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Introduction

This book is devoted to the theory of J-contractive and J-inner mvf’s
(matrix valued functions) and a number of its applications, where J is an
m×m signature matrix, i.e., J is both unitary and self adjoint with respect
to the standard inner product in C

m. This theory plays a significant role
in a number of diverse problems in mathematical systems and networks,
control theory, stochastic processes, operator theory and classical analysis.
In particular, it is an essential ingredient in the study of direct and inverse
problems for canonical systems of integral and differential equations, since
the matrizant (fundamental solution) Ux(λ) = U(x, λ) of the canonical in-
tegral equation

u(x, λ) = u(0, λ) + iλ

∫ x

0
u(s, λ)dM(s)J, 0 ≤ x < d, (1.1)

based on a nondecreasing m × m mvf M(x) on the interval 0 ≤ x < d is an
entire mvf in the variable λ that is J-inner in the open upper half plane C+

for each point x ∈ [0, d):

(1) Ux(λ) is J-contractive in C+:

Ux(λ)∗JUx(λ) ≤ J for λ ∈ C+

and

(2) Ux(λ) is J-unitary on the real axis R:

Ux(λ)∗JUx(λ) = J for λ ∈ R.

Moreover, Ux(λ) is monotone in the variable x in the sense that

Ux2 (λ)∗JUx2 (λ) ≤ Ux1 (λ)∗JUx1 (λ) if 0 ≤ x1 ≤ x2 < d

1



2 Introduction

and λ ∈ C+. These properties follow from the fact that the matrizant
Ux(λ) = U(x, λ) is a solution of the system (1.1) with U0(λ) = Im , i.e.,

U(x, λ) = Im + iλ

∫ x

0
U(s, λ)dM(s)J, 0 ≤ x < d,

and hence satisfies the identity

Ux2 (λ)JUx2 (ω)∗ − Ux1 (λ)JUx1 (ω)∗

= −i(λ − ω)
∫ x2

x1

Ux(λ)dM(x)Ux(ω)∗.

The family Ux(λ) is also continuous in the variable x and normalized by the
condition

Ux(0) = Im for 0 ≤ x < d.

The most commonly occuring signature matrices (except for J = ±Im) are
the matrices

jpq =
[

Ip 0
0 −Iq

]
, Jp =

[
0 −Ip

−Ip 0

]
and Jp =

[
0 −iIp

iIp 0

]
,

−jpq , −Jp and −Jp. The equivalences[
ε∗ Iq

]
jpq

[
ε

Iq

]
≤ 0 ⇐⇒ ε∗ε ≤ Iq ;

[
ε∗ Ip

]
Jp

[
ε

Ip

]
≤ 0 ⇐⇒ ε + ε∗ ≥ 0

and [
ε∗ Ip

]
Jp

[
ε

Ip

]
≤ 0 ⇐⇒ ε − ε∗

i
≥ 0

indicate a connection between the signature matrices jpq , Jp and Jp and the
classes

Sp×q
const = {ε ∈ C

p×q : ε∗ε ≤ Iq} of contractive p × q matrices;

Cp×p
const = {ε ∈ C

p×p : ε + ε∗ ≥ 0} of positive real p × p matrices;

iCp×p
const = {ε ∈ C

p×p : (ε − ε∗)/i ≥ 0} of positive imaginary

p × p matrices.
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Moreover, if an m × m matrix U is J-contractive, i.e., if

U∗JU ≤ J, (1.2)

then the inequality

[x∗ I]J
[x
I

]
≤ 0 (1.3)

implies that

[x∗ I]U∗JU
[x
I

]
≤ 0 (1.4)

and hence, the linear fractional transformation

TU [x] = (u11x + u12)(u21x + u22)−1, (1.5)

based on the appropriate four block decomposition of U , maps a matrix x in
the class Fconst(J) of matrices that satisfy the condition (1.3) into Fconst(J),
if x is admissible, i.e., if det (u21x + u22) �= 0.

Conversely, if J �= ±Im and U is an m × m matrix with detU �= 0 such
that TU maps admissible matrices x ∈ Fconst(J) into Fconst(J), then

ρU is a J-contractive matrix for some ρ ∈ C \ {0}. (1.6)

Moreover, if TU also maps (admissible) matrices x that satisfy (1.3) with
equality into matrices with the same property, then the matrices ρU , con-
sidered in (1.6) are automatically J-unitary, i.e., (ρU)∗J(ρU) = J . These
characterizations of the classes of J-contractive and J-unitary matrices are
established in Chapter 2. The proofs are based on a number of results in the
geometry of the space C

m with indefinite inner product

[ξ, η] = η∗Jξ

defined by an m × m signature matrix J , which are also presented in
Chapter 2.

Analogous characterizations of the classes P(J) and U(J) of meromorphic
J-contractive and J-inner mvf’s in C+ are established in Chapter 4. These
characterizations are due to L. A. Simakova. They are not simple corollaries
of the corresponding algebraic results in Chapter 2: if the given m×m mvf
U(λ) is meromorphic in C+ with detU(λ) �≡ 0 in C+ and ρ(λ)U(λ) ∈ P(J),
then ρ(λ) must be a meromorphic function in C+. To obtain such character-
izations of mvf’s in the classes P(J) and U(J) requires a number of results
on inner-outer factorizations of scalar holomorphic functions in the Smirnov
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class N+ in C+ and inner denominators of scalar meromorphic functions
in the Nevanlinna class N of functions with bounded characteristic in C+,
and the Smirnov maximum principle in the class N+. This material and
generalizations to p× q mvf’s in the classes N p×q

+ and N p×q with entries in
the classes N+ and N , respectively, is presented in Chapter 3. In particular,
the Smirnov maximum principle, inner-outer factorization and a number of
denominators for mvf’s f ∈ N p×q are discussed in this chapter. Thus, Chap-
ters 2 and 3 are devoted to topics in linear algebra and function theory for
scalar and matrix valued functions that are needed to study J-contractive
and J-inner mvf’s as well as the other problems considered in the remaining
chapters.

The sets P(J) and U(J) are multiplicative semigroups. In his fundamen-
tal paper [Po60] V. P. Potapov obtained a multiplicative representation for
mvf’s U ∈ P(J) with det U(λ) �≡ 0 that is a far reaching generalization of
the Blaschke-Riesz-Herglotz representation

u(λ) = b(λ) exp{iα + iβλ} exp
{
− 1

πi

∫ ∞

−∞

1 + µλ

µ − λ
dσ(µ)

}
(1.7)

of scalar holomorphic functions u(λ) in C+ with |u(λ)| ≤ 1. In formula (1.7)
b(λ) is a Blaschke product, α ∈ R, β ≥ 0 and σ(µ) is a bounded nondecreas-
ing function on R. To obtain his multiplicative representation, Potapov used
the factors that are now known as elementary Blaschke-Potapov factors. If
J �= ±Im , there are four kinds of such factors according to whether the
pole is in the open lower half plane C−, in C+, in R, or at ∞. He obtained
criteria for the convergence of infinite products of normalized elementary
factors that generalizes the Blaschke condition, using his theory of the J

modulus. The Potapov multiplicative representation of mvf’s U ∈ P(J)
with det U(λ) �≡ 0, leads to factorizations of U of the form

U(λ) = B(λ)U1(λ)U2(λ)U3(λ),

where B(λ) is a BP (Blaschke-Potapov) product of elementary factors, U1(λ)
and U3(λ) are entire J-inner mvf’s that admit a representation as a multi-
plicative integral that is a generalization of the second factor in (1.7), and
U2(λ) is a holomorphic, J-contractive invertible mvf in C+ that admits a
representation as a multiplicative integral that is a generalization of the
third factor in (1.7).
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In view of Potapov’s theorem, every entire J-inner mvf U(λ) with U(0) =
Im admits a multiplicative integral representation

U(λ) =

d
�∫

0

exp{iλdM(x)J}, (1.8)

where M(x) is a nondecreasing m × m mvf on [0, d]. Moreover, M(x) may
be chosen so that M(x) is absolutely continuous on [0, d] with derivative
H(x) = M ′(x) ≥ 0 normalized by the condition traceH(x) = 1 a.e. on
[0, d]. But even under these last conditions, H(x) is not uniquely defined by
U(λ), in general.

Multiplicative integrals were introduced in the theory of integral and
differential equations by Volterra. In particular, the matrizant Ux(λ) of
the integral equation (1.1) may be written in the form of a multiplicative
integral.

Ux(λ) =

x
�∫

0

exp{iλdM(s)J}, 0 ≤ x < d, (1.9)

and if d < ∞ and M(x) is bounded on [0, d], then formula (1.8) coincides
with formula (1.9) with x = d, and U(λ) = Ud(λ) is the monodromy matrix
of the system (1.1). Thus, in view of Potapov’s theorem, every entire mvf
U ∈ U(J) with U(0) = Im may by interpreted as the monodromy matrix of
a system of the form (1.1) on [0, d].

A number of Potapov’s results on finite and infinite BP products and on
the multiplicative representation of mvf’s in P(J) are presented in Chapter
4, sometimes without proof.

The problem of describing all normalized m × m mvf’s H(x) ≥ 0 in a
differential system of the form

d

dx
u(x, λ) = iλu(x, λ)H(x)J a.e. on [0, d] (1.10)

with a given monodromy matrix Ud(λ) = U(λ) (U ∈ E ∩ U(J) and U(0) =
Im) is one of a number of inverse problems for systems of the form (1.10).
The system (1.10) arises by applying the Fourier-Laplace transform

u(x, λ) =
∫ ∞

0
eiλtv(x, t)dt
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to the solution v(x, t) of the Cauchy problem

∂v

∂x
(x, t) = −∂v

∂t
(x, t)H(x)J, 0 ≤ x ≤ d, 0 ≤ t < ∞, (1.11)

v(x, 0) = 0.

Since u(x, λ) = u(0, λ)Ux(λ), 0 ≤ x ≤ d, the monodromy matrix Ud(λ) is the
transfer function of the system with distributed parameters on the interval
[0, d] specified by H(x); with input v(0, t), output v(d, t) and state v(x, t) at
time t. Thus, the inverse monodromy problem is the problem of recovering
the distributed parameters H(x), 0 ≤ x ≤ d, described by the evolution
equation (1.11) from the transfer function of this system.

Potapov’s theorem establishes the existence of a solution of the inverse
monodromy problem. The uniqueness of the solution is established only
under some extra conditions on U(λ) or H(x).

If J = ±Im the Brodskii-Kisilevskii condition

type {U(λ)} = type {det U(λ)}

on the exponential type of the entire mvf U(λ) is necessary and sufficient
for uniqueness. If J �= ±Im , then the problem is much more complicated,
even for m = 2.

A fundamental theorem of L. de Branges states that every entire J1-inner
2 × 2 mvf U(λ) with U(0) = I2 and the extra symmetry properties

U(−λ) = U(λ) and detU(λ) = 1

is the monodromy matrix of exactly one canonical differential system of the
form (1.10) with J = J1 and with real, normalized Hamiltonian H(x) ≥ 0
a.e. on [0, d].

The Brodskii-Kisilevskii criteria was obtained in the sixties as a criteria
for the unicellularity of a simple dissipative Volterra operator with a given
characteristic mvf U(λ).

Characteristic functions of nonselfadjoint (and nonunitary) operators were
introduced in the 1940’s by M. S. Livsic, who showed that these functions
define the operator up to unitary equivalence under the assumption of sim-
plicity and that they are J-contractive in C+ (in the open unit disc D,
respectively). Moreover, he discovered that to each invariant subspace of
the operator there corresponds a divisor of the characteristic function and,
to an ordered chain of invariant subspaces, there corresponds a triangular
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representation of the operator that generates a multiplicative representation
of the characteristic function of the operator. Livsic also proposed a trian-
gular model of the operator based on the multiplicative representation of
the characteristic function. This was one of the main motivations for the
development of the theory of multiplicative representations of J-contractive
mvf’s by V. P. Potapov.

L. de Branges obtained his uniqueness theorem and a number of other
results in harmonic analysis, by consideration of the reproducing kernel
Hilbert spaces of entire vvf’s (vector valued functions) with reproducing
kernels Kω(λ) defined by the entire J-inner 2×2 mvf’s U(λ) by the formula

Kω(λ) =
J − U(λ)JU(ω)∗

ρω(λ)
, where ρω(λ) = −2πi(λ − ω).

The theory of RKHS’s (reproducing kernel Hilbert spaces) with kernels of
this form (and others) was developed by him, partially in collaboration with
J. Rovnyak for m × m mvf’s U ∈ P(J) for m ≥ 2 and even for operator
valued functions U(λ).

A number of results on the spaces H(U) for U ∈ P(J), and for the de
Branges spaces B(E) are discussed in Chapter 5. In particular it is shown that
if U ∈ P(J) and detU(λ) �≡ 0, then the vvf’s f in the corresponding RKHS
H(U) are meromorphic in C \ R with bounded Nevanlinna characteristic in
both C+ and C−. Thus, every vvf f ∈ H(U) has nontangential boundary
values

f+(µ) = lim
ν↓0

f(µ + iν) and lim
ν↓0

f(µ − iν) = f−(µ) a.e. on R.

Moreover,

U ∈ U(J) ⇐⇒ f+(µ) = f−(µ) a.e. on R for every f ∈ H(U).

Connsequently, every f ∈ H(U) may be be identified with its boundary
values if U ∈ U(J).

The space H(U) is Rα invariant with respect to the generalized backwards
shift operator Rα that is defined by the formula

(Rαf)(λ) =
f(λ) − f(α)

λ − α
, λ �= α,

for points λ and α in the domain of holomorphy of U(λ).
The subclasses US(J), UrR(J), UrsR(J), U�R(J) and U�sR(J) of singular,

right regular, right strongly regular, left regular and left strongly regular
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J-inner mvf’s are introduced in Chapter 4 and are characterized in terms of
the properties of the boundary values of vvf’s from H(U) in Chapter 5: if
U ∈ U(J), then

U ∈ UrsR(J) ⇐⇒ H(U) ⊂ Lm
2 ,

U ∈ UrR(J) ⇐⇒ H(U) ∩ Lm
2 is dense in H(U),

U ∈ US(J) ⇐⇒ H(U) ∩ Lm
2 = {0}.

Moreover, if U ∈ U(J), then the transposed mvf Uτ ∈ U(J) and

U ∈ U�R(J) ⇐⇒ Uτ ∈ UrR(J) and U ∈ U�sR(J) ⇐⇒ Uτ ∈ UrR(J).

Furthermore, the following implications hold when ω �∈ R:

U ∈ UrsR(J) ∪ U�sR(J) =⇒ ρ−1
ω U ∈ Lm×m

2 =⇒ U ∈ UrR(J) ∩ U�R(J).

There are a number of other characterizations of these classes. Thus, for
example, in Chapter 4, an mvf U ∈ U(J) is said to belong to the class US(J)
of singular J-inner mvf’s if it is an outer mvf in the Smirnov class Nm×m

+
in C+, i.e., if U ∈ Nm×m

+ and U−1 ∈ Nm×m
+ . Then an mvf U ∈ U(J) is said

to be right (resp., left) regular J-inner, if it does not have a nonconstant
right (resp., left) divisor in the multiplicative semigroup U(J) that belongs
to US(J). Characterizations of the subclasses UrsR(J) and U�sR(J) in terms
of the Treil-Volberg matricial version of the Muckenhoupt (A2)-condition
are established in Chapter 10.

Every mvf U ∈ U(J) admits a pair of essentially unique factorizations:

U(λ) = U1(λ)U2(λ), where U1 ∈ UrR(J) and U2 ∈ US(J), (1.12)

and

U(λ) = U3(λ)U4(λ), where U4 ∈ U�R(J) and U3 ∈ US(J).

The second factorization follows from the first (applied to the transposed
mvf’s Uτ (λ)). The first factorization formula is established in Chapter 7
by considering the connection between mvf’s W ∈ UrR(jpq) and the GSIP
(generalized Schur interpolation problem) in the class

Sp×q = {s ∈ Hp×q
∞ : ‖s‖∞ ≤ 1},

where Hp×q
∞ is the Hardy space of holomorphic bounded p× q mvf’s in C+.

In this problem, three mvf’s are specified: s◦ ∈ Sp×q and two inner mvf’s
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b1 ∈ Sp×p and b2 ∈ Sq×q and

S(b1, b2; s◦) = {s ∈ Sp×q : b−1
2 (s − s◦)b−1

2 ∈ Hp×q
∞ }

is the set of solutions to this problem. The GSIP based on s◦, b1 and b2 is
said to be completely indeterminate if, for every nonzero vector ξ ∈ C

q , there
exists an mvf s ∈ S(b1, b2; s◦) such that s(λ)ξ �≡ s◦(λ)ξ. An mvf W ∈ U(jpq)
is the resolvent matrix of this GSIP if

S(b1, b2; s◦) = {TW [ε] : ε ∈ Sp×q}. (1.13)

There are infinitely many resolvent matrices W ∈ U(jpq) for each completely
indeterminate GSIP (a description is furnished in Chapter 7) and every such
W automatically belongs to the class UrR(jpq). Conversely, every mvf W ∈
UrR(jpq) is the resolvent matrix of a completely indeterminate GSIP. The
correspondence between the class UrR(jpq) and the completely indeterminate
GSIP’s is established in Chapter 7. Moreover, W ∈ UrsR(jpq) if and only if
W is the resolvent matrix of a strictly completely indeterminate GSIP; i.e.,
if and only if there exists at least one ε ∈ Sp×q such that ‖TW [ε]‖∞ < 1. The
correspondence between the subclasses UrR(Jp) and UrsR(Jp) and completely
indeterminate and strictly completely indeterminate GCIP’s (generalized
Carathéodory interpolation problems) are discussed in Chapter 7 too. This
chapter also contains formulas for resolvent matrices U(λ) that are obtained
from the formulas in Chapter 5 for U ∈ UrsR(J) with J = jpq and J = Jp

from the description of the corresponding RKHS’s H(U).
The results on GCIP’s that are obtained in Chapter 7 are used in Chapter

8 to study bitangential generalizations of the Krein extension problem of
extending a continuous mvf g(t), given on the interval −a ≤ t ≤ a, with a
kernel

k(t, s) = g(t + s) − g(t) − g(−s) + g(0)

that is positive on [0, a]× [0, a] to a continuous mvf g̃(t) on R which is sub-
ject to analogous constraints on [0,∞) × [0,∞). In particular, the classes
of entire mvf’s U in UrR(Jp) and UrSR(Jp) are identified as the classes of
resolvent matrices of completely indeterminate and strictly completely in-
determinate bitangential extension problems for mvf’s g(t). A bitangential
generalization of Krein’s extension problem for continuous positive definite
mvf’s and Krein’s extension problem for accelerants and the resolvent ma-
trices for these problems are also considered in this chapter.
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In Chapter 11 extremal values of entropy functionals for completely inde-
terminate generalized interpolation and extension problems are established
in a uniform way that is based on the parametrizations of jpq and Jp inner
mvf’s that was discussed in earlier chapters.

Every mvf U ∈ U(J) has a pseudocontinuation from C+ into C− that is a
meromorphic mvf of Nevanlinna class in C−. Consequently, every submatrix
s ∈ Sp×q of an inner mvf S ∈ Sm×m admits such an extension to C−, as
do mvf’s of the form s = TW [ε] and and c = TA[τ ], where W ∈ U(jpq),
A ∈ U(Jp), ε is a constant p × q contractive matrix and τ is a constant
p × p matrix with τ + τ∗ ≥ 0. Such representations of the mvf’s s and c

arose in the synthesis of passive linear networks with losses by a lossless
system with a scattering matrix S, a chain scattering matrix W or a trans-
mission matrix A, repectively. The representations of s as a block of an
n × n inner mvf S and s = TW [ε] and c = TA[τ ] with constant matrices
ε ∈ Sp×q and τ ∈ Cp×p, respectively, are called Darlington representations,
even though Darlington only worked with scalar rational functions c ∈ C,
and the scattering formalism described above was introduced by Belevich for
rational mvf’s s ∈ Sp×q . In the early seventies Darlington representations
for mvf’s s ∈ Sp×q and c ∈ Cp×p that admit pseudocontinuations into C−
were obtained independently by D. Z. Arov [Ar71] and P. Dewilde [De71];
generalizations to operator valued functions were obtained in [Ar71] and
[Ar74a] and by R. Douglas and J. W. Helton in [DoH73]. Descriptions of the
sets of representations and solutions of other inverse problems for J-inner
mvf’s are discussed in Chapter 9, which includes more detailed references.

In the study of bitangential interpolation problems and bitangential in-
verse problems for canonical systems, a significant role is played by a set
ap(W ) of pairs {b1, b2} of inner mvf’s b1 ∈ Sp×p and b2 ∈ Sq×q that are
associated with each mvf W ∈ U(jpq) and a set apII (A) of pairs {b3, b4} of
p × p inner mvf’s that is associated with each mvf A ∈ U(Jp). The inner
mvf’s in {b1, b2} are defined in terms of the blocks w11 and w22 of W by the
inner-outer factorization of (w#

11)
−1 = (w11(λ)∗)−1, which belongs to Sp×p

and the outer-inner factorization of w−1
22 , which belongs to Sq×q :

(w#
11)

−1 = b1ϕ1 and w−1
22 = ϕ2b2.

The pair {b3, b4} ∈ apII (A) is defined analogously in terms of the entries in
the blocks of the de Branges matrix

E(λ) =
[
E−(λ) E+(λ)

]
=
[
a22(λ) − a21(λ) a22(λ) + a21(λ)

]
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that is defined in terms of the bottom blocks of A via the inner-outer and
outer-inner factorizations of (E#

− (λ))−1 = (E−(λ)∗)−1 and E+(λ)−1 in the
Smirnov class N p×p

+ :

(E#
− )−1 = b3ϕ3 and E−1

+ = ϕ4b4.

If the mvf A is holomorphic at the point λ = 0, then b3 and b4 are also
holomorphic at the point λ = 0 and may be uniquely specified by imposing
the normalization conditions b3(0) = Ip and b4(0) = Ip.

To illustrate the role of associated pairs we first consider a system of the
form (1.1) or (1.10) with J = jpq . Then the matrizant Wx, 0 ≤ x < d

is a monotonic continuous chain (with respect to the variable x) of entire
jpq-inner mvf’s that is normalized by the condition Wx(0) = Im . Corre-
spondingly there is a unique chain of associated pairs {bx

1 (λ), bx
2(λ)} of entire

inner mvf’s with bx
1 (0) = Ip and bx

2 (0) = Iq , and this chain is monotonic and
continuous with respect to the variable x.

The class UrsR(J) plays a significant role in a number of inverse problems
for canonical systems of the forms (1.1) and (1.10). In particular, the ma-
trizant Ux(λ), 0 ≤ x < d, of every canonical system that can be reduced to a
Dirac system with locally summable potential belongs to the class UrsR(J)
for every x ∈ [0, d); see e.g., [ArD05c], which includes applications to ma-
trix Schrödinger equations with potentials of the form q(x) = v2(x) ± v′(x)
(even though the matrizant of the Schrödinger equation belongs to the class
US(J)).

In the authors’ formulation of bitangential inverse problems, the given
data is a monotonic continuous chain of pairs {bx

1 (λ), bx
2 (λ)}, 0 ≤ x < d, and

a spectral characteristic (e.g., a monodromy matrix, an input scattering or
impedance matrix, or a spectral function) and the problem is to find a system
with the given spectral characteristic that satisfies the two restrictions:

(1) Wx ∈ UrR(jpq) for every x ∈ [0, d).

(2) {bx
1 , bx

2} ∈ ap(W ) for every x ∈ [0, d).

These inverse problems were solved by Krein’s method, which is based on
identifying the matrizant with a family of resolvent matrices of an ap-
propriately defined completely indeterminate extension problem; see e.g.,
[ArD05b], [ArD05c] and [ArD07b].

The Krein method works because for each completely indeterminate GSIP
with given data b1, b2, s◦, there is an mvf W ∈ U(jpq) such that (1.13) holds
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and {b1, b2} ∈ ap(W ) that is unique up to a right constant jpq unitary
multiplier. Moreover, if b1 and b2 are holomorphic at the point λ = 0, then
W is holomorphic at the point λ = 0 and then may be uniquely specified by
imposing the normalization W (0) = Im . Furthermore, W (λ) is entire if b1

and b2 are entire. These relationships are discussed in Chapters 7 and 8.
Descriptions of the RKHS’s H(W ) and H(A) based on associated pairs

are discussed in Chapter 5.
The theory of the RKHS’ H(U) and B(E) is developed further and ap-

plied to construct functional models for Livsic-Brodskii operator nodes in
Chapter 6. In this chapter the mvf’s U ∈ U(J) that are holomorphic and
normalized at the point λ = 0 (and in the even more general class LB(J))
are identified as characteristic mvf’s of Livsic-Brodskii nodes. Connections
with conservative and passive linear continuous time invariant systems are
also discussed.

Necessary and sufficient conditions for the characteristic mvf of a simple
Livsic-Brodskii node to belong to the class UrsR(J) are furnished in Chapter
10, and functional models of these nodes are given in terms of the associated
pairs of the first and second kind of the characteristic function U of the node.

An m×m mvf U ∈ P(J) may be interpreted as the resolvent matrix of a
symmetric operator with deficiency indices (m, m) in a Hilbert space. This
theory was developed and applied to a number of problems in analysis by
M. G. Krein; see e.g., Krein [Kr49] and the monograph [GoGo97]. The latter
focuses on entire symmetric operators and, correspondingly, entire resolvent
mvf’s U ∈ U(J). Connections between the Krein theory of resolvent matrices
and and characteristic mvf’s of Livsic-Brodskii J-nodes with the de Branges
theory of RKHS’ H(U) were considered in [AlD84] and [AlD85]. Resolvent
matrices of symmetric operators were identified as characteristic mvf’s of
generalized LB J-nodes by M. G. Krein and S. N. Saakjan [KrS70], A. V.
Shtraus [Sht60], E. R. Tsekanovskii and Yu. L. Shmulyan [TsS77] and others.

An m×m mvf U ∈ P(J) may also be interpreted as the resolvent matrix
of a completely indeterminate commutant lifting problem; see e.g., [SzNF70]
and [FoFr90].

Finally, we remark that although we have chosen to focus on the classes
P(J) and U(J) for the open upper half plane C+, most of the considered
results have natural analogues for the open unit disc D with boundary T.
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Algebraic preliminaries

This chapter introduces a number of the concepts that will play a significant
role in the analysis of the mvf’s (matrix valued functions) that are considered
in this monograph in the special setting of matrices, i.e., constant mvf’s.
Particular attention is paid to the linear fractional transformations that
map the classes Sp×q

const and Cp×p
const into themselves. These transformations

are defined in terms of certain subblocks of matrices U ∈ C
m×m that are

contractive with respect to an appropriately chosen signature matrix J and
for the even larger class of J-minus matrices, which is defined in terms of
the indefinite inner product

[u, v] = v∗Ju for u, v ∈ C
m.

The geometry of the space Cm with respect to this indefinite inner product
is studied and then applied to obtain properties of J-contractive matrices, J-
unitary matrices and minus matrices and the corresponding linear fractional
transformations and linear transforms. Some other properties of matrices
that will be needed in the sequel are also presented in this chapter.

2.1 The classes Pconst(J) and Uconst(J)

A matrix J ∈ C
m×m is said to be a signature matrix if it is both selfadjoint

and unitary with respect to the standard inner product in C
m , i.e., if J = J∗

and J∗J = Im . In view of these assumptions, the matrices

P =
Im + J

2
and Q =

Im − J

2
(2.1)

13
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are complementary orthogonal projectors on C
m and every m×m signature

matrix J �= ±Im is unitarily equivalent to the matrix

jpq =

[
Ip 0

0 −Iq

]
, p ≥ 1, q ≥ 1, p + q = m, (2.2)

where

p = rank P and q = rank Q. (2.3)

In addition to jpq itself, the main examples of signature matrices that will
be of interest in the sequel are:

Jp =

[
0 −Ip

−Ip 0

]
, Jp =

[
0 −iIp

iIp 0

]
and jp = jpp for 2p = m.

(2.4)
The signature matrices Jp and jp are connected by the formula

Jp = V
∗jpV, where V =

1√
2

[
−Ip Ip

Ip Ip

]
. (2.5)

A matrix U ∈ C
m×m is said to be:

(1) J-contractive if U∗JU ≤ J .

(2) J-expansive if U∗JU ≥ J .

(3) J-unitary if U∗JU = J .

The class of J-contractive matrices will be designated Pconst(J) in honor of
V. P. Potapov, who systematically investigated their properties; the class of
J-unitary matrices will be designated Uconst(J).

2.2 The Potapov–Ginzburg transform

Let

Sp×q
const =

{
A ∈ C

p×q : A∗A ≤ Iq

}
and

S̊p×q
const =

{
A ∈ C

p×q : A∗A < Iq

}
.

In this subsection we will introduce the Potapov–Ginzburg transform
PG(U), which maps U ∈ Pconst(J) into the set Sm×m

const . It is convenient,
however, to first establish two preliminary lemmas.
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Lemma 2.1 If U ∈ C
m×m, then the six matrices

P ± QUQ, P ± QU, P ± UQ

are either all invertible or all singular.

Proof To verify the assertion for the first four matrices, it suffices to observe
that if u ∈ C

m, then

(P ± QUQ)u = 0 ⇐⇒ Pu = 0 and QUQu = 0

⇐⇒ Pu = 0 and QUu = 0

⇐⇒ (P ± QU)u = 0.

This analysis also implies that

P ± QU∗Q is invertible ⇐⇒ P ± QU∗ is invertible

and hence, as P and Q are orthogonal projectors, that

P ± QUQ is invertible ⇐⇒ P ± UQ is invertible,

as needed to complete the proof. �

Lemma 2.2 Let U ∈ C
m×m . Then P + QU is invertible if and only if

P −UQ is invertible. Moreover, if one (and hence both) of these matrices is
invertible, then

(PU + Q)(P + QU)−1 = (P − UQ)−1(UP − Q).

Proof The first assertion was verified in the preceding lemma; the second
is a straightforward calculation. �

The mapping from

{U ∈ C
m×m : P + QU is invertible}

into C
m×m that is defined by the formula

S = (PU + Q)(P + QU)−1 = (P − UQ)−1(UP − Q) (2.6)

is called the Potapov–Ginzburg transform. We shall refer to it as the
PG transform of U and shall write S = PG(U).

Lemma 2.3 Let U ∈ Pconst(J) with J �= ±Im. Then the matrices P ±QUQ,
P ± QU and P ± UQ are all invertible. Moreover, if S = PG(U), then:
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(1) S ∈ Sm×m
const .

(2) Im − S∗S = (P + U∗Q)−1(J − U∗JU)(P + QU)−1.

(3) Im − SS∗ = (P − UQ)−1(J − UJU∗)(P − QU∗)−1.

(4) P ± QSQ, P ± QS and P ± SQ are invertible.

(5) U = PG(S) = (PS + Q)(P + QS)−1 = (P − SQ)−1(SP − Q).

(6) J − U∗JU = (P + S∗Q)−1(Im − S∗S)(P + QS)−1.

(7) J − UJU∗ = (P − SQ)−1(Im − SS∗)(P − QS∗)−1.

(8) The matrices P±QUQ are both expansive, i.e., P±QUQ is invertible
and (P ± QUQ)−1 ∈ Sm×m

const .

(9) (P + QS)(P + QU) = (P + QU)(P + QS) = Im.

(10) QSQUQ = QUQSQ = Q.

(11) (P + QSQ)(P + QUQ) = (P + QUQ)(P + QSQ) = Im.

Proof The assumption that U ∈ Pconst(J) is equivalent to the inequality

U∗PU + Q ≤ P + U∗QU.

But this in turn implies that

QU∗PUQ + Q ≤ QU∗QUQ

and hence that

QU∗PUQ + Im ≤ P + QU∗QUQ = (P ± QU∗Q)(P ± QUQ),

which clearly implies that the two matrices P ± QUQ are expansive and
hence invertible. Therefore, (8) holds and all six of the matrices referred
to in the statement of the lemma are invertible, by Lemma 2.1. Assertion
(1) is immediate from the identities in (2) and (3), which are verified by
straightforward calculations.

The next step is to verify (4). In view of Lemma 2.1, it suffices to check
that P + QS is invertible, which follows easily from the observation that

(P + QS)(P + QU) = P + Q(PU + Q) = P + Q = Im.

This calculation also justifies the formulas in (9). Items (5), (6) and (7) are
again routine calculations, (10) is obtained by multiplying (9) on the left
and on the right by Q, and (11) follows easily from (10). �
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Theorem 2.4 If J is an m × m signature matrix and J �= ±Im, then
(1) The PG transform is well defined on the set Pconst(J).

(2) The PG transform is a one to one map of Pconst(J) onto the set

{S ∈ Sm×m
const : P + QSQ is invertible}.

(3) If U ∈ Pconst(J) and S = PG(U), then U = PG(S).

(4) U ∈ Uconst(J) if and only if PG(U) ∈ Uconst(Im).

Proof (1) holds because P + QU is invertible if U ∈ Pconst(J). (2) and (3)
follow from (4) and (5) of Lemma 2.3, and (4) follows from (6) of Lemma
2.3. �

Corollary 2.5 If J is an m × m signature matrix and J �= ±Im, then

U ∈ Pconst(J) ⇐⇒ U∗ ∈ Pconst(J)

and

U ∈ Uconst(J) ⇐⇒ U∗ ∈ Uconst(J).

Lemma 2.6 Let U ∈ Pconst(J) with J �= ±Im, let S = PG(U) and let

UP = Q + PUP, UQ = P + QUQ, SP = Q + PSP

and SQ = P + QSQ. (2.7)

Then:
(1) SP ∈ Sm×m

const and SQ ∈ Sm×m
const .

(2) SQUQ = Im.

(3) The matrix SQ is invertible, UQ = S−1
Q and the matrix UQ is expan-

sive.

(4) ‖U‖ ≥ 1.

(5) ‖UP ‖ ≤ ‖U‖ and ‖UQ‖ ≤ ‖U‖.
(6) The formulas

U = (Im + PSQ)SP UQ(Im − QSP ) (2.8)
and

S = (Im + PUQ)UP SQ(Im − QUP ) (2.9)
hold.
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(7) ‖U‖ ≤ 3‖UQ‖.

(8) det U = det SP
det SQ

and det S = det UP
det UQ

.

(9) U is invertible if and only if SP is invertible.

(10) If U is invertible, then

U−1 = (Im + QSP )SQS−1
P (Im − PSQ) (2.10)

and

‖S−1
P ‖ ≤ ‖U−1‖ ≤ 3‖S−1

P ‖. (2.11)

(11) If U ∈ Uconst(J), then U is invertible,

PSPU∗P = P and SP U∗
P = Im

and hence SP is invertible, U∗
P = S−1

P and UP is expansive.

Proof The first assertion in (1) follows easily from the fact that

S∗
P SP = (Q + PS∗P )(Q + PSP ) = Q + PS∗PSP

≤ Q + P = Im.

The inequality S∗
QSQ ≤ Im may be checked in the same way.

Assertion (2) rests on the identity

SQUQ = P + QSQUQ = P + Q = Im,

which is immediate from (11) of Lemma 2.3, and (3) is immediate from (2).
Let u be a nonzero vector in the range of Q. Then, since UQ is expansive,

‖u‖2 ≤ ‖UQu‖2 = ‖QUQu‖2

≤ ‖U‖2‖u‖2.

This proves (4), which is then used to verify (5):

‖UP u‖2 = ‖Qu‖2 + ‖PUPu‖2

≤ ‖Qu‖2 + ‖U‖2‖Pu‖2

≤ ‖U‖2(‖Qu‖2 + ‖Pu‖2)

= ‖U‖2‖u‖2
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for every u ∈ Cm . Therefore, ‖UP ‖ ≤ ‖U‖ and, by much the same argument,
‖UQ‖ ≤ ‖U‖.

Next, upon substituting the identities

PS + Q = (Im + PSQ)(Q + PSP ) and

QS + P = (Im + QSP )(P + QSQ)

into the formula U = (PS + Q)(QS + P )−1, it is readily seen that

U = (Im + PSQ)SP (SQ)−1(Im + QSP )−1,

which leads easily to (2.8), with the help of the formulas in (1) and (2) and
the fact that (Im + QSP )−1 = Im − QSP .The verification of formula (2.9)
is similar.

Formula (2.8) yields the bound

‖U‖ ≤ ‖Im + PSQ‖‖SP ‖‖UQ‖‖Im − QSP‖,

which leads easily to (7), since ‖SP ‖ ≤ 1 and ‖(Im +PSQ)‖ ≤
√

3, as follows
from the sequence of inequalities:

‖(Im + PSQ)u‖2 = ‖u‖2 + 2R〈SQu, Pu〉 + ‖PSQu‖2

≤ ‖u‖2 + 2‖SQu‖‖Pu‖ + ‖PSQu‖2

≤ ‖u‖2 + 2‖Qu‖‖Pu‖ + ‖Qu‖2

≤ ‖u‖2 + ‖Qu‖2 + ‖Pu‖2 + ‖Qu‖2

≤ 3‖u‖2.

The formulas in (8) follow from the formulas in (6) and (2) and the fact
that for any matrix B ∈ C

m×m ,

det(Im ± PBQ) = det(Im ± BQP ) = det Im = 1

and

det(Im ± QBP ) = det(Im ± BPQ) = det Im = 1.

Moreover, the first formula in (8) yields (9).
If U is invertible, then the formulas in (2) and (6) lead easily to (2.10) and

the second inequality in (2.11). The first inequality in (2.11) then follows
from the observation that

PU−1P = PS−1
P P
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and hence that

‖U−1‖ ≥ ‖PU−1P‖ = ‖PS−1
P P‖ = ‖S−1

P ‖.

To verify the equality ‖PS−1
P P‖ = ‖S−1

P ‖, we first note that

S−1
P = (PSP P + Q)−1 = PS−1

P P + Q

and hence that ‖PS−1
P P‖ ≥ 1 and

‖S−1
P x‖2 = ‖PS−1

P Px‖2 + ‖Qx‖2

≤ ‖PS−1
P P‖2‖Px‖2 + ‖Qx‖2

≤ ‖PS−1
P P‖2(‖Px‖2 + ‖Qx‖2)

≤ ‖PS−1
P P‖2‖x‖2

for every x ∈ C
m . Therefore,

‖S−1
P ‖ ≤ ‖PS−1

P P‖

and thus, equality holds, since the opposite inequality is obvious.
Finally, if U ∈ Uconst(J), then the formulas

(Q + SP )U∗ = (P − UQ)−1U∗JU

and

(P + SQ) = (P − UQ)−1J

imply that

(Q + SP )U∗ = P + SQ

and hence that

PSPU∗P = P

and

SP U∗
P = (Q + PSP )(Q + PU∗P )

= Q + PSPU∗P = Q + P = Im.

This completes the proof of the displayed formulas in (11). The remaining
assertions in (11) follow easily from these formulas. �
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In the special case that J = jpq with p ≥ 1 and q ≥ 1, the orthogonal
projectors defined in (2.1) can be written explicitly as

P =

[
Ip 0

0 0q×q

]
and Q =

[
0p×p 0

0 Iq

]
.

Correspondingly, if W ∈ Pconst(jpq) and S = PG(W ) are written in block
form as

W =

[
w11 w12

w21 w22

]
and S =

[
s11 s12

s21 s22

]
(2.12)

with blocks w11 and s11 of size p× p and w22 and s22 of size q × q, then the
formulas of Lemma 2.3 lead to the following conclusions:

Lemma 2.7 Let W ∈ Pconst(jpq) and S = PG(W ) be written in the standard
block form (2.12). Then

(1) w22 and s22 are invertible.

(2) S =

[
w11 w12

0 Iq

][
Ip 0

w21 w22

]−1

=

[
Ip −w12

0 −w22

]−1 [
w11 0

w21 −Iq

]
, i.e.,

s11 = w11 − w12w
−1
22 w21, s12 = w12w

−1
22 ,

s21 = −w−1
22 w21 and s22 = w−1

22 .
(2.13)

(3) W =

[
s11 s12

0 Iq

][
Ip 0

s21 s22

]−1

=

[
Ip −s12

0 −s22

]−1 [
s11 0

s21 −Iq

]
,

i.e.,

w11 = s11 − s12s
−1
22 s21, w12 = s12s

−1
22 ,

w21 = −s−1
22 s21 and w22 = s−1

22 .
(2.14)

(4) s11 ∈ Sp×p
const, s12 ∈ S̊p×q

const, s21 ∈ S̊q×p
const and s22 ∈ Sq×q

const.

(5) det W =
det s11

det s22
and det S = det w11

det w22
.

(6) W is invertible ⇐⇒ s11 is invertible.
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(7) The formulas for W and S can also be expressed as

W =

[
Ip s12

0 Iq

][
s11 0

0 w22

][
Ip 0

−s21 Iq

]
(2.15)

and

S =

[
Ip w12

0 Iq

][
w11 0

0 s22

][
Ip 0

−w21 Iq

]
. (2.16)

(8) w22 = s−1
22 and ‖w22‖ ≤ ‖W‖ ≤ 3‖w22‖.

(9) If W is invertible, then

W−1 =
[

Ip 0
s21 Iq

] [
s−1
11 0
0 s22

] [
Ip −s12

0 Iq

]
and

‖s−1
11 ‖ ≤ ‖W−1‖ ≤ 3‖s−1

11 ‖.

(10) If W ∈ Uconst(jpq), then w∗
11s11 = Ip.

Proof Items (1), (2) and (3) are immediate from Lemma 2.3. Moreover,
since [

s∗11 s∗21

s∗12 s∗22

][
s11 s12

s21 s22

]
≤
[
Ip 0

0 Iq

]
,

it is readily seen that

s∗11s11 + s∗21s21 ≤ Ip and s∗12s12 + s∗22s22 ≤ Iq.

Therefore, s11 ∈ Sp×p
const, s22 ∈ Sq×q

const and, since s22 is invertible, s12 ∈ S̊p×q
const.

The supplementary inequality

s21s
∗
21 + s22s

∗
22 ≤ Iq,

which is obtained from the 22 block of the inequality SS∗ ≤ Im , serves
to guarantee that s21 ∈ S̊q×p

const, to complete the proof of (4). Item (6) is
immediate from (5), which, in turn, follows from (3) and (2). Item (7) is
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obtained from the Schur complement formula[
w11 w12

w21 w22

]
=

[
Ip w12w

−1
22

0 Iq

][
w11 − w12w

−1
22 w21 0

0 w22

][
Ip 0

w−1
22 w21 Iq

]
(2.17)

and the formulas in (2.13). Similar arguments serve to justify formula (2.16).
The upper bound in (8) follows from (2.15), since the matrices sij are con-
tractive. The remaining assertions of the lemma follow from the correspond-
ing assertions in Lemma 2.6. �

Lemma 2.8 If W ∈ Uconst(jpq), then there exists a unique choice of
parameters

k ∈ S̊p×q
const, u ∈ Uconst(Ip) and v ∈ Uconst(Iq) (2.18)

such that

W =

 (Ip − kk∗)−1/2 k(Iq − k∗k)−1/2

k∗(Ip − kk∗)−1/2 (Iq − k∗k)−1/2

 u 0

0 v

 . (2.19)

Conversely, if k, u, v is any set of three matrices that meet the condition
(2.18), then the matrix W defined by formula (2.19) is jpq-unitary.

Proof Let W ∈ Uconst(jpq), let wij and sij be the blocks in the four block
decomposition of W and S = PG(W ) and let k = s12. Then, by Lemma 2.7,
k ∈ S̊p×q

const,

s11s
∗
11 = Ip − kk∗ s∗22s22 = Iq − k∗k and s21s

∗
11 = −s22k

∗,

since S ∈ Uconst(Im), where m = p + q. The first two equalities imply that

s11 = (Ip − kk∗)1/2u and s22 = v∗(Iq − k∗k)1/2, (2.20)

where u ∈ Uconst(Ip) and v ∈ Uconst(Iq) are uniquely defined by s11

and s22, respectively. Moreover, these formulas lead easily to the asserted
parametrization of W with parameters that are uniquely defined by W and
satisfy the constraints (2.18), since

w11 = s−∗
11 , w22 = s−1

22 , w12 = ks−1
22 and w21 = −s−1

22 s21 = k∗s−∗
11 . (2.21)

The converse is easily checked by direct calculation. �
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Lemma 2.9 If W ∈ Uconst(jpq), then u = Ip and v = Iq in the parametriza-
tion formula (2.19) if and only if W > 0.

Proof If W ∈ Uconst(jpq) and W > 0, then parametrization formula (2.19)
implies that u = Ip and v = Iq , since w11 > 0 and w22 > 0. Conversely,
if W ∈ Uconst(jpq) and u = Ip and v = Iq , then, by Schur complements,
formula (2.19) can be written as

W =
[
Ip k

0 Iq

] [
(Ip − kk∗)1/2 0

0 (Iq − k∗k)−1/2

] [
Ip 0
k∗ Iq

]
,

since w11 − w12w
−1
22 w21 = (Ip − kk∗)1/2. But this clearly displays W as a

positive definite matrix. �

2.3 Linear fractional transformations

Let

U =

[
u11 u12

u21 u22

]
(2.22)

be a constant m × m matrix with blocks u11 of size p × p and u22 of size
q × q, respectively, and define the linear fractional transformation

TU [x] = (u11x + u12)(u21x + u22)−1 (2.23)

for every x ∈ C
p×q for which the indicated inverse exists, i.e., for x in the

set

D(TU ) = {x ∈ C
p×q : u21x + u22 is invertible}.

We shall refer to this set as the domain of TU and, for a set X ⊆ D(TU ),
we let

TU [X] = {TU [x] : x ∈ X}.

Let V = [vij ]2i,j=1 be a second constant m × m matrix which is partitioned
conformally with U . Then if x ∈ D(TU ) and TU [x] ∈ D(TV ), it is readily
checked that x ∈ D(TV U ) and

TV [TU [x]] = TV U [x]. (2.24)
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Lemma 2.10 If U, V ∈ C
m×m and UV = Im, then

(1) TU [D(TU )] = D(TV ).

(2) TV [TU [x]] = x for every x ∈ D(TU ).

(3) D(TU ) = {x ∈ C
p×q : det(v11 − xv21) �= 0}.

(4) If x ∈ D(TU ), then

TU [x] = −(v11 − xv21)−1(v12 − xv22). (2.25)

Proof (1) and (2) are readily checked by direct calculation. Suppose next
that u21x + u22 is invertible, but ξ∗(v11 − xv21) = 0 for some vector ξ ∈ Cp.
Then the identity

0p×q = [Ip − x]Im

[
x

Iq

]
= [Ip − x]V U

[
x

Iq

]
yields the formula

(v11 − xv21)(u11x + u12) = −(v12 − xv22)(u21x + u22), (2.26)

which implies that ξ∗(v12 − xv22) = 0 too. Therefore,

[ξ∗ − ξ∗x]V = 0

and hence, since V is invertible, ξ = 0. Thus, v11 − xv21 is invertible.
Since the argument can be reversed it follows that

u21x + u22 is invertible ⇐⇒ v11 − xv21 is invertible.

This establishes (3); (4) is now immediate from formula (2.26). �

Lemma 2.11 Let U ∈ C
m×m be an invertible matrix and let V ∈ C

m×m be
such that

V jpqU = jpq , i.e., V = jpqU
−1jpq .

Then, in terms of the standard four block decompositions [uij ]2i,j=1 and
[vij ]2i,j=1 described above,

D(TU ) = {x ∈ C
p×q : v11 + xv21 is invertible}.

Moreover, if x ∈ D(TU ), then the linear fractional transformation (2.23) can
also be written as

TU [x] = (v11 + xv21)−1(v12 + xv22). (2.27)
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Proof The lemma follows directly from Lemma 2.10, since jpqV jpq = U−1.
It can also be established independently in much the same way by exploiting
the identity

[Ip x]V jpqU

[
x

Iq

]
= [Ip x]jpq

[
x

Iq

]
= 0,

which is valid for every x ∈ C
p×q .

Remark 2.12 We shall refer to the linear fractional transformation TU de-
fined above that maps D(TU ) ⊆ C

p×q into C
p×q as a right linear fractional

transformation and shall sometimes denote it by Tr
U . There is also a left

linear fractional transformation, T �
U with domain

D(T �
U ) = {y ∈ C

q×p : yu12 + u22 is invertible}

and range in C
q×p that is defined on D(T �

U ) by the formula

T �
U [y] = (yu12 + u22)−1(yu11 + u21).

Theorem 2.13 Let U ∈ C
m×m . Then the linear fractional transformation

TU meets the three conditions:

(1) Sp×q
const ⊆ D(TU ).

(2) TU [Sp×q
const] ⊆ Sp×q

const.

(3) TU [S̊p×q
const] ⊆ S̊p×q

const.

if and only if

(4) U = cW for some choice of c ∈ C \ {0} and W ∈ Pconst(jpq).

Proof The proof that (4) =⇒ (1)–(3) is relatively straightforward. Indeed,
if W ∈ Pconst(jpq) and x ∈ Sp×q

const, then (1) follows from the observation that
w22 is invertible, s21 ∈ S̊q×p

const and

w21x + w22 = w22(Iq − s21x).

Next, (2) and (3) are easily extracted from the formulas

(w21x + w22)∗{TW [x]∗TW [x] − Iq}(w21x + w22)

= [x∗ Iq ]W ∗jpqW

[
x

Iq

]
≤ [x∗ Iq ]jpq

[
x

Iq

]
= x∗x − Iq.
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The same conclusions prevail if W is replaced by U = cW for any c ∈ C\{0},
because then TU [x] = TW [x].

The converse implication lies deeper and requires the development of the
theory of finite dimensional spaces with indefinite metric. A proof will be
furnished later in Corollary 2.41. �

Corollary 2.14 If W ∈ Uconst(jpq), then

Sp×q
const ⊆ D(TW ) and TW [Sp×q

const] = Sp×q
const.

Proof The inclusions Sp×q
const ⊆ D(TW ) and TW [Sp×q

const] ⊆ Sp×q
const follow from

Theorem 2.13. However, since W ∈ Uconst(jpq) ⇐⇒ W−1 ∈ Uconst(jpq), the
inclusion TW −1 [Sp×q

const] ⊆ Sp×q
const is also valid. Therefore,

Sp×q
const = TW [TW −1 [Sp×q

const]] ⊆ TW [Sp×q
const] ⊆ Sp×q

const.

�

Lemma 2.15 Let U ∈ C
m×m and let TU denote the linear fractional trans-

formation defined in terms of the blocks uij of U by formula (2.23). Then

(1) S̊p×q
const ⊆ D(TU ) ⇐⇒ u22 is invertible and u−1

22 u21 ∈ Sq×p
const.

(2) Sp×q
const ⊆ D(TU ) ⇐⇒ u22 is invertible and u−1

22 u21 ∈ S̊q×p
const.

Proof If S̊p×q
const ⊆ D(TU ), then 0p×q ∈ D(TU ) and hence u22 is invertible

and the matrix χ = u−1
22 u21 is well defined. Moreover, if ‖χ‖ > 1, then the

matrix x = −‖χ‖−2χ∗ belongs to the set S̊p×q
const. However, this is not viable,

since det (Iq + χx) = 0, because ‖χ‖2 is an eigenvalue of χχ∗. Therefore,
χ ∈ Sq×p

const. Conversely, if u22 is invertible and ‖χ‖ ≤ 1, then it is readily
checked that

D(TU ) = {x ∈ C
p×q : det (Iq − χx) �= 0} ⊇ S̊p×q

const,

since ‖χx‖ ≤ ‖χ‖‖x‖ < 1, for x ∈ S̊p×q
const. This completes the proof of (1).

The proof of (2) is similar. �

Lemma 2.16 Let U ∈ C
m×m and assume that S̊p×q

const ⊆ D(TU ) and that TU

is injective on S̊p×q
const. Then U is invertible.
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Proof Lemma 2.15 implies that u22 is invertible and that the matrix χ =
u−1

22 u21 ∈ Sq×p
const. Thus, if

U

[
ξ

η

]
= 0 for some choice of ξ ∈ C

p and η ∈ C
q ,

then the formulas

0 = u21ξ + u22η = u22(η + χξ)

imply that η = −χξ and consequently that η∗η ≤ ξ∗ξ. Now choose y ∈ Cq

with y �= 0 such that Iq +ηy∗ is invertible and the matrix ε = ξy∗(Iq +ηy∗)−1

is in S̊p×q
const. Then

U

[
ξy∗

Iq + ηy∗

]
= U

[
ξy∗

ηy∗

]
+ U

[
0
Iq

]
= U

[
0
Iq

]
and it is readily checked that

TU [ε] = TU [0].

Therefore, since TU is assumed to be injective on S̊p×q
const, ε = 0. Thus, ξ = 0

and η = 0 and hence U is invertible. �

Lemma 2.17 Let U ∈ Cm×m with a four block decomposition as in (2.22)
and suppose that u22 is invertible and that χ = u−1

22 u21 is strictly contractive.
Then there exists a matrix W0 ∈ Uconst(jpq) such that the blocks u

(1)
ij of the

matrix U1 = UW0 satisfy the conditions

u
(1)
11 ≥ 0, u

(1)
22 > 0 and u

(1)
21 = 0. (2.28)

Such a matrix U1 is uniquely defined by the matrix U . Moreover:

(1) The blocks of U1 may be expressed in terms of the matrices

k = −(u−1
22 u21)∗ = −χ∗, (2.29)

δ = {u22(Iq − k∗k)u∗
22}1/2 and v = (Iq − k∗k)1/2u∗

22δ
−1 (2.30)

by the formulas

u
(1)
22 = δ, u

(1)
11 = {(u11 +u12k

∗)(Ip −kk∗)−1(u11 +u12k
∗)∗}1/2 (2.31)

and

u
(1)
12 = (u11k + u12)(Iq − k∗k)−1/2v. (2.32)
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(2) The factor W0 is unique if and only if det U �= 0.

(3) det U �= 0 ⇐⇒ u
(1)
11 > 0.

(4) The matrix W0 admits a parametrization of the form (2.19) in which
k and v are uniquely defined by formulas (2.29) and (2.30) and u is
a p × p unitary matrix such that

(u11 + u12k
∗)(Ip − kk∗)−1/2 = u

(1)
11 u∗. (2.33)

(Thus u and, hence W0, is uniquely defined by U if and only if
det U �= 0.)

Proof Let W0 ∈ Uconst(jpq) and let U1 = UW0. Then, if W0 is parametrized
as in (2.19),

u
(1)
11 = (u11 + u12k

∗)(Ip − kk∗)−1/2u, (2.34)

u
(1)
22 = (u21k + u22)(Iq − k∗k)−1/2v, (2.35)

u
(1)
12 = (u11k + u12)(Iq − k∗k)−1/2v (2.36)

and

u
(1)
21 = (u21 + u22k

∗)(Ip − kk∗)−1/2u. (2.37)

The last equality implies that u
(1)
21 = 0 if and only if k = −χ∗, i.e., if and

only if (2.29) holds. Moreover, since u
(1)
22 is invertible, formula (2.35) implies

u
(1)
22 > 0 if and only if the unitary matrix v is defined by formula (2.30),

whereas (2.34) implies that u
(1)
11 ≥ 0 if and only if it is defined as in formula

(2.31). Furthermore, the p × p unitary matrix u may be chosen to satisfy
(2.33). This choice of u is unique if and only if u

(1)
11 > 0.

Finally, the formula

det U det W0 = det u
(1)
11 det u

(1)
22

yields (3) and the rest of (4), since u
(1)
22 and W0 are invertible. �
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2.4 Matrix balls

A matrix ball B in C
p×q is a set of the form

B = {C + LER : E ∈ Sp×q
const} (2.38)

where C ∈ C
p×q , L ∈ C

p×p, R ∈ C
q×q , L ≥ 0 and R ≥ 0. The matrix C is

called the center of the ball and the matrices L and R are called left and
right semi radii, respectively.

Lemma 2.18 A matrix X ∈ C
p×q belongs to the matrix ball B with center

C and left and right semi radii L and R if and only if

|ξ∗(X − C)η| ≤ ‖Lξ‖ ‖Rη‖ (2.39)

for every choice of ξ ∈ C
p and η ∈ Cq .

Proof Suppose first that (2.39) is in force. Then (X − C)η is
orthogonal to every vector ξ in the null space of L, i.e., range
(X − C) ⊆ range (L). Therefore,

LL†(X − C) = X − C,

where L† denotes the Moore-Penrose inverse of L. Similar considerations
imply that

(X − C)R†R = X − C,

where R† denotes the Moore-Penrose inverse of R. Thus,

(X − C) = LL†(X − C)R†R

and L†(X − C)R† ∈ Sp×q
const, since

|u∗L†(X − C)R†v| ≤ ‖LL†u‖ ‖RR†v‖ ≤ ‖u‖ ‖v‖

for every choice of u ∈ Cp and v ∈ C
q by (2.39) and LL† and RR† are

orthogonal projections. This completes the proof that (2.39) implies that X

belongs to the matrix ball defined by C,L and R. The converse implication
is self-evident. �

Lemma 2.19 Let Bj denote the matrix ball with center Cj ∈ C
p×q and left

and right semi radii Lj ∈ Cp×p and Rj ∈ Cq×q , respectively, for j = 1, 2.
Then B1 ⊆ B2 if and only if

|ξ∗(C1 − C2)η| + ‖L1ξ‖ ‖R1η‖ ≤ ‖L2ξ‖ ‖R2η‖ (2.40)

for every choice of ξ ∈ C
p and η ∈ C

q .
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Proof Suppose first that B1 ⊆ B2 and let E1 ∈ Sp×q
const. Then there exists a

matrix E2 ∈ Sp×q
const such that

C1 − C2 + L1E1R1 = L2E2R2

and hence

|ξ∗(C1 − C2)η + ξ∗L1E1R1η| = |ξ∗L2E2R2η| ≤ ‖L2ξ‖ ‖R2η‖

for every choice of ξ ∈ C
p and η ∈ C

q . If L1ξ = 0 or R1η = 0, then (2.40) is
clear. Now fix ζ ∈ C with |ζ| = 1, set u = L1ξ, v = R1η and suppose that
‖u‖ ‖v‖ �= 0. Then the matrix

E1 = ζ
uv∗

‖u‖ ‖v‖

belongs to Sp×q
const, and by appropriate choice of ζ

|ξ∗(C1 − C2)η + ξ∗L1E1R1η| = |ξ∗(C1 − C2)η| + ‖u‖ ‖v‖
= |ξ∗(C1 − C2)η| + ‖L1ξ‖ ‖R1η‖,

which, when substituted into the preceding inequality, yields (2.40).
Suppose next that (2.40) is in force and let X ∈ B1. Then, in view of

Lemma 2.18,

|ξ∗(X − C2)η| = |ξ∗(X − C1)η + ξ∗(C1 − C2)η|
≤ |ξ∗(X − C1)η| + |ξ∗(C1 − C2)η|
≤ ‖L1ξ‖ ‖R1η‖ + |ξ∗(C1 − C2)η|
≤ ‖L2ξ‖ ‖R2η‖,

for every choice of ξ ∈ Cp and η ∈ Cq . Therefore, by another application of
Lemma 2.18, X ∈ B2. �

Corollary 2.20 If B1 = B2, then C1 = C2.

Proof If B1 = B2, then the supplementary inequality

|ξ∗(C1 − C2)η| + ‖L2ξ‖ ‖R2η‖ ≤ ‖L1ξ‖ ‖R1η‖ (2.41)

is also in force for every choice of ξ ∈ C
p and η ∈ C

q . The conclusion now
follows easily by adding (2.40) and (2.41). �
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Lemma 2.21 If B1 ⊆ B2 and B1 �= {C1}, then there exists a finite constant
ρ > 0 such that

L1 ≤ ρL2 and R1 ≤ 1
ρ

R2.

Proof If B1 �= {C1}, then there exist a pair of vectors ξ◦ ∈ C
p and η◦ ∈ C

q

such that ‖L1ξ
◦‖ �= 0 and ‖R1η

◦‖ �= 0. Thus, in view of (2.40), ‖L2ξ
◦‖ �= 0,

‖R2η
◦‖ �= 0 and

‖L1ξ
◦‖

‖L2ξ◦‖
≤ ‖R2η

◦‖
‖R1η◦‖

< ∞.

Therefore, the number

κ = sup
{
‖L1ξ‖
‖L2ξ‖

: L1ξ �= 0
}

is finite and positive and

‖L1ξ‖ ≤ κ‖L2ξ‖

first for ξ ∈ C
p with L1ξ �= 0 and then for all ξ ∈ C

p, and , similarly

‖R1η‖ ≤ 1
κ
‖R2η‖,

first for η ∈ C
q with R1η �= 0 and then for all η ∈ C

q . Consequently,

L2
1 ≤ κL2

2 and R2
1 ≤ 1

κ
R2

2.

The conclusion follows by taking square roots. �

Corollary 2.22 If B1 = B2 and B1 �= {C1}, then there exists a finite
constant γ > 0 such that

L1 = γL2 and R1 = γ−1R2.

Proof If B1 = B2, then there exist a pair of finite positive constants α and
β such that the inequalities

L2
1 ≤ αL2

2, R2
1 ≤ 1

α
R2

2, L2
2 ≤ βL2

1 and R2
2 ≤ 1

β
R2

1

are all in force. Therefore,

L2
1 ≤ αβL2

1 and R2
1 ≤ 1

αβ
R2

1,
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which implies that αβ = 1 and hence, since L1 > 0 and R1 > 0, that L2
1 =

αL2
2 and R2

1 = α−1R2
2. Thus, by the uniqueness of the positive semidefinite

square root of a positive semidefinite matrix,

L1 = γL2 and R1 = γ−1R2

for some finite positive constant γ. �
In the future we shall usually indicate the center of a matrix ball B in

Cp×q by mc and the left and right semiradii by the symbols R� and Rr ,
respectively. In terms of this notation,

B =
{

m ∈ C
p×q : m = mc + R�εRr and ε ∈ Sp×q

const

}
. (2.42)

If R� > 0 and Rr > 0, then, for each choice of κ > 0, there exists a unique
choice of ρ such that

det (ρR�)
det (ρ−1Rr)

= κ. (2.43)

Lemma 2.23 Let U ∈ Cm×m and suppose that Sp×q
const ⊆ D(TU ). Then

TU [Sp×q
const] is a matrix ball with positive right semiradius Rr, i.e.,

TU [Sp×q
const] =

{
m ∈ C

p×q : m = mc + R�εRr and ε ∈ Sp×q
}

, (2.44)

where the center of the ball mc is uniquely specified by the formula

mc = u
(1)
12 (u(1)

22 )−1 (2.45)

and the left and right semiradii R� and Rr may be specified by the formulas

R� = u
(1)
11 and Rr = (u(1)

22 )−1, (2.46)

in which the u
(1)
ij are are given by formulas (2.29)–(2.37). Moreover, for this

choice of R� and Rr,
det R�

det Rr
= |det U |. (2.47)

If det U �= 0, then the last equality holds only for this choice of R� and Rr .

Proof This is an easy consequence of Lemma 2.17 and the preceding dis-
cussion. �

Theorem 2.24 Let U ∈ C
m×m . Then

Sp×q
const ⊆ D(TU ) and TU [Sp×q

const] = Sp×q
const (2.48)
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if and only if

U = cW for some W ∈ Uconst(jpq) and some scalar c > 0. (2.49)

Proof If (2.48) holds, then the the center of the matrix ball TU [Sp×q
const] is

mc = 0p×q and the left and right semiradii may be chosen equal to R� = Ip

and Rr = Iq , respectively. Thus, by formulas (2.45) and (2.46), the blocks
of the matrix U1 that is defined in Lemma 2.17 are u

(1)
12 = 0, u

(1)
11 = cIp and

u
(1)
22 = cIq . Therefore, U1 = cIm and hence (2.49) is in force.
Conversely, (2.49) implies (2.48), by Corollary 2.14. �

Remark 2.25 In formula (2.49),

c = |det U |1/m, (2.50)

since |det W | = 1 when W ∈ Uconst(jpq).

Lemma 2.26 Let W ∈ Pconst(jpq). Then TW [Sp×q
const] is a matrix ball in

Sp×q
const with positive right semiradius Rr, i.e.,

TW [Sp×q
const] =

{
s
(1)
12 + s

(1)
11 εs

(1)
22 : ε ∈ Sp×q

const

}
, (2.51)

where the s
(1)
ij are the blocks in the four block decomposition of S1 = PG(W1)

and W1 ∈ Pconst(jpq) is identified with the matrix U1 considered in Lemma
2.23, with W in place of U . Moreover, for this choice of R� and Rr ,

det R�

det Rr
= |det W |. (2.52)

If det W �= 0, then the last equality holds only for this choice of R� and Rr .

Proof This is essentially a special case of Lemma 2.23, which is applicable,
since Sp×q

const ⊆ D(TW ), when W ∈ Pconst(jpq). �

2.5 Redheffer transforms

If W ∈ Pconst(jpq), then the linear fractional transformation TW may be
rewritten in terms of the Redheffer transform, which is defined in terms
of the blocks sij of the PG transform S = PG(W ),

RS [ε] = s12 + s11ε(Iq − s21ε)−1s22 (2.53)
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on the set

D(RS) = {ε ∈ C
p×q : det (Iq − s21ε) �= 0}, (2.54)

since D(RS) = D(TW ), and, if ε ∈ D(RS), then by formula (2.13),

RS [ε] = w12w
−1
22 + (w11 − w12w

−1
22 w21)ε(Iq + w−1

22 w21ε)−1w−1
22

= TW [ε].

The Redheffer transform RS may also be defined for (p + k) × (r + q)
matrices

S =
[
s11 s12

s21 s22

]
with blocks

s11 ∈ C
p×r, s12 ∈ C

p×q , s21 ∈ C
k×r and s22 ∈ C

k×q

on the set

D(RS) = {ε ∈ C
r×k : det (Ik − s21ε) �= 0} (2.55)

by the formula

RS [ε] = s12 + s11ε(Ik − s21ε)−1s22, (2.56)

and not just for S ∈ Sm×m
const with s22 invertible. If E ⊆ D(RS), then

RS [E] = {RS [ε] : ε ∈ E}. (2.57)

Theorem 2.27 Let S ∈ S(p+k)×(r+q)
const be decomposed into four blocks of the

sizes indicated above. Then:

(1) S̊r×k
const ⊆ D(RS).

(2) RS [Sr×k
const ∩ D(RS )] ⊆ Sp×q

const.

(3) Sr×k ⊆ D(RS) if and only if s21 ∈ S̊k×r
const.

(4) RS [S̊r×k
const] ⊆ S̊p×q

const if and only if s12 ∈ S̊p×q
const.

(5) If S is an isometric matrix and ε ∈ D(RS), then RS [ε] is an isometric
matrix if and only if ε is an isometric matrix.
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Proof Under the given assumptions, there exist a positive integer m ≤ r+q

and a pair of matrices M ∈ C
m×r and N ∈ C

m×q such that

Ir+q −
[

s∗11 s∗21
s∗12 s∗22

] [
s11 s12

s21 s22

]
=
[

Ir − (s∗11s11 + s∗21s21) −(s∗11s12 + s∗21s22)
−(s∗12s11 + s∗22s21) Iq − (s∗12s12 + s∗22s22)

]
=
[

M∗M M ∗N
N∗M N∗N

]
.

Let ε ∈ Sr×k
const ∩ D(RS) and let g = (Ik − s21ε)−1s22. Then

Iq − RS [ε]∗RS [ε] = Iq − (s∗12 + g∗ε∗s∗11)(s12 + s11εg)

= N∗N + s∗22s22 + g∗ε∗(M∗N + s∗21s22)

+(s∗22s21 + N∗M)εg

+g∗ε∗(M∗M + s∗21s21 − Ir)εg.

Moreover, since

s22 + s21εg = g,

it is readily checked that

s∗22s22 + g∗ε∗s∗21s22 + s∗22s21εg + g∗ε∗s∗21s21εg − g∗ε∗εg

= s∗22(s22 + s21εg) + g∗ε∗s∗21(s22 + s21εg) − g∗ε∗εg

= s∗22g + g∗ε∗s∗21g − g∗ε∗εg

= g∗(Ik − ε∗ε)g

and hence that

Iq − RS [ε]∗RS [ε] = (N + Mεg)∗(N + Mεg) + g∗(Ik − ε∗ε)g. (2.58)

Consequently, RS [ε] ∈ Sp×q
const if ε ∈ Sr×k ∩ D(RS).

If s21 ∈ S̊k×r and ε ∈ Sr×k
const, then s21ε ∈ S̊k×k and hence ε ∈ D(RS).

It remains to check that if Sr×k
const ⊆ D(RS), then s21 ∈ S̊k×r. But if this is

not so, then there exists a vector η ∈ C
r such that ‖s21η‖ = ‖η‖ = 1. Thus,

the matrix ε = ηη∗s∗21 ∈ Sr×k
const. However,

det (Ik − s21ηη∗s∗21) = det (1 − η∗s∗21s21η) = 0.

Therefore, the constructed matrix ε �∈ D(RS).
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Next, to verify (4), suppose first that ε ∈ S̊r×k , s21 ∈ S̊p×q and (Iq −
RS [ε]∗RS [ε])η = 0 for some η ∈ C

q . Then, in view of (2.58),

(N + Mεg)η = 0 and gη = 0.

Therefore, Nη = 0, s22η = 0 and hence (Iq − s∗21s21)η = 0, which in turn
implies that η = 0, i.e., s21 ∈ S̊p×q =⇒ RS [S̊p×q ] ⊆ S̊p×q . The converse
implication is self-evident, since s12 = RS [0].

Assertion (5) is self-evident from formula (2.58), since M = 0 and N =
0 if S is isometric. This completes the proof, since assertion (1) is self-
evident. �

2.6 Indefinite metrics in the space C
m

In this section we shall consider subspaces of C
m endowed with the indefinite

inner product

[u, v] = 〈Ju, v〉 = v∗Ju,

where J ∈ C
m×m is a signature matrix with J �= ±Im (and hence, m ≥ 2).

Then there exist vectors u, v and w �= 0 in C
m such that

[u, u] > 0, [v, v] < 0 and [w,w] = 0.

Thus, for example, if J = j1, then the vectors

u =
[

1
0

]
, v =

[
0
1

]
and w =

[
1
1

]
meet the stated conditions. In general, if x ∈ R(P ), the range of P =
(Im +J)/2; y ∈ R(Q), the range of Q = (Im −J)/2; and if x �= 0 and y �= 0,
then

[x, x] = ‖x‖2 > 0 and [y, y] = −‖y‖2 < 0.

Moreover, if also ‖x‖ = ‖y‖, then

[x + y, x + y] = [x, x] + [y, y] = ‖x‖2 − ‖y‖2 = 0.

It is convenient to set
M++ = {u ∈ C

m : [u, u] > 0} ∪ {0},
M+ = {u ∈ C

m : [u, u] ≥ 0},
M0 = {u ∈ C

m : [u, u] = 0},
M− = {u ∈ C

m : [u, u] ≤ 0},
M−− = {u ∈ C

m : [u, u] < 0} ∪ {0}.
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A subspace L of C
m is said to be positive with respect to [ , ] if L ⊆ M++,

nonnegative if L ⊆ M+, negative if L ⊆ M−−, nonpositive if L ⊆ M−
and neutral if L ⊆ M0.

A subspace L of Cm is said to be a maximal nonpositive subspace if
L ⊆ M− and L is not a proper subspace of any other nonpositive subspace of
Cm . A subspace L of Cm is said to be a maximal nonnegative subspace if
L ⊆ M+ and L is not a proper subspace of any other nonnegative subspace
of C

m .

Lemma 2.28 Let L be a subspace of C
m and let p = rank(Im + J) and

q = rank(Im − J). Then:

(1) L ⊆ M+ =⇒ dim L ≤ p.

(2) L ⊆ M− =⇒ dim L ≤ q.

(3) L ⊆ M0 =⇒ dim L ≤ min{p, q}.

Proof Since J �= ±Im , it suffices to restrict attention to the case J = jpq . In
this setting it is convenient to write u ∈ C

m as u = col(x, y), where x ∈ C
p

and y ∈ C
q . Then

[u, u] = 〈x, x〉 − 〈y, y〉 = x∗x − y∗y

and hence

x∗x ≥ y∗y ⇐⇒ u ∈ M+

x∗x ≤ y∗y ⇐⇒ u ∈ M−
x∗x = y∗y ⇐⇒ u ∈ M0.

Let u1, . . . , ut be a basis for L and write uj = col(xj, yj) with xj ∈ C
p

and yj ∈ C
q for j = 1, . . . , t. Then, if L ⊆ M+, it is readily checked that

x1, . . . , xt is a linearly independent set of vectors in C
p:

x =
t∑

j=1

cjxj = 0 =⇒ u =
t∑

j=1

cjuj = 0 (2x∗x ≥ u∗u if u ∈ M+)

=⇒ c1 = · · · = ct = 0,

since u1, . . . , ut is a linearly independent set of vectors in C
m . Consequently,

t ≤ p, as claimed in (1). Next, it follows in much the same way that if



2.6 Indefinite metrics in the space Cm 39

L ⊆ M−, then

y =
t∑

j=1

cjyj = 0 =⇒ u =
t∑

j=1

cjuj = 0,

since now 2y∗y ≥ u∗u. Thus, y1, . . . , yt is a linearly independent set of vectors
in C

q and consequently, t ≤ q, as claimed in (2).
Finally, (3) follows from (1) and (2), since M0 ⊆ M− ∩M+. �
We remark that the formulas

R(P ) ⊆ M++, dim R(P ) = p

and

R(Q) ⊆ M−−, dim R(Q) = q

imply that R(P ) is a maximal nonnegative subspace and R(Q) is a maximal
nonpositive subspace.

Lemma 2.29 Let L be a k-dimensional subspace of C
m such that u∗jpqu ≤ 0

for every u ∈ L. Then:

(1) There exists a matrix S ∈ Sp×q
const and a k-dimensional subspace Y of

C
q such that

L =
{[

Sy

y

]
: y ∈ Y

}
. (2.59)

(2) The matrix S in the representation of L in (1) is unique if and only
if either k = q or k < q and S is coisometric.

(3) Conversely, if L is defined by formula (2.59) for some choice of S ∈
Sp×q

const and some k-dimensional subspace Y of Cq , then L ⊆ M− and
L is a k-dimensional subspace of C

m.

Proof Let v1, . . . , vk be a basis for L; let vj = col(xj, yj) with xj ∈ C
p and

yj ∈ C
q for j = 1, . . . , k; and let

V = [v1 · · · vk ], X = [x1 · · ·xk ] and Y = [y1 · · · yk ].

Then, under the given assumptions, V ∗jpqV ≤ 0, and hence

X∗X ≤ Y ∗Y.
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By the proof of the preceding lemma, the rank of the q×k matrix Y is equal
to k and hence it admits a polar decomposition Y = UD, where U ∈ C

q×k

is isometric and D ∈ Ck×k is positive definite. Thus, as

Y ∗Y = DU∗UD = D2,

it follows that

XD−1 ∈ Sp×k
const and XD−1U∗ ∈ Sp×q

const

and hence, upon setting

S = XD−1U∗,

that

SY = XD−1U∗UD = X.

Thus, (2.59) holds for this choice of S ∈ Sp×q and Y = R(Y ).
Next, to obtain (2), observe first that if k = q, then Y is invertible, Y = Cq

and the matrix S = XY −1 is uniquely defined by L. If k < q, then there
exists a matrix V ∈ C

q×(q−k) such that Ũ = [U V ] is unitary and the p× q

matrix

S1 =
[

XD−1 E
]
Ũ∗ = XD−1U∗ + EV ∗

meets the condition S1Y = X for every choice of E ∈ C
p×(q−k). However,

since

S1S
∗
1 = XD−2X∗ + EE∗ = SS∗ + EE∗,

it follows that S1 is contractive if and only if

EE∗ ≤ Ip − SS∗.

But this in turn implies that there exists a nonzero matrix E ∈ C
p×(q−k)

that meets the last constraint if and only if the contractive matrix S is not
coisometric. This serves to jusify (2). Thus, as (3) is self-evident, the proof
is complete. �

Lemma 2.30 Let J be a signature matrix that is unitarily equivalent to jpq .
Then:

(1) L ⊆ M− is a maximal nonpositive subspace of C
m with respect to J ,

if and only if dim L = q; and L ⊆ M+ is a maximal nonnegative
subspace of C

m with respect to J , if and only if dim L = p.
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(2) If L ⊆ M− is a nonpositive subspace of Cm and dim L < q, then L
is a proper subspace of a maximal nonpositive subspace L− of C

m.

(3) If L ⊆ M+ is a nonnegative subspace of C
m and dim L < p, then L

is a proper subspace of a maximal nonnegative subspace L+ of C
m.

Proof Since there is no loss of generality in taking J = jpq , the first assertion
follows easily from the preceding two lemmas. To verify (2), let L ⊆ M−
and suppose that dim L = k and k < q. Then, by Lemma 2.29, (2.59) holds
for some S ∈ Sp×q

const. Let

L− =
{[

Sy

y

]
: y ∈ C

q

}
.

Then L ⊂ L− ⊆ M− and L �= L−, since dim L = k < q = dim L−.
Assertion (3) follows from (2) by replacing J by −J . �
If L1 and L2 are subspaces of a subspace L of C

m , then we will write

L = L1[+]L2

if the following three conditions are met:

(1) L1 ∩ L2 = {0}.
(2) [x, y] = 0 for every x ∈ L1 and y ∈ L2.

(3) Every vector u ∈ L can be expressed in the form u = x+y, where x ∈ L1

and y ∈ L2. (In view of (1), this representation is unique.)

We shall also let

L[⊥] = {v ∈ C
m : [u, v] = 0 for every u ∈ L}.

If J �= ±Im , then there exist subspaces L of C
m such that L ∩ L[⊥] �= {0}.

This will happen only if L ∩M0 �= {0}. It is readily checked that

C
m = L[+]L[⊥] ⇐⇒ L∩ L[⊥] = {0}.

In this case, we write

L[⊥] = C
m [−]L

and say that L[⊥] is the orthogonal complement of L with respect to
the indefinite J-metric in C

m . In a similar vein, if L = L1[+]L2, then we
sometimes write L2 = L[−]L1 and L1 = L[−]L2.
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Lemma 2.31 If L = L1[+]L2, where L1 ⊆ M++ and L2 ⊆ M−−, then
L ∩ L[⊥] = {0}.

Proof Let u ∈ L∩L[⊥]. Then, in view of the given assumptions, u = u1 +u2,
where u1 ∈ L1, u2 ∈ L2 and

[u1, u2] = [u, u1] = [u, u2] = 0.

Therefore,

[u1, u1] = [u2, u2] = 0

and hence u1 = u2 = 0. Thus, u = 0 too. �

Remark 2.32 If L ∩ L[⊥] = {0}, then L admits the decomposition L =
L1[+]L2, where L1 ⊆ M++ and L2 ⊆ M−− (as follows from Lemma 2.35,
that is established below). Moreover, if L = L′

1[+]L′
2 for a second pair of

positive and negative subspaces L′
1 and L′

2, then dim Lj = dim L′
j for

j = 1, 2; see Remark 2.36.

Lemma 2.33 Let L be a subspace of C
m such that L∩L[⊥] = {0} and let u

be a nonzero vector in L∩M0. Then there exists a vector v ∈ L∩M0 such
that [u, v] = 1.

Proof Under the given assumptions, the vector u �∈ L[⊥]. Therefore, there
exists a vector y ∈ L such that [u, y] = 1. It is readily checked that the
vector

v = y − 1
2
[y, y]u

meets the two stated requirements. �

Lemma 2.34 Let L be a subspace of C
m such that L ∩ L[⊥] = {0} and

L ∩ M0 �= {0}. Then there exists a nonzero vector u ∈ L ∩ M++ and a
nonzero vector v ∈ L ∩M−− such that [u, v] = 0.

Proof Under the given assumptions, the preceding lemma guarantees the
existence of a pair of vectors x, y ∈ L ∩M0 such that [x, y] = 1. Then as

[x + ty, x + ty] = 2t, t ∈ R,
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it follows that the vectors u = x + y and v = x− y meet the stated require-
ments. �

Lemma 2.35 Let L be a nonzero subspace of C
m. Then L admits a J-

orthogonal decomposition of the form

L = L+[+]L0[+]L−, (2.60)

where the subspaces L+, L0, L− meet the conditions

L+ ⊆ M++, L0 ⊆ M0 and L− ⊆ M−−.

Moreover, in any such decomposition,

(1) L0 = L ∩ L[⊥].

(2) dim L+ + dim L0 ≤ p and dim L− + dim L0 ≤ q.

(3) dim L0 ≤ min{p, q}.

Proof Let L be a k-dimensional subspace of C
m with 1 ≤ k ≤ m. If L ⊆

M0, then the asserted decomposition of L holds with L+ = {0}, L0 = L
and L− = {0}. If L is not a subset of M0, then either L ∩ M++ �= {0}
or L ∩ M−− �= {0}, or both. Suppose for the sake of definiteness that
L ∩ M++ �= {0}. Then there exists a vector u1 ∈ L with [u1, u1] = 1. Let
L1 = {u ∈ L : [u, u1] = 0}. If L1 ∩M++ �= {0}, then there exists a vector
u2 ∈ L1 such that [u1, u2] = 0 and [u2, u2] = 1. Let

L2 = {u ∈ L : [u, uj ] = 0 for j = 1, 2}.

If L2 ∩ M++ �= {0}, then the construction continues to generate vectors
u3, . . . , ur with

[uj, ui] =
{

0 if i �= j, i, j = 1, . . . , r,

1 if i = j, i = 1, . . . , r,

until

Lr = {u ∈ L : [u, uj ] = 0, j = 1, . . . , r}

is such that

Lr ∩M++ = {0}.
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Then, if Lr ∩ M−− �= {0}, in a similar way one finds vectors v1, . . . , vs

such that

[vi, vj ] =
{

0 if i �= j, i, j = 1, . . . , s,

−1 if i = j, i = 1, . . . , s,

[vi, uj ] = 0, i = 1, . . . , s, j = 1, . . . , r,

Lr+s = {u ∈ L : [u, uj ] = 0, j = 1, . . . , r and [u, vi] = 0, i = 1, . . . , s},

and

Lr+s ∩M−− = {0}.

We conclude that Lr+s is a (k − r − s)-dimensional subspace of M0 and set
L0 = Lr+s,

L+ = span {uj : 1 ≤ j ≤ r} if L ∩M++ �= {0}

and

L− = span {vi : 1 ≤ i ≤ s} if L ∩M−− �= {0}.

This completes the verification of the decomposition (2.60).
Next, if u ∈ L0, then u ∈ L[⊥]

± and (as follows by invoking Cauchy’s
inequality in L0), u ∈ L[⊥]

0 . Therefore, u ∈ L ∩ L[⊥]. Conversely, if u ∈
L∩L[⊥], then, in view of the decomposition (2.60), u = u+ +u0 +u−, where
u± ∈ L± and u0 ∈ L0. Consequently,

0 = [u, u±] = [u±, u±] =⇒ u± = 0

and hence that u = u0, i.e., u ∈ L0. This completes the proof of (1).
The asserted bounds on the dimensions follow from Lemma 2.28, since

L±[+]L0 ⊆ M± and dim(L±[+]L0) = dimL± + dimL0.

�

Remark 2.36 The decomposition exhibited in the last lemma is not unique.
Thus, for example, if L = span{u, w} where

[u, u] = 1, [u, w] = 0, and [w,w] = 0,

then L admits the two decompositions

L = span{u}[+]span{w}
= span{u + w}[+]span{w}.
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Nevertheless, the dimensions of the subspaces in the sum (2.60) are unique:
If the space L with decomposition (2.60) admits a second decomposition

L = L̃+[+]L̃0[+]L̃−,

in which L̃+ ⊆ M++, L̃− ⊆ M−− and L̃0 ⊆ M0, then

dim L± = dim L̃± and L0 = L̃0.

To verify Remark 2.36, let u1, . . . , uk and v1, . . . , vk be two bases of L and
let U =

[
u1 · · · uk

]
and V =

[
v1 · · · vk

]
. Then U = V X for some

invertible matrix X ∈ C
k×k and hence, as

U∗JU = X∗V ∗JV X,

Sylvester’s Law of Inertia (see e.g., [Dy07] p. 431) implies that the matrix
U∗JU has the same number of positive (resp., negative) eigenvalues as the
matrix V ∗JV .

2.7 Minus matrices

A matrix U ∈ C
m×m is said to be a minus matrix with respect to the

indefinite inner product [ , ] (or with respect to the signature matrix J) if

[u, u] ≤ 0 =⇒ [Uu, Uu] ≤ 0.

Theorem 2.37 Let U ∈ C
m×m be a minus matrix with respect to an m×m

signature matrix J �= ±Im. Let

µ−(U) = inf
{

[Uv, Uv]
[v, v]

: v ∈ C
m and [v, v] < 0

}
and

µ+(U) = sup
{

[Uu, Uu]
[u, u]

: u ∈ C
m and [u, u] > 0

}
.

Then:

(1) µ+(U) ≤ µ−(U).

(2) µ−(U) ≥ 0.

(3) [Uu, Uu] ≤ µ−(U)[u, u] for every u ∈ C
m.

(4) µ+(U) ≤ 0 ⇐⇒ [Uu, Uu] ≤ 0 for every u ∈ C
m.
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(5) det U �= 0 =⇒ µ+(U) > 0.

(6) If µ−(U) > 0 and ρ ∈ C\{0}, then

ρ−1U ∈ Pconst(J) ⇐⇒ µ+(U) ≤ |ρ|2 ≤ µ−(U).

Proof Since J �= ±Im , there exist a pair of vectors u, v ∈ C
m such that

[u, u] = 1 and [v, v] = −1. Suppose first that [u, v] = reiθ for r ≥ 0 and some
θ ∈ [0, 2π) and let ρ = ieiθ. Then

[u + ρv, u + ρv] = [u, u] + 2R{ρ[v, u]} + [v, v] = 0

and hence, since U is a minus matrix,

[U(u + ρv), U(u + ρv)] ≤ 0.

Thus, as the same inequality holds if ρ is replaced by −ρ,

[Uu, Uu] + 2R {ρ[Uv, Uu]} + [Uv, Uv] ≤ 0

and

[Uu, Uu] − 2R {ρ[Uv, Uu]} + [Uv, Uv] ≤ 0.

Consequently,

[Uu, Uu] ≤ −[Uv, Uv]

for every choice of u ∈ C
m with [u, u] = 1 and v ∈ C

m with [v, v] = −1. But
this is equivalent to the inequality

[Uu, u]
[u, u]

≤ [Uv, Uv]
[v, v]

for every u ∈ C
m with [u, u] > 0 and v ∈ C

m with [v, v] < 0. The last
inequality clearly justifies assertion (1).

Assertion (2) is clear from the definition.
Next, to justify (3), take any u ∈ C

m and observe that:

(a) [u, u] > 0 =⇒ [Uu, Uu] ≤ µ+(U)[u, u] ≤ µ−(U)[u, u],
thanks to (1), whereas,

(b) [u, u] < 0 =⇒ − [Uu, Uu] ≥ −µ−(U)[u, u],
by the definition of µ−(U), and

(c) [u, u] = 0 =⇒ [Uu, Uu] ≤ 0 = µ−(U)[u, u].
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The verification of (4) is similar: if µ+(U) ≤ 0, then the first inequality for
[Uu, Uu], in (a) just above, implies that

[Uu, Uu] ≤ 0

when [u, u] > 0. However, the same inequality must hold if [u, u] ≤ 0 too,
since U is a minus matrix. The implication ⇐= in (4) follows from the
definition of µ+(U).

Next, (5) is a consequence of (4), because if µ+(U) ≤ 0, then the space
L = {Uu : u ∈ C

m} is a subspace of M−. Therefore, by Lemma 2.28,
dim L ≤ q. However, this is not possible if U is invertible (and J �= −Im).
Thus, U invertible =⇒ µ+(U) > 0.

Finally, to verify (6), suppose first that ρ−1U ∈ Pconst(J) for some ρ ∈
C\{0}. Then, clearly,

[Uu, Uu] ≤ |ρ|2[u, u]

for every u ∈ C
m . Thus,

[u, u] < 0 =⇒ [Uu, Uu]
[u, u]

≥ |ρ|2 =⇒ µ−(U) ≥ |ρ|2

and

[u, u] > 0 =⇒ [Uu, Uu]
[u, u]

≤ |ρ2| =⇒ µ+(U) ≤ |ρ2|.

Moreover, the argument can be run backwards to show that if µ+(U) ≤
|ρ2| ≤ µ−(U), then

[Uu, Uu] ≤ |ρ2|[u, u],

and hence that ρ−1U ∈ Pconst(J), as claimed. �

Corollary 2.38 An matrix U ∈ C
m×m is a minus matrix with respect to

an indefinite inner product [ , ] if and only if there exists a constant c ≥ 0
such that

[Uu, Uu] ≤ c[u, u]. (2.61)

Proof One direction follows from (2) and (3) in Theorem 2.37. The other
direction is self-evident. �
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2.8 Strictly minus matrices

A matrix U ∈ C
m×m is said to be a strictly minus matrix with respect

to the indefinite inner product [ , ] (or with respect to the signature matrix
J) if there exists a scalar c > 0 such that

[Uu, Uu] ≤ c[u, u] (2.62)

for every u ∈ C
m .

Remark 2.39 Clearly, U is a strictly minus matrix if and only if

U∗JU ≤ cJ for some c > 0,

i.e., if and only if c−
1
2 U ∈ Pconst(J). By Theorem 2.37, every invertible

minus matrix is a strictly minus matrix and the inequality (2.62) holds
for every u ∈ C

m if and only if µ+(U) ≤ c ≤ µ−(U).

Theorem 2.40 Let U ∈ C
m×m and let J be an m × m signature that is

unitarily equivalent to jpq. Then the following statements are equivalent:

(1) U is a strictly minus matrix with respect to J .

(2) U is a minus matrix with respect to J and µ−(U) > 0.

(3) UM− ⊆ M− and UM−− ⊆ M−−.

(4) The linear mapping X −→ UX maps each of the two sets

{X ∈ C
m×q : X∗JX ≤ 0}, {X ∈ C

m×q : X∗JX < 0}

into itself.

(5) There exists a nonzero constant c such that cU ∈ Pconst(J).

Proof The implications (1) =⇒ (2), (1) =⇒ (3), (3) =⇒ (4) and (1) ⇐⇒ (5)
are clear from the definitions, while (2) =⇒ (1) follows from Theorem 2.37.

Suppose next that (4) is in force. Then U is clearly a minus matrix with
respect to J and hence, in view of Theorem 2.37, µ−(U) ≥ 0. We wish to
show that µ−(U) > 0. If this were not the case, i.e., if µ−(U) = 0, then, by
another application of Theorem 2.37,

[Uu, Uu] ≤ 0
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for every vector u ∈ C
m . Thus, the subspace

L = {Uu : u ∈ C
m}

is a subspace of M−. Without loss of generality, we can assume that J = jpq

and hence that there exists a matrix s ∈ Sp×q
const such that

{Uu : u ∈ C
m} ⊆

{[
s

Iq

]
y : y ∈ C

q

}
.

In particular, {
U

[
ε

Iq

]
y : y ∈ C

q

}
⊆
{[

s

Iq

]
y : y ∈ C

q

}

for every choice of ε ∈ Sp×q
const. Let ε ∈ S̊p×q

const and let

X =
[

ε

Iq

]
.

Then X∗jpqX < 0 and hence, by assumption (4), (UX)∗jpq(UX) < 0, i.e.,

(u11ε + u12)∗(u11ε + u12) < (u21ε + u22)∗(u21ε + u22).

Therefore, u21ε + u22 is invertible and consequently{
U

[
ε

Iq

]
y : y ∈ C

q

}
=

{[
TU [ε]

Iq

]
(u21ε + u22)y : y ∈ C

q

}

=

{[
TU [ε]

Iq

]
y : y ∈ C

q

}

⊆
{[

s

Iq

]
y : y ∈ C

q

}
.

Therefore

s = TU [ε] for every ε ∈ S̊p×q (2.63)

and s ∈ S̊p×q
const. Now let v1, v2, . . . be a sequence of nonzero vectors in M−−

such that

lim
n↑∞

[Uvn, Uvn]
[vn, vn ]

= µ−(U).



50 Algebraic preliminaries

We can assume that [vn, vn ] = −1 and then, upon setting vn = col(xn, yn)
with xn ∈ C

p and yn ∈ C
q , it is readily seen that

‖yn‖2 = ‖xn‖2 + 1 ≥ 1.

Consequently, the vectors wn = ‖yn‖−1vn are subject to the bounds

1 ≤ ‖wn‖2 =
‖xn‖2 + ‖yn‖2

‖yn‖2 =
2‖yn‖2 − 1

‖yn‖2 ≤ 2.

Thus, we can assume that the vectors wn tend to a limit w ∈ M− as n ↑ ∞.
Moreover, if µ−(U) = 0 and δ > 0, then there exists an integer N such that

[Uwn, Uwn] ≥ δ[wn, wn ] when n ≥ N,

which in turn implies that

[Uw, Uw] ≥ δ[w,w].

The assumption wn ∈ M−− means that in the representation
wn = col(‖yn‖−1xn, ‖yn‖−1yn), xn = εnyn for some εn ∈ S̊p×q

const and hence,
in view of (2.63), that

Uwn =

[
TU [εn]

Iq

]
(u21εn + u22)

yn

‖yn‖

=

[
s

Iq

]
(u21εn + u22)

yn

‖yn‖

−→
[

s

Iq

]
(u21ε + u22)η

for some choice of ε ∈ Sp×q
const and η ∈ C

q with ‖η‖ = 1, as n ↑ ∞ along an
appropriately chosen subsequence. But this implies that

0 > [Uw, Uw] ≥ δ[w,w] (since s ∈ S̊p×q
const)

and hence that µ−(U) > 0. Thus, as

[Uu, Uu] ≤ µ−(U)[u, u] for every u ∈ C
m,

by Theorem 2.37; and µ−(U) > 0, by the preceding analysis, (5) holds with
c = µ−(U)−1/2. �

We are now able to complete the proof of Theorem 2.13.
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Corollary 2.41 If conditions (1)–(3) in the setting of Theorem 2.13 are in
force, then condition (4) is in force also.

Proof Let u = col(x, y) be a nonzero vector in M−− with components
x ∈ C

p and y ∈ C
q . Then the matrix

ε =
xy∗

y∗y
belongs to S̊p×q

const and u =

[
ε

Iq

]
y.

Therefore, by (1) and (3), the vector

Uu = U

[
ε

Iq

]
y =

[
TU [ε]

Iq

]
(u21ε + u22)y

clearly belongs to M−−. Similar considerations show that u ∈ M− =⇒
Uu ∈ M− and hence that U satisfies condition (3) of Theorem 2.40. There-
fore, in view of the equivalences established in Theorem 2.40, U also satisfies
condition (4) of Theorem 2.13, as claimed. �

The numbers µ+(U) and µ−(U) associated with a matrix U ∈ C
m×m that

is a strictly minus matrix with respect to a signature matrix J �= ±Im are
eigenvalues of the matrix

G = U×U = JU∗JU,

where U× denotes the adjoint of U with respect to the indefinite inner
product [ , ] based on J , i.e.,

[Uu, v] = [u, U×v]

for every choice of u, v ∈ C
m. Before turning to the proof of this assertion,

it is convenient to establish some preliminary results:

Lemma 2.42 Let U ∈ C
m×m be a strictly minus matrix with respect to a

signature matrix J �= ±Im and let G = JU∗JU . Then:

(1) The eigenvalues of G are nonnegative.

(2) If Gu = λu and u �= 0, then:

(a) [u, u] > 0 =⇒ λ ≤ µ+(U).

(b) [u, u] < 0 =⇒ λ ≥ µ−(U).
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(c) [u, u] = 0 =⇒ λ = µ−(U) = µ+(U).

(d) λ < µ−(U) =⇒ [u, u] > 0.

(e) λ > µ+(U) =⇒ [u, u] < 0.

(f) If µ+(U) < µ−(U), then λ �∈ (µ+(U), µ−(U)).

Proof In view of Remark 2.39, there exists a constant c > 0 such that
U ∗JU ≤ cJ . Let H = cIm − G and let Gy = µy for some nonzero vector
y ∈ C

m . Then

JH = cJ − U∗JU ≥ 0

and

y∗JHy = (c − µ)y∗Jy.

Moreover,

cJG − G∗JG = U∗J(cJ − U∗JU)JU

and

y∗(cJG − G∗JG)y = (c − µ)µy∗Jy = µy∗JHy ≥ 0.

Thus, if y∗JHy > 0, then µ ≥ 0. On the other hand, if y∗JHy = 0, then
JHy = 0, since JH ≥ 0. Consequently, Hy = (c − µ)y = 0, which forces
µ = c > 0. Therefore (1) holds.

Next, if [y, y] �= 0, then (2a) and (2b) follow easily from the definitions of
µ−(U) and µ+(U) and the auxiliary identity

µ =
[Gy, y]
[y, y]

=
[Uy, Uy]

[y, y]
.

On the other hand, if [y, y] = 0, then (c−µ)y = 0 for every point c > 0 that
meets the inequality µ+(U) ≤ c ≤ µ−(U). Since µ−(U) > 0 for a strictly
minus matrix, this is only viable if µ+(U) = µ−(U). Thus (c) is proved;
assertions (d), (e) and (f) are easy consequences of (a), (b) and (c) and the
definitions of µ−(U) and µ+(U), respectively. �

Lemma 2.43 Let U ∈ C
m×m be a strictly minus matrix with respect to

a signature matrix J �= ±Im and let λ be an eigenvalue of the matrix G =
JU∗JU . Suppose further that the algebraic multiplicity of λ as an eigenvalue
of G exceeds its geometric multiplicity. Then

λ = µ+(U) = µ−(U)

and there exists a J-neutral eigenvector of G with eigenvalue λ.
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Proof If (G − λIm)ku = 0 and (G − λIm)k−1u �= 0 for some integer k > 1,
then clearly y = (G− λIm)k−1u is an eigenvector of G corresponding to the
eigenvalue λ. Moreover,

[y, y] = [(G − λIm)k−1u, y]

= [u, (G − λIm)k−1y] = 0.

Therefore, by Lemma 2.42, λ = µ−(U) = µ+(U), as claimed. �

Corollary 2.44 Let U ∈ C
m×m be a strictly minus matrix with respect to a

signature matrix J �= ±Im and let G = JU∗JU . Then:

(1) The algebraic multiplicity of every eigenvalue λ of G with λ < µ+(G)
or λ > µ−(G) is equal to its geometric multiplicity.

(2) If µ+(G) < µ−(G), then G is diagonalizable.

Lemma 2.45 Let U ∈ C
m×m be a strictly minus matrix with respect to a

signature matrix J �= ±Im. Let u1, . . . , uk be a linearly independent set of
eigenvectors of the matrix G = JU∗JU with the same eigenvalue λ and let
L = span{u1, . . . , uk}.

(1) If λ < µ−(G), then L ⊆ M++.

(2) If λ > µ+(G), then L ⊆ M−−.

Proof Clearly, Gu = λu for every vector u ∈ L. Therefore, if λ < µ−(G)
and u �= 0, then [u, u] > 0, by Lemma 2.42. Similarly, if λ > µ+(G) and
u �= 0, then [u, u] < 0, by the same lemma. �

Lemma 2.46 Let U ∈ C
m×m be a strictly minus matrix with respect to

a signature matrix J �= ±Im. Let u1, . . . , uk be a linearly independent set
of eigenvectors of the matrix G = JU∗JU corresponding to the eigenvalues
λ1, . . . , λk and let L = span{u1, . . . , uk}.

(1) The eigenvectors of G corresponding to distinct eigenvalues are or-
thogonal with respect to the indefinite inner product.

(2) If λj < µ−(G) for j = 1, . . . , k, then L ⊆ M++.

(3) If λj > µ+(G) for j = 1, . . . , k, then L ⊆ M−−.
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Proof The formula

λi[ui, uj ] = [Gui, uj ] = [ui, Guj ] = λj [ui, uj ]

(which utilizes the fact that the eigenvalues of G are real) clearly implies
that

[ui, uj ] = 0 if λi �= λj.

Thus, in view of the previous lemma, L = span{v1, . . . , vk}, where

[vi, vj ] =


0 if i �= j

1 if i = j and λj < µ−(G)

−1 if i = j and λj > µ+(G).

Thus, for example, if λj > µ+(G) and u ∈ L, then

u =
k∑

j=1

cjvj =⇒ [u, u] = −
k∑

j=1

|cj |2 =⇒ u ∈ M−−. �

Theorem 2.47 Let U ∈ C
m×m be a strictly minus matrix with respect to

an m × m signature matrix J �= ±Im and let G = JU∗JU . Then:

(1) The eigenvalues of the matrix G are all nonnegative.

(2) If λ1(G) ≤ · · · ≤ λm(G) is a list of the eigenvalues of G repeated
according to algebraic multiplicity, then

µ+(U) = λp(G) and µ−(U) = λp+1(G).

(3) If γ ∈ C\{0}, then

γ−1U ∈ Pconst(J) ⇐⇒ λp(G) ≤ |γ|2 ≤ λp+1(G).

(4) The matrix G has a J-neutral eigenvector with eigenvalue λ if and
only if λp(G) = λp+1(G). In this case λ = λp(G) = λp+1(G).

Proof The first assertion is verified in Lemma 2.42. The rest of the proof is
broken into steps.

Step 1 Assertion (2) holds if µ+(U) < µ−(U).

By Lemma 2.43, the matrix G is diagonalizable in this setting. Let
u1, . . . , um be a set of eigenvectors corresponding to λ1 ≤ · · · ≤ λm that
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are orthogonal with respect to [ , ] and let

L+ =

{
0 if λj ≥ µ−(U) for j = 1, . . . , m

span{uj : λj < µ−(U)} otherwise

and

L− =

{
0 if λj ≤ µ+(U) for j = 1, . . . , m

span{uj : λj > µ+(U)} otherwise.

Then, in view of Lemmas 2.42 and 2.46, L+ ⊆ M++ and L− ⊆ M−−.
Moreover, since G has no eigenvalues in the open interval (µ+(U), µ−(U))
by Lemma 2.42,

L+[+]L− = C
m.

Therefore,

dim L+ = p and dim L− = q,

λ1 ≤ · · · ≤ λp ≤ µ+(U) < µ−(U) ≤ λp+1 ≤ · · · ≤ λm

and every vector u ∈ C
m admits a decomposition

u = u+ + u−

with components u± ∈ L± that are orthogonal with respect to [ , ]. Conse-
quently,

[u, u] = [u+, u+] + [u−, u−]

and, since GL± ⊆ L±, [u+, u+] ≥ 0 and [u−, u−] ≤ 0, it is readily seen that

[Gu, u] = [Gu+, u+] + [Gu−, u−]

≤ λp[u+, u+] + λp+1[u−, u−]

≤ γ[u, u]

for every choice of γ in the interval λp ≤ γ ≤ λp+1. But this implies that

µ+(U) ≤ λp and µ−(U) ≥ λp+1

and hence, as the opposite inequalities are also in force, that (2) holds.

Step 2 Assertion (2) holds if µ+(U) = µ−(U).
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Let λ = µ+(U) = µ−(U). Then even though G is not necessarily diago-
nalizable, Corollary 2.44 guarantees that the algebraic multiplicity of every
eigenvalue λj of G with λj �= λ is equal to its geometric multiplicity. Thus,
we can choose an orthogonal set of eigenvectors uj for each such choice of
λj and can define

L+ =

{
0 if λj ≥ µ+(U) for j = 1, . . . , m

span{uj : λj < µ+(U)} otherwise

L− =

{
0 if λj ≤ µ−(U) for j = 1, . . . , m

span{uj : λj > µ−(U)} otherwise.

Then, in view of Lemma 2.46, L+ ⊆ M++, L− ⊆ M−− and, consequently,
L+ ∩ L− = {0}. Moreover, by (1) of Lemma 2.46, L+ is orthogonal to L−
with respect to [ , ]. Let L = L+[+]L−. Then, in view of Lemma 2.31,
L ∩ L[⊥] = {0} and hence

C
m = L[+]L[⊥]

and, by Lemma 2.35,

L[⊥] = K+[+]K−,

where K+ ⊆ M++ and K− ⊆ M−−. Consequently, as

(L+[+]K+)[+](L−[+]K−) = C
m

and

L+[+]K+ ⊆ M++ and L−[+]K− ⊆ M−−,

it is readily seen that

dim L+ + dim K+ = p and dim L− + dim K− = q.

Moreover, the discussion in Step 1 is easily adapted to show that K+ �= {0}
and K− �= {0}. Thus, for example, if K+ = {0}, then dim L+ = p and
consequently λ1 ≤ · · · ≤ λp < µ+(U). Moreover, if u ∈ C

m , then

u = u+ + u−,



2.8 Strictly minus matrices 57

where u+ ∈ L+, u− ∈ K−[+]L−, GL+ ⊆ L+ and G(K−[+]L−) ⊆ L−[+]K−.
Therefore,

[u, u] = [u+, u+] + [u−, u−]

[Gu, u] = [Gu+, u+] + [Gu−, u−]

≤ λp[u+, u+] + µ−(U)[u−, u−]

≤ λp[u, u],

since λp < µ+(U) = µ−(U) by the definition of L+. But the last inequality
also implies that µ+(U) ≤ λp which contradicts the fact that λp < µ+(U).
Thus, K+ �= {0} and, by a similar argument, K− �= {0}. Therefore, the
numbers r = dim L+ and s = dim L− are subject to the inequalities

0 ≤ r ≤ p − 1 and 0 ≤ s ≤ q − 1.

But this means that in the list λ1 ≤ · · · ≤ λm,

λj = λ for r + 1 ≤ j ≤ m − s

and hence that

λp = λ = µ+(U) = µ−(U) = λp+1.

Step 3 Assertions (3) and (4) hold.

Assertion (3) follows from (2) and Theorem 2.37. Next, to verify (4),
suppose first that λ = µ+(U) = µ−(U). Then, by the analysis in Step 2, λ

is an eigenvalue of G and the space

K = ker((G − λIm)m)

may be decomposed as

K = K+[+]K−

where K+ ⊆ M++, K− ⊆ M−−, dim K+ ≥ 1 and dim K− ≥ 1. There are
two possibilities; either
(a) dim K > dim ker(G − λIm) or (b) dim K = dim ker(G − λIm).
In case (a), Lemma 2.43 guarantees the existence of a neutral eigenvector.
In case (b), we may choose u+ ∈ K+ with [u+, u+] = 1 and u− ∈ K− with
[u−, u−] = −1. Then u = u++u− is a neutral eigenvector of G corresponding
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to λ. This completes the proof of (4) in one direction. However, the other
direction is immediate from (2) and Lemma 2.42. �

Theorem 2.48 Let U ∈ C
m×m be a strictly minus matrix with respect to

an m × m signature matrix J �= ±Im. Then the following conditions are
equivalent:

(1) {u ∈ C
m : u ∈ M0 and Uu ∈ M0} �= {0}.

(2) There exists a neutral eigenvector of G.

(3) λp(G) = µ+(U) = µ−(U) = λp+1(G).

(4) There exists exactly one scalar ρ > 0 such that ρ−1U ∈ Pconst(J ).

Proof The equivalences (2)⇐⇒ (3)⇐⇒ (4) are consequences of the previous
theorem. The implication (2)=⇒ (1) is clear. It remains only to prove the
implication (1)=⇒ (2).

Let (1) be in force and suppose that µ+(U) < µ−(U). Then

C
m = L+[+]L−,

where the spaces L± are defined in Step 1 of the proof of the previous
theorem. Thus, if u ∈ M0 and Uu ∈ M0, u �= 0, then

u = u+ + u− and Gu = Gu+ + Gu−,

where u± ∈ L± and Gu± ∈ L±. Consequently,

0 = [u, u] = [u+, u+] + [u−, u−],

0 = [Gu, u] = [Gu+, u+] + [Gu−, u−]

≤ µ+(U)[u+, u+] + µ−(U)[u−, u−]

and hence

0 ≤ {µ+(U) − µ−(U)}[u+, u+].

Therefore, since [u+, u+] > 0, this last inequality implies that µ+(U) ≥
µ−(U), contrary to assumption. Consequently (3) holds, and thus, as (3) is
equivalent to (2), so does (2). �

2.9 Linear fractional transformations in Sp×q
const

Lemma 2.49 Let U ∈ C
m×m and suppose that

(1) S̊p×q
const ⊆ D(TU ).
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(2) TU [S̊p×q
const] ⊆ Sp×q

const.

(3) The set TU [Sp×q
const ∩ D(TU )] contains more than one matrix.

Then:

(4) U = cW for some choice of c ∈ C \ {0} and W ∈ Pconst(jpq).

(5) Sp×q
const ⊆ D(TU ).

(6) TU [Sp×q
const] ⊆ Sp×q

const.

(7) TU [S̊p×q
const] ⊆ S̊p×q

const.

Proof Let u ∈ C
m be a nonzero vector such that u∗jpqu ≤ 0. Then by

Lemma 2.29, there exists a matrix ε ∈ Sp×q
const such that

u =
[

ε

Iq

]
y for some vector y ∈ C

q.

In view of assumptions (1) and (2),[
rε

Iq

]∗
U∗jpqU

[
rε

Iq

]
≤ 0

for every choice of r in the interval 0 ≤ r < 1. Consequently,

u∗U∗jpqUu = lim
r↑1

y∗
[
rε

Iq

]∗
U∗jpqU

[
rε

Iq

]
y ≤ 0.

Thus, U is a minus matrix with respect to the indefinite inner product
based on jpq and hence, in view of Theorem 2.37, µ−(U) ≥ 0. However, if
µ−(U) = 0, then, by another application of Theorem 2.37, the vector space

L = {Uu : u ∈ C
m}

is a subspace of M− (with respect to the inner product based on jpq) and
consequently, by Lemma 2.29, there exists a matrix s ∈ Sp×q

const such that

L ⊆
{[

s

Iq

]
y : y ∈ C

q

}
.

Therefore, {[
TU [ε]

Iq

]
y : y ∈ C

q

}
⊆
{[

s

Iq

]
y : y ∈ C

q

}



60 Algebraic preliminaries

for every ε ∈ Sp×q
const ∩ D(TU ). But this implies that

TU [ε] = s

for every ε ∈ Sp×q
const ∩D(TU ), which is not viable with assumption (3). Con-

sequently µ−(U) > 0 and hence by item (6) of Theorem 2.37, the matrix
µ−(U)−1/2U belongs to the class Pconst(jpq). This justifies assertion (4). As-
sertions (5)–(7) then follow from Theorem 2.13. �

Lemma 2.50 Let W be an invertible minus matrix with respect to jpq . Then

(1) w22 is an invertible q × q matrix.

(2) w12w
−1
22 ∈ S̊p×q

const and w−1
22 w21 ∈ S̊q×p

const.

(3) w11 − w12w
−1
22 w21 is an invertible p × p matrix.

(4) Sp×q
const ⊆ D(TW ).

(5) TW [Sp×q
const] ⊆ Sp×q

const.

(6) TW [S̊p×q
const] ⊆ S̊p×q

const.

(7) TW is injective on D(TW ).

Proof Let W be an invertible minus matrix with respect to jpq . Then,
in view of items (1), (5) and (6) of Theorem 2.37, there exists a number
γ ∈ C\{0} such that the matrix W̃ = γ−1W belongs to the class Pconst(jpq).
Consequently, the first three assertions follow from Lemma 2.7, whereas the
next three assertions follow from Theorem 2.13. Finally, (7) follows from
Lemma 2.10. �

Theorem 2.51 Let U ∈ C
m×m . Then the following implicatations are in

force:

(1) If S̊p×q
const ⊆ D(TU ), TU [S̊p×q

const] ⊆ Sp×q
const and TU is injective on S̊p×q

const,
then

cU ∈ Pconst(jpq) for some c ∈ C \ {0} and U is invertible.

(2) If cU ∈ Pconst(jpq) for some c ∈ C \ {0} and U is invertible, then

Sp×q ⊆ D(TU ), TU [Sp×q ] ⊆ Sp×q

and TU is injective on D(TU ).
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Proof Suppose first that the assumptions in (1) are in force and that

U

[
x

y

]
= 0

for some choice of x ∈ C
p and y ∈ C

q . Then

U

[
xη∗

Iq + yη∗

]
= U

[
0

Iq

]
,

for every η ∈ C
q . Thus, if ‖η‖ is chosen small enough, then the matrix

ε = (xη∗)(Iq + yη∗)−1

belongs to Sp×q
const and the preceding equality implies that

TU [ε] = TU [0].

Therefore, in view of the presumed injectiveness, ε = 0 and hence x = 0.
Consequently, upon writing U = [uij ], i, j = 1, 2, we obtain

u21x + u22y = u22y = 0.

Therefore, since (1) guarantees that u22 is invertible, it follows that y = 0
also and hence that U is invertible. Moreover, cU ∈ Pconst(jpq) for some
nonzero constant c by Lemma 2.49.

Next, (2) follows from Lemma 2.50. �

Theorem 2.52 Let U ∈ C
m×m . Then the four conditions

(1) Sp×q
const ⊆ D(TU ).

(2) TU [Sp×q
const] ⊆ Sp×q

const.

(3) TU is injective on Sp×q
const.

(4) TU maps the class of p × q isometric (respectively, coisometric) ma-
trices into itself if p ≥ q (respectively, p ≤ q)

are in force if and only if:

(5) U = cW for some c ∈ C\{0} and W ∈ Uconst(jpq).

Moreover, if (5) holds, then:

(a) TU maps Sp×q
const onto itself.
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(b) TU maps the class of isometric (resp., coisometric) p × q matrices

onto itself if p ≥ q (resp., p ≤ q).

(c) µ−(U) = µ+(U).

(d) The modulus |c| of the number c in (5) is unique:

|c|2 = µ−(U).

Proof Suppose first that (1)–(4) are in force. Then, by the preceding the-
orem, U = cW for some choice of scalar c ∈ C\{0} and invertible matrix
W ∈ Pconst(jpq). Therefore, since TU [ε] = TW [ε], we can assume that c = 1
without loss of generality and hence that the m × m matrix

F = jpq − U∗jpqU

is positive semidefinite. Moreover, if p ≥ q, then (4) implies that

[ε∗ Iq ]F
[

ε

Iq

]
= 0

for every isometric matrix ε ∈ Sp×q . Thus upon writing F = [fij ], i, j =
1, 2, in appropriate block form, we see that

ε∗f11ε + ε∗f12 + f21ε + f22 = 0

for all such ε. Consequently, upon replacing ε by eiθε, and viewing the pre-
vious formula as a matrix Fourier series with respect to eiθ , it is readily seen
that

f12 = 0, f21 = 0 and ε∗f11ε + f22 = 0.

Therefore, since f11 ≥ 0 and f22 ≥ 0, it follows that f22 = 0 and ε∗f11ε = 0
for all isometric ε. In particular, writing

f11 = U1

[
s1 . . .

sp

]
U∗

1 and ε = U1

[
Iq

0

]
;

where U1 is unitary and s1 ≥ · · · ≥ sp are the singular values of f11; the
formula ε∗f11ε = 0 implies that s1 = · · · = sq = 0, and hence by the
monotonicity of the singular values, that f11 = 0 too. Therefore, F = 0, i.e.,
U ∈ Uconst(jpq).

If q ≥ p, then, it is convenient to use the formula

TU [ε] = (v11 + εv21)−1(v12 + εv22)
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based on the block decomposition of the matrix

V = jpqU
−1jpq

that is given in Lemma 2.11 and to now let

F = V jpqV
∗ − jpq.

Then, F ≥ 0. Moreover, the fact that

εε∗ = Ip =⇒ TU [ε]TU [ε]∗ = Ip

implies that

[Ip ε]F

[
Ip

ε∗

]
= 0

and hence, upon invoking the standard block decomposition F = [fij ], i, j =
1, 2, it is readily seen that

f11 + εf21 + f12ε
∗ + εf22ε

∗ = 0

for every coisometric p × q matrix ε. Then, since F ≥ 0, it is readily seen,
much as before, that fij = 0 and hence that V ∈ Uconst(jpq). This completes
the proof that (1)–(4) =⇒ (5). The converse is easy.

It remains only to check that if (5) holds, then (a)–(d) also hold. But,
(a) and (b) are easy and (c) follows from Theorem 2.48: U ∈ Uconst(J) =⇒
UM0 = M0. Therefore, (1) and (3) of Theorem 2.48 hold. The latter justifies
(c). Then, in view of (3) in Theorem 2.47, (d) holds too. �

2.10 Linear fractional transformations in Cp×p
const

Analogues of Theorems 2.51 and 2.52 hold for the linear fractional transfor-
mations

TA[τ ] = (a11τ + a12)(a21τ + a22)−1

that are defined in terms of matrices A = [aij ], i, j = 1, 2, with blocks
aij ∈ Cp×p and that act in the class

Cp×p
const = {τ ∈ C

p×p : τ + τ∗ ≥ 0}

and map the class

C̊p×p
const = {τ ∈ C

p×p : τ + τ∗ > 0}
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into Cp×p
const. The main conclusions regarding such transforms are summarized

in the following theorem:

Theorem 2.53 Let A ∈ C
m×m . Then the following implications are in force:

(1) If

γ−1A ∈ Pconst(Jp) for some γ ∈ C \ {0}, (2.64)

then

TA[Cp×p
const ∩ D(TA)] ⊆ Cp×p

const, (2.65)

C̊p×p
const ⊆ D(TA) and TA [C̊p×p

const] ⊆ C̊p×p
const. (2.66)

(2) Let C̊p×p
const ⊆ D(TA). Then TA is injective on C̊p×p

const if and only if A is
an invertible matrix. Moreover, if TA is injective on C̊p×p

const, then TA

is invertible on D(TA).

(3) If C̊p×p
const ⊆ D(TA) and TA [C̊p×p

const] ⊆ Cp×p
const, and if TA [Cp×p

const ∩ D(A)]
contains more than one matrix, then condition (2.64) is in force.

(4) If C̊p×p
const ⊆ D(TA) and the linear fractional transformation TA maps

C̊p×p
const injectively into Cp×p

const then the condition (2.64) holds and the
matrix A is invertible.

(5) If the linear fractional transformation TA meets the constraints in (4)
and maps the set

{τ ∈ D(TA) : Rτ = 0} into {c ∈ C
p×p : Rc = 0}, (2.67)

then the modulus |γ| of the number γ in condition (2.64) is unique:

|γ|2 = µ+(A) = µ−(A), and γ−1A ∈ Uconst(Jp). (2.68)

(6) Conversely, if (2.68) holds, then the matrix A is invertible and the
transform TA meets the constraints in (5).

(7) If A is a strictly minus matrix with respect to J = Jp, then

µ+(A) = λp(A) and µ−(A) = λp+1(A).

Furthermore,

γ−1A ∈ Pconst(Jp) ⇐⇒ µ+(A) ≤ |γ|2 ≤ µ−(A).
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Proof The theorem follows from Theorems 2.13, 2.51 and 2.52, Lemma 2.49
and the properties of linear fractional transformations based on the matrix
V defined in formula (2.5) that are recorded below:
D(TV) = {s ∈ Cp×p : det(Ip + s) �= 0},

Cp×p
const ⊆ D(TV) and Sp×p

const ∩ D(TV) = TV[Cp×p
const],

Cp×p
const = TV[Sp×p

const ∩ D(TV)],

C̊p×p
const = TV[S̊p×p

const] and S̊p×p
const = TV[C̊p×p

const].

If W = VAV, then
A ∈ Pconst(Jp) ⇐⇒ W ∈ Pconst(jp),

A ∈ Uconst(Jp) ⇐⇒ W ∈ Uconst(jp),

JpA
∗JpA = V(jpW

∗jpW )V∗,

µ−(A) = µ−(W ), µ+(A) = µ+(W ),

λj(A) = λj(W ), j = 1, . . . , m.

It remains only to verify assertion (5). The conditions in (4) guarantee
that

γ−1A ∈ Pconst(Jp) for some γ ∈ C \ {0} and that A is invertible.

The next step is to show that if condition (2.67) is in force, then γ−1A ∈
Uconst(Jp). Condition (2.67) guarantees that if W = VAV, then TW maps
every p × p matrix ε that meets the conditions

ε∗ε = Ip, det (Ip + ε) �= 0 and det (Ip + TW [ε]) �= 0 (2.69)

into a unitary p × p matrix. Now let ε be any unitary p × p matrix. Then
there exists a sequence γn , n = 1, 2 . . . with |γn| = 1 such that γnε meets the
three conditions in (2.69) and γn → 1 as n ↑ ∞. Consequently, the matrices
TW [γnε] are unitary and

TW [ε] = lim
n↑∞

TW [γnε]

is unitary. �
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Remark 2.54 The results presented above can easily be reformulated for
linear fractional transformations in the classes

iCp×p
const = {v ∈ C

p×p : Iv ≥ 0} and iC̊p×p
const = {v ∈ C

p×p : Iv > 0}.

In this representation the signature matrix Jp is replaced by the signature
matrix Jp; it is useful to note that

Jp = V ∗
1 JpV1 where V1 =

[
−iIp 0

0 Ip

]
. (2.70)

2.11 Transformations from Sp×p
const into Cp×p

const

Let Pconst(jp, Jp) be the class of (jp, Jp)-contractive matrices, i.e., matrices
B such that

B∗JpB ≤ jp, (2.71)

and let Uconst(jp, Jp) be the class of (jp, Jp)-unitary matrices, i.e., matrices
B such that

B∗JpB = jp. (2.72)

If A = BV, then

A ∈ Pconst(Jp) ⇐⇒ B ∈ Pconst(jp, Jp)

and

A ∈ Uconst(Jp) ⇐⇒ B ∈ Uconst(jp, Jp).

Thus, as

A∗JpA = Jp ⇐⇒ AJpA
∗ = Jp (2.73)

and

A∗JpA ≤ Jp ⇐⇒ AJpA
∗ ≤ Jp (2.74)

by Corollary 2.5, it follows that

B∗JpB ≤ jp ⇐⇒ BjpB
∗ ≤ Jp (2.75)

and

B∗JpB = jp ⇐⇒ BjpB
∗ = Jp. (2.76)

The notation

Cconst(A) = TB [Sp×p
const ∩ D(TB)] for B = AV (2.77)

will be useful.
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Lemma 2.55 Let A ∈ Pconst(Jp) and let B = AV. Then

TA[Cp×p
const ∩ D(TA)] ⊆ Cconst(A) ⊆ Cp×p

const (2.78)

and the first inclusion may be proper.

Proof Let c ∈ Cconst(A), i.e., let c = TB [ε], where ε ∈ Sp×p
const ∩ D(TB) and

let [u
v

]
= B

[
ε

Ip

]
=
[

b11ε + b12

b21ε + b22

]
.

Then, since A∗JpA ≤ Jp =⇒ B∗JpB ≤ jp,[
ε

Ip

]∗
B∗JpB

[
ε

Ip

]
≤
[

ε

Ip

]∗
jp

[
ε

Ip

]
≤ 0. (2.79)

The inequality (2.79) implies that

u∗v + v∗u ≥ 0 (2.80)

and the condition ε ∈ D(TB) means that the matrix v = b21ε + b22 is
invertible. Let c = uv−1. Then c ∈ Cp×p

const, since (2.80) holds and c = TB [ε].
Thus, the second inclusion in (2.78) holds.

Furthermore, if τ ∈ Cp×p
const∩D(TA) and c = TA[τ ], then τ = TV[ε] for some

ε ∈ Sp×p
const∩D(TV) and, consequently, c = TAA[ε] = TB [ε], i.e., c ∈ Cconst(A).

Thus, the first inclusion in (2.78) holds.
The following example shows that this inclusion may be proper: Let ε =

−ξξ∗, where ξ ∈ Cp and ξ∗ξ = 1. Then ε ∈ Sp×p
const and det(Ip + ε) = 0, i.e.,

ε �∈ D(TV). Let

A = V

[
Ip 0
0 u

]
V and B = AV =

1√
2

[
−Ip u

Ip u

]
,

where u is a p × p unitary matrix such that det (ε + u) �= 0. Then A ∈
Uconst(Jp), ε ∈ Sp×p

const ∩ D(TB) and

c = TB [ε] = (−ε + u)(ε + u)−1 belongs to Cconst(A).

However, c �∈ TA[Cp×p
const ∩ D(TA)] because, if c = TA [τ ] for some τ ∈ Cp×p

const ∩
D(TA), then τ = TV[ε1] for some ε1 ∈ Sp×p

const ∩ D(TV) and

c = TB [ε1] = TB [ε].
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Therefore ε1 = ε, since B is invertible and hence TB is injective by Lemma
2.10. But this contradicts the fact ε1 ∈ D(TV) and ε �∈ D(TV). Thus, in this
example, the first inclusion in (2.78) is proper. �

Lemma 2.56 Let A ∈ Pconst(Jp), B = AV and
[
b21 b22

]
=
[
0 Ip

]
B.

Then:

(1) b22b
∗
22 − b21b

∗
21 ≥ 0.

(2) The following three conditions are equivalent:

(a) Sp×p
const ⊆ D(TB).

(b) b22b
∗
22 − b21b

∗
21 > 0.

(c) b22 is invertible and

χ = b−1
22 b21 belongs to the set S̊p×p

const. (2.81)

Proof Assertion (1) follows by looking at the 22 blocks in the inequality

BjpqB
∗ ≤ Jp.

The equivalence of (a) and (c) in (2) is established in Lemma 2.15; the
equivalence of (b) and (c) is easy. �

Lemma 2.57 Let A ∈ Pconst(Jp) and suppose that the blocks bij in the
four block decomposition of B = AV satisfy at least one (and hence all)
of the conditions (a)–(c) in Lemma 2.56. Then Cconst(A) = TB [Sp×q

const] and
hence Cconst(A) is a matrix ball with a positive right semiradius. Its unique
center mc and its left and right semiradii R� and Rr may be specified by
the formulas considered in Lemmas 2.17 and 2.23 with B in place of U and
B1 = BW0 in place of U1, B1 ∈ P(jp, Jp).

Proof This is essentially a special case of Lemma 2.23, which is applicable,
since Sp×q

const ⊆ D(TB), under the given assumptions. �

2.12 Affine generalizations

The set Cconst(A) may also be defined directly in terms of a linear fractional
transformation T̃A that is defined on the set

D(T̃A) =
{[u

v

]
: u, v ∈ C

p×p and det(a21u + a22v) �= 0
}
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by the formula

T̃A

[u
v

]
= (a11u + a12v)(a21u + a22v)−1.

Let

C̃p×p
const =

{[u
v

]
: u, v ∈ C

p×p, u∗v + v∗u ≥ 0 and u∗u + v∗v > 0
}

(2.82)
be the affine generalization of the class Cp×p

const. Then r = u + v is invertible
and

C̃p×p
const =

{
V

[
ε

Ip

]
r : r ∈ C

p×p is invertible and ε ∈ Sp×p
const

}
. (2.83)

Consequently,

Cconst(A) = T̃A [C̃p×p
const ∩ D(T̃A)]. (2.84)

Let TA denote the transform that is defined on the set of block matrices{[
u
v

]
: u, v ∈ Cp×p

}
by the formula

TA

[u
v

]
= A

[u
v

]
=
[

a11u + a12v

a21u + a22v

]
. (2.85)

If γ−1A ∈ Pconst(Jp) for some γ ∈ C \ {0}, then: TA maps the class C̃p×p
const

into itself; it is injective if A is invertible. Conversely, if TA is an injective
map of C̃p×p

const into itself, then A is invertible and γ−1A ∈ Pconst(Jp) for some
γ ∈ C \ {0}. This characterization of invertible strictly minus matrices with
respect to Jp will be established below in the setting of general signature
matrices.

Let J be unitarily equivalent to jpq , let

Fconst(J) = {X ∈ C
m×q : X∗JX ≤ 0 and rankX = q} (2.86)

and

F̊const(J) = {X ∈ C
m×q : X∗JX < 0 and rankX = q}. (2.87)

In terms of this new notation, property (4) in Theorem 2.40 may be refor-
mulated as

TU (F(J)) ⊆ F(J) and TU (F̊(J)) ⊆ F̊(J).
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Theorem 2.58 Let J be a signature matrix that is unitarily equivalent to
jpq , let U ∈ C

m×m and let TU denote the linear map of C
m×q into itself that

is defined by the formula

TUX = UX, X ∈ C
m×q. (2.88)

Then:

(1) TU is injective on F̊const(J) if and only if the matrix U is invertible.

(2) TU maps F̊const(J) injectively into Fconst(J) if and only if U is an
invertible minus matrix with respect to J .

(3) TU maps the set F̊const(J) into itself if U is a strictly minus matrix
with respect to J .

Proof If U is an invertible m × m matrix, then TU maps C
m×q injec-

tively onto itself. If U is an invertible minus matrix, then, by Theorem 2.37,
γ−1U ∈ Pconst(J) for some γ ∈ C \ {0}, i.e., U is a strictly minus matrix.
Consequently,

(TUX)∗JTUX ≤ |γ|2X∗JX

{
≤ 0 if X ∈ Fconst(J)

< 0 if X ∈ F̊const(J),

i.e., TU maps Fconst(J) into itself and F̊const(J) into itself. This justifies (3)
and one direction of (1) and (2). To complete the proof, it suffices to check
the remaining assertions for the case J = jpq , i.e., to verify that

(a) If TU is injective on F̊const(jpq), then U is invertible.

(b) If TU maps F̊const(J) injectively into Fconst(jpq), then U is an invertible
minus matrix with respect to jpq .

To verify (a), let the vector col(ξ, η) with components ξ ∈ C
p and η ∈ Cq

belong to the null space of U and let y ∈ C
q be a nonzero vector such that

Iq + ηy∗ is invertible and the matrices

X =
[

ξy∗(Iq + ηy∗)−1

Iq

]
and Y =

[
0

(Iq + ηy∗)−1

]
both belong to the class F̊const(jpq). It is readily seen that this can be
achieved for any vector y ∈ Cq with ‖y‖ small enough. Then

X = Y,
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since UX = UY and TU is presumed to be injective on F̊const(jpq). But this
implies that

ξ∗y(Iq + ηy∗)−1 = 0 and Iq = (Iq + ηy∗)−1

and hence that ξ = 0 and η = 0, i.e., U is invertible.
Suppose next that hypothesis (b) is in force and let ε ∈ S̊p×q

const. Then[u
v

]
= U

[
ε

Iq

]
belongs to Fconst(jpq).

Therefore, u∗u ≤ v∗v and, in view of the rank condition, v is invertible, i.e.,
ε ∈ D(TU ) and

uv−1 = TU [ε] ∈ Sp×q
const.

Thus,

S̊p×q
const ⊆ D(TU ) and TU [S̊p×q

const] ⊆ Sp×q
const.

Therefore, U is an invertible minus matrix with respect to jpq , by Theorem
2.51. �

Theorem 2.59 Let J be a signature matrix that is unitarily equivalent to
jpq with p ≥ q and let U be an invertible m × m matrix such that:

(1) U ∈ Pconst(J).

(2) TU maps the set

{X ∈ C
m×q : X∗JX = 0 and rank X = q}

into itself.

Then U ∈ Uconst(J).

Proof Without loss of generality, we can take J = jpq . Let ε be a p × q

isometric matrix and let

Xk =
[

ikε

Iq

]
for k = 1, . . . , 4.

Then X∗
k jpqXk = 0 and the condition X∗

kU∗jpqUXk = 0 holds if and only if

ε∗{u∗
11u11 − u∗

21u21}ε + ik{u∗
12u11 − u∗

22u21}ε
= u∗

22u22 − u∗
12u12 + (−i)kε∗{u∗

21u22 − u∗
11u12}.
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Therefore, since i + i2 + i3 + i4 = 0, it is readily checked that

ε∗{u∗
11u11 − u∗

21u21}ε = u∗
22u22 − u∗

12u12

and

{u∗
12u11 − u∗

22u21}ε = 0

for every p × q isometric matrix ε. The second constraint implies that

{u∗
12u11 − u∗

22u21} = 0.

The assumption U ∈ Pconst(jpq) yields the supplementary inequalities

u∗
11u11 − u∗

21u21 ≤ Ip and u∗
22u22 − u∗

12u12 ≥ Iq,

which, when combined with the first constraint, imply that

u∗
11u11 − u∗

21u21 = Ip and u∗
22u22 − u∗

12u12 = Iq.

Therefore, U ∈ Uconst(J). �

2.13 The J modulus

Lemma 2.60 If U ∈ Pconst(J) is invertible and G = JU∗JU , then

ker (Im − G)m ⊆ ker (Im − G)2. (2.89)

Proof Let U ∈ Pconst(J). Then J − U∗JU ≥ 0. Therefore

|〈(J − U∗JU)x, y〉|2 ≤ 〈(J − U∗JU)x, x〉 〈(J − U∗JU)y, y〉

for every choice of x, y ∈ Cm , or, equivalently

|[(Im − G)x, y]|2 ≤ [(Im − G)x, x] [(Im − G)y, y]

for every choice of x, y ∈ Cm . Assume now that (Im − G)3u = 0 and let
x = (Im − G)u. Then the preceding inequality implies that

[(Im − G)2u, y] = 0 for every y ∈ C
m.

Therefore, (Im −G)k+3u = 0 =⇒ (Im −G)k+2u = 0 for k = 0 and hence for
every positive integer k. �

Theorem 2.61 Let U ∈ Pconst(J) be invertible, let λ1 ≤ · · · ≤ λm denote
the eigenvalues of G = JU∗JU and assume that J is unitarily equivalent to
jpq . Then
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(1) 0 < λ1 ≤ · · · ≤ λp ≤ 1 and 1 ≤ λp+1 ≤ · · · ≤ λm.

(2) If G is not diagonalizable, then there exists an invertible matrix V ∈
Cm×m such that

V ∗JV = jpq and V −1GV = S, where S = diag{D1, E, D2},

D1 = diag{λ1, . . . , λr}, 0 ≤ r < p, D2 = diag{λm−s+1, . . . , λm},
0 ≤ s < q, E = Im−r−s + N , N2 = 0 and Sjpq ≤ jpq.

(3) G is diagonalizable if and only if ker(G − Im)2 = ker(G − Im). If G

is diagonalizable, then the formulas in (2) hold with N = 0.

Proof Suppose that G is not diagonalizable. Then, by Theorem 2.47,

µ+(U) = λp(G) = 1 = λp+1(G) = µ−(G).

Assume for the sake of definiteness that m ≥ 3 and

λr < λr+1 = 1 = · · · = λm−s < λm−s+1;

and let D1 = diag{λ1, . . . , λr} and D2 = diag{λm−s+1, . . . , λm}. Then, in
view of Lemma 2.46, there exists an invertible matrix U = [U1 U2 U3] with
block columns of size m × r, m × n and m × s, respectively, such that

GU1 = U1D1, U∗
1 JD1 = Ir, GU3 = U3D2, U∗

3 JU3 = −Is, U∗
1 JU3 = 0

and the columns of U2 are a basis for ker (G − Im)2. Moreover, if Gu = λu

and ξ ∈ C
n, then the formula

(λ − 1)2[u, U2ξ] = [(G − Im)2u, U2ξ] = [u, (G − Im)2U2ξ] = 0

implies that U ∗
2 JU1 = 0 and U∗

2 JU3 = 0. Thus,

U∗JU = diag{Ik, U∗
2 JU2, −I�}

and

GU = UC, where C =

D1 0 0
0 F 0
0 0 D2

 and (F − In)2 = 0.

