where B is homogeneous of degree 1 in Y = {y,}.
Now over K-{(Y)) f takes the form

f=c-uA"'v=c—-DuB'v. R
Exercises
(In Ex. 1-3, R = Ep{ X ) denotes the tensor ring, as in the text.)
1. Show that a linear homogeneous left regular matrix is right monic.

2. Use Th. 3.5 to show that a monic full matrix A over R is an atom if and only if
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A is not associated over E to a matrix in block triangular form. Obtain a bound
on the length of factorizations of monic full #n X n matrices over R in terms of n.

3. Give an example of a monic matrix over R which is not full.

6.4 Free fields

Our main concern in this section is to investigate the relation between
free fields with related base fields. But we begin by making use of the
specialization lemma to prove the existence of free fields without using
the theory of Ch. 4.

THEOREM 6.4.1. Let E be a field with centre C and consider the tensor
ring R = Ec{X) on any set X. Then there exists an epic R-field U with an
honest embedding R — U, hence U is the free field E.€X>.

Proof. We shall prove the result by finding an honest homomorphism
from R to an ultrapower of E. Suppose first that [E:C] = « and that C is
infinite, and consider the mapping

R=E{X)— EF", 1)

where p € R is mapped to (py), with p; = p(xf), for f € EX. With each
square matrix A over R we associate a subset B(A) of EX, its singularity
support, defined by

B(A) = {f € EX|A(xf) is invertible over E}.

By Cor. 2.6 9(A) # & for any full matrix A, while for a non-full matrix
@(A) = . For any invertible matrices P, Q over E, P ® Q is again
invertible, so A(x) @ B(x) becomes singular precisely when A(x) or
B(x) becomes singular, hence we have

B(A) N B(B) = B(A ® B).

This shows that the family of sets 9(A), where A ranges over all full
matrices over R, is closed under finite intersections. Hence this family is
contained in an ultrafilter ¥ on E* (see 1.2), and the homomorphism (1)
gives rise to a homomorphism to an ultrapower:

R— EF' /%, )

As an ultrapower of E the right-hand side is again a field, and every full
matrix A over R is invertible on @(A) and so is invertible in the
ultrapower. Thus (2) is an honest homomorphism, so the subfield
generated by the image of R is the desired epic R-field U.
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There remains the case where C or [E:C] is finite. We take
indeterminates r, s, ¢ and define E, = E(r), E, = E{(s). On E, we have
the automorphism a: f(s) > f(rs), of infinite order, with fixed field E;.
We now form the skew function field F = E,(¢; «); by Th. 2.2.10 the
centre of F is the centre of E;, namely C(r). This is infinite and
[F:C(r)] = », because the powers s” are clearly linearly independent.
The natural homomorphism Ec{X) — F¢,){(X) = F} E; (X) is hon-
est, by Prop. 5.4.4 and Lemma 5.4.2. We now construct the free field
Fe»€ X3 by the first part of the proof, and this is a field over which
every full matrix over E-{ X ) becomes invertible. Wl

Let us return to E-{ X ) and suppose now that C is a central subfield of
E. Given any subfield D of E, let us write Kk = D N C; then we have a
natural homomorphism of tensor rings

Di(X) » Ec(X), 3)

and this map is injective, for the subring of E-(X ) generated by D and
X is determined by the defining relations ax = xa for all x € X,
ae DNC=k, and hence is isomorphic to D,(X). We shall be
interested to know when there is a corresponding homomorphism of free
fields:

DXy — Ec€XY. )

Clearly this is so if and only if the map (3) is honest, but that is not always
the case. We shall find that it is so precisely when C and D are linearly
disjoint in E over k, i.e. when the natural homomorphism

C®kD——)E

is injective. But we shall need some preliminary results.

LEMMA 6.4.2. Let R be a k-algebra and E/k any field extension
(possibly skew) of finite degree. If R is a right Ore domain and
Rz = R @, E is an integral domain, then Ry, is again a right Ore domain.

