


ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

EDITED BY G.-C. ROTA

Volume 57

Skew fields



ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

1. L. A. Santalo Integral Geometry and Geometric Probability
2. G. E. Andrews The Theory of Partitions
3. R. J. McEliece The Theory of Information and Coding: A Mathematical Framework

for Communication
4. W. Miller, Jr Symmetry and Separation of Variables
5. D. Ruelle Thermodynamic Formalism: The Mathematical Structures of Classical

Equilibrium Statistical Mechanics
6. H. Mine Permanents
7. F. S. Roberts Measurement Theory with Applications to Decisionmaking, Utility, and

the Social Sciences
8. L. C. Biedenharn and J. D. Louck Angular Momentum in Quantum Physics: Theory

and Applications
9. L. C. Biedenharn and J. D. Louck The Racah-Wigner Algebra in Quantum Theory
10. J. D. Dollard and C. N. Friedman Product Integration with Applications in Quantum

Theory
11. W. B. Jones and W. J. Thron Continued Fractions: Analytic Theory and Applications
12. N. F. G. Martin and J. W. England Mathematical Theory of Entropy
13. G. A. Baker, Jr and P. Graves-Morris Pade Approximants, Part I, Basic Theory
14. G. A. Baker, Jr and P. Graves-Morris Pade Approximants, Part II, Extensions and

Applications
15. E. G. Beltrametti and G. Cassinelli The Logic of Quantum Mechanics
16. G. D. James and A. Kerber The Representation Theory of Symmetric Groups
17. M. Lothaire Combinatorics on Words
18. H. O. Fattorini The Cauchy Problem
19. G. G. Lorentz, K. Jetter and S. D. Riemenschneider Birkhoff Interpolation
20. R. Lidl and H. Niederreiter Finite Fields
21. W. T. Tutte Graph Theory
22. J. R. Bastida Field Extensions and Galois Theory
23. J. R. Cannon The One-Dimensional Heat Equation
24. S. Wagon The Banach-Tarski Paradox
25. A. Salomaa Computation and Automata
26. N. White (ed) Theory of Matroids
27. N. H. Bingham, C M . Goldie and J. L. Teugels Regular Variations
28. P. P. Petrushev and V. A. Popov Rational Approximation of Real Functions
29. N. White (ed) Combinatorial Geometries
30. M. Phost and H. Zassenhaus Algorithmic Algebraic Number Theory
31. J. Aczel and J. Dhombres Functional Equations in Several Variables
32. M. Kuczma, B. Choczewski and R. Ger Iterative Functional Equations
33. R. V. Ambartzumian Factorization Calculus and Geometric Probability
34. G. Gripenberg, S.-O. Londen and O. Staffans Volterra Integral and Functional

Equations
35. G. Gasper and M. Rahman Basic Hypergeometric Series
36. E. Torgersen Comparison of Statistical Experiments
37. A. Neumaier Interval Methods for Systems of Equations
38. N. Korneichuk Exact Constants in Approximation Theory
39. R. A. Brualdi and H. Ryser Combinatorial Matrix Theory
40. N. White (ed) Matroid Applications
41. S. Sakai Operator Algebras in Dynamical Systems
42. W. Hodges Model Theory
43. H. Stahl and V. Totik General Orthogonal Polynomials
44. R. Schneider Convex Bodies
45. G. Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions
46. A. Bjorner et al. Oriented Matroids
47. G. Edgar and L. Sucheston Stopping Times and Directed Processes
48. C. Sims Computation with Finitely Presented Groups
49. T. W. Palmer C*-algebras I
50. F. Borceux Handbook of Categorical Algebra 1, Basic Category Theory
51. F. Borceux Handbook of Categorical Algebra 2, Categories and Structures
52. F. Borceux Handbook of Categorical Algebra 3, Categories of Sheaves



ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Skew fields
Theory of general division rings

P. M. COHN, FRS
University College London

CAMBRIDGE
UNIVERSITY PRESS



CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521432177

© Cambridge University Press 1995
Parts of this book appeared in Skew Field Constructions © Cambridge University

Press 1977

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 1995
This digitally printed version 2008

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-43217-7 hardback
ISBN 978-0-521-06294-7 paperback



To my grandson

James Abraham Aaronson





CONTENTS

Preface xi

From the preface to Skew Field Constructions xiii

Note to the reader xv

Prologue 1

1 Rings and their fields of fractions 3
1.1 Fields, skew fields and near fields 3
1.2 The general embedding problem 8
1.3 Ore's method 14
1.4 Necessary conditions for a field of fractions to exist 19
1.5 Stable association and similarity 24
1.6 Free algebras, firs and semifirs 34
1.7 The matrix reduction functor 41

Notes and comments 45

2 Skew polynomial rings and power series rings 47
2.1 Skew polynomial rings 47
2.2 The ideal structure of skew polynomial rings 56
2.3 Power series rings 66
2.4 Group rings and the Malcev-Neumann construction 71
2.5 Iterated skew polynomial rings 78
2.6 Fields of fractions for a class of filtered rings 83

Notes and comments 91

3 Finite skew field extensions and applications 93
3.1 The degree of a field extension 93
3.2 The Jacobson-Bourbaki correspondence 96
3.3 Galois theory 100
3.4 Equations over skew fields and Wedderburn's theorem 111
3.5 Pseudo-linear extensions 118



dii Contents

3.6 Quadratic extensions 126
3.7 Outer cyclic Galois extensions 133
3.8 Infinite outer Galois extensions 140
3.9 The multiplicative group of a skew field 143

Notes and comments 150

4 Localization 152
4.1 The category of epic R-fields and specializations 153
4.2 The matrix representation of fractions 157
4.3 The construction of the localization 162
4.4 Matrix ideals 171
4.5 Universal fields of fractions 177
4.6 Projective rank functions and hereditary rings 184
4.7 Normal forms for matrix blocks over firs 196

Notes and comments 200

5 Coproducts of fields 202
5.1 The coproduct construction for groups and rings 203
5.2 Modules over coproducts 210
5.3 Submodules of induced modules over a coproduct 214
5.4 The tensor ring on a bimodule 224
5.5 HNN-extensions of fields 231
5.6 HNN-extensions of rings 239
5.7 Adjoining generators and relations 242
5.8 Derivations 250
5.9 Field extensions with different left and right degrees 259

5.10 Coproducts of quadratic field extensions 268
Notes and comments 275

6 General skew fields 278
6.1 Presentations of skew fields 279
6.2 The specialization lemma 283
6.3 Normal forms for matrices over a tensor ring 292
6.4 Free fields 301
6.5 Existentially closed skew fields 308
6.6 The word problem for skew fields 317
6.7 The class of rings embeddable in fields 326

Notes and comments 329

7 Rational relations and rational identities 331
7.1 Polynomial identities 331
7.2 Rational identities 335
7.3 Specializations 340
7.4 A particular rational identity for matrices 345
7.5 The rational meet of a family of ^f-rings 348
7.6 The support relation on generic division algebras 355
7.7 Examples of support relations 362

Notes and comments 365



Contents ix

8 Equations and singularities 366
8.1 Algebraically closed skew fields 367
8.2 Left and right eigenvalues of a matrix 374
8.3 Normal forms for a single matrix over a skew field 379
8.4 Central localizations of polynomial rings 386
8.5 The solution of equations over skew fields 395
8.6 Specializations and the rational topology 401
8.7 Examples of singularities 408
8.8 Nullstellensatz and elimination 411

Notes and comments 418

9 Valuations and orderings on skew fields 420
9.1 The basic definitions 421
9.2 Abelian and quasi-commutative valuations 427
9.3 Matrix valuations on rings 435
9.4 Sub valuations and matrix sub valuations 442
9.5 Matrix valuations on firs 449
9.6 Ordered rings and fields 457
9.7 Matrix cones and orderings on skew fields 462

Notes and comments 469

Standard notations 473

List of special notations used throughout the text 475

Bibliography and author index 478

Subject index 495





PREFACE

When Skew Field Constructions appeared in 1977 in the London
Mathematical Society Lecture Note Series, it was very much intended as a
provisional text, to be replaced by a more definitive version. In the
intervening years there have been some new developments, but most of
the progress has been made in the simplification of the proofs of the main
results. This has made it possible to include complete proofs in the
present version, rather than to have to refer to the author's Free Rings
and their Relations. An attempt has also been made to be more
comprehensive, but we are without a doubt only at the beginning of the
theory of skew fields, and one would hope that this book will offer help
and encouragement to the prospective builders of such a theory. The
genesis of the theory was described in the original preface (see the extract
following this preface); below we briefly outline the subjects covered in
the present book.

The first four chapters are to a large extent independent of each other
and can be read in any order, referring back as necessary. Ch. 1 gives the
general definitions and treats the Ore case as well as various necessary
conditions for the embedding of rings in skew fields. From results in
universal algebra it follows that necessary and sufficient conditions for
such an embedding take the form of quasi-identities. Later, in Ch.4, we
shall find the explicit form of these quasi-identities, and in Ch. 6 we shall
see that this set must be infinite. The rest of Ch. 1 gives the definition and
basic properties of free algebras and free ideal rings, which play a major
role later. It also includes some technical results on the association of
matrices and it introduces an important technical tool: the matrix
reduction functor.

Ch. 2 studies skew polynomial rings and the fields formed from them,
as well as power series rings and generalizations such as the Malcev-
Neumann construction, and the author's results on fields of fractions for a
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class of filtered rings. Ch. 3 is devoted to the Galois theory of skew fields,
now almost classical, with applications to (left or) right polynomial
equations over skew fields, and special cases of extensions, such as
pseudo-linear extensions and cyclic Galois extensions.

Ch. 4 is in many ways the central chapter. The process of forming fields
of fractions or more generally epic R -fields for a ring R is described in
terms of the singular kernel, i.e. the set of matrices that become singular
over the field. It is shown how any epic R-field can be constructed from
its singular kernel, while the latter has a simple description as prime
matrix ideal. This leads to explicit conditions for the existence of a field of
fractions. In particular, the rings with a fully inverting homomorphism to
a field are characterized as Sylvester domains and it is shown that every
semifir has a universal field of fractions. Of the earlier sections only 1.6 is
needed here.

Ch. 5 describes the coproduct construction and the results proved here
are basic for much that follows. It is also the most technical chapter and
the reader may wish to postpone the details of the proofs in 5.1-3 to a
second reading, but he should familiarize himself with the results. They
are applied in the rest of the chapter to give the HNN-construction for
fields and for rings, to study the effect of adjoining generators and
relations, particularly matrix relations, and to construct field extensions
with different left and right degrees (Artin's problem). Ch. 6 deals with
some general questions. There is a study of free fields; here the
specialization lemma is an essential tool. Other topics include the word
problem and existentially closed fields.

Ch. 7 on rational identities is mainly devoted to Bergman's theory of
specializations between rational meets of X-fields; it is independent of
most of the rest and can be read at any stage.

In Ch. 8 the rather fragmentary state of knowledge of singularities
(which in the general theory take the place of equations in the
commutative theory) is surveyed, with an account of the problems to be
overcome to launch a form of non-commutative algebraic geometry.
Ch. 9 deals with valuations and orderings on skew fields from the point of
view of the general construction of Ch. 4 and it shows for example how to
construct valuations and orderings on the free field.

The exercises are intended for practice but serve also to present
additional developments in brief form, as well as some open problems.
Some historical background is given in the Notes and comments.

The theory of division algebras (finite-dimensional over a field) is very
much further advanced than the general theory of skew fields, and a
comprehensive account including a full treatment of division algebras
would have thrown the whole out of balance and resulted in a very bulky
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tome. For this reason that topic has largely been left aside; this was all the
more reasonable as the subject matter is much more accessible, and no
doubt will be even more so with the forthcoming publication of the
treatise by Jacobson and Saltman.

Nearly all the material in this volume has been presented to the Ring
Theory Study Group at University College London and I am grateful to
the members of this group for their patience and help. I would like to
thank Mark L. Roberts for his comments on early chapters and George
M. Bergman for his criticism of Skew Field Constructions, which has
proved most useful. My thanks also go to the staff of the Cambridge
University Press for their help in transforming the manuscript into a
book, with a particular word of thanks to their copy editor Mr Peter
Jackson, who corrected not merely grammatical but also mathematical
slips. As always, I shall be glad to receive any constructive criticism from
readers, best of all, news of progress on the many open problems.
London, February 1995 P. M. Cohn

From the preface to Skew Field Constructions
The history of skew fields begins with quaternions, whose discovery (in
1843) W. R. Hamilton regarded as the climax of his far from ordinary
career. But for a coherent theory one has to wait for the development of
linear associative algebras; in fact it was not until the 1930's that a really
comprehensive treatment of skew fields (by Hasse, Brauer, E. Noether
and Albert) appeared. It is an essential limitation of this theory that only
skew fields finite-dimensional over their centres are considered.

Although general skew fields have made an occasional appearance in
the literature, especially in connexion with the foundations of geometry,
very little of their properties was known until recently, and even
particular examples were not easy to come by. The first well known case
is the field of skew power series used by Hilbert in 1899 to illustrate the
fact that a non-archimedean ordered field need not be commutative.
There are isolated papers in the 1930's, 1940's and 1960's (Moufang,
Malcev, B. H. Neumann, Amitsur and the author) showing that the free
algebra can be embedded in a skew field, but the development of the
subject is hampered by the fact that one has no operation that can be
performed on skew fields (over a given ground field) and again produces
a skew field containing the original ones. In the commutative case one has
the tensor product, which leads to a ring from which fields can then be
obtained as homomorphic images. The corresponding object in the
general case is the free product and in the late 50's the author tried to
prove that this could be embedded in a skew field. This led to the
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development of firs (= free ideal rings); it could be shown (1963) that any
free product of skew fields is a fir, but it was not until 1971 that the
original aim was achieved, by proving that every fir is embeddable in a
skew field, and in fact has a universal field of fractions. Combining these
results, one finds that any free product or 'coproduct' of fields has a
universal field of fractions, or a field coproduct, as we shall call it. It is
this result which forms the starting point for these lectures.

As the name indicates, these really are lecture notes, though not for a
single set of lectures. For this reason they may lack the polish of a book,
but it is hoped that they have not entirely lost the directness of a lecture.
The material comes from courses I have given in Manchester and
London; some parts follow rather closely lectures given at Tulane
University (1971), the University of Alberta (1972), Carleton University
(1973), Tubingen (1974), Mons (1974), Haifa Technion (1975), Utrecht
(1975) and Ghent (1976). It is a pleasure to acknowledge the hospitality
of these institutions, and the stimulating effect of such critical audiences.



NOTE TO THE READER

The reader of this book is expected to have a fair background in algebra,
particularly ring theory and commutative field theory. Any standard
results needed are usually quoted from the author's Algebra (referred to
as A.I, 2, 3, see the Bibliography).

All theorems, propositions, lemmas and corollaries are numbered
consecutively in a single series in each section; thus Th. 2.2 is followed by
Prop. 2.3 in Section 1.2, and outside Ch. 1 they are referred to as
Th. 1.2.2, Prop. 1.2.3 respectively. Occasional results needed but not
proved are usually given letters, e.g. Th. 6.A. The end (or absence) of a
proof is indicated by • . Most sections have exercises; open-ended (or
open) problems are marked °. Unexplained notations can be found in the
list of standard notations on p. 473.

References to the bibliography are by the author's name and the last
two digits of the year of publication if after 1900, e.g. Ore [31], Cramer
[1750], with primes to distinguish publications by the same author in the
same year.





PROLOGUE

O gliicklich, wer noch hoffen kann,
Aus diesem Meer des Irrtums aufzutauchen!
Was man nicht weiss, das eben brauchte man,
Und was man weiss, kann man nicht brauchen.

Goethe, Faust I

One of the principal aims of this book is to describe some methods of
constructing skew fields. The case most studied so far is that of skew
fields finite-dimensional over their centres. But a finite-dimensional
A>algebra, where A: is a commutative field, is a field whenever it has no
zero-divisors. On the one hand this enormously simplifies their study,
while on the other hand it puts many constructions out of bounds
(because they produce infinite-dimensional algebras). The study of fields
that are not necessarily finite-dimensional over their centres is still in its
early stages, and the methods needed here are not very closely related to
those used on finite-dimensional algebras - the relation between these
subjects is rather like the relation between finite and infinite groups.

There are some ways of obtaining a field directly, for example Schur's
lemma tells us that the endomorphism ring of a simple module is a field,
and the coordinatization theorem shows that when we coordinatize a
Desarguesian plane, the coordinates lie in a field. But these methods are
not very explicit, and we shall have no more to say about them. For us
the usual way to construct a field is to take a suitable ring and embed it in
a field. What is to be understood by 'suitable' will transpire later.

There are five methods of interest to us; they are
(1) Ore's method (Ch. 1),
(2) The method of power series (Ch. 2),
(3) Inverse limits of Ore domains (Ch. 2),
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(4) A general criterion (Ch. 4),
(5) An application of the specialization lemma (Ch. 6).

As a test ring we shall use the free algebra on a set X over a commutative
field k, written k(X). All five methods can be used on k(X), and each
has its pros and cons. (1) is particularly simple, but not in any way
canonical, (2) and (3) provide a convenient normal form, while (4) gives,
at least in principle, a complete survey over all possible embeddings,
indeed over all homomorphisms of our ring into fields. Finally (5) applies
only to free algebras, where it gives an easy existence proof of the
universal field of fractions.

The main applications are to the construction of the field coproduct,
which shows that the class of skew fields possesses the amalgamation
property and allows a form of HNN-construction. The consequences are
described here, but it is clear that the existing range of constructions is
still rather limited, mainly because a good specialization theory is still
lacking (see 8.8 below). One would hope that the present work will offer
encouragement to others working towards that goal.



Rings and their fields of fractions

Fields, especially skew fields, are generally constructed as the field of
fractions of some ring, but of course not every ring has a field of fractions
and for a given ring it may be quite difficult to decide if a field of fractions
exists. While a full discussion of this question is left to Ch. 4, for the
moment we shall bring some general observations on the kind of
conditions to expect (mainly quasi-identities) in 1.2 and give some
necessary conditions relating to the rank of free modules in 1.4, as well as
some sufficient conditions. On the one hand there is the Ore condition in
1.3, generalizing the commutative case; on the other hand and perhaps
less familiar, we have the trivializability of relations, leading to semifirs in
1.6, which include free algebras and coproducts of fields, as we shall see
in Ch. 5. Some general relations between matrices over rings, and the
applications to the factorization of elements over principal ideal domains
(needed later) are described in 1.5.

Although readers will have met fields before, a formal definition is
given in 1.1 and is contrasted there with the definition of near fields,
which however will not occupy us further. The final section 1.7 deals with
the matrix functor and its left adjoint, the matrix reduction functor, which
will be of use later in constructing counter-examples.

1.1 Fields, skew fields and near fields
By a field we understand a set K with two binary operations, addition,
denoted by a plus sign: +, and multiplication, denoted by a cross, x, a
dot, •, or simply by juxtaposition, with two distinguished elements, zero:
0 and one: 1, such that

(i) AT is a group under addition, with 0 as neutral element,
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(ii) 1 =£0 and Kx = ^\{0} is a group under multiplication, with 1 as
neutral element,

(iii) the two operations are related by the distributive laws:

x(y + z) = xy + xz, (x + y)z = xz + yz for all x, y, z e i£.

The groups A' in (i) and Kx in (ii) are the additive group and the
multiplicative group of ^ respectively.

Our first observation is that the additive group is always abelian. For,
using first the left and then the right distributive law, we have

(x + 1 ) 0 + l) = (x + l)y + (x + 1)-1 = xy + y + x + 1,

while an expansion on the other side gives

(x + 1)0 + 1) = x(y + 1) + 1 • O + 1) = xy + x + y + 1.

Equating the results and cancelling xy on the left and 1 on the right, we
find that y+x = x + y,as claimed.

If the multiplicative group of K is abelian, K is a commutative field;
when commutativity is not assumed, K is called a skew field or also a
division ring. Since skew fields form the topic of this book, we shall use
the term 'field' to mean 'not necessarily commutative field' and only
occasionally add 'skew', when emphasis is needed.

Let K be a field. Any sub field ofK (i.e. a subset of K admitting all the
operations of K) contains 1 and hence the subfield generated by 1. This
least subfield, often denoted by n , is called the prime subfield of K. It is
either the rational field Q or Z/p, the integers mod p, for some prime p.
Accordingly K is said to have characteristic 0 or p; this characteristic is
also written char K.

Given a field K and a subset X of K, the centralizer of X in K is
defined as the set

%K(X) = {y e K\xy = yx for all x e X}.

This set is easily seen to be a subfield of K. In the special case X = K we
obtain the centre C of K:

C = {y e K\xy = yx for all x e K}.

Clearly the centre is a commutative subfield containing the prime subfield

n.
Just as rings arise naturally as the endomorphism sets of abelian

groups, or more generally, of modules, i.e. groups with operators, so
fields arise as endomorphism sets of simple modules. Their importance
stems from the fact that linear algebra, first developed over the real
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numbers, can be carried out over any field. This applies even to skew
fields, as long as we do not try to form determinants. In fact there is a
form of determinant over skew fields, the Dieudonne determinant, but
this will play only a limited role here. The main difference is that whereas
the structure of commutative fields is fairly well known since the
fundamental paper of Steinitz [10], information on skew fields is much
more fragmentary. The theory is best developed for fields finite-dimen-
sional over their centres (division algebras), but we shall mainly be
concerned with fields infinite-dimensional over their centres, where a full
classification is not to be expected.

It is a natural question to ask what can be said about endomorphism
sets of non-abelian groups. Let G be a group written multiplicatively and
consider the set M(G) of all mappings preserving 1 of G into itself. On
M(G) we have two operations, the multiplication arising by composition
of mappings and addition arising from the group operation:

x(a/3) = {xa)l5,x(a+ /3) = xa-x/3 for all x e G, or, j5 e M(G).

It follows that the left distributive law holds,

a(/3 + y) = a/3 + ay, a, /3, y e M(G),

but the right distributive law fails to hold in general. In fact we have

for all a, /3 e M(G) only when y is an endomorphism of G. However, if
we restrict ourselves to endomorphisms we no longer have an addition,
because the sum of two endomorphisms need not be an endomorphism.
Thus M(G) fails to be a ring only in that it lacks the right distributive law
(except for the vestige 0a = 0) and the commutativity of addition. It
forms an example of a near ring; a subring whose non-zero elements all
have inverses is a near field. Near fields have been used in the study of
permutation groups, in geometry, as the rings coordinatizing certain
translation planes and in the classification of finite subgroups of skew
fields (see Amitsur [55] and for the results, 3.9 below), but they will not
occupy us further in this volume. For a detailed account of near fields see
Wahling[87].

In any field K the addition can be expressed in terms of the
multiplication xy and the operation x + 1. For we clearly have

y = if >> = 0.

This observation leads to a definition of fields which emphasizes the
multiplicative structure. Let G be any group, written multiplicatively; by
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the group with 0 on G we understand the set G 0 = G U {0} with
multiplication xy as in G for x, y =£ 0, while xO = Ox = 0 for all x e Go.

L E M M A 1.1.1. Lef G be a group and Go f/ie group with 0 on G.
Suppose that a: Go —> Go is tf map such that eo = 0 /or some e e G
further,

(i) OCJ = 1, where 1 is tfze neutral element of G,
(ii) (y-1jcy)a= y~l * xo* y for all x, y e G,

(iii) [(xy~1)o-y]o = ([xo- y~l]o)y for all x e Go, y e G.
Then Go is a field with respect to its multiplication and the addition

Proof By (1), jt + 0 = j t ,0 + x = {Qx~l)o-x = 1 • x = x for x # 0. Now
with the help of (1), (iii) may be written as

(JC + y)o — xo -\- y.

Further, (1) shows that xo = x + 1, hence

(jc + y) + l = (jc + l) + y. (2)

Now the definition (1) shows that for yz =£ 0,

hence

= xz + yz. (3)

This has been shown to hold for y, z =£ 0. If z = 0, both sides reduce to 0,
while for y = 0, both become xz, so (3) holds identically in Go.

Next we have to prove

z(x + y) = zx + zy. (4)

If one of x, y, z is 0, this is clear; otherwise we have by (ii),

zx + zy = (zx-y~lz~l)o- zy = z(xy~lo)z~l - zy

= z(xy~lo)y

= z(x + y)

and (4) follows.
Next we have, by (2),

(xz'1 + yz'1) + 1 = (xz'1 + 1) + yz'1;

multiplying on the right by z and using (3) twice, we find
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(x + y) + z = (x + z) + y, (5)

at least when z =£ 0, but for z = 0 it holds trivially. Taking x = 0, we find
that y + z = z + .y, hence addition is commutative and so (5) can be
rewritten to give the associative law:

(x + y) + z = x + {y + z).

Finally, for x ^ 0, we have

ex + x = (ex • jc~1)a* JC = 0-x = 0.

Thus x has the additive inverse ex, and this is true even when x = 0 and
eO = 0. This shows Go to be a group under addition, with neutral element
0. In particular, e is the additive inverse of 1 and writing - 1 for e, we
obtain the usual notation for a field. •

Exercises

1. Show that every near field with fewer than nine elements is a field (for a near
field on nine elements, see Ex. 4).

2. Show that if in Lemma 1.1, (ii) is omitted, we obtain a near field.

3. Let K be any field with a subgroup P of index 2 in Kx and with an
automorphism of order 2, JC-^JC', mapping P into itself. Define a new
multiplication on A" by the rule

_ \xy if x e P,
X°y~\xy' if** P.

Verify that # with this multiplication is a near field which is not a field.

4. (Dickson [05]) Apply Ex. 3 to construct a near field on any field of p2

elements, where p is an odd prime.

5. (Ferrero [68]) Let T be an additive group with a group G acting on it by
fix-point-free automorphisms (i.e. ocg — oc for oc e T, g e G implies a = 0 or
g = 1). Let A, (/ G /) be a family of orbits ¥= {0} in F, with representatives St and
on F define a multiplication by putting oc° fi = figa if a e A, and ga is the unique
element of G satisfying diga = a; otherwise, i.e. if a * A, for all i, put a° /3 = 0.
Verify that except for lacking a one, F is a near ring. (This shows that every group
F is the additive group of some near ring, possibly lacking a one.)

6. Show that in any ordered field (see 9.6) the set of all non-negative elements,
with the operation xo — x + 1, satisfies the conditions (i)-(iii) of Lemma 1.1 (this
shows that the condition ea = 0 cannot be omitted).
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7. Show that any element of a ring having both a left inverse and a right inverse
has a unique two-sided inverse.

8. (Kohn and Newman [71]) Show that in any field K of characteristic =£ 2 the
following identity holds:

[(x + y - 2)"1 - (x + y + 2)"1]"1 - [(x - y - 2)"1 - (x - y + 2)"1]"1 =

Why cannot jcy be expressed in this way unless K is commutative?

9. In any ring show that if 1 - xy is a unit, then so is 1 - yx. (Hint. Use
elementary transformations to transform diag(l, 1 — xy) to diag(l — yx,l).)

10. Show that the centralizer of any subset of a field is a subfield.

1.2 The general embedding problem
A basic difference between groups and rings on the one hand and fields
on the other is that the former, but not the latter, form a variety, i.e. a
class defined by identical relations (see A.3, 1.3). In particular, a group
may be described by generators and defining relations and any set of
generators and relations yields a group; similarly for rings, whereas a
given set of (ring) generators and defining relations cannot always be
realized in a field. The usual method of obtaining a field, especially a
skew field, is as field of fractions of a ring. This makes it important to
study methods of embedding rings in fields. In this section we shall make
some general observations on the embedding problem, and we begin by
introducing some terminology.

Let R be a ring; by a field of fractions of R we understand a field K
together with an embedding R^> K such that K is the field generated by
the image of R. Our task then is to find when a ring has a field of
fractions. For commutative rings the answer is easy (and well known). It
falls into three parts:

(i) Existence. A field of fractions exists for a ring R if and only if R is
an integral domain, i.e. the set Rx = R\{0} is non-empty and closed
under multiplication.

(ii) Uniqueness. When a field of fractions exists, it is unique up to a
unique isomorphism, thus given two fields of fractions of R, A,-: /?—> Kt

(/ = 1,2), there exists a unique isomorphism q): Kx^> K2 such that

(iii) Normal form. Each element of the field of fractions can be written
in the form a/b, where a, b e R, b =£ 0, and a/b = a'/b' if and only if
ab' = ba\
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Of course this is not really a 'normal form'; only in certain cases such as
Z or k[x] is there a canonical representative for each fraction (see also
Ex. 1).

Let us now pass to the non-commutative case. The absence of
zero-divisors is still necessary for a field of fractions to exist, but not
sufficient. The first counter-example was found by Malcev [37], who
writes down a semigroup whose semigroup ring over Z is an integral
domain but cannot be embedded in a field (see Ex. 3 below). Malcev
expressed his example as a cancellation semigroup not embeddable in a
group, and it prompted him to ask for a ring R whose set Rx of non-zero
elements can be embedded in a group, but which cannot itself be
embedded in a field. This question was answered affirmatively nearly 30
years later, in 1966, and will be dealt with in 5.7 below.

After giving his example, Malcev went on in a remarkable pair of
papers (Malcev [39]) to provide a set of necessary and sufficient
conditions for a semigroup to be embeddable in a group. This is an
infinite set of conditions, and Malcev showed that no finite subset could
be sufficient. The first two conditions express cancellability:

xy = xz => y = z, yx = zx => y = z; (1)

next came the condition (using A to mean 'and'):

ax = by A ex = dy A au = bv => cu = dv. (2)

The other conditions were similar, but more complicated (Malcev [39], or
UA, VII. 3), and they were all of the form

A1 A A2 A . . . A An => B, (3)

where Ax, . . . , An, B are certain equations, with the universal quantifier
V for all the variables prefixed. Such a condition (3) is called a
quasi-identity or a universal Horn sentence', when the As are missing, we
have an identity.

As a matter of fact it follows from general principles of universal
algebra that the class of semigroups embeddable in groups is a quasi-
variety, i.e. definable by quasi-identities. For it can be shown to be a
universal class (definable by sentences with universal quantifiers over all
variables, i.e. universal sentences), and one has the following theorem
(see e.g. UA, VI. 4):

A class of algebras is a quasi-variety if and only if it is universal and
admits direct products, or equivalently, if and only if it admits direct
products and subalgebras.
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We remark that such a class always contains the one-element subalge-
bra, as the product of the empty family. With the help of this result it is
not hard to check that the class of semigroups embeddable in groups is a
quasi-variety. At the same time we see that integral domains do not form
a quasi-variety, since they do not admit direct products, and neither do
rings embeddable in fields. Nevertheless they come very close to being a
quasi-variety. To be precise, if 9) denotes the class of integral domains, 3F
the class of fields and s& the class of subrings of fields, then there is a
quasi-variety 2, such that

# = 9fl l (4)

To find a, we recall some definitions. A ring R is called regular (in the
sense of von Neumann) if for any a e R there exists x e R such that
axa = a. If for each a e R there exists x e R such that a2x = a, R is said
to be strongly regular. Despite its appearance, the condition of strong
regularity is left-right symmetric, as the next lemma shows. We recall
that a ring is said to be reduced, if it contains no nilpotent elements =£ 0,
i.e. x2 = 0 implies x = 0.

L E M M A 1.2.1. A ring is strongly regular if and only if it is regular and
reduced.

Proof. Assume that R is strongly regular. If a2 = 0, take x to satisfy
a2x = a; then 0 = a2x = a, so R is reduced. Moreover, for any a e R and
for x e R such that a2x = a,we have

(axa — a)2 = axa2xa — axa2 — a2xa + a2

= axa2 — axa2 — a2 + a2 = 0,

hence axa — a = 0 and this shows R to be regular.
Conversely, if R is regular and reduced, let a e R and take x e R such

that axa = a. Then

(a2x — a)2 = a2xa2x — a2xa — a3x + a2

= a3x - a2 - a3x + a2 = 0,

hence a2x - a = 0 and so R is strongly regular. •

Now any regular ring R is semiprimitive, i.e. its Jacobson radical 3 is
zero. For if a € 3 and axa = a, then a(xa - 1) = 0 and xa - 1 is a unit, by
the definition of 3> so a = 0. It follows that R is a subdirect product of
primitive rings, which as homomorphic images of R are again regular (see
A.3, Th. 10.4.1, p. 405). Now any primitive ring is clearly prime (A.3,
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Prop. 10.6.1, p. 413), and there is little more that can be said about a
regular prime ring. But a prime ring which is strongly regular is a field.
To see this we first show that R has no idempotents apart from 0 and 1.
For if e is an idempotent and x e R, then (ex(l — e))2 = 0; since R is
reduced, we have ex(l — e) = 0 for all x e R, and by primeness, either
e = 0 or e = 1. Now given a, x e R satisfying axa = a, it follows that ax is
idempotent, hence ax = 0 or 1, and ax = 0 only if a = axa = 0. Hence R
is a field and we have proved

T H E O R E M 1.2.2. A strongly regular primitive ring is a field. Any
strongly regular ring is a subdirect product of fields. •

It is clear that the class of rings embeddable in strongly regular rings is
a quasi-variety. We shall show that this can be taken to be the class 2,, but
for the proof we shall need a result which is best proved by using
ultraproducts. We briefly recall the background, referring to A.3, 1.6 for
details.

Let / be a non-empty set. A filter on / is a set SF of subsets of / which
is non-empty, admits intersections and contains with any subset X of / all
subsets D X. Since SF is non-empty, it follows that / e ^ and we shall
exclude the family of all subsets by requiring that 0 £ 3F. If the set 2P(/)
of all subsets of / is regarded as a Boolean algebra, a filter on / may be
regarded as the dual of a proper ideal in 2P(/). As for ideals one can show
that any filter is contained in a maximal one; such a maximal filter is
called an ultrafilter and may also be characterized by the fact that for any
subset X of / , either X or its complement (but not both) belongs to the
ultrafilter. For example, given c e / , the set of all subsets containing c
forms an ultrafilter, the principal filter generated by c. When / is finite,
every ultrafilter has this form, as is easily seen, but on infinite sets there
are non-principal ultrafilters, as we shall see in a moment.

Let {Xx} be a family of subsets of / with the following 'finite
intersection property':
(FIP) Any finite subfamily of the Xx has a non-empty intersection.

Then the set 2F of all subsets containing some finite intersection C\Xk is
a filter, as is easily checked; it is the filter generated by the family {Xx}.
To give an example, let / be an infinite set; then the cofinite sets, i.e. the
subsets with a finite complement, have the finite intersection property
and so generate a filter 3F0- Take an ultrafilter containing 2F0; this is an
example of a non-principal ultrafilter on / .

Filters are used in the construction of certain homomorphic images of
direct products. Let Rt (i e I) be a family of rings and let P = Y\Ri be
their direct product, with the natural projections 77,: P—> Rt. For any filter
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3F on the index set / we define the reduced product P/3* as a
homomorphic image of P by the rule:

For any x e P, x = 0 if and only if {i e / | x ^ = 0} e 3F.

If the subsets of / belonging to 3F are called 3*-large, then P/3* may be
described as the homomorphic image of P by the ideal of all elements
vanishing on an 3 -̂large index set. When 3£ is an ultrafilter, the reduced
product P/3F is called an ultraproduct. It is clear that the reduced product
is again a ring, though the reduced product of fields need not be a field.
But an ultraproduct of fields is again a field; more generally, any
elementary sentence of logic applying to rings holds in an ultraproduct
precisely if it holds in all the factors of an SMarge set (see A.3, Th. 1.6.4,
p. 30).

The next proposition (whose statement does not mention ultra-
products) shows how these ideas may be applied:

P R O P O S I T I O N 1.2.3. Let R be a ring and fk\ R —> Kx (A e A) a family
of homomorphisms from R to fields, such that for any finite subset X of
Rx, some fk maps no element of X to zero. Then R is embeddable in a
field.

Proof. For each x e Rx define A(x) = {Ae A|JC/A =£ 0}; by hypothesis,

n...n A(xn) * 0 ,

for any finite family xl9 . . . , xn of non-zero elements of R. Hence the sets
A(x) generate a filter, and we can find an ultrafilter 3F containing all the
A(JC). We can combine the fk to a homomorphism / : R —• P = Y[Kx, let
g: P—> P/SF be the natural homomorphism to the reduced product. As an
ultraproduct of fields P/3F is a field and for each x e Rx, xfx =£ 0 on an
SF-large set, namely A(JC). Hence xfg=£0 and so fg is the desired
embedding. •

Let us return to the equation (4). In order to identify 21 let us define 91
as the class of strongly regular rings. Clearly 2ft admits direct products, for
if Rk is a family of strongly regular rings and P = fl^A is their direct
product, take any a = (ax) e P. Then there exists xx e Rx such that
a\xk = ax\ hence on putting x = (JCA), we have a2x = a, showing that P is
again strongly regular. Thus 91 admits direct products; in the same way
we see that the class s*3l of subrings of strongly regular rings admits direct
products; moreover it admits subrings and so it is a quasi-variety. We
assert that Si may be taken to be s$l, thus we have

s® = 2) fl s<3l. (5)
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For clearly any ring embeddable in a field is an integral domain and is
embeddable in a strongly regular ring. Conversely, if R is an integral
domain and embeddable in a strongly regular ring, then by Th. 2.2, R is
embeddable in a direct product of fields; hence for each x e Rx we can
find a homomorphism to a field which is non-zero on x. It follows that
each finite family {xl9. . . ,xn} can be mapped to non-zero elements,
since we can apply the argument to the product xx...xn. So the
condition of Prop. 2.3 is satisfied and R is embeddable in a field. Thus we
have proved (5); the result may be stated as

T H E O R E M 1.2.4. A subring of a strongly regular ring is embeddable in
a field if and only if it is an integral domain. •

As a consequence we have

C O R O L L A R Y 1.2.5. A subring of a direct product of fields is embedd-
able in a field if and only if it is an integral domain. •

These results show that the class of integral domains embeddable in
fields can be defined by quasi-identities. Later, in 6.7, we shall find an
explicit set of such quasi-identities; this set is infinite and we shall see that
it cannot be replaced by a finite set of quasi-identities, or indeed by any
finite set of elementary sentences.

Exercises
1. Let R be a commutative Bezout domain, i.e. an integral domain in which every
finitely generated ideal is principal. Show that every element of its field of
fractions can be written in the form a/b, where a, b are coprime, and a, b are
unique up to multiplication by a unit.

2. Let R = k[x, y, z, t\ xz = yi\. Show that there is no way of writing the fraction
x/y so that it is defined and either finite or oo under every homomorphism of R to
a field.

3. Verify that (2) holds in every subsemigroup of a group, but not in every
cancellation semigroup. (Hint. Try writing the conditions in terms of 2 x 2
matrices; cf. also 1.4.)

4. Show that every strongly regular ring is semiprime, i.e. xRx = 0 implies x = 0.

5. Let R be a ring with a unary operation x •-> x' such that x2x' = x, x'2x = x'.
Show that x' is uniquely determined by x.
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6. Let R be a non-trivial ring such that for all a, c ¥=0 in R, either xa = c or
ax = c has a solution in /?. Show that R is a field.

7. Show that every identity can be expressed as a quasi-identity.

1.3 Ore's method
We shall now look at the embedding problem in more detail and in
particular treat an important special case, first described by Ore [31]. But
we begin with some general remarks on the problem of constructing
inverses in rings.

Let R be a ring and 5 a subset of R. A homomorphism / : R-± Rf to
another ring R' is called S-inverting if for each s e 5, sf is an invertible
element of R\ i.e. an element with a two-sided inverse; such an invertible
element is also called a unit. The following result, although trivial to
prove, is useful in considering 5-inverting maps.

P R O P O S I T I O N 1.3.1. Given a ring R
and a subset 5 ofR, there exists a ring Rs

with an S-inverting homomorphism
A: /? —» Rs which is universal S-invert-
ing, in the sense that for each S-inverting
homomorphism f: /? —» Rf there is a
unique homomorphism / ' : /?$—» R'
such that f = Xf.

As with all universal constructions, the universal property determines
Rs up to isomorphism (see A.2, 1.3).

Proof. To construct Rs we take a presentation of R and for each s e S
adjoin an element s' with defining relations ss' = s's = I. The map A is
defined by assigning to each element in R the corresponding element in
the given presentation. Then sX is invertible, the inverse being s'. Thus
we have a ring Rs and an 5-inverting homomorphism A: /? —> Rs, and it
remains to verify the universal property of A. Given any 5-inverting
homomorphism f: R-* R', we define f: Rs^> R' by mapping aX (for
a e R) to af and sf to (sf)'1, which exists in Rf, by hypothesis. Any
relation in Rs must be a consequence of the relations in R and the
relations expressing that s' is the inverse of sX. All these relations still
hold in R', so / ' is well-defined and it is clearly a homomorphism. It is
unique because its values on RX are prescribed, as well as on (5A)"1, by
the uniqueness of inverses. •
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The ring Rs constructed here is called the universal S-inverting ring or
the localization at S of R. We have in fact a functor from pairs (R, S)
consisting of a ring R and a subset 5 of /?, with morphisms
f: (R, S) —> (/?', S') which are homomorphisms from R to R' mapping 5
into 5', to the category Rg of rings and homomorphisms.

All this is easily checked, but it provides no information about the
structure of Rs. In particular we shall be interested in a normal form for
the elements of Rs and an indication of the size of the kernel of A, which
could be the whole of R (e.g. if 0 e S). This general question will be
treated in Ch. 4; for the moment we shall make some simplifying
assumptions, which will allow us to obtain a complete answer in an
important special case.

Let us look at the commutative case first. To get a convenient
expression for the elements of Rs we shall take 5 to be multiplicative, i.e.
1 e S and if a, b e 5, then ab e S. In this case every element of Rs may be
written as a fraction a/s, where a e R, s e S, and a/s = a'/sf if and only if
as't = a'st for some t e S. This is not exactly what one understands by a
normal form, but it is sufficiently explicit to allow us to determine the
kernel of A, viz.

ker A = {a e R\at = 0 for some t e S}. (1)

Ore's idea consists in asking under what circumstances the elements of
Rs have this form, when commutativity is not assumed. We must be able
to express s~la, where a e R, s e S, as a^1 (ax e R, sx e S), and on
multiplying up, we find as1 = sai. More precisely, we have as{\~1 =
sail'1, whence asxt = saxt for some t e S. This is the well known Ore
condition and it leads to the following result:

T H E O R E M 1.3.2. Let R be a ring and S a subset, such that
(D.I) S is multiplicative,
(D.2) For any ae R, s e 5, sR D aS =£ 0 ,
(D.3) For any a e R, s e 5, sa = 0 implies at = 0 for some t e S.
Then the universal S-inverting ring Rs may be constructed as follows. On
R x S define the relation

(a, s) ~ (a', s') whenever au = a'u', su = s'u' e S for some u, u' e R.

(2)

This is an equivalence on R x S and the quotient set R x S/~ is Rs. In
particular, the elements of Rs may be written as fractions a/s — as'1 and
ker A is given by (1). •

The full proof is a lengthy but straightforward verification, which may
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be left to the reader (see A.3, Th. 9.1.3, p. 350). It can be simplified a
little by observing that the assertion may be treated as a result on
monoids; once the 'universal 5-inverting monoid' Rs has been con-
structed, by the method of this theorem, it is easy to extend the ring
structure of R to Rs. A multiplicative subset S of R satisfying (D.2) is
called a right Ore set; if sa = 0 or as = 0 for a e R, s e S implies a = 0, S
is said to be regular. More generally, if 5 satisfies (D.3), it is said to be
right reversible and if (D.l-3) hold, 5 is sometimes called a right
denominator set. Of course a corresponding construction can be carried
out on the left, leading to left fractions s~xa, when the left Ore condition
holds.

When S is contained in the centre of R, in particular, when R is
commutative, (D.2-3) are automatic and can be omitted. If R is an
integral domain, (D.3) can be omitted and if moreover S = Rx then
(D.2) reads aR D bR i= 0 for a, b =£ 0. In that case RR* is a field, for
when a,b e Rx, then ab~l has the inverse ba~l. Thus we have

COROLLARY 1.3.3. Let R be an integral domain such that

aRDbR^O fora,beRx. (3)

Then the localization of R at Rx is a field K and the natural homomorph-
ism A: R—> K is an embedding.

Only the last part remains to be proved, and this is clear because ab~l

for a, &=£0 has the inverse ba~l and kerA = 0, by (1) for an integral
domain. •

An integral domain R satisfying condition (3) is called a right Ore
domain, so the corollary tells us that every right Ore domain has a field of
fractions.

It is important to observe that the localization at a right Ore set is
essentially unique. Let us first note that the construction is functorial.
Thus, given a map between pairs / : (R, S) —• (/?', 5'), i.e. a homomorph-
ism / from R to Rf such that Sf C S", we have the diagram shown, and

by universality there is a unique
R homomorphism fx\ Rs-+ R's>

such that the resulting square
commutes. In other words, A is a
natural transformation. It fol-
lows in particular that if / is an
isomorphism, then so is fv
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So far R, Rf have been quite general; suppose now that R is a right
Ore domain and Rf = D is any field of fractions of R, thus we have an
embedding f:R-*D. Putting S = RX, we have a homomorphism
fa Rs—> D, which is an embedding, because Rs is a field. The image of
Rs under fx is a field containing R and hence equal to D, because D was
a field of fractions. Thus fx is an isomorphism, and we have proved

P R O P O S I T I O N 1.3.4. The field of fractions of a right Ore domain is
unique up to isomorphism. •

The result is of particular interest because it ceases to hold for general
rings. We shall soon (in 2.1) meet rings which have several non-isomor-
phic fields of fractions.

If in the above diagram we take Rf — R to be a right Ore domain and
5 = Sf = Rx, then / is an endomorphism of R and the condition Sf C S
expresses the fact that / is injective. This sufficient condition for
extendability is clearly also necessary. Moreover, fx is uniquely deter-
mined by / , because we have

{ab-l)fx • bf = af.

This provides a criterion for the extendability of endomorphisms:

C O R O L L A R Y 1.3.5. Let R be a right Ore domain with field of fractions
K. Then an endomorphism ofR can be extended to an endomorphism of K
if and only if it is injective; its extension is then unique. •

This result also fails to extend to general rings, as we shall see in 4.5.
We conclude this section with a sufficient condition for a ring to be an

Ore domain which is often useful.

P R O P O S I T I O N 1.3.6. Let R be an integral domain; then either R is a
right Ore domain or it contains a right ideal which is free of infinite rank as
R-module. In particular, every right Noetherian domain is right Ore.

Proof. Suppose that R is an integral domain which is not right Ore. Then
there exist a, b e Rx such that aR D bR = 0; we claim that the elements
b, ab, a2b, . . . are right linearly independent over R, so the right ideal
generated by them is free, of infinite rank.

If this were not so, then there would be a relation ^albct = 0, where
the ct are not all 0. Let cr be the first non-zero coefficient; then we can
cancel ar and obtain the relation
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bcr + abcr+1 + . . . 4- an~rbcn = 0.

Hence

a(bcr+1 + . . . + an~r~lbcn) = -bcr # 0,

and this contradicts the assumption on a and b. Now the last sentence
follows because a free right ideal of infinite rank clearly cannot be finitely
generated. •

Since a principal right ideal domain is right Noetherian, we have

C O R O L L A R Y 1.3.7. Every principal right ideal domain is a right Ore
domain and hence has a field of fractions. •

Exercises

1. Give a proof of Th. 3.2; in particular, verify the expression (1) for the kernel
of A.

2. Let R = limi?A be the direct limit of a directed system of Ore domains. Show
that R is an Ore domain.

3. Show that the isomorphism in Prop. 3.4 is unique.

4. Let M be a monoid with a submonoid 5, satisfying the following conditions: (i)
for all m e M, 5 6 5, mS Pi sM ¥= 0 , (ii) if sm = sm' for m, m' e S and s e S,
then there exists t e S such that mt = m't. Show that the universal 5-inverting
monoid Ms of M (defined as for rings) can be constructed as a set of fractions
mt~l such that mxt\

l = m 2 ^ 1 if and only if m^ = m2t
f, txt = t2t' e S for some

t, t' e M. Find the conditions for the natural homomorphism from M to Ms to be
an embedding.

5. Let R be a right Ore domain with field of fractions K and let / : R —» D be a
homomorphism to a field D such that D as a field is generated by im / (thus D is
an epic R-field in the sense of 4.2). Show that K contains a subring L with a
single maximal ideal m such that L/m = D.

6. Let R be a commutative ring, A an n x n matrix over R and S = R(xtj;
AX = XA = / ) , where X = (xi}), thus S is the universal A -inverting ring. Show
that S is commutative. (Hint. Verify first that xtj centralizes R.)

7. Show that for a principal ideal domain R and a right Ore set S in R the
localization Rs is again principal.
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1.4 Necessary conditions for a field of fractions to exist
The most obvious condition for the embeddability of a ring in a field is
the absence of zero-divisors (where v stands for 'or'):

xy=0^x = 0vy = 0, 1^0 . (1)

As is well known, in the commutative case it is also sufficient, but for
general rings, (1) does not really go to the heart of the matter, for here
we need conditions involving addition as well as multiplication. In this
section we shall discuss a number of such conditions and their interrela-
tion; some of them will play a role in what follows. In any case, all are
easily stated and of some independent interest.

Let R be any ring and F a free left /^-module on a basis B. If B is
infinite, then any two bases of F have the same cardinal (see A. 2, Prop.
4.4.4, p. 142), but for finite B this need not be the case. We shall say that
F has unique rank if any two bases of F have the same number of
elements, and the number of these elements will be called the rank of F,
written rk(F). Over a field, every module is free, of unique rank, as is
well known; even for subrings of fields the rank shows good behaviour
that we shall now consider in more detail.

D E F I N I T I O N 1. A ring R is said to have invariant basis number (IBN)
if every free R-module has unique rank.

By the earlier remark this condition is automatic for free modules that
are not finitely generated, and the duality nR = Hom# (Rn, R) shows that
it is enough to assume unique rank for finitely generated free left
7?-modules. Most rings arising naturally have IBN; in particular, any field
or more generally, any ring with a homomorphism to a field has IBN.
Examples lacking IBN will occur later when we come to construct integral
domains not embeddable in fields.

Next we have a strengthening of IBN:

D E F I N I T I O N 2. A ring R is said to have unbounded generating number
(UGN) if for every n = 1, 2, . . . there is a finitely generated left
i?-module which cannot be generated by fewer than n elements.

It is equivalent to require that for all n, Rn cannot be generated by
fewer than n elements. For if this holds, R satisfies the condition;
conversely, when it is false, suppose that Rm can be generated b y m - 1
elements. Since every m-generator left R-module is a homomorphic
image of Rm, it follows that any module on m generators can be
generated by m — 1 elements, and by induction it follows that every
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finitely generated module can be generated by m — 1 elements, so UGN
fails to hold.

If IBN fails for R, say Rm = Rn for m > n, then Rm has a basis of
n < m elements, so UGN fails to hold; thus UGN implies IBN.

Next we come to an even stronger condition.

D E F I N I T I O N 3. A ring R is said to be weakly n-finite if any generating
set of n elements of Rn is free. If R is weakly n-finite for all n, it is called
weakly finite.

Weakly 1-finite rings are sometimes called 'von Neumann finite',
'inverse symmetric' or 'directly finite'.

Let R be a non-trivial ring. If Rn can be generated by fewer than n
elements, we can find Az-element generating sets for Rn that are not free,
so any weakly finite (non-trivial) ring has UGN. Thus for any non-trivial
ring we have the implications

WF => UGN => IBN, (2)

where WF stands for 'weakly finite'. The trivial ring 0 is weakly finite but
does not have UGN or IBN. Moreover, neither of the implications in (2)
can be reversed (see Cohn [66]).

To restate the conditions, let us suppose that Rn has a generating set of
m elements. Then we have an exact sequence

0-> K-+Rm^>Rn^>0,

which splits, because Rn is free. So we obtain the relation

Rm = Rn 0 K. (3)

This isomorphism allows us to restate the three conditions in the
following form:

(IBN) For all m, ny R
m = Rn implies m = n,

(UGN) For all m, n, Rm = Rn ® K implies m^n,
(WF) For all n, Rn = Rn © K implies K = 0.

By taking bases for our modules, we obtain a restatement in terms of
matrices:

(IBN) For A e nRm, B e mRn, if AB = lm BA = Imy then m = n,
(UGN) For A e nRm, B e mRn, if AB = In, then m^n,

(WF) For A, B e Rn, if AB = I, then BA = I.
These conditions again make it clear that (2) holds for any non-trivial
ring. Further, it can be shown that a ring R has UGN if and only if some
non-zero homomorphic image of R is weakly finite (see FR, Prop. 0.2.2,
p. 8 or Th. 4.6.8 below). Any field (even skew) has all three properties;
more generally all three hold for any subring of a field, for any Artinian
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or Noetherian ring (A.2, 4.4, p. 144) and for any commutative ring
(always excluding the trivial ring). In fact, a ring lacking any of these
properties is usually regarded as pathological.

Let R be a non-trivial ring without IBN. Then for some m ^ n,

Rm = Rn. (4)

We take (r, r + d) to be the first such pair of distinct integers (m, n) in
the lexicographic ordering. Then it is not hard to verify that (4) holds
precisely when m = n or ra, n^ r and d\m — n. In this case R is said to
have free module type (r, r + d). For example, if V is an infinite-dimen-
sional vector space over a field k, then V = V ® V, and it follows easily
that Endfc (V) is a ring of free module type (1,2).

Next take a non-trivial ring R without UGN. Then for some n, Rn can
be generated by n - 1 elements. If the least such n is m, then every
finitely generated /^-module can be generated by m - 1 elements. Let us
call such a ring non-UGN of type m. From the matrix form of the
conditions we see that there is a universal non-UGN ring of type ra,
namely the fc-algebra generated by the entries of an ra x (ra — 1) matrix
A and an (ra — 1) x ra matrix B subject to the defining relations (in
matrix form) AB = / . We shall denote it by Um. Similarly we can form a
universal non-IBN ring of free module type (r, r + d) by taking the
entries of an r x (r + d) matrix A and an (r + d) x r matrix B with
defining relations (in matrix form) AB = / , BA — I. This ring will be
denoted by Vrtr+d. Every non-UGN ring is a homomorphic image of an
appropriate universal non-UGN ring, and similarly for non-IBN rings.

We can also form a non-WF ring by taking the A>algebra Wn on the
entries of two n x n matrices A, B with defining relations AB = / , but
now it is no longer the case that all homomorphic images are non-WF: we
obtain a weakly finite ring by imposing the relations BA = I.

Let us record the effect of homomorphisms on these conditions.

P R O P O S I T I O N 1.4.1. Let R-+R be a homomorphism between rings.
(i) If R is non-IBN of free module type (r, r + d)y then R is non-IBN of
free module type (r', r' + d')y where r' ^ ry d'\d. (ii) If R is non-UGN of
type m, then R is non-UGN of type m'', where m' ^ m.

Proof, (i) By hypothesis, Rr = Rr+d\ on tensoring with R we obtain
Rr = Rr+d, from which the result follows. Similarly, (ii) follows on
tensoring the isomorphism Rm~x = Rm ® K. •

It follows that the conditions IBN and UGN are reflected by iso-
morphisms:
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COROLLARY 1.4.2. Given a homomorphism R-^R, if R has IBNor
UGN, then so does R. •

There is another way to express UGN, which requires a definition that
is much used later. Let A be a square matrix, say n x n, over a ring R,
and consider the different ways of writing A as a product:

A = PQ, where P is n x r and Q is r x n, (5)

for varying r. If in every representation (5) of A we have r ^ n, A is said
to be full. The matrix formulation of UGN above shows that it holds if
and only if every unit matrix is full. More generally we have the following
criterion for UGN:

P R O P O S I T I O N 1.4.3. A ring R has unbounded generating number if
and only if every invertible matrix is full. In particular; over a (non-trivial)
weakly finite ring every invertible matrix is full.

Proof If every invertible matrix is full, then In is full for all n and so
UGN holds. Conversely, suppose that A is invertible, but not full, say (5)
holds with r < n. Then / = P- QA'1, so / is not full and hence UGN
fails to hold for R. The last part follows because every non-trivial weakly
finite ring has UGN. •

We now turn to a condition of a different kind. We recall that for any
square matrix A over a field K (even skew) the following four conditions
are equivalent:
(5.1) A has no left inverse,

(S.l°) A has no right inverse,
(5.2) A is a left zero-divisor,

(S.2°) A is a right zero-divisor.
A square matrix over a field with these properties is called singular, any
other square matrix is called non-singular; the latter holds (by (S.2, 2°))
precisely when the matrix is regular, or equivalently, when A is full, as is
easily verified.

When A is singular, there is a non-zero column u such that Au = 0. If
U is an invertible matrix with u as its first column, then we have

for some row c and (n — 1) x (n — 1) matrix Ax. In particular, if A is
nilpotent, say Ar = 0, then A is singular and the matrix Ax in (6) is again
nilpotent. An induction shows that when A is nilpotent, then there is an
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invertible matrix T such that T~lAT is upper triangular, with zeros on
the main diagonal. It follows that a n « x « nilpotent matrix A over a
field satisfies An = 0, so we have proved

P R O P O S I T I O N 1.4.4. An nx n nilpotent matrix A over a field satisfies

Clearly this condition must also hold for any matrix over a subring of a
field. The condition of Prop. 4.4 is known as Klein's nilpotence condition,
since Klein [69] showed, by an ingenious use of Malcev's conditions:

If R is an integral domain such that every nilpotent n x n matrix C over
R satisfies Cn = 0, then Rx is embeddable in a group.

Klein showed also that his condition is not necessary for Rx to be
embeddable in a group. As we have seen, it is necessary for embeddabil-
ity in a field, but not sufficient, as counter-examples of Bergman [74']
show (see 5.7, Ex. 4). Klein shows further that his condition implies weak
finiteness:

P R O P O S I T I O N 1.4.5. Any ring satisfying Klein's nilpotence condition is
weakly finite.

Proof Let A, B e Rn satisfy AB = / . Then ArBr = / for all r ^ 1, by an
easy induction. Moreover, ^4(7 - BrAr) = (I - Br~lAr~l)A, hence the
matrix C = A(I - BrAr) satisfies C = (I - Br~iAr~i)Ai; in particular,
Cr = 0. Choosing r = n + 1, / = n, we find that

/ - BA = (/ - BA)AnBn = CnBn = 0,

because Cn = 0, by Klein's condition. Hence BA = / , as we had to
show. •

The converse does not hold, as an example by Klein [70'] shows.

Exercises

1. Show that a matrix (not necessarily square) over a ring, which has a right
inverse, is left regular; verify that the converse holds over any Artinian ring.
Deduce that over an Artinian ring the four conditions (S.l-2°) are equivalent for
any square matrix.

2. Verify that a ring satisfying Klein's nilpotence condition is reduced, and deduce
that a prime ring satisfying Klein's nilpotence condition is an integral domain.
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3. Show that in a weakly finite ring, if A is full, then so is A © / .

(A C
4. Let R be a weakly finite ring and A, B square matrices over R. If .

for some block C is invertible, show that A and B are both invertible. Show that
weak finiteness is necessary as well as sufficient.

5. Show, by taking a suitable homomorphic image, that the universal non-WF
ring satisfies UGN.

6. (Jacobson [50]) Let R be a ring with elements a, b such that ab = 1 =£ ba.
Show that the elements e^ = bl~l(\ — ba)a^~l form an infinite set of matrix units
and the e# form an infinite family of pairwise orthogonal idempotents.

7. (Kirezci [82]). Let Vnjfn be the universal non-IBN A>algebra of free module
type (n, m). Show that V1 m for m > 1 is simple.

8. (After Kirezci [82]) If the defining matrices for Vnm are A, B and those for
Vn'tm> are A', £ ' , show by mapping A' to A(A © /) and B' to (B © I)B that
there is a homomorphism from Vn^n+rk to Vn^k. Deduce that for all m > n ^ 1
there is a homomorphism V^m —> Vn n+1.

9. Show that if R has free module type (r, r + d) and n ^ r, then ^ ( f i ) has free
module type (1,1 + d/(d, n)).

1.5 Stable association and similarity
This somewhat technical section provides some necessary background for
the factorization of elements and matrices. It is convenient to have these
results in one place, but the reader may well decide to skip this section
and refer back to it later when necessary.

Let R be any ring. Two matrices A, A' over R are said to be associated
if there exist invertible matrices P, Q over R such that

A' = PAQ.

If R is a ring with IBN, then every invertible matrix is square, so if A is
m x «, the same then holds for A'.

Sometimes a weaker condition is needed. We shall say that A and A'
are stably associated if A ® I is associated to Af ® I for some unit
matrices (not necessarily of the same size). Thus if A is m x n, then A'
will be (m + r) x (n 4- r) for some r e Z . If we define the index of an
m x n matrix as n — m, we see that over a ring with IBN, stably
associated matrices have the same index.

Any finitely presented left R -module M is given by a resolution
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R™ 4 , Rn _> M _+ Q9

where the map a is given by an m x n matrix A. It is clear that stably
associated matrices give rise to isomorphic modules. Moreover, if A is
left regular, so that a is injective, then any left regular matrix A'
presenting an isomorphic module must be stably associated to A. This
result will not be needed here, so the proof is omitted (see FR, 0.6).

There is a related notion which is sometimes needed. Two matrices A,
B with the same number of rows are called right comaximal if the matrix
(A B) has a right inverse. Similarly two matrices A', B' with the same
number of columns are left comaximal if (A' B')T has a left inverse. An
equation

AB' = BA' (1)

is called comaximal if A, B are right comaximal and A', B' are left
comaximal. The relation between these concepts is given by

T H E O R E M 1.5.1. Let R be a ring and A erRm, A1 esRn. Then the
following conditions are equivalent:

(a) A, A' satisfy a comaximal relation (1),

(b) there is an (r + n) x (s + m) matrix with a right inverse

/* -B'
of the form L

\ A

In particular, (a) and (b) hold whenever
(c) A and A' are stably associated,

and in a weakly finite ring (a)-(c) are equivalent for two matrices A, A' of
the same index.

Proof. If (a) holds, say A, A1 satisfy (1), then by comaximality, there
exist matrices C, D, C\ D' such that

AD' - BC = / , DA' - CB' = / , (2)

and on writing

B\ ID' -B'\

c DJ' ^ \-c A1 y w

we have PQ = for some S, hence P has the right inverse
W 11

D' -B'\f I 0\ = /* -B'\
-C A' j\-S I ~ * A' r
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and (b) follows. Conversely, if Q in (3) is a right inverse of P, then (1)
and (2) hold, and this shows (1) to be a comaximal relation. Thus (a) and
(b) are equivalent.

If (c) holds, say we have

A 0\/Pl P2\/Ql Q2\(I 0 \

o ij\p3 p*l \Qi G4/I0 A'r

then we have the relation

AP2 = Q2A'. (5)

Now

(A Q2)( Q1 fj = (Api &) = (Gi Q2),

by (4), and (Qx Q2) has a right inverse, therefore A and <22 are right
comaximal. By symmetry (5) shows that P2 and A' are left comaximal;
thus(c)=>(a).

Now if R is weakly finite and A, Af have the same index, then
m — r = n — s, hence r + n — s + m and the matrices in (b) are square;
by weak finiteness, the right inverse is a two-sided inverse and we have
the equation

/ 0 \ / / 0 \ f A B \ l l B \ l A 0 \
-C l)\0 A ' ) \ C D)~\0 l)\0 I ) '

which shows A and A' to be stably associated. •

We now turn to factorizations of elements and begin by introducing a
notion weaker than comaximality. The definition could be framed for
matrices, but only the case of elements will be needed.

A relation ab' = ba' is called coprime if a, b are left coprime, i.e. they
have no non-unit common left factor, and a', b' are right coprime.
Clearly any two right comaximal elements are left coprime; in a principal
ideal domain the converse holds, for here aR + bR = dR and if a, b are
left coprime, then d is a unit and so a, b are then right comaximal.

Let R be an integral domain and a,a'eRx. Consider a module
homomorphism

+ R/Raf. (6)

If 11-> bf, then x i-» xb' and a •-• 0, hence ab' e Ra'', say

ab1 = ba'. (7)

Thus a homomorphism (6) is given by a relation (7), and conversely,
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every relation (7) leads to a homomorphism (6). Here b' is determined by
/ up to an element of Ra'; thus if b[ = b' + za', then by (7), ab[ =
a(bf + za') = ba' + azaf = (b + tfz)fl\ So 6 is determined by / up to an
element of aR and / defines a unique R -homomorphism

/*: R/a'R^R/aR, x^bx. (8)

Let us call a module of the form R/Ra or R/aR, where a=£0, strictly
cyclic. What the above argument shows is that the categories of left and
right strictly cyclic modules over an integral domain are dual to each
other; this is also called the factorial duality.

We note that the map (6) is injective if xb' e Ra' implies x e Ra, i.e. if
(7) is a least common left multiple (LCLM) of af and b'; when this is so,
(7) is left coprime. For the surjectivity of (6) we require c e R such that
c •-> 1, i.e. cb' - 1 e Ra', so for some d e Rwe have

da' + cb' = 1.

This expresses the fact that (7) is left comaximal, hence right coprime. In
particular, over a PID we have an isomorphism (6) if and only if there is a
comaximal relation (7). With Th. 5.1 this yields conditions for an
isomorphism of strictly cyclic modules over a PID:

P R O P O S I T I O N 1.5.2. Let R be a principal ideal domain. Then for any
a, a' e Rx the following conditions are equivalent:

(a) there is a coprime relation

ab' = ba'; (7)

(b) there is a comaximal relation (7);
(c) R/Ra = R/Ra';

(c°) R/aR = R/a'R. •

Two elements a, a' satisfying condition (b) are said to be similar. Thus in
a PID the isomorphism between strictly cyclic modules is described by
similarity. It is clear from Th. 5.1 that in a weakly finite ring two elements
are similar if and only if they are stably associated, while in the
commutative case similar elements are just associated.

An element of a ring will be called an atom, or irreducible, if it is a
non-unit which cannot be written as a product of two non-units. Let R be
a PID and a e Rx; any factorization a — px . . . pr into non-unit factors
corresponds to a chain of right ideals

R D pxR D Pip2R D . . . D px . . . pfl = aR, (9)

where the inclusions are proper, because the pt are non-units. If all the pt
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are atoms, then (9) is a composition series, and by applying the Jordan-
Holder theorem (A.I, 9.3) to two composition series, a = px . . . pr

— Pi - - - Ps> we find that r = s and for some permutation /•—>/' of
{1, . . . , r}, pi is similar to p[>. This is expressed by saying that R is a
unique factorization domain (UFD); in the commutative case it reduces
to the usual meaning of this term, because then similar elements are
associated. The main point of distinction for general UFDs is that
corresponding factors are merely similar and not necessarily associated,
and the factors cannot always be rearranged at will. The composition
length of (9) is also called the length of a.

Let us return to a general integral domain R and specialize (6) by
taking a' = a. We see that the endomorphisms of R/Ra are given by
elements b' such that

ab' = ba,

for some b e R. Let us define the idealizer of the left ideal Ra as the
largest subring of R containing Ra as an ideal:

$(Ra) = {b' e R\abf e Ra}.

Clearly this is a subring and from what has been said, there is a surjective
homomorphism from $(Ra) to End# (R/Ra) obtained by mapping
bf e 3>(Ra) to the endomorphism x •-> xb'. The kernel is easily seen to be
Ra, hence we have

End* (R/Ra) = $(Ra)/Ra.

The quotient $(Ra)/Ra will be denoted by %(Ra) and called the
eigenring of Ra.

An element c of a ring R is said to be right invariant if c is right regular
and Re QcR\ this means that for each x e R there exists x' e R such that
xc = ex', and here x' is uniquely determined by x, because c is right
regular. Left invariant elements are defined similarly and a left and right
invariant element is said to be invariant. Thus an invariant element in a
ring R is a regular element c such that Re = cR.

An element a of R is said to be bounded if it is a left factor of an
invariant element: c = ab, where c is invariant. It is then also a right
factor, for cb = b'c = b'ab, hence c = b'a; this shows the notion defined
here to be symmetric. Any invariant element with a as factor is called a
bound for a; in general there may be no least bound, but in a PID we can
form the largest ideal contained in Ra. It will have the form Ra*, where
a* is invariant with a as factor, and clearly a* is a factor of any bound of
a. Thus a* is the least bound of a, unique up to unit factors. This least
bound a* can also be characterized as the generator of the annihilating
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ideal of R/Ra; it follows that any element similar to a is again bounded,
with the same bounds. An element with no bounded factors other than
units is said to be totally unbounded.

For bounded elements in a PID we have the following commutation
formula. Two elements a, b are said to be totally coprime, if no non-unit
factor of a is similar to a factor of b.

L E M M A 1.5.3. In a principal ideal domain R, if a is bounded and totally
coprime to u, then there is a comaximal relation

au = Mi«i, (10)

and hence

R/Rau = R/Ra 0 R/Ru. (11)

Proof If we can find a relation (10), where a1 is totally coprime to u and
ux totally coprime to a, then it must be coprime and hence comaximal, so
it only remains to find the relation.

Let 0* = a1 a be the least bound of a, and a1 au = a*u = u$a*. If the
LCRM of a' and u0 is a'ux = uob, then for some a1, a* = bax and
au — uxax. Here ux is similar to a right factor of u0 and so is totally
coprime to a, while ax is a factor of a* and so totally coprime to u. Hence
this is the required relation; now (11) follows by comaximality. •

An invariant element c in a ring is called an I-atom if it is a non-unit
and the only factors of c which are again invariant are units or associates
of c. One would expect the least bound of a bounded atom to be an
I-atom; this is in fact the case, as we shall now show.

T H E O R E M 1.5.4. Let R be a principal ideal domain.
(i) Every non-zero ideal of R has the form Re = cR, where c is an

invariant element, and R/Rc is a simple ring if and only if c is an I-atom;
(ii) every I-atom is a product of similar bounded atoms;
(iii) if p is a bounded atom, then its least bound p* is an I-atom whose

atomic factors are precisely all the atoms similar to p; moreover, the
eigenring K of Rp is afield and we have

R/Rp* = yfln(K), where n is the length ofp*. (12)

Proof (i) Let a be a non-zero ideal of R. By definition, a = Ra = a'R,
hence a = Re with an invariant generator c. Now R/a is simple if and only
if a is maximal, but any ideal containing Re has the form Rb, where b is a
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factor of c and is again invariant. So Re is maximal precisely when c has
no non-trivial invariant factors, i.e. it is an I-atom.

(ii) Let p* be an I-atom and take any atom p dividing p*\ clearly p* is
the least bound of p. Since p is bounded, any similar atom p' is again
bounded. If the least bound of p' is c, then c(R/Rp) = 0, hence Re C Rp
and so Re C Rp*. By symmetry, Rp* C Re, so c is associated to p*. Thus
any atom similar to p is a factor of p*9 and it follows that

Rp* C H{/?/?'!/>' similar to p}. (13)

If we can show that the right-hand side is a two-sided ideal, then equality
must hold, since p* is an I-atom. Take a in the right-hand side of (13);
given b e R and p' similar to p, either b e Rp', and then ab e Rp', or
Rb + ify?' = R, and so

/ta + ify?' = Re,

where c = pxb = b^p', and this is a coprime relation. It follows that px is
similar to p and so 0 e Rpl9 and afo e Rpxb = Rbxp' Q Rp'. This shows
the right-hand side of (13) to be an ideal, and so equality holds in (13). It
follows that R/Rp* is a sum of terms R/Rp, hence there is a chain from
Rp* to R whose quotients are all isomorphic to R/Rp, and so p* is a
product of elements similar to p.

(iii) Let p be a bounded atom; its least bound /?* is an I-atom, for if
p* = cd, where c, d are invariant non-units, then p is a factor of c or of
d, contradicting the fact that p* was the least bound of p. By (ii) p* is a
product of atoms similar to p and the atoms dividing p* are precisely the
atoms similar to p. The eigenring K of R/Rp, as endomorphism ring of
the simple module R/Rp is a field, by Schur's lemma and R/Rp* is a sum
of copies of R/Rp, hence a direct sum of finitely many copies. If p* has
length n, then

R/Rp* = (R/Rp)n.

Taking endomorphism rings and bearing in mind that the endomorphism
ring of any ring A as left A -module is A, we have the desired conclusion
(12). •

Over a PID R every cyclic module is either free of rank 1 or of the
form R/Ra for some aeRx. By a torsion module we understand a
module M in which every element is annihilated by a non-zero element of
R. If no element of M other than zero is annihilated by a non-zero
element of R, then M is said to be torsion-free. As for abelian groups one
easily verifies that any module M (over a PID) has a uniquely determined
maximal torsion submodule tM and that M/tM is torsion-free. When M
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is finitely generated, then so is M/tM, and being torsion-free, it is free, so
that we can write M = tM © F, where F is a free submodule, unique up
to isomorphism. The following structure theorem can be stated for
finitely generated modules, but we limit ourselves to cyclic modules, as
that is all we shall need:

T H E O R E M 1.5.5. Let R be a principal ideal domain. Any cyclic left
R-module is either free of rank 1 or of the form

R/Ra = R/Rqx 0 ... 0 R/Rqk © R/Ru, (14)

where each qt is a product of bounded similar atoms, while atoms in
different q's are dissimilar, and u is totally unbounded. Moreover, u and
the qt are uniquely determined up to order and similarity.

Proof. It is clear that over a PID any submodule of a cyclic module is
again cyclic; thus a submodule of R/Ra has the form Rb/Ra, where
a = cb, and RbJRcb = R/Rc. Consider the bounded atoms that are
factors of a; suppose that pl9 . . . , pk are pairwise dissimilar bounded
atoms such that each bounded atomic factor of a is similar to exactly one
of the p^ If pf denotes the bound of pi9 then the submodule of R/Ra
annihilated by pf is again cyclic, of the form R/Rqh where qt is a product
of atoms similar to pt. Clearly the sum ^R/Rqt is direct and is equal to
the submodule of R/Ra annihilated by pf . . . p*. By Lemma 5.3 we
obtain a decomposition (14), where R/Ru has no non-zero submodule
with non-zero annihilator. It follows that u is totally unbounded, for if
u = u'pu" with a bounded atom p, where (by induction) u' is totally
unbounded, then by Lemma 5.3, there is a comaximal relation u'p =
pouQ, hence u = pouou" and R/Ru has the submodule Ruou"/Rpouou" =
R/Rp0, which is annihilated by p*. This contradiction shows u to be
totally unbounded, and it establishes the decomposition (14). Here R/Rqt

is unique as the submodule annihilated by pf while R/Ru is unique up to
isomorphism, hence qt and u are unique up to similarity. •

We shall also need a result on direct decompositions. A non-zero
element a of a PID R is said to be indecomposable if R/Ra is
indecomposable as left /^-module; by the factorial duality this notion is
actually left-right symmetric. Now an indecomposable bounded element
may be described as follows:

P R O P O S I T I O N 1.5.6. Let R be a principal ideal domain. Then a
bounded indecomposable element is a product of similar atoms and has a
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bound of the form pn, where p is an I-atom. Two bounded indecomposable
elements have the same bound if and only if they are similar.

Proof. Let q be bounded indecomposable and consider the direct
decomposition (14) for R/Rq. The term R/Ru is absent because q is
bounded and since q is indecomposable there is only one term. Thus q is
a product of similar atoms, say q — p\>.>pr\ each pt has the same bound
p, an I-atom, hence q has the bound pr and it follows that the least
bound q* of q also has this form. Here Rq* is determined by the
similarity class of q as the annihilator of R/Rq, while R/Rq is determined
by Rq* as an indecomposable part of R/Rq*. •

If R is an Ore domain with centre Z, then the field of fractions of R
has a centre containing Z, but not necessarily generated by it. By how
much it fails is described in the next result:

P R O P O S I T I O N 1.5.7. Let R be a right Ore domain and K its field of
fractions, and let C be the centre of K.

(i) Then any element of C has the form ab~l
y where

axb = bxa for all x e R. (15)

Conversely, ifa,beRx and (15) holds, then ab~l e C.
(ii) / / R is a principal right ideal domain, then any u e C can be written

as u = ab~l, where a and b are left and right coprime, and for any
representation of u as a quotient of coprime elements, there is an injective
endomorphism aofR such that

xa = axa, xb = bxa for all x e R. (16)

(iii) / / R is a principal ideal domain, then a in (ii) is an automorphism
ofR.

Proof, (i) Suppose that a,b e Rx satisfy (15). Then ab = ba and on
dividing (15) by b on the left and right, we obtain

b~lax = xab~l for all x e R, (17)

hence b~la = ab~l e C. Conversely, if ab'1 e C, then a = ab'1 • b =
bab'1, hence ab = ba, so (17) holds and on multiplying up we find (15).

(ii) Now assume that R is a PRID and take u e C. Write u = ab'1,
a = dau b = dbu where d is a HCLF of a, b. Then ab'1 = b'xa = b1~

1a1

and ax = bx- b\xax = b\xax • bl9 hence bxax = a1b1. Thus we may assume
in (i) that a, b are left coprime. We may also take them to be right
coprime, for if a = axd, b = bxd, then ab'1 = axbiX and now the same
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argument applies. We claim that

aRD bR = abR.

For we know that the LCRM of a and b has the form ab' = bar. We also
have ab = ba, hence a = a'c, b = b'c and since a, b are right coprime, c
must be a unit, so ab = ba is the LCRM. Now bxa = axb is a right
multiple of ab = ba, hence for some / e R, bxa = baf, axb = abf.
Clearly / depends on x and is uniquely determined by it. Denoting it by
jca,we have

xa = axa, xb = bxa.

Each of these equations determines xa uniquely and it is easily checked
that the map x •-> xa is an injective endomorphism of R. If R is left as
well as right principal, we have, by symmetry an injective endomorphism
/? of R such that ax = x^a, bx = x^b. Hence xa = axa = xa^a, so ar/3 = 1
and similarly, /3a = 1, hence a is an automorphism. •

Exercises

1. Show that any two associated elements in a ring are similar, and that the
converse also holds if one of the elements is invariant.

2. Use Th. 5.1 to show that if A e rRm and A' e sRn are stably associated over a
weakly finite ring R, then A © ln is associated to Im © A'.

3. Let R be a PRID and / the set of all its right invariant elements. Show that / is
a regular right Ore set in R and that the localization Rj is a simple PID. If R is a
(left and right) PID, verify that Rj is a field if and only if R is not primitive.

4. An integral domain R is said to be rigid, if for any c e Rx, c = ab' = ba'
implies aR C bR or bRQaR. Show that any Noetherian rigid domain is a
valuation ring (see 9.1). Show that in any atomic rigid domain every element not
zero or a unit can be written as a product of atoms: c = Pi . . . pr where the factor
Pi is unique up to associates.

5. Show that for a ¥= 0 in a PID R, R/Ra and R/aR have the same annihilator,
viz. Ra* = a*R, where a* is the least bound of a.

6. Prove the extension of Th. 5.5 to finitely generated modules.

7. A ring will be called fully right inversive if every left regular matrix (not
necessarily square) has a right inverse. Show that a ring R is fully right inversive if
and only if the only finitely presented bound right R-module is 0. (A module M is
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bound if Horn (M, R) = 0. It can be shown that every ring R can be embedded in
a fully right inversive ring in which all left regular matrices over R remain left
regular (and so acquire right inverses), see Cohn [93]).

1.6 Free algebras, firs and semifirs
In this section we shall meet conditions that are sufficient for embeddabil-
ity in a field, although their sufficiency will only be proved in Ch. 4. They
are not necessary, but they hold in a wide class of cases, particularly in
free algebras and in the coproduct of fields, as we shall see in Ch. 5.

Let R be any ring. A relation of r terms

a • b = a1b1 + . . . + arbr = 0 (1)

is said to be trivial if for each i = 1, . . . , r either at = 0 or bt = 0. In the
zero ring every relation is trivial, but excluding this case, there are always
non-trivial relations. Nevertheless there are rings in which all such
relations can be trivialized. If there is an invertible r x r matrix P over R
such that aP'1 • Pb = 0 is a trivial relation, then (1) is said to be
trivialized by P or also trivializable. More generally, a matrix product

AB = 0, (2)

where A is m x r and B is r x n is trivializable if there is an invertible
r x r matrix P which trivializes (2), i.e. such that for each / = 1, . . . , r
either the /th column of AP~l or the ith row of PB is zero.

For any non-negative integer n we define an n-fir as a non-zero ring in
which every relation (1) of at most n terms is trivializable. If R is an n-fir
for all n, it is called a semifir. Let us denote the class of all rc-firs by 3*n

and the class of all semifirs by 3% then it is clear that

9o 2 &i 3 3̂2 3 • • • , H3%, = 9. (3)

It is easily checked that S^ is the class of all non-zero rings, 3^ is the class
of all integral domains and 3^ the class of all integral domains in which
any two elements with a non-zero common left multiple generate a
principal left ideal. In particular, a commutative domain is a 2-fir
precisely if every 2-generator ideal is principal; by induction we see that
every finitely generated ideal is principal, thus a commutative 2-fir is
nothing other than a Bezout domain. As the next theorem will show,
every commutative 2-fir is in fact a semifir, thus the chain (3) collapses to
two terms. By contrast, in the general case all terms of the chain (3) are
distinct (see 5.7).

We now give an alternative description of ft-firs and semifirs. First we
remark that if we have a relation (1) in an n-fir, where r^n, then
we can transform (1) to a relation a' • b' = 0, where a' = (a[ . . .



1.6 Free algebras, firs and semifirs 35

a'k 0 . . . 0), bf = (0 . . . 0 b'k+1 . . . b'r)
T and a[, . . . , a'k are

right linearly independent. This follows easily by an induction on r — k.
The transformation from a • b to a' • b' = aP~l • P6 is often called an
internal modification.

T H E O R E M 1.6.1. Let R be a non-zero ring. Then for every integer
n^O, the following conditions are equivalent:

(a) R is an n-fir,
(b) any left ideal ofR generated by r ^ n left linearly dependent elements

has a family of fewer than r generators,
(c) any submodule on at most n generators of a free left R-module is

again free, of unique rank,
(a°)-(c°) the left-right duals of (a)-(c).

Further, R is a semifir if and only if every finitely generated left (or
equivalently, right) ideal is free, of unique rank.

Proof, (a) => (b). Suppose that a is a left ideal generated by wl5 . . . , ur

(r ^ n) which are left linearly dependent, say a • u = 0, where u =
(ui . . . ur)

T, a = (a1? . . . , ar) ¥= 0. Then by (a) there is a matrix P
trivializing this relation, say u' = Pu, af = aP~l, a' • uf = 0. Further, a is
generated by the components of uf\ since a =£ 0, we have a' =£ 0, so by
triviality some component of u' is 0 and hence a is generated by fewer
than r elements. Thus (b) holds, and by taking a generating set of a of
least cardinal we see that a is free as left .R-module.

(b)=>(c). Let F be a free left R -module and G a submodule on a
generating set ul9 . . . , ur, where r ^ n. If G is not free on w1? . . . , ur,
suppose that 2*W = 0, where the at are not all zero. By transforming to
a'i, u[ we may suppose that a[, . . . , a'k are right linearly independent and
a'k+i = • • • = a'r = 0, where k^l.By projecting from F to R we see that
all the coordinates of u[, . . . , u'k must vanish, hence u[ - . . . = u'k = 0
and so G has a generating set of fewer than r elements. Taking a
generating set of least cardinal, we see that G is free. If G has a basis of
r ^ n elements and another basis, of s < r elements, then Rr = Rs, so G
has a surjective endomorphism with kernel isomorphic to Rr~s. Hence a
generating set of s elements maps to a set of s non-free generators under
this epimorphism, which as before yields a generating set of fewer than s
elements. This is a contradiction and it shows that the rank of G is
unique.

(c) => (a). Given a relation (1), the vector b = (bx . . . br)
T defines a

linear map f:Rr^>R by right multiplication and we obtain an exact
sequence

/?r^im/^0. (4)
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As r-generator submodule of R, im/ is free, so this sequence splits and
we can change the basis in Rr to one adapted to the decomposition
Rr = ker/ © im/, where d imim/=f say. If this change of basis is
described by P e GLr(R), and af = aP~\ b' = Pb, then since af • b' = 0,
the components of a' lie in ker/. Thus the components of a' after the
first t are zero, while the first t components of b' are 0, so (1) has been
trivialized. Now (a°)-(c°) follow by the symmetry of (a).

If R is a semifir, (a) holds for all n, hence by (c), any finitely generated
left ideal is free of unique rank. Conversely, when this holds, and R
contains free left ideals of arbitrary finite rank, then (c) holds and hence
(a), for all n. When this is not the case, R is a left Ore domain, by Prop.
3.6, and hence it has IBN; thus (c) holds and hence (a). •

Suppose that over an n-fir R we have a matrix relation AB = 0, where
A is m x r and B is r x s. Then right multiplication by B defines a linear
map f:Rr-*Rs, leading to an exact sequence (4). Here im/ is an
r-generator submodule of Rs, so if r ^ n, im/ is free and as in the proof
of the theorem we can find P e GLr(R) to trivialize the relation AB = 0.
Thus we have

C O R O L L A R Y 1.6.2. Over an n-fir any matrix relation AB = 0, where A
has at most n columns, can be trivialized by an invertible matrix. •

This result can still be generalized. Suppose that AB merely has a block
of zeros, say

If A' denotes the block consisting of the first r1 rows of A and B" is the
block consisting of the last s" columns of B, then A'B" = 0, hence this
product can be trivialized and we obtain

L E M M A 1.6.3 (Partition lemma). Let R be an n-fir and let A e rRn,
B e nRs be such that the product AB has an r' x s" block of zeros as in
(5), where r', r"} s'', s" indicate the numbers of rows and columns
respectively. Then there exists P e GLn(R) and a decomposition
n = n' + n" such that AP~l has an r' x n" block of zeros and PB has an
n' x s" block of zeros. •

A (non-zero) ring in which every right ideal is free, of unique rank is
called a right fir. Left firs are defined similarly and a left and right fir is
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called a free ideal ring, or fir for short. In the commutative case firs
reduce to PIDs, more generally we have

P R O P O S I T I O N 1.6.4. A ring is a principal right ideal domain if and
only if it is a right fir and satisfies the right Ore condition.

Proof. In a right fir R every right ideal is free and if R is also right Ore,
then any two elements of R are right linearly dependent, hence no right
ideal needs more than one generator and so R is right principal.
Conversely, a PRID is right Noetherian and hence right Ore, thus all
right ideals are free and we have a right fir. •

As an example of a fir we have the free A>algebra (for any commutative
field k) on a set X. It is written k(X) and consists of all A:-linear
combinations of words on the set X. If X = {x}, this algebra is just the
polynomial ring k[x], but as soon as X has more than one element, the
algebra is non-commutative. That k(X) is a fir will be shown in 5.4; for
the moment we note that a commutative fir is just a PID (by Prop. 1.6.4),
and k[x] is a PID, as is well known and easily proved with the help of the
Euclidean algorithm. In fact a generalization of the latter, the weak
algorithm, can be used to show that k(X) is a fir, but we shall use a
different method of proof in Ch. 5.

The homomorphic image of a semifir need not be a semifir; this is clear
since the free algebra is a semifir, while most of its homomorphic images
are not. However, a retract of a semifir is again a semifir. We recall that a
ring 5 is called a retract of a ring R if there is a homomorphism f: R-* S
with a left inverse (composing from left to right). The left inverse must
then be injective and if we identify S with its image in R, we can describe
a retract of R as a subring S of R with a homomorphism from R to 5
whose restriction to S is the identity map.

P R O P O S I T I O N 1.6.5. Any retract of an n-fir is an n-fir; likewise for
semifirs.

Proof. Let / : R —> S be a retract, where R is an n-fir, and consider an
r-term relation in 5, where r ^ n:

a-b = "Zafii = 0. (1)

Over R we can trivialize it: a' • b' = 0 holds trivially, where a' = aP'1,
b' = Pb for an invertible matrix P over R. Applying / to P we obtain a
matrix over S which trivializes (1) in 5. This proves the result for /i-firs;
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the conclusion for semifirs follows because a semifir is just an n-fir for all
n. •

Often a generalization of free algebras is needed. Let K be any field
and E a subfield of the centre of K. Then the tensor K-ring on a set X
over E, KE(X), is defined as the Airing generated by X over K with
the defining relations

ax = xa for all x e X, a e E.

As we shall see in 5.4, this ring is also a fir. In fact, E could be taken to
be any subfield of K, not necessarily central, but we have imposed this
condition to ensure that substitution can be carried out: any map X -+ K
extends to a homomorphism KE(X) —» K.

Tensor rings can be defined more generally for any bimodules and this
construction will also be needed later. Let K and E be as before and let
M be a K-bimodule centralizing E, i.e. am = ma for any m e M,
ae E. Define Mn = M ® . . . <g) M (n factors), where the tensor pro-
duct is taken over K. Then the direct sum

K ® M1 0 M2 © . . . (6)

becomes a ring by using the natural homomorphism Mr ® Ms —» Mr+S

together with linearity to define the multiplication. This ring is often
written KE{M), where the context usually indicates whether it is taken
over a set or a bimodule. The tensor ring on a set X may in fact be
regarded as a special case, by taking M to be the direct sum of copies of
K° ®EK indexed by X.

The tensor K-hng KE(M) on a bimodule M can be shown to be a fir
by using the weak algorithm (see FR, 2.6), but here we shall merely
prove (in 5.4) that it is a semifir, which is enough for our purposes. In
particular this will apply to the free K-hng KE{X) on a set X.

Besides the free algebra and the free A'-ring we shall also need to
consider free power series rings. Let X and E C K be as before; then we
can consider the set KE{{X)) of formal series in X as a .K-ring in a
natural fashion. Formally this ring may be defined as the completion of
the free iC-ring KE(X) in the topology defined by the powers of the ideal
generated by X. This power series ring is again a semifir (see 5.4), but
unlike the free K-hng, it is not a fir when X ^ 0 (see FR, 3.4).

When X is infinite, it is sometimes convenient to assign degrees to the
members of X. The case just described is that where each x e X has
degree 1, but if we assign degrees in such a way that for any integer N
only finitely many members of X are of degree less than N, then the
resulting ring will include terms such as ^xex

x' Thus KE((X)) will
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depend on the degree function that is used for X. In the uses we make of
power series, X will be finite and then KE({X)) is independent of the
degree function used, so this problem does not arise.

At first sight free algebras seem far removed from the kind of rings that
are usually considered, but in fact they can be found in any non-Ore
domain.

P R O P O S I T I O N 1.6.6. Let R be an integral domain with centre F. Then
either R is left and right Ore or it contains a free algebra of countable rank.

Proof. Suppose that R is not left Ore and take x,y e Rx such that
Rx fl Ry = 0, i.e. x and y are left linearly independent over R. We claim
that the F-algebra generated by x and y is free. For if not, then there is a
polynomial in x and y which vanishes; we choose such a polynomial / of
least degree and write it as

f=a + f1x + f2y,

where a e F and fl9 f2 have lower degree than / . If a — 0, then
f\x + fiy — 0, which contradicts the hypothesis, so af^O and fl9 f2

cannot both vanish, say fx =£ 0. Hence

0 = yf = ay + yfxx + yf2y

+ (or + yf2)y,

which is again a contradiction. This shows the F-algebra on x and y to be
free. Now the subalgebra generated by zn = xyn (rc = 0, 1,2, . . . ) i s easily
seen to be free on the zn and so it satisfies all the conditions. •

To obtain a homological description of firs, we recall that a ring is said
to be left hereditary if every left ideal is projective, left semihereditary if
every finitely generated left ideal is projective. It is well known that for a
left (semi)hereditary ring, every (finitely generated) submodule of a
projective left /^-module is again projective (A.3, Th. 3.4.4, p. 97), so a
left hereditary ring is just a ring of left global dimension at most 1. Similar
definitions apply on the right and give distinct classes of rings (see Ex. 3).

The homological dimension of a module measures how far the module
is from being projective. In this sense one can also ask how far a
projective module is from being free. We shall not introduce a measure
here, but define a ring R to be projective-free if every finitely generated
projective left R-module is free, of unique rank. The duality
P »-> Horn,? (P, R) shows this notion to be left-right symmetric. For
example, any local ring is projective-free (FR, Cor. 0.5.5, p. 22). It is
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easily verified that a ring is a left (semi)fir if and only if it is
projective-free and left (semi)hereditary.

In Ch. 4 we shall show that every semifir can be embedded in a field.
For the moment we shall merely note that semifirs satisfy Klein's
nilpotence condition.

P R O P O S I T I O N 1.6.7. Let R be an n-fir and C a nilpotent n x n matrix
over R. Then there is a conjugate P~1CP which is upper triangular, with
zeros on the main diagonal; in particular, Cn = 0.

Proof. Since C is nilpotent, we have Cm+1 = 0 for some m ^ 0. Choose
the least such m and write B = Cm\ then B ¥= 0 and CB = 0, hence by
Cor. 6.2, there is an invertible n x n matrix U such that CU has its first
column equal to 0, and the same holds for U~lCU. Omitting the first row
and column from U~lCU, we obtain an (n — 1) x (n — 1) matrix which is
again nilpotent; by induction it is conjugate to an upper triangular matrix
with zeros on the main diagonal, hence the same holds for C. •

With the help of Klein's theorem (Klein [69]) this shows that for every
semifir R, the monoid Rx can be embedded in a group. In fact this
already holds for 2-firs, by the Gerasimov-Malcolmson localization
theorem (FR, Th. 7.11.22, p. 484).

Exercises
1. Give a direct proof that a semifir is weakly finite.

2. Let A be a commutative integral domain. Show that the polynomial ring A[x]
is a fir if and only if A is a field.

3. Show that Q as Z-module is not projective. Deduce that the triangular matrix

ring is right but not left hereditary.

4. Prove that a ring is a left (semi)fir if and only if it is left (semi)hereditary and
projective-free.

5. Show that a retract of a PID is again a PID.

6°. Is every retract of a fir again a fir?

7. Let R be any ring and a a right ideal which is free as right i?-module and
satisfies a2 = a. Show that either a = R or a = 0.
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8. (G. M. Bergman) Show that if an inverse of xy is adjoined to k{x, y), the
resulting ring has an idempotent =£ 0, 1.

9. Show that a ring R is a semifir and a local ring if and only if R =£ 0 and for any
«!, . . . , an e R satisfying a relation X a A = 0, where the 6/ are not all zero, there
is such a relation with one of the bt a unit (Cohn [92']).

10. Show that in a semifir R every finitely generated left or right ideal a satisfies
a ®Ra = a2.

11. Let R be a semifir and c e R. Show that any right ideal a in R satisfies
rk(a fl cR) ^ rka, with equality if and only if a 4- cR is principal.

1.7 The matrix reduction functor
We shall now take a closer look at Rg, the category of rings and
homomorphisms, and some related categories. Here the unit element 1 is
understood to be a constant operator. The category Rg has as its final
object 0, the zero ring consisting of 0 alone, for every ring has a unique
homomorphism to 0. There is also an initial object, the ring of integers Z,
for there is always a unique homomorphism Z —»R, because Z is
generated by the constant operator 1, whose image in R is determined.
This amounts to treating rings as Z-algebras.

More generally, if A is any commutative ring, by an A-algebra we
understand a ring R which is an A -module such that

a(xy) = ax • y = x • ay for all x, y e R, a e A. (1)

It is easily verified that an A-algebra is simply a ring R with a
homomorphism from A to the centre of R, viz. a »-> a • 1. The expression
'A-algebra' will be taken to imply that A is a commutative ring.

Often a more general notion is needed. Let A be any ring, not
necessarily commutative. By an A-ring we understand a ring R which is
an A-bimodule such that

a(xy) = (ax)y, (xa)y = x(ay), x(ya) = (xy)a,

forallx,y e R, a e A. (2)

Again it is easy to see that an A-ring is nothing other than a ring R with a
homomorphism A -» R, viz. a •-> a • 1. If this homomorphism is injective,
the A-ring is called faithful. We shall write Rg^ for the category of
A-rings and homomorphisms, where the homomorphisms are understood
to be compatible with A; this will be so if they are ring-homomorphisms
and A-bimodule homomorphisms. Clearly RgA is a category with initial
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object A; it is essentially the comma category (Rg, A) (see 5.1 below;
A.3, p. 69).

In the category RgA we can, for any pair of objects R, 5, form the
pushout:

(3)

Here P may be obtained by taking a presentation of R as A-ring:
R = A{X; R), where X is a generating set with defining relations R,
and S = A(Y; 5) , and take the joint presentation (assuming the sets X,
Y to be disjoint):

p= R*S = A(X U Y; R, 5) . (4)

This is usually called the coproduct of R and 5 over A (or sometimes the
free product of R and S, amalgamating A). Its existence is clear by
abstract nonsense, but in practice we shall often want to have further
information on the structure of the coproduct, e.g. whether the coproduct
(4) is faithful, i.e. the natural homomorphisms from R, S to P in (3) are
injective. These questions will form the subject of Ch. 5.

Another category of interest to us is the category Rgn ofnxn matrix
rings. Its objects are rings with n2 constant operators etj (in addition to 1),
traditionally called the matrix units, although they are not units except in
the trivial case n = 1. They satisfy the conditions familiar from matrix
theory:

eifiu = djkeih Y,eu = 1> (5)

where 8jk = 1 if ; = k and 0 otherwise (Kronecker delta). The morphisms
in Rgn are ring homomorphisms preserving the matrix units. For any
n ^ 1 this category is equivalent to the category of rings. To prove this
fact we introduce the matrix functor cSRn, a covariant functor from Rg to
Rgn. With any ring R it associates the n x n matrix ring Tln(R) = Rn

whose elements are n x n matrices over R, with the matrix units etj being
given by the matrix with (/, y)-entry 1 and all other entries 0. Clearly any
ring homomorphism f\ R-^> S uniquely determines a homomorphism
from $fln(R) to Ttn(S) in Rgn, by applying / to the separate matrix
entries. Conversely, any homomorphism $)?„(/?)-><3fin(S) arises in this
way from a homomorphism /? —» S, because R can be characterized
within yRn(R) as the centralizer of all the etj and it is mapped to the
centralizer of the etj within Tln(S), which is S. Thus the functor Tln is
faithful and full; moreover, every object T in Rgn is of the form
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where C is the centralizer of the etj in T. This shows 1JI n to be a category
equivalence (see A.2, Prop. 1.3.1, p. 19). Thus we have proved

T H E O R E M 1.7.1. The matrix functor Tln establishes an equivalence
between Rg and Rgn, for any n ^ 1. •

The inverse of the matrix functor is a functor from Rgn to Rg which
associates to any n x n matrix ring with a specified set of matrix units etj
the centralizer of the e^. There is another functor from Rgn to Rg, namely
the forgetful functor, which forgets the etj. It is important to distinguish
these two functors; we shall not use a special notation for the inverse of
yRn, but denote the forgetful functor applied to a matrix ring ^ftn(R) by
Wn(R).

We now come to another functor, perhaps less familiar than the others.
By the n-matrix reduction functor 5Bn we shall understand the left adjoint
of the n x n matrix functor. Thus we have

$). (6)

Our first task is to show that such a functor exists. Taking R to be the
initial object Z in (6), we see that 5Bn(Z) is again an initial object in Rg,
hence by uniqueness,

®n(Z) = Z.

Next, by the equivalence of Rg and Rgrt we obtain from (6),

, Wn(S)) = Rgrt (9Kn(2Bn(tf)), <JRn(S)). (7)

Let us put £„(#) = (3)?n(
(3Bn(7?)); (7) shows $n(R) to have the following

universal property: There is a homo-
R - • gn (#) morphism /i: R^^n(R) such that

every homomorphism from R to a
matrix ring 5^n(5) can be factored
uniquely by a homomorphism
5n(/?)->9Kn(5). Here \i is obtained
by choosing 3^(5) = &(/?) in (7)

and taking the map on the left corresponding to the identity map on the
right.

This description makes it clear how to construct 5n(^): w e take the
ring R and adjoin n2 elements etj satisfying the equations (5). If R is an
A -algebra, we shall also want the relations

aeij = eija f°r all a e A and /, j = 1, . . . , n,

to ensure that Sn(^) is again an A-algebra. When R = A, this construc-
tion just gives <JRn(A), while in general we have a coproduct over A:
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&,(/*) = R * mn(A)-

This is an n x n matrix ring; the underlying ring, viz. the centralizer of
the etj9 is ^S>n(R), or more explicitly, $&n(R; A). This mode of formation
leads to the following rule-of-thumb for forming 3

Take the elements of R and interpret them as n x n matrices', with the
elements of A as scalars.

More generally, given an A-algebra R with a presentation R =
A(X\&), we can form another A -algebra by interpreting each element
x of X as an mx x nx matrix, where nx = my if a product xy occurs in O,
mx = my if a sum of terms begins with JC and y respectively and nx = ny if
a sum of terms ending mx, y respectively occurs in O.

We give some examples to illustrate these rules, where A: is a
commutative field:

1. Let R = k[x], the polynomial ring in x. Then 9Bn(/?) is the free
A:-algebra on n2 generators xtj.

2. R = k[t, f"1], the ring of Laurent polynomials (see 2.1). Here
3Bn(/?) is the A>algebra on 2n2 generators jci;, ytj (/, 7 = 1, . . . , n) with
defining relations in matrix form, writing X — (xtj), Y = (ytj), XY =
YX = I. More generally, we can interpret t as m x (m 4- d) matrix and
t~l as (m + d) x m matrix, and so obtain the universal non-IBN ring of
free module type (m, m + d).

3. R = k[x; xr = 0]. Here 3Brt(i?) is the fc-algebra with n2 generators xtj

and defining relations in matrix form, writing X - (xtj), Xr = 0.
Later, in 5.7 we shall see that for n > 1, 3Bn(#) is an integral domain

whenever R¥^0. Applied to the example 3, with r > n > 1, this provides
an example of an integral domain not embeddable in a field, by Prop. 4.4.

Exercises

1. Show that for a non-commutative ring A, the category of A -algebras (as
defined by (1)) is equivalent to the category of A-algebras, where A = A/t, c
being the commutator ideal of A (thus A is the largest commutative homomorphic
image of A).

2. An A -ring R is said to be augmented if there is an A-ring homomorphism
R—>A. Show that an augmented A -ring R can be expressed as R = A © a,
where a is the kernel of the above homomorphism R^A (a is called the
augmentation ideal). Show that the coproduct of augmented A -rings is faithful. If
A = k[x], give an example of two A-rings whose coproduct is not faithful.
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3. What is the appropriate n-matrix reduction functor for the category of A -rings,
where A is a non-commutative ring?

4. Show that the correspondence R •-> euRen is a functor from Rgn to Rg which
is inverse to 1ft n.

5. Show that the matrix functor Tln does not have a right adjoint.

6. For any A-rings B, C, show that B * 3Rn(C) = Wn(R), where # = 3Brt(£ * C;
C).

Notes and comments
The first non-commutative field was the ring of quaternions, constructed
by Sir William Hamilton in 1843, with the aim of representing vectors in
space (in the way vectors in the plane could be represented by complex
numbers). Hamilton and his followers built up an elaborate geometrical
calculus on this foundation, which eventually led to vector analysis, but
which is not relevant to our theme. Skew fields finite-dimensional over
their centres (division algebras) were studied intensively in the 1920s and
1930s and there has been a revival of interest since 1970. For an
up-to-date account see Jacobson and Saltman [a].

The first skew field infinite-dimensional over its centre was constructed
in 1903 by Hilbert in his study of the foundations of geometry (Hilbert
[03]). This was the field of skew Laurent series F((x; a)), where F is the
rational function field R(t) and a is the automorphism f(t) »-> f(2t) of F
(see 2.3), to illustrate the fact that an ordered field need not be
commutative, when the ordering is non-Archimedean. In principle this
example already occurs in the first edition, Hilbert [1899], but there (in a
rare mistake) he takes the automorphism a to be f(t) »-» /(—t); this is not
order-preserving and so the ordering cannot be extended (in fact the
resulting field is 4-dimensional over its centre). For a brief history see
Cohn[92].

Near fields were introduced by Dickson [05] in studying the axiomatics
of field theory; a thorough treatment can be found in Wahling [87]. The
definition of fields in terms of their multiplicative group given in Lemma
1.1 is taken from Cohn [61'], with some simplifications suggested by
N. G. Greenwood. Similar sets of axioms were used by Dicker [68] and
Leissner [71]. A remarkable set of axioms for fields, dispensing with the
distributive laws, was found by Pickert [59], who proves that a set K with
two binary operations x + y, xy is a field provided that (i) K is an
abelian group under the operation x + y with neutral element 0, (ii)
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AT\{0} is a group under the operation xy, with neutral element 1, (iii)
AT\{1} is a group under the operation x°y=x + y— xy, with neutral 0
(where — denotes the inverse of +, as usual).

Quasi-identities have been studied in universal algebra, see UA, Ch.
VI, where they occur as particular Horn sentences, and Malcev [73]; see
also Cohn [71']. Ultraproducts were introduced by Los [55] and today
constitute a basic tool in model theory, see Chang and Keisler [73], UA,
V. 5.

O. Ore [31] studied the construction that bears his name and proved
Cor. 3.3. In Ore [33] he applied these results to skew polynomial rings, in
particular the ring of differential polynomials k(t)[x; 1, d/dt] (see 2.1).
The concept of invariant basis number was first defined and studied by
Leavitt [57]; see also Everett [42]. A comparative study of IBN, UGN
and weak finiteness was made by Cohn [66]. That Noetherian domains
are Ore was first proved by Goldie [58].

The notion of similarity goes back to Fitting [36], who examines this
concept for matrices over any ring. In the form given here it is taken from
Cohn [63], see also FR, 0.6 and 3.2. Invariant and bounded elements
were studied in the context of pseudo-linear transformations by Jacobson
[37], see also the account in Ch. 3 of Jacobson [43]. Our treatment is
based on that of Ch. 3 of FR, where Prop. 5.2 and Th. 5.4 are established
for semifirs.

Firs and semifirs (then called 'local firs') were introduced in Cohn [64].
Here we have included only a few basic results needed later; for a
detailed account see FR Ch. 1,4 and 5.

The matrix reduction functor arose in conversation between G. M.
Bergman and the author in 1969 and is described in Cohn [69]; see also
Bergman [74'], Cohn [79] and FR, 2.11. It was also defined in Procesi
[73], Ch. IV, but used only in commutative rings, where it leads
essentially to the generic matrix ring.



Skew polynomial rings and
power series rings

The true analogue of a polynomial ring in the non-commutative case is
the free algebra, or more generally, the tensor ring. But there is a
half-way house, rather like the Ore domain (of which it is an instance),
namely the skew polynomial ring, which was introduced by Ore [33]. We
examine its elementary properties in 2.1 and make a further study of its
ideal theory in 2.2. By forming a completion we obtain in 2.3 from a skew
polynomial ring a skew power series ring, whose properties in some
senses are simpler than for polynomials. This leads in 2.4 to the
Malcev-Neumann construction, a far-reaching generalization allowing
the group algebra of any totally ordered group to be embedded in a field.
With its help we can iterate the skew polynomial ring construction in 2.5
to form the rings first studied by Jategaonkar, which provide a rich source
of counter-examples.

The final section 2.6 applies Ore's method to filtered rings whose
associated graded ring is an Ore domain. It is shown that the filtered ring
can be embedded in a field, constructed as an inverse limit, and this
construction is then used to embed the universal associative envelope of
any Lie algebra in a field.

2.1 Skew polynomial rings
Commutative field extensions are usually constructed as residue-class
rings of polynomial rings over a field. For skew fields the polynomial
construction is not the most general means of forming an extension, but it
is an important special case because it allows Ore's construction from 1.3
to be used; in fact Ore [33] was one of the first to consider skew
polynomial rings formally.

Let K be a field with a central subfield C. Then the AT-ring generated

47
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by an indeterminate x over C is the tensor Airing Kc(x) already
encountered in 1.6. Its elements do not look like polynomials at all,

a + ^biXCi + ^djxejxfj + . . . , a, bh ch dj, ej9 / , e K,

and they are no easier to handle than expressions in several variables. We
shall make the simplifying assumption that all coefficients can be written
on the right, but we shall allow the coefficient ring to be arbitrary, to
begin with.

Thus let A be any ring, t a new symbol to represent the indeterminate
and consider a ring R whose elements can all be uniquely expressed in the
form

/ = a0 + tax + . . . + tnan, where at e A. (1)

We shall call such an expression / a polynomial in t and define its degree,
deg/, as n if an =£ 0; the zero polynomial 0 is said to have degree — «>. If
in (1), an = 1, / is said to be monic. The additive group of R is just the
direct sum of countably many copies of A, by the uniqueness of (1). To
multiply two elements, say f = ^tlat given by (1) and g = ^lt

ibj we
have, by distributivity, fg = 2 ^ ( ^ ; ) f y and so it will only be necessary to
prescribe att

j. We shall also assume that

deg /g^deg /4 -degg . (2)

Then in particular, at for any a e A has degree at most 1, so

at = taa + a6, (3)

where a*->aa, a^a8 are mappings of A into itself. This is already
enough to fix the multiplication in R, for now we can work out atr by
induction on r:

af = (ta* + a V " 1 = [t2aal + t(aad + a6a) + a*]tr~2

We derive some consequences from (3):

{a + b)t = t(a 4- b)a + (a + b)\ at + bt = taa + a6 4- tba + b\

hence

(a + b)a = aa + ba, (a + b)6 = a6 + b\ (4)

and

(ab)t = t(ab)a + (ab)\ a(bt) = a{tba + b6) = taaba + a6ba + ab\

so

(ab)a = aab«, (ab)s = a6ba + ab6. (5)
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Further, It = t\ = t, therefore

1* = i? 1* = o. (6)

From (4)-(6) we see that a is an endomorphism of A and 6 is an
a-derivation of A, i.e. a mapping such that

{a + b)6 = a6 + fo*5, (flfe)6 = 0<V + ab8 for all a, 6 e A. (7)

We note that (7) entails I6 = 0, by putting a = b = 1 in the second
equation (7). Conversely, if A is any ring with an endomorphism a and
an ar-derivation <5, then the set of all expressions (1) can be made into a
ring by defining addition componentwise and multiplication by the
commutation rule (3). The verifications are straightforward, and they
show that in the resulting ring the form (1) for the elements is unique.
This proves part (i) of

P R O P O S I T I O N 2.1.1. Let A be a ring, a an endomorphism and 6 an
a-derivation of A and put R = A(t;at = taa + a6, a e A). Then

(i) each f e R can be uniquely written as ^jtlat (at e A),
(ii) R is an integral domain, provided that A is an integral domain and a

is injective,
(iii) if A is a field, then R is a principal right ideal domain, which is also

a principal left ideal domain whenever a is an automorphism.

To prove (ii), we note that when A is an integral domain and a is
injective, then we have equality in (2), and hence R is then an integral
domain. Next, let A be a field and let a be a right ideal in R. For a = 0
there is nothing to prove; otherwise let p = a0 + tax + . . . + tn be the
monic polynomial of least non-negative degree in a. Given / e a, we can
by the usual division algorithm write / = pq + r, where q,r e R and
deg r < degp. But then r = / — pq e a, and if r =£ 0, we obtain a monic
polynomial of lower degree than p in a, which contradicts the minimality
of p, so r = 0 and / e pR. Hence a = pR and R has been shown to be
right principal. If a is an automorphism, with inverse /J, then, writing
aa = b, we have a = b^ and we can re-write (3) in the form b^t =
tb + b*6 or

tb = bh - b?\

which shows by symmetry that R is left principal. •

The ring R formed here is called the skew polynomial ring in t over A
associated with a, 6 and is denoted by A[t; a, 6]. When <5 = 0, we also
write A[t\ a] instead of A[t; or, 0]. If moreover a= 1, we obtain the
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polynomial ring in a central indeterminate t over A, written A[t]. For a
field K the principal right ideal domain K[t\ a, 6] has a field of fractions,
by Cor. 1.3.7, which will be denoted by K(t; a, 8).

In matrix notation the commutation rule (3) may be written

«d o - a
and the conditions (4)-(6) may be summed up by saying that the mapping
of A into the matrix ring A2 defined by

o $)
is a ring homomorphism. More precisely, it is a homomorphism into the
ring T2(A) of upper 2 x 2 triangular matrices over A, which in a

suggestive notation may also be written I. More generally, any
\U A)

homomorphism from A to T2(A) has the form

a« a8

0 cfi

and it is easily verified that a, fl are endomorphisms of A, while 8
satisfies

(a + b)6 = a6 + b\ (ab)6 = aabd + a6b^. (9)

Such a mapping is called an {a, p)-derivation of A; as before, a
(1, /?)-derivation is also called a ^-derivation. As an example of an
(a, /?)-derivation we have the mapping

a »-» ca^ — aac, where c e A. (10)

This is called the inner (or, ^-derivation induced by c; any derivation not
of this form is said to be outer.

Let A be a right Ore domain with field of fractions K. In Cor. 1.3.5 we
saw that any injective endomorphism of A extends to K\ in fact this also
applies to derivations. Thus let a be an injective endomorphism of A; its
unique extension to K is again written as a. Any ar-derivation 6 defines a
homomorphism (8) from A to T2(A) which by functoriality extends to a
homomorphism from K to T2(K), say

u u'
0 ua

Clearly the map u »-* u' is an ar-derivation on K extending 8 and we shall
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write u6 instead of u' for u e K. Thus we have shown that the derivation
associated with an injective endomorphism extends to K:

P R O P O S I T I O N 2.1.2. Let A be a right Ore domain with field of
fractions K, and let a be an injective endomorphism of A and 8 an
a-derivation. Then a extends to a unique endomorphism of K and 8
extends to a unique a-derivation of K. •

In a skew polynomial ring R = A[t; a, 8] over any ring A we can
change the variable by writing

t' = ta + b,

where a, b e A and a is a unit in A. Clearly this leaves the ring R
unchanged, but it will in general change a and 8 and by a judicious choice
of variable it may be possible to reduce a to 1 or 8 to 0. Suppose that a is
an inner automorphism:

ca = ucu~l for some u e U(A).

Writing f' = to, we find that ctf = ctu = (tc* + c6)u = tuc + cdu, hence

ctf = t'c + c6wforallc e A;

thus a has been reduced to 1 by a change of variable.
Secondly, assume that 8 is an inner a-derivation:

c6 = cd — dca for some d e A.

On writing t' = t - d, we have ct' = c(t - d) = tca + cd - dca - cd =
t'ca, so

ct' = t'c".

Thus if either a or 8 is inner, it can be reduced to 1 or 0 respectively by a
change of variable. In fact, when neither a nor 8 is inner, R is quite
restricted, as the next result shows:

T H E O R E M 2.1.3. Let K be a skew field with centre C and let R =
K[f, a, 8] be a skew polynomial ring with endomorphism a and a-deriva-
tion 8. Then

(i) if a does not leave C fixed, then 8 is inner and by a suitable choice
of variable may be taken to be zero,

(ii) if a leaves C fixed but 8 does not map it to 0, then a is inner and by
a suitable choice of variable may be taken to be 1,

(iii) if a leaves C fixed and 8 maps it to zero, then C is contained in the
centre of R.
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Proof. Assume that a does not leave C fixed, say ya=£ y for some y e C.
Then on writing t' = yt — ty we have, for any c e K,

ctf = c(yt - ty) = ytca + yc8 - tcay - c8y = t'ca,

hence we have R = K[t'; or], so <5 has been reduced to zero. Next assume
that a leaves C fixed but there exists y e C such that y6 =£ 0. Then ya — y
and for any c eK we have cy = yc, hence cy6 + cdy = yc6 + y6ca, i.e.
cy6 = y6ca and writing f' = t(yd)~1, we have

cf = tc^y6)-1 + c ' V ) - 1 = Ky6)"1^ + c\y8yl = t'c + cd\

where 6' is a 1-derivation, i.e. an ordinary derivation of K. This shows a
to be inner. In the remaining case a reduces to 1 and <5 reduces to 0 on C,
hence t centralizes C as well as K and so C is contained in the centre
oiR. •

In the special case where [A'IC] is finite, all linear endomorphisms and all
linear derivations are inner, by the Skolem-Noether theorem:

P R O P O S I T I O N 2.1.4. Let K be a field finite-dimensional over its centre
C. Then any C-linear endomorphism of K is an inner automorphism and
any C-linear derivation is inner.

Proof. Any endomorphism a of K must be injective, since the kernel is a
proper ideal; hence it is an automorphism by finite dimensionality. Now
a is inner, by the Skolem-Noether theorem (A.3, 7.1 or Cor. 3.3.6
below).

To prove the result for derivations we shall need the Skolem-Noether
theorem for simple rings: any two homomorphisms from a finite-dimen-
sional simple algebra into a central simple finite-dimensional algebra A
have images that are conjugate in A (see A.3, Th. 7.1.6, p. 262). We
could take a = 1, by what has been shown, but this is not necessary. We
have the following two homomorphisms from K to T2(K):

a 0\ (a a6

0 a} l
By Skolem-Noether the images are conjugate, thus there is a non-singu-

lar matrix I over K such that

q\(a

s )\0
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Hence

ap = pa, aq = pa6 + qaa,

ar = ra, as = ra6 + sfl".

It follows that p, r e C; they cannot both vanish, say p ^ 0 ; then on
dividing by p we may assume that p = 1 and so aq = a6 + qaa, which
shows <5 to be inner. •

For any skew field K we obtain a rational function field K(t) by
forming the polynomial ring K[t] in a central indeterminate and taking its
field of fractions. Its centre is described by the next result:

P R O P O S I T I O N 2.1.5. Let K be afield with centre C. Then the function
field K(t) formed with a central indeterminate t has the centre C(t).

Proof Every element of K(t) has the form cp = fg'1, where / , g e K[t].
We shall use induction on d(cp) = deg/ + deg g to prove that if q> is in the
centre of K(t), then cpe C(t), the converse being evident. For d(cp) = 0
we have an element of K and the result holds by definition. If d(cp) > 0,
we may assume that deg/^= degg, replacing cp by cp~l if necessary. By
the division algorithm, f=qg + r, where degr<degg, with uniquely
determined q, r e K[t]. Let us write uc = c~luc for u e K(t), c e Kx\
then

Since (p is in the centre of K(t), we have qf = cp/i.e.
l ~ rg~l. (11)

Now v(qj) = deg g - deg/ is a valuation on K(t) and the left-hand side of
(11) has a value ^ 0, unless q = qc, while the right-hand side has a strictly
positive value, which gives a contradiction. Without using valuations we
can say: put t = s'1; then K(t) = K(s) and for s = 0 the right- but not
the left-hand side of (11) vanishes. This shows that both sides must
vanish, qc = q and rg~l is in the centre, but d{rg~l) < d(fg~x), so the
result follows by induction. •

Later, in 2.2, we shall meet another proof of this fact.
Let us examine more carefully the conditions under which a skew

polynomial ring over a field is left principal.

P R O P O S I T I O N 2.1.6. Let K be afield with an endomorphism a and an
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a-derivation 6, and let R = K[t\ a, 6]. Then the following conditions are
equivalent:

(a) a is an automorphism,
(b) R is left principal,
(c) R is left Ore.

Proof. (a)=>(b) by Prop. 1.1 and (b) => (c) is clear. To show that
(c) => (a), assume (c); it will be enough to show that a is surjective. Let
c e K; by hypothesis there exist f,geR such that

ft = gtc ± 0.

A comparison of degrees shows that deg/ = degg = n, say. Let / =
tna + . . . , g = tnb + . . . , then by comparing highest terms we find aa =
bac and so c = (b~la)a. This shows a to be surjective and hence an
automorphism. •

This result together with Prop. 1.6.6 leads to an embedding of a free
algebra in a field, as was observed by Jategaonkar [69'] and independ-
ently, Koshevoi [70]: Let K be a field with a non-surjective endomorph-
ism or, e.g. the rational function field k(t) with endomorphism a:
f(t) *-+ f(t2), and form the skew polynomial ring R = K[x; a]. This is a
principal right ideal domain, by Prop. 1.1, and so has a field of fractions
D, say. By Prop. 1.6 it is not left Ore, so it contains a free algebra of
infinite rank. This then provides an embedding of the free algebra in a
field.

In spite (or perhaps because) of its simplicity this construction is of
limited use, because not every automorphism of the free algebra can be
extended to an automorphism of the field of fractions, constructed here.
One application of this construction due to J. L. Fisher [71] is to show
that the free algebra has many different fields of fractions, in contrast to
the situation in the commutative case, where the field of fractions is
unique up to isomorphism, when it exists (Prop. 1.3.4). Let A = k[t] be
the polynomial ring in a central indeterminate t over a commutative field
k; for n = 2, 3, . . . it has the endomorphism an: f(t) •-»/(£"), which is
clearly not surjective because t does not lie in the image (for n > 1). Now
form R = A[x; an] and consider the subring 5 of R generated by x and
y = xt over k. By Prop. 1.6 it follows that Sx D Sy = 0, hence the
subalgebra on x and y is free, and for different n we get distinct, i.e.
non-isomorphic, embeddings, because

x~lyx = tx = xtn = x{x~ly)n = {yx~l)nx,

hence
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x~ly = {yx~l)n.

The skew polynomial ring admits the following natural generalization.
Let A be any ring and M a monoid. Then the monoid ring on M over A
consists of all formal sums ^sas, where s e M, as e A and almost all the
as vanish, with addition and multiplication:

5>A. (13)
When A is commutative and M is a group, this is just the well known
group algebra on M over A. The homomorphism ^sas*-+^as is called
the augmentation mapping.

The construction can still be generalized in two ways. Firstly, if we are
given an action of M on A by endomorphisms, i.e. a homomorphism / of
M into the monoid of endomorphisms of A, indicated by fs:a>-*as

(a e A,s e At), this allows us to define a skew monoid ring, in which (13)
is replaced by the formula

which arises by using the commutation rule

Secondly, the multiplication of elements of M in the monoid ring may be
modified by a factor set:

s • t = stmst,

where {mst} satisfies the usual factor set conditions. We shall not enter
into further details at this stage, since only special cases will be needed
where the necessary formalism can be derived ad hoc. There is just one
case of more frequent occurrence, namely the case of an infinite cyclic
group. The group ring of the free group on a single generator t over A is
called the ring of Laurent polynomials, written A[t, t~1]. Its elements are
finite sums X ^ ; (at e ^)> where the exponent / may also be negative.
This ring can also be described as the localization of the polynomial ring
A[t] at t; similarly we obtain a ring of skew Laurent polynomials by
localizing the skew polynomial ring A[t; a, 6] at t.