Since U∗JU is invertible, the n× n matrix U∗
2 JU2 is a Hermitian invertible

matrix. Therefore, there exists an invertible matrix K ∈ C
n×n such that
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K∗U∗
2 JU2K = jk� where k + � = n. Let

L =

Ir 0 0
0 K 0
0 0 Is

 , S = L−1CL =

D1 0 0
0 K−1FK 0
0 0 D2

 ,

K−1FK = In + N and V = UL. Then N2 = K−1(F − In)2K = 0,

V ∗JV = jpq and GV = GUL = UCL = V S.

Thus, as

0 ≥ J − GJ = J − V SV −1J = V (Im − S)V −1J

= V (Im − S)jpqjpqV
−1J = V (Im − S)jpqV

∗,

it follows that (Im − S)jpq ≥ 0. Set K−1FK = E to complete the proof of
(2) for the case r > 0 and s > 0. The cases r = 0, s = 0 and the proof of
(3) are easy consequences of the proof furnished above and are left to the
reader. �

Lemma 2.62 Let B ∈ Ck×k be an upper triangular matrix with diagonal
elements bii = λ �= 0 for i = 1, . . . , k and let A ∈ C

k×k. Then

B2A = AB2 ⇐⇒ BA = AB. (2.90)

Proof Under the given assumptions,

k∑
j=0

(
k

j

)
Bj(−λIk)k−j = (B − λIk)k = 0.

Now assume that k > 1 and let

P1(B) =
∑

even j

(
k

j

)
Bk−j(λIk)j

and

BP2(B) = −
∑
odd j

(
k

j

)
Bk−j(λIk)j .

Then P1(B) and P2(B) are polynomials in B2 that satisfy the identity

P1(B) = BP2(B).
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Therefore,

BAP2(B) = BP2(B)A = P1(B)A = AP1(B) = ABP2(B).

Thus, as P2(B) is invertible, it follows that BA = AB, as needed. �

Theorem 2.63 Let A, B ∈ C
n×n and suppose that the eigenvalues of both

A and B are positive. Then

A2 = B2 ⇐⇒ A = B. (2.91)

Proof Let A = USU−1 and B = V TV −1, where S and T are upper tri-
angular matrices in Jordan form and suppose that A2 = B2. Then, since
µIn + S and µIn + T are invertible for µ > 0, it is readily seen that

dim ker (µIn − S)k = dim ker (µ2In − S2)k

= dim ker (µ2In − T 2)k

= dim ker (µIn − T )k for k = 1, 2, . . . .

Therefore, S and T have the same Jordan block decomposition, up to the
order in which the blocks are placed. Thus, there is no loss of generality in
assuming that S = T , and hence that US2U−1 = V S2V −1, i.e.,

QS2 = S2Q with Q = V −1U.

Now, if S has � distinct eigenvalues, µ1, . . . , µ�, then S = diag {S1, . . . , S�},
where Sj is an upper triangular matrix with µj on the diagonal. Thus, if Q

is written in compatible block form, then

QS2 = S2Q ⇐⇒ QijS
2
j = S2

i Qij for i, j = 1, . . . , �.

Therefore, Qij = 0 if i �= j and QiiS
2
i = S2

i Qii, which, in view of Lemma
2.62 implies that QiiSi = SiQii, for i = 1, . . . , �. Consequently, QS = SQ,
i.e., A = B. This completes the proof of the implication =⇒ in (2.91). The
implication ⇐= is self-evident. �

Theorem 2.64 Let U ∈ Pconst(J), G = JU∗JU and suppose that U is
invertible. Then there exists a unique matrix R with positive eigenvalues
such that R2 = G. Moreover, this matrix R has the following properties:

(1) R = exp{−HJ}, where H ≥ 0 (and hence is selfadjoint).

(2) JR∗J = R.
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(3) R ∈ Pconst(J).

(4) UR−1 ∈ Uconst(J).

Proof We shall asume that J �= ±Im, because if J = ±Im , then the theorem
is obvious. In view of Theorem 2.61, it suffices to focus on the case

G = V SV −1, where S = diag {D1, E, D2}, V ∗JV = jpq

and the matrices D1, E and D2 are specified in (2) of Theorem 2.61. Then
clearly the formula

R = V S1V
−1 with S1 = diag {D1/2

1 , E1, D
1/2
2 },

and

E1 = In +
1
2
N = exp {1

2
N}

exhibits a matrix R with positive eigenvalues such that R2 = G. The asserted
uniqueness of such an R follows from Theorem 2.63.

Next, to verify (1), let

L1 = diag{lnλ1, . . . , lnλr}, L2 = diag{lnλm−s+1, . . . , lnλm}
S2 = diag{L1, N, L2}, 2H = −V S2V

−1J, k = p − r and � = q − s.

Then, as

jpq = diag{Ir, jk�, −Is}, L1 < 0, −jk�N ≥ 0 and L2 > 0,

it follows that

−S2jpq = diag{−L1,−N,−L2}jpq = diag{−L1, −Njkl, L2} ≥ 0.

Therefore,

R = exp{1
2
V S2V

−1} = exp{−HJ}

and

H = −1
2
V S2jpqjpqV

−1J = −1
2
V S2jpqV

∗ ≥ 0.

This completes the proof of (1); the implications (1) =⇒ (2) =⇒ (4) =⇒ (3)
are easily checked. �

The unique matrix R with positive eigenvalues that meets the condition
R2 = JU∗JU is called the J modulus of U . The J modulus was introduced
by V. P. Potapov as a basic tool in his study of the convergence of products of
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mvf’s with J-contractive values. Its usefulness stems from the following facts,
which were also established by Potapov; see [Po60], [Po88a] and [Po88b].

Theorem 2.65

(1) If R = exp{−HJ}, where H ≥ 0, then the eigenvalues of R are
positive and R2 = JR∗JR, i.e., R is the J modulus of itself.

(2) If U1, U2 ∈ Pconst(J) are both invertible, and U1JU∗
1 ≤ U2JU∗

2 , then
R1J ≤ R2J for the corresponding J modulii.

(3) If R1J ≤ R2J and Rj = exp{−HjJ}, where Hj ≥ 0, then H1 ≤ H2.

(4) If H ∈ Lm×m
loc ([0, d)) and H(x) ≥ 0 a.e. on [0, d), then the multiplica-

tive integral

U =

d
�∫

0

e−H (x)Jdx

converges if and only if H ∈ Lm×m
1 ([0, d)). (See Section 3.19 for the

relevant definitions.)

Remark 2.66 In view of assertion (4) of Theorem 2.64 and assertion (1) of
Theorem 2.65, an m×m matrix R is the J modulus of an invertible matrix
U ∈ Pconst(J) if and only if

R = e−HJ

for some H ∈ C
m×m with H ≥ 0.

2.14 Infinite products of matrices

Let B1, B2, . . . , Bn be a finite sequence of m × m matrices and let
n
�∏

k=1

Bk = B1B2 · · ·Bn and

n
�∏

k=1

Bk = BnBn−1 · · ·B1,

denote the right and left products respectively. The symbols
∞
�∏

k=1

Bk = B1 B2 · · ·Bn · · · and

∞
�∏

k=1

Bk = · · ·Bn Bn−1 · · ·B1



78 Algebraic preliminaries

are called the right and left products of the infinite sequence {Bk}∞k=1 of
m × m matrices, respectively.

A right (resp., left) infinite product of the matrices B1, B2, . . . is said to
be convergent if

(1) All the matrices Bk are invertible.

(2) The sequence of right (resp., left) partial products

Pn =

n
�∏

k=1

Bk

resp., Pn =

n
�∏

k=1

Bk


converges to a limit P as n ↑ ∞.

(3) The limit P is invertible.

If one or more of these three conditions fails, then the infinite product is
said to be divergent.

If these three conditions are met, then P is called the right (resp., left)
product of the matrices B1, B2, . . ., and is denoted

P =

∞
�∏

k=1

Bk

resp., P =

∞
�∏

k=1

Bk

 .

Since  n
�∏

k=1

Bk

τ

=

n
�∏

k=1

Bτ
k ,

the right product is convergent if and only if the left product of the matrices
Bτ

k , k ≥ 1, is convergent and, if these products are convergent, then ∞
�∏

k=1

Bk

τ

=

∞
�∏

k=1

Bτ
k .

Thus, it is enough to study right products.
If the right product

Pn = B1 · · ·Bn = Pn−1Bn,

of the matrices Bk, k ≥ 1, converges, then

lim
n→∞

Bn = Im. (2.92)
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Since the matrices Pn and Bn are invertible and tend to invertible lim-
its as n ↑ ∞, the sequences ‖Pn‖, ‖Bn‖, ‖P−1

n ‖ and ‖B−1
n ‖ are bounded.

Consequently, the identity

Pn+� − Pn = Pn

 n + �
�∏

k=n+1

Bk − Im


implies that {Pk} is a Cauchy sequence if and only if for every ε > 0 there
exists an integer N such that∥∥∥∥∥∥∥

n + �
�∏

k=n+1

Bk − Im

∥∥∥∥∥∥∥ < ε for every n > N and every � ≥ 1. (2.93)

Moreover, if this condition holds, then

∞
�∏

k=n+1

Bk is invertible for large enough n

and hence, P is invertible, since for such n,

P = Pn

∞
�∏

k=n+1

Bk

is the product of two invertible matrices.

Lemma 2.67 Let {Bk}∞k=1 be a sequence of invertible m×m matrices such
that the series

∑∞
k=1 ‖Bk − Im‖ converges. Then the right product

∞
�∏

k=1

Bk converges.
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Proof Let Ak = Bk − Im , k = 1, 2, . . ., let Bk be invertible and assume that
the series

∑∞
k=1 ‖Ak‖ converges. Then∥∥∥∥∥∥∥

n + �
�∏

k=n

Bk − Im

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
n + �
�∏

k=n

(Im + Ak) − Im

∥∥∥∥∥∥∥ ≤
n+�∏
k=n

(1 + ‖Ak‖) − 1

≤ exp

{
n+�∑
k=n

‖Ak‖
}

− 1,

since the second inequality is self-evident, and the first inequality is easily
verified directly for � = 1, and then by induction for � > 1. Thus, the Cauchy
condition (2.93) follows from the Cauchy condition for the convergence of
the series

∑∞
k=1 ‖Ak‖. �

2.15 Some useful inequalities

In this section we establish some useful inequalities for future use.

Lemma 2.68 If V ∈ C
p×q, then

‖V ‖2 ≤ trace(V ∗V ) ≤ q‖V ‖2 (2.94)

and

det(V ∗V ) ≤ ‖V ‖2q . (2.95)

If p = q and V is invertible with ‖V −1‖ ≤ 1, then

‖V ‖ ≤ |det V | ≤ ‖V ‖p. (2.96)

Proof Let µ2
1 ≥ · · · ≥ µ2

q denote the eigenvalues of the positive semidefinite
matrix V ∗V . Then (2.94) and (2.95) are immediate from the observation
that

trace(V ∗V ) = µ2
1 + · · · + µ2

q , ‖V ‖ = µ1

and

det(V ∗V ) = µ2
1 · · ·µ2

q .
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Finally, (2.96) is easily obtained from the same set of formulas when q = p

and V is invertible with ‖V −1‖ ≤ 1, because then µ2
j ≥ 1 for j = 1, . . . , p.

�

Lemma 2.69 Let W ∈ Uconst(jpq) and let s21 = −w−1
22 w21. Then the matrix

c = (Iq + s21ε)(Iq − s21ε)−1 (2.97)

is well defined for each choice of ε ∈ Sp×q
const and, if s = TW [ε], then

Rc ≥
(
1 − ‖s‖2)w∗

22w22. (2.98)

Proof The matrix c is well defined, because w22 and w21ε + w22 are both
invertible matrices. A straightforward calculation shows that

Rc = (Iq − s21ε)−∗(Iq − ε∗s∗21s21ε)(Iq − s21ε)−1

≥ (Iq − s21ε)−∗(Iq − ε∗ε)(Iq − s21ε)−1.

Therefore, since

Iq − s∗s = (w21ε + w22)−∗(Iq − ε∗ε)(w21ε + w22)−1,

it is readily seen that

Rc ≥ w∗
22(Iq − s∗s)w22 ≥

(
1 − ‖s‖2)w∗

22w22. �

2.16 Bibliographical notes

In [Po60] V. P. Potapov considered more general injective linear fractional
transformations of the class Pconst(J) into Sm×m

const than (2.6). The transfor-
mation (2.6) was introduced by Yu. Ginzburg [Gi57]. The transformation
defined by formula (2.13) was found independently by Redheffer and used
to transform chain scattering (transmission) matrices into scattering matri-
ces in his study of transmission lines with distributed parameters via the
scattering formalism.

Matrix and operator balls were extensively studied by [Shm68]. The pre-
sented proofs of Lemmas 2.18–2.21 in Section 2.4 are adapted from [DFK92].

An analogue of Theorem 2.51 for the transform (2.53) in a Hilbert space
setting was established by Redheffer in [Re60].

Most of the material in Sections 2.7 and 2.8 was adapted from [KrS96a].
Corollary 2.38 is equivalent to a result of P. Finsler [Fi37], which states
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that if a pair A and B of n × n Hermitian matrices are such that A is
invertible and

〈Ax, x〉 ≥ 0 =⇒ 〈Bx, x〉 ≥ 0

for every x ∈ C
n, then there exists a constant c ≥ 0 such that B − cA ≥ 0.

The recent text [GLK05] is a good introduction to linear algebra in vec-
tor spaces with indefinite inner products that includes Finsler’s result as
Proposition 10.2.1.

The verification of (1) in Lemma 2.42 is adapted from Potapov [Po88a].
The discussion of the J modulus in Section 2.13 is adapted from [Po60],
[Po88a] and [Po88b]. These references contain additional useful information
on the J modulus; for additional perspective, see also [An04]. Item (4) in
Theorem 2.65 is a corollary of a result on a family of multiplicative inte-
grals of J moduli that is established in [Po88b], which is perhaps Potapov’s
principal result in this direction.
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The Nevanlinna class of meromorphic mvf’s

The first half of this chapter summarizes a number of basic definitions and
facts on the Nevanlinna class of meromorphic scalar and mvf’s of bounded
Nevanlinna type in C+. Special attention is paid to the subclasses asso-
ciated with the names of Schur, Carathéodory, Smirnov, and Hardy and
a subclass of pseudomeromorphic functions for use in the sequel, mostly
without proof. For additional information, the books of de Branges [Br68a],
Dym and McKean [DMc76] and Rosenblum and Rovnyak [RR94] are recom-
mended for scalar functions; Helson [He64], Rosenblum and Rovnyak [RR85]
and Sz-Nagy and Foias [SzNF70] are good sources for matrix and operator
valued functions. The article by Katsnelson and Kirstein [KK95] also con-
tains useful information.

In the second part of this chapter, characterizations of the Nevanlinna
class of mvf’s and some of its subclasses in terms of the domain and range
of the operator of multiplication by a mvf f in the class under consideration
acting between two Hardy H2-spaces of vvf’s (vector valued functions) will
be presented. Inner-outer factorizations and the notions of denominators
and scalar denominators will also be developed in this part.

The symbols C, C+ [resp., C−] and R will be used to denote the complex
plane, the open upper [resp., lower] half plane and the real line, respectively;
R+ = [0,∞) and R− = (−∞, 0]. The symbols RA = (A + A∗)/2 and IA =
(A−A∗)/(2i) will be used for the real and imaginary parts of A for numbers.
matrices and operators.

3.1 Basic classes of functions

A measurable p × q mvf f(µ) on R is said to belong to:

83
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Lp×q
r for 1 ≤ r < ∞ if

‖f‖r
r =

∫ ∞

−∞
trace{f(µ)∗f(µ)}r/2dµ is finite.

L̃p×q
r for 1 ≤ r < ∞ if∫ ∞

−∞
(1 + µ2)−1trace{f(µ)∗f(µ)}r/2dµ is finite.

Lp×q
∞ if

ess sup{‖f(µ‖ : µ ∈ R} is finite.

A p × q mvf f(λ) is said to belong to:

Sp×q (the Schur class) if it is holomorphic in C+ and if f(λ)∗f(λ) ≤ Iq

for every point λ ∈ C+;

Hp×q
∞ if it is holomorphic in C+ and if

‖f‖∞ = sup{‖f(λ)‖ : λ ∈ C+} < ∞;

Hp×q
r (the Hardy class), for 1 ≤ r < ∞, if it is holomorphic in C+ and

if†

‖f‖r
r = sup

ν>0

∫ ∞

−∞
trace{f(µ + iν)∗f(µ + iν)}r/2dµ < ∞;

Cp×p (the Carathéodory class) if q = p and it is holomorphic in C+ and

(Rf)(λ) =
f(λ) + f(λ)∗

2
≥ 0

for every point λ ∈ C+;

Wp×q(γ) (the Wiener class) for a fixed γ ∈ Cp×q , if it admits a repre-
sentation of the form

f(λ) = γ +
∫ ∞

−∞
eiλth(t)dt, for λ ∈ R,

where h ∈ Lp×q
1 (R);

Wp×q if it belongs to Wp×q(γ) for some γ ∈ C
p×q ;

† If f ∈ Hp×q
r , then its norm coincides with the Lp×q

r norm of its boundary values
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Wp×q
+ (γ) for a fixed γ ∈ C

p×q , if it admits a representation of the form

f(λ) = γ +
∫ ∞

0
eiλth(t)dt, for λ ∈ R ∪ C+,

where h ∈ Lp×q
1 (R+);

Wp×q
− (γ) for a fixed γ ∈ C

p×q , if it admits a representation of the form

f(λ) = γ +
∫ 0

−∞
eiλth(t)dt, for λ ∈ R ∪ C−,

where h ∈ Lp×q
1 (R−);

N p×q
+ (the Smirnov class) and N p×q

out the subclass of outer mvf’s in
N p×q

+ will be defined in Section 3.11;

N p×q (the Nevanlinna class of bounded characteristic) if it can be ex-
pressed in the form f = h−1g, where g ∈ Hp×q

∞ and h ∈ H∞ (= H1×1
∞ ).

The class N p×q is closed under addition, and, when meaningful, multi-
plication and inversion. Moreover, even though N p×q is listed last, it is the
largest class in the list of meromorphic p × q mvf’s given above. Analogous
classes will be considered for the open lower half plane C−. In particular, a
p × q mvf f is said to belong to

Kp×q
2 if it is holomorphic in C− and if

‖f‖2
2 = sup

ν>0

∫ ∞

−∞
trace{f(µ − iν)∗f(µ − iν)}dµ < ∞.

For each such class of functions X p×q we shall use the symbol X instead of
X 1×1 and X p instead of X p×1.

Theorem 3.1 (Fatou) Let f ∈ H∞. Then there exist nontangential bound-
ary values f(µ) for alomost all points µ ∈ R. In particular

f(µ) = lim
ν↓0

f(µ + iν) a.e. on R.

Proof This follows from the corresponding theorem for harmonic functions
in C+; see, e.g., Theorem 5.3 on p. 29 in [Ga81]. �
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Theorem 3.2 Let f ∈ H∞ and suppose that f(λ) �≡ 0 in C+, then the
boundary value,

f(µ) �= 0 for almost all points µ ∈ R.

Proof See Corollary 2 on p.65 of [Ga81]. �

Corollary 3.3 Let f1, f2 ∈ H∞ and suppose that the boundary values f1(µ)
and f2(µ) coincide on a set of positive Lebesgue measure in R. Then f1(λ) ≡
f2(λ) on C+.

Theorem 3.4 Let f ∈ N p×q . Then f has nontangential boundary values
f(µ) at almost all points µ ∈ R and f(λ) is uniquely defined by its boundary
values f(µ) on a set of positive Lebesgue measure in R.

Proof Let f ∈ N p×q . Then, by definition, f = h−1g, where g ∈ Sp×q , h ∈ S
and h �≡ 0. Thus, by Fatou’s theorem, g and h have nontangential limits g(µ)
and h(µ) a.e. on R and h(µ) �= 0 a.e. on R, by Theorem 3.2. Consequently,
f = h−1g has nontangential boundary values. Moreover, if f(µ) = 0 on a
subset of R with positive Lebesgue measure, then g(µ) = 0 on a subset of
R of positive Lebesgue measure and hence g(λ) ≡ 0 in C+, by Theorem 3.2.
Thus, the same conclusion holds for f(λ) = h(λ)−1g(λ). �

In view of the preceding discussion, every f ∈ Hp×q
r has nontangential

boundary values, since Hp×q
r ⊂ N p×q for 1 ≤ r ≤ ∞. Moreover, the norm

in Hp×q
r can be computed in terms of boundary values only, and the corre-

sponding spaces Hp×q
r can be identified as closed subspaces of the Lebesgue

spaces Lp×q
r on the line, for 1 ≤ r ≤ ∞; see Theorem 3.59. Furthermore, the

spaces Hp×q
2 and Kp×q

2 are mutually orthogonal complementary subspaces
of Lp×q

2 with respect to the inner product 〈f, g〉 =
∫∞
−∞ trace {g(µ)∗f(µ)}dµ;

i.e.,

Lp×q
2 = Hp×q

2 ⊕ Kp×q
2 ; and Lp

2 = Hp
2 ⊕ Kp

2 if q = 1.

Theorem 3.5 Let f ∈ Hp×q
r for 1 ≤ r < ∞. Then the

f(ω) =
1

2πi

∫ ∞

−∞

f(µ)
µ − ω

dµ (3.1)
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and the Poisson formula

f(ω) =
Iω

π

∫ ∞

−∞

f(µ)
|µ − ω|2 dµ (3.2)

are valid for every point ω ∈ C+. Formula (3.2) is also valid for f ∈ Hp×q
∞ .

Proof This follows from Theorems 11.2 and 11.8 in [Du70], since it suffices
to verify the asserted formulas for each entry in the mvf f . �

We shall use the symbols

Π+ to denote the orthogonal projection from Lp×q
2 (R) to Hp×q

2 ,

Π− = I − Π+ for the complementary projection,

PL denotes the orthogonal projection onto a closed subspace L of a
Hilbert space,

f#(λ) = f(λ)∗, f∼(λ) = f(−λ)∗, ρω(λ) = −2πi(λ − ω),∨
α∈A{Lα} for the closed linear span of subsets Lα in a space X ,

E for the class of scalar entire functions,

ln+ |a| =

{
ln |a| if |a| ≥ 1

0 if |a| < 1
,

〈g, h〉st =
∫∞
−∞ h(µ)∗g(µ)du for the standard inner product in Lk

2(R)

and for mvf’s h ∈ Lk×p
2 (R) and g ∈ Lk×q

2 (R).

3.2 The Riesz-Herglotz-Nevanlinna representation for mvf’s in the
Carathéodory class

A p × p mvf c(λ) belongs to the Carathéodory class Cp×p if and only if it
admits an integral representation via the Riesz-Herglotz-Nevanlinna formula

c(λ) = iα − iλβ +
1
πi

∫ ∞

−∞

{
1

µ − λ
− µ

1 + µ2

}
dσ(µ) for λ ∈ C+, (3.3)

where α = α∗ ∈ C
p×p, β ∈ C

p×p, β ≥ 0 and σ(µ) is a nondecreasing p × p

mvf on R such that ∫ ∞

−∞

d(trace σ(µ))
1 + µ2 < ∞. (3.4)
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The parameters α and β are uniquely defined by c(λ) via the formulas

α = Ic(i), β = lim
ν↑∞

ν−1
Rc(iν). (3.5)

The Stieltjes inversion formula

σ(µ2) − σ(µ1) = lim
ε↓0

∫ µ2

µ1

R(c(µ + iε))dµ, (3.6)

which is valid at points of continuity µ1, µ2 of σ(µ), serves to define σ(µ)
up to normalization. Such a mvf σ(µ) will be called a spectral function
of c(λ). In this monograph we shall always assume that σ(0) = 0 and that
σ(µ) is left continuous on R. Under these normalization conditions, σ(µ) is
uniquely defined by c(λ). The inclusion

Cp×p ⊂ N p×p
+ ,

that will be established in Lemma 3.58, serves to guarantee that every mvf
c ∈ Cp×p has nontangential boundary limits c(µ) at almost all points µ ∈ R.
In particular,

c(µ) = lim
ε↓0

c(µ + iε) for almost all points µ ∈ R.

The spectral function σ(µ) can be decomposed into the sum

σ(µ) = σs(µ) + σa(µ), (3.7)

of two nondecreasing p × p mvf’s σs(µ) and σa(µ), where σs(µ) is the sin-
gular component of σ(µ), i.e., σ′

s(µ) = 0 for almost all points µ ∈ R, and
σa(µ) is the locally absolutely continuous part of σ(µ) normalized by
the condition σa(0) = 0, i.e.,

σa(µ) =
∫ µ

0
f(a)da, (3.8)

where

f(µ) ≥ 0 a.e. on R and
∫ ∞

−∞

trace f(µ)
1 + µ2 dµ < ∞. (3.9)

The convergence of the last integral follows from (3.4). In fact, condition
(3.4) is equivalent to the two conditions∫ ∞

−∞

d(trace σs(µ))
1 + µ2 < ∞ and

∫ ∞

−∞

trace f(µ)
1 + µ2 dµ < ∞.
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Moreover,

f(µ) = σ′(µ) = Rc(µ) a.e. on R (3.10)

and hence, in view of formula (3.9),∫ ∞

−∞

trace{c(µ) + c(µ)∗}
1 + µ2 dµ < ∞. (3.11)

If σ(µ) is locally absolutely continuous, i.e., if σ(µ) = σa(µ), then the p × p

mvf f(µ) = σ′(µ) is called the spectral density of c(λ).
Formula (3.3) implies that

Rc(i) = β +
1
π

∫ ∞

−∞

dσ(µ)
1 + µ2 ,

which leads easily to the following concclusions:

Lemma 3.6 Let c ∈ Cp×p. Then in formula (3.3)

β = 0 ⇐⇒ Rc(i) =
1
π

∫ ∞

−∞

dσ(µ)
1 + µ2 , (3.12)

whereas β = 0 and σ(µ) is locally absolutely continuous if and only if

Rc(i) =
1
π

∫ ∞

−∞

Rc(µ)
1 + µ2 dµ. (3.13)

The subclass of mvf’s c ∈ Cp×p with β = 0 and locally absolutely con-
tinuous spectral functions σ(µ) in the representation (3.3) will be denoted
Cp×p

a . The subclass of mvf’s c ∈ Cp×p with singular spectral functions will
be denoted Cp×p

sing . Every mvf c ∈ Cp×p has an additive decomposition

c(λ) = cs(λ) + ca(λ), where cs ∈ Cp×p
sing and ca ∈ Cp×p

a . (3.14)

This decomposition is unique up to an additive constant purely imaginary
p × p matrix. Thus, in terms of the notation introduced in (3.3), (3.7) and
(3.10), we may set

cs(λ) = iα − iβλ +
1
πi

∫ ∞

−∞

{
1

µ − λ
− µ

1 + µ2

}
dσs(µ) (3.15)

and

ca(λ) =
1
πi

∫ ∞

−∞

{
1

µ − λ
− µ

1 + µ2

}
f(µ)dµ, (3.16)
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where f(µ) = Rc(µ) a.e. on R. This decomposition corresponds to the nor-
malization ca(i) ≥ 0, and is uniquely determined by this normalization.
There are other normalizations that may be imposed on ca that insure
uniqueness of the decomposition (3.14).

Remark 3.7 A mvf c ∈ Cp×p admits a holomorphic extension across a finite
interval (a, b) if and only if σs(a+) = σs(b−) and the spectral density f(µ) of
ca(λ) has a holomorphic extension to an open set in C that contains (a, b).
This depends essentially upon the observation that if f is holomorphic in the
set

Ω = {µ + iν : a + δ ≤ µ ≤ b − δ and − δ ≤ ν ≤ δ},

then ∫ b−δ

a+δ

{
1

µ − λ
− µ

1 + µ2

}
f(µ)dµ =

∫
Γ

{
1

µ − λ
− µ

1 + µ2

}
f(ζ)dζ,

where Γ is the intersection of the boundary of Ω with C− directed from a+ δ

to b − δ.

Remark 3.8 If c ∈ Cp×p, a ∈ R and b > 0, then formula (3.3) implies that

(Rc)(a + ib) = bβ +
b

π

∫ ∞

−∞

dσ(µ)
(µ − a)2 + b2 . (3.17)

The particular choice c(λ) = Ip yields the evaluation

1 =
b

π

∫ ∞

−∞

1
(µ − a)2 + b2 dµ. (3.18)

Lemma 3.9 If c ∈ Cp×p, a ∈ R and b > 0, then∫ ∞

−∞

(Rc)(a + ib)
a2 + (b + 1)2

da ≤ 2π(Rc)(i). (3.19)

Proof If b > 0 and ν > 0, then the evaluation

b

π

∫ ∞

−∞

1
(µ − a)2 + b2

1
a + iν

da =
1

µ + i(b + ν)
, (3.20)

which follows readily from the Poisson formula since the function

fν(λ) =
1

λ + iν
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belongs to H∞ if ν > 0, leads easily to the formula

b

π

∫ ∞

−∞

1
(µ − a)2 + b2

1
a2 + ν2 da =

b + ν

ν(µ2 + (b + ν)2)
. (3.21)

Thus, in view of formulas (3.17) and (3.21),∫ ∞

−∞

(Rc)(a + ib)
a2 + (b + 1)2 da =

πb

b + 1
β +

2b + 1
b + 1

∫ ∞

−∞

dσ(µ)
µ2 + (2b + 1)2

≤ π

{
2β +

2
π

∫ ∞

−∞

dσ(µ)
µ2 + 1

}
= 2π(Rc)(i).

�

Lemma 3.10 Let c ∈ Cp×p. Then:

(1) Rc(ω) > 0 for at least one point ω ∈ C+ if and only if Rc(ω) > 0 for
every point ω ∈ C+.

(2) If Rc(µ) > 0 for almost all points µ ∈ R, then (Rc)(ω) > 0 for every
point ω ∈ C+.

(3) If Rc(ω) > 0 for at least one point ω ∈ C+, then c−1 ∈ Cp×p.

Proof Statements (1) and (2) follow from formula (3.17) and the fact that
β ≥ 0 and σ(µ) is a nondecreasing mvf on R. The verification of (2) also
uses the inequality ∫ ∞

−∞

dσ(µ)
|µ − λ|2

≥
∫ ∞

−∞

Rc(µ)
|µ − λ|2

dµ.

Statement (3) is immediate from (1). �

3.3 Some subclasses of the Carathéodory class Cp×p

(a) Cp×p ∩ Hp×p
∞ .

If c ∈ Cp×p ∩ Hp×p
∞ , then, by a well-known theorem of the brothers Riesz

(see e.g., p.74 [RR94]), β = 0 in formula (3.15), the spectral function
σ(µ) of c(λ) is locally absolutely continuous and formula (3.15) reduces to
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cs(λ) = iα. Therefore,

c(λ) = iα +
1
πi

∫ ∞

−∞

{
1

µ − λ
− µ

1 + µ2

}
f(µ)dµ, (3.22)

where α∗ = α ∈ C
p×p,

f(µ) = (Rc)(µ) ≥ 0 a.e. on R and f ∈ Lp×p
∞ (R). (3.23)

It is clear that if condition (3.23) is in force, then the function c(λ) defined
by formula (3.22) belongs to Cp×p

a and that

Rc(λ) ≤ ‖f‖∞Ip for λ ∈ C+.

To the best of our knowledge, necessary and sufficient conditions on f(µ)
which guarantee that c ∈ Cp×p ∩ Hp×p

∞ are not known.
We turn next to two subclasses of the class Cp×p ∩ Hp×p

∞ :

(b) C̊p×p = {c ∈ Cp×p ∩ Hp×p
∞ : (Rc)(µ) ≥ δcIp > 0 a.e. on R}, where

δc > 0 depends upon c.

(c) Cp×p ∩ Wp×p
+ (γ), where Rγ > 0.

In case (b) the mvf f(µ) in the integral representation (3.22) is subject to
the bounds

δ1Ip ≤ f(µ) ≤ δ2Ip for a.e. µ ∈ R,

where 0 < δ1 ≤ δ2.

In case (c) the lower bound may not be in force.

(d) Cp×p
0 = {c ∈ Cp×p : sup {‖νc(iν)‖ : ν > 0} < ∞}.

It is known that a mvf c(λ) belongs to Cp×p
0 if and only if it admits a

representation of the form

c(λ) =
1
πi

∫ ∞

−∞

1
µ − λ

dσ(µ), where trace σ(µ) < ∞,

or, equivalently, if and only if c ∈ Cp×p and

sup
ν>0

{ν trace Rc(iν)} < ∞ and lim
ν↑∞

c(iν) = 0. (3.24)
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3.4 Inner-outer factorization in the class H∞

A function f(λ) belongs to the class Sin of scalar inner functions if f ∈ S
and |f(µ)| = 1 for almost all points µ ∈ R.

Example 3.11 (Blaschke products) Let

b(λ) =
n∏

k=1

γk

(
λ − ωk

λ − ωk

)
, for λ ∈ C+ and n ≤ ∞, (3.25)

where the points ωk ∈ C+ and are subject to the Blaschke condition
∞∑

k=1

|I ωk |
1 + |ωk |2

< ∞ if n = ∞ (3.26)

(that is necessary for the convergence of the product) and the γk are con-
stants of modulus one that are chosen to insure the convergence of the prod-
uct if n = ∞. For example, we can choose

γk = 1 if |ωk | ≤ 1 and γk = ω̄k/ωk if |ωk | > 1.

If |ωk | ≤ 1 for at most finitely many indices k, then we can choose γk =
ω̄k/ωk for all k. In this case,

b(λ) =
n∏

k=1

1 − λ/ωk

1 − λ/ω̄k
, λ ∈ C+, n ≤ ∞. (3.27)

Products of the form (3.25) and (3.27) are called Blaschke products and
the factors are called elementary Blaschke factors.

Theorem 3.12 A function f ∈ S admits the representation

f(λ) = b(λ)bs(λ), (3.28)

where b(λ) is a Blaschke product and bs(λ) = exp(iα + iβλ) with α = α and
β ≥ 0 if and only if

lim
ν↓0

∫ ∞

−∞

ln |f(µ + iν)|
1 + µ2 dµ = 0. (3.29)

Moreover, if f ∈ Sin and

f−1 ∈
∨
t≥0

e−tH∞ in L∞, (3.30)

then bs(λ) = exp(iα + iβλ) as above.



94 The Nevanlinna class of meromorphic mvf’s

Proof See Akutowicz [Aku56] for the condition (3.29) and [Dy74] for the
sufficiency condition (3.30). �

Theorem 3.13 Let f ∈ S and suppose that f(ω) = 0 for at least one point
ω ∈ C+ but that f(λ) �≡ 0. Then the set ω1, ω2, . . . , of all the zeros of f(λ),
repeated according to multiplicity, satisfy the Blaschke condition (3.26) and
hence the corresponding Blaschke product b(λ) defined by formula (3.25)
is convergent if the normalization constants γk are chosen appropriately.
Moreover,

f(λ) = b(λ)f1(λ), where f1 ∈ S and f1(λ) �= 0 for every λ ∈ C+.

Proof The proof rests on the observation that if f(ω) = 0 for some point
ω ∈ C+ and bω(λ) = (λ − ω)/(λ − ω), then b−1

ω f ∈ S by Schwarz’s lemma.
Clearly a finite number of zeros ω1, . . . , ωn can be removed from f(λ) by
iterating this procedure n times. A more detailed analysis may be found in
Section 2.13 of [DMc76]. �

Example 3.14 (Singular inner factors) Let

bs(λ) = exp{−cs(λ)}

= exp
{
−
[
iα − iβλ +

1
πi

∫ ∞

−∞

1 + µλ

µ − λ

dσs(µ)
1 + µ2

]}
, (3.31)

for λ ∈ C+, where cs ∈ Cp×p
sing is given by formula (3.15) and hence,

α ∈ R, β ≥ 0 and σs(µ) is a nondecreasing singular function on R (i.e.,
σ′

s(µ) = 0 a.e. on R) that is subject to the constraint∫ ∞

−∞

d(trace σs(µ))
1 + µ2 < ∞.

The function bs(λ) is referred to as a singular inner function. It can be
characterized as an inner function that has no zeros in C+.

The next theorem presents a fundamental factorization formula for func-
tions f ∈ S that is due to Riesz and Herglotz.

Theorem 3.15 Let f ∈ S and suppose that f(λ) �≡ 0. Then

f(λ) = b(λ)bs(λ)ϕ(λ), (3.32)
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where b(λ) is a finite or infinite Blaschke product that is defined by the zeros
{ωk}n

1 (n ≤ ∞) of f(λ) (repeated according to their multiplicity) by formula
(3.25), or b(λ) = 1 if f(λ) �= 0 in C+, bs(λ) is a singular inner function and

ϕ(λ) = exp
{
− i

π

∫ ∞

−∞

1 + µλ

µ − λ

ln |f(µ)|
1 + µ2 dµ

}
for λ ∈ C+. (3.33)

Conversely, every function f(λ) of the form (3.32) in which b(λ) is any finite
or convergent infinite Blaschke product, bs(λ) is any singular inner function
and

ϕ(λ) = exp
{

i

π

∫ ∞

−∞

1 + µλ

µ − λ

k(µ)
1 + µ2 dµ

}
for λ ∈ C+, (3.34)

where
k(µ)

1 + µ2 is summable and k(µ) ≥ 0 a.e. on R, (3.35)

belongs to the class S and k(µ) = − ln |f(µ)| a.e. on R.

Proof Theorem 3.13 guarantees that if f ∈ S and f �≡ 0, then

f(λ) = b(λ) exp{−c(λ)} for λ ∈ C+,

where b(λ) is the Blaschke product that is defined by the zeros of f(λ) in
C+ and c ∈ C. Thus, upon invoking the additive decomposition (3.14) and
writing

bs(λ) = exp{−cs(λ)},

we obtain the formula (3.32) with

ϕ(λ) = exp{−ca(λ)},

which is of the form (3.34), with

k(µ) = (Rc)(µ) = − ln |f(µ)| a.e. on R.

The stated conditions (3.35) on k(µ) follow from this formula and the fact
that (1 + µ2)−1(Rc) ∈ L1.

The fact that every function f(λ) of the form (3.32) belongs to the class
S when k(µ) is subject to the constraints (3.35) is self-evident. �

Remark 3.16 The factors b(λ) and bs(λ) in formula (3.32) are unique up
to constant factors of modulus one.
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Corollary 3.17 Every inner function f(λ) can be written as a product

f(λ) = b(λ)bs(λ), for λ ∈ C+, (3.36)

where b(λ) is a Blaschke product and bs(λ) is a singular inner function.
Moreover, the factors b(λ) and bs(λ) are uniquely determined by f(λ) up to
multiplicative constants of modulus one.

Proof This is immediate from the previous theorem, because k(µ) = 0 a.e.
on R, i.e., ϕ(λ) ≡ 1. �

A function ϕ ∈ H∞ is called outer if

{ϕf : f ∈ H2} is dense in H2.

The class of scalar outer functions that belong to the Schur class S will be
denoted Sout. The notation

ϕk(λ) =
(

λ − i

λ + i

)k

and ψk(λ) =
ϕk(λ)√
π(λ + i)

for k = 0,±1, . . . and et(λ) = eiλt (3.37)

will be useful.

Theorem 3.18 Let ϕ ∈ H∞. Then the following conditions are equivalent:

(1) ϕ is outer.

(2) ϕ(λ) �= 0 for every point λ ∈ C+ and

ln |ϕ(ω)| =
Iω

π

∫ ∞

∞

ln |ϕ(µ)|
|µ − ω|2 dµ (3.38)

for at least one point ω ∈ C+.

(3) ϕ(λ) �= 0 for every point λ ∈ C+ and the identity (3.38) holds for
every point ω ∈ C+.

(4) ϕ admits an integral representation of the form

ϕ(λ) = γ exp
{

i

π

∫ ∞

−∞

1 + µλ

µ − λ

k(µ)
1 + µ2 dµ

}
for λ ∈ C+, (3.39)

where γ is a constant of modulus one and k ∈ L̃1(R).

(5)
∨
t≥0

{etψ0 ϕ : t ≥ 0} = H2.
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(6)
∞∨

n=0

{ψnϕ : n = 0, 1, . . .} = H2.

Moreover, if ϕ is outer, then

k(µ) = − ln |ϕ(µ)| (3.40)

in the integral representation (3.39).

Proof The equivalence of items (1)–(5) is covered in Sections 2.8–2.10 of
[DMc72]. The equivalence of (1) and (6) follows from the definition of an
outer function and the fact that

{ψn : n = 0, 1, . . .} is an orthonormal basis for H2.

�

Corollary 3.19 The functions ϕ in the class Sout can be parametrized by the
formula (3.39), where γ is a constant of modulus one and k(µ) is a function
on R that is subject to the constraints (3.35). Moreover, in formula (3.39),

k(µ) = − ln |ϕ(µ)| a.e. on R and γ = ϕ(i)/|ϕ(i)|. (3.41)

Theorem 3.20 If f ∈ H∞ and f �≡ 0, then f(λ) admits an inner-outer
factorization

f(λ) = fi(λ)fo(λ), (3.42)

in which the inner factor fi and the outer factor fo are unique up to multi-
plicative constants of modulus one. Moreover:

(1) |f(λ)| is subject to the inequality

ln |f(a + ib)| ≤ b

π

∫ ∞

−∞

ln |f(µ)|
(µ − a)2 + b2 dµ for b > 0. (3.43)

(2) The inequality (3.43) is an equality at one point ω = a + ib in C+ if
and only if equality holds at every point ω ∈ C+.

(3) The inequality (3.43) is an equality at one point ω = a + ib in C+ if
and only if f(λ) is an outer function.

(4) If f ∈ S and f �≡ 0, then fo ∈ Sout.
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Proof Let s(λ) = ‖f‖−1
∞ f(λ). Then s ∈ S and hence, by Theorems 3.15 and

3.18, s(λ) admits an inner-outer factorization

s(λ) = si(λ)so(λ).

Thus, the factorization formula (3.42) holds with fi(λ) = si(λ) and fo(λ) =
‖f‖∞so(λ). The inequality (3.43) follows from the inequality

|f(ω)| ≤ |fo(ω)|

for every point ω ∈ C+ and the identity (3.38) applied to the outer factor
fo(λ). �

Corollary 3.21 Let f ∈ H∞. Then

sup {|f(λ)| : λ ∈ C+} = ess sup {|f(µ)| : µ ∈ R}. (3.44)

Proof In view of formula (3.18), the inequality (3.43) clearly implies that
|f(λ)| ≤ ess sup {|f(µ)| : µ ∈ R} for every point λ ∈ C+ and hence that
the left hand side of the asserted identity cannot exceed the right hand side.
The identity then follows from the fact that

f(µ) = lim
ν↓0

f(µ + iν) a.e. on R.

�

3.5 Factorization in the classes N+ and N
A function f ∈ N is said to belong to the Smirnov class N+ if it admits

a representation of the form

f = g/h with g ∈ S and h ∈ Sout. (3.45)

Thus, in view of the preceding analysis, every function f ∈ N+ may be
expressed as a product of the form

f(λ) = b(λ)bs(λ)ϕ1(λ)/ϕ2(λ), (3.46)

where b(λ) is a Blaschke product of the form (3.25), bs(λ) is a singular inner
function of the form (3.31), ϕj(λ) ∈ Sout, j = 1, 2, and

|ϕ1(µ)/ϕ2(µ)| = |f(µ)| for almost all points µ ∈ R.

Formulas (3.39) and (3.40) are still valid for ϕ(λ) = ϕ1(λ)/ϕ2(λ). However,
the restriction k(µ) ≥ 0 a.e. on R is no longer in force.
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Theorem 3.22 (The Smirnov maximum principle) Let f ∈ N and
let 1 ≤ p ≤ ∞. Then

f ∈ Hp ⇐⇒ f ∈ N+ ∩ Lp(R). (3.47)

Moreover, if f ∈ Hp, then

‖f‖Hp = ‖f‖Lp (3.48)

for 1 ≤ p ≤ ∞.

Proof See Theorem A on p. 88 of [RR85]. �
If f ∈ N is holomorphic in C+ and f(λ) �≡ 0, then the number

τ+
f = lim sup

ν↑∞

ln |f(iν)|
ν

(3.49)

is finite.

Lemma 3.23 If f ∈ N+ and f(λ) �≡ 0 in C+, then:

(1) −∞ < τ+
f ≤ 0.

(2) eiλδf(λ) ∈ N+ ⇐⇒ δ ≥ τ+
f .

(3) In formulas (3.36), (3.28) and (3.32), τ+
f = τ+

bs
and τ+

bs
= −β.

(4) If also f ∈ S, then eiλτ +
f f(λ) ∈ S.

Proof The first three assertions are immediate from the representation for-
mula (3.46) and the formulas for its factors. In fact τ+

f = −β, since

lim
ν↑∞

ln |ϕ1(iν)|
ν

= lim
ν↑∞

ln |ϕ2(iν)|
ν

= lim sup
ν↑∞

ln |b(iν)|
ν

= 0 (3.50)

and

lim
ν↑∞

ln |bs(iν)|
ν

= lim
ν↑∞

ln |eβ(iν)|
ν

= −β. (3.51)

The final assertion then follows from the Smirnov maximum principle, since
if f ∈ S, then

|eiµτ +
f f(µ)| = |f(µ)| ≤ 1

for almost all points µ ∈ R and eiλτ +
f f(λ) ∈ N+. �
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Remark 3.24 If, in the setting of the last lemma, f(λ) �= 0 for every
point λ ∈ C+, then there is no Blaschke factor b(λ) in the factorization
formula (3.46) and hence the lim sup in (3.49) can be replaced by an ordinary
limit.

Lemma 3.25 If f ∈ S and f(λ) �≡ 0, then f(λ) is a Blaschke product if
and only if the condition (3.29) is satisfied and τ+

f = 0.

Proof The result follows from Theorem 3.12 and assertion (3) in Lemma
3.23. �

Lemma 3.26 If f ∈ H∞ and if e−tf ∈ H∞ for every t ≥ 0, then f(λ) ≡ 0.

Proof If f ∈ H∞, then (1 − iλ)−1f(λ) ∈ H2. Therefore,

f(λ)
1 − iλ

=
∫ ∞

0
eiλug(u)du

for some function g(u) ∈ L2(R+). Thus if also e−iλtf(λ) ∈ H∞ for t ≥ 0,
then

e−iλt

∫ ∞

0
eiλug(u)du = e−iλt

∫ t

0
eiλug(u)du + e−iλt

∫ ∞

t
eiλug(u)du

also belongs to H2. But this means that

e−iλt

∫ t

0
eiλug(u)du ∈ H2 ∩ H⊥

2

and hence that ∫ t

0
eiλug(u)du = 0 for every t > 0.

It is now clear from the formula for (1 − iλ)−1f(λ) that f(λ) ≡ 0. �

Lemma 3.27 If etj f ∈ H∞ for a sequence of positive numbers t1 ≥ t2 ≥ · · ·
which tend to 0 as j ↑ ∞, then f ∈ H∞.

Proof The function g(λ) = (1 − iλ)−1f(λ) belongs to H2, since etj g ∈ H2

and ‖g − etj g‖st → 0 as j ↑ ∞. Therefore f ∈ L∞ ∩ N+ = H∞, by the
Smirnov maximum principle. �

A function ϕ ∈ N+ is called outer if it can be expressed as a ratio ϕ(λ) =
ϕ1(λ)/ϕ2(λ), where ϕ1, ϕ2 ∈ Sout. The class of outer functions in N will be
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denoted Nout. Thus,

Nout ⊂ N+ ⊂ N .

We remark that

f ∈ Nout ⇐⇒ f ∈ N+ and f−1 ∈ N+. (3.52)

The implication =⇒ follows easily from the definitions of the classes Nout and
N+. Conversely, if f ∈ N+ and f−1 ∈ N+, then f = g/h and f−1 = g1/h1,
with g ∈ S, h ∈ Sout, g1 ∈ S and h1 ∈ Sout. Therefore, since gg1 = hh1 and
hh1 ∈ Sout, it follows that gg1 ∈ Sout, and hence that g ∈ Sout, as needed,
and g1 ∈ Sout. This implies that the product of two outer functions in N+ is
outer. Conversely, if f ∈ N+, g ∈ N+ and fg is outer, then (as follows from
the factorization formula (3.46)) both f and g are outer.

Remark 3.28 If f ∈ N+ and f �≡ 0, then the inequality (3.43) holds;
equality prevails for at least one (and hence every) point ω = a + ib in C+

if and only if f ∈ Nout. This characterization may be used to show that
(λ − ω)k ∈ Nout for every integer k and every point ω ∈ C−. This last
conclusion also follows from Lemma 3.57 (with much less effort), since Nout

is multiplicative group and (λ − ω) ∈ Nout if ω ∈ C−.

Later, in Theorem 3.64, we shall see that

ϕ ∈ Nout ⇐⇒ the set {ϕf : f ∈ H2 and ϕf ∈ H2} is dense in H2.

If ϕ ∈ H∞, then ϕf ∈ H2 for every f ∈ H2. Therefore, this last characteri-
zation is consistent with the definition of an outer function in H∞ that was
given earlier.

Every ϕ ∈ Nout admits a representation of the form (3.32), where
k ∈ L̃1(R). From the representation (3.39) and (3.45), it follows that
every f ∈ N admits an essentially unique representation of the form

f(λ) = b1(λ)−1b2(λ)ϕ(λ), (3.53)

where b1(λ) and b2(λ) are inner functions that have no common nonconstant
inner divisors in the class Sin and ϕ ∈ Nout, i.e., ϕ is an outer function in the
class N+. A function f ∈ N belongs to N+ if and only if the denominator
b1(λ) in formula (3.53) is absent.

If f ∈ N+, then the set of roots of f(λ) (counting multiplicities) coin-
cides with the set of roots in the Blaschke factor b(λ) in (3.46) (counting
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multiplicities). In particular, if f(λ) �= 0 for any point λ ∈ C+, then the
Blaschke factor b(λ) in (3.46) is absent; if f(λ) is continuous in C+, then the
singular factor in (3.46) reduces to bs(λ) = γeβ(λ).

Lemma 3.29 If f ∈ E ∩ N and f(λ) �≡ 0, then τ+
f is finite and

f(λ) = e−iτ+
f λb(λ)ϕ(λ), (3.54)

where ϕ(λ) ∈ E ∩Nout and b(λ) is a Blaschke product of the form (3.27). If
f ∈ E ∩ N+, then τ+

f ≤ 0 and the factorization (3.54) yields an inner-outer
factorization of f with an inner factor exp{−iλτ+

f }b that is meromorphic
in C and an entire outer factor ϕ.

Proof By a double application of formula (3.32), f(λ) admits a representa-
tion of the form

f(λ) = eiβλb(λ)ϕ(λ),

where β ≥ 0, b(λ) is a Blaschke product and ϕ ∈ Nout. Therefore, as follows
with the help of (3.50) and (3.51),

τ+
f = − β.

The Blaschke product b in formula (3.54) may be written in the form (3.19)
because f(λ) has at most finitely many roots ωk with |ωk | ≤ 1. Consequently,

ϕ(λ) = eiλτ +
f lim

n→∞
fn(λ), where fn(λ) =

n∏
j=1

1 − λ/ωj

1 − λ/ωj
f(λ)

is entire, since the the functions fn(λ) are entire and converge uniformly on
compact subsets of C. �

Theorem 3.30 Let g(µ) be a measurable function on R such that g(µ) ≥ 0
a.e. on R. Then:

(1) The factorization formula

g(µ) = |f(µ)|2 a.e. on R for some f ∈ N (3.55)

holds if and only if ∫ ∞

−∞

| ln |g(µ)||
1 + µ2 dµ < ∞. (3.56)
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(2) If the constraint (3.56) is met, then there exists a solution f(λ) =
ϕ(λ) in the class Nout that can be uniquely specified by imposing the
normalization condition ϕ(ω) > 0 at some fixed point ω ∈ C+.

(3) The set of all solutions f ∈ N to this factorization problem is de-
scribed by formula (3.53), where ϕ ∈ Nout is uniquely specified as in
(2) and b1 and b2 are arbitrary inner functions.

(4) The factorization (3.55) holds for some f ∈ Hp, 1 ≤ p ≤ ∞ if and
only if the constraint (3.56 ) holds and g ∈ Lp/2. Moreover, if these
two conditions are met, then every solution f ∈ Hp is of the form
f = bϕ, where b ∈ Sin and ϕ(λ) is an outer function that belongs to
Hp.

Proof See [RR 94]. �

3.6 The rank of meromorphic mvf’s

Let f(λ) be a mvf that is meromorphic in some open nonempty subset Ω of
C. Then hf denotes the set of points ω ∈ Ω at which f is holomorphic,

h
+
f = hf ∩ C+ and h

−
f = hf ∩ C−.

We shall define

rank f = max{rank f(λ) : λ ∈ h
+
f }

for every meromorphic p × q mvf f(λ) in C+.

Lemma 3.31 Let f(λ) be a meromorphic p × q mvf in C+, let r = rank f

and assume that f(λ) �≡ 0. Then

rank f(λ) = r for every λ ∈ h
+
f (3.57)

except for at most a countable set of points {ωj} that do not have a limit point
in C+. Moreover, if f ∈ N p×q, then the sequence of points {ωj} satisfies the
Blaschke condition (3.26) and

rank f(µ) = r for almost all points µ ∈ R. (3.58)

Proof Let r = rank f . Then r = rank f(ω) for some point ω ∈ h
+
f and hence

there exists an r× r submatrix ∆(λ) of f(λ) such that its determinant δ(λ)
is not equal to zero at the point ω. Consequently, δ(λ) �≡ 0 in C+ and hence
as δ(λ) is meromorphic in C+, it has at most countably many zeros {ωj} in
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C+ and this set does not have a limit point in C+. Therefore, rank f(λ) = r,
except for the set {ωj}, since rank f(λ) ≤ r for every point λ ∈ h

+
f .

If f ∈ N p×q , then δ ∈ N and consequently, the sequence {ωj} satisfies the
Blaschke condition (3.26). Moreover, nontangential limit values f(µ) and
δ(µ) exist at almost all points µ ∈ R and rank f(µ) ≥ r for almost all
points µ ∈ R, since δ(µ) �= 0 a.e. on R. On the other hand, if ∆1(λ) is a
submatrix of f(λ) of size r1 ×r1 such that δ1(µ) = det ∆1(µ) is not equal to
zero on a subset of R of positive Lebesgue measure, then δ1(λ) �≡ 0 in C+.
Consequently, r1 ≤ r and hence rank f(µ) ≤ r for almost all points µ ∈ R.
Thus, the proof is complete. �

3.7 Inner and outer mvf’s in Hp×q
∞

A mvf f ∈ Hp×q
∞ is said to be inner (resp., ∗-inner) if

Iq − f(µ)∗f(µ) = 0 (resp., Ip − f(µ)f(µ)∗ = 0)

for almost all points µ ∈ R. It is said to be outer (resp., ∗-outer) if the
closure

fHq
2 = Hp

2 (resp., f∼Hp
2 = Hq

2 , where f∼(λ) = f(−λ̄)∗).

It is readily checked that in order for f ∈ Hp×q
∞ to be inner (resp., outer),

it is necessary that p ≥ q (resp., p ≤ q). (The inequalities are reversed if
inner/outer is replaced by ∗-inner/∗-outer.) In particular, a square mvf is
inner if and only if it is ∗-inner and is outer if and only if it is ∗-outer.

The symbols Sp×q
in , Sp×q

∗in , Sp×q
out and Sp×q

∗out will be used to designate the
classes of functions f ∈ Sp×q which are inner, ∗-inner, outer and ∗-outer,
respectively. In the square case, Sp×p

in = Sp×p
∗in and Sp×p

out = Sp×p
∗out. Moreover,

for mvf’s f in either of these two classes, det f(λ) �≡ 0 in C+ if f ∈ Sp×p
in

and det f(λ) �= 0 in C+ if f ∈ Sp×p
out .

Theorem 3.32 Let f ∈ Hp×q
∞ . Then f is an outer mvf if and only if

(1) rankf(ω) = p for at least one point ω ∈ C+.

(2) Every mvf g ∈ Hr×q
∞ that meets the inequality

g(µ)∗g(µ) ≤ f(µ)∗f(µ)

for almost all points µ ∈ R also meets the inequality

g(λ)∗g(λ) ≤ f(λ)∗f(λ)
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for every point λ ∈ C+. Moreover, in this case, rankf(λ) = p for
every point λ ∈ C+, rank f(µ) = p for almost all points µ ∈ R and

g(λ) = b(λ)f(λ)

for some b(λ) ∈ Sr×p.

Proof See, e.g., Propositions 4.1 and 4.2 on pp. 200–201 of [SzNF70]. �

Lemma 3.33 If b ∈ Sp×p
in and if det b(λ) is constant in C+, then

b(λ) ≡ constant.

Proof If det b(λ) ≡ γ in C+, then b(λ)−1 ∈ Hp×p
∞ and det {b(λ)∗b(λ)} =

|γ|2 = 1. Therefore, since b(λ)∗b(λ) ≤ Ip in C+, equality must hold and this
in turn implies that b(λ)∗ ∈ Hp×p

∞ . Therefore, b(λ) must be constant. �

3.8 Fourier transforms and Paley-Wiener theorems

The Fourier transforms

f̂(µ) =
∫ ∞

−∞
eiµtf(t)dt and f∨(t) =

1
2π

∫ ∞

−∞
e−iµtf(µ)dµ (3.59)

will be considered mainly for f ∈ Lp×q
1 (R) and f ∈ Lp×q

2 (R).
If f ∈ Lp×q

2 (R), then the integral is understood as the limit of the integrals∫ A
−A in Lp×q

2 (R) as A ↑ ∞. Moreover, the mapping

f → (2π)−1/2 f̂ is a unitary operator in Lp×q
2 (R),

i.e., it is onto and the Plancherel formula holds:

〈f̂ , ĝ〉st = 2π〈f, g〉st for f, g ∈ Lp×q
2 ,

and

f(t) = (f̂)∨(t) a.e. on R. (3.60)

If f ∈ Lp×q
2 (R), then µf̂(µ) belongs to Lp×q

2 (R) if and only if

f is locally absolutely continuous on R and f ′ ∈ Lp×q
2 (R). (3.61)

Moreover, if these conditions hold, then

µf̂(µ) = if̂ ′(µ). (3.62)
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If f ∈ Lp×r
1 (R) and g ∈ Lr×q

1 (R), then f̂ ∈ Wp×r(0), ĝ ∈ Wr×q(0), f̂ ĝ ∈
Wp×q(0) and

(f̂ ĝ)∨(t) =
∫ ∞

−∞
f(t − s)g(s)ds a.e. on R. (3.63)

Formula (3.63) is also valid if f ∈ Lp×r
1 (R), g ∈ Lr×q

s (R) and 1 < s < ∞.

Theorem 3.34 If f̂ ∈ Wp×p(0) and γ ∈ C
p×p, then there exists a matrix

δ ∈ C
p×p and a mvf ĝ ∈ Wp×p(0) such that

(γ + f̂(µ))(δ + ĝ(µ)) = Ip (3.64)

if and only if

det (γ + f̂(µ)) �= 0 for every point µ ∈ R and γ is invertible. (3.65)

If f̂ ∈ Wp×p
+ (0) (resp., Wp×p

− (0)) and γ ∈ C
p×p, then there exists a matrix

δ ∈ C
p×p and a mvf ĝ ∈ Wp×p

+ (0) (resp., Wp×p
− (0)) such that (3.64) holds

for all points µ ∈ R if and only if

det (γ + f̂(λ)) �= 0 for every point λ ∈ C+ (resp., C−) and

γ is invertible. (3.66)

Proof The stated assertions for mvf’s are easily deduced from the scalar
versions, the first of which is due to N. Wiener; the second (and third)
to Paley and Wiener; see [PaW34] for proofs and, for another approach,
[GRS64]. �

If (3.64) holds, then (by the Riemann-Lebesgue lemma) γδ = Ip.

Theorem 3.35 (Paley-Wiener) Let f be a p× q mvf that is holomorphic
in C+. Then f ∈ Hp×q

2 if and only if

f(λ) =
∫ ∞

0
eiλxf∨(x)dx for λ ∈ C+

and some f∨ ∈ Lp×q
2 (R+). Moreover, if f ∈ Hp×q

2 , then its boundary values
f(µ) admit the Fourier-Laplace representation

f(µ) =
∫ ∞

0
eiµxf∨(x)dx a.e. on R.

Proof This follows easily from the scalar Paley-Wiener theorem; see, e.g.,
pp. 158–160 of [DMc72]. �
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Theorem 3.36 (Paley-Wiener) A p× q mvf f admits a representation of
the form

f(λ) =
∫ β

−α
eiλxf∨(x)dx for λ ∈ C

and some f∨ ∈ Lp×q
2 ([−α, β]) with 0 ≤ α, β < ∞ if and only if f(λ) is an

entire p × q mvf of exponential type with τ+(f) ≤ α and τ−(f) ≤ β and
f ∈ L2(R).

Proof This follows easily from the scalar Paley-Wiener theorem; see, e.g.,
pp. 162–164 of [DMc72]. �

3.9 The Beurling-Lax theorem

The functions ϕk(λ) and ψk(λ) introduced in (3.37) will be used frequently
below.

Lemma 3.37 If f ∈ Lp
1(R) and∫ ∞

−∞
ϕk(µ)f(µ)dµ = 0 for k = 0,±1, . . . ,

then f(µ) = 0 a.e. on R.

Proof Since(
λ − i

λ + i

)k

=
(

1 − 2i

λ + i

)k

and
(

λ + i

λ − i

)k

=
(

1 +
2i

λ − i

)k

for k = 0, 1, . . ., it is readily seen that under the given assumptions∫ ∞

−∞

f(µ)
(µ ± i)k

dµ = 0 for k = 0, 1, . . . .

Therefore, ∫ ∞

−∞

f(µ)
µ − λ

dµ = 0 for λ ∈ C+ ∪ C−.

Thus, as

(µ − λ)−1 =

{
−i
∫∞
0 exp (i(µ − λ)t)dt if λ ∈ C−

i
∫ 0
−∞ exp (i(µ − λ)t)dt if λ ∈ C+,
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it follows that∫ ∞

−∞
e−iate−b|t|f̂(t)dt = 0 for a ∈ R and b > 0.

Consequently, f̂(t) = 0 on R and hence f(µ) = 0 a.e. on R, as claimed. �

Theorem 3.38 Let L be a proper closed nonzero subspace of Hp
2 such that

etf ∈ L for every f ∈ L and every t ≥ 0.

Then there exists a positive integer q ≤ p and an inner mvf b ∈ Sp×q
in such

that

L = bHq
2 . (3.67)

Moreover, this mvf b(λ) is uniquely defined by L up to a unitary constant
right multiplier.

Proof The formula
λ − α

λ − α
= 1 + i(α − α)

∫ ∞

0
eiλte−iαtdt for α ∈ C+ (3.68)

guarantees that L is invariant under multiplication by ϕ1. Moreover, ϕ1L
is a proper subspace of L, because otherwise (ϕ1)kL = L for all positive
integers k and hence

L = (ϕ1)kL = ∩k
j=0(ϕ1)jL ⊂ ∩k

j=0(ϕ1)jH
p
2 for k = 0, 1, . . . ,

which leads to a contradiction, since ∩∞
j=0(ϕ1)jH

p
2 = {0}. Thus,

N = L � ϕ1L

is nonzero, and since (ϕ1)jN is orthogonal to (ϕ1)kN for j �= k and ϕk
1N ⊂

ϕk
1H

p
2 , much the same sort of argument leads to the Wold decomposition

L =
∞⊕

j=0

ϕjN.

Let f1, . . . , fk be an orthonormal set of vectors in N and let

F (λ) =
[
f1 · · · fk

]
and G(λ) =

√
π(λ + i)F (λ).

Then ∫ ∞

−∞
ϕn(µ)ξ∗F (µ)∗F (µ)ηdµ = 0 for n = 1, 2, . . .
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and every choice of ξ, η ∈ Ck . The last integral is also equal to 0 for
n = −1,−2, . . . , as follows upon taking complex conjugates and interchang-
ing ξ and η. Thus,

1
π

∫ ∞

−∞
ϕn(µ)

G(µ)∗G(µ) − Ik

1 + µ2 dµ = 0 for n = 0,±1,±2, . . . ,

which, in view of the preceding lemma, implies that G(µ)∗G(µ) = Ik a.e.
on R. Therefore, k ≤ p, and hence dimension N ≤ p. Let q = dimensionN

and let k = q. Thus, as G ∈ N p×q
+ ∩ Lp×q

∞ , the Smirnov maximum principle
implies that G ∈ Hp×q

∞ and hence, as G∗G = Iq a.e. on R that G ∈ Sp×q
in .

Moreover, as f ∈ N implies that

f = Fξ = ψ0Gξ and L = ⊕∞
j+0ϕjN,

it follows that L = GHq
2 . This completes the proof of existence.

If there are two inner mvf’s b and b1 such that L = bHq
2 = b1H

q1
2 , then the

identity N = Hp
2 � bHq

2 = Hp
2 � b1H

q1
2 implies that q = q1 = dimensionN

and hence that the columns of ψ0b form an orthonormal basis for N as do
the columns of ψ0b1. Therefore there exists a constant q × q unitary matrix
V such that b1 = b2V . This proves the essential uniqueness of b. �

Lemma 3.39 Let bα(λ) = (λ−α)/(λ−α) for α ∈ C+ and let L be a proper
closed subspace of Hp

2 . Then the following assertions are equivalent:

(1) etL ⊆ L for every t ≥ 0.

(2) bαL ⊆ L for at least one point α ∈ C+

(3) bαL ⊆ L for every point α ∈ C+.

Proof If (2) is in force, then the argument in the first part of the proof of
Theorem 3.38 is easily adapted to verify the Wold decomposition

L =
∞⊕

n=0

bn
αNα with Nα = L � bαL.

Let f ∈ Nα and let hα(λ) = {
√

2π/(iα − iα)(λ − α)}−1. Then, since hαbk
α,

k = 0, 1, . . . , is an orthonormal basis for H2,

ethα =
∞∑

k=0

ck(t)hαbk
α, where

∞∑
k=0

|ck(t)|2 < ∞.
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Thus, if f ∈ Nα, then

etf =
∞∑

k=0

ck(t)bk
αf, belongs to L.

Therefore, (2) =⇒ (1); and, as the implication (1) =⇒ (3) is justified by
formula (3.68) and (3) =⇒ (2) is self-evident, the proof is complete. �

The generalized backwards shift operator Rα is defined for vvf’s and
mvf’s by the rule

(Rαf)(λ) =


f(λ) − f(α)

λ − α
if λ �= α

f ′(α) if λ = α
(3.69)

for every λ, α ∈ hf . In order to keep the typography simple, we shall not
indicate the space in which Rα acts in the notation.

Lemma 3.40 Let L be a proper closed subspace of Hp
2 and let V (t) =

Π+e−t|Hp
2

for t ≥ 0. Then the following assertions are equivalent:

(1) V (t)L ⊆ L for every t ≥ 0.

(2) RαL ⊆ L for at least one point α ∈ C+

(3) RαL ⊆ L for every point α ∈ C+.

Proof The proof follows by applying Lemma 3.39 to L⊥, the orthogonal
complement of L in Hp

2 and invoking the identities

〈V (t)f, g〉st = 〈f, etg〉st and 〈Rαf, g〉st = 〈f, bαg〉st
for f ∈ L, g ∈ L⊥, t ≥ 0 and α ∈ C+. �

The spaces

H(b) = Hp
2 � bHq

2 for b ∈ Sp×q
in (3.70)

will play a significant role in future developments.

Lemma 3.41 If bHr
2 ⊇ b1H

p
2 , where b ∈ Sp×r

in and b1 ∈ Sp×p
in , then r = p

and b−1b1 ∈ Sp×p
in .

Proof The stated inclusion implies that∥∥∥∥Pb1 Hp
2

ξ

ρω

∥∥∥∥
st

≤
∥∥∥∥PbHr

2

ξ

ρω

∥∥∥∥
st

(3.71)



3.9 The Beurling-Lax theorem 111

for every ξ ∈ Cp and every ω ∈ C+. Therefore, since the orthogonal pro-
jectors in (3.71) can be reexpressed in terms of the isometric multiplication
operators Mb1 and Mb and the projection Π+ as

Pb1H
p
2

= Mb1 Π+Mb∗1
and PbHr

2
= MbΠ+Mb∗ ,

respectively, and

Π+Mb∗1

ξ

ρω
=

b1(ω)∗ξ
ρω

and Π+Mb∗
ξ

ρω
=

b1(ω)∗ξ
ρω

,

the inquality (3.71) implies that

ξ∗b1(ω)∗b1(ω)ξ
ρω(ω)

=
∥∥∥∥b1(ω)ξ

ρω

∥∥∥∥2

st

≤
∥∥∥∥b(ω)ξ

ρω

∥∥∥∥2

st

=
ξ∗b(ω)∗b(ω)ξ

ρω(ω)

for every choice of ξ ∈ C
p and ω ∈ C+. Therefore,

b1(ω)b1(ω)∗ ≤ b(ω)b(ω)∗

for every point ω ∈ C+. Thus, as the rank of the matrix on the left is equal
to p except for an at most countable set of points ω ∈ C+, it follows that
r ≥ p. At the same time, r ≤ p, since b ∈ Sp×r

in . Therefore, r = p and
b−1b1 ∈ Sp×p. �

Corollary 3.42 If bHr
2 ⊇ βHp

2 , where b ∈ Sp×r
in and β ∈ Sin, then r = p

and βb−1 ∈ Sp×p
in .

Proof This follows from Lemma 3.41 with b1 = βIp. �

Theorem 3.43 If bj ∈ Sp×p
in for j = 1, . . . , n, then there exists a mvf

b ∈ Sp×p
in such that:

(1) b−1
j b ∈ Sp×p

in for j = 1, . . . , n.

(2) If b̃ ∈ Sp×p
in and b−1

j b̃ ∈ Sp×p
in for j = 1, . . . , n, then b−1 b̃ ∈ Sp×p

in .

Moreover, a mvf b ∈ Sp×p
in is uniquely specified by these two constraints up

to a constant unitary p × p multiplier on the right.

Proof Let

L =
n⋂

j=1

bjH
p
2 and β =

n∏
j=1

det bj .
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Then, since βb−1
j ∈ Sp×p

in , it follows that βHp
2 ⊆ bjH

p
2 for 1, . . . , n and hence

that βHp
2 ⊆ L. In view of Theorem 3.38, there exists a mvf b ∈ Sp×r

in such
that L = bHr

2 , and hence βHp
2 ⊆ bHr

2 . Therefore, r = p by Corollary 3.42 and
(1) then follows from the inclusion bHp

2 ⊆ bjH
p
2 by Lemma 3.41. Moreover,

if b̃ ∈ Sp×p
in is such that b−1

j b̃ ∈ Sp×p
in for j = 1, . . . , n, then b̃Hp

2 ⊆ bHp
2 and

consequently (2) follows by another application of Lemma 3.41.
Finally, if b̃ ∈ Sp×p

in meets the same two conditions as b, then b̃−1b and
b−1 b̃ both belong to Sp×p

in and therefore b−1 b̃ is a constant unitary p × p

matrix. �
A mvf b ∈ Sp×p that meets condition (1) in Theorem 3.43 is called a com-

mon left multiple of the set {b1, . . . , bn}; b is called a minimal common
left multiple of the given set if it meets (1) and (2).

Theorem 3.44 If bα ∈ Sp×p
in for α ∈ A, then there exists a mvf b ∈ Sp×p

in

such that:

(1) b−1bα ∈ Sp×p
in for every α ∈ A.

(2) If b̃ ∈ Sp×p
in and b̃−1bα ∈ Sp×p

in for every α ∈ A, then b−1 b̃ ∈ Sp×p
in .

Moreover, a mvf b ∈ Sp×p
in is uniquely specified by these two constraints up

to a constant unitary p × p multiplier on the right.

Proof Let

L =
∨

α∈A
bαHp

2

be the minimal closed subspace of Hp
2 that contains the subspaces bαHp

2
for every choice of α ∈ A. Theorem 3.38 implies that L = bHr

2 for some
b ∈ Sp×r

in . Moreover, since bαHp
2 ⊆ bHr

2 , Lemma 3.41 implies that r = p. If
b̃ ∈ Sp×p

in is such that b̃−1bα ∈ Sp×p
in for every α ∈ A, then bαHp

2 ⊆ b̃Hp
2 for

every α ∈ A, and hence bHp
2 ⊆ b̃Hp

2 . Therefore, b̃−1b ∈ Sp×p
in , by Lemma

3.41. �
A mvf b ∈ Sp×p that meets condition (1) in Theorem 3.44 is called a

common left divisor of the set {bα : α ∈ A}; b is called a maximal
common left divisor of the given set if it meets (1) and (2).

There are analogous definitions of common right multiple, minimal com-
mon right multiple, common right divisor and maximal common right divisor
and corresponding analogues of Theorems 3.43 and 3.44.
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Lemma 3.45 If

β(λ) =
n∏

j=1

βj(λ), where βj(λ) =
(

λ − ωj

λ − ωj

)
and ωj ∈ C+,

is a finite Blaschke product, then dimH(β) = n.

Proof It is readily checked that the functions

ϕk(λ) =
k∏

j=1

βj(λ)
1

λ − ωk

belong to H(β) for k = 1, . . . , n and are orthogonal in H2. Let f ∈ H2�βH2

and set

cj =
〈f, ϕj〉
〈ϕj, ϕj〉

for j = 1, . . . , n.

Then, since

0 =

〈
f −

n∑
j=1

cjϕj, ϕk

〉
for k = 1, . . . , n,

it follows that f(ω1) −
∑n

j=1 cjϕj(ω1) = 0 and(
f −

∑n
j=1 cjϕj

β1 · · ·βk−1

)
(ωk) = 0 for k = 2, . . . , n,

and hence that(
f −

∑n
j=1 cjϕj

β1 · · ·βk

)
∈ H2 for k = 1, . . . , n.

Therefore,

f −
n∑

j=1

cjϕj ∈ βH2 ∩ (βH2)⊥.

Thus, f −
∑n

j=1 cjϕj = 0, which serves to prove that ϕ1, . . . , ϕn is a basis
for H2 � βH2 and hence that dimH2 � βH2 = n. �

Lemma 3.46 If b ∈ Sp×p
in is a rational mvf, then dimH(b) < ∞.

Proof Let b be a rational p × p inner mvf and let β(λ) = det b(λ). Then,
since H(b) ⊆ H(βIp) and dimH(βIp) = p dimH(β), the assertion follows
from Lemma 3.45. �
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3.10 Inner-outer factorization in Hp×q
∞

Lemma 3.47 Let f ∈ Lp×q
∞ and let

fHq
2 ⊆ Hp

2 . (3.72)

Then f(µ) is the boundary value of a mvf f(λ) that belongs to the space
Hp×q

∞ .

Proof Fix ω ∈ C+. Then, under the given assumption (3.72), the mvf
g(µ) = ρω(µ)−1f(µ) is the boundary value of a mvf g(λ) that belongs to
Hp×q

2 . Consequently, f(µ) is the boundary value of the holomorphic mvf
f(λ) = ρω(λ)g(λ). Moreover, f ∈ N p×q

+ , since ρω ∈ N+. Consequently, by
the Smirnov maximum principle (or inequality (3.43)), applied to each entry
of the mvf f ∈ N p×q

+ , f ∈ Hp×q
∞ . �

Theorem 3.48 Let f ∈ Sp×q and suppose that rank f = r ≥ 1. Then f

admits an inner-outer factorization

f = bϕ, where b ∈ Sp×r
in , ϕ ∈ Sr×q

out , (3.73)

and a ∗-outer-∗-inner factorization

f = ϕ∗b∗, where ϕ∗ ∈ Sp×r
∗ou t

and b∗ ∈ Sr×q
∗in . (3.74)

Moreover, the factors in (3.73) and (3.74) are defined up to constant unitary
r × r multipliers u and v:

b −→ bu, ϕ −→ u∗ϕ and ϕ∗ −→ ϕ∗v , b∗ −→ v∗b∗.

Proof Let f ∈ Sp×q , let r = rank f and let L = fHq
2 . Then L is a closed

subspace of Hp
2 that is invariant under multiplication by et for t ≥ 0. There-

fore, by the Beurling-Lax theorem, L = bH�
2 for some b ∈ Sp×�

in . Moreover,
the mvf ϕ that is defined by the formula

ϕ(µ) = b(µ)∗f(µ) for almost all points µ ∈ R

belongs to L�×q
∞ (R), ‖ϕ‖∞ ≤ 1 and the closure

ϕHq
2 = H�

2.

Therefore, by Lemma 3.47 and the definition of the class S�×q
out , ϕ(µ) is the

boundary value of a mvf ϕ(λ) that belongs to the class S�×q
out . The inclusion

fHq
2 ⊆ bH�

2
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implies that for any fixed point ω ∈ C+

f

ρω
= bg

for some g ∈ H�×q
2 . Therefore,

range f(µ) ⊆ range b(µ)

for almost all points µ ∈ R. Thus,

b(µ)ϕ(µ) = b(µ)b(µ)∗f(µ) = f(µ) for almost all points µ ∈ R,

since the matrix b(µ)b(µ)∗ is the orthogonal projection matrix onto the range
of b(µ). Moreover,

rank f(µ) = rank f and rank ϕ(µ) = rank ϕ a.e. on R.

Therefore, if rank ϕ = �, then � = rank f = r. This completes the proof of
the existence of the asserted inner-outer factorization (3.73).

Suppose next that f admits another inner-outer factorization

f = b1ϕ1 with b1 ∈ Sp×r1
in and ϕ1 ∈ Sr1×q

out .

Then the formula

bHr
2 = bϕHq

2 = b1ϕ1H
q
2 = b1H

r1
2

implies that r1 = r and b1(λ) = b(λ)u for some unitary matrix u ∈ C
r×r ,

by the essential uniqueness of the inner mvf in the Beurling-Lax theorem.
Thus,

b(µ)uϕ1(µ) = b(µ)ϕ(µ) for almost all points µ ∈ R,

and hence, upon multiplying both sides of the last equality by u∗b(µ)∗, we
obtain

ϕ1(µ) = u∗ϕ(µ) for almost all points µ ∈ R.

The assertions on ∗-outer - ∗-inner factorizations for f ∈ Sp×q follow from
the inner-outer factorization of f∼ ∈ Sq×p. �

Corollary 3.49 Every nonzero mvf f ∈ Hp×q
∞ admits an inner-outer fac-

torization of the form

f = bϕ,
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where b ∈ Sp×r
in and ϕ is an outer function of class Hr×q

∞ for some r ≤
min{p, q}. This factorization is unique up to the replacement of b(λ) by b(λ)χ
and ϕ(λ) by χ∗ϕ(λ), where χ is an r×r constant unitary matrix. Moreover,
r = rank f . Every nonzero mvf f ∈ Hp×q

∞ also admits a ∗-outer-∗-inner
factorization which can be obtained in a self-evident way from the inner-
outer factorization of f∼(λ).

Proof This follows from Theorem 3.48 applied to the mvf f/‖f‖∞. �
Every square mvf f ∈ Hp×p

∞ with det f(λ) �≡ 0 in C+ admits both an
inner–outer factorization and an outer–inner factorization:

f = b1ϕ1 = ϕ2b2

where bj ∈ Sp×p
in and ϕj is outer in Hp×p

∞ for j = 1, 2.

Theorem 3.50 Let f ∈ Sp×p. Then

(1) f ∈ Sp×p
out ⇐⇒ det f ∈ Sout.

(2) f ∈ Sp×p
in ⇐⇒ det f ∈ Sin.

Proof Let f ∈ Sp×p. Then, by a theorem of M. G. Krein (see, e.g., [Roz58]),

f ∈ Sp×p
out ⇐⇒


(a) det f(λ) �≡ 0 for λ ∈ C+

(b) ln |det f(ω)| = Iω
π

∫ ∞

−∞

ln |det f(µ)|
1 + µ2 dµ

for every point ω ∈ C+.

By Theorem 3.18, the equality (b) holds for the scalar function det f(λ) of
the class S if and only if det f ∈ Sout. This completes the proof of (1).

Suppose next that f ∈ Sp×p. Then the inequality

|det f(µ)|2Ip ≤ f(µ)∗f(µ) ≤ Ip,

which holds for almost all points µ ∈ R, implies that if det f ∈ Sin, then
f ∈ Sp×p

in . The converse is self-evident. �
A scalar function h ∈ S is said to be a scalar multiple of a mvf f ∈ Sp×p

with det f(λ) �≡ 0, if hf−1 ∈ Sp×p.

Lemma 3.51 Let s ∈ Sp×q and let ξ = s(ω)η for some point ω ∈ C+ and
some vector η ∈ C

q such that ξ∗ξ = η∗η. Then ξ = s(λ)η and η = s(λ)∗ξ
for every point λ ∈ C+.
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Proof If η = 0, the asserted conclusion is self-evident. If η �= 0, then we
may assume that η∗η = 1. Then

|ξ∗s(λ)η| ≤ 1 = ξ∗ξ = ξ∗s(ω)η

for every point λ ∈ C+. Therefore, the maximum principle applied to the
scalar function ξ∗s(λ)η implies that ξ∗s(λ)η ≡ 1 in C+ and hence that

‖ξ − s(λ)η‖2 = ξ∗ξ − ξ∗s(λ)η − η∗s(λ)∗ξ + η∗s(λ)∗s(λ)η

= η∗s(λ)∗s(λ)η − 1 ≤ 0,

which imples that ξ = s(λ)η in C+. Similar considerations based on the
evaluation of ‖s(λ)∗ξ − η‖2 yield the identity s(λ)∗ξ ≡ η in C+. �

Corollary 3.52 Let s ∈ Sp×q and let s(ω)∗s(ω) < Iq at a point ω ∈ C+,
then s(λ)∗s(λ) < Iq at every point λ ∈ C+.

Corollary 3.53 Let s ∈ Sp×p be such that det (Ip − s(λ)) �≡ 0 in C+. Then
det (Ip − s(λ)) �= 0 for every point λ ∈ C+.

Proof If det (Ip − s(ω)) = 0 for some point ω ∈ C+. Then ξ = s(ω)ξ for
some vector ξ ∈ C

p with ξ∗ξ = 1. Therefore, by Lemma 3.51, ξ ≡ s(λ)ξ in
C+ and hence det (Ip − s(λ)) ≡ 0 in C+. �

The next lemma amplifies the corollary.

Lemma 3.54 If s ∈ Sp×p and det{Ip −s(λ)} �≡ 0 in C+, then the mvf Ip −s

is outer in Hp×p
∞ .

Proof If Ip − s is not outer in Hp×p
∞ , then the closure {Ip − s}Hp

2 �= Hp
2 .

Therefore there exists a nonzero element g ∈ Hp
2 such that

〈{Ip − s}f, g〉st = 0

for every f ∈ Hp
2 . Thus

g = Π+s∗g

and hence, since

‖g‖2 = ‖Π+s∗g‖2 ≤ ‖s∗g‖2 ≤ ‖g‖2,
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it follows that s∗g ∈ Hp
2 and thus

g(µ) = s(µ)∗g(µ)

for almost all points µ ∈ R. But this implies that

det{Ip − s(µ)∗} = 0 for almost all points µ ∈ R

=⇒ det{Ip − s(µ)} = 0 for almost all points µ ∈ R

=⇒ det{Ip − s(λ)} = 0 for every point λ ∈ C+,

which contradicts the given assumption. �

3.11 The Smirnov maximum principle

A p × q mvf which is holomorphic in C+ is said to belong to the Smirnov
class N p×q

+ if it can be expressed in the form

f = h−1g, (3.75)

where g ∈ Hp×q
∞ and h is a scalar outer function of class H∞. It is readily

checked that N p×q
+ is closed under addition and also multiplication, whenever

the matrix multiplication is meaningful. In particular, if f ∈ N p×q
+ , then

(1 − iλ)kf(λ) ∈ N p×q
+ and λkf(λ) ∈ N p×q

+ for every integer k. If also g is
outer in Hp×q

∞ , then f is said to belong to the class N p×q
out of outer mvf’s

in N p×q
+ .

Theorem 3.55 Let f ∈ N p×p
+ . Then

f ∈ N p×p
out ⇐⇒ det f ∈ Nout. (3.76)

Proof Let f ∈ N p×p
out . Then f = gh−1 where g ∈ Sp×p

out and h ∈ Sout.
Therefore, since

det f =
det g

(h)p ,

it follows from Theorem 3.50 that det f ∈ Nout. Conversely, let f ∈ N p×p
+

and let det f ∈ Nout. Then, since f = gh−1 with g ∈ Sp×p and h ∈ Sout, it
follows that

det g = hp det f

belongs to Sout. Therefore, by Theorem 3.50 g ∈ Sp×p
out and consequently

f ∈ N p×p
out . �
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Theorem 3.55 may be viewed as a generalization of the first assertion in
Theorem 3.50. The example

f =
g

(det g)1/p
, g ∈ Sp×p

out

indicates that the implication

det f ∈ Sin =⇒ f ∈ Sp×p
in

does not hold for f ∈ N p×p
+ .

Lemma 3.56 If f ∈ N p×p and det f(λ) �≡ 0 in C+, then

(1) f ∈ N p×p
out if and only if both f and f−1 belong to N p×p

+ .

(2) f ∈ N p×p
out if and only if f−1 ∈ N p×p

out .

Proof The implication =⇒ is a straightforward consequence of Theorem
3.55. Conversely, if f ∈ N p×p

+ and f−1 ∈ N p×p
+ , then

f =
g

h
and f−1 =

g1

h1

where g ∈ Sp×p, h ∈ Sout, g1 ∈ Sp×p and h1 ∈ Sout. Therefore, since
gg1 = hh1Ip, and hh1 ∈ Sout, it follows that

det g · det g1 ∈ Sout

and hence that det g ∈ Sout. Thus, g ∈ Sp×p
out by Theorem 3.50. This com-

pletes the proof of (1); (2) is immediate from (1). �

Lemma 3.57 Let c ∈ Cp×p. Then:

(1) c ∈ N p×p
+ .

(2) c−1 ∈ N p×p
+ ⇐⇒ det c(λ) �≡ 0 in C+ ⇐⇒ c ∈ N p×p

out .

Proof Let c ∈ Cp×p. Then the mvf s = (Ip−c)(Ip +c)−1 belongs to the class
Sp×p and the function det {Ip +s(λ)} �= 0 at every point λ ∈ C+. Therefore,
by Lemma 3.54 and Theorem 3.50,

Ip + s

2
∈ Sp×p

out and det
{

Ip + s

2

}
∈ Sout.
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Thus, c ∈ N p×p
+ . This proves (1). The second assertion follows from Lemma

3.54, Theorem 3.50 and the observation that

Ip − s

2
∈ Sp×p

out ⇐⇒ det c(λ) �= 0 in C+.

�

Lemma 3.58 The following assertions hold:

(1) Cp×p = TV[Sp×p ∩ D(TV)].

(2) Cp×p ⊂ N p×p
+ .

(3) If c ∈ Cp×p, then c ∈ N p×p
out if Rc(ω) > 0 for at least one (and hence

every) point ω ∈ C+.

(4) C̊p×p = TV[S̊p×p] and C̊p×p ⊂ N p×p
out .

Proof This follows from Lemma 3.57. �
We turn next to the Smirnov maximum principle. In the formulation,

f ∈ N p×q
+ is identified with its boundary values.

Theorem 3.59 If f ∈ N p×q
+ , then

sup
ν>0

∫ ∞

−∞
(trace{f(µ + iν)∗f(µ + iν)})r/2dµ

=
∫ ∞

−∞
(trace{f(µ)∗f(µ)})r/2dµ

for 1 ≤ r < ∞,

sup
λ∈C+

trace{f(λ)∗f(λ)} = ess supµ∈Rtrace{f(µ)∗f(µ)},

sup
ν>0

∫ ∞

−∞
‖f(µ + iν)‖rdµ =

∫ ∞

−∞
‖f(µ)‖rdµ for 1 ≤ r < ∞

and

sup
λ∈C+

‖f(λ)‖ = ess supµ∈R{‖f(µ)‖},

where in these equalities both sides can be infinite. In particular,

N p×q
+ ∩ Lp×q

r (R) = Hp×q
r (3.77)

for 1 ≤ r ≤ ∞.
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Proof See Theorem A on p. 88 of [RR85]. �
A p × q mvf which is holomorphic in C− is said to belong to the Smirnov

class N p×q
− if it can be expressed in the form (3.75) but with g and h in the

corresponding classes with respect to C−. In particular, f ∈ N p×q
− if and

only if f# ∈ N q×p
+ .

The Smirnov maximum principle will be invoked a number of times in the
subsequent developments. The proof of the next lemma, which is useful in
its own right, is a good illustration of the application of this principle.

Lemma 3.60 Let f(λ) be a p× q mvf that is holomorphic in a set hf ⊃ C+.

Then the following equivalences hold:

(1) ρ−1
i f ∈ Hp×q

2 .

(2) Rαf ∈ Hp×q
2 for at least one point α ∈ hf .

(3) Rαf ∈ Hp×q
2 for every point α ∈ hf .

Proof Suppose first that (1) is in force and let α ∈ hf . Then f ∈ N p×q
+ and

Rαf ∈ N p×q
+ . Moreover, if µ ∈ R, then

f(µ) − f(α)
µ − α

=
(µ + i)
(µ − α)

(f(µ) − f(α))
(µ + i)

∈ Lp×q
2 (R).

If α �∈ R, then the preceding assertion is self-evident, since

µ + i

µ − α
∈ L∞, (µ + i)−1f ∈ Lp×q

2 and (µ + i)−1f(α) ∈ Lp×q
2 .

If α ∈ R, then the same conclusion holds since (Rαf)(µ) is bounded in a
neighborhood (α − δ, α + δ) of α, and (µ + i)/(µ − α) is bounded for µ ∈ R

with |µ − α| ≥ δ. By the Smirnov maximum principle, this completes the
proof of (1) =⇒ (3). The implication (3) =⇒ (2) is self-evident. Finally, if
(2) is in force, then

f(λ) − f(α)
λ + i

=
(λ − α)
(λ + i)

(f(λ) − f(α))
(λ − α)

clearly belongs to Hp×q
2 , since (λ−α)/(λ+ i) belongs to H∞. Thus, (2) =⇒

(1). �
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3.12 Characterization of the classes N p×q , N p×q
+ , N p×q

out and Hp×q
∞ via

multiplication operators

Let f be a p× q mvf that is meromorphic in C+ and let M̃f be the operator
of multiplication by f that acts between the spaces Hq

2 and Hp
2 with

D(f) = {h ∈ Hq
2 : fh ∈ Hp

2 } (3.78)

and range

∆(f) = {g ∈ Hp
2 : g = fh for some h ∈ Hq

2}. (3.79)

Lemma 3.61 The operator M̃f is a closed operator.

Proof Let {hn} ∈ D(f) and {gn} = {M̃fhn} be two convergent sequences
such that

hn −→ h in Hq
2 and gn −→ g in Hp

2 .

Then, since hn(λ) −→ h(λ) and gn(λ) −→ g(λ) at every point λ ∈ C+,

(M̃fhn)(λ) = f(λ)hn(λ) −→ f(λ)h(λ) = g(λ) at every point λ ∈ h
+
f ,

i.e., h ∈ D(f) and g = M̃fh. �
The closure D(f) of D(f) in Hq

2 is invariant under multiplication by
et(λ), t ≥ 0. Therefore, the Beurling-Lax theorem implies that if

D(f) �= {0}, then D(f) = bf Hr
2 where bf ∈ Sq×r

in . (3.80)

Moreover, 1 ≤ r ≤ q and bf is uniquely determined by f up to a right
constant unitary multiplier of size r × r.

Theorem 3.62 Let f(λ) be a p × q mvf that is meromorphic in C+ such
that D(f) �= {0} and let bf ∈ Sq×r

in be defined by the Beurling-Lax theorem
as in (3.80). Then:

D(f) = bf Hq
2 with bf ∈ Sq×q

in ⇐⇒ f ∈ N p×q . (3.81)

D(f) = Hq
2 ⇐⇒ f ∈ N p×q

+ . (3.82)

D(f) = Hq
2 ⇐⇒ f ∈ Hp×q

∞ . (3.83)

Moreover, if f ∈ Hp×q
∞ , then the operator M̃f of multiplication by the mvf f

is a bounded linear operator from Hq
2 to Hp

2 with norm

‖M̃f‖ = ‖f‖∞. (3.84)
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Proof (⇐=) Suppose first that f ∈ N p×q . Then f = f1/(bϕ), where f1 ∈
Sp×q , b ∈ Sin and ϕ ∈ Sout. Therefore, bϕHq

2 ⊆ D(f) and thus, as

ϕHq
2 = Hq

2 and bHq
2 = bHq

2 ,

we see that

bHq
2 ⊆ D(f) = bf Hr

2 .

Consequently, by Corollary 3.42, r = q.
If f ∈ N p×q

+ , then b(λ) = 1 in the preceding argument and hence bf (λ) =
Iq . If f ∈ Hp×q

∞ , then clearly D(f) = Hq
2 .

(=⇒) Next, to deal with the opposite implications, suppose first that
D(f) = bfHq

2 and bf ∈ Sq×q
in . Then for any fixed point ω ∈ C+ there exists a

sequence of mvf’s hn(λ), n = 1, 2, . . ., in Hq×q
2 such that their columns belong

to D(f) and tend to the corresponding columns of the mvf ρω(λ)−1bf (λ)
in Hq

2 . Thus, the Cauchy formula for vvf’s in Hq
2 guarantees that hn(λ)

tends to ρω(λ)−1bf (λ) at every point λ ∈ C+ when n ↑ ∞. Therefore, since
det bf (λ) �≡ 0 in C+, we may conclude that det hn(λ) �≡ 0 in C+ for large
enough n and hence that for such n, f1(λ) = f(λ)hn(λ) belongs to Hp×q

2
and

f = f1h
−1
n

belongs to N p×q . This completes the proof of (3.81).
Suppose next that D(f) = Hq

2 . Then, (3.81) guarantees that f ∈ N p×q ,
i.e., f = f1/bϕ, where f1 ∈ Sp×p, b ∈ Sin and ϕ ∈ Sout. Let

f2 = f1/b = ϕf.

Then,

f2D(f) = ϕfD(f) = ϕ∆(f) ⊆ Hp
2

and, since f2 ∈ Lp×q
∞ and ‖f2‖∞ ≤ 1, we also have

f2H
q
2 = f2D(f) ⊆ f2D(f) ⊆ Hp

2 .

Therefore, by Lemma 3.47, f2 ∈ Hp×q
∞ and so f ∈ N p×q

+ . This com-
pletes the proof of (3.82). It remains to verify (3.83) and formula (3.84).
The implication ⇐= in (3.83) is self-evident. Conversely, if D(f) = Hq

2 ,
then f ∈ N p×q

+ by (3.82), and, as M̃f is a closed operator on the
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full Hilbert space Hq
2 , it must be bounded. Let ξ ∈ Cp, η ∈ Cq and ω ∈ C+.

Then,
η

ρw
∈ Hq

2 , f
η

ρw
∈ Hp

2 and
ξ

ρw
∈ Hp

2 ,

and it follows that∣∣∣∣〈M̃f
η

ρw
,

ξ

ρw

〉
st

∣∣∣∣ ≤ ‖M̃f‖
∥∥∥∥ η

ρw

∥∥∥∥
st

∥∥∥∥ ξ

ρw

∥∥∥∥
st

=
‖M̃f‖‖η‖st‖ξ‖st

ρω(ω)
.

At the same time, by the Cauchy formula for functions in H2,〈
M̃f

η

ρw
,

ξ

ρw

〉
=

ξ∗f(ω)η
ρω(ω)

.

Thus,

|ξ∗f(ω)η| ≤ ‖M̃f‖‖η‖st‖ξ‖st

and hence

‖f(ω)‖ ≤ ‖M̃f‖

for every point ω ∈ C+. Consequently, f ∈ Hp×q
∞ and

‖f‖∞ ≤ ‖M̃f‖.

On the other hand, the bound

‖M̃f h‖2 = ‖fh‖2 ≤ ‖f‖∞‖h‖2

implies that ‖M̃f‖ ≤ ‖f‖∞ and hence that formula (3.84) holds. �

Theorem 3.63 Let T be a bounded linear operator acting from Hq
2 into Hp

2
such that

et(λ)(Th)(λ) = (T (eth))(λ) for h ∈ Hq
2 and every t ≥ 0. (3.85)

Then there exists a unique mvf f ∈ Hp×q
∞ such that T = M̃f is the operator

of multiplication by the mvf f(λ), i.e.,

(Th)(λ) = f(λ)h(λ) for h ∈ Hq
2 . (3.86)

Moreover,

‖T‖ = ‖f‖∞. (3.87)
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Proof Let ξj , j = 1, . . . , q, denote the jth column of the identity matrix Iq .
Then the vvf hj = ρ−1

i ξj belongs to Hq
2 and, consequently, gj = Thj belongs

to Hp
2 for j = 1, . . . , q and the p × q mvf

f(λ) = ρi

[
g1(λ) · · · gq(λ)

]
belongs to N p×q

+ . In view of Lemma 3.61 and the equivalence (3.82), the
operator M̃f of multiplication by the p × q mvf f with domain D(f) ⊆ Hq

2
and range ∆(f) ⊆ Hp

2 is a closed linear operator with D(f) = Hq
2 . Moreover,

since (3.86) holds for the vvf’s h = ξ/ρi for every ξ ∈ C
q and∨

t≥0

etρ
−1
i C

q = Hq
2 ,

the relation Th = M̃fh holds for every h ∈ Hq
2 , i.e., D(f) = Hq

2 and T = M̃f .
The equivalence (3.83) guarantees that f ∈ Hp×q

∞ . This completes the proof
of existence. suppose next that f1 and f2 are two mvf’s in Hp×q

∞ such that

Th = f1h = f2h for every h ∈ Hq
2 .

Then, the particular identities

(f1 − f2)
ξ

ρi
= 0 for every ξ ∈ C

q

clearly imply that f1 = f2.
This completes the proof, since (3.87)was established inTheorem 3.62. �

Theorem 3.64 Let f ∈ N p×q
+ . Then

f ∈ N p×q
out ⇐⇒ ∆(f) = Hp

2 . (3.88)

Moreover, if q = p, then

f−1 ∈ Hp×p
∞ ⇐⇒ ∆(f) = Hp

2 (3.89)

Proof Suppose first that f ∈ N p×q
out . Then

f = f1/ϕ,

where f1 ∈ Sp×q
out and ϕ ∈ Sout. Thus, ϕHq

2 ⊆ D(f),

fϕHq
2 = f1H

q
2 ⊆ ∆(f)



126 The Nevanlinna class of meromorphic mvf’s

and

fϕHq
2 = f1H

q
2 ⊆ ∆(f) ⊆ Hp

2 .

But

f1H
q
2 = Hp

2 , since f1 ∈ Sp×q
out .

Thus, ∆(f) = Hp
2 .

To obtain the converse, let

f ∈ N p×q
+ and ∆(f) = Hp

2 .

Then

f = f1/ϕ,

where f1 ∈ Sp×q and ϕ ∈ Sout and, by Theorem 3.62, D(f) = Hq
2 . The next

step is to show that f1 ∈ Sp×q
out or, equivalently, that

f1H
q
2 = Hp

2 .

We know that

f1D(f) = ϕfD(f) = ϕ∆(f),

and hence that

f1D(f) = ϕ∆(f) = ϕ∆(f) = ϕHp
2 = Hp

2 .

Therefore, since

f1D(f) ⊆ f1H
q
2 ⊆ Hp

2 ,

we must also have

f1H
q
2 = Hp

2 ,

as needed. Finally, if q = p, then (3.89) follows from the equivalence in (3.83)
applied to f−1 in place of f . �

3.13 Factorization in N p×q and denominators

A pair of mvf’s f1, f2 ∈ N p×q
+ is said to be right coprime if

b ∈ Sq×q
in and fjb

−1 ∈ N p×q
+ for j = 1, 2

=⇒ b(λ) is a constant unitary matrix. (3.90)
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Similarly, a pair of mvf’s f1, f2 ∈ N p×q
+ is said to be left coprime if

b ∈ Sp×p
in and b−1fj ∈ N p×q

+ for j = 1, 2

=⇒ b(λ) is a constant unitary matrix. (3.91)

The notation

(f1, f2)R = Iq and (f1, f2)L = Ip

is used to designate right and left coprime pairs, respectively.

Remark 3.65 If, for example, b1, b2 ∈ Sp×p
in , then, in view of Theorem

Theorem 3.44,

(b1, b2)L = Ip ⇐⇒ b1H
p
2

∨
b2H

p
2 = Hp

2 ⇐⇒ H(b1) ∩H(b2) = {0}.

There is a more restrictive definition of left (right) coprime H∞-mvf’s that
for b1, b2 ∈ Sp×p

in reduces to

[b1, b2]L = Ip ⇐⇒ ‖PH(b1 )PH(b2 )‖ < 1;

see pp. 268–289 in Fuhrmann [Fu81]. If b1, b2 ∈ Sp×p
in are rational, then the

two definitions coincide.

Theorem 3.66 If f ∈ N p×q and f �≡ 0, then f admits two representations:

f = fRd−1
R , where fR ∈ N p×q

+ , dR ∈ Sq×q
in , (dR, fR)R = Iq (3.92)

and

f = d−1
L fL, where fL ∈ N p×q

+ , dL ∈ Sp×p
in and (dL, fL)L = Ip. (3.93)

The factors fR and dR are uniquely defined by f up to a constant unitary
multiplier on the right, whereas the factors fL and dL are uniquely defined
by f up to a constant unitary multiplier on the left.

Proof Let f ∈ N p×q . Then, by Theorem 3.62, D(f) = bfHq
2 where bf ∈

Sq×q
in . Let f1(λ) = f(λ)bf (λ). Then,

bfD(f1) = D(f)

and hence

bf D(f1) = bfD(f1) = D(f) = bf Hq
2 .

But this implies that D(f1) = Hq
2 . Therefore, by Theorem 3.62, f1 ∈ N p×q

+ .



128 The Nevanlinna class of meromorphic mvf’s

The next step is to show that (f1, bf )R = Iq . If b ∈ Sq×q
in is a common

right divisor of f1 and bf , then D(fbf b−1) = Hq
2 by Theorem 3.62, since

fbf b−1 ∈ N p×q
+ . Moreover, the inclusion

(fbf b−1)D(fbf b−1) ⊆ Hp
2

implies that

(bf b−1)D(fbf b−1) ⊆ D(f)

and hence that

bf b−1Hq
2 = (bf b−1)D(fbf b−1) ⊆ D(f) = bf Hq

2 ,

and, consequently, that

b−1Hq
2 ⊆ Hq

2 .

Therefore, since

b−1 ∈ Sq×q
in by Lemma 3.47 and b ∈ Sq×q

in ,

b(λ) is a constant unitary matrix. Thus, the the first representation formula
(3.92) with fR(λ) = f1(λ) and dR(λ) = bf (λ) is justified. Moreover, since

dRHq
2 = dRD(fR) = dRD(fR) = D(f) = bf Hq

2 ,

it follows that dR = bfu for some q × q unitary marix u and hence that the
mvf’s dR and fR in (3.92) are essentially unique.

Finally, since

f ∈ N p×q
+ ⇐⇒ fτ ∈ N q×p

+ and b ∈ Sq×q
in ⇐⇒ bτ ∈ Sq×q

in ,

the assertions related to (3.93) follow from the results proved above by
passing to transposes. �

Theorem 3.67 Let f ∈ N p×q. Then the factors fR and dR in the repre-
sentation formula (3.92) and the factors fL and dL in the representation
formula (3.93) are minimal in the sense that:

(1) If f = f̃R d̃−1
R with d̃R ∈ Sq×q

in and f̃R ∈ N p×q
+ , then d̃R = dRb and

f̃R = fRb for some mvf b ∈ Sq×q
in .

(2) If f = d−1
L f̃L with d̃L ∈ S p×p

in and f̃L ∈ N p×q
+ , then d̃L = bdL and

f̃L = bfL for some mvf b ∈ Sp×p
in .
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Proof In setting (1), Theorem 3.62 implies that D(f̃R) = Hq
2 and

d̃R D(f̃R) ⊆ D(f). Therefore, since D(f) = bf Hq
2 = dRHq

2 ,

d̃R Hq
2 ⊆ dR Hq

2

and, consequently, the mvf b = d−1
R d̃R belongs to Sq×q

in and

f̃R = fd̃R = fR d−1
R d̃R = fRb,

as claimed. The proof of (2) is similar. �
If f ∈ N p×q and f �≡ 0, then d̃R ∈ Sq×q

in is called a right denominator
of f if fd̃R ∈ N p×q

+ ; and d̃L ∈ Sp×p
in is called a left denominator of f if

d̃Lf ∈ N p×q
+ . The mvf’s dR and dL that intervene in (3.92) and (3.93) are

called minimal right and left denominators of f , respectively, since dR

is a common left divisor of every right denominator d̃R of f and dL is a
common right divisor of every left denominator d̃L of f , thanks to Theorem
3.67.

Lemma 3.68 Let f be a rational p× q mvf. Then its minimal left and right
denominators dL and dR are rational.

Proof Let f(λ) be a rational p × q mvf. Then there exists a finite scalar
Blaschke product β(λ) such that β(λ)f(λ) is analytic in C+ and hence βf ∈
N p×q

+ , i.e., d̃L = βIp is a left denominator of f . Consequently, by Theorem
3.67, βd−1

L ∈ Sp×p
in and thus, as

βd#
L

ξ

ρi
∈ Hp

2 and d#
L

ξ

ρ−i
∈ Kp

2 for every ξ ∈ C
p,

it follows that

d#
L

ξ

ρ−i
∈ Kp

2 �
(

ρi

ρ−i

)
β#Kp

2 .

Therefore, since the space on the right is a finite dimensional Hilbert space
with basis of rational vvf’s, the mvf d#

L is also rational.
The proof that dR is a rational mvf is similar. �
An ordered pair {d1, d2} of inner mvf’s d1 ∈ Sp×p

in and d2 ∈ Sq×q
in is called

a denominator of the mvf f ∈ N p×q if

d1fd2 ∈ N p×q
+ .
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Thus d̃L is a left denominator of f if and only if {d̃L, Iq} is a denominator of
f , and d̃R is a right denominator of f if and only if {Ip, d̃R} is a denominator
of f .

A denominator {d1, d2} of f is called a divisor of another denominator
{d̃1, d̃2} of f if

d̃1d
−1
1 ∈ Sp×p

in and d−1
2 d̃2 ∈ Sq×q

in .

It is called a trivial divisor if d̃1d
−1
1 and d−1

2 d̃2 are constant unitary ma-
trices. A denominator {d1, d2} of f is called a minimal denominator of f

if every denominator of f that is a divisor of {d1, d2} is a trivial divisor.

Lemma 3.69 Let f ∈ N p×q and let {d̃1, d̃2} be a denominator of f . Then
there exists a minimal denominator {d1, d2} of f that is a divisor of {d̃1, d̃2}.

Proof Let {d̃1, d̃2} be a denominator of mvf f . Let f1 = d̃1f . Then d̃2 is
a right denominator of f1. By Theorem 3.67, there exists a minimal right
denominator d2 of f1. Thus, d̃1fd2 ∈ N p×q

+ , d2 ∈ Sq×q
in and d2 is a common

left divisor of all right denominators of f1. Therefore, d−1
2 d̃2 ∈ Sq×q

in . Let
f2 = fd2. Then d̃1 is a left denominator of f2. By Theorem 3.67, there exists
a minimal left denominator d1 of f2, i.e.,

d1fd2 ∈ N p×q
+ (3.94)

and d1 is a common right divisor of all left denominators of fd2. Therefore,
d̃1d

−1
1 ∈ Sp×p

in . Thus, {d1, d2} is a divisor of {d̃1, d̃2}. In view of (3.94),
{d1, d2} is a denominator of f . It is a minimal denominator of f . Indeed, let
{b1, b2} be a denominator of f that is a divisor of {d1, d2} i.e.,

u = d1b
−1
1 ∈ Sp×p

in and v = b−1
2 d2 ∈ Sq×q

in .

Then

b1fb2 ∈ N p×q
+ , d1 = ub1 and d2 = b2v. (3.95)

Consequently, b1 is a left denominator of f2 and b1d
−1
1 ∈ Sp×p

in , since d1 is
a minimal left denominator of f2. Therefore, u ∈ Sp×p

in and u−1 ∈ Sp×p
in and

hence, u is a constant unitary p×p matrix. Furthermore, since d̃1d
−1
1 ∈ Sp×p

in

and (3.95) holds,

f1b2 = d̃1fb2 = d̃1d
−1
1 ub1fb2 ∈ N p×q

+ .
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Consequently, b2 is a right denominator of f1. From this it follows that
d−1

2 b2 ∈ Sq×q
in . Thus, as v = (d−1

2 b2)−1 also belongs to Sq×q
in , the mvf v is a

constant unitary q × q matrix. �
A denominator {d1, Iq} of f is minimal if and only if d1 is a minimal left

denominator of f . Similarly, a denominator {Ip, d2} of f is minimal if and
only if d2 is a minimal right denominator of f .

Theorem 3.70 Let f ∈ N p×q and let {d1, d2} be a minimal denominator
of f . Then:

(1) If f is a rational mvf, then d1 and d2 are also rational mvf’s.

(2) If f is an entire mvf, then d1 and d2 are also entire mvf’s.

Proof Let f be a rational p × q mvf. Then clearly f ∈ N p×q . Let dL and
dR be minimal left and right denominators of f , respectively. Then, in view
of Lemma 3.68, dL and dR are also rational. Let {d1, d2} be a minimal
denominator of f . Then the mvf b = dLd−1

1 belongs to Sp×p
in , since dL is a

left denominator of fd2 and d1 is a minimal left denominator of fd2. Thus,

H(b) ⊆ H(dL)

and, as H(dL) is finite dimensional with a basis of rational vvf’s, thanks to
Lemma 3.46, the vvf

b(λ) − b(α)
λ − α

ξ is rational for every ξ ∈ C
p.

Therefore, b is rational, as is d1 = b−1dL. The proof that d2 is rational is
based on similar considerations using dR.

The proof of (2) will be given in Theorem 3.105. �

Theorem 3.71 Every mvf f ∈ N p×q
+ that is not identically equal to zero

admits an inner-outer factorization of the form

f(λ) = bL(λ)ϕL(λ), where bL ∈ Sp×r
in and ϕL ∈ N r×q

out (3.96)

and a ∗-outer-∗-inner factorization of the form

f(λ) = ϕR(λ)bR(λ), where ϕR ∈ N p×r
∗out and bR ∈ Sr×q

∗out. (3.97)

In both of these factorizations,

r = rank f. (3.98)
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The factors in each of these factorizations are defined uniquely up to re-
placement of

bL and ϕL by bLu and u∗ϕL

and

ϕR and bR by ϕRv and v∗bR,

where u and v are constant unitary r × r matrices. Moreover, there exists a
q × q permutation matrix K such that

[
Ir 0

]
Kτ ϕL(λ)∗ϕL(λ)K

[
Ir

0

]
> 0 for every point λ ∈ C+,

and, for each such permutation matrix K and each fixed point ω ∈ C+, there
exists exactly one factor ϕL in (3.96) and exactly one factor ϕR in (3.97)
such that

ϕL(ω) K

[
Ir

0

]
> 0 and [Ir 0]Kτ ϕR(ω) > 0. (3.99)

Proof Let f ∈ N p×q
+ . Then f = ϕ−1f1, where ϕ ∈ Sout and f1 ∈ Sp×q . Thus,

by Theorem 3.48, f1 admits an essentially unique inner-outer factorization
of the form f1 = b1ϕ1, where b1 ∈ Sp×r

in , ϕ1 ∈ Sr×q
out and

r = rank ϕ1(λ) for λ ∈ C+.

Therefore, f = b1ϕ1/ϕ, i.e., (3.96) holds with bL = b1, ϕL = ϕ1/ϕ and
r = rank f . Moreover, {ϕ(λ)η : η ∈ Cq} is independent of λ ∈ C+, since
ϕ ∈ Sp×q

out , and hence there exists a q×q permutation matrix K such that the
first r columns of the r× q matrix ϕ1(λ)K are linearly independent at every
point λ ∈ C+. This matrix K meets the first condition in the theorem, and
for each choice of ω ∈ C+, there exists a unique unitary matrix x ∈ C

r×r

such that

xϕ1(ω)K
[
Ir

0

]
> 0.

Thus, fixing ω and x, the matrix ϕL(λ) = uϕ1(λ) is outer and satisfies the
first condition in (3.99). Moreover, if ϕ̃L is a second r × q outer factor of f

that meets the same normalization condition as ϕL, then ϕ̃L(λ) = yϕL(λ)
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for some unitary r × r constant matrix y,

yϕL(ω)K
[
Ir

0

]
= ϕ̃L(ω)K

[
Ir

0

]
> 0 and ϕL(ω)K

[
Ir

0

]
> 0.

Therefore, y = Ir , i.e., there is only one outer factor of f that meets the
normalization condition at ω.

Similar arguments serve to verify the assertions for ϕR, with the same
matrix K, since ϕL(µ)∗ϕL(µ) = ϕR(µ)ϕR(µ)∗ a.e. on R. �

Theorem 3.72 Every mvf f ∈ N p×q that is not identically equal to zero
admits a representation of the form

f = d−1
L bLϕL, where dL ∈ Sp×p

in , bL ∈ Sp×r
in ,

ϕL ∈ N r×q
out and (dL, bLϕL)L = Ip,

(3.100)

and a representation of the form

f = ϕRbRd−1
R , where ϕR ∈ N p×r

∗out, bR ∈ Sq×r
∗in ,

dR ∈ Sq×q
in and (ϕRbR, dR)R = Iq.

(3.101)

In these two representations of f(λ), r = rank f and the factors are es-
sentially unique, i.e., up to the replacement of dL by udL, ϕL by vϕL and
bL by ubLv∗ in (3.100), where u and v are constant unitary matrices, with
analogous replacements for the factors in (3.101).

Proof This is an immediate consequence of Theorems 3.66 and 3.71. �

3.14 Some properties of outer mvf’s

This section is devoted to a number of characteristic properties of outer
mvf’s. The first of these is an extremal characterization.

Theorem 3.73 Let ψ ∈ N p×q
+ and ϕ ∈ N r×q

out be such that

ψ(µ)∗ψ(µ) ≤ ϕ(µ)∗ϕ(µ) a.e. on R. (3.102)

Then:

(1) ψ(λ)∗ψ(λ) ≤ ϕ(λ)∗ϕ(λ) for every λ ∈ C+.

(2) ψ(λ) = s(λ)ϕ(λ) for exactly one mvf s ∈ Sp×r.
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(3) If equality holds in formula (3.102), i.e., if

ψ(µ)∗ψ(µ) = ϕ(µ)∗ϕ(µ) a.e. on R,

then s ∈ Sp×r
in in (2), i.e., (2) is an inner-outer factorization of ψ.

(4) If equality holds in formula (3.102) and ψ ∈ N p×q
out , then p = r and

ψ = uϕ for some constant p × p unitary matrix u.

Proof If ϕ ∈ N r×q
out , then ϕ = h/g for some choice of h ∈ Sr×q

out and g ∈ Sout.
Thus, as ψ1 = gψ belongs to N p×q

+ and

ψ1(µ)∗ψ1(µ) ≤ h(µ)∗h(µ) ≤ Iq a.e. on R,

the Smirnov maximum principle implies that ψ1 ∈ Sp×q . Let

Tf = ψ1f1 for f = hf1, f1 ∈ Hq
2 .

Then, in view of the last inequalities, Tf is well defined by f , Tf ∈ Hp
2 and

‖Tf‖ ≤ ‖f‖ for every f ∈ ∆(h). Thus, Tf is a contractive linear operator
from ∆(h) into Hq

2 . Therefore, since h ∈ Sr×q
out , T can be extended to a

contractive linear operator acting from Hr
2 into Hp

2 . Moreover, since

eτ Tf = Teτ f, for every f ∈ Hr
2 and τ ≥ 0,

Theorem 3.63 guarantees the existence of a mvf s ∈ Sp×r such that

(Tf)(λ) = s(λ)f(λ) for every f ∈ Hr
2 .

Thus, if f = h
ξ
ρi

, then

Tf = ψ1
ξ

ρi
= sh

ξ

ρi
for every ξ ∈ C

q

and hence ψ1 = sh, which verifies (1) and proves the existence of at least
one s ∈ Sp×q such that (2) holds. To check uniqueness, assume that ψ =
s1ϕ = s2ϕ for a pair of mvf’s s1, s2 in Sp×q . Then the equality

(s1(µ) − s2(µ))ϕ(µ) = 0 a.e. on R

implies that

s1(µ) = s2(µ) a.e. on R,

since rank ϕ(µ) = r a.e. on R, as ϕ ∈ N r×q
out . Thus, s1 = s2.

Suppose next that equality holds a.e. on R in (3.102), then

ϕ(µ)∗{Ir − s(µ)∗s(µ)}ϕ(µ) = 0 a.e. on R.
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Thus,

{Ir − s(µ)∗s(µ)}ϕ(µ) = 0 a.e. on R

and hence, as rankϕ(µ) = r a.e. on R, it follows that s ∈ Sp×r
in .

Finally, (4) follows from (3) and the uniqueness of the inner-outer factor-
ization of the mvf ψ ∈ N p×q

+ that was established in Theorem 3.71. �

Theorem 3.74 Let ϕ ∈ N p×q
+ . Then:

(1) ρ−1
ω ϕ ∈ Hp×q

2 for some (and hence for every) ω ∈ C+ if and only if
ρ−1

i ϕ ∈ Lp×q
2 .

(2) If ρ−1
i ϕ ∈ Hp×q

2 , then ϕ ∈ N p×q
out if and only if∨

t≥0

R0etϕC
q = Hp

2 . (3.103)

Proof The implication ρ−1
ω ϕ ∈ Hp×q

2 =⇒ ρ−1
i (µ)ϕ(µ) ∈ Lp×q

2 if ω ∈ C+

is obvious. The converse implication follows from the Smirnov maximum
principle.

Now let ρ−1
ω ϕ ∈ Hp×q

2 for some ω ∈ C+. Then ρ−1
ω ϕξ ∈ Hp

2 for every
ξ ∈ C

q and ω ∈ C+. Consequently

Lt = {(R0et)ϕξ : ξ ∈ C
q}

is a subspace of Hp
2 for every t ≥ 0 and

D+ =
∨
t≥0

Lt

is a closed subspace of Hp
2 . Moreover, the formulas

eτ (λ)
et(λ) − 1

λ
=

et+τ (λ) − 1
λ

− eτ (λ) − 1
λ

imply that

eτ Lt ⊆ Lt+τ + Lτ if t ≥ 0 and τ ≥ 0

and, consequently, that etD+ ⊆ D+ for every t ≥ 0. Therefore, by the
Beurling-Lax theorem, there exists an essentially unique mvf b ∈ Sp×r

in such
that

D+ = bHr
2 for some r ≤ p.



136 The Nevanlinna class of meromorphic mvf’s

Consider fixed α > 0. Then

eα(λ) − 1
λ

ϕ(λ)ξ ∈ Lα for every ξ ∈ C
q .

But, Lα ⊂ D+. Consequently,

eα(λ) − 1
λ

ϕ(λ) = b(λ)h(λ), where b ∈ Sp×r
in and h ∈ Hr×q

2 .

Therefore, since λ/(eα(λ) − 1) ∈ Nout, it follows that

ϕ(λ) = b(λ)h1(λ), where h1 ∈ N r×q
+ .

By Theorem 3.71, there exists an essentially unique inner-outer factorization
of the mvf h1, i.e., h1 = bLϕL, where bL ∈ Sr×r1

in , ϕL ∈ N r1×q
out and r1 =

rank h1. But ϕ(µ)∗ϕ(µ) = h1(µ)∗h1(µ) a.e. on R. Consequently, rank h1

= rank ϕ. Now let ϕ ∈ N p×q
out . Then rank ϕ = p. Consequently, r1 = p.

Thus, ϕ = bbLϕL, where bbL ∈ Sp×p
in , ϕL ∈ N p×q

out , which implies that bbL

and so too b are constant unitary p × p matrices. Consequently r = p and
D+ = bHp

2 = Hp
2 , i.e., (3.103) holds.

Conversely, if the relation (3.103) is in force, then D(ϕ) = Hq
2 and ∆(ϕ) =

Hp
2 and hence, in view of Theorem 3.64, ϕ ∈ N p×q

out . �

Theorem 3.75 Let ϕ ∈ Hp×q
2 . Then ϕ ∈ N p×q

out if and only if∨
etϕC

q = Hp
2

t ≥ 0

Proof The proof is much the same as the proof of (2) in Theorem 3.74. �

3.15 Scalar denominators

A function β is called a scalar denominator of the mvf f ∈ N p×q , if

βf ∈ N p×q
+ and β ∈ Sin. (3.104)

The set of all scalar denominators of f will be denoted D(f).

Lemma 3.76 Let f ∈ N p×q and let dL and dR be minimal left and right
denominators of f . Then D(f) �= ∅ and

D(f) = D(d−1
L ) = D(d−1

R ). (3.105)
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Proof Let β = det dL, where dL is a minimal left denominator of a mvf
f ∈ N p×q . Then

βf = (βd−1
L )fL ∈ N p×q

+ , (3.106)

since fL ∈ N p×q
+ and βd−1

L ∈ S p×p
in . Consequently, β ∈ D(f), i.e., D(f) �= ∅.

Next, since (3.106) holds for every β ∈ D(d−1
L ), the inclusion D(d−1

L ) ⊆
D(f) is in force. Conversely, if β ∈ D(f), then d̃L = βIp is a left denominator
of f . Therefore, since dL is a minimal left denominator of f , d̃L d−1

L ∈ Sp×p
in ,

i.e., βd−1
L ∈ Sp×p

in and hence β ∈ D(d−1
L ). Thus D(f) ⊆ D(d−1

L ). This proves
the first equality in (3.105); the second may be verified in just the same
way. �

A scalar denominator β0 of a mvf f ∈ N p×q is called a minimal scalar
denominator of f , if it is a common divisor of all scalar denominators of
f , i.e., if

β0 ∈ D(f) and β/β0 ∈ Sin for every β ∈ D(f). (3.107)

Lemma 3.77 Let f ∈ N p×q, let dL and dR be minimal left and right de-
nominators of f . Then:

(1) f has a minimal scalar denominator.

(2) A minimal scalar denominator of f is a minimal common multiple
of all the entries fij of f .

(3) The sets of minimal scalar denominators of the three mvf’s f , d−1
L ,

and d−1
R coincide.

Proof Let uij be a minimal denominator for the entry fij of f , if fij �≡ 0. In
view of Theorem 3.43, there exists an essentially unique minimal common
multiple u of all the uij . Since ufij ∈ N+, uf ∈ N p×q

+ . Thus u is a scalar
denominator of f , i.e., u ∈ D(f). Moreover, if v ∈ D(f), then vf ∈ N p×q

+ and
hence vfij ∈ N+, i.e., v is a common multiple of the {uij}, i.e., vu−1

ij ∈ Sin.
However, since u is a minimal common multiple of {uij}, u−1v ∈ Sin . Thus,
u is a minimal scalar denominator of f . This completes the proof of (2); (1)
follows from (2); and (3) follows from Lemma 3.76. �

Let u ∈ Sin and let

N p×q(u) = {f ∈ N p×q : u ∈ D(f)} = {f ∈ N p×q : uf ∈ N p×q
+ }.

Then it is clear that N p×q(1) = N p×q
+ .
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A rational p × q mvf f belongs to N p×q ; it belongs to N p×q
+ if and only

if f has no poles in C+. If f has poles ω1, . . . , ωn in C+, repeated according
to their order, then

f ∈ N p×q(u), where u(λ) =
n∏

j=1

λ − ωj

λ − ωj
,

and u(λ) is a minimal scalar denominator of f(λ).

3.16 Factorization of positive semidefinite mvf’s

This section focuses on the following factorization problem: given a measur-
able p × p mvf g(µ) on R, find f ∈ N q×p such that

f(µ)∗f(µ) = g(µ) a.e. on R. (3.108)

In view of Lemma 3.31,

rank f(µ) = r = rank f a.e. on R.

Thus, this problem admits a solution only if the given mvf g(µ) satisfies the
conditions

g(µ) ≥ 0 and rank g(µ) = r a.e. on R, (3.109)

where r ≤ p.
The solutions f = ϕL of the factorization problem (3.108) such that ϕL ∈

N r×p
out are of special interest.
The nondegenerate case r = p, i.e., the case g(µ) > 0 a.e. on R will

be considered in this section. A criterion for the existence of at least one
solution f ∈ N q×p of the problem (3.108) will be formulated and the set
of all solutions to this problem will be described when r = p. In Theorem
3.110 the factorization problem (3.108) will be considered under the extra
assumption that the mvf g(µ) is the nontangential limit of a mvf g ∈ N p×p

and then the case r < p will not be excluded.

Theorem 3.78 Let g ∈ Lp×p
1 be such that g(µ) > 0 a.e. on R. Then there

exists an outer mvf ϕL ∈ Hp×p
2 such that f = ϕL is a solution of the

factorization problem (3.108) if and only if

ln det g ∈ L̃1.
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This function f is defined by g up to a constant unitary left factor and it
may be normalized by the condition f(ω) > 0 at some fixed point ω ∈ C+.

Proof A complete proof may be found in [Roz67]. The uniqueness also
follows from assertion (4) in Theorem 3.73. �

We turn next to a more general theorem on the solution of factorization
problem (3.108) in the class N q×p with q ≥ p.

Theorem 3.79 Let g(µ) be a measurable p×p mvf on R such that g(µ) > 0
a.e. on R. Then:

(1) There exists at least one f ∈ N p×p such that (3.108) holds if and
only if

ln ‖g±1‖ ∈ L̃1. (3.110)

(2) If condition (3.110) is satisfied, then there exists a mvf ϕL ∈ N p×p
out

such that f = ϕL is a solution of problem (3.108). This solution is
unique, up to a constant unitary left multiplier and it may be uniquely
specified by imposing the normalization condition ϕL(ω) > 0 at some
fixed point ω ∈ C+.

(3) The set of all solutions f ∈ N q×p with q ≥ p of the factorization
problem (3.108) is described by the formula (3.100) with ϕL ∈ N p×p

out ,
considered in assertion (2) and arbitrary inner mvf’s dL ∈ Sq×q

in and
bL ∈ Sq×p

in .

Proof Let f ∈ N q×p be a solution of the factorization problem (3.108) for
a measurable p × p mvf g(µ) with g(µ) > 0 on R. Then, by Theorem 3.72,

f = d−1
L bLϕL,

where dL ∈ Sq×q
in , bL ∈ Sq×r

in , ϕL ∈ N r×p
out and consequently

ϕL(µ)∗ϕL(µ) = g(µ) a.e. on R.

Therefore, since r ≤ p and rank g(µ) = p a.e., we must have r = p, i.e.,
ϕL ∈ N p×p

out . This completes the proof of assertion (3). Moreover, ϕL =
ϕ1/ϕ2, where ϕ1 ∈ Sp×p

out and ϕ2 ∈ Sout.
Next, since det ϕ1 ∈ S and detϕ1 �≡ 0, it follows that

0 ≥
∫ ∞

−∞

ln |detϕ1(µ)|
1 + µ2 dµ > −∞
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and

|detϕ1(µ)| ≤ ‖ϕ1(µ)‖ ≤ 1.

Consequently,

0 ≥
∫ ∞

−∞

ln ‖ϕ1(µ)‖
1 + µ2 dµ > −∞.

Thus, as

‖g(µ)‖ =
‖ϕ1(µ)‖2

|ϕ2(µ)|2 ,

it follows that

0 ≥
∫ ∞

−∞

ln ‖g(µ)‖
1 + µ2 dµ +

∫ ∞

−∞

ln |ϕ2(µ)|2
1 + µ2 dµ > −∞.

Therefore, ln ‖g‖ ∈ L̃1, since the second integral is finite. Similar arguments
imply that ln ‖g−1‖ ∈ L̃1.

Conversely, let g(µ) be a measurable p × p mvf on R such that g(µ) > 0
a.e. on R and condition (3.110) is in force. Then the function

ϕ2(λ) = exp
{

1
2πi

∫ ∞

−∞

(
1

µ − λ
− 1

1 + µ2

)
ln ‖g‖dµ

}
belongs to the class Nout and

|ϕ2(µ)|2 = ‖g(µ)‖ a.e. on R.

Let

g1(µ) = (1 + µ2)−1g(µ)/|ϕ2(µ)|2.

Then, clearly g1(µ) > 0 a.e. on R and g1 ∈ Lp×p
1 . Moreover, as

det g1(µ) =
det(g(µ)/|ϕ2(µ)|2)

(1 + µ2)p
≤ ‖g(µ)‖p

(1 + µ2)p|ϕ2(µ)|2p
=

1
(1 + µ2)p

,

it is readily seen that ∫ ∞

−∞

ln det g1(µ)
1 + µ2 ≤ 0.

Furthermore,

g1(µ)−1 = (1 + µ2)|ϕ2(µ)|2g(µ)−1
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and

det g1(µ)−1 = (1 + µ2)p|ϕ2(µ)|2p det g(µ)−1

≤ (1 + µ2)p|ϕ2(µ)|2p‖g(µ)−1‖p.

Consequently, ∫ ∞

−∞

ln det g1(µ)
1 + µ2 dµ > −∞,

since condition (3.110) holds for ‖g(µ)−1‖. Thus,

g1 ∈ Lp×p
1 , g1(µ) > 0 a.e. on R and ln det g1 ∈ L̃1.

By Theorem 3.78 there exists a mvf f1 ∈ Hp×p
2 ∩ Np×p

out such that

f1(µ)∗f1(µ) = g1(µ) a.e. on R.

Let

ϕL(λ) = (λ + i)ϕ2(λ)f1(λ).

Then ϕL ∈ Np×p
out and f = ϕL is a solution of the factorization problem

(3.108). The essential uniqueness of a solution f = ϕL with ϕL ∈ N p×p
out

follows from assertion (4) of Theorem 3.73. This completes the proof of
assertions (1) and (2). �

Remark 3.80 The dual factorization problem to (3.108) is to find a mvf
f ∈ N p×q such that

f(µ)f(µ)∗ = g(µ) a.e. on R. (3.111)

The equivalences

f(µ)f(µ)∗ = g(µ) ⇐⇒ f∼(µ)∗f∼(µ) = g(−µ) a.e. on R

and

f ∈ N p×q ⇐⇒ f∼ ∈ N q×p

yield dual versions of Theorems 3.78 and 3.79.
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3.17 Blaschke-Potapov products in Sp×p

Analogues of Blaschke factors for mvf’s f ∈ Sp×p with det f �≡ 0 were
systematically studied by V. P. Potapov. These analogues will be called BP
(Blaschke-Potapov) factors and their products will be called BP products.
An elementary BP factor can be expressed as

Bα(λ) = Ip − P + bα(λ)P = Ip + (bα(λ) − 1)P (3.112)

where P = P 2 = P ∗ is a p × p matrix orthoprojector and

bα(λ) = γ
λ − α

λ − α
with α ∈ C+ and |γ| = 1.

An elementary BP factor is said to be a primary BP factor if rankP = 1
in formula (3.112). If rankP = k and v1, . . . , vk is a basis for the range of P

and

V = [v1 · · · vk ]

is the p × k matrix with columns v1, . . . , vk , then

P = V (V ∗V )−1V ∗.

Thus,

Bα(λ) = Ip + (bα(λ) − 1)V (V ∗V )−1V ∗.

If the basis is chosen to be orthonormal, then V is an isometry, i.e., V ∗V =
Ik , and then P = V V ∗ and

Ip + (bα(λ) − 1)P =
k∏

j=1

{Ip + (bα(λ) − 1)Pj},

is the product of k primary factors with orthogonal projections

Pj = vjv
∗
j , j = 1, . . . , k,

of rank one such that

PiPj = PjPi = 0 for i �= j

and, as follows from the formula

[v1 · · · vk ]


v∗1
...

v∗k

 =
k∑

j=1

vjv
∗
j ,

P1 + · · · + Pk = P.



3.17 Blaschke-Potapov products in Sp×p 143

It is readily checked that

Bα(λ) = Ip + (ba(λ) − 1)P ∈ Sp×p
in

and that a finite product of such elementary BP factors is a rational mvf in
Sm×m

in . The converse is also true:

Theorem 3.81 Every rational p × p mvf that belongs to Sp×p
in can be ex-

pressed as a finite product of elementary BP factors multiplied by a constant
unitary p × p matrix.

Proof This is a special case of Theorem 4.7. �
It may also be shown that a rational mvf in Sp×p

in has McMillan degree m

if and only if it can be expressed as the product of m primary factors times
a constant unitary factor on either the left or the right. (The definition and
basic properties of McMillan degree may be found in [Kal63a].)

The infinite BP products

∞
�∏
j=1

Bj(λ) = B1(λ)B2(λ) · · ·Bn(λ) · · ·

and
∞
�∏
j=1

Bj(λ) = · · ·Bn(λ) · · ·B2(λ)B1(λ)

are said to be convergent if the sequence of corresponding finite partial
products converges to a p × p mvf B(λ) such that det B(λ) �≡ 0 in C+.

Theorem 3.82 (V. P. Potapov) Let

Bj(λ) = Ip + (bαj (λ) − 1)Pj, j = 1, 2, . . . ,

be a sequence of elementary BP factors that are normalized by the condition

bαj (ω) > 0

at some point ω ∈ C+, ω �= αj for j = 1, 2, . . .. Then the following are
equivalent for λ ∈ C+:
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(1) The infinite BP product

∞
�∏
j=1

Bj(λ) converges.

(2) The infinite BP product

∞
�∏
j=1

Bj(λ) converges.

(3)
∞∏

j=1

bαj (λ) converges.

(4)
∞∑

j=1

(1 − |bαj (λ)|) < ∞.

(5) The given sequence of points α1, α2, . . . satisfies the Blaschke condi-
tion given in (3.26).

Moreover, if (4) holds for at least one point λ ∈ C+, then it holds for every
point λ ∈ C+ and the products in (1)–(3) converge uniformly in every com-
pact subset Ω of C that does not intersect the closure of the points α1, α2, . . . .

Theorem 3.83 (V. P. Potapov) Let

B(λ) =

 n
�∏

k=1

Br
k(λ)

Ur (1 ≤ n ≤ ∞), (3.113)

where Ur is a p × p unitary matrix and

Br
k(λ) = Ip + (bωk

(λ) − 1)Pr
k , nk = rank Pr

k

is an elementary BP factor. Then

det Br
k(λ) = bωk

(λ)nk , det B(λ) = (det Ur)
n∏

k=1

bωk
(λ)nk

and B(λ) may be factored as a left BP product

B(λ) = U�

n
�∏

k=1

B�
k(λ), (3.114)

where U� is a p × p-unitary matrix and

B�
k(λ) = Ip + (bωk

(λ) − 1)P�
k , rank P�

k = nk.
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Conversely, any left BP product (3.114) may be factored as a right BP prod-
uct (3.113).