Proof. Let K be the field of fractions of R and consider Kj; this is of
finite degree over K, because [Kz:K] = [E:k], so if we can prove that it
is a domain, it must be a field. Now every element of Ky has the form
p=24®ab7!, where A, € E, a;€ R, b € R*. Hence p = ub™!, where
u=>A® a; e Rg. We conclude that R* is a right Ore set in Rg: given
ueR, beR”, wehave b™'u = u,b;" for some u; € Rg, b, € R*, hence
uby = bu, and clearly u; #0 if u # 0. It follows that Ky is a domain:
given ub™', vc™'#0 in Kz, we have b 'v=uv,b;' say, hence
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ub lve™' = uv,b7'c™ = uvy(ch;)~!, which is not 0 because uv,# 0.
Thus K is a domain, hence a field, and so Rg is a right Ore domain. W

Next we examine the effect of a scalar extension of the coefficient field
of a tensor ring:

LeEMMA 6.4.3. Let D be a field which is a k-algebra and let C/k be a
commutative field extension. If D @, C is a domain, then (i) D ®, C is
an Ore domain and (ii) we have

(D ®; C)c(X) = Di(X) ®; C. &)

Proof. To prove (i) it is enough to take the case where C is finitely
generated over k, because the Ore condition involves only finitely many
elements of C. Thus let C be a finite algebraic extension of C, = k(T),
where T = {t;,...,t} is a finite set of indeterminates. By the Hilbert
basis theorem the ring D ® k[T] = D[T] is Noetherian, and hence
an Ore domain, and so is its localization D ®, Cy,. Now D ®, C =
(D ®, Cy) O, Cis an extension of finite degree, hence an Ore extension
by Lemma 4.2.

To prove (ii) we note that we have a k-bilinear map from D,(X ) and
C to (D ®, C)c{X), hence a homomorphism from right to left in (5),
and a (D ® C)-ring homomorphism from left to right, and these two
maps are clearly mutually inverse. B

Next we show that irreducibility is preserved by suitable extensions of
the ground field.

PrROPOSITION 6.4.4. Let D be a field which is a k-algebra and let C/k
be a simple algebraic (commutative) field extension whose generator has
the minimal polynomial f. If f is irreducible over D, then it remains so over
T=D€X> and Tc=T ®, C is the universal field of fractions of
(D ®; C)c(X).

Proof. We have C = k[t]/(f), hence D ®, C = D[t]/(f), where f is
central and irreducible over D, by hypothesis, hence D ®, Cis a field E,
say. If we can show that the tensor ring E-{ X ) has the universal field of
fractions T, then f must be irreducible over T and the proof will be
complete.

By Lemma 4.3 we have the isomorphism

E(X)=D(X)®,C, (6)

so the right-hand side is a semifir. Now we have the commutative square
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DX DXy =T

Di<X> & C DXy ®C=T¢

which shows that T, can be obtained from D, (X ) ® C by inverting all
full matrices over D,(X) (it is not obvious a priori that these matrices
remain full over D{(X) ® C). Now E€X> is formed from
Ec{X)=D,(X)® C by inverting all full matrices, so we have a
homomorphism

Tc— Ec€X73, )

which consists in inverting all full matrices. By Th. 5.5.11, T = D, €X>»
has the centre &, so T is simple (by Cor. 7.1.3 of A.3), and hence (7) is
injective. Further, [T¢:T] =[C:k] < %, so T is Artinian and therefore a
matrix ring over a field (see A.2, Th. 5.3.2, p. 174). But by (7), T is
embedded in a field, so T, is itself a field, and it follows that
Te = E-€ X7, as we had to show. &

We shall also need a criterion for a field to split under a commutative
field extension.

LEMMA 6.4.5. Let E be a field which is a k-algebra and let C = k(a)
be a simple algebraic (commutative) extension of k, generated by an
element o with minimal polynomial f over k. Then E ®, C is Artinian
and moreover, (i) E ®, C is simple if and only if f is irreducible over the
centre of E, (ii) E ®, C is a field if and only if f is irreducible over E.