Exercises
1. Let K be a field with centre C. Show that for any / e K[t] the highest common
left factor of all the afa~l (a e Kx) is either a constant or a polynomial with
coefficients in C.
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2. Let A: be a commutative field and let a be the endomorphism f(t)^>f(t2)
of the rational function field E = k(t). Verify that D = E(t; a) is a field with
centre k.

3. Let k be a commutative field with an endomorphism a¥= 1. Show that every
ar-derivation is inner. (Hint. Verify that for all a, b e k we have a8(ba — b) =
bd(aa — a); note that this is a special case of Prop. 1.4.)

4. Let ^ be a field finite-dimensional over its centre and let a be an
endomorphism of K. Show that any ar-derivation of K is inner unless a itself is an
inner automorphism.

5. Let q = pr, where p is a prime number and r ̂  1, write F^ for the field of q
elements and denote by T the endomorphism fi-^fp of F^[JC]. Verify that each
polynomial ^Tlct defines an endomorphism of F^[JC], where ct acts by right
multiplication, and that aT = Tap. Deduce that the endomorphisms form a skew
polynomial ring ¥q[T; a], where a: a >-» ap (O. Ore [33']).

6. Let D be a field finite-dimensional over its centre C. Given f e D[x], show
that there exists g e D[x]x such that fg = gfe C[x].

7. The real quaternions H may be defined as an R-algebra with basis 1, /, j , k and
multiplication i2 = j2 = — 1, ij = —ji = k. Writing a for complex conjugation in C,
show that there is a homomorphism C[J; a] •-> H defined by t •-> / and deduce that

8. An involution of a field AT is defined as an antiautomorphism x >-> JC* whose
square is the identity. In a field with involution * an element u is unitary if
u*u = 1. Show that for u =£ 1, w*w = 1 holds if and only if L> + u* = 1, where

9. An involution * is unitary-trivial if u*u = 1=> u = 1. Show that a field with a
unitary-trivial involution, not the identity, is of characteristic 2 and any element
commuting with its image is fixed under *.

10. Let K be a field with an automorphism a and an involution *. Show that for
any c e K there exists an involution (necessarily unique) of L = K(t; a)
extending * and mapping x to xc if and only if (*a)2 = / (c) , the conjugation by c,
and c*a = c"1. Further, if * is unitary-trivial on K, then so is its extension to L.

By iterating this process construct a field of infinite degree over its centre with a
unitary-trivial involution not the identity (see Cohn [79']).

2.2 The ideal structure of skew polynomial rings
Many division algebras arise as residue-class rings of skew polynomial
rings over skew fields, which as we saw in 2.1, are (left or right) principal
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ideal domains; this makes it of interest to determine the elements
generating two-sided ideals. We recall from 1.5 that an invariant element
in a ring R is a regular element c such that Re = cR. Clearly every unit
and every regular element in the centre is invariant. Our first concern is
to note that every ideal of an integral domain which is principal as left
and as right ideal has an invariant generator.

P R O P O S I T I O N 2.2.1. Let R be an integral domain and a a non-zero
ideal which is principal as left and as right ideal. Then a has an invariant
generator, i.e. there exists c e Rx such that

a = CR = Re. (1)

Proof. By hypothesis a = cR = Rcf, hence c = uc', c' = cv and so c =
uc' = ucv. Now uc e cR, say uc = cw, hence cwv = ucv = c, which
shows that wv = 1. Thus v is a unit, by symmetry so is u and cR = Re. •

Next we observe that in a polynomial ring over a field every ideal has a
polynomial with central coefficients as generator. Since every non-zero
polynomial is associated to a monic polynomial, it is enough to prove the
result for the latter.

P R O P O S I T I O N 2.2.2. Let K be any field with centre C and let K[t] be
the polynomial ring over K in a central indeterminate t. Then a monic
polynomial in K[t] is left or right invariant if and only if all its coefficients
lie in C.

Proof. Clearly any polynomial with coefficients in C is (left and right)
invariant. Conversely, assume that / = tn + tn~xax + . . . + an is right
invariant in K[t]. Then for any c e K we have cf = fc' for some c \ which
must lie in K, by comparing degrees, thus

tnc + tn~1cal + . . . + can = tnc' + f*"1^' + . . . + anc'.

Equating coefficients we find that c' = c, cat = a{c\ hence cat = atc for
/ = 1, . . . , ft, so at e C, as claimed. •

Let K be a skew field, a an endomorphism and <5 an ar-derivation of
K. As we saw in 2.1, the skew polynomial ring R = K[t; a, 6] is then a
PRID, so every non-zero ideal of R has the form /R, where /=£() and
RfCfR, so / is right invariant. This makes it of interest to find a
criterion for right invariance. Let us call / right K-invariant if / ¥= 0 and
Kf Q fK, thus / is right invariant if and only if / is right AT-invariant and
tf e fR; explicit criteria for right invariance are derived in Prop. 2.3 and
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Th. 2.5 below. We remark that in considering the right ideal fR we may
assume / to be monic in t, by dividing by the leading coefficient; then /
has the form

/ = t
n + tn~1a1 + . . . + <*„, where at e K. (2)

However, we need not restrict ourselves to fields; in what follows, K may
be any integral domain and a an injective endomorphism. The conditions
for / e R = K\t\ a, 6] to be right invariant are

cf = fc' for all ce K,

tf = f{tb + a),

where c', b, a e K, by a comparison of degrees. Taking / as in (2), we
find

cf = ctn + ... = tnc«n + . . . ,

fc' = tnc' + . . . ,

where the dots indicate lower terms in t\ hence c' = ca". Similarly we
have

tf = tn+1 4- tnax + . . . ,

f(tb + a) = tn+1b + tna + tn~laxtb + . . . ,

= tn+1b + tn(a + alb) + . . . ;

for right invariance we must have b = 1, a + a^ = ax and so we obtain the
following description of right invariant elements:

P R O P O S I T I O N 2.2.3. Let K be an integral domain with an injective
endomorphism a and an a-derivation 6 and put R = K[t; oc, 6]. Then a
monic polynomial f in R of degree n is right K-invariant if and only if

cf = fc
an for all c e K\ (3)

/ is right invariant if and only if (3) holds, as well as

tf = f(t + a), where a = ax - a", (4)

ax being the coefficient of tn~x in f. •

If a is an automorphism of K with inverse /?, then (3), (4) can be
written as fc — c^nf, ft = (t — a^")f, hence / is then also left invariant,
and so we have
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C O R O L L A R Y 2.2.4. If in Prop. 2.3, a is an automorphism of K, then
any monic right (K-) invariant element of R is (K-) invariant. •

For any monic polynomial / in K[t; a, 6], given by (2), let us define its
divergence as

A(/) = tf - f(t + a), where a = ax - a". (5)

We note that A(/) has a lower degree than / . For on writing deg/ = n
and ignoring terms of degree less than n, we have

A(/) = tn+1 + tnax - tn(t + a) - tn~lax{t + a) + . . .

= t\ax - a - a?) + . . . ,

and the coefficient of tn vanishes by the definition of a.
This leads to the following criterion for invariance:

T H E O R E M 2.2.5. Let K be afield with endomorphism a and oc-deriva-
tion 5 and put R — K[t; a, 8\. If f is a monic right K-
invariant polynomial of degree n, then its divergence A(/) is again right
K-invariant of degree less than n and 6an — and is an inner (an, an+1)-
derivation. Morever, f is right invariant if and only if A(/) = 0.

Further, ifu = ^Jo
ltm~lai (a0 = 1) is the monic right K-invariant

polynomial of least positive degree m, then

A(w) = -a6
m - ama, where a = ax - a", (6)

and u is right invariant, unless am+1 is an inner automorphism of K.
The element u will be called the minimal right K-invariant element

oiR.

Proof. The right invariance of / is characterized by the vanishing of
A(/), by Prop. 2.3. To verify the right ^-invariance of A(/), we have, for
any c e K, on writing A = an,

cA(/) = ctf - cf(t + a)

= (tca + cd)f - fc\t + a)

= tfcaX + fc6X - ftcXa - fcx6 - fcka

Hence we find

cA(/) - A(f)caX = f[acaX + c6k - cXd - cka\. (7)
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The left-hand side is of degree less than n, while the right-hand side has
the factor / of degree n, so both sides must vanish and we obtain

cA(/) = A(f)c«n+\ (8)

c6X - ck6 = cka - acX(X. (9)

Now (8) shows A(/) to be right K-invariant, and (9) shows 6X — Xd to be
an inner (an, arn+1)-derivation.

Suppose now that u = ^™tm~lat is the monic right K-invariant
polynomial of least positive degree; then since A(u) is right A'-invariant
of lower degree, it must be of degree zero. Now

A(u) = ̂ ti+1am.t - ^am-it - ^ a ^ a ,

and the constant term is easily seen to be — a6
m — ama. Hence (6) follows,

and (8), applied to u, shows that either A(u) = 0 and u is right invariant,
or A(u) =£ 0 and am+1 is an inner automorphism. •

From this result it is easy to obtain a criterion for the simplicity of skew
polynomial rings, using the following observation on the occurrence of
invariant elements:

L E M M A 2.2.6. Let K be a field with an endomorphism a and an
a-derivation 6 and put R = K[t; a, 6]. If R contains a right K-invariant
element of positive degree, then it contains a right invariant element of
positive degree.

Proof. We observe that the divergence satisfies the rule:

A(fg) = A(f)g + fA(g), (10)

for any monic polynomials / , g such that g is right ^-invariant. Of course
A is not a derivation, since it is not ^-linear. To prove (10), let us write
f=tn + tn~lax + . . . , g = tm + tm~xbx + ...,a = a1-a

a
ub = b 1 - b l

a n d \i= ocm. T h e n ag = ga*1, h e n c e

A(/)g + /A(g) = [tf - f(t + a)]g + f[tg - g(t + b)\

= tfg - f(t + a)g + ftg - fg(t + b)

= tfg - fg(t + b + a").

Since fg = tm+n + tm+n-\b1 + a?) + . . . , this is just A(fg), and (10)
follows.

Let u be the minimal right ^-invariant element, of degree m, say. As
we saw in Th. 2.5, A(u) e K, hence for any n ^ O w e have by a repeated
application of (10),
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A(un+1) = ]>>"-<A(Wy = wwgonA(M)0.

It follows that tun+1 e unR for all n ^ 1, hence tsun e un~sR, and this lies
in uR provided that s < n. Now any polynomial / can be written as

f = uq + r, where deg r < m.

Therefore fum = uqum + rum e uR, and it follows that

Rum C uR.

Thus uR contains a two-sided ideal RumR =£ 0, which has a right invariant
element of positive degree as generator. •

We now have the following simplicity criterion:

T H E O R E M 2.2.7'. Let K be a field with endomorphism a and an
a-derivation 6 and let R = K[t; a, S\. If the (an, an+1)-derivation
6an — an6 is outer for all n = 1, 2, . . . , then R is a simple ring.

Proof If R is not simple, it has a non-unit right invariant element / . If
deg/ = n, then by Th. 2.5, 6an - ocnb is inner. Moreover in the contrary
case, R does not even have non-constant right iC-invariant elements, by
Lemma 2.6. •

In the special case when 5 = 0 we can get a more explicit result. An
automorphism or of a field K is said to have inner order r if ar is the least
positive power which is inner, of the form I(e): a •-> eae~l. If ar is outer
for all r > 0 or a is not an automorphism, a is said to have infinite inner
order.

P R O P O S I T I O N 2.2.8. Let K be a field with an endomorphism a and
consider the skew polynomial ring R = K[t; a], (i) / / a has infinite inner
order, then every right K-invariant element is right invariant and the right
invariant elements are all of the form fc (c e Kx). (ii) / / a is an
automorphism of inner order r, say ar = I(e), then u = fe centralizes K
and the invariant elements are of the form ^g, where g is a polynomial in
u with coefficients in the centre of K.

Proof Let / = tn + tn~1a1 + . . . + an be right invariant. Then
tf = f(t + a), where a = ax — <zf; comparing lowest terms, we find that
a = 0, so tf = ft and on writing this out and equating coefficients, we find

a? = ah i = 1, . . . , n. (11)

Next we have cf = fcan for any c e K, hence
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can~lat = atc
a\

Now a1 is injective; cancelling an~l, we find that

cat = aiC«\ i = 1, . . . , n. (12)

If a has infinite inner order, it follows that at = 0 and / reduces to tn, so
in this case the only right invariant elements are tnc.

If ar is an inner automorphism, say ocr = I(e), let us write u = tre.
Then fore e K,

cu = ctre = trca e = trece~l • e = uc,

so u centralizes K. Now any right invariant element is invariant, and if /
given as before is invariant, then (12) above shows that at = 0 unless r
divides i\ hence we have f=tmg, where g is a polynomial in u.
Moreover, g is invariant, so eg = gc11 for some automorphism \i.
Comparing highest powers of u we see that \i— 1, so eg = gc and if
g = ^us~ibh then

0 = cg-gc = ^u'-'icbi - bfi).

Hence bt lies in the centre C of K, thus / equals a power of t times an
element of C[u], as claimed. •

Next we allow a derivation but restrict a to be an automorphism. An
element of the skew polynomial ring over K will be called K-central if it
centralizes K.

T H E O R E M 2.2.9. Let K be a field with an automorphism a and an
a-derivation 6 and put R = K[t; a, 6]. If R is not simple, then there are
non-unit K-invariant elements; let u be a monic one, of least positive
degree m, say. Either (i) a has infinite inner order, in which case every
K-invariant element has the form urc, r e N, c e Kx, or (ii) a has finite
inner order, so an element of the form usc is K-central. Ifv = ude is a
K-central element of least positive degree, then every K-invariant element
has the form f = urfxc, where fx is a polynomial in v with coefficients in
the centre of K and c induces the automorphism an~rm, n = deg/,
m = degw.

Proof. We have seen that R is not simple precisely when there are
non-unit K-invariant elements (Lemma 2.6), thus let u be the minimal
(monic) AT-invariant element, of degree m, say. Any ^-invariant element
/ , taken monic for convenience, may be written in the form

/ = uq + r, where q, r e R, deg r < m.
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By Prop. 2.3, cu = uc11, where fi= am; if / has degree n and we put
v = an, then fcv = cf = cuq + cr = wĉ g + cr, hence

u{qcv - c^) = cr - rc\ (13)

On the left there is a factor of degree ra, while the right-hand side has
degree less than ra; hence both sides vanish and so

Thus r is #-invariant, of degree less than m, hence r e K. Moreover, by
(13) and the fact that a is an automorphism, we have

cq = qcanm.

Applying the same argument to q, we find, by induction on the degree
of/,

f=us + us~1b1 + . . . + &„ where bt e K, (14)

hence n — sm. The highest coefficient in (14) is 1, because both u and /
are monic. Now for any c e K we have

fcv = uscv 4- M5"1fe1c
v + . . . + bsc\

cf = usc^ + us~1c^lb1 + . . . + cfe5.

Equating powers of u, we see again that v = // , i.e. n = sm and

c&. = b^\ i = 1, . . . , s. (15)

Suppose first that a has infinite inner order. Then bt = 0 and by (14),
every AT-invariant polynomial is of the form urc, where c e K. The
alternative is that a power of a is inner, say az is the least such power.
Then \i - aim is inner if and only if z\im, so by (15) bt = 0 unless z\im.
Hence either / = us or / is equal to ur times a polynomial in ud, where
d = z/(z, m). By hypothesis,

cw<* = ^c0^ = w^ece"1 for some e e T and all c e K.

Hence v = ude is ^-central and w~r/ can be written as a polynomial in v,
say / = ur(^vJCj). Now g = u~rf is ^-invariant of degree n — rm, so if
A = or""'7", then ag = gak and

0 = flg - gaA = ^vj(acj - Cjak).

Hence acj = c;tf
A and it follows that all the cs can be obtained from a

single one by multiplying by an element of the centre of K. Thus
/ = "7iC> where fx centralizes K and c induces the automorphism an~mr,
which is what we had to show. •
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We shall apply this result to determine the centre of the corresponding
field of fractions.

T H E O R E M 2.2.10. Let K be a skew field with centre C. Given an
automorphism a and an a-derivation 6 of K, consider U = K{t\ a, 6),
the field of fractions of the skew polynomial ring R = K[t\ or, S\.

(i) / / R is simple or a has infinite inner order, then the centre of U is the
set

Co = {ae C\aa = a,as = 0}. (16)

(ii) / / R is not simple and a has finite inner order, so that there exist
non-unit invariant elements in R, let v be the monic invariant element of
least positive degree inducing an inner automorphism I(c): a^>cac~l;
then the centre of U is C0(vc), the field of rational functions in vc over Co.

Proof By Prop. 1.1, R is a PID and it is clear that in any case the centre
of U contains Co. By Prop. 1.5.7, every element of the centre of U,
^(£7), has the form fg~l = g~lf, where for some automorphism A of R,

Pf = fp\ Pg = gPk for all p e R. (17)

If R is simple, then there are no non-unit invariant elements in R, so in
that case %(U) C K. An element a of K centralizes K precisely when
ae C, and if at = ta, then ta = taa + a8, hence aa = a, a6 = 0, so

We may now take R to be not simple and hence to possess non-unit
invariant elements. Assume that oc has infinite inner order and let u be
the minimal AT-invariant element, inducing the automorphism /?, say, of
K. If fg-1 e ^(£7), we can write / = urc~\ g = usd~\ where c, de K.
For any a e K we have af = aurc~l = ura^c~x = fca^c'1, so / induces
the automorphism /3rI(c), and similarly g induces fisl(d). By (17) we
have

A = f?I(c) = FI(d). (18)

Now fi = am, where m = deg u. Since oc has infinite inner order, then so
does £, and by (18), r = s and fg'1 = g~lf = dc~l e K. Since this
element must centralize K, we find as before that it lies in Co.

There remains the case when a has finite inner order. By hypothesis
there are non-unit ^-invariant and hence non-unit invariant elements.
Let z be the minimal invariant element, say pz = zp^ for p e R. By (17)
/ is invariant and we have

f = zq + r, where deg r < deg z.
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For any a e K,we have fak — af = azq + ar — za^q + ar, hence

z(qak - a^q) = ar - rak.

Here the right-hand side has lower degree than the factor z on the left, so
both sides must vanish. By the minimality of z we have r e K and q is
again invariant, so / is a polynomial in z over K, by induction on deg/.
Thus we have / = ^zlah g — ^zlbh where ai9 bt e K. By (17) we have

hence all the coefficients vanish and so //A"1 is an inner automorphism
whenever at =£ 0 and similarly for g. Now we may assume / and g to be
without a common factor, hence a0, b0 are not both 0, say a0 ^ 0 and
dividing / , g by a common factor, we may assume that a0 — 1. Since
pa0 = p — aop

k, it follows that A = 1 and the powers of z occurring in /
or g induce inner automorphisms. Let v = zr be the least such power,
inducing I(c) say; then vc is central and / , g can be expressed as
polynomials in vc with coefficients in Co. •

In the special case or = 1, 6 = 0 we again reach the conclusion of
Prop. 1.5.

Exercises
1. Let K be a field with endomorphisms a, p. Show that the (a, /^-derivations on
K form an additive group, and for any (a, /^-derivation 6 and any endomorph-
isms A, ii, Xdfj, is a {XafjL, A$u)-derivation.

2. Let E be a finite extension of the Galois field ¥p with automorphism a: a>~* ap

and put R = E[t; a]. Find an E-invariant element of positive degree which is not
invariant.

3. Let AT be a field with an endomorphism a and an ar-derivation S such that
ad = da. Show that a extends to U = K(t; a, 6) and that 6 is induced by an inner
ar-derivation of U.

4. Let K be a field with a non-surjective endomorphism a. Show that in K(t; a)
the union [jt~nKtn has an automorphism extending a and is the least subfield
containing K with this property.

5. Show that in a skew polynomial ring K[t; a, 6] over a field K, a polynomial /
(not necessarily monic) is invariant if and only if / is .K-invariant and
tf = f(tb + c). Determine 6 and c in terms of the coefficients of / .

6. Let E be a commutative field with an automorphism a of order n and fixed
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field F. Show that for any irreducible polynomial / over F, f(tn) is an invariant
element of R = E[t\ a] and the residue-class ring is simple, with one exception.
What is its centre? When is it a field? What is the exception?

7. Let E be a field with centre k. Given a polynomial / over k show that over E,
f splits into a number of factors all of the same degree. Deduce that an irreducible
polynomial of prime degree over k either stays irreducible over E or splits into
linear factors. (Hint. Use Th. 1.5.4.)

8. Let R = K[t; a, 6] be a skew polynomial ring over a field K with endomorph-
ism a and ar-derivation d such that ad = da. Given / as in (2), verify (by
comparing coefficients of tn~l in (3)) that

aickoc - cxax = ncXd, where A = an~l.

Deduce that for char K = 0, d is inner on im A.

9. (after J.-P. Van Deuren) Show that the field of fractions of the complex-skew
polynomial ring C[t; ~~] contains a central element x = t2 such that for any odd
m, xm - 1 is a square. Hence obtain a subfield of given genus g. (Observe that
the function field of the curve y2 — x2g~x — 1 is of genus g, see Cohn [91], 4.6.)

10. Let k be a commutative field containing a primitive nth root of 1, £ say.
Define an automorphism a on F = k(y) over k by the rule a: y •-> £y and form
the skew function field F(x\ a). Find its centre and show that its dimension over
the centre is n2.

2.3 Power series rings
In the commutative case the familiar power series ring Kit} may be
regarded as the completion of the polynomial ring K[t] with respect to
the 'f-adic topology', i.e. the topology obtained by taking the powers of
the ideal generated by t as a neighbourhood base at zero. No problems
arise in extending this concept to the ring K[t; a] for any endomorphism
a of K. In this way we obtain the ring Kit; a} of all skew power series.
Suppose now that a is an automorphism and consider the ring K((t\ a))
of skew Laurent series; they are series of the form 2 - r ^ * with
componentwise addition and multiplication by the commutation rule:

atn = tnaa\ (1)

Since n may now be negative, we have had to restrict oc to be an
automorphism. We remark that K((t; a)) is again a field, for any
non-zero series can be written t~rc(l — ^it1^) and this has the inverse
[^n(^itlai)

n]c~1tr. This field of skew Laurent series can be formed even
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when a is not an automorphism, say by localizing at the powers of t, but
now its elements can no longer all be written in the form Sf'fl,-.

Suppose now that we have a field K with an endomorphism a and an
ar-derivation 8. Here we face a difficulty; the above topology on K[t; a]
may be described in terms of the order-function:

o(f) = r if / = t% + tr+1ar+l + . . . + t»an (a, * 0).

It turns out that when <5 ^ 0, the multiplication is not continuous in the
r-adic topology, as the formula

a-t= ta" + a6 (2)

shows, and any attempt to construct the completion directly will fail. A
way out of this difficulty is to introduce z = t~l and rewrite (2) as a
commutation formula for z. We then get

za = aaz + zadz. (3)

Owing to the inversion we now have to shift coefficients to the left, and as
(3) shows, we cannot usually do this completely in the polynomial ring,
but we can do it to any desired degree of accuracy by applying (3)
repeatedly:

za = aaz + a6az2 + Za*z2

= aaz + abaz2 + a^z3 + . . . + adn~1(Xzn + za^zn. (4)

If d is locally nilpotent, i.e. each element of K is annihilated by some
power of 8, then (4) can be used as a commutation formula in the skew
polynomial ring. But in any case, in the power series ring we can pass to
the limit and obtain the formula

za = aaz + a6az2 + a*az3 + .... (5)

The ring obtained in this way is clearly an integral domain, and the set
consisting of all powers of z is a left Ore set, by (5), so we can form the
ring of fractions, which is in effect the ring of skew Laurent series in z.
We shall not use a special notation for this ring but remark that it is
actually a field:

T H E O R E M 2.3.1. Let K be a skew field with an endomorphism oc and
an oc-derivation 6, and consider the following ring:

R = K(z\za = a"z + za6z for all a e K). (6)

This ring has a completion R, consisting of all power series ^a^1 and
Z = { l , z , z 2 , . . . } is a left Ore set whose inversion yields a field,
consisting of all power series of the form
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^z~raiZ
l. (7)

When a is an automorphism, the series can be written ^btz
l or also ^zlct.

Proof. Consider the completion R consisting of all series 2 ^ - z ' . It *s

clear that these series form a ring with the commutation rule (5). The
order function satisfies the relation o(fg) = o(f) + o(g), because a is
injective, and this shows R to be an integral domain. Moreover, (5) shows
that for any a e K there exists / e R such that za = fz9 thus z is left
invariant, hence zg = gkz for any g e R and so zrg = gk'zr. This shows Z
to be a left Ore set, hence the elements z~rf (r ^ 0, / e R) form again a
ring. To show that this ring is in fact a field, we first note that every
element of order 0 in R is a unit. For if / = 2 a,*1', where a0 ¥* 0, we have

V = 1 - 2>^> where bt = -a~^vai (/ > 0).

Hence

r1 = (i -
o

By expanding and rearranging this series we obtain an expression of the
form ^CiZ1; this follows because for any m, the terms from G ^ T with
n> m do not contribute to the coefficient of zm. This shows / to be a
unit.

Now any non-zero power series of the form (7) can be written as
z~rgzs, where r, s ^ 0 and g is of order 0 and hence a unit. It has the
inverse z~sg~lz\ and this shows the localization to be a field.

When a is an automorphism, we can clearly pull the coefficients
through to one side or the other and so obtain the given form for the
series. •

For power series the centre is not hard to determine, at least when a
has infinite inner order. If if is a field with centre C, and an
endomorphism a and ar-derivation 6 are given, then the (a, S)-reduced
centre of K is defined as the subfield

C0 = {ae C;aa = a,a8 = 0}. (8)

P R O P O S I T I O N 2.3.2. Let K be a skew field with an automorphism a of
infinite inner order and an a-derivation 6. Let R be the completion of the
ring (6) and U its field of fractions. Then the centre of U is the
{a, S)-reduced centre C0ofK.
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Proof. Clearly C0Cc6(t/); to prove equality, we take any fell and
write it as a Laurent series: / = ^atz

l. If cf = fc, then

hence a*, = atc
a' and so a, = 0 unless i = 0, and a0 e C. Further, a0

centralizes z precisely when az~l = z~la = z~laa + a6, i.e. aa = a,
a6 = 0, so a0 lies in Co, which is therefore the centre. •

From this result we obtain another proof of part of Th. 2.10(i) by
applying the following criterion, well known in the case of complex power
series:

P R O P O S I T I O N 2.3.3 (Rationality criterion). Let K be a field with an
automorphism a. Then a formal series ^tlat in K((t; a)) is a rational
function of t if and only if there exist integers r, n0 and elements cly . . . ,
cr e K such that

an = fl^xCx + flf_2c2 + . . . + aan_rcr for all n > n0. (9)

For this is just the condition that (^tlat)(l — 2 i ^ c / ) should be a
polynomial, except for a factor t~k. •

We conclude this section with two constructions. The first is a result of
Kothe [31], allowing us to construct outer automorphisms of skew fields:

P R O P O S I T I O N 2.3.4. Let K be a commutative field with an automorph-
ism a and put E = k((t; or)). Given any automorphism /? of k such that
a/3=f}a, extend (3 to E by the rule t^—t. Then /3 is an inner
automorphism of E if and only if /J = ar for some r e Z.

Proof If /? is inner on £ , then there exists a e Ex such that

UP = a~lua for all u e E,

hence ua = au@. Let a = ^tlat and first take u = t. Then t^ = t, so

hence a" = at. Next take u = b e kx; then bf^^ai) = ^ ^ bY hypo-
thesis and so ^(b* - b^)at = 0, hence b$ = b"1 whenever at =£ 0. This
holds for some /, so )8 = ocr for some r e Z. Conversely, if /3 = arr, then /}
is inner, induced by tr. •

For example, if k = F(s), where F is any field of characteristic 0, and
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a: s »->s + l, then /?: s »-> s + 1/2 is an outer automorphism of
E = k((t; <*))•

Secondly we shall sometimes need a field with a prescribed field as
centre. This is accomplished by the next result:

P R O P O S I T I O N 2.3.5. Let k be a commutative field. Then there exists a
field D whose centre is k and which is infinite-dimensional over k.

Proof. Take the rational function field k(t) and adjoin roots of the
equations x2" = t for n = 1, 2, . . . . The resulting field may be denoted by
E = k(t, t1/2, t1/4, . . .) and may also be obtained as the field of fractions
of the group algebra over k of the additive group of all dyadic fractions
m/2n. On E we have the automorphism a: f(t) •-» f(t2); we claim that
the fixed field of a is precisely k. Any element / of E may be written as a
rational function of t2' for some r e Z. If / £ k, then the possible values
of r are bounded above. Let us choose r as large as possible, so that / is
not a rational function of tr+1. Since fa is such a function, it follows that
f" =£ / , and this shows the fixed field to be A:.

We now form the field of skew Laurent series

D = E((x; a)),

and claim that D has centre k. Any element of D has the form
/ = ^xlah where ate E. If / centralizes D, then ^xl+1at = xf = fx =
^xl+1af, hence a? = a( and so atek, by the first part. Further,
Y.x^it = ft = tf = Y,txlai = ^xlt2iah hence at(t - t2) = 0 and so a{ = 0
unless / = 0. Therefore / = a0 e k as claimed. Clearly D is infinite-dimen-
sional over k, since e.g. 1, t, t2, . . . are linearly independent. •

We remark that the field D used here can be formed more simply as
follows. Let F = k(t) be the rational function field with endomorphism
a: / ( 0 ^ /(*2)- The skew polynomial ring F[x; a] has a field of fractions
F(x; a) which is clearly a subfield of the field D of skew Laurent series
constructed in the proof of Prop. 3.5, and that proof shows that F(x\ a)
has all the required properties.

Exercises
1. Find an automorphism a of K = R(t) and an automorphism fi of K(x; a),
both of infinite inner order, such that ap = Pa and a, ft are not commensurate,
i.e. there is no relation ar = fis, r, s e N.

2. Let A" be a skew field with automorphisms or, /3 such that a ft = pa. Put
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D = K((x; a)) and extend /3 to D by x? = x. Show that /3 is inner on D if and
only if P = arl{c) for some r eZ, c e Kx.

3. Let D be the field generated over a commutative field k of characteristic 0 by
JC, y with the relation xy — yx = 1. Show that the centre of Z) is k.

4. Let ^ be a field with a surjective derivation S and consider the field of Laurent
series in x with commutation formula ex = xc + xcdx. Verify that S*'"1^-—
^xlCiX~l = ^xlcf and deduce that the field of skew Laurent series has a
surjective inner derivation.

5. (Lazerson [61]) Let A; be a commutative field of finite characteristic p and
adjoin commuting indeterminates to form K = k(xx, x2,. . .)• Verify that K has a
derivation S such that xf = xt-i (i > 1), xf = 1. On L = #(f; 1, 6) show that for
q = pn, dq is the inner derivation induced by tq and for any a e L there exists
q = pn such that [CJC ,̂ tq] = a; thus 6 is surjective on L.

6. By forming ultraproducts of the fields in Ex. 5 for different p obtain a field of
characteristic 0 with a surjective inner derivation.

7. Let K be a field with an automorphism a and consider the skew power series
field L = K((t; a)). Show that no element of L\K can be right algebraic over K,
in the sense that all its powers are right linearly independent over K (see 3.4).
(Hint. If u = ^tlct e L is right algebraic over K but u =£ 0, show that the order
must be zero and then repeat the argument with u — c0.)

2.4 Group rings and the Malcev-Neumann construction
Let M be a monoid and consider the monoid ring KM over a field K
(possibly skew). As defined in 2.1, this is the vector space over K with M
as basis, made into a ring by means of the multiplication in M. We ask:
for which groups G is KG embeddable in a field? Clearly it is necessary
for KG to be an integral domain, and for this to hold, G must be
torsion-free. For if u e G is of finite order n, then

(1 - M)(1 + u + u2 + . . . + un~l) = 0. (1)

When G is abelian, this condition is also sufficient:

T H E O R E M 2.4.1. Let G be an abelian group and k any commutative
field. Then the group algebra kG is embeddable in a field if and only if G
is torsion-free.

Proof. The necessity follows by (1), so assume that G is torsion-free.
Writing G additively for the moment, we can regard it as a Z-module and
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because G is torsion-free, we can embed it in a Q-module, i.e. a vector
space over Q. By taking an ordered basis of this space and using a
lexicographic ordering of the coefficients, we obtain a total ordering of
G, which makes it into an ordered group. Going back to multiplicative
notation, we thus have a total ordering on G such that s ^ s', t ^ tf imply
st ^ s'tf. Now it is easy to see that the group algebra of an ordered group
is an integral domain. Let

a = a1s1 + . . . + amsm, where at e kx, sx < s2 < . . . < sm,

b = b1t1 + . . . + bntn, where bj e kx, tx < t2 < . . . < tn.

Hence ab = a1b1s1t1 + . . . , where the dots represent terms > sxtu and
this shows that ab ̂  0. Thus kG is a commutative integral domain and so
it can be embedded in a field. •

For non-abelian groups it is still not known whether kG can have
zero-divisors when G is torsion-free, though this has been established in
many special cases. When G is totally ordered, kG is an integral domain,
as the proof of Th. 4.1 shows, but in that case kG can actually be
embedded in a field. This will be proved in Th. 4.5, but some preparation
is necessary.

An ordered set is said to be well-ordered if every non-empty subset has
a least element. This is the familiar definition for totally ordered sets; if a
partially ordered set is well-ordered, it must be totally ordered, as we see
by applying the definition to pairs of elements. For this reason the
definition in the general case has to be modified; it will be convenient to
have several equivalent forms of the definition. By an antichain we
understand a set of pairwise incomparable elements.

L E M M A 2.4.2. Let S be a partially ordered set. Then the following three
conditions are equivalent:

(a) every infinite sequence contains an infinite ascending sequence -
given (at) in S, there exists a sequence (nf) of integers such that m' <
n' =>am, ^an>;

(b) every non-ascending sequence (a,), at ̂  af for i < j , is finite;
(c) every strictly descending sequence ax > a2 > . . . is finite and every

antichain is finite.

Proof, (a) => (b) is clear, and likewise (b) => (c), since both strictly
descending chains and antichains are non-ascending. It remains to show
that (c) => (a). Assume that (c) holds and let (at) be an infinite sequence
in 5. By (c) this sequence contains minimal elements and these elements
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form an antichain and so are finite in number; hence we can choose one
of them, say bx such that

bx^ an for infinitely many n. (2)

Omitting all terms an not satisfying (2), we obtain an infinite sequence
(bj) say, such that b1 ^ bn for all n. Repeating the argument, we obtain
by induction on n an infinite ascending sub-sequence of (at), so (a) is
satisfied. •

A partially ordered set satisfying the conditions (a)-(c) of this lemma is
said to be partly well-ordered (PWO); clearly for totally ordered sets this
agrees with the definition of a well-ordered set.

It is clear from the definition that any subset of a PWO set is again
PWO, likewise for the image of a PWO set under an order-preserving
map. Further, the union of two PWO sets is PWO, and for any two PWO
sets 5, T their Cartesian product S x T, ordered by the rule

(s, t) ^ (V, t') if and only if s ^ s' and t ^ t',

is again PWO. For any infinite sequence in the product contains an
infinite sub-sequence in which the first components are in ascending
order, and this contains an infinite sub-sequence in which the second
components are in ascending order, so that (a) is satisfied. We shall also
need conditions for a monoid with a PWO generating set to be PWO. By
a divisibility ordering on a monoid M we understand a partial ordering
' ^ ' o n M such that
( O . I ) s ^ s'9 t ^ t' => st ^ s'tf for all s , t, s \ t' e M ,
( O . 2 ) 1 ^ 5 for alls e M.
When (O.1-2) hold, then M is conical, i.e. st = 1 implies s = t = 1. For
if st = 1, then 1 ^ t, hence s ^ st = 1, so s = 1, and t = st = 1. We shall
show now that a monoid with a divisibility ordering is PWO, provided it
has a PWO generating set.

L E M M A 2A.3. Let M be a monoid with a divisibility ordering. If M is
generated by a partly well-ordered set X, then M itself is partly well-
ordered.

Proof. Let X* be the free monoid on X, with the partial ordering
induced by that of X\ this means that xx . . . xm ^ yt . . . yn holds precisely
when integers T, 2', . . . , m' exist such that 1 ̂  1' < 2' < . . . < m' ^ n
and xt =̂  yv. The natural homomorphism from X* to M is order-preserv-
ing, so it will be enough to show that X* is PWO. If this were not so, we
would have a non-ascending sequence (an) in X*, thus
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at ^ aj for / < j .

Choose a non-ascending sequence (an) with a^ of minimal length. Among
all non-ascending sequences beginning with ax choose one with a2 of
minimal length, and so on: al9 a2, . . . . For each i, either at e l o r

a^xtbi, xteX, bteX*\{l}. (3)

There can only be finitely many a{ in X, because this is PWO, so the at in
(3) still form an infinite non-ascending sequence. We claim that the set
B = {bt} of bt occurring in (3) is PWO. Otherwise we could find an
infinite non-ascending sub-sequence (w£), where ut = bv. Let /0 be least
among V, 2', . . . ; by omitting finitely many bs we may assume that
i0 — r . Now consider the sequence

ax, a2, . . . , flr-i, by, bT, . . . . ( 4 )

If at ^ by for some i < V and some ;, then at < ay, which contradicts the
fact that (at) is non-ascending. This and the fact that {bv) is non-ascend-
ing shows that (4) is non-ascending. But this contradicts the choice of av\
so B = {bi} is PWO. Now it follows from (3) that {at) as product of two
PWO sets is PWO. This shows that X* and with it M is PWO, as
claimed. •

Let M be a monoid and k a commutative field, as before. We can form
the function space kM consisting of all functions from M to k. For any
a = (as) e kM we define its support as

2)0) = {s e M\as^0}.

The functions of finite support form a subspace k(M) of the A>space kM\
on k{M) we can define a multiplication by the rule

If a = (as), b = (bt), then ab = c, where c = (cM), cu = ]T a5fe,. (5)

Since tf, 6 have finite support, the sum on the right of (5) is finite, and it
is easily verified that k(M) is isomorphic to the monoid ring kM, and so
may be identified with it.

We can think of the elements of kM as formal series ^sas, but there is
usually no multiplication, because the number of solutions (s, t) of st = u
for a given u may be infinite. Suppose now that M has a divisibility
ordering. Then we can consider the subset k((M)) of kM consisting of all
functions with partly well-ordered support. It turns out that this is in fact
a ring:
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T H E O R E M 2.4.4. Let M be a monoid with a divisibility ordering, k a
commutative field and k((M)) the set of all series with partly well-ordered
support. Then k((M)) is a k-algebra with the monoid algebra kM
as subalgebra. The units in this algebra are the series whose support
includes 1.

Proof Let a = ^sas, b = ^tbt be elements of k((M)). By definition
their supports 2)(fl), 2)(6) are PWO; their sum a + b has as support a
subset of 2)(a) U 2)(6) and so it is again PWO. Taking next the product
ab, consider for a given u e M, the set of all pairs (s, t) e 2)(fl) x 2)(b)
such that

st = u. (6)

If this set is infinite, then since 2)(a) is PWO, there is an infinite
sub-sequence (sh tt) such that Si < s2 < . . . ; hence 11 > t2 > . . . , and so
2)(fc) contains an infinite non-ascending sub-sequence, which is a contra-
diction. Thus (6) has only finitely many solutions and so the product ab is
defined; moreover ^(ab) as image of 2J(fl) x 2)(fe) under the map
(tf,b)»-» ab, is PWO, therefore ab lies in k((M)). The associative and
distributive laws are easily checked, hence k((M)) is a fc-algebra, whose
subalgebra consisting of all elements of finite support is the monoid
algebra.

If a = ^sas has an inverse, then for some s e 2)(a) there exists t such
that st = 1, and so 5 = 1. Conversely, let a be a series whose support
contains 1; on dividing by its coefficient, we can take a in the form
a = 1 - b, where b = ^sbs (s > 1). We claim that 1 + b + b2 + . . . lies
in k((M)); once that is established, it is easily verified that ^bn is the
inverse of a. Now the monoid generated by 2)(6) with the divisibility
ordering is PWO by Lemma 4.3, hence (J®(&n) is PWO and no element
of M can belong to infinitely many of the 2)(6n), because the solutions of
Si. . . sn = u, for a fixed n, form an anti-chain in a PWO set. Thus ^bn is
well-defined with PWO support, and it is the inverse of a. •

Let G be an ordered group, i.e. a group with a total ordering satisfying
(O.I). With the help of Th. 4.4 we can show that the group algebra kG
can be embedded in a field.

T H E O R E M 2.4.5. Let G be an ordered group and k a commutative field.
Then the set k((G)) of series over k with well-ordered support in G is a
field.

We remark that the proof goes through even if the field k is skew.
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Proof. The subset M of G defined by

M = {u e G\u^ 1}

is a monoid with a divisibility ordering, almost by definition; hence
R = k((M)) is a A>algebra by Th. 4.4. It is an integral domain, for we
clearly have 1 =£ 0 and if for / e Rx we define its order o(f) as the least
element in the support of / , then o(fg) = o(f)o(g) and it follows that the
product of non-zero elements is non-zero. We claim that M is a (left and
right) Ore set in R. Let u e M, / e R\ every element p in 2)(/) satisfies
p ^ 1, hence u~lpu ^ u~lu = 1, so /x = u~lfu e R and

ufi = fu.

This shows M to be a right Ore set; by symmetry it is also left Ore. If L is
the localization of R at M, then it is clear that L C k((M)), and here we
have equality, for if / e K((G)), f =£ 0, say o(f) = v9 then r;"1/ e R and
o(v~lf) = 1, hence y"1/ is a unit in R and so / = v • t?"1/ is a unit in L.
This shows that L is a field and coincides with k((G)). •

The construction of the field of power series in this theorem is called
the Malcev-Neumann construction. It applies in particular to free groups,
since the latter can be ordered. To verify this fact, let F be the free group
on a set X and define the lower central series of F recursively as

Yi(F) = F, yr+1(F) = (F, yr(F)),

where for subgroups G, H, (G, H) is the subgroup generated by all
commutators (g, h) = g~lh~lgh, for g e G, h e H. It can be shown that
yr{F)/yr+l{F) is abelian torsion-free, so we can totally order each
Yr/Vr+i' Moreover, f]yr = 1, so for any a i= 1 there is a unique r such
that a e yr(F)\yr+1(F) (see M. Hall [59], p. 166f. and A.3, 4.6). Now
write a > 1 if the residue class ayr+1(F) is > 1, and a < 1 otherwise.

Another more direct way of ordering F (due to G. M. Bergman [90]) is
to take any set Xf in bijection with X and define a map from F to the
power series ring R((X')) by the rule:

00

x *-^> 1 — xf, x~l »-> 2 ( x ' ) n ' if * corresponds to JC'.
o

This provides an embedding; now R((X')) can be totally ordered by
taking any ordering on X\ extending it to the lexicographic ordering on
the free monoid on Xf and ordering R((^ ')) by the sign of its lowest
term.
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Since the free group F on any set X can be ordered, we see by Th. 4.5
that the power series ring k((F)) is a field. It contains the group ring kF
and we thus obtain

C O R O L L A R Y 2.4.6. The group algebra of any free group can be
embedded in a field. •

This provides another embedding of the free algebra k(X), since the
latter is a subalgebra of kF, where F is the free group on X.

Exercises

1. Let G be any group and K any field. Show that the group ring KG has UGN.

2. If G is a torsion-free abelian group and K a skew field, show that the group
ring KG is embeddable in a field, without using Th. 4.5. (Hint. Write G as union
of free abelian groups and use Ex. 1.3.2)

3. Prove Th. 4.4 for the monoid ring KM over a skew field K.

4. Let G be an ordered group, acting on a field K by automorphisms, a»-»a8

(g e G). Show that the formal series in G over K with skew multiplication:
ag = ga8 again form a field.

5. (R. Moufang [37]) Let G be the free metabelian group on a, b and write
u = (a, b) = a~lb~lab. Verify that every element of the group algebra kG can be
written as a finite sum ^arbsu(pkrs(q)), where r, s are integers, Arj(<p) e k and cp is
an element of the free abelian group on a, p, with the commutation rules
u^a = au^", u^b = bu^. Verify that this expression is unique, if each cp is a
polynomial in a, p. Show further that the formal series ^ar(bsfrs), where the frs

are rational functions in the ua'PJ form a field containing kG.

6. Show that in Ex. 5 the subalgebra generated by a, b is free and hence deduce
an embedding of the free algebra of rank 2 in a field. Verify that the least field so
obtained is not isomorphic to the field of fractions constructed in Cor. 4.6.

7. Let K be a field and G an ordered group, and let A be the skew group ring of
G over K with basis ua (a e G) and multiplication uaup = uapmatp, where the
map G Kx satisfy the factor set conditions. Verify that the formal series in G over
K with well-ordered support and with the above multiplication rule again form a
field, which contains A as a subring.

8. Let G be an ordered group and kG the group algebra over a field k. Show that
every unit in kG is trivial, i.e. of the form ocu, a e kx, u e G.
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9. Show that a field K can be embedded in a field L such that all automorphisms
of K are induced by inner automorphisms of L. (For a generalization see 5.5.)

10°. Find conditions for the Laurent polynomial ring R[t, t~l] over a semifir R to
be a semifir. Find extensions to the skew case. Is the resulting ring a fir when R is
a fir? (Hint. See the proof of the inertia lemma 6.2.1.)

2.5 Iterated skew polynomial rings
We have seen that a polynomial ring over a field is a principal ideal
domain, and it is clear that this condition is necessary, i.e. if a polynomial
ring is principal, the coefficient ring must be a field. This is true even for
skew polynomial rings relative to an automorphism (see Th. 5.1 below),
but for a general endomorphism it need not hold. The precise conditions
were determined by Jategaonkar [69]:

T H E O R E M 2.5.1. Let A be a ring with an endomorphism a and put
R = A[t; or]. Then R is a principal right ideal domain if and only if A is a
principal right ideal domain and a maps Ax into U(A), the group of units
of A. In particular, if a is an automorphism, then R is right principal if
and only if A is a field.

Proof If R is right principal, then so is A because it is a retract of R
(obtained by putting t — 0). Further, for any a e Ax we have
aR + tR = cR, where c is the highest common left factor of a and t. It
follows that c has degree 0, as factor of a, so t = cf, where / has degree
1, say f = td-\- e. Now t = ctd + ce = tcad + ce, which shows that ce = 0,
cad = 1, so ca is a unit (A is an integral domain, so every element with a
right inverse is a unit). Now we have au + tv = c and putting t = 0, we
see that a is associated to c, hence aa is associated to ca, a unit, so aa is a
unit, as claimed.

Conversely, if the given conditions hold, R is clearly an integral
domain. Let a be a right ideal in R\ when a = 0, there is nothing to prove;
otherwise let n be the least degree of polynomials occurring in a. The
leading coefficients of polynomials of degree n in a form with 0 a right
ideal in A, which is principal, generated by a say. If / = tna + . . . e a,
then aa e \J(A) and hence ft = tn+1aa + . . . has a unit as highest
coefficient. It follows that a contains a monic polynomial of degree n + 1
and so also of all higher degrees. Now it is clear that a = fR, hence R is a
principal right ideal domain. The last sentence follows because for an
automorphism a, the condition only holds when Ax = U(A), i.e. A is a
field. •
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This result shows that under favourable circumstances one may iterate
the polynomial ring construction and still get a PRID, and it suggests the
following definition.

By a J-skew polynomial ring we understand a skew polynomial ring
A[t; a] such that a is injective and satisfies Jategaonkar's condition:
(J.O) A*CU(A)U{0}.
For example, this condition holds whenever A is a field; what is of
interest is that there are other cases. It is easily verified that a J-skew
polynomial ring over A is an integral domain if A is. We shall be
interested in direct limits of iterated J-skew polynomial rings, which may
be defined as follows. Let r be an ordinal number. A ring R is called a
J-ring of type r, if R has a chain of subrings Rx (A < r), such that
(J.I) Ro = U(R) U {0} (hence Ro is afield),
(3.2) Rx+i is a J-skew polynomial ring over Rh for all A < r,

(J.3) Rx = U R^ for any limit ordinal A ^ r,

(J.4) RT = R.
Explicitly we have /?A+1 = R\[tx\ &x] and it follows from the definition
that each element c of R can be uniquely written as

• • tKckl,,x (cAl...Ar e i ? o , A ^ . . ^ Ar). (1)

It is easily verified that U(i?A) = U(R0) for all A, hence we have

C O R O L L A R Y 2.5.2. Any J-ring (of any type r) is a principal right ideal
domain. •

It turns out that J-rings can be characterized as integral domains with a
Euclidean algorithm (usually transfinite) and unique remainder (see
Lenstra [74]; FR, 8.8). We shall not carry out this verification but we
shall show how to construct J-rings of prescribed type. Skew polynomial
rings over fields are just the J-rings of type 1; J-rings of type 2 can be
obtained by an ad hoc construction (Cohn [67], see also Ex. 3), but
beyond this the general case is no harder than the finite case. Moreover,
one cannot use induction directly, since the coefficient ring depends
essentially on the order type. Jategaonkar uses an ingenious argument
involving ordinals; below is a direct proof based on the Malcev-Neumann
construction (Th. 4.4).

We observe that to achieve the form (1) we need a commutation rule of
the form

where u^ has to be a unit in Ro. More generally, this must be true for
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products of ts, which we may as well take in normal form, as in (1). Thus
we shall need a formula of the form

VAI • • • hr = hx . . . tKu^x (Ax ^ . . . ^ Ar, K > \i, r ^ 1). (2)

It turns out that this is enough to give the required construction. Thus let
T = {tx} (A< r) be a family of indeterminates, denote by FT the free
group on T and put E = k((FT)). Let K be the subfield of E generated
by the elements

u^.x = (th . . . fa,)"1 V*i • • • lK (Ai ^ • • • ̂  K, K > P, r ^ 1), (3)

as suggested by (2); then no element of K other than those of k can
centralize any tx:

L E M M A 2.5.3. The centralizer of any tv in the field K just constructed
is k.

Proof. Let G be the subgroup of F = FT generated by the right-hand
sides of (3). Each generator has odd length, so that we can speak of a
middle factor. When we form a group element of G, the middle factor of
any generator cannot be affected by cancellation, hence any element of G
begins with a letter t^1 and ends with a letter t^ even after cancellation; it
follows that t" $ G for all n¥=Q. Now any a e K can be written as a
series of the form a = ^uau, where u runs over G, and conjugation by tv

maps K into itself:

where Xt_i ̂  v> Af. Now tv commutes only with ty in F, so conjugation
by tv fixes 1 and moves all other elements of G in infinite orbits. Each of
these orbits is generated from a single element of G by conjugation by a
positive power of tv. Hence t~laty = a can hold only if Q)(a) = {1}, thus
a = ai e k, as claimed. •

We have seen that conjugation by tv induces an endomorphism of G
which we shall denote by av. For any ordering of F or G conjugation is
order-preserving, therefore av extends to an endomorphism of K, again
denoted by av. Thus for any a e K we have

aty = tva
a\ (4)

Let R be the subring of E = k((F)) generated by K and all tv (v< T). By
(4) each element of R can be written in the form of a finite sum

2'AX • • • tkaXl_kr, where ah,mX e K. (5)

If the A, are not already in descending order, then for some / = 1, 2, . . . ,
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r — 1 we have A, < A,-+1 ^ . . . ^ Ar. Now we can pull fA. through to the
right, using (2). By repeating this process, if necessary, we ensure that
Ax ̂  . . . ^ Ar in each term of (5). We claim that with this proviso, the
expression (5) is unique. To establish this claim, suppose that we have a
relation

5>A! • • • MAI.-A, = °> w h e r e ah..x eK,k1&...z*kr. (6)

If the highest subscript occurring in (6) is A, then we can write (6) as
^jt\ci = 0, where each ct is a polynomial in the t^ (// < A). Conjugating
by tk we obtain coefficients cfk which lie in K\ thus tx satisfies an
equation over K. We write down the minimal equation:

t" + tr% + . . . + bn = 0, where bte K. (7)

If we conjugate by tx we obtain another monic equation of degree n for tx

and by the uniqueness of the minimal equation it must coincide with (7).
Thus b"k = bt for / = 1, . . . , n, and by the lemma bt e k, so tx is algebraic
over k. But this is clearly false, and this contradiction shows that all the
coefficients in (6) must vanish. Hence (5) is unique; this means that by
adjoining the fs one by one to K we obtain a J-skew polynomial ring at
each stage, hence R itself is a J-ring of type r and we have proved

T H E O R E M 2.5.4. For any commutative field k and any ordinal r there
exists a J-ring of type r which is a k-algebra. •

J-rings of type at least 2 have various unusual properties. In the first
place there are elements with arbitrarily long factorizations, as the
equation

t2 = t!t2unn n = 1, 2, . . .

shows: from t2 we can split off arbitrarily many factors on the left, though
not on the right. In fact a J-ring of type r is right Noetherian, but it
has descending chains of length r, such as {txR}; we note that P\txR =
tx+iR. The ideal structure of R is further illuminated by

L E M M A 2.5.5. In the J-ring of type r constructed in Th. 5.4, txR is a
two-sided ideal for any A < r, and for any f e Rx, fR D txR for some
A > /i for all tp occurring in f

Proof. That txR is a two-sided ideal follows because

if^<A,

t\
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Further, if A > pi for all t^ occurring in / , we have ftx = txu for a unit u,
hence tx = ftxu~l and so txR C fR. •

From this lemma it follows in particular that when r is a limit ordinal,
then in a J-ring of type r any non-zero right ideal contains an ideal of the
form txR. It follows that R cannot be right primitive, for if a is any
non-zero right ideal, then R/a is not faithful. However, R is left
primitive; to show this we need to exhibit a faithful simple left R-module,
or equivalently, a maximal left ideal containing no non-zero ideal. From
the normal form (5) it is clear that the elements tx are left linearly
independent over R, hence the same is true of the elements 1 4- tx. Hence
the left ideal a = ^R(l + tx) *S proper and so is contained in a maximal
left ideal a0. If a0 contained a non-zero ideal, it would contain some tx

and so also 1 = (1 + tx) — tx, which is absurd. So a0 is the required
maximal left ideal, and this shows R to be left but not right primitive.
Whether such rings exist was a question first raised by Jacobson in 1956
(and first answered by Bergman [64]).

Another question of Jacobson asks whether in a right Noetherian ring
the powers of the Jacobson radical always meet in 0. To answer it we take
a J-ring of type r and localize at the set of all polynomials with non-zero
constant term. The result is a ring P whose Jacobson radical is 3 = t1P. If
we define the transfinite powers of 3 by the rule 3A+1 = 3A3, 3A = Cl^xT
at a limit ordinal A, then 3A D txP and it follows that 3A ̂  0 for all A < r.

Exercises
1. Let R be a J-ring of infinite order type r. Show that the complement of t\R is a
right Ore set 2. Further, show that the localization of R at 2, R^ = L, is a local
ring in which {txL} forms a well-ordered descending chain of right ideals.

2. By applying the factorial duality to Ex. 1, show that L/LtT is a cyclic left
L-module which is Artinian but not Noetherian, with a well-ordered ascending
chain of submodules of order type r.

3. Let k be a commutative field with an endomorphism a and containing an
element t such that t is transcendental over ka. Form the function field k{y) and
let K be the subring of all rational functions of the form f/g, where g is not
divisible by y. Extend or to AT by the rule y a = t and form the skew power series
ring R = K\x\ a\. Show that R is a J-ring of type 2.

4. (H. H. Brungs) Show that a ring in which the set of all principal right ideals is
(descending) well-ordered by inclusion is a principal right ideal ring in which every
left regular element is right invariant.
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5. Show that the ring constructed at the end of this section satisfies the conditions
of Ex. 4.

2.6 Fields of fractions for a class of filtered rings
Our aim in this section is to prove that a filtered ring has a field of
fractions whenever the associated graded ring is an Ore domain. We
begin by briefly recalling the definitions of filtered and graded rings.

By a filtered ring we understand a ring R with a series of submodules
indexed by Z,

. . . D R_x D Ro D i?i D . . . , (1)

such that
(F.I)
(F.2) ^
(F.3) [JRn = R.
If in (1) Ro = R and R_l9 /?_2, . . . are absent, we speak of a positive or
descending filtration. Similarly, when Rx = R2 = . . . = 0, we have a
negative or ascending filtration (in this case it is often convenient to
change the sign of the suffix).

On a filtered ring we can define a Z-valued function by putting

v(x) = sup{n\x eRn}. (2)

It is easily checked that v satisfies
(V.I) v(x) eZifx^o, u(0) = oo,
(V.2) v(x-y)^min{v(x),v(y)},
(V.3) v(xy)*v(x) + v(y).
Such a function is called a subvaluation, pseudo-valuation or also
filtration on R. If equality holds in (V.3), v is called a valuation, more
familiar in field theory (see Ch. 9). For any subvaluation v we have by
(V.2), v(-y) ^ v(y), hence v(-y) = v(y). Further, if v(x) > v(y), then
v(x — y) ^ v(y). If this inequality were strict, we would have
v(y) = v(x - (x - y)) ^ min{i>(jt), v(x - y)}, which is a contradiction.
Hence we have (as for valuations)
(V.4) / / v(x) =£ v(y), then v(x - y) = min {v(x), v(y)}.

Suppose now that conversely, R is a ring with a Z-valued subvaluation;
then R may be filtered by the submodules

Rn = {xe R\v(x)^n},

and it is easily checked that (F.l-3) hold.
A ring R is said to be graded if it is a direct sum of submodules indexed

by Z: R = ̂ An such that AtAj C Ai+j. Any element of At is said to be
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homogeneous of degree i. Such a ring can always be filtered by setting
Rn

 = S n A - But more significantly, we can with every filtered ring R
associate a graded ring G(R), which may be thought of as the ring of
'leading terms'. Its additive group is the direct sum ^(Rn/Rn+i), with
multiplication defined as follows: Given aeRt/Ri+l9 PeRj/Rj+l9 take
representatives a e Rt for a and b e Rj for /3 and put

a/3 = ab (modRi+j+1).

The product lies in Ri+j/Ri+j+1 and depends only on a, )3, not on a, b, as
can be verified without difficulty. We have a natural mapping from R to
G(R) which assigns to a e R its 'leading term' a defined by the rule: if
a = 0, then a = 0; if a =£ 0 and v(a) = n, then a = a (mod Rn+i). We have
ab = ab, but this is not generally a homomorphism, because if a = b but
a =£ fc, then a - b =£ a - b.

We note the following criterion for the associated filtration v to be a
valuation:

P R O P O S I T I O N 2.6.1. Let R be a filtered ring with associated filtration v
and graded ring G{R). Then G(R) is an integral domain precisely when v
is a valuation; when this is so, R itself is an integral domain.

Proof Assume that G(R) is an integral domain and take a, b e Rx; if
v(a) = r, v(b) = s, we have v(ab) ^ r + s and we must show that
equality holds here. We have a,b¥^0, hence ab = abi=0 and so
ab $ Rr+s+i, but this means that v(ab) < r + s + 1 and the desired
equality follows. The converse is clear; moreover, when v is a valuation,
then for any a, b ¥= 0, v(a), v(b) < °°, hence v(ab) < oo and so ab =£ 0,
which shows R to be an integral domain. •

As an example of a positively filtered ring consider a ring R with an
ideal a such that

IV = 0. (3)

We can filter R by the powers of a, writing Ro = R, Rn = an (n ^ 1), and
so obtain the a-adic filtration of R. If a is generated by a single central
element t, the condition (3) becomes

f]tnR = O. (4)

The associated filtration is then a valuation provided that t is not
nilpotent and R/tR is an integral domain. For this condition is clearly
necessary by Prop. 6.1, because R/tR — G0(R). Conversely, when it
holds, take any a,b e Rx and let v(a) = r, v(b) = s. Then a~tru,
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b = tsv, where u, v £ tR, hence uv £ tR and ab = tr+suv, so v{ab) —
r + s. We shall refer to v as the t-adic valuation on R.

With an additional hypothesis we can show that R has a field of
fractions. For any central element c of R we shall write (c) for the ideal
generated by c when the ring is clear from the context.

T H E O R E M 2.6.2. Let R be a ring and t a regular central element of R
satisfying (4) and such that R/(t) is a right Ore domain. Then R can be
embedded in a field D and if the t-adic valuation of R is extended to D in
the natural way, then R(RX)~1 is dense in D. Moreover, ifS is the ring of
valuation integers in D, then S/(t) is isomorphic to the field of fractions of

For the proof we shall need a couple of lemmas. Let us fix n ^ 1 and
write x for the image of x e R in R/(tn), and for X QR put
X = {x\x e X}. Further, we shall put U = R\(t).

L E M M A 2.6.3. Given n ^ 1, with the above notation, U is a regular
right Ore set in R.

Proof We shall use induction on n; for n = 1 the conclusion is true by
hypothesis. Let n > 1 and take u e U, x e R. If xu = 0, this means that
v(xu) ^ n, but v(u) — 0, so v{x) ^ n and hence x — 0. The same
argument applies if ux = 0, so U is regular.

To check the Ore condition, we have by the induction hypothesis y e R
and v e U such that

uy - xv = z e (t""1).

If v(z) ^ n, the result follows, so assume that v(z) < n, say z = z$tn~l,
where z0

 e U anc*

uy - xv - zot"'1 = 0. (5)

Likewise there exist yx e R, vx e U such that uyx - ZQVX e (t), hence
uyxt

n-x - z^vxt
n~l e (tn), and by (5),

uyvx - xvvx - zot
n~1v1 = 0,

hence

u(yvx - yitn~l) - xvvx e (tn),

and vvle\J. This shows U to be a right Ore set. •

We shall write Rn = R/(tn) and denote its localization at U by Sn. Then
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tSn is a nilpotent ideal, (tSn)
n = 0, and writing A for the field of fractions

of R/(t), we have Sn/(t
n) = A. Moreover, we have

~tn~lSn HRn = ~t»~lRn, (6)

because the intersection just represents the elements of Rn with value at
least_ n - 1. It follows that the natural homomorphism from Rn to
Rj(tn~l) = Rn-i extends to a homomorphism from Sn to Sj(tn~l) =
5n_x. We thus have two inverse systems of rings (Rn) and (Sn) with
Rn C Sn, such that the diagram

commutes. We put R = lim Rn, S = lim Sn, so that R Q R Q S, and write
qpw: 5rt+1 —> Sn, yn: S —> 5n for the natural homomorphisms.

L E M M A 2.6.4. WifA £/*e above notations S is a local ring and an integral
domain, with maximal ideal (t) and residue-class ring S/(t) isomorphic to
A. Moreover, tS D R = tR and f]tnS = 0, and S is complete in the t-adic
topology.

Proof. The homomorphism cpn\ Sn+1^>Sn maps 5n+1 to Sn and induces
an isomorphism of residue-class rings, Sn+1/(t) = Sn/(t) = A, by (6).
Hence S contains an ideal tS with residue-class ring S/tS = A. Any
element of S\tS is invertible in 5, because its image under the map yn:
S —» Sn is invertible, for all n. Thus 5 is a local ring with maximal ideal tS
and residue-class ring S/f£ = A. We have f](tnS) = 0, because tS maps to
tSn and (tyn)

n = 0, but (fyj""1 =£ 0, so t is not nilpotent in S. Since v is a
valuation on 5, it follows that 5 is an integral domain.

It remains to show that the f-adic valuation on S reduces to v on R.
Given x e trS\tr+1S, there exists n0 such that for all n ^ n0,

xyn e trSn\t
r+1Sn.

Since Sn is the localization of Rn at U and xyn e Rn, we see that xyn e
trRn\t

r+1Rn for all n ^ rto> therefore x e trR\tr+1R, i.e. y(x) = r. •

To complete the proof of Th. 6.2, let D be the localization of S at the
multiplicative set generated by t. Every element of Dx has the form
x — tru, where u e 5\^5, hence u is a unit and x~l — t~ru~l. This shows
D to be a field. Finally, choose a set X of representatives for Ax in 5;



2.6 Fields of fractions for a class of filtered rings 87

then given x e Dx, say v(x) — r, we have xt~r e S\tS, so there exists
are X such that v(xt~r — ar) > 0, or equivalently, v(x — trar) > r. An
induction shows that

00

x = ^tlah where v(x) = r, at e X U {0}. (7)
r

Clearly each at is uniquely determined; thus each non-zero element of D
has the unique form (7); this also shows R(Rx)~l to be dense in D. •

This proof is due to A. I. Lichtman [a], who has also used the following
trick to extend the result.

Let A be any filtered ring whose associated graded ring is an integral
domain, and denote the corresponding valuation by v. Let B = A[t, t~l]
be the ring of Laurent polynomials in a central indeterminate t over A
and extend v to B by the formula

It is clear that this defines a filtration on B which extends v. To check
that it is in fact a valuation, take a,b e B, and write a = ^Jt

iai, b = ^t%
where ai9 bt e A. If r is the least suffix for which v(a) = v{ar) + r and 5" is
the least suffix for which v(b) = v(bs) + s, and n = r + s, then we have

v(ab) = min < vl X ^ i t - i I + & f •

For k = n the sum on the right-hand side has a term

v(arbs) + n = v(ar) + r + tf(b5) + 5.

For any other term in the sum we have

v(at) + i ^ v(ar) + r, v(bn_t) + n - i^ v(bs) + s,

and at least one of these inequalities is strict, therefore

v{aibn_i) + n > v(arbs) 4- n,

and it follows that v(ab) ^ v(arbs) + n = y(fl) 4- f(fe). This proves equal-
ity in (V.3), so we have a valuation. Now the ring of valuation integers in
B is defined as

C= {x e B\v(x)^0}.

We claim that

C/tC = G(A). (8)
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For a proof consider the map / : G(A) —> C/tC defined as follows. Given
a e Ar/Ar+1, take x e Ar mapping to a and put af = xt~r. If x' is
another element mapping to ar, then x — x' e Ar+1, hence (x — x')t~r e
tC, so as map into C/tC, f is well-defined; moreover xt~r e tC if and only
if x e Ar+1, so it is injective. Thus we have an injective mapping
Ar/Ar+i —> C/tC, which is easily seen to be additive. Since this holds for
all r, we have an additive group homomorphism

f:G(A)-+C/tC, (9)

and it only remains to verify the multiplicative property. But if v(x) = r,
v(y) = s, then v(xy) = r + s and xt~r • yt~s = xyt~r~s, while 1 clearly acts
as unit-element. The distributive laws are easily checked, so we have an
injective ring homomorphism (9). It is an isomorphism since C is spanned
by the elements xt~r {x e Ar, r e Z).

Given a e Cx, if v(a) = n, then a $ tn+1C; thus f]tnC = O and of
course t lies in the centre of C. Thus all the hypotheses of Th. 6.2 are
satisfied and we obtain

T H E O R E M 2.6.5. Let R be a filtered ring whose associated graded ring
is a right Ore domain. Then R can be embedded in a field D> which is
complete in the topology defined by the valuation induced from the
filtration on R, and /?(i?x)"1 is dense in D. •

As an application we show how to embed the universal associative
envelope of any Lie algebra in a field. Let us recall the necessary
definitions.

A Lie algebra L (over a commutative field k) is a /:-space with a
bilinear map from L x L to L, usually called Lie multiplication or simply
'multiplication', denoted by [x, y] and satisfying the identities:

[*,*] = 0, (10)

[[*> y]> z] + [[)>, z], x] + [[z, x], y] = 0 (Jacobi-identity). (11)

As a consequence of (10), [x, y] = — [y, x], i.e. the multiplication is
anticommutative, but it is not generally associative.

An important example of a Lie algebra is derived from an associative
algebra. Let A be a ring which is also a fc-algebra and on A define a
multiplication by the rule

[x,y] =xy - yx. (12)

The A>space A with the multiplication (12) is easily seen to be a Lie
algebra, denoted by A~ and called the Lie algebra derived from A. More
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generally, if V is any subspace of A closed under the multiplication (12),
then we can form V~ as a subalgebra of A~.

If L is any Lie algebra and A an associative algebra, then by a
representation of L in A one understands a homomorphism of L into A".
It is a basic result that every Lie algebra has a faithful representation in a
suitable associative algebra. This follows from the more precise Birkhoff-
Witt theorem (also called Poincare-Birkhoff-Witt theorem) stated here
without proof:

T H E O R E M 2.A. For any Lie algebra L there exists an associative
algebra U(L) with a representation L —> U(L)~ which is universal for
representations of L in associative algebras. This representation is faithful;
more precisely, if (wA) is a totally ordered basis of L, then a basis of U(L)
may be taken in the form of ascending monomials:

uhuh . . . uK, X, ^ h, ^ . . . ^ kn r = 0, 1, . . . . (13)

The proof of the first sentence follows easily by abstract nonsense. For
the proof of the rest (the real content of the theorem) see e.g. Jacobson
[62], p. 159 or UA, p. 294.

Let L be a Lie algebra with basis w1? u2, . . . (taken countable for
simplicity) and let U(L) be its universal associative envelope. Since U(L)
has a basis of elements (13), we can embed L in U(L) by identifying its
basis with the elements (13) of degree 1. If the multiplication table for L
is given by [uh Uj] = ^,yfjUk, then the defining relations of U(L) may be
written as

j j j k . (14)

In particular, if U(L) is filtered by the powers of L, we see that U/U~l

has a basis consisting of the ascending monomials (13) of degree r; thus
U(L) has a negative filtration. Moreover, in the associated graded ring
G(U(L)) the us commute by (14), hence G(U(L)) is a commutative
integral domain, in fact it is isomorphic to the polynomial ring
k[ul9 u2,. . .], as is easily verified. Invoking Th. 6.5, we obtain the
following embedding:

T H E O R E M 2.6.6. The universal associative envelope of any Lie algebra
can be embedded in a skew field. •

This result can be used to provide another way of embedding the free
algebra k{X) in a field. For let Lo be the free Lie algebra on X and
U(L0) its universal associative envelope. Then U(L0) is generated by X
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and so is a homorphic image of k{X), while the Lie subalgebra of
k(X)~ generated by X, Lx say, is a homomorphic image of Lo. Thus we
have the commutative diagram shown, where the map Lo—» U(L0) is

injective, by Th. 2.A. Hence the homo-
morphism Lo—» Lx is injective, and so
Lx is free on X, while U(LX) = k{X).
Thus the free algebra, as the universal

* Wo) associative envelope of the free Lie alge-
bra, has a field of fractions.

Exercises

1. Let R be a filtered ring and G(R) the associated graded ring. Determine when
the 'leading term' map a •-* a is a homomorphism.

2. Define a filtered ring R to be a BW-algebra (BW = Birkhoff-Witt) if G(R) is
a polynomial ring over k in a number of indeterminates. For any Lie algebra L
over k with an alternating bilinear form b defined on it, show that the associative
algebra A{L\ b) generated by L as vector space and 1, with the defining relations

xy — yx = [x, y] + b(x, y)\ for all JC, y e L,

is a BW-algebra and that every BW-algebra arises in this way.

3. Give an example of a filtered ring R which is an integral domain such that
G(R) is not an integral domain.

4. Define a partial ordering on the set Nr of r-tuples of positive integers by the
rule: (m1?. . . , mr) ̂  (n1? . . . , nr) if and only if ra, ̂  n, for / = 1, . . . , r. Show
that any infinite subset of Nr contains an infinite ascending sub-sequence. Deduce
that the polynomial ring k[xi,. . . , xn] is Noetherian (Hilbert basis theorem).

5. Show that a filtered ring R is right Noetherian whenever its associated graded
ring G(R) is right Noetherian. By applying Prop. 1.3.6 and Ex. 4, deduce that the
universal associative envelope of a finite-dimensional Lie algebra is an Ore
domain and hence has a field of fractions.

6. Let F = k{X) be the free algebra on X and L the Lie algebra generated by X
as subalgebra of F~. Show that any non-zero element of L is an atom in F. (Hint.
If u e L and a is the ideal of F generated by w, verify that F/a is the universal
associative envelope of L/(u).)

7. Let L be a Lie algebra with an injective endomorphism a. Show that a extends
to a unique endomorphism of U(L), and this extends to an endomorphism of its
field of fractions, constructed as in the proof of Th. 6.6.
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8. Let k be a commutative field of characteristic 0 and on k(X), where
X = {x^i, j e N}, define a, 6 by

xa _ x XS _ x

Show that a extends to an endomorphism of the field of fractions K of k(X),
formed as in Th. 6.6. Verify that a is not an automorphism and that 6 is not inner
on im an for any n. Deduce that K[t; or, S] is a simple principal right ideal domain
(see Cozzens and Faith [75], Cohn [77]).

Notes and comments
Skew polynomial rings first arose in the study of linear differential
equations. If / ' = df/dx, then the ring of linear differential operators
may be written as k(x)[D\ 1,']. In this form it appears in Schlesinger
[1897], who proves that it is an integral domain (see also the references in
FR, p. 191). The first abstract study was undertaken by Ore [32]; there
have been many papers since then and most of 2.1 is folklore (Th. 1.3 is
taken from Cohn [61"]). Much of 2.2 follows Lam and Leroy [88], see
also Cohn [77]. The observation that power series over K[t; a, 6] need to
be formed in t~l rather than t goes back to Schur [04]. If t is interpreted
as differentiation and t~l as integration, it is just an expression of the
familiar fact that convergence is improved by integration, but not by
differentiation.

As was noted in 2.4, it is still not known whether the group algebra kG
is always an integral domain whenever the obvious necessary condition
that G be torsion-free is satisfied. Farkas and Snider [76] have shown this
to be the case when G is also polycyclic (i.e. soluble with maximum
condition on subgroups); since kG is Noetherian in this case it is then
embeddable in a field. More generally this has now been established for
all torsion-free soluble groups by Kropholler, Linnell and Moody [88]. In
another direction, J. Lewin and T. Lewin [78] have shown (using methods
of Magnus and some results from Ch. 4 below) that for any torsion-free
group given by a presentation with a single defining relation the group
algebra can be embedded in a field. Dicks [83] gives another relatively
brief proof of this result, based on his theory of HNN-constructions.

The power series ring over an ordered group, R((G)) was introduced
(for abelian G) by Hahn [07], who used it to show that every abelian
ordered group can be embedded in an ordinal power of R, lexicographic-
ally ordered. Th. 4.5 was proved independently by Malcev [48] and
Neumann [49]; our proof follows Higman [52] who establishes a version
of Lemma 4.3 for general algebras. The fact that the free group can be
ordered was proved by Shimbireva [47] and independently by Neumann
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[49']. Power series over a free metabelian group were considered by R.
Moufang [37] who used them to show that group algebras of free
metabelian groups, and hence free algebras, could be embedded in
ordered fields (see Ex. 5, 6 of 2.4).

The construction of 2.4 can also be carried out for ordered monoids,
and for an ordered cancellation monoid M and an ordered field k, the
power series ring k((M)) is totally ordered (see 9.6). Dauns [70'] shows
that when M is an ordered cancellation monoid not embeddable in a
group (see Chehata [53]), then k((M)) is an integral domain not
embeddable in a field.

The J-rings studied in 2.5 were constructed by Jategaonkar [69], by a
method using transfinite induction. The more direct proof given here first
appeared in the first edition of FR. Jategaonkar used his construction to
give (i) an example of a right but not left primitive ring, (ii) an example of
a left Noetherian ring having elements with infinite factorizations, (iii) an
example of a left Noetherian ring whose Jacobson radical 3 satisfies
fl3n =£ 0, (iv) a ring in which the left and right global dimensions differ by
a prescribed number (in previous examples this difference had been 1,
Kaplansky [58] or 2, Small [66]). This is proved by showing that for a
J-skew polynomial ring R[t; a] the left global dimension equals
l.gl.dim./? + 1 (see Jategaonkar [69] or Rowen [88], 5.1). Points (i)-(iii)
are sketched in the text ((ii) was first answered in Cohn [67] by an
example using a J-ring of type 2).

Th. 6.5 and its application, Th. 6.6 were proved by Cohn [61'] by
constructing the multiplicative group of the field as an inverse limit of
monoids and then defining addition with the help of Lemma 1.1.1. The
simpler proof given here is due to Lichtman [a]; another proof by
valuations is due to Dauns [70]. For a fourth proof, using inverse limits of
quotient groups of p-jets, see Wehrfritz [92]. A fifth proof was recently
given by A. I. Valitskas [a], using the matrix ideals of Ch. 4. The
construction has also been used more recently in micro-localization (see
e.g. v.d. Essen [86]).



Finite skew field extensions and
applications

The beginnings of commutative field theory are to be found in the theory
of equations. The analysis of algebraic equations with the help of groups
led to Galois theory, but in a modern treatment Galois theory is
developed abstractly and equations enter at a relatively late stage. In the
non-commutative case it turns out that a Galois theory can be developed
which closely parallels the commutative theory, and this is done in 3.3,
using the Jacobson-Bourbaki correspondence (3.2) and some basic facts
on dimensions in 3.1. By contrast, equations over skew fields are much
harder to handle and what little is known is presented in 3.4. In any case,
the appropriate tool to use is a matrix; our knowledge of matrix
singularities is even more sparse, and an account will have to wait until
Ch.8.

The rest of the chapter deals with various special cases, in which more
can be said: quadratic extensions (3.6) and the slightly more general case
of extensions generated by a single element with a skew commutation
rule, the pseudo-linear extensions (3.5). For outer cyclic Galois exten-
sions 3.7 gives a fairly complete description, due to Amitsur, while the
infinite case is briefly dealt with in 3.8.

The last section, 3.9, dealing with the multiplicative structure of fields,
forms a separate subject not directly related to the rest. Its location here
is determined by the fact that it uses some results from 3.4 but none from
later chapters.

3.1 The degree of a field extension
It is a familiar observation that if A: is a commutative field and a is
algebraic over k, then the field k(a) generated by a over k has finite
degree and coincides with the fc-algebra generated by a. Moreover, any
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finite set of algebraic elements over k generates an extension of finite
degree. For skew fields there is no corresponding statement; here the
extensions of finite degree are much more complicated and there is no
simple way of producing them all, as in the commutative case. In fact
there could be ambiguity about what is meant by an extension of finite
degree.

Let K be a field and E a K-ring. Then E may be regarded as left or
right vector space over K and their dimensions provide two numbers
(possibly infinite), which will be denoted by

[E:K]L and [E:K]R.

When E is itself a field, these numbers are usually called the left and
right degree, and we shall use this terminology generally for A'-rings^*)
For many fields these two numbers coincide, but not always, as we shall
see in Ch. 5. We shall often call [E:K]R simply the degree of E over K
and call the extension E/K finite when its degree is finite. As in the
commutative case we have the product formula for the degrees (see A.2,
pp. 63f.), which follows from the next result:

P R O P O S I T I O N 3.1.1. If KQE are any fields and V is a right
E-module, then the dimensions of V over E and K are related by the
formula

[V:K] = [V:E][E:K]R, (1)

whenever either side is finite.

The proof is as in the commutative case, by showing that if {ux} is a
right E-basis for V and {vt} a right A'-basis for E, then {uxVi} is a right
#-basisfor V. •

At least one of our difficulties disappears for extensions of finite
degree, the difference between zero-divisors and non-units:

P R O P O S I T I O N 3.1.2. Let K be a field and A a K-ring of finite right
degree over K. Then every right regular element of A is a unit; hence if A is
an integral domain, then it is a field.

Proof. Let a e A and suppose that a is right regular. Then the mapping

(*) Care is needed to avoid confusion with the 'degree' of a central simple algebra, which is
usually defined as the square root of the dimension. We shall not have occasion to use
the term in that sense, but shall avoid confusion by speaking of the 'dimension' in cases
of doubt.
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Xa\ x »-> ax is injective, and it is clearly right AMinear on a finite-dimen-
sional AT-space, hence it is surjective, and so ab = 1 for some b e A. Now
b is again right regular: if bx = 0, then x = abx = 0. Hence there exists
c e A such that be = 1, but now c = abc = a, which shows that ab =
6a = 1, so 0 is a unit. The rest is clear. •

There is one important case where the left and right degrees are the
same:

T H E O R E M 3.1.3. Let E be a field of finite dimension over its centre.
Then for any subfield K of E the left and right degrees of E over K
coincide.

Proof. Let AT be a subfield of E and denote the centre of E by C. By
hypothesis E is a C-algebra of finite degree, and it is clear that A =
KC - OjXiy^Xi e K, yt e C} is a subalgebra. If we regard A as a K-hng,
we can choose a basis of A as left AT-space consisting of elements of C;
this will also be a right A'-basis of A, hence

[A:K]L = [A:K)R. (2)

Now A is a C-algebra of finite degree, and an integral domain, as
subalgebra of E, hence A is a field. By (1) we have

[E:C] = [E:A]L[A:C] = [E:A]R[A:C].

Since [£:C] is finite, so is [A:C]. If we divide by [A:C] and then multiply
by (2), we get, on using (1) again,

[E:K]L = [E:K]R,

as we had to show. •

As a consequence the left and right degrees also coincide when the
subfield is commutative:

P R O P O S I T I O N 3.1.4. Let E be afield and K a commutative subfield for
which [E:K]R is finite. Then E is of finite degree over its centre and so
[E:K]L = [E:K]R.

Proof. Denote the centre of E by C and by F the subfield of E
generated by C and K. Then F is a commutative subfield containing C
and [E:F]R is again finite. Consider the tensor product E (8>c P\ it is a
simple algebra with centre F, by Cor. 7.1.3, p. 260 of A.3, and we have a
homomorphism
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E®cF-*EndF(EF), (3)

which maps ^u( ® at (ute E, oc{ e F) to the endomorphism x »->
^jUiXeti. By the simplicity of E <8> F it is an embedding, and if
[E:F]R = n, then the right-hand side of (3) is <DWn(F). Hence

[E:C] = [E ® c F:F] ^ [<$ln(F):F] = n2.

Thus E is of finite degree over C and now the conclusion follows by
Th. 1.3. •

Exercises

1. Let k be a commutative field and K = k{t) the rational function field, with
endomorphism a: f(t) •-> f(t2). Show that the truncated polynomial ring K[x; a]/
(x2) has left degree 3 and right degree 2 over K. (Hint. Show that 1, x, xt is a left
AT-basis.) Find ^-algebras of arbitrary left and right degrees.

2. Let K be a field, E a subfield and F its centralizer in K. Verify that
C = E fl F is the centre of E and give a direct proof that the natural
homomorphism of E®CF into K given by jc®yt-^xy is injective (this is
expressed by saying that E and F are linearly disjoint in K over C, see 6.4
below).

3. Give a direct proof that a field cannot be of prime dimension over its centre.

4. (Schofield [85]) Let A, D be A>algebras which are skew fields, A of finite
degree over k and D with centre F such that E ®k F is an integral domain for all
commutative field extensions E/k (such an extension F/k is called regular). Show
that A0 ®£ Z) is a simple Artinian ring with a unique simple module S of finite
dimension over D; verify that A can be embedded in Wln(D) if and only if
[S:D]\n.

3.2 The Jacobson-Bourbaki correspondence
Let A be any ring and M, N two A-bimodules. We shall write
Hom(M, N), UomA_ (M, N), Hom_A (M, N), H o m ^ (M, JV) for the
set of all additive, left-A, right-A and A-bimodule homomorphisms from
M to N respectively, and we shall use a corresponding notion for
End(M) = Hom(M, M). Of course End(M) also has a multiplication
which together with the addition gives it a ring structure. In particular, for
M = A we have in End (A) the subring p(A) of right multiplications pa:
x^>xa\ this ring is isomorphic to A, as is well known (see Th. 2.1 below).
Similarly the subring k(A) of left multiplications Xa\ x^>ax is anti-
isomorphic to A, because (writing maps on the right) we have XaXb = Xba\
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x*-*bax. These two subrings can be identified with each other's
centralizers in End (A); we recall that the set of module endomorphisms
of AA is just the centralizer of EndA_(A) in End (A) and the set of
module endomorphisms of AA is the centralizer of End_A (A) in End (A).
Further we denote by A° the opposite ring of A, i.e. the ring on A+ as
additive group with the multiplication

x o y = yx.

T H E O R E M 3.2.1. Let A be a ring and p(A), X(A) the rings of all right
and left multiplications respectively. Then p(A) = A, k(A) = A° and

p(A) = EncU_ (A), k(A) = End.A (A). (1)

Proof. Any right multiplication is a left-A homomorphism, by the
associative law: (bx)a = b{xa). Hence the map a*-*pa is a ring homo-
morphism from A to EndA_(A). It is injective, because pa = 0 means that
a = 1 • pa = 0; to show that it is surjective, take 8 e EndA_(A) and let
10 = b. Then for any x e A, xd = x{\6) — xb = xpfc, hence 6 = pb, as
claimed. This proves the first equation (1) and the fact that p(A) = A.
The proof for the other side is similar, bearing in mind that the left
multiplications define a left A -module structure on A, corresponding to a
right A°-module structure. •

We shall also need a lemma on centralizers of subrings of End (A):

L E M M A 3.2.2. Let A be a ring and F a subring of End (A) containing
p(A). Define a subset of A by the condition

C = {x e A\XX centralizes F}

= {x e A\(xy)f = x • yf for all y e A, f e F}.

Then the centralizer of F in End (A) is A(C), hence C is a subring of A
and we have

p(A) QFC Endc.(A). (2)

Moreover, C may be defined by the equation

C = {x e A\xf = x • 1/ for all / e F}. (3)

Proof. Since F contains p(A), the centralizer of A(A), it follows that the
centralizer of F is contained in A(A); now the definition of C states that
Kf — fK f°r x e C, so the centralizer is just A(C) and it follows that C is
a subring of A. Now (2) follows because the elements of F centralize C.
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To prove (3), denote the right-hand side by C"; then it is clear that
CCC" and we must show that equality holds. Let xeC, so that
xf = x • 1/ for all feF.lt follows that for any y e A,

(xy)f = xpyf = x • l ( p / ) , because pyf e F,

and so x e C, as claimed. •

For the moment let A be any abelian group. In End (A) there is a
natural topology which is induced by regarding it as a subset of AA,
endowed with the product topology (taking A as a discrete space). This is
known as the finite topology or the topology of simple convergence. If
/ e End (A), a typical neighbourhood of / , specified by a finite subset X
of A, consists of all q)eEnd(A) such that xf — xcp for all x e X. It
follows that all centralizers are closed:

P R O P O S I T I O N 3.2.3. Let A be an abelian group and FCEnd(A) .
Then the centralizer of F is closed in the finite toplogy on End (A).

Proof Let feEnd(A) and C = {g e End(A)\gf = fg}. Given h$C,
we have hf =£ fh, so there exists x e A such that xhf =£ xfh. Consider the
neighbourhood of h determined by x, xf. It consists of all cpe End (A)
such that xh = xq>, xfh = xfcp. Hence

xcpf = xhf =£ xfh = xfcp,

and so cp $ C. Thus a neighbourhood of h is disjoint from C, hence C is
closed. Now for any subset F of End (A), the centralizer of F is closed, as
the intersection of the centralizers of all / e F. •

Let us now consider any ring A and a simple right A-module M. By
Schur's lemma the endomorphism ring of MA, i.e. the centralizer of A in
End(M), is a field D, say, and the action of A on M is dense in the
centralizer of D in End(M). This is just the density theorem for simple
modules (see e.g. A.3, Cor. 10.2.6, p. 401), which will be applied in the
next result.

Let K be a field and consider the ring E = End(K) of all endomorph-
isms of K+. For any subfield D of K define Df = EndD_(K), the
centralizer of A(D) in E\ this is a subring containing p(K), i.e. a
p(/£)-subring of E. If F is any p(AT)-subring of E, we define
F' = {x e K\(xy)f = x-yf for all y e K, f e F}, the centralizer of F,
which is a subring of K by Lemma 2.2, in fact a subfield. The mappings



3.2 The Jacobson-Bourbaki correspondence 99

D •-> Df, F'»-> F' satisfy the usual rules for a Galois connexion (see A.2,
p. 85f.):
(G.I) D"DD,F"DF,
(G.2) £>! C D2 => D[ D D'l9 F1QF2^F[D F'2,
(G.3) D'"= D', F"= F'.
Our problem will be to find the sets which correspond under this Galois
connexion, i.e. the subfields of K of the form F' and the subrings of E of
the form D1. This question is answered by the Jacobson-Bourbaki
correspondence, which tells us that the correspondence is between all
subfields of K and all closed p(#)-subrings of E:

T H E O R E M 3.2.4 (Jacobson-Bourbaki correspondence). Let K be a
field and End(K) the endomorphism ring of K+ with the finite topology.
There is an order-reversing bijection between the subfields D of K and the
closed p(K)-subrings F of End (K), given by the rules

= {x e K\(xy)f = x • yf

for ally e K,f e F}. (4)

Moreover, if D and F correspond in this way, then

[K:D]L = [F:K]R, (5)

whenever either side is finite.

Proof. Given a closed p(AT)-subring F of End (K), define D as in (4). By
Lemma 2.2, A(D) is the centralizer of F in End(X^). Now K is a simple
right A'-module, hence it is simple as right F-module, so the centralizer
D of F is a field, by Schur's lemma, and F is dense in the bicentralizer
(by the density theorem). But F is closed, so we have equality:

F = EndD.(K). (6)

Conversely, given D, put F = EndD_(K) and define Dx as

Dx = {x e K\xf = x • 1/ for all f e F}.

Then DXDD and by the first part, F = EndDl_(K), so Dx = D by
Lemma 2.2. Thus we have the correspondence (4), which is clearly
order-reversing.

To establish (5), let us take a finite subset X of K which is left
D-independent, and for each y e X choose 8y e End£,_(^) such that

= <xy.

This is clearly possible, e.g. by completing X to a left £>-basis of K and
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defining dy as 0 on the complement of X. The dy are right linearly
^-independent, for if ^dyay = 0 (ay e K), we can apply this relation to
x e X and get 0 = x(^dyay) = ax, so all the ax vanish and the relation
was trivial. This shows that

[K:D]h ^ [F:K]R, (7)

and it proves (5) when the left-hand side is infinite. If the left-hand side is
finite, we can take X to be a left Z)-basis of K. Thus every element of K
has the form ^axx, and for any / e F we have

yf ) = Y,*yyf =

hence / = 2)5y • yf and this shows that the dy span F as right i£-space.
Therefore equality holds in (7) and (5) follows. •

Exercises
1. Verify that the finite topology on End (A), for any abelian group A, is
Hausdorff.

2. Let K be a field. What is the condition for the finite topology on K+ to be
discrete?

3°. Show that for any abelian group A, a. topology on End (A) may be defined by
taking as the closed sets all finite unions of centralizers. Find conditions for this
topology to be equal to the finite topology.

4. Show that any p(#)-subring F of End(K) satisfying [F:K]R < °o is closed in
the finite topology.

3.3 Galois theory
Let K be a field and G the group of all its automorphisms. For a subfield
E of K define £* = {ae G\x° = x for all x e E} and for any subgroup
H of G put H* = {x e K\x° = x for all o e H}. It is clear that £* is a
subgroup of G, if* is a subfield of K and we again have a Galois
connexion:
(G.I) £ * * D £ , H**DH,
(G.2) ElQE2^> Et D £?, H1CH2=> H\ D iff,
(G.3) £*** = £*, #*** = if*.

Given a subgroup H of G, we call / /* the fixed field of if. Given a
subfield E of AT, we call £* the growp of K/E\ if £** = £ , we call £* a
Galois group, also denoted by Gal(AT/£), and we say that K/E is a
Galois extension.
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Our problem will be to find which fields and groups correspond in this
Galois connexion, i.e. which subfields of K are of the form //* and which
subgroups are of the form £*. We recall that in the case of commutative
fields the finite Galois extensions are just the separable normal exten-
sions, while every subgroup of Gd\{K/E) has the form F* for a suitable
field F between K and E. The account which follows is based on
Jacobson [56], Ch. VII.

The commutative theory rests on two basic results (see e.g. A.2,
Lemma 3.5.1, p. 81, Th. 3.5.5, p. 84):

Dedekind's lemma. Distinct homomorphisms of a field E into a field F
are linearly independent over F.

Artin's theorem. / / G is a group of automorphisms of a field E and F is
the fixed field, then [E:F] = \G\ whenever either side is finite.

Our object is to find analogues in the general case. We begin with
Dedekind's lemma; here we have to define what we mean by the linear
dependence of homomorphisms over a skew field. Given any fields K, L,
we write H = Hom(X, L) for the set of all field homomorphisms from
K to L; H is a subset of the space LK of all maps from K to L, and we
can form HL, the right L-submodule of LK generated by H. We shall
write the elements of H as exponents and also write a@ = ar/3 for
a, fie K. We have

xas = (xa)s = xsa8 = xsa* for all x, aeK,se H;

hence we can define HL as left K -module by the rule

as = so* for a e K,s e H = Hom(A:, L). (1)

It is easily checked that with this definition HL is a (K, L)-bimodule.
Each lie Lx defines an inner automorphism of L,

and it is clear that forseH we have si (ft) e H. Two homomorphisms
s, t from K to L are called equivalent, s ~ t, if they differ by an inner
automorphism: t = sl(^i). We note that for each seH, sL is a
(K, L)-submodule of HL which is simple as (K, L)-module, since it is
already simple as L-module. The next result shows how HL is made up
of these parts.

L E M M A 3.3.1. Let K, L be fields and H = Hom(K, L). Then HL is a
semi-simple (K, L)-bimoduley as sum of the simple modules sL. Two
sub-modules sLy tL are isomorphic if and only ifs and t are equivalent.
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Proof. We have seen that sL is simple; HL is a sum of these simple
modules, and so is semisimple. If sL = tL, let t correspond to sft where
fie Lx. Then a-sfi = sp- a* for all a e K, and since as = sa*, we find
that asn = na\ so s = tl(fi). Conversely, if s ~ t, then o^[i- \ial for
some pie Lx and retracing our steps, we find that sL = tL with t
corresponding to sfi in the isomorphism. •

We now consider the action of the (K, L)-bimodule HL. Each element
of HL defines a mapping K -» L as follows:

a <-> ^a^'A;, where or e K, st e H, A, e L. (2)

By (1) the left ^-module structure of HL acts on K in the expected way,
namely by right multiplication. Let N be the kernel of the mapping (2)
from HL to LK\ thus N consists of all sums 2 s A s u ch that

2 ^ ' A = 0 for all are K. (3)

The quotient M = HL/N is a (A', L)-bimodule whose elements have the
form X-M-; (si e H> K e L), with X^A = 0 if and only if (3) holds. By
Lemma 3.1, HL is semisimple, hence so is the quotient M; we recall also
that a semisimple module is a direct sum of its homogeneous components
or type components, where each component is a direct sum of simple
modules of a given type (A.2, 4.2). Now we have the following
generalization of Dedekind's lemma:

T H E O R E M 3.3.2. Let K, L be any fields, put H - Horn(K, L) and
consider M = HL/N, the homomorphic image of HL in LK as (K, L)-
bimodule, as defined above.

(i) Given s, sv . . ., sn e H, ifs = ̂ S/A, in M, then s = Sil(fi) for some i
and some jie Lx.

(ii) Given s e H, pily . . ., \ir e Lx, if the elements si (ft) are linearly
dependent over L, then the ft are linearly dependent over %L(KS),
the centralizer of Ks in L.

Proof, (i) If s = X^A> ^en the simple module sL lies in the sum of the
stL and so it lies in the same type component as some stL, hence s and st

generate isomorphic modules and so are equivalent: s = sJdi) for some
fieLx.

(ii) If the si (ft) are linearly dependent in M, take a relation of shortest
length:

^ , = 0, where A, e Lx .
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Multiplying on the right by a suitable factor, we may assume that Ax = fa.
By applying the relation to 1 e K, we find that ^Af = 0, so

Sft'A- = 0, (4)

and the result will follow if we can show that iu~1Ai e%L(Ks). Let us
apply the relation to a product a/3 in K:

0 = ̂ (apyii^i = I^PvlX (5)

Next apply the relation to or and multiply by /3s on the right:

o =
Taking the difference, we get

^tf %) = 0.

The first coefficient is krfi
s — Axj8

5 = 0, hence by the minimality the other
coefficients also vanish l l l

Ks, as we had to show.

xj y

coefficients also vanish, so falktp
s = psfalkt and hence falkt centralizes

Suppose that s is an isomorphism between K and L. Then Ks = L and
so the centralizer of Ks in L is just the centre of L. This yields

C O R O L L A R Y 3.3.3. Let sv . . . , sr be pairwise inequivalent isomorph-
isms between two fields K and L and let Ax, . . . , kt e L be linearly
independent over C, the centre of L. Then the isomorphisms ^/(A;) are
linearly independent over L and any isomorphism which is a linear
combination (over L) of these isomorphisms has the form s = stI(X),
where X^

Proof If the stI(Xj) were linearly dependent, then by (i), for some s = s(

the sI(Xj) would be linearly dependent, so by (ii) the A; would then be
linearly dependent over C, but this contradicts the hypothesis.

Now assume that the isomorphism s satisfies

s = 2A-/(A;-)O^, where oci] e L. (6)

Then by (i), s = stI(X) for some /, say / = 1 and A e L. Hence we have
SiI(X) = ^Sil(kj)aij, and by equating terms of the same type we may
omit all terms sk with k¥=l. Now by what has been shown, A, A1? . . . , A,
are linearly dependent over C, but A1? . . . , A, are linearly independent,
hence A depends linearly on the Xh so A = X^vA f°r some /J; e C. •

Next we have to translate Artin's theorem. Without using Dedekind's



104 Finite skew field extensions and applications

lemma we can state the result as [K:D] = [G:K], where G, or rather
GK, is regarded as right A'-space. We shall replace G, a group of
D-linear automorphisms of K, by D-linear transformations of DK. Every
such s e EndD_(K) satisfies the rule

(ax)s = ocxs for all x e K, a e D,

which generalizes the rules (xy)s = xsys, of = a satisfied for s e G. For
any field K we shall consider the ring End (AT) again as a topological ring,
as in 3.2. It contains p(K) as a subring and by the Jacobson-Bourbaki
correspondence (Th. 2.4) there is an order-reversing bijection between
the subfields D of K and the closed p(#)-subrings F of End (AT) such
that

[K:D]L = [F:K]R

whenever either side is finite.
Given a group G of automorphisms of AT, we have a right ^-space

GK, and we have only to show that this is a ring in order to be able to
apply the preceding result. Thus we need

L E M M A 3.3.4. Let K be a field and G a group of automorphisms of K.
Then GK is a p{K)-subring of End(^) and its closure GK in the finite
topology is EndD_(K), where D is the subset of K fixed by G.

Proof In GK we have the rule ag = ga8 (a e K, g e G); using this rule
we have

Since every element of GK is a sum of terms ga, it follows that GK is
closed under products and GK D p(K), so GK is a p(K)-nng. By Th.
2.4, ~GK = EndD_(K), where D = {x e K\xf = x • lf for all fe~GK}.
Thus if are K, then

a e D o af = or- lf for all / e GK,

o cfifi = a • 1*0 for all g e G, /3 e K,

hence a e D if and only if a8 = a for all g e G. •

By combining this result with Th. 3.2, we obtain a result on extending
homomorphisms. By an automorphism of K over a subfield D or an
automorphism of K/D we shall understand an automorphism of K
leaving D elementwise fixed.
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P R O P O S I T I O N 3.3.5. Let K be afield, G a group of automorphisms of
K and D the fixed field of G. Further, assume that G contains all inner
automorphisms of K over D. If E is a D-subring of K of finite left degree
over D, then every D-ring homomorphism of E into K is induced by an
element of G.

Proof. Let s: E-* K be a D-ring homomorphism. Regarding E and K
as left D-spaces, we see that E is a subspace of K, therefore s can be
extended to a D-linear endomorphism of K, i.e. an element of
EndD_(K). By Lemma 3.4, EndD_(K) = GK and so on any finite-dimen-
sional subspace s can be written as SftA (ft e G, Xte K). In particular,
since [E:D]L < °°, we have s = XftA o n E. Now E is a D-subring of K
of finite left degree, hence a field (Prop. 1.2) and by Th. 3.2(i), s = &/(//)
for some i and some jie Kx. Applying this expression to a e D we find

a = (Xs = a8il(ii) = \ioc\x~l.

Hence the inner automorphism /(JU) leaves D fixed, so I{pi) e G by
hypothesis and so &/(//) e G is an automorphism which induces s. •

This yields the Skolem-Noether theorem for the special case of fields:

C O R O L L A R Y 3.3.6. Let K be a field with centre C and let D be a
C-subalgebra of K finite-dimensional over C. Then any C-algebra homo-
morphism from D to K can be extended to an inner automorphism of K.
In particular, if [K:C]< *>, every automorphism of K over C is inner.

Proof. In Prop. 3.5 take G to be the group of all inner automorphisms of
K. Then C is the fixed field and every inner automorphism belongs to G;
now the conclusion follows. •

We now return to our initial task of finding which automorphism
groups and subfields correspond to each other in the Galois connexion.
We first deal with a condition which is obviously satisfied by all Galois
groups. Let A 'bea field with centre C and let D be any subfield of K\
then the centralizer of D in K is a subfield D' containing C. Any
non-zero element of D' defines an inner automorphism of K over D and
so belongs to the group D*; conversely, an inner automorphism of K
belongs to D* only if it is induced by an element of D'. Thus we see that
the oc e K for which I (a) e D* together with 0 form a subfield containing
C. This then is a necessary condition for an automorphism group to be
Galois and it suggests the following
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Definition. A group G of automorphisms of a field K is called an
N-group (after E. Noether) if the set

A = {ae K\a = 0 or I(a) e G}

is an algebra over the centre C of K; A will be called the C-algebra
associated with G. Clearly the associated C-algebra is necessarily a field.

We note that the property of G being an TV-group is not just a group
property, but refers to its action on the field. It is also clear that every
Galois group is an TV-group: if G — E* and E = G*, then I(c) e G if and
only if c e %D(E), so the associated algebra is just the centralizer of E
inK.

If G is any TV-group with associated algebra A, and Go is the subgroup
of all inner automorphisms I(a) (a e Ax), then Go is normal in G, for if
x e K, a e Ax, s e G, then

xs~lI{a)s = (ax^a-1)5

hence

and this shows Go to be normal in G. We define the reduced order of G
as

|G|red = (G:G0)[A:C]. (7)

With this notation we have the following replacement for Artin's
theorem:

T H E O R E M 3.3.7. Let K be any field, G an N-group of automorphisms
of K and put D = G*, the fixed field of G. Then

[K:D]L = \GU (8)

whenever either side is finite, and when this is so, G is a Galois group, i.e.
G = D* = G**.

Proof Suppose first that [K:D] = m < °°; then by the Jacobson-Bour-
baki correspondence (Th. 2.4), [EndD_(K):K]R = m. Let sl9 . . . , sr e G
be pairwise incongruent (modG0) and Al5 . . . , A, any elements of the
associated C-algebra A that are linearly independent over C. Then the
maps SiI(Xj) are in YLndD_(K) and by Cor. 3.3 they are linearly
independent over K. Hence rt^m and it follows that |G|red ^ m < <».

We may now assume that G has finite reduced order. Let su . . . , sr be
a transversal for Go in G and A1? . . . , A, a C-basis for A; then we know
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that the sjikj) are linearly independent over K. We shall show that they
form a right K-basis for EndZ)_(iC).

Given s e G, let s = Si/(A), say, where XeA and so A
(/J; e C). For any c e K we have

c* = c5l/(A) = Ac51 A"1

where y; = Ay/JyA"1 e AT. This shows that the ^/(Ay) span G, hence also
GA\ Now GK has finite dimension over K, and so GA' = GK =
EndD_(£), by Lemma 3.4. It follows that |G|red = [EndD.(K):K]R =
[K:D]L.

Next it is clear that £>* = G** D G. Conversely, if s e £>*, then
s € EndD_(A'), hence 5 = ^dsil{kj)aij, where ar̂  e K. By Th. 3.2, since s
is an automorphism of K, we have 51 = stI(X) for some /, where A = S^y^y
(/3; e C), but then /(A) e Go and s1, e G, hence s e G, as we had to
show. •

Here is a simple example (noted by G. M. Bergman) to illustrate the
need for introducing the reduced order. Let o> be a primitive nth root of 1
(for any odd n ^ 3) or a primitive 2wth root of 1 (for any even n ^ 4),
and in the real quaternions H consider I(co). This automorphism has
order n, though its fixed field is C and [H:C] = 2.

We note some consequences of Th. 3.7. In the first place (8) allows us
to assert the equality of left and right degrees in some cases:

C O R O L L A R Y 3.3.8. Let K be a field, G an N-group of automorphisms

ofKandD = G*. Then

[K:D]L = [K:D]R,

whenever either side is finite.

This follows from (8) by symmetry. •

Secondly we have a result first obtained by Brauer [32] in the theory of
algebras.

C O R O L L A R Y 3.3.9. Let K be a field with centre C and let A be any
C-subalgebra of K. Then the centralizer A' of A in K is again a C-algebra
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and the bicentralizer A" contains A. Moreover,

[K:A\ = [A:C], (9)

whenever either side is finite, and when this is so, then A" = A.

Proof. Suppose first that [A^:A']L is finite. Clearly Af is a subfield of K\
let G be the group of all inner automorphisms of K over A' and let Ax be
the associated algebra. Then AXDA and by Th. 3.7, |G|red = [A^.C] =
[K:A']L, hence A is then of finite degree. Thus we may assume that
[A:C] is finite, and hence A is a field. Let G be the group of all inner
automorphisms induced by A; then G* = A' and (9) follows from (8).
Moreover, (A')* = G, which means that A" — A. •

We still need a lemma to identify the precise form taken by subrings of
GK.

L E M M A 3.3.10. / / K/D is a Galois extension with group G and
[K:D]L < oo, then any p(K)-subring B of GK has the form HK, where
H = G fl B is an N-subgroup of G.

Proof Put H = GH B\ then clearly HK C 5 . To prove equality we
note that HK and B are both A'-bimodules contained in
GK = EndD_(K), by Lemma 3.4. Now GK is semisimple and hence so is
B; moreover, every simple submodule of B is isomorphic to a simple
submodule of GK and so is of the form uK, where au = ua3 for all
a e K and some s e G. Replacing u by uy (y e K) if necessary, we may
suppose that

1 • u = u and still au = ucf for some s e G.

Hence a- u = 1 • ua3 = (Xs, i.e. u is an automorphism of K, viz. s, and
since u e EndD_(K), s fixes D, i.e. s e G, so s e G fl B = H. This shows
that B = HK.

That H is a group follows because B is a centralizer (being of finite
degree over K, by Jacobson-Bourbaki). To show that H is an TV-group,
let /(a^), I(a2) e H and a = a^ + a2p2 ^ 0; w e m u s t show that
I (a) e H, and clearly it will be enough to show that I (a) e B. We have
I(a) = k(a)p{a~l) and B D p(K), hence I(a) e BoX(a) e B. By hypo-
thesis, A(ar1), A(ar2) e B and k(a) = A(ar1))31 + X{cx2)^ hence A(#) e B,
and it follows that H is an N-group. •

Finally we come to the fundamental theorem. In order to describe
extensions, we need an analogue of normal subgroups, bearing in mind
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that we admit only TV-groups. We therefore define: a subgroup H of an
TV-group G is said to be N-invariant in G if the TV-subgroup generated by
the normalizer of H in G is G itself.

T H E O R E M 3.3.11 (Fundamental theorem of Galois theory for
skew fields). Let K/E be a Galois extension with group G and assume
that[K:E]L< » .

(i) There is a bisection between N-subgroups of G and intermediate fields
D,ECDCK:

H>-* H* = {x e K\x° = x for all a e H}y

D>-> D* = {oe G\x° = x for all x e D}.

IfH**D, then K/D is Galois with group H and [K:D]L= \H\TQd.
(ii) IfH*+D, then the group of automorphisms ofD/E is isomorphic to

NH/H, where NH is the normalizer of H in G. Moreover, D/E is Galois if
and only ifH is N-invariant in G.

Proof (i) By Th. 3.7, |G|red < <*> and so any TV-subgroup of G has finite
reduced order: H/Ho = H/(H n Go) = HG0/G0 C G/Go, where Go is
the subgroup of G consisting of inner automorphisms, and similarly for
Ho and H; thus the C-algebra associated with H is contained in that of
G. It follows by Th. 3.7 that, given H, we have H** = H. Conversely,
given D, we put H = G n EndD_(K); then End£>_(#) = HK, by Lemma
3.10. Now H consists of all D-linear transformations in G, i.e. the
elements of G fixing D, thus H = D*. Since EndD_(K) = HK, we have
D = H* by Lemma 3.4. Thus D** = D and now [K:D]L = \H\Ted by
Th. 3.7.

(ii) If D <r> H, then for any s e G, D* ±> s~lHs, therefore the members
of NH and only these are automorphisms of D/E. Every automorphism of
D/E is induced by one of K/E (Prop. 3.5), hence its Galois group, Gx

say, is a homomorphic image of NH. The kernel consists of those
automorphisms of K which fix D, i.e. H, so that Gx = NH/H. So far D
was any field between K and E. Now D/E is Galois if and only if E is
the fixed field of Gl9 i.e. E is the set of elements fixed by NH. By (i) this
holds if and only if the TV-subgroup of G generated by NH corresponds to
E, which happens precisely when this group is G. But this just means that
H is TV-invariant in G. •

We note the special case where the Galois group is inner, i.e. consists
entirely of inner automorphisms. Let K/E be a Galois extension with
inner Galois group G and let E' be the centralizer of E in K; then C, the
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centre of AT, is contained in Ef and G = E'x/Cx. Such extensions are
described in Cor. 3.9.

Let us return to the case of a general Galois extension K/E with group
G. As we have seen, the subgroup Go of inner automorphisms is normal
in G; moreover, G/Go consists entirely of outer automorphisms (apart
from 1). For if the fixed field of Go is Ko and a e G/Go, suppose that
o = I(c) and take a e G mapping to a. Then o~lI(c) fixes Ko and so lies
in Go, i.e. a e Go and hence a = 1, as claimed.

A Galois group will be called outer if the only inner automorphism it
contains is 1. E.g. in the commutative theory all Galois groups are outer.
It follows from Th. 3.11 that every Galois extension is an outer extension
followed by an inner extension:

C O R O L L A R Y 3.3.12. Given any Galois extension K/E, there is a field
Ko, E C Ko C K, such that Ko/E is Galois with outer Galois group and
K/Ko has inner Galois group. Here Ko is uniquely determined as the
bicentralizer of E in K.

Proof. Let G be the Galois group of K/E and Go the subgroup of inner
automorphisms. The automorphisms in Go fix E and so are induced by
elements of the centralizer E' of E. If Ko denotes the centralizer of E',
i.e. the bicentralizer of E, then K0D E and Ko is the fixed field of Go.
Thus K/Ko is Galois with inner Galois group Go, while Ko/E has Galois
group G/Go and this is outer, as we have seen. •

The 'theorem of the primitive element' has an analogue in the skew
case.

T H E O R E M 3.3.13. Let K be a field with an infinite subfield E. If there
are only finitely many subfields between K and E> then K can be generated
by a single element over E, i.e. K/E is a simple extension.

Proof. Among the simple extension fields of E in K take a maximal one,
E(a) say. If E(a) =£ K, take b $ E(a) in K and consider the fields
LA = E(a + Xb) (XeE). Two of these must coincide, because E is
infinite. If Ly contains a + yb and a + y'b, where y^y\ then it also
contains (y — y')b, hence b and a, so Ly is a simple extension strictly
larger than E(a), which is a contradiction. •

The conclusion holds for any Galois extension with finite Galois group.
However, a Galois group of finite reduced order may well have infinitely
many A^-subgroups (see Ex. 3).
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Exercises

1. (S. A. Amitsur) Let F = Q(w), where u is a primitive cube root of 1, with
automorphism a: w •-> u2. Put R = F[v; a] and verify that v2 — 2 is central and
irreducible. If K = R/(v2 - 2), show that X/F is inner Galois, with group
generated by /(«), of order 3 but reduced order 2.

2. Show that any field of finite degree over its centre is an inner Galois extension.

3. Let K be a field with centre C =£ K and suppose that K/C is a Galois
extension. Show that there are infinitely many fields between K and C, and
deduce that the Galois group must be infinite. Give an example where the Galois
group has finite reduced order.

4. Show that the set of all automorphisms and antiautomorphisms (reversing
multiplication) of a field K forms a group in which the set of automorphisms
forms a subgroup of index at most 2. Give an example of an antiautomorphism of
a field whose fixed set is not a subfield. (Hint. Try a field of fractions of the free
algebra.)

3.4 Equations over skew fields and Wedderburn's theorem
The solution of equations over a commutative field k is closely bound up
with the problem of constructing algebraic extensions of k. For skew
fields, matrices are needed to treat the general problem, and we shall
present what little is known so far in Ch. 8. In this section we shall
describe a special situation that allows the use of ordinary polynomials in
K[t].

Let AT be a field and L an extension of K. An element a of L is said to
be right algebraic over K if its powers are right linearly dependent over
AT, i.e. a is a left root of an equation

f(t) = a0 + tax + . . . 4- tnan = 0, at e K, not all 0. (1)

We shall also say that or is a left zero of the polynomial f(t) = ^fa^
There is a corresponding definition of left algebraicy right root.

To find the relation between the left zeros of a polynomial and those
of its factors, let g = ^tjbj be another polynomial. We shall put fg =
^ti+iatbj, so formally polynomials may be regarded as members of the
polynomial ring K[t]; further we write f(c) or fc for the element obtained
by replacing t by c, keeping the coefficients on the right. Then we have,
assuming that fc^0,
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and so

(fg)c = fcgirM), (2)

whenever fc=£0. If we apply this formula to the usual division algorithm,
f = (t - c)q + r, putting t = c, we find that r = fc and so

f=(t-c)q + fc for any / e K[t] and c e K. (3)

The conclusions (3) and (2) may be stated as follows:

P R O P O S I T I O N 3 . 4 . 1 . Let K be any field, c e K and f e K[t\. Then
fc = 0 if and only if t - c is a left factor of f Further, for any fge K[t]
and c e K,

\I8)c ~~ I r / /• —1 r\ >rr , c\ \ V

[fcgifc Cfc) tffc * 0.
Hence the left zeros offg are either left zeros of for conjugates of left zeros
ofg- •

We shall also need a criterion for the similarity of linear factors in K[t],
but this is no harder to prove for the skew polynomial ring, and is
sometimes useful in that form.

L E M M A 3.4.2. Let K be a field with an endomorphism a, an a-deriva-
tion 6 and put R = K[t; a, S\. Then t — a is similar to t — a' if and only if

a' = c-
laca + c~lcd for some c e Kx. (5)

In particular, in K[t], t — a is similar to t — af if and only if ar is conjugate
to a.

Proof. From Prop. 1.5.2 we know that t — a is similar to t — a1 if and
only if there is a comaximal relation

p{t - a') = {t- a)q, (6)

where p,qeR. By the division algorithm we can replace p by
p — (t — a)f, which for suitably chosen / is of degree 0. Thus we may
take p = c e Kx and then a comparison of degrees shows that q e Kx.
Now (6) can be written as

tca + c8 - ca' = tq - aq,

and on comparing coefficients we find that q = ca', c6 — ca' = —aq\ hence
ca' = aca 4- c6, which yields (5). Conversely, when this holds, then we
obtain (6) with p = c, q = ca by reversing the steps of the argument. •
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Going back to (4), we see that if a is a left zero of / , then it is also a
left zero of fg, for any polynomial g, and if a is a left zero of / and g,
then it is a left zero of / — g. Thus the polynomials having a as left zero
form a right ideal in K[t], viz. the kernel of the substitution map
f(t) »->/(#). When a e K, this is of course the right ideal generated by
t — a, while for a right algebraic over K it will be a non-zero principal
right ideal. The monic polynomial generating this right ideal is called the
minimal polynomial of a over K; it is the unique monic polynomial of
least degree with a as left zero. In Galois extensions such minimal
polynomials have a complete factorization:

T H E O R E M 3.4.3. Let L/K be any Galois extension, with group G. If
a e L is right algebraic over K, with minimal polynomial p(t), then

p(t) = (t-ai)...(t- an), (7)

where a^ . . . , an are conjugates of G-transforms of a, and every
G-transform of a is conjugate to (at least) one of the at.

Proof The minimal polynomial of a over L is t — a, hence we have

p(t) = (t - a)f(t) for some / e L[t].

If a e G, then p(t) = (t - a°)f°(t), hence all the t - a° have a LCRM
q(t) which is a left factor of p(t). But q is invariant under G and so has
coefficients in K, therefore q = p. Let us write

p(t) = ( t - ai)(t - a 2 ) . . . ( t - ar)p" = p'p",

where ax = a, each at is a conjugate of a G-transform of a and r is as
large as possible. We claim that/?" = l; if not, then there exists a
G-transform a' of a such that t — a' is not a left factor of p'. However, a'
is a left zero of p, so t — a' is a left factor of p, while the LCRM of t — a'
and p' has the form

(t - a')Pl = p'p2. (8)

This is a right coprime relation, so p2 is similar to a right factor of t — a',
but it is not a unit, so it must have degree 1 and hence can be taken in the
form p2 = t — ar+l9 where <zr+1 is similar to a', by Lemma 4.2. Now p is a
common right multiple of (t — a') and /?', and hence a right multiple of
the LCRM, i.e.

p = p'(t - ar+1)q;

but this contradicts the choice of r. This proves (7); now any t — a° is
a left factor of p and by the same argument a° is conjugate to one of
thea2, •
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In particular, since any left zero of p is conjugate to one of al9 . . . , an,
we obtain the following generalization of the well known theorem that an
equation of degree n cannot have more than n roots:

C O R O L L A R Y 3.4.4. The left zeros of a polynomial of degree n fall into
at most n conjugacy classes. •

Another special case is obtained by taking G to consist of inner
automorphisms:

C O R O L L A R Y 3.4.5. Let K be a field with centre C and let f be an
irreducible polynomial over C. Then all left zeros (if any) of f in K are
conjugate.

Proof If G is the group of all inner automorphisms of K, then the fixed
field is just C. Now if or is a left root of / = 0 in K, then t - a is a left
factor of / , and by irreducibility / is the minimal polynomial for a over
C, so we can apply Th. 4.3 to reach the conclusion. •

This result has another useful consequence:

C O R O L L A R Y 3.4.6. Let K be a field with centre C and let a e K\C be
such that ar = 1. Then there exists b e Kx such that b~lab = am =£ a.

Proof. Since ar = 1, a is algebraic over C; moreover if K has finite
characteristic p, we may assume that p \ r, for otherwise r = pr' and
(ar — l)p = ar — 1 = 0, hence ar = 1. Let / be the minimal polynomial of
a over C; all its zeros are distinct, because they are zeros of tr — 1 and
they may be taken as powers of a. Since a $ C, f has degree > 1, so there
is a zero am =£ a of / , and by Cor. 4.5, b~lab = am for some b e Kx. •

It is possible to construct polynomials with prescribed left zeros:

P R O P O S I T I O N 3.4.7. Let K be any field and let alf . . . , an e K be
pairwise inconjugate. Then there is a unique monic polynomial of degree n
with ah . . ., an as left zeros.

Proof. If / , g are two monic polynomials of degree n with the as as left
zeros, then / — g is a polynomial of degree less than n with the as as left
zeros, and so must vanish, by Cor. 4.4; so there can be at most one such
polynomial. To find it we may, by induction on n, assume that g is monic
of degree n — 1 with left zeros al9 . . . , an_x. Then g(an) ¥= 0, again by
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Cor. 4.4, and hence, by Prop. 4.1, g(t)(t - g(an)~
lang(an)) is a monic

polynomial of degree n with al9 . . . , an as left zeros. •

It is also possible to construct polynomials with conjugate zeros, but
then we no longer have uniqueness (see Ex. 3). This still leaves the
question whether an equation over a field always has a left root in a
suitable extension field; the answer is 'yes', but we shall have to wait until
Ch. 8 for the proof.

As a natural consequence of the above results we have Wedderburn's
theorem, that every finite field is commutative. For the proof we shall
need some facts about finite fields (see A.2, 3.7-8) and finite groups.

In any finite abelian group A of exponent r the equation xr = 1 has at
least r solutions, with equality precisely when A is cyclic, as we see from
the basis theorem for abelian groups. If A is a subgroup of a field, there
are at most r solutions, so A must then be cyclic. Thus every finite
abelian subgroup of the multiplicative group of a field is cyclic.

We recall that a finite field F has finite characteristic p\ as vector space
over Fp, the field of p elements, F has finite degree n, say. Then F has
q = pn elements, and it may be described as the splitting field of the
equation xq — x = 0 over ¥p; hence the field of pn elements exists and is
unique up to isomorphism. Moreover, Fx is cyclic.

We shall also need the fact that a finite group cannot be written as a
union of a proper subgroup and all its conjugates. This fact is easily
proved directly (see Ex. 1); it is also used in some other proofs of
Wedderburn's theorem (see e.g. A.3, Th. 7.1.13, p. 265).

With a view to later applications we shall establish the following slightly
more general result:

T H E O R E M 3.4.8. Every non-commutative field is infinite. More gener-
ally, in a non-commutative field, every element is contained in an infinite
commutative subfield.

Proof Let K be a field with centre C, where C =£ K and \C\ = q < ».
Given a e K\C, let / be the minimal polynomial of a over C, of degree
r, say. The map x >-> xq is an automorphism of C(a) over C of order r.
Hence aq is conjugate to a, by Cor. 4.5, so there exists b e Kx such that

bab~1 = aq. (9)

It follows that bsab~s = aqS and aqr = a, so a commutes with br, but of
course not with b, by (9). Put E = C(a, br)\ this is a commutative field
and the right E-module spanned by 1, b, . . . , br~l is a non-commutative
field extension of E of degree at most r. In fact the degree is exactly r,
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for let the minimal equation of b over E be

bs + bs~lXx + . . . + Xs = 0, where Xt e E and s ^ r. (10)

Multiplying on the left by aqS and subtracting the same equation
multiplied on the right by a, we obtain

bs~\aq - a)Xl + . . . + (aqS - a)Xs = 0.

Since this equation has lower degree, all coefficients vanish. If s < r, this
means that Xx = . . . = Xs = 0 and (10) reduces to bs = 0, which is a contra-
diction. Hence s = r and (10) becomes br — Xr = 0, so [E(b):E] = r.