Proof See [Po60] and [Zol03]. �

Corollary 3.84 If B(λ) is a BP product, then det B(λ) is a Blaschke
product.

Theorem 3.85 Let f ∈ Sp×p and assume that det f(λ) �≡ 0 in C+ and that
the set E of the zeros of det f(λ) in C+ is nonempty. Then E = {ωj}n

j=1,
n ≤ ∞, is at most countable and is subject to the constraint (3.26), counting
multiplicities. Moreover, f(λ) has both left and right BP factorizations

f(λ) = B�(λ)g�(λ) and f(λ) = gr(λ)Br(λ),

where B� (resp., Br) is a left (resp., right) BP product of size p× p; g�, gr ∈
Sp×p and g�(λ) and gr(λ) are invertible p×p matrices for every point λ ∈ C+.

Theorem 3.86 Let f ∈ Sp×p, let g(λ) = det f(λ) and suppose that g(λ) �≡ 0
in C+. Then the following four conditions are equivalent:

(1) f(λ) is a left BP product.

(2) f(λ) is a right BP product.

(3) g(λ) is a Blaschke product.

(4) τ+
g = 0 and

lim
ν↓0

∫ ∞

−∞

ln |g(µ + iν)|
µ2 + 1

dµ = 0. (3.115)

Proof The equivalence of (1), (2) and (3) follows from Theorem 3.85
and Corollary 3.84. The equivalence of (3) and (4) follows from Lemma
3.25. �

Corollary 3.87 If f = f1f2, f1, f2 ∈ Sp×p and f is a BP product, then both
f1 and f2 are BP products.

Proof This follows from the equivalence between statements (1) and (3) in
Theorem 3.86. �

Theorem 3.88 Let B ∈ Sp×p
in and let v be a minimal scalar denominator

of B#. Then B is a BP product if and only if v is a Blaschke product.
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Proof The function v−1 det B ∈ Sin, since det B is a scalar denominator of
B# and v is a minimal scalar denominator of B#. Therefore, if B is a BP
product, then det B is a Blaschke product by Corollary 3.84 and hence, v is
a Blaschke product by Corollary 3.87. Conversely, if v is a Blaschke product,
then vIm is a BP product, and another application of the preceding corollary
to the identity

(vB#)B = vIm

guarantees that B is a BP product, since (vB#) ∈ Sp×p
in . �

Theorem 3.89 Let sj ∈ Sp×p
in , j = 1, 2, . . ., be such that either s−1

j sj+1 ∈
Sp×p

in for j = 1, 2, . . . or sj+1s
−1
j ∈ Sp×p

in for j = 1, 2, . . . and assume that
s(λ) = limj↑∞sj(λ) exists at each point λ ∈ C+ and det s(λ) �≡ 0. Then
s ∈ Sm×m

in .

Proof Suppose for the sake of definiteness that s−1
j sj+1 ∈ Sp×p

in for j =
1, 2, . . .. Then the inequalities

s(ω)s(ω)∗ ≤ sj+1(ω)sj+1(ω)∗ ≤ sj(ω)sj(ω)∗,

clearly imply that det sj(ω) �= 0 whenever ω ∈ C+ and det s(ω) �= 0. More-
over, if m > n, then the evaluations∫ ∞

−∞
(sm(µ) − sn(µ))∗(sm(µ) − sn(µ)) dµ

|ρω(µ)|2

=
∫ ∞

−∞
{2Ip − sn(µ)∗sm(µ) − sm(µ)∗sn(µ)} dµ

|ρω(µ)|2

= 2R

∫ ∞

−∞
{Ip − sn(µ)−1sm(µ)} dµ

|ρω(µ)|2

= R

{
Ip − sn(ω)−1sm(ω)

2πIω

}
imply that ρ−1

ω sn tends to a limit f ∈ Hp×p
2 and ρω(λ)−1sn(λ) → f(λ)

at every point λ ∈ C+ as n ↑ ∞. But this in turn implies that f(λ) =
ρω(λ)−1s(λ) and hence that∫ ∞

−∞

(Ip − s(µ)∗s(µ)
|ρω(µ)|2

dµ = lim
n↑∞

∫ ∞

−∞

Ip − sn(µ)∗sn(µ)
|ρω(µ)|2

dµ = 0.



3.18 Entire matrix functions of class N p×q 147

Therefore, since

Ip − s(µ)∗s(µ) ≥ 0 for almost all points µ ∈ R,

it follows that s(µ)∗s(µ) = Ip for almost all µ ∈ R, i.e., s ∈ Sp×p
in . �

Corollary 3.90 If B ∈ Sp×p is a BP product, then B ∈ Sp×p
in .

Proof This is immediate from Theorem 3.89. �
A mvf g ∈ Sp×p that is invertible at every point λ ∈ C+ admits both a

multiplicative left integral representation and a multiplicative right integral
representation. This representation is a generalization of the multiplicative
representation of a scalar function g ∈ S with g(λ) �= 0 in λ ∈ C+ that
follows from the representation

g(λ) = exp{−c(λ)}

with c ∈ C, and the integral representation (3.3) of c; see Potapov [Po60] and
Ginzburg [Gi67]. In the next section, we shall present this representation in
the special case that g(λ) is an entire inner mvf.

3.18 Entire matrix functions of class N p×q

A p× q mvf f(λ) = [fjk(λ)] is entire if each of its entries fjk(λ) is an entire
function. The class of entire p× q mvf’s f(λ) will be denoted Ep×q . If f also
belongs to some other class X p×q , then we shall simply write f ∈ E ∩X p×q .

An entire p×q mvf is said to be of exponential type if there is a constant
τ ≥ 0 such that

‖f(λ)‖ ≤ γ exp{τ |λ|}, for all points λ ∈ C (3.116)

for some γ > 0. In this case, the exact type τ(f) of f is the infimum of all
such τ . Equivalently, an entire p×q mvf f , f �≡ 0, is said to be of exponential
type τ(f), if

τ(f) = lim sup
r→∞

ln ‖ M(r)‖
r

< ∞, (3.117)

where

M(r) = max {‖f(λ)‖ : |λ| = r}.
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The inequalities in (2.94) applied to the matrix f(λ) yield the auxiliary
formula

τ(f) = lim sup
r→∞

ln max{trace(f(λ)∗f(λ)) : |λ| = r}
2r

. (3.118)

Moreover, a mvf f ∈ Ep×q is of exponential type if and only if all the entries
fij(λ) of the mvf f are entire functions of exponential type. Furthermore, if
f ∈ Ep×q is of exponential type, then

τ(f) = max{τ(fij) : fij �≡ 0, 1 ≤ i ≤ p, 1 ≤ j ≤ q}. (3.119)

To verify formula (3.119), observe first that the inequality

|fij(λ)|2 ≤ trace{f(λ)∗f(λ)}

implies that τ(fij) ≤ τ(f), if fij �≡ 0. On the other hand, if

τ = max{τ(fij) : fij �≡ 0, 1 ≤ i ≤ p, 1 ≤ j ≤ q},

then there exists a number γ > 0 such that

trace f(λ)∗f(λ) =
∑

|fij(λ)|2 ≤ γexp{2(τ + ε)|λ|}

for every ε > 0. Consequently, τ(f) ≤ τ . Also, it is clear that if

M±(r) = max {|f(λ)| : |λ| ≤ r and λ ∈ C±},

then

τ(f) = max{τ+(f), τ−(f)}, (3.120)

where

τ±(f) = lim sup
r→∞

ln M±(r)
r

;

and that

τ±(f) = max{τ±(fij) : fij �≡ 0, 1 ≤ i ≤ p, 1 ≤ j ≤ q}.

Analogues of formula (3.118) are valid for τ±(f). Moreover, if a mvf f ∈ Ep×q

has exponential type τ(f), then the types τ+(f) and τ−(f) of the mvf f in
the closed upper and lower half planes C+ and C− are not less than the
exponential types τ+

f and τ−
f of the mvf f on the upper and lower imaginary

half axis respectively, i.e.,

τ±
f

def= lim sup
ν↑∞

ln ‖ f(±iν) ‖
ν

≤ τ±(f). (3.121)
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Theorem 3.91 (M. G. Krein) Let f ∈ Ep×q. Then f ∈ N p×q if and only
τ+(f) < ∞ and f satisfies the Cartwright condition∫ ∞

−∞

ln+ ‖ f(µ) ‖
1 + µ2 dµ < ∞. (3.122)

Moreover, if f ∈ E ∩ N p×q, then τ+(f) = τ+
f .

Proof See [Kr47a], [Kr51] and Section 6.11 of [RR85]. �

Lemma 3.92 If f ∈ E ∩ N p×q and f(λ) �≡ 0, then

τ±
f = lim sup

ν↑∞

ln trace{f(±iν)∗f(±iν)}
2ν

. (3.123)

Proof This is immediate from Lemma 2.68. �

Theorem 3.93 If f(λ) = [fjk(λ)] is a p × q mvf of class N p×q such that f

is holomorphic in C+ and f(λ) �≡ 0, then

τ+
f = max{τ+

fj k
: j = 1, . . . , p, k = 1, . . . , q and fjk(λ) �≡ 0}.

Proof The proof is the same as that of (3.119). �
Let

δ±f = lim sup
ν↑∞

ln |det f(±iν)|
ν

(3.124)

for f ∈ N p×p with det f(λ) �≡ 0.

Theorem 3.94 Let f ∈ Ep×p be invertible in C+ and let f−1 ∈ N p×p
+ . Then:

(1) f ∈ E ∩ N p×p.

(2) 0 ≤ τ+
f < ∞.

(3) δ+
f = lim supν↑∞

ln |det f(iν)|
ν = limν↑∞

ln |det f(iν)|
ν exists as a

limit and τ+
f ≤ δ+

f ≤ pτ+
f .

(4) e−iδ+
f λ det f−1(λ) ∈ Nout.

(5) δ+
f = pτ+

f if and only if eiτ +
f λf(λ) ∈ N p×p

out .
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Proof (1) is self-evident (since f = (f−1)−1). Next, since f−1 = h−1g with
h ∈ Sout and g ∈ Sp×p, formula (3.38) with ϕ = h implies that τ+

h = 0.
Consequently,

τ+
f = τ+

g−1 and δ+
f = δ+

g−1

and hence (2) follows from the inequalities

1 = ‖g(iν)g(iν)−1‖ ≤ ‖g(iν)‖‖g(iν)−1‖ ≤ ‖g(iν)−1‖,

and the inequalities in (3) follow by applying (2.96) to g(λ)−1. To obtain
the rest of (3), let g = bϕ in C+ with b ∈ Sp×p

in and ϕ ∈ Sp×p
out . Since

hp(λ) = det f(λ) × det b(λ) × det ϕ(λ)

for λ ∈ C+, it follows that det b(λ) has no zeros in C+. Moreover, since f is
entire and g is holomorphic in C+, det b(λ) is a singular inner function of
the form

det b(λ) = γeiαλ

for some γ ∈ C with |γ| = 1 and some α ≥ 0. Thus,

δ+
f = lim

ν↑∞

ln |det f(iν)|
ν

= α

exists. The inequalities in (3) are immediate from Lemma 2.68, and (4) is
immediate from the preceding identifications.

Next, in view of (1) and Lemma 3.92,

exp{iτ+
fj k

λ}fjk(λ) ∈ N+

for every entry fjk(λ) in f(λ) which is not identically equal to zero. There-
fore, since τ+

f ≥ τ+
fj k

,

eiτ+
f λf(λ) = eiτ +

f λϕ(λ)−1b(λ)−1

belongs to N p×p
+ and hence so does

h(λ) := eiτ+
f λb(λ)−1.

Thus, by the Smirnov maximum principle (see Theorem 3.59), h ∈ Sp×p
in .

Moreover,

det h(λ) = eipτ +
f λγe−iδ+

f λ = γ exp{i(pτ+
f − δ+

f )λ},
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which is consistent with the already established inequality δ+
f ≤ pτ+

f . Thus,
if δ+

f = pτ+
f , then

det h(λ) = γ

and hence, by Lemma 3.33, h(λ) ≡ constant, i.e.,

b(λ) = eiτ +
f λIp

(up to a constant p × p unitary multiplier). Therefore

eiτ+
f λf(λ) = ϕ(λ)−1

belongs to N p×p
out , which proves the hard half of (5). The converse statement

drops out easily from the observation that if eτ+
f

f ∈ N p×p
out , then

lim sup
ν↑∞

ln det{e−τ +
f ν |f(iν)|}

ν
= 0. �

Corollary 3.95 Let f ∈ Ep×p be invertible in C+ with f−1 ∈ Hp×p
∞ . Then

the following are equivalent:

(1) lim
ν↑∞

ln ‖f(iν)‖
ν

= 0.

(2) lim
ν↑∞

ln[trace{f(iν)∗f(iν)}]
ν = 0.

(3) limν↑∞
ln |det f(iν)|

ν = 0.

(4) f ∈ N p×p
out .

Proof This formulation takes advantage of the fact that for a sequence of
nonnegative numbers {xk},

lim sup
k→∞

xk = 0 ⇐⇒ lim
k→∞

xk = 0.

The rest is immediate from the preceding two theorems and the inequalities
in Lemma 2.68. �

3.19 Entire inner mvf’s

A scalar entire inner function f(λ) is automatically of the form f(λ) =
f(0)eiλd, where |f(0)| = 1 and d ≥ 0. The set of entire inner p × p mvf’s is
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much richer. It includes mvf’s of the form

f(λ) = f(0)eiλD,

where f(0)∗f(0) = Ip and D ≥ 0 as well as products of mvf’s of this form.
More general constructions of entire inner p× p mvf’s may be based on the
right multiplicative integral

b
�∫
a

exp{ϕ(t)dM(t)}

of a continuous scalar valued function ϕ(t) on the closed interval [a, b] with
respect to a nondecreasing p × p mvf M(t) on [a, b]. The integral is defined
as the limit of products of the form

exp{ϕ(τ1)[M(t1) − M(t0)]} exp{ϕ(τ2)[M(t2) − M(t1)]

· · · exp{ϕ(tn)[M(tn) − M(tn−1)]},

where a = t0 < t1 < · · · < tn = b, is an arbitrary partition of [a, b],
τj ∈ [tj−1, tj ] for j = 1, . . . , n, and the limit is taken over finer and finer
partitions as n ↑ ∞ and

max{tj − tj−1, j = 1, . . . n} −→ 0.

Under the given assumptions on ϕ(t) and M(t) this limit exists and is called
the (right) multiplicative integral of ϕ(t) with respect to M(t). Multiplicative
integrals may also be defined under less restrictive assumptions on ϕ(t)
and M(t) than were imposed here; see e.g., the appendix of [Po60]. A left
multiplicative integral

b
�∫
a

exp{ϕ(t)dM(t)}

may be defined in much the same way as the limit of products of the form

exp{ϕ(τn)[M(tn) − M(tn−1)]} exp{ϕ(τn−1)[M(tn−1) − M(tn−2)]

· · · exp{ϕ(t1)[M(t1) − M(t0)]}.
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If H ∈ Lm×m
1 ([a, b]), then by definition

t
�∫
a

exp{ϕ(t)H(t)dt} =

t
�∫
a

exp{ϕ(t)dMt},

where M(t) = M(a) +
∫ t

a
H(s)ds.

Theorem 3.96 (V. P. Potapov) Let f ∈ E ∩ Sp×p
in . Then

f(λ) = U�

d
�∫
0

exp{iλdM(t)}, (3.125)

where U� = f(0) is a p × p unitary matrix and M(t) is a nondecreasing
p × p mvf on the interval [0, d] that may be chosen so that it is absolutely
continuous on [0, d].
Conversely, if U� is a constant p × p unitary matrix and M(t) is a nonde-
creasing p × p mvf on the closed interval [0, d], then the mvf f(λ) is well
defined by (3.125) and f ∈ E ∩ Sp×p

in .

Proof See [Po60] and [Zol03]. �

Lemma 3.97 If b ∈ Sp×p
in and if det b(λ) = eiδλ for some δ ≥ 0, then:

(1) Rωbξ ∈ Hp
2 � eδH

p
2 for every choice of ω ∈ C+ and ξ ∈ C

p.

(2) b(λ) is an entire mvf of exponential type.

Conversely, if a mvf b ∈ Sp×p
in is entire, then det b(λ) = eiλδ × det b(0) for

some δ ≥ 0.

Proof Under the given assumptions,

b−1(λ) = e−iδλh(λ)

for some choice of h ∈ Hp×p
∞ . Therefore,

e−iδµb(µ) = h(µ)∗

for almost all points µ ∈ R, which in turn implies that

b(λ)
λ − ω

ξ ∈ eiδλKp
2
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for ω ∈ C+ and ξ ∈ C
p. But this leads easily to (1), since Rωbξ ∈ Hp

2 ; (2) is
immediate from (1) and Theorem 3.36.

The converse follows easily from the fact that if a mvf b ∈ Sp×p
in is entire,

then det b(λ) is a scalar inner entire function, and hence it must be of the
indicated form. �

Similar considerations lead easily to the following supplementary result.

Lemma 3.98 If b ∈ E ∩ Sp×p
in and b = b1b2, where b1, b2 ∈ Sp×p

in , then
b1, b2 ∈ Ep×p.

Proof By (the converse statement in) Lemma 3.97, det b(λ) = γeiλδ , where
|γ| = 1 and δ ≥ 0. Therefore, det b1(λ) is of the same form and hence b1(λ)
is entire by (2) of the same lemma. �

The preceding analysis also leads easily to the following set of conclusions,
which will be useful in the sequel.

Theorem 3.99 Let b ∈ E ∩ Sp×p
in and let f = b−1. Then:

(1) det b(λ) = eiλα × det b(0) for some α ≥ 0.

(2) The limits (3.121) and (3.124) satisfy the inequalities

0 ≤ τ+
f ≤ δ+

f ≤ pτ+
f < ∞. (3.126)

(3) δ+
f = − lim

ν↑∞
ln |det b(iν)|

ν = α.

(4) pτ+
f ≥ α, with equality if and only if

b(λ) = eiλα/pb(0).

(5) b(λ) is an entire mvf of exponential type τ+
f .

Proof Item (1) is established in Lemma 3.97. Moreover, in view of (1),
f(λ) = b−1(λ) is entire and satisfies the hypotheses of Theorem 3.94. The
latter serves to establish (2); (3) is immediate from (1) and then (4) is
immediate from (5) of Theorem 3.94.

Finally, the proof of (5) rests mainly on the observation that

τ+
f = lim sup

ν↑∞

ln ‖f(iν)‖
ν

= lim sup
ν↑∞

ln ‖b(−iν)‖
ν

bounds the growth of b(λ) on the negative imaginary axis. Theorem 3.91
applied to entire mvf’s that are of the Nevanlinna class in the lower half plane



3.20 Minimal denominators of mvf’s f ∈ E ∩ N p×q 155

C− implies that τ−(b) = τ+
f . Therefore, τ(b) = max {τ−(b), τ+(b)} = τ−(b),

since ‖b(λ)‖ ≤ 1 in C+. �
In subsequent developments, the structure of entire inner mvf’s will be

of central importance. The following three examples illustrate some of the
possibilities:

Example 3.100 If b(λ) = eiλaIp with a ≥ 0, then

pτb−1 = δb−1 = pa.

Example 3.101 If b(λ) = eiλa ⊕ Ip−1 = diag{eiλa, 1, . . . , 1} with a ≥ 0,
then

τb−1 = δb−1 = a.

Example 3.102 If b(λ) = diag{eiλa1 , eiλa2 , . . . , eiλap } with a1 ≥ a2 ≥ · · · ≥
ap ≥ 0, then

τb−1 = a1 and δb−1 = a1 + · · · + ap.

For future use, we record the following observation which is relevant to
Example 3.101.

Lemma 3.103 If b ∈ E ∩ Sp×p
in admits a factorization b(λ) = b1(λ)b2(λ)

with bi ∈ Sp×p
in for i = 1, 2 and if δb−1 = τb−1 , then:

(1) bi ∈ E ∩ Sp×p
in and

(2) δb−1
i

= τb−1
i

for i = 1, 2.

Proof Since (1) is available from Lemma 3.98, we can invoke Theorem 3.99
to help obtain the chain of inequalities

δb−1 = δb−1
1

+ δb−1
2

≥ τb−1
1

+ τb−1
2

≥ τb−1 .

But now as the upper and lower bounds are presumed to be equal, equality
must prevail throughout. This leads easily to (2), since δb−1

i
≥ τb−1

i
. �

3.20 Minimal denominators of mvf’s f ∈ E ∩ N p×q

Lemma 3.104 Let f ∈ E ∩ N p×q. Then:

(1) f ∈ N p×q
+ ⇐⇒ τ+

f ≤ 0.
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(2) If τ+
f > 0, then eτ +

f
is a minimal scalar denominator of f .

(3) A minimal scalar denominator of f is an entire function.

Proof Since f ∈ N p×q
+ ⇐⇒ fjk ∈ N+ and, by Theorem 3.93, τ+

f ≤ 0 ⇐⇒
τf+

j k
≤ 0 for every entry fjk in the mvf f such that fjk �≡ 0, it is enough to

show that

f ∈ N+ ⇐⇒ τ+
f ≤ 0 for scalar functions f ∈ E ∩ N ,

in order to verify (1). But this follows from Lemmas 3.23 and 3.29.
Next, to verify (2), let τ+

f > 0. Then τ+(fjk) ≤ τ+
f by Theorem 3.93,

and hence, eτ +
f

fjk ∈ N+, by Lemma 3.23. Thus, eτ +
f

f ∈ N p×q
+ , i.e., eτ +

f
is

a scalar denominator of f . Thus, if β is a minimal scalar denominator of
f , then β ∈ Sin and β−1eτ +

f
∈ Sin. Therefore, Lemma 3.98 guarantees that

β ∈ E ∩ Sin and hence that β = γeα with |γ| = 1 and 0 ≤ α ≤ τ+
f . On the

other hand,

−α + τ+
f = τ+

eα f ≤ 0,

since eαf ∈ N p×q
+ . Thus, α = τ+

f and (2) holds.
Finally, if f ∈ E ∩N p×q

+ , then β = 1 is a minmimal scalar denominator of
f . If f ∈ E ∩ N p×q , but f /∈ N p×q

+ , then (1) implies that τ+
f > 0 and hence

(2) yields (3). �

Theorem 3.105 Let f ∈ E ∩ N p×q. Then:

(1) The minimal left and right denominators dL and dR of f are entire
mvf’s.

(2) The minimal denominators {d1, d2} of f are also pairs of entire
mvf’s.

Proof If f ∈ E∩N p×q
+ , then dL and dR are constant unitary matrices. There-

fore, it suffices to consider the case where f �∈ N p×q
+ . By the previous lemma,

eτ +
f

is a minimal scalar denominator of f and, therefore, by Lemma 3.77, it

is a minimal scalar denominator of the mvf’s d−1
L and d−1

R . Consequently,

bR = eτ+
f

d−1
R ∈ Sq×q

in and bL = eτ+
f

d−1
L ∈ Sp×p

in .
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But this is the same as to say that

eτ+
f

Iq = bRdR and eτ +
f

Ip = bLdL,

which implies that dR ∈ E ∩Sq×q
in and dL ∈ E ∩Sp×p

in , thanks to Lemma 3.98.
Suppose next that f ∈ E ∩ N p×q and let dL and dR be minimal left

and right denominators of f , respectively, and let {d1, d2} be a minimal
denominator of f . Then, just as in the proof of Theorem 3.70, it may be
shown that dLd−1

1 ∈ Sp×p
in and d−1

2 dR ∈ Sq×q
in and hence, since dL and dR

are entire by part (1), that b1 = dLd−1
1 is entire and b2 = d−1

2 dR is entire.
Consequently, b1d1 and d2b2 are entire, as are d1 and d2. �

3.21 The class Πp×q

A p×q mvf f− in C− is said to be a pseudocontinuation of a mvf f ∈ N p×q ,
if

(1) f#
− ∈ N p×q , i.e. f− is a meromorphic p × q mvf in C− with bounded

Nevanlinna characteristic in C− and

(2) lim
ν↓0

f−(µ − iν) = lim
ν↓0

f(µ + iν) (= f(µ)) a.e. on R.

The subclass of all mvf’s f ∈ N p×q that admit pseudocontinuations f−
into C− will be denoted Πp×q . Theorem 3.4 implies that each f ∈ Πp×q

admits only one pseudocontinuation f−.
Although

Πp×q ⊂ N p×q ,

by definition, and f ∈ N p×q is defined only on C+, we will consider mvf’s
f ∈ Πp×q in the full complex plane C via the formulas

f(λ) = f−(λ) for λ ∈ hf− ∩ C−

and

f(µ) = lim
ν→0

f(µ + iν) a.e. on R.

The symbol hf will be used to denote the domain of holomorphy of this
extended mvf f(λ) in the full complex plane and

h+
f = hf ∩ C+, h

−
f = hf ∩ C− and h0

f = hf ∩ R.
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We shall also write

Πp = Πp×1, Π = Π1 and Π ∩ X p×q = Πp×q ∩ X p×q

for short.
It is clear that a p × q mvf f belongs to the class Πp×q if and only if all

the entries in the mvf f belong to the class Π. Moreover, Πp×q is a linear
manifold and

f ∈ Πp×r, g ∈ Πr×q =⇒ fg ∈ Πp×q ;

f ∈ Πp×p =⇒ det f ∈ Π and tracef ∈ Π;

f ∈ Πp×p and det f �≡ 0 =⇒ f−1 ∈ Πp×p;

f ∈ Πp×q =⇒ f# ∈ Πq×p, f∼ ∈ Πq×p and f(−λ) ∈ Πp×q .

The inclusion

Sp×p
in ⊂ Πp×p

is also obvious and, moreover, the pseudocontinuation s− for a mvf s ∈ Sp×p
in

may be defined by the symmetry principle

s−(λ) = [s#(λ)]−1, λ ∈ C−,

that follows from the equality

s(µ)s(µ)∗ = s(µ)∗s(µ) = Ip a.e. on R.

Thus,

s#(λ)s(λ) = s(λ)s#(λ) = Ip for every λ ∈ hs ∩ hs#

if s ∈ Sp×p
in .

The following result is due to Douglas, Shapiro and Shields [DSS70].

Theorem 3.106 Let f ∈ H2. Then

f ∈ Π ∩ H2 ⇐⇒ f ∈ H2 � bH2 for some b ∈ Sin. (3.127)

Proof If f ∈ H2 � bH2 for some b ∈ Sin, then h− = b−1f belongs to the
space K2. Let f− = h−/b#. Then f#

− ∈ N and

lim
ν↓0

f−(µ − iν) = b(µ)h−(µ) = f(µ) a.e. on R, (3.128)
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i.e., f− is a pseudocontinuation of f and, consequently, f ∈ Π ∩ H2. Con-
versely, if f ∈ Π ∩ H2, i.e., if f ∈ H2 and (ii) holds for some function f−(λ)
such that f#

− ∈ N , then f#
− = g/b, where g ∈ N+ and b ∈ Sin. Therefore,

since

|g(µ)| = |f−(µ)| = |f(µ)| a.e. on R,

g ∈ L2 ∩ N+ and the Smirnov maximum principle guarantees that g ∈ H2.
Thus, as

f(µ) = f−(µ) = b(µ)g#(µ) a.e. on R,

it follows that f belongs to H2 ∩ bK2 = H2 � bH2. �

Corollary 3.107 Let f ∈ Hp×q
2 . Then f ∈ Π ∩ Hp×q

2 if and only if b−1f ∈
Kp×q

2 for some b ∈ Sin.

Proof This follows easily by applying Theorem 3.106 to the entries of the
mvf f(λ). �

If f ∈ Πp×q and if the restriction of f to C+ has a holomorphic extension
to C−, then this extension coincides with the pseudocontinuation f− of f ,
as follows from the uniqueness of the holomorphic extension. In particular,
the pseudocontinuation f− of an entire mvf f ∈ Πp×q is the restriction of f

to C−. Thus, if f ∈ Ep×q , then

f ∈ Πp×q ⇐⇒ f has bounded Nevanlinna characteristic

in both half planes C+ and C−

⇐⇒ f ∈ N p×q and f# ∈ N q×p.

Theorem 3.108 (M. G. Krein) Let f ∈ Ep×q. Then f ∈ Πp×q if and
only if f is an entire mvf of exponential type and satisfies the Cartwright
condition ∫ ∞

−∞

ln+ ‖ f(µ) ‖
1 + µ2 dµ < ∞. (3.129)

Moreover, if f ∈ E ∩ Πp×q , then

(1) τ+(f) = τ+
f , τ−(f) = τ−

f .

(2) τ−
f + τ+

f ≥ 0.

(3) τ(f) = max {τ+
f , τ−

f }.
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Proof All the assertions except for (2) follow from Theorem 3.91. To verify
(2), suppose to the contrary that τ+

f + τ−
f < 0 and let g = eδf , where

τ+
f < δ < −τ−

f . Then τ+
g = −δ + τ+

f < 0 and τ−
g = δ + τ−

f < 0, which is
impossible, since in this case g(λ) ≡ 0. Therefore, (2) is also valid. �

Let

rg = max{rank g(λ) : λ ∈ hg}

for a mvf g ∈ Πp×q .

Lemma 3.109 If g ∈ Πp×q, then:

(1) rank g(λ) = rg for every point λ ∈ hg except possibly for a set of
isolated points.

(2) rank g(µ) = rg a.e. on R.

Proof Let

r+
g = max{rank g(λ) : λ ∈ h+

g }

for g ∈ N p×q . Then, since Πp×q ⊂ N p×q , Lemma 3.31 guarantees that

rank g(λ) = r+
g

for every point λ ∈ C+ except possibly for a set of isolated points and that

rank g(µ) = r+
g a.e. on R.

The lemma follows from these facts and their analogues for mvf’s g(λ) such
that g# ∈ N q×p. �

Let u, v ∈ Sin and define

Πp×q(u, v) = {f ∈ Πp×q : f ∈ N p×q(u) and f# ∈ N q×p(v)}.

If f ∈ Πp×q , then f ∈ Πp×q(u, v) for some pair {u, v} of scalar inner
functions u and v. In the set of such pairs there exists a pair {u, v} that is
minimal in the sense that:

(1) f ∈ Πp×q(u, v).

(2) If f ∈ Πp×q(ũ, ṽ), then u−1ũ ∈ Sin and v−1ṽ ∈ Sin.

Such a minimal pair is uniquely defined by f , up to a pair of constant
multipliers with modulus one.
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If f ∈ N p×p and f(µ) ≥ 0 a.e. on R, then f ∈ Πp×p and f#(λ) = f(λ)
and, consequently, f ∈ Π(v, v), where v is a minimal scalar denominator of
f .

If f ∈ Πp×q , then all the entries in the factors in formulas (3.92), (3.93),
(3.100) and (3.101) belong to Π.

A rational p × q mvf f belongs to the class Πp×q . Moreover, if f ∈
Πp×q(u, v) and {u, v} is a minimal pair for f in the above sense, then u

and v are both finite Blaschke products. Indeed, the minimal scalar denom-
inators of the rational mvf’s f and f# are scalar Blaschke products with
zeros that coincide with the poles of f in C+ and the poles of f# in C+,
respectively.

Theorem 3.110 Let g ∈ Πp×p(v, v), let r = rg and suppose that g(µ) ≥ 0
a.e. on R. Then:

(1) The factorization problem (3.108) has a solution f = ϕL ∈ N r×p
out

that is uniquely defined up to a left constant r × r unitary factor.

(2) Every solution ϕL ∈ N r×p
out of the factorization problem (3.108) be-

longs to the class Πr×p(1, v).

(3) Every solution f ∈ N q×p with q ≥ r of the factorization problem
(3.108) can be described by formula (3.100), where ϕL ∈ N r×p

out is a
solution of the factorization problem (3.108).

(4) If the solution f ∈ N r×p, i.e., if q = r, then

(a) f ∈ Πr×p

(b) f#(λ)f(λ) = g(λ) for every point λ ∈ Hf ∩ Hf# .

(5) The following equivalences hold:

(a) g ∈ Lp×p
1 ⇐⇒ ϕL ∈ Hr×p

2 .

(b) g ∈ L̃p×p
1 ⇐⇒ ϕL ∈ ρ−1

ω Hr×p
2 for some (and hence every) point

ω ∈ C+.

(c) g ∈ Lp×p
∞ ⇐⇒ ϕL ∈ Hr×p

∞ .

(d) g ∈ Rp×p ⇐⇒ ϕL ∈ Rr×p.

(6) If g ∈ Rp×p, then the set of solutions f ∈ Rq×p of the factorization
problem (3.108) is described by formula (3.100) with dL ∈ R ∩ Sq×r

in

and bL ∈ R ∩ Sq×q
in .
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Proof Assertions (1) and (2) are due to Rosenblum and Rovnyak; see Sec-
tion 6.5 in [RR85]. Next, if f admits a representation of the form (3.100),
then clearly, f is a solution of the factorization problem (3.108). Conversely,
if f ∈ N r×p is a solution of this factorization problem, then (3) follows from
the representation (3.100) of f , because the formula

g(µ) = f(µ)∗f(µ) = ϕL(µ)∗ϕL(µ) a.e. on R

implies that rankϕL = rg = r and hence that the number r considered in
formula (3.100) coincides with the number r = rg that is considered in this
theorem. This completes the proof of (3).

Assertion (4a) is clear from (2) and formula (3.100); (4b) then follows
because the equality holds a.e. on R. The implications ⇐= in (5) are self-
evident. The opposit implications =⇒ in the first three equivalences follow
from the Smirnov maximum principle.

The next step is to verify the implication =⇒ for (5d). Towards this end,
let g ∈ Rp×p be such that g(µ) ≥ 0 a.e. on R. Then g ∈ Πp×p(v, v) where v

is a finite Blaschke product. By (2), ϕL ∈ Πr×p(1, v). Moreover, without loss
of generality, it may be assumed that g has no poles on R or at infinity. This
can always be achieved by multiplying g(λ) by a scalar outer function of
the form β(λ)2/(λ2 + 1)k , where β(λ) is a polynomial with zeros at the real
poles of g(λ). Thus we may assume that g ∈ R ∩ Lp×p

∞ and hence by (5c),
ϕL ∈ Hr×p

∞ . Furthermore, as vϕ#
L ∈ N p×r

+ , the Smirnov maximum principle
guarantees that vϕ#

L ∈ Hp×r
∞ . Thus,

ϕL(λ) − ϕL(i)
λ − i

ξ ∈ Hr
2 � vHr

2 for every ξ ∈ C
p.

Since Hr
2 � vHr

2 is a finite dimensional space with a basis of rational vvf’s,
ϕL ∈ Rr×p. This completes the proof of (5).

Suppose next that g ∈ Rp×p and that f ∈ Rq×p is a solution of the
factorization problem (3.108). Then in (3.100), dL ∈ Rq×q by Lemma 3.68.
Moreover, the mvf ϕL ∈ Rr×p and can be normalized by the condition

ϕL(ω)K
[

Ir

0(p−r)×r

]
> 0,
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where K is a p × p permutation matrix that is chosen as in Theorem 3.71.
Then, in formula (3.100),

bL = dLfK

[
Ir

0(p−r)×r

](
ϕLK

[
Ir

0(p−r)×r

])−1

belongs to Rq×r . �
This theorem, combined with Theorem 3.108 yields the following general-

ization of a theorem of Akhiezer:

Theorem 3.111 (M. Rosenblum and J.Rovnyak) Let g be an entire
p×p mvf of exponential type τg, let r = rg and suppose further that g(µ) ≥ 0

on R and
∫ ∞

−∞

ln+ ‖g(µ)‖
1 + µ2 dµ < ∞. Then:

(1) g ∈ Πp×p.

(2) The special solution ϕL ∈ N r×p
out of the factorization problem (3.108)

is an entire r×p mvf of exponential type that satisfies the Cartwright
condition, ∫ ∞

−∞

ln+ ‖ϕL(µ)‖
1 + µ2 dµ < ∞,

i.e., ϕL ∈ E ∩ Πr×p.

(3) The exponential type of the mvf exp{−iτgλ}ϕL(λ) is equal to τg/2.

3.22 Mean types for mvf’s in N p×q and Πp×q

The mean type τ+
f of a mvf f ∈ N p×q that is holomorphic in C+ is defined

by the formula

τ+
f = lim sup

ν→∞

ln ‖f(iν)‖
ν

. (3.130)

If f �≡ 0, then τ+
f is finite and may also be evaluated by two auxiliary

formulas, just as was the case for the types τ±(f) of entire mvf’s f in Section
3.18:

τ+
f = lim sup

ν→∞

ln trace{f(iν)∗f(iν)}
2ν

(3.131)

and

τ+
f = max{τ+

fij
: fij �≡ 0, 1 ≤ i ≤ p, 1 ≤ j ≤ q}. (3.132)
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If f ∈ N p×p is holomorphic in C+ and det f(λ) �≡ 0 in C+ then

δ+
f = lim sup

ν→∞

ln |det f(iν)|
ν

(3.133)

is also finite. Similarly, if f is holomorphic in C− and f# ∈ N q×p, then the
mean type τ−

f in C− is defined by the formula

τ−
f = lim sup

ν→∞

ln ‖f(−iν)‖
ν

(3.134)

and, if q = p and det f(λ) �≡ 0,

δ−f = lim sup
ν→∞

ln |det f(−iν)|
ν

. (3.135)

If f is holomorphic in C \ R and f ∈ Πp×q , then

τ±
f = τ∓

f# and, if q = p and det f(λ) �≡ 0 δ±f = δ∓
f# . (3.136)

Moreover, the representation formula (3.38) for scalar outer functions leads
easily to the conclusion

f ∈ Nout =⇒ τ+
f = lim

ν↑∞

ln |f(iν)|
ν

= 0. (3.137)

Lemma 3.112 Let f ∈ N p×q be holomorphic in C+ and f �≡ 0. Then the
following implications are in force:

(1) f ∈ N p×q
+ =⇒ τ+

f ≤ 0.

(2) f ∈ N p×p
+ and det f(λ) �≡ 0 =⇒ δ+

f ≤ 0.

(3) If f ∈ N p×p
out , then

τ+
f = lim

ν↑∞

ln ‖f(iν)‖
ν

= 0 and τ+
f−1 = lim

ν↑∞

ln ‖f(iν)−1‖
ν

= 0.

(4) If q = p and f(λ) is invertible at every point λ ∈ C+ and f−1 ∈ N p×p
+ ,

then

(a) τ+
f and δ+

f are subject to the bounds

τ+
f ≤ δ+

f ≤ pτ+
f . (3.138)
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(b) If dL ∈ Sp×p
in , dR ∈ Sp×p

in are minimal left and right denominators
of f , i.e., if

fdR ∈ N p×p
out and dLf ∈ N p×p

out , (3.139)

then dL(λ) and dR(λ) are holomorphic in C \ R,

0 ≤ τ+
f = τ−

dL
= τ−

dR
and 0 ≤ δ+

f = δ−dL
= δ−dR

. (3.140)

Proof If f ∈ N p×q
+ , then f = g/ϕ, where g ∈ Sp×q and ϕ ∈ Sout. Therefore,

‖f(iν)‖ ≤ 1/|ϕ(iν)|, which implies that τ+
f ≤ τ+

ϕ−1 and thus, verifies (1),

since τ+
ϕ−1 = 0. Then (2) follows from (1), since f ∈ N p×p

+ =⇒ det f ∈ N+.

Suppose next that f ∈ N p×p
out . Then f−1 ∈ N p×p

out and hence f = g/ϕ and
f−1 = h/ψ, where g, h ∈ Sp×p

out and ϕ, ψ ∈ Sout. Therefore,

|ψ(iν)| = ‖f(iν)h(iν)‖ ≤ ‖f(iν)‖ ≤ |ϕ(iν)|−1,

which, in view of formula (3.137), suffices to verify the first assertion in (3).
But the second follows from the first, since f ∈ N p×p

out ⇐⇒ f−1 ∈ N p×p
out .

To verify (4), let f be holomorphic and invertible at each point λ ∈ C+

and let f−1 ∈ N p×p
+ . Then

f−1 =
g

ϕ
for some g ∈ Sp×p and ϕ ∈ Sout.

Therefore, g(λ) is invertible at each point λ ∈ C+ and the formula

f(λ) = ϕ(λ)h(λ)

for h = g−1 implies that the left and right denominators of f and h coincide
and that

τ+
f = τ+

h and δ+
f = δ+

h .

Thus, as f can be replaced by h in the proof of (4), we can assume that
f−1 ∈ Sp×p. Then (4a) follows immediately from (2.96). Moreover,

f−1 = ψLdL = dRψR,

where dL, dR ∈ Sp×p
in and ψL, ψR ∈ Sp×p

out . Then, since f is holomorphic in
C+, d−1

L and d−1
R are also holomorphic in C+ and

‖dL(iν)−1‖ = ‖f(iν)ψL(iν)‖ ≤ ‖f(iν)‖‖ψL(iν)‖
≤ ‖f(iν)‖ = ‖dL(iν)−1ψL(iν)−1‖
≤ ‖dL(iν)−1‖‖ψL(iν)−1‖.
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Moreover,

lim
ν↑∞

ln ‖ψL(iν)−1‖
ν

= 0,

since ψL ∈ N p×p
out . Therefore,

τ+
f = τ+

d−1
L

= τ−
dL

and τ+
f = τ+

d−1
R

= τ−
dR

,

since the estimates are independent of the order of the factors in (3.139).
The same arguments applied to det f(iν) justify the second set of equali-

ties in (3.140). �

Remark 3.113 If f ∈ Ep×p is such that det f(λ) �= 0 in C+ and
f−1 ∈ N p×p

+ , then f ∈ N p×p and, by Theorem 3.70, minimal left and
right denominators dL and dR of f are entire mvf’s, and, by (4) and (5) of
Theorem 3.94,

det dL(λ) = γ1eα(λ) and det dR(λ) = γ2eα(λ)

for some scalars γi of modulus one and α = δ−dL
= δ−dR

= δ+
f . Moreover,

δ+
f = pτ+

f ⇐⇒ dL(λ) = dL(0)eα(λ) and dR(λ) = dR(0)eα(λ).

3.23 Bibliographical notes

Originally N was defined as the class of meromorphic scalar functions f(λ)
in C+ with bounded Nevanlinna characteristic, i.e., for which

sup
ν>0

∫ ∞

−∞

ln+ |f(µ + iν)|
1 + µ2 dµ < ∞

and the poles ω1, ω2, . . . of f are subject to the Blaschke condition (3.26).
Moreover, the Smirnov class N+ was originally defined as the class of scalar
holomorphic functions in C+ such that

sup
ν>0

∫ x

−∞

ln+ |f(µ + iν)|
1 + µ2 dµ < ∞

is absolutely continuous on R. These definitions are equivalent to the char-
acterizations

N = {f : f = f1/f2 where f1 ∈ S and f2 ∈ S}
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of the class N and

N+ = {f : f = f1/f2 where f1 ∈ S and f2 ∈ Sout}

that we started with.
A proof of the integral representation formula (3.3) for mvf’s c ∈ Cp×p

and in the subclass Cp×p
0 defined in Section 3.3 may be found in pp. 23–28 of

[Bro72]. Additional information on subclasses of Cp×p for the case p = 1 may
be found in [KaKr74] Theorem S.1.4.1 on p.12; and for p ≥ 1 and operator
valued functions in [Bro72] Theorem 4.8 pp. 25–27.

Analogues of the factorization problems (3.46) and (3.53) for holomorphic
functions in D and of the formulas (3.31) and (3.39) for the factors seem to
have been first obtained by V. E. Smirnov. He exploited these parametric
representations to obtain Theorem 3.22 and to establish a theorem that may
be reformulated as follows:

If f ∈ H2(D) and Lf =
∨
n≥0

ζnf in L2(T), then Lf = H2(D) ⇐⇒

f(z) = γ exp
{

1
2π

∫ 2π

0

eiθ + z

eiθ − z
ln |f(eiθ |dθ

}
for z ∈ D and a γ ∈ T;

see, e.g., [Smi28] and [Smi32]. Later, functions f that admitted such a rep-
resentation were termed outer functions by Beurling [Be48], who proved
that Lf = bH2(D), where b ∈ Sin and b−1f is outer. Theorem 3.38 is due
to Lax [La59]. The proof presented here is adapted from the discussion on
pp. 8–9 of Helson [He64]. A generalization to Hilbert space valued functions
based on wandering subspaces was obtained by Halmos [Ha61].

Theorem 3.50 is obtained in Sz.-Nagy-Foias [SzNF70] as a corollary of a
general result (Theorem 6.2 on pp. 217–218) on the inner-outer factorization
of contractive holomorphic operator valued functions and their scalar mul-
tiples. In particular, their results imply that if a scalar multiple of f ∈ Sp×p

is inner (respectively, outer), then f ∈ Sp×p
in (respectively, f ∈ Sp×p

out ). This
fact is applicable to the proof of the presented theorem, because det f is a
scalar multiple of a mvf f ∈ Sp×p with det f(λ) �≡ 0.

Lemma 3.54 is established by other methods in the the proof of Lemma
3.1 in [Ar73].

The Smirnov maximum principle for matrix and operator valued functions
may be found in Rosenblum and Rovnyak [RR85].
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The discussion of denominators, left and right denominators, and the cor-
responding minimal denominators for mvf’s in the class N p×q is adapted
from [Ar 73], where these results were used to study Darlington representa-
tions. This circle of ideas also plays a role in the theory of approximation of
mvf’s in the class Πp×q by rational mvf’s; see [Ar78], [Kat93], [Kat94] and
[KK95].

Theorem 3.79 is due V. N. Zasukhin and M. G. Krein. Krein’s proof may be
found in Rozanov [Roz58]; see also [Roz60] and Wiener and Masani [WM57].
Devinatz [Dev61] established an operator theoretic generalization; see, e.g.,
the notes on pp. 126–127 of [RR85] for more on the history of this circle of
ideas and additional references.

Theorem 3.81 was obtained by Potapov [Po60]. Potapov’s proof is based
on his generalization of the well known Schwarz lemma to the setting of
mvf’s and a recursive argument based on the Schur-Nevanlinna algorithm.

Theorems 3.82 and 3.96 are due to Potapov [Po60]. A multiplicative in-
tegral representation formula for normalized entire inner m×m mvf’s f(λ)
is equivalent to identifying f(λ) as the monodromy matrix of a canonical
system of integral equations with mass function M(t) on the interval [0, d].
Potapov proved this theorem by approximating a mvf f ∈ E ∩ Sp×p

in by a
sequence of mvf’s fn ∈ R ∩ Sp×p

in and invoking the representation of these
mvf’s as BP products. A different proof that is based on a circle of ideas
introduced by Yu. P. Ginzburg was presented in Theorem 2.2 of [ArD00a].
Multiplicative representations of matrix and operator valued functions with
bounded Nevanlinna characteristic in C+ were obtained by Yu. P. Ginzburg
in [Gi67] by consideration of the minorants of these functions and applying
the Beurling-Lax-Halmos theorem; see also [GiZe90] and [GiSh94].

Item (2) in Lemma 3.103 coincides with Lemma 30.1 on p.186 of Brodskii
[Bro72], which is proved the same way.

Theorem 3.108 may be found in [Kr51]. It was generalized to entire opera-
tor valued functions by Rosenblum and Rovnyak; see Section 6.11 of [RR85],
and, for additional discussion and references p. 126 of [RR85]. The recent
monograph [RS02] is a good source of supplementary information on the
class Π and related issues.
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J -contractive and J -inner matrix valued functions

In this chapter we shall present a number of facts from the theory of J-
contractive and J-inner mvf’s that will be needed in the sequel. Most of this
information can be found in the papers [Po60], [Ar73], [Ar89], [Ar95a] and
the monographs [Dy89b] and [Zol03]. The class of J-inner mvf’s is a sub-
class of the class of J-contractive mvf’s, which was investigated by Potapov
[Po60].

4.1 The classes P(J) and U(J)

Let J be an m × m signature matrix and let P and Q be the orthogonal
projection matrices that are defined by formula (2.1) with ranks p and q,
respectively, as in (2.3).

An m×m mvf U(λ) which is meromorphic in C+ is said to belong to the
Potapov class P(J) of J-contractive mvf’s if

U(λ)∗JU(λ) ≤ J (4.1)

for every point λ ∈ h+
U , the domain of holomorphy of U in C+. In his paper

[Po60], Potapov imposed the extra condition det U(λ) �≡ 0 on U ∈ P(J),
in order to develop his multiplicative theory. This subclass will be denoted
P◦(J).

If U ∈ P(J) and λ ∈ h
+
U , then, since the PG (Potapov-Ginzburg) trans-

form maps U(λ) into the contractive matrix S(λ), it is readily seen that it
maps U into an m × m mvf S that is holomorphic and contractive on h

+
U .

This mvf S has a unique extension to a mvf in Sm×m which will also be
designated S(λ). Thus, the PG transform

S(λ) = (PU(λ) + Q)(P + QU(λ))−1 = (P − U(λ)Q)−1(U(λ)P − Q) (4.2)

169
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maps U ∈ P(J) into Sm×m . More precisely, it maps the class P(J) onto the
set

{S ∈ Sm×m : det (P ± QS(λ)) �≡ 0}
= {S ∈ Sm×m : det (P ± S(λ)Q) �≡ 0}
= {S ∈ Sm×m : det (P ± QS(λ)Q) �≡ 0}.

Moreover, since the PG transform is its own inverse, the formula

U(λ) = (PS(λ) + Q)(P + QS(λ))−1 = (P − S(λ)Q)−1(S(λ)P − Q) (4.3)

is also valid and serves to justify the inclusion

P(J) ⊂ Nm×m.

Consequently, every mvf U ∈ P(J) has nontangential boundary values.
A mvf U ∈ P(J) is said to be J-inner if (in addition to (4.1))

U(µ)∗JU(µ) = J for almost all points µ ∈ R. (4.4)

We shall designate the class of J-inner mvf’s by U(J) and shall reserve
the symbol W (λ) for J-inner mvf’s with J = jpq and A(λ) for J-inner mvf’s
with J = Jp. It is readily seen that

U ∈ U(J) ⇐⇒ PG(U) ∈ Sm×m
in .

Condition (4.4) guarantees that U(λ) is invertible in C+ except for an iso-
lated set of points, i.e.,

U(J) ⊂ P◦(J).

Thus, we can (and shall) define a pseudocontinuation of U(λ) to C− by
the symmetry principle:

U(λ) = J
{

U#(λ)
}−1

J

for λ ∈ C−. Consequently,

U(J) ⊂ Πm×m.

Corollary 2.5 guarantees that the inequality (4.1) holds if and only if

U(λ)JU(λ)∗ ≤ J ; (4.5)

the position of U(µ) and U(µ)∗ can of course also be interchanged in formula
(4.4).

Lemma 4.1 Let U ∈ P(J) with J �= ±Im, let S = PG(U) and let

UP (λ) = Q + PU(λ)P and UQ(λ) = P + QU(λ)Q, (4.6)
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and

SP (λ) = Q + PS(λ)P and SQ(λ) = P + QS(λ)Q. (4.7)

Then

(1) The identity

SQ(λ)UQ(λ) = Im holds for every point λ ∈ h
+
U (4.8)

and hence the mvf UQ(λ) is expansive in C+, i.e.,

UQ(λ)∗UQ(λ) ≥ Im for λ ∈ h
+
U .

(2) If U ∈ U(J), the identity

SP (λ)U#
P (λ) = Im holds for every point λ ∈ h+

U# (4.9)

and hence the mvf UP (λ) is expansive in C−.

(3) If U ∈ U(J), then the formula

U(λ) = (Im + PS(λ)Q)U−#
P (λ)UQ(λ)(Im − QS(λ)P ) (4.10)

holds for every point λ ∈ h
+
U ∩ h

+
U# .

Proof This follows from Lemma 2.6. �
In future developments it will be convenient to consider the classes

P(J1, J2), P◦(J1, J2) and U(J1, J2) of m×m mvf’s that are meromorphic in
C+ and are defined in terms of two unitarily equivalent signature matrices
J1 and J2 = V ∗J1V by the following constraints:

U ∈ P(J1, J2) if U(λ)∗J1U(λ) ≤ J2 for every point λ ∈ h
+
U ; (4.11)

U ∈ P◦(J1, J2) if U ∈ P(J1, J2) and det U(λ) �≡ 0 in h
+
U ; (4.12)

U ∈ U(J1, J2) if U ∈ P(J1, J2) and U(µ)∗J1U(µ) = J2

a.e. on R. (4.13)

It is readily seen that

U ∈ P(J1, J2) ⇐⇒ UV ∗ ∈ P(J1). (4.14)

U ∈ P◦(J1, J2) ⇐⇒ UV ∗ ∈ P◦(J1). (4.15)

U ∈ U(J1, J2) ⇐⇒ UV ∗ ∈ U(J1). (4.16)
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Moreover, (4.11) is equivalent to the condition

U(λ)J2U(λ)∗ ≤ J1 for every point λ ∈ h
+
U (4.17)

and

U(µ)∗J1U(µ) = J2 a.e. on R ⇐⇒ U(µ)J2U(µ)∗ = J1 a.e. on R. (4.18)

In view of (4.14) and (4.16), P(J1, J2) ⊂ Nm×m and U(J1, J2) ⊂ Πm×m .
The classes P(J), P◦(J), U(J) and

U0(J) = {U ∈ U(J) : 0 ∈ hU and U(0) = Im}, (4.19)

are semigroups with respect to matrix multiplication. Moreover, if U1, U2,∈
P(J), then

(1) U1U2 ∈ P◦(J) =⇒ U1 ∈ P◦(J) and U2 ∈ P◦(J).

(2) U1U2 ∈ U(J) =⇒ U1 ∈ U(J) and U2 ∈ U(J).

Furthermore, if U1, U2, . . . ∈ P(J) and if C+ \ ∩∞
j=1h

+
Uj

is a set of isolated
points and if

U(λ) = lim
n↑∞

U1(λ)U2(λ) · · ·Un(λ) (4.20)

or

U(λ) = lim
n↑∞

Un(λ) · · ·U2(λ)U1(λ) (4.21)

exists for every point λ ∈ ∩∞
j=1h

+
Uj

, then U ∈ P(J). Moreover, if U ∈ P◦(J),
then

h
+
U = ∩∞

j=1h
+
Uj

;

see Theorem 4.60, below.
An infinite right product U1(λ)U2(λ) · · · of mvf’s Uj ∈ P◦(J) is said

to be convergent if the limit U(λ) in formula (4.20) exists for every λ ∈ h
+
U

and U ∈ P◦(J). In this case we shall write

U(λ) =

∞
�∏
j=1

Uj(λ). (4.22)

Infinite left products can be defined analogously:

U(λ) =

∞
�∏
j=1

Uj(λ). (4.23)
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Lemma 4.2 The following facts will be useful:

(1) U ∈ P(J) ⇐⇒ U∼ ∈ P(J).

(2) U ∈ U(J) ⇐⇒ U∼ ∈ U(J).

(3) P(Im) = Sm×m and U(Im) = Sm×m
in .

(4) P(−Im) = {s(λ) : s(λ) is meromorphic in C+ and s(λ)∗s(λ) ≥
Im for λ ∈ h+

s } and U(−Im) = {U : U−1 ∈ Sm×m
in }.

Proof The first two depend upon facts established in Chapter 2. �

Example 4.3 Let s11 ∈ Sp×p and s22 ∈ Sq×q and suppose that det s22 �≡ 0
in C+. Then the mvf

W =
[

s11 0
0 s−1

22

]
∈ P(jpq).

Moreover,

W ∈ U(jpq) ⇐⇒ s11 ∈ Sp×p
in and s22 ∈ Sq×q

in .

Example 4.4 Let c ∈ Cp×p. Then the mvf

A(λ) =
[

Ip c(λ)
0 Ip

]
∈ P(Jp).

Moreover, A ∈ U(Jp) ⇐⇒ Rc(µ) = 0 a.e. on R, i.e., c ∈ Cp×p
sing.

Lemma 4.5 If U ∈ U(J), then

(1) |det U(µ)| = 1 a.e. on R.

(2) There exist a pair of scalar inner functions b1, b2 ∈ Sin such that

det U(λ) =
b1(λ)
b2(λ)

.

(3) rankU(λ) = m if λ ∈ hU ∩ hU# .

Proof Assertion (1) is immediate from (4.4); (2) then follows from the fact
that det U ∈ N and the representation (3.53) for functions in N ; and (3) is
immediate from (2). �
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4.2 Blaschke-Potapov products

The simplest examples of mvf’s U ∈ U(J) are rational J-inner mvf’s with
one simple pole ω. They are called elementary BP (Blaschke-Potapov)
factors. If J = Im , or J = −Im , then there is only one kind of elementary
BP factor: with ω ∈ C+ or ω ∈ C−, respectively. If J �= ±Im , then there are
four kinds and an elementary BP factor is said to be of the first, second,
third or fourth kind, according as ω ∈ C+, ω ∈ C−, ω ∈ R or ω = ∞. Let

bω(λ) = γω
λ − ω

λ − ω
with |γω | = 1, if ω �∈ R

and

cω(λ) =
1

πi(ω − λ)
if ω ∈ R,

and let U ∈ Uconst(J).
An elementary BP factor of the first or second kind may be represented

in the form

Uω(λ) = U(Im + (bω(λ) − 1)P ), (4.24)

where

P = P 2 and
{

PJ ≥ 0 if ω ∈ C+

PJ ≤ 0 if ω ∈ C−

An elementary BP factor of the third or fourth kind may be represented
in the form

Uω(λ) = U(Im − cω(λ)E) = U exp{−cω(λ)E} if ω ∈ R

and

U∞(λ) = U(Im + iλE) = U exp{iλE} if ω = ∞,

respectively, where

E2 = 0, and EJ ≥ 0.

An elementary BP factor Uω(λ) is said to be a primary BP factor if
rankP = 1 or rank E = 1 in the preceding representations. It is easy to
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check that

P 2 = P, PJ ≥ 0 and rankP = 1

⇐⇒ P = vv∗J for some v ∈ C
m with v∗Jv = 1.

P 2 = P, PJ ≤ 0 and rankP = 1

⇐⇒ P = −vv∗J for some v ∈ C
m with v∗Jv = −1.

E2 = 0, EJ ≥ 0 and rankE = 1

⇐⇒ E = vv∗J for some v ∈ C
m with v∗Jv = 0.

An elementary BP factor Uω(λ) is said to be normalized at the point
α if the constant J-unitary factor U is taken equal to Im in the preceding
representations and if, in the factors of the first and second kind, bω(α) > 0.

Lemma 4.6 Let Uω(λ) be an elementary BP factor of the first or second
kind with pole at ω that is normalized by setting U = Im and bω(α) > 0 in
formula (4.24). Then:

(1) Uω(α) = exp {−HJ}, where

H = −(ln bω(α))PJ ≥ 0,

i.e., in view of Theorem 2.64, Uω(α) is a J modulus.

(2) exp{−‖H‖} ≤ ‖Uω(α)±1‖ ≤ exp{‖H‖}.
(3) exp{−trace H} ≤ ‖Uω(α)±1‖ ≤ exp{trace H}.

Proof Since P 2 = P , it is readily checked that

eβP =
∞∑

j=0

βjP j

j!
= Im +

 ∞∑
j=1

βj

j!

P

= Im + (eβ − 1)P

for every β ∈ C. Thus,

Im + (bω(α) − 1)P = exp{ln bω(α)P},

which leads easily to (1). Assertion (2) then follows from the bounds

‖Uω(α)±1‖ = ‖ exp{∓HJ}‖ ≤ exp{‖HJ‖} = exp{‖H‖}

and

1 = ‖Uω(α)Uω(α)−1‖ ≤ ‖Uω(α)‖‖Uω(α)−1‖.
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Finally (3) follows from (2) and the inequality ‖H‖ ≤ trace H, which is in
force, since H ≥ 0. �

Clearly the finite product of elementary BP factors is a rational J-inner
mvf. The converse is also true:

Theorem 4.7 Every rational J-inner mvf U(λ) can be represented as a
finite product of elementary BP factors. Moreover, if the McMillan degree
of U(λ) is equal to r, then U(λ) may be expressed as the product of r primary
BP factors that are each normalized at a point α times a constant J-unitary
matrix on either the left or the right.

Proof This is proved in Section 5.8. �

Infinite BP products Conditions for the convergence of the right infinite
product of elementary BP factors Uk(λ), k ≥ 1

∞
�∏

k=1

Uk(λ) = U1(λ)U2(λ) · · ·Un(λ) · · ·

and the left infinite product of elementary BP factors

∞
�∏

k=1

Uk(λ) = · · ·Un(λ) · · ·U2(λ)U1(λ)

that were established by Potapov [Po60] will be presented below.

Remark 4.8 Let {Uωk
(λ)}∞k=1 be a sequence of elementary BP factors such

that the right infinite BP product

B(r)(λ) =

∞
�∏

k=1

Uωk
(λ)

is well defined. Then, as will be shown subsequently in Theorem 4.60 from
more general considerations,

h
+
B (r ) =

∞⋂
k=1

h
+
Uωk

= C+\{ωk : ωk ∈ C−}
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and

h
+
B (r )−1 =

∞⋂
k=1

h
+
U−1

ωk

= C+\{ωk : ωk ∈ C+}.

Consequently, both sets {ωk : ωk ∈ C−} and {ωk : ωk ∈ C+} have no
limit points in C+ under the given assumptions. The same conclusions are
valid if the left infinite BP product B(l)(λ) of these factors is well defined.
Consequently, if B(r)(λ) or B(l)(λ) is well defined, then the set

C+ \ ({ωk : ωk ∈ C+} ∪ {ωk : ωk ∈ C−})

is open.

Theorem 4.9 Let {Uωk
}k≥1 be an infinite sequence of elementary BP fac-

tors, that are normalized at a point

α ∈ C+ \ ({ωk : ωk ∈ C+} ∪ {ωk : ωk ∈ C−}) :

Uωk
(λ) =


Im + (bωk

(λ) − 1)Pk if ωk ∈ C \ R

Im − cωk
(λ)Ek if ωk ∈ R

Im + iλEk if ωk = ∞
,

where

P 2
k = Pk, bωk

(α) > 0, Hk = −{ln bωk
(α)}PkJ ≥ 0 if ωk ∈ C \ R,

and

E2
k = 0 and Hk = EkJ ≥ 0 if ωk ∈ R or ωk = ∞.

Then the following conditions are equivalent:

(1) The right BP product

∞
�∏

k=1

Uωk
(λ) converges.

(2) The left BP product

∞
�∏

k=1

Uωk
(λ) converges.

(3) The series
∑∞

k=1 trace Hk converges.

Moreover, if condition (3) is satisfied then the right and left BP products,
considered in (1) and (2) converge uniformly on every compact set

K ⊂ C \ Ω where Ω = the closure of {ωk, ωk : k ≥ 1}.
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Proof Suppose first that condition (3) is in force, let K be a compact subset
of C \ Ω and let

βωk
(λ) =


|bωk

(λ) − 1| if ωk ∈ C \ R,

|cωk
(λ)| if ωk ∈ R,

|λ| if ωk = ∞.

If ωk �∈ R, then the identity

1 − bωk
(λ) =

1 − bωk
(α)

bωk
(α)

[
(1 + bωk

(α))
(α − ωk)(λ − α)
(α − α)(λ − ωk)

− 1
]

(4.25)

helps to guarantee the existence of a number c > 0 such that

βωk
(λ) ≤

{
c|1 − bωk

(α)| if λ ∈ K and ωk ∈ C \ R

c if λ ∈ K and ωk ∈ R ∪ {∞}

since the functions (λ− α)/(λ− ωk) are uniformly bounded on K for k ≥ 1
and the sequences {bωk

(α) : k ≥ 1} and {bωk
(α)−1 : k ≥ 1} are bounded.

Thus, as

1
t
|1 − x| ≤ |

∫ 1

x

1
y
dy| = | lnx| ≤ t|1 − x| if

1
t
≤ x ≤ t

for some t > 1, it follows that

‖Uωk
(λ) − Im‖ ≤ c1trace Hk for k ≥ 1.

Therefore, the bound∥∥∥∥∥∥∥
n + �
�∏

k=n

Uωk
(λ) − Im

∥∥∥∥∥∥∥ < exp

{
c1

n+�∑
k=n

traceHk

}
− 1 for � ≥ 1,

is uniformly satisfied for λ ∈ K; and the same estimate holds for n + �
�∏

k=n

Uωk
(λ)


−1

, since Uωk
(λ)−1 = JU#

ωk
(λ)J.



4.2 Blaschke-Potapov products 179

Moreover, the sequence of partial right products Pn(λ) of the mvf’s Uk(λ)
is uniformly bounded on K:

‖Pn(λ)‖ ≤
n∏

k=1

‖Uωk
(λ)‖ ≤

n∏
k=1

(‖Uωk
(λ) − Im‖ + 1)

≤ exp

{
n∑

k=1

‖Uωk
(λ) − Im‖

}

≤ exp

{ ∞∑
k=1

‖Uωk
(λ) − Im‖

}
< M < ∞.

Thus, as

‖Pn+�(λ) − Pn(λ)‖ ≤ ‖Pn(λ)‖
∥∥∥∥∥

n+�∏
k=n+1

Uωk
(λ) − Im

∥∥∥∥∥ ,

the sequence Pn(λ) converges uniformly in K to an invertible bounded mvf
P (λ). Moreover, since the partial products Pn(λ)−1 = JP#

n (λ)J are subject
to similar bounds, it follows that P (λ)−1 is bounded on K and that

‖Pn(λ)−1 − P (λ)−1‖ ≤ ‖Pn(λ)−1‖‖P (λ) − Pn(λ)‖‖P (λ)−1‖.

The implication (3) =⇒ (2) follows from (3) =⇒ (1) applied to
∞
�∏

k=1

Uωk
(λ)τ .

The implication (1) =⇒ (3) is more difficult to verify. A proof based on
deep arguments that rested on the J modulus was given by V. P. Potapov
in [Po60], where he introduced this notion, studied its properties and, in
particular, applied them to prove the implication (1) =⇒ (3). Here the im-
plication (1) =⇒ (3) will be presented under the assumption that all the
factors in the product are elementary BP factors of the first or second kind.
Then, by Lemma 4.6,

Uωk
(α) = exp{−HkJ}, where Hk = −(ln bωk

(α))PkJ ≥ 0,

and hence, in view of (1) in Theorem 2.65 the matrices Uωk
(α) are J mod-

ulii. Consequently, the implication (1) =⇒ (3) follows from assertion (4) in
Theorem 2.65. �
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A finite or infinite convergent right (resp., left) product of elementary BP
factors

B(r)(λ) =

n
�∏

k=1

Uωk
(λ) (B(l)(λ) =

n
�∏

k=1

Uωk
(λ)), n ≤ ∞,

is called a right BP product (respect., left BP product).

Theorem 4.10 Let U be a right or left BP product. Then:

(1) U ∈ U(J).

(2) If U is a right BP product and α ∈ h
+
U ∩ h

+
U−1 , then

U(λ) = B(r)(λ)U (r),

where B(r)(λ) is a right BP product of elementary factors that are
normalized at the point α and U (r) ∈ Uconst(J).

(3) If U is a left BP product and α ∈ h+
U ∩ h

+
U−1 , then

U(λ) = U (l) B(l)(λ),

where B(l)(λ) is a left BP product of elementary factors that are
normalized at the point α and U (l) ∈ Uconst(J).

Proof Assertion (1) coincides with Corollary 4.63, which is presented later.
Assertions (2) and (3) are due to Potapov; see [Po60]. �

Theorem 4.11 (V. P. Potapov) Let U ∈ P◦(J). Then there exist two
multiplicative representations:

U(λ) = B(r)(λ)U (r)(λ) and U(λ) = U (l)(λ)B(l)(λ), (4.26)

where B(r)(λ) and B(l)(λ) are right and left BP products of elementary fac-
tors of the first and second kind, and the two mvf’s U (r)(λ) and U (�)(λ) are
holomorphic and invertible in C+. Moreover, both factorizations in (4.26)
are unique, up to constant J-unitary factors V1 and V2:

B(r)(λ) �−→ B(r)(λ)V1 and U (r)(λ) �−→ V −1
1 U (r)(λ),

B(l)(λ) �−→ V2B
(l)(λ) and U (l)(λ) �−→ U (l)(λ)V −1

2 .
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The order of the elementary factors in the BP product U(λ) may be chosen
arbitrarily. This choice influences the values of the matrices Pk, but not the
values of the poles ωk.

Proof This theorem is due to Potapov [Po60]; see also [Zol03]. �

4.3 Entire J-inner mvf’s

A finite product of normalized elementary BP factors of the fourth kind may
be expressed as a multiplicative integral:

U(λ) =

n
�∏

k=1

(Im + iλHkJ) =

n
�∏

k=1

exp{iλHkJ}

=

n
�∫

0

exp{iλdM(t)},

where Hk ≥ 0, HkJHk = 0, I ≤ k ≤ n, and

M(t) =

{
H1t for 0 ≤ t ≤ 1∑m−1

k=1 Hk + Hm(t − m + 1) for m − 1 ≤ t ≤ m, 2 ≤ m ≤ n,

is a continuous nondecreasing m × m mvf on the interval [0, n].
Here trace M(n) =

∑n
k=1 trace Hk and U ∈ U(J) is a polynomial of degree

≤ n with U(0) = Im .

Remark 4.12 Every J-inner mvf U(λ) that is a polynomial of degree n,
normalized by the condition U(0) = Im has such a multiplicative represen-
tation.

A convergent infinite product of normalized elementary BP factors of the
fourth kind may be rewritten also in the form of a multiplicative integral.
Indeed, let

U(λ) =

∞
�∏

k=1

(Im + iλHkJ) =

∞
�∏

k=1

exp{iλHkJ},

where

Hk ≥ 0, HkJHk = 0, k ≥ 1, and
∞∑

k=1

trace Hk < ∞.
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Let

M(t) =

{
2H1t for 0 ≤ t ≤ 1

2∑n−1
k=1 Hk + 2nHn(t − 1 + 1

2n−1 ) for 1 − 1
2n−1 ≤ t ≤ 1 − 1

2n

(4.27)
and M(1) =

∑∞
k=1 Hk . Then M(t) is a continuous nondecreasing m×m mvf

on the interval [0, 1] such that M(0) = 0 and traceM(1) =
∑∞

k=1 trace Hk <

∞ and

U(λ) =

1
�∫

0

exp{iλdM(t)J}. (4.28)

The mvf U belongs to E ∩ U(J) because it is the uniform limit of mvf’s in
this class on every compact subset of C. Moreover, U(0) = Im and U has
exponential type τ(U) = 0. Convergent infinite products of the normalized
elementary BP factors of the fourth kind with J = Jp arise as the class
of resolvent matrices A(λ) that serve to describe the set of solutions of
matrix generalizations of the Hamburger moment problem in the completely
indeterminate case.

The set of finite and convergent infinite products U(λ) of normalized el-
ementary BP factors of the fourth kind is a proper subset of the class of
mvf’s U ∈ E ∩ U(J) with U(0) = Im and τ(U) = 0. To the best of our
knowledge, the problem of characterizing this subset is still open, even for
the case m = 2. Nevertheless, in view of the following theorem, every mvf
U ∈ E∩U(J) with U(0) = Im admits a multiplicative integral representation
of the form (4.28) for some continuous nondecreasing m × m mvf M(t) on
the interval [0, 1].

Theorem 4.13 (V. P. Potapov) Let U ∈ E ∩ U(J). Then

U(λ) = U0

d
�∫

0

exp{iλdM(t)J}, (4.29)

where U0 ∈ Uconst(J), M(t) is a nondecreasing m × m mvf in the interval
[0, d] that may be chosen so that it is absolutely continuous on [0, d] with
M(0) = 0 and trace M(t) = t, 0 ≤ t ≤ d.
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Conversely, if U0 ∈ Uconst(J) and M(t) is a nondecreasing m × m mvf on
the closed interval [0, d], then the mvf U(λ) is well defined by formula (4.29).
Moreover, U ∈ E ∩ U(J) and U(0) = U0.

Remark 4.14 If M(t) is a continuous nondecreasing m × m mvf on the
interval [0, d], then the mvf

Ut(λ) =

t
�∫

0

exp{iλdM(s)J}, 0 ≤ t ≤ d, (4.30)

is the unique continuous solution of the integral equation

y(t, λ) = y(0, λ) + iλ

∫ t

0
y(s, λ)dM(s)J, 0 ≤ t ≤ d, (4.31)

that meets the initial condition

y(0, λ) = Im.

This particular solution Ut(λ) is called the matrizant (fundamental solu-
tion) of the integral system (4.31) and its value Ud(λ) at the right end point
of the interval [0, d] is called the monodromy matrix of the system. Thus,
Potapov’s theorem guarantees that every mvf U ∈ E ∩ U(J) with U(0) = Im

can be identified as the monodromy matrix of an integral system of the form
(4.31) based on a continuous nondecreasing m×m mvf M(t) with M(0) = 0.

Remark 4.15 If U0 = Im and

M(t) =
∫ t

0
H(s)ds for 0 ≤ t ≤ d, (4.32)

where

H ∈ Lm×m
1 ([0, d]) and H(t) ≥ 0 a.e. on [0, d], (4.33)

then the matrizant Ut(λ) of the integral equation (4.31) is absolutely contin-
uous on the interval [0, d] for every λ ∈ C and is also the matrizant of the
differential system

d

dt
y(t, λ) = iλy(t, λ)H(t)J, a.e. on [0, d], (4.34)
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i.e., Ut(λ) is the unique absolutely continuous solution of this differential
system that satisfies the initial condition

y(0, λ) = Im.

Thus, in view of Potapov’s theorem, every mvf U ∈ E ∩ U(J) with U(0) = Im

is the monodromy matrix of a differential system of the form (4.34) with a
mvf H(t) that satisfies the conditions (4.33). Conversely, every monodromy
matrix U(λ) of such a differential system belongs to the class E ∩ U(J) with
U(0) = Im and then may be written as the multiplicative integral

U(λ) =

d
�∫

0

exp{iλH(t)dtJ} def
=

d
�∫

0

exp{iλdM(t)J},

where M(t) is defined in formula (4.32). The mvf H(t) in this representation
is not uniquely defined by U(λ), even if it is subject to the usual normaliza-
tion condition trace H(t) = 1 a.e. on [0, d].

In view of the inclusion

E ∩ U(J) ⊂ E ∩ Πm×m,

Theorem 3.108 guarantees that every entire J-inner mvf U(λ) is of expo-
nential type and satisfies the Cartwright condition and

τ+(U) = τ+
U and τ−(U) = τ−

U .

Therefore,

τ(U) = max{τ+
U , τ−

U }.

The multiplicative integral representation (4.29) yields the bound

τ(U) ≤ trace(M(d)) (4.35)

and the formula

det U(λ) = det U(0) exp{iλtrace(M(d)J)}.

Thus,

det U(λ) = γea(λ)

where |γ| = 1 and a ∈ R.
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Lemma 4.16 If U ∈ U(J) with J �= ±Im and UP and UQ are defined by
formula (4.6), then

τ+
U = τ+

UQ
≥ 0 and τ−

U = τ−
UP

≥ 0

Proof The first assertion follows from (4), (5) and (7) of Lemma 2.6; the
second follows from (10) and (11) of the same lemma. �

4.4 Multiplicative representations in the class P◦(J)

Let U ∈ U(J) be a rational mvf with all its poles on R that is normalized by
the condition U(∞) = Im . Then U(λ) can be expressed as a finite product
of normalized elementary BP factors of the third kind

U(λ) =

n
�∏

k=1

(Im − cωk
(λ)HkJ) =

n
�∏

k=1

exp{−cωk
(λ)HkJ}, (4.36)

where

ω1 ≤ · · · ≤ ωn, Hk ≥ 0 and HkJHk = 0 for k = 1, . . . , n.

The mvf U(λ) may also be expressed as a multiplicative integral

U(λ) =

d
�∫

0

exp
{

1
−2πi(α(t) − λ)

dM(t)J
}

, (4.37)

where d = 1,

M(t) =

{
nH1t for 0 ≤ t ≤ 1∑m−1

k=1 Hk + Hm(nt − m + 1) for m−1
n ≤ t ≤ m

n , 2 ≤ m ≤ n

and

α(t) = ω[nt]+1 for 0 ≤ t < 1 and α(1) = ωn.

In the representation (4.37) the m × m mvf M(t) is nondecreasing ab-
solutely continuous on the interval [0, 1] and α(t) is a scalar nondecreasing
continuous function on the interval [0, 1].

Theorem 4.17 (V. P. Potapov) Let U ∈ P◦(J) and assume that U

satisfies the following conditions:
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(1) The mvf’s U(λ) and U(λ)−1 are holomorphic in C+.

(2) U(λ) is holomorphic at the point λ = ∞.

(3) U(µ)∗JU(µ) = J for every µ ∈ R with |µ| ≥ γ for some γ > 0.

(4) U(∞) = Im.

Then the mvf U(λ) admits a multiplicative integral representation of the form
(4.37), where M(t) is a nondecreasing absolutely continuous m×m mvf on
the interval [0, d] with M(0) = 0 and α(t) is a nondecreasing continuous
scalar function on the interval [0, d].
Conversely, a mvf U(λ), that is defined in C+ by formula (4.37), where
M(t) is a nondecreasing m × m mvf on the interval [0, d] and α(t) is a
nondecreasing continuous scalar function on the interval [0, d], belongs to
the class P◦(J) and satisfies the conditions (1)–(4).

Proof The converse part of the theorem is easily checked:

U(λ) = lim
n↑∞

Un(λ)

where

Un(λ) =

n
�∏

k=1

exp{−cα(tk)(λ)[M(tk) − M(tk−1)]J}

and

tk =
kd

n
for k = 0, 1, . . . , n.

The mvf’s Un ∈ P◦(J) and satisfy the conditions (1)–(4). Moreover, Un(λ)
converges uniformly to U(λ) on every compact subset of C+ and in a neigh-
borhood of the point λ = ∞.

The proof of the direct part of the theorem is much more difficult. see
Potapov [Po60] and Zolotarev [Zol03], or Brodskii [Bro72] for details. �

Remark 4.18 Let U ∈ P◦(J) and assume that U satisfies conditions (2)-
(3) of the previous theorem. Then the factors U (r)(λ) and U (�)(λ) in (4.26)
satisfy the conditions (1)–(3) and can be normalized to meet (4) also.

Theorem 4.19 Let U ∈ P◦(J) and assume that U(λ) and U(λ)−1 are
holomorphic in C+. Then

U(λ) = U0U1(λ)U2(λ)U3(λ),
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where U0 ∈ Uconst(J), U1, U3 ∈ E ∩ U(J), U1(0) = U3(0) = Im and U2(λ)
admits a multiplicative integral representation

U2(λ) =

d
�∫

0

exp
{

1 + α(t)λ
−2πi(α(t) − λ)

dM(t)J
}

(4.38)

where M(t) is a nondecreasing absolutely continuous m × m mvf on [0, d]
with trace M(t) = t and α(t) is a scalar nondecreasing function on the open
interval (0, d).

Proof This follows from Theorem 5.3 of Zolotarev [Zol03]. �
Theorems 4.11, 4.19 and Potapov’s theorem yield a multiplicative repre-

sentation for every mvf U ∈ P◦(J).

4.5 The classes P(jpq ) and U(jpq )

Our next objective is to reexpress a number of the preceding formulas in
more explicit block form for J = jpq .

Theorem 4.20 Let

W (λ) =
[

w11(λ) w12(λ)
w21(λ) w22(λ)

]
and S(λ) =

[
s11(λ) s12(λ)
s21(λ) s22(λ)

]
be the standard four block decompositions of a mvf W ∈ P(jpq) and its PG
transform S = PG(W ) (i.e., the 11 blocks are p × p and the 22 blocks are
q × q). Then:

(1) S ∈ Sm×m, where m = p + q.

(2) det w22(λ) �≡ 0.

(3) The block entries in the mvf S(λ) can be calculated explicitly in terms
of the block entries of W (λ):

S(λ) =
[

w11(λ) w12(λ)
0 Iq

] [
Ip 0

w21(λ) w22(λ)

]−1

=
[

Ip w12(λ)
0 Iq

] [
w11(λ) 0

0 w22(λ)−1

] [
Ip 0

−w21(λ) Iq

]
,
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i.e.,

S(λ) =
[
w11(λ) − w12(λ)w22(λ)−1w21(λ) w12(λ)w22(λ)−1

−w22(λ)−1w21(λ) w22(λ)−1

]
. (4.39)

(4) det s22(λ) �≡ 0 and s22(λ) = w22(λ)−1.

(5) Every mvf S ∈ Sm×m with blocks s11(λ) and s22(λ) of sizes p×p and
q × q, respectively, such that det s22(λ) �≡ 0 is the PG transform of a
mvf W ∈ P(jpq).

(6) The mvf W (λ) can be recovered from its PG transform S = PG(W )
by the formula W = PG(S):

W (λ) =
[
s11(λ) s12(λ)

0 Iq

] [
Ip 0

s21(λ) s22(λ)

]−1

=
[
Ip s12(λ)
0 Iq

] [
s11(λ) 0

0 s22(λ)−1

] [
Ip 0

−s21(λ) Iq

]
(4.40)

(7) ‖s12(λ)‖ < 1 and ‖s21(λ)‖ < 1 at each point λ ∈ C+.

(8) h
+
W = h

+
s−1
22

.

(9) det W (λ) = det s11(λ)
det s22(λ) at each point λ ∈ h

+
W .

(10) W ∈ P◦(jpq) ⇐⇒ det s11(λ) �≡ 0.

(11) If W ∈ P◦(jpq), then h
+
W −1 = h

+
s−1
11

and

W (λ)−1 =
[

Ip 0
s21(λ) Iq

] [
s11(λ)−1 0

0 s22(λ)

] [
Ip −s12(λ)
0 Iq

]
(4.41)

at every point λ ∈ h
+
W −1 .

Proof This is an easy consequence of Lemmas 2.3 and 2.7. �

Remark 4.21 In view of formulas (4.2) and (4.3), formulas (4.39) and
(4.40) may be reexpressed as

S =
[
Ip −w12

0 −w22

]−1 [
w11 0
w21 −Iq

]
and W =

[
Ip −s12

0 −s22

]−1 [
s11 0
s21 −Iq

]
.
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Corollary 4.22 Let wij denote the blocks in the standard four block decom-
position of a mvf W ∈ P(jpq). Then:

(1) h
+
W = h+

w22
.

(2) ‖w22(λ)‖ ≤ ‖W (λ)‖ ≤ 3‖w22(λ)‖ for every point λ ∈ C+ ∩ hW .

If W ∈ P◦(jpq) and S = PG(W ), then

(3) s11(λ) = w11(λ) − w12(λ)w22(λ)−1w21(λ) for λ ∈ h
+
W , C+ ∩ hW −1 =

C+ ∩ hs−1
11

and

‖s11(λ)−1‖ ≤ ‖W−1(λ)‖ ≤ 3‖s11(λ)−1‖

for every point λ ∈ C+ ∩ hW −1 .

If W ∈ U(jpq), then:

(4) h
+
W # = h

+
w#

11
.

(5) ‖w#
11(λ)‖ ≤ ‖W#(λ)‖ ≤ 3‖w#

11(λ)‖ for every point λ ∈ C+ ∩ hW # .

Proof Assertions (2), (3) and (5) follow from the corresponding inequalities
in Lemma 2.7. Assertions (1) and (4) follow from (8) and (11) of Theorem
4.20, since s−1

22 = w22 and s−1
11 = w#

11 when U ∈ U(jpq) (as is spelled out in
Lemma 4.24). �

Corollary 4.23 Let wij denote the blocks in the standard four block decom-
position of a mvf W ∈ P(jpq). Then:

(1) W ∈ L̃m×m
2 ⇐⇒ w22 ∈ L̃q×q

2 .
(2) W ∈ Lm×m

∞ ⇐⇒ w22 ∈ Lq×q
∞ .

If W ∈ U(jpq), then also

(3) W ∈ L̃m×m
2 ⇐⇒ w11 ∈ L̃p×p

2 ⇐⇒ (Ip − s12s
∗
12)

−1 ∈ L̃p×p
1 ⇐⇒

(Iq − s21s
∗
21)

−1 ∈ L̃q×q
1 .

(4) W ∈ Lm×m
∞ ⇐⇒ w11 ∈ Lp×p

∞ ⇐⇒ ‖s12‖∞ < 1 ⇐⇒ ‖s21‖∞ < 1.

Proof This is immediate from the inequalities in the preceding corollary
and the fact that W−1(λ) = jpqW

#(λ)jpq for every point λ ∈ hW ∩ hW #

when W ∈ U(jpq). �

Lemma 4.24 Let W ∈ U(jpq) and let S = PG(W ). Then:

(1) S ∈ Sm×m
in .
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(2) s11(λ) = w#
11(λ)−1 for every point λ ∈ h

w−#
11

.

(3) s12 = (w#
11)

−1w#
21 and s21 = −w#

12(w
#
11)

−1.

Conversely, if the lower q × q diagonal block s22 of S ∈ Sm×m
in satisfies the

condition det s22(λ) �≡ 0, then S = PG(W ) for some mvf W ∈ U(jpq).

Proof The first assertion (1) follows from Lemma 2.3, whereas the second
follows from the identity

W (λ)jpqW
#(λ) = jpq, for λ ∈ hW ∩ hW # .

which implies that

W#(λ) = jpqW (λ)−1jpq

and hence, in view of formula (4.41), that (2) and (3) hold. �

Lemma 4.25 The block entries in the PG transform S of W ∈ U(jpq) are
subject to the following two constraints:

(1) w#
11(λ)s11(λ) = Ip for every point λ ∈ C+ ∩ hW # .

(2) w22(λ)s22(λ) = Iq for every point λ ∈ C+ ∩ hW .

They are also subject to the following four inequalities, at every point λ ∈ C+,
with equality at at almost all points λ ∈ R:

(3) Iq − s21(λ)s21(λ)∗ ≥ s22(λ)s22(λ)∗.

(4) Iq − s12(λ)∗s12(λ) ≥ s22(λ)∗s22(λ).

(5) Ip − s21(λ)∗s21(λ) ≥ s11(λ)∗s11(λ).

(6) Ip − s12(λ)s12(λ)∗ ≥ s11(λ)s11(λ)∗.

Proof Assertions (1) and (2) are obtained in Lemma 4.24 and Theorem 4.20,
respectively. The inequalities (3)–(6) are in force at every point λ ∈ C+ with
equality a.e. on R, since S ∈ Sm×m

in .

4.6 Associated pairs of the first kind

In view of Theorem 4.20, the block diagonal entries in the PG transform of
a mvf W ∈ P◦(jpq) satisfy the conditions

s11 ∈ Sp×p, det s11(λ) �≡ 0, s22 ∈ Sq×q and det s22(λ) �≡ 0.
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Therefore, s11 and s22 admit both left and right inner-outer factorizations.
In particular we shall always write

s11(λ) = b1(λ)ϕ1(λ) and s22(λ) = ϕ2(λ)b2(λ), (4.42)

where b1 ∈ Sp×p
in , ϕ1 ∈ Sp×p

out , b2 ∈ Sq×q
in and ϕ2 ∈ Sp×p

out . We shall refer to the
mvf’s b1(λ) and b2(λ), which are determined up to a constant unitary factor
(on the right for b1(λ) and on the left for b2(λ)) as an associated pair of
W (λ) and shall write {b1, b2} ∈ ap(W ), for short. If {b1, b2} ∈ ap(W ), then
ap(W ) = {{b1u, vb2} : u and v are constant unitary matrices of sizes p ×
p and q × q}.

Lemma 4.26 If W ∈ P◦(jpq) and if {b1, b2} ∈ ap(W ), then:

(1) h
+
W = h

+
b−1
2

and h
+
W −1 = h

+
b−1
1

.

(2) W ∈ Nm×m
+ ⇐⇒ w22 ∈ N q×q

out ⇐⇒ b2(λ) = constant.

(3) W−1 ∈ Nm×m
+ ⇐⇒ w#

11 ∈ N p×p
out ⇐⇒ b1(λ) = constant.

Proof The first assertion follows from Corollary 4.22 and the definition of
ap(W ). The remaining two assertions are a straightforward consequence of
the definitions and formulas (4.39), (4.41) and Lemma 4.24. �

Lemma 4.27 Let W ∈ U(jpq) and let bj and ϕj , j = 1, 2, be defined for W

as in (4.42). Then there exists a constant γ ∈ C with |γ| = 1 such that:

det ϕ1(λ) = γ det ϕ2(λ) (4.43)

for every point λ ∈ C+ and

det W (λ) = γ
det b1(λ)
det b2(λ)

(4.44)

for every point λ ∈ C+ at which det b2(λ) �= 0.

Proof Lemma 4.25 implies that

det {s22(µ)s22(µ)∗} = det {Iq − s21(µ)s21(µ)∗}

= det {Ip − s21(µ)∗s21(µ)}

= det {s11(µ)∗s11(µ)}
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for almost all points µ ∈ R and hence that

|det ϕ2(µ)| = |det ϕ1(µ)|
for almost all points µ ∈ R.

This serves to complete the proof of (1), since a scalar outer function is
determined uniquely by its modulus on R, up to a multiplicative constant
factor of modulus one. The second assertion is an immediate consequence of
the first and item (9) in Theorem 4.20. �

Lemma 4.28 Let W and W1 belong to P◦(jpq), let {b1, b2} ∈ ap(W ) and
{b(1)

1 , b
(1)
2 } ∈ ap(W1) and suppose that W−1

1 W ∈ P◦(jpq). Then

(b(1)
1 )−1b1 ∈ Sp×p

in and b2(b
(1)
2 )−1 ∈ Sq×q

in .

Proof Let W2 = W−1
1 W and let w

(k)
ij denote the ij block of Wk . Then, since

w11 = w
(1)
11 w

(2)
11 + w

(1)
12 w

(2)
21 ,

it follows readily from Lemma 4.24 that (in a self-evident notation for the
entries in the corresponding PG transforms)

s11 = s
(1)
11 {Ip − s

(2)
12 s

(1)
21 }−1s

(2)
11 (4.45)

and hence, in terms of the adopted notation for the inner-outer factorization
of s11 and s

(k)
11 , that

b1ϕ1 = b
(1)
1 ϕ

(1)
1 {Ip − s

(2)
12 s

(1)
21 }−1b

(2)
1 ϕ

(2)
1 .

Therefore,

(b(1)
1 )−1b1ϕ1 ∈ N p×p

+ ∩ Lp×p
∞ = Hp×p

∞ ,

by the Smirnov maximum principle (Theorem 3.59), since {Ip − s
(2)
12 s

(1)
21 } is

outer in Hp×p
∞ by Lemma 3.54. This implies that (b(1)

1 )−1b1 ∈ Sp×p
in .

A similar analysis of the formula

w22 = w
(1)
21 w

(2)
12 + w

(1)
22 w

(2)
22

= w
(1)
22 {Iq − s

(1)
21 s

(2)
12 }w

(2)
22

yields the identity

s22 = s
(2)
22 {Iq − s

(1)
21 s

(2)
12 }−1s

(1)
22 , (4.46)

which leads easily to the second conclusion, much as before. �
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Lemma 4.29 Let the mvf’s W and W1 belong to P◦(jpq) and suppose that
either W−1

1 W ∈ P◦(jpq) or WW−1
1 ∈ P◦(jpq). Then

h
+
W ⊆ h

+
W1

and h
+
W −1 ⊆ h

+
W −1

1
. (4.47)

Proof Suppose first that W−1
1 W ∈ P◦(jpq) and let {b1, b2} ∈ ap(W ) and

{b(1)
1 , b

(1)
2 } ∈ ap(W1). Then Lemma 4.26 and Corollary 4.22 guarantee that

h
+
W = h+

w22
= h

+
s−1

22
= h

+
b−1
2

, (4.48)

h
+
W1

= h
+
(b(1)

2 )−1
, (4.49)

h
+
W −1 = h

+
s−1
11

= h
+
b−1
1

(4.50)

and

h
+
W −1

1
= h+

(b(1)
1 )−1

. (4.51)

Moreover, by Lemma 4.28,

(b(1)
1 )−1 = ub−1

1 and (b(1)
2 )−1 = b−1

2 v

with u ∈ Sp×p
in and v ∈ Sq×q

in . Therefore,

h
+
b−1
1

⊆ h
+
(b(1)

1 )−1
and h

+
b−1
2

⊆ h
+
(b(1)

2 )−1
. (4.52)

The inclusions in (4.47) for the case W−1
1 W ∈ P◦(jpq) now follow from the

inclusions in (4.52) and the equalities (4.48)–(4.51).
Finally, since W ∈ P◦(jpq) ⇐⇒ Wτ ∈ P◦(jpq) the inclusions for the case

WW−1
1 ∈ P◦(jpq) follow from the first case by considering transposes. �

Corollary 4.30 Let W = W1W2, where the mvf’s W1 and W2 belong to
P◦(jpq). Then W ∈ P◦(jpq) and

h
+
W = h

+
W1

∩ h
+
W2

and h
+
W −1 = h

+
W −1

1
∩ h

+
W −1

2
. (4.53)

Proof The inclusions in one direction follow from Lemma 4.29. The opposite
inclusions are self-evident. �

Lemma 4.31 Let W = W1W2, where W1 and W2 both belong to P◦(jpq)
and let {b(j)

1 , b
(j)
2 } ∈ ap(Wj) for j = 1, 2 and {b1, b2} ∈ ap(W ). Then

det b1 = γ1 det b
(1)
1 det b

(2)
1 and det b2 = γ2 det b

(1)
2 det b

(2)
2 , (4.54)

where γ1, γ2 ∈ C and |γ1| = |γ2| = 1.
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Proof Formula (4.45) implies that

det s11 det {Ip − s
(2)
12 s

(1)
21 } = det s

(1)
11 det s

(2)
11 . (4.55)

Therefore, since the second factor on the left is an outer function in H∞ by
Lemma 3.54, the first equality in (4.54) follows by matching inner parts in
formula (4.55). The second equality follows from (4.46) in much the same
way. �

In the sequel we shall adopt the notion of associated pairs for mvf’s U ∈
P◦(J) for arbirary signature matrices J that are unitarily equivalent to jpq .
Thus, if

J = V ∗jpqV

for some constant unitary matrix V , we shall say that {b1(λ), b2(λ)} is an
associated pair of the first kind for U(λ), if {b1, b2} ∈ ap(W ), where
W (λ) = V U(λ)V ∗ and shall write

{b1, b2} ∈ apI (U).

Lemma 4.32 The set apI(U) depends upon the choice of the unitary matrix
V only through extra unitary constant factors, i.e., b1(λ) −→ u1b1(λ) and
b2(λ) −→ b2(λ)u2, where u1 and u2 are unitary matrices of sizes p × p and
q × q, respectively.

Proof If J = V ∗
1 jpqV1, where V1 is another unitary matrix, then, since

V2 = V1V
∗ commutes with jpq , it must be of the form V2 = diag {u1, u2},

where u1 and u2 are unitary matrices of sizes p × p and q × q, respectively.
Consequently,

V1 =
[

u1 0
0 u2

]
V.

�

Lemma 4.33 Let U ∈ P◦(J), J �= ±Im, and let {b1, b2} ∈ apI (U). Then

U ∈ Nm×m
+ ⇐⇒ b2(λ) is constant

and

U−1 ∈ Nm×m
+ ⇐⇒ b1(λ) is constant.

Proof It suffices to consider the case J = jpq . But then the conclusions are
contained in Lemma 4.26. �
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Lemma 4.34 Let U = U1U2, where Uk ∈ P◦(J) for k = 1, 2 and J �= ±Im.
Then:

(1) U ∈ Nm×m
+ if and only if U1 and U2 both belong to Nm×m

+ .

(2) U−1 ∈ Nm×m
+ if and only if U−1

1 and U−1
2 both belong to Nm×m

+ .

Proof It suffices to consider the case J = jpq . But then the stated results
follow for W ∈ P◦(jpq) from formulas (4.45), (4.46) and Lemmas 4.26 and
4.28. �

4.7 The classes P(Jp), P(jp , Jp), U(Jp) and U(jp , Jp )

Let m = 2p and let

A(λ) =
[

a11(λ) a12(λ)
a21(λ) a22(λ)

]
be a meromorphic m×m mvf in C+ with blocks aij(λ) of size p× p, and let

B(λ) = A(λ)V =
[

b11(λ) b12(λ)
b21(λ) b22(λ)

]
(4.56)

and

W (λ) = VA(λ)V =
[

w11(λ) w12(λ)
w21(λ) w22(λ)

]
, (4.57)

where V is defined in formula (2.5). Then

A ∈ P(Jp) ⇐⇒ B ∈ P(jp, Jp) ⇐⇒ W ∈ P(jp),

A ∈ P◦(Jp) ⇐⇒ B ∈ P◦(jp, Jp) ⇐⇒ W ∈ P◦(jp),

and

A ∈ U(Jp) ⇐⇒ B ∈ U(jp, Jp) ⇐⇒ W ∈ U(jp).

It turns out to be more convenient to work with the mvf’s B ∈ P(jp, Jp)
than the mvf’s A ∈ P(Jp). A mvf B ∈ P(jp, Jp) is meromorphic in C+ and
meets the constraint

B(λ)∗JpB(λ) ≤ jp for every λ ∈ h
+
B. (4.58)
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If B ∈ U(jp, Jp), then

B ∈ P(jp, Jp) and B(µ)∗JpB(µ) = jp for almost all points µ ∈ R.

(4.59)
In view of (2.76), condition (4.58) is equivalent to the condition

B(λ)jpB(λ)∗ ≤ Jp for every λ ∈ h
+
B, (4.60)

whereas condition (4.59) is equivalent to the condition

B(µ)jpB(µ)∗ = Jp for almost all points µ ∈ R. (4.61)

In particular, (4.60) implies that:

b22(λ)b22(λ)∗ − b21(λ)b21(λ)∗ ≥ 0 for λ ∈ h
+
B, (4.62)

whereas (4.58) implies that

b12(λ)∗b22(λ) + b22(λ)∗b12(λ) ≥ Ip for λ ∈ h
+
B, (4.63)

and (4.59) implies that

b22(µ)b22(µ)∗ − b21(µ)b21(µ)∗ = 0 a.e. on R. (4.64)

Lemma 4.35 Let B ∈ P(jp, Jp). Then:

(1) det b22(λ) �= 0 for every point λ ∈ h+
B .

(2) The mvf c0 = b12b
−1
22 belongs to Cp×p.

(3) The mvf χ = b−1
22 b21 belongs to Sp×p.

(4) The mvf ρ−1
i (b22)−1 belongs to Hp×p

2 .

(5) ρ−1
i (b11 − b12b

−1
22 b21) belongs to Hp×p

2 .

If B ∈ U(jp, Jp), then

(6) χ = b#
22(b

#
21)

−1 and χ ∈ Sp×p
in .

(7) b11 − b12b
−1
22 b21 = −(b#

21)
−1.

(8) ρ−1
i (b#

21)
−1 ∈ Hp×p

2 .

Proof Let W = VB. Then W ∈ P(jp) and b22 can be expressed in terms of
the blocks wij and sij of W and the PG transform S of W by the formulas

b22 =
1√
2
(w12 + w22) =

1√
2
(Ip + s12)w22. (4.65)
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By Theorem 4.20, s12 ∈ Sp×p, s12(λ)∗s12(λ) < Ip and det w22(λ) �= 0 for
λ ∈ h

+
W and s22 = w−1

22 belongs to Sp×p. Thus, (1) holds. Moreover, (2) holds
because

c0 = b12b
−1
22 = (−w12 + w22)(w12 + w22)−1 = (Ip − s12)(Ip + s12)−1 (4.66)

and s12 ∈ Sp×p. Furthermore, the inequality (4.62) yields (3).
In view of (4.65), the mvf

b−1
22 =

√
2s22(Ip + s12)−1 belongs to N p×p

+ , (4.67)

since s22 ∈ Sp×p and, by Lemma 3.54, (Ip + s12) ∈ N p×p
out . Moreover, the

inequalities

c0 + c∗0 = (b∗22)
−1(b∗12b22 + b∗22b12)b−1

22 ≥ (b∗22)
−1b−1

22

imply that ρ−1
i b−1

22 ∈ Lp×p
2 , since in view of condition (3.11), Rc0 ∈ L̃p×p

1 .
Assertion (4) now follows by the Smirnov maximum principle, since ρ−1

i b−1
22 ∈

Lp×p
2 ∩N p×p

+ .
Next, in view of formulas[

b11(λ) b12(λ)
b21(λ) b22(λ)

]
=

1√
2

[
−w11(λ) + w21(λ) −w12(λ) + w22(λ)
w11(λ) + w21(λ) w12(λ) + w22(λ)

]
(4.68)

and (4.66), the mvf

α = b11 − b12b
−1
22 b21, (4.69)

may be reexpressed in terms of the blocks sij of S as

α =
1√
2
{−w11 + w21 − (Ip − s12)(Ip + s12)−1(w11 + w21)}

=
√

2{−(Ip + s12)−1w11 + s12(Ip + s12)−1w21}

=
√

2(Ip + s12)−1(−w11 + w12w
−1
22 w21).

Thus,

α = −
√

2(Ip + s12)−1s11 (4.70)

belongs to N p×p
+ , since (Ip + s12) ∈ N p×p

out and s11 ∈ Sp×p. Moreover, as

αα∗ ≤ 2(Ip + s12)−1s11s
∗
11(Ip + s12)−∗

≤ 2(Ip + s12)−1(Ip − s12s
∗
12)(Ip + s12)−∗

= 2Rc0
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and c0 ∈ Cp×p, it follows that αα∗ ∈ L̃p×p
1 . Thus, ρ−1

i α ∈ Lp×p
2 ∩ N p×p

+ and
the Smirnov maximum principle serves to complete the proof of (5).

If B ∈ U(jp, Jp), then (6) follows from (3) and (4.64). Next, the identity

B(λ)jpB
#(λ) = Jp on h

+
B ∩ h

+
B#

implies that

b11b
#
21 − b12b

#
22 = −Ip on h+

B ∩ h+
B#

and hence, in view of (6), that

α = b11 − b12b
−1
22 b21 = b11 − b12b

#
22(b

#
21)

−1

= (b11b
#
21 − b12b

#
22)(b

#
21)

−1 = −(b#
21)

−1,

which justifies (7). Finally, (8) follows from (7) and (5). �

4.8 Associated pairs of the second kind

Let B ∈ P◦(jp, Jp). Then the Schur complement factorization

B =
[

Ip b12b
−1
22

0 Ip

] [
b11 − b12b

−1
22 b21 0

0 b22

] [
Ip 0

b−1
22 b21 Ip

]
,

can be reexpressed in terms of c0, α and χ as

B =
[

Ip c0

0 Ip

] [
α 0
0 b22

] [
Ip 0
χ Ip

]
. (4.71)

Consequently, detα(λ) �≡ 0, since

det B = det α · det b22 (4.72)

and detB(λ) �≡ 0 by assumption. Thus,

α ∈ N p×p
+ and detα(λ) �≡ 0 on h+

α

and

b−1
22 ∈ N p×p

+ and det b22(λ)−1 �≡ 0 on h
+
b−1

22
.

Therefore, −α and b−1
22 have inner-outer and outer-inner factorizations in

N p×p
+ :

−α = b3ϕ3 and b−1
22 = ϕ4b4, (4.73)
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where bj ∈ Sp×p
in and ϕj = N p×p

out , j = 1, 2. If B ∈ U(jp, Jp), then α =
−(b#

21)
−1 and the formulas in (4.73) can be reexpressed as

(b#
21)

−1 = b3ϕ3 and b−1
22 = ϕ4b4. (4.74)

The pair {b3, b4} is called an associated pair of the mvf B, and the set of all
such pairs is denoted by ap(B). Thus, {b3, b4} ∈ ap(B). Moreover, if {b3, b4}
is a fixed associated pair of B, then ap(B) = {{b3u, vb4} : u and v are
unitary p × p matrices}.

Now let A ∈ P◦(Jp) and let

B(λ) = A(λ)V and W(λ) = VA(λ)V.

Then B ∈ P◦(jp, Jp) and W ∈ P◦(jp). Let S = PG(W ) and let bij , wij and
sij denote the blocks of B, W and S, respectively.

The set apI (A) = ap(W ) of associated pairs of the first kind for A was
defined earlier. Analogously, we define apII(A) = ap(B) as the set of asso-
ciated pairs of the second kind for A. These definitions can be extended
to mvf’s in the class P◦(J) based on a signature matrix J that is unitarily
equivalent to Jp: If

J = V ∗JpV for some unitary matrix V ∈ C
m×m, (4.75)

then
U ∈ P(J) ⇐⇒ V UV ∗ ∈ P(Jp)

U ∈ P◦(J) ⇐⇒ V UV ∗ ∈ P◦(Jp)

U ∈ U(J) ⇐⇒ V UV ∗ ∈ U(Jp).

If U ∈ P◦(J), then the the pair {b3, b4} is said to be an associated pair
of the second kind for U(λ) and we write {b3, b4} ∈ apII (U) if {b3, b4} ∈
apII (V UV ∗). The set apII (U) depends upon the choice of the unitary matrix
V in (4.75).

Lemma 4.36 Let A ∈ P◦(Jp) and let W = VAV. Let {b1, b2} ∈ apI (A) and
{b3, b4} ∈ apII (A). Then

1
2
(Ip + s12)b3 = b1ϕ and b4(Ip + s12)/2 = ψb2 (4.76)

for some ϕ ∈ Sp×p
out and ψ ∈ Sp×p

out , where s12 = w12w
−1
22 and wij are the

blocks of the mvf W .
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Proof Formulas (4.70), (4.73) and (4.42) imply that

s11 = b1ϕ1 =
(
(Ip + s12)/

√
2
)

b3ϕ3,

and hence that

1
2
(Ip + s12)b3 =

(
1√
2

)
b1ϕ1ϕ

−1
3 .

Moreover, ϕ = (1/
√

2)ϕ1ϕ
−1
3 ∈ N p×p

out because ϕj ∈ N p×p
out . Therefore, since

‖ϕ‖∞ = ‖(Ip + s12)/2‖∞ ≤ 1, the maximum principle guarantees that ϕ ∈
Sp×p

out .
The second assertion in (4.76) may be verified in much the same way via

formulas (4.67), (4.73) and (4.42). �

Remark 4.37 A stronger result on the connection between apI (A) and
apII (A) will be obtained later in Lemma 7.68.

Lemma 4.38 Let A ∈ P◦(Jp) and let {b1, b2} ∈ apI (A) and let {b3, b4} ∈
apII (A). Then the following equivalences are valid:

(1) A ∈ Nm×m
+ ⇐⇒ b2 is a constant matrix ⇐⇒ b4 is a constant

matrix.

(2) A−1 ∈ Nm×m
+ ⇐⇒ b1 is a constant matrix ⇐⇒ b3 is a constant

matrix.

Proof Since [
Ip c0

0 Ip

]
∈ Nm×m

out ,

[
Ip 0
χ Ip

]
∈ Nm×m

out ,

α ∈ N p×p
+ and b−1

22 ∈ N p×p
+ , formula (4.71) implies that

B ∈ Nm×m
+ ⇐⇒ b22 ∈ Nm×m

out ⇐⇒ b4 is a constant matrix (4.77)

and

B−1 ∈ Nm×m
+ ⇐⇒ α ∈ Nm×m

out ⇐⇒ b3 is a constant matrix. (4.78)

Moreover, the connections (4.76) imply that

b3 is a constant matrix ⇐⇒ b1 is a constant matrix
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and

b4 is a constant matrix ⇐⇒ b2 is a constant matrix

because (1
2 )(Ip + s12) ∈ Sp×p

out . Thus, (1) and (2) are valid, since

A ∈ Nm×m
+ ⇐⇒ B ∈ Nm×m

+

and

A−1 ∈ Nm×m
+ ⇐⇒ B−1 ∈ Nm×m

+ .

4.9 Singular and regular J-inner mvf’s

A mvf U ∈ U(J) is said to be singular if it belongs to the class Nm×m
out . The

class of singular J-inner mvf’s will be denoted US(J).

Lemma 4.39 Let U ∈ U(J), J �= ±Im, and let {b1, b2} ∈ apI (U). Then

(1) U ∈ US(J) ⇐⇒ b1 and b2 are both constant unitary matrices.

(2) If q = p and {b3, b4} ∈ apII (U), then U ∈ US(J) ⇐⇒ b3 and b4 are
both constant unitary matrices.

Proof Assertion (1) follows from the definition of the class Nm×m
out and

Lemma 4.26. Assertion (2) then follows from the connection (4.104) between
pairs {b1, b2} ∈ apI (A) and {b3, b4} ∈ apII (A), where A(λ) = V U(λ)V ∗ and
V is a unitary matrix such that J = V ∗JpV . �

Lemma 4.40 Let U ∈ P◦(J), J �= ±Im, and let S = PG(U). Then:

(1) U ∈ Nm×m
+ ⇐⇒ (P + QS)/2 ∈ Sm×m

out

(2) U−1 ∈ Nm×m
+ ⇐⇒ (Q + PS)/2 ∈ Sm×m

out

(3) If U ∈ U(J) and J �= ±Im, then

U ∈ US(J) ⇐⇒ (P + QS)/2 ∈ Sm×m
out and (Q + PS)/2 ∈ Sm×m

out .

Proof Without loss of generality we may assume that J = jpq . Then, in
view of Theorem 3.50, the four block decompositions

P + QS =
[
Ip s12

0 s22

]
and Q + PS =

[
s11 s12

0 Iq

]
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imply that

(P + QS)/2 ∈ Sm×m
out ⇐⇒ s22 ∈ Sq×q

out and

(Q + PS)/2 ∈ Sm×m
out ⇐⇒ s11 ∈ Sp×p

out .

Therefore, (1) and (2) follow immediately from Lemma 4.33; and (3) follows
from (1), (2) and Lemma 4.39. �

Lemma 4.41 The equivalence

U ∈ US(±Im) ⇐⇒ U±1 ∈ Sm×m
in ∩ Sm×m

out

exhibits the fact that if J = ±Im, then US(J) = Uconst(Im) is equal to the
class of constant m × m unitary matrices. Thus, if US(J) contains at least
one nonconstant mvf, then J �= ±Im.

Proof By definition, US(Im) = Sm×m
in ∩ Nm×m

out = Sm×m
in ∩ Sm×m

out .
Therefore, by Theorem 3.50, det U ∈ Sin ∩ Sout and hence as
U(λ)∗U(λ) ≤ Im in C+ and det U(λ)∗U(λ) = 1 in C+, it follows that U(λ)
is unitary at each point of C+ and consequently must be equal to a unitary
constant matrix.

Since U ∈ US(−Im) ⇐⇒ U−1 ∈ US(Im), the asserted conclusions are in
force for J = −Im too. �

Lemma 4.42 If U ∈ US(J), then det U(λ) ≡ c, where c is a constant with
|c| = 1.

Proof Let ϕ(λ) = det U(λ). Then, the result follows easily from the obser-
vation that ϕ ∈ Nout, since U±1 ∈ Nm×m

+ , and, at the same time, |ϕ(µ)| = 1
a.e. on R. �

The simplest examples of a mvf U ∈ US(J) are the elementary BP factors
of the third and fourth kind that are based on a constant m × m matrix E

such that E2 = 0 and EJ ≥ 0:

Uω(λ) = Im +
E

πi(λ − ω)
= exp

{
E

πi(λ − ω)

}
for ω ∈ R

and

U∞(λ) = Im + iλE = exp {iλE} .

The proof that these mvf’s belong to Nm×m
out follows from Remark 3.28.
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Other important examples are the 2p × 2p mvf’s

U(λ) =
[

Ip cs(λ)
0 Ip

]
and U(λ) =

[
Ip 0

cs(λ) Ip

]
,

which belong to US(Jp) when cs ∈ Cp×p and Rcs(µ) = 0 for almost all points
µ ∈ R.

Theorem 4.43 Let U = U1U2, where Uk ∈ U(J) for k = 1, 2. Then U ∈
US(J) if and only if U1 ∈ US(J) and U2 ∈ US(J).

Proof If J = ±Im, then there is nothing to check, since US(J) =Uconst(J).
If J �= ±Im , then the statement follows from Lemma 4.34. �

Theorem 4.44 A finite or convergent infinite left or right product of sin-
gular J-inner mvf’s is a singular J-inner mvf.

Proof Let Uj ∈ US(J) for j = 1, . . . , n and let U(λ) = U1(λ) · · ·Un(λ).
Then, by Theorem 4.43, U ∈ US(J). Convergent infinite products of singular
J-inner mvf’s are J-inner, by Corollary 4.62, which will be presented later.
The proof that convergent infinite products are singular is not so obvious.
It will follow from Theorem 4.60. �

An mvf U ∈ U(J) is said to belong to the class U�R(J) of left regular
J-inner mvf’s if the factorization U = U1U2 with U2 ∈ U(J) and U1 ∈ US(J)
implies that U1 ∈ Uconst(J). Similarly, an mvf U ∈ U(J) is said to belong
to the class UrR(J) of right regular J-inner mvf’s if the factorization U =
U1U2 with U1 ∈ U(J) and U2 ∈ US(J) implies that U2 ∈ Uconst(J).† Clearly,

U ∈ UrR(J) ⇐⇒ U∼ ∈ U�R(J).

The classes UrR(jpq) and UrR(Jp) are closely connected to the generalized
interpolation problems in the classes Sp×q and Cp×p, respectively, that will
be considered in Chapter 7. Moreover, convergent right BP products of ele-
mentary factors of the first and second kind are connected with bitangential
interpolation problems in the classes Sp×q if J = jpq and Cp×p if J = Jp.
These connections will be used to obtain characterizations of the classes
UrR(jpq) and U�R(jpq) in Chapter 7, and they were exploited in [Ar89] to
establish the following result:

† The usage of left and right that is adopted here is not uniformly adhered to in the literature.
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Theorem 4.45 Let U(λ) be a right BP product of elementary factors of the
first and second kind, i.e., with poles that are not on R. Then U ∈ UrR(J).
Moreover:

(1) If J �= ±Im and {b1, b2} ∈ apI (U), then the inner mvf’s b1 and b2

are both BP products.

(2) If J �= ±Im, q = p and {b3, b4} ∈ apII (U), then the inner mvf’s b3

and b4 are both BP products.

Conversely, if U ∈ UrR(J), J �= ±Im and either condition (1) or condition
(2) is in force, then U is a right BP product of elementary factors of the
first and second kind.

Remark 4.46 A right BP product U(λ) of elementary factors of the first
kind belongs to the Smirnov class Nm×m

+ and, consequently, if {b1, b2} ∈
apI (U) and {b3, b4} ∈ apII(U), then b2(λ) and b4(λ) are both constant. A
right BP product U(λ) of elementary factors of the second kind belongs to
the Smirnov class with respect to C−, i.e., U# ∈ Nm×m

+ , and, consequently,
if {b1, b2} ∈ apI (U) and {b3, b4} ∈ apII (U), then b1(λ) and b3(λ) are both
constant.

Remark 4.47 In view of Theorem 4.45, necessary and sufficient conditions
for a mvf U ∈ U(J), J �= ±Im, to be a right BP product of elementary
factors of the first and second kind may be obtained by combining any one
of the necessary and sufficient conditions for U ∈ UrR(J) (see Section 7.3)
with Theorem 3.86, which gives necessary and sufficient conditions for an
inner function b(λ) to be a BP product. If J = jpq, W is written in place of
U and {b1, b2} ∈ ap(W ), then:

(1) b2 is a BP product if and only if τ+
w22

= 0 and

lim
ν↓0

∫ ∞

∞

ln |detw22(µ + iν)|
1 + µ2 dµ =

∫ ∞

∞

ln |detw22(µ)|
1 + µ2 dµ. (4.79)

(2) b1 is a BP product if and only if τ−
w11

= 0 and

lim
ν↓0

∫ ∞

∞

ln |detw11(µ − iν)|
1 + µ2 dµ =

∫ ∞

∞

ln |detw11(µ)|
1 + µ2 dµ. (4.80)

Remark 4.48 In view of Lemma 4.41,

J = ±Im =⇒ UrR(J) = U(J).
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Theorem 4.49 Every mvf U ∈ U(J) admits a pair of factorizations:

U(λ) = U1(λ)U2(λ) where U1 ∈ UrR(J) and U2 ∈ US(J)

and

U(λ) = U1(λ)U2(λ) where U1 ∈ US(J) and U2 ∈ U�R(J).

These factorizations are unique up to constant J-unitary factors.

Proof The first assertion will be proved for J = jpq in Theorem 5.89 and
then again by another method in Theorem 7.52. The proof is easily adapted
to the case of general signature matrices J �= ±Im by considering W =
V ∗UV with a constant m × m unitary matrix V such that V ∗jpqV = J . If
J = ±Im , then, in view of Lemma 4.41 and Remark 4.48, the two indicated
factorizations are both trivial.

The second factorization for J �= ±Im follows from the first factorization
and the equivalences

U ∈ U(J) ⇐⇒ U∼ ∈ U(J)

U ∈ US(J) ⇐⇒ U∼ ∈ US(J)

U ∈ UrR(J) ⇐⇒ U∼ ∈ U�R(J).

�

Theorem 4.50 Let U(λ) be a left or right BP product of elementary factors
Uj ∈ U(J). Then:

(1) U ∈ U(J).

(2) If the Uj are elementary factors of the first or second kind, then a
left BP product belongs to the class UlR(J) and a right BP product
belongs to the class UrR(J).

(3) If the Uj are elementary factors of the third or fourth kind, then
U ∈ US(J).

Proof If U is a finite BP product, then the theorem is self-evident. If U is
an infinite BP product, then the asserted results follow from Corollary 4.62,
which will be presented later, and Theorems 4.44 and 4.45. �

Necessary and sufficient conditions for a mvf W ∈ U(jp) (recall that jp is
short for jpp) to be right regular are presented in [Ar89] and [Ar95a]. A new
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characterization is presented in Section 6. A simple sufficient condition for
a mvf U ∈ U(J) to be right and left regular will be presented in assertion
(1) of Theorem 5.90.

The next theorem belongs in this section. But its proof depends upon
Theorem 4.94, which will be established later.

Theorem 4.51 Let U ∈ U(J), where J �= ±Im and let

U = U1U2 where U1 ∈ UrR(J), U2 ∈ US(J) (4.81)

and

U = U3U4 where U3 ∈ US(J), U4 ∈ U�R(J). (4.82)

Then U1 is a right BP product if and only if U4 is a left BP product.

Proof Without loss of generality we may be assume that J = jpq and, in
keeping with our usual conventions, write W in place of U and Wj in place
of Uj . By Theorem 4.94, ap(W ) = ap(W1) and ap(Wτ ) = ap(Wτ

4 ). Let W1

be a right BP product of elementary factors of the first and second kind and
let {b1, b2} ∈ ap(W ). Then, since ap(W ) = ap(W1), Theorem 4.45 implies
that b1 and b2 are both BP products and thus, by Remark 4.47, τ+

w22
= 0,

τ−
w11

= 0 and conditions (4.79) and (4.80) are both in force. Therefore, as
the conditions in Remark 4.47 will also hold for the corresponding blocks
of Wτ , it follows that if {b̃1, b̃2} ∈ ap(Wτ ), then b̃1 and b̃2 will be BP
products. Consequently, Theorem 4.45 implies that Wτ

4 is a right BP product
of elementary factors of the first and second kind. Therefore, W4 is a left
BP product of elementary factors of the first and second kind. The proof in
the other direction is the same. �

Corollary 4.52 Let U ∈ U(J), where J �= ±Im. If U is a right (resp., left)
BP product of elementary factors of the first and second kind, then the mvf
U4 in the factorization (4.82) (resp., U1 in the factorization (4.81)) is a left
(resp., right) BP product of elementary factors of the first and second kind.

The next theorem is a much deeper result for the case m = 2.

Theorem 4.53 (V. E. Katsnelson) Let U(λ) be a 2 × 2 singular J-
inner mvf. Then there exist convergent right and left infinite products of
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elementary BP factors of the first kind such that ∞
�∏
j=1

Ur
ωj

(λ)

 U(λ) =

∞
�∏
j=1

U�
ωj

(λ).

Proof See [Kat89] and [Kat90]. �

4.10 Domains of holomorphy of J inner mvf’s

Theorem 4.54 Let U ∈ U(J), J �= ±Im, and let {b1, b2} ∈ apI (U). Then

h
+
U = h

+
b#
2
, h

−
U = h

−
b1

and hU ⊆ h
b#
2
∩ hb1 . (4.83)

Moreover:

(1) If U is entire, then b1 and b2 are entire.

(2) If U ∈ UrR(J), then hU = h
b#
2
∩hb1 and hence, U is entire if and only

if b1 and b2 are entire.

Proof It is enough to verify the theorem for W ∈ U(jpq) and {b1, b2} ∈
ap(W ). But then (4.83) follows from Lemma 4.26 and the fact that W−1 =
jpqW

#jpq . The verification of (2) is more complicated because it is necessary
to check points on R. Details may be found in [Ar90]. �

Corollary 4.55 Let U ∈ UrR(J), J �= ±Im, and suppose that {b1, b2} ∈
apI (U) and b1 and b2 are both entire mvf’s. Then U is entire.

Theorem 4.56 Let U ∈ U(J), J �= ±Im, let q = p and let {b3, b4} ∈
apII (U). Then

h
+
U = h

+
b#
4
, h

−
U = h

−
b3

and hU ⊆ h
b#
4
∩ hb3 .

If U is entire, then b3 and b4 are entire. If U ∈ UrR(J), then hU = h
b#
4
∩hb3 .

Proof The theorem follows from Lemma 4.36 and Theorem 4.54. �

Corollary 4.57 Let U ∈ UrR(J), J �= ±Im, let q = p and suppose that
{b3, b4} ∈ apII (U) are both entire mvf’s. Then U is entire.
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4.11 Growth constraints on J-inner mvf’s

Theorem 4.58 Let U ∈ U(J) with J unitarily equivalent to jpq and let
{b1, b2} ∈ apI (U). Then:

(1) h
+
U = C+ ⇐⇒ h−b2

= C− and, if h+
U = C+, then τ+

U = τ−
b2

and
τ+
U ≤ δ−b2

≤ qτ+
U .

(2) h
−
U = C− ⇐⇒ h

−
b1

= C− and, if h
−
U = C−, then τ−

U = τ−
b1

and
τ−
U ≤ δ−b1

≤ pτ−
U .

If q = p and {b3, b4} ∈ apII(U), then hb1 = hb3 , hb2 = hb4 and:

(3) If h
−
b3

= C−, then τ−
b1

= τ−
b3

and δ−b1
= δ−b3

.

(4) If h
−
b4

= C−, then τ−
b2

= τ−
b4

and δ−b2
= δ−b4

.

Proof The identifications of the domains of holomorphy are established in
Theorem 4.54. Assertions (1) and (2) may be verified for W ∈ U(jpq). Then,
in view of the inequalities in (8) and (9) of Lemma 2.7,

‖s22(λ)−1‖ ≤ ‖W (λ)‖ ≤ 3‖s22(λ)−1‖ for every λ ∈ h
+
W

and

‖s11(λ)−1‖ ≤ ‖W (λ)−1‖ ≤ 3‖s11(λ)−1‖ for every λ ∈ h
+
W −1 .

Consequently, by Lemma 3.112,

h
+
W = C+ =⇒ τ+

W = τ+
s−1
22

= τ+
b−1
2

= τ−
b2

and τ−
b2

≤ δ−b2
≤ qτ−

b2
,

whereas

h
−
W = C− =⇒ τ−

W = τ+
W −1 = τ+

s−1
11

= τ+
b−1
1

= τ−
b1

and τ−
b1

≤ δ−b1
≤ pτ−

b1
.

This justifies (1) and (2).
If q = p, then assertions (3)–(6) may be verified for A ∈ U(Jp) by ex-

ploiting the connection (4.104) between the two sets of associated pairs
{b1, b2} ∈ apI (A) and {b3, b4} ∈ apII (A) together with Lemma 3.54 and the
fact that if s ∈ Sp×p, then (Ip + s)/2 ∈ Sp×p

out . �
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4.12 Monotonic sequences in P◦(J)

Lemma 4.59 Let U1 ∈ P◦(J), U2 ∈ P◦(J) and let U = U1U2. Then U ∈
P◦(J) and

h
+
U = h

+
U1

∩ h
+
U2

and h
+
U−1 = h

+
U−1

1
∩ h

+
U−1

2
. (4.84)

Proof There are three cases to consider: J = Im , J = −Im and J �= ±Im .
Case 1 If J = Im , then the mvf’s U1, U2 and U all belong to Sm×m and
hence h

+
U = h

+
U1

= h
+
U2

= C+. Moreover, as

det U(λ) = det U1(λ) det U2(λ)

it follows that U ∈ P◦(J) and

det U(λ0) �= 0 ⇐⇒ det U1(λ0) �= 0 and det U2(λ0) �= 0.

Therefore, h
+
U−1 = h

+
U−1

1
∩ h

+
U−1

2
.

Case 2 If J = −Im , then Case 1 is applicable to the mvf’s Ũ = U−1,
Ũ1 = U−1

1 and Ũ2 = U−1
2 .

Case 3 If J �= ±Im , then without loss of generality it may be assumed that
J = jpq . Then the assertion of the lemma coincides with Corollary 4.30. �

A sequence Un ∈ P◦(J), n ≥ 1, is called right (resp., left) monotonic if

U−1
n Un+1 ∈ P◦(J) (resp., Un+1U

−1
n ∈ P◦(J)), n ≥ 1.

If a sequence Un is right (or left) monotonic, then, by Lemma 4.59,

h
+
Un +1

⊆ h+
Un

and h+
U−1

n +1
⊆ h+

U−1
n

.

Moreover, if the limit

U(λ) = lim
n→∞

Un(λ) exists in C+ except for at most a set of

isolated points and U ∈ P◦(J), (4.85)

then

h
+
U ⊆

⋂
n≥1

h+
Un

and h+
U−1 ⊆

⋂
h+

U−1
n

, (4.86)

since

U−1
n U ∈ P◦(J) for n ≥ 1. (4.87)

Moreover, the following assertion is valid.
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Theorem 4.60 Let Un ∈ P◦(J), n ≥ 1, be a right or left monotonic sequence
that converges to a mvf U ∈ P◦(J) on h

+
U . Then

h
+
U =

⋂
n≥1

h
+
Un

and h
+
U−1 =

⋂
n≥1

h
+
U−1

n
.

If J is unitarily equivalent to jpq and if {b(n)
1 , b

(n)
2 } ∈ apI (Un) are normalized

by the conditions

b
(n)
1 (α) > 0 and b

(n)
2 (α) > 0 for n = 1, 2, . . .

at a fixed point α ∈ h
+
U ∩ h

+
U−1 , then the limits

b1(λ) = lim
n↑∞

b
(n)
1 (λ) and b2(λ) = lim

n↑∞
b
(n)
2 (λ)

exist at every point λ ∈ C+. Moreover, {b1, b2} ∈ apI (U).

Proof It suffices to focus on right monotonicity.
If J = Im , then h

+
Un

= h
+
U = C+ and the presumed monotonicity guaran-

tees that

Un+1(λ)Un+1(λ)∗ ≤ Un(λ)Un(λ)∗, λ ∈ C+.

Consequently,

U(λ)U(λ)∗ ≤ Un(λ)Un(λ)∗, λ ∈ C+.

Let sn(λ) = det Un(λ), s(λ) = det U(λ) and let λ0 ∈
⋂

n≥1 h
+
U−1

n
. Then

sn ∈ S and sn(λ0) �= 0 for n ≥ 1; s ∈ S and, since U ∈ P◦(J), there
exists a number r, 0 < r < |λ0|, such that |s(λ)| > 0 on the deleted disc
0 < |λ − λ0| ≤ r. Therefore, |sn(λ)| > 0 on the closed disc 0 ≤ |λ − λ0| ≤ r,
since |sn(λ)| ≥ |s(λ)| for λ ∈ C+ and sn(λ0) �= 0 for n = 1, 2, . . .. Thus, as
sn(λ) tends uniformly to s(λ) on the closed disc 0 ≤ |λ−λ0| ≤ r, a theorem
of Hurwitz (which follows easily from Rouche’s theorem; see e.g., p. 119 of
[Ti60]) implies that s(λ) �= 0 on this disc also, i.e., λ0 ∈ h

+
U−1 . Thus,

∩∞
n=1h

+
U−1

n
⊆ h

+
U−1

and hence, as the opposite inclusion is available in (4.86), these two sets
must coincide.

If J = −Im , then U−1
n ∈ Sm×m and U−1 ∈ Sm×m , which implies that

h
+
U−1 = h

+
U−1

n
= C+. That h

+
U = h

+
Un

follows by applying the preceding

analysis to S = U−1 ∈ P◦(Im), Sn = U−1
n ∈ P◦(Im).
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If J �= ±Im , then without loss of generality it may be assumed that J = jpq

and then the asserted results follow from Lemmas 3.4 and 3.8 in [Ar97]. �

Theorem 4.61 Let {Un}∞n=1 be a monotonic sequence of mvf’s in P◦(J),
let

U(λ) = lim
n↑∞

Un(λ) for λ ∈ ∩∞
n=1

(
h

+
Un

∩ h
+
U−1

n

)
(4.88)

and assume that U ∈ P◦(J). Then there exists a subsequence {Unk
}∞k=1 such

that

U(µ) = lim
k↑∞

Unk
(µ) a.e. on R.

Proof See [Ar79b]. �

Corollary 4.62 Let {Un}∞n=1 be a monotonic sequence of mvf’s in U(J) and
let U ∈ P◦(J) be the limit in (4.88). Then U ∈ U(J).

Corollary 4.63 A convergent infinite BP product U(λ) belongs to the class
U(J).

4.13 Linear fractional transformations

In this section we consider left and right linear fractional transformations
based on an m × m mvf

U(λ) =

[
u11(λ) u12(λ)

u21(λ) u22(λ)

]
(4.89)

that is meromorphic in C+ with blocks u11(λ) of size p × p and u22(λ) of
size q × q, respectively. The right linear fractional transformation

T r
U [x] = {u11(λ)x(λ) + u12(λ)}{u21(λ)x(λ) + u22(λ)}−1 (4.90)

acts in the set of p × q mvf’s ε(λ) that are meromorphic in C+ and belong
to the set

D(Tr
U ) = {x(λ) : det[u21(λ)x(λ) + u22(λ)] �≡ 0 in C+},

i.e., to the domain of definition of T r
U . The left linear fractional trans-

formation

T �
U [y] = {y(λ)u12(λ) + u22(λ)}−1{y(λ)u11(λ) + u21(λ)} (4.91)
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acts in the set of q × p mvf’s y(λ) that are meromorphic in C+ and belong
to the set

D(T �
U ) = {y(λ) : det{y(λ)u12(λ) + u22(λ)} �≡ 0 in C+},

i.e., to the domain of definition of T �
U .

The notation

Tr
U [X] = {Tr

U [x] : x ∈ X} and T �
U [Y ] = {T �

U [y] : y ∈ Y }
for subsets X of D(T r

U ) and subsets Y of D(T �
U ) will be useful.

Lemma 4.64 Let U(λ) be a meromorphic m × m mvf in C+ with block
decomposition (4.89). Then:

(1) Sp×q ⊆ D(Tr
U ) if and only if

det u22(λ) �≡ 0 in h
+
U , χ = u−1

22 u21 ∈ Sq×pand

χ(λ)∗χ(λ) < Ip for each point λ ∈ C+.

(2) Sq×p ⊆ D(T�
U ) if and only if

det u22(λ) �≡ 0 in h
+
U , s12 = u12u

−1
22 ∈ Sq×p and

s12(λ)∗s12(λ) < Iq for each point λ ∈ C+.

Proof The first assertion is immediate from Lemma 2.15. The second as-
sertion follows from the first and the observation that

T �
U [y] = (T r

U τ [yτ ])τ . (4.92)

�
In the future, we shall usually drop the superscript r and write TU

instead of T r
U .

Right and left transformations of Sp×q into itself

Lemma 4.65 Let W ∈ P(jpq). Then
(1) Sp×q ⊆ D(TW ) and TW [Sp×q ] ⊆ Sp×q.

(2) Sq×p ⊆ D(T�
W ) and T �

W [Sq×p] ⊆ Sq×p.

Proof Let sij denote the blocks of the PG transform S of W . Then Theorem
4.20 guarantees that s12 ∈ Sp×q , s21 ∈ Sq×p and that

s12(λ)∗s12(λ) < Iq and s21(λ)∗s21(λ) < Ip (4.93)
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for each point λ ∈ C+. Therfore the first inclusions in (1) and (2) hold. On
the other hand, if ε ∈ Sp×q , then ε ∈ D(TW ) and

(w21ε + w22)∗(TW [ε]∗TW [ε] − Iq)(w21ε + w22)

=
[

ε

Iq

]∗
(W ∗jpqW − jpq)

[
ε

Iq

]
≤ 0 (4.94)

for each point λ ∈ h
+
W . Thus, TW [ε] is a holomorphic contractive mvf on

h
+
W and hence admits a unique extension to C+ that belongs to Sp×q . This

completes the proof of the second inclusion in (1). The second inclusion in
(2) may be verified in much the same way on the basis of the inequality

(εw12 + w22)(T �
W [ε]T �

W [ε]∗ − Iq)(εw12 + w22)∗

=
[
ε Iq

]
(WjpqW

∗ − jpq)
[
ε Iq

]∗ ≤ 0 (4.95)

for ε ∈ Sq×p. �

Lemma 4.66 Let W ∈ U(jpq). Then the assertions of Lemma 4.65 are in
force. Moreover:

(1) If p ≥ q, then TW [Sp×q
in ] ⊆ Sp×q

in and T �
W [Sq×p

∗in ] ⊆ Sq×p
∗in .

(2) If p ≤ q, then TW [Sp×q
∗in ] ⊆ Sp×q

∗in and T �
W [Sq×p

in ] ⊆ Sq×p
in .

Proof If p ≥ q and ε ∈ Sp×q
in , then inequality (4.94) will be an equality a.e.

on R, i.e., TW [ε] is an isometry a.e. on R. Consequently, TW [ε] ∈ Sp×q
in . The

other three inclusions may be obtained similarly. �

Lemma 4.67 Let W ∈ P(jpq), W1 ∈ P◦(jpq) and suppose that W−1
1 W ∈

P(jpq). Then TW [Sp×q ] ⊆ TW1 [Sp×q ].

Proof Let W2 = W−1
1 W . Then

TW [Sp×q ] ⊆ TW1 [TW2 [Sp×q ]] ⊆ TW1 [Sp×q ],

since, TW2 [Sp×q ] ⊆ Sp×q by Lemma 4.65. �

Lemma 4.68 If Wn ∈ P◦(jpq), n ≥ 1, is a monotonic sequence such that

W (λ) = lim
n↑∞

Wn(λ) for λ ∈
⋂
n≥1

h
+
Wn

and W ∈ P◦(jpq),
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then

TWn +1 [Sp×q ] ⊆ TWn [Sp×q and TW [Sp×q ] =
⋂
n≥1

TWn [Sp×q ].