Proof. It is clear that E ® C is Artinian, as E-ring of finite degree. Now
we have

E ®, C= E[1)/(f),

and the ideals of E[¢] are generated by invariant elements of E[¢], which,
up to unit factors, are the monic polynomials with coefficients in the
centre, Z say, of E (by Prop. 2.2.2). Thus E[t]/(f) is simple precisely
when f is irreducible over Z, i.e. (1). Suppose now that f is irreducible
over Z; then it is an I-atom and by Th. 1.5.4 we have E[t]/(f) =M,(D),
where D is a field and n is the length of f in a factorization over E[¢].
Hence E ® C is a field if and only if n =1, i.e. f is irreducible over
E. 1
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We now come to the main result of this section, giving conditions for an
embedding of free fields:

THEOREM 6.4.6. Let E be a field with a central subfield C, let D be a
subfield of E and put k = D N C. Then for any set X there is a natural
embedding

DXy — Ec€XY, ®
if and only if D and C are linearly disjoint in E over k.

Proof. Suppose that there is a D-ring homomorphism (8) which is the
identity on X. Then we have a k-bilinear map of D;€ X and C into
E-£€X?Y and hence a homomorphism

DXy @, C— Ec€X. )

Since D, € X> has centre k, the left-hand side of (9) is simple (Cor. 7.1.3
of A.3) and so (9) is an embedding. The restriction to D &, C gives an
embedding of the latter in E and this shows D and C to be linearly
disjoint in E over k.

Conversely, if D and C are linearly disjoint in E over k, then D ® C is
an integral domain, as subring of E, so it is an Ore domain, by Lemma
4.2. Writing F for its field of fractions, we claim that there is a natural
embedding

Di€Xy ®, C— F€£X>. 10)
It will be enough to show that there is a natural homomorphism

DXy — FAXY, (11)

for then we have a bilinear map of D, €X¥ and C into F-€X¥, which
gives rise to a homomorphism (10), and this must be an embedding,
because the left-hand side of (10) is simple (by Cor. 7.1.3 of A.3). In the
special case C = k(t), F = D(t) the result follows by Prop. 5.4.4, and by
repetition the result follows when C is any purely transcendental
extension of k; if C is a simple algebraic extension of k, say C = k(«),
where o has the minimal polynomial f over k and D ® C is an integral
domain, then f remains irreducible over D (by Lemma 4.5) and hence
remains irreducible over D, € X, by Prop. 4.4, so D}€<X> ® C is a
field. By Prop. 4.4 it is the universal field of fractions of (D ® C)c(X)
and F = D ® C, so (10) is an isomorphism in this case. Now suppose that
the result holds for kK C C; with F; =D ® C, and C/C, is a simple
algebraic extension. Then we have maps D, €X> — (D ® Cy),€X>
and (D®; C) ®c€X>—>(D®C)®C)c€X> and by combining
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them and noting that (D ®, C;) ®,, C= D® C, we obtain the map
(11). Thus (11) holds generally, provided only that D & C is an integral
domain.

Finally, since D ® C is an Ore domain embedded in E, we have an
embedding of F in E and by Prop. 5.4.3,

Ec€XYy =E s Fc€XY,

therefore F-€XY) is embedded in E.€XJ and this together with (11)
proves the result. H

As a first consequence we note the following strengthening of the
specialization lemma:

THEOREM 6.4.7. Let D be a field which is a k-algebra and let E be a
field containing D as subfield, such that the centre C of E is infinite,
[E:C] = = and D, C are linearly disjoint in E over k. Then every finite
set of elements of D€ XY is defined for some choice of values of X in E.

For we have an embedding of D;€X> in E-€X> and we can apply
the specialization lemma to the latter. B

This result may be expressed by saying that E satisfies no rational
identities, a theorem first proved by Amitsur [66].

We return to polynomials over a field and briefly consider the relation
between reducibility over a field and over its centre. Let D be a field with
a central subfield k. In Prop. 4.4 we saw that a polynomial over k& which
is irreducible over D remains so over D, € X Y. For polynomials over D
this need no longer hold, as we shall see below. Let us define a field
extension D/k, where k is central in D, to be normal if every f € k[t]
which is irreducible over k splits over D into factors all of the same
degree. When D is a commutative algebraic field extension of k, this
reduces to the usual notion (see A.2, 3.2, p. 72); in general it is probably
stronger, though no examples are known (see Ex. 2°). As a first result we
note that every field is normal over its centre.