If there are finite skew fields, let AT be a smallest one, and again denote
its centre by C. Every element of K generates a commutative subfield
over C and so is contained in a maximal subfield E of K. By the
minimality of K, E is commutative and so has the form E = C(a) for
some a e K. If [E:C] = r and b is as before, then br e E by maximality,
but b $ E and so E(b) = K, by the maximality of E. It follows that
[K:E] = [E:C] = r, hence [K:C] = r2 and this shows that r is independ-
ent of the choice of E. Thus all maximal subfields of K have the same
number of elements, so all are isomorphic and each can be written as
C(a), where the minimal equation for a over C is the same in each case.
By Cor. 4.5 these maximal subfields are all conjugate in K, so Kx can be
written as the union of all the conjugates of a proper subgroup of Kx.
But this contradicts the fact about groups mentioned earlier, so we
conclude that any genuinely skew field must be infinite (Wedderburn's
theorem).

To complete the proof, we may assume that C is finite and a is
algebraic over C, since otherwise the result holds trivially. Let a be
algebraic of degree r over C and find b e K to satisfy (9). Then
[C(a, b):C(a, br)] = r and C(a, br) is commutative, but C(a, b) is not; if
C(a, br) were finite, this would mean that C(a, b) is also finite,
contradicting the first part. Hence C(a, br) must be infinite and the
conclusion follows. •

We can now make a more precise statement about the occurrence of
conjugate zeros.

T H E O R E M 3.4.9. Let K be a field. If a polynomial over K has two
distinct left zeros in a conjugacy class of K, then it has infinitely many left
zeros in that class.

Proof Let / = ^fct and suppose that / has a and b~xab as left zeros.
Then ^cfct = 0 and b^cfbCi = SC*"1^)1^, = 0, hence
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Xb)ct = 0

for all A in %K(a), the centralizer of a in K. It follows that
(1 + XbYla(l + Xb) is a left zero of / for all A e ^ ( a ) , and these
elements are all distinct, for if (1 + Xb)~la{\ + Kb) = (1 + X'by1a(\ +
A'&), then (1 + Afe)(l + A'6)"1 = \i e ^>K(a). If j i ^ l , then 1 + Afe =
li+tik'b, and since / x ^ l , it follows that //A'=£ A and so b = (fiXf—
A)"1^ - /i), which contradicts the fact that fe $ ̂ 0 ) - Hence // = 1 and
so A' = A. Now ^#(0) is infinite, by Th. 4.8, and this gives infinitely many
left zeros conjugate to a. •

By combining this result with Cor. 4.4, we obtain

C O R O L L A R Y 3.4.10. Let K be a field and f a polynomial of degree n
over K. Then the number of left zeros of f in K is either at most n or
infinite. •

Exercises

1. Let G be a finite group, H a proper subgroup of h elements and write
(G:H) = n. Verify that there are at most n conjugates of H in G; deduce that the
union of all the conjugates has at most n(h — 1) + 1 elements. Hence show that G
cannot be covered by all the conjugates of H.

2. Let K be any field. Given a e K and a non-zero polynomial / over K, show
that there exists an integer r ^ O such that / = (t - fl)r/i> where fi(a) =£ 0.
Deduce that f(t)(t - fi(a)~1af1(a)) has as left zeros all the left zeros of / as well
as a.

3. Given a field K and ax, . . . , an e K, not necessarily inconjugate or even
distinct, show that there exists a monic polynomial / of degree n with al5 . . . , an

as left zeros. Is / unique?

4. Show that if a is a left zero of a polynomial / , then f(t) = (t - a)g(t), and the
left zeros of g are conjugates of the left zeros of / . Hence obtain another proof of
Cor. 4.4.

5. Let K be a skew field with finite centre C =£ K. Show that the centralizer of
any element of K cannot be algebraic over C.

6. (I. N. Herstein) Show that any finite subgroup of a skew field of prime
characteristic is cyclic. (Hint. Recall that a finite subgroup of the multiplicative
group of a commutative field is cyclic. See also Prop. 9.4 below.)

7. Show that any finite subring of a skew field is a commutative field.
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8. Let K be any field. Show that any element of K not in the centre has infinitely
many conjugates.

9. Let D be a finite field with centre C. Put \C\ = q, [D:C] = n and write down
the class equation for the finite group Dx. Deduce that the cyclotomic polynomial
®n(q) divides q — 1. By taking a complete factorization of O over C and
comparing absolute values, obtain a contradiction. (This is essentially the
Wedderburn-Witt proof of Wedderburn's theorem.)

10. Assuming Wedderburn's theorem (Ex. 9), give a direct proof of Th. 4.8, using
Cor. 4.6 and Prop. 9.4.

11. Let D be a field which is a fc-algebra and let E = k{a) be a simple algebraic
extension of k, generated by an element a with minimal polynomial / over k.
Show that D <8>̂  E is an Artinian ring, simple if and only if / is irreducible over
the centre C of D. Moreover, if / = p1 . . . pr is a complete factorization over D,
then D 0 ^ £ is an r x r matrix ring over a field, in particular, D <8> E is itself a
field precisely when / is irreducible over D.

12. Let E be a field of degree 4 over its centre k and assume char k =£ 2. Show
that £ may be generated by M, y such that w2 = or, y2 = /3, where a, ft e k and
wy = — t?w. (Such an algebra is called a quaternion algebra.)

13. Let # be an infinite field with finite centre C. Use Cor. 4.6 to show that each
element of K commutes with an element transcendental over C.

14. Let D be a field with an involution * whose fix-point set is a commutative
subfield. Show that every element of D\k is quadratic over k.

15. Show that a commutative field k has an extension with an involution having k
as fixed field if and only if k either has a separable quadratic extension or is a
separable quadratic extension.

16. (Amitsur [56]) Let E be a field which is a A>algebra. Show that if s e E is
transcendental over k, then the elements (s - or)"1, where a ranges over k, are
linearly independent over k. Deduce that if E is finitely generated as /c-algebra
and k is uncountable, then E is algebraic over k.

3.5 Pseudo-linear extensions
It seems hopeless at present to try to describe all skew field extensions of
finite degree. We shall therefore single out some special classes that are
more manageable.

We begin by looking at quadratic extensions, i.e. extensions L/K such
that [L:K]R = 2. Then for any u e L\K, the pair 1, u is a right i^-basis
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of L. Since every element of L has a unique expression of the form
we + y, where x, y e AT, we have in particular,

au = uaa + a6 for all a e K, (1)

and

u2 + uX + \i = 0, for certain X, JJLE K. (2)

Here 0*, 06 are uniquely determined by 0 and a calculation as in 2.1
shows that oc is an endomorphism and d an a-derivation of K. Moreover,
the structure of L is completely determined by K and (1), (2).

Conversely, let K be any field with endomorphism a and ar-derivation
(5. In R = K[t; or, 6] consider a quadratic polynomial / = t2 + tX + iu. It is
easy to write down conditions on X, \i for / to be right invariant, so that
fR is a two-sided ideal, and when these conditions hold, then L = R/fR
is a K-hng of right degree 2. It will be a field precisely if the equation (2)
has no solution for u in K. We shall carry out the details in 3.6, but for
the moment treat a more general case where we keep (1) but modify (2),
so as to allow extensions of higher degree.

Thus we shall define a pseudo-linear extension of right degree n, with
generator u, as an extension field L of K with right A'-basis 1, u, . . . ,
un~l such that (1) holds and (in place of (2)):

un + un~1X1 + . . . + wAn_! + Xn = 0, where Xte K. (3)

The remarks made earlier show that every quadratic extension is
pseudo-linear, but this does not remain true for extensions of higher
degree. Our first concern is to obtain a formula for the left degree of a
pseudo-linear extension:

P R O P O S I T I O N 3.5.1. Let L/K be a pseudo-linear extension of right
degree n. Then the left degree is given by

[L:K]L = 1 + [K:K«]L 4- [K:K«]2
L + . . . + [K:Ka\r\ (4)

where a is the associated endomorphism. In particular, we have

[L:K]L^[L:K]R> (5)

with equality if and only if a is an automorphism of K.

Proof. Let us write Lo = K, Lt = uLt_i + K (i ^ 1); then by an easy
induction, L{ = K 4- uK + . . . + ulK, hence we have a chain of right
AT-modules

K = Lo C Lx C . . . C Ln_! = L,
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and (4) will follow if we can show that each Lt is a left A'-module and

(6)

That Lt is a left ^-module is clear by induction, using pseudo-linearity.
Now let {vk} be a left AT "-basis for K; we claim that the elements

where Ao, Al5 . . . , An_x range independently over the index set used for
{yA}, form a basis of Lt (mod Lt_i). This will prove (6) and hence (4). For
any c e K we have

Therefore

«c = Z " ĉ ...Ai._1yA._1 . . . vh

- S^.^-^^C • • • ^ (mod L<-i)>
and this shows that the elements (7) span Lt (mod Lt_x) over i^. To prove
their independence, suppose that

^c^^yvC ...v^ = 0 (mod £,•_!>,

Then on retracing our steps we find that all coefficients

hence the elements (7) are linearly independent and so form a basis of Lt

(modL/.x), so (4) is established. Now the remaining assertion is clear
from (4). •

As in the case of quadratic extensions, it is clear that every pseudo-
linear extension is of the form R/fR, where R = K[t; a, d] and / is a
right invariant polynomial, which is irreducible over K.

When K is of finite degree over its centre, the pseudo-linear extensions
of K can still be simplified by Prop. 2.1.4, which tells us that a and d are
now inner. If we assume that ca = ece~l and cb — cd — dca for all c e K,
then the formula cu = uca + c6 becomes

cu = uece~l + cd — dece~x\

hence on writing u' = ue — de,we have

cu' = u'c,

so that for fields of finite degree over the centre, no generality is lost by
taking a = 1, 6 = 0. However, it is still possible to have an endomorph-
ism or a derivation which is not C-linear (but not both, by Th. 2.1.3).
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We recall that an extension L/K is called central if L = K ®c E,
where C is the centre of K and E is a commutative field extension of C.
It is clear that a pseudo-linear extension is central precisely if the
associated endomorphism is 1, the derivation is 0 and there is a generator
satisfying a monic equation with central coefficients.

Secondly we define a binomial or pure extension as a pseudo-linear
extension in which the generator satisfies a binomial equation,

un - A = 0,

and whose associated endomorphism a is such that an is the inner
automorphism induced by A. In the case of zero derivations it turns out
that every pseudo-linear extension can be built up from these two types:

T H E O R E M 3.5.2. Let K be a field with an endomorphism a. Then every
pseudo-linear extension of K with endomorphism a and zero a-derivation
is obtained by taking a central extension, followed by a binomial extension.

Proof As we have seen, every pseudo-linear extension with zero
derivation has the form R/fR, where R = K[t; a] and / is a right
invariant polynomial in R which is irreducible over K. If a has infinite
inner order, then the only such polynomial is t and there are no proper
extensions, by Prop. 2.2.8. If a has inner order r, say ar = I(e), then
u = tre centralizes K and again by Prop. 2.2.8, any invariant irreducible
polynomial is a polynomial in u with central coefficients. Let g be such a
polynomial and F = C[u]/(g) the commutative field extension of the
centre C of K defined by g. It is indeed a field, since g is a fortiori
irreducible over C. Then L = K ®CF is a central extension of K and the
given extension is a binomial extension of L (to which a has been
extended by the rule ua = ue~lea), with the defining equation xr —
ue~x = 0. •

If we are looking among pseudo-linear extensions for examples with
different left and right degrees, we can concentrate on binomial exten-
sions, by this result. Although as a matter of fact, we shall need to have
non-zero derivations too, this suggests that we begin by looking at
binomial extensions and our next aim is a result which provides a supply
of them. First a commutation rule, which we shall find useful:

L E M M A 3.5.3. Let n be a positive integer and co a primitive n-th root of
1. Ifu, v are indeterminates over Z[co] such that

vu = couv, (8)
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then

(u + v)n = un + vn. (9)

This formula holds also in characteristic dividing n with suitable co.

Proof Over Z, when we expand the left-hand side of (9), we obtain a
sum of terms which are products of us and vs. The terms of degree / in u
include with any product / , all the terms obtained by cyclic permutation
of the factors. By moving the last factor u or v to first place we obtain
ajf, whether that factor is M or y. Hence the sum sy of all cyclic
permutations of / satisfies Sf = afsf, it follows that sy = 0 for 0< i < n.
Since (u + v)n can be written as a sum of such terms sy, we see that the
only terms to survive are un and vn and (9) follows. If the characteristic is
p, write n = prm where p \ m and take a; to be a primitive mth root of
1. Then (u + v)m = um + vm follows as before, and umvm = vmum, hence
we obtain again (9). •

We can now describe a particular class of binomial extensions.

T H E O R E M 3.5.4. Let n be a positive integer and E a field with an
endomorphism a and a primitive n-th root of 1, co say, in the centre C of E
and fixed by a (if the characteristic p divides n, say n = prm, p \ m, then
co is understood to be a primitive m-th root of 1). Let 5 be an a-derivation
of E such that

da = coad, (10)

and write L = E(t; a, 6). Then a may be extended to an endomorphism
of L, again written a, by putting

ta = cot, (11)

and 6 can be extended to an a-derivation of L by writing

t6 = (1 - oo)t2. (12)

With these definitions we have

ct = tca 4- cs for allc e L. (13)

Further, (}= an is an endomorphism of L, e= 6n is a ^-derivation, and if
K is the sub field of L generated by u — tn over E, then we have

K = E(u\ 0, e\

and L/K is a binomial extension of degree n.



3.5 Pseudo-linear extensions 123

Proof. We first observe that co lies in the centre of L. For we have
of = 1, hence 0 = {of)6 = n(on~l(o6 and so co6 = 0, with a similar
argument, using of1 = 1, in characteristic p . By hypothesis, o/* = co, so
tea = cot and the conclusion follows. Now a straightforward computation,
using (13), shows that (11) determines an endomorphism of E[t; a, 8]
and this clearly extends to L, since a is injective. We now define 8 on t
by (12); it extends to a unique ar-derivation on E[t; a, 8] and hence it
extends to L. Now 8a and coa8 agree on E by hypothesis; an easy
calculation shows that they agree on t, thus we have two (or, a^-deriva-
tions agreeing on a generating set of L, hence they are equal.

Let us write or0 and <50 for a and 8 acting on E[t; a, 8] by action on the
coefficients only. We can write (13) in operator form as

p(t) = A(O*o + A)>

where p(t), k{t) indicate right and left multiplication by t. We have
X(t)a0 = aok(t) and <50 • A(f)ar0 = a)X(t)a0 • <50, hence by Lemma 5.3,

p(tn) = A(f"K + So. (14)

But by (11), an fixes £, so arj = arn = /?. If we define e on L by

cf * = * V + c£, (15)

then e will be a ^-derivation and will agree with 8$ on E[t; a, 8], by (14),
in particular it will equal 8n on E. Hence the S-subring of L generated
by tn is of the form E[u; /3, e], where u — tn, and so the subfield of L
generated by tn over E has the form K = E{u\ ft, s). We claim that 1, t,
. . . , tn~l are right linearly independent over K\ for if we had a relation
Xo~Vtfj = 0 (at e K)> then on multiplying by a common denominator we
could take the at to be polynomials in u and now a comparison of degrees
shows that at• = 0 for i = 0 , 1 , . . . , n - 1. To show that L/K is pseudo-li-
near we shall verify that K is mapped into itself by ft and e. Clearly E
admits ft and e, while up = u by (11), with w = f", and so u£ = 0, by (15).
Finally L/K is binomial because tn = u. •

Later, in Ch. 5, we shall use this result to construct extensions of finite
right and infinite left degrees. The problem will be to choose E, a and 8
so that [K:Ka]h = «>.

Pseudo-linear extensions may be described as simple extensions with a
commutation rule defined by an automorphism. A more general class of
finite extensions with a commutation rule defined by a group of
automorphisms is formed by the crossed product construction. This can
be defined for general skew fields and is sometimes useful; to describe it
we first recall the usual crossed product construction.
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Given a finite Galois extension of commutative fields F/k, put
F = Gal(F/A:); then each element c of the cohomology group H2(T, Fx)
defines a crossed product as follows. Let {uo} be a family of symbols
indexed by F and let A be the right F-space on the uo as basis; A may be
defined as an F-bimodule by the equations

auo = uoa° (a e F,o e F ) . (16)

Now a ring structure may be defined on A by the equations

uouT = uaTcatT, (17)

where cOtT is the cocycle (factor set) representing c e H2(T, Fx). Then A
is a central simple A>algebra, and this is what one usually understands by
a crossed product. Conversely, whenever a central simple A>algebra A
has a maximal commutative subfield F which is a splitting field of A and
is Galois over k, then A is a crossed product (see e.g. A.3, 7.5). It turns
out that it is not necessary to assume F maximal. If we drop this
assumption (but restrict to the case of central division algebras for
simplicity), we obtain

T H E O R E M 3.5.5. Let D be a field with centre k and let F be a
commutative subfield containing k, such that F/k is a finite Galois
extension, then D is a crossed product over Ff, the centralizer of F in D,
with group Gal (F/k).

Proof We observe that F' is a field and by Cor. 3.9, F" = F, hence F is
the centre of F'. Let U be the normalizer of F x in Dx. Any element u of
U induces an automorphism of F/k, hence we have a mapping a:
[/—>F = Gal(F/fc), which is clearly a homomorphism. By the Skolem-
Noether theorem it is surjective and its kernel is the centralizer of Fx in
Dx, i.e. Ftx. Thus we have a short exact sequence

Choose a transversal {ua} of F in U and let Dx be the right F'-space
spanned by the ua. It is easily checked that cOT = u~]uouT e F ' , hence D1

is a crossed product over F' with group F. The linear independence of the
uo over F' follows by the familiar argument: if

^uoao = 0, where ao e F ' ,

is a shortest non-trivial relation, then ax =£ 0 and for any b e F,

0 = 6 - yZuoao - ^Zuoao • b = ^uo(b° - b)ao

is a shorter relation and for suitable b is non-trivial, a contradiction.
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Now [D:F']R = [F:K] by Cor. 3.9, hence [D:Ff] = [D^.F'] and so
Dx = D; thus D has been expressed as a crossed product over F' with
group r = Gal (F/k). •

Exercises

1. Let E be a field with an endomorphism a. Show that a can be extended to
K = E(t; a) by defining ta = tk for any A in the centre of E such that Xa = A =£ 0
and that A"" = A.

2. Let F/k be any commutative field extension and let D be a field with A: as
central subfield. Show that D ®fc F is an Ore domain whenever it is an integral
domain, and that its field of fractions is then a central extension of D.

3. Let L be a central extension of K with centre F. Show that L is the field of
fractions of the Ore domain K 0 C F, where C is the centre of K.

4. Let D be a field with central subfield k. Show that the following conditions are
equivalent: (a) every irreducible polynomial over k remains irreducible over D,
(b) for every simple algebraic extension F/k, D <8>k F is a field, (c) every monic
left factor in D[t] of an element of k[t] lies in k[t]. (When (a)-(c) hold, k is said
to be totally algebraically closed in D, see Cohn and Dicks [80]).

5. Let K be a field and G a finite group of outer automorphisms of K. Use the
construction of the text to define for any factor set of G in K a crossed product
field. What goes wrong if G contains non-trivial inner automorphisms?

6. Let AT be a field and G a group of outer automorphisms with a finite normal
subgroup N such that G/N is torsion-free abelian. Define the crossed product
algebra of G over K, for a given factor set and verify that it is an Ore domain.

7. (Ikeda [63]) Let K be a field and G a group which is the union of a
well-ordered ascending chain of groups Ga (a < r) of outer automorphisms of K,
such that Go = 1, Ga for each non-limit ordinal a < T is an extension of Ga_1 by
a torsion-free abelian group, while at a limit ordinal a, Ga= {J{Gp\/3< a}.
Define a crossed product field D for any factor set of G in K as the limit of an
ascending chain {Da}, where Da is the field of fractions of the crossed product
algebra of Ga over K. Verify that the centralizer of K in D is the subfield of the
centre of K left fixed by G.

8. Let A be a central simple algebra over a field F. If A: is a subfield of F such
that F/k is a finite Galois extension with group F, show that for any factor set
{cOT} representing c e H2(T, Fx) there is a central simple algebra B over k
which is a crossed product (in the sense of 5.5) over A with factor set {co T}.
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3.6 Quadratic extensions
Let us now consider quadratic field extensions more closely. As we saw in
3.5, a quadratic extension L/K has a basis 1, u for any u e L\K, and the
defining equations are

au = uaa 4- a6 for all a e K, (1)

u2 + uX 4- \i = 0, (2)

where A, \i e K, a is an endomorphism and 8 an a-derivation of K.
To construct such an extension, let the field K be given, with an

endomorphism a and an ar-derivation <5, and form the skew polynomial
ring R = K[t; a, 8]. Given A, \x e K, the quadratic polynomial

/ = t2 + tX + p (3)

defines a quadratic extension of K if and only if (i) the right ideal fR of R
is two-sided, and (ii) the residue-class ring R/fR has no zero-divisors.
Condition (i) holds precisely when / is right invariant; thus of e fR for all
a e K and tf e fR. Conditions for this to hold were given in Prop. 2.2.3,
but in this case it is just as quick to work out the result directly, using the
fact that every polynomial in t is congruent (mod fR) to a unique linear
polynomial. Thus we have

af = at2 + atl + a\i

= (taa + ad)(t + A) + a\x

= t2a«2 + taa6 + ta6a + a* + taaX + adX + a\i

= t{a"d + a6* + aak - Xa"2) + a* + adX + a\i - tia"2 (mod fR).

If af e fR, the coefficients on the right must vanish and we obtain

a"6 + a6a = la"2 - aaX, (4)

a* + a
6X = jua"2 - flji. (5)

We note that (4) may be expressed by saying that ad + 8a, regarded as
operator, is the inner (or, a2)-derivation induced by A; similarly (5)
expresses the fact that & 4- 6X is the inner a^-derivation induced by pi.
Next we consider tf = f3 + £2A 4- f JU. We have

ft = t3 + t2ka + f(ju* 4- A6) 4- ju6;

hence

tf = f2(A - A*) + f(ji - fi* - Xs) - ii6 (mod /K),

= f(ji - p* - X6 - A(A - A*)) - ii6 - pi{X - X") (mod fR),
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and this lies in fR if both coefficients on the right vanish:

Xs = ft - n* - MX - Xa), (6)

lS = n(X - X"). (7)

Thus / is invariant precisely when (4)-(7) hold.
We now assume that these equations are satisfied and ask when R/fR is

an integral domain (and hence a field). The ring R/fR has zero-divisors if
and only if there exist a, b, c, d e K such that neither a, b nor c, d are
both zero and

(ta + b)(tc + d) = 0 (mod fR).

Such a congruence is possible only if the left-hand side is of degree 2 in t,
i.e. a, c are both non-zero. We may therefore replace b by -ba and d by
-de. Dividing by c on the right, we thus obtain

(t - b)a(t - d) = 0 (mod//?).

Now (mod fR) we have

(t - b)a(t - d) = tat - bat - tad + bad

= t2aa + ta6 - t(ba)a - (ba)6 - tad + bad

= t(a6 - (ba)a -ad- kaa) + bad - (ba)6 - \ma.

Equating coefficients, we find

ad = a6 - (ba)a - Xa% (8)

bad = (ba)6 + fiaa. (9)

Here we can substitute for ad from (8) and obtain

b(a6 - (ba)a - Xa") = (ba)6 + \iaa.

Recalling that (ba)6 = b6aa + ba6, we can simplify this to

b*a° + ima + bb°a° + bka" = 0.

Since a =£ 0, we have a* =£ 0, and dividing by aa we find

bb« + bk+b6 + ti = 0. (10)

Thus if /?///? has zero-divisors, then (10) has a solution in K. Conversely,
if (10) has a solution b in K, we can put a = 1 and define d by (8). Then
(10) ensures that (9) also holds and by retracing our steps we obtain
zero-divisors in R/fR. Hence the solubility of (10) in K is necessary and
sufficient for the existence of zero-divisors.

If L/K is generated by u satisfying (1) and (2), then it is also generated
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by v = ua + b, where a,b e K and a^O. The commutation rule for v is
obtained by substituting in (1):

cv = c(ua + b) = ucaa + c6a + cb

= (v - b)a~lcaa + c6a + cb

= va~1caa + c6a - ba~lcaa + cb.

Thus a is changed by an inner automorphism. If a is kept fixed, then we
may take a = 1 and in place of cs we now have c6 + cb — bca, so 6 is
modified by an inner ar-derivation. The results may be summed up as

T H E O R E M 3.6.1. (i) Let L/K be a quadratic extension. Then for any
u e L\K, 1, u form a right K-basis of L and there is an endomorphism a
of K with an oc-derivation 6 of K such that

au = uaa + a6 for all a e K, (1)

and there exist A, /ze K such that

u2 + uk + \i = 0. (2)

Here the endomorphism a is determined up to an inner automorphism of
K, and for fixed a, 6 is determined up to an inner a-derivation of K.

(ii) Given a field K with an endomorphism a and an a-derivation 6,
there is a quadratic extension of K with right K-basis 1, u and defining
equations (1), (2) if and only if ad + 6a is the inner (a, a2)-derivation
induced by A, & + 6X is the inner a2-derivation induced by ILL, X6 and fx6

are given by (6), (7) respectively and K contains no element b satisfying
(10). •

As in the case of the polynomial ring the derivation becomes inner in
the extension:

C O R O L L A R Y 3.6.2. If L/K is a quadratic extension defined by (1), (2),
then the endomorphism a of K may be extended to an endomorphism a of
L by putting

and 6 is then the inner a-derivation induced by u. Further, the
endomorphism a is an automorphism of L if and only if a is an
automorphism.

Proof. For the first point we need only verify that a preserves the
defining relations (1), (2) of L, i.e. we have to show that
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aa{-k - u) = (-A - u)aal + a*",

(-A - uf + (-A - w)A" + yP = 0.

The first equation follows by (1) and (4), while the second is a
consequence of (2) and (6). Now (1) shows 6 to be inner and finally, if a
is an automorphism with inverse /?, then /j , defined by u^ = —Â  — w, is
an endomorphism extending /3 and is inverse to a. Conversely, if a is an
automorphism of L with inverse /?, then for any a e K, a? e L, say

^ = uax + a2, where ai9 a2 e K.

Hence

a = —(A + w)af + a%\

comparing coefficients of u, we find that a\ — 0, hence a1 = 0 and a = #£?
which shows ar to be an automorphism of K. •

In the commutative case a quadratic equation can be simplified by
completing the square, at least in characteristic not 2. A similar reduction
applies in general and there is now no restriction on the characteristic.

P R O P O S I T I O N 3.6.3. Let L/K be a quadratic extension defined by (1)
and (2). If the equation

x + xa = A (11)

has a solution in K, then L/K may be defined by an element v of L
satisfying the equation

v2 + v = 0. (12)

In particular this holds if Xa = A and char K ^ 2.

Proof Let x = c be a solution of (11) in K. Replacing u by u + c, we
have (w + c)2 = w2 + we + cu + c2 = -uX - pi + uc + uca + c6 + c2,
hence

(w + cf = c2 + c6 - \i.

Thus we obtain (12) on putting v = u + c, v = \i — c2 — c8. •

We now ask for conditions for a quadratic extension to be Galois. Let
L/K again be a quadratic extension generated by u e L subject to (1) and
(2) and assume that it is a Galois extension. This means that there is an
automorphism of L over K other than the identity. Suppose that in this
automorphism
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u^uc + d, where c, d e K, c ¥= 0. (13)

Then by (1), for any a e K,

a(uc + d) = (uc + d)aa + a6.

Since a(uc + d) = wtf"c + a^c + ad, we obtain on equating the coeffi-
cients of u and of 1,

ca" = aac, (14)

a\c - 1) = da" - ad. (15)

If c =£ 1, then on putting e = d(c - I)"1 and using (14), we can reduce
(15) to the form

a6 = eaa - ae\

thus <5 is then inner. If c = 1, then (15) states

daa = ad. (16)

Now by hypothesis the automorphism defined by (13) is not the identity,
so d ¥= 0 and by (16) a is then inner. Thus for a quadratic Galois
extension either a or 8 must be inner; hence by a suitable choice of
generator we may assume that either a—I or 6 = 0. The precise
conditions for L/K to be Galois can now be stated as follows.

T H E O R E M 3.6.4. Let L/K be a quadratic field extension with endo-
morphism oc and oc-derivation 8, and denote the centre of K by C.

(i) / / char K =£ 2, then L/K is Galois if and only if 8 is inner;
(ii) if char K = 2, then L/K is Galois if and only if

(ii.a) oc but not 8 is inner, say oc = 1, and either the coefficient X in (1) is
not zero or there exists c e Cx such that c6 = c2, or

(ii.b) 8 but not a is inner; say 6 = 0, and either A -=h 0 or there exists
c e C, c ¥=1 such that cca = 1, or

(ii.c) both a and 8 are inner, say a = 1, 8 = 0 and Xi=0.

Proof, (i) If L/K is Galois and char K =£ 2, then by the earlier remark, or
or 8 is inner. But if a is inner, we may take a = 1; then by (4), 26 is the
inner derivation induced by A, so 8 is inner in any case. Now when 8 is
inner, then taking 8 = 0, we see from (6), (7), that ka = A, /ia = // and (5),
(4) reduce to

/itf"2 = a\x, Xa"2 = a"A. (17)

If we change the generator of the extension to v = 2u + A, then
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Now D w - y defines an automorphism of L/K of order 2.
(ii) Suppose now that L/K is Galois and char K = 2. We already know

that or or (5 must be inner and so we may assume that a = 1 or 6 = 0. In
case 6 = 0 we see from (17) that a is an automorphism; thus a is an
automorphism in any case and by (14), c lies in the centre of K. If we
assume further that A = 0, then u2 + fi = 0 and hence

0 = (uc 4- d)2 4- fi = wcwc + wed + dwe + d2 + \i

= u2cac 4- uc6c + wed 4- wd"c + d6c + d2 4- pi

= w ^ c + cd + d"c) + /i(l + c*c) + ddc + d2.

Equating coefficients (and remembering that c is a non-zero element of
the centre of K), we find

c6 + d + d" = 0, (18)

//(I + cca) + d6c 4- d2 = 0. (19)

We now consider the cases a = 1 and 6 = 0 separately,
(ii.a) a=l but 6 is outer. By (15), c = l and now (18) holds

identically, while (19) becomes

d6 = d2. (20)

Thus there must be a non-zero element d satisfying this equation and by
(16) deC. Conversely, if A = 0 and there exists d e Cx such that (20)
holds, then the map w»-»u 4- d defines an automorphism of order 2 of
L/K, because (14), (15), (18), (19) then hold. On the other hand, if
A =£ 0, then u •-» u 4- A defines the required automorphism, since k6 = 0 by
(6), bearing in mind that or = 1.

(ii.b) 6 = 0 but a is outer. By (15), d = 0, hence c =£ 1. Again (18) is
satisfied, while (19) becomes

cca = 1. (21)

Therefore this equation must be satisfied by an element of C other than
1. Conversely, when (21) holds for an element c =£ 1 in C, then u^uc
defines an automorphism of order 2 of L/K, while for A ^ 0 we can again
take u «-> w + A as our automorphism.

(ii.e) or = 1 and 6 = 0. Now c and d lie in C, (18) holds identically and
(19) becomes

//(I + c)2 + d2 = 0.
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Since either c =£ 1 or d =£ 0, this means that \i must be the square of an
element of C, which contradicts the fact that u $ K. Thus we must have
A =£ 0 in this case. When this is so, we can again take u ^ u + A to obtain
an automorphism of order 2 of L/K. •

As a consequence we obtain a result of Jacobson [55] on quadratic
Galois extensions:

C O R O L L A R Y 3.6.5. / / K is a field of finite degree over its centre and of
characteristic not 2, then any quadratic extension of K is Galois.

For in this case a is inner and now the argument under (i) of Th. 6.4
shows 6 to be inner, hence the extension is then Galois. •

Exercises

1. Let L/K be a quadratic extension defined by (1), (2). Show that A and [i are
fixed under a if and only if they are constant under d, and when this is so, then
AjU = \xk. In this case show further that when char K ¥= 2, then L/K may be
generated by v e L such that v2 + v = 0, where va = v, v8 = 0; the same holds in
characteristic 2 if A ¥= 0, while for char K = 2 and A = 0, L/K may be generated by
v e L such that v2 + v + v = 0, where v" = v, v6 = 0.

2. Let L/l£ be a quadratic extension defined by (1), (2). Show that when a is an
inner automorphism, then 6 is inner and the conclusion of Ex. 1 holds.

3. Show that a quadratic extension defined by (1), (2) is central if and only if oc
and <5 are inner.

4. Let L/K be a quadratic Galois extension. Verify that the generator v can be
chosen so that the automorphism is v *-+ — v in characteristic =£ 2, and v*-+v + l
or v »-> vc, where cca = 1 in characteristic 2.

5. Let char& = 0 and put F = k(x) with automorphism or: /(*) »->/(2JC); if
L = F(t; a) and # is the subfield generated by f2 over F, show that L/K is
Galois with outer Galois group.

6. Let char/: = 2 and put F = k(x) with derivation 6: f(x) •-> d//djc. If
L = F(f; 1, 6) and ^ is the subfield generated over F by t2 + £, show that L/K is
Galois with outer Galois group.

7. Let F be a commutative field. Find all quadratic extensions F/E such that F is
non-commutative and has an anti-automorphism fixing E.
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3.7 Outer cyclic Galois extensions
To illustrate some of the results of this chapter, we shall now determine
outer Galois extensions with cyclic Galois group, briefly outer cyclic
extensions, following Amitsur [48, 54].

Let K be a field with an endomorphism a and an ^-derivation 6. We
shall often write a' for a6 and a(n) for a6". The set of constants

C = {a e K\a' = 0} (1)

forms a subfield of K. We consider the 'differential equation'

p(z) = zin)a0 + z{n~1)a1 + . . . + zan = 0 , w h e r e at e K,a0* 0 , ( 2 )

and show that the set of elements of K satisfying (2) form a finite-dimen-
sional C-subspace of K.

T H E O R E M 3.7.1. In a field K with endomorphism a, a-derivation 8
and with field of constants C defined by (1), the solutions of (2) in Kform
a left C-space of dimension at mostn.

Proof. The linearity of the solution set is clear from the relation
p(cz) = cp(z) for c e C. We shall put p = ^da^i, so that (2) can be
written zp = 0. The proof proceeds by induction on n, the case n = 0
being trivial. Let n > 0 and suppose first that an = 0; then p = 8q, where
q has degree n — 1 in 5, and by induction, £/ = kerg has dimension
=̂  n — 1. Let Ui, . . . , ur be left C-independent solutions of (2), where we
may take ux = 1 without loss of generality, because an = 0. Then u'2, . . . ,
u'r satisfy zq = 0 and they are left C-independent, for if ^2ciui = 0, then
v = ^CiUi e C. By the independence of ux = 1, u2, . . . , ur we conclude
that y = c2 = . . . = cr = 0. Hence r — 1 ̂  n — 1 and so r ^ n, as claimed.

In the general case, when an i=- 0, let u be a solution of (2). If the only
solution is 0, then there is nothing to prove, so take u=£0, and consider
the equation zup = 0. The coefficient of z is up = 0, so its solution space
UQ has dimension ^ n. Now kerp = {zu\z e C/o} = Uou, and this has the
same dimension as Uo, so the solution space of (2) has dimension at
most n. •

If L/K is a cyclic extension of degree n, then

n = [L:K]L = [L:K]R ** |

by Th. 3.7, with equality when the Galois group is outer. We shall here
confine ourselves to outer cyclic extensions. Let cr be a generator of the
Galois group and write 8 = a - 1; then 8 is a a-derivation, for we have
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(ab)6 = (ab)a - ab = a°ba - ab = (a° - a)b° + a{ba - b)

= a6b° + ab6.

We also note that the field of 6-constants is just the fixed field under a.
By hypothesis a" = 1, hence

h{8) = £(v")<y = (6 + 1)" - 1 = 0. (3)
1

We first construct a basis relative to which a is represented by a
diagonal matrix:

P R O P O S I T I O N 3.7.2. Let L/K be an outer cyclic extension of degree n
and assume that K contains a primitive n-th root of 1, co say. For any
generator a of the Galois group, L has a right K-basis alf . . . , an such
that

aa
v = covav, v = 1, . . . , n. (4)

Proof Let A: be a commutative subfield of K containing co and consider
L as left A>space. Then L is a direct sum of eigenspaces Lv on which a
acts by multiplication by cov, and K = Lo by definition. For any non-zero
elements a, b e Lv we have ab'1 e Lo = K, hence Lv = avK, for some
av e Lv. Thus each Lv is at most 1-dimensional over K, and it is non-zero
because [L:K]R = n. •

The hypothesis on co can be satisfied whenever n is prime to the
characteristic of K. In constructing outer cyclic extensions we shall for
simplicity assume that co is central, but this is not essential.

T H E O R E M 3.7.3. Let K be a skew field with a central primitive n-th
root of 1, CD say. Then there is an outer cyclic extension L/K of degree n
and containing co in its centre if and only if there exists an automorphism a
of K and a e K such that (i) an = I(a), aa — a, of = co and no lower
power of a is inner, (ii) tna — 1 is irreducible in R = K[t; a]. When this is
so, then tna — 1 is invariant in R and L = R/(tna — 1)R, with generating
automorphism

Proof, (i), (ii) just amount to saying that tna — 1 is central and
irreducible (observe that every right invariant element of R is associated
to a central element, by Prop. 2.2.2). So if (i), (ii) hold, we have an outer
cyclic extension. Conversely, given an outer cyclic extension L/K, we can
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by Prop. 7.2 find u e L such that u° = cou^ 0. Then any c e K satisfies

(u~lcu)° = u~loTlc(ou = u~lcu,

hence u~lcu e K, so a: c •-» u~lcu is an automorphism of K, of = co and
we have a homomorphism

K[t; a] —» L, given by £ •-> u,

and the generator of the kernel has the form tna — 1, where 0 is such that
(i), (ii) hold. •

If we drop the condition that of = co, then of = of for some integer r
and it is not hard to write down conditions on r for an extension to exist
(see Ex. 2). One can also give conditions for an outer cyclic extension of
degree n if K merely contains a primitive dth root of 1, where d is a
proper factor of n.

As a consequence we have a form of Hilbert's theorem 90; we shall
define the norm of c e L in our cyclic extension L/K by

N(c) = cc° ... c°n~\ (5)

C O R O L L A R Y 3.7.4. If L/K is an outer cyclic extension of degree n with
generating automorphism o, then for any c e L, the equation

cx° = x (6)

has a non-zero solution in L if and only if

N(c) = 1. (7)

Proof It is clear that c = a{a°)~1 satisfies (7) for any a e Lx. Con-
versely, if (7) holds, we have (aX(c))n = 1, where A(c) denotes left
multiplication by c, for the left-hand side maps x successively to x, cx°,
c°x°\ . . . , cc° . . . c°n'lx°n = x. Thus we have

x[(aX(c)Y - 1] = 0.

This has the form xp(a)[aX(c) — 1] = 0 for some polynomial p(a) of
degree n — 1. Now xp{o) = 0 can be considered as a differential equation
(for d=o— 1) of order n — 1, so its solution space has dimension
^ n — 1, hence there exists a e L such that ap(a) = b =£ 0, and
b(oX{c) - 1) = 0, i.e. cb° = b, so (6) holds for x = b. •

In a similar way one can show that the equation x°c = x has a non-zero
solution if and only if c°n~l . . . c°c = 1.

We also note the following criterion for reducibility:
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P R O P O S I T I O N 3.7.5. Let K be afield with an automorphism o of order
n and let co be a primitive n-th root of 1 in its centre. Then for any a e K,
either tn — a is irreducible in K[t\ o] or it splits into factors of the same
degree. In particular, ifn is prime, then tn — a is a product of linear factors
or irreducible according as

N(x) = xx° ...x°n~l = a

has a solution or not.

Proof. Let p = p(t) be an irreducible left factor of tn — a; then so is
p(covt), for v = 1, . . . , n — 1, therefore we can write

x . . . prq,

where px = p{t) and each pt is similar to p(coVit) for some vt. If r is
chosen as large as possible, then each p(covt) is a factor of p1 . . . pr, in
fact this is their least common right multiple and so is unchanged by the
substitution t ^ cot. This means that it is a polynomial in tn, of positive
degree, and a factor of tn — a. Hence it must be tn — a, so q = I and we
have proved the first part.

Now if p has degree d, then d\n, hence when n is prime, d = 1 or n
and now the last part follows from the identity

t» - a = (t - b)(tn~l + tn-2b°n~l + . . . 4- b°b°2 . . . b°n~l)

+ bba ... b°n~l - a. •

We now turn to the case where n is a power of the field characteristic,
n ~ Pe> P = °har K. We note that in this case (3) reduces to dn = 0.

P R O P O S I T I O N 3.7.6. Let L/K be an outer cyclic extension of degree
n = pe, where p = char K, with automorphism a = 6 + 1 and write Lv =
ker <5V = {c e L|c(v) = 0}. Then each Lv is a right K-space of dimension v
and

K = LlCL2C...CLn = L,LV= L'v+1(v = 1, . . . , n - \).

Proof. By Th. 7.1, [LV:K]R ^ v and for v = n we have equality. We shall
use induction on n — v, thus we assume that Lv + 1 has a right K -basis
a0 = 1, fl1? . . . , av, and we claim that a[, . . . , a'v forms a right A^-basis
for Lv. If ^a'iCi = 0, then Xaic* — c e K and by the linear independence
of a0, . . . , av we have cx = . . . = cv = 0, hence a[, . . . , a'v are linearly
independent; they belong to Lv, so this shows that Lv = L'v+1 and
[Lv:K]R = v. M
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Since V = Ln_1? we have the following solubility criterion:

COROLLARY 3.7.7. In the situation of Prop. 7.6, the equation x' = a
(a e L) has a solution in L if and only if a^n~^ = 0. •

When v is a power of p, Lv can also be described as the fixed set of an
automorphism:

COROLLARY 3.7.8. In Prop. 7.6, for v=pl (i = 0, 1, . . . , e) the
sub space Lv is the sub field of L fixed by av.

This follows because 6V = (a - l)v = ay - 1, when v = p\ •

In our outer cyclic extension L/K let us define the trace of a e L as
n - l

tra= ^a°\
o

Since

( a - 1 ) o - \ T

it follows that

Xx a = a{n~l) for any a e L. (8)

This formula enables us to prove a normal basis theorem. We recall that a
basis of a Galois extension L/K is said to be normal if it consists of the
conjugates of a suitably chosen element; such an element is said to be
primitive.

T H E O R E M 3.7.9 (Normal basis theorem). Any outer cyclic extension
L/K of degree n = pe, where p = char K, has a normal basis, and a e L is
primitive if and only if tr a =£ 0.

For by (8), tra ¥= 0 if and only if a $ Ln_1. Thus for any a $ Ln_x we
have a{n~v) e LV\LV_X and s o a , f l ' , . . . , a{n~x) form a basis of Ln = L. •

Let us now determine the extensions of degree p (the case pe, e > 1,
follows by repetition, see Amitsur [54] and Ex. 5). We shall write
xp = xp — x, and we also recall the Jacobson-Zassenhaus formula (Jacob-
son [62], p. 187, (63)) in characteristic p:

(x + yy=x? + yP + A(x9y), (9)
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where A is a sum of commutators in x and y. It follows that the
expression V(x) defined by

V(x) = (t + xf - tfi = (t + x)p - tp - x , (10)

when evaluated in K[t; 1, <5] is a polynomial in x, x',..., JC^" 1 * , since
e.g. [x, t] = xt — tx — x'. We first prove an analogue of the reducibility
criterion of Prop. 7.5:

P R O P O S I T I O N 3.7.10. Let K be a field of characteristic p with a
derivation 8 such that 8P — 0. For any a e K, the polynomial tfi — a is
either a product of commuting linear factors in K[t;l, 8] or irreducible
according as the equation

V(x) + a = 0,

where V is as in (10), has a solution in K or not.

Proof Let h be a monic irreducible factor of tp — a, of degree d say;
then the polynomials h(t + v) (v = 0, 1, . . . , p — 1) are similar to factors
of tp — a. Their least common right multiple is invariant under the map
t •-> t + 1, and hence is a polynomial in tfi, so it has degree at least p , but
it is a factor of tp - a, hence it must be equal to tp - a. All the h(t + v)
are irreducible of the same degree d, hence d\p and so either d = p or
d = 1. If V(b) + a = 0, then (t + bf - tfi = V(b) = -a, hence

t'-a = (t + by = (t + b)((t + b)p~l - 1),

and so t* — a splits into linear factors r + 6 + v ( v = 0 , 1, . . . , /? - 1),
which clearly commute with each other. Conversely, if tp — a has a linear
factor t + b, then

(t + &)* - V(6) - a = tfi-a = (t + b)h(t),

hence V(6) + a has f + 6 as a factor, but it is of degree 0 in t, so
V(b) + a = 0. M

We can now prove an analogue of Th. 7.3, giving outer cyclic
extensions in characteristic p:

T H E O R E M 3.7.11. A field K of characteristic p has an outer cyclic
extension of degree p if and only if there is a derivation 6 in Ksuch that (i)
5P is inner, induced by a e K with a6 = 0, but 8 itself is outer, and (ii)
V(x) + a = 0 has no solution in K.

When this holds, tp — a is invariant irreducible in R = K[t\ 1, 8] and
L = R/(tp — a)R, with generating automorphism
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Proof. Again (i), (ii) ensure that t* — a is central and irreducible, so
when these conditions are satisfied, we have an extension.

Conversely, let L/K be an outer cyclic extension of degree p with
generating automorphism a. Then by Prop. 7.6, L has an element y such
that y° = y + 1, hence the map c »-> c8 = cy — yc induces a derivation on
K and we have a homomorphism

K[t; 1, 6]-* L with t^y.

Here yp = a e K, so dp is inner, induced by a, and a8 = 0, while
F(x) + 0 = 0 has no solution in A', by the irreducibility of yfi — a over
K. •

Exercises

1. Let L/K be an outer cyclic extension with generating automorphism o. Show
that a, b e L satisfy c~lac = b for some c e L if and only if N(b) = c~lN(a)c.

2. Let # be a field with an automorphism a and let co be a primitive nth root of 1
in K such that coa = cod. Show that d is a primitive root of 1 (mod n) and find the
conditions for an outer cyclic extension of K of degree n to exist.

3. Let H be the field of real quaternions and co a complex primitive nth root of 1
(n > 2). Show that the inner automorphism a = I(co) satisfies on = 1, but there
are only two non-zero eigenspaces C and ;C (Bergman).

4. Let K be a field of characteristic p with a derivation. Show that if c e K
commutes with all its derivatives, then V(c) = cfi + c^p~l\

5. (Amitsur [54]) Let K/E be an outer cyclic extension of degree n = pe > 1,
with generating automorphism a. Show that K/E can be embedded in an outer
cyclic extension L/K of degree pe+1 if and only if there is a derivation 6 in K and
elements a, b e K such that tr a =£ 0 and a " 1 ^ — 6 is the inner derivation induced
by a, b8 = 0 and 6* is the inner derivation induced by b, b° — b = V(a) and
V(x) + b = 0 has no solution in K.

When these conditions hold, verify that tfi — a is an invariant irreducible
element in R = K[t; 1, 6] and L = R/(tfi - a)R, with generating automorphism
over K given by t •-» t + #.

6. Show that all cyclic extensions of degree pe of a perfect commutative field of
characteristic p are commutative. (Hint. Use the fact that a commutative perfect
field has no non-zero derivation.)
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3.8 Infinite outer Galois extensions
For commutative fields there is a theory of infinite algebraic extensions
and profinite Galois groups, first developed by Krull [28]; a non-commu-
tative analogue was given by Jacobson [56], whose exposition we follow
here.

We shall consider algebraic field extensions L/K, i.e. extensions where
every element of L is right algebraic over K. Further we shall confine our
attention to outer automorphism groups. Clearly every outer automorph-
ism group is an N-group and the associated algebra reduces to the centre.
Thus a Galois extension L/K is outer precisely when the centralizer of K
in L is just the centre of L. In particular, every commutative Galois
extension is outer.

For infinite Galois extensions the Galois group carries a natural
topology, which plays an important role. We recall that a topological
group G is called profinite if it is an inverse limit of finite groups (see
A.3, 3.2, p. 84). As a closed subgroup of a direct product of finite groups
it is a compact group in the finite topology and it is totally disconnected,
i.e. the connected components are single points. Conversely, it can be
shown that every compact totally disconnected group is profinite (see e.g.
Gruenberg [67]), but we shall not need these details in what follows.

We begin by establishing some basic properties of outer Galois
extensions.

P R O P O S I T I O N 3.8.1. Let L/K be an algebraic field extension which is
Galois, with Galois group G which is outer. Then G is profinite; further,
for any intermediate field E, K C E C L, the following hold:

(i) Distinct homomorphisms of E into L over K are right linearly
independent over L and if [E:K]L = m is finite, then there are precisely m
such homomorphisms.

(ii) Any finite subset of L is contained in a subfield E which is Galois
over K, admits G and is of finite degree

[E:K]L = [E:K]R. (1)

In particular, (1) holds for any subfield E of L whenever either side is
finite.

Proof. We begin by proving (i) and (ii). (i) By Lemma 3.1, if the
homomorphisms si9 . . . , sr are linearly dependent over L, then two are
equivalent, say sx = s2l(c) for some c e Lx. Hence I(c) e G and since G
is outer, I(c) = 1 and ŝ  = s2- This shows that distinct homomorphisms
are right linearly independent over L. Now let [E:K]L = m\ then
[Hom^ (E, L):L]R = m by Th. 2.4. Further, every homomorphism from
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E to L over K is induced by the restriction to E of an element of G, by
Prop. 3.5, so there are at least m distinct such homomorphisms, sl9 . . . ,
sm say. Since they are linearly independent, they form a basis over L and
so every homomorphism s is a linear combination: s = 2AA, (K G L). By
Lemma 3.1 and because G is outer, s must be equal to some sh so there
are exactly m such homomorphisms and (i) is proved.

(ii) For any c e L, K(c) has finite right degree over K, so there are
only finitely many homomorphisms K(c)^> L and only finitely many
conjugates cf. Hence for any finite family c1? . . . , cr the set {cj}, where s
ranges over G, is finite. Let E be the field generated over K by the c]\
then every s e G maps E into itself and is an automorphism, because
s'1 e G. The set of induced automorphisms of E forms a group / / , which
like G is outer. It is a finite group, since it is defined by its effect on the
c]. Hence E/K is Galois and (1) follows by Cor. 3.8. Now if E is any
field between K and L for which one side of (1) is finite, then E is
finitely generated over K and we can embed it in a finite Galois extension
D such that [D:K]L = [D:K]R. We also have [D:E]L = [D:E]R, hence
(1) follows by division.

It remains to show that G is profinite. For any finite subset X of L
there is a finite Galois extension Ex of K containing X, and its group Gx

is a finite homomorphic image of G. For Y D l w e have a homomorph-
ism GY-> Gx, so the Gx form an inverse system. Its inverse limit is G,
because the action of any element of G on a finite set X is represented by
an element of Gx. •

Later we shall need the fact that homomorphisms from any intermedi-
ate field can be extended to automorphisms:

P R O P O S I T I O N 3.8.2. Let L/K be an algebraic Galois extension, with
group G which is outer. If E is an intermediate field, K C E C L, then any
homomorphism from E to L over K can be extended to an automorphism,
i.e. an element of G.

Proof. Let s: E —> L be a homomorphism over K and denote by 4> the
set of all fields F between E and K such that [F:K]h < oo. For any F e O
write sF for the restriction of s to F; by Prop. 3.5 there exists t e G such
that tF = sF. We now define a subset of G by the equation

GF={te

Each GF is a non-empty closed subset of G; moreover, if F1? . . . , Fr e O,
then there exists F e f such that Fl<Z F for i = 1, . . . , r, and clearly

GFln . . . n GFrDGF¥^ 0 .
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Thus the family {GF} has the finite intersection property, hence by the
compactness of G, we have C\GFi=0. This means that there exists t e G
such that sF=tF for each F e O ; but every element of E can be
embedded in a finite Galois extension, by Prop. 8.1, hence 5 = f£, as we
wished to show.

To establish the Galois connexion we need to prove a special case first:

L E M M A 3.8.3. Let L/K be an algebraic Galois extension with group G
which is outer. If H is a subgroup of G with K as fixed field, then H is
dense in G. In particular, ifHis closed, then H = G.

Proof Let E be an intermediate field of finite degree admitting G and
let GE be the finite group of automorphisms induced by G in E, and
write HE for the group induced by H. Since GE, HE are TV-groups, we
have HE = GE by the finite theory, and this holds for all £ , hence
H* = G*. Now any finite set can be embedded in such a field E, hence
/ / = G = G, i.e. H is dense in G, and when H is closed, it must equal
G. •

Now the main result, giving the Galois connexion, can be stated:

T H E O R E M 3.8.4. Let L/K be an algebraic Galois extension with group
G which is outer. Then there is a bijection between the closed subgroups H
of G and intermediate fields E, K C E C L:

H H+ //* = {x e L\xs = x for all s e H},

£ _* E* = {s e G\xs = x for all x e E}.

IfH<r>E in this correspondence, then LJE is Galois with group H; E/K is
Galois if and only if H is normal in G and in that case the group of E/K
is G/H.

Proof. The proof is similar to the finite case. Clearly we have E C £**;
if this inclusion is proper, take c e E**\E and let F be a finite Galois
extension of K containing c. Since c $ F C\ E and F/K is Galois, there is
an automorphism s of F fixing FOE such that cf =£ c, but the number of
conjugates cf of c is finite, say c0 = c, c1, . . . , cr. We define

Gt = {s e G\xs = x for all x e E D F, cf = c j , / = 1, . . . , r.

Since every automorphism of F/F C\ E arises by restriction from an
element of G, it follows that Gt is not empty, and neither is GF = Gx n
. . . fl Gr; moreover, this set is again closed. For each finite Galois
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extension F/K such that c e F w e obtain such a closed set GF and as
before we see that the family {GF} has the finite intersection property. By
compactness we have D GF =£ 0 and any element s of f| GF fixes any
x e E fl F for any F, while c? =£ c. Since every element of is is contained
in some finite Galois extension F, it follows that s fixes 2s, thus s e 2s*
and so s fixes 2?**, but this is a contradiction, because c e £ * * , and it
follows that £** = E.

Next take a closed subgroup H of G and put 2s = 2/*. Then L/2s is
Galois and its group 2s* is clearly outer. Since L/K is algebraic, the same
holds of L/E and by Lemma 8.3, H = E* = 2/**. Thus 2/** = H and
L/2s is Galois with group H.

For any s e G, s"1 ifc fixes 2s5, hence s-12/s = H if and only if 2s5 = £ ,
so E admits all elements of G precisely when H is normal in G. If sE

denotes the restriction of s to E, then the map s •-> sE is a homomorphism
from G to Gal(E/K), which is surjective by Prop. 8.1. This homomorph-
ism is easily verified to be open and continuous and its kernel is H, hence
Gal(E/K) =

Exercises

1. Show that an open subgroup of a profinite group G has finite index and that
the intersection of all open subgroups is 1. Deduce that the topology on G is
Hausdorff.

2. Show that any profinite group G can be expressed as G = Urn (G/N), where N
runs over all open normal subgroups of G.

3°. Examine the problems encountered in extending the theory of this section to
mixed (not purely outer) Galois groups.

3.9 The multiplicative group of a skew field
So far very little is known about the general structure of skew fields, but
there are some results about their multiplicative groups, mainly asserting
that quite weak commutativity conditions imply commutativity. The
proofs are usually direct calculations with conjugates or commutators,
independent of the general theory.

We adopt the usual notation for group commutators:

0 , y) = x~ly~lxy.

L e t K b e a n y f i e ld , l e t a, b e Kx a n d s u p p o s e a l s o t h a t a^l. W e h a v e

b~\a - \)b = b~lab - 1.
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Since b~lab = a(a, 6), we can rewrite this relation as

(a - \){a - 1, b) = a(a, b) - 1,
or also

a((a, b)-(a- 1, b)) = 1 - (a - 1, b). (1)

Moreover, the two sides of (1) do not vanish when ab =£ ba. This formula
shows that any element not in the centre lies in the subfield generated by
all the commutators. More precisely, suppose that K is not commutative
and let b be a non-central element, say ab ^ ba. Then by (1), b cannot
commute with both (a, b) and {a — 1, b), for if it did, it would also
commute with a. So the derived group cannot be contained in the centre
and we obtain

T H E O R E M 3.9.1. Let K be a field such that the derived group (Kx, Kx)
is contained in the centre of K. Then K is commutative. •

Another property of fields which holds quite generally was discovered
surprisingly late:

T H E O R E M 3.9.2 (Cartan-Brauer-Hua theorem). Let D be a field
with centre C. If K is a subfield of D admitting all inner automorphisms of
D, then either K QC or K = D.

Proof Suppose that K is a subfield of D admitting all inner automorph-
isms but K <£C, say be K\C. Take a e D such that ab ¥= ba\ then
(a, b) = a~lb~la • b e K and (a, b) =£ 1, and similarly, {a - 1 , 6 ) ^ 1, so
both sides of (1) are non-zero and we can solve (1) for a, hence a e K.
This shows that any element not commuting with b lies in K. If c
commutes with b but a does not, then a, a + c e K and so c e K. Hence
K = D, as we had to show. •

We next show that the multiplicative group of a skew field cannot be
nilpotent. We recall that a group G is said to be nilpotent if for some n,
(. . . ((jto, *i), x2)9 . • • , xn) = 1 for all JC0, . . . , xn e G; the least n is the
nilpotence class of G. A group G is nilpotent of class at most n if and
only if there is a chain of normal subgroups

G = G1DG2D . . . D Gn+1 = 1,

such that O, y) e Gi+1 for all x e Gh y e G (see e.g. A.I, 9.8).

T H E O R E M 3.9.3 (Hua). Let K be a field with centre C. Then Kx/Cx

has trivial centre, hence Kx is not nilpotent unless K is commutative.
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Proof. Let b e K and suppose that b corresponds to a non-trivial
element in the centre of Kx/Cx; thus b $ C but (a, b) e C for all a e Kx.
So for any a =£ 0,1 in K, (a, b), (a - 1, b) e C and hence by (1), a e C.
It follows that K = C, so if K is not commutative, then Kx/Cx has trivial
centre; in particular, if Kx is nilpotent, Kx/Cx has a non-trivial centre,
so AT must then be commutative. •

We next generalize Wedderburn's theorem by showing that a field K is
commutative if every element is of finite multiplicative order. We recall
that a group is called periodic if all its elements have finite orders. We
also recall the following generalization of the well known fact that every
finite subgroup of a commutative field is cyclic (see 3.4 above):

P R O P O S I T I O N 3.9.4. Any finite subgroup of a field K of finite
characteristic is cyclic.

Proof. Let G be a finite subgroup and let P be the prime subfield of K.
Then the P-algebra generated by G is finite-dimensional and hence is a
finite subfield F. By Wedderburn's theorem (see Th. 4.8) F is commutat-
ive, and as subgroup of a commutative field, G is cyclic. •

T H E O R E M 3.9.5 (Jacobson). Let K be a field such that Kx is
periodic. Then K is commutative.

Proof. Since 2r = 2 for some r > 1, K is of finite characteristic p. Let C
be the centre of K and assume that C =£ K. Given a e K\C, since a has
finite order, by Cor. 4.6, there exists b e Kx such that b~lab = am =£ a,
hence ab¥=ba. The subgroup H generated by a, b contains (a) as a
normal subgroup and so is an extension of (a) by (b), hence it is finite
and so is cyclic, contradicting the fact that ab^hba. This contradiction
shows that K = C, so K is commutative. •

The problem of characterizing the multiplicative group of a field has
not yet been solved even in the commutative case, but there are some
results on the subgroups of fields. We begin by looking at the commuta-
tive case and first recall some properties of abelian groups.

Since our groups occur as subgroups of fields, we shall write them
multiplicatively. Every abelian group G has a unique subgroup T(G)
consisting of all elements of finite order, the torsion subgroup of G. If
T(G) = G, G is a torsion group; such a group can be expressed in just
one way as a direct product G = Y[Gp, where p runs over all primes and
Gp, the p-primary component of G, consists of all elements of p -power



146 Finite skew field extensions and applications

order. If the torsion group G is locally cyclic, i.e. all its finitely generated
subgroups are cyclic, then its p-primary component Gp is either cyclic of
order pr, where r is a non-negative integer, or of type Zp°° (the group of
all pr\h roots of 1 in C, for all r). Both cases can be described by saying
that Gp has order pa, where a = r or a = <*>. Since G = Y[Gp, it follows
that any locally cyclic torsion group is completely described by the formal
product of the orders of its components:

AT = ]!/>?(*.• = 0 , 1 , . . . , or oo). (2)

Such a product is called a supernatural number or Steinitz number.
Conversely, to every supernatural number there corresponds exactly one
locally cyclic group up to isomorphism. We shall denote the group
corresponding to N by ZN and also say that ZN is of type N. If

M = Up*

is a second supernatural number, we say that M divides TV and write
M\N if pt ^ oct for all i. Clearly ZM can be embedded in ZN if and only if
M\N. We also note that every supernatural number is completely
determined by its natural divisors, so symbolically we have

N = limn.
n\N

The torsion group of a commutative field can be described as follows:

T H E O R E M 3.9.6. Let k be an arbitrary commutative field. Then T(kx),
the torsion subgroup of the multiplicative group of k, is locally cyclic of
type N, where (i) 2|A^ if char k = 0, (ii) N = lim {pm - l\m\M} for some
supernatural number M if char k = p.

Proof Since every finite subgroup of kx is cyclic (see 3.4), T(kx) is
locally cyclic. Now (i) follows because - 1 has order 2. To prove (ii), let k
be of prime characteristic p. Then the roots of 1 in k together with 0 form
a subfield, namely the relative algebraic closure in k of its prime subfield
II, so we may without loss of generality take k to be algebraic over II.
Let us denote by IIn the extension of degree n of II; then IIm is contained
in Hn if and only if m\n. We now put

M — lim {ra|nm is embedded in &},

and note that k is completely determined by the supernatural number M.
Conversely, every supernatural number M defines an algebraic extension
of n , unique up to isomorphism. Clearly A:x is then a torsion group and
its type N is determined by its finite subgroups, hence
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N = lim{pm - l\m\M},

as we had to show. •

The necessary conditions in this theorem are actually also sufficient.
For if ¥p is the algebraic closure of the field ¥p of p elements, then
T(F*) is of type F I I ^ H A ^ p}, because Fp contains a primitive /nth root
of 1 for all n and all primes / =£ p. In characteristic 0 the type of T(CX) is
clearly Y\p?- Thus we have

C O R O L L A R Y 3.9.7. An abelian torsion group G can be embedded in
the multiplicative group of a commutative field if and only if it is locally
cyclic. More precisely, every locally cyclic group can be embedded in a
commutative field of characteristic 0, while G can be embedded in a field
of prime characteristic p if and only if G is locally cyclic of type prime
top. •

We now turn to groups that are not necessarily torsion-free and show
how to extend an embedding of their torsion subgroup to one of the
whole group.

P R O P O S I T I O N 3.9.8. Let G be an abelian group whose torsion
subgroup is contained as a subgroup in Fx, where F is a commutative
field. Then there is a commutative extension field E of F whose
multiplicative group contains G as a subgroup and such that F is relatively
algebraically closed in E; in particular, Ex/Fx is torsion-free.

Proof. Put T = T(G) and take a transversal {ga}9 where a e G/T, of T
in G, with gx = 1 and with factor set {ma^} in Fx, so that

gagfi = gap™*,?' (3)

Let A be the F-algebra with basis ga (a e G/T) and multiplication table
(3). Since G is abelian, A is associative and commutative, and G/T may
be ordered because it is torsion-free. Now consider the ring B of formal
series over G/T with coefficients in F, with well-ordered support, using
the multiplication (3). This is a field, by Th. 2.4.5, adapted to take
account of the multiplication rule (see Ex. 7 of 2.4). Clearly B contains A
as a subring; we claim that the subfield E of B generated by A satisfies
the conditions of the proposition. By construction Ex contains G as a
subgroup, so it only remains to prove that F is relatively algebraically
closed in E. Let u e E be algebraic over F, with minimal equation



148 Finite skew field extensions and applications

un + cxu
n~l + . . . + cn = 0 (q e F). (4)

We can write u as a power series:

u = g A + • • • (K e ^ x ) ,

where dots denote terms in g^ with fi> a. Suppose that a < 1; then the
lowest term in (4) is gan and this is not cancelled by any other term, a
contradiction. Hence a ^ 1; if a > 1, we again reach a contradiction, by
applying the same argument to M"1, therefore or = 1. Now w — Ax is again
algebraic over F, with lowest term > 1, and this is possible only if
u — Xx = 0, hence u e F, as we wished to show. •

If we combine this result with Cor. 9.7, we obtain

C O R O L L A R Y 3.9.9. An abelian group can be embedded in the multipli-
cative group of a commutative field precisely when its torsion subgroup is
locally cyclic. •

In a general skew field the possible finite subgroups have been
determined by Amitsur [55]; we shall describe the result without giving a
proof. By Prop. 9.4 we can limit ourselves to the case of characteristic
zero. We recall that a finite group is called metacyclic if it consists of an
extension of one cyclic group by another. Further, if P is a class of
groups, then a binary P-group is a central extension of the two-element
group by a P-group.

T H E O R E M 3.A (Amitsur [55]). A finite group G can be embedded as
a subgroup in the multiplicative group of a field if and only if G is

(i) a cyclic group, or
(ii) a certain form of metacyclic group, or
(iii) a certain form of soluble group with a quaternion subgroup, or
(iv) the binary icosahedral group SL2(F5) of order 120.

Here the soluble groups under (iii) include the binary octahedral group
(of order 48), extensions of a cyclic group of odd order by a generalized
quaternion group and the direct product of a quaternion group (order 8)
by a metacyclic group occurring in (ii), of odd order m, where 2 has odd
order (modm). The metacyclic groups in (ii) have the property that all
their Sylow subgroups are cyclic. A precise description is somewhat
complicated, and can be found in the reference quoted or also in Shirvani
andWehrfritz[86].
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Exercises

1. By expressing x(xy — yx) as an additive commutator show that any skew field
is generated by its additive commutators.

2. Show that Th. 9.1 can be restated as follows: If in a field K, ((a, b), c) = 1 for
all a, b, c e K such that the commutator is defined, then K is commutative.

3. Verify that a metacyclic extension of Cm by Cn has the presentation

where sn = 1 (modm), r(s — 1) = 0 (modrc), and show that for any m, n, r, s
satisfying these conditions a metacyclic group of order mn with this presentation
exists.

If the resulting group is G, show that G can be embedded in a field if and only
if, writing (o for a primitive mth root of 1 over Q and a for the automorphism

of of F = Q(co), the polynomial tn - of is irreducible in F[t; a].

4. Show that a finite ring which is reduced is a direct product of fields. (Hint. Use
induction and the fact that every central idempotent ^ 0,1 leads to a direct
product decomposition.)

5. Let D be a field with an involution * whose fix-point set is a commutative
subfield k. Show that Dx normalizes k and so k is central in D.

6. Let K C L be any pair of fields and define TV as the normalizer of K in L:
N = {x e L*\x~lKx = K}. Show that the elements of N/Kx, i.e. the auto-
morphisms of K induced by Af modulo inner automorphisms, are linearly
independent over K.

7. A field is said to be critically skew if it is infinite-dimensional over its centre
and every proper subfield is commutative. Show that in a critically skew field the
centre is relatively algebraically closed. (Hint. Use the fact that a subfield of finite
degree is its own bicentralizer.)

8. Show that for a critically skew field D with centre C the commutation relation
is transitive on D\C. (Hint. Show that the complements of C in centralizers form
a partition of D\C.)

9. Show that in a critically skew field D with centre C there exists a pair of
conjugate elements generating D over C. (Hint. Observe that any two non-
commuting elements generate D and apply Kaplansky's Pi-theorem.)

10°. Give an example of a critically skew field.

11°. Let K be a field which is algebraic over its centre C; is K commutative?
Show, using Th. 9.5, that this is so when C is finite.
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Notes and comments
The Jacobson-Bourbaki correspondence, as a basis for Galois theory in
the non-commutative case, was developed by Jacobson [40,47] and
N. Bourbaki (cf. H. Cartan [47]), but a form of Galois theory for simple
Artinian rings already occurred in Noether [33], where the notion (but
not the name) of TV-group is introduced. The theory was further
generalized to prime rings by Kharchenko [91].

There are many papers on algebraic equations over skew fields, usually
with a substitution rule keeping all the coefficients on one side (as in the
text). Cor. 4.4 was first proved by Richardson [27], while Herstein [56]
proved Cor. 4.10 and Gordon and Motzkin [65] proved Th. 4.9 (using Th.
4.8 as in the text). The commutativity of finite fields was established by
Wedderburn [05]; here it forms part of Th. 4.8, whose proof is modelled
on that of Artin [28]. Cor. 4.5 was first obtained by Wedderburn [21], and
Prop. 4.7 appears in Bray and Whaples [83]. For a general survey of
equations over skew fields see Lawrence and Simons [89].

Pseudo-linear extensions were introduced in Cohn [61"] and Prop. 5.1
was established in Cohn [66'], where Th. 5.4 is also proved. 3.6
essentially follows Cohn [61"]; the actual description of quadratic Galois
extensions already occurs in Dieudonne [52], while Cor. 6.5 was proved
by Jacobson [55]. 3.7 is based on Amitsur [48,54], while 3.8 essentially
follows Jacobson [56], VII. 6, generalizing the work of Krull [28].

H. Cartan [47] proved Th. 9.2 for finite-dimensional division algebras
as an application of the non-commutative Galois theory. A little later
Brauer [49] and Hua [49] independently gave a direct proof of the general
case. Th. 9.1 and 9.3 are due to Hua [50], who actually showed that the
multiplicative group of a skew field cannot be soluble (see 6.4, Ex. 6).
Prop. 9.4 is due to Herstein [53] and Th. 9.5 is a special case of the
theorem of Jacobson [45], that a ring satisfying xn = x where
n = n(x) > 1 is commutative. More generally, Kaplansky [51] showed
that for a field K with centre C, if Kx/Cx is a torsion group, then
K = C.

Th. 9.6 is taken from Cohn [62], where Prop. 9.8 is also proved, though
in a slightly weaker form (Ex/Fx is torsion-free); the strengthened form
was obtained by Schenkman [64]. For further properties of multiplicative
groups of commutative fields see W. May [72].

Amitsur's theorem 3.A is proved using results on groups with fix-point-
free action and the determination of groups with cyclic Sylow subgroups
by Zassenhaus [36]. A proof of Th. 3.A along similar lines was obtained
independently at about the same time by J. A. Green (unpublished).

Many individual results on subgroups of skew fields have been
established. Thus W. R. Scott [57] has generalized Th. 9.3 by showing
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that Kx/Cx has no non-trivial abelian normal subgroups and M. S.
Huzurbazar [60] has shown that Kx/Cx has no non-trivial locally
nilpotent subgroup. G. R. Greenfield [81] has conjectured: In any field K
a non-central subnormal subgroup of Kx contains a non-central normal
subgroup. He proves this conjecture when K is finite-dimensional over a
commutative local field with finite residue-class field of characteristic =£ 2.

At the other extreme J. Tits [72] proved that a full matrix group over a
field either is soluble-by-locally-finite or contains a non-cyclic free
subgroup, while A. I. Lichtman [78] has shown that if Kx has a normal
subgroup H containing a non-abelian nilpotent subgroup, then H also
contains a non-cyclic free subgroup.

Zalesskii [67] has conjectured that a finite group of s x s matrices over
a skew field K of characteristic zero has a metabelian subgroup of index
bounded in terms of s alone (generalizing the classical theorem of Jordan
and Schur which asserts this for commutative fields and an abelian
subgroup, see e.g. Wehrfritz [73]), and he has proved it when G is
soluble. The general case has now been proved by Hartley and Shahabi
Shojaei [82].
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This chapter deals with the formation of fractions in general rings. In the
commutative case a necessary and sufficient condition for the existence of
a field of fractions is the absence of zero-divisors (and the condition
1 =£ 0), and the construction as fractions ab'1 is well known. As we saw in
1.3, the same method of construction still applies in Ore domains, though
the verification is a little more involved. In the general case the
difficulties are both theoretical - the criterion for embeddability is quite
complicated and cannot be stated as an elementary sentence - and
practical - a sum of fractions cannot generally be brought to a common
denominator. The practical problem is overcome by inverting matrices
rather than elements. After some general remarks on epimorphisms and
localizations in 4.1, we go on to show in 4.2 that all elements of the field
of fractions (if one exists) can be found by solving matrix equations, and
something like a normal form (in the case of firs) is presented in 4.7. On
the theoretical side we shall meet a criterion for a ring to possess a field of
fractions in Th. 4.5, but what turns out to be more useful is a sufficient
condition for a ring to have a universal field of fractions (Th. 5.3); the
latter, when it exists, is unique up to isomorphism, unlike a field of
fractions, of which there may be many, e.g. for a free algebra.

The main step is the construction of a field from a ring by inverting
certain matrices, and this occupies 4.3, while 4.4 examines the sets of
matrices inverted in forming such fields. The result, giving a correspond-
ence of epic /^-fields and prime matrix ideals (Th. 4.1), is remarkably
similar in appearance to the theorem in the commutative case describing
R-fields in terms of the prime spectrum of R. In 4.5 we examine
conditions ensuring the existence of a universal field of fractions. Here
the main result, which will be much used in later chapters, is that every
semifir has a universal field of fractions (Cor. 5.9).
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In the construction of localizations the inner rank of a matrix plays a
crucial role, and 4.6 is devoted to a general study of rank functions on
rings, and the connexion with fields of fractions.

4.1 The category of epic /{-fields and specializations
Let R be any ring and consider the category of R-rings. We recall that in
any category an epimorphism is a map / such that fg = fgf implies
g = g''. Whereas in the category of groups the epimorphisms are just the
surjective homomorphisms, for rings this is no longer so, for example the
embedding Z C Q is easily seen to be an epimorphism. The following
equivalent ways of expressing the condition are often useful (cf. Knight
[70]).

P R O P O S I T I O N 4.1.1. Let f: i?—> 5 be any homomorphism of rings.
Then the following conditions are equivalent:

(a) f: R-+ S is an epimorphism,
(b) in the S-bimodule S®RSwe have x ® 1 = 1 ® xfor allx e 5,
(c) the multiplication map x ® y »-> xy in S ®RS-* S is an isomorph-

ism,
(d) 5 * 5 = 5 under a natural isomorphism.

Proof (a) => (b). We form the split null extension 5 © (5 ®R 5) with
the multiplication

0 , w)O, v) = (xy, xv + uy),

and consider the maps from 5 to 5 © (5 ®R S) given by

x*-+(x,l<8> x),x>-+ (x, x ® 1), x e S.

They are easily verified to be ring homomorphisms and their restrictions
to R agree, hence they are equal, and S O J C ® 1 = 1 ® X .

(b) => (c). The multiplication homomorphism maps ^xt ® yt to
but when (b) holds, we have ^xt ®yz = ^x^ ® 1 = 1 ®
hence (c).

(c) => (d). S * 5 has a filtration (5n), where Sx = S, Sn+1 = Sn <8>R S;
when (c) holds, we see by induction on n that Sn = 5, whence 5 * 5 = 5.

(d) => (a). By definition, 5 * 5 is the pushout of the map f: R—> S with
itself. If g{: S —> T (i = 1, 2) are two homomorphisms such that fgx = fg2,
then by the definition of the pushout there is a homomorphism
h: S * 5 —> T such that gt = ath, where at is the pushout map 5 —> 5 * 5
mapping 5 on the ith factor. Since 5 * 5 = 5, we have Oi = ar2 = 1$,
hence gx — g2 and (a) follows. •
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We shall be interested in R-rings that are fields, R-fields for short. If K
is an R-field which is generated, as a field, by the image of R, we call R
an epic R-field. This terminology is justified by the fact that the canonical
map is then an epimorphism, and only then:

P R O P O S I T I O N 4.1.2. A homomorphism f from a ring R to a field K is
an epimorphism if and only if K is the field generated by im/.

Proof Let K be the field generated by im/. Then K' = {a e K\a<8)l =
1 ® a} clearly contains im/ and if a e K' and 0 =£ 0, then a"1 ® 1 =
a-1 ® aa'1 = a~xa ® a'1 = 1 ® a~\ so K' = # , (b) holds and hence /
is an epimorphism. Conversely, if the subfield generated by im/ is a
proper subfield E say, and ux = 1, w, is a right £-basis of K, then
# <8>£ # = 2 " i ® AT = # © 2i*iMi ® ^ an(* this is not isomorphic to
K, so / is not an epimorphism. •

Our object is to make the epic .R-fields, for a given ring R, into a
category, and we must find the morphisms. To take R-hng homomorph-
isms would be too restrictive, as all maps would then be isomorphisms.
For if / : K -* L is such a map between epic TMields, then / is injective,
because its kernel is a proper ideal in a field, and im/ is a subfield of L
containing the image of R, hence im/ = L, because L was epic, so / is
an isomorphism.

To obtain a workable notion of morphism let us define a local
homomorphism between any rings A, B as a homomorphism f: Ao—> B,
whose domain Ao is a subring of A, which maps non-units to non-units. If
B is a field, this means that the non-units in Ao form an ideal, viz. ker/,
so that Ao is then a local ring. We recall that a local ring is a ring Ao in
which the non-units form an ideal m; the quotient ring A0/m is then a
field, called the residue-class field of Ao. Of course when we are dealing
with R-rings, a local homomorphism is understood to have a domain
which includes the image of R.

Let / be a local homomorphism between iMields K, L. If its domain is
Ko, then by what has been said, Ko is a local ring with residue-class field
K0/kerf; this is isomorphic to a subfield of L containing the image of R,
so if L is an epic R-field, we have

K0/kerf=L. (1)

Two local homomorphisms between A and B are said to be equivalent
if there is a subring of A on which both are defined, and on which they
agree and again define a local homomorphism. This is easily seen to be an
equivalence; an equivalence class of local homomorphisms between epic
R-fields is called a specialization. It can easily be checked that the



4.1 The category of epic R-fields and specializations 155

composition of two specializations is again a specialization, i.e. the
composition of mappings, when defined, is compatible with the equival-
ence defined earlier. In this way we obtain for each ring R, a category (Sf

R

of epic /Mields and specializations. It is clear that the number of epic
R-fields is bounded by max{|/?|, Ko}>

 s o &R *S a small category, and as
we shall see later, there is at most one specialization between two epic
R-fields, so that ?FR can be represented as a partially ordered set.

At first sight it seems as if there may be several specializations between
a given pair of epic R-fields. Thus let R = k\x, y] be the commutative
polynomial ring in x and y over a field, take F — k(x,y), its field of
fractions with the natural embedding and E = k, with the homomorphism
/? —» E leaving k fixed and mapping #, y to 0. We obtain a specialization
from F to E by defining a homomorphism a: k[x, y]—> E in which
xoc = yoc = 0. Let Fo be the localization of k[x, y] at the maximal ideal
(x,y); then a can be extended in a natural way to Fo. Now there are
local homomorphisms from F to E that are defined on larger subrings
than Fo, for we can 'specialize' rational functions (j)(x,y) so that x/y
takes on a specified value in k. In this way we obtain many different local
homomorphisms from F to E\ however, they all agree on Fo, so that
there is just one specialization from F to E.

Of course for some rings R there will be no /Mields at all. For
example, when R = 0, or for a less trivial example, take R to be any
simple ring with zero-divisors, say a matrix ring over a field. For then any
homomorphism R^> K must be injective and this is impossible when K is
a field. Even integral domains R without R-fields exist, e.g. if R is a ring
without invariant basis number (see 1.4) and an integral domain. Then
any R-hng is again without IBN and so cannot be a field.

What can we say about R-fields in the commutative case? Let R be a
commutative ring and K an epic R-field; then K is of course also
commutative, being generated by a homomorphic image of R. The kernel
p of the natural mapping R-+ K is a prime ideal and K can be
reconstructed in two ways from R and p. Firstly, we can form R/p, an
integral domain, because p is prime, and now K is obtained as the field of
fractions of R/p. Secondly, instead of putting the elements in p equal to 0,
we can make the elements outside p invertible, by forming the localization
Rp. This is a local ring and its residue-class field is isomorphic to K. The
situation can be illustrated by the accompanying commutative diagram.

The two triangles correspond to
the two methods of constructing
K. The route via the lower
triangle is perhaps more famil-
iar, but unfortunately it does not
seem to generalize to the non-
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commutative case. We therefore turn to the upper triangle. Even this
cannot be used as it stands, for as we have seen in 2.1, the field of
fractions need not be unique, which means that in general an epic R-field
will not be determined by its kernel alone.

To describe an epic R -field we need more than the elements which map
to zero, we need the matrices which become singular; over a field that
term has an unambiguous meaning (see 1.4). Given any R -field K, with
natural map A: /?—> K, by the singular kernel of K (or of A), written
Ker A, we understand the collection of all square matrices over R, of all
orders, which map to singular matrices over K. If 2P is the set of all such
matrices, then we can define a localization R^, analogous to Rp in the
commutative case, as follows. In 1.3 we met the notion of a universal
5-inverting ring; we shall need the corresponding construction when 5 is
replaced by a set of matrices over R.

Let R be a ring and 2 a set of matrices over R. A homomorphism
f:R-±R' is called ^-inverting if for each A — (aia) e 2, the image
Af = (aiaf) is an invertible matrix over R'. Here we need not limit
ourselves to square matrices; A can be of arbitrary shape, although for
homomorphisms to fields only square matrices will play a role. Now we
have the following analogue of Prop. 1.3.1:

T H E O R E M 4.1.3. Given a ring R and a set 2 of matrices over R, there
exists a ring R% and a homomorphism A: i? —> /?2 which is universal
^-inverting, in the sense that the images under A of the members of 2 are
invertible over R' and every ^-inverting homomorphism from R to another
ring can be factored uniquely by A.

Proof. For every m x n matrix A — (aia) in 2 we choose mn symbols a'ai

which we adjoin to R, with defining relations, in matrix form, writing
A' = {a>ai):

AAf = Im, A'A = In. (2)

The resulting ring is denoted by R^ and is called the universal ̂ -inverting
ring or the localization at 2 of R. Clearly the natural homomorphism
A: i? —> Rx is 2-inverting and as in Prop. 1.3.1 we can show that for every
2-inverting homomorphism / : /?—• R' there is a unique homomorphism
/ ' : /?z -> R' such that / = A/'. •

We can now describe the construction of an epic R -field in terms of its
singular kernel. Let K be an epic R-field, 2P its singular kernel and 2 the
complement of 9 in the set of all square matrices over R. Thus 2 consists
of all square matrices over R which become invertible over K. Then the
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localization R? is a local ring, with residue-class field K. We shall soon
see a proof of this fact (Th. 3.5), but we note that it does not solve our
problem yet. For we would like to know when a collection of matrices is a
singular kernel, just as we can tell when a collection of elements of R is a
prime ideal. In fact we shall be able to characterize singular kernels in
much the same way in which kernels of /Mields in the commutative case
are characterized as prime ideals.

Exercises

1. Carry out the details of the proof that for any ring R the epic R -fields and
specializations form a category.

2. Show that if R is a commutative ring and R —> 5 is an epimorphism, then S is
also commutative.

3. Let f: R-* S be a local homomorphism between two rings. Show that the
domain of / is a local ring if and only if S is a local ring.

4. Let R be a ring with ^-fields K, L and M, and let / , g be specializations from
K to L and from L to M, with domains Ko and Lo respectively, and define
Kx = Lo/"1 D Ko, fi = f\K1. Verify that fxg is a local homomorphism from Kx

to M and so defines a specialization from K to M.

5. Let A = fl^A be a direct product of a family of rings. Show that each
specialization / to an A -field A' is a product of specializations fy A% -» K.

6. Let / : A —» B be a ring homomorphism. If A is a local ring, show that / is local
if and only if the induced homomorphism of matrix rings yRn(A)-*yRn(B) (for
any n) is local.

4.2 The matrix representation of fractions
To obtain a description of the elements of the localization Rs in the
commutative case it is usual to assume S to be multiplicative. In the same
way we need to restrict 2 to find a convenient means of describing the
elements of R^. A set 2 of matrices over R is called upper multiplicative

(A C\
if 1 e 2 and with A, B e 2 the matrix is in 2, for any C of

\° Bl
appropriate size. Lower multiplicative sets are defined similarly, using
A 0 \

. Given a 2-inverting homomorphism f:R-*R',we define theD )
2-rational closure of / as the set of all entries of all matrices (A/)"1 for
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A e 2. With these definitions we have the following description of the
2-rational closure:

T H E O R E M 4.2.1. Let R be any ring, 2 an upper multiplicative set of
matrices over R and f: R^> R' a ^-inverting homomorphism. Then for
any x e R' the following conditions are equivalent:

(a) x lies in the ^-rational closure ofR in R',

(b) x is a component of the solution u of an equation

Au - e}; = 0, A e Z', (1)

(c) x is a component of the solution u of

Au- a = 0, AeXf, (2)

where a is a column over im /,
(d) x — bA~lc, where A e2^, b is a row and c a column over im/.

Moreovery the 2-rational closure of R in R' is a subring of Rf containing
im/.

Proof If (a) holds, say x is the (*,;)-entry of A'1, then x is the ith
component of the solution of (1), hence (b) holds. Now (c) is a special
case of (b), and if (c) holds, then ut = ejA~xa, which establishes (d).
Finally, when (d) holds, then

1
0
0

b
A
0

°\
1 /

1

= 0
\ 0

-bA-1

A'1

0

bA~lc
-A~lc

1

where the matrix whose inverse is taken is again in 2, because 2 is upper
multiplicative. This shows (a)-(d) to be equivalent.

Let Rx(R') be the 2-rational closure of R in Rf; it contains im/,
because any c e im/ satisfies the equation 1 • u — c = 0, which is of the
form (2). To prove the ring property, suppose that ut is the ith
component of the solution of (2) and Vj is the yth component of the
solution of Bv — b = 0, then ut — Vj is the ith component of the solu-
tion of

A
0

where C has for its yth column the ith column of A and the rest 0. Next
utVj is the ith component of the solution of

A C\ (0
0
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where C has as its /th column —a and the rest 0. This shows that R%(Rf)
is a ring containing im/, as claimed. •

Let R be any ring and K an epic iMield. As we saw in Th. 2.1, any
element p e K can be expressed in the form

p = c - uA~lv, where c e R, u e Rn, v e nR, A e Rn, (3)

and A is not in the singular kernel of K. Thus p is completely determined
by the block

« - ( : :)• <«>

Such a block will be called admissible for K or K-admissible. Thus the
elements of K may be described either in block form, as in (4), or in
equational form, as in (2).

Sometimes a different notation is convenient for the system (2), where
we now take (—a, A) as our basic matrix. Omitting the reference to / , for
simplicity, we shall write our system with a matrix A of index 1 in the
form

Au = 0, A e mRm+1. (5)

The columns of A are indicated by subscripts:

A = (AQ A x . . . Am),

and we also write Ax for Am and A* = (Ax . . . Am_x). We shall call
(5) an admissible system and A an admissible matrix of order m for the
element p of Rr if (5) has a unique solution u e m+1Rf normalized by the
condition u0 = 1, and u^ = p. The m x m matrix formed by the last m
columns of A, (A* A^), is called the denominator, the matrix of the
first m columns, (Ao A^.) the numerator and A* the core of p in the
representation (5) and we write u = (1 u* p)T. These matrices depend
not merely on p but on the representation (5). Thus a system (5) is
admissible precisely when its denominator is invertible over R'.

For reference we note that if A, B are admissible matrices for /?, q
respectively, then we have as admissible matrices for p - q, pq

Bo B* BM 0 0 \ (Bo #* B* 0 0
0 Aoo A* Aoo/ \ 0 0 An A* Ao

(6)

respectively. As (6) shows, we need to assume 2 lower multiplicative with
the present convention.

We note that a result similar to Th. 2.1 holds for matrices:
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P R O P O S I T I O N 4.2.2. Let R be a ring, 2 a lower multiplicative set of
matrices over R and f: R-+ Rf a ^-inverting homomorphism. Then for
any m x n matrix P over R^(Rf) there exist r ^ 0 and an (r + m) x
(n + r + m) matrix A = (Ao A* A^) over im/, u = (/ £/ P)T over
R' such that

Au = 0, (,4* Aoo) e 2 / . (7)

Here Ao, A*, A<* all have r + m rows and n, r, m columns respectively.

Proof Consider an m x n matrix P with a single non-zero entry, say
P = p © 0. If Cu = 0 is an admissible system for p, then we have as an
admissible system for the matrix P

= 0.

We complete the proof by showing that the set of matrices determined by
a system (7) is closed under addition. If P\ P" are determined by the
matrices A', A" respectively, then P = P' + P" is determined by the
system

* At At f)

hence every matrix over R^{R') is so determined, by induction. •

In the commutative theory we have Cramer's rule, giving an explicit
formula for the solution of the matrix equation (2). If we write A^ for
the matrix obtained from A in (2) by replacing its ith column by a, then
Cramer's rule states that the ith component ut of u is given by the formula

Co
0

0
0

c*
0

C.0

0
o \

Im-l)

1

1 «*
\ ^\o

0

0
0
0

t

detA
In the general case we no longer have determinants, but there still is a
form of Cramer's rule, using now the form (5):

P R O P O S I T I O N 4.2.3 (Cramer's rule). Given an admissible system

Au = 0, (8)
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for an element p = */«, p is stably associated to its numerator; hence p is
(left/right) (regular/invertible) if and only if the corresponding property
holds for its numerator.

Proof. The equation (8) can be written Ao + A*u* + A^p = 0, hence

(A* — AQ) — (A% Ay,) n . (9)

Now the denominator (A* A^) is invertible, hence p is stably associ-
ated to (A* -A o ) , which, except for a column permutation, is the
numerator. •

The following form of this rule is often useful:

P R O P O S I T I O N 4.2.4. Let R be a ring, Z a lower multiplicative system
of matrices and i?2 the universal localization. If JR2 has unbounded
generating number, then every invertible matrix P over Rx is stably
associated to a full matrix over R.

Proof: By Cramer's rule in matrix form, P is stably associated to
(A# —Ao) = A0 say. Since P is invertible over /?2, so is A0, hence it is
full over R%, by UGN (see Prop. 1.4.3), and a fortiori it is full over R. •

Exercises

1. Find admissible matrices for xy~x, x~ly, xy~lz, x~lyz~l, xy~l + zt~l over
the free algebra k(x, y , z, t ) .

2. Show that over a left Ore domain every element of the field of fractions is
given by an admissible system of order 1.

3. Given a ring homomorphism R-* R', let A enRn+1 be an admissible matrix
for p e R'. Show that for any n x n matrix P over R which is right regular over
R', PA is again admissible for p. Similarly for AQ*9 where Q* = 1 © Q © 1 and
Q is left regular over Rr.

4. (N. G. Greenwood) Show that for any 2-localization JR -» R% and any sub-
set I of R the set of solutions of admissible equations with matrices A =
(Ao A^ A*), where the entries of Ao are in / form a left ideal of fl2.

5. Let R be a semifir with a O-inverting homomorphism to a field U, where 3> is
the set of all full matrices (see 4.5). Given p, q e U with matrices A, B which are
left prime, with cores that are right prime, if A • B is the matrix for pq (as in (6)),
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show that A • B is left prime unless the denominator of A and the numerator of B
have non-unit left factors that are similar (an m x n matrix is left prime if it has
no non-unit left mx m factor; similarly for right prime).

4.3 The construction of the localization
The localization of a ring R at a set 2 of matrices was defined in 4.1 in
terms of a presentation, but we shall want to have a more concrete
construction that is easier to handle. The main problems that arise are the
following:

(i) Find the kernel of the natural map R —» R^, or at least find conditions
for this map to be injective,

(ii) find the singular kernel of the natural map R-> RY and its relation
to 2.

Since our main interest is in R-fields, there is a third problem:
(iii) Find conditions for R% to be a local ring, and when they hold, find

conditions for the natural map from R to the residue-class field of R%
to be injective.

We shall construct the elements of i?2 *
n t r i e form p — bA~lc, where p

is an element, b a row, c a column and A a matrix in 2. Since A is
invertible over i?2, we can regard p — bA~lc as an element of i?2, but we
shall use a stably associated form to avoid inversion:

p-bA~lc 0\ ip - bA~lc b\ Ip b\ Ib p

0 J/ \ ° A)~*\c A)~*\A c

Each term is associated to the next over R^ and the last expression has
the advantage of being defined as a matrix over R itself. Thus we
consider, for any set 2 of square matrices over R, the set M(2) of all
matrix blocks

where a e R, a' e Rn, 'a e nR, a0 e 2 n , an n x n matrix in 2. Here n
may be any positive integer, or it may be 0, in which case a = (a). A
matrix block (1) is said to be pure if a = 0; it is possible to operate with
pure blocks only, but we shall use the general form (1), which is no
harder to handle; a0 will be called its denominator.

Our aim will be to construct R% as a set of equivalence classes of
elements of M(2), for any ring R and upper multiplicative set 2 of square
matrices over R. If A: R-* R^ is the natural homomorphism, then the
matrix block given by (1) is to represent the element

A(a) - WMa'Wa). (2)
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On each matrix (1) we can perform certain elementary operations
which do not change the element represented.
(E.I) To a given row (column) add a left multiple of a later row (a

right multiple of an earlier column).
This amounts to left (right) multiplication by an upper unitriangular

matrix; thus if a is changed to

p\la' a\_(a' + pa° 2 + p('n
0 P)\a° ' a ] ~ { Pa0 P('a)

then the corresponding element of /?2 is

and this simplifies to X(a) — X(af)X(a°)~1X(fa), if we bear in mind that A is
a homomorphism. Similarly for right multiplication by an upper unitri-
angular matrix.

To describe the second type of operation, let us call a square block T
on the main diagonal of a0 in (1) superfluous if either the row block or
the column block of T is zero apart from T itself, and any entry below
and to the left of T is zero. Now we have a second elementary
transformation:
(E.2) To insert or remove a superfluous block, and the row and

column block containing it.
We shall write a —> b to indicate that b is obtained from a by an

elementary transformation (E.I) or (E.2), and a ~ b means that we can
pass from a to b by a series of elementary transformations. This is clearly
an equivalence relation; we shall call a and b equivalent if a ~~ b. For
example, any block is equivalent to a pure block:

a' a
a0 'a

where dots stand for zeros. The equivalence class containing a e M(E) is
written [a] and the set of all such classes is denoted by R^. Our object will
be to define a ring structure on /?2, but first we shall need to define an
operation on matrices, the determinantal sum. Let A, B be two n x n
matrices which differ only in the first column, say A = (Al9 A2,. . . , An),
B = (Bl7 A2, . . . , An). Then the determinantal sum of A and B with
respect to the first column is defined as the matrix

C = ( A , + B l 9 A 2 , . . . , A n ) .

The determinantal sum with respect to other columns (for suitable
matrices) is defined similarly. We shall usually denote the determinantal
sum of A and B by A V B, without specifying the column to be added,
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since this is usually clear from the context. For matrices over a
commutative ring it is clear that

det(A V B) = det A + det B.

In general we have no such relation, because determinants are then not
defined, but over a skew field it is easily verified that if A and B are
singular, then so is A V B, whenever the latter is defined. We also note
the distributive law:

(AV B) ® P = (A ® P)V (B ® P), (3)

whenever A V B is defined. There is a corresponding definition of
determinantal sum with respect to rows, but this will not be needed.

We now define the following operations on M(2), where dots indicate
blocks of zeros:

a © b =

(5)

Our object will be to show that R% is a ring relative to these operations.
In the first place we observe that ©, 0 are well-defined on the classes;
we have a1 ~ a2, b1 ~ b2 => ax © b1 ~ a2 © b2, ax © bx ~ a2 0 b2, be-
cause any elementary operation carried out on a, b can also be carried
out on a © b, aQ b. The associative laws follow because the sum of a, b
and c in M(2) with either bracketing has the matrix

c°

where s = a + b + c; the matrix for the product ofa,b and c is

' a' a
a0 'a

1

Next we note the formulae for the sum and product of an element
r e R by a block matrix a:
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ra\ . N (a' ar
) ©W ( 'ar

Taking r = 0, 1 in turn, we find that (0) © a ~ a © (0) - a,

by using (E.2), and (1) 0 a ~ a 0 (1) - a. Writing (-)a = (-1) 0 a, we
have (-) ((-)a) = a, and

fa' -a'
a \±7 ( — )a = I a •

, , , , "" •<••

Hence a © (-)a ~ (0) and similarly ((-)a) © a ~ (0). There remain the
distributive laws. Consider first

(a © c) © (6 0 c) ~ (a © 6) © c. (6)

We write down the matrix block for the left-hand side of (6), putting
t = ac + be for short, and apply elementary transformations:

a' ac' b' be' t

a' acf b' {a + b)c'

a'
a0

•
•

ac'
'ac'
c°
•

b'

•

b°

be'
•

-c°
'be'
c

t
'ac

•

'be
'c

1 a1 b' {a 4- b)c' t
a0 • 'ac' 'ac

b° 'be' 'be

where we have used (E.2) to remove c° at the last step; the result is the
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matrix block for the right-hand side of (6). Now the other distributive law
follows by symmetry. By the observation in 1.1 the addition is commutat-
ive and so we have a ring i?2 and it is clear that the mapping

A: r -> [(r)] (r € R)

is a ring homomorphism from R to /?2. We claim that A is universal
Z-inverting. To establish this fact, we first prove the rule

a' -\^lar # _ K
a0 c I \a° b + co u I ^ Uo „ I ~ Uo »..,_„ I- ( 7 )

Writing down the matrix block for the left-hand side and applying
elementary transformations, we have

- a 0 b I -» I a0 • 6 + c
a0 c / \ • a0 c / \ • a0 c

Thus (7) is proved. Now if e7 denotes the ;th column of the unit matrix
and ej the i-th row, then the (y)-entry of A(A)"1 is represented by the
matrix block

ej 0

for on denoting the A:-th column of A by Ak, we have

(«*)

where we first use (7) with n summands, then (E.I) and finally (E.2).
Similarly we have 2(ay) © ujk ~ (̂ /A:)? therefore [utj\ is the (y)-entry of
A(A)"1, and so A(A) is invertible, as claimed. To prove the universal
property, let f:R^>R' be a 2-inverting homomorphism and for any
element [a] of /?2 define

/i(W) = /(2) " fWfta^fCa). (8)
As for A, we can verify that the right-hand side is unaffected by
elementary transformations (E.I, 2). Hence fx is well-defined on JR2 by
(8), and is uniquely determined by / . Moreover, for any r € R, we have



4.3 The construction of the localization 167

f(r) =

so / has been factored by fx and this shows A to be universal 2-inverting.
Summing up, we have the following explicit description of R^\

T H E O R E M 4.3.1. Let R be any ring and 2 an upper multiplicative set of
square matrices over R. Then the set M(2) of all matrix blocks

a = 0 , I, a0 ell, a' row, 'a column over R, a e R, (9)
\a a I

taken modulo the equivalence ~ defined by the elementary operations
(E.I, 2) and with the operations ©, © defined by (4) and (5) forms a ring
R% which is the localization of R at 2, with the natural homomorphism
A: R-^> R% given by r ^ [(/)]• *

To apply the result we need to be able to recognize when a matrix
block represents zero in R% (problem (i)). This is accomplished by
Malcolmson's criterion:

P R O P O S I T I O N 4.3.2. Let R, 2, /?2 be as in Th. 3.1 and let a be a matrix
block as in (9). Then [a] = 0 in R? if and only if there exist F, G, P,
Q G 2, a matrix H over R, rows f u and columns g, v over R such that

a'
a0 a \ lu

p)(Q v). (10)

Proof Let us write a ~ 0 if a satisfies (10). We remark that the left-hand
side of (10) can be factorized as

'1 - f - \ la1 a •
'a •

This makes it clear that if a ~ 0, then a ~ b, where b is the left-hand side
M

of (10), and we then have
[a] = [b] = k(uv) - X{uQ)X{PQYlX(Pv) = X{uv) - k(uv) = 0,

so [a] = 0. Conversely, if a ~ b and a ~ 0, then we have b ~ 0, for any
elementary operation (E.I) carried out on (10) will change P, Q into
other members of 2, while the effect of (E.2) is just to insert or remove
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further terms F • G. Thus if e.g.

(Q v),

then

If the superfluous terms in (10) appear in the opposite order, we can
reduce them to the form (10) by the following steps:

/
H
K
F

a'
a0

•

a
'a

8

G

f
H
K
F
•

f
H
K
F
•

f
H
K
F

a'
• a0

•
•
G

a'
a0

-G
•

G

a'
• a0

•

a
'a

8
•

8

a
'a
•

G g {

In particular it follows that if a ~ 0, then a ~ 0.

The criterion of Prop. 3.2 is quite general, but not easy to apply directly;
in particular it may be quite difficult even to decide when R^ is trivial.
We shall therefore derive some consequences that are easier to use. We
recall from 1.4 that a matrix A is called full if it is square, say n x n, and
cannot be written in the form A = PQ, where Q has fewer than n rows.
With the help of this notion we have the following sufficient condition for
the natural map A to be injective:

C O R O L L A R Y 4.3.3. Let R be any ring and 2 an upper multiplicative set
of full matrices, which is closed under permutations of rows or of columns.
Then in R^ [a] ̂  0 for any a e 2.
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Proof. Suppose that 0 e 2 and [a] = 0. Then (10) holds; further,

if e l and C =

and by a permutation of rows and of columns we find that the left-hand
side of (10) lies in 2 and so is full. But this contradicts (10), so we
conclude that [a] =£ 0. •

We next derive conditions for the localization to be a local ring. For
this purpose we remark that a ring R is local if and only if 1 =̂= 0 and for
every x e R either x has a left inverse or 1 — x has a right inverse. For a
local ring these conditions are clearly satisfied. Conversely, suppose that
they hold in R. An idempotent e =£ 1 has no left or right inverse, for if
eu = 1, say, then e = e • eu = eu = 1. Hence, for any idempotent e in R,
either e = 1 or 1 - e = 1, soO, 1 are the only idempotents in R. Now if
xy = 1, then yx is an idempotent =£ 0, hence yx = 1, so every inverse in
R is two-sided, in other words, R is weakly 1-finite (see 1.4). Thus for
any x e R, either x or 1 — x has an inverse, hence the non-invertible
elements of R form a set closed under addition and so form an ideal; this
shows R to be a local ring.

We shall now see that the conditions of Cor. 3.3, together with one
other condition, are enough to ensure that R% is a local ring.

T H E O R E M 4.3.4. Let Rbe a ring and 2 a set of full matrices such that 2
is upper multiplicative, closed under permutations of rows or of columns,
while the complement of 2 admits determinantal sums of columns. Then
Rx is a local ring.

Proof. Rz is non-trivial, because (1) e 2, so [(1)] =£ 0, by Cor. 3.3. Given
x e Rz, let x = ux be the first component of the solution of

Au - ex = 0, (12)

and suppose that x has no left inverse in R%. By Cramer's rule the
numerator of ux has no left inverse in R^. Let us write A = (Ax A'),
where Ax is the first column of A; then this numerator is (ex A'). We
assert that (Ax — ex A') e 2 , for if not, then (ex A') and (Ax — ex

A') both lie in the complement of 2, hence so does A = (Ax — ex A1) V
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(ex A'). But this is a contradiction; hence (Ax - ex A') e 2, and we
can form the system

(Al-e1 A')v-ei = 0. (13)

It may be rewritten as

Av - ex(l + vx) = 0. (14)

By (12) and (14), Av = ex(l + vx) = Au{\ + vx), so v = u{\ + vx). Equa-
ting the first components, we find that y1 = w1(l + y1), and so

This shows that 1 — x has a right inverse, and now the remark made
earlier shows that R% is a local ring. •

As an application let us show that any epic R -field is determined by its
singular kernel. Let K be an epic R-field, \i\ R—> K the canonical map
and 2P = Ker// its singular kernel. If &' is its complement in yR(R), then
the localization at &', i.e. R$» is usually written R^ (just as we write Rp in
the commutative case). From the definition of 2P it follows that \i can be
factored uniquely by A: R -» R® to give a map a: Rg>^> K such that
fi = Xoc. Now it is clear that 2P admits determinantal sums of columns and
contains all non-full matrices, while SP' contains only full matrices, is
upper multiplicative and is closed under permutations of rows or of
columns. Hence by Th. 3.4, R® is a local ring and K, as homomorphic
image of Rg> is just its residue-class field. This establishes

T H E O R E M 4.3.5. Let R be any ring and K an epic R-field with singular
kernel 9\ Then the localization R® is a local ring with residue-class field
K. •

Exercises

1. If a is a matrix block as in (1), find a matrix block for [a]~l.

2. Given a ring R and a set 2 of square matrices, consider blocks (1) where 3 is
r x r, a0 e 2 is s x s, a' is r x s and 'a is s x r. Show that in R%, [a] represents
the r x r matrix (2) and obtain conditions for [a] to be non-full. What are the
conditions for [a] to be zero?

3. Let R be any ring and let 2 be the set of all upper triangular matrices over R
with non-zero elements along the main diagonal. Show that R has an embedding
in an Rx-inverting ring if and only if any matrix equation
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u
p)iQ v)

where F, G, P, Q e 2, / , u are rows, g, v columns over R and a e R, implies
a = 0.

4. (Malcolmson [93]) Let R be any ring and 2 a multiplicatively closed set of
square matrices. Show that a matrix A over R has a right inverse over R% if and
only if there exist P, Q e 2, a matrix S over R and invertible square matrices,
E, F over R such that Q = EPF(I © A)S.

5. (Malcolmson [93]) Let R be a ring and 2 a multiplicative set of square
matrices. Show that R% has UGN if and only if 2 contains only full matrices; R% is
weakly finite if and only if AB e 2 for square matrices A, B implies that A, B are
invertible over R%.

4.4 Matrix ideals
In the last section we saw in Th. 3.5 how to construct an epic R-field from
its kernel. What we need now is a simple way of recognizing singular
kernels - just as in the commutative case the kernels of epic R-fields are
precisely the prime ideals of R. For this purpose we need to develop a
form of ideal theory in which the place of ideals is taken by certain sets of
matrices. Instead of addition and multiplication we have determinantal
addition and diagonal sums, while the non-full matrices play the role of
zero. The use of these notions can be motivated by observing that in the
commutative case they reduce to the corresponding operations on
determinants, thus diagonal sums correspond to taking the product of
determinants, while any non-full matrix A over a commutative ring has
zero determinant, for we can write A = PQ, where P, Q are square
matrices with a zero column and row, respectively. However, this analogy
should not be pushed too far: it is quite possible for a full matrix to have
zero determinant, for example in the polynomial ring A:[x,y,z] the
matrix

(1)

can be shown to be full (see Cohn [89] or Ex. 2 below), though its
determinant is zero.

We shall need analogues of ideals and prime ideals. In any ring R a
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matrix ideal is a collection si of square matrices satisfying the following
four conditions:
(MI.l) si contains all non-full matrices,
(MI.2) If A e si, then A © B e si for all B e $fl(R),
(MI.3) If A, B e si and C = AV B is defined with respect to some

column, then C e si,
(MI.4) If A © 1 e si, then A e si.
If, moreover,
(MI.5) si is proper, i.e. si # 9W(/?),
(MI.6) A, B $si^A® B $si,
then si is called a prime matrix ideal. The analogy with prime ideals is
clear, at least at the formal level. It is easily verified that for any epic
R-field, its singular kernel is a prime matrix ideal, and conversely, from
Th. 3.4-5 it is clear that for any prime matrix ideal 2P the ring R^ is a
local ring, whose residue-class field is an epic R-field with singular kernel
9>. This field will be denoted by R/&. Moreover, a specialization between
epic /Mields can be characterized in terms of the corresponding singular
kernels:

T H E O R E M 4.4.1. Let R be a ring and Klf K2 epic R-fields with singular
kernels 9^, 9>2

 and corresponding localizations Rlf R2. Then the following
conditions are equivalent:

(a) there is a specialization a: Kx -> K2,
(b) *:£?,
(c) there is an R-ring homomorphism /?2 —> /?i.

Thus the category of epic R-fields 3FR, as a partially ordered set, is
order-isomorphic to the set of prime matrix ideals over R, partially ordered
by inclusion.

Further, if there are specializations Kx —> K2 and K2 —» Klf then Kx and
K2 are isomorphic as R-fields.

We note the reversal of direction in (c) compared with (a).

Proof. Write 2t for the complement of 9\ and fx^.R-^Ki for the
canonical homomorphism. To prove (a)=>(b), assume a specialization
a: K1 —» K2 and take A e 22; then A fa has an inverse which is the image
of a matrix B over K^. (Aptq){B(x) = / , hence (A^B = I 4- C, where
Ca = 0. It follows that / + C has an inverse over Rx and so does A\ix,
therefore A e 2X. This shows that 9^ C 9>2> i.e. (b) holds.

Now (b) => (c) is clear, for when (b) holds, then X1:R^Rl is
22-inverting and so may be factored by hi to give a homomorphism
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Now

R2 -> R1. Finally, to show that (c) => (a),
given a homomorphism from /?2

 t o ^i>
let 5 be the image of R2 in /?x and write
m1 for the maximal ideal of Rx. The
natural homomorphism Rx —> Kx maps 5
to 5" = S/(S fl nti). Now 5 is a local ring
(as homomorphic image of R2) and
5 fl m1 is a proper ideal, so the natural
homomorphism R2 —> # 2 can be taken
via S", giving a homomorphism from 5'
to K2, and this is the required specializa-
tion,

remark follows by using (b). •

K2

As an immediate consequence we have

C O R O L L A R Y 4.4.2. Let R, Klf K2 be as in Th. 4.1, with a specializa-
tion a: Ki —> K2. Then any K2-admissible block C is also Kradmissible,
and if C defines p in Klf then p lies in the domain of a and the element of
K2 defined by C is pa.

Proof. Let 2P; be the singular kernel of Kt and let A be the denominator
in C. Since K2 is a specialization of K1 we have &1 C 2P2 by Th. 4.1, and
by hypothesis, A $ <3>

2, hence A $ 9^ and so C is ^-admissible. If

I, then p is given in K1 byC =

p = a — uA lv,

hence p lies in the domain of a, and par is given by the same formula
over K2. •

The partially ordered set of prime matrix ideals of R is sometimes
called the field spectrum and is denoted by Spec(R). When R is
commutative it reduces to the familiar prime spectrum of R.

There still remains the problem of constructing prime matrix ideals.
Guided by the analogy of the commutative case, we first consider matrix
ideals. It will be convenient to begin with sets satisfying only the axioms
(MI. 1-3); such a set will be called a matrix preideal. From a preideal s&
we get a matrix ideal sfi, as the set of all matrices A such that A © / e 64,
for a unit matrix of suitable size. Given any set X of square matrices over



174 Localization

a ring R, we can form (X), the matrix ideal generated by X, as follows.
Let (X)o be the set of all determinantal sums

Zx V Z2 V . . . V Zr, (2)

where Z, is either non-full or of the form Z{— U © C, U e X,
C e ^(R). Here some care has to be exercised with sums of the form (2),
because determinantal addition is non-associative and not everywhere
defined, but we have omitted the brackets in (2), for simplicity. It is clear
that (X)o is the least matrix preideal containing X9 and the associated
matrix ideal (X)o is the least matrix ideal containing X\ thus it is the
matrix ideal generated by X.

We can now form prime matrix ideals with the help of Zorn's lemma,
as in the commutative case.

T H E O R E M 4.4.3. Let R be any ring, si a matrix ideal and 2 a set of
square matrices, including 1 and closed under diagonal sums and disjoint
from si. Then (i) there exist maximal matrix ideals containing si and
disjoint from 2, and (ii) every such matrix ideal is prime.

Proof It is easily checked that the collection of matrix ideals containing
si and disjoint from 2 is inductive, hence by Zorn's lemma there are
maximal matrix ideals satisfying these conditions. Let 2P be such a matrix
ideal; since 1 e 2, 2P is proper. Now suppose that there exist Al9 A2$

(3>

such that Al © A2 e 9\ If sit denotes the matrix ideal generated by 2P
and Ah then sit D 9\ hence sit n 2 ¥= 0 , by the maximality of &, say
Bt e ^ (11. Now Bx © B2 is a determinantal sum of terms in 2P and
terms of the form Ax © A2 © C, and hence it lies in 9. But Bx © B2 is
also in 2, which contradicts the fact that 9 H 2 = 0 . This contradiction
shows that Ax © A2 $ &, so 9 is indeed prime. •

For any matrix ideal si we can define its radical as

= {A\A © . . . © A (r terms) e si, for some r};

it is easily verified that V ^ is a matrix ideal containing si. With the help
of Th. 4.3 one can now prove the following analogue of the commutative
case:

Vs£ = (]{9\9 prime D si}. (3)

To illustrate how these results may be used to answer questions about
iMields, consider the following general situation. We have a ring R and
want to find an epic R -field making a given set X of square matrices
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invertible and a second set Y singular. Let 2 be the set of all diagonal
sums of 1 and matrices from X, and take (Y), the matrix ideal generated
by Y. Our problem has a solution precisely when

= 0 . (4)

For when such an epic R-field exists, then its singular kernel 2P must
contain (Y) and be disjoint from X, so (4) holds. Conversely, when (4)
holds, then we can by Th. 4.3 find a prime matrix ideal containing Y and
disjoint from X. An equivalent condition is 2 Pi V(Y) = 0 .

To find if R has any epic R-field at all, we form the least matrix ideal
JV\ which is the set of all matrices A such that A © / is a determinantal
sum of non-full matrices, for some unit matrix / . If H contains no unit
matrix, then X can be enlarged to a prime matrix ideal, by Th. 4.3, and
hence we can find an epic R-field. This sufficient condition is clearly also
necessary, so we obtain

T H E O R E M 4.4.4. A ring R has a homomorphism into afield if and only
if no unit matrix I (of any size) can be written as a determinantal sum of
non-full matrices. •

More explicitly, if R has no R-field, then there must be an equation

/ = d V C2 V . . . V Cr, (5)

where the C, are non-full and the right-hand side is bracketed in some
way so as to make sense. This is a very explicit condition, but if we are
given a ring R with no iMields, it may be far from easy to construct an
equation (5). Likewise, if there is no equation (5), the construction of an
iMield may be difficult. The proof will be of no help since it was
non-constructive (Zorn's lemma was used).

The situation may be illustrated by a corresponding problem for
commutative rings. If R is a commutative integral domain, then any
n x n matrix A, which is nilpotent satisfies the equation An = 0, as we
see by transforming A to triangular form over the field of fractions of R.
It follows that for any commutative ring R, if A is a nilpotent n x n
matrix, then the entries of An must lie in every prime ideal of R and
hence be nilpotent. In particular, let A be a 2 x 2 matrix over a
commutative ring R and denote by 3 the ideal generated by the entries of
A3; then the entries of A2 lie in V3~. The explicit verification shows that
such a problem is not always trivial (see Ex. 5).

Returning to Th. 4.4, to give an example, consider a ring R without
UGN. Such a ring has an n x r matrix A and a n r x n matrix B, where
r < n, such that AB = / , thus / is not fulL It is clear that such a ring has
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no /^-fields; what Th. 4.4 shows is that a slightly more general condition
of this type is sufficient as well as necessary for the existence of R-fields.

We next ask when there is a field of fractions. For this to exist we need
an injective homomorphism to a field, thus the singular kernel must not
contain any non-zero elements of R. Let A be the set of all diagonal
matrices with non-zero entries on the main diagonal. We need a prime
matrix ideal disjoint from A and by Th. 4.3 this can be found precisely
when the least matrix ideal does not meet A. Thus we have

T H E O R E M 4.4.5. A ring R has a field of fractions if and only if R =£ 0
and no diagonal matrix with non-zero diagonal elements can be expressed
as a determinantal sum of non-full matrices. •

Although this solves our problem, we now see that we would like to
know more: Is there more than one field of fractions, and if so, is there
one that is universal in some sense? Here a universal R-field is
understood to be an epic i?-field, which has every other epic R-field as
specialization. Using the correspondence in Th. 4.1, we see that there is a
universal R-field precisely if there is a least prime matrix ideal. Evidently
(bearing (3) in mind) this is the case if and only if V^" is prime, where X
is the least matrix ideal.

Exercises
1. Prove the relation (3) for any matrix ideal si.

2. Verify that T, given by (1), is full over k[x, y, z], but that (x 0 1 © 1)7 is not
full. Deduce that T becomes non-full if x~l is adjoined. Do the same for y, z.

3. Writing T(x, y, z) for the matrix (1), show that T(x, y, z) © T{x -l,y, -z)
is not full.

4°. Find a commutative ring in which a determinantal sum of non-full matrices is
full.

5. Let A be a 2 x 2 matrix over a commutative ring R and denote by 3 the ideal
generated by the entries of A3. Find powers of the entries of A2 which lie in 3.
Do the same with 3 replaced by a matrix ideal.

6. Let R be a ring with a universal field of fractions U. Show that every
automorphism of R extends to U. Give an example of a field of fractions for
which this fails.
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7. Show that every ring R which has an epic /Mield also has one that is epi-final,
i.e. one without specializations to other epic /Mields. Show also that R has
epi-initial R-fields, i.e. epic R-fields to which there are no specializations.

8. Let R be a commutative ring. Show that for any A e Tl(R), detA = 0 if and
only if A becomes singular in every iMield. Deduce that det A = 0 if and only if
®rA can be written as a determinantal sum of non-full matrices, for some r ^ 1.

9. Verify that a ring can be embedded in a field if and only if A n yN = 0 ,
where A is the set of all diagonal matrices with non-zero diagonal elements and X
is the least matrix ideal. Deduce another proof of Cor. 1.2.5 by applying (3) to X.

10. Given square matrices A, B of the same size, show that A ® B is associated
to AB 0 / . Deduce that the complement of a prime matrix ideal is closed under
products.

4.5 Universal fields of fractions
In 4.4 we met precise conditions for the existence of a universal field of
fractions, but we are also interested in having more manageable sufficient
conditions for the existence. In any /Mield the only matrices over R that
can be inverted are the full matrices; a ring homomorphism is said to be
fully inverting if every full matrix has an image which is invertible. In
particular, if the canonical map from a ring R to an epic /Mield K is fully
inverting, then the singular kernel is the set of all non-full matrices over
R, and K must then be the universal field of fractions of R. It is indeed a
field of fractions, since every non-zero element is full as 1 x 1 matrix and
so is inverted over K. Our aim in this section will be a characterization of
rings R with a fully inverting homomorphism to an R-field. The
corresponding localization is called a universal localization.

A ring homomorphism f: R^> S is said to be honest if it maps full
matrices to full matrices; for example, a homomorphism to an R-field is
honest if and only if it is fully inverting. Every honest homomorphism is
injective; we also have the following useful condition for honesty:

P R O P O S I T I O N 4.5.1. Let R be any ring and S a retract of R; then the
inclusion homomorphism S —» R is honest.

Proof. Let A be a full matrix over 5 and denote the retraction R —> S by
p. If A is not full over R, say A = PQ, where Q has fewer rows than A,
then we have A = Pp • Qp over S and this contradicts the fact that A was
full over S. •
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To describe fully inverting maps we first give conditions for an epic
/Mield to coincide with its localization.

L E M M A 4.5.2. Let R be any ring and 2P a prime matrix ideal of R with
universal localization R^ and residue-class field K. Suppose that either (i)
the map R^> K is fully inverting (and so 9> consists of all non-full
matrices), or (ii) every matrix over R which is full over R^ is invertible
over K. Then Rg, = K and 2P is a minimal prime matrix ideal.

Proof. By Th. 3.4, R& is a local ring; we have to show that under the
given conditions every non-unit of R^ is 0, for then it will coincide with
the residue-class field. So let p e R^ and take an admissible system for p:

Au = 0. (1)

Since p is a non-unit, its numerator (Ao A*) is not invertible over R&
hence it is not invertible over K. In case (i) (Ao A*) is non-full over R,
while in case (ii) it is not full over Rg>; thus in either case we can over R&
write (Ao A*) = PQ, where P is n x (n - 1) and Q is (n - 1) x n.
Hence

= (A0 A* An) = (PQ An) = (P An){

so (P An) is a factor of the denominator (A* An) over Rg>; the latter is
a unit and the local ring R& is weakly finite, therefore (P An) is also
invertible over R^. Cancelling this factor in (1), we obtain

and this has the solution p = 0. Hence Roj> is a field, so R9 = K.
Now <3> is minimal, for if g>'C2/\ then by Th. 4.1 there is a

homomorphism / : R^ —> Rg» which must be injective, because R^ is a
field. Thus / is an isomorphism and (3>t = 9\ as claimed. •

We now have the following characterization of fully inverting maps to
/^-fields:

T H E O R E M 4.5.3. Let R be any ring. Then there is an epic R-field K with
a fully inverting map to K if and only if the following two conditions are
satisfied:

(i) 1 =£ 0 and the diagonal sum of full matrices over R is full,
(ii) the determinantal sum of non-full matrices over R, where defined, is

non-full.
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Moreover, K is then the universal localization R$>, where O is the set of all
full matrices over R.

Proof. Suppose that K as described exists. Then its singular kernel
consists of all non-full matrices, so then the complement of O in 1R(R) is
the least matrix ideal >f; thus N is a prime matrix ideal and (i), (ii) hold.
Conversely, assume (i), (ii); then the set X of all non-full matrices is a
matrix ideal by (ii), necessarily the least, and it is prime, by (i). Thus we
have an honest map to an epic R-field K, which is fully inverting, so
K = R&, by Lemma 5.2. •

We next try to find a class of rings to which this result can be applied.
Over any ring R we define the inner rank of a matrix A as follows. If A is
m x n, consider all factorizations

A = PQ, where P is m x r and Q i s r x n . (2)

When r has the least possible value, (2) is called a rank factorization of A
and r is called the inner rank or simply the rank of A, written rA. We
note that an element of JR, as 1 x 1 matrix, has rank 1 precisely when it is
non-zero, while 0 has rank 0. It is clear that for an m x n matrix A,
rA =^min(ra, n) and a full matrix, as defined in 1.4, is just a square
matrix of rank equal to its number of rows. More specifically, an m x n
matrix A is called left full if rA = m and right full if rA = n; it is clear
that if A is left full, then m ^ n, and if it is right full, then m ^ n. The
following necessary condition for a matrix to be full is often useful.

P R O P O S I T I O N 4.5.4. An m x n matrix over any ring with an r x s
block of zeros cannot be left full unless r + s ^ n. In particular, an n x n
matrix with an r x s block of zeros, where r + s > n, cannot be full.