Proof The first assertion follows from Lemma 4.67. Moreover, since
W−1

n Wn+k ∈ P◦(jpq) for k ≥ 1, it follows that W−1
n W ∈ P◦(jpq) and hence

that TW [Sp×q ] ⊆
⋂

n≥1 TWn [Sp×q ]. Conversely, if s ∈
⋂

n≥1 TWn [Sp×q ], then
there exists a sequence of mvf’s ε1, ε2. . . . ∈ Sp×q such that s = TWn [εn] for
every integer n ≥ 1. Therefore, there exists a subsequence εnk

that converges
to a limit ε ∈ Sp×q at each point λ ∈ C+. Consequently,

s = TWn [εn ] = lim
k↑∞

TWn k
[εnk

] = TW [ε].

Thus, s ∈ TW [Sp×q ]. �

Remark 4.69 If εn ∈ Sp×q for n ≥ 1 and

s(λ) = lim
n↑∞

TW [εn],

then there exists a subsequence {εnk
}, k = 1, 2, . . . of {εn} that converges to

a mvf ε0 ∈ Sp×q at each point of C+. Therefore,

s(λ) = lim
k↑∞

TW (λ)[εnk
(λ)] = (TW [ε0])(λ) ;

i.e., the set TW [Sp×q ] is a closed subspace of Sp×q with respect to pointwise
convergence.

Transformations in Cp×p and from Sp×p into Cp×p

If A ∈ P(Jp), then it is convenient to consider linear fractional transfor-
mations based on the standard four block decompositions (with p×p blocks)
of the mvf’s

A(λ) = VW (λ)V and B(λ) = A(λ)V

together with that of A(λ). It is readily checked that

Sp×p ∩ D(TV) =
{
s ∈ Sp×p : det(Ip + s(λ)) �≡ 0

}
and

Cp×p = TV[Sp×p ∩ D(TV)].
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Consequently, in view of Lemma 4.65,

Sp×p ∩ D(TB) = {ε ∈ Sp×p : TW [ε] ∈ D(TV)}

and

TB [Sp×p ∩ D(TB)] = TV[TW [Sp×p ∩ D(TB)]] ⊆ Cp×p.

Let

C(A) = TB [Sp×p ∩ D(TB)]. (4.96)

Then it is easy to check that

TA [Cp×p ∩ D(TA)] ⊆ C(A) ⊆ Cp×p ⊂ D(TV), (4.97)

TV[C(A)] ⊆ TW [Sp×p], TV[Sp×p
in ∩ D(TV)] ⊆ Cp×p

sing , (4.98)

C̊p×p ⊂ D(TA), (4.99)

and, if τ ∈ C̊p×p and c = TA [τ ], then (Rc)(λ) > 0 for every point λ ∈ C+.
Moreover, it is readily seen that if A ∈ U(Jp), then also

TA[Cp×p
sing ∩ D(TA)] ⊆ TB [Sp×p

in ∩ D(TB)] ⊆ Cp×p
sing ⊂ D(TV) (4.100)

and

TVB [Sp×p
in ∩ D(TB)] ⊆ TW [Sp×p

in ]. (4.101)

Lemma 4.70 Let A ∈ P(Jp), let B = AV and let χ = b−1
22 b21. Then the

following conditions are equivalent:

(1) Ip − χ(ω)χ(ω)∗ > 0 for at least one point ω ∈ C+.

(2) Ip − χ(λ)χ(λ)∗ > 0 for every point λ ∈ C+.

(3) b22(ω)b22(ω)∗ − b21(ω)b21(ω)∗ > 0 for at least one point ω ∈ h
+
B .

(4) b22(λ)b22(λ)∗ − b21(λ)b21(λ)∗ > 0 for every point λ ∈ h
+
B .

(5) Sp×p ⊆ D(TB).

Proof In view of Lemma 4.35, det b22(λ) �= 0 for λ ∈ h
+
B and χ ∈ Sp×p.

Consequently, (1) is equivalent to (3). The equivalence (2) ⇐⇒ (5) is valid by
Lemma 4.64. The implications (2) =⇒ (1) and (4) =⇒ (3) are obvious. The
converse implication (1) =⇒ (2) follows from Corollary 3.52. The implication
(3) =⇒ (4) then follows from the formula χ = b−1

22 b21 and the implication
(1) =⇒ (2). �
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Lemma 4.71 Let A ∈ P(Jp), B = AV and W = VAV. Then

TV[TA[Cp×p ∩ D(TA)]] ⊆ TW [Sp×q ]. (4.102)

If s ∈ TW [Sp×q ], there is a sequence of mvf’s sn ∈ TVA[Cp×p ∩ D(TA)] such
that

s(λ) = lim
n↑∞

sn(λ).

Moreover, if A ∈ U(Jp) and s ∈ TW [Sp×q
in ], then the mvf’s sn may be chosen

from TVA[Cp×p
sing ∩ D(TA)].

Proof Let ε ∈ Sp×p, χ = b−1
22 b21, γ ∈ C and suppose that |γ| = 1. Then:

(a) γε ∈ D(TV) ⇐⇒ det (γIp + ε(ω)) �= 0 for at least one (and hence every)
point ω ∈ C+.

(b) γε ∈ D(TB) ⇐⇒ det (γIp + χ(ω)ε(ω)) �= 0 for at least one (and hence
every) point ω ∈ C+.

Now let s = TW [ε] for some mvf ε ∈ Sp×p. Then there exists a sequence of
points γn ∈ C with |γn| = 1 such that

lim γn = 1, γnε ∈ D(TV) ∩ D(TB), TW [γnε] ∈ TVA [Cp×p ∩ D(TA)]

and

s(λ) = lim
n↑∞

TW (λ)[γnε(λ)] = TW (λ)[ε(λ)].

Moreover, if A ∈ U(Jp) and ε ∈ Sp×p
in , then

TW [γnε] ∈ Sp×p
in and TV[TW [γnε]] ∈ Cp×p

sing.

�

Lemma 4.72 Let A ∈ P(Jp), A1 ∈ P◦(Jp) and A−1
1 A ∈ P(Jp). Then

C(A) ⊆ C(A1). (4.103)

Proof Let W = VAV, W1 = VA1V, B = AV and B1 = A1V. Then
W ∈ P(jp), W1 ∈ P◦(jp), and, by Lemma 4.67,

TW [Sp×p] ⊆ TW1 [Sp×p].

Consequently,

D(TB) = D(TV) ∩ TW [Sp×p] ⊆ D(TV) ∩ TW1 [Sp×p] = D(TB1 ),
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and, if ε ∈ D(TB), then

TB [ε] = TV[TW [ε]] ∈ TV[D(TV) ∩ TW1 [Sp×p]] = C(A1).

�

4.14 Connections between the two kinds of associated pairs

The next lemma will be used to establish a connection between the two sets
of associated pairs.

Lemma 4.73 Let A ∈ U(Jp), let B(λ) = A(λ)V, χ = b−1
22 b21, W (λ) =

VA(λ)V, {b1, b2} ∈ apI (A) and {b3, b4} ∈ apII(A). Then for every s ∈
TW [Sp×p] ∩ D(TV), there exist a pair of mvf’s ϕs ∈ Sp×p

out and ψs ∈ Sp×p
out

such that

(1/2)(Ip + s)b3 = b1ϕs and b4(Ip + s)/2 = ψsb2. (4.104)

If

Ip − χ(ω)χ(ω)∗ > 0 for at least one point ω ∈ C+, (4.105)

then TW [Sp×p] ⊂ D(TV) and (4.104) holds for every s ∈ TW [Sp×p].

Proof Let W (λ) = VA(λ)V, B(λ) = VW (λ) and recall that if ε ∈ Sp×p,
then

s = TW [ε] = (w11ε + w12)(w21ε + w22)−1

= (w#
11 + εw#

12)
−1(w#

21 + εw#
22).

Consequently,

Ip + s =
√

2(b21ε + b22)(w21ε + w22)−1

=
√

2(w#
11 + εw#

12)
−1(εb#

22 + b#
21). (4.106)

Then, by formulas (4.106), (3) and (6) of Lemma 4.35, (4.42), (4.74) and
Lemmas 4.25 and 4.24, we obtain

b4(Ip + s) =
√

2ϕ−1
4 (Ip + χε)(Ip − s21ε)−1ϕ2b2

and

(Ip + s)b3 =
√

2b1ϕ1(Ip − εs21)−1(Ip + εχ)ϕ−1
3 .
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By Lemma 3.54, the mvf’s Ip +χε, Ip +εχ, Ip −s21ε and Ip −εs21 all belong
to the class N p×p

out , since χε, εχ, s21ε and εs21 belong to Sp×p and

det(Ip + χε) = det(Ip + εχ) �≡ 0 if s ∈ D(TV)

and

det(Ip − s21ε) = det(Ip − εs21) �≡ 0,

by (7) of Theorem 4.20. Thus, as ϕj ∈ N p×p
out for j = 1, . . . , 4, we see that

(4.104) is valid with ϕs, ψs ∈ N p×p
out . The supplementary conclusion, that in

fact ϕs and ψs belong to Sp×p, then follows from the Smirnov maximum
principle. The second statement then follows from Lemma 4.70. �

4.15 Redheffer transforms

Let S ∈ Sm×m with blocks sij . The right Redheffer transform Rr
S is

defined on p × q mvf’s x(λ) that are meromorphic in C+ and belong to the
domain

D(Rr
S) = {x : det(Iq − s21(λ)x(λ)) �≡ 0 in h+

x } (4.107)

by the formula

Rr
S [x] = s12 + s11x(Iq − s21x)−1s22, (4.108)

and the left Redheffer transform R�
S is defined on q × p mvf’s y(λ) that

are meromorphic in C+ and belong to the domain

D(R�
S) = {y : det(Iq + y(λ)s12(λ)) �≡ 0 in h+

y } (4.109)

by the formula

R�
S [y] = −s21 + s22(Iq + ys12)−1ys11. (4.110)

The notation

Rr
S [X] = {Rr

S [x] : x ∈ X} and R�
S [Y ] = {R�

S [y] : y ∈ Y }

for X ⊆ D(Rr
S) and Y ⊆ D(R�

S ) will be useful.

Theorem 4.74 If W ∈ P(jpq) and S = PG(W ), then

(1) Sp×q ⊂ D(Rr
S), Rr

S [Sp×q ] ⊆ Sp×q and

Tr
W [ε] = Rr

S [ε] for every ε ∈ Sp×q . (4.111)
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(2) Sq×p ⊂ D(R�
S), R�

S [Sq×p] ⊆ Sq×p and

T �
W [ε] = R�

S [ε] for every ε ∈ Sq×p. (4.112)

(3) If W ∈ U(jpq), then Rr
S [Sp×q

in ] ⊆ Sp×q
in if p ≥ q and Rr

S [Sp×q
∗in ] ⊆ Sp×q

∗in
if p ≤ q. Moreover,

R�
S [Sq×p

in ] ⊆ Sq×p
in if q ≥ p and R�

S [Sq×p
∗in ] ⊆ Sq×p

∗in if q ≤ p.

Proof The inclusions Sp×q ⊂ D(Rr
S) and Sq×p ⊂ D(R�

S ) follow from the
fact that if W ∈ P(jpq) and S = PG(W ), then det s22(λ) �≡ 0 in C+ and the
inequalities (4.93) are in force for every point λ ∈ C+.

The remaining assertions are easy consequences of formula (2.58) and the
observation that

R�
S [y] = (Rr

S1
[yτ ])τ , if S1 = jpqS

τ jpq.

�
In the future, we shall drop the superscript r and write RS instead

of Rr
S .

We remark that right (and left) Redheffer transforms may be defined just
as in formulas (2.55) and (2.56) for mvf’s S ∈ S(p+k)×(r+q) with blocks s11

and s22 that are not necessarily square. Then RS is a mapping of r×k mvf’s
into the set of p×q mvf’s and the analogue of Theorem 2.27 holds for mvf’s.

4.16 Strongly regular J-inner mvf’s

A mvf W ∈ U(jpq) is said to be a right strongly regular jpq-inner mvf if

TW [Sp×q ] ∩ S̊p×q �= ∅;

it is said to be a left strongly regular jpq-inner mvf if

T �
W [Sq×p] ∩ S̊q×p �= ∅.

If J �= ±Im and J = V ∗jpqV for some constant m × m unitary matrix V ,
then U ∈ U(J) is said to be a right (left) strongly regular J-inner mvf
if W (λ) = V U(λ)V ∗ is a right (left) strongly regular jpq-inner mvf. This
definition does not depend upon the choice of V : If V ∗

1 jpqV1 = V ∗
2 jpqV2,

then the matrix V1V
∗
2 is both unitary and jpq-unitary and therefore, it must

be of the form V1V
∗
2 = diag {u1, u2}, where u1 and u2 are constant unitary
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matrices of sizes p × p and q × q, respectively. Thus, the mvf’s W1(λ) =
V1U(λ)V ∗

1 and W2(λ) = V2U(λ)V ∗
2 are related by the formula

W2(λ) =
[

u∗
1 0
0 u∗

2

]
W1(λ)

[
u1 0
0 u2

]
and, consequently,

TW2 [Sp×q ] = u∗
1TW1 [Sp×q ]u2.

Therefore,

TW2 [Sp×q ] ∩ S̊p×q �= ∅ ⇐⇒ TW1 [Sp×q ] ∩ S̊p×q �= ∅.
The classes of left and right strongly regular J-inner mvf’s will be de-
noted U�sR(J) and UrsR(J), respectively. The convention U�sR(±Im) =
UrsR(±Im) = U(±Im) will be convenient.

Theorem 4.75 The following inclusions hold:
(1) U(J) ∩ Lm×m

∞ (R) ⊆ UrsR(J) ∩ U�sR(J).

(2) UrsR(J) ∪ U�sR(J) ⊂ L̃m×m
2 .

(3) U(J) ∩ L̃m×m
2 ⊂ U�R(J) ∩ UrR(J).

Proof Corollary 4.23 justifies (1). To verify (2), it suffices to consider the
case J = jpq . Let W ∈ UrsR(jpq) and let s21 = −w−1

22 w21. Then there exists a
mvf ε ∈ Sp×q such that s(λ) = TW [ε] is strictly contractive: ‖s‖∞ ≤ γ < 1.
Let

c(λ) =
{
Iq + s21(λ)ε(λ)

}{
Iq − s21(λ)ε(λ)

}−1
.

Then, since c ∈ Cq×q , it follows that �c ∈ L̃q×q
1 . The desired result now

drops out easily from Corollary 4.23 and the inequality

Rc(µ) =
{
Iq − ε(µ)∗s21(µ)∗

}−1{
Iq − ε(µ)∗s21(µ)∗s21(µ)ε(µ)

}
×
{
Iq − s21(µ)ε(µ)

}−1

≥
{
Iq − ε(µ)∗s21(µ)∗

}−1{
Iq − ε(µ)∗ε(µ)

}{
Iq − s21(µ)ε(µ)

}−1

= w22(µ)∗
{
Iq − s(µ)∗s(µ)

}
w22(µ)

≥ (1 − γ2)w22(µ)∗w22(µ).

If W ∈ U�sR(jpq), then Wτ ∈ UrsR(jpq) and hence Wτ ∈ L̃m×m
2 , as proved

above. The proof of (3) is postponed to Theorem 5.90. �
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Theorem 4.76 If U ∈ UrsR(J)∪ U�sR(J), then U ∈ U�R(J)∩ UrR(J), i.e.,

UrsR(J) ∪ U�sR(J) ⊆ U�R(J) ∩ UrR(J).

Moreover, if U ∈ UrsR(J) and admits a factorization of the form

U(λ) = U1(λ)U2(λ)U3(λ)

with Ui ∈ U(J) for i = 1, 2, 3, then:

(1) U1 ∈ UrsR(J).

(2) U1U2 ∈ UrsR(J).

(3) Ui ∈ U�R(J) ∩ UrR(J) for i = 1, 2, 3.

Proof The first assertion is immediate from the preceding two theorems.
To complete the proof, it suffices to consider J = jpq and then, in terms

of our usual notation, we write W in place of U and Wi in place of Ui. Since

TW [Sp×q ] ⊆ TW1 W2 [Sp×q ] ⊆ TW1 [Sp×q ],

(1) and (2) are clear from the definition of right strong regularity. But these
two conclusions imply that W2 does not have a nonconstant singular jpq-
inner divisor on the left because otherwise it could be shifted to W1, which
would contradict (1). Similarly, W3 does not have a left singular jpq-inner
factor because of (2). Moreover, in view of (2) and the already established
fact that W ∈ UrR(jpq), W2 and W3 do not have nonconstant singular jpq-
inner divisors on the right. �

Theorem 4.76 justifies the use of the terminology strongly regular.

4.17 Minus matrix valued functions

Our next objective is to develop analogues of the algebraic results that were
presented in Sections 2.7 to 2.10 for meromorphic mvf’s in C+. We shall
show that the properties of the linear fractional transformations TU based
on U ∈ P(J) (resp., U ∈ U(J)) for J = jpq and J = Jp that are considered in
this section serve to essentially characterize the classes P(J) and U(J) in the
following sense: If a nondegenerate mvf U(λ) that is meromorphic in C+ has
these properties, then there exists a scalar function ρ(λ) such that ρ(λ)U(λ)
belongs to P(J) (resp., ρU ∈ U(J)). These results are mostly adapted from
the work of L. A. Simakova. It is first necessary to study minus mvf’s.
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An m × m mvf U is said to be a minus mvf with respect to a signature
matrix J in C+ if U is meromorphic in C+ and U(λ) is a minus matrix
with respect to J for each point λ ∈ h

+
U . A minus mvf U is said to be

nondegenerate if det U(λ) �≡ 0 on h
+
U .

Lemma 4.77 Let U be a nondegenerate minus mvf with respect to a sig-
nature matrix J in C+ and suppose that J �= ±Im. Then there exists a
scalar function ρ(λ) that is meromorphic in C+ such that ρ(λ) �≡ 0 and
ρU ∈ Nm×m .

Proof Without loss of generality we may assume that U is a nondegenerate
minus mvf with respect to jpq in C+, and, in keeping with our usual notation,
replace U by W . Then, by Lemma 2.50 the mvf’s

α(λ) = w11(λ) − w12(λ)w22(λ)−1w21(λ) and δ(λ) = w22(λ)−1 (4.113)

are well defined in terms of the standard four block decomposition of W (λ),
they are meromorphic in C+ and

s12(λ) = w12(λ)w22(λ)−1 and s21(λ) = −w22(λ)−1w21(λ) (4.114)

are holomorphic contractive mvf’s on h
+
W . Therefore these two mvf’s have

unique holomorphic contractive extensions on C+, which we continue to
denote s12(λ) and s21(λ), respectively. Thus,

s12 ∈ Sp×q and s21 ∈ Sq×p. (4.115)

The auxiliary formula

W (λ) =
[

Ip s12(λ)
0 Iq

] [
α(λ) 0

0 w22(λ)

] [
Ip 0

−s21(λ) Iq

]
based on Schur complements, implies that

det W (λ) = detα(λ) · det w22(λ).

Since detW (λ) �≡ 0 by assumption, there exists an entry αst(λ) in α(λ) such
that αst(λ) �≡ 0 in C+. Let

ρ(λ) = αst(λ)−1. (4.116)

We will show that ρW ∈ Nm×m with this choice of ρ(λ). Let ω ∈ h
+
W ∩

hW −1 be a fixed point. Then Theorem 2.51 implies that there exists a scalar
ρ1(ω) �= 0 such that W̃ (ω) = ρ1(ω)W (ω) belongs to Pconst(jpq). Let S̃(ω) be
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the PG transform of W̃ (ω). Then S̃(ω) ∈ Sm×m
const and in the standard four

block decomposition of W̃ (ω),

s̃11(ω) = ρ1(ω)α(ω) ∈ Sp×p
const and s̃22(ω) = ρ1(ω)−1δ(ω) ∈ Sq×q

const.

Consequently, the entries αkl(ω) of α(ω) and δij(ω) of δ(ω) are subject to
the bounds

|ρ1(ω)αkl(ω)| ≤ 1 and |ρ1(ω)−1δij(ω)| ≤ 1,

and hence

αkl(λ)δij(λ) ∈ S. (4.117)

Moreover, the bounds

|ρ1(ω)αst(ω)| ≤ 1 and ‖ρ1(ω)−1δ(ω)‖ ≤ 1

imply that |ρ1(ω)| ≤ |ρ(ω)| and

ρ−1(ω)δ(ω) ∈ Sp×p
const for ω ∈ h

+
W ∩ h

+
W −1 .

Thus, ρ−1δ has a unique holomorphic contractive extension to C+, i.e.,

ρ−1δ ∈ Sp×p,

and hence

ρ w22 ∈ N q×q .

Then, in view of (4.114) and (4.115),

ρ w12 ∈ N p×q and ρ w21 ∈ N q×p.

The inclusion (4.117) implies that

hkl = αklδ ∈ Hq×q
∞ ,

and consequently that

ρ αklIq = hklρ w22 ∈ N q×q

for every entry αkl of α. Thus, ρ α ∈ N p×p and therefore, ρ w11 ∈ N p×p,
since

w11 = α + w12w
−1
22 w21 = α + s12w21

and ρ α ∈ N p×p, ρ w21 ∈ N q×p and s12 ∈ Sp×q . �
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Remark 4.78 The function ρ = α−1
st satisfies the needed condition ρW ∈

Nm×m and has an extra property:

(ρ w22)−1 ∈ Sq×q . (4.118)

Moreover, the PG transform Sρ of the mvf ρ W is a well defined holomorphic
mvf on h

+
W ∩h

+
W −1 and its blocks s

(ρ)
ij in the standard four block decomposition

of Sρ are such that:

s
(ρ)
11 = ρα ∈ N p×p, s

(ρ)
12 = s12 ∈ Sp×q ,

s
(ρ)
21 = s21 ∈ Sq×p and s

(ρ)
22 = (ρ w22)−1 ∈ Sq×q .

Theorem 4.79 Let U be a nondegenerate minus mvf with respect to a sig-
nature matrix J in C+ and suppose that J �= Im. Then there exists a scalar
function ρ that is meromorphic in C+ such that ρ U ∈ P◦(J).

Proof Without loss of generality, we may assume that U is a non-degenerate
minus-mvf with respect to jpq in C+ and then, in keeping with our usual
notation, we write W in place of U . Moreover, in view of Lemma 4.77 and
Remark 4.78, we can assume that W ∈ Nm×m and w−1

22 ∈ Sp×p. Let W (µ)
be the nontangential boundary values of W a.e. on R and let

G(µ) = jpqW (µ)∗jpqW (µ) a.e. on R. (4.119)

Then det W (µ) �= 0 a.e. on R, because detW ∈ N and detW (λ) �≡ 0 on
h

+
W . Therefore G(µ) is invertible a.e. on R, and hence, by Lemma 2.42, the

eigenvalues of G(µ) are positive a.e. on R and taking into account their
algebraic multiplicities, they may be indexed so that

0 < λ1(µ) ≤ λ2(µ) ≤ · · · ≤ λm(µ) a.e. on R.

By Theorem 2.47, c(µ)W (µ) ∈ Pconst(jpq) for some scalar c(µ) if and only if

λp(µ) ≤ |c(µ)|−2 ≤ λp+1(µ). (4.120)

All functions λj(µ), 1 ≤ j ≤ m, are measurable on R, because the coefficients
of the characteristic polynomials det(λIm −W (µ)) of the matrices W (µ) are
measurable functions of µ on R and the zeros λj(µ) of these polynomials are
continuous functions of the coefficients. Moreover, in view of the bounds

λj(µ) ≤ ‖W (µ)‖2 and λj(µ)−1 ≤ ‖W (µ)−1‖2 a.e. on R
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and assertion (1) in Theorem 3.79,

lnλj(·) ∈ L̃1 for 1 ≤ j ≤ m. (4.121)

In particular,

lnλp(·) ∈ L̃1 and lnλp+1(·) ∈ L̃1. (4.122)

Now let f(µ) be a measurable function on R such that

λp(µ) ≤ f(µ) ≤ λp+1(µ) a.e. on R. (4.123)

Then the inclusions (4.122) imply that

ln f(·) ∈ L̃1, (4.124)

and hence, by Theorem 3.30, there exists a scalar function ρe ∈ Nout with
nontangential boundary values ρe(µ) a.e. on R such that

|ρe(µ)| = f(µ)−2 a.e. on R. (4.125)

In view of (2) of Theorem 2.47 and formulas (4.123) and (4.125), the non-
tangential boundary values W (µ) of the mvf

W̃ (λ) = ρe(λ)W (λ) (4.126)

are jpq-contractive a.e. on R. Moreover, the blocks S̃ij of the Potapov-
Ginzburg transform S̃ of W̃ are such that

(1) s̃12 = w̃12 w̃−1
22 = w12w

−1
22 , which belongs to Sp×q ,

(2) s̃21 = −w̃−1
22 w̃21 = −w22w

−1
21 , which belongs to Sq×p,

(3) s̃22 = w̃−1
22 = ρ−1

e w−1
22 , which belongs to Sp×p.

The conclusions in (1) and (2) were discussed in the proof of Lemma 4.77; see
(4.114). The conclusion in (3) follows from the Smirnov maximum principle,
which is applicable because ρ−1

e ∈ Nout and w−1
22 ∈ Sq×q and, consequently,

s̃22 ∈ N p×p
+ and ‖s̃22(µ)‖ ≤ 1 a.e. on R.

The final step is to establish the existence of a scalar inner function βi(λ)
such that

W1 = βiW̃ ∈ P(jpq). (4.127)

To this end, let

α̃ = w̃11 − w̃12w̃
−1
22 w̃21(= s̃11) and δ̃ = w̃−1

22 (= s̃22).
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Then it follows from the proof of Lemma 4.77 that

α̃stδ̃ ∈ Sq×q

for every entry α̃st of α̃. Consequently,

α̃stδ̃kj ∈ S

for every entry α̃st of α̃ and every entry δ̃kj of δ̃. If α̃st(λ) �≡ 0, then it admits
a factorization of the form

α̃st =
bst ϕst

dst
(4.128)

in which ϕst ∈ Nout and bst and dst are coprime inner functions, i.e.,

bst ϕst δ̃kj

dst
∈ S.

Therefore,

δ̃kj

dst
∈ S.

In view of Theorem 3.43, there exists a least common inner multiple βi for all
the dst in the sense that d−1

st βi ∈ Sin for all s, t = 1, . . . , p, and if d−1
st β ∈ Sin

for s, t, . . . , p, then β−1
i β ∈ Sin . Thus,

δ̃kl/βi ∈ S, 1 ≤ k, l ≤ q.

Since δ̃ ∈ Sq×q , β−1
i δ̃ ∈ N q×q

+ , βiα̃ ∈ N p×p
+ and ‖α̃(µ)‖ ≤ 1 a.e. on R, the

Smirnov maximum principle implies that

β−1
i δ̃ ∈ Sq×q and βiα̃ ∈ Sp×p.

Thus, the blocks of the PG transform S1 of the mvf W1 = βiW̃ all belong
to the Schur class of appropriate size, and ‖S1(µ)‖ ≤ 1 a.e. on R. Conse-
quently, S1 ∈ Sm×m , by the Smirnov maximum principle, and hence W1 ∈
P(jpq). �

In view of Theorem 4.79, it is natural to look for a description of the set
of all scalar functions ρ(λ) such that ρU ∈ P◦(J) when U ∈ P◦(J) and
J �= ±Im . Without loss of generality, we may assume that J = jpq .

Theorem 4.80 (L. A. Simakova) Let W ∈ P◦(jpq) and let λj(µ)
denote the jth eigenvalue of G(µ) = jpqW (µ)∗jpqW (µ) in the ordering
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λ1(µ) ≤ · · · ≤ λm(µ) a.e. on R. Then the set of all scalar functions ρ

such that ρW ∈ P◦(jpq), is described by the formula

ρ =
b

d
ρe, (4.129)

where

(1) ρe ∈ Nout and is subject to the bounds

λp(µ) ≤ |ρe(µ)|−2 ≤ λp+1(µ) a.e. on R. (4.130)

(2) b ∈ Sin is a common inner divisor of all the entries in the mvf δ(λ)
that is defined in (4.113).

(3) d ∈ Sin is a common inner divisor of all the entries in the mvf α(λ)
that is defined in (4.113).

Proof The identity

ρIm = (ρW )W−1

implies that ρ ∈ N when W ∈ P◦(jpq) and ρW ∈ P◦(jpq), since P(jpq) ⊂
Nm×m . Thus, in view of (3.53), ρ admits a representation of the form (4.129),
where ρe ∈ Nout, b ∈ Sin, d ∈ Sin and b and d are coprime inner functions.
Moreover, ρe satisfies the condition (4.130), since |ρe(µ)| = |ρ(µ)| a.e. on R

and

λp(µ) ≤ |ρ(µ)|−2 ≤ λp+1(µ) a.e. on R.

The next step is to verify (3). Since W ∈ P(jpq) and ρW ∈ P(jpq), the
mvf α ∈ Sp×p and ρα ∈ Sp×p. Therefore,

αst ∈ S and
b

d
ρeαst ∈ S

for every entry αst of the mvf α. Thus,

b

d
αst ∈ N+

and, since b and d are coprime,
αst

d
∈ N+.

The Smirnov maximum principle implies that
αst

d
∈ S,

i.e., d is an inner divisor of every entry αst in α.



228 J-contractive and J-inner matrix valued functions

A similar argument based on the observation that

δ ∈ Sq×q and ρ−1δ ∈ Sq×q

leads to the conclusion that (2) is in force.
Conversely, if ρ is of the form (4.129) where ρe, b and d meet the conditions

(1), (2) and (3), respectively, then, since |ρe(µ)| = |ρ(µ)| a.e. on R and (1)
is in force, Theorem 2.47 implies that ρ(µ)W (µ) is jpq-contractive a.e. on
R. The PG transform S̃(µ) of ρ(µ)W (µ) is a well defined contractive matrix
a.e. on R. Moreover, since ρW ∈ Nm×m , S̃(µ) is the nontangential boundary
value of the PG transform S̃(λ) of W̃ (λ) = ρ(λ)W (λ). The blocks s̃ij of S̃

are related to the blocks sij of the PG transform S of W by the formulas

s̃11 = ρs11, s̃12 = s12, s̃21 = s21 and s̃22 = ρ−1s22.

Therefore, s̃12 ∈ Sp×q and s̃21 ∈ Sq×p since W ∈ P(jpq). Moreover, since
s11 = α and s22 = δ, the entries of s̃11 and s̃22 are

b

d
ρeαst and

d

b
ρ−1

e δjk,

respectively. Conditions (2) and (3) guarantee that

b

d
ρeαst ∈ N+ and

d

b
ρ−1

e δjk ∈ N+.

Consequently,

s̃11 ∈ N p×p
+ and s̃22 ∈ N q×q

+ .

Thus, S̃ ∈ Nm×m
+ and the Smirnov maximum principle implies that S̃ ∈

Sm×m . Therefore, W̃ ∈ P(jpq). �

Remark 4.81 In the setting of Theorem 4.80,

λp(µ) ≤ 1 ≤ λp+1(µ) a.e. on R.

If λp(µ) = λp+1(µ) a.e. on R, then λp(µ) = 1 a.e. on R and condition
(4.127) is satisfied only for ρe(λ) ≡ exp(iγ), where γ ∈ R. In this case,
formula (4.129) reduces to

ρ(λ) =
b(λ)
d(λ)

.
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Theorem 4.82 If U ∈ U(J), J �= ±Im and {b1, b2} ∈ apI (U), then ρU ∈
P(J) for some scalar function ρ if and only if

ρ =
b

d
, (4.131)

where

b ∈ Sin, b−1b2 ∈ Sq×q
in , d ∈ Sin and d−1b1 ∈ Sp×p

in . (4.132)

Moreover, for each such choice of ρ, ρU ∈ U(J).

Proof We may assume that J = jpq and will write W in place of U . If
W ∈ U(jpq) and {b1, b2} ∈ ap(W ), then

α = s11 = b1ϕ1 and δ = s22 = ϕ2b2,

where ϕ1 ∈ Sp×p
out and ϕ2 ∈ Sq×q

out . Therefore, if b ∈ Sin, then

b−1α ∈ Sp×p ⇐⇒ b−1b1 ∈ Sp×p,

and if d ∈ Sin, then

d−1δ ∈ Sq×q ⇐⇒ d−1b2 ∈ Sq×q .

Moreover, since G(µ) = jpqW (µ)∗jpqW (µ) = Im a.e. on R, the characteriza-
tion of ρ claimed in (4.131) and (4.132) follows from Remark 4.81).

Finally, since ρW ∈ P(jpq) and |ρ(µ)| = 1 a.e. on R for ρ of this form and
W ∈ U(jpq), it follows that ρW ∈ U(jpq) too. �

Corollary 4.83 If U ∈ E ∩ U(J), J �= ±Im, and {b1, b2} ∈ apI (U), then
ρU ∈ P(J) for some scalar function ρ if and only if

ρ(λ) = eiγeβ(λ), where γ = γ, β = β2 − β1, (4.133)

and β1 and β2 are nonnegative numbers such that

e−1
β1

b1 ∈ Sp×p
in and e−1

β2
b2 ∈ Sq×q

in . (4.134)

Moreover, for such a choice of ρ, ρU ∈ E ∩ U(J).

Proof In view of Theorem 4.54, b1 and b2 are entire mvf’s. Consequently,
the corollary follows from Theorem 4.82 and the fact that a scalar inner
divisor of an entire inner mvf is entire. �
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Theorem 4.84 If A ∈ U(Jp) and {b3, b4} ∈ apII (A), then ρA ∈ P(Jp) for
some scalar function ρ if and only if

ρ =
b

d
, (4.135)

where

b ∈ Sin, b−1b4 ∈ Sp×p
in , d ∈ Sin and d−1b3 ∈ Sp×p

in . (4.136)

Moreover, for each such choice of ρ, ρA ∈ U(Jp).

Proof This is immediate from Theorem 4.82 and the connection (4.104)
between the associated pairs of the first and second kind for A ∈ U(Jp). �

Remark 4.85 In view of (4.74), condition (4.136) can be reformulated in
terms of the blocks of the mvf B(λ) = A(λ)V :

d ∈ Sin, d−1(b#
21)

−1 ∈ N p×p
+ , b ∈ Sin and b−1b−1

22 ∈ N p×p
+ . (4.137)

Corollary 4.86 If A ∈ E ∩ U(Jp) and {b3, b4} ∈ apII(A), then ρA ∈ P(Jp)
for some scalar function ρ if and only if ρ(λ) is of the form (4.133) where
β1 ≥ 0, β2 ≥ 0 are such that

e−1
β1

b3 ∈ Sp×p
in and e−1

β2
b4 ∈ Sp×p

in .

Moreover, for such a choice of ρ,

ρA ∈ E ∩ U(Jp).

Proof This is immediated from Corollary 4.83 and the connection (4.104)
between the associated pairs of the first and second kind for A ∈ U(Jp). �

4.18 More on linear fractional transformations

Theorem 4.87 Let W be a nondegenerate meromorphic m×m mvf in C+

and let

S̊p×q
const ⊂ D(TW ) and TW [S̊p×q

const] ⊆ Sp×q . (4.138)

Then there exists a scalar meromorphic function ρ(λ) in C+ such that ρW ∈
P◦(jpq). Moreover, if, in addition to the properties (4.138),

TW maps every isometric matrix in C
p×q into Sp×q

in if p ≥ q
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or

TW maps every coisometric matrix in C
p×q into Sp×q

∗in if p ≤ q,

then ρW ∈ U(jpq) with the same function ρ.

Proof Lemma 2.49 guarantees that a nondegenerate meromorphic m × m

mvf W that satisfies the conditions in (4.138) is a minus mvf with respect to
jpq . Then, since W is assumed to be nondegenerate, Theorem 4.79 implies
that there exists a scalar meromorphic function ρ(λ) in C+ such that ρW ∈
P◦(jpq). The rest of the proof is the same as the proof of the corresponding
statements in Theorem 2.52. �

Theorem 4.88 Let W be a nondegenerate meromorphic m×m mvf in C+

and let

Sp×q ⊆ D(TW ) and TW [Sp×q ] = Sp×q . (4.139)

Then there exists a scalar meromorphic function ρ(λ) in C+ such that
ρ(λ)W (λ) ∈ Uconst(jpq).

Proof By Theorem 4.87 there exists a scalar meromorphic function ρ1(λ)
in C+ such that ρ1W ∈ P◦(jpq), and, since TW −1 [Sp×q ] = Sp×q , a scalar
meromorphic function ρ2(λ) in C+ such that ρ2W

−1 ∈ P◦(jpq). Thus,

|ρ1(λ)|2W (λ)∗jpqW (λ) ≤ jpq for λ ∈ h
+
W ∩ h+

ρ1

and

|ρ2(λ)|2jpq ≤ W (λ)∗jpqW (λ) for λ ∈ h
+
W ∩ h+

ρ2
.

Consequently,

(|ρ2(λ)|2 − |ρ1(λ)|−2)jpq ≤ 0 for λ ∈ h
+
ρ−1

1
∩ h+

ρ2
.

Thus,

|ρ2(λ)ρ1(λ)| = 1 for λ ∈ h+
ρ1

∩ h+
ρ2

;

i.e.,

ρ2(λ) = eiγρ1(λ) for some γ ∈ R.

Thus, W0 = ρ1W and W−1
0 both belong to P(jpq) and S0 = PG(W0) and

S−1
0 = PG(W−1

0 ) both belong to Sm×m . Therefore, S0 ∈ Sm×m
const and W0 ∈

Uconst(jpq). �



232 J-contractive and J-inner matrix valued functions

Theorem 4.89 Let W ∈ U(jpq) and W1 ∈ P◦(jpq), let {b1, b2} ∈ ap(W )
and suppose that

TW [Sp×q ] ⊆ TW1 [Sp×q ]. (4.140)

Then

(1) W1 ∈ U(jpq) and

W =
β1

β2
W1W2, (4.141)

where W2 ∈ U(jpq) and β1 and β2 are scalar inner functions such
that

β−1
1 b1 ∈ Sp×p

in and β−1
2 b2 ∈ Sq×q

in . (4.142)

(2) If equality prevails in (4.140), then W2 ∈ Uconst(jpq).

Proof Under the given assumptions the mvf W̃2 = W−1
1 W is a nondegen-

erate meromorphic m × m mvf in C+ such that

Sp×q ⊆ D(T
W̃2

) and T
W̃2

[Sp×q ] ⊆ Sp×q .

Therefore, by Theorem 4.87, there exists a scalar meromorphic function ρ(λ)
in C+ such that

ρW̃2 ∈ P◦(jpq).

Then ρW = W1W2 with W2 = ρW̃2, i.e., W ∈ U(jpq) and ρW ∈ P◦(jpq);
the rest follows from Theorems 4.82 and 4.88. �

Corollary 4.90 If either W and W̃ both belong to U(jpq) ∩ Nm×m
+ or W #

and W̃# both belong to U(−jpq) ∩Nm×m
+ , then

TW [Sp×q ] = T
W̃

[Sp×q ] (4.143)

if and only if

W̃ (λ) = W (λ)V for some V ∈ Uconst(jpq). (4.144)

Proof Suppose first that (4.143) holds and that W and W̃ both belong to
U(jpq) ∩ Nm×m

+ . Then, β2 is a constant in formula (4.141), since {b1, Iq} ∈
ap(W ) by Lemma 4.33. However, this implies that W̃ = β−1

1 WV −1 for
some V ∈ Uconst(J) and hence that (β−1

1 b, β−1
1 Iq) ∈ ap(W ). Therefore, since

W̃ ∈ Nm×m
+ , β1 must be a constant. The proof of the second assertion is

similar. �
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Corollary 4.91 Let W and W1 both belong to U(jpq). Then

TW [Sp×q ] = TW1 [Sp×q ] and ap(W ) = ap(W1)

if and only if

W1(λ) = W (λ)U and U ∈ Uconst(jpq).

Corollary 4.92 Let W ∈ E ∩ U(jpq), W1 ∈ P◦(jpq), {b1, b2} ∈ ap(W ) and
suppose that

TW [Sp×q ] ⊆ TW1 [Sp×q ]. (4.145)

Then:

(1) W1 ∈ U(jpq) and

W =
eβ1

eβ2

W1W2, (4.146)

where W2 ∈ U(jpq), β1 ≥ 0, β2 ≥ 0,

e−1
β1

b1 ∈ E ∩ Sp×p
in and eβ−1

2
b2 ∈ E ∩ Sq×q

in . (4.147)

(2) If equality prevails in (4.145), then W2 ∈ Uconst(jpq).

Proof This is follows from Theorem 4.89 and and Corollary 4.83. �

Corollary 4.93 If W ∈ P◦(jpq) is such that

TW [Sp×q ] = Sp×q ,

then W ∈ Uconst(jpq).

Proof This follows from Theorem 4.89, since Im ∈ U(jpq), {Ip, Iq} ∈ ap(Im)
and, under the given assumptions, TW [Sp×q ] = TIm [Sp×q ]. �

Theorem 4.94 Let W and W1 both belong to U(jpq), let {b1, b2} ∈ ap(W )
and {b(1)

1 , b
(1)
2 } ∈ ap(W1). Then the conditions

(b(1)
1 )−1b1 ∈ Sp×p

in , b2(b
(1)
2 )−1 ∈ Sq×q

in and TW [Sp×q ] ⊆ TW1 [Sp×q ]

hold if and only if W−1
1 W ∈ U(jpq). Moreover, if W−1

1 W ∈ U(jpq), then

W−1
1 W ∈ US(jpq) ⇐⇒ ap(W1) = ap(W ). (4.148)
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Proof If the first set of conditions hold, then, by Theorem 4.89, there exist
a mvf W2 ∈ U(jpq) and a pair of scalar inner divisors β1 and β2 of b1 and
b2, respectively (with no common divisors), such that

W =
β1

β2
W1W2.

Therefore,

s11 =
β1

β2
s
(1)
11 {Ip − s

(2)
12 s

(1)
21 }−1s

(2)
11 ,

just as in the verification of (4.45). But, in terms of the usual notation, this
implies that

β1

β2
b
(2)
1 = {Ip − s

(2)
12 s

(1)
21 }(ϕ

(1)
1 )−1(b(1)

1 )−1b1ϕ1(ϕ
(2)
1 )−1, (4.149)

which belongs to Lp×p
∞ ∩N p×p

+ = Hp×p
∞ . Therefore, each entry in the matrix

β−1
2 b

(2)
1 belongs to H∞ (since β1 and β2 have no common divisors) and hence

β−1
2 b

(2)
1 ∈ Sp×p

in .
In much the same way, formula

s22 =
β2

β1
s
(2)
22 {Iq − s

(1)
21 s

(2)
12 }−1s

(1)
22 (4.150)

implies that β−1
1 b

(2)
2 ∈ Sq×q

in . Thus, by Theorem 4.82, β−1
2 β1W2 ∈ U(jpq), as

needed.
The converse is immediate from Lemmas 4.67 and 4.28.
Finally, since Formula (4.149) implies that

β1

β2
b
(2)
1 is constant ⇐⇒ (b(1)

1 )−1b1 is constant

and formula (4.150) implies that

β2

β1
b
(2)
2 is constant ⇐⇒ b2(b

(1)
2 )−1 is constant,

the last assertion follows from Lemma 4.39. �
Next, a number of results on linear fractional transformations in Cp×p and

from Sp×p into Cp×p will be obtained by reduction to the linear fractional
transformations in Sp×p that were considered earlier.

Theorem 4.95 Let A(λ) be a nondegenerate meromorphic m × m mvf in
C+ such that
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(1) C̊p×p
const ⊂ D(TA) and TA [C̊p×p

const] ⊂ Cp×p.

Then there exists a scalar meromorphic function ρ(λ) such that mvf ρA ∈
P◦(Jp). Moreover, if in addition to (1), the condition

(2) TA[(Cp×p
sing)const] ⊆ Cp×p

sing

is in force, then ρA ∈ U(Jp).

Proof Let W (λ) = VA(λ)V. Then, since C̊p×p
const = TV[S̊p×p

const], Cp×p
const ⊂

D(TV) and TV[Cp×p] ⊆ Sp×p, the theorem follows from Theorem 4.87 and
Lemma 4.71. �

Theorem 4.96 Let A ∈ U(Jp), A1 ∈ P◦(Jp) and {b3, b4} ∈ apII (A) and
suppose that

C(A) ⊆ C(A1). (4.151)

Then

(1) A1 ∈ U(Jp) and there exist a mvf A2 ∈ U(Jp) and a pair of scalar
inner functions β1 and β2 such that

A(λ) =
β2(λ)
β1(λ)

A1(λ)A2(λ)

and

β−1
1 b3 ∈ Sp×p

in and β−1
2 b4 ∈ Sp×p

in . (4.152)

(2) If equality prevails in (4.151), then A2 ∈ Uconst(Jp).

Proof Let W (λ) = VA(λ)V, W1(λ) = VA1(λ)V, B(λ) = A(λ)V and
B1(λ) = A1(λ)V. Then W ∈ U(jp) and W1 ∈ P◦(jp). Let {b1, b2} ∈ ap(W ),
i.e., {b1, b2} ∈ apI (A). Lemma 4.36 implies that property (4.152) is satisfied
if and only if

β−1
1 b1 ∈ Sp×p

in and β−1
2 b2 ∈ Sp×p

in . (4.153)

In view of Theorem 4.89, it is enough to verify that

TW [Sp×p] ⊆ TW1 [Sp×p],

but this follows from Lemma 4.71. �

Corollary 4.97 Let A ∈ E ∩ U(Jp) and A1 ∈ P◦(Jp), let {b3, b4} ∈ apII(A)
and suppose that

C(A) = C(A1).
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Then A1 ∈ E ∩ U(Jp) and can be expressed in the form

A1(λ) =
eβ2 (λ)
eβ1 (λ)

A(λ)V,

where e−β1 b3 ∈ Sp×p
in , e−β2 b4 ∈ Sin, β1 ≥ 0, β2 ≥ 0 and V ∈ Uconst(Jp).

Theorem 4.98 Let A and A1 both belong to U(Jp), let {b3, b4} ∈ apII(A)
and {b(1)

3 , b
(1)
4 } ∈ apII (A1). Then the conditions

(b(1)
3 )−1b3 ∈ Sp×p

in , b4(b
(1)
4 )−1 ∈ Sp×p

in and C(A) ⊆ C(A1)

hold if and only if A−1
1 A ∈ U(Jp).

Remark 4.99 Theorem 4.98 remains valid if the condition C(A) ⊆ C(A1)
is replaced by the condition

TA [Cp×p ∩ D(TA)] ⊆ TA1 [Cp×p ∩ D(TA1 )].

Corollary 4.100 Let A and A1 both belong to U(Jp). Then

C(A) = C(A1) and apII (A) = apII (A1)

if and only if

A1(λ) = A(λ)U and U ∈ Uconst(Jp).

Theorem 4.101 Let A be a nondegenerate meromorphic m×m mvf in C+,
let B = AV and suppose that

TV[Cp×p] ⊆ D(TB) and C(A) = Cp×p.

Then:
(1) There exists a scalar function ρ(λ) that is meromorphic in C+ such

that ρA ∈ Uconst(J).

(2) If it is also assumed that A ∈ P◦(J), then A ∈ Uconst(J).

Proof Let B(λ) = A(λ)V and let W (λ) = VA(λ)V. Then

Cp×p = C(A) = TB [Sp×p ∩ D(TB)]

= TV[TW [Sp×p ∩ D(TV)].

Consequently,

TW [Sp×p ∩ D(TV)] = Sp×p ∩ D(TV),
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and hence, in view of Lemma 4.71, the conditions in (4.139) are in force for
W , since Sp×p∩D(TB) = Sp×p ∩D(TV) under the given assumptions. Thus,
Theorem 4.88 and Corollary 4.93 are applicable. �

TW [Sp×p] = Sp×p, since Sp×p ∩ D(TV) is dense in Sp×p and TW [Sp×p] is
closed with respect to pointwise convergence in Sp×p and Theorem 4.88 and
Corollary 4.93 are applicable. �
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tions of mvf’s in the class P◦(J) is adapted from the paper [Po60] and
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with trace H(t) = 1 and H(t) = H(t) ≥ 0 a.e. on [0, d]; see [Br68a], and, for
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Necessary and sufficient conditions for a 2 × 2 mvf A ∈ U(J1) that is
meromorphic in C to be the BP product of elementary factors of the first
and second kind that are different from those in Remark 4.47 were obtained
in [GuT03] and [GuT06], where necessary and sufficient conditions for A to
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the multiplicative representation of the characteristic mvf of such operators
and the triangular representation of such operators in the Livsic model; see
Brodskii [Bro72], Livsic [Liv73] and Zolotarev [Zol03]. Every convergent in-
finite product of elementary BP factors of the third and fourth kind can be
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of other results on 2×2 singular J-inner mvf’s may be found in [Kat89] and
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Lemma 4.40 arose following a lecture by (and discussion with) S. Naboko
in which the class of singular characteristic functions UA(λ) of nonselfad-
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formulated in assertion (3) of the lemma.
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Reproducing kernel Hilbert spaces

5.1 Preliminaries

In this chapter we shall develop the basic properties of a number of RKHS’s
(reproducing kernel Hilbert spaces) with RK’s (reproducing kernels) of a spe-
cial form that were introduced and extensively exploited to resolve assorted
problems in analysis by L. de Branges. In later chapters, RKHS methods will
be used to describe the set of solutions to each of a number of completely
indeterminate bitangential interpolation and extension problems.

Positive kernels

An m×m mvf Kω(λ) that is defined on a set Ω×Ω is said to be a positive
kernel on Ω × Ω if

n∑
i,j=1

u∗
i Kωj (ωi)uj ≥ 0 (5.1)

for every positive integer n and every choice of points ω1, . . . , ωn in Ω and
vectors u1, . . . , un in C

m .

Lemma 5.1 Let Kω(λ) be a positive kernel on Ω×Ω. Then for every choice
of α, β ∈ Ω:

(1) Kα(β)∗ = Kβ(α).

(2) Kα(α) ≥ 0.

(3) ‖Kα(β)‖ ≤ ‖Kα(α)‖ 1
2 ‖Kβ(β)‖ 1

2 .

(4) Equality holds in (5.1) if and only if
∑n

j=1 Kωj (λ)uj = 0 for every
point λ ∈ Ω.

240
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(5) If Kα(α)u = 0 for some point α ∈ Ω and vector u ∈ Cm, then
Kα(λ)u = 0 for every point λ ∈ Ω.

Proof Formula (5.1) implies that the matrix[
u∗Kα(α)u u∗Kα(β)v

v∗Kβ(α)u v∗Kβ(β)v

]
is positive semidefinite for arbitrary points α, β in Ω and arbitrary vectors
u, v in C

m . Thus, (1), (2) and the estimate

|v∗Kα(β)u| ≤ {u∗Kα(α)u} 1
2 {v∗Kβ(β)v} 1

2

≤ ‖Kα(α)‖ 1
2 ‖Kβ(β)‖ 1

2 ‖u‖ ‖v‖,

which implies (3) and (5), are readily seen to be valid. Finally, another
application of formula (5.1) implies that the matrix[ ∑n

i,j=1 u∗
i Kωj (ωi)uj

∑n
j=1 u∗

jKωj (λ)∗v∑n
j=1 v∗Kωj (λ)uj v∗Kλ(λ)v

]
is positive semidefinite for arbitrary points λ in Ω and arbitrary vectors v

in Cm and hence that (4) is valid too. �

Basic definitions and properties

A Hilbert space H of m × 1 vector valued functions defined on a set Ω is
said to be a RKHS (reproducing kernel Hilbert space) if there exists
an m × m mvf Kω(λ) defined on Ω × Ω such that:

(1) The inclusion

Kωu ∈ H (as a function of λ) (5.2)

holds for every choice of ω ∈ Ω and u ∈ C
m .

(2) The equality

〈f, Kωu〉H = u∗f(ω) (5.3)

holds for every choice of ω ∈ Ω, u ∈ C
m and f ∈ H.

Any mvf Kω(λ) that meets these two conditions is said to be a RK (repro-
ducing kernel) for H. It is readily checked that:
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(3) The kernel Kω(λ) is a positive kernel.

(4) A RKHS has exactly one RK, i.e., the RK is unique.

(5) If ‖fn − f‖H −→ 0 as n ↑ ∞, then fn(ω)− f(ω) −→ 0 as n ↑ ∞ at every
point ω ∈ Ω.

Theorem 5.2 If an m×m mvf Kω(λ) is a positive kernel on Ω×Ω, there
is exactly one RKHS of m × 1 vector valued functions on Ω with Kω(λ) as
its RK.

Proof Let the m × m mvf Kω(λ) be a positive kernel on Ω × Ω and let

L =


n∑

j=1

Kωj (λ)uj : ωj ∈ Ω, uj ∈ C
m, n ≥ 1

 (5.4)

be the linear manifold of finite sums of the indicated form endowed with the
scalar product

〈f, g〉 =
n∑

i,j=1

v∗i Kωj (ωi)uj, (5.5)

when

f(λ) =
n∑

j=1

Kωj (λ)uj and g(λ) =
n∑

j=1

Kωj (λ)vj (5.6)

for some n ≥ 1, ωj ∈ Ω and uj, vj ∈ C
m , 1 ≤ j ≤ n. The same sequence of

points, ω1 . . . ωn, may always be assumed in the representations (5.6) of the
vvf’s f(λ) and g(λ) by taking some of the uj = 0 or vj = 0, if needed.

The next step is to check that the inner product is well defined, or equiv-
alently, that if either f(λ) ≡ 0 or g(λ) ≡ 0, then 〈f, g〉 = 0. But if f(λ) ≡ 0
in Ω, then the following sequence of implications holds:

n∑
j=1

Kωj (λ)uj ≡ 0 =⇒
n∑

j=1

Kωj (ωi)uj = 0

=⇒
n∑

j=1

v∗i Kωj (ωi)uj = 0

=⇒ 〈f, g〉 =
n∑

i,j=1

v∗i Kωj (ωi)uj = 0.
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The linear manifold L with scalar product defined by formula (5.5) is a pre-
Hilbert space. Moreover, if ‖f‖2 = 〈f, f〉 = 0 for some vvf f ∈ L, then, in
view of item (4) in Lemma 5.1, f(λ) ≡ 0 on Ω.

Next, let {fn} be a fundamental sequence in L. Then the formula

u∗fn(ω) = 〈fn, Kωu〉

implies that fn(ω) is a fundamental sequence of vectors in C
m for every fixed

ω ∈ Ω. Let

f(ω) = lim
n→∞

fn(ω), ω ∈ Ω. (5.7)

Thus, formula (5.7) defines exactly one m × 1 vvf f(λ) on Ω corresponding
to each fundamental sequence {fn} in the pre-Hilbert space L.

Let

f(λ) = lim
n→∞

fn(λ) and g(λ) = lim
n→∞

gn(λ), λ ∈ Ω,

where {fn} and {gn} are two fundamental sequences in L. Define the scalar
product for these two vvf’s by formula

〈f, g〉 = lim
n→∞

〈fn, gn〉.

This limit exists since {〈fn, gn〉}, n ≥ 1, is a fundamental sequence of points
in C. After such a completion a Hilbert space H of m × 1 vvf’s g(λ) on Ω
is obtained in which L is a dense manifold and, consequently, the first char-
acteristic property (5.2) of a RKHS with RK Kω(λ) holds. Moreover, since
there exists a fundamental sequence {fn} ∈ L such that f(λ) = limn↑∞ fn(λ)
for every f ∈ H, the evaluation

u∗f(ω) = lim
n→∞

u∗fn(ω) = lim
n→∞

〈fn, Kωu〉 = 〈f, Kωu〉.

for every choice of ω ∈ Ω and u ∈ Cm implies that the second characteristic
property (5.3) holds too.

The uniqueness of the RHKS H of m × 1 vvf’s with given RK Kω(λ)
follows from properties (5.2) and (5.3) of a RKHS. �
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Lemma 5.3 Let H be a RKHS of p × 1 vvf ’s that are defined on a set Ω
and let Kω(λ) denote the RK of H and let

Nω = {u ∈ C
p : Kω(ω)u = 0}

Rω = {Kω(ω)u : u ∈ C
p} and

Fω = {f(ω) : f ∈ H}.
Then

Rω = Fω and Nω = F⊥
ω

for every point ω ∈ Ω. In particular,

at each point ω ∈ Ω, Fω = C
p ⇐⇒ Kω(ω) > 0. (5.8)

Proof It suffices to show that Nω = F⊥
ω , since Rω = N⊥

ω .
Suppose first that u ∈ Nω . Then

|u∗f(ω)| = |〈f, Kωu〉H| ≤ ‖f‖H‖Kωu‖H = 0

for every f ∈ H, since ‖Kωu‖2
H = u∗Kω(ω)u. Therefore, Nω ⊆ F⊥

ω .
Conversely, if u ∈ F⊥

ω , then u∗Kω(ω)v = 0 for every v ∈ Cp. But this
implies that u∗Kω(ω) = 0 and hence, since Kω(ω) = Kω(ω)∗ that Kω(ω)u =
0, i.e., u ∈ Nω . �

In the sequel we shall only be interested in RKHS’s of vvf’s that are
holomorphic in some open subset Ω of the complex plane C and are invariant
under the generalized backwards shift operator Rα which is defined for vvf’s
and mvf’s in Chapter 3 by formula (3.69). In order to keep the typography
simple, we shall not indicate the space in which Rα acts in the notation.

Lemma 5.4 Let H be a RKHS of m × 1 vvf ’s that are defined in an open
nonempty subset Ω of C and suppose that H is Rα invariant for every point
α ∈ Ω. Then the following two assertions are equivalent:

(1) Kω(ω) > 0 for at least one point ω ∈ Ω.

(2) Kω(ω) > 0 for every point ω ∈ Ω.
Moreover, the sets Nω , Rω and Fω defined in Lemma 5.3 are independent
of the choice of the point ω ∈ Ω.

Proof Let u ∈ Nβ for some point β ∈ Ω. Then, since Nβ = F⊥
β by Lemma

5.3,

u∗f(β) = 0 for every f ∈ H.
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Consequently,

0 = u∗(Rαf)(β)

=
u∗f(β) − u∗f(α)

α − β
for every f ∈ H and every α ∈ Ω \ {β}.

Therefore,

u∗f(α) = 0 for every f ∈ H and every α ∈ Ω.

Thus, u ∈ F⊥
α , and as F⊥

α = Nα, this proves that

Nβ ⊆ Nα for every α ∈ Ω.

Therefore, by symmetry,

Nβ = Nα for every point α ∈ Ω.

Moreover, as

Kω(ω) > 0 ⇐⇒ Nω = {0},

it follows that

Kω(ω) > 0 at one point ω ∈ Ω

⇐⇒ Kω(ω) > 0 at every point ω ∈ Ω.

Since Rω = N⊥
ω and Fω = Rω , the proof is complete. �

Theorem 5.5 Let H be a RKHS of m × 1 vector valued functions that are
defined on a set Ω and let Kω(λ) be its RK. Then an m× 1 vvf f(λ) that is
defined on Ω belongs to H if and only if there exists a constant γ ∈ R such
that

γ2Kω(λ) − f(λ)f(ω)∗ is a positive kernel. (5.9)

Moreover,

‖f‖2
H = inf{γ2 : (5.9) holds}.

Proof See e.g., pp. 16–17 of [Sai97]. �

Lemma 5.6 Let H be a RKHS of m×1 vvf ’s on some nonempty open subset
Ω of C with RK Kω(λ) on Ω × Ω. Then the two conditions

(1) Kω(λ) is a holomorphic function of λ in Ω for every point ω ∈ Ω;
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(2) the function ‖Kω(ω)‖ is bounded in every compact subset of Ω;

are in force if and only if

(3) every vvf f ∈ H is holomorphic in Ω.

Proof If (1) and (2) are in force and f ∈ H, then (3) may be verified by
choosing a sequence {fn} of finite linear combinations of the form fn =
ΣKωj uj which approximate f in H and then invoking the inequality

|u∗{f(ω) − fn(ω)}| = |〈f − fn, Kωu〉H|

≤ ‖f − fn‖H‖Kω(ω)‖ 1
2 ‖u‖.

This does the trick since the fn are holomorphic in Ω and tend to f uniformly
on compact subsets of Ω.

Conversely, if (3) is in force, then (1) is selfevident and (2) follows from
the uniform boundedness principle of Banach and Steinhaus; see, e.g., pp.
98–99 in [Ru74] for the latter. �

Corollary 5.7 If, in the setting of the previous lemma, condition (1) is in
force and the mvf Kω(ω) is continuous on Ω, then (3) is also in force.

Theorem 5.8 Let H be a RKHS of p × 1 vvf ’s that are defined on a set
Ω and suppose that H is invariant under the action of Rα for some point
α ∈ Ω. Then Rα is a bounded linear operator in H.

Proof Under the assumptions of the theorem, Rα is a closed operator in
H: If Kω(λ) is the RK of the RKHS H and if hn → h and Rαhn → g in H
when n → ∞, then

ξ∗hn(λ) = 〈hn, Kλξ〉H → 〈h, Kλξ〉H = ξ∗h(λ)

and

ξ∗(Rαhn)(λ) = 〈Rαhn, Kλξ〉H → 〈g,Kλξ〉H = ξ∗g(λ)

for every λ ∈ Ω and ξ ∈ C
p. Therefore, g = Rαh, since ξ∗(Rαhn)(λ) →

ξ∗(Rαh)(λ) for every λ ∈ Ω and ξ ∈ C
p. This completes the proof by a

theorem of Banach (see e.g., Theorem 5.10 in [Ru74]), since Rα is a closed
linear operator that is defined on the full space H. �
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5.2 Examples

Recall the notation

ρω(λ) = −2πi(λ − ω̄), (5.10)

which will be used frequently.

Example 5.9 The Hardy space Hp
2 of p × 1 holomorphic vvf ’s in Ω = C+

equipped with the standard inner product in Lp
2:

〈g, h〉st =
∫ ∞

−∞
h(µ)∗g(µ)dµ, (5.11)

is perhaps the most familiar example of a RKHS. The RK for this space is

Kω(λ) =
Ip

ρω(λ)
, (5.12)

defined on C+ × C+.

Formula (5.3) is nothing more than Cauchy’s formula for Hp
2 . The repro-

ducing kernel formulas lead easily to the evaluation described in the next
lemma.

Lemma 5.10 If f ∈ Hp×q
∞ , ξ ∈ C

p and ω ∈ C+, then

Π+f∗ ξ

ρω
= f(ω)∗

ξ

ρω
. (5.13)

Proof Let η ∈ Cq and α ∈ C+. Then〈
Π+f∗ ξ

ρω
,

η

ρα

〉
st

=
〈

ξ

ρω
, f

η

ρα

〉
st

=
η∗f(ω)∗ξ

ρω(α)
=
〈

f(ω)∗
ξ

ρω
,

η

ρα

〉
st

.

�
The space Hp

2 is Rα invariant for every point α ∈ C+, since

Rαf ∈ N p
+ ∩ Lp

2

for every α ∈ C+ and every f ∈ Hp
2 , and N p

+ ∩ Lp
2 = Hp

2 , by the Smirnov
maximum principle. The same argument implies that Rαf ∈ Hp

2 if α ∈
R ∩ hf , i.e., if the vvf f is holomorphic at the point α. Moreover, it is easy
to check that

(RαKωξ)(λ) = 2πiKω(λ)Kω(α)ξ (5.14)

for every point α ∈ C+ and every vector ξ ∈ C
p.
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Example 5.11 The Hardy space Kp
2 of p× 1 holomorphic vvf ’s in Ω = C−

equipped with the standard inner product in Lp
2 is an RKHS with RK

Kω(λ) = − Ip

ρω(λ)
,

defined on C− × C−.

The space Kp
2 is Rα invariant for every point α ∈ C−. This follows from

the Rα invariance of Hp
2 and the fact that

f ∈ Kp
2 ⇐⇒ f# ∈ Hp

2 .

Example 5.12 If s ∈ Sp×q, then the kernel

Λω(λ) =
Ip − s(λ)s(ω)∗

ρω(λ)
(5.15)

is positive on C+ × C+ and hence, in view of Theorem 5.2, is the RK of
exactly one RKHS which we shall refer to as H(s). Moreover, every vvf
f ∈ H(s) is holomorphic in C+.

The asserted positivity of the kernel follows from the fact that the operator
M̃s of multiplication by the mvf s restricted to Hq

2 is a contraction from Hq
2

into Hp
2 and formula (5.13) written as

(M̃s)∗
ξ

ρω
= s(ω)∗

ξ

ρω
:

n∑
i,j=1

ξ∗i s(ωi)s(ωj)∗ξj

ρωj (ωi)
=

∥∥∥∥∥∥(M̃s)∗
n∑

j=1

ξj

ρωj

∥∥∥∥∥∥
2

st

≤

∥∥∥∥∥∥
n∑

j=1

ξj

ρωj

∥∥∥∥∥∥
2

st

=
n∑

i,j=1

ξ∗i ξj

ρωj (ωi)

for every choice of points ω1, . . . , ωn in C+ and vectors ξ1, . . . , ξn in C
n and

every integer n ≥ 1. The vvf’s in H(s) are holomorphic in C+, by Corollary
5.7.

Remark 5.13 The space H(s) has two useful characterizations. The first,
which originates with de Branges and Rovnyak (for the disc) [BrR66],
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characterizes H(s) as the set of g ∈ Hp
2 for which

κ = sup{‖g + sh‖2
st − ‖h‖2

st : h ∈ Hq
2} (5.16)

is finite. In this case

κ = ‖g‖2
H(s) ≥ ‖g‖2

st for every g ∈ H(s).

The second characterizes H(s) as the range of the square root of the operator
(I − M̃sM̃

∗
s )|Hp

2
. A good discussion of the connection between these two de-

scriptions is given by Ando [An90]; see also Sarason [Sar94] and, for more
on the second description, Fillmore and Williams [FW71]. These character-
izations imply that H(s) is a subspace (not necessarily closed) of Hp

2 and
hence that every vvf f ∈ H(s) has nontangential boundary values f(µ) a.e.
on R. There is a natural analogue H∗(s) of H(s) in Kq

2 ; see, eg., [Dy03b].

Theorem 5.14 If s ∈ Sp×q, then:

(1) (Rαs)η ∈ H(s) for every α ∈ C+ and η ∈ C
q .

(2) If α1, . . . , αk ∈ C+ and η1, . . . , ηk ∈ C
q , then∥∥∥∥∥∥

k∑
j=1

(Rαj s)ηj

∥∥∥∥∥∥
2

H(s)

≤ 4π2
k∑

i,j=1

η∗i
Iq − s(αi)∗s(αj)

ραi (αj)
ηj , (5.17)

with equality if s ∈ Sp×q
in .

(3) The space H(s) is Rα invariant for every α ∈ C+.

(4) The inequality

‖Rαf‖H(s) ≤
1

Iα
‖f‖H(s)

is in force for every α ∈ C+ and every f ∈ H(s).

(5) H(s) ⊆ Hp
2 as linear spaces and hence every f ∈ H(s) has nontan-

gential boundary values f(µ) a.e. on R.

(6) If s ∈ Sp×q
in for some p ≥ q, then

H(s) = Hp
2 � sHq

2

and the inner product in H(s) is just the standard inner product
(5.11).
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Proof See Theorem 2.3 in [Dy89b]. �

Lemma 5.15 If s ∈ Sp×q , then each of the vector spaces

range {Ip − s(ω)s(ω)∗} and range {Iq − s(ω)∗s(ω)}

is independent of the choice of the point ω ∈ C+.

Proof The asserted conclusions follow by applying Lemma 5.4 to the
RKHS’s with RK’s Λω(λ) defined by s and s∼, respectively. �

Example 5.16 Let b ∈ Sp×q
∗in for some p ≤ q and let Ω = C−. Then

H∗(b) = Kq
2 � b#Kp

2

is a RKHS of q × 1 holomorphic vvf ’s in C− with respect to the standard
inner product in Lq

2 with RK

Kω(λ) =
b#(λ)b(ω̄) − Iq

ρω(λ)
, (5.18)

defined in C− × C−. Moreover, H∗(b) is Rα invariant for every α ∈ C−.

In view of the fact that

f ∈ H∗(b) ⇐⇒ f ∈ Kq
2 and bf ∈ Hp

2

it is readily seen that the space H∗(b) is Rα invariant for every α ∈ C−,
since Rαf ∈ Kq

2 and

b(λ)(Rαf)(λ) =
1

λ − α
b(λ)f(λ) − b(λ)

λ − α
f(α)

belongs to Hp
2 for every choice of α ∈ C− and f ∈ H∗(b).

Example 5.17 If c ∈ Cp×p, then the kernel

kc
ω(λ) = 2

c(λ) + c(ω)∗

ρω(λ)
(5.19)

is positive on C+ × C+ and hence, in view of Theorem 5.2, is the RK of
exactly one RKHS which we shall refer to as L(c). Moreover, since the con-
ditions of Corollary 5.7 are satisfied, every vvf f ∈ L(c) is holomorphic in
C+.
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The asserted positivity of the kernel is an easy consequence of the Riesz-
Herglotz integral representation of a mvf c ∈ Cp×p: If

g =
n∑

j=1

kc
ωj

ξj , g◦(µ) = 2
n∑

j=1

ξj

ρωj (µ)
and ξ =

n∑
j=1

ξj , (5.20)

then

g(λ) =
1
πi

∫ ∞

−∞

1
µ − λ

dσ(µ)g◦(µ) +
1
π

βξ

and
n∑

i,j=1

ξ∗i kc
ωj

(ωi)ξj =
n∑

i,j=1

1
π2

∫ ∞

−∞

ξ∗i dσ(µ)ξj

(µ − ωi)(µ − ωj)
+

1
π

n∑
i,j=1

ξ∗i βξj

=
∫ ∞

−∞
g◦(µ)∗dσ(µ)g◦(µ) +

1
π

ξ∗βξ

= 〈g, g〉L(c).

The main properties of L(c) are due to L. de Branges and may be found
on pp. 9–13 of [Br68a]. In the sequel we shall only use the estimate in the
next lemma, which is adapted from [Br63].

Lemma 5.18 If c ∈ Cp×p and the spectral function σ(µ) of c is such that
σ(α + ε) = σ(α − ε) for some α ∈ R and ε > 0 and g is as in (5.20), then
the kernel kc

ω(λ) is positive on C+ ∪ {α} × C+ ∪ {α},
Rαg ∈ L(c) and ‖Rαg‖L(c) ≤ ε−1‖g‖L(c). (5.21)

Proof If g is of the specified form, then

(Rαg)(λ) =
1
πi

∫ ∞

−∞

1
µ − λ

dσ(u)
1

µ − α
g◦(µ),

which belongs to L(c), since

1
µ − α

1
µ − ωj

=
1

α − ωj

{
1

µ − α
− 1

µ − ωj

}
.

Moreover,

‖Rαg‖2
L(c) =

∫ ∞

−∞

1
µ − α

g◦(µ)∗dσ(µ)
1

µ − α
g◦(µ)

≤ ε−2
∫ ∞

−∞
g◦(µ)∗dσ(µ)g◦(µ) ≤ ε−2‖g‖2

L(c).

�
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Example 5.19 Let U ∈ P(J). Then

Kω(λ) =
J − U(λ)JU(ω)∗

ρω(λ)
(5.22)

is a positive kernel on h
+
U × h

+
U and hence, in view of Theorem 5.2, is the

RK of exactly one RKHS of m × 1 vvf ’s on h
+
U , which we shall refer to as

H(U). In view of Corollary 5.7, these vvf ’s are holomorphic in h
+
U .

Theorem 5.20 If U ∈ P(J), then:

(1) (RαU)v ∈ H(U) for every choice of α ∈ h
+
U and v ∈ Cm.

(2) The inequality∥∥∥∥∥∥
�∑

j=1

(Rαj U)vj

∥∥∥∥∥∥
2

H(U )

≤ 4π2
�∑

i,j=1

v∗i
J − U(αi)∗JU(αj)

ραi (αj)
vj (5.23)

holds for every choice of α1 · · · , α� ∈ h
+
U and v1, . . . , v� ∈ Cm.

(3) The space H(U) is Rα invariant for every point α ∈ h
+
U .

(4) The inequality

‖Rαf‖H(U ) ≤
1

Iα
{1 + 2−1‖QU(α)Q‖}‖f‖H(U ) (5.24)

holds for every f ∈ H(U) and every α ∈ h
+
U .

(5) H(U) ⊂ Nm and hence every f ∈ H(U) has nontangential boundary
values.

(6) If J �= Im, S = PG(U) and L(λ) = (P −S(λ)Q)−1, then the formula

f(λ) = L(λ)g(λ), g ∈ H(S), (5.25)

defines a unitary operator from H(S) onto H(U).

Proof If J = Im , then P(J) = Sm×m , h
+
U = C+ and (1)–(5) follow from

Theorem 5.14.
If J �= Im , then Theorem 5.14 is applicable to S = PG(U), since it belongs

to Sm×m , and the kernels Kω(λ) and Λω(λ) that are defined by formulas
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(5.22) and (5.15), respectively, are connected:

Kω(λ) = L(λ)Λω(λ)L(ω)∗ on h
+
U × h

+
U .

Therefore, Kω(λ) is a positive kernel on h
+
U ×h

+
U . Moreover, (6) holds and the

identities based on the two recipes for the PG transform (see (2.6)) imply
that

(RαU)(λ) =
L(λ)(S(λ)P − Q) − (Q + PS(α))L̃(α)

λ − α

= L(λ)
(S(λ)P − Q)(P + QS(α)) − (P − S(λ)Q)(Q + PS(α))

λ − α
L̃(α)

= L(λ)(RαS)(λ)L̃(α), where L̃(λ) = (P + QS(λ))−1,

which serves to justify (1), thanks to (5.25).
The second assertion rests on the chain of inequalities∥∥∥∥∥∥

�∑
j=1

(Rαj U)vj

∥∥∥∥∥∥
2

H(U )

=

∥∥∥∥∥∥
�∑

j=1

(Rαj S)yj

∥∥∥∥∥∥
2

H(S)

≤ 4π2
�∑

i,j=1

y∗i
Im − S(αi)∗S(αj)

ραi (αj)
yj ,

where yj = L̃(αj))vj for j = 1, . . . , �, which coincides with the right hand
side of (5.23).

Next, if f ∈ H(U) and α ∈ h
+
U , the formula

(Rαf)(λ) = L(λ){(Rαg)(λ) + (RαS)(λ)QL(α)g(α)} (5.26)

displays the fact that H(U) is Rα invariant. Moreover, in view of (5.25) and
(5.26)

‖Rαf‖H(U ) ≤ ‖Rαg‖H(S) + ‖(RαS)QL(α)g(α)‖H(S).

Therefore, since

QL(α) = Q(P − U(α)Q) = −QU(α)Q

and

g(α)∗g(α) =
〈

g,
g(α)
ρα

〉
st

≤ ‖g‖st

{
g(α)∗g(α)

ρα(α)

}1/2

,
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it follows that

‖(RαS)QL(α)g(α)‖H(S) ≤
2π‖QL(α)g(α)‖√

ρα(α)
≤ 2π‖QU(α)Q‖‖g‖st

ρα(α)
.

Thus, as

‖g‖st ≤ ‖g‖H(S) and ‖g‖H(S) = ‖f‖H(U ),

the preceding estimates combine to yield the bound in (4).
Assertion (5) follows from formula (5.25) and the fact that L ∈ Nm×m

and g ∈ Hm
2 if g ∈ H(S). �

5.3 A characterization of the spaces H(U)

In this section we present a characterization of RKHS’s of holomorphic vvf’s
with RK’s of the form (5.34) in terms of Rα invariance and a constraint
on the inner product that is formulated in terms of the structural identity
(5.27), that is due to L. de Branges [Br63]. In de Branges original formulation
it was assumed that the underlying domain Ω was subject to the constraint
Ω ∩ R �= ∅. The relaxation of this condition to Ω∩Ω �= ∅ is due to Rovnyak
[Rov68].

Theorem 5.21 Let H be a RKHS of holomorphic m × 1 vector valued
functions that are defined on an open subset Ω of C such that Ω ∩ Ω �= ∅,
let J ∈ Cm×m be a signature matrix and suppose further that:

(1) H is invariant under Rα for every point α ∈ Ω.

(2) The de Branges identity

〈Rαf, g〉H − 〈f, Rβg〉H − (α − β)〈Rαf, Rβg〉H = 2πig(β)∗Jf(α)
(5.27)

is in force for every pair of points α, β ∈ Ω and every pair of functions
f, g ∈ H.

Then the RK Kω(λ) of H meets the following conditions:

(1) J−ρµ(µ)Kµ(µ) is congruent to the matrix J for each point µ ∈ Ω∩Ω.

(2) If µ ∈ Ω ∩ Ω is fixed and

J − ρµ(µ)Kµ(µ) = T ∗JT (5.28)
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for some invertible matrix T ∈ Cm×m , then

Kω(λ) =
J − U(λ)JU(ω)∗

ρω(λ)
(5.29)

on Ω × Ω, where the mvf U(λ) is uniquely specified by the formula

U(λ) = {J − ρµ(λ)Kµ(λ)}JT ∗ (5.30)

up to a constant J-unitary factor on the right.

Proof The proof is broken into steps.

Step 1is to show that the mvf

Pω(λ) = J − ρω(λ)Kω(λ) (5.31)

satisfies the relation

Pω(λ) = Pµ(λ)JPµ(µ)JPµ(ω)∗ (5.32)

for every pair of points λ, ω ∈ Ω.
The identity

Kω(λ) − Kω(µ)
λ − µ

− Kω(λ) − Kµ(λ)
ω − µ

= 2πiKµ(λ)JKω(µ)

is easily deduced from (5.27) by choosing α = µ, β = µ, f = Kωu, g = Kλv

with λ ∈ Ω \ {µ}, ω ∈ Ω \ {µ} and u, v ∈ C
m . Then, upon cross multiplying

by (λ − µ)(ω − µ) and reexpressing in terms of Pω(λ), it follows that

Pω(λ) = Pµ(λ)JPω(µ) (5.33)

for every pair of points λ, ω ∈ Ω. Thus

Pω(µ) = Pµ(µ)JPω(µ),

and, since ρµ(µ) = 0,

J = Pµ(µ) = Pµ(µ)JPµ(µ) = Pµ(µ)JPµ(µ).

Consequently,
Pω(µ) = J2Pω(µ)

= Pµ(µ)JPµ(µ)JPω(µ)

= Pµ(µ)JPω(µ)

= Pµ(µ)JPµ(ω)∗.
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Thus, upon substituting the last formula into (5.33), we obtain (5.32).

Step 2 is to verify (5.28).
It is convenient to let M = Pµ(µ). Then M = M∗, M is invertible and

M−1 = JPµ(µ)J . If µ ∈ R, then M = J and we may choose T = Im . If
µ �∈ R, then without loss of generality we may assume that µ ∈ C−. Suppose
further that J �= ±Im , let x �= 0 belong to the range of the orthogonal projec-
tion P = (Im +J)/2 and let y �= 0 belong to the range of the complementary
projection Q = (Im − J)/2. Then

〈Mx, x〉 = 〈{J − ρµ(µ)Kµ(µ)}x, x〉

= 〈x, x〉 − ρµ(µ)〈Kµ(µ)x, x〉

> 0,

since ρµ(µ) < 0 and Kµ(µ) ≥ 0; and

〈M−1y, y〉 = 〈J{J − ρµ(µ)Kµ(µ)}Jy, y〉

= −〈y, y〉 − ρµ(µ)〈Kµ(µ)y, y〉

< 0,

since ρµ(µ) > 0 and Kµ(µ) ≥ 0.
Now let

N = [X M−1Y ]∗M [X M−1Y ],

where X ∈ Cm×p, Y ∈ Cm×q , range X = range P , range Y =
range Q, p = dim(rangeX) and q = dim(rangeY ). Then, since

N11 = X∗MX > 0, N22 = Y ∗M−1MM−1Y < 0,

[X M−1Y ] is invertible and N = N∗, it follows that M is congruent to the
matrix [

N11 0
0 N22 − N∗

12N
−1
11 N12

]
which has p positive eigenvalues, and q negative eigenvalues. Consequently,
M is congruent to jpq , which is congruent to J . Therefore, (5.28) holds
when J �= ±Im . The proof is easily modified to cover the cases J = ±Im .
The details are left to the reader.
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Step 3 is to complete the proof.
Formulas (5.28), (5.31) and (5.32) imply that

Pω(λ) = Pµ(λ)JT ∗JTJPµ(ω)∗ = U(λ)JU(ω)∗

with

U(λ) = Pµ(λ)JT ∗.

This serves to establish formulas (5.29) and (5.30).
It remains only to check uniqueness. But, if there exists a second m × m

mvf V (λ) that is holomorphic in Ω such that

Kω(λ) =
J − V (λ)JV (ω)∗

ρω(λ)
,

then

V (µ)JV (µ)∗ = J = V (µ)∗JV (µ)

and

V (λ)JV (ω)∗ = U(λ)JU(ω)∗

for every pair of points λ, ω ∈ Ω. Therefore,

V (λ) = V (λ)JV (µ)∗JV (µ) = U(λ)JU(µ)∗JV (µ) = U(λ)L,

where

L = JU(µ)∗JV (µ)

is independent of λ. Moreover, the development

J = V (µ)∗JV (µ) = L∗U(µ)∗JU(µ)L = L∗JL,

proves that L is J-unitary. �

Theorem 5.22 Let H be a RKHS of m × 1 vector valued functions that
are holomorphic on a nonempty open subset Ω of C that is symmetric with
respect to R and suppose that there exists an m×m signature matrix J and
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an m × m mvf U(λ) that is holomorphic in Ω such that the RK Kω(λ) can
be expressed on Ω × Ω by the formula

Kω(λ) =


J − U(λ)JU(ω)∗

ρω(λ) if λ �= ω

U ′(ω)JU(ω)∗
2πi if λ = ω

(5.34)

Then

(1) H is Rα invariant for every point α ∈ Ω.

(2) The de Branges identity (5.27) is valid for every choice of f, g ∈ H
and α, β ∈ Ω.

Proof The proof is broken into steps.

Step 1 is to check that if λ, ω, α,∈ Ω, and α �= ω, then

(RαKω)(λ) =
Kω(λ) − Kα(λ)JU(α)JU(ω)∗

ω − α
. (5.35)

Let Nω(λ) = J − U(λ)JU(ω)∗. Then, since

Kω(λ) − Kω(α) =
{

1
ρω(λ)

− 1
ρω(α)

}
Nω(λ) +

1
ρω(α)

{Nω(λ) − Nω(α)},

and

J = U(α)JU(α)∗ = U(α)∗JU(α),

the result follows from the evaluations(
Rα

1
ρω

)
(λ) =

(
1

ω − α

)
1

ρω(λ)
, for α �= ω

and

Nω(λ) − Nω(α)
λ − α

=
U(α)JU(ω)∗ − U(λ)JU(ω)∗

λ − α

=
{

U(α)JU(α)∗ − U(λ)JU(α)∗

λ − α

}
JU(α)JU(ω)∗

= −2πiKα(λ)JU(α)JU(ω)∗.

Step 2 is to verify the formula

〈(I +(α−β)Rα)f, (I +(β−α)Rβ)g〉H = 〈f, g〉H−ρβ(α)g(β)∗Jf(α) (5.36)
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for α, β ∈ Ω and sums of the form

f =
k∑

j=1

Kωj uj and g =
�∑

i=1

Kγi vi, (5.37)

where the points ωj, γi ∈ Ω and the vectors uj, vi ∈ Cm.
The identity is verified first for k = � = 1 by a straightforward, though

lengthy, calculation that makes use of (5.34) and (5.35). The extension to
finite sums is then immediate since inner products are sesquilinear.

Step 3 If f ∈ H is as in Step 2 and α ∈ Ω \ R, then

‖Rαf‖H ≤ 1 + {1 + 2π|α − α|‖Kα(α)‖1/2}
|α − α| ‖f‖H. (5.38)

The inequalities

f(α)∗f(α) = 〈f, Kαf(α)〉H ≤ ‖f‖H‖Kαf(α)‖H
= ‖f‖H{f(α)∗Kα(α)f(α)}1/2

imply that

‖f(α)‖ ≤ ‖f‖H‖Kα(α)‖1/2.

Therefore, by formula (5.36) with α = β and f = g,

‖(I + (α − α)Rα)f‖H ≤ {1 + 2π|α − α‖Kα(α)‖1/2}‖f‖H.

The bound (5.38) then follows from the triangle inequality.

Step 4 If f ∈ H is as in (5.37) and [α − ε, α + ε] ⊂ Ω ∩ R for some ε > 0
and U(µ) + U(α) is invertible in this interval, then

‖Rαf‖H(U ) ≤ {ε−1 + π‖KU
α (α)‖}‖f‖H(U ). (5.39)

Let S = PG(U) and assume that U(α) = Im . (This involves no loss of
generality because U(λ)JU(α)∗J meets this condition.) The mvf’s

C = JTV[S]J = (Im − U)(Im + U)−1J (5.40)

and

M(λ) = 2(Im + U(λ))−1 = Im + C(λ)J (5.41)
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are holomorphic in an open set Ω0 that contains [α − ε, α + ε] and

C(λ) + C(ω)∗

−πi(λ − ω)
= M(λ)KU

ω (λ)M(ω)∗. (5.42)

Thus, in view of Corollary 5.27 that will be presented in the next section,
there exists a unique extension of C(λ) into C+ that belongs to Cm×m that
will also be denoted by C(λ). Formula (5.42) implies that

2R(C(µ + iν) = M(µ + iν){J − U(µ + iν)JU(µ + iν)∗}M(µ + iν)∗

and hence if the interval [α − ε, α + ε] ⊂ hU ∩ hM , that the values of the
spectral function σ(µ) of C(λ) are equal at the endpoints of this interval.
Thus,

‖Rαg‖L(C) ≤
1
ε
‖g‖L(C)

for finite sums of the form g =
∑

KC
ωj

uj , by Lemma 5.18. Moreover, if f is
as in (5.37), it is readily checked that

‖Mf‖2
L(C) = ‖

n∑
j=1

KC
ωj

M(ωj)−∗uj‖L(C) = ‖f‖2
H(U ).

Therefore, since

(RαMf)(λ) = M(λ)(Rαf)(λ) + (RαM)(λ)f(α)

and

(RαM)(λ) = −πiM(λ)KU
α (λ)J,

it follows that

‖Rαf‖H(U ) = ‖MRαf‖L(C) = ‖RαMf + πiMKU
α Jf(α)‖L(C)

≤ 1
ε
‖Mf‖L(C) + π‖KU

α Jf(α)‖H(U ),

which yields (5.39).

Step 5 is to complete the proof.
Finite sums of the form considered in (5.37) are dense in H and the bounds

in (5.36) and (5.39) insure that if a sequence fn, n = 1, 2, . . . of finite sums
of the form considered in (5.37) tend to a limit f in H, then Rαfn tends
to a limit f̃ in H when α ∈ Ω. Moreover, f̃ can be identified as Rαf , since
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norm convergence implies pointwise convergence in a RKHS. Thus, H is Rα

invariant for every point α ∈ Ω and the bounds on Rα are valid for arbitrary
f ∈ H and formula (5.36), which is equivalent to the de Branges identity,
holds for arbirary f, g ∈ H and α, β ∈ Ω. �

Lemma 5.23 If U ∈ P(J), then

range {J − U(ω)JU(ω)∗} and range {J − U(ω)∗JU(ω)}

are independent of the choice of the point ω ∈ h
+
U .

Proof The first assertion follows from Lemma 5.4; the second follows by
applying the same lemma to the mvf U1(λ) = U(−λ)∗. �

5.4 A finite dimensional example and extensions thereof

The conditions (1) Rα invariance and (2) the de Branges identity (5.27) in
Theorem 5.21 are particularly transparent in the finite dimensional case.
Thus, for example, if F (λ) is an m×n meromorphic mvf in C with columns
that are independent in the sense that F (λ)u = 0 for an infinite set of points
that includes a limit point if and only if u = 0, then the space

H = {F (λ)u : u ∈ C
n} (5.43)

endowed with the inner product

〈Fu, Fv〉H = v∗Pu (5.44)

based on any positive definite n × n matrix P is a RKHS with RK

Kω(λ) = F (λ)P−1F (ω)∗. (5.45)

If H is Rα invariant for some point α ∈ hF , then there exists an n×n matrix
V such that

F (λ) − F (α)
λ − α

= F (λ)V.

Thus,

F (λ) = F (α){(In + αV ) − λV }−1,

i.e., Rα invariance forces F (λ) to be a rational mvf. If it is also assumed
that F (λ) → 0 as |λ| → ∞, then it is readily checked that V is invertible
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and hence that F (λ) can be reexpressed as

F (λ) =
C√
2π

(λIn − A)−1 (5.46)

where, ∩n−1
j=0 kernelCAj = {0} (i.e., (C,A) is observable). Thus, hF = {λ ∈

C : det(λIn − A) �= 0} and, with the aid of the evaluation

(RαF )(λ) = −F (λ)(αIn − A)−1 for α ∈ hF , (5.47)

it is also easily verified that H is Rα invariant for every α ∈ hF and that the
de Branges identity (5.27) holds if and only if the positive matrix P that
defines the inner product is a solution of the Lyapunov equation

A∗P − PA = iC∗JC. (5.48)

Moreover, upon invoking formula (5.30) and letting µ ∈ R tend to ∞, it is
readily checked that

U(λ) = Im − iC(λIn − A)−1P−1C∗J (5.49)

up to a constant J-unitary multiplier on the right.
de Branges spaces are a convenient tool for solving tangential Nevanlinna-

Pick problems. In particular:

Theorem 5.24 Let ξ1, . . . , ξn ∈ C
p, η1, . . . , ηn ∈ C

q and α1, . . . , αn ∈ C+.
Then there exists a mvf s ∈ Sp×q such that ξ∗j s(αj) = η∗j for j = 1, . . . , n if
and only if the n × n matrix P with components

pij =
ξ∗i ξj − η∗i ηj

ραj (αi)
, i, j = 1, . . . , n,

is positive semidefinite.

Proof Suppose first that there exists a mvf s ∈ Sp×q such that ξ∗j s(αj) = η∗j
for j = 1, . . . , n. Then the necessity of the condition P ≥ 0 is an immediate
consequence of the inequalities∥∥∥∥∥∥

n∑
j=1

cjρ
−1
αj

ηj

∥∥∥∥∥∥
2

st

=

∥∥∥∥∥∥
n∑

j=1

cjρ
−1
αj

s(αj)∗ξj

∥∥∥∥∥∥
2

st

=

∥∥∥∥∥∥Π+Ms∗

n∑
j=1

cjρ
−1
αj

ξj

∥∥∥∥∥∥
2

st

≤

∥∥∥∥∥∥
n∑

j=1

cjρ
−1
αj

ξj

∥∥∥∥∥∥
2

st

.
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Suppose next that P > 0, let J = jpq , vj = col [ξj, ηj ] for j = 1, . . . , n,

C = − 1
i
√

2π

[
ξ1 · · · ξn

η1 · · · ηn

]
= − 1

i
√

2π
[v1 · · · vn ]

A = diag {α1, . . . , αn},

F (λ) =
C√
2π

(λIn − A)−1 and W (λ) = Im − iF (λ)P−1C∗jpq.

Then, since P is a positive definite solution of the Lyapunov equation (5.48)
with J = jpq , the space H = span {F (λ)u : u ∈ C

n} endowed with the inner
product (5.44) is a de Branges space with RK

KW
ω (λ) =

jpq − W (λ)jpqW (ω)∗

ρω(λ)
.

Moreover, if fj = ρ−1
αj

vj denotes the jth column of F , then since

pk� = 〈fk, f�〉H =
v∗� jpqvk

ραk
(α�)

= 〈jpqfk, f�〉st

for k, l = 1, . . . , n, it follows that

u∗fk(ω) =
〈

jpqfk,
jpq − WjpqW (ω)∗

ρω
u

〉
st

=
〈

jpqfk,
jpqu

ρω

〉
st

−
〈

jpqfk,
WjpqW (ω)∗

ρω
u

〉
st

= u∗fk(ω) − u∗W (ω)jpqW (αk)∗jpqvk

ραk
(ω)

for every ω ∈ C+ \ {αk}. Thus,

[ξ∗k − η∗k ]
[

w11(αk) w12(αk)
w21(αk) w22(αk)

]
= v∗kjpqW (αk) = 0

and hence

ξ∗kw12(αk)w22(αk)−1 = η∗k,

which exhibits s12 = w12w
−1
22 as a solution of the Nevanlinna-Pick inter-

polation problem if P > 0. A more detailed analysis exhibits TW [Sp×q ] as
the full set of solutions. The case P ≥ 0 may be handled by a limiting
argument. �
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Corollary 5.25 Let ω1, . . . , ωk ∈ C+ and let sω1 . . . sωk
∈ Sp×q

const. Then there
exists a mvf s ∈ Sp×q such that s(ωj) = sωj for j = 1, . . . , k if and only if

k∑
i,j=1

u∗
j

Ip − sωj s
∗
ωk

ρωk
(ωj)

uk ≥ 0 (5.50)

for every choice of vectors u1, . . . , uk ∈ C
p.

Proof This is a special case of Theorem 5.24 with n = kp,

C = − 1
i
√

2π

[
Ip · · · Ip

s∗ω1
· · · s∗ωk

]
and A = diag {ω1Ip, . . . , ωkIp}.

�
Let Ω be a subset of C+ and sω ∈ C

p×q for each point ω ∈ Ω and let

S(Ω; sω) = {s ∈ Sp×q : s(ω) = sω for every point ω ∈ Ω}.

Lemma 5.26 S(Ω; sω) �= ∅ if and only if

n∑
j,k=1

ξ∗j
Ip − sωj s

∗
ωk

ρωk
(ωj)

ξk ≥ 0 (5.51)

for every choice of points ω1, . . . , ωn ∈ Ω and vectors ξ1, . . . , ξn ∈ C
p.

Proof The necessity of condition (5.51) follows from the positivity of the
kernel

Λω(λ) =
Ip − s(λ)s(ω)∗

ρω(λ)
.

when s ∈ Sp×q . The sufficiency of this condition when Ω is a finite or count-
able set is a consequence of Corollary 5.25 and the sequential compactness
of Sp×q .

If Ω is uncountable, then there exists a limit point ω0 ∈ C+ of the set Ω.
Let ω1, ω2, . . . be a sequence of distict points in Ω that tend to this limit point
ω0. Then, in view of the preceding discussion, there exists a mvf s ∈ Sp×q

such that s(ωj) = sωj for j = 1, 2, . . ., and, since ω0 is a limit point, there
is only one such mvf s ∈ Sp×q . The same argument shows that if α is any
other point of the set Ω, and if s is the unique mvf that was considered just
above, then s(α) = sα, since the sequence α, ω1, ω2, . . . still tends to ω0. �
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Corollary 5.27 If Ω is a subset of C+ and cω ∈ Cp×p
const for each point ω ∈ Ω,

then the set C(Ω; cω) of mvf’s c ∈ Cp×p such that c(ω) = cω for every point
ω ∈ Ω is nonempty if and only if

n∑
j,k=1

ξ∗j
Ip − cωj c

∗
ωk

ρωk
(ωj)

ξk ≥ 0 (5.52)

for every choice of points ω1, . . . , ωn ∈ Ω and vectors ξ1, . . . , ξn ∈ Cp.

Proof The necessity of condition (5.52) is clear from Example 5.17. Con-
versely, if this condition is satisfied and sω = PG(cω), then the set
{sω : ω ∈ Ω} satisfies the condition (5.51). Therefore, Lemma 5.26 guar-
antees that S(ω; sω) �= ∅. Thus, as TV[sω ] = cω , it is readily seen that
C(Ω; cω) = TV[S(Ω; sω)] and hence that C(Ω; cω) �= ∅. �

Corollary 5.28 If Ω is a subset of C+ and Uω ∈ Pconst(J) for each point
ω ∈ Ω, then the set PJ (Ω; Uω) of mvf’s U ∈ P(J) such that U(ω) = Uω for
every ω ∈ Ω is nonempty if and only if

n∑
j,k=1

v∗j
J − Uωj JU∗

ωk

ρωk
(ωj)

vk ≥ 0 (5.53)

for every choice of points ω1, . . . , ωn ∈ Ω and vectors v1, . . . , vn ∈ Cm.

Proof The necessity is easily checked directly from the identity∥∥∥∥∥
n∑

k=1

KU
ωk

vk

∥∥∥∥∥
2

H(U )

=
n∑

j,k=1

v∗j
J − Uωj JU∗

ωk

ρωk
(ωj)

vk

which is valid for U ∈ P(J).
Conversely, if the condition (5.53) is met, then the set S(Ω; Sω) with Sω =

PG(Uω) is nonempty by the preceding lemma, i.e., there exists a mvf S ∈
Sm×m such that S(ω) = PG(Uω) for every point ω ∈ Ω. Thus,

det(P + QS(λ)Q) �≡ 0,

and hence U = PG(S) is well defined and U(ω) = PG(Sω) = Uω , for every
ω ∈ Ω, as claimed. �

Lemma 5.29 Let J be an m×m signature matrix, let U(λ) be an m×m mvf
that is holomorphic in an open set Ω ⊆ C+ such that the kernel KU

ω (λ) that
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is defined by formula (5.34) is positive on Ω×Ω. Then there exists a unique
meromorphic extension Ũ ∈ P(J) of U(λ) to a domain Ω̃ = h

Ũ
⊆ C+.

Morever, every vvf h ∈ H(U) has a unique extension h̃ ∈ H(Ũ) to the
domain Ω̃ and

〈h, g〉H(U ) = 〈h̃, g̃〉H(Ũ ).

Proof There are three cases to consider:

1. J = Im: If ωj ∈ Ω for j = 1, 2, . . . is an infinite sequence of points in Ω
with a limit point ω0 ∈ Ω, then, since P(Im) = Sm×m , there exists a unique
mvf Ũ ∈ Sm×m such that Ũ(ωj) = U(ωj) for j = 1, 2, . . . . Moreover, the
kernel KŨ

ω (λ) meets the conditions of the lemma.

2. J = −Im: In this case, U(λ)U(λ)∗ ≥ Im for λ ∈ Ω. Therefore, U(λ) is
invertible and the preceding argument is applicable to S(λ) = U(λ)−1, since
it belongs to Sm×m .

3. J �= ±Im: The argument in the first paragraph is now applied to S =
PG(U). �

5.5 Extension of H(U) into C for U ∈ P◦(J)

If U ∈ P◦(J) and

Ω+ = {λ ∈ h
+
U : detU(λ) �= 0} and Ω− = {λ : λ ∈ Ω+},

then U will be defined in Ω− by the symmetry principle

U(λ) = JU#(λ)−1J for λ ∈ Ω−.

Let hU denote the largest open set in C to which U can be extended as a
holomorphic mvf and let

h
−
U = hU ∩ C− and h0

U = hU ∩ R. (5.54)

Then h+
U = hU ∩ C+ ⊇ Ω+, h−U ⊇ Ω− and

ω ∈ h0
U ⇐⇒ (ω − δ, ω + δ) ⊂ hU and U(µ)∗JU(µ) = J

for µ ∈ (ω − δ, ω + δ) for some δ > 0.
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Moreover, U is holomorphic on the set

ΩU = Ω+ ∪ Ω− ∪ h0
U (5.55)

and

U#(λ)JU(λ) = J for every point λ ∈ ΩU . (5.56)

Since U is J-contractive in h
+
U and −J-contractive in h

−
U , the restrictions U+

of U to C+ and U− of U to C− are meromorphic with bounded Nevanlinna
characteristic in C+ and C−, respectively. Therefore, the limits

U+(µ) = lim
ν↓0

U(µ + iv) and U−(µ) = lim
ν↓0

U(µ − iv)

exist a.e. on R and, in view of (5.56), U−(µ)∗JU+(µ) = J a.e. on R. Thus a
mvf U ∈ P◦(J) that is extended to C− by the symmetry principle belongs
to the class Πm×m if and only it belongs to the class U(J).

Example 5.30 Let b(λ) = (λ − i)/(λ + i) for λ �= i and let U(λ) =
diag{b(λ)/2, 1} in C+. Then U ∈ P◦(J), Ω+ = C+ \ {i}, Ω− = C− \ {−i},
U+ = U , U−(λ) = diag{2b(λ), 1}. Thus, the mvf U−(λ), which is obtained
by the symmetry principle is not the holomorphic extension of U+(λ).

Theorem 5.31 If U ∈ P◦(J), then:

(1) The formula (5.34) defines a positive kernel on hU × hU . Every vvf
in the RKHS H with RK Kω(λ) is holomorphic on hU .

(2) The RKHS H with RK Kω(λ) is Rα invariant for every point α ∈ ΩU .

(3) The de Branges identity (5.27) is in force for every choice of α, β ∈
ΩU and f, g ∈ H.

Proof To verify (1), it is necessary to show that
n∑

s,t=1

x∗
t Kωs (ωt)xs ≥ 0 (5.57)

for every choice of points ω1, . . . , ωn ∈ ΩU and vectors x1, . . . , xn ∈ C
m . We

shall treat the main case in which the sum (5.57) is considered with points
in both Ω+ and Ω− and leave the other two cases to the reader. Without
loss of generality, we may assume that ωs ∈ Ω+ for s = 1, . . . , k and ωs ∈ Ω−
for s = k + 1, . . . , k + �. Then n = k + � and it is convenient to set αs = ωs
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for s = 1, . . . , k; and βt = ωk+t and yt = xk+t for t = 1, . . . , �. Then the sum
(5.57) can be split into four pieces:

©1 =
k∑

i,j=1

x∗
jKαi (αj)xi, ©2 =

�∑
t=1

k∑
i=1

y∗t Kαi (βt)xi,

©3 =
�∑

j=1

k∑
s=1

x∗
sKβj

(αs)yj and ©4 =
�∑

t,j=1

y∗t Kβj
(βt)yj .

Moreover, since

Kβ(α) =
J − U(α)JU(β)∗

ρβ(α)

=
{U(β) − U(α)}
−2πi(α − β)

JU(β)∗

=
1

2πi

(
RβU

)
(α)JU(β)∗

for α �= β,

©3 =
�∑

j=1

k∑
s=1

x∗
s

(
Rβj

U
)

(αs)vj and ©2 =
�∑

t=1

k∑
i=1

v∗t

(
Rβt

U
)

(αi)∗xi,

with 2πivj = JU(βj)∗yj for j = 1, . . . , �. On the other hand, since

©4 =
�∑

t,j=1

y∗t

{
J − U(βt)JU(βj)∗

ρβj
(βt)

}
yj

=
�∑

t,j=1

y∗t U(βt)J

{
U(βt)∗JU(βj) − J

−2πi(βt − βj)

}
JU(βj)∗yj

= 4π2
�∑

t,j=1

v∗t

{
J − U(βt)∗JU(βj)

ρβt
(βj)

}
vj

≥

∥∥∥∥∥∥
�∑

j=1

(Rβj
U)vj

∥∥∥∥∥∥
2

,



5.5 Extension of H(U) into C for U ∈ P◦(J) 269

thanks to (5.23), it is readily seen that

©1 + ©2 + ©3 + ©4 ≥

∥∥∥∥∥∥
k∑

i=1

Kαi xi +
�∑

j=1

(
Rβj

U
)

vj

∥∥∥∥∥∥
2

≥ 0.

Thus, the kernel Kω(λ) is positive on ΩU×ΩU and hence also on hU×hU . The
rest of asserion (1) follows from Theorem 5.2 and Corollary 5.7, since Kω(ω)
is continuous on hU . Assertions (2) and (3) are immediate from Theorem
5.22, since Ω is symmetric with respect to R. �

Remark 5.32 If U ∈ P◦(J) has a holomorphic extension through some
interval (a, b) ⊆ R and if U(µ)∗JU(µ) = J for all points µ ∈ (a, b), then
the assertions of Theorem 5.31 remain valid if Ω is replaced by the larger
domain hU .

Theorem 5.33 Let H̃ be a RKHS of m × 1 vvf ’s on a subset Ω̃ of C with
RK Kω(λ) on Ω̃ × Ω̃ and let Ω be a nonempty subset of Ω̃. Then the set
of restrictions f = f̃ |Ω of f̃ ∈ H̃ to Ω is a RKHS H with RK that is the
restriction of Kω(λ) to Ω × Ω and the operator

TΩ : f̃ ∈ H̃ −→ f̃ |Ω,

is a partial isometry from H̃ onto H with ker TΩ = {f̃ ∈ H̃ : f̃ |Ω ≡ 0}. If
Ω and Ω̃ are open and H̃ is a RKHS of holomorphic vvf ’s on Ω̃ and Ω has
a nonempty intersection with each connected component of Ω̃, then TΩ is
unitary.

Proof In view of Theorem 5.2 and Corollary 5.7, the restriction of Kω(λ)
to Ω × Ω defines a unique RKHS H of holomorphic m × 1 vvf’s on Ω with
the restricted Kω(λ) as its RK. Moreover, with the help of Theorem 5.5, it
is readily checked that

‖TΩ f̃‖2
H ≤ ‖f̃‖2

H̃ for every f̃ ∈ H̃,

i.e., TΩ is a contraction. On the other hand, if ωj ∈ Ω and uj ∈ Cm for
j = 1, . . . , n and λ ∈ Ω̃, then

f̃(λ) =
n∑

j=1

Kωj (λ)uj belongs to H̃, f̃ |Ω ∈ H
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and

‖f̃‖2
H̃ =

n∑
i,j=1

u∗
i Kωj (ωi)ui = ‖f̃ |H‖2

H.

Then TΩ maps a dense subspace of H isometrically onto the closure in H̃ of
sums of the indicated form and is equal to zero on the orthogonal comple-
ment of this closure, as claimed. �

Theorem 5.34 If U ∈ P◦(J) and H = H(U) is the RKHS of holomorphic
vvf ’s on hU that is considered in Theorem 5.31, then:

(1) The restrictions f± = f |
h
±
U

belong to the Nevanlinna class of m × 1
vvf ’s in C±, respectively, for every f ∈ H.

(2) The limits f±(µ) = limν↓0 f(µ + iν) exist a.e. on R if f ∈ H.

(3) U ∈ U(J) ⇐⇒ H(U) ⊂ Πm.

Proof (1) follows from Theorems 5.33 and 5.20 and (2) is immediate from
(1). The condition H(U) ⊂ Πm implies that that f+(µ) = f−(µ) a.e. on R

and hence, upon applying this to the vvf f(λ) = KU
ω (λ)v for ω ∈ hU ∩ hU−1

and v ∈ Cm , that U+(µ) = U−(µ) a.e. on R. Thus, U ∈ U(J), since J −
U−(µ)JU−(µ)∗ ≤ 0 and J − U+(µ)JU+(µ)∗ ≥ 0 a.e. on R. The converse
implication will be established later in Theorem 5.49. �

5.6 The space H(b) for p × p inner mvf’s b(λ)

In this section the RKHS H(b) for b ∈ Sp×p
in that was introduced earlier in

Example 5.12 will be studied in more detail. Earlier, H(b) was defined as
the RKHS of p × 1 vvf’s that are holomorphic in C+ with RK Λω(λ) on
C+ × C+ defined by formula (5.15) with s(λ) = b(λ). In view of assertion
(5) of Theorem 5.14,

H(b) = Hp
2 � bHp

2

and the inner product in H(b) is just the standard inner product (5.11) in
Lp

2.

Lemma 5.35 If b ∈ Sp×p
in , then:

(1) b ∈ Πp×p.

(2) H(b) ⊆ Πp.
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Proof To verify the first assertion, recall that b ∈ Sp×p
in admits a pseudo-

continuation to the lower half plane C− by means of the recipe

b(λ) = {b#(λ)}−1

for every point λ ∈ C− for which b(λ̄) is invertible. Thus, as b(µ) is unitary

for almost all points µ ∈ R,

lim
ε↓0

b(µ − iε) = lim
ε↓0

{b(µ + iε)∗}−1 = {b(µ)∗}−1

= b(µ) = lim
ε↓0

b(µ + iε),

for almost all points µ ∈ R.
Next, (2) follows from the fact that H(b) = Hp

2 ∩ bKp
2 and Corollary

3.107. �
Since every vvf f ∈ H(b) admits a pseudocontinuation to C− that is

holomorphic on the set hb, the space H(b) may be viewed as a space of p×1
holomorphic vvf’s on the set hb and not just on C+.

Lemma 5.36 Let b ∈ Sp×p
in and let the kernel kb

ω(λ) be defined on hb × hb

by the formula

kb
ω(λ) =


Ip − b(λ)b(ω)∗

ρω(λ) if λ �= ω

b′(ω)b(ω)∗
2πi if λ = ω

. (5.58)

Then:

(1) kb
ω(λ) is a positive kernel on hb × hb.

(2) ‖kb
ω(ω)‖ is continuous in hb.

Proof The first goal is to check that the kernel kb
ω(λ) that is defined for

b ∈ Sp×p
in on hb × hb by formula (5.58) is positive. It is enough to check that

this kernel is positive on the set Ω × Ω, where Ω = Ω+ ∪ Ω−, Ω+ = {λ ∈
C+ : det b(λ) �= 0} and Ω−{λ : λ ∈ Ω+}, since this kernel is continuous on
hb × hb. But this follows from (1) of Theorem 5.31 with J = Ip. The second
assertion is self-evident. �

Our next objective is to show that if b ∈ Sp×p
in , then
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(1) ∩f∈H(b)hf = hb.

(2) The space of vvf’s in H(b) extended by pseudocontinuation into all of
hb coincides with the RKHS H of vvf’s on hb with RK kb

ω(λ) defined on
hb × hb.

Lemma 5.37 Let b ∈ Sp×p
in . Then Rαbξ ∈ H(b) for every choice of α ∈ hb

and ξ ∈ C
p.

Proof The stated assertion is readily verified by direct calculation when
α ∈ C+. On the other hand, if α ∈ C− ∩ hb, then α ∈ hb, b(α)b(α)∗ = Ip and
the desired conclusion follows from the identity

(Rαb)(λ) = 2πikb
ᾱ(λ)b(α), (5.59)

which expresses the left hand side in terms of the RK of H(b).
If α ∈ R ∩ hb and ξ ∈ Cp, then another argument can be based on the

observation that

Rαbξ =
b(λ) − b(α)

λ − α
ξ ∈ Hp

2

and

b−1Rαbξ =
Ip − b(λ)−1b(α)

λ − α
ξ = −b#(λ) − b#(α)

λ − α
b(α)ξ ∈ Kp

2 .

Thus, Rαbξ ∈ H(b). �

Lemma 5.38 Let b ∈ Sp×p
in and let d(λ) = det b(λ). Then

hb = hd and H(b) ⊆ H(dIp). (5.60)

Proof Clearly hb ⊆ hd. Moreover, since b(λ) and d(λ) are both holomorphic
in C+, it remains only to check the opposite inclusion in R ∪ C−.

Suppose first that ω ∈ hd ∩ C−. Then, since d(ω)d(ω)∗ = 1, d(ω) �= 0.
Therefore, b(ω) is invertible and ω ∈ hb also.

Next, if ω ∈ hd ∩ R, then d(λ) is holomorphic in a neighborhood of ω

and hence (since |d(µ)| = 1 for almost all points µ ∈ R), |d(λ)| ≥ ε > 0 in
a possibly smaller neighborhood of ω. Thus b(λ) is holomorphic, invertible
and bounded in the intersection of a small rectangle R̊ centered at ω with
C+ ∪ C−. The integral

1
2πi

∫
Γ

b(ζ)(ζ − λ)−1dζ
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around the boundary Γ of R̊ defines a holomorphic mvf in the interior of R̊

which coincides with b(λ) in R̊∩(C+∪C−). Therefore, b(λ) may be presumed
to be holomorphic in R̊; see the proof of Lemma 5.39 below for more details
and references.

Finally, the second assertion in (5.60) drops out easily from the observation
that db−1 ∈ Sp×p

in and hence that dHp
2 ⊆ bHp

2 . �

Lemma 5.39 Let b ∈ Sp×p
in . Then ω ∈ hb if and only if every f ∈ H(b) is

holomorphic at ω, i.e.,

hb = ∩f∈H(b)hf .

Proof Let f ∈ H(b). Then clearly

h
+
f = C+ = h

+
b .

Moreover, since f = bf− for some mvf f− ∈ Kp
2 and f− is holomorphic in

C−,

h
−
b ⊆ h

−
f

for every f ∈ H(b). On the other hand, the inclusion is reversed for f = Rαbξ,
which belongs to H(b) for every α ∈ hb and ξ ∈ C

p by Lemma 5.37.
Finally, if ω ∈ R ∩ hb, then b(λ) is analytic in a small rectangle (with

nonempty interior) centered at ω which intersects R in the interval [a1, a2].
Let f ∈ H(b). Then on the one hand, since f ∈ Hp

2 , it follows that f is
analytic in C+ and∫ a2

a1

‖f(µ + iν) − f(µ)‖dµ ≤
{

(a2 − a1)
∫ ∞

−∞
‖f(µ + iν) − f(µ)‖2dµ

} 1
2

,

which tends to zero as ν ↓ 0. On the other hand the representation f = bf−
with f− ∈ Kp

2 insures that f is analytic in the intersection of the rectangle
with C−. Moreover, it is not hard to show that∫ a2

a1

‖b(µ − iν)f−(µ − iν) − b(µ)f−(µ)‖dµ −→ 0

as ν ↓ 0. Therefore, by a well known argument based on Cauchy’s formula,
it follows that every f ∈ H(b) can be continued analytically across the
interval (a1, a2); see e.g., Carleman [Car67] and pp. 223–224 of Sz.-Nagy-
Foias [SzNF70]. This proves that R ∩ hb ⊆ R ∩ hf for every f ∈ H(b). The
proof is now easily completed by resorting to functions of the form Rαbξ
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with α ∈ hb and ξ ∈ Cp in order to exhibit functions in H(b) for which the
inclusion is reversed, just as before. �

Lemmas 5.35–5.39 are covered by the next theorem.

Theorem 5.40 Let b ∈ Sp×p
in and H(b) = Hp

2 � bHp
2 . Then:

(1) Every vvf f ∈ H(b) admits a pseudocontinuation to C−, i.e.,

H(b) ⊂ Πp.

(2) hb = ∩f∈H(b)hf .

Moreover,

(3) The space H(b) is a RKHS of holomorphic p × 1 vvf ’s on hb with
respect to the standard inner product in Lp

2(R) and the RK kb
ω(λ)

that is defined on hb × hb by formula (5.58).

(4) The space H(b) is Rα invariant for every point α ∈ hb.

(5) Rα is a bounded linear operator on H(b) for every α ∈ hb.

(6) Rαbξ ∈ H(b) for every point α ∈ hb and every vector ξ ∈ C
p.

Proof Assertions (1), (2) and (5) are covered by the preceding lemmas. The
verification of (4) for α ∈ C+ is quick and easy. It rests on the observation
that if δα(λ) = λ − α, then

Rαf = Π+
f

δα
(5.61)

for f ∈ Hp
2 and α ∈ C+. Thus, if g ∈ H(b) and α ∈ C+, then Rαg ∈ H(b),

since Rαg ∈ Hp
2 and

〈Rαg, bf〉st = 〈 g

δα
, bf〉st = 〈g, b

f

δᾱ
〉st = 0,

for every f ∈ Hp
2 .

Next, if α ∈ C− ∩ hb and g ∈ H(b), then b(α)b(α)∗ = Ip and, by Lemma
5.39, α ∈ hg . Therefore, upon writing g = bf with f ∈ Kp

2 , it follows that
α ∈ hf and hence, from Lemma 5.37 and the formula

(Rαg)(λ) = b(λ)(Rαf)(λ) + (Rαb)(λ)f(α), (5.62)

that Rαg ∈ bKp
2 . The proof is now easily completed by checking that Rαg ∈

Hp
2 .
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Finally, the argument for α ∈ C− ∩ hb works for α ∈ R ∩ hb also in view
of the fact that if g ∈ Hp

2 and α ∈ R ∩ hg , then Rαg ∈ Hp
2 and, similarly, if

f ∈ Kp
2 and α ∈ R ∩ hf , then Rαf ∈ Kp

2 .
It remains only to verify that the RKHS H with RK kb

ω(λ) on hb × hb

coincides with the space of vvf’s f ∈ H(b) considered on hb instead of just
C+. But this follows from Theorem 5.31. �

Lemma 5.41 Let b ∈ Sp×p
in and let H(b) denote the RKHS of p× 1 vvf ’s on

hb with RK kb
ω(λ) that is defined on hb ×hb by formula (5.58). Then the sets

Nω , Rω and Fω defined in Lemma 5.3 with Kω(λ) = kb
ω(λ) are independent

of the choice of the point ω ∈ hb. Moreover, the following conditions are
equivalent:

(1) kb
ω(ω) > 0 for at least one point ω ∈ hb.

(2) kb
ω(ω) > 0 for every point ω ∈ hb.

(3) {f(ω) : f ∈ H(b)} = Cp for at least one point ω ∈ hb.

(4) {f(ω) : f ∈ H(b)} = Cp for every point ω ∈ hb.

Proof The stated results follow from (4) of Theorem 5.40 and Lemma
5.4. �

5.7 The space H∗(b) for p × p inner mvf’s b(λ)

If b ∈ Sp×p
in , then the space H∗(b) of p×1 vvf’s on C− considered in Example

5.16 may be extended to a space of vvf’s on hb# :

Theorem 5.42 Let b ∈ Sp×p
in , let H∗(b) = Kp

2 � b#Kp
2 and let the RK �b

ω(λ)
be defined on hb# × hb# by the formula

�b
ω(λ) =


b#(λ)b#(ω)∗ − Ip

ρω(λ) if λ �= ω

1
2πib

′(ω)∗b(ω) if λ = ω

. (5.63)

Then:

(1) Every vvf g ∈ H∗(b) admits a pseudocontinuation into C+ with
bounded Nevanlinna characteristic, i.e., H∗(b) ⊆ Πp.

(2) hb# = ∩g∈H∗(b)hg.

Moreover:
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(3) The space H∗(b) of p × 1 holomorphic vvf ’s on hb# is a RKHS with
respect to the standard inner product in Lp

2, and the RK �b
ω(λ) is

defined by formula (5.63).

(4) The space H∗(b) is Rα invariant for every point α ∈ hb# .

(5) Rα is a bounded linear operator on H∗(b) for every α ∈ hb# .

(6) Rαb#ξ ∈ H∗(b) for every point α ∈ hb# and vector ξ ∈ C
p.

Proof Let f∼(λ) = f(λ). Then hbτ = hb and:

(a) f ∈ H∗(b) ⇐⇒ f∼ ∈ H(bτ ).

(b) α ∈ hb# ⇐⇒ α ∈ hbτ .

(c) (Rαf)∼(λ) = (Rαf∼)(λ).

(d) (Rαb#ξ)∼(λ) = (Rαbτ )(λ)ξ.

(e) If ω ∈ hb# , then ω ∈ hb and

(�b
ω)∼(λ) =

Ip − bτ (λ)bτ (ω)∗

−2πi(λ − ω)
= kbτ

ω (λ) if λ �= ω.

Thus, all the stated assertions follow from the corresponding assertions in
Theorem 5.40 applied to the mvf bτ in place of b. �

Lemma 5.43 Let b ∈ Sp×p
in . Then the operator Mb of multiplication by the

mvf b(µ) is unitary in Lp
2 and maps the subspace H∗(b) onto the subspace

H(b).

Proof The proof is easy and is left to the reader. �

5.8 The space H(U) for m × m J-inner mvf’s U(λ)

Lemma 5.44 Let U ∈ U(J), where J is an m × m signature matrix. Then
the kernel KU

w (λ) that is defined on hU × hU by formula (5.34) is positive
on hU × hU .

Proof This follows from Theorem 5.31. �
In view of Theorem 5.2 and Corollary 5.7, there is a unique RKHS H of

holomorphic vvf’s on hU with RK KU
ω (λ) on hU × hU . Consequently,

〈f, KU
ω ξ〉H = ξ∗f(w) for every f ∈ H, ξ ∈ C

m and ω ∈ hU . (5.64)
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At the same time, since U(J) ⊂ P(J), to each mvf U ∈ U(J) there corre-
sponds a RKHS H(U) of vvf’s that are holomorphic in h

+
U with RK KU

ω (λ)
on h

+
U × h+

U that is defined by formula (5.34).
Let

L(λ) = (P − S(λ)Q)−1 for λ ∈ Ω, (5.65)

where J �= ±Im , S = PG(U) and

Ω =

{
hU ∩ hS if U ∈ U(J)

h
+
U if U ∈ P(J) \ U(J)

.

Then

KU
ω (λ) = L(λ)KS

ω (λ)L(ω)∗ on Ω × Ω. (5.66)

Theorem 5.45 Let J be an m×m signature matrix, U ∈ U(J), S = PG(U),

G�(µ) = P + U(µ)QU(µ)∗ a.e. on R

and let L(λ) be defined by (5.65). Then:

(1) Every vvf f ∈ H(U) belongs to Πm and, consequently, has nontan-
gential limit values a.e. on R.

(2) The formula

f(λ) = L(λ)g(λ), g ∈ H(S) (5.67)

defines a unitary operator, acting from H(S) onto H(U), i.e.,
f ∈ H(U) if and only if (P − SQ)f ∈ Hm

2 and (Q − S#P )f ∈ Km
2

and, if f ∈ H(U), then

‖ f ‖2
H(U )=‖ (P − SQ)f ‖2

st= ‖G−1/2
� f‖2

st.

Proof If J = Im, then S = U and there is nothing to prove. If J �= Im , then
the identities

n∑
j=1

KU
ωj

(λ)ξj = L(λ)
n∑

j=1

KS
ωj

(λ)L(ωj)∗ξj (5.68)

and
n∑

i,j=1

ξ∗i K
U
wj

(wi)ξi =
n∑

i,j=l

ξ∗i L(ωi)KS
ωj

(ωi)L(ωj)∗ξj , (5.69)
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which are in force for every choice of points ωi, . . . , ωn in hU ∩hS and vectors
ξ1, . . . , ξn in C

p, imply that formula (5.67) defines an isometric operator from
the linear manifold L1 of vvf’s g ∈ H(S) of the form

g(λ) =
n∑

j=1

KS
ωj

(λ)L(ωj)∗ξj (5.70)

that is dense in H(S) into the linear manifold L2 of vvf’s f ∈ H(U) of the
form

f(λ) =
n∑

i,j=1

KU
ωj

(λ)ξj , (5.71)

which is dense in H(U), since

〈f, f〉H(U ) = 〈g, g〉H(S) = 〈g, g〉st.

Next to check that the unitary extension of the isometric operator is given
by (5.67), let g ∈ H(S) and gn ∈ L1 be such that limn→∞ gn = g in the
space H(S), i.e., in the Lm

2 metric, and let fn(λ) = L(λ)gn(λ). Then fn ∈ L2

and limn→∞ fn = f in the space H(U) for some f ∈ H(U). Thus,

ξ∗f(w) = 〈f, KU
ω ξ〉H(U ) = lim

n→∞
〈fn, KU

ω ξ〉H(U )

= lim
n→∞

〈Lgn, KU
ω ξ〉H(U ) = lim

n→∞
〈gn, KS

ω L(w)∗ξ〉H(S)

= 〈g,KS
ω L(w)∗ξ〉H(S) = ξ∗L(w)g(w)

for every w ∈ HU
⋂

hS and ξ ∈ C
m . Consequently, f(λ) = L(λ)g(λ). for

λ ∈ hS
⋂

hU . Thus, formula (5.67) defines a unitary operator acting from
H(S) onto H(U). It is easily checked that

(P − S(µ)Q)∗(P − S(µ)Q) = G�(µ)−1 a.e. on R.

Assertion (1) follows from (5.67), since L ∈ Πm×m and (as shown in Theorem
5.40) H(S) ⊂ Πm . �

Corollary 5.46 If U ∈ U(J) is rational and S = PG(U), then

dimH(U) = dimH(S) < ∞.

Proof This is immediate from Theorem 5.45 and Lemma 3.47. �
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Remark 5.47 If U ∈ P(J) and S = PG(U), then formula (5.66) is valid
in h

+
U × h

+
U and multiplication by L is a unitary operator from H(S) onto

H(U):

‖(P − SQ)−1g‖H(U ) = ‖g‖H(S) for every g ∈ H(s).

Since H(S) ⊆ Hm
2 , this implies that H(U) ⊂ Nm and hence that every

f ∈ H(U) has nontangential boundary values f(µ) a.e. on R. If (P −SQ) ∈
Nm×m

out , then H(U) ⊂ Nm
+ .

Lemma 5.48 Let U ∈ U(J), J �= ±Im, let S = PG(U) and let

L∗(λ) = (S#(λ)P − Q)−1. (5.72)

Then the formula

f(λ) = L∗(λ)h(λ) with h ∈ H∗(S) (5.73)

defines a unitary map L∗ from H∗(S) onto H(U).

Proof Since S ∈ Sm×m
in

L∗(λ) = L(λ)S(λ), (5.74)

and, by Lemma 5.43, the operator MS of multiplication by S maps H∗(S)
isometrically onto H(S), whereas ML defines a unitary operator from H(S)
onto H(U), by Theorem 5.45. �

Theorem 5.49 Let U ∈ U(J). Then:

(1) Every vvf f ∈ H(U) admits a pseudocontinuation to C−, i.e.,

H(U) ⊂ Πm.

(2) hU = ∩f∈H(U )hf .

Moreover, in view of (1) and (2):

(3) The space H(U) is a RKHS of holomorphic m × 1 vvf ’s on hU with
RK kU

ω (λ) that is defined on hU × hU by formula (5.34).

(4) The space H(U) is Rα invariant for every point α ∈ hU .

(5) The operator Rα is bounded in H(U) for every α ∈ hU .

(6) (RαU)ξ ∈ H(U) for every point α ∈ hU and vector ξ ∈ C
m.
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Proof The cases J = ±Im are covered by Theorems 5.40 and 5.42. Suppose,
therefore, that J �= ±Im , let S = PG(U) and let L(λ) be defined by formula
(5.65). Then (1) is established in Theorem 5.45.

Next, fix a point ω ∈ hU at which U is invertible. Then, since Kωu ∈ H(U)
for every vector u ∈ C

m , the formula

ρω(λ)Kω(λ) = J − U(λ)JU(ω)∗

clearly implies that ⋂
f∈H(U )

hf ⊆ hU .

The proof of the opposite inclusion is more complicated. Formulas (4.2),
(4.3) and (5.65) imply that

hU ∩ C+ = hS ∩ hL ∩ C+ (5.75)

and hence, in view of formula (5.67) and Theorem 5.40, that

hU ∩ C+ ⊆ hf ∩ C+ for every f ∈ H(U).

In much the same way, Lemma 5.48 implies that

hU ∩ C− = hS# ∩ hL∗ ∩ C− = hL∗ ∩ C− (5.76)

and hence that

hU ∩ C− ⊆ hf ∩ C− for every f ∈ H(U),

which serves to complete the proof of (2).
Assertion (4) now follows from formulas (5.75), (5.67), (5.26) and Theorem

5.40 if α ∈ hU ∩C+, and from formulas (5.76), (5.73), Theorem 5.42, Lemma
5.48 and the identity

(Rαf)(λ) = L∗(λ){(Rαh)(λ) − (RαS#)(λ)Ph(α)},

if α ∈ hU ∩ C−. Assertion (5) follows from (4) and Theorem 5.8.
To verify (6), suppose first that α ∈ hU ∩ C+. Then the formula

(RαU)(λ) = L(λ)(RαS)(λ)(P + QS(α))−1,

which is established in the proof of Theorem 5.20 for α and λ in h
+
U , is still

valid for α ∈ hS ∩ hL ∩ C+ (the same proof works even if α ∈ hS ∩ hL ∩ R).
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Therefore, by Theorems 5.45 and 5.40, (RαU)u ∈ H(U) for every vector
u ∈ C

m . Now suppose that α ∈ hU ∩ C−. Then α ∈ hL∗ ∩ C−, and, since

U(λ) = (S#(λ)P − Q)−1(P − S#(λ)Q) = (QS#(λ) + P )(PS#(λ) + Q)−1,

the formula

(RαU)(λ) = −L∗(λ)(RαS#)(λ)(PS#(α) + Q)−1

and Lemmas 5.48 and 5.43 imply that (RαU)u ∈ H(U) for every vector
u ∈ C

m . �

Theorem 5.50 Let U ∈ U(J) and let L be a closed subspace of H(U) that
is Rα invariant for every point α ∈ hU . Then there exists a mvf U1 ∈ U(J)
such that hU1 ⊇ hU , L = H(U1) and U−1

1 U ∈ U(J). Moreover, the space
H(U1) is isometrically included in H(U), and

H(U) = H(U1) ⊕ U1H(U2), where U2 = U−1
1 U. (5.77)

Proof Let uj denote the jth column of Im for j = 1, . . . , m and let ω ∈ hU .
Then, since the formula u∗

j f(ω) defines a bounded linear functional on L,
the Riesz representation theorem guarantees the existence of a set of vectors
{gj,ω} ∈ L, j = 1, . . . , m, such that

u∗
j f(ω) = 〈f, gj,ω〉H(U ) for j = 1, . . . , m and for every f ∈ L.

Thus, the m × m mvf

Gω(λ) =
[
g1,ω(λ) · · · gm,ω(λ)

]
defines a RK on L, i.e.,

Gωu ∈ L and u∗f(ω) = 〈f, Gωu〉H(U ) for every u ∈ C
m.

Consequently, Theorem 5.21 is applicable to the RKHS L with RK Gω(λ)
on hU × hU , and hence L = H(U1) for some m × m mvf U1 ∈ P(J) that is
holomorphic in hU ; and H(U1) is isometrically included in H(U). Moreover,
the evaluations

|〈Gαu, Kαu〉|2 ≤ 〈Gαu, Gαu〉 〈Kαu, Kαu〉

imply that

{u∗Gα(α)u}2 ≤ u∗Gα(α)u u∗Kα(α)u
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for every α ∈ hU and every u ∈ Cm , and hence that

u∗{J − U1(α)JU1(α)∗}u ≤ u∗{J − U(α)JU(α)∗}u

for every α ∈ h
+
U and every u ∈ C

m . Therefore, U ∈ U(J) and

u∗U(α)JU(α)∗u ≤ u∗U1(α)JU1(α)∗u

for every α ∈ h+
U and every u ∈ C

m . Thus, U−1
1 U ∈ U(J). Moreover, since

L = H(U1) is isometrically included in H(U), (5.77) follows from the obser-
vation that

0 = 〈f, KU
ω v − KU1

ω v〉H(U )

=
〈

f, U1

{
J − U2JU2(ω)∗

ρω

}
U1(ω)∗v

〉
H(U )

for every choice of f ∈ H(U1), ω ∈ hU1 ∩ hU2 and v ∈ C
m . �

Proof of Theorem 4.7 If U ∈ U(J) is rational, then, in view of Corollary
5.46 and Theorem 5.49, dimH(U) = r < ∞ and H(U) is Rα invariant for
α ∈ hU . Therefore, there exists a nonzero vvf f ∈ H(U) such that Rαf = µf

for some µ ∈ C. It is readily checked that

f(λ) =

{
u

ρω (λ) for some ω ∈ C and u ∈ C
m if µ �= 0

u for some u ∈ C
m if µ = 0.

Therefore, since X1 = {cf : c ∈ C} is a one dimensional Rα invariant
subspace of H(U), Theorem 5.50 guarantees that X1 = H(U1), where U1 is
a primary BP factor that is uniquely determined by X1 up to a constant J

unitary factor on the right. Moreover,

H(U) = H(U1) ⊕ U1H(Ũ2), where Ũ2 = U−1
1 U

belongs to U(J) and dimH(Ũ2) = r − 1. If r > 1, then this algorithm
can be repeated r − 1 more times to yield the factorization U(λ) =
U1(λ) · · ·Ur(λ)Ũr+1, where the first r factors are primary BP factors and
Ũr+1 ∈ Uconst(J). Thus, as

U(λ) =
{
I + i(λ − α)Cα(I − (λ − α)Rα)−1C∗

αJ
}

U(α) for α ∈ hU ∩ R,

where Cαf =
√

2πf(α), C∗
αv =

√
2πKαv, f ∈ H(U) and v ∈ C

m , and this
realization of U(λ) is mininimal, a theorem of Kalman [Kal65] guarantees
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that the McMillan degree of U(λ) is equal to r. (Variants of the proof of this
theorem may be found, e.g., in [AlD86] and on pp. 418–424 in [Dy07].) �

Lemma 5.51 If U ∈ P◦(J) and ω ∈ hU ∩ hU−1 , then the formula

U(λ) = {J − ρω(λ)KU
ω (λ)}U(ω)−∗J (5.78)

defines U(λ) in terms of KU
ω (λ) up to a J-unitary constant factor on the

right.

Proof Formula (5.78) follows directly from the definition of the RK. If
U1 ∈ P◦(J) is such that ω ∈ hU1 ∩ hU−1

1
and KU1

ω (λ) = KU
ω (λ), then

U1(λ)JU1(ω)∗ = U(λ)JU(ω)∗. Thus, U(ω)−1U1(ω)JU1(ω)∗U(ω)−∗ = J ,
and the proof is complete. �

If U ∈ U0(J), then (5.78) evaluated at ω = 0 simplifies to

U(λ) = J + 2πiλKU
0 (λ)J. (5.79)

Theorem 5.52 (L. de Branges) If U, U1, U2 ∈ U(J) and U = U1U2, then
H(U1) sits contractively in H(U), i.e., H(U1) ⊆ H(U) (as linear spaces) and

‖f‖H(U ) ≤ ‖f‖H(U1 ) for every f ∈ H(U1).

The inclusion is isometric if and only if

H(U1) ∩ U1H(U2) = {0}. (5.80)

If the condition (5.80) is in force, then

H(U) = H(U1) ⊕ U1H(U2). (5.81)

Proof Let

L = {f + U1g : f ∈ H(U1) and g ∈ H(U2)},

L0 = {h ∈ H(U2) : U1h ∈ H(U1)}

and let

‖f + U1g‖2
L = inf{‖f − U1h‖2

H(U1 ) + ‖g + h‖2
H(U2 ) : h ∈ L0}.

The strategy of the proof is to identify L with H(U) with the help of the
identity

KU
ω (λ) = KU1

ω (λ) + U1(λ)KU2
ω (λ)U1(ω)∗. (5.82)
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The stated claim then drops out easily:

H(U1) ⊆ L = H(U)

and

‖f‖2
H(U ) = ‖f‖2

L = inf{‖f − U1h‖2
H(U1 ) + ‖h‖2

H(U2 ) : h ∈ L0}

≤ ‖f‖2
H(U1 ) (5.83)

for every f ∈ H(U1). Thus, the inclusion H(U1) ⊆ H(U) is isometric if L0 =
{0}. Conversely, if this inclusion is isometric, then by Theorem 5.50 applied
to L = H(U1), there exists a mvf Ũ1 ∈ U(J) such that H(Ũ1) = H(U1),

Ũ1
−1

U ∈ U(J) and H(U) = H(Ũ1)⊕ Ũ1H(Ũ1
−1

U). However, Theorem 5.21
implies that Ũ1 = U1V for some V ∈ Uconst(J). Thus,

H(U) = H(U1V ) ⊕ U1V H(V −1U−1
1 U) = H(U1) ⊕ U1V H(U2).