ProrosiTION 6.4.8. Any field is normal over its centre.

Proof. Let D be a field and C its centre. If f e C[¢] is irreducible over C,
then f is an /-atom in D[¢], hence by Th. 1.5.4, all its atomic factors are
similar and so are of the same degree. B

For non-normal extensions we can find irreducible polynomials which
become reducible after a free adjunction:
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THEOREM 6.4.9. Let D be a field with a central subfield k. If D/k is
not normal, then there exist irreducible polynomials over D which become
reducible over D€ X, where X #+ .

Proof. By hypothesis there is an irreducible polynomial f over k£ with a
complete factorization over D, f = p; ... p,, in which the p; are not all of
the same degree. If we factorize each p;, over D,€X>, we get a
factorization f=gq;...q, in which each g; divides some p, Now
D€ X is a field with centre k, hence normal over k and so all the g;
have the same degree. This means that some p; splits into at least two
factors over D€ X >, but by construction p; is irreducible over D. B

As an example of an irreducible polynomial over D which has a zero in
D€ X, let us take an irreducible polynomial f of degree n > 2 in k[¢],
such that over D we have

f=0-ag, (12)

where g is irreducible over D. Such a field may be obtained by taking a
field k with a commutative extension E such that E/k is the splitting field
of a separable polynomial f with symmetric group of degree n and taking
D to be the subfield of E obtained by adjoining a single zero a of f.
Then [D:k] = n and over D, f has the form (12). By Th. 4.9, g, which is
irreducible over D, splits into linear factors over D, € X .

A zero of g can be found as follows. Let x € X and put ¢ = xa — ax,
B=clac. If g =D b, then since f = (t — a)D,t'b; = >.t(b;,_; — ab)),
it follows that b;,_; — ab; € k. Now we have

cb; = [x, a]b; = [x, ab;] + a[b;, x]
=[x, ab; — b;_;] + a[b;, x] — [b;_1, x],

and here the first term on the right vanishes, because b, ; — ab; € k.
Hence we find

cg(B) = 2chb; = Ya'ch;
= 2.a™[b;, x] - Xa'[b;y, x] =0,
since the last two sums cancel each other. It follows that g(f) = 0. The

other factors of f can be found similarly from conjugates of «, though
these factors need not of course commute with each other.

Exercises

1. Let k be a commutative field, f an irreducible polynomial over k and E a
(commutative) splitting field for f over k. Show that all zeros of f are conjugate
over E;€x>.
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2°. Let E be a field and D a subfield such that any irreducible polynomial over D
which has a linear factor over E splits completely. Is E/D normal?

3. Let D be a field with a central subfield k. Show that D ® E is an integral do-
main for every simple algebraic extension E of k if and only if every irreducible poly-
nomial over k remains irreducible over D. Show that this always holds provided
that D ®, k? is a field, where k® is the algebraic closure of k. Prove the converse
of this assertion when k is perfect and give a counter-example for an imperfect k.

4. Give an example of a field D with subfields E, F such that E, F are linearly
disjoint (over E N F), but F, E are not.

5. Construct a field E which is a k-algebra (for a given commutative field k) such
that every element of E\k is a multiplicative commutator. Show also that such a
field cannot be finitely generated.

6. (Amitsur [66], Hua [50]). Use Th. 4.7 to show that for a skew field D with
infinite centre, D> satisfies no group identity, and deduce that D> cannot be
soluble.

6.5 Existentially closed skew fields

Let k be a commutative field. By an algebraic closure of k one usually
understands a field k* with the properties:

(i) k* is algebraic over k,

(ii) every polynomial equation over k* has a solution in k*.
It is well known (see e.g. A.2, 3.3) that every commutative field has an
algebraic closure and that the latter is unique up to isomorphism, though
not necessarily a unique isomorphism. Thus the correspondence &k — k* is
not a functor, in fact the different isomorphisms of k* over k form the
subject of Galois theory. When one tries to perform an analogous
construction for skew fields one soon finds that it is impossible to
combine (i) and (ii); in fact (i) is rather restrictive, so we give it up
altogether and concentrate on (ii). Here it is convenient to separate two
problems, namely (a) which equations are soluble (in some extension)
and (b) whether every soluble equation has a solution in the closure. So
far only partial results are available on (a); we shall return to it later, in
Ch. 8, and for the moment concentrate on (b).