A matrix of the sort described in the last sentence is sometimes called
hollow.

Proof Let A be m x n, with an r x s block of zeros, in the top-right-
hand corner, say. We have the factorization

A - ( P

\ R S ) \ 0 I ) \ R

here P is r x (n — s) and 5 is (m — r) x s. So A has been expressed as a
product of an mx(m + n — r — s) by an (m + n — r — s)xn matrix,
and if A is left full, we must have m + n - r - s^ m, i.e. r + s ^ n.
Now the second part is also clear. •
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In n-firs the inner rank has the following important property:

P R O P O S I T I O N 4.5.5. IfR is an n-fir and P e rRn, Q e nRs are such that

PQ = 0, (3)

then

rP + rQ ^ n. (4)

Proof. By Cor. 1.6.2 we can trivialize the relation (3). Let PU =
(Pf 0), U~lQ = (0 Q')T, where P' is r x nu Qr is n2 x s and nx +
n2

 = n. Clearly we have rP ^ nl9 rQ ̂  n2, therefore (4) holds. •

A ring R is called a Sylvester domain if R is non-trivial and for any
matrices A, B such that the number of columns of A equals the number
of rows of B, equal to n, say, the following nullity condition holds:

AB = 0^vA + r 5 ^ n. (5)

By Prop. 5.5, every semifir is a Sylvester domain. By applying (5) to
elements of R, we see that a Sylvester domain is indeed an integral
domain. More generally we see that every left full matrix is left regular,
and similarly on the right. The reason for the name is that these rings
satisfy Sylvester's law of nullity for the inner rank:

C O R O L L A R Y 4.5.6. Let R be a Sylvester domain and A e rRn,
BenRs. Then

rA + vB ^ n + r(AB).

Proof. Write r(AB) = r and take a rank factorization AB = PQ, so that
Q has r rows. Then we have

hence by Prop. 5.5, n + r ^ v(A P) + r(B -Q)T ^vA + rB. •

We shall need some further consequences of the nullity condition:

L E M M A 4.5.7. Let R be a Sylvester domain. Then
(i) for any matrices A, B over R, r(A © B) — xA + rB,

(ii) if A, By C are matrices over R with the same number of rows, and if
r(A B) = r(A C) = rA , then r(A B C) = rA.

Proof (i) We take rank factorizations A = PQ, B = P'Q'; then
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A 0 \ = / P O \ / 0 0 \
0 B) \0 P')\0 Q')J

and hence r(A © B) ^rA + rB. We note that no hypothesis was
necessary so far. In the other direction, let

A
0

be a rank factorization of A © B, where the right-hand side is partitioned
so that P and Q are square. Since PQ' = 0, we have

r(A © B) ^ rP + vQ' ^ r(P£>) + r(P'Q') = rA + rB.

(ii) Let us take suitably partitioned rank factorizations (A B) =
D(E, E'), (A C) = F(G G'). By hypothesis, A = DE = FG are
also rank factorizations of A, therefore

rA ^ rD, rG. (6)

It follows that the number of columns of (D F) is 2rA and

(D

hence by the nullity condition,

2rA ^ r(D F) + r(E - G ) T ^ rD + rG ^ r(£>£) + r(FG) = 2rA.

Hence equality holds throughout, and bearing in mind (6), we find that
rA — rD = rG. Further, we have rA = r(D F), so there is a rank
factorization (D F) = H(J K), where the number of columns of H is
rA = r(D F). Now

(A B C) = (DE DE' FG') = (HJE WE' HKG')

= H(JE JE' KG');

therefore r(A B C) ^ rH ^ rA and (ii) follows. •

We can now show that any Sylvester domain has a universal field of
fractions; in fact we have a somewhat more precise result:

T H E O R E M 4.5.8. In any Sylvester domain R the following equivalent
conditions are satisfied:

(a) the localization R& at the set O of all full matrices is a field,
(b) the set of all non-full matrices over R is a prime matrix ideal.

Moreover, Rq, is then the universal field of fractions ofR.

Proof. Let 2P be the set of all non-full matrices over R. If 2P is a prime
matrix ideal, then the conditions of Th. 5.3 are fulfilled, so R& is then a



182 Localization

field, and this shows that (b)=>(a). Conversely, if (a) holds, then the
singular kernel of the map R - • R& is just 3>, so (b) holds. Next we show
that (a) holds in any Sylvester domain, by verifying (i), (ii) of Th. 5.3.
Condition (i) follows from Lemma 5.7 (i); to prove (ii), let A = (a, C),
B = (b,C) be non-full, where a,benR, CenRn~l and put F =
(a + b, C). If C is right full, then rC = n - 1 = vA = r£ , hence by
Lemma 5.7 (ii), rF = xC and so F is non-full. If C is not right full, then
r C < n - 1 and again r f < n , so F is non-full in any case. Thus the
conditions of Th. 5.2 are satisfied and (a) follows. When this holds, 2P is
the least prime matrix ideal and so Rq> is the universal field of fractions of
R, again by Th. 5.3. •

We remark that the condition of being a Sylvester domain is necessary
as well as sufficient for the conditions (a), (b) to hold (see FR, Th. 7.5.10,
p. 417, or Ex. 5 below). As we have seen, any semifir is a Sylvester
domain, hence we obtain

C O R O L L A R Y 4.5.9. For any semifir (and in particular, any fir) R, the
localization R& at the set O of all full matrices is a universal field of
fractions for R, with a fully inverting homomorphism R-> R&. •

One useful consequence of this result is the following simple criterion
for the extendibility of homomorphisms to the field of fractions:

T H E O R E M 4.5.10. Let R, S be semifirs, or more generally, Sylvester
domains, and °IL(R), °U(S) their universal fields of fractions. Given a
homomorphism f:R-*S, f extends to a homomorphism / ' : %(/?)->
°ll(5), necessarily unique, if and only if f is honest. In particular, every
isomorphism between R and S extends to a unique isomorphism between
Gil(R)and(U(S).

Proof Denote by O, W the set of all full matrices over R, S respectively.
If / is honest, then QfCW, and so the mapping R^S-^S^ is
<J>-inverting. Hence there is a unique homomorphism / ' : R<p^> Sw such
that the diagram shown commutes, which means that / can be extended

in just one way. Conversely, if an exten-
sion exists, then any full matrix A over
R is inverted over R& and so is mapped
to an invertible matrix over 5W. But this
is the image of Af, which must therefore
be full; hence / is honest, as claimed.

The rest follows since an isomorphism is always honest. •
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For Sylvester domains Malcolmson's criterion can still be simplified. If
R is a Sylvester domain, then any product of full matrices is full, and
likewise for diagonal sums of full matrices, by Th. 5.8. Suppose now that
a is a matrix block representing zero, [a] = 0. Then the product in (11) on
p. 167 is non-full, but the left and right factors are full, hence the middle
factor a © / is non-full, and hence so is a itself. Conversely, when a is
non-full, then so is the product. Thus we obtain

T H E O R E M 4.5.11. Let R be a Sylvester domain. Then any matrix block
a over R represents zero if and only if a is not full. •

In the next section we shall see that like semifirs, Sylvester domains are
projective-free. It can also be shown that a Sylvester domain has weak
global dimension at most two but we shall not do so here (see FR, Cor.
5.5.5, p. 256). An example of a Sylvester domain of global dimension
exactly 2 is the polynomial ring in two variables over a commutative field:
k[x,y] (see FR, Th. 5.5.12, p. 260). Thus we have found fields of
fractions for a class of rings that are (i) projective-free and (ii) of weak
global dimension at most 2. When we drop the first condition, some
restriction has to be placed on the projective modules, for a field of
fractions to exist. In the next section we shall examine the consequences
of having a rank function defined on projectives, to generalize the rank of
free modules.

Exercises
1. Show that an Ore domain is a Sylvester domain if and only if every full matrix
is regular.

2. Show that R = k[x]/(x2) (where A: is a commutative field), has a universal
/Mield, but no field of fractions. What are the conditions for a commutative ring
R to have (i) a universal R-field, (ii) a universal field of fractions?

3. Show that the homomorphism of k{ zo> Z\, . . . ) into k(x,y) defined by
zn •"-» ynx is injective but not honest. Show also that the homomorphism / defined
by zof = y, zn+1f = (znf)x - x(znf) is honest (see Cohn [90]).

4. Let A be a full matrix such that when the first column is omitted, the result is
not left full. Find a factorization A = B(l © C), where B and C are both full. Use
this result to show that when the set of all full matrices is closed under diagonal
sums and products, where defined, then the inner rank of a matrix is the
maximum of the orders of its full submatrices.
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5. Verify that the conditions of the last exercise are satisfied whenever R has an
honest homomorphism to a field. Deduce that such a homomorphism preserves
the inner rank. Hence show that any ring satisfying (a) or (b) of Th. 5.8 is a
Sylvester domain.

6°. Let R be a semifir and 5 a subset of Rx which contains with any element c all
elements similar to c and all factors of c. Is the ring (R; c = 0 for all c e S)
embeddable in a field?

7°. Let R be a fir and $> a prime matrix ideal. Show that & = f)&n is again prime
(where &n is the matrix ideal generated by A1 © . . . © An, At e <3>). Is & always
the least prime matrix ideal of Rl (Note that a proper ideal a in any fir satisfies
Han = 0, see FR, Cor. 5.11.4, p. 296, also 9.5 below.)

4.6 Projective rank functions and hereditary rings
In this section we shall examine conditions under which hereditary rings
have fields of fractions; the results will not be used elsewhere in the book,
so this section can be omitted on a first reading.

Given any ring R, let M be an R -module and take a presentation
of M:

where F, G are free R-modules. If M is finitely presented, F and G may
be taken free of finite rank and the map a is then represented by a
matrix. If M is finitely generated projective, then F splits over im a and it
follows that G may then also be taken to be finitely generated; thus any
finitely generated projective module is actually finitely presented. We
also recall that M is projective if and only if a: G —• F can be chosen so
that a'\ F-> G exists satisfying a a'a = a (see A. 3, Prop. 6.6.1, p. 240).
We shall mainly be interested in finitely generated projective modules,
where this description takes the following simple form:

P R O P O S I T I O N 4.6.1. Let R be any ring and P a projective right
R-module with an n-element generating set. Then there is an idempotent
n x n matrix E such that P is isomorphic to the cokernel of the
endomorphism of nR defined by I — E. Conversely, the cokernel of the
map defined by any idempotent matrix is finitely generated projective.

Proof. We have P = coker or, where a:G-^F satisfies aa'a=a for
some a'\ F -* G. Since P is generated by n elements, F can be taken as
nR and a' a is an idempotent endomorphism of nR, represented by an
idempotent matrix; since im a = im acf a, it follows that P = coker a' a.
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Conversely, an idempotent n x n matrix corresponds to an idempotent
endomorphism a of F, hence F = im a © ker a, so P = ker a is project-
ive. •

If P is associated with the idempotent matrix E, then P is the cokernel
defined by Ef = I - E. Now nR = ker E' © im £ ' , so coker Ef = ker £ ' ,
i.e. P consists of all u enR such that (I — E)u = 0, in other words,
u = Eu. Hence P = E 'nR. We shall also want to describe the isomorph-
isms of projective modules in terms of the idempotent matrices represent-
ing them.

P R O P O S I T I O N 4.6.2. Let R be any ring and P, Q finitely generated
projective R-modules represented by idempotent matrices E e Rm, F e Rn

respectively. Then P=Q if and only if there exist AemRn, B e nRm such
thatAB = E, BA = F.

Proof By definition, P is generated by the columns of E and Q is
generated by the columns of F. Let 0: P—» Q be an ismorphism and
suppose that 0 maps Eu to Bu, while 6~l maps Fv to Av. Applying 6 to
the columns of E and then 0"1, we obtain E = AB\ similarly, applying
6~l to the columns of F and then 6, we find that F = BA. Conversely, if
E = AB, F = BA, then Eu^> Bu, Fv*-> Av are mutually inverse
homomorphisms between P and Q. •

Two idempotent matrices E e Rm, F e Rn are said to be isomorphic if
there exist A e mRn, B e nRm such that AB = E, BA = F. We note that
on replacing A, B by EAF, FBE we may assume that in addition,
EA = A = AF, FB = B = BE.

As an application of these ideas we show that Sylvester domains are
projective-free:

T H E O R E M 4.6.3. Every Sylvester domain is projective-free.

Proof. Let R be a Sylvester domain; as subring of a field, R is weakly
finite, in particular R has IBN, so to show that R is projective-free, it
only remains to verify by Prop. 6.2, that every idempotent matrix is
isomorphic to a unit matrix. Let E be an n x n idempotent matrix and
put rE = r, r(I — E) = s. Since E(I — E) = 0, we have r + s ^ n.
Taking rank factorizations E = PQ, I — E = P'Qr, we have

(P P
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Hence r 4- s = n and by weak finiteness,

Q
Q,,(P

thus QP = Ir and this shows E to be isomorphic to /r, hence the
projective module defined by E is free. •

For any ring R consider the category ^R of all finitely generated
projective right /^-modules and their homomorphisms. The set ^(R) of
isomorphism classes can be defined as a commutative monoid by denoting
the class of P by [P] and writing

[p] + [Q] = [P e G] . (i)

The universal group of ^(R) is just the Grothendieck group of project-
ives, K0(R). Of course we obtain the same monoid by using finitely
generated projective left ^-modules, by the duality P*-^> P* =
Horn* (P, R). The image of <3>(R) in K0(R) is the monoid &(R) of staWe
isomorphism classes, where P, P' 6 2^ are called stably isomorphic, in
symbols P ~ P \ if

P 0 "# = P' 0 nR

for some n ^ 0. For any two stably isomorphic modules are clearly
identified in &(R) and the monoid of such classes admits cancellation,
and so has K0(R) as group of fractions. The stable isomorphism class of P
will be denoted by [P].

The correspondence /? »-> ^(i?) is a functor from rings to monoids, for,
given a homomorphism / : i? —» S and a projective /^-module P, we have
an 5-module P (2)̂  5, which is again projective: if P © P' = nR, then
P ® 5 © P' <8> 5 s nR <g> 5 = "S. Thus / induces a map

9>(#)->9>(S), (2)

which is easily seen to be a monoid homomorphism. Moreover, stably
isomorphic modules have stably isomorphic images, so that we also have
a homomorphism from &(R) to 2P(S). A projective 5-module is said to be
induced from R if it occurs in the image of the map (2).

For any set 3 of objects in <3>R an object P of ^R is called subordinate
to 3 if it is a direct summand of a direct sum of members of $; e.g. every
projective is subordinate to {i?}.

The monoid &(R) can be used to define a preordering of K0(R). Given
a,/3e K0(R), we write a ^ /3 to mean: (3 - a e ®(R). This defines a
preordering preserved by addition, because &(R) is a monoid; the next
result gives conditions for the preordering to be a partial ordering:
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P R O P O S I T I O N 4.6.4. For any ring R, the preordering defined on Ko(/?)
is a partial ordering, provided that R is weakly finite.

Proof. The condition for a partial ordering is antisymmetry:

[P] => [P] = [Q]. (3)

The hypothesis in (3) states [P © 5] = [Q], [Q@T] = [P], hence
[ P © S © T] = [P]; adding P'9 where P © P1 = nR, we have
[5 © T] = 0, hence 5 © T © mR = mR; by weak finiteness, S © T = 0,
hence 5 = T = 0 and P = Q. •

We now turn to the question of generalizing the notion of rank. In the
simplest case, that of a field, the dimension of a vector space is an
important invariant, in fact the only one, since two spaces of the same
dimension are isomorphic. For general modules there may be no
numerical invariant, but for many rings there is a rank function on
projective modules. Generally, for any ring R, by a rank function on
projectives we shall understand a function p on the finitely generated
projective right R-modules with non-negative real values, such that
(R.I) P=P'=>pP = pP',
(R.2) p(P©<2) = pP + pG,
(R.3) pR = 1.
If pP ¥= 0 for P =£ 0, p is said to be faithful. We note that the relation
P © 5 = Q © 5 implies pP = pQ, by (R.l-2). Hence p is constant on
stable isomorphism classes and so may be regarded as a function on
&(R), and it extends to a homomorphism from K0(i?) to R which is 1 on
R. Conversely, every homomorphism from K0(R) to R which is
order-preserving and takes the value 1 on R defines a rank function on

Our first aim will be to determine when a ring has a rank function, but
some preparation is necessary. We begin by observing that every rank
function on R also defines a rank function on certain homomorphic
images of R. For the proof we shall need the notion of a trace ideal. For
any right R-module M we define its trace ideal r(M) as the set

\x)\x eM,fe M* = Hom*(M, R)\. (4)

Bearing in mind that M is a right and M* a left .R-module, we can easily
verify that r(M) is an ideal in R; e.g. for a non-zero free module F,
T(F) = R. More generally, for a projective right ideal a, we can take / in
(4) as the inclusion map, and this shows that r(a) D a. For a projective
/^-module P we can, by the dual basis lemma (see e.g. A.2, Prop. 4.5.5,
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p. 149), write every x e P as x = ^Jui(ai,x), where the ut form a
generating set of P and at e P*. Hence we have, for x e P,

> ufa, x)) = £ ( / , Ui)(ai9 x).

This shows that r(P)2 = r(P), thus the trace ideal of a projective module
is idempotent.

More generally we can, for any set J» of finitely generated projective
right i?-modules define T(3>) as the union of all the T(P) , where P ranges
over all projectives subordinate to $. Our next result describes the effect
of dividing by a trace ideal.

P R O P O S I T I O N 4.6.5. Given a ring R and a set 3 of finitely generated
projective right R-modules, put t = r(3). Then for any Q e &R,
Q ®R (R/t) = 0 if and only if Q is subordinate to 3. Further, the monoid
of induced projectives over R/t is the quotient of <3>(R) by the relation
P~ P' if and only if P © Q = Pf © Q', where Q, Q' are subordinate
to 3.

Proof If Q ® (R/t) = 0, then every element of Q lies in the image of a
map from a sum of members of $ to Q. Since Q is finitely generated,
there is a surjection from a sum of members of 3 to Q, hence Q is
subordinate to $>. The converse is clear.

Now let a: P—> P' be a map inducing an isomorphism between
P<8>(R/t) and P' ® (R/t). Then there is a surjection a(Bfi:
P®Q->P', where Q is subordinate to $, and this map splits over
ker(ar© )3):

P © Q = P' ©ker(or©/3).

Moreover, ker (a © /?) becomes zero over R/t and so is subordinate to 3>.
Conversely, if P © < 2 = P ' © ( ? ' , with g , Q' subordinate to J>, then
clearly P, P' become isomorphic over R/t. •

We next prove a lemma on extending homomorphisms of preordered
groups, analogous to the Hahn-Banach theorem; this will enable us to
extend rank functions.

Consider the category whose objects are preordered groups G with an
order-unit, (G,u), i.e. a distinguished element u such that G is the
convex hull of the subgroup generated by u: for any x e G there exists
AZ52=0 such that —nu^x^nu. The morphisms are homomorphisms
preserving the preorder and the order-unit. For example, the additive
group of real numbers with the usual order and the order-unit 1 is an
object (R, 1) in this category. Any morphism A: (G, w)—»(R, 1), i.e. a
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homomorphism A from G to R such that uk = 1, is called a state. Given
(G, u), we write G+ = {x e G\x ^ 0} for the positive cone of G and note
that G is generated as a group, by G+, for if JC e G and -nu^ x ^ nu,
then JC + ra/ ̂  0 and so x = (JC + nw) - ra/, where x + nu, nu e G+.

L E M M A 4.6.6. Lef G be a preordered abelian group with order-unit u
and let (/ / , u) be a subobject of (G, u), i.e. H is a subgroup of G,
containing u, with the preorder induced from G. Then every state on
(H, u) extends to a state on (G, u).

Proof. Let 0 be a state on (H, u) and let 2F be the family of all subgroups
containing H with states extending (j>. 3F has a natural partial order:
(K,X)^(K',kf) if KCK' and A' extends A. It is clear that 3? is
inductive, and so by Zorn's lemma it has a maximal element (K, A). We
shall complete the proof by showing that K = G.

If G+ C K, then GCK,so when # C G, we can find f e G + \ # . We
define two real numbers or, /J as follows:

We claim

a —

P =
that

sup {X(x)/n

ini{X(x)/n\

\x

X

e

e

K

K

and nt

and nt

^ x for

^ x for

some n

some n

0 t̂f̂ /3<oo. (5)

Since t^OeK, we have 0 = A(0)/l ̂  or. Next t ̂  nz for some r > 0,
hence )3 ̂  X(ru)/l = r < oo. Now take p, q e K and positive integers m,
n such that p ^ mt and nt ̂  q. Then n/7 ̂  mnf ^ m̂ r and so /tA(p) ̂
mX(q), hence k(p)/m^ X(q)/n. Now sup (X{p)/m) — or, inf (X(q)/ri) —
13, hence a^ ft and (5) follows.

We now take any y e R such that a ^ y ̂  /J and show that

If x ^ nt for some * € K, n e Z, then A(x) ̂  ny. (6)

If n = 0, then .* ̂  0 and so A(JC) ^ 0 . If n > 0, then x ^ nr, so
A(^)//i ^ P^y and therefore A(x) ̂  ny. If n < 0, then - x ^ (~n)t,
hence A(—x)/(—n) ^ ar=^ y and again X(x)^ny; so (6) holds for all
neZ.

Suppose now that x + nt = 0. Then by (6), A(x) + ny ^ 0, but also
(-*) + (-rc)f = 0, hence A(-x) + ( -n)y ^ 0, and so AO) + ny = 0.
This shows that the map //: K + Zr —> R given by

^(x 4- nr) = A(x) + ny, for x e K, n e Z,

is well-defined. Moreover, (6) shows that (K + Zt) D G+ is mapped to
R+, so fi preserves the preorder; further, fx(u) = X(u) = 1, and this shows
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that jU is a state on (K + Zf, u) extending A. This contradicts the
maximality of (K, A), so K = G and A is the required extension of (f>. •

For example, let p be a rank function on R and let # be the set of all
projectives on which p is zero. Then p is defined on the monoid of
induced projectives over R/r(S>), by Prop. 6.5, and by Lemma 6.6 it can
be extended to a rank function p' on R/r($). If every projective
(i?/r(^))-module is induced from one of R, then it follows that p' is
faithful. E.g. this is so when R is v. Neumann regular (see Goodearl [79],
16.7) or when R is weakly semihereditary (see Prop. 6.9 below), but it
does not hold in general. However, for any ring R with a rank function p
we can define tx as the trace ideal of all the projectives on which p
vanishes, and on Rfa there is an induced rank function px\ moreover,
since pR = 1, tx is a proper ideal. If px is not faithful, we can take the
trace ideal of all the projectives on which px vanishes; it corresponds to an
ideal t2 2 tt in R. Continuing in this way, we obtain an ascending
sequence (tn) of proper ideals, and rank functions pn on R/tn, which all
correspond to each other. Since all the tn are proper, so is their union t^
and there is a rank function pw defined on R/tm. If pw is not faithful, we
can continue this process transfinitely. For some ordinal a of cardinal at
most \R\ the chain becomes stationary. If t is the corresponding ideal,
then R/t is a non-zero ring with a faithful rank function. Thus we have
proved

P R O P O S I T I O N 4.6.7. Let R be any ring with a rank function p. Then
there is a proper ideal t of R such that R/t has a faithful rank function
which on projective modules induced from R agrees with p. •

We can now achieve our aim of describing the rings which have a rank
function; the necessary and sufficient condition turns out to be UGN
(see 1.4).

T H E O R E M 4.6.8. For any ring R the following conditions are equiva-
lent:

(a) R has a rank function on projectives,
(b) R has a non-zero homomorphic image which is weakly finite,
(c) R has unbounded generating number.

Proof (a)=>(b). If R has a rank function p, then by Prop. 6.7, a
non-zero homomorphic image Rf of R has a faithful rank function p'. We
claim that R' is weakly finite; for if nR' = nR' © K, then p'(K) + n = n,
hence p'(K) = 0 and so K = 0, because pf is faithful, and this shows R'
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to be weakly finite. To show (b) => (c), let R satisfy (b) and suppose that
R is a non-zero weakly finite image of R. Then R has UGN, hence so
does R, i.e. (c) holds. Finally, assume that R satisfies (c); this means that
nR = mR® K implies n^ m. In terms of the order-unit u of Ko(/?) this
states that

mu ^ nu => m ^ n. (7)

It follows that the subgroup (u) generated by u is infinite cyclic, so we
have a homomorphism / : (u) -* R defined by f(nu) = n. To show that /
is a state we must verify that nu ^ 0 => f(nu) ^ 0; but this holds by (7)
with m = 0. Now / can be extended to a state on K0(R) and hence a rank
function on R by Lemma 6.6, and this shows that R satisfies (a). •

This result shows that most rings normally encountered have a rank
function. For example, every projective-free ring clearly has a unique
rank function. We shall find that there are other rings with a unique rank
function, but the rank functions themselves will have better properties for
rings that are hereditary. A weaker condition that is left-right symmetric
is often useful. A ring R is said to be weakly semihereditary if for any two
maps between finitely generated projective R-modules

a:P-*P', /3 :P ' -»P" , (8)

such that ar/3 = 0, we can write P' = P[ © P'2 such that im a C P[ C
ker/J. In terms of matrices this condition can be restated as follows: For
any A e rRn, B e nRs such that AB = 0, there exists an idempotent n x n
matrix E such that AE — A, EB = 0. By applying the duality * (or
replacing E by / — E in the matrix condition) we see that this condition
is left-right symmetric. In a right semihereditary ring R, if a, (3 are as in
(8), then im/? is a finitely generated submodule of P", hence projective
and so P' splits over ker /?: P' = im/J©ker/J. Since af$ = 0, we have
imarC ker j8, and this shows R to be weakly semihereditary. Thus every
right semihereditary ring is weakly semihereditary and by symmetry the
same holds for left semihereditary rings.

For a weakly semihereditary ring it has been shown (by G. M.
Bergman [72], see e.g. FR, Th. 0.3.7, p. 14), that every projective
module is a direct sum of finitely generated modules. This generalization
of Kaplansky's theorem uses the latter's decomposition theorem of a
projective into countably generated modules.

In a weakly semihereditary ring we can pass from a rank function to a
faithful rank function on a homomorphic image in a single step. This
follows from the next result, which shows every projective module of the
image to be induced.
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P R O P O S I T I O N 4.6.9. Let R be a weakly semihereditary ring and t the
trace ideal of a set 3 of finitely generated projective R-modules. Then R/t is
again weakly semihereditary and every finitely generated projective (R/t)-
module is induced from R.

Proof. We shall use a bar to indicate the map R —» R/t, thus R = R/t and
P= P® R for P € <3>R. Let a: P-» P \ J3: P' -> P" be maps between
finitely generated projective /?-modules such that aft = 0. Then a/3 = 0,
hence a/3 can be factored by a map to a projective subordinate to $, say
or/3 = yd, where y: P -> Q, 6: Q -» P". Over # we have

Since i? is weakly semihereditary, we have P' 0 Q = P1 © P2, where
im(or y) C ?! C ker (0 -6) T . Hence P' = Px © P2 and im a C Px C
ker/3, and this shows that the weakly semihereditary condition holds
between induced projectives.

Now any finitely generated projective ^-module may be defined by an
idempotent matrix over R, and this corresponds to a map e:nR^nR
such that e2 = e, i.e. e(l — e) = 0. By the previous argument, applied to
the maps e,l — e, we have n^ = P1 © P2, where i m e C ^ C ker (1 - e).
But im£ = ker(l — e), hence im^ = Px and this shows that all finitely
generated projective ^-modules are induced. By the first part R is weakly
semihereditary, as we had to show. •

C O R O L L A R Y 4.6.10. Let R be a weakly semihereditary ring with a rank
function p and denote by t the trace ideal of all the projectives on which p
vanishes. Then there is a unique rank function p induced on R/t by p and
p is faithful.

Proof. It is clear that p defines a unique rank function p on the induced
projective (JR/t)-modules, but by Prop. 6.9 this includes all finitely
generated projectives, so p is uniquely defined. Moreover, if pP = 0, then
pP = 0, hence P = 0 by the definition of t. It follows that p is faithful. •

For each rank function p on projectives there is an inner rank on
matrices, defined as before: Given a map a: P—» Q between projectives,
the inner p-rank of a, p(a), is the infimum of p(P') for all projectives P'
such that a can be taken via P':

p(a) = inf {p(P')\a = £y for /3: P -> P' , y: P' -> Q}.

If 1P is factored by maps via P' , then P is a direct summand of P' , hence
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p(lP) = p(P). Further it is clear that p(a) ^ min {pP, pQ). The map
a: p^> Q is called left full if p(a) = pP, right full if p(a) = pQ and full
if it is left and right full. If more than one rank function is involved, we
shall speak of p-full maps etc., to avoid confusion. In particular, for an
m x n matrix A with m =̂  n say, we have pA ^ m, with equality if and
only if A is left p-full.

For an idempotent matrix E the inner p-rank clearly equals the p-rank
of the projective module defined by E, hence for any matrix A the inner
p-rank may also be defined as

pA = inf {pE\E idempotent and A = BEC). (9)

We have seen that for the existence of universal fields of fractions the
nullity condition played an important role. Such a condition can be
considered more generally; if the nullity condition holds for p,

Given a: P -» P' , 0: Pr -> P", if a/3 = 0, then p(a) + p(/3) ̂  pP',

then p is said to be a Sylvester rank function. As before, the law of nullity
can be recovered from this special case: if a: P-» P \ /J: P' —> P", then
for any y: P ^ £ , 6: g -> ^" we have

hence p(a) + p(/J) ^ pP' + p g , and taking the infimum as Q varies, we
obtain

p(a) + p(P) ^ pP' + p(aP).

It is of interest that this condition holds in all weakly semihereditary
rings:

P R O P O S I T I O N 4.6.11. In a weakly semihereditary ring every rank
function is Sylvester.

Proof Let oc\ P ^> P', /?: P' -^ P" satisfy a/3 = 0. Then there exists a
decomposition P' = Px® P2 such that im a C P1 C ker /?. Hence
p(or) ^ pPx, p(j3) ^ pP2 and so p(ar) + p(/3) ^ pPx + pP2 = pP' . •

Homomorphisms to a field form an important source of rank functions.
Thus let R be any ring with an R -field K, and for Pe<3>R put
P= P<8) K. Every projective #-module T is free of uniquely deter-
mined rank rT and we can use it to define a rank function on 2^̂  by the
rule

pP = rP.
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Clearly P = P ' implies pP = pP' and pR = l, and since P=PX® P2

implies P = Px © P2, we see that p(Px © P2) = pPx 4- pP2. Thus p is
indeed a rank function; moreover, it is Z-valued. If K is actually a field of
fractions, then the sequence 0—> R -> K is exact and tensoring with P we
obtain the exact sequence 0 - > P - * P ; hence p is then faithful. Con-
versely, if p is faithful, then pE > 0 for every non-zero idempotent matrix
£ , and so for a e R, a =£ 0, we have

pa = inf {p£"|fl = bEc, E idempotent} =£ 0,

because p is discrete-valued; so R is embedded in if. This proves

T H E O R E M 4.6.12. Lef R be any ring with an epic R-field K. Then the
function on projectives defined by pullback from the dimension over K is a
Z-valued rank function on projectives, which is faithful if and only if K is a
field of fractions of R. •

For the proof of the next result we note that the properties of the inner
rank established in Lemma 5.7 for Sylvester domains hold for general
Z-valued Sylvester rank functions, with the same proof:

For any matrices A, B, p(A © B) = pA + pB. (10)

/ / A, By C are any matrices with the same number of rows and
p(A B) = p(A C) = pA, then

p(A B C) = pA. (11)

P R O P O S I T I O N 4.6.13. Let R be a ring with a Z-valued Sylvester rank
function p. Then the set 2P of all matrices that are not p-full is a prime
matrix ideal, R® is a field and the natural homomorphism X from R to Rg>
is rank-preserving in the sense that r(AX) = pA. The kernel of A is the
ideal generated by the entries of idempotent matrices E satisfying pE = 0.

Proof We have to verify (MI.1-6) for 9. (MI.l) is clear and (MI.3)
follows by (11), (MI.2) and (MI.6) follow by (10) and (MI.4-5) follow
from (10) and the fact that pln- n. Thus 2P is a prime matrix ideal. Let
K = R/9 be the corresponding epic /Mield; we claim that the natural
map R-+ K preserves the rank p. Given A e mRn, let r be the greatest
integer for which A has a p-full r x r submatrix. Then every
(r + l ) x ( r + l) submatrix of A has p rank at most r; by induction,
using (11), we can add columns and find that every (r + 1) x n submatrix
has p-rank at most r. By symmetry we can add rows and so find that
pA = r. Thus if pA = r, then there is a p-full r x r submatrix, but no
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(r + 1) x (r + 1) submatrix can be p-full. Hence over K some r x r
submatrix of A is non-singular, but every (r + 1) x (r 4- 1) submatrix is
singular; this shows the natural map R -> K to be rank-preserving. The
kernel consists of all 1 x 1 matrices of p-rank 0, and by (9) this is the
ideal generated by the entries of idempotent matrices of zero p-rank.

Now Rg> is a local ring, hence projective-free, so the residue-class map
R$>^> K preserves the unique rank function. If A e Hl(R) is full over R&,
it is full over K and so is inverted; it follows that the map /? —• R# also
preserves the p-rank, so any member of 9\ being non-p-full, maps to a
non-p-full matrix over R&, so by Lemma 5.2 (ii), R® is a field and 9* is a
minimal prime matrix ideal. •

If we apply this result to weakly semihereditary rings, we obtain a
classification of certain epic R-fields defined by rank functions:

T H E O R E M 4.6.14. Let R be a weakly semihereditary ring. Then there
are natural bijections between the following sets:

(a) Z-valued rank functions on R,
(b) minimal prime matrix ideals over R,
(c) universal localizations that are fields.

Further, for any rank function p, the corresponding epic R-field will be a
field of fractions if and only if p is faithful.

Proof. By Prop. 6.11 any rank function on R is Sylvester, so for a
Z-valued rank function p we can apply Prop. 6.13 to deduce that the set
of all non-p-full matrices is a minimal prime matrix ideal. By following
the proof of Prop. 6.13 we see that any minimal prime matrix ideal is the
singular kernel of an epic /Mield which is of the form R®. Finally, any
epic /Mield K gives rise to a Z-valued rank function; if the singular
kernel is 2P, then the minimal prime matrix ideal corresponding to this
rank function is just the minimal prime matrix ideal contained in 9\ The
last part is clear. •

This proof shows incidentally that over a weakly semihereditary ring
every prime matrix ideal contains a unique minimal one.

Exercises

1. Show that every finitely related projective module (over any ring) can be
written as a direct sum of a finitely presented projective module and a free
module.
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2. Show that the trace ideal of a non-zero projective module is a non-zero. Let M
be a finitely presented module, presented as cokernel of a map defined by a
regular matrix. Verify that M is bound, and hence has zero trace ideal.

3. In the proof of Lemma 6.6, show that a = p.

4°. Show that a (left or) right semihereditary local ring is a semifir. Is the same
true for a weakly semihereditary local ring?

5. Show that a ring R has free module type (1,2) (see 1.4) if and only if R
contains an idempotent e such that e is isomorphic to 1 and to 1 — e. Deduce that
the localization of R at the set of all right invertible elements is zero.

6°. The proof of Th. 6.8 shows that a ring with a faithful rank function is weakly
finite. Does every weakly finite ring have a faithful rank function?

4.7 Normal forms for matrix blocks over firs
In the field of fractions K of a commutative integral domain R the
elements have the simple form ab'1, but there is generally no convenient
normal form; the best we can say is that

ab~l = a'b'-1 (1)

if and only if ab' = ba'. When R is a Bezout domain we can take a, b to
be coprime and then (1) holds if and only if (a', b') = u(a, b) for a unit u
inR.

In the case of a general ring R with an epic iMield K, we can compare
the blocks (or systems of equations) determining a given element of K.
The result is rather more complicated than in the commutative case (see
FR, 7.6), but again there are simplifications when R is a fir and K the
universal field of fractions, which will be presented below.

Thus let R be a fir and U its universal field of fractions. We shall now
write a typical element of U as / = c — uA~lv, so the corresponding
block has the form

( c
V

where A is a full matrix over R, n x n say and u e Rn, v e nR, c e R\ n is
called the order of the block. Since the matrices inverted in U are all the
full matrices, the block (2) is admissible (for / ) whenever A is full. The
least order of any block representing / is sometimes called the depth of / .

We note the following changes which can be made to this block without
affecting / :
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(i) We can replace (A, v) by P(A, v) = (PA, Pv), where P is any full
matrix. For we have c — u(PA)~lPv = c — uA~lv. Similarly we can

replace \ by , where Q is a full matrix.

(ii) / / we replace A by A® I, then for any p, q e R,

and I A I represent the same element.
\A v

In fact the matrix on the left can be reduced to the form

by means of operations of the form (i), and the latter is equivalent to the
form (2) by the operation (E.2) introduced in 4.3.

Likewise the operations inverse to (i), (ii), where possible, can be
applied without affecting / . This shows that in (2) A may be replaced by
any matrix stably associated to A. But in (i), P, Q need not be invertible
over R, as long as they are full. This suggests the following definition. We
recall that a matrix A over any ring is called left prime if any square left
factor of A necessarily has a right inverse; right prime matrices are
defined similarly. Now a block (2) and the corresponding representation

of / is said to be reduced if (A v) is left prime and . i s right prime.
\AI

By the chain condition in firs we can by applying the inverse of (i) reduce
any block (2) to one which is reduced. For such a block we have the
following uniqueness theorem.

T H E O R E M 4.7.1. Let R be a semifir and U its universal field of
fractions. Given f e U, if

u c\
A v)

u'
A v) md \A>

are two reduced admissible blocks representing f e U, then A and Af are
stably associated. Further, when R is a firy then any element of U can be
represented by a reduced admissible block.

Proof. The last part is clear, since any block can be replaced by a
reduced block, by the chain condition in R (see FR, Th. 1.2.3, p. 72 and
Lemma 7.6.5, p. 425). Suppose now that the two blocks in (3)
representing / are both reduced, of orders m and n say. Then the block
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where e = c — c', represents zero, as we saw in 4.3. Since R is a semifir,
it follows by Th. 5.11 that we have a factorization

u'
0 v \=m\E\(G H k)m + n, (4)

\)

where the appended letters indicate the block sizes. By (4),
hence by suitable internal modification we find

E = ( £ ' 0), H --

where E' is m x s and H" is (m + n - s) x n. Further, A = EG, and
since A is full, we have s ^ m. Similarly, A1 = FH, and so m + n —
s^z n, therefore s = m. We now partition (and rename) (4) as

m n 1
(Qi 0 ^ \ mu

A
0

u'
0

A'

6 \
V

-V

1
= m\

n

p

m

pr

0
Pi
n

\Q[ Qi q'jn- ( 5 )

Thus (A u) = Pi(Qi q); since (A v) is left prime, P1 is invertible and
by another internal modification may be taken to be / . Similarly
(A' u')T is right prime and so we can take Q'2 = / . Now (5) becomes

It follows that

P2A = -A'Q[. (7)

Since u = pA + u'Q[, any common right factor of A and £>i is also a
common right factor of A and w and so must be invertible. Similarly on
the left, so (7) is coprime, hence comaximal and it follows by Th. 1.5.1
that A and A' are stably associated. •

When just one of the blocks is reduced, we can still obtain some
information:

C O R O L L A R Y 4.7.2. Let R be a semifir with universal field of fractions
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U and consider two admissible blocks (2) for the same element of U. If the
first block is reduced, then A is stably associated to a factor of A'.

Proof We again have a factorization (5), where now P1 can be taken to
be / ; thus we have

where the dimensions are as before, because both A and Af are full.
Hence we have

P2A = -P'2Q[, A' = P'2Q'2. (8)

Here the first relation is right prime, because u = pA + p'Q[. It follows
that A is stably associated to a right factor of Pf

2 and hence to a factor of
A', by the second equation (8). •

If a ring R has a universal field of fractions U, its singular kernel is the
unique least prime matrix ideal of R and so is contained in the singular
kernel of any other R-field. This is so in particular when R is a fir; in that
case we can always find a universal denominator.

T H E O R E M 4.7.3. (Universal denominators). Let R be a semifir and
U its universal field of fractions. If an element f of U can be defined by a
reduced block a and there is a block for f which is admissible over an epic
R-field K> then the block a is also K-admissible. In particular this holds
for all elements of U when R is a fir.

Proof. Let f e U and let or be a reduced admissible block for / , and
suppose that a' is any ^-admissible block for / . Then af is also
^/-admissible, by Cor. 4.2, and if the denominators in a, a' are A, A'
respectively, then A is stably associated to a factor of A', by Cor. 7.2.
Since Af $ Ker K, we have A £ Ker K, so a is ^-admissible, as claimed.
By Th. 7.1, a reduced block for / always exists, when R is a fir. •

The denominator of a reduced admissible block for / is called a
universal denominator for / .

Exercises

1. Let R be a semifir and U its universal field of fractions. Show that for p e U,
the depth d{p) satisfies the relation d(p + q) ^ d(p) + d(q), with equality
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whenever p, q have denominators (in some block representation) that are totally
coprime, i.e. have no similarity class of factors in common.

2. Let R be a ring with an epic R -field K, and let 2 be the complement of the
singular kernel. Show that the solution un of a system Au = 0 of order n (with
w0 = 1) is unaffected if A is multiplied on the left by a matrix in 2, or on the right
by a matrix of the form 1 0 Q © 1, where Q e 2, or by adding a right multiple of
columns 1 to n — 1 to the first or last columns.

3. Let R be a semifir and U its universal field of fractions. A system Au = 0 is
said to be reduced if A is left prime and its core is right prime. Show that two
reduced systems determine the same element of U if and only if we can pass from
one to the other by the operations listed in Ex. 2 and their inverses.

4. Let R be a semifir which is a local ring but not principal, with universal field of
fractions U. By considering elements of the form ^a~x show that there are
elements of any prescribed depth in U.

Notes and comments
Until about 1970 the only methods of embedding rings in skew fields,
apart from Ore's method, were topological (see 2.4, 2.6). In Cohn [71] it
was proved that any fir could be embedded in a field by inverting all full
matrices, and this was shown to be a universal field of fractions in Cohn
[72]. Matrix ideals were developed in the 1971 Tulane Lecture Notes
(Cohn [72']), and the key result, that every prime matrix ideal over a ring
R occurs as singular kernel of an epic /Mield, was proved later that year
(Cohn [71"]), a connected account being given in the first edition of FR.
This proof constructed the field as a group and then used Lemma 1.1.1. A
more direct method was found by Malcolmson [78] and independently by
Gerasimov [79]; this (in a slightly simplified form) is also the method used
here in 4.3.

The field spectrum of a general ring was defined as a topological space
by Cohn [72'], in analogy to the commutative case, where it reduces to
the familiar prime spectrum of a ring. The prime spectrum of a
commutative ring was characterized as a topological space by a set of
axioms by Hochster [69]; in Cohn [79] it was shown that Spec(/?) for any
ring R satisfies Hochster's axioms and that an affine scheme on R can be
constructed. The theorem on universal denominators (Th. 7.3) can then
be used to show that for a fir every global section of this scheme is
rational (see FR, p. 488); whether every rational section is integral is not
known, even for the case of free algebras. This question is related to the
existence of fully algebraically closed fields (see 8.1).
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The route to the universal field of fractions followed in 4.5 aims to
bring out clearly at which points the various hypotheses are needed. It
leads naturally to Sylvester domains, which were introduced by Dicks and
Sontag [78]. The law of nullity for matrices over a commutative field was
established by Sylvester [1884]. The properties of the rank function in 4.6
are taken from Schofield [85], while the construction of rank functions
(Lemma 6.6) is taken from Cohn [90']. The equivalence (b)<^>(c) in
Th. 6.8 was first proved generally by Malcolmson [80]; for regular rings it
goes back to Goodearl [79], Th. 18.3. A direct proof is given in FR,
Prop. 0.2.2.

A study of numerators and denominators is made in Cohn [82], where
the theorem on universal denominators (Th. 7.3) is also proved, using
systems of matrix equations. It has been replaced here by the slightly
simpler proof in terms of matrix blocks, using the normal form theorem
(Th. 7.1), which was obtained in discussions with M. L. Roberts.



Coproducts of fields

One of the main results of Ch. 4 stated that every semifir has a universal
field of fractions. This is now applied to show that every family of fields
all having a common subfield can be embedded in a universal fashion in a
field, their field coproduct. We begin in 5.1 by explaining the coproduct
construction for groups (where it is relatively simple) and for rings, and
derive some of the simpler consequences when the common subring is a
field. When the factors themselves are fields, an elaboration of these
results will show the ring coproduct of fields to be a fir (by an analogue of
the weak algorithm, see Cohn [60, 61]), but we shall not follow this route,
since it will appear as a consequence of more general later results.

The study of coproducts requires a good deal of notation; some of this
is introduced in 5.2 and is used there to define the module induced by a
family of modules over the factor rings and compute its homological
dimension. In 5.3 we prove the important coproduct theorems of
Bergman [74]: If R is the ring coproduct of a family (Rx) of rings, taken
over a field K, then (i) the global dimension of R is the supremum of the
global dimensions of the factors (or possibly 1 if all the factors have global
dimension 0) (Th. 3.5), (ii) the monoid of projectives ^(R) is the
coproduct of the 9>(#A) over <d>(K) (Th. 3.8). As an immediate
consequence we have the theorem that a coproduct of firs over a field is a
fir (Th. 3.9), which tells us in particular that a coproduct of fields is a fir.

The coproduct may be regarded as a special kind of tree product. We
shall not take up this topic in general, but confine our attention to one
important case, the HNN-extension. This construction, first carried out
for groups by Higman, Neumann and Neumann [49], is described for
fields in 5.5 and for rings in 5.6. It allows us to embed any ring in a simple
ring and any field in a homogeneous field.

In 5.7 we return to the Bergman coproduct theorems and show how

202
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they can be used to determine the effect of adjoining elements or of
localizing on the global dimension and the monoid of projectives. This
leads to a simple method of constructing rings to given specifications, for
example it provides a source of integral domains not embeddable in
fields. Next we turn to derivations and in 5.8 we define the universal
derivation bimodule of a ring and examine its relation to the correspond-
ing bimodule formed from a homomorphic image. As an application we
show that the number of generators of a free field is an invariant.

The results of 5.3 and 5.7 are used in 5.9 to construct field extensions of
different left and right degrees, taking first the case where one degree is
finite and the other infinite and then the (rather harder) case where both
are finite.

The final section 5.10 examines the special case in which the coproduct
of fields is a principal ideal domain. This is so precisely when there are
just two factors, both of degree 2. It may be viewed as an analogue of the
situation in groups, where a free product of two cyclic groups of order 2 is
the infinite dihedral group.

5.1 The coproduct construction for groups and rings
Let si be any category; we recall the definition of a coproduct. Given a

family (Ak) of objects in si, suppose that an
object 5 exists with maps uk\ AA—> 5 such
that for any family of maps cpx\ Ak^> X to
the same object X there is a unique map / :
S —> X satisfying cpk = ukf. Then S with the
maps ux is called the coproduct of the family
(Ax) and is denoted by LiAk, or by
A1 u. . . u An in the case of a finite family.

Thus we have a bijection

E X A M P L E S . The coproduct of sets is the disjoint union; for abelian
groups we obtain the direct sum (also called the restricted direct product),
for general groups we have the free product, but this case will be taken up
in more detail in a moment.

Often we need an elaboration of this idea. Let A' be a fixed object in si
and consider the comma category (K,si): its objects are arrows K —» A
(A e Ob si) and its morphisms are commutative triangles:
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This category has the initial object K -> K;it reduces to si when K is an
initial object of si. Now the coproduct in (K,s£) is called the coproduct
over K. E.g. for two objects in (K, si) the coproduct is just the pushout:

K >A

Let us consider coproducts over a fixed group K in the category of
groups. This means that we have a family of groups (GA) and homo-
morphisms ix: K —• GA and the coproduct C with maps ux: GA—» C is a
sort of 'general pushout'. Its existence is clear: we take presentations for
all the groups GA (on disjoint generating sets) and then obtain a
presentation for C by taking the union of the presentations of the GA

together with all relations of the form xix = xi^ (x e K), which identify
the images of K. Clearly any element of K mapped to 1 by any ix must be
mapped to 1 by every wA, so by modifying K and the GA we may as well
assume that each ix is injective; this means that K is embedded in GA via
ix. If in this situation all the ux are injective, the coproduct is called
faithful. If moreover, Gxux (1 G^u^ = Kix for all A ^ ^, the coproduct is
called separating. These definitions apply quite generally for concrete
categories (i.e. categories where the objects have an underlying set
structure). A faithful and separating coproduct of groups is usually called
a free product, and a basic result, due to Schreier [27], asserts the
existence of free products of groups. Although this result will not be
directly needed here, we shall outline the proof, since it is very similar to
the corresponding proof for the coproduct of fields, which we shall soon
meet.

T H E O R E M 5.1.1 (Schreier). The coproduct of groups (over a fixed
group) is faithful and separating.

Proof (outline). Let (GA; A e A) be the family of groups, where GA has a
subgroup Kx which is isomorphic to the base group K. We can write
down a normal form for the elements of the coproduct C as follows.
Choose a left transversal for Kx in GA of the form 5AU{1}, thus
GA = Kx U SXKX. Then every element of C can be written in just one way
as
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. • snc, where n ^ 0, st e SA., Af-_! =£ Xh c e K, (1)

where the different Kk are identified with K for convenience. It is clear
how to write any element of C in this form. The uniqueness can then be
proved by defining a multiplication of the expressions (1), which consists
in a set of rules reducing the formal product of two such expressions to
normal form and verifying that one obtains a group in this way. A quicker
way (v.d. Waerden [48]) is to define for each A e A a group action of GA

on the set of expressions (1):

5 . . . 5 C ' £ = J 1 ' " " P " g ~ P A'
1 n [̂ i • • • sn_xspc' if An = A and 5ncg = spc' in GA,

with the understanding that sp is to be omitted if cg e Kk, or in the second
case, if sncg e Kk. Now it can be verified that these group actions agree
on Kx and hence combine to give a C-action on the set of elements (1).
For n = 0 and c = 1, (1) reduces to 1 and by considering the effect of the
group action on 1 we see that the coproduct is faithful and separating. •

Our aim in this chapter is to study the coproduct of rings. Let K be a
fixed ring and consider K-rings; we shall usually want our A-ring R to be
faithful, i.e. the natural map K —> R should be injective. For example, if
K is a field, any non-zero K-ring is faithful; this is the case we shall
mainly be concerned with, but at first we place no restriction on K. As in
the case of groups, we can establish the existence of the coproduct of a
family of K-rings (Rx) by taking a presentation for each K-ring Rx in our
family and writing all these presentations together, as well as the relations
identifying the images of K; but the coproduct need not be faithful or
separating. Before finding conditions ensuring this we look at some
examples; we shall use * to denote the coproduct of rings.

1. Let A: be a commutative field, K = k[x], where x is a central
indeterminate, R = k(x) the rational function field, S = k[x, y;xy =0].
In R * 5 we have y = 1 • y = x~l • xy = 0, so 5 is not faithfully repre-
sented in the coproduct.

2. The inclusion Z C Q is an epimorphism of rings, and by Prop. 4.1.1,
we have Q * Q = Q. Hence the coproduct is faithful, but not separating.
More generally this applies for any ring epimorphism.

When the coproduct is faithful and separating, we shall sometimes call
it the free product (as for groups). Thus the question is: When does the
free product of rings exist? We begin by giving a necessary condition; for
simplicity we limit ourselves to two factors:

Let /?!, R2 be faithful A-rings. If their free product is to exist, we must
have

cxa, ac2 e K => cxa • c2 = cx- ac2 in K, for all ct e Rh a e K.
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Clearly this also holds with Rx and R2 interchanged, and more generally,
for matrix equations. If we take all implications of a suitable form we can
obtain necessary and sufficient conditions for the free product to exist,
but they will not be in a very explicit form. Syntactic criteria of a rather
different form have been obtained by P. D. Bacsich and D. R. Hughes
[74]; see also W. A. Hodges [93], 8.6.

We now come to a simple sufficient condition for the existence of free
products of rings, which will be enough for all the applications we have in
mind. In essence it states that the free product of a family (Rx) of faithful
K -rings exists provided that each quotient module Rx/K is free as right
AT-module.

We shall first consider the case of two factors, where the coproduct
takes a particularly simple form. Thus we have R — Rx * R2; we shall use
the following convention. For any positive integer v, Rv is to mean Rx if v
is odd and R2 if v is even. Further we abbreviate the quotient module
Rv/K as Rv. By assumption, Rv is free as right /^-module and we shall
take a right A -̂basis of Rv and lift it to Rv; in this way we get a right
A'-basis of Rv including 1, which we shall write as Tv U {1} (v = 1, 2).

Next we define a filtration on R. By definition every element of R may
be written as a finite sum of products

axa2 ...an, (2)

where av is the image of an element of Rv under the natural homomorph-
ism i?v—> R. We put Ao = K and let An be the set of all sums of such
products (2) with n factors, for n = 1, 2, . . . . It is clear that An is a
A'-bimodule and provided that Rv =£ K for v = 1, 2, we have

Ao C A, C A2 C . . . , AAj £ Ai+j9 [JAn = R. (3)

Thus (An) is a filtration of R. Since Rn is free as right ^-module, we
have Rn = K © TnK and An is a free right A'-module with basis tx . . . fv,
where ^ e ^ U {1}, tt e Tt for i > 1 and v = 1, 2, . . . , n. The fact that tt

and ti+1 do not lie in the same factor Rv ensures that there is no
cancellation between them. Thus An/An_x has a basis consisting of all
products tx . . . tn, where tx e Tx U {1}, tt e Th i = 2, . . . , n9 and it
follows that

AjAn-i S /?! ® £2 (2) £3 <g> . . . ® /?„. (4)

This shows in particular that JR1? i?2
 a r e embedded in i?, and identifying

them with their images, we see that Rxr\ R2 = K. Thus we have

T H E O R E M 5.1.2. Let K be any ring and Rl9 R2 faithful K-rings such
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that Rv/K is free as right K-module (v = 1, 2). Then the coproduct Rx * R2

is faithful and separating. •

It will be convenient to have a second filtration (Hn) on R. We put
Ho = K, H_x = 0 and for n = 1, 2, . . . define Hn as the set of all sums of
products (2) with n factors, where at e RX\J R2. The Hn are again
A^-bimodules and the conditions for a filtration are easily checked:

0 = ff.x C tf0 C tfx C . . . , HtHj C Hi+j9 [JHn = R.

With each a e Rx we associate a non-negative integer h(a), its height, by
the rule

/i(fl) = n if and only if a 6 H^H^.

We also assign a height to 0 by putting h(0) = — oo. It is clear that we
have the inclusions

H0CA1CHlCA2G...CHn_lC:AnCHnCZ...,

and from the relations between Hn and An we obtain the natural
isomorphisms

AjHn.x = /^ ® fl2 <8> . . . <8> £„, (5)

HjAn = fl2 ® fl3 ® • • • ® ^ n + i ? (6)

and

HjHn.x = AnlHn_x 0 Hn/An. (7)

Suppose that n is even; then the last factor on the right of (5) is R2 and
we shall denote the submodule of Hn corresponding to the first term on
the right of (7) by H1? and the submodule corresponding to the second
term by H2*; when n = 0, HJ2 = H2$ = Ho by convention. When n is
odd, we can form H1^ and H22 in the same way; thus H^ is the sum of
products of at most n factors, the first one in R^ and the last in Rv. It is
clear that if H^ is defined, then \i + v= n + 1 (mod2), so for given n,
each of //, v determines the other and we shall often write simply H% or
H'„ for H^v. The elements of H^ which are of height n (i.e. those
corresponding to a non-zero element on the right of (7)) are called left
li-pure or right v-pure or more precisely, pure of type {pi, v), where we
may also write (fi, •) or (•, v) instead of {pi, v). As an example, if c is any
element of R of positive height n, then we have a decomposition

c = c' + c\ c'eHl
n, c"eH2

n. (8)

Here c', c" are not unique, but either is determined up to an element of
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By a monomial unit in R we understand a unit which can be expressed
as a monomial (2). Soon we shall see that in a coproduct of integral
domains over a field every unit is a monomial unit. An element c of R is
said to be right reduced if h(cu) ^ h(c) for every monomial unit u\ left
reduced is defined similarly.

Our next result provides information on the height of a product:

T H E O R E M 5.1.3. Let K be a field and R = Rx* R2 the coproduct of
two integral domains Rl9 R2 over K. Then for any two elements a, b of
positive height in R we have

h(ab) ^ h{a) + h(b) with equality unless a is right v-pure and

b is left v-pure (v = 1, 2). (9)

Further, if a is right v-pure and b is left v-pure (v = 1, 2), then

h(ab) ^ h(a) + h(b) - 1, (10)

with equality if either a is right reduced or b is left reduced.

Proof Write h(a) = r, h(b) = s; it is clear that h(ab) ^ r + s. If this
inequality is strict, then

ab ^

Let us write a = a' + a\ where a' e Hr\ a" e Hr
2 and b = b' + b",

where V e Hl
s\b" e H2

S\ Then

ab = a'b" + a"b' = 0 (mod Hr+S_x).

Since the two summands are (zero or) pure of different types, we may
equate them to zero separately:

Suppose that a' $ Hr_x and write a' = ^A^i + <**> where Xx e K,
a* e Hr_Y and the at are right linearly independent (mod //r_!) over K.
We then have ^Jaikib't = Q (mod//r+5_!), hence X{b

fl e Hs_x. Since
a1 $ Hr_u not all the A, vanish, say Ax # 0 . Then b" = k±l • kxb" e Hs_x

and so either a' e Hr_x or b" e Hs_x\ similarly, either a" e Hr_x or
b' e //5_i. If a' e Hr_u then a" $ Hr_x (because h{a) = r) , and so
br e Hs_x; this means that a is right 2-pure and b is left 2-pure. Similarly,
if b" e Hs_x, then b is left 1-pure and a is right 1-pure, so (9) is
established.

Suppose now that a is right 1-pure and b is left 1-pure; then (10) clearly
holds. Assume further that b is left reduced. We can write a as a finite
sum
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a = ^Za"x't, where a" e Hr\, x\ e R1.

For a is congruent (mod Hr_x) to such an expression, but any element of
Hr_x may also be written in this form. Now if h(ab) < r + s — 1, then

ab^^a'lxlb^O (mod Hr+S_2).

Let us write 0" = ^,ahtihi + af, where \ihi e K, afe Hr_2 and the ah are
right linearly independent (mod Hr_2) over K. This implies that each ah is
right 2-pure and

5>«*,* = 0 (mod Hs^) for all h. (11)

We have

Let us put *fc = 2^Ai^/j fl* = l£a?Xh then *A e Rl9 a* e H'r\ and

a = ^ahxh + a*. (12)

The congruences (11) now take the form

xhb = 0 (mod //5_i) for all h. (13)

By symmetry b may be expressed as

where yk e Rl9 bk is left 2-pure of height 5 - 1 and b^ e H]'^. Further,
the argument that led to (13) now shows that

xhyk = 0 (mod Ho) for all h, k. (14)

Since h(a) = r, (12) shows that the xh are not all zero, say xi =£ 0.
Similarly we may suppose that yl ^ 0; then w = x^x e K by (14), hence
X\y\U~l = 1 and JCX is a unit in /?!; similarly yx is a unit, so by (13), b is
not left reduced, which contradicts the hypothesis. The same argument
gives a contradiction if a is right reduced, and the conclusion follows. •

C O R O L L A R Y 5.1.4. Let K, Rlf R2 and R = Rx* R2 be as in Th. 1.3.
Given a right reduced element a in R, we have

h(ab) ^ h(a)forallb e Rx. (15)

Moreover, R is an integral domain and every unit in R is a monomial unit.

Proof. UbeKx, then h(ab) = h(a) and (15) holds. Otherwise h(b) > 0
and (15) is a consequence of (10). In particular, since every non-zero
element is right associated to a right reduced element, R cannot have



210 Coproducts of fields

zero-divisors. Finally, if a is a unit of positive height and right reduced,
then h(a) > h(a • a'1), which contradicts (15), hence such an a has zero
height. This shows that every unit in R is a monomial unit. •

Exercises

1. Show that any category with coproducts has an initial object.

2. Let A, B be monoids containing submonoids isomorphic to a group C. Show
that the coproduct of A and B over C is faithful and separating (for an
appropriate definition of the latter).

3. Show that in a free product of groups any element of finite order has a
conjugate lying in one of the factors.

4. Let k be a commutative field and Ri = k(xi, x2, y\, y2) be a free algebra.
Show that the subalgebra Si generated by the elements fy = xtyj (i, j = 1, 2) is free
on these four generators. Let R2 be the /c-algebra generated by six elements a, b,
Uj (*> / = 1> 2) with the defining relations tn — at2\ — t12b + at22b = 0. Show that
the subalgebra S2 generated by the ttj is again free on these generators. Verify that
R2 is an integral domain (like Ri) and that their coproduct Rx * R2 over the
subalgebra generated by the fy is faithful and separating, but has zero-divisors.

5. Let A be the skew group ring of the infinite cyclic group with generator t over
C with commutation rule it — t~li. Express A as coproduct of two copies of C
overR.

6. Let K be a field, Rk a family of integral domains which are ^-rings and
R = * Rk their coproduct. Show that any (left or) right algebraic element over K
is conjugate to an element in one of the factors. Give an example of an element
conjugate to an algebraic element in R^ which is not itself algebraic.

7. (After B. H. Neumann [54]) Let A: be a commutative field and put Kx =
k(x,y;xyx = y), K2 = k(y, z\ yzy = z), K3 = k(z, x; zxz = x). Show that the
ring coproduct R of Ki, K2, K3 amalgamating k(x) in Ki and #3, k(y) in Kx

and K2 and k(z) in K2 and K3 is faithful and separating, but is not an integral
domain. (Hint. Form &(§, 77, £) as a field in three central indeterminates and
successively adjoin x with I(x): ^ i - ^ " 1 , x2 = £, then y with I(y): x>-*x~l,
y2 = 77, then z with I(z): x >-* x^1, y •-> y"1, z2 = £; now verify that (xyz)2 = 1.)

5.2 Modules over coproducts
We now begin a more detailed study of coproducts of arbitrary families
and first introduce a systematic notation. We write Ro instead of K and
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take a family (Rx) of Tarings, where A runs over a set A. We shall write
Ao = A U {0} (assuming of course that 0 $ A), and write A, A' etc. for a
general element of A and pi, pi' etc. for a general element of Ao. We
abbreviate *, (g)̂  as *0, ®^ and call i?0 the base rmg and i?A the factor
rings of the °coproduct R = *0 Rx. Further, we shall often write M® for
M^ ®llR, where M^ is an /^-module.

By an induced module over the coproduct R we understand an
/^-module of the form M = ©^M®, where M^ is an ^-module. An
induced /^-module of the form Mf or an JRA-module of the form
Mo ®0 Rx is called a basic module. Thus for example, every free
#A-module is basic, Rx = RQ <8>0 ^A and every free R-module is induced,
as well as basic: Rn = R®n.

It is easily seen that an induced module M = ©MJf has the following
universal property:

Given an R-module N and a family of R^-homomorphisms f^: M^ —» N
(pi e Ao), there is a unique R-homomorphism f:M^>N such that the

triangle shown commutes for all pi e Ao.
For the map fa M^—»N extends to a

map from M® to iV by the universal
property of the tensor product and these
maps combine to give a map of the direct

k# sum M = ©M® into N.
We remark that for this property to hold, R may be any ring with

homomorphisms /?A—» R which all induce the same map on Ro, in other
words, R may be any homomorphic image of the coproduct. However,
when R is the coproduct (and the Rk satisfy the conditions of Th. 1.2), we
shall prove that the maps M^—» M are injective; this will also provide
another proof of Th. 1.2.

Thus we shall assume that each Rx is a faithful /Vring, and identifying
Ro with its image in i?A, we assume that RJRQ is free as right /Vmodule.
We take again an iVbasis of RjRo and lift it to Rx to get an /Vbasis of
Rx of the form Tk U {1}. The union of the Tx will be written T. Next let
M^ be a right /^-module, free as /?0-module, and write M = ©Afjf. For
each M^ we have an iVbasis 5^ and we write S for the union of the 5^.
We observe that when Ro is a field, all assumptions are satisfied, provided
that the factors Rx are all non-zero. The members of Tx or 5A are said to
be associated with the index A; elements of So are not associated with any
index.

We claim that the induced module M = © M jf is a free /Vmodule
with a basis consisting of all products of the form

stx... tn, 5 6 5 , tteT9 n^ 0 , ( 1 )
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where no two successive factors are associated with the same index. These
products (1) are called monomials and the set of all such monomials is
denoted by U.

Let F be the free 7?0-module on U as basis. To prove our claim it will
be enough to verify that F has the universal property of induced modules,
but we first have to define the R -module structure on F. For this it is
enough, by the definition of R as a coproduct, to define for each A an
/?A-module structure on F which extends the given /^-module structure.
A monomial u e U is said to be associated with A if its last factor (an
element of S or T) is associated with A. The set of all elements of U not
associated with A is denoted by f/A; these are the monomials which when
multiplied by an element of Tx on the right, give again a monomial. For
any fixed \i e AQ we may write F as

F = S^R0®(U\S(i)R0; (2)

here the first term on the right may be identified with M^ and so may be
given an /^-module structure. For \x = 0 the second term on the right of
(2) is a free iVm°dule. We claim that for A ¥* 0, (U\Sx)Ro has a natural
structure as free /?A-module. To see this we observe that U\SX is the
disjoint union of Ux and UkTk, hence

(U\SX)RO = UkR0 0 UXTXRO,

and since Tx U {1} is an TVbasis of i?A, we find that (U\SX)RO becomes a
free /^-module with basis Uk in this way. Thus F has an /^-module
structure for each A, extending the given /?0-module structure, and hence
Fis an R-module.

It remains to verify the universal property of the induced module
0 M ® for F. Let fa M^ -^ N (fie Ao) be any family of /?0-linear maps of
MM into Af and define f:F^>Nasan i?0-linear map on the basis U by
the rule

(stx . . . tn)f = (sf(i)t1 ...tn, i t s eS^.

It is clear that / is /^-linear for all \i and hence R-linear. Thus we have
proved

L E M M A 5.2.1. Let R = *RX be the coproduct of a family (Rx) of
faithful Ro-rings, where RjR$ is free as right Ro-module with the image of
Tx as basis, and let M = 0MJf = ©M^ <8̂  R be an induced R-module,
where each M^ is free as right Ro-module with basis S^ Then M is a free
right RQ-module on the set U of monomials as basis, where U is defined as
above in terms of the bases T ={JTX and S = Us^. Moreover, for each
A e A, MA is embedded in M by the canonical map and there is a direct
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sum decomposition M = Mk © M[, where M\ is a free Rr module on Ux

as basis. •

For basic R-modules we shall need a slight variant of this result.

L E M M A 5.2.2. Let Rh R, T be as in Lemma 2.1 and let Mo be a free
right Ro-module with basis Qo. Suppose further that for each A e A,
another R0-basis <20A of Mo is given. Then Mf = Mo ® R is a free
RQ-module with a basis consisting of all products

qtx... tn, tteZn^O,

where no two successive tt are associated with the same index and if tx is
associated with A, then q e QOh while for n = 0, q e Qo.

This follows in the same way as Lemma 2.1; we just have to use the
basis QOA in defining the ^-module structure on M®. •

If we apply Lemma 2.1 with MA = Rk we see that the coproduct is faith-
ful. To verify that it is separating, we take Mo = Ro, Mx = 0 (A e A); then
we find that M = R has an /?0-basis consisting of all monomials t1t2 . . . tn,
where tt e T and no two neighbouring factors are associated with the
same A. Thus if 1, 2 e A, 1 =£ 2, then the /^-module Ri © ^2 has as basis
r 1 u r 2 U { l } , hence R1d R2 = Ro and this shows the coproduct to be
separating. Thus we have proved

T H E O R E M 5.2.3. Let Ro be any ring, {Rx\XeA} a family of faithful
RQ-rings and R = * Rx their coproduct. If the quotient modules RJRQ are
free as right Ro-modules, then the coproduct is faithful and separating and
for each JX e AQ = A U {0}, the quotient R/R^ (hence also R itself) is free
as right R^-module. •

When Ro is a field, the case of main importance to us, all the conditions
are clearly satisfied, because every module over a field is free, so we
obtain

C O R O L L A R Y 5.2.4. The free product of any family (R^) of non-zero
rings over a field Ro exists and is left and right free over each R^. •

Th. 2.3 provides a means of finding the homological dimension hd# of
induced R-modules, for a coproduct R:

P R O P O S I T I O N 5.2.5. Let R — * Rx be a coproduct of non-zero R0-rings
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Rx, where Ro is a field, and let M = © Af ® = © Af,, <g>M R be an induced
R-module. Then

Proof. Clearly it suffices to show that hdR(M®) = hd^M^. Now R is left
free, hence left flat, over R^, therefore - ®^ R converts a projective
/^-resolution of M^ to a projective /^-resolution of M® and so
hdfl(MJf) =̂  hd^MM. To show that equality holds, we observe that since
R is right /^-projective, any /^-projective resolution of M® is also
/^-projective, hence hd#(Af?) ^ hd^ (M ®), but the latter equals
hd^M^, because M^ and Atf differ only by an /^-free summand, by
Lemma 2.1. •

Exercises

1. Verify that the coproduct R = * R^ over a field Ro is flat as (left or) right
/?A-module; deduce the analogue of Prop. 2.5 for the weak dimension.

2. Let L = E £ F be any field coproduct. If an element A e K has a square root
in £ and in F but not in K, say X= a2 = b2 (a e E, b e F), show that £ = c-1ac,
where c = a + b. Suppose that K contains a primitive fourth root of 1; show that
any root of x4 — A = 0 in L is conjugate to an element in either E or F.

3. Let k be a commutative field with a primitive cube root of 1 and put E = k(x),
F = k(y), K = k(t) for indeterminates x, y, t, and put L = E £ F, where A" is
embedded in E by mapping ^i-»x2 and in F by mapping * •-> v3. Show that L
contains an element of degree 6 over K. (Hint. Use Ex. 7 of 2.2. Explicitly put
z = xy'1, q = z2 - y, v = q~lzq - z and verify that v6 = t. Note that this result
is in contrast with the situation in groups, where a theorem of Kurosh [34] states
that any subgroup of a free product of groups is a free product of a free group and
of groups that are conjugate to subgroups of the factors.)

5.3 Submodules of induced modules over a coproduct
From now on we shall assume that the base ring Ro is a field. In that case
the hypotheses of Th. 2.3 all hold, and for any family (Rx) of non-zero
/?0-rings the coproduct R = * Rk is faithful and separating. We shall
continue to use the notation of 5.2; thus T — L)TA, where Tx U {1} is an
/Vbasis of /?A, Rx = Ro® TXRO, and if M = 0Afjf is an induced
module, we have an /?0-basis S^ of M^ and S = U ^ . Further, M itself
has the /?0-basis U of monomials, thus M = Mk © UxRx for any A e A,
hence for any u e Ux we have a projection map Px(u): M —> Rx, which
maps x e M t o the coordinate in Rx of the monomial u in x. Similarly,
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M = UR0 and we have a projection map po(u): M -* Ro. We shall write
U° for U, so that there is a projection map p^ for each element in U^.

For any subset X of M we define its \x-support as

%(X) = {u e U^xp^u) ± 0 for some x e X).

In particular this defines the ^-support of an element of M. The 0-support
is also called the support: %(X) = (3)(X). We note that any finitely
generated i^-submodule of M has finite ^-support. From the definition it
is also clear that the A-support of an element x of M is empty precisely
when x e MA, while its 0-support is empty precisely when x = 0.

The degree of a monomial stx . . . tn is defined to be n. We choose a
well-ordering of A and of 5, T and then well-order U by degree, with
monomials of the same degree ordered lexicographically, reading from
left to right. Given x e M, if x =£0, we can write it as an i?0-linear
combination of the monomials in its support. The greatest such term, in
the well-ordering of U, is called its leading term, its degree the degree of
x, written degjc. If degx = n and all terms of degree n are associated
with A, x is called k-pure; thus if x is not A-pure, there are terms of
degree n whose monomial is in Uk. The greatest such term is called the
leading co-k term. If x is A-pure for some A, it is called pure; otherwise it
is called impure or also 0-pure and its leading term is then called the
leading co-0 term. We note that a A-pure element of degree n has a
A-support consisting of monomials of degree < n, while a 0-pure element
has a 0-support consisting of monomials of degree ^ n.

We shall need to know the effect of acting on M with the basis T; it
will be enough to look at the case when there is no interaction:

L E M M A 5.3.1. Given an induced R-module M = 0 M M over a co-
product R = * Rk, let y e M be not Xrpure, with leading co-Xx term u
which occurs in y with coefficient 1, thus ypk\{u) = 1. If tte Tk. for i = 1,
2, . . . , n and successive A, are distinct, then ytx . . . tn is Xn-pure and has
leading term utx . . . tn, again with coefficient 1.

Proof. By induction it is enough to prove the result for n = 1. We shall
write t for tx and A for A:; thus we have to show that yt is A-pure with
leading term ut, with coefficient 1. If y = u, this is clear; if y ¥= u, then y
contains a term vc, where y is a monomial ^ u and c e Ro, thus
vet e vR0. If v (unlike u) is associated with A, then vet has degree
< degw + 1 = degwf, so ut comes after vet. Otherwise v e Ux and then
v < u because u is the leading co-A term of y. The product vet will be an
i?0-linear combination of terms vt\ f ' eT A U{l} ;by the ordering of U
these terms are < ut, so ut, which occurs with coefficient 1, is the leading
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term of yt. Further, the terms ut' with t' i=> 1 are like ut associated with A,
therefore yt is A-pure. •

In studying the submodules of an induced module we shall be
particularly interested in those that are themselves induced. The next
result gives a sufficient condition:

P R O P O S I T I O N 5.3.2. Given an induced R-module M = 0 M ® over a
coproduct R = * Rh let L^ be an R^-submodule of M with the following
properties. For each JUEAQ,

(AM) All members of L^ are pi-pure,
and for any pi, pi' e AQ,

(B^) The pi'-support of L^ contains no monomial u which is also
leading co-pi' term of a (non-pi'-pure) element xa, where x e L^
a e R, and if pC = fi, then also deg xa > deg x.

Then the natural map 0 L ^ ^L^R C M is an isomorphism.

A family of modules (L^) in M satisfying A^ and B^ is said to be
well-positioned.

Proof Given pi e Ao, for each monomial u that occurs as leading term of
some element of L^ we choose an element q e L^ having u with
coefficient 1 as leading term and write Q^ for the set of all such q. By the
well-ordering of U and by A^ it follows that Q^ is an /?0-basis of L^.

The leading term of q e Q^ will also be called its 'key term'. When
u =£ 0, this is also the leading co-pi' term of q for all pi' =£ pi. An element of
Lo, being 0-pure, has likewise a leading co-A term for all A e A, but for
some A this will not equal its leading term (if the latter is A-pure), and we
shall need to modify <20 in this case. For any A and any monomial u which
is leading co-A term of a member of Lo we choose q e Lo having u as
leading co-A term, with coefficient 1, and denote the set of all such q by
(20A. Each such <20A is again an /?0-basis of Lo. By the 'key term' of a
member of g0A we shall mean its leading co-A term. Now let V be the set
of all products

qtx . . . tn, where n ^ 0, tt e Tk. and A, =£ Ai+1 and either

(i) n = 0 and q e Q^ for some /i, or L n\
(ii) n ^ 1, q e Qok and A = Ax or
(iii) n ^ 1, q e Qx and A =£ Ax.

If qti . . . tn is as in (1) and the key term of q is u, then the leading term
of qti . . . tn is utt . . . tn, by Lemma 3.1. We claim that the members of V
have distinct leading terms and so are /^-linearly independent. If two
distinct elements of V have the same leading term, then we have an
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equation of the form

utx...tm = u't[ ...t'ninU.

Here we may take ra ^ ft, say m = n + r. Then this equation reduces to

it f i . . . fr = u'.

Let q e L^, q' e LM, correspond to u, uf respectively and consider the
following cases:

Case 1. r >0 . If /i' =£0, then tr e 7^, so the //-support of q' e 7>
contains utx . . . tr_x which is also the leading CO-JU' term of the
non-ju'-pure element qtx . . . tr_x and this contradicts B^. If // = 0, then
since the support of q' e Lo contains utx . . . tr which is also the leading
term of the pure element qtx . . . tn we again have a contradiction to B^.

Case 2. r = 0. Then u = u' is associated with A, say, and q,q'e
Qx U (2o//> where /i is the index associated with tx — t[\im> 0, while for
m = 0, QOfi = Qo- By the construction of the Qs, \i q^h q\ they cannot
belong to the same set, say q e Q^, qf e QOfi. Then the support of q' e Lo

contains a monomial u which is also the leading term of a pure element
q -1, where q e LA, and this contradicts Bm.

This shows that the elements of V have distinct leading terms and so V
is an iVbasis of ^L^R, as we wished to show. •

With the help of this result we can show that every submodule of an
induced module is itself induced:

T H E O R E M 5.3.3. Let R = * Rx be the coproduct of a family (Rk) of
non-zero rings over a field Ro. Then every submodule of an induced
module has an induced module structure. More precisely, if M = 0MJf =
©M^ ®M R, where MM is an R^-module, then for any R-submodule L of
M there is an R-submodule L^ of L (for all \i) such that the natural map

f-*L (2)
is an isomorphism.

Proof Let M be as stated and let L be any /?-submodule of M. For each
A e A let Vk be the set of monomials occurring as leading co-A terms of
non-A-pure elements of L, and denote by LA the set of all elements whose
A-support does not contain any element of Vk. Clearly Lx is an
jRA-submodule of L whose members are all A-pure. Let V° be the set of
monomials occurring as leading terms of pure elements of L and let Lo be
the set of all elements of L whose support contains no element of V°.
Again it is clear that Lo is an /?0-module, whose elements are 0-pure (i.e.
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impure). Thus A^ holds, and B^ also follows from the definition of the
L^, hence this family is well-positioned, and by Prop. 3.2 the map (2) is
injective. We put L' = ^L^R and complete the proof by showing that
L' = L. If V C L, choose y e L\L' so as to minimize the leading term
in U2)A(>0- K> f°r some A, y is A-pure, then since y $ LA, the A-support of
y contains a monomial u eVx, where u is the leading co-A term of some
x e L, so x has a term w<#, a e Ro. Let w be chosen to be the greatest;
the monomials in Dk(y) have degree less than degy, hence degx =
deg u < degy and SOJC e L'. Further, there exists c e Rk such that u $ Dk

(y — xc), and y — xc is either A-pure with all monomials in its A-support
< u, or of lower degree than y. Hence y - xc e L', by the choice of y,
and so y — (y — xc) + xc e Lf. If y is impure, then since y £ Lo, some
monomial in D(y) occurs in the leading term of some pure element x of
L. Let u be the greatest such monomial; then x e L' and for some
c e Lo, y - xc has a leading term < u, so again y - xc e Lf and hence
y e L'. Therefore no such y can exist and V = L, so (2) is an
isomorphism. •

Sometimes the following more precise statement is useful:

C O R O L L A R Y 5.3.4. Let R and M be as in Th. 3.3 and suppose that
(LM) is a well-positioned system of R^submodules of the induced
R-module M, and L = ^L^R. Then L C\ M^ C L^ for all fi; further, if
^Z = M, then L^ = M^.

Proof Let x e L be of degree 1 as member of M\ writing x = ^vxv

(xv e Ro), we see that each v occurring in x must also be of degree 1, i.e.
lie in ^M^ and so be of length 1 as member of V, i.e. lie in some L^. If
further, x e M^ for some pi'', then x cannot involve terms from L̂ » for
li" =£ JU' , because the leading co-// term of the L^-part of x cannot be
cancelled by any other terms; therefore x e L^>. This shows that
L fl M^ C L^. Suppose now that ^L^R = M\ then our conclusion states
that M^ C L^ and if this inclusion were proper, we would have a proper
inclusion of induced modules M C L , which is impossible, therefore
L^ = MM as claimed. •

Th. 3.3 leads to a formula for the global dimension of a coproduct:

T H E O R E M 5.3.5. Let (Rk) be a family of non-zero R0-rings} where Ro

is afield, and let R = * Rx. Then the global dimension ofR is given by

r.gl.dim./? = supA{r.gl.dim./?A}, (3)
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whenever the right-hand side is positive. When the right-hand side is 0,
then r.gl.dim.i? = 1 unless there is only one factor i= Ro.

Proof. By Prop. 2.5, r.gl.dim./? ^ supA{r.gl.dim.JRA}. To prove that
equality holds, it will be enough to show that for any submodule M of a
free R -module F,

hdR(M) ^ supA (r.gl.dim./y - 1, (4)

or 0, if the right-hand side is negative. Now F is induced, hence by Th.
3.3, so is M, say M = 0M®', where M^ is an ^-submodule of M. But
F is free as /^-module, hence

hd^(M,) ^ max{(r.gl.dim./g - 1, 0},

and now (4) follows by Prop. 2.5. This proves (3) when the right-hand
side is positive; now the rest is clear. •

C O R O L L A R Y 5.3.6. With the notation of Th. 3.5, every protective
R-module is induced by protective R^-modules.

For if P is a projective R-module, then P is a submodule of a free
.R-module, so by Th. 3.3, P = 0 F ^ and each P^ is projective as
/^-module, by Prop. 2.5, because P is /^-projective. •

The main theorems, 2.3 and 3.3, can also be proved when Ro is a
matrix ring over a field or more generally for any semisimple ring (see
Bergman [74]) with only minor modifications, but we shall not need these
cases (see Ex. 1).

Given a homomorphism / : M —»TV of induced i?-modules, if M =
0Afjf is finitely generated and the system of i^-submodules
M^f C N is not well-positioned, then we can modify / so as to obtain a
well-positioned system, by means of certain types of automorphisms of
induced modules, which we now define.

Consider a homomorphism

/ : 0 A f ® - . 0 N ® . (5)

If / arises from a family of /^-linear maps f^: M̂ —» A^, we shall call it
induced. Under the injectivity conditions of Th. 3.3 this is the case
precisely when / maps M^ into N^ for each //.

Among the isomorphisms between induced modules there is a type
arising from the fact that a free R -module can be written as an induced
module in more than one way. For any \i, pC e AQ we have R® =
R = R$, hence
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^ M , e R,>)®. (6)

An isomorphism (5) arising by a transfer of terms as in (6) is called a free
transfer isomorphism.

Secondly there is the transvection automorphism, familiar from the
study of linear groups. Let e: M^—^ R^ be an i^-linear functional,
extended to M so as to annihilate M^ for /i=£ //. Next, for any \i" and
x e M^ there is a map a(x): i?—> M defined by 1 •-» x e M® C M.
Clearly ar(x)e: R-> R vanishes if \i' =£ //' and this will hold even if yd — ji"
if we add the condition x e ker e. Now for any a e R let A(a): R-> R be
left multiplication by a; then the map eA(«)ar(x): u •—> x<z(we) is nilpotent
and so 0 = \M — eX(a)a(x) is an automorphism of M. Such an auto-
morphism will be called a transvection, jx-based in case jnf = //' = /i.

With the help of these isomorphisms we can transform any homo-
morphism of induced modules so as to obtain a well-positioned family in
the image module.

P R O P O S I T I O N 5.3.7. Let R = *Rxbe the coproduct of a family (Rx) of
non-zero Ro-rings, where Ro is a field, and letf: M —» N be a homomorph-
ism of induced R-modules, where M is finitely generated. Then there exists
an induced R-module M' and an isomorphism a: M' —• M which is a
finite product of free transfer isomorphisms and transvections such that the
system (M'^af) of submodules of N is well-positioned, and af is then an
induced homomorphism.

Proof Let M = 0MJf and suppose that the family (M^f) is not
well-positioned in N. To remedy this defect, we shall modify / and M\
we assign to every map as in (5) an index in a certain well-ordered set and
show that each adjustment of / lowers this index. By induction, a finite
sequence of these adjustments will reduce / to a map / ' : M' —• TV such
that (Mpf) is well-positioned; since / ' is determined by its effect on the
Mp, f is then induced.

To define the index, consider Ao x [/, where U is well-ordered as
before and AQ has a well-ordering with 0 as first element. We well-order
AQ x U first by the degree of the second factor and for a given degree
lexicographically from left to right. Next let H be the set of almost
everywhere zero functions from Ao x U to N, well-ordered lexicographic-
ally reading from highest to lowest in Ao x U.

For any map / as in (5) we define its index hfeHby the rule

, x y fl if u e 2L(MJ) (and hence u e [/"),
^U)hf= JO otherwise.
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We now show how to diminish hf if (M^f) is not well-positioned. Suppose
first that (A^) fails for some \i, so M^f contains an element xf of degree n
say, which is not //-pure. Let u e C/M be the //-leading term of xf and
consider the restriction p'^u) = p^(u)\L^, where p^u) is the projection
defined at the beginning of this section. It follows that xfp'^u) is non-zero
and lies in Ro; this is clear when \i = 0, while for \i =£ 0 a coefficient from
R^Ro applied to u would give a term of degree n + 1. Since Ro is a field,
this coefficient is invertible and so the map fp^u): M^ —> R^ splits over its
kernel M^ and we get a decomposition M^ = M'^ © xR^. Now JC must be
//-pure for some \i' =£ \i\ we shall transfer the free summand xR^ from M^
to M^. In detail, we define a free transfer isomorphism i\Mf^>M,
where AfJ, is as above and M^ = M^ © xR^, while M »̂ = M^ for //' =£
\i, / / . We now put f — if\ M' -+ N and note that the /i-support of M'^f
no longer contains u. So the first place where hf differs from hf is either
(/*, w) or (//, w'), where w e u'R^. If //' ¥= 0, we have (//, w) > (//, w') by
looking at degrees and for // = 0 this inequality still holds by the ordering
of the first component. Hence (fi,u)hf = 1 > 0 = (//, w ) ^ , so / ' has
lower index than / .

If B^ fails, let the //-support of M^f contain a monomial w which is
also the leading co-// term with coefficient 1 of a (non-//-pure) element
xfa = xaf, where x e M^, a e R and if // = //, then degjca > degjc. For
each y e M^, there is a unique element yep = y — xa(yfpfi>(u)) such that
u $ SyCyq?). Indeed, the map fp^iu): M^ —» R^ is ^-linear. We extend
the map cp\ M^ —> M to M by defining it as the identity on M^ for
//' =£ //' and claim that it is a transvection. This will follow if we show that
xfPfi(u) = 0; for // =£ /i this is clear, while for [if = [A we have degxa >
deg*, so w $^^{xf). Now the first place where A^ differs from /ẑ  is
(//, M) and it is clear that A^ < hf, so we have again lowered the index.
By induction we find that after a finite number of such adjustments of /
the family (M^f) is well-positioned. •

This result allows us to give a precise description of the finitely
generated projective modules over a coproduct. We recall the functor 2P
from rings to monoids which was introduced in 4.6. Our aim will be to
show that 9 preserves coproducts over a field as base ring. We remark
that over any coproduct R = * Rx of rings we have, for any R-module M
induced by a family (M^) of projectives, ^ [ M J = ^[M^] if (M^) is
obtained from (MM) by a free transfer isomorphism or a transvection.

T H E O R E M 5.3.8. Let R = * Rx be the coproduct of a family (Rx) of
non-zero Ro-rings over afield Ro. Then the induced map
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is an isomorphism.

Proof. We have homomorphisms 3*(/?A) —»2P(̂ ) which agree on the
distinguished element [Rk] and hence give a homomorphism (7). We first
show that (7) is injective.

Suppose that two elements ^[L^] , 2 [ ^ / J of the left-hand side of (7)
have the same image, so that there is an isomorphism

/:©Lj?->©MJ?. (8)

By Prop. 3.7 there is an induced /^-module L' with an isomorphism a:
U —> L such that the system (L'^af) is well-positioned. Now by Cor. 3.4,
L'^af = M^ and so 2 [ £ J = X [ ^ ] = S [ ^ J by the above remark, and
this shows (7) to be injective.

To establish surjectivity, let P be a finitely generated projective
fl-module, say P 0 Q = nR. By Cor. 3.6, P = ©P®, Q = ©G®, and it
remains to show that the P^ are finitely generated. There is an
isomorphism / : (©/?;*)® -» ®(Pn © Q»)® s u c h t h a t E«^ = n. By Prop.
3.7 we can apply free transfer isomorphisms and transvections to the
family (/?£") so as to obtain a family (L^) whose image is well-positioned.
Clearly L^ is again finitely generated and its image is P^ © Q^ by Cor.
3.4. Hence P^ is finitely generated; thus (7) is surjective and hence an
isomorphism. •

This result enables us to derive several consequences without difficulty:

T H E O R E M 5.3.9. The coproduct of a family of firs over a field is a fir.
In particular, the coproduct of fields (over a field) is a fir.

Proof By Th. 3.5, the right ideals of the coproduct are projective, and by
Th. 3.8, all projectives are free of unique rank, hence all right ideals are
free of unique rank. Similarly for left ideals, so the coproduct is a fir. •

A similar result holds for n-firs:

P R O P O S I T I O N 5.3.10. Let Ro be a field and n a positive integer. Then
the coproduct of any family of n-firs over Ro is an n-fir. Moreover, the
coproduct of any family of semifirs over Ro is a semifir.

Proof. Let R = * Rx, where each Rx is an n-fir. For any map nR-^ R the
image can by Th. 3.3 be written as 0 M ® , so there is an induced
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surjection a: ®{Rn^)® -+ ©Af®, where ^nli = n. By free transfer
isomorphisms and transvections we obtain a family (R™H) with ^mfi = n,
such that M^ is the image of R™"; hence M^ can be generated by m^
elements, and as submodule of the projective /^-module R, M^ is free of
rank at most m^ so ©M® is free of rank at most n. By repeating this
argument with an isomorphism, we see that the rank must be unique.
Hence R is an rc-fir. If each factor is a semifir, it is an n-fir for all n, so R
is then an n-fir for all n, and so R is then a semifir. •

For n = 1 this tells us that the coproduct of integral domains is an
integral domain. This was already proved in Cor. 1.4; the rest of that
corollary can also be proved in this way:

C O R O L L A R Y 5.3.11. Let Ro be a field and (Rx) a family of integral
domains which are Ro-rings. Then the coproduct R = * Rk is an integral
domain and any unit in R is a monomial unit.

Proof We have seen in Prop. 3.10 that R is an integral domain. Now
each unit u e R defines an automorphism x »-> ux of R = R®. Here R is
free on one generator; any free transfer isomorphism just amounts to
renaming the generator, while a surjection is a unit in some R^. The only
transvection is the identity map, since it must be //-based for some //, but
Rp is an integral domain. Hence the result follows by Prop. 3.7. •

In 4.5 we saw that any semifir (and in particular, any fir) has a
universal field of fractions in which all full matrices are inverted, so it
follows that the coproduct of fields Ek over a field K has a universal field
of fractions. This field will be called the field coproduct or simply
coproduct of the Ex, written oEk or in the case of two factors E, F,

Exercises

1. Let A: be a commutative field and A = k(a, b, c, d, d') a free algebra. Show
that there is a faithful A -ring R in which the equations xa = c, xb — d have a
solution x = u and a faithful A -ring S in which the equations ax = b, ex = d' have
a solution x = v. Show that the homomorphism A * A = A-* R * S induced by
the inclusions A —• R, A —» S is not injective.

2. (Schofield) Let E, F be fields containing a common subfield K and suppose
that E is not finitely generated over K. Show that the centre of the field
coproduct E ° F is the centre of K. (Hint. Given c in the centre, verify that
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c e E' © F for a proper subfield E' of E; now write E o F = E <> (£ ' ° F) and
show successively that c lies in £ ' , K.)

3. (J. W. Kerr [82]) Let Do be a field with centre k and define for n ^ 1, Dn as
the field coproduct over k of £>rt_i and &(.*:„, >>„, zn). Take any subalgebra Ao of
Do and define An as the subring of Dn generated over An_x by xn, yn, a~lzn for
all a e ^4^_i. Show that the union A = [JAn is a right Ore domain, but the power
series ring A[[t]] is not right Ore. (Hint. Examine 2-V" a nd E ) ^ )

5.4 The tensor ring on a bimodule
For any commutative field k the /ree k-algebra on a set ^ , k(X), may
be defined by the following universal mapping property: k(X) is
generated by X as A>algebra and any mapping of X into a A>algebra A
can be extended to a unique A:-algebra homomorphism of k{X) into A.
The elements of k(X) can be uniquely written as

5X...ir*«'i • • • *i,> where x, e X, ah_ir e k.

As is easily seen, k(X) may also be represented as a coproduct:

= *k[x],

where x runs over X. Since each &[*] is a principal ideal domain (and
hence a fir), it follows from Th. 3.9 that k(X) is a fir. More generally,
we can show in the same way that for any field D the tensor D-ring on
any set is a fir:

T H E O R E M 5.4.1. Let D be afield and k a central subfield. Then for any
set X the tensor D-ring on X over k, Dk(X), is a fir.

Proof We have just seen that k(X) as a coproduct of PIDs is a fir, so
the result follows because Dk{X) = D * k(X). •

k

Since every fir has a universal field of fractions (Cor. 4.5.9), we have
universal fields of fractions for k{X) and Dk(X), which will be denoted
by k^X^ and Dk^X^ and called free fields. To elucidate the relation
between them we need a lemma:

L E M M A 5.4.2. Let R, S be semifirs over a field K. Then
(i) the inclusion i? —» R * 5 is honest, and

(ii) if ^(R) denotes the universal field of fractions of R, then the natural
map R * 5 -> °\l(R) * S is honest.
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Proof, (i) Consider the natural homomorphisms

R _> R * s -+ %(/?) * 5.

Any full matrix A over R is invertible over °IX(/?), hence also over
°\L(R) * 5 and so A is full over JR * S, as we had to show.

(ii) By (i) any full matrix over R is full over R * S, hence we have a
homomorphism <U(R) -» °\L(R * 5) (Th. 4.5.10), and it follows that we
have a homomorphism °lt(i?) * 5 —> °U(i? * 5). Thus we have mappings

R* s _» ou(#) * 5 ^ °U(# * S).

Now any full matrix over R * 5 is invertible over °U(/? * 5) and hence is
full over °U(#)*S. •

We can now describe the relation between different free fields:

P R O P O S I T I O N 5.4.3. Let D c E be any fields and let k be a central
subfield of E that is also contained in D. Then

D (1)

Hence there is a natural embedding

(2)

In particular, taking D = k, we find that k^.X^ is embedded in
and

k (3)

Proof We have the natural isomorphisms

E * Dk(X) = E*D* k(X) = E * k{X) = Ek{X).

Now the natural homomorphism Ek(X) —> E * Dk^.X^ is honest, by
Lemma 4.2 (ii), hence we have an embedding

(4)

But the right-hand side is a field generated by E and X, hence it is
generated as a field by the image of Ek(X), so (4) is surjective and we
have the natural isomorphism (1). Now (2) and (3) are immediate
consequences. •

Under suitable conditions this result continues to hold when there is a
change of ground field (see 6.4 below). For the moment we shall merely
deal with the case of a simple transcendental extension.
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P R O P O S I T I O N 5.4.4. Let E be a field with a central subfield k and form
E(t) with a central indeterminate t. Then there is a natural embedding

Ek^X^^E(.t)m^X^. (5)

Proof The assertion will follow if we can show that the natural
homomorphism

Ek(X)-* E(t)k(t)(X) (6)

is honest. Let us write F = Ek^X^>; there is a natural inclusion E —> F\
hence a mapping E(t) —> F(t) and so an E(t)-ring homomorphism

E(t)k(t)(X)^F(t). (7)

Now let A be a full matrix over Ek(X). Then A is invertible over F9

hence also over F(t) and by (7) it is full over E(t)k{t){X). This shows (6)
to be honest and now the embedding (5) follows. •

The fact that the free algebra is a fir also follows from the existence of
the weak algorithm, as explained in Ch. 2 of FR. The weak algorithm can
actually be applied to a wider class of rings, to which we now turn. We
begin with a general definition.

Let R be a ring and M an /?-bimodule. We put

AT = M ( 8 > M ® . . . ® M , n factors, taken over R\

thus M1 = M and by convention, M° = R. It is clear that Mr ® Ms =
Af+S; hence we have a multiplication on the direct sum

T(Af) = ©Mn, (8)

which is associative and so turns it into an R-hng. This ring is called the
tensor R-ring on M; usually we shall single out a central subfield k of R
and assume that the left and right actions of k on M agree. Then T(M)
will be a A>algebra, which will be denoted by Rk{M)\ it will usually be
clear from the context whether the tensor ring on a set or a bimodule is
intended. From (8) we see that Rk{M) is a graded ring, with AT as
component of degree n, and there is a natural bimodule homomorphism
M —> Rk(M), mapping M to M1, with the usual universal property for
maps of M to brings. When R = D is a field, the tensor ring Dk{M)
can be shown to possess a weak algorithm relative to the grading;
consequently it is a fir, for any Z)-bimodule M. We shall not give the
proof here, which uses the weak algorithm, as the result will not be
needed (see FR, 2.4), but confine ourselves to showing that the tensor
ring Dk{M) is a semifir. Somewhat more generally we shall establish the
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result when k is replaced by a (possibly skew) subfield. Thus we shall
prove

T H E O R E M 5.4.5. Let D be a field with a subfield F and let M be a
D-bimodule with an F-centralizing generating set. Then the tensor ring
DF{M) is asemifir.

Proof Put R = DF(M), let {uv} be a right F-basis of D and {vk} an
F-centralizing generating set of M, which we may take to be left and
right linearly independent over D, without loss of generality, by omitting
superfluous terms. Any element of M has the form m — 2wvyA^vA? with
uniquely determined coefficients avX in D. Since R = ©M", it follows
that every element of R can be uniquely written as

/ = c + 'Zuyvjyx, where c e D, fvK e R.

Now assume that we have a relation in R:

To show that this relation can be trivialized it is enough to do this in a
given degree; thus we may assume that the ah bt are homogeneous and
that deg at + deg bx• = r > 0. We shall use double induction, on n and r. If
each at has positive degree, we can write at = SWV^A^VA/? equating
cofactors of uvvk, we find

]>>vA*A = 0,

and now the result follows by induction on r. There remains the case
where some ai9 say a1? has degree 0. Thus ax e D and either a1 = 0 and
we can use induction on n, or «! ^ 0, in which case we can replace a2 by
a2 — ax • a\la2 = 0 and bx by b[ = bi + a\la2 • b2', thus we obtain

2>,A = a\b[ + a3b3 + . . . + anbn = 0,

so we have again diminished n and can apply induction to complete the
proof. •

In particular, this result shows the tensor ring on a set X, DF(X), to
be a semifir, since it can be expressed as tensor ring on the D-bimodule
generated by the F-centralizing set X. The same proof shows DF((X)) to
be a semifir.

Sometimes a slight variant of the above construction is needed, leading
to a filtered ring. By a pointed R-bimodule we shall understand an
.R-bimodule M with a subbimodule isomorphic to R, which is comple-
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mented as right /^-module, thus M = R® N. A map f:M^>M'
between pointed bimodules is then a homomorphism which forms a
commutative triangle with the canonical maps from R. Given any pointed
i?-bimodule M = R © TV, we put M = M/R; thus M is an 7?-bimodule
which is isomorphic to TV as right .R-module. We now define a sequence
of R-bimodules in terms of M recursively as follows: M° = R, M1 = M
and if M""1 has been defined, we put

W = R © (TV ® Mn~l). (9)

The right /^-module structure is clear, since R and Mn~l are bimodules;
the left R-module structure is defined as follows: If u e TV, v e Mn~l and
a e R, then au = ax + uu say, where ax e R, u1 e TV. Then we put

a(u ® v) = axv + ux <8> v.

It is easily verified that with this definition AT is a pointed /?-bimodule
with Mn~l as subbimodule. In this way we obtain a direct system of
R -bimodules

R = M° -* M1 -> M2 -> . . . ,

whose direct limit is a ring in a natural way, since we have a map
Mr ® M 5 ^ Mr+5. This ring is denoted by /?*(M; R) and is called the
filtered tensor ring on the pointed i?-bimodule M. Like all universal
constructions this tensor ring has a universal property:

T H E O R E M 5.4.6. Let R be a ring and a k-algebra. Then (i) for any
R-bimodule M, the natural homomorphism M —> Rk{M) is universal for
bimodule homomorphisms from M to R-rings, (ii) for any pointed
R-bimodule M the natural homomorphism M —• Rk{M\ R) is universal
for pointed bimodule maps from M to R-rings.

The proof is a straightforward verification, which may be left to the
reader. •

Our aim will be to find conditions for the natural homomorphism to be
injective. The main condition is that M should be (left and right) flat. We
shall not treat this problem in its most general form, but confine our
attention to the case used later, where R is an integral domain. To allow
induction arguments to be used, we must then show that the tensor ring
is again an integral domain. We begin by examining the tensor product
of flat modules. Let us recall that a right R-module M is called flat if
M ® - preserves exactness, i.e.

0 _> Ur -> U exact => 0 - * M ® £ / ' - > A f ® £ 7 exact. (10)
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It follows immediately that if M is a flat right /^-module and N an
R-bimodule which is right flat, then M ® TV is again right flat. We also
recall the following standard criterion for flatness (see A.3, 6.6): MR is
flat if and only if, for any relation XWA = 0 (w,- e M, at e R), there exist
Vj e M, bjt e R such that ut = ̂ Vjbjh ^b^ = 0. Further we recall that a
right /^-module M is called torsion-free if ur = 0 for u e M, r e R implies
u = 0 or r = 0.

L E M M A 5.4.7. Let R be an integral domain. Then any flat R-module is
torsion-free. Further, if UR is flat and RV is left torsion-free, then in
U ® V, u® v = 0 implies u = 0 or v = 0.

Proof. Let UR be flat and suppose that ur = 0. By flatness there exist ul9

. . . , un e U, xu . . . , xn e R such that u = 2Mr*«> *ir = 0. If r ^ 0, then
Xi = 0 for all i and so w = 0; thus U is torsion-free. Suppose now that UR

is flat and RV torsion-free and that u® v = 0 in £/ ® V. I f y ^ O , then
Rv is a free submodule of V and (7 ® /?y is embedded in £/ ® V, hence
^(8)^ = 0 ^ ^ 0 7?^ and so u = 0. •

When R is a PID, then conversely, every torsion-free R-module is flat,
but for general integral domains this need not hold.

With the help of this lemma we can show that the tensor ring on a flat
bimodule over an integral domain is again an integral domain.

T H E O R E M 5.4.8. Let R be a k-algebra which is an integral domain, and
let M be an R-bimodule which is left and right flat. Then the tensor R-ring
Rk{M) is again an integral domain.

Proof. It is clear that each homogeneous component Mn of Rk{M) is left
and right flat and so torsion-free. Let a, b e Rk(M), suppose that
a,bi=0 and write each as a sum of homogeneous components:
a = ar 4- ar_i + . . . , b = bs + bs_1 + . . . , where ah bt lie in Ml and
ar, bs =£ 0. By Lemma 4.7, arbs =£ 0 and this is the component of degree
r + s of ab, hence ab i= 0. •

For filtered rings on a pointed bimodule there is a corresponding result.
We recall that with a filtered ring (Rn), where Rn C Rn+i, there is
associated a graded ring ©(/?„//?„_!), and the filtered ring is an integral
domain, provided that the associated graded ring is one (Prop. 2.6.1).

C O R O L L A R Y 5.4.9. Let R be a k-algebra which is an integral domain
and let M be a pointed R-bimodule such that M = M/R is left and right
flat. Then the filtered tensor ring Rk{M\ K) is again an integral domain.
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Proof. Let us write Mn = M ® . . . ® M (n factors); then

Mn/Mn-l s ft}". (11)

To prove the result we shall use induction on n. For n = 1 it holds by
definition, so take n > 1. By the induction hypothesis we have the exact
sequence

0 _» M"-2 -» Mn - 1 -> AT"1 -» 0.

If we tensor on the left with M = N, then since TV is right flat, we have
the exact sequence

0 -* N ® M""2 -» AT ® M""1 -* Mn -> 0.

By the definition (9), AT = N ® AT"1 and so

Mn/Mn-l s MnlMn-1 = Mn,

which proves (11).
Thus we have a filtered ring whose associated graded ring is the tensor

ring Rk(M)\ the latter is an integral domain, by Th. 4.8, hence so is the
filtered ring, as we wished to show. •

Let us return to the tensor ring on a bimodule. An important example
is the D-bimodule M = D ®k D for the field D with central subfield k.
The tensor D-ring Dk{M) has the following universal property: Given
any D-ring R and any element c e R, there is a unique D-ring
homomorphism from Dk{M) to R such that

1 ® 1 •-> c. (12)

For the map (12) can be extended to a bimodule homomorphism M —> R
and hence to a D-ring homomorphism from Dk{M) to R. This shows
that we have an isomorphism

If we examine the proof, we see that it is not necessary to assume k to be
central, or even commutative. Thus if K denotes an arbitrary subfield of
D, we have DK(D 0 ^ D) = DK{x). More generally, for any set X we
have DK(X) = DK(X(D <8>K £>)), where XM denotes the direct sum of
copies of M indexed by X, By applying Th. 4.1 (which clearly holds for
general subfields of D) we derive the following consequence:

P R O P O S I T I O N 5.4.10. Let D be a field and K a subfield. Then for any
set X, the tensor ring DK(X(D ®K D)) is a fir. •
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Exercises

1. Let H be a semifir with universal field of fractions D and let AT be a subfield of
H. Show that the mapping HK(X) -* DK{X) induced by the inclusion H C D is
honest.

2. Show that over a commutative field every idempotent 2 x 2 matrix =£ 0, / has
trace 1. Over the free field /:(*, y) construct an idempotent 2 x 2 matrix =£ 0, /
with trace 1 + JC - x', where JC ' is a conjugate of x.

3. Let fc be any commutative field and D = k(x) ° k(y) a field coproduct. Show
that D has an involution * such that x* = x, y* = y~x(x — x2). Construct a
self-adjoint idempotent 2 x 2 matrix =£ 0, / over D with trace 1 + x — x', where
x' is a conjugate of x.

4. Give an example of a module over the polynomial ring fc[jc,y] which is
torsion-free but not flat.

5.5 HNN-extension of fields
Although Schreier had discussed free products of groups in 1927, it was
not until 20 years later that significant applications were made, notably in
the classic paper by Higman, Neumann and Neumann [49]. Their main
result was the following

H N N T H E O R E M . Let G be any group with two subgroups A, B which
are isomorphic, say f: A —» B is an isomorphism. Then G can be
embedded in a group H containing also an element t such that

t~lat = af for alia e A. •

The group H is usually denoted by (G, t; t~lat = af, a e A) and is
called an HNN-extension. We shall omit the proof (but see Ex. 1).

We observe that the above theorem would be trivial if / were an
automorphism of the whole of G: then H would be the split extension of
G by an infinite cycle inducing / . But for proper subgroups A, B the
result is non-trivial and (at first) surprising. It has many interesting and
important consequences for groups and it is natural to try and prove an
analogue for fields. What is needed is a coproduct in the category of
fields. However, we shall not adopt a categorical point of view: as we
saw, the morphisms in the category of fields are all monomorphisms and
this is somewhat restrictive. Over a fixed ring, it is true, we have defined
specializations, but it would be more cumbersome to define them without
a ground ring, and not really helpful.
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In this section we shall prove an analogue of the HNN theorem using
the field coproduct introduced in 5.4. But we shall also need some
auxiliary results on subfields of coproducts. It will be convenient to regard
all our fields as algebras over a given commutative field k\ this just
amounts to requiring k to be contained in the centre of each field
occurring.

T H E O R E M 5.5.1. Let K be afield and A, B subfields of K, isomorphic
under a mapping f: A-* B, where K, A, B are k-algebras and f is k-linear.
Then K can be embedded in a field L, again a k-algebra, in which A and B
are conjugate by an inner automorphism inducing f thus L contains t =£ 0
such that

t~lat = afforalia e A. (1)

The field L is again called an HNN-extension and is denoted by
Kk^t, r1; t~lat = af,ae

Proof We shall give two proofs, one using the weak algorithm and so
depending on results of FR, and a second one using only results proved
here.

Define K as right A-module by the usual multiplication and as left
A-module by

a-u = (af)u, aeA,ueK. (2)

We now form the iC-bimodule K ®AK with the usual multiplication by
elements of AT. If we abbreviate 1 ® 1 as t, this consists of all sums
^Uitvt {uh vt e K) with the defining relations

at = t-af, a e A. (3)

Now the tensor ring on this bimodule K ®A K satisfies the weak
algorithm (see FR, Th. 2.6.2). Hence it is a fir and so it has a universal
field of fractions L. Thus K has been embedded in a field L in which (3)
holds. We remark that Prop. 4.10 cannot be used as it stands since
K ® K does not have the standard bimodule structure. However we can
prove the result without the weak algorithm as follows.

We take a family (Kt) of copies of K indexed by Z and form their field
coproduct amalgamating B in Kt with A in Ki+1 along the isomorphism / .
This can be done stepwise and taking the direct limit, we obtain a field F,
say. In F we have the shift automorphism a which consists in replacing
any element of Kt by the corresponding element of Ki+1. We now form
L — F(t; a) and embed K in L by identifying it with Ko. Then for any
a e A C Ko we have at = t • aa = t • af, so (2) again holds. •
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Any field D which is a A>algebra is said to be n-homogeneous over k if
for any elements ai9 . . . , an, bu . . . , bn e D such that the map at •-» bt

defines an isomorphism between the fc-fields they generate, there exists
t e Dx such that t~latt = bt (/ = 1, . . . , n); D is called homogeneous if it
is n-homogeneous for all n. The construction of homogeneous fields is an
easy consequence of Th. 5.1:

C O R O L L A R Y 5.5.2. Every field D (over a central subfield k) can be
embedded in a field (again over k) of the same cardinal or at least
countable, which is homogeneous.

Proof Given finitely many as and bs such that at»-»bt defines an
isomorphism, we can by Th. 5.1 extend D to include an element t ¥=0
such that t~latt = bt, and the least such extension has the same cardinal as
D or is countable. If we do this for all pairs of finite sets in D which
define isomorphisms, we get a field D1? still of the same cardinal as D or
countable, such that any two finitely generated isomorphic subfields of D
are conjugate in Dx. We now repeat this process, obtaining D2, and if we
continue thus, we get a tower of fields

D C Dx C D2 C

Their union is a field L with the required properties, for if ax, . . . , an,
&l5 . . . , bn e L and at •-> bt defines an isomorphism, we can find Dr to
contain all the as and bs, hence they become conjugate in Dr+1 and so are
conjugate in L. •

A homogeneous field has the property that any two elements with the
same (or no) minimal equation over k are conjugate. Hence we obtain

C O R O L L A R Y 5.5.3. Every field K (over a central subfield k) can be
embedded in a field L over k in which any two elements with the same
minimal equation over k or both transcendental over k are conjugate. •

Later we shall need an analogue of this result for matrices. We first
establish a matrix version of Th. 5.1.

L E M M A 5.5.4. Given a field K (over k) and n^l, let E be a subfield of
yRn(K). If Flf F2 are subfields of E which are isomorphic under a map (p\
F1 —» F2, then there is an extension L of K and a matrix T e GLn(L) such
that

xcp= T~lxTforallx e Fx.
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Proof. By Th. 5.1, E has an extension field Er with an element T
inducing q). Consider the coproduct R = 5J?n(AT) * E'\ this is of the form
<3Dfin(G), where G is a ring containing K. By Th. 3.5, R and hence G is
hereditary; by Th. 3.8 G is projective-free and so it is a fir. If L is its
universal field of fractions, then L contains K and ^ ( L ) contains the
matrix T inducing q>. •

The scope of this lemma can still be extended as follows: Let Fu F2 be
subfields of ^fln(K) as before, and suppose that there is a subfield F
isomorphic to F2 by an isomorphism g: F2-> F, such that F and Ft are
contained in a common subfield Et of 3W„(!£), for i = 1, 2. By the lemma
we can enlarge K to a field L containing an invertible matrix 7\ which
induces the isomorphism fg\ Fx-+ F and then enlarge L to a field M
containing an invertible matrix T2 inducing the isomorphism g: F2 -» F.
Now TiT^1 induces the isomorphism / : Fx -> F2.

We can now prove an analogue of Th. 5.1 for matrices, at least for the
transcendental case. A square matrix A over a field K is said to be totally
transcendental over the central subfield k if for every non-zero poly-
nomial f e k[t]9 the matrix f(A) is non-singular. Clearly if A is totally
transcendental over k, then the field generated by A over A: is a simple
transcendental extension of k. The field K is said to be matrix-homo-
geneous over k if any two totally transcendental matrices of the same size
over k are conjugate.

T H E O R E M 5.5.5. Every field K with a central subfield k has an
extension field L which is matrix-homogeneous over k.

Proof Let A, B be two n x n matrices over K, both totally transcen-
dental over k. Then k(A) is a purely transcendental extension of k, thus
if u is a central indeterminate over K, we have k(A) = k(u) and likewise
k(B) = k(u). We shall take Fx = k(A), F2 = k(B), F = k(u). Consider
the field K((u)) of formal Laurent series in u over K. We have

mn(K((u))) = <mn(K)((U)), (4)

and F, Fx are contained in the subfield k(A)((u)) of (4), while F, F2 are
contained in k(B)((u)). We can therefore apply Lemma 5.4 and the
remark following it and obtain an extension field L of K((u)) with an
invertible n x n matrix inducing the ^-isomorphism k{A) —» k(B) de-
fined by A •-> B.

We can repeat this process for other pairs of totally transcendental
matrices until we obtain a field K1D K in which any two totally
transcendental matrices over K of the same order are conjugate. If we
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repeat the construction for Kx we obtain a tower of fields over k,

K C Kx C K2 C . . . ,

whose union is a field L with the property that any two totally
transcendental matrices of the same order are conjugate, so L is the
required matrix-homogeneous field. •

This means, for example, that over L any totally transcendental matrix
n x n A can be transformed to scalar (not merely diagonal) form. We
need only choose a transcendental element a over k in L; then aln is
totally transcendental, therefore T~lAT = ocl for some T e GLrt(L). We
shall return to this topic in Ch. 8.

Our next objective is to show that every countable field can be
embedded in a two-generator field. This corresponds to a theorem of
B. H. Neumann [54] for groups. We shall need some lemmas on field
coproducts; first we examine a situation in which a subfield of a given
field is a field coproduct. If D is a field with subfield E, we shall write
DE{X) for the tensor D-ring on X with E centralizing X. By Prop. 4.10
this is a fir; its universal field of fractions will be denoted by DE<^X^ and
will also be called a free field.

L E M M A 5.5.6. Let D be a field with subfield E and let x be an
indeterminate. Then the free field DE^x^ can be written in the form

DE^ = F(x; a), (5)

where F is the field coproduct of countably many copies Dt of D (i e Z)
over E, and a is the shift automorphism Dt —» Di+i.

Proof Let R be the ring coproduct of the countable family Dt over E; it
is a fir, with universal field of fractions F, say. The subfields x~lDxl of
DE^x^ generate a subfield G which is an epimorphic image of R, hence
G is an R -specialization of F. Now x induces an automorphism of G by
conjugation and we can extend the specialization from F to G by forming
the skew polynomial ring F[x; a] with the shift automorphism a. We thus
have a specialization from F(x; a) to DE-^x^ which by the universal
property of DE^x^ must be an isomorphism. •

We shall also need a result on free sets in field coproducts. Given a
field over k as central subfield, by a free set over k we understand a
subset Y such that the subfield generated by Y is free, i.e. isomorphic to
the free field
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L E M M A 5.5.7. Let E be a field, generated over the central sub field k by
a family {ex} of elements, and let U be a field containing a free family {ux}
over k. Then the elements ux + ex form a free set in the field coproduct
U o E.

k

Proof. We may assume that U = k^ux^\ for by hypothesis U contains
k^.ux^ = F, say, and we have E © JJ = (E © F) © [/. So if the family
{ux} is free in E © F, it is free m E © U. Now the field coproduct
D = E o U has the following universal property: Given any E-field F and
any family {fx} of elements of F (indexed by the same set), there is a
unique specialization from D to F over E, with domain generated by E
and the ux, which maps ux to fx. In particular, there are specializations
from D to itself which map ux to ux + ex, or to ux — ex respectively. On
composing these mappings we obtain the identity mapping, ux >-> ux +
Â ^ "A - ex + Â = "A> a nd similarly in the opposite order. Hence they

are inverse to each other and so are automorphisms. It follows that the
ux + ex like the ux form a free set. •

We can now achieve our objective, the embedding theorem mentioned
earlier; the proof runs parallel to the group case.

T H E O R E M 5.5.8. Let E be a field, countably generated over a central
sub field k. Then E can be embedded in a two-generator field over k.

In essence the proof runs as follows: Suppose that E is generated by
eo = O, e1, e2, . . . ; we construct an extension field L generated by
elements x, y, z over E satisfying

y~iXyi = Z~iXZi + e . ( j = 0 , 1 , . . . ) •

Then L is in fact generated by x, y, z alone. If we now adjoin t such that
y = txt'1, z = t~lxt, the resulting field is generated by x and t.

To give a formal proof, let F be the free field on x, y over k\ it has a
subfield U generated by ut = y~lxyl (i = 0, 1, . . .) freely, by Lemma 5.6,
and similarly, let G be the free field o n x , z over k, with subfield V
freely generated by vt = z~lxzl (i = 0, 1, . . .). Now form K = E © F and
take the subfield W generated by wt = ut + et (i = 0, 1, . . .), freely by
Lemma 5.7. We note that w0 = u0 + e0 = u0 = x, so K is generated over
k by x, y and the wt (i ^ 1).

Let L be the field coproduct of K and G, amalgamating W and V
along the isomorphism wt <-» vt. We note that wo = x = v0 and that L is
generated by x, y, z and the w, or also by x, y, z and the vi9 or simply by
x, y, z. Now L contains the isomorphic subfields generated by x, y and
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by z, x respectively, hence we can adjoin t to L to satisfy t~lxt = z,
t~1yt = x, by Th. 5.1. It follows that we have an extension of L
generated by x, t over k and it contains E. •

The following special case is already a consequence of Lemma 5.6,
obtained by taking K = k(y):

C O R O L L A R Y 5.5.9. Any free field of countable rank, Dfc^x1,x2,. . . ^ ,
can be embedded in Dk<^x,y^ by mapping xr to y~rxyr (r = 1, 2,
...). M

From Th. 5.8 we also obtain the usual general form:

C O R O L L A R Y 5.5.10. Every field over k can be embedded in a field L
such that every countably generated subfield of L is contained in a
two-generator subfield of L.

Proof. Let E be the given field and Ek a typical countably generated
subfield (always over k). Then there is a two-generator field LA

containing £A, by the theorem. Let MA be the field coproduct of E and
LA over Ek\ if we do this for each countably generated subfield of E we
get a family {MA} of fields, all containing E. We form their field
coproduct E' over E; in E' every countably generated subfield of E is
contained in a two-generator subfield of £ ' , namely Ek is contained in
LA. Now we repeat the process which led from E to E'\

where Ea = \j{E^\P< a} at a limit ordinal a, and where v is the first
uncountable ordinal. Then Ev is a field in which every countably
generated subfield is contained in some Ea (a < v) and hence in some
two-generator subfield of Ea+1 C E\ •

At this point it is natural to ask whether there is a countable field, or
one countably generated over k, containing a copy of every countable
field of a given characteristic. As in the case of groups, the answer is 'no'.
This is shown by the following argument (for which I am indebted to
A. J. Macintyre).

For any field K, denote by &(K) the set of isomorphism types of
finitely generated subgroups of Kx. Clearly if K is countable, then so is
y(K). Now D. B. Smith [70] has shown that there are c = 2*° isomorph-
ism types of finitely generated orderable groups, i.e. there are c groups
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which can be ordered and are distinct as groups. Further, every ordered
group can be embedded in a field of prescribed characteristic, by the
methods of 2.4, hence every countable ordered group can be embedded
in a countable field. It follows that there are c distinct sets ^(K) as K
runs over all countable fields of any given characteristic. Therefore these
fields cannot all be embedded in a two-generator field, so no countable
field can contain a copy of every countable field.

The methods of this section can also be used to determine the precise
centre of a free field.

T H E O R E M 5.5.11. Let D be a field with a central subfield k. Then for
any set X the centre of the free field Dk^X^ is k, unless either (i) D = k
and \X\ = 1 or (ii) the centre ofD is larger than k and X = 0 .

Proof. Suppose first that D D k and \X\ = 1, say X = {x}. By Lemma
5.6 the field E = Dk^x^ can be written in the form E = F{x\ a), where
F is the field coproduct of copies of D over k and a, the shift
automorphism has infinite order. Thus F is a A>algebra and k is the fixed
field of or, hence by Th. 2.2.10, E has the precise centre k. This proves
the result when D D k and \X\ = 1. If \X\ > 1, write X = X' U {*},
where X' =£ 0 ; now Dk^X^ is the universal field of fractions of Dk{X)
= Dk(X') * k[x], and this is D^X'^^xif; this reduces the problem to
the case already treated. There still remains the case X = 0 , but then the
exceptions reduce trivially to the case (ii). •

Exercises
1. Prove the HNN theorem for groups along the lines of the proof of Th. 5.1.

2. Let A' be a field and E a subfield with an isomorphism f: K —> E. Using the
skew function field, find an extension of K with an element inducing / .

3. Show that there is an infinite field in which any two elements =£ 0,1 are
conjugate. Show further that any two countable fields with this property are
isomorphic. (Hint. Embed F2(x) in a homogeneous field without adding alge-
braic elements.) Deduce that in such a field every element is a multiplicative
commutator.

4. For any field K show that the group PGL2(#) of fractional linear transforma-

tions x •-> (ax + b)(cx + d)'1, I I non-singular, is triply transitive on the

projective line K^ = K U {°o}. By using for K the field constructed in Ex. 3
obtain a field L for which PGL2(L) is four-fold transitive on L^ (P. J. Cameron).
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5°. Let D be a field with a central subfield k and in P = Dk^x^ consider the
subfields Ka = (l + ax)~1K(l + ax), for a e k. Is the subfield of P generated by
the Ka their field coproduct? (G. M. Bergman) If true, this would provide an
analogue to Cor. 5.10 for subfields generated over k by at most \k\ elements.