The identification of L with H(U) is broken into a number of steps.

Step 1. L is an inner product space.

Clearly L is a vector space. Suppose next that

‖f + U1g‖L = 0

for some choice of f ∈ H(U1) and g ∈ H(U2). Then there exists a sequence
of vvf’s hj ∈ L0 such that

‖f − U1hj‖2
H(U1 ) + ‖g + hj‖2

H(U2 ) ≤ 1/j.

Thus, U1hj → f in H(U1) and hj → −g in H(U2), and so, as the convergence
is pointwise in hU1 ∩ hU2 ,

f + U1g = 0

in hU1 ∩ hU2 , i.e., ‖f + U1g‖L > 0 if f + U1g �≡ 0. Moreover, it is readily
checked from the definition that

‖α(f + U1g)‖L = |α| ‖f + U1g‖L (5.84)

for every α ∈ C.
The next objective is to check that the parallelogram law holds. To this

end let p1 = f1 + U1g1 and p2 = f2 + U1g2 be any two elements in L. Then
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there exists a pair of sequences {hj} and {kj} in L0 such that

‖p1‖2
L = lim

j→∞
{‖f1 − U1hj‖2

H(U1 ) + ‖g1 + hj‖2
H(U2 )}

and

‖p2‖2
L = lim

j→∞
{‖f2 − U1kj‖2

H(U1 ) + ‖g2 + kj‖2
H(U2 )}.

Moreover, by the parallelogram law in H(U1) and H(U2), the sum of the
terms in the curly brackets on the right hand side of the last two formulas
is equal to

1
2
{‖f1 + f2 − U1(hj + kj)‖2

H(U1 ) + ‖g1 + g2 + hj + kj‖2
H(U2 )

+ ‖f1 − f2 − U1(hj − kj)‖2
H(U1 ) + ‖g1 − g2 + hj − kj‖2

H(U2 )}

which in turn is clearly bounded from below by

1
2
{‖p1 + p2‖2

L + ‖p1 − p2‖2
L}.

Therefore,

2‖p1‖2
L + 2‖p2‖2

L ≥ ‖p1 + p2‖2
L + ‖p1 − p2‖2

L. (5.85)

However, upon reexpressing (5.85) in terms of p′1 = p1 +p2 and p′2 = p1−p2,
it is readily seen that the opposite inequality to (5.85) is also valid, and
hence that in fact equality prevails in (5.85). Thus the parallelogram law is
established, and therefore, as is well known, L admits an inner product and
‖ ‖L satisfies the triangle inequality.

Step 2. For every finite set of points ω1, . . . , ωk ∈ hU1 ∩ hU2 and vectors
ξ1, . . . , ξk ∈ C

m, ΣKU
ωj

ξj belongs to L and

‖ΣjK
U
ωj

ξj‖2
L = Σi,jξ

∗
i K

U
ωj

(ωi)ξj = ‖ΣjK
U
ωk

ξj‖2
H(U ).

Let ηj = U1(ωj)∗ξj . Then, by (5.82),

ΣjK
U
ωj

(λ)ξj = ΣjK
U1
ωj

(λ)ξj + U1(λ)ΣjK
U2
ωj

(λ)ηj
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belongs to L. The rest is plain from the evaluation

‖ΣjK
U1
ωj

ξj − U1h‖2
H(U1 ) + ‖ΣjK

U2
ωj

ηj + h‖2
H(U2 )

= ‖ΣjK
U1
ωj

ξj‖2
H(U1 ) + ‖U1h‖2

H(U1 ) − 2RΣjη
∗
j h(ωj)

+‖ΣjK
U2
ωj

ηj‖2
H(U2 ) + ‖h‖2

H(U2 ) + 2RΣjη
∗
j h(ωj)

= ‖ΣjK
U
ωj

ξj‖2
H(U ) + ‖U1h‖2

H(U1 ) + ‖h‖2
H(U2 ),

which is valid for every h ∈ L0.

Step 3. If u ∈ L, then

〈u, KU
ω ξ〉L = ξ∗u(ω) (5.86)

for every point ω ∈ hU1 ∩ hU2 and every ξ ∈ C
m.

Suppose u = f +U1g with f ∈ H(U1) and g ∈ H(U2), and let η = U1(ω)∗ξ.
Then

‖u+KU
ω ξ‖2

L = inf{‖f +KU1
ω ξ−U1h‖2

H(U1 ) +‖g +KU2
ω η +h‖2

H(U2 ) : h ∈ L0}.
But the term in curly brackets is readily seen to be equal to

‖f − U1h‖2
H(U1 ) + ‖KU1

ω ξ‖2
H(U1 ) + 2Rξ∗{f(ω) − U1(ω)h(ω)}

+ ‖g + h‖2
H(U2 ) + ‖KU2

ω η‖2
H(U2 ) + 2Rη∗{g(ω) + h(ω)}.

Thus the terms involving h(ω) cancel out and the indicated infimum is thus
seen to be equal to

‖u‖2
L + ξ∗KU1

ω (ω)ξ + η∗KU2
ω (ω)η + 2Rξ∗u(ω)

which, in view of (5.82) and Step 2, serves to establish the identity

‖u + KU
ω ξ‖2

L = ‖u‖2
L + ‖KU

ω ξ‖2
L + 2Rξ∗u(ω).

The rest is plain.

Step 4. H(U) = L.

Let u ∈ H(U). Then there exist finite linear combinations of reproducing
kernels

n∑
j=1

KU
ωj

ξj =
n∑

j=1

KU1
ωj

ξj + U1

n∑
j=1

KU2
ωj

ηj = fn + U1gn
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such that

‖u − fn − U1gn‖H(U ) → 0 as n → ∞.

But now, by the calculations in Step 2 with h = 0, it follows that

‖fn + U1gn‖2
H(U ) = ‖fn‖2

H(U1 ) + ‖gn‖2
H(U2 ),

and hence that fn tends to a limit f in H(U1) and gn tends to a limit g in
H(U2). Therefore,

u = f + U1g

belongs to L and

‖u‖2
H(U ) = ‖f‖2

H(U1 ) + ‖g‖2
H(U2 )

= infh∈L0 limn→∞{‖fn‖2
H(U1 ) + ‖U1h‖2

H(U1 ) + ‖gn‖2
H(U2 ) + ‖h‖2

H(U2 )}
= infh∈L0 limn→∞{‖fn − U1h‖2

H(U1 ) + ‖gn + h‖2
H(U2 )}

= infh∈L0 {‖f − U1h‖2
H(U1 ) + ‖g + h‖2

H(U2 )}
= ‖u‖2

L.

Thus H(U) sits isometrically inside L and is therefore a closed subspace of
L. On the other hand, it follows readily from (5.86) that u = 0 is the only
element of L which is orthogonal to H(U). Thus L = H(U) as asserted, and
so the proof of both the step and the theorem is complete. �

Formula (5.83) implies that the inclusion H(U1) ⊆ H(U) is isometric if
L0 = {0}. Conversely, if this inclusion is isometric, then by Theorem 5.50 ap-
plied to L = H(U1), there exists a mvf Ũ1 ∈ U(J) such that H(Ũ1) = H(U1),

Ũ1
−1

U ∈ U(J) and H(U) = H(Ũ1)⊕ Ũ1H(Ũ1
−1

U). However, Theorem 5.21
implies that Ũ1 = U1V for some V ∈ Uconst(J). Thus,

H(U) = H(U1V ) ⊕ U1V H(V −1U−1
1 U) = H(U1) ⊕ U1V H(U2).

We remark that the space L0 endowed with the norm

‖h‖2
L0

= ‖h‖2
H(U2 ) + ‖U1h‖2

H(U1 )

is referred to by de Branges as the overlapping space [dB4], [dB8].
A simple example which illustrates the last theorem is obtained by setting

Uα(λ) = Im − αc(λ)vv∗J
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where α ≥ 0, c(λ) is a scalar Carathéodory function and v∗Jv = 0. Then it
is readily checked that

Uα+β = UαUβ

and that

KUα
ω (λ) =

J − Uα(λ)JUα(ω)∗

ρω(λ)
= 2αkc

ω(λ)vv∗

in which kc
ω(λ) is given by (5.19). If c ∈ Cp×p

sing , then Uα ∈ U(J) and

KUα
ω (λ) =

α

γ
K

Uγ
ω (λ) for 0 < α ≤ γ.

Therefore,

‖
∑

j

KUα
ωj

(λ)ξj‖2
H(Uγ )

=
(

α

γ

)2

‖
∑

j

K
Uγ
ωj (λ)ξj‖2

H(Uγ ) =
(

α

γ

)2∑
i,j

ξ∗i K
Uγ
ωj (ωi)ξj

=
(

α

γ

)∑
i,j

ξ∗i KUα
ωj

(ωi)ξj =
(

α

γ

)
‖
∑

j

KUα
ωj

(λ)ξj‖2
H(Uα ).

But this in turn implies that H(Uα) sits contractively in H(Uγ) for 0 ≤ α ≤
γ, with isometry if and only if α = γ.

Theorem 5.53 If U ∈ U(J), then {ξ ∈ C
m : Uξ ∈ H(U)} is a J-neutral

subspace of C
m.

Proof If Uξ and Uη belong to H(U) and if α and α belong to hU , then the
identity

(RαU)(λ) = 2πiKα(λ)JU(α)

implies that

〈RαUξ, Uη〉H(U ) = 2πiη∗Jξ and 〈Uξ, RαUη〉H(U ) = −2πiη∗Jξ.

Therefore, formula (5.27) with f = Uξ, g = Uη and β = α implies that

η∗Jξ = 0,

as desired. �
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Lemma 5.54 Let U ∈ U(J) and let H(U) denote the RKHS of m × 1
vvf ’s on hU with RK KU

ω (λ) that is defined on hU × hU by formula (5.34).
Then the sets Nω , Rω and Fω defined in Lemma 5.3 with Kω(λ) = KU

ω (λ)
are independent of the choice of the point ω ∈ hb. Moreover, the following
conditions are equivalent:

(1) KU
ω (ω) > 0 for at least one point ω ∈ hU .

(2) KU
ω (ω) > 0 for every point ω ∈ hU .

(3) {f(ω) : f ∈ H(U)} = Cm for at least one point ω ∈ hU .

(4) {f(ω) : f ∈ H(U)} = Cm for every point ω ∈ hU .

Proof This follows from Theorem 5.49 and Lemma 5.4. �

5.9 The space H(W ) for W ∈ U(jpq )

Description of H(W )

If W ∈ U(jpq) and S = PG(W ), then formula (5.65) may be written in
terms of the standard four block decompositions of S and W as

L(λ) =
[

Ip −s12

0 −s22

]−1

=
[

Ip −w12

0 −w22

]
(5.87)

and the description of the space H(U) given in Theorem 5.45 yields the
following description of H(W ):

Theorem 5.55 Let W ∈ U(jpq) and let sij , i, j = 1, 2 be the blocks of
S = PG(W ) in the four block decomposition that is conformal with jpq .
Then

H(W ) =
{[

f1

f2

]
:

f1 − s12f2 ∈ Hp
2

s22f2 ∈ Hq
2

and
s∗11f1 ∈ Kp

2
f2 − s∗12f1 ∈ Kq

2

}
(5.88)

and

f =
[
f1

f2

]
=⇒ 〈f, f〉H(W ) =

〈[
Ip −s12

−s∗12 Iq

]
f, f

〉
st

. (5.89)

Proof This is immediate from (2) of Theorem 5.45 and formula (5.87). �
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Corollary 5.56 If W ∈ U(jpq) and f ∈ H(W ) with components f1 and f2

as in (5.88), then

f ∈ Lm
2 ⇐⇒ f1 ∈ Lp

2 ⇐⇒ f2 ∈ Lq
2.

Proof This is immediate from the description of H(W ) given in (5.88). �

Recovering W from the RK KW
ω (λ)

Let

KW
ω (λ) = Kω(λ) =

[
K11

ω (λ) K12
ω (λ)

K21
ω (λ) K22

ω (λ)

]
(5.90)

be the four block decomposition of the RK KW
ω (λ) with blocks K11

ω (λ) of
size p×p and K22

ω (λ) of size q× q for the mvf W ∈ U(jpq). The mvf W (λ) is
defined by the RK Kω(λ) up to a jpq- unitary constant factor on the right
by Lemma 5.51. In view of Lemma 2.17, this constant factor can be chosen
so that

w11(ω) > 0, w22(ω) > 0 and w21(ω) = 0 (5.91)

at a fixed point ω ∈ hW ∩ hW −1 ∩ C+.

Theorem 5.57 Let W1 ∈ U(jpq) and let ω ∈ hW ∩ hW −1 ∩ C+. Then there
exists exactly one mvf W ∈ U(jpq) such that H(W ) = H(W1) and W meets
the normalization condition (5.91). Moreover:

(1) If ω ∈ hW ∩ hW −1 ∩ R, then

W (λ) = Im − ρω(λ)KW1
ω (λ)jpq for λ ∈ hW . (5.92)

(2) If ω ∈ hW ∩ hW −1 ∩ C+, then

W (λ) = {jpq − ρω(λ)KW1
ω (λ)jpq}W (ω)−∗jpq for λ ∈ hW , (5.93)

where

W (ω) =

[
w11(ω) w12(ω)

0 w22(ω)

]
, (5.94)

w11(ω) = {Ip + ρω(ω)K11
ω (ω)}−1/2, (5.95)

w22(ω) = {Iq + ρω(ω)K22
ω (ω)}−1/2 (5.96)
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and

w12(ω) = ρω(ω)K12
ω (ω)w22(ω)−1. (5.97)

Proof Formulas (5.96) and (5.97) follow easily upon substituting the nor-
malization (5.91) into the formula

W (λ)jpqW (ω)∗ = jpq − ρω(λ)Kω(λ), (5.98)

setting λ = ω and matching blocks. This also leads to formula (5.92) (upon
taking taking note of the fact that W (ω) is jpq-unitary if ω ∈ R, which
forces W (ω) = Im) as well as a lengthy formula for w11(ω). Formula (5.95)
is obtained from the 11 block of the formula

W (ω)jpqW (ω)∗ = jpq + ρω(ω)Kω(ω)

and the observation that w12(ω) = 0 and w11(ω) = w11(ω)−1. The last two
evaluations come from the formulas

W (ω)jpqW (ω)∗ = jpq and w21(ω) = 0.

�

Remark 5.58 The blocks w21(ω) and w22(ω) are uniquely defined by for-
mulas (5.96) and (5.97) for points ω ∈ h

+
W even if W (ω) is not invertible.

The invertibility of W (ω) is only needed to justify formula (5.95).

Matrix balls BW (ω)

In this subsection we shall show that if W ∈ U(jpq) and ω ∈ h+
W ∩ h+

W −1 ,
then the set

BW (ω) = {s(ω) : s ∈ TW [Sp×q ]} (5.99)

is a matrix ball with positive semiradii and we shall present formulas for
its center and its left and right semiradii in terms of the reproducing kernel
KW

ω (ω).

Theorem 5.59 If W ∈ U(jpq) and ω ∈ h
+
W , then the set BW (ω) defined by

formula (5.99) is a matrix ball with left and right semiradii R�(ω) ≥ 0 and
Rr(ω) > 0 and center sc(ω) ∈ Sp×q

const:

BW (ω) = {sc(ω) + R�(ω)εRr(ω) : ε ∈ Sp×q
const}, (5.100)
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where

sc(ω) = ρω(ω)K12
ω (ω){Iq + ρω(ω)K22

ω (ω)}−1 (5.101)

and

Rr(ω) = {Iq + ρω(ω)K22
ω (ω)}1/2. (5.102)

If {b1, b2} ∈ ap(W ), then

det R�(ω)
det Rr(ω)

=
|det b1(ω)|
|det b2(ω)| = |detW (ω)| (5.103)

and

R�(ω) > 0 ⇐⇒ ω ∈ h+
W ∩ h+

W −1 . (5.104)

Moreover, if ω ∈ h+
W ∩ h

+
W −1 , then

R�(ω) = {Ip + ρω(ω)K11
ω (ω)}−1/2. (5.105)

Proof Since TW [Sp×q ] = TW W0 [Sp×q ] for W ∈ U(jpq) and W0 ∈ Uconst(jpq),
we can, without loss of generality, consider TW [Sp×q ] under the assumption
that W (ω) meets the normalization conditions (5.91). Then BW (ω) is clearly
a matrix ball with center

sc(ω) = w12(ω)w22(ω)−1 (5.106)

and semiradii

R�(ω) = w11(ω) and Rr(ω) = w22(ω)−1. (5.107)

The stated formulas for the center and the semiradii are now easily obtained
from Theorem 5.57. Finally, to obtain formula (5.103), it suffices to consider
the case that W (λ) is subject to the normalization conditions (5.91) at the
point ω. Then the semiradii can be reexpressed in terms of the blocks in the
PG transform S = PG(W ) by the formulas

R�(ω) = w11(ω) = w#
11(ω)−1 = s11(ω) = b1(ω)ϕ1(ω)

and

Rr(ω) = w22(ω)−1 = s22(ω) = ϕ2(ω)b2(ω).

The next step is to invoke the identities

s11(µ)s11(µ)∗ = Ip − s12(µ)s12(µ)∗ a.e. on R
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and

s∗22(µ)s22(µ) = Iq − s12(µ)∗s12(µ) a.e. on R

to verify that

|det ϕ1(µ)|2 = det (Ip − s12(µ)s12(µ)∗)

= det (Iq − s12(µ)∗s12(µ)) = |det ϕ2(µ)|2 a.e. on R

and hence that |det ϕ1(ω)| = |det ϕ2(ω)|. Formula (5.103) now drops out
upon combining formulas. �

Remark 5.60 The center of the matrix ball BW (ω) is uniquely defined.
However, the semiradii are only unique up to a multiplicative positive scalar
constant: i.e., BW (ω) does not change if R�(ω) is replaced by δR�(ω) and
Rr(ω) is replaced by δ−1Rr(ω) for any choice of δ > 0. If R�(ω) > 0, then
there exist only one pair of semiradii R�(ω) and Rr(ω) of the ball BW (ω)
that satisfy the relation (5.103). Consequently, in view of formulas (5.103)–
(5.107), the matrix ball BW (ω) and the number det W (ω) serve to uniquely
determine the matrix W (ω) normalized by the condition (5.91) for a mvf
W ∈ U(jpq).

5.10 The de Branges space B(E)

A p × 2p mvf

E(λ) = [E−(λ) E+(λ)], (5.108)

with p × p blocks E± that are meromorphic in C+ and meet the conditions

detE+(λ) �≡ 0 and χ
def
= E−1

+ E− ∈ Sp×p
in (5.109)

will be called a de Branges matrix. If E is a de Branges matrix, then the
kernel

KE
ω (λ) = −E(λ)jpE(ω)∗

ρω(λ)
=

E+(λ)E+(ω)∗ − E−(λ)E−(ω)∗

ρω(λ)
(5.110)

is positive on h
+
E
× h

+
E
, since χ ∈ Sp×p

in and

KE
ω (λ) = E+(λ)kχ

ω(λ)E+(ω)∗ on h
+
E
× h

+
E
. (5.111)

Therefore, by Theorem 5.2, there is exactly one RKHS B(E) with RK KE
ω (λ)

associated with each de Branges matrix; it will be called a de Branges
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space. Moreover, since the kernel KE
ω (λ) is a holomorphic function of λ on

h
+
E

for every fixed ω ∈ h
+
E

and KE
ω (ω) is continuous on h

+
E
, Corollary 5.7

guarantees that every vvf f ∈ B(E) is holomorphic in h
+
E
. A vvf f ∈ B(E)

may have a holomorphic extension onto a larger set in C+ than h
+
E
. Thus,

for example, if ω1 and ω2 are two distinct points in C+ and if

E−(λ) = Ip, and E+(λ) =
(λ − ω1)
(λ − ω1)

(λ − ω2)
(λ − ω2)

and f =
1

λ − ω1
,

then

B(E) =
{

α

λ − ω1
+

β

λ − ω2
: α, β ∈ C

}
with respect to the standard inner product and

h+
f = C+ \ {ω1} whereas h+

E
= C+ \ {ω1, ω2}.

Lemma 5.61 Let E be a de Branges matrix, let χ = E−1
+ E− and suppose

that

Kχ
ω (ω) > 0 for at least one (and hence every) point ω ∈ C+. (5.112)

Then ⋂
f∈B(E)

h
+
f = h

+
E
. (5.113)

Proof In view of Lemma 5.41, det [Ip − χ(λ)χ(ω)∗] �= 0 for every choice of
λ, ω ∈ C+ and consequently, h+

f = h+
E

for vvf’s of the form

f(λ) = KE
ω (λ)u

with ω ∈ h
+
E+

∩ h
+
(E+ )−1 , u ∈ C

p and u �= 0. Thus, the condition (5.112)
implies (5.113). �

Lemma 5.62 Let E be a de Branges matrix and let χ = E−1
+ E−. Then the

formula

(Tf)(λ) = E+(λ)−1f(λ) (5.114)
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defines a unitary operator T from B(E) onto H(χ). Moreover,

f ∈ B(E) ⇐⇒ E−1
+ f ∈ H(χ)

⇐⇒ E−1
− f ∈ H∗(χ)

⇐⇒ E−1
+ f ∈ Hp

2 and E−1
− f ∈ Kp

2 . (5.115)

Proof The proof follows easily from the definitions. �

Lemma 5.63 Let E = [E+ E−] be a de Branges matrix. Then the following
three conditions are equivalent:

(1) E+(λ) has a limit E+(µ) as λ tends nontangentially to µ ∈ R at
almost all points µ ∈ R and det E+(µ) �= 0 a.e. on R.

(2) E−(λ) has a limit E−(µ) as λ tends nontangentially to µ ∈ R at
almost all points µ ∈ R and det E−(µ) �= 0 a.e. on R.

(3) E(λ) has a limit E(µ) as λ tends nontangentially to µ ∈ R at almost
all points µ ∈ R and rank E(µ) = p a.e. on R.

Proof The implications (3) =⇒ (1), (3) =⇒ (2) and the equivalence (1) ⇐⇒
(2) follow from the formula E−(λ) = E+(λ)χ(λ), since χ ∈ Sp×p

in . Next, if
(1) and (2) are in force, then the nontangential convergence asserted in (3)
clearly takes place. The rank condition is then immediate from the inequality

E+(µ)E+(µ)∗ ≤ E(µ)E(µ)∗,

which is valid a.e. on R. �
The conditions (1), (2) and (3) in Lemma 5.63 are met if any one (and

hence every one) of the three equivalent conditions

(i) E+ ∈ Πp×p, (ii) E− ∈ Πp×p, (iii) E ∈ Πp×2p (5.116)

is in force. The conditions (1)–(3) are also met if the de Branges matrix
E(λ) is holomorphic on R except for a set of Lebesgue measure zero and
rank E = p (in the sense defined in Chapter 3) and hence in particular if
E(λ) is meromorphic on the full complex plane C and rank E = p.

Theorem 5.64 If any one (and hence every one) of the equivalent conditions
(1)–(3) in Lemma 5.63 is in force, then:

(1) The identity

E+(µ)E+(µ)∗ = E−(µ)E−(µ)∗ (5.117)

is in force for almost all points µ ∈ R.
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(2) The mvf

∆E(µ) = E+(µ)−∗E+(µ)−1 = E−(µ)−∗E−(µ)−1 (5.118)

is well defined a.e. on R.

(3) Every vvf f(λ) in B(E) has a nontangential limit f(µ) as λ tends
nontangentially to µ ∈ R at almost all points µ ∈ R.

(4) If f ∈ B(E), then

‖f‖2
B(E) = ‖E−1

+ f‖2
st =

∫ ∞

−∞
f(µ)∗∆Ef(µ)dµ. (5.119)

Proof The theorem follows from the equivalences (5.115) and the fact that
the operator T defined in (5.114) is a unitary map of B(E) onto H(χ). �

Theorem 5.65 If a de Branges matrix E = [E− E+] belongs to Πp×2p,
then:

(1) f ∈ Πp for every f ∈ B(E), i.e.,

B(E) ⊂ Πp. (5.120)

(2) The inclusion

hf ⊇ hE (5.121)

is in force for every f ∈ B(E).

(3) The space B(E) of vvf ’s is a RKHS of holomorphic p× 1 vvf ’s on hE

with RK KE
w (λ), defined on hE × hE by the formula

KE
ω (λ) =


E+(λ)E+(ω)∗ − E−(λ)E−(ω)∗

ρω(λ) if λ �= ω

− 1
2πi{E

′
+(ω)E+(ω)∗ − E′

−(ω)E−(ω)∗} if λ = ω.

(5.122)

Proof Assertion (1) follows from the relation (5.114) between the vvf’s of
the spaces B(E) and H(χ). Assertion (2) follows from (3). In view of formula
(5.111), the kernel KE

ω (λ) defined by formula (5.122)is clearly positive on
Ω × Ω, where Ω = hE

⋂
hχ. However, since Ω is dense in hE and KE

ω (λ) is
continuous on hE × hE, the kernel KE

ω (λ) is in fact positive on the larger
set hE × hE. Thus, by Theorem 5.2, there exists a unique RKHS H of p× 1
vvf’s on hE with RK KE

ω (λ) that is defined on hE × hE by formula (5.122).
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Moreover, since the mvf KE
ω (λ) is holomorphic on hE for every ω ∈ hE and

the mvf KE
ω (ω) is continuous on hE, the vvf’s in H are holomorphic on hE

by Corollary 5.7.
Next, to verify (3), let L denote the linear manifold of vvf’s f of the formf =

n∑
j=1

KE
ωj

(λ)uj, where ωj ∈ hE

⋂
hχ and uj ∈ C

p, 1 ≤ j ≤ n

 ,

and note that for every such vvf f ,

g = E−1
+ f =

n∑
j=1

Kχ
ωj

(λ)E+(ωj)∗uj

belongs to H(χ) by Theorem 5.40 and

‖f‖2
H = ‖g‖2

H(χ) = ‖g‖2
st.

Consequently, f ∈ B(E) and ‖f‖2
B(E) = ‖f‖2

H. Therefore, H = B(E), since L
is dense in H. �

Lemma 5.66 Let E = [E− E+] be a de Branges matrix and let χ =
E−1

+ E−. Then the following conditions are equivalent:

(1) The inequality KE
ω (ω) > 0 holds for at least one point ω ∈ h+

E
.

(2) The inequality KE
ω (ω) > 0 holds for every point ω ∈ h

+
E
.

(3) The equality {f(ω) : f ∈ B(E)} = Cp holds for at least one point
ω ∈ h

+
E
.

(4) The equality {f(ω) : f ∈ B(E)} = C
p holds for every point ω ∈ h

+
E
.

(5) The inequality kχ
ω(ω) > 0 holds for at least one point ω ∈ hχ.

(6) The inequality kχ
ω(ω) > 0 holds for every point ω ∈ hχ.

(7) The equality {f(ω) : f ∈ H(χ)} = C
p holds for at least one point

ω ∈ hχ.

(8) The equality {f(ω) : f ∈ H(χ)} = C
p holds for every point ω ∈ hχ.

Moreover, if E ∈ Πp×2p, then the preceding eight equivalences hold with hE

in place of h
+
E

in (1)–(4).
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Proof The last four equivalences follow from Lemma 5.41, since χ ∈ Sp×p
in .

The implication (1) =⇒ (2) follows from (5) =⇒ (6) and formula (5.111),
which expresses the kernel KE

ω (λ) in terms of the kernel kχ
ω(λ). The con-

verse implication (2) =⇒ (1) is self-evident. The rest follows from Lemma
5.41. �

5.11 Regular de Branges matrices E and spaces B(E)

Let E be a de Branges matrix. Then the space B(E) will be called a regular
de Branges space if it is Rα invariant for every point α ∈ h

+
E
; E will be

called a regular de Branges matrix if

E ∈ Πp×2p, ρ−1
α E−1

+ ∈ Hp×p
2 and ρ−1

α E−1
− ∈ Kp×p

2 , (5.123)

for at least one (and hence every) point α ∈ C+.

Lemma 5.67 If E = [E− E+] is a de Branges matrix, then the following
implications are in force:

(a) E is a regular de Branges matrix =⇒

(b) B(E) is a regular de Branges space =⇒

(c) B(E) is Rα invariant for at least one point α ∈ h
+
E
;

i.e., (a) =⇒ (b) =⇒ (c). If

KE
ω (ω) > 0 for at least one (and hence every) point ω ∈ h+

E
, (5.124)

then (c) =⇒ (a) and hence (a) ⇐⇒ (b) ⇐⇒ (c).

Proof If E = [E− E+] is a de Branges matrix and f = E+g, then f ∈
B(E) ⇐⇒ g ∈ H(χ), and

(Rαf)(λ) = E+(λ)(Rαg)(λ) + (RαE+)(λ)g(α) (5.125)

for every α ∈ h
+
E
. Therefore, since Rαg ∈ H(χ) for every α ∈ C+,

Rαf ∈ B(E) ⇐⇒ (RαE+)(λ)g(α) ∈ B(E), (5.126)

i.e., in view of Lemma 5.62, Rαf ∈ B(E) if and only if

E−1
+ (RαE+)u ∈ Hp

2 and E−1
− (RαE−)u ∈ Kp

2 for u = g(α). (5.127)
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However, if (a) is in force, then Lemma 3.60 and the second condition in
(5.123) imply that

(RαE−1
+ )v ∈ Hp

2 for every v ∈ C
p.

The choice v = E+(α)g(α) justifies the first condition in (5.127); the second
is immediate from the third condition in (5.123). Thus, (a) =⇒ (b) =⇒ (c).

Suppose next that the extra constraint (5.124) is in force. Then the other
seven conditions in Lemma 5.66 are also in force. In particular,

{g(α) : g ∈ H(χ)} = C
p for every α ∈ C+. (5.128)

Moreover, since (5.124) implies that E+(ω)∗E+(ω) > 0 at every point ω ∈
h

+
E
, it follows that the mvf E+(λ)−1 is holomorphic in h

+
E
. Thus, if (c) is

in force for some point α ∈ h
+
E
, then the two conditions in (5.127) hold for

every u ∈ Cp and hence (5.123) holds for the given point α ∈ h
+
E
. However,

this suffices to insure that (5.123) holds for every point α ∈ C+ and hence
that (c) =⇒ (a). �

Remark 5.68 If E = [E− E+] is a regular de Branges matrix. then B(E)
is a RKHS of p× 1 holomorphic vvf ’s on hE and its RK, KE

ω (λ), is defined
on hE×hE by formula (5.122). Moreover, the proof of Lemma 5.67 is easily
adapted to show that B(E) is Rα invariant for every point α ∈ hE ∩ hχ.

A simple example

A simple example of a regular de Branges matrix is obtained by setting

E(λ) =
[
E−(λ) E+(λ)

]
=
[
b3(λ) b#

4 (λ)
]
,

for any choice of b3 ∈ Sp×p
in and b4 ∈ Sp×p

in . Then,

χ = E−1
+ E− = b4b3

and the RK

KE
ω (λ) =

b#
4 (λ)b#

4 (ω)∗ − b3(λ)b3(ω)∗

ρω(λ)
= �b4

ω (λ) + kb3
ω (λ).

Thus,

B(E) = H∗(b4) ⊕H(b3),
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which reduces to H(b) with b = b3 if b4(λ) is constant and to H∗(b) with
b = b4 if b3(λ) is constant. If b3 = eαIp and b4 = eβIp with α ≥ 0 and β ≥ 0,
then

B(E) =
{∫ α

−β
eiλth(t)dt : h ∈ Lp

2([−β, α])
}

is the Paley-Wiener space of entire functions ĥ(λ) of exponential type that
belong to Lp

2(R) and are subject to the growth constraints τ+(ĥ) ≤ β and
τ−(ĥ) ≤ α.

Theorem 5.69 Let E = [E− E+] be a de Branges matrix, let χ = E−1
+ E−

and suppose that

0 ∈ hE and E+(0) = E−(0) = Ip. (5.129)

Then:

(1) E is a regular de Branges matrix if and only if E ∈ Πp×2p and
R0E+ξ ∈ B(E) and R0E−ξ ∈ B(E) for every ξ ∈ C

p.

(2) If E is a regular de Branges matrix, then B(E) is R0 invariant.
(3) If B(E) is R0 invariant and −iχ′(0) > 0, then E is a regular de

Branges matrix,

Proof In view of Theorem 5.40, 0 ∈ hg for every g ∈ H(χ), since 0 ∈ hχ.
Consequently, 0 ∈ hf for every f ∈ B(E). Assertion (1) now follows from
Lemmas 3.60 and 5.62 and Theorem 5.40. The proof of (2) is similar to the
proof of Lemma 5.67.

Finally, suppose that the assumptions in (3) hold. Then, in view of Lemma
5.41, {g(0) : g ∈ H(χ)} = C

p, and, by Theorem 5.40, R0χξ ∈ H(χ) for every
ξ ∈ C

p. Thus, formula (5.125) with α = 0 implies that E−1
+ R0E+ξ ∈ H(χ)

for every ξ ∈ C
p. Therefore, E+ and E− = E+χ both belong to Πp×p and

R0E±ξ ∈ B(E) for every ξ ∈ C
p. Thus, (3) follows from (1). �

5.12 Connections between A and E

This section focuses on the connections between the mvf A ∈ U(Jp) and the
de Branges matrix E that is defined by the formula

E(λ) = [E−(λ) E+(λ)] =
√

2[0 Ip] A(λ)V (5.130)
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or, equivalently, in terms of the blocks aij of A and bij of B = AV,

E− = a22 − a21 =
√

2b21 and E+ = a22 + a21 =
√

2b22. (5.131)

Lemma 5.70 The components E±(λ) of the mvf E(λ) defined by formula
(5.130) enjoy the following properties:

(1) E± ∈ Πp×p.

(2) E+(λ)E+(λ)∗ − E−(λ)E−(λ)∗ = −E(λ)jpE(λ)∗ ≥ 0 in h
+
E
.

(3) E+(µ)E+(µ)∗ − E−(µ)E−(µ)∗ = −E(µ)jpE(µ)∗ = 0 for almost all
points µ ∈ R.

(4) det E+(ω) �= 0 for at least one point ω ∈ h+
E
, i.e., rank E+ = p.

(5) The mvf χ(λ) = E+(λ)−1E−(λ) belongs to the class Sp×p
in .

(6) ρ−1
i E−1

+ ∈ Hp×p
2 and ρ−1

−i E
−1
− ∈ Kp×p

2 .

(7) ∆(µ) = E+(µ)−∗E+(µ)−1 = E−(µ)−∗E−(µ)−1 a.e. on R.

(8) ∆ ∈ L̃p×p
1 .

Proof (1) is immediate from the fact that A ∈ Πm×m , while (2) and (3) are
easy consequences of the fact that A ∈ U(Jp) and VJpV = jp.

Next, if assertion (4) is false, then det E+(λ) ≡ 0 on h
+
E
, which in turn

leads to the following sequence of implications:

det E(λ)E(λ)∗ ≡ 0 on h
+
E

=⇒ det A(λ) ≡ 0 on hA

=⇒ det A(µ) = 0 a.e on R.

But on the other hand, |A(µ)| = 1 a.e on R, since A ∈ U(Jp). Consequently,
(4) holds and the mvf’s E+(λ)−1 and χ(λ) are meromorphic in C+. Thus
(5) follows from (2) and (3).

Assertion (6) is equivalent to the pair of assertions (4) and (8) in Lemma
4.35, since E+ =

√
2b22 and E− =

√
2b21.

Assertions (7) and (8) follow from (5) and (6). �

Theorem 5.71 If A ∈ U(Jp), then the mvf E = [E− E+] that is defined by
formula (5.130) is a regular de Branges matrix. Conversely, if E = [E− E+]
is a regular de Branges matrix, then a family of mvf’s A ∈ U(Jp) exists such
that formula (5.130) holds.
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Proof The first part of the theorem follows from Lemma 5.70. The converse
statement will be established in Theorem 9.18. �

In Section 9.4 it will be shown that every regular de Branges matrix E

may be obtained from the bottom block row of some mvf A ∈ U(Jp) by
formula (5.130). Moreover, the set of mvf’s A ∈ U(Jp) that correspond to a
given regular de Branges matrix in this way will be described.

Corollary 5.72 Let A ∈ U(Jp) and let the mvf E = [E− E+] be defined
by the bottom p × 2p block row [a21 a22] of the mvf A by formula (5.130).
Then E is a regular de Branges matrix and B(E) is a regular de Branges
space.

Proof This follows from Theorem 5.71 and (1) of Lemma 5.67. �

5.13 A factorization and parametrization of mvf’s A ∈ U(Jp).

In this section we shall present some results that are adapted from [ArD01b]
on the factorization and parametrization of mvf’s A ∈ U(Jp) with prescribed
blocks a21(λ) and a22(λ). These blocks will be specified via formula (5.130)
in terms of a de Branges matrix E = [E+ E−] that satisfies the auxiliary
conditions (5.123), and the mvf c = TA[Ip].

Theorem 5.73 If A ∈ U(Jp), E is given by (5.130) and c = TA[Ip], then:

(1) E is a regular de Branges matrix and c ∈ Π ∩ Cp×p.

(2) The mvf A can be recovered from E and c by the formula

A =
1√
2

[
−c#E− cE+

E− E+

]
V. (5.132)

(3) The mvf c admits an essentially unique decomposition of the form

c = cs + ca (5.133)

with components cs ∈ Cp×p
sing and ca ∈ Cp×p

a . Moreover, both of the

components cs and ca belong to the class Πp×p, cs + c#
s = 0 and

ca(λ) = iα +
1
πi

∫ ∞

−∞

{
1

µ − λ
− µ

1 + µ2

}
E+(µ)−∗E+(µ)−1dµ

for λ ∈ C+ (5.134)

and some Hermitian matrix α ∈ C
p×p.
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(4) The given mvf A ∈ U(Jp) admits a factorization of the form

A(λ) = As(λ)Aa(λ), (5.135)

where

As(λ) =

[
Ip cs(λ)

0 Ip

]
(5.136)

and

Aa(λ) =
1√
2

[
−c#

a (λ)E−(λ) ca(λ)E+(λ)

E−(λ) E+(λ)

]
V. (5.137)

Moreover, As ∈ US(Jp), Aa ∈ U(Jp) and the mvf’s ca and Aa are
uniquely determined by E up to an additive constant iα in (5.134)
and a corresponding left constant multiplicative factor in (5.137) that
is of the form [

Ip iα

0 Ip

]
with α = α∗ ∈ C

p×p. (5.138)

Conversely, if E is a regular de Branges matrix and if c = cs + ca, where cs

is any mvf from the class Cp×p
sing and ca is defined by formula (5.134), then

ca ∈ Πp×p; the mvf A that is defined by formulas (5.132)–(5.134) belongs to
the class U(Jp); and (5.130) holds.

Proof The first assertion in (1) follows from Lemma 5.70; the second from
the formula c = TA [Ip], since A ∈ U(Jp) and U(Jp) ⊂ Πm×m . Formula
(5.132) and the converse implications of the theorem follow from Theorem
9.18, which will be established in Chapter 9. Assertion (3) follows from the
equality

Rc(µ) = Rca(µ) = E+(µ)−∗E+(µ)−1 a.e. on R.

Finally assertion (4) follows from formulas (5.132) and (5.133). �
An mvf A ∈ U(Jp) is called perfect if TA[Ip] ∈ Cp×p

a . Recall that c ∈ Cp×p
a

if and only if (a) limν↑∞ ν−1c(iν) = 0 and (b) the spectral function σ(µ) is
locally absolutely continuous. Moreover (a) and (b) hold if and only if (3.13)
holds.

If A ∈ E ∩ U(J), then (b) is automatically in force and hence A is perfect
if and only if c = TA [Ip] meets condition (a).
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Theorem 5.74 If A ∈ U(Jp) is perfect and E is given by (5.130), then
hA = hE . Moreover, E is rational (resp., meromorphic, entire) if and only if
A is rational (resp., meromorphic, entire).

Proof The inclusion hA ⊆ hE is obvious. The proof of the opposite inclusion
rests on the fact that if A ∈ U(Jp) is perfect, then c = TA[Ip] belongs to
Π ∩ Cp×p

a and A can be recovered from E and c by formula (5.132) up to a
Jp-unitary constant factor on the left that does not effect hA. Moreover, as

c = −c# + 2(E#
+ )−1E−1

+ = −c# + 2(E#
− )−1E−1

− , (5.139)

the entries in the top block row of A are given by the formulas

cE+ = −c#E+ + 2(E#
+ )−1 and − c#E− = cE− − 2(E#

− )−1. (5.140)

Suppose now that λ ∈ h
−
E
. Then c#, E− and E+ are all holomorphic in a

neighborhood of λ as is cE+ thanks to the first formula in (5.140) and (6)
of Lemma 5.70.

Similarly if λ ∈ h
+
E
, then λ ∈ h

+
A thanks to to the second formula in (5.140).

Finally, if λ ∈ hE ∩ R, then c and c# are holomorphic in a neighborhood of
λ by Remark 3.7, whereas (6) of Lemma 5.70 guarantees that E−1

+ and E−1
−

have no poles on R. Therefore, hA = hE and hence A is entire if and only if
E is entire.

If A is rational (resp., meromorphic) then formula (5.132) clearly implies
that E is rational (resp., meromorphic). Conversely, if E is rational, then
formula (5.134) implies that c is rational in C+. Therefore, its boundary
values and its extension to C− via (5.139) are also rational, as is c#. Thus A

is rational. Similarly, if E is meromorphic in C, then (6) of Lemma 5.70 and
formula (5.140) imply that A is meromorphic on C \ R and R ⊂ hE. Thus,
in view of Remark 3.7, c and c# are also holomorphic on R. Therefore. A is
meromorphic on C. �

Theorem 5.75 Let E = [E− E+] be a regular de Branges matrix and let
∆E(µ) = E+(µ)−∗E+(µ)−1 a.e. on R. Then:

(1) There exists a perfect mvf A ∈ U(Jp) such that (5.130) holds. More-
over, A is uniquely defined by E up to a left constant Jp-unitary factor
of the form (5.138) by formulas (5.134) and (5.137). There is only
one such perfect mvf Aa for which ca(i) > 0: if α = 0 in (5.134).
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(2) If E satisfies the conditions (5.129), then there is exactly one per-
fect mvf A ∈ U0(Jp) for which (5.130) holds. It is given by formula
(5.132), where

c(λ) = Ip +
λ

πi

∫ ∞

−∞

1
µ(µ − λ)

{∆E(µ) − Ip}dµ. (5.141)

Proof The first assertion follows from Theorem 5.73 with c = ca and A = Aa

given by formulas (5.134) and (5.137), respectively.
Assertion (2) follows from Theorem 5.74 and the identity

c(λ) − Ip = iα +
1
πi

∫ ∞

−∞

{
λ

µ(µ − λ)
+

1
µ(1 + µ2)

}
{∆E(µ) − Ip}dµ

by choosing

α =
1
π

∫ ∞

−∞

1
µ(1 + µ2)

{∆E(µ) − Ip}dµ.

�
In view of Theorem 5.73, formula (5.130) defines a one to one correspon-

dence between perfect mvf’s A ∈ U0(Jp) and regular de Branges matrices
E = [E− E+] with the properties (5.129).

The next theorem describes the connection between the corresponding
RKHS’s H(A) and B(E).

Theorem 5.76 Let A ∈ U(Jp) and let E, ca, cs, Aa and As be defined by A

as in Theorem 5.73. Let U2 denote the operator that is defined on H(A) by
the formula

(U2f)(λ) =
√

2[0 Ip]f(λ) for f ∈ H(A). (5.142)

Then:

(1) H(As) = {f ∈ H(A) : (U2f)(λ) ≡ 0}, i.e.,

H(As) = ker U2. (5.143)

(2) The orthogonal complement of H(As) in H(A) is equal to AsH(Aa),
i.e.,

H(A) = H(As) ⊕ AsH(Aa). (5.144)

(3) The operator U2 is a partial isometry from H(A) onto B(E) with
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kernel H(As), i.e., U2 maps H(A) �H(As) isometrically onto B(E).
Moreover,

H(As) =

L(cs)

⊕
{0}

(5.145)

and L(cs) is the RKHS with RK

kcs
ω (λ) =

cs(λ) + cs(ω)∗

ρω(λ)
. (5.146)

(4) The operator U2 is unitary from H(A) onto B(E) if and only if the
mvf A is perfect.

Proof Let N∗
2 = [0 Ip], H2(A) = ker U2 and observe that

2N∗
2 KA

ω (λ)N2 = ρω(λ)−12{N∗
2 JpN2 − N∗

2 B(λ)VJpV
∗B(ω)∗N2}

= ρω(λ)−1{0 − E(λ)jpE(ω)∗} (5.147)

= KE
ω (λ).

Moreover, since

U2K
A
ω (λ)N2η =

1√
2
KE

ω (λ)η, (5.148)

the operator U2 maps the linear manifold

LA =

{
n∑

i=1

KA
ωi

(λ)N2ηi : ωi ∈ hA, ηi ∈ C
p and n ≥ 1

}
(5.149)

onto the linear manifold

LE =

{
1√
2

n∑
i=1

KE
ωi

(λ)ηi : ωi ∈ hA, ηi ∈ C
p and n ≥ 1

}
.

Furthermore, the formula

2

∥∥∥∥∥
n∑

i=1

KA
ωi

N2ηi

∥∥∥∥∥
2

H(A)

= 2
n∑

i,j=1

η∗j N
∗
2 KA

ωi
(ωj)N2ηi

=
n∑

i,j=1

η∗j K
E
ωi

(ωj)ηi =

∥∥∥∥∥
n∑

i=1

KE
ωi

ηi

∥∥∥∥∥
2

B(E)

(5.150)
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exhibits U2 as an isometry from LA into B(E):

‖f‖2
H(A) = ‖U2f‖2

B(E) for f ∈ LA. (5.151)

Therefore, since L⊥
A = H2(A) and the set U2LA is dense in B(E), the operator

U2 is a partial isometry from H(A) = LA⊕L⊥
A onto B(E) with kernel H2(A).

Next, it follows readily from formula (5.136) that

KAs
ω (λ) =

1
ρω(λ)

[
cs(λ) + cs(ω)∗ 0

0 0

]
and hence that

N∗
2 KAs

ω (λ) = [0 0].

Thus, H(As) ⊆ H2(A) (as linear spaces).
Finally, to obtain the opposite inclusion, observe that since H2(A) is a

closed subset of H(A) that is Rα invariant for every point α ∈ hA , Theorem
5.50 guarantees that there exists a pair of mvf’s Aj ∈ U(Jp), j = 1, 2, such
that

H2(A) = H(A1), A(λ) = A1(λ)A2(λ)

and

H(A) = H(A1) ⊕ A1H(A2).

Moreover, upon writing

A1(λ) = A(1)
s (λ)A(1)

a (λ) and A2(λ) = A(2)
s (λ)A(2)

a (λ)

in terms of the formulas given in Theorem 5.73 and observing that

N ∗
2 KA1

ω (λ) = 0 ⇐⇒ N∗
2 {A1(ω) − A1(λ)}JpA1(ω)∗ = 0

for λ, ω, ω ∈ hA1

⇐⇒ N∗
2 {A1(ω) − A1(λ)} = 0 for λ, ω ∈ hA1

⇐⇒ N∗
2 {A(1)

a (λ) − A(1)
a (ω)} = 0 for λ, ω ∈ hA1 ,

we see that the bottom block row of A
(1)
a (λ) is constant. Therefore, by for-

mulas (5.137) and (5.134), A
(1)
a (λ) is a Jp–unitary constant matrix, which

may be taken equal to Im . Thus

A(λ) = A(1)
s (λ)A(2)

s (λ)A(2)
a (λ)
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from which it follows that

As(λ) = A(1)
s (λ)A(2)

s (λ)

and hence that

H(A1) ⊆ H(As),

as needed to complete the proof of (3). Finally, (4) is immediate from
(1)–(3). �

Remark 5.77 It is readily seen that the mvf As(λ) in the factorization
(5.135) belongs to the class US(Jp), since cs ∈ N p×p

+ . Thus,

A ∈ U�R(Jp) =⇒ As(λ) is constant. (5.152)

The converse is not true. In order to have A ∈ U�R(Jp), a second condition
is also needed; see Section 7.4. The inclusion

U�sR ∪ UrsR ⊆ U�R ∩ UrR

guarantees that if A ∈ U�sR or A ∈ UrsR, then the operator U2 is a unitary
operator from H(A) onto B(E).

5.14 A description of H(W ) ∩ Lm
2

The classes US(J), UrR(J) and UsrR(J) of singular, right regular and strongly
right regular J-inner mvf’s will be characterized in terms of the linear man-
ifold LU = H(U) ∩ Lm

2 (R). Since H(U) ⊂ Lm
2 (R) if J = ±Im , only the

case J �= ±Im is of interest and thus, it suffices to focus on J = jpq and
H(W ) ∩ Lm

2 (R) for W ∈ U(jpq).
To every W ∈ U(jpq) we associate a pair of operators Γ11, Γ22 and a pair

of linear manifolds L+
W , L−

W which are defined in terms of {b1, b2} ∈ ap(W )
and s12 = TW [0]:

Γ11 = ΠH(b1 )Ms12 |Hq
2
, Γ22 = Π−Ms12 |H∗(b2 ) (5.153)

L+
W =

{[
g

Γ∗
11g

]
: g ∈ H(b1)

}
and L−

W =
{[

Γ22h

h

]
: h ∈ H∗(b2)

}
.

(5.154)
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Lemma 5.78 If W ∈ U(jpq), then:

(1) L+
W = H(W ) ∩ Hm

2 .

(2) The formula∥∥∥∥[ g

Γ∗
11g

]∥∥∥∥2

H(W )
=
〈[

I −Γ11

−Γ∗
11 I

] [
g

Γ∗
11g

]
,

[
g

Γ∗
11g

]〉
st

= 〈(I − Γ11Γ∗
11)g, g〉st

holds for every g ∈ H(b1). In this formula, Γ∗
11 = Π+Ms∗12

|H(b1 ).

(3) The formulas Γ11 = Π+Ms|Hq
2

and〈[
Ip −s

−s∗ Iq

] [
g

Γ∗
11g

]
,

[
g

Γ∗
11g

]〉
st

=
∥∥∥∥[ g

Γ∗
11g

]∥∥∥∥2

H(W )

hold for every mvf s ∈ TW [Sp×q ] and every g ∈ H(b1).

Proof . If f = col(f, g) belongs to H(W ) ∩ Hm
2 , then (5.88) implies that

h = Π+s∗12g and s∗11g ∈ Kp
2 . Thus, as s11 = b1ϕ1 and ϕ1 ∈ Sp×p

out , it is
readily checked that g is orthogonal to b1H

p
2 with respect to the standard

inner product and hence that g ∈ H(b1). Therefore H(W )∩Hm
2 ⊆ L+

W . The
opposite inclusion is even easier.

Since the verification of the formulas in (2) follows easily from (5.89), we
turn next to (3). Let ε ∈ Sp×q . Then

TW [ε] − TW [0] = (w11ε + w12)(w21ε + w22)−1 − w12w
−1
22

= {w11ε + w12 − w12w
−1
22 (w21ε + w22)}(w21ε + w22)−1

= (w11 − w12w
−1
22 w21)ε(Iq − s21ε)−1s22

= w#
11ε(Iq − s21ε)−1s22

= s11ε(Iq − s21ε)−1s22

= b1ϕ1ε(Iq − s21ε)−1ϕ2b2

= b1ψb2,

where ψ = ϕ1ε(Iq − s21ε)−1ϕ2 belongs to N p×q
+ , since (Iq − s21ε)−1 belongs

to N p×q
+ , by Lemma 3.54. Thus,

s(λ) − s12(λ) = b1(λ)ψ(λ)b2(λ) (5.155)
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for some choice of ψ ∈ Hp×q
∞ and hence Γ11 = ΠH(b1 )Ms|Hq

2
and

Π+(s∗ − s∗12)g = Π+b∗2ψ
∗b∗1g = Π+b∗2ψ

∗Π+b∗1g = 0 (5.156)

for g ∈ H(b1) and s ∈ TW [Sp×q ]. The asserted formula is now easily checked
by direct computation. �

Lemma 5.79 If W ∈ U(jpq), then:

(1) L−
W = H(W ) ∩ Km

2 .
(2) The formula∥∥∥∥[ Γ22h

h

]∥∥∥∥2

H(W )
=
〈[

I −Γ22

−Γ∗
22 I

] [
Γ22h

h

]
,

[
Γ22h

h

]〉
st

= 〈(I − Γ∗
22Γ22)h, h〉st

is valid for every h ∈ H∗(b2).
(3) The formulas Γ22 = Π−Ms|H∗(b2 ) and〈[

Ip −s

−s∗ Iq

] [
Γ22h

h

]
,

[
Γ22h

h

]〉
st

= 〈(I − Γ∗
22Γ22)h, h〉st

are valid for for every mvf s ∈ TW [Sp×q ] and every h ∈ H∗(b2).

Proof The proof is much the same as the proof of Lemma 5.78. The verifi-
cation of the third assertion rests on formula (5.155) and the evaluation

Π−{(s − s12)h} = Π−b1ψb2h = Π−b1ψΠ−b2h = 0 (5.157)

for h ∈ H∗(b2). Thus

Γ22h − sh = −Π+sh

and

−s∗Γ22h + h = −s∗Π−sh + h.

The rest is straightforward. �
We turn next to the sum

LW = L−
W +̇ L+

W (5.158)

and its closure LW in H(W ). The sum is direct because L−
W ⊆ (Km

2 ) and
L+

W ⊆ Hm
2 . However, it is not an orthogonal sum in H(W ). The inner
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product between elements in the two spaces can best be expressed in terms
of the operator

Γ12 = ΠH(b1 )Ms12 |H∗(b2 ). (5.159)

Since

ΠH(b1 )b1ψb2|H∗(b2 ) = 0 (5.160)

for ψ ∈ Hp×q
∞ , it follows readily from (5.155), (5.156) and (5.157), respec-

tively, that the operators Γ12, Γ11 and Γ22 do not change if s12 is replaced
by any s ∈ TW [Sp×q ].

Lemma 5.80 If W ∈ U(jpq), g ∈ H(b1) and h ∈ H∗(b2), then:

(1) LW = H(W ) ∩ Lm
2 .

(2)
〈[

g

Γ∗
11g

]
,

[
Γ22h

h

]〉
H(W )

= −〈Γ∗
12g, h〉st.

(3)
〈[

Ip −s

−s∗ Iq

] [
g

Γ∗
11g

]
,

[
Γ22h

h

]〉
st

= −〈Γ∗
12g, h〉st

and Γ12 = ΠH(b1 )Ms|H∗(b2 ) for every choice of s ∈ TW [Sp×q ].

Proof It is readily checked with the aid of Theorem 5.55 that if f ∈ H(W )∩
Lm

2 is decomposed as f = f1 + f2 with f1 ∈ Hm
2 and f2 ∈ Km

2 , then
f1 ∈ H(W )∩Hm

2 and f2 ∈ H(W )∩Km
2 . Therefore, in view of Lemmas 5.78

and 5.79, we see that H(W ) ∩ Lm
2 ⊆ LW . This serves to establish (1), since

the opposite inclusion is self-evident. The rest is straightforward. �
The next theorem summarizes the main conclusions from the preceding

three lemmas.

Theorem 5.81 Let W ∈ U(jpq). Then

Γ11 = ΠH(b1 )Ms|Hq
2
, Γ22 = Π−Ms|H∗(b2 ) and

Γ12 = ΠH(b1 )Ms|H∗(b2 ) for every choice of s ∈ TW [Sp×q ], (5.161)

and:

(1) LW = H(W ) ∩ Lm
2 .

(2) Every f ∈ LW has a unique decomposition of the form

f =
[

g

Γ∗
11g

]
+
[
Γ22h

h

]
with g ∈ H(b1) and h ∈ H∗(b2). (5.162)
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(3) If f is as in (2), then

‖f‖2
H(W ) =

〈[
I − Γ11Γ∗

11 −Γ12

−Γ∗
12 I − Γ∗

22Γ22

] [g
h

]
,
[g
h

]〉
st

. (5.163)

(4) If f is as in (2) and s ∈ TW [Sp×q ], then

‖f‖2
H(W ) =

〈[
Ip −s

−s∗ Iq

]
f, f

〉
st

. (5.164)

Corollary 5.82 If W ∈ U(jpq), then LW is Rα invariant for every point
α ∈ hW .

Proof This is immediate from the identification of LW in (1) of the theorem,
since H(W ) is Rα invariant for every point α ∈ hW and f ∈ H(W ) is
holomorphic at all such points α, by Theorem 5.49. Moreover, if f ∈ H(W )∩
Lm

2 and α ∈ hW , then Rαf ∈ Lm
2 . Thus, Rαf ∈ LW . �

Lemma 5.83 Let U ∈ U(J). Then:

(1) U ∈ Nm×m
+ if and only if H(U) ⊆ Nm

+ .

(2) U ∈ Nm×m
− if and only if H(U) ⊆ Nm

− , where f ∈ Nm×k
− ⇐⇒ f# ∈

N k×m
+ .

Proof Clearly it suffices to prove both statements for the special case that
J = jpq . Suppose first that W ∈ Nm×m

+ and let f = col(f, g) belong to
H(W ). Then f ∈ Nm

+ , since s22h ∈ Hq
2 and g − s12h ∈ Hp

2 , by Theorem
5.55, and s22 ∈ Sq×q

out when W ∈ Nm×m
+ . The other direction follows from

the formula for the reproducing kernel. This completes the proof of (1). The
proof of (2) is similar. �

Corollary 5.84 If W ∈ U(jpq) ∩Nm×m
+ , then

L+
W = H(W ) ∩ Lm

2 = H(W ) ∩ Hm
2 .

If W ∈ U(jpq) ∩N−, then

L−
W = H(W ) ∩ Lm

2 = H(W ) ∩ Km
2 .

Proof By the Smirnov maximum principle,

N+ ∩ Lm
2 = Hm

2 and (by symmetry) N− ∩ Lm
2 = Km

2 .

�
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5.15 Characterizations of the classes US (J), UrR (J) and UrsR (J)

Let

H(b1, b2) =
H(b1)
⊕

H∗(b2)
.

Theorem 5.81 guarantees that the operator

LW =
[

I Γ22

Γ∗
11 I

]
: H(b1, b2) → H(W ) (5.165)

is well defined, injective and bounded. The operator

∆W =
[

I − Γ11Γ∗
11 −Γ12

−Γ∗
12 I − Γ∗

22Γ22

]
: H(b1, b2) → H(b1, b2) (5.166)

that appears in formula (5.163) is also bounded and (since ∆W = L∗
W LW )

nonnegative. We turn next to characterizations of the indicated subclasses
of U(J) in terms of the properties of the set

LU = H(U) ∩ Lm
2 .

Extensive use will be made of the next lemma and Theorem 5.50.

Lemma 5.85 Let W ∈ U(jpq) and let LW denote the closure of H(W )∩Lm
2

in H(W ). Then there exists an essentially unique mvf W1 ∈ U(jpq) such that

LW = H(W1). (5.167)

Moreover:

(1) W−1
1 W ∈ US(jpq).

(2) H(W1) is included isometrically in H(W ), i.e.,

‖f‖H(W1 ) = ‖f‖H(W ) for every f ∈ H(W1).

(3) LW = LW1 and ap(W ) = ap(W1).

Proof By Corollary 5.82, LW is Rα invariant for every point α ∈ hW .
Therefore, since Rα is a bounded operator in H(W ) for each such point
α, LW is also invariant under Rα. Thus, by Theorem 5.50, there exists an
essentially unique mvf W1 ∈ U(jpq) such that (5.167) holds, (2) holds and
W−1

1 W ∈ U(Jpq). Consequently,

LW1 = H(W1) ∩ Lm
2 ⊆ H(W ) ∩ Lm

2 = LW ⊆ LW1 .
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Therefore,

LW1 = LW .

Let {b(1)
1 , b

(1)
2 } ∈ ap(W1) and let s ∈ TW [Sp×q ]. Then, since W−1

1 W ∈ U(jpq),
s ∈ TW1 [Sp×q ]. Therefore, LW1 admits a description as in (2) of Theorem
5.81 in terms of the operators Γ(1)

ij that are defined just as in formulas (5.153)

and (5.159), with the same s, but with {b(1)
1 , b

(1)
2 } in place of {b1, b2}. Thus,

as LW1 = LW , it follows that H(b(1)
1 ) = H(b1) and H∗(b

(1)
2 ) = H∗(b2) and

hence that b
(1)
1 = b1v1 and b

(1)
2 = v2b2 for some pair of unitary matrices

v1 ∈ Cp×p and v2 ∈ Cq×q . This completes the proof of (3) and justifies the
formulas

Γ(1)
ij = Γij for i, j = 1, 2. (5.168)

In particular, {b1, b2} ∈ ap(W1), and hence, in view of Theorem 4.94, (1)
holds. �

Theorem 5.86 Let U ∈ U(J). Then:

(1) U ∈ US(J) ⇐⇒ H(U) ∩ Lm
2 = {0}.

(2) U ∈ UrR(J) ⇐⇒ H(U) ∩ Lm
2 is dense in H(U).

(3) U ∈ UrsR(J) ⇐⇒ H(U) ⊂ Lm
2 .

Proof Suppose first that J �= ±Im . Then, there is no loss of generality
in assuming that J = jpq . Consequently, Lemma 4.39 and the description
of LW that is furnished in Theorem 5.81 supply the key ingredients in the
following sequence of equivalences if W ∈ U(Jpq) and {b1, b2} ∈ ap(W ):

LW = {0} ⇐⇒ H(b1) = {0} and H∗(b2) = {0}
⇐⇒ b1(λ) = constant and b2(λ) = constant

⇐⇒ W ∈ US(jpq).

Moreover, since LW = H(W1) for some mvf W1 ∈ U(jpq) and W−1
1 W ∈

US(jpq) by Lemma 5.85, the formula W = W1(W−1
1 W ) implies that

LW �= H(W ) ⇐⇒ W−1
1 W �∈ Uconst(jpq) ⇐⇒ W �∈ UrR(jpq).

This completes the proof of (1) and (2) if J �= ±Im . However, if J = ±Im ,
then (1) and (2) are self-evident, because U(J) = UrR(J) ⊂ Lm

2 .
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Assertion (3) is listed here to ease the comparison with (1) and (2). It will
be justified in Theorem 5.92. �

Corollary 5.87 Let W ∈ U(jpq) and let W1 be the mvf that is considered
in Lemma 5.85. Then W1 ∈ UrR(jpq).

Proof This follows from the equality LW1 = H(W1) and Theorem 5.86. �

Theorem 5.88 Let W ∈ U(jpq), let {b1, b2} ∈ ap(W ) and let s12 = TW [0].
Then W (λ) is not right regular if and only if there exists a nonzero element
f ∈ H(W ) such that [

Ip −s12

−s∗12 Iq

]
f ∈

b1H
p
2⊕

b∗2K
q
2

. (5.169)

Proof If W (λ) is not right regular, then by Theorems 5.81 and 5.86, there
exists a nonzero f ∈ H(W ) such that〈[

Ip −s12

−s∗12 Iq

]
f,

[
g

Γ∗
11g

]
+
[
Γ22h

h

]〉
st

= 0 (5.170)

for every choice of g ∈ H(b1) and h ∈ H∗(b2). Therefore, since[
Ip −s12

−s∗12 Iq

]
f ∈

Hp
2⊕

Kq
2

, Γ22h ∈ Kp
2 and Γ∗

11g ∈ Hq
2 ,

the condition (5.170) is readily seen to be equivalent to the condition〈[
Ip −s12

−s∗12 Iq

]
f,
[g
h

]〉
st

= 0

for all such g and h. But this is equivalent to the asserted condition
(5.169). �

Theorem 5.89 Let U ∈ U(J). Then:

(1) U admits a right regular-singular factorization

U = U1U2 with U1 ∈ UrR(J) and U2 ∈ US(J) (5.171)

that is unique up to multiplication by a constant J-unitary factor V

on the right of U1 and V −1 on the left of U2.
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(2) LU = LU1 = H(U1).

(3) H(U1) is isometrically included in H(U).

Proof If U ∈ U(J) and J = ±Im, then the theorem is self-evident, because
U(J) = UrR(J), US(J) = Uconst(J) and LU (J) = H(U).

If J �= ±Im , then it suffices to verify the theorem for J = jpq . In this
setting, Lemma 5.85 and Corollary 5.87 guarantee the existence of a right
regular-singular factorization W = W1W2 as in (1) and that (2) and (3)
hold. Therefore, it remains only to check the essential uniqueness of the
factorization considered in (1). But if W = W3W4 with W3 ∈ UrR(jpq) and
W4 ∈ US(jpq), then, by the same arguments that were used to prove (2) of
Theorem 5.86, LW = LW3 = H(W3). Thus, as LW = H(W1), by Lemma
5.85, it follows that H(W3) = H(W1) and hence that W3 = W1V for some
V ∈ Uconst(jpq). �

Theorem 5.90 Let U ∈ U(J). Then:

(1) U ∈ L̃m
2 =⇒ U ∈ UrR ∩ U�R.

(2) U ∈ UrsR ∪ U�sR =⇒ U ∈ L̃m
2 .

(3) U ∈ UrsR ∪ U�sR =⇒ U ∈ UrR ∩ U�R.

Proof If U ∈ L̃m
2 , then KU

ω v ∈ Lm
2 for every choice of v ∈ C

m and ω ∈ hU .
Therefore, LU is dense in H(U) and hence U ∈ UrR(J), by Theorem 5.86.
The same argument applied to U∼ implies that U∼ ∈ UrR(J) and hence that
U ∈ U�R(J). Thus, (1) holds, and the proof is complete, since (2) coincides
with Theorem 4.75 and (3) is immediate from (1) and (2). �

Let

ΓW =
[
Γ11 Γ12

0 Γ22

]
:

Hp
2

⊕
H∗(b2)

−→
H(b1)
⊕
Kq

2

, (5.172)

where {b1, b2} ∈ ap(W ) for W ∈ U(jpq) and the operators Γij are defined by
formulas (5.153) and (5.159).

Lemma 5.91 If W ∈ U(jpq), then the following are equivalent:

(1) W ∈ UrsR(jpq).

(2) W ∈ UrR(jpq) and ‖ΓW ‖ < 1.

(3) ∆W ≥ εI on H(b1, b2) for some ε > 0.
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Proof The implication (1) =⇒ (2) will be proved in Theorem 5.92. The con-
verse implication will follow from Theorem 7.54. Moreover, the equivalence
of (2) and (3) is well known. �

Lemma 5.91 exhibits a useful characterization of the class UrsR(jpq). The
implication (2) =⇒ (1) will be used in the proof of Theorem 5.92.

Theorem 5.92 Let U ∈ U(J). Then the following are equivalent:
(1) U ∈ UrsR(J).

(2) There exist a pair of constants γ2 ≥ γ1 > 0 such that

γ1‖f‖st ≤ ‖f‖H(U ) ≤ γ2‖f‖st for every f ∈ H(U). (5.173)

(3) H(U) is a closed subspace of Lm
2 .

(4) H(U) ⊂ Lm
2 .

Proof If J = ±Im , then H(U) is included isometrically in Lm
2 and the

theorem is self evident. If J �= ±Im , then it is enough to verify the theorem
for J = jpq . But if W ∈ UrsR(jpq), then, since UrsR(jpq) ⊆ UrR(jpq) by
Theorem 5.90, Lemma 5.85 guarantees that LW = H(W ). Moreover, by
Theorem 5.81, ‖f‖H(W ) can be evaluated by formula (5.164) when f ∈ LW ,
which, upon choosing s ∈ TW [Sp×q ] with ‖s‖∞ < δ and δ < 1 leads easily
to the bounds

(1 − δ)‖f‖2
st ≤ ‖f‖2

H(W ) ≤ (1 + δ)‖f‖2
st for f ∈ LW .

Moreover, since LW is dense in H(W ), the inequalities extend to H(W ).
Thus, (1) =⇒ (2), and clearly (2) =⇒ (3) and (3) =⇒ (4).

It remains only to check that (4) =⇒ (1). Towards this end, let H(W ) ⊂
Lm

2 . Then LW = H(W ), W ∈ UrR(jpq) by Theorem 5.86, and the operator
LW defined in (5.165) is a bounded invertible operator from H(b1, b2) onto
H(W ). Therefore, by a theorem of Banach, LW has a bounded inverse. Thus,
in view of Theorem 5.81,∥∥∥∥LW

[
g

h

]∥∥∥∥2

H(W )
=
〈

∆W

[
g

h

]
,

[
g

h

]〉
st

∆W is positive and has a bounded inverse. But this is equivalent to the
fact that the operator ΓW defined by (5.172) is strictly contractive, i.e.,
‖ΓW ‖ < 1. Thus,

H(W ) ⊂ Lm
2 =⇒ W ∈ UrR(jpq) and ‖ΓW ‖ < 1,
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and hence W ∈ UrsR(jpq) by Lemma 5.91. �

5.16 Regular J-inner mvf’s

A J-inner mvf U is said to belong to the class UR(J) of regular J-inner
mvf’s if it is both right and left regular, i.e.,

UR(J) = UrR(J) ∩ U�R(J).

Theorem 5.93 The following inclusions hold:

(1) U(J) ∩ L̃m×m
2 ⊆ UR(J).

(2) UrsR(J) ∪ U�sR(J) ⊆ UR(J) ∩ L̃m×m
2 .

(3) UrsR(J) ∪ U�sR(J) ⊆ UR(J).

Proof This is just a reformulation of Theorem 5.90. �

Theorem 5.94 Let U = U1U2, where Uj ∈ U(J) for j = 1, 2. Then:

(1) If U ∈ UrsR(J), then U1 ∈ UrsR(J) and U2 ∈ UR(J).

(2) If U ∈ U�sR(J), then U1 ∈ UR(J) and U2 ∈ U�sR(J).

Proof Suppose first that U ∈ UrsR(J). Then, by Theorems 5.52 and 5.86,

H(U1) ⊆ H(U) ⊆ Lm
2

and U1 ∈ UrsR. Moreover,

U ∈ UrsR(J) =⇒ U ∈ UrR(J) =⇒ U2 ∈ UrR(J),

where the first implication follows from Theorem 5.93 and the second impli-
cation follows from the definition of the class UrR(J). Next, to verify that
U2 ∈ U�R(J), let U2 = U3U4, where U3 ∈ US(J) and U4 ∈ U(J). Then
U = U1U3U4 and, by the preceding argument, U1U3 ∈ UrsR(J). Therefore,
U1U3 ∈ UrR(J) and hence, U3 is a constant matrix. Thus, U2 ∈ UR(J).

Since (2) follows from (1) by considering U∼ = U∼
2 U∼

1 , the proof is
complete. �

5.17 Formulas for W (λ) when W ∈ UrsR (jpq )

Let W ∈ UrsR(jpq). Let {b1, b2} ∈ ap(W ), s12 = TW [0] and let the oper-
ators Γ11, Γ12 and Γ22 be defined by formulas (5.153) and (5.159). Then,
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by Theorem 5.92, H(W ) ⊂ Lm
2 and, consequently, Theorem 5.81 provides a

description of H(W ). Moreover, if dj(λ) = det bj(λ), j = 1, 2, then

H(b1) ⊆ H(d1Ip), H∗(b2) ⊆ H∗(d2Iq),

Γ∗
11H(b1) ⊆ H(d1Ip), Γ22H∗(b2) ⊆ H∗(d2Iq)

and it is easy to check that both subspaces Γ∗
11H(b1) and Γ22H∗(b2) are Rα

invariant for every α ∈ hW . Thus, in view of Theorem 3.38 and Corollary
3.42,

Γ∗
11H(b1) = H(̂b1) and Γ22H∗(b2) = H∗(̂b2) (5.174)

for some b̂1 ∈ Sp×p
in and b̂2 ∈ Sq×q

in . �

Theorem 5.95 Let W ∈ UrsR(jpq), let {b1, b2} ∈ ap(W ), and s12 = TW [0].
Let the operators Γ11, Γ22 and Γ12 be defined by the formulas (5.153) and
(5.159) and let the operators LW and ∆W be defined by formulas (5.165) and
(5.166). Then ∆W and LW are bounded and boundedly invertible operators,
the adjoint L∗

W of LW acts from H(W ) onto H(b1, b2),

∆W = L∗
W LW > 0 (5.175)

and the RK of the RKHS H(W ) is given by the formula

KW
ω

[
ξ

η

]
= LW ∆−1

W

kb1
ω ξ + Γ11k

b̂1
ω η

Γ∗
22�

b̂2
ω ξ + �b2

ω η

 , for ξ ∈ C
p and η ∈ C

q , (5.176)

where kb1
ω and �b2

ω are the RK’s of the RKHS’s H(b1) and H∗(b2), and kb̂1
ω

and �b̂2
ω are the RK’s of the RKHS’s H(̂b1) and H∗(̂b2), respectively.

Proof In the proof of Theorem 5.92 it is shown that the operator ∆W

is positive, bounded and boundedly invertible in the space H(b1, b2) and
that LW is a bounded, invertible and boundedly invertible operator from
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H(b1, b2) onto H(W ). It is readily checked that for every point ω ∈ hW〈
LW

[g
h

]
, KW

ω

[
ξ

η

]〉
H(W )

= [ξ∗ η∗]
(
LW

[g
h

])
(ω)

= 〈g, kb1
ω ξ〉st + 〈Γ22h, �b̂2

ω ξ〉st + 〈Γ∗
11g, kb̂1

ω 〉st
+〈h, �b2

ω η〉st

=

〈[g
h

]
,

[
kb1

ω ξ + Γ11k
b̂1
ω η

Γ∗
22�

b̂2
ω ξ + �b2

ω η

]〉
st

.

At the same time, by assertion (3) of Theorem 5.81,〈
LW

[g
h

]
, KW

ω

[
ξ

η

]〉
H(W )

=
〈[g

h

]
, ∆W L−1

W KW
ω

[
ξ

η

]〉
st

,

which also serves to justify (5.175). Thus,〈[g
h

]
,

[
kb1

ω ξ + Γ11k
b̂1
ω η

Γ∗
22�

b̂2
ω ξ + �b2

ω η

]〉
st

=
〈[g

h

]
, ∆W L−1

W KW
ω

[
ξ

η

]〉
st

for every g ∈ H(b1) and h ∈ H(b2), which yields (5.176). �
Formula (5.176) may be rewritten in the following form. Consider the

set Hm(b1, b2) of m × m mvf’s F =
[
f1 f2 · · · fm

]
with columns fj ∈

H(b1, b2) for 1 ≤ j ≤ m, as the orthogonal sum of m copies of the space
H(b1, b2) and the set Hm(W ) of m × m mvf’s K =

[
k1 k2 · · · km

]
with

columns kj ∈ H(W ), for 1 ≤ j ≤ m, as the orthogonal sum of m copies of
the space H(W ). Let the operators

∆W : Hm(b1, b2) → Hm(b1, b2) and LW : Hm(b1, b1) → Hm(W )

act on these spaces of m × m mvf’s columns by column:

∆W

[
f1 f2 · · · fm

]
=
[
∆W f1 ∆W f2 · · · ∆W fm

]
and

LW

[
f1 f2 · · · fm

]
=
[
LW f1 LW f2 · · · LW fm

]
.

Analogously, let the operators Γ11 and Γ∗
22 act on p × p and q × q mvf’s

respectively, column by column. Then the mvf

FW
ω (λ) =

[
kb1

ω (λ) (Γ11k
b̂1
ω )(λ)

(Γ∗
22�

b̂2
ω )(λ) �b2

ω (λ)

]
∈ Hm(b1, b2) (5.177)
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and formula (5.176) may be rewritten in the form

KW
ω (λ) = (LW ∆−1

W FW
ω )(λ) (5.178)

for every ω ∈ hW .
The mvf W (λ) is defined by the RK Kω(λ) of the RKHS H(W ) up to a

constant jpq-unitary right factor and

W (λ)jpqW (ω)∗ = jpq − ρω(λ)Kω(λ). (5.179)

If ω ∈ h
+
W ∩ h

+
W −1 , then there is only one mvf W (λ) that meets the nor-

malization condition (5.91) at the point ω, and W (ω) for this W may be
expressed in terms of Kω(ω) and Kω(ω) by formulas (5.94)–(5.97).

If 0 ∈ hW , then W (λ) may be normalized at the point ω = 0 by the
condition W (0) = Im . This normalized W (λ) is defined uniquely by the
formula

W (λ) = Im + 2πiλ KW
0 (λ)jpq , (5.180)

where

KW
0 (λ) = (LW ∆−1

W F W
0 )(λ) (5.181)

and

F W
0 =

[
kb1

0 (λ) (Γ11k
b̂1
0 )(λ)

(Γ22�
b̂2
0 )(λ) �b2

0 (λ)

]
. (5.182)

Since hb ⊆ hW and h
b̂j

⊆ hW , the mvf’s bj and b̂j may also be normalized

by the conditions b1(0) = b̂1(0) = Ip and b2(0) = b̂2(0) = Iq . Then

kb1
0 (λ) = Ip − b1(λ)

−2πiλ
, kb̂1

0 (λ) = Iq − b̂1(λ)
−2πiλ

,

�b2
0 (λ) = b#

2 (λ) − Iq

−2πiλ
and �b̂2

0 (λ) = b̂#
2 (λ) − Ip

−2πiλ
.

(5.183)

If b2(λ)=constant, i.e., if W ∈ Nm×m
+ , then H∗(b2) = {0} and the preceding

formulas simplify:

LW =
[

I

Γ∗
11

]
: H(b1) → H(W ), (5.184)

and

∆W = I − Γ11Γ∗
11 : H(b1) → H(b1), (5.185)
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where

Γ11 = PH(b1 )Ms|Hq
2
, s ∈ TW [Sp×q ], (5.186)

FW
ω (λ) = [kb1

ω (λ) (Γ11k
b̂1
ω )(λ)]. (5.187)

Analogously, if b1(λ)=constant, i.e., if W ∈ Nm×m
− , then H(b1) = 0,

LW =
[
Γ22

I

]
: H∗(b2) → H(W ), (5.188)

and

∆W = I − Γ∗
22Γ22 : H∗(b2) → H∗(b2), (5.189)

where

Γ22 = Π Ms|H∗(b2 ), s ∈ TW [Sp×q ], (5.190)

FW
ω (λ) = [(Γ∗

22�
b̂2
ω )(λ) �b2

ω (λ)]. (5.191)

Remark 5.96 In formula (5.177) the mvf’s b̂1 and b̂2 may be replaced by
any other pair of inner mvf’s b5 ∈ Sp×p

in and b6 ∈ Sq×q
in , such that H(̂b1) ⊆

H(b5), H∗(̂b2) ⊆ H∗(b6) and hb5 ∩ hb−1
6

⊇ hW . In particular, it is possible to
choose b5 = (det b1)Ip and b6 = (det b2)Iq .

Remark 5.97 Theorem 5.57 guarantees that there is exactly one mvf W ∈
U(jpq) for which (5.179) and the normalization conditions (5.91) hold at a
point ω ∈ h

+
W ∩ h

+
W −1 ∩ C+ hold. The formulas that are given in Theorem

5.57 for this normalized mvf W (λ) in terms of the RK may be combined
with the preceding analysis to obtain formulas for the normalized mvf W (λ)
in terms of the operators Γij .

5.18 A description of H(A) when A ∈ UrsR (Jp)

In this section we shall explain how to obtain a description of the space H(A)
for A ∈ UrsR(Jp) from the description of the space H(W ) that was given for
W ∈ UrsR(jpq) in Theorem 5.81. The proof will be obtained by applying this
theorem to W (λ) = VA(λ)V. (In this case p = q.) The description of H(A)
will depend upon the connection between {b1, b2} ∈ apI (A) and {b3, b4} ∈
apII (A) (see (5.196) below) and the interplay between the operators Γ11, Γ22

and Γ12 defined in terms of {b1, b2} ∈ ap(W ) and s ∈ TW [Sp×q ] by formulas
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(5.153) and (5.159) that were used to describe H(W ) and the operators Φij

that are defined in analogous fashion by the formulas

Φ11 = ΠH(b3 )Mc|Hp
2
, Φ22 = Π−Mc|H∗(b4 ), Φ12 = ΠH(b3 )Mc|H∗(b4 )

(5.192)
for c ∈ C(A) ∩ C̊p×p. The operators Γij and Φij are independent of the
considered choices of the mvf’s s(λ) and c(λ).

Theorem 5.98 Let A ∈ UrsR(Jp), let E(λ) =
√

2N∗
2 A(λ)V and {b3, b4} ∈

apII (A). Then

B(E) = H∗(b4) ⊕H(b3) (5.193)

as linear spaces of vvf ’s, but not as Hilbert spaces (unless E+E#
+ = Ip) and

there exist a pair of positive constants γ1 and γ2 such that

γ1‖f‖st ≤ ‖f‖B(E) ≤ γ2‖f‖st (5.194)

for every f ∈ B(E).

Proof By Theorem 5.92, there exist a pair of positive constants α1 and α2

such that

α1‖f‖st ≤ ‖f‖H(A) ≤ α2‖f‖st

for every f ∈ H(A). Moreover, since A ∈ UrsR(Jp),

‖f‖H(A) =
√

2 ‖N∗
2 f‖B(E),

by Theorem 5.76. Therefore,

α1‖N∗
2 f‖st ≤

√
2 ‖N∗

2 f‖B(E)

for every f ∈ H(A). This supplies the first inequality in (5.194) (with γ1 =
α1/

√
2) and exhibits the inclusion B(E) ⊂ Lp

2(R).
The verification of (5.193) rests on the fact that

f ∈ B(E) ⇐⇒ E−1
+ f ∈ Hp

2 and E−1
− f ∈ Kp

2

and the factorizations

E−1
+ = ϕ4b4 and (E#

− )−1 = b3ϕ3 (5.195)
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with bj ∈ Sp×p
in and (λ + i)−1ϕj ∈ N p×p

out ∩ Hp×p
2 for j = 3, 4. Thus, as

(µ + i)−1ϕ4(µ) is outer in Hp×p
2 , the following equivalences hold for f ∈ Lp

2:

E−1
+ f ∈ Hp

2 ⇐⇒
〈

ϕ4b4f,
(

f+
µ + i

)∗〉
st

= 0 for all f+ ∈ H1×p
∞

⇐⇒
〈
b4f,

(
ϕ4

µ + i

)∗
f∗

+

〉
st

= 0 for all f+ ∈ H1×p
∞

⇐⇒ f is orthogonal to b∗4K
p
2 .

Similar considerations lead to the conclusion that

E−1
− f ∈ Kp

2 ⇐⇒ f is orthogonal to b3H
p
2 .

This serves to complete the proof of (5.193).
Next, let T denote the (embedding) operator that maps f ∈ B(E) onto

f ∈ H∗(b3)⊕H(b4). By the first inequality in (5.194), T is also bounded and
one to one. Therefore, by a theorem of Banach, T has a bounded inverse.
Consequently, the second inequality in (5.194) must also hold for some γ2 >

0. �

Lemma 5.99 Let A ∈ UrsR(Jp), let {b1, b2} ∈ apI (A), {b3, b4} ∈ apII (A),
W = VAV and let Γ11 and Γ22 be defined as in (5.153). Then

(I + Γ∗
11)H(b1) = H(b3), (I + Γ22)H∗(b2) = H∗(b4) (5.196)

and

H(A) =
{[

−(I − Γ∗
11)g + (I − Γ22)h

(I + Γ∗
11)g + (I + Γ22)h

]
: g ∈ H(b1) and h ∈ H∗(b2)

}
.

(5.197)

Proof Formula (5.197) follows from the relations

KA
ω (λ) = VKW

ω (λ)V and H(A) = VH(W )

between the RK’s of the RKHS’s H(A) and H(W ) and the description of
H(W ) that is given in Theorem 5.81, because LW = H(W ), since W ∈
UrsR(Jp). Then (5.196) follows from (5.197) and Theorem 5.98. �

Lemma 5.100 Let A ∈ UrsR(Jp). Then

Φ∗
11 = (I − Γ∗

11)(I + Γ∗
11)

−1|H(b3 ) and

Φ22 = (I − Γ22)(I + Γ22)−1|H∗(b4 ). (5.198)
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Proof If c ∈ C(A)∩ C̊p×p, then c = −Ip +2(Ip + s)−1, where s ∈ TW [Sp×q ]∩
S̊p×p. Consequently,

Φ∗
11 = Π+Mc∗ |H(b3 ) = Π+{−I + 2M(Ip +s∗)−1 }|H(b3 )

= {−I + 2Π+M(Ip +s∗)−1 }|H(b3 ).

Thus, in order to complete the proof of the first equality in (5.198), it is
enough to show that

(I + Γ∗
11)

−1g = Π+(Ip + s∗)−1g (5.199)

for every g ∈ H(b3). Since g = b3g− for some g− ∈ Kp
2 , it follows from

Lemma 4.73 that

Π+(Ip + s∗)−1g = Π+(Ip + s∗)−1b3g− =
1
2
Π+b1ϕ

−∗
s g−,

where ϕ−1
s ∈ Hp×p

∞ . This last conclusion stems from the Smirnov maximum
principle, which is applicable since ϕ−1

s ∈ N p×p
+ and is equal to the bounded

mvf 2b∗3(Ip + s)−1b1 a.e. on R. This proves that Π+(Ip + s∗)−1g ∈ H(b1).
Moreover,

(I + Γ∗
11)Π+(Ip + s∗)−1g = Π+(Ip + s∗)Π+(Ip + s∗)−1g

= Π+(Ip + s∗)(Ip + s∗)−1g

= g.

This justifies (5.199). Then,

Φ22 = Π−{−I + 2M(Ip +s)−1 }|H∗(b4 )

and so, to verify the second equality in (5.198), we need to show that

(I + Γ22)−1h = Π−(Ip + s)−1h (5.200)

for every h ∈ H∗(b4). But, writing h = b∗4h+ for some h+ ∈ Hp
2 and invoking

Lemma 4.73, we see that

Π−(Ip + s)−1h = Π−(Ip + s)−1b∗4h+ =
1
2
Π−b∗2ψ

−1
s h+.

Moreover, since

ψ−1
s = 2b2(Ip + s)−1b∗4
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belongs to Lp×p
∞ ∩N+, it follows from the Smirnov maximum principle that

ψ−1
s ∈ Hp×p

∞ . Consequently, Π−b∗2ψ
−1
s h+ belongs to H∗(b2) and

(I + Γ22)Π−(Ip + s)−1h = Π−(Ip + s)Π−(Ip + s)−1b∗4h+

= Π−(Ip + s)(Ip + s)−1b∗4h+

= Π−b∗4h+ = h,

as required. �

Lemma 5.101 In the setting of this section,

〈Φ12h, g〉st = −2〈Γ12(I + Γ22)−1h, (I + Γ∗
11)

−1g〉st for every

g ∈ H(b3) and h ∈ H∗(b4). (5.201)

Proof In view of the identifications (5.196), (I + Γ∗
11)

−1g ∈ H(b1) and
(I + Γ22)−1h ∈ H∗(b2). Therefore,

〈Γ12(I + Γ22)−1h, (I + Γ∗
11)

−1g〉st = 〈Ms(I + Γ22)−1h, (I + Γ∗
11)

−1g〉st.
Next, invoking (5.199) and (5.200), we can write the term on the right as

〈sΠ−(Ip + s)−1h, Π+(Ip + s∗)−1g〉st
= 〈(Ip + s)Π−(Ip + s)−1h, Π+(Ip + s∗)−1g〉st
= −〈(Ip + s)Π+(Ip + s)−1h, (Ip + s∗)−1g〉st
= −〈Π+(Ip + s)−1h, g〉st = −〈(Ip + s)−1h, g〉st

= −(
1
2
)〈(c + Ip)h, g〉st = −(

1
2
)〈ch, g〉st = −(

1
2
)〈Φ12h, g〉st,

as claimed. �
Next, in order to obtain formulas for the RK KA

ω (λ) of the RKHS H(A)
in terms of the operators Φij , it is convenient to introduce the operators

∆A = 2R

[
Φ11|H(b3 ) Φ12

0 ΠH∗(b4 )Φ22

]
:

H(b3) H(b3)

⊕ −→ ⊕
H∗(b4) H∗(b4)

(5.202)

and

LA =

[
−Φ∗

11 Φ22

I I

]
:

H(b3)

⊕ −→ H(A)

H∗(b4)

. (5.203)
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Theorem 5.102 Let A ∈ UrsR(Jp), B(λ) = A(λ)V and let the operators
Φ11, Φ22 and Φ12 be defined by formula (5.192), where c ∈ C(A)∩Hp×p

∞ and
{b3, b4} ∈ apII (A). Then

H(A) =

{
LA

[
g

h

]
: g ∈ H(b3) and h ∈ H∗(b4)

}
. (5.204)

Moreover, if

f = LA

[
g

h

]
for some g ∈ H(b3) and h ∈ H∗(b4), (5.205)

then

‖f‖2
H(A) = 〈∆Af, f〉st = 〈(c + c∗)(g + h), (g + h)〉st. (5.206)

Proof The description of H(A) in (5.204) follows from Lemmas 5.99 and
5.100. Moreover, in view of (5.196),

g ∈ H(b3) ⇐⇒ g̃ = (I + Γ∗
11)

−1g belongs to H(b1)

and

h ∈ H∗(b4) ⇐⇒ h̃ = (I + Γ22)−1h belongs to H∗(b2).

Thus, as [
g

h

]
=

√
2VLW

[
g̃

h̃

]
and ‖f‖H(A) = ‖Vf‖H(W )

when W = VAV, it is readily seen that∥∥∥∥LA

[
g

h

]∥∥∥∥2

H(A)
=
∥∥∥∥VLA

[
g

h

]∥∥∥∥2

H(W )
= 2
∥∥∥∥LW

[
g̃

h̃

]∥∥∥∥2

H(W )

= 2
〈

∆W

[
g̃

h̃

]
,

[
g̃

h̃

]〉
st

=
〈[

I − Γ11Γ∗
11 −Γ12

−Γ∗
12 I − Γ∗

22Γ22

] [
g̃

h̃

]
,

[
g̃

h̃

]〉
st

.

This leads easily to formula (5.206) with the help of the identities

2〈(I − Γ11Γ∗
11)g̃, g̃〉st = 〈(Φ11 + Φ∗

11)g, g〉st,

2〈(I − Γ∗
22Γ22)h̃, h̃〉st = 〈(Φ22 + Φ∗

22)h, h〉st
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and, by (5.201),

−2〈Γ12h̃, g̃〉st = 〈Φ12h, g〉st. �

Lemma 5.103 Let A ∈ UrsR(Jp), Ȧ(λ) = JpA(λ)Jp and let {b3, b4} ∈
apII (A) and {ḃ3, ḃ4} ∈ apII (Ȧ). Then

Φ∗
11H(b3) = H(ḃ3) and Φ22H∗(b4) = H∗(ḃ4). (5.207)

Proof Under the given assumptions, Ȧ ∈ UrsR(Jp) because

c ∈ C(A) ∩ C̊p×p ⇐⇒ c−1 ∈ C(Ȧ) ∩ C̊p×p,

and, in view of formula (5.204),

[0 Ip]H(Ȧ) = {ġ + ḣ : ġ ∈ H(ḃ3) and h ∈ H∗(ḃ4)}.

On the other hand, since KȦ
ω (λ) = JpK

A
ω (λ)Jp, formula (5.204) implies that

[0 Ip]H(Ȧ) = {−Φ∗
11g + Φ22h : g ∈ H(b3) and h ∈ H∗(b4)}.

The identities in (5.207) now follow easily, since Φ∗
11g ∈ Hp

2 and Φ22h

∈ Kp
2 . �

Theorem 5.104 Let A ∈ UrsR(Jp), Ȧ(λ) = JpA(λ)Jp, {b3, b4} ∈ apII (A),
{ḃ3, ḃ4} ∈ apII (Ȧ), let the operators ∆A and LA be defined by formulas
(5.202) and (5.203) and let b5(λ) and b6(λ) be a pair of mvf’s in Sp×p

in such
that

ḃ−1
3 b5 ∈ Sp×p

in and b6ḃ
−1
4 ∈ Sp×p

in

and hb3 ∩hb−1
4

⊆ hb5 ∩hb−1
6

. Then ∆A and LA are bounded invertible operators
with bounded inverses and, for every point ω ∈ hA, the RK KA

ω (λ) for the
space H(A) is given by the formula

KA
ω (λ)

[
ξ

η

]
= LA(∆A)−1

[
−Φ11k

b5
ω kb3

ω

Φ∗
22�

b6
ω �b4

ω

][
ξ

η

]
. (5.208)

Proof Since A ∈ UrsR(Jp), we may assume that c ∈ C(A)∩ C̊p×p in formula
(5.198) and hence that there exists a pair of numbers δ2 > δ1 > 0 such that

δ1Ip ≤ c(λ) + c(λ)∗ ≤ δ2Ip for every point λ ∈ C+. (5.209)

Thus, if g ∈ H(b3) and h ∈ H∗(b4), then,

‖g + h‖2
st = ‖g‖2

st + ‖h‖2
st
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and, in view of formulas (5.205) and (5.206),

δ1‖g + h‖2
st ≤

∥∥∥∥LA

[
g

h

]∥∥∥∥2

H(A)
≤ δ2‖g + h‖2

st.

Therefore, LA is a bounded one to one map of H(b3) ⊕ H∗(b4) onto H(A)
with a bounded inverse (LA)−1:

‖L−1
A ‖ ≤ δ

−1/2
1 and ‖∆−1

A ‖ ≤ δ−1
1 .

Now let f ∈ H(A) and let

(LA)−1f =

[
g

h

]
∈

H(b3)

⊕
H∗(b4)

.

Then, for every choice of ξ, η ∈ C
p and every point ω ∈ hA,

[ξ∗ η∗]f(ω) =

〈
f, KA

ω

[
ξ

η

]〉
H(A)

=

〈
∆A(LA)−1f, (LA)−1KA

ω

[
ξ

η

]〉
st

=

〈[
g

h

]
, ∆A(LA)−1KA

ω

[
ξ

η

]〉
st

,

by formulas (5.206) and (5.202). On the other hand, in view of (5.203),

[ξ∗ η∗]f(ω) = [ξ∗ η∗]

(
LA

[
g

0

])
(ω) + [ξ∗ η∗]

(
LA

[
0

h

])
(ω)

=

〈[
−Φ∗

11g

g

]
,

[
kb5

ω ξ

kb3
ω η

]〉
st

+

〈[
Φ22h

h

]
,

[
�b6
ω ξ

�b4
ω η

]〉
st

= 〈g,−Φ11k
b5
ω ξ + kb3

ω η〉st + 〈h, Φ∗
22�

b6
ω ξ + �b4

ω η〉st

=

〈[
g

h

]
,

[
−Φ11k

b5
ω ξ + kb3

ω η

Φ∗
22�

b6
ω ξ + �b4

ω η

]〉
st

for every choice of g ∈ H(b3), h ∈ H∗(b4) and ξ, η ∈ C
p. Thus, upon

comparing the two formulas for [ξ∗ η∗]f(ω), we obtain formula (5.208). �



330 Reproducing kernel Hilbert spaces

We remark that the exhibited lower bound for ∆A depends heavily on the
“full operator”; the symbol [

c + c∗ c

c∗ c + c∗

]
may be a singular matrix (e.g., c = (1 + i

√
3)a with a ∈ R).

Formula (5.208) may be rewritten in a form that is analogous to formula
(5.178):

KA
ω (λ) = (LA∆−1

A F A
ω )(λ), (5.210)

where the operators

LA : Hm(b3, b4) → Hm(A) and ∆A : Hm(b3, b4) → Hm(b3, b4)

act on the columns of m × m mvf’s and

FA
ω (λ) =

[
−(Φ11k

b5
ω )(λ) kb3

ω (λ)
(Φ∗

22�
b6
ω )(λ) �b4

ω (λ)

]
∈ Hm(b3, b4).

Then the mvf A(λ) is defined up to a constant right Jp-unitary factor by
the formula

A(λ)JpA(ω)∗ = Jp − ρω(λ)KA
ω (λ).

If A ∈ U0(Jp), then

A(λ) = Im + 2πiλK0(λ)Jp.

Theorem 5.105 Let A ∈ UrsR(Jp), {b3, b4} ∈ apII (A), E(λ) =
√

2N∗
2 A(λ)V

and let the operator ∆A be defined by formula (5.202). Then

η∗2K
E
ω (λ)η1 = 2

〈
∆−1

A

[
kb3

ω η1

�b4
ω η1

]
,

[
kb3

λ η2

�b4
λ η2

]〉
st

(5.211)

for every pair of points λ, ω ∈ hA and every pair of vectors η1, η2 ∈ C
p.

Moreover, if c ∈ C(A)∩ C̊p×p, then there exist numbers γ1 > 0, γ2 > γ1 such
that

γ1Ip ≤ (Rc)(µ) ≤ γ2Ip (5.212)

for almost all points µ ∈ R, and for every such choice of γ1 and γ2, and
every point ω ∈ hA,

γ−1
2
{
kb3

ω (ω) + �b4
ω (ω)

}
≤ KE

ω (ω) ≤ γ−1
1
{
kb3

ω (ω) + �b4
ω (ω)

}
. (5.213)
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Proof Formula (5.211) follows from formulas (5.208) and (5.203) and the
identity

η∗2K
E
ω (λ)η1 = 2

〈
KA

ω

[
0
η1

]
, KA

λ

[
0
η2

]〉
H(A)

.

Next, the equality (5.206) and the bounds exhibited in (5.212)imply that
2γ1I ≤ ∆A ≤ 2γ2I. Therefore,

(2γ2)−1I ≤ (∆A)−1 ≤ (2γ1)−1I

and hence, by formula (5.211),

γ−1
2

∥∥∥∥∥kb3
ω η

�b4
ω η

∥∥∥∥∥
2

st

≤ η∗KE
ω (ω)η ≤ γ−1

1

∥∥∥∥∥kb3
ω η

�b4
ω η

∥∥∥∥∥
2

st

.

The asserted inequalities (5.213) now drop out easily from the evaluation∥∥∥∥∥kb3
ω η

�b4
ω η

∥∥∥∥∥
2

st

= η∗
{
kb3

ω (ω) + �b4
ω (ω)}η. �

We are primarily interested in formula (5.210) for the case ω = 0. With a
slight abuse of notation, it can be reexpressed in the following more conve-
nient form:

Theorem 5.106 If, in the setting of Theorem 5.105, it is also assumed that
0 ∈ hA, then

KA
0 = LA

[
û11 û12

û21 û22

]
, (5.214)

where the ûij = ûij(λ) are p × p mvf’s that are obtained as the solutions of
the system of equations

∆A

[
û11 û12

û21 û22

]
=

[
−Φ11k

b5
0 kb3

0

Φ∗
22�

b6
0 �b4

0

]
(5.215)

and the operators in formulas (5.214) and (5.215) act on the indicated ma-
trix arrays column by column. In particular, the columns of û11(λ) and
û12(λ) belong to H(b3) and the columns of û21(λ) and û22(λ) belong to
H∗(b4).
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5.19 Bibliographical notes
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Connections of the de Branges RKHS’s H(U) with the Krein theory of
symmetric operators in Hilbert space with finite defect indices (m, m) are
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Theorems 5.21 and 5.22 are essentially due to L. de Branges [Br63]. In
de Branges’ original formulation it was assumed that the domain Ω of the
RKHS included at least one point of R. The relaxation of this requirement to
the weaker constraint Ω ∩ Ω �= ∅ is due to Rovnyak [Rov68]. A formulation
for a wider class of domains that includes analogous results for the disc
that are due to Ball [Ba75] is given in [AlD93]. The identification of H(U)
with maximal domain with a mvf U ∈ P◦(J) in Theorem 5.31 seems to
be new.

The verification of the unitary similarity (5.67) between H(U) and H(S)
for U ∈ H(U) ans S = PG(U), and the use of this equivalence to obtain the
characterization Theorem 5.55 of H(W ) for W ∈ U(jpq) is based on Theo-
rems 2.4 and 2.7 of [Dy89b]. This characterization of H(W ) was obtained
by other methods by Z. Arova [Ara97].

There are many ways to establish Theorem 5.24. The presented method
via finite dimensional reproducing kernel Hilbert spaces is adapted from the
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treatments in [Dy89b] and [Dy98]; more details on the limiting argument
may be found in [Dy89b]. Limiting arguments can be avoided by passing to
Riccati equations as in [Dy03a]. The identification of the de Branges identity
in finite dimensional Rα invariant spaces with solutions of the Lyapunov
equation seems to have been first noted in [Dy89a]; a better proof is furnished
in [Dy94a] and [Dy98].



6

Operator nodes and passive systems

In this chapter the RKHS’s H(U) and B(E) will used to construct functional
models for operator nodes and passive systems. The following notation will
be useful:

L(X, Y ) = the set of bounded linear operators from a Hilbert space X

into a Hilbert space Y ;

L(X) = L(X, X);

D(A) = the domain of a linear operator A;

A|M = the restriction of a linear operator to a subspace M;

ΛA = {λ ∈ C : (I − λA)−1 ∈ L(X)};
ρ(A) = {λ ∈ C : (λI − A)−1 ∈ L(X)}.

6.1 Characteristic mvf’s of Livsic-Brodskii nodes

Let LB(J) denote the class of mvf’s U that are meromorphic on C \R such
that:

(1) The restriction of U to h
+
U belongs to the class P◦(J).

(2) 0 ∈ hU and U(0) = Im .

(3) There exists a δ > 0 such that (−δ, δ) ⊂ hU and U(µ)∗JU(µ) = J for
all points µ ∈ (−δ, δ).

(4) The mvf U does not have a holomorphic extension to an open set Ω that
contains hU properly.

334



6.1 Characteristic mvf’s of Livsic-Brodskii nodes 335

Clearly,

LB(J) ⊃ U0(J). (6.1)

The class LB(J) coincides with the class of characteristic mvf’s of simple LB
(Livsic-Brodskii) J-nodes, which plays a fundamental role in the spectral
theory of bounded linear nonselfadjoint operators with finite dimensional
imaginary part.

A set Σ = (A, C; X, Y ) of Hilbert spaces X and Y and operators A ∈ L(X)
and C ∈ L(X, Y ) is called an LB J-node if

A − A∗ = iC∗JC, (6.2)

where J ∈ L(Y ) is both unitary and selfajoint.
An LB J-node is called simple if⋂

n≥0

kerCAn = {0}. (6.3)

It is readily checked that Σ is simple if and only if∨
n≥0

(A∗)nC∗Y = X or, equivalently,
∨
λ∈Ω

(I − λA∗)−1C∗Y = X

for some neighborhood Ω of zero. In view of (6.2), these conditions are also
valid if A∗ is replaced by A. The operator valued function

UΣ(λ) = IY + iλC(IX − λA)−1C∗J for λ ∈ ΛA (6.4)

is called the characteristic function of the LB J-node Σ. If Y is an m-
dimensional linear space, then L(Y ) can be identified with the set of m×m

matrices that define these operators in a fixed orthornormal basis in Y .
In this case we can assume without loss of generality that Y = C

m and
L(Y ) = Cm×m , respectively. Then J is an m × m signature matrix and
UΣ(λ) is an m × m mvf that will be called the characteristic mvf of the
LB J-node Σ.

Theorem 6.1 Let U ∈ LB(J), X̊ = H(U), Å = R0 and C̊f =
√

2πf(0)
for f ∈ H(U). Then Σ̊ = (Å, C̊; X̊, Cm) is a simple LB J-node. Moreover,
ΛÅ = hU and UΣ̊(λ) ≡ U(λ) on hU .

Proof Since

ξ∗C̊f =
√

2πξ∗f(0) =
√

2π〈f, KU
0 ξ〉H(U ) for f ∈ H(U) and ξ ∈ C

m,
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the adjoint operator C̊∗ ∈ L(Cm,H(U)) is given by the formula

(C̊∗ξ)(λ) =
√

2πKU
0 (λ)ξ for λ ∈ hU and ξ ∈ C

m. (6.5)

In view of Remark 5.32, the RKHS H(U) is R0 invariant and the de Branges
identity (5.27) for α = β = 0:

〈(R0 − R∗
0)f, g〉H(U ) = 2πig(0)∗Jf(0) for f, g ∈ H(U), (6.6)

is equivalent to the operator identity

Å − Å∗ = iC̊∗JC̊.

Moreover, since

C̊Ånf =
√

2π
f (n)(0)

n!
for every f ∈ H(U),

it is readily seen that ∩n≥0kerC̊Ån = {0} and hence that the node Σ̊ is
simple.

It remains only to check that ΛÅ = hU and that UΣ̊(λ) = U(λ) for every
λ ∈ hU . The formula

((I − λR0)−1f)(ω) =
ωf(ω) − λf(λ)

ω − λ
= f(ω) + λ(Rλf)(ω)

for λ ∈ hU ∩ hU−1 , ω ∈ hU , λ �= ω, (6.7)

implies that (I − λR0)−1 ∈ L(H(U)) for each point λ ∈ hU ∩ hU−1 , i.e.,
hU ∩ hU−1 ⊆ ΛÅ. It also implies that

C̊(I − λÅ)−1f =
√

2πf(λ) for λ ∈ hU ∩ hU−1 (6.8)

and hence that

C̊(I − λÅ)−1C̊∗Jξ = 2πKU
0 (λ)Jξ for λ ∈ hU ∩ hU−1 and ξ ∈ C

m.

Thus,

UΣ̊(λ) = Im + 2πiλKU
0 (λ)J = U(λ) for λ ∈ hU ∩ hU−1

and, consequently UΣ̊ satisfies properties (1)–(3) in the list furnished above.
Therefore, as ΛÅ = hUΣ̊

by definition, and hU satisfies property (4) in the
list, it follows that ΛÅ ⊆ hU and hence that UΣ̊(λ) = U(λ) in ΛÅ. Moreover,
ΛÅ ∩ R = hU ∩ R, since hU−1 ∩ hU ∩ R = hU ∩ R.
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Suppose next that ω ∈ hU and ω �∈ R. Then there exists a δ > 0 such
that the mvf F (λ) = U(1/λ) is holomorphic in the disc Bδ(1/ω) = {λ ∈ C :
|λ − 1/ω| < δ} and Bδ(1/ω) \ {1/ω} ⊂ hU ∩ hU−1 . Therefore,

F (λ) = I + iC̊(λI − Å)−1C̊∗J in Bδ(1/ω) \ {1/ω}.

Thus, if Γr is circular contour of radius 0 < r < δ centered at 1/ω and
directed counterclockwise, then∫

Γr

ζkC̊(ζI − Å)−1C̊∗dζ = −i

∫
Γr

ζk(F (ζ) − I)Jdζ = 0.

Therefore,∫
Γr

C̊Åk+1(ζI − Å)−1C̊∗dζ =
∫

Γr

C̊Åk{ζ(ζI − Å)−1 − I}C̊∗dζ = 0

for k = 0, 1, . . .. Consequently,∫
Γr

〈C̊Åk+j(ζI − Å)−1C̊∗u, v〉stdζ =∫
Γr

〈(ζI − ζÅ)−1ÅjC̊∗u, (Å∗)kC̊∗v〉H(U )dζ = 0

for u, v ∈ C
m and j, k = 0, 1, . . .. Thus, as the node is simple,∫
Γr

〈(ζI − Å)−1g, h〉H(U )dζ = 0 for every 0 < r < δ,

for dense sets of vectors g ∈ H(U) and h ∈ H(U) and hence, by passing to
limits, for every pair of vectors g, h ∈ H(U). But this in turn implies that
the Riesz projector (see e.g., Chapter 11 of [RSzN55])∫

Γr

(ζI − Å)−1dζ = 0,

and hence that the operator (ω−1I − Å) has a bounded inverse, i.e.,
ω ∈ ΛÅ. �

Theorem 6.2 Let U ∈ LB(J) and let H(U) be the RKHS of holomorphic
vvf ’s defined on hU with RK Kω(λ) defined on hU × hU by formula (5.34).
Then:

(1) Rα ∈ L(H(U)) for every point α ∈ hU .
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(2) The de Branges identity holds for every pair of vectors f, g ∈ H(U)
and every pair of points α, β ∈ hU .

(3) hU = ΛÅ for Å = R0 and

Rα = R0(I − αR0)−1 for every α ∈ hU . (6.9)

Proof Let Σ̊ = (R0, C̊;H(U), Cm) be the simple LB J-node considered in
Theorem 6.1. Then formula (6.8) implies that

(Rαf)(λ) = (λ − α)−1
√

2π
{

C̊(I − λÅ)−1 − C̊(I − αÅ)−1
}

f

=
√

2πC̊(I − λÅ)−1Å(I − αÅ)−1f (6.10)

for every f ∈ H(U) and α ∈ ΛÅ. Thus,

Rαf = Å(I − αÅ)−1f for f ∈ H(U) and α ∈ ΛÅ.

Consequently, H(U) is Rα invariant for every α ∈ hU ; formula (6.9) holds;
and the de Branges identity hold for f, g ∈ H(U) and α, β ∈ hU . �

Since the LB J-node Σ̊ is uniquely defined by the mvf U ∈ LB(J), we
shall also denote it as

ΣU = (R0, CU ;H(U), Cm),

where it is understood that R0 acts in H(U) and that CU maps f ∈ H(U)
into

√
2πf(0).

There exists another model of a simple LB J-node with given characteristic
mvf U ∈ LB(J) that is due to Livsic that rests on the following lemma:

Lemma 6.3 If U ∈ P(J), and det(Im +U(λ)) �≡ 0 in C+, then the mvf c =
JTV[PG(U)]J belongs to Cm×m. Moreover, if U = UΣ is the characteristic
mvf of an LB J-node Σ = (A, C; X, Cm), then

2c(λ) = −iλC(I − λAR)−1C∗, where AR = (A + A∗)/2. (6.11)

Proof This is verified by straightforward calculation with the aid of formulas
(5.40) and (5.42). �

Theorem 6.4 If U ∈ LB(J), Ũ(λ) = U(−1/λ), and c = JTV[PG(Ũ)]J ,
then limµ↑∞ Ũ(µ) = Im and there is an interval [a, b] ⊂ R such that:

(1) R \ [a, b] ⊂ h
Ũ

and Ũ∗JŨ = J for µ ∈ R \ [a, b].
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(2) c ∈ Cp×p and admits a representation of the form

c(λ) =
1
πi

∫ b

a

dσ(µ)
µ − λ

for λ ∈ C \ [a, b].

(3) If X = Lm
2 (dσ, [a, b]),

(A1f)(µ) = µf(µ), (Cf)(µ) =
1√
π

J

∫ b

a
dσ(µ)f(µ) for f ∈ X,

and A = A1 + (1/2)iC∗JC, then Σ = (A, C; X, Cm) is a simple LB
J-node with characteristic mvf UΣ(λ) = U(λ).

Proof Assertion (1) follows directly from the fact that U ∈ LB(J). Thus,
in view of formula (5.42) (applied to Ũ), the Stieltjes inversion formula
implies that the spectral function σ(µ) of c is constant for µ < a and µ > b.
Assertion (2) then follows from the general representation formula (3.4),
since c(∞) = 0.

Since A1 = A∗
1, it is readily checked that Σ is an LB J-node. Moreover, Σ

is simple because

∩n≥0ker CAn = ∩n≥0kerCAn
1 and ∩n≥0 ker CAn

1 = {0},

since vector valued polynomials are dense in Lm
2 (dσ, [a, b]).

Finally, to identify UΣ(−1/λ), let

cΣ(λ) = (Im − UΣ(−1/λ))(Im + UΣ(−1/λ))−1J

Then, it is readily checked that

2cΣ(λ)v = iC(λI − A1)−1C∗v =
2
πi

∫ b

a

dσ(µ)
µ − λ

v for every v ∈ C
m,

and hence that cΣ(λ) coincides with the mvf c(λ) that was defined in terms
of U(−1/λ). Therefore, U(λ) = UΣ(λ), as claimed. �

Two LB J-nodes Σj = (Aj, Cj ; Xj, Y ), j = 1, 2, are called similar if there
exists an invertible operator T ∈ L(X1, X2) with T−1 ∈ L(X2, X1) such that

A2 = TA1T
−1 and C2 = C1T

−1.

If there exists such a T which is unitary, then Σ1 and Σ2 are said to be
unitarily similar and T is called a unitary similarity operator from Σ1

to Σ2. If one of two unitary similar nodes is simple, then the other is simple
and there is only one such T .
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Theorem 6.5 If the characteristic functions UΣ1 and UΣ2 of two simple
LB J-nodes coincide in a neighborhood of zero, then Σ1 = (A1, C1; X1, Y1)
is unitarily similar to Σ2 = (A2, C2; X2, Y2) and hence ΛA1 = ΛA2 and
UΣ1 (λ) ≡ UΣ2 (λ) on ΛA1 .

Proof Since UΣ1 and UΣ2 coincide in a neighborhood Ω of zero,

C1(IX1 − λA1)−1(IX1 − ωA∗
1)

−1C∗
1 = C2(IX2 − λA2)−1(IX2 − ωA∗

2)
−1C∗

2

for λ, ω ∈ Ω. Therefore,

C1A
j
1(A

∗
1)

kC∗
1 = C2A

j
2(A

∗
2)

kC∗
2 for j, k = 0, 1, . . . . (6.12)

The identities in (6.12) imply that the formula

T
n∑

k=0

(A∗
1)

kC∗
1yk =

n∑
k=0

(A∗
2)

kC∗
2yk, yk ∈ Y for k = 1, . . . , n,

defines an isometric operator that extends by continuity to an isometric
operator from∨

k≥0

(A∗
1)

kC∗
1Y onto

∨
k≥0

(A∗
2)

kC∗
2 Y such that TC∗

1 = C∗
2 .

If the LB J-nodes Σ1 and Σ2 are simple, then this extension is unitary from
X1 onto X2, Moreover, in this case the formulas

(TA∗
1)(A

∗
1)

kC∗
1y = (A∗

2)
k+1C∗

2y = (A∗
2T )(A∗

1)
kC∗

1y

imply that TA∗
1 = A∗

2T . �

Theorem 6.6 If Σ = (A, C; X, Cm) is an LB J-node, then its characteristic
mvf UΣ(λ) satisfies conditions (1)–(3) in the definition of the class LB(J)
and the operator

(TΣx)(λ) = (2π)−1/2C(I − λA)−1x (6.13)

is a partial isometry from X onto the space H(U) based on U = UΣ (with
hU = ΛA),

ker TΣ =
⋂
n≥0

ker(CAn).

Moreover, TΣ is a unitary similarity operator from the node Σ to the node
ΣU = (R0, CU ;H(U), Cm) based on the mvf U = UΣ if and only if Σ is a
simple node. If Σ is a simple LB J-node, then UΣ ∈ LB(J),
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Proof A straightforward calculation based on (6.2) and (6.4) yields the
identity

J − UΣ(λ)JUΣ(ω)∗ = −i(λ − ω)C(I − λA)−1(I − ωA∗)−1C∗ (6.14)

for every pair of points λ, ω ∈ ΛA. Thus, UΣ is holomorphic on ΛA and
satisfies conditions (1)–(3) in the definition of the class LB(J). Formula
(6.14) implies that

n∑
j=1

Kωj (λ)vj =
1√
2π

C(I − λA)−1x = TΣx,

where

x =
1√
2π

n∑
j=1

(I − ωjA)−1C∗vj ,

ω1, . . . , ωn ∈ ΛA and v1, . . . , vn ∈ C
m . Therefore,

‖TΣx‖2
H(U ) =

n∑
i,j=1

v∗i Kωj (ωi)vi

=
1
2π

n∑
i,j=1

v∗i C(I − ωiA)−1(I − ωjA)−1C∗vj = ‖x‖2
X .

Thus, TΣ maps

X1 =
∨

ω∈ΛA

(I − ωA∗)−1C∗
C

m

isometrically onto H(U). Therefore, since

X � X1 = ∩n≥0ker(CAn) = kerTΣ,

TΣ is a partial isometry from X onto H(U) and TΣ is unitary if and only if
X = X1, i.e., if and only if the LB J-node Σ is simple.

The fact that UΣ satisfies (4) too if Σ is simple follows from Theorems 6.1
and 6.5.

The formulas TΣAx = R0TΣx and Cx = CUTΣx for x ∈ X are equivalent
to the formula

C(I − λA)−1x = CU (I − λR0)−1TΣx =
√

2πf(λ)

for f(λ) = TΣx, which is equivalent to (6.13). �
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The characteristic function UΣ∗(λ) of the dual LB J-node Σ∗ =
(−A∗, C; X, Y ) is equal to U∼

Σ (λ) and the operator

(TΣ∗x)(λ) =
1√
2π

C(I + λA∗)−1x from X into H(UΣ∗)

is related to the operator TΣ by the formula

(TΣ∗x)(λ) = (UΣ)∼(λ)(TΣx)(−λ).

Lemma 6.7 If Σ = (A, C; X, Y ) is an LB J-node, X1 is a closed subspace
of X and

A1 = PX1 A|X1 and C1 = C|X1 , (6.15)

then Σ1 = (A1, C1; X1, Y ) is an LB J-node.

Proof Formulas (6.15) and (6.2) imply that

A1 − A∗
1 = PX1 (A − A∗

1)|X1 = iPX1 C
∗JC|X1 = iC∗

1 JC1.

�
The LB J-node Σ1 that is defined in Lemma 6.7 is called the projection

of the LB J-node Σ onto the subspace X1.

Theorem 6.8 Let Σ = (A, C; X, Y ) be an LB J-node, let X1 be a closed
subspace of X that is invariant under A, let X2 = X � X1 and let Σj =
(Aj, Cj ; Xj, Y ) be the projections of Σ onto Xj for j = 1, 2. Then X =
X1 ⊕ X2 and:

(1) The operators A and C can be expressed as

A =
[
A1 iC∗

1JC2

0 A2

]
and C = [C1 C2]. (6.16)

(2) ΛA = ΛA1 ∩ ΛA2 .

(3) The characteristic functions of Σj are divisors of the characteristic
function of Σ:

UΣ(λ) = UΣ1 (λ)UΣ2 (λ) for λ ∈ ΛA; (6.17)

and, if x1 ∈ X1 and x2 ∈ X2, then(
TΣ

[
x1

x2

])
(λ) = (TΣ1 x1)(λ) + UΣ1 (λ)(TΣ2 x2)(λ). (6.18)



6.1 Characteristic mvf’s of Livsic-Brodskii nodes 343

(4) If Σ is simple, then Σ1 and Σ2 are simple LB J-nodes, the two com-
ponents in the sum in (6.18) are orthogonal in H(UΣ) and

H(UΣ) = H(UΣ1 ) ⊕ UΣ1H(UΣ2 ).

Conversely, if Σj = (Aj, Cj ; Xj, Y ), j = 1, 2 are two LB J-nodes, and if
X = X1 ⊕ X2 and the operators A and C are defined by the formulas
in (6.16), then Σ = (A, C; X, Y ) is an LB J-node and X1 is invariant
under A.

Proof Under the first set of given assumptions,

A =
[
A1 A12

0 A2

]
and C = [C1 C2]

for some operator A12 ∈ L(X2, X1). Thus,

A − A∗ =
[
A1 − A∗

1 A12

−A∗
12 A2 − A∗

2

]
= i

[
C∗

1
C∗

2

]
J [C1 C2],

which implies that A12 = iC∗
1JC2 and hence that (1) holds.

Assertions (2) and (4) follow from the block triangular structure of A; and
(3) is a straightforward computation.

Conversely, if A and C are defined on X = X1 ⊕X2 in terms of the opera-
tors from the two LB J-nodes Σ1 = (A1, C1; X1, Y ) and Σ2 = (A2, C2; X2, Y )
by the formulas in (6.16), then

A − A∗ =
[

A1 − A∗
1 iC∗

1 JC2

−iC∗
2 JC1 A2 − A∗

2

]
= i

[
C∗

1
C∗

2

]
J [C1 C2] = iC∗JC,

i.e., Σ = (A, C; X, Y ) is an LB J-node, and AX1 ⊆ X1. �
The LB J-node Σ = (A, C; X, Y ) that is connected with the LB J-nodes

Σj = (Aj, Cj ; Xj, Y ) by the formulas in (6.16) is called the product of Σ1

with Σ2 and is written Σ = Σ1 × Σ2.

Remark 6.9 The product Σ1 × Σ2 of two simple LB J-nodes may not be
simple, even if J = I; see, e.g., Theorem 2.3 in [Bro72]. Necessary and
sufficient conditions for Σ1 × Σ2 to be simple in terms of the characteristic
functions UΣ1 and UΣ2 for J = I are given in [SzNF70] and [Shv70]. Anal-
ogous conditions for J �= I are necessary but not sufficient for the product
of two simple nodes to be simple; see [Ve91a].
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Lemma 6.10 If U ∈ LB(J) admits a factorization U(λ) = U1(λ)U2(λ) in
h

+
U with factors U1, U2 ∈ P(J), then U1 and U2 have unique holomorphic

extensions to hU1 ⊇ hU and hU2 ⊇ hU , respectively, and for these extensions
U1(λ)U1(0)−1 ∈ LB(J) and U2(λ)U1(0)−1 ∈ LB(J).

Proof In view of the equality (5.82) for λ, ω ∈ h
+
U and Theorem 5.5, the

RKHS H(U1) of vvf’s on h+
U1

sits contractively in the RKHS H(U) of vvf’s
on h

+
U and hence every vvf f ∈ H(U1) has a unique holomorphic extension

onto hU . Then U1 has a unique holomorphic extensions to hU that meets
the stated conditions. The same conclusion may be obtained for U2 by con-
sidering U∼. �

In view of Lemma 6.10 we can (and will) assume that both of the factors
in every such factorization U(λ) = U1(λ)U2(λ) of U ∈ LB(J) also belong
to LB(J). The divisor U1 of U in this factorization is called left regular
in the Livsic-Brodskii sense if the product Σ = Σ1 × Σ2 of two simple LB
J-nodes with characteristic mvf’s UΣ1 = U1 and UΣ2 = U2 is a simple LB
J-node. Thus, if Σ is a simple LB J-node and Σ = Σ1×Σ2, then UΣ1 is a left
regular divisor of UΣ. But not every divisor U1 ∈ LB(J) in the factorization
UΣ = U1U2 is left regular; see [Bro72].

Theorem 6.11 If U ∈ U0(J), then the factors U1 and U2 in a right regular-
singular factorization (5.171) may be uniquely specified by choosing them
in U0(J) and U1 is a left regular divisor of U in the Livsic-Brodskii sense.
Moreover, if Σ = (A, C; X, Cm) is a simple LB J-node with characteristic
mvf UΣ = U ,

X1 = {x ∈ X : TΣx ∈ Lm
2 } and X2 = X � X1,

then Σ = Σ1 × Σ2, where Σ1 and Σ2 are the projections of the node Σ onto
X1 and X2, respectively, and Uj = UΣj for j = 1, 2.

Proof This follows from Theorems 5.89 and 6.8 and the fact that X1 is an
invariant subspace of A. �

Theorem 6.12 If Σ = (A, C; X, Y ) is an LB J-node and X1 =
∩n≥0ker(CAn), then:

(1) AX1 ⊆ X1, CX1 = {0} and A1 = A|X1 is a selfadjoint operator in
X1, i.e., the projection Σ1 = (A1, 0; X1, Y ) of Σ onto X1 is an LB
J-node in which A1 is selfadjoint.
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(2) The space X2 = X � X1 is invariant under A and the projection
Σ2 = (A2, C2; X2, Y ) of Σ onto X2 is a simple LB J-node.

(3) Σ = Σ1 × Σ2 = Σ2 × Σ1.

(4) UΣ1 (λ) = IY for λ ∈ ΛA1 , UΣ2 (λ) = UΣ(λ) for λ ∈ ΛA and ΛA ∩ (C\
R) = ΛA2 ∩ (C \ R).

Proof Assertion (1) and the invariance of X2 under A are easy (with the
help of (6.2)) and also serve to justify the formula

CAn(x1 + x2) = C1A
n
1 x1 + C2A

n
2 x2 when x1 ∈ X1 and x2 ∈ X2.

But this in turn implies that CAnx2 = 0 ⇐⇒ C2A
n
2 x2 = 0 and hence that

Σ2 is simple. Moreover, as the last formula is equivalent to

CAn

[
x1

x2

]
= [C1 C2]

[
An

1 0
0 An

2

] [
x1

x2

]
,

(3) and (4) follow easily from the definitions. �

Corollary 6.13 If Σ = (A, C; X, Y ) is an LB J-node and A has no selfad-
joint part, then Σ is a simple node.

Proof This is immediate from Theorem 6.12. �

Remark 6.14 If A ∈ L(X) is a selfadjoint injective operator, Y = X ⊕X,
J = diag{IX ,−IX} and C = col(IX , IX ), then A − A∗ = 0 = iC∗JC,
i.e., Σ = (A, C; X, Y ) is an LB J-node. Moreover, since A is injective, and
CAx = 0 =⇒ Ax = 0, Σ is simple.

If Σ = (A, C; X, Cm) is a simple LB J-node,with characteristic mvf UΣ,
then, in view of Theorems 6.6 and 5.49, UΣ ∈ U0(J) if and only if

TΣx =
1√
2π

C(I − λA)−1x belongs to Πm for every x ∈ X.

Moreover, if UΣ ∈ U0(J), then

{x ∈ X : (TΣx)(µ) ∈ Lm
2 } is dense in X ⇐⇒ UΣ ∈ UrR(J) (6.19)

and

{x ∈ X : (TΣx)(µ) ∈ Lm
2 } = {0} ⇐⇒ UΣ ∈ US(J). (6.20)
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In order to keep the notation simple, the same symbol R0 is used for the
backward shift in both H(A) and B(E).

Theorem 6.15 Let E = [E− E+] be a regular de Branges matrix such that
(5.129) holds and let A ∈ U0(Jp) be the unique perfect Jp-inner mvf such that
E =

√
2[Ip 0]AV. Let Σ̊ = (R0, CA ;H(A), Cm) be the simple LB J-node

with characteristic mvf UΣ̊(λ) = A(λ). Then the unitary operator U2 from
H(A) onto B(E) that is defined by formula (5.142) is a unitary similarity
operator from the node Σ̊ onto the node ΣE = (R0, CE;B(E), Cm), where
CEg =

√
2π(U∗

2 g)(0) for g ∈ B(E). Moreover, if

G±(λ) = (R0E±)(λ), G(λ) = [G+(λ) + G−(λ) G+(λ) − G−(λ)]

and ∆E(µ) is given by formula (5.118), then:

(1) G+ξ and G−ξ belong to B(E) for every ξ ∈ C
p.

(2) The operator CE from B(E) into C
m may be defined by the formula

CEg =
√

π

2πi

∫ ∞

−∞
G(µ)∗∆E(µ)g(µ)dµ. (6.21)

(3) The adjoint U∗
2 of the unitary operator U2 is given by the formula

(U∗
2 g)(λ) =

1√
22πi

∫ ∞

−∞
G(µ)∗∆E(µ)

λg(λ) − µg(µ)
λ − µ

dµ. (6.22)

Proof If A ∈ U0(Jp) is perfect, then, in view of Theorem 5.76, the opera-
tor U2 from H(A) onto B(E) that is defined by formula (5.142) is unitary.
Moreover,

U2R0|H(A) = R0|B(E)U2

and

U2K
A
0 (λ)u = U2

Jp − A(λ)Jp

−2πiλ
u = U2

V − A(λ)V
−2πiλ

jpVu

=
1

2πi
[G−(λ) G+(λ)]jpVu for u ∈ C

m.

Therefore, if f ∈ H(A), then

u∗f(0) = 〈f, KA
0 u〉H(A) = 〈U2f, U2K

A
0 u〉B(E)

=
u∗

√
22πi

∫ ∞

−∞
G(µ)∗∆E(µ)(U2f)(µ)dµ
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and hence, as

u∗CEU2f = u∗CAf =
√

2πu∗f(0),

that (6.21) holds for every g ∈ B(E).
In view of Theorem 6.6, the inverse operator U∗

2 from B(E) onto H(A) is
given by the formula

(U∗
2 g)(λ) = (2π)−1/2CE(I − λR0)−1g

=
1√
22πi

∫ ∞

−∞
G(µ)∗∆E(µ)((I − λR0)−1g)(µ)dµ,

which coincides with (6.22). �

Remark 6.16 If A ∈ U(Jp) is perfect and c = TA[Ip], then there is another
formula for U∗

2 that is valid even if 0 �∈ hA: If g ∈ B(E), then

(U∗
2 g)(λ) =

1√
2

[
c(λ)g(λ) − 1

πi

∫∞
−∞

Rc(µ)
µ−λ g(µ)dµ

g(λ)

]
for λ ∈ hA. (6.23)

This follows from Theorem 3.1 in [AlD84]; see also Theorem 2.12 in
[ArD05a].

Theorem 6.17 Let E = [E− E+] be a regular de Branges matrix such that
(5.129) holds and let χ = E−1

+ E−. Then χ is the characteristic mvf of the
following two simple LB I-nodes:

(1) Σχ = (R0, Cχ;H(χ), Cp), where Cχ =
√

2πh(0) for h ∈ H(χ) and R0

acts in H(χ).

(2) Σ1 = (A1, C1;B(E), Cp), where

(A1g)(λ) =
g(λ) − E+(λ)g(0)

λ
and C1g =

√
2πg(0)

for g ∈ B(E). Moreover, T : h −→ E+h is the unitary similarity operator
from Σχ to Σ1.

Proof Assertion (1) holds because χ ∈ U0(Ip). The rest follows from Lemma
5.62, since the operator

T : h ∈ H(χ) −→ g = E+h ∈ B(E)
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is unitary,

A1g = TR0h = E+(λ)
h(λ) − h(0)

λ
=

g(λ) − E+(λ)g(0)
λ

= (R0g)(λ) − G+(λ)g(0) = (R0g)(λ) − 1√
2π

G+(λ)C1g (6.24)

and

C1g = CχT−1g = CχE−1
+ g =

√
2πg(0).

�
We remark that formula (6.24) exhibits the operator A1 as a finite dimen-

sional perturbation of the operator R0 in the space B(E).

6.2 Connections with systems theory

LB J-nodes also arise naturally in the study of linear continuous time in-
variant conservative systems that are described by a system of equations of
the form

−i
dx

dt
= Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) for t ≥ 0, (6.25)

where x(t), u(t) and y(t) belong to the Hilbert spaces X, U and Y , respec-
tively; A ∈ L(X), B ∈ L(Y, X), C ∈ L(X, U) and D ∈ L(U, Y ).

The system (6.25) will be denoted S = (A, B, C, D; X, U, Y ). Let

Xc
S =

∨
n≥0

AnB and Xo
S =

∨
n≥0

(A∗)nC∗Y.

The system S is said to be

controllable if Xc
S = X; observable if Xo

S = X;

and minimal if it is both controllable and observable; it is called simple if

Xc
S

∨
Xo

S = X.

The condition for observability is equivalent to the condition⋂
n≥0

kerCAn = {0}.
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If x(0) = 0, then the Fourier transforms of the functions u(t) and y(t) are
connected:

ŷ(λ) = TS(λ)û(λ), where TS(λ) = D + C(λI − A)−1B (6.26)

for λ ∈ ρ(A). The function TS(λ) is called the transfer function of the
system S.

Two systems Sj = (Aj, Bj, Cj, Dj ; Xj, Uj, Yj), j = 1, 2, with Y1 = U2 may
be connected in cascade to obtain the system
S = (A, B, C, D; X, U, Y ), in which U = U1, Y = Y2, X = X1 ⊕ X2 and the
input u(t) = u1(t), the state x(t) = col (x1(t), x2(t)), the output y(t) = y2(t)
and u2(t) = y1(t). The transfer functions of the systems Sj are related to
the transfer function of S by the formula

TS(λ) = TS2
(λ)TS1

(λ) for λ ∈ ρ(A1) ∩ ρ(A2).

A system S = (A, B, C, D; X, U, Y ) is said to be (JU , JY )-conservative
with respect to a pair of signature operators JU ∈ L(U) and JY ∈ L(Y ) if

d

dt
‖x(t)‖2 = 〈JU u(t), u(t)〉U − 〈JY y(t), y(t)〉Y (6.27)

for every t ≥ 0, when x(0) ∈ X and u(t) ∈ U and an analogous condition is
satisfied for mvf’s u(t), x(t) and y(t) associated with the adjoint system

S∗ = (−A∗,−iC∗,−iB∗, D∗; X, Y, U).

These two conditions are equivalent to the constraints[
−i(A − A∗) − C∗JY C −iB − C∗JY D

iB∗ − D∗JY C JU − D∗JY D

]
= 0 (6.28)

and [
−i(A − A∗) − BJU B∗ −C∗ − iBJU D∗

−C + iDJU B∗ JY − DJU D∗

]
= 0, (6.29)

which in turn is equivalent to the three conditions

(1) D∗JY D = JU and DJU D∗ = JY .

(2) B = iC∗JY D.

(3) A − A∗ = iC∗JY C.
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Thus, there is a one to one correspondence between

LB J-nodes Σ = (A, C; X, Y ) and

J-conservative systems S = (A, iC∗J, C, IY ; X, Y, Y )

and

TS(λ) = UΣ(1/λ) for λ ∈ ρ(A). (6.30)

Moreover, if Σj corresponds to Sj for j = 1, 2, then Σ = Σ1×Σ2 corresponds
to the cascade connection of S2 and S1.

A system S = (A, B, C, D; X, U, Y ) is said said to be (JU , JY )-passive if
the equality in (6.27) and its analogue for S∗ is replaced by ≤, or, equiva-
lently, if the equalities in (6.28) and (6.29) are both replaced by ≥.

A (JU , JY ) conservative (resp., passive) system with JU = IU and JY =
IY is called a conservative (resp., passive) scattering system and its
transfer function is called a scattering matrix. Thus, the system S =
(A, B, C, D; X, U, Y ) is a conservative scattering system if A − A∗ = iC∗C,
B = iC∗D and D is unitary. The scattering matrix of a passive scattering
system is defined by the formula

TS(λ) = {I + iC(λI − A)−1C∗}D for λ ∈ ρ(A). (6.31)

If the equalities (6.28) and (6.29)are in force, then the properties of ob-
servability, controllability, simplicity and minimality are equivalent to those
of the system (6.25).