The assertion that an equation f(xi, ..., x,) =0 has a solution can be
expressed as follows:

Jai,...,a,f(ay,...,a,) =0.

Any sentence of the form 3Jay, ..., a, P(aq,...,a,), where P is an
expression obtained from equations by negation, conjunction and disjunc-
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tion, is called an existential sentence, more precisely an elementary
existential sentence, because only element variables are quantified.

By an existentially closed field over k, EC-field for short, we under-
stand a field D which is a k-algebra, such that any existential sentence
with constants from D, which holds in some extension of D, already
holds in D itself. Such a sentence can always be expressed as a finite
conjunction of finite disjunctions of basic formulae, a basic formula being
of the form f = g or its negation, where f, g are polynomials in x, .. .,
x, over D, i.e. elements of Di{xy,...,x,). In the case of fields all
existential sentences can actually be reduced to equations:

ProrosiTION 6.5.1. Any existential sentence over a field D is equiva-
lent to a finite set of equations

Axy, .. X%, (i=0A .. A £,=0). 1)

Proof. Any basic formula f = g can be written as f — g=0, and f# g
can be expressed as (f—g)y =1, where y is a new variable. A
disjunction g, =0v g, =0v ... v g, =0is equivalent to g8, ... 8, =
0; thus our existential sentence can be written as a conjunction of a finite
number of equations fi=0A f,=0A ... A f, =0, and by prefixing an
existential quantifier we obtain (1). B

By this result a field D is existentially closed if and only if every finite
system of equations which is consistent (i.e. has a solution in some
extension field) has a solution in D itself. As a trivial example, k itself is
existentially closed over k precisely when k is algebraically closed, but for
D D k it is possible for D to be existentially closed even when k is not
algebraically closed. In fact we shall find in Th. 5.3 that every field D can
be embedded in an EC-field, but the latter will not be unique in any way.

We know from Ch. 4 that we shall need to consider, besides the
vanishing of elements, also the singularity of matrices, but fortunately
one can be reduced to the other. On the one hand, equations represent
the special case of 1 X 1 matrices; on the other hand, if A = (g;) is an
n X n matrix, let us write sing (A) for the existential sentence

Jug, ..., UL, ., Uy,
(Ealjuj =0A...A Za,,juj =0A(1-uwy)...1—uw,) = 0),
and nonsing (A) for the sentence
Ix(i,j=1,..., n)(zawxvj =6;i,j=1,..., n).

It is clear that sing (A) asserts that (over a field) A is singular and
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nonsing (A) < —1 sing (A).

It is now an easy matter to obtain criteria for existential closure in
terms of the singularity of matrices:

ProrosiTioN 6.5.2. A field D over k is an EC-field if and only if
every finite set of matrices over D, (X ) which all become singular for a
certain set of values in some extension field of D already become singular
for some set of values in D.

Proof. The conditions for existential closure concern the vanishing of a
finite set of elements, i.e. the singularity of 1 X 1 matrices, and so are a
special case of the matrix condition, which is therefore sufficient.
Conversely, when D is existentially closed and we are given matrices A;,
..., A, which become singular in some extension, then sing(A;) A
... A sing (A,) is consistent and hence has a solutionin D. B

Let D be a field with k& as central subfield. To find an EC-field
containing D one might first construct an extension D, in which a given
finite consistent system of equations over D has a solution, and repeat
this process infinitely often. However there is no guarantee that the
ECHfield so obtained will contain solutions of every finite consistent
system over D. For this to hold we need to be assured that any two
consistent systems over D are jointly consistent. This follows from the
existence of field coproducts: if ®;, ®, are two consistent systems of
equations over D, say ®; has a solution in K, then any field L containing
both K; and K, will contain a solution of ®; U ®,; here we can take the
field coproduct K, 5 K2 for L. More generally, a class of algebras is said
to possess the amalgamation property if any two extensions of an algebra
A are contained in some algebra C. Thus the class of fields has the
amalgamation property; an example of a class not possessing the
amalgamation property is the class of formally real fields (see 9.6).