5.6 HNN-extensions of rings
In this section we shall prove analogues of the HNN theorem for rings.
Instead of the embedding techniques of Ch. 4 we here need the results
from 5.4 on filtered tensor rings. As before, all our rings will be algebras
over a given commutative field k.

T H E O R E M 5.6.1. Let R be an integral domain and A, B subrings of R,
isomorphic under a mapping / : A —» B, where R, A, B are k-algebras and
fis k-linear. Then R can be embedded in a ring S, again a k-algebra and an
integral domain, containing an element t =£ 0 such that

at = t-af for all a e A, (1)

provided that R is flat as right A-module and as left B-module.

Proof. Define R as right A-module by the usual multiplication and as left
A-module by the rule

a-u = (af)u foralla e A,u e R. (2)

We now form the /?-bimodule M = R®AR with the usual multiplication
by elements of R as module action. If we abbreviate 1 ® 1 as t, this
bimodule consists of all sums XMi*yi {uh vt e R) with the defining
relations (1). For any left i?-module U we have

M ®R U = R ® A R <8)R U = R <8)A U\

since R is right A-flat, it follows that M is right i?-flat. Similarly we find
that M is left /?-flat, because R is left 5-flat. By Th. 4.8, the tensor ring
Rk(M) is an integral domain and the component of degree 0 is
isomorphic to R. Thus R is embedded in an integral domain with an
element t =£ 0 satisfying (1). •

To give an illustration, let R be a A:-algebra which is an integral domain
and let a, b e R be such that a, b are not algebraic over k. Then k[a] and
k[b] are isomorphic subrings of R, with an isomorphism mapping a to b,
and R is torsion-free as (left or right) k[a\- or A:[6]-module, because R is
an integral domain. But over a PID, torsion-free modules are flat, so all
the hypotheses of Th. 6.1 are satisfied and we obtain
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C O R O L L A R Y 5.6.2. Let R be a k-algebra which is an integral domain
and let ay b be elements of R not algebraic over k. Then R can be
embedded in a k-algebra S containing an element t ¥= 0 such that

at = tb,

and S is again an integral domain. •

Using filtered tensor rings, we can prove the following slight generaliza-
tion, which will be used later.

T H E O R E M 5.6.3. Let R be a k-algebra which is an integral domain with
kx as precise group of units. Given a, b e R\k and any c e R, there exists
a k-algebra S containing R as well as an element t =£ 0 satisfying the
equation

at - tb = c. (3)

Moreover, S is again an integral domain with kx as precise group of units.

Proof. Consider the direct sum R ©/? = (/?, R) as right &[a]-module by
right multiplication in i?, and as left A:[tf]-module by the rule

a(xl9 x2) = (axi + cx2, bx2).

On the submodule (R,0) this is just the structure induced by left
multiplication in R and we shall regard (R,0) as i?-bimodule in the
obvious way. We now form the tensor product of R with (R, R):

M = R®RR 0 R®k[a]R. (4)

The first term on the right is just R; denoting the second term by N, we
have M = R © TV and if we write t for 1 ® 1 in N, we see that N is
generated by t as right R -module and M = R ® N has a left R -module
structure with at = tb + c. In this way M becomes a pointed /?-bimodule.
Further, M = M/R is generated by t as .R-bimodule subject to at = tb;
thus M is essentially the module used in the proof of Th. 6.1. To verify
that it is flat we need to show that it is torsion-free as A:[a]-module. We
first show that a is not algebraic over k. Suppose that a satisfies an
equation over k\ since a¥=0, we may divide by a if necessary, so as to
obtain an equation with non-zero constant term:

V*n + Xxa
n~l + . . . + Xn_xa + 1 = 0.

Hence a(Xoa
n~1 + . . . + Xn_x) — — 1; this shows a to be a unit, so it must

lie in k, against the hypothesis.
Thus k[a] is a PID and since R is an integral domain, it is torsion-free
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as right fc[fl]-module. Now over a PID any finitely generated torsion-free
module is free (see e.g. A.I, 10.6), hence any row vector (ul9 . . . ,
un) e Rn is equivalent over GLn(k[a]) to a vector (u[, . . . , u'r, 0, . . . , 0),
where u[, . . . , u'r are right linearly independent over k[a]. Hence any
element of M can be written as ^Uitvh where we may assume the ut to
be right linearly independent over k[a]. It follows that 2 X ^ * = 0 if and
only if vt = 0 for all /. Thus if ^Uitvip = 0, where p e k[a] and the ut are
as before, then vtp = 0 for all /, hence either p = 0 or vt; = 0 for all /,
which shows M to be torsion-free and hence flat.

We now form the filtered tensor ring on M: S = Rk{M\ R). This ring
is an integral domain by Cor. 4.9, and it contains R as subring. Let u e S
be a unit and write Sn for the filtration defined by M. If u e 5r\5r_x and
u~l e Ss\Ss-i, then 1 = uu~l e 55+r\55+r_l9 which is a contradiction,
unless r = s = 0; but then So = R and this has kx as group of units.
Hence the group of units of 5 is precisely kx, as we had to show. •

By a repetition of this argument we obtain the following embedding
theorem:

T H E O R E M 5.6.4. Let R be a k-algebra which is an integral domain with
kx as precise group of units. Then R can be embedded in a k-algebra T
which is an integral domain with kx as precise group of units, such that the
equation

ax — xb = c (5)

has a solution for any a, b, c e T such that a, b $ k.

Proof By Th. 6.3, R can be embedded in a A:-algebra with the same
properties as R, in which a given equation (5) (with a, b $ k) can be
solved, and by induction we obtain a fc-algebra Tx containing R with the
same properties as R, in which all equations (5) over R with a, b $ k can
be solved. If we repeat the process, we obtain a chain

RC TXC T2C . . . ,

whose union is a /:-algebra with the required properties. •

The algebra T constructed here is plainly a simple ring. But we can say
a little more. Consider the following formula:

n

(Pn(a)) 3 xl9 . . . , xn9 yl9 . . . , yn ^xtayi = 1. (6)
I

A simple ring may be defined as a non-trivial ring in which every
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non-zero element a satisfies (Pn(a)) for some n. If we can choose a fixed
n for all a e R (this is the case if e.g. R is a full matrix ring over a field),
then R will be called rc-simple. It is easily seen that an ultrapower of a
simple ring R is again simple precisely when R is n-simple, for some n.
Now the equation (5) shows that the ring T of Th. 6.4 is 2-simple.

Exercises

1. Show that a 1-simple ring without idempotents other than 0 or 1 is a field.

2. Let R be a ^-algebra in which every equation ax — ya = c with a $ k has a
solution. By writing this equation as aR + Ra = R show that R is reduced (i.e.
a2 = 0 implies a = 0). Deduce that R is an integral domain.

3. Let R be a A>algebra which is an integral domain, with elements a, b that are
not algebraic over k. Find an integral domain containing R as well as t, t~l such
that at = tb.

4. Show that a Lie ring can be embedded in a Lie division ring (defined as Lie
ring in which [a, x] = b has a solution for all a ¥= 0), by embedding its universal
associative envelope in a ring in which ax — xa = b has a solution for all a =£ 0
(see Cohn [59']).

5.7 Adjoining generators and relations
Throughout this section all rings will be A>algebras, where A: is a
commutative field, and all mappings will be fc-linear.

If R is any ring, we can adjoin an indeterminate x by forming the
coproduct

R' = R* k[x]. (1)

Since k[x] is a PID, the new ring R' has the same global dimension as R,
or global dimension 1 if R was semisimple, by Th. 3.5, while
&(R') = 9(R),byTh. 3.8.

Secondly, let R be any ring and f e R; then we can adjoin the relation
/ = 0 to JR by forming its quotient by the ideal generated by / . This ring
may be denoted by R(f = 0). About this ring much less can be said; this
is in the nature of things, since every ring can be obtained by imposing
suitable relations on a free ring.

A third process consists in forming localizations, i.e. adjoining inverses.
This again does not raise the homological dimension, though it may
change the monoid of projectives, as we see by forming the field of
fractions of a commutative integral domain which is not projective-free.
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Our aim is to generalize these processes. We can think of x in (1) as
providing a homomorphism between free right R -modules of rank 1 (by
left multiplication). More generally, let P, Q be finitely generated
projective right i?-modules. To obtain the R-ring with a universal
homomorphism from P to Q, let E, F be the idempotent matrices
defining P, Q respectively. If E is n x n and F is m x m, we may think
of P as the submodule of nR spanned by the columns of E and similarly
for Q and F. Any homomorphism a: P —> Q maps E to A e mRn, and
A = Ea= (Ea)E = AE, while A = FA1 for some A1 e mRn, hence
FA = A. Thus we have

AE = A = FA. (2)

Conversely, if A satisfies (2), then the map E^A defines a homo-
morphism from P to Q. This makes it clear how to adjoin a universal
homomorphism a: P—» Q to R: we adjoin mn indeterminates atj to R,
whose matrix A is subject to the defining relations (2). Similarly, to
adjoin a universal isomorphism P —» Q we adjoin first the homomorphism
a as before and then localize at or, by adjoining mn indeterminates bjt to
R, forming an n x m matrix B, subject to the defining relations

AB = F, BA = E. (3)

As we saw in 4.6, we may always assume the additional relations

EB = B = BF.

The rings so formed will be denoted by Rk(a: P—» Q) and /?*(<#, oc~l\
P=Q) respectively. Consider first T = Rk(a: P-> Q). Writing P® =
P ®R T, we can describe T as the /?-ring with universal homomorphism
P® —» Q®. If q?: /? -» i?' is any ring homomorphism, then it is clear that
the r-ring with universal homomorphism P <8) Rf -^> Q <8> R' is R' <8> 71.
To obtain a manageable form for T we shall replace R by a matrix ring
5 = ^^(Z?), where TV is a natural number chosen so large that P 0 Q is
a direct summand of .̂R. Then the matrices E, F are replaced by
orthogonal idempotents e, / i n 5. We now have P = eS, Q = fS and we
need to find an 5-ring with a universal map eS^> fS. Put g = 1 — e — f
and consider the map from k x k x k to S given by

(0, b, c)>^> ea + fb + gc.

The projective module induced by the first factor k is eS, by the second it
is fS, and the (k x A:)-ring with a universal map from 0 x k to k x 0

/is the upper triangular matrix ring T2(k) = , where A: x k embeds
\U A:/

in the diagonal and en induces the universal map. It follows that the
universal ring is T, defined by
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WN(T) = yflN(R) * (T2(k) x k), where K = k x k x k. (4)
K

Our main interest lies in relating the global dimension and monoid of
projectives of T to those of R. The answer is provided by

T H E O R E M 5.7.1. Let R be a k-algebra, P, Q finitely generated
projective right R-modules and let T = Rk(a: P-* Q) be the R-ring with
universal homomorphism from P® to Q®. Then

r.gl.dim.T = max{r.gl.dim./?, 1}; (5)

similarly for the left global dimension, and the ring homomorphism /? —> T
induces an isomorphism

®(R) = 3>(T), (6)

so all finitely generated projective T-modules are induced from R.

Proof We have seen that T is given by (4) above. The first assertion
follows from Th. 3.5, because gl.dim.(T2(fc) x k) = 1, and the second
follows by Th. 3.8, because ^{T2{k) x k) = <3>(k x kx k). The same
result holds for the left global dimension, because we clearly have Rk{a\
P^Q) = Rk(p: Q* -+ P*), where ft is the dual of a. •

In a similar way we can deal with the adjunction of an isomorphism
between projectives P and Q, yielding Rk{oc, a'1: P=Q). To obtain
this ring we note that the (k x fc)-ring with a universal isomorphism
between 0 x k and k x 0 is 9W2(&)> where kx k embeds in the ring of
diagonal matrices. Here en and e2\ are the universal map and its inverse.
Thus we use the same construction as before, but with Tl2(k) in place of
T2(k).

T H E O R E M 5.7.2. Let R be a k-algebra and P, Q finitely generated
projective right R-modules and let T = Rk(ay a~l\ P = Q) be the R-ring
with a universal isomorphism P® = Q®. Then

r.gl.dim.T = r.gl.dim.7?, (7)

unless the right-hand side is 0, when the left-hand side is either 0 or 1, and
similarly for the left global dimension. Further, the ring homomorphism
R-* T induces a surjective homomorphism

with kernel generated by the relation [P] = [Q].



5.7 Adjoining generators and relations 245

Proof. In the earlier notation we have

= WN(R) * CTO2(Jfc) x k), where K = k x k x k. (8)

Now (7) follows as before, when r.gl.dim. i? ^ 1. When r.gl.dim./? = 0,
the left-hand side is at most 1; it can be either 1 or 0, as is shown by the
cases (i) R = k[t, t~x], (ii) R = k x 9JJ2(£)> where we adjoin a universal
isomorphism between k x 0 and 0 x 3R2(^)^n to obtain the ring 2JJ3(fc).

To prove the second part, we note that 8P(2R2(fc) x k) is the quotient of
<3>(k x kx k) by the relation [k x 0 x 0] = [0 x k x 0], and the co-
product on the right of (8) has as monoid of projectives the commutative
coproduct of the corresponding monoids. Since 9(^SRN(T)) = ?P(T) by
Morita equivalence, the assertion follows. •

As a further application of 5.3 we consider the adjunction of an
idempotent map on a finitely generated projective P. If we adjoin a
universal idempotent map on the free module of rank 1 to the field k we
obtain the ring k x k, so the /?-ring with universal idempotent e e ^fln(R)
satisfying e(nR) = P, denoted by Rk{e2 = e: P—» P) , is the centralizer of
the matrix units in Htn(R) * {kx kx k), where K = kx k maps to
yfln(R) by (a, b) •-» ea + (1 - e)b and to k x k x k by {a, b) ^> (a, a, b).
Thus we have

<$ln{T) = 0K n ( / i ) *(kx kx k ) , w h e r e K = k x k.
K

From this equation it is clear that the analogue of (7) holds unless the
right-hand side is 0 or 1. To find 2P(T) we observe that we now have

[P®] = [Qf] + [Q"l (9)

so <3>(T) is obtained by adding two generators [(?'], [(?"] to <3>(R) with the
defining relation (9). This yields

T H E O R E M 5.7.3. Let R be a k-algebra, P a finitely generated projective
right R-module and let T = Rk(e

2 = e: P-» P) be the R-ring with
universal idempotent endomorphism e of P. Then

r.gl.dim. T = max {r.gl.dim.R, 1},

and similarly for the left global dimension, and 2P(T) is obtained from
<3>(R) by adjoining two generators [Q'\ [Q'f] with defining relation (9). •

A slightly different situation arises when we adjoin inverses of existing
maps. This is essentially localization and we can show that a hereditary
ring remains so on localization:
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T H E O R E M 5.7.4. Let R be a right hereditary ring and 2 a set of maps
between finitely generated projective modules. Then the localization Rx is
again right hereditary.

Proof. We begin by proving

Ext R (M, N) = Ext ^ (M, N), (10)

for any pair of i?2-modules M, N. The natural homomorphism R-+ R%
allows us to consider any /^-module as an 7?-module; further it is clear
that a left P2-module M is characterized in RM by the property that for
any map a: P —> Q in 2, the induced map a ® 1: P ®R M —> Q ®^ M is
bijective. It follows that if an R-module is an extension, in the category
RM, of a pair of /?2-modules, then M is itself an /?2-module, and this is
just expressed by (10).

Now R is right hereditary, hence Ext R (M, -) is right exact; by (10), so
is Ext Rx (M, -) and this shows R% to be right hereditary, as claimed. •

These methods also allow us to find out more about the matrix
reduction functor introduced in 1.7. We shall need a lemma on maps with
zero product:

L E M M A 5.7.5. Let R = * Rk be a coproduct of K-rings, where K is a
field. Given finitely generated projective R-modules P, P', P" and
homomorphisms a: Pf —> P, )3: P—> P" such that a/3 = 0, there exist
finitely generated projective Rrmodules Ph P'h P'{ almost all zero, a
decomposition ofP into induced projectives

and maps ak\ P[-^ Px, /3A: PA-» P\ such that ax/3x = 0, and there is a
commutative diagram

P'

Proof. By Th. 3.3, im/3 is an induced module, the map P-»im/J is a
surjection of induced modules and by Prop. 3.7 we have a commutative
diagram
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P' P"

oi

®ker/3A®-

and it remains to show how to replace im)3A and ker/3A by finitely
generated projective i?A-modules. The image of a' is a finitely generated
submodule of 0 ker pf and so lies in an i?-submodule generated by a
finite subset of Uker/jf. Hence we can find finitely generated free
i?A-modules P[ for each A, but almost all 0, with an induced map from
®P[® to 0ke r / ? f whose image contains imar'. Since P' is projective,
we can lift oc' from 0j3f to 0PJ® and so obtain a commutative diagram

pf-

a!

e p

If we dualize this diagram, use the same argument to fill in the bottom
right-hand corner and dualize once more, we obtain (11). •

We can now deal with the matrix reduction ring:

T H E O R E M 5.7.6. Let R be any k-algebra and n ^ 1. Then the matrix
reduction T — $£>n(R; k) satisfies

r.gl.dim.T = r.gl.dim.tf,

unless the right-hand side is 0. Moreover, T is an (n — l)-fir and its group
of units is kx.

Proof. We have

= S, say.

The assertion on global dimensions follows from Th. 3.5, as before. Now
let m < n and take a e Tm, b e mT such that ab = 0. We may regard a, b
as homomorphisms to and from P®, where P is induced from mk and ®
refers to the natural map $)?„(/:)-» S. By Lemma 7.5 we have a
commutative diagram
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where a, /3 are defined over ^Rn(k) and compose to 0 (reading from right
to left, exceptionally). The middle term in the bottom row must be P®,
because this is the only form an induced module can take; moreover,
a/3 = 0, so by a linear transformation this relation can be trivialized, and
hence the same holds for ab = 0.

Finally, suppose that u is a unit in T; it defines an automorphism of
P®, where P = k, but all free transfer automorphisms and transvections
must be the identity on P®, hence by Prop. 3.7, the group of
automorphisms of P® over R must be the group of automorphisms of P
over <Sln(k), i.e. kx. •

We remark that in Th. 7.6, T need not be an n-fir - in fact it will not
be one unless R is a 1-fir, i.e. an integral domain. For if a e Tn, b e nT,
then P® may be induced from JR (instead of ^ftn(k)) and we can then no
longer be sure that the relation a/3 = 0 can be trivialized (see the
examples below and Ex. 9).

However, when R is a fir, then so is T:

C O R O L L A R Y 5.7.7. Let R be a k-algebra which is a fir, and let n
Then the matrix reduction T = ^S>n(R; k) is again a fir.

1.

For by Th. 7.6, T is hereditary and the monoid of projectives of
5 = Wn
i.e. T is projective-free, and so it is a fir.

= Wln(k) * R is free on (l/n)[S]9 hence <3>(T) is free on [T],

The above results may be applied in various ways. For example,
consider the ring obtained by adjoining a map with a one-sided inverse:

T = Rk(a: P -> Q, /?: Q -> P; orjB = 1P>.

This ring may be obtained by forming first S = Rk{e2 = e: P —> Q) and
then r = Sk(a, a'1: P = ime). It follows that T has the same global
dimension as R, except that gl.dim.T may be 1 when R is semisimple.
Further, &(T) is obtained by adjoining one generator [Qn] and one
defining relation: [P] + [Qtf] = [Q].

As an illustration we shall consider the universal non-IBN and
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non-UGN rings. Let us denote by / the element of ^(R) corresponding
to [R].

(i) IBN. For n > m ^ 1 the universal non-IBN ring of type (ra, n) is

By Th. 7.2 this ring is hereditary and ^(ymtn) is generated by / with
defining relation ml = nl. Since m < n, the ring is an (ra — l)-fir, by an
argument as in the proof of Th. 7.6; of course it is not an m-fir. When
m = n, we can use the same results and find that ^(Vn>n) is free on / ;
thus Vntn is hereditary and projective-free, and so is a fir.

(ii) UGN. For n > ra ^ 1 the universal non-UGN ring of type (ra, n) is

Umtn = k(a: kn -> km, /?: km -> *"; a/3 = 1) ,

(composing left to right). The above example shows Um>n to be hereditary
with 9*(C/m>w) generated by / and [P] subject to the defining relation

ml = nl + [P].

Thus £/m>n is an (m — l)-fir, when m < n. When n ^ m, the same
definition can be used, but the resulting ring then has UGN.

(iii) W. The universal weakly n-infinite ring is

Wn = k(e2 = e: kn ^ kn).

By Th. 7.3, Wn is hereditary and 9{Wn) is generated by / and [P] with
the defining relation nl = nl + [P],

Exercises

1. Let R be a right hereditary ring and 2 a set of maps between finitely generated
projective R-modules. Show that the right localization R^ (which consists in
adjoining right inverses of all maps in 2) is again right hereditary.

2. Show that any finitely generated abelian monoid is finitely related. (Hint.
Consider the monoid algebra.)

3. Let A be a finitely generated abelian monoid with distinguished element / =£ 0
such that (i) / is a fundamental unit, i.e. for each x e A there exist y e A and
« G N such that x + y = nl, and (ii) A is conical (i.e. x + y — 0 implies
x = y = 0). Show that there is a hereditary ring R (and A>algebra) such that
&(R) = A as monoids with distinguished element / , such that for any A>algebra S
and any homomorphism cp from A to ^(5) (preserving fundamental units), there
exists a A>algebra homomorphism / : /? —> S which induces cp (Bergman [74']).

4. Show that R = ^(^(k)) is a hereditary ring with ^(R) isomorphic to the
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monoid generated by 1 and \\ in §N. Deduce that R is an integral domain
satisfying Klein's nilpotence condition, but that R has no R-field (Bergman [74']).

5. Show that (for m < n) Vm n and £/m n are not ra-firs. (Hint. Verify that in an
ra-fir R, Rm has unique rank and cannot be generated by fewer than m elements.)

6. Give an example of a simple non-Ore integral domain. (Hint. Apply Th. 6.4 to
Vmn, where n > m > 1.)

7. (Schofield) Let AT be a field, M a A'-bimodule and TV a subbimodule. Show
that the natural inclusion K(N) —» K(M) is honest.

8. (Dicks and Sontag [78]) Let A = (aa) be an m x r matrix and B = (bXj) an
r x n matrix and let R be the fc-algebra on the (m + n)r generators aa, bXj with
defining relations AB = 0. Verify that R is an (r - l)-fir. For m, n, r^l show
that every full matrix is left regular if m, n < r, but R is a Sylvester domain if and
only if m + n ^ r.

9. (Bergman [74']) Show that if R is an (r - l)-fir but not an r-fir, then 9£n(i?) is
an (nr — l)-fir but not an nr-fir.

5.8 Derivations
We now return to make a more detailed study of derivations. This will be
useful in calculating invariants of free algebras and free fields. We shall
now assume that all our rings are K-rings, where K is a fc-algebra (and k
a commutative field, as usual).

On tensor rings any derivation can be described by its effect on the
bimodule, as our first result shows:

P R O P O S I T I O N 5.8.1. Let R, A, B be K-rings, U an R-bimodule and
T = T(U) the tensor ring on U. Further let a: T-* A, /3: T-^ B be
homomorphisms. Then for any {A, B)-bimodule M, any K-linear homo-
morphism f:U-*M extends to a unique (or, ^-derivation of T in M.

Proof We recall from 2.1 that an (a, ^-derivation <5 of T in M may be
described as a homomorphism from T to a triangular matrix ring:

For x in U, with xf in the (l,2)-entry instead of xd, this defines a
.K-linear map from U to the triangular matrix ring in (1), which extends
to a unique homomorphism from T, by universality. The images are
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again triangular matrices and the (1, 2)-entry has the form xd, where <5 is
an (a, j3)-derivation extending / . •

For simplicity we shall confine ourselves in what follows to the special
case where A = B = R and a = fi = 1; the (1, l)-derivations will just be
derivations, with images in an /?-bimodule. The general case is usually no
harder but requires more notation.

For any /^-bimodule M the derivations (over K) form a module
Der# (R, M) and it is clear that Der# (R, -) is a functor, which is actually
representable, i.e. there is an i?-bimodule QK(R), called the universal
derivation bimodule, with a derivation dot R inQK(R) such that there is
a natural isomorphism

Horn,, (QK(R), M) s Der* (R, M),

given by the correspondence a »-> 6a. It is not difficult to construct
QK(R) directly in terms of generators a6 {a e R) and defining relations
expressing that 6 is a derivation, but there is a more concrete realization,
as the kernel of the multiplication map on R. We recall that the
multiplication on R may be expressed as a K -bilinear map

m: R <8)K R-* R, x ® y •-> xy.

In terms of it the universal derivation bimodule may be described as
follows:

T H E O R E M 5.8.2. For any K-ring R (where K is arbitrary) there is an
exact sequence

R®KR™>R-*0, (2)

where m is the multiplication map and QK(R) is generated as left (or right)
R-module by the elements

xd = x®l-\®x(xeR). (3)

Proof. The map m: x ® y ^ xy is clearly an /^-bimodule homomorphism
which is surjective and if its kernel is denoted by QK(R), we obtain the
exact sequence (2). The elements (3) all lie in this kernel and conversely,
if 2 A ® yt € QK(R), then ^x^ = 0 and so

which shows QK(R) to be generated as left or right /^-module by the
elements (3).

It remains to identify QK(R) as the universal derivation bimodule. The
map x •-> xd, where A:6 is given by (3), is easily seen to be a derivation of
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R in QK(R), and it is universal, for given any derivation d of R in an
R-bimodule M, we can define a homomorphism / from QK(R) to M as
follows: If ]>>, ® yt e QK(R), then ^x^ = 0, hence 2>fy; + **y? = 0
and we may define / by the equations

The first equation shows / to be right ^-linear, the second shows it to be
left R-linear; moreover, (xK)dy = xdky for XeK, so the expression
^xfyt is balanced and is uniquely determined by ]£*,• <8> yt. Now 5f maps
x to (x ® 1 - 1 ® JC)/ = jcd, hence d = 6f and / is unique, since it is
given on the generating set {x ® 1 — 1 (8) * } . •

By combining this result with Prop. 4.1.1 (c), we find

C O R O L L A R Y 5.8.3. A ring homomorphism K —» R is an epimorphism
if and only if the only derivation on R over K is 0.

For the criterion for an epimorphism reduces to QK(R) = 0, and this is
clearly so if and only if the only derivation is zero. •

In the sequel we frequently have to deal with a family of ring
homomorphisms i?A —> S and 5-modules that are induced from Rr

modules: M ®Rk S. It will be convenient to denote this induced module
by M®, leaving the ring homomorphism to be inferred from the context
(or indicated separately, in cases of doubt). Similarly for bimodules the
induced module S® M ® S will be written ®M®.

Our next object will be to relate the universal derivation bimodule to
that of a residue-class ring. Here we shall need some basic properties of
the Tor functor, assumed to be known to the reader (see e.g. A.3, Ch. 3).
We begin with a lemma needed in the next proof.

L E M M A 5.8.4. Let T be a ring, a an ideal in T and R = T/a. Then

Tor i(R, R) = a ®T R = a/a2. (4)

Proof Consider the exact sequence

0 -> a -> T -> R -» 0. (5)

Applying ® T R and noting that Tor [(T, R) = 0, R®TR = T ®TR
= R, we obtain

0 -> Tor l(R, R) -> a <g)r R -> R -> R -> 0.
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Here the last map is just the identity; this proves the first isomorphism in
(4). To establish the second, we operate on the exact sequence (5) with
a ® r and find an exact sequence

Clearly the image of the first map is a2, and hence (4) follows. •

T H E O R E M 5.8.5. Let T be a K-ring, where K is afield, let a be an ideal
of T and write R = T/a. Then there is an exact sequence

0 - a/a
2 4 . ®QK{T)® 4 . QK(R) -> 0,

where <8> is based on and p is induced by the natural homomorphism
T^R.

Proof By Th. 8.2 we have the exact sequence

0 -> QK(T) -* T ®K T -» T -> 0,

which is split exact as sequence of left T-modules. Tensoring on the left
with R = T/a over T, we obtain the exact sequence

0 -> ®QK(T) -> R <8)K T -> R -> 0.

If we now operate with <8)TR and bear in mind that R ®TR = R, we
obtain the exact sequence

Tor f(R ®K T, R) -> Tor l(R, R) -> 0 Q ^ ( T ) 0 ^ /? ®^7? -> /? -^ 0.

(6)

Now /? ® ̂  T is projective as right T-module, since for any T-module M,

Homr (R ®K T, M) = Horn* (/?, Homr ( r , M)) = Hom^ (/?, M)

and this functor is exact in M because K is a field. It follows that
Tor i(R <g>K T, R) = 0, so the first term in (6) may be replaced by 0. The
term Torl(R, R) may be replaced by a/a2, by Lemma 8.4, and the last
map in (6) is the multiplication map m whose kernel we know to be
QK(R), so (6) may be replaced by the exact sequence

0 _> a/a2 -> ®QK(T)® -+ QK(R) -> 0,

and this is the sequence we had to find. •

This result just expresses the fact that QK(R) is obtained from QK(T)
by tensoring with T and dividing out by a. The kernel is a/a2, because the
derivation bimodule is a linearized form. Explicitly, if R is given by a
presentation
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then QK(R) is the R-bimodule on generators x8 (x e X) and defining
relations cp8 = 0 (cpe<&), where cp8 is the formal derivative of cp. If a
denotes the ideal of k(X) generated by 4>, then any element of a2 has
the form 2#A> where ai9 bt e a; now (2# A)6 = X^f^ + 2 ^ ? and this
vanishes as element of the bimodule QK(R), in illustration of the fact that
the kernel is a/a2.

We also note the special case of an idempotent ideal:

C O R O L L A R Y 5.8.6. Let T be a K-ring, where K is a field, let a be an
idempotent ideal of T and put R = T/a. Then QK(R) = ®QK(T)®.

This follows from Th. 8.5, since now a/a2 = 0, by hypothesis. •

The results obtained so far allow us to calculate the universal derivation
bimodule of a tensor ring:

P R O P O S I T I O N 5.8.7. Let K be a field, U a K-bimodule and
T = Kk{U) the tensor K-ring on U. Then the universal derivation
bimodule for T is the T-bimodule induced from U:

where ® is taken relative to K -* T and the derivation extends the identity
map on U.

Proof The K-hng T is generated by U with no relations except those
holding in U. Hence QK(T) is generated by u6 (u e U) with linearity and
(au)8 = au8, (ua)8 = u8a forueU,aeK. •

We can also express the universal derivation bimodule of a coproduct
in terms of those of its factors:

T H E O R E M 5.8.8. Let {Rk} be a family of K-rings, where K is a field.
Then the universal derivation bimodule of the coproduct is the direct sum
of those of its factors:

G*(* R,) = ®(®QK(RX)®),
K.

where ® refers to the homomorphism from Rk to the coproduct.

Proof A presentation of R^ is obtained by taking presentations of all the
Rx and identifying K in all of them. Hence QK(* Rx) is generated as
bimodule by the images induced by the bimodules QK(Rk) and there
are no further relations. •
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We shall also want to know the universal derivation bimodule for a
localization:

T H E O R E M 5.8.9. Let Rbe a K-ring, where K is a field, and let 2 be any
collection of matrices over R. Then the universal derivation bimodule for
the localization R^ is given by

= *QK(R)

where <8> refers to /?

Proof Let us write N = ®QK(R)®; we shall prove the theorem by
extending the universal derivation 6: R-^ QK(R) to a universal deriva-
tion of Rz in N. Since each derivation defines a homomorphism to a
triangular matrix ring, we have a diagram

N

where v, V are the canonical maps and the horizontal map is induced by
d. Now every matrix in 2 maps to an invertible matrix over the triangular
matrix ring in the bottom right-hand corner, because it is invertible mod

the nilpotent ideal . Hence there is a unique map completing

the diagram to a commutative square; clearly this map defines a
derivation 6%: R^^ N and it remains to show that this is a universal
derivation.

Given a derivation of R% over K to an Rx -bimodule M, d: R^-^ M,
this defines a derivation of R in M which factors through QK(R), by the
universal property of the latter:
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By the universal property ofN = ®QK(R)®, a can be factored by V to
give a homomorphism a': N —» M, and we have to show that d = d^a'.
By construction we have vd = da = 6Va' = vd^a', and since v is an
epimorphism we conclude that d = d^a'. This shows 6% to be the desired
universal derivation. •

Under suitable assumptions we can strengthen this result to a criterion
for localization in terms of the universal derivation bimodule:

T H E O R E M 5.8.10. Let R be a right hereditary K-ring, where K is a
field. Then a ring homomorphism (p\ R^> F to a field F is a localization if
and only if op induces an isomorphism

6q>: = QK(F).

Proof If F is a localization of R, the result follows by Th. 8.9. For the
converse assume dcp to be an isomorphism. Then every derivation of F
over K is uniquely determined by its restriction to the image of R, i.e.
QR(F) = 0, so cp is an epimorphism, by Cor. 8.3. Its singular kernel is a

prime matrix ideal and if its complement in
yR(R) is 2, then R% is a local ring and we have
a commutative diagram as shown. As localiza-
tion of a right hereditary ring R^ is again right
hereditary, by Th. 7.4, so all ideals of R^ are
free, as right ideals in a right hereditary local

ring.
Now the above diagram yields the commutative diagram shown, where

the top row is an isomorphism by
Th. 8.9 and the slanting arrow is an
isomorphism by hypothesis. Hence
the vertical arrow is an isomorph-
ism, and so the kernel of the homo-
morphism / : R? —• F is idempo-
tent, by Th. 8.5; it is a proper ideal

of R% and is free as right ideal. But it is easily verified that a free ideal
cannot be idempotent unless it is improper or 0 (see Ex. 7, 1.6). Hence
ker/ = 0 and so / is an isomorphism. •

We shall now use derivations to prove that the number of free
generators is an invariant both in free algebras and in free fields. Let
T = Kk{X) be the tensor K-ring on a set X\ if K is a field, then it is
determined by T as the set of all units, together with 0. The free
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generating set X is of course not unique, e.g. x e X may be replaced by
x + a, where a e K, but as we shall now show, its cardinal is unique.

T H E O R E M 5.8.11. Let K be a field which is a k-algebra and let X, Y be
any sets. If' Kk(X) = Kk{Y), then \X\ = \Y\.

Proof Let a be any retraction from T = Kk(X) to K; such a map is
obtained for example by mapping X to 0. Now consider the AT-bimodule
D of all (a, ar)-derivations of T in K. Such a derivation is a ^-linear map
determined by the images of X, which may be any prescribed elements of
K; hence we have D = K(x\ similarly D = K(Y\ and by the invariance
of the dimension of a vector space it follows that \X\ = \Y\, as we wished
to show. •

In order to study free fields, we first establish a property of subfields of
free fields. We shall take D(X) to mean DD(X), thus X centralizes D,
but D need not be commutative.

P R O P O S I T I O N 5.8.12. Let E C D be fields and X a set. Then the
subfield of D^X^f generated by X over E is naturally isomorphic to

Proof. Since D^X^> is a localization of D(X), we have by Th. 8.9,

Now by Prop. 8.7, QD(D(X)) is generated by the elements x8 (x e X)
subject to

x8a = ax8 for all x e X, a e D.

Hence QD(D^X^) is the free D^X^-bimodule on the generators x8,
centralizing D. Denote by L the subfield generated by X over E and
consider the L-bimodule generated by the x8 in QD(D^X^). It is the
image of QE(L) in QD(D^X^>) under the homomorphism L -> D<£X^,
and so is the free L-bimodule on the ^-centralizing generators x8. Since
QE(E^X^) is the free bimodule on the ^-centralizing generators x8, we
see that the natural homomorphism E(X) —> L induces an isomorphism
QE(L)= ®QE(E(X))®. Now E(X), being a fir, is hereditary, so we
can apply Th. 8.9 to conclude that L =

Our aim is to show that for any set X, the cardinal \X\ is an invariant
of the free field k^X^. For infinite sets X this follows from a result in
universal algebra which we quote without proof (Prop. 1.4.4 of A.3). In
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the finite case we shall actually find a slightly more general result,
analogous to weak finiteness, or the Hopf property for groups. Namely
we shall show that if \X\ = n, then any set of n elements generating
k^X^- is a free generating set. It is no harder to prove this result for the
more general case of universal fields of fractions of tensor rings, although
we need an extra hypothesis at this stage. For any A:-algebra R we define
its multiplication algebra as R°®kR, where R° denotes the opposite
(anti-isomorphism) of R. We note that R may be considered as an
i?-bimodule in a natural way, using the left and right multiplications,
hence it is an R° <8>k jR-module.

T H E O R E M 5.8.13. Let D be a skew field which is a k-algebra and
consider F — Dk^X^>, where X = {jcl5 . . . , xn}. Further, assume that its
multiplication algebra F°®kF is weakly finite. Then any D-ring epi-
morphism

(7)

extends to an automorphism of F.

Proof The universal derivation bimodule QD(Dk(X)) is the free
Z\(^0-bimodule on the generators jtf, hence the universal derivation
bimodule QD(F) is the free F-bimodule on the xf, by Th. 8.9. Since (7) is
an epimorphism, by hypothesis, the elements xtf generate F as D-field
and it follows that the elements (*,-/) ̂ -generate QD(F) as F-bimodule,
i.e. as right (F° <8> F)-module, but this is a free right (F° ® F)-module of
rank n, hence by weak finiteness, these elements form a free generating
set. Thus the map (7) induces an isomorphism ®QD(Dk(X))® -+ QD(F).
By Th. 8.10, (7) is a localization, so / can be extended to the universal
field of fractions of Dk(X) to yield an automorphism of F. •

Taking D — k, we obtain

C O R O L L A R Y 5.8.14. For any commutative field k, any generating set
of n elements of k^xu . . . , xn^ is a free generating set; in particular, any
two free generating sets of a free field have the same number of elements.

Proof The first part follows from Th. 8.13, because the multiplication
algebra of A:^:^^ is weakly finite: writing k^X^>° as E, we can express

®k k^X^ as E®kk^X^ and this can be embedded in
Now assume that k^X^ = k^Y^>; if one of X, Y is infinite,

then so is the other and both have the same cardinal, by Prop. 1.4.4 of
A.3. So we may assume that X, Y are both finite. Applying the first part
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to the map k(Y) —> k<£X^ giving rise to the isomorphism, we find that
Y\ ^ \X\. By symmetry we also have \X\ ^ \Y\, hence \Y\ = \X\, as

claimed. •

Exercises

1. Let R, A, B be AT-rings and a: R-* A, /3: R—» # be homomorphisms. Show
that the universal (a, /^-derivation bimodule for R is A ®# QK(R) <8>R B.

2. Given ring monomorphisms A-+R, R-+S, obtain the exact sequence
0-> Der^ (5, M) -» DerA (S, M) -H> DerA (R, M) for any S-module M. Deduce
the exact sequence QA(R) -» QA(S) -> QR(S) -* °-

3. Let r = /fc(t/> = R*K(U) be the tensor ring on a !<:-bimodule £/. Show
that QK(T) = ®QK(R)® 0 ® t/'®, where U' = R®U®R3nd the exponent ®
refers to the map R-+T.

4°. (A. H. Schofield) Let F be a field with a central subfield fc. Is the
multiplication algebra of F, F° ®£ F, weakly finite?

5. (A. H. Schofield) Let £ l 5 . . . , En be finite-dimensional division algebras over
A: and denote the least common multiple of the degrees [Et:k] by m\ further write
o Ei = F. (i) Show that Et can be embedded in <3)f?m(A:), and deduce that F can be
embedded in an appropriate localization of *^lm(k) with n factors <3)?m(/:). (ii)
Show that F can be embedded in a localization of ̂ m ( / : ) * k(y) by embedding £r

in y~r (%lm(k)yr (r = 1, . . . , n). (iii) Show that F^X}> can be embedded in
<$lm(k{.Z})9 where Z = {zijx\i, j = 1, . . . , n, x e X U {y}}.

6. (A. H. Schofield) Let E be a division algebra with [E:k]<<*> and write
F = Ek^.X^. Using Ex. 5, show that F° ®fc F is weakly finite.

7. (W. Dicks) Let D be a field which is a A:-algebra and write F = Z ) ^ * ^ for the
free field on an indeterminate x. Verify that Q^(F) is the free F-bimodule on x as
^-centralizing set: Qk(F) = ®(D ®k D)®. Show that there can be no equation
x = 2[fl/> fy] (ah bt G F) in F. (Hint. Apply first <5: JC >-» 1 ® 1 and then reverse
multiplication, p ® q^> qp, to obtain a contradiction. Makar-Limanov [89] has
constructed a field where every element can be written as a sum of at most two
commutators, and for some elements two are really needed.)

5.9 Field extensions with different left and right degrees
To construct a field extension with different left and right degrees we
shall first examine a type of binomial extension introduced in 3.5. Given a
positive integer n > 1 and a primitive nth root of 1, co say, in our ground
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field k, let us take a field E with an endomorphism a and an ar-derivation
8 such that

8a = coa8, (1)

and construct fields K and L as in Th. 3.5.4. We then have an extension
of right degree n and its left degree will be greater than n provided that
K* ¥= K. More generally, if [K:K°]L = oo, then [L:K]L = oo, but some
care is needed here: it is not enough to take [E:Ea]L = oo, for whatever
or is, we shall have Ka = K if 8 = 0, because a is then an inner
automorphism of L, with inverse c-» tct~l. Likewise we have [L:K]L =
[L:K]R whenever K is commutative, by Prop. 3.1.4, or when L/K is
Galois, by Cor. 3.3.8. Further, we cannot take E to be commutative (say,
generated over k by commuting indeterminates), or even of finite degree
over k, because then 8 would be inner, by Th. 2.1.3 and Prop. 2.1.4, and
so could be reduced to zero.

To construct our example, we take any commutative field k with a
primitive nth root of 1, co say, and let A be any set. When the
characteristic p of k divides n, this is taken to mean that co is a primitive
rath root of 1, where n = mp\ p \ ra. We form the free algebra
R = k(xxij) o n a family of indeterminates indexed by A x N2 and write
E = k^xxtj^f for its universal field of fractions. On R we have an
endomorphism a defined by

XXij ~

If (3 is the endomorphism of R defined by

[0

then a/3 = 1 (read from left to right), hence a is a retraction, and so an
honest map, by Prop. 4.5.1. It follows that a extends to an endomorph-
ism of E, again denoted by a.

Next we define an (^-derivation on R by

xkij — xXi+lj-

This extends to an ar-derivation of E, still denoted by 8. Consider the
(a, o2)-derivation 8a - coa8 on E\ this is easily seen to vanish on each
generator x^, hence it is zero on R and so it is zero on E. Thus we have
8a = coa8 on E. We now form L = E(t\ a, 8) and K = E(tn; an, 8n) as
in Th. 3.5.4; by that result, L/K is a binomial extension of right degree
n. To show that the left degree is > n it is enough to prove that Ka =£ K.
This can be done quite easily whatever A, e.g. we could take A to consist
of one element. But we are then left with the task of finding whether
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[K:Ka]L is finite or infinite. It is almost certainly infinite, but this
does not seem easy to show when |A| = 1, whereas it becomes easy for
infinite A.

For any ji e A denote by E^ the subfield of E generated over k by all
xXij such that ; > 1, or ; = 1 and A=£ \i\ thus we take all JCS except x^n

(i e N). It follows that £„ D Ea for all \i, and E^t) D La D Ka. We
claim that xm e E^(t) if and only if A ¥= \i. Assuming this for the moment,
we see that the xm are left linearly independent over Ka, for if
2flA*Aii = 0, where ax e Ka and some a^ =£ 0, then we could express x^
in terms of the xA11, A^/i , and so x^n e E^(t), which contradicts our
assumption.

That xm e E^t) for A=£ \i is clear from the definition. To show that
xiiii $ £//0> le t u s w r i t e A = EfJ[t] (for a fixed fi) and observe that for
any a e E, at = taa + a6, hence

at = a6 (mod A),

so by induction on r, af = a&r (mod A).
If x^ e E^(t), we would have xfill = fg~l, where f,geA\ thus

xfiiig = f = 0 (mod A), and if g = ^tlbh where bt e E^ then

= 2^«+i î « (mod A).

Here we have multiplied a congruence mod A by elements of A, which is
permissible. Thus we have

2Xii+ii*i + & = 0, where b e A, bt e E^. (2)

Now we have E[t] = E © fi?[f], as a direct sum of E-spaces, so we may
in (2) equate terms of degree 0 in t and so obtain an equation

5Xii+u*i + bo = °> where 6i? fe0 e ^ ,

and not all 6t vanish. But this is impossible, because the x^ are clearly
linearly independent over E^. This proves that x^ $ E^t) and it follows
that [L:K]L ^ |A|. Thus we have proved most of

T H E O R E M 5.9.1. Given any two cardinal numbers A, \x of which at least
one is infinite, both greater than 1, there is a field extension L/K of left
degree A and right degree \iy and of prescribed characteristic.

Proof. For finite \i this has just been proved. When both A, \i are infinite
and A ^ \i say, we take any extension of left and right degree \i and follow
it by an extension of left degree A and right degree 2. The resulting
extension has left degree X[i = X and right degree 2\i = \i. •
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There remains the case where the degrees on both sides are finite but
different. We shall present Schofield's example, by proving

T H E O R E M 5.9.2. Let F C E be an extension of fields and ry s any
integers greater than 1. Then there exists an extension field E of E with a
subfield F such that F H E = F and

[E:F]R = r, [E:F]L = s. (3)

The proof will be in a number of stages. Suppose
first that E' is any extension field of E with a subfield
Ff such that F' DE = F. Then EFf = {2>*y«l*« e E>
yt e F'} is an (E, F')-bimodule and the natural homo-
morphism E ®F Ff ^> EFf shows that

[EF':Ff] ^ [E ® F':F'] = [E:F]R.

Here and in the rest of this section generally, tensor
products of two fields are taken over their intersection. Our aim will be to
construct, for the given extension E/F, an extension E'/F' such that
[EF'.F1] has a preassigned value, while F' ® E = F'E. We state the
precise result needed as

P R O P O S I T I O N 5.9.3. Let E/F be a field extension and r an integer such
that l < r ^ [ F : F ] R . Then there exist a field E' containing E and a
subfield F' of Ef such that

(i) F' fl E = Fand F' E = F' ® E by the natural homomorphism;
(ii) [EF':Ff] = r and any r right F-independent elements of E form a

basis ofEF' as right F'-space.
We remark that since EF1 is a subspace of E' as right F'-space, it

follows that [ £ ' : F ' ] R ^ r.

Before proving this proposition let us show how to deduce Th. 9.2 from
it. We write Fo = F and let Eo be an extension of E such that
[E0:F0]R ^ r, [E0:F0]L ^ 5, e.g. by taking Eo = E(t). We then define an
extension En/Fn recursively, using Prop. 9.3 at the odd stage and its
left-right dual at the even stage. In detail, given an extension Fn_x C En_x

with [£„_!:Fn_i]R 2* r, [Fn_1:Fn_1]L ^ 5, there exists an extension Fn C En

such that £n_! C £„, Fn n En_x = Fn_u and further, (i) for odd n, FnEn_x

= Fn® En_i, while any r right Fn_x-independent elements of En_1 form a
basis of En_xFn as right Fn-space, (ii) for even n, E^Fn = En_x ® Fn,
while any s left Fn_x-independent elements of En_1 form a basis of FnEn_x

as left Fn-space.
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Given an extension F C E as in Th. 9.2, we take Fo C Eo as above and
suppose that wl5 . . . , ur e Eo are right F0-independent and vu . . . ,
vs e Eo are left F0-independent. If Fn_x C En_1 are already constructed,
with En_1 D Eo such that w1? . . . , ur are right Fn_x-independent and vl9

. . . , vs left Frt_!-independent, we construct Fn C En as above. When n is
odd, we have Fn D En_1 — Fn_1 and FnEn_i = Fn <8> Fn-i, hence y1? . . . ,
u5 are left Fn-independent; further, [ ivFn]R 5£ [ i i ^ F ^ F J - r and wl5

. . . , ur form a basis of En_1Fn as right Fn-space. When n is even, u1, . . . ,
wr are right Fn-independent and yl5 . . . , y5 form a basis of FnEn_l as left
Fn-space.

Now put E = [JEn, F = \JFn; then F C E is a field extension and the
set {w1? . . . , wr} is a right F-basis for E, for it is linearly independent
over F and spans E2mF2m+i over F2m+i, for all m; hence it spans F F over
F. Similarly yl5 . . . , vs is a left F-basis for F. Thus (3) holds; moreover,
F C F, E C E and any element of F H £" lies in Fn D Fo for some n,
hence F n F = F, and Th. 9.2 is proved.

It remains to prove Prop. 9.3, by constructing F' and E'. Suppose for a
moment that E' and F' exist, satisfying the conditions of Prop. 9.3. Then
M = EFf is an (F, F')-bimodule generated by 1, which for clarity we
shall denote by u. Since E fl Ff = F, we will have

For any a e E, b e F', au = ub if and only if a = b e F. (4)

Given any element x of M, we define its left normalizer in E as

{a e E\ax e xF'}.

Then (4) shows that the left normalizer of u is precisely F; in fact (4)
asserts a little more: it also tells us that F is the precise centralizer of u (in
E and F'). Our task is firstly to construct a field extension F' of F and an
(E, F')-bimodule M with these properties, and then to find a field E'
containing E and F' to satisfy (i) and (ii) of Prop. 9.3.

If there is an (£ , F')-bimodule M such that [M:Ff] = r, then there is
an embedding of E in 9Kr(F') induced by the left action of E on M\ so
we look for a suitable ring T such that E embeds in Tlr(T). Here T is
restricted to be an F-ring and we want our bimodule to have a single
F-centralizing generator, so we put

T = 3Br(£; F),

where 3B is the matrix reduction functor of 1.7. By Cor. 7.7, T is again a
fir. If its universal field of fractions is denoted by F \ we have

3Wr(F), (5)
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and if {etj) is the set of matrix units centralizing F, then Hlr(F
f)en is an

(£ , F')-bimodule with F-centralizing generator en. Moreover, in ^ ( T )
we have E fl F' = F, for from (5) we see that the elements of F'
centralize the etj and the only elements of E centralizing the etj are those
of F. We shall need to show that linear independence is preserved in
passing from F to F':

L E M M A 5.9.4. Given a field extension F C E and elements u1, . . . ,
ure E that are right F-independent, put T = $&r(E; F) and let Ff be the
universal field of fractions of the fir T. Then the elements uxen, . . . , uren

form a right Ff-basis of Tlr(F
f)en.

Proof. For simplicity we shall put P = Utr(F) and

C = 9Kr(T) = P*E.

Since Ttr(F
f)en has dimension r as right F'-space, it will be enough to

show that the uten are right F'-independent. We may assume without
loss of generality that u1 = 1 if 1 is in the F-span of the ut. If the uten are
right F'-dependent, then, bearing in mind that they are columns of
elements of F ' , we see that the matrix formed by these columns is
singular over F' and hence non-full over T. Thus we have

^Uieu = yz, where y, z e C and yerr = 0. (6)

We choose a right F-basis for P of the form {1, etj} for (/, j) =£ (r, r) and
label the etj as ak (A = 1, . . . , r2 — 1), and we extend ul9 . . . , ur to a
right F-basis of E which we label as 1, b^ (ju = 1, . . .). We take the ak to
be well-ordered, as well as the b^, and then well-order the set {ak, b^} so
that aA < b^ for all A, pi. The words on this set {ax, b^} with as and bs
alternating (including the empty word 1) form a right F-basis for C,
which we shall take to be ordered by length and lexicographically, with 1
as first element.

For any c e C we denote by c the leading term, i.e. the maximal
element in its support. We can also express c as a right P-linear
combination of words whose last letter comes from {b^}; the words
occurring in this expression for c will be called the P-support of c and for
any such word q there is a right P-linear map cq: C^> P which consists in
taking the right-hand coefficient of q in c.

Assume that y in (6) has been chosen so that its P-support is minimal
in the lexicographic ordering of finite descending sequences of words.
Now consider the P-module yP; we may choose a right F-basis {yk} of
yP such that the leading terms all have F-coefficients 1 and are distinct. If
an element of yP had a leading term ending in some b^, it would generate
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a free right P-module, but this cannot be so, because yerr = 0, hence yP
is a proper homomorphic image of P and so its dimension as right
F-space is < r2.

We note further that no leading term yt can be an initial segment of
another, pj. For suppose we have yl = y2p, where p is a non-empty word
with initial factor b^. Let y1 = q, cq(y) = t and write y2 = ya\ then
ta = cq(y)a = cq(y2) = 0, because y2 is shorter than yt. So we have

O - yapt)(z + aptz) = yz\

hence we may in (6) replace y by y — yapt and z by z + aptz, which
removes q from the P-support of y and replaces it by lower terms. But
this contradicts the minimality of the P-support of y, and it proves our
claim.

Now any element of yC can be written as yc = ^y/jk, where fk does
not begin with a term ax. Since the leading term of yk has a coefficient 1
and this term ends in a factor ak, we have yijk = ykfk. If two of these
terms were the same, say yxfx = y2f2, then one of yu y2 would be an
initial segment of the other, but we have seen that this cannot happen, so
all the yijk are distinct.

By (6), we have

ufi^ = Yjuheih^ij e yC, for /, j = 1, . . . , r\
h

hence w,€1; = ykq for some word q with initial factor not in P. Now M^1;-
is a word of length 2 with last factor in P. The only ways to split it into
two factors of which the second does not start with a factor in P are
1 • uteij and ute^ • 1. If yk = 1, then 1 is the leading term of some member
of yP, hence yP contains an element of F, so yP = P and hence
[yP:F] = r2, in contradiction with the fact that yerr = 0. Hence yk = w^1;,
so yP contains r2 right F-independent elements, which leads to a
contradiction as before. Therefore the wfe1;- are right F'-independent and
so they form a right F'-basis, as claimed. •

Let us write M for the (E, F')-bimodule Tlr(F')en and u for its
generator en. Our next aim is to construct a field E' containing F' and E
such that the conditions of Prop. 9.3 are satisfied. We remark that none
of these conditions limits the size of E' in any way: if we have found a
field E' to satisfy all these conditions, then any field containing E' will
also satisfy them.

Let D = E o Ff be the field coproduct of E and F' over F, and with
M = Ttr(F')en form the D-bimodule

®M® = D ®EM ®F D.
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The tensor ring R = DF{®M®) is a fir (see FR. 2.6), and so it has a
universal field of fractions, which we shall denote by E'. In terms of the
natural grading on R, the generator u of M is of degree 1 and hence it is
an atom in R. Moreover, the left normalizer of u in R is F + uR, for by
expressing the elements of R in terms of a right D-basis of ̂ M®
including u, we see that this normalizer lies in D + uR and DuF'
= D ®£ M; hence if c e D satisfies cu = uc', then c e F' and since the
centralizer of u in F' is F, we find that c e F.

Let us write Eu = u~1Eu; then EUF' = u~xEuFf, and this ( F \ F')-
bimodule is isomorphic to M as (E, F')-bimodule, as we see by
multiplying by u on the left. Our next task is to determine the structure of
F'Eu as (F' , £)-bimodule, and we shall do so in quite general circum-
stances.

L E M M A 5.9.5. Let R be a fir with universal field of fractions U, and let
v be an atom in R with left normalizer N in R. Then the mapping given by
multiplication

R ^ ( y " 1 / ? ) - > Rv~lR (7)

is an isomorphism; likewise for the mapping induced by multiplication

(R/Rv) ®K (v^R/R) -> Rv^R/R, (8)

where K = N/Rv.

Proof We note that in R®Nv~xR the two natural embeddings of R
coincide, since r <8> 1 = r ® vv~l = rv ® v~l = 1 ® rvv~l = 1 <8> r.

It is clear that both mappings (7) and (8) are surjective. If (8) is not
injective, then there is a relation

p1v~lq1 + . . . + pnv~lqn = r e R, (9)

which is not a consequence of the relations in R ® v~xR; a corresponding
statement holds for (7), with r replaced by 0 in (9), so it is enough to
consider (9). Let us take a relation (9) for which n is minimal. Writing
p = (p1 . . . pn), q = (qi . . . qn)

T, we can express (9) as p(v~lIn)q = r,
and by elementary row and column operations we have

0 r - p{v-lI)q)^\p r - p(v~lI)q] ~* \p

vl q^
P



5.9 Field extensions with different left and right degrees 267

Thus we obtain a linearized matrix which is singular over U and hence
non-full over R:

where B, C are n x n matrices over R, b is a row and c a column. By the
partition lemma we can modify the right-hand side so that B, C are lower
triangular. Writing B = (btj), C = (c^), we then have bucu = v and since v
is an atom, one of bih cu must be a unit; by a further adjustment we may
assume that one of bih cu is 1 and the other is v. Now bnci = qu and if
bn = v, then P\V~1q1 = p1c1 and we can shorten (9) to ^2Piv~1(li =

r ~ P\c\- Hence we may assume that bn = 1. Let k be the first index for
which bkk = v\ then (bij)ij<k is an invertible matrix, so by a modification
we can reduce it to the unit matrix, while (cij)ij<k becomes vlk-i, and
ct = qt for / < k. Now consider the (k, y)-entry of the product BC, where
j < k\ this is the fcth row of B multiplied by the yth column of C:

bkjv + vckj = 0.

Comparing (k, n + l)-entries in (10), we find

Hence

v~lqk = Y,v~lbkjqj + ck = -^Zckjv^qj + ck,

and when this is inserted into (9), that relation is again shortened. There
remains the case B = I, C = vl. Then cnn = v, so bnv = pn and we can
again shorten our relation. Hence every relation (9) is a consequence of
the relations in R ® v~lR\ it follows that (8) is an isomorphism and
similarly for (7). •

Applied to our particular construction, this result shows that for
R = DF{®M®) the submodule F'Eu is isomorphic as (F' , £M)-bimodule
to F' ®FEU, by a mapping which sends 1 to 1 ® 1, for as we saw, u is an
atom with left normalizer F + uR. Since Eu embeds in u~lR/R by the
map yli>-^u~1y (mo&R) and F' embeds in R/Ru by mapping x to x
(modi?), the isomorphism (8) shows that the image of F'Eu in Ru~lR/R
is isomorphic to F' ®FEU in a natural way. In detail, denoting residue
classes by [], we find that the mapping

F' ®FEU -> (R/uR) ®K (u^R/R) -> U/R,

x ® yu i-> [x] ® [u~ly] i-> [xw"1^]
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is injective. Hence so is the map F' ®FEU —» U given by x ® yu »-»
xu~ly. Following this map by right multiplication by w, we see that the
map x ® yu »-> xyu is injective, as claimed. Together with Lemma 9.4 this
completes the proof of Prop. 9.3. •

Exercises

1. Verify that in Th. 9.1, Ka * K when |A| = 1.

2°. Show that in the conditions of Th. 9.1, [L:K]L = oo if |A| = 1.

3. (Schofield) Let L/K be any field extension such that [L:K]R = [L:K]L < oo.
If M ! , . . . , wr e L are left and right linearly independent over K but do not form a
left or right K-basis, show that U = ^UiK and V = ^Kut are proper subgroups
of L+; hence find ur+1 e L not left or right linearly dependent on u1, . . . , ur.
Deduce that there is a right A"-basis for L which is also a left K-basis. More
generally, if [LIA'JR ^ [L:K]L, show that there is a right .K-basis which can be
enlarged to a left A'-basis.

5.10 Coproducts of quadratic field extensions
We have seen in 5.3 that any coproduct of fields is a fir; it is natural to
ask when this fir is an Ore domain and hence principal. This turns out to
be the case precisely when there are two factors, each a quadratic
extension. We shall see that in this special case the coproduct has a form
resembling a skew polynomial ring, but we begin by establishing the
conditions for a coproduct to be Ore.

T H E O R E M 5.10.1. Let (Ek) be a family of fields that are K-rings, where
K is a field, and Ex =£ K. If the coproduct R = * Ekis a right Ore domain,
then there are at most two factors and [EX:K]R = 2 (A = 1, 2).

Proof Assume first that there are just two factors El9 E2 and that
[E1:K]R>2. Then there exist x,yeE1 such that 1, x, y are right
linearly independent over K. Take z e E2\K and put a = xz + zx,
b = yz + zy\ then it follows by Cor. 1.4 that a, b are non-units in R. If
aR fl bR^O, then since R is a fir, aR + bR is principal; thus there exist
d, ai, bx, p, q e R such that

d = ap + bq, (1)

a = dal9 b = dbx. (2)

Here d may be taken to be right reduced in R, i.e. not right associated to
an element of lower height. By (2) and Th. 1.3,
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h{d) + h{ax) - 1 ^ h(dax) = h(a) = 2,

hence h(d) ^ 3 - h{ax), so d has height at most 2. If h(d) = 2, then
h(ax) ^ 1, by Cor. 1.4. If h(ax) = 1, then ax and d are left and right
A-pure for some A, so a1eEx and d = aa\l, but then 2 = h(d) =
h(aai1) = 3, by Th. 1.3, a contradiction. Hence if h(d) = 2, then
/*(fli) = 0, i.e. ax e K\ similarly bxe K and writing y = b\lax, we have
a = by, i.e.

xz + zx = yzy + zyy.

Equating pure terms of type (2,1), we find

zx — zyy = 0 (mod Hi).

Hence x - yy e Ho, which contradicts the right linear independence
(mod Ho) of x and y. It follows that h(d) < 2. Now h(ap) ^ 2, so by (1),
h(ap) = h(bq) = N, say, where N^2 and h(p) = h(q) = N - 2. Re-
writing (2) as a congruence, we find

xzp + zx/7 + yzq + zyg = 0 (mod HN_i),

or, taking pure components separately,

xzp + yzq = z(xp + yq) = 0 (mod //^-l)- (3)

Now /?, g are of height N — 2, so xp, yq e //jv_i> a nd since z e E2\K,
the second congruence (3) yields

xp + yq = 0 (mod HN_2)-

By the right linear independence of JC , y (mod if 0)
 w e find

p = q = 0 (mod Hl
N_2)-

Thus p, q are left 1-pure of height N -2, hence zp, z<7 are left 2-pure of
height N — 1. Now we obtain from the first congruence (3),

zp = zq = 0(modHN_2),

and this contradicts the relations h(zp) = ^(z^) = N — 1. Thus a and 6
can have no common right multiple other than zero and this shows R not
to be right Ore.

If there are more than two factors, let E1 be the first factor and E2 the
coproduct of all the others. Then R = Ex* E2 and [E2:K]R > 2, so the
previous argument can be applied to complete the proof. •

It remains to investigate the case of two extensions of right degree 2.
We take our extensions to be El9 E2 over K and again write R —
Ex* E2. Each Et is pseudo-linear and we may take it to be generated by
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ut with defining and commutation relations

aui = Uid"1 + adl for all a e K, (4)

u2 + u^ + fa = 0 for some A,-, fa e K. (5)

We shall show that this coproduct is right Ore and obtain a normal form
for its elements.

T H E O R E M 5.10.2. Let EjK (i = 1, 2) be two quadratic extensions of a
field K, generated by ut subject to (4), (5), and write R = Ex* E2. Then R
is a principal right ideal domain and if t = u1 — u2, then every element ofR
can be expressed uniquely in the form of a finite sum

^trcn where cr e Ex. (6)

Moreover, t satisfies the commutation relations

at = taa2 + vita* + a' for all a e K, (7)

where

a* = a
ai - a"2, a' = a6' - a52; (8)

Ult = t2 - t{ux + A2> - uxk - fa (9)

where

A = Ax - Az, n = fa - faz. (10)

Proof We begin by deriving the commutation formulae (7), (9) for t.
For any a e K we have

at = a(ui — u2)

= uxa
ai 4- adl - u2a

ai - a62

= taa2 + ux(a
a' - aai) + a*1 - a6*

= ta"2 + uxa* + a',

and this is (7). To prove (9), we have from (5),

(MJ - if + (Ml - tfo + fa = 0.

We expand the square and use (5) to obtain

— Uiki — fa — uxt — tui + t2 + u^ — tl^ + fa = 0.

Taking u ^ to the other side and using the abbreviations (10), we obtain
(9). Thus (7) and (9) are established. They show that the set of all
polynomials (6) form a subring R' of R\ clearly R' contains Eu and since
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every element of E2 has the form

u2a + b = —ta + uxa + b,

for some a, b e K, it follows that Rf also contains E2 and so R' = R,
because R is generated by Ex and E2. Thus every element of R has the
form (6). To prove uniqueness, assume that

c0 + tc1 + . . . + tncn = 0, where ct e El9 cn i= 0.

Multiplying by c"1 on the right, we obtain a relation

b0 + tbx + . . . + tn~lbn_x + rn = 0, where 6, e £x. (11)

Now t is left and right reduced of height 1, so h(trbr) ^ r + 1, and

n = Ktn~\bn.x + 0) =

and so we have reached a contradiction. Hence the powers of t are right
linearly independent over Ex and (6) is unique.

It remains to show that R is right Ore; in fact it is no harder to show
that R is right principal and this follows as in the polynomial case, but
extra care is necessary on account of the commutation formulae (7), (9).
Given any non-zero right ideal a of R, we take an element / in a of least
degree in t, chosen monic without loss of generality:

f = tn + tn-lcx + . . . + cn, where ct e Ex.

This polynomial / is unique, for if a contained another monic polynomial
g of degree n, the difference f — g would be a non-zero polynomial in a
of lower degree. Consider fR, the right ideal generated by / . Since
fR C a, / is also the unique monic polynomial of least degree in fR. We
claim that for any N > n, fR contains a monic polynomial of degree TV.
Let Pr be the set of all elements of R of degree at most r in t\ clearly this
is a right Ex-space. We have

ft = tn+1 + tn~lcxt + tn~2c2t + . . . + cnt.

Hence by (7) and (9),

ft = tn+1 + tn-xcxt (mod Pn). (12)

We write cx as cx = uxa + b, where a,b e K\ then by (5), (7) and (9),

uxat = u^a"2 + Witf* + uxa
f = t2a"2 + g,

where g is a linear polynomial in t. Similarly bt is a linear polynomial in
t, by (7). Inserting these expressions in (12), we find

ft = t"+1(l + aa>) (mod Pn). (13)
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If 1 + a"2 = 0 (i.e. a = — 1), then ft is a polynomial of degree at most n
and since ft e fR, we must have ft = fb for some b e. Ex, but this would
mean that t = b, a contradiction. Hence 1 + #*2 =£ 0 and now (13) shows
that fR contains a polynomial of degree n + 1; therefore it also contains a
monic polynomial of degree n + 1.

Now let TV > n + 1 and assume that fR contains a monic polynomial of
degree m for each m satisfying n^ m < N; we have to find a monic
polynomial of degree N in fR. Let g be in /R and monic of degree
N — 1. Since N — 2^ n, we may reduce the coefficient of tN~2 in g to
zero by subtracting a suitable polynomial in fR. If g = r^"1 + fN~36 +
. . . , t h e n

gt = tN+ tN~3bt + . . .

by (9), so gt is a monic polynomial of degree N in fR. It follows by
induction that fR contains a monic polynomial of degree N for all N ^ n.
Now any element h of R can by subtraction of suitable right Ex -multiples
of the polynomials just found be brought to the form h = hx + h2, where
hi e fR and h2 e Pn-i. In particular, if h e a, then h2 e a n Pn_x = 0 and
so h = hi e fR, and this shows that a = fR. Thus R is a principal right
ideal domain, and in particular it is right Ore. •

Whether the coproduct R is also left Ore will naturally depend on the
left degrees of the Et over K. Let us briefly consider the case of
commutative fields; we shall see that the field coproduct of two
commutative field extensions is a quaternion algebra, i.e. a 4-dimensional
algebra over its centre.

T H E O R E M 5.10.3. Let Fly F2 be two commutative quadratic field
extensions ofk, given as Ft = k(ut), where as before,

u] + u^ 4 -^ = 0 for some Xiy \i{ e k, (5)

and put t = ux — u2, A = Xx — l^. Then their field coproduct E = Fxo F2 is
a quaternion algebra with centre k(u), where

u= t2 + It. (14)

Proof. We have seen that every element of the coproduct P = Fx* F2

can be written as a polynomial in t = ux — u2 with coefficients in Fx:

Xtrcr, where cr e Fx. (6)
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The commutation formulae now read

at = toe for all a e k, (7)

uxt = t2- t(Ul + X,) - UlX - [i, (9)

where as before, A = Ax - A2, fi = [i\- \h- Multiplying (9) by t on the
right and using (9) to simplify the result, we obtain

uxt
2 = t2(ux - A) + t(2ux + A2)A + (uxX + fji)k.

Hence

Ul(t
2 + Xt) = (t2 4- Xi)ux. (15)

Let us put u = t2 4- Af; by (15), w commutes with ux and it also commutes
with t, and hence with u2 = ux - t. Thus u lies in the centre of P. If the
field of fractions of P is denoted by E, then E is a quadratic extension of
k(t), by (5) and (9), which in turn is a quadratic extension of k(u), so E
is 4-dimensional over A:(w). Since uxu2 =£ W2wi> £ is non-commutative and
so is a quaternion algebra with centre k(u). •

From the proof it is easy to deduce the form taken by specializations of
the field coproduct:

C O R O L L A R Y 5.10.4. Let L be a field which is a k-algebra, generated
over k by two elements ux, u2 both quadratic over k. Then L is either
commutative or a quaternion algebra.

Proof. Clearly L is a homomorphic image of P = k{ux) * k(u2) and since
L is a field, it is a proper homomorphic image. Now P is 4-dimensional
over the central subring k[u], where u = t2 + Xt as in the proof of Th.
10.3. Let vu v2, i>3, v4 be the image in L of a basis of P over k[u] and let
C be the image of k[u\. No finite-dimensional extension of k[u] is a field,
so C is a proper homomorphic image of k[u] and hence is a field.
Further, L is spanned by the vt over the central subfield C and hence is
either commutative or a quaternion algebra over C, because [L:C] is a
perfect square =^4. •

Let us return to the skew case and examine more closely the coproduct
of two quadratic extensions that are isomorphic. We may take them to be
El9 E2 where Et is generated over K by ut satisfying

aut = uta
a + a3 for all a e K, (16)

u] 4- utk + \x = 0. (17)
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This coproduct P = Et* E2 has an automorphism a of order 2 which
consists in interchanging ux and u2 and leaving K fixed. The commutation
formulae for t = ux - u2 now reduce to

at = to" for all a e K, (18)

and uxt = t2 — t(ux + A), which can be written

X). (19)

Now we know from Cor. 3.6.2 that a may be extended to an
endomorphism at of Et by putting

u? = -{ut + A).

Hence (19) may be written in the form

Thus the map alo=oa2 agrees with the inner automorphism of P
induced by t. Since a2 = 1, we have a2 = oocxo and oc\ = oc^oociO =
aa2aa2, and this is just the inner automorphism induced by t2.

The field of fractions L of P may be constructed as follows. Form the
skew polynomial ring E\u\ a2], let Lo be its field of fractions and extend
the endomorphism ocx of Ex to Lo by putting uai = u. Then L is the
quadratic extension of Lo generated by t satisfying the equation t2 = u.
Since every quadratic extension is pseudo-linear, we have a commutation
formula

ft = tfP + / A for all / e Lo,

where /3 is an endomorphism and A a ^-derivation of Lo. For the special
case where / e Ex, say / = uxa + b (a, b e K)we have

(uxa + 6)f = t(uxa + 6) + wa",

as is easily verified, while of course ut = tu. It follows that /? = a and A is
defined by

(uta + b)A = uaa, uA = 0.

The result may be stated as

T H E O R E M 5.10.5. Let E/K be a quadratic extension with endomorph-
ism a and a-derivation d, and denote the extension of a to E by ocx. Then
the field coproduct of two copies of E over K is the quadratic extension of
the function field K(u; a2) generated by t subject to t2 = u. •
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Exercises

1. Let E/K be a quadratic extension and L = E °. E the field coproduct of two
copies of E over K, with bases 1, ux (i = 1, 2). By expressing the elements of L as
Laurent series in t = U\ — u2 determine the centre of L.

2. Using Th. 10.3, determine the quaternion algebras that can be expressed as
field coproducts of two quadratic extensions.

3. Let L/K be a finite extension generated by an element u such that I(u) maps
K into itself. Show that /(«) has finite inner order on K and that L/K can be
obtained as a central extension followed by a binomial extension.

4. Let E/K be a quadratic extension with endomorphism a and ar-derivation 6,
and let L be a field which is a homomorphic image of E £ E. Show that
[L: A*]R = 2 unless a has finite inner order.

5. (Schofield [85]) Show that for any field £ , ^fl2(E) E*£ 9J?2(£) = 9K2(£[f, r"1])
for a central indeterminate f. (Hint. Take the matrix units of the first factor to be
etj and E x E embedded along the diagonal; now show that the matrix units of
the second factor may be taken to be eu, e22, f12, f2\ and show that f12 = te12,
/21 = t~le2i for some t centralizing the first factor.)

6. Let D be a quaternion algebra over k with splitting field F. Use Ex. 1 to show
that (9K2(A:) * D) ® k E = Wl2(E[t, t~1]) for any commutative extension E of k
and by localization deduce that 0%l2{k) £ D) ®kE =s<K2(is(0)- Assuming
uniqueness of the minimal splitting field of D, deduce that the centre of
9tt2(A:) £ D is F. (Schofield [85] shows that every function field of genus 0 can
occur as centre of a coproduct in this way.)

Notes and comments
Coproducts of groups, usually called free products with amalgamated
subgroup, occur naturally in algebraic topology, where the Seifert-van
Kampen theorem (proved in 1933) expresses the fundamental group of a
union of two spaces as a free product of groups with an amalgamated
subgroup. Schreier [27] gave a topological proof that subgroups of free
groups are free, and an algebraic proof of the existence of free products
of groups (Th. 1.1), which was later simplified by van der Waerden [48].
It is also possible to define a notion of free product of groups with
different amalgamated subgroups, where we have a family of groups (G,-)
and subgroups (Htj) of Gt such that Htj = //;7. We can form the coproduct
of the Gt amalgamating Htj and Hjh but this coproduct will in general be
neither faithful nor separating, see B. H. Neumann [54] and the
references given there.
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The coproduct of rings was introduced (as 'free product') by Cohn [59],
where the coproduct of a family of K -rings was shown to be faithful and
separating whenever all the factors are faithfully flat as left and right
A'-modules. This condition holds in particular when K is a field and all
the factors are faithful K-rings, a case treated in more detail in Cohn
[60], where a form of the weak algorithm was established when all the
factors are fields, and this was used to prove that the coproduct is then (in
today's terminology) a semifir; Th. 1.3 and Cor. 1.4 were also proved
there. The method used was adapted and greatly generalized by Bergman
[74], to prove the results of 5.2 and 5.3, culminating in Theorems 3.5, 3.8,
3.9. These sections follow essentially Bergman's paper, with some
simplifications.

The consequences 4.1-4 for tensor rings in 5.4 first appeared in Skew
Field Constructions, Lemma 4.7 is taken from Cohn [60]; the rest of 5.4 is
new. The HNN-extension for fields, Th. 5.1, and the matrix form Th. 5.5
are taken from Cohn [73]. Th. 5.8 and the results leading up to it first
appeared in Cohn [73']. The embedding theorem 6.4 first appeared in
Cohn [58] with a direct proof; the present proof is new. A (not necessarily
associative) algebra over a field can always be embedded in a non-asso-
ciative division ring; this was shown by B. H. Neumann [51]. Bokut' [81]
showed that every ring which is a A:-algebra can be embedded in a
1-simple ring, again a fc-algebra.

The results of 5.7 are largely taken from Bergman [74']. Part of Th. 7.6
(the (n — l)-fir property) was proved in direct fashion by Cohn [69], as a
kind of analogue to 'small cancellation theory' in groups. The interpreta-
tion of the universal derivation bimodule as kernel of the multiplication
map (Th. 8.2) is due to Eilenberg, while much of the rest of 5.8 is folklore
(cf. also Bergman and Dicks [75,78], where Th. 8.9 is proved). The
invariance of the generating number of free fields (Th. 8.13) was proved
by Schofield [85]; the corresponding result for free algebras appears in
FR, 0.11.

The question whether left and right degrees of a field extension are
equal was first raised by E. Artin, though there seems to be no written
record and it was not listed among the problems in the preface to his
collected works (E. Artin [65]). The first example of a quadratic field
extension of infinite left degree (Cohn [61"]) was a construction based on
the embedding theorem of 2.6 (Th. 2.6.3, see Cohn [61']); pseudo-linear
extensions of right degree n ^ 2 and infinite left degree were constructed
in Cohn [66']. Field extensions of different finite left and right degrees
(Th. 9.2) were first constructed by Schofield [85'], whose presentation we
follow here. In the text we referred to FR for the fact that the tensor ring
DF{®M®) is a fir (p. 266). In fact this is a semifir by Th. 4.5; the
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fir-property is only needed in the proof of Lemma 9.5 to show that
elements have complete factorizations, but this follows easily by a direct
argument using the degree.

The results on coproducts that are right Ore in 5.10 are taken from
Cohn [60,61"]. Using results from Cohn [85] (cf. also FR, Th. 7.8.4,
p. 441) it can be shown that the centre of the field coproduct E o F lies in
K unless E, F are both at most quadratic over K. When E, F are both
commutative quadratic extensions of K, then the centre is a rational
function field K(t). In general the centre of the field coproduct can be
any function field of genus 0 (Schofield [85]; see also Ex. 6 of 5.10).



General skew fields

In any variety of algebras such as groups or rings the members can be
defined by presentations in terms of generators and defining relations.
Fields do not form a variety, as we saw in 1.2, and they do not have
presentations in this sense. In fact the usual mode of construction of
commutative fields is quite different: one takes a rational function field
over some ground field and then makes an algebraic extension. For skew
fields this method works only in very special cases, but there is an
analogue of a presentation, in terms of matrices that become singular.
Now it is necessary to verify in each case that the outcome is a field and
this forms the subject of 6.1. At this stage free fields form a natural topic,
but first we need to prepare some tools: In 6.2 we prove the specialization
lemma, which generalizes the density principle of the commutative
theory: A non-zero polynomial over an infinite (commutative) field
assumes non-zero values. The analogue for skew fields states that a
non-zero element of a free field (with infinite centre and of infinite degree
over it) can be specialized to a non-zero element in the field.

The elements of the free field are described in terms of matrices over
the tensor ring and it is therefore of interest to provide a normal form for
these matrices. This is done in 6.3 and a corresponding 'normal form' for
fractions is derived.

Section 6.4 is devoted to free fields. The relation between free fields
over different base fields is described and some surprising properties are
revealed, such as irreducible polynomials over a field D which become
reducible on adjoining an indeterminate to D.

One commutative concept which has (so far) no satisfactory analogue
in the general case is the algebraic closure of a commutative field. Some
properties of the algebraic closure are shared by existentially closed
fields, which form the topic of 6.5. These fields are less manageable, thus

278
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they are not axiomatizable (i.e. they cannot be defined by elementary
sentences), unlike the algebraically closed commutative fields, but they
also have properties not shared by the commutative fields, for example,
being member of a given subfield can in an existentially closed field be
expressed as an elementary sentence.

As in the case of groups one can formulate the word problem for
presentations of fields, and we shall find in 6.6 that free fields have a
solvable word problem (subject to a condition on the ground field), while
examples given here show that there are also fields with unsolvable word
problem.

The final section 6.7 uses the compactness theorem of logic to establish
the claim made in 1.2 that the class of integral domains cannot be defined
by a finite set of elementary sentences.

6.1 Presentations of skew fields
In the commutative case field extensions are very simple to describe. Any
finitely generated commutative field may be formed by taking a purely
transcendental extension of the ground field K = k{xu . . . , xn) and
making a finite number of simple adjunctions; each of the latter consists
in adjoining a solution of an equation / = 0, where / is a polynomial in a
single variable over K. In particular this shows that any simple extension
of infinite degree is free. No such simple statement holds in the general
case, in fact we shall need to define what we mean by a free extension
(corresponding to a purely transcendental extension in the commutative
case).

To reach the appropriate definition, consider a finitely generated
extension E = D(al9. . . , <xn) of a skew field D. As before we shall take
all our fields to be fc-algebras, where A: is a commutative field. This
represents no loss of generality (in fact a gain): if k is not present, we can
take the prime subfield to play the role of the ground field. Given E as
above, we have a D-ring epimorphism:

Dk(X) ^E,X= {xl9 . . . , xn}, xt ~ at (* = 1, . . . , n). (1)

Here Dk{X) is the tensor D-ring on X introduced in 1.6. Let <3> be the
singular kernel of (1); since E is an epic Dk(X)-field, being the field
generated by the <xt over D, it is determined up to isomorphism by 2P. If
<£ is any set of matrices generating 2P as matrix ideal, then E is already
determined by O and we shall write

E = Dk^X; O}>, (2)

and call this a presentation of E. In particular, we call the at free over D
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if the presentation can be chosen with <f> = 0 ; this just means that (1) is
an honest map, i.e. 2P consists precisely of all non-full matrices over
Dk{X). From Th. 5.4.5 we know that Dk(X) is a semifir (in fact,
Dk(X) is even a fir, see FR, 2.4), so the set of all non-full matrices is a
prime matrix ideal and the corresponding universal field of fractions is the
free D-field on X, Dk^X^>.

Let E be any field with the presentation (2); we shall say that E is
finitely generated over D if X may be taken to be finite; E is finitely
related if 3> may be chosen finite, and E is finitely presented when X and
O can both be chosen finite. As for groups we have the following
decomposition for finitely related fields:

T H E O R E M 6.1.1. Any finitely related field can be expressed as the field
coproduct of a finitely presented and a free field.

Proof Let E = Dk^X; O^>, where O is finite. Then the subset X' of
members of X occurring in matrices from O is finite. If X" denotes the
complement of X1 in X, we clearly have E = E' © E", where
E' = Dk<^X'\ 0>}> and En = Dk^Xff^>. Here E' is finitely presented and
E" is free. •

In the special case when E has finite (left or right) degree over D, the
above construction can be simplified a little. In that case (1) is surjective,
not merely epic. Moreover, instead of taking the free algebra, we can
incorporate the commutation relations as follows. Suppose that
[E:D]R = n and let ul9 . . . , un be a right D-basis of E. Since E is a
Z)-bimodule, we have the equations

auj = ^ZuiPijia) for all a e D, (3)

where the map art-> (p/;(ar)) is a homomorphism from D to (3)?n(Z)). Let
M be the right D-space on ul9 . . . , un as basis; by the equations (3), M
becomes a pointed Z)-bimodule, as we see by changing our basis of E so
that ux = 1. Let T be the filtered tensor ring on this bimodule,
constructed as in 5.4. Th. 5.4.5 can be adapted to show that this ring is a
semifir. Now E is obtained as a homomorphic image of T, so we need to
look for ideals in T which as right D-spaces have finite codimension, in
fact the kernel of (1) in this case is a complement of M in T. But it is not
at all clear how this would help in the classification of extensions of finite
degree.

Let us return to the general case. Given any set X and any set O of
square matrices over Dk(X), we may ask: When does there exist a field
with the presentation
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(4)

Writing (<£) for the matrix ideal of Dk{X) generated by O, we have two
possibilities:

(i) (O) is improper. This means that there is an equation

/ = ClVC2V . . . VCr, (5)

where each Q is either non-full or a diagonal sum of a matrix in O and
another matrix, and the sum on the right of (5) is suitably bracketed.
Then there is no field (4), in fact there is no field over which all the
matrices of O become singular. Here there is no solution because we do
not allow the one-element set as a field.

(ii) (O) is proper. This means that no equation (5) is possible. Now
there is always a field over which the matrices of O become singular,
possibly more than one. The different such fields correspond to the prime
matrix ideals containing (O), and there is a universal one among them
precisely when the radical V W is prime. In particular, this is so when
(O) itself is prime, and that will be the only case in which the notation (4)
will be used.

In practice most of the presentations we shall meet are given by
equations rather than singularities, but the latter are important in
theoretical considerations, e.g. when we want to prove that an extension
is free we must check that there are no matrix singularities. We shall
return to this question in Ch. 8.

A special case occurs when E (and hence also D) is of finite degree
over k. In that case the singularity of a matrix can be expressed by the
vanishing of a norm and hence it will be enough to consider equations.
Only in the case of infinite extensions are the matrix singularities really
necessary.

We conclude with some examples. Although the notation (4) is used, a
justification is needed in each case that the matrix ideal generated is
indeed prime.

1. The Hilbert field

H = K^u, v; uv = vu2^. (6)

To construct this field we take a field K and form the rational function
field K(u) in a central indeterminate u\ on K(u) we have an endomorph-
ism a: f(u) i->/(w2). Hence we can form the skew polynomial ring
K(u)[v; a] and its field of fractions H = K(u)(v; a), which is clearly
given by the presentation (6).

We remark that if the centre of K is C, then the Hilbert field H again
has centre C and [H:C] = » . For the proof we write w1/2' = vluv~\ so
that
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(ul/2lf = iT'V'wiTV = u-

If we put E = K(u, w1/2, u1/4, . . .), then on E a is an automorphism and
H = E{v\ a) C E((v; a)). It is clear that a has infinite inner order on E
and fixed field K, hence the centre of H is C (Th. 2.2.10). Moreover, 1,
u, u2, . . . are linearly independent over C, so [//:C] = oo (for another
proof see Prop. 2.3.5).

2. The Weyl field

W= K^x,y;xy-yx = l^>. (7)

To form W we again take the rational function field K(y) and on it
define a derivation <5 by the rule yd = l. This extends to a unique
derivation 6 on K(y), which is just (formally) differentiation with respect
to y. The skew polynomial ring A(K) = K(y)[x\ 1, 6] is called the Weyl
algebra and its field of fractions is the Weyl field W with the presenta-
tion (7).

When K has centre C and characteristic zero, we can again show that
W has centre C and is of infinite degree over it. For on writing z = x"1,
we can embed W in the field of formal Laurent series in z (see 2.3); the
commutation rule now reads yz = z(y + z)- We take an element / in the
centre of W and write it as a Laurent series in z: f = ^Jz

lai. By
conjugating with z we see that at{y) = at(y + z), hence at is independent
of y, hence so is / . By symmetry / is independent of x and so / e K;
since / centralizes K, it must belong to C, hence C is the centre of K. It
is again clear that 1, JC, x2, . . . are linearly independent over C, so
[W:C] = oo.

3. Let ^ = {JC0, * ! , . . . , JC4} and consider the presentation

/r r \
Z) = k^X; A -xo^>, where A = \ l 2 . (8)

* X

The fact that A — x0 is singular may be expressed by the rational relation

„ / _ , „ \-v-~ -̂v v \ n

As this relation shows, D may be regarded as the free field on x0 and any
three of JC1? JC2, JC3, JC4. In Ch. 8 we shall see that D may also be obtained
as an extension of the free field on JC1? x2, x3, JC4.

Exercises

1. Show that the Weyl algebra on x and y over a commutative field /: of
characteristic p has centre k(xp, yp) and its degree over its centre is /?2.

2. Show that for a commutative field k of characteristic 0 and an integer r > 1,
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the field k^u,w,vu = ruv^ is infinite-dimensional over its centre k. What
happens in finite characteristic?

3. Show that E ° (F ° G) = E ° G.
F K K

6.2 The specialization lemma
In commutative field theory the density principle is of importance; it
states that any polynomial over an infinite field which is not identically
zero assumes a non-zero value for some value of the argument. In the
general theory there is an analogue, Amitsur's theorem on generalized
polynomial identities, but for our purposes the result is more usefully
expressed in terms of matrices. As we shall need Amitsur's theorem in
the proof, we shall state it in the form required here.

If A is a A>algebra, then by a generalized polynomial identity (GPI) in
a set X of variables over A one understands a non-zero element p of
Ak{X) which vanishes under all maps X -* A. We shall only need the
special case of Amitsur's theorem for skew fields, but strengthened by a
restriction on the set of values that may be substituted. The precise form
is as follows:

G P I - T H E O R E M . Let E be a field, 2 a multiplicative subset of E and C
its centralizer in E. If for all a e Ex, Call is infinite-dimensional as left
C-space, then any non-zero multilinear element p of EC{X) has a
non-zero value for some choice of values ofXin 2.

For a proof, see A.3, Th. 9.8.3, p. 391 (see also FR, 5.9). The
restriction on p to be multilinear was necessary here, because 2 may not
be a subspace. However, if we take a subfield D for 2, the multilinearity
need not be assumed. In that case the condition [CaD.C] = °° follows if
we assume (i) [£:C] = °° and (ii) E = CD. For in that case each a e Ex

has the form a = ^jCtdh where cte C, dt e D and ctdi =£ 0 for some /.
hence CaD = CD = E, and so [CaD.C] = [E:C] = » . Thus we obtain
the following form of the GPI-theorem:

T H E O R E M 6.A. Let D C E be a field extension, denote the centralizer
of D in E by C and assume that (i) [E:C] = o° and (ii) E = CD. Then any
non-zero element of EC(X) has a non-zero value for some choice of
values ofXinD. •

We shall also need some auxiliary results. In the first place there is the
inertia lemma for semifirs, which is concerned with pulling down
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factorizations from Laurent series to power series. Given a ring A and a
subring B, we shall say that B is finitely inert in A, if for any matrix
M erBs, such that over A we have M = PQ, where P is r x n and Q is
n x 5, there exists U e GLn(A) such that PU~l, UQ have all their entries
in B.

L E M M A 6.2.1 (Inertia lemma). Let R be a semifir. Then for a central
indeterminate t, the ring /?[[*] of formal power series is finitely inert in
R((t)), the ring of formal Laurent series.

Proof We write A = R((t)), B = /?[*] and indicate the natural homo-
morphism B-> R, obtained by putting t = 0, by a bar. Given M erBs,
suppose that over A we have

M = PQ, where P is r x n and Qis n x s. (1)

We may suppose P, Q =£ 0, since otherwise the conclusion holds trivially.
Over A every non-zero matrix T can be written uniquely as tyT', where
veZ^T' has entries in B and T' =£ 0. Let P = f"P', £) = tvQ', where
P' , Q' =5̂ 0. Writing JU + v= —A, and dropping the dashes, we can now
rewrite (1) in the form

M = rkPQ, where P e r £ n , 2 e nBs and P, (5 =£ 0. (2)

If A =ss 0, the conclusion follows; if A > 0, we have PQ = 0. Then, since R
is a semifir, we can find a matrix U e GLn(R) trivializing this relation,
and on replacing P, Q by PU"1, UQ we find that all the columns in P
after the first h are 0 and the first h rows of Q are 0. If we multiply P on
the right by V = tlh © In_h and Q on the left by V'1, then P becomes
divisible by t, while g has all its entries still in B. We can now cancel a
factor t in (2) and so replace A by A - 1; after A steps we obtain the same
equation (2) for M but with A = 0, and this proves the finite inertia. •

There is a stronger form, total inertia, which will not be needed here
(see FR, 2.9), but we note the next result, which is proved by total inertia
in FR; below we give a direct proof.

We remark that any matrix over a tensor ring DK{X) is stably
associated to a linear matrix, by the process of linearization by enlarge-
ment (also called Higman's trick, see Higman [40]). We fix an entry of
our matrix in which a product occurs, say f + ab\ for simplicity we take it
to be in the bottom right-hand corner. Now take a diagonal sum with 1
and apply elementary transformations. Writing only the last two entries in
the last two rows, we have
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f + ab 0\ (f + ab a\ If
0 l)^\ 0 \r\-b

In this way any matrix over DK{X) can be reduced to a matrix which is
linear in X.

P R O P O S I T I O N 6.2.2. Let D be a field and K a subfield of D. Then for
any finite set X, the natural homomorphism DK{X) -» DK{{X)) is
honest.

Proof. We have to show that any full matrix over R = DK{X) remains
full over R = DK((X)); by linearization it is stably associated to a matrix
of the form A = Ao + ^xtAh where xt e X and Ao, At are matrices over
D. Enlarging X if necessary, we may suppose that it contains an element
x0 not occurring in A. Now consider x0A; this is linear homogeneous in
the variables x0, x0Xi (i > 0), which again form a free set, and it will be
enough to show that x0A remains full over R (which contains the power
series ring on xo,xoXi). Thus we may assume A to be homogeneous of
degree 1. Suppose that A is not full over R and take a rank factorization
over R:

A = BC, (3)

where B is n x r say, C is r x n and r < n. Write B = ^Bh C =
where Bh Ci are the homogeneous components of degree /. Then
B0C0 = 0, and Bo, Co are matrices over Z), hence on replacing Bo by an
associate, we may assume

Bo =
I 0\
0 0 '

where / is J X s, say. Since B0C0 = 0, the first s rows of Co are now 0,
and on replacing Co by an associate (which leaves Bo unaffected), we find
that

C -1°
c°-[o

where / is t x t and since Co has r rows, s + t ^ r. Equating homogen-

eous components in (3), we have A = B0Ci 4- BXCQ or on writing Bx, Cx

in block form to conform with Co, Bo respectively:

0 0 / 10 B\) \ 0 B'[
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Thus A has an (n — s) x (n — t) block of zeros. But

so A is hollow; by Prop. 4.5.4 it is not full, which is a contradiction. •

To avoid complications we have taken X to be finite, as that is the only
case needed, but with a little care the result can be proved generally.

Next we come to a property of inner ranks. As we saw in Prop. 1.4.3,
over a weakly finite ring every invertible matrix is full; we shall be
interested in matrices with an invertible submatrix:

L E M M A 6.2.3. Let R be a weakly finite ring and consider a partitioned
matrix over R:

A I "^*-1 ^ ^ 2 1 1 A

A = \ I, where A± is r x r.
\A3 A4J

If A i is invertible, then rA ^ r, with equality if and only if
A~, A An ~~~ A

Proof. Since the inner rank is unchanged by elementary transformations,
we can make the following changes without affecting the inner rank:

/ / Ai1A2\^(l A\lA2 \ 11 0
I ^ A I I n A A A ~^ A I I n A A A ~^ i
\J~\-2 -**4 / \ ^ •''•A **-?>-**-\ •*~*-21 \ -^4 **•'$•**• 1 -*

If rA = s, say, this last matrix can be written as

y Q"),

where P' is r x s and Qf is s x r. Thus I = P'Q' and by weak finiteness
/ is full, so r ^ s. Thus rA ^ r; when equality holds, we have Q' P' = / ,
again by weak finiteness, but P'Q" = 0, hence Q" = 0 and similarly
P" = 0. Hence AA — A^A\~lA2 — 0 and the conclusion follows; now the
converse is clear. •

We shall also need a weak form of the specialization lemma, referring
to a central indeterminate.

L E M M A 6.2.4. Let D be a field which is a k-algebra over an infinite
field k, and consider the polynomial ring D[t] in a central indeterminate,
with field of fractions D(t). If A = A(t) is a matrix over D[t], then the
rank of A over D(t) is the maximum of the ranks of A(a), a e k, and this
maximum is assumed for all but a finite number of values of a.
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Proof. By the diagonal reduction of matrices over the principal ideal
domain D[t] (see 10.5 of A.I or 8.1 of FR) we can find invertible
matrices P, Q over D[t] such that

PAQ = diag(px, . . . , pr9 0, . . . , 0), where Pi e D[t]. (4)

The product of the non-zero pt gives us a polynomial / whose zeros in k
are the only points of k at which A = A(t) falls short of its maximum
rank, and by the density principle this cannot happen for more than deg/
values. •

We now come to the main result of this section:

T H E O R E M 6.2.5 (Specialization lemma). Let D be a field which is a
k-algebra over an infinite field k. Let E be an extension field of D, C the
centralizer of D in E and assume that E = CD and [E:C] = °°. Then any
full matrix over EC(X) (for any set X) is invertible for some choice of
values of X in D.

Proof. Let A = A(x) be a full n x n matrix over EC(X) and denote by
r the maximum of the ranks of A{a) as a ranges over Dx. We have to
show that r = n, so assume that r < n. Since only finitely many xs occur
in A, we may take X finite. By a translation x »-»x + a (x e X, a e D)
we may assume that the maximum rank is attained for x = 0; further, by
interchanges of rows and of columns we may take the r x r principal
minor of A(0) to be invertible. Thus if

Bx(x) B2(x)\
B3(x) B4(x))'

where Bx is r x r, then BX(G) is invertible. Given a e Dx and any Xe k,
we have rA(Xa) ^ r, hence by Lemma 2.4, the rank of A(ta) over E(t) is
at most r, and the same holds over E((t)). Now Bx(ta) is a polynomial in
t with matrix coefficients and constant term #i(0), a unit, hence B^ta) is
invertible over the power series ring Elt}. By Lemma 2.3, the equation

B4(ta) = B3(ta)B1(ta)-lB2(ta) (5)

holds over Elt} for all a e D*. Therefore the matrix

B4(tx) - B3(tx)B1(tx)-lB2(tx) (6)

vanishes when the elements of X are replaced by any values in D. Now
(6) may be regarded as a power series in t whose coefficients are matrices
over Ec(X),so the entries of these matrices are generalized polynomial
identities or identically 0; hence by the GPI-theorem 6.A the expression
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(6) vanishes as a matrix over Ec{X)\t\\ putting t - 1, we obtain a matrix
A(x) over EC((X)) of inner rank r, and since r < n, it is non-full. But
this contradicts the fact that A(x) is full over EC(X) and the inclusion in
EC{{X)) is honest. This shows that r = n and so A(a) is invertible for
some a e D*. •

Taking E = Z), A: = C, we obtain an important special case:

C O R O L L A R Y 6.2.6. Let D be a field with infinite centre C and suppose
that [D\C\ = oo. Then every full matrix over DC(X) is invertible for some
choice of values of X in D. •

For the specialization lemma to hold it is clearly necessary that C
should be the precise centralizer of D. For C must centralize D to make
the substitution possible, and if C were smaller, say there existed a in the
centralizer of D but not in C, then ax — xa would be non-zero and
hence full, as 1 x 1 matrix, even though it vanishes for all values of x in
D. Secondly, if [£:C] were finite, there would be non-trivial identities
over E, so again the lemma does not hold. On the other hand, it is not
known whether it is essential to assume an infinite ground field.

One way in which the specialization lemma can be used is to specialize
the variables in Dk^X^ so as to preserve certain elements. If E is a field
containing D (and still a A>algebra), then any map a: X -* E can be
extended to a homomorphism, again written a, of Dk{X) into E; if
2P = Ker a is the singular kernel, then a can be extended to the
localization of Dk{X) at 9\ This yields the following result:

P R O P O S I T I O N 6.2.7'. Let D C E be an extension of fields such that the
centre k of E is contained in D, and assume that k is infinite and
[E:k] = oo. Then for any finite set of elements ply . . . , pr of Dk^X^>
there is a map a: X —» E such that the induced homomorphism a of
Dk{X) into E is defined on p1} . . . , pr. In particular, the intersection of
all the singular kernels of the homomorphisms of Dk(X) into E is the set
of all non-full matrices over Dk{X).

Proof. By Prop. 5.4.3 we have a natural embedding
Ek^X^, hence an honest homomorphism Dk{X) —> Ek{X). Now let At

be the denominator of pt in some representation (see 4.2); then At is full
over Dk(X), hence also over Ek(X), and so is A = Ax © . . . © Ar. By
the specialization lemma (Th. 2.5) we can find a: X —> E such that Aa is
invertible over E, hence each A? is invertible over E and it follows that
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a is defined on pt for / = 1, . . . , r. The last part follows because for each
full matrix A we can find a singular kernel of a map to E which excludes
A, so the intersection of these singular kernels is just the set of all
non-full matrices. •

As a further application we prove a form of the normal basis theorem
for Galois extensions. Let L/K be a finite Galois extension with Galois
group G, and denote by Go the subgroup of inner automorphisms. Write
(G:G0) = r, denote the centre of L by C and recall that the algebra
associated with G (see 3.3) is defined as

A = {a e L\a = 0 or I(a) e G}.

It is clear that A is a C-algebra and if [A:C] = s, then [L:K] =
|G|red = rs = ft, say, by Th. 3.3.7. Choose a transversal al9 . . . , or of Go

in G and a C-basis vl9 . . . , vs of A; the set of re elements a,-/(u;-) will be
called a reduced automorphism set of L /# . By Cor. 3.3.3, the rs
elements 0//(u;-) form a right A-basis for the right A-space spanned by all
the ol(a) (o e G, a e A), for this corollary shows them to be linearly
independent, and if a e G, then a = otl{a), where a = 2 ^ / (̂ y e C)\
hence for all x e L,

xa = jta'7(» = axOia~l =

where bj = XjVja'1 e A. It follows that any element a of G can be
expressed in the form

a — oj(a) = ^otl(vj) where bj e A and i depends on o. (7)

As in the commutative case we have the following criterion for a set to
be a AT-basis of L:

L E M M A 6.2.8. Let L/K be a Galois extension of degree n with reduced
automorphism set dx, . . . , dn. Then a given set {w1? . . . , un) of n
elements of L forms a left K-basis of L if and only if the matrix P = (/?„),
where ptj = ut', is non-singular.

Proof. The n elements ui9 . . . , un form a basis if and only if they are
linearly independent over K. If there is a dependence relation ^a^ = 0,
where the at e K are not all 0, then ^a^uf1 = 0 for all /, so P is then
singular. Conversely, assume that the ut form a basis. By Dedekind's
lemma (Th. 3.3.2), the 0; are linearly independent, thus for any x e L,

5>*>c;- = 0 ( c / e L ) ^ c 1 = . . . = cn = 0. (8)
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Now x = ^aiUi for suitable at e K, hence (8) is equivalent to

^Zupcj = 0 => Cjr = 0, j = 1, . . . , n,

and this shows P to be non-singular. •

For our purpose we need to transform the specialization lemma as
follows:

L E M M A 6.2.9. Let L/K be a Galois extension of degree n with reduced
automorphism set diy . . . , dn, and denote the centralizer of K in L by H.
Further, assume that L, K are k-algebras, where the field k is infinite and
L = HK, [L:H] = oo, if A = A(xu . . . , xn) is a full matrix over
LH(x1, . . . , xn), then A(ue\ . . . , u6n) is non-singular for some u e L.

Proof Let wl5 . . . , un be a left K-basis of L and define a matrix B by

B(yl9 ...,yn) = Ahyiuf\ . . . , ̂ ytuA. (9)

Suppose that A(ue\ . . . , udn) is singular for all u e L\ the lemma will
follow if we show that A(x1, . . . , xn) is non-full. Now by (9), under the
hypothesis stated, B{au . . . ,an) is singular for all ate K, so by the
specialization lemma (Th. 2.5), B(y1, . . . , yn) is not full over
^/f(yij • • • 9^)5 but the equations

Xj = Sw/f' (10)

can be solved for the yt because the matrix (up) is non-singular, by
Lemma 2.8. Hence the matrix A(xx, . . . , xn) = B(yu . . . , yn) is non-full,
as we wished to show. •

We now come to the normal basis theorem. We recall that a normal
basis of a Galois extension of commutative fields is a basis consisting of
the conjugates of a single element, and the existence of such a normal
basis is well known in that case (see e.g. A.3, Th. 5.7.5, p. 205).

T H E O R E M 6.2.10. Let L/K be a finite Galois extension and assume
that L, K are algebras over an infinite field k, and that L — HK,
[L:H] = so, where H is the centralizer of K in L. Then L/K has a normal
basis.

Proof Let 0l9. . . , 6n be a reduced automorphism set for L/K and let
A(G) be the associated algebra (G being the group of L/K). From
Lemma 2.8 we know that the elements w1? . . . , un e L form a basis if and
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only if the matrix (up) is non-singular, so we have to find u eL such that
the matrix (udi0i) is non-singular. By (7) we have

0.0/ = E0/A;/, where bhij e A(G). (11)

Let us consider the matrix A = (a(j) over LH(x1,. . . , xn), where

We can partition A into blocks corresponding to the transversal al9 . . . ,
ar of Go in G that was used for the set {0,-}. Thus in block form we have
A = (A^), where A, JU = 1, . . . , r. If 0,, 0; are represented by aA, a^
respectively and axa^ = ov (modG0), then in (11), bhij = 0 unless 0h is
represented by ay. Hence when A is written in block form, it is a
monomial matrix, i.e. each row has just one non-zero block Ak(l and
likewise each column. To determine when A is singular we can therefore
confine our attention to a single block.

We claim that A(\ 0 . . . 0) = (buj) is non-singular. For if it were
singular, then in some row every block would be singular, i.e. there
would exist a suffix / and elements c; e A(G), not all 0, such that

2blijCj = 0, (13)

and here all the 0; for which bltj =£ 0 belong to the same oy Hence

=6 = 0^1(0), where v e A(G).

Now the relation (ab)e = aebd, where a,b e L, can be written as an
operator equation, bd = 6bd, and by (11),

This is independent of 61 by (13), so for any ate L,

20,a,-0 = 20,.0a? = 2 dhbhial where bhi =
h=2

This means that 0 is a semilinear transformation of the right L -space
spanned by dl9 . . . , 0rt, whose image is a proper subspace. But 0 as an
automorphism of L is invertible, so we have a contradiction, and this
shows that (bUj) is non-singular. Similarly for the other blocks, hence
A = A(xu . . . , xn) must be full over LH(xu . . . , xn). By Lemma 2.9
there exists u eL such that A(ue\ . . . , udn) is non-singular; this is the
matrix (ptJ), where

p.. = ^udhbhij.

But this is just udi6', by (11), and it is what we had to show. •
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Exercises

1. Find the modifications needed to prove Prop. 2.2 in the case when X is infinite
(distinguish the case where the degrees oix e X are bounded).

2. Find a counter-example for Lemma 2.3 when R is not weakly finite.

3. The GPI-theorem may be stated more generally as follows: Let E be a field, H
a subring and K its centralizer. If for all a e Ex the left A'-space KaH is
infinite-dimensional over K, then any non-zero element of EK(X) has a non-zero
value for some choice of values of X in H (see Cohn [89"]). Use it to show that if
H is a semifir with universal field of fractions D such that the centre C of D is
infinite, and H contains C and is of infinite degree over C, then any full matrix
over HC{X) is full for some choice of values of X in H.

4. Let k be any commutative field and U = k^X^ the free field on a set X over
k. Show that no element of U\k can be algebraic over k. (Hint. Put F = k(t) and
let E be the Hilbert field on F; if u e U\k, fix A e k, take a specialization such
that u =£ A and use the fact that k is relatively algebraically closed in E, see Ex. 7
of 2.3.)

5. Let K be a skew field whose multiplicative group is simple; verify that its
centre is F2. Show that there exists such a field of any infinite cardinal. (Hint.
Form U = F2^X^ with a set X of the given cardinal, apply Cor. 5.5.2 to embed
it in a homogeneous field and use Ex. 4.)

6,3 Normal forms for matrices over a tensor ring
When we are given a specialization cp of a free field U, to determine
whether cp is defined at an element p of U we need to examine the image
under cp of a denominator for p, as is made clear by the proof of Prop.
2.7. This makes it of interest to reduce the denominator to the simplest
possible form; we shall accomplish this objective by finding a form for
matrices over the tensor ring which is unique up to stable association,
with a minimal representative in its class, unique up to association.

Let E be any field and D a subfield and consider the tensor Zs-ring
R = ED{X) on a set X, and its universal field of fractions U = ED^X^>.
We are interested in full matrices over R, occurring as denominators of
elements of [/, but to begin with we take any matrix over R, not
necessarily square. As a first simplification we shall reduce our matrix to
be linear in X. By linearization by enlargement, any m x n matrix over
ED(X) can be reduced to the form

d

A = Ao + ^A\XiA"h (1)
I
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where the xt are distinct elements of X and Ao, A'h A" are matrices with
entries in E. In the first place such a reduction gives rx terms a'yXia'y, say,
where the av are columns and the a"v are rows; we combine the av to an
m x rx matrix A[ and the a"v to an r1 x n matrix A", and similarly for the
other variables. Thus in (1), Ao is m x n, A\ is m x r, and A •' is rt x n.
We may further assume that the columns of A[ are linearly independent
over D and likewise for the rows of A", for when this is not so, we can
make a transformation which will reduce rt.

Any matrix A over ED(X) is called linear if it has the form (1), where
Ao, A'i9 A" have entries in E; if the rt are minimal, A is said to be
reduced. From what has been said it follows that when A is reduced, the
columns of each A\ are right linearly independent and the rows of each
A" are left linearly independent over D. The matrix A of the form (1) is
called right monic if it is linear, reduced and A[, . . . , A'd are right
comaximal, i.e. (A{, . . . , A'd) has a right inverse; A is left monic if it is
linear reduced and A", . . . , A"d are left comaximal, and a monic matrix is
one which is left and right monic.

In a right monic matrix A the terms of highest degree are left regular.
For assume that A has the form (1) and suppose that

iXiAU = 0.

Since the rows of each A" are left linearly independent, we can equate the
left cofactors of xt and obtain PA • = 0. Now by hypothesis there exists a
2>, x m matrix T such that (A[,. . . , A'd)T = / , hence P = P(AJ, . . . ,
Ad)T = 0. It follows that A itself is left regular.

The following lemma represents the analogue of the weak algorithm for
matrices. For any matrix A we shall denote by A the terms of highest
degree in A, and write d(A) for the degree of A in the xt.

L E M M A 6.3.1. Let R = ED(X) be a tensor E-ringy and consider a
linear matrix A over R such that A is right regular, and a right monic
matrix B over R. IfP, Q are matrices over R such that

PB = AQ, (2)

then there exists a matrix C over R such that

P = AC + Po, Q = CB + Go and P0B = AQ0, (3)

where Po, Qo are matrices over E.

Proof. Equating highest terms in (2), we obtain

PB = AQ. (4)
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If d(Q) = 0, then deg P = 0 by (4), because B is right monic and so B is
left regular; so the result follows in this case. We may now assume that
d(Q) ^ 1 and write Q = Y,Fi*iQh where Ft is over R and Qt over E. If B
in reduced form is B = ^B'^B", then (4) becomes

^PB'^B'^^AF^Q^ (5)

By taking the number of columns in Fx to be minimal we may also assume
that these columns are right linearly independent over D. If we now
equate the terms with last factor x1 in (5), we obtain

PB[xxB'[ = AFxxxQx.

Since B is reduced, the rows of B" are left linearly independent over D;
hence we have Qx = V\B\ for some matrix Vx over D and so

PB[ = AFiVi.

Similarly, equating terms with xt as last factor we obtain a corresponding
equation for PB\ and so find that

P(B'l9 . . . , £ » = A^Vu . . . , FdVd).

Let T be a right inverse of (B'u . . . , B'd) and put C = ( F ^ , . . . ,
FdVd)T. Then T is a matrix over £ and we have

. . . , £ i ) r = AC. (6)

Now by (2)

(P - AC)B = A(Q -

this is an equation of the same form as (2), but P — AC has lower degree
than P, by (6), and since A is right regular, Q — CB has lower degree
than <2, so the result follows by induction on d(Q). •

We now have the following normal form theorem for matrices over a
tensor ring:

T H E O R E M 6.3.2. Let R = ED{X) be a tensor E-ring. Any matrix over
R is stably associated to a matrix A © 0, where A is monic. Moreover, if
A © 0, A' © 0 are two matrices that are stably associated and such that A,
A' are monic, then the numbers of rows of A, A1 agree, as do those of
A © 0, A' © 0, and likewise for columns, and there exist invertible
matrices P, Q over E such that PA1 = AQ.

A linear matrix stably associated to a matrix T is also called a linear
companion of T.
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Proof. By the linearization process we reach a linear companion for our
matrix, of the form A 0 0, where A is an m x n matrix of the reduced
form (1). Suppose that m + n is minimal for the given matrix; we claim
that A is then monic. For if (A[, . . . , A'd) has no right inverse, then its
rank is less than m and so by elementary row operations its last row can
be reduced to zero. If now the last row of Ao is also 0, we can reduce m
by 1, contradicting the minimality; this amounts to writing A as B 0 N,
where TV is the 1 x 0 zero matrix. Hence the last row of Ao is not 0, and
by further row operations over R and column operations over E we find
that A is associated to A' 0 1, where Af is again linear. So A is stably
associated to A', but this again contradicts the minimality of m + n.
Hence A is right monic; by symmetry it is also left monic, so the existence
of a monic form (1) is established. We remark that if A is invertible, it is
stably associated to the 0 x 0 matrix.

Suppose now that A, A' are both monic and A 0 0, A! 0 0 are stably
associated; then F 0 0 and F' 0 0 are associated, where F = A 0 /r,
F' = A1 0 Is for suitable r and s. Thus there exist invertible matrices [/,
V such that for appropriate partitioning,

U, U2\(F 0\(F> 0\(Vl V2

U3 U4J\0 0) [0 O)[V3 V4

Equating (2, l)-blocks, we find that U3F = 0, while the (1, 2)-blocks show
that F'V2 = 0. Now A, A1 are regular, hence so are F, F' and therefore
U3 = 0 = V2. Let Fbemx n, F' m' x ri and F 0 0, F' 0 0 both t x u.
Then U3 is (t - m')x m, and since U is full, we must have
t - mf + m^ t, i.e. m^m' (by Prop. 4.5.4). Similarly V2 is
ri x (u — n), so ri + u — n ^ u, and hence ri ^ n. By symmetry we
have mf ^ m, n ^ n \ and so F and F' are both m x n. It follows that
C/i, f/4, y1? F4 are all square and are invertible, since this is true of U, V.
Moreover, UXF = F'V1, so F and F' are associated and A, A' are stably
associated. By Th. 1.5.1 we thus have a comaximal relation AB' = BA',
and there exist matrices C, D, C, Df over R such that

and r / A, are mutually inverse. (8)

Further, by Lemma 3.1 there exists P such that

B = AP + £n, 5 ' = PA' + £n,

where 2?0, BQ are over E. Hence on multiplying the matrices (8) by
/ / -P\ ll P
(o / ) on the right and by (o /
obtain a pair of mutually inverse matrices
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A Bo\ ( D[ ~BQ

r n and \-c A1

We also have AC = CA, so by another application of Lemma 3.1 we
obtain a pair of inverse matrices

c n ianc* \-rr A'

where Co, Q are over E. Thus we have the equation

Equating highest terms we find 2jA\XiA[D2 = 0. Taking right cofactors of
xt we have A"D2 = 0, and since (A",. . . , A^)1 is right regular, we
conclude that D2 = 0; hence D2 = 0 and so —BoCo = I. Thus Bo has a
right inverse over E, and by symmetry BQ has a left inverse. Hence,
denoting the index of a matrix A by i(A), we have i(B)^0^ i(B');
since A, Ar are stably associated, they have the same index, hence so do
B, B' and therefore i(B) = i{Bf) = 0. It follows that Bo, B'o are
invertible over E, and we have ABQ = B0A'9 as claimed. •

The proof shows that once we have reached a linear form for our
matrix, if the latter is right regular, we can achieve left monic form by
elementary row operations over E and column operations over R, and
similarly on the other side. Thus we obtain

C O R O L L A R Y 6.3.3. / / A is a right regular linear matrix over
R = ED(X), then there exists an invertible matrix P over E and an
invertible matrix T over R such that PAT = B © /, where B is left monic.
Moreover, the entries of P and the coefficients in the entries of T can be
chosen to lie in the subfield of E generated by the coefficients in the entries
of A . M

Next we derive a bound on the degrees of the factors in a matrix
factorization. For any matrix C = (ci}) over R = ED{X) we write again
d(C) = max {d(ctj)}, where d denotes the degree. In the proof we shall
need the weak algorithm. We recall from Ch. 2 of FR that a family (at) of
elements of R is called right d-dependent if some at = 0 or there exist
fc( e R, almost all 0, such that

<max{d(fl|.) + d(6|.)}.

An element a is said to be right d-dependent on (at) if a = 0 or if there
exist bt e R, almost all 0, such that
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d(a), d(ai) + d(b() « d(a).

Now the weak algorithm for the tensor ring R asserts that in any right
d-dependent family some element is right d-dependent on the elements of
lower degree in the family. As a consequence any right ideal of R has a
right d-independent basis (FR, Th. 2.2.4); here this result will only be
needed for finitely generated ideals.

L E M M A 6.3.4. Let R = ED{X) be the tensor E-ring over D on X and
let CemR\ If

C = AB (9)

is a factorization of C, where A is m x r and right regular and B is r x n
and left regular, then there is an invertible matrix Uo over R such that

Proof Write C = (c,y), A = (aa), B = (bXj) and consider the tensor ring
S = ED(Z), where Z = X U {yl9 . . . , ym} with new variables y(. The
embedding R —» S is honest, since R is a retract of 5. Consider the right
ideal a of 5 generated by px = 2 } W A (^ = 1? • • • » r)- Since A is right
regular, a is free on the pA. By the weak algorithm we can find a right
d-independent basis ql9. . . , qr of a with

d(qi) ^ ^ d(qr).

Since {pk) and (qx) are two bases of a, we have

Px =

where A and A' = (a'a) are right associated, and we have C =
AB = A'Bf, where B' = {b'kj) is left associated to 5 . We claim that
d(qr) ^ 1 + d(C); for if d(qr) > 1 + d(C), suppose further that b'rj^0 for
some /. Since fi = ^yp^ can be written as fi = *Zqxb[j, we have

1 + d(C) < d(qr) ^ d(qr) + d{b'rj).

This shows that the qx are right d-dependent, a contradiction, unless
b'r)f = 0 for all /, which in turn contradicts the fact that B' like B is left
regular. This then shows that d(qr) ^ 1 + d(C), and therefore
d{A') ^ d(C). Now A' = AU for an invertible matrix U over 5. Setting
^ = 0, we obtain a homomorphism from S to R which maps U to an
invertible matrix Uo and does not raise the degree, hence
d(Q. m
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We can now achieve our aim, of proving a factorization theorem for
linear matrices over tensor rings. A matrix factorization PQ is said to be
proper if P has no right inverse and Q has no left inverse. If a matrix
with a proper factorization PQ is left regular, it follows that P has no left
inverse, either. For if P'P — / , then

(PPf - I)PQ = P(P'P - I)Q = 0,

hence PP' = / , but this contradicts the fact that P has no right inverse.

T H E O R E M 6.3.5. Let R = ED{X) and consider a linear matrix C over
R which is left regular. If

C= FG (10)

is a proper factorization of C, where F is right and G is left regular, then
there exist invertible matrices U, W over E and V over R such that

Proof Let (10) be the given factorization of C; here F is regular,
because it is right regular and C is left regular. Suppose that F is m x r
and G is r x n. By Lemma 3.4 we can make an internal modification
such that F has degree at most 1. Since a regular matrix over E is a unit,
F must have degree exactly 1. By Cor. 3.3 there exist U e GLm(£),
V e GLr(R) such that

UFV = A 0 / , (11)

where A is left monic (m — s) x (r — s). Hence by suitably partitioning
Vr~1G, we can rewrite (10) as

m
Now UC is linear, hence G" is linear and G' has degree 0, since
otherwise the leading term of G' would be in the right annihilator of A,
contradicting the fact that A is left monic (and so A is right regular). The
matrix G' has t = r - s rows and is left regular (because G is left
regular), hence it has a right inverse over E, i.e. there exists
W e GLn(£) such that G'W = (/, 0). It follows that

and this, together with (11) is the required form.
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We shall mainly need the following consequence. We recall that an
n x n matrix is called hollow if it has an r x s block of zeros, where
r + s > n. As we saw in Prop. 4.5.4, such a matrix cannot be full.

C O R O L L A R Y 6.3.6. A linear square matrix over R = ED(X) which is
not full is associated over E to a linear hollow matrix.

Proof. Let C e Rn, C = FG, where F is n x r, G is r x n and r < n. We
may assume C left regular since otherwise it is left associated to a matrix
with a zero row (and so hollow). By Th. 3.5 there exist U, W e Ghn(E)
such that

ucw-ft
where A is s x (r + s — n) and B is (n — s) x (2n — r — s). Hence the
zero block is s x (2n — r — s) and 2n — r — s + s = 2n — r > n. •

These results allow us to express denominators for the free field in
monic form:

T H E O R E M 6.3.7. Let R = ED(X) be the tensor ring on X and
U = ED^X^ its universal field of fractions. Then every element of U can
be described by a reduced block with a universal denominator,

with a monic matrix A, determined up to unit factors over E.

Proof. Let f e U and suppose / is represented by the block (12). Here A
may be replaced by any matrix stably associated to it. For if P, Q are
invertible matrices of the same order as A, then the block

/ uQ c
\PAQ Pv

defines the same element as (12), and so does

(13)

while for A = B © / , we can partition u, v accordingly and reduce (12)
as follows:



0
0
/

c - u"v"
v'
0
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0
I

where the last step is inverse to the step passing from (12) to (13). Thus
by appropriate operations we can transform a block for / e U to another
block of this form in which A is monic, using Th. 3.2, and hence reduced.
Since R is a semifir, we can use Th. 4.7.1 to conclude that A is
determined up to stable association and by Th. 3.2, if A, A' are monic
matrices in two blocks representing / , then

PA' = AQ, (14)

for invertible matrices P, Q over E. By Th. 4.7.3 the denominator is
universal. •

By using the specialization lemma we obtain a representation of
elements of U by power series:

T H E O R E M 6.3.8. Let K be a field with centre C such that C and [K:C]
are infinite. Then every element of Kc^x1, . . . , xd^> can be represented as
a power series in xt — at for suitable oc{ e K.

Proof Let f e U, the universal field of fractions, and take a block (12)
representing A, with A in monic form, say

A = Ao + 5>i*«^7- (15)

By the specialization lemma A is non-singular for some values at of xt in
K. Replacing xt by yt = xt — ah we obtain a representation (15) where A
is non-singular for yt — 0 and by passing to an associate, we may take A
in the form I - B, where B is homogeneous of degree 1 in Y = {yt}.
Now over Kc(( Y)) f takes the form

f=c- uA~lv = c -

Exercises

(In Ex. 1-3, R = ED{X) denotes the tensor ring, as in the text.)

1. Show that a linear homogeneous left regular matrix is right monic.

2. Use Th. 3.5 to show that a monic full matrix A over R is an atom if and only if
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A is not associated over E to a matrix in block triangular form. Obtain a bound
on the length of factorizations of monic full n x n matrices over R in terms of n.

3. Give an example of a monic matrix over R which is not full.

6.4 Free fields
Our main concern in this section is to investigate the relation between
free fields with related base fields. But we begin by making use of the
specialization lemma to prove the existence of free fields without using
the theory of Ch. 4.