In view of (6.2), the main operator in an LB J-node is dissipative if J = I

and accumulative if J = −I. Correspondingly, following Brodskii, LB I-
nodes and LB (−I) nodes are referred to as dissipative and accumulative
nodes, respectively. This terminology is not used in this monograph because
these nodes correspond to conservative but not dissipative or accumulative
systems. Thus, each LB I-node corresponds to a linear continuous time
invariant conservative scattering system (6.25) with U = Y , D = IY and
B = iC∗, and UΣ(1/λ) is equal to the scattering matrix of this system.
Moreover, every such conservative scattering system can be imbedded into
the Lax-Phillips framework in which the evolution of the state is described
by a group of unitary dilations of the semigroup eitA:

eitA = PXU(t)|X for t ≥ 0;

for details see [AdAr66], [St05] and [Zol03].
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The Lax-Phillips framework was used in [ArNu96] to generalize the results
on conservative and passive scattering systems discussed above to a setting
in which one or more of the operators may be unbounded. In this case it is
convenient to rewrite the second equation in (6.25) as

y(t) = N

[
x(t)
u(t)

]
for t ≥ 0,

where N is a linear operator from X⊕U into Y and to impose the following
restrictions on the operators A, B and N :

(1) iA is the generator of a continuous semigroup T (t) = eitA for t ≥ 0;

(2) B ∈ L(X, X−);

(3) N ∈ L(D(N), Y );

where X− is the space of continuous linear functionals on the space X+ =
D(A∗), the domain of A∗ with the graph norm; D(N) = {col (x, u) : Âx +
Bu ∈ X} with the graph norm of [Â B]|D(N ) and Â = (A∗)∗ ∈ L(X, X−),
the adjoint of A∗ ∈ L(X+, X).

We remark that A∗ and Â are contractive operators between the indicated
spaces and that Â is a natural extension of A.

The controllability and observability subspaces for the system
S = (A, B, N ; X, U, Y ) are defined as

Xc
S

=
∨

λ∈Λ
Â
∩C+

(I − λÂ)−1BU and Xo
S

=
∨

λ∈Λ
Â∗∩C−

(I − λÂ)∗)−1C∗Y,

where C = N |D(A). The definitions of controllable, observable, simple and
minimal systems are the same as before, but with respect to these subspaces.
The transfer function of S is defined by the formula

TS(λ) = N

[
(λI − Â)−1B

IU

]
for λ ∈ ρ(Â).

A system S = (A, B, N ; X, U, Y ) is said to be a conservative (resp., passive)
scattering system if the equality (resp., inequality ≤ in place of =) (6.27)
holds with JU = IU and JY = IY for every admissible x(0) ∈ X and
u(t) ∈ U and analogous constraints are in force for the adjoint system S∗ =
(−A∗,−iC∗, N∗; X, Y, U), where N∗ is defined so that TS(λ) = T∼

S∗
(λ).
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This condition is equivalent to the equality (resp., inequality ≥) for the
quadratic forms

‖u‖2
U − ‖N

[
x

u

]
‖2

Y = i〈Âx + Bu, x〉X − i〈x, Âx + Bu〉X (6.32)

for col (x, u) ∈ D(N) and a second constraint analogous to the first for the
adjoint system S∗. The transfer function for a passive scattering system is
called a scattering matrix. In this setting, a simple conservative scattering
system need not be minimal.

The colligation Σ = (A, B, N ; X, U, Y ) that corresponds to a conservative
scattering system S = (A, B, N ; X, U, Y ) will be called a generalized LB
I-node. The characteristic function UΣ(λ) of such a generalized LB I-node
is defined by the formula

UΣ(λ) = N

[
λ(I − λÂ)−1B

IU

]
for λ ∈ Λ

Â
, (6.33)

and hence TS(λ) = UΣ(1/λ). This node Σ is called simple if the correspond-
ing system S is simple.

The following facts are known for scattering systems and generalized LB
I-nodes:

(1) The main operator A of a passive scattering system is a maximal dissi-
pative operator.

(2) Every maximal dissipative operator A in a Hilbert space X may be
imbedded as the main operator in a generalized LB I-node
Σ = (A, B, N ; X, U, Y ) , which is equivalent to a conservative scattering
system S. Morever, the system S is simple if and only if A is a simple
dissipative operator (i.e., A has no selfadjoint part).

(3) If TS(λ) the scattering matrix of a passive system, then the restriction
U(λ) of TS(1/λ) to C+ belongs to he Schur class S(U, Y ) of holomorphic
contractive L(U, Y ) valued functions in C+.

(4) Every function U ∈ S(U, Y ) may be represented as the characteristic
function UΣ of a generalized simple LB I-node, which is defined by
U(λ) up to unitary similarity.

(5) If S = (A, B, N ; X, U, Y ) is a conservative scattering system and if

X◦ = PXo

S
Xc

S
and X• = PXc

S
Xo

S
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then appropriately defined restrictions

S◦ = (A◦, B◦, N◦; X◦, U, Y ) and S• = (A•, B•, N•; X•, U, Y )

of S onto the subspaces X◦ and X• are minimal passive scattering sys-
tems with scattering matrices that coincide with TS(λ) in C−.

(6) The systems S◦ and S• may be characterized as extremal systems in
the set of all minimal passive scattering realizations of a given scattering
matrix T (λ) with T (1/λ) ∈ S(U, Y ) in the sense that

‖x◦(t)‖X◦ ≤ ‖xmin(t)‖Xm in ≤ ‖x•(t)‖X•

if x◦(0) = 0, xmin(0) = 0, x•(0) = 0 and the admissible input data u(t)
is the same for all three systems. The systems S◦ and S• are defined
by T (λ) up to unitary similarity and are called minimal optimal and
minimal ∗-optimal, respectively.

Thus for every U ∈ S(U, Y ), U(1/λ) may be realized as the restriction
to C− of the scattering matrix of either a simple conservative scattering
system S that is defined by U(λ) up to unitary similarity, or a minimal
passive scattering system that is defined by U(λ) up to weak similarity.

Every rational mvf U ∈ Sp×q coincides with the characteristic mvf UΣ(λ)
of a simple generalized LB I-node Σ = (A, B, N ; X, Cq , Cp) in C+. However,
dimX < ∞ if and only if U ∈ Sp×p

in . In this case, dim X = deg U , N =
[C D], the quadratic equality (6.32) and its analogue for S∗ is equivalent
to the operator identities (6.28) and (6.29) with JU = Iq and JY = Ip, and
formula (6.33) can be rewritten as

UΣ(λ) = D + λC(I − λA)−1B, (6.34)

where B = iC∗D. If U �∈ Sp×p
in , then dimX = ∞, A is unbounded and

ΛA ∩ R = ∅. Nevertheless, there exists a restriction

Smin = (Amin, Bmin, [Cmin Dmin]; Xmin, Cq, Cp)

of a conservative system S = (A, B, N ; X, Cq, Cp) to a subspace Xmin of X

such that dimXmin = deg U , the operators in Smin satisfy (6.28) with ≥ in
place of =, JU = Iq , JY = Ip; and TSm in

is defined by the operators in Smin

by formula (6.31). Moreover, TSm in
(1/λ) = U(λ) in C (and not just in C+).

In particular, the choices S◦ and S• yield minimal optimal and minimal
∗-optimal passive scattering system realizations for U(λ),



354 Operator nodes and passive systems

6.3 Bibliographical notes

In the mid forties M. S. Livsic introduced the notion of the characteristic
function of an operator A ∈ L(X) by the formula

UA(λ) = {I + i|AI |1/2(λI − A)−1|AI |1/2JA}|YA
, (6.35)

where AI = 2IA = (A − A∗)/i, YA = AIX and JA = signAI |YA
; see, e.g.,

[Liv54] and the references cited therein. Livsic discovered that:

(1) UA(1/λ)∗JUA(1/λ) ≤ J for λ ∈ ΛA ∩C+ with equality for λ ∈ ΛA ∩R.

(2) If A is unitarily similar to B, then UA(λ) = UB(λ).

(3) If UA(λ) = UB(λ) in a neighborhood of zero and A and B are simple in
the sense that ∩ker{AIA

n} = ∩ker{BIB
n} = {0}, then A is unitarily

similar to B.

(4) If A is simple and dimYA = m < ∞, then the mvf UA(1/λ) belongs to
the class LB(J).

(5) The characteristic function can be identified as the transfer function
of a system, as in (6.25). Moreover, in a number of concrete problems
in scattering theory, circuit theory and quantum mechanics the oper-
ator A in the evolution semigroup T (t) = eitA is dissipative and the
characteristic function of A coincides with the Heisenberg scattering
matrix.

(6) The reduction of A to triangular form is connected with the existence
of a monotonically increasing system of invariant subspaces, which, in
turn correspond to the resolution of the characteristic matrix function
UA(λ) into factors and to the decomposition of an open system with
main operator A into a cascade of simpler systems.

The connections referred to in (6) stimulated the development of multiplica-
tive representations of mvf’s in the class P◦(J) by Potapov [Po60]. Brodskii
introduced the operator node that we call an LB J-node and its character-
istic function to simplify these connections. It is easily seen that UA(1/λ)
is the characteristic function of the LB JA-node ΣA = (A, |AI |1/2; X, YA).
A detailed discussion of LB J-nodes may be found in [Bro72]. The argu-
ment based on Riesz projections in last part of the proof of Theorem 6.1 is
adapted from the proof of Theorem 9.3 in [Bro72].
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Theorem 6.4 was generalized by E. R. Tsekanovskii and Yu. L. Shmulyan
in [TsS77] to the setting of operator valued functions U(λ) and c(λ) and
possibly unbounded operators A and was used to develop the theory of gen-
eralized LB J-nodes and the Krein theory of resolvent matrices. A number of
other authors, including A. V. Shtraus [Sht60], A. N. Kochubei [Ko80] have
contributed to the theory of generalized LB J-nodes; see, e.g., the references
cited in [TsS77] and in [Ku96].

Passive minimal realizations of rational mvf’s in Sp×q , Cp×p, P(J) and
other classes by purely algebraic methods that do not depend upon operator
theory were considered independently in control theory and passive network
theory; see, e.g., [Bel68], [DBN71] and [Kal63a]. A minimal realization for a
rational transfer mvf T (λ) that is holomorphic at infinity is defined by four
matrices A, B, C and D = T (∞), up to similarity, i.e., up to replacing the
first three matrices by R−1AR, R−1B and CR, respectively. If a minimal
realization of T (λ) is given, then a passive minimal realization may be ob-
tained by choosing the similarity matrix R as a positive definite square root
of a solution of the appropriate KYP (Kalman-Yakubovich-Popov) inequal-
ity. If U ∈ Sp×q is rational, then the KYP inequality is[

−i(PA − A∗P ) − C∗C −iPB − C∗D
iB∗P − D∗C I − D∗D

]
≥ 0.

Moreover, if P > 0 is a solution of this KYP inequality, then the minimal
system S = (A, B, C, D; Cr, Cq, Cp) is a minimal passive scattering system
with respect to the inner product 〈x, x〉P = 〈Px, x〉Cr in the state space
X = C

r , where r = degreeT (λ) = degreeU(λ). There exist a unique pair
of extremal solutions P◦ and P• of the KYP inequality such that 0 < P◦ ≤
P ≤ P•. If P = P◦ or P = P•, then the corresponding systems S◦ and S•
will be minimal optimal and minimal ∗-optimal, respectively.

KYP inequalities were used to study the absolute stability problem by
the Lyapunov method in control theory, first for finite dimensional spaces
(see [Pop61], [Yak62], [Kal63b] and [Pop73]) and subsequently in Hilbert
spaces, where one or more of the operators may be unbounded (see [Yak74],
[Yak75] and [LiYa6]). In control theory, the quadratic functionals 〈Px, x〉X
are called storage or Lyapunov functions; the extremal functions 〈P◦x, x〉X
and 〈P•x, x〉X are called available storage and required supply functions;
see [Wi72a], [Wi72b], [Pop73]; see also [Kai74] for applications to stochas-
tic processes. Solutions P of the KYP inequality that may be unbounded
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and/or have unbounded inverses were considered in [AKP05] and [ArSt05].
In particular, criteria for P◦ = P• and P• ≤ cP◦ in terms of constraints on
the scattering matrix are presented there.

An observable optimal discrete time scattering system
S = (A, B, C, D; X, U, Y ) with scattering matrix

S(λ) = D + λC(I − λA)−1B where
[
A B

C D

]
is coisometric

for a given function S ∈ S(U, Y ) (with respect to D) was obtained by L. de
Branges with A = R0 and state space X = H(S); see [BrR66] and Theorem
5.3 and Corollary 5.6 in [An90]. The restriction of S to the controllability
space Xc

S
yields a minimal optimal realization S◦ of S(λ).

Connections of the theory of characteristic functions of operators and oper-
ator nodes with the theory of conservative and passive systems are discussed
in [Hel74], [Ar74b], [Ar79c], [BaC91] and [Ar95b]. The presented results
on conservative and passive scattering systems are adapted from [ArNu96]
(which includes proofs); for additional information, see also [ArNu00],
[Ar00b], [ArNu02] and [St05].

Passive minimal realizations of rational mvf’s in the classes Sp×q and Cp×p

may also be obtained via the minimal Darlington representations that are
described in Chapter 9.

If P > 0 in (5.48), then Σ = (P 1/2AP−1/2, CP−1/2; Cn, Cm) is an LB
(−J)-node with characteristic mvf UΣ(λ) = U(1/λ), where U(λ) is defined
by formula (5.49). Operator nodes based on operator identities in Hilbert
space analogous to (5.48) were used extensively by L. A. Sakhnovich in his
study of interpolation, moment problems and canonical systems; see, e.g.,
[Sak93], [Sak97] and [Sak99].

The functional model of a simple LB J-node with state space H(U) in
Theorem 6.1 was considered in [AlD84] for U ∈ U0(J). Analogous models
for simple J-unitary nodes where the state space X is the RKHS H(U) of
holomorphic vvf’s in a domain Ω ⊆ D that contains the point zero are well
known; see, e.g., [ADRS97] and the references cited therein. A generalization
that drops this restriction may be found in [ArSt07]. The functional model
with state space B(E) presented in Theorem 6.15 seems to be new, though
equivalent functional models for LB J-nodes with characteristic mvf’s that
are meromorphic in C were considered earlier by L. de Branges [Br68a],
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[Br68b] and subsequently by L. Golinskii and I Mikhailova [GoM97], L. A.
Sakhnovich [Sak97] and G. M. Gubreev [Gu00a], [Gu00b].

The operator A is said to have absolutely continuous spectrum (resp.,
singular spectrum) if the condition on the left of (6.19) (resp., (6.20)) is
met; see, e.g., [Na76] and [Na78] for a study of these classes. Operator valued
generalizations of Theorems 5.89 and 6.11 were obtained in [Ve91a], [Ve91b]
and [Tik02].



7

Generalized interpolation problems

In this chapter and the next, we will discuss a number of interpolation
problems:

(1) GSIP, the generalized Schur interpolation problem.
(2) GCIP, the generalized Carathéodory interpolation problem.
(3) GKEP, the generalized Krein extension problem.
(4) NP, the Nehari problem.

If these problems are completely indeterminate in a sense that will be defined
below, then the set of solutions of each of the first three problems may be
described in terms of a linear fractional transformation that is based on
a right regular J-inner mvf, with J = jpq for the GSIP and J = Jp for
the GCIP and the GKEP. Moreover, the J-inner mvf’s that correspond to
GKEP’s are entire. Conversely, every mvf U ∈ UrR(J) corresponds in this
way to a completely indeterminate GSIP or GCIP, according as J = jpq

or J = Jp, and every entire mvf U ∈ UrR(Jp) corresponds to a completely
indeterminate GKEP.

The GKEP may be considered as a special case of the GCIP, which in turn,
may be reduced to a GSIP and may be viewed as a special case of the NP.
The set of solutions of a completely indeterminate NP can be expressed as
the image of a linear fractional transformation of the class Sp×q that is based
on a mvf that belongs to the class MrR(jpq) of right regular γ-generating
matrices, which will be defined below.

Two sided connections also exist between the class UrsR(J) of right
strongly regular J-inner mvf’s (MrsR of right strongly regular γ-generating
matrices) and strictly completely indeterminate interpolation problems.
These connections will be exploited in Chapter 10 to establish alterna-
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tive criteria for the strong regularity of J-inner mvf’s (γ-generating matri-
ces) in terms of the Treil-Volberg matrix version of the Muckenhoupt (A)2

condition.
The final sections of this chapter will be devoted to a discussion of the

generalized Sarason problem.

7.1 The Nehari problem

In this section we review a number of results on the Nehari problem, largely
without proof. Let f ∈ Lp×q

∞ and let Γ(f) denote the linear operator from
Hq

2 into Kp
2 that is defined by the rule

Γ(f) = Π−Mf |Hq
2
, (7.1)

where Mf denotes the operator of multiplication by f from Lq
2 into Lp

2 and
Π− denotes the orthogonal projection of Lp

2 onto Kp
2 .

Clearly,

Γ(f) ∈ L(Hq
2 , Kp

2 ) and ‖Γ(f)‖ ≤ ‖f‖∞. (7.2)

Lemma 7.1 Let f1 and f2 be two mvf’s from Lp×q
∞ . Then

Γ(f1) = Γ(f2) ⇐⇒ f1 − f2 ∈ Hp×q
∞ .

Proof The implication ⇐= is self-evident. Conversely, if Γ(f1) = Γ(f2) and
h = f1−f2, then h ∈ Lp×q

∞ and Γ(h) = 0. Consequently, MhHq
2 ⊆ Hp

2 , which
is equivalent to the assertion that h ∈ Hp×q

∞ , by Lemma 3.47. �
Let V+(t), t ≥ 0 denote the semigroup of operators of multiplication by

et = exp(iµt) in Hq
2 and let V−(t), t ≥ 0 denote the semigroup of operators

of multiplication by e−t in Kp
2 .

Theorem 7.2 Let Γ ∈ L(Hq
2 , Kp

2 ). Then there exists a mvf f ∈ Lp×q
∞ such

that Γ = Γ(f) if and only if

ΓV+(t) = V−(t)∗Γ. (7.3)

Moreover, if this condition is satisfied, then there exists at least one mvf
f ∈ Lp×q

∞ such that

Γ = Γ(f) and ‖f‖∞ = ‖Γ‖, (7.4)

i.e.,

‖Γ‖ = min{‖f‖∞ : f ∈ Lp×q
∞ and Γ(f) = Γ}. (7.5)
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Proof It is readily checked that if f ∈ Lp×q
∞ , Γ = Γ(f) and g ∈ Hq

2 , then

Π−fetg = Π−etfg = Π−et(Π− + Π+)fg

= Π−etΠ−fg = Π−etΓg,

i.e., (7.3) holds; and ‖Γ‖ ≤ ‖f‖∞. The converse lies deeper. If ‖Γ‖ < 1, then
Theorem 7.45 implies that there exists a mvf f ∈ Lp×q

∞ with ‖f‖∞ = 1 such
that Γ = Γ(f). Thus, if ‖Γ‖ = 1 and 0 < ρ < 1, then there exists a function
fρ ∈ Lp×q

∞ with ‖fρ‖∞ = 1 such that ρΓ = Γ(fρ). Consequently, there exists
a sequence of points ρn ↑ 1 as n ↑ ∞ such that fρn → f weakly in Lp×q

∞ as
ρn ↑ 1 and hence, Γ = Γ(f) and ‖f‖∞ ≤ 1. Therefore, ‖f‖∞ ≤ ‖Γ‖. �

An operator Γ ∈ L(Hq
2 , Kp

2 ) that satisfies the condition (7.3) is called a
Hankel operator.
The Nehari problem NP(Γ):Given a Hankel operator Γ, define the set

N (Γ) = {f ∈ Lp×q
∞ : Γ(f) = Γ and ‖f‖∞ ≤ 1}. (7.6)

The mvf’s f ∈ N (Γ) are called solutions of the NP(Γ).
In view of Theorem 7.2,

N (Γ) �= ∅ ⇐⇒ ‖Γ‖ ≤ 1. (7.7)

Moreover, if ‖Γ‖ ≤ 1, then

‖Γ‖ = min {‖f‖∞ : f ∈ N (Γ)}.

Remark 7.3 Theorem 7.2 and other results on the NP may be obtained
from the corresponding analogues for mvf’s on the circle T by replacing the
independent variable

ψ(ζ) = i
1 − ζ

1 + ζ
, ζ ∈ T that maps T onto R ∪∞,

which transforms mvf’s f(µ) on R to f(ψ(ζ)) on T.

If Γ is a Hankel operator, then NP(Γ) is called

(1) determinate if it has exactly one solution.

(2) indeterminate if it has more than one solution.

(3) completely indeterminate if for every nonzero vector η ∈ Cq there
exist at least two solutions f1 ∈ N (Γ), f2 ∈ N (Γ) such that ‖(f1 −
f2)η‖∞ > 0.
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(4) strictly completely indeterminate if it has at least one solution
f ∈ N (Γ) such that ‖f‖∞ < 1.

It is readily checked that if NP(Γ) is strictly completely indeterminate, then
it is automatically completely indeterminate: If f1 ∈ N (Γ) and ‖f1‖∞ < 1,
then f2 = f1 + ξη∗ ∈ N (Γ) for every choice of nonzero vectors ξ ∈ Cp and
η ∈ C

q such that ‖ξη∗‖ ≤ 1 − ‖f1‖∞. Moreover,

‖(f2 − f1)η‖∞ = ‖ξη∗η‖ = η∗η‖ξ‖ > 0.

Lemma 7.4 If Γ is a Hankel operator, then

NP (Γ) is strictly completely indeterminate ⇐⇒ ‖Γ‖ < 1. (7.8)

Proof The assertion is immediate from Theorem 7.2. �
Let ω ∈ C+ and let

A+(ω) =
{

η

ρω
: η ∈ C

q

}
∩ (I − Γ∗Γ)1/2Hq

2 (7.9)

and

A−(ω) =
{

ξ

ρω
: ξ ∈ C

p

}
∩ (I − ΓΓ∗)1/2Kp

2 . (7.10)

Theorem 7.5 Let Γ be a Hankel operator with ‖Γ‖ ≤ 1. Then:

(1) The numbers dimA+(ω) and dimA−(ω) are independent of the choice
of the point ω ∈ C+.

(2) The NP(Γ) is determinate if and only if

A+(ω) = {0} or A−(ω) = {0} (7.11)

for at least one (and hence every) point ω ∈ C+.

(3) The NP(Γ) is completely indeterminate if and only if

dimA+(ω) = q and dimA−(ω) = p (7.12)

for at least one (and hence every) point ω ∈ C+. Moreover, the two
conditions in (7.12) are equivalent.

Proof This follows with the help of Remark 7.3 from the analogous re-
sults for mvf’s on T that are established in [AAK71a] and Theorem 4
of [Ar89]. �
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Remark 7.6 It is useful to note that if ω ∈ C+, then

dim A+(ω) = q ⇐⇒
{

η

ρω
: η ∈ C

q

}
⊆ (I − Γ∗Γ)1/2Hq

2 (7.13)

and

dim A−(ω) = p ⇐⇒
{

ξ

ρω
: ξ ∈ C

p

}
⊆ (I − ΓΓ∗)1/2Kp

2 . (7.14)

Lemma 7.7 Let A be a linear operator in a Hilbert space H such that
0 ≤ A ≤ I, let x ∈ H and let

lim
t↑1

〈(I − tA)−1x, x〉 = κ. (7.15)

Then κ < ∞ if and only if x ∈ range (I − A)1/2.

Proof Suppose first that κ < ∞. Then, since the bound

|〈y, x〉H| = |〈(I − tA)1/2y, (I − tA)−1/2x〉H|
≤ ‖(I − tA)1/2y‖H ‖(I − tA)−1/2x‖H
≤ {〈(I − A)y, y〉H + (1 − t)〈Ay, y〉H}1/2 κ1/2

is valid for every t in the interval 0 ≤ t < 1, it follows that

|〈y, x〉H| ≤ κ1/2‖(I − A)1/2y‖H for every y ∈ H.

Thus, the linear functional

ϕ((I − A)1/2y) = 〈y, x〉H

is well defined and bounded on the range of (I − A)1/2. Therefore, by the
Riesz representation theorem, there exists a vector u ∈ H such that

ϕ((I − A)1/2y) = 〈(I − A)1/2y, u〉H.

Thus,

〈y, x〉H = 〈y, (I − A)1/2u〉H

for every y ∈ H, and hence x = (I − A)1/2u. This completes the proof that
if κ < ∞, then x ∈ range (I − A)1/2. The converse is easy and is left to the
reader. �
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Remark 7.8 Let ω ∈ C+, η ∈ Cq and ξ ∈ Cp. Then, by Lemma 7.7,

η

ρω
∈ A+(ω) ⇐⇒ lim

δ↑1

〈
(I − δΓ∗Γ)−1 η

ρω
,

η

ρω

〉
st

< ∞

and
ξ

ρω
∈ A−(ω) ⇐⇒ lim

δ↑1

〈
(I − δΓΓ∗)−1 ξ

ρω
,

ξ

ρω

〉
st

< ∞.

Consequently the condition (7.12) is equivalent to the following:

lim
δ↑1

〈
(I − δΓ∗Γ)−1 η

ρω
,

η

ρω

〉
st

< ∞ for every η ∈ C
q (7.16)

and

lim
δ↑1

〈
(I − δΓΓ∗)−1 ξ

ρω
,

ξ

ρω

〉
st

< ∞ for every ξ ∈ C
p (7.17)

for at least one (and hence every) point ω ∈ C+. The conditions (7.11) are
equivalent to

lim
δ↑1

〈
(I − δΓ∗Γ)−1 η

ρω
,

η

ρω

〉
Hq

2

= ∞ for every nonzero vector η ∈ C
q

(7.18)
or

lim
δ↑1

〈
(I − δΓΓ∗)−1 ξ

ρω
,

ξ

ρω

〉
Kp

2

= ∞ for every nonzero vector ξ ∈ C
p,

(7.19)
respectively.

Remark 7.9 If 1 is a singular value of a contractive Hankel operator Γ,
i.e., if ‖Γx‖ = ‖x‖ for some nonzero vector x, then NP(Γ) is not completely
indeterminate. Consequently, if the NP(Γ) is completely indeterminate, then

I − Γ∗Γ > 0 and I − ΓΓ∗ > 0 (7.20)

and, in view of Theorem 7.5 and Remark 7.6, the inclusions

Iq

ρω
∈ (I − Γ∗Γ)1/2Hq×q

2 and
Ip

ρω
∈ (I − ΓΓ∗)1/2Kp×p

2 (7.21)

are necessary and sufficient for the NP (Γ) to be completely indeterminate.
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7.2 γ-generating matrices

Let Mr(jpq) denote the class of m × m mvf’s A(µ) on R of the form

A(µ) =
[

a11(µ) a12(µ)
a21(µ) a22(µ)

]
(7.22)

with blocks a11 of size p × p and a22 of size q × q such that

(1) A(µ) is a measurable mvf on R that is jpq-unitary a.e. on R.

(2) a22(µ) and a11(µ)∗ are the boundary values of mvf’s a22(λ) and a
#
11(λ)

that are holomorphic in C+ and, in addition,

(a22)−1 ∈ Sq×q
out and (a#

11)
−1 ∈ Sp×p

out . (7.23)

(3r) The mvf

s21(µ) = −a22(µ)−1a21(µ) = −a12(µ)∗(a11(µ)∗)−1 (7.24)

is the boundary value of a mvf s21(λ) that belongs to the class Sq×p.

The mvf’s in the class Mr(jpq) are called right γ-generating matrices.
They play a fundamental role in the study of the matrix Nehari problem: if
the NP(Γ) is completely indeterminate, then

N (Γ) = TA[Sp×q ] for some A ∈ Mr(jpq).

Let M�(jpq) denote the class of m×m mvf’s A(µ) on R of the form (7.22)
that meet the conditions (1) and (2) that are stated above for Mr(jpq) and
(in place of (3r))

(3�) The mvf

s12(µ) = a12(µ)a22(µ)−1 = (a11(µ)∗)−1a21(µ)∗ (7.25)

is the boundary value of a mvf s12(λ) that belongs to the class Sp×q . The
mvf’s in the class M�(jpq) will be called left γ-generating matrices. This
class was introduced and briefly discussed in Section 7.3 of [ArD01b].

The standard four block decompositions

A =
[
a− b−
b+ a+

]
, if A ∈ Mr(jpq) (7.26)

and

A =
[
d− c+

c− d+

]
, if A ∈ M�(jpq), (7.27)
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in which the indices ± indicate that the corresponding blocks are nontan-
gential limits of mvf’s in the Nevanlinna class in C±, will be used frequently.

We remark that, in view of property (1),

ε ∈ Sp×q =⇒ f(µ) = TA[ε] belongs to Lp×q
∞ and ‖f‖∞ ≤ 1.

Let

TA[Sp×q ] = {TA[ε] : ε ∈ Sp×q}.

A mvf A ∈ Mr(jpq) is said to be:

(1) right singular if TA[Sp×q ] ⊆ Sp×q .

(2) right regular if the factorization A = A1A2 with a factor A1 ∈ Mr(jpq)
and a right singular factor A2 ∈ Mr(jpq) implies that A2 is constant.

(3) right strongly regular if there is an f ∈ TA[Sp×q ] with ‖f‖∞ < 1.

These three subclasses of Mr(jpq) will be designated MrS(jpq), MrR(jpq)
and MrsR(jpq), respectively. The corresponding subclasses M�S(jpq),
M�R(jpq) and M�sR(jpq) of M�(jpq) are defined analogously:

A mvf A ∈ M� is said to be:

(1) left singular if T �
A[Sq×p] ⊆ Sq×p.

(2) left regular if A = A2A1 with Aj ∈ M�(jpq) for j = 1, 2 and A2 is left
singular, then A2 is constant.

(3) left strongly regular if there exists an f ∈ T �
A[Sq×p] with ‖f‖∞ < 1.

In view of the equivalences

f = T �
A

[ε] ⇐⇒ f∼ = TA
∼ [ε∼] ⇐⇒ fτ = TA

τ [ετ ]

A ∈ M�(jpq) ⇐⇒ A
∼ ∈ Mr(jpq) ⇐⇒ A

τ ∈ Mr(jpq)

A ∈ M�S(jpq) ⇐⇒ A
∼ ∈ MrS(jpq) ⇐⇒ A

τ ∈ MrS(jpq)

A ∈ M�R(jpq) ⇐⇒ A
∼ ∈ MrR(jpq) ⇐⇒ A

τ ∈ MrR(jpq)

A ∈ M�sR(jpq) ⇐⇒ A
∼ ∈ MrsR(jpq) ⇐⇒ A

τ ∈ MrsR(jpq),

there is a correspondence between results on mvf’s in the class Mr(jpq) and
mvf’s in the class M�(jpq). Thus, only results on right γ-generating matrices
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and right regular J-inner mvf’s will be presented in detail. In those cases
when a dual result for left γ-generating matrices or left regular J-inner mvf’s
is presented, the proof will be omitted.

A mvf W ∈ U(jpq) will be identified with its boundary values W (µ), which
are defined a.e. on R.

Lemma 7.10 The following conditions are equivalent:

(1) A ∈ Mr(jpq) and TA[0] ∈ Sp×q .

(2) A ∈ Mr(jpq) and TA[Sp×q ] ⊆ Sp×q , i.e., A ∈ MrS(jpq).

(3) A ∈ US(jpq).

(4) A ∈ Mr(jpq) and TA[ε] ∈ Sp×q for some ε ∈ Sp×q .

Moreover, the classes MrS(jpq) and M�S(jpq) can (and will) be identified
with US(jpq).

Proof If (1) holds, then S = PG(A) is a measurable mvf on R that is unitary
a.e. on R. Moreover, since s11 = (a#

−)−1 ∈ Sp×p
out , s21 = −a

−1
+ b+ ∈ Sq×p and

s22 = a
−1
+ ∈ Sq×q

out by definition of the class Mr(jpq), and s12 = b−a
−1
+ ∈

Sp×q by assumption, it follows that S ∈ Hm×m
∞ . Consequently, S ∈ Sm×m

in ,
by the maximum principle. Therefore, A = PG(S) is jpq-inner, and, since
a22 ∈ N q×q

out and a
#
11 ∈ N p×p

out , A ∈ US(jpq), i.e., (1) =⇒ (3).
The implications (3) =⇒ (2), (2) =⇒ (1) and (3) =⇒ (4) are obvious. The

implication (4) =⇒ (1) will be established later.
The final statement follows from the equivalences

A ∈ MrS ⇐⇒ A
τ ∈ MrS and U ∈ US(jpq) ⇐⇒ Uτ ∈ US(jpq)

and the equivalence of (2) with (3). �
If either A ∈ Mr(jpq) or A ∈ Ml(jpq), then the m × m mvf S = PG(A) is

unitary a.e. on R and its blocks can be expressed in terms of the blocks of
A by the formula[

s11(µ) s12(µ)
s21(µ) s22(µ)

]
=
[

a11(µ)−∗ a12(µ)a22(µ)−1

−a22(µ)−1a21(µ) a22(µ)−1

]
a.e. on R.
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If either A ∈ Mr(jpq) or A ∈ Ml(jpq) and aij(µ) are the blocks, considered
in the decomposition (7.22) of A, the notations

s12(µ) = a12(µ)a−1
22 (µ), s21(µ) = −a

−1
22 (µ)a21(µ), (7.28)

∆r(µ) =
[

Ip −s21(µ)∗

−s21(µ) Iq

]
, ∆�(µ) =

[
Ip s12(µ)

s12(µ)∗ Iq

]
(7.29)

will be useful.

Lemma 7.11 Let A ∈ Mr(jpq)∪M�(jpq), let m = p+q and let the mvf’s s21,
s12, ∆r and ∆� be defined by formulas (7.28) and (7.29). Then the following
conditions are equivalent:

(1) A ∈ Lm×m
∞ .

(2) ‖s12‖∞ < 1.

(3) ‖s21‖∞ < 1.

(4) ∆−1
r ∈ Lm×m

∞ .

(5) ∆−1
� ∈ Lm×m

∞ .

(6) ‖TA[ε]‖∞ < 1 for at least one matrix ε ∈ Sp×q
const.

(7) ‖TA[ε]‖∞ < 1 for every mvf ε ∈ S̊p×q.

Proof Since A(µ) is jpq-unitary a.e. on R, the blocks a11(µ) and a22(µ) are
invertible a.e. on R and the equalities

a11(µ)a11(µ)∗ = (Ip − s12(µ)s12(µ)∗)−1

a22(µ)∗a22(µ) = (Iq − s21(µ)s21(µ)∗)−1

a22(µ)a22(µ)∗ = (Iq − s12(µ)∗s12(µ))−1

are in force a.e. on R. Next, upon invoking the formula

‖(Iq − A∗A)−1‖ = (1 − ‖A‖2)−1,

which is valid for every A ∈ Cp×q with ‖A‖ < 1, it is readily seen that

a11 ∈ Lp×p
∞ ⇐⇒ ‖s12‖∞ < 1 ⇐⇒ a22 ∈ Lq×q

∞ < 1 ⇐⇒ ‖s21‖∞ < 1.

Moreover,

a22 ∈ Lq×q
∞ =⇒ a12 ∈ Lq×p

∞ and a11 ∈ Lp×p
∞ =⇒ a21 ∈ Lp×q

∞ ,
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since

a12 = s12a22, a21 = s∗12a11, ‖s12‖∞ < 1 and ‖s21‖∞ < 1.

Thus, the equivalences (1) ⇐⇒ (2) ⇐⇒ (3) are established. Moreover,
(1) ⇐⇒ (4) ⇐⇒ (5), then follows from Schur complements.

Next, let ε ∈ Sp×q and fε = TA[ε] and suppose that (3) holds. Then the
identity

Iq − f∗
ε fε = a

−∗
22 (Iq − s21ε)−∗(Iq − ε∗ε)(Iq − s21ε)−1a−1

22 (7.30)

is in force and implies that

‖fε‖∞ < 1 ⇐⇒ ‖ε‖∞ < 1.

Thus, (3) =⇒ (7). Since the implication (7) =⇒ (6) is obvious, it remains
only to check that (6) =⇒ (1). Suppose therefore that (6) holds, i.e., that
‖fε‖∞ < 1 for some constant p × q contractive matrix ε. Then, by formula
(7.30), ‖ε‖ < 1. Thus, the matrix

Vε =
[

(Ip − εε∗)−1/2 ε(Iq − ε∗ε)−1/2

ε∗(Ip − εε∗)−1/2 (Iq − ε∗ε)−1/2

]
is a constant jpq-inner matrix with the property TVε [0] = ε. Let

Aε(µ) = A(µ)Vε.

Then the formulas

TAε
[0p×q ] = TA[ε] = fε

imply that ‖TAε
[0p×q ]‖ < 1 and hence, upon applying the implication (2)

=⇒ (1) to the mvf Aε, that Aε ∈ Lm×m
∞ . Thus, as Aε ∈ Mr and

Aε ∈ Lm×m
∞ ⇐⇒ A ∈ Lm×m

∞ ,

the proof is complete. �

Corollary 7.12 If A ∈ Mr(jpq) ∩ Lm×m
∞ , then A ∈ MrsR(jpq). If A ∈

M�(jpq) ∩ Lm×m
∞ , then A ∈ M�sR(jpq).
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Proof The first assertion is immediate from the preceding lemma. The
second assertion follows from the first and the equivalences

A ∈ M�(jpq) ⇐⇒ A
∼ ∈ Mr(jpq)

A ∈ M�sR(jpq) ⇐⇒ A
∼ ∈ MrsR(jpq)

A ∈ Lm×m
∞ ⇐⇒ A

∼ ∈ Lm×m
∞ .

�

Lemma 7.13 Let A ∈ Mr(jpq)∪M�(jpq), let m = p+q and let the mvf’s s21,
s12, ∆r and ∆� be defined by formulas (7.28) and (7.29). Then the following
conditions are equivalent:

(1) A ∈ L̃m×m
2 .

(2) (Ip − s∗21s21)−1 ∈ L̃p×p
1 .

(3) (Ip − s12s
∗
12)

−1 ∈ L̃p×p
1 .

(4) ∆−1
r ∈ L̃m×m

1 .

(5) ∆−1
� ∈ L̃m×m

1 .

Moreover, if any one (and hence everyone) of these conditions is in force,
then A ∈ Mr =⇒ A ∈ MrR and A ∈ M� =⇒ A ∈ M�R

Proof The proof of the equivalence of (1)–(5) is much the same as for
Lemma 7.11. The last assertion follows from Lemma 7.36. �

Our next objective is to parametrize the mvf’s A ∈ Mr(jpq).

Lemma 7.14 Let A ∈ Mr(jpq) and let the mvf s(µ) = s21(µ) be defined by
formula (7.24). Then

s ∈ Sq×p and ln det{Iq − ss∗} ∈ L̃1. (7.31)

Conversely, if a mvf s(λ) satisfies the conditions (7.31), then there exists a
mvf A ∈ Mr(jpq) such that s(µ) = −a22(µ)−1a12(µ) a.e. on R. Moreover,
this mvf A(µ) is uniquely defined by s(λ) up to a left block diagonal jpq-
unitary multiplier by the formula

A(µ) =

[
a−(µ) b−(µ)

b+(µ) a+(µ)

]
=

[
a−(µ) 0

0 a+(µ)

]
∆r(µ), (7.32)
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where a+(µ) and a−(µ) are the essentially unique solutions of the factoriza-
tion problems

a−1
+ a−∗

+ = Iq − ss∗ a.e. on R with a−1
+ ∈ Sq×q

out , (7.33)

a
−1
− a

−∗
− = Ip − s∗s a.e. on R with a

−#
− ∈ Sp×p

out , (7.34)

b+ = −a+s, b− = −a−s∗ (7.35)

and ∆r is defined by formula (7.29) with s21 = s.

Proof Let A ∈ Mr(jpq) and s = s21, where s21 is defined by formula (7.24).
Then s ∈ Sp×p and the blocks of the mvf A(µ) satisfy the equalities in (7.33)–
(7.35). Moreover ϕ2(λ) = a+(λ)−1 and ϕ1(λ) = a#

−(λ)−1 are solutions of the
factorization problems

ϕ1(µ)∗ϕ1(µ) = Iq − s(µ)∗s(µ) a.e. on R, with ϕ1 ∈ Sp×p
out , (7.36)

and

ϕ2(µ)ϕ2(µ)∗ = Ip − s(µ)s(µ)∗ a.e. on R, with ϕ2 ∈ Sq×q
out . (7.37)

Consequently, the second condition in (7.31) holds by Theorem 3.78.
Conversely, if the conditions in (7.31) are in force, then the factorization

problems (7.36) and (7.37) are solvable, by the Zasukhin-Krein theorem. Let

a−(µ) = ϕ1(µ)−∗, a+(µ) = ϕ2(µ)−1, b+(µ) = −ϕ2(µ)−1s(µ)

and b−(µ) = −ϕ1(µ)−∗s(µ)∗ a.e. on R. (7.38)

Then the mvf A(µ) defined by formula (7.32) is a right γ-generating matrix.
Moreover, since the solutions of the factorization problems (7.36) and (7.37)
are uniquely defined up to constant unitary multipliers u and v:

ϕ1 −→ uϕ1 and ϕ2 −→ ϕ2v,

the preceding analysis shows that the blocks of the mvf A(µ) are defined by
s(λ) up to constant multipliers

a−(µ) −→ ua−(µ), a+(µ) −→ va+(µ),

b−(µ) −→ ub−(µ), b+(µ) −→ vb+(µ),
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i.e., the mvf A(µ) is defined by s(λ) up to a constant block diagonal jpq-
unitary (and unitary) multiplier

A(µ) −→
[

u 0
0 v

]
A(µ). (7.39)

�

Lemma 7.15 Let A ∈ MrsR(jpq) ∪ M�sR(jpq). Then A ∈ L̃m×m
2 .

Proof If A ∈ MrsR(jpq), then there exists an ε ∈ Sp×q such that the mvf

f = TA[ε]

is strictly contractive: ‖f‖∞ = δ < 1. Then, since s21ε ∈ Sq×q and
‖(s21ε)(λ)‖ < 1 for every point λ ∈ C+, the mvf

c = (Iq + s21ε)(Iq − s21ε)−1

belongs to the Carathéodory class Cq×q . Consequently, (Rc) ∈ L̃q×q
1 . Thus,

as

(Rc)(µ)

= {Iq − (s21ε)(µ)∗}−1{Iq − (s21ε)(µ)∗(s21ε)(µ)}{Iq − (s21ε)(µ)}−1

≥ {Iq − (s21ε)(µ)∗}−1{Iq − ε(µ)∗ε(µ)}{Iq − (s21ε)(µ)}−1

= a+(µ)∗{Iq − f(µ)∗f(µ)}a+(µ) ≥ (1 − δ2)a+(µ)∗a+(µ)

= (1 − δ2){Iq − s21(µ)s21(µ)∗}−1

for almost all points µ ∈ R, the asserted result follows from Lemma 7.13 if
A ∈ MrsR(jpq).

If A ∈ M�sR(jpq), then Aτ ∈ MrsR(jpq) and consequently, Aτ ∈ L̃m×m
2 and

hence A ∈ L̃m×m
2 . �

The next theorem clarifies the connection between the class MrR(jpq)
(resp., MrsR(jpq)) and the completely indeterminate (resp., strictly com-
pletely indeterminate) Nehari problems. We begin with three lemmas, which
are of interest in their own right.

Lemma 7.16 MrsR(jpq) ⊂ MrR(jpq) and M�sR(jpq) ⊂ M�R(jpq).

Proof This follows from Lemmas 7.15 and 7.13. �
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Lemma 7.17 Let A1 ∈ Mr(jpq) and let

A2 = A1W, where W ∈ US(jpq). (7.40)

Then A2 ∈ Mr(jpq) and

TA2 [Sp×q ] ⊆ TA1 [Sp×q ]. (7.41)

Conversely, if Aj ∈ Mr(jpq) for j = 1, 2, and (7.41) holds, then (7.40) is in
force.

Proof Let the mvf’s A1 ∈ Mr(jpq), W ∈ US(jpq), A2 = A1W and their PG
transforms have block decompositions

Aj =

[
a

(j)
11 a

(j)
12

a
(j)
21 a

(j)
22

]
Sj =

[
s
(j)
11 s

(j)
12

s
(j)
21 s

(j)
22

]
= PG(Aj), j = 1, 2,

W =
[
w11 w12

w21 w22

]
and S =

[
s11 s12

s21 s22

]
= PG(W ),

respectively. Then the equality

a
(2)
22 = a

(1)
21 w12 + a

(1)
22 w22 = a

(1)
22 {Iq − s

(1)
21 s12}w22 (7.42)

implies that a
(2)
22 ∈ N q×q

out , since

A
(1) ∈ Mr =⇒ a

(1)
22 ∈ N q×q

out , W ∈ US(jpq) =⇒ w22 ∈ N q×q
out

and, in view of Lemma 3.54 and the fact that s
(1)
21 ∈ Sq×p, s12 ∈ Sp×q and

‖s12(λ)‖ < 1 for λ ∈ C+,

Iq − s
(1)
21 s21 ∈ N q×q

out .

Moreover,

a
(2)
12 (µ)∗a(2)

12 (µ) − a
(2)
22 (µ)∗a(2)

22 (µ) = −Iq a.e. on R, (7.43)

since A2(µ) is jpq-unitary a.e. on R. Consequently, a
(2)
22 (µ)−∗

a
(2)
22 (µ)−1 ≤ Iq

a.e. on R, which implies that (a(2)
22 )−1 ∈ Sq×q

out , by the Smirnov maximum
principle. In much the same way, the equality

a
(2)
11 = a

(1)
11 w11 + a

(1)
12 w21 = a

(1)
11 {Ip − s

(1)∗
21 s∗21}w11, (7.44)

which is valid a.e. on R, implies that (a(2)
11 )−# ∈ Sp×p

out . Furthermore,

a
(2)
21 = a

(1)
21 w11 + a

(1)
22 w21 ∈ N q×p

+ ,
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since a
(1)
21 ∈ N q×p

+ , a
(1)
22 ∈ N q×q

+ and W ∈ Nm×n
+ . Moreover, s

(2)
21 ∈ N q×p

+ ,
since s

(2)
21 = −(a(2)

22 )−1a
(2)
21 , a

(2)
21 ∈ N p×p

+ and (a(2)
22 )−1 ∈ Sq×q . The Smirnov

maximum principle and the supplementary inequality

s
(2)
21 (µ)s(2)

21 (µ)∗ ≤ Iq a.e. on R

imply that s
(2)
21 ∈ Sq×p. Thus, A2 ∈ Mr(jpq). Moreover, (7.41) holds because

TA2
[Sp×p] = TA1

[TW [Sp×q ]] and TW [Sp×q ] ⊆ Sp×q .

Conversely, let Aj ∈ M(jpq)r , j = 1, 2, let W = A
−1
1 A2 and assume that

(7.41) holds. Then W (µ) is jpq-unitary a.e. on R and

TW [Sp×q ] ⊆ Sp×q . (7.45)

To prove that W ∈ US(jpq), let Sj = [s(j)
ik ] and S = [sik ] denote the PG

transforms of Aj and W , respectively. Then, since W = PG(S) and S(µ) is
unitary a.e. on R, it is enough to prove that S ∈ Nm×m

+ , s11 ∈ Sp×p
out and

s22 ∈ Sq×q
out .

In view of (7.45), the mvf s12 = TW [0] belongs to Sp×q . Then the equality
(7.42) implies that w22 ∈ N q×q

out and hence that s22 ∈ N q×q
out . Moreover, s22 ∈

Sq×q
out , by the Smirnov maximum principle. In the same way, the equality

(7.44) implies that w#
11 ∈ N p×p

out and then that s11 ∈ Sp×p
out .

To complete the proof of the lemma, it remains to show that s21 ∈ N q×p
+ .

To this end, let 0 < γ < 1 and let u ∈ C
p×q be isometric if p ≥ q and

coisometric if p < q. Then the evaluation

TW [γu] − TW [0] = (w11γu + w12)(w21γu + w22)−1 − w12w
−1
22

= (w11 − w12w
−1
22 w21)γu(w21γu + w−1

22

= (w#
11)

−1γu(w−1
22 w21γu + Iq)−1w−1

22

= s11γu(Iq − s21γu)−1s22

implies that u(Iq − γs21u)−1 ∈ N p×q
+ . Thus, if p ≥ q, then u∗u = Iq , (Iq −

γs21u)−1 ∈ N q×q
+ , and, as

‖(Iq − γs21(µ)u)−1‖ ≤ (1 − γ)−1 a.e. on R,

the Smirnov maximum principle implies that (Iq − γs21u)−1 ∈ Hq×q
∞ . More-

over, the Poisson integral representation of mvf’s in the class Hq×q
∞ implies
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that (Iq − γs21u) ∈ Cq×q , since R (Iq − γs21(µ)u)−1 ≥ 0 a.e. on R. Con-
sequently, s21u ∈ N q×q

+ . Therefore, s21 ∈ N q×p
+ , since u is an arbitrary

isometric p × q matrix.
The case p < q then follows from the identity

u(Iq − γs21u)−1 = (Iq − γus21)−1u. �

Lemma 7.18 Let Aj ∈ Mr(jpq) for j = 1, 2. Then

TA1 [Sp×q ] = TA2 [Sp×q ] (7.46)

if and only if

A1(µ) = A2(µ)W a.e. on R (7.47)

for some constant jpq-unitary matrix W .

Proof If Aj ∈ Mr(jpq) for j = 1, 2 and (7.46) holds, then, by Lemma 7.17,
the identity (7.47) is in force and W±1 ∈ US(jpq). Therefore, W (λ) is jpq-
unitary at all points λ ∈ C+ and hence (as the PG transform of W (λ) is
unitary in C+) must be constant. Conversely, if (7.47) holds, it is readily
seen that (7.46) holds, since

TA1 [Sp×q ] = TA2 [TW [Sp×q ]] and TW [Sp×q ] = Sp×q

when W ∈ Uconst(jpq). �

Lemma 7.19 If A ∈ Mr(jpq) and TA[Sp×q ] = Sp×q, then A(µ) is a constant
jpq-unitary matrix.

Proof The conclusion is immediate from Lemma 7.18 with A1 = A and
A2 = Im . �

Theorem 7.20 Let Γ be a Hankel operator such that the NP (Γ) is com-
pletely indeterminate. Then there exists a mvf A ∈ Mr(jpq) such that

N (Γ) = TA[Sp×q ]. (7.48)

This mvf is defined essentially uniquely by Γ up to a constant jpq-unitary
multiplier on the right and is automatically right regular, i.e., A ∈ MrR(jpq).
Moreover,

A ∈ MrsR(jpq) ⇐⇒ ‖Γ‖ < 1. (7.49)
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Proof A description of the form (7.48) for completely indeterminate NP’s
considered on the circle T was obtained in [AAK68] for the case p = q = 1
and then for arbitrary p and q in [Ad73a]. The asserted uniqueness of the
mvf A ∈ Mr(jpq) in formula (7.48) follows from Lemma 7.18. The fact that
this mvf belongs to the class MrR(jpq) will be established in Theorem 7.22.
The equivalence (7.49) follows from Theorem 7.2. �

Lemma 7.21 Let A ∈ Mr(jpq), ε ∈ Sp×q and let

ϕε
+ = a+ + b+ε and ϕε

− = a− + b−ε#. (7.50)

Then:

(1) ϕε
+ ∈ N q×q

out and (ϕε
−)# ∈ N p×p

out .

(2) ρ−1
ω (ϕε

+)−1 ∈ Hq×q
2 and ρ−1

ω (ϕε#
− )−1 ∈ Hp×p

2 for every point ω ∈ C+.

If A ∈ MrsR(jpq), then also

(3) ρ−1
ω ϕε

+ ∈ Hq×q
2 and ρ−1

ω (ϕε
−)# ∈ Hp×p

2 for every point ω ∈ C+.

Proof Consider s21 = −a
−1
+ b+ for the mvf A ∈ Mr(jpq). Then

ϕε
+ = a+(Iq − s21ε) and (ϕε

−)# = (Ip − εs21)a
#
−

and the statement (1) holds by Lemma 3.54, which is applicable to Iq −s21ε

and Ip − εs21, since s21ε ∈ Sq×q , εs21 ∈ Sp×p and ‖s21(µ)‖ < 1 a.e. on R.
Furthermore, cε(λ) = (Iq + s21(λ)ε(λ))−1 belongs to Cq×q and

ϕε
+(µ)−1ϕε

+(µ)−∗ = cε(µ)a+(µ)a+(µ)−∗cε(µ)∗

= cε(µ)(Iq − s21(µ)s21(µ)∗)cε(µ)∗

≤ cε(µ)(Iq − s21(µ)ε(µ)ε(µ)∗s21(µ)∗)cε(µ)∗

≤ Rcε(µ) a.e. on R.

Thus, as Rcε ∈ L̃q×q
1 , it follows that (ϕε

+)−1 ∈ L̃q×q
1 ∩ N q×q

out and hence, by
the Smirnov maximum principle, that ρ−1

ω (ϕε
+)−1 ∈ Hq×q

2 for every point
ω ∈ C+. The second inclusion in (2) may be checked in much the same way.

Let A ∈ MrsR(jpq). Then A(µ) ∈ L̃m×m
2 by Lemma 7.15. Consequently,

ρ−1
ω ϕε

+ ∈ Lm×m
2 and ρ−1

ω (ϕε
−)# ∈ Lm×m

2 .

Then (3) follows from (1) and the Smirnov maximum principle. �
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Theorem 7.22 Let A ∈ Mr(jpq) and let Γ = Γ(f) for some f ∈ TA[Sp×q ].
Then:

(1) The Hankel operator Γ does not depend upon the choice of f , i.e.,

TA[Sp×q ] ⊆ N (Γ). (7.51)

(2) NP (Γ) is completely indeterminate.

(3) TA[Sp×q ] = N (Γ) if and only if A ∈ MrR(jpq).

(4) A ∈ MrR(jpq) and ‖Γ‖ < 1 if and only if A ∈ MrsR(jpq).

Proof . We have already observed that if f ∈ TA[Sp×q ] and A ∈ Mr(jpq),
then f ∈ Lp×q

∞ and ‖f‖∞ ≤ 1. Let A ∈ Mr(jpq) and let fj = TA[εj ] for
εj ∈ Sp×q , j = 1, 2. Then, invoking the left linear fractional representation
of the mvf f2(µ):

f2(µ) = {ε2(µ)b−(µ)∗ + a−(µ)∗}−1{ε2(µ)a+(µ)∗ + b+(µ)∗}, (7.52)

and the right linear fractional representation of the mvf f1(µ):

f1(µ) = {a−(µ)ε1(µ) + b−(µ)}{b+(µ)ε1(µ) + a+(µ)}−1, (7.53)

it is readily checked that

f2(µ) − f1(µ) = {ε2(µ)b−(µ)∗ + a−(µ)∗}−1

× {ε2(µ) − ε1(µ)}{b+(µ)ε1(µ) + a+(µ)}−1. (7.54)

Then Lemma 7.21 and the Smirnov maximum principle imply that f2−f1 ∈
Hp×q

∞ and consequently, Γ(f2) = Γ(f1). Thus, (1) is proved.
To verify (2), let ε1 = 0p×q in (7.53) and let ε2 = ε be a constant isometric

(resp,. coisometric) matrix if p ≥ q (resp., p < q). Then for η ∈ C
q , η �= 0:

(f2 − f1)η = a
−∗
− (Ip − εs∗21)

−1εa−1
+ η.

Consequently,

(f2(µ) − f1(µ))η = 0 a.e. on R ⇐⇒ εa+(µ)−1η = 0 a.e. on R.

Therefore, it suffices to exhibit a matrix ε ∈ Sp×q
const such that ‖εa−1

+ η‖∞ > 0.
If p ≥ q, then every isometric matrix ε ∈ Cp×q satisfies this condition. If
p < q, then there exists at least one coisometric matrix ε ∈ C

p×q that
satisfies this condition, because otherwise PLa

−1
+ η = 0 a.e. on R for every

orthoprojection ε∗ε = PL onto L ⊆ C
q with dimL = p. But then a

−1
+ (µ)η =

0 a.e. on R. Thus, (2) holds.
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Suppose next that equality holds in (7.51) and let A = A1W , where A1 ∈
Mr(jpq) and W ∈ US(jpq). Then

TA[Sp×p] = TA1
[TW [Sp×q ]] ⊆ TA1

[Sp×q ].

Therefore, by the preceding analysis, TA1
[Sp×q ] ⊆ N (Γ) = TA[Sp×q ]. Conse-

quently, TA1
[Sp×q ] = TA[Sp×q ] and hence, by Lemma 7.18, W ∈ Uconst(jpq),

i.e., A ∈ MrR(jpq).
To verify (3), assume that A ∈ MrR(jpq), f ∈ TA[Sp×q ] and Γ = Γ(f).

Then the NP(Γ) is completely indeterminate and consequently, by Theorem
7.20, there exists a mvf A1 ∈ Mr(jpq) such that TA1

[Sp×q ] = N (Γ). Thus,

TA[Sp×q ] ⊆ TA1
[Sp×q ] = N (Γ)

and hence, by Lemma 7.17, A = A1W for some W ∈ US(jpq). However, as
A ∈ MrR(jpq), it follows that W ∈ Uconst(jpq), and thus

TA[Sp×q ] = N (Γ).

This completes the proof of (3).
Let A ∈ MrsR(jpq). Then A ∈ MrR(jpq) by Lemma 7.16. Moreover, there

exists a mvf f ∈ TA[Sp×q ] with ‖f‖∞ < 1 and, consequently, ‖Γ(f)‖ < 1,
since ‖Γ(f)‖ ≤ ‖f‖∞. Conversely, if A ∈ MrR(jpq) and ‖Γ(f)‖ < 1, for
some f ∈ TA[Sp×q ], then TA[Sp×q ] = N (Γ(f)) and hence A ∈ MrsR(jpq) by
Theorem 7.20. Thus, (4) is proved. �

Theorem 7.23 If A ∈ Mr(jpq) and the mvf s12 is defined by the first formula
in (7.28), then:

A ∈ MrsR(jpq) ⇐⇒ ‖Γ(s12)‖ < 1 and at least one (and hence each)

of the five conditions considered in Lemma 7.13 holds.
If A ∈ M�(jpq) and the mvf s21 is defined by the second formula in (7.28),
then:

A ∈ MrsR(jpq) ⇐⇒ ‖Γ(s21)‖ < 1 and at least one (and hence each)

of the five conditions considered in Lemma 7.13 holds.

Proof If A ∈ MrR(jpq) then the implication =⇒ follows from Theorem
7.22 and Lemma 7.15, whereas the implication ⇐= follows from the same
theorem and Lemma 7.13.
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The proof of the case A ∈ Ml(jpq) then follows from the equivalence

A ∈ MlsR(jpq) ⇐⇒ A
τ ∈ MrsR(jpq). �

Theorem 7.24 Every mvf A ∈ Mr(jpq) admits a factorization

A = A1A2, with A1 ∈ MrR(jpq) and A2 ∈ US(jpq) (7.55)

that is unique up to constant jpq-unitary multipliers:

A1 −→ A1V and A2 −→ V −1
A2 with V ∈ Uconst(jpq). (7.56)

Proof Let A ∈ Mr(jpq) and consider f ∈ TA[Sp×q ] and Γ = Γ(f). Then, by
Theorems 7.22 and 7.20, the NP(Γ) is completely indeterminate and there
exists a mvf A1 ∈ MrR(jpq) such that

TA[Sp×q ] ⊆ N (Γ) = TA1
[Sp×q ].

Moreover, by Lemma 7.17, A admits a factorization of the form (7.55), which
is unique up to the transformations (7.56), by Theorem 7.20. �

The next theorem establishes a connection between the classes Mr(jpq),
MrR(jpq), MrsR(jpq) and the classes U(jpq), UrR(jpq), UrsR(jpq), respectively.

Lemma 7.25 If A ∈ Mr(jpq), then

TA[0] ∈ Πp×q ⇐⇒ T �
A

[0] ∈ Πq×p ⇐⇒ A ∈ Πm×m.

Proof Let s = s21 ∈ Πq×p. Then, by Theorem 3.110, the equalities in (7.33)–
(7.35) imply that the outer mvf’s a

#
− and a+ belong to the classes Πp×p and

Πq×q , respectively. Thus, a− ∈ Πp×p, s#
21 ∈ Πp×q and, as b+ = −a+s21, it

follows that b+ ∈ Πq×p and b− ∈ Πp×q . Therefore, A ∈ Πm×m . In much the
same way, the identities

Ip − f12(µ)f12(µ)∗ = a−(µ)−∗a−(µ)−1,

Iq − f12(µ)∗f12(µ) = a+(µ)−∗a+(µ)−1,

b− = f12a+ and b+ = f∗
12a−

for f12 = TA[0], imply that A ∈ Πm×m when f12 ∈ Πp×q . The remaining
implications are self-evident. �

We recall that a denominator of a mvf f ∈ N p×q is a pair {b1, b2} of mvf’s
such that b1 ∈ Sp×p

in , b2 ∈ Sq×q
in and b1fb2 ∈ N p×q

+ . The set of denominators
of f is denoted den f .
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Theorem 7.26 Let A ∈ Π ∩ Mr(jpq), {b1, b2} ∈ denTA[0] and let

W (µ) =
[

b1(µ) 0
0 b2(µ)−1

]
A(µ) a.e. on R. (7.57)

Then

W ∈ U(jpq) and {b1, b2} ∈ ap(W ). (7.58)

Conversely, if (7.58) holds and the mvf A is defined by formula (7.57), then
A ∈ Π ∩ Mr(jpq) and {b1, b2} ∈ denTA[0].

Proof Let A ∈ Π ∩ Mr(jpq), let {b1, b2} ∈ denTA[0] and let W be defined
by formula (7.57). Then W is jpq-unitary a.e on R and hence S = PG(W )
is unitary a.e. on R. Next, to show that S ∈ Sm×m

in , let

S = PG(W ) =
[
s11 s12

s21 s22

]
and A =

[
a11 a12

a21 a22

]
;

and recall that, in view of the Smirnov maximum principle, it is enough
to check that S ∈ Nm×m

+ . To this point, we know that s12 ∈ N p×q
+ , since

s12 = b1TA[0]b2 and {b1, b2} ∈ denTA[0]. Furthermore, s22 ∈ Sq×q , since
s22 = a

−1
22 b2 and a

−1
22 ∈ Sq×q

out ; s11 ∈ Sp×p, since s11 = b1(a
#
11)

−1 and (a#
11)

−1 ∈
Sp×p

out ; and s21 = −a
−1
22 a21 ∈ Sq×p. Thus, W ∈ U(jpq) and {b1, b2} ∈ ap(W ).

The converse assertion follows from the definitions of the set ap(W ), the
class Mr(jpq) and the equality TW [0] = b1TA[0]b2. �

Theorem 7.26 yields a one to one correspondence between the class of
mvf’s W ∈ U(jpq) with a given associated pair {b1, b2} ∈ ap(W ) and the
class of mvf’s A ∈ Π ∩ Mr(jpq) with {b1, b2} ∈ denTA[0].

Theorem 7.27 If the mvf’s A ∈ Π∩Mr(jpq) and W ∈ U(jpq) are connected
by formula (7.57), then

A ∈ MrR(jpq) ⇐⇒ W ∈ UrR(jpq) (7.59)

and

A ∈ MrsR(jpq) ⇐⇒ W ∈ UrsR(jpq). (7.60)

Proof Let A ∈ MrR(jpg) and let W ∈ U(jpq) be connected with A by
relation (7.57). Let W = W1W2, where W1 ∈ U(jpq), W2 ∈ US(jpq). Then
{b1, b2} ∈ ap(W1) by Theorem 4.94, and hence, if

A1 =
[

b−1
1 0
0 b2

]
W1, then A1 ∈ Mr(jpq).
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Therefore,

A = A1W2, where A1 ∈ Mr(jpq) and W2 ∈ US(jpq).

Consequently, W2 is a constant matrix, since A ∈ MrR(jpq). Thus, W ∈
UrR(jpq).

Conversely, if W ∈ UrR(jpq), {b1, b2} ∈ ap(W ) and (7.57) holds for some
mvf A ∈ Mr(jpq), then A = A1W2, with A1 ∈ MrR(jpq) and W2 ∈ US(jpq),
and

W =
[
b1 0
0 b−1

2

]
A1W2.

Thus, as

TA[Sp×q ] ⊆ TA1 [S
p×q ],

it follows that

f − f12 ∈ Hp×q
∞ for every f ∈ TA1 [S

p×q ].

Consequently, {b1, b2} ∈ denf for every f ∈ TA1 [S
p×q ]. In particular,

{b1, b2} ∈ denf0, where f0 = TA1 [0p×q ] and

W1 =
[

b1 0
0 b−1

2

]
A1 ∈ U(jpq) and W = W1W2.

Thus, W2(λ) is constant, since W ∈ UrR(jpq). Moreover, since f ∈
TA1

[Sp×q ] ⇐⇒ b1fb2 ∈ TW [Sp×q ], (7.60) follows from Lemma 7.16, (7.59),
Theorem 7.22, and the fact that ‖f‖∞ < 1 if and only if ‖b1fb2‖∞ < 1. �

Theorem 7.28 If W ∈ U(jpq), then the following conditions are equivalent:

(1) W ∈ Lm×m
∞ .

(2) TW [0] ∈ S̊p×q.

(3) T �
W [0] ∈ S̊q×p.

(4) TW [Sp×q
const] ∩ S̊p×q �= ∅.

(5) TW [S̊p×q ] ⊆ S̊p×q.

Proof This follows from Theorem 7.26 and Lemma 7.11. �

Corollary 7.29 U(J) ∩ Lm×m
∞ ⊆ UrsR(J) ∩ U�sR(J).
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Proof If J �= ±Im, then U is unitarily equivalent to a mvf W ∈ U(jpq) and
then, since U ∈ UrsR(J) ⇐⇒ W ∈ UrsR(jpq) and U ∈ U�sR(J) ⇐⇒ W ∈
U�sR(jpq), the assertion follows from Theorem 7.28. If J = ±Im , then the
assertion is true by definition. �

Theorem 7.30 Let A ∈ U(Jp). Then the following conditions are equivalent:

(1) A ∈ Lm×m
∞ .

(2) TA[Ip] ∈ C̊p×p.

(3) TA∼ [Ip] ∈ C̊p×p.

(4) TA[Cp×p
const] ∩ C̊p×p �= ∅.

(5) TA[C̊p×p] ⊆ C̊p×p.

Proof The assertions follow from the fact that C̊p×p = TV[S̊p×p] and that
A ∈ U(Jp) ⇐⇒ VAV ∈ U(jp). �

Examples to show that the inclusions Mr(jp) ∩ Lm×m
∞ ⊆ MrsR(jp) and

Ur(jp) ∩ Lm×m
∞ ⊆ UrsR(jp) are proper when p = 1 will be presented in

Section 10.4.

7.3 Criteria for right regularity

Lemma 7.14 yields a parametrization of the mvf’s A ∈ Mr(jpq). If q = p,
then a second parametrization of the mvf’s A ∈ Mr(jp) may be obtained by
setting

c = TV[s], where s = s21 = −a
−1
22 a21. (7.61)

Then c ∈ Cp×p and the second condition in (7.31) is equivalent to the re-
quirement that

ln det (Rc) ∈ L̃1. (7.62)

Let

∆(µ) = 2{c(µ) + c(µ)∗}−1 a.e. on R. (7.63)

Since Rc ∈ L̃p×p
1 when c ∈ Cp×p, Theorem 3.78 guarantees that there exist

essentially unique solutions of the factorization problems

∆(µ) = ϕ−(µ)∗ϕ−(µ) and ∆(µ) = ϕ+(µ)∗ϕ+(µ) (7.64)
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such that (ρiϕ
#
−)−1 and (ρiϕ+)−1 are outer mvf’s in Hp×p

2 . Then

A(µ) =
1
2

[
ϕ−(µ){Ip + c(µ)∗} −ϕ−(µ){Ip − c(µ)∗}
−ϕ+(µ){Ip − c(µ)} ϕ+(µ){Ip + c(µ)}

]
a.e. on R (7.65)

and every mvf A ∈ Mr(jp) may be parametrized by this formula, up to a
constant block diagonal unitary factor on the left; (7.65) may be obtained
from (7.32) and the formulas (7.33)–(7.35), (7.61), (7.63) and (7.64).

Our next objective is to obtain a new factorization of mvf’s A ∈ Mr(jp)
that is based on the parametrization formula (7.65) and the Riesz-Herglotz
integral representation formula for the mvf’s c ∈ Cp×p, which yields the
decomposition (3.14)–(3.16).

Theorem 7.31 Let A ∈ Mr(jp) be parametrized by formula (7.65) and let
the mvf c(λ) ∈ Cp×p considered in this formula be expressed in the form
(3.14). Then the formula for A(µ) can be reexpressed in the following equiv-
alent ways:

A(µ) = Aa(µ) +
1
2

[
ϕ−(µ)cs(µ)∗ ϕ−(µ)cs(µ)∗

ϕ+(µ)cs(µ) ϕ+(µ)cs(µ)

]
, (7.66)

A(µ) = Aa(µ) +
1
2

[
−ϕ−(µ)cs(µ) −ϕ−(µ)cs(µ)

ϕ+(µ)cs(µ) ϕ+(µ)cs(µ)

]
(7.67)

and

A(µ) = Aa(µ)As(µ), (7.68)

where

Aa(µ) =
1
2

[
ϕ−(µ){Ip + ca(µ)∗} −ϕ−(µ){Ip − ca(µ)∗}
−ϕ+(µ){Ip − ca(µ)} ϕ+(µ){Ip + ca(µ)}

]
(7.69)

and

As(µ) =

[
Ip 0

0 Ip

]
+

1
2

[
−cs(µ) −cs(µ)

cs(µ) cs(µ)

]
(7.70)

a.e. on R. Moreover, Aa ∈ Mr(jp) and As ∈ US(jp).

Proof This is an immediate consequence of the stated formulas and the fact
that cs(µ) = −cs(µ)∗ a.e. on R. �
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Corollary 7.32 The class Uconst(jp) is parametrized by the formulas

A = AaAs, (7.71)

Aa =

 u 0

0 v

 (δ
1
2 + δ−

1
2 )/2 −(δ

1
2 − δ−

1
2 )/2

−(δ
1
2 − δ−

1
2 )/2 (δ

1
2 + δ

1
2 )/2

 (7.72)

and

As =

[
Ip − iγ −iγ

iγ Ip + iγ

]
, (7.73)

where u, v, δ and γ are arbitrary p × p matrices such that

u∗u = v∗v = Ip, δ > 0 and γ∗ = γ. (7.74)

Proof The class of mvf’s A ∈ Mr(jpq) which are constant on R coincides
with the class of constant jpq-unitary matrices. Therefore the sought for
parametrization can be obtained by specializing formulas (7.69) and (7.70)
to the case where A(µ) is constant. In particular, this assumption implies
that ϕ−(µ), ϕ+(µ), ∆(µ), ca(µ) and cs(µ) are all constant. Upon setting

∆(µ) = δ > 0,

it follows that

ϕ−(µ) = uδ
1
2 , ϕ+(µ) = vδ

1
2 , ca(µ) = δ−1 and cs(µ) = i2γ,

where u, v, δ and γ are subject to (7.74). The rest is immediate from formulas
(7.68)–(7.70). �

Let g(µ) be a p × p measurable mvf that is unitary a.e. on R and admits
a factorization of the form

g(µ) = ψ−(µ)ψ+(µ)−1, (7.75)

where

ρ−1
ω (ψ#

− )−1 ∈ Hp×p
2 and ρ−1

ω ψ−1
+ ∈ Hp×p

2 (7.76)

for at least one (and hence every) point ω ∈ Ω+. Then we shall say that
index{g} = 0 if for any other pair of mvf’s ψ̃−, ψ̃+ with the properties
(7.75) and (7.76) the equalities

ψ̃−(µ) = ψ−(µ)κ and ψ̃+(µ) = ψ+(µ)κ (7.77)

hold a.e. on R for some invertible constant p × p matrix κ.
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We remark that this automatically forces ψ#
− (λ) and ψ+(λ) to be outer

mvf’s.

Theorem 7.33 Let A ∈ Mr(jp) be expressed in the form

A(µ) = Aa(µ)As(µ)

considered in Theorem 7.31 and let

c(λ) = ca(λ) + cs(λ) (7.78)

be defined by formula (7.61). Then the following statements are equivalent:

(1) A ∈ MrR(jp).

(2) Aa ∈ MrR(jp) and As(µ) is constant.

(3) index{TA[Ip]} = 0 and As(µ) is constant.

(4) index{TA[Ip]} = 0 and cs(λ) is constant.

(5) index{TA[ε]} = 0 for every constant unitary p×p matrix ε and As(µ)
is constant.

Proof The implications (1) ⇐⇒ (2), (3) ⇐⇒ (4) and (5) =⇒ (3) are self-
evident; (1) =⇒ (5) is established in [AAK68] for p = 1 and in [Ad73a] for
p > 1. Finally, (3) =⇒ (2), by Theorem 5.4 of [ArD01b]. �

Theorem 7.33 is not directly applicable to mvf’s A ∈ MrR(jpq) when
p �= q. The next two lemmas present two different ways of embedding a
mvf A ∈ MrR(jpq) into a mvf A1 ∈ MrR(jp1 ) with the property that A ∈
MrR(jpq) ⇐⇒ A1 ∈ MrR(jp1 ).

Lemma 7.34 Let

A =
[

a− b−
b+ a+

]
∈ Mr(jpq) (7.79)

and, supposing that p �= q, let

k = |p − q|, p◦ = max{p, q}

and

A
◦ =

[
a◦− b◦−
b◦+ a◦+

]
, (7.80)
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where

a◦− = a−, b◦− = [0p×k b−],

b◦+ =
[

0k×p

b+

]
, a◦+ =

[
Ik 0
0 a+

]  if p > q (7.81)

and

a◦− =
[

a− 0
0 Ik

]
, b◦− =

[
0k×q

b−

]
b◦+ = [0q×k b+], a0

+ = a+

 if p < q. (7.82)

Then

(1) A◦ ∈ Mr(jp◦).

(2) A ∈ MrR(jpq) if and only if A◦ ∈ MrR(jp◦).

(3) A ∈ MrsR(jpq) if and only if A◦ ∈ MrsR(jp◦).

Proof Suppose first that p > q. Then it is readily checked that the identities

(a◦−)∗a◦− − (b◦+)∗b◦+ = a∗−a− − b∗+b+ = Ip,

(a◦−)∗b◦− − (b◦+)∗a◦+ = 0 and

(b◦−)∗b◦− − (a◦+)∗a◦+ =
[
−Ik 0k×q

0q×k b∗−b− − a∗+a+

]
= −Ip

hold a.e. on R and hence that A◦ is jp-unitary a.e. on R. Moreover, as the
blocks a◦± and b◦± of A◦ inherit the properties (7.23) and (7.24) from the
blocks a± and b± of A, it follows that A◦ ∈ Mr(jp).

Next, to prove (2), let

s = TA[0p×q ], s◦ = TA
◦ [0p×p], Γ = Γ(s) and Γ◦ = Γ(s◦). (7.83)

Then, in view of Theorem 7.22, it suffices to show that

(a) A◦ ∈ MrR(jp) =⇒ N (Γ) ⊆ TA[Sp×q ]

and

(b) A ∈ MrR(jpq) =⇒ N (Γ◦) ⊆ TA
◦ [Sp×p].

We first focus on the case p > q. To establish (a), let A◦ ∈ MrR(jp) and
f ∈ N (Γ). Then, since f◦ = [0p×k f ] belongs to N (Γ◦), f◦ = TA

◦ [ε◦] for
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some ε◦ ∈ Sp×p, by Theorem 7.22. A direct calculation based on the block
decomposition ε◦ = [ε1 ε] with ε1 ∈ Sp×k and ε ∈ Sp×q yields the formula

TA
◦ [ε◦] = [(a− − TA[ ε ] b+)ε1 TA[ε] ]. (7.84)

Thus, f = TA[ε] belongs to TA[Sp×q ], as claimed.
Next, to establish (b), let A ∈ MrR(jpq) and f◦ ∈ N (Γ◦). Then f◦ =

[f1 f ] where f ∈ N (Γ), f1 ∈ Sp×k and ‖f◦‖∞ ≤ 1. Therefore since N (Γ) =
TA[Sp×q ] by Theorem 7.22, f = TA[ ε ] for some ε ∈ Sp×q . Let

ε◦ = T
(A◦)−1 [f◦ ].

Then ‖ε◦‖∞ ≤ 1 and, in terms of the block decomposition

ε◦ = [ε1 ε] and f◦ = [f1 f ] = TA
◦ [ε◦] = [(a− − fb+)ε1 f ].

Thus, (a− − fb+)ε1 = f1 ∈ Sp×k. But, with the aid of the formula

f = TA[ ε ] = (εb∗− + a∗−)−1 (εa∗+ + b∗+), (7.85)

it is readily checked that a− − fb+ = (εb∗− + a∗−)−1 and hence that

ε1(µ) = {ε(µ)b−(µ)∗ + a−(µ)∗}f1(µ) a.e. on R.

Consequently, ε◦ ∈ N p×p
+ and, as it also meets the bound

‖ε◦(µ)‖ ≤ 1 a.e on R,

the Smirnov maximum principle guarantees that ε◦ ∈ Sp×p. This completes
the proof of (b) and assertion (2) for the case p > q. The verification of (2)
for the case p < q is similar and is left to the reader.

Finally, assertion (3) follows from (2) and Theorem 7.22 and the fact that
‖Γ◦‖ = ‖Γ‖. �

Remark 7.35 In view of Lemma 7.34, Theorem 7.33 applied to the mvf A◦

yields a number of equivalent conditions for A ∈ MrR(jpq) even if p �= q.

Another useful embedding of the mvf A ∈ Mr(jpq) is described below.

Lemma 7.36 Let A ∈ Mr(jpq), m = p + q and define the 2m × 2m mvf

Ã(µ) =

[
ã−(µ) b̃−(µ)

b̃+(µ) ã+(µ)

]
, (7.86)
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where

ã− =
[

a− 0
0 Iq

]
, b̃− =

[
0p×p b−
0q×p 0q×q

]
,

b̃+ =
[

0p×p 0p×q

b+ 0q×q

]
, ã+ =

[
Ip 0
0 a+

]
,

(7.87)

and a± and b± are the blocks of A, considered in (7.79). Then:

(1) Ã ∈ Mr(jm).

(2) A ∈ MrR(jpq) if and only if Ã ∈ MrR(jm).

(3) A ∈ MrsR(jpq) if and only if Ã ∈ MrsR(jm).

Proof A straightforward calculation yields the identities

Ã
∗
jmÃ =


a∗−a− − b∗+b+ 0 0 a∗−b− − b∗+a+

0 Iq 0 0
0 0 −Ip 0

b∗−a− − a∗+b+ 0 0 b∗−b− − a∗+a+


= jm a.e on R,

where the variable µ has been supressed to save space. Therefore, since
(ã#

−)−1 ∈ Sm×m
out , (ã+)−1 ∈ Sm×m

out and ã
−1
+ b̃ ∈ Sm×m , (1) is established.

Next, let

Γ = Γ(f0) and Γ̃ = Γ(f̃0), (7.88)

where

f0 = TA[0p×q ] and f̃0 = T
Ã

[0m×m ]. (7.89)

Then

f̃0 =
[

0p×p f0

0q×p 0q×q

]
and Γ̃ =

[
0 Γ
0 0

]
(7.90)

and hence

‖Γ̃‖ = ‖Γ‖.

Thus, in view of Theorem 7.22, (3) follows from (2).
The verification of (2) rests on Theorem 7.22 and the observation that if

ε̃ =
[

ε11 ε12

ε21 ε22

]
(7.91)
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is the four block decomposition of a mvf ε̃ ∈ Lm×m
∞ with ‖ε̃‖∞ ≤ 1 and

diagonal blocks of sizes p × p and q × q, respectively, then, with the help of
formulas (7.87) and (2.27), the mvf

f̃ = T
Ã

[ε̃] =
[

a−ε11 a−ε12 + b−
ε21 ε22

] [
Ip 0p×q

b+ε11 b+ε12 + a+

]−1

(7.92)

can be reduced to

f̃ =
[

(ε12b
∗
− + a∗−)−1ε11 TA[ε12]

ε21 − ε22(b+ε12 + a+)−1b+ε11 ε22(b+ε12 + a+)−1

]
.

To establish (2), suppose first that A ∈ MrR(jpq) and let f̃ ∈ F(Γ̃). Then,
in view of (7.25),

f̃ =
[

f11 f

f21 f22

]
,

where f11 ∈ Sp×p, f21 ∈ Sq×p, f22 ∈ Sq×q and f ∈ N (Γ). Therefore, by
Theorem 7.22, there exists a mvf ε ∈ Sp×q such that f = TA[ε]. Moreover,

ε̃ = T
(Ã)

−1 [f̃ ] belongs to Lm×m
∞ and ‖ε̃‖∞ ≤ 1.

Therefore, since f = TA[ε] for some ε ∈ Sp×q , it follows from the two block
decompositions of f̃ that TA[ε] = TA[ε12] and hence that ε = ε12. Thus,
ε12 ∈ Sp×q and ε11 = (εa#

− + b
#
−)f11 ∈ N p×p

+ , ε22 = f22(b+ε + a+) ∈ N q×q
+

and ε21 = f21 + ε22(b+ε12 + a+)−1b+ε11 ∈ N q×p
+ . Therefore, by the Smirnov

maximum principle, ε̃ ∈ Sm×m . Thus, f̃ ∈ T
Ã

[Sm×m ] and consequently, by
Theorem 7.22, Ã ∈ MrR(jm).

To establish the converse, let Ã ∈ MrR(jm), f ∈ N (Γ) and set

f̃ =
[

0p×p f

0q×p 0q×q

]
. (7.93)

Then, since f ∈ N (Γ), Theorem 7.22 guarantees that f̃ = T
Ã

[ε̃] for some
mvf ε̃ ∈ Sm×m . Thus, upon invoking the four block decomposition (7.91) of
ε̃ and comparing formulas (7.92) and (7.93), it follows that f = TA[ε12] with
ε12 ∈ Sp×q (and ε11 = 0p×p, ε21 = 0q×p and ε22 = 0q×q). Thus, Theorem
7.22 guarantees that A ∈ MrR(jpq). �

Lemma 7.37 Let A ∈ Mr(jpq) be given by formula (7.79), let Ã be defined
by formulas(7.86) and (7.87) and set

c̃ = (Im − s̃)(Im + s̃)−1, where s̃ = −ã
−1
+ b̃+ (7.94)
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then c̃ ∈ Cm×m∩Hm×m
∞ (and, consequently, its spectral function is absolutely

continuous, i.e., the component c̃s of c̃ in the decomposition (7.78) with c̃ in
place of c is a constant m × m matrix).

Proof In view of formula (7.87),

s̃ = −ã
−1
+ b̃+ =

[
0p×p 0p×q

s 0q×q

]
, where s = −a

−1
+ b+ ∈ Sq×p.

Consequently,

c̃ =
[

Ip 0
−s Iq

] [
Ip 0
s Iq

]−1

=
[

Ip 0
−2s Iq

]
belongs to Hm×m

∞ . �

Theorem 7.38 Let A ∈ Mr(jpq) be given by formula (7.79) and let
Ã ∈ Mr(jm) be defined by formulas (7.86) and (7.87). Then the following
assertions are equivalent:

(1) A ∈ MrR(jpq).

(2) index {T
Ã

[Im ]} = 0.

(3) index {T̃
Ã

[ ε̃ ]} = 0 for every constant unitary m × m matrix ε̃.

Proof The theorem follows from Lemmas 7.36 and 7.37 and Theorem 7.33
applied to the mvf Ã(µ). �

Lemma 7.39 Let A ∈ Mr(jpq) be given by formula (7.32), let Ã be defined
by formulas (7.86) and (7.87), let ∆r(µ) be defined by formula (7.29) and
let g̃ = T

Ã
[Im ]. Then:

(1)

∆r(µ)−1 = ψ̃+(µ)∗ψ̃+(µ) = ψ̃−(µ)∗ψ̃−(µ), (7.95)

where

ψ̃+ =
[

Ip 0
b+(µ) a+(µ)

]
jpq and (7.96)

ψ̃−(µ) =
[

a−(µ) b−(µ)
0 Iq

]
jpq (7.97)
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(2) g̃ = ψ̃−ψ̃−1
+ .

(3) ψ̃−1
+ ∈ Hm×m

∞ and (ψ̃#
− )−1 ∈ Hm×m

∞ .

(4) If ∆−1
r ∈ L̃m×m

1 , then ψ̃+
ρi

∈ Hm×m
2 ,

ψ̃#
−

ρi
∈ Hm×m

2 , index g̃ = 0, and
A ∈ MrR(jpq).

Proof (1)–(3) and the first two assertions of (4) are easy; the last two follow
from Lemma 7.13 and Theorem 7.38. �

7.4 Criteria for left regularity

The following dual versions of Lemma 7.14 and Theorems 7.26 and 7.27 are
useful.

Lemma 7.40 Let

A ∈ M�(jpq) and s = TA[0]. (7.98)

Then

s ∈ Sp×q and ln det {Ip − ss∗} ∈ L̃1. (7.99)

Conversely, if a mvf s meets the conditions in (7.99), then there exists a
mvf A such that (7.98) holds. Moreover, this mvf is uniquely defined up to
a constant block diagonal jpq-unitary matrix multiplier on the right by the
formula

A(µ) = ∆�(µ)
[

d−(µ) 0
0 d+(µ)

]
a.e. on R, (7.100)

where ∆� is defined by formula (7.29) with s12 = s and the mvf’s d− and
d+ are solutions of the factorization problems

d−(µ)−∗d−(µ)−1 = Ip − s(µ)s(µ)∗ a.e. on R, d
−#
− ∈ Sp×p

out , (7.101)

and

d+(µ)−∗d+(µ)−1 = Iq − s(µ)∗s(µ) a.e. on R, d
−1
+ ∈ Sq×q

out , (7.102)

respectively.
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Theorem 7.41 Let A ∈ Π ∩ M�(jpq), {b5, b6} ∈ denT �
A

[0q×p] and let

W (λ) = A(λ)
[

b5(λ) 0
0 b6(λ)−1

]
. (7.103)

Then

W ∈ U(jpq) and {b∼5 , b∼6 } ∈ ap(W∼). (7.104)

Conversely, if (7.104) is in force and the mvf A(λ) is defined by formula
(7.103), then A ∈ Π ∩ M�(jpq) and {b5, b6} ∈ den T �

A
[0q×p].

Theorem 7.42 Let the mvf’s W ∈ U(jpq) and A ∈ Π∩M�(jpq) be connected
by formula (7.103). Then

W ∈ U�R(jpq) ⇐⇒ A ∈ M�R(jpq)

W ∈ U�sR(jpq) ⇐⇒ A ∈ M�sR(jpq).

Dual versions of the parametrization formula (7.65) and the factorization
formula (7.68) for mvf’s A ∈ M�(jp) exist. They are based on the decompo-
sition

z(λ) = zs(λ) + za(λ)

of the mvf z = TVA[0p×p] into components zs ∈ Cp×p
sing and za ∈ Cp×p

a with
za(i) > 0. Additional information on dual formulas is furnished on pp. 284–
289 of [ArD01b].

7.5 Formulas for A when ‖Γ‖ < 1

Lemma 7.43 If A ∈ Mr(jpq) and ω ∈ C+, then A admits a unique factor-
ization of the form

A(µ) = A
◦
ω(µ)Vω, (7.105)

where Vω ∈ Uconst(jpq) and A◦
ω ∈ Mr(jpq) is normalized by the conditions

a◦−(ω) > 0, b◦−(ω) = 0, b◦+(ω) = 0 and a◦+(ω) > 0. (7.106)
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Proof If the matrix V −1
ω is expressed in terms of the parameters k ∈

Sp×q
const, u ∈ Uconst(Ip) and v ∈ Uconst(Iq) in (2.19), then (7.105) is equiv-

alent to the system of equations

a
◦
− = (a− + b−k∗)(Ip − kk∗)−

1
2 u, b◦− = (a−k + b−)(Iq − k∗k)−

1
2 v

b◦+ = (b+ + a+k∗)(Ip − kk∗)−
1
2 u, a◦+ = (b+k + a+)(Iq − k∗k)−

1
2 v.

Moreover, since A ∈ Mr(jpq),

s21 = −a
−1
+ b+ = −b

#
−(a#

−)−1 belongs to Sq×p (7.107)

and ‖s21(ω)‖ < 1 for every point ω ∈ C+. Thus,

b◦+(ω) = 0 ⇐⇒ b◦−(ω) = 0 ⇐⇒ k = s21(ω)∗,

and hence, if k = −s21(ω)∗, then

a◦−(ω) = a−(ω)(Ip − kk∗)
1
2 u and a◦+(ω) = a+(ω)(Iq − k∗k)

1
2 v.

Thus, as u and v are unitary matrices, a◦−(ω) > 0 and a◦+(ω) > 0 if and only
if

a
◦
−(ω) = {a−(ω)(Ip − kk∗)a−(ω)∗} 1

2 ,

a◦+(ω) = {a+(ω)(Iq − k∗k)a+(ω)∗} 1
2 ,

u = (Ip − kk∗)−
1
2 a−(ω)−1a◦−(ω) and

v = (Iq − k∗k)−
1
2 a+(ω)−1a◦+(ω).

�

Remark 7.44 If there is a point ω ∈ R ∩ hU , then A(ω) ∈ Uconst(jpq) and
A admits a factorization of the form (7.105) with Vω = A(ω) and A◦

ω = Im.

If Γ is a Hankel operator from Hq
2 into Kp

2 , then Γ and Γ∗ will be defined
on mvf’s h = [h2 · · ·h�] in Hq×�

2 and [g1 · · · gk ] in Kp×k
2 column by column,

i.e., by the rules

Γ[h1 · · · h�] = [Γh1 · · · Γh�]

and

Γ∗[g1 · · · gk ] = [Γ∗g1 · · · Γ∗gk ].
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Correspondingly, I − Γ∗Γ and I − ΓΓ∗ act on mvf’s in Hq×q
2 and Kp×p

2 by
the rules

(I − Γ∗Γ)[h1 · · · hq ] = [(I − Γ∗Γ)h1 · · · (I − Γ∗Γ)hq ]

and

(I − ΓΓ∗)[g1 · · · gp] = [(I − Γ∗Γ)g1 · · · (I − ΓΓ∗)gp].

Theorem 7.45 If the NP (Γ) is strictly completely indeterminate, i.e, if
‖Γ‖ < 1, then

N (Γ) = TA
◦
ω
[Sp×q ], (7.108)

where A◦
ω ∈ MrsR(jpq) is normalized at the point ω ∈ C+ by the conditions

(7.106) and its blocks are uniquely specified by the formulas

a◦+(µ) = ρω(µ){(I − Γ∗Γ)−1ρ−1
ω Iq}(µ)αω, (7.109)

b
◦
+(µ) = ρω(µ){Γ∗(I − ΓΓ∗)−1ρ−1

ω Ip}(µ)βω, (7.110)

b
◦
−(µ) = ρω(µ){Γ(I − Γ∗Γ)−1ρ−1

ω Iq}(µ)αω, (7.111)

a◦−(µ) = ρω(µ){(I − ΓΓ∗)−1ρ−1
ω Ip}(µ)βω, (7.112)

where

αω = {ρω(ω)((I − Γ∗Γ)−1ρ−1
ω Iq)(ω)}−1/2 (7.113)

and

βω = {ρω(ω)((I − ΓΓ∗)−1ρ−1
ω Ip)(ω)}−1/2. (7.114)

Proof Theorem 7.20 and Lemma 7.43 guarantee the existence of a nor-
malized mvf A◦

ω ∈ MrsR(jpq) such that (7.105) holds. Moreover, since
A◦

ω ∈ L̃m×m by Lemma 7.15, the Smirnov maximum principle implies that

ρ−1
ω a◦+ ∈ Hq×q

2 and ρ−1
ω b◦+ ∈ Hq×p

2 ,

and, by consideration of (ρ−1
ω a◦−)# and (ρ−1

ω b◦−)#, that

ρ−1
ω a◦− ∈ Kp×p

2 and ρ−1
ω b◦− ∈ Kp×q

2 .

Let

fε = TA
◦
ω
[ε] for ε ∈ Sp×q .
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Then

Γρ−1
ω (b◦+ε + a◦+) = Π−fερ

−1
ω (b◦+ε + a◦+) = Π−ρ−1

ω (a◦−ε + b◦−).

Therefore,

Γρ−1
ω a◦+ = Π−ρ−1

ω b◦− = ρ−1
ω b◦−, (7.115)

since b◦−(ω) = 0, and

Γρ−1
ω b

◦
+ = ρ−1

ω {a◦− − a
◦
−(ω)}. (7.116)

Moreover, since A◦
ω is jpq-unitary a.e. on R,

fε = (ε(b◦−)∗ + (a◦−)∗)−1(ε(a◦+)∗ + (b◦+)∗).

Therefore,

f∗
ε = (a◦+ε∗ + b◦+)(b◦−ε∗ + a◦−)−1

and

Γ∗ρ−1
ω (b◦−ε∗ + a◦−) = Π+ρ−1

ω f∗
ε (b◦−ε∗ + a◦−)−1 = Π+ρ−1

ω (a◦+ε∗ + b◦+)

and hence

Γ∗ρ−1
ω a◦− = ρ−1

ω b◦+, (7.117)

since b◦+(ω) = 0, and

Γ∗ρ−1
ω b◦− = ρ−1

ω (a◦+ − a◦+(ω)). (7.118)

Thus, as

ρω(λ)/ρω(λ) = bω(λ) =
λ − ω

λ − ω
= 1 +

ω − ω

λ − ω
= 1 − 2πi(ω − ω)

ρω(λ)
,

and

Π+bωΠ−f∗
ε ρ−1

ω b◦− = ρ−1
ω c

with c ∈ C
q×q
2 , it follows that

Γ∗Γρ−1
ω a◦+ = Γ∗ρ−1

ω b◦− = Π+bωf∗
ε ρ−1

ω b◦−

= Π+bωΓ∗ρ−1
ω b◦− + Π+bωΠ−f∗

ε ρ−1
ω b◦−

= bωΓ∗ρ−1
ω b◦− + ρ−1

ω c

= bω
a◦+ − a+(ω)

ρω
+

c

ρω
.
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Therefore,

(I − Γ∗Γ)ρ−1
ω a◦+ = ρ−1

ω c1 (7.119)

for some matrix c1 ∈ Cq×q . In much the same way, it follows that

ΓΓ∗ρ−1
ω a◦− = Γρ−1

ω b◦+ = Π−b−1
ω fερ

−1
ω b◦+

= Π−b−1
ω Γρ−1

ω b◦+ + ρ−1
ω d

= b−1
ω Γ∗ρ−1

ω b◦+ + ρ−1
ω d

for some d ∈ Cp × p2, and hence that

ΓΓ∗ρ−1
ω a◦− = ρ−1

ω {a◦−(λ) − a◦−(ω)} + ρ−1
ω h1(ω)

and

(I − ΓΓ∗)ρ−1
ω a◦− = ρ−1

ω c2 (7.120)

for some matrix c2 ∈ C
p×p.

Next, since A◦
ω is jpq-unitary a.e. on R, the auxiliary evaluation

ρω(ω)−1Iq =
∫ ∞

−∞

a◦+(µ)∗a◦+(µ) − b◦−(µ)∗b◦−(µ)
|ρω(µ)|2

dµ

= 〈(I − Γ∗Γ)−1ρ−1
ω c1, (I − Γ∗Γ)−1ρ−1

ω c1〉st
−〈Γ(I − Γ∗Γ)−1ρ−1

ω c1, Γ(I − Γ∗Γ)−1ρ−1
ω c1〉st

= 〈(I − Γ∗Γ)−1ρ−1
ω c1, (I − Γ∗Γ)(I − Γ∗Γ)−1ρ−1

ω c1〉st
= 〈ρ−1

ω a◦+, ρ−1
ω c1〉st = ρω(ω)−1c∗1a

◦
+(ω)

implies that c1 = (a◦+(ω)−1 is positive definite and that

c1 = {ρω(ω)〈(I − Γ∗Γ)−1ρ−1
ω Iq, ρ−1

ω Iq〉st}
1
2 . (7.121)

Similarly,

c2 = {−ρω(ω)〈(I − ΓΓ∗)−1ρ−1
ω Ip, ρ−1

ω Ip〉st}−
1
2 . (7.122)

The asserted formulas now follow easily from formulas (7.115)–(7.122). �

Remark 7.46 If the NP (Γ) is completely indeterminate, then, in view of
Remark 7.9, formulas (7.109)–(7.112) may be written as (even if ‖Γ‖ = 1)

a◦+(λ) = ρω(λ){〈(I − Γ∗Γ)−1/2ρ−1
ω Iq, (I − Γ∗Γ)−1/2ρ−1

λ Iq〉stαω (7.123)
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and

b◦+(λ) = ρω(λ)〈Γ∗(I − ΓΓ∗)−1/2ρ−1
ω Ip, (I − Γ∗Γ)−1/2ρ−1

λ Iq〉stβω (7.124)

for λ ∈ C+; and

b◦−(λ) = ρω(λ)〈Γ(I − Γ∗Γ)−1/2ρ−1
ω Iq, (I − ΓΓ∗)−1/2ρ−1

λ Iq〉stαω (7.125)

and

a◦−(λ) = ρω(λ)〈(I − ΓΓ∗)−1/2ρ−1
ω Ip, (I − ΓΓ∗)−1/2ρ−1

λ Ip〉βω, (7.126)

for λ ∈ C−.

7.6 The generalized Schur interpolation problem

In this section we shall study the following interpolation problem for mvf’s
in the Schur class Sp×q , which we shall refer to as the GSIP, an acronym for
the generalized Schur interpolation problem:

GSIP(b1, b2; s◦): Given mvf’s b1 ∈ Sp×p
in , b2 ∈ Sq×q

in and s◦ ∈ Sp×q, describe
the set

S(b1, b2; s◦) = {s ∈ Sp×q : (b1)−1(s − s◦)(b2)−1 ∈ Hp×q
∞ }. (7.127)

The mvf’s s(λ) in this set are called solutions of this problem. The classical
Schur and Nevanlinna-Pick interpolation problems for mvf’s in the Schur
class Sp×q and their tangential and bitangential generalizations are all spe-
cial cases of the GSIP, if there exists at least one solution s◦ to the problem.
Moreover, every GSIP may be easily reduced to an NP.

The GSIP(b1, b2; s◦) is said to be

(1) determinate if it has exactly one solution.

(2) indeterminate if it has more than one solution.

(3) completely indeterminate if for every nonzero vector η ∈ C
q there

exist at least two solutions s1 ∈ S(b1, b2; s◦), s2 ∈ S(b1, b2; s◦) such that
‖(s1 − s2)η‖∞ > 0.

(4) strictly completely indeterminate if there exists at least one solu-
tion s ∈ S(b1, b2; s◦) such that ‖s‖∞ < 1.
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It is readily seen that there is a simple connection between the set
S(b1, b2; s◦) and the set N (Γ) based on the Hankel operator

Γ = Γ(f◦), where f◦(µ) = b1(µ)∗s◦(µ)b2(µ)∗ a.e. on R, (7.128)

that is given by the equivalence

s ∈ S(b1, b2; s◦) ⇐⇒ b∗1sb
∗
2 ∈ N (Γ). (7.129)

Moreover, a GSIP(b1, b2; s◦) is determinate, indeterminate, completely in-
determinate, or strictly completely indeterminate if and only if the corre-
sponding NP(Γ) belongs to the same class.

It is also easily checked that

s1 ∈ S(b1, b2; s◦) ⇐⇒ S(b1, b2; s◦) = S(b1, b2; s1),

and hence that the given data for the GSIP is really b1, b2 and the Hankel
operator defined by formula (7.128).

Theorem 7.47 Let b1 ∈ Sp×p
in , b2 ∈ Sq×q

in and let Γ be a Hankel operator.
Then there exists at least one mvf f◦ such that b1f

◦b2 ∈ Sp×q and Γ = Γ(f◦)
if and only if

‖Γ‖ ≤ 1 and ΓMb2 H
q
2 ⊆ H∗(b1). (7.130)

Moreover, if (7.130) is in force and s◦(µ) = b1(µ)f◦(µ)b2(µ) a.e. on R, then

S(b1, b2; s◦) = {s : b∗1sb
∗
2 ∈ N (Γ)} = {b1fb2 : f ∈ N (Γ)}

and

‖Γ‖ = min{‖s‖∞ : s ∈ S(b1, b2; s◦)}. (7.131)

Proof Let Γ be the Hankel operator corresponding to the GSIP (b1, b2; s◦)
that is defined by formula (7.128). Then ‖Γ‖ ≤ 1 and

Γ Mb2 Hq
2 = Π M∗

b1
Ms◦ Hq

2 ⊆ H∗ (b1),

i.e., (7.130) holds. Conversely, let b1 ∈ Sp×p
in , b2 ∈ Sq×q

in and let Γ be a
Hankel operator that meets the conditions in (7.130). Then N (Γ) �= ∅. Let
f◦ ∈ N (Γ). Then

ΓMb2 H
q
2 = Π−Mf◦Mb2 H

q
2 ⊆ H∗(b1).

Consequently,

Mb1 Mf◦Mb2 H
q
2 ⊆ Hp

2 .
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Let s◦(µ) = b1(µ)f◦(µ)b2(µ) a.e. on R. Then s◦ ∈ Lp×q
∞ , ‖s◦‖∞ ≤ 1 and

Ms◦H
q
2 ⊆ Hp

2 and hence, s◦ ∈ Sp×q , by Lemma 3.47. The equivalence (7.129)
between the GSIP(b1, b2; s◦) and N (Γ) for this choice of s◦ now drops out
easily: if

f(µ) = b1(µ)∗s(µ)b2(µ)∗ a.e. on R,

then
f ∈ N (Γ) ⇐⇒ f − f◦ ∈ Hp×q

∞ and ‖f‖∞ ≤ 1

⇐⇒ b−1
1 (s − s◦)b−1

2 ∈ Hp×q
∞ and s ∈ Sp×q

⇐⇒ s ∈ S(b1, b2; s◦).

Formula 7.131 follows from Theorem 7.2. �
Connections between the classes U(jpq), UrR(jpq) and UrsR(jpq) and the

GSIP that are analogous to the connections between the classes Mr(jpq),
MrR(jpq), MrsR(jpq) and the NP also exist.

Theorem 7.48 Let b1 ∈ Sp×p
in , b2 ∈ Sq×q

in and s◦ ∈ Sp×q be a given set of
mvf’s such that the GSIP(b1, b2; s◦) is completely indeterminate. Then there
exists an essentially unique (i.e., up to a right jpq-unitary constant factor)
mvf W̊ ∈ U(jpq) for which both of the following two conditions hold:

(1) TW̊ [Sp×q ] = S(b1, b2; s◦).

(2) {b1, b2} ∈ ap(W̊ ).

If W ∈ P◦(jpq), then TW [Sp×q ] = S(b1, b2; s◦), if and only if W ∈ U(jpq)
and is of the form

W (λ) =
β2(λ)
β1(λ)

W̊ (λ)V, (7.132)

where the βk(λ) are scalar inner divisors of the bk(λ) for k = 1, 2, and V

is a constant jpq-unitary matrix. These mvf’s W (λ) automatically belong to
the class UrR(jpq). Moreover,

W ∈ UrsR(jpq)

⇐⇒ theGSIP(b1, b2; s◦) is strictly completely indeterminate.

Proof The NP(Γ) that corresponds to a completely indeterminate
GSIP(b1, b2; s◦) via (7.128) and (7.129) is also completely indeterminate and

N (Γ) = TA[Sp×q ]
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for some mvf A ∈ MrR(jpq). Thus, if

W̊ =
[

b1 0
0 b−1

2

]
A,

then

S(b1, b2; s◦) = TW̊

[
Sp×q

]
.

Consequently, if f12 = TA[0], then, by Theorem 7.47, the mvf

b1f12b2 = TW̊ [0]

belongs to Sp×q . Therefore, f12 ∈ Πp×q , {b1, b2} ∈ den f12, A ∈ Πm×m by
Lemma 7.25, and, by Theorem 7.26,

W̊ ∈ U(jpq) and {b1, b2} ∈ ap(W̊ ).

Moreover, W̊ ∈ UrR(jpq), thanks to Theorem 7.27, since A ∈ MrR(jpq); and
the assertions related to (7.132) follow from Theorem 4.89. �

A mvf W ∈ P◦(jpq) such that S(b1, b2; s◦) = TW [Sp×q ] is called a resol-
vent matrix of the GSIP(b1, b2; s◦).

Remark 7.49 In view of Theorems 7.48 and 4.89, every completely inde-
terminate GSIP(b1, b2; s◦} has exactly one resolvent matrix W̊ that is nor-
malized at a point ω ∈ h

+
b−1
2

by the conditions

ẘ11(ω) > 0, ẘ21(ω) = 0 and ẘ22(ω) > 0 (7.133)(
or by the condition W̊ (ω) = Im if ω ∈ hb1 ∩ hb−1

2
∩ R

)
such that {b1, b2} ∈ ap(W̊ ). Moreover, every resolvent matrix W of this
problem belongs automatically to the class UrR(jpq), and the set of all resol-
vent matrices W of this problem is described by formula (7.132). A formula
for the resolvent matrices W of this problem with {b1, b2} ∈ ap(W ) will be
presented in Section 7.8.

Theorem 7.50 Let W ∈ U(jpq), let {b1, b2} ∈ ap(W ) and let s◦ ∈ TW [Sp×q ].
Then the GSIP(b1, b2; s◦) is completely indeterminate and

TW [Sp×q ] ⊆ S(b1, b2; s◦). (7.134)

Moreover, equality prevails in (7.134) if and only if W ∈ UrR(jpq).



400 Generalized interpolation problems

Proof Let W ∈ U(jpq), {b1, b2} ∈ ap(W ) and s◦ ∈ TW [Sp×q ], let the mvf
A be defined by formula (7.57) and let f◦ = b−1

1 s◦b−1
2 and Γ = Γ(f◦). Then

{b1, b2} ∈ den f◦ and A ∈ Π ∩ Mr(jpq) by Theorem 7.26. Moreover, by
Theorem 7.22, N (Γ) ⊇ TA[Sp×q ], NP (Γ) is completely indeterminate and

N (Γ) = TA[Sp×q ] ⇐⇒ A ∈ MrR(jpq),

the GSIP(b1, b2; s◦) is completely indeterminate and

TW [Sp×q ] = b1TA[Sp×q ]b2 ⊆ b1N (Γ)b2 = S(b1, b2; s◦).

Moreover, formula (7.134) holds with equality if and only if W ∈
UrR(jpq). �

Theorem 7.51 Let W ∈ U(jpq), let {b1, b2} ∈ ap(W ) and let b
(1)
1 ∈ Sp×p

in

and b
(1)
2 ∈ Sq×q

in be any pair of matrix valued inner functions such that
(b(1)

1 )−1b1 ∈ Sp×p
in and b2(b

(1)
2 )−1 ∈ Sq×q

in . Then there exists an essentially
unique mvf W1 ∈ UrR(jpq) such that

(1) {b(1)
1 , b

(1)
2 } ∈ ap(W1) and

(2) W−1
1 W ∈ U(jpq).

Moreover, W−1
1 W ∈ US(jpq) if and only if {b(1)

1 , b
(1)
2 } ∈ ap(W ).

Proof Under the stated conditions, let s◦ ∈ TW [Sp×q ]. Then, by Theorem
7.50, the GSIP(b1, b2; s◦) is completely indeterminate and

TW [Sp×q ] ⊆ S(b1, b2; s◦). (7.135)

Moreover, since

S(b1, b2; s◦) ⊆ S(b(1)
1 , b

(1)
2 ; s◦), (7.136)

the GSIP(b(1)
1 , b

(1)
2 ; s◦) is completely indeterminate too. By Theorem 7.48,

there exists an essentially unique mvf W1 ∈ UrR(jpq) such that

S(b(1)
1 , b

(1)
2 ; s◦) = TW1 [Sp×q ] and {b(1)

1 , b
(1)
2 } ∈ ap(W1). (7.137)

Conditions (7.135)–(7.137) imply that

TW [Sp×q ] ⊆ TW1 [Sp×q ]

and hence, Theorem 4.94 implies that W−1
1 W ∈ U(jpq) and W−1

1 W ∈
US(jpq) if and only if {b(1)

1 , b
(1)
2 } ∈ ap(W ). �
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Theorem 7.52 Every mvf W ∈ U(jpq) admits a factorization

W = W1W2, with W1 ∈ UrR(jpq) and W2 ∈ US(jpq) (7.138)

that is unique up to constant jpq-unitary multipliers

W1 −→ W1V and W2 −→ V −1W2 with V ∈ Uconst(jpq). (7.139)

Proof Let W ∈ U(jpq), s◦ ∈ TW [Sp×q ] and {b1, b2} ∈ ap(W ). Then, by
Theorems 7.48 and 7.50, the GSIP(b1, b2; s◦) is completely indeterminate,
S(b1, b2; s◦) = TW1 [Sp×q ] for some essentially unique mvf W1 ∈ U1(jpq)
and TW [Sp×q ] ⊆ TW1 [Sp×q ]. Moreover, since TW1 [Sp×q ] = S(b1, b2; s◦) and
ap(W ) = ap(W1), Theorem 7.51 guarantees that the mvf W2 = W−1

1 W be-
longs to he class US(jpq), i.e., that a factorization of the form (7.138) exists
and that it is unique, up to the transformations indicated in (7.139). �

7.7 Generalized Sarason problems in Sp×q and Hp×q
∞

The GSIP(b1, b2; s◦) is formulated in terms of the three mvf’s b1, b2 and s◦.
However, the set S(b1, b2; s◦) of solutions to this problem depends only upon
the mvf’s b1 ∈ Sp×p

in , b2 ∈ Sq×q
in and the three operators

Γ11 = PH(b1 )Ms|Hq
2
, Γ22 = Π−Ms|H∗(b2 ) and

Γ12 = PH(b1 )Ms|H∗(b2 ), with s = s◦. (7.140)

In fact these operators are independent of the choice of s ∈ S(b1, b2; s◦).
Moreover, S(b1, b2; s◦) coincides with the set of s ∈ Sp×q for which (7.140)
holds. This observation leads to the following generalized Sarason prob-
lem in the class Sp×q in which the given data are b1 ∈ Sp×p

in , b2 ∈ Sq×q
in and

a block upper triangular operator

X =
[

Γ11 Γ12

0 Γ22

]
:

Hq
2

⊕
H∗(b2)

−→
H(b1)
⊕
Kp

2

. (7.141)

GSP(b1, b2; X;Sp×q) : Given b1 ∈ Sp×p
in , b2 ∈ Sq×q

in and a block triangular
operator X of the form (7.141), find a mvf s ∈ Sp×q such that (7.140) holds.

Let S(b1, b2; X) denote the set of solutions to the GSP(b1, b2; X;Sp×q).



402 Generalized interpolation problems

If S(b1, b2; X) �= ∅ and s◦ ∈ S(b1, b2; X), then

S(b1, b2; X) = S(b1, b2; s◦). (7.142)

Moreover, there is also a one to one correspondence between S(b1, b2; X)
and the set of solutions N (Γ) to the Nehari problem based on the Hankel
operator

Γ = Π−Mf◦ |Hq
2

with f◦ = b∗1s
◦b∗2, (7.143)

i.e.,

s ∈ S(b1, b2; X) ⇐⇒ b∗1sb
∗
2 ∈ N (Γ). (7.144)

There is a two sided connection between the operators X and the Hankel
operator Γ considered in the equivalence (7.144) that may be written in in
terms of the blocks Γij , 1 ≤ i ≤ j ≤ 2, of X in (7.141) and the operator Γ:

Γ = Mb∗1 {Γ11Π+ + (Γ22 + Γ12)PH∗(b2 )}Mb∗2 |Hq
2
, (7.145)

and, conversely,

Γ11 = Mb1 ΓMb2 |Hq
2
, Γ22 = Π−Mb1 ΓMb2 |H∗(b2 ),

Γ12 = PH(b1 )Mb1 ΓMb2 |H∗(b2 ).
(7.146)

By Theorem 7.2, N (Γ) �= ∅ if and only if Γ is a contractive Hankel operator
from Hq

2 into Kp
2 , i.e., if and only if (7.3) holds and ‖Γ‖ ≤ 1. This leads to

the following criteria for the solvability of a GSP in the class Sp×q .

Theorem 7.53 Let b1 ∈ Sp×p
in , b2 ∈ Sq×q

in and let X be a bounded linear
block triangular operator with blocks Γij , 1 ≤ i ≤ j, as in (7.141). Then
S(b1, b2; X) �= ∅ if and only if the operator X is contractive and the operator
Γ from Hq

2 into Kp
2 defined by formula (7.145) is a Hankel operator, i.e., it

has property (7.3).

Proof Since ‖Γ‖ = ‖X‖ the theorem follows from Theorem 7.2 and the fact
that

S(b1, b2; X) �= ∅ ⇐⇒ N (Γ) �= ∅. �

The generalized Sarason problem can also be formulated in Hp×q
∞ , with

a pair of mvf’s b1 ∈ Sp×p
in , b2 ∈ Sp×p

in and a bounded linear upper block
triangular operator X of the form (7.141) as given data.
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GSP(b1, b2; X; Hp×q
∞ ): Given b1 ∈ Sp×p

in , b2 ∈ Sq×q
in and a block triangular

operator X of the form (7.141), find a mvf s ∈ Hp×q
∞ such that the relations

(7.140) hold.
Let H∞(b1, b2; X) denote the set of solutions to the GSP(b1, b2; X; Hp×q

∞ ).

Theorem 7.54 A GSP (b1, b2; X; Hp×q
∞ ) is solvable if and only if the opera-

tor Γ, defined by the formula (7.145) is a Hankel operator. Moreover, if the
problem is solvable, then

‖X‖ = min{‖s‖∞ : s ∈ H∞(b1, b2; X)}. (7.147)

Proof If X = 0 then Γ = 0 and H∞(b1, b2; X) = Hp×q
∞ . Suppose therefore

that X �= 0 and Γ is defined by formula (7.145). If H∞(b1, b2; X) �= ∅
and s ∈ H∞(b1, b2; X), i.e., if s ∈ Hp×q

∞ and the relations (7.140) hold,
then formulas (7.140) and (7.145) imply that Γ is a Hankel operator and
‖s‖∞ ≥ ‖X‖.

To establish the converse, let Γ be a Hankel operator and let Γ1 = ‖X‖−1Γ
and X1 = ‖X‖−1X. then Γ1 is a Hankel operator with ‖X1‖ = 1. Therefore,
by Theorem 7.53, S(b1, b2; X1) �= ∅. Let s1 ∈ S(b1, b2; X1) and let s = ‖X‖s1.
Then s ∈ H∞(b1, b2; X) and

‖s‖∞ = ‖X‖ ‖s1‖∞ ≤ ‖X‖.

Therefore, ‖s‖∞ = ‖X‖, since ‖s‖∞ ≥ ‖X‖ when s ∈ H∞(b1, b2; X). �

Corollary 7.55 The GSP (b1, b2; X;Sp×q) is strictly completely indetermi-
nate if and only if the operator Γ defined by formula (7.145) is a Hankel
operator and ‖X‖ < 1.

Remark 7.56 Theorems 7.53 and 7.54 are equivalent, i.e., Theorem 7.53
follows from Theorem 7.54 and conversely. Moreover,

S(b1, b2; X) = {s ∈ H∞(b1, b2; X) : ‖s‖∞ ≤ 1}

⊆ H∞(b1, b2; X)

and, if X �= 0, then

S(b1, b2; ‖X‖−1X) �= ∅ ⇐⇒ H∞(b1, b2; X) �= ∅.
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A solvable GSP in the class Sp×q is determinate, indeterminate, com-
pletely indeterminate or strictly completely indeterminate, if and only if the
corresponding GSIP is such, and results that are obtained for one problem
are immediately transferrable to the other. In particular, Theorem 7.48 may
be reformulated as follows:

Theorem 7.57 If the GSP(b1, b2; X;Sp×q) is completely indeterminate, then
there exists a mvf W such that

S(b1, b2; X) = TW [Sp×q ], (7.148)

where W ∈ U(jpq) and {b1, b2} ∈ ap(W ). Moreover, W ∈ UrR(jpq) and
is uniquely defined by the given data b1, b2, X up to a constant jpq-unitary
factor on the right, which may be uniquely specified by imposing the normal-
ization conditions

w11(ω) > 0, , w22(ω) > 0 and w21(ω) = 0 (7.149)

at a point ω ∈ hb1 ∩ h
b#
2
∩ C+.

If ω ∈ hb1 ∩ h
b#
2
∩ R, then (7.149) holds if and only if W (ω) = Im.

Proof In view of Theorem 4.54, hb1 ∩ h
b#
2

= hW , since W ∈ UrR(jpq); and
(7.149) holds if and only if det W (ω) �= 0, i.e., if and only if ω ∈ hW −1 . If ω ∈
hb1 ∩ h

b#
2
∩ hW −1 , then a mvf W ∈ Uconst(jpq) that meets the normalization

conditions (7.149) may be obtained by Lemma 2.17. �

7.8 Resolvent matrices for the GSP in the Schur class

An m × m mvf W (λ) that is meromorphic in C+ with det W (λ) �≡ 0 is said
to be a resolvent matrix for the GSP(b1, b2; X;Sp×q) if S(b1, b2; X) =
TW [Sp×q ]. In view of the identification S(b1, b2; s◦) = S(b1, b2; X) when
s◦ ∈ S(b1, b2; X), Remark 7.49 is applicable to the resolvent matrices
of a completely indeterminate GSP(b1, b2; X). If ‖X‖ < 1, and only in
this case, the GSP(b1, b2; X) is strictly completely indeterminate, its re-
solvent matrices W ∈ UrsR(jpq), and a resolvent matrix W such that
{b1, b2} ∈ ap(W ) may be obtained in terms of the given data by formu-
las (5.165), (5.166) and (5.177)–(5.179). If 0 ∈ hb1 ∩ hb2 then there exists
exactly one normalized resolvent matrix W with 0 ∈ hW and W (0) = Im

such that {b1, b2} ∈ ap(W ); it is given by formulas (5.180)–(5.183). In these
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formulas, the mvf’s b̂1 ∈ Sp×p
in and b̂2 ∈ Sq×q

in may be replaced by any mvf’s
b5 ∈ Sp×p and b6 ∈ Sq×q such that (̂b1)−1b5 ∈ Sp×p

in and b6(̂b2)−1 ∈ Sq×q
in

and hb5 ∩ h
b#
6
⊇ hb1 ∩ h

b#
2
. In particular, we may choose b5 = det b1Ip and

b6 = det b2Iq .
The next step is to derive formulas for this resolvent matrix when the

problem is strictly completely indeterminate, i.e., in view of Theorem 7.54,
when ‖X‖ < 1 and the operator Γ defined by formula (7.145) is a Hankel
operator. In this case W ∈ UrsR(jpq) and consequently formulas (5.177)–
(5.179) for W are applicable with

LW = LX =
[

I Γ22

Γ∗
11 I

]
: H(b1, b2) → H(W ) (7.150)

and

∆W = ∆X =
[
I − Γ11Γ∗

11 −Γ12

−Γ∗
12 I − Γ∗

22Γ22

]
: H(b1, b2) → H(b1, b2), (7.151)

where Γij is now taken from X. The value W (ω) of the mvf W (λ) normalized
by the condition (7.149) at a point ω ∈ h

+
b1
∩ h

+
b#
2

is obtained from formulas

(5.94)–(5.97).

Lemma 7.58 If X is of the form (7.141) and ∆X is defined by formula
(7.151), then ‖X‖ ≤ 1 if and only if ∆X ≥ 0 and

‖X‖ < 1 ⇐⇒ ∆X ≥ δI for some δ > 0. (7.152)

Let b ∈ Sp×p
in ,

V (t) = Met |Hq
2

and V1(t) = PH(b)Met |H(b) (7.153)

be two semigroups of contractive operators in the spaces Hq
2 and H(b),

respectively. Then Theorem 7.2 yields the following results:

Theorem 7.59 H∞(b, Iq ; X) �= ∅ if and only if

V1(t)X = XV (t) holds for every t ≥ 0. (7.154)

Moreover, if this condition is in force, then

min{‖h‖∞ : h ∈ H∞(b, Iq ; X)} = ‖X‖, (7.155)

i.e., ‖h‖∞ ≥ ‖X‖ and there exists at least one h ∈ H∞(b, Iq ; X) with ‖h‖∞ =
‖X‖.
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Proof This is immediate from Theorems 7.2 and 7.53, since H∗(b2) = {0}
when b2 = Iq . �

Corollary 7.60 S(b, Iq ; X) �= ∅ if and only if (7.154) is in force for every
t ≥ 0 and ‖X‖ ≤ 1.

Remark 7.61 If S(b, Iq ; X) �= ∅ and s◦ ∈ S(b, Iq ; X), then

S(b, Iq ; X) = S(b, Iq ; s◦) = {s ∈ Sp×q : b−1(s − s◦) ∈ Hp×q
∞ },

i.e., the GSP(b, Iq ; X; Sp×q) is a one sided GSIP, with conditions imposed on
the left. Consequently, all the results that were obtained earlier for the GSIP
with b1 = b and b2 = Iq are applicable to a solvable GSP(b, Iq ; X; Sp×q). A
number of them will be formulated below without proof.

The connection

X = MbΓ, where Γ = Γ(f) = Π−Mf |Hq
2
, f = b∗h

and h ∈ Hp×q
∞ , (7.156)

between the operator X and the Hankel operator Γ implies that

(I − Γ∗Γ)1/2 = (I − X∗X)1/2 (7.157)

and

(I − ΓΓ∗)1/2 = {Mb∗(I − XX∗)1/2MbPH∗(b) + Pb∗Kp
2
}|Kp

2
. (7.158)

Consequently, the subspaces A+(ω) and A−(ω) that were defined for ω ∈ C+

in terms of the contractive Hankel operator Γ by formulas (7.9) and (7.10)
may be reexpressed in terms of the operator X by the formulas

A+(ω) =
{

η

ρω
: η ∈ C

q

}
∩ (I − X∗X)1/2Hq

2 (7.159)

and

A−(ω) =
{

ξ

ρω
: ξ ∈ C

p

}
∩ (b∗Kp

2 ⊕ Mb∗(I − XX∗)1/2H(b)). (7.160)

Moreover, setting

A
′
−(ω) = {Rωbη : η ∈ C

p} ∩ (I − XX∗)1/2H(b), (7.161)

it is easy to check that dim A−(ω) = dim A′
−(ω).
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In keeping with the definitions introduced above for the GSIP, the
GSP(b, Iq ; X; Sp×q) is said to be

(1) determinate, if there is only one solution to this problem;

(2) completely indeterminate, if for every η ∈ C
q there are at least two

solutions s1, s2 ∈ S(b, Iq ; X) such that s1(λ)η �≡ s2(λ)η;

(3) strictly completely indeterminate, if S(b, Iq ; X) ∩ S̊p×q �= ∅.

Theorem 7.62 Let S(b, Iq ; X) �= ∅. Then:

(1) The GSP(b, Iq ; X;Sp×q) is determinate if and only if A+(ω) = {0} or
A′
−(ω) = {0} for at least one (and in fact for every) point ω ∈ C+.

(2) The GSP(b, Iq ; X; Sp×q) is completely indeterminate if and only if
dim A+(ω) = q and dim A′

−(ω) = p for at least one (and in fact for
every) point ω ∈ C+.

(3) The GSP(b, Iq ; X; Sp×q) is strictly completely indeterminate if and
only if ‖X‖ < 1.

Remark 7.63 It is useful to note that

dim A+(ω) = q ⇐⇒
{

η

ρω
: η ∈ C

q

}
⊆ range (I − X∗X)1/2 (7.162)

and

dim A
′
−(ω) = p ⇐⇒ {Rωbξ : ξ ∈ C

p} ⊆ range (I − XX∗)1/2. (7.163)

If (7.162) is in force, then I −XX∗ > 0, whereas if (7.163) is in force, then
I − X∗X > 0. Both of these conditions fail if 1 is a singular value of X.

Theorem 7.64 If the GSP(b, Iq ; X; Sp×q) is completely indeterminate, then
there exists a unique mvf W ∈ U(jpq) with {b, Iq} ∈ ap(W ), up to an arbi-
trary constant jpq-unitary multiplier on the right, such that

S(b, Iq ; X) = TW [Sp×q ]; (7.164)

and this mvf W automatically belongs to the class UrR(jpq). Moreover,
W ∈ UrsR(jpq) if and only if the GSP(b, Iq ; X;Sp×q) is strictly completely
indeterminate.
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Theorem 7.65 Let W ∈ U(jpq), let {b, Iq} ∈ ap(W ), s◦ ∈ TW [Sp×q ] and
X = PH(b)Ms◦ |Hq

2
. Then:

(1) X does not depend upon the choice of s◦ in TW [Sp×q ].

(2) The GSP(b, Iq ; X; Sp×q) is completely indeterminate.

(3) S(b, Iq ; X) ⊆ TW [Sp×q ], with equality if and only if W ∈ UrR(jpq).

Theorem 7.66 Let W ∈ U(jpq), let {b, Iq} ∈ ap(W ), s◦ ∈ TW [Sp×q ] and
X = PH(b)Ms◦ |Hq

2
. Then:

(1) H(W ) ∩ Lm
2 =

{[
g

X∗g

]
: g ∈ H(b)

}
.

(2) W ∈ UrR(jpq) ⇐⇒
{[

g

X∗g

]
: g ∈ H(b)

}
is dense in H(W ).

(3) W ∈ UrsR(jpq) ⇐⇒
{[

g

X∗g

]
: g ∈ H(b)

}
= H(W ). Moreover, in

this case∥∥∥∥[ g

X∗g

]∥∥∥∥
H(W )

=
〈

jpq

[
g

X∗g

]
,

[
g

X∗g

]〉
st

= 〈(I − XX∗)g, g〉st.

(4) If W ∈ UrsR(jpq), then it is uniquely specified by the normalization
condition (5.91) and the formulas (5.93)–(5.97) with

Kω(λ) =
([

I

X∗

]
(I − XX∗)−1

[
kb

ω Xkb̂
ω

])
(λ),

where b̂ ∈ Sp×p
in is such that XH(b) = H(̂b).

7.9 The generalized Carathéodory interpolation problem

In this section we shall study the following interpolation problem for mvf’s
in the Carathéodory class Cp×p, which we shall refer to as the GCIP, an
acronym for generalized Carathéodory interpolation problem:

GCIP(b3, b4; c◦): Given mvf’s b3 ∈ Sp×p
in , b4 ∈ Sp×p

in and c◦ ∈ Cp×p, describe
the set

C(b3, b4; c◦) = {c ∈ Cp×p : (b3)−1(c − c◦)(b4)−1 ∈ N p×p
+ }. (7.165)
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The mvf’s c(λ) in this set are called solutions of this problem. The classical
Carathéodory and Nevanlinna-Pick interpolation problems for mvf’s in the
Carathéodory class Cp×p, and their tangential and bitangential generaliza-
tions, may be reformulated as GCIP’s, if there exists at least one solution
c◦ to the problem.

The difference between the formulation of the GSIP and the GCIP is due
to the fact that although Sp×q ⊆ Hp×q

∞ , there are mvf’s c ∈ Cp×p that do not
belong to Hp×p

∞ , for instance c(λ) = −iλIp. It turns out that the space N p×p
+ ,

which contains Cp×p, is a reasonable substitute for Hp×p
∞ in the formulation

of the GCIP. Thus, for example, if ω1, . . . , ωn is a distinct set of points in
C+, and if s◦ ∈ Sp×q , c◦ ∈ Cp×p and b(λ) =

∏n
j=1(λ − ωj)/(λ − ωj), then:

{s ∈ Sp×q : s(ωj) = s◦(ωj) for j = 1, . . . , n}
= {s ∈ Sp×q : b−1(s − s◦) ∈ Hp×q

∞ }

and

{c ∈ Cp×p : c(ωj) = c◦(ωj) for j = 1, . . . , n}
= {c ∈ Cp×p : b−1(c − c◦) ∈ N p×p

+ }.

Consequently, in this example, s(λ) (resp., c(λ)) is a solution of the
Nevanlinna-Pick problem in the class Sp×q (resp., Cp×p) with prescribed
values s◦(ω1), . . . , s◦(ωn) (respectively c◦(ω1), . . . , c◦(ωn)) at the points
ω1, . . . , ωn.

Bitangential Nevanlinna-Pick problems in the class Cp×p with a solution
c◦(λ) correspond to a GCIP(b3, b4; c◦) in which the p × p inner mvf’s b3(λ)
and b4(λ) are BP products.

The GCIP(b3, b4; c◦) is said to be

(1) determinate if it has exactly one solution;

(2) indeterminate if it has more than one solution;

(3) completely indeterminate if for every nonzero vector ξ ∈ C
p there

exist at least two solutions c1 ∈ C(b3, b4; c◦), c2 ∈ C(b3, b4; c◦) such that
c1(λ)ξ �≡ c2(λ)ξ in C+;

(4) strictly completely indeterminate if there exists at least one solu-
tion c ∈ C(b3, b4; c◦) such that c ∈ Hp×p

∞ and Rc(λ) ≥ δIp for some δ > 0,
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or, in other words, if

C(b3, b4; c◦) ∩ C̊p×p �= ∅. (7.166)

Remark 7.67 The GCIP(b3, b4; c◦) is completely indeterminate if at some
point ω ∈ C+ at which b3(ω) and b4(ω) are invertible,

{c(ω)ξ − c◦(ω)ξ : c ∈ C(b3, b4; c◦)} �= {0} (7.167)

for every nonzero vector ξ ∈ C
p.

7.10 Connections between the GSIP and the GCIP

The next lemma serves to connect the GCIP with the GSIP.

Lemma 7.68 Let c◦ ∈ Cp×p and let s◦ = TV[c◦]. Then the conditions

1
2
b−1
1 (Ip + s◦)b3 ∈ Sp×p

out and
1
2
b4(Ip + s◦)b−1

2 ∈ Sp×p
out (7.168)

serve to define one of the pairs {b1, b2} and {b3, b4} of p × p inner mvf’s
in terms of the other, up to constant unitary multipliers. Moreover, for any
two such pairs, the conditions

1
2
b−1
1 (Ip + s)b3 ∈ Sp×p

out and
1
2
b4(Ip + s)b−1

2 ∈ Sp×p
out (7.169)

are satisfied for every mvf s ∈ S(b1, b2; s◦) ∩ D(TV) and

C(b3, b4; c◦) = TV[S(b1, b2; s◦) ∩ D(TV)]. (7.170)

Proof The proof rests on the essential uniqueness of inner-outer factoriza-
tions and outer-inner factorizations of mvf’s f ∈ Sp×p and f ∈ N p×p

+ with
det f(λ) �≡ 0 in C+. These results are applicable because 1

2 (Ip + s◦) ∈ Sp×p

and det (Ip +s◦) �≡ 0 in C+ implies that 1
2 (Ip +s◦) ∈ Sp×p

out and 2(Ip +s◦)−1 ∈
N p×p

out . Thus, b3 and b4 are essentially uniquely defined by s◦, b1 and b2:
b3 is a minimal right denominator of b−1

1 (Ip + s◦) and
b4 is a minimal left denominator of (Ip + s◦)b−1

2 .
Since b−1

3 (Ip + s◦)−1b1 ∈ N p×p
out and b2(Ip + s◦)−1b−1

4 ∈ N p×p
out , b1 and b2

are essentially uniquely defined by b3, b4 and s◦:
b1 is a minimal right denominator of b−1

3 (Ip + s◦) and
b2 is a minimal left denominator of (Ip + s◦)b−1

4 .
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Let s ∈ S(b1, b2; s◦) ∩ D(TV). Then

b−1
1 (Ip + s)b3 = b−1

1 (Ip + s◦)b3 + b−1
1 (s − s◦)b3.

Since b−1
1 (Ip +s)b3 ∈ Hp×p

∞ , b3 is a minimal right denominator of b−1
1 (Ip +s)

if and only if b3 is a minimal right denominator of b−1
1 (Ip +s◦). Analogously,

since

b4(Ip + s)b−1
2 = b4(Ip + s◦)b−1

2 + b4(s − s◦)b−1
2 ,

b4 is a minimal left denominator of (Ip + s)b−1
2 if and only if b4 is a minimal

left denominator of (Ip + s◦)b−1
2 . Moreover, if s = TV[c] and c ∈ Cp×p, then

Ip + c = 2(Ip + s)−1, Ip + c◦ = 2(Ip + s◦)−1

and, consequently, if s ∈ S(b1, b2; s◦) ∩ D(TV), then

2b−1
3 (c − c◦)b−1

4 = 4b−1
3 {(Ip + s)−1 − (Ip + s◦)−1}b−1

4

= 4b−1
3 {(Ip + s)−1(s◦ − s)(Ip + s◦)−1}b−1

4

= −ϕ−1
s b−1

1 (s − s◦)b−1
2 ψ−1

so ,

where ϕs = b−1
1 (Ip + s)b3/2 and ψs = b−1

4 (Ip + s)b2/2 are the mvf’s in Sp×q
out

that are considered in (7.169). Thus,

TV[S(b1, b2; s◦) ∩ D(TV)] ⊆ C(b3, b4; c◦). (7.171)

Conversely, (7.169) is equivalent to the fact that

ϕs = b−1
1 (Ip + c)−1b3 ∈ Sp×p

out and ψs = b4(Ip + c)−1b−1
2 ∈ Sp×p

out

if c ∈ C(b3, b4; c◦). Moreover, since

b−1
1 (s − s◦)b−1

2 = −2ϕsb
−1
3 (c − c◦)b−1

4 ψs◦ ,

TV[C(b3, b4; c◦) ⊆ S(b1, b2; s◦) ∩ D(TV). (7.172)

The inclusions (7.171) and (7.172) yield the equality (7.170). �

Theorem 7.69 Let A ∈ U(Jp), {b3, b4} ∈ apII (A) and c◦ ∈ C(A). Then:

(1) The GCIP(b3, b4; c◦) is completely indeterminate.

(2) C(A) ⊆ C(b3, b4; c◦).

(3) Equality prevails in (2) if and only if A ∈ UrR(Jp).
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(4) A ∈ UrsR if and only if the GCIP (b3, b4; c◦) is strictly completely
indeterminate and equality prevails in (2).

Proof This is a consequence of the preceding lemma, the relations between
the classes U(Jp) and U(jp), UrR(Jp) and UrR(jp), and UrsR(Jp) and UrsR(jp),
respectively. �

Theorem 7.70 Let the GCIP(b3, b4; c◦) be completely indeterminate. Then
there exists a mvf Å ∈ U(Jp) such that:

(1) C(b3, b4; c◦) = C(Å).

(2) {b3, b4} ∈ apII (Å).
Such a mvf Å(λ) is defined up to a constant right Jp-unitary multiplier and
is automatically right regular, i.e., Å ∈ UrR(Jp).
If A ∈ P(Jp), then C(b3, b4; c◦) = C(A) if and only if A ∈ UrR(Jp) and is of
the form

A(λ) =
β4(λ)
β3(λ)

Å(λ)V,

where βj(λ) is a scalar inner divisor of bj(λ), j = 3, 4 and V ∈ Uconst(Jp).
The GCIP(b3, b4; c◦) is strictly completely indeterminate if and only if Å ∈
UrsR(Jp).