To construct an EC-field extension of D we take the family {C,} of all
finite consistent systems of equations over D and for each A take an
extension E; of D in which C; has a solution. If we put D; = o E;, then
every finite consistent set of equations over D has a solution in D,. By
repeating this process we obtain a tower

DcD,CD,C...,

whose union L is again a field, of the same cardinal as D, or countable if
D was finite. Any finite consistent set of equations over L has its
coefficients in some D; and so has a solution in D,,;, hence also in L.
Thus L is an EC-field and we have proved



6.5 Existentially closed skew fields 311

THEOREM 6.5.3. Let D be any field with k as central subfield. Then
there exists an EC-field L containing D, in which every finite consistent set
of equations over D has a solution. When D is infinite, L can be chosen to
have the same cardinal as D, while for finite D, L may be taken
countable. B

The EC-field constructed here is not in any way unique; even a minimal
EC-field containing a given field D need not be unique up to isomorph-
ism, as will become clear later on. Further, it will no longer be possible to
find an EC-field that is algebraic (in any sense) over D.

Th. 5.3 is actually a special case of a result in universal algebra. A
general algebraic system A is said to be existentially closed (EC) if every
existential sentence which holds in an extension of A already holds in A
itself. For any class = of algebraic systems which is inductive, i.e. closed
under isomorphisms and unions of ascending chains of Z-systems, it can
be shown that EC Z-systems exist and in fact any 2-system is contained in
an EC Z-system, although there may not be a least EC X-system
containing it (see e.g. UA, IX. 3, p. 327). Applied to fields, this just gives
Th. 5.3.

Sometimes a stronger version of closure is needed, where the above
property holds for all sentences, not merely existential ones. We shall not
need this stronger form, and therefore just state the results without proofs
(which may be found e.g. in UA, Ch. IX).

Let o be an inductive class of algebras (of some sort). A homomorph-
ism f: A— B between s-algebras is said to be elementary if for every
sentence P(x) which holds in A, P(xf) holds in B. Now a forcing
companion(*) of A is defined as a subclass € of o such that
(F.1) Any sd-algebra can be embedded in a ‘€-algebra,

(F.2) Any inclusion C; C C, between ‘€-algebras is elementary,

(F.3) € is maximal subject to (F.1, 2).

It can be shown that every inductive class has a unique forcing companion
(see UA, Th. IX. 4.3, p. 330). This applies in particular to skew fields.
Here we also have the amalgamation property, but an important
difference between the commutative and the non-commutative case is
that algebraically closed commutative fields are axiomatizable (we can
write down a set of elementary sentences asserting that all equations have
solutions), whereas the corresponding statement for EC-fields is false.
This follows from the fact that the class of EC-fields is not closed under
ultrapowers (see Hirschfeld and Wheeler [75] and Ex. 10 below).

(*) More precisely, this is an infinite forcing companion, but we shall not have occasion to
meet others.
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Although EC-fields do not share all the good properties of algebraically
closed fields, they have certain new features not present in the commuta-
tive case. For example, the property of being transcendental over the
ground field can now be expressed by an elementary sentence:

transc(x): 3y, z (xy #Fyx Ax’y=yx’ axz=2x> Az #0). (2)

This sentence, due to Wheeler, states that there is an element y
commuting with x? but not with x, hence k(x?) C k(x); secondly x is
conjugate to x2, so k(x) = k(x?), in particular, [k(x):k] = [k(x?):k], and
since k(x?) C k(x), the degree must be infinite. Conversely, when x is
transcendental over k, we can take an HNN-extension E in which x is
conjugate to x? and form the field coproduct of E with k(x?,y) over
k(x?), to obtain an extension in which (2) is satisfied. Hence (2) holds in
the EC-field. Wheeler has generalized (2) to find (for each n = 1) an

elementary formula transc, (xq, . . ., x,) expressing the fact that x, ...,
x, commute pairwise and are algebraically independent over k (see
Ex. 2).

To describe EC-fields in more detail we shall need a result that is useful
in forming constructions. We recall that an EC-field can be embedded in
a homogeneous extension, by Cor. 5.5.2, and so it is itself homogeneous.