T H E O R E M 6.4.1. Let E be a field with centre C and consider the tensor
ring R = EC(X) on any set X. Then there exists an epic R-field U with an
honest embedding R—> U, hence U is the free field

Proof We shall prove the result by finding an honest homomorphism
from R to an ultrapower of E. Suppose first that [E:C] = o° and that C is
infinite, and consider the mapping

R = EC(X) -> EE\ (1)

where p e R is mapped to (pf), with pf= p(xf), for / e Ex. With each
square matrix A over R we associate a subset 2)(A) of Ex, its singularity
support, defined by

= {/ € Ex\A(xf) is invertible over E}.

By Cor. 2.6 Q)(A) =£ 0 for any full matrix A, while for a non-full matrix
2)(A) = 0 . For any invertible matrices P, Q over E, P © Q is again
invertible, so A(x) © B{x) becomes singular precisely when A(x) or
B(x) becomes singular, hence we have

D 2)(£) = 2)(A © B).

This shows that the family of sets 2)(A), where A ranges over all full
matrices over R, is closed under finite intersections. Hence this family is
contained in an ultrafilter 2£ on Ex (see 1.2), and the homomorphism (1)
gives rise to a homomorphism to an ultrapower:

R -> EEX/^. (2)

As an ultrapower of E the right-hand side is again a field, and every full
matrix A over R is invertible on 2)(A) and so is invertible in the
ultrapower. Thus (2) is an honest homomorphism, so the subfield
generated by the image of R is the desired epic /Mield U.
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There remains the case where C or [£:C] is finite. We take
indeterminates r, s, t and define Ex — E(r), E2 = E^s). On E2 we have
the automorphism a: f(s) *-> f(rs)9 of infinite order, with fixed field E1.
We now form the skew function field F= E2(t; a); by Th. 2.2.10 the
centre of F is the centre of £ l 9 namely C(r). This is infinite and
[F:C(r)] = oo, because the powers sn are clearly linearly independent.
The natural homomorphism EC{X) - • Fc{r)(X) = FElElc{r){X) is hon-
est, by Prop. 5.4.4 and Lemma 5.4.2. We now construct the free field
Fc^^X^ by the first part of the proof, and this is a field over which
every full matrix over EC(X) becomes invertible. •

Let us return to EC(X) and suppose now that C is a central subfield of
E. Given any subfield D of E, let us write k = D D C; then we have a
natural homomorphism of tensor rings

(3)

and this map is injective, for the subring of EC(X) generated by D and
X is determined by the defining relations ax = xa for all x e X,
a e D fl C = k, and hence is isomorphic to Dk{X). We shall be
interested to know when there is a corresponding homomorphism of free
fields:

Dk^X^-*Ec^X^. (4)

Clearly this is so if and only if the map (3) is honest, but that is not always
the case. We shall find that it is so precisely when C and D are linearly
disjoint in E over A:, i.e. when the natural homomorphism

C®k D-± E

is injective. But we shall need some preliminary results.

L E M M A 6.4.2. Let R be a k-algebra and E/k any field extension
(possibly skew) of finite degree. If R is a right Ore domain and
RE = R®k E is an integral domain, then RE is again a right Ore domain.

Proof. Let K be the field of fractions of R and consider KE; this is of
finite degree over AT, because [KE:K] = [E:k], so if we can prove that it
is a domain, it must be a field. Now every element of KE has the form
p = ^jX( <8> atb~l, where Xt e E, at e R, b e Rx. Hence p = ub~l, where
u = X^J ® at e RE- We conclude that Rx is a right Ore set in RE: given
u e R, b e Rx, we have b~lu = uxb\l for some ux e RE, bx e Rx, hence
ub1 = bux and clearly ux =£ 0 if u =£ 0. It follows that KE is a domain:
given ub'1, vc~l^0 in KE, we have b~1v = v1bil say, hence
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ub~lvc~x = uvib\lc~l — uv^cbi)'1, which is not 0 because uv1¥
z0.

Thus KE is a domain, hence a field, and so RE is a right Ore domain. •

Next we examine the effect of a scalar extension of the coefficient field
of a tensor ring:

L E M M A 6.4.3. Let D be a field which is a k-algebra and let C/k be a
commutative field extension. If D ®kC is a domain, then (i) D ®kC is
an Ore domain and (ii) we have

(D ®k C)C(X) = Dk{X) ® t C. (5)

Proof. To prove (i) it is enough to take the case where C is finitely
generated over k, because the Ore condition involves only finitely many
elements of C. Thus let C be a finite algebraic extension of Co = k(T),
where T = {^,. . . , tr} is a finite set of indeterminates. By the Hilbert
basis theorem the ring D ® k[T] = D[T] is Noetherian, and hence
an Ore domain, and so is its localization D ®kC0. Now D ®kC =
(D ® k Co) ®cQ C is a n extension of finite degree, hence an Ore extension
by Lemma 4.2.

To prove (ii) we note that we have a A>bilinear map from Dk(X) and
C to {D ®kC)c{X), hence a homomorphism from right to left in (5),
and a (D <8)k C)-ring homomorphism from left to right, and these two
maps are clearly mutually inverse. •

Next we show that irreducibility is preserved by suitable extensions of
the ground field.

P R O P O S I T I O N 6.4.4. Let D be afield which is a k-algebra and let C/k
be a simple algebraic (commutative) field extension whose generator has
the minimal polynomial f. Iffis irreducible over D, then it remains so over
T = Dk^X^ and Tc= T ®kC is the universal field of fractions of
(D®kC)c(X).

Proof We have C=k[t]/(f), hence D ®k C= D[t]/(f), where / is
central and irreducible over Z), by hypothesis, hence D ®k C is a field E,
say. If we can show that the tensor ring EC(X) has the universal field of
fractions Tc, then / must be irreducible over T and the proof will be
complete.

By Lemma 4.3 we have the isomorphism

EC{X) = Dk(X) ®k C, (6)

so the right-hand side is a semifir. Now we have the commutative square
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Dk<X) >Dk(X) = T

Dk<X>

which shows that Tc can be obtained from Dk{X) <8> C by inverting all
full matrices over Dk{X) (it is not obvious a priori that these matrices
remain full over Dk{X) ® C). Now EC^X^ is formed from
EC(X) = Dk{X) ® C by inverting all full matrices, so we have a
homomorphism

(7)

which consists in inverting all full matrices. ByTh. 5.5.11, T =
has the centre k, so Tc is simple (by Cor. 7.1.3 of A.3), and hence (7) is
injective. Further, [rc:T] = [C:k] < oo5 so Tc is Artinian and therefore a
matrix ring over a field (see A.2, Th. 5.3.2, p. 174). But by (7), Tc is
embedded in a field, so Tc is itself a field, and it follows that
Tc = EC^X^, as we had to show. •

We shall also need a criterion for a field to split under a commutative
field extension.

L E M M A 6.4.5. Let E be a field which is a k-algebra and let C = k{a)
be a simple algebraic (commutative) extension of k, generated by an
element a with minimal polynomial f over k. Then E ®kC is Artinian
and moreover, (i) E ®kC is simple if and only iffis irreducible over the
centre of'E, (ii) E ®kC is afield if and only iffis irreducible over E.

Proof It is clear that E ® C is Artinian, as £-ring of finite degree. Now
we have

E®kC=E[t]/(f),

and the ideals of E[t] are generated by invariant elements of E[t], which,
up to unit factors, are the monic polynomials with coefficients in the
centre, Z say, of E (by Prop. 2.2.2). Thus E[t]/(f) is simple precisely
when / is irreducible over Z, i.e. (i). Suppose now that / is irreducible
over Z; then it is an /-atom and by Th. 1.5.4 we have E[t]/(f) = Tln(D),
where D is a field and n is the length of / in a factorization over E[t].
Hence E ® C is a field if and only if n = 1, i.e. / is irreducible over
E. M
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We now come to the main result of this section, giving conditions for an
embedding of free fields:

T H E O R E M 6.4.6. Let E be a field with a central subfield C, let D be a
sub field of E and put k — D Pi C. Then for any set X there is a natural
embedding

(8)

if and only if D and C are linearly disjoint in E over k.

Proof. Suppose that there is a D-ring homomorphism (8) which is the
identity on X. Then we have a A>bilinear map of Dk<^X^> and C into
EC^X^> and hence a homomorphism

ZV£A>®* C->EC«£A>. (9)

Since Dk^X^> has centre k, the left-hand side of (9) is simple (Cor. 7.1.3
of A. 3) and so (9) is an embedding. The restriction to D ®kC gives an
embedding of the latter in E and this shows D and C to be linearly
disjoint in E over k.

Conversely, if D and C are linearly disjoint in E over k, then D <8> C is
an integral domain, as subring of E, so it is an Ore domain, by Lemma
4.2. Writing F for its field of fractions, we claim that there is a natural
embedding

(10)

It will be enough to show that there is a natural homomorphism

(11)

for then we have a bilinear map of Dk^X^> and C into FC^X^>, which
gives rise to a homomorphism (10), and this must be an embedding,
because the left-hand side of (10) is simple (by Cor. 7.1.3 of A.3). In the
special case C = k(t), F = D(t) the result follows by Prop. 5.4.4, and by
repetition the result follows when C is any purely transcendental
extension of A:; if C is a simple algebraic extension of k, say C = k(a),
where a has the minimal polynomial / over k and D ® C is an integral
domain, then / remains irreducible over D (by Lemma 4.5) and hence
remains irreducible over Dk^X^, by Prop. 4.4, so Dk^X^> ® C is a
field. By Prop. 4.4 it is the universal field of fractions of (D ® C)C(X)
and F = D ® C, so (10) is an isomorphism in this case. Now suppose that
the result holds for k Q Cx with Fx = D® Cx and C/Q is a simple
algebraic extension. Then we have maps Dk^.X^>^> (D ® C^c^X^
and (D <8)k d ) ® C l ^ ^ ^ -> ((£> ® Q) ® C) C ^A> and by combining
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them and noting that (D <8>k Q) ®Cl C = D® C, we obtain the map
(11). Thus (11) holds generally, provided only that D <8> C is an integral
domain.

Finally, since D ® C is an Ore domain embedded in E, we have an
embedding of F in E and by Prop. 5.4.3,

therefore FC^X^> is embedded in EC<£X^> and this together with (11)
proves the result. •

As a first consequence we note the following strengthening of the
specialization lemma:

T H E O R E M 6.4.7. Let D be a field which is a k-algebra and let E be a
field containing D as subfield, such that the centre C of E is infinite,
[E:C] = oo and D, C are linearly disjoint in E over k. Then every finite
set of elements of Dk^X^ is defined for some choice of values of X in E.

For we have an embedding of Dk^X^ in EC^X^ and we can apply
the specialization lemma to the latter. •

This result may be expressed by saying that E satisfies no rational
identities, a theorem first proved by Amitsur [66].

We return to polynomials over a field and briefly consider the relation
between reducibility over a field and over its centre. Let D be a field with
a central subfield k. In Prop. 4.4 we saw that a polynomial over k which
is irreducible over D remains so over Dk^X^. For polynomials over D
this need no longer hold, as we shall see below. Let us define a field
extension D/k, where k is central in D, to be normal if every / e k[t]
which is irreducible over k splits over D into factors all of the same
degree. When D is a commutative algebraic field extension of k, this
reduces to the usual notion (see A.2, 3.2, p. 72); in general it is probably
stronger, though no examples are known (see Ex. 2°). As a first result we
note that every field is normal over its centre.

P R O P O S I T I O N 6.4.8. Any field is normal over its centre.

Proof Let D be a field and C its centre. If / eC[t] is irreducible over C,
then / is an /-atom in D[t]9 hence by Th. 1.5.4, all its atomic factors are
similar and so are of the same degree. •

For non-normal extensions we can find irreducible polynomials which
become reducible after a free adjunction:
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T H E O R E M 6.4.9. Let D be a field with a central subfield k. If D/k is
not normal, then there exist irreducible polynomials over D which become
reducible over Dk^X^>, where X =£ 0 .

Proof. By hypothesis there is an irreducible polynomial / over k with a
complete factorization over D, f = pi . . . pr,in which the pt are not all of
the same degree. If we factorize each pt over Dk^X^, we get a
factorization / = qx . . . qn in which each g; divides some pt. Now
Dk^X^ is a field with centre k, hence normal over k and so all the g7

have the same degree. This means that some pt splits into at least two
factors over Dk^X^, but by construction pt is irreducible over D. •

As an example of an irreducible polynomial over D which has a zero in
Dk^X^, let us take an irreducible polynomial / of degree n>2in k[t],
such that over D we have

f = (t~ «)g, (12)

where g is irreducible over D. Such a field may be obtained by taking a
field k with a commutative extension E such that E/k is the splitting field
of a separable polynomial / with symmetric group of degree n and taking
D to be the subfield of E obtained by adjoining a single zero a of / .
Then [D:k] = n and over D, f has the form (12). By Th. 4.9, g, which is
irreducible over D, splits into linear factors over Dk^X^.

A zero of g can be found as follows. Let x e X and put c — xoc—ocx,
P = c-'ac. If g = 2rt>,-, then since f = (t - a)^fbt = S^&.-i - *&,-)>
it follows that bi_1 — abt e k. Now we have

cbt = [x, a]bi = [x, abt] + a[bh x]

= [x, ab( - b^] + a[bh x] - [bt_u x]9

and here the first term on the right vanishes, because bi_1 — abt e k.
Hence we find

cg(P) = Itcfibt

since the last two sums cancel each other. It follows that g(/3) = 0. The
other factors of / can be found similarly from conjugates of or, though
these factors need not of course commute with each other.

Exercises
1. Let k be a commutative field, / an irreducible polynomial over k and E a
(commutative) splitting field for / over k. Show that all zeros of / are conjugate
over
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2°. Let E be a field and D a subfield such that any irreducible polynomial over D
which has a linear factor over E splits completely. Is E/D normal?

3. Let D be a field with a central subfield k. Show that D ® E is an integral do-
main for every simple algebraic extension E of k if and only if every irreducible poly-
nomial over k remains irreducible over D. Show that this always holds provided
that D <8>k ka is a field, where ka is the algebraic closure of k. Prove the converse
of this assertion when k is perfect and give a counter-example for an imperfect k.

4. Give an example of a field D with subfields E, F such that E, F are linearly
disjoint (over EOF), but F, E are not.

5. Construct a field E which is a A>algebra (for a given commutative field k) such
that every element of E\k is a multiplicative commutator. Show also that such a
field cannot be finitely generated.

6. (Amitsur [66], Hua [50]). Use Th. 4.7 to show that for a skew field D with
infinite centre, Dx satisfies no group identity, and deduce that Dx cannot be
soluble.

6.5 Existentially closed skew fields
Let A: be a commutative field. By an algebraic closure of k one usually
understands a field k* with the properties:

(i) ka is algebraic over k>
(ii) every polynomial equation over ka has a solution in ka.

It is well known (see e.g. A. 2, 3.3) that every commutative field has an
algebraic closure and that the latter is unique up to isomorphism, though
not necessarily a unique isomorphism. Thus the correspondence k •-> ka is
not a functor, in fact the different isomorphisms of ka over k form the
subject of Galois theory. When one tries to perform an analogous
construction for skew fields one soon finds that it is impossible to
combine (i) and (ii); in fact (i) is rather restrictive, so we give it up
altogether and concentrate on (ii). Here it is convenient to separate two
problems, namely (a) which equations are soluble (in some extension)
and (b) whether every soluble equation has a solution in the closure. So
far only partial results are available on (a); we shall return to it later, in
Ch. 8, and for the moment concentrate on (b).

The assertion that an equation f(xl9 . . . , xn) = 0 has a solution can be
expressed as follows:

3al9 . . . ,anf(al9 . . . , an) = 0.

Any sentence of the form 3a1? . . . , an P(a1? . . . , « „ ) , where P is an
expression obtained from equations by negation, conjunction and disjunc-
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tion, is called an existential sentence, more precisely an elementary
existential sentence, because only element variables are quantified.

By an existentially closed field over k, EC-field for short, we under-
stand a field D which is a A>algebra, such that any existential sentence
with constants from D, which holds in some extension of D, already
holds in D itself. Such a sentence can always be expressed as a finite
conjunction of finite disjunctions of basic formulae, a basic formula being
of the form / = g or its negation, where / , g are polynomials in x1? . . . ,
xn over D, i.e. elements of Dk(xl9. . . ,xn). In the case of fields all
existential sentences can actually be reduced to equations:

P R O P O S I T I O N 6.5.1. Any existential sentence over a field D is equiva-
lent to a finite set of equations

3xl9 . . . , xn (/x = 0 A . . . A f = 0). (1)

Proof Any basic formula / = g can be written as / — g = 0, and / =£ g
can be expressed as (f — g)y = l, where y is a new variable. A
disjunction gx = 0 v g2 = 0 v . . . v gm = 0 is equivalent to gxg2 . . . gm =
0; thus our existential sentence can be written as a conjunction of a finite
number of equations /i = 0 A /2 = 0 A . . . A /r = 0, and by prefixing an
existential quantifier we obtain (1). •

By this result a field D is existentially closed if and only if every finite
system of equations which is consistent (i.e. has a solution in some
extension field) has a solution in D itself. As a trivial example, k itself is
existentially closed over k precisely when k is algebraically closed, but for
D D k it is possible for D to be existentially closed even when k is not
algebraically closed. In fact we shall find in Th. 5.3 that every field D can
be embedded in an EC-field, but the latter will not be unique in any way.

We know from Ch. 4 that we shall need to consider, besides the
vanishing of elements, also the singularity of matrices, but fortunately
one can be reduced to the other. On the one hand, equations represent
the special case of 1 x 1 matrices; on the other hand, if A = (ai}) is an
n x n matrix, let us write sing (A) for the existential sentence

3ul9 . . . , unvl9 . . . , vn

j = 0 A . . . A 5X;W; = 0 A (1 - U^) . . . (1 - UnVn) = Oj,

and nonsing (A) for the sentence

3xtj(i, 7 = 1 , . . . , n)i^aivxvj = 8ij9 i, j = 1, . . . , n I.

It is clear that sing (A) asserts that (over a field) A is singular and
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nonsing(A) <=> —i si

It is now an easy matter to obtain criteria for existential closure in
terms of the singularity of matrices:

P R O P O S I T I O N 6.5.2. A field D over k is an EC-field if and only if
every finite set of matrices over Dk{X) which all become singular for a
certain set of values in some extension field of D already become singular
for some set of values in D.

Proof The conditions for existential closure concern the vanishing of a
finite set of elements, i.e. the singularity of 1 x 1 matrices, and so are a
special case of the matrix condition, which is therefore sufficient.
Conversely, when D is existentially closed and we are given matrices Au

. . . , Ar which become singular in some extension, then sing(A1) A

. . . A sing (Ar) is consistent and hence has a solution in D. •

Let D be a field with k as central subfield. To find an EC-field
containing D one might first construct an extension Dx in which a given
finite consistent system of equations over D has a solution, and repeat
this process infinitely often. However there is no guarantee that the
EC-field so obtained will contain solutions of every finite consistent
system over D. For this to hold we need to be assured that any two
consistent systems over D are jointly consistent. This follows from the
existence of field coproducts: if Ol9 <J>2 are two consistent systems of
equations over D, say O, has a solution in Kh then any field L containing
both K1 and K2 will contain a solution of Ox U O2; here we can take the
field coproduct Kx © K2 for L. More generally, a class of algebras is said
to possess the amalgamation property if any two extensions of an algebra
A are contained in some algebra C. Thus the class of fields has the
amalgamation property; an example of a class not possessing the
amalgamation property is the class of formally real fields (see 9.6).

To construct an EC-field extension of D we take the family {CA} of all
finite consistent systems of equations over D and for each A take an
extension Ek of D in which CA has a solution. If we put D1 = ° Ek, then
every finite consistent set of equations over D has a solution in Dx. By
repeating this process we obtain a tower

D C D 1 C D 2 C . . . ,

whose union L is again a field, of the same cardinal as D, or countable if
D was finite. Any finite consistent set of equations over L has its
coefficients in some Dt and so has a solution in Di+1, hence also in L.
Thus L is an EC-field and we have proved
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T H E O R E M 6.5.3. Let D be any field with k as central subfield. Then
there exists an EC-field L containing D, in which every finite consistent set
of equations over D has a solution. When D is infinite, L can be chosen to
have the same cardinal as D, while for finite D, L may be taken
countable. •

The EC-field constructed here is not in any way unique; even a minimal
EC-field containing a given field D need not be unique up to isomorph-
ism, as will become clear later on. Further, it will no longer be possible to
find an EC-field that is algebraic (in any sense) over D.

Th. 5.3 is actually a special case of a result in universal algebra. A
general algebraic system A is said to be existentially closed (EC) if every
existential sentence which holds in an extension of A already holds in A
itself. For any class 2 of algebraic systems which is inductive, i.e. closed
under isomorphisms and unions of ascending chains of 2-systems, it can
be shown that EC 2-systems exist and in fact any 2-system is contained in
an EC 2-system, although there may not be a least EC 2-system
containing it (see e.g. UA, IX. 3, p. 327). Applied to fields, this just gives
Th. 5.3.

Sometimes a stronger version of closure is needed, where the above
property holds for all sentences, not merely existential ones. We shall not
need this stronger form, and therefore just state the results without proofs
(which may be found e.g. in UA, Ch. IX).

Let si be an inductive class of algebras (of some sort). A homomorph-
ism / : A —» B between si-algebras is said to be elementary if for every
sentence P(x) which holds in A, P(xf) holds in B. Now a forcing
companion^) of si is defined as a subclass % of si such that
(F.I) Any si-algebra can be embedded in a %-algebra,
(F.2) Any inclusion Cx C C2 between %-algebras is elementary,
(F.3) % is maximal subject to (F.I, 2).
It can be shown that every inductive class has a unique forcing companion
(see UA, Th. IX. 4.3, p. 330). This applies in particular to skew fields.
Here we also have the amalgamation property, but an important
difference between the commutative and the non-commutative case is
that algebraically closed commutative fields are axiomatizable (we can
write down a set of elementary sentences asserting that all equations have
solutions), whereas the corresponding statement for EC-fields is false.
This follows from the fact that the class of EC-fields is not closed under
ultrapowers (see Hirschfeld and Wheeler [75] and Ex. 10 below).

(*) More precisely, this is an infinite forcing companion, but we shall not have occasion to
meet others.
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Although EC-fields do not share all the good properties of algebraically
closed fields, they have certain new features not present in the commuta-
tive case. For example, the property of being transcendental over the
ground field can now be expressed by an elementary sentence:

transc(jc): 3y, z (xy =£ yx A x2y = yx2
 A XZ = zx2

 A Z ^ O ) . (2)

This sentence, due to Wheeler, states that there is an element y
commuting with x2 but not with JC, hence k(x2) C k(x); secondly x is
conjugate to x2, so k(x) = k(x2), in particular, [/:(.*):/:] = [k(x2):k], and
since k(x2) C k(x), the degree must be infinite. Conversely, when x is
transcendental over k, we can take an HNN-extension E in which x is
conjugate to x2 and form the field coproduct of E with k(x2, y) over
k{x2), to obtain an extension in which (2) is satisfied. Hence (2) holds in
the EC-field. Wheeler has generalized (2) to find (for each n ^ 1) an
elementary formula transcn (JC1? . . . , xn) expressing the fact that jtl5 . . . ,
xn commute pairwise and are algebraically independent over k (see
Ex. 2).

To describe EC-fields in more detail we shall need a result that is useful
in forming constructions. We recall that an EC-field can be embedded in
a homogeneous extension, by Cor. 5.5.2, and so it is itself homogeneous.

L E M M A 6.5.4 (Zig-zag lemma). If K, L are two EC-fields, countably
generated over k, then K = L if and only if K and L have the same family
of finitely generated subfields.

Proof. Clearly the condition is necessary. Conversely, suppose that K, L
are countably generated EC-fields with the same finitely generated
subfields. Write K = k(au a2, . . .), L = k(bi9 b2, . . .)> w e shall construct
finitely generated subfields Kn, Ln of K and L respectively such that (i)
Kn c Kn+l9 Ln c Ln+1, (ii) Kn D k(al9. . . , an), Ln D k(bl9 . . . , bn), (iii)
there is an isomorphism between Kn+1 and Ln+1 extending a given
isomorphism between Kn and Ln. Since K = \JKn, L = {JLn by (ii), it
will follow that K = L, by taking the common extension of the
isomorphisms in (iii).

Put Ko = Lo = k; if Kn, Ln have been defined, with an isomorphism
cpn: Kn^> Ln and we put K'n = Kn(an+1), then K'n is finitely generated,
hence isomorphic to a subfield L'n of L containing an isomorphic copy of
Ln. Since L is homogeneous, there is an inner automorphism of L
mapping L|, to a subfield L"n containing Ln in such a way that the
restriction to Kn is cpn. Let cp'n\ K'n-^> L"n be the isomorphism so obtained,
put Ln+1 = L'n(bn+1) and find an isomorphic copy of Ln+1 in K. It will
contain a subfield isomorphic to K'n and by applying a suitable inner
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automorphism of K we obtain an isomorphism of Ln+1 with a subfield
Kn+i, say, of K such that its restriction to L"n is {(p'n)~

l. Now Kn+1 and
Ln+1 satisfy (i)-(iii) and the result follows by induction. •

We now turn to applications, and begin by showing that in an EC-field,
belonging to a finitely generated subfield can be expressed by an
elementary sentence. For any subset S of a field D we shall write ^(5)
for the centralizer of S in D.

P R O P O S I T I O N 6.5.5. Let D be an EC-field over k. Then for any alf

. . . , an b e K,

b e k(au ...,ar)o <€(&) D <6(al9 . . . , ar).

This means that the formula 'b e k(ax,. . . , <zr)\ not at first sight
elementary (and in fact not so in the commutative case), can be expressed
as an elementary sentence in an EC-field:

Vx (atx = xat (i = 1, . . . , r) => bx = xb). (3)

Proof Put E = k(ax, . . . , ar)\ if b e E, then (3) clearly holds, while for
b $ E, (3) is false in D o E(x) and hence also in D, because the latter is
existentially closed (and the negation of (3) is an existential sentence). •

Taking r = 0, we obtain a result which is well known in the special case
when k is the prime subfield:

C O R O L L A R Y 6.5.6. The centre of an EC-field over k is k. •

EC-fields are in some way analogous to algebraically closed groups,
which have been studied by B. H. Neumann [73]; the next result
corresponds to a property proved by Neumann for groups:

P R O P O S I T I O N 6.5.7. An EC-field cannot be finitely generated or
finitely related.

Proof. Let D be an EC-field over k. Given al5 . . . , ar e D, the sentence

3x, y (atx = xat (i = 1, . . . , r) A xy =£ yx)

holds in D(x) © k(y), hence it holds in D itself, and by Prop. 5.5 this
means that D contains an element y $ k(ax,. . . , ar); therefore D cannot
be finitely generated. Now suppose that D is finitely related; then it can
be expressed as a field coproduct of a finitely presented field E and a free
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field F, and here F cannot be finitely generated, by the first part. If x is a
free generator, it occurs in no relation, so the sentence 3y(x = y2) is not
satisfied in D, though it is clearly consistent, but this contradicts the fact
that D is an EC-field. Hence D cannot be finitely related. •

As we saw in 5.5, there are continuum-many non-isomorphic finitely
generated fields, hence no countable EC-field can contain them all, thus
there are no countable universal EC-fields. However, it is possible to
construct a countable EC-field containing all finitely presented fields: we
enumerate all finitely presented fields Dl9 Z)2, . . . over k, form their field
coproduct over k and take a countable EC-field containing this co-
product, which exists by Th. 5.3. The result is a countable EC-field
containing each finitely presented field over k\ such an EC-field is
sometimes called semiuniversal.

Any EC-field has proper EC-subfields, thus there are no minimal
EC-fields, as the next result shows.

T H E O R E M 6.5.8. Let D be an EC-field over k and c any element of D.
Then the centralizer Cofc in D is an EC-field over k(c).

Proof It is clear that k(c) is contained in the centre of C. Now let

h = fi = • • • = / , = 0 (4)

be any finite set of equations in xu . . . , xn over C which has a solution in
some extension of C over k(c). This means that the solution (xl9 . . . , xn)
of (4) also satisfies

xxc - cxx = . . . = xnc - cxn = 0. (5)

Hence the equations (4), (5) are consistent and so have a solution in D.
By (5) this means that we have found a solution of (4) in C, so C is an
EC-field over k(c), as claimed. •

By taking intersections we can get EC-fields over k itself. Such a
construction can also be obtained in a more straightforward fashion:

T H E O R E M 6.5.9. Let D be an EC-field over k and let a e D be
transcendental over k. Then there exists b e D such that

ba = a2b ± 0. (6)

/ / E is the centralizer of such a pair a, b in D, then E is again an EC-field
over k and the inclusion E C D is an elementary embedding.
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Proof. Since a and a2 are both transcendental over k, the system (6) has
a solution in an HNN-extension and hence in D itself. Given a, b
satisfying (6), let E be their centralizer in D and consider a consistent
system of equations

/l = • • • = /r = 0, (7)

in the variables x1? . . . , xn over E. Since D is an EC-field, this system
has a solution in D. Let cl9 . . . , cs e E be the coefficients occurring in
(7) and consider the system consisting of (7) and

x-y = yxh xtz = zxt (i = 1, . . ., rc), (8)

c-y = ycj9 cjz = zcj9 zy = y2z * 0 (/ = 1, . . . , s). (9)

This system is consistent: we form first D(y) and with the endomorphism
°'- f(y) "^ f(y2) f o r m K(y)(z;a) = H; this is just the Hilbert field
already encountered in 6.1. It shows (7), (8) and (9) to be consistent and
so to have a solution in D itself, which we again denote by xh y, z. Now
the mapping y »-> a, z »-» b defines an isomorphism

k(c1, . . . , c5, y, z) = k(cx, . . . , cs, a, b), (10)

for the left-hand side is the field of fractions of L, the skew Laurent
polynomial ring in z, z~l over k(cl9. . . , c5, y)\ this ring L is simple and
has the corresponding ring in a, b, b~l as homomorphic image; by the
simplicity we have an isomorphism, which yields the isomorphism (10).
By homogeneity there exists t e D such that c-t = tCj, yt = ta,
zt = tb =£ 0. If we put t~lXit = x •, then x\ e E and x • is a solution of (7) in
E. This shows E to be an EC-field.

To prove that the inclusion E C D is an elementary embedding, we
need only show that every finitely generated subfield of D can be
embedded in E. Let cl5 . . . , cs e D and consider the system (8), (9); this
system is consistent and so has a solution in D. Since k(y, z) = k(a, b)
with y ^ a, z*-+ b, it follows that there exists t e K such that yt = ta,
zt-tb^h 0. If we put t'1^ = cj, then c) e E and k(cu . . . , cs) = k(c'l9
. . . , cr

s), but the latter is a subfield of E and so the result follows. •

When D itself is countable, it follows from the zig-zag lemma 5.4 that
E = D and we obtain

C O R O L L A R Y 6.5.10. If D is a countable EC-field over k and a, b e D
are transcendental elements such that ba = a2b ̂  0, then D is isomorphic
over k to the centralizer of a, b in D. Thus every countable EC-field has a
proper subfield isomorphic to itself. •
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An important and useful result due to Wheeler states that every
countable EC-field has outer automorphisms:

T H E O R E M 6.5.11. Every countable EC-field has 2*° distinct auto-
morphisms, and hence has outer automorphisms.

Proof. Let D be an EC-field, generated over kby al9 a29 . . . , where the
at are so chosen that an $ k(al9. . . , tfn_i); this is possible, because D is
not finitely generated, by Prop. 5.7. By Prop. 5.5 there exists bn in D
commuting with al9 . . . , an_x but not with an. Let fin be the inner
automorphism induced by bn and consider the formal product

for a given choice of exponents et• = 0,1. We claim that a defines an
automorphism of D. Its effect on k(ax,. . . , an) is

for when i> n, then pt leaves k(ai9 . . . , an) elementwise fixed. Thus it is
an endomorphism which is in fact invertible since each f}t is. Since the et

are independent and each choice gives a different automorphism, we have
indeed 2Ko distinct automorphisms; of course there cannot be more than
this number since D is countable. But D has only countably many inner
automorphisms, so there are outer automorphisms. •

This proof is of course highly non-constructive; since EC-fields
themselves are not given in any very explicit form, there seems little hope
of actually finding a particular outer automorphism.

An important but difficult question is: Which fields are embeddable in
finitely presented fields? It would be interesting if some analogue of
Higman's theorem could be established. This asserts that a finitely
generated group is embeddable in a finitely presented group if and only if
it can be recursively presented (Higman [61]).

Exercises
1. For a commutative field F of prime characteristic /?, the perfect closure is
defined as a p-radical (= purely inseparable) extension which is perfect. Show
that the perfect closure F of F is unique up to a unique isomorphism, and so
defines a functor F •-> F.

2. (W. H. Wheeler) Define a sentence transcn (x1?. . . , xn) expressing that
Xi, . . . , xn are commuting independent indeterminates, in terms of
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transcn_! (JC2, . . . , xn), transcj (x{) and the fact that jq commutes with the xt but
i 2 , . . .9xn).

3. (W. H. Wheeler) Show that every EC-field contains a commutative algebraic-
ally closed subfield of infinite transcendence degree over the ground field.

4°. Does every EC-field over h contain a free field (of rank > 1) over &?

5. Show that the class of commutative fields has the amalgamation property.

6. Prove an analogue of Th. 5.9 in which (6) is replaced by ba = Xab, where

A * 0, Xn ± 1 for all n > 0.

7. Let K be a field with a presentation K = k^X;$>^>, where O is a set of
square matrices. This presentation is called absolute, if K is the only field
generated, as field and fc-algebra, by X and in which all the matrices of O become
singular. Show that the given presentation is absolute if and only if the matrix
ideal generated by O is maximal.

8. Show that every EC-field contains a copy of every finitely absolutely presented
field and an epimorphic image under a local homomorphism of every finitely
presented field.

9. (Boffa and Van Praag [72]) Show that in an EC-field over a perfect ground
field, transc(x) can be described by the sentence: 3y (xy - yx = 1).

10. (Boffa and Van Praag [72]) Let K be an EC-field over a perfect ground field
k and (an) a sequence of algebraic elements in K of unbounded degrees. Show
that in an ultrapower L of K the element (fl1? a2,. . .) is transcendental but does
not satisfy the criterion of Ex. 9. Deduce that the class of EC-fields does not admit
ultrapowers. (A similar result was obtained by Wheeler [72], using (2).)

11. Let K be an EC-field with an automorphism a and an ar-derivation 6 and
consider R = K[t; a, 6]. Show that a polynomial in R is totally unbounded if and
only if its linear companion is totally transcendental. Deduce that two totally
unbounded polynomials are similar if and only if they have the same degree.

12°. Let E be a free field on a countable set over a ground field k. Are any two
countable EC-fields containing E as subfield isomorphic?

6,6 The word problem for skew fields
The word problem in a variety of algebras, e.g. groups, is the problem of
deciding, for a given presentation of a group, when two expressions
represent the same element. This is often a highly non-trivial problem; if
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there is an algorithm for deciding this question in a finite number of steps,
the given presentation is said to have a solvable word problem. In the
case of skew fields we again have a presentation, as explained in 6.1, and
we can ask the same question, but the word problem is now a relative
one. Generally we have a coefficient field K, itself a A>algebra, and we
need to know how K is given. It may be that K itself is given by a
presentation with solvable word problem, and the algorithm which
achieves this is then incorporated in the algorithm to be constructed; or
more generally, we merely postulate that certain questions about K can
be answered in a finite number of steps and use this fact to construct a
relative algorithm. A process or construction which can be carried out in
a finite number of steps is often called effective.

We shall give one example of a field with solvable word problem and
one with unsolvable word problem. Our first task will be to show that free
fields have a solvable word problem; of the two alternatives described
above we shall take the second, thus our solution will not depend on the
precise algorithm in K, but merely on the fact that it exists. In fact it is
not enough to assume that K has a solvable word problem; we need to
assume that K is dependable over its centre: Given a field K which is a
A:-algebra, we shall call K dependable over k if there is an algorithm
which for each finite family of expressions for elements of K, in a finite
number of steps either leads to a linear dependence relation between the
elements over k, or shows them to be linearly independent over k.

When K is dependable over k, then K has a solvable word problem
(relative to k), as we see by testing one-element sets for linear
dependence. Let K have centre C; our task will be to solve the word
problem for the free field KC^X^. Here it will be necessary to assume
K dependable over C; this assumption is indispensable, for we shall see
that it holds whenever KC^.X^ has a solvable word problem.

There is another difficulty which needs to be briefly discussed. As
observed earlier, we need to deal with expressions of elements in a field
and our problem will be to decide when such an expression represents the
zero element. But in forming an expression we may need to invert
non-zero elements, therefore we need to solve the word problem already
in order to form meaningful expressions. This problem could be
overcome by allowing formal expressions such as (a — a)'1, but we shall
be able to bypass it altogether: instead of building up rational expressions
step by step, we can obtain them in a single step by solving suitable
matrix equations, as we saw in 4.2.

We begin by recalling some relevant definitions from logic. Let N be
the set of natural numbers, as usual. A subset S of N is said to be
recursive if for each n e N there is an algorithm for deciding in a finite
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number of steps whether or not n e S. The set 5 is called recursively
enumerable (r.e.) if there is a function / defined on N whose range of
values is all of 5 and such that for each n e N , f(n) can be computed in a
finite number of steps. It is clear that every recursive set is r.e., but there
exist r.e. sets that are not recursive; we omit the proof (which uses
Cantor's diagonal argument) and refer to H. Rogers Jr [67] for details.
However the following easy consequence of the definitions helps to
elucidate these concepts.

P R O P O S I T I O N 6.6.1. A subset SofN is recursive if and only if both S
and its complement Sr inN are recursively enumerable.

Proof. If 5 is recursive, then so is S', and so both are r.e. If both S and
5' are r.e., let / , g be the functions with ranges S and 5' respectively.
Then every natural number r is a value of / or g, so it will occur in the
sequence / ( I) , g(l), /(2), g(2), . . . ; hence after a finite number of steps
we see whether r is in 5 or in S'. •

More generally, these concepts may be applied to any countable set,
whose elements are effectively enumerated.

Now we have the following reduction theorem:

T H E O R E M 6.6.2. Let R be a semifir and U its universal field of
fractions. Then the word problem for U can be solved if the set of full
matrices over R is recursive.

Of course this condition can only hold in a countable ring.

Proof. Any element p of U is obtained as component of the solution of a
matrix equation

Au = 0,

and p = 0 if and only if its numerator A0 is non-full over R. By
hypothesis there is an algorithm to decide whether A0 is full or not, and
this provides the answer to our question. •

We note that it is enough to assume that the set of full matrices over R
is r.e., because its complement, the set of all non-full matrices, is always
r.e. in a countable ring.

We shall also need a property of matrices, which generalizes the well
known fact that an n x n nilpotent matrix A over a field satisfies the
equation An = 0.
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L E M M A 6.6.3. Let P be an n x n matrix, A a matrix with n columns
and B a matrix with n rows over a field K. If

APyB = 0 for v = 0, 1, . . . , n - I, (1)

then APvB = 0forall

Proof Let nK be the right A'-space of columns with n components. The
columns of B span a subspace Vo of nK, while the columns annihilated by
the rows of A form a subspace W of nK, and since AB = 0 by hypothesis,
we have V0CW. Regarding P as an endomorphism of nK, we may
define a subspace Vy of nK for v > 0 recursively by the equations

Thus Vv = Vo + PV0 + . . . + PVVO and it follows that

V0QV1Q...Q Vn.x. (2)

Moreover, by (1), Vv C W for v= 0, 1, . . . , n - 1. Now if A = 0 or
5 = 0, then there is nothing to prove. Otherwise Vo =£ 0, W ^ ni^ and we
must have equality at some point in (2), since dim Vn-\ ^ n — 1. Suppose
that Vk_1 = Vk for some A:<n; then P y M C 7 M , hence PV^ C
PVk-i Q Vk a nd so Fjt+1 = VJt + PV^ = VJt, so the sequence is stationary
from Vk onwards. We conclude that Vv C W for all v, i.e. APyB = 0 for
all v, as we had to show. •

To solve the word problem for a free field, we must be able to decide
when a matrix over a tensor ring is full. This is accomplished by the next
result, which may be regarded as a constructive form of the specialization
lemma.

P R O P O S I T I O N 6.6.4. Let K be a field, dependable over its centre C.
Assume further that C and [K:C\ are infinite. Then for any full matrix
over the tensor ring F = KC{X) there is an algorithm for finding a set of
values a ofXin K such that A(a) is invertible.

Proof. Since being full or invertible is unaffected by stable association,
we can limit ourselves to the case where A is linear, by passing to a linear
companion. Thus we may assume that

A = Ao + Al9 (3)

where At is homogeneous of degree / in the JCS. Thus Ao has entries in K;
if A is not full, then it will remain non-full when the xs are replaced by 0,
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so Ao must then be singular. Hence if A0 is non-singular, then A is
necessarily full.

We may therefore assume that Ao is singular, of rank r < N, say,
where TV is the order of A; we shall use induction of N. By a diagonal
reduction over K (which leaves the fullness of A unaffected), we can
reduce Ao to the form 7 0 0; this is an effective procedure because K is
dependable over C. If we partition Ax accordingly, we have

(i-P
A~~x R S

where P, Q, R9 S are homogeneous of degree 1 (and the sign of P is
chosen for convenience in what follows). Now pass to the completion
F = KC((X)); by inertia (Prop. 2.2) A is full over F if and only if it is full
over P. The matrix / — P is invertible over F, so by Lemma 2.3 the inner
rank of A is at least r, with equality precisely when

S - R(I - P)~lQ = 0. (4)

To check whether (4) holds, we have to verify that for each v = 0, 1, . . .
the terms of degree v in (4) vanish. Now S — R(I — P)~1Q =
S — ^RPVQ, and equating terms of a given degree we find that (4) is
equivalent to

5 = 0, RPvQ = 0, v = 0 , 1, . . . ; (5)

by Lemma 6.3 it is enough to take v= 0, 1, . . . , N — 1 in (5). This
provides us with an algorithm for determining whether (4) holds. When
this equation holds, A is non-full, by Lemma 2.3. Otherwise, writing
X = {xx}, we can by the specialization lemma (Cor. 2.6) specialize xx to
values ocx e K such that I — P remains non-singular (using induction on
N) and S — R(I — P)~lQ is non-zero. Translating back to A, we find
that by specializing xx to ax we obtain a matrix of rank > r. We now
replace xx by xx + ax in A and start again from (3). This time we have a
matrix Ao over K of rank > r. By repeating this process a finite number
of times (at most Â  times, where TV is the order of A), we either find
values of X in K for which A is non-singular, or find that A is
non-full. •

Prop. 6.4 provides an algorithm for deciding when a matrix A over
KC{X) is full, in case C and [i£:C] are infinite, and so it shows the set of
full matrices to be recursive in this case. When C is finite, or even when it
is not 'constructively' infinite in the way described earlier, we can reach
the conclusion as follows. Given a field K with centre C, let K' = K(t)
be the rational function field in a central indeterminate t. By Prop. 2.1.5,
the centre of K' is C = C(t). We claim that K' is dependable over C
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whenever K is dependable over C. For let ux, . . . , un e Kf and write
these elements as functions in t with a common denominator: ut = fig'1,
where f, g e K[t]. Clearly it will be enough to test fl9 . . . , fn for linear
dependence over C", and we may take the /s to be numbered so that
deg/i ^ deg/2 ^ . . .. Consider the leading coefficients of / l5 . . . , fn\ if
they are linearly independent over C, then the /s are linearly independ-
ent over C". Otherwise we can find i, 1 ̂  / ^ w, ari+1, . . . , arn e C and
non-negative integers v/+1, . . . , vn such that /• = fi - ^i+ifjttjt*1 has
lower degree than fi. Now the linear dependence over C of fu . . . , / „ is
equivalent to that of / i , . . . , //_1? /•, fi+1, . . . , / „ , and here the sum of
the degrees is smaller. Now the conclusion follows by induction on the
sum of the degrees of the /s .

When C is finite but [/£:C] is infinite, we can thus by adjoining t obtain
K\ C such that C is infinite in the constructive sense, e.g. we can take
1, t, t2, . . . ; moreover, [K':C] = [K:C]. It follows that the set of full
matrices over K'C{X) is recursive, and since the natural map
KC(X) —> K'C{X) is honest, by Prop. 5.4.4, we conclude that the set of
full matrices over KC(X) is recursive.

When [i£:C] is finite but C is infinite, we again adjoin another central
indeterminate u and obtain K' = K(u), C" = C(u). On Kf we have the
endomorphism a: f{u)^> f(u2). Now form the skew polynomial ring
K'[v; a] and its field of fractions K". This is again the Hilbert field, its
centre is C and by Th. 4.6 the inclusion KC(X)-> K"C(X) is honest.
This reduces the problem again to the first case. Finally, when C and
[A :̂C] are both finite, we carry out the last two reductions in succession.
We have thus proved

P R O P O S I T I O N 6.6.5. Let K be a field, dependable over its centre C.
Then for any set X, the set of full matrices over the tensor ring KC(X) is
recursive. •

As we have seen, the recursiveness of the set of full matrices is
equivalent to the solvability of the word problem; it only remains to
establish the connexion with dependability; we shall prove the following
somewhat more general result:

L E M M A 6.6.6. Let K be a field with central subfield k. If for every finite
set Y the word problem for the free field Kk^Y^ is solvable, then the free
K-field Kk^X^ on any set X is dependable over k.

Proof. If X is any set and Y Q X, then the natural map
Kk(Y) -» Kk(X) has a retraction and so is honest (Prop. 4.5.1). Now let
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X be an infinite set and consider a matrix A over Kk(X). Since A
involves only finitely many elements from X, A is defined over a finite
subset Y of X\ by hypothesis we can determine whether A is full over
Kk{Y) and hence we can do the same over Kk{X). So we may take X
infinite in what follows.

Let U = Kk^X^ be the free field on an infinite set X\ given ul9 . . . ,
une U, we have to determine whether the us are linearly dependent over
k. We shall use induction on n, the case n = 1 being essentially the word
problem for U. We may assume that ux =£ 0, and hence on dividing by ux

we may suppose that ux = 1. Only finitely many elements of X occur in
u2, . . . , un, so we can find another element in X, y say. We write
u\ = uty — yut and check whether u2, . . . , u'n are linearly dependent over
k. If so, let ^2Au\at = 0, where ar2, . . . , ocn are in k and not all zero;
hence u = ̂ 2

uiai satisfies yu = uy. Since u does not involve y, it follows
that we can specialize y to any element of £/, hence w lies in the centre of
[/, so w e k, say w = a. Now 1 • or — ^2uiai = 0 is a dependence relation
over A:. Conversely, if there is a dependence relation 2iMi#* = 0, where
not all the or, vanish, then not all of a2, . . . , ocn can vanish, because
ux — 1 =£ 0, and so ^2u'iai = 0 is a dependence relation between u2, . . . ,
w .̂ Now the result follows by induction on n. •

This lemma, taken together with the earlier remarks, shows that for
any field K dependable over its centre C, the free field KC^X^> on any
set X is dependable over C. Conversely, if KC^X^ with an infinite set
X is dependable over C, then K is dependable over C. In fact it is
enough if the hypothesis holds for Kc^x, y^, for we can transform any
word, using the infinite alphabet xt = y~lxyl. Thus we have established

T H E O R E M 6.6.7. Let K be a field, dependable over its centre C. Then
the free K-field on any set X over C, Kc^X^f has a solvable word
problem and is again dependable over C. Conversely, if the word problem
in KC^X^, where \X\ ^2, is solvable, then K is dependable over C. •

By taking K = C we obtain a special case, where no hypothesis on
dependability is needed:

C O R O L L A R Y 6.6.8. Let k be any commutative field with solvable word
problem. Then for any set X, the free field k^X^ has a solvable word
problem. •

We now give an example (due to Macintyre) of a field with unsolvable
word problem. The idea is to take a finitely presented group with
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unsolvable word problem and use these relations in the group algebra of
the free group. We first show how to encode a given group presentation
in a direct product of free groups.

L E M M A 6.6.9. Let Fx be the free group on the family {xx\X e A} and Fy

the free group on {yA|A e A}. In the direct product Fx x Fy let H be the
subgroup generated by the elements xxyx (^ £ A) and a subset U of Fx.
Then H D Fx is the normal subgroup of Fx generated by U.

Proof. Let us denote by N the normal subgroup of Fx generated by U.
Since the xs and ys commute in the direct product, we have for u e U,
x\~luxx — (xxyx)~lu(xxyx) e H; it follows that N C H and so N C
H H Fx and we have to establish equality here.

Consider the natural homomorphism

f:FxxFy-*(Fx/N)xFy, (6)

which maps U to 1. If w e H fl Fx, then since uf = 1 for u e U, it follows
that wf is a product of the (xxyx)f, and since the JCS and ys commute, we
can write it as

wf = [v(x)v(y)]f = v(xf)v(yf),

for some group word v. Since w e Fx, wf e Fx/N and so v(yf) = 1, but
the yxf are free, so v = 1 and wf = 1, hence w e ker / = N. M

Let Fx, Fy, H, N be as above and consider G = Fxx Fr This group
can be ordered: we order the factors as in 2.4 and then take the
lexicographic order on G. Hence we can form the power series field
K = k((G)). The power series with support in H form a subfield L; we
take a family of copies of K indexed by Z and form their field coproduct
amalgamating L. The result is a semifir with universal field of fractions
D, say. If a denotes the shift automorphism in D, we can form the skew
polynomial ring D[t\ a] and its field of fractions D(t; a). It turns out that
we can describe TV as the centralizer of t in Fx:

L E M M A 6.6.10. With the above notation, let w e Fxy where FXCG
C K = Ko C D; then w e N if and only if tw = wt in D(t; a).

Proof If w e N, then w e H by Lemma 6.9, hence w e L and so
wt — tw. Conversely, when tw — wt, then w is fixed under a and so lies in
the fixed field of a, i.e. w e L. But L consists of all power series with
support in H, hence w e H D Fx = N, by Lemma 6.9. •
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Now let A be a finitely presented group with unsolvable word problem,
say

A = (xl9 ...,xn;u1 = ... = um = l), (7)

where ul9 . . . , um are words in the xs. We shall construct a finitely
presented field whose word problem incorporates that of A. Let A: be a
commutative field and put

M = k^xu . . . , xn, yu . . . , yn, t;

where 4> consists of the following equations:

*> 7 = 1, . . . , w), u^t = tu^(fi= 1, . . . , m). (8)

To see that this definition is meaningful, let P = Px be the free field over
k on xu . . . , xn and form the field coproduct of the P(yt) over P. The
resulting field Q has Fx x i^ naturally embedded in it; in fact Q is the
universal field of fractions of the group algebra of Fx x Fy over k. In Q
consider the subfield generated by H over k, k{H) say, and let S be the
field coproduct of copies of Q indexed by Z amalgamating k(H). With
the shift automorphism a in S we can form the skew function field
T = S(t; a); from its construction this is just M (see Lemma 5.5.6). By
the universality of T we have a specialization from T to D(t; a). We
claim that

for any w e Fx, w e N o tw = wt in T. (9)

Clearly if w e N, then tw = wt; conversely when wt = tw in T, then this
also holds in D(t; a), hence w e TV by Lemma 6.10.

Now (9) shows that the word problem in M (= T) is unsolvable
because this is the case for A = Fx/N.

It only remains to find an example of a finitely presented group with
unsolvable word problem. Such examples are given by Lyndon and
Schupp [77], to whom we refer for details. Perhaps the simplest way
(described there) is to take a r.e. but non-recursive set 5 of integers and
form

G = {a, b, c , d\ a^bct = c^dd, ieS).

This presentation has unsolvable word problem since a~nban = c~ndcn

holds if and only if n € 5 and S is not recursive. Since S is r.e., G can be
embedded in a finitely presented group H (by Higman's theorem quoted
in 6.5), and so H has unsolvable word problem.
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Exercises

1. Let R be any ring and K an epic R-field. Show that the word problem in K
can be solved if the singular kernel is recursive.

2. (G. M. Bergman) Let A: be a countable commutative field. Show that the
Hilbert field H = k^u, v\ uv = vu1^ is again countable. Use the specialization
lemma to enumerate all the full matrices over k^.X^ and hence solve the word
problem for this field.

3°. Let K be a field with a central subfield k, such that K is dependable over k.
Find an extension E of K with exact centre k and dependable over k. Deduce
that Kk^X^ has a solvable word problem.

4°. Let K be a field with central subfield k.li Kk^x^- for a single indeterminate
x has a solvable word problem, is K necessarily dependable over kl

5°. Is the conjugacy problem in k<^X^, i.e. deciding when two elements are
conjugate, solvable?

6. Show that any EC-field has unsolvable word problem.

7. Verify the assertion after Lemma 6.10 that Q is the universal field of fractions
of the group algebra of Fx x Fy over k.

6.7 The class of rings embeddable in fields
In 1.2 we saw on general grounds that the class of rings embeddable in
fields can be characterized by a set of quasi-identities, together with the
condition excluding zero-divisors. An explicit form of these quasi-identi-
ties was provided by Th. 4.4.5, which tells us that a ring R can be
embedded in a field if and only if R ¥= 0 and no diagonal matrix with
non-zero diagonal elements can be written as a determinantal sum of
non-full matrices. Let us call this the embedding condition. To express
this condition in the form of quasi-identities we need to separate out the
integral domain condition:

P R O P O S I T I O N 6.7.1. A ring R can be embedded in afield if and only if
R is an integral domain and no scalar matrix can be written as a
determinantal sum of non-full matrices.

Proof. These conditions are certainly necessary: that R must be an
integral domain is of course well known; it also follows from the
observation that if ab = 0, then
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Hence by the embedding condition, a = 0 or b = 0. Conversely, when the
conditions of the proposition hold, suppose that we have an equation

D = AJ . . . VAr, (1)

where D is diagonal and Ax, . . . , Ar are non-full. If D —
diag(dx,. . . , dn), we multiply (1) by diag(l, du dtd2, . . . , dl . . . dn_x)
on the left and by diag (d2. . . dn, d3. . . dn, . . . , dn,l) on the right. Then
we have the scalar matrix dx . . . dnl expressed as a determinantal sum of
non-full matrices. By hypothesis it follows that dx . . . dn = 0, hence dt = 0
for some /. This proves the sufficiency of the conditions. •

The conditions of Prop. 7.1, apart from the integral domain condition,
can be expressed as quasi-identities, for we have

d = P1Q1V...VPrQr*>c = 09 (2)

where the Pt are n x (n — 1) and the Qt are (n — 1) x n and it is
understood that each determinantal sum refers to a particular column and
a system of bracketing is given. Moreover, we use the convention that the
right-hand side is undefined unless at each stage the matrices to be
operated on agree in all but the columns that are to be added.

Thus we now have an explicit set of quasi-identities that are necessary
and sufficient for the embeddability of an integral domain in a field. Of
course we shall need (2) for all n and all r, so we have an infinite set of
quasi-identities. So far there is nothing to tell us whether this infinite set
is perhaps equivalent to a finite set of quasi-identities, or indeed any finite
set of elementary sentences. We shall now show that this is not the case.
For the proof we shall need the compactness theorem of logic, which
states that a set of elementary sentences is consistent (i.e. has a model) if
and only if every finite subset is consistent. If for each set 2 of sentences
2P(2) denotes the class of its models, the space of all models may be
regarded as a topological space, whose closed sets are finite unions of sets
of the form SP(2). For any infinite set 2 of sentences we clearly have

9>(Z) = 0 ( 2 / ) , (3)

where 2/ ranges over the finite subsets of 2. Now the compactness
theorem may be interpreted as saying that the model space is compact,
for it asserts that the directed system 2P(2/) of non-empty closed sets has
the non-empty intersection 9^(2) (see Malcev [73], IV. 8, p. 163, or UA
V.5, p. 213 or also Ex. 5 below).
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We shall need two results about rings:
(I) Every semifir is embeddable in a field.

(II) For every n^l> there exists an n-fir which is not embeddable in a
field.

(I) was proved in Cor. 4.5.9, while (II) follows by taking the universal
non-IBN ring of type (n + 1, n + 2), see 5.7.

We remark that the class of rc-firs, for any n ^ 1, may be defined by a
single elementary sentence, namely P1 A . . . A Pn, where

Pn: 1 =£ 0 A V*!, . . . , xn9 yu . . . , yn i^x^ = Ol =>

xipn = 0 v = 0)1.

If 8Fn denotes the class of n-fivs and 3F the class of semifirs, then we
clearly have

9*1 2 9*2 2 • • • , H ^ n = 9?. (4)

Suppose now that there is a finite set of elementary sentences which is
necessary and sufficient for an integral domain to be embeddable in a
field. On replacing these sentences by their conjunction, we obtain a
single sentence Q, say. Then for any n ^ 1, the sentences -i£?> A> 2̂>
. . . , Pn have a model in the n-fir not embeddable in a field, by (II). By
the compactness theorem, the set {-i £>, Px, P2> • •} has a model; this is a
semifir not embeddable in a field, and it contradicts (I). Thus we have a
contradiction and it proves

T H E O R E M 6.7.2. The class of integral domains embeddable in a field
can be characterized by a set of quasi-identities, but it cannot be defined by
a finite set of elementary sentences. •

Exercises
1. Show that inclusions in (4) are all proper.

2. Show that the class of all rings with IBN cannot be defined by a finite set of
elementary sentences.

3. Show that the class of rings with a universal field of fractions cannot be defined
by a finite set of elementary sentences.

4. Show that the class of rings R with an R -field cannot be defined by a finite set
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of elementary sentences. (Hint. Find an elementary sentence describing 2 x 2
matrix rings over n-iirs.)

5. Let 2 be a set of elementary sentences such that each finite subset 2 0 is
consistent. Show thai the sets ^(2o) °f models of 2 0 possess the finite intersection
property and by forming ultraproducts obtain a model for 2 , and so prove the
compactness theorem.

Notes and comments
The notion of a presentation of a field (which depends essentially on the
theory of matrix ideals given in 4.4) was developed in Cohn [75] to obtain
a form of the Nullstellensatz (see Ch. 8). The specialization lemma was
first proved by Cohn [72"] (where the proof used important suggestions
by G. M. Bergman). Since the appearance of Skew Field Constructions
the proof has been further simplified, to be independent of the inertia
theorem. The normal basis theorem 2.10 is taken from Cohn [80].

The normal form of 6.3 in the special case E = D = k was described by
M. L. Roberts [84], while Lemma 3.4 and Th. 3.5 for this case are due to
A. H. Schofield (see FR, 5.8); the present generalization is new. For
applications to a normal form in the power series representation see Cohn
and Reutenauer [94]. The existence proof for free fields (Th. 4.1) is taken
from A.3, Th. 11.3.3, p. 446. Th. 4.6 on relations between free fields and
the work leading up to it were presented in Skew Field Constructions,
albeit with some errors, which were corrected in Cohn [82']. Prop. 4.8,
Th. 4.9 and the example following it are taken from Cohn and Dicks [80].

No really satisfactory notion of 'algebraic closure' has so far been found
for skew fields; some possibilities will be discussed in Ch. 8, but if we turn
to logic we find two versions of 'completeness'. On the one hand there
are the EC-fields; their construction is relatively straightforward and they
have various useful properties, which are discussed in 6.5 (the concept
was developed in the 1950s, see A. Robinson [63]; the applications to
fields in 6.5 are taken from Cohn [75]). On the other hand there is the
smaller class of 'generic fields', obtained as the (infinite) forcing
companion of the class of fields. For an inductive theory where the
forcing companion is axiomatizable, there is also a model companion, but
this is not the case for the theory of fields, as was noted by Sabbagh [71]
(cf. Macintyre [77] and Ex. 10 of 6.5). This follows because the class of
generic fields does not admit ultraproducts (in this respect skew fields
behave like groups). We have not defined generic fields in the text, as
they have so far no immediate application. For a fuller account see
Macintyre [77] or UA, Ch. IX. Th. 5.11 is taken from Wheeler [72], with
a proof from Cohn [75].
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The word problem for groups was first formulated by Max Dehn in
1911, in connexion with group presentations arising in topology. It has
been solved in many special cases; the first examples of finitely presented
groups with unsolvable word problem are due to P. S. Novikov [55] and
W. W. Boone [59]. Th. 6.7, giving conditions for the word problem for
free fields to be solvable, was proved by Cohn [73"], in response to a
question by Macintyre. The first example of a field with unsolvable word
problem was given by Macintyre [73], our account follows another
example by Macintyre; Lemma 6.9 used in the proof is due to K. A.
Mikhailova [58]. The proof of Th. 7.2, showing that integral domains
embeddable in fields cannot be defined by finitely many elementary
sentences, is taken from Cohn [74]. It is modelled on similar proofs by
Robinson [63].

It may be of interest to recall the various classes of rings considered by
Bokut' [81] (cf. also FR, p. 486f.). Let % be the class of integral
domains, 9bx the class of rings R such that Rx is embeddable in a group,
2>2 the class of rings such that the universal Rx-inverting map is injective
and % the class of fields. Then

where the inclusions are obvious (though not the fact that they are
proper). B. L. v. d. Waerden [30] had asked whether 2)0 = ^ and this was
answered by Malcev [37] by showing that 250^®i- At about this time
Malcev asked whether 9b1 =

 <&; the answer came 30 years later from three
people working independently: Bowtell [67] and Klein [67] gave examples
showing that %=£%, while Bokut' [67, 69] proved that Q)1i=%. His
proofs are quite long and have not been simplified. The examples of
Bowtell and Klein can be verified using the methods of 5.7. Valitskas [87]
uses defining relations expressed in terms of the blocks of 4.3 to construct
a ring R which is in 2) x but not in 2)2- By the same method he finds a ring
whose adjoint semigroup (with multiplication a°b = a + b + ab) is
embeddable in a group, but which is not embeddable in a radical ring.



Rational relations and rational
identities

The specialization lemma in one of its forms (Prop. 6.2.7) states that in a
field of infinite degree over its centre, itself infinite, there are no rational
identities, and the proof depended on Amitsur's GPI-theorem. In 7.1 we
again take up GPIs and examine their relation with ordinary polynomial
identities.

The functional approach leads in 7.2 to another treatment of rational
identities in fields, and the rational topology, a topic to which we shall
return in Ch. 8. To study rational identities we need, besides the free
field, the generic division algebras of different Pi-degrees. They are
introduced in 7.3; the specializations between them are described there
and are illustrated in 7.4.

The rest of the chapter is devoted to an exposition of Bergman's theory
of specializations. The basic notions of rational meet and support relation
are explained in 7.5 and in 7.6 we see how they are realized in generic
division algebras. Finally in 7.7 examples of the different support
relations are given, showing the totally different behaviour in the
non-commutative case.

7.1 Polynomial identities
Every ring satisfies certain identities such as the associative law:
(xy)z = x(yz). In a field the situation is less simple; we have rational
identities like xx~l = 1 or (xy)'1 = y~lx~l, but here it is necessary to
restrict x and y to be different from zero. In order to discuss rational
identities over a field it is helpful first to summarize the situation for
rings.

Let A: be a commutative field and F = k{X) the free A:-algebra on a

331



332 Rational relations and rational identities

set X = {jcl9 x2, • • •}• Any A>algebra A is said to satisfy the polynomial
identity

p(x) = 0, (1)

if p is an element of F which vanishes for all values of the xs in A. If A
satisfies a non-trivial identity, i.e. this is true for some p =£ 0, it is called a
Pi-algebra. The basic result on Pi-algebras is

K A P L A N S K Y ' S P I - T H E O R E M (Kaplansky [48]). Let R be a primi-
tive Pi-algebra with a polynomial identity of degree d. Then R is a simple
algebra of finite degree n2 over its centre, where n ^ d/2.

For a proof see Jacobson [56], p. 226, Herstein [68], p. 157 or A.3,
Th. 10.4.6, p. 401. We recall that a ring is (left) primitive if it has a
faithful simple (left) module.

In (1) the coefficients were restricted to lie in the centre; without this
restriction the result clearly fails to hold. E.g. in the matrix ring yfln(k)
over k we have the identity

euxenyen - euyeuxen = 0,

which has degree 2, but the degrees of the algebras satisfying it are
unbounded. Of course this is not an identity of the form (1), but a
generalized polynomial identity (GPI), as defined in 6.2. The existence of
such a generalized identity again limits the algebra, as Amitsur has
shown. For reference we state his theorem (of which a special case was
used in 6.2):

A M I T S U R ' S G P I - T H E O R E M (Amitsur [65]). A primitive ring R
satisfies a generalized polynomial identity if and only if it is isomorphic to a
dense ring of linear transformations in a vector space over a field of finite
degree over its centre, and R contains a linear transformation of finite
rank.

A proof can be found in Herstein [76], p. 31.
The connexion between generalized and ordinary polynomial identities

may be described as follows. Let D be a simple algebra of finite
dimension n over its centre k; then k is a field, n is a perfect square, say
[D:k] = n = d2 and so for m ^ 1, [Dm:k] = mn (see A.3, Ch. 7). In
terms of a A>basis ul9 . . . , un for D we can write the elements of the
tensor D-ring F = Dk(xu . . . , xm) as linear combinations (over k) of
monomials u^x^u^ . . . xjruir. There is a pairing
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Fx Dm^D, (f,a)~f(a),

where f(a) = f(au . . . , am) arises from f(xl9 . . . , xm) on replacing x] by
dj e D. If we fix / e F, we have a mapping Dm —> D and if we fix a e Dm,
we get a mapping F-^D; clearly the latter mapping is a D-ring
homomorphism. Writing Hom(F, D) for the set of all D-ring homo-
morphisms, we can state the result as follows:

L E M M A 7.1.1. IfD is a k-algebra and F = Dk(x1, . . . , xm), then

Hom(F, D) = Dm.

Explicitly we have cp>->(xiCp, . . . , xmcp).

The proof is almost immediate: we have seen that a e Dm defines a
homomorphism and conversely, each homomorphism cp provides an
element (jti<p, . . . , xmcp) of Dm. •

This result expresses the left adjoint property of F, viz. the set
Hom(F, D) corresponds to the set of mappings from X to Z), i.e. Z> ,̂
which is Dm, because | X \ = m.

In a similar way we get a mapping 6, the evaluation mapping

6:F^DD\ f^f, (2)

where f: Dm^> D is the function on Dm defined by / . Now (2) is also a
D-ring homomorphism if we regard the functions from Dm to D as a ring
under pointwise operations; this amounts to treating the right-hand side
of (2) as a product of rings. The image of F under 6 is written F; it is the
ring of polynomial functions in m variables on D, and the kernel of 6 is
just the set of all generalized polynomial identities in m variables over D.

By identifying Dm with fc™" via a fc-basis of D, we may view the ring of
polynomial functions kmn (= Dm) —» k as a central fc-subalgebra G of
DDm\ clearly G does not depend on the choice of A>basis of D. Since the
canonical map kDm®kD^>DDm is injective, the subring C of D°m

generated by D and G is of the form G ®kD.\i, moreover, k is infinite,
then G is just the fc-algebra of polynomials in mn commuting indetermin-
ates, so C is the D-ring of polynomials in mn central indeterminates.
Another way of expressing C is as the image of the tensor ring:

T H E O R E M 7.1.2. Let D be a central simple k-algebra of dimension n.
Then F = Dk(x1,. . . , xm) may be expressed as the tensor ring on mn
D-centralizing indeterminates and C—F is the image of the evaluation
map 6.
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Proof We may regard F as the tensor D-ring on the D-bimodule
(D <8)k D)m; since D is central simple, the map

q>: D <8)k D-> End^(D) = Z)n, where (a ® b)cp\ x »-» axb, (3)

is injective, and hence is a D-bimodule isomorphism, by the density
theorem (A.3, Th. 7.1.1, p. 259). It follows that F is the tensor £>-ring on
mn D -centralizing indeterminates.

Now fix a A>basis wl9 . . . , un of D and consider the dual A>basis wf,
. . . , w* in Horn* (Z), k) C EndA:(D). For each \i = 1, . . . , n there exists
vfi = 2^/u ® "A e Z) ® Z> mapping onto u*9 i.e. such that v^cp = w*. If in
F = Dk(xl9 . . . , xm) we take yl7l = 2 < V * < M A > t h e n F = D(vifi) is the free
D-ring on the mn D-centralizing indeterminates y^, / = 1, . . . , m,
// = 1, . . . , n. If we put ^ = vifi0: (Zbnux, . . . , ^bmXuk) ^> bifi, then it
is clear that F is the D-ring generated by the %ipL. Now G is by definition
the A>algebra generated by the §iAI, hence we conclude that C = GZ) = F,
as claimed. •

If we examine the role played by 6, we obtain the following explicit
expression for it:

T H E O R E M 7.1.3. Let D be a central simple k-algebra of degree n> where
k is infinite. Then the evaluation map 6 can be expressed in the form

where vipL *-+ |I>4 (i = 1, . . . , m, \x = 1, . . . , n).

Hence the kernel of 6 is generated by the commutators of pairs of the

*V •

Exercises

1. Prove Th. 1.2 by tensoring D with a splitting field K, so as to reduce D to the
form Km.

2. In yfln(A) denote the matrix units by etj. Verify that the product of en, e12, e21,
. . . , en_i n, enn in any order other than the given one is zero. Deduce that for any
non-zero /c-algebra A, the matrix ring ^fln(A) satisfies no polynomial identity of
degree <2n. (This is the staircase lemma, see A.3, p. 379. When A is
commutative, lRn(A) satisfies an identity of degree In, viz. the standard identity
S2n = 0, by the Amitsur-Levitzki theorem, A.3, p. 378.)

3. Let D be a central simple fc-algebra with A>basis u1, . . . , un and put X = {xu

. . . , xn}, S = { iy^ = 1, . . . , m, i = 1, . . . , n}. Show that the map
D ® k(X) -+ D ® k[E] defined by xk ^ 2§A/Wiis surjective. Is it injective?
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7.2 Rational identities
The basic result on rational identities, again due to Amitsur [66], states
that there are no non-trivial rational identities over a skew field which is
of infinite degree over its centre and whose centre is infinite. But it is now
more tricky to decide what constitutes a 'non-trivial' identity. Here are
some 'trivial' ones:

(x + y)-1 - y-\x-x + y~lYlx-1 = 0,

[x'1 + (y'1 - x)"1]"1 - x + xyx = 0 (Hua's identity),

[x - (1 + yy'xil + y)][(l + y)-lx(l + y) - y-'xy]'1 - y = 0.

Amitsur's result is implicit in Th. 6.4.7; we shall now sketch another
proof, due to Bergman [70].

Our first task is to find a means of expressing rational functions. Let D
be a field with centre k\ we can form the polynomial ring D[t] in a
central indeterminate t and its field of fractions D(t). Any cp e D(t) has
the form cp = fg'1, where f,ge D[t], and we can set t = a if a e k is
such that g(a) ¥= 0; then q>(a) will be defined. For a given cp we can
choose / , g in cp = fg~l to be coprime, and then / , g will not both vanish
for any a e k. Since we only had to avoid the zeros of g in defining (p(a)
we see that cp is defined at all but finitely many points of k. More
generally, the same reasoning applies to any commutative unique
factorization domain R and its field of fractions U, with an epic R -field
playing the role of k, but once we give up unique factorization, the
situation changes. For example, consider the ring of polynomials in
commuting variables x, y, z, t over k subject to the relation xt = yz (this
is the coordinate ring of a quadric, the simplest non-UFD). Here we have
x/y = z/t, but there is no representation of this fraction which can be
used for all specializations: x/y fails if we put x = y = 0, while z/t fails
for z = t = 0.

In the case of several non-central variables the role of D{t) can be
taken by the free field, but that notion will not be needed in our first
construction. What we shall do is to build up formal expressions in xl9

. . . , xm using +, —, x, -T- and elements of D, and called rational
expressions. The expressions will be defined on a subset of Dm or more
generally, of Em, where E is a £)-field. Strictly speaking, our 'expres-
sions' should be called 'generalized rational expressions', to emphasize
that the coefficients need not commute with the variables, but we shall
omit the qualifying adjective and often briefly refer to 'expressions'.

Let X be any set; by an X-ring we shall understand a ring R with a
mapping a: X -* R, and we sometimes write (R, a) to emphasize this
mapping. More generally, for any field D an (X, D)-ring is a D-ring R
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with a mapping a: X —> R. If R is a field, we speak of an X-field or an
(X, D)-field; the latter is essentially the same as a Dk(X)-field (with k
understood as ground field) in our previous terminology. An (X, D)-field
is again called epic if it is generated, as D-field, by the image of X.

Given X = {xl9. . . , xm} and a field D, we write 2ft(X; D) for the free
abstract algebra on X with constants D and operations {—15 ( )j"1, +2,
x2}, where the subscript indicates the arity of the operation. For each
expression there is a unique way of building it up since no relations are
imposed, thus e.g. (x — x)'1 is defined. In contrast to 7.1 we now have a
partial mapping

9l(X;D) x Em^ E, (1)

for any D-field E. Thus any map a: X ^> E defines a map a of a subset
of <3l(X; D) into E by the following rules:

(i) if a e D, then ace = a,
(ii) if a — xh then xta = xt<x,

(iii) if a = — b or b + c or be and £<#, co- are defined, in E, then
aoc = —ba or ba + ca or ba * coc,

(iv) \ia = b~l and fear is defined and non-zero, then a a = (ba)'1.
Since a just extends or, we can safely omit the bar. We thus obtain the

following simple condition for an expression in X over D to define an
element of a given (X, D)-field:

P R O P O S I T I O N 7.2.1. Let D be a field, X a set, (£ , a) an (X, D)-field
and a e 2ft(X; D). Then aoc is undefined if and only if a has a
subexpression b~l, where boc = 0. •

With each / e 9l(X; D) we associate its domain dom/, a subset of Dm

consisting of the points at which / is defined; more generally we shall
consider dom/ in Em, where E is a D-field. If d o m / ^ 0 , / is called
non-degenerate on E. Taking m = 1, we obtain an expression f(t) in a
single variable t\ if we regard t as a central variable, we may thus
consider f(t) as an element of D(t). As such, it will (by Lemma 6.2.4) be
defined for all but finitely many values of t in the centre of D (assumed
infinite).

L E M M A 7.2.2. Let D be a field which is a k-algebra, where k is an
infinite field, and let E be a D-field with centre k. If f, g e <3l(X; D) are
expressions that are non-degenerate on E, then dom/ D dom g ¥= 0 .

Proof Let p e dom/, q e domg, write r = tp + (1 - t)q and consider
f(r), g(r)eE(t). For t = l, f(r) is defined and for t = 0, g(r) is
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defined, hence each is defined for all bu t finitely m a n y values of f i n k
and so for some value t0 of t b o t h are defined. •

Given / , g e 2ft(X; D), let us put / ~ g if / , g are non-degenerate (on a
given E) and / , g have the same value at each point of dom/ n domg.
This is clearly an equivalence; reflexivity and symmetry are obvious and
transitivity follows by Lemma 2.2. If / , g are non-degenerate, then so are
f + g9 f — g, fg, and they depend only on the equivalence classes of / , g,
not on / , g themselves. Further, if / / 0 , then f~l is defined. Each
equivalence class of expressions is called a rational function, and as we
have just seen, they form a field:

T H E O R E M 7.2.3. Let D be a field which is a k-algebra, where k is an
infinite commutative field, and let E be a D-field with centre k. Then the
rational functions from Em to E with coefficients in D form a field
Dk(X', E). •

When E is commutative, this field Dk(X; E) reduces to the familiar
function field D(X) and is independent of E. In that case any element of
D(X) can be written as a quotient of two coprime polynomials, and this
expression is essentially unique. The dependence on E in the general case
will be examined below. Now there is no such convenient normal form for
the elements of Dk(X; E). But in any case each element of Dk{X)
defines an element of Dk(X; £ ) , thus Dk(X; E) is a Dk(X)-fie\d. It may
not be epic, but when it is (e.g. when E = D), then Dk(X; E) is a
specialization of Dk^X^>, and in any case it contains such a specializa-
tion as subfield. By a generalized rational identity in Dk(X\ E) we
understand an element of Dk^X^ at which this specialization either is
undefined or is defined and equal to zero.

The domains of functions form a basis for the open sets of a topology
on Em, the rational topology on Em\ this is in general distinct from the
Zariski topology, a polynomial topology which is usually coarser (see
8.7). The closed sets in the rational topology are of the form

T(P) = {p e Em\f(p) = 0 or undefined, for all / e P}9

where P c Dk (X; E).

A subset 5 of Em is called irreducible if it is non-empty and not the union
of two closed proper subsets. Equivalently, the intersection of two
non-empty open subsets of S is non-empty. Thus Lemma 2.2 states that
Em is irreducible in the rational topology when the centre of E is infinite.

A subset S of £ m is called flat if S contains with p and q also
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ocp + (1 — a)q for infinitely many oc e k. Of course a closed flat subset
will then contain ocp + (1 — a) q for all a e k. Now the proof of Lemma
2.2 gives us

L E M M A 7.2.4. If E is afield with infinite centre, then any non-empty flat
subset of Em is irreducible. •

An example of a flat closed subset is the space 5 defined by

2>;A*AA = c (aa, ba, c e D). (2)

By Lemma 2.4, 5 is irreducible (if non-empty) and so, as in Th. 2.3, it
yields a field Dk(X; S) in xl9 . . . , xm satisfying (2); it may be called the
function field of the set defined by (2). In general it is not easy to decide
whether a given set is irreducible, e.g. xxx2 - x2xx = 0 for E D D D k. In
the commutative case every closed set is a finite union of irreducible
closed sets, but this need not hold in general.

It is clear that every polynomially closed set is rationally closed; we
shall be interested in conditions for the converse to hold. This will be the
case for flat sets, but first we shall need two general remarks:

(i) Let S C Em and p be a point not in S, the closure of S; then there
exists / defined at p but not anywhere on 5. The degeneracy of / can
only arise by inversion, so / = g"1, where g is non-degenerate on S and is
0 at all points of 5 where defined, and g(p) =£ 0.

(ii) Any element of D(t) defined at t = 0 can be expanded in a power
series. If / = a - tg say, then f~x = a~\l - tga~l)~l = Y,a-l(tga~l)n, so
we can build up any function in D(t), provided that it is defined at t = 0.

We can now show that the closure of any flat set is polynomially closed,
so for flat sets, rationally closed = polynomially closed.

L E M M A 7.2.5. Let D be a field which is a k-algebra, where k is an
infinite field, and let E be a D-field with centre k. If S C Dm is flat, then its
closure in Em is polynomially closed.

Proof. Let p $ S; we have to find a polynomial over D which is zero on
5 but not at p. We know that there is a rational function / , non-degener-
ate on S and / = 0 on 5, but f(p) ¥= 0. Let q e S be a point at which / is
defined.

For any x e Em consider /((I - i)q + tx); this is defined for t = 0, so it
is a well-defined element of E(t). If x e 5, / is zero by flatness, but for
x = p it is non-zero because it is non-zero for t = 1. In the power series
expansion of /((I — i)q + tx), if we have to take the inverse of an
expression g(t), the constant term g(0) is non-zero, because f(q) is
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defined, and g(0) does not involve the coordinates of x. Hence the
expansion /((I — t)q + tx) has coefficients which are polynomials in x;
their coefficients are in D, because q e S C Dm. These polynomials are 0
on S, but at least one is non-zero at p , and this is the required
polynomial. •

C O R O L L A R Y 7.2.6. Let k, D, E be as before and assume that D and E
satisfy the same generalized polynomial identities over k with coefficients in
D. Then Dk(X; E) = Dk(X; D), and for any D-subfield B of D,
Bk(X; E) = Bk(X; D).

Proof The rational closure of Dm in Em is polynomially closed by
Lemma 2.5, because Dm is flat. Since every GPI on Dm holds in Em, the
rational closure of Dm is Em, i.e. Dm is dense in Em. The rest follows
because Bk(X; E) is the subfield of Dk(X; E) generated by B and X. •

If we bear in mind Amitsur's GPI-theorem, which for fields states that
a field E of infinite degree over its centre satisfies no GPIs (except those
stating that the centre of E commutes with the variables), then we obtain
the following conclusion, where E D D D B of Cor. 2.6 are replaced by
E'DEDD:

P R O P O S I T I O N 7.2.7. Let D be a field which is a k-algebra and let E, E'
be D-fields with centres C, C containing k, such that E C E', C C C and
[E\C\y [E':C], C are infinite. Then for any set X,

Dk(X; E) = Dk(X; E'). •

An extension of fields E C Ef is said to be centralizing if the centre of
E' contains that of E\ this just means that E' centralizes the centre of E
(and we see that central extensions form a special class of centralizing
extensions). We can now state Bergman's form of Amitsur's theorem on
rational identities:

T H E O R E M 7.2.8. Let D be a field. Then there exists a centralizing
extension E of D with centre C, such that C and [E\C] are infinite. For a
given m = 1, 2, . . . all such fields E yield the same function field Dk(x1,
. . . , xm\ E) up to D-isomorphism.

Proof. Write X = {JC1? . . . , xm} and denote the centre of D by k. Then
D(i) has centre k(t), and so does the Hilbert field H on D(t).
Moreover, H has infinite degree over k(t) and k(t) is infinite, so H is an
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extension of the required form. If E is any centralizing extension of D
whose centre C is infinite and such that [£:C] = o°, let E' be the Hilbert
field on E(t). Then E' is a centralizing extension of both E and H, so by
Prop. 2.7, Dk(X; E) = Dk(X; E') = Dk(X; H), therefore Dk(X\ E) =
Dk(X; H), so Dk(X\ E) is independent of the choice of E. •

The result may be expressed by saying that for fields infinite over their
centre, where the latter is infinite, there are no rational identities, a
conclusion we already met in Th. 6.4.7.

When E is of finite degree over its centre, there are of course
non-trivial identities, but Amitsur [66] has shown that they depend only
on the degree (cf. also Bergman [70]). More precisely, if [D:k] = n = d2

and E is any extension of D with infinite centre C containing k, where
[E:C] = (rd)2, t h e n Dk(X; E) d e p e n d s on ly o n D, d,r,m = \X\ a n d n o t
on E. It can be shown that Dk(X; E) has dimension (rd)2 over its centre,
hence these fields are different for different values of rd. Moreover, for
di\d2 the field with dx is a specialization of that with <i2,

 s e e Bergman
[70].

Exercises

1. Show that an integral domain which satisfies a polynomial identity is an Ore
domain. (Hint. Use Prop. 1.6.6.)

2°. (Bergman) Show that the domain of definition o f / = (JC"1 + y~l + z"1)"1 is
the intersection of dom^" 1 ) , dom(y~1), dom(z~1) and

dom(l + xy'1 + JCZ"1)"1 U dom^jc"1 + 1 + yz~l)~l

Udom(zjc~1 + zy~l + I)"1,

and deduce that the set where / is undefined is irreducible. Is it polynomially
closed?

3°. (Bergman) Is the set defined by xy - yx = 0 (for any E D D D k) irreducible,
or at least a finite union of irreducible closed sets?

7.3 Specializations
We now examine how rational identities change under specialization.
Over skew fields the situation is relatively straightforward. Consider a
generalized rational expression f(%l9. . . , |fm); we shall call / an absolute
generalized rational identity (GRI) if in the free field Dk^xl, . . . , xm^>
the element f(xl9 . . . , xm) is either undefined or zero. From the existence
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of universal denominators in Dk<{X^> (Th. 6.3.7) it follows that any
absolute GRI is in fact a GRI for all D-fields (understood as A>algebras).
But rational identities can behave in unexpected ways in rings with few
units. For example, in Z the identity £ — %~l = 0 holds, though it fails in
homomorphic images such as Z/5Z. Even an algebra over a field, say a
free A:-algebra k(X) will satisfy the identity ^rfl — rfl% = 0, though it
has homomorphic images where this fails. Our aim will be to show that
any absolute GRI over D is a GRI over any weakly finite D-ring. We
begin by reducing the question to matrix form.

P R O P O S I T I O N 7.3.1. Let D be a field which is a k-algebra. To every
generalized rational expression f over D in the set of indeterminates {t-l9

. . . , £r} we can associate a matrix A = A(x) over Dk(X) of index 1,
such that

(i) at any point a = (al9 . . . , ar) over any weakly finite D-ring R which
is a k-algebra, f{a) is defined if and only if the denominator of A(a)
is invertible over R>

(ii) if the point a e Rr satisfies the equivalent conditions of (i), then f(a)
may be obtained as the last component u^ of the unique normalized
solution u = (1 u% Woo)T of the equation Au = 0.

Proof. We use induction on the complexity of / . If / = ^ or / e £), we
can take A = (f -1) ; both (i) and (ii) are clearly satisfied.

If / = g + h and the matrices associated to g, A are B, C, then we
associate to / the matrix

_(B0 0 -Bx B* B
A \c0 Q c. o o

When we evaluate this matrix at a point a of a weakly finite ring R, we
see that its denominator will be invertible whenever those of B and C
are; the converse also holds because all denominators are square and R is
weakly finite. This proves the induction step for (i) in this case, and now
(ii) also follows. If / = gh, we use

/ 0 0 Bo B* B«
\C0 C* Coo 0 0

with the same reasoning as before. When g = - 1 , this gives a matrix for
-h.

There remains the case when / = g"1. If the matrix associated to g is
B, it would seem natural to take for / the matrix

A = (tfoo B* Bo).
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This has almost the desired properties. For if f(a) is defined, this means
that g(a) is defined and invertible and hence, by the induction hypothe-
sis, B(a) defines g(a) and by Cramer's rule (Prop. 4.2.3), B(a) will have
an invertible numerator. Hence A(a) then has an invertible denominator
and so defines f(a). However, the converse may not hold; namely if g(a)
itself is undefined, so that f(a) — g(a)~l also cannot be defined, the
denominator of A may still be invertible. Thus for / = g"1 to be defined
it is necessary for g to be defined and invertible; this will be so if the
denominator of A contains both the numerator and the denominator of
B. To achieve this aim, we put

BO0 0 0 B* Bo

0 B* Bx 0 0

now it is easily checked that (i) and (ii) hold, and the result follows by
induction. •

Since Dk{X) is a semifir, any square matrix over it is invertible over its
universal field of fractions Dk^X^ if and only if it is full. Hence an
expression / is an absolute GRI if and only if the corresponding matrix A
constructed in Prop. 3.1 has either a non-full denominator (making f(x)
undefined) or a non-full numerator (making f(x) = 0, if it is defined). We
can now achieve our aim announced earlier.

T H E O R E M 7.3.2. Let D be a field which is a k-algebra and let R be a
D-ring which is a k-algebra. Then every absolute generalized rational
identity is a generalized rational identity for R if and only if R is weakly
finite.

Proof Assume first that R is weakly finite; let / be an absolute GRI in
x1, . . . , xr with associated matrix A, and take a e Rr. Since A(x) has a
non-full numerator or denominator, the same is true of A(a). Now a
non-full matrix over a weakly finite ring cannot be invertible, so either (i)
A(a) has a non-invertible denominator, or (ii) A(a) has an invertible
denominator and a non-full numerator. By Prop. 3.1, in case (i) f(a) is
not defined; in case (ii) the numerator is non-full, so by Cramer's rule
(Prop. 4.2.3) we find that f(a) © / is not full, say

where P, Q are square. Thus PQ = I, pQ = 0 = Pq, pq = f(a). Since R
is weakly finite, QP =I,sop = 0 = q and f(a) = 0, as we wished to
show.
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Now suppose that R is not weakly finite. Then R contains square
matrices P, Q such that PQ = I and QP =£ / . Let P, Q be n x n say;
writing 5, T for n x n matrices with indeterminate entries, let us consider
the matrix equation

T{ST)~1S -1 = 0.

Written out in full, the left-hand side consists of n2 expressions in the
entries of S, T and (S71)"1; thus they are rational expressions which are
defined and equal to zero in the free field Dk^X^>, so they are absolute
GRIs, but not all of them hold when we set S = P, T = Q, though all are
defined. •

To describe rational identities that are not absolute we shall need the
notion of Pi-degree. If A is a commutative ring, then ^Rn(A) is of
dimension n2 over its centre as free A -module and it satisfies the standard
identity of degree 2n, by the Amitsur-Levitzki theorem (see A.3,
Th. 9.5.8, p. 378):

S2n(xl9 . . . , x2n) = 2 sgn oxlox2o . • • x(2n)a = 0,

where the sum is taken over all permutations a of (1, 2, . . . , In) and
sgn a indicates the sign of a. Let R be any Pi-ring which is prime (i.e. the
product of any two non-zero ideals is non-zero); by Posner's theorem it
has a ring of fractions Q which is simple Artinian and satisfies the same
polynomial identities as R (see A.3, Th. 10.7.6, p. 420, or Jacobson [75],
p. 57). If Q is d2-dimensional over its centre, then R satisfies S2d = 0 and
no standard identity of lower degree. We shall call d the Pi-degree of R
(and Q) and write d = PI-deg#. For a prime ring satisfying no
polynomial identity the Pi-degree is defined as °°.

We shall also need the notion of a generic matrix ring. Let t be a
commutative field and m, d two positive integers, and write k[T] for the
commutative polynomial ring over k in the family T = {x^} of md2

commuting indeterminates, where /, / = 1, . . . , d, A = 1, . . . , m. Let
k(T) be its field of fractions and consider the matrix ring

Wd(k[T])Q<3Rd(k(T)).

We have a canonical m-tuple of matrices Xx = (x\j)\ the fc-algebra
generated by these m matrices is written k{X)d and is called the generic
matrix ring of order d. This may be regarded as the analogue of the
matrix reduction functor for the category of commutative rings. Another
way of describing it is as the free A>algebra on X = {Xx} in the variety of
A>algebras generated by d x d matrix rings over commutative A>algebras.
This ring k{X)d is an Ore domain (see A.3, Prop. 9.7.2, p. 385); its field
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of fractions, written k^X^d, is called the generic division algebra of
degree d\ like k{X)d it has Pi-degree d, if m > 1. Of course, for m = 1,
k{X)d reduces to a polynomial ring in one variable; this case is of no
interest here and we henceforth assume that m > 1.

Let (Z), a) be any X-field and define its domain %{D) as the subset of
2ft(X; D) on which or is defined. Let 3£(D) be the subset of %{D)
consisting of all functions which vanish for a. Any / e 2t(D) U
(9l(^; D)YS(D)) is called a rational relation, or /^-rational relation if
coefficients in A: are allowed. Explicitly we have fa = 0, provided that fa

is defined. More precisely, a member of 2£(D) is a non-degenerate
relation, while a member of Sft(X; D)\¥>(D) is a degenerate relation. Now
Amitsur's theorem on rational identities (Th. 2.8) may be expressed as
follows: For any field D with infinite centre k and any set X, there is an
X-field E over k such that the ^-rational identities over D are the
^-rational relations satisfied by X over E. Thus we can speak of E as the
(relatively) free X-field for this set of identities. Moreover, the structure
of E depends only on k, \X\ and the Pi-degree of D:

If Pl-deg D = d, then E = k^X^d is the field of generic matrices,

If Pl-deg D = oo, then E = k^X^ is the free k-field on X.

In particular, two A>fields satisfy the same rational identities if and only if
they have the same Pi-degree. Our aim is to describe the specializations
between different generic matrix rings; here we shall need a theorem of
Bergman and Small on Pi-domains. We recall that a ring R with Jacobson
radical 3 is called local if R/% is a field, and matrix local if Rfe is simple
Artinian, i.e. a full matrix ring over a field.

T H E O R E M 7.3.3 (Bergman and Small [75]). (i) / / R is a prime
Pi-ring which is also local (or even matrix local) with maximal ideal m,
then Pl-deg(R/m) divides Pl-deg/?.

(ii) If RXCR are Pi-domains, then Pl-deg Rx divides Pl-deg R.

Since the result is somewhat peripheral, we shall sketch the proof of (ii)
only. Let d, dx be the Pi-degrees of R, Rx\ they are also the Pi-degrees of
their fields of fractions Q, Qx. We denote their centres by k, kx\ by
enlarging Q1 we may assume that k1'D k. Now choose a maximal
commutative subfield Fx of Qx and enlarge F1 to a maximal commutative
subfield F of Q. Then [iv/^] divides [F:fc], and this means that dt\d. •

With the help of this result we can derive Bergman's description of
specializations between generic matrix rings.
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T H E O R E M 7.3.4. Let k be a commutative field, c, d positive integers
and X a set with more than one element. Then the following conditions are
equivalent:

(a) %(k^X^c)Q%(k^X^d), i.e. every rational identity in Pi-degree d
is also one for Pi-degree c,

(b) there is an X-specialization k<^X^d-+ k*^X^c,
(c) there is a surjective local homomorphism Dd —> Dc, where Dn is a

division algebra over k of Pi-degree n,
(d) c divides d.

Proof The implications (a) => (b) => (c) are clear. To prove that
(c) => (d), let Dd C Dd be a local ring with residue-class field Dc\ then
c = PI-degDc|PI-degD^|PI-degZ)rf by Th. 3.3. To show that (d)=>(a),
take an infinite A:-field E. Since c\d9 we can embed 9RC(E) in ^Rd(E) by
mapping a to (a a . . . a). Then every rational identity in yJld(E) holds
in tfll^E); but these identities are just the rational relations in

^c, hence %{k^X^>c) C «(JH£A>d), and so (a) follows.

Exercises

1. (Bergman) Let X = {x}, D = Q(x), D' = Q, considered as Z-field by x ^ 0.
Find a relation which is defined and holds over D but is not defined over D'.

2. Show that a finite-dimensional division algebra satisfying the identity
[[x, yf, z] = 0 must be a quaternion algebra. (Hint. Split the algebra by extending
the centre and apply the staircase lemma (7.2, Ex. 1).)

7.4 A particular rational identity for matrices
As a consequence of Th. 3.4 there are rational identities holding in
Pi-degree 3 but not in Pi-degree 2. We shall now describe a particular
example of such an identity which was found by Bergman [76]. From the
results of Bergman and Small [75] (see 7.3 above) it follows that there is
no (x, ^-specialization

So there must be a relation holding in Pi-degree 3 but not 2, and we are
looking for an explicit such relation. We shall need some preparatory
lemmas; as usual, we put [X, Y] = XY — YX.

L E M M A 7.4.1. Let C be a commutative ring. Then for any
X, Y e <K3(C) we have
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[X, [X, Yf] = (det [X, Y]) • [X, [X, Y]"1], (1)

whenever [X, Y]~l is defined. For 2 x 2 matrices the left-hand side of (1)
is zero.

Proof. Writing Z = [X, Y], we have tr Z = 0, hence Z has the charac-
teristic equation Z3 + pZ - q = 0, where p,q e C, in fact q = det Z.
When Z is invertible, we can write this as Z2 + p — qZ~l = 0, and
applying [A\ - ] , we obtain [X, Z2] - 9[A\ Z"1] = 0, i.e. (1).

For 2 x 2 matrices the characteristic equation reduces to Z2 - q = 0,
and so [X, Z2] = 0. •

Let us write Y' = [X, Y]; then we can express the conclusion of the
lemma as

({Y')2)' _ JO for 2 x 2 matrices,
((Y')"1)' [detY' for 3 x 3 matrices. ^

Here we have used the convention of writing u/v = a if u = av for a
scalar a.

We shall need a second matrix identity. As before, C is a commutative
ring and Y' = [X, Y].

L E M M A 7.4.2. Let X,Ye T13(C) and write A for the discriminant of
the characteristic polynomial ofX. Then

detY"' = A-detY'. (3)

Proof If C is an algebraically closed field, we can transform X to
diagonal form whenever A =£ 0, say X = diag(A1? A2, A3). Then A = 62,
where (5 = (Ax — A2XA2 — A3XA3 — Xx). Now an iterated commutator
formed from Y = (yi}) has the form

0 {K-h)nyn (h-h
h)nyn 0 {h-h
hYy* (h-hYy* o

so its determinant is given by

det Y<»> = (Ax - A2)"(A2 - A3)"(A3 - ^

+ (Ax - A3)"(A3 - A2)"(A2 -

+ (-ir
For n = 1 and 3 these expressions differ by a factor & = A, hence (3)
follows. This proves (3) for an algebraically closed field whenever A =£ 0;
hence it holds generally. •
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Using (2) and (3) we can write down rational identities for 3 x 3
matrices, but most of them will hold for 2 x 2 matrices too. What we
need is a relation between determinants of commutators of 3 x 3 matrices
which fails when these commutators are replaced by 0. For any matrices
X and Y let us again write Y' = [X, Y] and consider the expression

det Y' det Y ^ d e ^ Y " " 1 ) ' ) ^ (Y"'"1)'). (4)

Since ' is a derivation, we have de^Y"1) ' = det(-Y^Y'Y"-1) =
(det Y)~2 • det ( - Y'), so (4) becomes, on writing yn = det Y(n),

Now the identity of Lemma 4.2 can be stated as y3 = Ayl9 hence we have

yiy^y^y* = yiyil^~ly\l^y2 = 1. (5)

Thus we obtain

T H E O R E M 7.4.3 (Bergman [76]). Let k be a commutative field and n
equal to 2 or 3. For X,Ye<$ln(k) write Y' = [X,Y], 6(Y) =
(Y^'KY-1)']-1, so that by (2), d(Y') = (n - 2) det Y\ Then there are
rational identities:

<5( Y')6( Y")[(<5( Y T M K * YT)] = | J ffnZ 2,

Proof. By (4) and (5), the left-hand side of (6) is identically 1 when
n = 3; for n = 2 the left-hand side is 0, if defined, so we need only find X
and Y such that the left-hand side is defined. Let E be an extension of k
with more than two elements and write 5 for the set of all matrices
0

,, where a, b e Ex when n = 2, or
b U i

0
0
c

a
0
0

4
0 /

0

\o

0
0
c

a
0
0

a, b, c e Ex, when n = 3.

Then 5 consists of invertible matrices and is closed under inversion and
commutation by diagonal matrices with distinct elements. If we choose Y
in S and X diagonal with distinct entries, then all terms lie in 5 and so (6)
is defined. •

Exercise
Verify that every polynomial identity satisfied by ^ ( C ) , where C is a
commutative ring, also holds for Tlr(C) for r < n. Examine where the proof
breaks down for rational identities.
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7.5 The rational meet of a family of Z-rings
We shall now make a closer study of specializations, following Bergman
[76]. We shall find that for skew fields they cannot be reduced to the
situation involving only two fields, as in the commutative case. We shall
be concerned with two basic notions: an essential term in a family of
X-fields and the support relation.

Given rings R1C R2, we shall say that Rx is rationally closed in R2 if
the inclusion is a local homomorphism; thus for every element of Rx

which is invertible in R2, the inverse also lies in Rt. The intersection of a
family of rationally closed subrings is again rationally closed, so we can
speak of the rational closure of a subset X of R, which is the least
rationally closed subring of R containing X. If this is R itself, we shall
call R a strict X-ring; e.g. Q(x,y) is a strict (x,y)-nng and so is
Z[JC, y, y'1], but not Z[x, y, xy~1]. Generally, if 2 is the set of all
matrices over Z(X) which are mapped to invertible matrices over R,
then the rational closure of X in R is contained in the 2-rational closure
of Z{X), in the sense of Ch. 4, but the two may be distinct: if

(x y\"1

x, y,u,v e X, then the entries of I lie in the latter, but not

generally in the former. We note that an epic Z(X)-field, briefly an epic
X-field, is just a strict ^-field.

A local homomorphism between X-fields cp\ D —> D' may be described
as a partial homomorphism from D to D' whose graph is rationally closed
in D x D'; hence if there is any ^-specialization at all, then the rational
closure of X in D x D' is the unique least ^-specialization. So there is at
most one minimal X-specialization between two ^-fields. Our aim is to
study the rational closure of X in finite direct products; to do so we need
to introduce the following basic concepts.

D E F I N I T I O N . Let {Rs}s be a family of strict X-rings. Then their
rational meet /\SRS is the rational closure of X in the product Yls^s-
When S is finite, say 5 = {1, . . . , « } , we also write R1 A . . . A Rn for
/\SRS', for n = 1 this reduces to R1 by the definition of strict X-hng.

The rational meet can also be viewed as the product in the category of
strict brings. We note that the bigger 5 is, the smaller is f\sRs, in the
sense that for TCS we have a projection pST: /\SRS^> ATRS- For
example, whether Dx A D2 is the graph of a specialization in one
direction or the other depends on which projection maps are injective.

Our first task is to determine the domain and the zero-set of a rational
meet:

L E M M A 7.5.1. Let {Rs}s be any family of strict X-rings, for some set X.
Then
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«(A R] = Dm*), a( A R) = fl W ) .

For As^s is ^ e set of all rational expressions evaluable in each Rs,
modulo the relation of having equal values in each Rs: f ~ go fRs = g*s

for all 5 e S o f - g e 2£(/?5) for all 5 e 5. •

Let {D5} 5 be a finite family of epic X-fields and let t e S. We shall call
the index t (and also the field Dt) essential in S if

thus there exists / defined on all Ds and vanishing on Dt but on none of
the others. Equivalently we have

For when (2) holds, take fe f]^>(Ds)\%(Dt)', then / contains a sub-
expression g"1 such that gDt = 0 but gDs i=0 for s =£ t. Conversely, given
such g, we find that g"1 belongs to the right- but not the left-hand side of
(2). Using this notion, we can say when the rational meet reduces to a
direct product:

P R O P O S I T I O N 7.5.2. Let X be a set and {Ds}s a finite family of epic
X-fields. Then the following conditions are equivalent:

(a) Each s is essential in S,
(b) for each s e S, there exists es e \\s%{Dt) such that e^f = dst,

(c) AsA = ILA.
Here 8st in (b) is the Kronecker delta.

Proof, (a) => (b). Choose fs defined in all Dt and vanishing in Ds but not
in Dt for t =£ s. Then the product gt = I I J ^ ^ 0 n anY order) vanishes on
all Ds except Dt, so es = gs&tgt)'1 satisfies the required condition.

(b) => (c). By (b), As A contains a complete set of central idempotents
es, which shows that /\SDS = YisK f°r some RSQ Ds. Now A A is
rationally closed in Y\DS, hence /?5 is rationally closed in Ds and it
contains X,so Rs = Ds.

(c)=>(a). Given s e S, choose g e fl«(A) such that gD* = 0 but
gD' # 0 for all r =£ 5; this shows 5 to be essential in 5. •

As an illustration, consider Dx A D2; if ^ ( A ) 2 ^ ( A ) , then Dx A Z)2

is a local ring, the graph of a specialization D1^> D2- Similarly if
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%{Di) Q%(D2), while if neither inclusion holds, then D1AD2 =

DI x D2 by Prop. 5.2. For more than two factors we shall find that /\DS

is a semilocal ring, i.e. a ring R which modulo its Jacobson radical 3(R) is
semisimple (Artinian).

L E M M A 7.5.3. Let f: i?—> Rf be a ring homomorphism such that Rf
rationally generates Rf. Then f is local if and only iff is surjective and
k e r / C j ( # ) .

Proof. =>. Rf is rationally closed because / is local and it rationally
generates R\ hence Rf = Rf. If af = 0 for a e R, then 1 + ax maps to 1,
hence 1 + ax is a unit, for any x e R, and this means that a e J(R).

<=. If the conditions hold, take a e R such that af is a unit, say
af'bf=l for some b e R. Then ab = 1 + n, where n e J(#) , hence
ab(l + n)"1 = 1 and similarly (1 + m)~lba = 1 for some m e J(R), and
so a is a unit. •

We note that the extra hypothesis (Rf rationally generates Rf) is only
needed for the first part of the proof.

We can now prove a result which describes the structure of rational
meets:

P R O P O S I T I O N 7.5.4. Let X be a set, {Ds}s a finite family of epic
X-fields, pairwise non-isomorphic as X-fieldsy and write U for the set of
essential indices in S. Then for any subset T ofS, with projection map

p: A A, (3)
T

the following conditions are equivalent:
(a) p is a local homomorphism,
(b) p is surjective and ker p C J(f\sDs),

f] n
(d) TDU.

Moreover, /\SDS is a semilocal ring with residue-class ring /\uDs —

(4)

Proof (a)^(b) by Lemma 5.3 and (a)o%(/\sDs) = %(/\TDs), which
is equivalent to (c), by Lemma 5.1. Now let V be a subset of S which is
minimal subject to (a)-(c). By the minimality of V applied to (c) we
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see that V contains no inessential index, i.e. V C [/; hence /\VDS =
n ^ A ? by Prop. 5.2. This ring is semisimple and V satisfies (b), so
As A/J(As A ) = Av A = IIv A> hence As A is semilocal, with residue
class fields isomorphic to the Ds (s e V). But distinct Ds are non-isomor-
phic as X-fields, hence V is the unique minimal subset of S satisfying
(a)-(c), so (a)-(c) are equivalent to U D V.

Now for any t e S, t is inessential if and only if S\{t} satisfies (c),
which holds precisely when S\{t} D V (because (c) is equivalent to
U D V) and this holds if and only if t $ V. Hence V = U as claimed, and
now (4) also follows. •

By (4) we have

C O R O L L A R Y 7.5.5. The set U of essential indices in S can also be
characterized as the set of those teS for which pSt: /\SDS-+Dt is
surjective. •

Still assuming our family {Ds} to consist of pairwise non-isomorphic
epic A -̂fields, we can describe the complement of U, i.e. the set of all
inessential indices, as the set of all f e S such that for 5' = S\{f}, (a) pss>
is a local homomorphism, (b)pss> is surjective with kernel in the Jacobson
radical, or equivalently, (c) f)s%(Ds) = f]s'^(A)- This follows from
Prop. 5.4. Here (c) states essentially that Ker(Z),) c U5Ker(Z)5). In the
commutative case this can happen only when ker (Dt) C ker (Ds) for some
5, by the prime avoidance lemma (A.2, Lemma 9.8.10, p. 343, or Lemma
6.4 below):

C O R O L L A R Y 7.5.6. In the case of a family {Ds}s of commutative
(pairwise non-isomorphic) fields an index t is inessential in S if and only if
Dt has some Ds (s ¥= t) as specialization. •

For example, let 5 = {0,1,2} and suppose that 0 is inessential in S;
then for commutative fields, every relation holding in Do holds in Dx or
in D2. For skew fields the result need not hold, i.e. there may be ft, f2

such that f vanishes in Do but not in Dt (/ = 1, 2). Now fx + f2 would
seem to be 0 in Do but not in Dx or D2\ but in fact it need not be defined,
for fi =£ 0 may hold 'degenerately' in Dl9 if fx is not defined in Dlt This
will become clear later.

We now come to the second basic notion, the support relation. We
have seen (in Cor. 5.5) that pSt: /\sDs —» Dt is surjective precisely when t
is essential in 5. Our next question is: When is pSt injective? It is
answered by
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P R O P O S I T I O N 7.5.7. Let X be a set and {Ds}s a family of epic
X-fields. Then for any t e S the following conditions are equivalent:

(a) 3E(A) n n5«(A) c n*2£(A),
(b) any relation defined in each Ds and holding in Dt holds in each Ds,
(c) Pst- As A -» A is injective.

Note that by (c) there is a local homomorphism Dt —» fls A-

Proof. An expression e in 2ft(X; Z) represents an element in kerp5, if it
is in the left-hand side of (a) and it represents 0 if it is in the right-hand
side of (a); this just expresses (b), and the equivalence with (c) is now
clear. •

When these conditions hold we shall say that t supports S, or also: Dt

supports {A}5. More generally, if t $ S, we say that t supports S if it
supports 5 U {t} in the above sense.

To gain an understanding of the support relation we begin by proving
some trivial facts:

P R O P O S I T I O N 7.5.8. Let X be a set and {Ds}s a family of epic
X-fields. Then

(i) Given t e S, U C S, if t supports U and Dt ̂  Du for some u e U,
then t is inessential for U U {t},

(ii) If t supports U, then it supports U U {t}}

(iii) If t supports St (i e I), then it supports U/S;,
(iv) / /1 supports U and for each ueU, u supports a non-empty set Su,

then t supports {JuSu.

Proof. To say that 't is inessential for 5' means 'any relation defined in
all Ds and Dt and holding in Dt also holds in some Ds, s =£ t\ while 't
supports 5' means 'any relation defined in all Ds and Dt and holding in Dt

holds in all Ds\ Now (i) is clear and (ii) also follows. To prove (iii), let /
be defined in Dt and Ds (s e St) and / = 0 in Dt; then / = 0 in all Ds,
s e Si, so t supports Us*, (iv) Let / be defined in Dt and Dv, where
v e SU9 for all u e U. If / = 0 in Dt9 then / = 0 in Du (u e U) by
hypothesis, hence / = 0 in Dv (v e Su), so t supports {JJJSU. •

We remark that if S' is a subset of S such that AsA—> As 'A is
surjective, then any t which supports S also supports 5', but in general
this need not be so. In the commutative case the support relation still
simplifies:

C O R O L L A R Y 7.5.9. If all the Ds are commutative and t supports S, then
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either 5 = 0 or Dt specializes to some Ds (s e S). More precisely: t
supports {s} if and only if there is a specialization Z),—> Ds.

For if t supports 5 and S =£ 0 , then either t e S or Ms inessential for
SU{t}; in the latter case there exists s i= t in S such that Ds is a
specialization of Dt. •

To clarify the relation between support and essential set we have the
following lemma. We note that by (i) above, a supporting index is a
special kind of inessential index.

L E M M A 7.5.10. Let X be a set, {Ds}s a finite family of pairwise
non-isomorphic epic X-fields and Dt an epic X-field. Then the following
conditions are equivalent:

(a) S U {t} is a minimal set in which t is inessential,
(b) 5 is a minimal non-empty set supported by t.

Proof. Let us write (a0), (b0) for (a), (b) without the minimality clause.
Then (b) => (a0) by (i) of Prop. 5.8, provided that S contains an element
s =£ t. To prove that (a) => (b0), let us write S' = S U {t}. We know by
hypothesis that 5 is minimal subject to fls^(A) = Hs ^(A)- By Prop.
5.4, S is the set of essential indices in 5', hence the projection ps>s is
surjective. For any function / let us abbreviate fDu as fu. If t does not
support 5, there exist a e /\SDS and u e S such that at = 0 but au =£ 0.
Since the map As'A~» I I s A *s surjective, there exists b e /\SDS such
that bu = a'1, bs = 0 for all s ¥= u, t, where s e S. Then e = ab is in
f\sDs and has value 1 in Du and 0 everywhere else, for bs = 0 for s =£ t
and at = 0. Thus e is a central idempotent and so /\s>Ds = R x Du for
some ring R. Now write T = S\{u}, T = T U {t}; then R C f i r A and
R is rationally generated by X and is rationally closed, hence
R = /\TDS. Further, ps>s is a local homomorphism, hence so is pT<T

(where we have to factor by Du), therefore by Prop. 5.4, T includes all
the essential indices in 5, which contradicts the minimality of S. So Dt

supports {Ds}s and (b0) follows.
We thus have (a) => (b0) and (b) => (a0); in an obvious terminology, if 5

is a minimal (a)-set, it is a (b)-set. Now let S be a minimal (a)-set and
take a minimal (b)-subset S1 of S; this is also an (a)-set contained in 5,
hence Si = 5, i.e. S was a minimal (b)-set. Thus (a) => (b) and similarly

C O R O L L A R Y 7.5.11. Let X, {Ds}s be as in Lemma 5.10 and let t e S.
Then %{Dt) D \\S%(DS) if and only if Dt supports some non-empty
subfamily of {Ds}s.
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For the left-hand side expresses the fact that t is inessential in 5 U {t}.
Now pick So C S minimal with this property and apply the lemma to
reach the desired conclusion. •

The relation

t supports 5 (5)

may be called trivial if 5 is 0 or {t}\ thus (5) will be called non-trivial if

S * 0 , {t}.

C O R O L L A R Y 7.5.12. For {Ds}s as before, each s e S is essential in S if
and only if there are no non-trivial support relations in S. •

The essential relations are determined by the minimal essential
relations, but there is no corresponding statement for support relations.
However, Cor. 5.12 shows that essential relations are determined by the
support relations.

Let us call a set S essential if each member is essential in it. Thus Cor.
5.12 states that 5 is essential if and only if there are no non-trivial support
relations in it. For essential sets the support relation can be described as
follows.

P R O P O S I T I O N 7.5.13. Write Sf = S U {t} and let {DS}S' be a finite
family of pairwise non-isomorphic epic X-fields. Then the following
conditions are equivalent:

(a) t supports S and S is essential,
(b) /\s'Ds is a semilocal ring contained in Dt (via the projection map)

with residue-class fields Ds,
(c) there exists a semilocal X-ring RQ Dt with residue-class fields Ds

(s e S),
(d) 3£(Dt) fl r\s%(Ds) £ n53E(D5) and no %{DS) contains the intersection

of all the others.

Proof (a)=>(b) follows by Prop. 5.4 and Prop. 5.7; (b) => (c) => (d)
holds trivially and (d) => (a) is also clear. •

C O R O L L A R Y 7.5.14. Let {Ds}s be a finite family of pairwise non-iso-
morphic epic X-fields, t e S and suppose that t supports S and U is the
subset of all essential indices in S. Further write Ur = U U {t}. Then the
projection map /\SDS —> /\t/' A w an isomorphism and t supports U. •
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Exercises

1. Verify that any non-empty family of strict X-rings has an essential index.

2. Give an example of an infinite family of epic X-fields which is not essential,
though every finite subfamily is.

7.6 The support relation on generic division algebras
We have seen that for two epic X-fields Dl9 D2 the rational meet
£>! A D2 is either a local ring - namely when one of Dl9 D2 is a
specialization of the other, and a field precisely when Dx = D2 - or the
full direct product Dxx D2. For three factors Dl9 D2, D3 there are many
more possibilities, e.g. the subrings Dt A DJ C Dt x Dj (1 ^ / < j ^ 3)
may each be the full direct product and yet the rational meet
Dx A D2 A D3 C Dx x D2x D3 could be a semilocal ring which embeds
in Dx and has two residue class fields D2, D3. This happens when every
rational relation satisfied in DY is satisfied either in D2 or in D3 but
neither D2 nor D3 accounts for all such relations. In order to see what
possibilities can be realized we shall take the generic division algebras
k^.X^n and describe all possible support relations in this case, using the
work of Bergman and Small [75] (and still following Bergman [76]). We
shall need Th. 6.8 of that paper, which for our purpose may be stated as
follows:

T H E O R E M 7.A. Let R be a prime Pi-ring and p0 0 prime ideal of R.
Then the integer (Pl-deg R - Pl-deg (R/Po)) can be written as a sum of
integers Pl-deg (R/p) (allowing repetitions), where p ranges over the
maximal ideals ofR.

We omit the rather lengthy proof (see Bergman and Small [75]).
Let us say that an integer n supports a set M of positive integers if for

each m e M, n — m lies in the additive monoid generated by the
elements of M. Clearly M must then be a subset o f { l , 2 , . . . , n } . The
Bergman-Small theorem shows the truth of the following:

If R is any prime Pi-ring, then Pl-deg R supports the set

{Pl-deg(R/p)\p prime in /?}.

In what follows, X will be fixed, with more than one element, so that
n has Pi-degree n. We shall write E(n) = %(k^X^n), Z(n) =

for brevity.
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T H E O R E M 7.6.1 (Bergman [76]). Let n be a positive integer and M a
finite non-empty set of positive integers. Then the following conditions are
equivalent:

(a) k^X^n supports {k^X^>m\m e M},
(b) Z(n)nflM%)cflMZ(m),
(c) the projection map pM>{n}\ f\M>k^.X^>r -> k<^X^n is infective,

where M' = M U {n}y

(d) there exists a prime Pi-ring R of Pi-degree n such that the set of
Pi-degrees of the residue-class rings of R at the maximal ideals is
precisely M, briefly, {PI-deg(.R/max)} = M,

(e) n supports M.

Proof, (a)-(c) are equivalent by Prop. 5.7. Now we have two variants of
(d), one weaker (d—) and one stronger (d+):
(d—) There is a prime ring R of Pi-degree n such that

{PI-deg(/?/prime)} 2 M D {PI-deg(/?/max)},

(d+) there is a semilocal prime ring R of Pi-degree n such that
every non-zero prime ideal is maximal and {PI-deg(/?/max)} = M,
and every residue-class field is infinite.

We complete the proof by showing that (c) => (d—) => (e) =>
(d+) => (b). Note that each condition implies that M C {1, 2, . . . , « } .

(c) => (d- ) . Put R = A M ' H ^ r , where M' = MU {n}. By Prop.
5.4, the residue class rings at the maximal ideals are among the k^X1^m

(m e M), for n itself cannot occur by (c) and Prop. 5.8. Now for each
me M, ker(# -> k<£X^m) = p is prime and PI-deg(/?/p) = m, so (d-)
holds.

(d—) => (e) is just the Bergman-Small theorem 7. A quoted earlier.
(e) => (d+). By (e) we can write n = ra(l, 1) + . . . + m(l, rx) =

. . . = m(s, 1) + . . . + m(s, rs), m(i, j) e M, where s ^ 1, rx ̂  1 and each
m e M occurs as some m(i, j). Let A be a commutative fc-algebra which
is a semilocal principal ideal domain with just s non-zero prime ideals 3i>
. . . , X each with infinite residue-class field Kt = A/Zt (e.g. let K D A: be
an infinite field extension and take a suitable localization of ^[r]). Then
we have A/J(A) = Ylt^h hence

Now for each i = 1, . . . , 5, 9)in(iQ has a block diagonal subring
isomorphic to

. . . x <Slm{itri)(Kd = Lh say.



7.6 The support relation on generic division algebras 357

Hence

Q = /

where Q as a direct product of simple Artinian rings is semisimple. If R is
the inverse image of Q in yfln(A) by the isomorphism (1), then
j(R) = j(<$ln(A)), hence R/J(R) = g . Since R/J(R) is semisimple (Arti-
nian), it follows that R is semilocal and PI-deg(JR/max) = M. Let ^ be
any prime ideal in R and put p = ^ Pi A; then p is prime in A, so p is 0 or
some 3,-. Suppose that p = 0; then A C fl/p. Since A + a»n(J(A)) C /? C

), we have, on writing F for the field of fractions of A,

because A is a domain and J(A) =£ 0. Hence RAx is simple with 0 as the
only prime, so ^ must be 0. If p = 3i> then ^ = A/3/ C R/ty and since /?
is a finitely generated /?-module, /?/}) is a finitely generated ^-module,
hence Artinian. It is also prime, hence simple, and so ^ was maximal.
Thus R satisfies (d+).

(d+) => (b). Assume that e lies in the left-hand side of (b), thus e = 0 is
a rational identity holding in Pi-degree n and not degenerate in Pi-degree
m for any m e M\ we have to show that e = 0 holds in each Pi-degree
m e M. Let R be as in (d+); this means that for each non-zero prime
ideal ^ of R there is given a map a^\ X —• R/ty such that e*v is defined in
R/¥>; we have to show that all the e"v are zero. Since R is semilocal, by
the Chinese remainder theorem there exists a: X -» R inducing all the
aty. Now ea can be evaluated (mod^) for all maximal "p, hence it can be
evaluated in R. Since ee Z(n), we have ea = 0 and so ea<* = 0, as
claimed. •

To give an illustration, we have 5 = 2 + 3. Let A be a local principal
ideal domain with maximal ideal 3; then ^ft5(A) contains the subring

and we have the local homomorphism ^fl5(A) —»yR2(K) x (Sl3(K), where
K = A/Z. This gives rise to a specialization of fields, for when we replace

by the generic matrix ring, we get a field with the same identities

If we combine Th. 6.1 with Prop. 5.13, we obtain

C O R O L L A R Y 7.6.2. For any integer n and set of integers M the
following conditions are equivalent, where Mf = M U {n}:
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(a) ^ A M ' H ^ r ^ H ^ n ^ injective, with residue-class fields
HX^m (m e M),

(b) k^X^n has a semilocal subring with residue-class fields k^.X^m

(m e M),
(c) n supports M, but no me M supports any non-empty subset of

M\{m}. M

C O R O L L A R Y 7.6.3. With n, M as before the following conditions are
equivalent:

(a) k^X^n supports a non-empty subfamily of {k^X^m\m e M}y

(b) every rational identity holding in Pi-degree n holds in Pi-degree m
for some m e M, Z(n) D f]ME(m) C [JMZ(m),

(c) there exists a prime Pi-ring R of Pi-degree n such that {PI-deg (R/
max)} C M,

(d) n supports a subset of M. •

To describe the connexion between prime ideals and the support
relation we shall need a couple of lemmas. The first is a form of the well
known prime avoidance lemma:

L E M M A 7.6.4. Let Rbea ring, % . . . , 3m any ideals in R and ̂ , . . . ,
tyn any prime ideals such that 3/ {£ tyj for all i, j . Then

fl3, £ Ufy.

Proof If tyk C tyj for ki= j , we can omit tyk. Since ^y is prime, we then
have 3i • • • Sm'Pi • • • Vj-iVj+i • "VntVj- Choose a} in the left- but not
the right-hand side; then a = a1 + . . . + an e 3/ for all / but a $ )̂y-. •

In what follows, {Ds}s is a finite family of epic X-fields, R = /\SDS

and % = ker (R -+ Ds). Thus % = 0 if and only if s supports 5, and ys is
maximal if and only if s is essential. We shall write Ess (5) for the set of
essential indices in 5.

L E M M A 7.6.5. Assume that the Ds (s e S) are pairwise non-isomorphic
as X-fields and that T C 5. Then the following conditions are equivalent:

(a) As A -* AT A W surjectivey

(b) for each t e Tands e Ess (5), ^ C f t ^ ^ r .
these conditions hold, then Ess (T) = Ess (5) n T.

Proof (a)=>(b). Put R'= f\TDs; then the projection p:R-^Rf is
surjective, by hypothesis. If t, s are as in (b), then ^ is a maximal ideal of
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R containing tyt and hence ker p, so its image under p is a maximal ideal
of R' with the same residue class field. But if Rf has a residue-class field
isomorphic to Ds, then s e Ess (T) C T, so (b) holds.

(b) => (a). Since imp rationally generates i?', it is enough to show that
imp is rationally closed in R\ i.e. the inclusion impCR' is a local
homomorphism; let a e R be such that ap is invertible in R'; then a $ tyt

for all t e T. Now consider those s e Ess (5) for which a e ^5; by (b),
since s $ T, we have tys ^ %>t for all f e T. hence ^ ^ H^P* = ker/?. By
Lemma 6.4 there exists b e R such that b e ker p and for any s e Ess (5),
b $ tys if and only if # e ^ But then a + b lies in no maximal ideal of R
and so is a unit, and {a + 6)/? = 0/? is likewise a unit in imp. •

We note that (a) shows that the residue-class rings of R' at maximal
ideals are just the residue-class rings of R at the maximal ideals con-
taining ker p. We can now express the inclusion of prime ideals in terms
of the support relation. We shall write Supp5(/) for the maximal subset
of S supported by f, i.e. the union of all the subsets supported by t.