Proof This is immediate from Lemma 7.68 and the analogous result for the
GSIP. �

Analogues of Theorems 7.51 and 7.52 hold for mvf’s A ∈ U(Jp).

Lemma 7.71 Let b3, b4 ∈ Sp×p
in and let χ1(λ) = b4(λ)b3(λ) satisfy the

condition

χ1(ω)χ1(ω)∗ < Ip for at least one (and hence every) point ω ∈ C+.

(7.173)
Then the GCIP (b3, b4; 0p×p) is determinate, i.e.,

C(b3, b4; 0p×p) = {0p×p}.
Proof If c◦(λ) = 0p×p, then s◦ = TV[0] = Ip and, in view of Lemma 7.68,
we can (and will) choose b1 = b3 and b2 = b4. Thus, in order to complete the
proof, it suffices to show that under condition (7.173) S(b3, b4; Ip) = {Ip}.
Let f◦(µ) = χ1(µ)∗ a.e. on R and let Γ = Γ(f◦). Then, by Theorem 7.47,

S(b3, b4; Ip) = {b3fb4 : f ∈ N (Γ)}.
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Consequently,

S(b3, b4; Ip) = Ip ⇐⇒ N (Γ) = {f◦}.

In the present setting,

(I − Γ∗Γ)1/2Hp
2 = χ1H

p
2

and hence, for ω ∈ C+,

ξ

ρω
∈ (I − Γ∗Γ)1/2Hp

2 ⇐⇒ ξ

ρω
∈ χ1H

p
2 ⇐⇒ ξ − χ1χ1(ω)∗ξ

ρω
∈ χ1H

p
2 .

However, since
ξ − χ1χ1(ω)∗ξ

ρω
∈ Hp

2 � χ1H
p
2 ,

the assumption

ξ

ρω
∈ χ1H

p
2 implies that

ξ − χ1(λ)χ1(ω)∗ξ
ρω

= 0

for every point λ ∈ C+. In particular, ξ∗(Ip − χ1(ω)χ1(ω)∗)ξ = 0, which
implies that ξ = 0, since χ1(ω)χ1(ω)∗ < Ip. �

Remark 7.72 If A ∈ UrsR(Jp), {b3, b4} ∈ apII (A), (7.173) holds and B =
AV, then Sp×p ⊂ D(TB). This follows from Lemmas 4.70, 5.3 and Theorem
5.98.

7.11 Generalized Sarason problems in C̊p×p

The given data for a generalized Sarason problem in the class C̊p×p is a pair
of mvf’s b3, b4 ∈ Sp×p

in and a bounded linear block triangular operator

X =
[

Φ11 Φ12

0 Φ22

]
:

Hp
2 H(b3)

⊕ −→ ⊕
H∗(b4) Kp

2

. (7.174)

GSP(b3, b4; X; C̊p×p): Given b1 ∈ Sp×p
in , b2 ∈ Sq×q

in and a block triangular
operator X of the form (7.174), find a mvf c ∈ C̊p×p such that

Φ11 = PH(b3 )Mc|Hp
2
, Φ22 = Π−Mc|H∗(b4 ) and

Φ12 = PH(b3 )Mc|H∗(b4 ). (7.175)
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Let C̊(b3, b4; X) denote the set of solutions of this problem. If this problem
is solvable and c◦ ∈ C̊(b3, b4; X), then it is easy to verify that

C̊(b3, b4; X) = {c ∈ C̊p×p : b−1
3 (c − c◦)b−1

4 ∈ Hp×p
∞ }. (7.176)

Moreover, since both of the mvf’s c and c◦ in (7.176) belong to Hp×p
∞ ,

b−1
3 (c − c◦)b−1

4 ∈ Hp×p
∞ ⇐⇒ b−1

3 (c − c◦)b−1
4 ∈ N p×p

+

by the Smirnov maximum principle. Thus,

C̊(b3, b4; X) = H∞(b3, b4; X) ∩ C̊p×p (7.177)

and, if c◦ ∈ C̊(b3, b4; X), then

C̊(b3, b4; X) = C(b3, b4; c◦) ∩ C̊p×p (7.178)

and the GCIP(b3, b4; c◦) is strictly completely indeterminate. Conversely,
if the GCIP(b3, b4; c◦) is strictly completely indeterminate, then the right
hand side of (7.178) is nonempty, since c◦ may be chosen to belong to C̊p×p.
Moreover, the operator X is well defined by formulas (7.174) and (7.175)
with c ∈ GCIP(b3, b4; c◦)∩Hp×p

∞ and X is independent of the choice of such
a c. Consequently, C̊(b3, b4; X) �= ∅ and (7.178) holds. Thus, formula (7.178)
exhibits a two sided connection between strictly completely indeterminate
GCIP’s and solvable GSP’s in C̊p×p.

The operators

ΓX = Mb∗3 {Φ11Π+ + (Φ22 + Φ12)PH∗(b4 )}Mb∗4 |Hp
2

(7.179)

from Hp
2 into Kp

2 and

∆X = 2R

[
Φ11|H(b3 ) Φ12

0 PH∗(b4 )Φ22

]
: H(b3, b4) → H(b3, b4), (7.180)

where

H(b3, b4) =
H(b3)
⊕

H∗(b4),

will be useful.

Theorem 7.73 A GSP(b3, b4; X; C̊p×p) is solvable if and only if:

(1) The operator ΓX , defined by formula (7.179) is a Hankel operator.
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(2) The operator ∆X , defined by formula (7.180) is positive and has a
bounded inverse, i.e.,

∆X ≥ δI for some δ > 0. (7.181)

Proof Suppose first that C̊(b3, b4; X) �= ∅. Then, in view of (7.177),
H∞(b3, b4; X) �= ∅. Therefore, by Theorem 7.54, ΓX is a Hankel operator,
i.e., (1) holds. Moreover, if c ∈ C̊(b3, b4; X), then 2(Rc)(λ) ≥ δIp for some
δ > 0 and consequently,〈

∆X

[g
h

]
,
[g
h

]〉
st

= 〈(c + c∗)(g + h), (g + h)〉st ≥ δ
〈[g

h

]
,
[g
h

]〉
st

for every choice of g ∈ H(b3) and h ∈ H∗(b4), i.e., (2) holds.
It remains to show that (1) and (2) imply that C̊(b3, b4; X) �= ∅. The

verification of this implication is much more complicated.
One approach is based on the connection between the GCIP(b3, b4; c◦)

and the GSIP (b1, b2; s◦) considered in the previous section, which yields
a connection between GSP(b1, b2; X1;Sp×p) and GSP(b3, b4; X; Cp×p). The
connection between the data of each of these two GSP’s may by found in
formulas (5.196), (5.198) and (5.201); for more details see the first appendix
in [ArD05a].

Condition (1) is equivalent to restricting the operator Γ defined by the
blocks Γij of X1 by formula (7.145) to be a Hankel operator, whereas con-
dition (2) is equivalent to the condition ‖X1‖ < 1. Thus, if (1) and (2) are
in force, then by Theorem 7.54, the corresponding GSP(b1, b2; X1;Sp×p) is
strictly completely indeterminate, i.e.,

S(b1, b2; X1) ∩ S̊p×p �= ∅.

Consequently, C̊(b3, b4; X) �= ∅ and, in fact,

C̊(b3, b4; X) = TV[S(b1, b2; X1) ∩ S̊p×p]. (7.182)

�
Formula (7.182) leads to a description of the set C̊(b3, b4; X) of solutions

of a solvable GSP in C̊p×p and, at the same time, of the set C(b3, b4; c◦) of
solutions of a strictly completely indeterminate GCIP.

Theorem 7.74 Let b3, b4 ∈ Sp×p
in and let X be the block upper triangular

operator defined by formula (7.174) and assume that conditions (1) and (2)
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of Theorem 7.73 are satisfied for the GSP(b3, b4; X; C̊p×p). Then there exists
a mvf A(λ) which is uniquely specified by the conditions

(1) A ∈ UrsR(Jp),

(2) {b3, b4} ∈ apII (A),

(3) C̊(b3, b4; X) = C(A) ∩ C̊p×p,

up to a constant Jp-unitary multiplier on the right, which is obtained from
the formulas

A(λ)JpA(ω)∗Jp = Im − ρω(λ)KA
ω (λ)Jp, (7.183)

where ω ∈ hb3 ∩h
b#
4

is fixed and KA
ω (λ) may be obtained from the given data

by the formulas that are presented in (5.210) and Theorem 5.104. More-
over, if c◦ ∈ C(A) ∩ C̊p×p, then the GCIP(b3, b4; c◦) is strictly completely
indeterminate and

C(b3, b4; c◦) = C(A).

Proof Conditions (1) and (2) of Theorem 7.73 are satisfied if and only
if C̊(b3, b4; X) �= ∅. In this case C̊(b3, b4; X) = C(b3, b4; c◦), where c◦ ∈
C̊(b3, b4; X). The rest of the theorem follows from Theorems 7.69 and
7.70. �

An mvf A ∈ P◦(Jp) is called a resolvent matrix of the GCIP(b3, b4; c◦)
if

C(b3, b4; c◦) = C(A),

and B(λ) = A(λ)V is called the B-resolvent matrix of this problem. If

C̊(b3, b4; X) = C(A) ∩ C̊p×p,

then A is called a resolvent matrix of the GSP(b3, b4; X), and formulas for
it are furnished in Theorem 7.74, whereas Theorem 7.70 describes the set of
all resolvent matrices of a completely indeterminate GCIP(b3, b4; c◦).

If b3 = Ip or b4 = Ip, then the Sarason problem reduces to a simpler
one sided problem. Thus, for example, if b3 = b ∈ Sp×p

in , b4 = Ip and X ∈
L(Hp

2 ,H(b)), then the GSP(b, Ip; X; C̊p×p) is to find a mvf c such that

c ∈ C̊p×p and X = PH(b)Mc|Hp
2
.

In this setting the operator ∆X is defined by the formula

∆X = X|H(b) + (X|H(b))
∗,

and the following theorems are special cases of the preceding results.
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Theorem 7.75 C̊(b, Ip; X) �= ∅ if and only if conditions (7.154) and (7.181)
are in force.

Theorem 7.76 If C̊(b, Ip; X) �= ∅, then there exists a unique mvf A ∈
UrsR(Jp) with {b, Ip} ∈ apII (A), up to an arbitrary constant Jp-unitary mul-
tiplier on the right such that

C̊(b, Ip; X) = C(A) ∩ C̊p×p. (7.184)

Theorem 7.77 Let A ∈ UrsR(Jp), {b, Ip} ∈ apII (A), c◦ ∈ C(A) ∩ C̊p×p

and X = PH(b)Mc◦ |Hp
2
. Then X does not depend upon the choice of c◦ and

(7.181) holds. Moreover,

H(A) =
{

LXg =
[
−X∗g

g

]
: g ∈ H(b)

}
, (7.185)

LX ∈ L(H(b),H(A)) and, for every vvf g ∈ H(b),∥∥∥∥[−X∗g
g

]∥∥∥∥
H(A)

= 〈∆Xg, g〉st = −
〈

Jp

[
−X∗g

g

]
,

[
−X∗g

g

]〉
st

, (7.186)

and the mvf A(λ) may be recovered from the formulas (7.183), where
KA

ω (λ) = (LX∆−1
X FX

ω )(λ), b−1b5 ∈ Sp×p and

F X
ω (λ) =

[
−(Xkb5

ω )(λ) kb
ω(λ)

]
.
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∞ }, where b1 ∈ Sp×k

in

and b2 ∈ S�×q
∗in , as well as its operator valued version were studied by A.

Kheifets in [Kh90]. Kheifets obtained his results as an application of the
abstract interpolation problem of [KKY87]. In the latter, the set of solu-
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Generalized Krein extension problems

In this chapter we shall focus on the GCIP(b3, b4; c◦) in the special setting
when b3(λ) and b4(λ) are entire inner mvf’s. Each such interpolation problem
is equivalent to a bitangential Krein extension problem in the class Gp×p

∞ of
helical p×p mvf’s on the interval (−∞,∞). This extension problem and two
analogous extension problems in the class of positive definite mvf’s and in
the class of accelerants that were considered by Krein will also be discussed.

8.1 Helical extension problems

A mvf g(t) is said to belong to the class Gp×p
∞ of helical p × p mvf’s on the

interval (−∞,∞) if it meets the following three conditions:

(1) g(t) is a continuous p × p mvf on the interval (−∞,∞).

(2) g(t)∗ = g(−t) for every t in the interval (−∞,∞).

(3) The kernel

k(t, s) = g(t − s) − g(t) − g(−s) + g(0) (8.1)

is positive on [0,∞) × [0,∞).

The class Gp×p
a of helical p× p mvf’s on the closed interval [−a, a] is defined

for a > 0 by the same set of three conditions except that the finite closed
intervals [−a, a] and [0, a] are considered in place of the intervals (−∞,∞)
and [0,∞), respectively.

The classical Krein helical extension problem is:

420
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HEP(g◦; a): Given a mvf g◦ ∈ Gp×p
a , 0 < a < ∞, describe the set

G(g◦; a) = {g ∈ Gp×p
∞ : g(t) = g◦(t) for every t ∈ [−a, a]}. (8.2)

Theorem 8.1 (M. G. Krein) A p × p mvf g(t) belongs to the class Gp×p
a

if and only if it admits a representation of the form

g(t) = −β + itα +
1
π

∫ ∞

−∞

{
e−iµt − 1 +

iµt

1 + µ2

}
dσ(µ)

µ2 (8.3)

on the interval (−a, a), where α = α∗ and β = β∗ are constant p×p matrices
and σ(µ) is a nondecreasing p × p mvf on R such that∫ ∞

−∞
(1 + µ2)−1d(trace σ(µ)) < ∞. (8.4)

Proof A proof for the case p = 1, based on Krein’s unpublished Lecture
Notes is given in Chapter 3 of [GoGo97]. This proof can be extended to
cover the matrix case. �

Theorem 8.1 implies that the HEP(g◦; a) is always solvable i.e., the set
G(g◦; a) is not empty and can be obtained by extending the set of all repre-
sentations (8.3) for g(t) from (−a, a) to the full axis R. Moreover, Theorem
8.1 leads easily to a growth estimate for mvf’s g ∈ Gp×p

∞ .

Corollary 8.2 If g ∈ Gp×p
∞ , then

‖g(t)‖ = O(t2) as t → ∞. (8.5)

Proof In view of Theorem 8.1, it suffices to check that the integral in formula
(8.3) meets the asserted growth condition. But clearly the integrand{

e−iµt − 1 +
iµt

1 + µ2

}
1
µ2 =

{
©1 + ©2
1 + µ2

}
,

where

©1 = {e−iµt − 1}

and

©2 =
{

e−iµt − 1 + iµt

µ2

}
=
∫ t

0
(s − t)e−iµsds.
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The rest is self-evident from (8.4), since

|©1 | ≤ 2 and |©2 | ≤ t2/2

for µ ∈ R. �
The next theorem exhibits an important connection between the classes

Gp×p
∞ and Cp×p.

Theorem 8.3 There is a one to one correspondence between mvf’s c(λ) in
the class Cp×p and mvf’s g(t) in the subclass

Gp×p
∞ (0) = {g ∈ Gp×p

∞ : g(0) ≤ 0} (8.6)

that is defined by the formula

cg(λ) = λ2
∫ ∞

0
eiλtg(t)dt for λ ∈ C+. (8.7)

Moreover, if g̃◦ ∈ G(g◦; a) for a given mvf g◦ ∈ Gp×p
a with g◦(0) ≤ 0 and

c◦ = cg̃◦, then

C(eaIp, Ip; c◦) = {cg : g ∈ G(g◦; a)}. (8.8)

Proof The preceding corollary guarantees that the integral in (8.7) below
exists and is holomorphic in C+ for every choice of g ∈ Gp×p

∞ . With the help
of formulas

λ2
∫ ∞

0
eiλtdt = iλ, λ2

∫ ∞

0
teiλtdt = −1 (8.9)

and

λ2
∫ ∞

0

{
e−iµt − 1 +

iµt

1 + µ2

}
eiλtdt =

µ2

i

{
1

µ − λ
− µ

1 + µ2

}
, (8.10)

which are valid for µ ∈ R and λ ∈ C+, it is readily checked that if g(t) is
given by (8.3) for every point t ∈ R, then

λ2
∫ ∞

0
eiλtg(t)dt = −iλβ + iα +

1
πi

∫ ∞

−∞

{
1

µ − λ
− µ

1 + µ2

}
dσ(µ). (8.11)

In view of the representation (3.3), which defines a one to one correspondence
between {α, β, σ(µ)} and mvf’s c(λ) in the Carathéodory class Cp×p, where
α and β are constant p × p matrices with α = α∗ and β ≥ 0, and σ(µ)
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is a p × p nondecreasing mvf which is subject to the constraint (8.4), the
mapping

g −→ λ2
∫ ∞

0
eiλtg(t)dt (λ ∈ C+) (8.12)

is one to one from

Gp×p
∞ (0) = {g ∈ Gp×p

∞ : g(0) ≤ 0} onto Cp×p.

The identification (8.8) will follow from a more general result that will be
established below in Theorem 8.7. �

Given g◦ ∈ Gp×p
a (0), 0 < a < ∞, The HEP(g◦; a) is said to be

(i) determinate if the problem has only one solution.

(ii) indeterminate if the problem has more than one solution.

(iii) completely indeterminate if for every nonzero vector ξ ∈ Cp, there
exist at least two mvf’s g1, g2 ∈ G(g◦; a) such that
{g1(t) − g2(t)}ξ �≡ 0 on R.

(iv) strictly completely indeterminate if there exists at least one g ∈
G(g◦; a) such that cg ∈ C̊p×p.

We remark that the identification (8.8) exhibits the fact that a strictly
completely indeterminate problem is automatically completely indetermi-
nate.

A two sided connection between completely indeterminate HEP’s and the
class of mvf’s A ∈ E ∩ U(Jp) such that {ea3 Ip, ea4 Ip} ∈ apII (A) for some
choice of a3 ≥ 0 and a4 ≥ 0 will be presented in Theorems 8.20 and 8.21.
These theorems will follow from more general results that will be presented
in the next section.

The identification (8.8) will be generalized to tangential and bitangential
Krein helical extension problems by replacing the special choices b3(λ) =
ea(λ)Ip, b4(λ) = Ip, with an arbitrary normalized pair b3(λ), b4(λ) of entire
inner p × p mvf’s. Correspondingly, the set G(g◦; a) on the right hand side
of (8.8) is replaced by the set G(g◦;F�,Fr}, of solutions of the following
bitangential Krein helical extension problem that we shall call GHEP, an
acronym for generalized helical extension problem:

GHEP(g◦;F�,Fr): Given a mvf g◦ ∈ Gp×p
∞ (0) and a pair of sets F� ⊆

Lp
2([0, α�]) and Fr ⊆ Lp

2([0, αr ]), at least one of which contains a nonzero
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element, describe the set G(g◦;F�,Fr} of mvf’s g ∈ Gp×p
∞ (0) that meet the

following three conditions for every choice of h� ∈ F� and hr ∈ Fr:∫ α�

t
h�(u)∗{g(u − t) − g◦(u − t)}du = 0 for 0 ≤ t ≤ α�. (8.13)∫ αr

t
{g(v − t) − g◦(v − t)}hr(v)dv = 0 for 0 ≤ t ≤ αr. (8.14)

∫ αr

t

[∫ α�

0
h�(u)∗{g(u + v − t) − g◦(u + v − t)}du

]
hr(v)dv = 0

for 0 ≤ t ≤ αr. (8.15)

The three sets of conditions (8.13), (8.14) and (8.15) are equivalent to the
three sets (8.13), (8.14) and∫ α�

t
h�(u)∗

[∫ αr

0
{g(u + v − t) − g◦(u + v − t)}hr(v)dv

]
du = 0

for 0 ≤ t ≤ α� (8.16)

(see Lemma 8.12, below). If Fr = {0} or Fr = ∅, then only constraint (8.13)
is in effect and the GHEP is a left tangential extension problem.

If F� = {0} or F� = ∅, then only constraint (8.14) is in effect and the
GHEP is a right tangential extension problem.

Theorem 8.4 Let g◦ ∈ Gp×p
∞ (0) and let F� ⊆ Lp

2([0, α�]) and Fr ⊆
Lp

2([0, αr ]), where α� + αr > 0. Then there exists a pair {b3, b4} of nor-
malized entire inner p × p mvf’s such that

C(b3, b4; c◦) = G(g◦;F�,Fr) with c◦ = cg◦ . (8.17)

Moreover, b3(λ) and b4(λ) may be chosen so that

τ(b3) ≤ α� and τ(b4) ≤ αr, (8.18)

with b4(λ) ≡ Ip for left tangential problems and b3(λ) ≡ Ip for right tangen-
tial problems.
Conversely, if a mvf c◦ ∈ Cp×p and a pair {b3, b4} of normalized entire inner
p×p mvf’s is given, then a pair of sets F� ⊆ Lp

2([0, α�]) and Fr ⊆ Lp
2([0, αr])

exists such that the identification (8.17) is in force and equality holds in both
of the inequalities in (8.18).
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This theorem will follow from a number of other results on the connection
between the GCIP(b3, b4; c◦) and the GHEP(g◦;F�,Fr) that will be obtained
below. We begin with a few preliminary results of a general nature. The
notation

fε(λ) = f(λ + iε)

will be used in the proof Lemma 8.6 and Theorem 8.7.

Lemma 8.5 Let b ∈ E ∩ Hp×p
∞ and suppose that b(0) = Ip and b(λ) is of

exponential type a. Then there exists a unique p × p mvf hb(t) such that

b(λ) = Ip + iλ

∫ a

0
eiλthb(t)dt with hb ∈ Lp×p

2 ([0, a]) (8.19)

and ∫ a

a−ε
‖hb(t)‖dt > 0 for every ε in the interval 0 < ε < a. (8.20)

Proof The representation (8.19) is immediate from the Paley-Wiener theo-
rem, since

ĥb(λ) =
b(λ) − Ip

λ

is an entire p × p mvf of exponential type a which belongs to the space
Hp×p

2 . �

Lemma 8.6 Let c and c◦ belong to the Carathéodory class Cp×p, let b ∈
E ∩ Sp×p

in and suppose that

b−1
ε (cε − c◦ε) ∈ N p×p

+

for every ε > 0. Then

b−1(c − c◦) ∈ N p×p
+ .

Proof Let

s = TV[c] = (Ip − c)(Ip + c)−1 and s◦ = TV[c◦].

Then s, s◦ and (Ip + s◦)/2 all belong to Sp×p and

(Ip + s◦)
2

b = dϕ, (8.21)
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where d ∈ Sp×p
in and ϕ ∈ Sp×p

out . In fact, since (Ip + s◦)/2 is outer,

det d(λ) = γ1 det b(λ) = γ2e
iδλ

for some unimodular constants γ1 and γ2 and δ ≥ 0, it follows that d(λ) is
also entire, by Lemma 3.97. Now

b−1(c − c◦) = b−1{(Ip − s)(Ip + s)−1 − (Ip + s◦)−1(Ip − s◦)}

= 2b−1(Ip + s◦)−1(s◦ − s)(Ip + s)−1,

which in view of (8.21) yields the formula

b−1(c − c◦) = ϕ−1d−1(s◦ − s)(Ip + s)−1. (8.22)

Therefore, by assumption,

b−1
ε (cε − c◦ε) = ϕ−1

ε d−1
ε (s◦ε − sε)(Ip + sε)−1

belongs to N p×p
+ for ε > 0 and hence, since ϕε and (Ip + sε) are both outer

mvf’s (in Hp×p
∞ ),

d−1
ε (s◦ε − sε) ∈ N p×p

+

for every ε > 0. Moreover, since

d−1(λ) = e−iδλD(λ)

for some mvf D ∈ E ∩ Sp×p
in , it follows that

‖d−1
ε (µ){s◦ε(µ) − sε(µ)}‖ ≤ 2eδε

for ε > 0 and every point µ ∈ R. Therefore,

d−1
ε (s◦ε − sε) ∈ Lp×p

∞ (R) ∩N p×p
+ = Hp×p

∞ .

Thus,

‖d−1
ε (λ){s◦ε(λ) − sε(λ)}‖ ≤ 2eδε

for every point λ ∈ C+, and hence, upon letting ε ↓ 0, we conclude that

‖d−1(λ){s◦(λ) − s(λ)}‖ ≤ 2,

i.e.,

d−1{s◦ − s} ∈ Hp×p
∞ .

The desired conclusion is now immediate from (8.22) since both ϕ and
(Ip + s)/2 belong to Sp×p

out . �
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Theorem 8.7 Let b3 and b4 be normalized entire inner p × p mvf’s of
exponential types a3 and a4 respectively, and let the mvf’s hb3 (t) and hb4 (t)
be defined by the corresponding integral representation formulas (8.19). Then
the identification (8.17) holds with

F� = {hb3 (t)ξ : ξ ∈ C
p} and Fr = {hb4 (t)

∗η : η ∈ C
p}

for every choice of g◦ ∈ Gp×p
∞ (0).

Proof The proof is divided into three parts.

1. Let b3(λ) = b(λ), a3 = a > 0 and b4(λ) ≡ Ip. Then Fr = {0} and hence,
in order to verify (8.17), it suffices to show that

c ∈ Cp×p meets the condition b−1(c − c◦) ∈ N p×p
+ (8.23)

if and only if c = cg , where g ∈ Gp×p
∞ (0) satisfies the condition∫ a

t

hb(u)∗{g(u − t) − g◦(u − t)}du = 0 for 0 ≤ t ≤ a. (8.24)

Suppose first that (8.23) holds and let

q(λ) =
∫ 0

−a
eiλthb(−t)∗dt and r(λ) =

∫ ∞

0
eiλt{g(t) − g◦(t)}dt,

for short. Then,

b(λ)−1{cg(λ)−cg◦(λ)} = {Ip−iλq(λ)}(cg(λ)−cg◦(λ)) = {Ip−iλq(λ)}λ2r(λ)

and, since Cp×p ⊂ N p×p
+ and N p×p

+ is closed under addition and multiplica-
tion, it is readily seen that

λ3q(λ)r(λ) ∈ N p×p
+

and hence, since λ−1Ip ∈ N p×p
+ , that

q(λ)r(λ) ∈ N p×p
+ .

Therefore qεrε ∈ N p×p
+ for every ε > 0. Moreover, since

qε ∈ Lp×p
2 (R) ∩ Lp×p

∞ (R)

and

rε ∈ Hp×p
2 ∩ Hp×p

∞ ,



428 Generalized Krein extension problems

it follows that the product

qεrε ∈ Lp×p
2 (R) ∩ Lp×p

∞ (R) ∩N p×p
+ .

Thus, by the Smirnov maximum principle for mvf’s,

qεrε ∈ Hp×p
2 ∩ Hp×p

∞

for every ε > 0. Consequently, the inverse Fourier transform

(qεrε)∨(t) =
∫ t

−a
q∨ε (s)r∨ε (t − s)ds

of qεrε must vanish for −a ≤ t ≤ 0. But this is the same as to say that∫ t

−a
hb(−s)∗e−εs{g(t − s) − g◦(t − s)}e−ε(t−s)ds = 0 (8.25)

for −a ≤ t ≤ 0, which leads easily to (8.24).
Now suppose conversely that (8.24) holds. Then clearly (8.25) holds for

every ε > 0 and hence

qεrε ∈ Hp×p
2 ∩ Hp×p

∞ ⊂ N p×p
+

for every ε > 0. Moreover, in view of (8.5), we also have

rε ∈ Hp×p
2 ∩ Hp×p

∞ ⊂ N p×p
+

for every ε > 0. Thus,

b(λ + iε)−1{cg(λ + iε) − cg◦(λ + iε)} = {Ip − i(λ + iε)qε(λ)}(λ + iε)2rε(λ)

belongs to N p×p
+ (as a function of λ) for every ε > 0. The desired conclusion

now follows by letting ε ↓ 0 and invoking Lemma 8.6.

2. Let b4(λ) = b(λ), a4 = a > 0 and b3(λ) ≡ Ip. In this setting F� = {0}
and hence, in order to verify (8.17), it suffices to show that

c ∈ Cp×p meets the condition (c − c◦)b−1 ∈ N p×p
+ (8.26)

if and only if c = cg , where g ∈ Gp×p
∞ (0) satisfies the condition∫ a

t
{g(u − t) − g◦(u − t)}hb(u)∗du = 0 for 0 ≤ t ≤ a. (8.27)

This equivalence may be verified in much the same way that the equivalence
of (8.23) to (8.24) was justified. Alternatively, it may be reduced to the
preceding setting by considering the mvf’s b∼(λ), c∼(λ) and (c◦)∼(λ) in
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(8.23) instead of b(λ), c(λ) and c◦(λ) and hb(t)∗, g(t)∗ and g◦(t)∗ in (8.24)
instead of hb(t), g(t) and g◦(t).

3. The general setting. If

b−1
3 (cg − cg◦)b−1

4 ∈ N p×p
+ (8.28)

holds, then clearly

b−1
3 (cg − cg◦) ∈ N p×p

+ and (cg − cg◦)b−1
4 ∈ N p×p

+ , (8.29)

Therefore, by the preceding two cases, conditions (8.24) and (8.27) must be
met. Furthermore, since b3(0) = Ip, the first of these implies that

b−1
3 (cg − cg◦) = (cg − cg◦) − iλ3

∫ ∞

0
eiλt

{∫ a3

0
hb3 (u)∗r∨(u + t)du

}
dt,

where
r∨(t) = g(t) − g◦(t) for t ≥ 0.

Consequently, condition (8.28) will be met if and only if (8.24) and (8.27)
hold and ∫ ∞

0
eiλt

{∫ a3

0
hb3 (u)∗r∨(u + t)du

}
dt b4(λ)−1 ∈ N p×p

+ .

Much the same sort of analysis as was used before leads to condition (8.15).
Moreover, the argument can be run backwards to establish the converse.

Similar considerations lead to the second set of conditions. �
We remark that conditions (8.13)–(8.15) depend at most on the values of

g(t) and g◦(t) on the interval −(a3 + a4) ≤ t ≤ a3 + a4.
We shall identify Lp

2([0, α]) with the subspace of vvf’s in Lp
2([0,∞)) with

support in the interval [0, α]. With this identification, Lp
2([0, α]) is invariant

under the action of the semigroup Tτ , τ ≥ 0, of backward shift operators in
the time domain that are defined by the formula

(Tτ f)(t) = f(t + τ) for f ∈ Lp
2([0,∞)) and τ ≥ 0. (8.30)

Then
Tτ f = (Π+e−τ f̂)∨.

Let
Ĥ = {ĥ : h ∈ H}

denote the Fourier transform of a subspace H of Lp
2(R).
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Lemma 8.8 Let L be a closed subspace of Lp
2(R+). Then L is invariant with

respect to the backwards shift semigroup T (t), t ≥ 0, in Lp
2(R+) if and only

if

RαL̂ ⊆ L̂ for at least one (and hence every) point α ∈ C+.

Proof This follows from Lemma 3.40. �

Lemma 8.9 Let H ⊆ Lp
2([0, α]) be a closed subspace that is invariant with

respect to the semigroup Tτ , τ ≥ 0. Then:

(1) There exists exactly one mvf b ∈ E ∩ Sp×p
in with b(0) = Ip such that

Ĥ = H(b).

Moreover,

(2) b(λ) is of exponential type a with a ≤ α.

(3) The mvf hb in the representation (8.19) for b(λ) belongs to
Lp

2([0, a]).

(4)
∨
{Tτ hbξ : ξ ∈ C

p and τ ≥ 0} = H.

Proof If H is a closed subspace of Lp
2([0, α]) that is invariant under the

action of the semigroup Tτ , τ ≥ 0, then

Ĥ ⊆ Hp
2 � eαHp

2

and Ĥ is invariant under the action of the semigroup of operators

Π+e−τ |Hp
2

for every τ ≥ 0.

Therefore, Hp
2 � Ĥ is invariant under multiplication by et for t ≥ 0 and

hence, by the Beurling-Lax theorem, there exists an essentially unique mvf
b ∈ Sp×q

in such that Ĥ = H(b). In view of Corollary 3.42, q = p, and b(λ) is
an entire inner p×p mvf of exponential type ≤ α, since H(b) ⊆ H(eαIp) and
Rαbξ ∈ H(b) for α ∈ C+ and every ξ ∈ C

p. Moreover, there is only one such
mvf b(λ) that meets the normalization condition b(0) = Ip. This completes
the proof of (1) and (2). Assertion (3) then follows from Lemma 8.5.

Next, as

ĥb(λ)ξ =
b(λ) − Ip

iλ
ξ = 2πkb

0(λ)ξ,
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belongs to H(b), it follows that hbξ ∈ H and hence that Tτ hbξ ∈ H for
every ξ ∈ C

p and every τ ≥ 0, since H is invariant with respect to Tτ for
τ ≥ 0. Thus, the closed subspace L that is defined in (4) is a subspace of
H. Moreover, in view of the preceding identity, R0bξ ∈ L̂ for every ξ ∈ C

p,
and, since L̂ is invariant with respect to the backward shift operator Rα in
H(b) for every α ∈ C+ by Lemma 8.8, it follows that

(Ip + ωRω)ĥbξ = −i(Ip + ωRω)R0bξ = −i(R0 + ωRωR0)bξ

= −i(R0 + Rω − R0)bξ = −i
b(λ) − b(ω)

λ − ω
ξ

= −i
b(λ)b(ω)∗ − Ip

λ − ω
b(ω)ξ = 2πkb

ω(λ)b(ω)ξ;

i.e., kb
ωξ ∈ L̂ for every ω ∈ C and ξ ∈ C

p. Consequently, H(b) ⊆ L̂. Thus,
L̂ = H(b) = Ĥ, and L = H. �

If F ⊆ Lp
2([0, α)), then ∨

(TτF : τ ≥ 0)

is a closed subspace of Lp
2([0, α)) that is invariant under Tτ for every τ > 0.

Consequently, there is a unique normalized entire inner p× p mvf b(λ) such
that (∨

{TτF : τ ≥ 0}
)̂

= H(b).

Lemma 8.10 Let f(t) be a continuous k× p mvf on [0, a], let h ∈ Lp
2([0, a])

and let

ψ(t) =
∫ a

t
f(v − t)h(v)dv for 0 ≤ t ≤ a. (8.31)

Then ψ ∈ Lk
2([0, a]) and

ψ(t + τ) =
∫ a

t
f(v − t)(Tτ h)(v)dv for 0 ≤ t ≤ a − τ and 0 ≤ τ. (8.32)

Proof If a − τ ≤ t ≤ a, then both sides of (8.32) are equal to zero. If
0 ≤ t < a − τ , then equality (8.32) follows from (8.31) by a change of
variables, since (Tτ h)(v) = 0 for τ > 0 and a − τ < v ≤ a. �
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Lemma 8.11 Let f(t) be a continuous p× k mvf on [0, a], let h ∈ Lp
2([0, a])

and let

ϕ(t) =
∫ a

t
h(u)∗f(u − t)du for 0 ≤ t ≤ a.

Then ϕ ∈ L1×k
2 ([0, a]) and

ϕ(t + τ) =
∫ a

t
(Tτ h)(u)∗f(u − t)du.

Proof This assertion is equivalent to Lemma 8.10. �
If 0 < α < a < ∞, then, in the next several lemmas, Lp

2([0, α]) is viewed
as a subspace of Lp

2([0, a])

Lemma 8.12 Let f(t) be a continuous p × p mvf on [0, a] and let h� ∈
Lp

2([0, α�]) and hr ∈ Lp
2([0, αr ]) be such that 0 < α�, 0 < αr, α� +αr ≤ a and∫ α�

t
h�(u)∗f(u − t)du = 0 for 0 ≤ t ≤ α�, (8.33)

∫ αr

t
f(v − t)hr(v)dv = 0 for 0 ≤ t ≤ αr. (8.34)

Then∫ αr

t

[∫ α�

0
h�(u)∗f(u + v − t)du

]
hr(v)dv = 0 for every 0 ≤ t ≤ αr

(8.35)
if and only if∫ α�

t

[∫ αr

0
h�(u)∗[f(u + v − t)hr(v)dv

]
du = 0 for every 0 ≤ t ≤ α�.

(8.36)

Proof Let the assumption of the lemma be in force and let f̃ be any con-
tinuous extension of f to the interval 0 ≤ t ≤ 2a. Then equations (8.33) and
(8.34) are equivalent to the formulas∫ a

t−u
f̃(u + v − t)hr(v)dv = 0 for 0 ≤ u ≤ t ≤ a

and ∫ a

t−v
h�(u)∗f̃(u + v − t)du = 0 for 0 ≤ v ≤ t ≤ a,
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respectively, where it is understood that h�(u) = 0 if u �∈ [0, α�] and hr(u) =
0 if u �∈ [0, αr ]. Consequently,∫ a

t

[∫ a

0
h�(u)∗f̃(u + v − t)du

]
hr(v)dv

=
∫ a

0
h�(u)∗

[∫ a

t
f̃(u + v − t)hr(v)dv

]
du

=
∫ t

0
h�(u)∗

[∫ a

t
f̃(u + v − t)hr(v)dv

]
du

+
∫ a

t
h�(u)∗

[∫ a

t
f̃(u + v − t)hr(v)dv

]
du

= −
∫ t

0
h�(u)∗

[∫ t

t−u
f̃(u + v − t)hr(v)dv

]
du

+
∫ a

t
h�(u)∗

[∫ a

t
f̃(u + v − t)hr(v)dv

]
du

= −
∫ t

0

[∫ t

t−v
h�(u)∗f̃(u + v − t)du

]
hr(v)dv

+
∫ a

t
h�(u)∗

[∫ a

t
f̃(u + v − t)hr(v)dv

]
du

=
∫ t

0

[∫ a

t
h�(u)∗f̃(u + v − t)du

]
hr(v)dv

+
∫ a

t
h�(u)∗

[∫ a

t
f̃(u + v − t)hr(v)dv

]
du

=
∫ a

t
h�(u)∗

[∫ a

0
f̃(u + v − t)hr(v)dv

]
du.

Thus,∫ a

t
h�(u)∗

[∫ a

0
f̃(u + v − t)hr(v)dv

]
du

=
∫ a

t

[∫ a

0
h�(u)∗f̃(u + v − t)du

]
hr(v)dv for 0 ≤ t ≤ a. (8.37)

Consequently, (8.36) implies that the left hand side of (8.37) vanishes for
0 ≤ t ≤ α� and hence for 0 ≤ t ≤ a. Therefore, the right hand side of (8.37)
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vanishes for 0 ≤ t ≤ a, which serves to justify (8.35). The proof that (8.35)
=⇒ (8.36) is similar. �

Lemma 8.13 Let f(t) be a continuous k × p mvf on [0, a], let 0 < αr ≤ a

and let hr ∈ Lp
2([0, αr]). If (8.34) holds, then∫ a

t
f(v − t)(Tτ h

r)(v)dv = 0 for 0 ≤ t ≤ a (8.38)

and every τ ≥ 0.

Proof This follows from Lemma 8.10. �

Lemma 8.14 Let f(t) be a continuous p × k mvf on [0, a], let 0 < α� ≤ a

and let h� ∈ Lp
2([0, α�]). If (8.33) holds, then∫ a

t
(Tτ h

�(u))∗f(u − t)du = 0 for 0 ≤ t ≤ a (8.39)

and every τ ≥ 0.

Proof This follows from Lemma 8.11. �

Lemma 8.15 Let f(t) be a continuous p × p mvf on [0, a]. Let h� ∈
Lp

2([0, α�]), hr ∈ Lp
2([0, αr ]), 0 < α� + αr ≤ a. If (8.33), (8.34) and (8.35)

hold, then (8.38) and (8.39) hold for every τ ≥ 0, and∫ α�

t
(Tτ1 h

�)(u)∗
[∫ αr

0
f(u + v − t)(Tτ2 h

r)(v)dv

]
du = 0, 0 ≤ t ≤ α�,

(8.40)
hold for every τ1 ≥ 0 and τ2 ≥ 0.

Proof If the assumptions of the lemma are in force, then (8.38) and (8.39)
hold for τ ≥ 0 by Lemmas 8.13 and 8.14. Let

f1(t) =
∫ αr

0
f(v + t)hr(v)dv for 0 ≤ t ≤ α�.

Then f1(t) is a continuous p × 1 mvf on [0, α�]. In view of Lemma 8.12,
(8.35) is equivalent to (8.36) and hence,∫ α�

t
h�(u)∗f1(u − t)du =

∫ α�

t
h�(u)∗

[∫ αr

0
f(v + u − t)hr(v)dv

]
du = 0.
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Thus, by Lemma 8.14,∫ α�

t
(Tτ1 h

�)(u)∗f1(u − t)du = 0 for 0 ≤ t ≤ α� (8.41)

and every τ1 ≥ 0.
Let τ1 ≥ 0 be fixed. Then∫ α�

t
(Tτ1 h

�)(u)∗f(u − t)du = 0,

∫ αr

t
f(v − t)hr(v)dv = 0

and ∫ α�

t
(Tτ1 h

�)(u)∗
[∫ αr

0
f(u + v − t)hr(v)dv

]
du = 0

for 0 ≤ t ≤ a. Thus, by Lemma 8.12,∫ αr

t

[∫ α�

0
(Tτ1 h

�)∗(u)f(u + v − t)du

]
hr(v)dv = 0.

Now let

f2(t) =
∫ α�

0
(Tτ1 h

�)∗(u)f(u + t)du for 0 ≤ t ≤ αr.

Then f2(t) is a continuous 1 × p mvf on [0, αr ] and∫ αr

t
f2(v − t)hr(v)dv = 0 for 0 ≤ t ≤ αr.

By Lemma 8.13,∫ αr

t
f2(v − t)(Tτ2 h

r)(v)dv = 0 for 0 ≤ t ≤ αr.

Consequently,∫ αr

t

[∫ α�

0
(Tτ1 h

�(u)∗f(u + v − t)du

]
(Tτ2 h

r)(v)dv = 0 for 0 ≤ t ≤ αr,

which is equivalent to (8.40) by Lemma 8.12. �

Lemma 8.16 Let f(t) be a continuous p × p mvf on [0, a]. Let

Fr ⊆ Lp
2([0, α�]) and F� ⊆ Lp

2([0, αr]) for 0 < α� + αr ≤ a
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and let

H� =
∨
τ≥0

(TτF�) in Lp
2([0, α�]) and Hr =

∨
τ≥0

(TτFr) in Lp
2([0, αr ]).

If (8.33), (8.34) and (8.35) hold for every h� ∈ F� and hr ∈ Fr , then (8.33),
(8.34) and (8.35) hold for every h� ∈ H� and hr ∈ Hr.

Proof Lemma 8.15 implies that (8.33), (8.34) and (8.35) hold for the vvf’s
h� and hr in the linear span of {TτF� : τ ≥ 0} and the linear span of
{TτFr : τ ≥ 0}, respectively. Thus, they are in force for every vvf h� and hr

in the closure of these linear manifolds, too. �

Lemma 8.17 Let F� ⊆ Lp
2([0, α�]) and Fr ⊆ Lp

2([0, αr ]) be given and let
b�(λ) and br(λ) be the unique pair of normalized entire inner p × p mvf’s
such that(∨

{TτF� : τ ≥ 0}
)∧

= H(b�) and
(∨

{TτFr : τ ≥ 0}
)∧

= H(br).

Let F ′
� and F ′

r denote the set of columns of the mvf’s hb�
(t) and hbr (t)

∗, re-
spectively, in the representation formula (8.19). Then for any g◦ ∈ Gp×p

∞ (0),

G(g◦,F�,Fr) = G(g◦,
∨
τ≥0

{TτF�},
∨
τ≥0

{TτFr}) = G(g◦,F ′
�,F ′

r).

Proof Lemma 8.9 implies that
∨
{TτF ′

� : τ ≥ 0} =
∨
{TτF� : τ ≥ 0},

and
∨
{TτF ′

r : τ ≥ 0} =
∨
{TτFr : τ ≥ 0}. Moreover, by Lemmas

8.13-8.15 applied to the mvf’s f = g − g◦, with g ∈ Gp×p
∞ (0), we obtain

the two identifications

G(g◦;F�,Fr) = G(g◦,
∨
τ≥0

{TτF�},
∨
τ≥0

{TτFr})

and

G(g◦;F ′
�,F ′

r) = G(g◦,
∨
τ≥0

{TτF ′
�},
∨
τ≥0

{TτF ′
r}) = G(g◦,

∨
F�,
∨

Fr).

�
Proof of Theorem 8.4. Let the mvf g◦ ∈ Gp×p

∞ (0) and the sets F� ⊆
Lp

2([0, α�]) and Fr ⊆ Lp
2([0, αr]) be given, with α� + αr > 0. Let F ′

� and
F ′

r be defined by F� and Fr as above, as the sets of columns of the mvf’s



8.1 Helical extension problems 437

hb�
and hbr . Let b3(λ) = b�(λ) and b4(λ) = b∼r (λ) and let c◦ = cg◦ . Then

C(c◦; b3, b4) = {cg : g ∈ G(g◦; F ′
�,F ′

r)} by Theorem 8.7. Consequently,

C(c◦; b3, b4) = {cg : g ∈ G(g◦;F�,Fr)},

since G(g◦;F ′
�,F ′

r) = G(g◦;F�,Fr) by the previous lemmas.
The converse statement of Theorem 8.4 was established in Theorem 8.7.

�
A GHEP is said to be determinate if it has only one solution and in-

determinate otherwise. It is said to be completely indeterminate or
strictly completely indeterminate if the corresponding GCIP is com-
pletely indeterminate or strictly completely indeterminate, respectively.

Theorem 8.18 If a GHEP(g◦;F�,Fr) is completely indeterminate, then:

(1) There exists a mvf A ∈ P(Jp) such that

{g : g ∈ G(g◦;F�,Fr)} = C(A). (8.42)

(2) Every mvf A ∈ P(Jp) for which the equality (8.42) holds is automati-
cally an entire right regular J-inner mvf and thus may be normalized
by the condition A(0) = Im.

(3) Every normalized mvf A ∈ U(Jp) for which the equality (8.42) holds
is uniquely defined by the data of the problem up to a scalar multiplier
eα(λ) such that eαA ∈ U(Jp).

(4) If A ∈ U(Jp) is such that the equality (8.42) holds, then

A ∈ UrsR(Jp) ⇐⇒ GHEP(g◦;F�,Fr) is strictly

completely indeterminate.

Proof Assertion (1) follows from the identification of the solution
GHEP (g◦;F�,Fr) with the solutions of the corresponding GCIP (c◦; b3, b4),
given in Theorem 8.4, and the description of the set C(c◦; b3, b4), given
in Theorem 7.70. The last theorem also guarantees that A ∈ UrR(Jp).
Consequently, A(λ) is an entire mvf, since b3(λ) and b4(λ) are entire and
{b3, b4} ∈ apII (A). Thus, assertion (2) is proved and A(λ) may be normal-
ized by the condition A(0) = Im . Then assertion (3) follows from Corollary
4.97.

Assertion (4) follows from formula (8.42) and the definitions of the class
UrsR(Jp) and the class of strictly completely indeterminate GHEP’s. �
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Theorem 8.19 Let A ∈ E∩U(Jp), let c◦ ∈ C(A), c◦ = cg◦, g◦ ∈ Gp×p
∞ (0) and

let {b3, b4} ∈ apII (A). Then b3(λ) and b4(λ) are entire inner p×p mvf’s that
may be assumed to be normalized. Let F� and Fr denote the set of columns of
the corresponding mvf’s hb3 (t) and hb4 (t)

∗ that arise from the representation
formula (8.19). Then the GHEP(g◦; F�,Fr) is completely indeterminate and

C(A) ⊆ {cg : g ∈ G(g◦; F�,Fr)} (8.43)

with equality if and only if A ∈ UrR(Jp).

Proof The stated assertions follow from Theorems 8.7 and 7.69. �
The preceding two theorems yield the following results for the completely

indeterminate classical Krein helical extension problem.

Theorem 8.20 If the Krein helical extension problem HEP(g◦; a) is com-
pletely indeterminate, then

(1) There exists a mvf A ∈ P(Jp) such that

C(A) = {cg : g ∈ G(g◦; a)}. (8.44)

(2) If A ∈ P(Jp) is such that the equality (8.44) holds, then A(λ) is
automatically an entire right regular Jp-inner mvf. Moreover,

{ea3 Ip, ea4 Ip} ∈ apII (A), with a3 ≥ 0, a4 ≥ 0 and a3 + a4 = a.

(3) If a3 ≥ 0, a4 ≥ 0 and a3 + a4 = a, then there exists exactly one
normalized mvf A◦ ∈ E∩U(Jp) such that (8.44) holds and {ea3 , ea4} ∈
apII (A◦). Moreover, the set of all normalized A ∈ E∩U(Jp) such that
(8.44) holds is described by the formula

A(λ) = eiλαA◦(λ), −a3 ≤ α ≤ a4.

(4) If A ∈ P(Jp) is such that the equality (8.44) holds, then

A ∈ UrsR(Jp) ⇐⇒ the HEP(g◦, a) is strictly

completely indeterminate.

Theorem 8.21 Let A ∈ E∩U(Jp) and suppose that {ea3 Ip, ea4 Ip} ∈ apII(A)
for some choice of a3 ≥ 0 and a4 ≥ 0, with a = a3 + a4 > 0. Let c◦ ∈ C(A),
c◦ = cg̃◦, where g̃◦ ∈ Gp×p

∞ (0) and let g◦ denote the restriction of the mvf
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g̃◦ to the interval [−a, a]. Then the HEP(g◦; a) is completely indeterminate
and

C(A) ⊆ {cg : g ∈ HEP (g◦; a)}. (8.45)

Equality holds in the last inclusion if and only if A ∈ UrR(Jp).

Proof The assertion follows from Theorem 8.19. �
The mvf’s A(λ) considered in formula (8.44) are called A-resolvent matri-

ces of the HEP(g◦; a) and the mvf’s B(λ) = A(λ)V are called B-resolvent
matrices of this problem.

8.2 Positive definite extension problems

The representation (8.7) of a mvf c ∈ Cp×p may be rewritten as the Fourier
transform

c(λ) =
∫ ∞

0
eiλtf(t)dt (8.46)

of a matrix valued distribution f(t) of at most second order with a kernel
f(t − s) that is positive on [0,∞) × [0,∞) in the sense that:

f(t)∗ = f(−t) and
∫ ∞

0
ϕ(t)∗

{∫ ∞

0
f(t − s)ϕ(s)ds

}
dt ≥ 0 (8.47)

for every infinitely differentiable vvf ϕ(t) with support in a finite closed
subinterval of (0,∞). Thus, the classical Krein helical extension problem
may be considered as an extension problem for a positive definite p× p ma-
trix valued distribution f(t) of at most second order that is specified on a
finite interval [−a, a] to the interval (−∞,∞). In this case, the convolution
operator is also understood in the sense of distributions. The corresponding
GHEP may also be reformulated in terms of a generalized extension prob-
lem for positive definite p × p matrix valued distributions. Krein solved the
extension problem for classical positive definite functions from the interval
[−a, a] onto the interval (−∞,∞) before he solved the HEP.

A p × p mvf f(t) is said to belong to the class Pp×p
a of positive definite

mvf’s on the finite closed interval [−a, a] if:

(1) f(t) is continuous on the interval [−a, a].

(2) f(t)∗ = f(−t) for t ∈ [−a, a].

(3) The kernel k(t, s) = f(t − s) is positive on [0, a] × [0, a].
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The condition in (3) means that
n∑

i,j=1

ξ∗i f(ti − tj)ξj ≥ 0

for every finite collection of points t1, . . . , tn from [0, a] and vectors ξ1, . . . , ξn

from C
p. Under conditions (1) and (2), (3) holds if and only if the inequality

in (8.47) holds for every vvf ϕ ∈ Lp
2([0, a]). The symbol Pp×p

∞ denotes the
class of p × p mvf’s f(t) which meet the same three conditions except with
(−∞,∞) in place of [−a, a] in (1) and (2) and [0,∞) in place of [0, a] in (3).

In [Kr5] Krein considered the following extension problem as an applica-
tion of the theory of selfadjoint extensions of entire symmetric operators:

PEP(f ; a): Given f ∈ Pp×p
a , find the set of all f̃ ∈ Pp×p

∞ such that f̃(t) =
f(t) for every point t in the interval −a ≤ t ≤ a.

The symbol P(f ; a) will designate the set of solutions to this problem.
It turns out that this extension problem is easily resolved with the help

of the following characterization of Pp×p
a :

Theorem 8.22 A p × p mvf f(t) belongs to the class Pp×p
a if and only if it

admits an integral representation of the form

f(t) =
1
π

∫ ∞

−∞
e−itµdσ(µ), |t| < a, (8.48)

where σ(µ) is a nondecreasing bounded p × p mvf on R.

Proof A proof for p = 1 is furnished in Theorem 2.1 on p. 127 of [GoGo97].
The proof for p > 1 is similar. �

Theorem 8.22 implies that if f ∈ Pp×p
a , then the set of f̃ ∈ P(f ; a) is

completely described by the formula

f̃(t) =
1
π

∫ ∞

−∞
e−itµdσ(µ), −∞ < t < ∞, (8.49)

where σ(µ) in (8.49) is the same as in (8.48). Thus, P(f ; a) �= ∅ if f ∈ Pp×p
a ,

and the basic issue is to describe all bounded nondecreasing mvf’s σ(µ) for
which (8.48) holds.

The formula

c(λ) =
1
πi

∫ ∞

−∞

dσ(µ)
µ − λ

(8.50)
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defines a one to one correspondence between the set of nondecreasing
bounded p × p mvf’s σ(µ) on R that are subject to the normalizations
σ(µ − 0) = σ(µ) and σ(−∞) = 0 and the class Cp×p

0 introduced in Sec-
tion 3.3. Thus, it follows from (8.50) that

c(λ) =
1
π

∫ ∞

−∞

{∫ ∞

0
ei(λ−µ)tdt

}
dσ(µ)

for λ ∈ C+, and hence, by (8.49), upon interchanging orders of integration,
that

c(λ) =
∫ ∞

0
eiλtf(t)dt for λ ∈ C+. (8.51)

Thus, the description of the set of solutions to the PEP(f ; a) is equivalent
via formula (8.51) to the description of the corresponding functions c ∈ Cp×p

0 .
It follows easily from the representation formulas (8.48) and (8.3) that

Pp×p
a ⊆ Gp×p

a .

8.3 Connections between the positive definite and the helical
extension problems

Let c ∈ Cp×p
0 . Then, since Cp×p

0 ⊂ Cp×p, it follows from Theorem 8.3 and the
discussion in subsection 8.2 that c(λ) admits two representations:

c(λ) =
∫ ∞

0
eiλtf(t)dt = λ2

∫ ∞

0
eiλtg(t)dt (for λ ∈ C+),

where f ∈ Pp×p
∞ and g ∈ Gp×p

∞ (0). Since f is continuous and bounded on R,
the formula∫ ∞

0
eiλtf(t)dt =

∫ ∞

0
eiλt

{
d2

dt2

∫ t

0
(t − u)f(u)du

}
dt

= −λ2
∫ ∞

0
eiλt

{∫ t

0
(t − u)f(u)du

}
dt

is readily verified (for λ ∈ C+) by integration by parts and serves to prove
that

g(t) = −
∫ t

0
(t − u)f(u)du. (8.52)

on the interval (0,∞).
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Let C2
a denote the class of mvf’s g(t) for which the second derivative g′′(t)

exists and is continuous on [−a, a] if a < ∞ and on (−∞,∞) if a = ∞, and
let

Q ∩ Gp×p
a = {g ∈ Gp×p

a : g ∈ C2
a , g(0) = 0 and g′(0) = 0}

for 0 < a ≤ ∞.

Theorem 8.23 If g ∈ Q∩Gp×p
a , then f = −g′′ belongs to Pp×p

a . Conversely,
if f ∈ Pp×p

a , then

g(t) = −
∫ t

0
(t − u)f(u)du (8.53)

belongs to Gp×p
a ∩ Q and f = −g′′.

Proof It suffices to focus on the case 0 < a < ∞. If g ∈ Q ∩ Gp×p
a , then g′′

is continuous on [−a, a] and the kernel

g(t − s) − g(t) − g(−s)

is positive. Therefore,∫ a

0
ϕ′(t)∗

{∫ a

0
[g(t − s) − g(t) − g(−s)]ϕ′(s)ds

}
dt ≥ 0

for every choice of p × 1 mvf ϕ with a continuous derivative on [0, a] and
ϕ(0) = ϕ(a) = 0. Integrating by parts twice, once with respect to s and once
with respect to t, we obtain the inequality

−
∫ a

0
ϕ(t)∗

{∫ a

0
g′′(t − s)ϕ(s)ds

}
dt ≥ 0.

Thus, the kernel −g′′(t − s) is positive and f = −g′′ belongs to Pp×p
a , as

claimed.
To verify the converse, let f ∈ Pp×p

a and let g(t) be defined by formula
(8.53). Then it follows readily from the representation formula (8.48) that

g(t) =
1
π

∫ ∞

−∞

e−itµ − 1 + iµt

µ2 dσ(µ)

and hence that

g(t − s) − g(t) − g(−s) =
1
π

∫ ∞

−∞

{
e−itµ − 1

µ

}{
eisµ − 1

µ

}
dσ(µ)

is a positive kernel. �
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Corollary 8.24 A mvf g ∈ Q∩Gp×p
a if and only if it admits a representation

of the form (8.3) with

β = 0, σ bounded and α =
1
π

∫ ∞

−∞

µ

1 + µ2 dσ(µ). (8.54)

In particular, if g ∈ Gp×p
∞ (0), then

cg ∈ Cp×p
0 ⇐⇒ g ∈ Q ∩ Gp×p

∞ . (8.55)

Theorem 8.25 If g ∈ Q ∩ Gp×p
a , then every solution g̃ of the HEP(g; a)

belongs to Q ∩ Gp×p
∞ .

Proof The proof is broken into steps.

1. There exists at least one solution g̃ of the HEP(g; a) which belongs to
Q ∩ Gp×p

∞ .
Let g ∈ Q∩ Gp×p

a . Then, by Theorem 8.23, f = −g′′ belongs to Pp×p
a . Let

f̃ ∈ P(f ; a) and set

g̃(t) = −
∫ t

0
(t − s)f̃(s)ds.

Then, since g̃(t) = g(t) for t ∈ (−a, a), g̃ ∈ Q ∩ G(g; a). This establishes the
claim of this step.

2.Every solution g̃ of the HEP(g; a) belongs to Q ∩ Gp×p
∞ .

The proof this step will be given in Section 8.5. �
There is also an important connection between Gp×p

∞ and {f ∈ Pp×p
∞ :

f(0) > 0} that will be discussed in the next section.

8.4 Resolvent matrices for positive definite extension problems

A PEP(f : a) is said to be

(1) determinate if the problem has only one solution.

(2) indeterminate if the problem has more than one solution.

(3) completely indeterminate if for every nonzero vector ξ ∈ Cp there
exist at least two solutions f̃1(t) and f̃2(t) of the problem such that
f̃1(t)ξ �≡ f̃2(t)ξ on R.
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In this section we shall characterize the class of resolvent matrices for com-
pletely indeterminate positive extension problems. We begin by stating four
lemmas (without proof), which serve to establish a connection between the
solutions of a completely indeterminate PEP and a completely indetermi-
nate HEP. The lemmas are formulated in terms of the following notation,
where β ∈ C

p×p and β > 0:

Aβ(λ) =
[

Ip 0
−iλβ Ip

]
. (8.56)

C0(β) = {c ∈ Cp×p
0 : νRc(iν) < β−1 for every ν > 0

and lim
ν↑∞

c(iν) = 0} (8.57)

and for f ∈ Pp×p
a , let

C0(f ; a) =
{∫ ∞

0
eiλtf̃(t)dt : f̃ ∈ P(f ; a), λ ∈ C+

}
. (8.58)

Lemma 8.26 If β > 0 is a constant p× p matrix, then Aβ ∈ E ∩U(Jp) and

TAβ
[Cp×p] = C0(β).

Lemma 8.27 Let f ∈ Pp×p
a and suppose that the PEP(f ; a) is completely

indeterminate. Then

f(0) > 0 and C0(f ; a) ⊆ C0(β) for β = f(0)−1.

Lemma 8.28 Let f ∈ Pp×p
a and suppose that the PEP(f ; a) is completely

indeterminate. Let c ∈ C0(f ; a) and let β = f(0)−1. Then:

(1) c = TAβ
[cg̃ ] for some g̃ ∈ Gp×p

∞ (0).

(2) If g(t) = g̃(t) for |t| ≤ a, then g ∈ Gp×p
a (0), the HEP(g; a) is com-

pletely indeterminate and

C0(f ; a) = TAβ
[C(g◦; a)], where C(g◦; a) = {cg : g ∈ Gp×p

a }.
(8.59)

Lemma 8.29 Let g ∈ Gp×p
a (0) and suppose that the HEP(g; a) is completely

indeterminate. Let β > 0 be a constant p × p matrix and let c = TAβ
[cg̃ ] for

any choice of g̃ ∈ G(g; a). Then:
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(1) c(λ) =
∫∞
0 eiλtf̃(t)dt for λ ∈ C+ and some choice of f̃ ∈ Pp×p

∞ .

(2) The mvf f(t) = f̃(t) for |t| ≤ a belongs to Pp×p
a and the HEP(f ; a)

is completely indeterminate.

(3) The identity (8.59) holds.

On the basis of this connection between C0(f ; a) and C(g; a) we can now
obtain the following results on the resolvent matrices of PEP’s from Theorem
8.20.

Theorem 8.30 Let f ∈ Pp×p
a and suppose that the PEP(f ; a) is completely

indeterminate (which implies that f(0) > 0) and let β = f(0)−1. Then there
exists a unique mvf B ∈ E ∩ U(jp, Jp) such that

(1) C0(f ; a) = TB [Sp×p ∩ D(TB)].

(2) τ+
B = 0 and τ+

B−1 = a.

(3) B(0) = V.

Moreover, detB(λ) = (−1)peipaλ and:

(4) The mvf A(λ) = B(λ)V belongs to the class UrR(Jp).

(5) A−1
β A ∈ E ∩ UrR(Jp).

Theorem 8.31 Let the setting of Theorem 8.30 be in force and let B̃ ∈
P(jp, Jp) be a second resolvent matrix for the completely indeterminate
PEP(f ; a) under consideration such that

TB̃
[Sp×p ∩ D(T

B̃
)] = C0(f ; a). (8.60)

Then

B̃(λ) = e−ia1 λB(λ)A, (8.61)

where B(λ) is the unique mvf discussed in Theorem 8.30, A is a constant
jp-unitary matrix and 0 ≤ a1 ≤ a. Moreover, B̃ ∈ UrR(jp, Jp).
Conversely, the equality (8.60) holds for every mvf B̃(λ) of the form (8.61).

Theorem 8.32 Let B̃ ∈ E ∩U(jp, Jp) and let {ea1 Ip, ea2 Ip} ∈ ap(B̃), where
a1 ≥ 0, a2 ≥ 0 and a = a1 + a2 > 0. Suppose further that c◦ ∈ T

B̃
[Sp×p] �= ∅

and let c◦ ∈ T
B̃

[Sp×p] ∩ Cp×p
0 and f̃◦ ∈ Pp×p

∞ corresponds to c◦ via formula



446 Generalized Krein extension problems

(8.51) and let f(t) = f̃◦(t) for |t| ≤ a. Then f ∈ Pp×p
a and the following

conclusions hold:

(1) The PEP (f ; a) is completely indeterminate.

(2) T
B̃

[Sp×p] ⊆ C0(f ; a).

(3) Equality holds in (2) if and only if B̃V ∈ UrR(Jp).

(4) B̃(λ) = Aβ(λ)B(λ), where β = f(0)−1 and B ∈ E ∩ U(jp, Jp).

Theorem 8.33 A mvf B̃ ∈ P(jp, Jp) is a B-resolvent matrix for a completely
indeterminate PEP(f ; a) for some f ∈ Pp×p

a (i.e., T
B̃

[Sp×p] = C0(f ; a)) if
and only if B̃(λ) has the following properties:

(1) B̃V ∈ E ∩ UrR(Jp).

(2) {ea3 Ip, ea4 Ip} ∈ ap(B̃) for some choice of a3 ≥ 0 and a4 ≥ 0, i.e.,
the blocks b21 and b22 satisfy the growth conditions

a3 = τ+
b#
21

=
1
p
δ+
b#
21

and a4 = τ+
b22

=
1
p
δ+
b22

.

(3) τ+
b#
21

+ τ+
b22

= a.

(4) A−1
β B̃ ∈ U(jp, Jp) for some constant p × p matrix β > 0.

8.5 Tangential and bitangential positive extension problems

The formula

f̂+(λ) =
∫ ∞

0
eiλtf(t)dt, for λ ∈ C+, (8.62)

defines a one to one mapping from Pp×p
∞ onto Cp×p

0 . Moreover, since Pp×p
∞ ⊂

Gp×p
∞ , it follows from Theorem 8.3 that if f and f◦ belong to Pp×p

∞ , then

f(t) = f◦(t) for |t| ≤ a ⇐⇒ e−1
a {f̂+ − f̂◦

+} ∈ N p×p
+ . (8.63)

This equivalence serves to identify the solutions of the PEP(f ; a) with the
set C(eaIp, Ip; f̂◦

+) ∩ Cp×p
0 . The next lemma enables us to drop the extra

intersection with Cp×p
0 and thus reduces the investigation of the PEP(f ; a)

to a GCIP.
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Lemma 8.34 Let c◦ ∈ Cp×p
0 and let a > 0. Then

C(eaIp, Ip; c◦) ⊆ Cp×p
0 .

Proof Let c ∈ C(eaIp, Ip; c◦). Then, since

e−1
a (c − c◦) = h ∈ N p×p

+ ,

it follows that

c(iν) = c◦(iν) + e−νah(iν)

for every choice of ν > 0. But now as

h = g−1f,

for some choice of f ∈ Sp×p and g ∈ S1×1
out , it is readily checked that for any

ε > 0, there exists an R such that

|hij(iν)| ≤ exp
{
−ν

π

∫ ∞

−∞

ln |g(µ)|
µ2 + ν2 dµ

}
≤ ε

for ν ≥ R. Therefore, since trace {νRc(iν)} is a monotone increasing func-
tion of ν on (0,∞),

trace {νRc(iν)} = trace {νRc◦(iν)} + trace {νe−ν
Rh(iv)}

is bounded on (0,∞). Moreover,

lim
ν↑∞

c(iν) = lim
ν↑∞

c◦(iν) + lim
ν↑∞

{e−νah(iν)} = 0,

since c◦(iν) → 0 as ν → ∞ and h(iν) is bounded for ν ≥ R. Thus, c ∈ Cp×p
0 ,

as claimed. �
We are now able to complete the proof of Theorem 8.25:

Proof of Step 2 of Theorem 8.25. Let g̃◦ be a solution of the HEP(g; a)
which belongs to Q∩Gp×p

∞ and let g̃ ∈ G(g; a) be any solution of this extension
problem. Then, by (8.55) and Theorem 8.3, respectively, cg̃◦ ∈ Cp×p

0 and

e−1
a (cg̃ − cg̃◦) ∈ N p×p

+ .

Therefore, by Lemma 8.34, cg̃ ∈ Cp×p
0 , which implies in turn that g̃ ∈ Q∩Gp×p

∞
by another application of (8.55). �

The next step is to consider tangential and bitangential versions of the
PEP. Thus, for example, a left tangential version of the PEP may be based
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on a mvf b ∈ E ∩ Sp×p
in and a mvf f ∈ Pp×p

a , where a = τb. The objective is
to find all f̃ ∈ Pp×p

∞ such that∫ a

t
hb(u)∗f̃(u − t)du =

∫ a

t
hb(u)∗f(u − t)du (8.64)

for 0 ≤ t ≤ a, where hb is obtained from the representation (8.19) for b.
There are two other formulations which are analogous to the formulation
of the left tangential HEP when Fr = {0} or Fr = ∅. Right tangential and
bitangential versions of the PEP can be expressed in similar ways too. This
problem can also be formulated in the frequency domain as in (8.65) below,
with b3 = b and b4 = Ip.

The preceding discussion leads naturally to the problem of finding the set.

C0(b3, b4; c◦) = {c ∈ Cp×p
0 : b−1

3 (c − c◦)b−1
4 ∈ N p×p

+ } (8.65)

for some given b3 ∈ E ∩ Sp×p
in , b4 ∈ E ∩ Sp×p

in and c◦ ∈ Cp×p
0 . It is clear that

C0(b3, b4; c◦) ⊆ C(b3, b4; c◦),

but (unlike the classical case in which b3 = eaIp and b4 = Ip) equality does
not hold in general. Thus this problem cannot be considered as a special case
of the GCIP unless extra assumptions are imposed. One such convenient
assumption is that either b3 or b4 have a nonconstant scalar inner divisor.

Lemma 8.35 Let c◦ ∈ Cp×p
0 , b3 ∈ E ∩ Sp×p

in , b4 ∈ E ∩ Sp×p
in and assume

further that either b3 or b4 has a nonconstant scalar inner divisor. Then

C0(b3, b4; c◦) = C(b3, b4; c◦).

Proof Suppose for the sake of definiteness that β(λ) is a nonconstant scalar
inner divisor of b3(λ). Then β(λ) = eτ (λ) for some τ > 0 and

C(b3, b4; c◦) ⊆ C(eτ Ip, Ip; c◦).

However, by Lemma 8.34,

C(eτ Ip, Ip; c◦) ⊆ C0(eτ Ip, Ip; c◦).

Therefore,

C(b3, b4; c◦) ⊆ C0(b3, b4; c◦),

which is to say that equality prevails. �
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We remark that if b ∈ E ∩ Sp×p
in is expressed in the form (8.19), then

e−1
τ b ∈ Sp×p

in ⇐⇒ hb(t) = b(0) for t ∈ [0, τ ]. (8.66)

8.6 The Krein accelerant extension problem

Let γ ∈ C
p×p and let Ap×p

a (γ) (for 0 < a ≤ ∞) denote the class of mvf’s
h ∈ Lp×p

1 ((−a, a)) for which the kernel f(t − s) based on the generalized
function

f(t) = δ(t)Rγ + h(t) (8.67)

is positive on [0, a) × [0, a) in the sense that∫ a

0
ϕ(t)∗

{
(Rγ)ϕ(t) +

∫ a

0
h(t − s)ϕ(s)ds

}
dt ≥ 0 (8.68)

for every ϕ ∈ Lp
2((0, a)). This condition forces h(t) to be Hermitian, i.e.,

h(t) = h(−t)∗ for almost all points t ∈ (−a, a). Following Krein, the func-
tion h(t) in the representation (8.67) will be called the accelerant and
the following extension problem will be called the accelerant extension
problem (AEP):

AEP(γ, h; a): Given h ∈ Ap×p
a (γ), 0 < a < ∞, find h̃ ∈ Ap×p

∞ (γ) such that
h̃(t) = h(t) for a.e. t ∈ (−a, a).

The symbol A(γ, h; a) will be used to denote the set of solutions to this
problem.

The condition (8.68) for a = ∞ can be reexpressed in terms of the Fourier
transform ĥ of h.

Lemma 8.36 Let h ∈ Lp×p
1 (R). Then the following three conditions are

equivalent:

(1)
∫ ∞

0
ϕ(t)∗

{
(Rγ)ϕ(t) +

∫ ∞

0
h(t − s)ϕ(s)ds

}
dt ≥ 0 for every

ϕ ∈ Lp
2(R+).

(2)
∫ ∞

−∞
ϕ̂(µ)∗{Rγ + ĥ(µ)}ϕ̂(µ)dµ ≥ 0 for every ϕ̂ ∈ Lp

2(R).

(3) Rγ + ĥ(µ) ≥ 0 for every µ ∈ R.

Moreover, the equivalence between these three statements continues to be
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valid if the inequality ≥ 0 is replaced by ≥ δ‖ϕ‖2
st in (1), by ≥ δ‖ϕ̂‖2

st in (2)
and ≥ δIp in (3) for some δ > 0.

Proof The Plancherel formula implies that the inequality (1) holds for every
ϕ ∈ Lp

2((0,∞)) if and only if the inequality in (2) holds for every ϕ̂ ∈ Hp
2 .

But, since the integral in (2) does not change if ϕ̂(µ) is replaced by e−iaµϕ̂(µ),
it is readily checked that the inequality in (2) holds for every ϕ̂ ∈ Hp

2 if and
only if it holds for every ϕ̂ ∈ Lp

2. Thus (1) is equivalent to (2). Finally, (2)
is equivalent to (3) by a standard argument. �

Condition (3) of Lemma 8.36 implies that if h ∈ Ap×p
∞ (γ), then

c(λ) = γ + 2
∫ ∞

0
eiλth(t)dt (λ ∈ C+) (8.69)

belongs to Cp×p, because

c(µ + iν) + c(µ + iν)∗

2
= Rγ +

∫ ∞

−∞
eiµte−ν |t|h(t)dt

= Rγ +
ν

π

∫ ∞

−∞

ĥ(u)
(u − µ)2 + ν2 du

=
ν

π

∫ ∞

−∞

Rγ + ĥ(u)
(u − µ)2 + ν2 du

for ν > 0. Moreover, since this last formula can be reexpressed as

(Rc)(λ) = (Rc1)(λ),

where

c1(λ) =
1
πi

∫ ∞

−∞

{
1

u − λ
− u

1 + u2

}
{Rγ + ĥ(u)}du (8.70)

for λ ∈ C+, it follows that

c(λ) = iα + c1(λ) (8.71)

for a constant Hermitian matrix α. Thus, as c1(i) = c1(i)∗, we see that

iα =
c(i) − c(i)∗

2
=

1
2
(γ − γ∗) +

∫ ∞

0
e−t{h(t) − h(t)∗}dt. (8.72)

Assertion (3) of Lemma 8.36 implies that Rγ ≥ 0 if Ap×p
a (γ) �= ∅. If Rγ > 0,

then it is possible to renormalize the data so that γ = Ip. However, even
in this case, there exist mvf’s h ∈ Ap×p

a (Ip) for which AEP(Ip; h; a) is not
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solvable; see Section 4 of [KrMA86] for an example. Because of this difficulty,
we shall focus on the subclass

Åp×p
a =

{
h ∈ Ap×p

a (Ip) :
∫ a

0
ϕ(t)∗

{
ϕ(t) +

∫ a

0
h(t − s)ϕ(s)ds

}
dt > 0

for every nonzero ϕ ∈ Lp
2(0, a)} for 0 < a ≤ ∞. (8.73)

ÅEP(h;a):Given h ∈ Åp×p
a , find h̃ ∈ Åp×p

∞ such that h̃(t) = h(t) for almost
all points t ∈ (−a, a).

The symbol Å(h; a) will be used to designate the set of solutions to this
problem.

If h ∈ Åp×p
∞ , then the mvf c(λ) which is defined by formula (8.69) with

γ = Ip satisfies the following properties:

(1) c is continuous on R.

(2) (Rc)(µ) = Ip + ĥ(µ) > 0 for every point µ ∈ R.

(3) (Rc)(µ) → Ip as |µ| → ∞.

(4) c ∈ Hp×p
∞ .

Thus, c ∈ C̊p×p. This fact will play an important role in the sequel.

8.7 Connections between the accelerant and helical extension problems

The classes Ap×p
a (γ) and Gp×p

a are connected:

Theorem 8.37 Let g ∈ Gp×p
a enjoy the following properties:

(1) g is locally absolutely continuous on (−a, a) and g(0) = 0.

(2) g′ is absolutely continuous on (−a, 0) ∪ (0, a), g′(0+) = −γ and
g′(0−) = γ∗.

(3) g′′ ∈ Lp×p
1 (−a, a).

Then h = −g′′/2 belongs to Ap×p
a (γ). Conversely, if h ∈ Ap×p

a (γ), then

g(t) =

{
−tγ − 2

∫ t
0 (t − s)h(s)ds for 0 ≤ t < a

tγ∗ + 2
∫ 0
t (t − s)h(−s)∗ds for −a < t ≤ 0

(8.74)

belongs to Gp×p
a and enjoys the properties (1)–(3) and g(t) = g(−t)∗.
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Proof See [KrMA86]. �
If g ∈ Gp×p

a admits a representation of the form (8.74) on some interval
(−a, a), then h is termed the accelerant of g on the interval (−a, a).

Corollary 8.38 Let 0 < a < ∞ and suppose that g ∈ Gp×p
a has an accelerant

h ∈ Ap×p
a (γ). Then

A(γ, h; a) = {−g̃′′ : g̃ ∈ G(g; a) and has an accelerant on R}.

Formulas (8.69)–(8.72) imply that if g ∈ Gp×p
∞ admits an accelerant h ∈

Ap×p
∞ (γ), then cg ∈ Cp×p

a and

Rcg(µ) = Rγ + ĥ(µ) for every µ ∈ R. (8.75)

Conversely, if cg ∈ Cp×p
a and (8.75) holds for some γ ∈ C

p×p and h ∈
Lp×p

1 (R), then g has accelerant h ∈ Ap×p
∞ (γ).

8.8 Conditions for the HEP(g; a) to be strictly completely
indeterminate

Theorem 8.39 Let g ∈ Gp×p
a (0) and a < ∞ and suppose that the HEP(g; a)

is strictly completely indeterminate. Then:

(1) g(t) = −
∫ t
0 v(s)ds for some v ∈ Lp

2([0, a]) (i.e., g(t) is absolutely
continuous in the interval [0, a], g(0) = 0, g′(t) = −v(t) a.e. in [0, a]
and v ∈ Lp

2([0, a])).

(2) The p×1 mvf
∫ t
0 v(t−s)ϕ(s)ds is absolutely continuous on the interval

[0, a] and its derivative

(X∨ϕ)(t) =
d

dt

∫ t

0
v(t − s)ϕ(s)ds (8.76)

belongs to Lp
2([0, a]) for every choice of ϕ ∈ Lp

2([0, a]).

(3) The operator X∨ from Lp
2([0, a]) into itself which is defined by formula

(8.76) is bounded.

Moreover, upon defining

v(t) = −v(−t)∗, for almost all points t ∈ [−a, 0],

we also have the following additional conclusions:
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(4) The p×1 mvf
∫ a
t v(t−s)ϕ(s)ds is absolutely continuous on the interval

[0, a] and the adjoint (X∨)∗ of X∨ in Lp
2([0, a]) is given by the formula

(X∨)∗ϕ)(t) =
d

dt

∫ a

t
v(t − s)ϕ(s)ds (8.77)

for every ϕ ∈ Lp
2([0, a]).

(5) There exists a δ > 0 such that the operator Y ∨ = X∨ +(X∨)∗, which
is given by the formula

(Y ∨ϕ)(t) =
d

dt

∫ a

0
v(t − s)ϕ(s)ds (8.78)

on Lp
2([0, a]), is bounded from below by δI, i.e.,∫ a

0
ϕ(t)∗

{
d

dt

∫ a

0
v(t − s)ϕ(s)ds

}
dt ≥ δ

∫ a

0
ϕ(t)∗ϕ(t)dt (8.79)

for every ϕ ∈ Lp
2([0, a]).

Proof Let g̃◦ ∈ G(g; a) and let

c◦(λ) = λ2
∫ ∞

0
eiλtg̃◦(t)dt for λ ∈ C+.

Then, under the given assumptions, the GCIP(eaIp, Ip; c◦) is strictly com-
pletely indeterminate. The rest of the proof is long and will be divided into
steps.

1. There exists a mvf c ∈ C(eaIp, Ip; c◦) ∩ C̊p×p that is meromorphic in C

with 0 ∈ hc and c(0) = Ip.
Let A ∈ E ∩ UrsR(Jp) be such that C(A) = C(eaIp, Ip; c◦), A(0) = Im and

{eaIp, Ip} ∈ apII (A). A mvf A(λ) with these properties exists by Theorem
8.20. Let W = VAV and let s◦ = TV[c◦]. Then TW [Sp×q ] = S(eaIp, Ip; s◦)
and TW [Sp×q ] ∩ S̊p×p �= ∅, by Lemma 7.68. Thus, there exists a number ρ,
0 < ρ < 1, and an mvf sρ ∈ TW [Sp×q ] such that ‖sρ‖∞ < ρ. Then

ρS(eaIp, Ip; ρ−1sρ) ⊆ TW [Sp×q ]

and ‖ρ−1sρ‖∞ < 1. By Theorem 7.48 there exists a mvf Wρ ∈ UrsR(jpq)
such that TWρ [Sp×q ] = S(eaIp, Ip; ρ−1sρ) and {eaIp, Ip} ∈ ap(Wρ). Since
Wρ ∈ UrR(jpq) and {eaIp, Ip} ∈ ap(W ), Wρ ∈ Em×m , by Theorem 4.54.
Consequently, Wρ may be normalized by the condition Wρ(0) = Im . Let
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s◦ρ ∈ TWρ [0]. Then s◦ρ = S(eaIp, Ip; ρ−1sρ) and s◦ρ is a meromorphic mvf in
C with 0 ∈ hs◦ρ and s◦ρ(0) = 0. Consequently, the mvf ρs◦ρ ∈ TW [Sp×q ] is
meromorphic in C with ‖ρs◦ρ‖∞ ≤ ρ < 1. Moreover, 0 ∈ hρs◦ρ and (ρs◦ρ)(0) =
0.

Let c = TV[ρs◦ρ]. Then c ∈ C(A) ∩ C̊p×p is meromorphic in C with 0 ∈ hc

and c(0) = Ip.

2. The mvf c that was constructed above satisfies the condition

R0c ∈ Hp×p
∞ ∩ Hp×p

2 (8.80)

from which follows that:

(a) c(λ) = Ip − iλ
∫∞
0 eiλsu(s)ds for λ ∈ C+ and some u ∈ Lp×p

2 .

(b) c(λ) = cg̃(λ), where g̃ ∈ G∞(0) and

g̃(t) = −tIp −
∫ t

0
u(s)ds, t ≥ 0. (8.81)

(c) The mvf’s û(λ) and û1(λ) = −iλû(λ) belong to Hp×p
∞ .

Since c ∈ C̊p×p, 0 ∈ hc and c(0) = Ip, the inclusion (8.80) follows by
elementary estimates; and suffices to justify (a) and (c). Then, since

−û1(λ) = iλ

∫ ∞

0
eiλtu(t)dt = iλ

∫ ∞

0
eiλt

{
d

dt

∫ t

0
u(s)ds

}
dt

= λ2
∫ ∞

0
eiλt

{∫ t

0
u(s)ds

}
dt for λ ∈ C+

and

c(λ) = Ip + û1(λ) = −λ2
∫ ∞

0
eiλtIpdt + û1(λ),

(b) holds.

3. If u(t) is defined as in Step 2, then assertions (1)–(5) of the theorem are
valid for

v(t) =
{

Ip + u(t) for almost all points t ∈ (0, a)
−v(−t)∗ for almost all points t ∈ (−a, 0).

(8.82)
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The mvf g̃ ∈ G∞(0) that was constructed in (8.81) belongs to G(g; a), i.e.,
g̃(t) = g(t) for t ∈ [0, a]; and formulas (8.81) and (8.82) serve to justify (1).
Moreover, since û, û1 ∈ Hp×p

∞ , the connection between the multiplication
operators Mû|Hp

2
and Mû1 |Hp

2
with the corresponding convolution operators

in the space Lp
2(R+) justifies assertions (2)–(4) of the theorem and formula

(8.78) for Y ∨ = X∨ + (X∨)∗. Then (8.79) follows from the lower bound
2Rc(µ) ≥ δIp, µ ∈ R for the mvf c(λ) considered above , since

〈Y ∨ϕ∨, ϕ∨〉st = 2R〈PH(ea Ip )Mcϕ, ϕ〉st = 2〈PH(ea Ip )(Rc)ϕ, ϕ〉st
≥ 2δ〈ϕ, ϕ〉st = 2δ〈ϕ∨, ϕ∨〉st

for every ϕ∨ ∈ Lp
2([0, a]). �

Let Πa denote the orthogonal projection of Hp
2 onto H(eaIp).

Lemma 8.40 If f ∈ Hp×p
∞ , then there exists a locally summable p × p mvf

v on R+ such that

f(λ) = (iλ)2
∫ ∞

0
eiλt{

∫ t

0
v(s)ds}dt for λ ∈ C+. (8.83)

Moreover, if v(t) = −v(−t)∗ for almost all points t ∈ R+, then for every
a > 0 ∫ t

0
v(t − s)ϕ(s)ds and

∫ a

t
v(t − s)ϕ(s)ds

are absolutely continuous for every ϕ ∈ Lp
2([0, a]) and

(Πafϕ̂)(λ) =
∫ a

0
eiλt{ d

dt

∫ t

0
v(t − s)ϕ(s)ds}dt (8.84)

and

(Πaf
∗ϕ̂)(λ) =

∫ a

0
eiλt{ d

dt

∫ a

t
v(t − s)ϕ(s)ds}dt (8.85)

for every choice of ϕ ∈ Lp
2([0, a]).

Proof If f ∈ Hp×p
∞ and r > ‖f‖∞, then s◦ = f/r belongs to S̊p×p and

c◦ =
[
Ip 2s◦

0 Ip

]
belongs to C̊p×p.

Therefore, the GCIP(eaIp, Ip; c◦) is strictly completely indeterminate. Thus,
the asserted results follow from the proof of Theorem 8.39. �
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Theorem 8.41 Let v ∈ Lp
2([−a, a]), 0 < a < ∞, be such that v(−t) = v(t)∗

for almost all points t ∈ (−a, a) and properties (2)–(5) in Theorem 8.39 are
in force (property (4) follows from (2) and (3)). Then the mvf

g(t) = −
∫ t

0
v(s)ds, −a ≤ t ≤ a,

belongs to Gp×p
a (0) and the HEP(g; a) is strictly completely indeterminate.

Proof The bounded operator X∨ defined on Lp
2([0, a]) by formula (8.76)

satisfies the condition

(X∨)∗Tτ = Tτ (X∨)∗, τ ≥ 0,

where Tτ , τ ≥ 0, is the semigroup of backward shifts on Lp
2([0, a]):

(Tτ ϕ)(t) =
{

ϕ(t + τ) for 0 ≤ t < a − τ

0 for a − τ < t < a.

The bounded operator X in H(eaIp) corresponding to X∨ that is defined
by the formula

(Xϕ̂) = (X∨ϕ)∧,

satisfies the conditions 2RX ≥ δI and

X∗Πae−τ ϕ̂ = Πae−τ X
∗ϕ̂, ϕ̂ ∈ H(eaIp).

Consequently,

XΠaeτ ϕ̂ = Πaeτ Xϕ̂, τ ≥ 0. (8.86)

Let

X̃ = XΠa|Hp
2

and T̃ ∗
τ = eτ |Hp

2
.

Since Πaeτ eaH
p
2 = 0 for τ ≥ 0, the relation (8.86) is equivalent to the

relation

X̃∗T̃τ = T̃τ X̃
∗,

where T̃τ = Π+e−τ |Hp
2
. Moreover,

X̃|H(ea Ip ) + (X̃|H(ea Ip ))
∗ = X + X∗ ≥ δI.

Thus, by Theorems 7.75 and 7.76 with b(λ) = ea(λ)Ip, C̊p×p(eaIp, X̃) �= ∅
and

C̊(eaIp, X̃) = C(A) ∩ C̊p×p
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for some mvf A ∈ UrsR(Jp) with {eaIp, Ip} ∈ apII (A). Then, as A ∈ Em×m

may be normalized by setting A(0) = Im , the assertion of Step 2 in the
previous theorem is valid. The mvf c(λ) ∈ C(A)∩ C̊p×p such that 0 ∈ hc and
c(0) = Ip has the representation (8.80) and c = cg̃ , where g̃ ∈ Gp×p

∞ (0) has
the representation (8.81). Furthermore, since c ∈ C̊(eaIp, X̃),

X̃ = ΠaMc|Hp
2
, i.e., XΠa|Hp

2
= ΠaMc|Hp

2
.

Thus, upon expressing the operator X in the terms of the mvf v(t), the last
equality implies that

g̃(t) = g(t), for 0 ≤ t ≤ a,

where g(t) = −
∫ t
0 v(s)ds. Therefore, g ∈ G∞(0) and the HEP(g; a) is strictly

completely indeterminate. �

8.9 Formulas for the normalized resolvent matrix for the HEP

In this section we shall apply the general formulas of Section 6 for B-
resolvent matrices for the GCIP(b3, Ip; c) in the strictly completely inde-
terminate case to the special setting which corresponds to the HEP(g; a).
Thus, in particular, we shall choose b3 = eaIp and shall define the time do-
main versions of the operators X and Y that intervene in the formulas for
B(λ) directly in terms of g(t) via formulas (8.76) and (8.78).

Theorem 8.42 Let the HEP (g;a) be strictly completely indeterminate and
let

g(t) = −
∫ t

0
v(s)ds, 0 ≤ t ≤ a, a < ∞, (8.87)

where v ∈ Lp
2([0, a]) and is extended to the full interval [−a, a] by the recipe

v(−t) = −v(t)∗ for almost all points t ∈ [−a, a]. Then:

(1) The mvf’s
∫ t
0 v(t−s)ϕ(s)ds and

∫ a
t v(t−s)ϕ(s)ds are absolutely con-

tinuous for every choice of ϕ ∈ Lp×p
2 ([0, a]).

(2) The system of equations

d

dt

∫ a

0
v(t − s)ϕ22(s)ds = Ip, 0 ≤ t ≤ a, (8.88)

d

dt

∫ a

0
v(t − s)ϕ21(s)ds = −v(t), 0 ≤ t ≤ a, (8.89)

for ϕ22 and ϕ21 is uniquely solvable in Lp×p
2 ([0, a]).
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(3) The mvf’s

ϕ1j(t) = − d

dt

∫ a

t
v(t − s)ϕ2j(s)ds, j = 1, 2, 0 ≤ t ≤ a, (8.90)

belong to Lp×p
2 ([0, a]).

(4) There is exactly one B-resolvent matrix B(λ) of the
HEP(g; a) in the class N+ ∩ U(jp, Jp) with B(0) = V; it is
given by the formula

B(λ) = V − iλ√
2

∫ a

0
eiλt

[
ϕ11(t) − ϕ12(t) ϕ11(t) + ϕ12(t)

ϕ21(t) − ϕ22(t) ϕ21(t) + ϕ22(t)

]
dt.

(8.91)

Proof If the HEP(g◦; a) is strictly completely indeterminate, then, by The-
orem 8.20, there exists exactly one mvf A(λ) that meets the constraints

(a) A ∈ E ∩ UrsR(Jp),

(b) {eaIp, Ip} ∈ apII (A),

(c) A(0) = Im ,

such that

{cg̃ : g̃ ∈ G(g; a)} = C(A).

Moreover, by Theorem 8.3, there exists a mvf c◦ = cg̃◦ in C(A) such that
c◦ ∈ C̊p×p and

C(eaIp, Ip; c◦) = C(A).

Thus, the formulas for the resolvent matrix of a strictly completely inde-
terminate GCIP that were obtained in Section 7.9 are applicable to the
GCIP(b, Ip; c◦) with b = eaIp:

A(λ) = Im + 2πiλK0(λ)Jp, (8.92)

where

K0(λ) =
([

−X∗

I

]
Y −1 [−Xk0 k0

])
(λ), (8.93)

k0(λ) =
Ip − ea(λ)Ip

−2πiλ
is the RK of the RKHS H(eaIp), (8.94)
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X = PH(ea Ip )Mc◦ |H(ea Ip ) and Y = X + X∗. (8.95)

Thus,

K0(λ) =
1
2π

[
ϕ̂11(λ) ϕ̂12(λ)
ϕ̂21(λ) ϕ̂22(λ)

]
=

1
2π

∫ a

0
eiλt

[
ϕ11(t) ϕ12(t)
ϕ21(t) ϕ22(t)

]
dt,

where the ϕ̂ij are p× p mvf’s with columns in H(eaIp) that are obtained by
first solving the equations

Y ϕ̂21 = −2πXk0 and Y ϕ̂22 = 2πk0 (8.96)

(column by column) for ϕ̂21 and ϕ̂22 and then setting

ϕ̂11 = −X∗ϕ̂21 and ϕ̂12 = −X∗ϕ̂22. (8.97)

The equations in (8.96) are uniquely solvable because Y is strictly positive.
With the help of Lemma 8.40 it is readily seen that (8.96) and (8.97) are
equivalent to (8.88) and (8.89).

Finally the formula for B(λ) follows by first substituting the formula for
the kernel K0(λ) into (8.92) to obtain

A(λ) = Im − iλ

[
ϕ̂12(λ) ϕ̂11(λ)
ϕ̂22(λ) ϕ̂21(λ)

]
,

and then multiplying on the right by V. �

Corollary 8.43 In the setting of Theorem 8.42,

B(λ) = V +
iλ√
2

∫ a

0
eiλt

[
−((X∨)∗ϕ1)(t) −((X∨)∗ϕ2)(t)

ϕ1(t) ϕ2(t)

]
dt, (8.98)

where ϕ1 and ϕ2 are solutions of the equations

d

dt

∫ a

0
v(t − s)ϕ1(s)ds = v(t) + Ip (8.99)

and
d

dt

∫ a

0
v(t − s)ϕ2(s)ds = v(t) − Ip, (8.100)

respectively, in the space Lp×p
2 ([0, a]).
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8.10 B-resolvent matrices for the accelerant case

The B-resolvent matrix B(λ) of the HEP(g; a) is uniquely defined by the
conditions

(i) B ∈ U(jp, Jp), (ii) {eaIp, Ip} ∈ ap(B) and (iii) B(0) = V.

Let g ∈ Gp×p
a (0) have an accelerant h ∈ Ap×p

a (γ). Then

g(t) = −
∫ t

0
v(s)ds for − a ≤ t ≤ a, (8.101)

where

v(t) =

{
γ + 2

∫ t
0 h(u)du for 0 < t ≤ a

−γ∗ − 2
∫ 0
t h(u)du for − a ≤ t < 0

and h(−u) = h(u)∗.

(8.102)
In this case Theorem 8.39 is applicable and formulas (8.76)–(8.78) may be
rewritten in terms of the accelerant h:

(X∨ϕ)(t) =
d

dt

∫ t

0

{
γ + 2

∫ t−s

0
h(u)du

}
ϕ(s)ds

= γϕ(t) + 2
∫ t

0
h(t − s)ϕ(s)ds,

(8.103)

(X∨)∗ϕ)(t) = − d

dt

∫ a

t

{
γ∗ + 2

∫ s−t

0
h(u)∗du

}
ϕ(s)ds

= γ∗ϕ(t) + 2
∫ a

t
h(s − t)∗ϕ(s)ds

= γ∗ϕ(t) + 2
∫ a

t
h(t − s)ϕ(s)ds

(8.104)

and

(Y ∨ϕ)(t) = (γ + γ∗)ϕ(t) + 2
∫ a

0
h(t − s)ϕ(s)ds, (8.105)

where Y ∨ ≥ 0, since h ∈ Ap×p
a (γ).

Lemma 8.44 If h ∈ Ap×p
a (Ip) and Y ∨ is defined by formula (8.105) with

γ = Ip, then

〈Y ∨ϕ, ϕ〉st > 0 for every nonzero ϕ ∈ Lp
2([0, a]) (8.106)
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if and only if there exists a δ > 0 such that

〈Y ∨ϕ, ϕ〉st ≥ δ〈ϕ, ϕ〉st for every ϕ ∈ Lp
2([0, a]). (8.107)

Proof If (8.106) is in force, then the integral operator Y ∨ maps Lp
2([0, a]) in-

jectively into itself, and thus onto itself, by the Fredholm alternative. There-
fore, by a theorem of Banach, Y ∨ has a bounded inverse, i.e., (8.106) implies
(8.107). The converse is obvious. �

Theorem 8.45 If g ∈ Gp×p
a (0) has an accelerant h ∈ Ap×p

a (Ip), then the
following three conditions are equivalent:

(1) The HEP(g; a) is completely indeterminate.

(2) The HEP(g; a) is strictly completely indeterminate.

(3) h ∈ Åp×p.

Proof If (1) is in force and g̃◦ ∈ G(g; a), then the GSIP(eaIp, Ip; s◦) based
on s◦ = TV[cg̃◦ ] is completely indeterminate. Therefore, the NP(Γ) with
Γ = Γ(e−as

◦) is completely indeterminate and hence I−Γ∗Γ > 0 by Remark
7.9. But this implies that Y ∨ > 0 and hence that (1) =⇒ (2). The converse
implication follows from Theorem 7.69. Finally the equivalence of (2) and
(3) follows from Lemma 8.44 and Theorem 8.39. �

Theorem 8.46 If g ∈ Gp×p
a (0) has an accelerant h ∈ Åp×p

a , then:

(1) The HEP(g; a) is strictly completely indeterminate.

(2) The B-resolvent matrix B(λ) of the HEP(g; a) can be expressed in
terms of h:

B(λ) = V +
iλ√
2

∫ a

0
eiλtB(t)dt, (8.108)

where

B(t) =
[
−((X∨)∗ϕ1)(t) −((X∨)∗ϕ2)(t)

ϕ1(t) ϕ2(t)

]
(8.109)

is absolutely continuous on [0, a], ϕ1 and ϕ2 are solutions of the equa-
tions

ϕ1(t) +
∫ a

0
h(t − s)ϕ1(s)ds = Ip +

∫ t

0
h(s)ds (8.110)



462 Generalized Krein extension problems

and

ϕ2(t) +
∫ a

0
h(t − s)ϕ2(s)ds =

∫ t

0
h(s)ds (8.111)

in Lp×p
2 ([0, a]), respectively, h(−s) = h(s)∗, and (X∨)∗ is defined by

formula (8.104) with γ = Ip.

Proof (1) and (2) follow from Theorem 8.45 and Corollary 8.43, respectively.
�

Since the operator

K : ϕ ∈ Lp
2([0, a]) −→

∫ a

0
h(t − s)ϕ(s)ds

is compact in Lp
2([0, a]) when h ∈ Lp×p

1 ([0, a]), Lemma 7.1 in [AAK71b]
guarantees that it has the same nonzero spectrum in Lp

2([0, a]) as in the
Banach space B of absolutely continuous p × 1 vvf’s on [0, a] with norm

‖ϕ‖B = max
t∈[0,a]

‖ϕ(t)‖ +
∫ a

0
‖ϕ′(t)‖dt.

Therefore, since Y ∨ ≥ δI in Lp
2([0, a]), it also has a bounded inverse in B.

Thus, as the right hand sides of equations (8.110) and (8.111) are absolutely
continuous on [0, a], ϕ1(t) and ϕ2(t) are also absolutely continuous on [0, a],
as is B(t), due to formulas (8.104) and (8.109). Consequently,

B(λ) = V +
1√
2
(eiλaB(a) − B(0)) − 1√

2

∫ a

0
eiλtB′(t)dt, (8.112)

where B′ ∈ Lm×m
1 ([0, a]) and, in view of formulas (8.104) and (8.109)–

(8.111),

B(0) =
[
ϕ1(0) − 2Ip ϕ2(0)

ϕ1(0) ϕ2(0)

]
and B(a) =

[
−ϕ1(a) −ϕ2(a)
ϕ1(a) ϕ2(a)

]
. (8.113)

Lemma 8.47 The mvf

A(λ) =
[
e−iλaIp 0

0 Ip

]
VB(λ) (8.114)

belongs to the class Mr(jp) ∩Wm×m(V ), where

V =
[
v11 v12

v21 v22

]
=
[

ϕ1(a) ϕ2(a)
Ip − ϕ1(0) Ip − ϕ2(0)

]
and V ∈ Uconst(jp).

(8.115)
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Proof Theorem 7.26 guarantees that A ∈ Mr(jpq). Moreover, if

F (µ) =
[
e−iµaIp 0

0 Ip

]
V

{
V +

1√
2
(eiµaB(a) − B(0))

}
,

then, by a straight forward calculation based on the formulas in (8.113),
F ′(µ) = 0. Therefore, F (µ) = F (0) = V , as specified in (8.115). Thus,

A(µ) = V − 1√
2

∫ a

0

[
e−iλ(a−t)Ip 0

0 eiλtIp

]
VB′(t)dt (8.116)

which clearly belongs to Wm×m(V ), since B′(t) ∈ Lm×m
1 ([0, a)]. Moreover,

V ∈ Uconst(jp), since A(µ) is jp-unitary and limµ↑∞ A(µ) = V , by the
Riemann-Lebesgue lemma. �

The mvf

B1(λ) = B(λ)V −1 (8.117)

is also a resolvent matrix for the HEP(g; a) under consideration, since V ∈
Uconst(jp). Moreover, B1(λ) is uniquely defined by conditions (i), (ii) and a
normalization at infinity instead of at zero:

(iii′) The mvf

A1(µ) =
[
e−iaµIp 0

0 Ip

]
VB1(µ) (8.118)

tends to Im as µ ∈ R tends to ∞.

Theorem 8.48 If g ∈ Gp×p
a (0) has an accelerant h ∈ Åp×p

a , then there exists
a unique B-resolvent matrix B1(λ) of the HEP(g; a) that has the properties
(i), (ii) and (iii′):

B1(λ) = V

[
eiλaIp 0

0 Ip

]
+

1√
2

∫ a

0
eiλtB1(t)dt, (8.119)

where

B1(t) =
[
(X∨e)(t) −((X∨)∗f)(t)

e(t) f(t)

]
belongs to L1([0, a]) (8.120)
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and e(t) and f(t) are solutions of the equations

e(t) +
∫ a

0
h(t − s)e(s)ds = −h(t − a), (8.121)

f(t) +
∫ a

0
h(t − s)f(s)ds = −h(t), (8.122)

in Lp×p
1 ([0, a]), respectively. Moreover,

A1 ∈ Mr(jpq) ∩Wm×m(Im). (8.123)

Proof The domain and range of the operators X∨, (X∨)∗ and Y ∨ that
are defined by formulas (8.103)–(8.105), respectively, is now extended from
Lp

2([0, a]) to Lp
1([0, a]) without change of notation. In view of (8.112), (8.109)

and identification F (µ) = V in the proof of Lemma 8.47,

B1(t) = −B′(t)V −1 =
[
((X∨)∗ϕ1)′(t) ((X∨)∗ϕ2)′(t)

−ϕ′
1(t) −ϕ′

2(t)

]
V −1.

Let

[e(t) f(t)] = −[ϕ′
1(t) ϕ′

2(t)]V
−1.

Then equations (8.110) and (8.111) guarantee that

ϕ′
j(t) +

∫ a

0
h(t − s)ϕ′

j(s)ds = h(t − a)ϕj(a) + h(t)(Ip − ϕj(0))

for j = 1, 2 a.e. on R and hence that e and f are solutions of (8.121) and
(8.122), respectively. Next, upon differentiating the formula

((X∨)∗ϕj)(t) = ϕj(t) + 2
∫ a

t
h(t − s)ϕj(s)ds,

a short calculation yields the formula

((X∨)∗ϕj)′(t) = ((X∨)∗ϕ′
j)(t) − 2h(t − a)ϕj(a) a.e. on [0, a].

Therefore, since

−2h(t − a)[ϕ1(a) ϕ2(a)] = −2h(t − a)[Ip 0]V,

the top block row of B1(t) is equal to

[−((X∨)∗e)(t) − 2h(t − a) − ((X∨)∗f)(t)]

= [(X∨e)(t) − ((X∨)∗f)(t)] a.e. on [0, a]. (8.124)
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Finally, (8.123) is immediate from Lemma 8.47. �

Theorem 8.49 If g ∈ Gp×p
a (0) has an accelerant h ∈ Åp×p

a , and if B(λ) and
B1(λ) are the B-resolvent matrices for the HEP(g; a) considered in Theorems
8.46 and 8.48, respectively, then

G(g; a) = {g̃ : cg̃ ∈ TB1 [Sp×p]} (8.125)

and the formula

Ip + (h̃)∧ = TB1 [ε] (8.126)

defines a one to one correspondence between the set of mvf’s ε ∈ S̊p×p ∩
Wp×p

+ (0) and the set Å(h; a) of solutions h̃ of the ÅEP(h; a), i.e.,

TB1 [S̊p×p ∩Wp×p
+ (0)] = TB1 [S̊p×p] ∩Wp×p

+ (Ip)

and

Å(h; a) = {h̃ : Ip +
∫ ∞

0
eiλth̃(t)dt ∈ TB1 [S̊p×p ∩Wp×p

+ (0)]}. (8.127)

Moreover, formula (8.127) may be rewritten as

Å(h; a) =
{

h̃ : Ip +
∫ ∞

0
eiλth̃(t)dt ∈ TB [S̊p×p ∩Wp×p

+ (γh)]
}

, (8.128)

where γh ∈ S̊p×p
const and is given by the formula

γh = −{Ip − ϕ1(0)∗}{Ip − ϕ2(0)∗}−1. (8.129)

Proof In view of formula (8.119), the entries wij in the four block decom-
position of the jp-inner mvf W = VB1 are entire mvf’s,

e−aw11 ∈ Wp×p
− (Ip), w12 ∈ Wp×p

+ (0), w21 ∈ Wp×p
+ (0),

w22 ∈ Wp×p
+ (Ip) (8.130)

and, as follows from Theorem 3.34, the entries sij in the four block decom-
position of S = PG(W ) meet the constraints

eas11 = ea(w
#
11)

−1 and s22 = w−1
22 belong to Wp×p

+ (Ip), (8.131)

whereas

s12 ∈ S̊p×p ∩Wp×p
+ (0) and s21 ∈ S̊p×p ∩Wp×p

+ (0). (8.132)
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Thus, if ε ∈ S̊p×p ∩Wp×p
+ (0) and s = TW [ε], then

s − s12 = s11ε(Ip − s21ε)−1s22 belongs to eaWp×p
+ (0) (8.133)

and

Ip − s∗s = s∗22{Ip − s21ε}−∗{Ip − ε∗ε}{Ip − s21ε}−1s22 on R, (8.134)

which implies that s ∈ S̊p×p. Thus,

TW [S̊p×p ∩Wp×p
+ (0)] ⊆ S̊p×p ∩Wp×p

+ (0).

Suppose next that ε ∈ Sp×p and that s = TW [ε] is in S̊p×p ∩ Wp×p
+ (0).

Then s−s12 ∈ Wp×p
+ (0) and, as the formula in (8.133) is still valid, s−s12 ∈

eaH
p×p
∞ . Therefore, since eaH

p×p
∞ ∩Wp×p

+ (0) = eaWp×p
+ (0), another applica-

tion of the formula in (8.133) implies that

ε(Ip − s21ε)−1 = w#
11(s − s12)w22 belongs to Wp×p

+ (0).

Therefore,

(Ip − s21ε)−1 = Ip + s21ε(Ip − s21ε)−1 belongs to Wp×p
+ (Ip)

and, by Theorem 3.34, Ip − s21ε inWp×p
+ (Ip). Thus,

ε = ε(Ip − s21ε)−1(Ip − s21ε) belongs to Wp×p
+ (0)

and, in view of (8.134), ε ∈ S̊p×p. This completes the proof that

if ε ∈ Sp×p and s = TW [ε], then

s ∈ S̊p×p ∩Wp×p
+ (0) ⇐⇒ ε ∈ S̊p×p ∩Wp×p

+ (0). (8.135)

Next, in view of Theorem 3.34,

TV[S̊p×p ∩Wp×p
+ (0)] = C̊p×p ∩Wp×p

+ (Ip)

and hence, TB1 [ε] = TV[TW [ε]],

TB1 [S̊p×p ∩Wp×p
+ (0)] = C̊p×p ∩Wp×p

+ (Ip) = TB1 [S̊p×p] ∩Wp×p
+ (Ip).

Formula (8.127) then follows from the results in Section 8.7.
Finally, formula (8.128) follows from (8.127) and the fact that B1(λ) =

B(λ)V −1, where V ∈ Uconst(jp) is specified in terms of ϕ1(t) and ϕ2(t)
evaluated at the end points of the interval [0, a] by formula (8.115): If ε ∈
S̊p×p ∩Wp×p

+ (0), then, since V −1 = jpV
∗jp and

det {−v∗12ε(λ) + v∗22} �= 0 for λ ∈ C+ ∪ {∞},
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TV −1 : ε ∈ S̊p×p ∩Wp×p
+ (0) −→

(v∗11ε − v∗21)(−v∗12ε + v∗22)
−1 ∈ S̊p×p ∩Wp×p

+ (−v∗21(v
∗
22)

−1).

The proof is completed by invoking the formulas TB1 [ε] = TB [TV −1 [ε]] and
(8.115). �

Theorem 8.50 Let B1(λ) be any m × m mvf that satisfies properties (i)
and (ii) and is such that

A1(µ) =
[
e−iaµIp 0

0 Ip

]
VB1(µ) belongs to Wm×m(Im).

Then

TB1 [0] = Ip + (h̃)∧, where h̃ ∈ Åp×p
∞

and B1 is a B-resolvent matrix of the HEP(g; a) based on the mvf g ∈
Gp×p

a (0) with accelerant h equal to the restriction of h̃ to the interval [0, a].

Proof Under the given assumptions, the mvf A = B1V belongs to E ∩
UrsR(Jp), since B1 ∈ Hm×m

∞ and (eaIp, Ip) ∈ apII(A), thanks to Corollary
4.55. Thus, in view of Theorem 8.21, B1 is a B-resolvent matrix of the
HEP(g; a) in the statement of the theorem. The rest follows easily from
the proof of Theorem 8.49, since the blocks wij of W = VB1 and sij of
S = PG(W ) have the properties stated in (8.130)–(8.132). �
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The ÅEP(h; a) was considered in the general context of band extensions in
[DG80]. A resolvent matrix B1 for the ÅEP(h; a) was obtained in [KrMA86],
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9

Darlington representations and related inverse
problems for J -inner mvf’s.

As noted earlier,

U(J) ⊂ Πm×m

for every m × m signature matrix J . Consequently, every p × q submatrix
of a J-inner mvf belongs to the class Πp×q . Conversely, in Section 9.5 it will
be shown that every mvf w ∈ Πp×q is the block w12 of a jpq-inner mvf W

and the set of all such W will be described. A better known result, related
to the inverse scattering problem, will be presented in Section 9.2, where we
will prove that every mvf s ∈ Π∩Sp×q is the block s12 of an inner n×n mvf
S for some n. Moreover, the set of all such mvf’s S with minimal possible
size n for a given mvf s will be described. The Potapov-Ginzburg transform
W = PG(S) for such a mvf S is well defined if and only if

Iq − s(µ)∗s(µ) > 0 a.e on R. (9.1)

If s ∈ Π ∩ Sp×q satisfies condition (9.1), then n = m = p + q,

s = TW [0p×q ] and W ∈ U(jpq); (9.2)

if not, then it admits a representation of the form

s = TW [ε] for some W ∈ U(jpq) and ε ∈ Sp×q
const. (9.3)

Analogous representations hold for the class Π ∩ Cp×p. In section 9.3 it
will be shown that a mvf c admits a representation of the form

c = TA[Ip] with A ∈ U(Jp) (9.4)

if and only if c ∈ Π ∩ Cp×p and

∆(µ) = (Rc)(µ) > 0 a.e. on R. (9.5)

470
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Moreover, the set of all mvf’s A that are related to the given c by (9.4) will
be described. If the given c ∈ Π ∩ Cp×p does not satisfy the condition (9.5),
then

c = TA [τ ], for some A ∈ U(Jp) and τ ∈ Cp×p
const. (9.6)

is valid too. Another representation of mvf’s c ∈ Π ∩ Cp×p will be given in
Section 9.7.

The inverse impedance (resp., inverse spectral) problem, of describing the
set of all mvf’s A ∈ U(Jp) that are related to a given mvf c (resp., ∆) by
formulas (9.4) (resp., (9.4) and (9.5)), is connected with the inverse problem
of describing the set of all mvf’s A ∈ U(Jp) with given bottom p× 2p block
row [a21 a22], or equivalently with given mvf’s

E− = a22 − a21 and E+ = a22 + a21, (9.7)

which is considered in Section 9.4. The mvf’s E− and E+ are solutions of
the factorization problems

∆(µ) = E−(µ)−∗E−(µ)−1 a.e. on R with ρ−1
i (E#

− )−1 ∈ Hp×p
2 , (9.8)

and

∆(µ) = E+(µ)−∗E+(µ)−1 a.e. on R with ρ−1
i E−1

+ ∈ Hp×p
2 . (9.9)

9.1 D-representations of mvf’s s ∈ Π ∩ Sp×q

Theorem 9.1 A mvf s ∈ Sp×q is a block of some inner n × n mvf if and
only if s ∈ Π ∩ Sp×q

in .

Proof Since Sn×n
in ⊂ Πn×n, one direction of the theorem is obvious. It

remains to prove that if s ∈ Π ∩ Sp×q , then it is a block of some mvf
S ∈ Sn×n. Four possible cases will be considered.

1. s ∈ Sp×p
in : Take S = s.

2. s ∈ Π ∩ Sp×q
in with q < p: Let

g(λ) = Ip − s(λ)s#(λ) and rg = rank g. (9.10)
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Then g ∈ Πp×p and Ip ≥ g(µ) ≥ 0 a.e. on R. By Theorem 3.110, applied to
the mvf g(−λ), the factorization problem

g(µ) = ψ(µ)ψ(µ)∗ a.e. on R with ψ∼ ∈ N rg ×p
out (9.11)

has an essentially unique solution ψ. Moreover, ψ ∈ Πp×rg and, by the
Smirnov maximum principle, ψ∼ ∈ Srg×p

out . Since s(µ)∗s(µ) = Iq a.e. on R,
g(µ) is an orthogonal projection of rank rg = p−q a.e. on R. Thus, the p×p

mvf

S(λ) = [ψ(λ) s(λ)]

belongs to Sp×p
in , since S ∈ Hp×p

∞ and

S(µ)S(µ)∗ = ψ(µ)ψ(µ)∗ + s(µ)s(µ)∗ = Ip a.e. on R.

This exhibits s(λ) is a block of S ∈ Sn×n
in with n = p. It is clear that n = p

is the minimal possible n for a mvf S ∈ Sn×n
in with block s. The set of all

mvf’s S with these properties is described by the formula

S(λ) = [ψ(λ)b1(λ) s(λ)], where b1 is any mvf in Srg ×rg

in (9.12)

and ψ is a solution of the factorization problem (9.11).

3. s ∈ Π ∩ Sp×q
∗in with p < q: Since s ∈ Π ∩ Sp×q

∗in ⇐⇒ s∼ ∈ Π ∩ Sq×p
in , this

case can be reduced to the previous case, i.e., if

f(λ) = Iq − s#(λ)s(λ) and rf = rank f, (9.13)

then there exists an essentially unique solution ϕ of the factorization problem

ϕ(µ)∗ϕ(µ) = f(µ) a.e. on R, where ϕ ∈ N rf ×q
out . (9.14)

The mvf ϕ ∈ Π ∩ Srf ×q
out ; and the minimal possible size of a mvf S ∈ Sn×n

in

with s as a block is n = q. The set of all such mvf’s S is described by the
formula

S(λ) =
[

s(λ)
b2(λ)ϕ(λ)

]
, where b2 is any mvf in Srf ×rf

in (9.15)

and ϕ is a solution of the factorization problem (9.14).

4. s ∈ Π ∩ Sp×q and s �∈ Sp×q
in , s �∈ Sp×q

∗in : As above, consider a solution ϕ

of the factorization problem (9.14), where f is defined by formula (9.13).
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Then

S2(λ) =
[

s(λ)
b2(λ)ϕ(λ)

]
∈ Π ∩ S(p+rf )×q

in if b2 ∈ Srf ×rf

in

and p + rf > q, since s �∈ Sp×q
∗in by assumption. Therefore, by the analysis of

Case 2, there exists a mvf

S(λ) = [S1(λ) S2(λ)] ∈ S(p+rf )×(p+rf )
in .

Thus, s(λ) is the 12 block of an n×n inner mvf S(λ) with n = p+rf , which
is the minimal possible size. �

Remark 9.2 In the proof of the preceding theorem, descriptions of the set
of mvf’s S ∈ Sn×n

in with minimal possible n such that s is a block of S are
furnished in Cases 1-3. In these three cases n = max{p, q}. In Case 4, the
embedding

S =
[
s11 s

s21 s22

]
∈ Sn×n

in for some n

yields the equalities

s22(µ)∗s22(µ) = Iq − s(µ)∗s(µ) = f(µ) a.e. on R,

which imply that n − p ≥ ranks22 = rf . Therefore, n = p + rf = q + rg is
the minimal possible n.

An n × n inner mvf S(λ) with a block equal to s(λ) and n as small as
possible is called a scattering D-representation of s(λ).

Theorem 9.3 Let s ∈ Π ∩ Sp×q and suppose that s �∈ Sp×q
in and s �∈ Sp×q

∗in .
Let ψ and ϕ be the essentially unique solutions of the factorization problems
(9.11) and (9.14), based on the mvf’s g = Ip − ss# and f = Iq − s#s,
respectively. Then the set of all mvf’s S ∈ Sn×n

in of minimal size n that
contain s as a 12 block is given by the formula

S(λ) =
[
Ip 0
0 b2(λ)

] [
ψ(λ) s(λ)
h(λ) ϕ(λ)

] [
b1(λ) 0

0 Iq

]
, (9.16)

where h ∈ Πrg×rf is the unique solution of two equivalent equalities

h(λ)ψ#(λ) = −ϕ(λ)s#(λ) (9.17)
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or

ϕ#(λ)h(λ) = −s#(λ)ψ(λ) (9.18)

and the pair {b2, b1} is a denominator of h.

Proof The existence of a mvf S ∈ Sn×n
in with s12 = s and n = p + rf was

established in Theorem 9.1. The fact that p + rf is the minimal possible
choice of n was discussed in Remark 9.2. Let

S(λ) =
[
s11(λ) s(λ)
s21(λ) s22(λ)

]
∈ Sn×n

in

with n = p + rf be any such D-representation of s(λ). Then

s11(µ)s11(µ)∗ = g(µ) a.e. on R, s11 ∈ Sp×rg , (9.19)

s22(µ)∗s22(µ) = f(µ) a.e. on R and s22 ∈ Srf ×q. (9.20)

Consequently, in view of Theorem 3.74, s11 = ψb1 and s22 = b2ϕ for some
choice of b1 ∈ Srg ×rg

in and b2 ∈ Srf ×rf

in , where ψ and ϕ are solutions of the
factorization problems (9.11) and (9.14) based on the mvf’s g = Ip − ss#

and f = Iq − s#s, respectively. Moreover, since S ∈ Sn×n
in ,

s21(λ)s#
11(λ) + s22(λ)s#(λ) = 0 (9.21)

and

s#
22(λ)s21(λ) + s#(λ)s11(λ) = 0, (9.22)

the mvf

h(λ) = b2(λ)−1s21(λ) b1(λ)−1 (9.23)

is a solution of equations (9.17) and (9.18) that belongs to Πrf ×rg , and the
pair {b2, b1} is a denominator of h.

The next step is to check that a mvf h ∈ L
rf ×rg
∞ is a solution of the

equation

h(µ) ψ(µ)∗ = −ϕ(µ) s(µ)∗ a.e on R (9.24)

if and only if it is a solution of the equation

ϕ(µ)∗h(µ) = −s(µ)∗ψ(µ) a.e. on R. (9.25)
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Indeed, if h ∈ L
rf ×rg
∞ is a solution of equation (9.24), then

ϕ(µ)∗h(µ)ψ(µ)∗ = −ϕ(µ)∗ϕ(µ)s(µ)∗ = −(Iq − s(µ)∗s(µ))s(µ)∗

= −s(µ)∗(Ip − s(µ)s(µ)∗) = −s(µ)∗ψ(µ)ψ(µ)∗

i.e.,

{ϕ(µ)∗h(µ) + s(µ)∗ψ(µ)}ψ(µ)∗ = 0 a.e. on R.

But this in turn implies that

ϕ(µ)∗h(µ) + s(µ)∗ψ(µ) = 0 a.e. on R,

since ψ∗Lp
2 = L

rg

2 , because ψ∼ ∈ Srg×p
out . Thus, h is a solution of equation

(9.25). Conversely, if h ∈ L
rf ×rg
∞ is a solution of equation (9.25), then

ϕ(µ)∗{h(µ)ψ(µ)∗ + ϕ(µ)s(µ)∗} = 0 a.e on R

and hence, as ϕ ∈ Srf ×q
out , h is also a solution of equation (9.24). Moreover,

since ψ∗Lp
2 = L

rg

2 , equation (9.24) has only one solution h ∈ L
rf ×rg
∞ .

The preceding analysis shows that equation (9.24) has exactly one solu-
tion h ∈ L

rf ×rg
∞ which is also the one and only solution of equation (9.25).

Moreover, formula (9.23) implies that this solution h(µ) is the nontangential
limit of a mvf h ∈ Πrf ×rg . Consequently, both equations (9.17) and (9.18)
have exactly one and the same solution h ∈ Πrf ×rg . It is also shown that
any mvf S ∈ Sn×n

in with block s12 = s and n = p + rf may be obtained by
formula (9.16), where {b2, b1} is a denominator of the mvf h.

Conversely, if S is defined by formula (9.16), where {b2, b1} is any denom-
inator of the mvf h, then S ∈ Hn×n

∞ , s12 = s and n = p + rf . It remains
only to show that S(µ)∗S(µ) = In a.e. on R. In view of (9.25) and (9.14), it
suffices to check that

ψ(µ)∗ψ(µ) + h(µ)∗h(µ) = Irg a.e. on R.

However, since ψ∗Lp
2 = L

rg

2 , this is equivalent to the equality

{ψ(µ)∗ψ(µ) + h(µ)∗h(µ) − Irg } ψ(µ)∗ = 0 a.e. on R,

which holds, because, in view of (10.13) and (10.19),

{ψ∗ψ + h∗h − Irg }ψ∗ = ψ∗{Ip − s s∗} + h∗{−ϕ s∗} − ψ∗

= −{ψ∗s + h∗ϕ}s∗ = 0.

�
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Remark 9.4 In [Ar79] it is shown that equations (9.24) and (9.25) each
have exactly one and the same solution h ∈ L

rf ×rg
∞ for any mvf s ∈ Sp×q

for which the two factorization problems (9.11) and (9.14) are solvable, even
if s �∈ Πp×q. If both of these factorization problems are solvable for a mvf
s ∈ Sp×q that does not belong to Πp×q, then s can not be represented as a
block of a mvf S ∈ Sn×n

in for some n. However, it can be represented as a
block of a bi-inner operator valued function S(λ) with values that are linear
contractive operators that act from the Hilbert space U ⊕C

q into the Hilbert
space Cp ⊕ Y for some infinite dimensional spaces U and Y ; see [ArSt??].
The scalar function

s(λ) = 1/(λ + i)1/2

serves as an example.

A scattering D-representation S ∈ Sn×n
in of a mvf s ∈ Π ∩ Sp×q such that

s �∈ Sp×q
in and s �∈ Sp×q

∗in is said to be minimal if the implications[
Ip 0
0 u(λ)

]−1

S ∈ Sn×n
in =⇒ u(λ) is a constant unitary matrix

and

S

[
v(λ) 0

0 Iq

]−1

∈ Sn×n
in =⇒ v(λ) is a constant unitary matrix

hold for every u ∈ Sq×q
in and v ∈ Sp×p

in .

Theorem 9.5 Let s ∈ Π ∩ Sp×q and suppose that s �∈ Sp×q
in and s �∈ Sp×q

∗in .
Then a D-representation S of the mvf s that is obtained by formula (9.16)
is minimal if and only if the denominator {b2, b1} of the mvf h considered
in this formula is a minimal denominator of h.

Proof The theorem is an immediate consequence of the definitions of min-
imal D-representations and minimal denominators. �

A scattering D-representation S ∈ Sp×p
in of a mvf s ∈ Π ∩ Sp×q

in with p > q

is said to be minimal if the implication

S(λ)
[
v(λ) 0

0 Iq

]−1

∈ Sp×p
in =⇒ v(λ) is a constant unitary matrix

holds for every v ∈ Sp×p
in . It is easy to see that a scattering D representation

S ∈ Sp×p
in of a mvf s that is obtained from formula (9.12) is minimal if and
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only if the mvf b1 considered in this formula is a constant rg × rg unitary
matrix.

A scattering D-representation S ∈ Sq×q
in of a mvf s ∈ Π∩Sp×q

∗in with q > p

is said to be minimal if[
Ip 0
0 u(λ)

]−1

S(λ) ∈ Sq×q
in =⇒ u(λ) is a constant unitary matrix

It is easy to see that a scattering D-representation S ∈ Sq×q
in of a mvf s

that is obtained from formula (9.15) is minimal if and only if the mvf b2

considered in this formula is a constant rf × rf unitary matrix.
Let s ∈ Π ∩ Sp×q and assume that s �∈ Sp×q

in and s �∈ Sp×q
∗in . A scattering

D-representation S of mvf s is called optimal if s22 ∈ Srf ×q
out and ∗-optimal

if s∼11 ∈ Srg×p
out .

The optimal (resp., ∗-optimal) scattering D-representation S of a mvf
s may be obtained from formula (9.16) with b2 = Irf

(resp., b1 = Irg ).

Theorem 9.6 Let s ∈ Π ∩ Sp×q and suppose that s �∈ Sp×q
in and s �∈ Sp×q

∗in .
Then:

(1) There exists a minimal optimal scattering D-representation S◦ of s

which may be obtained from formula (9.16) by setting b2 equal to a
constant rf × rf unitary matrix and setting b1 equal to a minimal
right denominator of the mvf h.

(2) There exists a minimal ∗-optimal scattering D-representation S• of
s which may be obtained from formula (9.16) by setting b1 equal to
a constant rg × rg unitary matrix and setting b2 equal to a minimal
left denominator of the mvf h.

(3) The two D-representations S◦ and S• are uniquely defined by s up to
a constant unitary left multiplier diag {Ip, v} and a constant unitary
right multiplier diag {u, Iq}, respectively.

Proof The proof is immediate from the definitions. �

Theorem 9.7 Let s ∈ Π ∩ Sp×q and let S ∈ Sn×n
in be a minimal scattering

D-representation of s. Then v is a minimal scalar denominator of s# if and
only if v is a minimal scalar denominator of S#.
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Proof It is clear that if s is a block of a mvf S ∈ Sn×n
in , then

S ∈ Πn×n(1, v) =⇒ s ∈ Πp×q(1, v)

It remains to show that the converse implication is in force if n is minimal
possible size and the D-representation S of s is minimal. There are four
cases to consider, just as in the proof of Theorem 9.1.

1. s ∈ Sp×p
in : S = s is the only D-representation of s and the assertion is

self-evident.

2. s ∈ Π∩Sp×q
in with p > q: All minimal D-representations S of s are given by

formula (9.12) with b1(λ) equal to an rg ×rg unitary constant matrix. Thus,
if s ∈ Πp×q(1, v), then g ∈ Πp×p(v, v) and by Theorem 3.110 a solution ψ of
the factorization problem (9.11) belongs to the class Πp×rg (1, v). Therefore,
s11 = ψb1 ∈ Πp×rg (1, v) and, consequently, S ∈ Πn×n(1, v).

3. s ∈ Π∩Sp×q
∗in with q > p: All minimal D-representations S of s are given by

formula (9.15) with b2(λ) equal to an rf ×rf unitary constant matrix. Conse-
quently, if s ∈ Πp×q(1, v), then f ∈ Πq×q(v, v) and, by Theorem 3.110, a so-
lution ϕ of the factorization problem (9.14) belongs to the class Πrf ×q(1, v).
Therefore, s22 = b2ϕ ∈ Πrf ×q(1, v) and consequently S ∈ Πq×q(1, v).

4. s ∈ Π ∩ Sp×q , s �∈ Sp×q
in and s �∈ Sp×q

∗in : Let S◦ ∈ Sm×m
in be a minimal

optimal scattering D-representation of s with block decomposition

S◦ =
[
s◦11 s

s◦21 s◦22

]
.

Then s◦22 ∈ Srf ×q
out and, since it is a solution of the factorization problem

(9.14) and f ∈ Πq×q(v, v), Theorem 3.110 guarantees that s◦22 ∈ Πrf ×q(1, v).
Thus, the mvf

S2 =
[

s

s◦22

]
belongs to Sm×q

in ∩ Πm×q(1, v),

and S2 �∈ Sm×q
∗in . Moreover,

S◦ = [S1 S2] with S1 =
[
s◦11
s◦21

]
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is a minimal scattering D-representation of S2. Thus, by Case 2, S◦ ∈
Πm×m(1, v), and hence s◦11 ∈ Πp×rg (1, v). Therefore, since S◦ is a minimal
optimal scattering D-representation of s, it may be obtained from formula
(9.16) with b1 equal to a minimal right denominator dR of the mvf h and b2

a constant rf × rf unitary matrix. Thus, s◦11 = ψdR , where ψ is a solution
of the factorization problem (9.11). Consequently, ψdR ∈ Πp×rg (1, v).

Now let S be a minimal scattering D-representation of s. The mvf

S =
[
s11 s

s21 s22

]
may be obtained from the formula (9.16) with some minimal denominator
{b2, b1} of the mvf h. Then b1 is a minimal right denominator of b2h and dR

is a right denominator of b2h. Consequently, b−1
1 dR ∈ Srg×rg

in , which together
with the already established fact that ψdR ∈ Πp×rg (1, v) implies that ψb1 ∈
Πp×rg (1, v), i.e., s11 ∈ Πp×rg (1, v). Moreover, since S is a minimal scattering
D-representation of the mvf [s11 s] and [s11 s] ∈ Π∩Sp×m

∗in , Case 3 implies
that S ∈ Πm×m(1, v). �

Lemma 9.8 Let s ∈ Π∩Sp×q , let S ∈ Sn×n
in be a mvf with s12 = s and sup-

pose that the ranks rg and rf of the mvf’s g and f defined by formulas (9.10)
and (9.13), respectively, are both positive. Then the following conditions are
equivalent:

(1) The mvf S is a D-representation of s, i.e., n = p + rf .

(2) s∗11L
p
2 = L

rg

2 .

(3) s22L
q
2 = L

rf

2 .

Proof Let S ∈ Sn×n
in with s12 = s and diagonal blocks s11 and s22. Then

n ≥ p + rf = q + rg and, by Theorem 3.73, the mvf’s s11 ∈ Sp×(n−q) and
s22 ∈ S(n−p)×q admit factorizations of the form

s11 = ψb1 where ψ∼ ∈ Srg×p
out and b1 ∈ Srg×(n−q)

∗in

and

s22 = b2ϕ, where ϕ ∈ Srf ×q
out and b2 ∈ S(n−p)×rf

in ,

since ψ and s11 are both solutions of the factorization problem (9.11),
whereas ϕ and s22 are both solutions of the factorization problem (9.14).
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Suppose now that (1) holds, i.e., that n = p+ rf = q + rg . Then b1 ∈ Srg×rg

in

and b2 ∈ Srf ×rf

in and hence

s∗11L
p
2 = b∗1 ψ∗Lp

2 = b∗1(ψ∗Lp
2) = b∗1L

rg

2 = L
rg

2

and

s22L
q
2 = b2ϕLq

2 = b2(ϕLq
2) = b2L

rf

2 = L
rf

2 .

Thus, (1) =⇒ (2) and (1) =⇒ (3).
Suppose next that n > p + rf = q + rg . Then b1 ∈ Srg×(n−q)

∗in , but the
vvf h1 = ρ−1

i (In−q − b∗1b1)ξ has positive norm in Ln−q
2 for some ξ ∈ C

n−q .
Moreover,

s11(µ)h1(µ) = ψ(µ)b1(µ){In−q − b1(µ)∗b1(µ)} ξ

ρi
= 0 a.e. on R,

i.e., h1 is orthogonal to s∗11L
p
2. Thus (2) fails and consequently, (2) =⇒ (1).

Much the same sort of argument shows that (3) =⇒ (1). �

Remark 9.9 If S ∈ Sn×n
in and s12 = s, then the following implications hold:

(1) If rg > 0 and rf = 0, then n = p ⇐⇒ s∗11L
p
2 = L

rg

2 .

(2) If rg = 0 and rf > 0, then n = q ⇐⇒ s22L
q
2 = L

rf

2 .

If S ∈ Sn×n
in is a rational D-scattering realization of s = s12, then S(1/λ) =

SS(λ) is the scattering matrix of a simple (and hence minimal, since
B = iC∗D) conservative scattering system S = (A, B, C.D; Cm, Cn, Cn)
with m = deg S and

SS(λ) = D + C(λI − A)−1B for λ ∈ ρ(A).

If rf > 0 and rg > 0, then B, C and D have block decompositions

B = [∗ B1], C =
[
C1

∗

]
and D =

[
∗ D1

∗ ∗

]
with respect to the decompositions

C
n = C

rf ⊕ C
q and C

n = C
p ⊕ C

rg

of the input and output spaces of S corresponding to the four block de-
composition of S. The system S1 = (A, B1, C1, D1; Cm, Cq , Cp) is a passive
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scattering system with scattering matrix

SS1
(λ) = D1 + C1(λI − A1)−1B1 = s(λ).

This is a minimal passive scattering realization of s(λ) if and only if S(λ) is
a minimal scattering D representation of s(λ). Moreover, the system S will
be a minimal optimal (resp., ∗-optimal) passive scattering system if and only
if S(λ) is a minimal optimal (resp., ∗-optimal) scattering D-representation
of s(λ).

9.2 Chain scattering D-representations

If S ∈ Sn×n
in with n = p + rf (= q + rg) is a mvf with s12 = s, then:

rg = p ⇐⇒ rf = q ⇐⇒ s11(λ) �≡ 0 ⇐⇒ det s22(λ) �≡ 0. (9.26)

The Potapov-Ginzburg transform W = PG(S) of the mvf S is well defined
if and only if the four equivalent conditions in (9.26) are satisfied. In this
case the scattering D-representation of s as the 12 block of S is equivalent
to the representation

s = TW [0p×q ], where W ∈ U(jpq). (9.27)

The analysis that was carried out in the previous section yields the following
results.

Theorem 9.10 Let s ∈ Sp×q. There exists at least one mvf W such that
(9.27) holds if and only if s ∈ Πp×q and

g(µ) = Ip − s(µ)s(µ)∗ > 0 and f(µ) = Iq − s(µ)∗s(µ) > 0

a.e. on R, (9.28)

i.e., if and only if rg = p and rf = q. If these conditions are satisfied, then
the solution ψ (resp., ϕ) of the factorization problem (9.11) (resp., 9.14)
belongs to Π ∩ Sp×p

out (resp., Π ∩ Sq×q
out ), the mvf h considered in (9.17) may

be defined by the formula

h(λ) = −ϕ(λ)s#(λ)ψ#(λ)−1 = −(ϕ#)−1(λ)s#(λ)ψ(λ) (9.29)

and the set of all mvf’s W ∈ U(jpq) such that (9.27) holds is described by
the formula

W (λ) = W ◦(λ)
[
b1(λ) 0

0 b2(λ)−1

]
, (9.30)
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where

W ◦ =
[
d− c+

c− d+

]
=
[

(ψ#)−1 sϕ−1

s#(ψ#)−1 ϕ−1

]
(9.31)

belongs to Ml(jpq) and {b2, b1} is any denominator of the mvf h.