LeMMA 6.5.4 (Zig-zag lemma). If K, L are two EC-fields, countably
generated over k, then K = L if and only if K and L have the same family
of finitely generated subfields.

Proof. Clearly the condition is necessary. Conversely, suppose that K, L
are countably generated EC-fields with the same finitely generated
subfields. Write K = k(a,, a,, . ..), L = k(by, b,, . . .); we shall construct
finitely generated subfields K,,, L, of K and L respectively such that (i)
Kn - K,,+1, Ln - Ln+la (ll) Kn 2 k(al’ tet an)’ Ln 2 k(bl, v bn)’ (111)
there is an isomorphism between K,,; and L,.; extending a given
isomorphism between K, and L,. Since K = UK,, L = UL, by (i), it
will follow that K= L, by taking the common extension of the
isomorphisms in (iii).

Put Ky= L, = k; if K,, L, have been defined, with an isomorphism
@,: K,— L, and we put K, = K,(a,.,), then K, is finitely generated,
hence isomorphic to a subfield L, of L containing an isomorphic copy of
L,. Since L is homogeneous, there is an inner automorphism of L
mapping L, to a subfield L) containing L, in such a way that the
restriction to K, is @,. Let ¢),: K, — L), be the isomorphism so obtained,
put L,.; = Ly(b,,;) and find an isomorphic copy of L,,, in K. It will
contain a subfield isomorphic to K, and by applying a suitable inner
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automorphism of K we obtain an isomorphism of L,,; with a subfield
K,.1, say, of K such that its restriction to L, is (¢})”!. Now K, and
L, satisfy (i)—(iii) and the result follows by induction. W

We now turn to applications, and begin by showing that in an EC-field,
belonging to a finitely generated subfield can be expressed by an
elementary sentence. For any subset S of a field D we shall write €(S)
for the centralizer of S in D.

ProprosiTiION 6.5.5. Let D be an EC-field over k. Then for any ay,
..., a,bek

bek(ay,...,a)<s%eb) D% ay,...,a).

This means that the formula ‘b € k(ay,...,a,)’, not at first sight
elementary (and in fact not so in the commutative case), can be expressed
as an elementary sentence in an EC-field:

Vx (ax =xa;(i=1,...,r)= bx = xb). 3)

Proof. Put E = k(ay,...,a,); if b € E, then (3) clearly holds, while for
b ¢ E, (3) is false in D o E(x) and hence also in D, because the latter is
existentially closed (and the negation of (3) is an existential sentence). W

Taking r = 0, we obtain a result which is well known in the special case
when k is the prime subfield:

COROLLARY 6.5.6. The centre of an EC-field over k is k. R

EC-fields are in some way analogous to algebraically closed groups,
which have been studied by B. H. Neumann [73]; the next result
corresponds to a property proved by Neumann for groups:

ProrosiTiON 6.5.7. An EC-field cannot be finitely generated or
finitely related.

Proof. Let D be an EC-field over k. Given a4, . . ., a, € D, the sentence

x,y(ax =xa,(i=1,...,r) A xy # yx)

holds in D(x) ° k(y), hence it holds in D itself, and by Prop. 5.5 this
means that D contains an element y ¢ k(ay, ..., a,); therefore D cannot
be finitely generated. Now suppose that D is finitely related; then it can
be expressed as a field coproduct of a finitely presented field E and a free
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field F, and here F cannot be finitely generated, by the first part. If x is a
free generator, it occurs in no relation, so the sentence 3y(x = y?) is not
satisfied in D, though it is clearly consistent, but this contradicts the fact
that D is an EC-field. Hence D cannot be finitely related. W

As we saw in 5.5, there are continuum-many non-isomorphic finitely
generated fields, hence no countable EC-field can contain them all, thus
there are no countable universal EC-fields. However, it is possible to
construct a countable EC-field containing all finitely presented fields: we
enumerate all finitely presented fields D,, D,, . . . over k, form their field
coproduct over k and take a countable EC-field containing this co-
product, which exists by Th. 5.3. The result is a countable EC-field
containing each finitely presented field over k; such an EC-field is
sometimes called semiuniversal.

A