T H E O R E M 7.6.6. Let {Ds}s be a finite family of epic X-fields and put
R = As A, V, = ker (R -> Ds). Then

QV0}. (2)

Proof Isomorphic X-fields determine the same kernel in R, so we may
without loss of generality take the Ds to be pairwise non-isomorphic. Fix
u e S and let T be the right-hand side of (2), i.e. the set of all s e 5 for
which %D^PM; then T satisfies (b) of Lemma 6.5, so the projection
R—* ATDS is surjective. The kernel is f l r ^ , which contains )̂M by the
definition of T; in fact since u e T, we have C\TVS = Vw Hence the map
y\rD5—> Du is injective, i.e. u supports T. It follows that T C Supp5(w),
but clearly also Supp5 (u) C T, hence we have the equality (2). •

We remark that in Lemma 6.5, (b) just states that

T D E s s ( 5 ) n L)Supp5(*). (3)
T

Hence we obtain

C O R O L L A R Y 7.6.7. With the notation of Th. 6.6, if T, T C 5, then
ker pST C kerp 5 r if and only if [jT Supp5 (t) D U T Supps (0- In particu-
lar,

(i) pST is injective o [jT Supp5 (t) = S,
(ii) U
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In general R = /\sDs will have prime ideals not of the form tys; e.g. if
C is a commutative local domain, X is a rational generating set and Do,
Dx are the field of fractions and the residue-class field respectively, then
Do A D1 = C, but C may have other primes (when C is not discrete).

We recall that Prop. 5.2 asserted that As A = Yls A if and only if S is
essential. More generally we can now say that

whenever the St are disjoint support sets in 5, i.e. if for any t e Sh

Supp5(0c5f,
We have seen that non-isomorphic X-fields may have the same

kernels, eg. k(x,y)Q k[t][x;at]9 where at: f(t)^> f(f). Here y = xt
and tx = xf (see 2.1). The resulting embeddings of k(x,y) in Dt are
distinct for / = 2, 3, . . . and none is a specialization of the others.

By contrast, if R is a right Ore X-domain, the epic R-fields can be
determined by their kernels, e.g. R = k{X)n. If, moreover, Dt is
commutative, then Supp5 (t) = {u e S\t supports {u}}, and this is just the
set of u such that Z),—> Du is a specialization. For let us write
T = Supp5 (t) and put C = /\TDs; we have an injection C—» Dt, so C is a
commutative integral domain with Dt as field of fractions. Let u e T\
then C/pw is an integral domain with field of fractions Du. Hence the
localization at ^ is a local ring Lu C Dt with residue class ring Du, i.e. we
have a specialization Dt-+ Du.

We conclude this section by showing how to express the notions of
essentiality and support in terms of singular kernels. For any prime matrix
ideal 9 we define 2P* as the set of matrices all of whose first order minors
lie in <3>. Clearly <3>' C 9? and under a homomorphism into a field, if 9
represents the singular matrices, then (3>' represents the matrices of nullity
at least two.

P R O P O S I T I O N 7.6.8. Let X be a set, {Ds}s a finite family of epic
X-fields and t e S. Then the following conditions are equivalent, where 9\
is the singular kernel of the map k(X) —> Ds:

(a) t is essential in S,
r

(c) 9>,\p; £ U,*,9>,,
(d) 9, £ IU9V

Proof. We saw that (a) o (b) in 7.5. When (b) holds, there is a rational
expression / which is defined in Ds fors¥=t but not in Dt. Hence the
denominator of / lies in 2P, but not in SP;, nor in any ?PS for s =£ t, so (c)
holds. Clearly (c) => (d) and when (d) holds, then we can find A e ^ ,
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A $ 2P5 (s =£ t). We may assume that A has been chosen to be of minimal
order subject to these conditions. Further, we may assume A to be an
atom, for if A = BC, where B, C are (square) non-units, then B, C $$>s

for s =£ t and either B e &t or C e &t because 9>, is prime and now we can
use induction on the degree. If we now consider the n x (n + 1) matrix
(c A), where c = (y xy . . . xn~1y)T, where x, y e X, x ^ y, we
obtain an admissible block for D5 (5 =£ f), so the rational expression /
defined by this block is defined in Ds but not in Dt; for if / were defined
in Dt and we take a reduced admissible block for / , its denominator B
would be stably associated to A, but Ae?Pt, hence Be®t and this
contradicts the fact that / is defined in Dt. •

We shall need an auxiliary result on ranks of matrices.

L E M M A 7.6.9. Given any prime matrix ideals &lf . . . , 9>r in k{X),
where X is infinite, any n x n matrix A $ U^i can be extended to an
n x (n + 1) matrix which has rank n mod^i for i = 1, . . . , r.

Proof Write A = (ax . . . an)\ if a is another column, we put
A* = (ax . . . an a) and we write A* £2^- to indicate that A* has
rank n modS^; this just means that the square matrix obtained by
omitting some column of A* is not in 2P,. We shall use induction on r;
when r = 1, A has nullity l i n o d ^ and we can make it non-singular by
adjoining a suitable column. When r > 1, we can by the induction
hypothesis adjoin a column to A to obtain an n x (n + 1) matrix At such
that At $ ty, {j =£ /). If for some /, At $ 9>i9 this will show that At $ (J^V
Otherwise At e 9\ for all / and we form A* = (A a), where a = ^atxh

with distinct elements x{ e X not occurring in any At. If A* e 9^ say, then
by specializing jcf- to 6i2 we obtain A2, but A2 £ ^u hence A* £ 9*! and
similarly A* $ 9\, i = 2, . . . , r. •

Now the support relation is described by

T H E O R E M 7.6.10. Let {Ds}s be a family of epic X-fields and <3>s the
singular kernel of Ds. Then Dt supports {Ds\s e S} if and only if

t C If)®]9t C If)®] U U9>;. (4)

In words: every matrix which becomes singular in Dt is either singular in
each Ds or of nullity > 1 in some Ds.

Proof Suppose that t supports 5 and let A € ^ f , A $ U^i- By the
lemma we can find a column a such that (A a) = A* $ L)9*5. Hence the
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equation A*u = 0 defines u = (ux . . . un u0) up to a scalar multiple
in any Ds. Since A e 8PM u0 = 0 in Dt and so u0 = 0 in all D5; but this
means that A e?Ps for all 5, because u0 is stably associated to its
numerator. Hence (4) holds.

Conversely, assume (4) and let / be defined in all Ds and / = 0 in Dt.
We can find a denominator for / , say A, with numerator Al9 and then
Al e &t, so either A1 e (]9S9 which means that / = 0 in all Ds or Ax e 9>;
for some s. But then A e^s and this contradicts the fact that A was a
denominator. •

7.7 Examples of support relations
Before constructing examples let us summarize the properties of sup-
ports. This is most easily done by introducing the notion of an abstract
support system, by which we understand a set 5 with a relation on
S x 9>(S), written t oc JJ and called the support relation, with the
following properties:
(5.1) If t e S and U C S, then t oc U o t oc JJ u {t},
(5.2) / / t oc St (i e I), then t oc (J A,
(5.3) / / t oc JJ and for each ue U, u<* Su^0, then t oc [juSu.
If in (S.2) we take the index set / to be empty, the hypothesis is vacuous,
hence t oc 0 and by (S.I), t oc {t} always holds. By Prop. 5.8 the support
relation on any family of epic X-fields is a support relation in the above
sense.

A special case of the support relation is that where
(5.4) roc Uotoc{u) for all ue U.
The relation is then completely determined by all pairs t, u such that
t oc [u] and if we write K M to indicate that t oc {^}, we obtain a
preordering of 5. Conversely, every preorder on S leads to a support
relation satisfying (S.4) in this way. Thus preorders may be regarded as a
special case of support relations.

A support relation on 5 induces a support relation on any subset of 5.
If a support relation is such that
(5.5) s oc {t} and t oc {s}=>s = t,
the relation is said to be separated. For example, the separated preorders
are just the partial orders. Note that this is not the same as s e Supp5 (t),
t e Supp5 (5), which may well hold for distinct 5, t in a separated support
relation.

We now construct all possible separated support relations on a
three-element set. There are ten in all, five of them orders (if we allow
non-separated ones and do not identify isomorphic ones, we get 53
support systems, 29 of them preorders).
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We list the ten below, the orders first, with rising arrows to indicate
specializations. In the examples, the pt are primes and \X\ > 1, unless
stated, while Gn = k^X^n.
1. Examples, (a) X = 0, Dt = Z/pt (i = 1, 2,

ODX OD2 OD3 3). (b) X = {*}, x •-> 1, 2, 3 in Q. (c) Gn,

n = 3,4,5.

2. Here Z>! specializes to D2 and Dx A D2 A D3

^ °2 = (£>i A D2) x D3. (a) X = {JC, y, z},
oz>3 Z>! = Q(x,y), z ^ O , D2 = Q(x), y , z ^ 0 ,

Z>3 = Q(z), x, y ^ 0. (b) Dx = G4, D2 = G2,
D3 = G3.

3. _ _ R = Di A D2 A D3 a semilocal domain
C {Dl A D3) D (D2 A D3) C Z)3. (a) D3 =
Q, A = Z / A (I = 1, 2), (b) D, = G3, D2 =
G2, D3 = G6.

4. R = £>! A D2 A D3 is a local ring with two
minimal prime ideals, subdirect product of
Dx A D3 and D2 A D3. (a) Dx = Q(x),
y^O, Z)2 = Q(y), x~0 , Z)3 = Q,
x ,y^0 . (b) D1 = Q, x~0 , D2 = Q,
x^p, D3 = Z/p,x^0.

5. ?~3 R = Dx A D2A D3 = Dx A D3 (by Cor.
5.14). (a) Di = Q(x, y), D2 = Q(x), y^O,

X^O/D3 = Z/P.

V

)D9

In each case there were commutative examples. For the remaining
support systems (non-orders) we have of course only non-commutative
examples. In each case s oc T is indicated by drawing an arrow from s to a
balloon enclosing T. We also indicate the partially ordered set of primes
tyi = ker ( A Dj —> Dt)\ in each case the lowest prime is 0.

6.
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Dl = G5, D2 = G2, D3 = G3.

7.

9.

x = G8, £>2 = G2, D3 = G3.

Here Dx oc {D3} follows from the rela-
tions shown and so is not explicitly
indicated. Dx = G3, D2 = G2,
D3 = Gv

6 Vi =

Ul K\X, y\ yX

D3 = A: (see 2.1).

10.

i A D2 A D3 = Dx A D3 = D2 A D3.

lyf = yx"1^, Z)2 = fc^, y; (x^yf

Dx A D2 A D3 = Dx A D3 = D2 A D3.

, y^>, D2 = k^x, y; {x^yf = yx~1^, D3 = k.
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Exercises

1. Construct the support relations on a four-element set and illustrate them by
field specializations. For example, draw a support diagram for Gn with n = 2, 3,
4, 12 and n = 2, 3, 5, 12.

2. (G. M. Bergman) Show that in a non-empty separated support system S there
exists f with Supp5 (t) = {t}.

3. (G. M. Bergman) Show that abstract support systems form a category, taking
as morphisms the maps compatible with the support relation. Describe products
and coproducts in this category.

4°. (G. M. Bergman) Show that in case 3 above, Dx A D2 A D3 = (Dx A D2) H
D3) when all fields are commutative. Does this hold generally?

5°. (G. M. Bergman) Can every abstract support system be realized by a family of
JT-fields?

Notes and Comments
The problem of polynomial identities was first considered in geometry, in
the study of Desarguesian projective planes in which Pappus' theorem
does not hold (and which are thus coordinatized by skew fields), see
Dehn [22], Wagner [37]. The first general result was the Pi-theorem of
Kaplansky [48], followed by the GPI-theorem of Amitsur [65]. The
presentation of 7.1 follows Procesi [68], who has now given a more
general treatment using Azumaya algebras in Procesi [73]. The special
case of Th. 1.2 when D is a field was proved by Gordon and Motzkin
[65].

The functional approach of 7.2 follows Bergman [70]; 7.3-4 largely
follow Bergman [76] and Bergman and Small [75], except for Prop. 3.1
and Th. 3.2, which are taken from Cohn [82]. In 7.5-7 we again follow
Bergman [76]. For the equivalence (b )o (d ) of Cor. 6.3 a brief proof
using Azumaya algebras was recently given by L. Le Bruyn [93].
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Equations and singularities

The theory of equations over skew fields is in many ways the least
developed part of the subject. An element of an extension field whose
powers are (right) linearly dependent over a subfield satisfies a rather
special kind of equation (discussed in 3.4). More general equations are
much less tractable, and in some ways it is more appropriate to consider
singularities of matrices, a wider problem. Here we can limit ourselves to
linear matrices, but even in this case there is as yet no comprehensive
theory.

We begin by discussing the different possible notions of an algebraically
closed skew field; although their existence in all cases has not yet been
established, the relations between them are described in 8.1. We find that
to solve equations we need to find singular eigenvalues of a matrix and
this has so far been done only in special cases (discussed in 8.5). By
contrast the similarity reduction to diagonal form requires the notion of
left and right eigenvalues; it is shown in 8.2 that they always exist (in a
suitable extension field) and 8.3 describes the reduction to normal form
based on these eigenvalues. While this normal form (over an EC-field) is
quite similar to the commutative case, there is no full analogue of the
Cayley-Hamilton theorem (owing to the lack of a determinant function),
although such a result exists for 'skew cyclic' matrices (i.e. matrices A
such that xl — A is stably associated to a 1 x 1 matrix) and is presented
in 8.3.

In 8.4 various notions of 'algebraic' over a central subfield are defined
and compared and earlier results are used to construct V-rings (rings over
which all simple modules are injective) as central localizations of
polynomial rings, following R. Resco, and to construct right Noetherian
but not Artinian annihilator rings, following Faith and Menal. In 8.5 we
return to the topic of equations and show how left and right eigenvalues

366
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can be used in certain cases to find singular eigenvalues and hence solve
the equations considered in 3.4. Singular eigenvalues of a matrix A are
also found in two special cases: (i) when A is 2 x 2 and (ii) when A has
indeterminate entries.

In the remaining three sections we discuss the problems arising when
one tries to do algebraic geometry over a skew field. The main difficulty
is of course that the intuitive geometric picture is missing, but there are
also many technical problems and these sections can only be regarded as a
programme. It is possible to define affine and projective space as in the
commutative case and to define the analogue of the Zariski topology, the
rational topology (already encountered in 7.2), and a notion of specializa-
tion. This is done in 8.6 and illustrated in 8.7 by some examples of
varieties. The final 8.8 brings a non-commutative analogue of the
Nullstellensatz and describes the (as yet unsolved) problem of finding a
satisfactory elimination procedure.

8.1 Algebraically closed skew fields
The first algebraically closed field we encounter is usually the field of
complex numbers, but that it is algebraically closed depends on topo-
logical properties of the real numbers. For a truly algebraic construction
we rely on a theorem of Kronecker which tells us that every polynomial
equation of positive degree over a commutative field k has a solution in
some extension field of k. One effect of this result has been to try to
reduce any search for solutions to a single equation. For example, to find
the eigenvalues of a matrix A we solve the equation det (xl — A) = 0.

In the general case no such simple theorem exists (so far!) and in any
case we do not have a good determinant function - the determinant
introduced by Dieudonne [43] is not really a polynomial but a rational
function - so the above reduction is not open to us. In fact we shall find it
more profitable to go from scalar equations to matrices.

Our first problem is to write down the general equation in one variable
x over a skew field D. We cannot allow x to be central if we want to be
able to substitute non-central values of D, but some elements of D are
bound to commute with x, such as 1, —1 etc. and it is clear that these
elements form a subfield k. Moreover, if a e k, so that ax = xa, then a
must lie in the centre of D if arbitrary substitutions of x are to be
allowed. Thus we have a field D which is a A>algebra, for a commutative
field k, and a polynomial in x is an element p of the tensor D-ring
Dk{x). Explicitly p has the form

. . . + brxcr + dxxeixfx + . . . 4- dsxesxfs + . . . , (1)
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where a, bt. . . e D. Thus even a polynomial of quite low degree can
already have a complicated form, and the problem of finding a solution
seems at first sight quite hopeless. A little light can be shed on the
problem by linearizing our polynomial. As we saw in 6.2, every matrix
over Dk{X), in particular every polynomial (considered as a 1 x 1
matrix), is stably associated to a linear matrix which may be taken in the
form Ao + ^AfcA" or also Ao + X-^A- Thus a general polynomial p in
x over D is stably associated to A + xB, where A, B e Dn for some n,
and instead of finding extension fields E where p = 0 has a root we can
look for a e E such that A + ocB is singular.

Given any D-ring R, a square matrix A over R will be called proper if
A becomes singular under some D-ring homomorphism of R into a field;
otherwise A is said to be improper. The following result is an immediate
consequence of the definitions:

P R O P O S I T I O N 8.1.1. Let D be a field and R a D-ring. If a matrix A
over R is invertible, or proper, then any matrix stably associated to A has
the same property. •

To elucidate the relation between invertible and improper matrices, we
have the following result:

P R O P O S I T I O N 8.1.2. Let R be a D-ring, where D is a field. Then an
invertible matrix over R is improper. When R is commutative, the converse
holds: every improper matrix is invertible, but this does not hold generally.

Proof. If A is invertible over R and / : R —> E is a D-ring map into a
D-field E, then Af is again invertible, hence A is then improper. When
R is commutative and A is not invertible, then det A is also a non-unit
and so is contained in a maximal ideal m of R. The natural map R —• R/m
is clearly a D-ring map into a field and it maps det A to 0, so A becomes
singular over R/m.

To find a counter-example we can limit ourselves to 1 x 1 matrices,
thus we must find a non-unit of R which maps to a unit under any
homomorphism into a field. Take a ring with no /^-fields, such as 3K2(Z>);
any element c of 9R2(#) which is not zero or a unit is improper but not
invertible. •

Of course this result does not exclude the possibility that the converse
holds in some non-commutative rings. As we shall see below, it is of
particular interest to know whether this holds for the tensor ring.

Our original problem was this: Does every polynomial p in F = Dk(x)
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which is a non-unit have a zero in some D-field El We note that p has a
zero a in E if and only if the D-ring map F ^> E defined by x *-* a maps
p to zero. Thus the question now becomes: Is every non-invertible
element of F proper? It is natural to subsume this under the more general
form:

P R O B L E M 8.1. Is every non-invertible matrix over Dk(x) proper?

We shall find that this is certainly not true without restriction on k and
Z), and find a positive answer in certain special cases, but the general
problem is still open. As a first necessary condition we have the following
result.

T H E O R E M 8.1.3. Let D be a field with centre k. If every non-constant
polynomial equation over D has a solution in some field extension of D,
then k is relatively algebraically closed in D.

Proof. Suppose that the conclusion fails to hold and let a e D be
algebraic over k but not in k. We consider the metro-equation

ax -xa = 1; (2)

by hypothesis it has a solution A in an extension of D, so that
aX — ka = 1. If / is the minimal polynomial for a over k, then by (2) we
have

0 = f(a)X - A/(«) = f'(a),

where / ' is the formal derivative of / (see 2.1). By the minimality of / it
follows that / ' = 0, so a is not separable over k; in particular, this shows
that k must be separably closed in D. If a is p-radical (purely
inseparable) over k, say aq e k, where q = pr, then on writing d(a) for
the derivation x •-> ax — xa, we have 6(a)q = 6{aq) = 0. Since a $ k, we
have (5(tf)=£0, say bd(a)^0 for some beD. Now the equation
xd(a)q~1 = b has a solution x0 in some extension of D, but then
xod(a)q = bd(a) =£ 0, a contradiction. Hence a e k and k is relatively
algebraically closed in D. •

Thus for Problem 1 to have a positive solution it is necessary for k to
be relatively algebraically closed in D. We have already noted that every
matrix A(x) over Dk{x) has a stably associated linear form xB + C,
where B, C are over D. If A(0) is non-singular, then so is C, the result of
putting x = 0 in xB + C, and so xB + C is associated to xBC~l + / . If B
is non-singular, our matrix can be put in the form xl — A, where
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A = -CB~l. Any element of Dk{x) or more generally a matrix P whose
linear companion can be put in the form xl — A is said to be non-singular
at infinity. For such a matrix the linear companion is unique up to
conjugacy:

P R O P O S I T I O N 8.1.4. Any matrix over Dk{x) which is non-singular at
infinity has a linear companion xl — A, where A is unique up to conjugacy
over k.

Proof If the given matrix is stably associated to xl — A and to xl — A',
then xl — A and xl — A' are stably associated, hence by Th. 6.3.2, there
are invertible matrices P, Q over D such that

P(xl - A) = (xl - A')Q.

Equating terms in x we find that Px = xQ, hence P = Q and all entries
of P commute with x and so lie in k, and A' = PAP'1 as claimed. •

To give an example, let

p(x) = xn + axx
n-x + . . . + an, (3)

and write p = an + pxx\ then the first step is

'x -1\

\<*n Pi ,

where we have interchanged the rows. If we continue in this way, we
obtain the matrix

'x - 1 0 0 . . . 0
0 x - 1 0 . . . 0

0 - 1
*n-i x + alf

This is of the form xl — A, where A e Dn, and this matrix or also A itself
is usually known as the companion matrix of p.

We now come to define algebraically closed skew fields; here it is
convenient to introduce several notions.

D E F I N I T I O N 1. A skew field K is called characteristically algebraically
closed (CAC) if for each square matrix A over K there exists a e K such
that a I — A is singular. Any such a is called singular eigenvalue of A.

It is clear that for commutative fields this reduces to the usual
definition of 'algebraically closed', for in that case 'singular eigenvalues'
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are just eigenvalues, and we can solve a polynomial equation by finding a
singular eigenvalue for its companion matrix. The question whether every
field has a CAC-extension is the singular eigenvalue problem.

The remaining definitions involve the centre of K and so have no strict
analogue.

D E F I N I T I O N 2. A skew field K with centre C is called polynomially
algebraically closed (PAC) if for every non-constant polynomial
p(x) e Kc(x) there exists a e K such that p(a) = 0.

D E F I N I T I O N 3. A skew field K with centre C is called fully algebraic-
ally closed (FAC) if every square matrix over Kc(x) which is not
invertible becomes singular when x is replaced by a suitable element
of K.

Our first task is to elucidate the connexion between these notions. It is
clear that in Def. 3 we can limit ourselves to matrices that are linear in x;
further, we may take the constant term to be non-singular and hence
equal to / , without loss of generality. We begin by giving a criterion for
/ — Ax to be invertible; it is no harder to do this for the case of several
variables. A square matrix will be called 0-triangular if it has zeros on and
below the main diagonal; if the matrix A over a ring R is such that
P~lAP is 0-triangular, where P is an invertible matrix over a subring S of
R, then A is said to be O-triangulable over S.

T H E O R E M 8.1.5. Let K be a field and C its centre. For any matrices
At e W^K) (i = 1, . . . , r) the following conditions are equivalent:

(a) / — ^A^ has an inverse over Kc(xi, . . . , xr),
(b) ^AjXi is nilpotent, as matrix over Kc{xu . . . , xr),

(c) (2A*,-)" = o.
(d) Ai, . . . , Ar are simultaneously O-triangulable over C.

Proof (a) => (b). Let us write X = {xl9. . . , xr). We have an embedding
of KC{X) in the formal power series ring KC<X> and in the latter,
(/ - ^AjXi)'1 = S/G/A**)7- By uniqueness this must also be the
inverse in KC(X), which is possible only if (XA*/)' = 0 for some t ^ 1.
Now (b)=>(c) follows because KC(X) is a semifir, and so satisfies
Klein's nilpotence condition (Prop. 1.6.7).

(c)=>(d). Write T = ^Aixi and let t be the least exponent of
nilpotence, i.e. Tl = 0, T*~l =£ 0. By equating left cofactors of degree 1 in
f = 0we obtain an equation TB = 0, where B =£ 0, Be Tln(K). We
denote the columns of T by Tl9 . . . , Tn; if these columns are linearly
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independent over C, then 2,7} ® 6;- ^ 0 f°r anY ty e K, not all 0; but this
contradicts the equation TB = 0. Hence the 7} are linearly dependent
over C, say ^TJPJ = 0, where /J; e C and not all vanish. Suppose that
Pi^O and write U for the matrix whose columns are /? =
(Pi • • • /UT, e2> • • • 9 en- This matrix U has entries in C and
JJ~lTU = 71' has its first column 0, thus

°)
o r*/'

where 71*, like T and T", is linear in the xs, say T* = X^f*/- Since
T* = 0, we have T*' = 0, so by induction on n there exists V e GLn(C)
such that V~lT*V is 0-triangular. Write P = U(\ 0 V); then
PeGLn(C) and P~lTP = ^P~lAiPxi is 0-triangular, therefore each
P~lAtP is 0-triangular, and so (d) holds. Now (d) => (a) follows tri-
vially. •

We can now describe the relations between the different forms of
algebraic closure, or rather, algebraic closedness:

T H E O R E M 8.1.6. (i) Every FAC field is PAC and CAC.
(ii) A field K with centre C is FAC if and only if every square matrix A

over K has a non-zero singular eigenvalue in K unless A is 0-triangulable
over C.

(iii) / / a field K with centre C is FAC, then either K = C and C is
algebraically closed, or [K: C] = °° and every non-invertible square matrix
over Kc(x) is proper.

Proof (i) follows because a non-constant polynomial is not invertible;
neither is xl — A and invertibility is preserved by stable association. To
prove (ii), suppose that K is FAC and let A be a square matrix over K
which is not 0-triangulable over C. Then / — Ax is non-invertible, by
Th. 1.5, so by FAC it becomes singular for some value of x in K, say
/ - AX is singular. Clearly X =£ 0, hence A"1 is a singular eigenvalue of A.
Conversely, assume that every matrix over K either is 0-triangulable or
has a non-zero singular eigenvalue, and consider any matrix over Kc(x)
which is not invertible; without loss of generality we may replace it by its
linear companion, A + Bx say. If A is singular, we can put x = 0 to get a
singular matrix. Otherwise we can replace the matrix by A'1 (A + Bx)
= I — Dx9 say. By hypothesis this is not invertible, so D is not
0-triangulable over C, and hence it has a singular eigenvalue <5 =£ 0. It
follows that / — D8~l is singular, and this shows K to be FAC.

To establish (iii) it is enough by (ii) to show that the conditions hold if
every square matrix that is not 0-triangulable over C has a non-zero
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singular eigenvalue. Suppose first that K = C; then every matrix A has a
singular eigenvalue precisely when C is algebraically closed, and
moreover, A has a non-zero singular eigenvalue unless it is O-triangul-
able. Now suppose that K =£ C and K is FAC. By (i) the metro-equation
has a solution for all a e K\C, so by Th. 1.3, C is relatively algebraically
closed in K, and in particular it follows that [K: C] = <». Moreover, any
equation over C has a solution in K and hence in C, i.e. C is
algebraically closed. Now take a square matrix A over Kc(x); we must
show that A is either invertible or proper, and we may without loss of
generality take it in linear form Ao + Axx. If Ao is singular, we obtain a
singular matrix by putting x = 0; otherwise our matrix is associated to
I - Bx. Now if B has a non-zero singular eigenvalue A, then / - BX'1 is
singular. The alternative, by (ii), is that B is O-triangulable over C, say
B = P~1BQP, where #0 is 0-triangular; hence

I - Bx = P~\I - Box)P,

and / — Box has the inverse / + #0Jt + . . . 4- {BQx)n~l, if Bo is /i x n.
Thus I — Bx and hence A is invertible, as we had to show. •

In the course of proving this result we have seen that the centre of a
FAC field is always algebraically closed; it follows that a FAC field, if
non-commutative, is of infinite degree over its centre. A CAC field can
be of finite degree, but only in a very special case:

P R O P O S I T I O N 8.1.7. Let K be a field with centre C and suppose that
1<[K:C]< oo. / /K is CAC, then C is real-closed and [K:C] = 4.

Proof. We know that the dimension of K over C is a perfect square, say
[i£:C] = m2, and any commutative subfield of K containing C has as
dimension over C a divisor of m (see A.3, 7.1). We claim that C is
perfect; for if not, then p = charC is finite and there exists a e C\CP.
Choose r so large that q = pr \ m. The equation xq = a has a root a in K
and xq — a is irreducible over C (because yp — a is irreducible, by the
choice of a), hence [C(a):C] = q, which is a contradiction. This shows C
to be perfect.

Let F be a maximal commutative subfield of K; then F D C and
[F:C] = m. We claim that F is algebraically closed; for if not, then there
is a finite extension E of F, [E:F] = h > 1. Since C is perfect, E/C is
separable and so E = C(/3) for some /3eE. Let g be the minimal
polynomial of /3 over C; then g has degree /zra and is irreducible over C.
By hypothesis g has a zero p1 in iC and [C(^!):C] = hm, which is again a
contradiction. This shows F to be algebraically closed. Thus C has an



374 Equations and singularities

extension of finite degree m which is algebraically closed. By a theorem
of Artin (see A.2, p. 122), C is real-closed and [F:C] = 2, hence
[K:C] = 4, as asserted. •

Exercises

1. Consider the matrix N = I . I over the real quaternions. Verify that N is

nilpotent and find a non-zero singular eigenvalue of N. Show also that

is not nilpotent and has no singular eigenvalue except zero.

2. Find two 3 x 3 matrices A, B over a commutative field such that A A + \iB is
nilpotent for all A, \i but such that A, B are not simultaneously O-triangulable.
(Hint. First take the field F2; find a O-triangulable matrix A and its transpose such
that det(7 + XA + piAT) = 1.)

3°. Give an example of an improper non-invertible matrix over k(x, y).

4°. Prove (or disprove) that in a field K of infinite degree over its centre C, any
finite-dimensional C-space U satisfies U~1U ¥= K, i.e. there exists a e K not of
the form u~lv, where u,veU.

5. Assuming a positive answer to Ex. 4°, show that if K is a FAC field with centre
C=£ K, then for any set X, every matrix over KC{X) which is non-invertible is
proper.

6°. Let K be an infinite field. Show that for every square matrix A over K there
exists a e K such that A — a I is non-singular. (Clearly this is false if K is finite
and it is easily proved if the centre of K is infinite; the general case is still open.)

8.2 Left and right eigenvalues of a matrix
In 8.1 we encountered singular eigenvalues of a matrix, but information
on their existence is still very fragmentary. We now turn to another type
of eigenvalue, whose existence can always be established, and which will
allow us to effect a reduction of matrices to diagonal form (when
possible). Let A be a square matrix over a field K and suppose that A is
conjugate to a diagonal matrix D = diag (ar1?. . . , an). Thus there is a
non-singular matrix U such that

AU = UD.

If we denote the columns of U by ul9 . . . , un, this equation can also be
written as
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Aut = UiOCi (/ = 1, . . . , n).

This makes it clear that we have indeed an eigenvalue problem, but the at

need not be singular eigenvalues of A, since they do not in general
commute with the components of ut.

For any square matrix A over a field K, an element or of AT is called a
right eigenvalue of A if there is a non-zero column vector w, called an
eigenvector for a, such that

Au = ua. (1)

Similarly a left eigenvalue of A is an element /3 e K for which there exists
a non-zero row vector v, an eigenvector for j3, such that vA = /3v. The set
of all left and right eigenvalues of A is called the spectrum of A, spec A.

Let c e Kx; if Aw = ua, then A • uc = ware = we • c~lac. This shows
that the right eigenvalues of A consist of complete conjugacy classes;
similarly for left eigenvalues. If P e GL,n(K), where n is the order of A,
then P~lAP • P~1u = P~lua, hence a is also a right eigenvalue of
P~lAP. In other words, right (and left) eigenvalues are conjugacy
invariants of A. For singular eigenvalues this is not the case; in fact,
although the three notions clearly coincide for elements in the centre of
K ('central eigenvalues'), there is in general no very close relation
between them. Thus it is possible for a matrix to have a right but no left
eigenvalue (see Ex. 2), but as we shall see in 8.3, over an EC-field the
notions of left and right eigenvalue coincide.

In order to achieve a transformation to diagonal form one needs a basis
of eigenvectors, and here one usually applies the well known result that
eigenvectors for different eigenvalues are linearly independent. Over a
skew field this takes the following form:

P R O P O S I T I O N 8.2.1. For any square matrix A over a field K,
eigenvectors belonging to inconjugate right eigenvalues are linearly inde-
pendent. If a is a right and /3 a left eigenvalue of A and a, (3 are not
conjugate, then the eigenvectors belonging to them are orthogonal, thus if
Au = ua, vA = /3v, then vu = 0.

Proof Let ai9 . . . , ar be right eigenvalues of A and u1, . . . , ur

corresponding eigenvectors, and assume that the us are linearly depend-
ent. By taking a minimal linearly dependent set, we may assume that

U\ = 2 W ' ^ ' where Ai e K.
2

By definition ^¥=0, hence by minimality A ^ O and r > 1. Now
= Aux = ^jAu^i = ^WjO^A,. Hence



376 Equations and singularities

but u2, . . . , ur are linearly independent, so at = ^a^J1 and the at are
all conjugate.

Next, if Au = ua, vA = fiv, then vAu = vw a = /3- vu, and if vu =£ 0,
this would mean that a and /? are conjugate. •

To describe the conditions for diagonalizability we shall need a lemma
on the solution of linear equations over a bimodule.

L E M M A 8.2.2. Let R, S be k-algebras and M an (R, S)-bimodule.
Given a e R, b e S, assume that there is a polynomial f over k such that
f(a) is a unit while f(b) = 0. Then for any m e M the equation

ax - xb = m (2)

has a unique solution x in M.

Proof. If in End^ (M) we define Xa\ x »-> ax, pb: x •-> xb, then (2) may be
written

x(k ~ Pb) = rn. (3)

We note that Xapb = pbXa and by hypothesis /(Afl) is a unit and f{pb) = 0.
Now define a polynomial q)(s, t) in the commuting variables s, t by

s - t

then

<p{K, Pb)iK ~ Pb) = (A, - PbMK, Pb) = f(K) ~ f(Pb) = /(Afl).

Since f(Xa) is a unit, it follows that Aa - pfe has a two-sided inverse; hence
(3) has a unique solution in M. •

The significance of the lemma lies in this: Given R, S, M as in the

lemma, the set of all matrices L , where r e R, s e S, m e M, is
\0 5/

a ring under the usual matrix multiplication, and (2) shows that

(l x\la m\ la 0 \ / l x
0 1/10 6 / " \ 0 6/10 1/ ' ( 4 )

thus I is conjugate to a 'diagonal' matrix, and the transforma-
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tion is accomplished by the element x found by Lemma 2.2. We now
show how this result can be used to provide a conjugacy reduction.

T H E O R E M 8.2.3. Let K be any field and A e Kn. Then spec A cannot
contain more than n conjugacy classes, and when it consists of exactly n
classes, all except at most one algebraic over the centre of K, then A is
conjugate to a diagonal matrix, and in that case the left and right
eigenvalues of A are the same up to conjugacy.

Proof. We have seen that spec A consists of complete conjugacy classes.
Let r be the number of classes containing right eigenvalues and s the
number of the remaining classes in specA\ by Prop. 2.1 the space
spanned by the columns of eigenvectors for the right eigenvalues is at
least r-dimensional, and the space of rows orthogonal to it is at least
s-dimensional; hence r + s ^ n, and r + s is just the total number of
conjugacy classes in spec A.

Assume now that r + s = n\ let al9 . . . , ar be inconjugate right
eigenvalues and ul9 . . . , ur corresponding eigenvectors, while & , . . . , &
are left eigenvalues not conjugate among themselves or to the as, with
corresponding eigenvectors vx, . . . , vs. By Prop. 2.1 the us are right
linearly independent, the vs are left linearly independent and VjUt = 0 for
all i, j . Thus if we write U1 for the n x r matrix consisting of the columns
ul9 . . . , ur and V2 for the s x n matrix consisting of the rows v1, . . . , vs,
then V2Ul = 0. Further, since the columns of C/j are linearly independ-
ent, we can find a n r x « matrix Vx over K such that V1U1 = I and
similarly there is an n x s matrix U2 such that V2U2 = I. We now put
U = {Ul U2),V = (V1 V2f\ then [ / J a r e n X n matrices and

v2)^
 U2)-[v2Ul v2u2)-[o i

The matrix on the right is clearly invertible and since fields are weakly
finite (see 1.4), we have U{VUyl = V"1, hence

AV~l = A(Ul U2 - UiW) = («!«! . . . urar A{U2 -

VA =

It follows that VAV1 = K* I, where a = diag(au . . . , ar), fl =

diag (Pi,. . . , f}s) and T e rKs. Now all the #s and /3s are inconjugate and
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all but at most one are algebraic over the centre C of K, hence their
minimal equations are distinct (by Cor. 3.4.5). If only right or only left
eigenvalues occur, we have reached diagonal form; otherwise let ft, . . . ,
[}s be algebraic, say. Taking / to be the product of their minimal
polynomials over C, we have f(/3) = 0, while f(a) is a unit. By Lemma
2.2 we can find X e rKs such that ocX — Xfi = T and on transforming our

/ / X\
matrix by we reach diagonal form. If this is D — P~lAP,

then the equation AP = PD shows that the right eigenvalues are just the
diagonal entries of D, while the equation P~lA = DP~l shows the same
for the left eigenvalues. •

The restriction on the eigenvalues, that there is to be at most one
transcendental conjugacy class, is not as severe as appears at first sight,
but is to be expected, since K can be extended so that all transcendental
elements are conjugate (by Cor. 5.5.2).

Exercises

1. Show that every 2 x 2 matrix with a right eigenvalue has a left eigenvalue.

2. Show that a matrix has a right eigenvalue in a field K if and only if it is
conjugate over K to a matrix in which there is a column with at most one non-zero
element. Give an example of a matrix with a right but no left eigenvalue.

3°. Let A e Kn\ an eigenspace of A is an r-dimensional space V of columns in nK
(0 < r < n), such that the n x r matrix P formed from a basis of V satisfies
AP = PB for some B e Kr. Verify that the 1-dimensional eigenspaces are the
eigenvectors associated with right eigenvalues. Develop a reduction theory using
eigenspaces.

4°. (G. M. Bergman) Let A e Kn; an element a of K is called an inner
eigenvalue, more precisely an r-eigenvalue, where 1 ^ r ̂  n, if nK, regarded as a
space on which A acts (on the left), has an A -invariant subspace W of dimension
r — 1 and for some u $ W, AM = ua (mod W). Verify that right eigenvalues are
1-eigenvalues and left eigenvalues are n-eigenvalues. Develop a reduction theory
using inner eigenvalues.

5. Let A be a Hermitian matrix over the quaternions. Show that the left and right
eigenvalues of A are real, but the singular eigenvalues need not be real. If or is a
singular eigenvalue of A with eigenvector u (i.e. Au = au), verify that
uH(a — a)u = 0, where H indicates the Hermitian transpose.

6. Show that the singular eigenvalues of a skew Hermitian matrix over the
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quaternions are pure (i.e. with zero real part), and the singular eigenvalues of a
unitary matrix have norm 1. (Note that the equation P = e5 relates a skew
Hermitian matrix S to a unitary matrix P.)

7. Show that a n n X n matrix over a field has at most n central eigenvalues.
(Hint. Use Lemma 6.2.4.)

8.3 Normal forms for a single matrix over a skew field
As before let K be a field which is a fc-algebra; our task is to find a
canonical form for a square matrix under conjugacy. The results are not
quite as precise as in the commutative case, but come very close, the main
difficulty being the classification of polynomials over K, i.e. elements of
K[t]. We shall need to make use of the reduction theory of matrices over
a principal ideal domain, as given by Jacobson [43], Ch. 3 or FR, Ch. 8;
the results needed will be stated with the appropriate reference.

Let A e ^n; in 5.5 we called A totally transcendental over k if for any
/ 6 k[t]x, f(A) is non-singular. If there is non-zero polynomial / over k
such that f(A) = 0, A is said to be algebraic over k. Of course when
K = k (the classical case) every matrix is algebraic, by the Cayley-
Hamilton theorem. In general a matrix is neither algebraic nor totally
transcendental, e.g. diag (or, 1), where a is transcendental over k, but we
have the following useful reduction.

P R O P O S I T I O N 8.3.1. Let K be a field which is a k-algebra. Every
square matrix A over K is conjugate to a matrix Ao © Al5 where Ao is
algebraic over k and Ax is totally transcendental, and Ao, Ax are unique up
to conjugacy.

Proof. Let A be n x n and consider V = nK as a (K, A:[r])-bimodule, in
which the action of t for a given AT-basis yl5 . . . , vn is given by

vtt = 'ZdijVj, where A = (atj). (1)

Since K ® k[t] = K[t], we may regard V as a left K[t]-module,
generated by yl5 . . . , vn. Now K[t] is a principal ideal domain, and every
module over it has a unique torsion submodule with torsion-free quotient.
Let Vo be the torsion submodule of V\ its quotient, being torsion-free and
finitely generated, is free, so we can find a complement V1 of Vo in V:

V = Vo © V,. (2)

Using a basis adapted to the decomposition (2), we find that A takes the

form I ° , where Ao is algebraic and Ax is totally transcendental.
\ u Ai
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Thus there is a polynomial / over k such that f(A0) = 0 and f{Ax) is
non-singular. By Lemma 2.2 and the remark following it we can reduce
A' to 0 and so obtain a conjugate of A in the form Ao 0 A1. Now in (2),
Vo is unique while Vx is unique up to isomorphism, hence Ao, A1 are
determined up to a change of basis in V, i.e. up to conjugacy. •

The totally transcendental part is in some ways simpler to deal with.
For by suitably extending K, we obtain a field over which any two totally
transcendental matrices of the same order are conjugate, by Th. 5.5.5.
This means that every totally transcendental matrix is conjugate to scalar
(not merely diagonal) form, where the scalar can be any transcendental
element. Over K itself we cannot expect such a good normal form, but of
course we can ensure it by assuming K to be an EC-field (see 6.5). We
state the result as

T H E O R E M 8.3.2. Let K be an existentially closed field over k. Then any
totally transcendental matrix over K is conjugate to al, where a is any
transcendental element of K. •

To describe the algebraic part, we recall the reduction theorem for
matrices over a principal ideal domain. For any integral domain R, an
element a is called a total divisor of b, in symbols a\\b, if there exists an
invariant element c such that Rb C Re = cRQRa. We shall also use the
notions of bounded elements and similarity as defined in 1.5.

R E D U C T I O N T H E O R E M FOR MATRICES OVER P I D S . Let R be a

principal ideal domain and C e Rn. Then there exist P, Q e GL,n(R) such
that

PCQ = diag (el9 . . . , er9 0
n~r), where ei\\ei+l9 er ± 0. (3)

Moreover, the et are unique up to similarity. •

For a proof we refer to Jacobson [43], p. 43 or FR, Th. 8.1.1, p. 489.
We apply the result by putting R = K[t] and C = tl — A. Since C is
non-singular, the zeros on the right of (3) do not occur and we have

P(tl - A)Q = diag (A,, . . . , AB), A,||A,+1. (4)

The polynomials Xt are called the invariant factors of A, and V as left
R -module is isomorphic to the direct sum

R/RXX 0 . . . 0 R/Rkn. (5)
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We observe that this holds for any matrix A, algebraic or not. In fact we
now see that A is algebraic if and only if Xn divides a polynomial with
coefficients in k. Let us take k to be the precise centre of K; then a
polynomial over K is invariant if and only if it is associated to a
polynomial over k (Prop. 2.2.2). It follows that A is algebraic if and only
if Xn is bounded in R.

To find when A is totally transcendental, suppose that Xn has a
bounded factor /?, say. Then the i?-module V has an element annihilated
by p and hence by /?*, the least bound of p. Now p* = p*(t) is invariant
and p*(A) is singular, so A cannot be totally transcendental. Conversely,
if A is not totally transcendental, then V has an element annihilated by
an invariant polynomial, so some invariant factor Xt has a factor which is
bounded, and hence Xn has a bounded factor. This proves most of

P R O P O S I T I O N 8.3.3. Let K be a field with centre k and let A e Kn have
invariant factors Al5 . . . , Xn. Then (i) A is algebraic over k if and only if
Xn is bounded, (ii) A is totally transcendental over k if and only if Xn is
totally unbounded, and then Xx = . . . = An_x = 1.

Only the last part still needs proof. Each Xt (i < n) is a total divisor of
Xn9 so there is an invariant element c such that Ai|c|An. But if Xn is totally
unbounded, the only invariant element dividing Xn is 1, hence Xt = 1 for
i = 1, . . . , n- 1. •

This result shows in particular that when A is totally transcendental,
then the associated /^-module (5) is cyclic. In that case A is called cyclic;
for example, the linear companion of any polynomial is a cyclic matrix;
more precisely, it is of the form tl — A, where A is cyclic. Prop. 3.3 has
the following immediate consequence:

C O R O L L A R Y 8.3.4. Any matrix over a field K which is totally
trancendental over the centre of K is cyclic. •

To obtain a normal form for algebraic matrices we need yet another
decomposition of the .R-module V. In (5) we had a decomposition into
the fewest number of cyclic summands. We now look for a decomposition
into the largest number of cyclic summands. Such a decomposition exists
of course because V has finite composition-length, and it is unique by the
Krull-Schmidt theorem. The precise result is as follows:

For any principal ideal domain R and any a e Rx there exists a
decomposition
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R/Ra = R/Rqx © ... © R/Rqk © R/Ru, (6)

where each qt is a product of similar bounded atoms, while atoms in
different q's are dissimilar, and u is totally unbounded. Moreover, qt and u
are unique up to similarity. •

For a proof see Jacobson [43], pp. 44f. or FR, Th. 6.4.5, p. 316. This
process can again be applied to tl — A, with R = K[t]; then the qt are
called the elementary divisors of A. By (6) we can write A as a diagonal
sum of terms corresponding to the different elementary divisors, together
with a totally transcendental part, corresponding to R/Ru. We have
already dealt with the totally transcendental part. Let now A be an
algebraic matrix; then A is a diagonal sum of cyclic matrices, each with a
single elementary divisor. We therefore consider a matrix with a single
elementary divisor a; this is a product of similar atoms,

<* = Pi • • • Ps- V)

Each Pj has the same degree d say (as polynomial in t) and sd = n is the
order of A. The i?-module associated to A is V = R/Ra; by definition it
is cyclic, with generator v, say. Then v,vt,..., vtn~l is a basis of V, for
v9 as generator of V, cannot be annihilated by a polynomial of degree less
than n. We still have a basis if we take v, vt, . . . , vtd~l, vps, vtps, . . . ,

Relative to this basis t has the matrixVPs-lPs, • • • , vtd~1p2 .

/Ps

I0

\o

• Ps-

N

Ps-l

0
0

Relative

0
N

0
0

0
0

0
0

where Pt is the linear companion of pt and N = edl is a d x d matrix with
1 in the SW-corner and the rest zero.

This describes A completely and we obtain an expression much like the
rational canonical form in the commutative case (see A.I, 11.4).
However, unlike the latter, the above expression is not unique; in fact the
Pi are determined only up to similarity and not every choice of ps in their
similarity class is possible, thus the factors in (7) cannot be prescribed.

In order to obtain a reduction to triangular form and an analogue of the
Jordan normal form we shall need to assume that every polynomial over
k splits into linear factors over K. Even when this does not hold, we can
enlarge K to a field L for which it holds by taking L = K°kk

a, where ka is
a (commutative) algebraic closure of k. Assuming K enlarged in this
way, we find that all bounded atoms are linear, of the form t — a, up to a
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unit factor, and t - a is similar to t - a' precisely when a is conjugate to
a', by Lemma 3.4.2.

For an analogue of the Jordan normal form we shall need a description
of indecomposable bound polynomials, and here it is necessary to assume
that k is perfect. We shall need Prop. 1.5.6 for a polynomial ring which
tells us: (i) If K is a field with centre k, then in K[t] a polynomial /
which is indecomposable bounded has a bound of the form pn, where p is
an I-atom and hence is irreducible as polynomial over k. (ii) Two
bounded indecomposable polynomials have the same bounds if and only
if they are similar.

P R O P O S I T I O N 8.3.5. Let K be a field with centre k. Assume that k is
perfect and that there is a commutative field F, k C F C K, such that every
polynomial over k splits into linear factors over F. Then every indecompos-
able bounded polynomial over K is similar to a polynomial of the form
(t - a)".

Proof Let a e K[t] be indecomposable bounded. By Prop. 1.5.6, its
least bound has the form pn, where p is an irreducible polynomial over k,
which may be taken to be monic. Thus we have over F,

p = {t - ax) . . .{t - ar), whe re <xt e F,

and where the at are distinct, because k is perfect. We claim that
(t - ax)

n has the least bound pn. For clearly (t - a{)n\pn, so the least
bound is a factor of pn, say pm, where m ^ n. We now have

r

pm = (t- ocx)
nq = (t- c ^ r U O ~ <*i)m-

By unique factorization in F[t] we must have n = m because the act are
distinct, hence pn is the least bound of (t - a^n. Clearly (t - a^n is
indecomposable, and it is similar to a because it has the same bounds. •

Let K be any field with perfect centre k, and assume that K contains
an algebraic closure of k. If A is an algebraic matrix over K with a single
elementary divisor, then the latter has the form (t - ar)\ by the result
just proved. It follows that A is conjugate to

(8)

a
0

0
0

1
a

0
0

0
1

0
0

. . a
.. 0

0
0

1
a
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When K is any field with perfect centre k, we can extend K so as to
contain a commutative field F containing an algebraic closure of k as well
as an element transcendental over k, e.g. by forming the field coproduct
K © F for a suitable F. By combining the above steps we then can for any
matrix over K find a conjugate over F in Jordan normal form. We shall
denote the n x n matrix (8) by Jn(a) and call it a Jordan matrix. Then
we can state our conclusions as follows:

T H E O R E M 8.3.6. Let K be a field with perfect centre k and F a
commutative field containing an algebraic closure of k as well as an
element A transcendental over k. Form the coproduct K © F and take an
extension L which is matrix-homogeneous with centre k. Then every matrix
A over L has a conjugate of the form

e . . . e jr>m) e uS9

where ̂ rl• + s = n, the order of A. •

In particular, we see that over a suitable extension every matrix has a
conjugate in triangular form. As in the commutative case we deduce

C O R O L L A R Y 8.3.7. Every field K has an extension L (with the same
centre) such that every matrix over L has left and right eigenvalues in L. •

This result shows that in many cases there is a very close analogy to the
commutative situation. However, there are significant differences; one
result without a full analogue is the Cayley-Hamilton theorem. To find a
replacement, let us take a field K with centre k and form the tensor ring
F = Kk{x). Any element p(x) of F has a linear companion, which may
be taken in the form xl — A, if p is non-singular at infinity. Of course not
every matrix of the form xl — A is stably associated to a polynomial; this
is not even true in the commutative case (but see Ex. 6). Let us call a
matrix A skew cyclic if xl — A is stably associated to a polynomial p(x)
over Kk(x), and call p(x) the invariant factor of A. It is clear that every
cyclic matrix is skew cyclic, but not conversely. Now we are dealing with
Kk{x) instead of K[x], so we no longer have a PID (unless K = k), but
in exchange we can now substitute arbitrary elements of K for x. We
have the following almost obvious relation between the singular eigen-
values of a skew cyclic matrix and the zeros of its invariant factor.

P R O P O S I T I O N 8.3.8. Let A be a skew cyclic matrix over a field K, with
invariant factor p(x). Then the singular eigenvalues of A are precisely the
roots of the equation p(x) = 0; in particular, for any a e K> the nullity of
a I — A is at most 1.
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The result follows because xl — A is stably associated to p(x) and so
for any value of a of x both expressions have the same nullity. •

It is natural next to replace x by a matrix, but some care is needed: if in
xl — A, where A e Xn, we replace x by B e Km we obtain, not B — A,
which is not even defined unless m = n, but In® B - A ® Im. In fact
this substitution defines a homomorphism Kn[x] —> Kmn. We shall need an
estimate for the rank of this matrix in a special case:

L E M M A 8.3.9. Let K be a field and A e Kn. Then In® A- A® In has
nullity at least n.

Proof. Clearly it is equivalent to prove that the rank is at most n2 — n.
We number the rows and columns of I ® A — A® I by double
subscripts and apply the elementary row and column operations
row/7 —» roWy + row;7, col̂  —> col,-,- + col7i (/ < /). In the resulting matrix
the entry in row^ (/ ^ /) and colr5 (r ^ s) is 0. Hence after permuting
non-zero rows and columns we obtain an N x N block of zeros, where
TV = (n2 + n)/2. It follows that all non-zero entries are now confined to
(n2 — n)/2 rows and (n2 — n)/2 columns, hence the rank is at most
n2 — n, as we had to show. •

With the help of this result we can prove a 'Cayley-Hamilton theorem'
for skew cyclic matrices:

T H E O R E M 8.3.10. Let K be a field with centre k and let A be a skew
cyclic matrix over K, with invariant factor p(x). Then p(A) = 0.

Proof By hypothesis, xl — A is stably associated to p(x) over Kk(x),
and this still holds if we substitute A for x. Hence p(A) is an n x n
matrix, whose nullity is at least n, by the lemma; thus p(A) = 0. •

In conclusion we briefly note the case of a field of finite dimension over
its centre. Take such a field K and let k be its centre; then [K:k] = n2 is
a perfect square and any maximal commutative subfield of K has degree
n over k (see A.3, 7.1). Let F be such a field and wl9. . . , un a left
F-basis for K. Then for any a € K we have

W = !LPiM)Uj, where ptj{a) e F, (9)

and it is easily verified that the mapping a •-» (Pij(a)) is a fc-homomorph-
ism of K into Fn. Since F is commutative, left, right and singular
eigenvalues coincide, but of course none need exist in F. Suppose
however that (ptj(a)) has an eigenvalue a in F; then there exist
yl5 . . . , yn in F, not all 0, such that
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Writing c = ^yiui, we have ac = ca and c =£ 0. Thus (pij(a)) has an
eigenvalue in F if and only if a is conjugate to an element in F. By the
Skolem-Noether theorem (Cor. 3.3.6) this is so whenever k{a) is
isomorphic to a subfield of F. All this still applies if a is an r x r matrix
over K, if we interpret (p,y(tf)) as an nr x nr matrix over F. Thus a
matrix A over ^ has a left eigenvalue in F if and only if its image under
p (given by (9)) has an eigenvalue in F. In general this is not much help,
because F need not be algebraically closed, but in the special case of the
real quaternions F reduces to C, the complex numbers. Applying the
above remarks, and using the fact that C is algebraically closed, we see
that every matrix over the real quaternions has left and right eigenvalues.

Exercises

1. (W. S. Sizer) Let K be a field with centre k. A matrix A over K, algebraic
over k, is called separable over k if the bounds of its elementary divisors are
separable over k. Show that a separable matrix is conjugate to a matrix with
entries in a commutative field, and here separability cannot be omitted.

2. (W. S. Sizer) Show that a family of pairwise commuting matrices that are
separable and diagonalizable can be simultaneously diagonalized.

3. Let ^ be a field with centre k. If no irreducible polynomial over k has
repeated zeros in K, show that K has a central extension to a field with perfect
centre and formulate a version of Prop. 3.5 for such fields.

4°. Examine how far the reduction theory of matrices can be carried out over a
projective-free A:-algebra.

5. (W. S. Sizer) Show that in Th. 3.6 one can further require that no two distinct
elements ah aj have the same minimal polynomial over k.

6°. Let k[x] be a polynomial ring over a commutative algebraically closed field k.
Show that a square matrix over A:[x] is cyclic if and only if it is stably associated to
a 1 x 1 matrix. Show that for a square matrix A over k with distinct eigenvalues
xl — A is cyclic and find conditions on a general square matrix A over k for
xl — A to be cyclic.

8.4 Central localizations of polynomial rings
This section is something of a digression, in that its results are not
primarily about fields, but they are closely related and in any case make
use of the results proved earlier.



8.4 Central localizations of polynomial rings 387

Let D be a skew field; then, as we saw in 2.1, the polynomial ring D[t]
is a principal ideal domain and so has a field of fractions, the rational
function field D(t), obtained as the localization of D[t] at the set £>[f]x.
Sometimes it is of interest to single out a central subfield k of D and
consider the localization at k[t]x. Since D[t] may be expressed as
D <8)k k[t], its localization at k[t]x is the ring

T = D®k k(t). (1)

As localization of D[t], T is again a PID. We shall call T the central
localization of D[t] over k. Its elements may be expressed as fractions
fg~l with denominator g in k[t]x. These localizations have a number of
interesting features, which we shall examine here. We shall need to
assume some elementary properties of injective modules. An injective
module / may be defined by the property that any homomorphism
M —» / can be extended to any module containing M. Every module M
has an 'injective hull' E(M) which is a minimal injective module
containing M, and which may also be defined as a maximal essential
extension of M, i.e. a module containing M such that every non-zero
submodule intersects M non-trivially (thus M is 'large' in E(M), see A.3,
Ch. 3). The results of this section will not be used later and so may be
omitted without loss of continuity.

Let D be a field with a central subfield k\ if [D:k] is finite, then since
[T:k(t)] = [D:k], where T is the central localization as in (1), it follows
that T is of finite degree over k(t) and so is itself a field. This conclusion
still holds under more general conditions. We recall that a fc-algebra A is
said to be locally finite over k if every finite subset of A generates a
subalgebra which is of finite degree over k. A fc-algebra A is called
matrix-algebraic over k if every square matrix over A is algebraic over k.
Both these conditions are, on the face of it, stronger than algebraicity:

T H E O R E M 8.4.1. Let D be a field which is a k-algebra. Then of the
following conditions, each implies the next:

(a) D is locally finite over k>
(b) D is matrix-algebraic over k,
(c) D is algebraic over k.

Proof, (a) => (b). Let A e Dn; then the subalgebra L of D generated by
the entries of A has finite degree over k, so does Ln and it follows that A
is algebraic over k. Now (b) => (c) is clear, since (c) is a special case
of(b). •

Algebraic A>algebras that are not locally finite have been constructed
by Golod and Shafarevich [64] (cf. A.3, p. 58), but it is not known
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whether they are matrix-algebraic and no examples of fields are known
satisfying (c) but not (b) or (b) but not (a).

We shall be particularly interested in matrix-algebraic fields, and
therefore list some equivalent conditions, which also explain the con-
nexion with central localization.

T H E O R E M 8.4.2. Let D be a field which is a k-algebra. Then

D ®k k(t) C D(t), (2)

and the following conditions are equivalent:
(a) D is matrix-algebraic over k,
(b) equality holds in (2),
(c) D ® k{t) is a field,
(d) every non-zero polynomial over D divides a polynomial over k.

When k is the exact centre of D, (a)-(d) are equivalent to
(e) every non-zero polynomial over D is bounded.

Proof. The inclusion (2) is clear. Clearly (b) => (c) and when D ® k(t) is
a field, every non-zero polynomial over D has an inverse, so we have
equality in (2) and this shows that (c) => (b); now it is easily verified that
(C)o(d).

Suppose for a moment that k is the exact centre of D. A matrix A over
D is algebraic over k if and only if every invariant factor of A is
bounded. Since every polynomial can occur as invariant factor of some
matrix, e.g. its companion matrix, D is matrix-algebraic if and only if
every polynomial is bounded, i.e. ( a ) o ( d ) o ( e ) . But this also means
that every element of D(t) can be written as a fraction with denominator
in k[t], which is the condition for equality in (2), thus (d )o (b ) . This
proves the equivalence of (a)-(e) when k is the exact centre of D.

Now let C be the centre of D; then C D k and by what we have shown,
D is matrix-algebraic over C if and only if

D ® c C(t) = D(t).

Assume that D is matrix algebraic over k. Then D is matrix-algebraic
over C and C is matrix-algebraic over k, hence every polynomial over D
divides a polynomial over C, which in turn divides a polynomial over k,
so equality holds in (2), thus (a)=>(b). Conversely, assume (b); then
D ® C(t) = D(t), hence D is matrix-algebraic over C, and (2) also
shows that every polynomial over C divides a polynomial over k\
applying this to t — a (a e C), we see that C is algebraic over k, and this
shows that D is matrix-algebraic over k, which proves that (b) => (a). •
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For a closer study of central localizations let us define a right V-ring as
a ring R for which every simple right /^-module is injective. It is clear that
over a V-ring every module of finite length is semisimple and hence again
injective. We begin by listing some properties of V-rings. An integral
domain which is a V-ring will also be called a V-domain. Further, we
recall that a cogenerator for a ring R is an i?-module C such that for
every R-module M and x e M, x =£0, there exists f\ M^> C such that

PROPOSITION 8.4.3. (i) For any ring R the following are equivalent:
(a) R is a right V-ring,
(b) the product of all simple right R-modules is a cogenerator,
(c) in every right R-module the intersection of all maximal submodules is

0.
(ii) Any V-ring is semiprimitive.
(iii) In a right V-ring every right ideal is idempotent.
(iv) Any V-domain is a simple ring.

Proof, (i) (a) => (b). Let C be the product of all simple right R-modules.
Since R is a right V-ring, C is injective; we have to show that it is a
cogenerator. Given x e M, x =£0, let No be a maximal submodule not
containing x and let A^ be the submodule generated by No and x. Then
NjN0 is simple, and so injective, therefore the natural homomorphism
N1 -» Ni/N0 can be extended to a homomorphism M —> NJNQ. Thus we
have a homomorphism M —> C which does not annihilate x, and so (b)
follows.

(b) => (c). For each x =£ 0 in M there is a homomorphism to a simple
module not annihilating x; its kernel is a maximal submodule of M not
containing JK, so the intersection of all maximal submodules of M is 0,
and this proves (c).

(c) => (a). Let M be a simple right .R-module and let E be its injective
hull; then E is an essential extension of M, but since M is simple, this
means that every non-zero submodule of E contains M, so if E ^ M, the
intersection of all maximal submodules contains M. This contradicts (c),
hence E = M, M is injective and this shows R to be a V-ring, i.e. (a).

(ii) In a V-ring the Jacobson radical, as the intersection of all maximal
right ideals, must be 0, by (i), so R is semiprimitive.

(iii) Let a be a right ideal in a right V-ring R; the result will follow if we
show that any maximal right ideal containing a2 also contains a, for then

by (i),

a = fl{m|m maximal Da} = fl{m|m maximal D a2} = a2.
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Suppose then that m is a maximal right ideal of R and that m D a2 but
m ^ a . Then m + a = R, hence ma + a2 = Ra, and so m D ma + a2 =
Ra D a, which contradicts our hypothesis, and it proves our claim.

Let R be a V-domain and a e Rx. Then by (iii), aRaR = aR, hence
RaR = R, so the ideal generated by any non-zero element is the whole
ring and R is simple. •

Let D be a field which is a fc-algebra and let T = D ® k(t) be its
central localization over k. For any n ^ 1, nD can be considered as a
right D-module in the usual way, by right multiplication. Further, for any
n x n matrix A = (atj) over D we can regard nD as a D[f]-module by
choosing a basis w1?. . . , un of nD and writing utt = ^atjUj, briefly,

ut = Au. (3)

If A is totally transcendental over k, this action can be extended to
T = D ® k(t) and we obtain a natural T-module structure on nD,
determined by the matrix A; this T-module will be denoted by (nZ), A).
Suppose that (nD, B) is a second such T-module, whose defining
equation corresponding to (3) is

vt = Bv. (4)

If these two T-modules are isomorphic, then

v = Pu (5)

for some P e GLn(D), and (4) takes the form Put = BPu, i.e. ut =
P~lBPu. Now a comparison with (3) shows that

A = P~lBP, (6)

so A and B are conjugate over D. Conversely, if A and B are conjugate
over D, say (6) holds for some P e GLn(D), then the equation (5) can be
used to define an isomorphism

("D, A) = ("D, B). (7)

Thus the necessary and sufficient condition for (7) to hold is that A and B
are conjugate over D.

If D is matrix-algebraic over k, then T is a field, by Th. 4.2, and there
are no modules of the form (nD, A). We shall now show that in every
other case, every T-module of finite length is of the form (nD,A) for
some transcendental matrix A.

P R O P O S I T I O N 8.4.4. Let D be a field which is a k-algebra, not
matrix-algebraic over k. Then every T-module of finite length is of the



8.4 Central localizations of polynomial rings 391

form (nD,A) for some n^O and some totally transcendental matrix
AeDn.

Proof Let L be the given T-module of finite length; for L = 0 there is
nothing to prove, so we may assume that L =£ 0. We claim that L as
D-space has finite dimension. Since T is a PID (as localization of D[t]),
L is a direct sum of cyclic torsion modules, and it will be enough to
consider the case where L is a cyclic torsion module, say L = T/aT\ here
a ^ O , because T is not a field and so has infinite length as T-module. On
multiplying up by the denominator, we may assume a to be a polynomial
in t, of degree n, say; hence [L:D] = n. Now take a D-basis of LD,
Ui,. . . , un say. If utt = ^a^Uj, ^en the matrix A = (atj) is totally
transcendental over k, because for every (j> e k(t)x the action of 0 on L
is well-defined. Hence L = (nD, A), as we had to show. •

We now come to the main result of this section, due to Resco [87],
which gives conditions for a central localization to be a V-ring.

T H E O R E M 8.4.5. Let D be a field with centre k and denote by
T = D ® k(t) the central localization over k. Then T is a simple principal
ideal domain. Further, T is a V-domain with a unique simple module up to
isomorphism if and only if D is matrix-homogeneous.

Proof We have seen that T must be a PID. Any ideal is generated by an
invariant polynomial / ; but such a polynomial is associated to 1 over k
and hence a unit; therefore T is simple.

If T is a field, it is also the unique simple T-module, and this is
injective. Thus T is then a V-ring; moreover, D is matrix-algebraic over
k and so the conclusion holds vacuously. So we may assume that T is not
a field.

Assume that T is a V-domain with the unique simple module M. Then
any T-module of finite length r is isomorphic to Mr. Let A, B e Dn be
both totally transcendental and consider the T-modules (nD,A),
(nD, B). If we write /(L) for the length of a finitely generated torsion
T-module L, then

[LD:D] = l(LT)[MD:D], (8)

and here [M:D] is finite, because T is not a field. It follows that (n£>, A)
and (nD, B) have the same length and so are isomorphic; hence A, B are
conjugate, so D is matrix-homogeneous.

Conversely, assume that D is matrix-homogeneous. We claim that any
two simple T-modules are isomorphic. Let M, N be simple T-modules;
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by Prop. 4.4 there exist totally transcendental matrices A e Dm and
B e Dn such that M = (mD, A), N = ("D, B). Now ®nA and ®mB are
totally transcendental matrices, both of order mn, and hence they are
conjugate and so Mn = N™. It follows that m = n and M = N, as
claimed, by the Jordan-Holder theorem.

It remains to show that the unique simple T-module M is injective. Let
M = (mD, A); then for any T-module of finite length / we have
L = (nD, B), where n = Im and B is conjugate to ®nA, hence L = Ml.
It follows that M cannot have any essential extension, for if M C N, then
any finitely generated submodule of N is a direct sum of copies of M; but
any two non-zero submodules must both contain M, so we must have
N = M. This shows M to be its own maximal essential extension, and
hence injective. •

For example, if D is existentially closed over k, then D is matrix-
homogeneous by Th. 5.5.5, so the central localization T of D over k is an
example of a simple V-domain, not a field, with a single simple
T-module.

Consider the special case of (nZ), A), where n = 1. In that case D itself
is a T-module with the action

c <E> t: x •-> axe, where c e Z), (9)

for some element a of D, transcendental over k. We claim that the
endomorphism ring EndT((D, a)) is %D(a), the centralizer of a in D. For
if or is a T-module endomorphism, then a commutes with all right
multiplications, (xc)a = (xa)c. Taking x = 1 and putting la = b, we find
that ca = be, so a is left multiplication by an element b of D. Moreover,
b(ax) = a(bx), so b e ^D(a)9 as claimed.

Suppose now that D is a countable existentially closed field over k and
a e D is transcendental over k. Then by Cor. 6.5.10, D can be embedded
as a A>algebra in C = %D{a). Thus we have an embedding f:D-+C and
an embedding g: k{t)^> C such that t*-+a\ since C and k{a) centralize
each other, we have a homomorphism

f®g:T=D® k(t) -> <%D(a) = Endr((£>, a) r) . (10)

Here the left-hand side is simple, by Th. 4.5, hence (10) is an embedding
and this allows us to regard D as a T-bimodule. Since D is matrix-
homogeneous, it follows by Th. 4.5 that T is a V-domain with a unique
simple right module.

This construction can be used to answer a question about annihilator
rings. In any ring R let us define the left and right annihilators of a subset
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l(X) = {a e R\aX = 0}, *(AT) = {b e R\Xb = 0}.

We note that this is a Galois connexion; in particular, we have
Ld{X) = l(X), dr-(X) = t-(X). A ring R in which every right ideal has the
form of a right annihilator, f^(X) for some X C R, is called a right
annihilator ring. Since in any case d*-(X) = *(AT), a right annihilator ring
is characterized by the property

a = d(a) for any right ideal a of R.

The question has been raised whether every right Noetherian right
annihilator ring is right Artinian (see Johns [77]); a counter-example was
given by Faith and Menal [92] using V-domains. In order to describe it we
shall need some properties of annihilator rings. We recall that the right
socle of a ring is the sum of its minimal right ideals; it is clearly a
two-sided ideal.

P R O P O S I T I O N 8.4.6 (Johns [77]). Let R be a right annihilator ring, $
its socle and 3 its Jacobson radical. If R is right Noetherian, then 3 is
nilpotent, *(3) = Z(3) = $ and g is a large right ideal.

Proof. Since 3 2 32 2 • • • is a descending chain, we have the ascending
chain Z(3) £^(32) C . . . , which must become stationary, say /(3m) =
/(3m+1). Then 3 m = ^(3m) = ^(3W+1) = 3 m + 1 ; thus 3 m = 3m3 and by
Nakayama's lemma, 3 m = 0.

Next we show that Z(3) is a large right ideal. Given x e R, either
*3 = 0 or for some n ^ 1, xT =£ 0, * 3 n + 1 = 0; in either case
xR fl /(3) ^ 0, and so /(3) is right large. Let us define 3> the right singular
ideal of R, as the set of all elements with a large right annihilator. Then
^(3) = ^(3) Q 3 a n d since R is right Noetherian 3 is a nil ideal (even
nilpotent, see A.3, p. 371); hence 3 C 3 and so /2(3) C 3- Thus we have a
descending chain 3 2 ^(3) 2 ^4(3) 2 • • • , and an ascending chain
^(3) C/3(3) C The latter becomes stationary, say /m(3) = /m+2(3).
Then dm(Z) = */m+2(3), hence Z1""1©) = ^m+1(3), and continuing in this
way, we find that Z2(3) = 3- Hence *(3) = ^ ( 3 ) = /(3).

Let a be a large right ideal of R; then / ( a ) C 3 c 3 , therefore
a = d(a) 2*(3) 2^(3)- Since the socle $ is the intersection of all large
right ideals of R (see e.g. A.3, p. 374), we have g D K3). B u t K3) itself is
large, so g = *(3) as claimed. •

The next result provides us with a source of right annihilator rings.

L E M M A 8.4.7. Let T be a right Noetherian right V-domain with a
T'bimodule W which is the unique simple right T-module. Then the split
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null extension R = T ®W, defined as ring with the multiplication

(f, w)(f, w') = (tf, tw' + wt'),

is a right Noetherian right annihilator ring.

Proof. Since T is right Noetherian and WT is simple, it follows that R is
right Noetherian. Moreover, T is simple by Prop. 4.3 (iv), hence the left
annihilator of W, being a proper ideal, must be zero. Since W is simple as
right T-module, aW = W for all a e Tx , so 3 = (0, W) is a minimal right
ideal of R and it is large as right ideal.

Let a be any non-zero right ideal of R; then a H 3 ^ 0, so a D 3- Since
T is a domain, /(a) C /(3) = 3- Explicitly we have a = (a0, W), where a0 is
a right ideal of T and /(a) = (0, Wo), where Wo is the left annihilator of a0

in W. We complete the proof by showing that tU(a) = a. Given x e T\a0,
we see as in the proof of Prop. 4.3 that there is a homomorphism
q>:R/ao^>W such that xq)=£0; thus xq>=ux for some ueW, and
wa0 = 0, so u e Wo. Hence ux =£ 0 and this shows that a0 is the exact right
annihilator of Wo. Thus a = (a0, W) = d(a) and this shows R to be a right
annihilator ring. •

Now take a countable existentially closed field D over k, let T be its
central localization over k and consider Z) as T-bimodule, as in (10). By
Th. 4.5, T is a V-domain with a unique simple right module, so we can
apply Lemma 4.7 to form the split null extension R = T © D, a right
Noetherian right annihilator ring. But this ring is not right Artinian, for if
it were, then T would be right Artinian and hence a field, which is not
the case. Thus R is an example of a right Noetherian right annihilator
ring which is not right Artinian.

Exercises

1. Show that in a right V-ring, for any two proper right ideals a, b, a Pi b = ab,
hence the multiplication of proper ideals is commutative.

2. Show that every right V-ring is semiprime.

3. Show that a commutative ring is a V-ring if and only if it is von Neumann
regular.

4. Show that a PID is a right V-ring if and only if every non-zero element is fully
reducible, i.e. cR = ClpiR, where the pi are atoms.
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5. Show that a PID R is a right V-ring if and only if for any atoms p, q there exist
u,veR such that up — qv = 1.

6°. Is the non-algebraic locally finite algebra of Golod and Shafarevich matrix-
algebraic?

7. Let D be a field not algebraic over its centre. Show that the polynomial ring
D[t] is primitive.

8. (H.-G. Quebbemann [79]) Let D be a field of characteristic 0, matrix-algebraic
over its centre C. On D[t] define / ' = df/dt as the formal derivative. Given
/ e D[t], if f — fg — gf for some g e D[t], show that / is an element of D
commuting with all the coefficients of g. Deduce that for a, b e D, if ab =£ ba,
then abn * bna for all n ^ 1.

8.5 The solution of equations over skew fields
We now return to the problem of solving equations over a skew field. In
8.1 we have seen how the problem is related to that of finding singular
eigenvalues of a matrix; unfortunately there are no general methods so
far for finding singular eigenvalues of a matrix. By contrast, left and right
eigenvalues can always be found in a suitable extension, as we saw in 8.2,
but this is not necessarily of help in solving equations. There are just
some exceptions where this is the case, which we shall describe now. They
are (i) equations with all coefficients on one side, (ii) 2 x 2 matrices and
(iii) n x n matrices with indeterminates as entries.

In solving equations it is convenient to write the coefficients on the left;
of course a similar result holds on the right.

T H E O R E M 8.5.1. Let K be any field. Then any equation of degree
n>0,

xn + axx
n-1 + . . . + an = 0 (at e K), (1)

has a right root in some extension field of K; moreover, the right roots
coincide with the right eigenvalues of the companion matrix.

Proof The equation has the linear companion

(2)

0
0

0
•n

1
0

0

0
1

0

0
0

0
0

0
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0
0
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— c
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In a suitable extension of K we can find a right eigenvalue of A:

Au = ua. (3)

In detail we have u1a = u2, u2a = w3, . . . , un_ioc = un, and

una = -anux - an^u2 - . . . - axun.

If wx = 0, it follows that u2 = . . . = un = 0 and so u = 0. But by
hypothesis, (3) has a solution with u =£ 0, so we may take ux — \. Then
w2 = <*> w3 = a2, . . . , un = an~l and the last equation reads

an + axocn~l + . . . + an = 0.

Thus a is a right root of (1). Conversely, any right root a of (1) leads to
an eigenvector (1 a . . . or""1)7 corresponding to the right eigenvalue
a. M

Since the right eigenvalues of A fall into at most n conjugacy classes,
this provides another proof of Cor. 3.4.4, that the right roots of (1) lie in
at most n conjugacy classes.

Next we turn to the singular eigenvalue problem for the special case of
2 x 2 matrices. We shall need to consider two special quadratic equa-
tions.

T H E O R E M 8.5.2. Let K be any field. Given a, b, c, d e K, c =£ 0, the
equation

x(cx + d) = ax + b (4)

has a solution in some extension field of K.

Proof Write A = I and consider the equation Av = va, which

we know has a solution (in an extension of K), with a right eigenvalue a
of A and v =£ 0. Writing v = (x y)T, we have

ax + by = xa,

ex + dy = ya.

If y = 0, the second equation reduces to ex = 0, and so x = 0. But x, y
cannot both vanish, so y =£ 0 and we can adjust a so that y = 1. If we now
eliminate or, we obtain ax + b = x(cx + d), i.e. (4). •

It remains to consider (4) when c = 0. Changing the notation slightly,
we have
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ax — xb = c. (5)

If we replace x by y — xp, where p e Kx, then (5) becomes ayp~l —
yp~lb = c, i.e.

ay — y • p~lbp = cp.

Thus in (5) we can either replace c by 1 (provided only that c =£ 0), or
replace b by a conjugate. We also recall from 8.2 that (5) is equivalent to
the matrix equation

)( CH 1% ')•
Let us put A = A )' ^ = n L h ^ fl» ^ a r e b°th transcendental

over k, then the matrices A, B are totally transcendental over AT and by
Th. 5.5.5 they are conjugate over a suitable extension of K, i.e. there
exists a non-singular matrix P such that PA = BP. Writing P =

, we thus have the equations

pa = ap, pc + qb = aq,

ra = br, re + sb = bs.

Since P is invertible, p, r cannot both vanish, say p =£ 0. Then from the
first two equations we find that

c + p~lqb = p~laq = ap~lq,

so x = p~lq is a solution of (5). Similarly, if r =£ 0, then x = r~ls is a
solution. Thus (5) is solved when a, b are both transcendental.

If one of a, b is algebraic over k and the other transcendental, or both
are algebraic but with different minimal equations over k, then (5) has a
unique solution within K, by Lemma 2.2. There remains the case where
a, b have the same minimal equation over k. Here we need a lemma, as
well as two results from FR about elements in a PID: (i) If p, p' are two
atoms with the same least bound q, then pp'\q2 and q2 is the least bound
of pp' if and only if pp' is indecomposable; (FR, Prop. 6.4.9, p. 318). (ii)
Two elements a, b satisfy a comaximal relation ab = b'a' if and only if w,
v exist such that ua — bv = 1 (FR, Lemma 3.4.3, p. 171).

L E M M A 8.5.3. Let K be a field with centre C and let a, b e K have the
same minimal polynomial \i over C. Then the equation

ax - xb = 1 (7)
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has a solution in K (or indeed in any extension field with centre C) if and
only if in the polynomial ring K[t]9 (t — b)(t — a) divides (i(t).

Proof In the ring R = K[t], t — a and t — b are similar bounded atoms,
with the same bound \i. By the above remark (i), the product
p = (t — b)(t — a) divides /i2 and fi2 is the exact bound of p if and only if
p is indecomposable, i.e. p\{i if and only if p is decomposable, which
means that there is a comaximal relation

{t - b)(t - a) = hk, where h, k e R.

B y ( i i ) a b o v e t h i s i s s o p r e c i s e l y w h e n f , g e R e x i s t s u c h t h a t

f(t -b)-(t- a)g = 1. (8)

By the division algorithm in R we can write / = (t — a)fx + u, where
/i e R, u e K. Inserting this expression in (8) and simplifying, we get

u(t - b) - (t - a)v = 1,

where v = g - fx{t - b). By comparing terms of highest degree in t, we
see that v e K and v = u. If we now equate constant terms, we find

au — ub = 1,

and this solves (7). Conversely, when (7) has a solution x = u, then (8)
holds with / = g — u and so (t — b)(t — a) is decomposable, whence
(t — b)(t — a)|jU, as claimed. •

Let us now return to (5); as we have seen, for c ¥= 0 this is equivalent to
ay — y • cbc~l = 1. Now if a, b have the same minimal polynomial \i over
k, we can enlarge K so that k becomes the exact centre, e.g. by taking
Kk^x^ with an indeterminate x. Then (5) has a solution if and only if
(t - cbc~l){t - a)\fi, by Lemma 5.3.

Finally we ask when the solution is unique; by linearity (5) has a unique
solution if and only if ax = xb has only x = 0 as solution, i.e. when a, b
are not conjugate. Summing up our results, we have the following
description of the solution of (5):

T H E O R E M 8.5.4. Let K be afield which is a k-algebra and consider the
equation

ax — xb = c, where a, b, c e K. (5)

(i) / / a> b are both transcendental over k, (5) has infinitely many
solutions over a suitable extension of K.

(ii) If one ofa} b is algebraic over k and the other is either transcendental
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or algebraic with a different minimal equation, then (5) has a unique
solution in K or any extension of K.

(iii) / / a, b have the same minimal polynomial \i over the centre k
of K, then (5) has a solution in K (or in any extension of K) if and only
if either c = 0 or (t — cbc~l)(t — a) divides \i, or equivalently, if
(t — cbc~l)(t — a) is decomposable in K[t]. •

We can now solve the singular eigenvalue problem for 2 x 2 matrices.

T H E O R E M 8.5.5. Let K be any field. Then every 2 x 2 matrix over K
has a singular eigenvalue in some extension of K.

If K is a k-algebra, where k is relatively algebraically closed in K, then A
has a non-zero singular eigenvalue unless A is O-triangulable over k.

Proof. Let A = . , where a, b,c, d e K: we have to find x such
\c dj

that xl — A is singular. If c = 0, we can take x = a. Otherwise, on
replacing x by ex, we may take c = 1. Now

a — x b \ . . , la — x b — (a — x)(d — x)
is associated to ^ *

1 d - x) \ 1 0

and this is singular precisely when (a — x)(d — x) = b, i.e.

x2 - xd - ax + (ad - b) = 0. (9)

By Th. 5.2 this has a solution in some extension field.
Suppose now that A has no non-zero singular eigenvalue. If c = 0, this

means that a = d = 0 and A is already 0-triangular. Otherwise we may
again take c = 1 and reach the equation (9). If this has no non-zero
solution, we must have ad = b, and on writing y = x~l we can bring it to
the form

dy 4- ya = 1.

By hypothesis this has no solution in any extension of K, so by Th. 5.4, d
and — a are algebraic over k with the same minimal equation over k (if
they had different minimal equations over k we could extend K to reduce
the centre to k). But k is relatively algebraically closed in K, hence
a, d e k and a = —d. Thus A takes the form

A — L , where a e k.
\1 -a)

But this is clearly conjugate to over k. •
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For general matrices the singular eigenvalue problem is still open, but
there is another case where a solution can be found; paradoxically here
the matrix has to be sufficiently general.

T H E O R E M 8.5.6. Let Kk(xtj) be the tensor ring on n2 indeterminates xtj

(i, j = 1, . . . , n) over a field K and denote by L its universal field of
fractions. Then the matrix X = (x(j) has a singular eigenvalue in a suitable
extension of L.

Proof We shall operate in M = L((t)), the field of Laurent series in a
central indeterminate t. Put

0 /„

We first find a singular eigenvalue for / ' + tX in M; this means that we
have to find A such that I' + tX — XI is singular. For convenience we
shall write

and put X = tA'. We have

xn u
V Xy

T . „ ) = ( AV

tv I + tXu - tX'IJ \c d]

say. This matrix will be singular if a = bd~lc, i.e.

t(xn - X') = tu(I - t(X>I - Xn)YUv
= tu(I + t{X'I - Xn) + t\X'I - Xnf + . . ,)tv.

If we write A' = ^ff, where / e L, insert this series and equate powers
of t, we can solve the resulting equations recursively for the f. Thus we
have found a singular eigenvalue for / ' + tX in M.

We now embed L in M by the rule X*-+ V + tX, a>-> a for a e K.
Since the coefficients of / ' + tX are indeterminates, this is indeed an
embedding, and since the image of X has a singular eigenvalue, so does
X itself. •

With a reasonable analogue of specialization one could use this result
to solve the general singular eigenvalue problem, but it seems unlikely
that a strong enough analogue of specialization exists in this generality
(see 8.8).
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Exercises

1. (I. Niven [41]) Using the remark at the end of 8.3, show that every equation
(1) over the real quaternions H has a right root in H.

2°. Can an n x n matrix over a field have more than n inconjugate singular
eigenvalues?

3°. Let L = Kk^x^ and consider a matrix A = (atj) with « n = x and all other
entries in K. Adapt the method of Th. 5.6 to show that A has a singular
eigenvalue in some extension of L.

8.6 Specializations and the rational topology
So far we have been concerned with finding one solution of any equation
(where possible), but in algebraic geometry one has to deal with the
system of all solutions. Now we can define varieties as solution sets of
systems of equations, but very little is known so far about such varieties.
Here is a very simple example which already shows the difference
between the commutative and the general case.

For any c e K one would expect the equation

ex - xc = 0 (1)

to define a zero-dimensional variety, provided that c is not in the centre
of K. But the solution of (1) is a subfield of K - the centralizer of c in K
- whereas in the commutative case 0-dimensional varieties are finite sets
of points.

Consider a field K which is a A>algebra and let E be a K-field. We
shall consider affine n-space over E, En or An(E), whose points are
described by n-tuples in E. Given or, /? e En, we shall write a-+ ft and
call /? a specialization of a over K, if the map at^> Pi defines a
specialization in the sense of 7.3. In terms of singular kernels, if
9 = Ker(jc-^ar), a = Ker(> »-»)8), this means that ? C i , or more
concretely, for any square matrix A = A(x) over Kk{X), where
X = \Xi, . . . , xn},

sing A (a) => sing A(0),

where sing A denotes the elementary sentence stating that A is singular
(as in 6.5). Since every matrix over Kk{X) is stably associated to a linear
matrix, it is enough to require this to hold for all linear matrices. Thus we
have

T H E O R E M 8.6.1. Let E/K be an extension of fields. Then for a, /3 e En

we have &-j>f5 if and only if
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sing I A + X A<*JI => sing I A + ^ A A I>

/or any square matrices A, Ax, . . . , An of the same order over K. •

We shall call a e En free over K if the map x •-> or defines an
isomorphism ZC^A^ = AT(ar). The following criterion is an immediate
consequence of the definitions.

C O R O L L A R Y 8.6.2. Given afield extension E/K, a point a e En is free
over K if and only if A + 2 A>ar; is singular only when A + 2 A*/ is
non-full over Kk{X). •

Th. 6.1 also makes it clear how specializations in projective space
should be defined. Each point of the projective space Pn(£) is described
by an (n + l)-tuple £ = (§0, . . . , §n) =£ 0 and §, r; represent the same
point if and only if £• = ^A for some A e £ x . At first sight it is not clear
how specializations in projective space are to be defined; instead of
polynomials we would have to consider rational functions in the xt and (in
contrast to the commutative case) there is no simple way of getting rid of
the denominators. However, with Th. 6.1 in mind we can define §—» rj if
and only if

for any square matrices Ao, . . . , An of the same order over K. But for
the moment we shall concentrate on affine spaces.

The criterion of Th. 6.1 can still be simplified if we are specializing to a
point in K:

T H E O R E M 8.6.3. Let E/K be a field extension and ae En, A e Kn.
Then oc-g A if and only if

nonsing ( / - 2>«(*« - A,) j (2)

for all square matrices A1,...,Anofthe same order over K.

Proof Assume that oc-^X. If / - Afa - A,-) becomes singular for
Xj = <xh then it must become singular for xt = A(; but then we have / ,
which is non-singular, a contradiction. So (2) holds.

Conversely, when (2) holds, let 9> be the singular kernel of the map
x »-> a from Kk{X) to K(a). We must show that under the map x H-> A
every matrix of 2P becomes singular, and here it is enough to test linear
matrices A + XA*r Thus let A + ^A^ be singular; we have to show
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that C = A 4- ̂ AtXi is also singular; we note that C has entries in K. If
C were non-singular, we could write

M = A 4-

= C + £ A<"i - A,-)

= ell - S^(^i - A*)), where £,- = - C " 1 ^ .

Here the left-hand side is singular by hypothesis and the right-hand side is
non-singular by (2), a contradiction, which establishes the result. •

The following special case is of interest:

C O R O L L A R Y 8.6.4. Let E/K be a field extension and a e En. Then a
has every point of Kn as a specialization if and only if I - X A(<*; ~ A,-) is
non-singular for allAt (of the same order) over K and all Af- e K. •

Let us call a point a satisfying the conditions of this corollary
quasi-free, thus a is quasi-free if a -g A for all Ae Kn. It is clear that
every free point is quasi-free, and the converse holds when the centre C
of K is infinite and [^:C] = <*>, so that the specialization lemma can be
applied. For then, if A 4- ̂ A/jc,- is full, there exists A e Kn such that
A + 2 A A* is non-singular, hence A + X A'#i *s a l s o non-singular.

To restate this corollary in a more intuitive form we make a couple of
definitions. A point a e En is called an inverse eigenvalue of the sequence
Ax, . . . , An of matrices if / — X A ^ i *S singular. Given an extension
E/K, we can regard the vector space Kn as a subgroup of En\ its cosets
will be called the levels in En over K. Thus a, /3 e En are on the same
level precisely when a - /3 e Kn. Now Cor. 6.4 may be stated as

C O R O L L A R Y 8.6.4'. Let E/K be a field extension. Then a point a of
En is quasi-free if and only if its level contains no inverse eigenvalue of any
sequence of matrices over K. •

We can put this in another way by saying that if the level of a contains
an inverse eigenvalue (of some sequence of matrices over K), then there
is a point A e Kn which is not a specialization of a.

Let K C E C L be fields. Given a e Ln, we define the locus of a in E
over K as the set of all specializations of a in E over K.

E X A M P L E S . 1. If a e Kn, the locus of a in K is just the point a.
2. The locus of a in K is all of Kn precisely when a is quasi-free

over K.
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3. If a square matrix A over E has an inverse eigenvalue a in L but
none in E, then the locus of a in E is empty. Of course this cannot
happen when E is an EC-field.

Sometimes it will be convenient to define specializations to infinity.
Thus we define a-g oo for a e E D K to mean: a =£ 0 and a~l -* 0. By
Th. 6.3, a'1 -j> 0 holds if and only if I - Aa'1 is non-singular for all
matrices A over K, thus a-* oo precisely when or is not a singular
eigenvalue of any matrix over K. An element a of E such that a-/*™ is
also called /irate over A\

Example 3 above means in detail that I - Aa is singular for some
a e L, but / — AX is non-singular for all A e E, so or has no specializa-
tions in E over K; in particular, A has no non-zero singular eigenvalue in
E. If 0 is also not an eigenvalue, then A is non-singular; this means that
a is finite over K, for if we had ar-» oo? then by Th. 6.3, / - Ca'1 would
be non-singular for any C over K. But I - Aa is singular and A is
non-singular, hence I — A~la~l = —A~l(I — A a)a~Ms singular, which
is a contradiction.

To illuminate the situation in the general case, let us first look at the
case of commutative fields E D K. If a e E is algebraic over K, but not
in K, then a satisfies an equation

/(*) = 0, (3)

over K. If (3) also has a root A in K, we can replace / by a polynomial of
lower degree which still has a as zero but not A. In the general case it may
not be possible to separate out the rational solutions in this way; those
that always accompany a represent the locus. To give an example of this
behaviour we shall construct a point a which has a specialization in K
without itself being in K or free over K.

In our example the locus of a consists of precisely one point, which
may be taken to be oo. The condition at oo means that I - Aa'1 is
non-singular for all A, i.e. a I — A is non-singular, while the condition at
a point A e K means that / — A (a — A) is singular for some A. Let A: be a
commutative field of characteristic 0, form the rational function field
F = k(t) and let K be a field with centre F and such that [K:F] = oo (by
Prop. 2.3.5). Let or be a root of the equation

(x + \)t - tx = 0, (4)

in a suitable extension field of K, which exists by Th. 5.4. Putting
x = A e K in (4), we obtain t = 0, which is false; hence (4) has no roots in
K, so a cannot be specialized to any element of K. So it only remains to
show that a -+ oo 9 and this will follow if we show that a I — A is
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non-singular for all matrices A over K. By (4) we have ta= (a + l)t and
At = tA for any matrix A over K, hence

t(al - A) = ((a + 1)/ - A)t.

Hence if ocl — A is singular, then so is (a + 1)/ — A, and by induction,
(a + v)I — A is singular for all ve N. Since K has characteristic 0, this
means that A — ocl has infinitely many central eigenvalues, which
contradicts Th. 2.3. Thus ocl — A cannot be singular and it follows that

If we extend K to a field E which contains a root x = s of (4), then the
solution of (4) has infinitely many specializations in E, viz. oo and s, and
hence the whole level of s over K, but no point in K itself.

We have already met the rational topology in 7.2, but it seems more
natural to define it in terms of matrices rather than rational equations. To
do so we define for each matrix A = A(x) over Kk{X) a subset of En, its
singularity support, as

= {a e £rt|nonsing(>l(af))}.

It is clear that

25(7) = En, 3(A 0 B) = 3(A) fl 2(fl). (5)

Hence we get a topology on En by taking the 25(A) as a basis for the
open sets, called the rational K-topology on En\ this is easily seen to
agree with the rational topology as defined in 7.2. It is finer than the
polynomial topology, because singularities of matrices give us more sets
than zeros of polynomials. Like the Zariski topology in the commutative
case, it is not Hausdorff, but it is a r0-topology, i.e. for each pair of
distinct points one can be chosen which does not lie in some neighbour-
hood of the other. It is clear that when E satisfies the conditions of the
specialization lemma, 25(A) is non-empty precisely when the matrix A is
full. In that case En is irreducible, i.e. every non-empty open set is dense.
For if 25(A), 25(5) =£ 0 , then A, B are full, hence so is A © B and so

25(A) D 2)(£) = 25(A © B) =£ 0 ,

by (5).
We note that a e En is free over K precisely when

A full => nonsing{A(or)), (6)

by Cor. 6.2. This means that a e <&(A) unless 2>(A) = 0 , so all the
non-empty open sets have a non-empty intersection, consisting of all the
free points. In Kn itself there are of course no free points, because
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xx - ocx fails to satisfy (6). Put differently, we can say that in the
E-topology the non-empty open sets have empty intersection. This shows
that the E-topology on En is in general finer than the K-topology.

The topology can also be used to describe the locus of a point:

T H E O R E M 8.6.5. Let E/K be a field extension and ae En. Then the
locus of a in Kn is the closure of a in the rational K-topology.

Proof. Let XeKn\ we have Xe{a) if and only if a lies in every
neighbourhood of A, i.e. A e 2)(A) => a e <3)(A) for all matrices A over
K. But this just means: sing (A(or)) => sing (A(A)), i.e. a —»A. •

In commutative algebraic geometry there is a very satisfactory theory of
dimension which can be built up using the notion of algebraic depend-
ence, and it is natural to ask whether a similar theory exists in general.
This seems not to be the case, and it may be of interest briefly to discuss
the reasons for this failure.

We consider a field extension E/K, where E and K are /^-algebras. A
finite family of elements of E is said to be algebraically dependent over K
if it is not quasi-free. By Cor. 6.4 this means that arl9 . . . , an are
algebraically dependent over K ii I - 2 AC^; ~ K) is singular for some
matrices At over K and A, e K. An element P of E is said to be
algebraically dependent on a set 5 over K if there is a finite subset S' of 5
which is quasi-free but such that 5' U {ft} is not quasi-free. We ask
whether this notion satisfies the usual axioms for a dependence relation;
unfortunately this is not the case. Let us briefly recall the definitions
involved (see A.3, 1.4).

An abstract dependence relation on a set 5 associates with each finite
subset X of 5 certain elements of S, said to be dependent on X, subject
to the conditions:
(D.0) IfX = {*!, . . . , xn}, then each xt is dependent on X,
(D.I) (Transitivity) / / z is dependent on {yl9 . . . , ym} and each yj is

dependent on X = {JC1? . . . , xn}> then z is dependent on X,
(D.2) (Exchange axiom) / / y is dependent on {x1, . . . ,xn} but not

on {x2, . . . , xn), then xx is dependent on {y, JC2, . . . , xn}.
Linear dependence (in a vector space over a field) and algebraic

dependence over a commutative field are familiar examples of depend-
ence relations. The above notion of algebraic dependence clearly satisfies
(D.0): Given al9. . . ,ane E, ocxe K(a1) and so ax is dependent on
{al9. . . ,an}.

We can also verify (D.2): Let ai9. . . 9 an9 P e E and suppose that P is
dependent on {au . . . , arn}, but not on {a2,. . . , an}. Let S be a
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minimal subset of {al9. . . , an} such that S is independent but S U {/3} is
dependent. Then 5 must contain al9 say 5 = {arl5 . . . , ar}, by suitable
renumbering of the as. Now {ft, al9. . . , ar} is dependent but
{/?, a2,. . - , ocr) is independent, hence ax is dependent on
{P, a2,. . . , ar} and so (D.2) holds.

If (D.I) were true, we could conclude in the usual way that every
extension field of K has a transcendence basis of a uniquely determined
cardinal v (the 'transcendence degree') and any algebraically independent
subset of E has at most v elements (see A.3, 1.4). But in Th. 5.5.8 we
saw that every countably generated field can be embedded in a
two-generator field over k. This shows that no transcendence degree can
exist, so (D.I) does not hold in general. A look at the commutative case
shows that what is needed here is a form of elimination. This again
emphasizes the point that in the case of skew fields a general elimination
procedure is lacking, but it might be worthwhile to examine special
situations where elimination can be used.

Exercises

1. For a field extension E/K verify that the rational A -̂topology on En is a
r0-topology and give conditions for it to be a T1 -topology (i.e. every point is
closed).

2. Define a dependence relation on a set X as a collection of finite subfamilies,
the 'independent' subfamilies, such that (i) there are independent families, (ii)
every subfamily of an independent family is independent, (Hi) every independent
family consists of distinct members. An element x of X is said to be dependent on
a subset S of X if there is a finite subset S' of S such that S' is independent, but
not 5' U {x}. Verify that (D.0), (D.2) hold, and give an example where (D.I)
fails.

3. Verify from the definition that all coordinates of a quasi-free point are distinct.

4. (J. Treur [89]) For any subset S of a field K and c e K define c to be
dependent on 5 if there is a finite subset S' of S such that every polynomial / over
K having all members of 5' as zeros also has c as zero. Show that for every finite
set 5 there is a unique monic polynomial of least degree having all members of S
as zeros. Verify that this is a dependence relation in the sense of the text, i.e. that
it satisfies (D.0-2). Show also that a polynomial of degree n cannot have more
than n independent zeros, and that equality holds for a generating set of a finite
Galois extension.

5. Let E be a field with an uncountable subfield K and suppose that E is finitely
generated as ^T-ring. Show that no element of E is free over K. (Hint. Compare
Ex. 16 of 3.4.)
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8.7 Examples of singularities
To define a notion of variety over a skew field we need to look at
singularities of matrices. For any set si of matrices over Kk{X) we define
its variety as the set

= VE(sA) = {a e En\sing(A(a)) for all A e si}.

When si = {A} consists of a single matrix, we shall also write Y{A)
instead of Y({A}); this is just the complement of its singularity support.
To avoid trivialities we need to take A to be full. When k is the centre of
K and E satisfies the assumptions of the specialization lemma, the
fullness of A ensures that Y(A) is a proper subset of En.

It is natural to begin with the simplest case, of varieties on the line. In
the commutative case these are just finite sets of points; by contrast, in
the general case the varieties can be of two kinds. We may have an
equation

x - a = 0, (1)

satisfied by a single value, or an equation

ax - xb = c, (2)

which has a solution of the form x = x0 + AJC1? where x0 is a particular
solution of (2), xx is a particular solution of the associated homogeneous
equation

ax - xb = 0, (3)

and A ranges over %E(a), the centralizer of a in E. Let us call the
solutions of (1) point singularities and those of (2) ray singularities.
Without attempting a precise definition at this stage we can say that the
variety of a matrix will in general contain both point and ray singularities
and it raises the following question:

P R O B L E M 8.2. Can the variety of a full matrix over Kk{x) always be
written as a finite union of point and ray singularities?

To give an answer one will need to have a much more precise
knowledge of the variety of a matrix. Here our main handicap is that the
knowledge of a point in the variety does not permit a reduction of the
matrix to one of lower order, in the way that knowledge of a zero of a
polynomial allows us to reduce its degree. Of course, once one has a good
control of the variety of a matrix in one variable, one will have a better
chance of describing the variety of a matrix in two variables, giving an
idea of 'algebraic sets'.
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We have already observed that the variety of a matrix is unchanged by
stable association, so we may take our matrix to be in linear form

C = A + Bx, where A, B e KN. (4)

At x — ex we obtain C(a) = A + Boc and a lies in T(C) precisely when
C(a) is singular. Let us denote the rank and nullity of C(a) by r(a),
n(a) respectively; thus if C is N x N, then r(a) + n(a) = N. Clearly
both rank and nullity are unchanged on passing to an associated matrix,
but this no longer holds for stable association. If C becomes C (B IS9 then
r(a) increases by s while n(a) remains unchanged. At <*>, for C as in (4),
we have r(oo) = r# , n(o°) = N - rB, SO at °° the rank is unchanged by
stable association.

We next examine how the variety changes when x is transformed. Let
us fix C = A + Bx and write n, r for the nullity and rank in terms of x9

and nf, r' for the same in terms of y, where y is obtained from x by a
fractional linear transformation. It will be enough to consider three
special cases, from which we know every fractional linear transformation
can be built up (see e.g. A.3, 4.7).

(i) y = x + A (A e K), C = A + Bx = A - BX + By.

r'(oo) = r(oo), n'(a) = n(a-X)9

for n'(a) is the nullity of A - BX + Ba = A 4- B(a - A),
(ii) y = Xx (A e Kx), C = A + BX~xy, hence

r'(oo) = r(oo), n'(tf) = ^A"1*).

(iii) y = x"1, C = Cy = Ay + B. Here we have (for N x N matrices)

r'(ff) = K*-1), »'(*) = "O"1) if or ^ 0,

r'(oo) = N - n(0), n'(0) = JV - r(oo).

So in this case we have n'(0) - r'(°°) = «(0) - r(°°)-
Let us define the de/ecr of C as

rf(C) = tn(*) ~ r(oo), (5)

where the sum is taken over all a e E. Of course this only makes sense if
C has no ray singularities and only a finite number of point singularities,
but we can modify the definition either (i) by summing only over point
singularities, or (ii) by allowing only one point from each ray singularity.
What we have shown may be summed up as

P R O P O S I T I O N 8.7.1. For any linear matrix C over Kk(x) with a pure
point singularity consisting of a finite number of points, the defect is
unchanged by fractional linear transformations. •
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We shall throughout assume that the conditions of the specialization
lemma hold. Thus k is infinite, and by a suitable transformation of x we
may assume C to be non-singular at infinity, so it can be taken in the
form

C = Ix - A,

and here A is unique up to conjugacy over k, by Prop. 1.4. In this case
(with a pure point singularity), if C is N x N, then its defect is given by

d(C) = 2>(») - N. (6)

In the commutative case this defect for a diagonalizable matrix is zero,
and in any case it is non-positive. Whether this holds more generally, say
over an EC-field, is bound up with the question whether every EC-field is
CAC (or FAC). Below we examine some special cases.

1. r(o°) = 1. Here C = A + Bx, where B has rank 1. By elementary
row transformations we can reduce all rows of B after the first to zero.
We now apply the reduction to echelon form to A, by elementary row
transformations and column permutations, but not acting on the first row.
Omitting the first row, we obtain (/ a), with no zero rows, because C
was full. Transferring the final column a to the first column and reducing
the first row of A after the (1,1)-entry to 0 by row transformations, we
finally reach the form

— bxx b2x b3x
a2 1 0 . . .

C= \ a3 0 1

aN 0 0 1

This is easily seen to be skew cyclic, being stably associated to

di — bxx — b2xa2 — . . . — bNxaN.

We thus have the equation

b2xa2 + . . . + bNxaN = al. (7)

Its solutions are ray singularities of C (for N > 1), since with any solution
x0 there are solutions x0 + Xxx for any A e %E(bx,. . . , bN), where xx

satisfies the homogeneous equation

bxx + b2xa2 + . . . + bNxaN = 0.

For N = 1, (7) reduces to a point singularity, so we may assume that
N > 1, and of course take Af minimal. This will be ensured by taking fc1?

. . . , bN and 1, a2, . . . , aN linearly independent over k.
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2. For a 2 x 2 matrix we can determine the variety with the help of
Th. 5.5 and also answer Problem 2 affirmatively. Let C = A + Bx be
2 x 2 . If TB = 2, the singularities are just the singular eigenvalues of
— B~XA, and by Th. 5.5 there is at least one. Taking it at <», we may
assume that C has the form A + Bx, where rB = 1. By the last example,
we thus obtain a matrix

- bxx b2x\
a2 1 )

and this matrix is singular precisely when

b2xa2 = ci\.

Either b2 = 0. Then we have another point singularity x = b\lax. We
see that the defect is zero in this case.

Or b2 =£ 0. Then by a scale change we can take b2 = — 1 and obtain

bxx - xa2 = al9

which gives a ray singularity.

Exercises

1. Show that if a variety in En, not passing through the origin, is defined by a
single matrix, the latter can always be taken in the form / —

2. Let A' be a field and Al9 A2 e 1R2{K), where Ax is non-singular, and let E be
an EC-field containing K. Show that the variety in E2 defined by / — Axxx —
A2x2 meets every line x2 = c2. Give an example where the variety does not meet
all lines jq = c^

3°. Does every matrix over an EC-field with a pure point spectrum have defect
zero?

8.8 Nullstellensatz and elimination
In commutative algebraic geometry the Hilbert Nullstellensatz is a basic
result; it is usually stated in two parts. The first part, in Zariski's
formulation (see Zariski and Samuel [60], p. 165 or A.2, 9.10) is

N U L L 1. If k is a commutative field, L D k afield extension and

/: k[xl9 . . . ,*„]-> L

a surjective homomorphism, then L is algebraic over k.
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The proof depends essentially on the Noether normalization lemma.
We note that when k is algebraically closed, the conclusion is that L = k
(the usual form of the theorem). From Null 1 one can deduce (by the
Rabinowitsch trick):

N U L L 2. If k is algebraically closed and a is an ideal in k[x1, . . . , xn],
then g e k\xx, . . . , xn] vanishes at all common zeros of a if and only if
gN e a for some N ^ 1.

In the non-commutative case, Null 1 gives rise to a problem first raised
by Amitsur (in the case where K is central in L): Let L be a skew field,
finitely generated as a ring over a subfield K\ is L necessarily algebraic
over Kl

This problem is still open, but we can sidestep it by replacing
'surjection' by 'epimorphism'. Then we obtain the following version of
the Nullstellensatz, where °V K(si) again denotes the variety defined
by si.

T H E O R E M 8.8.1. Let K be an EC-field over k and write F = Kk(X). If
si is a finite set of matrices over F which all become singular under some
homomorphism of F into a K-field L, then TA:(^) =£ 0 . For an infinite set
si the conclusion need not hold.

Proof. The first part is merely a restatement of the definitions: Since K is
an EC-field, a finite set of matrices which becomes singular under some
homomorphism F—> L already becomes singular in K. To establish the
last part, let ^ be a countable EC-field; then K has an outer
automorphism a, say, by Th. 6.5.11. Now the elements ax — xa° {a e K),
1 — xy all become zero (i.e. singular) in the skew rational function field
K(x; a), but not in K itself, because a is not inner. •

We remark that in the commutative case any variety defined by a
subset 5 of /:[*!,. . . , xn] can also be defined by a finite set; for S may be
replaced by the ideal a it generates and a has a finite generating set, by
the Hilbert basis theorem. By contrast, in the general case not every set
si of matrices can be replaced by a finite set, as the example given in the
proof shows.

To find an analogue of Null 2 we shall need to use prime matrix ideals.

T H E O R E M 8.8.2. Let K be an EC-field over k, B a matrix and si any
matrix ideal over the tensor ring F = Kk(X). Then B e ysi if and only if
B becomes singular at all points of TL(,s4), for a suitable extension L of K.
If si is finitely generated, it is enough to take L = K.
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Proof Suppose that B e ^fd and let f\F^>L be any homomorphism
under which all matrices in si become singular. Then the singular kernel
9> of / is a prime matrix ideal containing si, hence 2P D V ^ , and so
B 6 9\ Therefore B becomes singular, as asserted.

Conversely, assume that B $ V ^ ; since V^~ is the intersection of all
prime matrix ideals containing si (see 4.4), there is a prime matrix ideal 2P
such that <3> D V*& but B $ <3>. The field L = F/& is an extension of K in
which each matrix of si becomes singular, but B maps to an invertible
matrix, so B is not singular at all points of TL(^4).

If si is finitely generated, by Ax, . . . , Ar say, then the sentence

A . . . A sing(Ar) A nonsing(Z?)

holds in L, hence it also holds in K, and the conclusion follows. •

The situation may be described by saying that we have a correspond-
ence si*-*V(si) between finitely generated matrix ideals and certain
subsets of Kn (the closed subsets in the rational topology) and this is an
order-reversing bijection (a Galois connexion) if we confine ourselves to
semiprime matrix ideals that can be obtained as radicals of finitely
generated matrix ideals. However, the points of Kn are not enough to
distinguish between general semiprime matrix ideals and here we need to
take an extension of K. In fact a fixed extension will do: In the proof of
Th. 8.2 the only extensions of K needed (for a finite X) were finitely
generated over K, so we need only take a universal EC-field.

Let us consider more closely the finitely generated maximal matrix
ideals of F = Kk(X), where X = {xl9 . . . , xn}. If si is such a matrix
ideal, then by Th. 8.2, T ^ ^ ) is not empty, say a = (al9 . . . ,
an) e TA:(34). Then xt - at e si and hence the matrix ideal Ma generated
by the xt — at is contained in si. But Ma is clearly maximal, hence when K
is an EC-field, any finitely generated maximal matrix ideal over F has the
form

Ma = (*i - « i , . . . , xn - an) (at e K).

Conversely, every matrix ideal of this form is finitely generated and
maximal. Thus the finitely generated maximal matrix ideals correspond to
the points oi Kn. Now we can show as in the commutative case that every
algebraically closed set is the union of its points:

T H E O R E M 8.8.3. Let K be an EC-field over k and si a finitely
generated matrix ideal in F = Kk(xl9 . . . , xn). Then ysi = MSP A W the
intersection of all the finitely generated maximal matrix ideals containing
si; hence Y(si) = Y(Vsi) is the union of the
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Proof. Let {9>A} be the family of all finitely generated maximal matrix
ideals containing si. We clearly have

V^cflsv (i)
To establish equality, take B $ V^"; by Th. 8.2 there is a point a e Kn at
which all matrices of si are singular but B is not. Hence the correspond-
ing matrix ideal Ma contains si, and so occurs among the 9^ on the right
of (1), but B $ Ma. Hence B is not contained in the right-hand side of (1)
and the equality follows. Taking varieties, we now obtain
Y(si) = [)Y(9X). •

Sometimes a homogeneous form of Th. 8.1 is needed. Let us write
Xh = {xo,xl9. . . , xn} and consider Kk(Xh) as a graded algebra, with
each xt of degree 1. The only matrices allowed are homogeneous in the
JCS; such a matrix is always stably associated to one in linear form:
2 o A*;> where At e KN for some N ^ 1.

T H E O R E M 8.8.4. Let K be an EC-field over k, F = Kk(Xh) and denote
by $ the singular kernel of the homomorphism qp: F—> K given by xt •-> 0
(i = 0,1, . . . , n). If si is a homogeneous finitely generated proper matrix
ideal then VK{&) = 0 if and only if V ^ = $.

Proof Since y maps si to singular matrices, we have in any case
\[siQ$. If VK(si) contains a point or^O, then \Z\dQMa and so
V^£ =£ $. Now we have

V ^ = (]{M\M fin. gen. max. D si}

by Th. 8.3, so if this is ^ $, then VK(sd) contains some point =£ 0. •

For a slightly different point of view, leading again to a form of the
Nullstellensatz, we require the notion of a generic point. Let K C L be
fields that are A>algebras. Given a prime matrix ideal 2P in
F = Kk(xi,. . . , xn), by a generic point for 8P over L we understand a
point c e TL(5P) such that every matrix over F which becomes singular at
c is in 2 ,̂ and hence is singular on all of YL(9). When the role of the
coefficient field is to be stressed, we may speak of a AT-generic point.
Every point of Ln is generic for some prime: given c e L \ we take 9 to
be the singular kernel of the mapping from F to L given by xt >-> ct.
Conversely, every prime matrix ideal has a generic point; for the proof we
recall from 6.5 that an EC-field L containing K is called semiuniversal
over K if every finitely presented field over K is embeddable in L. This
means that L contains a copy of every quotient of F by a finitely
generated prime matrix ideal (for varying n). Such semiuniversal fields
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always exist and may be taken countable when K is countable over k.
For clearly the set of all finitely presented fields over K is countable; we
now form their field coproduct over K and take an EC-field containing
this field coproduct. In a similar way one can form a universal EC-field
over K, i.e. an EC-field containing all finitely generated fields over K,
but this field need not be countable, even if K is.

P R O P O S I T I O N 8.8.5. Let K be a field which is a k-algebra, countably
generated over k. Then every prime matrix ideal 2P in F — Kk(xi, . . . , xn)
has a generic point in any universal EC-field over K. If 2P is finitely
generated, the point may be taken in any semiuniversal EC-field over K.

Proof The quotient Lo = F/SP is finitely generated, and when 2P is
finitely generated, Lo is even finitely presented over AT, so we have an
embedding Lo-» L in a universal or semiuniversal EC-field over K,
respectively. The natural map F—> Lo—» L takes the members of 2P and
no others to singular matrices. If c e Ln is the image of x = (jcl5 . . . , xn),
then any matrix B over F is in 2̂  if and only if it is singular at c; this
shows c to be a generic point for 2 .̂ •

This result allows us to deduce another form of the NuUstellensatz:

T H E O R E M 8.8.6. Let K C L be fields which are k-algebras, where K is
countably generated over k and L is a universal EC-field over K. Given a
prime matrix ideal 5P in F = Kk(x1, . . . , xn), 2P is the precise set of
matrices that are singular on all of VL(&). More generally, if si is any
matrix ideal in F} then V ^ is the set of matrices that become singular on
TL(,s4). / / L is merely assumed semi-universal, the assertions hold for
finitely generated matrix ideals.

Proof. Given 3 \ we can by Prop. 8.5 find a generic point c over L. The
members of 9P clearly become singular on TL(9>); on the other hand, if
Z? £ 2P, then B is non-singular at c, hence B is not singular on all of
TL(2P). Similarly, for general si we replace c by the set of all generic
points for the primes containing si and use the formula ysi = (| {3̂ (2̂
prime D si}. •

We observe that if 2P1? . . . , 2Pr are distinct prime matrix ideals that are
finitely generated, then their product si = (3)

1 . . . 2Pr is again finitely
generated and VsJ = <3>

1 n . . . D <3>r. However, V ^ itself may not be
finitely generated; thus we cannot limit ourselves to semiprime matrix
ideals.
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We conclude this section by discussing a fundamental result of algebraic
geometry and its possible generalizations. The main theorem of elimina-
tion theory, in its simplest form, gives conditions for two equations to
have a common solution (in some field extension) - namely the vanishing
of the resultant. In its most general form it states that projective space Pn

is complete (see Mumford [76], p. 33). We recall that a variety X is said
to be complete if for every variety Y the projection p2: X x Y —» Y
carries closed sets into closed sets. Thus the theorem in question asserts
that the projection

p2: Pn x Y^Y (2)

maps closed sets to closed sets, for any Y. Being closed is a local
property, so we can cover Y by affine open sets and it will be enough to
prove the result for affine Y. If Y is closed in Am, then Pn x Y is closed
in Pn x Am, so we can without loss of generality take Y = Am.

Every closed subset Z of Pn x Am is given by a finite set of equations

ft(u; y) = 0 (/ = 1 , . . . , 0,

where the us are homogeneous coordinates in Pn and the ys coordinates
in Am. For any point y° of Am, p2

l{yQ) consists of all non-zero solutions
u = u° of ft(u; y°) = 0. Hence we have

y° e p2(Z) o the equations ft(u; y°) = 0 have a solution u° =£ 0. (3)

It has to be shown that the set T of points y° of Am satisfying the two
sides of (3) is closed, i.e. we have to find a set of polynomials gj(y) such
that

y° e p2(Z) o gj(y°) = 0 for / = 1, . . . , r.

These polynomials are precisely the ones obtained by the usual elimina-
tion process (see Mumford loc. cit.)

In the non-commutative case the closed subset Z of Pn x Am is given
as a set of singularities

sing(Ax(u; y)), A e A, u e P\ y e Am. (4)

Here we may without loss of generality take the A A to be linear
homogeneous in the us:

If we denote by si the matrix ideal homogeneous in u generated by all the
Ax(u\ y) over Kk(u; y), the tensor ring in variables y and homogeneous
variables u, then in analogy to (3) we have, for any y° e Km,
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y0ep2(Z)osing(Ak(u';y0)) for some uf eP"(£) , for suitable E D K.

(5)

Let us define, for R = Kk{y), and the above matrix ideal 64 in
Kk(u;y),

64* = {B e 0R(/?)|(B © Ir)Ui e 64 for i = 0, 1, . . . , n and some r). (6)

It is easily verified that 64* is a matrix ideal in R. Let {B^y)} be a
generating set of 64*. Then

v° e p2(Z) => B^y0) is singular for all /i. (7)

For if y° e p2(Z), then all the Ak{u\y°) have a common singularity
u' ePn(E). Suppose that some B^ is non-singular at y°. By definition of
64* we have

(5 M (y)e/ )M | . = V{AA(M;y)}, (8)

where the right-hand side is a determinantal sum of terms. If we put
y = y°, u = u', then the right-hand side of (8) becomes singular, while
B^(y°) is non-singular; hence u\ = 0 for all i, which is a contradiction,
because w' e Pn(£). So all the B^ are singular at y°, as claimed.

Thus (7) gives a necessary condition for a common singularity.
However, there is no evidence so far to show that it is an equivalence. It
is possible that 64*, as defined in (6), is too small to be relevant.

Exercises

1. Given an extension E/K of fields that are A>algebras, a point c of En is said to
be finitely presented over K if the prime matrix ideal in Kk(x1, . . . ,xn) with c as
generic point is finitely generated. Show that c is finitely presented if and only if
K(ci, . . . , cn) has a finite presentation over K. Deduce that every point in Kn is
finitely presented over K.

2°. Given a field E and a point a of En, determine the subfields of E over which
a is finitely presented. Is there always a least such subfield?

3°. If & is a finitely generated matrix ideal in Kk(xi9. . . , xn), is V ^ always an
intersection of finitely many prime matrix ideals?

4. Show that for a =£ 0, the matrix A = I has the eigenvalues 0, —2.

Thus if B = I I, then A, B have the same eigenvalues, but verify that

A ® I — I (£) B is non-singular unless ab = ba.
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5. Put A = f , _ I, B = I _ ; show that A <8> I - I <8> B is singular, but
\ab 0/ \a 0 J

A, B have no common singular eigenvalue, unless ab = ba.

6. Let R be a /c-algebra and # an iMield with singular kernel #\ If S is a set of
square matrices over Rk(X) and ($>,£) denotes the matrix ideal of Rk(X)
generated by fy and S, show that the matrices of S have a common singularity in
some extension field E of K if and only if (<3>, S) n yR(R) = ®. Verify that
(S)n$t(/?)CSPis necessary for a common singularity but not sufficient. (Hint.
Consider R = k[a], S = (1 - ax).)

7°. Show that two matrices A, B over a commutative field A: have a common
eigenvalue in some extension field of k if and only if A<8>I-I<S>B is singular.
Given a skew field K and matrices A, B over # , find a matrix C whose entries
are functions of the entries of A and B such that A and B have a common
singular eigenvalue in some extension of K if and only if C is singular (it may be
necessary to allow for a family {Q} of matrices, possibly infinite, such that A, B
have a common singular eigenvalue if and only if all the Q are singular).

Notes and comments
The development of general skew fields made it natural to replace
equations by singularities, though this does not always make the solution
easier. The linearization process has long been used informally, e.g. in
the theory of differential equations (for an early explicit use in the study
of group rings, see Higman [40]). It was first used in the present sense in
Cohn [72', 73, 76] and the first edition of FR.

The special case of Th. 1.6 of extensions in which every element is right
algebraic was proved by R. Baer [27]; the rest of 8.1 was in Skew Field
Constructions or is new. The problem of finding right roots of equations
was solved for the real quaternions H by Niven [41] and Eilenberg and
Niven [44] gave a topological proof that every / in HR(JC) with a unique
term of highest degree has a zero. This also follows from the more
general theorem of R. M. W. Wood [85] that H is a CAC-field. L. G.
Makar-Limanov [75,85] has constructed a PAC-field of infinite degree
over its centre. The metro-equation (2) of 8.1 (which arose in conversa-
tion with Amitsur on the Paris Metro on 28 June, 1972) has often been
considered e.g. in connexion with the Weyl algebra. For an application to
the geometry of the tetrahedron see Bilo [80].

The reduction to diagonal form in 8.3 is taken from Cohn [73], where
left and right eigenvalues are introduced, the results of 8.2 are proved and
the normal form of 8.3 is derived, except for the final step depending on
Prop. 3.5; this result and its application are due to W. S. Sizer [75]. The
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Cayley-Hamilton theorem for skew cyclic matrices was proved in Cohn
[76]. The following characterization of skew cyclic matrices was obtained
by M. L. Roberts [82]: A matrix A is skew cyclic if and only if A is
conjugate over the centre to a matrix C with non-zero entries on the
subdiagonal (i.e. ci+u =£ 0) and zeros below the subdiagonal.

Th. 4.2 is taken from Cohn [85], but parts of it were well known, cf.
e.g. Jacobson [56], p. 241. V-rings (named after O. E. Villamayor) have
been studied by Faith [81], see also Cozzens and Faith [75], where Prop.
4.3 is proved. The rather curious example of a V-ring in Th. 4.5 was
constructed by Resco [87] to answer a question of Cozzens and Faith [75],
who asked whether a tensor product of two simple V-rings is always a
V-ring. In Johns [77] it was claimed that a right Noetherian right
annihilator ring is right Artinian; the claim was based on a result of R. P.
Kurshan [70] which turned out to be false, and the counter-example
presented in the text is due to Faith and Menal [92]. Amitsur [56] has
shown that a field which is algebraic over an uncountable centre is also
matrix-algebraic (Jacobson [56], p. 247).