Proof The theorem follows from Theorem 9.3 and formula (4.40) for the
Potapov-Ginzburg transform. �

A representation of a mvf s in the form (9.27) is called a chain scattering
D-representation of the mvf s. Thus, Theorem 9.10 gives a criterion for
such a representation to exist and a description of the set of all chain scat-
tering D-representations of the given s.

Corollary 9.11 If W ∈ U(jpq), then TW [0] = 0 if and only if it can be
expressed in the form

W (λ) =
[

u(λ) 0
0 v(λ)−1

]
, where u ∈ Sp×p

in and v ∈ Sq×q
in . (9.32)

A chain scattering D-representation (9.27) of a mvf s is called minimal
if the implication

W (W̃ )−1 ∈ U(jpq) =⇒ W̃ ∈ Uconst(jpq) (9.33)

for every mvf W̃ ∈ U(jpq) such that T
W̃

[0] = 0. In this case W is also called
minimal.

Theorem 9.12 A chain scattering D-representation (9.27) of s is min-
imal if and only if the scattering D-representation S = PG(W ) of s is
minimal, i.e., if and only if the pair {b2, b1} considered in formula (9.30)
is a minimal denominator of the mvf h defined by formula (9.29).

Proof This follows easily from Theorem 9.10. �
A chain scattering D-representation (9.27) and the mvf W in it is called

optimal if W ∈ Nm×m
+ and ∗-optimal if W# ∈ Nm×m

+ . The mvf’s that
are considered in minimal optimal and minimal ∗-optimal representations
will be denoted W◦ and W•, respectively. They are the PG transforms of
the mvf’s S◦ and S•, respectively, that were introduced in Theorem 9.6.

Theorem 9.13 Let s ∈ Π ∩ Sp×q and assume that det{Iq − s#s} �≡ 0. Let
W ∈ U(jpq) be a minimal chain scattering D-representations (9.27) of s and
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let v be a minimal scalar denominator of the mvf h that is defined by formula
(9.29). Then:

(1) v is a scalar denominator of both W and W#, i.e.,

W ∈ Πm×m(v, v). (9.34)

(2) v is a minimal scalar denominator of W• and W#
◦ , where W• is a

minimal ∗-optimal and W◦ is a minimal optimal chain scattering D-
representation of s.

Proof If {b2, b1} is a minimal denominator of the mvf h defined by formula
(9.29), then, in view of Theorem 9.12, formulas (9.30)-(9.31) define a minimal
mvf W . Let g = Ip − ss#, f = Iq − s#s, and let

h1 = s#g−1 = f−1s# . (9.35)

Then

h = −ϕh1ψ, (9.36)

where ϕ and ψ are solutions of the problems (9.14) and (9.11), respectively.
Since ϕ ∈ N q×q

out and ψ ∈ N p×p
out , the functions h and h1 have the same

minimal scalar denominator v. Since

Ip + sh1 = g−1 and Iq + h1s = f−1,

v is a scalar denominator of the mvf’s g−1 and f−1. Moreover, since b1

is a minimal right denominator of the mvf b2h and b2 is a minimal left
denominator of hb1, the function v is a scalar denominator of the mvf’s b−1

1
and b−1

2 .
Let wij be the blocks of the mvf W . Then

vw11 = vψ−#b1 = (vg−1)ψb1 ∈ N p×p
+ ,

vw12 = sϕ−1(vb−1
2 ) ∈ N p×q

+ ,

vw21 = −vs#ψ−#b1 = −ϕ−1(vh)b1 ∈ N q×p
+ ,

vw22 = vϕ−1b−1
2 = −ϕ−1(vb−1

2 ) ∈ N q×q
+ ,
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i.e., W ∈ Nm×m(v). Furthermore,

vw#
11 = (vb−1

1 )ψ−1 ∈ N p×p
+ ,

vw#
12 = vb2ϕ

−#s# = b2ϕ(vh1) ∈ N q×p
+ ,

vw#
21 = −(vb−1

1 )ψ−1s ∈ N p×q
+ ,

vw#
22 = b2(vϕ−#) = b2ϕ(vf−1) ∈ N q×q

+ ,

i.e., W# ∈ Nm×m(v). Thus, W ∈ Πm×m(v, v).
If W = W•, then b1 is constant and, consequently, v is a minimal scalar

denominator of w21, since vw21 = ϕ−1(vh)b1 and ϕ ∈ N q×q
out . Therefore, the

denominator v for W• is minimal. Similarly, if W = W◦, then b2 is constant
and v is a minimal scalar denominator of w#

12, since vw#
12 = b2ϕ(vh1) and

ϕ ∈ N q×q
out . Thus the denominator v of W#

◦ is minimal. �

Theorem 9.14 A mvf s ∈ Sp×q admits a representation of the form (9.3)
with some ε ∈ Sp×q

const if and only if s ∈ Πp×q. If this condition is satisfied,
then, in the considered representation,

rank(Ip − εε∗) = rank(Ip − s s∗) and rank(Iq − ε∗ε) = rank(Iq − s∗s).

Proof See [Ar73]. �

9.3 D-representations in the class Cp×p

Analogues of the representations (9.27) and (9.3) with ε ∈ Sp×q
const exist for

mvf’s c ∈ Π ∩ Cp×p:

Theorem 9.15 A mvf c ∈ Cp×p admits a representation of the form

c = TA [τ ] with A ∈ U(Jp) and τ ∈ Cp×p
const (9.37)

if and only if c ∈ Πp×p. Moreover, for any such representation,

rank Rτ = rank Rc.

Proof Since

c ∈ Cp×p =⇒ TV[c] ∈ Sp×p and A ∈ U(Jp) =⇒ VAV ∈ U(jp), (9.38)

the assertion follows from Theorem 9.14 with s = TV[c] and W = VAV

because in the representation (9.3) ε may be chosen in D(TV). �
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Theorem 9.16 A mvf c admits a representation of the form

c = TA [Ip] with A ∈ U(Jp) (9.39)

if and only if

c ∈ Π ∩ Cp×p and rank Rc = p. (9.40)

If this condition is satisfied, then the set of all mvf’s A ∈ U(Jp) such that
TA[Ip] = c is described by the formula

A(λ) = B◦(λ)
[
b1(λ) 0

0 b2(λ)−1

]
V, (9.41)

where

B◦(λ) =
1√
2

[
−c#(λ)x#

2 (λ) c(λ)x1(λ)
x#

2 (λ) x1(λ)

]
(9.42)

and

(1) x1(λ) and x2(λ) are essentially unique solutions of the factorization
problems

x1(µ)x1(µ)∗ = {(Rc)(µ)}−1 a.e. on R and x1 ∈ N p×p
out , (9.43)

x2(µ)∗x2(µ) = {(Rc)(µ)}−1 a.e. on R and x2 ∈ N p×p
out . (9.44)

(2) x1 ∈ Πp×p and x2 ∈ Πp×p.

(3) {b2, b1)} is a denominator of the mvf

θ(λ) = x#
1 (λ)x2(λ)−1 = x1(λ)−1x#

2 (λ). (9.45)

Proof The theorem follows from Theorem 9.10 and formula (9.37), since
(Ip + s) ∈ N p×p

out and {b2, b1} ∈ den h ⇐⇒ {b2, b1} ∈ den θ, because the
mvf’s h and θ, considered in (9.29) and in (9.45) are connected by the
relation

θ(λ) − h(λ) = x−1
1 (λ){Ip + s(λ)}x−1

2 (λ),

where the right hand side belongs to N p×p
out by Lemma 3.54. �

Remark 9.17 If c(λ) ≡ Ip, then x1(λ) = x2(λ) ≡ Ip, B◦(λ) ≡ V and
θ(λ) ≡ Ip. Consequently every pair {b2, b1} of mvf’s b1, b2 ∈ Sp×p

in is a
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denominator of the mvf θ = Ip and the formula

A◦(λ) = V

[
b1 0
0 b−1

2

]
V, where b1, b2 ∈ Sp×p

in , (9.46)

gives a description of the set of mvf’s A◦ such that

A◦ ∈ U(Jp) and Ip = TA◦ [Ip].

A D-representation (9.39) of c is said to be:

(a) minimal if the implication

A(λ)A◦(λ)−1 ∈ U(Jp) =⇒ A◦ ∈ Uconst(Jp)

holds for every mvf A◦ of the form (9.46). In this case, A is also said to
be minimal.

(b) optimal if A ∈ Nm×m
+ ; in this case, A is also said to be optimal.

(c) ∗-optimal if A# ∈ Nm×m
+ ; in this case, A is also said to be ∗-optimal.

If c ∈ Π∩Cp×p and Rc(µ) > 0 a.e. on R, then there exist minimal optimal
and minimal ∗-optimal mvf’s A◦ and A• for c. They are connected with
minimal optimal and minimal ∗-optimal mvf’s W◦ and W• for the mvf s =
TV[c] by the relations

A◦(λ) = V W◦(λ)V and A•(λ) = V W•(λ)V. (9.47)

Thus, A◦(λ) may be obtained from the general formula (9.41) with b2(λ) ≡
Ip and b1(λ) = dR(λ), where dR(λ) is a minimal right denominator of the
mvf θ, and A• may be obtained from formula (9.41) with b1(λ) ≡ Ip and
b2(λ) = dL(λ), where dL(λ) is a minimal left denominator of the mvf θ(λ).

9.4 Inverse problems for de Branges matrices and spectral functions

In this section two inverse problems for Jp-inner mvf’s will be studied.

The inverse de Branges matrix problem: Given a p × 2p mvf E(λ) =
[E−(λ) E+(λ)], describe the set of mvf’s A(λ) such that

E(λ) =
√

2[0 Ip]A(λ)V and A ∈ U(Jp). (9.48)
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In view of formula (5.131) this problem can be reformulated as follows: Given
two p × p mvf’s a21(λ) and a22(λ), describe the set of all mvf’s A ∈ U(Jp)
such that [a21 a22] is the bottom block row of A, i.e.,

[a21(λ) a22(λ)] = [0 Ip]A(λ). (9.49)

The inverse spectral problem: Given a p × p mvf ∆(µ) on R, describe
the set of all mvf’s A ∈ U(Jp) such that

∆(µ) = Rc(µ) a.e. on R when c = TA[Ip], (9.50)

i.e., ∆(µ) is the spectral density of the component ca in the decomposition
(3.14) of the mvf c ∈ Cp×p considered in (9.50).

The inverse de Branges matrix problem is connected with the inverse
spectral problem because if formulas (9.50) and (9.48) hold for the same
mvf A ∈ U(Jp), then

∆(µ) = E+(µ)−∗E+(µ)−1 = E−(µ)−∗E−(µ)−1 a.e. on R. (9.51)

The solutions of these inverse problems will be obtained on the basis of
the solution of the inverse impedance problem considered in Theorem 9.16.

Theorem 9.18 Let E = [E− E+] be a given p× 2p mvf. Then there exists
a mvf A ∈ U(Jp) such that (9.48) holds if and only if E is a regular de
Branges matrix. Moreover, if E is a regular de Branges matrix, then:

(1) There exists a mvf c ∈ Cp×p with

Rc(µ) = E+(µ)−∗E+(µ)−1 a.e. on R (9.52)

and every such c belongs to Π ∩ Cp×p.

(2) The set of all mvf’s A ∈ U(Jp) such that (9.48) holds is described by
formula (5.132).

(3) The parameter c in formula (5.132) can be recovered from A by the
formula c = TA [Ip].

Proof If A ∈ U(Jp), then E =
√

2[0 Ip]AV is a regular de Branges matrix
by Theorem 5.71. Moreover, the mvf c = TA [Ip] belongs to the class Π∩Cp×p

and formula (5.132) holds, thanks to (9.41), (9.42) and (9.48).
Conversely, if E = [E− E+] is a regular de Branges matrix, thenE−∗

+ E−1
+ ∈

L̃p×p
1 . Therefore the mvf ca defined by formula (5.134) satisfies the condition
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(9.52). Moreover, every mvf c ∈ Cp×p for which (9.52) holds may be written
as c = cs + ca, where cs is any mvf in Cp×p

sing and ca is defined by formula
(5.134. The mvf

ca(µ) = −ca(µ)∗ + 2E+(µ)−∗E+(µ)−1 a.e. on R

is the nontangential boundary value of the mvf −c#
a (λ)+2E+(λ)−#E+(λ)−1,

which belongs to the class of meromorphic mvf’s f in C− such that f# ∈
N p×p. Therefore, ca ∈ Πp×p; and, since the inclusion cs ∈ Πp×p is always
true, it follows that c ∈ Πp×p.

The final step is to obtain the description (5.132) from Theorem 9.16. Since
det E+(λ) �≡ 0 and det E#

− (λ) �≡ 0 and the mvf’s E−1
+ and E−#

− belong to
N p×p

+ , they admit factorizations of the form

E−1
+ = b2ϕ and E−#

− = ψb1,

where

b1 ∈ Sp×p
in , b2 ∈ Sp×p

in , ϕ ∈ N p×p
out and ψ ∈ N p×p

out .

Moreover, x1 = ϕ−1 and x2 = ψ−1 are solutions of the factorization problems
(9.43) and (9.44), respectively, and {b2, b1} is a denominator of the mvf θ

defined in (9.45), since

θ = x−1
1 x#

2 = ϕψ−# = b−1
1 E−1

+ E−b−1
2 = b−1

1 χb−1
2 ,

and χ ∈ Sp×p
in . Thus, Theorem 9.16 is applicable to this choice of b1, b2 and

c and formulas (9.41) and (9.42) are equivalent to (5.132). �
The solution of the inverse spectral problem is given in the following the-

orem.

Theorem 9.19 The inverse spectral problem for a given p× p mvf ∆(µ) on
R admits a solution A(λ) if and only if (1) ∆ ∈ L̃n×n

1 ; (2) ∆(µ) > 0 a.e. on
R; and (3) ∆(µ) is the nontangential boundary value of a mvf ∆ ∈ Πp×p.
Moreover, if these three conditions are satisfied, then formulas (5.133) and
(5.134) (with ∆(µ) in place of E−∗

+ (µ)E−1
+ (µ)) define a mvf c ∈ Π ∩ Cp×p

with Rc(µ) = ∆(µ) > 0 and the set of solutions A(λ) of the inverse spectral
problem for ∆(µ) coincides with the set of solutions of the inverse impedance
problem for c described in Theorem 9.16.

Proof In the proof of Theorem 9.18 it is shown that if ∆ is obtained from a
mvf A ∈ U(Jp) by (9.50), then ∆ has the three listed properties. Conversely,
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if the mvf ∆(µ) has these three properties, then formulas (5.133) and (5.134)
(with ∆(µ) in place of E−∗

+ (µ)E−1
+ (µ)) define a mvf c ∈ Π ∩ Cp×p with

∆(µ) = Rc(µ) a.e. on R. �

9.5 The inverse 12 block problem for jpq -inner mvf’s

In this section we consider a third inverse problem:

IP3 Given a p × q mvf w, describe the set of all mvf’s W such that

W ∈ U(jpq) and W =
[

w11 w

w21 w22

]
. (9.53)

The next theorem provides a solution of this problem.

Theorem 9.20 Let w(λ) be a p× q mvf that is meromorphic on C+. Then:

(1) There exists a mvf W such that (9.53) holds if and only if w ∈ Πp×q .
(2) If w ∈ Πp×q, then the set of mvf’s W such that (9.53) holds is de-

scribed by the formula

W =
[
Ip 0
0 b−1

2

] [
ϕ#

1 w

ϕ2w
#ϕ−1

1 ϕ2

] [
b1 0
0 Iq

]
, (9.54)

where ϕ1 and ϕ2 are solutions of the factorization problems

ϕ#
1 (λ)ϕ1(λ) = Ip + w(λ)w#(λ) with ϕ1 ∈ N p×p

out , (9.55)

ϕ#
2 (λ)ϕ2(λ) = Iq + w#(λ)w(λ) with ϕ2 ∈ N q×q

out , (9.56)

respectively, and b1 and b2 are right denominators of the mvf’s
w#ϕ−1

1 and wϕ−1
2 , respectively.

Proof The details are left to the reader since the proof is similar to the
proof of Theorem 9.3. �

A solution W of IP3 is said to be minimal if v ∈ Sq×q
in , u ∈ Sp×p

in and[
Ip 0
0 v−1

]−1

W

[
u 0
0 Iq

]−1

∈ U(jpq)

implies that both v(λ) and u(λ) are constant unitary matrices.
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Theorem 9.21 Let w ∈ Πp×q. Then there exists a unique minimal solution
W of IP3, up to left and right constant unitary multipliers of the form[

Ip 0
0 v∗

]
and

[
u 0
0 Iq

]
,

respectively. A minimal solution W of IP3 may be obtained from formula
(9.54), where b1 and b2 are minimal right denominators of the mvf’s w#ϕ−1

1
and wϕ−1

2 , respectively.

Proof The proof is similar to the proof of Theorem 9.5. The details are left
to the reader. �

9.6 Inverse problems in special classes

This section focuses on solutions of the inverse problems considered above
in one or more of the following special classes:

(1) rational mvf’s.

(2) entire mvf’s.

(3) real mvf’s f in the sense that f(−λ) = f(λ).

(4) symmetric mvf’s f in the sense that f(λ)τ = f(λ) and symplectic mvf’s
in the sense that fτ (λ)Jpf(λ) = Jp.

These classes are important in a variety of applications in physics and engi-
neering.

The inverse scattering problem

Let s ∈ Π ∩ Sp×q , let f, g, rf and rg be defined by formulas (9.13) and
(9.10) and assume that rf > 0 and rg > 0. This corresponds to Case 4 in
the proof of Theorem 9.1. Cases 2 and 3 are simpler and may be analyzed
in the same way as Case 4; Case 1 is not of interest, because then S = s.

Let ϕ and ψ be the unique solutions of the factorization problems (9.14)
and (9.11) that are normalized by the conditions

ϕ(iν)Rf

[
Irf

0

]
> 0 and [Irg 0]Lgψ(iν) > 0 for some ν > 0, (9.57)
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where Rf and Lg are appropriately chosen permutation matrices that de-
pend upon f and g, but are independent of ν. Let h be the unique mvf that
is defined by the relation (9.17).

In the next theorem, the given mvf s will be considered as the block s11

of the mvf S ∈ Sm×m
in , instead of as the block s12. This identification is

convenient if s is symmetric. Then, in view of Theorem 9.3, the set of all
mvf’s S ∈ Sn×n

in of minimal size with s = s11 is given by the formula

S =
[
Ip 0
0 b2

]
S◦
[
Iq 0
0 b1

]
, (9.58)

where

S◦ =
[
s ψ

ϕ h

]
. (9.59)

Theorem 9.22 Let s ∈ Π ∩ Sp×q and assume that rf > 0 and rg > 0.
Then the set of all scattering D-representations S ∈ Sn×n

in with s11 = s is
described by formula (9.58), where S◦ is uniquely specified by formula (9.59)
and {b2, b1} is an arbitrary denominator of the mvf h.
Suppose further that s is subject to one or more of the extra constraints that
are presented in the first column of Table 8.1. Then the mvf’s S◦, S, b1 and
b2 that are considered in formulas (9.58) and (9.59) satisfy the conditions
that are displayed in the remaining columns of the table.

s
◦
S minimal S S {b2 b1}

S◦ and
real real S• may real ⇐⇒ b1 and b2

be chosen real are real
symmetric is chosen - symmetric ⇐⇒ b2 = bτ

1
symmetric

rational rational rational rational ⇐⇒ b1 and b2
are rational

entire of entire of
exp type exp type

Table 9.1.

Thus, for example, if s ∈ Sp×q is a real rational mvf such that rf > 0
and rg > 0, then the mvf S◦ defined by formula (9.59) with normalized
ψ and ϕ is also a real rational mvf and the scattering D-representation S

with s11 = s defined by formula (9.58) is a real rational mvf if and only
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if the denominator {b2, b1} of the mvf h is chosen to be real and rational.
Moreover, every minimal scattering D-representation S of s is rational. The
minimal optimal and minimal ∗-optimal D representations S◦ and S• may
be chosen real. If s is also symmetric, then we may choose Lg = Rτ

f in the
normalization condition (9.57). Then S◦ will be symmetric too and then S is
real symmetric and rational if and only if bτ

2 = b1 and b1 is real and rational.

Proof For the sake of simplicity, the proof will be organized in tabular form,
that serves to justify Table 8.1.

s f, g ψ, ϕ h
◦
S

real both real both real real real
symmetric f τ (λ) = g(λ) ψτ = ϕ symmetric symmetric
rational both rational both rational rational rational
entire of both entire both entire
exp type of exp type of exp type

Table 9.2.

The statements in the second column of Table 8.2 follow easily from the
constraints imposed on s in the first column and the formulas for f and g.
Then the uniqueness of the normalized solutions of the factorization prob-
lems guarantee the validity of the first two entries in the third column, since
Rf and Lg are both real and may be chosen with Lg = Rτ

f when s = sτ .
The last two entries follow from Theorem 3.70.

Next, the uniqueness of the solution h of equation (9.17) serves to justify
the first two entries in the fourth column. The third entry in this column
also follows from (9.17), because s#, ϕ, and ψ# are rational mvf’s and the
rg × p mvf ψ# has a rational right inverse, since rankψ# = rg . The entries
in the fifth column of Table 8.2 follow from the entries in columns one, three
and four. This yields the second column of Table 8.1, and hence by formula
(9.58), justifies the equivalences between the fourth and fifth columns of
Table 8.1. The last conclusion depends upon the formulas

s12 = ψb1 and s21 = b2ϕ.

If Sτ = S, then ψτ = ϕ and hence, by the essential uniqueness of the
inner-outer factorization of s21, it follows that

sτ
12 = s21 ⇐⇒ bτ

1 = b2.
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If s is rational or real, then since the p × rg mvf ψ has rank rg , it has a left
inverse that is real if ψ is real and is rational if ψ is rational. Therefore s12

is real or rational if and only if b1 is real or rational, respectively. Similar
conclusions hold for s21 and b2.

The verification of the entries in the third column of Table 8.1 follows from
Theorem 9.7, which guarantees that if S is a minimal D-representation of a
mvf s ∈ Sp×q ∩ Πp×q(1, v), then S ∈ Πn×n(1, v). If s is a rational mvf, then
a minimal scalar denominator v of s# is a rational inner function, i.e., v is
a finite Blaschke product and hence S is rational mvf, since vS−1 ∈ Sn×n

in .
If the mvf s is entire of exponential type a , then v = ea and, consequently,
eaS

−1 ∈ Sn×n
in . Therefore, by Lemma 3.98, S is an entire mvf. Finally, the

verification of the first entry in the third column of Table 8.1 is obtained
from formula (9.58) with b1 = dR and b2 = Irf

for S◦ and b1 = Irg and
b2 = dL for S•, where dR and dL are minimal right and left denominators of
the mvf h. Since S◦ is real in this setting, it suffices to show that dR and dL

may both be chosen real when h is real. The mvf’s dR(λ) and dL(λ) may be
uniquely specified by imposing the normalization dR(iν) > 0 and dL(iν) > 0
for some ν > 0. Then, if h is real, dR(−λ) and dR(λ) are both minimal right
denominators of h that meet the same normalization condition. Therefore
dR(−λ) = dR(λ), i.e., dR is real. Similar considerations serve to establish
the existence of a real minimal left denominator of h. �

The inverse chain scattering problem

The next theorem focuses on special properties of the mvf W in the chain
scattering D-representation (9.27) when the given matrix s is subject to one
or more of the extra constraints that are under consideration in this section.

Theorem 9.23 Let s ∈ Π ∩ Sp×q, assume that rg = p and rf = q and let
the set of mvf’s W such that

W ∈ U(jpq) and s = TW [0]

be described by formula (9.30) , where W ◦ is uniquely specified by formula
(9.31) and the mvf’s b2, b1 are defined by s as in Theorem 9.10.
Suppose further that s is subject to one or more of the extra constraints that
are presented in the first column of Table 8.3. Then the mvf’s W ◦, W , b1
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and b2 that are considered in formulas (9.30)–(9.31) satisfy the conditions
that are displayed in the remaining columns of the table.

s W ◦ minimal W W {b2 b1}
W◦ and

real real W• may real ⇐⇒ b1 and b2
be chosen real are real

symmetric is chosen - symplectic ⇐⇒ b2 = bτ
1

symplectic
rational rational rational rational ⇐⇒ b1 and b2

are rational

Table 9.3.

Thus, for example, if s ∈ Sp×p is a real rational mvf such that rf > 0
and rg > 0, then the mvf W ◦ defined by formula (9.31) with normalized ψ

and ϕ is also a real rational mvf and the mvf W in the chain scattering D-
representation s = TW [0] is a real rational mvf if and only if the denominator
{b2, b1} of the mvf h is chosen so that b1 and b2 are real and rational.
Moreover, every minimal W in the chain scattering D-representation of s is
rational. The minimal optimal and minimal ∗-optimal mvf’s W◦ and W• may
be chosen real. If s is also symmetric, then W ◦ may be chosen symplectic
and then W is real symplectic and rational if and only if bτ

2 = b1 and b1 is
real and rational.

Proof Let S be a scattering D-representation of s with block s11 = s as in
Theorem 9.22 and let

S̃ = S

[
0 Iq

Ip 0

]
=
[
s̃11 s

s̃21 s̃22

]
. (9.60)

The PG transform W = PG(S̃) defines a one to one correspondence between
the mvf’s S and the mvf’s W in the chain scattering D-representations
(9.27). Moreover,

W is real ⇐⇒ S is real

W is symplectic ⇐⇒ S is symmetric

W is rational ⇐⇒ S is rational

W is minimal ⇐⇒ S is minimal

W = W◦ ⇐⇒ S = S◦ and W = W• ⇐⇒ S = S•.
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Thus, as W ◦ and S◦ are related in the same way as W and S, the theorem
follows from Theorem 9.22. �

Remark 9.24 The third column of Table 8.1 guarantees the existence of a
real S when s is real and a rational S when s is rational. If s is symmetric,
then a symmetric S may be obtained from formula (5.132) with b1 = dR and
b2 = dτ

R, where dR is any minimal right denominator of h.

Theorem 9.25 Let s ∈ Sp×q and let rg = p and rf = q. Then the mvf s

admits the representation

s = TW [0] with some W ∈ E ∩ U(jpq) (9.61)

if and only if the following conditions are satisfied:

(1) The mvf s is meromorphic in C.

(2) The mvf

f(λ) = Iq − s#(λ)s(λ) (9.62)

has the properties

det f(λ) �≡ 0, ln det f ∈ L̃1. (9.63)

(3) The mvf

h1(λ) = f(λ)−1s#(λ) (9.64)

is entire of exponential type.

Moreover, if these conditions are satisfied, then:

(i) The set of all mvf’s W such that (9.61) holds is described by formula
(9.30) with entire inner mvf’s b1 and b2.

(ii) The mvf W ◦ that is defined by formula(9.31) is entire.

(iii) Every minimal W in the chain scattering D-representation s (9.27)
is entire.

(iv) If, in addition to (1)–(3), a mvf s is also (a) real or (b) symmetric or
(c) real and symmetric, then the mvf W in the representation (9.27)
of s may be chosen to be (a) real and entire, (b) symplectic and entire,
(c) real, symplectic and entire, respectively, by appropriate choices of
b1 and b2.
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Proof Let s admit the representation (9.61). Then (1) is obvious and (2)
holds, since

f(λ) = w#
22(λ)−1w22(λ)−1.

Moreover, (3) holds, since

h1(λ) = w22(λ)w#
12(λ)

and the mvf W is assumed to be entire of exponential type.
Conversely, if properties (1)–(3) are in force, then the mvf’s f−1 and g−1

are both entire of exponential type, since

Iq + h1(λ)s(λ) = f(λ)−1 and f#(λ) = f(λ),

Ip + s(λ)h1(λ) = g(λ)−1 and g#(λ) = g(λ)

and h1 is an entire mvf of exponential type.(Since s is meromorphic in C and
bounded in C+, it can not have poles on R.) Moreover, since f−1 ∈ L̃q×q

1 ,
the bound∫ ∞

−∞

ln+ ‖h1(µ)‖
1 + µ2 dµ ≤

∫ ∞

−∞

ln ‖f(µ)−1‖
1 + µ2 dµ ≤

∫ ∞

−∞

ln det f(µ)−1

1 + µ2 dµ

implies that h1 satisfies the Cartwright condition. Therefore, by Theorem
3.108, h1 ∈ E ∩ Πq×p, f−1 ∈ E ∩ Πq×q and g−1 ∈ E ∩ Πp×p.

By Theorem 3.111, the solutions ϕ1 and ϕ2 of the factorization problems

f−1(λ) = ϕ1(λ)ϕ#
1 (λ) with ϕ1 ∈ N q×q

out (9.65)

and

g−1(λ) = ϕ#
2 (λ)ϕ2(λ) with ϕ2 ∈ N p×p

out (9.66)

are entire mvf’s of exponential type that satisfy the Cartwright condition,
i.e., ϕ1 ∈ E ∩ Πq×q and ϕ2 ∈ E ∩ Πp×p. Moreover, the mvf’s ϕ1 and ϕ2

are uniquely defined by s and the normalization conditions ϕ1(0) > 0 and
ϕ2(0) > 0. Thus, the mvf W ◦ defined by formula (9.31) may be written in
terms of the mvf’s ϕ1 and ϕ2 and s:

W ◦ =

[
ϕ#

2 sϕ1

s#ϕ#
2 ϕ1

]
. (9.67)
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The mvf’s sϕ1 and s#ϕ#
2 are holomorphic and have exponential growth in

C+ and C−, respectively. Moreover, since

sϕ1 = h#
1 ϕ# and s#ϕ#

2 = h1ψ,

the mvf’s sϕ1 and s#ϕ#
2 are holomorphic and have exponential growth also

in C− and C+, respectively. Consequently, the mvf’s sϕ1 and s#ϕ#
2 are both

entire of exponential type. Thus, the mvf W ◦, defined in (9.67) is entire of
exponential type. Moreover, W ◦ ∈ E ∩ Πm×m .

The mvf’s h and h1, that are defined by formulas (9.29) and (9.64) re-
spectively, are connected by the relation

h = −ϕh1ψ, (9.68)

since

h = −ϕs#ψ#−1 = −ϕs#g−1ψ = −ϕf−1s#ψ = −ϕh1ψ.

Since h1 is an entire mvf, its minimal scalar denominator is entire, i.e., it is
ea, a ≥ 0. Formula (9.68) implies that ea is a minimal scalar denominator of
the mvf h too, since ϕ and ψ are outer. Let {b2, b1} be a minimal denominator
of the mvf h. Then b2 is a minimal left denominator of the mvf hb1. Since ea

is a scalar denominator of hb1, it is a scalar denominator of b−1
2 . Therefore,

b2 is an entire mvf, by Lemma 3.98. In the same way, it can be shown that
the mvf b1 is entire. Thus, all minimal W are entire, since W ◦ is entire
and b1 and b2 are both entire, since {b2, b1} is a minimal denominator of
h. Moreover, formula (9.30) implies that the mvf W in a chain scattering
D-representation (9.27) is entire if and only if the mvf’s b1 and b2, that are
considered in formula (9.27) are both entire. The rest of the theorem follows
from Theorem 9.22. �

The inverse impedance problem.

The next two theorems on the inverse impedance problem are analogues
of the preceding two theorems.

Theorem 9.26 Let c ∈ Π ∩ Cp×p, assume that

det {c(λ) + c#(λ)} �≡ 0,

and let the set of mvf’s A such that

A ∈ U(jpq) and c = TA[Ip]
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be described by formulas (9.41) and (9.42). Suppose further that c is subject
to one or more of the extra constraints that are presented in the first column
of Table 8.4. Then the mvf’s B◦, A, b1 and b2 that are considered in formu-
las (9.41)–(9.45) satisfy the conditions that are displayed in the remaining
columns of the table.

c
◦
B minimal A A {b2 b1}

A◦ and
real real A• may real ⇐⇒ b1 and b2

be chosen real are real
symmetric is chosen - symplectic ⇐⇒ b2 = bτ

1
antisymplectic

rational rational rational rational ⇐⇒ b1 and b2
are rational

Table 9.4.

Thus, for example, if c ∈ Cp×p is a real rational mvf, then the mvf B◦

defined by formula (9.42) with normalized x1 and x2 is also a real rational
mvf and the mvf A in the D-representation of c defined by formula (9.41)
is a real rational mvf if and only if the denominator {b2, b1} of the mvf
h is chosen to be real and rational. Moreover, every minimal A in the D-
representation of c is rational. The minimal optimal and minimal ∗-optimal
mvf’s A◦ and A• may be chosen real. If c is also symmetric, then B◦ may
be chosen antisymplectic and then A is real symplectic and rational if and
only if bτ

2 = b1 and b1 is real and rational.

Proof The theorem follows from Theorem 9.23 applied to the mvf s = TV[c],
since the mvf’s A and B◦ are connected by the relations

A = V W V and B◦ = VW ◦

and the matrix V is real and antisymplectic: VτJpV = −Jp. The mvf’s b1

and b2 in formulas (9.41) and (9.30) are the same. �

Theorem 9.27 A mvf c ∈ Cp×p has a D-representation (9.39) with an entire
mvf A if and only if the following conditions are satisfied:

(1) The mvf c is meromorphic in C and has no poles on R.

(2) det[c(λ) + c#(λ)] �≡ 0 and ln det Rc ∈ L̃p×p
1 .
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(3) The mvf

h2(λ) =
[
c(λ) + c#(λ)

2

]−1

(9.69)

is entire of exponential type.
If these conditions are in force, then, in formula (9.41), the mvf A◦ ∈
E ∩ Πm×m and every minimal A in the D-representations (9.39) is entire.
Moreover, if, in addition, c is (a) real, (b) symmetric, or (c) real and sym-
metric, then the mvf A◦ may be (and will be) chosen (a) real, (b) symplectic,
or (c) both real and symplectic, respectively, and after such a choice of A◦:

(i) A is a real entire mvf ⇐⇒ b1 and b2 are both real entire mvf’s.

(ii) A is a symplectic entire mvf ⇐⇒ b2 = bτ
1 and b1 is an entire mvf.

(iii) A is a real symplectic entire mvf ⇐⇒ b2 = bτ
1 and b1 is a real entire

mvf.

Proof The theorem follows from Theorem 9.25 applied to the mvf s =
TV[c], from the connections between the mvf’s B◦ and W ◦, and A and W ,
mentioned in the previous theorem and the connections

h(λ) = −ϕ(λ)h1(λ)ψ(λ)

= −v∗1x1(λ)−1{Ip + s(λ)}x2(λ)−1v∗2 + v∗1x1(λ)−1h2(λ)x2(λ)−1v∗2 ,

between the mvf’s h, h1 and h2 defined by formulas (9.29), (9.64) and (9.69).
In the preceding equality, v1 and v2 are p × p unitary matrices such that

{Ip + s(λ)}ϕ(λ)−1 = x2(λ)v1 and ψ(λ)−1{Ip + s(λ)} = v2x2(λ).

�
9.7 Jp,r -inner SI-dilations of c ∈ Π ∩ Cp×p

There is another representation of a mvf c ∈ Π ∩ Cp×p, as the 22 block of a
Jp,r-inner mvf Θ in C+, where

Jp,r =
[
Ir 0
0 Jp

]
if r > 0 and Jp,0 = Jp if r = 0, (9.70)

and Θ has the block decomposition

Θ =

 θ11 θ12 0
θ21 θ22 Ip

0 Ip 0

 (9.71)

that is conformal with Jp,r .
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It is easy to verify the equivalence

c ∈ Cp×p
sing ⇐⇒ Θ =

[
c Ip

Ip 0

]
belongs to U(Jp). (9.72)

Moreover, if c ∈ Π ∩ Cp×p, then

fc = c + c# belongs to Πp×p (9.73)

and, by Lemma 3.109, the number

rc = rank fc(λ) (9.74)

is constant on hfc , except possibly at a set of isolated points (where rank
fc(λ) < rc), and rank f(µ) = rc a.e. on R. Clearly,

rc = 0 ⇐⇒ c ∈ Cp×p
sing.

A Jp,r-inner mvf of the form (9.71) with θ22 = c will be called a Jp,r-inner
SI (scattering-impedance)-dilation of the mvf c. We shall show:

(1) If c has a Jp,r-inner SI-dilation, then c ∈ Π ∩ Cp×p and r ≥ rc.

(2) If c ∈ Π∩Cp×p, then there exists a Jp,r-inner SI-dilation of c with r = rc.

Let c ∈ Π ∩ Cp×p, let r = rc and assume that rc > 0. Then, by Theorem
3.110, the factorization problems

ϕ(µ)∗ϕ(µ) = fc(µ) a.e. on R (9.75)

and

ψ(µ)ψ(µ)∗ = fc(µ) a.e. on R (9.76)

admit an essentially unique pair of solutions ϕ = ϕc and ψ = ψc such that
ϕc and ψτ

c are outer mvf’s that belong to N r×p
out . Since fc ∈ L̃p×p

1 , Theorem
3.110 also guarantees that

ρ−1
i ϕc ∈ Π ∩ Hr×p

2 and ρ−1
i ψc ∈ Π ∩ Hp×r

2 .

Lemma 9.28 Let c ∈ Π ∩ Cp×p, let r = rc and suppose that rc > 0 and let
ϕc and ψc be solutions of the factorization problems (9.75) and (9.76) such
that ϕc and ψτ

c belong to N r×p
out . Then there exists a unique mvf sc ∈ Πr×r

such that

scψ
#
c = ϕc. (9.77)

Moreover, sc has unitary nontangential boundary values sc(µ) a.e. on R.
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Proof If r = p, then it is readily seen that

sc = ϕc(ψ#
c )−1 (9.78)

meets the stated requirements.
If r < p, then there exists an r × r submatrix of fc with rank equal to r

a.e. on R. Suppose first that the upper left hand r × r block of fc is such
and consider the corresponding block decompositions

ϕc = [ϕ1 ϕ2] and ψτ
c = [ψτ

1 ψτ
2 ]

with blocks ϕ1 and ψ1 of size r × r. Then the formulas[
ϕ#

1

ϕ#
2

]
[ϕ1 ϕ2] =

[
ψ1

ψ2

]
[ψ#

1 ψ#
2 ]

imply that

ϕ1(ψ
#
1 )−1 = (ϕ#

1 )−1ψ1 and ϕ#
1 ϕ2 = ψ1ψ

#
2

and hence that

ϕ1(ψ
#
1 )−1ψ#

2 = (ϕ#
1 )−1ψ1ψ

#
2 = (ϕ#

1 )−1ϕ#
1 ϕ2 = ϕ2.

Thus, the mvf

sc = ϕ1(ψ
#
1 )−1 (9.79)

meets the stated requirements.
If the upper left-hand r × r block of fc is degenerate, then there exists

a p × p permutation matrix K such that the rank of the upper left-hand
r × r block of Kτ fcK is equal to r. Then the preceding argument may be
repeated for the block decompositions

ϕcK = [ϕ1 ϕ2] and ψτ
c K = [ψτ

1 ψτ
2 ].

The equality (9.77) defines sc uniquely, because the specified mvf’s ϕc and
ψ#

c are both outer. �

Lemma 9.29 Let c ∈ Π ∩ Cp×p, let rc > 0 and let

Θc =

 sc ϕc 0
ψc c Ip

0 Ip 0

 (9.80)
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be defined in terms of the mvf’s ϕc, ψc and sc that were introduced in Lemma
9.28. Then

Θc ∈ Π(r+2p)×(r+2p) and Θ#
c Jp,rΘc = Jp,r = ΘcJp,rΘ#

c . (9.81)

Proof The inclusion in (9.81) is self-evident, since all the blocks of Θ belong
to Πk×� for appropriate choices of k and �. The first identity in (9.81) is
justified by a straightforward calculation; the second is immediate from the
first. �

Theorem 9.30 If a p × p mvf c admits a Jp,r-inner SI-dilation, then c ∈
Π ∩ Cp×p and r ≥ rc. Conversely, if c ∈ Π ∩ Cp×p and rc > 0, then c admits
infinitely many Jp,r-inner SI-dilations Θ with r = rc and all of them may be
obtained by the formula

Θ =

 b1 0 0
0 Ip 0
0 0 Ip

Θc

 b2 0 0
0 Ip 0
0 0 Ip

 , (9.82)

where Θc is defined by formula (9.80) and {b1, b2} is a denominator of sc,
i.e.,

b1 ∈ Sr×r
in , b2 ∈ Sr×r

in and b1scb2 ∈ Sr×r
in . (9.83)

Proof If Θ is a Jp,r-inner SI-dilation of c, then c = Θ22 belongs to Πp×p,
since Θ ∈ U(Jp,r) and U(Jp,r) ⊂ Π(r+2p)×(r+2p). Moreover, as

Θ(λ)∗Jp,rΘ(λ) ≤ Jp,r on h
+
Θ

with equality a.e. on R, it is readily seen that

θ11(λ)∗θ11(λ) ≤ Ir and 2(Rc)(λ) ≥ θ12(λ)∗θ12(λ) on h
+
Θ (9.84)

with equality a.e. on R and

θ#
21(λ) = θ#

11(λ)θ12(λ). (9.85)

The bounds (9.84) guarantee that θ11, θ12 and c = θ22 have holomorphic
extensions to all of C+ and that the extensions

θ11 ∈ Sr×r
in and c ∈ Cp×p.

Thus, c ∈ Π ∩ Cp×p, and the supplementary identity

θ#
12θ12 = fc (9.86)



9.7 Jp,r -inner SI-dilations of c ∈ Π ∩ Cp×p 503

implies that r ≥ rc. The second inequality in (9.84) implies that the mvf
f(λ) = ρi(λ)−1θ12(λ) is subject to the bound

f(a + ib)∗f(a + ib) ≤ (Rc)(a + ib)
2π2{a2 + (b + 1)2}

for every choice of a + ib with a ∈ R and b > 0. Thus, the inequality (3.19)
implies that ∫ ∞

−∞
f(a + ib)∗f(a + ib)da ≤ 1

π
(Rc)(i)

for every b > 0, and hence that

ρ−1
i θ12 ∈ Hr×p

2 . (9.87)

In view of (9.86) and (9.87),

θ12 = b1ϕc, where b1 ∈ Sr×r
in . (9.88)

Similar considerations based on the fact that

Θ(λ)Jp,rΘ(λ)∗ − Jp,r ≤ 0 in h+
Θ

with equality a.e. on R lead to the inequality

2(Rc)(λ) ≥ θ21(λ)θ21(λ)∗ on h
+
Θ

with equality a.e. on R. Consequently, θ21 has a holomorphic extension to
all of C+, and this extension, which we continue to denote by θ21, has the
following properties

ρ−1
i θ21 ∈ Hp×r

2 and θ21θ
#
21 = fc. (9.89)

Thus,

θ21 = ψcb2, where b2 ∈ Sr×r
in , (9.90)

and hence, upon substituting (9.88) and (9.91) into (9.85), it follows that

b#
2 ψ#

c = θ#
11b1ϕc, or (as θ#

11θ11 = Ir) b#
1 θ11b

#
2 ψ#

c = ϕc.

Consequently, by Lemma 9.28, b#
1 θ11b

#
2 = sc, i.e.,

b1scb2 = θ11. (9.91)

Therefore, since θ11 ∈ Sr×r
in , {b1, b2} is a denominator of sc; and, the system

of equalities (9.88), (9.90), (9.91) and θ22 = c is equivalent to the equality
(9.82).
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Now let c ∈ Π∩Cp×p and rc > 0, let {b1, b2} be any denominator of the mvf
sc and let Θc be defined by formula (9.80). Then, since Θc ∈ Π(r+2p)×(r+2p)

and is Jp,r unitary a.e. on R with r = rc, by Lemma 9.29, it follows that the
mvf Θ that is defined by formula (9.82) has the same properties. Therefore,
the PG transform

S = (PΘ + Q)(P + QΘ)−1, with P =
Ir+2p + Jp,r

2
= Ir+2p − Q,

belongs to Π(r+2p)×(r+2p) and is unitary a.e. on R. Thus, in order to complete
the proof that Θ is a Jp,r-inner SI-dilation of the mvf c, it remains only to
check that Θ ∈ U(Jp,r), or equivalently, that S = PG(Θ) belongs to the class
S(r+2p)×(r+2p)

in . The verification makes use of the fact that b1scb2 ∈ Sr×r
in ,

since {b1, b2} is a denominator of sc, and

(Ip +
1
2
c)−1 = Ip + TV[

c

2
] belongs to Hp×p

∞ , since TV[
c

2
] ∈ Sp×p.

By direct calculation,

S =

 s11 s12 0
0 0 Ip

s31 s32 0

 ,

where:

s32 =
(
Ip − 1

2c
) (

Ip + 1
2 c
)−1 belongs to Sp×p, since 1

2c ∈ Cp×p.

s12 = b1ϕc

(
Ip + 1

2 c
)−1 belongs to N r×p

+ .

s31 = −
(
Ip + 1

2c
)−1

ψcb2 belongs to N p×r
+ .

s11 = b1scb2 − 1
2 b1ψc

(
Ip + 1

2c
)−1

ψcb2 belongs to N r×r
+ .

Consequently, S ∈ N (r+2p)×(r+2p)
+ and, by the Smirnov maximum principle,

S ∈ Sr×r
in . Thus Θ ∈ U(Jp,r).

If Θ̃ is a Jp,r-inner SI-dilation of c with r = rc and if u ∈ Sr×r
in and

v ∈ Sr×r
in are two inner m × m mvf’s, then

Θ =

 u 0 0
0 Ip 0
0 0 Ip

 Θ̃

 v 0 0
0 Ip 0
0 0 Ip

 (9.92)
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is also a Jp,r-inner SI-dilation of c with r = rc. A Jp,r-inner SI-dilation Θ
of c with r = rc is said to be minimal if in every factorization of the form
(9.92) the mvf’s u and v are constant unitary r × r matrices. �

Theorem 9.31 If a Jp,r-inner SI-dilation Θ of c with r = rc is expressed
in the form (9.82) then it is minimal if and only if {b1, b2} is a minimal
denominator of the mvf sc.

Proof This follows easily from the definitions and formula (9.82). �

Theorem 9.32 Let c ∈ Cp×p with rc > 0 be a rational mvf. Then every
minimal Jp,r-inner SI-dilation Θ of c with r = rc is a rational mvf. Moreover,
the mvf’s Θ and c have the same McMillan degree.

Proof The solutions ϕc and ψc of the factorization problems (9.75) and
(9.76) are rational, by Theorem 3.110. Thus, the mvf sc, that is defined
by formula (9.77) is rational, since it is given explicitly by formula (9.78)
if rc = p, and by formula (9.79) if 0 < rc < p. If {b1, b2} is a minimal
denominator of a rational mvf, sc, then b1 and b2 are rational mvf’s by
assertion (1) of Theorem 3.70. Thus a minimal Θ is a rational mvf, since
all the mvf’s in formulas (9.82) and (9.80) are rational. The proof that the
McMillan degrees of Θ and c coincide may be based on Kalman minimal
realization theory for systems and will not be presented here. �

Theorem 9.33 If c ∈ Cp×p is an entire mvf of exponential type, then

(1) c ∈ Π ∩ Cp×p.

(2) Every minimal Jp,r-inner SI-dilation of c with minimal left or right
denominators of sc is an entire mvf.

Proof Let c ∈ E ∩ Cp×p. Then c ∈ Πp×p if and only if c is an entire mvf
of exponential type, since Cp×p ⊂ N p×p and, consequently, Theorem 3.108
is applicable to the entries of the mvf c. Let c ∈ Π ∩ Cp×p be an entire mvf.
Then rc > 0, except in the case when c(λ) = iα − iβλ, α∗ = α ∈ Cp×p and
β ≥ 0, β ∈ C

p×p. Let rc > 0. Then fc is an entire mvf and, by Theorem
3.111, the mvf’s ϕc and ψc are entire. Let r = rc and let b be a minimal right
denominator of ϕ#. Since ϕ#

c ∈ Πp×m is entire, b is entire: b ∈ E ∩ Sm×m
in ,

by Theorem 3.70, and hence ψ = ϕ#
c b ∈ E ∩ N p×m

+ . Moreover, ψ = θ21 is a
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solution of the factorization problem (9.76). Consequently,

ψ = ψcb2 for some b2 ∈ Sm×m
in .

Therefore,

ϕc = bb#
2 ψ#

c

and hence, bb#
2 = sc, since sc is the unique solution of equation (9.77). Since

b = scb2 ∈ Sm×m
in , b2 is a right denominator of sc. Moreover, if dR is a

minimal right denominator of sc, then scdR ∈ Sr×r
in , u = d−1

R b2 ∈ Sr×n
in and

bu−1 = scb2u
−1 = scdR belongs to N r×r

+ . Thus, bu−1 ∈ Sr×r
in and

ϕ#
c bu−1 = ψcb2u

−1 = ψcdR ∈ N p×r
+ .

Therefore, since b is a minimal right denominator of ϕ#
c , u must be constant.

Thus, b2 is a minimal right denominator of sc. By Theorem 9.31, the mvf Θ
with blocks

θ11 = scb2, θ12 = ψc, θ21 = ψcb2 and θ22 = c

is a minimal Jp,r-inner SI-dilation of c. But

scb2 = b ∈ Er×r, ϕc ∈ Er×r, ψcb2 = ϕ#
c b ∈ Ep×r and c ∈ Ep×p.

Thus, Θ is an entire mvf.
In the same way it may be checked that if d is a minimal left denominator

of ψ#
c and ϕ = dψ#

c , then ϕ = b1ϕc, where b1 is a minimal left denominator
of sc, and that a mvf Θ of the form (9.71) with

θ11 = b1sc, θ12 = b1ϕc, θ21 = ψc and θ22 = c

is an entire minimal Jp,r-inner SI-dilation of c. �

9.8 Rational approximation of mvf’s of the class Π ∩ Hp×q
∞

In this section an application of D-representation to the solution of a rational
approximation problems for mvf’s of the class Π ∩ Hp×q

∞ will be presented.
A mvf f ∈ Π ∩ Hp×q

∞ is called quasimeromorphic if a minimal scalar
denominator v of f# is a Blaschke product, i.e., if

f = vg−, where g#
− ∈ Π ∩ Hp×q

∞ (9.93)
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and

v(λ) =
n∏

k=1

γk [(λ − λk)/(λ − λk)]mk , (9.94)

where the λk are poles of f of orders mk , and the γk are constants with
|γk | = 1 that are chosen so that the Blaschke product converges if n = ∞.

If λk �= 0 for all k ≥ 1 and λ = 0 is not a limit point of the sequence {λk},
i.e., if 0 ∈ hf , then γk may be chosen such that

v(λ) =
n∏

k=1

[(1 − λ/λk)/(1 − λ/λk)]mk , (9.95)

The Blaschke condition
n∑

k=1

mkIλk

|λk |2 + 1
< ∞, where λk �= λj if k �= j, (9.96)

is necessary to insure that there exists a quasimeromorphic mvf f ∈ Π∩Hp×q
∞

with poles λk of orders mk, k ≥ 1.

Theorem 9.34 Let the sequence {λk, mk}, k ≥ 1, of complex numbers λk ∈
C− and integers mk, k ≥ 1, satisfy the Blaschke condition (9.96). Let f ∈
Lp×q
∞ be such that

f(µ) = lim
n→∞

fn(µ) a.e. on R (9.97)

where {fn}, n ≥ 1, is a sequence of rational p × q mvf’s with properties:

(a) The poles of fn are contained in the set {λk}, k ≥ 1, and the order
of each pole λj of fn is at most mj .

(b) The sequence of mvf’s fn is uniformly bounded in C+, i.e.,

‖fn‖∞ ≤ c, n ≥ 1, for some c > 0. (9.98)

Then:

(1) The mvf f is the nontangential limit of a quasimeromorphic mvf that
will also be denoted f .

(2) The poles of the quasimeromorphic mvf f are contained in the set
{λk}, k ≥ 1, and the order of every pole λj of f is at most mj , i.e.,
the Blaschke product v(λ), defined in (9.94) is a scalar denominator
of the mvf f#.
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(3) The mvf f is the limit of the sequence fn in the complex plane, i.e.,

f(λ) = lim
n→∞

fn(λ) for λ ∈ C \ {λn}∞1 . (9.99)

Moreover, f is the uniform limit of the sequence fn on every compact
set K ⊂ C+ ∪ (C−\{λn}∞)1.

Proof Let f ∈ Lp×q
∞ and assume that the sequences {λk, mk}, k ≥ 1, and

{fn}, n ≥ 1, satisfy the conditions of the theorem. Let

F (µ) =
f(µ)

(µ + i)2 and Fn(λ) =
fn(λ)

(λ + i)2 .

Then F ∈ Lp×q
1 ∩ Lp×q

2 , Fn ∈ Hp×q
1 ∩ Hp×q

∞ and F (µ) = limn→∞ Fn(µ) a.e.
on R. Moreover, since

F∨
n (t) =

1
2π

∫ ∞

−∞
e−iµtFn(µ)dµ = 0 for every t < 0

and

‖Fn(µ)‖ ≤ c

µ2 + 1
,

Lebesgue’s dominated convergence theorem implies that

F∨(t) =
1
2π

∫ ∞

−∞
e−iµtF (µ)dµ = 0 for every t < 0.

Consequently,

F (µ) =
∫ ∞

0
eiµtF∨(t)dt, with F∨ ∈ Lp×q

2 (R+);

i.e., F is the nontangential limit of a mvf from Hp×q
2 , that will also be denoted

by F . Thus, f(µ) is the nontangential limit of the mvf f(λ) = (λ + i)2F (λ),
that belongs to N p×q

+ . Since f ∈ Lp×q
∞ , the Smirnov maximum principle

guarantees that f ∈ Hp×q
∞ .

Similar arguments applied to the mvf g(µ) = v(µ)f(µ)∗ and the sequence
gn(λ) = v(λ)f#

n (λ) imply that g(µ) is the nontangential limit of a mvf in
Hq×p

∞ that will also be denoted g. Thus, f ∈ Hp×q
∞ and

f(µ) = v(µ)g∗(µ) a.e. on R, where g ∈ Hq×p
∞ .

This means that f ∈ Π ∩ Hp×q
∞ is a quasimeromorphic function and v is a

scalar denominator of f#.
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It remains to prove assertion (3) of the theorem. The Cauchy formula

f(λ) − fn(λ)
(λ + i)2

=
1

2πi

∫ ∞

−∞

f(µ) − fn(µ)
(µ + i)2(µ − λ)

dµ

yields the bounds

‖f(λ) − fn(λ)‖2

≤ |λ + i|4 1
(2π)2

∫ ∞

−∞

dµ

|µ − λ|2
∫ ∞

−∞

‖f(µ) − fn(µ)‖2

(µ2 + 1)2 dµ

=
|λ + i|4
4πIλ

∫ ∞

−∞

‖f(µ) − fn(µ)‖2

(µ2 + 1)2 dµ for λ ∈ C+.

Thus, as the Lebesgue dominated convergence theorem guarantees that the
integral on the right hand side of the last inequality tends to zero, it follows
that f(λ) is the uniform limit of the sequence fn(λ) on every compact set
K1 ⊂ C+. By the same arguments g(λ) is the uniform limit of the sequence
gn(λ) on every compact set K2 ⊂ C+. Since

f(λ) = v(λ)g#(λ) and fn(λ) = v(λ)g#
n (λ),

the mvf f(λ) is the uniform limit of the sequence fn(λ) on every compact set
K3 ⊂ C−\{λk}∞1 . Thus, f(λ) is the uniform limit of the sequence {fn(λ)}∞1
on every compact set K ⊂ C+ ∪ (C− \ {λk}∞1 ). �

Theorem 9.35 Let f ∈ Π∩Hp×q
∞ , f �≡ 0, be a quasimeromorphic function.

and let v(λ) be the minimal scalar denominator of f# with poles λk in C−
of orders mk, k ≥ 1, that is defined by formula (9.94). Then there exists a
sequence of rational mvf’s fn such that:

(1) The poles of each mvf fn are contained in the sequence {λk}m
k=1 and

the order of each pole λj of fn is at most mj , i.e., v is a scalar
denominator of f#

n .

(2) f(λ) = limn↑∞ fn(λ) for λ ∈ C \ {λk}m
1 , m ≤ ∞. Moreover, the

convergence is uniform on every compact set K ⊂ C \ {λk}m
k=1 and

f(µ) = lim
n↑∞

fn(µ) a.e. on R.

(3) ‖fn‖∞ ≤ ‖f‖∞
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Proof Let the mvf f satisfy the conditions of the theorem and let s =
f/‖f‖∞. Then s ∈ Π ∩ Sp×q , ‖s‖∞ = 1 and a minimal scalar denominator
v of s# is a Blaschke product. Let S ∈ Sn×n

in be a minimal scattering D-
representation of the mvf s with s12 = s. Then, by Theorem 9.7, v is a
minimal scalar denominator of the mvf S#. Therefore, by Theorem 3.88, S

is a BP product. If S(λ) is rational, then s(λ) is rational and there is nothing
to prove. Suppose therefore that

S(λ) =

∞
�∏

k=1

Bk(λ),

is an infinite product of elementary BP factors and let

Sm(λ) =

m
�∏

k=1

Bk(λ)

be the partial products. Then

S(λ) = lim
m→∞

Sm(λ)

and the convergence is uniform on every compact set K ⊂ C \ {λk}∞1 , by
Theorem 4.9. Since v(λ) is a scalar denominator of mvf S# and S−1

m S ∈
Sn×n

in , v is a scalar denominator of every mvf S#
m, m ≥ 1, i.e., the set of

poles of every mvf Sm is contained in {λk} and λj is a pole of Sm of order
at most mj . The 12 blocks sm(λ) of the mvf’s Sm(λ), m ≥ 1, are rational
mvf’s such that:

(1) The mvf s(λ) is uniform limit of the sequence sm(λ) of every compact
set K ⊂ C \ {λk}∞1 .

(2) The poles of sm are contained in the set {λk}∞1 and a pole λj of sm has
order at most mj .

(3) ‖sm‖∞ ≤ 1 (= ‖s‖∞).

Moreover, there exists a subsequence smk
(λ) such that

s(µ) = lim
k→∞

smk
(µ) a.e. on R,

see Theorem 4.60. Then the subsequence smk
(λ) has also the property

s(µ) = lim
k→∞

smk
(µ) a.e. on R,
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and the sequence of rational mvf’s fk(λ) = ‖f‖∞smk
(λ) have all the prop-

erties (1)–(3) that are formulated in the theorem. �

Lemma 9.36 Let f ∈ Hp×q
∞ . Then f ∈ Π ∩ Hp×q

∞ if and only if there exists
a sequence fn of quasimeromorphic mvf’s fn ∈ Hp×q

∞ such that:

(1) The distinct poles λ
(n)
1 , . . . , λ

(n)
kn

of fn satisfy the condition

sup
n

kn∑
j=1

m
(n)
j |Iλ

(n)
j |

1 + |λ(n)
j |2

< ∞, where m
(n)
j = the order of λ

(n)
j .

(2) f(λ) = limn→∞ fn(λ) uniformly on every compact set and the con-
vergence is uniform on every compact

K ⊂ C \
∞⋃

n=1

{λ(n)
j }kn

j=1.

(3) f(µ) = limn→∞ fn(µ) a.e. on R.

(4) ‖fn‖∞ ≤ ‖f‖∞.

Proof One direction of the theorem follows from a corresponding result of
Tumarkin [Tum66] on scalar functions of the class Hp∩Π: if fn is a sequence
of quasimeromorphic mvf’s from Hp×q

∞ that satisfy the conditions (1)–(4),
then f ∈ Π ∩ Hp×q

∞ .
To prove the converse, it is enough to verify the assertion for f ∈ Π∩Hp×q

∞
with ‖f‖∞ = 1. Let F ∈ Sm×m

in be a scattering D-representation of f , which
exists by Theorem 9.1, i.e., let f be the block f12 of mvf F . A generalization
of a theorem of Frostman to mvf’s by Ginzburg [Gi97] implies that the mvf’s

Fa = (F − aIm)(Im − āF )−1 for a ∈ D

are BP products for almost all parameters a ∈ D with respect to Lebesgue
measure. Then there exists a sequence an ∈ D such that an → 0 as n → ∞
and Fan are BP products that satisfy conditions (1)–(4) with F in place of
f . Then the sequence fn of the 12 blocks of Fan is a sequence of quasimero-
morphic mvf’s from Hp×q

∞ that satisfy the conditions (1)–(4). �

Theorem 9.37 Let f ∈ Hp×q
∞ . Then f ∈ Π ∩ Hp×q

∞ if and only if there
exists a sequence fn of rational mvf’s from Hp×q

∞ that satisfy the conditions
(1)–(4) of Lemma 9.36.
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Proof This follows from Theorems 9.34, 9.35 and Lemma 9.36. �

9.9 Bibliographical notes

The representations of the mvf’s s ∈ Π ∩ Sp×q and c ∈ Π ∩ Cp×p that
were discussed above are called Darlington representations, even though
the first results of this nature seem to have been obtained by V. Belevich
for rational mvf’s. More precisely, he showed that every rational real mvf
s ∈ Sp×p may be considered as a block of a rational real mvf S ∈ Sn×n

in

for some n, see the monograph [Bel68] and the references cited therein.
This scattering formalism permitted Belevich to generalize the Darlington
realization [Dar39] of a real scalar rational function c ∈ C with (Rc)(µ) > 0
on R (except for at most finitely many points) as the impedance of a passive
linear one-port circuit with only one resistor to the more general setting of
multiports. Belevich’s result was generalized to the nonrational case by P.
Dewilde [De71] and [De76]. The Darlington representations (9.4) and (9.6)
for rational real mvf’s c ∈ Cp×p were obtained independently of Belevich
by V. P. Potapov (see e.g., [EfPo73]), E. Ya. Melamud [Me72] and [Me79]
by other methods that were based on the theory of J-contractive mvf’s.
Subsequently, influenced by his participation in Potapov’s seminar, D. Z.
Arov obtained Darlington representations for mvf’s s ∈ Π ∩ Sp×q and c ∈
Π ∩ Cp×p in [Ar71] and [Ar73].

Darlington chain scattering representations with entire mvf’s W were
studied in connection with inverse problems for canonical differential sys-
tems with dissipative boundary conditions in [Ar71] and [Ar75].

Scattering D-representations for operator valued functions s ∈ S(U, Y )
were obtained in [DoH73], [Ar71], [Ar74a] and [Ar79a]. Inverse scattering,
impedance and spectral problems for inner mvf’s S(λ) and J-inner mvf’s
W (λ) and A(λ) were also studied in [De71], [De76], [DeD81a], [DeD81b],
[DeD84] and [ADD89].

The following inverse chain scattering problem was studied in Chapter 8
of [Dy89b]: given s ∈ Sp×q describe the set of all mvf’s W ∈ U(jpq) such
that

s = TW [ε] for some ε ∈ Sp×q ; (9.100)

see also [BoD06] and, for another variant, [AlD84]. Connections with the
Carathéodory-Julia theorem are discussed in [Sar94]; extensions of this
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theorem may be found in [BoK06] and a number of other papers by the
same authors. A solution W of the inverse chain scattering problem with
ε ∈ S̊p×q

const in (9.100) exists if and only if the conditions of Theorem 9.10 are
satisfied. Moreover, in this case,

ε = TW ◦
ε
[0p×q ], where W ◦

ε =
[

(I − ε ε∗)−1/2 ε(I − ε∗ε)−1/2

ε∗(I − εε∗)−1/2 (I − ε∗ε)−1/2

]
and

s = TW W ◦
ε
[0p×q ]. (9.101)

Representations of the form (9.100) with W ∈ E ∩U(jpq) and rational mvf’s
ε ∈ Sp×q were considered in [Ar01].

The Jp,r-inner SI-dilations in (9.71) is adapted from the papers [ArR07a]
and [ArR07b], which were motivated by the realizations of stationary
stochastic processes discussed in [LiPi82], [LiPa84] and [LiPi85]. The four
block mvf [θij ], i, j = 1, 2 that carries the information in (9.71) was also
considered independently in [BEO00] in their study of acoustic wave filters.
Subsequently, rational symmetric D-representations S with minimal McMil-
lan degree were studied in [BEGO07].

The equivalence of conditions (2) and (3) in Lemma 9.8 was observed by
D. Pik [Pik03] in his study of the time varying case.

The inverse problems discussed in Section 9.4 were first considered by L.
de Branges in the special case that the mvf’s

E(λ), ∆(λ)−1 = E+(λ)E#
+ (λ) and A(λ)

are entire and p = 1 in connection with his study of inverse problems for
canonical integral and differential systems; see the monograph [Br68a] and
the references cited therein; some generalizations to matrix and operator
valued functions are presented in [Br68b]. The problem of reconstructing an
entire Jp-inner mvf (resp., 2 × 2 J1-inner mvf that is meromorphic in the
full complex plane C) when either one or two of its four blocks are given
was studied in [KrOv82] (resp., [GoM97]).

A complete proof of Theorem 9.20 may be found in Theorem 1.2 of [Ar97].
A number of related block completion problems are considered in [AFK93],
[AFK94a] and [AFK94b].

The results in Section 9.8 are adapted from [Ar78]. Connections between
the classes Π∩Hr and Π∩Hp×q

r for 1 ≤ r < ∞ and rational approximation
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were studied by G. Ts. Tumarkin [Tum66] and V. E. Katsnelson [Kat93]
and [Kat94], respectively.

Scattering D-representations were used in [Ar74a] to study simple con-
servative scattering systems with losses by the Darlington method. This is
equivalent to studying simple contractive and maximal dissipative opera-
tors by their characteristic functions. Passive scattering systems with extra
properties: minimal, optimal, minimal and optimal, etc, were studied by the
same methods in [Ar79a]; see [Ar95b] for a review. An application of scat-
tering and chain scattering D-representations to the passive system realiza-
tion of rational mvf’s s ∈ Sp×q may be found in Sections 4–6 of [ArD02b].
Connections of Jp,r-inner SI-dilations with passive system theory were con-
sidered in [ArR07b]. There exist time varying generalizations of scattering
D-representations; see, e.g., [De99] and the references cited therein, and
[Pik03].
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More criteria for strong regularity

In this section a number of criteria for a mvf to belong to the class of right
(left) strongly regular J-inner mvf’s for a fixed m×m signature matrix J �=
±Im and for the specific signature matrices jpq, Jp and Jp will be obtained
and formulated in the terms of the matrix Muckenhoupt (A2) condition that
was introduced by S. Treil and A. Volberg and used by them to characterize
those weighted Ln

2 (∆) spaces (with matrix valued weights ∆(µ) ≥ 0 a.e.
on R) for which the Hilbert transform is bounded; see [TrV97]. Enroute to
these criteria we shall establish analogous criteria for a right (resp., left) γ-
generating matrix to belong to the class of right (resp., left) strongly regular
γ-generating matrices.

10.1 The matrix Muckenhoupt (A2) condition

Let

AI (∆) =
1
|I|

∫
I
∆(µ)dµ (10.1)

denote the average of a mvf ∆ ∈ Ln×n
1,loc over a finite interval I ⊂ R of length

|I|. If ∆(µ) > 0 a.e. on R and ∆±1 ∈ Ln×n
1,loc, then ∆(µ) is said to satisfy the

matrix Muckenhoupt (A2) condition if

sup
I

‖{AI (∆)}1/2{AI (∆−1)}1/2‖ < ∞. (10.2)

Lemma 10.1 If an n×n mvf ∆(µ) that is positive definite a.e. on R satisfies
the matrix Muckenhoupt (A2) condition (10.2), then

∆ ∈ L̃n×n
1 and ∆−1 ∈ L̃n×n

1 . (10.3)

515
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Proof See Lemma 2.1 in [TrV97]. �

Lemma 10.2 Let ∆±1 ∈ L̃n×n
1,loc and ∆(µ) > 0 a.e. on R. Then condition

(10.2) is equivalent to the condition

sup
I

det {AI (∆) · AI (∆−1)} < ∞. (10.4)

Proof In [TrV97] it is shown that the matrix

X = {AI (∆)}1/2{AI (∆−1)}1/2 (10.5)

is expansive, i.e., X∗ X ≥ In. Therefore, in view of Lemma 2.68, it is subject
to the inequalities

‖X‖ ≤ |detX| ≤ ‖X‖n, (10.6)

which lead easily to the equivalence of the two conditions (10.2) and
(10.4). �

Condition (10.4) will be referred to as the determinantal Muckenhoupt
condition.

Let ∆ ∈ L̃n×n
1 be positive semidefinite a.e. on R and let Ln

2 (∆) denote the
Hilbert space of n × 1 measurable vvf’s f on R with norm

‖f‖∆ = ‖∆1/2 f‖st.

Then the subspaces

D+(∆) =
∨
t≥0

R0etC
n and D−(∆) =

∨
t≤0

R0etC
n in Ln

2 (∆) (10.7)

are well defined and the inclusions etD+(∆) ⊆ D+(∆), e−tD−(∆) ⊆ D−(∆)
hold for every t ≥ 0.

Theorem 10.3 Let ∆ be a measurable n × n mvf on R that is positive
definite a.e. on R. Then ∆ meets the matrix Muckenhoupt (A2) condition if
and only if

∆ ∈ L̃n×n
1 and ‖PD−(∆)|D+ (∆)‖ < 1. (10.8)

Proof See Lemmas 2.1 and 2.2 in [TrV]. �
The second condition in (10.8) states that the angle between the past

D−(∆) and the future D+(∆) in the Hilbert space Ln
2 (∆) is strictly positive.
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Lemma 10.4 Let ∆ be an n× n mvf that is positive definite a.e. on R and
suppose that

∆ ∈ L̃n×n
1 and ln det ∆ ∈ L̃1. (10.9)

Then:

(1) The factorization problems

∆(µ) = ψ∗
−(µ) ψ−(µ) a.e. on R, with ψ#

− ∈ N n×n
out , (10.10)

and

∆(µ) = ψ∗
+(µ)ψ+(µ) a.e. on R, with ψ+ ∈ N n×n

out , (10.11)

have essentially unique solutions ψ#
− and ψ+.

(2) The equalities∨
t≤0

R0etψ−C
n = Kn

2 and
∨
t≥0

R0etψ+C
n = Hn

2 (10.12)

hold, where the closed linear spans are considered in Ln
2 .

(3) The mvf

g(µ) = ψ−(µ)ψ−1
+ (µ) (10.13)

is unitary a.e. on R.

(4) The norm of the Hankel operator

Γ(g) = Π−Mg |Hn
2

(10.14)

is equal to the norm of restricted projection, considered in Theorem
10.3, i.e.,

‖Γ(g)‖ = ‖PD−(∆)|D+ (∆)‖. (10.15)

Proof Assertions (1) and (2) follow from Theorems 3.78 and 3.79 applied to
∆(µ) and ∆(−µ). Assertion (3) follows from (10.10) and (10.11). To verify
(4), we first observe that

f+ ∈ D+(∆) if and only if ψ+f+ ∈ Hn
2 ,

whereas

f− ∈ D−(∆) if and only if ψ−f− ∈ Kn
2 .
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Thus, as

〈f+, f−〉∆ = 〈∆f+, f−〉st,

we see that

‖PD−f+‖2
∆ = sup{|〈∆f+, f−〉st| : f− ∈ D−(∆) and ‖f−‖∆ = 1},

while

〈∆f+, f−〉st = 〈ψ∗
−ψ−ψ−1

+ ψ+f+, f−〉st

= 〈gψ+f+, ψ−f−〉st = 〈gh+, h−〉st,

where h+ = ψ+f+ belongs to Hn
2 , h− = ψ−f− belongs to Kn

2 and

‖h±‖st = ‖f±‖∆ .

Thus,

‖PD−f+‖2
∆ = sup{|〈gh+, h−〉st | : h− ∈ Kn

2 and ‖h−‖st = 1}

and hence the desired result (10.15) now follows by standard arguments.
�

10.2 Criteria of strong regularity for γ-generating matrices

The first criterion that A ∈ MrsR(jpq) (resp., A ∈ M�sR(jpq)) is easily ob-
tained from the previous analysis.

Theorem 10.5 If A ∈ Mr(jpq) and ∆r is defined by the formula in (7.29),
then

A ∈ MrsR(jpq)

⇐⇒ ∆r satisfies the matrix Muckenhoupt (A2) condition

⇐⇒ ∆r satisfies the determinantal Muckenhoupt condition.

If A ∈ M�(jpq) and ∆� is defined by the formula in (7.29), then

A ∈ M�sR(jpq)

⇐⇒ ∆� satisfies the matrix Muckenhoupt (A2)condition

⇐⇒ ∆� satisfies the determinantal Muckenhoupt condition.
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Proof Let A ∈ Mr(jpq) and let Ã be defined by formulas (7.86) and (7.87).
Then Ã ∈ Mr(jm) and, by Lemma 7.36, A ∈ MrsR(jpq) ⇐⇒ Ã ∈ MrsR(jm).
Let

g̃ = T
Ã

[Im ].

Then, in view of Theorems 7.38 and 7.22,

A ∈ MrsR(jpq) ⇐⇒ A ∈ MrR(jpq) and ‖Γ(g̃)‖ < 1. (10.16)

Suppose now that ∆r satisfies the matrix Muckenhoupt (A2) condition. Then
∆−1

r ∈ L̃m×m
1 and hence by Lemma 7.39, A ∈ MrR(jpq). Moreover, by The-

orem 10.3 and Lemma 10.4, ‖Γ(g̃)‖ < 1. Consequently, A ∈ MrsR(jpq). Con-
versely, if A ∈ MrsR(jpq), then A ∈ MrR(jpq) and ‖Γ(g̃)‖ < 1 by Theorem
7.22. Therefore, by Theorem 10.3 and Lemma 10.4, ∆r must satisfy the
matrix Muckenhoupt (A2) condition. �

Theorem 10.6 Let A ∈ Mr(jpq) and let

s◦21 =


s21 if q = p[
0k×p

s21

]
if p > q

[0q×k s21] if p < q,

(10.17)

where k = |p− q| and s21 = −a
−1
22 a21. Let p◦ = max{p, q}, let ε be a unitary

p◦ × p◦ matrix and define the mvf ∆ε by the formula

∆ε(µ) = {Ip◦ − s◦21(µ)ε}∗{Ip◦ − s◦21(µ)s◦21(µ)∗}−1{Ip◦ − s◦21(µ)ε}. (10.18)

Then the following conditions are equivalent:

(1) A ∈ MrsR(jpq).

(2) At least one (and hence every one) of the five conditions in Lemma
7.13 is satisfied and ∆ε(µ) satisfies the matrix Muckenhoupt (A2)
condition for at least one unitary p◦ × p◦ matrix ε.

(3) The two mvf’s ∆ε(µ) and ∆−ε(µ) satisfy the matrix Muckenhoupt
(A2) condition for at least one unitary p◦ × p◦ matrix ε.

(4) The mvf’s ∆ε(µ) satisfy the matrix Muckenhoupt (A2) condition for
every unitary p◦ × p◦ matrix ε.
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Proof Let A ∈ Mr(jpq) and let the mvf A◦ be defined as in Lemma 7.34 if
p �= q and let A◦ = A if p = q. Then A◦ ∈ Mr(jpo ) and

A ∈ MrsR(jpq) ⇐⇒ A
◦ ∈ MrsR(jp◦),

by Lemma 7.34. Moreover, A ∈ L̃m×m
2 ⇐⇒ A◦ ∈ L̃2p◦×2p◦

2 . Thus, without
loss of generality we may assume that q = p. Then s◦21 = s21 and p◦ = p.
Moreover, it is enough to verify the equivalences (1) ⇐⇒ (2) ⇐⇒ (3) for the
specific unitary matrix ε = Ip, since

A ∈ Mr(jp) ⇐⇒ A

[
ε 0
0 Ip

]
∈ Mr(jp) (10.19)

and

A ∈ MrsR(jp) ⇐⇒ A

[
ε 0
0 Ip

]
∈ MrsR(jp) (10.20)

for any p × p unitary matrix ε. Let

∆Ip (µ) = {Ip − s21(µ)∗}{Ip − s21(µ)s21(µ)∗}−1{Ip − s21(µ)}
= {Ip − s21(µ)}{Ip − s21(µ)∗s21(µ)}−1{Ip − s21(µ)∗}

(10.21)

and set

g(µ) = TA[Ip]. (10.22)

Then

∆Ip (µ) = ψ−(µ)∗ψ−(µ) = ψ+(µ)∗ψ+(µ) (10.23)

and

g(µ) = ψ−(µ)ψ+(µ)−1, (10.24)

where, in terms of the blocks in the decomposition (7.32),

ψ− = a− + b− and ψ+ = b+ + a+. (10.25)

By Lemma 7.21,

ρ−1
i (ψ#

− )−1 ∈ Hp×p
2 and ρ−1

i ψ−1
+ ∈ Hp×p

2 .

Suppose now that (1) holds. Then ‖Γ(g)‖ < 1 and, by Lemma 7.15, A ∈
L̃m×m

2 . Moreover, in view of Lemma 10.4 and Theorem 10.3, ∆Ip (µ) satisfies
the matrix Muckenhoupt (A2) condition. Thus (1) =⇒ (2).

Suppose next that (2) holds. Then A ∈ L̃m×m
2 and hence
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(a) A ∈ MrR(jp), by Lemma 7.13.

(b) ∆Ip ∈ L̃ p×p
1 , by formulas (10.23) and (10.25).

(c) ‖Γ(g)‖ < 1, by Lemma 10.4 and Theorem 10.3.

Thus, in view of Theorem 7.22, A ∈ MrsR(jp), i.e., (2) =⇒ (1).
The equivalence (1) ⇐⇒ (2) guarantees that (1) =⇒ (3) and that (2) =⇒

(3).
Suppose now that (3) holds for ε = Ip. Then, by Lemma 10.1,

∆Ip ∈ L̃p×p
1 and ∆−1

Ip
∈ L̃p×p

1 .

Therefore,

(a− ± b−) ∈ L̃p×p
2 and (b+ ± a+) ∈ L̃p×p

2 .

Thus, A ∈ L̃ m×m
2 , i.e., (3) =⇒ (2) and hence the proof of the equivalences

(1) ⇐⇒ (2) ⇐⇒ (3) is complete.
Finally, the implication (4) =⇒ (3) is obvious and the implication (3) =⇒

(4) follows from the equivalence (10.20). �

10.3 Strong regularity for J-inner mvf’s

Let J be an m × m signature matrix. Then J �= ±Im =⇒ J = V ∗jpqV for
some m × m unitary matrix V and, if correspondingly,

W (λ) = V U(λ)V ∗,

then:

U ∈ U(J) ⇐⇒ W ∈ U(jpq)

U ∈ UrR(J) ⇐⇒ W ∈ UrR(jpq), U ∈ U�R(J) ⇐⇒ W ∈ U�R(jpq)

U ∈ UrsR(J) ⇐⇒ W ∈ UrsR(jpq) and U ∈ U�sR(J) ⇐⇒ W ∈ U�sR(jpq).

In view of Theorem 7.27, the criteria for right (resp., left) strong regularity
for mvf’s in U(jpq) may be obtained from the corresponding criteria for
the right (resp., left) strong regularity of γ-generating matrices that were
discussed in the previous section and the parametrization formula based on
formula (7.57), i.e.,

W =
[

b1 0
0 b−1

2

]
A with A =

[
a− b−
b+ a+

]
, (10.26)
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where {b1, b2} ∈ ap(W ) and A ∈ Mr(jpq).
Let

s21 = −w−1
22 w21, s12 = w12w

−1
22 , (10.27)

∆r(µ) =
[

Ip −s21(µ)∗

−s21(µ) Iq

]
and ∆�(µ) =

[
Ip s12(µ)

s12(µ)∗ Iq

]
.

Theorem 10.7 Let W ∈ U(jpq). Then:

(1) W ∈ UrsR(jpq) ⇐⇒ ∆r satisfies the matrix (or, equivalently, the
determinantal) Muckenhoupt (A2) condition.

(2) W ∈ U�sR(jpq) ⇐⇒ ∆� satisfies the matrix (or, equivalently, the
determinantal) Muckenhoupt (A2) condition.

Proof The first assertion follows from Theorems 10.5 and 7.27, and the
observation that

w22(λ)−1 w21(λ) = a+(λ)−1 b+(λ).

The second assertion then follows from (1) and the fact that

W ∈ U�sR(jpq) ⇐⇒ W∼ ∈ UrsR(jpq),

since

W∼(λ) =
[

w∼
11(λ) w∼

21(λ)
w∼

12(λ) w∼
22(λ)

]
implies that

−w∼
22(λ)−1w∼

12(λ) = −(w12(λ)w22(λ)−1)∼ = −s∼12(λ). �

Theorem 10.8 Let W ∈ U(jpq) and let the mvf ∆ε(µ) be defined by the p×q

mvf s21 = −w−1
22 w21 and the p◦ × p◦ unitary matrix ε by formulas (10.17)

and (10.18). Then the following statements are equivalent:

(1) W ∈ UrsR(jpq).

(2) W ∈ L̃ m×m
2 and the mvf ∆ε(µ) satisfies the matrix Muckenhoupt

(A2) condition for at least one (and hence every) p◦ × p◦ unitary
matrix ε.

(3) The two mvf’s ∆ε(µ) and ∆−ε(µ) satisfy the matrix Muckenhoupt
(A2) condition for at least one p◦ × p◦ unitary matrix ε.
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(4) The mvf’s ∆ε(µ) satisfy the matrix Muckenhoupt (A2) condition for
every p◦ × p◦ unitary matrix ε.

Proof The theorem follows from Theorem 7.27 and the corresponding cri-
teria for right strongly γ-generating matrices given in Theorem 10.6. �

Analogous criteria hold for left strongly regular jpq-inner matrices in which
the mvf s∼12(λ) = w∼

22(λ)−1w∼
12(λ) is considered in place of the mvf s21(λ).

Theorem 10.9 Let A ∈ U(Jp), let

c�(λ) = TA [Ip], c∼r (λ) = TA∼ [Ip] (10.28)

and let

δr(µ) = Rcr(µ), δ�(µ) = Rc�(µ) a.e. on R. (10.29)

Then:

(1) The following conditions are equivalent:

(a) A ∈ UrsR(Jp).

(b) A ∈ L̃m×m
2 and δr(µ) satisfies the matrix Muckenhoupt (A2) con-

dition.

(c) cr ∈ Cp×p
a and its spectral density δr(µ) satisfies the matrix Muck-

enhoupt (A2) condition.

(2) The following conditions are equivalent:

(a) A ∈ U�sR(Jp).

(b) A ∈ L̃m×m
2 and δ�(µ) satisfies the matrix Muckenhoupt (A2) con-

dition.

(c) c� ∈ Cp×p
a and its spectral density δ�(µ) satisfies the matrix Muck-

enhoupt (A2) condition.

Proof Let A ∈ U(Jp) and W = VAV. Then

A ∈ UrsR(Jp) ⇐⇒ W ∈ UrsR(jp). (10.30)

Let s12 = w12w
−1
22 , s21 = −w−1

22 w21,

c�(λ) = TV[s12] and cr(λ) = TV[−s21]. (10.31)

The equivalences (a) ⇐⇒ (b) in (1) and (2) are obtained from Theorems
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10.6 and 10.8, taking into account the equivalence (10.30) and the formulas
(10.31).

Next, let A ∈ Mr(jp) be the mvf considered in the factorization formula
(7.57) for the mvf W and let g = TA[Ip]. Then in view of Theorem 7.27,

A ∈ UrsR(Jp) ⇐⇒ A ∈ MrsR(jp)

and hence, by Theorem 7.33,

A ∈ UrsR(Jp) ⇐⇒ index g = 0, cr ∈ Cp×p
a and ‖Γ(g)‖ < 1. (10.32)

Thus, the implication (1a) =⇒ (1c) follows from the already established
implication (1a) =⇒ (1b).

Conversely, if (1c) is in force, then Theorem 10.3 and Lemmas 10.1 and
10.4 applied to the mvf δr(µ) imply that ‖Γ(g)‖ < 1 and index g = 0 Thus in
view of (10.32), (1a) holds and hence the equivalences in (1) are established.

Finally, (2) follows from (1), since A ∈ U�sR(Jp) ⇐⇒ A∼ ∈ UrsR(Jp). �

Remark 10.10 If A ∈ U(Jp) and [E− E+] =
√

2AV, then

δ�(µ) = E+(µ)−∗E+(µ)−1 = E−(µ)−∗E−(µ)−1 a.e. on R. (10.33)

Analogously, if [E•
− E•

+] =
√

2A∼V, then

δr(µ) = E•
−(µ)−∗E•

−(µ)−1 = E•
+(µ)−∗E•

+(µ)−1 a.e. on R. (10.34)

Remark 10.11 If U ∈ U(Jp) and

A(λ) =
[
−iIp 0

0 Ip

]
U(λ)

[
iIp 0
0 Ip

]
,

then

U ∈ UrsR(Jp) ⇐⇒ A ∈ UrsR(Jp)

and

U ∈ U�sR(Jp) ⇐⇒ A ∈ U�sR(Jp).

Moreover,

TA[Ip] = −iTU [iIp] and TA∼ [Ip] = −iTU∼ [iIp]. (10.35)
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Theorem 10.12 Let U ∈ U(J), J �= ±Im, and let the complementary m×m

orthoprojection matrices P and Q be defined by (2.1). Let

Gr(µ) = P + U(µ)∗QU(µ) and G�(µ) = P + U(µ)QU(µ)∗. (10.36)

Then:

(1) U(λ) ∈ UrsR(J) if and only if the mvf Gr(µ) satisfies the matrix (or,
equivalently, the determinantal) Muckenhoupt (A2) condition.

(2) U(λ) ∈ U�sR(J) if and only if the mvf G�(µ) satisfies the matrix (or,
equivalently, the determinantal) Muckenhoupt (A2) condition.

Proof The theorem follows from Theorem 10.7, applied to the mvf W (λ) =
V U(λ)V ∗, where V is an m×m unitary matrix such that J = V ∗jpqV , and
the formulas

Gr(µ)−1 = V ∗
[

Ip s21(µ)∗

s21(µ) Iq

]
V (10.37)

and

G�(µ)−1 = V

[
Ip −s12(µ)

−s12(µ)∗ Iq

]
V ∗, (10.38)

which are obtained by direct calculation. Thus, for example, in view of
(10.36),

V Gr(µ)V ∗ =
[
Ip 0
0 0

]
+
[
0 w21(µ)∗

0 w22(µ)∗

] [
0 0

w21(µ) w22(µ)

]
=
[
Ip + w21(µ)∗w21(µ) w21(µ)∗w22(µ)

w22(µ)∗w21(µ) w22(µ)∗w22(µ)

]
=
[
Ip −s21(µ)∗

0 Iq

] [
Ip 0
0 w22(µ)∗w22(µ)

] [
Ip 0

−s21(µ) Iq

]
for almost all points µ ∈ R. Therefore, Gr(µ) is invertible and (10.37) holds.
Similar considerations lead to (10.38). �

10.4 A mvf U ∈ E ∩ UrsR (J1) that is not in L2×2
∞

In this section, a one parameter family of 2 × 2 mvf’s At(λ) such that At ∈
E ∩U�sR(J1) and At �∈ L2×2

∞ and hence A∼
t ∈ E ∩UrsR(J) and A∼

t �∈ L2×2
∞ will

be presented. This example serves to show that the inclusions U(J)∩Lm×m
∞ ⊆

UrsR(J) and U(J) ∩ Lm×m
∞ ⊆ U�sR(J) are proper.
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Let

St(λ) =
∞∑

n=0

(−1)n λ2n+1

Γ(1 + t + 2n)
for t > −1, (10.39)

where Γ(λ) denotes the Gamma function.
In [Dz84] the integral representation formula

St(λ) =


λ

Γ(t)

∫ 1

0
(1 − x)t−1 cos λxdx for 0 < t ≤ 1

1
Γ(t − 1)

∫ 1

0
(1 − x)t−2 sin λxdx for 1 < t < 2,

(10.40)

is used to show that St(λ) is an entire function of exponential type and that
for 0 < t < 2, St(λ) has real simple roots and that for µ > 0,

St(µ) = µ1−t cos
(
µ − π

2
t
)

+ O(µ−1) as µ → +∞. (10.41)

The supplementary asymptotic formula

S′
t(µ) =

{
µ1−t sin(µ − π

2 t) + O(1) if 0 < t < 1

−µ1−t sin(µ − π
2 t) + O(1) if 1 < t < 2,

(10.42)

for the derivative S′
t(λ) with respect to λ of St(λ) as µ ↑ ∞ was obtained in

[ArD01b], pp. 294–295.
Let

ft(λ) = St(λ) + iS′
t(λ) and ∆t(λ) = ft(λ)f#

t (λ).

Then

∆t(µ) = |ft(µ)|2 = |St(µ)|2 + |S′
t(µ)|2 for µ ∈ R

and, in view of formulas (10.40)–(10.42),

f1(λ) = ie−iλ, ∆1(λ) ≡ 1

and

lim
µ↑∞

∆t(µ)
|µ|2−2t

= 1 for 0 < t < 2. (10.43)

Clearly, ∆t(λ) is an entire function of exponential type. Moreover, if 1/2 <

t < 3/2, then:
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(1) ∆t(µ) satisfies the Muckenhoupt (A2) condition.

(2) ∆±1
t ∈ L̃1.

(3) ∆t is of Cartwright class.

(4) ∆t ∈ Π.

Items (1)–(3) follow from (10.43); (4) then follows from Theorem 3.108.
Thus, the factorization problems

∆t(µ) = |ϕt(µ)|2, ϕt ∈ Nout, (10.44)

have unique solutions that meet the normalization conditions ϕt(0) > 0. By
Theorem 3.111, they are entire functions of exponential type. Let

ct(λ) =
1
πi

∫ ∞

−∞

{
1

µ − λ
− µ

1 + µ2

}
∆−1

t (µ)du, αt = τ(ϕt),

Et
+(λ) = ϕt(λ), Et

−(λ) = eiαtλϕ#
t (λ)

and

At(λ) =
1√
2

[
−c#

t (λ)Et
−(λ) ct(λ)Et

+(λ)
Et

−(λ) Et
+(λ)

]
V.

Then, in view of Theorems 10.9 and 9.15, ct ∈ Π and

At ∈ E ∩ U�sR(J1) if 1/2 < t < 3/2.

However,

At �∈ L2×2
∞ if 1/2 < t < 3/2 and t �= 1,

because

At ∈ L2×2
∞ =⇒ ∆t ∈ L∞ and ∆−1

t ∈ L∞

whereas, the asymptotic formula (10.43) implies that

∆t(µ) −→ ∞ as µ −→ ∞ if 1/2 < t < 1

and

∆t(µ)−1 −→ ∞ as µ −→ ∞ if 1 < t < 3/2.
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10.5 Right and left strongly regular de Branges matrices

Let E be a regular de Branges matrix that meets the condition (5.129)
and let AE denote the characteristic mvf of the simple LB Jp-node ΣE =
(R0, CE;B(E), Cm) that was defined in Theorem 6.15. Then AE is the unique
perfect mvf in U0(Jp) that is related to E by (5.130). By Theorem 6.15,
the unitary operator U∗

2 from B(E) onto H(AE) that is given by formula
(6.22) is a unitary similarity operator from the node ΣE onto the simple LB
Jp-node Σ̊ = (R0, C̊;H(AE), Cm). Moreover, the characteristic mvf of the
dual simple LB Jp-node (ΣE)∗ = (−R∗

0, CE;B(E), Cm) is equal to A∼
E
(λ) =

AE(−λ)∗; and (ΣE)∗ is unitarily similar to the simple LB Jp-node Σ̊∗ =
(−R∗

0, C̊;H(A∼
E
), Cm).

In view of Theorem 6.6, the unitary similarity operators from ΣE to Σ̊
and (ΣE)∗ to Σ̊∗ are given by the formulas

(Frg)(λ) =
1√
2π

CE(I − λR0)−1g for g ∈ B(E) (10.45)

and

(F�g)(λ) =
1√
2π

CE(I + λR∗
0)

−1g for g ∈ B(E), (10.46)

respectively. Moreover, Fr = U∗
2 ,

(F�g)(λ) = A∼
E
(λ)(Frg)(−λ) (10.47)

and explicit expressions for U∗
2 and CE are given in Theorem 6.15.

Since Frg ∈ H(AE) and F�g ∈ H(A∼
E
) when g ∈ B(E) and H(U) ⊂ Πm

when U ∈ U(J), both of these vvf’s have nontangential boundary values a.e.
on R.

A regular de Branges matrix E(λ) that meets the constraint (5.129) will be
called right strongly regular (resp., left strongly regular) if Frg ∈ Lm

2
for every g ∈ B(E) (resp., F�g ∈ Lm

2 (R)) for every g ∈ B(E); the corre-
sponding de Branges space B(E) will be called right or left strongly regular
accordingly.

Recall that if E = [E− E+] is a regular de Branges matrix that satisfies
the condition (5.129), then, by Theorem 5.69, (R0E±)u ∈ B(E) for every u ∈
C

p; and E is right (resp., left) strongly regular if and only if AE ∈ UrsR(Jp)
(resp., A∼

E
∈ UrsR(Jp)). Moreover, A∼

E
∈ UrsR(Jp) ⇐⇒ AE ∈ U�sR(Jp).
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Theorem 10.13 Let E(λ) be a regular de Branges matrix that satisfies the
condition (5.129). Then the following statements are equivalent:

(1) E(λ) is right strongly regular.

(2) {Frg : g ∈ B(E)} is a closed subspace of Lm
2 (R).

(3) There exist a pair of positive constants γ1 and γ2 such that

γ1‖Frg‖st ≤ ‖g‖B(E) ≤ γ2‖Frg‖st.

(4) At least one of the functions

〈g, (I − λR∗
0)

−1G+u〉B(E), 〈g, (I − λR∗
0)

−1G−u〉B(E)

has nontangential boundary limits that belong to L2(R) for every
choice of g ∈ B(E) and u ∈ C

p.

Proof The equivalence of the conditions (1), (2) and (3) follows from The-
orem 5.92. It remains only to verify the equivalence of (1) and (4). To this
end, let W (λ) = VAEV and let f ∈ H(AE). Then, since VH(AE) = H(W ),
Corollary 5.56 applied to Vf guarantees that

f =
[
f1

f2

]
∈ Lm

2 ⇐⇒ f1 − f2 ∈ Lp
2 ⇐⇒ f1 + f2 ∈ Lp

2.

The equivalence (1) ⇐⇒ (4) follows from the last equivalence applied to
f = Frg and the formulas (10.45) and

C =
[

C1

C2

]
, (10.48)

where

C1 : g ∈ B(E) −→
√

π

2πi

∫ ∞

−∞
(G+(µ) + G−(µ))∗ ∆E(µ)g(µ)dµ (10.49)

and

C2 : g ∈ B(E) −→
√

π

2πi

∫ ∞

−∞
(G+(µ) − G−(µ))∗ ∆E(µ)g(µ)dµ

=
√

πg(0). (10.50)

�
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Remark 10.14 If E(λ) is a right strongly regular de Branges matrix and
the pair {b3, b4} of p × p inner mvf’s is obtained from the factorizations in
(5.195), then {b3, b4} ∈ apII (AE) and, in view of Theorem 5.98,

B(E) = H(b3) ⊕H∗(b4), (10.51)

as linear topological spaces with scalar product

〈g, h〉B(E) =
∫ ∞

−∞
h(µ)∗E+(µ)−∗E+(µ)−1g(µ)dµ. (10.52)

We remark that if E(λ) is a regular de Branges matrix and (5.129) is in
force, then the generalized transform F� is a unitary operator from B(E)
onto H(A∼

E
) and

E(λ) is left strongly regular ⇐⇒ AE ∈ U�sR(Jp) ⇐⇒ A∼
E
∈ UrsR(Jp).

Thus, an application of Theorem 5.92 to A∼
E

yields the following result:

Theorem 10.15 Let E(λ) be a regular de Branges matrix that satisfies the
conditions (5.129). Then the following statements are equivalent:

(1) E(λ) is left strongly regular.

(2) {F�g : g ∈ B(E)} is a closed subspace of Lm
2 (R).

(3) There exist a pair of positive constants γ1 and γ2 such that

γ1‖F�g‖st ≤ ‖g‖B(E) ≤ γ2‖F�g‖st.

(4) At least one of the functions

〈g, (I − λR0)−1G+u〉B(E), 〈g, (I − λR0)−1G−u〉B(E)

has nontangential boundary limits that belong to L2(R) for every
choice of g ∈ B(E) and u ∈ C

p.

Theorem 10.16 Let E(λ) be a regular de Branges matrix. Then E(λ) is
left strongly regular if and only if the density ∆E(µ) satisfies the matrix
Muckenhoupt (A2) condition.

Proof This is immediate from Theorem 10.9, applied to the perfect mvf
AE. �
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10.6 LB J-nodes with characteristic mvf’s in UrsR (J)

Theorem 10.17 Let Σ = (A, C; X, Cm) be a simple LB Jp-node with char-
acteristic mvf UΣ ∈ UrsR(Jp). Let

{b3, b4} ∈ apII (UΣ) and b2(0) = b4(0) = Ip (10.53)

and let Σ+ = (A+, C+; X+, Cp) be a simple LB I-node with characteris-
tic mvf b3(λ) and Σ− = (A−, C−; X−, Cp) be a simple LB (−I)-node with
characteristic mvf b4(λ)−1. Then there exists an invertible operator

R ∈ L(X, X+ ⊕ X−) with R−1 ∈ L(X+ ⊕ X−, X) (10.54)

such that

A = R−1
[
A+ 0
0 A−

]
R, and [0p×p Ip]C = [C+ C−]R. (10.55)

Moreover,

X− = {0} ⇐⇒ b4(λ) ≡ Ip ⇐⇒ UΣ ∈ Nm×m
+

and

X+ = {0} ⇐⇒ b3(λ) ≡ Ip ⇐⇒ UΣ ∈ Nm×m
− .

Proof The given simple LB nodes Σ, Σ+, Σ− can be replaced by their
functional models. In these models, A, A−, A+, are backwards shifts in the
spaces X = H(UΣ), X+ = H(b3) and X− = H∗(b4), respectively, and the
operators C, C+, C− map vvf’s g from their respective domains X, X+, X−
into

√
2πg(0). Let LA denote the operator from H(b3) ⊕H∗(b4) onto H(A)

that is defined by formula (5.205). Then, in the given setting, Theorem 5.102
is applicable to the mvf A(λ) = UΣ(λ) and the operator R = (LA)−1 satisfies
the stated assertions. �

Theorem 10.18 Let Σ = (A, C; X, Cm) be an LB jpq-node with character-
istic mvf UΣ ∈ U(jpq). Let

{b1, b2} ∈ ap(UΣ), b1(0) = Ip, b2(0) = Iq, (10.56)

and let Σ+ = (A+, C+; X+, Cp) be an LB I-node with characteristic mvf
b1(λ) and let Σ− = (A−, C−; X−, Cq) be an LB (−I)-node with characteristic
mvf b2(λ)−1.
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(1) If the nodes Σ, Σ+ and Σ− are simple and UΣ ∈ UrsR(jpq), then there
exists an invertible operator

R ∈ L(X, X+ ⊕ X−) with R−1 ∈ L(X+ ⊕ X−, X), (10.57)

such that

A = R−1
[
A+ 0
0 A−

]
R, C± = P±CR−1|X± , (10.58)

where P+ = P = (Im +jpq)/2 and P− = Q = (Im −jpq)/2. Moreover,

X− = {0} ⇐⇒ b2(λ) ≡ Iq ⇐⇒ UΣ ∈ Nm×m
+

and

X+ = {0} ⇐⇒ b1(λ) ≡ Ip ⇐⇒ UΣ ∈ Nm×m
− .

(2) Conversely, if (10.58) and (10.57) hold for the nodes Σ, Σ+ and Σ−,
then UΣ ∈ UrsR(jpq).

Proof A proof of the first statement may be based on the description of the
space H(UΣ) for UΣ ∈ UrsR(jpq) that is furnished in the proof of Theorem
5.81, in much the same way that Theorem 10.17 was verified.

The verification of the second assertion rests on the fact that the trans-
forms TΣ+ and TΣ− based on the nodes Σ+ and Σ− map X+ and X− into
Lp

2 and Lq
2, respectively, and the fact that if

f =
[
g

h

]
∈ H(UΣ) and UΣ ∈ U(jpq),

then

f ∈ Lm
2 ⇐⇒ g ∈ Lp

2 ⇐⇒ h ∈ Lq
2. �

An LB J-node Σ = (A, C; X, Y ) is called a Volterra node if its
main operator A is a Volterra operator (i.e., if A is a compact operator
and its spectrum σ(A) = {0}) and C is compact). A simple LB J-node
Σ = (A, C; X, Cm) is a Volterra node if and only if UΣ ∈ E ∩U0(J); see e.g.,
[Bro72].

If UΣ ∈ E ∩ U0(J), i.e., if the simple node Σ is a Volterra node, then
the bj(λ) are entire inner functions and consequently the nodes Σ+ and Σ−
considered in the preceding two theorems are Volterra nodes. If m = 2,
then b1(λ) = b3(λ) = eiλτ3 and b2(λ) = b4(λ) = eiλτ4 , where τ3 = τ−

U ≥ 0,
τ4 = τ+

U ≥ 0 and U = UΣ. The functional models based on the backwards
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shift acting in H(b3) and H∗(b4) are of course still applicable. However, since
H(b3) = L2([0, τ3])∧ and H∗(b4) = L2([−τ4, 0])∧, the identities

h(λ) =
∫ τ3

0
eiλah∨(a)da =⇒ (R0h)(λ) = i

∫ τ3

0
eiλb

∫ τ3

b
h∨(a)dadb

and

h(λ) =
∫ 0

−τ4

eiλah∨(a)da =⇒ (R0h)(λ) = −i

∫ 0

−τ4

eiλb

∫ b

−τ4

h∨(a)dadb

lead to well known functional models based on integration operators acting
in the indicated subspaces of L2. In particular, the functional model of a
simple Volterra LB I-node with characteristic function eiλτ3 may be chosen
as Σ+ = (A+ , C+; X+, C), where X+ = L2([0, τ3]),

(A+u)(t) = i

∫ τ3

t
u(a)da and C+u =

∫ τ3

0
u(a)da for u ∈ X+.

In much the same way, the functional model of a simple Volterra LB (−I)-
node with characteristic function e−iλτ4 may be chosen equal to the node
Σ− = (A−, C−; X−, C), where X− = L2([−τ4, 0])),

(A−u)(t) = i

∫ t

−τ4

u(a)da and C−u =
∫ 0

−τ4

u(a)da for u ∈ X−.

Correspondingly, the operator R considered in the preceding two theorems
acts from X onto L2([0, τ3]) ⊕ L2([−τ4, 0]).

Analogues of the preceding two theorems for the case UΣ ∈ U�sR(J) may
be obtained by applying the preceding results to (UΣ)∼ and recalling that

UΣ ∈ U�sR(J) ⇐⇒ (UΣ)∼ ∈ UrsR(J).

10.7 Bibliographical notes

Most of the material in this chapter is adopted from [ArD01b] and [ArD03b].
The properties of left strongly regular spaces B(E) and of operators in these
spaces related to the backwards shift R0 were studied by other methods in
the case that E+(λ) and E−(λ) are scalar meromorphic functions in C by G.
M. Gubreev [Gu00b], as an application of his theory of regular quasiexpo-
nentials. In particular, he noted the connection between the class U�sR(Jp)
and the class of left strongly regular de Branges spaces B(E) when p = 1
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and E(λ) is entire. Some of his results may be obtained from the analysis in
the last two sections.

The example presented in Section 10.4 is adapted from [ArD01b].
The function St(λ) defined in formula (10.39) has been investigated exten-

sively by M. M. Dzhrbashyan [Dz84] in his study of interpolation problems
for entire functions of finite order and finite type that belong to L2 with
some weight ω(µ).

Theorem 10.18 was announced in [Ar00a]; a proof was furnished in
[ArD04a].

The evolution semigroup T (t) = eitA, t ≥ 0, based on the main operator
A of a simple generalized LB I-node Σ = (A, B, N : X, U, Y ) is bistable in
the sense that T (t) → 0 and T (t)∗ → 0 strongly as t ↑ ∞ if and only if the
characteristic function UΣ(λ) has unitary nontangential boundary values
a.e. on R (i.e., UΣ is biinner). see [ArNu96] and [St05]. Moreover, if Σ =
(A, C; X, Cm) is a simple LB J-node and its characteristic mvf UΣ ∈ UrsR(J),
then Theorem 10.18 implies that:

(1) T (t) is bistable if UΣ ∈ Nm×m
+ .

(2) T (−t) is bistable if U#
Σ ∈ Nm×m

+ .

(3) If UΣ �∈ Nm×m
+ and U#

Σ �∈ Nm×m
+ , then X = X++̇X−, T (t)X+ ⊆ X+,

T (t)X− = X− for t ≥ 0 and the semigroups T+(t) = T (t)|X+ and
T−(t) = T (−t)|X− for t ≥ 0 are bistable, i.e., T (t) is a group of operators
with a two sided dichotomy property.

Analogues of Theorems 10.17 and 10.18 on LB J-nodes and J-unitary
nodes with strongly regular J-inner characteristic mvf’s and the properties
of the corresponding evolution semigroups were obtained by Z. D. Arova in
her PhD thesis [Ara02]; see also [Ara00a], [Ara00b], [Ara01] and [Ara05].
Her characterizations of the class of simple operator nodes Σ with charac-
teristic mvf UΣ ∈ UrsR(J) used somewhat different nodes than were exhib-
ited here. Thus, for example, in place of the relations (10.58), she used the
relations

A = R−1
[
A+ 0
0 A−

]
R, C± = CR−1|X± , (10.59)

where Σ+ = (A+, C+; X+, Cm) and Σ− = (A−, C−; X−, Cm) are simple LB
I-nodes and simple LB (−I)-nodes, respectively.
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Ball and Raney [BaR07] introduced the class of L2-regular mvf’s (on the
circle), which is larger than the class UrsR(J), and studied the two sided
dichotomy property of linear discrete time invariant system realizations of
L2-regular mvf’s. They also gave another characterization of right strong
regularity (on the circle) in terms of the class of Lm×m

2 regular mvf’s and
presented applications to problems of interpolation and realization.
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Formulas for entropy functionals and their
extremal values

In this chapter entropy formulas for a number of the extension problems
considered in Chapters 7 and 8 will be obtained in a uniform way that
exploits the description of the set of solutions to these problems in terms
of linear fractional transformations based on gamma-generating matrices
and J-inner mvf’s. Formulas will be obtained for the extremal value of the
entropy over the set of solutions to each of the extension problems under
consideration in the completely indeterminate case. In this treatment, the
entropy of a contractive mvf is defined to be nonnegative. Consequently, the
extremal value will be a minimum. If the sign in the definition of entropy is
reversed (as is also common in the literature), then the extremal value will
be a maximum.

11.1 Definitions of the entropy functionals

The entropy functional I(f ; ω) is defined on the set of mvf’s f ∈ Lp×q
∞ with

‖f‖∞ ≤ 1 by the formula

I(f ; ω) = −Iω

2π

∫ ∞

−∞

ln det{Iq − f(µ)∗f(µ)}
|µ − ω|2 dµ for ω ∈ C+. (11.1)

It is clear that:

(1) 0 ≤ I(f ; ω) ≤ ∞.

(2) I(f ; ω) = 0 for at least one (and hence every) ω ∈ C+ ⇐⇒ f = 0p×q .

(3) I(f ; ω) < ∞ for at least one (and hence every) ω ∈ C+ ⇐⇒
I(f ; i) < ∞.

(4) I(f ; i) < ∞ =⇒ f(µ)∗f(µ) < Iq a.e. on R.

536
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If f ∈ Sp×q , then:

I(f ; i) < ∞ =⇒ f(λ)∗f(λ) < Iq for every λ ∈ C+.

The entropy functional h(c;ω) is defined on mvf’s c ∈ Cp×p by the formula

h(c;ω) = −Iω

2π

∫ ∞

−∞

ln det Rc(µ)
|µ − ω|2 dµ for ω ∈ C+. (11.2)

If c ∈ Cp×p and s = TV[c], then s ∈ Sp×p and

Rc = (I + s)−∗(Ip − s∗s)(Ip + s)−1 (11.3)

Therefore,

h(c;ω) = I(s;ω) + ln |det{Ip + s(ω)}|, (11.4)

since

ln |det{Ip + s(ω)}| =
Iω

π

∫ ∞

−∞

ln |det{Ip + s(µ)}|
|µ − ω|2 dµ, (11.5)

because det{Ip + s(λ)} is an outer function in H∞ by Lemma 3.54. Conse-
quently,

(1) −∞ < h(c;ω) ≤ ∞.

(2) h(c;ω) < ∞ for at least one (and hence every) ω ∈ C+ ⇐⇒ h(c; i) < ∞.

11.2 Motivation for the terminology entropy functional

If x(t) is a complex p-dimensional continuous time stationary Gaussian pro-
cess with zero mean, then it admits a representation of the form

x(t) =
∫ ∞

−∞
eitµdy(µ) for t ∈ R,

where y(t) is a p-dimensional process with independent increments. If x(t)
is full rank and regular in the sense of Kolmogorov, then the covariance

E{x(t)x(s)∗} =
∫ ∞

−∞
ei(t−s)µf(µ)dµ,

where f ∈ Lp×p
1 , f(µ) ≥ 0 a.e. on R and ln det f ∈ L̃1. Let

xω(n) =
∫ ∞

−∞
bω(µ)ndy(µ) for n = 0,±1, . . . ,
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where bω(µ) = (µ − ω)/(µ − ω) and ω ∈ C+. Then xω(n) is a stationary
Gaussian sequence with zero mean and correlation matrix

E{xω(n)xω(k)∗} =
∫ ∞

−∞
bω(µ)n−kf(µ)dµ =

∫ π

−π
ei(n−k)θg(θ)dθ,

where

θ = θ(µ) =
ω − ω

i

∫ µ

0

1
|s − ω|2 ds and g(θ) = f(µ).

By a formula due to Pinsker [Pi54], the differential entropy h(xω) of the
discrete time process {xω(n)} is

h(xω) = kp +
1
4π

∫ π

−π
ln det g(θ)dθ = kp − h(c;ω), (11.6)

where c ∈ Cp×p
a , f(µ) = Rc(µ) a.e. on R and kp = (p/2) ln(4π2e).

If f ∈ Lp×q
∞ and ‖f‖∞ ≤ 1, then the mvf[

Ip f(µ)
f(µ)∗ Iq

]
may be viewed as the spectral density of a generalized m-dimensional sta-
tionary Gaussian process x(t) = col(u(t), v(t)), where u(t) and v(t) are white
noise processes with spectral densitities fuu(µ) = Ip and fvv(µ) = Iq and
cross spectral density fuv(µ) = f(µ).

By another formula of Pinsker that is presented in Theorem 10.4.1 of
[Pi64], I(f ; ω) = I(uω, vω), the amount of information per unit time
in the component uω(n) about the component vω(n) when xω(n) =
col(uω(n), vω(n)).

11.3 Entropy of completely indeterminate interpolation problems

The functionals

I(f) = I(f ; i) = − 1
2π

∫ ∞

−∞

ln det{Iq − f(µ)∗f(µ)}
1 + µ2 dµ (11.7)

and

h(c) = h(c; i) = − 1
2π

∫ ∞

−∞

ln det Rc(µ)
1 + µ2 dµ (11.8)

are of particular interest.
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Theorem 11.1 Let Γ be a Hankel operator with ‖Γ‖ ≤ 1, acting from Hq
2

into Kp
2 . The NP (Γ) is completely indeterminate if and only if

I(f) < ∞ for some f ∈ N (Γ). (11.9)

Proof Let NP(Γ) be completely indeterminate. Then

N (Γ) = TA[Sp×q ] for some A ∈ Mr(jpq)

by Theorem 7.20. Let

f0 = TA[0].

Then f0 ∈ N (Γ) and

Iq − f0(µ)∗f0(µ) = a+(µ)−∗a+(µ)−1 a.e. on R, (11.10)

where a+ is the 22 block of A and

a
−1
+ ∈ Sq×q

out ,

by definition of the class Mr(jpq). Therefore,

I(f0; ω) = −Iω

π

∫ ∞

−∞

ln |det a+(µ)|
|µ − ω|2 dµ = − ln |det a+(ω)| < ∞, (11.11)

since det a+(λ) is an outer function.
Conversely, if I(f) < ∞ for some mvf f ∈ N (Γ), then∫ ∞

−∞

ln(1 − ‖f(µ)‖)
1 + µ2 dµ > −∞, (11.12)

since

(1 − ‖A‖2)q ≤ det(Iq − A∗A) ≤ 1 − ‖A‖2

for every contractive p × q matrix A. Thus, the function

ϕ(λ) = exp
{

1
πi

∫ ∞

−∞

{
1

µ − λ
− µ

1 + µ2

}
ln(1 − ‖f(µ)‖)dµ

}
belongs to the class Sout and

1 − ‖f(µ)‖ = |ϕ(µ)| a.e. on R.

Moreover, if ξ ∈ Cp and η ∈ C
q are unit vectors and

f1(µ) = f(µ) + ϕ(µ)ξη∗,
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then f1 ∈ Lp×q
∞ , f1 − f ∈ Hp×q

∞ and

‖f1(µ)‖ ≤ ‖f(µ)‖ + |ϕ(µ)| = 1 a.e. on R.

Consequently, f1 ∈ N (Γ), and

(f1(µ) − f(µ))η = ϕ(µ)ξ =⇒ ‖(f1 − f)η‖∞ > 0;

i.e., the NP(Γ) is completely indeterminate. �

Theorem 11.2 Let b1 ∈ Sp×p
in , b2 ∈ Sq×q

in and s◦ ∈ Sp×q. The
GSIP(b1, b2; s◦) is completely indeterminate if and only if

I(s) < ∞ for some s ∈ S(b1, b2; s◦).

Proof Let b1 ∈ Sp×p
in , b2 ∈ Sq×q

in , s◦ ∈ Sp×q , f◦(µ) = b1(µ)∗s◦(µ)b2(µ)∗ and
Γ = Γ(f◦). Then, since

s ∈ S(b1, b2; s◦) ⇐⇒ b∗1(µ)s(µ)b∗2(µ) ∈ N (Γ),

the GSIP(b1, b2; s◦) is completely indeterminate if and only if the NP(Γ) is
completely indeterminate. Moreover, if f = b∗1sb

∗
2 then

I(s) = I(f).

Thus, the theorem follows from Theorem 11.1. �

Theorem 11.3 Let b3 ∈ Sp×p
in , b4 ∈ Sp×p

in and c◦ ∈ Cp×p. The
GCIP(b3, b4; c◦) is completely indeterminate if and only if

h(c) < ∞ for some c ∈ C(b3, b4; c◦).

Proof This follows from Lemma 7.68 and Theorem 11.2. �

11.4 Formulas for entropy functionals and their minimum

Let

A(µ) =
[
u11(µ) u12(µ)
u21(µ) u22(µ)

]
be a measurable m × m mvf on R with blocks u11 and u22 of sizes p × p

and q × q, respectively, such that A(µ) has jpq-unitary values a.e. on R.
Then

u22(µ)u22(µ)∗ − u21(µ)u21(µ)∗ = Iq a.e. on R, (11.13)
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and hence det u22(µ) �= 0 a.e. on R,

u−1
22 ∈ Lq×q

∞ , and ‖u−1
22 ‖∞ ≤ 1. (11.14)

Thus, the mvf

s21(µ) = −u22(µ)−1u21(µ) (11.15)

enjoys the properties

s21 ∈ Lq×p
∞ and ‖s21‖∞ ≤ 1.

Lemma 11.4 Let A(µ) be a measurable m×m mvf on R that is jpq-unitary
valued a.e. on R such that u21(µ) and u22(µ) are the boundary values of
mvf’s u21(λ) and u22(λ) that are holomorphic in C+ and

s21 = −u−1
22 u21 ∈ Sq×p and u−1

22 ∈ Sq×q
out (11.16)

and let

fε = TA[ε], ε ∈ Sp×q . (11.17)

Then

I(s21; ω) = I(s12; ω) = ln |detu22(ω)| (11.18)

and:

(1) The entropy functional is given by the formula

I(fε; ω) = I(s21; ω) + I(ε;ω) + ln |det{Iq − s21(ω)ε(ω)}| (11.19)

for every point ω ∈ C+. Formula (11.19) can also be expressed as the
algebraic sum of three entropy functionals:

I(fε; ω) = I(s21; ω) − I(kω ; ω) + I(εω ; ω), (11.20)

where

kω(λ) ≡ s21(ω)∗, (11.21)

εω(λ) = TAω
[ε], ε ∈ Sp×q (11.22)

and Aω is the jpq-unitary matrix that is defined by the formula

Aω =
[

(Ip − kωk∗
ω)−1/2 −(Ip − kωk∗

ω)−1/2kω

−(Iq − k∗
ωkω)−1/2k∗

ω (Iq − k∗
ωkω)−1/2

]
. (11.23)



542 Formulas for entropy functionals

(2) The entropy functional is subject to the bound

I(fε; ω) ≥ I(s21; ω) − I(kω ; ω) (11.24)

for every ε ∈ Sp×q, with equality if and only if

ε(λ) ≡ s21(ω)∗.

(3) The lower bound in (11.24) may be written as

I(s21; ω) − I(kω ; ω) =
1
2

ln det[u22(ω)u22(ω)∗ − u21(ω)u21(ω)∗].

(11.25)

Proof Under the given assumptions,

Iq − s21(µ)s21(µ)∗ = u22(µ)−1u22(µ)−∗ a.e. on R (11.26)

and

Iq − s12(µ)∗s12(µ) = u22(µ)−∗u22(µ)−1 a.e. on R. (11.27)

The equalities in (11.18) follow from (11.26), (11.27) and the fact that, in
view of Theorem 3.50, (detu22)−1 ∈ Sout.

Since the mvf A(µ) is assumed to be jpq-unitary a.e. on R, formulas (11.15),
and (11.17) imply that

Iq − f∗
ε fε = u−∗

22 {Iq − s21ε}−∗{Iq − ε∗ε}{Iq − s21ε}−1u−1
22 (11.28)

a.e. on R. The identity

ln |det[Iq − s21(ω)ε(ω)]| =
Iω

π

∫ ∞

−∞

ln |det{Iq − s21(µ)ε(µ)}|
|µ − ω|2 dµ (11.29)

holds, since det{Iq − s21(λ)ε(λ)} is an outer function in H∞, by Lemma
3.54 and Theorem 3.50. Formula (11.19) now follows easily from (11.18) and
(11.29).

Next, upon applying formula (11.22) to the mvf εω(λ) = TAω
[ε], it follows

that

I(εω ; ω) = I(k∗
ω ; ω) + I(ε;ω) + ln |det{Iq − s21(ω)ε(ω)}|. (11.30)

Formula (11.20) follows from (11.19) and (11.30), since

det{Ip − kωk∗
ω} = det{Iq − k∗

ωkω}.



11.4 Formulas for entropy functionals and their minimum 543

Finally, (2) follows from formula (11.20), since I(s21; ω) and I(kω ; ω) do
not depend upon the choice of the mvf ε ∈ Sp×q and

I(εω ; ω) ≥ 0 with equality if and only if εω = 0 ;

i.e., if and only if ε(λ) = s21(ω)∗. �

Corollary 11.5 Let [b+ a+] be the bottom block row of a mvf A ∈ Mr(jpq),
fε = TA[ε] and s21 = a

−1
+ b+. Then the assertions of Lemma 11.4 are in force.

Moreover,

I(fε, ω) ≥ 1
2

ln det[a+(ω)a+(ω)∗ − b+(ω)b+(ω)∗] (11.31)

for every ε ∈ Sp×q with equality if and only if

ε(λ) ≡ s21(ω)∗.

Proof The mvf A ∈ Mr(jpq) satisfies the conditions of Lemma 11.4. More-
over,

I(s21; ω) = I(f0; ω) = ln |det a+(ω)| (11.32)

by formula (11.11). Thus, (11.31) follows from the formula (11.24). �

Corollary 11.6 Let Γ be a Hankel operator acting from Hq
2 into Kp

2 and let
NP (Γ) be completely indeterminate. Then

N (Γ) = TA[Sp×q ] for some A ∈ Mr(jpq) (11.33)

and the conclusions of Corollary 11.5 are in force.

Proof This follows from Theorem 7.20 and Corollary 11.5. �

Theorem 11.7 Let W ∈ U(jpq), let {b1, b2} ∈ ap(W ) and let

δW (ω) = b2(ω)[w22(ω)w22(ω)∗ − w21(ω)w21(ω)∗]b2(ω)∗. (11.34)

Then

I(s;ω) ≥ 1
2

ln det δW (ω) for every s ∈ TW [Sp×q ] (11.35)

with equality if and only if

s(λ) = TW [ε] with ε(λ) ≡ s21(ω)∗. (11.36)
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Proof Under the given conditions, the mvf

A(µ) =
[
b1(µ)∗ 0

0 b2(µ)

]
W (µ)

belongs to Mr(jpq) and, if fε = TA[ε], then sε = TW [ε] = b1fεb2. Therefore,

I(sε; ω) = I(fε; ω)

and hence the theorem follows from Corollary 11.5. �

Corollary 11.8 Let b1 ∈ Sp×p
in , b2 ∈ Sq×q

in and s◦ ∈ Sp×q, and let the
GSIP(b1, b2; s◦) be completely indeterminate. Then S(b1, b2; s◦) = TW [Sp×q ]
for some W ∈ U(jpq) with {b1, b2} ∈ ap(W ) and the conclusions of Theorem
11.7 are in force.

Proof This follows from Theorems 7.48 and 11.7. �

Lemma 11.9 Let A ∈ U(Jp), {b3, b4} ∈ apII (A), B(λ) = A(λ)V,[
E−(λ) E+(λ)

]
=

√
2
[
Ip 0

]
B(λ), χ(λ) = E+(λ)−1E−(λ),

let

δE(ω) = b4(ω){E+(ω)E+(ω)∗ − E−(ω)E−(ω)∗}b4(ω)∗ (11.37)

and suppose that δE(ω) > 0 for some ω ∈ C+. Then:

(1) C(A) = TB [Sp×p], i.e., Sp×p ⊆ D(TB).

(2) If cε = TB [ε] for some ε ∈ Sp×p, then

h(cε; ω) = ln |det b4(ω)E+(ω)|

+ I(ε;ω) + ln |det{Ip − χ(ω)ε(ω)}| (11.38)

and

h(cε; ω) ≥ 1
2

ln det δE(ω), (11.39)

with equality if and only if ε(λ) ≡ χ(ω)∗.

Proof In view of condition (11.37), Lemma 4.70 guarantees that Sp×p ⊂
D(TB). The condition B∗(µ)JpB(µ) = jp a.e. on R implies that

R cε = R TB [ε] = E−∗
+ {Ip + χε}−∗{Ip − ε∗ε}{Ip + χε}−1E−1

+ (11.40)
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a.e. on R. Thus, as the mvf’s Ip + χε and ϕ = b4E+ belong to the class
N p×p

out , it follows that

h(cε; ω) = ln |det ϕ(ω)| + ln |det[Ip + χ(ω)ε(ω)]| + I(ε;ω).

Thus, by formula (11.30) with s21(ω) = −χ(ω),

h(cε; ω) = ln |detϕ(ω)| + I(εω ; ω) − I(kω ; ω),

where kω(λ) ≡ χ(ω)∗ and the mvf εω ∈ Sp×p is obtained from formulas
(11.22) and (11.23). Consequently, h(cε; ω) has minimum value when ε varies
over Sp×p if and only if εω(λ) ≡ 0, i.e., if and only if ε(λ) ≡ χ(ω)∗ = kω(λ),
and, if ε(λ) ≡ χ(ω)∗, then

h(cε) = ln |detϕ(ω)| − I(kω ; ω)

= ln |detϕ(ω)| + 1
2

ln det[{p−χ(ω)χ(ω)∗}

= ln |detϕ(ω)| − ln |detE+(ω)|

+
1
2

ln det{E+(ω)E+(ω)∗ − E−(ω)E−(ω)∗}

= ln |det b4(ω)| + 1
2

ln det{E+(ω)E+(ω)∗ − E−(ω)E−(ω)∗}

=
1
2

ln det δE(ω).

�

Theorem 11.10 Let b3 ∈ Sp×p
in , b4 ∈ Sp×p

in , c◦ ∈ Cp×p and let the
GCIP(b3, b4; c◦) be completely indeterminate. Let

C(b3, b4; c◦) = C(A), where A ∈ U(Jp), {b3, b4} ∈ apII (A)

and assume that det δE(ω) > 0 and that B = AV. Then the inequality
(11.39) holds for cε = TB [ε] for every ε ∈ Sp×p, with equality if and only if
ε(λ) = χ(ω)∗ and χ = b−1

22 b21.

Proof The assertions of the theorem follow from Lemma 11.9 and Theorem
7.70. �
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11.5 A matricial generalization of the entropy inequality

Theorem 11.11 If f ∈ Lp×q
∞ and ‖f‖∞ ≤ 1, then I(f) < ∞ if and only if

there exists a mvf ϕf (λ) ∈ Sq×q
out such that

ϕf (µ)∗ϕf (µ) = Iq − f(µ)∗f(µ) a.e. on R.

Moreover, this mvf ϕf is uniquely defined up to a constant unitary left factor.

Proof This follows by applying Theorem 3.78 to the mvf g = (Iq−f∗f)|ρi|−2

and then invoking the Smirnov maximum principle. �
If the conditions of Theorem 11.11 are met, then the entropy functionals

I(f ; ω) may be calculated in terms of the mvf ϕf :

I(f ; ω) = − ln |detϕf (ω)|. (11.41)

Thus, for example, formula (11.20) may be rewritten as

ln |detϕfε (ω)| = ln |detϕs21 (ω)| + ln |detϕεω (ω)| − ln |detϕkε (ω)|.

The following matricial generalization of assertion (2) of Lemma 11.4 exists
if, in addition to (11.16), the block u22(µ) of the mvf A(µ) satisfies the extra
condition

u22(µ) = β(µ)ϕ(µ)−1 a.e. on R, (11.42)

where β(µ) is a scalar function with |β(µ)| = 1 a.e. on R and ϕ(µ) is the
nontangential limit a.e. on R of a mvf ϕ ∈ Sq×q

out .
Under this assumption we consider

∆1(ω) = ϕ(ω)∗[Iq − s21(ω)s21(ω)∗]−1ϕ(ω). (11.43)

Theorem 11.12 Let A(µ) be a measurable mvf that is jpq-unitary a.e. on
R such that condition (11.16) is in force and the block u22 admits a factor-
ization of the form (11.42), and let ∆1(ω) be defined by (11.43). Then for
each point ω ∈ C+ the mvf fε = TA[ε] is subject to the inequality

ϕfε(ω)∗ϕfε(ω) ≤ ∆1(ω), (11.44)

for every ε ∈ Sp×q with I(ε) < ∞. Moreover, equality holds if and only if
ε(λ) ≡ s21(ω)∗.
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Proof Under the given conditions, the equality (11.28) may be rewritten
for ε ∈ Sp×q with I(ε) < ∞ as

ϕfε (µ)∗ϕfε (µ) =

ϕ(µ)∗{Iq − s21(µ)ε(µ)}−∗ϕε(µ)∗ϕε(µ){Iq − s21(µ)ε(µ)}−1ϕ(µ).

Therefore, since

ϕε{Iq − s21ε}−1ϕ ∈ Sq×q
out ,

it follows that

ϕfε (λ) = vεϕε(λ){Iq − s21(λ)ε(λ)}−1ϕ(λ), λ ∈ C+,

for some constant unitary q × q matrix vε. Thus,

ϕfε (ω)∗ϕfε (ω) =

ϕ(ω)∗{Iq − s21(ω)ε(ω)}−∗ϕε(ω)∗ϕε(ω){Iq − s21(ω)ε(ω)}−1ϕ(ω). (11.45)

If this equality is applied to the mvf εω(µ) = TAω
[ε] with Aω as in (11.23)

and kω = (Iq − k∗
ωkω)1/2, then

ϕεω (ω)∗ϕεω (ω) =

kω{Iq − s21(ω)ε(ω)}−∗ϕε(ω)∗ϕε(ω){I − s21(ω)ε(ω)}−1kω.

Thus, the equality (11.45) may be rewritten as

ϕfε (ω)∗ϕfε (ω) = ϕ(ω)∗k−1
ω ϕεω (ω)∗ϕεω (ω)k−1

ω ϕ(ω).

Therefore, since

ϕεω (ω)∗ϕεω (ω) ≤ Iq

with equality if and only if εω(λ) ≡ 0,

ϕfε (ω)∗ϕfε (ω) ≤ ϕ(ω)∗{Iq − s21(ω)s21(ω)∗}−1ϕ(ω)

with equality if and only if εω(λ) ≡ 0p×q , i.e., if and only if ε(λ) ≡
s21(ω)∗. �

Theorem 11.13 If the NP(Γ) is completely indeterminate and N (Γ) =
TA[Sp×q ] for some mvf A ∈ MrR(jpq) with bottom block row

[
b+ a+

]
, then

ϕf (ω)∗ϕf (ω) ≤ {a+(ω)a+(ω)∗ − b+(ω)b+(ω)∗}−1 (11.46)
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for each point ω ∈ C+ and every f ∈ N (Γ) with I(f) < ∞. Moreover,
equality holds in (11.46) if and only if

f = TA[s21(ω)∗], where s21 = −a
−1
+ b+. (11.47)

Proof Theorem 11.12 is applicable with β = 1 and ϕ = a−1
+ in (11.42). �

Corollary 11.14 Let the GSIP (b1, Iq ; s◦) be completely indeterminate and
let

S(b1, Iq ; s◦) = TW [Sp×q ],

where

W ∈ U(Jpq) and {b1, Iq} ∈ ap(W ).

Then

ϕs(ω)∗ϕs(ω) ≤ {w22(ω)w22(ω)∗ − w21(ω)w21(ω)∗}−1. (11.48)

for each point ω ∈ C+ and every s ∈ S(b1, Iq ; s◦) with I(s) < ∞. Moreover,
equality holds in (11.48) if and only if s = TW [ε] with ε(λ) ≡ s21(ω)∗, where
s21 = −w−1

22 w21.

Proof This follows from Theorem 11.12. �
If c ∈ Cp×p and h(c) < ∞, then, by Theorem 3.78, there exists a mvf

ψc ∈ N p×p
out such that

ψc(µ)∗ψc(µ) = Rc(µ) a.e. on R;

ψc is defined by c up to a constant unitary left factor.

Theorem 11.15 Let A ∈ U(Jp), B(λ) = A(λ)V,

E(λ) = [E−(λ) E+(λ] =
√

2[0 Ip]B(λ)

and assume that E ∈ N p×2p
+ and the RK KE

ω (ω) > 0 for some point ω ∈ C+

(and hence for every ω ∈ C+). Then

ψc(ω)∗ψc(ω) ≤ (E+(ω)E+(ω)∗ − E−(ω)E−(ω)∗)−1 (11.49)

for every c ∈ TB [Sp×p] with h(c) < ∞. Moreover, equality prevails in (11.49)
if and only if c(λ) = TB [χ(ω)∗], where χ = b−1

22 b21.
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Proof Under the given assumptions, c = TB [ε], and h(c) < ∞. (11.40) may
be rewritten for mvf’s c with h(c) < ∞ as

ψ∗
c (µ)ψc(µ)

= E+(µ)−∗{Ip + χ(µ)ε(µ)}−∗ϕε(µ)∗ϕε(µ){Ip + χ(µ)ε(µ)}−1E+(µ)

a.e. on R. Consequently,

ψc(ω)∗ψc(ω) = E+(ω)−∗kωϕεω (ω)∗ϕεω (ω)kωE+(ω)−1,

where

ϕεω (λ) = ϕε(λ){Ip + χ(ω)ε(λ)}−1, kω = (Ip − k∗
ωkω)−1/2,

εω(λ) = TAω
[ε] and Aω is defined by formula (11.23) but with kω(λ) ≡ χ(ω)∗.

Thus,

ψc(ω)∗ψc(ω) ≤ E+(ω)−∗(I − k∗
ωkω)−1E+(ω)−1

with equality if and only if εω(λ) ≡ 0, i.e., if and only if ε(λ) ≡ χ(λ)∗. �

Corollary 11.16 If the GCIP(b3, Ip; c◦) is completely indeterminate and

C(b3, Ip; c◦) = TB [Sp×p] (11.50)

for some mvf B ∈ U(jp, Jp) that belongs to N p×p
+ and if E =

√
2[0 Ip]B and

KE
ω (ω) > 0 for at least one point ω ∈ h+

E
, then the conclusions of Theorem

11.15 are in force for every c ∈ C(b3, Ip; c◦) with h(c) < ∞.

Proof Under the given assumptions, Theorem 11.15 is applicable and yields
the stated assertions. �

11.6 Bibliographical notes

Chover [Ch61] is possibly the first paper to consider the relevance of entropy
integrals to extension problems. However, there seemed to be little interest
in the subject before Burg considered maximum entropy interpolants in the
setting of the discrete covariance extension problem, first for the scalar case
[Bu67], and then several years later in his PhD thesis [Bu75] for the matrix
case. A linear fractional description of the set of spectral densitities for
a Feller-Krein string was used to find the density with maximal (minimal)
entropy in [DMc76]. Maximum entropy extensions were identified with band
extensions in a number of different settings by Dym and Gohberg; see, e.g.,
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[DG79], [DG80], [DG81], [DG86] and [DG88]. This theme was extended to
the setting of C∗ algebras in [GKW91].

Most of the results in this chapter were adapted from the papers
[ArK81] and [ArK83]. Minimum entropy solutions for scalar and tangen-
tial Nevanlinna-Pick problems were obtained independently in the same
way in [DeD81a] and [DeD81b]. For additional discussion, references and
examples see e.g., Chapter 11 of [Dy89b], Section 7 of [DI84], [Dy89c] and
[Lan87]. Connections of entropy evaluations with matrix balls are discussed
in Chapter 11 of [Dy89b]. Explicit formulas for the maximum entropy and
the semiradii in terms of reproducing kernels are furnished in Theorems 7.4
and 8.3 of [DI84].

Applications of extremal entropy solutions to control theory may be found
e.g., in [MuGl90], [PI97], [Fe98] and the references cited therein; applications
to rational interpolation with degree constraints are discussed in [BGL01].
Connections of a class of matrix extremal problems with maximal entropy
integrals and tangential (resp., bitangential) interpolation problems are con-
sidered in [DG95] (resp., [Dy96]). Entropy integrals for interpolation prob-
lems with singular Pick matrices are considered in [BoD98]. Maximum en-
tropy problems in the setting of upper triangular operators are treated in
[DF97] and a number of the references cited therein.
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[SzNF70] Béla Sz.-Nagy and Ciprian Foias, Harmonic Analysis of Operators on Hilbert
Space, North Holland, Amsterdam, 1970.



566 Bibliography

[Tik02] A. S. Tikhonov, Inner-outer factorization of J -contractive-valued functions. in Op-
erator Theory and Related Topics, Vol. II (M. A. Kaashoek, H. Langer and G. Popov,
eds.), (Odessa, 1997), Oper. Theory Adv. Appl., 118, Birkhäuser, Basel, 2000, pp.
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