Most of 8.5 first appeared in the Skew Field Constructions; Th. 5.4 is
taken from Cohn [73'"], though special cases had often been noted before,
e.g. Johnson [44]. The existence of singular eigenvalues for a matrix with
indeterminate entries (Th. 5.6) was proved in Cohn [75'].

The work of 8.6 was essentially new in Skew Field Constructions, based
on Cohn [77'] and developed further in Cohn [85'], where the examples
of 8.7 also appeared. The non-commutative Nullstellensatz was first
obtained by W. H. Wheeler [72], cf. Hirschfeld and Wheeler [75], where
the result is stated in terms of so-called d-prime ideals (kernels of
homomorphisms into fields) taking the place of prime matrix ideals. The
present version is taken from Cohn [75]. The remarks on elimination have
not been published before (but see Cohn [88]).



Valuations and orderings on skew
fields

Normal subgroups can be used to decompose groups, and this is an
important tool in the analysis of groups. Ideals play a similar role in ring
theory, but there is no direct analogue in fields. The nearest equivalent is
a general valuation, which allows a field to be analysed into a group, the
'value group', and a residue-class field. Thus valuations form a useful tool
in commutative field theory, but there is no method of construction in
general use, mainly because in most cases all the valuations are explicitly
known, e.g. for algebraic number fields, function fields of one variable or
even two variables (see e.g. Cohn [91], Ch. 5). Our aim in this chapter is
to describe a general method of construction, using subvaluations, which
can be used even in the non-commutative case.

We begin by recalling the basic notions in 9.1, which still apply to skew
fields, and then in 9.2 explain the special case of an abelian value group,
which presents a close analogy to the commutative case while being
sufficiently general to include some interesting applications. In the
commutative case a ring R with a valuation v is an integral domain and u
extends in a unique way to the field of fractions of R. In the general case
neither existence nor uniqueness is ensured; what is needed here is a
valuation on all the square matrices over R and 9.3 introduces the study
of such matrix valuations and explains the way they determine valuations
on epic R-fields. In 9.4 a method of constructing such matrix valuations is
described, based on the principle of the Hahn-Banach theorem (that a
closed subspace disjoint from a convex body can be separated from this
body by a hyperplane), and this is used in 9.5 to construct matrix
valuations on firs.

The last two sections are devoted to ordered fields. In 9.6 the analogue
of the Artin-Schreier theory is developed for skew fields, giving
conditions under which a skew field (or even a ring) can be ordered,

420
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while 9.7 describes matrix cones on R, which are then used to order epic
R-fields. As an application it is shown how free fields may be ordered.

9.1 The basic definitions
To discuss valuations we shall need to deal with ordered groups. It will be
convenient to use additive notation, though our groups need not be
abelian. By an ordered group T we shall understand a group with a total
ordering x ^ y, which is preserved by the group operation:

x 2* y,xf ^ y' =>x + x' ^ y + y' for all x, x\ y, y' e T.

Sometimes T will be augmented by a symbol oo to form a monoid with the
operation

and the ordering oo > % for all x e T.
Let R be a ring. By a valuation on R with values in an ordered group

T, the value group, we shall understand a function v on R with values in
r U {oo} subject to the conditions:
(V.I) v(x) e T \J {oo} and v assumes at least two values,
(V.2) v(xy) = v(x) + v(y),
(V.3) v(x + y) ^ min {v(x), v(y)} (ultrametric inequality).
The set

kert> = {x e R\v(x) = oo}

is easily verified to be an ideal of R, which is proper by (V.I). If
ker v = 0, v is said to be proper•; e.g. on a field every valuation is proper,
because 0 is the only proper ideal. In general Rfktrv is an integral
domain, by (V.2). Further it is clear that v(0) = oo and if u $ kert>, then
v(u) = v(u -1) = v{u) + v(l), hence v(l) = 0. It also follows that
2v(—1) = v((—I)2) = 0, so v(—1) = 0, and by another application of
(V.2) we obtain
(V.4) v(-x) = v(x).

If F can be embedded in R (which happens precisely when T is
Archimedean ordered, see e.g. Cohn [91], Prop. 1.6.3, p. 33), we can
define a metric on R by choosing a real constant c between 0 and 1 and
defining

d(x,y) = cv{x~y).

It is easily verified, using (V.I-3), that (M.l-4) below hold, so we have a
metric on R/kcrv, turning R into a topological ring, with a Hausdorff
topology if and only if ker v = 0:
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(M.I) d(x, y)^0 with = if and only if x = y fmodker v),
(M.2) d(x,y) = d(y,x),
(M.3) d(x, y) + d(y, z) ^ d(x, z) (triangle inequality),
(M.4) d(x + a, y + a) = d(x, y) (translation invariance).
When v is proper, the function |JC| = d(x,0) is also called a norm or
absolute value on i?. As with every metric space, one can form the
completion of R, which plays an important role in commutative field
theory, but which will not concern us here.

We remark that the triangle inequality (M.3) actually holds in the
stronger form:
(M.3') d(x, z) ^ max {d(x, y), d(y, z)}.
Whereas (M.3) tells us that in any triangle the sum of any two sides is at
least equal to the third, (M.3') shows that every triangle is isosceles; for if
d(x, y) < d(y, z) say, then by (M.3'), d(x, z) ^ d(y, z) and d(y, z) ^
max{d(y,x), d(x, z)} = d(x, z) (using (M.2)), hence d(x, z) = d(y, z).
In terms of the original valuation this states that

If v(x + y) > min {v(x), v(y)}9 then v(x) = v(y). (1)

Of course this is easily proved directly, for any value group r .
Every integral domain has the trivial valuation

" t°o,
corresponding to the discrete topology. Any other valuation is called
non-trivial.

We begin by showing that any proper valuation on an Ore domain can
be extended to its field of fractions:

P R O P O S I T I O N 9.1.1. Let R be a right Ore domain with field of
fractions K. Then any proper valuation v on R has a unique extension
toK.

Proof Every element of K has the form u = ab'1, a,b e R, so if an
extension w of v to K exists, then v(a) = w(ub) = w(u) + v(b), hence
w(u) = v{a) - v(b). If we also have u = axb\l, then ap = axpx,
bp = biPi for some p, px e Rx. Hence v(a) — v(b) = v(ap) — v(bp) =
v(aiPi) - v(biPi) = v(ax) - v(bi), and this shows w to be independent
of the choice of a and b. It remains to show that w is a valuation on K.
(V.I) is clear; to prove (V.2), given ab'1, cd'1, let bp = cq = m, say;
then we can replace ab'1 by ap • (bp)'1 = apmT1 and cd'1 by cq(dq)~l =
m(dq)'1, hence ab'1 • cd~x = apm'1 • m(dq)~1 and w(ab~1 • a/"1) =
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w(ap(dq)~1) = v(ap) — v(dq) = v(ap) — v(m) + v(m) — v(dq) = w(ab~l)
+ n^cd"1). (V.3) follows similarly, by bringing x and y to a common
denominator. •

Let us now consider a valuation v on a field J£. With v we associate the
subset of K defined by

V = {x € ^|t;(jc)^O}. (3)

It is clear from (V.l-3) that V is a subring of K\ in fact it has two further
properties: It is total, i.e. for every x e K, either x e V, or x ^ 0 and
JC"1 e V. Secondly it is invariant, i.e. for every aeV and c e Kx,
c~lac e V. A total invariant subring of a field is called a valuation ring
and what we have said can be summed up as follows:

P R O P O S I T I O N 9.1.2. For any valuation v on a field K, the set V
defined by (3) is a valuation ring. •

When K is commutative, the condition of invariance becomes vacuous
and the above term agrees with the usage in the commutative case.

Conversely, given any skew field K and a valuation ring V in K, we
can form a valuation giving rise to it as follows. In V we define the group
of units as

U = {x e K\x e V and x~l e V}. (4)

Briefly we may write (with a slight abuse of notation) U — V n V~l.
Because V is invariant in AT, it follows that U is a normal subgroup of
Kx. The quotient Kx/U will be denoted by T and written additively. On
Kx we have a preordering by divisibility: a\b if and only if ba~l e V. Two
elements a, b are equivalent in this preorder, i.e. a\b and b\a, precisely
when they lie in the same coset of U. Thus the divisibility preordering on
Kx defines an ordering of T = Kx/U, which is a total ordering, because
V was a total subring of K. Now it is easily checked that the natural map
v: Kx —»F together with the rule v(0) — °° defines a valuation on K
whose valuation ring is just the ring V with which we started.

There is a third way of describing valuations which is sometimes useful.
By a place on a field K with values in a field L we mean a
homomorphism cp from a subring V of K to L, extended to all of K by
writing q)(x) = <*> for JC e K\V, such that
(P.I) i/ <p(x) * oo, fAen ^c^Jtc) =£ °o /or a// c e # x ,
(P.2) if (p(x) = oo, r/ien x^Oand ^(x"1) = 0.
It is clear from (P. 1-2) that V is necessarily a valuation ring in K.
Conversely, every valuation ring V in K defines a place on K as follows.
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The non-units in V form an ideal, for in terms of the corresponding
valuation v the set of non-units is given by

m = {x e K\v(x)>0},

and this is an ideal by (V.I-3). We have the residue-class field V/m and
the natural homomorphism V^V/m satisfies (P. 1-2) because V is a
valuation ring. Thus we have the following triple correspondence on any
skew field:

valuation rings ̂

valuations •< • places

Two valuations v, v' on K with value groups F, F' are said to be
equivalent if there is an isomorphism 6: F—»F' such that v'(x) = v(x)6
for all x e K. Two places <p, y' on K with values in L, L' are called
equivalent if there is an isomorphism / : L —> L' such that cp'{x) = cp{x)f
for all x e K. It is easily verified that two valuations are equivalent if and
only if they define equivalent places, or also if and only if they have the
same valuation ring. Thus for any field K we have a triple correspond-
ence (a 'trijection') between (i) equivalence classes of valuations, (ii)
equivalence classes of places and (iii) valuation rings on K. This shows
the advantage of dealing with the valuation ring, rather than the valuation
or the place, either of which is only determined up to equivalence.

The simplest non-trivial case is that where the value group is Z, the
additive group of integers. A valuation with value group Z will be called
principal. For example, the p-adic valuation on Q, for any prime number
p, is a principal valuation (see e.g. A.2, 8.1). In the case of a principal
valuation the valuation ring is a principal ideal domain; conversely, a
valuation ring which is a principal ideal domain gives rise to a principal
valuation (see e.g. Cohn [91], Th. 1.4.2 or Ex. 1).

Let K be any field with a valuation v; it allows us to 'decompose' K as
follows. The valuation may be regarded as a homomorphism from Kx to
the value group F; its kernel is the group U of units in the valuation ring.
Thus we have

F = Kx/U. (5)

Let V be the valuation ring and m its maximal ideal; clearly every element
of the form 1 + x, where x e m, is a unit. It is called a 1-unit (Einseinheit)
and the group of all 1-units is written 1 + m or U1. Let us write k for the
residue-class field; thus k = V/m, and in the natural mapping from V to k
an element maps to 1 precisely when it is a 1-unit. The residue-classes
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mod Ui correspond to the different elements of k, so that we have an
isomorphism

kx = (6)

All these facts are conveniently summed up in the following commutative
diagram with exact rows and columns:

- • 1

(7)

In the special case of a principal valuation T is infinite cyclic and so the
horizontal sequences in (7) split. This is the case that occurs most
frequently in the commutative theory and we then have the isomorphism

Kx/U1 = kx x (8)

Here the diagram (7) does not add much to our knowledge that is not
already clear from (8). By contrast, in the general case, especially when r
is non-abelian, (7) provides more information about Kx. In particular,
the third row will be of interest in what follows.

To end this section we give some examples of valuations on skew fields.
1. Let K be any field and consider the rational function field K(t)

formed with a central indeterminate t. Every element of K(t) is either 0
or of the form cp = tyfg~1, where / , g are polynomials in t with non-zero
constant term. The function v(cp) = v is easily verified to be a valuation,
called the t-adic valuation on K(t). Its value group is Z and its
residue-class field is K.

The same construction can be used in the more general situation of a
skew function field K(t\ a), where a is an automorphism of K. More
generally, let AT be a field with a valuation v and an automorphism a such
that v(aa) = v(a) for all a e K, and form the skew function field
L = K(t; a) as before. Now select an element 6 in the value group T (or
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in an ordered extension of F) and define a valuation on the skew
polynomial ring K[t; a] by the rule

• v(a,)}.

It is easily checked that this is a valuation on K[t; a] and by Prop. 1.1 it
can be extended uniquely to L. If the residue-class field of K under v is k
and the automorphism induced on A; by or is a, then the residue-class field
of L is k{u\ a~r) if rd is the least multiple of 6 which lies in F, and k if no
multiple of 6 lies in F.

2. For any ordered group F there is a field with a valuation whose
precise value group is F. To construct it we form the power series field L
over F with coefficients in a commutative field k, as in 2.4. To take
account of the additive notation in F we shall write the elements of F in
exponential form as ta {a e F) with an auxiliary variable t. Thus
tatp = t"+P for a, (3 e F, any element of L has the form of a power series
with well-ordered support and the valuation is the least element in this
support: if / = ^taca, then

3. Consider the free field F = k^x, y^\ we may ask whether there is
anything like an x-adic valuation on it. A straightforward approach yields
nothing, because we cannot write every element in the form xvfg~x as
under 1. However, we can proceed as follows: We shall want to have
v(x) > 0 = v(y) and this will entail v{c~xxc) > 0 = v(c~lyc) for any
c =£ 0. Let us define

yr = x~ryxr (reZ). (9)

By Lemma 5.5.6, the subfield E generated by the yr over k is free
on these generators; it has the shift automorphism a: yt >-> yi+1 and
F = k^x, y^ = E(x; a), so we can take the x-adic valuation on E as
valuation on F. Here the value group is still Z, but the residue-class field
is now E = k^.yr\r e Z ^ , and in this sense it is more complicated than
our initial field F. Later we shall find valuations of F with simpler
residue-class fields, but this is achieved at the cost of complicating the
value group.

4. If we have a commutative field extension F C E and v is a valuation
on F, then there always exists a valuation on E extending v, by
Chevalley's extension lemma (see A.2, Lemma 8.4.3, p. 290). There is a
generalization to the skew case, which provides an extension under
suitable conditions (see 9.2 below), but there may be no extension in this
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case. To give an example, let D be a field with a non-trivial valuation v,
which is trivial on a subfield K of D. Then v(a) > 0 for some a e D x ; it
follows that a is not algebraic over K, hence D can be enlarged to a field
E containing an element b such that ab = ba'1, by Lemma 5.5.4. If v
could be extended to E, we would have ufa"1) < 0, but fl"1 = b~lab, so
t^dT1) = v(b~lab) — —v(b) + y(«) 4- y(6) > 0. This contradiction shows
that v cannot be extended to E.

Exercises

1. Show that a valuation is Z-valued if and only if its valuation ring is a principal
ideal domain (Hint. Show that every element of the valuation ring V can be
written as pru (or 0), where pV is the maximal ideal and u is a unit.)

2. Let AT be a skew field of characteristic 0 with a Z-valued valuation v. If the
residue-class field is a commutative field of characteristic p and v{p) = 1, show
that K is commutative. Does this remain true without the condition v(p) = 1?

3. Show that an EC-field over a ground field k has no non-trivial valuations.

4. (A. H. Schofield) Let K be a field with an automorphism a and an
^-derivation 6, put U = K(t;a96) and C = %(U)C\K. Using the valuation
—deg, where deg is the degree in t, show that any finite-dimensional C-algebra in
U is contained in K.

9.2 Abelian and quasi-commutative valuations
A central problem in valuation theory concerns the extendibility of
valuations to extension fields. For a commutative field extension F C E,
every valuation on F has at least one extension to E, by Chevalley's
extension lemma, but as the example in 9.1 showed, in the general case
there may be no extension. The general problem is difficult, since it may
involve an extension of the ordered value group; one way of simplifying
the problem is to assume the value group to be abelian. In that case the
problem turns out to be quite tractable; an extension does not always
exist, but there is a simple criterion.

Thus we specialize by considering valuations with abelian value group,
more briefly abelian valuations. Such a valuation on K is zero on all
commutators and so must be trivial on the derived group of Kx; we shall
denote this derived group, i.e. the subgroup generated by all commuta-
tors in K, by Kc. Then we have the following simple condition for a
valuation to be abelian:
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P R O P O S I T I O N 9.2.1. Let K be a field with a valuation v and denote its
valuation ring by V. Then v is abelian if and only if v(a) = 0 for all
a e Kc or equivalently, V D Kc.

Proof By definition v: Kx —» T is a group homomorphism whose kernel
is the group U of units in V. Its image is abelian precisely when U D Kc;
when this is so, then V D Kc, and conversely, when V D Kc, then
V~l DK\soU = Vn V~l D Kc. •

In order to describe extensions we shall need the notion of domination.
Let K be a field and consider pairs P = (R, a) consisting of a subring R
of K and a proper ideal a of R. Given two such pairs P and P' = (/?', a'),
we shall say that P' dominates P, in symbols P' ^ P or P ^ P' , if /?' D R
and a' D a. If a pair (R, a) is such that R D A'0, then since Kc is a group,
every element of Kc is a unit in R and so Kc D a = 0 (because a is
proper). It will be convenient to single out the essential step in the
construction as a separate lemma.

L E M M A 9.2.2. Let K be a field, R a subring containing Kc and a a
proper ideal of R. Then R and a are invariant in K. Further, there is a
subring V with a proper ideal m such that (V, m) is maximal among pairs
dominating (R,a), and any such maximal pair (V, m) consists of a
valuation ring in K and its maximal ideal.

Proof If ae Rx, b e Kx, then b~lab = a • a~lb~lab e R, because all
commutators lie in R. Thus R is invariant and the same argument applies
to a.

Now consider the family of all pairs dominating (R, a). It is clear that
this family is inductive, hence by Zorn's lemma there is a maximal pair,
(V,m) say. By maximality, m is a maximal ideal in V and since
V D R D Kc, it follows that V and m are invariant, so it only remains to
show that V is a valuation ring. Thus we must show that V is a total
subring of K. Take c e Kx; if c £ V, then V[c] D V, so if the ideal m'
generated by m in V[c] were proper, we would have (V[c], m') > (V, m),
in contradiction with the maximality of the latter. Hence m' = V[c] and
we have an equation

a0 + axc + . . . + amcm = 1, a{ e m. (1)

Here we were able to collect powers of c on the right because of the
invariance of m, using the equation cr = crc~l • c.

Similarly, if c"1 $ V, we have an equation

b0 + bxc~l + . . . + bnc~n = 1, bj e m. (2)
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Let us choose ra and n as small as possible and suppose that ra ^ n, say.
Multiplying (2) on the right by cm, we obtain

(1 - bo)c
m = 61cm"1 + . . . + bnc

m~n. (3)

By the invariance of V we have xc = c • xy for all x e V, where y = y(c)
is an automorphism of V which maps m onto itself. If we multiply (3) by
amym on the right, we obtain

(1 - bo)amcm = bx(amY)cm-1 + . . . + bn{amyn)cm-\ (4)

Now multiply (1) by (1 — b0) on the left and substitute from (4); we
obtain an equation of the same form as (1), with ra replaced by ra - 1.
This contradicts the minimality of ra, and so either c or c~l lies in V and
V is total; hence V is a valuation ring, with maximal ideal m. •

This result allows us to prove the following extension theorem for
abelian valuations:

T H E O R E M 9.2.3. Let K C L be an extension of fields. Given an
abelian valuation v on K, there is an extension of v to an abelian valuation
on L if and only if there is no equation

^afi = 1, where at e Ky v{a^) > 0, and ct e Lc. (5)

Proof For any at e K such that ufa) > 0 and any ct e Lc, an abelian
extension w of v to L must satisfy

w(atCi) = w(at) = v(at) > 0,

hence when (5) holds, we have

w(flI-cI-)} > 0,

a contradiction. Conversely, if no equation (5) holds, this means that
if V is the valuation ring of v, with maximal ideal m, then mLc =
(2jaict\ai e K> v(ad > 0 , ct e Lc} is a proper ideal in VXC; thus (VLC,
mLc) is a pair in L and by Lemma 2.2 there is a maximal pair (W, n)
dominating it. Further, W is a valuation ring satisfying W D K DV,
n f l ^ D m , hence W fl K = V and so W defines the desired exten-
sion. •

Sometimes we shall want to restrict the class of valuations even further;
thus one might consider valuations with abelian value group and
commutative residue-class field. From the bottom row of the diagram (7)
of 9.1 we see that this means that Kx/U1 is an extension of one abelian
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group by another. It is convenient to take the special case where Kx/U1

is itself abelian and we shall define a valuation u on a field K to be
quasi-commutative if the quotient Kx/U1 is abelian. Below are some
equivalent ways of expressing this condition:

T H E O R E M 9.2.4. Let K be a field with a valuation v, having valuation
ring V, maximal ideal m and group of 1-units L^. Then the following
conditions are equivalent:

(a) v is quasi-commutative,
(b) r c l + m= Ul9

(c) v(l-a)>0forallaeKc.
Moreover, when (a)-(c) hold, then the value group and residue-class field
are commutative.

This is an easy consequence of the definitions, with the last part
following from the diagram (7) of 9.1. •

We remark that a quasi-commutative valuation on a field K is trivial
precisely when K is commutative. For quasi-commutative valuations we
have an extendibility criterion similar to that of Th. 2.3:

T H E O R E M 9.2.5. Let K C L be an extension of fields. Given a
quasi-commutative valuation v on K, v has a quasi-commutative extension
to L if and only if there is no equation in L of the form

laiPi + 26/(9/ - 1) = 1, (6)

where aiy bj e K, v(at) > 0, v(bj) ^ 0, pb q] e Lc.

Proof. If there is a quasi-commutative extension w of v to L, then for ai9

bj, pi, q, as above we have

/(?/ " 1)) ^ m i n u t e ) + w(Pi), v(bj) + w{q} - 1)} > 0,

because v(at) > 0, w(qj — 1) > 0. Hence there can be no equation of the
form (6). Conversely, assume that no equation (6) holds and consider
the set Q of all expressions X^iA + 2fy(tf; ~ 1)' where ai9 bj, pt, qj
are as before. It is easily checked that Q is closed under addition and
contains the maximal ideal of the valuation ring V of v in K. More-
over, Q is invariant in L: u~xQu = Q for u e Lx, because u'^a-p-u =
at' a~lu~laiU • u~lptu e VLC, and similarly for the other terms. In the
same way we can verify that Q admits multiplication. We now define

W = {a e L |aQcQ}. (7)
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It is clear that W is a subring of L containing Lc and V, for if c e V and
we multiply the expression on the left of (6) by c, we obtain ^capi
+ 2cfy(9y ~ 1)> ^is is of the same form, because v(cat) = v(c) +
y(ai) > 0 and v(cbj) ** 0. Further, Q is an ideal in W, because c Q c Q
for all c e W, by the definition of W, and Qc = c • c"1Qc = cQ C Q. By
hypothesis, 1 $ Q, hence Q is a proper ideal of W. Thus W is a subring of
L containing Lc and the valuation ring of v. By Lemma 2.2, there exists a
maximal pair (7\p) dominating (W, Q), and T is a valuation ring such
that TDW D Lc, while l + p D l + Q D L c . Hence the valuation w
defined by T extends v and is quasi-commutative, by Th. 2.4. •

To apply this result we shall need fields of infinite degree over their
centres, with a quasi-commutative valuation. Such fields may be con-
structed as follows. Let k be any commutative field of characteristic zero
and form the Weyl field K = Wx(k), generated by s, t over k with the
defining relation st - ts = 1. Its centre is k, as we have seen in 6.1.
Putting x = s"1, we can write the above relation as

tx = x(t + x). (8)

On K we have the x-adic valuation v, obtained by writing any element as
a formal Laurent series in x with coefficients in k(t) and taking the
exponent of the lowest power of x. Thus any / e K has the form

where / 0 is a power series in x with coefficients in k{t) and non-zero term
independent of x. We can pull the coefficients through to the right, using
the shift map a: cp(t)»-»qp(t + x) of k(t) into K based on (8). Although
the image is not in k(t), the terms of lowest degree remain unchanged,
thus if /o = a0 4- xax + . . . , then /o = a0 4- xa[ + . . . with the same a0.
We claim that v is quasi-commutative. Given f,ge Kx, let f = xrf0,
g = xsg0 say; then their commutator is given by

x'fox'go\

= <i0 + */f, g£r = fo0 + *g* for

(/, g) = («o + J / I ) - 1 ^ ) + ^ i ) " 1 ^ + xfi)(b0 + xgl).

When we apply the residue-class map, the right-hand side reduces
to 1, because the residue-class field k(t) is commutative. Hence
v((f> 8) ~ 1) > 0 a nd this shows v to be quasi-commutative.

To illustrate Th. 2.5 we now show that the free field has a quasi-com-
mutative valuation. We begin by proving an extension theorem:

let/o
some

=
n

ao +

,g*i

xfi, go
then

= b

g)
1

= f o x

*8i> so

80 X

that fo



432 Valuations and orderings on skew fields

T H E O R E M 9.2.6. Let K be a field with an infinite centre C such that
[K:C\ = oo and let X be any set. Then any quasi-commutative valuation v
on K can be extended to a quasi-commutative valuation on the free field

Proof. Writing L = KC^X^, we have to show that there is no equation

1) = 1, (9)

where ah bj e K, v(at) > 0, v(bj) ^ 0, ph q} e Lc. Suppose we have such
an equation. Since each pt and q^ is a product of commutators, there is a
finite set of elements of Lx , c1? . . . , cN such that each pt and g; is a
product of commutators formed from the cs. By the specialization lemma
(Prop. 6.2.7) there is a specialization from L to K which is defined on all
the cs and their inverses. By applying this specialization we obtain an
equation (9) with ph qj e Kc, but this contradicts the fact that there is a
quasi-commutative valuation on K. Hence no equation (9) can exist, so
we can apply Th. 2.5 to obtain a quasi-commutative extension of v
toL. M

In particular, the example just constructed allows us to form
WiC^)*^^^ with a quasi-commutative valuation, and it has k^X^> as a
subfield, by Prop. 5.4.3. We thus obtain

C O R O L L A R Y 9.2.7'. For any commutative field k of characteristic
zero and any set X the free field k^X^ has a quasi-commutative
valuation over k. •

The restriction on the characteristic can be lifted by a slight modifica-
tion of the construction (see Ex. 2).

In any ordered group a subset is called convex if with any a ^ b it
contains all x satisfying a^x^b. In the elementary theory most
valuations are real-valued; since R as ordered group has no convex
subgroups other than 0 and itself, it follows that no two real-valued
valuations on a given field can be comparable. By contrast, in the general
case it can happen that valuations are comparable, and this leads to an
interesting decomposition theorem, which persists even in the non-com-
mutative case, although there is then an extra condition.

Let K be a field with a valuation v, with valuation ring V, maximal
ideal m and residue-class field Kv = V/m. A second valuation v' on K
with valuation ring V is said to be subordinate to y, y' < y, if V D F .
Writing m' for the maximal ideal of V and £/, U' for the unit groups in
V, V, we see that U' D U, m' C m, and if the value groups are F, F'
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K

V

respectively, then T = Kx/U,

r = Kx/uf = (Kx/u)/(ur/u) = r/A,

where A = U'/U is a convex subgroup of I\ Thus if cp\ T^T' is the
natural homomorphism, then v'(x) = cp(v(x)) for all x e K. In this case
we can decompose the valuation vf as q>v and we see that its residue-class
field Kv< has a valuation with value group A = ker cp and residue-class
field Kv. The situation may be illustrated by the accompanying diagram.

In the natural homomorphism
V'->V'/m' = Kv, the ring V cor-
responds to a valuation ring in Kv>
with residue-class field Kv. We may
think of the place K —> Kv as being
composed of the places K —» Kv>
and KV->KV. Conversely, if we
have a valuation v' on K and a
valuation on the residue-class field
Kv>, we may ask when these valu-
ations can be composed to yield a
valuation on K to which v' is subor-
dinate.

Consider first the commutative
case. Thus A' is a commutative field
with a valuation v', valuation ring

V and residue-class field Kv> and w is a valuation on ^ with valuation
ring W. If V denotes the inverse image of W in ^ , then
V D V D m D m', where m is the set of non-units in V. Any element x of
K not in V either lies in V, in which case Jc~1Gtn, o r j c ^ V , in which
case x~l e m' c m. So in any case V is a valuation ring with maximal ideal
m. The valuation v of K corresponding to V is called the concatenation of
v1 and n>; by definition we have v' < v.

If we consider the same situation for a skew field K, we find again that
V is a total subring contained in V , but it may not be invariant. Let
£ e AV, say | = Jc, where x e K and the bar indicates the residue-class
map. Then v'(x) ^ 0, hence for any a e Kx, v(a~lxa) = -v(a) + v(x) +
v(a) ^ 0, so a T 1 ^ maps to an element of Kv> which we shall denote by
%aa. It is clear that for any a e Kx the map oca\ £»-H> %aa is an
automorphism of Kv> and a >-• arfl is a homomorphism A^x —> Aut(Ar

y) .
We claim that the inverse image V of W in K is invariant precisely when

w ( | ) ^ 0 => H<£arfl) ^ 0, for all ? e ^ a n d f l e i ^ x . (10)

For in terms of K this condition just states that x e V => a~lxa e V. Thus
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(10) is necessary and sufficient for V to be a valuation ring, and hence to
define a concatenation of vf and v. So we have

T H E O R E M 9.2.8. Let K be afield with a valuation v, with residue-class
field E. If w is a valuation on E, then the concatenation of v and w exists
if and only if the induced automorphisms aa (a e Kx) of E preserve the
sign of the valuation w, i.e. (10) holds. •

As an illustration consider the Weyl field K = WX(A:); as is easily seen,
we have a quasi-commutative valuation on K, namely the x-adic
valuation v with residue-class field k(t). If w is the £-adic valuation on
k(t), then <xx is the identity on k(t), because t + x = t (modm). Thus
every element of Kx induces the identity automorphism on k(t), so the
condition of Th. 2.8 holds and we have a valuation on K with value group
Z2, ordered lexicographically. Any element / of Kx of the form
/ = x°«>(a0 + xft) has the value (v(f), w(a0)).

More generally the concatenation always exists when the valuation on
K is quasi-commutative.

Exercises

1. Let F = k(t) be a rational function field with the shift automorphism a:
f(t)>-+f(t + l). Define K = F(x\ a), the skew function field, with the x-adic
valuation v. Show that v has an abelian value group and a commutative
residue-class field but is not quasi-commutative.

2. Let k be a commutative field and let E be the Hilbert field on k, with relation
uv = vu2. Show that the x-adic valuation on E, where x = u — 1, is quasi-commu-
tative.

3. Show that for a quasi-commutative valuation the concatenation with any
valuation exists.

4. Let F be a commutative field of characteristic ¥= 2 with an automorphism a =£ 1
and put K = F((t; a)). Verify that the £-adic valuation on K has residue-class
field F, and use it to show that no equation x2 + xax + a2 = 0 over K has more
than two roots.

5. Let k be a commutative algebraically closed field and E a proper commutative
extension of k. Show that there is a non-trivial valuation on E trivial on k and
with residue-class field k.

6. Let K be a field with an abelian valuation v with residue-class field k which is
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commutative algebraically closed. Given an extension L/K such that v extends to
an abelian valuation w on L, show that w can be chosen so as to have the same
residue-class field.

9.3 Matrix valuations on rings
We have seen in 9.1 that any valuation y o n a commutative ring R leads
to a residue-class ring R/a which is an integral domain with a field of
fractions to which v can be extended. Such a result cannot be expected
for general rings; here the theory of Ch. 4 suggests that we define
valuations on matrices over R, and in this way a generalization can
indeed be found. However, we shall need to restrict ourselves to the case
of an abelian value group, mainly because for matrices over a general ring
the determinant function (Dieudonne determinant) has values in an
abelian group.

D E F I N I T I O N . A matrix valuation on a ring R is a function V on ^ffl(R)
with values in FU {oo}, where F is an abelian ordered group, satisfying
the following conditions:
(MV.l) VA = oo for every non-full matrix A,
(MV.2) VA is unchanged if a row or column of A is multiplied by

- 1 ,
(MV.3) V(A 0 B) = VA + VB,
(MV.4) V(A V 5 ) ^ min {VA, VB} whenever the determinantal sum

AV B is defined,
(MV.5) VI = 0.

It is clear that the restriction of a matrix valuation to R, qua set of 1 x 1
matrices, is a valuation on R, hence the set kerV = {x e R\Vx = oo} is
an ideal of R and V induces a proper valuation on R/kerV. More
generally, the set Ker V = {A e yR(R)\VA = oo} is a prime matrix ideal
of R (see Ex. 1).

We note some immediate consequences of the definition.
1. If AV B is defined and VA * VB, then V(A V B) = min {VA,

VB}.
For if C = A V B, then VC ^ min {VA, VB} by (MV.4). By hypothesis,
VA * VB, say VA < VB, and so VC ^ VA. Suppose that VC > VA and
write B~ for the matrix obtained from B by changing the sign of the
column operated on, so that A = C V B~; using (MV.4) once more, we
find VA ^ min {VC, VB}, where we have used (MV.2). Since VC> VA,
it follows that VA^ VB, which is a contradiction; hence VC = VA, as
claimed.
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2. V(AE) = V(EA) = VA for any elementary matrix E.
This amounts to saying that VA is unchanged if we add a left multiple of
one row or a right multiple of one column to another. Suppose we add a
multiple of the second column to the first:

(A, + A2X A2 A3 . . . An) = AV(A2 . . . An)

Here the second matrix on the right is non-full, so its value is <*> and the
other two must have equal value, by 1.

Let us call two matrices E-associated if we can pass from one to the
other by elementary operations on rows and columns, i.e. multiplying on
the left or right by elementary matrices, and stably E-associated if they
become E-associated after forming diagonal sums with / . Then we have
as an immediate consequence of 2 (and (MV.3, 5)):

3. VA = VB whenever B is stably E-associated to A.

Let B = (b B'), C = (c C ) ; then

A C\/A 0 C'\ (A c C
0 BJ~\O b B'J \0 0 B'

if A, B have orders m, n respectively, then the second matrix on the
right has an n x (m + 1) block of zeros and so is not full, hence V has the
same value on the other two matrices. In this way we can replace all the
columns of C by 0 and finally obtain V(A © B), which has the value
VA + VB by (MV.3). The other equation follows in the same way.

5. V(AB) = VA + VB.
This follows because in the following chain all matrices have the same
value:

(AB 0 \ (AB A\ (A -AB\ (A 0 \ (A 0
A B ' \ 0 l)'\ 0 I)'\I 0 )9\I B)9\0 B

A ring homomorphism can be used to transfer matrix valuations:

P R O P O S I T I O N 9.3.1. Let f: R-> R' be a ring homomorphism. If V is
a matrix valuation on R', then V^y defined by

V*A = V(Af) for A e

is a matrix valuation on R.
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V* will be called the matrix valuation defined by pullback along / . The
proof is a routine verification, which may be left to the reader. •

If R is a commutative ring with a valuation v9 then the function V
defined on yR(R) by the equation

VA = v(detA) (1)

is a matrix valuation, as is easily checked. The correspondence v <-> V is a
bijection between matrix valuations and valuations, taking v to be defined
in terms of V as the restriction V\R. For this reason matrix valuations are
not needed in the commutative case. In the general case this argument
cannot be used, because we do not then have a determinant. But for skew
fields we have at least the Dieudonne determinant. We briefly recall the
definition (see A.3, 11.2 for details).

Let K be any field; the quotient of its multiplicative group Kx by its
derived group Kc is called the abelianization and is written K*b. Thus we
have

K*b = Kx/Kc. (2)

By definition, the natural map 6: Kx —» Kab is universal for homomorph-
ism to abelian groups. The basic theorem on Dieudonne determinants
states that for any field K and any n ^ 1 there is a homomorphism

D e t : G L n ( # ) ^ # a b , (3)

which is universal for homomorphisms from GLn(K) to abelian groups.
The image of a matrix A is written Det(A) or D(A) and is called the
Dieudonne determinant of A. To find its value we note that for any
A e GLn(K) there exist products of elementary matrices [/, V, briefly
E-matrices, such that

UAV = I © or, where a e Kx. (4)

Here a will in general depend on the mode of reduction, but its
residue-class mod Kc is completely determined by A, and it is just the
Dieudonne determinant of A (see A.3, Th. 11.2.6, p. 442).

Our aim will be to show that any abelian valuation on a field gives rise
to a matrix valuation via the Dieudonne determinant; here we shall need
the following lemma to replace the additivity of the ordinary determinant:

L E M M A 9.3.2. Let C = AV B be a matrix equation over a field, where
V is taken over the first column, say, and A is non-singular. Then there are
invertible matrices P, Q, where Q = 1 © Q' and P is an E-matrix, such
that
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where a, b, c are columns satisfying

c = a + b, and cu = an + bn. (6)

Proof. We note that the relation C = A V B is unaffected by elementary
row operations (multiplying on the left by an E-matrix P).

Since A is non-singular, we can permute the rows so that the cofactor
of the (1, l)-entry in A is non-singular and now by row operations we can
reduce the first row of A to (an 0 . . . 0). Thus we have

0 \ plan *\(l 0
AUJ \a IJ\O A u

where An is non-singular. Writing Qf = An, we see that A has the form
(5), where Q = 1 © Q\ and similarly for B, C and now (6) follows. •

To deal with the case where A is singular, we prove a more general
result, sometimes known as the magic lemma:

L E M M A 9.3.3. Let R be a ring, 2 a set of square matrices over R such
that AB eX if and only if A, B e 2 and cp: 2 —» T a map to an abelian
group F such that cp{AB) = cp(A) + (p{B) and (p(E) = 0 for any elemen-
tary matrix E. Then in any matrix equation

C = AV B,

where B, C e 2 and A is non-full, we have cp{B) = (p(C).

Proof Assume that the determinantal sum is relative to the first column
and let At, Bx be the first columns of A, B. Since A is non-full, we have
A = PQ, where P has n — 1 columns and Q has n — 1 rows if A is
nx n. Writing Q = {Qx <2'), where Q' e Rn__l9 we have

B = (BX PQ') =

Since Ax = PQ1, we can write C as

•<* < to
now a comparison with (7) shows that <p(C) = q)(B).
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We can now establish the connexion between valuations and matrix
valuations for fields:

T H E O R E M 9.3.4. Let K be a field with an abelian valuation v. Then v
can be extended to a matrix valuation V on K by defining

_ Jt>(Det A) if A is non-singular,
[oo if A is singular.

This correspondence v <-* F is a bisection.

Proof That we have a bijection is clear since v is determined by V as its
restriction to K\ it remains to verify (MV.1-5). (MV.l) and (MV.5) are
clear from the definition and (MV.2,3) follow because Det is a
homomorphism. To prove (MV.4) suppose first that A is non-singular.
Then we have expressions (5) for A, B, C and P is an E-matrix,
so VT = 0, while Det (A) = a6

nq, where q = Det(Q). Hence VA =
v(Det A) = v(an) + v(q), and similarly, VB = v(bn) + v(q), VC =
v(cn) + v(q). By (6) we have c n = an + fcn, hence

v(cn) 2*min{v(an), v(bn)},

and so VC ^ min {VA, VB}, which proves (MV.4) when A is non-singu-
lar. When A is singular, (MV.4) follows by Lemma 3.3. Thus V is indeed
a matrix valuation on K. •

Let R be any ring and K an epic R-field. Any valuation v on K defines
a matrix valuation V on K, by Th. 3.4, and by pullback we get a matrix
valuation on R. We now turn to the inverse problem: Given a matrix
valuation V on R, how can we find an epic /Mield with a valuation giving
rise to VI

Let R be a ring with a matrix valuation V; we define its singular kernel
as

g> = KerF = {A e^(R)\VA = oo}. (9)

It is easily verified that 2P is a prime matrix ideal. We form its localization
Rg> with residue-class field K = R/ty. In order to define a valuation on K
we first define a function W on the set S of all admissible matrices
A = (Ao A* A oo) by putting

WA = V(A0 AJ-V(A* A.). (10)

Clearly this is a well-defined element of T U {<*>} which by (9) is equal to
oo precisely when (Ao A#) e (3>. We recall from 4.2 that if A, B are
admissible for p , q respectively, in K, then the matrix
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A-B =
0

B* Bo 0 0 (11)

is admissible for pq. This defines an associative multiplication on 5, so 5
forms a semigroup under this multiplication. The subset Sx of all
admissible matrices whose numerator is not in 2P is again closed under the
multiplication (11), as well as the operation

A = Ao), (12)

which defines p l if A defines p.
Let us write f: S1-+ Kx for the map which associates with any A e Sx

the element p e Kx which is determined by A. The above remarks show
that (A • B)f = AfBf and Af = {Af)~l. We also note that

and

W(A • B) = V

= V(AO

0 0

* A0) = -WA

= V(B0 £*)

= WA + WB.

fioo 0

V(A0 A

A*\_VIO

- V(B

We thus have two homomorphisms from Sx as a semigroup, namely
W: Sx —» F and / : Si —> Kx, and our aim is to define a homomorphism

from Kx to F by factoring W by / .
Firstly we note that / is surjective; we
claim further that ke r /CkerW. For if
Af = 1, then A is admissible for 1 and
the equation Au = 0 with ŵ  = u0 = 1

W
shows that (Ao +
V(A0 + Aoo

A*) e 9. Hence
= 00 and so

V(A0

It follows that WA = 0, as claimed.
Therefore, if Af = Bf, then (A • 5 ) / = A^fi^"1 = 1» s o W(A • 5) = 0

and WA = — WJ? = W5. Thus we have indeed a homomorphism v from
A:x to r such that v(Af) = WA. Explicitly, if p e Kx is determined by
the admissible matrix A, we put

V(p) = WA = V(A0 A+) - A.) .

Further we put v(0) = 00 and claim that v is a valuation on # . (V.I) is
clear and (V.2) follows since v is a homomorphism. To verify (V.3),
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suppose first that v(p) ^ 0. Then any admissible matrix A for p satisfies
V(A0 A*) ^ V(A* A»). By (MV.4) it follows that V(A0 + A* A*)
^ V(A* Aoo), and since (Ao + A^ A* A^) is an admissible matrix
for p - 1, we have shown that v(p) ^ 0 implies v(p - 1) ^ 0.

Now to prove (V.3), take a, b e K, where v(a) ^ v(b) say. If
v(a) = oo, then # = 0 and (V.3) is clear; otherwise we have v(ba~l) ^ 0,
and so

v(b - a) = v{ba~l - 1) + v(a) ^ v(a) = min{v(a), v(b)},

so (V.3) is established.
Thus we have indeed a valuation v on K. By Th. 3.4 it gives rise to a

matrix valuation on K which will again be denoted by v, and if A: R^> K
is the natural homomorphism, then it is clear that vk is just V. Thus we
have proved the following existence theorem for matrix valuations:

T H E O R E M 9.3.5. Let R be any ring. Then each matrix valuation V on R
determines an associated epic R-field K with an abelian valuation v, and
conversely, every epic R-field with an abelian valuation v determines a
matrix valuation on R in this way. This correspondence between abelian
valuations on epic R-fields and matrix valuations on R is bijective, and the
singular kernel of the R-field agrees with the singular kernel of the
corresponding matrix valuation. •

Exercises

1. Verify that for any matrix valuation V, the set Ker V = {A e Wl(R)\ VA = oo}
is a prime matrix ideal. Show that

0>o = {A eTliR^VA >0}

is also a prime matrix ideal and that fl^o £ Ker V, where &Q is defined as the
matrix ideal generated by Ax © . . . © An (At e <3>0).

2. Let R be a weakly finite ring. Use the magic lemma to show that the
determinantal sum of an invertible and a non-full matrix is invertible.

3. Show that in the free field k<^x,y^, x cannot be expressed as a sum of
products of multiplicative commutators. (Hint. Find an abelian valuation such that
»(*)* 0.)

4. If the value group T is not assumed abelian, show that a matrix valuation
defined by (MV.1-5) has nevertheless commuting values. (Hint. Use the fact that
A © B is E-associated to B © A.)
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9 A Subvaluations and matrix subvaluations
There is a basic method of constructing valuations via an auxiliary
function called a subvaluation, rather in the way linear functional are
constructed from sublinear functional by the Hahn-Banach theorem. In
the commutative case this route is hardly ever used, probably because
there the valuations are usually known explicitly, but that is not so for
skew fields. It will illustrate the construction if we first describe it for
commutative fields. As a matter of fact, subvaluations were first
introduced in the 1930s by Mahler (under the name 'pseudo-valuations'),
who classified all pseudo-valuations on algebraic number fields.

Let K be a commutative field and A a subring generating it. As we saw
in Prop. 1.1, any valuation v on K is completely determined by its values
on A; more generally, given any valuation v on a commutative ring A,
we can use v to define a valuation on the epic A -field generated by
A/kerv. But if the values of v on a generating set of A are assigned, it
will not in general be possible to reconstruct v from them. We therefore
proceed as follows.

Let X be a generating set of A as a commutative ring, take any family
of real numbers indexed by X, X(x) (x e X), and define

f )
v(a) = sup < ^(x^a = xt . . . xn9 xt e X >. (1)

v I )
The function v is defined for all a e A that can be written as products of
elements of X. It takes values in R U {<*>} and the definition (1) is so
designed that for any a, b on which vis defined,

v(ab) & v(a) + v(b). (2)

This rule, which is easily checked, will replace the law (V.2). We express
(2) by saying that v is submultiplicative. In order to have a function
defined on all of A, satisfying (V.3), we now define \i by

pia) = sup { m i n K ^ l t f = &! + . . . + br)}. (3)
i

Then JX still satisfies (2) and in addition,

\i(a + b) ^ min {^i{a), p(b)}.

So \i has the following properties:
(SV.l) fx{a) is defined for all a e A and jj,(a) e R or j.i{a) = °°,
(SV.2) ii{ab) ^ fa)
(SV.3) fi(a + b)^ min
A function p n a ring A satisfying (SV.1-3) is called a subvaluation on
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A. If we had equality in (SV.2) and fi(a) is not identically oo5 we would
have a valuation. The subvaluation ja will be called radical if

ti(an) = nfi(a) for all a e A and all n ^ 1. (4)

With every subvaluation \i we associate the least radical subvaluation
majorizing it, called its root, which may be defined by

ti*{a)=\im-ti(an). (5)

This limit always exists, for by (SV.2) we have ^(an+1) ^ {i(an) + [i(a),
hence

n + 1 n + 1 n rc + 1

This shows that ti(an)/n is ultimately monotone increasing and so has a
limit, possibly +<*>, as n—>°°. Moreover, û* is easily seen to be a
subvaluation and fj*(cf) = lim {ti{arn)/n) = r • lim(^i(an)/n) = r • ju*(a). If
/ is any radical subvaluation majorizing \i, then f(a)^ fi(a), hence
/(a) = f(an)/n ^ ^(an)/n and on passing to the limit we find that /(a) ^
[i*(a). Thus //* is indeed the least radical subvaluation majorizing pi.

As we remarked, it is possible that ju*(a) = °°; but then from the way \i
was defined, we might have \i(a) — <*> for all a, even when all the A(x) are
bounded. However, for a subvaluation with a finite root we obtain a
whole family of valuations by the following existence theorem:

T H E O R E M 9.4.1. Let [i be any subvaluation on a commutative ring R
and denote by /i* its root defined by (5). Then

p*(a) = inf {v(a)\v(a)&ti(a)}, (6)

where v ranges over all valuations on R majorizing \i.

The proof does not use the commutativity of R, but as we saw earlier,
in the general case it does not lead to a valuation on an epic R-field. We
shall therefore reformulate the result in terms of matrix valuations, with a
proof which will include the above result.

Our first task is to define an analogue of subvaluations. By a matrix
subvaluation on a ring R we understand a real-valued function [i on Tt(R)
satisfying (MV.l, 2, 4) and in place of (MV.3) and (MV.5),
(MV.3') fi(A © B)^\xA + \iB,
(MV.5') tflo) = 0,
where l0 is the unique 0 x 0 matrix over R. A function satisfying (MV.3')
is again called submultiplicative.



444 Valuations and orderings on skew fields

A diagonal sum A1 0 . . . 0 An with At = A will be abbreviated as
© n A. Now a matrix subvaluation jd is said to be radical if it satisfies

J©A) = n • \iA for all A e W(R) and n = 1, 2, (7)

As before we can from any matrix subvaluation \x construct its root,

l**(A) = lim , (8)

which is the least radical matrix subvaluation majorizing jd.
A matrix subvaluation \i is said to be regular at a matrix A if

\i(A ®X) = IJLA + IIX for all X e <K(/*). (9)

If |U is regular at every matrix of a subset S of 9Jl(/?), it is said to be
regular on S. Such a function is multiplicative on 5, i.e. (9) holds for all
A,XeS.

Our aim will be to construct a matrix subvaluation majorizing pi that is
regular on a prescribed set. Clearly a matrix valuation is just a matrix
subvaluation that is oo on some prime matrix ideal and regular on its
complement in yR(R). So our aim will be gradually to enlarge the set on
which our given matrix subvaluation is regular.

Let id be any matrix subvaluation on a ring R and define the domain of

2 = {A em(R)\idA < oo}.

We fix a subset S of 2 and define a function ^ by

= sup U(X 0 Ax 0 . . . 0 Ar) - j^piiA^Y for any X e

(10)

where {A1? . . . , Ar) ranges over all finite subsets of S. Since 5 C 2 , ^ ' is
certainly defined, if we allow the value oo; it is called the regularization of
jd over 5. By (MV.3') we have

li'(X) & piX). (11)

We claim that pi' satisfies (MV.l, 2, 4, 3').
(MV.l and 2) are clear because they hold for pi. To prove (MV.4), we

note that

(X V Y) 0 A = (X 0 A) V (Y 0 A),
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as is easily checked, where the determinantal sums are both over the
same column. Let us write A = (&[Ah B = ®\Bj\ then we have

fi((X V Y) 0 A 0 B) ^ min {v(X 0 A 0 B), fi(Y 0 A 0

^ min L(X ®A)

Hence

v Y) 0 A 0 5) -

^ min L(X ®A)- %iKA), KY 0 B) -

If we now take the sup as the Ah Bj range over 5 for varying r, s we find
that the right-hand side becomes min {[i'(X), //(Y)}, while the left-hand
side is at most sup {fj((X V Y) ® C) - 2>(Q)}> where C = 0 ( Q , and
this is just / / (X V Y). Thus we reach the conclusion

which proves (MV.4). Finally, to establish (MV.3') we have, with A, B
as before,

ti(X 0 Y 0 A 0 B) 5* /i(X 0 A) + /*(Y 0 5).

Hence

/i(X © Y 0 A 0 5) - EKA) " 2>(£;)

^ K^ © A) - EMA) + K^ ®B)-

and taking suprema as before, we obtain

li'(X 0 Y) ^

i.e. (MV.3'). By contrast, (MV.5') need not hold for //; in fact, as the
definition of pi' in (10) shows, (MV.5') holds precisely when \x is
multiplicative on S. Our aim will be to use \\! to enlarge the domain of
regularity. As a first step we shall show how to manufacture a matrix
subvaluation that is regular on S from one that is merely multiplicative on
S. Let us call a set of matrices diagonally closed if it contains l0 and is
closed under diagonal sums.

L E M M A 9.4.2. Let JJL be a matrix subvaluation on a ring R, with domain
2. Then for any subset S of 2,

p'(X 0 C) = p'(X) + ti(C) for all X e Tl(R), C e S, (12)



446 Valuations and orderings on skew fields

where \i' is the regularization of ji on S. If further, S is diagonally closed,
then the following conditions are equivalent:

(a) there exists a matrix subvaluation tis regular on S and such that

fis\S = fi\S and \iX ^ \isX

^ sup {\i(X ® A)- \iA) for all X e Tt(R), A e S,
A

(13)

(b) \i is multiplicative on S,
(c) the regularization fi' satisfies JM'(10) < oo?

When (a)-(c) hold, ^ is the regularization of fi on S. If, moreover, \x is
radical, then so is tis.

Proof For any C e 5 we have, by the definition of //',

n'(x e c) = supIpix e ce AX e . . . e AT) - i>(A)|. (14)

In (10) the expression in brackets increases if we enlarge the family
Al9 . . . , Ar. Since we are taking the supremum, this will be unchanged if
we only consider families including C. Thus we can write (10) as

n\x) = supU(xe c e AX@ ... e A,)-\IC- 2MA)}, (is)

and a comparison with (14) shows that

\i!{X 0 C) = \k\

which is the equation (12).
Assume now that S is diagonally closed and that (a) holds. Then /i5 is

multiplicative on 5, hence so is \i, by (13), and (b) follows. If (b) holds,
then from the definition (10) we see that //(lo) = 0 and so (c) follows.
Finally, when (c) holds and we define

lis(X) = v'(X) ~ f*'(lo) for all X e 0»(/?), (16)

then by putting X = l0 in (12), we obtain

HS{Q = PL{C) for all C e 5, (17)

which proves the first part of (13). Inserting this value in (12) and
remembering (16), we find that

lis{X 0 O = iis(X) + JK5(O for X e <K(/J), C e S.

Thus ns is regular on 5, and hence is multiplicative on S\ by (17), so is /i,
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and so JM'(IO) = 0, whence JJ,S = \if by (16). Now for A = ®[Ah where
Ate S, we have

© A ) - \IA = fjt{x © AX © . . . e Ar) -

, © . . . e Ar) -

Taking the sup on both sides, we obtain fi'(X) = sup{/i(X © A) -
liA) ^ \iX, i.e.

\iX ^ iisX ^ sup {pi(X © A) - IJLA},

and this proves the rest of (13).
It remains to show that tis is a matrix subvaluation. Now {is equals JU\

which satisfies (MV.l, 2, 4) and also (MV.3' and 5'), because [i'(l0) = 0;
so tis is a matrix subvaluation, as claimed.

We saw that when (c) holds, then JM'(10) = 0, so /i5 = \if by (16).
Suppose now that \i is radical. In (10) replace Z by 0 " Z and bear in
mind that the quantity in brackets can only increase when {Al5 . . . , Ar}
is enlarged. We thus have

= sup I d@(X © A , © . . . © Ar)\ - n

Since \x is radical, we obtain

A®X\ = n • sup L(X © Ax © . . . © Ar) - SKA)} = n

and this shows ^5 = \t! to be radical as asserted. •

We can use this result as follows to enlarge the domain of regularity.
Suppose that \i is a radical matrix subvaluation and S is a diagonally
closed subset of its domain 2, on which fi is multiplicative. By Lemma 4.2
we can form its regularization [is on S and this will be regular on 5 and
again radical. Now choose any matrix C e 2\5 and let Sf be the least
diagonally closed subset containing C and S. Any member of S' is a
diagonal sum of terms in S or equal to C, and so is E-associated to
© n C © A for some A e S and n ^ 0. By regularity we have

= n

Thus jU5 is multiplicative on S". If we adjoin all the matrices in 2 in turn
we obtain in this way a matrix valuation majorizing Ju; of course this
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valuation may well depend on the order in which the matrices are
adjoined.

We well-order 2 as {Ajar < T} for some ordinal r and write Sa for the
least diagonally closed set containing all Ap for /3 < a; further we write pia

for jxSa. Then \iT is multiplicative on 2 and so is a matrix valuation;
moreover, we have \ix^ \i and if \i is multiplicative on some diagonally
closed subset S of 2, then \iT = [i holds on 5. We thus have

T H E O R E M 9.4.3. Let pi be a radical matrix subvaluation on a ring R,
with domain 2 and multiplicative on some diagonally closed subset SofH.
Then there is a matrix valuation v on R with domain contained in 2, such
that v\S — fi\S and

pi(X) ^ v(X) =ss sup {(i{X © A) - ti(A)}, where A ranges over S.
A

For the proof we need only choose a well-ordering of 2! in which the
matrices in S come first, and then apply Lemma 4.2. •

This theorem holds in particular if we take S to consist of all diagonal
sums of a fixed matrix C. In this way we see that there is for any matrix C
and any matrix subvaluation pi satisfying / i (0nC) = n • fiC, a matrix
valuation majorizing \i and agreeing with \i on C. For when we form the
root \i* to obtain a radical matrix subvaluation, we clearly have
jU*(C) = //(C) and so we can apply Th. 4.3.

We can now achieve our objective, of finding an analogue of Th. 4.1.

T H E O R E M 9.4.4. Let \i be any matrix subvaluation on a ring R. Then
its root ii* satisfies

fi* = inf{V\V^[i}, (18)

where V ranges over all real-valued matrix valuations majorizing pi.
Further, if pi is multiplicative on a diagonally closed subset S of yR(R),
then there is a matrix valuation V ^ pi such that V\S = pi\S.

Proof It is easily checked that both sides of (18) are radical matrix
subvaluations, and for any matrix valuation V such that V ^ pi, we have
V ^ [J*, hence inf {V\V ^ pi) ^ pi*. If this inequality were strict at C, say,
then fi*(C) < VC for all V considered, but JU(C) ^ //*(C) ^ oo, so by what
has been said, we could find a matrix valuation V ^ pi such that
pi*(C) = V(C), and this contradicts the hypothesis. Thus we have equality
in (18). •
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We remark that in all the results of this section we have had to limit
ourselves to ra*/-valued valuations because of the need to form suprema,
which presupposes that we are operating in R (see A. 2, Th. 6.6.5,
p. 218).

The results of this section can be used to extend valuations on field
coproducts; we shall not go into the proofs (which can be found in Cohn
[89']), but merely quote the result. Let (K, v) be a field K with a
valuation v\ an extension (L, w) is said to be unramified if the value
group has not been enlarged. Further, K is said to be v-closed in L if for
each c e L there exists c0 e K such that

w(c — c0) ^ w(c — a) for all a e K.

Such a cQ may be regarded as a 'closest neighbour' of c in K.
With these definitions we have the following extension theorem for

valuations on field coproducts:

T H E O R E M 9.A. Let (Kx, vx) be a family of valuated fields with a
common sub field E such that v = v^\E is independent of A and assume
that KjE is an unramified extension and E is v-closed in each Kx. Then
the field coproduct L = oE Kx has a unique valuation extending all the

Exercises
1. Give a direct proof of Th. 4.1 (after the pattern of the proof of Th. 4.4).

2. Let V be a matrix subvaluation on a field K such that for any invertible matrix
A over K, V(A~1) = —VA. Show that V is a matrix valuation.

3. Show that for any matrix subvaluation JJL on a ring R the sets
= {Ae <JR(R)\VA = °°} and {A e ^(R^VA > 0} are matrix ideals.

9.5 Matrix valuations on firs
We shall now use the method of the last section to construct matrix
valuations on a ring R. These matrix valuations will be positive
real-valued on R and so define a valuation on a certain epic /Mield with a
valuation ring containing the image of R. Although the method of
construction is quite general, for it to be useful we shall need to restrict
the class of rings; interesting conclusions can be reached for tensor rings,
but to begin with we shall impose no restrictions.

Let R be any ring. To construct a matrix subvaluation on R we can
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imitate the method used for subvaluations in 9.4. Thus let {At} be a
family of square matrices over R and for each At define a real number
k{At) such that X(At) ^ 0 with equality if and only if At is invertible. If A-
is any matrix obtained from At by elementary transformations or
changing the sign of a row or column, we put X(A •) = h(At) and denote
the family of all possible A\ by 5. Next we define a function v on Tt(R)
by putting for any C e

= . sup j2A(Q|C © / = Q © . . . © Cr, Cf- e S j if C is full,

if C is non-full.

(1)

We note that for C = / the Ct in (1) must all be unit-matrices, hence we
have v(/) = 0. More generally, the definition (1) shows that

v(7) = 0, v(C © /) = H O for any C 6 0»(/?). (2)

This function v is the least submultiplicative function satisfying (2) and
majorizing A:

L E M M A 9.5.1. Let R be a ring and A a function defined on a certain set
S of matrices of R. If v is defined in terms of A by (1), then (i) v is
submultiplicative and satisfies (2), (ii) v ^ A, (Hi) any submultiplicative
function satisfying (2) and majorizing A also majorizes v.

Proof Given matrices C, D and any fixed e > 0, we can find decomposi-
tions C © I = Ax © . . . © Ar, D © / = B1 © . . . © Bs, Ah B} e S, such
that

v(C) < 2KA) + £, v(£>)

now C 0 D © / is ^-associated to Ax 0 . . . 0 Ar 0 £x 0 . . . © BS,
therefore

v(C © D) s* 2>(A) + 2>(£/) > v(C)

Since e was arbitrary, it follows that v is submultiplicative. Further, v
satisfies (2), as we have seen. Now let C € S, so that X(C) is defined; by
taking the decomposition C = C in (1), we see that v(C) ^ A(C), so (ii)
holds. Finally, if / is a submultiplicative function satisfying (2) and
majorizing A, then for any C such that C © / = Cx © . . . © Cr we have
f(C) = f(C 0 /) 5* 2/(C,) s* 2A(C,.), hence /(C) > sup
v(C) and (iii) follows. •
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Thus in v we have a function satisfying (MV.l, 2, 3', 5). In order to
satisfy also (MV.4) and so obtain a matrix subvaluation, we form

= sup{min{v(Q|C = V;C;}}, (3)
i

where the sup is taken over all possible decompositions as a (repeated)
determinantal sum.

L E M M A 9.5.2. Let v be any function satisfying (MV.l, 2, 3', 5') and (2).
Then the function fa defined by (3) is a matrix subvaluation and \x ^ v,
while any matrix subvaluation majorizing v also majorizes \i.

Proof. Since we always have the decomposition C = C, it follows that
pi(C) ^ v(C); in particular, \i satisfies (MV.l). (MV.2) holds because for
any matrix C, C and C~, obtained by changing the sign of a row or
columm, have the same decompositions. (MV.5') is clear because
Klo) = Hlo) = 0.

To prove (MV.4), let C = A V B, choose s > 0 and take decomposi-
tions

A = XjAh B = VSy, (4)
1 i

such that

li{A) ^ min lviAt)\A = \/A-\ + e, ii(B) ^ min lv(Bj)\B = \/B-\ + e.

(5)

Then

min (v(A), y(Bj)\C = VAV£;1 ^ min {^A)9 ^i(B)} - e.

Since e was arbitrary, it follows that //(C) ̂  min {//(A), p(B)} and
(MV.4) follows.

It remains to prove (MV.3'). We again take £ > 0 and find determi-
nantal decompositions (4). Now we have A © B = V/(^ © Bj) —

j), hence

© B) ^ min {^A, © £.)} ^ min

by (5). Since e was arbitrary, we conclude that fi(A © B)
so (MV.3') holds. This shows that ^ is a matrix subvaluation. Now let /
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be any subvaluation such that / ^ v. Then for any decomposition

and taking the sup over all determinantal decompositions of C, we find
that / (C)^/ i (C) . Thus any matrix subvaluation majorizing v also
majorizes \i. •

By combining these two lemmas we have a process of forming from any
function A on certain matrices over R the least matrix subvaluation pi
associated with A, with the following properties:

T H E O R E M 9.5.3. Let R be any ring and A a function defined on certain
non-invertible square matrices over R, with real positive values. Define v
by (1) in terms of A and \i by (3) in terms of v. Then pi ^ v, pi is a matrix
subvaluation on R and any matrix subvaluation majorizing A also
majorizes pi. •

Given any family of non-invertible square matrices {At} over R and
any function A with positive real values defined on it, we can in this way
construct the least matrix subvaluation majorizing A. With each matrix
subvaluation pi we can associate two matrix ideals, its singular kernel
given by

= {A e

and its associated matrix ideal defined as

9>! = {A

The next result clarifies the relation between these concepts:

T H E O R E M 9.5.4. Let R be a ring and si a proper matrix ideal generated
by a family {At} of matrices. For any real-valued function A on {At} let pi
be the least matrix subvaluation majorizing A. Then

pi(I) = 0, pi(C 0 /) = ill for all C e Tt(R). (6)

Moreover, 9^, the matrix ideal associated with pi, is si and if the values of
A are positive and bounded, and bounded away from 0, then its singular
kernel is given by

Proof. Since si is proper, the terms Ct in any determinantal decomposi-
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tion / = SJiCi cannot all lie in si, say Cxi si. Then from the definition
(1), v ^ ) = 0, because the sup is taken over the empty family, hence

= 0. A similar argument shows that fx(C 0 /) = \xC.
Now any matrix C belongs to si precisely when there is an equation

where B( = Aj ® D for some D, or Bt is non-full.

Hence k(Bt) > 0, so v(Bt) > 0 and \iC > 0; thus C e ^ . Conversely, if
C e 3*!, then \iC > 0, hence C = Q V . . . V Cn and v ( Q > 0 for all i.
Thus each Q has the form Cl ; 0 I — Ax 0 . . . © As, where At is in the
original family and s > 0, hence Q e si and so C e si. This shows that
&!=&.

It remains to prove (7). Assume that <5, M exist such that

0 < 6 < A(Af-) < M for all /.

If A e sin, then A 0 / = V/5,-, where each Bt is either non-full or a
diagonal sum of « terms in si. It follows that ju(Sf) > AK5 and so ^A > «5.
Suppose that A i^^ then /M is finite, so we can find n to satisfy
nd > \iA and hence A $ sin. This proves that f]sin C ^0. Conversely, if
A e &Q, then ûA = °°, so for any n, \iA > nM and we can write
A = \JiBh where v(Bt) > nM. Hence Bt 0 / is a diagonal sum of more
than n matrices in si and so A e sin. This holds for all n, hence A e f]sin

and (7) is established. •

This result gives a clue to the kind of conditions on a ring needed to
allow a matrix valuation to be defined on it. We shall need the following
definitions:

D E F I N I T I O N 1. A matrix ideal i in a ring R is said to be small if
f l^ n = «N\ where >f is the set of all non-full matrices.

This definition, although quite general in form, is only significant in the
case where the set N is itself a matrix ideal. For example, a ring can have
no small matrix ideals unless the determinantal sum of any two non-full
matrices is again non-full. We shall want to use the above definition
mainly for firs, where X is actually a prime matrix ideal, as we saw in 4.5.
In a commutative principal ideal domain a prime matrix ideal corresponds
to a prime ideal pR and we have f]pnR = 0; from this it easily follows
that every proper ideal in R is small. It seems likely that this holds for
every fir, but so far this has only been proved for tensor rings (see Th. 5.8
below).
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D E F I N I T I O N 2. A matrix ideal si in a ring R is said to be *-small if si is

proper and for any full matrix C there exists r e N such that

M m for all n 5*1.

We record two obvious properties:

P R O P O S I T I O N 9.5.5. Let R be any ring, (i) Any *-small matrix ideal is
small, (ii) Given matrix ideals 28 C si, if si is small or *-small, then so
is®.

Proof, (i) is clear. To prove (ii), we have 2fcn C si", hence (]&" C
and so whenever si is small, 2S is so too. Now assume that si is *-small
and take any full matrix C. There exists r > 0 such that 0 n C $ sim for
all n, hence 0 n C $ Wn for all n, and this shows 2S to be *-small. •

The role played by the notion of smallness in the construction of matrix
valuations is clarified by our next result:

T H E O R E M 9.5.6. Let R be a ring in which the set X of all non-full
matrices forms a matrix ideal. Given a real-valued radical matrix sub-
valuation \i on R with singular kernel X and associated prime matrix ideal
&i, if the values \iA for A e ?P1 have a positive lower bound, then ?P1 is
*-small. Conversely, given a *-small matrix ideal si on R and a real
function A on a generating set of si, with a finite upper bound, let JJL be its
associated matrix subvaluation. Then its root ft* is finite on the set of all
full matrices.

Proof. By definition \iA > 0 for A e (3>
l and by hypothesis there exists

6 > 0 such that \xA ^ 6. Let fiA = a and suppose that 0 " A e *["; then
pi(®nA) = na^ rnb. By choosing r > a/6, we ensure that 0 M $ <3>[n

for all n, and the first assertion follows.
For the converse let {At} be a generating set of si on which X is

defined, and suppose that ii{At) ^ M. If C is a full matrix such that
/i*(C) = a>, this means that for any r e N there exists n such that
ti{®nC) > rnM. As in the first part of the proof it follows that
0 " C e sirn, but this contradicts the fact that si is *-small. •

By invoking Th. 4.4 we see that this result provides a means of
obtaining a matrix valuation from a *-small matrix ideal. By Prop. 5.5 it is
enough to show that every maximal matrix ideal is *-small. We shall now
show this for the case of tensor rings.
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Let K be any field and k a central subfield and consider the tensor
AT-ring on a set X: R = Kk{X). We know that this ring is a fir and so has
a universal field of fractions U = Kk^X^>. Let a = (ax) e Kx, thus a is a
function on X with values in K; we obtain a Airing homomorphism from
R to K by mapping x to ax. The singular kernel is a prime matrix ideal
Ma which is generated by the family (x - ax). It is clear that Ma is a
maximal matrix ideal in R and the next result shows it to be *-small;
moreover, it yields a matrix valuation associated with Ma.

P R O P O S I T I O N 9.5.7. Let R = Kk{X) be a tensor K-ring on a set X
and a = (ax) e Kx. Then the matrix ideal Ma generated by all x — ax

(x e X) is a *-small prime matrix ideal and there is a matrix valuation Va

on R with singular kernel >f, the set of all non-full matrices, and associated
matrix ideal Ma.

Proof. On replacing x by x — ax we may take a = 0. We write again
U = Kk^X^- and form the rational function field U(t) with a central
indeterminate t. On U(t) we have the r-adic valuation v, which induces a
matrix valuation on R[t], again denoted by v. Now for any A e ^(R) we
define

V(A) = v(At)9 where At = A(tx). (8)

Thus the value of A is defined as the f-adic value of the matrix A(tx)
obtained from A by replacing each x e X by tx. To verify that V is a
matrix valuation on R with associated prime matrix ideal Mo, generated
by all x e X, we note first that v is a matrix valuation on R[t] and x »-»tx
defines a homomorphism R —> R[t], hence (8) defines a matrix valuation
on R by pullback. Further, VA > 0 precisely when ^4(0) is non-invertible,
i.e. when the matrix obtained from At by putting t = 0 is non-invertible.
But this is just the matrix ideal associated with the £-adic valuation,
namely Mo. By Th. 5.6, Mo is *-small, and it follows that the singular
kernel is X. •

This result can be extended to any prime matrix ideal of the tensor
ring:

T H E O R E M 9.5.8. Let R = Kk{X) be the tensor K-ring on Xas before
and let 2P be any prime matrix ideal on R. Then there exist an extension
field L of K and a e Lx such that <3> = Man 9R(/?), where Ma = (x - ax)
is a maximal matrix ideal in Lk{X). Hence
matrix valuation on R with associated matrix ideal
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Proof. Let L = R/&, the residue-class field of the localization Rg>, and
denote the image of x e X in L by ax. The ring 5 = Lk{X) is again a
tensor ring, containing R as subring. We write Ma for the matrix ideal of
S generated by all x — ax (x e X), clearly a maximal matrix ideal of S. If
the matrix ideal of S generated by 2P is denoted by 2P', then by the
definition of a we have l ^ C ^ ' , and (3>t is proper, because the natural
homomorphism /?—> L can be extended to S. Hence (3>t = Ma by the
maximality of Ma and it follows that Ma n TO(/J) D 9\ But the natural
map R—> S induces a homomorphism of local rings R&-> SMa which
yields an isomorphism of residue-class fields; therefore Ma D ^(R) = 9\
as claimed. Let Va be the matrix valuation on S corresponding to Ma

which exists by Prop. 5.7. Its associated matrix ideal is Ma, hence the
restriction Va\R is a matrix valuation on R, with associated matrix ideal
3>, and by Th. 5.6, <3> is *-small. •

This result shows that the matrix subvaluation pi obtained from a proper
matrix ideal s4 of Kk{X) has a finite root p* and so, by Th. 4.4,

li*{A) = inf {VA\VA ^ fiA). (9)

We recall from (3) of 4.4 that for any matrix ideal si we have

Vs£ = f |{^ prime \& D si}. (10)

By Th. 5.8, each 2P in (10) arises by restriction from some Ma; we thus
have a family of matrix valuations associated with ^4. It is clear that
inf (V )̂ defines another matrix subvaluation, and one would expect this to
be in some sense equivalent to ^*; whether it actually equals pi* is not
known.

Th. 5.8 leaves open the question whether every maximal matrix ideal of
Kk{X) is necessarily of the form Ma for a e Kx. If we look to the
commutative case for guidance, we find that when we take (i) X finite
and (ii) k algebraically closed, then every maximal ideal of k[X] is
finitely generated (by the Hilbert basis theorem) and is of the form
(x-ax\xeX), by the Hilbert Nullstellensatz (see A.2, Th. 9.10.3,
p. 351). In the non-commutative case we need to assume finite generation
explicitly and replace algebraically closed fields by existentially closed
skew fields. As we saw in 8.8, for any EC-field K over k, a finitely
generated maximal matrix ideal of Kk{X) must be of the form
Ma = (x - ax\x e X).

Exercises

1. Let kQ be the group algebra over k of the additive group Q of rational
numbers. Show that the augmentation ideal of kQ is idempotent, and deduce that
the singular kernel of the augmentation map A;Q —• k is not small.
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2. Verify that in a commutative principal ideal domain every proper matrix ideal
is *-small.

3. Let R be an Hermite ring in which the determinantal sum of any two non-full
matrices (where defined) is again non-full. Show that the set X of all non-full
matrices over R is a matrix ideal, and give a condition for X to be prime. (R is
Hermite if for every matrix A with a left inverse, (A, A') is square invertible for
some A'\ see FR, 0.4.)

4°. Is it true that every proper matrix ideal in a fir is small, or *-small?

5. A matrix ideal & in a ring R is called superficial if it is small and for any
m,n^0 and any matrices A, B, A$9>m+1, 5 ^ n + U i © 5 ^ m + n + 1 .
Show that every superficial matrix ideal is prime and *-small.

6. Show that the matrix subvaluation associated with a prime matrix ideal 9* is a
matrix valuation if and only if & is superficial.

7. Let Kk{X) be a tensor K-ring on a set X, where \X\ > 1, and let Ma be a
maximal matrix ideal, with the corresponding matrix valuation Va. Show that the
residue-class field for Va is not an epic R-field.

9.6 Ordered rings and fields
The theory of orderings on a field presents some analogies to the theory
of valuations; thus Th. 2.3 and 2.4 have an analogue in Th. 6.4. These
results are of intrinsic interest and also serve as a preparation for the
study of matrix cones in 9.7. We begin by recalling the basic results, but
assume that the reader has some familiarity with the commutative case.

An ordered ring is a non-trivial ring R with a total ordering '> ' which is
preserved by the ring operations:
(O.I) / / xx > x2, yt > y2, then xx + yx > x2 + y2,
(O.2) / / x> 0, y > 0, then xy > 0.
As usual we write x ^ y to mean 'x > y or x = y' and use ^ , < for the
opposite ordering. An element x is called positive if x > 0, negative if
x < 0. From (O.2) we see that an ordered ring is necessarily an integral
domain. Further, the square of any non-zero element is positive, for if
a > 0 then a2 > 0 and if a < 0 then -a > 0 and so a2 = (-a)2 > 0. Since
any positive integer n is a sum of squares I2, it follows that any ordered
ring has characteristic zero. We shall also need the following general
property:

L E M M A 9.6.1. In any ordered ring, if xx . . . xr > 0, then xv . . . xr> > 0
for any permutation (1', . . . , r') of (1, . . . , r).
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Proof, xi . . . xr > 0 holds if and only if xt =£ 0 for / = 1, . . . , r and the
number of negative JCS is even. •

In any ordered ring R the set

P = {x e R\x > 0} (1)

is called the positive cone. By (O.I, 2) it is closed under addition and
multiplication and, writing -P = {-x\x e P}, we have

PD-P = 0, PU-P=RX. (2)

Conversely, every additively and multiplicatively closed subset P of Rx

satisfying (2) is the positive cone of an ordering on R, as is easily
checked.

A commutative ordered ring, being an integral domain, naturally has a
field of fractions and the ordering can be extended to it. This holds more
generally for Ore domains:

T H E O R E M 9.6.2. Let R be a right Ore domain and K its field of
fractions. If R is an ordered ring, then the ordering can be extended to K in
just one way.

Proof. Every element of K has the form as'1, where a,s e R, s =£ 0. If
there is an ordering on K extending that of R, then as'1 must have the
same sign as as = as'1 • s2, so the ordering is unique if it exists at all. Now
the rule just given defines an ordering. For if as'1 = a's''1, let su = s'u'\
then au = a'u'. Suppose that as > 0; then as'u'u = asu2 > 0, hence
au • s'u' > 0, so a'u' • s'u' > 0 and hence a's' > 0.

Now let x,y>0 in K, say x = as~1, y = bs'1 with a common
denominator s\ then (x + y)s2 = (a + b)s = as + bs > 0. Similarly, if
x = as'1, y = bt'1 and x, y > 0, then s~lb = b^i1, and xy =
as~lbt~l = abifai)'1. Now ab1ts1 has the same sign as atbiSx, or also as
atbs, or also as • bt, which is positive, so xy > 0. •

To study the existence of orderings we shall need the general notion of
a cone. Given any elements aY, . . . , an of a ring, we shall write
[axa2. . . an] for the set of all products of ax, a2, . . . , an in all possible
orders; here the at need not all be distinct; for example, in an ordered
ring, any member of \a\a\ . . . a2

n] is positive, if ati=0.
We now define a cone on a ring R as a subset P of R which is closed

under addition and, for any al9. . . , an e Rx, ux, . . . ,ume P, contains
the whole of [«? . . . a2

nux . . . um]; P is said to be proper if0$P, total if
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P U - P D i ? x . The definition shows that P always contains all squares of
non-zero elements.

It is clear that the positive cone of an ordering on R is a proper total
cone. Moreover, the intersection of any family of cones on R is again a
cone, so we can speak of the cone generated by a given subset of R. For
example, the least cone on R is the cone Po generated by the empty set; it
consists of all sums of members of [a\. . . a2

n], for any at e Rx. Of course,
Po may be improper, e.g. if R is not an integral domain, or a finite field.
If the least cone in R is proper, R is said to be formally real; this then
means that no sum of terms from any sets [a\. . . a2

n] is zero.
Given a ring R and any proper cone P on R, not necessarily total, if we

define x > y to mean x — y e P, we obtain a partial ordering of R in
which all squares are positive; it is a total ordering if and only if P is total.
Thus when we speak of a partially ordered ring (or field), it is always
understood that all non-zero squares are positive.

We remark that Z (and hence Q) has a unique ordering, because there
is only one proper cone. The real field R also has a unique ordering,
because every element is either a square or the negative of a square.

Our aim will be to show that any formally real ring can be ordered. The
essential properties are contained in the following lemma, where we write
P + aP={p + aq\p,qeP}.

L E M M A 9.6.3. Let R be a ring and P a proper cone in R. Then (i) the
cone generated by P and an element a of R is proper if and only if
0 $ P 4- aP, (ii) every proper cone on R is contained in a maximal proper
cone and (Hi) a proper cone is maximal if and only if it is total.

Proof, (i) Let (P,a) be the cone generated by P and a; it consists of
sums of terms which are products of elements of P and a in some order.
Since a2 e P, we can write any element of P as u0 + ux where u0 is the
sum of products involving an even number of factors a, and so belonging
to P, while ux is the sum of products with an odd number of factors a,
hence aux e P. If 0 e (P, a), we have u0 + ux = 0, hence au0 + aux = 0
and u0, aux e P, so if (P, a) is improper, then 0 e P 4- aP. The converse
is clear.

That a proper cone is contained in a maximal proper cone is clear by
Zorn's lemma, so (ii) holds. To prove (iii), let P be a maximal proper
cone. If P is not total, say a e RX\P U —P, consider (P, a); since P was
maximal, (P,a) is improper, so u 4- av = 0 for some u,veP, and
similarly, x — ay = 0 for some x, y e P, hence

0 = xu + xav — xu + (ay)(av) e P,
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which is a contradiction; thus P is total. Conversely, if P is total, then
P U — P = Rx and so P is clearly maximal. •

This lemma allows us to state conditions for an ordering to exist; we
shall slightly more generally give conditions for an ordering on a subring
or a partial ordering to be extended. It is clear that any ordering on a ring
R defines an ordering on any subring by restriction.

T H E O R E M 9.6.4. Let R be a ring. Then (i) any partial ordering > on R
can always be extended to a total ordering >" such that x > y => x >" y;
(ii) if R has an ordered subring A, then the ordering of A can be extended
to one ofR if and only if no sum of terms from the sets

[c\... c2
max . . . an], where ct e Rx, a^ > 0 in A, (3)

vanishes. In particular, R can be ordered if and only if it is formally real.

Proof, (i) Given a partial ordering on R, let P be its cone; by Lemma 6.3
P is contained in a maximal proper cone P' , which is total and so defines
an ordering of R extending the partial ordering. If for P we take the least
cone, Po, we see that there is an ordering on R precisely when Po is
proper, i.e. when R is formally real.

To prove the rest of (ii) we note that the positive cone P of A consists
of all sums of terms from the sets (3), so the hypothesis just states that P
is proper. In any ordering of R extending that of A the positive cone
contains P, so if an extension exists, P must be proper. Conversely, when
P is proper, then it is contained in a maximal proper cone P' which is
total, again by Lemma 6.3, so P' defines an ordering which by
construction extends that of A. •

In a field the definition of a cone can still be simplified. It is clear that
any cone in a field K is closed under sums and products and contains all
non-zero squares. Conversely, a subset P of a field with these properties
is a cone, for in the first place P contains all commutators

(a, b) = a-xb~lab = a-2{ab~l)2b2 e P.

Hence if ba e P, then ab = ba(a, b) e P and it follows that P satisfies the
conditions for a cone. In particular, the least cone in a field is generated
by all sums of products of squares. This leads to a simple criterion for a
field to be formally real; we state the result again in slightly more general
form in terms of extensions:

T H E O R E M 9.6.5. Given a field extension L/K> if K is ordered, then the
ordering can be extended to L if and only if there is no equation
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— 1 = ^2jPiUb where pt e K, pt > 0 and ut is a product of squares in L.

(4)

In particular, a field is formally real if and only if —1 cannot be written as
a sum of products of squares.

Proof. It is clear that no equation (4) can exist if L has an ordering
extending that of K. Conversely, when no such equation exists, let P be
the set of all sums 2 A W *

 a s *n (4) where p-Ui i= 0. Then P is a cone, which
we claim is proper. For if not, then we have an equation

pouo + pxux + . . . + prur = 0,

where pt > 0 in K and ut is a product of squares, for / = 0, 1, . . . , r.
Hence

- 1 = p l l p x U x u l l + . . . + p ^ 1

which is a forbidden equation, by hypothesis. Hence P is proper and we
can again use Lemma 6.3 to find a maximal cone, leading to an ordering
ofL. •

For commutative fields this reduces to the well known condition of
Artin and Schreier: A commutative field is formally real if and only if - 1
cannot be written as a sum of squares.

We conclude with a theorem of Albert on algebraic elements in
ordered fields.

T H E O R E M 9.6.6. Let K be an ordered field. Then the centre of K is
relatively algebraically closed in K.

Proof Let C be the centre and suppose that a e K and a is algebraic
over C but not in C. Then its minimal polynomial over C,

/ = *" + kxx
n-1 + . . . + \n (A,- e C),

is of degree n > 1. Since char K = 0, we can replace a by a' — a +
(l/n)A1; its minimal polynomial is obtained by replacing x by x — (l/n)Xx

and expanding in powers of x. In the resulting polynomial the coefficient
of xn~x is zero. Now by Cor. 3.4.5 we can factorize this polynomial as

(x - ax) . . . (x - an),

where the at are conjugates of a'. Comparing coefficients of xn~l we have

a, + . . . + an = 0.
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If fl'>0, then each conjugate at is positive and ^at>0; similarly,
^ax < 0 when a' < 0, so a' — 0, which contradicts the fact that a $ C, and
so the conclusion follows. •

Exercises
1. Show without using Th. 6.4 that every formally real ring is an integral domain.

2. Show that a proper cone P on a ring is an intersection of maximal cones if and
only if p, ap e P implies a e P.

3. Let R be an integral domain with an ordered subring A such that for any r e R
there exist a, b e Rx such that ar, rb e A. If the positive cone of A is P, and
P' = {x e R\ax e P for some a e P}, show that x e P' if and only if axb e P for
some a, b e P. Verify that P' is a proper total cone on R and deduce that the
ordering on A can be extended to one of R in just one way.

4. Show that a field K can be ordered if and only if Kx contains a subgroup of
index 2, closed under addition.

5. Show that an element c of a field K is positive under every ordering of K if
and only if c is a sum of products of squares.

6. (A. A. Albert [57]) Show that an ordered Pi-ring R is commutative. (Hint.
Use Ex. 1 of 7.2 to show that R is an Ore domain; now apply Kaplansky's
Pi-theorem and Th. 6.6.)

7. Let P be a cone on a field K. If P is total and P ¥= Kx, show that
pn -p = 0.

8. In an ordered field show that if a commutes with bn, where n > 0, then a
commutes with b.

9. Let P be a cone on a field K.lf-leP, show that P = Kx.

9.7 Matrix cones and orderings on skew fields
In Th. 6.2 we have seen that for a commutative integral domain R (or
even an Ore domain) with field of fractions K every ordering of R
extends to a unique ordering of K. For general skew fields this is no
longer so; if R is an ordered ring and K is an epic R-field, then the
ordering may or may not be extendible to K, and if it is, the extension
may not be unique. It turns out that we need to order not just the
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elements of R but the square matrices over R. This is most easily
expressed in terms of matrix cones.

For any subset II of ^ft(R) define

- I I = {A e 3R(/?)| - 1 0 A e II}, II+ = n\(II H - n ) .

A subset II of <3??(JR) is called a matrix cone if
(M.I) II contains all non-full matrices,
(M.2) n contains A® A, for all A e 0W(/?),
(M.3) If A, Be II, then A © B e II,
(M.4) / / A, B eU and C = AV B with respect to some column (or

row) is defined, then C e II,
(M.5) If A® 1 ell, then AeU,
(M.6) If A en H-n and B e <K(/?), then A® B en.
As a first consequence we note that A e II implies EA, AE e II for any
elementary matrix E of the same order as A. For if E = I + Xe2\ say, and
A = (a1 a2 . . . an), then

A E = (tfx + a2X a2 . . . #„ ) = A V

By (M.I) the second term on the right is in II as well as the first, so
AE e n by (M.4); similarly for other columns or for rows.

It follows that if A e II, then the result of interchanging two columns
and changing the sign of one of them still lies in II, and likewise (by a
double application) for the result of multiplying two columns of A by — 1.

With any matrix cone II we associate the set

n° = nn -n,

which is easily seen to be a matrix ideal. If, further,
(M.7) A® B en0 implies A e II or B e II,
(M.8) - 1 * 1 1 ,
then II is said to be proper. Clearly (M.7 and 8) hold when the associated
matrix ideal II0 is prime. Conversely, if II is proper, so that (M.7, 8)
hold, then II0 is prime. To establish this fact it will be enough to show
that (M.7) is equivalent to
(M.7') A © B e n° implies A en0 or Be n° .
Assume (M.7) and suppose that A © B e II0. Then A e II or B e II;
further, - 1 © A © B e II0, hence - 1 © A e II or B e II, i.e. A e-n
or B en. Similarly A e II or Be - I I , and since - 1 © - 1 © A ©
B e II0, we conclude that ^ 4 e - n o r £ e - I I . Thus we have

(AenvBen)A(AenvBe - I I ) A (A e - I I v B e II)

A (A e -n v B e - I I ) ,
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which by the distributive law reduces to

(A e n A A e - I I ) v (B e U A B e - I I ) ,

from which (M.7') follows. The converse is clear.
From the definition it is clear that any intersection of matrix cones is

again a matrix cone, so we can speak of the matrix cone generated by a
given matrix ideal (or indeed, by any set of square matrices). An
intersection of proper matrix cones need not be proper, since (M.7) may
fail; however, the intersection of a family of matrix cones associated with
a fixed prime matrix ideal 2P is a matrix cone which is again associated
with 2P and so is proper.

We note some elementary properties of matrix cones.

L E M M A 9.7.1. Let II be a matrix cone over a ring R and A, B e
Then

(i) If A e U+ and B e U and C = AV B is defined, then C e II+.
(ii) If A eU+ and E is an elementary matrix of the same order as A,

then AE, EA eU+. In particular, if any two columns (or rows) of A are
interchanged and the sign of one is changed, the result is still in U+.

(iii) If A® BeU, then (* C\, (^ ° ) e U for all C, D of

appropriate size.

(iv) / / A © B e U+, then (* C\, [* ° \ e U+ for all C, D of

appropriate size.
(v) / / n is proper and A, B e U+, then A © B e U+.

Proof, (i) Let A e II+ , B e U and suppose that AV B is defined with
respect to the first column say: A = (a, A'), B = (b, A'). By (M.4),
A V B e II; we have to show that A V B $ —II, so assume that
AV B = (a + b,A') e - I I . By (M.2) and (M.5), - 1 © ( -6 , A') e II.
Thus by (M.4),

- 1 © A = ( -1 © (a 4- 6, A')) V ( -1 © (-&, A')) e II,

but then A e - I I , which contradicts the hypothesis, hence A V B $ - I I .
Now (ii) follows as before, by the remarks made earlier.

[A C\
To prove (iii) we build up C in one column at a time, using

(M.4) and (M.I), and similarly for , while (iv) follows by
\D BJ

using (ii).
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To prove (v), suppose that II is proper and let A,BeU+; then
A © B e n by (M.3), and we have to show that A © B £ - I I . If this is
not so, then - 1 © A © B e II, hence - 1 © A © B e U H - I I = n° , so
by (M.8) and (M.7'), A e U° or B e II0, which is a contradiction, hence
(v) follows. •

The next result shows how matrix cones can be used to construct
orderings. We shall call a matrix cone total if II U —II = Tt(R).

T H E O R E M 9.7.2. Let R be any ring and II a proper matrix cone on R,
with associated prime matrix ideal II0. If K — R/ll0 is the corresponding
epic R-field, then the set

P(H) = {a e K\for some admissible A = (Ao A* A^) for a,

(Ao A,)0(-A. ^ ) e n + } (1)

is the positive cone of a partial ordering of K; it is a total ordering if and
only if II is total.

Proof. Suppose that a, b e K and denote admissible matrices for them by
A = (Ao A% A*), B = (Bo B* B^). Then an admissible matrix for
a + b is

Ao A* Aoo 0 0 \
£}Q U ~~£>oo ^5>|c &ooj

and we have to show that a, b e P(TL) implies a + b e PQT). Thus we
need to show that

Ao A* Aoo 0 \ ^ / 0 A* A* 0
Bo 0 —Boo B%) \—Boo 0 — Bn B^

The first term can be written as a determinantal sum,

Ao A* Aoo 0 \ _ lAQ A* AOO

Bo 0 -Bo* B*) \ 0 0 -Boo 1

v / 0 A* Ao, 0
\B0 0 -Bo, B*

while the second can by an interchange of columns be brought to the form

-A. A, 0 0\
D rj p> /? / '

The diagonal sum of (4) with the first term on the right of (3) gives
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Ao A* An 0 \ I-An A*
0 0 -Bn B*J \ Bn 0 -

Since (Ao A*) © (-A^ A*), ( - « „ £ * ) © ( - £ « , ^ J e l l * , this
term lies in n + . The second term on the right of (3) together with (4)
gives

A* 0 0\ /-An A* 0 0
0 Bo B+] \ Bn 0 -Bn B*

and this lies in n + because (-An A*) © (-An A*), (Bo B*)
© (-tfoo £*) e n + . It follows that (2) holds, and this shows P(II) to be
closed under sums. Next consider a product ab; an admissible matrix is

Bo B* Bn 0 0
O

f) A A A

and to show that ab e P(TL) we need to verify that

#o #* Bn 0 \ Q / 0 #*
0 0 Ao A*j \-An 0

By appropriate elementary transformations, and transforming away
non-diagonal terms by Lemma 7.1 (iv), we can reduce this to

Bo #* 0 0 \ /-Bn B* 0 0
0 0 Ao A*] \ 0 0 -An A*

If a,b e P(U), it is clear by (M.3) that ab e P ( n ) ; when b = a, then
a2 e P(TL) by (M.2). Thus P(TL) is a matrix cone on if. It is proper
because 0 has the admissible matrix (0 1) and 0 © — l e l i n — II, so
0 $ P(U). Hence P(U) defines a partial ordering on K.

Finally, if II is total, then for any a e Kx with admissible matrix
A = (A0 A* An), either (Ao A J © (-An A*) e H+ or - 1 ©
(Ao A*) © (—An A^)eU+, In the second case, we have by
elementary transformations, 1 © (Ao A*) © (An A*)eT\+, hence
(Ao A*) © (An A*) e II+ and so -a e P(U); thus P(II) is total and
so defines an ordering on K. M

Over a commutative ordered field we can define an ordering of
matrices by the rule: A > 0 if and only if det A > 0. With this definition it
is easily checked that for any partially ordered field K the set of all
matrices A such that A > 0 is a proper matrix cone, which is total
precisely when we have a total ordering.

Assume now that K is a skew field. On K we have the Dieudonne
determinant Det: GL(^)-» Kab. If K is an ordered field, or even just



9.7 Matrix cones and orderings on skew fields 467

partially ordered, then its positive cone contains all squares and hence all
commutators. Thus each residue-class in Kab is either positive or negative
and so we can again define a matrix A to be positive if Det A is positive.
In this way each partial ordering of an epic R -field leads to a proper
matrix cone on i?. As expected, this correspondence between proper
matrix cones and partial orderings is a bijection:

T H E O R E M 9.7.3. Let R be a ring and K an epic R-field with natural
homomorphism X.R-+K. Then for any partial ordering of K with
positive cone P, the set

M(P) = {A e 3W(/?)|Det Ax ^ 0}

is a proper matrix cone with associated prime matrix ideal KerA;
moreover, P(M(P)) = P.

Proof (M.I) is clear and (M.2,3) follow by the multiplication of
determinants in diagonal sums; (M.5, 6) are also clear, so it remains to
prove (M.4). Let C = A V B, where A, B e Tt(R) and the determinantal
sum is with respect to the first column. By Lemma 3.2 we can apply
elementary transformations so as to reduce A, B, C to the form a © Z),
b © D, c © D, where c = a + b. Hence Det Ax = ax • 6, Det Bx = bx • 6,
Det CA = cA-6, where 6 = DetDA. Now ax8, bx6^0, hence ck8 =
ax8 + bx6 ̂  0, and so (M.4) holds. This shows M(P) to be a matrix cone.

For any A e yR(R), Ak is singular if and only if Det Ax = 0 and this just
means that A e M(P) H -M(P). Moreover, a e P(M(P)) o (Ao A*) ©
(—Aoo A^)eM(P) for an admissible matrix A for a, while Cramer's
rule in the form

shows that a is stably associated to (Ao A%) © (-AM A*)~l —
(Ao A*) © (-Aoo AJ-C-Aoo A*)~2.Thusae P(M(P))oae P. M

This result leads to a criterion for an epic /Mield to be orderable.

T H E O R E M 9.7.4. Let R be a ring and K an epic R-field with natural
homomorphism A: /?—» K. Then K can be ordered if and only if the
matrix cone on R generated by KerA is proper, with associated prime
matrix ideal KerA.

Proof Put KerA = 2P and let n be the set of all matrices C such that
C © / is a determinantal sum of matrices which are either in 9> or of the
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form A © A or a diagonal sum of such matrices. Then it is clear that II
satisfies (M.l-5) and we have a matrix cone if (M.6) also holds. This will
certainly be true if

n n - n = g>. (5)

We note that in any case n n - I l D ? . Suppose first that K can be
totally ordered and let II' be the corresponding matrix cone. Then II' is
proper, IT D II and II' n - I I ' = 9>, hence (5) holds and II is a proper
matrix cone with associated matrix ideal 9\ Conversely, if n is a proper
matrix cone satisfying (5), then it defines a partial ordering of K, and by
Th. 6.4 this can be extended to a total ordering. •

As an application we shall prove that the free field on any ordered field
can be ordered.

T H E O R E M 9.7.5. Let K be an ordered field with centre k and X any
ordered set. Then the free field Kk^X^ can be ordered so as to extend the
orderings on K and X.

Proof It will be enough to find an ordering of Kk^X^ to extend the
ordering of K, because every permutation of X induces an automorphism
of Kk^X^>, so we can apply a permutation to X to ensure that the
ordering on X agrees with the given one.

By Th. 6.6 A: is relatively algebraically closed in K, so [K:k] = °°
unless K = k. Let us for the moment assume that K =£ k and write
R = Kk(X). We note that k is infinite, since it is of characteristic zero,
so all the hypotheses of the specialization lemma are satisfied. We denote
by N the set of all non-full matrices over R; we have to find a proper
matrix cone n of R with associated matrix ideal N. For any K-hng
homomorphism k: R-+ K consider the set

nA = {A e <K(/?)|Det(i4A) s* Oin K).

It is clear that IIA is a proper matrix cone containing the positive cone P
of K, considered as set of 1 x 1 matrices. Let II = fllIA, where the
intersection is taken over all IIA corresponding to all Airing homomorph-
isms from RtoK. Then II is again a proper matrix cone; we claim that

nn-n = if. (6)

Clearly any non-full matrix belongs to II D —II. Conversely, if A is full,
then by the specialization lemma, Ak is non-singular for some homo-
morphism A, hence Det(Ax)¥=0 and it follows that A $ IIA n -IIA;
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therefore A$Un - I I , and so (6) holds. Now by Th. 7.4, R/X can be
ordered, and since II D P, the ordering extends that of K.

When K = k, we take K to be the Hilbert field on k (see 6.1). The
polynomial ring k[u] can be ordered by assigning to each polynomial the
sign of its lowest term, and this ordering can be extended to F = k(u) by
Th. 6.2. Now F has the order-preserving endomorphism a: f(u) »-> f(u2)
and on the skew polynomial ring F[v; a] we can extend the ordering of F
by taking again the sign of the lowest term; this ordering again extends to
K = F(v; a) and clearly K is an ordered field with k as centre, by 6.1.
By Th. 6.4.6, k<^.X1f> as a subfield of Kk^X^ can be ordered. •

Exercises

1. Show that a matrix cone satisfying (M.7) but not (M.8) must equal yfl(R).

2. Let IIA be a family of matrix cones on a ring R, where IIA is associated with the
matrix ideal 9V Show that flnA is proper if and only if H^A is prime.

3. (G. Revesz [83]) Let R be a partially ordered ring with positive cone P and let
K be a field of fractions of R with singular kernel (3>. Show that this partial order
can be extended to an ordering of K if and only if there is a proper total matrix
cone II associated with & and satisfying HDP. Show also that this ordering is
unique if every matrix cone II associated with & and satisfying II D P is total.

4. (G. Revesz [83]) Let F = k(x,y) be the free algebra over an ordered field k
on x and y and let G be the subalgebra generated by x, xy, xy2. Verify that G
has a total ordering extending that of k for which xy < x < xy2, but that this
ordering cannot be extended to the universal field of fractions of G.

5. Let K be an ordered field with centre k. Show that the field coproduct K ° K
can be totally ordered. (Hint. Use Lemma 5.5.6.)

6. Let G be an ordered group with a subgroup H. Show that the free product
G *G amalgamati
5, cf. Cohn [85"].)
G * G amalgamating H can be ordered to extend the order on G. (Hint. Use Ex.

H

Notes and comments
Kurt Hensel introduced p-adic valuations in number fields (see Hensel
[08]), probably by analogy with places in function fields, but the study of
valuations with a general value group (not necessarily R) was begun by
W. Krull [31]. Valuations on skew fields were first defined by Schilling
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[45], although in his book (Schilling [50]) he confines his attention to the
commutative case. A further generalization has been studied by Mathiak
[77, 81], in which the values form an ordered group with a group of order
automorphisms; this corresponds to the case where the ring of the
valuation is a total subring of the field, not necessarily invariant.

The notion of domination and Chevalley's lemma first appeared in
Chevalley [51] and it received a coherent treatment in Bourbaki [64]. The
extension of Chevalley's lemma to abelian valuations on skew fields first
occurs in Cohn and Mahdavi-Hezavehi [80], and was also obtained
independently by M. Krasner [a], while quasi-commutative valuations
were defined in Cohn [88']. Sections 9.1-2 are based on the exposition in
A.3, Ch. 9.4.

The notion of pseudo-valuation (here called subvaluation) was devel-
oped by Mahler in a series of papers in the mid-1930s in Ada
Mathematica. In particular he showed that in any algebraic number field
or algebraic function field of one variable any subvaluation (in the present
terminology) is the infimum of a finite family of valuations. In Cohn [54]
it was shown that any radical subvaluation on a field is an infimum of a
family of valuations; this result was proved in the general context of
commutative rings (as in Th. 4.1) by Bergman [71], who also points out
the parallel with the well known formula for the radical of an ideal in a
commutative ring:

Va = \]{p prime |p D a}.

Matrix valuations were defined and studied by M. Mahdavi-Hezavehi
[79, 82], where Th. 3.5 is proved. The first complete proof of Th. 4.4
appeared in Cohn [89'], where the result is used to construct valuations
on field coproducts. The results in 9.5 are taken from Cohn [86].

The theory of formally real commutative fields was developed by Artin
and Schreier [26]. The extendibility criterion of Th. 6.5 in the commutat-
ive case (there is no equation X P / # ?

 = "~1> Pt > 0) was obtained by Serre
[49]; in the general case the orderability condition was proved independ-
ently by Pickert [51] and Szele [52], and the criterion for extendibility by
Fuchs [58], where forms of Th. 6.4 are proved, as well as Lemma 6.3 on
which it is based. The case of formally real rings is studied by R. E.
Johnson [52] and V. D. Podderyugin [54]. Theorem 6.6 was proved by A.
A. Albert [40]. Section 9.7 follows essentially Revesz [83]; for Th. 7.5 see
also Cohn [85"].

For a commutative field that is not formally real, the level has been
defined as the least integer n such that - 1 can be written as a sum of n
squares. A. Pfister [65] has shown that the level is always a power of 2,
and all powers can occur. For skew fields Scharlau and Tschimmel [83]
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define the level as the least integer n such that —1 can be written as a sum
of n products of squares, and they show that for every n ^ 1 there is a
field of level n, constructed as an iterated Laurent series ring in two
variables over a commutative field.





STANDARD NOTATIONS

Besides the usual signs of logic, A, v, —i, =>,<=>, V, 3 (and, or, not,
implies, is equivalent to, for all, there exists) and the signs N, Z, Z/p, Q,
R, C, H, F^ (natural numbers, integers, integers mod/?, rational, real,
complex numbers, quaternions and the Galois field of q elements), the
following signs are often used without further explanation, where 5, T,
X are sets, R denotes a ring, and A a commutative ring.

|5| cardinal of the set 5,

<3>(S) set of all subsets of 5,

S\T complement of T in 5,

n^A Cartesian product of the family of rings (Rx),

Rx set of all mappings from X to R,

RW restricted direct product (direct sum) of copies of R,

A[X;<&] commutative A-algebra generated by X with defining rela-
tions 4>,

R(X; O) R-ring generated by X with defining relations O,

R/a residue-class ring of R (mod a),

E/D field extension DCE,

centre of R,

centralizer of X in R,

R° opposite ring,

R+ additive group of the ring R,

473
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RM, MR left, right i?-module,

Rx = R\{0} set of all non-zero elements of R,

U(R) group of units of R (in 2.6 U(L) is used to denote the universal
associative envelope of the Lie algebra L),

J(R) Jacobson radical of R,

(x, y) = x~ly~lxy multiplicative commutator,

[x, y] = xy — yx additive commutator,
mRn set of all m x n matrices over R,
mR = mR\ Rn = xRn set of column, resp. row, vectors over R,

yfln(R) = Rn set of all n x n matrices over R,

Tl(R) set of all square matrices over R,

GLn(R) group of all invertible n x n matrices over R,

SLn(A) group of all n x n matrices of determinant 1 over A,

Im m x m unit matrix,

CT transpose of the matrix C,

diag(a1? . . . , # „ ) diagonal matrix,

etj matrix with (/, /)-entry 1, the rest 0,

et ith column of unit matrix,

drs Kronecker delta (1 if r = s, 0 otherwise),

A © B diagonal sum of matrices A, B,

0 r C = Q © . . . © Cr, where Q = C,

hd^(M) homological dimension of the .R-module M,

l.gl.dim.(/?), r.gl.dim.(/?) left, right global dimension of R.

H2(G, A) second cohomology group of G with coefficients in A.



LIST OF SPECIAL NOTATIONS USED
THROUGHOUT THE TEXT

Vnm universal non-IBN ring, 21

Um universal non-UGN ring, 21

Wn 'universal' non-WF ring, 21

KE(X) free K-hng on X, centralizing E, 38

KE {(X)) free power series ring, 38

Rg category of rings and homomorphisms, 41

Rgn category of matrix rings and homomorphisms compatible with the
matrix structure, 42

R * S coproduct of rings over K, 42

K

5Bn(#), y£n(R; A) matrix reduction functor, 43f.

deg / degree of a polynomial, 48

A[t], A[t\ a, 6] (skew) polynomial ring, 49

Tn(R) upper triangular matrix ring over R, 50

K(t\ a, 6) skew function field, 50

A[t, t~l\ a] skew Laurent polynomial ring, 55

A(/) divergence of a skew polynomial, 59

I(e): a »-> eae~l inner automorphism, 61

Kit; a}, K((t; a)) skew power, resp. Laurent series ring, 66

o(f) order of a power series, 67

475
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KM, KG monoid ring, group ring, 71

2)(/) support of a function, 74

k((M)) power series ring over an ordered monoid, 74

G(R) graded ring associated with a filtered ring, 84

[E:K]L, [E:K]R left, right degree, 94

Afl, pa left, right multiplication, 96

Gal (E/K) Galois group of a Galois extension E/K9 100

x* = xp - x, y(x) = (f + *)* - f, 137f.

3^R category of epic R-fields and specializations, 155

Ker singular kernel of a homomorphism, 156, of a matrix valuation, 439

R<z localization at a set 2 of matrices, 157

(Ao A* An) admissible matrix, 159

, admissible block, 159

a)

AV B determinantal sum of matrices, 163

R/& epic #-field defined by a prime matrix ideal 9\ 172

Spec (R) field spectrum of the ring R, 173

(X) matrix ideal generated by a set X of matrices, 174

V ^ radical of matrix ideal, 174

rA (inner) rank of A, 179

universal field of fractions (when it exists), 182

monoid of projectives, 186

T(M) trace ideal of a module, 187

G+ positive cone of an ordered group, 189

L±Ak coproduct in a category, 203

* Rx coproduct of a family of A'-rings, 205

K

®M0 induced bimodule, 211

© Kk field coproduct of fields, 223
K
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free field, 224

T(M) or KE(M) tensor ring on a iC-bimodule Af, 224, 226

QK(R) universal derivation bimodule, 251

; O> skew field presentation, 279

singularity support of a matrix, 301, 405

sing (A), nonsing (A) A is (non-) singular, 309

^(X; D) set of rational expressions, 336

dom / domain of / , 336

Dk(X; E) rational function field, 337

k(X)d generic matrix ring, 343

^>(D) domain of definition of an X-field, 344

2£(Z>) subset of vanishing expressions, 344

k^X^d generic division algebra, 344

/\SRS rational meet of a family of X-rings, 348

Ess (5) set of essential indices, 358

Supp5 (t) subset supported by t, 359

t oc U support relation, 362

a\\b a is total divisor of b, 380

%-£ K] specialization over K, 401f.

YE(A) variety defined by A, 408

Kc derived group of K x , 427

Kab = Kx/Kc abelianization of K, 437

Det A Dieudonne determinant of A, 437

P(TL) cone associated with II, 465

M(P) matrix cone associated with P, 467
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SUBJECT INDEX

For any property P, left P, right P or non-P are usually listed under P. An S-object is often
listed as -object, e.g. t-adic is listed as -adic, but /?-adic comes under p.

abelian valuation, 427
abelianization, 437
absolute GRI, 340
absolute presentation, 317
absolute value, 422
abstract support system, 362
AC = algebraically closed, 308
addition, 3
additive group of a field, 4
-adic topology, 66
-adic valuation, 85, 425
admissible matrix block, system, 159
-algebra, 41
algebraic closure, 308, 329
algebraic dependence, 406
algebraic element, 111
algebraic extension, 140
algebraic matrix, 379
algebraically closed, 308, 367
amalgamation property, 310
Amitsur-Levitzki theorem, 334, 343
Amitsur's GPI-theorem, 332, 365
Amitsur's theorem on rational identities,

339, 344
annihilator ring, 393
antichain, 72
Artin-Schreier condition, 461
Artin's theorem, 101, 103f.
associated matrices, 24
atom, 27
augmentation ideal, 44
augmentation mapping, 55
augmented ring, 44

base ring in a coproduct, 211
basic formula, 309

basic module, 211
Bezout domain, 13
bicentralizer, 110
binomial field extension, 121
Birkhoff-Witt theorem, 89
block, 162
Bokut' classification, 330
bound, of an element, 28
bound module, 34
bounded element, 28
BW-algebra, 90

CAC = characteristically algebraically
closed, 370, 418

Cartan-Brauer-Hua theorem, 144
Cayley-Hamilton theorem, 385
central, 62
central field extension, 121
central localization, 387
centralizer, 4
centralizing extension, 339
centre, 4
characteristic of a field, 4
Chevalley's extension lemma, 426, 470
cofinite subset, 11
cogenerator, 389
comaximal, 25
comma category, 203
commutator, 143, 238, 259, 441
compactness theorem of logic, 327, 329
companion matrix, 370
complete variety, 416
concatenation of valuations, 433
cone,458
conical monoid, 73, 249
conjugate, 112, 233
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consistent system of equations, 309
convex subgroup, 432
coprime, 26, 29
coproduct

in a category, 203f.
of fields, 223, 268, 449
of rings, 42, 222,276

core, 159
Cramer's rule, 160
critically skew field, 149
crossed product, 123ff.
cyclic extension, 133
cyclic matrix, 381

Dedekind's lemma, lOlf.
defect of a matrix over D^ {x), 409
degenerate, 336, 344
degree

of a field extension, 94
of a monomial, 215
of a polynomial, 48, 84

denominator
of an admissible matrix block, 162
of an admissible system, 159, 201

dependable field extension, 318
dependence relation, 406f.
depth, 196
derivation, 49
derived group, 144, 427
Desarguesian plane, 1, 365
determinantal sum of matrices, 163
diagonally closed matrix set, 445
Dieudonne determinant, 437, 466
differential equation, 133
differential polynomial, 46, 91
distributive laws, 4
divergence of a skew polynomial, 59
divisibility ordering, 73
division algebra, 5, 45, 150
division ring, 4
domain

of a function, 336, 344
of a sub valuation, 444

dominate, 428

E-associated, 436
EC-field, 309ff.
E-matrix, 437
effective construction, 318
eigenring, 28
eigenspace, 378
eigenvalue, 370, 375, 378, 403
eigenvector, 375
elementary divisor, 382
elementary mapping, 311
elementary sentence, 308
elimination theory, 416f.
embedding condition, 326
epic -field, 154, 336
epi-final, -initial, 177

epimorphism, 153
equivalence

of homomorphisms, 101
of local homomorphisms, 154
of matrix blocks, 163
of places, valuations, 424

essential extension, 387
essential index (term), 349
essential set, 354
Euclidean algorithm, 79
evaluation map, 333
existential sentence, 308
existentially closed, 309ff.

FAC = fully algebraically closed, 371
factor ring in a coproduct, 211
factorial duality, 27
faithful A-ring, 41,205
faithful coproduct, 42, 204
field, 3, 154, 336

coproduct, 223
of fractions, 8
spectrum, 173, 200

filter, 11
filtered ring, 83, 228
filtration, 83, 206f.
finite extension, 94
finite field element, 404
finite topology, 98
finitely generated, 280
finitely inert, 284
finitely presented, 280

point, 417
finitely related, 280
fir, 36f., 40, 46, 222, 248
flat module, 228
flat subset, 337
forcing companion, 311
formally real field, ring, 459
fraction, 15
free fc-algebra, 224
free field, 224, 235, 301, 344
free ideal ring, 36f.

see also fir
free module type, 21
free point, 402
free product

with amalgamation, 275
of groups, rings, 42, 204f.

free set in a field, 235, 279f.
free transfer isomorphism, 220
full map, 193
full matrix, 22, 168,179
fully algebraically closed, 200, 371
fully inverting map, 177
function field, 338
fundamental theorem of Galois theory for

skew fields, 109

Galois connexion, 99,109, 142
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Galois extension, group, 100, 129ff.
generic division algebra, 344
generic field, 329
generic matrix ring, 46, 343
generic point, 414
Gerasimov-Malcolmson localization

theorem, 40
global dimension, 39, 218, 244, 247
GPI = generalized polynomial identity, 283,

332, 339
graded ring, 83
GRI = generalized rational identity, 337,

340f.
Grothendieck group of projectives, 186

HCLF = highest common left factor, 32
Hahn-Banach theorem, 188, 420, 442
height, 207

theorem for integral domains, 208
hereditary ring, 39, 246
Hermite ring, 457
Higman's theorem, 316, 325
Higman's trick, 284
Hilbert basis theorem, 90
Hilbert field, 281, 339, 469
Hilbert Nullstellensatz, 411ff., 415, 419
Hilbert 'Theorem 90', 135f.
HNN-extension

ofafield,231f.,276
of a ring, 239ff.

Hochster's axioms, 200
hollow matrix, 179, 299
homogeneous element, 84
homogeneous field, 233
homological dimension, 39, 214
honest homomorphism, 177
Horn sentence, 9
Hua's identity, 335
Hua's theorem, 144, 150

I-atom, 29
IBN = invariant basis number, 19, 46, 249,

328
idealizer, 28
idempotent, 184f.,243
identity, 9, 331f., 335
indecomposable, 31
index of a matrix, 24, 296
induced homomorphism, 219
induced module, 186, 211
inductive class, 311
inertia lemma, 284
inner derivation, 50
inner eigenvalue, 378
inner Galois group, 109
inner order of an automorphism, 61
inner rank,179,192
integral domain, 8
internal modification, 35
invariant basis number, 19

invariant element, 28, 57f.
invariant factor, 380, 384
invariant subring, 423
inverse eigenvalue, 403
inversive ring, 33
inverting homomorphism, 14, 156
involution, 56
irreducible algebraic set, 337
irreducible element, 27
isomorphic idempotents, 185
iterated skew polynomial ring, 78ff.

J-ring, J-skew polynomial ring, 79
Jacobson-Bourbaki correspondence, 99,

150
Jacobson radical, 10, 82, 92
Jacobson-Zassenhaus formula, 137
Jategaonkar's condition, 79
Jordan matrix, normal form, 384

Kaplansky's Pi-theorem, 332, 365
Kaplansky's theorem on projective modules,

191
key term, 216
Klein's nilpotence condition, 23, 40, 250
Klein's theorem, 23, 40

LCLM, LCRM, least common left, right,
multiple, 33

large submodule, 387
Laurent polynomial, 44, 55
Laurent series, 45, 66
leading term, 84, 215
length of an element in a UFD, 28
level

of an affine space, 403
of a field, 470

Lie algebra, 88
linear companion, 294, 370
linear matrix, 293
linearization by enlargement, 284
linearly disjoint, 96, 302
local homomorphism, 154
local ring, 154, 169, 344
localization, 15, 156
locally cyclic group, 146
locally finite algebra, 387
locus of a point, 403
lower central series, 76

magic lemma, 438
Malcev conditions, 9, 23
Malcev-Neumann construction, 76, 79, 91
Malcolmson's criterion, 167,183
matrix-algebraic algebra, 387
matrix block, 159, 162
matrix cone, 463
matrix functor, 42
matrix-homogeneous, 234, 391
matrix ideal, 172
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matrix local ring, 344
matrix preideal, 173
matrix reduction functor, 43, 46, 247
matrix subvaluation, 443
matrix units, 42
matrix valuation, 435
metacyclic group, 148
metro-equation, 369, 418
minimal invariant element, 59
minimal polynomial, 113
monic matrix, 293
monic polynomial, 48
monoid of projectives, 186, 221, 244, 249
monoid ring, 55
monomial matrix, 291
monomial unit, 208
multiplication, 3
multiplication algebra, 258
multiplicative commutator, 143, 238
multiplicative function, 444
multiplicative group of a field, 4, 143ff.,

150f.
multiplicative set, 15

of matrices, 157

TV-group, 106, 150
N-invariant subgroup, 109
near field, ring, 5, 7, 45
negative element, 457
von Neumann regular ring, 10, 190
nilpotent group, 144
non-singular at infinity, 370
norm, 422
normal basis theorem, 137, 290
normal field extension, 306
normal form in a free ring, 294
normalizer, 263
nullity condition, 180
Nullstellensatz, 411ff., 415, 419
numerator, 159, 201

one, 3
one-unit, 424
opposite ring, 97
order of a block, 196
order-unit, 188
ordered field, 457
ordered group, 75, 421
ordered ring, 457
Ore condition, 15
Ore domain, 16
Ore set, 16
outer cyclic extension, 133
outer derivation, 50
outer Galois group, 110

PAC = polynomially algebraically closed,
371,418

p-adic valuation, 469
Pi-algebra, 332

Pi-degree, 343
P(R)ID = principal (right) ideal domain, 49
PWO = partly well-ordered, 73
partition lemma, 36
partly well-ordered, 73
perfect closure of a commutative field, 316
place, 423
point singularity, 408
pointed bimodule, 227
polynomial, 48
polynomially algebraically closed, 371
positive cone, 458
positive element, 457
Posner's theorem, 343
power series, 38, 66ff.
presentation of a field, 279
prime avoidance lemma, 351, 358
prime (left, right) matrix, 197
prime matrix ideal, 172
prime ring, 343
prime subfield, 4
primitive element (theorem), 110, 137
primitive ring, 10, 82, 92, 332
principal valuation, 424
profinite group, 140
projective-free ring, 39,185
proper factorization, 298
proper matrix, 368
proper (matrix) cone, 458, 463
proper valuation on a ring, 421
pseudo-linear field extension, 119
pseudo-valuation, 83, 442, 470
pure element, 207, 215
pure field extension, 121
pure matrix block, 162

quadratic field extension, 118, 126, 268ff.
quasi-commutative valuation, 430
quasi-free point, 403
quasi-identity, 9, 46
quasi-variety of algebras, 9
quaternions, 45, 56
quaternion algebra, 118, 272f., 373

Rabinowitsch trick, 412
radical matrix ideal, 174
radical matrix subvaluation, 443f.
rank, of a free module, 19
rank factorization, 179
rank function on projectives, 187
rational closure, 157, 348
rational expression, function, 335ff.
rational identity, 335ff., 345f.
rational meet, 348
rational relation, 344
rational topology, 337, 405
rationality criterion, 69
ray singularity, 408
recursive, recursively enumerable, 318f.
reduced admissible system, 200
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reduced automorphism set, 289
reduced centre, 68
reduced element, 208
reduced matrix block, 197
reduced order, 106
reduced product, 12
reduced ring, 10
regular field extension, 96
regular matrix sub valuation, 444
regular ring, 10,190
regular subset, 16
regularization, 444
representation of a Lie algebra, 89
residue-class field, 154
resultant, 416
retract, 37
reversible Ore set, 16
Rg = category of rings, 15, 41
rigid domain, 33
-ring, 41, 335
ring epimorphism, 153
root of a (matrix) subvaluation, 443f.

Schreier's theorem, 204, 275
Seifert-van Kampen theorem, 275
semifir, 34, 40, 46
semihereditary ring, 39
semilocal ring, 350
semiprime ring, 13
semiprimitive ring, 10
semiuniversal EC-field, 314, 414
separable matrix, 386
separating coproduct, 204
similar elements, matrices, 27, 46
simple ring, 61, 241f., 391
singular eigenvalue, 370
singular ideal, 393
singular kernel, 156, 439, 452
singular matrix, 22, 309
singularity support, 301, 405
skew cyclic matrix, 384
skew field, 4
skew polynomial ring, 49
Skolem-Noether theorem, 52,105
small cancellation theory, 276
small matrix ideal, 454
socle of a ring, 393
specialization, 154, 344f., 401
specialization lemma, 287, 306, 320, 329
spectrum, 375
split null extension, 153, 394
stably associated matrices, 24
stably isomorphic modules, 186
staircase lemma, 334
standard identity, 343
state, 189
Steinitz number, 146
strict ^-ring, 348
strictly cyclic module, 27
strongly regular ring, 10

submultiplicative function, 442f.
subordinate projective module, 186
subordinate valuation, 432
subvaluation, 83, 442, 470
superficial matrix ideal, 457
superfluous block, 163
supernatural number, 146
support, 74, 215
support relation, 351ff., 362
supporting a family, 352, 355
Sylvester domain, 180, 185, 201
Sylvester rank function, 193
Sylvester's law of nullity, 180

tensor ring, 38, 48, 226
topology of simple convergence, 98
torsion-free, 30, 229
torsion group, 145
torsion module, 30
total (matrix) cone, 458, 465
total divisor, 380
total subring, 423
totally algebraically closed, 125
totally coprime, 29
totally transcendental, 234, 379
totally unbounded, 29
trace in an outer cyclic extension, 137
trace ideal, 187
transvection, 220
triangle inequality, 422
triangulable, 371
trivial relation, 34
trivial ring = zero ring, 20
trivial support relation, 354
trivial valuation, 422
trivializable, 34

UFD = unique factorization domain, 28
UGN = unbounded generating number, 19,

46, 190, 249
ultrafilter, ultraproduct, llf., 46
unit, 14
universal class, 9
universal denominator, 199, 299
universal derivation bimodule, 251
universal EC-field, 314, 415
universal field of fractions, 176f.
universal localization, 15, 177
universal sentence, 9
universal S~, 2-inverting ring, 15, 156
unramified extension, 449

valuation, 83, 421, 469
valuation ring, 423
value group, 421
variety

of algebras, 8
over a skew field, 408

V-ring, 389, 419
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WF = weakly finite, 20, 190, 249 Weyl algebra, field, 282
weak algorithm, 38, 232, 276, 293, 297 word problem, 317, 330
weakly finite, 20, 46, 190, 249
weakly semihereditary ring, 191f.
Wedderburn's theorem on finite fields, 115, Zariski topology, 337, 405

145, 150 zero, 3
well-positioned family, 216 zig-zag lemma, 312
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